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Περίληψη

Στην παρούσα Διπλωματική Εργασία μελετάμε την συμπίεση Βαθιών Νευρωνικών Δικτύων και

πιο συγκεκριμένα την Δομική Περικοπή (Structured Pruning) σε μοντέλα Επεξεργασίας Φυσικής

Γλώσσας. Η παρούσα μελέτη μπορεί να προσεγγιστεί από δύο ισοδύναμες οπτικές:

• Μελέτη της περικοπής για την περικοπή. Καταλήξαμε στο συμπέρασμα ότι είναι

προτιμότερο να εφαρμόζονται στρατηγικές περικοπής που μελετάνε ταυτόχρονα τόσο το προεκ-

παιδευμένο (pre-trained) όσο και το μετεκπαιδευμένο (fine-tuned) μοντέλο.

• Μελέτη της περικοπής για την καλύτερη κατανόηση του μοντέλου. Κατα-

λήξαμε στο συμπέρασμα ότι με την μετεκπαίδευση το μοντέλο τείνει να ξεχνάει την γνώση

που είχε μάθει από την προεκπαίδευσης, και για να υπερκεράσουμε αυτό το πρόβλημα κατά

την διάρκεια της δομικής περικοπής μελετάμε ταυτόχρονα τόσο το προεκπαιδευμένο όσο και το

μετεκπαιδευμένο μοντέλο.

Πολλές μελέτες έχουν γίνει στον τομέα της συμπίεσης νευρωνικών δικτύων και εφαρμόζουν διαφο-

ρετικές τεχνικές όπως την Περικοπή Βαρών, την Δομική Περικοπή, την Κβαντοποίηση, την Απόσταξη

Γνώσης και την Εύρεσης Νευρωνικής Αρχιτεκτονικής. Ωστόσο, μέσω της Δομικής Περικοπής μπο-

ρούμε να συμπιέσουμε το δίκτυο και ταυτόχρονα να καταλάβουμε τα θεμελιώδη δομικά τμήματά του.

Για αυτόν τον λόγο, κάνουμε Δομική Περικοπή σε μοντέλα που βασίζονται στο BERT, που είναι το

κυρίαρχο μοντέλο στον χώρο της Επεξεργασίας Φυσικής Γλώσσας.

΄Αλλες μελέτες στον τομέα της δομικής περικοπής του BERT λαμβάνουν υπόψιν μόνο το μετεκπαι-

δευμένο μοντέλο, παρόλο που το μετεκπαιδευμένο μοντέλο προήλθε από μια διαδικασία κατά την οποία

τα βάρη του είναι κυρίως καθορισμένα από την προεκπαίδευση και έχουν λάβει μια μικρή εξειδίκευση

για την τελική εργασία. Για αυτό τον λόγο, προτείνουμε μια στρατηγική Δομικής Περικοπής που

λαμβάνει υπόψιν τόσο το προεκπαιδευμένο όσο και το μετεκπαιδευμένο μοντέλο και έτσι η σημαντι-

κότητα των κεφαλών υπολογίζεται λαμβάνοντας υπόψιν την σημαντικότητα των αντίστοιχων κεφαλών

και στα δύο μοντέλα.

Σε αυτή την εργασία, μελετάμε τον τρόπο με τον οποίο αυτή η ιδέα μπορεί να εφαρμοστεί σε

αρχιτεκτονικές τύπου BERT και για να δείξουμε την σημαντικότητα της προσέγγισής μας εκτελούμε

πειράματα που λαμβάνουν υπόψιν BERT μοντέλα που είναι προεκπαιδευμένα σε διαφορετικά σύνολα

κειμένων και τα ελέγχουμε σε όγκο δεδομένων που αφορούν διαφορετικούς τομείς.

Επίσης, μελετάμε την προσέγγιση μας μέσω της Ϋπόθεσης Τυχερού Δελτίου’ (Lottery Ticket Hy-
pothesis) και δείχνουμε ότι για την απόκτηση της αρχικοποίησης μασκών περικοπής είναι καλύτερο

να λαμβάνουμε υπόψιν και τα δύο μοντέλα. Ταυτόχρονα, δείχνουμε μια καλύτερη εφαρμογή της “Υ-

πόθεσης Τυχερού Δελτίου” στην Δομική Περικοπή και την ονομάζουμε “Επαναλαμβανόμενη Δομική

Περικοπή”.

Τέλος, μελετάμε την ικανότητα γενίκευσης της μεθοδολογίας μας σε διαφορετικές τροπικότητες

(modalities), όπως στην τροπικότητα της φωνής μέσω του μοντέλου wav2vec 2.0.

Λέξεις Κλειδιά

Βαθιά Μάθηση, Επεξεργασία Φυσικής Γλώσσας, Transfer Learning, Transformers, BERT, Συμπίεση,

Δομική Περικοπή, Υπόθεσης Τυχερού Δελτίου, μετεκπαίδευση (fine-tuning)
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Abstract

In this Diploma Thesis, we study the compression of Deep Neural Networks, and more precisely,
we study the structured pruning in Natural Language Processing models. From our work, we draw
some conclusions that can be divided into two main aspects:

• Studying pruning for pruning. We propose a better implementation of pruning that
considers both the pre-trained and the fine-tuned model.

• Studying pruning for a better understanding of the model. We see that through
fine-tuning, the model forgets prior knowledge, and in order to overcome this problem, we
study both the pre-trained and the fine-tuned model for better pruning results.

Many studies have been done regarding compression neural networks, and they apply different
compression techniques such as Magnitude Pruning, Structural Pruning, Quantization, Knowl-
edge Distillation, and Neural Architecture Search. However, through Structured Pruning, one
can compress the network and understand the fundamental structured components of the model.
Therefore, we focus on Structured Pruning of BERT-based models, the dominant models used in
Natural Language Processing.

Other studies regarding Structured Pruning of BERT-based models considered only the final
fine-tuned model, even though these models are created after a fine-tuning process, where weight
values are mostly predetermined by the original model and are only fine-tuned on the end task.
Thus, we suggest that pruning strategies should both consider the pre-trained and the final fine-
tuned model, and the head importance score should be calculated considering both the importance
of the pre-trained and the fine-tuned head.

In this study, we examine how this idea could be implemented for BERT-base models, and in
order to illustrate the impact of our approach, we execute experiments considering BERT models
pre-trained on different corpora and fine-tuned on datasets of different domains.

Moreover, we study our approach through the Lottery Ticket Hypothesis, where we see that
obtaining initialization pruning masks considering both the pre-trained and the fine-tuned model
outperforms the approach which only considers the fine-tuned model. Moreover, we propose a
better application of the Lottery Ticket Hypothesis in structured pruning, and we name this
approach "Iterative Structural Pruning".

Last but not least, we examine the generalization ability of our methodology through different
modalities, and we examine a speech model named wav2vec 2.0. This study is essential because
many Transformer-based architectures achieve significant results on different modalities such as
speech and vision.

With this thesis, we wish to open new roads and create new aspects to explore pruning mech-
anisms, Lottery Ticket Hypothesis, and fine-tuning techniques.

Keywords

Deep Learning, Natural Language Processing, Transfer Learning, Transformers, BERT, Com-
pression, Structured Pruning, Lottery Ticket Hypothesis, fine-tuning

3





To My Mother,
Christina





Ευχαριστίες

Η παρούσα διπλωματική εργασία αποτελεί ένα προσωπικό πόνημα στην διαμόρφωση του οποίου

συντέλεσαν πολλοί και διάφοροι άνθρωποι τους οποίους θα ήθελα να ευχαριστήσω.

Αδιαμφισβήτητα, το πρώτο και πιο ουσιαστικό ευχαριστώ οφείλω να το προσφέρω στον επιβλέποντα

καθηγητή της παρούσας μελέτης, τον καθηγητή Αλέξανδρο Ποταμιάνο. Η διάθεσή του για βοήθεια,

οι συμβουλές του και οι πολυσχιδείς του γνώσεις ήταν καθοριστικές τόσο για την περάτωση αυτού

του έργου όσο και για την προσωπική μου πνευματική διαμόρφωση.

΄Ενα βαθύ ευχαριστώ οφείλω στους διδακτορικούς ερευνητές της ομάδας του κυρίου Ποταμιάνου.

Πιο συγκεκριμένα, ευχαριστώ τον Γιώργο Παρασκευόπουλο, τον Ευθύμη Γεωργίου και τον Χάρη

Παπαϊωάννου. Οι συμβουλές τους ήταν πολύτιμες και ο ενθουσιασμός τους για την έρευνα αποτελεί

προσωπική πηγή έμπνευσης.

Φυσικά, θα ήθελα να ευχαριστήσω όλους τους συμφοιτητές μου και τους φίλους μου, για τις

συζητήσεις μας και την ανταλλαγή γνώσεων και απόψεων. Τους ευχαριστώ ειλικρινά.

Τέλος, οφείλω να ευχαριστήσω τους γονείς μου, την Χριστίνα και τον Σωτήρη. Χωρίς την στήριξή

τους δεν θα τα είχα καταφέρει.

Στέφανος Σταμάτης Σ. Αχλάτης

Αθήνα, Νοέμβρης 2021

7





Contents

Περίληψη 1

Abstract 3

Ευχαριστίες 7

List of Figures 13

List of Tables 17

0 Εκτεταμένη Ελληνική Περίληψη 19
0.1 Περίληψη . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0.2 Εισαγωγή . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
0.3 Σχετική Βιβλιογραφία . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
0.4 Διατύπωση Προβλήματος . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

0.4.1 Ορισμός Δομικής Περικοπής . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
0.4.2 BERT Αρχιτεκτονική . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

0.5 Προτεινόμενη Μεθοδολογία . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
0.6 Πειράματα . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

0.6.1 Διαφορετικά Επίπεδα Περικοπής . . . . . . . . . . . . . . . . . . . . . . . . . 22
0.6.2 Ο όρος εξειδίκευσης α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
0.6.3 Κερδίσαμε το Λαχείο; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
0.6.4 Επαναλαμβανόμενη Δομική Περικοπή . . . . . . . . . . . . . . . . . . . . . . 27
0.6.5 Περικοπή σε Μοντέλα Διαφορετικής Τροπικότητας . . . . . . . . . . . . . . 28

1 Introduction 29
1.1 From Artificial Intelligence To Deep Learning . . . . . . . . . . . . . . . . . . . . . 29
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.3 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2 From Machine Learning to Deep Learning 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Learning Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.3 Self-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Machine Learning Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.1 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2 Underfitting and Overfitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9



CONTENTS

2.3.3 Regularization, Dropout and Pruning . . . . . . . . . . . . . . . . . . . . . 37
2.3.4 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.4.2 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.3 Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Deep Learning Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.1 Feedforward Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.5.3 Attention Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.4 Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3 Natural Language Processing 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Word Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.1 Denotational Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.2 Distributional Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 Traditional Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.2 Neural Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Embeddings from Language Models (ELMo) . . . . . . . . . . . . . . . . . . . . . . 62
3.6 Bidirectional Encoder Representations from Transformers (BERT) . . . . . . . . . 62
3.7 GLUE Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 CoLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.2 SST-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.3 MRPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.4 QQP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7.5 STS-B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.6 MNLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.7 QNLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.8 RTE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.9 WNLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.7.10 SciERC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7.11 PubMed 200k RCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Compression of Deep Learning Models 69
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 Compression: Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2.1 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Lottery Ticket Hypothesis (LTH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4 Pruning Transformer-based models . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Transformer-based Structured Pruning . . . . . . . . . . . . . . . . . . . . . 73
4.4.2 Transformer-based Magnitude Pruning . . . . . . . . . . . . . . . . . . . . . 79

4.5 Pruning Computer Vision models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6 Pruning Using Explainable AI (XAI) Techniques . . . . . . . . . . . . . . . . . . . 80

10



CONTENTS

5 Back to the Future: A transfer learning approach for structured pruning 83
5.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4.1 Structured Pruning Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4.2 BERT Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6.1 Different Pruning Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.6.2 The specialization factor α . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.6.3 Do we win the Lottery? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6.4 Iterative Structured Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.6.5 Pruning in a different modality . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions 95
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

Bibliography 102

List of Abbreviations 103

11





List of Figures

1 Αποτελέσματα στα προβλήματα του GLUE. Εκτελούμε πειράματα με διαφορετικές

τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμένου μον-

τέλου στο σύνολο ανάπτυξης. Κόβουμε 14 κεφαλές σε κάθε βήμα περικοπής. Για

α = 1 η μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη μεθοδολογία του

Michel [1]. Για κάθε πείραμα ελέγξαμε 4 διαφορετικά τυχαία φύτρα. . . . . . . . . . 24
2 Λεξιλογική επικάλυψη (%) μεταξύ διαφορετικών τομέων. Ο όρος "PT" δηλώνει ένα

δείγμα από πηγή αντίστοιχη της πηγής προεκπαίδευσης του BERT. . . . . . . . . . 25
3 Αποτελέσματα στα σύνολα δεδομένων PubMed 20k RCT και SciERC. Εκτελούμε

πειράματα με διαφορετικές τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσ-

ματα του κομμένου μοντέλου στο σύνολο ανάπτυξης. Κόβουμε 14 κεφαλές σε κάθε

βήμα περικοπής. Για α = 1 η μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη

μεθοδολογία του Michel [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Αποτελέσματα στα σύνολα δεδομένων PubMed 20k RCT και SciERC. Εκτελούμε

πειράματα με διαφορετικές τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσ-

ματα του κομμένου μοντέλου στο σύνολο ανάπτυξης. Κόβουμε 14 κεφαλές σε κάθε

βήμα περικοπής. Για α = 1 η μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη

μεθοδολογία του Michel [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5 Επαναλαμβανόμενη Δομική Περικοπή στο MNLI και στο QNLI με α = 1 . . . . . . 28
6 Το μοντέλο wav2vec 2.0. έχει μετεκπαιδευτεί στο σύνολο δεδομένων Timit [2] και η

επίδοση του καταγράφεται στην μετρική του Word Error Rate. . . . . . . . . . . . . 28

2.1 Artificial Intelligence, Machine Learning and Deep Learning Domains . . . . . . . 33
2.2 Training and test errors behave differently. At the left end of the graph, training

error and generalization error are both high. This is the underfitting regime. As we
increase capacity, training error decreases, but the gap between training and gen-
eralization error increases. Eventually, the size of this gap outweighs the decrease
in training error, and we enter the overfitting regime, where capacity is too large,
above the optimal capacity. Source: [3] . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Large learning rate leads the loss function to fluctuates around the minimum.
Source: [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Loss function’s landscapes could be full of local minima, which potentially could
lead to a suboptimal solution by GD Source: [4] . . . . . . . . . . . . . . . . . . . 40

2.5 Perceptron Structure. Source: cs231n.github.io . . . . . . . . . . . . . . . . . . . . 42
2.6 Multilayer perceptron (MLP) Structure. Source: electronicdesign . . . . . . . . . 43
2.7 A rolled up RNN where Xt is the input vector containing sequences of characters

of a word while ht is as output vector. Source: colah.github.io . . . . . . . . . . . 43
2.8 An unrolled up RNN whereXt is the input vector containing sequences of characters

of a words while ht is as output vector. Source: colah.github.io . . . . . . . . . . 44
2.9 The repeating module in an LSTM. Source: colah.github.io . . . . . . . . . . . . 45
2.10 Encoder-decoder architecture: (a) traditional (b) with attention model. Source: [5] 47

13

https://cs231n.github.io/neural-networks-1/
https://www.electronicdesign.com/markets/automotive/article/21804976/whats-the-difference-between-machine-learning-techniques
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/


LIST OF FIGURES

2.11 Overview of vanilla Transformer architecture. Source: [6] . . . . . . . . . . . . . . 49
2.12 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of sev-

eral attention layers running in parallel. Source: [7] . . . . . . . . . . . . . . . . . 50

3.1 The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word. Source: [8] . . . . 58

3.2 A feed-forward neural network language model. Source: [9] . . . . . . . . . . . . 61
3.3 Pre-training and fine-tuning procedures for BERT. Source: [10] . . . . . . . . . . 63
3.4 Task descriptions and statistics. All tasks are single sentence or sentence pair

classification, except STS-B, which is a regression task. MNLI has three classes;
all other classification tasks have two. Test sets shown in bold use labels that have
never been made public in any form. Source: [11] . . . . . . . . . . . . . . . . . . 65

4.1 Graphic Illustration of Lottery Ticket Hypothesis . . . . . . . . . . . . . . . . . . 72
4.2 Early-stopping iteration and accuracy of LeNet under one-shot and iterative prun-

ing. Average of five trials; error bars for the minimum and maximum values. Source:
[12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Typical self-attention classes used for training a neural network. Both axes on every
image represent BERT tokens of an input example, and colors denote absolute
attention weights (darker colors stand for greater weights). The first three types
are most likely associated with language model pre-training, while the last two
potentially encode semantic and syntactic information. Source: [13] . . . . . . . . 74

4.4 FrameNet annotation example for the “address” lexical unit with two core frame
elements of different types annotated. Source: [13] . . . . . . . . . . . . . . . . . . 74

4.5 Importance (according to LRP) of self-attention heads. The model trained on 6m
OpenSubtitles EN-RU data. Source: [14] . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 BLEU score as a function of number of re-tained encoder heads (EN-RU). Regu-
larization applied by fine-tuning trained model. Source: [14] . . . . . . . . . . . . 76

4.7 Functions of encoder heads retained after pruning. Each column represents all
remaining heads after varying amount of pruning (EN-RU; Subtitles). Source: [14] 76

4.8 The “good” subnetworks for QNLI: self-attention heads (top, 12×12 heatmaps) and
MLPs (bottom, 1× 12 heatmaps), pruned together. Earlier layers start at 0. The
experiment ran with 5 random initializations and reported averages and standard
deviations. Source: [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9 The "good" and "bad" subnetworks in BERT fine-tuning: performance on GLUE
tasks. ’Pruned’ subnetworks are only pruned, and ’retrained’ subnetworks are
restored to pre-trained weights and fine-tuned. Subfigure titles indicate the task
and percentage of surviving weights. STD values and error bars indicate standard
deviation of surviving weights and performance, respectively, across 5 fine-tuning
runs. Source: [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.10 Overlaps in BERT’s “good” subnetworks be- tween GLUE tasks: self-attention
heads. Source: [15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.11 Performance of subnetworks at the highest sparsity for which IMP finds winning
tickets on each task. To account for fluctuations, we consider a subnetwork to be a
winning ticket if its performance is within one standard deviation of the unpruned
BERT model. Entries with errors are the average across five runs, and errors are the
standard deviations. IMP = iterative magnitude pruning; RP = randomly pruning;
θ0 = the pre-trained weights; θ′0 = random weights; θ′′0 = randomly shuffled pre-
trained weights. Source: [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

14



LIST OF FIGURES

4.12 Illustration of the evolution of a 5× 5 filter with steps of training. Initial training
of the network for Task I learns a dense filter as illustrated in (a). After pruning by
60% and re-training, a sparse filter for Task I is obtained, as depicted in (b), where
white circles denote 0 valued weights. Weights retained for Task I are kept fixed for
the remainder of the method and are not eligible for further pruning. The pruned
weights are allowed to be updated for Task II, leading to filter (c), which shares
weights learned for Task I. Another round of pruning by 33% and re-training leads
to filter (d), the filter used for evaluating Task II (Note that weights for Task I, in
gray, are not considered for pruning). Hereafter, weights for Task II, depicted in
orange, are kept fixed. This process is completed until desired or runs out of pruned
weights, as shown in the filter (e). The final filter (e) for Task III shares weights
learned for tasks I and II. At test time, appropriate masks are applied depending
on the selected Task to replicate filters learned for the respective tasks. Source: [17] 81

4.13 Overview of Piggyback method fo learning piggyback masks for fixed backbone
networks. During training, maintaining a set of real-valued weights mr which are
passed through a thresholding function to obtain binary-valued masks m. These
masks are applied to the weights W of the backbone network in an element-wise
fashion, keeping individual weights active, or masked out. The gradients obtained
through backpropagation of the task-specific loss are used to update the real-valued
mask weights. After training, the real-valued mask weights are discarded, and only
the thresholded mask is retained, giving one network mask per task. Source: [18] 81

4.14 Illustration of the LRP procedure. Each neuron redistributes to the lower layer as
much as it has received from the higher layer. Source: [19] . . . . . . . . . . . . . 82

4.15 Input image and pixel-wise explanations of the output neuron ‘castle’ obtained with
various LRP procedures. Parameters are ε = 0.25 std and γ = 0.25. Source: [19] . 82

5.1 Results on GLUE tasks. We conduct the experiments for different values of the hy-
perparameter α, and the result is the performance of the model in the development
set after pruning 14 attention heads in each pruning step. For α = 1 our method
is equivalent to the baseline method of Michel et al. [1]. For each experiment, we
test 4 random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2 Vocabulary overlap (%) between domains. PT denotes a sample from sources sim-
ilar to BERT pretraining corpus. Vocabularies for each domain are created by
considering the top 10K most frequent words (excluding stopwords) in documents
sampled from each domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Results on PubMed 20k RCT and SciERC on different pruning rates. We conduct
the experiments for different values of the hyperparameter α, and the result is the
model’s performance after pruning 14 attention heads in each pruning step. For
α = 1 our method is equivalent to the baseline method of Michel et al. [1]. . . . . 90

5.4 Results on GLUE tasks and PubMed 20k RCT on different pruning rates. We
conduct the experiments for different hyperparameter α values, and the result is
the model’s performance after pruning 14 attention heads in each pruning step. . 91

5.5 Iterative Structured Pruning (ISP) on MNLI and QNLI with α = 1 . . . . . . . . 93
5.6 wav2vec 2.0 fine-tuned on Timit dataset. The Performance is computed in WER. 93

15





List of Tables

1 Προβλήματα του GLUE [20], μέγεθος συνόλου δεδομένων, μετρικές αξιολόγησης και

υπερπαράμετροι μετεκπαίδευσης που χρησιμοποιήθηκαν στην παρούσα εργασία . . . 23

2 Αποτελέσματα στα προβλήματα του GLUE. Εκτελούμε τα πειράματα με διαφορετικές

τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμένου μον-

τέλου στο σύνολο ανάπτυξης. Για α = 1 η μεθοδολογία μας είναι ισοδύναμη με την

συγκρινόμενη μεθοδολογία του Michel [1]. Για κάθε πρόβλημα η καλύτερη επίδοση

καταγράφεται με έντονα γράμματα. Για κάθε πείραμα ελέγξαμε 4 διαφορετικά τυχαία

φύτρα. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Αποτελέσματα στα προβλήματα του GLUE. Η πρώτη γραμμή περιγράφει την επίδοση

της συγκρινόμενης μεθοδολογίας του Michel [1]. Στις επόμενες γραμμές παρουσιά-

ζουμε την καλύτερη επίδοση του μοντέλου στο σύνολο ελέγχου μετά την περικοπή 98
κεφαλών. Για κάθε πρόβλημα η καλύτερη επίδοση καταγράφεται με έντονα γράμματα.
Για κάθε πείραμα ελέγξαμε 4 διαφορετικά τυχαία φύτρα. . . . . . . . . . . . . . . . . 24

4 Τα σύνολα δεδομένων PubMed 20k RCT και SciERC, τα μεγέθη των δεδομένων και

οι τιμές υπερπαραμέτρων με τις οποίες έγινε η διαδικασία της μετεκπαίδευσης. . . . . 25

5 Αποτελέσματα στα προβλήματα του GLUE και στο PubMed 20k RCT. Κόβουμε

112 κεφαλές από τα μοντέλα με διαφορετικές τιμές τις υπερπαραμέτρου α. Μετά

ελέγχουμε την επίδοση του μοντέλου και καταγράφουμε το α για το οποίο κατα-

γράψαμε την υψηλότερη επίδοση. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Αποτελέσματα στα προβλήματα του GLUE. . . . . . . . . . . . . . . . . . . . . . . 27

2.1 Encoder-decoder architecture: traditional and with attention model. Notation:
x = (x1, . . . , xT ): input sequence, T : length of input sequence, hi: hidden states
of encoder, c: context vector, αij : attention weights over input, sj : decoder hid-
den state,yj : output token, f, g: non-linear functions, a: alignment function, p:
distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Summary of Alignment Functions. Notation: a (ki, q): alignment function for
query q and key ki, sim: similarity functions such as cosine, dk: length of input,
(W,wimp,W0,W1,W2): trainable parameters, b: trainable bias term, act: activa-
tion function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.3 Complexity and parameter counts of self-attention and position-wise FFN . . . . 51

2.4 Per-layer complexity, minimum number of sequential operations and maximum
path lengths for different layer types. T is the sequence length, D is the represen-
tation dimension and K is the kernel size of convolutions . . . . . . . . . . . . . . 52

5.1 GLUE tasks [20], dataset sizes metrics and fine-tuning hyperparameters reported
in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

17



LIST OF TABLES

5.2 Results on GLUE tasks after pruning 112 heads. We conduct the experiments for
different values of the hyperparameter α, and the result is the model’s performance
in the development set after pruning 112 attention heads. For α = 1 our method
is equivalent to the baseline method of Michel et al. [1]. For each task, the best
result is bolded. For each experiment, we test 4 random seeds. . . . . . . . . . . . 87

5.3 Results on GLUE tasks after pruning 98 heads. The first line describes the per-
formance of the baseline for α = 1, and then we present the best performance of
the model in the development set after pruning 98 attention heads. For each task,
the best result is bolded, and the corresponding best α is mentioned. For each
experiment, we test 4 random seeds. . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Results on PubMed 20k RCT and SciERC after pruning 112 heads. We conduct
the experiments for different values of the hyperparameter α, and the result is the
model’s performance after pruning 112 attention heads. For α = 1 our method is
equivalent to the baseline method of Michel et al. [1]. . . . . . . . . . . . . . . . . 90

5.5 PubMed 20k RCT and SciERC dataset sizes metrics and fine-tuning hyperparam-
eters reported in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Results on GLUE tasks and PubMed 20k RCT after pruning 112 heads. We prune
112 heads from the models with different values of the hyperparameter α. Then we
test their performance, and for the best performance, we mention the corresponding
α in this Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 Results on GLUE tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

18



Chapter 0

Εκτεταμένη Ελληνική Περίληψη

0.1 Περίληψη

Γνωρίζουμε ότι τα Βαθιά Νευρωνικά Δίκτυα μεγάλου μεγέθους δομούνται από μεγάλο πλήθος

παραμέτρων πολλών εκ των οποίων δεν συνεισφέρουν και έτσι δύναται να εφαρμοστούν μεθοδολογίες

περικοπής τόσο στα βάρη του δικτύου όσο και στις δομικές οντότητες που το αποτελούν. Στον

τομέα της Επεξεργασίας Φυσικής Γλώσσας οι αρχιτεκτονικές που έχουν ως βάση τους Transformers
έχουν μελετηθεί ως προς την δομική περικοπή των κεφαλών αυτο-προσοχής (self-attention heads)
και έχουμε δει αξιόλογα αποτελέσματα. Σε αυτή την μελέτη εξετάζουμε την δομική περικοπή αρ-

χιτεκτονικών που έχουν ως βάση το μοντέλο BERT και θεωρούμε το γεγονός ότι κατά την δι-

αδικασία της μεταφοράς μάθησης (transfer learning) το μοντέλο είναι το αποτέλεσμα μιας διαδικασίας

μετεκπαίδευσης (fine-tuning) πάνω σε ένα προεκπαιδευμένο δίκτυο (pre-trained). Με βάση αυτό

προτείνουμε μια νέα μεθοδολογία δομικής περικοπής κατά την οποία κόβουμε κεφαλές μελετώντας

ταυτόχρονα το προεκπαιδευμένο και το μετεκπαιδευμένο δίκτυο. Επιπλέον, μελετάμε την μεθοδολογία

μας υπό το πρίσμα της "Υπόθεσης Τυχερού Δελτίου" (Lottery Ticket Hypothesis) όπου και δείχ-

νουμε ότι η εξαγωγή μασκών περικοπής που προέρχεται από την ταυτόχρονη μελέτη των δύο μοντέλων

παράγει καλύτερα αποτελέσματα σε σχέση με την μάσκες περικοπής που παράγονται από την μελέτη

μόνο του μοντέλου μετεκπαίδευσης. Σχετικά με την "Υπόθεσης Τυχερού Δελτίου", προτείνουμε

μια καλύτερη εφαρμογή της για δομική περικοπή και την ονομάζουμε "Επαναλαμβανόμενη Δομική

Περικοπή". Τέλος, εξετάζουμε την τεχνική μας και σε άλλη τροπικότητα (modality) και πιο συγ-

κεκριμένα στην περιοχή της Αυτόματης Αναγνώρισης Φωνής μέσω του μοντέλου wav2vec 2.0 και

βρίσκουμε αντίστοιχα αποτελέσματα.

