Y
gl
X

POMHOEV S
SO
nvppopos

WA

EOGNIKO METZOBIO ITOAYTEXNEIO
TMHMA HAEKTPOAOTQN MHXANIKQN KAT MHXANIKQN YIIOAOTISTON

TOMEAY TEXNOAOTI'TAY ITAHPO®OPIKHZX KAI YITOAOI'TETQN

EPTAZTHPIO MIKPOYTIOAOTIEZTQN KAI
WHOIAKQN XYXTHMATQN VLSI

AITTAQMATIKH EPTAYIA

Encapsulating measurement uncertainty
UPROP: A Python library for Uncertainty Propagation

TtvAtavog E. Toaykapaxng
(Stylianos E. Tsagkarakis)

EmBAEntwv: Anuntptog I. Tovvtpnc
Kabnyntng E.M.II.

ABnva, Mdptiog 2022

§%
)

,
3
Al

HOE

nvpPopro

A

I
N

EONIKO METZOBIO ITOAYTEXNEIO
TMHMA HAEKTPOAOT'QN MHXANIKON KAI MHXANIKQN YIIOAOTIETON

TOMEAZX TEXNOAOTTAZ ITAHPO®OPIKHZ KAI YITIOAOT'TETQN

EPTAXTHPIO MIKPOYIIOAOTIEZTQN KAI
WHOIAKQN XYXTHMATQN VLSI

AITTAQMATIKH EPTAYIA

Encapsulating measurement uncertainty
UPROP: A Python library for Uncertainty Propagation

TtvAavog E. Toaykapaxng
(Stylianos E. Tsagkarakis)

EmtBAéntwv: Anuntpoc I. Tovvtpnc
Kabnyntng E.M.II.

Eykp(Onke ammo tnv TpiueAn e€eTaoTIKN entTPOTN TNV 2022-03-04.

ANUATPLOG ZoVVTPNG Tlavaylotng Toavaxkag TwTthpLog EV8ng
Kabnynthg E.M.IIL. Kabnynthg E.M.IIL. Entikovpog Kabnyntig X.IL.A.

Abnva, Maptiog 2022

TtuAavog E. Toaykapaxng
AutAwpatouyo¢ HAektpoAdyog Mnxavikog kat Mnxavikog YmoAoylotwy
E.M.II.

Copyright © Toaykapdkng ZtuAlavog, 2022.
Me ernipvAagn mavtog Sikatwpartog. All rights reserved.

ATtayopeveTal 1 avtiypadn, arobnkevon kat Stavour tThg tapovoag epyaciag,
€€ OAOKANPOU N TUAMATOC AUTNAC, YIA EUTTOPIKO 0KOT0. EmiTpénetal n avatinwon,
amoBnkevon Kat Stavoun yia okod un KepSOoKOTIKG, EKTTASEVTIKNAC 1) EPEVVNTIKAG
dvoNg, VIO TNV POV Va avadEPETaL 1) TTNYN TTPOEAEVONC Kat va Statnpeitat
To Tapov ppvupa. EpwtApata mov adpopolv Tn xpron tThe Epyaciac yia kepdooko-
TUKO OKOTIO TIPETEL VA ameubBvvovTal TTPOC TOV oUYYpaAdEd.

Ot amdPe(C KAl TA CUUTEPACTUATA TTOV TIEPLEXOVTAL OE AUTO TO £yypado ekdppd-
{ouv ToV ouyypadEa Kat Sev TPETEL va EPUNVEVBEL OTL AVTITIPOCWITEVOLY TIC ETTION-
uec Béoeic Tov EBvikoy Metadftov IToAvteyvelov.

MepiAndn

Y& avtn) SutAwpatikn apovotalovue tv BtBAodhkn UPROP. H Bi-
BAoBnKN lo0dystl Tov TUTTO Uncertain 7TOU ATOTEAEL £VA TTPOYPAUUATIOTIKO
MOVTEAO YLa TTEPLYp T, amobBnksvon kot exTéAson mpaswy Tavw o€ aBéfata
Sebopeva. YmeppopTwvouue aptOunTikolc Kal CUYKPITIKOUC TEAEOTEC OU-
TWE WOTE VA TIETUXOUUE TNV MeTASoom kat tn §tddoon Tov Bopvou e10660v
otnv €€060. TTapdAAnAa avamtiooupe epapuoyEg, Sokiudlovtag otnyv tpd-
&1 TO TPOYPAUMATIOTIKO LOVTEAO.

O kUpLo¢ 0TOXOG HAC £lval va TTAPEXOVUE OE UN-ELSTUOVEC TIPOYPAMUMUATL-
OTEC, A PIAKN oTn Xpnon Slemadn Ue Eva evpy GpAoua SuvaTtoTATWY, TOU
Ba Toug emttpémel va SlaxelptoTovv To BOpuo xwplc va tov ayvouv. To ku-
pLoTeEPO TALoVEKTNMA NG BLtBA0BnKNng UPROP mnydadst amd tnv suA€ia kKat
gUKOAl0 0N ¥pnon t™C. Aokipdlovue ™ BiBA0ONKN aviTvooovTac sdpap-
HOYEC TTOU XPNOLLOTIOLOVV HETPNOELS ALoONTHPWYV KAl HAC ETIITPETOVY va Sel-
Eovpe Ta TTAEOVEKTAMATA TN XPNOoNC TNC BIAoBnKnC og ox€on pe TIc ovpPa-
TIkéC ueBodoug. H xprion g odnyel og BeAtiwon otnv akpifeta, o€ oxéon
ue TIc oupBatikég uebddoug, mov kupalvetat amd 1.2 x £wg 40X e HEoT) TIUN
7x. Té\o¢ Zuykpivouue TV vAomoinon pag pe BtBAoBNKeC kat VAOTTIOINOELG
VALKOU TeAeuTalaC TEXVOAOYIAC Kal TTapaBEToupe TIC StadopEg TouG.

Av xat auTtn n tpoogyylon StaocPpalilst 0TL n tpodcPacn oto 06puPo yive-
TAL KE £VA EVYPNOTO KAL UIVIMAALGTIKO TPOTTO, UITAPYOUV KAl MELOVEKTNMATA.
Katd tov urtoAoytopo pe) BipAodnkn UPROP, n emttdoyr| Tov peyéBoug ava-
T0PAoTAoNG Twv Uncertain AVTIKEIUEVWV EVOWUATOVEL TOV KAAOIKO OU-
BBacuod peta taxvtnTag kat akpifetag, oAU pMeyAAOC KAl 1 XpNon NG
BiBA0ONKNG Ba elvat TTOAV apyn yia TPAKTIKN XPNomN, TTOAU Hikpo kat s Ba
UTIAPYEL APKETN akpiBela 0TOUC LTTOAOYIOHOVC.

A€Ee1g xAedua: 00puPog, afeBatdtnta, Stadoon BopuBou, Python, tuxaleg
petaBAntég, mbavotnta

Abstract

In this work we present the UPROP Python library. A library for
Uncertainty PROPagation, that allows developers to describe, store, and
execute arithmetic operations on uncertain data. We overload arithmetic
and comparison operators in order to achieve propagation of the input
uncertainty to the output. To benchmark the library we develop real life
applications with data derived from sensors.

The main goal of the UPROP Library is to provide non-expert pro-
grammers a basic, user-friendly interface with a wide range of operations,
which allows them to reason about uncertainty without ignoring it. The
main advantage of the Uncertain type originates from it’s flexibility and
minimalism. We develop GPS and sound recognition applications, using
the UPROP library and uncertain sensor measurements. The usage of
the library shows improved expressiveness and accuracy over the conven-
tional usage of particle (one-sample) calculations. This approach leads
to an average accuracy improvement, ranging from 1.2x to 40x with an
average value of 7x. We further test the library using micro-benchmark
comparisons with the state-of-the-art and list their differences.

While the implementation of the UPROP library ensures the accessi-
bility and expressivity of the Uncertain type it also has the potential to
make a practical implementation impossible. The representation size em-
bodies the classic speed-accuracy trade-off. Too high and the Uncertain
type will be too slow for practical use; too low and it will be too inaccu-
rate to solve real problems.

Keywords: uncertainty, uncertainty propagation, random variables, python,
probability

Evyopioticg

IMpwtioTwe, Ba NBeAa va ekPpdcw TNV EVYVWUOCTUVY] HOU OTOV ETTLPAE-
WV Kabnynth pov, Tov kabnynth Anuntpto Zovvtpn, E.M.II., tou pov ma-
pelye TNV SLVATOTNTA VA CUVEPYACTW HE TO EPYATTNPLO MIKPOUTTOAOYIOTWV
kat ¥nerakwv Zvotnudtwyv oto EOvikd MetooBio IToAuteyveio. EmumAéov
Ba NBela va evxaplotnow tov xabnyntn Phillip Stanley-Marbell, oto Ila-
vemoTuto tov Cambridge, mov pov €8wae TNV Hov TNV gukalpia va acyo-
ANBw pe éva téo0 evdlapEpov Bgpa. Evxaptotw emiong tov petadibaktopa
BaoiAelo Tooutooupa, oto Iavemiotipio Tov Cambridge yia tnv oAUTIUN
BonBeta xat kaBodnynomn mou Hov TTapeiye o€ OAN TN StdpKELA EKTTOVNONG TG
gpyaciag kat Iov NTav mavta SITAd Mov yla TNV EXAUCT ATTOPLWV.

Axopa, Ba nbsAa va svxaploTnow Toug Yovelc pou, Mdvo kat Xplotiva,
70U MoV £8woav TIC BACELS Y TNV ATTOKTNON YVOOEWV KAl KAAALEpYyNoav
META MOV TNV Aydrm yia udbnon, kabwg kat tov adepdo pov MixdAn mou pa-
{{ pe Toug yovelc pou pe atnpilovy TIC ETTIAOYEC MOV KAl OV SElXVouV EUTTL-
0TOOUVN 0€ OTL KAVW. AVEKTIUNTNC onuaciag eivat kat n otnptén mtov éAafa
a7to TOUC GIAOUC HOV OTIC SUOKOAEC Kat EUKOAEG oTIyMEC. TéAog Ba nBsha va
TIW £va TEPACTIO EVXAPLOTAOW OTNV KOTIEAA oU XpUiod, TTOV [E VITOMOVY] KAl
aydnn e vooTNPLle o€ KABE OTIYUN TWV POLTNTIKWY LOU XPOV®V.

Acknowledgements

Firstly, I would like to express my gratitude to my supervisor, professor
Dimitrios Soudris, N.T.U.A., who gave me the opportunity to work on
this exciting project for my thesis with the Microprocessors and Digital
Systems Laboratory in the National Technical University of Athens. I
am forever grateful to professor Phillip Stanley-Marbell, University of
Cambridge, for giving me the opportunity to work on such an interesting
Thesis. Additionally, I would like to extend my deepest gratitude to post-
doctoral researcher, Vasileios Tsoutsouras, University of Cambridge, who
has been constantly supporting and guiding me on this journey, clearing
my every doubt.

Furthermore, I would like to thank my parents, Christina and Manolis,
for providing me the base for acquiring knowledge and assisted me in
growing my love for learning. I would also like to thank my brother
Michalis who, along with my parents support and trust my choices.
Also to thank my friends who provided my with invaluable support
throughout tough and easy times. Finally, a special thanks to my girl-
friend Chrysa, who patiently and lovingly supported me in every moment
throughout my university years.

10

11

Contents

MepiAndn 7
Abstract 8
Evyoptotisg 9
Acknowledgements 10
Extetapévn leptindy 21
1 Ewooywyn . . . o o oo 21
2 YAOTOINOM .« v v o e e e e e e e e e e e e e e e 23
2.1 AVOTTOOAOTAON XOTAVOUWY « « o v v v o v v v . 25
2.2 Metédoon BopdPBov Lo 26
2.3 YmeppoptwuévoL aplbuntixol teAeotég 27
2.4 Xpnon tng ovuvapTNorS map o€ Uncertain aviixeipevor 27
2.5 EEaywyn mAnpogoptwyy BopvBov oL 28
2.6 TeAeoTég ZOYXQLONG « v v v v v v e e e 29
3 Tetpopotieq aELOAOYNoM o o 31
3.1 Kavovixomownuévn andotaon Wasserstein 32
3.2 Aptbpntixol TeAeotég 32
3.3 Xvyxptxol TeAeotég 33

3.4 Ymoloyiopog toyvnrog amd petpnoetg GPS pe 06-
OLPBO . . . 35
3.5 Movtéro eEapbpworng Brown-Ham 38
4 ZOvodm xo LEANOVTIXN EQELVOL . « . v v v v i e e 39
4.1 MeMovtixqy 'Epevvar . . o L oL oo o oo 39
4.2 TOVOPN ... e 40
1 Introduction 43
1.1 Problem Statement, b4
1.2 Examples with Uncertainty 46

12

1.3 Contributions of thiswork 47

1.4 Thesis Outline 48
Notation & Theoretical Backgound 49
2.1 Probability Theory 49
211 Probability 000000 49
2.1.2 Random Variables 51
2.2 Arithmetic operations on random variables 56
2.3 Comparing distributions 0. o7
2.3.1 Stochastic Dominance o7
2.3.2 Distribution Comparison Metric. 58
2.3.3 Wasserstein - Earth Mover’s Distance 58
2.3.4 Kolmogorov-Smirnov Test 62
Implementation 65
3.1 Design Principles 65
3441 Theidea. 65
342 Goals. e 66
3.2 Representation of distributional information 67
3.3 Uncertainty Propagation 68
3.3.1 Overloaded Magic or Dunder Methods 69
3.3.2 Overloaded Arithmetic Operators 70
3.3.3 Mapping Functions to Uncertain objects 72
3.4 Extracting uncertainty information 73
3.4.1 Conditional operators 74
3.4.2 Bounding uncertainty 77
3.4.3 Other overloaded magic methods 78
3.4.4 Plotting Uncertain objects 80
Evaluation 83
4.1 Evaluation Introduction 83
4.1.1 Monte Carlo Simulation 83
4.1.2 Normalized Wasserstein distance 85
4.2 Operators evaluation 85
4.2.1 Arithmetic Operators 86
4.2.2 Conditional Operators 87
4.3 Speed calculation from uncertain GPS coordinates 90
4.3.1 Calculating displacement from coordinates - The
Haversine Formula 91
4.3.2 Measuring GPS coordinates 92

4.3.3 Converting measurements to Uncertain objects. . . 93

13

5

6

4.3.4 Speed estimation with Uncertain objects
4.3.5 Speed Estimation Results
4.4 Detecting claps from noisy sound signals
4.4.1 Problem Description
4.42 Adding noisetoasignal
4.4.3 Algorithm explanation
4.4.4 Emphasizing on the usage of Uncertain objects
4.4.5 Validating Recognitions
4.5 Brown Ham dislocation model
4.6 NIST Uncertainty Machine - Comparison
4.7 Pyro-Comparison
4.7.1 Compounding error

Related Research

Conclusion

6.1 Future Work,
6.1.1 Efficiency in Computations
6.1.2 Correlation tracking between variables
6.1.3 Compounding error after operations

6.2 Conclusion

14

List of Figures

OO Tk W N =

©

1.1
1.2

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

[Tpéobeon Vo Uncertain petoffAnTedv. 27
AmoteAéopoato g u_map() pebddov. oL 28
[MiBavétnTor evdg Uncertain aviixetpévov X < value. . . . 30

"EAeyyog teAeotdv: Kavovixomoinpévn amdotoon Wasserstein 33

Testing conditional operators of two random variables . . . 35
Asvypotolndio YOpw amd TLG CUVTETOYUEVES LETPMONG. . . 36
Extipnon Taydtntog - LOyxplon Uncertain vs 1-Asiypo . 37
AvéAvor xatovopng Uncertain oavtixelpévwy - Avtoov-

ONETLOM: « v v e e e e e e e e e e e e e e e e e e e 38
Kavovixomowuévn amdotaor Wasserstein - [leipop.ae Brown-
Ham. 39
Google Maps uncertainty. 46
Noise in speech. 47
A discrete random variable. 0L 52
PDF of a continuous random variable. 53
CDF & PDF of Random Variable: X ~ N(0,1) 54
Wasserstein Distance: Visualized 59
Wasserstein distances variation of shifted distributions . . . 61
Wasserstein distances variation of scaled distributions . . . 61
Wasserstein distances variation of scaled & shifted distri-
butions 62
The Kolmogorov distribution’s PDF [26]. 63
Histogram accuracy based onbins 68
Adding two Uncertain variables. 70
Results of the u_map funtion. 73
Probability of an Uncertain object X < value. 75
Bounding an Uncertain variable inside a specific range. . 78
Plotting an Uncertain variable with a specific hatch. 81
Plotting two Uncertain variables in the same axis. 82

15

4.1 Sampling a Multivariate Gaussian with Monte Carlo Simu-

lation. L 84
4.2 'Testing operators: Normalized Wasserstein distance 86
4.3 'Testing conditional operators of two random variables . . . 88
4.4 Testing conditional operators of two random variables . . . 88
4.5 Measured GPS Coordinates fitted on map. 90
4.6 Measured speed calculated from PhyPhox. 92
4.7 Sampling methods around measured coordinates. 93
4.8 Sampling radius overlaps between moving and stationary

States. 94
4.9 Speed estimation - Comparison Uncertain vs particle . . . 98
4.10 Distributional analysis of Uncertain variables - Autocor-

relation. oL Lo 100
4.11 Uncertainty in measurements relation to uncertainty in cal-

culations. o L oo 101
4.12 Normalized Wasserstein distance of speed estimation be-

tween Uncertain and MCS 101
4.13 Speed estimation - Test 04: Comparison Uncertain vs Monte

Carlo 102
4.14 Particle vs Measured values ratio. 102
4.15 Recorded sound signal to test clap detection algorithm. . . 103
4.16 Sound input with added constant AWGN. 106
4.17 Sound input with added noise and RMS Amplitude. 106
4.18 Clap detection algorithm visualized. 109
4.19 Sound descriptors of the input sound signal. 110
4.20 Spectral Flux of input sound signal. 111
4.21 Detected clapping sounds using spectral flux descriptor. . . 112
4.22 Brown-Ham coefficient calculation with varying number of

bins. 113
4.23 Normalized Wasserstein distance between the Uncertain

and Monte Carlo distributions. 114
4.24 UPROP Library vs NIST. 115
4.25 Comparing the Uncertain type with Pyro-1. 117
4.26 Comparing the Uncertain type with Pyro-2. 117
5.1 Bornholt’s prior knowledge usage. 121

16

List of Tables

1 Ymepoptwpévor aptbuntixol TeAeotég. L 27
Arobéorpeg pebodol Twy Uncertain oviLxelévwy. 29
3 ATOTEAEOUATO OLYXQLTLXWY TEAEGTWY YPNOLLOTTOLWOVTOS TV
nébodo: Atapopa Toyaiwy MetaffAqtdy. 34
4 ATOTEAEOUATO CLYXQLTLXWY TEAEGTWY YPNOLULOTTOLWOVTOS TN
uébodo: Xtoyaotiy Kvptooylor. 34
5 Emidoon g BifAtobnxng UPROP - GPS. 36
3.1 Overloaded arithmetic operator methods. 71
3.2 Overloaded in place arithmetic operator methods. 71
3.3 Overloaded right hand side arithmetic operator methods. . 72
3.4 Uncertain ’s available methods to extract uncertainty . . . 74
3.5 Overloaded Uncertain ’s conditional operators 76
3.6 Overloaded Uncertain ’s magic methods. 79
4.1 Mean normalized Distance of arithmetic operators. 87

4.2 Conditional operators results using Stochastic Dominance method. 89
4.3 Conditional operators results usingg RV-Difference method. 89
4.4 Measurements collected by the PhyPhox [7] mobile appli-

cation. 92
4.5 UPROP Library performance gain over the particle sample

calculations. Lo oo o 97
5.1 Related work comparison. 119

17

Listings

1 Weudwg Betixd os vmobéoetg.o L. 22
2 Twoépevo 300 Uncertain aVTLXELLEVOY. o o 26
3 Circular convolution between two Uncertain objects. 26
4 YAOTOLNOM TNG OUVEPTNONG U_MAP. « « « v o v v v o v v v o 28
5 YAomoinon tng Xtoyaotixng Kvptapylog yia tov teAeot) <. 31
6 YAomoinoy tng pebddov Aixpopa tuyoiwy petoffAnTwy. . 31
1.1 False positives in conditionals. 45
1.2 GPS API simulation. 46
3.1 Adding two Uncertain objects. 68
3.2 Circular convolution between two Uncertain objects. . . . 69
3.3 int’s class attributes and methods. 70
3.4 Using the u_map funtion. 72
3.5 Implementing the u_map funtion. 73
3.6 Choosing the comparison method for conditionals. 76

3.7 Implementation of Stochastic Dominance for the < operator 76
3.8 Implementation of the difference of random variables method. 77
3.9 Bounding an Uncertain variable using the public bound ()

method. o o 77
3.10 Example of using the __bool__() overloaded method. . . . 78
3.11 Example using overloaded magic methods - 1. 79
3.12 Example using overloaded magic methods - 2. 79
3.13 Plotting an Uncertain variable with a specific hatch. 81
3.14 Plotting two Uncertain variables in the same axis. 82
4.1 Monte Carlo Simulation explained. 84
4.2 Speed estimation using Uncertain objects. 95
4.3 Speed estimation using particle measurements. 96
4.4 Setting autocorrelation ON/OFF. 99
4.5 Converting measurement to Uncertain by adding constant

NOISE. i i i 105

4.6 Converting measurement to Uncertain by adding constant

noise based on SNR. o oL 107

4.7 Clapping sounds algorithm detection. 108

4.8 Adding a reference distribution to a sum 10 times. 116
4.9 Adding a reference distribution to a sum 10 times - Uncertain

................................. 116

4.10 Adding a reference distribution to a sum 10 times - Pyro. . 116

19

20

Extetopévn [epiAnd

1 Ewoayowyn

ABeBatdtTnTa vdpxel o€ TTOAAEC TTTUXEC TNC (WNG HAC. ZE €va UEYAAO
Babuo ot kaONuePIVEC ATTOPATELS KAL OTTOLOONITOTE PIOKO TTOV TTAIPVOUE OU-
vodevetat amd avthv. BéBata sipaocte T000 cuvnbiopévot mov ouvnBwg Sev
™V avtidapBavopacte, S10TL €XOUME TNV (KavoTnTa va thv enegepyaldua-
oTe VTooLVEdNTA. Me avtioTolxo TpOTo Ba £mtpeme va AstTovpyovV Ta LVITO-
AOYLOTIKA CUOTAMATA. AVTIBETWG OMWE, EVK N 1KAVOTNTA TWV UITOAOYLOTL-
KOV CUCTNUATWY va amobnkevouv kat va ene€epydlovtat Sedopéva BeATIo-
VETAL OUVEX®C, T KAVOTNTA TOUC va avTIdeTwdovy v aBeBatdtnta Kat
T0 00puPo ota Sdouéva £xet pelvel oTATIUN.

Y10 apeABov oxedialape T CUCTAUATA EAEYXOU WC MEUOVWMEVA KAl
KALIOTA CUOTAUATA UTIO TOV EALYX0 €VOC KATAOKELAOTH 1) O KAEIOTA KAl
npooTaTeLVOUEVa TEPIBAAAovTa. Me TV avodo ¢ xpnong Tov AladIktu-
ov TV Tpayudtwy (IoT), Twv aUuTOVOU®WVY AUTOKIVATWY KAl TOU AUTOMATL-
oMoV o€ kKABe mtuyn ™ {wng Mag, eEAPTONATTE OAO KAl TTEPLOCOTEPO ATTO
TIC akptPeic uetpnoelc atobntipwy. 'ETol TIPETEL KAl 1] (KAVOTNTA TWV UIO-
AOYIOTIK®V CUOTNUATWV va cupPBadiost pe tnv av€avouevn porn afépatwv
UETPNOEWYV Ao aloOnTnpec.

‘'OAeC Ol UETPNOELC £XOLV Evav avartopevkTo Babuod aBeBatdtntac (Bopv-
Bog ugtpnong) xat £tol, £€va cVOTNUA TTOU TIC XPNOIMOTOLE(yla va TTApEL a-
opdoelg Ba mpémet va AapBavet vITOPLY TOL KAl authv Thv aAnbewa. Avtd
TPOKAAE(Tapartoinom Tn¢ aANBelac OXETIKA LE TNV TTPAYUATIKN TIUH TN TT0-
00TNnTag Tou BéAovpe va petproovpe [1]. EmutAéov, ot dpuoikol vouol mov ev-
Sexopévwe teptypddouy Thv £€€AEN KATTOLOL GUOIKOV CUCTAHATOC SEV AKO-
AovBwvTal TANPWC TNV TTPAYUATIKOTNTA, AOYW TNG UIap&ng diepyactokov
BopvBov. T1" avTovg Toug AOYoug €xouv avartuyxBel TeEXVIKES OTwC N METPI-
aon Kat To ATpdptopa, ot omoleg ouvdudlouvv Tig BopuBwbelg LeTPROELG
amod moAAaTAoUC atobnthpec padl Ye yvwor yia Toug Gpuotkoug VOUOUE TToU
SiEmovv éva Ppuoiko CUCTNUA WOTE va KatapEpovv TNV eEopudAvvon tov Bo-
puBou.

21

@ Ot W N =

O TIPOYPAUMATIOTEG TIPETEL VA YVWPIOUV TA TTApATTdve Kat va ta Aappd-
VOUV UTTOYLV TOUC KATA TN SIApKELd avATtTuEnG Tov EKACTOTE CUOTHUATOC.
To va YpnoIMoTTOloUV TA CUYKEKPIUEVA SeSOUEVA wC Exel umtopel va amofel
polpaio xat va KataAn&el o e0paAUEVa ATTOTEAECUATA UE KATATTPOPIKEC
OUVETIELEC.

Ty napovoa SumAwpatikn tapovotalouvpe v BipAodnkn UPROP yia
™ yAwooa nipoypappatiopol Python. H BifAo0nxn auth meptéxet tov TUmo
Sedouévwv: Uncertain. O TUMOC Uncertain amoteAel £va TPOYPAUUATIOTL-
KO LOVTEAO YLa JTEPLYppn], amoBnkevon kot exktédson mpaswy TAVW o€ afé-
Bata Sedopéva. IapdAAnAa avantuoooupe hapUoYES, Soktualovtag oTnv
TTPA&N TO TAPATTAV® TTPOYPAUMUATIOTIKO MOVTEAO.

'Ontw¢ TPOAVAPEPAUE, Ol ALTONTAPES ATTOTEAOUV AVATTOOTIACTO KOMUATL
TWV QUTOMATOTIONUEVWY S1adtkaotwv oTn ovyxpovn TexvoAoyia. 'Eva xa-
PAKTNPLOTIKO TTapddetyua tng onuaciag ™c afefatdtTnTag oe HETPNOELC Al-
ofnmpwv Ba pmopolvos va sivat ot aloONTATEC HETPNONC ATTOCTACONC EVOG
AUTOVOMOU AUTOKIVATOU. ZTO TUAMA KWS KA 1 Tapovatdlovpe ToV PeuSoKw-
S1xa 7TOV YPNOIUOTIOOVUE O AVAAOYA OXTUATA TIPOKEILEVOL Va Statnpsitat
ua otabepn amdoTaom amod TO TPOTTOPEVOUEVO OXNHA.

if distance < 10:
car.decrease_speed()
elif distance == 10:
car.maintain_speed()
else:
car.steady_speed()

Listing 1: Weudwg Oetixd oc vmobéoelc.

31O TAPATTAV® TTAPASEIYUA O TIPOYPAUMATIOTAC ayvosl tTnv mtbavr] afe-
BatdtnTa mov kpvPBouv ta dsdopéva. ‘ETot umtdpyet n mbavotnTa atuxnua-
TOG, AOyw KaBuoTepnUEVNG TTESNONC. AKOMA KAl OTNV OTAVIA TEPIMTWON
70U 0 AONTAPAC SNAWOoEL artdoTAON MEYAAUTEPN TwV 10 HETPWYV, TOTE O
auToOMaTog eAYKTNC Ba emtttayvvel To Oxnua kat Ba vap&est cvykpouvon. Av-
™M n TAnpodopia Ba TPETEL va TPOTPEYEL TOUC TTPOYPAUUATIOTES E(TE VA KA-
VOUV OTATIOTIKN avdAuon TwVv §e60UEVWVY 10080V €(TE VA AVTIHETWITI(OUV
Ta dedopéva avta w¢ apfata.

H B1BA1001xn 1t0VL TpoTEIVOUUE 0TV TTAPOVOA SITAWUATIKY ATTOTEALL (LA
TpooTIddela va evowuaTtwooups TNy aBeBatdtnta kat tov 86puvpo ot pia -
Bavotikn Soun Sedopévwv. ‘Etat Ba pac o6l n Suvatdtnta va powbroov-
ue Tov avdioyo B0puPo oTa amoTeAEouaTa TPAEEWVY Kt KANOEWY oLVAPTH-
OEWV TTAVW 0Ta ekaotote dsdopéva. H oxedlaon mapouotwv SOHwV amoTe-
AEL HEYAAN TTPOKANON adov amaltel loyupd Habnuatikd OspéAia kabwe kat -

22

KTETAUEVN BEATIOTOTTOINON WC TTPOC TOUE XPOVOUC KAl TOUC TTOPOUC TTOU AITAL-
TOUVTAL YA TNV EKTEAEOT. ZTO TTAPEABIV, | AVATTTUEY TOUG EXEL ATTATYOANOEL
TNV EPEVVNTIKY KOWVOTNTA TOOO O€ LOPPN YAWCOWV TPOYPAUHUATIOUOU 000
Kal o€ enimedo VALKOU.

