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Abstract

The constant rise in the capabilities of Artificial Intelligence has led to its
application in numerous domains even when safety is a critical component. In
the area of computer vision, Convolutional Neural Networks (CNNs) achieve
impressive results in image classification, segmentation and object detection.
It has been proven though that CNNs are easily manipulated and fooled by
very small and carefully crafted corruptions, imperceptible to the human eye.
These corruptions known as adversarial attacks have raised the question of
the robustness of modern CNNs to images deviating from the training data
distribution and pose an important threat to their reliability. A variety of
attack as well as defence and detection methods have been proposed but to
this date models are still vulnerable.

The purpose of this thesis is to examine the success rate of common adver-
sarial attack algorithms as well as the defence method of adversarial training
in image classification tasks. Specifically, we start by using common CNN ar-
chitectures trained on the CIFAR-10 and 350 Bird Species datasets as victim
models. We implement two attacks, namely the white-box C&W and PGD
methods and manage to fool our models into misclassifying perturbed images
with a success rate of up to 100%. In order to then investigate ways to de-
fend our models we use adversarial training with the TRADES algorithm and
significantly drop attack success rates, but also show the existing trade-off
between accuracy and robustness. Lastly, since current detection methods
propose a strong distinction between the spectral representation of adversar-
ial examples and benign images, we explore the characteristics of adversarial
attacks as well as training methods in the Fourier domain. Through this
analysis we observe that perturbations are influenced by a number of factors
related to the dataset, training algorithm and model architecture and aspire
to bring forward the Fourier domain properties that differentiate robust from
non-robust models and their vulnerabilities.

Keywords— robustness, adversarial machine learning, convolutional
neural networks, image classification, Fourier transform






ITepirandm

H ocuveytic e€éMin twv duvatothtewy tng Teyvntic Nonuooivng €yet odnyroet
oTNY eVEEld EPUPUOYY| TNG oXOUN XAl OE TEDLA OTIOL 1) VALY KT AGPAAODS AELTOUE-
yiag e ebvon xplown. Mtov Topéa TG 6pUONC UTOAOYLOTMY TOL MUVEMXTIXY
Nevpwvixd Aixtuva (ENA) emtuyydvouy evIunmotond anotehéouata, k¥oTdoo
€yl amodetyVel 6Tl auTtd elvon ETIEEETY) G UXEEC XAl CTOYEUUEVES AANOLOCELS
WV EWOVLY, avetaloUnTee oTto avlp@mivo pdtt. AuTéC oL dAAOLWOELS, XOWVKSG
YVWO TS e aviaywvio txéc emtdéoelc (adversarial attacks) €) 0LV 00NYNOEL O
EQOTAUATO OYETIXA PE TNV aviexToTNTA TV UNA amévavtt o€ EXOVES amo-
A(AVOLGES TNG XUTAVOUNG TOVY BEBOUEVWY EXTALBEUCTC XAl UTOTEAODY OTUAVTIXT
amelly) Yoo Ty a€lomio o Toug.

Yxonde tng mapoloog dltelPhc etvon va eéetaoctel 1) emtuyion TOAATAGOY
olyopiluwy enlieong xodoe xar 1 duuva Ue Ty YEY0BO TNG ovToyWVIo TG
exnaldevong O TEOPBAAUUTA TUEVOUNONG EXOVOY.  MUYXEXPUIEVY, CEXIVAUE
Yenowonoivtag apyttextovixée UNA exmoudeuuéveg otor GUVoAa BEBOUEVWY
CIFAR-10 xou 350 Bird Species w¢ povtého-90pata. Tromowolue tic entdéoelg
AeuxoU-xouttol (white-box) C&W xou PGD xan xortopépvoupe var odnyfooue
Toe LovTéha o€ Adog TaEvounoT TwV dAAOIWUEVLY EXOVKOY UE TOCOGTO EMTU-
ylog €we xou 100%. [Tpoxeévou var BLEEELVCOUNE OTN) CUVEYELXL TPOTIOUG L-
nepdomione v LNA, yenowonololue avioyovio txy| exnaidevon (adversarial
training) pe tov olyoprdpo TRADES pewdvovtag onuavtixd to tococtd emt-
Tuylog Ty emiéoewy, ahhd delyvoupe eniong to "trade-oft” petald oxplBetag
xon ovlextixdtnroc.  Téhog, dedouévou 6TL moAAéc uédodol aviyvevong To-
viCouv 6TL uTdpEyEL Loy LET BLEXELOT UETAEY TN QPUCUUTIXAG OVITORAC TUONG TOV
AVTAY WVIOTIXOV Topadetyudtwy (adversarial examples) xon tov xahondov e
AOVWY, DLEPELVOUUE Ta YAUPUXTNELO TS TwV EYVpinmy emtiéoewy xadng xon Tig
uedodoug exmaideuone oto medlo Fourier. Méow autrc tng avdAuvong mopa-
TNEOVUE OTL Ol AAAOUWOOELS ETNEEdlovTaL amtd BLAPOPOUS TURYOVTES OTWS TO
oUVORO BEBOUEVWY, TOV ohyOELIUO EXTIOBEVCTIC XAl TNV AEYITEXTOVLXY) TOU [o-
VTEAOU %01l PLAOBOEOUUE VoL XATOVOTICOUPE TIC LOLOTNTES Tou Tediou Fourier mou
OLopOEOTOLOVY Tal avieEXTXE amd Tor W) avOEXTIXG MOVTERX XAl TOL TEWTA TOUG
oruela.

AéEerg-kA€161d— Loy LEA VEUROVIXG BIXTUOL, 0VTOrY VIO TLXY| Uiy aevixr Uddn-
O, CUVEMXTIXE VEURWVIXG. DX TUOL, TAEVOUNOT EOVWY, UETaoY NuaTiopog Fourier






Euyaplotieg

H Simhopotind you epyooio eivor o anotéleopa ToAol x6mou, avalhTnong,
ONULOVEYIXOTNTUC XOU TELQUUATIONOU, Xl ONAL QUTH To OPEIAL TEMOTA ot OAAL
otov emPBAénovta pou x. Avdpéa-I'edpyio Ltaguiondtn. Hrov yeydin you
Yoed ToU Hou EBWOE TNV guxanpla Vo TNV exTOV o oTo epyaoThiplo Teyvntrg
Nonuocivng xan Yuotnudtwy Mdinong xon extiud wdtepa TIC YVOOELS TOU
Theo u€oo oo Ta parduato Tou dwddoxetl. Enlong, 9éhw va euyaplothow Yepud
Tov x. [Nwpyo Xidha o omolog and TNy oy Y| MEYEL TO TENOG TNG OLTAWUATIXNAS
ue othele pe TV mpoduplo Tou, TNV EUTIGTOCUVH TOU UOU EBELYVE XOL TIC
OUCLIOTIXEG EPELYNTXES OUUPBOVAEG Tou. TEAog, TO UmOTEAECUA AUTWY TGV
unvev 0ev Yo unopoloe va eivonl 1660 TAOUGCIO YwElg TIC UTOBOUES TOU OV
mapelye To wotitovto Max Planck for Empirical Aesthetics yia va xdvey Ta
TELRGUOTA TTOV ETPETE XAk TOUEC EVYUPLOTE TOAD Yiot TNV UTOGTARLEY), Xou oLl TeERa
touc Dr. Nori Jacoby xaw Dr. Peter Harrison mou pou €dwooy authyv tnv
dLVATOHTNTU CuVeERYUTTaC.

To yeoévia pov oto Edvixd MetoodBo [Tohuteyvelo unriploy Eeyweiotd yia
TOAOUE AOYOUC, TEWTAURYIX. Yol TOV TAOUTO YVMOTE TOU THed oo ToL o idatol
xa Toug xodnyNTéS wou. I'vodploa gihoug mou Edwaoay xat Bivouv xdTL LeymploTd
oTn oY) LoV, XAl TOUC EUYOELOTK TOAD YLal TIC AEEYUGTES GTIYUES TTOU TEQAOUUE
wolt To teheutadar yeovio. Edyopon vo cuveyloel to TagldL yac mapéo xat TavTo
va pordofvoude xan vo e€eMicdpacte. Téhog, 600 poxpld €QTaco To XATAPERA
ue TNV Bordeior TNG OOYEVELIS OV, TV YOVLOV UOU XUl TOV AOERPEMY HOL ol
g0youon Vo Takpvouy TOGT BUVOUT UTO EUEVA, OCT) TPV Xl EYW OO AUTOUG.



Yta abépgra pov, Nextdpio, Avaotaoia, Mévika kar Oeddwpo
Yroug yovelS pov, Bappdpa kar NikéAao
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Kegdiawo 1

Extetopevn neplindn oo
EAAN VxS

1.1 Ewoaywyn

H enidpaon e Teywvnthc Nonuooivne (TN) oty e€éMén tne xowvwviog xou
e TEYVohoylag elvon AoV epgavic o Tohudpriuoug Touelc, uepol ex Twv
omolwyv ebvor 1 autévopn mhofynon [YWY 18], n avaxatooxeuy tplodidotatwy
e6vwyv [ZL21] xou Bodoyla [Jum-+21]. Autr 1 nohudidototn egupuoyr tne
TN oe Touelc oToug omoloug 1 acaielc xon alldmoTyn Aertoupyla Tng ebvor
xplowung onuaoctog, a&ilel va epeuvicel xavelc TedToOUC PE ToUC omoloug UnopEt
va. yenowonotniel e xaxdBouvin mpdieon.

Méyper onjuepa €youy epgavio tel Tolamhéc emiéoelc mouv VETouy we oTdyo
ouo thuata Mnyavixic Médnone (Machine Learning - ML) ot Borhdic Médn-
onc (Deep Learning - DL) xau €youv anpéfientec ouvénelec. Xtov Touéa
NG UTOAOYIOTIXNC 6pACTC, OO0V 0ol TEOBAAUNTY and TAgVOUNGCT| UEYEL ol
aviyveuon avTXelévey, wa onuavtxd pédodog eCandtnong twv Badiudy Neu-
ewvixdv Atinv (BNA) eivan ot avtorywvio Tixée emiécels, o anooxonoly
oTNV 0ALOLWOT) TNG ELGOBOU PE XUTIAANAL OYEBLUCUEVO TEOTO (GTE AUTA VoL
Topdéouy havdaouévn é£odo (n O€ GAAEC TEQLTTOOELS TNV emduunTy é€060 Tou
emntdéuevou). Autéc ot ohhowwoelg eivon BUOX0AO VoL avty veuloly and To ov-
Yodmvo pdtt (xou T cuo THUOTEL) xorg efvon WtalTepa Pixprc axtivag anbo Tao
woxpld omd TNV apyixn elcodo. Emmiéov, ameihéc punopoly va cuufolv xatd
NV eEXTABEVOTN TWY HOVTEA®Y 6Twe ot Trojan [Yun+-20] emdécelc nou etodyouy
TEOUEAETNUEVO VOPUPBO GTo BEDOUEVA EXTIUBEUONG Yol VO ONULOVEYHCOUY aVa-
xp1feic ouoyetioeg el0660L xou e€ddou. Téhog, uéow emécewy ouunepdouo-
t0¢ uéhouc (Membership Inference Attacks) [Che+20a] uropel évac xoxoning



Acronyms 2

YPHOTNG VoL GUAREEEL TATIPOQOPIES Yiol TOL DEDOUEVY TOU Y ENOWOTOLAUNXAY GTNV
exTlBEVOTC TOU UOVTEAOU, XU (G GUVETELN VO CUYXEVTPWOOEL Tavoy eua-
loOnta mpocwmind ctotyela péoa oc autéc. Tao mopomdve avoueva yenlouv
OmOEOLTITN X0 OUCLAOOY AVayXn) TNV EQEUVAL TNG AVIEXTIXOTNTA, a&loTLo THog ol
ao@drelog TV cuctnudtewy TN. XNtnv nopodou epyacia pag evolapépouy ol
AVTAYWVIO TIXES EMIETELC TOU GTOYEVOLY Tol MUVEAXTIXE Nevpwvind Alxtuo
(XNA) [Pin+20] o€ npoBifuata tadvéunone.

O mopamdves amethéc €youy QEpEL 0To Pws ouVIXeS Aettoupylog Twv BNA
oTic onoleg €youv eMunr otBapdTnta (robustness) xou topdyouy avallomo T
amoteréopara. Hapdha autd €youv Tpotadel Uio oELRE amd TEOTOUE AV THIETOTI-
orng N aviyveuong TETolwy xaxoBoviny emiéocwmy. ‘Vcov agopd Tig avTorywvt-
OTIXEC EMVETELS, EPEVVES GTOYEVOUY XUTd xVPLO AOYO GTO VoL ONULOVEYHCOULY
mo oTupd povtéha Ue pedddouc Omwe N aviaywviotxy uddnon [Mad+19]
xou o Tpéapoto Toug opdoydvioue tadvountée [XLY21]. Ot npdtot 6mwe Yo
doUUE apyoTERN 0ANACoUY TO TEOPBANUA Tou xakeltar o TadvounTtic vor BehTi-
OTOTOLNGEL UE TO VoL GUVUETOUY XL VAL TOV EXTIALOEVOUY O AVTOYWVLO TIXE To-
eadelypoTa, oL 6elTEPOL UE TO Vol WIOUY XATIYORNUATIXG TOV TAEVOUNTY OTO Vol
TEOPBAAEL 68 xOVTIVEC oo TdoElg Ta onueia TNg (Blag xotnyoplog, ahid TpoBdi-
AovTag poxpeld Ti¢ xatnyopleg Yetald touc. ‘ANeg pédodol €youv mpoomadoet
vor Topdéouy acageic xAloelg (obfuscated gradients) ota BNA dote vav unv
umopel xavelc vo mpooeyyioel ebxoia TNV xAlon vyl va emtevel, elte TpooTo-
Y00V VoL vty VELGOLY TIC XAXOPBOVAES ELGOBOUG, CUY VA OUME ATODEVUETAL TG
Tpocapuoouévec pédodot eniteane unopolv vo Eenepdoouy TéToleg duuves [A-
"Q18]. Me tnyv oelpd pog, og authv TNV epyooio LIOVETOVUE TNV oVTAY OV TIXN
udinom yio vor Topatneicouue Toor dOvaun €youv ol emIEEIC EVAVTIO GE Eval
opuvopevo BNA.