0.2 Εισαγωγή

Πρόσφατα, στον χώρο της Επεξεργασίας Φυσικής Γλώσσας (Natural Language Processing -
NLP), έχουμε δει μεγάλη πρόοδο σε πολλές διαφορετικά προβλήματα (tasks), όπως το πρόβλημα

της Κατανόησης Φυσικής Γλώσσας (Natural Language Understanding - NLU) και της Εξαγωγής

Συμπερασμάτων σε προβλήματα Φυσικής Γλώσσας (Natural Language Inference - NLI). Μεγάλο

κομμάτι αυτής της προόδου οφείλεται στην Μεταφορά Μάθησης (Transfer Learning) των αρχιτεκ-

τονικών που έχουν ως βάση τους Transformers, μια αρχιτεκτονική που προτάθηκε από τον Vaswani
[7] το 2017.

Αυτά τα μοντέλα αποτελούνται από εκατομμύρια παραμέτρους που κάνουν αργή την αλληλεπίδραση

τους και απαιτούν πολλούς ενεργειακούς και υπολογιστικούς πόρους. Μάλιστα, το μέγεθος αυτών

των αρχιτεκτονικών φαίνεται να μεγαλώνει όλο και περισσότερο. Πιο συγκεκριμένα, το BERT-base
μοντέλο [21] αποτελείται από 110 εκατομμύρια παραμέτρους, το Turing-NLG [22] αποτελείται από 17
δισεκατομμύρια παραμέτρους και το GPT-3 [23] αποτελείται από 175 δισεκατομμύρια.

΄Ενας τρόπος για να αντιμετωπιστεί το πρόβλημα του μεγάλου μεγέθους αυτών των δικτύων είναι
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μέσω της τεχνικής της συμπίεσης (compression) του δικτύου και πιο συγκεκριμένα με την περικοπή

βαρών ή δομικών οντοτήτων όπως των κεφαλών αυτο-προσοχής. Πολλοί ερευνητές, όπως η Voita
[14], η Kovaleva [13] και ο Michel et al. [1] έχουν δείξει ότι οι αρχιτεκτονικές που έχουν ως βάση τους

Transformers έχουν παραμέτρους που μπορούν να περικοπτούν και έχουν καταφέρει να περικόψουν

κεφαλές αυτο-προσοχής χωρίς μεγάλη πτώση στην απόδοση του μοντέλου.

Παρόλο που αυτές οι δουλειές έχουν πετύχει αξιοσημείωτα επίπεδα περικοπής των δικτύων, δεν
λαμβάνουν υπόψιν ότι το μοντέλο που εξετάζουν έχεθ δημιουργηθεί μέσω μίας διαδικασίας μετεκ-

παίδευσης (fine-tuning) και γι’ αυτό εξαρτάται ιδιαίτερα από το προεκπαιδευμένο δίκτυο. Σε αυτή την

εργασία εξετάζουμε μια νέα ευριστική που αναθέτει σε κάθε κεφαλή αυτο-προσοχής μια τιμή μελετών-

τας ταυτόχρονα και τα δύο μοντέλα. Στην συνέχεια, μελετάμε την μεθοδολογία μας στα προβλήματα

του GLUE [11], στο SciERC [24] και στο PubMed 200k RCT [25].

Μελετάμε την μεθοδολογία μας υπό το πρίσμα της "Υπόθεσης Τυχερού Δελτίου" (Lottery Ticket
Hypothesis) όπου και δείχνουμε ότι η εξαγωγή μασκών περικοπής που προέρχεται από την ταυτόχρονη

μελέτη των δύο μοντέλων παράγει καλύτερα αποτελέσματα σε σχέση με τις μάσκες περικοπής που

παράγονται από την αποκλειστική μελέτη του μοντέλου μετεκπαίδευσης. Σχετικά με την "Υπόθεσης

Τυχερού Δελτίου", προτείνουμε μια καλύτερη εφαρμογή της για δομική περικοπή και την ονομάζουμε

"Επαναλαμβανόμενη Δομική Περικοπή".

Τέλος, εξετάζουμε την τεχνική μας και σε άλλη τροπικότητα (modality) και πιο συγκεκριμένα

στην περιοχή της Αυτόματης Αναγνώρισης Φωνής μέσω του μοντέλου wav2vec 2.0 [26] και βρίσκουμε
αντίστοιχα αποτελέσματα.

0.3 Σχετική Βιβλιογραφία

Πολλές μελέτες έχουν δείξει ότι το BERT αποτελείται από μεγάλο πλήθος παραμέτρων πολλών

εκ των οποίων δεν συνεισφέρουν [27] και έχουν εφαρμόσει διαφορετικές τεχνικές συμπίεσης, όπως

η περικοπή βαρών από τον Gordon [28] και την περικοπή δομικών οντοτήτων από την Voita [14], η
Kovaleva [13] και ο Michel et al. [1].

Μεθοδολογίες περικοπής που λαμβάνουν υπόψιν τόσο το μετεκπαιδευμένο όσο και το προεκ-

παιδευμένο μοντέλο δεν είχαν προταθεί στον χώρο της Επεξεργασίας Φυσικής Γλώσσας μέχρι το 2020,
όπου ο Sanh [29] πρότεινε μια μεθοδολογία που την ονόμασε "μετακινούμενη περικοπή" ("movement
pruning"), η οποία περικόπτει βάρη στο BERT βασισμένη στο πόσο άλλαξαν οι τιμές των βαρών κατά

την διαδικασία της μετεκπαίδευσης.

Ο Frank [12] πρότεινε την ιδέα της "Υπόθεσης Τυχερού Δελτίου" (Lottery Ticket Hypothesis)
που διατυπώνεται ως εξής: "΄Ενα νευρωνικό δίκτυο πρόσθιας διάδοσης που είναι πυκνό και οι τιμές

των βαρών του είναι τυχαία αρχικοποιημένες περιέχει υποδίκτυα (τυχερά δελτία - winning tickets)
που – όταν εκπαιδευτούν απομονωμένα από το υπόλοιπο δίκτυο – πετυχαίνουν όμοια επίδοση στο

σύνολο δεδομένων ελέγχου συγκρινόμενη με την επίδοση του αρχικού δικτύου, αν εκπαιδευτούν

με αντίστοιχο πλήθος εποχών εκπαίδευσης". ΄Ετσι, ο Frank όχι μόνο πρότεινε μια μεθοδολογία

περικοπής αλλά έδειξε και τον πιο βαθύ και ουσιαστικό λόγο για τον οποίο τα βαθιά νευρωνικά δίκτυα

δουλεύουν με επιτυχία.

Ο Chen [16] εφάρμοσε την Υπόθεσης Τυχερού Δελτίου περικόπτοντας βάρη στο BERT και

πέτυχε αξιοσημείωτα αποτελέσματα δείχνοντας έτσι ότι η Υπόθεσης Τυχερού Δελτίου μπορεί να

εφαρμοστεί και σε δίκτυα που δεν είναι τυχαία αρχικοποιημένα αλλά προεκπαιδευμένα. Ο Prasanna [15]
εφάρμοσε την ίδια υπόθεση αλλά περικόπτοντας δομικές οντότητες στο BERT και πέτυχε αξιόλογα

αποτελέσματα. Πιο συγκεκριμένα, έκοβε κεφαλές που έχουν την μικρότερη επίδοση σύμφωνα με την

ευριστική που πρότεινε ο Michel [1].
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0.4 Διατύπωση Προβλήματος

0.4.1 Ορισμός Δομικής Περικοπής

΄Εχοντας ένα σύνολο δεδομένων D = {(xi,yi)}ni=1 και ένα επιθυμητό επίπεδο αραιότητας κ, τότε
η δομική περικοπή ενός νευρωνικού δικτύου μπορεί να γραφτεί ως το εξής πρόβλημα βελτιστοποίησης

με περιορισμούς:

min
ws

L(ws;D) = min
ws

1

n

n∑
i=1

` (ws; (xi,yi))

με: ws ∈ Rm, ‖ws‖0 ≤ κ

όπου `(·) είναι η συνάρτηση σφάλματος (loss function) , ws είναι το σύνολο δομικών παραμέτρων

του νευρωνικού δικτύου π.χ. κεφαλές αυτο-προσοχής, m είναι το ολικό πλήθος των δομικών συνόλων

και ‖ · ‖0 είναι η τυπική νόρμα L0.
Δεν υπάρχει αποδοτικός αλγόριθμος για την ελαχιστοποίηση της L0 νόρμας αφού είναι μη-κυρτή

και NP-δύσκολη και απαιτεί συνδυαστική αναζήτηση. ΄Ετσι, το πρόβλημα της δομικής περικοπής είναι

NP-δύσκολο πρόβλημα.

0.4.2 BERT Αρχιτεκτονική

Το BERT είναι επι της ουσίας μια στοίβα από επίπεδα κωδικοποίησης (encoder layers) της αρ-

χιτεκτονικής των Transformers Vaswani et al. [7]. ΄Ολα τα επίπεδα έχουν ακριβώς την ίδια δομή:
μια πολυ-κεφαλή αυτό-προσοχής (MHAtt - multi-head self-attention) ακολουθούμενη από ένα MLP
επίπεδο και απομένων (residual) συνδέσεις μεταξύ τους.

Το MHAtt αποτελείται από Nh ανεξάρτητες παραμετροποιημένες κεφαλές . Μια κεφαλή αυτο-
προσοχής h στο επίπεδο l έχει παραμετροποιηθεί με τις εξείς μεταβλητές: Wh

k ,W
h
q ,W

h
v ∈ Rdh×d,Wh

o ∈
Rd×dh και το dh συνήθως είναι ίσο με το d/Nh. Δίνοντας n d-διάστατα διανύσματα εισόδου x =

x1, x2, . . . xn ∈ Rd, τοMHAtt είναι το άθροισμα των εξόδων κάθε ανεξάρτητης κεφαλές εφαρμόζοντας

το διάνυσμα εισόδου x :

MHAtt(x, q) =

Nh∑
h=1

ξhAttWh
k ,W

h
q ,W

h
v ,W

h
o
(x, q)

Για να επιτρέψουμε τις διαφορετικές κεφαλές να αλληλοεπιδράσουν μεταξύ τους, οι αρχιτεκτονικές
των Transformers εφαρμόζουν σε κάθε επίπεδο ένα μη γραμμικό νευρωνικό δίκτυο πρόσθιας διάδοσης

πάνω στην έξοδο του MHAtt [30].

0.5 Προτεινόμενη Μεθοδολογία

Παρόλο που η περικοπή είναι ιδιαίτερα αποδοτική για τα μοντέλα που έχουν προκύψει από επιβλεπό-

μενη μάθηση, είναι λιγότερο χρήσιμη για τα μοντέλα που έχουν προκύψει από μεταφορά μάθησης. Στην

επιβλεπόμενη μάθηση, οι τιμές των βαρών ορίζονται κυρίως από την διαδικασία εκπαίδευσης για το

πρόβλημα που καλείται να αντιμετωπίσει το δίκτυο. Ωστόσο, στην μεταφορά μάθησης τα βάρη καθορί-

ζονται κυρίως από το αρχικό προεκπαιδευμένο μοντέλο και υπάρχει μια μικρή αλλαγή των τιμών του

κατά την σύντομη διαδικασία της μετεκπαίδευσης. Σε αυτή την εργασία, προτείνουμε μια διαδικασία

περικοπής που λαμβάνει υπόψη τόσο το προεκπαιδευμένο όσο και το μετεκπαιδευμένο μοντέλο.
Αρχικά, όπως ο Michel πρότεινε, εισάγουμε τις μεταβλητές μάσκας ξh με τιμές στο {0, 1}, όπου

ξh = 1 δηλώνει ότι η αντίστοιχη κεφαλή h δεν έχει μασκαριστεί, ενώ ξh = 0 δηλώνει ότι η κεφαλή h
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έχει μασκαριστεί. ΄Ετσι, οδηγούμαστε σε μια τροποποίηση του ορισμού του MHAtt ως εξής:

MHAtt(x, q) =

Nh∑
h=1

ξhAttWh
k ,W

h
q ,W

h
v ,W

h
o
(x, q)

Ορίζουμε την εκτιμώμενη απόλυτη ευαισθησία του μοντέλου ως σημαντικότητα για μια τις μεταβλητές

μάσκας ξh ως:

Ih = Ex∼X
∣∣∣∣∂(α ∗ L1(x) + (1− α) ∗ L2(x))

∂ξh

∣∣∣∣
όπου X είναι η κατανομή δεδομένων, L1(x) το σφάλμα (loss) του μετεκπαιδευμένου μοντέλου

στο δείγμα x, L2(x) το σφάλμα (loss) του μετεκπαιδευμένου μοντέλου στο δείγμα x και α ∈ [0, 1]

είναι ένας όρος εξειδίκευσης, ο οποίος ελέγχει το βάρος του κάθε σφάλματος. Πιο συγκεκριμένα,
το α > 0.5 δηλώνει ότι η διαδικασία περικοπής θα δώσει μεγαλύτερη προσοχή στο μετεκπαιδευμένο

μοντέλο, ενώ το α < 0.5 δηλώνει το αντίθετο και το α = 0.5 δηλώνει πως ο αλγόριθμος περικοπής θα

δώσει εξίσου προσοχή και στα δύο μοντέλα. Η εφαρμογή του αλγόριθμου περικοπής με υπολογισμό

της σημαντικότητας των κεφαλών περιγράφεται από τον Αλγόριθμο 0.1.

Algorithm 0.1: Δομική Περικοπή με υπολογισμό σημαντικότητας

1: Μετεκπαίδευση του προεκπαιδευμένου μοντέλου

2: Αρχικοποίηση συνόλου μασκών περικοπής των κεφαλών αυτο-προσοχής σε s = 1d. d: διάσταση

3: repeat
4: Υπολογισμός Ih για τις κεφαλές που δεν έχουν περικοπεί

5: Ταξινόμηση των κεφαλών σε φθίνουσα σειρά με βάση το Ih
6: Περικοπή κ% των αρχικών κεφαλών και ενημέρωση του s αντίστοιχα . κ: Υπερπαράμετρος

7: until η αραιότητα του s γίνει ίση με sT . sT : ΄Οριο Αραιότητας

8: return s

Μετά την εξαγωγή των μασκών s, μπορούμε να κάνουμε μια εφάπαξ εφαρμογή της "Υπόθεσης

Τυχερού Δελτίου" για τις κεφαλές αυτο-προσοχής: χρησιμοποιούμε τις μάσκες s στο προεκπαιδευμένο

BERT και κάνουμε μετεκπαίδευση του νέου δικτύου στο δεδομένο πρόβλημα. Εναλλακτικά, μπορούμε
να εφαρμόσουμε την προτεινόμενη τεχνική με όνομα "Επαναλαμβανόμενη Δομική Περικοπή". Η

"Επαναλαμβανόμενη Δομική Περικοπή" περιγράφεται από τον Αλγόριθμο 0.2.

Algorithm 0.2: Επαναλαμβανόμενη Δομική Περικοπή για προεκπαιδευμένα μοντέλα

1: Μετεκπαίδευση του προεκπαιδευμένου μοντέλου

2: Αρχικοποίηση συνόλου μασκών περικοπής των κεφαλών αυτο-προσοχής σε s = 1d . d: διάσταση

3: repeat
4: Υπολογισμός Ih για τις κεφαλές που δεν έχουν περικοπεί

5: Ταξινόμηση των κεφαλών σε φθίνουσα σειρά με βάση το Ih
6: Στο προεκπαιδευμένο δίκτυο περικοπή κ% των αρχικών κεφαλών και ενημέρωση του s
7: Μετεκπαίδευση του προεκπαιδευμένου μοντέλου

8: until η αραιότητα του s γίνει ίση με sT . sT : ΄Οριο Αραιότητας

9: return s

0.6 Πειράματα

0.6.1 Διαφορετικά Επίπεδα Περικοπής

΄Ολα τα πειράματα σε αυτή την ενότητα χρησιμοποιούν ως προεκπαιδευμένο μοντέλο το "bert-
base-uncased" από την βιβλιοθήκη των Transformers [31]. Το μοντέλο έχει μετεκπαιδευτεί σε 6
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Σύνολο Δεδομένων MNLI QQP QNLI MRPC SST-2 CoLA
Παραδείγματα Εκπ. 392,704 363,872 104,768 3,680 67,360 8,576
Επαναλ./Εποχές 12,272 11,371 3,274 115 2,105 268
Εποχές 3 3 3 3 3 3
Μέγεθος Batch 32 32 32 32 32 32
Ρυθμός Μάθησης 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Βελτιστοποιητής AdamW with ε = 1× 10−8

Μετρική Αξιολ. Matched Acc. Acc. Acc. Acc. Acc. Matthew’s

Table 1. Προβλήματα του GLUE [20], μέγεθος συνόλου δεδομένων, μετρικές αξιολόγησης και
υπερπαράμετροι μετεκπαίδευσης που χρησιμοποιήθηκαν στην παρούσα εργασία

α MNLI QNLI QQP SST-2 MRPC CoLA
1 0.586 0.564 0.725 0.837 0.484 0.183
0.7 0.589 0.670 0.719 0.783 0.589 0.202
0.6 0.586 0.603 0.750 0.798 0.652 0.206
0.5 0.566 0.594 0.694 0.843 0.537 0.287
0.4 0.623 0.599 0.709 0.832 0.571 0.229

Table 2. Αποτελέσματα στα προβλήματα του GLUE. Εκτελούμε τα πειράματα με διαφορετικές τιμές
της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμένου μοντέλου στο σύνολο ανάπ-
τυξης. Για α = 1 η μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη μεθοδολογία του Michel
[1]. Για κάθε πρόβλημα η καλύτερη επίδοση καταγράφεται με έντονα γράμματα. Για κάθε πείραμα
ελέγξαμε 4 διαφορετικά τυχαία φύτρα.

διαφορετικά προβλήματα του GLUE: MNLI, QQP, QNLI, MRPC, SST-2 και CoLA με την μετρικές

που φαίνονται στον Πίνακα 1. Εφαρμόζουμε τον προτεινόμενο αλγόριθμο 0.1 με κ = 10% και

ελέγχουμε την επίδοση του μοντέλου στο σύνολο ανάπτυξης (development set), καθώς στο GLUE
δεν είναι δημόσια διαθέσιμο το σύνολο ελέγχου (test set).
Βαθιά Επίπεδα Περικοπής. ΄Οπως έχουμε δει από προηγούμενες μελέτες [15] [14] το BERT

επιδέχεται βαθιά περικοπή και γι’ αυτό σε αυτό το πείραμα εκτελούμε βαθιά περικοπή. Εκτελούμε

8 επαναλήψεις του προτεινόμενου Αλγορίθμου και σε κάθε επανάληψη περικόπτεται 14 κεφαλές,
επομένως κόβουμε 112 από τις 144 κεφαλές, που είναι περίπου το 80% των κεφαλών αυτο-προσοχής
του BERT. Τα αποτελέσματα αυτού του πειράματος μπορούν να φανούν στον Πίνακα 2.

Από αυτά τα πειράματα μπορούμε να δούμε ότι για βαθιά επίπεδα περικοπής η μεθοδολογία μας

είναι καλύτερη από την συγκρινόμενη μεθοδολογία του Michel [1] για κάθε πρόβλημα του GLUE.
΄Ετσι, μπορούμε να παρατηρήσουμε ότι η χρήση του προεκπαιδευμένου και του μετεκπαιδευμένου

δικτύου βοηθάει την διαδικασία της περικοπής. Η καλύτερη τιμή της υπερπαραμέτρου α εξαρτάται από

την φύση του προβλήματος, κάτι που θα μελετηθεί εκτενώς σε επόμενα πειράματα.
Μικρότερα Επίπεδα Περικοπής. Σε αυτή την ενότητα εκτελούμε πειράματα σε μικρότερα

επίπεδα περικοπής, έτσι εκτελούμε 7 επαναλήψεις του προτεινόμενου αλγορίθμου και για κάθε επανάλ-

ηψη κόβουμε 14 κεφαλές, έτσι συνολικά κόβουμε 98 από τις 144 κεφαλές, που είναι περίπου το 80%

των κεφαλών αυτο-προσοχής του BERT. Τα αποτελέσματα αυτού του πειράματος μπορούν να φανούν

στον Πίνακα 3.
Από αυτά τα πειράματα μπορούμε να δούμε ότι και για μικρότερα επίπεδα περικοπής η μεθοδολογία

μας είναι καλύτερη από την συγκρινόμενη μεθοδολογία του Michel [1] για κάθε πρόβλημα του GLUE.
΄Ετσι, μπορούμε να παρατηρήσουμε ότι η χρήση του προεκπαιδευμένου και του μετεκπαιδευμένου

δικτύου βοηθάει την διαδικασία της περικοπής ακόμη και για μικρότερα επίπεδα περικοπής.
Διαφορετικά Επίπεδα Περικοπής. Σε αυτή την ενότητα εκτελούμε πειράματα σε διά-

φορα επίπεδα περικοπής, έτσι παρουσιάζουμε τα αποτελέσματα του τελικού μοντέλου για κάθε βήμα

περικοπής που είναι ίσο με 14 κεφαλές περικοπής. Συνολικά, εκτελούμε 8 βήματα περικοπής και

τα αποτελέσματα είναι η μέση τιμή 4 διαφορετικών πειραμάτων με διαφορετικά τυχαία φύτρα. Τα
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MNLI QNLI QQP SST-2 MRPC CoLA
0.717(α = 1) 0.734 0.791 0.875 0.639 0.286
0.732 (α = 0.4) 0.787 (0.7) 0.811 (0.6) 0.881 (0.4) 0.730 (0.6) 0.0.394 (0.6)

Table 3. Αποτελέσματα στα προβλήματα του GLUE. Η πρώτη γραμμή περιγράφει την επίδοση της
συγκρινόμενης μεθοδολογίας του Michel [1]. Στις επόμενες γραμμές παρουσιάζουμε την καλύτερη
επίδοση του μοντέλου στο σύνολο ελέγχου μετά την περικοπή 98 κεφαλών. Για κάθε πρόβλημα η
καλύτερη επίδοση καταγράφεται με έντονα γράμματα. Για κάθε πείραμα ελέγξαμε 4 διαφορετικά
τυχαία φύτρα.

αποτελέσματα αυτού του πειράματος μπορούν να φανούν στην Εικόνα 1.

Figure 1. Αποτελέσματα στα προβλήματα του GLUE. Εκτελούμε πειράματα με διαφορετικές τιμές
της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμένου μοντέλου στο σύνολο ανάπ-
τυξης. Κόβουμε 14 κεφαλές σε κάθε βήμα περικοπής. Για α = 1 η μεθοδολογία μας είναι ισοδύναμη
με την συγκρινόμενη μεθοδολογία του Michel [1]. Για κάθε πείραμα ελέγξαμε 4 διαφορετικά τυχαία
φύτρα.

Από την Εικόνα 1 βλέπουμε ότι η προτεινόμενη μεθοδολογία εν γένει κερδίζει την συγκρινόμενη

μεθοδολογία. Παρόλο, που για μικρότερα επίπεδα περικοπής βλέπουμε μικρότερη διαφορά στην επί-

δοση των διαφορετικών μεθοδολογιών. Αυτό συμβαίνει καθώς το BERT έχει πολλές κεφαλές που

περικόπτονται χωρίς μεγάλη επίπτωση στην επίδοση του μοντέλου.