ITio ovykekplpuéva, o enimedo vAkov, ot ToovTooupacg k.a. [2] tapovai-
acav v pkpoapyttektovikn Laplace n omold XpnotHomnotel KATavouES TTL-
BavoTnTwyV 08 avamTapdoTacT UNXavic, WOTE VA TTPAYUATOTTOOVVTAL ATTPO-
oxomta npa&elg mavw oe dedopéva. H pikpoapyttextovikn Laplace emextel-
VEL TO 0UVOAO evTOAwV RISC-V, 00T va UITopel 0 XpNoTNG va ELCAYEL Kal va
e&ayel TANPOPOPIEC OXETIKA UE TNV KATAVOUT TuXaiwV petafAntov. H a-
VatapdoTtaon oTn HVAUN amtoTeAsitatl amd mAeLadeg mtov xwpilovv to medio
optopoV o N pépn pe (o mbavotnTta kat TEPLEXOLV TN METN TIUR, KAl TV
avtioToyn mbavdtnTa IOV AVAAoyel 0TO EKACTOTE UEPOC.

Ye eninedo Aoylopikov o Bonrholt [3] vAorolel Tov adpatpeTikd TUmo Se-
Souévwv Uncertain<T>. O Bornholt xpnotHomoLel TIC 0OPLAKES KATAVOUES
TuXalwV HETABANTWV KABWCE KAl CUVAPTAOELC SELYUATOANYPIAC TTPOKEIUEVOU
va avanapaoctnoet Sedopéva pe B0pufo. Ze ouvduvaopo pe éva Bayesian Al-
KTUO TTov oynuatietal amd £va katevBuvouevo akukAko ypdgo (DAG) uio-
pel KAl EKTIUAEL TIC TIMEC TWV METABANTWYV OTav Xpetalstat.

H tapovoa epyacia ouvelopEpel otny miAvon Tov TpofAnuaToc tou Bo-
puBov ota dedopéva, epmAovtidovtag Tnv YAwood mpoypappatiopov Python,
TAPEXOVTAG OTOUG TTPOYPAUMATIOTEG Hia BLBAL0BNKN pe TV omola popovv
amPOCKOTITA, VA VAOTIOI OOV TIC EPUAPUOYES TOUC.

2 YAowoinoy

O UTTAPYOVOEC APXITEKTOVIKEG KAl YAWOCTEC TTPOYPAUMATIOUOV SEV LITO-
omnpillovv ek puoew TNV LItapén BopuvPou oe Sedopva oL aToTeAOVVTAL
arto éva Kat uovo detypa. Ot voAoyloTeC £xouvv oxedlaoTel ye Baon tnv 16€a
0TL 8ev umtdpyet aBeBatdTNTA OTIC TIMEC AVTEC. ZUVETTWC £(TE SnuovpyovvTal
€€ATOUIKEVUEVEC AVOELG ATTd TOUC TIPOYPAUMUATIOTEC, £(Te 0 BOpuBog auTdg
ayvositat. Ztnv SUTePn TTPOTEYYLIOT £lval TTPOPAVEC TTWC O TTPOYPAUUATL-
o Badletl Tov XpNOTN Kal cVOTNHUA TOL O€ KIvOuvo. ZTNV MEPIMTWON TwV
€EATOUIKEVUEVWV AVCEWY, EAV O TIPOYPAUMATIOTAG SEV £XEL SIETMOTNUOVIKN
yvwon 1| 8ev yivel cwoTog EAeyxoc, TOTE To cUoThUa KabloTatat emikivéuvo
£V ayvola Twv Tpoypappatiotov. H dyvola kiv8Uvou Utopel va TpoKar£oEsL
oofBapdtepa tpofAnaTa.

H xuptotepn uéBoSo¢ Tou YpnoIHOTTOLETAL TOTO ATTIO TNV EPEVVITIKT KOL-
vOTNTA aAAG Kat amo) Bropnyavia ya tnv npowbnon BopvBov ota amo-
TeAéopata sivat n pEBodoc Monte Carlo (Ymosvotnta 4.1.1). AmoteAsl Hia

23

a&lomiot uEBodo, OUWE eivatl TTOAD amaITNTIKY VITOAOYIOTIKA KAOWC 0 Ka-
B aAydplBpoC TPEXEL ETAVAANTITIKA TTOAAATIAACEC HOPEC TOU UeYEBOUC TNG
gl00dov.

H 8€a ticw amtd tnv BIRA06 KN UPROP £ival va TTPOCOMOLWCOVME TNV
uébodo Monte Carlo pe Hia VTETEPUIVIOTIKN TIPOCEYYLON, ATALTWVTAC AlyO-
TePO ¥povo. To cvotnua pag mpowdei Tov BOpufo ylati Bewpolpe TTwg &i-
vat £vag onpavTikog mapdyovtag mov uitopel va mai&el kaboplotikd poAo
OTNV ATTOTEAEOMATIKOTNTA £VOC OLUOTAMATOG. O 0TdY0¢ auTtng TS BifAto-
BNkng elval va emekTeVEL TN AEITOUPYIKOTNTA TNG YAWOOTAC TTPOYPAUUATI-
opov Python [4] oUTtwg wote va StevkoAUveL TO0O TNV avATTTuEn edaprOY®V
mov Baotlovtal o eumelpikd deSopéva (METPNOELC aTt0 AloBNTAPEC), 000 Kat
YVWOTEC TAPAUETPIKEG KATAVOMEC.

Ot xUptot atdyot TG BiBAoONkNnc UPROP sivat va amoteAel éva (I) pve-
HAALOTIKO Kal (2) EVEMKTO £pYAAE(O:

* Oa TPEMEL va ETUTPENEL OTOVG TTPOYpappatiotég Python va to utobe-
TROOUV GTOV KWS1KA TOUC, avTikablotwvtag, £t Suvatov Toug cuuPa-
TIKOUG TUTTOUC SebopEVwY, OTwC int, double.

¢ 'Eva avtikeipevo tumov Uncertain Oa mpémet va umopsl va avamapa-
OTAHOEL Hia Tuxala petaPAnty.

e H xAdon Uncertain Oa mpémel eniong va UEPPOPTWVEL, TNV TAELO-
Ymaoia twv teEAectV ™G Backng xAdaong thg Python ovtwe wote
Ol TTPOYPAMMATIOTEG VA UITOPOVV ATIPOCKOTITA VA XPTC LLOTOTOVV TIC
(51e¢ exdpaoelg TTov Ba xpnaotpomolovoay He TIG TIMES EVOC SelyaTog,
evw TTapdAAnAa Ba mpowbeitat o B0puPoc HEoa amd TEAEOTEC KAl OU-
VAPTAOEIC. ZTO ammAd Ttapddetypa: Z = A+B O7mou Ta A,B amoteAovv
800 Uncertain avtikeipeva, 0a kadsitat o + TeEAeoTNC 0 omolog Ba et
oTpEdEL €va VEo Uncertain avTIKE(UEVO Z, CUUTTEPIAAUBAVOUEVOU TOU
ouvvduaopuov BopuPou TTov TEPLElXE TOOO TO A 600 Kal To B.

To xUpto cvutépacua amd tnyv vAomoinon ¢ UPROP BiBAobnknc, sivat
OTLITPOKEIMEVOL VA XPNoLpoTtonBel o TUToC Uncertain w¢ TUTOC TPWTNG Td-
&Ng, Omwg ot Tumot int, float, etc MPEMEL VA UTTAPYEL KATTOLOC CUMBIBATUAG
000V apopd TNV TaXVTNTA EKTEAEONC KAl TNV XPHNON UVAUNC OTO EKACTOTE
UTTOAOYLOTIKO GUOTNHA, HE AMETO KEPSOC TNV AKPI(BELA GTOUE UTTOAOYLOOVG.
EntutAéov n miBavotikn pvon twv tuxalwv HeTaBAnTwv mteplopidel To TAN-
Bo¢ Twv TPAgewV KAl CUVAPTHOEWV TTOV MITOPOUV VA EKTEAECTOVV [UE AUTEC,
KaBw¢ TpEMEL va YIVEL 1] METABAOT AT TO VTETEPUIVIOTIKO 0TO TTLOAVOTIKO
ntebio oplopov.

24

21 AvomopdoTtoc XOUTAVOUOY

Katd yevikr opoAoyla, n 1o akptBf¢ avamapdoTaot Ui KATAVOUNG Ttt-
BavoTnTwv otn Lvnun elvat va amobnkevovtat 0Aa ta delypata. ‘Opwc, mpdrt-
TOVTACG £TOL O UTTIOAOYLOTIKOG pOPTOC TOU CUOTHMATOC EMLBapiveTal onua-
VTIKA. ZUVETIWC 1 EVPECT EVOC TPOTTOV AVATAPACTACNC TTOV ATTALTEL AtyoTe-
peC TTPA&elc kat Statnpel TNV akpifela oToug LITOAOYIOUOUC Elvat LovoSpo-
MoG.

Ot ToovTtoovpag K.a. [2] mpoTeivouy Tov TPOTTO avamapdoTacTg Tuxaiwy
METABANTWV w¢ oLVSVATUO ouvapTHoewV NTIpdK.

Definition 2.1 Dirac mixture representation: 'Ectw (x) 1 ovvaptnon SéA-
1o (Dirac) -- €vag povadiaio¢ TaAuog otn Oon x. AsSougvng uiog Tiung xy € R,
Bewpovue ws TNV ovvaptnon: 6(x — xg) WG TNV oVVAPTHON UAlNS TTBavoTnTAG
KoL TNV AITOKAAOUUE TN EVOG SEIYUATOS. XpNOoILOTOIWVTAC XUTO TOV 0PLOUO
UTTOPOVUE VO UETAOXNUNXTIOOVUE EVAV TTIVOK TT0 OEIYUXTA X1, To, ..., Ty OF LI
ovvaptnon uadec mlavoTnTaC XPNOoLOTTOLWVTHC Ve oTaOuIoUE VO dBpotopi.

M M
Ix(z) = ané(x —), orov p, € [0,1], an =1 (2.1)
n=1 n=1

Av xd0s NTipdk 0Ttov oUVOLAOUO LOATTEXEL UE TNV ETTOMEVN KAL TNV TIPOTYOU-
MEVN, TOTE AUTY N AVATTAPACTACN TA{PVEL TN HOPDN TWV (CTOYPAUMATWV
OUXVOTHTWV.

Etvat &ekabapo mwg 1o HEyebog pvnung tov kataAapupavetévaUncertain
avTtikeipevo kabopiletatl amod to mANBo¢ Twv NTipdk (§ oThAWVY 0TV TepPi-
TTTWOT) TOU IOTOYPAUMUATOC) TTOU EXOVME XWPIoeL TO TTES0 0pLoMOV NG €KA-
otote Tuxaiag uetPAnTC. ‘Eva onpavtikd cuumépacua mov eEAyape Katd
NV epapatiky a&loAdynon 3 sivat tw¢ umopsl va vmtdp&et k€pdog amd tnv
pelwon Tou HeYEBOUG EVOC AVTIKEIUEVOV, XWPIC VA UITAPEEL ATTWAELA OTNV d-
KpiBela vITOAOYIOHWV.

AZloomuelwTo £lvatl To YEYOVOC TwC 1) XPNOLUOTIOMOT IOTOYPAUUATWY O
OXE0N UE TIC TIMEG EVOG Selypatog tpooBETel ToAUTTAOKOTNTA OTIC Stadika-
ol(e¢ He avTikelpeva TUTOL Uncertain, o€ avtiBeon He TN XpNOT TILWOV EVOG
Setypatoc. ITo CUYKEKPIUEVA 1) METATPOTH TWV SEYUATWY OE IOTOYPAMMA-
Ta anattel €va akyoptBuo moAumAokotntag xpovoy, O (N - k) yua va ta&vo-
unoovpe ta N Selyuata og k 0THAEC KAl VA UTTOAOYIOOUUE TIC OUXVOTNTEC.
H moAumAokdtnTta xwpov e€aptdtat amd Tov aplud Twv oTnA®v Kat sivat:
O (k). Ztnv meplntwon mov enAgyape va arofnkevoovpe ta N Selypata wg
€XeL, N ToAVTTAOKOTNTA XWPOoL Ba av€aviotav oe O (N).

25

© 0 a3 U W N =

- =
- O

2.2 Merddoom 0opdBov

H Baown apyxn Tov tomov Uncertain £ival va UTTOPEL VA EVOWHUATWVEL
To BopuPo -- akOua Kal Ta O akpaia evEeXOUEVA, KAl VA TOV TTPOowBel/e-
Tad(8et pEoa Ao TEAECTEC KAl CUVAPTHOELC TTOU XPNOLUOTTO0VV Uncertain
avtike(peva. 'EoTw Uncertain avTIKE(UEVA TTOU AVATIAPLOTOVV TIG TUXAIES
uetaBAntég X ~ U (0,6) kat Y ~ U (0,6).To yvéuevd toug Z = X - Y eivat
eniong Uncertain kat avamaptotd yia tuxaia petafAntn. To mapddstyua
auTo palvetal 0To TUAUA KWSIKA 2.

X = Uncertain([i for i in range(0,100)])
X = Uncertain([i for i in range(100,200)])
Z=X+Y

Listing 2: I'tvépevo 600 Uncertain avTixelévmy.

Y70 TAPATTAV® TUAMA KOSIKA XPNOLULOTTOLOVME KUKALKN CUVEAEN Twv V0
TUXAlWV METABANTOV V1A VA VTTOAOYICOUNE OAEC TIC TTIOAVEC TIMEG TNC META-
BANTNAC Z. H xukAkr) ouvEMEN oplleTatl we:

(Fr9)e) = [fe=taat= [flg—tar @2

YTO TTAPAKAT® TUNHA KOSKa 3 S€lxvoupe TNV VAOTIOMOT TNS KUKAIKNC OU-
VEMENC otV BiBAoBkn UPROP.

def addRandomVariables (X1, X2):

"""Calculate the circular convolution of X1 with X2."""

dst_hist = []

dst_medians = []

for i in range(0,len(X1.hist)):

for j in range(0,len(X2.hist)):

dst_hist.append(X1.hist [i]*X2.hist[j])
dst_medians.append(X1.median[i] + X2.median[j])

dstVar = createObjectFromOperation(dst_hist, dst_medians)
return dstVar

Listing 3: YAomoinon g xuxAxng oLVEMENG peTaEd SV0 Uncertain OVTIXELUEVW®Y
(toyoiwy petafinTteyv). H mapoywyni tou véov Uncertain oavtixelpévov yivetol UE
Béomn tov optopd 2.1 Xtov mivoxo dst_hist amobnxévovror ot mbavétnTEG DYy TWV
TLHOY, oty avtiotolyn 0éon, touv mivaxa dst_medians otov omolo amobnxebovtal ot
TLpég Tov TEdioL 0pLoUoy (T — xy,).

'To U(ab) awvoamopLtotd pio opoLdp.open xotovopy oto Stéotnuo [a,b]

26

2.3 Ymeppoptwpévor aptuntinol teAeoTtég

Ot untepdopTWHEVOL
aplOuNTIKo(TEAECTEC TTOV
vrtootnpilet n BipAodn-
k1 UPROP mapouvotddo-
vtat otov mivaka 1. ‘O-
TTWE TTPOAVADEPAE XPN-
OMOTIOOVV TNV KUKALKY
ouvéMNEN (oplopdg 2.2)
TIPOKEIMEVOU VA UTTOAO-
yloToUv OAeC ot TiBaveg
TIMEC TNG TTAPAYOUEVNG
uetafAntng. Iapovotd-
{OULE EVA XAPAKTNPLOTL-
K6 mapddstypa otnv Et-
kova 1 O aptBuog otnAwv (bins) Tov mapayouevou Uncertain avTIKE(MEVOU
META ammd TNV KANOM €VOC TEAEOTN £lval 0 HEYAAVUTEPOG aptBuoc avdusoa
otov aptipo otnAwv (bins) TwV avTikElUEVWVY TTOU TO TTAPTYAYAV.

T T
Operand (1) ~ (8, 2)
[Operand (2) ~ A(10, 1)
T X+Y

0.04

0.03

0.02

0.01

0.00

125

Iyqeoa 1: Tlpdobeon 8Vo Uncertain petaffAnToy.

Méfodog | Xpton | type(a) | type(b)

__neg__ -a Uncertain | -

__add__ at+b Uncertain | Uncertain | Number
__sub__ a-b Uncertain | Uncertain | Number
__mul _ axb Uncertain | Uncertain | Number
__truediv__ | a/b Uncertain | Uncertain | Number
__pow__ axx*b Uncertain | Uncertain | Number
__mod__ alkb Uncertain | Uncertain | Number
__divmod__ | divmod(a,b) | Uncertain | Uncertain | Number

Mivoxog 1: Yreppoptwpévol apLtduntixol tTeAecTéc.

2.4 Xpnon g ovvaPTNoYg map o< Uncertain avtixeipe-
vo

2t BBA06nKkn UPROP Xp1OIUOTTOIOVME AUTHY TH CUVAPTNOT] TTPOC Ode-
AOC MO WOTE VA KAVOUUE map Ta Uncertain AvTIKE(UEVA OTNV EKAOTOTE OU-
vaptnon €l0odov. Avth 1 Actoupyia vAoToLElTal 0TV cuvdptnon u_map ().
To aVTIKEIMEVO TIOV €TLOTPEDOVME lvat TUTTOV Uncertain. To TUAMA KOSL-
Ka 4 Selyvel Tnv vAomoinom ¢ HeBodov u_map (). Xtnv Ekova 2 tapovotd-
{oupE TO aTtoTEAET A TNG MEBOSOV u_map () We TNV ocuvdpTnon €.

27

© 0 a3 U W =

- e
- O

Uncertain object

0.25 o
Original Values: x 0.12 s e
0.20 0.10
i E0.08
£0.15 i
£0.10
£0.041
0.05 %
0.02 I
WWWWH'MHH ILLLLLLL L) L1
0.00 0 1 2 3 4 5 0.00% 25 50 75 100 125 150
(@) To Uncertain avtixeipevo etoddov: X ~ (8) To Uncertain avtixeipevo eEddov: e” to omolo
U(0,5) TapbyOnxe ard ™ pébodo u_map.

Tynpo 2: Amoteréopoto g u_map () pebodov pe eicodo X ~ U(0,5) xow cuvaptnon
eLo6d0v v exbetinn ovvdaptnon: e*.

def u_map(obj, func: Callable, **kwargs) -> Uncertain:
"""Map function <func> to the <obj> Uncertain object”"""
new_medians = map(lambda x: func(x, *+*kwargs), obj._medians)

mnmn

Since the ordering of the new mapped values has not
changed, compared with the original medians the histogram
values in the corresponding positions represent the
probablity of each new median.

mmnn

dstVar = createObjectFromOperation(obj.hist, new_medians)
return dstVar

Listing 4: YAomoinom Tng ovvaeTNong u_map n omoio avTtoTolyel Uncertain avtixel-
UEVOL OE CLYOPTYOELG.

2.5 EEaywyn mwAnpogopixny Hopdouv

ITPOKEIMEVOL VA EKUETAAAEVTOVUE TO OUVOAO TWV SUVATOTHTWY TOU TU-
7tov Uncertain mpénel va Swoovpe mpdoBact oTo XPpNoTn OXETIKA UE TNV
aBeBatdtnta kat to B6puPo touv kAbe avtikeipevov. Ilpdattovrac £tat, &i-
VOUUE TN YVWOT] Kl THV TTANPo¢popla 0TO XPHoTH TIPOKEIMEVOL va AABEL pia
TEKUNPLWUEVT artdpaon pe ™ Stadoon ¢ afsPatdtntag amd tnv icodo.
IMTapovotalovpe TI¢ StabBEaiueg TANPOPOPLES TNE KATAVOUNG EVOC Uncertain
AVTIKEIMEVOU OTOV TTivaka 2.

28

Mé£6030¢ | Txomog | Tomog val

mean p=E[X] -
variance E[(X — p)?] -
min() Xonin -
max () Xnmax -
mode () r, PX=x;)>PX=u;)1#] |-
NthMoment (N) oy = E[(X — p)V] -
prob(val) P(X = val) Number
CDF (val) Fx(x = val) Number
QF (val) Fil(z = val) Number
probabilityEQ(val) | P(X = val) Number
probabilityNE(val) | P(X # val) Number
probabilityLT(val) | P(X < val) Number
probabilityLE(val) | P(X < val) Number
probabilityGT(val) | P(X > val) Number
probabilityGE(val) | P(X > val) Number

Mivoxog 2: Aiabéotpeg pébodol Twv Uncertain ovILXELUEVWY VIOl TNV EEOYWYY TTANQO-
poplog mepl BopVouv xow afefBodTrTog.

Av xat ot kevTpIkeC portec Sev opidovv TAvTa HovVadIKA KATTOL KATAVOUN
nBavotnTag [5], 0 TPOYPAUMATIOTAC MITOPEL VA ATTOKTHOEL £VA ONUAVTIKO O-
YKo mmAnpodoptwv vrodoyilovtag pia oepd amd avteg (. 1: péon Tun,
2: Saxvpavon, 3: Aofotnta (acvppetpia), 4: KVPTOTNTA, K.AT.). T'a ma-
pAdeLyua, 1 XPNHoT AUTWV TwV TTANPODOPLOV Ba UITOPOVCE Va TTAPEXEL CUVE-
TEL OTIC ATTOPACELS yia TN Slathnpnon ThE otabepoTnTaC O€ £va AUTOUATO
oVoTNUA EAEYYOUL.

2.6 Teheotég XOYXPLOYG

TupumAnpwpatika pe tn HEBodo u_map (), n amapaitntn AelTovpykoOTnTA
70U opelAet va €xeL n BIBALOONKN WOTE VA TTPOTOUOLWVEL TOUC APLBUNTIKOUE
TUTTOUG SeS0oUEVWY, VAL Ol TEAEOTEC OUYKPLONG: <, <, =, #, >, >. Alakpi-
voupe 8U0 katnyopleg ovykpioewv: (i) ouykptomn evog Uncertain aVTIKELUE-
VOU Me €va oTtabepd aptBud, kat (ii) cuykplon 8Uo Uncertain AVTIKEUEVWV.

‘'Ocov apopd TNV TPWOTN MEPIMTWON: AV CUYKPIVOUUE TNV péon Tiun: E[X]
--- éva HOvo Selypa IOV TTPOEPYETAL ATTO TNV KATAVOUT, ME MIA aptOunTIkn
otabepd value: E[X] § value, TO AMOTEAECOUA UITOPE(VA glval TTapamtAa-
VNTIKO, TToL 0dnyel o€ Yevdwg BeTika amoteAéopata [3]. AvtiBetwe, oTnV
VAOTIO(NOT HAC OUYKPIVOUME TO TUAMA TN TBavotntac Tov Uncertain a-

29

VTIKELMEVOL TIOV BplokeTal oTa aplotepd 1 ota 8e€td ¢ Tiung value. To
oxfua 3 ontikorotel autr ouykplon: Uncertain(X) < 8 = P(X < 8).

Probability of the Uncertain object: X being less than 8

Bl P(X=<8)

20.15 | X
: n
(O]
[a)
>
£0.10 1
o]
-g -
°
a I

Qosm

0.00 5 10 15 20

Distribution Support

Iyqea 3: H mbavétnro evédg Uncertain avtixetpévouv va givor X < value givot To
abpotopa Twv THUVOTATWY TWY OTNADY TwY 0Tolwy To Yédo eivar < value. Xe ot
NV TEPITTWOY, 1 TLULY] AVATAPLOTATAL UE TO GXOVPO TPEOLYO YPWUO.

‘Ocov agpopd TN mepinTtwon oUykplong SVo Uncertain AvTIKEIUEVWYV:

1. ot TEAEOTEG = KAl # VAoTIolOUVTAL ME TN Xprion Tou Kolmogorov-Smirnov
EAEYYOU, EVW

2. yld TOUG OL TEAEOTEC <, <, >, > mipoTelvoupe dvo uebodoug:

(@') Ztoxaoctkn Kuprapyia xat

(B") Awadopa Tuxainwv MstafAntwv.

0 xpnotng umopsi va Staré€sl tn uébodo mov emibupel eite Katd TNV apyLko-
7t0(NoN TV METABANTWV £(TE KATA TNV EKTEAEOT).

Mébfodog 1: Xtoyxoaotinn Kvprapyio
‘Onw¢ avadpépovpe otnv Yrosvotnta 2.3.1, n Zroxaotikn Kvplapyio ov-

ykpivel TiI¢ ABpoloTikéc ZuvapTnoel¢ Katavoung Twv Tuxainv HetaBAntov.
Y10 TUNMA Kwdika mapovatalovpe Tov Pevdokwdika vAomoinong tc:

30

© ® a9 U A W N e

O I

def stochastic_dominance_le(X,Y):
for i in joint_distribution_support(X,Y):
if X.CDF(i) >= Y.CDF(i):

continue
else:

return False
return True

Listing 5: Weudoxwdixag yia Ty vAoToinon g XLtoyootixig Kvuplopylog yio tov
Teleot <.

Mébfodog 2: Arapopd Tuyoiwy peTafANTOY

H péBodoc ovykplong Atpopd Svo petafAnTv elvat lcoSuvaun Ue ™ ov-
Ykplom €vo¢ Uncertain avTiKeIUEVOL HE TO 0Tabepo aptBuod 0. H 18éa micw
amo v vAomoinon nyddet amd TNy avTieTabeTikn (S10TNTA TWV CUYKPLTL-
KoV TeEAectwv X > Y = X — Y > 0. 10 TUNMA KOS KA 6 TTapovatdloupe
Peudokwdika yla Tnv vAomoinon tne.

def difference_rv_gt(X: Uncertain, Y: Uncertain):
Z : Uncertain = X-Y
max_threshold = max(X.threshold, Y.threshold)
return Z.probabilityGT(0) > max_threshold

Listing 6: YAomoinon g pebddov Awxpopa toyoliwy uetofSAntdy

3 Iletpopotin aELoAOYTOT

TNV evoTNnTa 2 Tapouctdoape tnv vAomoinon g BiBAobrxng UPROP,
aKOAOUBWVTAC CUYKEKPIUEVEG OXESIATTIKEG APXEC. € AUTY TNV UITOEVOTNTA
a&lohoyoupe melpapatikd tn BtBAodnkn o€ epapuoyEc. Apxikd tapovotd-
{OUE TIG aTmapalTnTEG TANPOPOPIESG KAL METPLKES YIA TNV AELOAGYN O, TTOV d-
TALTE(TAL VLA TNV KATAVOTOT TOU UTTOAOUTOU KEPAAAIOU. XTN CUVEXELD TTPAY-
MATOTOLOVE TIELPANATA OTOUG UTTEPDOPTWHEVOUS ApLOUNTIKOUC KAl CLUYKPL-
TIKOUC TEAEOTEC. ETEKTEIVOUE TIC SOKIMEC Hag pe SV0 EPUAPUOYEC TTOU XELP(-
dovTal MEWPAUATIKEG METPNOELG: (1) exTiUnon TaxVTNTAG ATTO UETPNOELS OU-
vretaypévwv GPS (ue 00pupo) kat (ii) £vag aiydptBuog avixvevong nxov amd
XEpokpotnua. Téhog, ouykpivouue tTnv BitAtodnkn UPROP e state-of-the-
art TAatdOpueC Kat epyaleia kat faduoroyovue tnv anodoon Tn¢.

31

3.1 Kavoviromownpévy ardotacy Wasserstein

TNy evotnta 2.3 mtapovotalovpe tnv amootacn Wasserstein, 1 omola
elvat pa puébodog ya v a&loAdynon ¢ amdkAlong petagy dvo moAudid-
OTATWV KATAVOUWYV. € AUTH TNV UIOEVOTNTA, TAPOVCIA{OUME IO EVAA-
AQKTIKT xpnon Tt andotaong Wasserstein yia ovykpion 800 gpyalsiwv
(frameworks/platforms) mov €xouv €€060 xatavouég mBavotnTwy. Onwg
avapépovpe otnv Yroevotnta 2.3.3, 0tav violoyiovpe tnv amdéotaon Wy
ueta&L SVo KaATAVOUWYV, VTTOAOY((OUME TNV TTEPLOXN METAEY TNG KAUTTUANG
Twv CDF. 'ET0l, 1 UTTOAOYIOMEVT TIUH OUVSEETAL AUeTa UE TO TTES(0 OpLlopoV
Rx xdBe xatavounc. Ztnv nepintwon pac, emBupoUpE va £XOUUE ULa eviaia
METPLKN YlA TO CUVOAO TwV SoKIMwV Hag. T'a va yivel auto, TPETEL va aro-
OUVOECTOUE TNV ArtdoTaon aTto To Ted(0 oplopov. Eouévwe, EL0AYOUE TNV
KavovikoTomuévn andotaon Wasserstein:

Definition 3.1 H xavovikomoinuévn amootacon Wasserstein vt o Aoyo¢ §vo
W, ammootdoswy

wwp (Fu, Frp) e |Falw) - Frf(z)| da 50
Wi (Fo Fry) Jo |[Fol) = Frg(a)| do

H NWD naipvel TipeEg otnyv meploxn: [0, 00) Ue TIMEG TTLo KOovTd 0To 0 va
onuaivel 0t n F, €xet uikpotepn amootaon Wasserstein e v Fre amo 0Tt
n Fy, éxet ue v Frep. HNWD pag 8ivetl ™ Suvatdtnta va cuykpivoups §vo
OVOTNUATA TTOU £X0UV £€080 KaTavouég miBavotntwy. 'ETot GUYKPIVOUUE TNV
€€060 ™ ¢ UPROP pe N TIUn T €€06600 0NV MEPIITWON TNC XPNONC EVOG
Selypatoc 1 pe ommolodnToTeE AAAO VO THUA.

e auTth ™ SITAWUATIKY, XPNOLMOTIOOUUE THV avTicTPOodn KAvoviKo-
mompévn andéotaon Wasserstein (NWD ') yia va vmoSnAwoovpe to kép-
8o¢ oty akpiBeta Twv vtodoylopwv ¢ BLBA0BNKNG UPROP, évavtt Twv v-
TIOAOYIOM®V e €va Selypua, XpNOILOTTOLOVTAS TNV Tpocopolwon Monte Carlo
¢ TNV Katavoun avagopdc. EmiAé€aue tnv mpooouoiwor Monte Carlo 816-
TL armoTeAel TNV kabiepwuévn kat Kovd amodsktn wEBodo yia tn tpowbnon
Tou BopUPou amtd TV elcodo otnV €€060. AUTO OYXVEL TOOO TNV EPEVVNTIKN
KowodTtnTa 600 Kat ot Brounxavia.