Eufadivovtog xaveic oto epmdtnuo Tng UTopdng TwWV ovTOyWVIO TIXOY To-
padeErYHdTwY, a&ilel Vol AVOPEROUUE TOL YUPAXTNEIO TIXG TOUC GTO TEdlo TNG CU-
YVoTNTaC TV oto onota BaciCovtan xan ToAAamAES pédodol duuvag 1| aviyveu-
ONG TOUG. MUYXEXPWEVA QUIVETAL VoL EYOUV CGNUXVTIXG OLUPORETIXY| PAUCUITLXY
xoTavour| o€ oyéon ue xohofelg exodvee [Har+21] [Lor+-21] xou ouvAdong oh-
Aolwvouv Tig PEoES xan UYNAES ouyVOTNTES OTIG omtoleg 1 avlpdmivy avTiindn
uével aueTdBANTY. Eva napdderypa Twv Qaopdtemy TNG apytxn|c ot dAAOLWUEVNS
ewovog gafvovton oto Lyruo 1.2. H mopatrienon outy| mopdtt elvor amd ) plo
OVUUEVOUEVY), avolyeEl GULHTNOT OYETIXG UE TO TTOLAL YOQOUXTNELC TIXG. EXUETTOAE-
Vovtan ot BNA xou yrorti emnpedlovton amd uixeéc ohhay€g UPnAmy cuy voTHToY.
H 18¢a twv otfBapdv (robust) xou un-otiopdy yopuxtnelo oy (non-robust)
omwe eofyoyav ot [lly+19] mpoonadel vo Eeywploel autd Tar yopoxTnelo TxXd
TIOL XEVOUV EVOL LOVTERO EVAAWTO OE UXEES OAAXYEC oTNY {0000 Xou auTd Tou
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elvor oviexTixnd xou 0LV ONUACLOAOYIXT X0 YENoULY| ThAnpopopia.

1.2 Avrayowvicotixece Emdéoeic os talwvo-
pnTeS

‘Omewe avapépaue TEONYOUUEVWS, OL OVTUYWVIO TIXEG EMWETELS elvon Eval EVPEWC
OLBEDOUEVD TIEOBANUA TOU OO T ol TASURE TopuTneeiton o TolAeS Epap-
woyéc ML xow DL povtéhwv, oahhd amd tnv dAAN mAcupd ctvar dOoxoa ovi-
YVELOLWO amd Evay ToEATNENTY. 1T TEOBANUA TNG ToEVOUNoNS EOVWY (to
omolo BLleupUVETAL X0t OF BLUPOPETIXOU £ldoug e16600uC) 1 Baowr| mpddeon Tou
xox630UA0U YEWRLOTY Elvor Var EAAyIG TOTOLAGEL TNV ahhoiwaoT) Tou yeeldleTon pia
ewova WoTe v Bpedel 0To 6plo amdPacTc UETAUED TNG TEOYUATIXNS XaTnyoplag
X0 TWV YELTOVIXGY auThS (Omwe amewxoviletar oto Lynuo 1.1). H adholwon
umohoyileTon Ue Yol JETELXY AmOG TOONG (distance norm) I, émee optleton oty
Lyomn 4.3 xou CUVETG LTEEYOLY BLUPOEETIXOV TUTIOU eMTLIEVTES avdAOYaL UE
NV UETPWY Tou Toug TeptopiletL.

O emd¥éoeic autéc ouVAVTOVTOL XUPlwe o YovTéha Taklvounong, Omou o
%o OBOVAOC YENOTNG GAAOLOVEL TNV £1G000 £TOL MOTE TO HOVTEAO VoL TNV TO-
no¥ethoel oe Adboc xatnyopla. Avdhoyo ye To €ldoc Tng mAnpogopiac mou
eyel o emTiiEevog ahAd xan TNy Yedodo mou yenoulonolel ol emiEoelc unopo-
Ov va te€voundoly oe heuxov- (white- ) xou podpou- (black- ) xoutiod (box),
emdéoelc Bdon xhione (gradient-based), emdéoeic Bdon epwtnudtwy (query-
based), xadohixéc xon ameptoptotes. Hopoxdte napodétouye Tic Baotxée autég
Xt Yoplec EMUECEWY %Ol TAL YOPUXTNELC TIXE TOUS GTO TEOBANUL TNG ToEOVN-
O”NG EXOVWY UE TO OTOIO XATATLAVETOL AUTY| 1) EQYUCIAL.

Envdéoeig Asuxol-xoutiol (white-box) e autiv v nepintwon o
emniéuevog umopel va €yel mpoofacr oe Oheg T mopauétpouc Tou BNA-
OTOYOU, OTWS Tt BAPT) TOV BLUPORETIXWY VEVPMVMY X0k TNV OOYITEXTOVIXT TOU.
O mpateg amdmelpeg eniveone anoppéouv and ) pédodo toyeiog xhiong (Fast
Gradient Sign Method — FGSM) [GSS15] xou yenotponoolv v xhion (gra-
dient) tng ouvdptnone anwhiewac (loss function) V,Ly(x) (poviéhou ue mopa-
uétpoug 6) ue v omola yivetow Tumixd 1 exaideuon. Xuyxexpuéva, EQOCOoV
XoTd TV eEXTUBEVOT) AVETAL TO TEOBANUA TN EAAYLOTOTOMONE TNS GLUVAETNONG
anwhetog Lo(z,y) yo Levyn (z,y) eloddou-xatnyoplac Tou cuvdhou exnaideu-
ong, otéyog ebvar va Bpedel ahhoiwon  mou vo elval OE AmOGTACT € amd Eval
apyix6 ONUElD T Xou VO UEYLOTOTOLEL TNV cUVAETNOY anwlelg (eite otny Te-
eimtworn mou 7 enileon elvon oToyELPEVN OE plar SlopopeTixy| xotnyopla t # ¥
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decision boundary 2e

A ey !

[
:

Yyfua 1.1 Anewdvion tng 10éag tiow and Tig avtorywvioTinég emi€atlc - 6Toy0g elvan
1 avallTNoT ONUElWY TOU GUVOAOU BEBOUEVMY TIOU VoL ATEYOLY TO TOA) ATOCTAUCT € ATO
0 podnuévo Gpto ambgaocne (decision boundary) xau énerto 1 (eAdytotn) odloiwon
TOUC TROXEWEVOU VoL TERAGOUY AT TO OPLO ATOPAUCTIC OE YELTOVIXT| XUTNYOopEla.

va ehoytotonoteiton to péyedoc Ly(x + 0,t)). Ltoyoc dnhadn etvan 1 oAhoLw-
uévn exdva va xivndel mpog TNy xotedduvon Tou oplou YETAED TNS TEOYUATIXNAG
xotnyopioc xow GAwV TV utololnwy (1 e emduuntic xotnyoplac t). Evd
1 uédodoc FGSM umohoyilel povadixd 1o mpdoylo authc TS xatebuvong, oL
enopeves Yédodol 6mwe 1 enavoknmtix| pévodoc PGD [Mad+19]xa n enideon
twv Carlini xou Wagner (C&W) [ND17] unoloyilouv to & og molhéc ena-
vodeig xan TETUY VoLV CNUUVTXG PXEOTERES Xou emTUYElc ahhowoelg. H
entieon C&W anotehel par amd Tic mo SuvaTég amethég xou SLUPEPEL WS PO
TOV TEOTO NG UAINUATIXAG BLATUTIWONG TNG UVTIXEWEVIXHAC CLUVARTNONG TTEOS
ehoylotonoinon (o avayvédotng unopel va Swtpélet oto Kegpdhawo 4 yua tny
axElBr) Slatimon) xat TeTuyaiver UixpdTepes ahhounoels and Ty pédodo PGD
1 omolo Te€yel mohhamhég enavahrbeg tne FGSM.

Envdéoeig pavpou-xoutiol (black-box) To mo peakiotuxd ceviplo
evog oucthuatog TN elvon vo uny unopel xavele va €yel npdofacrn oty ecw-
TepY| apyrtEXTOVIXY, Ta Bden xon TN péYodo exmaideuong autov. o autrhv
Vv meplntwon €youv avantuyvel ol uédodol padpou xouTiol oL omoleg xdTa
OLVETELL OEV €YOLV GuECT) TEOCPUGCT TNV AT TNG CUVAETNONG UTWAELIC.
Qdotdc0 E€yel anoderytel oTL unopel xavelc va exyettodeutel Tic €£6BoUC TOU
nopdryet To BNA (eite autée ebvon amhd 1 Tehxr) andgooT, ite ol mavoTnTeg
Wiot €660V VoL avrxel oe xdiepta amd T xoTnyoples, Yo td we logits) yio va
TOEAEEL EMTUY T AVTUYWVIC TS TapadelypaTor ahhd 1o yior vor Teooeyyloel Tny
xhlon Vi Lo(x). Luyxexpwéva, n entdeon opiou andgaone (boundary attack)
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[BRBI8] avixer o awtrhv v xatnyopio xat yenowonotel wévo tny amdeaon
TOU OXTVUOU Yol Vol ovallNTHOT EVELOTIXG ULaL AVTAYWVIOTIXY Elxova.  Eivon e-
TovoAnm T Yédodog mou Zexwvdel Ue €va onpelo Tou 101 avAXEL OE Ulal GAA
xatnyoplo and TNV meoydoTixr, ot o€ xdie Briua emAéyel pior Tuyada ahholwon
TETOL WOTE VO JELOVEL TNV OTOC TACT) TO ONUEIOL oIt TO aEyINd XAl TUUTOYEOVL
va oLVEY (el var avixel o€ BlapopeTiny| xatnyopla (ta Bruota avokbovTo oTov
Ahyéprduo 1).

‘ANeg emtuyipéveg pédodol OTwe 1 TEOYEVESTEPA xaJOdTYOUUEVT TUYO-
fo pédodog ywelc xhion opouévn we Prior-guided Random Gradient-Free
method (P-RGF) [Che+420b], Bacilovton tumixd oe hydtepo epmTidata Téve:
o710 povtého (queries) o 0TOl0L YENOULEDOUV GTO VoL OVOXATUCKEVO TEL Lol TPO-
oéyyion g xAlong, n omoio oty P-RGF pe tn oeipd tne Bacileton xou otny
xhlom evog vnoxatdototou (surrogate) veupwvixol dixtoou (am’ dmou mpo-
x0mTeL o bpoc prior-based). Ov emiéoeic autée yprlouv évav mo peahloTixd
%«(vBUVO oL TOEd TNV TEPLOPIOPEVY TANEOYORia Tapdyouy averaicdnTeg oaAAd
e&loou emrtuyelc embéoeic.

Kadohxég xou ancpiépioteg entdéoetg (universal, unrestricted)
Ye mpornyovueveg gpyacieg Exel mapatnendel 6Tl evag emmpdovetog xivouvog
TWY OVTOYWVIOTIXOY ETIECENY EVAL TO YEYOVOS OTL UTopOoUV VoL ECATATACOUY
mohhd BNA mépav tou otodyou-9iuatog tne enftdeone. Ildvew oc authv tnv
10€0 matdve ot xotohxég emIETELS, TOU LAOTIOLOVY (ETavolnTTiXés) Yeddoug
yioo vae Ty €0peom wog ahholwong mou vo uropel vor Yevixeutel wg mpog TNy
EXOVOL TTIOU OANOLOVETOL OAAG Xl TO HOVTEAO-DUUN.  LUVETWS, OTWS PaiveTol
oty epyaota [Moo+17] ot cuyypageic xataoxevdlouy ua oAhoiwoT Tou ool
mpootelel oe omOlONTOTE EOVAL ETTUYYEVEL Vo UTEEOEPEL TOV TUEYOUNTY) UE
UEYEAO TOGOGTO emTUYiG, Xou ToEUTNEOVY 6Tl auT6 cuUPalvel xon av doVel wg
elcodog ot BlapoeeTIXoUg TadvounTEC.

Téhog, a&ilel va avagepdolv ol ameptdploTeg emUECELS Ol OTolEG BlapPwVo-
OV HE TOV EURY OPLOUS TOV AVTUYWVIC TIXGY ETWECEWY UTO TNV €VVola Tou OTL
oev elvan avenalodnteg, wotdéoo 0dNyoly Talvountéc o Adog ouuTEpdoUo-
Toe ot omolor 0 dvipwrog etvon avdextinde. Tétoleg embéoelc, olupwvo ue
Toug ouyypagelc tou [HP 18], emtuyydvouv va Eeyerdoouy to BNA ye v ah-
AOLOOT TWV YPWUATIXWY XAVIAMY TWV EOVOY, OAAS EXUETTUAEDOVTAL XL To
OTUOCLOAOY XS YARUXTNPLG TG, EIXOVWY 1) TOV TURUUETEIXO Y(PO CNHUAGLONOYL-
%V 1B0THTOV Fevwnuixdy Avtaywviotixdy Awxtiwy (Generative Adversarial
Network — GAN) [['oo+14] yio va napdEouy etxdvee pe Ty Bl onuactoloyia
ol ahhotwpéva (1 mpdoleta) yapoxtnptotxd [Jos+19].
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1.3 XTtfBapdtna tTwv Badiwy Nevpwvixov
AwxtOwV

"Hom €youpe avogpépet Tog oL avtaywvio Tixég emiéoelg tnydlouy omd Tny me-
eloptouévn oTiBapdTnta Tng e€6dou Twv BNA ot uixpéc ahhayéc tng eloddou.
H pédodoc e avtaywviotixrc udinone (adversarial learning) amooxonel oto
vo exmtandelel o oTPoued Yovtéda e To va tpoomalel vor Tagivounoel owoTd
OVTUY WVIO TIXES EIXOVEC TIOU XATUOXEVALEL XOTE TNV OLEEXELN TNG EXTOUOEVOTC.
Me dhho Aoya, vhoToleitan evog idoug enadinoT SEBOUEVKV (data augmen-
tation) otnv omofo ogeilel 1 €€000¢ TOU UOVTENO Vo efvan oETHBANTY), ohhd
EVOVTL TWV XOWVMY UETACY NUATIOUMY YENOLLOTOLOVVTUL SUVOUXG-UTOAOYLOUEVYL
VoY WVIo Td Ttopadetypata. §2¢ mtpog To TeoBAnua mou Tpootadel 1 uédodog
ouTY| va feltioTonotoel, TapadéTouue THY pordnuotiny Exgeaon otny oyéon 3.2
6oL Qalvetal 6TL avTixeluevo Tng BeATio ToTolnong ebvan Vo ENay IO TOTOLACEL TNV
UEYLO TN TWT) TNG CLVEETNOTG UMMAELUS TOU EYEL TO HOVTEAO ATO AVTAY VIO TIXY
TopadElypoTaL.

