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IlepiAnyn

Avutr| n SutAopatikn epyacia apouotddetl v dnpoupyia evog vEou ouvoAou SedoliEvav
peyadng rAtpakag (large-scale dataset) yia 1o pdBAnpa ng avayvopiong oe eminedo o-
vioutag (Instance-Level Recognition, ILR), oto medio tov épyav téxvng (artwork domain).
To ouvolo 6edopévav auto, mou ovopddetal ouvodo dedopévav Met, epgavider pia oepd amno
IPOKANOELS OM®G PeEYAAn opoldtnta petady twv KAdoewv tou (large inter-class similarity),
Katavopr] pakplag oupdg (long-tail distribution) kat oAU peyddo apiOpod kAdaocewv. Ba-
olotKkape otr cuddoyn avoiyxtig npoocBaong tou pouosiou The Met yia va oxnuaticoupe
éva peyddo ouvoldo exknaidevong (training set) mepinou 224.000 rAdoswv, orou KABe KAdAON
avtiotoixel oe €va €ékBepa Tou pouceiou, e PETOYPAPIEG TTOU TPABNXTNKAV O OUVONKeS
otouvtio. To ouvolo a&loddynong (test set) arotedeital oe €va moocootd and eeoypadieg
IoU arnelkovi¢ouv ekBepata Kat tpabrXTnNKav arnd noKENIeEG TOU POUOEI0U, €10AyovTag pid
petatoruon katavourg (distribution shift) petat autou kat tou cuvodou exkmaibeuong. A-
TTOTEAETTAL EMMUITAEOV ATTO £va GUVOAO E1KOV®V TTIOU 6ev oxetidoviatl pie ekBEpata amno 10 Pouoeio
Met, kat 1ou KAvel 10 POBANPA va TAipvel XapaKIpa aviXveuong eKtog katavourng (out-
of-distribution detection). To mpotewvopevo benchmark akoloubei 1o napadeiypa dAAev
npoodatev ouvolwv dedopévev yia 1o ILR os Sapopetika nedia, oote va sevBappuvBouv
rnpooeyyioelg epappooeg avedaptriog nediou. Ilpokepévou va ipoodpepbel pa Bdorn ya
peddoviikég ouykpioelg, aglodoyoupe katdAdnleg peBodoug oe autd. H autoenorteudpevn
(self-supervised) kat n enornteudpevn OUYKPLTIKY) (supervised contrastive) pnddnon ouvdu-
alovtal anotedeopatika yla v eknaibevorn CNNs rou mapdyouyv v avanapaotaor) E1IKOVAg
(image representation) ) oroia xpnoponoteitat oe ouvduaopo pe €vav Un nMapapeTpiko 1a-
Swountr) (non-parametric classifier), vriobewkvioviag pia unooxopevn kateubuvon yua 1o
ILR.

Aggerg KAeda

avayvoplon o€ erminedo oviotntag, avayvoplorn £pyev TEXVNG, ouvolo dedopévav ava-

YVOP101G REYAANG KATpaKag, ta§ivopnon Kovitvotepou yeitova






Abstract

In this thesis, the creation of a new dataset and benchmark for large-scale instance-
level recognition (ILR) in the domain of artworks is addressed. The proposed dataset,
called the Met dataset, exhibits a number of different challenges such as large inter-
class similarity, long-tail distribution, and many classes. It relies on the open access
collection of The Met museum to form a large training set of about 224k classes, where
each class corresponds to a museum exhibit with photos taken under studio conditions.
The evaluation set is primarily composed of photos taken by museum guests depicting
exhibits, which introduces a distribution shift between training and testing. It is addi-
tionally composed of a set of images not related to Met exhibits making the task resemble
an out-of-distribution detection problem. The proposed benchmark follows the paradigm
of other recent datasets for ILR on different domains to encourage research on domain
independent approaches. In order to offer a testbed for future comparisons, a number of
suitable approaches are evaluated. Self-supervised and supervised contrastive learning
are effectively combined to train CNNs that produce the image representation used in
combination with a non-parametric classifier, showing a promising direction for ILR. The

dataset webpage (also contains reference code) is: http://cmp.felk.cvut.cz/met/ .

Keywords

instance-level recognition, artwork recognition, large-scale recognition dataset, knn

classification
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Kegpalaio m

Extetapévn EAAnvikn IepiAnyn

0.1 IIeprypadit) npoBAnpatog

H ontuikn avayvopion 1 katnyoplonoinorn (visual recognition or classification) srutuy-
Xavetat pe kamyopieg (kKAdoelg) oplopéveg oe dradopetikd enineda Aemtopépetag. Ia ma-
padetypa, 1o €kBepa mou @atvetat oty ewkova 1 katnyoplonoteital og "Clytie" tou William
Henry Rinehart, og yAumto 1 og épyo téxvng, amd v dmoyn ng avayvoplong oe &-
niinedo oviotntag (instance-level recognition, ILR) [1], tng Aemtopepous KATNyOP10TION0NS
(fine-grained recognition) [2] 1] tng yevikig katnyoplomnoinong (category-level recognition,
CLR) [3], avtiotoixa. H katyoptlomnoinon ot eninedo oviotntag, arotedet 181Ky mepintaon
11§ OTTTIKIG KATNYOP10MOIN0NG ITOU OTOXEVEL OTNV AVAYVOPL0T CUYKEKPTHEVAOV AVIIKEIPIEVROV
Kat 01 HOVO NG YVEVIKNG (Onpactodoyikrg) katnyopiag toug. Egappddetar oe Siapopoug
Topelg, Onwg ta rmpoidvea, ta aflobéata, o1 aotikeg Torobeoieg Katl ta £pya teXvNg. Aviirpo-
ORIEUTIKA Ttapadelypata mMpakikev epappoyev g eivat 1 avayvoptlor tortobsowmv (place
recognition) [4, 5], n avayveopion kat i avaxinon a§ofedtowv (landmark recognition and
retrieval) [6], n avuotoixion mpoioviwv (street-to-shop product matching) [7, 8, 9] kat 1
avayvopilon £pyev texvng (artwork recognition) [10].  Ymapxouv 6idpopot mapdyovieg rmou
kaBiotouv 10 ILR anattntuiko mpobAnpa. O apiBpog tov Katnyoplov (KAAcewmv) ou mpaypa-
TevETal eival yevikd moAu peydlog gravoviag péxpt kat v téén tev 108 oe pepukd ovvoda

6edopévav, pe moAAég KAAOEIG va avIUIPOoR®IEVovIdl anod Alya 1 éva povo napadetypa-

Figure 1. To yAvunio Clytie touv William Henry Rinehart. IInyn: https://www.metmuseum.org/
art/collection/search/11922
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Figure 2. Ilapabeiypuara ILR oto ovvojlo 6dolvmv mou Tpoteivetal o avtiv tnu pyaoia, mou
Kkatadekvvouv m duokojlia tou mpobAnuarog. I'ta va Avoet 1o mpd6Anua, cva povtéflo mpemet
va AVTOTOLYIOEL T e1KOVA gp@Tuaroc (query/test image) pe avtrv amo 1g etkOVes eKTaibeuong
(train images) mou avikel o idta katnyopia (0 autn TV TEPIMI®ON TOU amekovifel To 1510
&xdeua). Or pukpég dragopeg uetall TV Karmyoptwv anartouv povtéfa ta onoia 0ttalovv o€
Aemtouépeieg, wote va MPo6oUV O OWOTY KATNYOPIOTOINoN.

1d, £V 1] PIKPT) OITUKY] §1adoportoinon petady twv KAAoemv KAvel T0 TPpoBANpa akopn o
6uUokolo, Orwg eaiveral kAl ota rmapddeiypata avayveplong oty ewkova 2. Adyem avtev
OV SUOKOAWV, Yivetal ouxvd 1) ermAoyn] va AVIIHEIRITICETAl 1] KATYOP10Itoinon oc erinedo
ovIoTNTag ®g MPOoBANHa avaxkinong oe eminedo oviotntag (instance-level retrieval) [11]. Zu-
YKEKPIPEVEG EPAPHOYEG, TT.X. OTOV TOHEA T®V MPOIOVI®V 1] TNG TEXVNG AMAtouv SUVANIKEG
EVILEPWOELS TOU OUVOAOU Katnyopltov. Ewkdveg aro véeg katnyopieg mpootifevial cuvexag,

6tvovtag oto ILR yapaxtijpa avayvopilong avoltou ouvolou (open-set recognition) [12].

[Mapd 1ig TOAAEG TIPAKTIKEG £PAPIOYEG KAl TIG OUOKOAEG TITUXEG TOU IPOBANATOG, TO
ILR &xel pooeAKUoel AtyOtepn IIPOOOYXY AITO TO IPOBANIA TG YEVIKING KATNYOP0II0inong
(CLR), 1o ortoio cuvodeuetat aro Snpodidr) ouvoda dedopévev (datasets) kat benchmarks,
onwg to ImageNet [13], rou egurninpetovv wg Pdon Soxkipuov akopn Kat yia adAa ripoBArpata
OITTIKIG avayveplong. Mia kupta attia yia auto eivat r) EAAeiyn ouvodev dedopévav peyaing
KAipakag (large-scale datasets), tov oroiev 1 dnuioupyia kat n emonpeioon (annotation)
T0UG yla 1o TipdBAnpa tou ILR eival piia oAy koruaotiky Siadikaocia. Katd ouvéneia, moAda
ouvola debopévav epthapBavouv S6pubo otig sruonpeinosig toug [1, 10, 6]. e autnv v
epyaoia, KAAUTTIOUHE autd TO KEVO €10Aay0vtag £va ouvolo debopévav yia to ILR otov topéa
TOV EPY®V TEXVIG.

O topéag g XVNGg €xel Tpabniel Heyddn mpoooyr) otV KOWoTntd g 0paoctg UItoAo-
ylotwv. Mia SnpodiAng ypappr £peuvag EMKEVIPOVETAL O [l OUYKEKPIUEV] ITTUXY TNG
tagvopnong, v poBAswn xapakinploukov (attribute prediction) [14, 15, 16, 17, 18]. Ze
AUtV IV MEPITIPOOT, Ta XapaKinpilotikd (attributes) avuiotoixouv oe Siapopa €ibr petade-

SopEvav yia €va £pyo TEXVNG, OTIOG TO OTud, 1o £160g, 1 mepiodog, o kKaAAueéyvng Kat daAla.



0.2 Zuvelogpopég epyaoiag

Training set

Artwork: California, Hiram Powers, 1850-55

Artwork Classifier —_— Confidence: 92 %

Figure 3. ZXyebiaypaupa wov npo6inuarog ILR. Yrapyet évag 1alvouning E0yov texXvng
(artwork classifier) o omoiog £xel eknaibevtel oe €va peydio ovvoio ekraibevong (training
set) ano épya téxvng. v edon mg atoAoynong, katd mv onoia divetar &g €l0060¢ oTov
raounn pia eucova epwtnuatog (query image), o talwountng 9a mpEmnel va umopEl va avay-
V@P1lel TO tKOVI{OUEVO EQYO TEXUNG, EAV ATEIKOVIETAL KATOW0, KAl ETIONG VA TAPEXEL EVA UETOO
gumotoouvng (confidence measure) yia v mpo6Asyn Tov.