3.2 AptOuynrixotl Teleotég

I'a va eAéyEoupe TOug aplOunTIkoU TEAEOTEG EKTEAECAME ULA OEIPA A-
AWV UTTOAOY oMWV HeTAEV TuxaiwV LETABANTWV TTOL AVTUTPOCWIEVOUV GU-
YKEKPLUEVEC KaTavopéG. Ta mapddstypa tpoodETovps, apatpovps, TOA-
AanAactadovpe kat Stapovpe tig Svo Tuxaieg petafAntég: X; ~ N (10,1)

32

Kat Xo ~ U(0.5,1.0) xpnotpomotwvtag tnv BAodnkn UPROP. 1n ouvéxela
EKTEAOVME TOVG (81ou¢ LUTTOAOYIOHOUE e TNV TTpocopoiwon Monte Carlo xat
vTToAOY({OVME TNV KAVOVIKOTIONUEVN artdoTacn Wasserstein peta&v touc.

Operation: +

210 = &~ Norm(1,0.01) + Norm(1,0.1)
ﬁ X #- Norm(-1000,100) + Uniform(500,1500)
5 ’\ 4— Norm(10,1) + Uniform(0.5,1.0)
H 0.8 ‘\\ Poisson(10,1) + Uniform(0.5,0.7)
= —— Rayleigh + Uniform(0.5, 1.0)
8
506 L\
g A
3 LN
c N\
3 \
20.4
a
SN

50.2 -
8 =
e,
0.0

10! 102 103

Number of bins

() Kavovixomounuévy améotaon Wasserstein tov
tedeoTh mpdoheong (+).

Operation: *

21.50
@~ Norm(0.5,1) * Norm(0.1,1)
& Norm(-1000,100) * Uniform(-500,1500)
1.25 4~ Norm(10,1) * Uniform(0.5,1.0)
Poisson(10,1) * Uniform(0.5,0.7)
1.00 i\ —— Rayleigh * Uniform(0.5, 1.0)

£0.75] .\

o

N

ul
(32

——
10! 102 103

Number of bins

©
o
S

Normalized Wasserstein distance (lower is bettet
o
%
o
»
W

() Kavovixomownuévn andotaoy Wasserstein tov
TEAEGTH TOAGTAAGLOGROD (%),

Operation: -

% 1.0 « #— Norm(0.5,1) - Norm(0.1,1)

ﬁ i\ #- Norm(-1000,100) - Uniform(-500,1500)
u::) 4— Norm(10,1) - Uniform(0.5,1.0)

H 0.8 N Poisson(10,1) - Uniform(0.5,0.7)

2 —— Rayleigh - Uniform(0.5, 1.0)

g

e

g 0.67

: A\

3

%0.4 \\\

= \’2\

$0.2 S

@ a Ne.

N B

© S

£ \'I\ﬁ*\gh.
£0.0

10! 102 103

Number of bins
(@) Koavovixomounuévn améotaon Wasserstein tov
teleot agaipeong ().

Operation: /

&~ Norm(0.5,0.1) / Norm(10,0.1)
#- Norm(10,1) / Uniform(0.5,1.0)

g
o
»

4— Poisson(10,1) / Uniform(0.5,0.7)
Rayleigh / Uniform(0.5, 1.0)

g

§0.8f «

206 s

%0.4 SNAN

4 ¥

g N

502 Ny

3 P

£ ——a g

£0.0 —1
10T 10? 103

Number of bins

(8) Kavovixomoiunuévn améotaon Wasserstein tov
tedeotn Staipeane (/).

Yxfua &: Avto to oyfua Seiyvel Ty xavovixoronuévn amootoon Wasserstein (dEovag
y) peTaED TNg xotavopng £680L g BLBALoBnng UPROP oL Tov DTOAOYLGROD UE TN
XoNon evég delypatog. Metpdpe owth Ty andéatoon ord Ty TPooooiwoy Monte
Carlo. XopnAdtepn TLuy onuoivel xahdtepy amodoor. Tapoatnpodue 6Tl 660 peyohd-
Tep0g lvar 0 apLiuds TwyY oTNALY, T600 UEYXADTEEY lvart 1 axp{BeLtor LTTOAOYLOUWY.

H Ewxova 4 sppaviletl ontikonomuéva ta arnoteAéopata. To eAaytoto
k£pSo¢ axpifelag os ox£on pe Tov VITOAOYLOUS TOU SelypaTtoc cwpaTiSiwy,
givat 1,03x ywa 8 othAec (bins) kat To To HEYLOTO £ivan 44, 62x yia 1024

otnAec (bins).

3.3 ZXvyxprtixol TeAeotég

To §£UTEPO ONUAVTIKO 0pOGT MO TTOU TIPETTEL va TTETUXEL T BIBAL00 KN UPROP
glval va TapExeL 0TOUE TTPOYPAMMATIOTEC TN duvatoTnTa va e€Adyouv TAnpo-
dopleg xat va BETovv EpwTNOEIC OXETIKA He TOV BOpuPo Uncertain avTIKEL-

UEVWV. AUTO ETIITPETEL 0TO XPNOTN VA AAPEL (LA TEKUNPLOUEVN amdpaon U
Bdon o B6puPo Tou cuETANATOC. ‘OTTWE AVADEPOVUE OTNY EVOTNTA 2.6, U-
AOTIOLOVUE TOV TEAECTY 10OTNTAC(=) Kat aviooTtnTaC (# N !'=) XPNOLLOTTOLW-
vtag ™ HéBoSo Kolmogorov-Smirnov [6]. Tia TOUG UTOAOLTTOUG TEAEOTEG
TAPEXOVE OTOV TTPOYPAMMATIOTH SV0 ueBOSouc amd TIC oTmoleg umopsi va &-
TUAEEEL:

D Ztoyxactixn xuprapyia Kat
Q@ Awx@opa tuxaiwv usTafAnTOV.
I'a va 8oKIHACOoUUE EKTEVWC KABe HEBOBO, TTapExoupe €va cUVOAO ATtd
Tuxaile¢ MeTaBANTEC TOU AVTITIPOCWITEVOUV CUYKEKPIUEVEC KATAVOUEGS, TIC

ormole¢ ouykpivoups ueTagy Toug. IMapovotdlovpe To ypddnua TwvV ocuvap-
™oswv otnv Ewkdva 5.

[X>Y | X>Y [X==VY [X#4Y |X<Y | XY

Testcase 1 | False *True* | True False False *True*
Testcase 2 | False False False True True True
Testcase 3 | False False False True True True
Testcase 4 | False False False True False False
Testcase b | False False False True *False* | *False*
Testcase 6 | False False False True False False

Mivaxog 3: AmoteAéopoto TEAEOTEY LG HPOLG YL Ta testcases 1-6, YONOLUOTOLHOYTAG
™ pébodo Ataxpopa Tuyoiwy MetafAntdy. Ot Tipég UE TOV QOTEPLOXO * ONUELLYVOLY
TO SLoPOPETLXO OTtoTEAEGOL UE TNV LEBOSoL Xtoyaotixrng Kuptapylog.

[X>Y [X>Y [X==Y [X#Y [X<V [X<Y

Testcase 1 | False *False* | True False False *False*
Testcase 2 | False False False True True True
Testcase 3 | False False False True True True
Testcase 4 | False False False True False False
Testcase b | False False False True *True* | *True*
Testcase 6 | False False False True False False

Mivoaxog 4: AmoteAéopoto TEAETTOY VTG 6POLS Yo Tow testcases 1-6, yENOLULOTIOLD-
vtog ™ pébodo Xroyaotiny Kvuptopyio. Ou Tipég Le Tov aatepiono * onuUeLHVOLY TO
Stopopetikd amotéreopa pe v pebddov Awxpopa Tuyaiwy MetaBiqtdy.

34

L0.4 i X o4 X 041 fi | —X
Y Il Y il il e Y
: HMM : JW. i :

g 0.2 i ‘ i 0.2 ‘HHHMHH“ HHHHHM § 0.2 R DR

; Il Sl AR | “ iR
O'0'—2.5 00 25 0.0 5 10 0.075 5 10

Distribution Support

(o) PDF - Testcase 1

Distribution Support

(3) PDF - Testcase 2

Distribution Support

(Y) PDF - Testcase 3

I
,0.2 X .0.4 X >0'2 X dik,
Y Y| of Y | g
C o m e
0.1 202 50.1—di LN
8 g g i]
(R
W
0.0 0.0 L

Distribution Support

(0’) PDF - Testcase 4

Distribution Support

() PDF - Testcase 5

Distribution Support

(¢’) PDF - Testcase 6

Iynro 5: Probability Density Functions of two random variables used to test conditional
operators and infer a partial order.

3.4 Ymoloyiopog ToxdTTOG 0etd petpnostg GPS pe 00-
ovfo

I'a va 8ei€ovpe ™ SuvatdTnTa Yprnong Tov Uncertain TUITOL YL VITOAO-
YIOMOUC, UAOTTOLOVE HIa EHAPUOYN XPNOLHoTTolwvTag To ITaykoouio ZVotn-
pa Evtomiopot O®gonc (GPS). To mapddetypa oto TUAMaA kKwdika 1 pac mapa-
KIVE(VA VAOTIOI)OOULE ULA EPAPHOYT] TTOU UTTOAOYI{EL TNV TAYXVTNTA XPNOIHO-
rolnvtag afépateg petpnoelg GPS and to smartphone touv xpnotn. Eotia-
{ovpe otov TopEa Tov GPS emetdn ot epapuoyec GPS sivat amA£c oTny Kata-
vON 0T, EVPEWC XPNOLUOTIOLOVMEVES OTA KIVNTA Kt CUVABWE avTineTwitiovv
BopuBo otic peTpnoel. Ta v ARYPn TwV HETPHOEWV XPNOILOTOOALE -
va Kvnto TNAEPwvo kat Tnv epapuoyn Phyphox [7] T'a Tov utoAoytopo tng
TaVTNTAC XPNOIMOTTOOVUE TNV uEBodo Haversine mov vitoAoyilsl Tnv amo-
otaon 8vo Twv ovvteTayusvwv GPS:

a = sin® (A;b> + cospy - cospy - sin’ (A;\) (3.2)
c =2 -arctan2(v/a, /(1 — a)) (3.3)
D=R-c (3.4)

35

Metatpémovtog Tig ouvTeETOYEVEG 65 Uncertain

I'a va VAOTTOINCOUVUE TNV £PAPHUOYT UTTOAOYIOMOU TAXVTNTAC TPETEL vV
uetatpéPouvpe ta Sedopéva pag o tUmo Uncertain. To API Twv KIvnTwV
™Aspwvwy (Android kat iPhone) tapéxet yla kdbe pétpnon v optldvtia
akpifeta g B€onc (o pétpa). Me Bdon avtd, SelyUATOAEUTTOVNE Hia SLo-
Sidotatn I'kaovotavny katavour 0mwg dsiyvoupe otnv Eikova 6a’ kat pia xa-
tavoun Rayleigh onwc¢ Selxvoupe otnv Ewcdva 6.

3D Heatmap of sampled Coordinates (Lat,Lon) 3D Heatmap of sampled Coordinates (Lat,Lon)

fousnbasg saidwes 8T
s o N
1o

fousnbai saldwes

4072752
2.98518

40.72740

S 0got 40.72745
22.08525 30.72756 0

(o 2298524
o

%
(2
%,
"y

", 22.98530
Y 22.98535
2298540 4072775

22.98526

22.98528 40.72762

(o) Me Bdon pa 'xoovotovy xotovout. (8) Me Bdon wa Rayleigh xotovou.

Tyqua 6: Aetypotorndio YOO oo TLG CUVTETAYUEVES LETENOYG WOTE Vo TPoabéaov-
UE TEYVNTO 06pVLPO OTLE LETPNOELS LOG.

Performance Gain
Test id | Min | Mean | Max
Test 01 | 2.07 | 2.71 3.91
Test 02 | 1.77 | 2.34 | 5.04
Test 03 | 17.01 | 34.73 | 52.79
Test 04 | 2.0 7.79 44 .41
Test 05 | 4.24 | 15.08 | 79.06
Test 06 | 2.36 | 5.57 | 29.06

Mivaxoag 5: Avtdg o mivaxog delyvel To x€pdog g PLpAtodxng UPROP 6cov oupopd
™V axpifelor LTTOAOYLOUWY GE OYEDT UE TOV LTIOAOYLOUS UOVO UE TLG TLUES TTOU UETOM-
OOLULE.

ITapovotalovpe Ta AOTEAECHATA AITO800MC TOV MOVTEAOL pag oTov IIi-
vaka 5. Katd péoo dpo €xovps 10x k€pSog amddoong os ox€omn e TOV UTTO-

36

AOYIOMO HOVO HE TIC TIMEC TWV METPNOEWY. AUTO TO KEPSOC amtddoong Ku-
paiveTatl amo 2x £w¢ 34x 0€ CUYKEKPIHEVES Soxipég. H afloddynon tng
artodoong Tou MOVTEAOU YiveTal HE BAOT TNV KAVOVIKOTONUEVY ATOCTACH
Wasserstein.

AUTOGLGYETLON KOl AVUTAPAGTOCY] UVNUNG

Znv mAsoPndld TwV VITOAOYIOUWY, N MEON TIUN TwV Uncertain avTl-
KEMEVWV CUYKAIVEL UE TNV TIUN TWV VTTOAOYIOUWYV UE €va Selypa. ExToc amo
NV eMITUXNUEVT oUYKALON, BAEmtoupe OTL 1 BtBAoBnkn UPROP katadépvel
va tpowBnoet to B0pufo elgddov otnv €€680, KATL TOL Patvetat otnV Eiko-
va 7. H enipaon tov BopvPou sivat spdpavic oto anotédsopa. H péylotn
KAt EAAYLOTN TN TTOAAEC POPEC aTtoKAlvoUY KaTd 50% amd tn uéon Tiun. H
BiBA0OnKN UPROP umopsl va Bondnost Tov mpoypaupatioTs) va mpoBAPet
QUTEC TIC aKpaleC TIMEC KAl va TTPAEEL avaAOywC.

—— Uncertain mean — Uncertain mean

—— Particle | — Particle R
Uncertain max - Uncertain max {45
Uncertain min Uncertain min

“I' — Uncertain mean
| — Particle

) Uncertain max
Uncertain min

R A N

B e e o A AN S

Rt TN
W NTININ ST

(o) Extipunon toyxdtnrog pe 06pv- (B) Extipnon toxdtnrag pe 66pv- (y) Extipnon toydmnrog pe 66pv-
Bo - Test 01 Bo - Test 02 Bo - Test 03

—— Uncertain mean
—— Particle
Uncertain max
Uncertain min

— Uncertain mean @ —— Uncertain mean |

— Particle | — Particle A
Uncertain max Uncertain max
Uncertain min E Uncertain min

(8") Extipnon toxdtnroag pe 06pv- () Extiunon toydtnrag ue 06pv- () Extiunon toayxdmrog pe 06pv-
Bo - Test 04 o - Test 05 Bo - Test 06

Iyquo 7: Extiunon Toydnrog - Z0yxpton LetaEd g xpnong Uncertain avTixelyuévwy
%o LTOAOYLOUO UE Evar delypa. Ameixovi{ovue TNy UEON TLUY, TO EAAYLOTO XAL TO
uéytoto xabe pebodov.

Y€ UEPIKEG TEPUTTWOELCG, BAETTOVE TIWG TO HOVTEAO ATTOTUYYXAVEL VA UITTO-
AOY(OEL TNV TTPpAYUATIKN MEOT) TIUT TNG TAXVTNTAC. I1lo oUYKEKPIUEVA, TTapa-
TNPOVUE TTWC OG0 TLO KOVTA 0-TO 0 £LVAL 1) UTTOAOYIOHEVN TIHN, TOOO HEYA-
AUtepn sivar n avakpifsia Tov povréAov pag. H ovumnepidpopd avth sivat
WSaitepa epdpavng otig Etkoveg 4.9a, 02 4.9b, 04 4.9d kat 06 4.9f.

AnoSiSovue avtn T ovumepidpopd otn OAvoTIKA dvon Twv Uncertain
AVTIKEIMEVWY, KAl LOVO OE OPLOUEVEG CUVONKEC KAl HETACYNUATIOMOVC/TU-
vapthoelg: @ to medio oplopov TnG Uncertain HeTaBANTNC TipEmel va PBpl-
OKETAL EKATEPWOEY TOL 0, (2) | CUVAPTNOT UETACYNMUATIOMOV TIPETEL VA Elval

37

dptia, . f(z) = 22, xat @) TPETMEL va EAEYYOUME YIA AUTOOUOXETION HETA-
BANTwv. Ac voBéoovue €va apadstyua dmou £xovue To Selypa x = 0 Kat
To avtioTolyo Uncertain avTIKE(UEVO, IO KAVOVIKY] KATAVOUN ME AOPLOTN
Swaomopd, 1 = 0 kat n ovvdptnon ueTacyNUATiopoL eivatn f(x) = z2. E-
av (KavoItolovvTal Ol TTAPATTAV® CUVONKEG, TOTE TO TTapayouevo Uncertain
AVTIKE(UEVO TTIPOKVITTEL E APVNTIKN AOEOTNTA EVW 1] TIUN TTOV AVAAOYE(0TO
éva Sslypa stvat tepimouv 0. Asiyvouus autny Tn ovumnepidpopd otnv Ewkdva 8

LITTTIT
B i

(o) Uncertain petofAnti etoédov (§) Anotéeopo pe Avtoouoyétt- (Y) Amotéheopo pue AVTOGUGYETL-
uj = Uncertain(X ~ N(0,1)) xow on ON. on OFF.
delypo etaddov p; = 0.

Tyqua 8: Avdhvon xotavouns Twy Uncertain xotovouwy e Avtoovoyétion ON xat
OFF. Me v awtoovoyétion ON: oty Ewdéva 8, us ~ (x?). Me v awtoovoyétion
OFF: oty Ewdéva 8Y us ~ Laplace(p = 0,0 = 1). Idavixd Oo émpeme vo tow:
mean(uz) & py 0 xA0e TEPITTTWON.

3.5 Movtélo eEqpOpwong Brown-Ham

Y& autd To melpapa vtoAoyilovpe TNV TAOT KOG £VOC KPAUAATOC ME-
TAAAWV XPNOILOTTOLOVTAC TO MOVTEAO e€dpBpwonc Brown-Ham [8, 9]. Ot
Anderson et al. [8] mapéyouv UmEPIKA VPN TIL®V Yid TIE €L0OS0UC TOU
MOVTEAOU METATOTMIONG. YTTOBETOUUE OTL Ol €(0080L TOU HOVTEAOU AKOAOU-
BoUV Hia OHOLOMOPdY KATAVOUN 08 AUTEC TIC TTEPLoXEC. H e€lowon 4.5.1 ta-
péxeL TNV €€l0wOT VITOAOYIOMOV TNE TAONE KOTNG TOUC KPAMATOC. ApyIKd,
METATPETTOVME OAEC TIC METAPBANTEC TTOU LTTdpXovv oTnV e€lowon 4.5.1 og
Uncertain avTIKE(MEVA KAL OTT] CUVEXELA EKTEAOVUE TOV VITOAOYIOMO. Xpn-
OlHOTTOLOVE TNV TTpooopoiwon Monte Carlo w¢ uébodo avadopdc.

YtV Ewova 9 mapatnpovue 0TL 1 adoTacn ival avtioTpodw avaro-
Y1 HE TOoV aptBpd Twv otNA®V (000 YaUnAdTEPO TO00 KaAUTEPO). To kEPSoC
axpifetag ¢ BAoBnKng UPROP xupaivetat amo 2x -- ue uéyebog avana-
pacTaonc 64, £wg 9, 4x -- ue uéyeboc avamapdotaong 1024, o cUyKpLom He
TOV UTTOAOYIO MO Xprjotuorotwvag va Seiyua. EQv ekTeAé00VUE TN OUYKPLTL-
K1 a&loAdynon pe ta Uncertain avtikeiyeva va €xovv péyeboc avamapota-
oNG amo 8 £w¢ 32, TO MOVTEAO MAC EXEL WG KAl 2X XELPOTEPN akpiBela.

38

Normalized Wasserstein Distance vs Number of bins

N
w

e —e— 8 bins
j:._; 16 bins
2 32 bins
©2.0 —e— 64 bins
5 128 bins
_% —e— 256 bins
@ —e— 512 bins
1.5
g —e— 1024 bins
2
£
2
£1.0
7
©
=
o
8
50.5 S
£
(=]
=2
e = 2
0.0

10! 102 10°
Number of bins

Iyqra 9: H Kavovixoroinuévn améotooy Wasserstein petaEd g bAomoinong pe ™y
BipAobxn UPROP xon tov vToAoYLopd evog delypotog, oto Ilelpapo Brown-Ham.
Mapotnpodpe Ttwg N amdotooy eivol avTloTEOQWS ovEAOYN 6ToV 0PLOKd TwY GTNADY
(bins) mov ypnotpomotobvtal. (660 XOUNAGTEPO TGO ROADTEPO).

4 Yovodn xou peAlovTixny] €psuva

4.1 MeAhovtixy "Epsvva

H BiBA061Kxn UPROP avaiauBavetl Tnv mpdkAnon va TAALCIWOEL TNV a-
BeBatdotnTa kat to 00puBo HETPNOEWYV XPNTIUOTTOLWVTAC MLIA AVATIAPACTACT
KATAVOUNG 0T MVAUNG. O oXeSLaoUOC TTAPOUOLWY CUCTNUATWY, ATTOTEAEL
ULa TEPACTLA TTPOKAN O TOOO ATTd TNV ATTOYT] HABNUATIKWV YVOOEWVY 000 Kl
o™ Slaxelplon TOV VITOAOYIOTIKOU KOG TOC EKTEAEONC. TIPOTEIVOUUE HMEPIKEC
evSLaPEPOoVoeC SUVATOTNTEC TTOV MITOPE(KAVEIC va epguvioeL kat n BLBALo01-
KT MAC MITOPE(va XPNOUEVOEL wC BAom Yia auTr] TNV £pgvva, KaBwe mapeyet
™ Suvatotnta Staxelpnong xat tadoong Tov BpuPou elcodou, atnv €€0do.

ATOTEAEGLATIXOTNTO GTOVG VTTOAOYLGLOVG

'Onw¢ ou{nTape v ouvtopia oty Evomta 4.2, Katd TOV UTTOAOYLOMO E
™ BBAoONkn UPROP, n emthoyn tov aptBuov twv otnAwv (bins) mov avtt-
TIPOCWTEVOLVY £Va AVTIKE(MEVO Uncertain EVOWUATWVEL TOV KAACIKO OUU-
BiBacud peta&y Taxvtntag kat akpifsiag. H emidoyn Tov cwotov aptBuov
bins elvat e€alpetikd onuavTikn: oA VPNAAGC Kat o TUTTOC Uncertain Oa &i-
VAt TOAD apyog YIa TTPAKTIKY XPNOT]. TTOAU XaunAog kat Oa sivat oAy avakpt-

39

BN¢ yla tnv emiAvon mpoBAnudtwy. O TUo¢ Uncertain aiyovpa av€dvel to
UTTOAOYIOTIKO KOO TOC O CUYKPLOT UVTTOAOYIOMOUC £VO¢ Selypatoc. H svpeon
TPOTTWV MElWwoNG N eEAAEPNC TWV TTEPITTWV UVTTOAOYIOUWYV Yl T BEATIOTO-
mto(non xpovou eKTEAEONG, Ba NTAV TO ETOUEVO ONUAVTIKO BMa oTNV XpNon
™C BiPAodnkNC.

EbVpeom ocvoyétiong petakd petofAntoyv

Tty Ymoevotnta 4.3.5, avaAUOUNE MEPIKOVC ATTO TOUG AOYOUC YLd TOUC
ormoloug N EVPECT AVTOCVOYXETIONG elval onuavTtikn. H autoovoyétion amo-
TeAel £va epyaAelo TO 07T0{0 HITOPE(VA ETTNPEATEL TN OXEon HeETAEV atTiov kat
attatov. Ao Tn AAAN 1 €UPEOT] TNG ELCAYEL UTTOAOYLOTIKO KOOTOC. MIia TuTtt-
KN Ao o€ auTo To TTPOBANUA HIToPEl va €lval n TapOTPUVON TOU XPHOTH va
emavarntpoodlopilsl pnTd TIC OXE0EIC TV Uncertain avTIKE(HEVWV avd Ta-
KTA Staotnpata. Auto OpwC Ba Hag TTapETPETE amd TO OXESIACTIKO 0TOXO
TOU UIVIHOALOHOD.

TQOAPLO LETOTOTLONG UETA OTTO TOAEELG

TéAog, oto Section 4.7 mapovctd{ovpe To OPAAUA METATOTLONC TTOV TTPO-
KaAsltat amo Tn Xpnon Twv ouvSvaouwy cuvapthoswyv NTipdk (lotoypau-
HaTwV) yta TN petadoon tov BopuPBou otic pdéeic. H extéAeon nmpdéewv ue
TIC S1apeoeg TIMEG kABe bin, €xel w¢ amoTtéAeoua (Uia "UETATONION TTPOG TA
8e€1d" TV aITOTEAECUATWY APOV KATA TNV TAPAYWYH TOU ATTOTEAETUATOC
ayvoouue oplopéva Selypata. AuTr 1 oUMITEPIPOPA NTAV AVAUEVOUEVN K-
B¢ elvatl Tapdywyo Twv oxedaoTIK®WV MAOYWV Hag. EmAéEaue pntd va
TNV KPATNOOUVUE 0TO CUOTNMUA Hag yiati Bewpovipe 0TL To kEPSOC AmTAdTNTAC
TWV VTTOAOYIOM®WV avTlotabuilel Tnv anwAsla akpifetag, n omola pmwopel va
avTILeTWTIOTEL He avénon Twv bins. Qotdoo, Ba ntav evélapEpov av kata-
DEPOVUE VA KATATTOAEUNCOVUE AUTO TO OPAAUA HETATOTIONC, AVAAVOVTAG
Ta TAATN TV bins Twv Tuxalwyv HeETABANTWOV €1l0080V kat peTatomilovtag
aploTEPA TO TTAPAYOUEVO ATTOTEAETUA.

4.2 Xodvodr

[Tapéxovtac avemapkn epyaieia kat Sopég Sedouévwy, ol YAWOOTES TTPO-
YPAUMATIOMOU £VOApPUVOUV TOUC TIPOYPAMMUATIOTEG VA AyVoroouy To BOpu-
Bo ota Sedouéva kat ot uTTAPXOVOEC SOUEC £lTE SV Elval APKETA EKPPACTIKEC
€(Te amaITovVv ONUAVTIKO XPOVO Yid VAV TTIPOYPAUUATIOTY] VA TIC XPNOLUO-
nomoet aveta xat aroteAsopatikd. H BiBAodnkn UPROP cuvelohEpsL 0N

40

AVTILETOILON auToV Tou TTpoANatoC. Yrootnpilet T petadoon tov Bopv-
Bouv 0TOUC LVTTOAOYIOUOUE EVW TTAPAAANAA TIPOTPEPEL EVKOAN KAl EVXPNOTN
Slaxelpton Tov xwpic LVITEPPOAIKEC ATTALTNHOELG ATIO TOV XPNHOTH.

Av xat auTtn n tpocgyylon StacPaiilst 0tL n pocPaocn oto 86puPo yive-
TAL KE £VA EVYPNOTO KAl UIVIHAALTTIKO TPOTTO, UITAPYOUV KAl MELOVEKTHMATA.
Katd tov urtoAoytopo pe) BipAodnkn UPROP, n emttdoyr| Tou peyéBoug ava-
T0PAoTAoNG TwV Uncertain AVTIKEIMEVWV EVOWUATOVEL TOV KAAOIKO OU-
BiBacuo petalv tayvtntag kat akpifetac. H emtAoyn Tov cwoTtov peyeboug
elvat e€atpeTikd oNUAvVTIKN: TTOAY LPNAS Kat n xpnon the BtBAOkNe Oa &i-
VAl TTOAU apy"| yld TTPAKTIKA XPNon, TTOAD xaunAn xat 8 Ba vtdpyetl apkeTh
axpiBela otoug VTTOAOYIGUOUC.