Ytor meduaTo oG VEANCOUE VoL YPTOULOTOLAGOUNE Lol EVOANOXTIXT) ARG
xovtv| tpoaéyyton, tnyv pédodo TRADES [Zha+19] n onola povieronotel to
parvouevo tou “trade-oft” uetall tng otBapdtnTag o g axpBetag evog To-
Evounth. Autd expdlel TV tapatienoT Twe Ta mo o TBued poviéha Tetvouy
v €Y 0LV omoAels TNV axpiBelo Toug (6Twe owTr anodidetar ¥Aaooixd, dnia-
0f ¢ TO TOCOGTO TwWV SEBOPEVLV EAEYYOL ToU Tadvopolvtal opld) xodde 1
TEOOTAELS TOUC VO XAUTNYORLOTIOLCOLY GWOTE Tol AAAOLWUEVA OTUEla UTopEl
var €yeL apvnTixy| emidpaon ota onuela mou Beloxovtar xovTd oTo dpto PETUED
TWY XATNYOPLOY. LOUPOVA OOV UE TNV Topoloo uedodo, auTtd To onuela Tou
Beloxovtar oe ambdcTAGT TO TOAD € amd To 6PLO UTOPACTS TERLYEAPOLY TO O-
oo o@dhpo (boundary error), to onueio mou xatnyoptomolovvton Addog and
ToV TAgVOUNTY TO PUCLXO COAAUY (vom)pod\ eppop) xou Téhog To 6TB0pd G-
ua (robust error) amotehel to dlpotoua TV TEONYOUUEVLY 800 GQOAUATLY.
Yuvenwg, yivetor Tpogavég To 6Tl av YEAHOOUNE Vo ENLYIG TOTOLACOUNE TO Rp
elte Yo auindel to Ry xou Yo pewwdel 10 Ry, cite 1o avtideto. H mopdue-
T0¢ A ToU ahybpriuou autol (eprypdpetar otov Alybpliuo 2) mou exppdlel
To0 “trade-off” eugdvioe WBLalTERO EVOLPEPOY OTOL TELRPAUATY UAC OTO TEDO TN
CLYVOTNTOG.

[IEpav g Buvatdtnrag Twv otBupdv BNA vo apuviolv amévavtl otig
avToy VIO TiEG emi€aele, Tponyolueveg epyacieg delyvouv 6Tl uTdpyel onua-
vy Slapopd atoug ydpteg yopaxtneloTixoy (feature maps) mou podaivouv
T ENA xan 671 To amoTEAEOUATO TOUG EQUNVEDOLY XOAUTEQY TNV CUCYETION



Acronyms 7

et0680u-e£680u. T'ior mopdderyua, olugwve Ye ta omoteléopoto Twv [Tsi+19)]
otnv Ewéva 3.2 BAEToupe TNy anemovion Tng xAong TNG CUVETNOTG AMWAELNS
0¢ TPOg Ta etxovoatolyela (pixel) tng eto6dou, dnhadh to péyedoc VL. Auté
€&’ optopol amexovilel Ta exxovoc Tolyela Tou €youv PUEYAA)TERT ETLEEON OTNY
TEMXT| AmOQUCT) TOU TOEVOUNTH ot €ivor EUPAVES OTL Ol G TUBUEME EXTOUOEVUEVOL
to&vountée (800 tereutaiec oelpéc) Eyouy pe OLapopd xahOTEPES epunveleg amd
Vv xAion oe oyéon Ue Toug TuTIXS exToudEUUEVOUS (BeTERN OElpd) Tou eV
oLVEBoLY pE TNV avdpnTivy avTtiAndn. Axoun, oty Ewoéva 3.1 ot cuyypope-
{c éxavay mopeuBoln and upla xatnyopia oe pla dlopopeTny| (oTny Téve oelpd
and o o€ oxORo o TEMXS YETor) xou BelyVOUV OTL ToL YAUPOXTNELO TIX Oh-
A&ouv mpog o xatebuvor evBuYEOUULOUEYN UE TNV onuacior TN SeUTEENC
xatnyoplog.

1.4 DuveAxtixd Neupwvmo’c AlxTuN

2TIC TEQIOCOTEPES TPONYOUUEVESG EQYACIEC OTIC OTOLEG EYOUUE XAVEL UVaPORd
OTWE XL OTNY AP0V EQYUCIN XATATLAVOUACTE UE TO YEVIXO TROBATUO TNG Ta-
EVOUNONG EXOVLV YeNoylototdvtas Luvehxtixd Neupwvixd Alxtuo (ENA).
To dixtua autd Tou amotehoy unoxatnyopia Twv BNA xotagépvouy adtouvn-
UOVEUTOL ATOTEAEOHUATO OE OLAUPORWY ELOWY GUVOAX DEDOUEVGY XL EBW XAl TOMAY
YeoOViaL amoTeAOUY TNV BACT Yol TIC TEPLOCOTEREC TPOCEYYIOEC OTOV TOUEN TNG
bpaong vnoroylotwy. To dixtua autd elvon eunvevoueva and Tov TEOTO AEL-
ToLEYIOC TOU OTTIXOV GUOTAUNTOS TMV {WVTOVGDY 0PYAVICHMOY TOU AEITOURYOVY
lepapytxd Ue it oelpd amd enimedo VEUPWVGLY Xl GOVIESTC YORUXTNELO TIXWY,
TO 0Tl ATOBENVIETOL GUVEY WS oXOUT X GE VEEC OLECOOXEC CUUTEQLPOPIXES
épeuvec [Lan+21].

Ye avaroyio pe to Prodoyd ontixd clotnua, To UNA €youv wg yopo-
XTNELOTIXG ToL Ywewd dlodidotata (pikteo (spatial filters) mou egapudlovto
TVe 6TNY OLoBLAC TATY ELXOVA-E(GOB0 X0l GTOYEVOUY GTO Vo Udouv Blapopwy
ELOWY YoUROXTNELO TG avdAOY L UE Tor Bedouéva exnafdevong. O tpdmog Tou Bia-
Ty 0LV TNV exdva Bacileton oty TEdn TNg cUVENENS, 6ToU TO PO Mo
piktpo Saoyilel ava opllovTia Gelpd (umopel xou vo Staoyilet avor Tohhamhéc
OELEEC) TNV €16V Xt TOAATAAGLELoVToL Tor v T{o Toty o EXOVOa TotyElol HETAED
TOUG YLoL Vo TAEoLY Lol SLoBLAo TaTr €000 TOL OVOUACETOL YEPTNG Y AQUXTNPL-
otxwv. ‘Oneg delyvel xan 1 Eixdva 4.2, umopolv vo utdpyouy ToAAamAd enimne-
o pikTpwy ot éva XNA (Tt npdoata LNA €youv dexddeg enimedo xan yihlddeg
VEUP(OVES GTO GUVOAO TOUC) OTIOU 0 YEETNS YOPAXTNPLO TIXWY TOU 1—00ToU €-
unédou anotelel TNy elcodo oTo Yikteo Tou (i + 1)—ootol emnédou. Opoing
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UToEOoUY Vo UTdEY 0LV TOANATAS pihTea oE éval enimedo Tar omola pordaivouy ToL-
xlho yapaxtneioTind. O Aéyog mou xohotd yerotua To ToMamAd enimeda etvan
1 duvatdTnTa v pardadvovton £ToL 6A0 xou o GUVIETL YUPAXTNEOTIXE, T O-
molo cuvtidevtan amd To TponyoLueva enineda QiATewY, cuvapTAoel Tou Bdioug
mou Bploxovto ta @ilTpo.

[TEpay TV cuVEAXTIXGOY eTTESWY, Ta UNA anotelodvTan and enineda pool-
Ing mOU GTOYEVOUY GTO VA UELOCOLY TNV YOELXT OLAC TUCT) TWV YARTMV Y oUQUXTL-
ELOTIXWY oAAS X Var Bonlicouy GTNY YeVIXEUsT) Xou TNV YEltOT TNG UTEPEXTA-
{Beuone. Axdun, oto meofinua tne Tevounone 1o XNA urnopel vo Staywpelo Tel
OTO XOUPITL TNG ECAY WY TG YORUXTNELO TIXMY (mou TEOYHUTOTIOLELTAL OO TOL TOA-
ANoThd GUVEAMX TS ETiTES L) Xou TOV T VOUNTH, 0 0T0l0g OUCLUG TIX TAUPVEL WG
€lc000 Tl C0YUEVAL YUPUXTNEIO TIXG Xo TOL TEQVAEL OO €Vl 1) TUPATAVE) ETERESA
VEUPWVOY Y€yl TNV €000 TOU amOTUTMVEL TNY THavoTNTA TNS ELGOBOU VoL O-
Vel ot xde pla amd Tic xatnyopteg o par upnrov-emnédou nopouaioon Tne
UEYLTEXTOVIXHC TORUTEUTIOUNE TOV OVOY VWG T o T8AL oty Eudva 4.2.

1.5 Iletpapatixd anoteAeécuota

‘Onwg €youpe avagépet TEQLANTTING OTIC TEONYOUUEVES THEAYEAPOUS, OTNY EQO-
yaoto authy uhoTooaue TOco emécelc o XNA, 660 xou plor uédodog duuvag
AL TUPUTNEHCUUE TNV CUUTEQLPOEE. TOV OVTUYWVIO TIXWY TURUOELYHATWY GTO
Tedlo TNG oLYVOTNTOG OE XGUE Lo AT AUTES TIC TIEPLTTOELS.

BIRDS CIFAR-10

Original Perturbation Adversarial Original Perturbation Adversarial
Albatross

Titmouse Horse

Sy, T ey T ]
pectrum - Orig.

S

Yyfuo 1.2: Avtaywviotixd mopadelypato yior xadéva amd tor GUVOA BEBOPEVLY XalL
T0 ouYVOTX Toug @doua (Seltepn oelpd). AploTepd EYOUUE OTNY TEMOTN OTAAN TNV
apyxn exova, 6T 6elTepn TV oAlolwor mou utoldyioe 1 pédodog PGD™ xa otnv
Teltn TNV ahhotwuévn exdva. Opoing xan yia Tic 8eEldTepES TEElS ElbVeC.
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Enwdéoeic oe Zuvehuxtixd Nevpwvixd Aixtua [No v egétoon
TWV AvVTAY VIO TIXOY entdéceny exnodedooue totxiha ENA ndve oto alvola
oedopévev CIFAR-10 [KH4-09] o 350 Birds species [Ger21] (o avoupepdua-
ote oe awtd we BIRDS). Tuyxexpyéva, yenotuoToouuE Xot EXTOUOEDCUUE
omo Ty apyh por oAt apyrtextovr] XNA yio 1o CIFAR-10 Baciouévn ota
netpdparta twv [ND17] xou évo ResNet-34 pe apyd npoexnoudeupéva Béen oto
olvoho dedopévewy ImageNet [Rus+15] vy to BIRDS oOvolo (oto Hopdptn-
uot A umdpyouv xou Tar aroteAéopata emtidéoewy ota povtéra GoogleNet xou
EfficientNet_B0). To npoexnoudevpéva Bden €xova Ueydhn Slopopd otny Te-
| oxpifBetar Tou Yovtélou Tou LemepVAEL TO 99% o oTNY Ty UTNTA TNG EX-
nofdevone (ypedotnxay Aydtepee and 10 emavarrdeic (epochs) tou cuvdrou
OEBOUEVWV).

O emiéoeic mou ulomothooue eivor AeuxoU-xouUTOL xaL BaCLOUEVES GTNY
xhion e anwhelog, ouyxexpwéva  C&W xaw PGD enfeon. Xuyxpivaue
xou o uhomoinomn avotytol xoddxa tng optoxhc enideong (amd v BBt
foolbox [RBB18] tnc Python) n onola eivon pédodoc yadpou-xoutiod dote vo
€YOUNE Lot €VPUTERT EXOVYL TV anelhwy. Ot emtidéuevol xvhinxay 16o0 e
ly eUXAElBIES AMOGTACELS OO TNV AEYIXT| EXOVA, GO XAl UE lo ATOCTIOELS, OL
omolec neptopilovv-uroloyilouv Ty péytotn (emitpenty|) oAhoiwon evoc exo-
vooTotyelou. Xtoug Iivaxeg 5.3 xou 5.4 paivovton Tor ATOTEAECUATA A YO TO
CIFAR-10 xou avtiototya otoug Ilivaxeg 5.5 yioa to BIRDS. Ou yetpixéc mou
YENOUWOTOLoOUE EVAL TO TOCOOTO TWV EOVWY YL TIg omoleg Beglnxe Eyxupn
(Bnhad”) Buvortr) var ahhdEel T xaTnyopla TS EXOVAS) aAhoiwon xode xat
v Eudeidio xon [ ambdoToo.

[Tépav tng udming emtuyioc Ty emiéocwy pac evdvtia o XNA tadvo-
UNTES, TOEAUTNEOVUE TNV CLYVOTIXA XUTAVOUY| TV UAAOWOEWY YL TIE DLopO-
PETIXEG UeVHOOUG Xt Ta GUVORA OEDOUEVGY. LNUELOVOUPE OUV YEVIXT] TOQA-
menon Bactouévn oe mpornyoluevee epyaoteg [Yin+20] [JB17], 6t ta BNA
AWOXOTOLOUY TG0 VPNAEC 6GO X YUUNAES GUYVOTNTES Yol Vo udouy To do-
ouévo oUVoLo BeBOUEVKDY (UGALOTO YEVIXEVOLY XOAUTERO AV YENOLWOTO|COUY
YUEAUXTNEIO TS EOVKY U1 AVTIANTTE 0TouG avip®Toug Tou Telvouv var elval
VPNAOY GUYVOTATWY), xou ETUTEOCVETWE HTL AVANOYA UE TIC GUYVOTNTES TIOU ot
Yatvouy, yivovtar evalointa o arlowwoelg autov. Topatnpolue yéoo and Ty
Ewéva 5.3 61 oty mepintwon tou CIFAR-10 undpyet evpela xotavour otig
CLVIOTWOES LY VOTNTUC ToU PETUBdANovTAL, o oUyxplon Ue auTtéc Tou BIRDS
¢ Ewdvag 5.4 mou elvon pe dlapopd o €VTOVES OTIC YUUNAES CLYVOTNTEC.
Emimiéov, ou emtidéuevol pe Iy xou o vOpUO amOGTUONS Tapoustdlouy OLo-
POpEC UETALY TOUC GTNV GUYVOTNTAU TO OO0 ElVOL AVOUEVOUEVO Xad(S GTNV
deVtepn nepinTwaon elvar Tpoodloptoévn 1 (LYo Tn) dAlolwon Tou EmTEETETOL
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o€ eTNEdO EXXOVOTTOLYElOU X OYL TNG CUVOMXNAC EIXOVOC OTWE GTNY TEMOT
TepinTwon.