Ta petadedopéva yia v mpoBAeyn Xapakinplotik®v AapBavovial arno pouceia kat Bacelg
6edopévav ou kablotouv autég Tig MAnpopopicg eAsuBepa Srabeopieg. Auto kabiotd BoAikr)
) dadikaoia Snpioupyiag twv cuvodmwv Sedopiévav, TIOU OPES KATAANyouv va givat cuyva
oAU 90puBndn Adye NG apaldtntag aviev tov minpodoptev [15, 17]. Mia dAAn yveortr)
epyaoia eivat n yevikeuon 1 n nipooappoyr) riediouv (domain generalization and adaptation)
OTIOU TA HOVIEAQ avayveoPlong ) aviXVEUOoN§ AVIIKEIPEV®OV EKTTAIGEUOVIAL OE PUOTKESG EIKOVES
KAt 1 yevikeuor) toug eAéyxetat o epya 1€xvng [19]. 'Eva rmoAu 6uokodo mpoBAnpa eivat n
avakdAuyrn potiBev [20, 21] ou mpoopidetal wg epyaldeio yia 10Toplkoug TEXVNG Kal OToXE-
UEL OtV £UPECH KOWQOV HOTIBoV PETady £pymv TEXVNG. € auth v gpyaocia sotialoupe oto
npoBAnpa tou ILR yia épya 1€xvng (BA. Ewkdva 3 yua éva oxebidypappa tou rpoBAnpatog)
ou ouvduddetl Tig ipoavapepbeioeg porAr|oelg tou ILR, oxetidetal pe epappoyeg pe 9etkod
AVTIKTUTIO, OTI®G OtV eKnaibeuon kat 8ev £Xel MPOOEAKUOEL AKOUN TTOAAL TPOCOXI OtV

£PEUVITIKI] KOVOTITA.

0.2 Zuvelopopig epyaoiag

0.2.1 To ouvolo debopivwv Met rat to cuvodsutirkd benchmark

Apxikd, dnpioupyoupe Eva véo ouvoAo dedopévav peyddng kAipakag (large-scale dataset)
yia 1o ipoBAnpa tou ILR, 10 omoio otnpidetat otnv ocuddoyr] avoixthg rpooBaong tou The
Metropolitan Museum of Art (The Met) ot Néa Yopkn (BA. Ewkdva 4 yla pia emoxkonnon)
ToU).

Arnotedeital and o €16 ekovav, TG e1kOveg ekBepatev (exhibit images), kal ug e1-

KOveg epotpatog (query images). Ot e1kdveg ekOepPATOV Antapti¢ouv To oUVOAO ekntaibeuong
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Met queries

Figure 4. Ilapabsiyuara emmoveov ekdsuatov (exhibits) kal emovov epotudIov (queries)
ano to ovvoflo debousvwv Met. mou emibetkvUouv Y TokLAouop@ia otnv yevia 9¢aong, 1ov
@OTIOUO Kat 70 Igua. Ot EIKOVES EKOEUATOV KAl Ol EIKOVES EPWOTNUATOV ano T ibia katnyopia
Bpiokovtar oe dakekoupucves yoauueg. Ilapovoialovial kat oL eikoveg mepioraocuou (distrac-
tor queries), mou givatr utoouvoo tou ouvoflou atoAoynong, Kat oL oroieg SV anetkovi{ouv
exdéuata tov povoeiou.

(training set) to oroio amoteAeital amno rnepirou 400.000 e1KOVEG IIPOEPXOHEVEG ATTO TEPLO-
00t1epeg aro 224.000 rAAQoelg, P £pya TEXVNG MIAYKOOUAS VEOYPAPIKAS KAAUWNG KAl Ao
riepiodoug ou xpovoloyouvtat peExpt v ITadaoAiBiky) emoyxr). Kdbe ékBepa tou pouceiou
avtiotolxel oe éva povadiko £pyo téxvng Kat opidet ) 61k tou KAdorn. To ouvolo eknaideu-
ong rnapouctddel katavour pakpldg oupdg (long-tail distribution) pe nepioodtepeg amno tig
H10€G KAAOEIS VA AVTIITPOOMITEVOVIAL Ao Hld £1KOvVa, Kabiothviag 1o pdBAnpa pia e1dikn
niepinoon padnong pe Atya nnapadetypata (few-shot learning). I[Tapouoiddet emiong vynan
OITTIKT] OPO10TNTA PETASU TV KAACEDV.

O1 £1KOVEG EPWTHIATOG £ival E1IKOVEG TTOU MPETTEL VA KATHyOoP10roinfouv amo tov tagivo-
HIT), arnoteAd@viag OUclaotiKA 10 0UVoAo a&loddynong. Xwpidovial otig e1KOVEG EPETATOS
Met (Met queries) kat oTig €1KOVEG €p@TIATOG Tteplortacpioy (distractor queries). 'Exou-
pe dnuoupynoet g smonpelnoelg (labels) yia niepioodtepeg arto 1.100 Met queries, mou
anotedovv geToypadieg mou 1pabrXINKav Ao £MOKEIEG TOU POUCEIOU KAl ATIEIKOVIOUV
ekBépata tou pouoesiou. Yrmdapyel pia petatoruon katavopr|g (distribution shift) petagu
AUTOV Kal TOV EIKOVOV EKTIAIBEUOTG, 01 OTIOlEG £X0UV TPaBnXIel Ud oUVOrKeG OTOUVTIO. XU-
PrieptAapBAvVOUE OTIG EIKOVEG EPWTNLATOG EITIITAEOV £va PEYAAO OUVOAO £1KOVOV TEPionaong
(distractor queries) rou dev anekovidouv ekbepata tou pouocesiou Met, 6nAadn arotedouv
ewkoveg ektog katavourg (Out-Of-Distribution,O0OD) [22, 23]. Tig XpnO110MOI0UHE @OTE
va TPocoPo1OO0UV PEAAIOTIKEG CUVONKEG AvayveiPLong KAl XPNOIEUOUV Yld TOV EAEYXO0 NG
eupwotiag evog tasivount). Mépog toug arotedeitat ard épya €Xvng rmou dev mpogpyovat
aro to The Met, mpoxepévou va auinbei mepattépem 0 aplOpog 1wV MTPOKANCE®V TOU CU-
voAou 6edopévav Met, eve 01 UTTOAOUTEG TTPOEPXOVIAL ATIO YEVIKEG Katnyopieg.  To ouvoldo
debopévav Met akoAoubel 10 P@TOKOAAO a§loAdynong tou mpooPatou ouvodou debopévav
Google Landmarks (GLD) [6] pe oxkoro va evBdppuvOouv kaboAikég mpooeyyioelg yia 1o
ILR, o1 omtoieg 9a 1oxuouv oe éva euputepo @aopa nediov (domains). Xe aviibeorn opwg pe
10 GLD, 1 srmuonpenoelg dev niepldapBavouv SopuBo, kat ano 600 yvepidoupe autd sivat to

povadiko ouvodo Sedopévav ILR os autv v KAlpaka, rou 6ev eptdapBavel SopuBo otig



0.2.2 TIlelpapatky a§loddynorn oxeukov pebodwv

EMONPEOELS Kat eivatl mANpeg §1aBéo1po oto KOwo.

Madi pe 1o ouvodo dedopévav Met Snpoupyoupe kat 1o aviiotorxo benchmark. Ta
Vv afloAoynorn pag rnpotetvopevng 1ebddou oe auto petpdpe U0 TUIIKEG PETPIKESG Yiad TO
ILR, v akpiBeia taivounong (ACC) kat to Global Average Precision (GAP). H axpiBeia
tadvounong petpietat povo ota Met queries, eve to GAP petpiétat oe 6Aa ta queries. To
teAdeutaio AapBavel UTIOWV TOU EKTOG ATIO TNV IIPOBAEWT KAl TNV EPITIOTOOUVT) TG IIPoBAeyng
(prediction confidence) rou npémnet va napéyet o tagvount)g. To GAP xprnowporotet tmy -
HITotoouvn) g MPOoBAEYPnNS G TPOTT0 AViXVEUONG EPOTNHATOV MEPIOCTIACHOU Kal eopaApéva
tadvounpévev Met epotnpdteov. Emrpénet tn oupnepiAnyn epenPAT®V MEPIONIACHOU OtV
a§loAoynon Xwpeig v avaykr va oupriepldapBavoviat otnv dadikaocia g ekpadnong, Ka-
Ywg o tadvopntng Sev rpoBAénet moté v KAAo™ meplortacpoy. Ta v eniteudn BeéAtiotou
GAP anatteital, eKt0g aro omoteg ITPoBALYPELS Yia 0AEG TIG E1KOVEG ep@INpatav Met, 0Aeg ot
EIKOVEG EPMOTNHATROV TTEPIOTIACHIOU VA TTAPOUV HIKPOTEPT) EPITIOTOOUVE TIPOBAEYNG Ao OAeg

TG €1KOVEG epwtpatov Met.
0.2.2 TIIeipapatiki a§loAdynorn oXETKAOV pedodwv
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Figure 5. Amnaunuka mapabeiypata avayvapiong amo 1o ocvvodo alojidynong touv Met, ue
xpPnon tou talvounty KOUTWOTEPOU YEITOVA yia TNV MPOOEYYIoN Ue THY Kopugaia amodoon.
O1 eikoveg gpwtiuatog (query/test images) mapovoialoviar dimfa otov TANOIEGTEPO yeitova
TOUG amo TG €KOVEG ekdeudiov tou Met tou omolou 1 kidon amoteAel kat v mpo6Asyn.
Enave ogipa: owoteg mpo6Asyels. Meoaia ocipa: davdaousveg mpobisweig. Ilapovoialovue
emiong pa ewkova ano ) owotn (ground-truth) kiaon. Kdadie ogipd: MpobALWels yia eKoveg
nepionaong (OOD-test) ot omoicg Eyouv AaGel UYnAO UETPO EUTLOTOCUVNG amod Tov TaflvounT).
O 0KOTIOG yia auteg ivat va amoKToouY X auniln eUmiotoouun.

[Tpaypatorolovpe melpapatiky aglodoynorn (experimental evaluation) tng arodoong
oxeuKaV peBodwv oto Met benchmark, nipokeipévou va poopepOet pia faon yla ouykpioelg
KAt yla va nipotabouv peAdoviukeg kateubuvoelg. Ta v avanapdotaon 1oV eIKOVEV o OAd

1a newpdaparta xpnotporiolovpe global avanapaoctdoeig rou €xoupe e€ayet anod eknadeupéva
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mAnpwg ouvedikuka diktua (fully-convolutional networks, FCNs), ta omoia napayouv ya
KAOe e1kova €va Siavuopa-nieptypadéa (descriptor). Apxikd, paypatonolovpe pia cUyKpt-
o1 PETady MAPAPETPIKGOV KAl HUI-TIAPAPEIPIKGOV Tagvountov. Asiyvoupe 0Tl Ol |r mapaple-
TpKOl ta§lvountég (Kal OUYKeEKPIPEVA €vag TaSvounTrg KOVIIVOTEPOU YEITova IOU £XOUHE
avarttugel) anodibouv 1oAy kadutepa Ard TOUG MAPAPETPIKOUG. MITopouv va Xe1plotouv
KAAUTEPA 1A EPMTPATA ITEPIOTIACHOU KAl €ival Imo KAtdAAnAol yla avayvopion Pakplag
oupdg.