0.6.2 Ο όρος εξειδίκευσης α

Θεωρούμε ότι το α κατά την διάρκεια της διαδικασίας περικοπής ελέγχει το πόσο βάρος δίνουμε στο

μετεκπαιδευμένο μοντέλο. ΄Ετσι, το α > 0.5 δηλώνει ότι η διαδικασία περικοπής θα δώσει μεγαλύτερη

προσοχή στο μετεκπαιδευμένο μοντέλο, ενώ το α < 0.5 δηλώνει το αντίθετο και το α = 0.5 δηλώνει

πως ο αλγόριθμος περικοπής θα δώσει εξίσου προσοχή και στα δύο μοντέλα.
Η προσέγγισή μας θεωρεί ότι το μετεκπαιδευμένο μοντέλο ξεχνάει πολύτιμη πληροφορία από το

προεκπαιδευμένο μοντέλο πράγμα που αντιμετωπίζουμε κατά την διάρκεια της περικοπής λαμβάνοντας

υπόψη τόσο το μετεκπαιδευμένο όσο και το προεκπαιδευμένο μοντέλο. Επιπλέον, για μικρότερα

επίπεδα περικοπής δεν υπάρχουν μεγαλύτερες διαφοροποιήσεις στα αποτελέσματα, ενώ σε μεγαλύτερα

επίπεδα ο όρος εξειδίκευσης βοηθάει την διαδικασία.
Για να ελέγξουμε την επίδραση του όρου εξειδίκευσης εξετάζουμε BERT-base μοντέλα σχετικά

με Επιστήμη Υπολογιστών και Βιοϊατρική Επιστήμη. Αυτό το πράττουμε καθώς το BERT-base έχει

μικρή λεξιλογική επικάλυψη μεταξύ επιστημονικών πεδίων, όπως έχει μελετήσει ο Gururangan [32]
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Σύνολο Δεδομένων PubMed 20k RCT SciERC
Παραδείγματα Εκπ. 20,000 3,200
Επαναλ./Εποχές 625 100
Εποχές 3 3
Μέγεθος Batch 32 32
Ρυθμός Μάθησης 2× 10−5 2× 10−5

Βελτιστοποιητής AdamW with ε = 1× 10−8

Μετρική Αξιολ. Accuracy Accuracy

Table 4. Τα σύνολα δεδομένων PubMed 20k RCT και SciERC, τα μεγέθη των δεδομένων και οι
τιμές υπερπαραμέτρων με τις οποίες έγινε η διαδικασία της μετεκπαίδευσης.

και φαίνεται στην Εικόνα 2.

Figure 2. Λεξιλογική επικάλυψη (%) μεταξύ διαφορετικών τομέων. Ο όρος "PT" δηλώνει ένα
δείγμα από πηγή αντίστοιχη της πηγής προεκπαίδευσης του BERT.

Μοντέλα Μετεκπαιδευμένα σε Επιστημονικά Πεδία . ΄Ολα τα πειράματα σε αυτή την

ενότητα έγιναν στο "bert-base-uncased" μοντέλο της βιβλιοθήκης Transformers [31]. Το μοντέλο

μετεκπαιδεύτηκε σε 2 επιστημονικά σύνολα δεδομένων: στο SciERC [24] και στο PubMed 20k RCT
[25] με τις μετρικές που φαίνονται στον Πίνακα 4. Μετά, εφαρμόστηκε ο προτεινόμενος Αλγόριθμος

5.1 με κ = 10%.
Εκτελέσαμε διαδικασία περικοπής για διαφορετικά επίπεδα περικοπής και παρουσιάζουμε τα αποτελέσ-

ματα του τελικού μοντέλου με βήμα περικοπής 14 κεφαλές. Συνολικά, εκτελέσαμε 8 βήματα περικοπής.
Τα αποτελέσματα περιγράφονται στην Εικόνα 3.

Figure 3. Αποτελέσματα στα σύνολα δεδομένων PubMed 20k RCT και SciERC. Εκτελούμε πειρά-
ματα με διαφορετικές τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμέ-
νου μοντέλου στο σύνολο ανάπτυξης. Κόβουμε 14 κεφαλές σε κάθε βήμα περικοπής. Για α = 1 η
μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη μεθοδολογία του Michel [1].

Από την Εικόνα 3 βλέπουμε ότι η καλύτερη επίδοση και στα δύο επιστημονικά πεδία πετυχαίνετε
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MNLI QNLI SST-2 MRPC CoLA PubMed 20k RCT
καλύτερο-α 0.7 0.6 0.6 0.7 1 0.6

Table 5. Αποτελέσματα στα προβλήματα του GLUE και στο PubMed 20k RCT. Κόβουμε 112
κεφαλές από τα μοντέλα με διαφορετικές τιμές τις υπερπαραμέτρου α. Μετά ελέγχουμε την επίδοση
του μοντέλου και καταγράφουμε το α για το οποίο καταγράψαμε την υψηλότερη επίδοση.

για α = 0.6. Αυτό μπορεί να δικαιολογηθεί από το γεγονός ότι το προεκπαιδευμένο BERT έχει

εκπαιδευτεί σε κείμενα με μικρή λεξιλογική επικάλυψη με τα επιστημονικά πεδία των σύνολο δεδομένων

PubMed 20k RCT και SciERC. ΄Ετσι, η διαδικασία της περικοπής πρέπει να δίνει μεγαλύτερη προσοχή

στο μετεκπαιδευμένο μοντέλο.
Μοντέλα με Επιστημονικά Πεδία Προεκπαίδευσης. Σε αυτή την ενότητα, αλλάζουμε

το προεκπαιδευμένο μοντέλο και χρησιμοποιούμε το SciBERT [33] το οποίο είναι ένα μοντέλο BERT
που έχει λάβει περισσότερη εκπαίδευση σε επιστημονικά κείμενα. Το SciBERT συγκρινόμενο με

το BERT έχει μεγαλύτερη λεξιλογική επικάλυψη μεταξύ επιστημονικών πεδίων, όπως η Επιστήμη

Υπολογιστών και η Βιοϊατρική Επιστήμη.
΄Ολα τα πειράματα σε αυτή την ενότητα χρησιμοποιούν ως προεκπαιδευμένο μοντέλο το "bert-

base-uncased" από την βιβλιοθήκη των Transformers [31]. Το μοντέλο έχει μετεκπαιδευτεί σε 6
διαφορετικά προβλήματα του GLUE: MNLI, QQP, QNLI, MRPC, SST-2 και CoLA με τις μετρικές

που φαίνονται στον Πίνακα 1. Εφαρμόζουμε τον προτεινόμενο αλγόριθμο 0.1 με κ = 10% και

ελέγχουμε την επίδοση του μοντέλου στο σύνολο ανάπτυξης (development set), καθώς στο GLUE
δεν είναι δημόσια διαθέσιμο το σύνολο ελέγχου (test set).

Το μοντέλο έχει μετεκπαιδευτεί σε 5 διαφορετικά προβλήματα του GLUE: MNLI, QNLI, MRPC,
SST-2 and CoLA και σε ένα Επιστημονικό Σύνολο Δεδομένων: PubMed 20k RCT. Εκτελούμε

8 επαναλήψεις του προτεινόμενου Αλγορίθμου και σε κάθε επανάληψη περικόπτεται 14 κεφαλές,
επομένως κόβουμε 112 από τις 144 κεφαλές, που είναι περίπου το 80% των κεφαλών αυτο-προσοχής
του BERT. Τα αποτελέσματα αυτού του πειράματος μπορούν να φανούν στον Πίνακα 5.

Μια πιο λεπτομερής εικόνα αυτού του πειράματος μπορεί να περιγραφεί από την Εικόνα 4, όπου
κόβουμε 14 κεφαλές σε κάθε επανάληψη και συνολικά κόβουμε 112 κεφαλές.

Figure 4. Αποτελέσματα στα σύνολα δεδομένων PubMed 20k RCT και SciERC. Εκτελούμε πειρά-
ματα με διαφορετικές τιμές της υπερπαραμέτρου α και καταγράφουμε τα αποτελέσματα του κομμέ-
νου μοντέλου στο σύνολο ανάπτυξης. Κόβουμε 14 κεφαλές σε κάθε βήμα περικοπής. Για α = 1 η
μεθοδολογία μας είναι ισοδύναμη με την συγκρινόμενη μεθοδολογία του Michel [1].

Σχετικά με τα προβλήματα του GLUE γνωρίζουμε ότι έχουν μικρή λεξιλογική επικάλυψη με τα

26



0.6 Πειράματα

a MNLI QNLI MRPC SST-2 CoLA
1 0.817 0.820 0.773 0.903 0.329
0.6 0.824 0.874 0.778 0.913 0.334
0.5 0.819 0.876 0.607 0.917 0.435
0.4 0.809 0.880 0.783 0.918 0.312

Table 6. Αποτελέσματα στα προβλήματα του GLUE.

επιστημονικά πεδία που έχει προεκπαιδευτεί το SciBERT και γι’ αυτό περιμένουμε ότι η καλύτερη

μεθοδολογία περικοπής θα προκύψει με τιμή της υπερπαραμέτρου α μεγαλύτερη από 0.5. Πράγματι,
αυτό επιβεβαιώνεται από τα παραπάνω πειράματα. Επιπλέον, σχετικά με το PubMed 20k RCT που

είναι ένα επιστημονικό σύνολο, βλέπουμε ότι η καλύτερη τιμή προκύπτει για α = 0.6, που δείχνει

ότι η καλύτερη στρατηγική περικοπής προκύπτει όταν δίνει μεγαλύτερο βάρος στο μετεκπαιδευμένο

μοντέλο.

0.6.3 Κερδίσαμε το Λαχείο;

Εμπνευσμένη από την "Υπόθεσης Τυχερού Δελτίου" (Lottery Ticket Hypothesis) [12] εκτελούμε
πειράματα για τα εξείς 5 προβλήματα του GLUE: MNLI, QNLI, MRPC, SST-2 and CoLA. Αρχικά,
για κάθε πρόβλημα εκτελούμε τον προτεινόμενο αλγόριθμο για διαφορετικές τιμές του α, το οποίο

εκτελεί διαφορετικά σύνολα από μάσκες κεφαλών. ΄Υστερα, εφαρμόζουμε αυτό το σύνολο μασκών

στο "bert-base-uncased" και έτσι έχουμε ένα προεκπαιδευμένο μοντέλο στο οποίο 112 κεφαλές έχουν

μαρκαριστεί. Μετά μετεκπαιδεύουμε το μοντέλο στο αντίστοιχο πρόβλημα του GLUE με τις μετρικές

που φαίνονται στον Πίνακα 1.
Τα πειράματα μπορούν να περιγραφούν στον Πίνακα 5.7. Η προσέγγισή μας κερδίζει τα μοντέλα

που έχουν μαρκαριστεί με σύνολο μασκών που έχει προκύψει από την τεχνική του Michael [1], παρόλο
που κόβεται το 80% των κεφαλών αυτο-προσοχής το αντίκτυπο στην απόδοση του μοντέλου έχει μια

πτώση μεταξύ 2−4%. ΄Ετσι, μπορούμε να παρατηρήσουμε ότι η χρήση του προεκπαιδευμένου και του

μετεκπαιδευμένου δικτύου βοηθάει την επιλογή μασκών για την διαδικασία της "Υπόθεσης Τυχερού

Δελτίου".

0.6.4 Επαναλαμβανόμενη Δομική Περικοπή

Σε αυτή την ενότητα εκτελούμε το πείραμα της Επαναλαμβανόμενης Δομικής Περικοπής. Αυτή

η προσέγγιση βελτιώνει την μελέτη της "Υπόθεσης Τυχερού Δελτίου" επειδή είναι η πρώτη φορά

που προτείνεται μια επαναληπτική διαδικασία για την εφαρμογή δομικής περικοπής. Ταυτόχρονα,
γενικεύεται η επαναληπτική προσέγγιση του Chen et al. [16].

Σε αυτά τα πειράματα εκτελούμε μια επαναληπτική τεχνική περικοπής όπου αρχικά μετεκπαιδεύουμε

το BERT μοντέλο στα τελικά προβλήματα. Μετά εντοπίζουμε τις 14 κεφαλές με το μικρότερη επί-

δοση στην ευριστική που προτείνουμε για α = 1. Μετά παίρνουμε το προεκπαιδευμένο μοντέλο και

κόβουμε αυτές τις 14 κεφαλές και μετεκπαιδεύουμε το μοντέλο. ΄Ετσι, το τελικό μοντέλο έχει 14

λιγότερες κεφαλές και έχει εκπαιδευτεί μόνο μια φορά. Μπορούμε να συνεχίσουμε την διαδικασία

εντοπίζοντας 14 κεφαλές με τη μικρότερη επίδοση στην ευριστική που προτείνουμε. ΄Ετσι, παίρνουμε
το προεκπαιδευμένο μοντέλο και κόβουμε αυτές τις 14 + 14 κεφαλές και μετά το μετεκπαιδεύουμε.

Συγκρίνουμε τα αποτελέσματα μας με την μη επαναλαμβανόμενη τεχνική η οποία περικόπτει το

x% των κεφαλών του προεκπαιδευμένου μοντέλο και μετά μετεκπαιδεύτηκε. ΄Ετσι, το τελικό μοντέλο

αποτελείται από 100− x% κεφαλές αυτο-προσοχής.
Με την Επαναλαμβανόμενη Δομική Περικοπή η συνολική απόδοση του μοντέλου είναι μεγαλύτερη

από την μη επαναλαμβανόμενη. Αυτό μπορεί να φανεί από την εικόνα Figure 5 όπου εκτελέσαμε αυτό

27



Chapter 0. Εκτεταμένη Ελληνική Περίληψη

το πείραμα σε 2 προβλήματα GLUE: MNLI και QNLI. Αυτή η προσέγγιση δείχνει ότι υπάρχει ένα

δίλημμα (trade-off) μεταξύ επίδοσης και υπολογιστικού κόστους.

Figure 5. Επαναλαμβανόμενη Δομική Περικοπή στο MNLI και στο QNLI με α = 1

0.6.5 Περικοπή σε Μοντέλα Διαφορετικής Τροπικότητας

Σε αυτή την ενότητα κόβουμε κεφαλές αυτο-προσοχής σε ένα μοντέλο διαφορετικής τροπικότητας

(modality). Πιο συγκεκριμένα, εξετάζουμε την τροπικότητα της φωνής μέσω του μοντέλου wav2vec
2.0 [26]. Είναι η πρώτη φορά που γίνεται περικοπή κεφαλών αυτο-προσοχής στο wav2vec 2.0.

Το προεκπαιδευμένο μοντέλο wav2vec 2.0. έχει μετεκπαιδευτεί στο σύνολο δεδομένων Timit [2]
και η επίδοση του καταγράφεται στην μετρική του Word Error Rate. Τα αποτελέσματα μπορούν

να φανούν από την Εικόνα 6. ΄Ετσι, μπορούμε να δούμε ότι η τεχνική μας μπορεί να εφαρμοστεί

και σε διαφορετικές τροπικότητες, και μάλιστα σε βαθιά επίπεδα περικοπής επιτυγχάνει καλύτερα

αποτελέσματα από την μεθοδολογία σύγκρισης.

Figure 6. Το μοντέλο wav2vec 2.0. έχει μετεκπαιδευτεί στο σύνολο δεδομένων Timit [2] και η
επίδοση του καταγράφεται στην μετρική του Word Error Rate.
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Chapter 1

Introduction

1.1 From Artificial Intelligence To Deep Learning

The terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are
usually confused. Based on the Oxford Dictionary, Artificial Intelligence can be defined as "The
theory and development of computer systems able to perform tasks normally requiring human in-
telligence, such as visual perception, speech recognition, decision-making, and translation between
languages". Thus, we can conclude that the term Artificial Intelligence is a more general term
including AI, ML, and DL, and the distinction is based on the technique in which the computer
systems can mimic human intelligence.

Artificial Intelligence approaches use hard-code knowledge about the ongoing task. Based on
logical inference rules, a computer system can derive new knowledge and reason about statements.
This method is known as the knowledge-based approach to artificial intelligence. One drawback of
this approach is the difficulty of formally describing all the knowledge based on the given task.

Machine Learning tries to overcome this problem by letting the system extract patterns from
raw data. The most naive machine learning method is the Naive Bayes classifier, based on the
Bayes’ theorem. The performance of these simple machine learning algorithms depends heavily
on the representation and the amount of the given data. Many machine learning methodologies,
such as the naive Bayes classifier, try to derive a mapping representation from the representation
space to the output space. However, mapping is not always the case for machine learning. Another
aim of machine learning is to learn the representation itself, and this field is called representation
learning. It can be very difficult to extract such high-level, abstract features from raw data. Many
of these factors of variation, such as a noise environment, can make the process quite challenging.

Deep Learning solves this central problem in representation learning by introducing repre-
sentations that are expressed in terms of other simpler representations. Deep learning enables the
computer to build complex concepts out of simpler concepts but demands enormous data.

1.2 Motivation

One of the most successful deep learning architectures is called Transformers. Transform-
ers yield performance in many Natural Language Processing tasks, while the training pipeline is
computationally demanding and the final model lists millions of parameters. Indeed, Transformer-
based models keep growing by orders of magnitude: The 110M parameters of base BERT are now
dwarfed by 17B parameters of Turing-NLG [22], which is dwarfed by 175B of GPT-3 [23]. This
trend raises concerns about computational complexity of self-attention, environmental issues [34]
[35], fair comparison of architectures [36], and reproducibility.

Human language is incredibly complex and would perhaps take many more parameters to
describe fully [37], but the current models do not make good use of the parameters they already
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have. Voita et al. [14] showed that all but a few Transformer heads could be pruned without
significant losses in performance. For BERT, Clark et al. [27] observe that most heads in the
same layer show similar self-attention patterns (perhaps related to the fact that the output of all
self-attention heads in a layer is passed through the same MLP), which explains why Michel et al.
[1] were able to reduce most layers to a single head.

Depending on the task, some BERT heads/layers are not only redundant [38], but also harmful
to the downstream task performance. Positive effect from head disabling was reported for machine
translation [1], abstractive summarization [39], and GLUE tasks [13]. Additionally, Tenney et al.
[40] examine the cumulative gains of their structured probing classifier, observing that in 5 out of
8 probing tasks, some layers cause a drop in scores (typically in the final layers). From the aspect
of unstructured pruning, Gordon et al. [28] find that 30–40 percent of the weights can be pruned
without impact on downstream tasks.

In general, larger BERT models perform better [41] , [42] but not always: BERT-base out-
performed BERT-large on subject-verb agreement [43] and sentence subject detection [44]. Given
the complexity of language and amounts of pre-training data, it is not clear why BERT ends up
with redundant heads and layers. Clark et al. [27] suggest that one possible reason is the use of
attention dropouts, which causes some attention weights to be zeroed-out during training.

Given the above evidence of overparameterization, it does not come as a surprise that
BERT can be efficiently compressed with minimal accuracy loss, which would be highly desirable
for real-world applications.

Compression can be achieved with different techniques, such as Knowledge Distillation [45],
Pruning [46] and Neural Network Quantization [47]. In this study, we explore Pruning as a com-
pression technique and, more specifically, Structured Pruning.

The main reason we study Structured Pruning rather than Magnitude pruning is that adaptive
sparse matrix multiplication has shown promising results on GPUs but is not yet applied in silicon,
and thus structured pruning is the only way of actually "accelerating" BERT. On the other hand,
accelerating unstructured sparse matrix multiplication is an active area of research in which recent
progress has been made. Bank-balanced sparsity (which is closely related to unstructured sparsity)
achieves near-ideal speed-ups while requiring a minimal deviation from unstructured sparsity [48].

Moreover, through structured pruning, we investigate the effect of structural components in
the neural network. We understand their functionality and their usefulness in the whole network,
and through this study, we can achieve better fine-tuning techniques.

1.3 Research Contributions

In this study, we examine a structured pruning approach for BERT-based architectures that
implies that in transfer learning, the final model is the result of a fine-tuning process of a pre-trained
model. Thus, we consider both the pre-trained and the fine-tuned model to prune attention heads.
Furthermore, we study this method through the Lottery Ticket Hypothesis, where we see that
considering both the pre-trained and the fine-tuned model outperforms the approach which only
considers the fine-tuned model. Moreover, we propose a better application of the Lottery Ticket
Hypothesis in structured pruning named "Iterative Structured Pruning". Finally, we examine our
technique on another modality, more precisely in Automatic Speech Recognition through wav2vec
2.0, and we see corresponding results.
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1.4 Thesis Outline

1.4 Thesis Outline

Chapter 2: From Machine Learning to Deep Learning, provides background knowledge to set
the stage for the subsequent chapters. First, we provide an overview of technical information that
is relevant in order to understand the contents of this thesis. Next, we introduce the reader to
machine learning together with its most elementary methods. We subsequently delve into the
machine learning models primarily used in this thesis.

Chapter 3: Natural Language Processing, presents the natural language processing background
needed to understand this thesis. After briefly presenting popular natural language processing
tasks, language modeling is presented, initially in the form of an-gram model based on the Markov
assumption and then as a recurrent neural network. Then, transfer learning methods that are
currently used to train natural language processing models are explained.

Chapter 4: Compression of Deep Learning Models, is a short survey that introduces compression
techniques in deep learning models. Firstly, the problem description is introduced, and the Lottery
Ticket Hypothesis is explained. Then we focus on different pruning approaches for Transformer-
based models, while we also present similar techniques on Computer Vision. Finally, critical aspects
of Explainable AI are presented as a promising pruning methodology.

Chapter 5: Back to the Future: A transfer learning approach for structured pruning, presents
a novel structured pruning technique for Deep Learning Language Models, such as BERT. This
approach considers both the pre-trained and the fine-tuned model and outperforms other structured
pruning methodologies. Also, we show that this method produces a better set of head masks for the
Lottery Ticket Hypothesis; if this set is used in the pre-trained model and this model is fine-tuned,
it will produce a model with significant performance and sparsity. Finally, in this chapter, we
examine an iterative structured pruning algorithm for performing the Lottery Ticket Hypothesis,
and we apply our methodology to a different modality.

Chapter 6: Conclusions, contains our conclusion, summarizing our findings and providing an
outlook into the future work.
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Chapter 2

From Machine Learning to Deep Learning

2.1 Introduction

The terms Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) are
usually confused. Based on the Oxford Dictionary, Artificial Intelligence can be defined as "The
theory and development of computer systems able to perform tasks normally requiring human in-
telligence, such as visual perception, speech recognition, decision-making, and translation between
languages". Thus, we can conclude that the term Artificial Intelligence is a more general term
including AI, ML, and DL, and the distinction is based on the technique in which the computer
systems can mimic human intelligence.

Artificial Intelligence approaches use hard-code knowledge about the ongoing task. Based on
logical inference rules, a computer system can derive new knowledge and reason about statements.
This method is known as the knowledge-based approach to artificial intelligence. One drawback of
this approach is the difficulty of formally describing all the knowledge based on the given task.

Machine Learning tries to overcome this problem by letting the system extract patterns from
raw data. The most naive machine learning method is the Naive Bayes classifier, based on the
Bayes’ theorem. The performance of these simple machine learning algorithms depends heavily
on the representation and the amount of the given data. Many machine learning methodologies,
such as the naive Bayes classifier, try to derive a mapping representation from the representation
space to the output space. However, mapping is not always the case for machine learning. Another
aim of machine learning is to learn the representation itself, and this field is called representation
learning. It can be very difficult to extract such high-level, abstract features from raw data. Many
of these factors of variation, such as a noise environment, can make the process quite challenging.

Deep Learning solves this central problem in representation learning by introducing repre-
sentations that are expressed in terms of other simpler representations. Deep learning enables the
computer to build complex concepts out of simpler concepts but demands enormous data.

In this section, we are going to discuss Machine Learning and Deep Learning Basics.

Figure 2.1. Artificial Intelligence, Machine Learning and Deep Learning Domains
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2.2 Learning Classification

Before classifying the types of learning in machine learning, a proper definition of “learning”
should be provided. Indeed, Mitchell [] provides generic, well-suited, definition for learning: “A
computer program is said to learn from experience (E) concerning some class of tasks (T) and
performance measure (P), if its performance at tasks in T, as measured by P, improves with
experience E.” So, more specifically in machine learning we train our model with data in order to
gain experience for a given task. Hopefully, after the training process, we will notice performance
improvement. In this section, we are going to classify learning, and we can define 14 different
learning types:

1. Learning Problems

(a) Supervised Learning

(b) Unsupervised Learning

(c) Reinforcement Learning

2. Hybrid Learning Problems

(a) Semi-Supervised Learning

(b) Self-Supervised Learning

(c) Multi-Instance Learning

3. Statistical Inference

(a) Inductive Learning

(b) Deductive Inference

(c) Transductive Learning

4. Learning Techniques

(a) Multi-Task Learning

(b) Active Learning

(c) Online Learning

(d) Transfer Learning

(e) Ensemble Learning

2.2.1 Supervised Learning

In supervised learning, there are input variables X and an output variable Y . The goal is to
build an algorithm that learns the mapping function from the input to the output.

Y = f(X)

During training, bothX and their corresponding y are provided; thus, the training data are labeled.
At inference, we expect that the mapping function can successfully predict the output for every
given x provided from the same distribution as the training sample.

Moreover, supervised learning can be classified into two categories, based on the nature of the
output y:

1. Classification
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2.2 Learning Classification

2. Regression

In classification, the output y is the class label of the input data x, while in regression, the
output is a predicted numerical value.

2.2.2 Unsupervised Learning

In other machine learning problems, the training data consists of input vectors x without any
corresponding target values. So, unsupervised learning aims to find patterns where the target
values are either not observable or infeasible to obtain. A large subclass of unsupervised tasks is
the problem of clustering. Clustering refers to grouping observations together so that members of
a common group are similar and different from members of other groups. Another exciting class of
unsupervised tasks is generative modeling. Generative models are models that imitate the process
that generates the training data. A good generative model would generate new data that resemble
the training data in some sense. This type of learning is unsupervised because the process that
generates the data is not directly observable – only the data itself is observable.

2.2.3 Self-Supervised Learning

Self-Supervised learning is proposed for utilizing unlabeled data with the success of supervised
learning. Producing a dataset with suitable labels is expensive, while unlabeled data is being
generated all the time. The motivation of Self-Supervised Learning is to make use of a large
amount of unlabeled data.

The main idea of Self-Supervised learning is to generate the labels from unlabeled data, accord-
ing to the structure or characteristics of the data itself, and then train on this unsupervised data
in a supervised manner. Self-Supervised learning is wildly used in representation learning to make
a model learn the latent features of the data. This technique is often employed in both natural
language processing, and computer vision [49].