41

42

Chapter 1

Introduction

The advance of technology is based on
making it fit in so that you don’t really even
notice it, so it’s part of everyday life.

—Bill Gates

Uncertainty and risk play a significant role in our everyday life. A
degree of uncertainty accompanies everyday decisions and judgements
followed by a risk assessment for the estimation of the probable causes.
We are so accustomed to it that we normally do not even recognize it
explicitly. The ability of computing systems to store and process data
has continuously improved, but the ability of programs to cope with and
reason about uncertainty has not.

In the past, we designed control systems as isolated and closed systems
under the control of one manufacturer and/or closed and protected en-
vironments. With the rise of usage of the Internet of Things, self-driving
cars and automation in every aspect of our lives, we are increasingly
dependent on accurate sensor readings. Thus, the ability of computer
systems has to keep up with the increasing flow of uncertain measure-
ments.

Sensors affect each measurement by inducing noise to it and this pro-
duces uncertainty regarding the true value of the measurand (quantity
to measure) [1]. The nature of physical measurements implies that there
is always some uncertainty between the recorded result and measurand.
Programmers have to take this uncertainty under consideration when
developing applications. Treating uncertain data as exact might lead to
incorrect results with catastrophic effects. Thus, the development of such
applications that handle uncertainty effectively without adding any per-

43

formance overhead, is a major challenge. Programmers need to have
interdisciplinary knowledge which is not something common. In this
direction, robust ways and frameworks of tracking and quantifying un-
certainty are essential, as the autonomy of computing systems increases.
In the above example, of autonomous cars, the ability of the computing
system to quantify how uncertain a decision might be is a key element
to reducing hazards and avoiding accidents.

In this thesis, we investigate, propose, and develop a programming
model for describing, storing, executing arithmetic operations on uncertain
data, as well as using it to construct applications that handle them. We
expand the popular programming language Python to allow applications
to construct variables containing distributional information according to
well-known parametric distributions (e.g., Gaussian) or empirical data
(data sampled from sensors), advancing the state-of-the-art.

The UPROP library facilitates uncertainty propagation through arith-
metic and conditional operators, and function calls. When initializing
an Uncertain object containing distributional information, the developer
has the option to perform statistical and probabilistic queries on this ob-
ject, to more accurately predict and manage possible events.

1.1 Problem Statement

Data uncertainty measurement is a challenging and time-consuming
task that may need advanced statistical and scientific approaches (clas-
sical or Bayesian) as well as human judgment to assess. Modern appli-
cations are increasingly confronted with the difficulty of computing in
unpredictable environments. This ambiguity shows itself in the data that
computers manage. In certain circumstances, the uncertainty originates
by a sensor’s low resolution or accuracy.

One type of measurement uncertainty is the spread across multiple mea-
surements while the measurand is presumably constant. We reference
the type of uncertainty caused by variance in values for a (nominally)
fixed measurand as aleatoric uncertainty. When we retrieve measurements
at the same time using different measurement tools, we may encounter
aleatoric uncertainty. It is also possible to be uncertain about a measur-
and simply because we do not have enough information about it. We call
this type of uncertainty as epistemic uncertainty. When training a neural
network, for example, you begin with high values of epistemic uncertainty
about the weights required to achieve a high prediction accuracy.

Suppose a cluster of sensors, that measure an autonomous car’s dis-

44

@ s W N =

tance from the leading car/object, when driving. These sensors are re-
sponsible for collision avoidance at any time. The computer of the car
performs calculations based on the measurements provided by these sen-
sors. Although sensor manufacturers report expected aleatoric uncertainty
for their sensors, there might still be a high level of measurement un-
certainty as Mohan et al. [10] report. In the possibility that some mea-
surements are not available, we used output feedback control laws or
state estimation algorithms [11]. These observations lead to the conclu-
sion that, regardless of the hardware choice, developers still have to deal
with uncertainty and this requires interdisciplinary knowledge. Code
Listing 1.1 depicts the pseudo-code that an autonomous vehicle speed
controller may use to maintain a constant distance from the vehicle in
front of it, using sensor readings as input.

if distance < 10:

car .decrease_speed()
elif distance == 10:

car .maintain_speed()
else:

car.steady_speed()

Listing 1.1: False positives in conditionals.

In Listing 1.1, if the developer ignores the underlying uncertainty in
measurement then the car might crash, due to late braking. Even if
something implausible occurs, and the sensor reports a distance greater
than 10 meters, the controller will instruct the car to accelerate, result-
ing in a collision. This information should urge the developer either
(i) make some statistical analysis of the data, or (ii) treat measurements
as uncertain before making critical decisions.

In most cases, rather than precise numbers, we should represent un-
certain as probability distributions or approximated values with error
boundaries. However, handling data as such would require developers
to rewrite their code, perhaps resulting in optimization issues. This is
why many estimation techniques assume the available measurements are dis-
turbance free [10]. This means developers treat data as facts, rather than
estimates. Bornholt [3] shows that this could lead to false positives and
or false negatives.

45

1.2 Examples with Uncertainty

The most prominent examples of measurement uncertainty occur in
our everyday interaction with technology: the smartphone. From blurry
images captures to inaccurate GPS measurements, we subconsciously en-
counter uncertainty every time we use our smartphone. In this section
we present some examples of uncertainty encounter that motivated us to
develop the UPROP Python Library.

GPS Example

Modern and emerging applications compute over uncertain data from
mobile sensors, search, vision, medical trials, benchmarking, chemical
simulations, and human surveys. Characterizing uncertainty in these
data sources requires domain expertise, or interdisciplinary knowledge.
These data have become widely available and non-expert developers are
increasingly consuming the results.

+ Ledar Grove

=]
& _ Playground
V-

'!'

awnsend Harris

= 2
i High Schoal — pge @
- E3 g j'dﬂ'hn“""‘lf' Aye 2
1B [;
5 | Ezra” S0 @
‘:'-"3_ | International =
2 |I EnlertalnerI " ran BIS
% .. = 2 iomvang
\ ot =)
T g J =
% \- g U
b, B n A :\'\JE
- AT A= e 4
o wm ~£, = 1o8 i
"'l'?_r = hAE. =
Cim P 1w S =

Figure 1.1: Google Maps representes uncertainty in GPS measurements with a circle of
a specific radius, provided by the smartphone.

This section uses Global Positioning System (GPS) data to motivate a
correct and accessible abstraction for uncertain data. On mobile devices,
GPS sensors estimate location. APIs for GPS typically include a position
and estimated error radius (a confidence interval for location). As we see
in Figure 1.1 Google Maps depicts the horizontal accuracy as a radius
around the measured coordinates.

Latitude, Longitude, Horizontal_ Accuracy = GPS_API()

Listing 1.2: GPS API usually returns a tuple of three elements: Latitude, Longitude
and Horizontal accuracy.

46

Noisy sounds example

Another common example of noise and uncertainty in our everyday
life is noisy sound signals. The online communication through video
calls and conferences has seen an increased usage particularly after the
initial outbreak of COVID-19 [12]. Communicating efficiently, without
interferences due to bad signal strength, leading to ambiguous sound
signals is not yet established. There has been extensive research in Speech
and Language Processing (SLP) to counteract these obstacles. Povey et
al. proposed the Kaldi speech recognition toolkit [13], which is intended
for use by speech recognition researchers. Collobert et al. [14] propose
a convolutional neural network for speech regocnition. Virtual personal
assistants such as Google, Siri or Alexa [15] have seen an increased usage.

All these technologies strive to recognise speech using complex algo-
rithms and Machine Learning methods. We propose the UPROP Python
Library, a library that researchers can use to process sound signals and
possibly manage uncertainty. We visualise a — clear and the equivalent
noisy, speech signal in Figure 1.2, the first (1.2a) beeing the clear speech
and the second (1.2b) with Added White Gaussian Noise (AWGN). Later
in Chapter 4 we put the UPROP Python Library to the test, performing
a sound recognition algorithm.

(a) Clear sounded speech. (b) Equivalent Noisy speech.

Figure 1.2: Clear sounded and noisy speech are a common example in our everyday
life when communicating via the internet.

1.3 Contributions of this work

In this work we present an uncertainty propagation library: the UP-
ROP Python Library. This library wraps the Uncertain datatype, a
datatype that encapsulates probability distributions — either empirical
or well-known parametric distributions. Using the available computer
architecture, we describe a memory representation to store probability

47

distributions and based on probability theory, we propagate Uncertainty
through operations. We utilize Python’s built in methods to our advan-
tage and manage to propagate uncertainty even through user defined
functions. The main advantage of the Uncertain type originates from
it’s flexibility and minimalism in usage.

We evaluate the proposed abstraction with micro-benchmarks and
real life applications. The micro-benchmarks consist of tests on opera-
tors with well-known parametric distributions. The applications bench-
marks test a combination of operators and functions mapping: (D using
the Haversine Formula [16] to estimate user speed from uncertain GPS
coordinates, (2) a sound detection algorithm with noisy sound signals as
input @ and calculation of the cutting stress of an alloy precipitate using
the Brown-Ham dislocation model [8, 9].

We compare the UPROP Python Library with the Monte Carlo Simu-
lation and state-of-the-art platforms for uncertainty propagation. When
using high number of bins the usage of the Uncertain type offers a
significant advantage over the conventional calculation method, ranging
from 1.2x to 40x more accurate. With regards to the comparison with
other state-of-the-art frameworks, when using a small number of bins
the UPROP library performs from 10x to 2x worse, while with higher
numbers we observe an increase in accuracy. Overall the UPROP Python
Library constitutes a flexible and minimal tool that the developer may use
to ensure uncertainty propagation when designing a system.

1.4 Thesis Outline

Chapter 2 supports the thesis theoretical background by providing an
overview of probability theory and random variables. In Chapter 3 we
present some of the design principles that we use in the development of
the uncertain package. We also show the implementation insights of the
Uncertain type, information on memory representation of uncertain data
and minimal examples of usage. Chapter 4 presents three case studies,
specific unit tests and presents the results in comparison with state-of-the-
art frameworks. Chapter 5 provides information about relevant literature
around the field of programming with uncertainty. Finally, Chapter 6
concludes the thesis, summarizes the main points and points out possible
future work.

48

Chapter 2

Notation & Theoretical
Backgound

2.1 Probability Theory

In deterministic mathematics, a variable can take a single value at
every single moment. Either x =5 or x = 4 holds True. This is not true
with random variables which variables often used to simulate the outcome
of an experiment. It is possible for a random variable to take multiple values.
These outcomes or possible values that a random variable can take must
be mutually exclusive, which means they cannot happen simultaneously.
To understand the concept of random variables we must first define and
model an “experiment” or “"random process”’. Thus, we have to use
the probability space or probability triple (2, F,P). A probability space
consists of three elements:

O A sample space (2, which is the set often all possible outcomes.

® An event space, which is a set of events F, an event being a set of
outcomes in the sample space.

® A probability function P, which assings each event in the event
space a probability, which takes values between 0 and 1.

2.1.1 Probability

Thus, P or P is a function P : F — [0, 1]. To understand the notion of
probability function we must first introduce the notion of the probability of an
event. Consider an experiment: a single dice roll of a fair, six-sided die.

49

In terms of a random experiment, this is nothing but randomly selecting
a sample of size 1 from a set of numbers that are mutually exclusive out-
comes. In this particular experiment, the sample space is {1,2,3,4,5,6}
from which we can form different events based on conditions, e.g., ‘the
observed outcome lies between 2 and 5°.

Suppose that we repeat an experiment /N times, keeping the conditions
as similar as possible and that A is some event that may or may not occur
on each repetition. After N trials the outcome A occurred N(A) times.
As N becomes larger, the ratio N(4)/N converges to a constant limit. We
refer to the probability of an event, as the proportion that the event occurs
in the long run, that is if we repeat the experiment multiple times.

Definition 2.1.1 Let A be an event in the Probability Space) [17]. Let
N(A) be the sample size of A and N(2) be the sample size of Q2. We notate
the probability of the event A as P(A), P(A) or Pr(A) and is given by the
Equation

N(A)

P(4) = lim) (2.1.1)

Given the sample space €2, of size N(2) and N(A) the number of times
in favor of A, we can also define probability as the ratio of the samples
of A to the samples of 2 [17].

P(A) = w (2.1.2)

The probability P(A) has the following properties:

with () beeing the empty set: {}, P(A) = 1 only when A = Q, and
P(A) =0 only when A = (),

We say that two events A and B are independent if the occurrence
of A does not provide any information for the occurrence of B and vice
versa. If whether or not one event occurs does affect the probability that
the other event will occur, then the two events are dependent. In terms
of probability this means that

P(A and B) = P(A) - P(B) (2.1.3)

50

2.1.2 Random Variables

We unify all the above ideas under the concept of a Random Variable
(RV) which constitutes a numerical summary of random outcomes. The
possible values we can assign to a random variable can be either discrete
or continuous.

* Discrete random variables have discrete outcomes, e.g., the possible
outcomes when rolling a die: {1,2,3,4,5,6}.

* A continuous random variable may take on a continuum of possible
values, countably or uncountably infinite, e.g., values in range: [0, 7]

Random variables are usually notated with an uppercase letter, e.g., X.

Definition 2.1.2 A random variable X is a measurable mapping from the
sample space) associated with a random experiment into the set of real numbers
R [17].

X:Q—-R (2.1.4)

The sample space is the domain over on which we define a random
variable and not the set of values it can take. We represent the probability
that a random variable X over () takes the value x € (2 with a probability
distribution: p : Q0 — [0, 00).

In the same way as Equation 2.1.3, we say two random variables are
independent if the value of one has no bearing on the value of the other.
Formally we say two random variables X and Y are independent if, for
every possible z € {0y and y € (y:

PX=zandY =y)=P(X =2)-P(Y =y) (2.1.5)

We say that a probability distribution is a list of outcomes and their asso-
ciated probabilities. For different type of Random Variables we define a
different type of probability function.

O We represent a discrete Random Variable with a probability mass func-
tion (PMF).

® We represent a continuous Random Variable with a probability density
function (PDF).

In Section 2.1.2 we discuss the two categories of a random variable.
Figure 2.1 shows an example of a discrete random variable that takes

51

discrete values in the range: (0,6.5). Figure 2.2 shows a continuous

randnam vwariahla uwrith dictrihiition ciinnart in tha rancas (N N NR)

® Discrete RV

Probability frequency

il

0 1 2 3 a 5 6
Distribution support

Figure 2.1: A discrete random variable.

Definition 2.1.3 Let X be a discrete random variable. Let S be the sample
space of X. We denote the probability mass function X as p(x)x. The
PMF assigns probabilities to the possible values of the random variable [17].
Specifically, if x1, x5, € S then the PMF is:

plr;)) =P(X =x;)=P({se S| X(s)=x))}) (2.1.6)

where P is a probability measure and p(z)x can also simplified as p(z).
For the probability mass function it is true that:

> px(z) =1 (2.1.7)

Definition 2.1.4 Let X be a discrete random variable. The cumulative dis-
tribution function of X is Fx(x). Fx(x) is a function that maps the values x
on the real numbers domain [17].

Fx(z)=P(X <z)= > P(X =)= px;) (2.1.8)

Probability density Function of continuous random variable

m—pf of continuous RV

Distribution support

Figure 2.2: PDF of a continuous random variable.

To determine the distribution of a discrete random variable we can
either provide its PMF or CDF. For continuous random variables, the
CDF is well-defined so we can provide the CDF. However, the PMF does
not work for continuous random variables, because P(X = z) = 0 for all
z € R. Instead, we can use the probability density function (PDF). The
concept is similar to mass density in physics: its unit is the probability
per unit length.

Definition 2.1.5 Let X be a continuous random variable. Let A > 0. The
probability density function of X is fx(x) [17].

Plx < X <z+A)

fx(z) = lim A (2.1.9)
Using Equations 2.1.8 and 2.1.9 we conclude that:
fx (@) = lim A === F'(z) (2.1.10)

We consider a continuous random variable X with an absolutely contin-
uous CDF Fx(z). Since the PDF is the derivative of the CDF, shown in
Equation 2.1.10, we can obtain the CDF from PDF by integration.

53

Definition 2.1.6 Let X be a continuous random variable. The Cumulative
Density Function of X is Fx(x) [17].

Fy(z) = /_xoo Fre(w)du (2.1.11)

CDF and PDF of the cumulative distribution function

— CDF(X)
10 PDF(X)

Probability Values

Figure 2.3: Cumulative Distribution Function and Probability Density Function of a
continuous random variable X ~ N(0,1)!

Also, we have:

Pla< X <b) = Fy(b) — Fx(a) = /b Fr(u)du (2.1.12)

In particular, the integral of the CDF over the entire range of the random
variable (2.1.14) should be equal to 1 [17].

/°° Fx(w)du =1 (2.1.13)

The range of a random variable X is the set of possible values of the
random variable. If X is a continuous random variable, we can define
the range of X as the set of real numbers z for which the PDF is larger
than zero, i.e.,

!X ~ N (u,0?) represents a Standard Normal Distribution with mean value: p and

variance: 2.

54

Definition 2.1.7 Let X be a random variable. The range of X is Rx and is
the range of all possible values that X can take. We refer to Rx as Distribution
Support [17].

Definition 2.1.8 Let X be a random variable. The expected value E[X] of X
is the weighted average of all possible values of the variable [17]. If X is discrete
with probability mass function p(x) then E[X]| = Y%, x;p(x;)dzx. If X is con-
tinuous with probability density function fx(x) then E[X] = [qxf(z)dx [17].

We also call E[X] the mean or average of A and we represent it with the
greek letter .

Definition 2.1.9 Let X be a random variable and k be a positive integer. The
k™ moment and the the k™ centralized moment oy, of X [17] respectively are:

my, = E(XF) (2.1.15)

o = E[(X — 1) (2.1.16)

Definition 2.1.10 The variance: Var(X) or %, of a random variable X is
the 2" centralized moment of X (oq). It is the expectation of the squared
deviation of the random variable from its population mean. If X is discrete
with PMF p(z), then Var(X) = E[(X — p)?] = 32, p(x;)(z; — p)?, while if
X is continuous with PDF f(x), then Var(X) = [qx?f(z)dx — p* [17].

Definition 2.1.11 The mode of a random variable is the value at which the
PDF (or the PMF) is at a maximum.
If X discrete and has PMF p(x):

mode = max{z; : p(z;) > p(x;), i #j Y{i,j} € Q} (2.1.17)
If X is continuous and has PDF f(x):

mode = max{x; : f(x;) > f(x;), i # 7 V{i,j} € Q} (2.1.18)

55

2.2 Arithmetic operations on random variables

Let X,Y be continuous random variables with probability density
functions fy and fy accordingly. Let the first two moments of X be
ix,ox and of Y be jiy, oy. If we tranform the random variable X through
multiplication with b and addition of a, then we affect the mean and
variance [17].

Hax+b = apix + b
02 xip = A°0% (2.2.1)

The mean of the sum of difference of two random variables X and Y is
the sum or difference of their means [17].

Ux+y = px =y
Okiy = 0% + 0% (2.2.2)

Theorem 2.2.1 Let XY, two random variables. If X and Y have a joint
density function, then Z = X +Y has a density function fx.y(Z) [17].

Fray(2) = /_o:o flz, 72 — 2)dz (2.2.3)

If X and Y are two independent random variables with probability
density functions fx(z) and fy(y) respectively then the probability den-
sity function of Z = X +Y is fz(z) and is the product of the circular
convolution between fy and fy. We notate the operation of convolution
between X and Y as fxiy = f(X) *xg(Y) [17].

FX)*9(V) = Fxar(2) = [fula)fo(z — a)de =

| ixG= ey (2.2.4)

The convolution of either two discrete or continuous random variables is
shown in Equation 2.2.5 [17].

P(Z=2= Y P(X=kPY =z—k)

(fxg)(2) = /O:O f(z—=1t)g(t)dt = /Oo F(t)g(z — t)dt (2.2.5)

—00

56

To conclude, following Equations 2.1.3, 2.2.5, when applying any of
the basic operators between two random variables X and Y':

O We generate the new distribution support as a pointwise operation
(+, —, %, /), between the distribution support of X and Y.

® we generate a new random variable Z, with PDF f(z). fz(z) is
the results of the convolution of fx(z) and fy(y).

2.3 Comparing distributions

Comparing two integers or any two particle values is well defined
in modern mathematics. On the other hand, comparing random vari-
ables, thus comparing distributions is not limited to a single method.
Some indicators showing the difference in two distributions, are: (i) the
Kolmogorov-Smirnov test [6], (ii) the Kullback-Leibler divergence [18]
(iii) or the Cramer-von Mises criterion [19]. In this thesis, we utilize the
two criteria shown in Subsections 2.3.1 and 2.3.2.

2.3.1 Stochastic Dominance

We refer to a partial order between random variables as stochastic
dominance [20]. It’s a type of probabilistic ordering. Let A, B be two
random variables that represents the outcomes a and b of an experiment,
respectively. When we rank an outcome a of an experiment as superior
to another outcome b then we can state that A is stochastically dominant
over B. Stochastic dominance does not give a total order, but only a
partial order. In terms of the cumulative distribution functions of the
two random variables, A dominating B means that the CDF of A is less
or equal to the CDF of B, with strict inequality at some z, as we show
in Equation 2.3.1. In this thesis we only deal with first-order stochastic
dominance (FSD). In Chapter 3 we present how we utilize Definition 2.3.1
to deduce partial ordering for Uncertain objects.

Fy(z) < Fp(x), YV x (2.3.1)

Definition 2.3.1 Let A, B be two random variables. A has first-order stochas-
tic dominance over B if for any outcome x, A gives at least as high a probability
of receiving at least x as does B, and for some x, A gives a higher probability
of receiving at least x [20].

P[A> x| > P[B > x|, VY x and for some x : P[A > z| > P[B > z]| (2.3.2)

57

2.3.2 Distribution Comparison Metric

While Equation 2.3.2 is an effective method for obtaining a boolean
result, there should also be a metric to help understand the concept of
distance between distributions.

In this thesis, we propose a dissimilarity measure using the Wasser-
stein distance. [21, 22], also called the Earth Mover’s Distance (EMD) [23].
The Wasserstein distance is typically used for image and audio process-
ing as well as generative adversarial networks [24, 25]. The Wasserstein
distance, thoroughly explained in Section 2.3.3, originates from the op-
timal transport problem, and is the distance between the distributions,
and the calculation does not require any parameters. In the field of data
science, a (dis)similarity between data corresponds to a distance between
data. Therefore, we can obtain and quantify the dissimilarity between
distributions by the Wasserstein distance. The optimal transport problem
is the calculation of the minimum cost for transporting luggage from one
point to another point, and thus the obtained Wasserstein distance in this
thesis is the minimum deformation for changing a distribution to match
another reference distribution. Hence, a small value of the Wasserstein
distance indicates that the distributions are similar, while a large
value implies that they are dissimilar.

In our evaluation, we measure the Wasserstein distance between the
results of a single benchmark execution using the (i) Uncertain datatype
and (ii) a state-of-the-art framework, using distributional inputs. We use
it to compare the performance of the two frameworks.

2.3.3 Wasserstein - Earth Mover’s Distance

The Earth Mover’s Distance (EMD) or Wasserstein Distance is a method
to evaluate divergence between two multi-dimensional distributions in
some feature space where a given a distance measure between single
features, called the ground distance. The EMD lifts” this distance from
measuring individual features to comparing full distributions.

Definition 2.3.2 Let (M, d) be a metric space, and let p € [1,00). For any
two probability measures 1, v on M, we define the Wasserstein distance of order

58

Cumulative Distribution Functions and their Wasserstein Distance Visualized Quantile Functions and their Wasserstein Distance Visualized

— CDFofe™ — Quantile Function of e
101 — CDFofe~ 209 — n of e
W, distance

Distribution Support

Cumulative Distribution Function

06 08 10

5 00 04
Distribution Support Quantile Function

(a) Calculation of the W distance using the Cumu- (b) Calculation of the W distance using the Quantile

lative Distribution Functions. Functions.

Figure 2.4: The grey area represents the W; distance between distribution ¢~ and
e, The W, remains the same either using the CDF (Figure 2.4a) or the QF (Figure
2.4b) to calculate it.

p between v and v by the formula [21]:

1/p
pr— 1 p
Wp(:uv V) ﬂehrbf;,u) pY d<$7 y) dﬂ'(i‘, y) (233)
= inf {Ed(X,Y))r, law(X) =p, law(Y) = v}

We denote this distance as W,(u,v) or p"-Wasserstein distance.

Definition 2.3.3 We can also define W, as:

Wy (p, v)P = inf E[d(X,Y)?] (2.3.4)

where d is the chosen metric and we take the infimum, over all the joint
distributions of the random variables X and Y with marginals x and v,
respectively.

59

To intuitively understand how the Wasserstein distance works, we
provide an example. Given two distributions, the first beeing the mass
of earth scattered in space and the second, a collection of holes in that
same space; the Wasserstein distance measures the least amount of work
needed to move the mass of earth into the holes. We call this amount
of work the ground distance. This problem only makes sense if the mass
scattered into space has the same mass as the holes to fill; therefore
without loss of generality assume that ;o and v are probability distribu-
tions containing a total mass of 1. Since the UPROP Library supports
only 1-Dimensional distributions the Wasserstein distance is, in this case,
deducted to the Wasserstein-1 metric or Wj.

Definition 2.3.4 Let X,Y be two random variables and their CDF F}, F,
respectively. We define the Wassersteind-1 metric between X and Y as:

W, (F1, Fy) :/R|F1(:c)—F2(x)]d:c (2.3.5)

or alternatively as:

W (@10 = [Qi) - Qufo)] dr (2.3.6)

In Figure 2.4 we visualize the calculation of the W; distance. This
is helpful to comprehend the calculation process. To understand the
variation of the W, metric between two distributions we initialize two
random variables A (purple) and B (blue), representing two gaussian
distributions with arbitraty mean and variance. We iterate K times dur-
ing which we transform the random variable B by (i) shifting it by the
constant k = 1, (ii) scaling it by the constant k¥ = 1 (iii) or shifting and
scaling it by the constant £ = 1. In Figures 2.5, 2.6 and 2.7 we present
the results of these modifications, and we showcase the effect that trans-
formations have on the Wasserstein distance. We observe that for all the
examples, the Wasserstein distance follows the same transformation that
we condition the random variable B.

60

1001 —— wasserstein Distance (measured)

80

60

Wasserstein distance

40

20

[25 50 75 100 125 150 175 200
52 Mean value of distribution B

(a) Ridge plot of a distribution A and the transformed distribution (b) Calculated Wasserstein distances (y-

B. Distribution B updates on each step. In the first step A = B axis) for consecutive linear shifts of dis-

but in each step distribution B shifts right by a value of £ = 1. tribution B. The x-axis shows the varia-
tion of the mean value: pp.

Figure 2.5: Depiction of the variation of the Wasserstein Distance between distribution
A and the same distribution shifted in every step: B. We observe that the variation in
the Wasserstein metric follows the linear shift (by a value of £ = 1) of the mean of
distribution B.

We observe that the Wasserstein distance increase rate is faster for the
combined shift and scale transformation, while the scaling example in
Figure 2.6 has the slowest increase rate. We can attribute this to the fact
that the two distributions share a portion of the distribution support.

1601 —— wasserstein Distance (measured)
140

120

il
A s

ﬂk 20
et ...

[50 100 150 200 250 300 350 400
0: Standard deviation of distribution B

(a) Ridge plot of a distribution A and the transformed distribution (b) Calculated Wasserstein distances (y-
B. We update distribution B on each step. In the first step A = B axis) for consecutive linear shifts of dis-
but in each step distribution’s we increase the standard deviation tribution B. The x-axis shows the varia-
op of B by a value of k = 1. tion of the standard deviation: op.

Figure 2.6: Depiction of the variation of the Wasserstein distance between distribution
A and B with the latter scaled by a factor of £ = 1 in every step. We observe that the
variation in the Wasserstein metric follows the linear shift of the standard deviation op.

61

Hg: Mean value of distribution B
75 100 125

0 25 50 150 175 200

801 Wasserstein Distance (measured)
70

60

|
&

-
‘Wasserstein distance
w

o

w A
o o

N
o

0 25 50 75 100 125 150 175 200
: Standard deviation of distribution B

Hb

(a) Ridge plot of a distribution A and the transformed distribution (b) Calculated Wasserstein distances (y-

B. We shift Distribution B in every step by 1 and we increase it’s axis) for consecutive linear shifts of dis-

standard deviation by 1 as well. tribution B. The x-axis shows the varia-
tion of the standard deviation: op and
the mean value: pp.

Figure 2.7: Depiction of the variation of the Wasserstei distances between distribution
A and B with the latter shifted and scaled by a factor of £ = 1 in every step. We
observe that the variation in the Wasserstein metric follows the linear shift and scale of
the standard deviation opg.