"Ernetta mpaypatonolovpie oUyKp1or Petadu S1apopav tponwv ripoekrnaibeuong (pretrain-
ing) v MAfPRG CUVEAIKTIKOV SIKTUGV ITOU £§AYOUV TV avariapdotact) TV EIKOVOV, OOTE va
HEAET)COUNE TV KAVOTNTA TOUG Yla petadopd ndbnong (transfer learning) oto ouvoldo de-
dopévev pag. Ta diktua, ta omoia Xprnoiporiolouv oAa v 1d1a apXiteKIoviky yla Sikain
OoUYKp101], OUYKpivovtal pe €va 8iktuo avagopdg, to oroio eivatl mpoeknatdeupévo yla 1o
npoBAnpa g YEVIKAG Katnyoplomnoinong oto ImageNet. [Tapatnpoupe ot n mposknaibeu-
on oe Sladopetikoy £idoug mpoBArpata, Onwg 1 MPOBAEWPn XAPAKINEIOTIK®V, aAAd amod 1o
1610 medio (Epya 1éXVNG), dev elval avaykaotikd odeAn yia 1o rpoBAnua tou ILR ot épya
TEXVNG, PaAlota pixvel v anodoon oe oxéon pe 1o diktuo avagopdg. Armo v ddAn, n
npoeKkaibeuon yla ouyyevikd rpoBArjpata onwg n ekpdadnon perpikig (metric learning),
aAAd og Blapopetikd media, onwg ta aglobiata, mPooPepet BeATIOOEIS 0 0X£0T He 10 Siktuo
avagopdg. Ermiong, PAémoupe ot 11 ekpabnorn avarnapdaotaong Xopig eniBAeyn (unsuper-
vised representation learning) g 1o Koppdt g MPOEKIAISEUONG EVOG SIKTUOU TTPOOPHEPEL
KaAr) yevikeuorn, BeAtiwvoviag Atyo v emidoor. Tédog, ta kadUtepa amnotedéopata ta ma-
ipvoupe amnd éva 6iktuo 1o omoio €xel mpoekmaldeubel oe eva 1OAU PeydAo OYKO €1KOVQY,
ermBeBai®voviag ta @PEAN NG MpoeKnaideuong peyding KAipaxkag.

H BeAtioon ng avanapdotacng t®V £1KOVOV Kabiotdtal anapaitnin He ) Xpron pun
MAPAPETPIKGOV Tagvountov. Ia 1o okorod autd, mpaypatonolovile eKpabnon avanapaota-
ong (representation learning) oto ouUvolo ekmnaibeuong tou Met dataset. Aeiyvoupe ot ot
nipoodateg peBodol autoenomnteuopevng (self-supervised) expdbnong nmou Bacidoviat povo
oe enauiroelg e1kOVeV (image augmentations) eivat opéApeg, adda ot Srabeopeg ermonpet-
®oe1g Tou ouvodeuouv 0 oUvolo Sedopévav Sev Sa mpémnet va apaBAénovial. ZuvBEtoupe
pia ouvduaopévn MPOOEYY10N AUTOETTIOMTEUOHEVIG KAl ETTOITTEUOHEVIG CUYKPITIKYG (Super-
vised contrastive) pabnong mou eknaibevel 10 SiKTUO MOV €§AYEL TNV AVATIAPACTACT] HE TV
Xpnon {EUynv EIKOVOV KAl EMITUYXAVEL TV KaAUtepn anodoorn oto benchmark pag, vrodet-
KVU0VTag UTIooXoHeveg peAdoviikég kateuBuvoetg. ITapabétoupe mapadeiypata avayvopiong
autyg g pebodou oty ewkova 5. Autd deixvouv v duokoldia g Katnyoplornoinong oto
OUVOAO agloAdy1N0o1Ng TOU CUVOAOU Hebopévav pag.

O 016X0g autou tou ouvodou Sedopévav eival va kabiepmbel ota turikda benchmarks
yia 1o ILR. Avapévoupe va enmopeAnoet v €épeuva 01l povo yia to ILR oto nedio tov épywv
1eXvng aAla oe 0Aa 1a niedia rmou epappodetat 1o ILR oe ouvbudopo pe ta ddAa unapyxovia

oUvoAa debopiévav.



Chapter E

Introduction

Classification of objects can be done with categories defined at different levels of granu-
larity. For example, the piece of art shown in Figure 1.1 is classified as “Clytie” by William
Henry Rinehart, as sculpture, or artwork, from the point of view of instance-level recogni-
tion [1], fine-grained recognition [2], or generic category-level recognition [3], respectively.
Instance-level recognition (ILR) is the visual recognition task that aims to recognize spe-
cific instances of objects and not only their semantic class. It is applied to a variety of
domains such as products, landmarks, urban locations, and artworks. Representative
examples of real world applications are place recognition [4, 5], landmark recognition and
retrieval [6], image-based localization [24, 25], street-to-shop product matching [7, 8, 9],
and artwork recognition [10].

There are several factors that make ILR a challenging task. It is typically required to
deal with a large category set, whose size reaches the order of 10°, with many classes
represented by only a few or a single example, while the small between class variability
further increases the hardness (see Figure 1.2 for challenging examples of ILR). Due to
these difficulties the choice is often made to handle instance-level recognition, or equiv-
alently instance-level classification, as an instance-level retrieval task [11]. Particular
applications, e.g. in the product or art domain require dynamic updates of the category
set; images from new categories are continuously added. Therefore, ILR is a form of open

set recognition [12].

Figure 1.1. Clytie by William Henry Rinehart. Image source: https://www.metmuseum.org/
art/collection/search/11922
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test train

Figure 1.2. Examples of instance-level recognition on the dataset proposed in this work,
demonstrating the difficulty of the task. A proposed model has to match the test image to
the one from the train images that belongs to the same class (in this case, depicts the same
exhibit). The low-inter class variability requires models to attend to a high-level of detail in
order to correctly classify such cases.

Despite the many real-world applications and challenging aspects of the task, ILR has
attracted less attention than category-level recognition (CLR) tasks, which are accompa-
nied by large and popular benchmarks, such as ImageNet [13], that serve as a testbed
even for approaches applicable beyond classification tasks. A major cause for this is the
lack of large-scale datasets. Creating datasets with accurate ground truth at large scale
for ILR is a tedious process. As a consequence, many datasets include noise in their
labels [1, 10, 6]. In this work, we fill this gap by introducing a dataset for instance-level

classification in the artwork domain.

The art domain has attracted a lot of attention in computer vision research. A popular
line of research focuses on a specific flavor of classification, namely attribute predic-
tion [14, 15, 16, 17, 18]. In this case, attributes correspond to various kinds of metadata
for a piece of art, such as style, genre, period, artist and more. The metadata for at-
tribute prediction is obtained from museums and archives that make this information
freely available. This makes the dataset creation process convenient, but the resulting
datasets are often highly noisy due to the sparseness of this information [15, 17]. Another
known task is domain generalization or adaptation where object recognition or detection
models are trained on natural images and their generalization is tested on artworks [19].
A very challenging task is motif discovery [20, 21] which is intended as a tool for art his-
torians, and aims to find shared motifs between artworks. In this work we focus on the
task of ILR for artworks (see Figure 1.3 for a schematic of the task) which combines the
aforementioned challenges of ILR, is related to applications with positive impact, such as

educational applications, and has not yet attracted attention in the research community.



1.1 Contributions

Training set

Artwork: California, Hiram Powers, 1850-55

Artwork Classifier —_— Confidence: 92 %

Figure 1.3. Schematic of the artwork recognition task. There exists a classifier that has
been trained on a large training set. At test time, given a query (test) image, the classifier
should be able to recognize the depicted artwork, if any, and also provide a confidence
measure for its prediction.

1.1 Contributions

The contributions of this work are two-fold: Firstly, we introduce a new large-scale
dataset for instance-level classification by relying on the open access collection from the
Metropolitan Museum of Art (The Met) in New York (see Figure 1.4 for an overview). The
training set consists of about 400k images from more than 224k classes, with artworks of
world-level geographic coverage and chronological periods dating back to the Paleolithic
period. Each museum exhibit corresponds to a unique artwork, and defines its own
class. The training set exhibits a long-tail distribution with more than half of the classes
represented by a single image, making it a special case of few-shot learning. We have es-
tablished ground-truth for more than 1, 100 images captured by museum visitors, which
form the query set. Note that there is a distribution shift between this query set and the
training images which are created in studio-like conditions. We additionally include a
large set of distractor images not related to The Met, which form an Out-Of-Distribution
(OOD) [22, 23] query set. The dataset follows the paradigm and evaluation protocol of the
recent Google Landmarks Dataset (GLD) [6] to encourage universal ILR approaches that
are applicable in a wider range of domains. Nevertheless, in contrast to GLD, the estab-
lished ground-truth does not include noise. To our knowledge this the only ILR dataset
at this scale, that includes no noise in the ground-truth and is fully publicly available.

On top of that, the introduced dataset is accompanied by performance evaluation of
relevant approaches. We show that non-parametric classifiers perform much better than
parametric ones. Improving the visual representation becomes essential with the use of
non-parametric classifiers. To this end, we show that the recent self-supervised learning
methods that rely only on image augmentations are beneficial, but the available ILR labels
should not be discarded. A combined self-supervised and supervised contrastive learning

approach is the top performer in our benchmark indicating promising future directions.
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Exhibit images

Figure 1.4. Samples from the Met dataset of exhibit and query (Met and distractor) images,
demonstrating the diversity in viewpoint, lighting, and subject matter of the images. Exhibit
images and queries from the same Met class are indicated by dashed lines.

1.2 Publications

This thesis builds on the results previously published in the following publications:

[26] Nikolaos Antonios Ypsilantis, Noa Garcia, Guangxing Han, Sarah Ibrahimi, Nanne
Van Noord kat Giorgos Tolias. The Met Dataset: Instance-level Recognition for Artworks.
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Bench-
marks Track (Round 2), 2021

1.3 Structure of the Thesis

The rest of the manuscript is organized as follows. Chapter 2 discusses the related
work of this thesis. Chapter 3 presents the dataset, its collection process, the suggested
evaluation metrics, and a comparison with existing relevant datasets. Chapter 4 includes
details about the approaches that are part of our evaluation whose results are presented

in Chapter 5.
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the guidance of my supervisor Giorgos Tolias.
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Background and related work

The background and related work chapter provides the necessary context for the
methods evaluated in this thesis, and is divided into two sections. The first section
takes a look at the task of instance-level image retrieval. Core components of methods
developed to solve this task are directly applicable to the addressed task of instance-level
classification, and some are being used in this work. In the second section, we take a
brief look at contrastive learning, the deep metric learning approach used as a training

method to train on the proposed dataset.

2.1 Image retrieval

Instance-level image retrieval aims at, given a query image, retrieving all the images
from a database that contain the same object instance depicted in the query. The task
reduces to calculating the similarity between the representation of the query image and
the representations of all the database images and ranking them based on it. For that
reason, the choice of the image representation, also called image descriptor, that will
be used to encode the image content is crucial. There are two main types of image

representations used in image retrieval, global and local ones.

