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Extended Abstract

The computer industry is witnessing an unprecedented demand for more
functionality and performance and is continuously using silicon components with
smaller form factor and feature size. This aggressive downscaling of hardware
components has brought about several failure mechanisms that degrade the
system’s operation, threatening its dependability. Such failure mechanisms
can be the result of the natural occurring variation in the attributes of circuit
elements during the fabrication procedure, or can be attributed to the aging
and the gradual wearout of the hardware and other variability effects related to
space particles and power/ground line voltage variation. The inherent stochastic
nature of these failure phenomena contributes to the so-called performance
variation of digital systems, in the sense that system behavior and response
cannot be fully deterministic and have a dynamic component.

In the software layer, computational- and data-intensive applications, user
interaction and quality of service conditions also generate persistently varying
and unpredictable workloads, deteriorating this effect. While software
applications are becoming even more complex and resource-hungry (especially
due to the continued “virtualization” that leads to the ubiquitous use of run-time
threads and dynamic memory allocation) and since the shrinking of transistor
and interconnect dimensions is not expected to end in this decade, we can
assume that we have already entered an era of inevitable, strongly dynamic
performance variation.

Under this highly dynamic context of system operation, ensuring dependability
and meeting timing constraints seems challenging. The goal of the current
research is to study existing methodologies that mitigate performance variation
and develop related schemes that can ultimately ensure and guarantee timing
deadlines. For this reason, we first briefly discuss the dominant failure
mechanisms which create defects is the silicon layer and deteriorate the reliability
of the system. A thorough review of the prior art on the subject of reliability
mitigation is also important in order to realize the current, state-of-the-art

i



ii EXTENDED ABSTRACT

mitigation approaches and methodologies. We specifically explore the research
domain of parametric reliability, namely the mitigation techniques that protect
the system from extreme fluctuations of operation parameters, especially
regarding the timing aspects.

Then, the aforementioned reliability threats need to be captured and modeled
while their impact on the system’s performance should be described and
estimated. Hence, we employ existing tools, and suggest new ones, in order to
develop a complete framework that effectively evaluates the failure probability of
electronic components, focusing especially on the SRAM buffers of NoC routers.
While the reliability community widely uses the time-consuming Monte-Carlo
experiments to asses this metric, our framework is founded on the analytics-
based MPFP methodology, which we have studied and improved for the case of
typical 6T memory cells.

We later present a realistic case study of a closed-loop PID controller that
mitigates performance variation with a reactive DVFS response. This concept
has been discussed but was only illustrated on small benchmarks; in particular,
the integration of the approach on an embedded platform and the extension
to manage dynamic workloads has not been shown earlier. This scheme is
compared against the version of a Linux CPU frequency governor in terms of
energy consumption and timing response. Moreover, we move forward and
suggest another flavor of this scheme to perform thermal management. Again
this controller is implemented on pure hardware and illustrated with a realistic
case study.

Next, the aforementioned PID controller is improved to operate on finer
granularity, at the thread node level. The concepts of performance and deadline
vulnerability factor are introduced to support the formulation of a discrete time
control problem while the basis of this new approach utilizes the system scenario
methodology; this methodology, along with related terms and definitions, is
studied in detail. Finally, we propose proactive DVFS actuations on the
thread node level using dynamic scenarios to guarantee timelines in a cost-
efficient manner. Simulation results present significant energy gains compared
to previous frequency guardband methods while experimental results on the
hardware platform substantiate the effectiveness of our scheme.

Keywords: Variability, Reliability, Failure Mechanisms, Performance, Power,
DVFS, PID Control, Scenarios



Εκτεταμένη Περίληψη

Η βιομηχανία υπολογιστών βιώνει ολοένα κι αυξανόμενη (ανευ προηγουμένου)

ζήτηση για αυξημένη λειτουργικότητα και επίδοση, χρησιμοποιώντας συνεχώς

πυριτίο με όλο και μικρότερα μεγέθη χαρακτηριστικών και συντελεστή μορφής.

Η επιθετική σμίκρυνση των συνιστωσών υλικού οδήγησε αναπόφευκτα σε νέους

μηχανισμούς σφαλμάτων, τα οποία αποτελούν απειλή για την αξιοπιστία και την

εύρυθμη λειτουργία του συστήματος. Τα σφάλματα αυτά μπορεί να οφείλονται στις

εύλογες διακυμάνσεις των χαρακτηριστικών και διαστάσεων των στοιχείων του

κυκλώματος κατά την κατασκευή, ή να αποδίδονται στη γήρανση και τη σταδιακή

φθορά του υλικού. Η εγγενώς στοχαστική φύση αυτών των μηχανισμών είναι

η γενεσιουργός αιτία της αποκαλούμενης ‘διακύμανσης επίδοσης’ των ψηφιακών

συστημάτων, υπό την έννοια ότι η συμπεριφορά κι απόκριση του συστήματος δεν

μπορεί να είναι απόλυτα ντετερμινιστική αλλά ενέχει και μια δυναμική συνιστώσα.

Σε επίπεδο λογισμικού, η ύπαρξη εφαρμογών υπολογιστικής έντασης αλλά

και έντασης δεδομένων, η επίδραση του χρήστη αλλά και η ποιότητα της

υπηρεσίας συμβάλλουν εξίσου στη συνεχή ύπαρξη κυμαινόμενου και απρόβλεπτου

υπολογιστικού φόρτου, επιδεινώνοντας περαιτέρω την επίδοση. Με τις εφαρμογές

λογισμικού να γίνονται όλο και πιο πολύπλοκες και υπολογιστικά απαιτητικές

σε επίπεδο πόρων, ειδικά λόγω της αυξανόμενης ‘εικονικοποίησης’ που οδηγεί

σε απανταχού χρήση νημάτων εκτέλεσης και δυναμική εκχώρηση μνήμης και

δεδομένου ότι η σμίκρυνση των τρανζίστορ και των διαστάσεων συνδεσμολογίας

δεν αναμένεται να φτάσει στο τέλος της εντός της τρέχουσας δεκαετίας, μπορεί

με ασφάλεια να υποτεθεί ότι θα βιώσουμε μια εποχή αναπόδραστης διακύμανσης

επίδοσης έντονα δυναμικού χαρακτήρα.

Στα πλαίσια του δυναμικού αυτού περιβάλλοντος λειτουργίας του συστήματος, η

διασφάλιση της αξιοπιστίας και η πλήρωση των χρονικών περιορισμών φαντάζει

δύσκολη πρόκληση. Στόχος της παρούσας εργασίας είναι η μελέτη υπαρχουσών

μεθοδολογιών για τη μείωση της διακύμανσης επίδοσης και η ανάπτυξη σχετικών

μεθόδων που μπορούν να διασφαλίσουν και να εγγυηθούν τους χρονικούς

περιορισμούς. Στα πλαίσια αυτά, αρχικά θα παρουσιαστούν εν συντομία οι
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κυρίαρχοι μηχανισμοί σφαλμάτων που ευθύνονται για αστοχίες σε επίπεδο

πυριτίου και επιδεινώνουν την αξιοπιστία του συστήματος. Η ενδελεχής μελέτη

της υπάρχουσας βιβλιογραφίας στον τομέα της αξιοπιστίας συστημάτων είναι

σημαντική και για την εμπέδωση των σύγχρονων προσεγγίσεων και μεθόδων

ελέγχου της αξιοπιστίας. Πιο συγκεκριμένα, θα μελετηθεί το ερευνητικό πεδίο

της παραμετρικής αξιοπιστίας, δηλαδή οι τεχνικές προστασίας του συστήματος

από ακραίες διακυμάνσεις των παραμέτρων λειτουργίας, ειδικά σε σχέση με τις

χρονικές απαιτήσεις.

Κατόπιν, οι προαναφερθείσες απειλές αξιοπιστίας πρέπει να εντοπισθούν και να

μοντελοποιηθούν, ενώ η επίδρασή τους στην επίδοση του συστήματος πρέπει να

εξηγηθεί και να εκτιμηθεί. Για το σκοπό αυτό θα χρησιμοποιηθούν υπάρχοντα

εργαλεία αλλά και θα προταθούν καινούρια, ώστε να αναπτυχθεί ένα πλήρες

πλαίσιο αποτελεσματικής αξιολόγησης της πιθανότητας αστοχίας ηλεκτρικών

συνιστωσών, επικεντρώνοντας περαιτέρω στα κύταρρα μνήμης δρομολογητών σε

ηλεκτρονικες πλατφορμες. Παρόλο που η ερευνητική κοινότητα χρησιμοποιεί

ευρέως το χρονοβόρο μοντέλο Monte-Carlo για την αποτίμηση αυτής της
πιθανότητας, το προτεινόμενο πλαίσιο βασίζεται στην αναλυτική μεθοδολογία

MPFP που μελετήθηκε και βελτιώθηκε για την υπόθεση τυπικών 6Τ στοιχείων
κυττάρων μνήμης.

Στη συνέχεια θα παρουσιαστεί ένα ρεαλιστικό σενάριο ενός PID ελεγκτή κλειστού
βρόχου για τον περιορισμό της διακύμανσης επίδοσης μέσω μιας αντιδραστικής

απόκρισης DVFS. Η ιδέα αυτή έχει μελετηθεί αλλά μόνο σε μικρή κλίμακα πιο
συγκεκριμένα, η ενσωμάτωση της σε μια ολοκληρωμένη πλατφόρμα και η επέκτασή

της για τη διαχείριση δυναμικού φόρτου εργασίας δεν έχει εξετασθεί. Το μοντέλο

αυτό θα συγκριθεί ως προς κατανάλωση ενέργειας και χρονική απόκριση με το

μοντέλο βάσης ενός ελεγκτή συχνότητας του λειτουργικού Linux. Επιπλέον θα
προταθεί μια διαφοροποιημένη εκδοχή του μοντέλου για τη διαχείριση θερμότητας.

Ο ελεγκτής αυτός υλοποιείται και πάλι με πραγματικό υλικό και παρουσιάζεται με

ένα ρεαλιστικό σενάριο.

Εν συνεχεία, ο προαναφερθείς ελεγκτής βελτιώνεται ώστε να λειτουργήσει

με αυξημένο βαθμό λεπτομέρειας σε επίπεδο thread node level. Εισάγονται
οι έννοιες του συντελεστή ευπροσβλητότητας επίδοσης και ευπροσβλητότητας

χρονικού ορίου ώστε να στοιχειοθετηθεί ένας πρόβλημα ελέγχου διακριτού

χρόνου, ενώ η νέα αυτή προσέγγιση χρησιμοποιεί ως βάση τη μεθοδολογία

σεναρίων συστήματος. Η μεθοδολογία αυτή, αλλά και οι σχετικοί όροι και

ορισμοί, μελετώνται λεπτομερώς. Επιπρόσθετα, παρουσιάζεται μια προσαρμογή

στο περιβάλλον εκτέλεσης της μεθοδολογίας ώστε να ληφθούν υπόψη μοτίβα

διακύμανσης επίδοσης, δημιουργώντας ένα πλαίσιο ευπροσάρμοστων σεναρίων

και σημαντικά ενεργειακά οφέλη. Σε αυτό το σημείο, η διακύμανση επίδοσης

εξακολουθεί να αντιμετωπίζεται με αντιδραστική απόκριση, χωρίς να παρέχονται

χρονικές εγγυήσεις.
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Τελικώς, προτείνονται προληπτικοί χειρισμοί DVFS σε επίπεδο thread node, με
χρήση δυναμικών σεναρίων για χρονικές εγγυήσεις με οικονομικά αποδοτικό

τρόπο. Αξιοποιώντας τη μερική προβλεψιμότητα της συμπεριφοράς κάθε

εφαρμογής, αναπτύσσεται μια προσέγγιση δυναμικών σεναρίων και καθίσταται

εφικτή η λήψη οικονομικά αποδοτικών αποφάσεων DVFS. Τα αποτελέσματα
της προσομοίωσης επιτυγχάνουν σημαντικά ενεργειακά οφέλη σε σχέση με

προηγούμενες μεθόδους ελέγχου συχνότητας, ενώ τα πειραματικά αποτελέσματα

της υλοποιηθείσας διάταξης καταδεικνύουν την αποτελεσματικότητα του προτεινό-

μενου μοντέλου.





Uitgebreide Samenvatting

De computerindustrie is getuige van een ongekende vraag naar meer functiona-
liteit en prestaties en gebruikt continu siliciumcomponenten met een kleinere
vormfactor en dimensies. Deze agressieve verkleining van hardwarecomponenten
heeft verschillende faalmechanismen veroorzaakt die de werking van het systeem
verslechteren en de betrouwbaarheid ervan in gevaar brengen. Dergelijke
faalmechanismen zijn ofwel het gevolg van de natuurlijk voorkomende variatie
in de eigenschappen van circuitelementen tijdens de fabricageprocedure, of zij
kunnen worden toegeschreven aan de geleidelijke veroudering van de hardware
en andere variabiliteitseffecten die verband houden met de componenten zelf en
de variatie in de spanning van de voeding of de grond. De inherente stochastische
aard van deze faalmechanismes draagt bij aan de zogenaamde prestatievariatie
van digitale systemen, in die zin dat systeemgedrag en -respons niet volledig
deterministisch kunnen zijn en een significante dynamische component vertonen.

In de softwarelaag van de applicaties, genereren dynamische computationele
en data-intensieve applicaties, gebruikersinteracties en wisselende quality of
service-voorwaarden ook voortdurend een variërende en onvoorspelbare plat-
formbelasting, waardoor dit effect nog verslechtert. Terwijl softwaretoepassingen
nog complexer worden en meer middelen nodig hebben op het platform (vooral
vanwege de voortdurende “ virtualisatie ” die leidt tot het alomtegenwoordige
gebruik van event-gedreven taken en dynamische geheugentoewijzing) en sinds
de inkrimping van transistor- en interconnectdimensies naar verwachting nog
zal verdergaan in dit decennium, kunnen we aannemen dat we al een tijdperk
van onvermijdelijke, sterk dynamische prestatievariaties zijn binnengegaan.

Onder deze zeer dynamische context van systeemuitvoering blijkt het een
uitdaging om betrouwbaarheid te garanderen en te voldoen aan timingbeperkin-
gen. Het doel van het huidige onderzoek is om bestaande methodologieën
te bestuderen die prestatievariaties verminderen en gerelateerde schema’s
te ontwikkelen die uiteindelijk deze randvoorwaarden kunnen garanderen.
Om deze reden bespreken we eerst kort de dominante faalmechanismen die
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defecten veroorzaken in de siliciumlaag en dus een negatieve impact hebben
op de betrouwbaarheid van het systeem. Een grondige herziening van de
stand van de techniek op het gebied van beperking van betrouwbaarheid is
ook belangrijk om de huidige mitigatiebenaderingen en -methodologieën te
realiseren. We onderzoeken specifiek het onderzoeksdomein van parametrische
betrouwbaarheid, namelijk de mitigatietechnieken die het systeem beschermen
tegen extreme schommelingen van uitvoeringsparameters, vooral met betrekking
tot de timingaspecten.

Vervolgens moeten de bovengenoemde betrouwbaarheidsbedreigingen worden
vastgelegd en gemodelleerd, terwijl hun impact op de systeemprestaties
nauwkeurig moet worden beschreven en geschat. Daarom gebruiken we
bestaande CAD omgevingen als fundament en stellen nieuwe uitbreidingen voor
om een compleet raamwerk te ontwikkelen dat de faalkans van elektronische
componenten effectief evalueert, met speciale aandacht voor de SRAM-buffers
van NoC-routers. De huidige betrouwbaarheidsgemeenschap maakt op grote
schaal gebruik van tijdrovende Monte-Carlo-experimenten om deze statistiek
te beoordelen. In tegenstelling daartoe, is ons raamwerk gebaseerd op de op
analyse-gebaseerde MPFP-methodologie, die we hebben bestudeerd en verbeterd
voor het geval van typische 6T-SRAM geheugencellen.

We presenteren daarna een realistische demonstratie van een gesloten-lus
PID-controlesysteem dat de prestatievariatie vermindert door middel van een
reactieve DVFS-sturing. Dit concept is besproken, maar is alleen geïllustreerd
op kleine applicaties; met name de integratie van de aanpak op een iingebed
platform en de uitbreiding om dynamische workloads te beheren is niet eerder
getoond. Deze regeling wordt vergeleken met de versie van een Linux CPU
frequentieregelaar in termen van energieverbruik en timingreactie. Bovendien
gaan we verder en suggereren we een andere variant van dit schema om thermisch
beheer uit te voeren. Wederom is deze controller geïmplementeerd op pure
hardware en geïllustreerd met een realistische demonstratie.

Vervolgens is de eerder genoemde PID-regelaar verbeterd om te werken met
een fijnere granulariteit, op het niveau van de zogenaamde “thread-node”.
De prestaties en timing-kwetsbaarheidsfactor worden geïntroduceerd om de
formulering van een discreet tijdcontroleprobleem te ondersteunen. De basis van
deze nieuwe benadering maakt gebruik van de systeemscenario-methodologie.
Deze methodologie, samen met gerelateerde termen en definities, wordt in
detail bestudeerd. Daarnaast wordt een aanpassing op deze methodologie
getoond om zich tijdens de uitvoering zelf nog verder aan te passen aan
prestatievariabiliteitsnormen. Hierdoor wordt een adaptief scenarioschema
gecreëerd en opmerkelijke resultaten worden behaald naar energiewinst toe.
Toch worden prestatievariaties nog steeds beheerd met een reactieve respons en
worden nog geen timinggaranties gegeven.
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Ten slotte stellen we proactieve DVFS-activeringen voor met een tussenliggende
granulariteit in de taken die uitgevoerd worden. Dit wordt bekomen met
dynamische scenario’s om de tijdsbeperkingen op een kostenefficiënte manier te
garanderen. Door de gedeeltelijke voorspelbaarheid en de correlaties van het
applicatiegedrag te benutten, ontwikkelen we een dynamische scenariobenadering
en maken kosteneffectieve DVFS-beslissingen mogelijk. Simulatieresultaten
tonen aan dat we aanzienlijke energiewinsten kunnen aanbieden in vergelijking
met eerdere methoden, terwijl experimentele resultaten op een representatief
hardwareplatform de effectiviteit van onze regeling verder ondersteunen.
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Chapter 1

Introduction

In this Chapter, we focus on the concept of performance variation in digital
systems and discuss its sources, mainly the interdependence with certain
phenomena manifesting in the hardware, like process variation and aging.
First, we will briefly present the necessary terminology regarding system
reliability. Next, we will explain how reliability threats, generated as defects
and imperfections on the hardware layer can propagate through the system,
architecture and software layers and cause binary errors and performance
variation. Then, we will shortly discuss the current approaches adopted to
mitigate performance variation. Finally, an overview of the contributions of our
text will complete the Chapter.

1.1 Performance Variation in Digital Systems:
Context and Motivation

System usage in modern electronic devices is not stable; on the contrary, digital
systems now operate under a highly dynamic context as a result of uncertainties
and numerous conditional elements in the hardware and software layers. In the
latter, input data, user interaction and quality of service (QoS) requirements
result in a constantly varying taskset of applications, algorithms and their
workloads. In fact, counter to traditional applications such as the email and
accounting software, today’s applications are more dynamic and unpredictable.
Prominent examples of modern workloads can be drawn from middleware and
operating systems (OS) which are becoming increasingly complicated since
numerous hardware features are being added to enable the use of runtime
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2 INTRODUCTION

libraries, interrupts, and parallel processing. The trend for more virtualization in
relevant multimedia and communication applications, along with their complex
stimuli and multiple QoS demands also generates series of workloads with notable
dynamic components. In addition, certain real-time applications, like online
gaming, video conferences and some e-commerce transactions, access databases
and function within strict time frames that the user senses as immediate and
provide real-time information that changes frequently. These nonstop changes in
the workload of modern applications contribute to creating dynamic operation
and thus, performance variation of digital systems.

In the logic devices of the hardware, primary sources of performance variation
are reliability threats such as radiation striking, and aging. Process variability
during the fabrication procedure, such as the fluctuations in the implanted
impurity concentration or in the oxide thickness, alter transistors’ characteristics,
especially threshold voltage [250]. Certain device parameters can also
be affected by temperature; carrier mobility and velocity saturation, for
instance, are dropping with the rise of temperature. These parameters
affect metal–oxide–semiconductor field-effect transistor (MOSFET) operation
therefore, overall system performance is directly correlated to the system’s
thermal profile. On top of that, aging effects on the oxide of the MOSFET
or the interconnects are exacerbated by temperature and can provoke defects
in the physical layer that deteriorate system operation while alpha radiation
and neutron strikes can damage electronic components (especially memories)
and generate soft/transient errors. Finally, supply voltage variations are also a
growing source of dynamic variations in deeply scaled nodes.

To ensure correct bit-wise operation and mitigate the aforementioned phenomena,
computer engineers have introduced a diverse arsenal of countermeasures such
as error-correcting codes, cyclic redundancy checks, shadow latches e.t.c. These
routines usually come at a variety of costs, namely power (e.g. voltage binning
[305, 248]), area (shadow latches [82]) or timing. Timing penalties in particular
increase the execution time and introduce performance variation. Instruction-
level rollback techniques [236, 43], for instance, ensure the correct functionality
of the system by saving application data of several checkpoints into memory
buffers. After the detection of an error, system is rolled-back to the last
correct checkpoint and operation is repeated. This type of imposed performance
variation threatens timely execution and is a bottleneck for applications with
deadline constraints.

The hypothesis of eliminating reliability threats and eradicating aforementioned
sources of dynamism is unrealistic to preserve not only for today’s technology
but also for future chips. First of all, process variation and hardware defects are
expected to become more intense as the transistor miniaturization continues.
As technology nodes shrink, the amount of process variability becomes notably
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prominent since, in this case, variability affects a larger percentage of the
device proportions (length or width) and feature sizes reach fundamental
dimensions such as the light’s wavelength in optical lithography [62, 145] and
the size of atoms [145]. Secondly, extra capabilities and additional functions are
continuously being added in modern processors while the applications tend to be
more varying in time. Both the physical components (hardware) and the software
of digital systems are expected to work under an intense dynamic fashion. We
are entering, therefore, an era of inevitable performance variation and the need
to describe and understand its sources, mitigate its impact and finally ensure
system timely operation is crucial. While the source of performance variation
can be traced on both the software and hardware, in our work we mainly focus
on the latter and study how reliability phenomena trigger performance variation.
Specifically, we will explain the physical mechanisms, creating the phenomena
while briefly presenting the premises on reliability study. We will also discuss
methodologies and develop relevant software tools in an attempt to estimate
their impact on system performance; various other approaches and aspects of
prior art will be thoroughly examined as well. Finally, we will propose certain
frameworks that attempt to mitigate the variation effects, manage performance
and guarantee timing constraints in a cost-effective manner. The latter is often
neglected since many techniques adopt a design-time, worst-case approach that
uses large safety margins and is proven quite suboptimal.

1.2 Reliability of Integrated Circuits

1.2.1 Premises and Terminology

In general, reliability, availability, and serviceability/maintainability (RAS) are
features that all together describe the dependability of an electronic product;
the ability, that is, of a system to provide trusted services within a time
period1. In fact, RAS acronym was first introduced by International Business
Machines (IBM) to describe the robustness of their computers in maintaining
their availability and data integrity [253].

Definition 1. Reliability is the probability that an electronic system will
perform correct service during its operation [20].

1Over time, other characteristics of dependability have also been mentioned such as safety
and integrity. Safety is the probability that a system will either function correctly or “fail" in
a safe manner that does not cause catastrophic consequences on other related systems, user(s)
and the environment. Integrity translates to the absence of improper system alterations
during a period of operation [20].
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Fault
Inner Scope

Outer Scope

(a)

Fault
Inner Scope

Outer Scope Error

(b)

Figure 1.1: Illustration of faults and errors: a) a fault in the inner scope that is
masked or corrected, is not propagating to the outer scope; b) a fault in the
inner scope, propagated and manifesting as an error in the outer scope

Definition 2. Availability refers to the probability of an electronic system
being available and ready for correct service for a given period of time [20].

Definition 3. Serviceability (or maintainability) is the probability that a failed
system can go through repairs and modifications so that its functioning state is
restored under a specific time period [20].

We have already highlighted how the reliability phenomena, are a dominant
reason for the dynamic operation of digital systems. These phenomena
typically arise from imperfections and defects on the silicon layer yet they
can also be initiated from environmental conditions and interactions. These
mechanisms can potentially cause faults in an electronic system, like for example
a defective transistor due to oxide wearout or an open circuit because of intense
electromigration2. Engineers classify faults in three main categories:

• permanent, describing faults that remain throughout system lifetime if
repairing procedure does not occur;

• semi-permanent (or intermittent), referring to faults that persist for long
periods and are likely to recur;

• transient, a term used to characterize faults that instantly occur before
they disappear such as a a bit-flip in a memory cell caused by subatomic
particle strikes coming from cosmic rays.

The manifestation of a fault is called an error [185]. Faults are the source of
errors in digital systems however, not all faults necessarily cause an error. A

2Apart from faults in the process technology and circuit layers, they can also appear in the
software as well, like for example software bugs in the application or the operating system.
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fault in one of the inputs in a NAND gate, for instance, is masked, should
another input of the gate be at the low logic level. Faults can also be tolerated
through specific circuit and architecture designs. When a fault surfaces in a
particular scope, it is called an error. If faults are either masked or tolerated in
a given scope, they do not propagate outside hence, do not manifest as errors.
Therefore the terms fault and error are directly correlated to the specific scope
we are examining. An illustration of the above is presented in Figure 1.1, drawn
from relevant work [185]. An error that is visible to the end-user is often referred
as a failure thus, failures are a subgroup of errors propagating at the outer
scope of the overall system. Similarly to faults, errors can also be classified as
permanent, semi-permanent and transient.

1.2.2 Functional and Parametric Reliability

A variety of mechanisms can cause faults in the silicon of digital systems, ranging
from process variability and manufacturing defects – such as contaminant
particles deposited on the silicon devices – to radiation, gate-oxide degradation,
interconnect wearout and more. If the fault manifests as an error, it can provoke
either a functional or a parametric reliability violation.

Definition 4. Functional reliability violation is the event of a divergence from
correct system behavior with regards to the binary digits that are communicated,
processed and stored [228, 218].

Definition 5. Parametric reliability violation refers to the fluctuation of certain
system’s operational characteristics outside their predefined boundaries [228,
218]. These characteristics may include temperature, energy consumption, delay
etc.

M1 M2

M3

M4

A B

A

B

Y

Vdd

Vss

Figure 1.2: Schematic dia-
gram of a NAND2 gate.

A functional violation for instance corresponds to
a bit flip in a memory cell – turning a 0 into a 1 or
vice versa – triggered by cosmic ray striking this
component. Another example is the erroneous
output of a P-type metal-oxide-semiconductor
(pMOS) transistor suffering from Negative Bias
Temperature Instability (NBTI) damage [104].
A parametric violation, contrariwise, relates to
a system’s parameter fluctuating outside of set
margins; in the latter example in particular,
NBTI slows down the transistor and should its
delay exceed acceptable levels, it is rendered non-
functional even if the output of the device is
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correct. Next, we attempt to clarify all the above by showing the impact
a degraded transistor (M2) can have on the delay of a simple NAND gate (see
Figure 1.2), implemented on the NGSPICE simulator, using PTM [50] at 90nm
nodes. We adopt the definition of the propagation delay (tpd) which translates to
“the maximum time needed from the input crossing 50% to the output crossing
50%" [292]. In the absence of any degradation in the device, propagation delay
is presented in Graph 1.3a. When NBTI damages M2, this delay rises as one
can observe in Graph 1.3b. Notice that in both cases, input A does not change.
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Figure 1.3: Propagation delay for the NAND2 gate: (a) Transient response when
the M2 transistor does not suffer from NBTI; propagation delay is minimum. (b)
In this instance, M2 is damaged by NBTI and the delay increases significantly.
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A functional violation is strictly related to binary correctness; in our example,
such a violation can happen if a wrong output is produced, regardless the gate’s
timing delay. When, however, the propagation delay is estimated to exceed a
set margin, a parametric violation occurs, even if the output value is correct
bit-wise. An exploration of the gate’s delay versus the degradation of M2 device
is shown in Figure 1.4. Assuming that an upper threshold for tpd is set at 3.8ps
by the designer, we can verify how a parametric violation could occur in the
scenario when the ∆Vth of the transistor due to NBTI stress rises to (or goes
beyond) 75mV . It should be noted that such levels of threshold voltage shifts
are not uncommon for devices after yearly operation.

It should also be stressed that even though the Definitions 4 and 5 appear
complementary, they are significantly interdependent. On the one hand, a
timing violation in a logic gate that is part of a sequential circuit could
lead to a mismatch with the clock frequency of the latches and therefore
a functional violation. Another example would be a parametric reliability
violation concerning the temperature of the system’s hardware. Subthreshold
currents have an exponential dependence with temperature and since strong
leakage currents can change a Dynamic Random-Access Memory (DRAM) cell’s
data (the capacitor is gradually discharged through the subthreshold current of
the OFF transistor), the parametric violation can provoke a functional one.