2.2.4 Transfer Learning

The ideal scenario of machine learning is that there are abundant labeled training instances,
which have the same distribution as the test data. However, collecting sufficient training data is
often expensive, time-consuming, or even unrealistic in many scenarios. Semi-supervised learning
can partly solve this problem by relaxing the need for mass labeled data. Typically, a semi-
supervised approach only requires a limited number of labeled data, and it utilizes a large amount of
unlabeled data to improve the learning accuracy. However, unlabeled instances are also challenging
to collect in many cases, making the resultant traditional models unsatisfactory.

Transfer learning, which focuses on transferring knowledge across domains, is a promising
machine learning methodology for solving the above problem. The concept of transfer learning
may initially come from educational psychology. According to the generalization theory of transfer,
as proposed by psychologist C.H. Judd, learning to transfer is the result of the generalization of
experience. It is possible to realize the transfer from one situation to another if a person generalizes
his experience. According to this theory, the transfer prerequisite is the interconnection between
the learning activities. In practice, a person who has learned the violin can learn the piano faster
than others since both the violin and the piano are musical instruments and may share some
common knowledge.

Inspired by human beings’ capabilities to transfer knowledge across domains, transfer learning
aims to leverage knowledge from a source domain to improve the learning performance or minimize
the number of labeled examples required in a target domain. However, it is worth mentioning that
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the transferred knowledge does not always positively impact new tasks. If there is little in common
between domains, knowledge transfer could be unsuccessful.

We will provide a more formal definition of the terms mentioned above; Domain, Target, and
Transfer Learning.

Domain: A domain D is composed of two parts, i.e., a feature space X and a marginal
distribution P (X). In other words, D = {X , P (X)}. And the symbol X denotes an instance set,
which is defined as X = {x | xi ∈ X , i = 1, . . . , n}

Task: A task T consists of a label space Y and a decision function f , i.e., T = {Y, f}. The
decision function f is an implicit one, which is expected to be learned from the sample data.

Transfer Learning: Given some observation(s) corresponding to mS ∈ N+ source domain(s)
and task(s) (i.e.,

{
(DSi

, TSi
) | i = 1, . . . ,mS

})
, and some/an observation(s) about mT ∈ N+ target

domain (s) and task (s ) (i.e.,
{(
DTj

, TTj

)
| j = 1, . . . ,mT

})
, transfer learning utilizes the knowl-

edge implied in the source domain(s) to improve the performance of the learned decision functions
fTj (j = 1, · · · ,mT ) on the target domain(s).

If mS equals 1 , the scenario is called single-source transfer learning. Otherwise, it is called
multi-source transfer learning. Besides, mT represents the number of the transfer learning tasks
where in the majority of scenarios mT = 1 [50].

2.3 Machine Learning Concepts

2.3.1 Loss Function

The goal of any Supervised Learning algorithm is to return a function f() which accurately
matches the input examples to the corresponding labels. To quantify the loss (error) of the model,
a Cost Function is used that predicts ŷ when the actual label is y. Usually, the Cost Function
L(ŷ, y) assigns a numeric value to the predicted output ŷ given the actual output y. It must
have an infimum, which means that the lower the error value, the better the prediction. Function
parameters are set in order to minimize L loss in the training examples.

Given a train set (x1:n, y1:n), a cost function L per sample and a function f(x; θ), we define the
total loss as the average loss on all training data:

L(θ) = − 1

N

N∑
i=1

L (f(x; θ), yi)

The goal is to find the optimal parameters θ that minimize the total error:

θ̂ = argθminL(θ) = argθmin
1

N

N∑
i=1

L (f(x; θ), yi)

Some standard cost functions are the following:

Mean Squared Error (MSE): MSE calculates the mean squared prediction error:

J(∂) =
1

n

n∑
i=1

(Yi − Pi)2

Where the prediction error is the difference between the true value (Yi) and the predicted value
(Pi) for an instance, and ∂ is the parameter vector of the network. MSE is used with regression
models.
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Mean Absolute Error (MAE): MAE calculates the mean of the absolute prediction error:

J(∂) =
1

n

n∑
i=1

|Yi − Pi|

Where Yi is the true value and Pi is the predicted value for an instance, and ∂ is the parameter
vector of the network.

Cross Entropy: Cross-entropy loss function uses the concept of cross-entropy. Cross-entropy
is mathematically defined as:

H(p, q) = −
∑
k

pk log qk

Where p and q are the true and the predicted probability distributions, respectively, the more
the two distributions differ, the higher the value of the cross-entropy. The cross-entropy loss
function is widely used in classification problems. Based on the definition of cross-entropy, the goal
of the Cross-entropy loss function is to minimize the cross-entropy between the model’s distribution
and the distribution of the given data.

2.3.2 Underfitting and Overfitting

The central challenge in machine learning is that the proposed algorithm should perform well on
new, previously unseen inputs, not just those our model is trained. The ability to perform well on
previously unobserved inputs is called generalization. Typically, when training a machine learning
model, we have access to a training set; we can compute some error measure on the training set,
called training error; and we reduce this training error. So far, what we have described is simply
an optimization problem.

What separates machine learning from optimization is that we want the generalization error,
also called the test error, to be below. The generalization error is defined as the expected value of
the error on new input. Here the expectation is taken across different possible inputs, drawn from
the distribution of inputs we expect the system to encounter in practice. We typically estimate
the generalization error of a machine learning model by measuring its performance on a test set of
examples that were collected separately from the training set.

The factors determining how well a machine learning algorithm will perform its ability to:
make the training error small and make the gap between training and test error small. These two
factors correspond to the two central challenges in machine learning: underfitting and overfitting.
Underfitting occurs when the model cannot obtain a sufficiently low error value on the training
set. Overfitting occurs when the gap between the training error and test error is too large. So,
in machine learning, we are trying to find a good trade-off of training error and the gap between
training and test error as it can be described by the Figure 2.2.

2.3.3 Regularization, Dropout and Pruning

We want to overcome the problem of overfitting and improve the generalization. Our modern
ideas about improving the generalization of machine learning models are refinements of thought
dating back to philosophers at least as early as Ptolemy. Many early scholars invoke a principle of
parsimony that is now most widely known as Occam’s razor (c. 1287–1347). This principle states
that among competing hypotheses that explain known observations equally well, we should choose
the “simplest” one. This idea was formalized and made more precise in the twentieth century by
the founders of statistical learning theory.

Regularization is the most common way to mitigate overfitting and apply Occam’s razor on
machine learning problems. To face the potential loss of generalization, we impose restrictions
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Figure 2.2. Training and test errors behave differently. At the left end of the graph, training
error and generalization error are both high. This is the underfitting regime. As we increase
capacity, training error decreases, but the gap between training and generalization error increases.
Eventually, the size of this gap outweighs the decrease in training error, and we enter the overfitting
regime, where capacity is too large, above the optimal capacity. Source: [3]

on the form of the solution by forcing the model to choose the smallest - in order of parameters-
solution. This is done by implying a term in the loss equation then penalizing the size of the model.
Thus, the loss function takes the following form:

θ̂ = argmin
θ
L(θ) = argmin

θ

1

N

N∑
i=1

L (f (xi; θ) , yi) + λR(θ)

The regularization term considers the parameter values and scores their complexity. We then
look for values that have both a low loss and low complexity. What regularization inherently
intends to do is penalize complex models and favor simpler ones. λ is a value that must be set
manually, based on the classification performance on a development set (called hyperparameter).
The Regularizers R measure the norms of the parameter matrices and opt for solutions with
low norms. The two most common regularization norms are L2 and L1, and the most common
technique is dropout.

L2 regularization. R takes the form of the standard Euclidean norm (L2 -norm) of the
parameters, trying to keep the sum of the squares of the parameter values low. Large model
weights W[i,j] will be penalized, since they are considered "unlikely". L2 is often referred to as
weight decay. As one can observe, high weights are severely penalized, but weights with small
values are only negligibly affected.

RL2(W) = ‖W‖22 =
∑
i,j

(
W[i,j]

)2
L1 regularization. The L1 regularizer punishes uniformly low and high values and intends

to decrease all non-zero parameter values towards zero. So, it encourages sparse solutions or else
models with many parameters with a zero value. The L1 regularizer is also called a sparse prior
or lasso.

RL1(W) = ‖W‖1 =
∑
i,j

∣∣W[i,j]

∣∣
Dropout. An effective technique for preventing neural networks from overfitting the training

samples is dropout training. Dropout is designed to prevent the network from learning to rely on
specific weights. It randomly sets to zero (drops) half of the neurons in the network (or in a specific
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layer) in each training example, in the stochastic-gradient training. The dropout technique is one
of the key factors contributing to the robust results of neural networks.

Pruning Another way to prevent overfitting is pruning. Pruning involves removing connections
between neurons or entire neurons, channels, or filters from a trained network, which is done by
zeroing out values in its weights matrix or removing groups of weights entirely. We will discuss
pruning with more details in Chapter 4.

2.3.4 Gradient descent

In this section, we will discuss a non-optimal but efficient way of minimizing the loss function.
A gradient (at a point) is the slope of the tangent to the function at that point. It points to
the direction of the most significant increase of the function. Gradient-based methods minimize
the objective function L(θ) by repeatedly computing an estimate of the loss L over the training
set, computing the gradients of the parameters θ of the model concerning the loss estimate and
updating the parameters in the opposite direction of the gradient.

Gradient descent (GD) is one of the most popular algorithms to perform optimization in neural
networks. It computes the gradient of the cost function concerning the parameters θ for the entire
dataset. The learning rate (η) is a hyperparameter that controls the extent to which the model
parameters are adjusted concerning the loss gradient. GD is formally defined as:

θ = θ − η∇θJ(θ)

Stochastic Gradient Descent (SGD) in contrast performs a parameter update for each training
example xi and label yi :

θ = θ − η∇θJ (θ;xi; yi)

Gradient descent performs redundant computations for large datasets, as it recomputes gradi-
ents for similar examples before each parameter update. SGD does away with this redundancy by
performing one update at a time. It is, therefore, usually much faster and can also be used to learn
online.

Vanilla gradient descent, however, does not guarantee good convergence. The learning rate
needs to be carefully tuned, as a small value leads to slow convergence, while a very large value
can hinder convergence and cause the loss function to diverge or to fluctuate around the minimum
as shown in Figure 2.3. Moreover, the same learning rate applies to all parameter updates. If our
data is sparse and our features have very different frequencies, it is possible that we do not want to
update them to the same extent, but we instead want to perform larger updates for rarely occurring
features. Finally, a key challenge of minimizing highly non-convex error functions, common for
neural networks, is avoiding getting trapped in local minima, as shown in Figure 2.4.

2.4 Machine Learning Models

2.4.1 Linear Regression

Linear Regression is a Supervised Learning Problem and solves a regression problem. In other
words, the goal is to build a system that can take a vector x ∈ Rn as input and predict the value
of a scalar y ∈ R as its output. The output of linear regression is a linear function of the input.
Let ŷ be the value that our model predicts y should take on. We define the output to be:

ŷ = w>x
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Figure 2.3. Large learning rate leads the loss function to fluctuates around the minimum. Source:
[4]

Figure 2.4. Loss function’s landscapes could be full of local minima, which potentially could lead
to a suboptimal solution by GD Source: [4]

where w ∈ Rn is a vector of parameters.
Parameters are values that control the behavior of the system. In this case,wi is the coefficient

that we multiply by feature xi before summing up the contributions from all the features. We can
think of w as a set of weights that determine how each feature affects the prediction. An in order
to achieve an optimal fit of the model to the training data, we try to minimize MSEtrain:

MSEtrain =
1

m

∑
i

(ŷ − y)
2
i

To minimize MSE train, we can simply solve for where its gradient is 0:

∇wMSEtrain = 0

⇒ w = (XX)
−1

Xy

So, for Linear Regression, we have a close form to describe the optimal solution. However, it is
preferred to calculate the w with gradient descent because this method is computationally intensive
both in time and memory complexity. Moreover, GD is capable of parallelization. Finally, we prefer
GD, because this method does not provide a solution when the data is non-linear separable, because
then the matrix (XX)

−1 is not invertible.

2.4.2 Logistic Regression

When it comes to classification, we are determining the probability of an observation to be part
of a certain class or not. Therefore, we wish to express the probability with a value between 0 and
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1. A simple classification algorithm that generates values of that form is Logistic Regression (LR)
classifier.

Suppose we have a simple problem for a binary classifier, as described earlier in the same
Section. Let xi=1:N = x1, . . . ,xN be the input vectors where i ∈ {0, 1}. The activation of the
LR classifier is determined by applying a sigmoid function over the fitted line to get the final
classification decision:

σ(z) =
1

1 + e−z

The activation of LR for a given vector x is defined as follows:

hw(x) = σ
(
wTx

)
=

1

1 + e−wTx

The loss function to be minimized while fitting the LR to the training data is the following:

1

2
‖w‖+ C

N∑
i=1

log
(
exp

(
−yi

(
wTxi + b

))
+ 1
)

where C > 0 and b represent the coefficients of penalization of wrong classifications and LR

is a highly efficient technique that does not require extensive computational resources usage. It
thus provides a solid baseline for most NLP tasks. An obvious disadvantage is that LR cannot
solve non-linear problems since its decision surface is linear. A common practice used to apply
LR to multi-class classification is to iteratively treat each pair of classes as a binary classification
problem, to which LR is performed.

2.4.3 Other Models

Some worth mentioning machine learning models are the following:

Decision Trees are a type of Supervised Machine Learning where the data is continuously
split according to a specific parameter. The tree can be explained by two entities, namely decision
nodes and leaves. The leaves are the decisions or the outcomes. Furthermore, the decision nodes
are where the data is split.

Conditional random fields (CRFs) are a class of statistical modeling methods often ap-
plied in pattern recognition and machine learning and used for structured prediction. Whereas a
classifier predicts a label for a single sample without considering "neighboring" samples, a CRF
can take context into account. The prediction is modeled as a graphical model, which implements
dependencies between the predictions. What kind of graph is used depends on the application.
For example, linear-chain CRFs are widespread in natural language processing, which implements
sequential dependencies in the predictions. In image processing, the graph typically connects
locations to nearby and similar locations to enforce that they receive similar predictions.

(Gaussian) Mixture Model is a probabilistic model for representing the presence of subpop-
ulations within an overall population, without requiring that an observed data set should identify
the sub-population to which an individual observation belongs. Formally a mixture model cor-
responds to the mixture distribution representing the probability distribution of observations in
the overall population. However, while problems associated with "mixture distributions" relate
to deriving the properties of the overall population from those of the sub-populations, "mixture
models" are used to make statistical inferences about the properties of the sub-populations given
only observations on the pooled population, without subpopulation identity information.
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2.5 Deep Learning Models

Deep Learning solves this central problem in representation learning by introducing represen-
tations expressed in other simpler representations. Deep learning enables the computer to build
complex concepts out of simpler concepts but demands big amount of data. In this section, we are
going to discuss some of the most popular Deep Learning Models.

2.5.1 Feedforward Neural Networks

An Artificial Neural Network (ANN) is a biologically inspired computational model patterned
after the network of neurons present in the human brain. The area of ANNs has been initially
inspired by modeling biological neural systems but has since diverged and become a matter of
engineering and achieving good results in Machine Learning tasks. Thus, we first introduce a very
brief and high-level description of the biological system that has influenced a large portion of deep
learning. The basic computational unit of the brain is a neuron. Billions of neurons can be found
in the human nervous system. Figure 2.5 shows the comparison between a biological neuron and
its mathematical notation. Each neuron receives input signals from its dendrites and produces
output signals along its (single) axon. The axon connects via synapses to the dendrites of other
neurons. In the computational model of a neuron, the signals that travel along the axons (e.g., x0)
interact multiplicatively (e.g., x0w0) with the dendrites of the other neuron based on the synaptic
strength at that synapse (e.g., w0). The idea is that the synaptic strengths (the weights w) are
learnable and control the strength of influence of one neuron on another. In the basic model, the
dendrites carry the signal to the cell body, where they all get summed. If the final sum is above a
certain threshold, the neuron can fire, sending a spike along its axon. In the computational model,
we assume that only the frequency of the firing communicates information. We thus model the
neuron’s firing rate with an activation function f , which represents the frequency of the spikes along
the axon. A standard activation function is the sigmoid function σ, since it takes a real-valued
input and squashes it to a range between 0 and 1.

Figure 2.5. Perceptron Structure. Source: cs231n.github.io

In order to learn complex non-linear functions, architectures that combine several artificial
neurons can be designed and implemented. Such architectures are called Multi-Layer Percep-
trons (MLPs). A multilayer perceptron (MLP) is a class of feedforward artificial neural networks
(FFNN). An MLP consists of at least three layers of nodes: an input layer, a hidden layer, and an
output layer. Except for the input nodes, each node is a neuron that uses a non-linear activation
function. Its multiple layers and non-linear activation distinguish MLP from a linear perceptron.
It can distinguish data that is not linearly separable. In Figure 2.6 we visualize the difference
between a simple neural network and a deep neural network (such as an MLP or an FFNN). A
deep neural network consists of more than one hidden layer.

Each neural network is composed of the following layers:
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Figure 2.6. Multilayer perceptron (MLP) Structure. Source: electronicdesign

• Input layer. This layer accepts the input data. It provides information from the outside
world to the network without any further computation. Nodes pass on the information to
the hidden layer.

• Hidden layer(s). More than one hidden layer can be used to preprocess the inputs obtained
by the previous layer. They extract the required features from the input data. When moving
to higher hidden layers, higher-level features are constructed.

• Output layer. After data preprocessing, a decision is made by the network in this layer.

2.5.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a type of artificial neural network where connections
between units form a directed cycle, and it was proposed in the 1980s. This creates an internal state
of the network, which allows it to exhibit dynamic behavior. Unlike feedforward neural networks,
RNNs can use their internal memory to process and work on arbitrary sequences of inputs. This
makes them applicable to tasks such as unsegmented connected handwriting recognition, speech
recognition, Natural language processing and Machine Translation.

RNNs are especially useful with sequential data because each neuron can use its internal memory
to maintain information about the previous input. Another way to think about RNNs is that they
have a memory state which captures information about what has been calculated so far. Figure
2.7 illustrates the architecture of a rolled-up recurrent neural network. A recurrent neural network
can be considered multiple copies of the same network, each passing a message to a successor.
Consider what happens if we unroll the loop as it can be described from Figure 2.8.

Figure 2.7. A rolled up RNN where Xt is the input vector containing sequences of characters of
a word while ht is as output vector. Source: colah.github.io

Considering an example from a natural language such as, "I had washed my house" is much more
different than "I had my house washed". This allows the network to gain a deeper understanding
of the language statements. This is important to note because reading through a sentence, even
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Figure 2.8. An unrolled up RNN where Xt is the input vector containing sequences of characters
of a words while ht is as output vector. Source: colah.github.io

as a person, you are picking up each word’s context from the words before or after it. An RNN
has loops in them that allow information to be carried across neurons while reading input.

In these diagrams, Xt is some input, A is a part of the RNN, and ht is its output. Essentially
you can feed in language words from the sentence or even characters from a string as Xt, and
through the RNN, it will result with a ht. The goal is to use ht as output and compare it to test
data (which is usually nothing but a small subset of the original data). Then we will get error
rate information. After comparing the output to the test data, with error rate in hand, we can use
Back Propagation Through Time (BPTT) which back checks through the network and adjusts the
weights based on error rate and makes it learn to get a good result.

Vanilla RNNs. The RNN first takes the x0 from the sequence of input, and it outputs h0
(hidden state). The hidden state h0 along with the next input x1 is the input for the next step.
Accordingly, h1 along with x2 is the input for the next step and so on. So, the RNN remembers the
context of the input it has already seen while training. Formally, at each time step t, the equations
that describe the function of the RNN are:

ht = fh (Whhht−1 +Whxxt + bh)

yt = fy (Wyhht + by)

where ht is the hidden state at time step t, xt is the input vector at time step t, yt is the output
vector at time step t, bh is the bias for h, by is the bias for y and fx, fh are the activation functions
for x and h respectively. They are three separate matrices of weights: Whx (input-to-hidden
weights), Whh (hidden-to-hidden), and Wyh (hidden-to-output).

Long Short-Term Memory (LSTM). RNNs can handle context from the beginning of the
statement, which will allow more accurate predictions of a word at the end of a statement. In
practice, this is not necessarily true for all types of RNNs, since RNNs are actually limited to
looking back only a few steps. This is a significant reason why RNNs need to be used with a
Long Short Term Memory (LSTM) regime, which introduced by Hochreiter and Schmidhuber
[51]. Adding the LSTM to the network is like adding a memory unit inside the network that can
remember context from the very beginning of the input. So, if the sentence is of 10 words and we
want to predict 11th word, all 10 words are being processed by RNNs and their weights on each
step are being saved using LSTM and the probability of 11th word being predicted accordingly.
Another problem of Vanilia RNN’s is the so-called problem of vanishing and exploding gradient
through BPTT.

A memory cell is used in addition to the hidden layer to pass information that might not
be used in prediction. These memory units allow for RNNs to give much more accurate results.
These memory units allow the network to remember the context across inputs. LSTM is denoted
in Figure 2.9

Given a sequence x1,x2, . . . ,xt, . . . ,xn of vectors of an input sequence of length n, for vector
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Figure 2.9. The repeating module in an LSTM. Source: colah.github.io

xt, with inputs ht−1 and ct−1,ht and ct are computed as follows:

ft = σ (Wfxt +Ufht−1 + bf )

it = σ (Wixt +Uiht−1 + bi)

ot = σ (Woxt +Uoht−1 + bo)

ut = tanh (Wuxt +Uuht−1 + bu)

ct = ft � ct−1 + it � ut

ht = ot � tanh (ct)

Forget gate (ft). This gate decides what information should be thrown away or kept. Infor-
mation from the previous hidden state ht−1 and information from the current input xt is passed
through the sigmoid activation function. Values come out between 0 and 1. The closer to 0 means
to forget, and the closer to 1 means to keep.

Input gate (fit). The previous hidden state and current input are passed into a sigmoid
function that decides which values will be updated by forcing the values to be between 0 and 1 (0
means unimportant and 1 means important). The hidden state and current input are also passed
to the tanh function to squish values between −1 and 1 (ut). Finally, the tanh output is multiplied
with the sigmoid output (it � ut). The sigmoid output will filter the important information of
tanh.

Cell state (ct). The cell state gets pointwise multiplied by the forget vector. This can drop
values in the cell state if it gets multiplied by values near 0. Then, we take the output from the
input gate and do a pointwise addition that updates the cell state to new values that the neural
network finds relevant.

Output gate (ot). The output gate decides what the next hidden state should be. As the
hidden state contains information on previous inputs, it is also used for predictions. First, the
previous hidden state and the current input are passed into a sigmoid function. Then, the newly
modified cell state is passed to the tanh function. We multiply the tanh output with the sigmoid
output (ot � tanh (ct)) to decide what information the hidden state should carry. The output is
the hidden state. The new cell state and the new hidden is then carried over to the next time step.

2.5.3 Attention Models

Attention Model, first introduced for Machine Translation by Bahdanau et al. [52] and has
now become a predominant concept in the neural network literature. Attention has become enor-
mously popular within the Artificial Intelligence community as an essential component of neural
architectures for many applications in Natural Language Processing, Speech, and Computer Vision.

The intuition behind attention can be best explained using human biological systems. For
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example, our visual processing system tends to focus selectively on some parts of the image while
ignoring other irrelevant information in a manner that can assist in perception [53]. Similarly, in
several problems involving language, speech, or vision, some input parts are more critical than
others. For instance, in machine translation and summarization tasks, only certain words in the
input sequence may be relevant for predicting the next word. Likewise, in an image captioning
problem, some input image regions may be more relevant for generating the next word in the cap-
tion. Attention Model incorporates this notion of relevance by allowing the model to dynamically
pay attention to only certain parts of the input that help in performing the task at hand effectively.

The idea of attention can be understood using a regression model proposed by Naradaya-Watson
in 1964 [54]. We are given training data of n instances comprising features and their corresponding
target values. We want to predict the target value ŷ or a new query instance x. A naive estimator
will predict the simple average of target values of all training instances. Naradaya-Watson proposed
a better approach in which the estimator uses a weighted average where weights correspond to the
relevance of the training instance to the query. Indeed, the proposed an attention function a(x, xi)
which is a weighting function that encodes the relevance of instance xi predict for x. A common
weighting function is a normalized Gaussian kernel, though other similarity measures can also
be used with normalization. The authors showed that the estimator has (i) consistency: given
enough training data, it converges to optimal results, and (ii) simplicity: no free parameters, the
information is in the data and not in the weights. Fast forward 50 years, the attention mechanism
in deep models can be viewed as a generalization that allows learning the weighting function.

The first use of Attention Model was proposed by Bahdanau et al. [52] for a sequence-to-
sequence modeling task. A sequence-to-sequence model consists of an encoder-decoder architecture
proposed by Cho et al. [55] as shown in Figure 2.10(a). The encoder is an RNN that takes an
input sequence of tokens {x1, x2, . . . , xT } where T is the length of input sequence, and encodes it
into fixed length vectors {h1, h2, . . . , hT }. The decoder is also an RNN which then takes a single
fixed length vector hT as its input and generates an output sequence {y1, y2, . . . , yT ′} token by
token, where T ′ is the length of output sequence. At each position t, ht and st denote the hidden
states of the encoder and decoder respectively.

There are two well-known challenges with this traditional encoder-decoder framework. First,
the encoder compresses all the input information into a single fixed-length vector hT that is passed
to the decoder. Using a single fixed-length vector to compress long and detailed input sequences
may lead to loss of information [55]. Second, it cannot model alignment between input and output
sequences, which is an essential aspect of structured output tasks such as translation or sum-
marization. Intuitively, in sequence-to-sequence tasks, each output token is expected to be more
influenced by some specific parts of the input sequence. However, the decoder lacks any mechanism
to selectively focus on relevant input tokens while generating each output token.

Attention Model aims at mitigating these challenges by allowing the decoder to access the entire
encoded input sequence {h1, h2, . . . , hT }. The central idea is to induce attention weights α over
the input sequence to prioritize the positions where relevant information is present for generating
the next output token.