H Avrtaywviotixy) Mddnon wg punyaviopnog duuvas  Agol omode-
{Cope 6Tt unopet xavelic vo Eeyerdoer pe 100% emtuyla to exmoudevpéva ENA
(mopbTL Eyouv TOND vy axpiBela oty To&vouno) eZeTAooUE TNV XavOTNTAL
™S avTorywvio Tixig udinong pe ) wédodo TRADES vo pewdoet tov Baduod
emtuylag Tov emTdéuevey. ‘Onng avagépaue €v ouvtouia Topamdve, otny
oltuTwon TNg ouvdptnong anwAclag Tou TRADES unopel xovelc vo duaBod-
uloel TV onuaota Tne axplBetag evdvtt Tne oTBapdTNTAC oTNY eEXTaldEUoT. AT
To TELRdUaTo Tou TEECoUE auTh 1 SlaBddiuion mou yiveTon PE TNV TUEAUETEO A
€yeL UeYdhn emppon] Tooo ota anotehéopata Twv emtdéocwy (Ilivoxes 5.6 xou
5.7) 600 %o 6T0 CLYYOTIXG ATOTUTIWHN TOUS OTwS atveton oTic Eixdvee B.1
(otnv mepintwon tou CIFAR-10) xou 5.4 (otnv mepintwon tou BIRDS, miny
NG TEWTNG OELRHC).

LUYAEXPWIEVA, BAETOUUE OTL OL AAAOLOCELS TWV ETLIECEWY GUYXEVTROVOVTOL
OTIC YouUNAES oLy VOTNTES GE avoloyla pe TV oTBopdTnTto Tou yovtéhou (on-
UELWOYOLUE OTL 600 PEWOVETOL 1 T A 1060 o oTBupd yivetar €va HOVTELD).
Auto Bebyver mwe o povtéda yivovton aviextind o YETABOMES TV LYNAGY
GUYVOTATOY, ONAADY| OTL OEV TIC YENOYOTOOUY ONUAVTIXG VLol YEVIXEUOT OTO
oOvoho Bedouévwy. Toutdypova, ol youniéc ouyvotntee naiCouv peyahite-
e0 POAO GTNV XATIYORLOTOINOT TNG ELGOO0U Xt UETHBOAAES TOUG 0ONYOUV OE
Aadog todvounon. AZiler vo avapEépoupe €06 OTL oL YouNhEéS xaL UECEC GU-
YVOTNTEC TOPOUGCLALOUY YORoXTNELO TIXd OE ol etxdva Tou efvon dloxploluo 6To
ovIpOTIVO pdTt xon w¢ avahoyla avTioToryoly ot Yeydhio Padud ota “oTiBoed”
YopaxtneloTixd (robust features) émwe ypduata, oyAUATE XU TEELYPAUUITA
TOU TEETEL VoL el Evar UOVTERD Yo TEPLEYOUY TNV XVELXL ONUACLONOY oL UG
EoVvaC.

Emumiéov, mopdTt TETUYAVOUUE VoL UEWWGOUUE TO TOCOGTO EMTLUY G TRV €-
Técewy (87})\0167’] TO TOCOGTO TOV EXOVKY Yl TIC oTtoleg Umopel Wi enideon va
umoloyloel xaxdBouheg aANOLOOELS) BEV (PTAVOUUE TOTE XOVTY OE 0% emtuyla,
XL ETUTAEOV OF TOAAEG TMEQIMTWOELC 1) EXTaldeLoT) elvon acTadrg wg Tpog TNV
amAELa (Vo POUVOUEVO TIOU TO GUVAVTACUUE TOAD £VTOVOL GTNV TERITTWOT) TOU
EfficientNet_B0). Autd Belyver 4Tt Ol TOESUETEOL TNS OVTUYWVIO TIXAC EXTIO-
devone v xohoTolv TOAD evaloUnTy XoL TEETEL Var ETMAEYOVTAL UE TEOGOYY
xou €mertor amd mohhég doxée. Emiong, xodopiCouv to méc0 duvatéc eméoeig
o yenotponomdolv xatd Ny exnaldeuon (apod Omwe einoye Tapamdve UTOAO-
yiCovton avtorywvio Tind mapodelypotor yiar xdiec BeBouEvo exTodBeuong) xon Yol
mdoavotnta ebvon 1) enfdeon mou yenowwonotfoaue cUUPwva ue toug [Zha+19]
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vo unv ebvon emopxric. ‘Ol to mopamdives ebvan uioe xotedduvorn ylor ueAhovt-
X1 EPELVAL XL TIPUXTIXEG AETTOUERELEG TOL OUWS Vo 0O1YHOOUY GE BUVUTS XKoL
oTBopd BNA.

1.6 X2yoAiacudg o LEANOVTIXESG XATELTVV-
ool

XNy nopoloo epyacion EVIQUPHOUUE GTO TEOBANUA TV AVTAYWVIC TIXOY ETL-
Ye€oewv ol omoleg amoteholV onuavTiXy| TopaBiacT TNG EUTIO TEUTIXOTNTUC Xl
afomotiag Twv BNA. Meketriooye 800 eupéng Bladedouéveg uedosoug enive-
ong AeuxoU-xouTiol, UToVEToVTAC OTL €youlE TAeN TEdoBact oc OAEC TIC Ta-
PAUUETEOUS TwV PoVTEAWY Tpog enlieon. To urnodetind pac oboTnuo acyoleito
ue TNV Tadvounom emoévewy and to cuvoha dedopévev CIFAR-10 xau 350 Birds
Species ypnowonotwviog yvwotéc apyitextovixée UNA. O emdéoelc mou v-
homowfoape ebvar o C&W xar PGD evey ti¢ ouyxplvoue xon pe pa enideon
Hoipou-xouTiol VAoTonuévr otny BiBAodxn avolytol xhodxa foolbox émou
OEV YENOWOTOLRUNXE Xouiol ECWTERIXY YVWOT Yiol T HOVTEND TEQEAY TNG TE-
Mg amogaong. ‘Oleg o yedodol Atay IXavEC Vo UTOROYIoOUY TOAD ULXEES
OALOLWOELS TTOU UETAPBAAOUY TNV TEAXY) TAEIVOUNOT) TNE EXOVAC-GTOYOU GE TO-
00016 peyahltepo Tou 80% amd Gheg Tic EOVES Tou emAEYUMxay Tuyaio (and
200 ¢ 300 to mhdoc avd entdeor).

‘Eneita epeuvriooue v pédodo avtaywviotixrc udnone TRADES nou
duvod uTohoYilel xoxb6BouAeg (vTaY OVIO TIXEC) OANOLOOELS XTdL NV EXTa-
{devon xaL TN YENOWOTOLACOUE Yia Vo EXTAdEVCOLUE O TB0Ed HovTEAX, avie-
xTxd oTig mopamdve emdéoeic. H pédodog autr, mou mopéyel Ty duvatdTn-
To Bteo Taduone avdpeoa oty oTBapotnTo xou axpifeo evéc BNA, Borinoe
oTnV Uelwon Tng emtuyiog Twv emi€ocwy aAAd xaL oTNV TopaTHENCT TNS Ola-
oTdiuong auTHG UECK TOMNATAGY TEIQUUATLY TOU TEECUUE UE BLopORETIXOUS
ouvduaouolg mapauétenmy. Iapdia autd yio xdnowr XNA anedeiydn aotodg
uedodog exmaldeuong xou Wiaitepa evaicinTn oty emAoyy Tng enldeong mdve
otnv onola yiveton 1 udnon.

[o var xatavoioouue xaADTEQO TTOL CUOTATIXG OTU OEBOUEVAL, TNV EXTO-
{Beuomn oAl xou Ty pédodo enticone xohoTtolv Ta XNA adOvaua anévavtt og
OLOXELTIXEG GTOYEUUEVES AANOLWOELS TNG ELCODOL XAVOUE UVIAUCY) UTWY GTO
nedlo Fourier. IIpofBdhhovtag tov BiodldcToto petacynuationd Pouplep Ghwv
TWV TETUYNUEVWY EXOVWY adpOolo TIXd, TORUTNENCUUE OTL GTNY TEPITTWON TWV
QEYIXWY UN-0TYBAPMY HOVTEAWY 1) xaTAvVOUY| TNG oAlolwong etval @aveptr| TO60
OTIC YoUNAES 600 xou oTIC UEoEC xan LS (og xdmoto Boduod) ocuyvotnreg,



Acronyms 12

CAPWS AVEAOYU UE TO GUVORO BEBOUEVLV, XAVOS XaEVaL EYEL DLUPOPETING UEYE-
Yog TANPOPORING XATAVEUNUEVO OTIC CUVIC TOOES GUY VOTNTIG (ue To CIFAR-10
v €yel o evpeto xatavouy| ant’ 6Tt to 350 Birds species mou cuyxevtp®yvel Thn-
pogopla xVplwg O YUUNAES CUVIGTHOOES OTWS PAETOUPE GTO PUCUUTOYEAUPTLOL
TV GUVOAWY Bedopévev oty Eéva 5.2).

H amewxdvion mou nolpvoupe vy i emdeoelg ota oTBopd HOVIEAX TOU
exnondevoouae pe Ty pévodo TRADES Siapéper xatd mohd xou yio o 600
oUvoha dedopévwy. Iapatneodue plor YETATOTON TG AANOIWONG OTIC YouN-
AOTEQEC GUYVOTNTEC GE GYEDT) UE TNV XUTOVOWUY| TTOU EIDUUE OTNV TEONYOUUEVT
TeplnTwoT), avouevo To onolo oupuPaivel oe dAec Tic emiéoelc xou To XNA. To
oTotyeio autéd avolyel TNV cLLATNOT CYETXE UE TNV PUOT TV CTYBUPMY YoEo-
XTNELOTIXAOY TwV Bedopévev tou podaiver éva aviextind BNA xou mou omwg
elvan ovaEVOUEVO (OUY OTIC YOUNAES CUYVOTNTES, O QVTITOEAYEDT) UE Tl UT-
oTBopd yopuxTNElo TXd Tou yenowwonotoly ta xowvd BNA vy yevixevon. Xto
ONUED UTO UTAEYEL aVAYXT] VIO TEPUUTERW GUC TNUNTIXG TELRAUATO UE DLapO-
cETIXEC apyLTEXTOVIXES (TEAEUTOlaG TEYVOhoYiog — state of the art), povtépvec
OLVUTEC EMVEDELC XU PEUALG TS GUVOAX BEDOUEVWV.

"AN\eC UEMOVTIXES XATEVDVVGELS EVOL 1) ETEXTAOT) TNE AVTAY WOVLO TG UddT-
OMNG ME TLO BLVATES duvaxég emécelg Evavtt Trg entieong PGD mou yenowuo-
Tole{ton amoxhelo Tixd. ‘Ocov agopd TNV avdAucT) TwV GUYVOTHTLY TWV oVToY K-
VIGTIXOV AANOLOCEWY, AmATELTOL £VOC CUC TNHATIXOC TEOTOC Yol Vo EEYwplcouy
TA YOEAUXTNELOTIXG TV OTBAUPMY %ot UN-0TYBUEMY O TOLYEIWY TOU TEPLEYOUV
oL ewxdvec oto medlo Fourier. Xuyxexpiuévo, umopel vo doxuudoer xovelc va
exTdEVOEL UOVTEAA GE EL0ODOUC UE OTOXOUEVEC XATOLEG CUYVOTNTES XOL VOl
oLy xplvel T EMIETEC G AUTE AVIAOYA UE TIC CUYVOTNTES TOL APaLEOUVTAL,
oA xa TV BUVATOTNTA YEVIXEUOTC TOUC OTIC 0y IXEC ElcOdoUC. T'ar mopddety-
uo et amoderydel OTL VM oL YUUNAEG CUYVOTNTES PEUOVWUEVA TETUYOVOUY
onuavtix axeifeio otor XNA, ov udniéc Bondolv va evioyuldel autr xar vo
TdEEL TNV PEYLOTN T TN TOROTL OTUACLOAOY XS OEV TPOGPECOUY ThANneopopia
otov dvipwno [Yin+20]. Aev eivar yvwot6 ouwe oxdpo av autd 1o YEYOVOS
umopel vo amogeuydel, av elvor yeroWo vor EXTondEVEL xavelg evar “ensemble”
LOVTEAWY Tou Yo elvor oviexTixnd o€ BLUPORETIXEG UAAOLOOEIC-ETIETELS 1) oV O
TEOTOG AZlONGYNONC TN XaVOTNTAG Yevixeuone twv LNA (ue vy petes g
axp(Betag) elvon ovTITEOoWTEUTIXGS.

Evekmiotolue va w)couue ToUC EVOLUPEROUEVOUC VLY VG TES VO GXEPTO-
Oy eig Bddog Toug mapdyovieg mou eMNEEAlOUY TNV ACPAAELN XU TNV OELOTL-
otio Twv BNA . Tlopdhhnha, eipacte auold60&ot OTL 1 EMOTHLOVIXT XOVOTNHTA
oTa emOpEvVa Yeovior Yo LIOVETACEL TEAXTIXES avATTUENG ued6dwY 6T TAdiCLO
¢ Teywntic Nonuootvne (TN) nou and v pio cuvddouv xahlTtepa Ye TNV



Acronyms 13

avipnmvn avtiindn (mou oTouc TEploodTEPOUC TopElC elvar TaEdBELY O P0G
utunon yioe v TN), ahhd and v dAAn umopoldv vo Aettoupyricouy dppnxta
oe axpaieg cuVIRxES xou Vo cuveyicouv Vo BEATIOVOLY Ue ac@dheto TNV xadn-
UEQVOTNTOL OIS,






Chapter 2

Introduction

It is widely known that machines are able to solve a variety of challenging
problems in almost all known areas such as Artificial Intelligence (Al), biology
and economics, even up to the extent of surpassing human-level performance
[He+15b] [Dav+16]. These radical technological advances are implemented
and used across many fields, either for scientific research or in our everyday
lives and needs. This extensive use of technology - although crucial - can
potentially be used maliciously.

In the past few years Machine Learning (ML) researchers have shed light
on possible ways one can leverage ML systems to cause undesired outcomes.
Since Deep Learning (DL) and ML have continuously demonstrated powerful
results in problems such as protein structure prediction [Jum+21], 3D image
reconstruction [ZL21], self driving cars [YWY 18] and realistic music genera-
tion [Dha+20] it is of great importance to understand how these techniques
could fail or be harmful.

Focusing on the area of Computer Vision (CV), there exist various mali-
cious threats to almost all used architectures and tasks like object detection,
classification and face recognition. The well-studied Adversarial Attack (AA)
threat can manipulate the input space of a classifier and create new adver-
sarial inputs from benign ones that are misclassified by the classifier, without
an observer being able to perceive this manipulation in the input. Another
form of threat that can occur while training a model are back-door or Trojan
attacks [Yun+20], where the goal is to inject some trigger patterns to the
training data so that the model learns some false association to the labels.
Membership Inference Attacks MIAs [Che+20a] and model inversion are two
of the most serious privacy threats since they aim at gaining knowledge of
the training data, meaning that they could potentially reveal sensitive infor-



Acronyms 16

mation contained in the data. These attacks, to name but a few, show how
crucial research in these problems can be but will hopefully also highlight
ways to create more secure and robust technological frameworks. We highly
recommend the interested readers to refer to [Akh+21] for an extensive re-
view of such diverse threats.