On the other hand, circuit designers and computer architects have advised
ways to tackle with functional violations at the system-level scope and prevent
errors visible to the user by adding extra hardware or by imposing overheads
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Figure 1.4: Graph showing the relation between the ∆Vth of M2 because of
NBTI and the propagation delay of the NAND gate. In the instances when tpd

exceeds acceptable levels, parametric violation occurs



8 INTRODUCTION

on execution time or power, risking a transition of these parameters outside set
specifications. Deployment of specific hardware components like spare memory
rows or columns for reliability purposes is such an example. Rollback-based
mechanisms and Error Correcting Codes (ECC) are also widely adopted to
correct binary errors at the expense, however, of extra clock cycles. In these cases,
while functional violations are prevented, timing overheads of such mechanisms
contribute to performance variation and pose a threat for system parametric
reliability and specifically, timely execution. In our work, we attempt to manage
system performance and limit this type of parametric violations; other system
parameters such as temperature and power, will be briefly discussed as well.

1.3 Dealing with Performance Variation:
What is Missing?

In terms of software, modern digital systems operate on highly workload-
intensive environments, where different applications and tasks are running in
parallel, executing functionalities with many conditionalities and constraints.
We have also discussed how phenomena in the physical layer can cause reliability
violations and contribute to performance variation. These phenomena are only
expected to exacerbate as process technologies continue to scale. At the same
time, embedded systems companies are becoming more and more interested
in power consumption; laptops, smartphones and many other portable devices
operate with batteries and their recharge or replacement may be impractical and
costly. In the intensely dynamic context of modern digital systems operation,
the mitigation of performance variation and the avoidance of timing violations
under minimum power budgets is clearly challenging.

The features enabling low-power operation and the ones dealing with timing
deadlines are, in principle, complementary. On the one side, many techniques
exist that focus solely on low-power consumption, not dealing with timing
dependability. For example, processor frequency and voltage is statically set to
the lowest available points when the “Powersave” governor of the Linux kernel
[45] is selected. This technology aims to minimize dynamic power consumption.
On the other side, a first, widely-adopted methodology for ensuring dependable
performance was the worst-case approach: timing constraints were guaranteed
at design-time, after worst-case values for the error rates and task execution
times were considered. To account for Process, Temperature and Voltage
(PVT) variations, for instance, memory vendors assumed worst-case conditions
and demanded substantial design margins [284]. This approach improves the
component’s reliability nevertheless, memory access latency is kept low, limiting
overall memory speed. The two main guardband types still in industrial design
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flows are the frequency guardbands and the voltage guardbands. In the first case,
maximum clock speed is relaxed so that the variations in the delay of critical
paths would always be regarded. In practise, clock period is increased by a time
slack to account for the PVT and aging delay variations. In a similar manner,
an additional voltage guardband can be added to the nominal voltage level, to
compensate for the delay variations. These guardbands nevertheless, penalize
performance and power efficiency. As another work claims, “the performance
degradation associated with margins, shows that a 20% voltage margin to
account for voltage swings in today’s 45 nm node translates to ∼ 25% loss in
peak clock frequency” [225].

Performance boosting methodologies can be utilized to speed up the central
processing unit (CPU) clock and avoid timing violations: the “Performance”
governor of the Linux kernel sets processor speed to the highest available level
[45]. Intel’s ‘Turbo Boost” is a similar feature, statically boosting the operating
frequency outside predefined margins when the user selects it and is already used
in numerous processors like the Core i5, Core i7, Core i9 and the Xeon series
[117]. Regarding AMD, it has already introduced the “OverDrive” technology
that allows the user to overclock a CPU [12]. Evidently, while such approaches
could be used to mitigate performance variation and provide timing guarantees,
they are again clearly suboptimal in terms of energy consumption.

After realizing this, the research community started to employ adaptive control
techniques. The basic principle is to allow the integrated circuit to adapt to
certain working conditions like ambient temperature, energy and workload. In
computer architecture, for example, numerous adaptive voltage scaling (AVS)
methods exist that manage power and timing constraints [274]. Adaptive
body biasing has also been proposed as a mitigation technique for threshold
voltage variability [189, 273]. Generally, knobs in the circuit-level like voltage or
frequency, and task mapping ones such as task scheduling and migration are used
to control performance, power and other system characteristics at run-time. In
this group of self-adaptive solutions, we can find DVFS technologies [282, 59] and
multi-processor, system-on-chip (MPSoC) mapping methodologies [300, 167].
In our case, several works applying DVFS in order to maximize computation
throughput with minimum energy budgets exist [33, 68]. Nevertheless, when
examining deadline constraints in dynamic systems, most of these schemes fall
into best-effort approaches and cannot provide guarantees. Such approaches
attain “satisfactory deadline miss ratios" and can be found for example in
the domain of mixed criticality and mode scheduling [98, 106], in systems
utilizing closed-loop control [160, 162] or task mapping and scheduling [172].
Therefore, in conclusion, computer engineers and developers need to focus more
on reestablishing guarantees without the use of (too) worst-case guardbands.
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1.4 Contributions and Structure of the Thesis

1.4.1 Contributions

We explained the term of performance variation and briefly presented the basic
premises and terminology of semiconductor reliability. We also highlighted how
challenging it is to mitigate performance variation in dynamic systems while
respecting timing constraints and operating at a low-power basis. We now move
forward by underlining the contributions of our work:

• First, a classification of prior art, regarding mitigation methods for
parametric reliability violations is attempted. This study includes a
wide range of works concerning both hardware and software solutions,
pre-market and post-market techniques as well as systems in package
(SiP) and across packages.

• In the context of reliability analysis, relevant frameworks are developed
that estimate time-dependent yield and failure probability of circuits
under test. These tools are based on Monte Carlo sampling and the
Most Probable Failure Point (MPFP) technique [132] while the dominant
circuitry under test is the Static Random-Access Memory (SRAM) cell3.

• A closed-loop controller that manages performance variation and ensures
timing deadlines through proper Dynamic Voltage and Frequency Scaling
(DVFS) actuations is introduced and instantiated on a target platform
where its capabilities and limitations are explored.

• After discussing the system scenario methodology [95, 96], we examine an
enhanced version of the feedback-based controller that can operate at the
thread node granularity.

• Finally, we go beyond the system scenarios and develop a proactive DVFS
controller based on dynamic scenarios. This way, we are able to guarantee
timing deadlines on certain systems and applications which experience
performance variation. Again, the controller is deployed on pure hardware
and final results verify the approach.

3Embedded memories are one of the hardware components most susceptible to degradation
because the emphasis on cell size/area minimization induces the use of minimal-sized devices
in the cells [54].
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1.4.2 Thesis Structure

The structure of the text is organized as follows: Chapter 2 studies the physical
mechanisms of the most prominent reliability phenomena threatening electronic
systems. These are the sources that under certain conditions create a fault
that can manifest as an error/failure. In Chapter 3, we discuss the prior
art on functional and parametric reliability since the two terms are closely
connected. Emphasis is given however, on the mitigation techniques for
parametric reliability and especially for timing violations. Chapter 4 presents
specific tools we have developed, in order to efficiently capture and estimate
the impact of pronounced reliability phenomena, namely BTI and Random
Dopant Fluctuation (RDF) [7], on a system’s performance. In Chapter 5, the
feedback-based controller is introduced; by proper DVFS decisions we aim
to ensure performance dependability and “absorb" the timing overheads of
RAS interventions. Chapter 6 discusses the system scenario methodology and
shows an enhanced version of the controller, operating on the thread node
level. In Chapter 7, we show a proactive DVFS controller that is based on
dynamic scenarios and aims to guarantee timing deadlines on specific steaming
applications with evident performance variation. Finally, Chapter 8 presents
some concluding remarks while aspects of future work are briefly noted. The
chain of events trigerring performance variation and timing violations are shown
in Schematic 1.5. The structure of the Thesis is presented in Figure 1.6.

Failure
Mechanisms

Dynamic
Workloads

Funct. Reliability
Violations

RAS
Interventions

Performance Variation /
Dynamic Operation

Param. Reliability
(esp. Timing) Violations

Figure 1.5: Schematic showing the dependencies between the events. Gray
boxes highlight the terms thoroughly studied throughout our work.
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Chapter 1:
Introduction

Chapter 2:
Failure Mechanisms

Chapter 3:
Prior Art on Parametric Reliability Mitigation

Chapter 4:
Efficient Modeling for BTI and RDF

Chapter 5:
A Closed-Loop Controller to Ensure Dependability under Performance Variation

Chapter 6:
Mitigating Performance Variations Using System Scenarios

Chapter 7:
Guaranteeing Timing Constraints with Dynamic Scenarios

Chapter 8:
Concluding Remarks and Future Work

Figure 1.6: Chapters of the Thesis



Chapter 2

Failure Mechanisms

In this Chapter, we elaborate on the failure mechanisms of circuits leading to
reliability violations and eventually performance variation. First of all, variations
in the voltage supply can cause circuit delays as well as functional errors. Time-
zero variability, caused mainly by manufacturing variability during the process
development deteriorates system performance. For example, minor defects
in the chemical or lithography process affect the characteristics of modern,
downscaled devices. Variations in the implanted impurity concentration of the
channel dopants can also alter a transistor’s threshold voltage. In addition,
aging phenomena dependent on a system’s lifetime, trigger time-dependent
variability; electric fields applied at the gate of a MOSFET, gradually degrade
the oxide and generate defects either in the oxide-substrate interface or the oxide
itself. Defects can also be created in the wires and interconnects of circuits,
leading to voids and hillocks on the conductors. Finally, a brief discussion on
radiation-induced transient faults completes this Chapter.

2.1 Voltage Supply Variations

While digital systems are designed to function at specific voltage levels, voltage
supply fluctuations are likely to occur during a chip’s operation. Typical reasons
for this are the di/dt noise (also known as delta-I noise) and the IR drops,
which are generated respectively due to parasitic inductances and resistances
across the sypply rails. In most CMOS circuits, propagation delay is inversely
proportional to the voltage supply hence, this type of Vdd variations have a
direct impact on the system’s performance. In fact, prior works estimated a

13
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30% variation in the delay due to a 10% Vdd fluctuation for typical CMOS gates
at 0.13 µm nodes, while in 90 nm technologies, 4% tpd variation was caused by
1% variation in the voltage supply [269, 240]. As we have already explained in
Section 1.2.2, large timing delays can also lead to logic errors, when manifesting
in sequential blocks and circuits with matched delays. Because of this, system
engineers are extremely careful when designing the power supply regulation and
distribution components. Finally, it should also be stressed that most aging
mechanisms are voltage-dependent therefore, voltage overshoots can exacerbate
these phenomena.

2.2 Time-Zero Variability

2.2.1 Process Variation

Printed transistors, often have slightly different characteristics from the ones
primarily designed. Furthermore, printed transistors of the same technology may
not be identical with each other. This is because the manufacturing process is
not ideal; on the contrary, during this procedure numerous sources of variability
exist that alter certain MOSFET characteristics, to a very small degree1. At
the end, this variability affects (among others) the current of the channel and
eventually, the delay of a circuit and its energy consumption.

Random Dopant Fluctuations

In order to follow Moore’s law and continue with device scaling, it is necessary to
sufficiently dope the channel region with implanted atoms [249]. Fluctuations in
the number of these dopants occurred even with transistors of older technologies.
Nevertheless, the phenomenon was irrelevant before, mostly because this number
was eventually averaged out. In modern devices however, and with the length
of the channel being in the nano-scale dimension, this number is limited to
less than a hundred. Moreover, even the spatial position of these dopants
varies, affecting device performance and mainly the threshold voltage [249, 292].
According to the theory on RDF [259], a device’s Vth is not fixed when exiting
the foundry but is distributed near a specified value with a Gaussian being a
sufficient approximation. This variability is formulated as shown in Equation

1This variation is classified between systematic (or deterministic) and random (or intrinsic).
Systematic variation occurs in elements placed next to each other and includes, among others,
lithography proximity effects (LPE) [249]. Systematic variation can ultimately be controlled
by the designer and described through deterministic models [175]. In this Chapter, we focus
solely on random process variability.
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2.1, where W and L are the channel’s width and length respectively. AV T is
Pelgrom’s mismatch parameter [208]. According to this Equation and inline
with RDF theory, as devices shrink, Vth variability becomes more pronounced.

σV th = AV T√
2WL

(2.1)

Oxide Thickness Variation

The aggressive shrinking of device dimensions, inevitably led to the scaling of
the oxide dielectric. In transistors at the 65 nm nodes and beyond, physical
oxide thickness (tox) is limited to 1 nm (= 10Å) which is equal to only five
atomic layers [34]. The oxide affects the capacitance of the gate and its ability
to attract charge to the channel. In addition, a MOSFET with a very thin oxide
suffers from high gate leakage currents since mobility carriers can easily “tunnel"
through the oxide. Controlling therefore the thickness of the gate dielectric
with remarkable precision is crucial. Nevertheless, because of the non-ideal
oxidation process, variation in the tox has been observed: recent experiments
have estimated a σtox = 0.1Å in oxides with 1 nm thickness [138]. In relevant
simulations, the impact of this effect is shown to add ∼ 10% in the overall σV th

(Equation 2.1) caused by RDF [17].

Line Edge Roughness

Similar to oxide thickness variation, the scaling of transistors has brought about
severe challenges in the lithographic printing technology. Specifically, as the
feature sizes now reach few tens of nanometers, the lithography process can
no longer flawlessly meet the high industry standards. Line Edge Roughness
(LER) refers to the variations in the gate patterns of fabricated devices or
the roughness in the edges of the printed patterns [249]; due to the extremely
downscaled technology nodes, its impact on device performance can no longer
be neglected. In detail, “LER is mainly caused by erosion of polymer aggregates
at the edge of the photoresist (PR) during development and fully depends on
some complex chemical formulas" [26]. The variation of a channel’s length
across its width due to LER is called, in short, Line Width Roughness (LWR).
LWR affects the drain and leakage currents and thus directly impacts the device
performance. The variation in the channel length is typically estimated as a
percentage of its nominal length; prior work, for example, mentions a σ = 0.02
µm, for a technology node of 0.4 µm [181]. While simulations have shown LWR



16 FAILURE MECHANISMS

impact to be relatively small compared to the σV th of the RDF, in extremely
downscaled devices LER variation could be quite important [17, 18].

2.3 Time-Dependent Variability

2.3.1 Oxide Wearout

Apart from process variation, that occurs during the manufacturing process,
several mechanisms can degrade a transistor’s performance during its lifetime,
such as BTI and Hot Carrier Injection (HCI). We have already explained how
the dielectric layer between the gate and the channel uses ultra-thin oxides
in order to keep up with the device scaling rules. During system operation
however, these thin oxides become susceptible to certain wearout phenomena,
also referred to as aging. The primary reason for the provocation of these
mechanisms is the electric field systematically stressing the oxide; interestingly,
part of the wearout damage is annealed when stress is removed. This renders
these phenomena largely workload-dependent.

Bias Temperature Instability

The dominant source of aging in modern devices is BTI. The phenomenon
was first observed to affect mostly short-channel pMOS transistors, thus it
was referred to as Negative Bias Temperature Instability (NBTI); now it is
also largely known to affect nMOS devices as well. BTI had already been
identified as a reliability threat more than 50 years ago [73] however, its impact
became prominent in technology nodes below 130 nm [243, 9]. While many
details remain currently unknown, the physical mechanism creating BTI is
believed to be the generation of interface traps and oxide charge because of the
vertical electric field applied between the gate and the substrate [120]. It is also
noteworthy that BTI is more intense in transistors with high temperatures with
recent models suggesting an exponential dependence [104].

Specifically, when electric field is applied at the gate of the MOSFET (through
the VGS), some of the Si–H bonds at the oxide-substrate interface break and
the H2 atoms are diffusing towards the gate, while the remaining Si becomes
charged, creating interface traps that may capture and release minority carriers
[101]. In addition, minority carriers can also be trapped in the oxide due to
defects in the Si–O bonds, such as a non-bridging oxygen atom or a silicon
vacancy. Charge trapping affects carrier mobility and leads to a “shift" in the
threshold voltage of the transistor, eventually slowing it down. According to
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the model, some of the Si–H bonds are annealed when gate stress is removed,
partially recovering the damage. The number of interface traps can be estimated
based on the following Equation 2.2 [206]:

Nit(t) =
√

kf No

2kr
(DHt) 1

4 (2.2)

where kf is the dissociation rate constant, kr is the rate of reverse annealing
of Si–H bonds, No represents the total number of Si–H bonds and DH shows
the coefficient of the hydrogen diffusion process. Due to the interface traps, the
threshold voltage shift can be modeled through the Equation 2.3 [206]:

∆Vth(Eox, t) = (1 + m)qNit(Eox, t)
Cox

(2.3)

Eox is the electric field applied at the oxide, q is elementary charge and Cox gate
capacitance and m accounts for extra Vth shift because of mobility degradation.
As the Equations 2.2 and 2.3 show, ∆Vth due to BTI follows a 1/4 power-law
dependence with time (t). Recent work on BTI includes the atomistic theory
which, besides the reaction-diffusion part, adds a stochastic component that
captures the recovering phase and the workload dependency in a more efficient
manner [104, 230, 290]. This stochastic component of the atomistic theory
describes the probabilistic nature of oxide defects; it is also able to capture
random telegraph noise (RTN). RTN, similar to BTI, can be modeled
through the trapping and de-trapping processes of minority carriers at the gate
insulator/Si interface.
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Figure 2.1: Interface traps and oxide charge in a pMOS: a) Because of BTI,
defects are located across the oxide and the channel; b) due to HCI, defects are
located on the interface and the oxide, mostly near the drain region.
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Hot-Carrier Injection

Oxide charge can also be trapped during the device operation because of HCI
and cause degradation. Due to the lateral electric field on the channel (caused by
strong VDS or a sudden overvoltage), some minority carriers collide with silicon
atoms located on the drain-substrate interface. This collision can create a pair
of electrons and holes with some of these particles having sufficient energy to
surpass the energy barrier and move to the oxide [144, 61, 112]. Actually, these
“hot" carriers may even tunnel through the oxide or to the substrate, increasing
the gate leakage current in the former case and the substrate current (Isub)
in the latter. While fist empirical or phenomenological HCI approaches failed
to describe the phenomenon in detail, recent physics-based models properly
consider defect generation mechanisms and the carrier distribution functions and
have been experimentally verified [38, 247]. Similarly to BTI, HCI also raises
the threshold voltage and reduces carrier mobility. Again, after the trapping
of the charge and during the relaxation phase, when VDS is removed, partial
annealing of the damage is enabled2. In contrast to BTI, HCI becomes more
prominent with the dropping of ambient temperature, because of the relative
decrease in carrier mobility [185]. An illustration of the BTI and HCI generated
traps on a pMOS device is presented in Figure 2.1.

Time-Dependent Dielectric Breakdown

The gradual build-up of trapped minority carriers in the oxide damages the
gate dielectric. When the vertical placement of this oxide charge allows the
formation of a conducting path between the gate and the substrate, the current
through the channel is suddenly reduced and intermittent or even permanent
faults occur, preventing the transistor’s correct operation. Oxide thickness,
voltage supply and device temperature largely affect the phenomenon. In
fact, the time to breakdown is also correlated to the material of the dielectric,
which in turn depends on the manufacturing process node [299, 271]. Older
generation products are based on SiO2 while modern transistors use high-k
dielectric materials such as Hafnium dioxide Hf02. Evidently, the phenomenon is
more prominent in today’s high-k dielectrics since they are significantly thinner.
Relevant work [257] studies Time-Dependent Dielectric Breakdown (TDDB) in
detail.

2It should be noted that hot electron injection on floating-gate MOSFETs (FGMOS) is
the main mechanism utilized to create certain non-volatile memories like flash memories.
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2.3.2 Wearout of the Interconnects

During the system operation, defects can be provoked in the wires and the
interconnects of a circuit as well. The three widely discussed failure mechanisms
that regard the interconnects are electromigration (EM), self-heating and TDDB
of the low-k dielectric, insulating the conductors. Again, since these phenomena
are highly correlated to the current density and the electric fields, their workload-
dependence is underlined.

Electromigration

Electromigration (EM) is caused by the continuous electron flow on the
interconnect [115, 266, 260]. Specifically, as the electrons are moving across the
wire, they collide with the conductor’s atoms, displacing them and creating
voids in regions where several atoms have been drifted or extrusions in regions
where a large amount of these atoms is accumulated (as shown in Figure 2.2).

Metal Wire

Void
Extrusion

Figure 2.2: Electromigration on a metallic
wire, forming voids and extrusions.

These voids may even result in
open circuits, severely damaging
the system while the extrusions can
cause shorts between lines or layers.
Following the scaling of transistor
dimensions, interconnects are also
shrinked and now, with increased
current densities, EM poses a serious
threat for reliability engineers. Ev-
idently, the phenomenon typically
damages interconnects in which DC
currents are flowing [155] but also wires that are very thin (dense grids) in which
current fluctuates in magnitude but is always flowing in the same direction.
That is the case for signal wires in dense arrays like memories or logic arrays
such as multipliers. To describe EM, Black’s Equation is still widely used [42].

Self-Heating

The current flowing through the wires dissipates power that in turn, leads to a
rise of the conductors’ temperature. In modern chips, wires and interconnects
are typically surrounded by oxides and dielectrics which are thermal insulators
and since heat convection is not enabled, some wires may become alarmingly
“hot". Resistance on these hot wires is increased significantly, along with the
propagation delay [8, 235], rendering self-heating a reliability threat. In addition,
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as EM is largely temperature-dependent, hot wires are also more susceptible to
electromigration.

Time-Dependent Dielectric Breakdown in Low-k Interconnects

The low-k dielectric breakdown in interconnect stacks has become a considerable
failure mechanism. First of all, the aggressive scaling of the electronic chips
lead to a dramatic shrinkage of the distance between the interconnects. In
order to reduce the RC parasitic delay of the wires and self-heating, low-k
insulating materials have been extensively utilized . This, however, along with
the fact that low-k dielectrics have intrinsically weaker breakdown strengths
made the TDDB of the low-k dielectric a prominent reliability issue. Apart
from temperature, there seems to be a clear dependence of low-k TDDB to
applied electric field (E). Currently, numerous models exist trying to describe
the phenomenon including the E model [291],

√
E [58], E2 [5] and (1/E +

√
E)

[158] models, depending on the exact physical mechanism inflicting the damage
on the insulator and the field’s dependece.

2.4 Radiation-induced Transient Faults

Apart from process variation and degradation effects, transient faults can also
occur due to radiation particles striking the semiconductor [265, 30]. There
are two types of particles that can cause such faults on a digital system: alpha
particles and high energy neutrons. An alpha particle consists of two protons
and two neutrons and can be emitted as radioactive decay from system packages
that typically contain small amounts of trace uranium and thorium impurities.
In fact, transient errors due to alpha particles were first noted by Intel in 1979
[173]. High energy neutrons, on the other hand, are particles generated as
cosmic rays “bombard” the atmosphere and are highly penetrative.

While the interaction of these two particles with the transistor’s silicon atoms
is different to a small degree, the physical principle behind the transient/soft
fault provocation seems the same: the particle collides with the silicon atoms
of the substrate across a specific depth, ionizing these atoms. The ionization
creates numerous pairs of electrons and holes which are not recombined; on the
contrary, due to the electric field and depending on the force of the collision
and the geometry, they are swept into the depletion regions and finally to the
contacts of the device, creating a spike current called single-event transient
(SET). If the charge of the carriers drawn into the contact is higher than a
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specific threshold, defined as critical charge (Qcrit), a single-event upset (SEU)
occurs and the device malfunctions.

With transistor scaling, critical charge is rapidly dropping as well. Nevertheless,
since the area of the device is also shrinking (and therefore there is a lower chance
of a radiation particle actually interacting the silicon), the overall FIT rate due
to radiation-induced errors remains nearly the same – or even decreases– with
newer process technologies [185]. Actually, at the sea level, SRAM memories
of a standard 0.6 µm CMOS process are estimated to suffer from 100 to 2000
FIT/Mb due to SEU [110] while at cruising altitudes, this number increases up
to 106 FIT/Mb [304].

2.5 Conclusion

This Chapter briefly discusses the physics behind the most prominent,
hardware-related failure mechanisms that affect the performance of digital
systems. Transistor variability during the lithography or the oxidation
process and fluctuations in the impurity concentration of dopants in the
channel region deteriorate reliability even before the electronic products are
shipped to customers. Gradual oxide and interconnect wearouts that occur
throughout the system’s lifetime, along with radiation-induced transient faults,
constitute another risk for reliability violations. Apart from functional failures,
the aforementioned phenomena eventually trigger system-wise parametric
reliability violations and performance variation, posing a serious threat for the
dependability of an electronic product. This highlights the need for developing
effective modeling techniques and mitigation solutions.





Chapter 3

Prior Art

3.1 Introduction

We have already highlighted the importance of functional and parametric
reliability on today’s digital systems in Chapters 1 and 2. In this Chapter, we
will focus on the current research in the mitigation techniques targeting the
latter reliability component. In collaboration with Dimitris R. [228] we have
classified this prior art in a complete top-down fashion, covering all aspects of
parametric reliability. The classification methodology itself, has been elaborated
in detail in previous work [228]. Nevertheless, we will start with a short
summary of this process. Then, we will briefly discuss certain approaches that
study the mitigation of functional reliability violations. While this is not the
main focus of our work, we have already explained in Section 1.2.2 how it is
highly correlated to parametric reliability and can often trigger performance
variation. Then, the prior art regarding the mitigation techniques for parametric
reliability violations will be examined in detail and the classification framework
will be introduced. This related work covers, in fact, a wide range of research
fields such as systems in package and across packages, pre-fabrication and
post-fabrication implementations and even solutions employed in the software
as well as the hardware of digital systems. Apart from reliability mitigation,
computer engineers and the VLSI industry in general also focus on reliability
analysis and utilize modeling tools to describe and quantify the impact of the
failure mechanisms. Hence, a brief overview on existing reliability simulation
approaches and related frameworks will be presented at the end of our Chapter.

23
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3.2 Building the Classification Framework

The methodology creating our classification framework is shown in Figure 3.1
and is based on a top-down division principle [142]. The domain under study –
in our case, parametric reliability mitigation – is the parent class (P ) and the
root of the tree.

Based on a relevant criterion, the parent class is split in two sub-categories S1
and S2 that are strictly:

• complementary, in a sense that S1 describes an X part and S2 the “not
X” part, that is X̄;

• non-overlapping, so that an intersection of the two sub-categories is zero
(S1 ∩ S2 = ∅);

Root Topic
Work 1

Work 2
Work 3

etc ...

A B

A.1 A.2 B.1 B.2

Splits creating a classification framework
Mapping samples of prior art

Figure 3.1: The classification framework built after the binary splits on the root
topic. In this example, “Work 3” is a hybrid mapped in both “B.1” and “B.2”.
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• complete, meaning that the two sub-categories together can compose their
primitive set (S1 ∪ S2 = P ).

The aforementioned properties enable the complete and consistent systematic
classification. In addition, binary splits continue to decompose the tree nodes
until the top-down division reaches sufficient depth. Finally, a large number
of sub-categories are designed that are also sufficiently granular to completely
describe and analyze the research domain. Evidently, the extent of the analysis
is reflected in the tree’s depth and the number of its nodes. In our instantiation,
we have mainly focused on a broad classification and not a very deep one.

After the framework is created in the form of a binary tree, samples of prior
art are mapped in the leaves of the tree. Starting from the root and following
the splitting criteria, each work sample is classified to the most suitable leaf.
In our example, “Work 1” belongs to the “A” node and is finally mapped in
the “A.1” category/leaf. Similarly, “Work 2” is placed into the “A.2” leaf. It
is quite usual for a prior art sample to discuss cross-layer approaches or cover
multiple sub-domains and thus belong in more than one tree leaves. Such works
are labeled as “hybrids” (see “Work 3” in Figure 3.1). However, based on this
classification and the splits, it is always possible to rigorously partition the
parts of the approach that belong to each of the leaves.

In contrast to other classifications of prior art found in typical surveys, our
methodology shows the following unique features: i) since the splits create two
complementary sub-categories, we always cover the complete research field and
do not ignore potentially relevant sub-domains. ii) The framework can be easily
extended by interested readers, using the same methodology; further splits can
be induced at the leaves of the primary tree, to create a more granular analysis
of the root topic. iii) Prior art samples can be seamlessly mapped in their
relevant sub-domains and objectively compared, following the mapping principle
of Figure 3.1. It is indeed much easier to compare the primitive partitions
of an approach than to directly compare the complex composite. iv) We can
easily highlight leaves in the classification tree that are not (sufficiently) well
covered by existing literature, once we have mapped the main publications to
the tree. In this way, we can identify promising research gaps. We can also
map requirements of applications to these trees and select the most promising
leaves for that application domain. This, however, is beyond the scope of the
current text.
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3.3 Mitigation of Functional Violations

The functional correctness of digital systems is of paramount importance for
the computer industry. In order to ensure correct, bit-wise operation and to
defer or avoid bit errors and system failures, computer engineers have developed
a plethora of techniques spanning across different abstraction layers: from
the microarchitectural and system level, to the firmware and software layers.
Previous work [218] presents an interesting classification of the functional
reliability mitigation domain, categorizing and briefly discussing the majority of
those schemes. A related survey on mitigation techniques regarding degradation
and aging can also be drawn from prior art [83] nevertheless, in this work,
parametric and functional reliability are not distinguished. Moreover, while
the survey presents a cross-layer approach, it fails to classify the mitigation
techniques into complementary categories. Other relevant works focus solely on
NBTI mitigation [60, 148]; again, however, their aim is to diminish the impact
of the phenomenon and no discussion on the split between parametric and
functional reliability is considered.