The corresponding encoder-decoder architecture with attention is shown in Figure 2.10(b). The
attention block in the architecture is responsible for automatically learning the attention weights
αij , which capture the relevance between hi (the encoder hidden state) and sj−1 (the decoder
hidden state). Note that the query state sj−1 is a hidden state of the decoder just before emitting
sj and yj . These attention weights are then used for building a context vector c, which is passed
as an input to the decoder. At each decoding position j, the context vector cj is a weighted sum
of all hidden states of the encoder and their corresponding attention weights, i.e. cj =

∑T
i=1 αijhi.

This additional context vector is the mechanism by which the decoder can access the entire input
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Figure 2.10. Encoder-decoder architecture: (a) traditional (b) with attention model. Source: [5]

sequence and focus on the relevant positions in the input sequence. This leads to improvements in
performance on the final task and improves the quality of the output due to better alignment. The
same concept is shown mathematically in Table 2.1. The only major difference in the encoder-
decoder architecture with attention is the composition of context vector c. In the traditional
framework, the context vector is just the last hidden state of the encoder hT . In the attention-
based framework, context at a given decoding step j is combination of all hidden states of the
encoder and their corresponding attention weights: cj =

∑T
i=1 αijhi.

The attention model shown in Figure 2.10(b) can also be seen as a mapping of a sequence of keys
K to an attention distribution α according to query q where keys are encoder hidden states hi and
query is the single decoder hidden state sj−1. Here the attention distribution αij emphasizes the
keys which are relevant for the main task concerning the query q. Then e = a(K, q) and α = p(e).

In some cases, there is also additional input of values V on which the attention distribution is
applied. The keys and values generally have one to one mapping, and although the core attention
model proposed by Bahdanau et al. does not distinguish between keys and values (ki = vi = hi),
some existing literature uses this terminology for different representations of the same input data.
Hence a generalized attention model A works with a set of key-value pairs (K,V ) and query q such
that:

A(q,K, V ) =
∑
i

p (a (ki, q)) ∗ vi

Here the instance x is the query, the training data points xi are keys, and their labels yi are
values. The alignment function (denoted by a ) and distribution function (denoted by p ) determine
how keys and queries are combined to produce attention weights.

Alignment functions. The first major category of alignment functions is based on a notion of
comparing query representations with key representations. For example, one approach is to com-
pute either the cosine similarity or the dot product between the key and query representations. To
account for varying lengths of representation, scaled dot product can be employed that normalizes
the dot product by the representation vector length. Note that these functions assume that key
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Function Traditional Encoder-Decoder Encoder-Decoder with Attention
Encode hi = f (xi, hi−1) hi = f (xi, hi−1)

Context c = hT cj =
∑T
i=1 αijhi

αij = p (eij)
eij = a (sj−1, hi)

Decode sj = f (sj−1, yj−1, c) sj = f (sj−1, yj−1, cj)
Generate yj = g (yj−1, sj , c) yj = g (yj−1, sj , cj)

Table 2.1. Encoder-decoder architecture: traditional and with attention model.
Notation: x = (x1, . . . , xT ): input sequence, T : length of input sequence, hi: hidden states of
encoder, c: context vector, αij: attention weights over input, sj: decoder hidden state,yj: output
token, f, g: non-linear functions, a: alignment function, p: distribution function

Function Equation
similarity a (ki, q) = sim (ki, q)
dot product a (ki, q) = qT ki

scaled dot product a (ki, q) =
qT ki√
dk

general a (ki, q) = qTWki
biased general a (ki, q) = ki(Wq + b)
activated general a (ki, q) = act

(
qTWki + b

)
generalized kernel a (ki, q) = φ(q)Tφ (ki)
concat a (ki, q) = wTimp act (W [q; ki] + b)
additive a (ki, q) = wTimpact (W1q +W2ki + b)

deep a (ki, q) = wTimpE
(L−1) + bL

E(l) = act
(
WlE

(l−1) + bl

E(1) = act (W1ki +W0q) + bl

location-based a (ki, q) = a(q)
feature-based a (ki, q) = wTimpact (W1φ1(K) +W2φ2(K) + b)

Table 2.2. Summary of Alignment Functions.
Notation: a (ki, q): alignment function for query q and key ki, sim: similarity functions such as
cosine, dk: length of input, (W,wimp,W0,W1,W2): trainable parameters, b: trainable bias term,
act: activation function.

and query have the same representation vector space. General alignment extends dot product to
keys and queries with different representations by introducing a learnable transformation matrix
W that maps queries to the vector space of keys. Biased general alignment allows learning the
global importance of some keys irrespective of the query by introducing a bias term. Activated
general alignment adds a nonlinear activation layer such as hyperbolic tangent, rectifier linear unit,
or scaled exponential linear unit. The formulations of these alignment functions are presented in
the Table 2.2.

The second major category of alignment functions combines keys and queries to form a joint
representation. One of the simplest models that follow this approach is the concat alignment by
Luong et al.[56], where a joint representation is given by concatenating keys and queries. Additive
alignment reduces computational time by decoupling the contributions of the query and the key;
this allows precomputing contributions of all keys to avoid re-computation for each query. In
contrast to a single neural layer used in additive alignment, deep alignment employs multiple
neural layers.

2.5.4 Transformers

Transformer proposed by Vaswani et al. [7] is a prominent deep learning model that has
been widely adopted in various fields, such as natural language processing (NLP), computer vision
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(CV), and speech processing. Transformer was originally proposed as a sequence-to-sequence model
for machine translation. However, later works show that Transformer-based pre-trained models
(PTMs) can achieve state-of-the-art performances on various tasks. Consequently, Transformer has
become the go-to architecture in NLP, especially for PTMs. In addition to language-related appli-
cations, Transformer has also been adopted in CV, audio processing, and even other disciplines,
such as chemistry and life sciences.

The vanilla Transformer [7] is a sequence-to-sequence model and consists of an encoder and
a decoder, each of which is a stack of L identical blocks. Each encoder block comprises a multi-
head self-attention module and a position-wise feed-forward network (FFN). For building a deeper
model, a residual connection [57] is employed around each module, followed by Layer Normalization
[58] module. Compared to the encoder blocks, decoder blocks additionally insert cross-attention
modules between the multi-head self-attention modules and the position-wise FFNs. Furthermore,
the self-attention modules in the decoder are adapted to prevent each position from attending to
subsequent positions. The overall architecture of the vanilla Transformer is shown in Figure 2.11.
In the following subsection, we shall introduce the critical modules of the vanilla Transformer.

Figure 2.11. Overview of vanilla Transformer architecture. Source: [6]

Attention Modules. Transformer adopts attention mechanism with Query-Key-Value (QKV)
model. Given the packed matrix representations of queries Q ∈ RN×Dk , keys K ∈ RM×Dk , and
values V ∈ RM×Dv , the scaled dot-product attention used by Transformer is given by:

Attention (Q,K, V ) = softmax

(
QK>√
Dk

)
V

where N and M denote the lengths of queries and keys (or values); Dk and Dv denote the
dimensions of keys (or queries) and values; A = softmax

(
QK>
√
Dk

)
is often called attention matrix;

softmax is applied in a row-wise manner. The dot-products of queries and keys are divided by√
Dk to alleviate gradient vanishing problem of the softmax function.
Instead of simply applying a single attention function, Transformer uses multi-head attention,
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where the Dm-dimensional original queries, keys, and values are projected into Dk, Dk and Dv

dimensions, respectively, with H different sets of learned projections. For each of the projected
queries, keys and values, and output is computed with attention. The model then concatenates all
the outputs and projects them back to a Dm-dimensional representation. This can be illustrated
in the Figure 2.12

MultiHeadAttn (Q,K,V) = Concat (head1, · · · ,headH)WO

where head i = Attention
(
QWQ

i ,KWK
i ,VWV

i

)

Figure 2.12. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel. Source: [7]

In Transformer, there are three types of attention in terms of the source of queries and key-value
pairs:

1. Self-attention. In Transformer encoder, we set Q = K = V = X, where X is the outputs
of the previous layer.

2. Masked Self-attention. In the Transformer decoder, the self-attention is restricted such
that queries at each position can only attend to all key-value pairs up to and including that
position. To enable parallel training, this is typically done by applying a mask function to the
unnormalized attention matrix Â = exp

(
QK†
√
Dk

)
, where the illegal positions are masked out

by setting Âij = −∞ if i < j. This kind of self-attention is often referred to as autoregressive
or causal attention.

3. Cross-attention. The queries are projected from the outputs of the previous (decoder)
layer, whereas the keys and values are projected using the outputs of the encoder.

Position-wise FFN. The position-wise FFN is a fully connected feed-forward module that
operates separately and identically on each position

FFN (H′) = ReLU
(
H′W1 + b1

)
W2 + b2

where H′ is the outputs of previous layer, and W1 ∈ RDm×Df ,W2 ∈ RDf×Dm ,b1 ∈ RDf ,b2 ∈
RDm are trainable parameters. Typically the intermediate dimension Df of the FFN is set to be
larger than Dm.

Residual Connection and Normalization. In order to build a deep model, Transformer
employs a residual connection [49] around each module, followed by Layer Normalization [4]. For
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Module Complexity Parameters
self-attention O

(
T 2 ·D

)
4D2

position-wise FFN O
(
T ·D2

)
8D2

Table 2.3. Complexity and parameter counts of self-attention and position-wise FFN

instance, each Transformer encoder block may be written as

H′ = LayerNorm( Selfattention (X) +X)

H = LayerNorm (FFN (H′) +H′)

where SelfAttention (·) denotes self attention module and LayerNorm (·) denotes the layer normal-
ization operation.

Position Encodings. Since Transformer does not introduce recurrence or convolution, and it
is ignorant of positional information (especially for the encoder). Thus additional positional rep-
resentation is needed to model the ordering of tokens. The authors employ the following equations
to compute the positional encoding:

PE(pos,2i) = sin
(
pos/10000(2i/dmodel)

)
PE(pos,2i+1) = cos

(
pos/10000(2i/dmodel )

)
Where pos is the position of the word in the sequence and i is the dimension. This positional
encoding is added to the input embedding.

To illustrate the computation time and parameter requirements of the Transformer, we analyze
the two core components of the Transformer (i.e., the self-attention module and the position-wise
FFN) in Table 2.3. We assume that the hidden dimension Dm of the model is D, and that the
input sequence length is T . The intermediate dimension of FFN is set to 4D and the dimension of
keys and values are set to D/H.

When the input sequences are short, the hidden dimension D dominates the complexity of
self-attention and position-wise FFN. The bottleneck of Transformer thus lies in FFN. However,
as the input sequences grow longer, the sequence length T gradually dominates the complexity of
these modules, in which case self-attention becomes the bottleneck of Transformer. Furthermore,
the computation of self-attention requires that a T × T attention distribution matrix is stored,
which makes the computation of Transformer infeasible for long-sequence scenarios (e.g., long
text documents and pixel-level modeling of high-resolution images). One shall see that the goal
of increasing the efficiency of Transformer generally leads to the long-sequence compatibility of
self-attention and the computation and parameter efficiency of position-wise FFN for ordinary
settings.

Analysis of Self-Attention. As a central piece of Transformer, self-attention comes with a
flexible mechanism to deal with variable-length inputs. It can be understood as a fully connected
layer where the weights are dynamically generated from pairwise relations from inputs. Table 2
compares the complexity, sequential operations, and maximum path length 4 of self-attention with
three commonly used layer types. We summarize the advantages of self-attention as follows:

1. It has the same maximum path length as fully connected layers, making it suitable for long-
range dependencies modeling. Compared to fully connected layers, it is more parameter
efficient and more flexible in handling variable-length inputs.

2. Due to the limited receptive field of convolutional layers, one typically needs to stack a deep
network to have a global receptive field. On the other hand, the constant maximum path
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Layer Type Complexity per Layer Sequential Operations
Self-Attention O

(
T 2 ·D

)
O(1)

Fully Connected O
(
T 2 ·D2

)
O(1)

Convolutional O
(
K · T ·D2

)
O(1)

Recurrent O
(
T ·D2

)
O(T )

Table 2.4. Per-layer complexity, minimum number of sequential operations and maximum path
lengths for different layer types. T is the sequence length, D is the representation dimension and
K is the kernel size of convolutions

length enables self-attention to model long-range dependencies with a constant number of
layers.

3. The constant sequential operations and maximum path length make self-attention more par-
allelizable and better at long-range modeling than recurrent layers.
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Natural Language Processing

3.1 Introduction

Natural Languages have evolved naturally in humans through use and repetition without con-
scious planning or premeditation, for example, English, Greek, and Latin. Therefore, they are
distinguished from constructed and formal languages such as programming and logic modeling
languages.

Natural Language Processing (NLP) is a subfield of linguistics, computer science, and artificial
intelligence concerned with the interactions between computers and natural language. Perhaps this
definition is outdated because of the application of NLP in programming languages source code
modeling and generation [59].

What is so special about natural language? Natural Language is a discrete/symbolic/categorical
system specifically constructed to convey meaning and is not produced by a physical manifestation
of any kind. In that way, it is very different from vision or any other machine learning task, where
the input data, for example, the image, follow some underlying physical law. Most words are just
symbols for an extra-linguistic entity: the word is a signifier that maps to a signified (idea or
things).

The hierarchical levels of language that NLP examines are:
Phonology. This level deals with the interpretation of speech sounds within and across words.

There are, in fact, three types of rules used in the phonological analysis: 1) phonetic rules – for
sounds within words; 2) phonemic rules – for variations of pronunciation when words are spoken
together, and; 3) prosodic rules – for fluctuation in stress and intonation across a sentence.

Morphology. This level deals with the componential nature of words composed of morphemes,
the smallest units of meaning. Lexical. At this level, humans, as well as NLP systems, interpret the
meaning of individual words. Several types of processing contribute to word-level understanding,
the first of these being assignment of a single part-of-speech tag to each word. In this processing,
words that can function as more than one part-of-speech are assigned the most probable part-of-
speech tag based on the context in which they occur.

Syntactic. This level focuses on analyzing the words in a sentence to uncover the grammatical
structure of the sentence.

Semantic. Semantic processing determines the possible meanings by focusing on the interac-
tions among word-level meanings in the sentence. This level of processing can include the semantic
disambiguation of words with multiple senses, in an analogous way to how syntactic disambiguation
of words can function as multiple parts-of-speech is accomplished at the syntactic level. Semantic
disambiguation permits one and only one sense of polysemous words to be selected and included
in the semantic representation of the sentence.

Discourse. While syntax and semantics work with sentence-length units, the discourse level
of NLP works with units of text longer than a sentence. It does not interpret multi-sentence texts

53



Chapter 3. Natural Language Processing

as just concatenated sentences, each of which can be interpreted singly. Rather, discourse focuses
on the properties of the text that convey meaning by making connections between component
sentences.

Pragmatic. This level is concerned with the purposeful use of language in various situations.
The goal is to explain how extra meaning is read into texts without being encoded in text. This
level requires world knowledge, including the understanding of intentions, plans, and goals.

3.2 Applications

Natural language processing provides both theory and implementations for a range of applica-
tions. Any application that utilizes text is a candidate for NLP. The most common applications
of NLP include the following:

Information Retrieval and Web Search: the science of searching for documents, for infor-
mation within documents, and metadata about documents, as well as searching databases and the
World Wide Web.

Information Extraction (IE): the recognition, tagging, and extraction into a structured
representation, certain critical elements of information, e.g., persons, companies, locations, orga-
nizations, from extensive collections of text.

Text Summarization: the process of distilling the essential information from a source in
order to produce an abridged version.

Question Answering (QA): the response from documents to extracted or generated answer.
Machine Translation (MT): the use of computer software in order to translate text or speech

from one natural language to another.
Speech Recognition and Synthesis: the extraction of a textual representation of a spoken

utterance.
Text Generation: A method for generating sentences from "keywords".
Natural Language Understanding and Generation (NLU, NLG): NLG system is like

a translator that converts a computer-based representation into a natural language representation.
Natural Language Inference (NLI) is the task of determining whether a "hypothesis" is

true (entailment), false (contradiction), or undetermined (neutral) given a "premise".

3.3 Word Representation

The performance of any machine learning model is drastically dependent on input representa-
tion. In the field of NLP, the input is natural language and its components, words. Significant,
in the English language, there are an estimated 13 million words, and thus there are 13 million
possible inputs for a machine learning model. Ideally, the word representation should contain the
word meaning, which is the idea represented by this word, and encode some properties such as
a notion of similarity and difference between words and successful distinction polysemous words,
which are words with different meanings on different occasions.

There are two ways that Linguists think about meaning, one is through “Denotational Seman-
tics” which is the concept of representing an idea as a symbol (a word or a one-hot vector), and
the other is through “Distributional Semantics” which is the concept of representing the meaning
of a word based on the context in which it usually appears.

3.3.1 Denotational Representation

In this category, the word is mapped into a symbol, either a scalar or a vector.
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Vocabulary IDs

Let us assume that we have a vocabulary V in a given task, containing all the words in the
training, development, and test dataset. The most naive approach is to match all the words of the
vocabulary with a unique ID symbol. For example for the given vocabulary V = {′I ′,′ love′,′ cats′},
we can define the following mapping:

wI = 1, wlove = 2, wcats = 3

This approach does not encapsulate the word’s meaning through the representation, and neither
a notion of similarity and difference between words nor the ambiguity problem is solved. Moreover,
this representation is computationally expensive as it uses |V | different IDs, and potentially this
|V | is 13 million. Finally, this approach is not capable of any further improvement.

One-Hot-encoding

One-Hot-Encoding is equivalent to the Vocabulary IDs, where we represent every word with
an R1×1 vector. The only difference is the dimensionality augmentation of the subspace to achieve
further improvement through compression techniques. In One-Hot-Encoding, every word is repre-
sented as an R|V |×1 vector with all 0 and one 1 at the index of that word in the sorted English
language. So, for example, word vectors in this type of encoding would appear as the following:

wI =

 1

0

0

 , wlove =
 0

1

0

 , wcats =
 0

0

1


We represent each word as a completely independent symbol. As we previously discussed, this

word representation does not directly give us a notion of similarity and difference between words,
nor the ambiguity problem is solved. For instance,

(
wcat)T wdogs =

(
wsiamese)T wcat = 0

The corresponding matrix that describes the method will be of |V | × |V | dimension and in the
following form:

 wI

wlove

wcats

 =

 1 0 0

0 1 0

0 0 1


Motivated by the fact that this matrix is sparse, we can apply many compression techniques

such as Singular Value Decomposition (SVD) and Non-negative Matrix Factorization (NMF), but
the final result should also be classified as "Denotational Semantics".

3.3.2 Distributional Semantics

As the British Linguist J.R. Firth said, "You shall know a word by the company it keeps" the
following techniques study words regarding their context. Denotational Semantics word vectors
can be classified into two categories: sparse and dense word vectors. Dense word vectors are often
named word embeddings.
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Sparse word vectors

Term Frequency–Inverse Document Frequency (TF-IDF) Representation. Tf-idf is a
statistical measure used to determine the significance of words t in documents d. The term docu-
ment could be defined as a batch of 10 words regardless of punctuations. However, it is essential
to follow this declaration through the application of tf-idf in the given corpora. The tf-idf value
comprises two terms: term frequency (tf) and inverse document frequency (idf). The TF term
denotes the following intuition: frequently occurring words are more important than less frequent
words. On the other hand, idf term denotes the opposite intuition: words that occur too often are
unimportant. Thus, the tf-idf product tries to solve the trade-off between the tf and the idf term.

More specifically, tf proposed by Luhn [60] is the frequency of the word in the document.
Usually, we use the count as the tf:

tft,d = count(t, d)

or a more squash term:

tft,d = log10(count(t, d) + 1)

The idf proposed by Sparck Jones [61] is defined as N/dft , where N is the total number of
documents, and dft is the number of documents in which term t appears. The fewer documents
in which a term occurs, the higher this weight. The lowest weight of 1 is assigned to terms that
occur in all the documents. Usually, we use a more squash term for idf:

dft = log10(N/dft)

The tf-idf weighted value wt,d, and the corresponding word vector, is the product of this two
terms:

wt,d = tft,d × idft

Using tf-idf we represent every word with an R|D|×1 vector, where |D| is the number of different
documents in the collection and in general case |D| < |N |. Thus, the word representation is smaller
than One-Hot-Vector and should contain some information about the word meaning, but tf-idf does
not give us directly neither a notion of similarity and difference between words nor the ambiguity
problem is solved.

Pointwise Mutual Information (PMI) Representation. Pointwise mutual information pro-
posed by Fano [62] is one of the essential concepts in NLP. It is a measure of how often two events
x and y occur, compared with what we would expect if they were independent:

I(x, y) = log2
P (x, y)

P (x)P (y)

The pointwise mutual information, proposed by Church and Hanks [63], between a target word
w and a context word c, where context can be the hole Vocabulary V , is then defined as:

PMI(w, c) = log2
P (w, c)

P (w)P (c)

Because pointwise mutual information ranges from negative to positive infinity and the negative
values are adverse, the proposed Positive PMI (PPMI). PPMI replaces negative PMI values with
zero, and it can be defined as:
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PPMI(w, c) = max

(
log2

P (w, c)

P (w)P (c)
, 0

)
The numerator tells us how often we observed the two words together. The denominator tells

us how often we would expect the two words to co-occur, assuming they occurred independently.
Thus, the ratio estimates how much more the two words co-occur than we expect them to co-occur
by chance.

More particularly, assuming we have |W | words and |C| contexts, then fi,j gives the number
of times word wi occurs in context cj . This can be turned into a PPMI matrix where ppmii,j gives
the PPMI value of word wi with context cj and the word representations pi∗ as follows:

pij =
fij∑|W |

i=1

∑|C|
j=1 fij

, pi∗ =

∑|C|
j=1 fij∑|W |

i=1

∑|C|
j=1 fij

, p∗j =

∑|W |
i=1 fij∑|W |

i=1

∑|C|
j=1 fij

,PPMIij = max

(
log2

pij
pi∗p∗j

, 0

)

Using PMI we represent every word with an R|C|×1 vector, where |C| is the number of contexts.
PMI representation should contain some information about the word meaning but does not directly
give us a notion of similarity and difference between words. Moreover, PMI does not overcome the
ambiguity problem.

Dence word vectors

Sparse Vector representations are long vectors with a size of approximately around 50,000 in
the average task. On the other hand, Dense Vectors, also called word embeddings and continuous
vectors, have much smaller dimensionality, around 300-1200. On top of that, sparse representations
are computationally expensive. Models trained with sparse vectors perform worse compared to
the models based on dense vectors. On the other hand, representing words as 300-dimensional
dense vectors requires our classifiers to learn far fewer weights than if we represented words as
50,000-dimensional vectors, and the smaller parameter space possibly helps with generalization and
avoiding overfitting. Moreover, the dense representations generally achieve a better understanding
of the meaning of the word.

Many different models were proposed for estimating continuous representations of words, in-
cluding the well-known Latent Semantic Analysis (LSA) and Latent Dirichlet Allocation (LDA).

Neural model architecture for estimating neural network language model (NNLM) was proposed
in [9], where a feedforward neural network with a linear projection layer and a non-linear hidden
layer was used to learn the word vector representation and a statistical language model jointly.

Another interesting architecture of NNLM was presented by Mikolov et al. [64], [65], where the
word vectors are first learned using a neural network with a single hidden layer. The word vectors
are then used to train the NNLM. Thus, the word vectors are learned even without constructing
the full NNLM. In this study, we directly extend this architecture and focus on the first step, where
the word vectors are learned using a simple model.

Finally, a Recurrent neural network-based language model has been proposed to overcome
certain limitations of the feedforward NNLM, such as the need to specify the context length (the
order of the model N), and because theoretically, RNNs can efficiently represent more complex
patterns than the shallow neural networks [66]. Furthermore, the RNN model does not have a
projection layer, only an input, hidden, and output layer.

The breakthrough methodology for dense word representation is Word2Vec proposed by Mikolov
et al. [8]. Word2Vec is a shallow, two-layer neural network that is trained to reconstruct linguistic
contexts of words. Given an input of a large corpus of words, it produces a vector space, typically
of some hundred dimensions, with each word in the corpus being assigned a corresponding vector
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in the space. Word vectors are located in the space such that words that share common contexts in
the corpus are located close to one another in the space. Word2Vec has two forms, the continuous
bag of words (CBOW) model and the Skip-Gram model as presented in Figure 3.1. When the
feature vector assigned to a word cannot accurately predict that word’s context, the components
of the vector are adjusted. The vectors of words judged similar by their context are nudged closer
together by adjusting the numbers in the vector.

Figure 3.1. The CBOW architecture predicts the current word based on the context, and the
Skip-gram predicts surrounding words given the current word. Source: [8]

Word2vec embeddings encapsulate a notion of similarity and difference between words. How-
ever, they are static embeddings, meaning that the method learns one fixed embedding for each
word, so it cannot overcome the problem of polysemous words. This problem can be overcome by
learning dynamic contextual embeddings like BERT representations, in which the vector for each
word is different in different contexts.

Word2Vec: Continuous Bag of Words (CBOW) The first proposed architecture of word2vec
is CBOW which is like the feedforward NNLM, where the non-linear hidden layer is removed, and
the projection layer is shared for all words (not just the projection matrix); thus, all words get pro-
jected into the same position (their vectors are averaged). We call this architecture a bag-of-words
model as the order of words does not influence the projection. Furthermore, we also use words
from the future; we have obtained the best performance on the task introduced in the next section
by building a log-linear classifier with four future and four history words at the input, where the
training criterion is to classify the current (middle) word correctly.

Word2Vec: Skip-Gram The second architecture of word2vec is like CBOW, but instead of
predicting the current word based on the context, it tries to maximize the classification of a word
based on another word in the same sentence. More precisely, we use each current word as an input
to a log-linear classifier with a continuous projection layer and predict words within a specific range
before and after the current word. We found that increasing the range improves the quality of
the resulting word vectors, increasing the computational complexity. Furthermore, since the more
distant words are usually less related to the current word than those close to it, we give less weight
to the distant words by sampling less from those in our training examples.
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GloVe Embeddings

GloVe, proposed by Pennington et al. [67], is an unsupervised learning algorithm for ob-
taining vector representations for words. Training is performed on aggregated global word-word
co-occurrence statistics from a corpus, and the resulting representations showcase interesting linear
substructures of the word vector space. GloVe is essentially a log-bilinear model with a weighted
least-squares objective. The training objective of GloVe is to learn word vectors such that their
dot product equals the logarithm of the words’ probability of co-occurrence. The central intuition
underlying the model is the observation that ratios of word-word co-occurrence probabilities can
encode some form of meaning. The GloVe model is trained on the non-zero entries of a global
word-word co-occurrence matrix, which tabulates how frequently words co-occur with one another
in a given corpus. Populating this matrix requires a single pass through the entire corpus to collect
the statistics.