2.3.4 Kolmogorov-Smirnov Test

We use the Kolmogorov-Smirnov test (KS-test) to decide if a sample
comes from a population with a specific distribution [6]. It is a non-
parametric test of the equality of continuous 1-Dimensional probability
distributions. With the KS-test we can obtain the Kolmogorov—Smirnov
statistic. This statistic measures the distance between a sample’s empiri-
cal CDF and the reference distribution’s CDF, or between two samples’
empirical CDFs. In particular, in this thesis, we use the two-sample
Kolmogorov—Smirnov Test, to decide if two Uncertain objects are equal

in distribution (). We discuss this later in Subsection 3.4.1. We define
the two-Sample Kolmogorov-Smirnov test as a set of two hypotheses:

® The null hypothesis, Hy: the two samples arose from the same
distribution

@ The alternative hypothesis, H;: the two samples arose from different
distributions

Suppose that the first sample has size m with an observed cumulative
distribution function of F,,(z) and that the second sample has size n with

62

an observed cumulative distribution function of G,,(z). We define:

Dy = mazx,|Fy(x) — G ()] (2.3.7

We reject the null hypothesis (at significance level «) if D,,,, > Dpna
where D,, , . is the critical value. For m and n sufficiently large:

m-+n

(2.3.8)

Dm,n,a - C(Oé) mn

where c¢(«) = the inverse of the Kolmogorov distribution at a. Figure 2.8
represents the PDF of the Kolmogorov Distribution.

fK(K)

k

Figure 2.8: The Kolmogorov distribution’s PDF [26].

In Chapter 3 we present how we utilize Equation 2.3.4 to implement
equality comparisons with Uncertain objects.

63

64

Chapter 3

Implementation

In Chapter 2 we set the mathematical foundation needed for the UP-
ROP Python Library. In this Chapter, we introduce and analyze the
design principles and the implementation of the U.PROP. Library, (Un-
certainty Propagation), wrapping the Uncertain type. We also state what
is our main goal: To provide non-expert programmers, a basic, user-
friendly interface with a wide range of operations, which allows them
to think effectively about uncertainty and not ignore it. We present our
efforts of creating a programming model that is efficient enough to apply
in real-world scenarios.

In more detail: Section 3.1 presents our design principles for the UP-
ROP Python Library. Section 3.2 describes Uncertain ’s type memory
representation of distributional information and what insights we gain
from using it. In Section 3.3 we explain how uncertainty propagates
through operations and function calls. Finally, in Section 3.4 we demon-
strate with examples how users can query uncertainty from Uncertain
objects and exploit it to their advantage.

3.1 Design Principles

3.1.1 The idea

Existing computer architectures and programming languages lack hard-
ware support and abstractions to treat uncertainty the in a different way
than they treat the arithmetic values i.e., with single particle values. Com-
puters are build upon the assumption that no degree of uncertainty lies
behing the entirety of the particle values. Most implementations by pro-
grammers or existing libraries usually represent uncertainty by using the

65

mean value of a set of samples or using statistical analysis. The de-facto
method — of both the reseach community and the industry, is the Monte
Carlo Simulation (Subsection 4.1.1). It constitutes a reliable but com-
putationally expensive method of propagating uncertainty. The Monte
Carlo Simulation generally yields more accurate results than other meth-
ods, accounting even for the extreme outcomes. The idea behind the
UPROP Python Library approaches the Monte Carlo simulation but in a
determenistic way, requiring less time and operations.

3.1.2 Goals

The UPROP Python Library introduces Uncertain , a generic data
type that encapsulates a probability distribution over a memory repre-
sentation. The goal of this library is to extend the Python Programming
Language [4] in order to allow developers to seamlessly create variables
with distributional information. Although the Uncertain datatype can
support empirical data (e.g., data sampled from sensors) or data derived
from well-known parametric distributions (e.g., Gaussian), the main focus
is to provide developers mainly managing empirical data, a () minimal
and @) flexible tool.

¢ [t should allow Python developers to adopt it in their code, replac-
ing, when necessary, the conventional numeric data types such as
int, double or float.

¢ An instance of an Uncertain variable should be able to represent
a Random Variable.

® The Uncertain class should also overload the majority of Python’s
base class operators so that programmers may write the same ex-
pressions whilst propagating uncertainty through operations and
functions.

The Uncertain data type incorporates and manipulates probability
distributions of samples. Having samples as input, allows working along
with conventional first-order datatypes. It also instigates programmers to
account for data uncertainty by giving new semantics for conditional ex-
pressions, which propagate uncertainty through computations. Uncertain
extends and differentiates from some earlier work in a way that focuses
on providing a user-friendly interface for non-expert Python program-
mers to properly reason about uncertainty.

66

The key insight of the Uncertain type is that in order to represent
uncertainty as a first-order datatype in memory there has to be some
trade-off with regards to accuracy. Furthermore, the nature of a Ran-
dom Variable limits the amount of operators accessible since we have
to make some assumptions about the transition of regular operations to
probabilistic operations.

3.2 Representation of distributional informa-
tion

As we mention in Subection 3.1.2, the focus of the UPROP Library
is to provide a useful tool to developers mainly managing emprical data
(i.e., measurements). Thus, the most accurate approach would be to
directly store the samples. But this adds significant performance and
memory overhead and quickly becomes impractical. In Subsection 2.1.2
we showcase that a random variable and hence a distribution can be
explicitly defined by either providing its’ PDF — if the random variable
is continuous, its’ PMF — if the random variable is discrete or even its’
CDF. Thus, the UPROP Library represents the input distributions with
an approximation of the PDF/PMF in memory by using a Dirac Mixture
Representation as Tsoutsouras et al. [2] propose.

Definition 3.2.1 Dirac mixture representation: Let §(z) be the Dirac
delta function — a unit impulse at position x. Given a value xy € R, we
consider §(x — xq) as a probability mass function and we call it a particle value
(or just particle). Using this definition, we transform an array of particle values
x1,Ta..., Ty into a probability mass function using a weighted sum.

M M
fx(x) = pud(z — z,), where p, €[0,1], > p, =1 (3.2.1)
n=1 n=1

If the Dirac mixture is equally spaced in the x-axis, then this repre-
sentation takes the form of a relative frequency histogram. It is clear that
the memory size of an Uncertain object is determined by the number of
Dirac (or bins). A key insight of using this representation is that there
is a trade-off between the representation size of an Uncertain object and
the accuracy of calculations.

67

_Jis

(a) Histogram with 10 bins. (b) Histogram with 50 bins. (¢c) Histogram with 500 bins.

Figure 3.1: Three different histograms of the same random variable representing a
Standard Normal Distribution with g = 0, 02 = 1. The blue line is the PDF of each
distribution.

It’s worth noting that employing histograms adds complexity to the
process as compared to using just particle values. To transform the sam-
ples to histograms requires an algorithm of O (N - k) time complexity, to
sort the IV samples into % bins and calculate their frequencies. The space
complexity of this representation is O (k). If we opted for storing the
samples directly, the corresponding space complexity would be O(N).

3.3 Uncertainty Propagation

The fundamental principle of the Uncertain type is capturing uncer-
tainty — even the most extreme outcomes, and propagating it to any oper-
ation performed with Uncertain objects. Suppose two Random Variables
and the corresponding Uncertain objects, X ~ U (0,6) and Y ~ U (0, 6)
!, represented by the Uncertain type. The result from their addition
Z =X +Y is also an Uncertain object representing a Random Variable
as we show in Listing 3.1.

X = Uncertain([i for i in range(0,100)])
X = Uncertain([i for i in range(100,200)])
Z=X+Y

Listing 3.1: Adding two Uncertain objects.
There are two takeaways from Listing 3.1:

O Data uncertainty is automatically propagated in the backend of the
Uncertain type.

® There are not significant code alterations compared to an imple-
mentation with particle values (one-sample values)

'U(a,b) represents a uniform distribution in the interval [a, b]

68

© ® a9 T A W N =

- e
=

We accomplish takeaway @ using Equation 2.2.5. This Equation de-
fines the result of on operation between Random Variables which is a
circular convolution of their distribution support positions and the corre-
sponding probability masses. In Listing 3.2 we show our implementation
of the circular convolution using the memory representation presented
in Section 3.2.

def addRandomVariables(X1, X2):

"""Calculate the circular convolution of X1 with X2."""

dst_hist = []

dst_medians = []

for i in range(0,len(X1.hist)):

for j in range(0,len(X2.hist)):

dst_hist.append(X1.hist[i]*X2.hist[j])
dst_medians.append(X1.median[i] + X2.median[j])

dstVar = createObjectFromOperation(dst_hist, dst_medians)
return dstVar

Listing 3.2: Implementation of the circular convolution between two Random Variables
(Uncertain objects). The generation of the new Uncertain object comes from definition
3.2.1. The variable dst_hist holds the probability values p, and dst_medians hold
the (z — z,,) distribution support points. We initialize the new object dstVar using the
generated histogram.

3.3.1 Overloaded Magic or Dunder Methods

Magic methods in Python are the special methods that start and end
with the double underscores. They are also called dunder methods.
Magic methods are not meant to invoke directly from the user, but the
invocation happens internally from the class on a certain action. For
example, when the user add two numbers using the + operator, internally,
we call the __add__() method. Listing 3.3 shows all the attributes and
methods of the int class. The Uncertain class overloads most of the
magic methods that the Python template class offers. We present there
methods in Subsections 3.3.2, 3.4.1 and 3.4.3.

69

https://www.tutorialsteacher.com/python/magic-methods-in-python

© 0 o U W =

10

dir(int)
[' abs_ ', ' add__', ' _and__', ' bool_ _', ' ceil ',

'__class__', '__delattr__', '__dir__', '__divmod__',

'__doc__', '__eq__', '__float__', '__floor__', '__floordiv__"',

' dint__', '__invert__', '__le__', '__1shift ', '__1t__',
'_mod__', '_mul__', '_ne__', '_neg ', '__mnew__', '__or__',

' _rlshift_ ', '__rmod__', '__rmul ', ' ror__', '__round_ _',
'__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__',
' rxor__', ' _setattr__', ' _sizeof_ ', '__str__', '__sub__',

' __subclasshook_ ', ' _truediv__', '__trunc__', '__xor__',

'bit_length', 'conjugate', 'denominator', 'from_bytes', 'imag',
'numerator', 'real', 'to_bytes']

Listing 3.3: This Listing shows all the attributes and methods defined in the int class.
We call the methods that start and end with the double underscores magic or dunder
methods.

3.3.2 Overloaded Arithmetic Operators

We mention in Section 3.1 that the goal of the Uncertain type is to
replace the conventional datatypes suck as int,float, ..., etc. In order
to accomplish this, the functionality of Uncertain has to simulate the
functionality of the aforementioned data types. We managed to achieve
this by using Object-Oriented Programming (OOP) in Python.

0.04 == Operanéi (1) ~ N8, 2)
@ Operand (2) ~ A(10,1)
[X+4Y
0.03
0.02 7
0.01 HM Tﬁ MF
0.00' 5 M l '[[Ltwmfﬂﬂ Hﬁmm

10.0 12,5 15.0 17.5 20.0 225 25.0

Figure 3.2: Adding two Uncertain variables. The 1°' operand represents a RV X ~
N(8,1) and the 2"? operand a RV Y ~ N(10,1). Their addition generates a new
distribution Z ~ A/(18,2), as expected, based on equation 2.2.2.

70

In Python3 the base class is the object class. All classes implicitly
inherit from the built-in object base class. The object class provides
some common methods, such as __init_, __str_, and __new__, that
can be overridden by any child class. Uncertain utilizes this functionality
and overloads a variety of operators.

The overloaded operators propagate uncertainty using a circular con-
volution between Uncertain objects as we show in Listing 3.2. In Fig-
ure 3.2 we showcase a simple example of the addition of two Uncertain
objects. In Tables 3.1-3.3 we present the list of Uncertain ’s overloaded
operators. Columns type(a) and type(b) show the supported operand
types when calling the corresponding operator. The return type of the
overloaded operators is an Uncertain object.

Method ‘IJsage ‘ type(a) ‘ type(b)
__neg__ -a Uncertain | -
__add__ a+b Uncertain | Uncertain | Number
__sub__ a-b Uncertain | Uncertain | Number
__mul__ axb Uncertain | Uncertain | Number
__truediv__ | a/b Uncertain | Uncertain | Number
__pow__ ax*b Uncertain | Uncertain | Number
__mod__ a’%b Uncertain | Uncertain | Number
__divmod__ | divmod(a,b) | Uncertain | Uncertain | Number
Table 3.1: Overloaded arithmetic operator methods.
Method ‘IJsage ‘ type(a) ‘ type (b)
__iadd__ a += b | Uncertain | Uncertain | Number
__isub__ a —= b | Uncertain | Uncertain | Number
__imul__ a *= b | Uncertain | Uncertain | Number
__itruediv__ | a /= b | Uncertain | Uncertain | Number

Table 3.2: Overloaded in place arithmetic operator methods.

The implementation of the circular convolution raises a dilemma, aim
for increased accuracy in expense of larger memory usage or aim for a trade-
off between them?. The chosen implementation of the convolution has
space complexity of O (k % n), where k is the number of bins of the 1%
operand and n is the number of bins of the 2" operand. After a small
number of operations and function calls, this quickly becomes impractical
in terms of memory usage. Thus, to maintain a reasonable amount of

71

@O s W N -

memory usage, we decided to keep the same number of bins after each
operation. If k£ > n then we opt to keep k bins.

Method ‘Ijsage ‘ type(a) ‘type(b)

__rsub__ a-b Number Uncertain
__radd__ at+b Number Uncertain
__rmul axb Number Uncertain
__rtruediv__ a/b Number Uncertain
__Tpow__ ax*b Number Uncertain
__rmod__ a’%b Number Uncertain
__rdivmod__ divmod(a,b) | Number | Uncertain
__rfloordiv__ | a//b Number | Uncertain

9999

Table 3.3: Overloaded arithmetic operator methods with the preceding r” e.g.,
_radd__ are only called if the left operand (a) does not support the corresponding
operation and the operands are of different types.

3.3.3 Mapping Functions to Uncertain objects

A significant milestone for the Uncertain type to simulate numeric
types is to be able to support all function calls using Uncertain objects.
Python’s map () is a built-in function that allows the processing and trans-
formation of all the items in an iterable without using an explicit for loop.
We use this function to our advantage and map the Uncertain ’s distri-
bution support points to a user-defined function. We implement this
functionality in the u_map() function. The new mapped values create a
new Uncertain object. Listing 3.5 shows our implementation of u_map ()
while Listing 3.4 presents an example using this function.

from UPROP import Uncertain, u_map
from math import exp

samples = [i for i in range(0,100)]
x = Uncertain(samples)

newX = u_map(x, exp)

Listing 3.4: Example of using the u_map function on an Uncertain object with function
math.exp: e”.

72

© ® a9 T A W N e

—- =
- O

Uncertain object e

0.25 I
Original Values: x 0.12 . e
0.20 0.10
20.08
£0.15 £
% %0.0G
50.04
0.05
0.02 fi
HWWWH\HM IITHITIRRAEET
0.00 0 1 2 3 4 5 0-00% 25 50 75 100 125 150
(a) The input Uncertain object: X ~ U(0,5) (b) The output Uncertain object: e” generated by

the u_map method.

Figure 3.3: Results of the example in Listing 3.4. Figure 3.3a represents input and
Figure 3.3b is the output of the u_map() method.

def u_map(obj, func: Callable, **kwargs) -> Uncertain:
"""Map function <func> to the <obj> Uncertain object"""
new_medians = map(lambda x: func(x, **kwargs), obj._medians)

nmnn

Since the ordering of the new mapped values has not
changed, compared with the original medians the histogram
values in the corresponding positions represent the

probablity of each mew median.

dstVar = createObjectFromOperation(obj.hist, new_medians)
return dstVar

Listing 3.5: Uncertain ’s u_map implementation: mapping a function to an Uncertain
object.

3.4 Extracting uncertainty information

To unfold the full potential of the Uncertain type, we have to provide
access and insights to the user about the uncertainty of any Uncertain ob-
ject used. Following every initialization and operation, with Uncertain
objects, we calculate and store the most significant distributional informa-
tion related to them. This allows the user to make an informed decision

73

based on uncertainty propagation from the input. We present the avail-
able distributional information to query in table 3.4.

Method | Purpose | Type of val
mean w=E[X] -
variance E[(X — u)?] -
min() Xmin N

max () Xmaz N

mode () i P(X=x)>PX=ux;)i#]|-
NthMoment (N) oy = E[(X — pn)V] -
prob(val) P(X = val) Number
CDF (val) Fx(x = val) Number
QF (val) Fy'(z = val) Number
probabilityEQ(val) | P(X = val) Number
probabilityNE(val) | P(X # val) Number
probabilityLT(val) | P(X < val) Number
probabilityLE(val) | P(X < val) Number
probabilityGT(val) | P(X > val) Number
probabilityGE(val) | P(X > val) Number

Table 3.4: Uncertain ’s available methods to extract uncertainty.

Although centralized moments do not always uniquely identify prob-
ability distributions [5], the developer can have a significant amount of
information by calculating a series of them (e.g., mean, variance, skew-
ness, kurtosis, etc). For example, using this information could provide
consistent decisions and maintain stability to a control system.

3.4.1 Conditional operators

Complementary to the u_map () method, the necessary functionality to
achieve closure in simulating numeric types are the conditional operators
<,<,=,#,> and >. We present the implemented comparison operators
in Table 3.5. We discern two subcategories: (i) comparing an Uncertain
object with a constant number and (ii) comparing two Uncertain objects.

Let X be a random variable and its’ expected value E[X]. If we com-
pare E[X]| with a desired constant “val”, the result can be misleading,
which leads to false positives [3]. Instead, we allow the user set a prob-
ability threshold, and we compare that, with the portion of probability
that is on the left or on the right of value. Figure 3.4 visualizes the
Probability of the Uncertain object X being <8 — P(X <38).

74

Probability of the Uncertain object: X being less than 8.

0.20 i — Xx=8
B P(X <8)
20.15 | X
: n
(O]
(a)
>
£0.10 :
o]
: -
8
& |
Olosm
0.00— 5 10 15 20

Distribution Support

Figure 3.4: The probability of an Uncertain object being X < value is the sum of the
probabities of the bins being < value. In this case, it is the area on the left of the line,
under the darker green bins.

Goodness-of-fit tests favour operators #, = but not the rest. There are
numerous goodness-of-fit tests, particularly tests for the one-, two- and
K-sample problems. The principle behind the one-sample tests states
that the testing a hypothesis that the sample observations have a hypoth-
esised distribution, whereas the two-sample problem is concerned with
testing the equality of the distributions of two independent samples. A
statistical test is just a formal way to make a decision between two mu-
tually exclusive hypotheses, the null hypothesis is usually well-defined
and concerns the hypothesised distribution, whereas the alternative hy-
pothesis is broad, and usually just constitutes the negation of the null
hypothesis. Thus, when we reject the null hypothesis, the majority of
tests do not give any information about what the true distribution might
look like, or how the true distribution differs from the hypothesised.
The same reasoning holds for the two-sample problem, when we reject
the null hypothesis of equality of the two populations, there is often no
information about how the two distributions disagree [27].

Under the aforementioned conditions and since for the equality (=)
and negation (#) operators rejecting or accepting the null hypothesis
suffices, we implement these two using the Kolmogorov-Smirnov two-
sample Test [6]. For the rest, we provide two methods that the user can
select during runtime: (i) Stochastic Dominance and (ii) Difference
of Random Variables. 1In order to select method (i) or method (ii),
the developer has to define a member variable of the Uncertain object,

75

either during initialization of at runtime as we show in Listing 3.6.

Method | Usage | type(a) | type(b)

__eq__ |a-== Uncertain | Uncertain | Number
__ne__ |a !=Db| Uncertain | Uncertain | Number
__ge__ | a > b | Uncertain | Uncertain | Number
__gt__ | a> b |Uncertain | Uncertain | Number
_le a <= b | Uncertain | Uncertain | Number
__1t__ |a < b|Uncertain | Uncertain | Number

Ut s W N -

© 0 a3 U W N =

Table 3.5: Overloaded Uncertain ’s conditional operators.

X = Uncertain(samplesl, comparison_method="difference")
X.set_comparison_method("dominance")

Y = Uncertain(samples2)

result: bool = X > Y

Listing 3.6: The developer can choose the desired comparison method by calling the
set_comparison_method() method with either "dominance” or “difference” as argu-
ment. “dominance” is the default value during initialization.

Method 1: Stochastic Dominance

As we mention in Subsection 2.3.1, Stochastic Dominance comparing
the CDF of Random Variables is a common method to obtain a partial
order between them. We present the implementation in pseudocode in
Listing 3.7.

def stochastic_dominance_le(X,Y):
for i in joint_distribution_support(X,Y):
if X.CDF(i) >= Y.CDF(i):

continue
else:

return False
return True

Listing 3.7: Pseudocode of the implementation of Stochastic Dominance for the <
operator. For each value in the distribution support range we compare the CDFs and
infer the result.

76

U CRN

U ORI

Method 2: Difference of Random Variables

The difference of Random Variables method is equivalent to comparing
an Uncertain object to a constant number. The principle behind the
method originates from the transposition property of any comparison
operator: X > Y = X —Y > 0. We present our implementation in
Listing 3.8.

def difference_rv_gt(X: Uncertain, Y: Uncertain):
Z : Uncertain = X-Y
max_threshold = max(X.threshold, Y.threshold)
return Z.probabilityGT(0) > max_threshold

Listing 3.8: The implementation of the difference of random variables method is equivalent
to generating a new Uncertain object Z from the difference of two Uncertain objects
X,Y and comparing the result with the user defined threshold.

For the case of comparing two Uncertain objects we present extensive
testcase in Section 4.2.

3.4.2 Bounding uncertainty

A characteristic of the Uncertain type is that it manages to propagate
information about the less-likely outcomes of Random Variables (i.e.,
long-tailed distributions) through calculations. In extreme scenarios, this
feature can turn out useful, but in other cases, this information may
be redundant. This should be application-dependent. We provide the
developers with the member function bound() that addresses this issue.

samples = rayleigh(scale=3,size=10000)

X = Uncertain(samples=samples,bins=100)

X1 = X.bound(lower=1, upper=7)

X2 = X.bound(lower=1, midlower=3, midupper=5, upper=7)

Listing 3.9: Using the public bound () method a user can define the lower and upper
allowed limit for the variable. We show the results of this Listing in Figure 3.5.

With this method, the developer can bound an Uncertain object in-
side a range of values. Basically the bound() member function gives the
developers the option to effectively low-pass, high-pass or band-pass
filter the Uncertain object. In specific cases, the developer can utilize
prior knowledge about any of the Uncertain objects and limit the values

77

accordingly. When bounding an Uncertain variable X with k£ number
of bins, the returned object Y has the same number of bins. Although the
bound method may result in increased calculation overhead, it limits data
uncertainty. This can be valuable in decision making. In Listing 3.9 we
present a usage example of the method bound () and it’s results visualized
in Figure 3.5.

0.30 0.4

[0 Original
72 Bounded

[Original
0.25 @@= Bounded |
0.3 |
H I

I i

| WWH H‘H I HWW\H\MLW,
| s .

0 2 4 6 8 10 12

0.2

l0.10

H
0.1

0.0

14

0.05(1
il
’ 6 8 10

0 2 4

12

(b) We can also bound Uncertain variables inside
the range [lower, midlower| U [midupper, upper].
In this example we bound the Uncertain variable in
the range [1,3] U [5, 7].

(a) We can bound Uncertain variables inside the
range [lower, upper|. In this example, we bound
the Uncertain variable in the range [1,7]

Figure 3.5: Bounding an Uncertain variable using the public bound () method. The
original variable represents a Rayleigh distribution with ¢ = 3 and we generate the
bounded after calling bound(). We show the implementation of this example in List-
ing 3.9.

3.4.3 Other overloaded magic methods

As we show in Subsection 3.3.1, the Python template class offers a
variety of magic methods that the Uncertain type overloads. In Subsec-
tions 3.3.2 and 3.4.1 we showcase the arithmetic and conditional over-
loaded operators. In this Subsection, we list overloaded magic methods
with general functionality that will ease the usage of the UPROP library
for the developers.

U W N =

>>> from UPROP import Uncertain

>>> bool(Uncertain([0,0,0])) # __bool__ ()
>>> False

>>> bool (Uncertain([0,0,1])) # __ bool__ ()

>>>

Listing 3.10: Using the

int,

is 0.

A significant magic function that Python offers is the

magic function. This function returns the boolean equivalent of any

True

float,etc, the Uncertain

78

__bool__() overloaded method. Following the behavior of
__bool__() method returns False only if the mean value

__bool O

-

object. For example bool(1) is True while bool(0) is False. In accor-
dance with the default Python behavior we overload this function and
the Uncertain __bool__() method returns False only if the Uncertain
object’s mean value is 0. In Table 3.6 we introduce some the implemented
magic methods along with minor usage examples Listings 3.10, 3.11 and
3.12.

>>> from UPROP import Uncertain

>>> X = Uncertain([[0,1,2,3,4], bins=100)
>>> len(X)

>>> 100

>>>

>>> 2 in X

>>> True

g O W N e

Listing 3.11: Using the __len__() overloaded method yields the number of bins that
an Uncertain object has. Method __contains__() returns True if the argument is
inside the Rx range.

>>> from UPROP import Uncertain
>>> X = Uncertain(samples=[1,2,3,4,5,6,7,8])

>>> X

>>> Uncertain variable:
Mean: 4.5
Variance: 3.828125
Bins: 4

Bin Width: 1.75
>>> print (X)
0 >>> 4.5

© ® a9 T AW N e

Listing 3.12: Using the __str__() overloaded method prints the expected value of X:
E[X]. The method __repr__() is an unambiguous way to represent the characteristics
of each Uncertain variable.

Method | Usage | type(a) | type(b) | Return type
__bool _ if (x) Uncertain | - bool
__contains__ | b in a Uncertain | Number bool
__str__ str(a) Uncertain | - -
__format__ f"{a:b}" | Uncertain | str str

__int__ int(a) Uncertain | - int
__float__ float(a) | Uncertain | - float

__len _ len(a) Uncertain | - int
__repr__ print(a) | Uncertain | - str

Table 3.6: Overloaded magic methods of the Uncertain type derived from Python’s
template class. In the column Method we list the method, followed by an example in
column Usage, the type of operands, as well as the Return type.

79

3.4.4 Plotting Uncertain objects

To assist in extracting uncertainty from Uncertain objects we imple-
ment the plot method. We wrap the widely used matplotlib.pyplot.hist()
with the plot() method to visualize any Uncertain variables. The user
has the option to place the histogram on the current axis or provide a
different one. The two axes x, y contain information for the distribution
support Ry and probability density (or frequency) respectively. We gen-
erate the entirety of the diagrams and plots used in this thesis with the
plot () method. We provide usage examples in Listings 3.13, 3.14 and
the respective results in Figures 3.6 and 3.7. The parameters that of the
plot () method are:

—_

ax: <plt.Axes> which axis to plot on, The default is: plt.gca(.
2. color: <str> Fill color of the histogram.

3. xlabel_flag: <bool> Set the xlabel defined by Uncertain if set
to True or leave empty if set to False. The label is: "Distribution
Support”

4. ylabel_flag: <bool> Set the ylabel defined by Uncertain if set to
True or leave empty if set to False. The label is: “Probability Density
- Plotting width = _”

5. label: <str> Label of the data.

6. mean: <bool> Plot the mean value as a black vertical line if set to
True.

7. density: <bool> Plot the Uncertain variable as a density his-
togram if set to True or as a Frequency histogram if set to False.

8. kwargs: Keyword arguments

(a) alpha: <float> Alpha value of the histogram.
(b) edgecolor: <str> The edgecolor of the histogram bars.

(¢) £fill: <bool>: Fill the bars with color if set to True of leave
empty set to False.

(d) hatch: <str>: The fill pattern to fill the bars. Used only if
fill is True.

(e) hist: <bool> plot the histogram if set to True or plot the
Kernel Density Estimation if set to False.

80

https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.hist.html

© ® a Ut W N =

(f) kde: <bool>: Plot the Kernel Density Estimation (Estimated

PDF), if set to True.

(g) kwargs: Any other matplotlib.pyplot Keyword arguments.

from UPROP import Uncertain
import numpy as np
import matplotlib.pyplot as plt

norm = np.random.default_rng() .normal(10,5,5000)

X = Uncertain(norm, bins=50)

X.plot(color='b', alpha=.3,
label="X", f£ill=True,
hatch="*", edgecolor='b',
ylabel_flag=True,
xlabel_flag=True)

plt.grid()
plt.legend()
plt.show()

Listing 3.13: Using the Uncertain ’s plot() method to visualize an Uncertain vari-

able X ~ N (10,5) with a star(*) hatch.

0.08 lim —— X Mean value
- 1 X
b —
30.06 -
[0]
[a)]
b .
50.04 =
© |
.8 _
2 r‘ (
0.02 B [~
I H |
0.00 ﬁﬁﬁﬁw{w FTk%ffﬁ
=10 -5 0 5 10 15 20 25

Figure 3.6: Result of Listing 3.13 using the Uncertain ’s plot() method to visualize

Distribution support

an Uncertain variable X ~ A(10,5) with a star(*) hatch.