We will now discuss the basic functional reliability mitigation approaches, first
focusing on the hardware and architecture-based techniques. The addition of
multiple modules, for example, with the same specification as the primary one,
and the majority voting at the output is a classical mitigation technique. No
error detection scheme is required since the voting masks the error. In general,
this methodology uses an odd number N of modules to avoid uncertain output
votes (N-modular redundancy). Typically however, the scheme is deployed in the
form of triple modular redundancy (TMR) [277, 165, 286]. Additional hardware
can also perform another set of functions and not act as a replica module or a
spare component; the addition of an extra hardware register and the utilization
of Error Correcting Code (ECC) memory is such an example. ECC memory
is a type of computer data storage that is able to detect and correct internal
data corruption and bit errors [57, 126, 56]. While the advantages of ECC
memories are the low area and power costs, the induced performance overhead
cannot be neglected. To prevent erroneous operation, faulty components can
be bypassed or powered off; this way, the system continues to operate but
usually at a degraded performance. CPU hot-plug is a feature in Linux kernels,
for example, that allows the user to deactivate a defective CPU or bring it
back online when its operation is restored [99]. Finally, we can find several
hardware-based task migration techniques [217, 283] that simply modify the
manner in which hardware resources are assigned and migrate error-prone tasks
to the more robust components.

Several techniques can exploit the software layers of a digital system. The
introduction of additional tasks, for example, to provision the functional
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reliability has already been studied. In contrast to using additional hardware,
parallel tasks can also run on the software stack and through voting can
provide error protection [87, 124]; previous work suggests the technology of
redundant multi-threading [78]. This usage, however, of the same resources for
the redundant tasks inevitably leads to performance degradation. Compilers
can reschedule and reorganize an application’s instruction flow, after a
characterization of the application’s vulnerability profile [298, 227]. In
multiprocessor systems, rescheduling and task migration/allocation policies have
already been proposed to prevent system failures [97, 35, 187, 170]. Another
widely used technique involves storing the state of the system and retrying task
execution at intermediate points. Specifically, at several checkpoints across
the workload, part of the system state (and potentially additional information)
is proactively stored; after the detection of an error, a rollback to the last
checkpoint of correct system operation is set. The checkpoint placement can be
decided, during the offline phase, at design time or at runtime (on-line phase)
although in the latter case, extra effort has to be invested. Several examples of
offline checkpointing can be found in prior art [53, 10, 200]. Works that address
online checkpointing are typically more complex and are implemented at the
kernel [80] and user levels [213, 255].

3.4 Mitigation of Parametric Violations –
Related Classifications

A crucial concept in the current text is the fundamental distinction between
functional and parametric reliability violations and the isolation of the latter
component. While both counterparts are equally important in order to address
dependability issues, in this Section we will discuss – and classify – prior
works and techniques developed to deal with parametric reliability. As we
illustrate in Figure 3.2, the parametric aspects in general can include techniques
managing direct figures of merit during the IC operation as well as cost-related
strategies and decisions regarding design economics. For instance, plans to
drastically reduce non- recurring engineering (NRE) costs for the design and
masks, including personel and prototype manufacturing costs, belong in the
latter group and our outside the scope our work. Regarding the techniques
targeting direct figures of merit, they can be further split into the ones dealing
with dependability and timing-related constraints and the ones aiming to control
other parameters of the operation instance; these parameters typically include
either power or temperature related aspects (low-power operation, dark silicon
technologies etc.). Contrariwise, the timing-related issues can involve short-term
solutions such as methods to reduce critical path delay and manage deadline
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Figure 3.2: Aspects of parametric reliability. Gray boxes highlight the direct
figures of merit we explore in our classification.

constraints and approaches affecting the system’s long-term timing aspects, like
for example improving IC lifetime. In our work, we concentrate mostly on short-
term, timing-related techniques (Leaf C) while certain aspects of temperature
and power management are also explored (Leaves A and B).

Throughout the literature, we can find several related surveys on parametric
reliability. In most cases, such attempts restrict themselves and analyse
mitigation techniques on a limited scope, not covering the entire potential
space. For example, numerous works target parametric reliability from the
scope of temperature management (Leaf A); we have already explained how
system performance and reliability are degraded by the rise of temperature since
degradation phenomena are exacerbated. Prior work tries to classify thermal
management techniques however, the classes of each hierarchy level are not
complementary [139]. Therefore, hybrid works that belong in more than one
category are not properly accounted for. A more systematic classification on
thermal management is performed in another work [79]. The analysis however,
is not granular enough and the binary tree is not sufficiently deep. Therefore,
fine-grain distinction of thermal management techniques is not achieved.

During the last twenty years, energy/power management has become a critical
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feature in many embedded platforms. To this end, numerous techniques exist
throughout the abstraction layers, from hardware design to architecture and
software domains belonging in the B Leaf of our classification in Figure 3.2.
Most efficient methods include a top-down approach, targeting the application
and architecture domain and moving to lower system and design levels. In fact,
since leakage currents are strongly dependent on transistor temperature, most
thermal management solutions also apply for power management. A recent
survey on such techniques for mobile processing units (CPUs and graphics
processing units a.k.a. GPUs) is presented in prior art [137] and focuses solely
on OS-level schemes. Another interesting classification for power management
methodologies is presented in relevant work [25]. Techniques are divided in two
separate categories: Dynamic Power Management (DPM), where a few, low-
power, inactive states are introduced by power-gating certain circuit blocks and
DVFS, where voltage and frequency levels are set to reduce energy consumption.

When focusing on parametric reliability in the sense of timing dependability and
avoiding timing violations (see Leaf C of Figure 3.2), we can find numerous
related works dealing with highly dynamic workloads. Contrariwise to static task
sets, where the complete characterization of the workload and its timing demands
are known beforehand, in dynamic workloads, scheduling and matching of jobs to
appropriate resources and resource attributes is performed at runtime. Certain
survey works deal with feedback-based, real-time task scheduling algorithms
[2, 161]. A related survey on hard, real-time scheduling has also been presented
[71], targeting however, solely multi-processor systems. A closed-loop scheduling
framework has been presented for soft, real-time systems [162] as well. While
the aforementioned work falls into a best-effort approach and cannot provide
deadline guarantees, it attains satisfactory deadline miss ratios.

For strict deadline guarantees, modern processors typically utilize voltage and
frequency margins [121]. However, this level of robustness comes at the cost
of lower processor performance and power efficiency [226]. A recent paper
[149] presents a DVFS scheme that introduces a Worst-Case Ready Queue
(WCRQ) algorithm to guarantee timing deadlines and tests this scheme on the
Gem5 simulator. The authors assume that future tasks are partly known and
reside on this ready queue. Due to the stochastic nature of highly dynamic
workloads however, such an assumption cannot always be safe. The same
applies for another related work where a real-time scheduler is also exploited
[211]. Towards this direction, certain DVFS schemes in the Linux kernel are
actuated based only on the last period CPU-usage statistics. “Ondemand” and
“Conservative” Linux governors, for example, set the CPU frequency depending
on the current system load [45]. Again however, the latter implementations fail
to provide timing guarantees.



30 PRIOR ART

3.5 Mitigation of Parametric Violations –
Our Classification

As explained in Section 3.2, we first define parametric reliability mitigation as
the root of our tree (see Figure 3.1). Then, we derive a split based on the type
of electronic packaging. Two branches are created: one focusing on systems
within package and a second regarding systems across packages; we further split
the former, in order to equally address single-die and multiple-die arrangements.

3.5.1 Systems Within Package: Single-Die

Mitigation techniques for parametric reliability on a single-die can be further
split between pre-fabrication and post-fabrication ones. The classification of
related work on this branch is presented in Figure 3.3.

Pre-Fabrication

Pre-fabrication solutions are applied before the die is fabricated and can be
classified between two complementary domains: hardware and software. In
addition, the former group can be further split into design related and process
technology. Design-related techniques can be implemented either by optimizing
the existing design (without the addition of new features) or by enhancing
the design by incorporating extra components and properties with respect to
parametric reliability.

Mapping 1. A transistor sizing technique to account for BTI wearout, is an
example of an optimization design solution [134]. An “NBTI-aware processor”
created through optimized combinational and memory-like blocks has also
been proposed [4]. Finally, related work suggests a layout co-optimization
framework to improve pin access of the standard cells and maximize pin
access flexibility for routing [296].

Mapping 2. A gate splitting methodology that adds redundant paths to
reduce delay variability is proposed in prior art [77]. The use of redundant
columns in SRAM memories to reduce SRAM leakage in the presence of
random delay variation has also been introduced [103].
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Mapping 3. An aging-aware compiler to uniformly distribute the stress of
instructions in order to minimize aging of general-purpose GPU architectures
is discussed in previous work [221]. Another work studies a timing variation-
aware scheduling and resource binding in high-level synthesis (HLS) approach
to mitigate the effects of performance variation [183].

Regarding the category of process technology, we refer to all mitigation
techniques implemented during the manufacturing procedure of the wafer in
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Figure 3.3: Classification Branch for Single-Die Solutions.
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order to minimize parametric reliability violations. Such techniques may concern
either the selection of materials or the lithography process.

Mapping 4. An alternative to typical CMOS technology has already been
available and refers to the Silicon on Insulator (SoI) technology [205]; this
technology suggests that devices are fabricated on an insulator and stands
in contrast to to conventional bulk processes leading to higher-speed devices.
Another example is the surface nitridation of metal wires that reduces line
resistance and increases reliability [238].

Mapping 5. Enabling designers to increase the feature density of chips
through the double patterning technique of the lithographic process is
discussed in a previous paper [296]. Another work suggests the use of
extreme lithography wavelengths and multiple patterning to deliver reliable
flash memories [214].

Post-Fabrication

After the IC has been manufactured, certain mitigation techniques can be
applied before shipping the die to the market. Alternatively, several solutions
have been developed to mitigate parametric reliability after the packaging and
shipping of the chip to the market. Before bringing the die to the market,
available techniques can be further divided between non-intrusive and intrusive.

Mapping 6. A testing phase to properly characterize and predict platform
and application runtime variability is discussed in prior art [241]. Voltage
binning to improve product yield has also been proposed [154]. Moreover,
measuring the supply current in the quiescent state for the presence of
manufacturing defects (iddq testing) is already widely used [171].

Mapping 7. An intrusive circuit repairing methodology using localized
laser pyrolysis has been presented in previous work [204]. In addition, pulse
current trimming can be utilized to mitigate process variability in polysilicon
sheet resistance [85].

After the die has been shipped, mitigation solutions can be split between reactive
and proactive ones.
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Mapping 8. A reactive speed control solution for runtime, temperature-
constrained applications has been studied in relative work [287]. Other
thermal control policies for runtime situations based on a reactive response
also exist [302]. A self-tuning technique to improve product lifetime under
aging phenomena is discussed in previous work [180].

Mapping 9. Mintarno et al. [180] also study a proactive DVFS scheme
based on degradation predictions and aging models. An energy efficient
scheme through the use of artificial neural network predictions has been
discussed in prior art as well [293].

We should note the hybrid papers of Xu et al. [296] and Mintarno et al. [180];
these works are “local hybrids”as they are concetrated in this specific branch of
the tree.

3.5.2 Systems Within Package : Multiple-Dies

In this category, we refer to the Systems in Package (SiP) where the set of dies
are packaged into single discrete components. Our classification is then further
split between the integration of dies and the addition of extra features in the SiP
(apart from the features that provide system functionality). This categorization
is illustrated in Figure 3.4.

Integration

Regarding the multi-die integration, we can study techniques that look into
the wiring at the various levels or the stacking procedure per se. In the former
domain, the two most widely used options are : mechanical wiring (such as wire
bonding) and thermal/chemical, like soldering.

Mapping 10. Previous work studies Pd-coated, Cu wire bonding for high
reliability semiconductor devices [254]. Specifically, this work examines the
critical aspect of bringing Cu and PdCu wire technology to wire bonding
process development and achieving high reliability requirements.
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Mapping 11. The in-situ reliability monitoring of micro-bumps is the main
focus of related work regarding through-silicon via (TSV) interposers [28].
Another paper looks into the process-level reliability of solder bumps in
3D semiconductor packaging [46]. Bae et al. [22] discuss the Solder Bump
Maker (SBM), a novel paste material from solder powder and polymer resin,
that manages to reduce the alignment requirements.

Concerning the die stacking strategy (regardless of conducting connections), we
find works focusing either on the arrangement of each die level on the final SiP
(stacking) or the selection of the die samples.
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Figure 3.4: Classification Branch for Multi-Die Solutions.
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Mapping 12. A reliability-constrained, die stacking methodology to
mitigate process variability in 3D SiP is presented in previous work [275].
Another paper studies a die-to-wafer integration technology for high yield
and performance concerning 3 dimensional stack applications [239]. Finally,
prior art extensively discusses the ideal arrangement of the memory hierarchy
within a 3D processor [41].

Mapping 13. Related patent discusses a voltage binning technique for
3D integrated circuit integration [37]. Certain strategies to improve the
parametric yield of a 3D system after profiling the process variation of all
dies and wafers involved, are mentioned in prior art [86].

Adding Extra Features & Components

We have covered, so far, parametric reliability solutions that target the issue of
multi-die integration with respect to the interconnections and relative stacking
strategies. Actually, integration procedure can also be facilitated through the
addition of extra hardware components. We further split this branch based on
whether an interposer affects the system’s parametric reliability [151].

If such an interposer is ignored and is not assumed, we can find works that
focus mainly on Through Silicon Vias (TSVs) and cavity cooling. In this case,
we can divide this group of techniques between the ones utilizing adaptivity and
those exploiting redundancy to counteract parametric violations.

Mapping 14. An adaptive scheme to detect and replace faulty vertical
connections between stacked dies is introduced in a previous patent [49].
Another related work extensively discusses a thermal control principle for
liquid-cooled 3D stacked architectures [237].

Mapping 15. A technology to provide TSV redundancy that improves
signal propagation and reduces cross-talk is presented in a relative patent
[136]. The deployment of a redundant TSV per block to replace defective
TSVs to boost recovery rates in 3D integrated systems is discussed in prior
art as well [114]. The patent by Camarota [49] is actually a hybrid paper
since it also refers to the use of redundant vias in order to enhance parametric
reliability of stacked dies.

When an interposer is involved, we can classify works that utilize active or
passive interposers.
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Mapping 16. The approach of the TSV Keep-Out-Zone, for an active
silicon interposer is presented in previous work [28]. Another work proposes
a wireless power transfer technology through an active silicon interposer that
targets low-voltage applications in 3D integrated systems [256].

Mapping 17. Related work discusses the fabrication of top and bottom
silicon interposers to stack SRAM chips in a SiP [22]. A passive silicon
interposer with TSVs to successfully implement the heterogeneous stacked-
silicon 3D integration is studied in another paper [168].

We identify four localized hybrids in the aforementioned tree branch. First of
all, the paper of Banijamali et al. [28] discusses both the reliability monitoring
of micro-bumps and the employment of passive interposers for 3D integration.
Similarly, the paper of Bae et al. [22] studies a novel soldering material and a
passive interposer as well. The work of Camarota [49] is also a localized hybrid
paper. The paper of Juan et al. [128] discusses a novel selection strategy for
3D ICs and an optimal stacking order to mitigate performance variation.

3.5.3 Systems Across Packages: Hardware Solutions

The current Section studies parametric mitigation for systems across packages.
Our focus is outside the semiconductor packaging; we inspect, instead, mitigation
techniques for discrete component systems such as processors, storage peripheries
or a memories. Defects and fault manifestations on a single node of these
components could threaten parametric reliability of the overall system. Hence,
in this case, the mitigation techniques are applied to deal with the consequences
of a faulty component. We further split this branch between hardware and
software solutions. The hardware solutions will be divided based on the node
granularity; we distinguish therefore prior work into intra-node and inter-node
techniques. This classification is presented in Figure 3.5.

Intra-Node

Intra-node methodologies target specific components and processing elements
of the relevant system. They can be further split between domain-specific
methodologies, i.e. the ones that focus solely on a specific domain (like for
example the automotive), and general purpose ones. The latter can be split
into the techniques that target the processing elements of the system and the
ones referring to its memory.
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Parametric Rel. Hardware Solutions
for Discrete Component Systems
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Figure 3.5: Classification Branch for Hardware Solutions on Discrete Component
Systems.

Mapping 18. The Power8 processor from IBM contains an integrated On
Chip Controller (OCC) [234]. The OCC, which is in fact a micro-controller
for power and thermal management, monitors several system parameters and
actuates changes in the processor’s operating frequency, voltage, memory
bandwidth and fan speed among others. Another work that discusses
parametric reliability solutions for processing components is the white paper
from Intel and Dell [74].
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Mapping 19. The authors of a relevant work [186] utilize certain information
from the data bus to develop an optimal, fine granularity refresh (FGR)
technique for DRAMs. Another example is a real-time, in-memory,
checkpointing scheme that improves the reliability of large-scale, parallel
processing systems [91]. Certain hardware solutions in the memory are the
subject of a technical report from Intel and Dell [74]

For the domain-specific methodologies, a relevant distinction can be made based
on whether an actuator is embedded into that specific hardware component.

Mapping 20. The thermal headroom along with several cooling and
packaging approaches for modern, on-board flight equipment are proposed
in previous work [242]. Furthermore, heat convection aspects and copper
thickness of the printed circuit board (PCB) for automotive, electronic
control modules are studied on the paper or Kumar et al. [147].

Mapping 21. The parametric reliability of automotive components is the
focus of the work from Valentin Von Tils [285]. Specifically, the author
identifies relevant semiconductor solutions for the automotive domain and
discusses examples of temperature-aware discrete components. Moreover,
thermal management and other parametric reliability solutions (such as
air-cooling friendly materials) for automotive electric traction-drive systems
are proposed in another relevant work [184].

Inter-Node

Contrariwise to intra-node techniques, inter-node solutions are employed over
the entire nodes of the system. A first basic distinction can be made between
the techniques that focus on the operation of the system’s set of nodes and the
ones that affect the data management between the nodes. The former group
can be further split between the methodologies targeting the collective node
configuration and the techniques that refer to the grouping or partitioning of
nodes.

Mapping 22. Energy variability among the set of nodes of a fully
operational, supercomputer prototype is leveraged and DVFS actuations are
implemented by Fraternali et al. [90] to save energy. To enable a reliable
power distribution and system failures, the configuration of the system nodes
is studied in another relevant work [19].
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Mapping 23. Rasmussen’s white paper [223] partitions the nodes of a
relevant system into specific blanking panels so that the thermal profile inside
a computer rack can be significantly improved. The grouping and partitioning
of computer racks in internet data centers to develop an optimized air flow
management system and achieve thermal control is also the focus of a related
patent by Frederic Charron [55]. The partitioning of the system’s nodes in
data centers to improve reliability is also the focus of the work from Avelar
[19].

Regarding the techniques affecting the data management across system nodes,
they can be split based on whether the interconnection is wired or wireless.

Mapping 24. Deploying solid state disks to reduce the overhead of
checkpoint writing is suggested in a related paper [202]. Another work studies
previous failure rates computed from files and predicts the reliability and
availability of the relevant storage architecture [92]. Then, they extrapolate
the results to a petascale system and propose spares to achieve acceptable
availability.

Mapping 25. In energy-bounded wireless sensor networks (WSNs), Jan
et al. [122] study different routing techniques and detect the one achieving
maximum lifetime. Another paper related to WSNs deals with energy
efficiency and introduces the use of “redundant transmission on fusion routes
with no acknowledgments” to deliver higher system reliability [164].

Localized hybrid papers can be identified in the current branch as well. A
white paper from Intel and Dell [74] for instance, discusses parametric reliability
mitigation solutions that focus on both the processing component and the
memory. In addition, Avelar [19] reviews both the partitioning and configuration
of nodes in data centers to improve availability and enable a reliable power
distribution that avoids single points of failure, namely the manifestation of
errors in certain system parts that can cause failure of the entire system.

3.5.4 Systems Across Packages: Software Solutions

Since digital systems have become significantly complex in the last years,
software techniques for parametric reliability mitigation have started to be widely
applicable as well. These techniques can be first split between design/setup
time schemes and runtime ones. We show this classification in Figure 3.6.
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Design/Setup Time

Before the execution of the software, schemes can be applied either under
the development of the relevant software itself or as admission policies for
the system’s workload. Regarding the former group, we can distinguish
methodologies that focus purely on the algorithmic part and techniques based
on the code implementation to tackle with certain parametric reliability aspects.

Mapping 26. A specific data sampling algorithm to improve the reliability
of wireless body area networks (WBANs) is proposed in prior art [24].
Moreover, to enhance reliability and performance of WBANs, Arrobo et al.
[16] introduce a relevant algorithm for information coding.
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Mapping 27. Checkpoint/Restart implementations on a message passing
interface (MPI) to mitigate system performance variability is the study of
relevant prior art [21]. To increase performance dependability and reduce the
overall effect of OS interference on large-scale parallel applications and MPI
communication, Oral et al. [201] suggest to accumulate all OS noise-related
sources into a specific core.

Solutions relevant to admission policies can be further distinguished between
anelastic and elastic ones; the elasticity of the services can be defined as
the dynamically changing resource requirements that depend “on the varying
number of users and patterns of requests” [140].

Mapping 28. A fixed priority scheduling policy for multi-node systems
under strict latency constraints is the subject of previous work [301]. Another
work studies the schedulability of I/O devices in hard real-time systems
under energy-optimal operation [262].

Mapping 29. An admission control policy for elastic cloud services is
proposed by Konstanteli et al. [140]. A task scheduling algorithm along
with proper DVFS actuations on the mobile cloud computing environment
is studied in another prior work [157].

Runtime

These techniques are activated at runtime, during the software execution. They
can be distinguished between OS-related solutions and hypervisor-like schemes.
The former group can be further split between reactive and proactive schemes.

Mapping 30. In recent work [219], features of the operating system
are enabled through the “Thread Tranquilizer” to dynamically reduce
performance variation of the application workload that runs on a 24-core
server. A reactive, runtime resource management scheme using Linux control
groups is also studied in another recent article [32]. The main goal of the
authors is to ensure timing deadlines while respecting power constraints.
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Mapping 31. El-Sayed et al. [81] focus on a checkpoint/restart mechanism
realization and first evaluate its performance and energy overheads. Then,
the move forward and suggest simple formulas that optimize checkpoint
scheduling by adapting to the failure rates of HCP systems and thus achieve
high energy gains. An adaptive I/O method to mitigate performance
variation due to the concurrent use of petascale storage systems by multiple
users is proposed in the work of Lofstead et al. [159].

On the branch related to hypervisor-like solutions, we typically find software
schemes dealing with virtual machine (VM) instances. Therefore, we can
distinguish these schemes between the ones handling the resource provision of
VMs and the others engaging in VM migration.

Mapping 32. To guarantee efficient workload VM allocation and optimize
application performance on co-hosted VMs, Dawoud et al. implement a
specific QoS controller [72]. Another work [210], introduces the hypervisor-
level framework “Hyper Tap” to efficiently support VM reliability monitoring.

Mapping 33. To ensure server system dependability in a proactive manner,
the authors of a prior work propose the “concept of anticipatory virtual
machine migration that proactively moves computation away from faulty
or suspicious machines” [215]. In addition, to reduce network bandwidth
utilization and achieve a reliable and efficient VM migration, Kashyap et al.
[131] introduce the Reliable Lazy Copy (RLC) approach.

The overall classification framework we have created is illustrated in Figure 3.7.

3.5.5 Classifying Globally Distributed Hybrids

An important feature of our binary classification is the ability to decompose
prior art samples to their primitives. This enables identification of hybrid
samples, i.e. those that can be mapped to more than two leaves. So far, we
have addressed localized hybrids. Table 3.1 contains widely distributed hybrids,
spanning across distant leaves (i.e. across Subsections). From such papers, one
can draw interesting observations:

• Certain domains that are quite new in terms of commercial readiness
(in comparison to more “mature” domains like single-die integration)
feature highly localized hybrids. This is supported by the degree of
hybrid dispersion for the multi-die packages branch (Subsection 3.5.2).
We have identified four localized hybrid papers which are mapped there
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and are concentrated in that very region, not spanning to more distant
domains. It is reasonable to expect that as multi-die packages are further
developed, more diverse research (i.e. more global hybrids) will appear in
that domain.

• It is noteworthy that many mitigation techniques targeting process
variability are valid hybrid papers. The hybrid nature lies in first receiving
feedback from low-level hardware and then effectively tuning these
adaptive, variability-aware techniques at higher abstraction layers (usually
at the system level). A case can be made for the papers of Qureshi et al.
[220] and Bathen et al. [29]. In both cases, a degree of semiconductor
variability (variable retention times and power variability, respectively) is
exposed for improved performance and energy budget.

• Finally, it is also reasonable to expect white papers and technical reports
from hardware vendors to appear in many leaves of our classification.
Even though detailed technical information is not disclosed, such sources
provide a very good bird’s eye view of parametric reliability solutions that
are available in commercial RAS-oriented products. A typical example is
Intel’s technology journal on “Managing Process Variation in 45nm CMOS
Technology” [69]. This report studies thoroughly mitigation techniques

Paper Brief Description Classification

[182] Report from IBM on available RAS
features

Mappings 18, 23,
and 32

[1]
Oracle white paper on SPARC
Mainframe-Class infastructure and its
capabilities

Mappings
18, 23, 32, and 33

[70] Intel white paper on the RAS features
of a specific processor family Mappings 18 and 32

[220] Adaptive DRAM refresh technique
leveraging on variable retention times Mappings 19 and 27

[29]
Framework of policies for variability-
aware virtualization of the memory
hierarchy

Mappings 19 and 27

[216]
Leveraging performance variability to
save energy by frequency scaling upon
MPI collectives

Mappings 22 and 27

Table 3.1: Hybrid papers instantiated in our binary classification and
components thereof
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adressing the size of the transistors, the introduction of novel device
materials, patterning techniques and placement and routing optimizations.
The white paper from AMD regarding power management and performance
variation is another such example [13].

3.5.6 Classification Extensibility & Reusability

Another unique feature of our classification is its systematic extensibility. Apart
from mapping new papers to an existing classification, additional splits can
be introduced depending on the intended focus. For the sake of brevity, we
substantiate the extensibility of our classification by elaborating the sub-domain
of single die solutions for parametric reliability (Subsection 3.5.1 – Figure 3.1).
In Figure 3.8, we illustrate remapping of previously mapped papers and the
addition of new ones.

Hardware design optimization is further split between circuit-level techniques
which imply mostly wire/transistor sizing and physical design techniques which
impact placement and routing (physical design). In the former category, we
find aging-aware sizing of standard cells [130] and lithography-aware sizing of
SRAM cells [127]. Design enhancements can be distinguished between adding
hardware, which implies here some form of redundancy techniques (round-robin
redundant SRAM deactivation [251]), and changing the existing hardware to
allow more adaptivity (as in the case of tunable sense amplifiers [66]).

Regarding the software strategies, we can further split this group between the
techniques that focus on the prediction and prevention of parametric reliability
violations and the ones deploying a type of tolerance for the designed system
implementation, to temper the impact of reliability threats to the system’s
operation. The work of Rahimi et al. [221] belongs in the former category since
it involves the use of an aging-aware compiler to generate code that balance
the workload distribution thus preventing possible wearout phenomena. In
addition, a runtime software that prevents the execution of problematic code
sequences that can cause recurring voltage supply variations is presented in
relevant work [109]. On the contrary, the work of Mittal et al. [183] discusses a
technique that mitigates performance variation by binding certain conscecutive
tasks to chained resources and minimizing therefore the overall latency of future
scheduling decisions. Another paper belonging in this category is the work
of Baek et al. [23] where the “Green” program is proposed to approximate
expensive functions and trade-off certain quality of service requirements for
improvements in energy consumption.

On the process technology front, the material side is split between interconnects
(capping layer for Cu interconnects [118]) and devices (process optimization
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for gate leakage and BTI [119]). The lithography side is split between single
patterning with advanced wavelengths and multiple patterning (hybrid paper by
Joshi et al. [127]). Previously instantiated lithography papers (at higher levels
of the tree) are remapped accordingly [296, 214].

The before-market side, of the post-fabrication domain contains a variety of
testing and tuning techniques. Non-intrusive techniques are split between
switching (where the fabricated die is dynamically operating, as in the case of
variability profiling for optimal DVFS [111]) and quiescent (where techniques
are applied on a die that is operationally static, as in the case of Iddq binning).
Intrusive techniques for parametric reliability are further split between contact-
based (e.g. current pulse injection [84]) and contactless [94].

Finally, in the after-market side of the tree, reactive and proactive techniques
have been elaborated. The reactive side is split based on the scope of the
technique in terms of power islands. For instance, in previous work, a PID-
controlled DVFS technique for dependable performance has been proposed
[229], whereas Nasir et al. deal with efficient, fine-grain voltage regulation
[190]. The hybrid paper of Herbert et al. deals with variability-aware DVFS
per core/memory module [111]. Proactive techniques have been split between
model-based and monitor-based. The work of Zoni and Fornaciari is instantiated
in both leaves, since it provides sensor-wise and sensorless mitigation of BTI in
network-on-chip buffers [309]. With the above extension, we substantiate both
the reusability of our classification framework, by adding new papers, and its
extensibility, by inducing further splits to the binary tree.

3.6 Reliability Modeling

In Chapter 2 we studied the physical principles behind the most prominent
failure mechanisms while in the previous Section 3.5, we created a top-down
classification of prior art regarding current mitigation techniques for parametric
reliability. The computer engineering community, during the last several years,
has also developed models to capture, describe and estimate the impact of
these failure mechanisms on the overall system performance. By studying the
literature on prior art, we can find several implementations that model these
mechanisms either on a device or a system/architecture level. The former
approaches achieve a very detailed and accurate description of these phenomena
however, when it comes to simulating large circuit inventories and over long time
strides, they often require lengthy and computationally intensive simulations.