Contextual Embeddings

The distributional approaches aggregate the contexts in which a term occurs in a corpus. The
result is a context-free, or else context-independent word representation. Word embeddings de-
scribed so far are static. Nevertheless, usually, a particular word can be used in different sentences
with a completely different meaning. Out of context, each word has multiple meanings. The ob-
vious problem is that polysemous words (words with obvious multiple senses) cannot be modeled
properly. For example, in the following sentences: “I dream of surfing the perfect wave.” and “Will
there be another wave of illness in the fall?”, the word “wave” has a pretty different meaning. So
static representations for words are quite insufficient solutions for understanding text. Therefore,
it is proposed to represent words, depending on the context each time found. A famous algo-
rithm for contextualized word representation is ELMo (Embeddings from Language Models) as
proposed by Peters et al. /citepeters2018dee, and BERT (Bidirectional Encoder Representations
from Transformers) by Jacob Devlin et al. [21].

3.4 Language Models

We want to develop a Language Model (LM) that can understand that the sentence: s1 : "I
love cats." is more likely to occur than the sentence: s2 : “Cats book ice-cream”. Indeed, the first
sentence is entirely valid, syntactically and semantically; thus, a good language model will assign
a higher probability to the first sentence.

More formally, Language Models compute the probability of occurrence of several words in a
particular sequence. Mathematically, we can call this probability on any given sequence of n words:

P (w1, w2, . . . , wn)

This probability is equal to the following probability:

P (w1, w2, . . . , wn) =

n∏
i=1

P (wi | wi−1, wi−2, . . . , w1) = P (w1)P (w2 | w1) . . . P (wn | w1, . . . , wn−1)

3.4.1 Traditional Language Models

The formula for computing the probability of a sentence and thus describing a language model,
called N-Gram LM, is computationally expensive. Thus, some assumptions are made for the
efficient training of a language model.
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The first and most naive assumption is the unary language model approach and breaks apart
this probability by assuming the word occurrences are entirely independent. The LM is then a
unigram, and the following formula can express the probability:

P (w1, w2, · · · , wn) =
n∏
i=1

P (wi)

In order to train such a language model given a set of corpora C of |N | total words, we have
to calculate the following probability for each word wi in the training corpora:

P (wi) =
count(wi)

|N |
,∀wi ∈ C

where count(wi) is the total time where the word wi detected in the training corpora. The
unigram Language Model is a bit ludicrous because the next word is contingent upon the previous
words.

For a better LM we have to look back at Bayesian probability theory, and most precisely on
the Markov condition, sometimes called the Markov assumption, which is an assumption made in
Bayesian probability theory, that every node in a Bayesian network is conditionally independent
of its non-descendants, given its parents. A more general assumption is the Causal Markov (CM)
condition, which states that conditional on all its direct causes, a node is independent of all variables
that are not direct causes or direct effects of that node. By using these theorems, we can construct
Bigram LM, Trigram LM, and more complex LM.

A Bigram Language Model can formally be expressed as:

P (w1, w2, · · · , wn) =
n∏
i=2

P (wi | wi−1)

In order to train a Bigram language model given a set of corpora C of |N | total words, we have
to calculate the following probability for each word wi in the training corpora:

P (wi | wi−1) =
count(wi, wi−1)∑
w∈C count(wi−1, w)

,∀wi ∈ C

Finally, a Trigram Language Model can formally be expressed as:

P (w1, w2, · · · , wn) =
n∏
i=2

P (wi | wi−1, wi−2)

In order to train a Trigram language model given a set of corpora C of |N | total words, we
have to calculate the following probability for each word wi in the training corpora:

P (wi | wi−1, wi−2) =
count(wi, wi−1, wi−2)∑
w∈C count(wi−2, wi−1, w)

,∀wi ∈ C

Typically, the actual number of words in the history is based on how much training data are
available. Trigram language models are commonly used, which consider a two-word history to
predict the third word. Language models may also be estimated over 2-grams (bigrams), single
words (unigrams), or any other order of n-grams.
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3.4.2 Neural Language Models

Non-linear neural network models allow conditioning on increasingly large context sizes with
only a linear increase in the number of parameters. For example, a neural probabilistic language
model was popularized by Bengio et al. [9].

This model takes as an input vector representations of a word window of n previous words,
looked up in a table C. These vectors are now known as word embeddings. These word embeddings,
C(w) ∈ Rdw , are then concatenated and fed into a hidden layer, whose output is provided to a
softmax layer as shown in Figure 3.2. This neural language model can be mathematically described
as follow:

x = [C (w1) ;C (w2) ; . . . ;C (wn)]

ŷ = P (wi | w1:k) = LM (w1:k) = softmax (hW2 + b2)

h = g (xW1 + b1)

x = [C (w1) ;C (w2) ; . . . ;C (wn)]

C(w) = E[w]

where wi ∈ V,E ∈ R|V|×dw ,W1 ∈ Rn·dw×dhid ,b1 ∈ Rdhid ,W2 ∈ Rdhid ×|V|,b2 ∈ R|V|.

V is a finite vocabulary. The vocabulary size |V |, ranges between 1,000 - 1,000,000 words,
with the common size being around 70,000 unique words. Feedforward neural networks have been
replaced with recurrent neural networks [66] for language modeling.

Figure 3.2. A feed-forward neural network language model. Source: [9]
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3.5 Embeddings from Language Models (ELMo)

ELMo embeddings [68] are deep contextualized word representations that offer high-quality
representations for language, modeling both complex characteristics of word use and adjusting
them in different linguistic contexts. The vectors are derived from a bi-directional LSTM trained
with a coupled language model (LM) objective on a large text corpus. ELMo representations are a
function of all the internal layers of the bi-directional language model. However, the weighting of
the ELMo embeddings needs to be carefully tuned for every different task. Therefore, the proposed
method, although very effective, has some limitations and requires task-specific architectures.

3.6 Bidirectional Encoder Representations from Transform-
ers (BERT)

BERT [10] proposed by J.Devlin et al. is a novel approach to incorporate bidirectionality in
a single Transformer model. A particularly challenging task, direct approaches to incorporating
bidirectionality in Transformer models fail since direct bidirectional conditioning would allow the
words to see themselves in the light of context from multiple layers, thereby ruling out the pos-
sibility of using it as a Language Model. In essence, it was traditionally only possible to train a
unidirectional encoder- a left-right or a right-left model. However, bidirectional models that could
see the complete sequence context would inherently be more powerful than unidirectional models
or a concatenation of two unidirectional models-left-right and right-left. To this end, the authors
trained their model on two unsupervised prediction tasks:

Masked Language Model. To overcome the challenges posed while applying bi-directionality
in Transformers, J.Devlin proposed masking of random tokens in the sequence. The Transformer
was trained such that it had to predict only the words that had been masked while being able to
view the whole sequence. WordPiece Tokenization is used to generate the sequence of tokens where
rare words are split into sub-tokens. Then, masking of 15% of the Wordpiece Tokens is performed.
Masking replaces the words with [MASK] tokens. However, instead of constantly replacing the
selected words with a [MASK] token, the data generator employs the following approach:

• Replace the word with [MASK] token 80% of the time

• Replace the word with another random word 10% of time

• Keep the word as it is 10% of the time

Performing prediction on only 15% of all words instead of performing prediction on all words
would entail that BERT would be much slower to converge. However, BERT showed immediate
improvements in absolute accuracy while converging slightly slower than traditional unidirectional
left-right models.

Next Sentence Prediction. This task entails predicting whether the first sequence pro-
vided immediately precedes the next. This task allows the Transformer to perform better on
several downstream tasks such as question-answering, Natural Language Inference that involve
understanding the relationship between two input sequences. The dataset used for training had a
balanced 50/50 distribution created as follows: choosing an actual pair of neighboring sentences
for positive examples and a random choice of the second sentence for the negative examples. The
input sequence for this pair classification task is generated as:

[CLS] < SentenceA > [SEP] < SentenceB > [SEP]
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Where sentences A and B are two sentences after performing the masking operations. The [CLS]

token is the first token used to obtain a fixed vector representation that is consequently used for
classification, and [SEP] is used to separate the two input sequences. As a result, the authors were
able to achieve an impressive accuracy of 97− 98% in the next sentence prediction task.

Pre-Training Procedure. The authors have used the BooksCorpus and the EnglishWikipedia
as pretraining data. They have used two variations of BERT-BASE(12- layer) and BERT-LARGE(24
layers)- that primarily differ in their depth. The maximum length of the input sequence is restricted
to 512 tokens. All subsequent tokens in the sequence are neglected. A dropout value of 0.1 is used
as regularization. Furthermore, the authors have made use of the GELU instead of Relu as an
activation function. GELU- Gaussian Error Linear units have been shown to provide improve-
ments compared to ReLU and eLu. Training of the models was performed on TPUs. Specifically,
BERT-BASE was trained on 16 TPU chips for four days. BERT-LARGE was trained on 64 TPU
chips, also for four days.

Fine-Tuning Procedure. The pre-trained BERT can be finetuned on a relatively small
dataset and requires lesser processing power, as it can be described in the Figure 3.3. BERT
improved upon the previous state-of-the-art in several tasks involving natural language inference,
question answering, semantic similarity, linguistic acceptability, among other tasks. The pattern of
the input and output sequence varies depending on the type of the task. The tasks can be broadly
divided into four categories:

• Single Sentence Classification Tasks: These tasks are performed by adding layers on the
classification embedding [CLS] and passing the input sequence preceded by the [CLS]

token.

• Sentence Pair Classification Tasks The two sentences are passed to BERT after being
separated by the [SEP] token. Classification can be performed by adding layers to the
[CLS]

• Question Answering Tasks

• Single Sentence Tagging Tasks

Subsequently, two multilingual BERT models-uncased and cased-for over 102 languages were
released. Furthermore, OpenAI released the GPT2 [69], essentially BERT trained as a language
model on a considerable amount of data.

Figure 3.3. Pre-training and fine-tuning procedures for BERT. Source: [10]

Mathematical Notation Attention is a core component of Transformers, which consist of
several layers, each containing multiple attentions (“heads”). Each attention head gathers relevant
information from the input vectors. A vector is updated by vector transformations, attention
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weights, and a summation of vectors.Mathematically, attention computes each output vector yi ∈
Rd from the corresponding pre-update vector ỹi ∈ Rd and a sequence of input vectors X =

{x1, . . . ,xn} ⊆ Rd :

yi =

 n∑
j=1

αi,jv (xj)

WO

αi,j := softmaxxj∈X

(
q (ỹi)k (xj)

>
√
d′

)
∈ R

where αi,j is the attention weight assigned to the token xj for computing yi, and q(·),k(·), and
v(·) are the query, key, and value transformations, respectively.

q (ỹi) := ỹiW
Q + bQ

(
WQ ∈ Rd×d

′
, bQ ∈ Rd

′
)

k (xj) := xjW
K + bK

(
WK ∈ Rd×d

′
, bK ∈ Rd

′
)

v (xj) := xjW
V + bV

(
W V ∈ Rd×d

′
, bV ∈ Rd

′
)

Attention gathers value vectors v (xj) based on attention weights and then, applies matrix mul-
tiplication WO ∈ Rd′×d. Boldface letters such as x denote row (not column) vectors, following
the notations in Vaswani et al.. In self-attention, the input vectors X and the pre-update vector
ỹi are previous layer’s output representations. In source-target attention, X corresponds to the
representations of the encoder, and vector ỹi (and updated vector yi) corresponds to the vector
of the i-th input token of the decoder.

3.7 GLUE Benchmark

For natural language understanding (NLU) technology to be maximally useful, it must be able
to process language in a way that is not exclusive to a single task, genre, or dataset. In pursuit of
this objective, we examine the General Language Understanding Evaluation (GLUE) benchmark
[11], a collection of tools for evaluating the performance of models across a diverse set of existing
NLU tasks. GLUE benchmark contains the following Task and datasets:

1. Single-Sentence Task

(a) CoLA: Corpus of Linguistic Acceptability

(b) SST-2: Stanford Sentiment Treebank

2. Similarity and Paraphrase Tasks

(a) MRPC: Microsoft Research Paraphrase Corpus

(b) QQP: Quora Question Pairs

(c) STS-B: Semantic Textual Similarity Benchmark

3. Inference Tasks

(a) MNLI: Multi-Genre Natural Language Inference

(b) QNLI: Question-answering Natural Language Inference

(c) RTE: Recognizing Textual Entailment

(d) WNLI: Winograd Natural Language Inference

In Figure 3.4 there is an overall description of the GLUE Datasets.
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Figure 3.4. Task descriptions and statistics. All tasks are single sentence or sentence pair classi-
fication, except STS-B, which is a regression task. MNLI has three classes; all other classification
tasks have two. Test sets shown in bold use labels that have never been made public in any form.
Source: [11]

3.7.1 CoLA

The Corpus of Linguistic Acceptability [70] consists of English acceptability judgments drawn
from books and journal articles on linguistic theory. Each example is a sequence of words annotated
with whether it is a grammatical English sentence. Matthew’s correlation coefficient is used for
evaluation metric, which evaluates performance on unbalanced binary classification and ranges
from -1 to 1, with 0 being the performance of uninformed guessing. GLUE uses the standard test
set, for which we obtained private labels from the authors. GLUE reports a single performance
number on the combination of the in and out-of-domain sections of the test set.

3.7.2 SST-2

The Stanford Sentiment Treebank [71] consists of sentences from movie reviews and human
annotations of their sentiment. The task is to predict the sentiment of a given sentence. GLUE
uses the two-way (positive/negative) class split and uses only sentence-level labels.

3.7.3 MRPC

The Microsoft Research Paraphrase Corpus [72] is a corpus of sentence pairs automatically
extracted from online news sources, with human annotations for whether the sentences in the
pair are semantically equivalent. Because the classes are imbalanced (68 percent positive), GLUE
follows common practice and reports both accuracy and F1 score.

3.7.4 QQP

The Quora Question Pairs dataset is a collection of question pairs from the community question-
answering website Quora. The task is to determine whether a pair of questions are semantically
equivalent. As in MRPC, the class distribution in QQP is unbalanced (63 percent negative), so
GLUE reports both accuracy and F1 score. Again, GLUE uses the standard test set, for which we
obtained private labels from the authors.
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3.7.5 STS-B

The Semantic Textual Similarity Benchmark [73] is a collection of sentence pairs drawn from
news headlines, video and image captions, and natural language inference data. Each pair is human
annotated with a similarity score from 1 to 5; the task predicts these scores. Following standard
practice, GLUE evaluates using Pearson and Spearman correlation coefficients.

3.7.6 MNLI

The Multi-Genre Natural Language Inference Corpus [74] is a crowdsourced collection of sen-
tence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sen-
tence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts
the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten
sources, including transcribed speech, fiction, and government reports. GLUE uses the standard
test set, for which private labels were obtained from the authors and evaluated on both the matched
(in-domain) and mismatched (cross-domain) sections.

3.7.7 QNLI

The Stanford Question Answering Natural Language Inference Dataset [75] is a question-
answering dataset consisting of question-paragraph pairs, where one of the sentences in the para-
graph (drawn from Wikipedia) contains the answer to the corresponding question (written by an
annotator). GLUE converts the task into sentence pair classification by forming a pair between
each question and each sentence in the corresponding context and filtering out pairs with low
lexical overlap between the question and the context sentence. The task is to determine whether
the context sentence contains the answer to the question. This modified version of the original
task removes the requirement that the model selects the exact answer and removes the simplifying
assumptions that the answer is always present in the input and that lexical overlap is reliable.

3.7.8 RTE

The Recognizing Textual Entailment datasets come from a series of annual textual entailment
challenges. Examples are constructed based on news and Wikipedia text. GLUE converts all
datasets to a two-class split.

3.7.9 WNLI

The Winograd Natural Language Inference Schema Challenge [76] is a reading comprehension
task in which a system must read a sentence with a pronoun and select the referent of that pronoun
from a list of choices. The examples are manually constructed to foil simple statistical methods:
Each one is contingent on contextual information provided by a single word or phrase in the
sentence. GLUE constructs sentence pairs by replacing the ambiguous pronoun with each possible
referent to convert the problem into sentence pair classification. The task is to predict if the
original sentence entails the sentence with the pronoun substituted. GLUE uses a small evaluation
set consisting of new examples derived from fiction books5 that were shared privately by the authors
of the original corpus. While the included training set is balanced between two classes, the test
set is imbalanced (65 percent not entailment). Also, due to a data quirk, the development set is
adversarial: hypotheses are sometimes shared between training and development examples, so if
a model memorizes the training examples, they will predict the wrong label on the corresponding
development set example. Finally, as with QNLI, each example is evaluated separately, so there
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is not a systematic correspondence between a model’s score on this task and its score on the
unconverted original task.

3.7.10 SciERC

SciERC [24] includes annotations for scientific entities, their relations, and coreference clusters
for 500 scientific abstracts. These abstracts are taken from 12 AI conference/workshop proceedings
in four AI communities from the Semantic Scholar Corpus. These conferences include general AI
(AAAI, IJCAI), NLP (ACL, EMNLP, IJCNLP), speech (ICASSP, Interspeech), machine learning
(NIPS, ICML), and computer vision (CVPR, ICCV, ECCV).

3.7.11 PubMed 200k RCT

PubMed 200k RCT [25] is a dataset based on PubMed for sequential sentence classification.
The dataset consists of approximately 200,000 abstracts of randomized controlled trials, totaling
2.3 million sentences. Each abstract sentence is labeled with its role in the abstract using one of
the following classes: background, objective, method, result, or conclusion.
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Chapter 4

Compression of Deep Learning Models

4.1 Introduction

Transformer-based models keep growing by orders of magnitude: The 110M parameters of base
BERT are now dwarfed by 17B parameters of Turing-NLG [22], which is dwarfed by 175B of GPT-3
[23]. This trend raises concerns about computational complexity of self-attention, environmental
issues [34] [35], fair comparison of architectures [36], and reproducibility.

Human language is incredibly complex and would perhaps take many more parameters to
describe fully, but the current models do not make good use of the parameters they already have.
For example, Voita et al. [14] showed that all but a few Transformer heads could be pruned
without significant losses in performance. For BERT, Clark et al. [27] observe that most heads in
the same layer show similar self-attention patterns (perhaps related to the fact that the output of
all self-attention heads in a layer is passed through the same MLP), which explains why Michel et
al. [1] were able to reduce most layers to a single head.

Depending on the task, some BERT heads/layers are not only redundant [38], but also harmful
to the downstream task performance. Positive effect from head disabling was reported for machine
translation [1], abstractive summarization [39], and GLUE tasks [13]. Additionally, Tenney et al.
[40] examine the cumulative gains of their structural probing classifier, observing that in 5 out of
8 probing tasks, some layers cause a drop in scores (typically in the final layers). From the aspect
of unstructured pruning, Gordon et al. [28] find that 30–40 percent of the weights can be pruned
without impact on downstream tasks.

In general, larger BERT models perform better [41] , [42] but not always: BERT-base out-
performed BERT-large on subject-verb agreement [43] and sentence subject detection [44]. Given
the complexity of language and amounts of pre-training data, it is not clear why BERT ends up
with redundant heads and layers. Clark et al. [27] suggest that one possible reason is the use of
attention dropouts, which causes some attention weights to be zeroed-out during training.

Given the above evidence of overparameterization, it does not come as a surprise that
BERT can be efficiently compressed with minimal accuracy loss, which would be highly desirable
for real-world applications.

4.2 Compression: Problem Setting

The goal of model compression is to achieve a smaller model from the original model without
significantly reducing the accuracy. The simplified model is a model that is reduced in size and
latency compared to the original model. Specifically, reducing size means that the compression
model has fewer and smaller parameters and therefore uses less RAM at runtime, which is desirable
because it frees up other parts of the memory application program. Latency reduction is the
reduction in the time required for the model to make predictions or inferences based on the input
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of the training model, which usually translates into a reduction in energy consumption during
runtime. Model size and latency are usually closely related because larger models require more
memory accesses to run. Some well-known research methodologies for compressing neural models
are the following:

• Pruning

• Quantization

• Knowledge distillation

• Neural Architecture Search (NAS)

4.2.1 Pruning

Pruning involves removing connections between neurons or entire neurons, channels, or filters
from a trained network, which is done by zeroing out values in its weights matrix or removing
groups of weights entirely. For example, to prune a single connection from a network, one weight is
set to zero in a weight’s matrix, and to prune a neuron, all values of a column in a matrix are set to
zero. The motivation behind pruning is that networks tend to be over-parametrized, with multiple
features encoding nearly the same information. Pruning can be divided into two types based on the
type of network component removed: unstructured pruning involves removing individual weights
or neurons, while structured pruning involves removing entire channels or filters. We will look at
these two types individually, as they differ in their implementations and outcomes.

Unstructured Pruning By replacing connections or neurons with zeros in a weight matrix,
unstructured pruning increases the sparsity of the network, i.e., its proportion of zero to non-zero
weights. Depending on the degree of sparsity and the method of storage used, pruned networks
can also take up much less memory than their dense counterparts.

However, what are the criteria for deciding which weights should be removed? One standard
method known as magnitude-based pruning compares the weights’ magnitudes to a threshold value.
A highly cited 2015 paper by Han et al. [77] prompted widespread adoption of this approach. In
their implementation, pruning is applied layer-by-layer. First, a predetermined "quality parameter"
is multiplied by the standard deviation of a layer’s weights to calculate the threshold value, and
weights with magnitudes below the threshold are zeroed. After all layers are pruned, the model
is retrained so that the remaining weights can adjust to compensate for those removed, and the
process is repeated for several iterations.

Mathematical formalism of Structured Pruning Given a dataset D = {(xi,yi)}ni=1, and
a desired sparsity level κ (i.e., the number of non-zero weights) neural network weight pruning can
be written as the following constrained optimization problem:

min
w

L(w;D) = min
w

1

n

n∑
i=1

` (w; (xi,yi))

s.t. w ∈ Rm, ‖w‖0 ≤ κ

Here, `(·) is the standard loss function (e.g., cross-entropy loss ),w is the set of parameters of the
neural network, m is the total number of structural sets and ‖·‖0 is the standard L0 norm. There is
no efficient way to minimize the L0 norm as it is non-convex, NP-hard, and requires combinatorial
search.

Structured Pruning Unlike unstructured pruning, structured pruning does not result in
weight matrices with problematic sparse connectivity patterns because it involves removing entire
blocks of weights within given weight matrices. Thus pruned model can be run using the same
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hardware and software as the original. While we are now looking at groups of weights to remove at
the channel or filter level, magnitude-based pruning can still be applied by ranking them according
to their L1 norms, for example. However, there are also more intelligent, "data-driven" approaches
that have been proposed which can achieve better results.

Huang et al. [78] were the first to integrate into the pruning process a means of controlling the
tradeoff between network performance and size. Their algorithm outputs a set of filters "pruning
agents"—each a neural network corresponding to a convolutional layer of the network—and an
alternative, pruned version of the original model, which is initialized to be the same as the original.
The pruning agents maximize an objective that is parametrized by a "drop bound" value, defined as
the maximum allowed drop in performance between the original and the pruned model, forcing the
agents to keep performance above a specified level. A pruning agent is trained for each convolutional
layer by evaluating the effects of pruning combinations of different filters within that layer. To do
so, it removes certain filters from the alternative model and compares this model’s performance on
an evaluation set to that of the original, learning which modifications will increase the network’s
efficiency while still adhering to accuracy constraints. Once the agent for one layer is trained, and
filters for that layer have been optimally removed, the entire pruned model is retrained to adjust
for the changes, and the process repeats for the next convolutional layer.

Mathematical formalism of Unstructured Pruning Given a dataset D = {(xi,yi)}ni=1,
and a desired sparsity level κ (i.e., the number of non-zero structural sets) neural network structural
pruning can be written as the following constrained optimization problem:

min
ws

L(ws;D) = min
ws

1

n

n∑
i=1

` (ws; (xi,yi))

s.t. ws ∈ Rm, ‖ws‖0 ≤ κ

Here, `(·) is the standard loss function (e.g., cross-entropy loss ),ws is the structural set of pa-
rameters of the neural network e.g. a convolutional filter, m is the total number of structural sets
and ‖ · ‖0 is the standard L0 norm. There is no efficient way to minimize the L0 norm as it is
non-convex, NP-hard, and requires combinatorial search.

Accelerating unstructured sparse matrix multiplication is an active area of research in which
recent progress has been made. For example, bank-balanced sparsity (which is closely related
to unstructured sparsity) achieves near-ideal speed-ups while requiring a minimal deviation from
unstructured sparsity [48]. On the systems side, adaptive sparse matrix multiplication has shown
promising results on GPUs but is not applied in silicon.

4.2.2 Quantization

While pruning compresses models by reducing the number of weights, quantization consists of
decreasing the weights’ size. Quantization, in general, is the process of mapping values from a large
set to values in a smaller set, meaning that the output consists of a smaller range of possible values
than the input, ideally without losing too much information in the process. In a neural network,
a particular layer’s weights or activation outputs tend to be normally distributed within a specific
range, so ideally, a quantization schema takes advantage of this fact and adapts to fit each layer’s
distribution. For example, models weights’ are typically stored as 32-bit floating-point numbers,
and a common approach is to reduce these to 8-bit fixed points, for which there are 256 possible
values. We can see how quantizing the weights in this way would reduce their memory footprint
by one-fourth.
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4.3 Lottery Ticket Hypothesis (LTH)

The pruning pipeline contains the following sequential stages: firstly, train the entire initial
network and then prune the trained network, based on a pruning algorithm.

Can we train the pruned network from the beginning and achieve similar or even better per-
formance? The answer to this question is negative unless the untrained network has a good
initialization. Frank et al. [12] proposed that the good initialization is the initial weights before
the training-pruning pipeline.

