3

3/
g?

I-’ §‘. 3
MPOMHOEV

=
nvpeopos

|

EONIKO METZOBIO MOAYTEXNEIO

2XOAH HAEKTPOAOIQN MHXANIKQN KAI MHXANIKQN YMNOAOTIZTQN

TOMEAS TEXNOAOTIAZ YNIOAOTIZTQON KAI [TAHPO®OPIKHE

A software analysis tool for Energy and Time-aware
function placement on the Edge

AutAwpatikn Epyacia
Mavvocg MaBptnAidng
ErBAEnwv Kabnyntig

AnuARtploc Zouvtpng
KaBnyntng

ABnva, OeBpoudplog 2022

/2

?’?
?

I-’ §.— 3
NMPOMHOEV §

X el===(
nvPPopos

|

EONIKO MET20BIO NMOAYTEXNEIO

2XOAH HAEKTPOAOTQN MHXANIKQON KAl MHXANIKQN YRNOAOTIZTQN

TOMEAZ TEXNOAOTIAZ YNOAOTIZTQN KAI [TAHPO®OPIKHE

A software analysis tool for Energy and Time-aware
function placement on the Edge

AumAwpatiki Epyacia

Mavvog MaBpnAidng

EruBAEnwv KaOnyntig

AnuNTPLOG ZoUVTPNC
KaBnyntng

EykpiBnke amo tnv tplpeAn e€etaotikn ertponn tnv 3" OePpouvapiov 2022.

AnuRtplog Zouvtpng MNavaywwtng Toavakag Alovuolog MNveupatikatog
KaBnyntig E.M.N. KaBnyntnc E.M.IN. KaBnyntng E.M.IM.

Copyright © MNavvocg NBpinAidng,2022
Me emidpuAaén mavtog dikawwpoatod. All rights reserved.

Anayopeletal n aviypadn, amobrnkevon kot Swavoun TG moapoloag
epyaociag, €€ oOAOKANPOU N TUAUATOG AUTNC, YLOL EUTTOPLKO OKOTIO. ETITpEMETAL
n avatunwon, amobnkeuon kot Slavoun yla okomo pn KePOOOKOTILKO,
EKTTOLOEVUTIKAG I EPEVVNTLKAG dUONC, LUTIO TNV PO UTOBEON va avadEpeTal n
Ttnyn mpoéAeuong kot va dtatnpeitol To moapov pnvupa. Epwtrpata mou
adopolv TN XPNon NG epyaciag yia KePOOOKOTIKO OKOTO TPEMEL Vo
arneuBuvovtal Tpog Tov cuyypadeEal.

OL amoOYPEeLg KOl TO CUMMEPACHOTO TIOU TIEPLEXOVTIAL OE QUTO TO €yypoado
ekppalouv TOV ouyypadéa Kal Oev TPEMEL v gpunveuBel otL
QVTUTPOOWTIEVOUV TI{ emionueg Oéoelg tou EBvikol MetooBlou
MoAuteyvelov.

Mavvocg NaPpinAidng

AutAwpoatoUyxog HAektpoAdyog Mnxavikog kot MnXavikog
YroAoylotwv E.M.I.

NepiAnyn

O 06poc¢ Kal cuykekplpéva n texvoloyia tou cloud computing povtélou (urtoAoyloTiko VEdog) €xel
UTEL yla T KaAd otn {wn Hog Ta TeAeutaia xpovia kal PAEmoupe toco TN {Ntnon 600 Kal tv
npoodopd cloud umnpeowwv va aufdvetal pe TaxlTatoug pubuolC. H avaykn Ouwg yla
amoBnkeuon Kal enefepyacio PeyAAwv OyKwv edopévwy o cuvduaoud e TNV évtagn OAo Kat
neploootepwy loT cuokeuwv oto Sladiktuo, aufdvel SPAPOTIKA TNV GUVOALKH KATAVAAWGN
evépyelag ota datacenters kat mopdAAnAa ¢épvel oe kivbuvo umoPdaBuLong TG CUVOALKAG

Mowotntag Ynnpeoiag (QoS) kat tng Nowotntag Eumnetpiag (QoE) tou xprotn.

To eVOAAOKTLKO UTIOAOYLOTIKO HoVTEND edge computing TPOTABNKE Kol XpNOLLOTIOLNONKE EMITUXWG
ota loT meplBaAlovta, He OKOTO va. PEPEL TOUC UTIOAOYLOMOUC TILO KOVTA OTOV TEALKO XPHOTN
HELWVOVTAG TOV OYKO Twv SeSOUEVWY TIOU ATOCTEAAOVTOL OTO VEDOG KAl KOTA CUVETELA TLC
KaBuoTepnoelg emiKowvwviag. Xpeldletal Aoutov va UTtdpxel ol gueliéioc otov TPOMO TOU
QVOTTUOOETOL £V AOYIOUIKO HE OKOTIO va Tpefel ot meplBdMov védoug yU autd Kkal Ta
«containers» givat oAU Stadedopéva oTic LEPEG paG. Ta «containers» EL0AYOUV OTO LOVTEAO QUTO
TO «microservices» Kol tnv €vvola tou serverless computing oOudwva pe tnv omola KaBe
ETUUEPOUG AELTOUPYLKOTNTA UIOPEl var UAoTolnBel autdvoua Kal aveEdptnta xwplg va amatteital

T(POKATOVO UTIOAOYLOTIKWY TIOPWV.

Ze autn tn SutAwpaTikh epyacia, mapoucldloupe éva epyaleio To omolo mpoteivel éva TpoOmo Ue
Tov omoio Ba prnopolcav va TPEEOUV OL EMIUEPOUG CUVAPTHOELS EVOC LOVOALBLKOU KwdLka 0 omolog
TPENEL va TPEEEL o€ serverless meplBAAAov, €10l wote e SeS0UEVO KATIOLO OVWTATO OPLO XPOVOU
eKTEAEONG va emuteuxBel n ehdywotn Suvatr KOTAVOAWGON €VEPYELAC OTA UNXOVAMOTA TIOU
amotedovv 10 TepBarlov cloud-edge TO omoilo Xpnotpomoleital. To TmeplBAAAov auto
EVOPXNOTPWVETOL MO TOV KUBEPVATN Kol yla TtV Oloxelplon Twv EMUEPOUC OCUVOPTHCEWV
xpnotuomnoleital n matdoppa avowytol kwdika OpenFaaS. To epyaleio Lo XPNOLUOTOLEL TEXVLKEC
UNXOVLIKAC LABnong yia TG mpoPALPELg evépyelag Kol XpOvou Kal avoAUel To apyxeio kwdika mou
TOU SlveTal WG MPOG TN UVAUN KAl TOo XpOvVo Tou amaltel kaBes emipépoug ouvaptnon tou. H
aélomoinon tng mAnpodopiag autAc Kot n amodaon yla tnv TeAKr mpotoon yivetal pe t Bonbesia

£VOC alyopiBuou ghaylotonoinong Ke pooeyyLoTkr Avaon.

NEEeLg KAeLdLa: <<Aloeiplon mopwv, KuBepvrteg, OpenFaaS, Evopxfiotpwon akétwy, Aladiktuo

Twv Npaypdtwv, Edge Computing, Serverless Computing>>

Abstract

The technology of the cloud computing model has entered our lives for good in recent years and
we can easily see both the demand and the supply of public and private cloud services growing
rapidly. However, the need to store and process large volumes of data in combination with the
integration of more and more loT devices on the Internet increases dramatically the total power
consumption in datacenters and at the same time puts at risk the overall Quality of Service (QoS)

and Quality of Experience (QoE).

Edge computing model was proposed and used successfully in 1oT environments, in order to bring
the computations and the process of the data closer to the end user by reducing the volume of
data sent to the cloud and reduce communication delays. So there needs to be a flexibility in the
way cloud-native software is developed and for this "containers" are very common nowadays.
"Containers" introduced "microservices" in this model and also the concept of serverless
computing according to which each individual functionality can be implemented independently,

without the need for any pre-allocation of computing resources.

In this thesis, we present a tool that proposes a way in which the individual functions of a
monolithic code could run in a serverless environment, so that given a maximum runtime
threshold, the minimum possible energy consumption in devices is achieved. These devices consist
our serverless infrastructure (cluster), they are orchestrated by Kubernetes and the deployment of
our code is managed by a scalable, fault-tolerant event-driven serverless platform called OpenFaasS.
Our tool uses machine learning techniques for energy and time predictions and analyzes (profiles)
the code file given in terms of memory allocation and the run-time required for each of its
individual functions. The utilization of this information and the decision for the final proposal is

achieved with the help of our self-developed minimization algorithm with approximate solution.

Keywords: << Resource Management, Kubernetes, OpenFaaS, Container Orchestration, Internet

of Things, Edge Computing, Serverless Computing >>

Euxaplotieg

@Otavovtag edw Ba BeAa va euXAPLOTHOW TA ATOMA Ta onola Hou otabnkav Kot pe Bondnoav
OAov auTo Tov Kalpo. Apxlka, Ba nBsAa va euxapLotiow tov KaBnyntr Anuntpn 2ouvipn o Omoiog
LLE EUTILOTEVUTNKE QTIO TNV TIPWTN OTLYLN YL TV EKTIOVNON AUTAE TNG SUTAWUATIKAG epyaciag péoa
ano tnv omola €uaba MoAAG, aveémtuéa Se€LOTNTEG Kal UmAoUTION TIG YVWOELG Hou. Emiong, Ba
NnBeha va EuXaPLOTHOW TO €PYAOTHPLO TS oX0ANg, Microlab, yia toug mopouc nmou S1€Bs0e OMWG
eniong euxaplotw toug urtoPrdloug Stddaktopeg Xapalapmno Mapdvto kot AxtAMEa Tlevetomoulo

yla Tov XpOvo Toug, TNV moAuTiun BonbeLa, urtopovn kat kaBodrynaon Toug.

‘Eva TEPAOTIO €UXAPLOTW OTOUC avBpwroug mou otddnkav SimAa pou OAa autd to opopda
doLtnTka Xpovia Kol 0 KABe €vag e ToV SIKO TOU TPOTOU GUVEBOAE OTO va yivw aUTOG TTou elpal
onuepa. TENOG, TO TILO PEYAAO EUXOPLOTW OTOUG avBpwrioug mou Ppiokovtal mavta SimAa pou Kat
UE otnpilouv He TNV QyAmn KoL TNV €UTMLOTOOUVN TIOU Jou Selyvouv, oTnv OLKOYEVELD OU, TIOU

Xwpic autoug dev Ba édptava pEXPL edw.

Adlepwpévo otoug yoveic pou, Mapia kat Evayopa, kot otov adepdo pou Mavaylwn.

10

11

Nepiexopeva (Table of Contents)

1 EKTETAMEVN EAANVIKN MEPIANWN c.cceeeeeeccceeercecereeeccce e eeeesaneeseeeeeees 15
00 R e [UAVZ o Ze> Yoo Lo I U Lo L P PSP SU RSP 19
1.2 NEPOHUOTIKO TIEPLBOAAOVvvieiieeitee sttt e eteeestte e s te e e staeesnteesntee e snbeeeseeesseeesnreeesneeennees 20
T T 0 Vo 1 (o 11y o o W ST O U PRSP RROTRRRO 22
IR 11 (o) w3, ¥Yo UL o (o LYo ToY Vo1V Vo o H SR 24

2 INtrodUCtioN ..cccuueiiiiiiiiiiiicc e 28
2.1 Internet Of ThiNGS ... srree e 28
D A o F - @] 0 o1 o Ui o =PRI 30
2.3 Serverless COMPULINGccuviie et e e e st ae e e e sta e e e s s tae e e e snrreeeeans 35
2.4 Virtualization and Deploymentccooiiiiiiiiiiii e 38

241 Virtual MAChiNEScoooiiiiiiici e 38
2.4.2 CONLAINEIS. ...cuitiiiieeiiiteiet ettt b et nn et n b anes 39
2.5 THESIS OVEIVIEW ..ottt bbbttt 41

3 Related WOrKccooiiiiimemmiiiiiiiiieieetcccinn e 42

4 Technical background.........cceveeeiieiiieecrienierreneerennerennerenseerenseeennncssnnes 45
4.1 Docker: A CONTAINET FUNTIME......ciiiiiriiieieieese et 45

411 Docker CHENt @Nd SEIVETocoviiiiriiireieee e 46
4.1.2 DOCKEE IMAGEScotiiiiitiieeieieieesit ettt bttt bbb 46
G T B o Tox] gl o (=T |1 Y PP 47
4.1.4 DOCKEE CONLAINETS.....ccuiiiiteieieiiiiisie sttt sttt e sn e 47
4.2 Kubernetes: A container OrChESIIAtOr.ccvviviiiiriie s 47
4.2.1 Control Plane (Master) COMPONENTS.........ccueveiriririerienie e 49
4.2.2 Node (Worker) COMPONENLScceiiiiieiiieeee et 50
4.2.3 KBS VS KBS ..ttt e 51
O T O o 1= 1] o 1 TSRS PPROPRN 53
4.3.1 OpenFaaS Design & ArchiteCtUre.........ccooovvieiiiiee e e 54

12

4.4 Machine Learning — Predictive Modeling..........ccccooeiiiiiiiiiene e
441 LiNEAr REOIESSIONoitiiiteieietieii sttt sttt n e
4.4.2 DeCiSion Tree REQIESSIONc.civiieieiie ettt ee et se e e sr e e sreens

Proposed approachcccoiveeiiiiiiieiiiiiiniiiiiesssesessneees

5.1 PrOfilING oo ettt nae s
5.1.1 1% Step — Memory Profilingccocovveviviieieeieeeeee e
5.1.2 2" Step — TimMe Profiling.....cccevevcicicieiieieceeeeeeeesee et

5.2 Energy and Time PrediCtionScccciiieiiiiiiie it sre st sae s
52.1 BuUilding the dataSeLS.........ccccuiiiiriiiiieieieie e
522 Prediction MOdel DECISIONccciriiiiiiiiiiciiciesesee s

5.3 Placing algorithmcoooeicic e
5.3.1 Knapsack and Multiple knapsack problem..........ccccccociviiviiieiiinisie e
5.3.2 Problem Definitionccoouiiiiiiiiieieieee e
5.3.3 AlGOIITNM e et ne
5.3.4 Algorithm Implementation.........ccccooveiiiiiii i e

Experimental Evaluation.........ccccceeeeiiiiiiiiiiiiiiiiiiiiiiiiniinenineneeeneeeeeeeeenenen,

6.1 EXPErimental SELUDcociiiiii ittt sttt nae s
B.1.1 EAQE DBVICESoeeeiiieiiecieeie sttt sttt sttt sttt ste st et sre e re e nrennen
6.1.2 Evaluated APPLCAtIONccciiiiiiicie e

T - 10U o] SRS PS
6.2.1 Experimental ProCRAUIE..........coiiiieie et

6.2.2 Results and Kubernetes Comparison

7.1
7.2

Conclusion and FULUFE WOrK.....ccveieeieireireieireiteeeireseeresreseesseressessressenaes

SUMMANY ..o

FUuture WOorkoooeeceeeeeeeeeeeeeeeee

BLBALOYPADIO / REFErENCESceeveeeeeeeeeiieirieieeeeeeeeeeeeeeeeeeeeseeeeeseeeseseseeeens

13

14

Extetaugvn EAAnvikn MepiAnyn

Ta televtala xpovia, n paydaia avamtuén tng texvohoyiag dEpvel OAO KAl MEPLOCOTEPES
NAEKTPOVIKEC OUOCKEUEC oOTnV KoOnuepwvotnta pag. OL MePLOoOTEPEG AMO QAUTEC £lvol
ouvexws ouvdedepéveg oto Sladiktuo kol mpoodépouv oTov Xpnotn Hla mAnBwpa
ebapuoywv. Q¢ ek ToUTOU, UMAPXEL N OVAYKN Yyla €va VEO TPOTUMO OTNV ETLKOWVWVIA
Machine2Machine mou emutpénel t ocuvdeopotnta twv "Mpaypdtwv" oto MaykoouLo

Aladiktuo. AuTO TO TIPOTUTIO £ival YWwWoTO pe tov 6po loT.