Briefly, regarding process variation we can find respective models describing
the impact of LER and LWR to the circuit’s layout [27] and its operation [67].
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Furthermore, an analytical description on the variation of VT due to RDF can
be found in previous papers [145, 156]. Referring to the gradual wearout of
the gate oxide, a surplus of work can be found on BTI and HCI phenomena
[270, 129, 281]. Recent work suggests that the latter is more pronounced in the
subthreshold operation of low-power CMOS circuits [169]. For BTI, a bulk of
experimental data verifies the shift from the previous, reaction-diffusion model
to a new atomistic model [104] capturing the phenomenon in a more efficient
manner. This new approach is introducing a stochastic part on BTI modeling
and presenting workload memory. Such device-level models come at the cost of
elevated simulation times, while computation complexity is tightly coupled to the
form of signal activity [233]. As a result, a cycle-by-cycle modeling of variability
can be computationally prohibitive, especially on complex circuit inventories.
This problem is partially alleviated through the framework presented in previous
work [233] (see Appendix Section A.2). There, signal activity is compressed
and through pseudo-transient simulations, the functional yield of an SRAM cell
is estimated at specific, user-defined time instances.

Many simulation tools in the industry use the Statistical Static Timing
Analysis (SSTA) methodology [123, 14, 40]. However, SSTA methodology
still faces certain challenges, like for example the incapability to include the
delay correlation of different circuit paths and spatial correlations of process
variation and to capture all the workload-dependent effects [93]. Another way
of characterizing variability effects on large circuit inventories could be the
worst-case timing analysis [89] where worst process and operating conditions
are assumed. This methodology is extremely fast and produces safe yet
rather pessimistic estimations in the form of guardbands. Another work [278]
understands the bottleneck of further increasing guardbands to deal with the
threat of variability. Hence, the authors focus on shaving design margins while
studying long-term as well as instantaneous BTI effects. Therefore, a trade-off
exists and engineers can choose either to accurately model the reliability threats
and use time-consuming simulation tools or employ more efficient approaches
by paying however a price in accuracy.

3.7 Conclusions

In the current Chapter, we have focused on the prior art of parametric reliability
mitigation. We have also briefly discussed the prevailing mitigation techniques
for functional reliability including error correcting codes, modular redundancy
and checkpoint/restart (rollback) mechanisms. Specifically, we have performed
a top-down, orthogonal classification approach with complementary splits to
categorize previous work samples regarding parametric reliability mitigation,
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into representative groups and eventually form a binary tree. The methodology
to build the aforementioned framework is studied in Section 3.2. Former survey
papers attempting similar categorizations are mentioned in Section 3.4 while
the complete classification framework is extensively analysed in Section 3.5.
Finally, specific aspects of current reliability modeling approaches and tools are
briefly mentioned in Section 3.6.



48 PRIOR ART

M
itigation of P

aram
etric R

eliability

W
ithin P

ackage
A

cross P
ackages

S
ingle D

ie
M

ultiple D
ies

H
ardw

are
S

oftw
are

P
re-F

abrication
P

ost-F
abrication

Integration
E

xtra F
eatures

Intra-N
ode

Inter-N
ode

D
esign/S

etup Tim
e

R
untim

e

Design Related

Process Technology

Before Market

After Market

Wiring

Stacking

Without Interposer

With Interposer

General Purpose

Domain Specific

Computing

Data Management

Development

Admission

Process Control

Hypervisor

Design Optimization

Capability Addition

Materials

Lithography

Non-Intrusive

Intrusive

Reactive

Proactive

Mechanical

Ther./Chemical

Arrangement

Selection

Adaptivity

Redundancy

Active

Passive

Processing

Memory

No Actuator

With Actuator

Configuration

Grouping

Wired

Wireless

Algorithm

Implementation

Anelastic

Elastic

Reactive

Proactive

VM Resources

VM Migration

Mapping 1

Mapping 2

Mapping 4

Mapping 5

Mapping 6

Mapping 7

Mapping 8

Mapping 9

Mapping 10

Mapping 11

Mapping 12

Mapping 13

Mapping 14

Mapping 15

Mapping 16

Mapping 17

Mapping 18

Mapping 19

Mapping 20

Mapping 21

Mapping 22

Mapping 23

Mapping 24

Mapping 25

Mapping 26

Mapping 27

Mapping 28

Mapping 29

Mapping 30

Mapping 31

Mapping 32

Mapping 33

Hardware

SoftwareMapping 3

Figure
3.7:

O
verallC

lassification
Fram

ework
for

Param
etric

R
eliability

M
igitation.



CONCLUSIONS 49

Parametric Rel. for Single-Die

Pre-Fabrication Post-Fabrication

Design-
Related

Process
Technology

Before
Market

After
Market

H
ar

dw
ar

e

So
ft

w
ar

e

O
pt

im
iz

at
io

n

E
nh

an
ce

m
en

t

M
at

er
ia

ls

L
it

ho
gr

ap
hy

N
on

-I
nt

ru
si

ve

In
tr

us
iv

e

R
ea

ct
iv

e

P
ro

ac
ti

ve
M

on
it

or
-B

as
ed

M
od

el
-B

as
ed

A
cr

os
s

Is
la

nd
s

W
it

hi
n

Is
la

nd
s

C
on

ta
ct

le
ss

C
on

ta
ct

-B
as

ed

Q
ui

es
ce

nt

Sw
it

ch
in

g

M
ul

ti
-P

at
te

rn
.

Si
ng

le
-P

at
te

rn
.

D
ev

ic
es

In
te

rc
on

ne
ct

s

P
re

ve
nt

io
n

T
ol

er
an

ce

C
ir

cu
it

-L
ev

el

P
hy

si
ca

l
D

es
ig

n

R
ed

un
da

nc
y

A
da

pt
iv

it
y

[1
83

,
23

]

[2
21

,
10

9]

[1
18

,
23

8]

[1
19

,
20

5]

[2
14

,
29

5]

[2
14

,
29

6,
12

7]

[2
41

,
30

5,
11

1]

[1
54

,
17

1]

[8
5,

20
4]

[9
4]

[2
72

,
19

0,
22

9]

[1
11

,
28

7]

[1
80

,
30

9]

[1
80

,
30

9,
29

3]

[1
34

,
13

0,
12

7]

[4
,

29
6]

[7
7,

10
3,

25
1]

[6
6,

25
4]

Figure 3.8: Extending the classification tree with extra splits for the single-die
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Chapter 4

Estimating Failure Probability
Using MPFP

4.1 Introduction

A broad categorization of techniques targeting parametric reliability violations
was presented earlier in Chapter 3 while a brief description of the failure
mechanisms triggering these violations has been studied in Chapter 2. To help
them determine and develop fitting mitigation schemes, tailored to a specific
digital system, engineers usually perform reliability analysis and deploy certain
software tools that estimate the impact of the failure mechanisms on the IC
design. Towards this direction, in the current Chapter, we develop a related
tool that captures the dominant failure mechanisms and estimates the failure
probability of the circuit under study in an accurate and efficient manner,
utilizing the most probable failure point (MPFP) methodology. First, we will
discuss other reliability analysis approaches, that are based either on static
timing analysis or some type of Monte-Carlo simulations. In Section 4.4 we will
extensively describe the MPFP methodology and highlight its core advantages,
focusing especially on the SRAM cell since memories are in general heavily
susceptible to variation and degradation. Finally, we will develop a related
simulation-based software tool, using MPFP, to estimate the robustness of the
SRAM buffers of a Network on Chip (NoC).

51
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4.2 Functional and Timing Verification of the
Design

When designing an electronic chip, typically in the Register Transfer Level
(RTL) abstraction layer, logic simulations are applied across the circuitry. These
type of simulations verify the functionality of the design and allow designers and
verification engineers to identify the numerous simple design errors that occur in
the initial version of every design. Since modern ICs consist of billion devices and
perform a wide variety of functionalities, this logic verification is a complex task,
and requires a considerable amount of time and effort. To efficiently perform
logic simulations, coding test-benches are generated, exploring the circuit’s
functional I/O behaviour after all the possible (or specific and representative)
input vectors are applied. ModelSim from Mentor Graphics [178] is such a
tool, widely used for field-programmable gate array (FPGA) designs. The same
company later introduced QuestaSim which provided high performance Verilog
and SystemVerilog simulations [177]; other commercial as well as open-source
simulators exist. Approaches for logic verification are discussed in the relevant
Chapter from Thornton et al. [166].

After the functionality of the design has been verified, engineers use timing
analysis to determine whether the timing constraints imposed by the components
or interfaces are respected. This analysis is usually performed later in the
development cycle and can be applied at the gate or the device level; certain
tools can also perform timing analysis at the physical design or even post-layout,
after placement and routing. In pre-layout simulations, a circuit schematic is
built to include the relevant elements of the design (gates, transistors, wires etc.)
while their characteristics are translated into mathematical models. In post-
layout simulations however, physical information is extracted from the routed
chip or board as well. In general, most simulation work should take place at the
pre-layout phase since design changes tend to be costlier further into the design
cycle. The goal of post-layout simulations is to finally confirm the compliance
with determined timing constraints. Therefore, both logic verification and
timing analysis are vital to understanding the IC design, and designing reliable
and successful electronic products. The design flow is illustrated in Figure 4.1.

In principle, through timing analysis engineers determine whether all signals
arrive at specific points of the design within their prescribed timing intervals. To
achieve this, designers can select to use static or statistical static timing analysis
(STA/SSTA) techniques to compute the timing behaviour of the circuitry
by propagating gate or device information through the netlist and without
performing simulations of the full circuit. Alternatively, one can choose to
simulate the complete circuit and perform dynamic timing analysis (DTA),
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Figure 4.1: CMOS design flow.

using relevant input stimuli and extracting timing information along with other
interesting data such as power measurements, waveforms and so on. In this
case however, the complete timing analysis of all netlist’s nodes usually requires
some type of exhaustive, Monte-Carlo-like experiments and hence significant
(and even prohibitive) simulation times for large SoC circuit netlists.

4.2.1 Static Timing Analysis

Static timing analysis performs an exhaustive and complete timing characteriza-
tion of the circuit design, estimating the propagation delay over all the design’s
elements. It is defined as static since the analysis results are independent from



54 ESTIMATING FAILURE PROBABILITY USING MPFP

the data values applied at the input pins. The primary task of STA is to
consider the propagation delays of all the circuit’s components, identify the
critical path and determine maximum clock speed while respecting the design’s
timing constraints. It is important to note that in STA, the entire circuit is
analyzed only once and the timing checks are carried out for all the possible
paths and scenarios of the design.

The relevant timing information of all the components in the design are stored
in library cell descriptions. In fact, standard cell library also contains data
irrelevant to timing characteristics such as area, functionality, geometry etc. The
STA tool uses this type of information and through respective timing models
– that can be simple linear ones or even complex, non-linear and advanced–
estimates the propagation delays of complex circuit components and evaluates
eventually the design’s timing behaviour. Therefore, standard libraries are
crucial for STA and are usually provided by the fabricating companies to the
electronic design automation (EDA) vendors.

To account for the different operating conditions, STA is performed at different
corners for Process, Voltage and Temperature (PVT) [36]. Specifically, STA
recognizes three corners for process variation, namely slow, typical and fast;
evidently, slow and fast corners are the extreme corners when addressing process
variability in STA. Similarly, the corners for voltage supply and temperature
variations are minimum, nominal and maximum. The operating conditions used
in STA are combinations of the aforementioned corners; for example, the Worst-
case Slow operating condition uses the slow corner regarding process variation,
maximum temperature corner and minimum voltage supply. On the contrary,
the Typical operating condition assumes typical process variation and simulates
the nominal corners for voltage and temperature. Standard libraries contain
information regarding all respective corners. In fact, modern STA tools usually
contain more design corners, like for example a distinction between nMOS and
pMOS devices or corners for the interconnects [292]. PrimeTime from Synopsys
performs STA analysis for designs at the gate level [263] while NanoTime (again
from Synopsys) is used for STA at the transistor level [264] and provides results
of notable accuracy; nevertheless, this transistor-level simulation requires a
very detailed description of the intellectual property (IP) block which is not
always available. When there is not accurate view of the IP design, the use of
transistor-level simulators like NanoTime is prohibitive.

4.2.2 Statistical Static Timing Analysis

With the aggressive downscaling of device and interconnect dimensions, process
variability and failure mechanisms in general are aggravated. Therefore, the need
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to design robust ICs while taking into account the aforementioned phenomena
is crucial. Traditionally, STA methodology could verify the timing constraints
of a design through different design corners, especially the Worst-case Slow one.
In modern devices however, the principal sources for performance variability
have multiplied. Hence, a complete corner analysis in this case could require
numerous STA runs –from 27 up to 220 [258]– and significant computation
times for large SoCs. Again, a worst-case analysis could be applied, assuming
worst-case conditions for all possible variability sources; nevertheless, such
a scenario proves rather pessimistic, does not take into account the actual
correlations between these sources and finally, suggests the use of overly large
safety margins, generating too low timing and power gains when migrating to
ultra-scaled technology nodes.

To overcome the above bottleneck, SSTA methodology was introduced. In
this type of analysis, the statistics of the variability sources are taken into
consideration, including their probability distributions, variances and co-
variances. Hence, instead of fixed delay values per corner, the delay is described
through its statistical distribution. Compared to STA, SSTA estimation is
more costly because a large amount of information is now needed. Furthermore,
this type of information is currently difficult to obtain since accurate process
data, correlating propagation delay to variability sources, requires extensive
experiments and substantial effort from fab companies.

Several SSTA approaches have been discussed so far [6, 113, 125]. Nevertheless,
the main problem of this technique still exists: an accurate mathematical
formulation that describes the propagation delay as a function of the process
parameters (tpd = tpd,nom + f(x1, x2, ..., xn)) – xi is considered a random
variable– is essential and not always available. Moreover, the correlations are
not correctly modeled in the statistical distributions that are employed today.
This leads to overly large global margins for ultra-scaled technology nodes.

4.2.3 Dynamic Timing Analysis

In contrast to STA and SSTA, DTA uses input stimuli to verify the timing
constraints of the circuit design. This type of analysis however, considers
only the specific input vectors applied each time hence, in order to increase
the quality of DTA, engineers need to expand the input vector. Evidently, a
complete DTA characterization of the circuit’s timing response usually requires
an exhaustive number of simulations. Nevertheless, it is more analytic compared
to static analysis, containing relevant information such as voltage and current
waveforms of the output nodes. Furthermore, DTA is the only method to
analyze asynchronous designs since static analysis cannot be applied in these
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cases. It is also important to note that typically, DTA can also be employed for
functional verification. Gate-level DTA can be performed with ModelSim [178]
while the SPICE framework is widely-used for transistor-level DTA [268]. Tools
for DTA at the physical level include the Virtuoso Layout Suite from Cadence
[48] and Calibre from Mentor Graphics [176].

When the dependence of propagation delay to process variation parameters
and other device characteristics (like for example ∆Vth caused by BTI/HCI) is
unknown, STA/SSTA provides results of questionable accuracy. In this case,
DTA is often used through Monte-Carlo-like experiments to achieve a proximate
estimation of the aforementioned dependence1. The standard Monte-Carlo
(MC) methodology [224, 143] relies on generating a large number of random
sample netlists and after simulations, the function f under study – in this
case, the function describing the relationship between propagation delay and
variability and reliability parameters – is approximated through a second f ′

function, based on the strong law of large numbers; the more experiments are
conducted, the more accurate the approximation, so that f ′ → f when N → ∞.
Evidently, MC is a strong tool for circuit designers and reliability engineers
when the cost of elevated simulation times is accepted.

An infinite number of samples for the MC methodology is impossible to be
simulated. Nevertheless, to achieve accurate approximations of the f function,
large sample populations are normally required and considered. In fact, the
bottleneck of the general MC methodology is its slow convergence rate (O(

√
N)).

This problem can be partly alleviated through certain approaches such as
Importance Sampling, Quasi MC [31] and corner-based Monte Carlo [174].
These statistical methods may enable a faster convergence rate but only under
certain conditions. Another way to reduce MC simulation time is to use only a
small number of samples and then “fit” the resulting f ′ to a known distribution
(often the Gaussian); again, the fitting procedure inevitably introduces errors. It
is clear therefore that approximating f and performing a complete DTA demands
extensive simulation times where large sample populations are simulated to
capture rare events/cases.

4.3 MPFP Premises

The Most Probable Failure Point (MPFP) search technique has recently been
proposed for failure probability estimations [133], as an alternative to the typical
MC method. While this methodology was first utilized in the mechanical and

1Actually, combinations of Monte Carlo algorithms with SSTA methodology have also
been discussed [280, 64].
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aerospace domains [108, 294], it is now employed in many works concerning
reliability and timing analysis of circuit designs [222, 153, 231]. We have already
explained the main problem of the typical MC methodology: since netlist samples
are randomly generated, the simulation of rare samples and the capturing of
events with low probability of occurrence requires large sample populations and
therefore, extensive simulation times. On the contrary, the MPFP technique
allows the generation of a more representative sampling population because,
in this case, samples are not randomly created. Finally, through MPFP, the
identification of rare events and faults with low probability of occurrence requires
less simulation iterations.

Next, we will estimate the failure probability (PF ) of a finFET-based 6T
SRAM cell2, utilizing the MPFP methodology. Generally, PF hints to the
parametric yield loss (Y L) of an embedded SRAM; Y L is the product of the
failure probability of an SRAM cell and the overall number N of cells in the
SRAM, as shown in Equation 4.1 [133].

Y L ≈ PF × N (4.1)
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Figure 4.2: Example of a butterfly curve
for a finFET-based, 10 nm 6T SRAM
cell. SNM hold is extracted graphically.

In this study, variability sources
include the dominant, time-zero
variation phenomenon RDF and time-
dependent wearout caused by BTI.
Instead of performing a typical DTA
analysis we will focus on the hold
stability of the SRAM cell, studying
the cell’s Static Noise Margin (SNM)
to present an illustration of the
MPFP approach. The SNM for the
hold operation describes the retention
ability of the cell and shows the
tolerance of the cell to noise; in
fact, the SNM value represents the
maximum noise level the cell can
tolerate for the hold operation [244].
In principle, the SNM is quantified graphically through the butterfly curve.
Specifically, it is estimated as the side length of the maximum square that can

2A finFET (or 3D) transistor is a multigate device where the gate is wrapped around
the channel, allowing better controllability of the channel, faster switching times and higher
current densities among others [297]. This is in contrast to planar MOSFETs, where the gate
is placed at the top of the channel.
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be fitted inside the lobes, as in Figure 4.23. Other figures of merit, like the write
stability of the cell, can also be considered as an extention for future work.

4.3.1 MPFP Methodology and Definitions

The core concept of our MPFP tool is based on the following definitions4:

• Aging wearout and process variability, alter certain device parameters –in
this case study Vth– which are described by a vector x. The vector size of
x depends on the netlist and specifically, on the number of the transistors
involved. For example, in the 6T SRAM cell, x ∈ R6 5.

• For the metric that we examine (the SNM in this case) a y value
corresponds to every x point. We show this through the function y(x).
The exact mathematical description of this function however is extremely
difficult to find. Only after simulation and experimental results, a yA

value is matched to a certain xA vector.

• We assume a certain margin Y for the metric value we examine. Depending
on the metric under study, the failure criterion can be either y < Y or
y > Y . In our case, a sample is considered failed when y < Y where Y is
a margin value for SNM metric. Nevertheless, assuming the metric under
study is the delay of a path, it is self-evident that the failure criterion
switches to y > Y , considering maximum delay Y .

• Then we consider a certain margin Y for the metric under study and
the failure criterion can either be y < Y or y > Y . In this case, the
failure criterion is y < Y hence, the SNM value yN of a vector xN is
considered a failed sample when yN < Y . Other studies, that focus on
the delay of a critical path for example, can have a different criterion; if Y
is the maximum accepted delay of the path, then a failed sample is when
yN > Y .

• Finally, we sample the x space - either in an exhaustive manner or through
an optimization method - and we focus on a) finding the most probable

3Stability of a cell can be related to other figures of merit as well. For instance, relevant
work [179] develops a methodology based on a prediction tool for the estimation of read SNM,
that indicates the robustness of the cell during its read operation.

4These definitions are not restrictive. They can also be applied beyond the SRAM cells or
the memory periphery in general. The work of Rodopoulos et al. [232] for example, employs
MPFP to perform reliability analysis and DTA for basic logic gates.

5x can be even more complex if we take into consideration the variability of the wires
in the BL/WL of a memory cell, especially for large SRAM blocks. However this study is
beyond the scope of our work.
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failure point xMP F P , which is the point that fails the criterion and is
most likely to appear and b) isolating the F space that contains all the
failed xN points; evidently xMP F P ∈ F . In fact, in order to estimate F
space it is important to first identify the the most probable failure point.
Then, the failure probability is simply P (x ∈ F ).

Several methods of MPFP analysis can be seen in prior art. The work of Khalil et
al [133] for example, exhaustively samples the space to obtain a highly accurate
estimation of F and the failure probability. Nevertheless, this method requires
significant simulation time. Realizing that the number of the netlist’s devices is
directly coupled to the computational complexity of the MPFP methodology,
certain optimization techniques that alleviate this complexity exist. Related
approaches, that study the 6T SRAM cell, assume that the operation of some
transistors is negligible compared to others. Hence, instead of sampling the
complete 6-D space drawn from all devices, they choose to reduce the dimensions
and neglect the variance of some transistors. A previous paper for instance
[135] considers a 1-D approximation while the work of Rodopoulos et al. [231]
realizes that the operation of WL devices in the SRAM’s hold ability needs not
be examined and minimizes the space to only four dimensions. Other efficient
sampling algorithms should also be noted [222].

In order to estimate the failure probability we should then identify the most
probable failure point. Previous works utilized Equation 4.2 that is representing
an optimization problem. Ideally the MPFP lies on the failure boundary and
gives us an idea of the F space; a proper estimation of the F space allows to
accurately calculate PF .

max
{

Pfail =
N−1∏
i=0

P (|∆Vth,i| ≥ xi)
}

(4.2)

so that y(x) < Y .

We have already mentioned that failure probability is P (x ∈ F ) and regardless
of our estimations on the MPFP location (the boundary of the F space), it is
crucial to have a solid indication of the F space. This problem is discussed in the
paper of Rodopoulos et al. [232], where the authors focus on a simple inverter
and differentiate their implementation from previous approaches, adopting a
x2 distribution and drawing hypersphere-like shapes around F . Interestingly,
a hypersphere sampling method is also described in another previous work by
Ranat et al. [222] nevertheless, this methodology only studies the identification
of the most probable failure point and does not look into the exact shape of the
F space.
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Figure 4.3: The typical 6T SRAM cell.

4.4 Utilizing MPFP – Estimating the SNM

4.4.1 Modeling the Failure Mechanisms

Figure 4.3 shows the design of a typical 6T SRAM cell. In our case study, we
have chosen to model variations in all 6 transistors therefore we examine a
subset of the 6D space. While this approach results in elevated simulation times,
we aim to achieve final PF estimations of significant accuracy. We focus on a
finFET-based SRAM cell at 10 nm nodes described by PTM modelcards [50].
We study PF of the cell after 3 years of continuous operation, which is a typical
lifetime assumption for electronics. We also model aging wearout, accounting for
the BTI effect (since this phenomenon is the dominant failure mechanism) and
describe the mean threshold voltage shift through the Equation 4.3, drawn from
relevant work that regards finFET devices [146]. This formulation is evaluated
based on wafer-level, extended Measure-Stress-Measure (eMSM) measurements
while the parameters α and γ of our technology nodes are also estimated.

⟨∆Vth,TD(t)⟩ ∼= AtaEγ
ox (4.3)

A is the fitting coefficient, Eox is the electric field applied between the gate
and the substrate and t represents the stress duration. Regarding σV th,T OT , it
is depending both on time-zero and time-dependent variability (σ∆V th,T OT =
σ∆V th,0 + σ∆V th,T D) [290]. Equation 4.4 shows the connection between time-
zero and time-dependent variability and we can identify how pronounced process
variation phenomena aggravate the time-dependent variation.

σ∆V th,T D(t) = σ∆V th,0

√
< ∆Vth,T D(t) >

100mV
(4.4)
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σ∆V th,0 represents the threshold voltage shift variability at time-zero due to
process variation. For process variation we will again focus on the dominant
phenomenon that is RDF. Hence, Equation 2.1 (Section 2.2.1) describes σ∆V th,0.
Finally, the mathematical formulation to describe the variability of Vth is given
in Equation 4.5.

σV th,T OT (t) =
(√

⟨Vth,T D(t)⟩
100mV

+ 1
)

σV th,0 (4.5)

4.4.2 Employing the MPFP

To locate the MPFP and therefore estimate the failure probability, we first need
to explore the SNM space and identify the point y(x) with the highest SNM
value. For this reason, we use the Cadence Spectre simulator [47] and estimate
the SNM at each point of the 6D space. It is important to note that we only
examine ”realistic” values of threshold voltage shifts. Therefore the range for
|∆V thi| ≤ 0.2V while our step size is 50mV . A reduction of the step size would
of course lead to a more accurate representation of the space, however, it would
also require more simulations and increase computational overhead. Hence,
there is a trade-off between the analysis accuracy (in terms of space mapping)
and simulation time. In fact, when studying netlists with numerous devices,
inhibitive simulation times would render the exhaustive sampling of the space
impractical.

After we sample the space and estimate the SNM values at each x, we
immediately observe the symmetry of the space. Looking closer at Figure
4.3 and at basic design principles of the typical 6T SRAM cell [292], we easily
realize that the cell is symmetric. This symmetry is confirmed in our analysis
of the SNM as well. Specifically, we have verified that the impact of threshold
voltage shifts on any of M1, M2 and M5 devices to the SNM value is identical to
the same amount of shifts on M3, M4 and M6 respectively, as shown in Figures
4.4a–4.4c. Obviously, this does not apply for the case for other combinations of
devices, like for example M1 and M6 as we can verify from Figure 4.4d. Since a
thorough representation of the whole SNM space is practically infeasible, we
show certain instances where the 4 ∆Vth of the devices remain fixed while for
the other two transistors, we sweep the threshold voltage shift while estimating
the SNM.

Next, we move forward and develop a tool that locates any maxima of the SNM
space. To this end, we are based on the coordinate ascent algorithm, as
presented in previous work [232]. In fact, we have observed in our simulations
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Figure 4.4: Instances of the SNM space: a) SNM space for ∆Vth,M1/M3 ; b) SNM
space for ∆Vth,M2/M4 ; c) SNM space for ∆Vth,M5/M6 ; d) SNM space for ∆Vth,M1/M6.
Symmetry of space is verified through Figures a, b and c.

that the SNM space contains a global maximum and local maxima also exist.
Interestingly, we have noticed that this global maximum is located upon the
symmetry axis (the pairs of M1-M3, M2-M4 and M5-M6 have the same ∆Vth).
Our tool starts by initializing the threshold voltage shifts near zero while the
results of coordinate ascent are presented in Figure 4.5.

It is clear that as the algorithm proceeds to next steps, the SNM value is
increasing until reaching the maximum at the final step. Using an exhaustive
search, we compared the aforementioned point to all the other sampled points
of the SNM space and have verified that this maximum (identified by the
algorithm) is in fact the global maximum. It should also be stressed that when
utilizing this algorithm and have reached a maximum, we cannot guarantee if it
is the global or just a local maximum. To assess whether the first or the second
case stands, a study on the concavity of the SNM space around this point is
essential. Should the maximum be local, we will find points in a distance r to
have a higher SNM value.

A strict mathematical proof of the concavity of the space is infeasible because
the exact formulation of the equation f(x) = y cannot be known. Nevertheless,
we can focus on the area near the maximum and examine whether points in
this area have an SNM value lower than the one of our maximum. In addition,
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we expect that as distance r from the maximum increases, the SNM value
will decrease. This observation would be rendered as substantial proof on the
concavity of the SNM space and show whether failure is monotonic. Figure 4.6
shows a representation of the SNM space around our maximum. The curves
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Figure 4.5: Results for the Coordinate Ascent Algorithm: a) CA for ∆Vth,M1 ; b)
CA for ∆Vth,M2 ; c) CA for ∆Vth,M3 ; d) CA for ∆Vth,M4; e) CA for ∆Vth,M5 ;
f) CA for ∆Vth,M6 ; g) CA for SNM.
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Figure 4.6: Studying the concavity of SNM space. Lines depict the different directions:
a) Near xmax space is concave; b) An example of a local maximum in the SNM space,
where no concavity is observed.

depict the SNM as we move away from the maximum at multiple directions; each
curve depicts the movement away from the maximum at a different direction.
The directions were calculated as stated in the Equation 4.6, where xmax is the
identified maximum point and x hints to the direction that we move parallel to
each time.

y = t ∗ x + xmax (4.6)

In Figure 4.6 the parameter r represents the distance (r = sgn(t) × ||y − xmax||)
of the threshold voltage shifts from the maximum. All the curves confirm that
the point we identified is indeed the global maximum since the SNM value is
decreasing in all directions while we are moving away (see Figure 4.6a. Therefore,
as variation increases (having the maximum as our starting point) failure is
monotonic. On the contrary, Figure 4.6b shows an example of a local maximum
in the SNM space where no concavity is observed.