2.1 Adversarial attacks

Adversarial attacks are arguably very concerning in terms of their proven high
effectiveness in various ML and DL settings but also for revealing an intrinsic
vulnerability in the way many models work. In other words, beyond the
practical security issues that arise with adversarial examples, which mainly
apply in malware detection [SCJ19] and ad-blocking [Tra+19], they bring
forward issues in the learning and generalization ability of NN models. As
discussed earlier, the main goal of an adversarial attacker is to fool a target
model, i.e. to create an input (e.g. an image) that doesn’t yield the expected
output label. By definition, these attacks produce mainly norm-bounded
perturbations, i.e. that lie in an e-ball centered at the input, which are
extremely low-magnitude and imperceptible to humans.

In [GSS15] the authors first presented this phenomenon and proposed an
initial explanation, namely the fact that models are too linear in combination
with their high-dimensional input space. In other words, they stated that
many infinitesimal perturbations to the input can add up to large changes
in the output. This weakness was also connected to the nature of the fea-
tures that they learn and optimize over. Specifically, researchers noticed that
models tend to learn features not meaningful or visible to humans [Yin+20],
such as strangely biased representations of the input towards e.g. textures
instead of meaningful features like shapes [Gei+18], and choose to utilize
non-robust features — that are nevertheless useful for generalization - that
can easily be manipulated towards fooling a model [Ily+19]. Non-robust
features are defined here as input features that once altered infinitesimally
might be negatively correlated to the true label of the input.

Depending on the system information that an attacker has access to, AAs
can be characterized as black-box and white-box. Simply put, in the former
attackers have access solely to the output of the target model while in the
later they have access to the entire architecture and parameters. Black-box
attacks are generally either transfer-based, i.e. the attacker creates adversar-
ial examples by attacking a white-box model and then uses them to attack
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Figure 2.1: Adversarial examples for all 10 classes of the CIFAR-10 dataset, gen-
erated by the C&W attack. Each row represents the true class of the image and
the columns represent the target class.

the black-box target model, or query-based, meaning that through multiple
queries to the target model adversarial examples are constructed by utiliz-
ing the output in a specific way. At the same time, white-box attacks are
gradient-based, i.e. they use gradient ascent over the model’s loss surface to
find inputs that can fool it. On a final note it is worth mentioning that al-
though most AAs are in general norm-bounded, an extension to non-bounded
attacks exists known as unrestricted attacks where feature manipulation such
as color-shift and change in texture is applied. Universal attacks that fool
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various target models at once are also possible and surprisingly easy to con-
struct [Moo+17].

B
v

Figure 2.3: Sample images from the CIFAR-10 [KH+-09] dataset.

2.2 (Adversarial) Robustness

By characterizing a ML model as robust, it is thought to achieve high accu-
racy even in diverse settings where the test data are significantly (but not
semantically) different from the train data, e.g. including additive noise,
distributional shifts, adversarial examples etc. In practice though a model
can be robust to a restricted subset of data corruptions depending on the
training data distributions, as proven in [Yin+20].
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In this section we briefly want to mention various methods for achieving
robustness to adversarial attacks. The most obvious and empirically most
successful choice of method is adversarial training [GSS15], where the goal
is to train a model explicitly on adversarial examples, thus redefining the
optimization problem from empirical error minimization to minimizing the
maximum error of adversarial inputs. Many extensions of this method use a
regularization term between benign and adversarial inputs, by incorporating
both the natural and robust error in the optimization function [Zha+19]
[Bai+21].

Adversarial training can be though of as a type of data augmentation,
although other augmentation methods can also improve robustness, like Au-
toAugment [Cub-+19] which is essentially a mixture of such methods. To
improve robustness over white-box attacks, gradient masking can be used to
add noise and complexity to the loss surface of a model, although this type of
defense has been surpassed by adaptive attacks as seen in [ACW18]. A more
general approach to measuring robustness is embodied through certified ro-
bustness, where one aims at providing a bounded area in the input space in
which models are proven to be robust to. Lastly, we should also note that
instead of making a model robust, researchers have also been interested in
constructing mechanisms to detect adversarial examples as a means of more
robust ML systems [Akh+21].

2.3 Contribution

In this work we took a closer look to the aforementioned Adversarial Attacks
problem in the scope of image classification (though many similar threats
also exist for speech-to-text problems, generative models etc.). Our setting
consists of an adversary who is trying to fool a target CNN image classifier
and a dataset that is used for training and inference. We experimented on
the CIFAR-10 [KH-+09] and 350 Bird species [Ger21] datasets (referred to as
BIRDS) with three different attack methods, two of them being white-box
attacks and one black-box. An example of our produced corruptions can be
seen in Figure 2.1.

We aim at unveiling the origin of such malicious perturbations by adopt-
ing a Fourier-domain perspective on adversarial examples, similar to ap-
proaches in [Yin+20], [Har+21] and [JB17]. Analyzing images in the fre-
quency domain has been widely used as a tool with applications in image
filtering, edge detection and compression. The effect of high and low fre-



Acronyms 20

quencies in human visual perception shows contradicting characteristics to
image perception by CNNs [Yin+20] [JB17] and therefore is a fruitful di-
rection of research. To this end, we analyze the frequency components that
attacks modify and compare them with respect to the frequency distribu-
tion of dataset images, the attack method and most importantly the training
method. We chose adversarial training with TRadeoff-inspired Adversarial
DEfense via Surrogate-loss minimization (TRADES) [Zha+19] as a compar-
ative robust method to natural training and found interesting properties
related to robustness. Our final objective is to observe whether robust and
non-robust features of datasets are visible in the Fourier domain.

2.4 Thesis structure

In the introductory chapter we presented the objectives of our research and
stated the problem of adversarial attacks at a high level. In Chapter 3 we
will discuss previous approaches to the problem of adversarial attacks and
robustness in general but also their frequency characteristics that are cur-
rently understood and the origins of our methodology. Chapter 4 provides
the essential theoretical background needed to understand and potentially
reproduce our method. This includes a definition of the attack algorithms
used, the TRADES adversarial training method, the Fourier analysis in our
experiments as well as the core ideas of CNNs for image classification. In
Chapter 5 we have a detailed description of our methodology and hypothesis
that connects to the previous related works and background theory. We also
examine the effectiveness of our experimental setup followed by our main
findings and Chapter 6 summarizes the impact and future directions of our
work.






Chapter 3

Related Work

After introducing our primary goals in the previous chapter, we now aim
at addressing the building blocks of our ideas. To approach the problem
of adversarial attacks more broadly we present the basic intuition behind
many notable attack methods in Section 4.3 that span with respect to the
CNN’s architecture information that is utilized, the tools and the objective
of the attack. Also, in Sections 3.3 and 3.2 we discuss the fundamental prin-
ciples behind robustness and the notion of robust and non-robust features,
which characterise the learned image representations of CNNs. Lastly, we
present previous works that have observed the frequency space of adversarial
examples in order to understand their nature and ways to detect them.

3.1 Adversarial attacks on classifiers

Adversarial attacks where first introduced roughly in 2014 by [GSS15] and
have since played an enormous role in deep learning research. Here we present
a brief overview of various attack approaches in a somewhat historical tem-
perament. The first generation of attacks where mainly white-box attacks
but in the recent years scientists also managed to develop impressive black-
box attacks that correspond to more realistic adversarial settings.

3.1.1 White-box and first-generation attacks

FGSM The authors in [GSS15] pioneered adversarial attacks by intro-
ducing a simple one-step attack known as the Fast Gradient Sign Method
(FGSM) — although they implemented a previous approach in [Sze+14b]
called the L-BFGS attack that worked almost identically but with much
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Standard lso-trained lo-trained

__

Original

rimate dog dog cat

bird turtle dog cat
Source: [Tsi+19]
Figure 3.1: Inter-class interpolation visualized in adversarial examples of large e-
bounded perturbations for standard and adversarially trained models. While there

are no clear target-class features represented in the case of the standard model,
they appear strongly in the adversarially trained models.

weaker results -and producing attacks with up to 87.15% success rate and
confidence 96.6% with an [, distortion as small as ¢ = 0.1. Their algorithm
uses the loss gradient to find the direction that maximizes the loss of the true
label and thus moving the sample away from its original class (or towards
the class boundaries). A full explanation and formalization of this attack
can be found in Chapter 4 and thus we will not go into further details in this
section.

JSMA Instead of using a gradient-based algorithm, in [WX18] the authors
use saliency maps and the forward derivative VF', which is derived by:

op_ OF(X) _ [WX)

Ox

Ox; :|j€1..M,i€1..N

where F' is the classifier’s probability output, M the number of classes and
N the dimensionality of input X, to find the input pixels that will mostly
move the output probabilities towards an incorrect (or target) class. In their
experiments they run a number of iterations in which the two pixels with
maximum saliency map values (in other words maximum negative effect on
the true class of the input) are found and modified by a fixed amount 6.
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This attack produces adversarial examples for the MNIST dataset and a
DNN classifier with 97.05% misclassification rate and 4.03% distortion.

Pixel attack In this attack the authors designed an algorithm that uses
Differential Evolution (DE) instead of loss/output gradients and after a num-
ber of so-called generations finds the pixel (or 3-5 pixels) that yields the
perturbed image with the highest target (or lowest true) class confidence.
The one-pixel attack creates adversarial examples with a success rate of up
to 71.66% with 75.02% confidence for targeted attacks on CIFAR-10 and
16.04% with top-1 confidence of 22.09% on ImageNet. The authors use the
average RGB distortion as their metric and present a minimum distortion of
123/255 for one channel. This attack can also be classified as a black-box
attack since it doesn’t require any model or weight information due to use of
the DE algorithm.

PGD To extend the single-step FGSM attack, in [KGB17] an iterative
attack that uses FGSM as an inner step with [ but also [y constrained
adversaries was introduced. For a more real-life experimental setup, the au-
thors measured the attack’s success rate on photos of printed adversarial
images instead of just the source ones, and resulted in an error rate of maxi-
mum 37.4% in the case of photos with a perturbation of [,-norm e = 2/255,
compared to an error rate of 71.6% for the source adversarial images under
the same perturbation size. This attack is significantly more successful that
its single-step counterpart (that e.g. yields error rates of 45.5% and 64.7%
respectively for e = 2/255).

C&W In [ND17] a different optimization-based attack was designed that
was motivated by a defense mechanism called defensive distillation . Apart
from bypassing this defense, the authors created one of the most effective
attacks (for [, lp and Iy constrained adversaries) so far by redefining the
optimization task of the adversary and using a well-suited objective function.
We will dive into this attack in Chapter 4, but we add here that the success
rate of this attack is 100% for all ImageNet, MNIST and CIFAR-10 datasets
and with perturbations nearly 50% smaller than ones created by JSMA,
FGSM and DeepFool.

DeepFool The DeepFool attack [MFF16] is another iterative gradient-
based attack that in each iteration moves the current input towards the
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nearest decision boundary (meaning that this attack is untargeted) until the
output label of the classifier is incorrect. They chose to formulate the tar-
get classifier as a linear affine classifier and yield smaller perturbations than
previous attacks. More specifically, they created an attack for binary and
multiclass classifiers, with [, [y and l; measured perturbations. The au-
thors also use a robustness metric p for comparison of their results, defined
(here for the [y attacker) as:

padv(f) =E A(x’ f)

5l

for classifier f, input x, expectation over the input space E, and minimum
perturbation A(z; f).

Trust Region Based attack Moving now towards more advanced ideas
that extend the previous optimization based approaches, an attack worth
mentioning is the Trust Region Based adversarial attack [Yao+18]. Here the
authors aimed at surpassing an important limitation that previous attacks
had, namely the fixed iterative step when searching for adversarial points.
Instead they used trust regions for approaching the optimal point, since this
optimization method computes an adaptive search space (and thus step size)
for the next point in each iteration based on some criteria and threshold.
They present competitive results tested on multiple target architectures and
produce up to 50% smaller perturbations compared to C&W, DeepFool and
FGSM attacks.

3.1.2 Black-box attacks

White-box attacks where the starting point of this research area and revealed
many weak points of modern DL models, yet they describe a superficially
strong adversary. On the other hand, black-box attacks which we will discuss
in the next paragraphs assume that models are protected in the simplest sense
of only being available as black-box models to the potential attackers. This
more realistic approach brought forward another batch of effective attacks
that can be characterised as query-based and transfer-based.

Decision Based attack For query-based attacks, attackers leverage the
top-N output of the models and run multiple queries in order to gain in-
formation and approximate an optimal adversarial example. The decision
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boundary attack [BRBI18] is implemented accordingly and has this advan-
tage of requiring only the model predictions, uses a relaxed definition of
the adversary’s objective (e.g. the adversary might be interested in produc-
ing incorrect top-5 predictions instead of top-1) and is a lot faster than it’s
white-box counterparts while producing as much as 50% smaller perturba-
tions. Interested readers can continue on Chapter 4 for more technical details
on this attack.

Transfer Based attack As previously mentioned, there exist transfer-
based attacks, which in essence use the information of attacks run on surro-
gate models to attack the target black-box one. In another variant, transfer-
based attacks aim at estimating the gradient of the target model, which is
typically done with the help of targeted queries, and use it to run white-box
attacks on the model. To better illustrate this approach, we will briefly ex-
plain the prior-guided random gradient-free method (P-RGF). In this attack,
the authors designed a gradient estimation method that takes into account a
transfer gradient from a surrogate model trained on the same dataset and de-
rive a theoretically-proven optimal parameter A for this estimation with fewer
queries. In other words, they incorporate a gradient prior to the algorithm,
although stating that also data-dependent priors, which utilize the input’s
structure and subsample the input-space dimensions, can also be introduced
for boosting the attack’s performance. Their attacks reach 100% success rate
for a VGG target model and more than 80% for specific defensive models.

3.1.3 Universal and unrestricted attacks

Lastly, researches played around with the idea of adversarial examples on a
more abstract level and built upon universal and unrestricted attacks instead
of plain e-bounded and image-targeted attacks.

Universal attacks This type of attack is two-fold, meaning that on the
one hand they aim at finding a single perturbation that can attack multiple
images, which in mathematical terms is expressed in [Moo+17] by:

Poup [Clz +w) # C(x)] > 1 -0 and [[w][, <& (3.1)

where D denotes the input space distribution and ¢ the maximum pertur-
bation magnitude, or they find adversarial examples that can fool multi-
ple models (which also holds in [Moo+17]). The algorithm for producing
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these perturbations runs iterates through all data points and for each point
finds the minimal perturbation that pushes it towards the class boundary (if
C(x 4+ w) # C(x) doesn’t hold) and aggregates it with the previous pertur-
bation. Since the perturbation is £ bounded, a projection step (similarly to
the PGD method) is needed and all above steps are repeated until 3.1 holds.
In mathematical terms:

Aw; < argmin ||r]|, s.t. C(z; +w + 1) # C(x;)

for data point z;, and:
w — Pe(w + Aw;)

Unrestricted attacks In this setting we assume an unrestricted adversary
that can produce however-large perturbations. These attacks modify high-
level semantic characteristics such as colour or image attributes [HP18] and
are resilient to many common defense mechanisms (like adversarial training).
In [HP18] a method of only modifying colour saturation and hue is proposed
and is based on the representation of RGB images in the HSV space. With
the Value in HSV being kept unchanged, they iteratively modify Hue and Sat-
uration to find adversarial examples that have the same meaning to humans.
With this simple yet effective attack, they manage to drop an adversarially
trained model’s accuracy to 8.4%. In [Jos+19] the authors create seman-
tic adversarial examples by experimenting with Generative Adversarial Net-
works [Goo+14] that can tune image attributes and parametric generative
transformations. The generated images, although meaningful, manipulate
the attribute space (e.g. by adding glasses or changing the hair color of
input faces) in a way that fools a target classifier and drop the classifier’s
accuracy down to 1%.