81

© 0 a3 U s W N -

T Ty
© 0 a3 O W N = O

from UPROP import Uncertain
import numpy as np
import matplotlib.pyplot as plt

norm = np.random.default_rng() .normal(10,5,5000)
uni = np.random.default_rng() .uniform(15,40,5000)

X = Uncertain(norm, bins=50)

X.plot(color='r', alpha=.5,
label='X")

Y = Uncertain(uni, bins=50)

Y.plot(color='b', alpha=.5,
label='Y', mean=False,
ylabel_flag=True,
xlabel_flag=True)

plt.grid()
plt.legend()
plt.show()

Listing 3.14: Using the Uncertain ’s plot () method to visualize two Uncertain vari-
ables X ~ N (10,5) and Y ~ U(15,40) using different parameters for each one.

0.08 —— X Mean value |
= Y Mean value
Em X
Y
20.06
2
7}
[a)]
)
=0.04
Q
3
o
o
0.02
0.00

-10 10 20 30 40
Distribution support

Figure 3.7: Result of Listing 3.14 using the Uncertain ’s plot() method to visualize

two Uncertain variables X ~ N(10,5) and Y ~ U(15,40) using different parameters
for each one.

82

Chapter 4

Evaluation

In Chapter 3 we discuss the implementation of the UPROP Library,
following the specified design principles in Section 3.1. In this Section we
experimentally evaluate the usage of the UPROP Library in real world
applications. In Section 4.1 we present the necessary information and
evaluation metrics needed to understand the rest chapter. We commence
with micro benchmarks in Section 4.2 by evaluating the overloaded arith-
metic and conditional operators. We extend our test suite with two appli-
cations manipulating experimental measurements: (i) Speed estimation
from uncertain GPS coordinates and (ii) A clap detection algorithm from
recorded sounds. We finally proceed to compare the UPROP Library
with the state-of-the-art and rate it’s performance.

4.1 Evaluation Introduction

4.1.1 Monte Carlo Simulation

The golden stantard method for uncertainty propagation in the re-
search and industry community is the Monte Carlo Simulation (MCS).
It is a mathematical technique, which we use to estimate the possible
outcomes of an uncertain event. The Monte Carlo Simulation is basically
a family of computational algorithms that rely on repeated random sam-
pling to obtain certain numerical results, and we use it to solve problems
that have a probabilistic interpretation [28].

Monte Carlo Simulations works by selecting a random value for each
task, and then building models based on those values. This process is
then repeated multiple times, with different values so in the end, the
output is a distribution of outcomes. In Listing 4.1 we present the Monte

83

-

@ Ut W N

Carlo Simulation for sampling a Multivariate Gaussian distribution of the
2-dimensional random vector X = (X1, X3)T X ~ N (u,X). Figure 4.1
we plot the resulting Multivariate Gaussian.

MONTE_CARLO_MAX_SAMPLES = 5000

gaussian_2D = []

for _ in range(0, MONTE_CARLO_MAX_SAMPLES):
sample_1 = random.normal (size=1)
sample_2 = random.normal (size=1)
gaussian_2D.append([sample_1, sample_2])

Listing 4.1: Sampling a Multivariate Gaussian Distribution using the Monte Carlo
Simulation.

® Monte Carlo Samples

o 14934
.Q’ £

AT €551 Se

-2 XY Co 00D OIS &, % ® o
. Eis..is' 550 o, Ve ;S},%;Sﬂgea cPJ.s.:
° ®e o ® v Qg.o ¢ S'G".C “. 0%
. .. o o o q,::: .3.3..0 ° .. . °
-3 o, ..:o %s ¢ oo . ¢
. . e .
..‘
-4 -3 Y -1 0 1 2 3 4

Figure 4.1: Sampling a Multivariate Gaussian with Monte Carlo Simulation.

84

4.1.2 Normalized Wasserstein distance

In Section 2.3 we present the Wasserstein Distance metric, which is a
method to evaluate divergence between two multi-dimensional distribu-
tions. In this section we present an alternative usage of the Wasserstein
distance to compare two frameworks with distributional output.

As we mention in Subsection 2.3.3, when we calculate the W, dis-
tance between two distributions, we calculate the area between the two
distributions’ CDF curves. Thus the calculated distance value is strongly
bonded to the distribution support Rx of each distribution. In our case,
we desire a uniform metric value for the entirety of our tests. To do
so, we have to detach the distance from the distribution support. We
therefore introduce the Normalized Wasserstein distance:

Definition 4.1.1 Let I, Iy, F,¢ be three cumulative distribution functions for
three random variables. Let W, be the Wasserstein-1 distance. We define the
Normalized Wasserstein Distance as the ratio of two W, distances:

Wi (Fa, Fry) _ Jr|Fale) - Frf(w)| da
Wi (Fo, Frg) J |[Fo() = Frg(w)| do

NWD = (4.1.1)

The NWD takes values in the range: [0,00) with values closer to 0
meaning that F;, has a smaller Wasserstein distance to [y than F; has
to Frer. The NWD enables us to compare the distributional output of the
UPROP Library with the particle value calculation method (conventional
method) or any other framework.

In this thesis we use the inverse Normalized Wasserstein distance
(NWD™) to denote the accuracy gain of the UPROP Library, over the
particle method calculation, using the Monte Carlo Simulation as the
baseline. We consider the MSC as the golden truth. In Sections 4.2, 4.3,
and 4.5 we calculate the Wasserstein distance of MSC (F}.;) for both the
UPROP Python Library (F,) and the particle method calculation (F;) and
proceed to calculate their inverse Normalized Wasserstein distance.

4.2 Operators evaluation

The fundamental goal of this research is to make it feasible for de-
velopers to use the UPROP Library instead of the conventional numeric
types such as int, float, etc. As we mention earlier in Chapter 3 it
is of utter importance that we fully implement and test the basic: The
arithmetic and comparison operators.

85

4.2.1 Arithmetic Operators

To test the arithmetic operators we performed a series of simple op-
erations between Random Variables representing specific distributions.
For example we add, subtract, multiply and divide two Random Vari-
ables: X; ~ N (10,1) and X, ~ 4£(0.5,1.0) using the UPROP Library. We
then perform the same calculation with the Monte Carlo Simulation and
measure their Normalized Wasserstein distance. Figure 4.2 shows the vi-
sualized results for each operation and Table 4.1 shows the mean values
obtained for each number of bins across all benchmarks. The minimum
accuracy gain over the particle sample calculation, is is 1.03x for 8 bins
and the maximum is 44.62x for 1024 bins.

Operation: +

21.0] = & Norm(L,0.01) + Norm(1,0.1)
ﬁ ‘\ #- Norm(-1000,100) + Uniform(500,1500)
g N #— Norm(10,1) + Uniform(0.5,1.0)
H 0.8 N Poisson(10,1) + Uniform(0.5,0.7)
= \\ —r— Rayleigh + Uniform(0.5, 1.0)
@
S
c
50.6 \
8 N \
£ N
c &\
o \
20.4
@
§ A
E SN
50.2 ~ N\
] R
= e
g e . .
£0.0
10! 102 103

Number of bins

(a) Normalized Wasserstein distance of addition op-
erator (+).

Operation: *

e

=
v
o

& Norm(0.5,1) * Norm(0.1,1)

& Norm(-1000,100) * Uniform(-500,1500)

#— Norm(10,1) * Uniform(0.5,1.0)
Poisson(10,1) * Uniform(0.5,0.7)

| —— Rayleigh * Uniform(0.5, 1.0)

=
N
S

=

o

=)
P

Normalized Wasserstein distance (lower is bett
o
w
o
I
L/

©
N
o

»

°

N

ul
0¥

B
10! 102 103

Number of bins

o
o
=]

(c) Normalized Wasserstein distance of multiplication
operator (¥).

Operation
1.0 = @~ Norm(0.5,1) - Norm(0.1,1)

#- Norm(-1000,100) - Uniform(-500,1500)
—4— Norm(10,1) - Uniform(0.5,1.0)
0.8 N Poisson(10,1) - Uniform(0.5,0.7)
—— Rayleigh - Uniform(0.5, 1.0)

]
b
5
H
o
g
2 0.67
2 B\\
] N\
£0.4 N
0) N
g * \\\
2
$0.2 -y
1 ' e
E \I\g\g‘*.
£0.0
10! 107 103

Number of bins

(b) Normalized Wasserstein distance of subtraction
operator (-).

#— Norm(0.5,0.1) / Norm(10,0.1)

#- Norm(10,1) / Uniform(0.5,1.0)

4— Poisson(10,1) / Uniform(0.5,0.7)
Rayleigh / Uniform(0.5, 1.0)

Iy
o
»

0.8 «
g
£06 s
%0.4 ENAN
g ¥
= N
30.2 =~
= L
£ —
£0.0
107 102 103

Number of bins

(d) Normalized Wasserstein distance of division op-
erator (/).

Figure 4.2: This Figure shows the Normalized Wasserstein distance (y-axis) between
the distributionl output of the UPROP Library and the particle sample calculation. We
measure this distance from the Monte Carlo Simulation. Lower is better. We condition
each operator to a series of tests, and we perform each test for a different number of
bins (x-axis). We notice that the greater the number of bins, the higher the accuracy.

The selection of the representation size (number of bins) embodies the
classic speed-accuracy trade-off. At small bin numbers, the calculation

86

is quick, but more inaccurate. At large bin numbers, the reverse is true:
the calculation is slow but accurate. Choosing the correct bin number is
therefore critically important: too high and the Uncertain type will be
too slow for practical use; too low and it will be too inaccurate to solve
real problems.

Bins\Operation | Add | Sub | Mul | Div

8 1.16 1.15 1.03 | 1.03
16 2.14 | 212 1.23 1.81
32 412 | 448 | 3.72 | 3.65
64 7.95 | 8.13 7.17 7.17
128 15.28 | 15.51 | 14.25 | 14.39
256 26.82 | 25.24 | 25.22 | 25.92
512 38.15 | 38.72 | 35.94 | 31.54

1024 42.94 | 44.61 | 42.98 | 41.98

Table 4.1: Mean inverse-Normalized Wasserstein distance between the Particle and the
UPROP Library implementation for the arithmetic operators for each number of bins.

4.2.2 Conditional Operators

The second major milestone to achieve with the UPROP Library is
to provide developers the ability to extract or query uncertainty from
Uncertain objects. This allows the user to make an informed decision
based on the propagated uncertainty. As we mention in Section 3.4.1,
we implement the equality(= or ==) and non-equality (+ or !=) operator
using the Kolmogorov Smirnov two-sample test [6]. For the rest opera-
tors we provide the developer with two methods which he can perform
conditional queries on Uncertain objects:

1. Stochastic Dominance and
2. Difference of Random Variables.

To test each method extensively we provide a set of Random Variables
representing specific distributions. We plot the PDF of these distributions
in Figure 4.3 and the CDF in Figure 4.4. For each method we create
a truth table (Table 4.2 and Table 4.3) to showcase the boolean results
yielded from each conditional operator.

87

0.4 | X 04 0.4 ‘ !
e HH =
: | $ 3 \ ‘
Wl i ol U \H\\um il
| \ \\ i
0.0555 00 25 50 00 To s 10 0075 5 10
Distribution Support Distribution Support Distribution Support
(a) PDF - Testcase 1 (b) PDF - Testcase 2 (c) PDF - Testcase 3
0.2 W X___ 0.4 | B X 0.2 ‘} }
o o o
o N EEEENY o W H H \\
0035 "0 10 20 %07 20 00— "5 10
Distribution Support Distribution Support Distribution Support
(d) PDF - Testcase 4 (e) PDF - Testcase 5 (f) PDF - Testcase 6

Figure 4.3: Probability Density Functions of two random variables used to test condi-
tional operators and infer a partial order.

Cumulative Distribution Functions of X & Y Cumulative Distribution Functions of X & Y Cumulative Distribution Functions of X & Y

1.00 1.00 /,ﬁ- 1.00 o
/ / /
0.75 0.75 / / 0.75 f——
0.50 0.50 /' —— CDF: X 0.50 /’ —— CDF: X
’ ' ‘ / — CDRY ' ; CDF: Y
0.25 CDF: X 0.25 / / 0.25 / /
_/ —— CDF: Y z / i 7
0.00 0.00 0.00
—25 00 25 50 0 5 10 0 5 10
(a) CDF - Testcase 1 (b) CDF - Testcase 2 (¢) CDF - Testcase 3
Loo Loo S Loo
-~ CDRX 7/ /7: -~ CDRX //f-
0.75 CDF: Y / 0.75 ij / 0.75 CDF: Y gj;
/ i
0.50 . 050/ 0.50 e
0.25 / 0.25 CDF: X | 425 / /
/ ~ CDFR:Y o/
7 . g
0.00 =S=md 0.00{ ——~ 0.00l
-10 0 10 20 0 10 20 0 5 10 15
(d) CDF - Testcase 4 (e) CDF - Testcase 5 (f) CDF - Testcase 6

Figure 4.4: Cumulative Density Functions of two random variables used to test con-
ditional operators and infer a partial order. As we show in equation 2.3.1 we compare
the two CDF to reason about a partial ordering when a conditional operator is used.

88

[X>Y [X>Y [X=Y[X#Y [X<Y [X<Y

Testcase 1 | False *True* | True False False *True*
Testcase 2 | False False False True True True
Testcase 3 | False False False True True True
Testcase 4 | False False False True False False
Testcase b | False False False True *False* | *False*
Testcase 6 | False False False True False False

Table 4.2: Conditional operators results for Testcases 1-6, using Stochastic Dominance
method. The values with the asterisk * note the different result between the RV-Difference
method and Stochastic Dominance method.

We notate the differences between Tables 4.2 and 4.3 with a star .
The Stochastic Dominance methods basically requires the sign of I:

I = CDF(X =k) — CDF(Y =k),Vk € Rx | J Ry
to not change at any value £:
sngl =1,Vk or sngl = —1,Vk

with sng beeing the sign function:

-1 ifz<0
sgnx =<0 ifx=0
1 ifz>0
[X>Y [X>Y [X=Y [X#Y | X<V [X<Y
Testcase 1 | False *False* | True False False *False*
Testcase 2 | False False False True True True
Testcase 3 | False False False True True True
Testcase 4 | False False False True False False
Testcase b | False False False True *True* | *True*
Testcase 6 | False False False True False False

Table 4.3: Conditional operators results for Testcases 1-6, using RV-Difference method.
The values with the asterisk * note the different result between the Stochastic Dominance
method and RV-Difference method.

Of course, the results of Table 4.3 the user-defined comparison thresh-
old we mention in Subsection 3.4.1 affects the result. We find that by
lowering the threshold we obtain more True results.

89

4.3 Speed calculation from uncertain GPS co-
ordinates

A common problem in our everyday life is inaccurate navigation in
mobile applications that utilize the Global Positioning System (GPS) [29].
A satisfactory navigation service requires an accurate positioning technol-
ogy. Most modern smartphones have GPS sensors to estimate the user’s
location, and an abundance of smartphone applications consume this lo-
cation estimate through APIs. Even though the current smartphones
have integrated multiple sensors, such as Global Navigation Satellite Sys-
tem receiver, gyroscope, accelerometer and magnetometer sensors, the
performance of positioning in even in urban environments is still not ac-
curate. The reasons of the errors include GNSS signals reflections, high
dynamic of pedestrian activities and disturbance of the magnetic field in
city environments.

Path fitted over Google Earth based on measured coordinates
23.00 =

e Coordinates

22.99

22.98

Latitude (°)

N
N
©
N

22.96

22.95

40.66 40.68 40.70 40.72
Longitude (°)

Figure 4.5: GPS Coordinates measured through the PhyPhox [7] mobile application,
approximately fitted on top of Google Earth [30].

Bornholt [3] shows that using measurements, from sensors, as facts
could lead to false positives and or false negatives. There have been
attempts to improve the performance of GPS usage. Whang et al [31]

90

suggest the utilization of the camera sensor for improving the accuracy
of the positioning. Ofstad et al [32] propose accelerometer augmented
mobile phone localization (AAMPL), a system that uses accelerometer
signatures to place mobile phones in the right context.

To demonstrate the feasibility of calculations using Uncertain objects
we implement an application using the Global Positioning System (GPS).
The example in Listing 1.1, replicating a situation where a autonomous
car has to brake based on the leading cars distance, indicates the hazards
of uncertainty in measurements. This particular example motivates us
to implement an application that estimates speed using uncertain GPS
measurements from the user’s smartphone. We focus on the GPS do-
main because GPS applications are simple to understand, pervasive in
the mobile computing landscape, and commonly experience uncertainty
in measurements.

4.3.1 Calculating displacement from coordinates - The
Haversine Formula

GPS satellites broadcast signals from space, and each GPS receiver
uses these signals to calculate its three-dimensional location (latitude(°),
longitude(®), and altitude(m)) relative to the Equator, the prime meridian
and the sea level accordingly. Since the measured coordinates are in
degrees(®) we have to use the haversine formula to determines the great-
circle distance between these two points on a sphere.

We calculate the distance (D) of two coordinates using the Haversine
Formula [16] shown in equations 4.3.1, 4.3.2 and 4.3.3. The haversine
formula allows to compute the great-circle distance between two points
— that is, the shortest distance over the earth’s surface directly from the
latitude (represented by ¢) and longitude (represented by)\) of the two
points. R = 6,371,000 represents the radius of the Earth in meters.

a = sin® (Aj> + cos¢y - cosPy - sin? (?) (4.3.1)
c =2 -arctan2(v/a, /(1 — a)) (4.3.2)

D=R-c (4.3.3)

4.3.2 Measuring GPS coordinates

Using the PhyPhox [7] mobile application we collected GPS Coordi-
nates as we show in Table 4.4. The main file columns that interest us
are: (i) Time, (ii) Latitude, (iii) Longitude, (iv) Altitude and (v) Speed.
Figure 4.5 presents the measured coordinates approximately fitted on top
of a screenshot of Google Earth [30].

File column

| Measurement 1 |

Measurement 2 | ...

Time (s) 11.853037 12.842904
Latitude (°) 40.727566 40.727483
Longitude (°) 22.985232 22.984930
Altitude (m) 188.420768 190.421115
Altitude WGS84 (m) 234.0 236.0
Speed (m/s) 27.410000 27.269999
Direction (°) 250.300003 250.199997
Distance (km) 2.097027 2.124238
Horizontal Accuracy (m) | 2.5 2.0
Vertical Accuracy (m) 100.0 100.0
Satellites 17 18

Table 4.4: Measurements collected by the PhyPhox [7] mobile application.

—— Measured speed(km/h)

—— Measured speed(km/h)

—— Measured speed(km/h)

(a) Test 01

(b) Test 02

(c) Test 03

Measured speed(km/h)

—— Measured speed(km/h)

—— Measured speed(km/h)

(d) Test 04

(e) Test 05

(f) Test 06

Figure 4.6: This Figure shows the user’s speed as calculated by the PhyPhox [7] mobile

application.

92

4.3.3 Converting measurements to Uncertain objects

As we mention in Chapter 3, we can initialize any Uncertain object
using a set of samples. Thus we have to convert the obtained measure-
ments to a distribution of samples and, consequently, perform the speed
calculation. Different smartphone Operating Systems (OS) manufacturers
provide a different definition of GPS accuracy:

¢ Android’s [33] developers documentation suggests: We define hori-
zontal accuracy as the radius of 68% confidence. In other words, if
you draw a circle centered at this location’s latitude and longitude, and
with a radius equal to the accuracy, then there is a 68% probability that
the true location is inside the circle.

¢ i0S’s [34] developers documentation suggests: Horizontal Accuracy:
The radius of uncertainty for the location, measured in me-
ters. The location’s latitude and longitude identify the center of the
circle, and this value indicates the radius of that circle. A negative value
indicates that the latitude and longitude are invalid.

We use an Android smartphone to obtain the measurements, so we
consider the horizontal accuracy field provided by PhyPhox [7] as the
radius of 68% confidence. In Figure 4.7 we present two different ap-
proaches to represent uncertainty in measurements. We sample a mul-
tivariate Gaussian distribution around the measured coordinates, with
o equal to the provided horizontal accuracy (Table 4.4) as we show in
Figure 4.7a.

3D Heatmap of sampled Coordinates (Lat,Lon) 3D Heatmap of sampled Coordinates (Lat,Lon)

51

soiduwes

40.72740
4072745
4072750 0
22.98520 4072755
072760
0, 2298530 4072765 oo
e S
U 40.72770
22.98528 “40.72762 2298540 4072775

(a) Based on a Gaussian distribution. (b) Based on a Rayleigh distribution.

Figure 4.7: Sampling around the measured coordinates to add artificial noise in mea-
surements. We placed the reference point in the centre of the plot.

93

Bornholt [3] proposes that it is high unlikely that the user’s true location is
exactly in the centre of the distribution, thus sampling a Rayleigh distribution
around it. We test this claim by adding a second sampling method as
we show in Figure 4.7b sampling a mutlivariate Rayleigh distribution.

sampled of two Sampled of two consecutive

22.9659 [Accuracy (i): 2.0 (m)

] Accuracy (i+1): 2.0 (m) 22.9526
Measurement (i)
Measurement (i+1)

22.9659
22.9526
22.9658

22.9526
22.9658

Latitude ()
itude (°)

22.9658 §22.9525

22.9657
22.9525

22.9657 yhiea e !
[Accuracy (i): 3.5 (m)
[Accuracy (i+1): 3.5 (m)
Measurement (i)
Measurement (i+1)

22.9525
22.9657

22.9525
20628480 6284 6284 0 6249 6245 62430 62450 6240 406397 406302 56303 ;6303 6303 46303

Longitude (%) Longitude (*)

(a) Consecutive measurements with major displace- (b) Consecutive measurements with minor displace-
ment. (speed # 0) ment. (speed = 0)

Figure 4.8: The sampling radius overlaps between moving and stationary states. Using
a circle around the sampling point, we depict the corresponding horizontal accuracy of
the measurement.

The function init_uncertain_tuples() in Line 4 of Listing 4.2 sam-
ples a two-dimensional Gaussian Distribution around particle measured
tuples <latlon> and converts them to Uncertain objects. In Figure 4.8
we can distinctly observe the difference between stationary and non-
stationary states when measuring the GPS Coordinates. There is a signif-
icant overlap between the two sampled distributions. Although the two
sampling centers differ, this could lead to ambiguous results. For ex-
ample, the user may be travelling forward, while the GPS measurement
indicates that he is moving backward. This unveils the need to com-
bine GPS Satellites measurements with other sensors’s data to improve
accuracy.

4.3.4 Speed estimation with Uncertain objects

Following the conversion of coordinates to Uncertain objects comes
the speed estimation. This process includes using the Haversine Formula
(4.3.1) to estimate the displacement and then calculate displacement over

94

time to obtain the desired value. Listing 4.2 shows the algorithm we use
to perform these calculations. We also present the equivalent with particle
values in Listing 4.3. The only differantiation between the two Listings
is the definition of a complementary function to initialize the Uncertain
objects and the usage of the u_map() method to assist calculations.

from UPROP import Uncertain
from numpy import radians, sin, cos, sqrt, arcsin

def init_uncertain_tuples(lat, lon, horiz_accuracy):
lat_dist, lon_dist = multivariate_normal(lat, lon, horiz_accuracy)
lat_unc = Uncertain(lat_dist)
lon_unc = Uncertain(lon_dist)
return (lat_unc, lon_unc)

def calculate_displacement(latl, lonl, lat2, lon2):

latl = latl.u_map(radians) ; lonl = lonl.u_map(radians)
lat2 = lat2.u_map(radians) ; lon2 = lon2.u_map(radians)
dlat = (lat2-latl)/2 ; dlon = (lon2-lonl)/2

al = dlat.u_map(sin)**2

a2 = latl.u_map(cos)*lat2.u_map(cos)
a3 = dlon.u_map(sin)**2

a = (al + a2*a3).u_map(sqrt)

return 2 * a.u_map(arcsin) * 6371000

for i in range(len(coords)):

latl, lonl = init_uncertain_tuples(coords[i] [0], coords[i][1])

lat2, lon2 = init_uncertain_tuples(coords[i+1] [0],

coords [i+1] [1])
displ = calculate_displacement(latl, lonl, lat2, lon2)
dt = time[i+1]-timel[i]

speed = (displ/dt) .u_map(kmh)

Listing 4.2: In this Listing we show the speed estimation from “noisy” or uncertain GPS
measurements. In line 4 we initialize two Uncertain objects which we use to calculate
the Haversine formula we present in Subsection 4.3.1. We later divide the estimated dis-
placement with the elapsed time to calculate the speed. Throughout the code (Lines 12,
13, 17, 18, 19, 20, 34) we use the u_map method included in the UPROP Python Library.
Listing 4.3 shows the equivalent calculations using particle measurements.

95

from numpy import radians, sin, cos, sqrt, arcsin

def calculate_displacement(latl, lonl, lat2, lon2):

latl = radians(latl) ; lonl = radians(lonl)
lat2 = radians(lat2) ; lon2 = radians(lon2)
dlat = (lat2-1latl)/2 ; dlon = (lon2-lonl)/2

al = sin(dlat)**2

a2 = cos(latl)*cos(lat2)

a3 = sin(dlon) **2

a = sqrt((al + a2*a3))

return 2 * arcsin(a) * 6371000

for i in range(len(coordinates)):

latl, lonl = coordinates([i][1], coordinates[i][1]

lat2, lon2 = coordinates[i+1][1], coordinates[i+1][1]
displ = calculate_displacement(latl, lonl, lat2, lon2)
dt = timel[i+1]-time[i]
speed = kmh(displ/dt)

Listing 4.3: In this Listing we show the speed estimation from the particle measure-
ments we collect. We use the Haversine formula (subsection 4.3.1) to calculate the
displacement. We later divide it with the elapsed time between measurements to cal-
culate speed. Listing 4.2 shows the equivalent calculations using Uncertain objects.

4.3.5 Speed Estimation Results

In the previous subsection (4.3.4) we present the methodology for es-
timating the user speed based on uncertain measurements. In this Sub-
section we present the results of those calculations, as well as comparison
with the conventional method of calculations, which is the particle
sample calculation. We consider the Monte Carlo Simulation (Ref: Sub-
section 4.1.1) to be the golden standard for uncertainty propagation, thus
we compare our implementation and the particle sample calculation with
the Monte Carlo Simulation distributional results.

We present the performance results of our model in Table 4.5. On
average we have a 10x performance gain over the particle sample cal-
culation. This performance gain ranges from 2x to 34x in specific
tests. We extract the performance evaluation of our model based on the

96

Normalized Wasserstein metric (Subsection 2.3.3).

Performance Gain
Test id \ Min \ Mean \ Max
Test 01 | 2.07 | 2.71 3.91
Test 02 | 1.77 | 2.34 | 5.04
Test 03 | 17.01 | 34.73 | 52.79
Test 04 | 2.0 7.79 44 .41
Test 05 | 4.24 | 15.08 | 79.06
Test 06 | 2.36 | 5.57 | 29.06

Table 4.5: This table shows the UPROP Library accuracy gain over the particle sample
calculations. Comparing these results after observing Figure 4.11 it becomes obvious
that there is a strong connection of accuracy in calculations with accuracy in GPS mea-
surements and thus the sampling radius. This is a generally expected behavior.

We plot our speed estimation results in Figure 4.9 using two methods:
O Uncertain objects and

® Particle value calculations (calculations with only the measured co-
ordinates), as we show in Listing 4.3.

We depict the Uncertain objects mean values with bold blue color, as well
as it’s minimum and maximum values with faint blue. The measured
value (with bold green color) is the speed as estimated by the PhyPhox
application. We show the particle calculated values (@) with red color.

On average the Uncertain model’s mean value is on-par with the par-
ticle calculated value. Besides this convergence, On most occasions the
UPROP Library manages to propagate the input uncertainty to the
output. The effect of this uncertainty is visible in the plotted results. The
minimum and maximum value, in particular calculations, diverge more
than 50% of the mean value from the mean value. The UPROP Library
exposes this effect, thus assisting the developer to take more informed
decisions.

In some calculations, the Uncertain model fails to calculate the true
speed mean value: We conclude that: The closer to O the calculated
value, the higher the inaccuracy of our model. This is markedly
observable in tests: 01-(Figure 4.9a), 02-(Figure 4.9b), 04-(Figure 4.9d)
and 06-(Figure 4.9f).

97

—— Uncertain mean
—— Particle

— Uncertain max
Uncertain min

—— Uncertain mean ’ : N 60
—— Particle B
——— Uncertain max
2 Uncertain min

—— Uncertain mean e
—— Particle

w0i- ——— Uncertain max
Uncertain min

— Uncertain mean

= Particle

-~ Uncertain max
Uncertain min

(d) Uncertain speed estimation - Test 04

—— Uncertain mean
—— Particle

-~ Uncertain max
Uncertain min

e —— Uncertain mean

| — Particle f ©
— Uncertain max | 20, / [/ N
2 Uncertain min . L/ | / Y \MJ
TS e me Be W Wo Wy #r Sw 5 5 I R e I e
(e) Uncertain speed estimation - Test 05 (f) Uncertain speed estimation - Test 06

Figure 4.9: Speed estimation - Comparison between using the UPROP Python Library
and the particle values. We depict the mean, min and max values of each method. The
solid faint red and blue lines depict the minimum values and the faint dashed lines (in
the top of each plot) the maximum values of each method accordingly.

The effect of the selected memory representation and of correlation.