4.4.3 Estimating Failure Probability

In order to estimate the failure probability, we continue and try to locate the
∆Vth combination, namely xY , with the minimum distance from the maximum
rY , that fails our criterion. For this reason, we use the gradient descent
algorithm [232]. According to the algorithm, we initialize the Vth shifts to the
values of the maximum and at every step, we move towards the most descending
direction of the SNM until we reach a local minimum. This procedure is shown in
Figure 4.7. It has to be noted that this algorithm follows a different concept from
coordinate ascent: instead of searching one coordinate at a time, it examines
multiple coordinates and then moves towards the most descending direction
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hence, this methodology requires more computations per iteration. Previously,
we chose coordinate ascent, since the path that led to the maximum was not
of interest.
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Figure 4.7: Results for the Gradient Descent Algorithm: a) GD for ∆Vth,M1 ; b)
GD for ∆Vth,M2 ; c) GD for ∆Vth,M3 ; d) GD for ∆Vth,M4; e) GD for ∆Vth,M5 ;
f) GD for ∆Vth,M6 ; g) GD for SNM.
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Figure 4.8: Failure Probability for various values of the SNM margins Y

draw hypersphere-like shapes around the maximum with a radius equal to rY .
Through this way, we are able to estimate the F space and calculate the failure
probability. Specifically, we calculate the probability P (x ∈ F ). To use the
non central χ2 distribution, we follow the Equation 4.7 to calculate the random
variable; N is the number of devices and σi represents the standard deviations of
the threshold shifts of the transistors. To estimate the non centrality parameter
λ we use µ to represent the mean ∆Vth of each device at the global maximum.

z2 =
N∑

i=1

x2
i

σ2
i

λ =
N∑

i=1

µ2
i

σ2
i

(4.7)

Finally, failure probability is estimated using the following methodology: For
each xY point with distance rY from the maximum, we calculate the failure
probability regarding as Y the respective SNM and utilizing the χ2 distribution.
Specifically, PF for each Y margin value satisfies Equation 4.8, where CDF and
PDF are the cumulative and probability density functions of the χ2 distribution.

Pfail = 1 − CDF (r < rY ) = 1 −
∫ rY

−∞
PDFrdr (4.8)

Figure 4.8 shows are failure probability estimations for the respective Y margins.
We can see that a decrement of Y results to lower PF values and vice versa. This
is expected, since failure is directly depending on the criterion and the specified
margin level. Therefore, when high levels of SNM margin are demanded, the
failure probability of our cell rapidly increases. We can move forward with our
work by approximating these data to a known distribution. This way, we can
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have a mathematical formulation to ”connect” the margin parameter to the
failure probability.

4.4.4 An Efficient MPFP Framework

Until now, we have utilized the MPFP methodology to estimate failure
probability nevertheless, we have exhaustively sampled the SNM space and this
required considerable simulation times. We now focus on upgrading the MPFP
tool by taking the symmetry of SNM space into consideration. Specifically,
this time, we will not sample the whole space. On the contrary, we will use
Spectre ”in-the-loop”, while the two algorithms are executed. In addition, we
will improve the coordinate ascent algorithm and exploit the symmetry of
the SNM space. We have verified that the global maximum lies on the symmetry
axis hence, this upgraded version of the algorithm utilizes the coordinates of the
symmetry axis. An example of the optimized implementation of coordinate
ascent is shown in Figure 4.9. Simulation time is now drastically reduced
therefore, we have decreased the step size to 25mV . On a typical 6T SRAM cell,
the symmetry of the SNM space between devices M1-M3, M2-M4 and M5-M6
exists regardless of the technology nodes. As a result, when studying the PF of
any 6T SRAM cell, the current efficient MPFP version can be utilized without
recurring computations studying the concavity or symmetry of the SNM space
through exhaustive sampling.

In the same spirit, we move forward and utilize the gradient descent tool
starting from the maximum. Because of the decreased step size, the steps to
reach the minimum are almost double. Moreover, since our simulator is running
”in-the-loop” with the gradient descent, total computation time is drastically
reduced. In fact, we can decrease step size to achieve even higher accuracy in our
estimations. Figure 4.10 presents the new results of the algorithm. Following
Equation 4.8, we have estimated the cumulative distribution of Y and eventually
the distribution of PF (shown in Figure 4.11).

4.4.5 Comparing Efficient MPFP to Monte Carlo

Since the Monte Carlo (MC) technique has been widely employed to evaluate
the reliability of CMOS circuits, in this Section we will estimate the failure
probability following this methodology and compare it against the results of
the MPFP technique developed earlier. The simulation framework for our MC
experimentation is illustrated in Figure 4.12. First, we add time-zero variability
to a median population size (104 samples) of ”fresh” SRAM netlists, according
to Equation 2.1. Afterwards, we inject time-dependent variability based on
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Figure 4.9: Results for the Optimized Coordinate Ascent Algorithm: a) Opt.
CA for ∆Vth,M1 ; b) Opt. CA for ∆Vth,M2 ; c) Opt. CA for ∆Vth,M3 ; d) Opt.
CA for ∆Vth,M4; e) Opt. CA for ∆Vth,M5 ; f) Opt. CA for ∆Vth,M6 ; g) Opt.
CA for SNM.

Equations 4.3 and 4.5 to generate the aged netlists, suffering from time-zero and
time-dependent variations. Next, we estimate the SNM value of each sample
using the Spectre simulator.
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Figure 4.10: Results of the Gradient Descent Algorithm for the Efficient MPFP
Approach: a) GD for ∆Vth,M1 ; b) GD for ∆Vth,M2 ; c) GD for ∆Vth,M3 ; d)
GD for ∆Vth,M4; e) GD for ∆Vth,M5 ; f) GD for ∆Vth,M6 ; g) GD for SNM.

Figure 4.13a shows the histogram of the estimated SNM values along with the
design margin Y . Next, we present the respective failure probability estimated
by our MPFP tool (Figure 4.13b) for the same Y and we compare the two
results. We can notice when targeting a high margin Y value, the estimated
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Figure 4.11: Results of the Efficient MPFP Approach: a) CDFY and b) PF for
our SRAM cell in terms of SNM design margin.
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Figure 4.12: The Flow of our Simulation Framework for MC Experiments.

failure probabilities for two different methodologies are (approximately) equal.

To estimate failure probabilities at significantly lower orders of magnitude (i.e.
in the scale of 10−8), the MC methodology requires a vast sample population
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Figure 4.13: Comparison between MC and MPFP for a high value of Y : a) MC
Experiments b) MPFP Approach

and long simulation times. This is challenging, especially when low CPU time
is a constraint. In our case study, no failed samples are detected when a more
realistic margin level is chosen (as shown in Figure 4.14). We should note that
in order to overcome this bottleneck of prohibitive computation times, engineers
work with a small population of MC samples and later fit the data to a known
distribution (usually the Gaussian). However, the SNM histogram shows a
rather prolonged tail towards lower values which the aforementioned fitting
cannot accurately capture [289]. Hence, we can conclude that while both MC
and MPFP methodologies are accurate when estimating failure probabilities of
high Y margins, when we examine the probabilities of lower magnitude scales,
our MPFP approach – only after the symmetry and concavity of the
space are verified– presents a more efficient solution. To address this issue
regarding MC experimentation, one can select a vast sample population however,
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this would render the technique inefficient. Figure 4.15 outlines the difference
in the computation time on a Intel CPU i3 8100 processor for the two schemes.
It should be stressed that the computational gains between the efficient and
the basic MPFP approach are even more drastic since, in the latter case, the
complete SNM space is sampled.
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Figure 4.14: Comparison of Monte Carlo with MPFP for a realistic value of Y : a)
MC Experiments b) MPFP Approach

4.5 Case Study Using NoC Buffers

After extensively analyzing the MPFP methodology and employing it on a
typical 6T SRAM cell, we now study the development of an efficient modeling
framework, that a) captures RDF-induced time-zero variability and BTI aging
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Figure 4.15: Difference in Computation time for the two methodologies.

on a cycle-by-cycle basis, and b) estimates PF over lifetime operation. We
focus on the SRAM memory of a Network on Chip (NoC) router since NoCs
are in general crucial components for the operation of a multicore processor;
given that the NoC constitutes the communication backbone of the various
on-chip modules (as well as the gateway to the off-chip components), a fault
in the NoC can render the entire chip useless6. Specifically, we will perform
a reliability analysis and estimate the failure probability of the NoC buffers
(often implemented using SRAM technology), which play an instrumental role
in the router’s datapath and overall NoC operation.

4.5.1 Proposed Simulation Framework

The flow of our simulation framework is shown in Figure 4.16. The initial
input files describe the signal activity of the circuitry, on a cycle-by-cycle basis.
Simulation time for a complete DTA analysis can be prohibitive, especially for
long time spans. Therefore, we first utilize CDW approximation to compress the
signal activity and alleviate computation complexity. A brief analysis on CDW
compression is presented in Appendix Section A.2 while the tool is introduced
and thoroughly described in our related work [233].

Next, we utilize the variation modeling tool, that is based on state-of-the-art
formulations presented earlier. Regarding process variation, we focus on RDF
which is the dominant phenomenon for aggressively downscaled nodes; due to
RDF, a transistor’s threshold voltage is not fixed when exiting the foundry. On

6To use the entire System on Chip (SoC) as case study would go beyond the scope of our
aim and means, so instead we have focused on a representative critical component in the SoC,
namely the communication network.



74 ESTIMATING FAILURE PROBABILITY USING MPFP

Input Files CDW
Approx.

CDW Wav.

Variation
Modeling

Tech. Specs

Vth Distr.MPFP Extrapolate

PF

Figure 4.16: Flow of our Simulation Framework.

the contrary,Vth,0 is distributed near a specified value and can be approximated
based on the Equation 2.1. For time-dependent variability, our focus is again
on the BTI phenomenon which is the dominant aging mechanism. First, we
deploy the reaction-diffusion model: according to it, ∆Vth depends on stress
time ts and is fixed at a mean value µ(ts), which is formulated in Equation
4.9 (Kv, βts are defined in [288]). This time we model BTI in planar CMOS
transistors, as opposed to Equation 4.3 that concerns finFET devices.

∆Vth ∼ N (µ(ts), 0) |µ| (ts) =


√

K2
va
f

1 − β
1/2n
ts

 (4.9)

The most recent atomistic concept differentiates from the RD theory by including
standard deviation. The standard deviation is correlated to the mean value
and also, to the time-zero variability, as described in Equation 4.4. The mean
∆Vth value remains similar to the one of the RD model. Consequently, the total
standard deviation of both time-zero and time-dependent variability is given by
Equation 4.5.

To have a more accurate modeling of ∆Vth distributions, the relaxation
phenomenon of BTI is taken under consideration as well. BTI recovery,
according to previous reaction-diffusion models, is formulated as shown in
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Equation 4.10 [104]; tr represents the relaxation time while ts the previous
stress phase. While previous approaches distinguished between a permanent and
a recoverable degradation component, recent discussions suggest that recovery
of the permanent component can be achieved via a thermally activated process.
Up to this day, a mathematical model fully capturing BTI recovery does not
exist and the true nature of the distinction between the recoverable and the
permanent part remains unknown.

∆Vth,tr ∝ ∆Vth,ts

(
ts

tr + ts

) 1
2

(4.10)

Then, failure probability is calculated using the MPFP tool presented earlier.
It should be noted that since simulation time in this case was not our main
focus, we employed the typical version of the tool and not our efficient approach.
Nevertheless, the enhanced version of MPFP can seamlessly be integrated in our
framework as well.

Finally, we use the extrapolate tool to project the estimated ∆Vth distributions
over lifetime spans, reaching up to three years of continuous operation. Hence, we
use a power-law-like formulation (similar to older reaction diffusion approaches
[207]); n is the H2 diffusion parameter (used also on Equation 4.9) and
b represents the relevant coefficient depending on previous cycle-accurate
simulation.

µ(t) = b ∗ tn (4.11)

We should underline that the aforementioned extrapolation enables reliability
estimations for the circuitry over long time windows. One could choose to stretch
the cycle-accurate simulations over longer time spans, disabling the extrapolation
tool and achieving results of notable accuracy. Nevertheless, circuits are
typically stressed with numerous workloads under different duty cycles that
lead to continually changing stress degrees. This introduces randomness on
a circuit’s characterization which is hard to capture, constituting lifetime
cycle-accurate simulations infeasible. Extrapolation is therefore a necessity if
reliability estimations are to be performed in the scale of yearly operations.

4.5.2 NoC Buffers

As proof-of-concept for the framework discussed previously, we hereby present
a case study that focuses on the buffers of NoC routers. In general, the advent
of the multicore processor era has rendered the NoC as the de-facto on-chip
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communication infrastructure. The performance of the NoC is critical to the
performance of the workloads running on the multicore processor: an ineffective
NoC can have a serious impact on the performance of the workloads, severely
affecting the computational power of the entire chip. In addition, an error within
the NoC can damage the entire multicore system. If a core fails in a multicore
CPU, the system may be able to continue to operate with fewer resources.
However, an error within the NoC can lead to various types of deadlocks, or
to the network disconnection of various on-chip components, for example the
communication of some cores with the memory controller. Therefore, NoCs
have become mission-critical actors within multi/many-core environments that
need to be studied.

Our goal is to present a case study focusing on the buffers of the NoC routers
operating under the BlackOut architecture; this architecture [308] focuses on
the reduction of static power consumption through power gating certain input
port buffers of the NoC.

The BlackOut Architecture

Each NoC router has a pipeline that consists of 4 stages: routing computation
(RC), virtual channel allocation (VA), switch allocation (SA) and switch traversal
(ST). Depending on the number of requests per each pipeline stage (that concern
a specific output port), the upstream router can safely decide on whether the
traffic heading towards the downstream router will increase or decrease. For
instance, if the sum of requests for a specific output port in stages RC and
VA is higher than the number of requests in the next stage, then the traffic
is increasing. Therefore, the upstream router needs to signal the downstream
router that incoming traffic is rising and more switched-on buffers are required
in order to leave performance unaffected.

When receiving a signal, the input port of the downstream router decides to
switch on/off buffers. Built into the BlackOut mechanism is the late binding
technique: it refers to the timing difference between the instance that a virtual
channel is allocated to a packet and the instance that an actual physical buffer
is allocated to the packet in the downstream router. By utilizing this time
difference, BlackOut can dynamically ”rename” buffers and use them in any
order. BlackOut can turn buffers on and off in the context of an expanding and
shrinking window.
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4.5.3 Simulation Results

We implemented and integrated the network architecture with an updated
version of the gem5 simulator [39]. The simulated topology is a 2D 8×8 mesh
network with deterministic XY routing. The network was stressed under a
uniform traffic pattern with an injection rate of 0.36 flits/node per cycle leading
the whole NoC to reach the onset of saturation7. We will perform a reliability
analysis for a router that contains 4 input ports (IP). We choose a representative
router from the middle of the topology to secure that all input ports receive
traffic (because of their physical location, corner/edge routers in a 2D mesh do
not use all their input/output ports).

All ports manages incoming traffic via 5 buffers which are used as storage space
and create first-in, first-out (FIFO) queues. The router’s architecture along
with the IPs is depicted in Figure 4.17 where we label the 4 ports as VC0 –
VC3 (virtual channels). For this analysis we will utilize our aforementioned
simulation framework and will consider the SRAM buffers to be synthesized on
HP-PTM 45 nm technology nodes [50] to present a realistic case study. Our
analysis covers all NoC buffers nevertheless, we will only focus on the most
critical ones, i.e., the buffers where PF is higher.

Figure 4.17: The architecture of the
router with the relevant IPs.

Under uniform random traffic, a flit
can have any of the network’s nodes as
destination with equal probability. A fine-
grained control of the traffic’s injection
rate is enabled through synthetic traffic
hence, it is used to stress the NoC to its
limit, i.e., to the threshold of saturation,
revealing the attributes of the network
itself (in contrast to application-specific
nuances).

Initially, input traces are compressed and
generate the CDW representation of the
overall signal activity. Signal files describe
the buffers’ workload for 105 cycles, with an operation frequency of f = 1GHz.
For the CDW approximation, the user-defined error ε = 0 is chosen, while
other ε values can also be selected. Figure 4.18 presents the simulated ∆Vth

estimations after the CDW waveforms. Based on the extrapolate tool, we
fit ∆Vth data to formulation 4.11 and extrapolate to approximately 3 years

7We define the injection rate as the probability of a node injecting an atomic unit of a
packet (flit) in the network in any given cycle.
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Figure 4.19: ∆Vth after 3 years of normal operation

of operation (108 seconds). Figure 4.19 presents the results. Again we should
underline that only ”critical” buffers are shown.

Then, our MPFP tool is utilized to estimate the failure probability PF of each
buffer at specific time instances (labeled as ”aging epochs” in other works
[100]). Again, we will study the robustness of the SRAM cell during the hold
operation, represented by the SNM metric. At the same time, we will also
take into account recent measurements on the measured levels of thermal noise
for our current technology [261]. Therefore, our failure criterion is shown in
Equation 4.12, where 25 mV represents the design margin to account for thermal
noise. Estimated failure probabilities for the two ”critical” buffers are presented
in Figure 4.20. It should finally be noted that PF values represent failure
probabilities for one SRAM cell of the buffer.



CONCLUSIONS 79

10
0

10
2

10
4

10
6

10
8

t (s)

10
-10

10
-8

10
-6

10
-4

F
a
ilu

re
 P

ro
b
a
b
ili

ty

VC2, Buffer 1

VC2, Buffer 5

Figure 4.20: PF after 3 years of normal operation.

SNM(x) < 0.025 (4.12)

4.6 Conclusions

In this Chapter we have discussed typical techniques for functional verification
and especially timing analysis. While STA and SSTA can provide an efficient
characterization of circuit’s timing profile, their results strongly depend on
relative information from standard libraries. When such information is not
available DTA analysis and a type of MC experimentation is usually performed.
In Section 4.4 we have extensively studied the MPFP methodology and estimated
the failure probability of a 6T finFET-based SRAM cell. We discover the
symmetry of the SNM space and have developed an efficient MPFP approach.
Finally, in Section 4.5 we employ the MPFP tool on a complete framework
modeling RDF and BTI on a “cycle-by-cycle“ basis and estimating PF over
lifetime operation, attempting an efficient and accurate approach.





Chapter 5

A Closed-Loop Controller to
Ensure Dependability under
Performance Variation

5.1 Introduction

In Chapter 4, we presented an efficient and accurate modeling framework that
captures BTI and RDF and estimates their impact on typical SRAM cells of
downscaled technologies. In general, the usage of accurate models to assess
the effect of failure mechanisms on a system’s reliability and dependability is
crucial. Ultimately however, the final goal of computer engineers and software
developers is to ensure correct system operation in a functional and parametric
level; we have already mentioned (see Section 3.3) the deployment of numerous
RAS techniques that target the functional reliability of digital systems. These
techniques can secure correct bit-wise operation nevertheless, they often come
with the cost of extra clock cycles (among others), deteriorating performance
and posing a serious threat to systems with deadline constraints. To this end,
we will now study a reliability mitigation technique that manages performance
variation in a reactive manner; as a result, we cannot provide full guarantees
but the complexity of the approach, especially the online technique, remains
very low. The current implementation will be deployed upon a single-die target
platform hence, belongs in Mapping 8 of our presented classification (see Figure
3.7 of Chapter 3). In Section 5.2, we will discuss the fundamental aspects of
our scheme, which are based on control theory. Also, we will outline basic

81
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information regarding our implementation such as the development of a rollback
mechanism or the available DVFS steps on our processor. In Section 5.3 we will
examine the capabilities of our scheme both in terms of efficiency and energy
costs; performance variation is generated not only from RAS interventions
but also from dynamic workload applied to the processor. As a result, we
cannot provide full guarantees but the complexity of the approach, especially
the online technique, remains very low. Section 5.4 presents a qualitative
comparison between our scheme and a “conservative” CPU-Freq governor
approach. Finally, Section 5.5 proposes a flavor of the PID controller targeting
thermal management.

5.2 A PID Scheme For Dependability

5.2.1 Premises

Slack

We will now discuss the theory of our closed-loop PID (proportional, integral,
derivative) controller, which provides a widely-applicable mitigation technique
for performance variation. The controller was first introduced in prior art [229]
and its basic principle is the reactive response to performance fluctuations
actuating DVFS to mitigate timing delays and respect performance constraints.
The previous work however illustrated the concept only on small test vehicles. To
this end, we differentiate our approach since now: a) real-time RAS events and
dynamic workload instances are triggering performance variation occurrences,
b) a quantitative comparison in terms of energy cost and timing dependability
between our controller and a Linux-based DVFS governor is presented and
finally, c) we implement a flavor of our PID scheme for thermal management
purposes. For our case study, we instantiated the controller on the NXP IMX6Q
board [245], on top of a GSM spectrum sensing application [63] with deadline
constraints. To control performance, first timing delays are monitored and
then the PID switches frequency and voltage of the processor. To assist us,
we introduce the term slack, to describe the timing difference for specific code
chunks, between their reference execution time (under nominal frequency) and
the actual execution time, under performance variability. Hence, in our case,
we define slack simply as:

Definition 6. Slack (s[n]) is the difference in the execution time for a specific
task between an error-free execution, operating at nominal frequency fnom and
the current execution at frequency f [n].
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s[n] = tref − t[n] (5.1)
where tref specifies the reference time and t[n] time execution at current
frequency.

From Equation 5.1 we realize that negative slack can be monitored when errors
are manifesting in the hardware and RAS events are actuated in order to correct
system’s functional behaviour. Another example of performance variation and
slack fluctuating from zero is the case when extra workload is applied that
competes for the same logic and memory resources. In these cases, the PID
controller should decide to elevate frequency and voltage in order to manage
dependability and drive slack to zero. On the contrary, positive slack can be
monitored when the frequency is over-boosted, translating into unnecessary
energy losses. Then the PID should slow down the processor, increasing the
clock’s period. To ensure slack convergence to zero, the controller monitors
slack periodically and enables DVFS, choosing from a number of available
DVFS points. It is important to distinguish between functional reliability and
performance dependability: in our scheme, the former is taken care of by a
rollback-based mechanism, similar to the ones presented in prior art. Instead,
the controller focuses on ensuring application’s timing demands.

Energy Model

Two components are responsible for the power consumption in CMOS circuits.
Dynamic power is attributed to the charging and discharging of circuit’s total
capacitance and at a voltage and frequency step n can be estimated through
Equation 5.21:

Pdyn[n] = αCV 2
dd[n]f [n] (5.2)

where α is the activity factor, depends on the workload and represents the
probability that the circuit node transitions from 0 to 1. C is the total circuit
capacitance, coming from the wires and transistors and f [n], Vdd[n], stand for
the frequency and supply voltage levels at the n-th step.

The power consumption from all the leakage currents is defined as static power.
Three main leakage currents are generating it: a) the subthreshold current,
which is the current flowing across the channel when a device is in the OFF
state, b) the gate-leakage current, that is the result of carriers tunneling through
the gate oxide and c) the reverse-bias junction leakage current, flowing between

1In reality, dynamic power is also the sum of another component Pshort−circuit which is
the result of short-circuit currents when both pMOS and nMOS paths are conducting. With
increased loading as in our case however, this component is negligible compared against the
switching power counterpart.
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source/drain and the substrate. From the aforementioned leakage currents, the
dominant one, that contributes most to static power, is due to subthreshold
leakage and its magnitude depends on the temperature, the supply voltage
and device size. In fact, it has an exponential dependence with temperature
therefore thermal management techniques are of paramount importance for
reducing static power. While for devices of older technology nodes, static power
was negligible compared to the dynamic counterpart, for technology nodes below
90 nanometers, static power reaches up to 30% of total power consumption
[102].

To estimate static power, we will follow the mathematical formulations of
previous work [141]. Note that in Equation 5.3, we do not capture the
temperature dependence (primarily because of the high non-linearities of the
model) however, we consider that this approximation is sufficient for our work.

Pstatic[n] = Vdd[n]I0e
−Vth
ηVτ (5.3)

I0 represents the nominal subthreshold leakage, η is a technology parameter
and Vτ the thermal voltage. Immediately, we realize that static power shows a
linear dependence to the voltage supply. Finally, total energy consumption for
all discrete n steps is the sum of the dynamic and static components (Equation
5.5) and can be calculated as in Equation 5.42.

E =
∫ T

0
P (t)dt =

m=n∑
m=1

P [nm]∆t[nm] = P [n1]∆t[n1] + ... + P [nn]∆t[nn] (5.4)

where
P [n] = Pstatic[n] + Pdyn[n] (5.5)

Spectrum Sensing Application

Our spectrum sensing application is used to detect GSM signals within a wide
band acquisition. First, the input signal is decomposed in 200 kHz-bandwidth
channels and the power spectral density (PSD) associated to each channel is
computed. Then, the obtained PSDs are compared to a threshold and the
active channels are indicated. The application is streaming in nature, contains
heavy digital signal processing computations and has deadline constraints since
specific time slots are allocated for the spectral sensing of each channel.

2In our work, we use normalized energy units. Searching though the platform’s data sheets
we have not found enclosed information relevant to power and energy data. Nevertheless,
since the study will be performed on the same workload (α) and hardware configuration
(C, I0), results from relative and not absolute energy comparisons are considered sufficient.
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5.2.2 RAS Instantiation – Rollback Mechanism

To ensure functional reliability, errors need to be detected and corrected. The
development of an error-detection mechanism has been part of our team’s
previous work [65]. A strategy based on signature comparison has been built
which alters the signature trace progressively and uses data from application
variables. This strategy consists of two distinct phases: a) the recording phase,
where the golden reference is created while the application runs without any
error occurrences and b) the comparison phase in which the application is
run on the processor. Then, binary errors can occur and the comparator,
operating in real-time, can detect the mismatch at certain checkpoints during
the application. It is important to note that the golden trace is stored locally,
on the memory of the target board. It should also be underlined that through
this configuration run-time error identification is enabled, within 1 ms from its
occurrence. Evidently, our signature-based detection scheme cannot capture
errors in all application data structures nor can identify the source of the error
in the faulty hardware component. These data corruption cases fall into the
category of undetected errors.

Apart from the signature configuration that detects the error, significant part of
our work has been the development of an error-recovery mechanism to mitigate
functional violations and ensure binary correctness. Hence, we have developed
a rollback technique to correct system functionality after the comparison phase.

Signatures

NXP Platform

Checkpoints
Error Detected

Rollback

Application Code

Application Domain

= ?

Golden Trace

Comparator

Memory Domain

Figure 5.1: The configuration of our RAS mechanism. At certain checkpoints
of the application, the system computes the signature and compares it against
the golden trace. In case of a mismatch, a rollback event occurs.
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Specifically, after an error has been detected, the system is rolled back, the
task is repeated and the sensing analysis of the current GSM channel restarts.
Naturally, this procedure introduces extra clock cycles and timing delay (negative
slack) since the repeated task now needs to be completed on tighter timing
demands. It should also be highlighted that with this rollback scheme, the
system only recover transient errors; in the presence of permanent or semi-
permanent errors, this scheme cannot ensure correct system operation. In this
case, fault-tolerant architecture features need to be added in order to start
up/power up redundant architecture resources when the initial ones become
unusable due to the permanent faults. This extension is outside the scope of
our work because sufficient literature is available on this direction [252, 116].
Figure 5.1 summarizes our developed RAS mechanism.

5.2.3 Controller Instantiation
Table 5.1: Operating Points of
our Processor. Highlighted are
the default levels available.

Available DVFS Levels
f (MHz) Vdd (V)

396 0.975
424 0.975
444 1.00
480 1.025
504 1.050
528 1.050
564 1.075
588 1.075
612 1.100
648 1.125
672 1.125
696 1.150
732 1.150
756 1.150
792 1.175
816 1.200
840 1.200
864 1.225
900 1.225
924 1.250
956 1.250
996 1.275

The key features of the PID implementation
are a) the monitor that measures timing
delay and estimates slack along with b) the
knobs used to perform dynamic voltage and
frequency scaling. For slack monitoring, we
use the clock_gettime() function of the C
library, that allows measuring time intervals
between code chunks with a nanosecond
resolution. This is one of the most accurate
methods to measure wall-clock time. One
other way to calculate function time is by
reading cycle counters (CCNT). These counters
are normally disabled, so first they should be
enabled from kernel-mode. In our processor,
in particular, they are accessible via CP15
instructions [75]. DVFS is supported on
the platform, however default support is
minimal; three DVFS points are available,
corresponding to minimum, nominal and
maximum operating points. Nevertheless, this
restriction is only a software limitation, and
not a hardware one. To this end, we have
used a custom DVFS driver by Thales [63],
that enables the use of numerous operating
points.
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Our DVFS configuration can be seen in Table 5.1. The timing overhead of
DVFS is measured in the scale of hundreds of µs, therefore it is negligible
for our case. The main contribution to this is given by the time the protocol
requires to set up a new voltage point (through I2C interface); this time can
be reduced by using designs with on-chip regulators [245]. Overall, in this case
study, the timing overhead of DVFS is taken into consideration during the slack
estimations.

The basic task of our aforementioned application includes the spectrum
characterization of a single GSM channel. This task is performed for all channels,
until the complete spectrum band has been analyzed. After monitoring the
slack, the decision for the DVFS switch is based on the proportional, integral
and differential components of the controller. The first component kp produces
an output value that is proportional to the current slack value. The integral
term ki is proportional to the magnitude and the history of the slack, therefore
the integral part represents the memory of the controller. Lastly, the derivative
part kd is depending on the slack’s slope. Hence, based on this scheme, the
frequency multiplier m[n] is selected according to the Equation 5.6:

m[n] = kps[n]︸ ︷︷ ︸
proportional

+ (s[n] − s[n − 1])kd︸ ︷︷ ︸
differential

+ (m[n − 1] + s[n]ki)︸ ︷︷ ︸
integral

(5.6)

The gains of the controller in this Equation are configured through trial-and-
error since they depend on system characteristics. In our case, the gain values
are set at kp = 0.25, ki = 0.005, kd = 0.3. From prior art, various methods
exist to tune a PID controller (such as the Ziegler and Nichols [303] approach)
however, these works are outside the scope of this work.