To Internet of Things (loT) eival éva 6ikTuo PUOKWVY AVTIKEWWEVWY, CUCKEUWY, OXNUATWY,
KTlplwv oAAG Kol GAAWV QVTIKELEVWY TA OTOLO TIEPLEXOUV EVOWUATWHEVO NAEKTPOVIKA
oUCTAMATA, AOYLOMIKA, aloOntipec kat duvatotnta ouvdeong oto SLadiktuo, KATL Tou
ETUTPEMEL OS OUTA TA OVIIKE(pEVA va cUM\éyouv, va avtaldooouv Ssdopéva kol va
ETILKOLWVWVOUV YeVIKOTEPA PETAEY Touc. To loT Sivel tn Suvatdtnta ota OVIKEIPEVA QUTA va
gAéyyovtal £€ 'OmMOOTACEWG HEOW TNG UTIAPXOUCAC SIKTUOKAG UTTOSOUAC SNULOUPYWVTOG
EUKALPIEG AUEONG EVOWUATWONG TOU GUCLKOU KOOUOU HE TA UTIOAOYLOTLKA CUOTHUOTA
€XOVTOC WG AMOTEAECHA TN BEATIWON TNE AMOTEAECUATIKOTNTOG KAl TNG akpiBelag aAAd Kat
N Helwon tou KOoToug. Amd tnv otlyur paAlota mou to loT efomAiletal pe aoBntnpeg
amoteAel HEpog EEUTIVWV CUOTNUATWY TNG KABNUEPLVOTNTAG OMwG ival ta £€umva omitia,

oxnuota Kal ToOAels. Kabe avtikeipevo avayvwplletal povadikd amd To eVOWHATWUEVO

15

UTIOAOYLOTIKO cUOTNUO KoL UTTopEl var AelToupyel TOOO auTtOVopO 000 KoL OE cuvepyacoia Ue

TNV uTtdAounn Stadiktuakn urmtodoun).

Q¢ ouvénela, Snuloupyeital kKabBnuepva €vag TepAOTLOC OYKOG SeSOUEVWY TIOU TO TOPOV
povtého tou Cloud Computing (védog) Sev pmopel va Siaxelplotel amodotikd. O OyKog
outog Ba ouveyioel va peyoAwvel, kabwg ta Siktua 5G avapévetal va auvfoouv akoun
TIEPLOCGOTEPO TOV apLlOUd Twv cuvdedepévwv mobile cuokeuwv. AkOpa, N acdpalela Kal n
TaxVtnta emikowwviag pe to védog, yivetal 0Ao kal mo SuokoAn 6co mAnBaivouv ot
XPNOTEC Kal N KAHOKA TNG KATAVOUNC TWV CUCKEUWV auédavetal. NpooBEtovtag os autd ta
npoPBAnuara, ot anattioslg (QualityOfService), ano amon mopwv Kol kKabuotépnong, Twv
epappoywv €xouv au€nbel oe mMOAU peydho PBabud pe TG ePopUOyEC TALOV va
XPNOLUOTIOOUY Katd KUplo Adyw Loxupd Hovtéda Mnxavikng Mabnong, Neupwvikwv

Awktuwv kat Texvntic Nonpoolvng.

AUon ota mPoBARUATA TTOU TTOPOUCLALEL TTAEOV TO UTIOAOYLOTIKO VEDOC £pXETaL Vo SWOEL N
texvoloyla tou Edge Computing 6mou ot umtoAoyLlopol A€oV yivovtal oTo dkpo Tou SIKTuou,
ekel Omou apywkd Onuwoupyolvtal. To Edge Computing elvat n Swadkaocia 1ng
QTTOKEVTPWONG TwV IT UMOSOUWVY Kal N TOMoBETNONG TOUG OTNV TNy Twv SeSouEvwy,
onAadn oto «Aakpo» Tou Siktuou. ETol, €AAXLOTOTIOLOUVTAL OL QVAYKEG YLOL ETILKOLVWVIEG
HEYOAWY amooTaoewv PETaty client (attnth) kot server (e€umnpPeINTr), YEYOVOC TTOU HELWVEL

Vv kaBuotépnon Kal tn xprion tou bandwidth.

To Edge Computing mpoodEpel o amoTeAeopaTIK evaAAaKTIKY: Ta deSopéva yivovtal
avTikelpevo emefepyaociag kol oavdaAuong TOAU TIO KOvtA OTo onpelo mou €xouv
onuoupynBel. Kal dedopévou mwg dev xpeldletal va petakivnBouv oto cloud 1 oe
datacenter yla ene€epyaoia, n kabuotépnon eivat onpavtka Ayotepn. To Edge Computing
(katt To mobile Edge Computing ota Siktua 5G) emutpénel TaxUTEPN KAl TILO OAOKANPWHEVN
avaAuon Sedopévwy, apéxovtog eukalpieg yLo o aflomiota insights, Taxutepoug xpdvoug

ardkpLlong Kat BeATLwUEVN epmeLlpia TeEAATWY.

Ta mAeovektnuata tou Edge Computing sivat adtapdiopninta n pelwon k6otoug, n peiwaon
TLOAUTIAOKOTNTOG TNG OPXLTEKTOVIKNG TWV UTIOSOUWY Kal N pelwon avaykng diaxeipiong. H
avantuén tng ayopdg tou Edge Computing eival cadng kot avodikr). MdaAlota, n Gartner
EKTIMA OTL UEXPL TO 2025 TO 75% Twv OSedopévwv Ba enefepyalovial €KTOG TOU

napadooiakol Data Centre r} tou cloud [1].

16

NapdAAnAa pe to Edge Computing fekivnoe va avamtUoosTal OKOWN ML Kolvoupyla
texvoloyla mou ovopdaletat Fog Computing (umoAoylotiky opixAn). To Fog Computing
anoteAel éva eninedo umoAoylopol petafl tou védoug kot tou edge. Otav to Edge
Computing mpoonaBei va oteilel tepaotieg pogg Sedopévwy ameubeiag oto cloud, To Fog
Computing pmopet va AdPet ta Sedopéva and to emninedo Edge mplv dptacouv oto cloud kat
oTn OuVEXeld va amodooioel TL elval OXeTkKO Kol T Oxl. To oxetikd O&edopéva
amoBbnkevovtal - petadépovral oto cloud, evw Ta doxeta OSebopéva pmopouv va
Slaypadolv i va avaAuBouv oto eninedo tou Fog ylo remote access N ylo evnUEPWON
TOTIKWY MOVTEAWV HNXOVIKAG HABnong. Mo kdtw oto oxnua 1.1 yivetatr €exabapn n

Lepapyia mou emikpatei ota neplocotepa loT meplBaiAovta onuepa.

Cloud Layer

e & Controllers
Fog Layer g o s '
' IoT Sensors
& Controllers

Edge Layer 27 g '
b . IoT Sensors
& Controllers

Fig 1.1: Cloud, Fog and Edge Computing Structure [2].

Map 6Aa autd mpokUTITouV GAAO TtpoBANUaTa, KABWE OL CUOKEVECG OTNV AKPn Tou SLkTtUou
glval TOAU TILO TIEPLOPLOUEVEG, OXETIKA UE TOUC TOPOUG Tou Slabétouv, amod oUTEC TOU
védpoug. Emiong, plog kot umapxel kaBe eiboug ocuoksurp otnv AGKpn Tou SiKTUou
(tnAeopdoelg, kwntd, Yuyeia, auvtokivnto KtA.) n ewovomoinon (virtualization) twv
edapuoywv o autod to TepPaAlov mpoodépel Ty KataAAnAotepn AUon. H mapoloa
TEXVIKN TIOU XpnoLUoTolel €lkovikEG pnxavég (Virtual Machines) g 6a umopouos va
SoUAéel og €va TETOLo EPLBAAAOV AOYWw TwV UPNAWV ATTALTHCEWY TNG O€ UVALN KoBwg Kat
enefepyaoctiky SUvapn. IUVENMWG, EMAEYETAL WLO KOWVOUPYLld TEXVLIKA) TIOU A£yetal

Containerization.

17

Ta Containers Aoutov eival €va TpPOmMog elkovomoinong piag sdappoyns. To kUpLo
XOPOKTNPLOTIKO, TIOU Ta KAVEL va emhéyovtal and ta Virtual Machines, sivat kupiwg n
«ehadpotnta» kal n gvelifio toug. Asopelouv TOAU AlyOTEPO XWPO KoL €ival TOAU Tlo
ypnyopa kot anodotikd. Emnpdcbeta, Aettoupyolv MAVW OTOV MUPHRVA TOU GUGTILATOC TOU
host machine (owko8eomotn) Kkal xpnowdomnololv ameuBelag mopoug kot PLPALOOAKESG Tou
OUCTAUATOC, XWPLG KATOL0 eTMAE0OV OTPpWUA AoYLopIKoU. ETol £pxetal Kal n Aoyl Twv
microservices. Onw¢ avadépape Kal vwpitepa Opwg, To MARBog Twv edappoywv eival
e€alpetik@ peydlo kot oxedov aduvato va To Slaxelplotel KAmolog. Emopévwg,
dnuloupynBnkav Sopég yla container orchestration, ywa epyoieio SnAadn ToU
Slayelpifovral auTéG TIC Texvoloyieg, pe Kopudala Kal emikpatéotepn toug KuBepvrteg

(Kubernetes).

O KuBepvntng (k8s kat k3s) eival €évag evopxnotpwtng MAKETWY TTOU XpNOoLUOToLEiTaL KOTA
KOpovV 0e OAa TO UTOAOYLOTIKA ouoTApata. H avayvwplon amd Ttov KOOUO Tou
TMPOYPOUHATIOHOU KaBwg Kat ol duvatotnteg Tou, Holdlouv ameploplotsg. Eilval
oxedlaopévol yla va Slaxelpilovral tTepAotio MANBOC CUCKEUWV Kol epapuoywv. Me GAAa

AOyLa, gival eldika oxedlacpévol yla meptBaiiovta védoug.

Metad tnv afloonueiwtn cuvelopopd tou virtualization kat Twv containers otnv Blopnyavia
tou software development &nulovpynBnke TAEov n avAykn Tou pay-per-use HOVTEAOU,
6nAadn tng mapoxn UMnpecLwv VEdouG LLE TETOLO TPOTIO WOTE VAL KEMLBAPUVETALY O XPOTNG
LE TO KOOTOC XPNong HLaG mopoxng, umnpeoiog, sdappoyng HOVo yla 000 Xpovo Tn
XPNOLUOTIOLEL | AKOUN Vo Tou SlveTal Kal n sukalpia va xpnotpormnolel povo ooa features -

XOPAKTNPLOTIKA TNG £DAPHOYNACS XPELALETAL YLIOL OGO XPOVO Ta XPELAlETOL.

‘Etol Aoumov avamntuxbnke to povtédo tou Serverless Computing cUudwva pe to omoio o
ekadotote developer pmopei va ypael Tov KwSLKa TOu XwPIC vo £XEL va SLAXELPLOTEL KATIOLO
server (0An n Staxeiplon yivetol amo tov cloud service provider) kot 0Tn CUVEXELA O KWOLKAG
QUTOG propel va evowpatwBOel oav éva container kol va ekteleitol povo kabe dopd mou
KaAeitol. Mmopel emiong va yivel scale-up or down cUpdwva Pe TIC AVAYKEG TTOU UTTAPXOUV
KATL TIou evioXUeL TV omAotnTa Katd tn Otdpkela avamtuéng tou Aoylopkol. To
EKTEAEOTIKO HOVTEAO autO ovopdletal Function-as-a-Service (FaaS) omou ouclaoTiKA ol
TIPOYPOUUOTIOTEG €€akolouBolv va ypdadouv pe custom server-side Aoyikr, aAld n
Slaxeiplon yivetal pe containers ta omola dlaxelpiletal MANPWE EVOg TAPOXOG UTINPECLWV

cloud.

18

H Siaxeiplon evépyelag wotdoo ota Datacenters twv mapoxwv unnpeowwv cloud amoteAet
€va onUavtiko mapayovrto enifAedng tou QoS Twv UNMNPECLWY TOUC OAAG KOl TNG HElwon
TO0O TOU TEPLBAANOVIIKOU QAMOTUTTWHATOG TOUG OCO KAl TOU KOOTOUG CUVTNPNONG TOU
efomAlopol Toug. H paydaia avfnon KvnTtkOTNTAG Kol avaykng yla umnpeoieg cloud
tomoBetel tnv emnifAedn Kal Tnv cwoth Slaxelplon tng evEPyELOC TPWTN Ot AloTa Twv
napoywv cloud unnpeolwv avadoplkd pe TN BLWOLUOTNTA TOUG. To KUPLO QVTLKEIHEVO TNG
HEAETNG Hag AoLmov, eival va PpeBel i £€0Tw va MPooeyyLloTel pa KoAr] TEXVIKA WOTE O €va
serverless TmeplpadMov Tou amoteleital amd Sadopwv E6WV CUOKEUEG KOl
EVOPXNOTPWVETOL e KUPBEPVATN, n TomoBétnon twv ekdotote containers — serverless

functions oTIg CUGKEUEG QUTEG VOl YLVETAL LE TOV TILO EVEPYNTLKA AmoS0TLKO TPOTO.

1.1 H ouvelopopa uag

Apxkd Snuloupynoape £vo epyaleio pe to omoio kavoupe profiling Tov kwdika mou pog
Silvetal. H avaluon auth yivetal oto design time (katd tov oxedlacuo tng ebapuoync) Kat
og unxavnpa S1adopeTIko Ao TIG CUOKEVEG OKUNG. Mo cuykekplpéva to profiling yivetal os
Intel x86 punxdvnua oe avtiBeon pe TIG ETEPOYEVEG CUOKEUEG AKLNG TTOU amoTeAolV To edge
neplBaAlov pag. Fpoapun ava ypappn eAEéyXoupe To HéEyeBoG UvhANG TTou amaltel n kabe
EVIOAN OQAAA KOL TO XPOVO TOU XPELAZETAL ylo va TPEEEL OTO KOWO HNXAvVNUQ TIOU
XPNOLLOTIOLOUE YLa TNV OVAAUCT, KOTAARYOVTAG £TOL OTN GUVOALKA UVAKN KAl XpOVo Tou
Xpelaletal KABe ouvapTnNon Tou LOVOALBIKOU KWALKA. TN CUVEXELX e HLOVTEAA TIPOPBAEPNG
(Linear ko Decision Tree Regression) mpoBAEMoupE To XpOvo Tou Ba xpelaoctel o KwdKag va
TpEel o kABe ouokeun tou cluster pag aAAd KAl TNV eVEPYELD TTOU Ba KATAVAAWOEL OE KABE
pLo ard autég. Télog, ta Sebopéva autd ta enefepyaldpacts HEow evdg alyopibuou mou
avantuéape Ue TeAkd oTOXO TNV TOMOOETNON TWV EKACTOTE CUVOPTHOEWY UE ToV BEATLOTO

gvepyelakd tpomo Staodalilovtag to emtBupntd Oplo cuvollkoU xpovou Tou opilel o

xprotng.

19

1.2 NMepauatiko nept8aiiov

To oUotnua mou dnuwoupyndnke yia tnv afloAdynon tou aAlyopiBuou pag amoteAeital amno
Lo ewovikn unxavry (VM) kat tpeic Edge ouokeuég. OL TPei¢ OUTEC OUOKEUEG
XpnoLlpomolouvtal w¢ koupol epyateg (worker nodes) otov (lightweight) KuBepvitn - k3s,
EVW N ELKOVLKNA HNXavr, ovtag n mo duvartr), Xpnolomnoleital w¢ KOUPog SLaXeLlpLOTAC.
Eniong, elvat MoAU onuavtiko va avadepbel OTL oL TEooepel; CUOKEUEG SLadEPouv Kal oE
apxltektovikn emnefepyaoctr). OL tpei¢ Edge OUOKEUEG XPNOLUOTIOLOUV TNV OPXLTEKTOVLKN
Aarch64 n Arm64, evw n €IKOVLKN KnXovh otnpiletal o PNXAavno Tou TPEXEL 0TO KAOOGLKO
x86_64. H Baoikn toug dtadopa ival otL ol Arm enefepyaoteg eival tomou RISC (Reduced
Instruction Set Computer) kol €mMopévwg TOAU TLo Talplootol kot Stadebopévol o€

EVOWUOTWUEVA CUCTHLLOTA.