2.1.1 Global and local descriptors

A global descriptor [27, 28, 29] is a mapping of an image to a vector, which serves
as a high level semantic signature of the image. It is a compact representation that de-
livers high retrieval performance and low memory footprint, as it reduces the similarity
calculation to a simple nearest neighbor search. On the downside, global descriptors lose
information about spatial arrangement of visual elements and often lack the capability to
retrieve images with only a partial match [30] or that contain occlusions and background
clutter. Before the use of deep learning in image retrieval, global descriptors were con-
structed by aggreggating hand-crafted local descriptors [31, 27, 32]. With the advent of
deep learning, they are produced by global pooling of feature maps of Convolutional Neu-
ral Networks (CNNs) that have been either pre-trained for other tasks [28, 33], or trained
to optimize them for the task of image retrieval, using ranking [34, 29] or classification
losses [35].
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Local descriptors encode the visual content of an image in a number (typically in
the hundreds) of short vectors. These vectors, which contain information about specific
image regions are used for patch-level matching, and are shown to be important for high
retrieval precision. Prior to deep learning, they have been extracted using hand-crafted
keypoint detectors and descriptors, like SIFT [36] and SURF [37]. With the advent of deep
learning however, many works learn local descriptors in a data-driven manner [38, 39]. A
typical image retrieval system uses global descriptors for a first search phase, in order to
reduce the solution space of the candidate matches, as they produce fast results. In the
second phase, local descriptors are used to perform spatial verification in order to re-rank

the top matches and produce a new refined list [38, 39].

2.2 Contrastive learning

Deep metric (or similarity) learning is a set of approaches that aims to train deep
models to produce embeddings with the following property: embeddings of data samples
that are considered "similar" will be close in the representation space according to a
distance measure, while data samples considered "dissimilar" will be further away.

Contrastive learning is one of the main approaches of deep metric learning, and is
essentially learning by comparing between pairs of data samples. For contrastive learning,
"similar" data samples form positive pairs, while "dissimilar" data samples form negative
pairs. As so, this learning task requires supervision in the level of pairs of images an and
not at the level of individual samples, like in other learning tasks, e.g. classification. By
contrasting between samples of positive and samples of negative pairs, representations
of positive pairs are pulled closer while representations of negative pairs are repulsed far
apart in the embedding space. Given the distance metric, contrastive learning boils down
to designing proper loss functions in order to achieve this goal. Representative examples
of contrastive learning losses are the contrastive loss [40], the triplet loss [41] and the
lifted structure loss [42].

2.2.1 Self-supervised contrastive learning

Self-supervised representation learning falls into the unsupervised learning paradigm,
meaning no human supervision in the form of annotations is needed. It relies on designing
a pseudo-supervised task to be solved, called the pretext task; supervision is provided by
the unlabelled data itself. The performance of a model trained to solve this task might not
be of immediate interest; however training to solve it can lead to learning intermediate
data representations that can be useful for other downstream tasks. Because of that,
self-supervised learning is most often used as a pretraining method, before finetuning
to the downstream task in hand. Examples of pretext for visual representation learning
include image colorization [43], patch relatedness [44], rotation prediction [45] etc.

A particular class of methods for self-supervised learning of visual representations
borrows ideas from the contrastive learning framework, and has achieved competitive

results as supervised counterparts, with representative examples being SimCLR [46] and
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MoCo [47]. The main idea underlying all these methods is that they learn representations
that are invariant under different distortions, usually in the form of image augmentations.
This is achieved by trying to minimize the distance in the representation space between
different augmentations of the same image (positive pairs), while pushing every other

image in the dataset far away (negative pairs).
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The Met dataset

In this chapter, the Met dataset is introduced. Firstly, we provide an overview of the
dataset. Then, we describe the collection and annotation process of it and provide more
statistics and comparisons to other relevant datasets. Last but not least, we describe
how we formulate the corresponding benchmark by defining the splits and explaining the

evaluation metrics used.

3.1 Dataset overview

The Met dataset for ILR contains two types of images, namely exhibit images and query
images. Exhibit images are photographs of artworks in The Met collection taken by The
Met organization under studio conditions, capturing multiple views of objects featured in
the exhibits. These images form the training set for classification and are interchangeably
called exhibit or training images in the following. We collect about 397k exhibit images
corresponding to about 224k unique exhibits, i.e. classes, also called Met classes. Query
images are images that need to be labeled by the recognition system, essentially forming
the evaluation set. They are collected from multiple online sources for which ground-truth
is established by labeling them according to the Met classes. The Met dataset contains

about 20k query images, that are divided into the following three types:

e Met queries, which are images taken at The Met museum by visitors and labeled
with the exhibit depicted

e other-artwork queries, which are images of artworks from collections that do not
belong to The Met, and

e non-artwork queries, which are images that do not depict artworks.

The last two types of queries are referred to as distractor queries and are labeled as “dis-
tractor” class which denotes out-of-distribution (OOD) queries. They simulate a more
realistic recognition setting, and serve to test the robustness of a classifier to OOD in-
puts. Other-artwork queries also add the extra challenge of sharing the same domain with
Met queries. Examples of Met query images along with exhibit images from their corre-
sponding Met class are shown in Figure 3.1 (more examples are presented in appendix B).

The distribution shift between the training images and the queries is showcased in these
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examples. Some causes of this shift are viewpoint and illumination changes and clutter.
Example of other-artwork and non-artwork distractor queries are shown in Figures 3.2

and 3.3 respectively.

3.2 Dataset collection

The dataset collection and annotation process is described in the following and sum-

marized in Figure 3.4.

3.2.1 Image sources

Exhibit images are obtained from The Met collection!. An example of the interface of
The Met collection is shown in Figure 3.5. Only exhibits labeled as open access (public
domain) are considered. A maximum of 10 images per exhibit is included in the dataset,
images with very skewed aspect ratios are excluded, and image deduplication is per-
formed. Query images are collected from different sources according to the type of query.
Met queries are taken on site by museum visitors. Part of them are collected by our
team, and the rest are Creative Commons (CC) images crawled from Flickr. We use Flickr
groups? related to The Met to collect candidate images. Distractor queries are down-
loaded from Wikimedia Commons® by crawling public domain images according to the
Wikimedia assigned categories. Generic categories, such as people, nature, or music, are
used for non-artwork queries, and art-related categories, e.g. art, sculptures, painting,

architecture, for other-artwork queries.

3.2.2 Annotation

We label query images with their corresponding Met class, if any. Met queries taken
by our team (see Figure 3.6 for examples) are annotated based on exhibit information,
whereas Met queries downloaded from Flickr are annotated in three phases, namely
filtering, annotation, and verification. In the filtering phase (Figure 3.7), invalid images
are discarded, i.e. images containing visitor faces, images not depicting exhibits, or
images with more than one exhibit. In the annotation phase (Figure 3.8), queries are
labeled with the corresponding Met class. To ease the task, the title and description
fields on Flickr are used for text-based search in the list of titles from The Met exhibits
included in the corresponding metadata. We use two text-based engines: an automatic
scoring system based on bag-of-words and the manual search engine provided by The
Met (Figure 3.9).% Queries whose depicted Met exhibit is not in the public domain
are discarded. Finally, in the verification phase (Figure 3.10), two different annotators
verify the correctness of the labeling per query. We additionally verify that distractor

queries, especially other-artwork queries, are true distractors and do not belong to The

Yhttps://www.metmuseum.org/

2https://www.flickr.com/groups/metmuseum/, https://www.flickr.com/groups/themet/, https://www.flickr.
com/groups/mma_aaoa/

3https://commons.wikimedia.org/wiki/Main Page

*https://www.metmuseum.org/art/collection/search


https://www.metmuseum.org/
https://www.flickr.com/groups/metmuseum/
https://www.flickr.com/groups/themet/
https://www.flickr.com/groups/mma_aaoa/
https://www.flickr.com/groups/mma_aaoa/
https://commons.wikimedia.org/wiki/Main_Page
https://www.metmuseum.org/art/collection/search

3.2.2 Annotation

Figure 3.1. Examples of Met query images and training (exhibit) images of the correspond-
ing Met class. Query images are shown in black border.
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Figure 3.2. Examples of other-artworlk distractor queries. These distractor queries depict
artworks that do not belong to the Met collection.
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Figure 3.3. Examples of non-artwork distractor queries. These distractor queries do not
depict artworks.
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The Met |:‘Public Domain Exhipi? images
Catalog (training set)

Own [ Annotation l—-
Images
Verification
Flickr —-I Filtering H Annotation }—-
Wikimedia Art Categories Verification H Other artwork
Commons

Generic Categories ]

Figure 3.4. An overview of the Met dataset collection and annotation process.
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Clytie
1869-70; carved 1872

William Henry Rinehart American

Q Onview at The Met Fifth Avenue in Gallery 700

American Neoclassical sculptors frequently mined
classical mythology for thematic inspiration. In book 4
of the “Metamorphoses,” the Roman poet Ovid tells the
story of Clytie, a water nymph who was abandoned by
Apollo, the sun god. Clytie gazed inconsolably at the
sun for nine days, languishing nude, without food or
drink. For her constancy, she was changed into a
sunflower so that her face would forever follow the sun
as it moved across the sky. Rinehart subtly evoked
Ovid’s story by depicting a drooping sunflower in
Clytie’s right hand. The tree stump with live sunflower
plants serves both to enhance the narrative and to offer

E] Public Domain < 4

Figure 3.5. An example of using the interface of The Met collection website.
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tensile support for the marble figure.

Figure 3.6. Examples of Met queries captured by our team.
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Instructions: Select the query images that are valid.

lllegal images that MUST NOT be used:

1. Images that contain people faces.
2. Images that do not contain any exhibit
3. Images with more than one exhibit

Figure 3.7. Example annotation step during the filtering stage of the annotation process.
In this phase, invalid images are discarded, i.e. images containing visitor faces, images not
depicting exhibits, or images with more than one exhibit.
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Instructions. Given a query image:

= Select to which of the artworks corresponds.

« |f the artwork is not listed in the top20 but you find it in the collection, use the exhibit url ID in the text box (e.g. https:/fwww. metmuseum.org/articollection/search/1 70008393 -->
170008393).

« Otherwise, leave default NONE OF THE ABOVE.

lllegal images that MUST NOT be used --> click NONE OF THE ABOVE:

1. Images that contain people faces.
2. Images that do not contain any exhibit.
3. Images with more than one exhibit

Query Image

Database Artworks

@]

Exchibit Exhibit

=]

Figure 3.8. Example annotation step during the annotation stage of the annotation process.
In this phase, queries are labeled with the corresponding Met class.
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flickr

TH
ML visit  ExhibitionsandEvents At LearnwithUs  Shop

Search / All Results
25978 results for "The Old Actress "

TheOldActress

AllResults (25978) Art (25412) Press (347) Exhibitions (69) Videos (63) More -

The Old Actress

861 9 0 Taken on May 11, 2019

DO somergns esene

Figure 3.9. Example of text-based search on the manual search engine provided by the
Met.

Instructions: For a pair of query-ground truth, verify the pair is valid.
lllegal pairs that MUST NOT be used:

1. Queries that contain people faces.

2. Queries that do not contain any exhibit.
3. Queries with more than one exhibit.

4. Query-Ground truth pair that don't match.

Pair verification:

®Pair is correct.
Incorrect: more than one exhibit.
Incorrect: faces.
Incorrect: no exhibit.

Incorrect: pair does not match.

Exhibit

Figure 3.10. Example annotation step during the verification stage of the annotation
process. In this phase, annotators verify the correctness of the labeling per query.



3.3 Dataset statistics

Instructions: For a distractor image verify that it does not correspond to a MET exhibit.

Potential distractor:

Closest MET exhibits:

Score: 0.55892295
Score: 0.5817453 Exhibit
Exhibit Score: 0.5761145

Exhibit

Score: 0.5553561 Exhibit
Exhibit

Distractor verification:

®Distractor is correct (NO match in MET).
Incorrect: distractor belongs to MET.

Incorrect: other.