5.3 PID Controller To Manage Timing Deadlines:
A Case Study

After we instantiate the controller, we proceed with our case study to examine
the capabilities of our proposed scheme. We should highlight that the NXP
board is fabricated at 40nm TSMC technology nodes [199] and the processor
consists of an ARM Cortex-A9 [15] quad-core. The board runs the version
3.0.35 of a Linux kernel image, while the software is cross-compiled through
the arm-fsl-linux-gnueabi toolchain. In this case study, we focus solely
on the spectrum sensing application nevertheless, our proposed scheme can
seamlessly be integrated on any software that meets the target application
domain assumptions.
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5.3.1 Dependability in the Presence of Rollback Interventions

For our experimentation, processor clock frequency is set at 792 MHz and voltage
level at 1.175 V. First, during the recording phase we generate the golden trace,
in error-free conditions. It is important to notice that our target platform
has already proven to be notably tolerant against soft-errors and reliability
nuisances. In fact, previous published work [65] has performed accelerated tests
and a system-level reliability analysis on the board under aggressive Vdd and T
conditions. In such conditions, and for typical stress times (in the order of a
few days), Mean Time Between Failure (see Appendix Section A.1) estimations
have shown that MTBF > 105s. Therefore, under typical voltage and frequency
levels and at ambient chip temperatures, one can expect that MTBF ≫ 105

seconds. This is the reason why throughout our case study, functional errors
are, in reality, software-injected.
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Figure 5.2: Slack over Time for Rollback Interventions.

Figure 5.2 shows how the slack measurement is progressing over time for one
run of the application. Time is viewed as sample count period, which is the
time for the application to perform one basic data processing computation at
nominal frequency3. An error is injected, the signature mismatch is detected
and finally a rollback event occurs, forcing the system to repeat its previous
task. This introduces delay, and drops slack to negative values. When this drop
is monitored, the controller takes action and boosts the frequency to absorb
the timing overheads and converge slack to zero. In this case, the MTBF was

3Since the target board is low-power oriented, this basic computational block is measured
to last significantly longer than in a high performance platform.
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Figure 5.3: Frequency over Time for Rollback Interventions.
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Figure 5.4: Energy Consumption over Time for Rollback Interventions.

selected so that we can manage to compensate for negative slack. An exploration
regarding the error rate limits the controller can mitigate is presented later.

In Figure 5.3 we observe the controller’s frequency decisions. As expected, the
controller drives frequency to the maximum level just after the rollback event
and gracefully converges slack to zero - thus meeting our deadlines - while
frequency remains around the reference value. We should note that the selection
of frequency steps is a function of the error rate, the controller gains and the
granularity of the DVFS points. Different error rates and different values for the
PID gains can activate different groups of DVFS points. Finally, in Figure 5.4
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we present an estimation of the energy consumption (both static and dynamic)
for our controller instantiation, estimated in normalized units.

5.3.2 Dependability in the Presence of Dynamic Workload

We move forward by studying the controller’s response at the presence of dynamic
workload while the board operates at error-free conditions. Such workload
variation may result, for example, from input-data dependent computations and
is largely unknown at design-time. In our experiment, workload variation occurs
when extra workload is running on the same core competing for processor and
memory resources. Hence, the controller’s challenge now is to compensate for
the extra load by optimal DVFS actuations. The imposed timing penalty of
performance variation is visible in Figure 5.5.

We can identify the time instances when the extra load is applied to the CPU and
a sudden slack drop is monitored. Then, the controller increases the processor’s
clock speed to converge slack to zero. Positive slack is observed when the extra
load is removed and in this case, the processor slows down, since meeting the
timing deadlines can be achieved at lower energy budgets. Figure 5.6 presents
the frequency response of the controller while the energy estimations are shown
in Figure 5.7.
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Figure 5.6: Frequency over Time for Dynamic Workload.
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Figure 5.7: Energy Consumption over Time for Dynamic Workload.

5.3.3 Hardware-related Limitations of our Scheme

Our scheme is able to manage timing deadlines, we should however explore its
hardware-related limitations. These limitations are solely associated with the
hardware’s maximum frequency; a higher operating frequency is can absorb
timing overheads (imposed by RAS events or extra workload) faster.

Definition 7. Critical Time (Tcrit) : in our case study, we define Tcrit to be
the minimum time needed for the processor to reach zero slack, after a timing
overhead event (such as a rollback) occurred.
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Figure 5.8: Slack versus time for MTBF = Tcrit.
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Figure 5.9: Frequency versus time for MTBF = Tcrit.

This approach can be visible if we focus on the Critical Time of our instantiation.
In our experimentation, assuming timing overhead is imposed by a rollback
event, the lowest MTBF rate the controller can handle is shown in Figure 5.8.
For this error rate, the controller’s action is to drive frequency to the highest
step, as seen on Figure 5.9.

For an error rate that is higher than the aforementioned one (MTBF < Tcrit),
timing deadlines cannot be met. Figure 5.10 shows such an example. Again, as
we can see in Figure 5.11, frequency is ”boosted” to the highest level so that
timing delays are absorbed. Nevertheless, at this increased error rate, the slack
cannot converge to zero; on the contrary, it is progressing to more negative
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Figure 5.10: Slack versus time for MTBF < Tcrit.
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Figure 5.11: Frequency versus time for MTBF < Tcrit.

values. This is not a limitation of the controller but of the hardware. If a higher
frequency step would be available, the controller could utilize it and absorb the
timing delays, mitigating thus higher error rates4.

4Alternatively, core resources that enable more parallelism would also have enabled
performance management for a larger application workload or higher error rates.
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5.4 Comparison of our Scheme versus a
“Conservative” Governor

Next, we implement a DVFS scheme that is based on the ”conservative” Linux
CPU-Freq governor algorithm , as a reference method to compare with. Another
governor, the ”ondemand”, operates in a more aggressive manner, and jumps to
max frequency the moment there is any load on the CPU hence, ”conservative”
behavior is more suitable in a battery powered environment. A static, flat
guardbanding policy is discussed in previous work however, it is evidently
less efficient [209]. The selected governor specifically gracefully increases and
decreases voltage and speed, depending on the current slack measurement. To
characterize this scheme one needs to set certain parameter values, which are
described in related work [45]:

1. SamplingRate, defines how often the kernel looks at the slack/CPU usage.
Typically, it is measured in usec (10−6 seconds) and its value is around
10000 or more. For this case study, we select a rate equal to 1 #Sample
Count Period Tnom

2. FreqStep, describes the percentage at which the frequency steps are
increased or smoothly decreased. By default, the CPU frequency increases
by 5% chunks of the maximum frequency. For our experiments and based
the DVFS configuration, we chose finer granularity of nearly 2.5%

3. SamplingDownFactor, represents the rate at which the kernel actuates
a decision on applying DVFS, while running at any speed. In our
experiments, it is set to 1 (the default) hence, decisions to re-evaluate
frequency are made at same interval with the SamplingRate

4. UpThreshold, typically defines the upper threshold of CPU usage before
the kernel makes a decision on decreasing the frequency. In our
experimentation, this threshold is directly correlated to the slack and set
equal to 15% of Tnom. Therefore, when slack is monitored to be higher or
equal to 0.15 × Tnom, speed is decreasing by one frequency step

5. DownThreshold, is similar to the UpThreshold however, it regards
decisions on increasing the frequency. For our experiments, it is set
to -15% of Tnom.

Table 5.2 summarizes the governor parameters for our current implementation.
Next, a comparison of the two configurations in the presence of rollback
interventions is presented. From Figure 5.12, we can identify how both schemes
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Table 5.2: The configuration for our “conservative governor

Parameter Description Value
SamplingRate How often we monitor Tnom

and estimate the slack

FreqStep
Available freq. step as 2.5% × fmaxa percentage of CPU
maximum frequency

SamplingDownFactor
The rate, as a percen- 1
tage of SamplingRate,
at which the kernel ac-
tuates DVFS

UpThreshold
The upper slack limit 15% × Tnom

of the kernel before
actuating a decision to
to decrease frequency

DownThreshold
The lower slack limit −(15% × Tnom)
of the kernel before
actuating a decision to
increase frequency

manage to compensate for negative slack that is invoked by our RAS mechanism.
However, the PID controller faster converges slack to zero, by approximately
3# Sample Count Periods. A closer look on the Figure shows that the governor
scheme, after a rollback event, converges slack to zero after nearly 9# Sample
Count Periods whereas the PID controller only after 6. Hence, our controller
configuration manages performance variation nearly 33.3% faster. Figures 5.13
and 5.14 show the frequency decisions and DVFS points that are actuated
throughout the process.

We can now identify the advantage of the PID controller compared against
the “conservative" governor: the governor scheme by default increases (and
decreases) voltage and frequency gracefully (that is per one frequency step
(FreqStep)). Therefore, even when slack values away from defined thresholds
are monitored, voltage and frequency scaling is actuated per step. This leads
to rather suboptimal decisions. On the contrary, our PID controller provides a
smarter DVFS policy that allows the processor to switch freely to any voltage
and frequency level, in order to compensate for performance variations. This is
underlined in Figure 5.14 where we can see that certain DVFS points are utilized
by the governor and not from our controller. Figure 5.15 shows a comparison
between the energy consumption for the two configurations for this case study;
the two lines are in fact overlapping. Hence, we can conclude that the two
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Figure 5.12: Slack versus time for PID and Governor.
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Figure 5.13: Frequency versus time for PID and Governor.

methodologies present similar energy costs however, the PID scheme enables
smarter DVFS compared to the governor.

5.5 Temperature Management

The alarming increase in power consumption and circuit density has emphasized
the importance of temperature management in VLSI circuits. As previously
mentioned, temperature affects system reliability since it exacerbates failure
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Figure 5.14: DVFS points with the PID and Governor.
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Figure 5.15: Energy Consumption for the PID and Governor.

mechanisms and amplifies current leakage. Transistor performance is degraded
with the rise of temperature hence, designers are careful to avoid the generation
of thermal hotspots in integrated circuit components. Interestingly, these
hotspots can be created due to the unbalanced power consumption, even when
average system temperature is below the thermal budget.

One way to deal with thermal hotspot generation and mitigate temperature
related-issues is to use a heat sink and allow the heat convection. This is the
case with our target board; the chip is in a metal lid configuration which enables
the uniform distribution of temperature. Our board also provides an integrated
on-chip Digital Thermal Sensor (DTS), calibrated and fused for temperatures up
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to 125◦C, which is also the qualification point for most industry electronic chips
[246]. By default, the thermal support of the platform is limited: it contains
only an alarm function that raises an interrupt if the measured temperature
exceeds a specified limit. In this Section, we will extend our PID methodology
to also be utilized for thermal management purposes. Moreover, we will provide
the experimental results that validate the efficiency of our scheme.

5.5.1 A PID controller for Thermal Management

After studying the controller’s response to mitigate performance variation, we
now realize a similar scheme to actuate DVFS for thermal management. In this
version, key features of our controller are : a) the on-chip digital sensor that
enables temperature monitoring of the processor and b) the DVFS configuration,

Table 5.3: DVFS points for
thermal management

Available DVFS Points
f (MHz) Vdd (V)

396 0.975
444 1.00
492 1.025
544 1.050
588 1.075
636 1.100
696 1.125
744 1.150
792 1.175
840 1.200
888 1.225
936 1.250
996 1.275

the control the CPU’s voltage, frequency and
consequently its temperature.

We should underline that the ARM A9
quad-core of our target platform is designed
with a single voltage/frequency island [15]
therefore, all cores can operate at the same
frequency and voltage level. Regarding our
methodology, first, a target temperature Ttar

is selected. Only when we measure Tmon

higher than our target one, the controller
actuates thermal management through proper
DVFS. Temperature is monitored periodically,
with a time step of approximately 10 seconds.
A custom driver that allows a 13-DVFS-
points configuration is used instead of the
limited default DVFS support. We present
this configuration in Table 5.3.

The PID scheme presented in Figure 5.16,
estimates the error e[n] = Ttar − Tmon and afterwards voltage and frequency
scaling decisions are decided based on the following mathematical formulation:

m[n] = kpe[n]︸ ︷︷ ︸
proportional

+ (e[n] − e[n − 1])kd︸ ︷︷ ︸
differential

+ (m[n − 1] + e[n]ki)︸ ︷︷ ︸
integral

where kp,kd,ki are the proportional, differential and integral gains of the
controller.
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Figure 5.16: PID controller for Temperature Management
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Figure 5.17: Chip Temperature using the PID.
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Figure 5.17 presents an example of our PID controller as a thermal management
solution while the target temperature is set to 50◦C. Again, the spectrum
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sensing application is used, while the board is in room temperature conditions.
This time, the workload stresses the CPU by running in parallel on all 4
cores of the chip. The platform fist functions without activating the thermal
management scheme; when chip temperature reaches approximately 57◦C and
then (at 600#SampleCountPeriod), the PID controller is ”turned on” to activate
DVFS and lower the temperature, bringing it near the target value. From this
Figure we can verify how the controller effectively reduces temperature down
to Ttar. The voltage decisions of the PID scheme are shown in Figure 5.18.

5.6 Conclusions

In this Chapter, we have discussed a PID mechanism that mitigates performance
variability by absorbing the temporal overhead from RAS interventions and
dynamic workload. The scheme has been instantiated on a real platform, on top
of an industry-related application with timing constraints. The RAS mechanism
is a rollback technique that works along with a signature configuration for
error detection. In Section 5.3, we have verified the effectiveness of the
controller when RAS interventions and dynamic workload conditions impose
performance variation. The hardware-related limitations of our scheme have
also been outlined. Then, in Section 5.4, we have shown the comparison of our
scheme versus the ”conservative” frequency governor, that targets performance
variability as well. The key feature of the governor’s methodology is the graceful
increment and decrement of CPU voltage and frequency. Results have shown
that while both mechanisms manage dependability, our PID controller is more
effective. Finally, we have moved forward and suggested an alternative version
of our controller to perform thermal management. Again, we have instantiated
this scheme on our board, which supports a digital, on-chip sensor to monitor
the CPU’s average temperature. For verification purposes, a realistic case study
of such an approach has been presented.



Chapter 6

Mitigating Performance
Variations Using System and
Adaptive Scenarios

6.1 Introduction

Previously, we defined slack (see Definition 5.2.1) as the difference between the
nominal and the actual execution time per task. This allowed us to mitigate
performance variation in a task-level basis. In this Chapter, we will deploy
this PID scheme on a finer workload granularity, applying DVFS actuations
per basic workload chunks named as Thread Nodes (TNs); we believe that a
TN-level mitigation of performance variation permits a more accurate and cost-
efficient mitigation of performance variability. Nevertheless, while many modern
application workloads can be split into a handful of tasks, their TN number
increases significantly. For this end, we have to come up with a scheme which
can handle this much larger amount of TNs for realistic applications. In Section
6.2 we will first define the related terminology and discuss the foundations of
the system scenario concept that groups TNs with similar cost perspectives. In
Section 6.3, we will apply a TN analysis and a system scenario clustering on our
spectrum sensing application, while presenting related simulation results. The
PID controller working in parallel with an adaptive system scenario mechanism,
that allows run-time re-clustering decisions of the scenario hierarchy, will be
studied later in Section 6.4; simulation results of Section 6.5 will show the
benefit of the latter approach. Finally, Section 6.6 will conclude the Chapter.

101
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6.2 System Scenarios: General Concepts
and Related Terminology

Before elaborating on the system scenario methodology, we first need to discuss
some basic concepts. For a more verbose definition of the following terms and
extensive coverage, we refer readers to previous related works [107, 96]. The
following work is also partly explained in our Chapter 7 of related book [51].

6.2.1 General Concepts

Following the background of previous works, we can divide system workload
into a number of thread nodes; as mentioned earlier, thread node categorization
constitutes a finer granularity compared to the task-level one. In short:
Definition 8. Thread Node is a set of successive instructions with a deterministic
behavior that is executed in a single manner, like for example the body of a
loop. In our study, it represents the basic computational block.

Therefore, our application workload can be split into a series of TNs with their
sequence depending on the control plane of the platform.
Definition 9. Run-Time Situation (RTS) is a tag/label of a TN or of a sequence
of TNs, with associated primary costs, like the execution time and the energy
budget.

Evidently, workload execution is a sequence of numerous RTSs. In general, a
TN can be executed under different power and timing budgets, generating a
number of RTSs: a processor with several DVFS points for instance, can execute
a TN in any of these steps. Hence, in the timing-energy cost plain, the RTS of
a thread node can be visualized as in Figure 6.1. Obviously, TN execution in
high DVFS levels results in increased energy costs and shorter execution times.
Definition 10. Cycle Budget (N) represents the actual number of cycles of a
TN (or a RTS), in the absence of any error-recovery mechanism. In the same
spirit, a Timing Budget (Tref ) can be defined, that is the reference execution
time of the TN for nominal/reference frequency fref .

Moreover, we can express any kind of performance variation, and particularly
variation caused by RAS interventions, in the form of cycle noise.
Definition 11. Cycle Noise (x) represents the extra clock cycles of a TN
due to performance variation. The extra cycles lead to higher execution times
(Treal > Tref ) of the TN when system is operating under fref .
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Figure 6.1: Illustration of a RTS in the
energy-time cost plain.

We have highlighted how the non-
determinism in the occurrence of
hardware errors and error recovery
interventions threatens timing dead-
lines and creates dynamic system
operation. Cycle noise is injected
based on system error rate (Λ)
while another important parameter
of x is its amplitude (M). This
metric largely depends on the type
of performance variation: in our case,
we will focus on variation caused by
RAS mechanisms. For example, an
error-correcting code is a type of computer data storage technique that can
detect and correct the most common kinds of internal data corruption using
redundancy check codes that typically cost a few nanoseconds [11]. In contrast,
a checkpoint-rollback mechanism returns the system to some correct, previous
state after erroneous operations are performed and may require significantly
longer timing penalties [52]. Since actual Λ and M values can be stochastic, we
can also utilize λ, µ representing their respective averages over entire workload.
Figure 6.2 shows a depiction of these metrics.

Definition 12. Performance Vulnerability Factor (PVF) represents the per
unit increase in number of cycles for a specific workload due to cycle noise
occurrence.

TN[n + 1]TN[n]

Cycle Budget

Cycle Noise

Λ[n]
N[n] N[n + 1]

... ...

x[n] x[n + 1]

Figure 6.2: Depicture of cycle budgets and cycle noise after TNs execution.
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In our case, we examine the workload in the thread node level hence, PVF after
the n-th TN is formulated as follows:

PV F [n] = 1 −
∑n

i=1 N [i]∑n
i=1(N [i] + x[i]) (6.1)

Definition 13. Deadline Vulnerability Factor (DVF) is the temporal equivalent
to PVF and represents the per unit increase in execution time (T ) for a specific
workload because of performance variation: DVF = 1 − Tref/Treal. After the
execution of the n-th TN, DVF is estimated according to Equation 6.2.

DVF [n] = 1 −

n∑
i=0

N [i]
fref

n∑
i=0

N [i] + x [i]
f [i]

= 1 −

n∑
i=0

N [i]
fref

n−1∑
i=0

N [i]
fref

1 − DVF [n − 1] + N [n] + x [n]
f [n]

(6.2)

f [i] is the operating frequency at step i. By definition, DVF and PVF are
identical for constant frequency operation (i.e. f [i] = fref, ∀i). In practice, DVF
tells us how far behind (or ahead) schedule the actual execution is, due to
performance variation. An alternative metric to DVF is the slack (see Definition
5.2.1), which we now define in a more precise manner.

Definition 14. Slack (s) is the cumulative divergence from the cycle budget,
assuming operation under reference (fref) and current (f [n]) frequency. We
formulate slack according to Equation 6.3, where n = 0, 1, 2, ..., s [0] = x [0] =
0 and f [0] = fref.

s [n] = Tref [n] − Treal [n] + s [n − 1] = N [n]
fref

− N [n] + x [n]
f [n] + s [n − 1] (6.3)

The interplay between slack and DVF metrics has been proven in our previous
work, verifying the equivalence of s[n] = 0 ⇐⇒ DV F [n] = 0 [195].
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6.2.2 Scenario Clustering Methodology
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Figure 6.3: Clustering RTSs in a Scenario.
D1 and D2 show the distance of the
RTSs from the scenario and represent the
clustering overhead.

Modern applications typically con-
sist of a surplus of RTSs hence,
storing their information would
demand considerable resources.
Moreover, a real-time identification
of the current TN and its charac-
terization to a RTS can be quite
complex and with a significant
timing overhead. Therefore, we
follow the system scenario approach
[95] and manually cluster all
application RTSs into scenarios to
reduce RTS-based computational
complexity. This procedure takes
place offline, during the profiling
of the workload. Specifically,
each scenario represents a bin on
the time-energy plain, containing
a number of RTSs with similar
behavior. Assuming that a workload is composed of k RTSs, the goal of
the methodology is to limit this number into l scenarios where l ≪ k and now
the l scenarios can easily be processed in real-time. An illustration of this
clustering procedure in the energy vs. timing Pareto space is presented in
Figure 6.3.

The scenario classification however comes with a sacrifice in accuracy.
Specifically, the costs of the RTSs in a cluster will not be identical with those
of the scenario; on the contrary, the difference in the costs is referred to as
clustering overhead and can be visualized as the distance of the RTS from the
scenario identifier in the time-energy plain. It is important to note that as
the number of the scenarios increases, the overhead is minimized and higher
accuracy is obtained. However, we now pay a price in complexity, since more
scenarios are now generated. It is up to the developer/user to find the best
trade-off and proceed with the clustering of RTSs according to his demands.

6.2.3 A PID Controller Utilizing System Scenarios

In our approach, we will again utilize the PID controller with the mission
to mitigate performance variations by applying suitable DVFS decisions. In
contrast however to Chapter 5, the controller now operates at a TN-level: it first
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uses a scenario detector to identify the relative scenario cluster in which the
current RTS belongs and then estimates the time slack. Therefore a design-time
RTS analysis of the application under study as well as a scenario classification
precedes the deployment of our scheme. Specifically, after the scenario clustering
we develop this detector in order to categorize at run-time the current RTS
with its respective scenario.

The key point in the definition of the scenario clustering is to efficiently bound
the operation cost (in this case energy and time) of each RTS. Considering
that each RTS has a fixed cycle budget, we have explained how several DVFS
schemes provide different cost trade-offs. In our PID implementation specifically,
each scenario is represented by its RTS with the minimum delay cost; this is
important considering that scenarios are used as reference to estimate the slack
in the PID controller. Through this approach, the clustering overhead creates
an overestimated impression of negative slack for the other RTSs, allowing an
aggressive DVFS actuation of the controller to manage performance variation.
This new version of our PID controller is illustrated in the diagram of Figure
6.4. The scenario detector receives the cycle budget of the executed RTS and
decides for the relative scenario in which the RTS belongs to: N̂ [n] represents
the RTS parameter of the scenario while p [n] shows the actual cycle budget of
the running RTS.

Controller Knob Processor
f [n]

Monitor

System Scenario Detector

x [n]
sref [n]

p [n]

e [n] C [n] , s [n]
−

s [n − 1]

N̂ [n]

Figure 6.4: Block diagram of the PID scheme with system scenarios [228].

6.3 Simulation Results: The PID Controller
With System Scenarios

6.3.1 System Scenario Analysis

To manage dependable performance, all thread nodes have to respect their
timing deadlines which are defined through their cycle budgets and the reference
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Figure 6.5: RTS clustering to scenarios on the spectrum sensing application.
Energy is calculated using the square law for dynamic power, i.e. Pdyn ∝ fV 2

dd

and numbers are normalized to the smallest RTS at Vdd = 1.2 V and f = 2.588
GHz.

frequency. Since the increased TN number of the workload as well as the several
DVFS steps of the processor generate a variety of RTSs, it is rather sub-optimal
to store RTS information of the workload and detect them at run-time; the
number of RTSs encountered in the instruction stream of a processor is in fact
significantly difficult to handle. Therefore we have highlighted the use of system
scenarios to cluster at design-time the population of RTSs into cumulative
representative cases. The clustering methodology for our PID controller was
explained in Section 6.2.3.

The RTS analysis, along with a scenario clustering attempt of the spectrum
sensing application, can be seen in Figure 6.5 where each RTS represents a
certain cycle budget. The DVFS points allowing us to perform the RTS analysis
are shown in Table 6.1 and are based on the Intel Core2 Duo E6850 processor;
we have chosen this processor for our simulation purposes since, in contrast to
our target platform, detailed power and timing data are documented in prior art
[203]. The multitude of solid lines in Figure 6.5 corresponds to the application’s
complete analysis and already represents the complexity of handling TNs using
the RTS abstraction. This amount of information, evidently, needs to be
abstracted further. Hence, we utilize system scenarios, that can replace the
many RTSs with a more manageable set of scenarios to be used as cycle budget
estimators. A close look at this Figure shows how we have split the application
into a pool of 768 RTSs (performing a fine-grained RTS analysis of the workload)
and later grouped them into 32 scenario bins. In reality, the granularity of
the RTS analysis depends on the user’s/developer’s demands: final goal is to
achieve the optimal RTS and scenario clustering of the workload under study.
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RTSs that require a similar number of cycles to execute are classified into
the same scenario. The scenario is uniquely identified with its cycle budget
estimator N̂k, which is the minimum (or maximum in some cases) cycle budget
of the RTSs that have been grouped therein. In a similar manner, RTSs with
similar costs are also falling under the same scenario when perceived at run-
time1. For our controller’s scheme, the fastest RTS is assigned as the cycle
budget estimator in the scenario. While moving away from the origin of the axis,
new scenarios are defined and certain RTSs are clustered to them. Eventually,
the wealth of RTSs is produced by all possible combinations of the application’s
configuration, like for example accuracy settings and input size. Hence, the
system scenario methodology allows us to reduce this huge set of RTSs to a more
manageable set of scenarios. It is clear, however, that the complexity reduction
detailed above introduces an accuracy overhead, which we have already defined
as clustering overhead. There lies a trade-off between the clustering accuracy
and the number of the derived scenarios: a fine grain clustering can decrease
the gap between the budget estimators however, it increases the number of the
scenarios and vice versa.

The assignment of the minimum cycle budget to a scenario forces the TNs
to be more restricted, compared to their actual timing deadlines. This trend
leads the PID controller to act in a more aggressive manner and boost the
clock’s frequency. This effect is essential for the purpose of our design: the
controller’s target is to ultimately absorb the interfering cycle noise of the
RAS interventions. Therefore, a small additional frequency boosting operates
preemptively towards the absorption of cycle noise. This ”negative” clustering
overhead (produced by the minimum cycle budget estimators) acts as an offset
and enables the mitigation of cycle noise without a reactive response. As a
result, this inevitable clustering overhead is not undesirable, provided that it
does not force our scheme to operate for long time periods in the ”worst case”
mode, which is to force it actuate the maximum operating frequency.

6.3.2 Simulation Results

After the system scenario analysis of the spectrum sensing application, we
submit this workload to the simple TN-level simulator that has been presented
in previous work [233]. The simulator operates at TN-granularity: for each
TN, the scenario detector provides the cycle budget estimator N̂ [n]. Moreover,

1Note that we notate the cycle budget estimator for the n-th executed TN as N̂ [n].
Assuming that this TN is binned to scenario k, then the following equation holds N̂ [n] = N̂k.
Obviously, when we use system scenarios or any other similar cycle budget estimation
techniques, the estimator N̂ [n] is used for slack calculation (Equation 5.1), instead of the
actual one N [n] which in this case cannot be known at run time.
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Table 6.1: DVFS points of the Intel Core2 Duo processor [203].

m Vdd (V) f (GHz) m Vdd (V) f (GHz)
1.2 1.3 3.074 0.9 1.15 2.281
1.1 1.25 2.852 0.7 1.1 1.932
1.0 1.2 2.588 0.6 1.05 1.54
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Figure 6.6: An instantiation of our simulator examining the PID’s response utilizing
system scenarios: a) PVF values ; b) DVF response ; c) Slack response ; d) Frequency
decisions of the PID.

we inject cycle noise based on the average values for the noise’s intensity and
rate, µ and λ and their respective standard deviations σ{M} and σ{Λ}. The
timing and power models of the simulator create traces from which DVF and
total energy consumption values can be deduced. It should be noted that power
models, in this case, account for both dynamic and static power consumption
[203]. It is also noteworthy that the DVFS energy and timing overhead is also
included in these models. After the completion of an RTS, the PID controller
selects the frequency of the next iteration from the values depicted in Table 6.1.
Figure 6.6 shows an instantiation of our simulator, examining the controller
scheme in terms of DVF,PVF, slack and frequency decisions.

RTSs and their cycle budget estimators are drawn from Figure 6.5. This time
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we will inject cycle noise by sweeping µ and λ values and assuming σ{M} = 0
and σ{Λ} = 0.1 × λ. This exploration will provide us with interesting results
concerning the response of our control scheme across different cycle noise profiles.
The simulated workload assumes equally probable RTSs. Each measurement
corresponds to a stream of 105 TNs and, when enabled, PID controller gains
are kp = 1.52 × 10−7, ki = 5 × 10−8, and kd = 4 × 10−8. Figure 6.7 shows the
PVF values for this set of noise setup.