3TN ouvéxela evowpatwoape otov KuPBepvitn to OpenFaaS, plo mAatdpopua avolytou
kwdika, dnuioupyiag kat Slaxeiplong serverless ebpopupoywv. Me t Bonbela tou Docker,
plog emiong mAatdpopuag avolxtol KwolKa Baviky yla evowpdtwon sdapuoywyv o€
containers, to OpenFaaS mop£xel Tn SuvVaTOTNTA EVOWHATWONG, EKTEAEONG Kal Slaxeiplong
omolaodnnote edappoyng ocav serverless cuvaptnon. OUCLAOTIKA TPOKELTOL yLa €va

epyaleio anoouvBeong ehapUOYWY OE KPOTEPEG LOVASEG Epyaciag.

To teAeuTaio Kal avayKaio CUCTATIKO TWV TEPAUATWY ATOV N SOKLUACTIKA edappoyr Kot n
aflohoynon tng. MAgov, n MANBwpA TwWV HOPUOYWV OL OTIOLEC XpNOLUOTIOLOUVTAL O KABE
otadlo Computing, eivat Texvntic Nonpoouvng i kat Mnxavikng Maénong. No avtd tov
Aoyo, smhé€ope tn BLBALOOAKN pNXavikng padnong tng python, scikit-learn . H Scikit-learn
(Sklearn) eivat pia oAU xpriown Kal woxuph BLBALOOAKN UNXavIKAg Labnong otnv python
KOl TtapEXEL ULt eTAOYN €PYOAELWV TOCO ylo HNXAVIK KABNon 000 Kol ylo OTATLOTIKN
povtehonoinon. H python w¢ yAwooa mpoypappatiopol emAeéxBnke kabBwg amoteAel pia
amd TIG LOXUPOTEPEC ETUAOYEG OE TEXVOAOYIEG HUNXOVIKNAG HABNONG Kal XpnoLuormoleital

OpKEeTA o€ serverless mepBaiiovra.

20

To meptBarlov mou dnpoupynOnke amewoviletat oto IxNuo 1.2:

Worker

OPENFAAS

Master

Worker

Fig 1.2: Infrastructure.

21

1.3 YAomoinon

AdoU Aoutov etolpdoape to mepBarlov oto omoio Ba aflohoyrniooupe TN AlUon Uag,
neplypadoupe tn Sladikaoia mou akoAouBrjoape yla va TpEEOUNE TNV edapuoyr OMwE

daivetal kat oto Ixnua 1.3.1.

Solution

Proposed . ©
o
[]

Detailhs of the Placing decision
application algorithm

LA :
L = | m— |
| e] s] e | E—
g | s— | -
|= ===> @]
Monolit_hic _code - Time and. . Time ar?d _Energy Cluster details
Application Memory Profiling Predictions

Fig 1.3.1: Evaluation procedure.

ApXLKA eLodyoupe TNV edbappoy we Eva HovoAlOkd kwdika pe SLtadopeg CUVAPTHOELS KoL
K&voupe to Baotko profiling xpnowwonowwvtag epyaleia tng python, tov python memory
profiler ywa to profiling tng pvAung mou xpetdietal kaBe ouvaptnon kat Tov cProfiler yia va
SoUpE To XpOVOo ToU XPEeLAeTal N cuvapTtnon va TPEEeL oto host pnxavnua mou ekteAel to

profiling.

3TN CUVEXELA XPNOLUOTIOLOU UE HoVTEAQ TTPOBAEPNG YL VO EKTIUACOUE TNV EVEPYELA TTIOU Bal
XPELOOTEL KABE cuvaptnaon otnv KABe cuokeur) Tou mepLBaAlovtog pog. Tnv dla Stadikaoia
okoAouBoUpE Kal yla TNV EKTIUNON TOou XpOvou Tou Ba xpelaotel kABe cuvaptnaon yla va

TpEteL og KABe cuoKeun).

22

O XpNotng €L0AyeL oTOV OAYOPLOUO AEMTOUEPELEG OXETIKA HE TO TEPLBAAAOV (aplBuo Kat
TUTIW CUOKEUWV TIou amoteAolV To serverless meplBallov yla to omoio B€AsL va pabel tn
BEATLOTN TOMOBETNON TWV CUVAPTACEWY), TO OPLO XPOVOU TOU €MIBUUEL £TOL WOTE va £XEL
oMokAnpwBel n exktédeon oAOKANpou Tou KwWSWKA Kal TEAOG tnv ermdoyn av BEAeL va
enefepyaotel n Sladlkaoia €KTEAECNC TWV CUVAPTHOEWV WG TAPAAANAQ eKTEAECLUN N

OELPLOKAL.

TéAoGg 0 aAyoplBuog adol €xel OAa TO MOPATIAVW OAV €(0060, EUMVEUCHEVOG ATIO TOV
simulated annealing algorithm (aAyoplBuog BeAtiotomolnuévng avalntnong), Soklpalel
OpPKETOUG ouvluaopoUg, MEoa amd TPAEELC TMIVAKWY, Kol KataAnysl otn Alon n omola
e€aodalilel tnv ehaylotn Suvartr) MPOBAEMOUEVN KATAVOAWGT EVEPYELAC N OTIOLOl LKAVOTTOLEL
TO XPOVIKO Oplo Tou £Beoe o0 Xprotng. H mpotelvopevn Abon tou alydplBuou mapouaotdletol
oav £vag binary map table pe otrAeg mou opilouv ta nodes Kol YpOUUES TTOU opllouv TIg
ouvaptnoels. O mivakag, onwc daivetal kot oto Ixnua 1.3.2, £xeL povo éva «1» otn Kabe
ypouun kabweg kabs ouvaptnon pnopei va tomoBetnBel povo pila popd kot povo os Eva
KOpPBo. H otnAn mou €xeL «1» opiletal wG o KOUPog otov omoio Ba tpoxoSpounbel n

OUVAPTNON TIOU QVTLOTOLXEL OTNV GUYKEKPLUEVN YPOLLLUE.

#_of_nodes (m)

/ 0 0 1
1 0 0
0 1 0
0 1 0
of functions(n)
1 0 0
Map Table
nxm

Fig 1.3.2: Proposed solution map table.

23

1.4 AmnoteAéouara kat AétoAoynon

MNa va oaflohoyooupe Tov QaAyoplOUO pOCG, XPNOLWMOTOLNCOUE Ml £dappoy Tou
anoteAeital amod 25 GUVAPTACELG NXOVIKNG LABNoNG, TG omoieg cuvavtape otn BLBALoONAKN
¢ python, scikit-learn. Aut n povoAlBikn edappoyr) HE TIC ETUUEPOUC AELTOUPYLEC TNG
npoKeltal v xwplotel oe 25 avefdptnta serverless functions kol va ekteAeotel oto

nieplBaAlov tou OpenFaaS e TOV TILO EVEPYELAKA OTOSOTIKO TPOTIO.

O oAyoplOUOC pOG KAVEL €MIONG TIPOTAOEL OVAAOYA HE TOV OATMOSEKTO OCUVOALKO XPOVO
EKTEAEONC TIOU SIVETAL Ao TNV XPNOTN, EMOMEVWE gival evlladEpov va SOKIUACOUUE TN
oupneplpopd TWV TPOTACEWY HOG OTAV O XPHOTNG MPOOTAOEl va HUELWOEL TOV CUVOALKO
XPOVO €KTEAEONG KOl OTO TEAOC va TIPOKUPEL 0 €AAXLOTOC XPOVOC ekTtEAeong, SnAadn o

€AAXLOTOG XPOVOG TIOU UIOPEL v TPEEEL N EdAPLIOYT) OTO CUYKEKPLUEVO TIEPLBAAAOV.

H Swadikaoia Aoumov mou akoAouBrjoape eival amif. Mpwta, tpé€ape Tov alyoplBuo Kot
MAPAMUE TNV TPWTIN TPATACH. ITN OUVEXELD, CUVEXIOOUE VA UELWVOUUE TOV emBupnto

OUVOALKO XpOVo ekTéAeong PEXPL va GTACOUUE otnv mpPotaon e Tov ghdyloto xpovo. O

oAyoplOuoc pag €édwoes 9 MpoTAcel;, n Kabeulo pe ULKPOTEPO GUVOALKO XpOVO Omod TNV

@ g@ @@ 122.8)
00 ’"
@@ 1%%.55

TLPONYOUUEVN.

On @
(12

% o N7
(t&)

@® 19575

3

(5 JllC2)

114.2J
e@’
(eI}, /

(1)
@ 96.45

1 2 3
Device

oo o
o e
(o
19&2325

2 3

3

Device

Device

Device

(a) Time threshold = 200s (b) Time threshold = 195s (c) Time threshold = 194s (d) Time threshold = 193s

Fig 1.4.1: MNapadetyua TomodeTNONC CUVOPTNOEWVY UELWVOVTHC TOV ETMIGUUNTO OUVOALKO

XPOVO EKTEAEONC

Ta anoteAéopota mou pog 668nkav ano tov aAyoplBuo sival autd mou meplévape. Onwg
daivetal oto Ixnua 1.4.1, o aAyoplOUOC HaG TPOTEWVE QpPXLKA Hla AUCn Omou OAn n
TOTOBETNON YWVOTAV OTLG TILO EVEPYELAKA OIMOSOTLKEG KL KYPYOPEG» GUOKEVEG (OUOKEUEG 2
Kal 3 - xavier). OTav OUWG XPELACTNKE VO UELWOOUE TOV GUVOALKO XPOVO €KTEAEONG, O
oAyOpLOUOC, TTIPOKELEVOU VAl ETUTUXEL TApaAANALopO, ot eltepn MpdTaon Xpnolponoince

KOLL TNV «TILO apynR» Kot OXL TO00 evepyelakd amodoTikr) ocuokeun (ouokeun 1 - nano) yla tnv

24

eKTEAEON ULlag amod TIC cUVAPTAOELS. To AMOTEAEGUA ATOV va UELWBOEL 0 CUVOALKOG XPOVOG
OTMWC eival Aoylko oAAG TapdAAnAa va auénBel n cuvolikr katavaAwon evépyetag. H (Sla
ouuneplpopa £xel mapatnpnbel Kal yla TG EMOUEVEG TIPOTACELG HEXPL VO GTACOUUE OTOV

€AA(LOTO XPOVO eKTEAEDCNG TTOU Ba pmopoloe va TPEEEL N edappoyn HOG.

‘EToL AoUtov eKTEAECAE TA MELPAUATO TWV OTOIWV Ta U0 ypadAHOTA TNG KATOYEYPOUUEVNG
OUVOALKNC KOTOVAAWGONG EVEPYELOG KOL TOU OUVOALKOU XPOVOoU €eKTEAECONG KABE mpoTAcNnS
napouctalovtal To KAtw. MapdAANAQ CUYKPIVOUUE QUTA TO OIOTEAECUATA HE TNV

npoPBAePn ou Sivetal amnod tov aAyoplBUo Kal tTnv TonoBETnon tou KuPBepvhtn.

Katd tnv eKTEAECN TWV MEPAUATWY HAG, TIOPATNPAOAUE OTL oL BeWpPNTIKA TTPOPBAETOUEVES
TIUEC TOOO TNG EVEPYELACG OCO KOL TOU XPOVOU gixav mopopola tdon Kot cupmnepldopd alda
urnpée kamola Stadopd AVARESA OTLG TIPAYHOTLKEG TLLEC TTIOU HUETPONKAV oo ta Epyaleia
HOG KOTA TNV EKTEAECN TWV CUVOPTNOEWY KOL OTLC TIPOPAETIOUEVEC TIUEG OO TO €PYAAEio
HOG. XpNOLUOTIOLWVTAG AOUTOV HEPIKA OTAQ EpYaAEia, UTTOPECAE VA UTIOAOYICOUE AUTO TO
KOOTOG Tou Bewpeital emipapuvon mou mpokaAeital amod tov KuBepvntn Kal to OpenFaas.
Mo CUYKEKPLUEVQ, TIOPATNPHOAUE OTL UTIAPXEL €vag TUTOG BopUBoOU OTIC LETPHOELS TIOU
TPoEPXETaL amd tnv (dla Tn cuokeun Kal dailvetal va eivat avEnpévog Adyw tng enidpaong
TOU KUPBEPVATN KO TOU TPOTIOU He Tov omoio to OpenFaaS emikowwvel e Tov KUpLo KOUPBO

(master node).

‘Etol Aowndy, yla va sipaote o akpBeic ota Slaypdppata afloAdynong, ovti yla Tig
TPoPAeNOpEVEG TLUEG TIou Sivel 0 OAyOpLOUOG XPNOLUOTIOCAUE TO HOBNUATIKO LOVIEAO
ermPapuvong KOoToug mou Sev eival timota dAo and tnv npdobeon Twv MPOPAENOUEVWV

TLLWV HE TO KOOTOC-00pUP0 MOU UTIOAOYLOAE TILO TIPLV.

Actual Energy using Mathematical Model VS Kubernetes

Placement

315
< 305
E 295 4 == Actual Energy
= 285 | e | [—
% 275 /l Predicted energy usign
S 265 u overhead model

255 Kubernetes Placement

1 2 3 4 5 6 7 8 9
Proposal

25

Fig 1.4.2 Energy Evaluation chart

Actual Time using Mathematical Model VS Kubernetes
Placement

e
[=]

| __T === Actual Time

w
%]

Predicted Time using
overhead model

Time (sec)

]
[%a]

1 2 3 A 5 6 7 8 g Kubemetes Placement

Proposal

Fig 1.4.3 Time Evaluation chart

310 IxAua 1.4.2 kot oto IxAua 1.4.3 mapatnpoUpe apXIKA OTL UTIAPXEL Eva UIKPO odAAua
HETAfl TwV TIPOPAETIOUEVWY KOl TWV TPAYHOTIKWY TLHWV, TO Omolo eilval apKetd
QVOPEVOUEVO KOBwWC Uumapxel mavta Xwpo¢ PeAtiwong Otav TMPOKELTAL yla HOVIEAQ
npoPAedng, ald pmopoUpe va TIOUUE OTL Kol ol 800 YpOoUpEG Kol oTic dUo ypadnuata
daivetal va akoAouBolv tnv iSla Tdon Kal cupneplPpopd KATL TTOU £ival TOAU GNUAVTIKO

KaBw¢ emPePfalwvetal n opbA Asttoupyia tou povtédou mpdPAedng.

Eniong, upmopoUpe va SoUpe OTL KOBWCG MELWVOUHE OUVEXWG TOV EMBUUNTO XpOVo
Aewtoupylog, N KATovaAwon eVEPYELAG auEAVETOL, OTIWE NTAV £TioNG avapevouevo kobwg o
aAyoplOuoc Eskivael va tomobetel cuvaptnoelg oto Ayotepo energy efficient nano device

yla va TTeTuXeL o pOAANALOUO.

Otav mpokettal va afloAoyrooupe Tov aAyoplOud pog os oxéon He TNV TomoBEtnon tou
KuBepvAtn, elval ONUOVTIKO VO EMLONUAVOUUE OTL amo ta Sedopéva TwV MELPAUATWY
TIPOKUTITEL OTL €AV OploOUUE €va XPOVIKO Oplo Tou eival peyaAUTepo amd Tov XPOvo
TomoBétnong mou TeTUXaiveEL O KUPBEPVATNG, EMITUYXAVOUUE, UE TN Alon pag, Aydtepn
katavalwon evépyelag. Eniong, xpnolponowwvtog To epyoAeio Hog, UopoUE vo opicoupe
£€val XpovikO Oplo xapnAotepo amd tnv tomoBétnon tou kuPepvAtn, To omoio Sivel otov
XPNOTN LOC TEPLOOOTEPO EAEYXO OXETIKA UE TO doptio epyaciog (workload), tn pon epyaciag
(workflow) kat tn ouvoAlkn tou eumetpia (QoS) otav xpnoipomolei tnv mMAatdopuo tou

OpenFaaSs kat tnv serverless apXLTEKTOVIKH).