Figure 3.11. Example annotation step during the distractor verification stage of the an-
notation process. In this phase, annotators verify that other-artwork distractor queries are
true distractors and do not belong to The Met collection.
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Figure 3.12. Number of exhibit images per time period.

Met collection. This is done in a semi-automatic manner supported by (i) text-based
filtering of the Wikimedia image titles and (ii) visual search using a pre-trained deep
network. Top matches are manually inspected and images corresponding to Met exhibits

are removed (Figure 3.11).

3.3 Dataset statistics

The Met dataset contains artworks spanning from as far back as 240,000 BC to the
current day. Figure 3.12 shows a smoothed histogram of the number of exhibit images by
creation year, grouped in bins of 500 years. More than half of the exhibits were created
between 1,500 AD and 1,999 AD, with a remarkable number of ancient artworks created
between 500 BC and 1 BC. Figure 3.13 shows the distribution of classes and images
according to The Met department. Whereas there is an imbalance for exhibits across
The Met departments, queries are collected to be evenly distributed to the best of our
capabilities. In this way, we aim to ensure models are not biased towards a specific type

of art, i.e., developing models that only produce good results for, e.g., European paintings,



Chapter 3. The Met dataset
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Figure 3.13. Number of images and classes by department. Met queries are assigned to
the department of their ground-truth class. Some departments that do not contain queries

but contain exhibit images are not shown.
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Figure 3.14. Number of distractor images by Wikimedia category. Top categories shown:

art-related categories in solid blue and generic categories in dash purple.

will not necessarily ensure good results on the overall benchmark. Finally, Figure 3.14

shows the number of distractor query images by Wikimedia Commons categories.

The

class frequency for exhibit images ranges from 1 to 10, with 60.8% and 1.2% classes

containing a single and 10 images, respectively (see Figure 3.15 left), indicating the long-

tail distribution of the training set. Met queries are obtained from 39 visitors in total,

while the maximum number of query images per class is, coincidentally, also 10. In total,

81.5% of the Met query images are the sole Met queries that depict a particular Met class

(see Figure 3.15 right). The number of photographers versus the Met queries that belong

to them is shown in Figure 3.16.
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Figure 3.15. Left: number of Met classes versus number of training images per class.
Right: number of Met classes versus number of query images per class. Both vertical axes
are shown in logarithmic scale, for better visualization.
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Figure 3.16. The number of photographers versus the Met queries that belong to them.

3.4 Comparison to other datasets

In this section, we provide a comparison of the Met dataset to other existing datasets

that are relevant in terms of domain (art) or task (ILR).

3.4.1 Artwork datasets

Table 3.1 summarizes datasets in the artwork domain for various tasks. Most of
the artwork datasets [14, 15, 16, 17, 18] focus on attribute prediction (AP), containing
multiple types of annotations, such as author, material, or year of creation, usually
obtained directly from the museum collections. Other datasets [48, 19, 18, 49] are focused
on category-level recognition (CLR), aiming to recognize object categories, such as animals
and vehicles, in paintings. From the artwork datasets, Open MIC [50] and NoisyArt [10]
are the only ones with instance-level labels. Compared to the Met dataset, the Open MIC
is smaller, with significantly less classes and mostly focuses on domain adaptation (DA)
tasks. NoisyArt has a similar focus to ours, but is significantly smaller, and has noisy
labels.

3.4.2 ILR datasets

In Table 3.2 we compare the Met dataset with existing ILR datasets in multiple do-

mains. ILR is widely studied for clothing [8, 9], landmarks [6], and products [7, 1]. The
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Art datasets Year Domain # Images # Classes Type of annotations Task Image source
PrintArt [48] 2012 Prints 988 75 Art theme CLR Artstor

VGG Paintings [19] 2014 Paintings 8,629 10 Object category CLR Art UK
WikiPaintings [14] 2014 Paintings 85,000 25 Style AP WikiArt
Rijksmuseum [16] 2014 Artwork 112,039 76,629 Art attributes AP Rijksmuseum
BAM [18] 2017 Digital art 65M f9  Media, content, emotion AP, CLR Enhance
Art500k [15] 2017 Artwork 554,198 71,000 Art attributes AP Various
SemArt [51] 2018 Paintings 21,383 21,383 Art attributes, descriptions Text-image Web Gallery of Art
OmniArt [17] 2018 Artwork 1,348,017 ¥100,433 Art attributes AP Various

Open MIC [50] 2018 Artwork 16,156 866 Instance ILR (DA) Authors

iMET [49] 2019 Artwork 155,531 1,103 Concepts CLR The Met
NoisyArt [10] 2019 Artwork 89,095 3,120 Instance (noisy) ILR Various

The Met (Ours) 2021 Artwork 418,605 224,408 Instance ILR Various

Table 3.1. Comparison to art datasets. © For datasets with multiple kinds of annotations,
the task with the largest number of classes is reported.

ILR datasets Year Domain # Images # Classes Type of annotations Image source
Street2Shop [8] 2015 Clothes 425,040 204,795 Category, instance Various
DeepFashion [9] 2016 Clothes 800, 000 33,881 Attributes, landmarks, instance Various

GLD v2 [6] 2019 Landmarks 4.98M 200,000 Instance (noisy) Wikimedia
AliProducts [1] 2020 Products 3M 50,030 Instance (noisy) Alibaba
Products-10K [7] 2020 Products 150,000 10,000 Category, instance JD.com

The Met (Ours) 2021 Artwork 418,605 224,408 Instance Various

Table 3.2. Comparison to instance-level recognition datasets.

Met dataset resembles ILR datasets in those domains in that the training and query
images are from different scenarios. For example, in Street2Shop [8] and DeepFashion
[9] queries are taken by customers in real-life environments, whereas training images
are studio shots. Getting annotations for ILR, however, is not easy, and some datasets
contain a significant number of noisy annotations from crawling from the web without
verification [1, 10, 6]. In that sense, the Met is the largest ILR dataset in terms of number
of classes, which have been manually verified. Overall, the Met dataset proposes a large-
scale challenge in a new domain, encouraging future research on generic ILR approaches

that are applicable in a universal way to multiple domains.

3.5 Benchmark and evaluation protocol

3.5.1 Splits

The structure and evaluation protocol for the Met dataset follows that of the Google
Landmarks Dataset (GLD) [6]. All Met exhibit images form the training set, while the
query images are split into test and validation sets. The test set is composed of roughly
90% of the query images, and the rest is used to form the validation set. To ensure no
leakage between the validation and test split, all Met queries are first grouped by user and
then assigned to a split. Additionally, we enforce that there is no class overlap between
the splits. As a result, 25 (14) users appear only in the test (validation) split, respectively.
Image and class statistics for the train, val, and test sets are summarized in Table 3.3.
The intended use of the validation split is for hyper-parameter tuning. All images are

resized to have maximum resolution 500 X 500.
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# Images
Split  Type Met othefart non-art # Classes
Train Exhibit 397,121 - - 224,408
Val Query 129 1,168 868 111+1
Test  Query 1,003 10, 352 7,964 734 + 1

Table 3.3. Number of images and classes in the Met dataset per split. Met exhibits images
are from the museum’s open collection, while Met query images are from museum visitors.
Query images contain distractor images too (denoted by the +1 class) while the rest of
val/test classes are subset of the train classes.

3.5.2 Metrics

For the evaluation of a proposed method on the proposed benchmark we measure
classification performance with two standard ILR metrics, namely average classification
accuracy (ACC), and Global Average Precision (GAP). The average classification accuracy
is measured only on the Met queries, as there is no explicit modelling of distractor class.
It is equal to the ratio of the correctly classified Met queries to the total number of Met
queries. GAP, also known as Micro Average Precision (1AP) [6], is measured on all queries
taking into account both the predicted label and the prediction confidence. In order to
calculate it, all queries (Met + distractor) are ranked according to their assigned prediction
confidence in descending order, and then average precision is estimated on this ranked
list; predicted labels and ground-truth labels are used to infer correctness of the predic-
tion, while distractors are always considered to have incorrect predictions. It is given
by

T
1 N
GAP = u ; p(Or(i), (3.1)

where p(i) is the precision at position i, r(i) is a binary indicator function denoting the
correctness of prediction at position i, M is the number of the Met queries, and T is
the total number of queries. An example of calculating GAP for a set of predictions and
their assigned confidences is shown in the first two rows of Fig. 3.17. The GAP score
is equal to the area-under-the-curve of the precision-recall curve whilst jointly taking all
queries into account. We measure this for the Met queries only, denoted by GAP~, and
for all queries, denoted by GAP. In contrast to accuracy, this metric reflects the quality
of the prediction confidence as a way to detect out-of-distribution (distractor) queries and
incorrectly classified queries. It allows for inclusion of distractor queries in the evaluation
without the need for distractors in the learning; the classifier never predicts “out-of-Met”
(distractor) class. Optimal GAP requires, other than correct predictions for all Met queries,
that all distractor queries get smaller prediction confidence than all the Met queries (last
two rows of Fig. 3.17).
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ACC =66.6%

GAP =%*(1+0.5) = 0.5

confidence: 0.99
precision: 1
correct: 1

GAP =0.81

GAP =1

Figure 3.17. First two rows: example of calculating ACC and GAP for a set of queries
and their corresponding predictions and confidences. In the first row, ACC calculation is
shown. It is calculated only on the Met queries, which are either correctly (green) or incor-
rectly classified (red). In the second row, for the GAP calculation, which takes into account
distractors as well (grey), the queries are sorted by confidence in descending order. The
confidence, the precision and the binary indicator of correctness at each rank of the sorted
list is shown. Then, calculation of GAP is straightforward. Last two rows: Ways to incre-
mentally achieve optimal GAP starting from the example of the top rows: 3rd row) to make
as many predictions correct for the non distractor queries, 4th row) to place missclassified
examples, which include distractors, in the bottom of the list
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Methods

In this chapter, we present a number of existing methods that are applicable to the
Met dataset, in the experimental evaluation. Firstly, we present the image representation,
given a fixed - already trained - deep embedding network. Subsequently, we describe a
simple non-parametric classifier that uses such image representation. Then, we list a
set of networks trained for other tasks which we use to extract the image representation
and test their potential for transfer learning. Finally, we present different ways of training
using the Met training set, including end-to-end learning of a Deep Network classifier, self-
supervised representation learning with image augmentations and contrastive learning

with a Siamese architecture taking advantage of the Met labels.

4.1 Image representation

In this section we explain how we obtain the image representation, also called image
descriptor, that is used to perform classification. In all of our baseline approaches, we
choose to use global image representations obtained by fully-convolutional networks.

Convolutional Neural Networks (CNNs) that are used for the task of classification typ-
ically contain fully-connected layers after the convolutional layers, in order to transform
the feature maps of the final convolutional layer into a vector of logits. By removing
the fully-connected layers, we can obtain the fully-convolutional part of the architecture,
which we call the fully-convolutional network (FCNs). The output of a FCN is a 3D tensor,
which can be equivalently seen as a set of feature maps with cardinality equal to the num-
ber of filters in the last convolutional layer of the FCN. In order to map this 3D tensor to
a vector, we perform global pooling of the feature maps. The global pooling operation that
we use is Generalized-Mean (GeM) pooling [29], shown to be effective for representation in
instance-level tasks [39]. More specifically, for a 3D tensor of shape C X H X W produced
by a FCN, where C is the number of feature maps and H, W are the spatial dimensions,

the i-th component of the global descriptor produced by the GeM pooling operation is

) »
fi = 4.1
(|cl-| Zcp} 0

ceCy

defined as:

where C; is the i-th feature map, and p is a learnable parameter of the pooling layer.