In Figures 6.8 and 6.9 we see average values for the DVF and energy consumption
after 10 simulation iterations. We can conclude that the controller manages
to enable dependable performance since it absorbs the increment in PVF that
cycle noise injection is causing; the challenge exists for the extreme cases of
cycle noise profile (high µ, low λ). In addition, total energy consumption is
also increasing as injected cycle noise moves to these profiles. This however
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Figure 6.7: PVF values for the set of µ and λ values.
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Figure 6.8: Average DVF estimations after 10 simulation iterations for the set
of µ and λ values.
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Figure 6.9: Average energy consumption in Joules after 10 simulation iterations
for the set of µ and λ values.
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Figure 6.10: The σDV F after the 10 simulation iterations for the set of µ and λ
values.

is expected, given that, in these cases, the controller needs to work overtime.
Finally, the standard deviation values of Figure 6.10 provide insight into the
statistical variability of our simulation results and indicate that the average
DVF reported is substantially accurate.

6.4 Towards an Adaptive Scenario Approach

6.4.1 Scenario Adaptation: Methodology

The system scenario methodology can be easily applied to any application, given
that an RTS analysis and the scenario classification are enabled at design-time.
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Figure 6.11: Slack impact in the Re-clustering Process.

On condition that the RTS positions into scenarios can be updated at run-time,
the scenario detector can modify the RTS hierarchy by re-clustering the existing
scenario distribution. This process provides a run-time adjustment of the RTS’
costs estimations. If a RTS is correlated with a specific cycle noise, this RTS
can change its scenario reference and move to a new scenario by removing cycles
equal to the cycle noise. This enables the PID controller to ”adapt” to run-time
conditions and absorb performance overheads before their presence. Figure 6.11
presents the basic concept behind this methodology: the RAS interventions
shift the RTS position far from the start of the axes. The re-clustering process
creates a positive slack that works as an offset on the expected negative slack
and equalizes the time lost. The goal here is to keep the RTS original position
stable. For this reason, RTS slack history needs be recorded and updated on
fixed time windows and be exploited at run-time. The re-clustering priority
focuses first on the most frequent RTSs with high slack values. This leads the
PID controller to act partially proactive and consider RAS events that are
gradually becoming a norm on the target processor2.

For each RTS re-positioning, an individual re-clustering decision is taken to
equalize the performance degradation. The scenario detector contains a record
of the design-time scenario budgets which is updated after each re-clustering.
Regarding the re-clustering decisions, the key point is to distinguish between the
transient and (quasi-)permanent cycle noise interference events. For example,
a very brief cycle noise burst that rarely reoccurs should not be triggering a
re-clustering process. The hardware degradation effects, manifesting during the
operation life, cannot be predicted in advance. Thus, an updated trace history
of the slack per RTS is needed to consider the error fluctuation in respect with

2The re-clustering process applies well when error behavior is statistical, allowing the
controller to eventually adapt. On the condition that this behavior is highly random, the
partial proactive nature of the scheme will be disabled.
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Algorithm 1 Re-clustering
1: sc_rts=detect_scenario(rts) ; {Scenario identification}
2: sl_rts = pid_controller(sc_rts) ; {Slack Identification}
3: if sl_rts > 0 then
4: if rts_list(rts) then
5: update_rts_slack(rts,sl_rts) {update rts slack history}
6: if check_slack_status(rts) then
7: Np=new_rts_pos(rts,sl_rts) {new rts position}
8: Sc_fit=Find_scenario(Np) {best fitting to scenario}
9: Merge (rts,Sc_fit) {merge rts to the new scenario}

10: end if
11: else
12: store_rts_list(rts,sl) {new rts slack registration}
13: end if
14: end if

the time. The running slack RTS_Slack[i] for a moving average window of Kw

RTS executions is given by Equation 6.4. After identifying a new trend in cycle
noise events, a reformulation of the system scenarios through RTS re-clustering
follows.

SlackRT S[i] =

N∑
i=0

(RTS_Slack[N − kw + i])

kw
(6.4)

Algorithm 1 provides a brief description of the re-clustering process. For each
RTS delay, we record the original scenario cycle budget (scrts) and the time noise
(slrts) cycles. The traced RTS’s slack is registered to a list (rts_list(rts)); if the
RTS already exists, its record is updated (update_rts_slack(rts, slrts)). A re-
clustering is triggered if the status of the involved RTS shows a stable behavior
for a specific time window (check_slack_status(rts)). Also, information about
the distance from the neighboring scenarios (Find_scenario(Np)) is exploited
to recognize the optimal re-clustering decision, updating only the scenario
data that have changed. Each re-clustering decision (Merge(rts, Sc_fit)) is
taken based on the new position of the RTS (new_rts_pos(rts, sl_rts)) in the
metric space, after reviewing the slack updated data and ensuring that the RTS
deadlines in the new scenario will be respected with the minimum cost (Pareto
optimal).

The re-clustering is a parallel process that does not interrupt the operation of
the PID controller. In any case, the re-clustering time can easily be limited and
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kept as a fraction of the RTS operation time. This is due to the simplicity of the
algorithm to find the new shifted positions without reordering the whole RTSs
by scratch. At the end of each re-clustering, the PID controller has updated
information about the suitable DVFS schemes, minimizing the generated slack
while paying a price in energy. A trade-off between the produced slack and the
energy exists that will be explored later along with simulation results.

6.4.2 Re-clustering Decisions

The re-clustering clearly alters the initial, design-time RTS classification by
removing the default RTS reference budgets and artificially creating positive
slack that shifts the position of the RTSs into the scenarios (see Figure 6.11).
This creates the impression of an extra equivalent delay to the PID controller,
proportional to the removed cycles and triggers more aggressive DVFS schemes
that absolve the negative slack. Examining the re-clustering decisions that have
to be considered at run-time, we outline the following cases:

• In the first case, the scenario budget is restricted enough and no slack
exists, hence there is no need for scenario change (see Figure 6.12a). The
added noise (red shifted Pareto curve) triggers a revision of the RTS
budget (green Pareto curve) that does not exceed the distance between
the RTS and the scenario (SC_2), exploiting the clustering overhead as
an offset. Thus, clustering overhead can be utilized as a proxy of cycle
noise tolerance. The next four cases cover situations where the negative
slack cannot be avoided.

• In the second case (see Figure 6.12b), in order to equalize the noise delay
(red Pareto curve), the revised RTS (green Pareto curve) is located just
under the scenario budget SC_1. Thus, Scenario #1 has a new more
restricted case due to the RTS shifting that modifies the existing scenario
budget.

• In the third case (see Figure 6.12c) the shifted RTS (green Pareto curve)
is closer to a neighboring scenario (SC_2) compared with the original
(SC_1). Thus, the RTS is assigned to the new scenario (SC_2) fitting
better from distance perceptive.

• In the fourth case (see Figure 6.12d), a new distinct scenario budget is
created. Two reasons lead to such a decision: 1) none of the existing
scenario cycle budgets cover the new RTS constraint or 2) the creation of
an individual scenario is more cost effective by merging with an existing
scenario.
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Figure 6.12: RTS shifted cases due to RAS interventions: a) RTS1 remains in the
scenario ; b) RTS1 creates an individual scenario ; c) RTS1 changes the scenario
bounds ; d) RTS1 is merged into another scenario.

• The fifth case is a combination of the second and the third aforementioned
case. A neighboring scenario merges the revised RTS (as in Figure 6.12c).
However, the position of the RTS in the new scenario is located just under
the scenario budget (as the blue RTS in Figure 6.12b) changing the new
scenario cycle budget as the most restricted case.

6.5 Evaluating Adative Scenarios:
Simulation Results

Now, we will explore the PID scheme enhanced with the adaptive scenario
methodology while examining the efficiency of the new concept; for simulation
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Figure 6.13: Histogram of the cycle noise injected in one RTS.

purposes, we utilize once more the spectrum sensing application (see Figure
6.5). Again, we inject cycle noise based on the values of Λ and M that represent
the rate and amplitude of RAS events respectively in terms of clock cycles.
It is assumed that cycle noise follows a bi-variate Gaussian distribution with
mean Λ and M values (λ and µ) and σ (σ{Λ}, σ{M}). Again, the timing and
power models of the simulator create traces from which DVF and total energy
consumption values can be deduced. Also, in our simulations, all overheads
of DVFS actuations are included in both the timing and power models. The
simulation results presented herein correspond to a set of random streams
of the target application RTS while the simulated workload assumes equally
probable RTSs. To inject cycle noise, we once more sweep µ and λ values while
σ{M},σ{Λ} are kept fixed.

The noise histogram for one stream of RTSs is shown in Fig 6.13. In fact,
each measurement corresponds to a stream of RTSs and for each combination
of µ and λ values, we show the average over 10 random measurements. This
way, we can provide insight into the statistical variability of our simulation
results. To underline the benefits of the scenario adaptivity, we compare this
approach versus a) the DVFS scheme with system scenarios, presented in Section
6.2.3 and b) a (fixed) frequency guardband. A static, flat frequency usage is
in fact widely employed to ensure timing deadlines [209]. To guarantee, for
example, that timing constraints are not threatened by imposed error-recovery
interventions or other sources of dynamism, the user can select to increase
system speed in a manner that any overhead is absorbed and application
finishes before its deadline. Such frequency guardband policies for example can
be the ”performance” frequency governor of the Linux OS, where frequency
is set at its highest level. From the simulation results, we can first of all
conclude that, again, apart from extreme noise profiles (high µ and low λ
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values), the controller with the adaptive scenarios methodology manages to
enable dependable performance, especially considering the increment in PVF
(as seen in Figure 6.14) which is the result of cycle noise injection.

6.5.1 Dependability Results

From Figures 6.15, 6.16 and 6.17, we clearly distinguish that the adaptive
scenarios are evidently more effective in terms of eliminating negative slack
compared to the system scenarios and competitive to the guardband. In fact,
the timing performance gain of the adaptive scenario approach seems to be
approximately 5% higher compared to the system scenarios while it is less
effective than the gaurdband only for limited, extreme noise cases. More
precisely, in Figure 6.18 we highlight how the adaptive scenarios clearly improve
the performance dependability at a representative simulation instantiation.
While system scenario DVF seems to balance to a value near zero, adaptive
scenarios converge DVF closer to zero. For a certain transition period (0-2000
ms), the number of the adaptive scenarios is fluctuating to reach to a stable
state. Throughout this time window, the re-clustering process creates new
scenarios and gradually increases their number up to 38 (1000 ms). After this
point, some of the existing scenarios are merged and reach a final number of 33
scenarios (2000 ms). Thus, the adaptive process creates and merges scenarios
by applying the aforementioned re-clustering decisions and finds the optimal
scenario clustering. After this process is completed (at 2000 ms), the scenarios
remain stable and the DVF converges to zero without applying an over-boosting
frequency policy (negative DVF) with unnecessary energy consumption results.
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Figure 6.14: PVF average values of 10 identical iterations.
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Thus, adaptive scenarios seem to ensure performance dependability without
paying a remarkable energy penalty.

6.5.2 Energy Remarks

From Figures 6.19 and 6.20 we can notice that the energy gain of the two
scenario methodologies is significant, compared to the guardband technology,
and reaches up to 15%. This number is decreasing as the injected cycle noise
profile becomes more intense (high µ and low λ). This however is to be expected,
since, in this case, the scenarios attempt to mitigate the worst-case conditions
that correspond to a state similar to the guardband. The energy consumption
deviation between the system and adaptive scenario is negligible and does not
exceed the 3%, as seen in Figure 6.21. The reason for this is that the extra
energy, consumed from frequency boosting on the adaptive scenarios, is partially
equalized by the less number of DVFS switches due to the scenario adjustment
that has previously taken place. Hence, we can realize that a fundamental
trade-off exists between the achieved performance as expressed by the DVF and
the energy impact that will be examined next.

6.5.3 Design Trade-offs

To understand the different trade-offs between performance and energy regarding
system and adaptive scenarios approaches we will first increase the reference
cycle budget. This is completed by homogeneously applying homogeneously
a percentage relaxation factor Frel to the MRC of each scenario (Fig. 6.3).
This, of course, leads to an equal clustering overhead increase in each scenario.
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Figure 6.15: Average DVF for Adaptive Scenarios after 10 iterations.
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Figure 6.16: Average DVF for System Scenarios after 10 iterations.
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Figure 6.17: Average DVF for Frequency Guardband after 10 iterations.

The new clustering overhead is formulated in Equation 6.5. This relaxation
of the reference scenario budgets provides better energy results due to the
less accurate slack estimations in the PID controller. However it also presents
worse performance results due to the increase of the clustering overhead. In
Figure 6.22 we present relative trade-offs between system and adaptive scenarios
for several relaxation factors (0-10%) and one noise instantiation (µ=5×104

and λ=5×103). We see that the Pareto curves of the two approaches seem
to be very close and presenting similar cost trade-offs (delay-energy) for a
specific constraint area (0.04 < DV F < 0.08). In fact, the adaptive scenarios
approach appears just a little worse trend (longer distance from the start of the
metric axes) because of the extra, required implementation cost. We can realize
that the adaptive scenario approach is of high value when strict dependability
constraints are essential; clearly, the static approach is unable to meet such
demands. Nevertheless, when timing constraints relax (DV F > 0.04), the static
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Figure 6.19: Energy gain (%): Adaptive scenarios vs frequency guardband.

scenarios scheme appears to be Pareto-optimal and should be utilized instead.

Cl′
RT S[i] =

n∑
i=0

(1 + Frel) × MRCRT S[i] − OPRT S[i] (6.5)

6.6 Conclusions

In this Chapter, we have briefly presented the theoretical background on system
scenarios while proposing, in Section 6.2, an enhanced version of the PID
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Figure 6.20: Energy gain (%): System scenarios vs frequency guardband.
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Figure 6.21: Energy gain (%): System vs Adaptive Scenarios.

controller, that actuates DVFS on thread node granularity. Next, in Section 6.3,
we have verified the operation of our scheme using several cycle noise profiles.
For simulation purposes, we use the Intel Core2 Duo E6850 processor which
had sufficient and detailed data, documented in prior art. Section 6.4 discusses
our adaptive scenario approach that allows the re- clustering of the scenario
hierarchy at run-time. We elaborated on the re-clustering methodology while
studying, in detail, relative re-clustering decisions. Finally, in Section 6.5, we
have simulated a PID implementation working with adaptive scenarios and
compared the results versus:

1. a controller working with system scenarios and
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2. a frequency guardband policy.

Simulation results have proven the efficiency of the adaptive scenarios scheme
both in terms of dependability management and energy consumption.



Chapter 7

Timing Guarantees with
Dynamic Scenarios

7.1 Introduction

A reactive scheme to manage dependable performance has been extensively
studied in Chapter 5. In Chapter 6 we have shown an enhancement of this
controller using system and adaptive scenarios. These versions of the scheme can
operate at the thread node granularity and mitigate performance variation in a
more efficient manner. Nevertheless, timing constraints are still not guaranteed,
mainly because of the reactive nature of the controller: first, a negative slack
value is monitored and afterwards, proper DVFS is actuated to converge slack
to zero. The general methodology adopted by computer architects to guarantee
dependable systems is the worst-case design approach [105]: reliability features
are ensured at design-time, assuming worst-case values for system characteristics
such as workload, process variation, ambient temperature etc. This approach
is pessimistic and adds large safety margins therefore, has proven to be quite
sub-optimal, especially for aggressively scaled technology nodes.

To remedy this, in this Chapter we will study a proactive DVFS scheme that
operates on the thread node level and guarantees timelines in a cost-efficient
manner. Specifically, by exploiting partial predictability of the application
behavior, we will develop a dynamic scenario approach to enable cost-effective
DVFS decisions. Section 7.2 will first mention related, proactive DVFS
algorithms used in a task-level basis, along with an illustrative example. Section
7.3 will elaborate on our dynamic scenario methodology. For experimental

123
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purposes, we will use two applications: i) the spectrum sensing app, which will
be the main focus of Section 7.4 and ii) a decoder drawn from the audio domain,
studied in Section 7.5. Finally, Section 7.6 will conclude our Chapter.

7.2 Guaranteeing Dependable Performance

7.2.1 Related Work and Task-Level DVFS Algorithms

To account for Process, Voltage and Temperature (PVT) variations, memory
vendors assume worst-case conditions and demand substantial design margins
[284]. While product yield is increased with this approach, memory access
latency is kept slow therefore contributing to the so-called memory-wall problem
[163]. Apart from memory components, most circuit designs are verified using
worst-case conditions in order to guarantee performance constraints under
variability threats [44, 76]. This analysis method has also proven to be quite
efficient in terms of design effort and computational time. Nevertheless, major
drawback of worst-case analysis is the pessimistic approach that leads to large
safety margins and over-conservative designs. Taking into consideration the
scaling of the voltage supply in the new technology nodes, one can conclude
that worst-case designs can no longer be adopted by the electronic industry.

An interesting area of study towards a different direction is the technique of
adaptive control [287]. The basic concept is to allow the integrated circuit
to adapt to certain working conditions like ambient temperature, energy and
workload. We have already studied in Chapters 5 and 6 a feedback controller
that employs PID-based DVFS to ensure dependable performance under the
presence of stochastic, error-recovery interventions. The controller is based
on a reactive response and does not guarantee timely execution of relevant
applications nevertheless, it ensures timing violations are minimized while
meeting low-power operation demands. In order to provide time guarantees,
Lampka et al. [150] discuss DVFS methodologies and scheduling algorithms in
hard real-time systems. The work assumes offline profiling of the application
tasks in order to account for worst-case time execution analysis. Actually,
the general mechanism to handle the hard guarantees always relies on some
form of guardbanding based on worst-case analysis at design-time. A survey of
scheduling algorithms and solutions built upon feedback-based configurations
can be found in prior art [3] while an interesting analysis of existing, hard real-
time scheduling policies also exists [71]. A paper that discusses task scheduling
and deadline guarantees under an error-recovery context can be found in prior
art [276]. Voltage scaling techniques of pre-emptive systems have been recently
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proposed [152], [212]. These works apply DVFS and scheduling decisions only
in a task-granularity basis.

7.2.2 An Illustrative Example

We have aleady highlighted the importance of applying DVFS decisions on
the thread node level. However, trying to deploy the algorithms of Subsection
7.2.1 “as-is” with TNs may be computationally prohibitive since, the conditional
branches generate many paths on the data flow level control and create an
explosive number of possible RTSs. Thus, it is not realistic to assume run-time
identification of each individual RTS; even if such a case occurs, the scheduler
would demand significant computation times to identify the RTS and perform
DVFS and scheduling decisions. For the above reasons, we proceed and follow
the scenario classification of Section 6.2. Therefore, while the methodologies
mentioned earlier cannot be employed in the TN-level with their exact conditions,
it is interesting to examine their DVFS algorithms.

Specifically, we now discuss the Cycle-conserving RT-DVS and Look-Ahead
RT-DVS algorithms from the work of Pillai et al. [212] that guarantee timing
deadlines for a sequence of tasks; we focus on their voltage scaling decisions and
slack distribution techniques. Neglecting the fact that both algorithms work
on task-level granularity (and also employ task scheduling policies), the Look-
Ahead RT-DVS algorithm seems to be the most aggressive and cost-effective
solution to guarantee deadlines. The concept of this approach is to “try to
defer as much work as possible, and set the operating frequency to meet the
minimum work to ensure all future deadlines are met”. This inherently means
that system operation may be forced to run at elevated frequencies later in
order to ensure all timing constraints. The general idea is that, in most cases,
a task is not completed in a worst-case execution time (WCET) window and
workload dynamism is modest. In modern processors however, the difference
between the maximum frequency and the nominal is not that broad, at least to
an extent that would allow the algorithm to achieve significant energy gains.

Next, studying an online DVFS scheme presented earlier [152], we find a Worst-
Case Ready Queue (WCRQ) algorithm. Authors manage to meet deadlines
working in task-level granularity (future tasks reside in the scheduler’s queue),
while ensuring minimum power consumption. Operating frequency is set to the
lowest point that guarantees timely execution of a task. If such a frequency
is not found, system operates at fmax and speeds up earlier jobs, one job at
a time. Then, the frequency is re-decided based on the algorithm. Finally, in
terms of DVFS, the principle of Cycle-conserving RT-DVS is rather simple:
assume WCET for all tasks and when one task is finished after cc cycles (<
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Figure 7.1: Example of the cycle-conserving RM algorithm: a) WCET is
considered for all tasks and deadline is set; b) Optimal frequency is selected
based on the deadline; c) After the execution of task 1, slack is redistributed
equally to the upcoming tasks and frequency decreases accordingly; d) With
the completion of task 2 enough slack exists to lower the frequency even further
without violating the deadline d1; e) all tasks have been completed and d1 is
guaranteed in every step.

WCE cycles), saved slack is averaged out until the deadline while actuating
proper DVFS and relaxing the frequency. An example of this algorithm is
presented in Figure 7.1. In our methodology, we will follow a similar approach
mainly because of its simplicity nevertheless, other algorithms highlighted in
this Section could also be integrated.

The PID-based, DVFS methodology that manages timing deadlines in the
presence of error-recovery interventions has been thoroughly presented earlier
in Chapters 5 and 6. This method adopts the scenarios concept and can work
on the TN level, however it is built upon a reactive response and thus cannot
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Figure 7.2: Example of the PID-based DVFS concept: a) WCET is considered
for all TNs and deadline is set; b) The execution of the TN1 requires less time
than WCET hence, slack increases; c) The controller relaxes the frequency and
now TN2 requires a longer time window; TN3 is not guaranteed; d) With the
completion of TN2, the controller now boosts frequency according to the PID
formulation and deadline is managed for TN3; e) in a scenario that TN3 lasts
longer, TN3 may miss the deadline; timing constraints are not guaranteed.

provide guarantees on timing deadlines. After estimating how far behind or
ahead we are from our schedule, DVFS switches are actuated from a closed-
loop, PID controller. An example is illustrated in Figure 7.2, presenting the
technique’s response in the task level. We can realize how timing dependability
is managed while guarantees are not provided. The power penalty of this
method, however, is minimal hence, it will be used in this Chapter as a baseline
technique to compare with.
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7.3 Dynamic Scenarios: A Proactive DVFS Scheme

To guarantee timing constraints, we need to ensure that application execution
finishes before the deadline even at worst-case conditions. Since we are operating
at the fine-grain level of TNs, we first consider WCET for all TNs, along with
their respective WC execution cycles. Assuming that cycle noise is bounded,
we can proceed with determining WC cycles per each TN in a sense that cycle
budget along with cycle noise will never exceed WC cycles. The execution
of such TNs under multiple DVFS levels generates a surplus of RTS points,
clearly though, this kind of information needs to be abstracted further; the
scenarios (see Section 6.2) group these RTSs into clusters with similar cycle
budgets. System scenarios now compose a more manageable set of information.
The assumption that cycle noise can be bounded is based upon the fact that
device degradation models actually allow to put absolute bounds; the Gaussion
distributions are only sufficient approximations and in reality, the tails have cut
offs [104]. The same concept applies for models describing wire degradation and
power supply noise. For the architecture layer of an embedded system, we can
also assume that realistic workload simulations (on long workloads) are able to
show the bounds on how much cycle overhead we can expect maximally for a
given application. Hence, we can safely provide bounds on the cycle noise.

The label describing each scenario accounts for the RTS with the highest cycle
budget among the cluster. Hence, assuming WC cycles of this RTS, we can
make sure that there exists no RTS in a scenario where WC cycles of the
RTS are higher than WC cycles of the scenario tag. On the contrary, due
to the clustering overhead we now have that WCSCE = WCRT S + D where
D represents the overhead. Finally, we employ a DVFS scheme, the Cycle-
conserving RT-DVS policy in our case, to guarantee timely RTS execution.
Clearly, DVFS is now occurring in a TN granularity. Just as in the case of
previous task-level DVFS algorithms, partial predictability of the system can
occur through a buffer containing future TNs for example. Such predictors
already exist in video image processing and computer vision applications. In
addition, using machine learning [267] or probabilistic predictors [279] one can
also estimate, to an extent, future system behaviour.

Assuming a Buffer with size S, containing future TNs (and hence their
respective cycle budgets N), we can present the DVFS Algorithm 2. Our
algorithm contains three main procedures: at first, the running RTS is chosen
from the start of the Buffer while a scenario detector matches it with its
cluster based on the cycle budget. Then, the Buffer is updated by allowing a
left shift (SAL) of the stored TNs and placing the incoming, future TN at the
Buffer’s end position. After this, we estimate the slack based on Equation 6.3.
Finally, we select the optimal frequency that can guarantee timing deadlines
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Algorithm 2 DVFS Algorithm
1: Update_Buffer:

N [n] = Buffer[start]
WCSCE [n] = detect_scenario(N [n])
SAL Buffer {Shift Buffer to the left}

Buffer[end] = rtsn+s {Update Buffer with incoming RTS}

2: Estimate_slack:
slack[n] = W CSCE [n]

fref
− N [n]+x[n]

f [n] + slack[n − 1]

3: select_frequency(f):
d =

∑s

i=1
W CSCE [i]
fref

+ slack[n]
use lowest freq. f ∈ {f1, ..., fm|f1 < ... < fm}
such that

∑s

i=1
W CSCE [i]

f ≤ d

and at the same time ensure minimum energy budget. The slack is added to
the respective deadline d and the minimum frequency is chosen so that timely
execution is guaranteed, assuming WCSCE cycles for future TNs. Again, we
should emphasize the difference between WCRT S which represents the worst-
case cycle estimation for an RTS and WCSCE that are the worst-case cycles of
the scenario cluster. This buffer can be built through any workload prediction
mechanism. It is also important to distinguish between system scenarios and
dynamic scenarios: in both cases application RTSs are classified into scenarios
however only the latter enables a proactive operation by exploiting workload
prediction and future slack stealing [188].

7.4 Utilizing Dynamic Scenarios on the Spectrum
Sensing App

To examine the efficiency of our dynamic scenarios approach we will now proceed
with simulations and board-level experiments. The first application for our
experiments is the spectrum sensing app which we have already seen in Chapters
5 and 6. It performs heavy digital signal computations and power analysis of
GSM bands and is relevant for software defined and cognitive radios. Since the
application contains a significant number of RTSs, which we have grouped in
scenario bins, it can be considered as a representative case study. In addition, we
choose to model the Intel Core2 Duo E6850 processor (see Table 6.1), following
accurate data from previous works [203]. Energy consumption is estimated
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Figure 7.3: The PVF values for different cycle noise profiles.

taking into consideration both static and dynamic power as well as DVFS energy
overheads; timing overhead of DVFS switches is also examined.

7.4.1 Simulation Results

For our simulation, we will compare our dynamic scenario scheme, against
the PID-enabled DVFS and the frequency guardband methodologies. This
comparison will be studied in terms of overall energy consumption and
dependability; meeting, that is, timing constraints. Dependability will be
viewed through the DVF term. We will examine our proactive approach and the
other two methods for different cycle noise configurations, with Λ ∈ [103, 107]
cycles and M ranging from 1% to 10% of RTS cycles. For simulation purposes,
we assume a dominant error-recovery mechanism hence, cycle noise is modeled to
follow a Gaussian distribution with µ and λ values equal to M , Λ. Nevertheless,
other noise profiles can also be simulated without changing the nature of the
output. The sigma values of the distribution are equal to σµ = 200 and σλ = 100
cycles respectively. Increased M and lower Λ values lead to more aggressive
cycle noise profiles, as can be seen in Figure 7.3. In our graphs, we will present
average results after 50 application runs per each cycle noise profile.

Next, in Figure 7.4, we present average total energy estimations for the
above noise profiles. We can verify how the static frequency guardband is
highly suboptimal in terms of energy consumption while our proactive DVFS
scheme shows the same energy costs with the reactive controller-based DVFS
configuration. In fact, both proactive and PID-enabled DVFS schemes present a
23% energy gain compared to the frequency guardband approach. Nevertheless,
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Figure 7.4: Total Energy estimations for the three schemes: a) dynamic scenarios;
b) PID controller-based; c) frequency guardband.
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Figure 7.5: DVF estimations (per unit) for the three schemes: a) dynamic
scenarios; b) PID controller-based; c) frequency guardband.
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through our scheme we are also able to provide dependability guarantees. For the
frequency guardbanding method, the static frequency was set at the processor’s
first DVFS level.
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Figure 7.6: Slack progression for the two DVFS schemes: a) dynamic scenarios;
b) PID controller-based DVFS. While in the proactive scheme slack never
reaches negative values, in the controller-based DVFS configuration slack often
drops to negative levels.

In Figure 7.5, we show the DVF values for the 3 different configurations. We
understand how for the frequency guardband, DVF reaches significantly negative
values. This translates to unnecessary energy losses since to reach our deadline
in time we only need to be slightly below zero. In addition, both controller-based
and proactive DVFS implementations manage to keep DVF value near zero for
the complete noise configurations. While this is notable and shows the efficiency
of both schemes, we should emphasize that only our proactive scheme is able to
guarantee DVF being below zero throughout the application execution (and
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hence we will never miss the deadline). In contrast, the PID controller often
misses the deadline. Figure 7.6 presents the slack for one application run when
the two schemes are deployed. While our proactive approach ensures that slack
will never reach negative values (as this means that we are behind our schedule),
in the PID controller’s case, slack often drops to negative levels.