3.2 (Non) Robust features learned by CNNs

Many approaches have been explored in order to understand the nature of fea-
tures that ML models and especially Convolutional Neural Networks (CNNs)
learn. As discussed above through these various adversarial attacks, there
are many forms of model manipulation that show the complex and unusual
interpretations that models learn (for examples, why are many models not
invariant to subtle pixel noise or colour shifts?). To this end, a number of
researchers have attempted to quantify the information that is used and have
indeed found some interesting and unexpected results.
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In [Gei+18] the authors found that naturally trained CNNs are heavily
biased towards texture features, something that isn’t true in the case of
human perception and also contradicts the established intuition that CNNs
learn increasingly complex shape representations. To induce more robust
shape biases instead of textures, they styled images of ImageNet [Rus+15]
with random textures using style-transfer methods and hence reducing the
generalization ability of textures in training. This reduced the accuracy of
models trained on the stylized ImageNet compared to non-stylized images,
but shows a greater shape-bias and good generalization to ImageNet.

Authors in [Ily+19] managed to design a theoretical framework to define
robust and non-robust features in terms of how they relate to the true label
after a small distortion of the input. They experiment with the Basic Iter-
ative Method attack [KGB17] — also known as Projected Gradient Descend
(PGD) attack - and construct two datasets, one robust Dg and one non-
robust Dyg that exhibit only robust and non-robust features respectively.
Concisely, Dyg contains adversarial examples along with the attack’s target
(hence wrong) label, meaning that due to the way they are created the corre-
lation of the label to the image is based on non-robust (easily manipulated)
features. On the other hand, Dy was created by utilizing a robust (adversar-
ially trained) classifier with mapping gr from input to the logits layer and
constructing a sample z’ that approximates:

arg min, o ¢ [|9r(2) — gr(@)|

with PGD, i.e. by mapping z’ to the robust classifier’s logits layer as close as
possible. Through extensive experiments they showed that a model trained
on Dypg generalizes well to the initial dataset (although the labels seem
wrong to humans) and thus it brings forth the usability of non-robust fea-
tures for training. Specifically they result in up to 63.3% and 87.9% accu-
racy for CIFAR-10 [KH+09] and Restricted ImageNet [Rus-+15] respectively.
They also note that training on Dy yields non-trivial accuracy to the natural
dataset of 48.27%.

To enhance these relations of (non) robust features to AAs, [Tsi+19]
examine the meaning of adversarial perturbations and feature representations
in robust and standard models. They show that representations of robust
models align better with human perception and obtain cleaner inter-class
interpolations. The authors show this by visualizing the gradients of the loss
with respect to input pixels and observing a stronger relation of these features
to human perceptual information in adversarially trained models than the
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ones from naturally trained models. Creating adversarial examples for robust
models reveals another useful fact about the corresponding perturbations,
namely that they exhibit salient feature characteristics of the target class.
Figures 3.1 and 3.2 showcase both of these facts.

(a) MNIST (b) CIFAR-10 (c) ImageNet
Source: [Tsi+19]

Figure 3.2: Visualization of the loss gradient with respect to input pixels for images
from the CIFAR-10 [KH+09], MNIST [Yan+98] and ImageNet [Rus+15] datasets.
Note that gradients show which areas in the images mostly influence the model’s
prediction. From top to bottom, the first row shows the input images, the second
row shows gradients for a naturally trained model, and the remaining rows present
gradients from adversarially trained models with ls and [, adversaries respectively.
It is evident that training robust models yields more representative gradients while
natural models seem to attract random-looking features.

3.3 Adversarial training and robustness

Adversarial training [GSS15] was first introduced as a regularization (and
augmentation) method, where the objective was to minimize:

L(0;z,y) = aL(0;2,y) + (1 — a)L(0; x + sign(V,. L(0; 2, v)),y)

which in other words is a linear combination of natural training error and
error introduced by adversarial examples (created with the Fast Gradient
Sign Method [GSS15]). In [Mad+19] authors reformulated this definition to a
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more generic saddle-point optimization problem, so as to use it to train robust
models. Specifically, they formulate the optimization problem as follows:

inEyy 0; X' Y 3.2
minExyywp | max  L(0; X, Y) (3:2)

where D denotes the data distribution and B(X, €) the € bounded neigh-
borhood of adversarial examples near X, to incorporate strong adversarial
examples to the training and minimize the worst-case error that they intro-
duce. This optimization problem presents a more abstract way of computing
X', in contradiction to the previous restrictive method.

In [Zha+19] another variant of adversarial training known as TRADES
was introduced, that defines robust error as the summation of natural and
boundary error (which stems from data points that lie at a maximum distance
e from the class boundary). The authors speculate on the trade-off between
robustness and accuracy while designing an intuitive objective function for
adversarial training that incorporates both natural and boundary errors. We
will skip the definitions at this point but readers can find a related section
in Chapter 4.

Regarding methods for robust Deep Neural Network (DNN) models for
classification, adversarial training is the most popular and effective choice.
That said, we briefly want to mention a different state of the art method
that yields higher robust accuracy under various attacks, one of which is
AutoAttack [CH20], an ensemble of very powerful and controversial attacks.
It’s intuition is related to TRADES in the sense that both consider the class
boundaries as an important factor and a key to better understanding the
problem. This method’s objective is to control for the intra-class compactness
and inter-class diversity of feature representations. This is achieved with the
following two objective functions:

. 2
minB ) [[f(z) —wy;
where C'is the number of classes, w, corresponds to the weight of the y-th

node in the classification layer and f(x) is the logit output of the classifier
for sample x that belongs to class j, and:

. 2
max toin fJus — wj;

where W*M holds the weights of the classification layer. It is evident
that by optimizing these functions the authors push intra-class samples close
to their kernel w; and push inter-class kernels away from each other.
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3.4 Fourier perspective of adversarial exam-
ples

In this section we want to bridge the knowledge introduced above with
the Fourier perspective of robustness and adversarial attacks discussed in
[Yin+20]. The main insight that we get from this work is that models can
only be robust to a subset of corruptions that are predominantly defined
by the training data. The authors reveal a correlation between frequency
component corruptions and test error with different training methods. They
provide evidence that AAs tend to corrupt high and mid frequencies when
the attacked model uses standard training, however these statistics change
with adversarial training and data augmentation methods, where adversarial
examples potentially modify high as well as low frequencies. They further
corroborate to the idea that by biasing models towards higher /lower frequen-
cies (through data augmentation or input frequency filtering), they become
more robust to high/low frequency corruptions, while sacrificing accuracy
and vulnerability to other complementary corruptions. We attempt to put
more context to these findings through our experiments on the 350 Bird
Species dataset [Ger21] and find some interesting alignments. Specifically,
the authors of [Yin+20] run experiments to measure the error rate of models
to all frequency basis perturbations while also training models on filtered
inputs and re-calculating their robustness.

In addition to [Yin+20], in [JB17] one gains a better understanding of
CNNs’ generalization characteristics through some extensive experiments on
datasets constructed with two frequency filtering techniques, a random and
radial filter (plus the initial unfiltered dataset). Specifically the authors aim
at comparing the generalization gap between models trained on these training
sets when tested on their three corresponding test sets. Although none of the
methods yield good generalization to all three test sets, the radially filtered
train set gives better results in comparison to the randomly and unfiltered
train sets.

The authors of [Har+21] and [Lor+21] consider the robustness properties
of analysing features and inputs in the frequency domain, in order to detect
adversarial attacks. In both defense mechanisms the authors observe intrigu-
ing patterns in adversarial examples generated from various algorithms, with
respect to their frequency characteristics. Thus they design a binary classi-
fier that effectively learns to distinguish between the frequency spectrum of
benign and adversarial images (although they leave out a very important ex-
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tension, namely testing the detector on adaptive attacks [ACWI18][CW17]).
They investigate the detection ability of both frequency magnitude and phase
and construct a black-box detector that utilizes the input alone, but also a
white-box detector that utilizes the Fourier transformations of a mixture of
feature maps from different CNN layers. As expected, the white-box detector
achieves significantly better detection rate, in the order of 50% higher than
the black-box detector. These attempts where very crucial for our intuition
to further analyze the frequency representations of adversarial attacks.






Chapter 4

Theoretical background

In this chapter we will analyze the theoretical tools utilized in our method.
Specifically, we discuss the fundamental principles of a Convolutional Neural
Network (CNN), the mathematical formulation of adversarial attack algo-
rithms as well as the details regarding adversarial training with TRADES,
a highly successful method that helps to understand the trade-offs between
accuracy and robustness. For a more detailed analysis we refer the reader
directly to the corresponding sources.

4.1 Notation

We denote by z € RY the input space and by F(x) or f(z) the output of
the full (convolutional) neural network model of parameter ¥, which is given
by applying the softmax function to the logits layer Z(z) (also known as the
penultimate layer), i.e. F(z) = softmax(Z(x)).

The classification output is denoted by C(x) = arg max{F(x)} and yields

the prediction of the model for input z. By L(J;z,y) we represent the
multi-class cross-entropy loss of sample x. Lastly, X describes an adversarial
example and B(X €) is the e bounded (for any distance norm) neighbourhood

around point X.
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Figure 4.1: The relation between visual system components and the basic structure
of a convolutional layer.

4.2 Convolutional Neural Networks

Architecture

Convolutional Neural Networks have defined the way images are understood
for over a decade, and they show impressive results in tasks such as image
classification, object recognition and face recognition. Their effectiveness
is thought to be strongly connected to how the biological visual system is
structured.

On a high level CNNs are stacked feature-extraction layers, which consist
of a convolutional layer, a pooling layer and an activation function. This
structure was inspired by [Fuk80] where a neural network is described as
layers of S-cells and C-cells on top of each other, the former recognising
a specific simple pattern in multiple regions of an image (thus extracting
patterns in a spatially invariant way) while the later are connected to the
previous S-cells and recognise more complex patterns. In Figure 4.1 this
relation becomes more evident.

By construction, CNNs extract information from images by computing
the discrete convolution between a filter and the input in an iterative manner.
Simply put, a small two-dimensional filter is convolved, i.e. passed over the



Acronyms 36

entire image one region at a time and multiplied element-wise, with the input
which yields values know as the feature map of the input. The convolution
of a filter f»*™ with input IV is given by:

3

n—1

f Y(n' +i,m +7),0>n < N—n,0>m'< M—m

Il
=)

=0 j

In essence, if the input X € R¥*W is convolved with a the filter-kernel
k € RE then the output is of shape % + 1 where P is the zero padding
that we is added to the image and S the stride with which the filter is
applied. After this operation, pooling (typically average or max pooling)
is employed for down-sampling and for regularization of the feature maps,
e.g. a 2 X 2 max pooling downsamples the image be a factor of two. Lastly,
an activation function is applied in order to introduce non-linearities to the
way these feature maps are combined for the final result. Depending on the
architecture, the number of filters in each convolutional layer, the pooling
method and the number of convolution layers can vary. The most widely
used activation function is the rectified linear unit (ReLU), which is defined
as:

ReLU(z) = max(0, x)

although other functions like the hyperbolic tangent tanh or the sigmoid
function can be used.

CNNs for Image Classification

For the purpose of this work, CNNs are used to classify images in a supervised
setting, i.e. alabeled training set is given which represents the classes that the
model ought to recognise. This type of problem deploys a classification layer
on top of the CNN, which essentially takes the learned features and passes
them through one or more fully-connected layers with as many output nodes
as the distinct classes. The final output is passed through a softmax layer,
where the softmax function is applied:

Z(x)

Z] 1 Z( )
and represents a vector with probabilities of the input belonging to each

class. The learning process takes place at the calculation of the loss func-
tion and its minimization (a method known as Empirical Risk Minimization

softmax(z) =
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Figure 4.2: Simple CNN architecture which takes as input 224 x 224 x 3 RGB
images and outputs a probability vector of size 1000.

[Vap91]) through running stochastic gradient descent [HS51] over the net-
work parameters. It is important to note here that the trainable parameters
of a CNN are its filters and the weights of the fully-connected layer(s). In
other words, the model aims at learning meaningful and representative filters
that can describe the features of the training data set. A widely adopted loss
function is the cross-entropy loss defined as follows:

L(l‘,y) = _Zyclogfc(x) (41)

where M is the number of classes, y, . is an indicator that equals 1 if input x
belongs to class ¢ and 0 otherwise, and f.(x) is the model’s softmax output
probability of o belonging to class ¢ with f(z) € RM.

Residual Networks

In [He+15a] the authors introduced a CNN
model that performed better than all pre-
vious architectures (e.g. VGG [SZ15]) by

x using residual connections. The authors ob-
identity

weight layer

served an important drawback in the ex-
isting models which was their inability to
represent the identity function. Effectively,

Figure 4.3: A residual block’s models were constrained on the number of

structure.
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convolutional layers that they could use because of exploding/vanishing gra-
dients [YPP94]. Through residual connections, i.e. connections mapping the
input of the convolutional block directly to the output, they overcame this
implication and managed to create even deeper and more accurate networks.
As seen in Figure 4.3 they add a mapping from the input to the output which
can describe the identity mapping if proven optimal. We used this architec-
ture in our experiments with BIRDS and on preliminary experiments with

CIFAR-10.

4.3 Attack methods

There are various attack methods one can explore, from black-box attacks
(where the attacker has only minimum knowledge of the underlying target
model, e.g. only the outputs of the softmax layer are known) to white-box
(the attacker has knowledge about the architecture and the weights of the tar-
get model). Although we implemented white-box attacks for our experiments
— which represent the strongest possible adversary — we want to underline
the high success rate of black-box attacks that exist in the literature such as
[BRB18], where the authors proposed an attack algorithm solely based on
the final decision of the model.