Y€ pla Babutepn oTOTLOTIKA avAAuaon, TeTUXALE TTEPIMoOU £wG Kal 6% Alyotepn KOTAVAAWON

EVEPYELOG oUYKpivovtag Tn AUon pag ravra pe tnv default tomoBétnon tou kuBepvntn (6tav

26

To emBupNnTd XPovikod oplo —time threshold- gival mavw amd To CUVOALKO XPOVO EKTEAEONG
TtomobEtnong tou KuBepvntn, Onw¢ oto proposal 1) kol Heiwon Tou cuvoAlkol XpOvou
ekTéAeong €wg katl 11% otav o xpnotng pag embupel va exkteAéoel Tnv edapuoyn HE Lo
ypnyopo tpomo, mépa amo tov default tpdmo tomoBEtnong tou KuPBepvntn. ZUVOALKA,
ouvouAloVTag TNV EVEPYELAKN KAl XPOVIKN amddoon Kal Ta amoTteAéoHATa Tou gpyaleiou
pog, KatadEpope va TETUXOUUE ML KATtd Tepimou 2,6% KkoAUTepn TOmMoBLInOn TWV
OUVOPTAOEWY UaG oto serverless meplparlov, oe oxéon He Tov TpOmo Tnou Ba Ta

TomoBetovoe o i6log 0 KuBepvnTNC.

277

Introduction

2.1 Internet of Things

With no doubt Internet of Things (loT) has become one of the most rapidly increasing
technologies of the 21st century. Now that we want and can connect everyday objects like
humidity sensors at crop fields, kitchen appliances in our smarthouses, cars, thermostats,
cameras etc. to the internet via embedded devices, we can see the benefits and the huge
impact of this technology in our life. Simply put, 10T is a network interface of dedicated
physical objects (things) that contain embedded technology to communicate and sense or
interact with their internal stages or external environment in order to reach a common goal.
So, it is quite a simple concept, it means taking all the things (devices) in the world and

connecting them to the Internet.

Taking a look back and at the same time trying to predict the number of loT devices
connected to the Internet in the next years, we can see the exponential growth of loT
devices, as shown in Fig 2.1. As the years go by, more and more suchlike devices will become

a reality, producing enormous amounts of data in need to be processed.

28

25

20

Connected devices in billions

2544
23.57
21.72
19.91
1815
16.44
14.76
1315
11.57

10,07
8.74

2019 2020« 2021+ 2022* 2023 2024 2025 Z2026* 2027* 2028* 2029+ 2030+

Fig 2.1: Evolution of loT devices [3].

All these data and the way that they can be managed, bring along questions and challenges

to be advised:

Privacy & Security: Security is one the biggest issues within loT. These sensors are

collecting, in many cases, extremely sensitive data — what you say or do in your own
home, for example. Keeping that secure is vital to consumer trust, but so far the

loT's security track record has been extremely poor.

Latency & Bandwidth: Cloud infrastructures are physically located far away from

where the data is produced. So, large amounts of data cannot travel all at once via

the current ways.

Quality of Service (QoS): Customers are expecting high latency and throughput to

their devices, an expectation hard to meet.

Compatibility: New waves of technology often feature a large stable of competitors

jockeying for market share, and loT is certainly no exception.

These problems cannot be addressed by the common cloud computing techniques. For

industrial and academic purposes, new computing paradigms have emerged to deal with

these challenges such as Fog and Edge Computing.

29

2.2 Edge Computing

Cloud data providers are continuously expanding their infrastructure as cloud-native
applications are becoming more and more popular. This is not a surprise as cloud capabilities
benefit any professional business nowadays. Internet is available from any point of the Earth
and sometimes in an exceptional speed, something that drove companies to go fully online
and offer services to clients directly from a browser or an application on a smart device. The
increase of loT devices at the edge of the network is producing a massive amount of data to
be computed at datacenters, pushing network bandwidth requirements to the limit. It also
requires the store and process of information into geographically distant clouds so this
computing model is not practical for the future, as it is likely to increase communication

latencies, degrade the overall Quality-of-Service (QoS) and Quality-of-Experience (QoE).

There was a need of introducing an alternative computing model which will bring
computations closer to the end-user. This would reduce the amount of data sent to the
cloud, consequently reducing communication latencies and also decentralizing some of the
computing resources available in large data centers by distributing them towards the edge of
the network. This new computing model that makes use of resources located at the edge of
the network (such as routers, gateways, and switches that are augmented with computing
capabilities) is referred to as “edge computing”. A model that makes use of both edge

resources and the cloud is referred to as “fog computing”.

30

Cloud Datacenter

Edge Nodes

User Devices Q (((o))) ==, (((O)))

Fig 2.2: Edge Computing architecture.

As shown at Fig 2.2 edge computing forms a computing environment that uses low-power
mobile devices, home gateways, home servers, edge ISP servers, and routers. These small-
form-factor devices nowadays have competent computing capabilities and are connected to
the network. The combination of these small compute servers enables a cloud computing
environment that can be leveraged by a rich set of applications processing Internet of Things

(loT) and cyber-physical systems (CPS) data.
We can evaluate an edge environment by 5 factors:

1. Privacy and security: The distributed nature of this model introduces a shift in

security schemes used in cloud computing. In edge computing, data may travel
between different distributed nodes connected through the Internet and thus
requires special encryption mechanisms independent of the cloud. Edge nodes may
also be resource-constrained devices, limiting the choice in terms of security
methods. Moreover, a shift from centralized top-down infrastructure to a
decentralized trust model is required. On the other hand, by keeping and processing

data at the edge, it is possible to increase privacy by minimizing the transmission of

31

sensitive information to the cloud. Furthermore, the ownership of collected data

shifts from service providers to end-users.

Scalability: In scalability we must take into account the heterogeneity of the devices,
having different performance and energy constraints, the highly dynamic condition,
and the reliability of the connections compared to more robust infrastructure of
cloud data centers. Moreover, security requirements may introduce further latency

in the communication between nodes, which may slow down the scaling process.

Reliability: Error-handling is crucial in order to keep a service alive. If a single edge
node goes down and is unreachable, users should still be able to access a service
without interruptions. Moreover, edge computing systems must provide actions to
recover from a failure and alerting the user about the incident. To this aim, each
device must maintain the network topology of the entire distributed system, so that
detection of errors and recovery become easily applicable. Other factors that may
influence this aspect are the connection technologies in use, which may provide
different levels of reliability, and the accuracy of the data produced at the edge that

could be unreliable due to particular environment conditions.

Speed: Edge computing brings analytical computational resources close to the end
users and therefore can increase the responsiveness and throughput of applications.
A well-designed edge platform would significantly outperform a traditional cloud-
based system. Some applications rely on short response times, making edge
computing a significantly more feasible option than cloud computing. Examples
range from lloT to autonomous driving, anything health or human / public safety
relevant, or involving human perception such as facial recognition, which typically

takes a human between 370-620ms to perform.

Efficiency: Due to the nearness of the analytical resources to the end users,
sophisticated analytical tools and Artificial Intelligence tools can run on the edge of
the system. This placement at the edge helps to increase operational efficiency and
is responsible for many advantages to the system. Additionally, the usage of edge
computing as an intermediate stage between client devices and the wider internet
results in efficiency savings that can be demonstrated in the following example: A
client device requires computationally intensive processing on video files to be

performed on external servers. By using servers located on a local edge network to

32

perform those computations, the video files only need to be transmitted in the local
network. Avoiding transmission over the internet results in significant bandwidth

savings and therefore increases efficiency.

Edge devices have smaller processors, limited power and sometimes they differ from each
other in terms of computer architecture and OS. Therefore, managing the nodes and their
resources is one of the key challenges in edge computing. An edge computing environment

is defined by its’ architecture model on data, control and tenancy:

1. Data flow architectures: These architectures are based on the direction of

movement of workloads and data in the computing ecosystem. For example,
workloads could be transferred from the user devices to the edge nodes or

alternatively from cloud servers to the edge nodes.

2. Control architectures: These architectures are based on how the resources are

controlled in the computing ecosystem. For example, a single controller or central
algorithm may be used for managing a number of edge nodes. Alternatively, a

distributed approach may be employed.

3. Tenancy architecture: These architectures are based on the support provided for

hosting multiple entities in the ecosystem. For example, either a single application or

multiple applications could be hosted on an edge node.

Edge computing infrastructure is defined by 3 main components:

1. Hardware: Any device can be equipped with single-board computers (SBCs) that
offer considerable computing capabilities and can contribute to a larger cluster of
nodes. Hardware consists of both computation devices that manipulate the data and

network devices that control the data flow.

2. System software: How a node manages its resources and can operate and

communicate directly with other fog/edge devices. System software is responsible
for manager the machines’ Operating System or the Virtual Machines and containers

that are deployed on the machine (known as Virtualization Software).

3. Middleware: Software that runs on top of an operating system and provides

complementary services that are not supported by the system software. The

33

middleware coordinates distributed compute nodes and performs deployment of

virtual machines or containers to each fog/edge node.

Recent studies in fog/edge computing suggest exploiting small-form-factor devices such as
network gateways, Wi-Fi Access Points (APs), set-top boxes, cars, and even drones as
compute servers for resource efficiency. Edge computing also utilizes commodity products

such as desktops, laptops, and smartphones.

In order to facilitate edge computing there is a need for implementing several algorithms

with the most popular being:

= Discovery: Identifying edge resources within the network that can be used for
distributed computation (so that workloads from the clouds or from user devices/

sensors can be deployed on them).

= Benchmarking: Capturing the performance of resources for decision-making in order
to maximize the performance of deployments using standard performance
evaluation tools. This is done by running sample micro or macro applications that
stress-tests each entity to obtain a snapshot of the performance of a Virtual
Machine (VM). There is a need for lightweight benchmarking tools for the edge not

to over-stress and reduce the performance of a device.

= Load-balancing: Distributing workloads across resources based on different criteria

such as priorities, fairness etc.

= Placement: Identifying resources appropriate for deploying a workload and place

incoming computation tasks on suitable fog/edge resources.

As the demand of allocating computer resources is increased due to the large amount of
data and the computationally heavy algorithms (such as machine learning or artificial
intelligence algorithms) deployed and stored in IoT devices, there has been the need of
running pieces of code that do not require pre-allocation of any resource. The solution came

from the new developed cloud computing model called “serverless computing”.

34

2.3 Serverless Computing

Serverless Architecture is a relatively new cloud computing model which uses the event-
trigger-action sequence model (Fig 2.3.1) and it is used to process requested functionality
without pre-allocating computing resources. It delegates the management of the execution
environment of an application (in the form of stateless functions) to the infrastructure
provider. Containers, managed by the cloud provider, are used to execute functions (often
called lambdas) which are event triggered and they last only for one invocation (state-less).
Serverless is by no means an indication that there are no servers, it simply means that the
developer should leave most operational concerns such as resource provisioning,

monitoring, maintenance, scalability, and fault-tolerance to the cloud provider.

Target Namespace

(O— Action i J5ON|

Trigger

Rule

Fig 2.3.1: Serverless Computing Model [4].

= A feed is a convenient way to configure an external event source to fire trigger
events that can be consumed by Cloud Functions. A feed is a stream of events that
all belong to some trigger. Pre-installed packages, installable packages, and your
own custom packages might contain feeds. A feed is controlled by a feed action,
which handles creating, deleting, pausing, and resuming the stream of events that
comprise a feed. The feed action typically interacts with external services that

produce the events, by using a REST API that manages notifications.

= Atrigger is a name for a class of events. Each event belongs to exactly one trigger; by

analogy, a trigger resembles a topic in topic-based pub-sub systems.

= Arule is used to indicate that whenever an event from trigger arrives, invoke action

with the trigger payload.

35

= An action is a set of instructions to be executed as soon as the previous feed-trigger-

rule sequence invoke it.

Serverless architectures refer to the application architecture that abstracts away server
management tasks from the developer and enhances development speed and efficiency by
dynamically allocating and managing compute resources. Function as a service (FaaS) is a

runtime on top of which a serverless architecture can be built.

A very simple example where serverless architecture’s capabilities are pointed out is the
procedure of automatically ordering new products in a supermarket (Fig 2.3.2). Let’s say that
there is an automated cloud-native tool that monitors products quantities on the store’s
shelves. An event can be the monitoring of a low availability on a single brand which will

then trigger the action of making a new order for the specific brand to the warehouse.

vVe=_
vV=_

\ N
\ Feed N

Fig 2.3.2: Serverless example.

This model allows the developer to write and deploy small pieces of cloud-native code that
responds to events without considering the runtime environment, resource allocation, load
balancing, and scalability and this is the main reason that the term “serverless” is very

popular in Google Trends the past 5 years as shown at Fig 2.3.3.

36

Interest over time

Fig 2.3.3: Popularity of the term “serverless” as reported by Google Trends.

Another major advantage is the pay-per-use billing model in contrast to the usual hour-
based billing of virtual machines and containers that cloud providers use. Anyone that uses
serverless infrastructure pays only for the time and resources his computations need, as
functions share the same runtime environment (typically a pool of containers) while there is
no cost to the consumer when the system is idle. Hence, the deployment of a pool of shared
containers (workers) on a machine (or a cluster of machines) and the execution of some
code onto any of them becomes inexpensive and efficient. It is important to mention that
cloud providers report that their customers see cost savings of 4x-10x when moving
applications to serverless. Because there is no charge when there are no events that invoke
cloud functions, it’s possible that serverless could be much less expensive. Moreover, as
organizations use serverless more and more, they will be able to predict their serverless
computing costs based on history, similar to the way they do today for other utility services,

such as electricity.

In the world of cloud computing there are several ways to use a cloud infrastructure for the
deployment of cloud native applications, either by allocating a machine-server or a VM
(laaS), a container (PaaS) or just provide your stateless function and the computations will
be executed on the runtime and OS you want (SaaS). Serverless Architecture and more
specific the Software as a Service model that cloud providers use nowadays give the user
scalability (horizontal) on demand and just when it is needed; in those sudden spikes of
traffic. The user can also have access to the software or app from any point of the earth and

he does not have to worry about updates, new versions of the OS etc.

In this way serverless platforms force application developers to carefully think about the cost
of their code when modularizing their applications, rather than latency, scalability, and
elasticity, which is where significant development effort has traditionally been spent. On the

other hand, deploying such applications in a serverless platform is challenging as developers

37

have to care fully understand how the platform behaves and design the application around
these. It also requires relinquishing to the platform design decisions that concern, among

other things, quality-of-service (QoS) monitoring, scaling, and fault-tolerance properties.

2.4 Virtualization and Deployment

In the previous sections, Edge computing paradigm has been introduced. In this kind of
architecture, someone might wonder how these applications will be packaged and deployed

in such a heterogeneous environment. This is achieved through Virtualization.

Virtualization relies on software to simulate hardware functionality, such as computing and
storage resources, and create a virtual computing system in top of an already existing one.
Therefore, it provides the opportunity to run more than one virtual systems, with even

different operating systems in the same physical device.

Virtualization allows multiple operating systems to run on a single physical machine and
enables fault and performance isolation between multiple tenants in the edge. It partitions
resources for each tenant so one tenant cannot access other tenants’ resources. The fault of
a tenant, therefore, cannot affect other tenants. Virtualization also limits and accounts for
the resource usage of each tenant so a tenant cannot monopolize all the available resources

in the system.

There are two ways for someone to perform virtualization which are described below:

2.4.1 Virtual Machines

Virtual Machines is the most widely used way of deploying an application to a device that
you know nothing about. A Virtual Machine (VM) is a set of virtualized resources used to
emulate a physical computer. Virtualized resources include CPUs, memory, network, storage
devices, and even GPUs and FPGAs. The architecture behind every VM is as shown below at

Fig 2.4.1.

38

Bins/Lib

Bins/Lib Bins/Lib

Guest OS

Guest OS

Infrastructure

Fig 2.4.1: Virtual Machine Architecture.

Applications have their own dependencies (Libraries, executables etc.) in order to run as
designed in a completely different system than host machine they were initially developed
and tested. Virtualization software called a hypervisor virtualizes the physical resources and

provides the virtualized resources in the form of a VM.

Furthermore, each VM has its own libraries, binaries and applications and the VM may be
many GB’s in size. This may raise significant problems in a constrained resource

environment.

2.4.2 Containers

Containers are an emerging technology for cloud computing that provides process-level
lightweight virtualization. Containers are multiplexed by a single Linux kernel so they do not

require an additional virtualization layer compared to virtual machines.