We attribute this behavior to the distributional nature of the Uncertain
objects. We found that this behavior only occurs in certain conditions and
transformations:

©® the Uncertain ’s distribution support (Rx) has to be on either side
of 0 (containing both negative and positive values),

@ the transformation function should be even f(z) = f(—z)e.g. f(z) =
22 or f(x) = |z|, and

® we should keep track of autocorrelation.

98

N o U W N e

Suppose we have an example where we have the particle value x = 0
and the corresponding Uncertain object is a normal distribution with
undefined variance and p = 0. If we pass the object through an even
function the generated Uncertain object becomes skewed (positively or
negative depending on the function’s sign) while the relevant particle
value is approximately 0. We showcase this behavior in Figure 4.10
and we present the relevant pseudocode in Listing 4.4. In particular
we set the particle value p; = 0 and the equivalent Uncertain value:
u; = Uncertain(X ~ N(0,1)). We depict p, with the solid red line and
the mean(u,) with the solid green line. For the transformation we choose
the even function f(z) = z?. Thus p, = p? = 0 and uy = u}. More
specifically, if:

O autocorrelation ON: u;y represents the Laplace distribution with p =
0 and b = 1 (Gaussian Mixture [35]).

® autocorrelation OFF: u, represents the chi-squared (y?) distribu-
tion with degree of freedom k =1 [36].

X = Uncertain(gaussian(0,1))

autocorrelation_ON()
Y = XxX

autocorrelation_OFF ()
Y = XxX

Listing 4.4: This Listing shows the pseudocode needed to generate the distributions in
Figure 4.10. By setting autocorrelation ON we generate the chi-squared (x?) distribution
and by setting it OFF we generate the Laplace distribution.

We see this behavior in the GPS application since even functions appear
in the Haversine Formula. Specifically in equation 4.3.1 we have the
function: f(z) = sin®’. We test both cases of autocorrelation and we
observe that if we choose the latter case: autocorrelation OFF, we have to
normalize our data since we later map the squared value to the sqrt()
function. As we know the sqrt takes only positive input values. This

limits the accuracy of our model in values near 0 as we can observe in
tests 01, 02, 04 and 06.

99

=== X Mean value
m— Particle Value
. X

0.4

Probability density - (Plotting bin width = 0.0743)

Distribution support

(a) Input Uncertain value u; = Uncertain(X ~ N(0, 1)) and input particle value p; = 0.

— X2 Mean value — X Mean value

I — Particle Value — Particle Value
- x

00 1T TTTI o
a 0 2 4 6 8 10 12 . -10 -5 [) 5 10 15

(b) Autocorrelation ON: Uncertain value us = uf

and particle value pz = p? = 0. There is a significant
deviation between mean(uz) and p2. The distribution
of uz becomes positively skewed.

(¢) Autocorrelation OFF: Uncertain value ug = u%

and particle value p> = p% = 0. The mean value
of the Uncertain object is equal to the particle value
after the transformation (mean(u2) = p2).

Figure 4.10: Distributional analysis of Uncertain variables with autocorrelation ON
and OFF. With autocorrelation ON: in Figure 4.10b, uz ~ (x?) (chi-squared distribution
with £ = 1). With autocorrelation OFF: in Figure 4.10c us ~ Laplace(u = 0,b = 1).
Ideally it should be: mean(us) & p, for every situation.

We also observe a highly dependent relationship of the distribution
support range Rx with the accuracy of measurements. We can notice
that, by comparing Figure 4.11a and 4.11b. The higher the meaure-
ment accuracy the lower the Normalized Wasserstein distance Which
means that the smaller the radius around the sampling point, the higher
accuracy we obtain. We certainly expect this behavior since the devia-
tion of the sampled distribution decreases and thus we propagate less
uncertainty through the model.

100

=== Accuracy(m) |5, 0.5
W
w 45 0.4
4.0 R

3.5: 03 +—— Normalized Wasserstein - Moving Average 10
: i Normalized Wasserstein

—— Speed(km/h)

60 3.0i 20.2

40 25

20 2.0 0.1

of L AMUWAAMA L N 15 0.0

(a) Measured speed vs measurement accuracy - Test (b) Normalized Wasserstein distance - Test 04.
04.

Figure 4.11: This Figure shows that tncertainty in measurements is highly dependent
to uncertainty in calculations. When we obtain high

_ 0.06
Ao S —— Normalized Wasserstein - Moving Average 10
0.4 A S 0.5 T A Normalized Wasserstein
I \ 0.l IR RS Nk \
- VI \ i 0.04
0.3 S~ NENE A ;) \f”/ \ T
0.3] ATy i ARy AN \ SN
02 | A , WY AN A
0.2 0.02 i
0.1 — Normalized Wasserstein - Moving Average 10 0.1| — Normalized Wasserstein - Moving Average 10
Normalized Wasserstein Normalized Wasserstein
0.0 - 0.0 0.00

(a) Normalized Wasserstein dis- (b) Normalized Wasserstein dis- (¢) Normalized Wasserstein dis-

tance - Test 01 tance - Test 02 tance - Test 03
0.5 A —— Normalized Wasserstein - Moving Average 10 0.4| — Normalized Wasserstein - Moving Average 10
04 / { 0.20 Normalized Wasserstein Normalized Wasserstein
. 1
J M 0.3 .
A | I - A
0.3 ' 2 Normalized Wasserstein - Moving Average 10 | |0+ | vl ‘\‘[\\‘ //\\ \ |
: / Normalized Wasserstein i I 0.2 /B Y
0.2f i 0.10 o ‘kw M ™ / ‘L/\\ | \ / “\
{ / N s AR AR a
0.1 L 0.05| A Mt AN VR 0af DA
o\ —
B i N V s
0.0 0.00 0.0

(d) Normalized Wasserstein dis- (e) Normalized Wasserstein dis- (f) Normalized Wasserstein dis-
tance - Test 04 tance - Test 05 tance - Test 06

Figure 4.12: Normalized Wasserstein distance for each test. We generate each result
between using the UPROP Library and the Monte Carlo Simulation. Table 4.5 presents
the min, mean and max values of this Figure.

Figure 4.13 presents the speed values calculated by using the UPROP
Library and the Monte Carlo Simulation. Based on it we can safely state
the UPROP Library usage yields narrower distribution support values
than the Monte Carlo implementation. This explains the results in Ta-
ble 4.5 and why the Uncertain model has at least 2x accuracy for each
test. We should also note that both the Uncertain model and the Monte
Carlo Simulation fail to capture the values near 0 due to the reasons we
explain earlier.

We also notice a significant deviation between the particle and mea-
sured values. In Figure 4.14 we plot the ratio %ﬁ;. Ideally this ratio
should be equal to 1. In Test 02 (orange line) for particular particle values
are 10x the measured value. This raises questions for both the quality

101

of measurements and the back-end calculations of the PhyPhox [7] ap-

plication.

Test 9: Speed comparison: Monte Carlo vs Uncertain vs Particle Value

—— Particle Value
Monte Carlo max

—— Monte Carlo mean
Monte Carlo min
Uncertain max

150 .
— Uncertain mean

Uncertain min

Speed values (km/h)

2

Monte Carlo samples frequency

Figure 4.13: Speed estimation - Test 04: Comparison between using the UPROP
Library vs the Monte Carlo Simulation and the particle values. We depict the mean,
min and max values of each method. For the Monte Carlo Simulation we also plot the
heatmap of the calculated values.

10 — Test 01
—— Test 02
— Test 03
8 — Test04
—— Test 05
— Test 06
6
4
2
e A |
ettty
0
. particle
Figure 4.14: This Figure shows the Particle vs Measured values ratio: ————-. Ideally

the ratio should be equal to 1. Specific particle values in Test 02 are almost 10x the

measured value.

102

4.4 Detecting claps from noisy sound signals

Following the GPS application we now face a challenge with the UP-
ROP Python Library. A major step in programming with it, is asking
questions with conditional operators. Speech recognition is one of the
most emerging fields of research, as speech is the natural way of commu-
nication [37]. Researchers develop neural networks for speech recognition
even in smartphones [38, 39]. There is also an emerging research interest
in sound quality [40, 41] in the telecommunications sector. The rising

research interest lead us to develop an application with sound recognition
using the UPROP Python Library:

(a) Input sound signal consisting of 1 distinct clap. (b) Input sound signal consisting of 2 distinct claps.

(¢) Input sound signal consisting of 3 distinct claps. (d) Input sound signal consisting of a 8 distinct (high
SNR) claps

(e) Input sound signal consisting of 10 hard to dis- (f) Input sound signal consisting of 16 distinct claps.
tinguish (low SN R) claps.

Figure 4.15: This figure shows the recorded sound signals that we use to test the clap
detection algorithm we present in Subsection 4.4.3 using the UPROP Python Library
through the algorithm. The red line depicts the Root Mean Square Amplitude (RM.S)
of the signal, which represents its’ energy at the given time.

103

Given the popularity of speech recognition and the inseparable rela-
tion of sound and noise signals we decided to implement a naive clap
detection algorithm to showcase the usage of the UPROP Library. We
utilized as input recorded sound signals and we later enhanced the signal
with Additive White Gaussian Noise (AWGN). We select this application
because it can showcase the usage of (i) calculations and (ii) conditional
operators using Uncertain objects, to arrive at a desired result.

Clap detectors have been around for some time, with their functional-
ity ranging from switching lights on and off, to perform any user defined
action. There is a lot of research conducted on the area of sound recogni-
tion and there are different suggestions on how to detect claps [42]. Some
algorithms include estimating the absolute energy of the clap sound, its
source azimuth (estimated from stereo microphones), and its range as
conveyed by the direct-to-reverberant energy balance [43].

4.4.1 Problem Description

The problem is to implement a simple robust method to detect single
claps in sound using the UPROP Library. The algorithm should be able
to detect the exact number of claps present in the input sound signal
and output this clap count. We recorded a series of sound signals, each
with a different amount of claps and interval between them. Figure 4.15
shows 4 of the recorded sounds.

Two characteristics of a clapping sound:

1. there is a sudden increase in amplitude when the clap occurs [44,
42].

2. it is short in duration

4.4.2 Adding noise to a signal

Similarly with GPS speed calculation in Section 4.3 we add have to
define the noise of the inputs signals in order to use the UPROP Library.
We recorded the input signals using an XLR microphone, thus resulting
in lower Signal to Noise Ratio (SNR) [45]. The audio encoding of the
input signal is 16-bits. We propose two methods of adding noise to a
signal:

1. Adding constant Additive White Gaussian Noise [46]

2. Adding Noise based on Signal to Noise Ratio [47]

104

Adding constant AWGN

We selected adding constant Additive White Gaussian Noise (AWGN)
because it is the most widely used noise model in research to mimic
the effect of multiple random processes that occur in nature. It is the
equivalent of having background noise in the recording environment.
Listing 4.5 presents the code used to generate and add AWGN in the
input signal. Figure 4.16 shows the AWGN (4.16a) and the reference
signal combined with AWGN (4.16b).

from UPROP import Uncertain
import soundfile

signal = soundfile.read(file)
uncertain_signal = []
for measurement in signal:

noisy_measurement = numpy.random.normal (measurement,
stdev,
len(signal))

uncertain_measurement = Uncertain(noisy_measurement)

uncertain_measurement = uncertain_measurement.bound(lower=-1,
upper=1)
uncertain_signal.append(uncertain_measurement)

Listing 4.5: We convert measurements to Uncertain object by creating a distribution
N ~ (p,0) aroung constant noise. o is user-defined and y is the measured amplitude.
We bound the Uncertain variable to ensure the measurements follow the original 16-bit
audio encoding.

Adding noise based on SNR

Signal-to-Noise Ratio (SNR) is a measure that compares the level of
a signal to the level of background noise. We define SN R as the ratio of
signal power to the noise power:

P.;
SNR = (4.4.1)

where P is the average power. A ratio higher than 1 indicates that
the signal is more prominent than the noise. The Signal-to-Noise Ratio

105

is often expressed in decibels (dB).

Psi na
SN Rap = 10logy : (4.4.2)

The wide usage of SINR in the telecommunications sector as a char-
acterization for the quality of a wireless connection inspired us to adding
noise to the reference signals based on a Signal-to-Noise Ratio. Rahul
et al [47] suggest that there is a relative SN R wall after which even the
most robust detectors fail to detect the received clean signal.

—— Waveform

(a) The AWGN signal has an almost constant RMS (b) The generated signal after adding AWGN of
Amplitude of 0.2. distribution: N ~ (0,0.1). The addition of noise
adds energy to the waveform.

Figure 4.16: This figure shows the modified sound signal which is the result of: the
reference plus Additive White Gaussian Noise (AWGN).

—— Waveform —— Waveform

(a) We modify the input sound signal with by adding (b) We modify the input sound signal with by adding
noise with SNR =0 dB. noise with SNR =10 dB.

Figure 4.17: This figure shows the modified sound signal which is the result of: the
reference plus Additive White Gaussian Noise (AWGN) based on a specific Signal to
Noise Ratio (SN R). Higher SNR means the reference signal is more prominent.

We selected the SN R values based on relative research from Parrish et
al [48] who propose that a signal with an SN R value of 20 dB or more is
the recommended for data networks, where as an SN R value of 25 dB or
more is the recommended for networks that use voice applications. We
opt for multiple values of SN R ranging between 0 dB (1:1 signal-to-noise

106

power ratio) to 25 dB (316:1 signal-to-noise power ratio). Listing 4.6
shows the pseudocode method for adding noise based on an SN R value.
Figure 4.17 shows the reference waveform with added noise based on a

-

© ® u g W N

specific user-defined SN R.

from UPROP import Uncertain
import soundfile

signal = soundfile.read(ref_file)
noise = soundfile.read(noise_file)
uncertain_signal = []
ref_singal_rms = rms(signal)
noise_signal_rms = rms(noise)

for measurement in signal:

snr = convert_to_ratio(snr_db)
noise_amplitude = measurement / snr

mixed_amplitude = measurement + noise_amplitude

noisy_signal = normal_distibution(mu = measurement,

stdev =abs(noise_amplitude),

size = 500)

uncertain_measurement

Uncertain(noisy_signal)

uncertain_measurement = uncertain_measurement.bound(lower=-1,

uncertain_signal .append(uncertain_measurement)

upper=1)

Listing 4.6: Pseudocode for adding noise based on a specific SNR. We convert mea-
surements to Uncertain objects by creating a distribution ' ~ (p,0) aroung a mea-
surement. We define the variance of noise (o) based on the SN R and p is the measured
amplitude. We bound the Uncertain variable to ensure the measurements follow the
original 16-bit audio encoding.

4.4.3 Algorithm explanation

The main goal of the algorithm is to analyze a sound signal, capture
these two characteristics and infer if the sound is a clapping sound. To

107

recognise the loudness characteristic of a clapping sound we compare the
amplitude of a short term average (consisting of the previous m samples),
effectively low pass filtering the signal with a threshold value. We define
the threshold using a constant over which we consider a clapping sound
might suprass, plus the average of a long term window. The long term
window consists of n > m samples, thus taking the noise floor into
account. We adapt this threshold value continuously.

from UPROP import Uncertain

for uncertain_sample in samples:
short_term_average : Uncertain = mean_of_last_samples(K)
long_term_average : Uncertain = mean_of_last_samples (M)

uncertain_threshold = const_threshold + long_term_average
max_val = O
clap_duration = 0

while (short_term_average > uncertain_threshold):
max_val = max(short_term_average.max(), max_val)
clap_duration += 1

if clap_duration > max_allowed_duration:
clap_duration = 0O
max_val = 0
break

next_samples()

short_term_average : Uncertain = mean_of_last_samples(K)
long_term_average : Uncertain = mean_of_last_samples (M)
uncertain_threshold = const_threshold + long_term_average

if O < clap_duration < max_allowed_duration:
if max_val > clap_likeness_threshold:
clap_count += 1
clap_duration = 0O
max_val = 0O

next_samples ()

Listing 4.7: Pseudocode of the clap detection algorithm.
To capture the second characteristic of a clapping sound, which is

108

the shortness of duration we count the duration of registered events. If
this average of the short term window is above the defined threshold we
start counting the duration of this event. As long as short_term_average
> long_term_average we increase the duration. Finally if the duration
does not exceed the defined duration threshold we register a clap event.
Listing 4.7 presents the pseudocode for the algorithm.

4.4.4 Emphasizing on the usage of Uncertain objects

In Listing 4.7 we initialize two Uncertain objects in lines 4 and 5
and consequently, we use the overloaded arithmetic operators, in line 8
to define a third. We use these Uncertain objects throughout the code
to decide if the short term average surpasses the long term average. In
Subsection 3.4.1 we propose two methods of comparing Random Vari-
ables or rather, Uncertain objects, which we further analyze and test in
Section 4.2.2. We use this functionality in line 13 where we compare two
Uncertain objects and whether to register or not a clapping sound.

Waveform file: 04_silence_2times_SNR_10dB.wav

[—— Waveform
—— Rolling RMS

-- Amplitude threshold
[Short window average
\”\ ‘ " | ‘ Long window average
i

Amplitude (RMS)

Clap Amplitude (RMS)

-- Average amplitude threshold
—— Detected clap

00 01 02 03 04 05 06 07

Figure 4.18: This Figure visualizes the algorithm we present in Subsection 4.4.3. We
take into account the absolute value of the reference signal calculating the short term
window average and later compare it with the . If the short
term window average surpasses the amplitude threshold then and the duration of the
event is less than the duration threshold we register a clap event. In this example, we
register two clap events.

The primary goal of the UPROP Library is to seamlessly merge with
existing code so that it does not act as an extra burden for programmers.

109

Specifically in Listing 4.7 the only section we observe a differentiation
with using conventional numeric types is in line 14. Thus we consider
that the Uncertain object has achieved a goal we set: Minimality.

Waveform file: 04._silence_2times_SNR_5dB.wav

—— Waveform

1 2 4 7
£ 20000 =

g —— Spectral Centroid

S 10000

0 100 200 300 400 500 600
suremer

g oo Spectral RMS

0 100 200 300 400 500 600

Window measurement

Figure 4.19: This Figure shows 4 selected sound descriptors of the input sound signal.
The Spectral Centroid is the barycenter of the signals’ spectrum. The

or Total Energy estimates the signal power of a frame around a given time. The zero-
crossing rate is a measure of the number of times a signal values crosses the zero axis.
Spectral flux is a measure of the variability of the spectrum over time [49].

4.4.5 Validating Recognitions

In order to validate the method we present in Subsection 4.4.1 using
the UPROP Python Library, we perform the same clap sound recognition
algorithm using the Spectral Flux instantaneous spectral sound descriptor.

Sound descriptors are specific extracted audio features from sound
signals that assist in sound classification and characterization. Geoffroy
Peeters [50] reports a large set of audio features for sound description.
We select a small subset of low-level descriptors and visualize them along
the input signal in Figure 4.19. This gives us the initial insight of the
descriptor to use for distringushing the clap sounds. The insight from
Figure 4.19 is that the Spectral Flux seems to be the appropriate descrip-
tor to use to validate our results.

Spectral flux (fluz(t)), is a measure of the variability of the spectrum
over time [49], calculated by comparing the power spectrum for one
frame against the power spectrum from the previous frame:

110

Definition 4.4.1

fluz(t) = (ZQ |51 (t) — sp(t — 1)|p>p (4.4.3)

k=b1

Where s;, is the spectral value at bin k. The magnitude spectrum and
power spectrum are both commonly used. b; and b, are the window
frame edges, between which to calculate the spectral flux and p is the
norm type.

Calculated this way, the spectral flux is not dependent upon overall
power, since we normalize the spectra, nor on phase considerations, since
we only compare the magnitudes. We decided to use spectral flux because
of it’s popularity in onset detection [51] and audio segmentation [52].
Figure 4.20 depicts a waveform with multiple clapping sounds and we
observe that the spectral flux can distringuish the moments when a clap
occurs.

Waveform file: noisy_0.01_06.wav

—— Waveform

Amplitude (RMS)

Time (sec)

—— Spectral Flux

Spectral Flux

Figure 4.20: This figure depicts a waveform with multiple clapping sounds and we
observe that the spectral flux can distringuish the moments when a clap occurs.

The validation algorithm we use is a variation of the algorithm pre-
sented in Subsection 4.4.1. Firstly, we use the original particle measure-
ments. Furthermore , instead of averaging the amplitude of the mea-
surements with the added noise, we average the values of Spectral Flux
descriptors. We redefine the spectral flux threshold accordingly to fit our
data. Figure 4.20 shows the short and long term window and the re-
sulting clap detections. We observe that the algorithm using the UPROP

111

Library recognizes the same amount of claps, at the same time compared
with the algorithm using spectral flux.

Waveform file: 04_silence_2times_SNR_10dB.wav

Amplitude (RMS)
5 o

—— Waveform
~= Amplitude threshold

00 01 02 03 04 05 06 07

—— Flux

== Flux threshold
777 [Short window average -{
Long window average

EZ ~== Average amplitude threshold
= Detected clap

Figure 4.21: Detected clapping sounds using spectral flux descriptor. The input wave-
form is on the top subfigure, In the middle subfigure we show the instantaneous spectral
flux descriptor shows. We low pass filter the descriptor by computing a short term av-
erage on the short term window. This short term average has to exceed a threshold in
order to trigger further evaluation of the microphone input. The evaluation includes
measuring the duration of how long the low pass filtered descriptor exceeds the constant
threshold. We observe that the recognitions are accurate, resulting in two claps.

4.5 Brown Ham dislocation model

This benchmark calculates the cutting stress of an alloy precipitate
using the Brown-Ham dislocation model [8, 9]. Anderson et al. [8]
provide empirical value ranges for the inputs of the dislocation model.
We assume that the inputs of the dislocation model follow a uniform
distribution across these ranges. Equation 4.5.1 defines the calculation
of the cutting stress of an alloy precipitate.

(4.5.1)

_ My (8RSW5)
2b el

We calculate the Normalized Wasserstein distance between the im-
plementation using the UPROP Library, and the conventional method:
using particle sampled values. We use the Monte Carlo Simulation as
reference. We plot the results in Figure 4.23.

oc

112

I
N
G

—— Monte Carlo Mean value
—— Uncertain Mean value
—— Particle Value

= Monte Carlo

W Uncertain

—— Monte Carlo Mean value
—— Uncertain Mean value
—— Particle Value

= Monte Carlo

W Uncertain

83798160.7476)
i
I
=)

=
N
o

otting bin width

0.2 0.4 0.6 0.8

Distribution support

1.0 12 1.4

(a) Brown-Ham coefficient calculation with 8 bins. (b) Brown-Ham coefficient calculation with 16 bins.
1.75 —— Monte Carlo Mean value 2175 —— Monte Carlo Mean value
— Uncertain Mean value s — Uncertain Mean value
1.50 —— Particle Value £1.50 —— Particle Value
= Monte Carlo 2 = Monte Carlo
1.25 B Uncertain 5 B Uncertain
H

Iy
=)
=)

e
S
I

=4
I
=)

HiE
e
e |
B |

1.2

o
N
o

Probabllity density - (Plotting bin width = 48346181.6572)

<4
=}
5}

0.75

1.0 1.00
Distribution support Distribution support

(c) Brown-Ham coefficient calculation with 32 bins. (d) Brown-Ham coefficient calculation with 64 bins.

—— Monte Carlo Mean value —— Monte Carlo Mean value

gL75 —— Uncertain Mean value 1.75 —— Uncertain Mean value
2 —— Particle Value —— Particle Value
- 1.50 = Monte Carlo 1.50 I == Monte Carlo
i W Uncertain l- W Uncertain
1.25 |

-
N
o

N
i
B
=

0.75 1.00 1.25

Distribution support

o r
Sy o
G S
o
S
G

=4
o
o
o
o
=)

L

i
iy
e
M
L

0.75 1.00 1.25 1.50 1.75

Distribution support

o
N
<

Probability density - (Plotting bin width = 7071960.1885)
[
K [
S

o
N
)

Probability density - (Plotting bin width

o
o
>

(e) Brown-Ham coefficient calculation with 128 bins. (f) Brown-Ham coefficient calculation with 256 bins.

g —— Monte Carlo Mean value 325 —— Monte Carlo Mean value
8 —— Uncertain Mean value 2 —— Uncertain Mean value
§20 — Particle Value g — Particle Value

5 == Monte Carlo £2.0 = Monte Carlo

= Uncertain B Uncertain

s
o

-

o

-
=)

g

=)

=4

o
o
o

Probability density - (Plotting bin width
Probability density - (Plotting bin width

0.0 0.75 100 125 ; 775 0.0 75 100 1.25 ; 75
Sistion upport Sisrtion Supprt
(g) Brown-Ham coefficient calculation with 512 bins. (h) Brown-Ham coefficient calculation with 1024
bins.

Figure 4.22: This figure shows the distributions generated for the Brown-Ham [9]
coefficient calculation with varying number of bins, using the Monte Carlo Simulation,
Uncertain objects through the UPROP Python Library, and just particle values. As
the number of bins increases the distributions’ mean appears to converge to the particle
value.

We observe that this distance is inversely proportional to the number
of bins (Lower is better). The UPROP Library performs from 2x more
accurate, with 64 bins, up to 9.4 x with 1024 bins, compared to the particle
sample calculation. If we perform the benchmark with the Uncertain

113

objects having from 8 to 32 bins, our model performs up to 2x worse,
with regards to accuracy. We also visualize the resuts for each number
of bins in Figure 4.22. The two distributions indeed converge as the
number of bins increases.

2 5 Normalized Wasserstein Distance vs Number of bins

° —e— 8 bins

16 bins

32 bins

2.0 —e— 64 bins
128 bins
—e— 256 bins
—e— 512 bins
15 —e— 1024 bins

1.0

4

0.5

Normalized Wasserstein Distance (lower is better)

0.0

10t 107 10°
Number of bins

Figure 4.23: The Normalized Wasserstein distance between the Uncertain and Monte
Carlo distributions is inversely proportional to the number of bins. (Lower is better).

114

4.6 NIST Uncertainty Machine - Comparison

The NIST Uncertainty Machine [53] is a web-based software appli-
cation to evaluate the measurement uncertainty associated with a scalar
output quantity that is a known and explicit function of a set of input
quantities for which estimates and evaluations of measurement uncer-
tainty is available. Random variables model the input and output quan-
tities and they use their probability distributions to characterize mea-
surement uncertainty. It supports both known and empirical probability
distributions, but has limited capabilities due to its web-based nature and
lack of features.

We select a benchmark to compare the UPROP Library with the NIST
Uncertainty Machine. We designed this benchmark specifically to test
the ability of each framework to track correlation between variables. We
show the benchmark implementation using the UPROP Python Library
in Listing ??. We recursively add a variable to a sum. We observe major
differences in the PDF function of the output variable X.

The Uncertain object fails to capture the correlation between the vari-
able Xqm and X,e. This is because we only support autocorrelation. We
check this by comparing the memory address of each object at the time
we invoke each operation / function.

Recursive addition of a reference distribution, 10 times

0.030 = Reference Mean value .
0.025 B Distribution Support BN Uncertain
23 [Reference NIST
£5 0.020 0.08
£50015
-
0.010
0.005
0.000 >
25 5.0 75 10.0 125 15.0 175 20.0 25 O
< 0.06
0.08] == UPROP Mean value g
B Distribution Support o
27006 HEE UPROP e
3 w
>
Z0.04
20
©
Q
25 5.0 75 10.0 125 15.0 175 20.0 25 Q9
o
003 =™ NIST Uncertainty Machine Mean value
. B Distribution Support 0.02 ‘ |
zz [NIST Uncertainty Machine :
35002
83
EE
e
£E
0.01 ‘ ‘
000 . B, 0.00 ola A{ﬂm ‘
25 5.0 75 10.0 125 15.0 175 200 225 75 10.0 12 5 15.0 17.5 20.0 22.5

Distribution Support

Distribution Support
Figure 4.24: Comparison between the UPROP Library and the NIST Uncertainty Ma-

chine. We initialize a Random Variable X ~ A/(0,1) and we add this variable to a sum:
sum += X for 10 times.

115

S U

@ Ut W N =

T W N -

X_ref = Uncertain(samples)
X_sum = 0

for i in range(0,10):
X_sum += X_ref

Listing 4.8: Adding a reference distribution to a sum 10 times. We initialize a Random
Variable X ~ A (0,1) and we add this variable to the sum: sum += X for 10 times.

4.7 Pyro - Comparison

Pyro [54] is a programming library written in Python and supported
by PyTorch on the backend, which is a widely used platform for deep
learning. With this said, Pyro is mainly focused on Machine Learning
(ML) tasks and enables the user to utilize flexible and expressive deep
probabilistic modelling for any computable distribution, even empirical
while unifying modern deep learning and Bayesian modelling.

We compare the UPROP Library with Pyro’s experimental feature
of Random Variables using a simple benchmark of two linear transfor-
mations on two Random Variables. We present the version compatible
with the UPROP Library in Listing 4.9 and the version compatible with
Pyro in Listing 4.10. Theoretically they should both yield as a result, a
Random Variable Z with uz; = 35 and o7 = V/18. Indeed, as we see in
Figure 4.25 both the UPROP Library and Pyro [54] return the expected
result.

from UPROP import Uncertain
import random

X = Uncertain(random.normal (5, 1))
Y = Uncertain(random.normal (20, 3))
Z 3*X+Y

Listing 4.9: Adding a reference distribution to a sum 10 times using the UPROP
Library. We initialize a Random Variable X ~ A (0,1) and we add this variable to the
sum: sum += X for 10 times.

from pyro.distributions.torch import Normal

X = Normal(5, 1).rv
Y = Normal(20, 3).rv
Z = X.mul(3)+Y

Listing 4.10: Adding a reference distribution to a sum 10 times using the UPROP
Library. We initialize a Random Variable X ~ A(0,1) and we add this variable to the
sum: sum += X for 10 times.