An intuitive way of understanding adversarial examples is by formally
defining the optimization problem that they approximately solve, defined in
[ND17] as follows:

minimize D(z,x + )
such that C(z 4 0) # C(x (4.2)
x40 €l0,1]"

where D is an appropriate distance metric. By solving the above problem
we obtain the smallest d-change that results to an image x+d that is classified
differently by the model while still remaining valid. In our setting we use the
l, norm distance metric, which is defined as:

D(z,2') = |l = 2|,
and is based on the p-norm:

], = (Zw)p (43)

=0
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Specifically, our attacks introduce adversaries that are leveraging the eu-
clidean distance measured by the [y norm, and the /., norm that measures
the maximum change over the N elements in x — z’.

For [, as well as [, bounded attacks we implemented the Basic Itera-
tive Method extension [KGB17] — also known as Projected Gradient Descent
(PGD) attack - of the Fast Gradient Sign Method (FGSM) attack [GSS15].
For ls bounded adversaries we use PGD and the Carlini & Wagner attack
(C&W) [ND17] that has proven to be one of the most effective white-box
attacks. In our experiments we also used the Boundary attack [BRB18] as
implemented in foolbox [RBB18], an open-source Python library for adver-
sarial attacks.

Fast Gradient Sign Method (FGSM)

The authors of [GSS15] were motivated by the observation that high dimen-
sional spaces such as the input space of images can translate small pertur-
bations to significant impacts in the output of DNNs (they note that this is
a problem of DNNs being too linear). Thus, they add a small perturbation
step in the direction that maximizes the loss of the true label (or minimizes
the loss of the target label in the case of targeted attacks):

Note that this is a single-step attack and as such is not as effective as
multiple-step or iterative attacks. The loss function used in both FGSM and
PGD attack is the cross-entropy loss as defined in 4.1

Basic Iterative Method (PGD)

As an extension to the previous attack, this attack is more effective since it
applies n iterations of n-step FGSM, while after each step it clips the image
to lay in the € bounded area around the initial image. In other words the
attacker decides on the size of the distortion beforehand and uses a smaller
distortion-step in each iteration . Formally defined:

Tiy1 =« + Pe(n - sign (Vz, L (0524, y)))

We should mention that for the purposes of our work we wanted to maxi-
mize the success rate of this attack -which is far worse than both subsequent
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attacks- and found that we had better results when running PGD for a cou-
ple more tries (specifically for failed cases). Since our goal was not to prove
the attack effectiveness but rather to measure it’s impact we consider this as
a plausible approach.

Carlini & Wagner attack

In [ND17] the authors tried solving a more explicit optimization problem
that follows definition 4.2 but can be solved using existing optimization al-
gorithms. To define an objective function that both minimizes the loss for
target class (or maximizes the loss of the true class in non-targeted attacks)
but also constrains the output image to be valid (with each pixel lying in
[0,1]), they introduced a change of variable as follows:

1
x+5€[0,1]n<:>5i:5(tanhw+1)—xi

The optimization problem now optimizes over parameter and yields a
valid image. The authors showed that (amongst others) the objective func-
tion defined as:

f(&) = max{max{Z(Z); : i #t} — Z(Z)s, —K}

creates the most successful and small perturbations. The final minimiza-
tion problem C&W attack optimizes is the following:

1 1
minimize 5 |(tanhw + 1)||2 4+ ¢ - f (5 (tanhw + 1))

and is optimized by running gradient descent. The constant ¢ is found
empirically by running binary search from an initially small value and for a
specific number of iterations (typically 10). The intuition behind it is that if
for the current value of ¢ no adversarial example is found, then we increase
¢ by a factor of 10 so that the algorithm searches a wider area around the
input, i.e. ¢ controls for the relative importance of optimizing the distance
|7 — 2||5 over the objective function f(%).

Boundary attack

The difference between all previous attacks and the Boundary Attack is that
the later is a black-box attack whereas the former were white-box attacks.
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Along with its high effectiveness, these are the two main reasons why we
decided to experiment with this attack.

In principle, the attack starts from an adversarial point and in each it-
eration samples a perturbation n* from a proposal distribution P, such that
it minimizes the distance between the adversarial point and the input, and
yields a new adversarial point. Although the authors note that the meaning
of “adversarial” is not restrictive to misclassification, we use it with the same
meaning as before. The boundary attack is described in Algorithm 1.

Input: z, 2° s.t. 7° is adversarial
k < 0;
while k < total steps do
sample n* ~ P(z%1);
if 2%~ + 0 is adversarial then
R A e
else
‘ ok kL
end
k+—k+1;
end
return z

k
Algorithm 1: Boundary Attack

4.4 Adversarial training with TRADES

As we already discussed in the previous chapters, adversarial training [GSS15]
[Mad+19] yields robust models against various attacks and will be used as
a comparative method of finding robust features in our experiments and
evaluating the effectiveness of our attacks. To this end we implemented
TRADES [Zha+19] as our training method, which encapsulates a natural
error Rp induced by the samples that are misclassified and a boundary error
Rp, that corresponds to the number of samples that lie no further that
distance € from their class boundary, to the robust error Ry, that describes
the number of existing adversarial examples, i.e. Rrop(F) = Ry(F)+ Rp(F).
We skip the mathematical error definitions since they are merely a theoretical
tool in [Zha+19], which brings us to the main takeaway that we utilize,
namely the objective function of the training task which TRADES minimizes.
Simply put TRADES minimizes the value of Rg,, which is formulated as:
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minE{c(e;F(X)Y) + max E(Q;F(X)F(X)/A)} (4.4)
0 XeB(X,e)

where the hyperparameter A denotes the relative weight of minimizing
the natural versus the boundary error. In the above formulation, adversarial
example X is calculated by running the PGDP attack. It is important to
note here that, in contrast to previous adversarial training methods such as
[Mad+19], the calculation of the adversarial examples as seen in Algorithm
2 is dependent on the difference between f(X) and f(X) instead of the
label Y and f (X ). This models the notion of the boundary error as a tighter
approximation than previous methods, since in order to maximize the second
loss term the algorithm “picks” samples near the decision boundary of f (as
an example, in the case of a binary classifier, the boundary error takes into

account samples for which f(X)- f(X) < 0). In Algorithm 2 all the training
steps of TRADES are presented.

Input: step sizes n; and 7y, hyperparameter A, batch x of size m,
number of iterations K, neural network f of parameter
initialize f(6);
while f not converged do
T« x+0.001-N(0,I); /* N the standard Gaussian
distribution */
for k=1,..., K do
7 &+ P,y -sign (VL (f(), f(2))]
end
00— Vo [L((fo(), 1) + LUo(@), fol@)/N] /m
end
return f(0)

Algorithm 2: TRADES

4.5 Discrete Fourier Transform

To observe the difference between features in the frequency domain we use
the widely used Fast Fourier Transform (FFT) algorithm to calculate the
2-dimensional Discrete Fourier Transform. For a discrete signal X with N
equidistant samples DF'T decomposes it to its constituent frequency compo-
nents. In the case of a 2-dimensional signal (an image in our case) X € RV*M

the DFT is defined as:
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N M
F(X) (k1) = Z Z X(n,m) - e~ 2N +51)
n=0 m=0

In practise the Fourier transform of an image is shifted so that the zero-
component is in the center of the image (an example is shown in Figure 5.2).
We use the 2-dimensional DFT either to simply observe the characteristics of
adversarial perturbations, or as a preliminary direction to filter an image in
the frequency domain, by using low, high and band pass filtering to preserve
the low, high or intermediate frequencies respectively. Here we used two
different types of filter kernels, a Gaussian and a box kernel. We employed
a Gaussian kernel for the low pass filtering due to the amount of distortion
that the box kernel introduces, as seen in Figure C.2. In the case of high
pass filtering though the values of the corresponding frequency components
are relatively small, so we simply employed the box kernel. The box kernel
with threshold ¢ is described as follows:

1, if X €[—t,1
0, else

Hi(X) = {

and the Gaussian kernel as:

1 _ x2
= (A F
tV2m
The above formulas describe a low pass filter but one can easily derive
the high pass formula simply by exchanging the first case to X ¢ [—t,t] for
the box kernel, and taking 1 —7H,(X) for the Gaussian kernel. The band pass
filter simply uses both a low on top of a high pass filter. Since image filtering

Hi(X)

is essentially a convolution operation on a 2-dimensional space and thus is
equivalent to multiplication in the frequency domain, the resulting frequency
filtered components are the product of the initial Fourier transform of X and

filter H(z):
f(z)x h(z) < F(X)-H(X)

and thus:
F(Xn) = F(X) - H(X)






Chapter 5

Method

After introducing the core concepts of adversarial attacks and adversarially
robust models, we now concentrate on implementation and experimental de-
tails regarding our attacker, target models and defence. In a nutshell, we
developed two popular attacks, namely the PGD and C&W methods and
achieved high success rates comparable to the original works. We also ex-
perimented with the open source boundary attack implementation contained
in the foolbox [RBB18] python library. These attacks are run on common
convolutional network architectures trained on the CIFAR-10 and BIRDS
dataset. While the former dataset has been used in a variety of methods,
we also experimented with the later which contains different resolution and
frequency characteristics. The aforementioned topics are discussed in Section
5.1. Despite our attack’s success rates on normal training scenarios, we are
interested in their performance under defended models which we present in
Section 5.2. Finally, we pose the question of which frequency components are
modified by different attack and training methods in Section 5.3 and discuss
our findings and overall observations in Section 5.4.

Hardware and Software setup

All computations on attacks and model training are done on two 16-core In-
tel Xeon Central Processing Unit (CPU), accelerated with an NVIDIA Titan
RTX Graphics Processing Unit (GPU). Our implementation and code is writ-
ten in the Python 3.7.11 programming language and the key machine learning
tools that we used are PyTorch 1.10.1 and torchvision 0.11.2 [Pas+19]. Since
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all our implementations are open-source!, interested readers can use our code
as a reference and reproduce all our experiments.

Datasets and pre-processing

CIFAR-10 The CIFAR-10 [KH+09] dataset contains 60000 images split
into 50000 training and 10000 test images (1000 per class) of dimensions
32x32x3 in RGB. Sample images can be seen in Figure 2.3. Images are
classified to 10 classes, namely airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck. This dataset yields useful comparative results
since it’s a typical target for adversarial attacks in the research community
although it certainly does not efficiently represent a real life dataset.

350 Bird species - BIRDS The 350 Bird species [Ger21] Kaggle dataset?
contains 45980 training, 1575 test (5 per species) and 1575 validation (5 per
species) RGB images of shape 224x224x3 in JPG format. They are classified
to 315 distinct bird species similar to samples that we present in Figure 2.2.
Due to its high resolution but reasonable size and class complexity (with
respect to many inter-class similarities) we decided to run experiments on it
and observe its characteristics in the frequency space. We will refer to this
dataset as BIRDS.

To train our models we use data augmentation and normalization tech-
niques. Specifically, we normalize the images to get mean y = 0 and a
standard deviation ¢ = 1 and use padding, random cropping and flipping
for augmentation. Note that we don’t use augmentation for our attacks. If
frequency filtering is applied, it is done before the augmentation and after
normalizing the data.

5.1 Attacks on CIFAR-10 and BIRDS

5.1.1 Target models and training

Throughout our experiments and after trying different CNN architectures
(such as various ResNet [He+15a] and Wide ResNet [ZK17] models) we fo-

!Code for all implementations and experiments is hosted in this github repository:
https://github.com/fotinidelig/foolproofNN
2We use version 47 which is available here


https://github.com/fotinidelig/foolproofNN
https://www.kaggle.com/gpiosenka/100-bird-species/version/47
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Original
[T

Carlini & Wagner attack

Natural A=0.1 A = 0.05 Natural A=0.1 A = 0.05

b
4 A b

PGD® attack

Natural . A = 0.05 Natural

A =0.05

Figure 5.1: Adversarial examples and their corresponding perturbations on two
sample images from BIRDS[Ger21]. We performed the PGD* [KGB17] and C&W
[ND17] attacks on the naturally and adversarially trained ResNet34 [He+15a] mod-
els (A = 0.1 and A = 0.05) as seen on each column. The difference in the per-
turbations for different training methods is clear since for the robust models the
image’s features are evidently distorted in a meaningful way.
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cused on one target model for each dataset that achieved the highest accu-
racy and training efficiency. To train our models we used Stochastic Gradient
Descend (SGD) [HS51] with Nesterov momentum [Nes83] as our optimizer,
weight decay and exponential learning rate decay (see Table 5.1 for specific
values used in our experiments). Since we use SGD, we feed our data in
mini-batches of size 128. Our loss function is the cross-entropy loss defined
in 4.1, as is typically used in classification tasks.

For the CIFAR-10 dataset, following [ND17] for evaluating our attacks, we
implemented the same CNN architecture (we will refer to it as CWCIFAR10)
which is described in Table 5.2. We trained it from scratch and achieved top-
1 accuracy of up to 82% (and more than 79%) in 60-70 epochs. Regarding
the BIRDS dataset we used a ResNet34 (as well as a GoogleNet [Sze-+14a]
and EfficientNet_BO [TL20] which can be found in Appendix B) and used
the pretrained® weights from ImageNet to initialize our model. We achieve
99.30% and 99.17% top-1 accuracy respectively. With this configuration the
model converges in less than 10 training epochs.

Layer Kernel size
Parameter Value Conv + ReLU 3x3x64
o SGD Conv + ReLU 3x3x64
| 0.01 Max Pooling 2% 2
11 " 0,05 Conv + ReLU 3% 3 x 128
—— ' Conv + ReLU 3% 3 x 128
momentum 0.9 .
batch size 128 Max Pooling 22
woichtdeca Sed Fully Connected + ReLLU 256
& Y Fully Connected + ReLLU 10
Softmax 10

Table 5.1: Training parame-

ters used throughout our exper-
Table 5.2: CWCIFAR10 model

architecture details

iments

5.1.2 Attacker setup

To attack our previous models we used a white-box adversary with the PGD
and C&W attack but we also experimented with the black-box boundary

3Specifically, we used the implementations for the ResNet34, GoogleNet and Efficienet-
Net_B0 provided by torchvision here.


https://pytorch.org/vision/stable/models.html
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attack. Based on the theoretical formulation of these methods as discussed
Section 4.3, we tested multiple hyperparameters with the prospect of cre-
ating strong attacks. Specifically, for the PGD attack and both [, and [,
bounded adversaries we tuned the number of iterations, the step size n and
perturbation size of € (e = 0.03 for [, adversaries, € = 0.5, 1.5 for [ CIFAR-10
and BIRDS attacks respectively). For the C&W algorithm we assumed an Iy
adversary we only tested the number of iterations while fixing the learning
rate to 0.01 and confidence to 0.01. We used 300 images drawn from the
respective test sets for each experiment.