In recent years, using containers as a virtualization method has become quite popular to all
kinds of users. Containers (named after the well-known containers from the shipping
industry) are a solution to the problem of how to get software to run independent, reliable

and as designed, when moved from one computing environment to another.

39

Bins/Lib Bins/Lib Bins/Lib

Container Engine

Operating System

Infrastructure

Fig 2.4.2: Containers Architecture.

To avoid all the drawbacks of the VMs, containers leverage one OS, increasing deployment
speed and portability with lower costs and memory footprint. Containers sit on top of a
physical server and its host machine’s OS. Each container shares the hosts OS kernel, and

can also share its binaries and libraries.

This lightweight virtualization allows containers to start and stop rapidly and to achieve

performance similar to that of the native environment.

Furthermore, containers bring micro-services logic to the Edge due to their modularity.
Rather than run an entire complex application inside a single container, the application can

be split in to modules (such as the database, the application front end, and so on).

40

2.5 Thesis Overview

In this thesis, we present a tool which proposes a way in which the individual functions of a
monolithic code could run in a serverless environment as individual and independent
application packaged containers, so that given a maximum runtime threshold, the minimum
possible power consumption in our cluster is achieved. Our serverless infrastructure (cluster)
consists of Aarch64 Edge devices which are orchestrated by Kubernetes. Finally, using state-
of-the-art frameworks such as Openfaas and the open source containerization platform
Docker we managed to package our applications into containers and run them in our

serverless environment.

Our tool analyzes (profiles) the code file given in terms of memory requirements and the
execution time of each of its individual functions on our testing device (personal computer)
and then using machine learning techniques (Linear Regression and Decision Tree Regression
models) predicts the energy consumption and the execution time of each function at each of
our devices. The utilization of this information and the decision for the proposed solution is
achieved through our developed algorithm. Furthermore, using Openfaas, Kubernetes and

Docker we show that our work is quite promising and to be continued.

The rest of this thesis is organized as follows: In Chapter 3, we present related work
regarding resource management on Edge computing and container orchestration, while on
the same time we highlight the scientific gaps throughout the literature. In Chapter 4, we
present Docker as a container runtime, Kubernetes as a container orchestrator and
Openfaas as a (Function as a Service) framework for building serverless functions on top of
containers (using Docker and Kubernetes). In Chapter 5, we present our approach to the
stated problem. In Chapter 6, we present our experimental infrastructure and the
experimental evaluation of our approach. Finally, in chapter 7 we conclude and propose

future work in order to improve our tool.

41

Related Work

Resource management in cloud infrastructure and datacenters has been researched by a lot
of scientists and professionals during the past years. As the amount of data being processed
at the datacenters all around the world increases the need for high performance while
reducing and controlling power consumption is essential. Moving to the fog/edge resources
which are typically resource constrained, heterogeneous, and dynamic compared to the
cloud, resource management on those devices is also an important challenge that needs to

be addressed.

Cheol-Ho Hong and Blesson Varghese [5] review publications to identify and classify the
architectures, infrastructure, and underlying algorithms for managing resources in fog/edge
computing. They make clear and fully understandable the reason fog/edge computing has
gained significant attention over the past few years as an alternative approach to the
conventional centralized cloud computing model, while describing in detail resource
management architectures, the dataflow, control, tenancy architectures, the infrastructure

used for managing resources, such as the hardware, system software, and middleware.

Authors of [6], using static analysis propose a flexible tool that enables the estimation of

performance and energy consumption of the application on embedded devices, providing a

42

complete methodology based on which the user can add estimation models for various
platforms. Facing the problem of how to adapt the traditional software development model
into the cloud-native model authors at [7] propose a tool for Java source code analysis,
transformation and deployment of the model and code automatically in a FaaS

infrastructure.

Authors at [8] addresses the technical challenges and open problems of existing serverless
platforms from industry, academia, and open source projects, identify key characteristics

and use cases.

Babak Bashari Rad et al. research the performance and the containerized development using
docker and its tools at [9] while concluding the advantages and disadvantages of the

platform.

Authors at [10], discuss the effective placement of virtual machines in a cluster of physical
machines in order to optimize the use of computational resources and reduce the
probability of virtual machine reallocation. They propose an approach based on the multiple
multidimensional knapsack problem, where the main concern is to maximize placement

ratio.

Authors at [11], address the problem of growing demand on cloud computing and the need
to try whatever is possible to meet the customers’ requirements for resources consuming
minimum power. They use the modeling of the multiple knapsack problem, with a
mechanism for allocating resources, which addresses the issue of energy saving.
Furthermore, a comparative analysis of the proposed solution with the original mechanism

to evaluate the performance modification is made.

In paper [12], authors propose a methodology for evaluating serverless frameworks
deployed on hybrid edge-cloud clusters. The methodology focuses on key performance
knobs of the serverless paradigm and applies a systematic way for evaluating these aspects
in hybrid edge-cloud environments. Methodology is also applied on three open-source
serverless frameworks, OpenFaaS, Openwhisk, and Lean Openwhisk respectively, and they
provide key insights regarding their performance implications over resource-constrained

edge devices.

43

In this work [13], we propose a methodology for application decomposition into fine-grained
functions and energy-aware function placement on a cluster of edge devices subject to user-
specified QoS guarantees. While the main concern in such environments is the minimization
of energy consumption, the heterogeneity in compute resources found at the edge may lead
to Quality of Service (QoS) violations and at the same time, Serverless computing, the next
frontier of Cloud computing has emerged to offer unprecedented elasticity by utilizing fine-

grained, stateless functions.

In overview of the literature, resource allocation and energy consumption is a quite popular
problem and lots of researchers are trying to bring solutions to the table. However, dividing
an application into several serverless functions, predicting the energy and run-time of every
function of the application before they are scheduled and proposing the way each one
should be placed on the edge devices of a cluster in order to achieve the lowest energy
consumption under a specific time threshold have never been proposed. Adding to this, we
are using OpenFaaS$, a very promising serverless platform, which can be used in lots of lloT

and loT serverless environment scenarios.

44

Technical background

In this chapter we will explain everything that is needed, in order to understand how

OpenFaaS works.

4.1 Docker: A container runtime

Docker is an open-source engine that automates the deployment of applications into
containers. Docker actually adds an application deployment engine on top of a virtualized
container execution environment and the applications that are built in the docker are
packaged with all the supporting dependencies into a standard form (container). These
containers keep running in an isolated way on top of the operating system’s kernel. The way
that docker is designed is to give a quick and a lightweight environment where code can be
run efficiently and moreover it provides an extra facility of the proficient work process to

take the code from the computer for testing before production.

There are four main internal components of docker, including Docker Client and Server,
Docker Images, Docker Registries, and Docker Containers as shown at Fig 4.1. These

components will be explained in more detail in the following sections.

45

S Client sl DOCKER_HOST B Registry o

[‘
docker build) ety dOCker daemon N
o - L "\\\ NG'MX
docker pull |- El e ,
_;' i Tk
docker run /] “| 4" openstack
.'e& 1 - x”
- = e build
SEE openstack

run

Fig 4.1: Docker Architecture [14].

4.1.1 Docker Client and Server

Docker can be explained as a client and server based application. The docker server gets the
request from the docker client through the docker command and then process it
accordingly. The complete RESTful (Representational state transfer) APl and a command line
client binary are shipped by docker. Docker daemon/server and docker client can be run on
the same machine or a local docker client can be connected with a remote server or
daemon, which is running on another machine. Also the client can communicate with more

than one daemon.

4.1.2 Docker Images

There are two methods to build an image. The first one is to build an image by using a read-
only template. The foundation of every image is a base image. Operating system images are
basically the base images, such as Ubuntu 14.04 LTS, or Fedora 20. The images of operating
system create a container with an ability of complete running OS. Base image can also be
created from scratch. Required applications can be added to the base image by modifying it,
but it is necessary to build a new image. The process of building a new image is called

“committing a change”.

46

The second method is to create a docker file. The docker file contains a list of instructions
when “Docker build” command is run from the bash terminal it follows all the instructions

given in the docker file and builds an image. This is an automated way of building an image.

4.1.3 Docker Registry

Docker images are placed in docker registries. It works correspondingly to source code
repositories where images can be pushed or pulled from a single source. There are two types
of registries, public and private. Docker Hub is called a public registry where everyone can

pull available images and push their own images without creating an image from scratch.

4.1.4 Docker Containers

Docker image creates a docker container. Containers hold the whole kit required for an
application, so the application can be run in an isolated way. For example, suppose there is
an image of Ubuntu OS with SQL SERVER, when this image is run with docker run command,

then a container will be created and SQL SERVER will be running on Ubuntu OS.

4.2 Kubernetes: A container orchestrator

Kubernetes (or k8s) is a portable, extensible, open-source platform for managing
containerized workloads and services, which facilitates both declarative configuration and
automation. It has a large, rapidly growing ecosystem and has become the standard
container orchestration solution. Kubernetes services support and tools are widely available.
In simpler terms, Kubernetes can be used in order to manage huge workloads in enormous

clusters with ease.

Kubernetes is a system that enables a container-based deployment within Platform-as-a-
Service (PaaS) clouds, focusing specifically on cluster-based systems. It can provide a cloud-

native application, a distributed and horizontally scalable system composed of

477

(micro)services, with operational capabilities such as resilience and elasticity support. From
an architectural point of view, Kubernetes introduces the pod concept, a group of one or
more containers (e.g. Docker, or any OCI compliant container system) with shared storage

and network.

A Container Management Platform (CMP) (as shown at Fig 4.2.1) contains functional layers
that work in order to deliver all the capabilities you need to build and manage a Kubernetes

infrastructure.

Developer Services Security &
Severless cifcp Governance

Platform Services OPA, Pod,

AP Terraform Public & Private Network security

Gateway Operator Registry

Central Control & Visibility cls

Benchmarking
Consistent Cluster Monitoring, Logging Flexible OS Container
Operations & Diagnostics Support Storage

i TLS
Hybrid Cloud Infrastructure R .

Central
Authentication

Fig 4.2.1: The anatomy of a container management platform.

A Kubernetes cluster consists of a set of worker machines, called nodes, that run
containerized applications. Every cluster has at least one worker node. The worker node(s)
host the Pods that are the components of the application workload. The Control Plane
manages the worker nodes and the Pods in the cluster. In production environments, the
control plane usually runs across multiple computers and a cluster usually runs multiple

nodes, providing fault-tolerance and high availability.

Now, we will describe Kubernetes’s main components. As shown in Fig 4.2.2, Kubernetes is

divided in Control Plane Components and Node Components.

48

—————————

e

421

P
\ SErVer

ﬁ f\ I Clo!.ld m::nm

| =

- fopoional)
H Controsier
: managsr

(persisEnice store)

| Tode Node

Fig 4.2.2: Kubernetes cluster main components [15].

Control Plane (Master) Components

ETCD: It is a simple, distributed key value storage which is used to store the
Kubernetes cluster data and metadata (such as number of pods, their state,
namespace, etc.), APl objects and service discovery details. It is only accessible from
the API server for security reasons. ETCD enables notifications to the cluster about
configuration changes with the help of watchers. Notifications are APl requests on

each ETCD cluster node to trigger the update of information in the node’s storage.

Kube Api Server: Kubernetes API is actually the front end of the control plane and,

by extension, of the whole environment. It is the central management entity that
receives all REST requests for modifications (to pods, services, replication
sets/controllers and others), serving as frontend to the cluster. Also, this is the only
component that communicates with the ETCD cluster, making sure data is stored in
ETCD and is in agreement with the service details of the deployed pods. It is also

designed to scale horizontally and be friendly to the user

Kube-Controller-Manager: This is a single binary that runs multiple controller

processes. You can break it down into Node Controller, Job Controller, Endpoint
Controller and Service Controller. Each one is responsible for Nodes, Pods-Jobs,
Services-Pod’s Network and API access to different namespaces in that order. Kube
controller-manager runs a number of distinct controller processes in the background

(for example, replication controller controls number of replicas in a pod, endpoints

49

4.2.2

controller populates endpoint objects like services and pods, and others) to regulate
the shared state of the cluster and perform routine tasks. When a change in a
service configuration occurs (for example, replacing the image from which the pods
are running, or changing parameters in the configuration yaml file), the controller

spots the change and starts working towards the new desired state.

Kube Scheduler: This is the tool responsible to schedule the pods (the co-located

group of containers inside which our application processes are running) on the
various nodes based on resource utilization. It reads the service’s operational
requirements and schedules it on the best fit node. For example, if the application
needs 2GB of memory and 4 CPU cores, then the pods for that application will be
scheduled on a node with at least those resources. Pods are the smallest and most
common deployable units that anyone can create in a Kubernetes Cluster. The
scheduler runs each time there is a need to schedule pods. The scheduler must know
the total resources available as well as resources allocated to existing workloads on

each node.

Node (Worker) components

kubelet: The main service on a node, regularly taking in new or modified pod
specifications (primarily through the kube-apiserver) and ensuring that pods and
their containers are healthy and running in the desired state. This component also

reports to the master on the health of the host where it is running.

kube-proxy: A proxy service that runs on each worker node to deal with individual
host subnetting and expose services to the external world. It performs request
forwarding to the correct pods/containers across the various isolated networks in a

cluster.

50

At Fig 4.2.3 we can see the components described above in a graph of a simple example of a

kubernetes cluster with 3 devices, 1 master node and 2 worker nodes (workers):

@
Worker node

i
Master node b j
* Kubelal ube-proxy
f’ ~ Llatom] | s
I
X \ Pod aoa | docker
AFl 2enver _..ir =
controller-manager
(replication, namespacs, schedular
SOMVICEACCOUNES, ..)
Worker node
=|| kubelet Kube-proxy
] T——1
[
K\ Pod ‘L Pod | v docker
2 | B

Fig 4.2.3: Kubernetes cluster main components in more detail [16].

4.2.3 Kk8svsk3s

While Kubernetes (or k8s) is designed to accommodate large configurations (approximately
up to 5000 nodes) and helps deploy applications in production there has been the need for
developing a lightweight version of k8s, in order to run clusters in IoT devices such as
Raspberry Pi, NVIDIA Jetson, etc. which have limited resources. Normal Kubernetes (or k8s)
is not operable in 10T or edge computing devices due to its’ heavy size and its’" memory
footprint. This is why Rancher Labs developed k3s (which is the one we used in our
kubernetes cluster) a lightweight Kubernetes distribution, which is a fully certified

Kubernetes offering by CNCF (Cloud Native Computing Foundation).

With that being said it is now very interesting to point out some of the major differences

between these two versions of Kubernetes:

51

K3s are not functionally different from K8s, but they have some differences that
make them unique. K3s can deploy applications faster than kubernetes. Not only
that, K3s can spin up clusters more quickly than K8s. K8s is a general-purpose
container orchestrator, while K3s is a purpose-built container orchestrator for

running Kubernetes on bare-metal servers.

Kubernetes uses kubelet, an agent running on each Kubernetes node to perform a
control loop of the containers running on that node. This agent runs inside the
container. However, K3s does not use kubelet, but it runs kubelet on the host

machine and uses the host’s scheduling mechanism to run containers.

Kubernetes or K8s can host workloads running across multiple environments, while
K3s can only host workloads running in a single cloud. It mainly happens because K3s
don’t contain the capacity to maintain a significant workload on multiple clouds as it

is small in size.

K3s uses kube-proxy to proxy the network connections of the Kubernetes nodes, but
K8s uses kube-proxy to proxy the network connections of an individual container. It
also uses kube-proxy to set up IP masquerading, while K3s does not use kube-proxy

to do that.

K8s uses kubelet to watch the Kubernetes nodes for changes in the configuration,
while K3s does not watch Kubernetes nodes for changes in the configuration.
Instead, it receives a deployment manifest containing the configuration information

from the Kubernetes control plane and makes changes accordingly.

K3s can have tighter security deployment than k8s because of their small attack

surface area.

K3s reduces the dependencies and steps needed to install, run or update a
Kubernetes cluster (You can install and deploy k3s with one command under 30

seconds).