116

https://docs.pyro.ai/en/1.8.0/contrib.randomvariable.html

= X
/Y
0.10 I Pyro(3*X+Y)
B Uncertain(3*X+Y)
0.08
>
1°)
c
CU
=]
o
o
L 0.06
2
2
©
S
& 0.04
0.02
0.00 m’”‘
0 10

Figure 4.25: Applying linear operations on Random Variables. Comparison between
the uncertain package and Pyro [54]. The result is stored in variable Z =3+ X +Y. The
Random Variables are X ~ N(5,1) and Y ~ A(20,3).

—— Uncertain Standard deviation
—— Pyro Standard deviation
B Uncertain
B Pyro

o
N
N

=}
-
=)

o
o
@

o
o
kS

—— Uncertain Mean
—— Pyro Mean
0.02 N Uncertain
B Pyro
35.0 352 354 35.6 35.8 00077750 4.175 4225 4.250
Distribution Support Distribution Support

Probability Frequency
o
o
>

Probability Frequency
o
o
=
————
===

o
o
]

0.00

(a) Distribution of mean values for the Uncertain (b) Distribution of standard deviation values for the
object and the Pyro object. Uncertain object and the Pyro object.

Figure 4.26: Based on equations 2.2.1 and 2.2.2 the result should have a mean

[3sx+y = 3%p1x +py = 35 and a standard deviation of o = 1/320% + 07 = /18 ~ 4.24.
We observe an offset of 0.8 from the expected mean value, with regards to the mean
value of uncertain package, while Pyro yields the expected results. The standard deviation
o, remains almost identical.

To apprehend in depth the distributional output of this benchmark
repeat the process k times and keep the mean and standard deviation
of Random Variable Z. We plot the distribution of these values in Fig-
ure 4.26. While the standard deviation remains almost the same for
both frameworks, the mean value diverges — in this example by ap-
proximately 0.7.

117

471 Compounding error

In Figure 4.26 where we compare the distribution of the first two
centralized moments of the results of each framework we observe that the
Uncertain object’s mean deviates by a margin of approximately 0.7 from
the expected value of 35. This happens due to the memory representation
chosen for Uncertain objects. We should note that we observe this shift-
to-the-right” behavior, in every benchmark. As we explain in Section 3.2
the memory representation of any Uncertain object is a Dirac mixture
representation (Definition 3.2.1). We propagate uncertainty through a
circular-convolution, which we showcase as pseudocode in Listing 3.2.

As we show throughout this section, the accuracy of our model in-
creases when we increase the number of bins representing an Uncertain
variable. The reason behind this lack of accuracy with less bins is not
the actual number of bins, but in fact the bin width. Less bins means
less groups of samples with higher probability. Thus, since we only rep-
resent each bin with 2 numbers: its probability and its median, we end
up partially distorting the distributional information obtained from the
samples.

This issue is further enhanced by performing operations with only the
median values. By doing so we generate new samples and we bin them
accordingly such as the smallest generated sample becomes the first bin
edge and the largest becomes the last bin edge. All this while keeping
the probability of each value. One simple observation, is that we ignore
the first sample value that originally formed the first Uncertain object.
This results in a right shift of the minimum possible value and explains
the issue we notice in this benchmark.

118

Chapter 5

Related Research

The UPROP Python Library attempts to encapsulate measurement
uncertainty by using a distributional memory representation to propagate
uncertainty through operations and functions. Designing frameworks
like this, poses a massive challenge for both the mathematical foundations
and in terms of efficiency. There have been multiple attempts to face this
challenge which we lists and compare with the UPROP Python Library
below. In Table 5.1 we present a brief comparison

Uncertainty .
Hardware/ . Programming .
System Software Propagation Lanwuage Execution
Method guag
UPROP Software | SreUlAr - pogon Locally
Convolution
. oy Software &]
Signaloid.io Hardware | C Online
NIST . Monte Carlo .
Uncertainty Software . . R Online
. Simulation
Machine
Pyro Software - Python Locally
. Sampling
Uncertain<T> | Software Functions C# Locally

Table 5.1: Mean inverse-Normalized Wasserstein distance between the Particle and the
UPROP Library implementation for the arithmetic operators for each number of bins.

Stan [55] is a domain-specific language designed for describing a restricted
class of probabilistic programs and performing high-quality automated infer-
ence in those models. Church [56], a probabilistic dialect of Scheme, was an

119

early universal probabilistic programming language, capable of representing any
computable probability distribution. Venture [57] is a universal language with a
focus on expressiveness and flexibility and a custom syntax and virtual machine.
Anglican [58] and webPPL [59] are lightweight successors to Church, embedded
as syntactic subsets [60] in the general-purpose programming languages Clojure
and JavaScript. Edward [61] is a PPL built on static TensorFlow graphs that
features composable representations for models and inference. ProbTorch [62]
is a PPL built on PyTorch with a focus on deep generative models and devel-
oping new objectives for variational inference. Turing [63] is a PPL embedded
in Julia featuring composable MCMC algorithms. Pyro [54] is a probabilistic
programming language (PPL) written in Python and supported by PyTorch on
the backend, which is a widely used platform for deep learning. With this said,
Pyro is mainly focused on Machine Learning (ML) tasks. Pyro enables flexible
and expressive deep probabilistic modelling for any computable distribution,
even empirical while unifying modern deep learning and Bayesian modelling.

Laplace Microarchitecture

Tsoutsouras et al. [2] present Laplace Microarchitecture for tracking machine
representations of probability distributions paired with architectural state. Laplace
uses the RISC-V ISA with two suggested extensions to induce distributional in-
formation to the microarchitecture and enable users to query and extract infor-
mation about the distribution of the random variables. It represents the variables
using either Telescoping torques representation (TTR) or Regularly-quantized
representation (RHQR) which simulates histograms. TTR using the definition of
mean value, that splits the support of the distribution in two halves, uniformly on
each side of the mean, represents the distribution in a Dirac Mixture of log(NV)
Dirac delta functions 6(z) — a unit impulse at position x. They generate these
Dirac deltas by recursively splitting each half of the distribution support, using
the mean value for each half. The probability of each possible variable value
defines the height of each Dirac delta. Laplace also supports correlation-tracking
between variables by tracking ancestors on a hardware level.

Bornholt’s Uncertain Type

Bornholt et al. [3] introduce Uncertain<T’>, a programming language abstrac-
tion to represent random variables. Bornholt et al. use user-specified sampling
functions to represent the variables, combined with a directed acyclic graph
(DAG), constructed on runtime, to represent the order of arithmetic operations.
This DAG forms a Bayesian Network and evaluated it whenever necessary. As
seen in Figure 5.1, Bornholt corrects the calculation of the posterior by us-
ing prior knowledge. They achieve this by fitting the likelihood distribution

120

calculated by the framework, with prior knowledge. The result of the fitting
constitutes the final posterior.

0.25 Prior (Road)

—— Likelihood (GPS)

020 Posterior

0.15

Density

0.05

0.00

Location

Figure 5.1: Bornholt fits calculated estimates generated by the Uncertain Type with
prior knowledge to produce the posterior distribution of the data.

Uncertain-UP

Manousakis et al. [64] represent random variables using a mean, variance-
covariance matrix, and when necessary the entire empirical distribution. Their
work applies to DAG-based data processing systems, such as Apache or Hadoop.
They use first-order Differential Analysis to propagate uncertainty through DAG
nodes under the condition that they represent continuous and differentiable
functions. In case this condition is not met, they use Monte Carlo simulation as
a fallback method.

NIST Uncertainty Machine

The NIST Uncertainty Machine [53] is a web-based software application to
evaluate the measurement uncertainty associated with a scalar output quantity
that is a known and explicit function of a set of input quantities for which
estimates and evaluations of measurement uncertainty is available. Random
variables model the input and output quantities and they use their probability
distributions to characterize measurement uncertainty. It supports both known
and empirical probability distributions. The memory representation of the ran-
dom variables consists of the first two centralized moments of the distribution
(mean, variance). The NIST Uncertainty Machine implements the approximate
method of uncertainty evaluation described in the GUM [1], and the Monte Carlo
method of the GUM Supplements 1 and 2.

121

122

Chapter 6

Conclusion

6.1 Future Work

The UPROP Python Library undertakes the challenge to encapsulate mea-
surement uncertainty by using a distributional memory representation. Design-
ing frameworks like this, poses a massive challenge for both the mathematical
foundations and in terms of efficiency. Below we propose some interesting
capabilities one can explore now that we have the ability to manage and propa-
gate measurement uncertainty. Our implementation can serve as a basis for this
exploration.

6.1.1 Efficiency in Computations

As we briefly discuss in Section 4.2, when computing with the UPROP
Python Library the selection of the number of bins that represent an Uncertain
object embodies the classic speed-accuracy trade-off. At small bin numbers, the
calculation is quick, but more inaccurate. At large bin numbers, the reverse is
true: the calculation is slow but accurate. Choosing the correct bin number is
therefore critically important: too high and the Uncertain type will be too slow
for practical use; too low and it will be too inaccurate to solve real problems.

The Uncertain type certaintly introduces a performance overhead when
compared to particle (one-sample) calculations. Finding ways to either reduce
or eliminate unnecessary computations to optimize this performance overhead
and ultimately reduce execution time, would be the next major step in calculating
with the UPROP Python Library.

6.1.2 Correlation tracking between variables

In Subsection 4.3.5, we analyze some of the reasons why tracking correlation
becomes both a blessing and a curse in some situations. Correlation may not

123

imply causation, but causation does certainly imply correlation. On the other
hand, this may introduce significant inaccuracy to our model as we show in the
GPS benchmark. A specific condition where this is prevalent, is mapping even
functions to Uncertain objects that have distribution support close to 0.

A typical solution to this problem might be to urge the user to explicitly
redefine objects after specific operations that meet some conditions. But this
would alter the design goal of minimality.

6.1.3 Compounding error after operations

Finally, in Section 4.7 we showcase the compounding error caused by using
Dirac Mixtures (histograms) to propagate uncertainty in operations. Performing
operations with the median values of each bin, results in a “right-shift” of the
results since we ignore some samples. We expected this design driven behavior
and we explicitly kept it because we consider it worth for the simplicity-to-
accuracy trade-off.

However it would be interesting if we manage to combat this compound-
ing error caused by operations by analyzing the input Random Variables’s bin
widths and counter-shifting the any new Uncertain objects.

6.2 Conclusion

The issues that software engineers are confronting are getting to be more
complex, and equivocal, requiring them to inference information from a hand-
tul of sensor measurements to PetaBytes of Big Data. These information sources
and the programs that utilize them, have one thing in common: they introduce
uncertainty. By providing insufficient tools and abstractions, programming lan-
guages encourage programmers to waive their responsibilities in the face of
uncertainty. Existing abstractions, either are not expressive enough or demand
a significant amount of time for a developer to comfortably and effectively use
them.

The UPROP Python Library aims to eliminate this, by addressing uncertainty
propagation and management without excess action from the user side. The
UPROP Python Library is a principled abstraction for computing with uncertain
data. The idea of the abstraction we propose originates from uncertainty in
computations and the fact that developers choose to ignore it. Reports show
that we have acquired the know-how to identify measurement uncertainty but
lack in tools that propagate it through computations. Our abstraction starts
by defining a memory representation of distributions and uses mathematical
knowledge to set the foundation of uncertainty propagation.

While this principled approach is a virtue and ensures the Uncertain type
is accessible and expressive, it also has the potential to make a practical im-

124

plementation impossible. The selection of representation bins in an Uncertain
object embodies the classic speed-accuracy trade-off. At small bin numbers, the
calculation is quick, but more inaccurate. At high bin numbers, the reverse is
true: the calculation is slow but accurate. Choosing the correct bin number is
therefore critically important: too high and the Uncertain type will be too slow
for practical use; too low and it will be too inaccurate to solve real problems.

125

Bibliography

[1]

[2]

[3]

[4]

[5]

(6]

[7]

(8]

[9]

[10]

“Guide to the expression of uncertainty in measurement,” Joint Committee for
Guides in Metrology, Tech. Rep., Mar. 2008.

V. Tsoutsouras, O. Kaparounakis, B. Bilgin, C. Samarakoon, J. Meech, J. Heck, and
P. Stanley-Marbell, “The laplace microarchitecture for tracking data uncertainty
and its implementation in a RISC-v processor.” ACM, Oct. 2021.

J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A first-order
type for uncertain data,” in Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems. Association
for Computing Machinery, 2014, p. 51-66.

“Python programming language.” [Online]. Available: WelcometoPython.org.(n.
d.).Python.Org.RetrievedDecember9,2021,fromhttps://www.python.org/

C. Berg, “Indeterminate moment problems and the theory of entire functions,”
Journal of Computational and Applied Mathematics, vol. 65, no. 1-3, pp. 27-55, 1995.

M. Karson, “Handbook of Methods of Applied Statistics. Volume I: Techniques
of Computation Descriptive Methods, and Statistical Inference. Volume II:
Planning of Surveys and Experiments. I. M. Chakravarti, R. G. Laha, and
J. Roy, New York, John Wiley; 1967, Journal of the American Statistical
Association, vol. 63, no. 323, pp. 392-394, Sep. 1968. [Online]. Available:
https://doi.org/10.1080/01621459.1968.11009335

S. Kuhlen, C. Stampfer, T. Wilhelm, and J. Kuhn, “Phyphox bringt das Smartphone
ins Rollen,” Physik in unserer Zeit, vol. 48, no. 3, pp. 148-149, 2017.

M. Anderson, F. Schulz, Y. Lu, H. Kitaguchi, P. Bowen, C. Argyrakis, and H. Ba-
soalto, “On the modelling of precipitation kinetics in a turbine disc nickel based
superalloy,” Acta Materialia, vol. 191, pp. 81-100, 2020.

L. Brown and R. Ham, “Dislocation-particle interactions,” Strengthening methods in
crystals, pp. 9-135, 1971.

M. Mohan Rayguru, M. Rajesh Elara, B. Ramalingam, J. Muthugala, M. Viraj,
P. Samarakoon, and S. Bhagya, “A path tracking strategy for car like robots with
sensor unpredictability and measurement errors,” Sensors, vol. 20, no. 11, p. 3077,
2020.

126

Welcome to Python.org. (n.d.). Python.Org. Retrieved December 9, 2021, from https://www.python.org/
Welcome to Python.org. (n.d.). Python.Org. Retrieved December 9, 2021, from https://www.python.org/
https://doi.org/10.1080/01621459.1968.11009335

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

0. Kaparounakis, V. Tsoutsouras, D. Soudris, and P. Stanley-Marbell, “Automated
physics-derived code generation for sensor fusion and state estimation,” 2020.

A. Wong, S. Ho, O. Olusanya, M. V. Antonini, and D. Lyness, “The use of social
media and online communications in times of pandemic covid-19,” Journal of the
Intensive Care Society, vol. 22, no. 3, pp. 255-260, 2021.

D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz et al., “The kaldi speech recognition
toolkit,” in IEEE 2011 workshop on automatic speech recognition and understanding,
no. CONF. IEEE Signal Processing Society, 2011.

R. Collobert, C. Puhrsch, and G. Synnaeve, “Wav2letter: an end-to-end convnet-
based speech recognition system,” arXiv preprint arXiv:1609.03193, 2016.

G. Lépez, L. Quesada, and L. A. Guerrero, “Alexa vs. siri vs. cortana vs. google
assistant: a comparison of speech-based natural user interfaces,” in International
Conference on Applied Human Factors and Ergonomics. Springer, 2017, pp. 241-250.

C. C. Robusto, “The cosine-haversine formula,” The American Mathematical Monthly,
vol. 64, no. 1, pp. 38-40, 1957.

0. Kallenberg and O. Kallenberg, Foundations of modern probability. Springer, 1997,
vol. 2.

S. Kullback and R. A. Leibler, “On Information and Sufficiency,”
The Annals of Mathematical Statistics, vol. 22, mno. 1, pp. 79-86, Mar.
1951, publisher: Institute of Mathematical Statistics. [Online]. Available:
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/
issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full

T. W. Anderson, “On the distribution of the two-sample cramer-von mises crite-
rion,” The Annals of Mathematical Statistics, pp. 1148-1159, 1962.

H. Levy, “Stochastic dominance and expected utility: Survey and analysis,” Man-
agement science, vol. 38, no. 4, pp. 555-593, 1992.

C. Villani, “The Wasserstein distances,” in Optimal Transport: Old and
New, ser. Grundlehren der mathematischen Wissenschaften, C. Villani,
Ed. Berlin, Heidelberg: Springer, 2009, pp. 93-111. [Online]. Available:
https://doi.org/10.1007/978-3-540-71050-9_6

A. Ramdas, N. G. Trillos, and M. Cuturi, “On Wasserstein Two-Sample Testing
and Related Families of Nonparametric Tests,” Entropy, vol. 19, no. 2, p. 47, Feb.
2017. [Online]. Available: https://www.mdpi.com/1099-4300/19/2/47

“EMD.” [Online]. Available: https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_
COPIES/RUBNER/emd.htm

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as a metric for
image retrieval,” International journal of computer vision, vol. 40, no. 2, pp. 99-121,
2000.

127

https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://projecteuclid.org/journals/annals-of-mathematical-statistics/volume-22/issue-1/On-Information-and-Sufficiency/10.1214/aoms/1177729694.full
https://doi.org/10.1007/978-3-540-71050-9_6
https://www.mdpi.com/1099-4300/19/2/47
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/RUBNER/emd.htm

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

K. Ni, X. Bresson, T. Chan, and S. Esedoglu, “Local histogram based segmentation
using the wasserstein distance,” International journal of computer vision, vol. 84, no. 1,
pp. 97-111, 2009.

“Kolmogorov—Smirnov test,” Oct. 2021, page Version ID: 1051865496.
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Kolmogorov%
E2%80%93Smirnov_test&oldid=1051865496

O. Thas, Comparing distributions. Springer, 2010, vol. 233.
C. Z. Mooney, Monte carlo simulation. Sage, 1997, no. 116.

D. Wells, N. Beck, A. Kleusberg, E. J. Krakiwsky, G. Lachapelle, R. B. Langley,
K.-p. Schwarz, J. M. Tranquilla, P. Vanicek, and D. Delikaraoglou, “Guide to gps
positioning,” in Canadian GPS Assoc. Citeseer, 1987.

“Google earth.” [Online]. Available: htts://earth.google.com

H. Wang, Y. Gu, and S. Kamijo, “Pedestrian positioning in urban city with the
aid of Google maps street view,” in 2017 Fifteenth IAPR International Conference on
Machine Vision Applications (MVA), May 2017, pp. 456—459.

A. Ofstad, E. Nicholas, R. Szcodronski, and R. R. Choudhury, “AAMPL:
accelerometer augmented mobile phone localization,” in Proceedings of the
first ACM international workshop on Mobile entity localization and tracking in
GPS-less environments, ser. MELT ’08. New York, NY, USA: Association
for Computing Machinery, Sep. 2008, pp. 13-18. [Online]. Available:
https://doi.org/10.1145/1410012.1410016

“Android location accuracy - api level 1.” [Online]. Available: https:
//developer.android.com/reference/android/location/Location

“horizontalAccuracy | Apple Developer = Documentation.” [Online].
Available: https://developer.apple.com/documentation/corelocation/cllocation/
1423599-horizontalaccuracy

P. S. Laplace, “Memoir on the Probability of the Causes of Events,” Statistical
Science, vol. 1, no. 3, pp. 364-378, 1986, publisher: Institute of Mathematical
Statistics. [Online]. Available: https://www.jstor.org/stable/2245476

M. K. Simon, Probability Distributions Involving Gaussian Random Variables. New
York, Ny: Springer, Nov. 2006. [Online]. Available: https://www.biblio.com/book/
probability-distributions-involving-gaussian-random-variables/d/501173421

S. Bhatt, A. Jain, and A. Dev, “Continuous speech recognition technologies—a
review,” Recent Developments in Acoustics, pp. 8594, 2021.

W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition,” in 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016,
pp- 4960-4964.

128

https://en.wikipedia.org/w/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=1051865496
https://en.wikipedia.org/w/index.php?title=Kolmogorov%E2%80%93Smirnov_test&oldid=1051865496
htts://earth.google.com
https://doi.org/10.1145/1410012.1410016
https://developer.android.com/reference/android/location/Location
https://developer.android.com/reference/android/location/Location
https://developer.apple.com/documentation/corelocation/cllocation/1423599-horizontalaccuracy
https://developer.apple.com/documentation/corelocation/cllocation/1423599-horizontalaccuracy
https://www.jstor.org/stable/2245476
https://www.biblio.com/book/probability-distributions-involving-gaussian-random-variables/d/501173421
https://www.biblio.com/book/probability-distributions-involving-gaussian-random-variables/d/501173421

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]

A. Chern, Y.-H. Lai, Y.-P. Chang, Y. Tsao, R. Y. Chang, and H.-W. Chang, “A
smartphone-based multi-functional hearing assistive system to facilitate speech
recognition in the classroom,” IEEE Access, vol. 5, pp. 10 339-10 351, 2017.

A. P. Markopoulou, F. A. Tobagi, and M.]J. Karam, “Assessing the quality of voice
communications over internet backbones,” IEEE/ACM transactions on networking,
vol. 11, no. 5, pp. 747-760, 2003.

H.-W. Gierlich and F. Kettler, “Advanced speech quality testing of modern
telecommunication equipment: An overview,” Signal processing, vol. 86, no. 6,
pp. 1327-1340, 2006.

N. Lesser and D. Ellis, “Clap detection and discrimination for rhythm therapy,” in
Proceedings. (ICASSP °05). IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2005., vol. 3, 2005, pp. iii/37-iii/40 Vol. 3.

D. H. Mershon and J. N. Bowers, “Absolute and relative cues for the auditory
perception of egocentric distance,” Perception, vol. 8, no. 3, pp. 311-322, 1979.

L. Peltola, C. Erkut, P. R. Cook, and V. Valimaki, “Synthesis of hand clapping
sounds,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 15,
no. 3, pp. 1021-1029, 2007.

D. H. Johnson, “Signal-to-noise ratio,” Scholarpedia, vol. 1, no. 12, p. 2088, 2006.

P. Bergmans, “A simple converse for broadcast channels with additive white gaus-
sian noise (corresp.),” IEEE Transactions on Information Theory, vol. 20, no. 2, pp.
279-280, 1974.

R. Tandra and A. Sahai, “Snr walls for signal detection,” IEEE Journal of Selected
Topics in Signal Processing, vol. 2, no. 1, pp. 4-17, 2008.

T. B. Parrish, D. R. Gitelman, K. S. LaBar, and M.-M. Mesulam, “Impact of signal-
to-noise on functional mri,” Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine, vol. 44, no. 6, pp. 925-932,
2000.

E. Scheirer and M. Slaney, “Construction and evaluation of a robust multifeature
speech/music discriminator,” in 1997 IEEE International Conference on Acoustics,
Speech, and Signal Processing, vol. 2, 1997, pp. 1331-1334 vol.2.

G. Peeters, “A large set of audio features for sound description (similarity and
classification) in the cuidado project,” CUIDADO Ist Project Report, vol. 54, no. 0,
pp- 1-25, 2004.

G. Tzanetakis and P. Cook, “Multifeature audio segmentation for browsing and
annotation,” in Proceedings of the 1999 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics. WASPAA’99 (Cat. No. 99TH8452). 1EEE, 1999,
pp- 103-106.

S. Dixon, “Onset detection revisited,” in Proceedings of the 9th International Conference
on Digital Audio Effects, vol. 120. Citeseer, 2006, pp. 133-137.

129

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

T. Lafarge and A. Possolo, “The NIST Uncertainty Machine,” NCSLI Measure,
vol. 10, no. 3, pp. 20-27, 2015.

E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan, T. Karaletsos,
R. Singh, P. Szerlip, P. Horsfall, and N. D. Goodman, “Pyro: Deep universal prob-
abilistic programming,” The Journal of Machine Learning Research, vol. 20, no. 1, pp.
973-978, 2019.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming
language,” Journal of statistical software, vol. 76, no. 1, pp. 1-32, 2017.

N. Goodman, V. Mansinghka, D. M. Roy, K. Bonawitz, and]J. B. Tenenbaum,
“Church: a language for generative models,” arXiv:1206.3255 [cs], Jul. 2014,
arXiv: 1206.3255. [Online]. Available: http://arxiv.org/abs/1206.3255

V. Mansinghka, D. Selsam, and Y. Perov, “Venture: a higher-order probabilistic
programming platform with programmable inference,” arXiv:1404.0099 [cs, stat],
Mar. 2014, arXiv: 1404.0099. [Online]. Available: http://arxiv.org/abs/1404.0099

D. Tolpin, J.-W. van de Meent, H. Yang, and F. Wood, “Design and implementation
of probabilistic programming language anglican,” in Proceedings of the 28th Sym-
posium on the Implementation and Application of Functional programming Languages,
2016, pp. 1-12.

N. D. Goodman and A. Stuhlmiiller, “The Design and Implementation of Proba-
bilistic Programming Languages,” http://dippl.org, 2014, accessed: 2021-11-13.

D. Wingate, A. Stuhlmueller, and N. Goodman, “Lightweight Implementations
of Probabilistic Programming Languages Via Transformational Compilation,”
in Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics. JMLR Workshop and Conference Proceedings, Jun. 2011, pp.
770-778, iSSN: 1938-7228. [Online]. Available: https://proceedings.mlr.press/v15/
wingatel1a.html

D. Tran, A. Kucukelbir, A. B. Dieng, M. Rudolph, D. Liang, and D. M. Blei,
“Edward: A library for probabilistic modeling, inference, and criticism,” 2017.

N. Siddharth, B. Paige,]J.-W. van de Meent, A. Desmaison, N. D. Goodman,
P. Kohli, F. Wood, and P. Torr, “Learning disentangled representations with semi-
supervised deep generative models,” in Advances in Neural Information Processing
Systems 30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, Eds. Curran Associates, Inc., 2017, pp. 5927-5937.

H. Ge, K. Xu, and Z. Ghahramani, “Turing: A language for flexible probabilistic
inference,” in International conference on artificial intelligence and statistics. PMLR,
2018, pp. 1682-1690.

I. Manousakis, I. n. Goiri, R. Bianchini, S. Rigo, and T. D. Nguyen, “Uncertainty

propagation in data processing systems,” in Proceedings of the ACM Symposium on
Cloud Computing. Association for Computing Machinery, 2018, p. 95-106.

130

http://arxiv.org/abs/1206.3255
http://arxiv.org/abs/1404.0099
http://dippl.org
https://proceedings.mlr.press/v15/wingate11a.html
https://proceedings.mlr.press/v15/wingate11a.html

	Περίληψη
	Abstract
	Ευχαριστίες
	Acknowledgements
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Υλοποίηση
	Αναπαράσταση κατανομών
	Μετάδοση θορύβου
	Υπερφορτωμένοι αριθμητικοί τελεστές
	Χρήση της συνάρτησης map σε Uncertain αντικείμενα
	Εξαγωγή πληροφοριών θορύβου
	Τελεστές Σύγκρισης

	Πειραματική αξιολόγηση
	Κανονικοποιημένη απόσταση Wasserstein
	Αριθμητικοί Τελεστές
	Συγκριτικοί Τελεστές
	Υπολογισμός ταχύτητας από μετρήσεις GPS με θόρυβο
	Μοντέλο εξάρθρωσης Brown-Ham

	Σύνοψη και μελλοντική έρευνα
	Μελλοντική Έρευνα
	Σύνοψη

	Introduction
	Problem Statement
	Examples with Uncertainty
	Contributions of this work
	Thesis Outline

	Notation & Theoretical Backgound
	Probability Theory
	Probability
	Random Variables

	Arithmetic operations on random variables
	Comparing distributions
	Stochastic Dominance
	Distribution Comparison Metric
	Wasserstein - Earth Mover's Distance
	Kolmogorov-Smirnov Test

	Implementation
	Design Principles
	The idea
	Goals

	Representation of distributional information
	Uncertainty Propagation
	Overloaded Magic or Dunder Methods
	Overloaded Arithmetic Operators
	Mapping Functions to Uncertain objects

	Extracting uncertainty information
	Conditional operators
	Bounding uncertainty
	Other overloaded magic methods
	Plotting Uncertain objects

	Evaluation
	Evaluation Introduction
	Monte Carlo Simulation
	Normalized Wasserstein distance

	Operators evaluation
	Arithmetic Operators
	Conditional Operators

	Speed calculation from uncertain GPS coordinates
	Calculating displacement from coordinates - The Haversine Formula
	Measuring GPS coordinates
	Converting measurements to Uncertain objects
	Speed estimation with Uncertain objects
	Speed Estimation Results

	Detecting claps from noisy sound signals
	Problem Description
	Adding noise to a signal
	Algorithm explanation
	Emphasizing on the usage of Uncertain objects
	Validating Recognitions

	Brown Ham dislocation model
	NIST Uncertainty Machine - Comparison
	Pyro - Comparison
	Compounding error

	Related Research
	Conclusion
	Future Work
	Efficiency in Computations
	Correlation tracking between variables
	Compounding error after operations

	Conclusion