The proposed pipeline is the following: train the initial model, apply a pruning algorithm to
detect the pruned network, and then retrain the network by initializing the non-pruned connection
weight equal to the corresponding weights of the initial model. More formally, this is known as
Lottery Ticket Hypothesis, and it can be stated as: "A randomly-initialized, dense neural network
contains a subnetwork that is initialized such that —when trained in isolation— it can match the
test accuracy of the original network after training for at most the same number of iterations".

Frank et al. not only proposed a pruning pipeline but also showed why deep neural networks
work. By overparameterization, many subnetworks are created inside the deep neural network from
which some subnetworks can achieve competitive performance alone. The best of these subnetworks
are called "Winning Ticket". The “Winning Tickets” generalize across vision datasets [79] and exist
both in LSTM and Transformer models for NLP [80].

Identifying winning tickets. Frank et al. identify a winning ticket by training a network
and pruning its smallest-magnitude weights, which is the simplest unstructured pruning methodol-
ogy. The remaining unpruned connections constitute the architecture of the winning ticket. Each
unpruned connection’s value is then reset to its initialization from the original network before it
was trained. The following pipeline can describe this process:

1. Randomly initialize a neural network f (x; θ0) (where θ0 ∼ Dθ ).
2. Train the network for j iterations, arriving at parameters θj .
3. Prune p% of the parameters in θj , creating a mask m.
4. Reset the remaining parameters to their values in θ0, creating the winning ticket f (x;m� θ0).
As described, this pruning approach is one-shot: the network is trained once, p% of weights are

pruned, and the surviving weights are reset. This process can be graphically described by Figure
4.1. However, Frank et al. focus on iterative pruning (IP), which repeatedly trains, prunes, and
resets the network over n rounds; each round prunes p

1
n% of the weights that survive the previous

round. Their results show that iterative pruning finds winning tickets that match the accuracy of
the original network at smaller sizes than does one-shot pruning.

Figure 4.1. Graphic Illustration of Lottery Ticket Hypothesis

Figure 4.2 presents the results of the lottery ticket hypothesis as applied to a LeNet-300-100
architecture proposed by LeCun et al. [81] trained on MNIST. As shown in Figure 4.2 the final
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performance of the pruned model for a large variety of pruning rates is greater than the performance
of the entire network.

Figure 4.2. Early-stopping iteration and accuracy of LeNet under one-shot and iterative pruning.
Average of five trials; error bars for the minimum and maximum values. Source: [12]

4.4 Pruning Transformer-based models

4.4.1 Transformer-based Structured Pruning

BERTology and Structured Pruning. BERTology [37] is a growing field of study con-
cerned with investigating the inner working of large-scale transformers like BERT. Many pruning
procedures based on BERTology results about the nature of attention heads.

Kovaleva et al.[13] suggest that there is a limited set of attention patterns that are repeated
across different heads, indicating the overall model overparameterization. While different heads
consistently use the same attention patterns, they have varying impacts on performance across
different tasks. They show that manually disabling attention in certain heads improves performance
over the regular fine-tuned BERT models.

For their study, the primary tool is self-attention maps: self-attention weights are extracted for
each head in every layer for a given input. Self-attention map is a 2D float array of shape L× L,
where L is the length of an input sequence.

They detect the following BERT’s self-attention pattern as it can be shown in the Figure 4.3:

• Vertical: mainly corresponds to attention to special BERT tokens [CLS] and [SEP], which
serve as delimiters between individual chunks of BERT’s inputs

• Diagonal: formed by the attention to the previous/following tokens

• Vertical and Diagonal: a mix of the previous two types,

• Block: intra-sentence attention for the tasks with two distinct sentences (such as, for example,
RTE or MRPC),

• Heterogeneous: highly variable depending on the specific input and cannot be characterized
by a distinct structure. Source: [13]
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Figure 4.3. Typical self-attention classes used for training a neural network. Both axes on
every image represent BERT tokens of an input example, and colors denote absolute attention
weights (darker colors stand for greater weights). The first three types are most likely associated
with language model pre-training, while the last two potentially encode semantic and syntactic
information. Source: [13]

They conclude that the estimated upper bound on all heads in the “Heterogeneous” category
varies from 32 (MRPC) to 61 percent (QQP), depending on the task.

Moreover, they studied the Relation-specific heads in BERT. For each sentence of the pre-
processed FrameNet Dataset (Figure 4.4), proposed by Baker et al. [82], they obtain pre-trained
BERT’s attention weights for each of the 144 heads. Every head returns the maximum absolute
attention weight among those token pairs that correspond to the annotated semantic link contained
within a given sentence. Then they average the derived scores over all the collected examples. They
conclude that 2 out of 144 heads tend to attend to the sentence parts that FrameNet annotators
identified as core elements of the same frame.

Figure 4.4. FrameNet annotation example for the “address” lexical unit with two core frame
elements of different types annotated. Source: [13]

With this observes they tried to prune BERT, and since it relies heavily on the learned attention
weights, they define head disabling as modifying the attention values of a head to be constant
a = 1/L for every token in the input sentence, where L is the length of the sentence. Thus,
every token receives the same attention, effectively disabling the learned attention patterns while
maintaining the information flow of the original model.

They conclude the following:

• Disabling some heads leads not to a drop in accuracy, as one would expect, but to an increase
in performance.

• While disabling some heads improves the results, disabling the others hurts the results.
However, it is important to note that disabling some heads across all tasks and datasets
leads to an increase in performance.

• A random head gives, on average, an increase in performance. Furthermore, disabling a
whole layer, that is, all 12 heads in a given layer, also improves the results.

• Relation-specific heads are 2 out of 144 heads, but they do not appear to be important in
any GLUE tasks: disabling either one does not lead to a drop in accuracy. This implies that
fine-tuned BERT does not rely on this piece of semantic information and prioritizes other
features instead.
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Voita et al. [14] study Transformer Model for the task of Neural Machine Translation and eval-
uate the contribution made by individual attention heads in the encoder to the overall performance
of the model and analyze the roles played by them. They study heads using Layer-wise relevance
propagation (LRP) [83]: a method for computing the relative contribution of neurons at one point
in a network to neurons at another. They proposed to use LRP to evaluate the degree to which
different heads at each layer contribute to the top-1 logit predicted by the model. Heads whose
outputs have a higher relevance value may be judged to be more critical to the model’s predictions.

They conclude that LRP ranks a small number of heads in each layer as much more important
than all others. A graphic representation of the result is the following for a model trained on 6m
OpenSubtitles EN-RU data can be found in the Figure 4.5

Figure 4.5. Importance (according to LRP) of self-attention heads. The model trained on 6m
OpenSubtitles EN-RU data. Source: [14]

By examining some attention matrices paying particular attention to heads ranked highly by
LRP, they categorize the heads in the following categories:

• Positional: the head points to an adjacent token,

• Syntactic: the head points to tokens in a specific syntactic relation

• Rare Words: the head points to the least frequent tokens in a sentence.

Structured Pruning by gating heads Another contribution of Voita et al. [14] was the
proposed attention heads pruning methodology for the Transformer Architecture. In order to
perform structured pruning, they modify the original Transformer architecture by multiplying the
representation computed by each head i by a scalar gate gi :

MultiHead(Q,K, V ) = Concat i (gi · head i)W
O

Unlike usual gates, gi are parameters specific to heads and are independent of the input (i.e., the
sentence). The aim is to disable less critical heads entirely rather than simply downweighing them,
thus would ideally apply L0 regularization to the scalars gi. The L0 norm equals the number of
non-zero components and would push the model to switch off less essential heads:

L0 (g1, . . . , gh) =

h∑
i=1

(1− [[gi = 0]])

h is the number of heads, and [[ ]] denotes the indicator function.
The L0 norm is nondifferentiable and so cannot be directly incorporated as a regularization

term in the objective function. Thus, they use a stochastic relaxation: each gate gi is now a random
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variable drawn independently from a head-specific distribution. They use the Hard Concrete dis-
tributions as proposed by Louizos et al. [84], a parameterized family of mixed discrete-continuous
distributions over the closed interval [0, 1].

The distributions have non-zero probability mass at 0 and 1, P (gi = 0 | φi) and P (gi = 1 | φi),
where φi are the distribution parameters. Now the sum of the probabilities of heads being non-zero
can be used as a relaxation of the L0 norm:

LC(φ) =

h∑
i=1

(1− P (gi = 0 | φi))

The new training objective is:

L(θ, φ) = Lxent(θ, φ) + λLC(φ)

where θ are the parameters of the original Transformer, Lxent(θ, φ) is cross-entropy loss for the
translation model, and LC(φ) is the regularizer described above.

To determine which head functions are most important in the encoder and how many heads
the model needs, they conduct a series of experiments with gates applied only to encoder self-
attention. The overall pipeline here is to prune a model by fine-tuning a trained model with
the regularized objective.

Through Figure 4.6 and Figure 4.7 it is noticeable that most heads, especially the encoder
self-attention heads, can be removed without seriously affecting performance.

Figure 4.6. BLEU score as a function of number of re-tained encoder heads (EN-RU). Regular-
ization applied by fine-tuning trained model. Source: [14]

Figure 4.7. Functions of encoder heads retained after pruning. Each column represents all
remaining heads after varying amount of pruning (EN-RU; Subtitles). Source: [14]

Michel et al. [1] perform ablation experiments on the attention heads by modifying the formula
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for Multi-Head Attention:

MHAtt(x, q) =

Nh∑
h=1

ξhAttWh
k ,W

h
q ,W

h
v ,W

h
o
(x, q)

where the ξh are mask variables with values in {0, 1}.In order to mask head h, we simply set ξh = 0.

As a proxy score for head importance, Michel et al. look at the expected sensitivity of the
model to the mask variables ξh defined above:

Ih = Ex∼X
∣∣∣∣∂L(x)∂ξh

∣∣∣∣
Where X is the data distribution and L(x) the loss on sample x. Intuitively, if Ih has a high value,
then changing ξh is liable to have a significant effect on the model. They find the absolute value
crucial to avoid data points with highly negative or positive contributions from nullifying each
other in the sum. Plugging the above Equations and applying the chain rule yields the following
final expression for Ih :

Ih = Ex∼X
∣∣∣∣Atth(x)T ∂L(x)

∂Atth(x)

∣∣∣∣
As far as performance is concerned, estimating Ih only requires performing a forward and

backward pass, and therefore is not slower than training. In practice, we compute the expectation
over the training data or a subset thereof. Finally, the importance scores are normalized by layer
(using the `2 norm).

Michel et al. concluded that if models have been trained using multiple heads, in practice, a
large percentage of attention heads can be removed at test time without significantly impacting
performance. Some layers can even be reduced to a single head.

Prasanna et al. [15] apply magnitude and structural pruning on fine-tuned BERT and then
re-finetune it. For the magnitude pruning approach, an iteratively pruning 10% of the lowest
magnitude weights across the entire model is applied. Regarding the structured pruning approach,
they use Michel et al. heuristic to determine whether a self-attention head is essential for the end
task.

They compute head and MLP importance scores in a single backward pass, prune 10% heads and
one MLP with the minor scores and continue the process until the performance on the development
set is more significant than 90% performance of the full fine-tuned model. They found some patterns
regarding the pruned heads, and these patterns for the QNLI task can be found in Figure 4.8:

Prasanna et al. perform structured lottery ticket hypothesis in different masks; classified as
"good" and "bad" masks. Their results can be found in the Figure 4.9.

Regarding the multi-tasking learning aspect, Prasanna et al. [15] study the overlaps in BERT’s
“good” subnetworks self-attention heads between GLUE tasks. The overlaps in the “good” sub-
networks are not explainable by two tasks’ relying on the same linguistic patterns in individual
self-attention heads. They also do not seem to depend on the type of task. For instance, consider
that two tasks targeting paraphrases (MRPC and QQP) have less in common than MRPC and
MNLI. Alternatively, the overlaps may indicate shared heuristics or patterns somehow encoded in
combinations of BERT elements.

Their results can be found in Figure 4.10.
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Figure 4.8. The “good” subnetworks for QNLI: self-attention heads (top, 12× 12 heatmaps) and
MLPs (bottom, 1 × 12 heatmaps), pruned together. Earlier layers start at 0. The experiment ran
with 5 random initializations and reported averages and standard deviations. Source: [15]

Figure 4.9. The "good" and "bad" subnetworks in BERT fine-tuning: performance on GLUE
tasks. ’Pruned’ subnetworks are only pruned, and ’retrained’ subnetworks are restored to pre-trained
weights and fine-tuned. Subfigure titles indicate the task and percentage of surviving weights. STD
values and error bars indicate standard deviation of surviving weights and performance, respectively,
across 5 fine-tuning runs. Source: [15]

78



4.4 Pruning Transformer-based models

Figure 4.10. Overlaps in BERT’s “good” subnetworks be- tween GLUE tasks: self-attention heads.
Source: [15]

4.4.2 Transformer-based Magnitude Pruning

Lottery Ticket Hypothesis and Magnitude Pruning. Chen et al. [16] applied the
unstructured Lottery Ticket Hypothesis on pretrained BERT. They study the accuracy when
training subnetworks of neural networks. For a network f(x; θ, ·), a subnetwork is a network
f(x;m � θ, ·) with a pruning mask m ∈ {0, 1}d1 (where � is the element-wise product). That is,
it is a copy of f(x; θ, ·) with some weights fixed to 0.

Let ATt (f (x; θi, γi)) be a training algorithm (e.g., AdamW with hyperparameters) for a task T
(e.g., CoLA) that trains a network f (x; θi, γi) on task T for t steps, creating network f (x; θi+t, γi+t).
Let θ0 be the BERT-pre-trained weights. Let εT (f(x; θ)) be the evaluation metric of model f on
task T .

A subnetwork f(x;m�θ, γ) is matching for an algorithm ATt if training f(x;m�θ, γ) with algo-
rithm ATt results in evaluation metric on task T no lower than training f (x; θ0, γ) with algorithm
ATt . In other words:

εT
(
ATt (f(x;m� θ, γ))

)
≥ εT

(
ATt (f (x; θ0, γ))

)
A subnetwork f(x;m� θ, γ) is a winning ticket for an algorithm ATt if it is a matching subnet-

work for ATt and θ = θ0.
A subnetwork f (x;m� θ, γTi) is universal for tasks {Ti}Ni=1 if it is matching for each ATiti for

appropriate, task-specific configurations of γTi .
To identify subnetworks f(x;m�θ, ·), they use neural network pruning [16, 17]. They determine

the pruning mask m by training the unpruned network to completion on a task T (i.e., using ATt )
and pruning individual weights with the lowest-magnitudes globally throughout the network. Since
the goal is to identify a subnetwork for the pre-trained initialization of the state of the network
early in training, they set the weights of this subnetwork to θi for a specific rewinding step i in
training. For example, to set the weights of the subnetwork to their values from the pre-trained
initialization, they set θ = θ0. Previous work has shown that it is better to repeat this pruning
process iteratively. The Iterative Magnitude Pruning (IMP) can be described in the following
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algorithm 4.1.

Algorithm 4.1: Iterative Magnitude Pruning (IMP) to sparsity s with rewinding step i.

1: Train the pre-trained network f (x; θ0, γ0) to step i : f (x; θi, γi) = ATi (f (x; θ0, γ0)).
2: Set the initial pruning mask to m = 1d1 .
3: repeat
4: Train f (x;m� θi, γi) to step t : f (x;m� θt, γt) = ATt−i (f (x;m� θi, γi)).
5: Prune 10% of remaining weights of m� θt and update m accordingly.
6: until the sparsity of m reaches s
7: return f (x;m� θi)

The results described in Figure 4.11 suggest that although BERT is a pre-trained language
model and thus is not randomly initialized, the Lottery Ticket Hypothesis can be implied through
Iterative Magnitude Pruning.

Figure 4.11. Performance of subnetworks at the highest sparsity for which IMP finds winning
tickets on each task. To account for fluctuations, we consider a subnetwork to be a winning ticket
if its performance is within one standard deviation of the unpruned BERT model. Entries with
errors are the average across five runs, and errors are the standard deviations. IMP = iterative
magnitude pruning; RP = randomly pruning; θ0 = the pre-trained weights; θ′0 = random weights;
θ′′0 = randomly shuffled pre-trained weights. Source: [16]

4.5 Pruning Computer Vision models

In the literature, idea exchange between NLP and Computer Vision (CV) is presented. Thus
in this section, some ideas regarding pruning CV models are described.

Mallya et al. [17] introduce PackNet, which uses iteratively pruning for unimportant weights
and fine-tuning them for learning new tasks. As a result of pruning and weight modifications, a
binary parameter usage mask is produced by PackNet. PackNet algorithm can be described in
Figure 4.12.

Another work, “Piggyback”, proposed by Mallya et al. [18] does not change weights of the initial
backbone network and learns a different mask per task. As a result, it is agnostic to task order,
and the addition of a task does not affect performance on any other task. Further, an unlimited
number of tasks can piggyback onto a backbone network by learning a new mask. Piggyback
algorithm can be described in Figure 4.13.

4.6 Pruning Using Explainable AI (XAI) Techniques

For a machine learning model to generalize well, one must ensure that meaningful patterns
in the input data support its decisions. However, a prerequisite is for the model to be able to
explain itself, e.g., by highlighting which input features it uses to support its prediction. Layer-
wise Relevance Propagation (LRP) is a technique that brings such explainability and scales to
potentially highly complex deep neural networks.
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Figure 4.12. Illustration of the evolution of a 5 × 5 filter with steps of training. Initial training
of the network for Task I learns a dense filter as illustrated in (a). After pruning by 60% and
re-training, a sparse filter for Task I is obtained, as depicted in (b), where white circles denote 0
valued weights. Weights retained for Task I are kept fixed for the remainder of the method and
are not eligible for further pruning. The pruned weights are allowed to be updated for Task II,
leading to filter (c), which shares weights learned for Task I. Another round of pruning by 33% and
re-training leads to filter (d), the filter used for evaluating Task II (Note that weights for Task I,
in gray, are not considered for pruning). Hereafter, weights for Task II, depicted in orange, are
kept fixed. This process is completed until desired or runs out of pruned weights, as shown in the
filter (e). The final filter (e) for Task III shares weights learned for tasks I and II. At test time,
appropriate masks are applied depending on the selected Task to replicate filters learned for the
respective tasks. Source: [17]

Figure 4.13. Overview of Piggyback method fo learning piggyback masks for fixed backbone net-
works. During training, maintaining a set of real-valued weights mr which are passed through a
thresholding function to obtain binary-valued masks m. These masks are applied to the weights W
of the backbone network in an element-wise fashion, keeping individual weights active, or masked
out. The gradients obtained through backpropagation of the task-specific loss are used to update the
real-valued mask weights. After training, the real-valued mask weights are discarded, and only the
thresholded mask is retained, giving one network mask per task. Source: [18]

LRP operates by propagating the prediction f(x) backward in the neural network through
purposely designed local propagation rules. The propagation procedure implemented by LRP is
subject to a conservation property, where what has been received by a neuron must be redistributed
to the lower layer in equal amount as it is shown in Figure 4.14.

LRP can be implemented in many different ways:

• Uniform LRP-0: picks many local artifacts of the function. The explanation is overly complex
and does not focus sufficiently on the actual concepts. The explanation is neither faithful
nor understandable.

• Uniform LRP-ε: removes noise elements in the explanation to keep only a limited number
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Figure 4.14. Illustration of the LRP procedure. Each neuron redistributes to the lower layer as
much as it has received from the higher layer. Source: [19]

of features that match the actual concepts in the image. It is a faithful explanation but too
sparse to be easily understandable.

• Uniform LRP-γ: is easier for a human to understand because features are more densely
highlighted, but it also picks unrelated concepts and makes it unfaithful.

• Composite LRP: overcomes the disadvantages of the approaches above.

Montavon et al. [19] implement the following algorithms in the VGG-16 [85] achieving the
results presented on Figure 4.15.

Figure 4.15. Input image and pixel-wise explanations of the output neuron ‘castle’ obtained with
various LRP procedures. Parameters are ε = 0.25 std and γ = 0.25. Source: [19]

Another well-known XAI technique is LIME, Local Interpretable Model-agnostic Explanations
[86], a model-agnostic explanation approach that returns explanations as features importance vec-
tors. The main idea of LIME is that the explanation may be derived locally from records generated
randomly in the neighborhood of the instance that has to be explained.
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Chapter 5

Back to the Future: A transfer learning approach for

structured pruning

5.1 Abstract

Large Deep Learning models are overparameterized, and thus they can be pruned in both
magnitude and structured aspects. In the field of Natural Language Processing, Transformer-based
architectures were examined under self-attention head pruning techniques and achieved promising
results. In this study, we examine a structured pruning approach for BERT-based architectures
that implies that in transfer learning, the final model is the result of a fine-tuning process of
a pre-trained model. Thus, we consider both the pre-trained and the fine-tuned model to prune
attention heads. Furthermore, we study this method through the Lottery Ticket Hypothesis, where
we see that considering both the pre-trained and the fine-tuned model outperforms the approach
which only considers the fine-tuned model. Moreover, we propose a better application of the
Lottery Ticket Hypothesis in structured pruning named "Iterative Structured Pruning". Finally,
we examine our technique on another modality, more precisely in Automatic Speech Recognition
through wav2vec 2.0, and we see corresponding results.

5.2 Introduction

Recently the field of Natural Language Processing (NLP) has faced significant progress in
many NLP tasks, such as Natural Language Understanding (NLU) and Natural Language Infer-
ence (NLI). A significant part of this progress is due to the Transfer Learning approach of the
Transformer-based models proposed by Vaswani et al. [7].

One of the most famous Transformer-based models is BERT, proposed by Devlin et al. [10].
BERT is a pre-trained language representation model trained from unlabeled text by jointly con-
ditioning on both left and right context in all layers. As a result, the pre-trained BERT model
can be fine-tuned with just one additional output layer to create state-of-the-art models for a wide
range of tasks, such as question answering and language inference, without substantial task-specific
architecture modifications.

Transformer-based models contain millions of parameters that slow down the interference, in-
crease the memory footprint, the number of computation operations (FLOPs), the power usage
and cause problem-related environmental issues. This problem tends to rapidly scale up: BERT-
base [21] contains 110 million parameters, Turing-NLG [22] contains 17 billion parameters and the
GPT-3 [23] includes 175 billion.

A response to this problem is model compression. Many researchers apply pruning techniques
on BERT-base models by pruning weights or structured components such as attention heads.
Many researchers, like Voita et al. [14], Kovaleva et al. [13] and Michel et al. [1], suggest that
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Transformer-based models are heavily overparameterized by removing a large number of heads
without a significant performance trade-off.

Although these works achieve significant pruning rates, they do not consider that the model
is produced through a fine-tuning process and thus is highly dependent on the pre-trained model.
This study examines a new heuristic for indicating the attention head’s importance of the model
based on both the pre-trained and the fine-tuned model. We test our method on several GLUE
benchmarks [11], on the SciERC dataset [24] and on the PubMed 200k RCT dataset [25].

We investigate the effect of the pre-trained domain in our pruning technique, where we replace
our pre-trained model, and we use SciBERT [33]. SciBERT is pre-trained on large scientific-related
corpora, and we see that our approach works regardless of the pre-trained domain.

Furthermore, we study this method through the Lottery Ticket Hypothesis (LTH), where we
see that considering both the pre-trained and the fine-tuned model for obtaining initialization mask
for LTH outperforms the approach which only considers the fine-tuned model. We also propose a
better pipeline for structured pruning with an "Iterative Structured Pruning" methodology.

Finally, we try structured pruning on a different modality and more precisely in the area of
Automatic Speech Recognition through wav2vec 2.0 [26]. Through this experiment, we see that
our methodology works well in other modalities.

5.3 Related Work

Many studies have shown that BERT is overparameterized [27] and try different compression
techniques, including magnitude pruning by and Gordon et al. [28] and structured pruning by
Voita et al. [14], Kovaleva et al. [13] and Michel et al. [1].

Voita et al. [14] suggest that all but a few Transformer heads could be pruned without significant
losses in performance. For BERT, Clark et al. [27] observe that most heads in the same layer have
similar self-attention patterns (perhaps related to the fact that the output of all self-attention
heads in a layer is passed through the same MLP), which explains why Michel et al. [1] were able
to reduce most layers to a single head.

Pruning strategies that consider both the fine-tuned and the pre-trained model were not pro-
posed in the Natural Language Processing bibliography until Sanh et al. [29] propose a pruning
approach named "movement pruning" that prunes BERT weights based on the change of the weight
value during fine-tuning.

Frank et al. [12] propose the Lottery Ticket Hypothesis, which is formulated as follows: "dense,
randomly-initialized, feed-forward networks contain subnetworks (winning tickets) that - when
trained in isolation - reach test accuracy comparable to the original network in a similar number
of iterations". Frank et al. not only propose a pruning pipeline but also propose the reason why
deep neural networks work.

Chen et al. [16] apply the magnitude approach of the Lottery Ticket Hypothesis on BERT and
achieve excellent results. Their study suggest that the Lottery Ticket Hypothesis can be applied
to a not randomly initialized network because BERT is a pre-trained network. Prasanna et al. [15]
apply a structured approach where the importance of a head is calculated by the sensitivity score
proposed by Michel et al. and achieve similar results. Both Chen et al. and Prasanna et al. find
that such winning subnetworks exist and transferability between subnetworks for different tasks
varies.
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5.4 Problem Definition

5.4.1 Structured Pruning Definition

Given a dataset D = {(xi,yi)}ni=1 and a desired sparsity level κ, neural network structured
pruning can be written as the following constrained optimization problem:

min
ws

L(ws;D) = min
ws

1

n

n∑
i=1

` (ws; (xi,yi))

s.t. ws ∈ Rm, ‖ws‖0 ≤ κ

Here, `(·) is the standard loss function, ws is the structured set of parameters of the neural
network e.g. attention heads, m is the total number of structured sets and ‖ · ‖0 is the standard
L0 norm.

There is no efficient way to minimize the L0 norm as it is non-convex, NP-hard, and requires
combinatorial search. Thus, Structured Pruning is an NP-hard problem.

Structured pruning can take place before, during, and afterward fine-tuning. In this work, we
first fine-tune the model, and afterward, we apply our pruning methodology.

5.4.2 BERT Architecture

BERT is fundamentally a stack of Transformer encoder layers Vaswani et al. [7]. All layers
have an identical structure: a multi-head self-attention (MHAtt) block followed by an MLP, with
residual connections around each.