52

4.3 OpenFaaS

OpenFaa$ (Function as a Service) is a framework for building serverless functions on the top
of containers (with docker and kubernetes). With the help of OpenFaas, it is easy to turn
anything that runs on Linux or Windows, into a serverless function, through Docker and
Kubernetes. It provides a built-in functionality such as self-healing infrastructure, auto-
scaling, and the ability to control every aspect of the cluster. Basically, OpenFaaS is a concept

of decomposing applications into a small unit of work.

In order to understand more clearly the innovation of this technology and serverless
computing in general we can analyze the 3 main architectural patterns (ways of building

systems) as shown at Fig 4.3.1.

. S
f L Client &R
Java) D S ' ESU—
Fronthead s £, nedes ¢ x -
< \ 41 =2
1 . h s Java, e a 11: —
a ~— : e Authentication API Product
Backhead ﬁ \|‘1,) = 8~ Service Gateway Database
- ® ilem il h 4 .

1 Purchase $ Search Q
DataBase = P .l Fundi_gn fun(.!i()t]

docker 3

Purchase
Database

Fig 4.3.1: Evolution of architectural patterns [17].

(@

e Monolith code: At the very start, we used to build monoliths, three-tier applications.

They were very heavyweight, slow to deploy and had trouble testing them.

e Microservices: After monolith, we broke these down into microservices. They

focused on being compostable and they are deployed with Docker containers.

53

e Serverless: Functions are small, discrete, reusable pieces of code that can easily be

deployed. Those functions are stateless and can run in a very short time.

It is important to point out that serverless functions do not replace our monolith code or
microservices, they work best alongside our existing systems building integrations and

helping events flow between our ecosystem.

The main goal of OpenFaas is to simplify serverless functions with Docker containers,
allowing us to run complex and flexible infrastructures. OpenFaaS is publicly available and a
free open-source environment for creating and hosting serverless functions. In more detail

this platform allows us to:
e Reduce idle resources.
e Quickly process data.
e Interconnect with other services.

e Balance load with intensive processing of a large number of requests.

However, despite the advantages of OpenFaaS and serverless computing in general,
developers must assess the application’s logic before starting an implementation. This
means that you must first break the logic down into separate tasks, and only then can you

write any code.

4.3.1 OpenFaaS Design & Architecture

OpenFaaS architecture is based on a cloud-native standard and includes the following
components: APl Gateway, Function Watchdog, and the container orchestrators Kubernetes,
Docker Swarm, Prometheus, and Docker. According to the architecture shown below at Fig
4.3.2, when a developer works with OpenFaa$, the process begins with the installation of

Docker and ends with the Gateway API.

54

AP| Gateway Function Watchdog

r

&
-

Prometheus

&

Fig 4.3.2: OpenFaas architecture [18].

e APl Gateway: Through the APl Gateway, a route to the location of all functions is
provided, and cloud-native metrics are collected through Prometheus. APl Gateway
will scale functions according to demand by altering the service replica count in the
Docker Swarm or Kubernetes API. A Ul is baked in allowing you to invoke functions

in the browser and create new ones when it is needed.

Client
@

Function

; =
|
! = —
| rm cluster .
w) —
| / ”
i Function Function
: Function ° ® O PN
I .
| . y ® .77‘.”, L 2
! Gaeway Netl @ GaewayNet2 Gaeway Net3
| Docker Swam

Fig 4.3.3: Client to Functions Routing [19].

e Function Watchdog: A Watchdog component is integrated into each container to

support the serverless application functions and provides a common interface
between the user and the function. Any Docker image can be turned into a
serverless function by adding the Function Watchdog (a tiny Golang HTTP server).
The Function Watchdog is the entrypoint allowing HTTP requests to be forwarded to
the target process via STDIN. The response is sent back to the caller by writing to

STDOUT from the application.

55

Function
program/
any

Function HTTP Request Ianguage
8080/t
B Function watchdog

Function container

APl Gateway Net 1

Fig 4.3.4: OpenFaaS Watchdog Interface [20].

Prometheus: This component allows you to get the dynamics of metric changes at
any time, compare them with others, convert them, and view them in text format or
in the form of a graph without leaving the main page of the web interface.
Prometheus stores the collected metrics in RAM and saves them to a disk upon

reaching a given size limit or after a certain period of time.

Function rate Replica scaling

Total requests - 200 OK Execution duration (s)

Fig 4.3.5: Example of a Prometheus/Grafana dashboard linked to OpenFaa$S showing auto-

scaling live in action.

Docker Swarm and Kubernetes are the engines of orchestration. Components such

as the APl Gateway, the Function Watchdog, and an instance of Prometheus work
on top of these orchestrators. Kubernetes is used to develop products, while Docker

Swarm is used to create local functions. Moreover, all developed functions,

56

microservices, and products are stored in the Docker container, which serves as the
main OpenFaa$ platform for developers and sysadmins to develop, deploy, and run

serverless applications with containers.

As we mentioned above any container or process in a Docker container can be a serverless
function in FaaS. Using the FaaS CLI, OpenFaaS gives us the opportunity to deploy our
functions or quickly create new functions from templates such as Node.js or Python as
shown at Fig 4.3.6. So, new functions can be generated using the FaaS-CLI and built-in

templates or through any binary for Windows or Linux in a Docker container.

Fig 4.3.6: Classic OpenFaa$S templates.

57

4.4 Machine Learning — Predictive Modeling

Machine learning is an application of artificial intelligence (Al) that provides systems the

ability to automatically learn and improve from experience without being explicitly

programmed. It focuses on the use of data and algorithms to imitate the way that humans

learn, gradually improving its accuracy.

We can divide the learning system of a machine learning algorithm into three main parts:

1. A Decision Process: In general, machine learning algorithms are used to make a

prediction or classification. Based on some input data, which can be labelled or

unlabeled, the algorithm will produce an estimate about a pattern in the data.

An Error Function: An error function serves to evaluate the prediction of the model.
If there are known examples, an error function can make a comparison to assess the
accuracy of the model. This is why there is a test set and a training set at every
machine learning algorithm implementation. The training set is used for the
predictions model while the test set is there to evaluate the model by comparing the

actual values with the predicted ones.

A Model Optimization Process: If the model can fit better to the data points in the
training set, then weights are adjusted to reduce the discrepancy between the
known example and the model estimate. The algorithm will repeat this evaluate and
optimize process, updating weights autonomously until a threshold of accuracy has

been met.

Machine Learning can be divided in three main categories in terms of learning environment

as shown at Fig 4.4.1:

1.

Supervised Learning: Supervised learning describes a class of problem that involves
using a model to learn a mapping between input examples and the target variable.
Models are fit on training data comprised of inputs and outputs and used to make
predictions on test sets where only the inputs are provided and the outputs from the
model are compared to the withheld target variables and used to estimate the skill

of the model.

Unsupervised Learning: Unsupervised learning describes a class of problems that

involves using a model to describe or extract relationships in data. Compared to

58

supervised learning, unsupervised learning operates upon only the input data

without outputs or target variables.

3. Reinforcement Learning: Reinforcement learning describes a class of problems
where an agent operates in an environment and must learn to operate using
feedback. The use of an environment means that there is no fixed training dataset,
rather a goal or set of goals that an agent is required to achieve, actions they may

perform, and feedback about performance toward the goal.

Image
Structure Classification
Dlscgvery Feature ° Customer
@ Elicitation Fraud ® Retention

Meaningful [

compression

Detection

DIMENSIONALLY " .
. REDUCTION CLASSIFICATION @® Diagnostics
Big data

Visualisation

® Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING

CLUSTERING REGRESSION

Targetted MACHINE @ Process

Marketing Optimization

LEARNING ~
[]
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

// @® Robot Navigation
S ///
Game Al ® ® Skill Aquisition
[]

Learning Tasks

Real-Time Decisions ®

Fig 4.4.1 Description of Machine Learning.

Machine learning, more specifically the field of predictive modeling is primarily concerned
with minimizing the error of a model or making the most accurate predictions possible, at
the expense of explainability. In our proposal we used two models of predictive modeling,
which will be described below, in order to predict the energy consumption and the runtime
of our functions before assigning them to a node of the cluster. Predictions are the major
factor with which the final decision of the algorithm is calculated. We will also describe the

reason we chose these specific models as there is a number of predictive models available.

59

4.4.1 Linear Regression

Linear regression is a linear model, that assumes a linear relationship between the input
variables (x) and the single output variable (y). More specifically, that y can be calculated
from a linear combination of the input variables (x). Furthermore, linear regression has been

around for more than 200 years and it has been studied from every possible angle.

When there is a single input variable (x), the method is referred to as simple linear
regression. When there are multiple input variables, literature from statistics often refers to

the method as multiple linear regression.

The representation is a linear equation that combines a specific set of input values (x) the
solution to which is the predicted output for that set of input values (y). As such, both the
input values (x) and the output value are numeric. For example, in a simple regression

problem (a single x and a single y), the form of the model would be:
y = Bo+ B1*x

, where Bj represent coefficients (scale factor for each input value)

For example, let us use BO = 0.1 and B1 = 0.5 and calculate the weight (in kilograms) for a

person with the height of 182 centimeters.
weight =0.1+0.5 * 182

weight =91.1 (kg)

60

Below at Fig 4.4.2 we can see the visual representation of the described equation:

160
120
g
-% 20
@
=
40
0

105 120 135 150 165 180 185 210 225 240

Height (cm)

Fig 4.4.2 Example Height Vs Weight Linear Regression.

In our case we have two input values, memory and time as it will be described below, so our

multiple linear regression form would be:
y = Bo + B1*x1 + B2*x2
, where B represent coefficients
, Xi represents inputs (time and memory)

, Y represents the predicted energy or the predicted run-time on the edge device

4.4.2 Decision Tree Regression

Decision Tree is a tree-structured classifier with three types of nodes. As shown at Fig 4.4.3
The Root Node is the initial node which represents the entire sample and may get split
further into further nodes. The Interior Nodes represent the features of a data set and the
branches represent the decision rules. Finally, the Leaf Nodes represent the outcome. This

algorithm is very useful for solving decision-related problems.

6l

Interior Interior
node node

Leaf node Leaf node

Interior Interior
node node

Leaf node § Leaf node Leaf node J| Leaf node

Fig 4.4.3 Decision Tree Regression model diagram.

In a decision tree, for predicting the class of the given dataset, the algorithm starts from the
root node of the tree. This algorithm compares the values of root attribute with the record
(real dataset) attribute and, based on the comparison, follows the branch and jumps to the

next node.

For the next node, the algorithm again compares the attribute value with the other sub-
nodes and move further. It continues the process until it reaches the leaf node of the tree.

The complete process can be better understood using the below algorithm:

1. Step-1: Begin the tree with the root node, says S, which contains the complete
dataset.

2. Step-2: Find the best attribute in the dataset using Attribute Selection Measure
(ASM).

3. Step-3: Divide the S into subsets that contains possible values for the best attributes.

4. Step-4: Generate the decision tree node, which contains the best attribute.

5. Step-5: Recursively make new decision trees using the subsets of the dataset
created in step-3. Continue this process until a stage is reached where you cannot

further classify the nodes and called the final node as a leaf node.

As an example (Fig 4.4.4) let us suppose there is a candidate who has a job offer and wants

to decide whether he should accept the offer or Not. So, to solve this problem, the decision

62

tree starts with the root node (Salary attribute by ASM). The root node splits further into the
next decision node (distance from the office) and one leaf node based on the corresponding
labels. The next decision node further gets split into one decision node (Cab facility) and one

leaf node. Finally, the decision node splits into two leaf nodes (Accepted and Declined offer).

Salary is between
$50000-580000

Office near to Declined

Provides Cab

Declined
facility

offer

Accepted Declined
offer offer

Fig 4.4.4 Decision Tree Regression example diagram.

63

Proposed approach

As it was mentioned above the problem we are trying to solve in this thesis is the energy
consumption in a serverless environment in which a monolithic application needs to run. As
the application needs to be divided into smaller pieces of code (functions) and each one will
be assigned to a node in our kubernetes cluster, we try to distribute those functions in the

most energy efficient way.

So, in this chapter, we present the proposed algorithm and the mechanisms we used for the

function distribution throughout our cluster.

5.1 Profiling

Our main goal, by predicting the energy consumption of each function of our monolithic
code and the time each function will need to run in every of our edge devices, is to be able
to decide the proper assignment to our nodes in order to achieve the minimum energy

consumption under a desired total time threshold.

The two inputs to our predictive model (as it is shown at Fig 5.1.1) will be:

1. Total amount of memory needed be every function (<Memory>).

64

2. Total time every function needs to run in our host-computer device which is a

machine different than our edge devices (<Time>).

app_info.py
Filename: <file _name>

<function_name> <Memory> <Time>

Fig 5.1.1 Application Info.

5.1.1 1% Step — Memory profiling

For the memory profiling of our code we used Python Memory Profiler. This is a python

module for monitoring memory consumption of a process as well as line-by-line analysis of
memory consumption (in MB) for python programs. We also developed a tool which
summarizes the total memory of a function because python memory profiler analyses the

code line-by-line.

For example, as shown at Fig 5.1.1.1 our tool would output that the total memory of

function <my_func()> is 338.867 (MB).

Line # Mem usage Increment Occurences Line Contents
3 38.816 MiB 38.816 MiB 1 @profile
4 def my_func():
5 46.492 T.676 MiB 1 a = [1] * (18 %% &)
6 | 199.117 152.625 MiB 1 b = [2] * (2 % 18 %x T)
[46.629 MiB [-152.488 MiB 1 del b
8 45.629 0.080 MiB 1 return a

Fig 5.1.1.1 Python Memory Profiler output example.

65

5.1.2 2" Step — Time profiling

For the time profiling we used cProfile, a built-in python module that can perform time
profiling and it is the most commonly used profiler currently. As it is shown at Fig 5.1.2.1 it
gave us the total run time taken by the entire code, the time taken by each individual step
and each individual function of our code and the number of times certain functions are

being called.

1961411 function calls (1931298 primitive calls) in 53
Ordered by: standard name

ncalls tottime p i filename:lineno(function)

lot_grid search_digits)

Fig 5.1.2.1 Python Memory Profiler output example.

In more detail:

= ncalls: Shows the number of calls made

= tottime: Total time taken by the given function. Note that the time made in calls to
sub-functions are excluded.

= percall: Total time / No of calls. (remainder is left out)

= cumtime: Unlike tottime, this includes time spent in this and all subfunctions that
the higher-level function calls. It is most useful and is accurate for recursive
functions.

= The percall following cumtime is calculated as the quotient of cumtime divided by
primitive calls. The primitive calls include all the calls that were not included through

recursion.

At this point we point out that the time measurement is being collected on a machine
different than the edge devices which we use in our cluster and it is briefly described in

chapter 6.

06

5.2 Energy and Time predictions

One of the most crucial procedure in our solution is predicting the energy and time values

which we will work with in order to deliver the best possible solution.

eee
L = | m—
[] e | e | . ‘
| o | e L .
lg | — m © Energy Prediction
Code Energy Prediction Tool

Fig 5.2 Prediction diagram.

So, after completing our profiling, we end up having a file with the details shown at Fig 5.2.1.

Python Memory Profiler Python Module “cProfile”
eee e
(] —— [] ——]
| | e | e | [e] s e |
[e | e [)
[| e | | e | e |
[== | = [==] =}

app_info.py
Filename: <file_name>

<function_name> <Memory> <Time>

Fig 5.2.1 Final profiling representation.

The next step is to make the datasets which will be used in our prediction models. One
dataset for each prediction (energy and time) and for each of our edge devices. As we will
describe in the next sections we used two types of edge devices so we will need 4 datasets in

total.

6’/

As machine learning techniques are a very useful and widely used technology we decided to

take as samples for our measurements, examples and benchmarks from a widely used

machine learning python library called “scikit-learn”. Scikit-learn is an open source machine

learning library that supports supervised and unsupervised learning. It also provides various

tools for model fitting, data preprocessing, model selection and evaluation, various

examples and benchmarks and many other utilities.