7.4.2 Buffer Size Impact

The buffer size plays an important role in this case study. It represents actually
how far ahead the application’s execution characteristics can be predicted.
To quantify this effect, we choose to simulate a number of buffer sizes for our
scheme and estimate the final DVF value as well as the total energy consumption.
Obviously, larger buffer sizes can allow a more efficient management of the
application’s timing demands. This statement seems quite reasonable; the
more information we have regarding the future operation, whether this may be
through the scheduler’s queue (as in our example) or through other predictor
configurations, the easier it is to exploit this information and ensure/guarantee
system dependability. Figure 7.7a presents the aforementioned results regarding
the DVF. As can be seen from this graph, regardless the buffer size, a timing
guarantee (DV F < 0) is always reached because of the characteristics of our
algorithm.

Nevertheless, when examining the energy costs for the different buffer sizes we
see how larger buffer sizes lead to lower total energy consumption. Specifically,
in Figure 7.7b we see that when the buffer contains a small number of future
TNs, energy cost can reach up to 9% compared to the optimal buffer size of 50.
On the contrary, after a certain degree, in our case a size of 50, increasing the
buffer translates to no further energy gains. This clearly demonstrates that we
do not require large costly buffers to make our approach function efficiently.

7.4.3 Board-Level Experimental Verification

To verify our approach on pure hardware, we utilize the NXP IMX6Q board
(see Section 5.2). This commercial board is widely used by developers for multi-
core processing purposes, low-power consumption and multimedia/graphics
applications. The current DVFS configuration, enabling the usage of 14
operating points, is presented in Table 7.11. Reference frequency is set at
792 MHz.

1Our technique can seamlessly be deployed on any processor with similar DVFS features.
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Figure 7.7: Dependability and energy costs for different buffer sizes: a) DVF
value; regardless buffer size, our scheme can guarantee timing dependability; b)
Energy penalty (%) for different buffer sizes, compared to the optimal choice of
a buffer size 50. Small sizes lead to increased energy costs up to 9%.

Table 7.1: DVFS Levels of the ARM Cortex A9 Processor for our Experiments.

DVFS Level Volt. (V) Freq. (GHz) DVFS Level Volt (V) Freq. (GHz)
Level 1 0.975 0.396 Level 8 1.150 0.744
Level 2 1.000 0.444 Level 9 1.175 0.792
Level 3 1.025 0.492 Level 10 1.200 0.840
Level 4 1.050 0.544 Level 11 1.225 0.888
Level 5 1.075 0.588 Level 12 1.250 0.936
Level 6 1.100 0.636 Level 13 1.275 0.948
Level 7 1.125 0.696 Level 14 1.300 0.996

Regarding the application, we will utilize a part of the spectrum sensing app,
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performing low-sensitivity, digital signal processing2. For this experiment, the
application consists of 3 different RTSs, clustered in 2 scenarios. We build the
buffer, containing up to 10 future RTSs, and run the application comparing
our proactive DVFS technique versus the PID controller-based DVFS method.
Cycle noise is injected through the usleep command of the Linux library. Noise
is again following a Gaussian distribution with M [n] ∼ Norm(µ, 0.1 × µ) and
Λ[n] ∼ Weib(λ, 1). In this case study, µ = 0.05 × N [n] and λ = 10 × N [n]
where N represents the cycle budget of a defined TN. Again, cycle noise is
bounded and x[n] < 0.1 × N [n]. Concerning the controller, gains are tuned as
kp = 25 × 10−2, ki = 1 × 10−3, kd = 3 × 10−2.

Slack progression for the two test cases is presented in Figure 7.8a. We can verify
how for the reactive, controller-based, DVFS methodology timing slack converges
to zero. However, it often drops to negative values meaning that, at certain
instances, timing constraints are not met. Momentarily therefore, application
execution is behind schedule and the controller boosts operating frequency and
drives slack to positive values to meet the deadlines. On the contrary, the slack
progression of the proactive DVFS technique is always positive meaning that
timely application execution is accomplished at any moment during the run.
This is expected of course since our proactive approach is guaranteeing the
timing demands. Interestingly, the graphs of the slack progression for the two
test cases generated from these experiments on the target board are similar in
nature with the ones predicted though the simulation modelling in Subsection
7.4.1, at Figure 7.6. Frequency decisions for the two cases are shown in Figure
7.8b. Due to lack of information, energy estimations with these experiments
are not presented3.

2In that respect, we are not utilizing the complete application as presented in Subsection
7.4.1. On the contrary, we are deviating from these simulations and assume the existence of
only 3 TNs clustered in two different scenarios. In this Subection, our purpose is to emphasize
on the responsiveness of the proactive DVFS methodology using DVFS capabilities provided
by a commercial platform running a standard Linux installation. The complexity reduction
and the degree of optimality offered by scenario classification has been explained earlier and
was also covered in Subsection 7.4.1.

3We were not able to perform energy estimations in this case, due to lack of technical
information. Searching though the board’s and processor’s data sheets we did not find enclosed
information relevant to power and energy data for our DVFS levels as well as the energy
overhead of DVFS.
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Figure 7.8: Experimental results on the NXP board for the Dynamic Scenarios
and PID-based DVFS approaches: a) Slack progression; b) Frequency decisions.

7.5 Utiling Dynamic Scenarios on the MP2
Decoder

Occasionally, the use of a scheduler queue to foresee future workload and
scenarios can be impractical; a simplistic operating system on an embedded
platform for example, may not provide such a feature. In addition, even if this
feature exists, sometimes the user may not have the administrative rights to
read from the queue. In this case, usage of our proactive DVFS methodology
alone seems somehow limited. To this end, we will now focus on another case
study, a small MPEG-1 Audio Layer II (MP2) decoding library written in C that
is widely used in several audio applications. Here, the predictor is not based
on a scheduler’s queue; workload prediction is enabled based on information
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Initialization Decoding Output

Figure 7.9: Flowchart of the application: the decoding procedure, is repeated
in chunks until the entire bitstream, drawn from the buffer, is processed. The
application reads the input file at run-time, updating the buffer.

extracted from the application profile and the input files.

7.5.1 Application 2: An MP2 Decoder

In this case study we choose a simple, MP2 decoding application available online
[88]. MP2 decoding, in general, is part of numerous audio and video players. We
chose this format since it is the simplest audio compression scheme still in broad
use today; Layer III (MP3) and other formats are considerably more complex.
Therefore, a TN analysis followed by a scenario clustering classification of the
complete audio application is outside the scope of our work; Performing the
scenario analysis for the aforementioned library we find 5 TNs clustered in 2
scenarios. MPEG Audio Layers I and II are built around a filter that transforms
32 consecutive time-domain samples into 32 frequency-domain values (subband
samples). This process is performed over a 512-sample window. 36 of these
32-sample runs are packed together in one 1152-sample frame, which is the
smallest atomic data unit in the stream that can be decoded independently.
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Figure 7.10: Dynamism in the execution time of the decoding process for
different bitstream chunks of Vivaldi’s “Four Seasons" Concerti.
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The decoder is realized as a main loop that is executed iteratively, reading
bitstream frames, decoding them and writing the output. With such an
application we can partially predict incoming TNs without using the feature
of a scheduler queue: after profiling the application, we understand how the
decoding process is depending on the input bitstream and the sample window.
A depicture of the decoder application flowchart is shown in Figure 7.9. It is
also important to note the inherent dynamism of this application since different
bitstream frames, need various computation times. This dynamism leads to the
generation of a plethora of RTSs that cannot be taken individually into account;
on the contrary, it highlights the need for scenario classification. An example of
this dynamism for the “Four Seasons" violin concerti is shown in Figure 7.10.
On top of this bitstream-dependent inherent dynamism, the error-correcting
overhead will be added hence, scenario clusters are designed accordingly, to
account for both sources of dynamism.

7.5.2 Simulation Results

We will simulate the application running on the Intel Core2 Duo E6850 processor,
as we have already performed for the GSM spectrum sensing application in
Section 7.4.1. Our proactive DVFS methodology will be compared to the
frequency guardband approach and the reactive, PID-enabled DVFS framework
in terms of total energy consumption and DVF estimations. In this case,
regarding cycle noise configurations, Λ ∈ [103, 109] cycles and M ranges from 1%
to 10% of RTS cycles. A dominant error-recovery mechanism is also considered
hence, cycle noise is modeled to follow a Gaussian distribution, as in the GSM
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Figure 7.11: The PVF values for different cycle noise profiles.
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application. PVF values for the noise profiles of our simulations are presented
in Figure 7.11. Again, graphs show average values of 50 application runs.

Total energy estimations for the 3 distinct technologies are shown in Figure 7.12.
We observe how these results are analogous to the ones extracted from simulation
runs of the spectrum sensing application. Specifically, the frequency guardband
methodology is the most energy-expensive approach while the proactive and the
PID-enabled DVFS techniques present equal energy costs. In this application,
energy gains reach up to 28% for the proactive DVFS framework compared to
the static, frequency guardband implementation. Again, for the latter approach,
the highest DVFS step was selected as guardband.

Results of the DVF metric for the MP2 decoding application are highlighted
in Figure 7.13. Once more, we confirm how our proactive DVFS scheme is
able to guarantee timing deadlines without unnecessary frequency boosts and
energy penalties, in contrast to the guardband approach. Slack progression
for the proactive and reactive DVFS schemes is presented in Figures 7.14. As
expected, these graphs present a similar trend to the ones obtained from the
GSM application. We can observe how in the case of the proactive DVFS
approach, slack never reaches negative values. On the contrary, when testing
the reactive, PID-enabled DVFS implementation, deadline misses can be noticed
since slack drops far below zero.

7.5.3 Buffer Size Impact

Through simulations, we will now examine the impact of different buffer sizes
in the efficiency of our scheme using the decoding application. As seen in the
flowchart of Figure 7.9, after the initialization phase, the decoder splits the
audio bitstream into workload frames of a specific size. In our case, the decoder
is used statically since the complete input stream is first stored into a file (an
audio song for instance). However, for real-time decoding applications, these
frames can be stored in a memory buffer, just after they are pre-fetched, waiting
to be processed like for example in the H.264/AVC video decoder [96]. It is
important to deploy our proactive DVFS framework so that timing deadlines
are guaranteed regardless of the buffer size. This is shown in Figure 7.15a; we
verify how for a buffer storing a number of frames (ranging from 1 up to 500) all
deadlines are guaranteed and DVF never drops to negative values. These results
are inline with the ones of Subsection 7.4.2, concerning the GSM spectrum
sensing application.

The size of the buffer as well as the size of the frame itself can vary, depending
on QoS and latency requirements. While we have shown that for all buffer
sizes deadlines are managed, it seems evident that more opportunities for
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Figure 7.12: Total Energy estimations for MP2 decoding app: a) dynamic
scenarios; b) PID controller-based; c) frequency guardband.
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Figure 7.13: DVF estimations (per unit) for MP2 decoding app: a) dynamic
scenarios; b) PID controller-based; c) frequency guardband.
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Figure 7.14: Slack progression for the two DVFS schemes in the case of the
decoding app: a) dynamic scenarios; b) PID controller-based DVFS. While in
the proactive scheme slack never reaches negative values, in the controller-based
DVFS configuration slack often drops to negative levels.
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optimal, proactive voltage and frequency scaling exist when higher buffer sizes
are selected; specifically, higher energy costs should be expected as the buffer
size shrinks since this would lead to a more aggressive voltage and frequency
scaling policy. For the decoding application, energy costs for different buffer
sizes are estimated via simulations and illustrated in Figure 7.15b. Results
for the two applications in fact present a similar trend: for small buffer sizes
energy costs to guarantee timing deadlines are elevated nevertheless, the energy
gains after stretching the buffer size quickly saturate. An ideal buffer for the
decoding application seems to be of a size of 50 frames. Nevertheless, when a
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Figure 7.15: Dependability and energy costs for different buffer sizes in the case
of the decoding application: a) DVF value; regardless buffer size, our scheme
can guarantee timing dependability b) energy penalty (%) for different buffer
sizes, compared to the optimal choice of a buffer size 50. Small sizes lead to
increased energy costs up to 4%.
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buffer contains nearly 10 future frames, the energy costs do not exceed 0.5%.
In fact, when only the next frame to be decoded is known (buffer size is 1) the
energy penalty to guarantee the deadlines is almost 4% compared to the energy
cost for the ideal buffer of size 50.

7.5.4 Board-Level Experimental Verification for Application 2

We will deploy this technique on our NXP IMX6Q board, decoding the “Fur
Elise" solo piano of Beethoven. During the Initialization phase of the decoder,
future workload of the application is unknown at the moment and no proactive
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Figure 7.16: Experimental results on the NXP board for the Dynamic Scenarios
and PID-based DVFS approaches in the case of the decoding application: a)
Slack progression b) Frequency decisions.
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decision can be made. When the MP2 input file is selected, the application
reads the bitstream, filling the buffer and updating it at run-time. During
the Decoding stage, the proactive DVFS methodology is employed and timing
constraints are guaranteed. Again, through the usleep command we inject
cycle noise, emulating the overhead of any RAS-related intervention mechanism
(similar to Subsection 7.4.3).

Slack progression during the application is presented in Figure 7.16a where the
scheme is compared again versus the reactive, PID-enabled DVFS configuration.
One can notice that slack is behaving in a manner similar to what we have
already observed in previous Sections. During the Decoding phase, that accounts
for most of the execution time, the proactive DVFS method is employed hence
timing constraints are guaranteed. In Figure 7.16b we see the frequency decisions:
at first, when the PID is enabled, frequency relaxes momentarily, since positive
slack is measured. Then, the input file is selected allowing us to foresee future
workload and utilize the proactive DVFS technology.

7.6 Conclusions

In this Chapter we elaborated on the dynamic scenarios methodology and
implemented a proactive DVFS scheme that aims to guarantee application
timing constraints. Firstly, in Section 7.2, we have mentioned several related
works that attempt to ensure dependability in the task-level granularity. In
addition, we have presented an illustrative example of such a DVFS algorithm.
Then, in Section 7.3, we have explained in detail the dynamic scenarios approach
that is the foundation of our proactive DVFS scheme. Another important feature
of our scheme is the workload prediction mechanism that enables us to foresee
and identify future scenarios. Two case studies have been examined to show
how our methodology can be applied to a group of real-time applications drawn
from different domains: the streaming spectrum sensing application, in Section
7.4, and an MP2 decoder, in Section 7.5. Both the extensive simulation results
as well as the board-level experiments have verified the benefits of our scheme
in terms of power consumption and timeline guarantees.



Chapter 8

Conclusion

8.1 Summary of the Main Contributions

After the technical work of the dissertation has been thoroughly presented,
we can now summarize and reflect on our research while highlighting the
main contributions. Firstly, we have defined performance variation as the
unpredictable, nonstop changes of the workload in digital systems. This variation
can be the result of modern, computationally-intensive software applications as
well as failures and errors on the silicon layer; in the current text, we focus mainly
on the latter. We have also elaborated on the utilization of RAS mechanisms
and explained how they ensure correct functional operation at the cost however
of parametric reliability.

Next, in Chapter 2, we have given a general review on the common hardware
failure mechanisms. Voltage supply variations due to di/dt noise and IR drops
can impact propagation delay of basic logic gates. Process variation phenomena
such as random dopant fluctuations, oxide thickness variation and line-edge
roughness also affect the performance of a digital system. On top of time-
zero variability, workload-dependent oxide and interconnect wearout degrades
the electrical characteristics of circuit elements, threatening functional and
parametric reliability violations. Finally, reliability violations can also occur due
to radiation-induced transient errors and power/ground line voltage variation.

The main goal of our research is the management of parametric reliability and
in particular performance variation. Thus, in Chapter 3 we have studied in
detail previous mitigation attempts drawn from the prior art [194]. These works
cover, in fact, a wide range of research domains, from design and pre-fabrication

147



148 CONCLUSION

solutions to software schemes of single-die, multi-die systems and systems across
packages. We have presented a classification methodology to cluster these
works into their respective domains, generating a binary tree in an orthogonal,
top-down approach. This classification enables the reader to identify research
fields that have received limited attention as well as decompose any prior art
samples to their primitives.

Before developing mitigation schemes of performance variation, an accurate
description of dominant failure mechanisms is necessary. To this end, we have
developed an efficient modeling framework using the Most Probable Failure
Point technique to capture RDF and BTI and estimate failure probabilities of
typical 6T SRAM cells (Chapter 4) [193]. The tool exploits the symmetry of
the design to apply Spectre “in-the-loop”, aggressively shrinking the simulation
times (compared to widely-used Monte-Carlo experimentations [196]). Moving
further, we have developed a complete simulation framework that captures RDF
and BTI on a cycle-by-cycle basis and estimates failure probability over lifetime
operation [192]. As a case study, we have focused on the SRAM memory of a
Network on Chip router.

In Chapter 5 we introduce a closed-loop PID controller that actuates DVFS
switches to manage performance variation [197]. We have deployed this scheme
on the NPX iMX6Q target platform that contains an ARM Cortex A9 Quad
processor. To generate performance variation, we have developed an error-
recovery mechanism that detects functional errors through a signature-based
approach and recovers correct system operation via task-level rollback. Slack
is monitored periodically and when performance variation is observed, proper
DVFS switches are decided. We have explored the hardware-related limitations
of this scheme while comparing it against another DVFS approach in terms of
performance and energy efficiency. Finally, we have briefly presented a similar,
PID-based, DVFS scheme for thermal management purposes [198].

Then, we study an enhanced version of the PID scheme that operates on the
RTS level (Chapter 6) [195]. Given that modern applications typically consist of
numerous RTSs, we have utilized the system scenario approach to group these
RTSs into a more manageable set of scenario clusters. Through simulations, we
have verified the ability of our enhanced scheme. The scenario clustering takes
place offline, during the profiling of the application; a run-time, re-clustering
policy through a novel, adaptive scenario approach is also presented [307, 306].
Simulation results comparing this scheme to the system scenarios and to a
static frequency guardband technology, highlight the benefit of the former
methodology both in terms of performance and energy response.

Finally, we have introduced a proactive DVFS scheme that employs dynamic
scenarios and manages to guarantee dependability in certain dynamic systems
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Figure 8.1: An illustration of the System, Adaptive and Dynamic Scenarios
methodology: a) System Scenarios; b) Adaptive Scenarios; c) Dynamic
Scenarios.
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[191]. Application RTSs are first clustered offline into scenarios according
to the system scenario methodology. Nevertheless, a workload predictor can
now exploit the system’s partial predictability and enables us foresee and also
identify future scenarios. Simulation results, as well as experiments on the
target board, verify our claims and show the efficiency of our proactive scheme
against the system scenarios and the static frequency guardband approach.
Figure 8.1 underlines the difference between the dynamic, the adaptive the
system scenarios concept. In system scenarios, the scenario clustering takes
place offline and at run-time, a scenario detector matches the current RTS to
each related scenario while the controller decides for DVFS. In the adaptive
scenarios, a run-time, scenario re-clustering procedure occurs which is based
on the monitored RTS history. Finally, in the dynamic scenarios approach, the
workload predictor allows us to foresee future RTSs and apply proactive DVFS
actuations.

8.2 Extensions and Future Work

Extensions of the current research and topics for future work can now be
discussed. These efforts could focus on the enhancement of our developed tools
and schemes, on the update of certain algorithms or even on the use of different
policies and technologies for simulation and experimental purposes. Specifically:

• In Chapter 4, one could study the application of the MPFP tool on more
complex circuitry. In this work, we have analyzed the 6T SRAM cell while
basic logic gates (inverters and NAND gates) have also been discussed in
prior art; sequential circuit blocks however, that consist of latches and
flip-flops have not been studied. Given that such designs are typically
non-symmetric and also create feedback loops, it is the author’s belief
that such an analysis would require substantial effort.

• Another general extension of Chapter 4 is to develop reliability modeling
frameworks that capture the majority of failure mechanisms (as mentioned
in Chapter 2). In our attempt, we focus on the dominant mechanisms
of deeply scaled nodes namely, the RDF concerning time-zero variability
and BTI (that is the phenomenon causing time-dependent variation).

• In Chapter 5, we have presented a case study of our PID-based DVFS
controller that manages system dependability. We also briefly discussed
an implementation of this scheme for temperature management. An
interesting topic for future work is the development of a relative scheme
that focuses on the performance and temperature in parallel. These two
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features are usually overlapping: thermal management requires a low
voltage and frequency operation while dependability needs the boosting
of the performance when necessary. Hence, a policy that manages both
features and the development of such a controller is important. In addition,
while Section 5.4 compares our PID scheme to a policy based on the
“conservative” governor, other existing policies could also be compared.
This comparison would produce interesting results regarding energy and
performance response.

• Chapter 6 deals with PID implementation using the system and adaptive
scenarios. In the former implementation, we used the GSM spectrum
sensing application and performed an offline analysis that clustered its
nearly 800 RTSs into 30 scenarios. An exploration of different clustering
profiles (such as the use of 5,10 or 20 scenarios) and the study of the
response of our scheme in these cases, is definitely interesting. Such a work
could provide significant information regarding the trade-off between the
complexity of the scenario analysis and the response of the PID controller.

• Finally, in Chapter 7, we could focus on probabilistic workload predictors
and predictors based on machine learning (as mentioned in Section 7.3) to
develop elaborate dynamic scenario concepts where the future look-ahead
aspects are even stronger emphasized and can be applied to more complex
application contexts.
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Appendix

A.1 Reliability Metrics

To characterize reliability and availability of digital systems several metrics
have been adopted by the community. Time to Failure (TTF) refers to the
length of time passed before a system experiences a fault or an error. Typically,
however, it is mostly used for failures. If, for instance, a system experiences a
failure after 5 months of operation, then the system’s TTF at that instance is 5
months. Mean Time to Failure (MTTF) represents the average time a hardware
component or a digital system is expected to operate before an error occurs.
Therefore a system where errors occur after 1 year of operation has an MTTF
equal to 1 year. Similar to the MTTF metric, Mean Time Between Failures
(MTBF) is also widely used amongst reliability engineers to show the mean
elapsed time between two consecutive errors. Mean Time Between Failures
includes, in fact, MTTF and Mean Time to Repair (MTTR), which refers to the
average time required for an error to be repaired from the moment it has been
detected. Hence, while MTBF is mostly used for repairable products, MTTF
describes the reliability of systems without this capability. A depicture of the
above, drawn for relevant work [185], is shown in Figure A.1. Failure Rate is
defined as the number of failures on a system during a specific time interval.
The most common unit for the failure rate is Failures in Time (FIT), which
shows the number of failures per 1 billion operation hours. A component having
a failure rate of 1 FIT is equivalent to having a MTBF of 1 billion hours.

Other metrics focus on the quality of the semiconductor fabrication process.
The ratio of the dice that are working correctly, to the total number of dice
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Figure A.1: Depicture of the correlation between MTTF,MTTR and MTBF

on the wafer is defined as (die) yield. Because of faults in the manufacturing
process (like imperfections on the starting or the photomasking material) yield is
typically far below 100% [292]. Evidently, yield is estimated before the products
are shipped, through the manufacturing test procedure that screens out the
defective parts. Another important metric that shows the density of chip-killing
defects is Defects per Million (DPM) and it is actually defined as the number
of defective parts per million units, chips in this case.

A.2 CDW Approximation

The computational overhead for a dynamic timing simulation of a circuit design
is directly coupled to the granularity of the workload’s signal representation.
Typical signal representations can be:

1. SPICE: It is considered the standard tool for IC simulations while a broad
array of SPICE simulators are available on the market. The signal is
discretized over adjustable time intervals. SPICE signal representations
are considered the most accurate amongst circuit simulators.

2. Value Change Dump (VCD): VCD is an ASCII-based signal format defined
along with the Verilog hardware description language. The waveform’s
representation is achieved via a fitting of voltage to logic levels. The two
logic levels correspond to high (Vdd) and low (Vss) voltage.

Through our tool, signal activity is transformed to a Compact Digital Waveform
(CDW). A detailed evaluation of the CDW signal representation is presented in
prior art [233]. Briefly, “consecutive signal regions that feature similar f and
α figures and occupy a duration ∆t are represented by a single CDW point
with coordinates (f ,α,∆t)”. In our case study, initial workload of the buffers is
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Figure A.2: Two epsilon scenarios for CDW: (a) Artist’s impression of a waveform
CDW compression to the respective VCD and SPICE points for an ε < 3 ·Tclock.
Consecutive signal points with similar voltage levels are grouped in a single
CDW point; (b) For an ε ≥ 3 · Tclock, the relaxation period lasting 3 · Tclock

is masked during the compression. CDW representation helps us alleviate
extensive computational overhead of the simulations.

stored in VCD-like format and by utilizing CDW approximation, signal activity
in compressed to CDW points. In detail, compression is achieved via a user-
defined error margin ε (in clock cycles) for the time-duration of each consecutive
point, as specified by the following formulation:

|∆TV CD − ∆TCDW | < ε · Tclock (A.1)

where ∆TV CD represents the initial, cycle-accurate signal activity of a device
in VCD format and ∆TCDW its CDW counterpart. Tclock is simply one
period of the processor’s clock.When ε → 0, ∆TCDW → ∆TV CD and the CDW
representation is similar to the initial signal VCD activity. On the contrary,
the crudest approximation is achieved when ε → ∞ and all signal activity is
compressed to a single CDW point. Figure A.2 presents a simplified compression
example of the same waveform for two different ε scenarios.

A.3 Choosing the Operating Points for the PID
Controller

The NXP IMX6Q CPU consists of an ARM Cortex-A9 quad core while the
Linux DVFS driver normally provides the usage of only 3 different operating
points, in the range of 396 MHz to 996 MHz [199]. However, a custom driver has
been developed to enable the use of numerous DVFS points (up to 50). With this
configuration, we can achieve a finer granularity division of the frequency and
voltage space. To choose the actual number of DVFS points for our configuration,
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Figure A.3: Graph showing the dependence of settling time on number of DVFS
points. Settling time per each configuration is the mean value as estimated
after 10 iterations.

we performed experiments with the controller, instantiating different number of
operating points (that were equally placed between maximum and minimum
frequency limits). Each time we injected an error, a rollback event occurred
and the settling time for all different configurations was measured. From the
domain of control theory, we define settling time as:

Definition 15. Settling Time in our case, represents the time elapsed from the
occurrence of a rollback event to the time at which the slack converges to zero,
remaining within an error band of 10%.

In Figure A.3 we present our experimental results. We see the mean estimated
values for settling time after 10 experiments per configuration while the standard
error for a confidence interval of 95% is also highlighted. It can be realized
that, when utilizing only 3 DVFS levels, we are unable to converge slack to zero.
Therefore, settling time cannot be defined in this case. Interestingly, increasing
the DVFS points greatly decreases settling time nevertheless, after a certain
degree, further increment of these points hardly has any impact on the settling
time. We must note that in practice, it is unusual for embedded processors to
offer a large number of operating points.

A.4 Slack Ringing/Jittering

In real conditions, the PID controller’s response usually deviates from the
ideal operation and is subject to certain non-ideal side effects. An example of
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Figure A.4: Ringing of the Slack.
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Figure A.5: No Ringing of the Slack.

such a ”nuisance” is called ringing/jittering and hints to the oscillation of the
controller’s output between the set point value. This oscillation can be seen in
numerous cases throughout our work, like for instance in Figures 5.2, 5.5 and
5.17. In the case of performance variability and slack mitigation, this oscillation
is caused by random variations in the execution time of a certain task. For
example, while nominal duration of a specific task at a frequency of 792 MHz
may last tref seconds, while the system is running at the same speed and at
error-free conditions, actual time delay of the task might may slightly diverge
from its reference value.

Thus ringing of the output can be partly tackled with appropriate tuning of
the controller’s gains. Tuning the controller gains in a manner that allows
the scheme to be less aggressive and sensitive to minor slack deviations would
restrain the ringing. In this case however, the settling time would also be
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Figure A.6: Frequency Decisions: Ringing Scenario.
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Figure A.7: Frequency Decisions: Non-Ringing Scenario.

extended. This can be visualized in Figures A.4 and A.5. In the first Figure,
after a rollback event, frequent jittering of the output is observed. In the
second case, the ringing is negligible. Nevertheless, settling time is considerably
increased now. Frequency actuations of the two examples, that portray different
PID gains, are shown in Figures A.6 and A.7.

A.5 Tuning Controller’s Gains – Overshoot Criterion

A proper tuning the gains of our controller is highly important for an effective
PID controller scheme. Actually, aside from the ringing of the output and the
settling time, other metrics are also used to characterize the scheme’s response.
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Figure A.8: Transient Response of the Controller for Different Gain
Configurations.

Definition 16. Overshoot describes the amount the output exceeds the final,
steady-state value during the transient response.

Typically, PID gains are tuned in a way that overshoots are limited while, at
the same time, settling time is minimized. In our case, for instance, overshoot
means an unnecessary energy penalty. These two goals however, can conflict.
Tuning the controller to minimize overshoot usually translates into a sacrifice
of its aggressiveness; the controller now needs to progressively slow the control
effort as it approaches the setpoint and this implies settling time is stretched.
Ideally, the controller would be aggressive enough to quickly set the output
to the desired value while avoiding an overshoot. Therefore tuning of the PID
gains needs to carefully take place. When setting the gains of our PID scheme,
we mainly targeted on minimizing settling time and jittering while also avoiding
overshoots1. Figure A.8 shows the controller’s transient responses (slack) after
a rollback event for several gain setups.

1In reality, an overshoot can occur due to aggressive ki values and can be limited by proper
kd tuning. Nevertheless, this study goes deep in control theory and is beyond the scope of
the current work.
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