Finally, we /5 normalize the global descriptor. The FCN followed by the GeM pooling
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operation and /5 normalization is called the backbone. It can be equivalently seen as an
embedding function f; : X — R9 that takes an input image x € X and maps it to a vector
f5(x) € R4, equivalently denoted by f(x). The backbone is parametrized by the parameter
set 8. ResNetl8 (R18) and ResNet50 (R50) [52] are the FCNs comprising the backbones
used in this work, producing 512D and 2048D descriptors, respectively.

4.2 kNN classification

There are some extra processing steps that we use to improve the representation used
with the kNN classifier, which is described afterwards. First of all, we follow the con-
vention [53, 39] and use an image-pyramid at test time to produce multi-scale image
representations. More specifically, representation of image x, denoted by vector embed-

ding v(x) € R, is a result of aggregation of multi-resolution embeddings given by

v(x) = 2rerS (Xr)

_ _&rerJ ) 4.2
12 er S ol 42

where x, denotes image x down-sampled by relative factor r. We set R = {1,27%5,27!} and
R = {1} in the multi-scale (MS) and single-scale (SS) case, respectively. Also, following the
standard practice in instance-level search, the image representation space is whitened
with PCA whitening (PCAw) [54] learned on the representation vectors of all Met training
images. Optionally, dimensionality reduction is performed by keeping the dimensions
corresponding to the top components. PCAw is always performed in the rest of this work,
unless stated otherwise; for simplicity we reuse notation v(x) for the whitened image
embeddings.

Next, we describe how we perform k-Nearest-Neighbor (KNN) classification using the
image representation obtained. Let y(x) be the label of image x, and let g be a query image.
The similarity between query q and a training image x is given by v(x)"v(q), coinciding
with the cosine similarity in our case, where we use /5 normalized image representations.

The confidence of class c for query q is given by
se(@) = max (v() V(@) Ly=c, (4.3)
X€NNk(q)

where NN (q) is the set of ik nearest-neighbors (kNNs) of g in the d-dimensional repre-
sentation space. The vector of class confidences is s(q) € RN with elements s.(q).c €
[1,...,N], where N is the number of training classes. Classes without any example in the
top-k neighbors obtain zero confidence. An example of calculating the vector of class con-
fidences is depicted in Figure 4.1. The predicted label {j(q) = arg max s.(q) is, according to
(4.3), equivalent to the label of the closest training image. Despite Clabel prediction requir-
ing only k = 1, confidence estimation for more classes is essential for normalization and
handling of OOD (distractor) queries. The normalized confidence is given by the soft-max
of vector ts(q), where t is the temperature. As it is a non-parametric classifier, it does not
require training on the Met dataset; only hyper-parameters k and t are tuned with grid

search according to GAP on the validation set. A schematic of the pipeline described to
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Figure 4.1. Example of the calculation of class confidences for a query image using the
proposed kNN classifier. The similarity values in this example are fictional and only exist
for the purposes of the figure.
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Figure 4.2. Overview of the pipeline for kNN classification. The backbone produces the
image descriptor after processing the image at multiple scales. It is subsequently whitened
by PCA-whitening and used as the input to the kNN classifier.

perform classification with the kNN classifier is shown in Figure 4.2

4.3 Pretrained models

We consider networks pretrained on different tasks and use them to obtain the image
embeddings used for kNN classification. This allows us to evaluate the transfer learning
potential of the pretraining task. In all the learned backbones, GeM pooling is used
(replacing global average pooling of ResNet) to produce the image embedding. We list

them below and give a brief overview for each one of them.

ImageNet (IN) - classification

Approach for training on ImageNet with cross-entropy loss [52], commonly used as a

standard pretraining step for other tasks.

Landmarks (SfM) - metric learning

Approach for metric learning with contrastive loss on image pairs obtained from

Structure-from-Motion on landmarks [29]. The image embedding uses GeM for global
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pooling during the pretraining phase too.

Artwork attributes (SemArt)

Networks trained on the SemArt dataset [51] by Garcia et al. [55] for artwork attribute
prediction. In particular, we consider variants for painting type (10 classes) or author

(350 classes). Note that SemArt consists only of paintings.

StylizedImageNet (SIN)

Network trained by Geirhos et al. [56] on a stylized version of ImageNet to improve

the texture bias of deep networks which is shown to demonstrate better transferability.

SwAV on ImageNet (IN) - self-supervision

Representation learning on ImageNet with self-supervision by instance discrimination.

The resulting network has achieved good results in concept generalization [57].

Semi-weakly supervised (SWSL) on Instagram 1B + ImageNet

Teacher-student approach [58] with teacher pretrained on about 1 billion images
with hashtags and student trained with teacher-generated pseudo-labels, eventually fine-

tuned on ImageNet.

4.4 Training on the Met

We now turn to training on the Met dataset for the first time. Firstly, we use the
training set of the Met dataset to train a Deep Network classifier for the Met classes.
Better results of the kNN classifier compared to the Deep Network one (as shown in the
next chapter), while using the same embeddings guides us to perform representation
learning by training the backbone to obtain better image descriptors to use with the kNN
classifier. Parameters & of the backbone are initialized by the result of pretraining on

ImageNet for classification, unless stated otherwise.

4.4.1 Learning with a classification objective

As the task that we are trying to solve is a classification task, we first proceed to
solve it by explicitly training to minimize classification losses. Classifiers that are trained
with classification losses use a weight matrix, where each row corresponds to a class. By
performing multiplication of the descriptor of an input image with this matrix, a vector
of logits is produced which is then fed as input to the classification loss, along with
the ground truth. Below, we explain the architecture we use in order to train with two

different kinds of classification losses.
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Deep network (DNet) classifier with instance-level labels

The Deep Network (DNet) classifier that we use in this work consists of the backbone
explained in the previous section, followed by a cosine similarity classifier. The cosine
similarity classifier is a linear classifier with /5 normalized rows and no bias term. As a
consequence, each row represents a learnable class prototype, and we end up essentially
calculating the cosine similarity between the class prototypes and the descriptor of the
input image, extracted from the backbone part of the DNet classifier (which already is
25 normalized). Such kind of classifiers have been used previously for training with im-
balanced datasets [59] and for face verification tasks [60]. The beneficial post-processing
step of PCA-whitening used with the kNN classifier can not be used while training this
classifier end-to-end. However, as PCA-whitening is a linear operation, it can be modeled
by a fully-connected (FC) layer [34] after the backbone part of the DNet classifier. This
layer is set to be trainable and initialized with the result of PCA whitening learned on
the training set of the Met dataset (from the pretrained descriptors), as done in [29]. The
whole pipeline (see Figure 4.3 for a schematic) is differentiable, so it is trained jointly
end-to-end.

We perform training by minimizing one of the two following losses. Firstly, standard
Cross-Entropy (CE) loss with soft-max, used as a standard objective in classification
settings. In our case, the input to the soft-max (logit vector) is equal to the cosine similarity
between the backbone output and the learnable class prototypes. The logit vector is
additionally multiplied by temperature y, which is needed as the logits are bounded at
the interval [—1, 1], hindering the network from converging [60]. Secondly, we use the
Arc-Face (AF) loss [61], which is also used in the work of Cao et al. [39] for instance-
level recognition of landmarks. The AF loss is a more discriminative version of the CE
loss, where an angular margin penalty is added between the ground truth class prototype
and the input descriptor in order to boost the intra-class compactness and enhance the

inter-class separability. For one sample it is given by:

exp (y x ACS (wﬁf 1))
3., exp (y x ACS (wﬂf yn))

L =-log 4.4)

where wy refers to the k-th row of the weight matrix (k-th learnable class prototype), f
is the /5 normalized input descriptor, y is the ground-truth label, k is the ground-truth

class index (y; = 1) and y is the temperature mentioned above. ACS denotes the Adjusted

Cosine Similarity and it is calculated as:
ACS(s,c) = (1 —c) X s+ c xcos(acos(s) + m) (4.5)

where s is the cosine similarity, m is the angular margin penalty, and c is a binary value
that denotes whether it is the ground-truth category or not. Index n indexes all the Met
classes.

During training with any of these two losses, two things are learned. On one side, a

better descriptor for the input image, as the backbone’s weights are being updated. Also,
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Figure 4.3. The schematic of the DNet classifier. The backbone part of the classifier
produces the image descriptor, which is subsequently fed to the cosine similarity classifier
that produces the vector of logits. The latter contains the similarity of the image descriptor
with every Met class. The entire pipeline is amenable to end-to-end training.

the learnable class prototypes of the cosine similarity classifier distribute themselves on
the unit hypersphere (of dimension same as the one of the descriptor) in such a way
as to be representative enough of the intra-class variability, while also being maximally
discriminative. During inference two options are considered. First, use the whole deep
network classifier and consider its argmax and max as class prediction and confidence
score, respectively. For the estimation of the confidence, we also tune a seperate temper-
ature hyperparameter on the validation set, after training, in order to improve the GAP
metric. Second, discard the cosine similarity classifier and use the backbone f5(:) (along
with the FC layer) to obtain the image representation v(x) and make predictions with the
kNN classifier.

4.4.2 Representation learning for the kNN classifier

We turn to representation learning to produce better image descriptors to use with the
kNN classifier. For all variants described next, the optional FC layer that was described
in the previous section is included in the backbone and initialized with the result of PCA
whitening. The fact that most Met classes in the training set are represented by a single
image make it impossible to use standard deep metric learning approaches [62], which
rely on the formation of positive pairs. So, despite the availability of training labels in the

considered task, a self-supervised approach becomes relevant.

Simple-siamese (SimSiam) representation learning

We apply the recent self-supervised representation learning approach by Chen and
He [63] to train the backbone. Each image x is augmented twice resulting in the positive
pair of x; and x». An example pair used with this method is shown in the first row
of Figure 4.5. The architecture used consists of the backbone, and two Multi-Layer
Perceptrons (MLPs), denoted by functions h,, : R? — R% and g,, : RY — R9, called

predictor and projector respectively. The loss maximizes the cosine similarity between
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Figure 4.4. The Siamese architecture used along with the contrastive loss. A pair of
images (in this example, a negative pair) is fed into the same backbone, producing their
representations. These are then fed to the contrastive loss, along with their corresponding
label.

he, (9o, f5(x1))) and g, (fs(x2)). The key ingredient for this method to work is to block the
back-propagation of gradients in the branch related to x;. There is no need for negatives
samples, making very large batch sizes [46] and a memory bank of negative samples [47]
unnecessary. During inference, only the backbone (along with the FC layer) is used to

obtain the image representation and predictions are made with the kNN classifier.

Contrastive loss with synthetic/real positives and hard negatives

We now proceed with contrastive learning that makes use of label supervision that is
provided with the Met dataset, by adding it in an incremental fashion. More specifically,
the backbone is trained with contrastive loss [40]. This is achieved by means of a Siamese
architecture [64], which is essentially two-branches of the same backbone, sharing the
same parameter set (see Figure 4.4). This architecture produces the descriptors of the
pair of images that are fed as its input, and feeds those descriptors to the loss function,
along with the label, indicating if it is a positive (same class) or a negative pair (different
class). The contrastive loss is minimized when positive pairs share the same descriptor
in the representation space, while negative pairs are apart by more than a fixed margin.