5.2.1 Building the datasets

Our final dataset for each of the edge device follows the template below:

PyScript name (from Time on local

scikit-learn) machine (s)

Time on edge device
Memory (MB) (s) / Energy on edge

device (Joule)

To make it more clear we describe the final status of the datasets as follows:

' N —
ol
N
Edge Device #1 Edge Device #2
Time Dataset for device #1 Time Dataset for device #2
. Time onlocal = Time on edge . Time onlocal | Time on edge
FIEIETIEE Memeory (MB} machine (s) device (s) IS Memory (MB) machine (s) device (s)
Energy Dataset for device #1 Energy Dataset for device #2
Time on local BB @ Time on local Energy on
PyScript Memory (MB) . edge device PyScript Memory (MB) . edge device
machine (s) machine (s)
(loule) (loule)
N N

Fig 5.2.1.1 Datasets final form.

68

The process we followed in order to build the datasets is simple:

> First, we profiled every example and benchmark was included in scikit-learns’ files
(approx. 500 python scripts) just in the same way we did for profiling our sample

monolithic code.

» Then, we run every profiled python script on each device and we measured the time
it took to finish and its’ energy consumption on that specific device. For the
measurements we used the basic time library of python and for the energy we used

bash files from the devices.

5.2.2 Prediction Model Decision

After building our datasets we had to decide which prediction model we will use. The best
way to make the right decision is to test various models and find the one with the minimum
Mean Square Error. In Statistics, Mean Square Error (MSE) is defined as Mean or Average of
the square of the difference between actual and estimated values and the formula for MSE

is:

wse =577~ 7)

MSE = mean squared error,

1 = number of data points,

Yi= observed values,

P

Y;= predicted values,

MSE tells us how close a regression line is to a set of points. It does this by taking the
distances from the points to the regression line (these distances are the “errors”) and
squaring them. The squaring is necessary to remove any negative signs. It also gives more
weight to larger differences. It's called the mean squared error as it finds the average of a

set of errors. The lower the MSE, the better the forecast.

69

With that being said we are now ready to proceed to the steps we followed to find the best
prediction modeling for us (we have to point out that the same process has been followed for

each edge device and each prediction, time and energy):

Step 1: Correlation Matrix

We measure correlation of two numerical variables to find an insight about their
relationships. On a dataset with many attributes, the set of correlation values between pairs
of its attributes form a matrix which is called a correlation matrix. The correlation matrix is a
symmetrical matrix with all diagonal elements equal to +1 where +1 describes a perfect

positive correlation and 0 means no correlation.

Correlation Matrix of the Original Dataset

-1.0
'r.'-d i 0.065
= - 0.8
ey
[=]
=
[+F]
s
0.6
w
1]
E
0.4
0.065 0.2

Energy(Joule)

i
Memory(MB) Time(s) Energy(joule)

Fig 5.2.2.1 Correlation Matrix of the Original Dataset.

70

Step 2: Visualizing our dataset

Energy = f(Time)

Energy = f(Time) -with limits-

L] () ®
[]
e ® .. .’
70000 | .
° LR Y
80 4 ® o'
60000 - : ® ® . L
[]
o o L
__ 50000 T 60l ° .- we
[= L] [] [
E g . s dody e
= 40000 S
> 5 & L] []
L]
Z 30000 | E o * °
o L]] o [
20000 L4 :‘".
201 228 °
[]
10000 .}'
° ° °
0] cmlliteess ¢ ° 0 . ‘ ; ‘
T T T , , T 0 5 10 15 20 25
0 100 200 300 400 500 Time (s)
Time (s)
Energy = f(Memory) Energy = f(Memory) -with limits-
1000 - +
[]
70000 -
800 b
60000 - ° L]
[]
__ 50000 -|
z T 6001 L L]
g 5 °
= 40000 2]
[]
[T [
g | °
£ 30000 . 5 400 % ®
20000 ° ® ¢
b L]
v pf
10000 4 ° 200 A 3o ﬁ(’
[J [] o8 [] °
0] Gt e o o o ° ° e, © N q
: : : : : : . . o 0 o ® o :
0 250 500 750 1000 1250 1500 1750 0 100 200 300 400 500
Memory (MB) Memory (MB)
Boxplot of the original data
350 g
300
250
200
150 - o
o]
100 | o
50 1
0 | ‘ L
Memory(MB) Time(s) Energy(joule)

71

Step 3: Removing the outliers

By visualizing our dataset, we can see that we have some measurements that are far greater
than the majority (outliers). By definition outliers are observations that lie an abnormal
distance from other values in a random sample from a population. Outliers can damage our
predictions and increase the error of our model. After modifying our dataset and removing

these outliers we have the new correlation matrix and the new boxplot:

Correlation Matrix of the New Dataset

-1.0
— - 0.9
Jua]
=
>
=] - 08
£
[1H]
=
0.7
0
g
E 0.6
05
]
= 0.4
g
=
9 | |
I_% Memory(MB) Time(s) Energy(joule)
Fig 5.2.2.2 Correlation Matrix of the New Dataset.
Boxplot of the new data
350 |
o}
o}
300 -
o}
250 -
200 -
150 |
100 g
50 1
. % -
Memory(MB) Time(s) Energy(joule)

72

Fig 5.2.2.3 Boxplot of the New Data.

Step 4: Choose the right model

It is now clear that our dataset is in a better state, the correlation matrix seems more helpful
and we can start making predictions with various prediction models and find the best one.
After dividing our new dataset to test and training sets we chose to try the most widely used

models and below we present the MSE of each one:

Linear Regression Random Forest Regression Decision Tree Regression
(MSE = 464.0815) (MSE = 1101.8150) (MSE = 2260.8714)
Ridge Regression Lasso Regression Polynomial Regression
(MSE = 464.0870) (MSE = 464.2736) (MSE = 509.5671)

Bayesian Ridge Regression

(MSE = 464.4987)

Barplot of MS Errors

Ridge Regression
Lasso Regression

c
2
k]
i
]
c
g
.
m
o
c
£

Random Forest Regression
Decision Tree Regression
Polynomial Regression
Bayesian Ridge Regression

Fig 5.2.2.4 Boxplot of MISE of each model.

So for this particular prediction model we chose Linear Regression which was the model with

the minimum MSE. Below we present more details regarding the accuracy of our model:

73

Energy(joules)

Predicted and Actual Values using Linear Regression

250 A
® Actual Values ®
® Predicted Values
200 + ®
o}
[
o}
T 150 s} * ¢ ¢
S |
E ’
= o ° : °
¢ 100 | 0
i ° e e
® o ®
® [
‘e %, ® o' s .
e @ ®
504 “ge e o e 3 ¢ ..
e °* %% 0 .
o - ®S.e o
® o o o® see?
e 3 S o 00 o0 o % o
0 -
T T T T T T
0 10 20 30 40 50
Test Case
Fig 5.2.2.5 Predicted and actual values using Linear Regression.
Predicted and Actual Values using Linear Regression
250 A

B Actual Values
mm Predicted Values

200 -
169.407
165.0%85 043 156,052 161601
149.674151.507 .
150 1 143.214
11952
11718619 :
. 96
100 4 90.8
84,0627
73.51 5
2.539 4667 131
50 4 4
2
i i
0-

-6.33763

241.484

Fig 5.2.2.6 Predicted and actual values using Linear Regression.

74

T T T T T T T T T T T T T T T T
10111 2131415161 7181 R B 12 2 R P @ 72 82 BO313233343536373839404 1429 34445164 748496015253

Energy(joule)

Absolute Actual Error using Linear Regression

100 A ™

80

60 A

20 4

Test Case

Fig 5.2.2.7 Absolut actual error using Linear Regression.

75

So we end up having 4 files that include our time and energy predictions for each node as

the Fig 5.2.2.8 below describes:

e
—
«H
" rrmmm
Edge Device #1 Edge Device #2
Time Predictions for device #1 Time Predictions for device #2
Predicted Time Predicted Time
Function on edge device Function on edge device
(s) (s)
Energy Predictions for device Energy Predictions for device
#1 #2
Predicted Predicted
Function Energy on Function Energy on
edge device edge device
(Joule) (loule)
~ >y /

Fig 5.2.2.8 Prediction files description.

5.3 Placing algorithm

In this chapter we will describe the algorithm responsible for placing and distributing the
functions through our cluster while minimizing the predicted total energy consumption

under a specific time threshold.

5.3.1 Knapsack and Multiple knapsack problem

At first we recognize our problem as a multiple knapsack problem. The knapsack problem is
an optimization problem used to illustrate both problem and solution. It derives its name
from a scenario where one is constrained in the number of items that can be placed inside a
fixed-size knapsack. Given a set of items with specific weights and values, the aim is to get as

much value into the knapsack as possible given the weight constraint of the knapsack. A

76

simple and clear example could be the problem of placing different kind of objects in a
knapsack as it is shown at Fig 5.3.1.1 while we try maximize the total value of the knapsack

which has limited carrying storage.

;

A
\ , Gold Ruby (gm

Value Weight Value Weight

Diamond
100% /g 1kg 1000$% /g 0.05kg Wood

Value Weight .
Value Weight

. 3%/g 10 kg

50008 /g 0.9 kg

Ag

Rock

Silver

Value Weight
Value Weight

1%/g 5kg

508 /g 4 kg

Fig 5.3.1.1 Example of knapsack problem.

The knapsack problem (KP) is an example of a combinational optimization problem, a topic
in mathematics and computer science about finding the optimal object among a set of
objects. It is a commonly used example problem in combinatorial optimization, where there
is a need for an optimal object or finite solution where an exhaustive search is not possible.
In the knapsack problem, the given items have two attributes at minimum — an item’s value,
which affects its importance, and an item’s weight or volume, which is its limitation aspect.
Since an exhaustive search is not possible, one can break the problems into smaller sub-
problems and run it recursively. This is called an optimal sub-structure. This deals with only
one item at a time and the current weight still available in the knapsack. The problem solver
only needs to decide whether to take the item or not (binary KP) based on the weight that
can still be accepted. However, if it is a program, re-computation is not independent and
would cause problems. This is where dynamic programming techniques can be applied.
Solutions to each sub-problem are stored so that the computation would only need to

happen once.

17

The multiple knapsack problem (or MKP) is an NP-hard extension to the standard binary
knapsack selection problem. The goal is the same; to find a subset of items that maximizes
the total profit/gain (objective function), however, the difference is that instead of having a
single knapsack or resource, there are multiple knapsacks/resources (each is a separate

constraint) and the subset of items should not violate the capacity of any of these knapsacks.

5.3.2 Problem Definition

Now that we have made clear how our problem can be approached we can try to define it:

e M = Knapsacks (no. of Nodes)

e N =lItems to be inserted in the knapsacks (no. of functions)

e Wijj = Weight (Time prediction on edge device (i) for function (j))

e di=Cost/ Value (Energy on a node (i) by the allocation of the functions)
e Xij=1if the function j has been allocated to node i

e Xij=0if the function j has not been allocated to node i
e Each function can be allocated by only one node
e T =Time threshold (Input by the user)

Equation:
Minimize z = ;% , d;

i=

Subject to:

® Xj= ﬁ] JeEM ={1, .., m},jeN={1, ..., n}

o E}?ilxij =1 ’ JEN = {11 Ty n}
e it wi;<T ,jeN={1,..,n}

5.3.3 Algorithm

The approach we took for the minimization problem we are facing is basically by trying a big

number of possible solutions and give an approximate solution. The algorithm creates a pool

78

of possible solutions and choses the solution which satisfies the constraints given by the user

while minimizing the total energy consumption.

5.3.4 Algorithm Implementation

Now that we have stated the problem we are trying to solve and the theoretical background
which will help us achieve it lets dive into our algorithm. Our algorithm is developed in
python programming language and makes use of all of the tools we described above

(profiling and predictions). The process follows the steps below:

Step 1: The user inputs the time threshold of his/her choice.

Step 2: Get the cluster details. This includes number and type of edge devices in our

environment which are also imported from the user.

Step 3: The user inputs if the algorithm should process the data according to parallel or
serial run in the serverless environment. We decided to give the option to run the code in
serial or in parallel (as long as there are no dependencies between the functions) in order to

see the difference in our results.

Step 4: This is the step where data about our monolithic code are imported. The data from

profiling (e.g., number of functions) and also the predictions we described above.

Step 5: At this point the algorithm generates map tables which describe the distribution of
the serverless applications (functions of the monolithic code) and runs a set of tests to find
the binary map table which gives us the distribution with the minimum predicted energy
consumption under the user’s time threshold. A binary map table can be visualized as it is

shown at Fig 5.3.4.2.

79

#_of nodes (m)

/ 0 0 1
1 0 0
0 1 0
0 1 0
of functions(n)
1 0 0
Map Table
nxm

Fig 5.3.4.2 Example of a binary map table with 3 nodes and 5 functions to be placed.

The explanation is simple:

e function_0 will be executed at node_2

function_1 will be executed at node_0

function_2 will be executed at node_1

function_3 will be executed at node_1

function_4 will be executed at node_0

After creating the map tables, the process follows the simple process of table multiplication
for every device and every variable (energy and time), as it is described in Fig 5.3.4.3, in

order to calculate the total energy consumption and the total run-time:

80

#_of_nodes (m)

of_functions (n)

I = [[[|

Energy Prediction Table on device #i Total energy for each
node of type #i

Ixn # of functions i xm

Map Table of device #i

nxm

Fig 5.3.4.3 Process of producing the final map table with 3 nodes and 5 functions to be

placed.

Every prediction (energy or time) is stored in a row table. The first element is the prediction
of function_0, the second element of the row table is the prediction for the function_1 etc.
Then the predictions row table is multiplied with the generated map table and the result is a
row table which gives us the total energy consumption or run-time on each node. The first
element of the last table is the total energy consumption of node_0, the second element is

the total energy consumption of node_1 etc.

Step 6: This is the last stage where the algorithm calculates the total energy consumption in
our cluster (by adding every element of the produced table above) and makes sure that the
total run-time is under the users’ desired time threshold. If it is under the time limit then it
compares this distribution with the previous one and saves the one with the minimum total
energy consumption. What we get as a result is the best map table accompanied by the

predicted total energy consumption and the predicted total run-time.

81

Experimental Evaluation

In this chapter, we are going to describe the Kubernetes cluster created for our experiments

and we will also present the tools we used to test and evaluate our algorithm.

6.1 Experimental Setup

Our cluster (or serverless environment) consists of four nodes, three Edge-Worker nodes

and one Master node as shown in Fig 6.1.

K3S

) Worker

OPENFAAS
Worker Master 192.168.1.253
(local IP)
147102.37150 192.168.1.249 Worker
(local IP)

192.168.1.252
(local IP)

Fig 6.1 Experimental Setup

82

For the Master node in our cluster, we used a virtual machine sitting on top of a machine
with 4 Intel CPU cores and 8 GBs of RAM. The virtual machines’ OS is Ubuntu 20.04.2 and the
architecture is x86_64. For our Edge-Worker nodes we used one NVIDIA Jetson Nano and
two NVIDIA Jetson Xavier NX and they both use Aarch64, one of the most widely used

architectures in edge computing systems.

As shown in Fig 6.1, we created a single node Kubernetes cluster and then deployed Docker
and OpenFaa$ on top of it. Most of the components, as well as the devices, will be described

below.

So, we created a heterogeneous and scalable cluster which can be found in real life
situations. The main idea is that a developer would like to run his cloud-native application,
written in the form of a monolithic code, in a serverless environment while keeping the total
energy consumption of the application in minimum levels. This can easily scale up or down
depending on the application/s and it could consider to be a solid scenario in an industrial

environment situation.

6.1.1 Edge Devices

ARM is the acronym for Advanced RISC Machines where RISC is the acronym for Reduced
Instruction Set Computing. It is the most pervasive processor architecture in the world, with
billions of Arm-based devices like sensors, wearables and smartphones, supercomputers etc.
being used in our everyday lives. Its reduced instruction set makes it more powerful and
efficient for mobile and edge devices. Furthermore, it offers extremely low power

consumption which is the main reason it is so popular in Internet of Things devices.