MHAtt consists of Nh independently parameterized heads. An attention head h in layer l is
parameterized by Wh

k ,W
h
q ,W

h
v ∈ Rdh×d,Wh

o ∈ Rd×dh and dh is typically set to d/Nh. Given
n d-dimensional input vectors x = x1, x2, . . . xn ∈ Rd, MHAtt is the sum of the output of each
individual head applied to input x :

MHAtt(x, q) =

Nh∑
h=1

AttWh
k ,W

h
q ,W

h
v ,W

h
o
(x, q)

To allow the different attention heads to interact with each other, Transformers apply a non-
linear feed-forward network over the MHAtt output at each Transformer’s layer [30]. Each attention
head may pay attention to different functionalities, such as syntax and semantics.

5.5 Proposed Method

While pruning is highly effective for standard supervised learning, it is less helpful in the transfer
learning approach. In supervised learning, weight values are primarily determined by the end task.
In transfer learning, weight values are determined mainly by the pre-trained model’s weights which
are only fine-tuned on the end task. In this work, we argue that to effectively reduce the size of
models for transfer learning, one should use pruning strategies that consider both the pre-trained
and the fine-tuned model.

Firstly, as Michel et al. [1] proposed, we introduce mask variables ξh with values in {0, 1},
where ξh = 1 denotes that the corresponding head h is not masked while ξh = 0 denotes that head
h is masked. This leads to a modification of the formula for MHAtt:

MHAtt(x, q) =

Nh∑
h=1

ξhAttWh
k ,W

h
q ,W

h
v ,W

h
o
(x, q)
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We define the expected absolute sensitivity of the model to the mask variables ξh:

Ih = Ex∼X
∣∣∣∣∂(α ∗ L1(x) + (1− α) ∗ L2(x))

∂ξh

∣∣∣∣
where X is the data distribution, L1(x) the loss of the fine-tuned model on sample x, L2(x) the

loss of the original model on sample x and α ∈ [0, 1] is an "specialization factor", which controls
the importance of each loss. More precisely, α > 0.5 denotes that the pruning process will pay
more attention in the fine-tuned model, while α < 0.5 denotes the opposite and α = 0.5 denotes
that the pruning algorithm will equally focus to both models. The implementation of the pruning
methodology with importance score can be described by the Algorithm 5.1.

Algorithm 5.1: Structured Pruning with Importance Score

1: Fine-tune the pre-trained network
2: Set the initial pruning mask of attention heads to s = 1d . d: dimension
3: repeat
4: Calculate Ih for the non-pruned attention heads
5: Sort heads in descending order based on Ih
6: Prune κ% of initial heads with the lowest Ih and update s
7: until the sparsity of s reaches sT . sT : Sparsity Threshold
8: return s

After extracting the mask s, we can perform a one-shot structured Lottery Ticket Hypothesis
on BERT: use the mask s on the pre-trained BERT and fine-tune it to the given task. Alternatively,
we can use an Iterative Structured Pruning approach for Lottery Ticket Hypothesis. This approach
is described in the Algorithm 5.2.

Algorithm 5.2: Iterative Structure Pruning (ISP)

1: Fine-tune the pre-trained network
2: Set the initial pruning mask of attention heads to s = 1d . d: dimension
3: repeat
4: Calculate Ih for the non-pruned attention heads
5: Sort heads in descending order based on Ih
6: From the pre-trained model prune κ% of remaining heads with the lowest Ih and update s
7: Fine-Tune the pre-trained network
8: until the sparsity of s reaches sT . sT : Sparsity Threshold
9: return s

Through the Iterative Structure Pruning approach, the final model is fine-tuned only one time.

5.6 Experiments

5.6.1 Different Pruning Rates

All experiments in this section are done on the pre-trained BERT model ("bert-base-uncased",
12-layers, 768-hidden, 12-heads, 110M parameters) from the Transformers library [31]. The pre-
trained model is fine-tuned with metrics shown in Table 5.1 on 6 different GLUE tasks:

• MNLI: Multi-Genre Natural Language Inference Corpus [74]

• QQP: the Quora Question Pairs dataset

• QNLI: Question-answering NLI based on the Stanford Question Answering Dataset [75]
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Dataset MNLI QQP QNLI MRPC SST-2 CoLA
Train Ex. 392,704 363,872 104,768 3,680 67,360 8,576
Iters/Epoch 12,272 11,371 3,274 115 2,105 268
Epochs 3 3 3 3 3 3
Batch Size 32 32 32 32 32 32
Learning Rate 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5 2× 10−5

Optimizer AdamW with ε = 1× 10−8

Eval Metric Matched Acc. Accuracy Accuracy Accuracy Accuracy Matthew’s

Table 5.1. GLUE tasks [20], dataset sizes metrics and fine-tuning hyperparameters reported in
this study

α MNLI QNLI QQP SST-2 MRPC CoLA
1 0.586 0.564 0.725 0.837 0.484 0.183
0.7 0.589 0.670 0.719 0.783 0.589 0.202
0.6 0.586 0.603 0.750 0.798 0.652 0.206
0.5 0.566 0.594 0.694 0.843 0.537 0.287
0.4 0.623 0.599 0.709 0.832 0.571 0.229

Table 5.2. Results on GLUE tasks after pruning 112 heads. We conduct the experiments for dif-
ferent values of the hyperparameter α, and the result is the model’s performance in the development
set after pruning 112 attention heads. For α = 1 our method is equivalent to the baseline method
of Michel et al. [1]. For each task, the best result is bolded. For each experiment, we test 4 random
seeds.

• MRPC: Microsoft Research Paraphrase Corpus [72]

• SST-2: Stanford Sentiment Treebank [71]

• CoLA: Corpus of Linguistic Acceptability [70]

For the fine-tuning process, all the training data of each benchmark are used. After fine-tuning,
the proposed algorithm 5.1 runs for different pruning rates with κ = 10% on the development set
of each benchmark. Finally, the pruned model is tested on the development set, as the test sets
of GLUE benchmarks are not publicly distributed. Testing on the development set of GLUE is a
common practice used in many BERT pruning papers [15], [16]. In the following experiments, we
see the impact of different methodologies on different pruning rates. The following experiments
are the average result of 4 different runs with different random seeds.

Deep Pruning Rate. As shown in previous studies [15], [14] BERT-base models can be heavily
pruned, so in this section, we perform a deep pruning investigation. We perform 8 iterations of the
proposed algorithm, and in each iteration, we prune 14 heads, so in total, we prune 112 out of 144
heads, which is approximately the 80% of BERT attention heads. The results can be described
from Table 5.2.

From these experiments, we can suggest that for deep pruning rates, our heuristic outperforms
the baseline heuristic proposed by Michel et al. [1] for every examined GLUE task. We can also
see that for the majority of the hyperparameter α values, the final model performs better than the
baseline model. This observation indicates that in deep pruning rates, the pre-trained model scores
with higher importance heads scored with lower importance on the fine-tuned model. Thus, the
final importance score, which is calculated as a weighted average between these two scores, gives
these heads a higher importance compared to the baseline, and that is beneficial as it is shown in
Table 5.2. Thus, we can conclude that considering both the pre-trained and the fine-tuned model
during the pruning stage is beneficial. The best value of the hyperparameter α depends on the
nature of the task and will be further investigated in the following experiments.
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MNLI QNLI QQP SST-2 MRPC CoLA
0.717(α = 1) 0.734 0.791 0.875 0.639 0.286
0.732 (α = 0.4) 0.787 (0.7) 0.811 (0.6) 0.878 (0.4) 0.730 (0.6) 0.387 (0.5)

Table 5.3. Results on GLUE tasks after pruning 98 heads. The first line describes the performance
of the baseline for α = 1, and then we present the best performance of the model in the development
set after pruning 98 attention heads. For each task, the best result is bolded, and the corresponding
best α is mentioned. For each experiment, we test 4 random seeds.

Lighter Pruning Rate. In this section, we perform a lighter pruning investigation; thus, we
perform 7 iterations of the proposed algorithm, and in each iteration, we prune 14 heads, so, in
total, we prune 98 out of 144 heads, which is approximately 70% of BERT attention heads. The
results can be described from Table 5.3.

From the above experiments, we see that our proposed methodology outperforms the baseline
even for a lighter pruning rate. We also see that, for each benchmark, the best performance is
achieved with the same α as the deep pruning rate experiment. So, we can suggest that our
approach is robust regarding α in these pruning rates. Overall, we see that considering both the
pre-trained and the fine-tuned model is beneficial for the pruning process.

Different Pruning Rates. In this section, we perform pruning investigation for different
pruning rates, and we present the results of the final model with a pruning step equal to 14 heads.
In total, we perform 8 pruning steps, and the result is the average of 4 different runs with different
random seeds. The results can be described from Figure 5.1.

Figure 5.1. Results on GLUE tasks. We conduct the experiments for different values of the
hyperparameter α, and the result is the performance of the model in the development set after
pruning 14 attention heads in each pruning step. For α = 1 our method is equivalent to the
baseline method of Michel et al. [1]. For each experiment, we test 4 random seeds.

From Figure 5.1 we see that for lower pruning rates, all the methodologies regardless of the
value of α achieve similar performance, which indicates that in the first 5 pruning iterations, the
effect of each head removal is similar. This observation indicates that in these pruning rates, some
heads can carry over the work of pruned heads. This result agrees with the results of other pruning
studies on BERT, such as Clark et al. [27], Prasanna et al. [15].

Moreover, we can see that for greater pruning rates, our approach generally outperforms the
baseline for any given value of α. A result discussed extensively in the experiments above.
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5.6.2 The specialization factor α

As we see from the previous chapter, in the first pruning iterations, α does not make any
significant difference in the result, but finding the best value for α in deeper pruning rates is
crucial. In this section, we are going to further investigate the result of α in the pruning process
by answering the following questions: "Does the best value of α depend on the end task?", "Does
the best value of α depend on the pre-trained corpora?".

The proposed importance score includes two importance scores: the importance score of the
pre-trained model and the importance score of the fine-tuned model. The final score is a weighted
average between these two scores, and the weight of each score is controlled through α. We assume
that α during pruning controls the amount of weight contributed to the fine-tuned model. Thus,
α < 0.5 suggests that the pruning process should give more weight to the pre-trained model, and
α > 0.5 suggests the pruning procedure should be more specialized on the fine-tuned model.

Does the best value of α depend on the end task? - Models Fine-tuned on Scientific
Domain. In order to examine the effect of specialization factor,a, we examine BERT-base models
fine-tuned on datasets of Computer and Biomedical Science. BERT-base has a small vocabulary
overlap between scientific domain as examined by Gururangan et al. [32] in the Figure 5.2, and
we want to see the effect of α in datasets with domains different from the pre-trained domains.

Figure 5.2. Vocabulary overlap (%) between domains. PT denotes a sample from sources similar
to BERT pretraining corpus. Vocabularies for each domain are created by considering the top 10K
most frequent words (excluding stopwords) in documents sampled from each domain.

All experiments in this section are done on the "bert-base-uncased" model from the Trans-
formers library [31]. It is fine-tuned on two different Scientific Domain Datasets: SciERC [24]
and PubMed 20k RCT [25] with metrics shown in Table 5.5. Then the proposed algorithm 5.1 is
implemented with κ = 10%.

Firstly, we perform 8 iterations of the proposed algorithm, and in each iteration, we prune 14

heads, so in total, we prune 112 out of 144 heads, which is approximately 80% of BERT attention
heads. The results are shown in Table 5.4.

We also perform pruning investigation for different pruning rates, and we present the results of
the final model with a pruning step equal to 14 heads. In total, we perform 8 pruning steps. The
results can be described from Figure 5.3.

From Figure 5.3 we see that for lower pruning rates, all the methodologies regardless of the
value of α achieve similar performance, which indicates that in the first pruning iterations, the
impact of each head removal is similar. Nevertheless, for the following iterations, we see that our
approach for α = 0.6 outperforms the baseline, as it can be clearly shown from the Table 5.4.

From Figure 5.3 we can conclude that the best score for both Scientific Domain tasks is α = 0.6.
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α PubMed 20k RCT SciERC
1 0.454 0.511
0.4 0.329 0.473
0.5 0.605 0.547
0.6 0.736 0.557

Table 5.4. Results on PubMed 20k RCT and SciERC after pruning 112 heads. We conduct the
experiments for different values of the hyperparameter α, and the result is the model’s performance
after pruning 112 attention heads. For α = 1 our method is equivalent to the baseline method of
Michel et al. [1].

Dataset PubMed 20k RCT SciERC
Train Ex. 178,144 3,216
Iters/Epoch 11,134 201
Epochs 3 3
Batch Size 16 16
Learning Rate 2× 10−5 2× 10−5

Optimizer AdamW with ε = 1× 10−8

Eval Metric Accuracy Accuracy

Table 5.5. PubMed 20k RCT and SciERC dataset sizes metrics and fine-tuning hyperparameters
reported in this study

Figure 5.3. Results on PubMed 20k RCT and SciERC on different pruning rates. We conduct the
experiments for different values of the hyperparameter α, and the result is the model’s performance
after pruning 14 attention heads in each pruning step. For α = 1 our method is equivalent to the
baseline method of Michel et al. [1].

This observation can be justified because BERT pre-trained corpora have small vocabulary overlap
with scientific domain datasets. Thus, pruning should focus more on the fine-tuned model, and
the pruning procedure should be more specialized on the fine-tuning model.

Does the best value of α depend on the pre-trained corpora? - Models with Scien-
tific Pre-trained Domain.

As Gururangan et al. [32] suggest, BERT-base has small vocabulary overlap regarding scientific
domains. So, for this section, we use another pre-trained model, trained on numerous scientific-
related corpora. This model is called SciBERT [33] and we use the implementation from the
Transformers library [31].

We fine-tuned our model on 5 GLUE tasks: MNLI, QNLI, MRPC, SST-2, and CoLA and a
Scientific Domain Dataset: PubMed 20k RCT. We perform 8 iterations of the proposed algorithm,
and in each iteration, we prune 14 heads, so we prune 112 out of 144 heads, which approximately
prune 80% of BERT attention heads. We perform the experiments for many values of the hyper-
parameter α, including for α = 1, which is equivalent to the Michel et al. [1] method used as the
baseline. The best value for α can be found in Table 5.6.

A more in detail description of this experiment is presented in Figure 5.4, where we prune 14
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MNLI QNLI SST-2 MRPC CoLA PubMed 20k RCT
winning-α 0.7 0.6 0.6 0.7 1 0.6

Table 5.6. Results on GLUE tasks and PubMed 20k RCT after pruning 112 heads. We prune
112 heads from the models with different values of the hyperparameter α. Then we test their
performance, and for the best performance, we mention the corresponding α in this Table.

heads in each iteration, and in total, we prune 112 heads.

Figure 5.4. Results on GLUE tasks and PubMed 20k RCT on different pruning rates. We conduct
the experiments for different hyperparameter α values, and the result is the model’s performance
after pruning 14 attention heads in each pruning step.

GLUE benchmarks have a small vocabulary overlap with the Scientific related corpora on
which SciBERT is trained. Therefore, we suggest that the heads will be drastically changed and
move closer to the scientific domain distribution through fine-tuning. Thus, we expect that the
best pruning strategy will be performed with a value of α greater than 0.5, indicating that the
pre-trained model contains some valuable general knowledge, but the importance score should be
mainly calculated from the fine-tuned model. Indeed, from Figure 5.4 we see that the best pruning
strategy is performed with the specialization factor set equal to α = 0.6.

From Figure 5.4 it is worth mentioning the plot of CoLA dataset, which is the only dataset
in which the winning methodology uses only the fine-tuned model to calculate the importance
scores. Moreover, the absolute performance of each GLUE task is worse when SciBERT is used as
a pre-trained model.

PubMed 20k RCT is a scientific-related dataset with significant vocabulary overlap with the
Scientific related corpora on which SciBERT is trained. We see the best value for α = 0.6, and the
absolute performance after pruning is better when the model uses a pre-trained model trained on
scientific text.

5.6.3 Do we win the Lottery?

In the previous sections, we first fine-tune the model and then apply a pruning methodology
which creates a set of head masks and a final pruned model. However, this process does not take
advantage of the re-training abilities of the BERT model. Indeed, we can use the set of head masks
as initialization masks on the pre-trained model and then fine-tune it once.

This idea is a structured approach of Lottery Ticket Hypothesis proposed by Frankle et al.
[12]. In previous studies, they apply this idea on BERT [15], but in our work, we see that our
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a MNLI QNLI MRPC SST-2 CoLA
1 0.817 0.820 0.773 0.903 0.329
0.6 0.824 0.874 0.778 0.913 0.334
0.5 0.819 0.876 0.607 0.917 0.435
0.4 0.809 0.880 0.783 0.918 0.312

Table 5.7. Results on GLUE tasks

approach, which creates the set of head masks regarding both the pre-trained and the fine-tuned
model, outperforms the approach which only considers the fine-tuned model.

Overall, we follow the following pipeline: we fine-tune the pre-trained model, and then we apply
our proposed pruning algorithm with κ = 10% for 8 iterations to extract a set of 112 head masks.
Then we apply this set of head masks on the pre-trained BERT model ("bert-base-uncased", 12-
layers, 768-hidden, 12-heads, 110M parameters) from the Transformers library [31]. In this way,
we have a pre-trained model where 112 heads are masked.

Then we fine-tune each model to the corresponding GLUE task with the metrics shown in Table
5.1. We perform this experiment for 5 GLUE Tasks: MNLI, QNLI, MRPC, SST-2, and CoLA.

The results can be found in Table 5.7. Our approach outperforms the models with a set mask
produced by Michael et al. [1] heuristic, while we prune approximately 80% of the attention
heads and we have a small drop on the initial model performance. This observation indicates
that considering both the pre-trained and the fine-tuned model is beneficial for a Lottery Ticket
Hypothesis approach.

5.6.4 Iterative Structured Pruning

This section conducts the Iterative Structured Pruning (ISP) approach as described in the
Methodology Section. This approach contributes to the field of Lottery Ticket Hypothesis because
it is the first time that structured pruning is conducted iteratively, and it generalizes Chen et al.
[16] iterative approach.

We conduct the iterative pruning technique in these experiments by first fine-tuning the pre-
trained BERT model on the downstream task. Then we detect the 14 heads with the lowest score
as measured from our heuristic with α = 1. Then we take the pre-trained model, prune those 14

heads, and fine-tune the model. Thus, the final model is fine-tuned once with the 90% of attention
heads remaining. We can continue this process by detecting the 14 heads with the lowest score
in this pruned model. Then we take the pre-trained model, prune those 14 + 14 heads, and then
fine-tune the model. Thus, the final model is fine-tuned once with the 80% of attention heads
remaining. In this method, the final pruned model is fine-tuned once.

We compare our results with the not Iterative Pruning, which is conducted by pruning x% of
heads in the pre-trained model and then fine-tuning the model. The final model has 100− x% of
attention heads remaining.

With the Iterative Structured Pruning approach, the model’s overall performance is more out-
standing than the not Iterative Pruning approach. This observation can be described by the Figure
5.5 where we conduct these experiments on 2 GLUE Tasks: MNLI and QNLI. This approach in-
dicates a trade-off between performance and computational cost.

5.6.5 Pruning in a different modality

In the previous sections, we prune models specialized in the language modality. This section
investigates whether our approach can be implemented for pruning BERT-base models trained on
other modalities.
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Figure 5.5. Iterative Structured Pruning (ISP) on MNLI and QNLI with α = 1

More specifically, we examine speech modality through the task of Automatic Speech Recogni-
tion. For this purpose, we use the newly introduced BERT-base model wav2vec 2.0 [26]. Wav2vec
2.0 masks the speech input in the latent space and solves a contrastive task defined over a quan-
tization of the latent representations, which are jointly learned and thought it learns powerful
representations.

We fine-tune the pre-trained models for phoneme recognition on the TIMIT dataset [2]. It
contains five hours of audio recordings with detailed phoneme labels. We use the standard train,
development, and test split and follow the standard protocol of collapsing phone labels to 39 classes.
Thus performance is computed in Word Error Rate (WER).

Then we apply our proposed pruning methodology and we perform pruning investigation for
different pruning rates. In total, we perform 8 pruning steps, and in total, we prune 112. The
results can be described from Figure 5.6.

From Figure 5.6 we see that for lower pruning rates, all the methodologies regardless of the
value of α achieve similar performance, which indicates that in the first 4 pruning iterations, some
heads can carry over the work of pruned heads.

Moreover, we can see that our approach outperforms the baseline for any given value of α for
the greatest pruning rates.

Figure 5.6. wav2vec 2.0 fine-tuned on Timit dataset. The Performance is computed in WER.
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Chapter 6

Conclusions

In this Diploma Thesis, we study the compression of Deep Neural Networks, and more precisely,
we study the structured pruning in Natural Language Processing models. From our work, we draw
some conclusions that can be divided into two main aspects:

• Studying pruning for pruning. We propose a better implementation of pruning that
considers both the pre-trained and the fine-tuned model.

• Studying pruning for a better understanding of the model. We see that through
fine-tuning, the model forgets prior knowledge, and in order to overcome this problem, we
study both pre-trained and fine-tuned models for better pruning results.

6.1 Discussion

In Section 5.5 Proposed Method, we extend the work from Prasanna et al. [15], and Michel
et al. [1] and we propose a new heuristic for calculating the importance score of self-attention
heads in BERT-based models. These models are created after a fine-tuning process, where weight
values are mostly predetermined by the original model and are only fine-tuned on the end task.
Thus, pruning strategies should consider the pre-trained and the final fine-tuned model, and the
head importance score should be calculated considering both the importance of the pre-trained
and the fine-tuned head. At the same time, the amount of specialization, which corresponds to
"how much importance should we pay to the final fine-tuned model," is controlled by a tunable
hyperparameter a.

This study performs pruning investigations for different pruning rates on BERT-base models
fine-tuned on different GLUE datasets. We conclude that our approach, in general, outperforms
the baseline for any given value of a for greater pruning rates.

In order to examine the effect of specialization factor a, we examine BERT-base models fine-
tuned on datasets of Computer and Biomedical Science. We suggest that a greater value for a gives
better performance on the final model. This observation can be justified because BERT pre-trained
corpora have small vocabulary overlap with the scientific domain datasets. Thus, pruning should
focus more on the fine-tuned model, and the pruning procedure should be more specialized on the
fine-tuning model.

Furthermore, in order to understand whether the best value of α depends on the pre-trained
corpora we use as pre-trained models, networks with Scientific Pre-trained Domains. Indeed, we
see a correlation between the pre-trained corpora distribution and the value of specialization factor
a.

Moreover, we investigate a structured approach to the Lottery Ticket Hypothesis. We show that
our approach that creates the set of head masks regarding both the pre-trained and the fine-tuned
model outperforms the approach that only considers the fine-tuned model.
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Regarding the Lottery Ticket Hypothesis, we propose a better implementation for structured
pruning through an Iterative Structured Pruning (ISP) approach. This approach contributes to the
Lottery Ticket Hypothesis because it is the first time that structured pruning has been conducted
iteratively.

Finally, we investigate whether our approach can be implemented for pruning BERT-base
models trained on other modalities. More specifically, we examine speech modality through the
task of Automatic Speech Recognition. For this purpose, we use the newly introduced BERT-base
model, wav2vec 2.0, and we show corresponding results. This study is critical because, as we can
conclude from the literature, many Transformer-based architectures achieve significant results on
different modalities such as speech and vision.

After all, investigating pruning is essential for reducing the model’s size and achieving interac-
tion speed-up. Structured pruning examines the importance of the head and is a way to conclude
a better understanding of the model. By classifying heads based on their importance, we iden-
tify which heads work better in the end task, thus understanding why BERT-based models work.
Indeed, as Voita et al. [14] said, "Specialized Heads Do the Heavy Lifting" and by understand-
ing which heads are "specialized" and what makes some heads specialize, we can create better
implementations for BERT-based models.

6.2 Future Work

Through the end of this thesis, we wish to open some new roads and create new aspects to
explore pruning mechanisms and the Lottery ticket Hypothesis. We suggest the following points
be explored in future work:

• Better understanding of the fine-tuning process. The proposed fine-tuning process of
Transformer-based models [7] seems to create models that forget the pre-trained knowledge.
The pre-trained knowledge is generic and essential for many Natural language Processing
Tasks, and thus our pruning approach that considers both models yields performance. We
suggest that this work opens the road for better fine-tuning methodologies.

• Structured Pruning of other structures in Transformers. Based on Prasanna et al.
[15] study, we know that other structures inside Transformers-based models can be pruned,
for example, fully connected layers. Perhaps our approach could be implemented for a better
pruning algorithm in these fully connected layers.

• Regarding Iterative Structured Pruning. The iterative structured pruning algorithm
could work in other Transformer-based models specialized in other modalities and with other
deep learning architectures such as Convolutional Neural Network.

• Pruning Models of Different Modalities. To the best of our knowledge, this is the first
work that examines pruning on models specialized in modalities different than language. As
a result, pruning Deep Leaning models of different modalities will achieve better interference
time and a better understanding of these models.
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AI Artificial Intelligence
BERT Bidirectional Encoder Representations from Transformers
CoLA Corpus of Linguistic Acceptability
DL Deep Learning
ELMo Embeddings from Language Models
GLUE General Language Understanding Evaluation
IP Iterative Pruning
IMP Iterative Magnitude Pruning
LDA Latent Dirichlet Allocation
LSA Latent Semantic Analysis
LSTM Long short-term memory
LTH Lottery Ticket Hypothesis
ML Machine Learning
NMT Neural Machine Translation
MLP Multilayer Perceptron
MNLI The Multi-Genre Natural Language Inference
MRPC The Microsoft Research Paraphrase Corpus
NAS Neural Architecture Search
NLI Natural Language Inference
NLG Natural Language Generation
NLP Natural Language Processing
NLU Natural Language Understanding
NNLM Neural Network Language Model
QA Question Answering
QNLI Question-answering Natural Language Inference
QQP Quora Question Pairs
RNN Recurrent Neural Network
RTE Recognizing Textual Entailment
SST-2 The Stanford Sentiment Treebank
STS-B Semantic Textual Similarity Benchmark
WNLI Winograd Natural Language Inference
XAI Explainable Artificial Intelligence
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