Formally, for one pair of images (Xi, Xj) it is defined as:

lf(xi) —f(xj)”z + ]l[yiiyj] max (O, €— Hf(xi) —f(xj)HZ)z (4.6)

L (Xi’ Xj) - ﬂ[yi:yj]

where f(X;), f(X;j) are the descriptors of the pair of images and || - ||§ denotes the squared

Euclidean distance. The value ¢ is the margin which defines when negative pairs have
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large enough distance in order to be ignored by the loss. When the images in the pair
share the same label, the second part of the loss dissapears and the loss is high when
their descriptors are far. When they do not come from the same class, the first part of
the loss dissapears, and having descriptors that are closer than the margin produces a
non-zero loss value, which is increasingly higher the closer they lie in the embedding
space.

We use each training image as an anchor to form one positive and one negative pair per
epoch. Hard negative mining is used to produce hard negative pairs. A hard negative pair
for a given anchor is a negative pair that is closer to the anchor than most other negative
pairs, therefore producing a higher loss value. As a result, hard negative pairs provide
more informative supervisory signal, which speeds up convergence for the expense of extra
computation at the beginning of each epoch. They are formed by randomly choosing an
image among the 10 most similar images from a different class, as these are computed
according to embeddings obtained with the current backbone before each epoch. All the
following variants use the same hard negative pairs, as just described. They differ in
the way they form the positive pair. Three different ways of forming the positive pair are
tested:

e Con-Syn: The positive is an augmented (synthesized) version of the anchor image,

as in the case of SimSiam (second row of Figure 4.5).

e Con-Syn+Real: The selected positive is another randomly chosen image of the same
class as the anchor, or an augmented version of the anchor image. Synthetic positive
or one of the real (all images in the class but the anchor) positives is chosen with
equal probability which is equal to one over the number of images in the class. If the
class has a single image, then augmentation is performed; note that many classes

contain a single image (third row of Figure 4.5).

e Con-Syn+Real-closest: Same as Con-Syn+Real but the real positive counterpart is
chosen to be the one with the most similar embedding to the anchor. This is used to
avoid images that depict completely different views of the object and has previously
been used in location estimation [4]. Synthetic or real positive is chosen with equal
probability (50%) in this case (fourth row of Figure 4.5).
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Figure 4.5. Examples of training pairs used by the representation learning methods that
are trained on the Met training set. First row: SimSiam uses only image augmentations to
form positive pairs, without the use of any supervision. Second row: Con-Syn also uses
image augmentations for the formation of the positive pairs, however it uses supervision
Jfrom the Met labels to form hard negative pairs. Third row: Con-Syn+Real additionally
picks the positive pair from a pool that contains the augmentation plus all the other images
Jfrom the same class as the anchor. Fourth row: Con-Syn+Real-closest limits the pool of
candidate positive pairs to either the augmentation or the closest image (as measured in
the representation space) that comes from the same class as the anchor.
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Experimental evaluation

In this chapter, a performance evaluation of the proposed methods is described, with
GAP, GAP without considering distractors (abbr. GAP™) and accuracy on the test queries
of the Met dataset as the evaluation metrics. Training, if any, is performed on the training
part of the Met dataset, while the validation queries are either used as validation set during
the training, to tune the hyper-parameters of the kNN classifier or to tune the inference
temperature of the deep network classifier. Multi-scale representation and PCA whitening
with dimensionality reduction to 512D are used in the rest of the chapter unless otherwise
stated.

5.1 Implementation details

All methods are implemented in the PyTorch [65] deep learning library and use the
FAISS [66] library for nearest neighbor search. In all approaches that involve training
the Adam optimizer is used, weight decay is equal to 1076, learning rate is equal to 10~/
for the backbone and it is decreased by a factor of 10 in the middle of the training.
The image augmentations used consist of random cropping in the scale range [0.7, 1.0]
and resize to 500 X 500, color jittering with probability 0.8, and conversion to grayscale
with probability 0.2. DNet is trained with a batch size of 256 images for 25 epochs
with the learning rate of the classifier set to 1073, Temperature y used with CE is set
to be fixed and equal to 30, while the temperature and margin penatly for AF are set
to be fixed and equal to 64 and 0.5, respectively. SimSiam is trained with a batch
size of 128 images, i.e. 64 original images augmented twice, for 15 epochs, with the
learning rates of the projector and predictor MLP are set to 1072, The training with the
contrastive loss is performed for 10 epochs with the margin set to 1.8. The batch size
is equal to 128 images, comprised of 64 pairs randomly sampled from the positive and
negative pairs of all anchors. An epoch is finished when all training images are used as
anchors once. The best epoch is chosen according to validation accuracy of corresponding
(parametric or non-parametric) classifier. To speed-up the process of choosing the best
epoch with the kNN classifier, single-scale representation is used without PCAw. The
hyper-parameters of the kNN classifier are tuned according to GAP on the validation
set with grid search on the cartesian product of the sets {1,2,3,5,7, 10, 15,20, 50} and
{0.01,0.1, 1,5, 10, 15,20, 25, 30, 50, 100, 500} for k and 1, respectively. The temperature
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ID Net PCAw MS k T GAP GAP~ ACC
1 R18IN 3 15 3.7 16.7 26.8
2 R18IN v 7 100 10.9 28.0 33.7
3 R18IN v 50 10 10.5 23.8 33.5
4 R18IN v v 3 50 15.9 37.5 42.3
5 R18IN v v 1 - 2.9 33.6 42.3
6 R18INT v v 3 100 14.1 36.9 42.3

Table 5.1. Recognition performance for kNN classifier on representation obtained from
ResNet18 pretrained on ImageNet. MS: multi-scale representation. 1: tuning k, t only with
Met queries, and without distractor queries in the validation set.

of the parametric classifiers is also tuned according to validation GAP once the training
is finished.

5.2 Image representation and kNN classifier components

ResNet18 (R18IN) trained on ImageNet is used as backbone to extract descriptors
and perform recognition with a kNN classifier. Hyper-parameters k and t are tuned on
the validation set and reported separately per experiment in Table 5.1 which shows the
impact of different components. The multi-scale representation and the use of whitening
are shown to be beneficial and are essential parts of main approach (ID4 vs ID1,ID2,
and ID3). Fixing k = 1 (ID5) is equivalent to no use of soft-max normalization in the kNN
classifier and has significantly lower GAP on all queries, slightly lower GAP on Met queries,
and identical accuracy by definition. Confidence normalization is therefore shown to be
very important for the handling of distractors and to achieve high GAP performance.
Finally, we show that having distractors in the validation set boosts GAP by better hyper-
parameter tuning for the kNN classifier (ID6 vs ID4).

5.3 Pretrained backbones and kNN classifier

Table 5.2 summarizes results of recognition performance with a kNN classifier for
backbones pretrained on different tasks and provides a comparison to the corresponding
network trained on ImageNet (R18IN, R50IN [52]). Networks for art attribute prediction
(R50SemArt (author), R50SemArt (type) [55]) perform worse than the ImageNet one, veri-
fying that the task of art attribute prediction is far from that of ILR, despite being the same
domain. The network for metric learning on landmarks (R18SFM, R50SFM [29]) provides
improvements; despite the domain difference (artwork vs landmarks), training for metric
learning well reflects the objectives of ILR. The model that is trained to mitigate texture
bias (R50SIN [56]) performs worse than the ImageNet baseline, indicating that texture
might play a role in the recognition of artworks. SwAV [57] provides a performance boost,
verifying the usefulness of unsupervised representation learning for better generalization.
Finally, SWSL [58] is the best performing variant demonstrating the benefits of learning

on a very large image corpus despite the noisy labels; we expect the training set to include
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Net GAP GAP~ ACC

R18IN [52] 15.9 (+0.0) 37.5 (+0.0) 42.3 (+0.0)
R18SFM [29] 23.2 (+7.3) 41.5 (+4.0) 45.7 (+3.4)
R18SWSL [58] 24.7 (+8.8) 47.0 (+9.5) 50.9 (+8.6)
R50IN [52] 22.2 (+0.0) 41.8 (+0.0) 46.4 (+0.0)
R50SFM [29] 26.6 (+4.4) 44.8 (+3.0) 48.6 (+2.2)
R50SemArt (author) [55] 1.8 (-20.4) 12.2 (-29.6) 18.0 (-28.4)
R50SemArt (type) [55] 7.9 (-14.3) 26.8 (-15.0) 31.9 (-14.5)
R50SIN [56] 15.5 (-6.7) 36.4 (-5.4) 41.7 (-4.7)
R50SWAV [57] 22.8 (+0.6) 45.0 (+3.2) 49.6 (+3.2)
R50SWSL [58] 30.4 (+8.2) 52.9 (+11.1) 56.3 (+9.9)

Table 5.2. Comparison of recognition performance for kNN classifier with representation
from backbone networks pretrained for different tasks. Relative improvements compared
to the corresponding network trained on ImageNet are shown in parentheses.

many artworks too.

5.4 Training on the Met dataset

Results from training on the Met dataset are shown in Table 5.3 with a parametric
Deep Network classifier (DNet) and with a kNN classifier. The latter is shown to be su-
perior, while carrying the extra cost of storing a 512-D vector per training image. AF is
shown to perform better than CE, verifying prior results on ILR [39]. SimSiam improves
the performance over the baseline without the use of any supervision indicating that
self-supervised learning is a promising direction for ILR. Con-Syn uses the same positive
pairs as SimSiam (synthetic augmentations) but further boosts the performance by incor-
porating supervision in the form of (hard) negative pairs. Including real positive pairs too
with constrastive loss achieves the best performance but only if the positive pair is prop-
erly disambiguated (Con-Syn+Real-closest vs Con-Syn+Real). Improvements by training
on the Met are confirmed starting from SWSL pretraining too. Examples where R18IN
Con-Syn+Real-closest succeeds in prediction but the R18IN baseline fails are shown in
Figure 5.1. These cases include challenges such as large viewpoint changes and high
inter-class similarity, which are scarce in the pretraining task of ImageNet classification.
In Figure 5.2 we present examples of hard negative pairs, which are generated before the
first epoch using the R18IN model and the contrastive loss. These examples showcase
the small inter-class variability present in the Met dataset. Finally, challenging examples
from the Met dataset for the top performing approach are shown in Figure 5.3. Wrong
predictions for the Met queries (2nd row) as well as high confidence predictions for OOD
queries, which correspond to predictions from the same semantic class (3rd row), reveal

some of the difficulties in the dataset.
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Method GAP GAP™ ACC
Parametric classification
R18IN DNet CE 9.6 24.7 30.6
R18IN DNet AF 16.9 32.0 36.6
kNN classification
R18IN (baseline) 15.9 37.5 42.3
R18IN DNet CE 21.6 40.4 44.7
R18IN DNet AF 23.7 43.9 47.4
R18IN SimSiam 26.8 42.3 45.6
R18IN Con-Syn 30.4 46.6 49.4
R18IN Con-Syn+Real 29.8 46.0 48.8
R18IN Con-Syn+Real-closest 32.5 47.5 50.0
R18SWSL (baseline) 24.7 47.0 50.9

R18SWSL Con-Syn+Real-closest 36.1 52.4 55.0

Table 5.3. Performance comparison for different types of training on the Met dataset.
Training starts from the result of pretraining on ImageNet (IN) or that of SWSL. Baseline:
not trained on the Met.
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Figure 5.1. Examples of incorrect and correct classification of test images for R18IN (base-
line) and R18IN Con-Syn+Real-closest (R18IN*), respectively. The test images are shown
next to their nearest neighbor from the Met exhibits that produced the respective prediction
per method.
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Figure 5.2. Examples of hard negative pairs formed by the approaches that use the
Contrastive loss on the Met training set. These examples additionally demonstrate the large
inter-class similarity of the dataset. Images are shown as squares only for the purposes of
this figure.
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Figure 5.3. Challenging examples from the Met dataset for the top performing approach.
Test images are shown next to their nearest neighbor from the Met exhibits that generated
the prediction of the corresponding class. Top row: correct predictions. Middle row: incorrect
predictions; an image of the ground truth class is also shown. Bottom row: high confidence
predictions for OOD-test images; the goal is to obtain low confidence for these.
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Figure 5.4. Accuracy improvement of the kNN classifier over the parametric one for varying
number of training images per class. DNet is trained with AF loss for the parametric
classifier, while the embeddings learned with this setup are used for the kNN classifier.
Relative improvements are reported in percentage for the different embedding variants.