83

6.1.1.1 NVIDIA Jetson Nano

NVIDIA

°
M | T

Jetson Nano is an embedded Linux module featuring the GPU accelerated processor NVIDIA
Tegra targeted at edge Al applications. It is a full blown single-board-computer in the form of
a module. Also, it is specifically designed for developers to use at home and for every kind of
usage in general. The goal of the form-factor is to have the most compact form-factor
possible, as it is envisioned to be used in a wide variety of applications where a possible
customer will design their own connector boards best fit for their design needs. The

specifications are shown in Fig 6.1.1.1:

84

GPU NYIDIA Maxwell architecture with 123 NVIDIA CUDAE cores

CPU Quad-core ARM Cortex-AS7 MPCore processor
Mamory 4 GB g4-bit LPDORSE, 1600MHz 25.6 GB/s
Storage 16 GB eMMC 51

Video Encode 250MP/=zec

1x &K @ 30 [HEVC)

2x 1080p @ 60 [HEVC)
4x 1080p @ 30 [HEVC)
4x 720p @ 60 [HEVC)
9x 720p @ 30 [HEVC)

Video Decode S00MP/=ec
1x 4K @ &0 [HEVT)
Zx 4K [@ 30 [HEVT)
4x 1080p @ &0 [HEVC]
8x 1080p @ 30 [HEVC)
%x 720p I &0 [HEVE)

Camera 12 lanes [3x4 or 4x2] MIPI C51-2 D-PHY 1.1 [1.5 Gb/s per pair]
Connectivity Gigabit Ethernet, M.2 Key E

Display HOMI 2.0 and eDP 1.4

uUsB Lx USE 3.0, USE 2.0 Micro-B

Others GBPID, 17T, 1°S, 5PI, UART

Mechanical 696 mm x 45 mm

2680-pin edge connector

Fig 6.1.1.1 NVIDIA Jetson Nano Specifications

6.1.1.2 NVIDIA Jetson Xavier NX

- ‘i

% "@HVIDIA. NVIDIA CORP SANTA CLARA

Jetson Xavier NX is ideal for use in high-performance Al systems like commercial robots,

medical instruments, smart cameras, high-resolution sensors, automated optical inspection,

85

smart factories, and other AloT embedded systems. It supports multiple power modes,
including low-power modes for battery-operated systems and it comes with cloud-native
support. Furthermore, Jetson Xavier NX accelerates the NVIDIA software stack with more
than 10X the performance of its widely adopted predecessor, Jetson TX2. The specifications

are shown in Fig 6.1.1.2:

Al Performance 21 TOPS [INTS)

GFPU 384-core NVIDIA Volts™ GPLU with 48 Tensor Cores
GPU Max Freq 1100 MHz

CPU G-core MVIDIA Carmel ARMEvE.2 44-bit CPU

4MB L2 + £MEB L3

CPU Max Freq 2-core @ 1700MHz
4f¢-core @ 1400Mhz

Memory 3 GB 128-bit LPDDR4x G 1866MHz
59.7GB/s

Storage 14 GB eMMC 3.1

Power 10WT1 W 20W

PCle Tl + x4

[PCle Gen3, Root Port & Endpoint]

CSl Camera Up to & cameras [36 via virtusl channels]
12 lanes MIPI C5l-2
D-PHY 1.2 [up to 30 Gbps]

Video Encode Zx 4KED | &x 4K30 | 10x 1080p40 | 22x 1080p30 [H.255)
Zx 4KA0 | bx SK3D | 10x 1080pE0 | 20x 108p30 [H.254]

Video Decods 2 BK30 | S SKED | 12 4K30 | 22x 1080p40 | 44x 108030 [H.255)
2 4KED | &x 4K30 | 10x 1080p40 | 22x 1080p30 [H.264)

Display 2 multi-mode DP 1.4/eDP 1.4HDOMI 2.0
DL Accelerator 2z MVDOLA Engines

Vision Accelerator T-Way VLIW Vision Processor
Hebworking 10/100/1000 BASE-T Ethernat
Mechanical 43 mm x 476 mm

240-pin 50-0DIMM connectar

Fig 6.1.1.2 NVIDIA Jetson Xavier NX Specifications

6.1.2 Evaluated Application

At this stage we present the application with which we will evaluate our algorithm and its
proposed solution. We chose to evaluate a monolithic application which consists of multiple
Machine Learning functions as our tool is developed and our cluster has been built in such a
way that proposes solutions on these heavily used technologies. More specific our test

applications consist of functions that create random datasets and try to predict the next

86

values using different prediction models. The structure of the application we chose to

evaluate our algorithm is shown at Fig 6.1.2.1.

evaluated application.py

0[o

<>

/\
~
N
00

/>

Fig 6.1.2.1 Evaluated Application structure

In order for our application to be cloud-native we had to build docker images which we will
run as functions (or serverless applications) in our OpenFaaS environment. We had to build
two different images as the tools to measure energy consumption and run-time in every

edge device are different.

With that being said, as you can see at Fig 6.1.2.2, we have two individual images each one
consisting of all of the functions of our test-application (monolithic code) shown above, all
the tools needed to capture the measurements (energy consumption and time) and the

Dockerfile which has all the information about building each image.

Nano Image

Functions
N\
— Tools to
S @
ﬁ? — > measure
s — - energy on
o — nano
S
N
> Dockerfile
_

Fig 6.1.2.2 Images used for evaluation

6.2 Evaluation

Now we use our experimental infrastructure described above to evaluate our custom
placement decision algorithm. We used a machine learning application which consists of 25
individual functions. The algorithm proposes a placement accordingly to our cluster as it is

described above while predicting the energy consumption of the proposal as well as the

total run-time of the whole application.

88

Xavier Image

Functions

Tools to
measure
energy on
Xavier

Dockerfile

6.2.1 Experimental Procedure

In order to evaluate our algorithm, we used an application which consists of 25 machine
learning functions which are inspired by the scikit-learn python library. This monolithic
application with its individual functions is to be splitted into 25 independent serverless

functions and run in our OpenFaaS environment in the most energy efficient way.

Also our algorithm makes a proposal depending on the accepted by-the-user total run-time
so it is interesting to test the behavior of our proposals when the users tries to decrease the
total run-time and at the end, find the minimum run-time that the application can run in this

specific environment.

With that being said, the procedure we followed is made simple. First, we run the algorithm
and we got the first proposal. Then we kept decreasing the total run-time until we reached
the proposal with the minimum run-time. The algorithm gave us 9 proposals, each one with
less time than the previous one. The results we have been given from the algorithm are what

we have been expecting.

As it is shown in Fig 6.2.1 our algorithm first proposed a solution where all of the placement
was taking place at the most energy efficient and “fast” devices (devices 2 and 3 - the xavier
ones). But when we needed to decrease the total run-time, the algorithm, in order to
achieve parallelization, as a second proposal made used of the “slower” and not that energy
efficient device (device 1 - nano) to run one of the functions. The results were to decrease
the time as needed but increase the total energy consumption. The same behavior has been

observed for the next proposals until we reach a time limit and the minimum run-time that

o0 0 0 0.0 @06 0
@@ @o ll;.ZJ @@ @@ 12}.3] (o) @g (1) 14{511
o @ /o, @o 193.55 (/) 192.25
O _ (1)) ®

1 2 3 2
(a) Time threshold = 200s (b) Time threshold = 195s (c) Time threshold = 194s (d) Time threshold = 193s

could be achieved.

Op ©
(2]
I?J
(f2)
@® 190)5.75

1

Device

Device

Device

Device

Fig 6.2.1 Placement behavior while decreasing time (example)

89

At this time, we were ready to test each one of the proposals in our real-life environment.
We used our custom docker images described above to run every function in the specific
node given by the map table of the proposal and capture its actual energy consumption and
run-time. At the end we could easily sum up the total energy consumption and run-time of
each proposal and compare those numbers with the predicted numbers given by the

algorithm.

It was interesting to compare our solution with the original kubernetes placement without
selecting nodes for each of the function to run on. So using our custom docker images we
run all of the serverless functions without telling kubernetes what to do and where to place
each one of them. We simply run every function and captured its energy consumption and

run-time.

6.2.2 Results and Kubernetes Comparison

In this section, we present the two charts of captured total energy consumption and total
run-time of each proposal while comparing those results with the prediction given by the

algorithm and the placement of kubernetes.

While running our experiments we noticed that the theoretical-predicted values of both
energy and time had some standard difference from the actual values which was measured
with our tools while running the functions. Using some simple methods, we have been able
to calculate that standard overhead which is consider to be an overhead caused by the
kubernetes deployment and the OpenFaaS. More specific, we noticed that there is a type of
noise on the measurements coming from the device itself and it seems to be increased due

to the kubernetes deployment and the way OpenFaaS communicates with the master node.

With that being said, in order to be more precise on the evaluation charts, instead of the
predicted values given by the algorithm we used the overhead model which is nothing more

than the predicted values with that overhead added on them.

90

Actual Energy using Mathematical Model VS Kubernetes

Placement

315
T 305 ‘A
= ==@==Actual Energy

295
=}
< 285 — - _—
% 275 /l Predicted energy usign
=
w265 u overhead model

255 Kubernetes Placement

1 2 3 4 5 6 7 8 9
Proposal

Fig 6.2.2.1 Energy Evaluation chart

Actual Time using Mathematical Model VS Kubernetes
Placement

40
o m === A\ctual Time
@ 35
v
£ 30 === Predicted Time using
= overhead model

25

1 2 3 a 5 6 7 =] g Kubernetes Placement
Proposal

Fig 6.2.2.2 Time Evaluation chart

At Fig 6.2.2.1 and Fig 6.2.2.1 we first notice that there is a small error between the predicted
and actual values, which is quite expected as there is always a room for improvement when
it comes to predictive models, but both lines in both charts follow the same trend and
behavior. Also we can see that as we keep decreasing the desired run-time the energy

consumption is increasing, as it was also expected.

When it comes to evaluate our algorithm with the kubernetes placement it is important to
point out that if we set a time threshold that is bigger than the kubernetes-placement-time
we accomplish less energy consumption. Also using our tool, we can set a time threshold
lower than the kubernetes placement, which will give our user more control on the
workload, workflow and on his overall experience when using OpenFaaS and serverless

functions.

91

In a deeper statistical analysis, we achieved approx. up to 6% less energy consumption
comparing our solution with the default kubernetes placement (if the desired time threshold
is above the kubernetes placement total run-time, as it is in proposal 1) and approx. up to
11% speedup when our user wants to run the application in a faster way, other than the
kubernetes default placement. All in all, combining the energy and time efficiency and
results, we managed to achieve an approx. 2.6% better placement than the default

kubernetes placement.

92

Conclusion and Future Work

7.1 Summary

In this thesis, we design and evaluate a decision placement algorithm for monolithic
applications consisting of multiple functions that need to run on a serverless environment
while ensuring the minimum total energy consumption and a desired run-time threshold.
We used state of the art tools such as Kubernetes and OpenFaaS while profiling the
application using python memory profiler and python time profiler. It is very important to
mention that our tool is scalable and can support heterogeneous machines. Furthermore,
we evaluated the tool, against the Kubernetes default placement. As shown, in our
experiments, the tool improves the quality of service and achieves this while giving the user

more control on his serverless deployment.

7.2 Future Work

This particular subject is very promising due to its versatility and its necessity. The fact that,

with an optimal placement decision in this kind of environments, industry and end-users

93

needs and quality of service can be improved dramatically makes it very interesting and

exciting.

First of all, for this research, our proposed algorithm can be evaluated in more
heterogeneous devices and applications, so that we can explore the scalability of our
approach. Another improvement might be taking into consideration the devices available
resources before deciding if a function with standard needs can be deployed on the specific

device.

Furthermore, there can be an even more research on predictive models and techniques in
order to improve the energy and time predictions of the algorithm. We could investigate
several ML models or use additional, more sophisticated features for our models. This way,

the model should be more effective and train specifically for each different case.

Another idea is to integrate into the decision algorithm, connection related aspects. Thus,
making the algorithm more appropriate for clusters consisted of devices in different
locations. Moreover, it is also interesting to investigate applications that consists of
connected functions, functions that communicate with one another and see the cost of that
communications as an overhead on our total predictions and actual values on the

measurements.

Last but not least, in modular scenarios on Edge computing systems, the behavior of our

approach should be evaluated, under geolocated, networking and QPS variations.

94

Biplioypagia | References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Rob van der Meulen. What Edge Computing Means for Infrastructure and
Operations Leaders (October 03, 2018) Available:

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-

for-infrastructure-and-operations-leaders

https://www.onlogic.com/company/io-hub/edge-computing-vs-fog-
computing/#:~:text=1n%20a%20nutshell%2C%20edge%20computing,purp
05es%2C%20such%20as%20data%20filtering.

T. Alam, «A Reliable Communication Framework and Its Use in Internet of

Things (IoT),» JOUR, 30 May 2018.

https://openwhisk.apache.org/documentation.html

Cheol-Ho Hong and Blesson Varghese. 2019. Resource Management in
Fog/Edge Computing: A Survey on Architectures, Infrastructure, and
Algorithms. ACMComput. Surv. 52, 5, Article 97 (September 2019)

Charalampos Marantos, Konstantinos Salapas, Lazaros Papadopoulos,
Dimitrios Soudris. A Flexible Tool for Estimating Applications

Performance and Energy Consumption Through Static Analysis

Josef Spillner and Serhii Dorodko. Java Code Analysis and Transformation
into AWS Lambda Functions (February 21, 2017)

95

https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.gartner.com/smarterwithgartner/what-edge-computing-means-for-infrastructure-and-operations-leaders
https://www.onlogic.com/company/io-hub/edge-computing-vs-fog-computing/#:~:text=In%20a%20nutshell%2C%20edge%20computing,purposes%2C%20such%20as%20data%20filtering
https://www.onlogic.com/company/io-hub/edge-computing-vs-fog-computing/#:~:text=In%20a%20nutshell%2C%20edge%20computing,purposes%2C%20such%20as%20data%20filtering
https://www.onlogic.com/company/io-hub/edge-computing-vs-fog-computing/#:~:text=In%20a%20nutshell%2C%20edge%20computing,purposes%2C%20such%20as%20data%20filtering
https://openwhisk.apache.org/documentation.html

[8]

[9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]

[17]

[18]
[19]

[20]

loana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, Philippe Suter. Serverless Computing: Current
Trends and Open Problems (10 Jun 2017)

Babak Bashari Rad, Harrison John Bhatti, Mohammad Ahmadi. An

Introduction to Docker and Analysis of its Performance (March 2017)

Ricardo Stegh Camati, Alcides Calsavara, Luiz Lima Jr. Solving the Virtual
Machine Placement Problem as a Multiple Multidimensional Knapsack
Problem (2014).

Silvio Roberto Martins Amarante, André Ribeiro Cardoso, Filipe Maciel
Roberto, Joaquim Celestino Jr. Using the multiple knapsack problem to
model the problem of virtual machine allocation in cloud computing (2013).

Achilleas Tzenetopoulos, Evangelos Apostolakis, Aphrodite Tzomaka,
Christos Papakostopoulos, Konstantinos Stavrakakis, Manolis Katsaragakis,
loannis Oroutzoglou, Dimosthenis Masouros, Sotirios Xydis, Dimitrios
Soudris. FaaS and Curious: Performance Implications of Serverless
Functions on Edge Computing Platforms (13 November 2021)

Achilleas Tzenetopoulos, Charalampos Marantos, Giannos Gavrielides,
Sotirios Xydis, Dimitrios Soudris. FADE: FaaS-inspired application
decomposition and Energy-aware function placement on the Edge (13
November 2021)

https://morioh.com/p/47719a08c1e8

https://kubernetes.io/docs/concepts/overview/components/

https://www.aquasec.com/cloud-native-academy/kubernetes-

101/kubernetes-architecture/

https://www.quora.com/What-is-more-secure-Kubernetes-serverless-or-

microservices

https://ericstoekl.github.io/faas/architecture/

https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-

openfaas-knative-more/

https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-

openfaas-knative-more/

96

https://morioh.com/p/47719a08c1e8
https://kubernetes.io/docs/concepts/overview/components/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-architecture/
https://www.aquasec.com/cloud-native-academy/kubernetes-101/kubernetes-architecture/
https://www.quora.com/What-is-more-secure-Kubernetes-serverless-or-microservices
https://www.quora.com/What-is-more-secure-Kubernetes-serverless-or-microservices
https://ericstoekl.github.io/faas/architecture/
https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-openfaas-knative-more/
https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-openfaas-knative-more/
https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-openfaas-knative-more/
https://www.cncf.io/blog/2020/04/13/serverless-open-source-frameworks-openfaas-knative-more/