5.5 Long tail recognition and kNN classifier

We train a parametric classifier (DNet) and additionally use the resulting embeddings
for the kNN classifier. A comparison is shown in Figure 5.4, where performance is reported
separately according to the number of training examples per ground-truth class of each
query. The KNN classifier does not only perform better than the parametric one, but
is shown to be more suitable for long-tail recognition, as it achieves increasingly higher

gains for more underrepresented classes.
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Conclusion

In this thesis, we have introduced a new large-scale dataset, the Met dataset, for the
task of instance-level recognition in the domain of artworks. This dataset is the first
artwork dataset to focus on this task, and is currently the only large-scale ILR dataset
with clean annotations. It poses several hard challenges, as it is designed to simulate
real-world conditions. It is large-scale, containing around 224k different artworks and
follows a long-tail distribution, with over 60% of its classes having only one training
image. Additionally, it exhibits high inter-class similarity, and distribution shift between
the query and the training images, which are captured under different conditions. The
query set is additionally enriched with out-of-distribution images, which puts a strong
emphasis on the importance of robustness in a practical recognition system. Part of them
come from the artwork domain, in order to further increase the difficulties.

Experimental evaluation on the corresponding benchmark shows that artwork related
pre-training is not necessary useful, while ILR-related pre-training is more relevant. This
indicates that the considered task is closer to ILR and deep representation learning than
it is to popular computer vision tasks in the artwork domain, whilst including many of
the same challenges. Fine-tuning the representation on The Met training set appears to
be essential, as non-parametric classification is shown to be superior than its parametric
counterpart. However, it is also challenging due to the training set statistics. The best
performing approach is found to be a combination of self-supervised and supervised
contrastive learning, leveraging the best of both worlds.

The goal of this dataset is to establish itself into the standard benchmarks for ILR. It
is expected to foster research not only on ILR for artworks but also for ILR across multiple

domains, when combined with other existing datasets.
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Appendix

Dataset extras

In this appendix, information about the hosting of the Met dataset, its maintenance,
and its licensing is included. Also, this appendix contains attribution to the Flickr users
whose photographs have been used in the query set and more example images from the
Met dataset.

A.1 Dataset hosting and maintenance

Public access and download links to the dataset are provided through the dataset
webpage: http://cmp.felk.cvut.cz/met/. It contains tar files for all images and the ground
truth files for evaluation. Publicly available reference code for using the dataset and
computing the evaluation metrics can be found in https://github.com/nikosips/met. The
code repository additionally includes code to reproduce some of the methods evaluated
in the paper. The dataset is hosted at the servers of the Visual Recognition Group at the

Czech Technical University in Prague.

A.2 License

The annotations of the dataset are licensed under CC BY 4.0 license. The images
included in the dataset are either publicly available on the web, and come from three
sources, i.e. the Met open collection, Flickr, and WikiMedia commons, or are created by
us. The corresponding licenses for the ones that are available on the web are public
domain, Creative Commons, and public domain, respectively. We do not own their copy-
right. For the ones created by us, we release them to the public domain. The creators of

the dataset, bear all responsibility in case of violation of rights.

A.3 Flickr users

We thank the 37 following Flickr photographers whose photos with permissive license
are included in the Met dataset. They appear in the form: username [real name], profile

url.

e edenpictures [Eden, Janine and Jim], https://www.flickr.com/people/edenpictures
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https://www.flickr.com/people/edenpictures
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e Eric.Parker [Eric Parker], https://www.flickr.com/people/ericparker/

e semarr [Sarah Marriage], https://www.flickr.com/people/semarr/

e mharrsch [Mary Harrsch], https://www.flickr.com/people/mharrsch/

e Johnk85 [Johnk85], https://www.flickr.com/people/johnk85/

e zinetv [Lionel Martinez], https://www.flickr.com/people/zinetv/

e opacity [], https://www.flickr.com/people/opacity/

o Will.House [Will House], https://www.flickr.com/people/karloff/

e sarahstierch [Sarah Stierch], https://www.flickr.com/people/sarahvain/

e euthman [Ed Uthman], https://www.flickr.com/people/euthman/

e griannan [], https://www.flickr.com/people/griannan/

e Trish Mayo [], https://www.flickr.com/people/obsessivephotography/

e Stephen Sandoval [Stephen Sandoval], https://www.flickr.com/people/pursuebliss/
e Grufnik [], https://www.flickr.com/people/grufnik/

e smallcurio [], https://www.flickr.com/people/smallcurio/

o gtrwndr87 [Matthew Mendoza], https://www.flickr.com/people/mattmendoza/
e peterjr1961 [Peter Roan], https://www.flickr.com/people/peterjri961/

e Stabbur’s Master [Larry Syverson], https://www.flickr.com/people/124651729@N04/
e gorekun [], https://www.flickr.com/people/gorekun/

e rverc [Regan Vercruysse], https://www.flickr.com/people/rverc/

e IslesPunkFan [Neil R], https://www.flickr.com/people/islespunkfan/

e Pete Tillman [Peter D. Tillman], https://www.flickr.com/people/29050464@N06/
e squesada70 [Sergio Quesadal, https://www.flickr.com/people/squesada/

e jareed [], https://www.flickr.com/people/jareed/

e stausi [], https://www.flickr.com/people/stausi/

e terryballard [Terry Ballard], https://www.flickr.com/people/terryballard/

e suetry [Susan Tryforos], https://www.flickr.com/people/stryforos/

e h-bomb [Howard Walfish], https://www.flickr.com/people/h-bomb/

e Robert Goldwater Library [The Robert Goldwater Library, The Metropolitan Museum
of Art], https://www.flickr.com/people/goldwaterlibrary/

e juan tan kwon [jon mannion], https://www.flickr.com/people/jmannion/
e ctj71081 [], https://www.flickr.com/people/55267995@N04/
e Kketrinl1407 [], https://www.flickr.com/people/65986072@N00/

e wallyg [Wally Gobetz], https://www.flickr.com/people/wallyg/

h_wang_02 [], https://www.flickr.com/people/7238238@N02/
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A.4 Extra image examples

e Olivier Bruchez [Olivier Bruchez], https://www.flickr.com/people/bruchez/
e JBYoder [Jeremy Yoder], https://www.flickr.com/people/jbyoder/

e jaroslavd [jerry dohnal], https://www.flickr.com/people/jaroslavd/

A.4 Extra image examples

We present more examples of Met queries and training images from the same class in
Figures A.1 - A.3.


https://www.flickr.com/people/bruchez/
https://www.flickr.com/people/jbyoder/
https://www.flickr.com/people/jaroslavd/

Appendix A. Dataset extras

Figure A.1. Examples of Met query images and training (exhibit) images of the correspond-
ing Met class. Query images are shown in black border.



A.4 Extra image examples

Figure A.2. Examples of Met query images and training (exhibit) images of the correspond-
ing Met class. Query images are shown in black border.



Appendix A. Dataset extras

Figure A.3. Examples of Met query images and training (exhibit) images of the correspond-
ing Met class. Query images are shown in black border.



Appendix E

Additional results

In this appendix, additional results of experimental evaluation on the proposed bench-

mark are included.

B.1 Descriptor dimensionality

Figure B.1 demonstrates the performance for increasing dimensionality of the image

representation after PCAw. Combination by simple concatenation is shown to be effective.

B.2 Local descriptors

We evaluate the kNN classifier where the image-to-image similarity is computed with
HOW local descriptors [11] (ECCV2020 R18 trained model) and ASMK [32]. It achieves
25.3 GAP, 47.6 GAP™ and 50.9 ACC, which is the highest performance for this backbone
(ResNet18) so far, however very close to the one achieved by the RIS8SWSL model and
similarity with global descriptors. Note that this is a much costlier approach than all the
rest in this work, which use global descriptors. The use of local descriptors trained for
this task is likely to be a promising future direction especially due to the high inter-class

similarities and the importance of distinctive artwork details.

40 [T T T =

60 |- ] —— R18IN
—— R18SWSL
—e— R18SWSL"

R18IN+R18SWSL"

30 - R18SWSL+R18SWSL"

50 |-

\
W

30 |~ — 10 |- |
| | | | | | | |
128 256 d 512 1024 128 256 d 512 1024

Figure B.1. Performance with a kNN classifier versus dimensionality for different back-
bones. Two approaches are combined by simple representation concatenation before PCAw
and is denoted by “+”. *: Contrastive Syn+Real-Closest training on the Met dataset.
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B.3 Approaches for long-tail recognition

In order to mitigate the harmful effect of the imbalance of the Met training set on the
learning process, we test a number of different approaches that are designed for long-
tail recognition. Using the DNet classifier trained with AF as the reference method, the

following methods are additionally used in training.

e Class weighting: The contribution of each sample in the loss function is weighted

by the inverse of its class frequency.

e Class-balanced sampling: The samples that are contained in a training mini-batch

are sampled uniformly across classes, and not across all training images.

e Classifier retraining with class-balanced sampling: After training the reference method,
the backbone is kept frozen and only the classifier is re-initialized and trained with

class-balanced sampling, as in the work of Kang et al. [67].

We observe no increase in accuracy with all these methods. More specifically, the
reference method achieves 36.6 accuracy, class weighting achieves 35.8, class-balanced

sampling achieves 33.4, and retraining achieves 35.0.

B.4 Mini dataset

We additionally create a smaller version of the database (training set) that contains
all images from the Met classes present in the Met queries, plus about an extra 10% of
the images from the rest of the classes of the original database. Its final size is 38,307
images from 33,501 classes. This set, along with the original query sets (test/val), form a
subset of the dataset that serves as a faster way to check the validity of different training
methods, before moving on to training on the entire database. This setup corresponds
to an easier recognition problem than the original one. For reference, R18IN with kNN
classification achieves 27.1 GAP, 49.0 GAP™ and 53.2 ACC on this subset.

B.5 OOD ratio

Results with and without distractors in the test set are included in the paper (GAP and
GAP~, respectively). We now include results, in Table B. 1, for varying ratio of OOD queries
in the validation set and in the test set. Results demonstrate the increasing difficulty by
introducing more distractors and the fact that a small amount of validation distractors

are enough for hyper-parameter tuning of the kNN classifier.



B.5 OOD ratio

Test

Val 0% 5% 10%
0% 36.9 329 29.7
10% 36.9 32.9 29.7

100% 37.5 33.6 309

50%

19.9
19.9
21.8

100%

14.1
14.1
15.9

Table B.1. Performance of R18IN with kNN classification with different amount (percentage
of their total number) of distractor queries in the validation (for tuning k,t) and test set. Ratio
lower than 100 is achieved by removing the appopriate amount of distractor queries.
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