5.1.3 Results

The metric for our evaluation is the fooling/success rate, i.e. the percentage
of samples for which an adversarial example is found:

Yoepl{Fo e Sst. Clx+0)#C(x)}
N

with S the space of valid perturbations, and the distance ||z — Z| ., o of
adversarial example  from the benign image = aggregated over all samples.
After carefully hand-picking the parameters we achieved near 100% accuracy
for all attacks and datasets as seen in tables 5.3, 5.4 and 5.5. We want
to note that in practise, some of these attacks where computationally very
expensive (with the C&W attack being significantly more time- and resource-
consuming) and thus the attack iterations and step sizes should be chosen

SR =

wisely in order to get feasible results.

Attack SR [, distance Iterations Step
*Boundary  100% 0.260 - -
C&W? 100% 0.234 800 -
C&W? 100% 0.232 400 -
*C&W? 100% 0.227 200 -
*PGD? 89% 0.491 100 0.1
PGD? 91.75% 0.494 200 0.1
PGD? 93.38% 0.490 500 0.1
PGD? 92.12% 0.489 200 0.07
PED- 92.75% 0.494 500 0.07

Table 5.3: Untargeted attack results for the CIFAR-10 dataset with an [ adversary
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Attack SR [, distance [, distance Iterations Step
PGD® 97.62% 1.169 0.03 30 0.007
*PGD>  98.12% 1.228 0.03 100 0.007
PGD®> 95.12% 1.046 0.03 30 0.004
PGD® 97.50% 1.250 0.03 100 0.004

Table 5.4: PGD untargeted attack results for the CIFAR-10 dataset with an [

adversary

Attack SR [, distance [, distance Iterations Step
*Boundary  100% 0.601 - - -
C&W? 100% 0.481 - 800 -
C&W? 100% 0.505 - 400 -
*C&W? 100% 0.487 - 200 -
PGD? 56% 0.5 - 500 0.1
PGD? 62.33% 0.5 - 500 0.07
*PCGD? 99% 1.5 - 100 0.1
PGD? 100% 1.5 - 500 0.1
PGD? 99% 1.5 - 500 0.07
*PGD™ 100% 7.607 0.03 100 0.007
PGD®> 100% 7.454 0.03 100 0.004

Table 5.5: Untargeted attack results for the BIRDS dataset and ResNet34 model
with both [ and [, adversaries

5.2 Defending with adversarial training

After ensuring the success of our attacks, we proceed to test a practical de-
fence mechanism by training our models with the TRADES algorithm. In
essence, this includes implementing a different loss function than the one
used in our previous natural training method, which in each minibatch itera-
tion calculates adversarial examples and pushes the model towards correctly
classifying those as well as benign samples.
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5.2.1 Experimental setup

Our training configurations mainly stay the same, with the difference that
we don’t use any data augmentation, although incorporating perturbed im-
ages can be though as an augmentation method. Adversarial examples are
computed with the PGD algorithm, with the difference that we don’t use the
cross-entropy loss to compute the gradients but rather the Kullback-Leibler
divergence loss defined as:

Llx,&) =) fulx) - (log fo(x) = log fo(7))

where x and T are the benign and adversarial samples respectively, M
the number of classes, y € RM the one-hot label and f € R the softmax
output probabilities. The choice of loss function was equally inspired by the
implementation details? provided by the authors of [Zha+19] and the loss
function definitions provided by the PyTorch tools®.

This defence contains a number of tunable parameters for both the train-
ing loss computation and the adversarial examples search. In general ad-
versarial training is largely more computationally aggressive than normal
training and thus we had to limit our parameter space and mainly experi-
mented with the lambda and norm parameter. Our choice of the parameter
A values stems from the effectiveness of TRADES to defend our models and
the maximum desired loss in accuracy. For completeness we have included
the parameters used for the inner maximization of problem 4.4 in Appendix
B. Lastly, we use the PGD> attack for training but some results on training
with the PGD? attack can also be found in the Appendix B.

5.2.2 Results

In order to quantify the effect of TRADES over the success rate of our attack,
we first run attacks on the non-robustly trained target models and then run
the same attacks on our adversarially trained models. We have denoted the
exact attack parameters used here in Tables 5.3, 5.4 and 5.5 by an asterisk
(*) next to the attack. It is evident from tables 5.6 and 5.7 that the bounded
attacks (PGD attacks) significantly under-perform in this setting, while the

4An official implementation can be found here
5The definitions of the cross-entropy and Kullback-Leibler divergence losses in PyTorch:
CrossEntropyLoss and KLDivLoss.


https://github.com/yaodongyu/TRADES
https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.KLDivLoss.html
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non-bounded attacks (C&W and boundary attacks) compute adversarial ex-
amples with significantly larger perturbations. This suggests that perturba-
tions of adversarially trained models are potentially more easily picked up
by an observer or an attack detector (empirically we noticed many of them
can be observer by the human eye). Moreover, by observing how \ affects
both accuracy and robustness, we can spot the trade-off between these two
properties and the final choice of A should reflect their relative importance
within a specific task. As a reminder, from problem 4.4 one observes that the
significance of minimizing the boundary loss Rp (i.e. the second loss term)
increases as A\ decreases, which as a consequence trains increasingly robust
models.

A Accuracy Attack SR [, distance

C&W? 100% 0.227

Boundary  100% 0.260

(oc)  827T8%  "pape’ 93129 1228
PGD? 89% 0.491

C&W? 100% 0.874

Boundary  100% 0.990
0.1 70.62% PGD® 34.50% 1.41
PGD? 23.00% 0.49

C&W? 100% 0.549

Boundary  100% 0.771

1 Vi PGD®* 66% 1.373

PGD? 33.50% 0.478

C&W? 100% 0.554

Boundary  100% 0.640

2 78.97% PGD® 71.50% 1.356
PGD? 48.50% 0.485

C&W? 100% 0.402

Boundary  100% 0.530

2 e PGD®> 84% 1.307

PGD? 57.50% 0.474

Table 5.6: TRADES results on the CWCIFAR10 model for different A values. The
trade-off between robustness (observed in the reduced success rate of our attacks
as A\ decreases) and accuracy is evident.
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A Accuracy Attack SR [, distance

C&W? 100% 0.481

Boundary  100% 0.260

(00) = 9930%  “papee”  100% 7.607
PGD? 100% 1.5

C&W? 100% 9.231

Boundary 99.50% 5.189

0.05 98.83% PGD®> 63.50% 10.079
PGD? 6% 1.453

C&W? 100% 1.812

0.1 08.67% Boundary 99.50% 2.594

PGD>  93.50% 9.223
PGD? 16.50% 1.49

Table 5.7: TRADES results on the ResNet34 model and BIRDS dataset for dif-
ferent A values. The A values that reduced the attack success rate differ where
fine-tuned to this specific model.

5.3 Fourier analysis of adversarial examples

We have previously discussed the existence of various attack detection ap-
proaches that take into account an image’s Fourier transformation and seek
to understand whether this image is benign or corrupted [Har+21] [Lor+21].
Many previous works emphasize that adversarial examples are on the most
part mid to high frequency distortions and they posses intrinsic frequency
properties, different from benign images. With respect to properties of robust
and adversarially trained DNNs, it has been proven that they are resilient
against high frequency modulations, yet remain vulnerable to low frequency
ones [Yin+20]. With our analysis we aim at approaching these two claims,
i.e. the general perturbation characteristics that are concentrated to mid-
high- frequencies and the apparent sensitivity of robust models to mainly
low frequency perturbations.

5.3.1 Analysis method

To measure how a computed perturbation is distributed across frequency
components, we first compute its 2D Fourier transform, and then iterate
over each component (in the 2D plane a frequency component corresponds
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to the (4, j)-pixel value) to calculate the percentage of the total perturbation
it represents. In other words,

_ | Fuyld) — Fiylo)
[7() — F@,

Ai’j(i,ac) 1€ [1,W] andj € [1,H]
where F(z) € R?*W the Fourier transform of x (we only use the real-valued
amplitude), aggregated over the image’s channels (3 channels for RGB color
images).

Since we run our attacks on multiple samples (typically 200 or 300), we
take the median:

A% = Med({AiJ(fk,fL’k),l‘k S DN})

of all benign-adversarial image pairs over the samples set DYV. This yields
a 2D perturbation frequency distribution AY which we visualize to observe
the differences in our attacks.

5.3.2 Comparison of attacks and training methods in
Fourier space

In this section we will present our attack and defence results with respect to
the Fourier analysis of the computed perturbations. As a starting point, and
in order to be able to assess these findings we looked at the overall frequency
characteristics of our datasets. For this purpose we visualized the mean
value for each frequency component over all training images in both datasets
as seen in Figure 5.2. It is evident that samples obtained from CIFAR-10
have a wider frequency distribution over both low and high components,
whereas in the case of the BIRDS dataset the frequency energy is mainly
concentrated in the lower frequencies. Figure A.1 shows an attack on the
same model architecture trained on both datasets and the connection to the
dataset’s characteristics is more clear. This serves a first intuition as to
why adversarial attacks produce entirely different frequency profiles for our
datasets. As seen in Appendix C Figure C.1 where we show different filtering
thresholds applied to images from our datasets, lower frequencies mainly
describe slow alterations in the images such as color alterations, whilst high
frequencies are responsible for the very subtle details.
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BIRDS 224 x 224 BIRDS 32 x 32 CIFAR-10 32 x 32

Figure 5.2: Visualization of the mean 2D Fourier transformation amplitudes over
all images for both BIRDS and CIFAR-10 datasets. The middle image is the down-
sampled BIRDS representation from 224 x 224 to 32 x 32 for better comparison
with CIFAR-10.

Boundary C&W? PGD? PGD*®

10 10 10 10
08 08 08 08
06 06 06 06
04 04 04 04
02 02 02 02
00 00 00 00

Figure 5.3: Visualization of AN for all attack methods on the CWCIFAR10 model
with natural training.

Natural training

CIFAR-10 In Figure 5.3 we present the frequency representations for each
attack algorithm for the natural CWCIFAR10 model. These suggest that
adversarial examples are manipulating both low and high frequencies but
merely as much mid frequencies. This is a contradicting fact to previous
beliefs [Yin+20], though it might be an intrinsic characteristic of this specific
CNN architecture or our training accuracy. One can also observe that the
PGD> attack slightly deviates from the profile of the other [y restricted
attacks. This is a natural consequence of the fact that the perturbation of
each pixel in the case of an PGD* adversary is constant.

BIRDS In the case of the BIRDS dataset, the frequency representations
in Figure 5.4 differ significantly. The perturbations are more concentrated
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in lower to mid frequencies and amplitudes increase as we move towards
the zeroth Fourier component, which is expected due to the energy concen-
tration of BIRDS images in lower components as described in the previous
paragraphs. In other words, and according to [Yin+20] the model counts on
these low- and mid-frequencies to generalize and thus is more vulnerable to
modulations in this region (while CIFAR-10 images have weaker concentra-
tion of large amplitude frequencies in a restricted space and thus our model
is vulnerable to a wider frequency region).

Boundary C&W? PGD? PGD®>

0.4 * 0.4 0.4 0.4

Figure 5.4: Visualization of A"V for all attack methods on the ResNet34 model for
BIRDS images. The first row represents the results of natural training, the second
and third ones of training with TRADES)—g.1 TRADES)—_g o5 respectively.

Adversarial training

In general and throughout all of our experiments we found that adversarial
training yields models with significantly altered AY distributions. Specif-
ically it showed a clear improvement in the robustness of models to high
frequency pixel manipulations, with increasing robustness leading to increas-
ingly sustained perturbations towards lower frequencies.
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CIFAR-10 Although in the previous paragraphs we emphasized that ad-
versarial attacks for CIFAR-10 images are distributed over a large frequency
region (shown in Figure 5.3), this region is entirely shifted towards low fre-
quencies as seen in Figure B.1 in Appendix B. This occurs with all adversaries
and parameter combinations that we run.

BIRDS In the case of images from BIRDS, adversarial attacks manipulated
a large low- to mid-frequency neighbourhood before. We observe a decrease
in this region when models are trained robustly, with the highest perturbation
amplitudes being gathered in much fewer and lower Fourier components.

5.4 Discussion

In the previous section we presented two claims suggested from related works,
specifically proposing that adversarial attacks corrupt mid to high frequen-
cies and that adversarial training boosts model’s robustness against higher
frequency modifications. We found the former to be deeply tied to the dataset
(and to some extend model) characteristics and the latter to be reproducible
by our experiments.

After extensively testing our attacks and evaluating the effects of adver-
sarial training, we want to discuss some catholic observations with respect to
different attack methods as well as model generalization properties. So far
we have seen few differences between different attack’s perturbations, with
the most notable being the effect of the utilized norm of an attacker (e.g.
a PGD? vs PGD™ adversary). We suspect that the key characteristic that
defines perturbations is the dataset itself and as a consequence its learnable
features. This has been previously suggested with the appearance of univer-
sal attacks [Moo+17] [Ily+19]. Some preliminary results we have on different
model architectures for test images of BIRDS and CIFAR-10 (Figure A.2 and
A1) also suggest that some architectures represent models with different fre-
quency vulnerabilities. Furthermore, the intuition that classes that appear
close to humans (e.g. truck and car, cat and dog) are also closer in the feature
manifold of models also seems very plausible (as seen in Figure 5.5).

Regarding the separation between robust and non-robust features, a com-
mon baseline is that adversarial attacks mainly modify non-robust features
[lly+19]. We find that it’s hard to distinguish them in the frequency domain
since attacks corrupt a large frequency region, still robust models experience
corruptions mainly in the lower Fourier components. The assumption that
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Figure 5.5: Here we run untargeted C&W attacks on 50 CIFAR-10 samples be-
longing in each class (a total of 500 samples) and present the number of adversarial
samples from each true class that were classified falsely in different classes. The
vertical axis represents the true class whereas the horizontal states the classifica-
tion class of the perturbed images. In almost all classes the class with the most
adversarial examples would be perceived as a relatively similar class to the true
one by humans (e.g. 60% of cat images where modified to be classified as dogs).
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lower frequencies are related to robust features is not too far-fetched. But
rather than focusing on this distinction, we want to raise the same idea as
discussed in [Yin+20], namely that models can only be resilient to a subset
of corruptions that are on the most part introduced in the training augmen-
tation. Adversarial training, i.e. data augmentation with corrupted images
in low as well as higher frequencies thus yield models robust to these Fourier
components.






Chapter 6

Conclusion and future
directions

In this thesis we investigated the threat of adversarial attacks in image clas-
sification Convolutional Neural Network (CNN) models. We experimented
with the CIFAR-10 and 350 Birds Species datasets with a variety of victim
models and attack methods. Many questions remain unresolved regarding the
ability of models to become robust to such corruptions and the characteris-
tics that these attacks utilize, with respect to the dataset, model architecture
and training (i.e. either natural-standard or adversarial) properties.

6.1 Conclusion

In summary, we demonstrated the effectiveness of adversarial attacks by
developing two widely used white-box attacks, namely the C&W [ND17]
and PGD [KGBI17] attacks and experimented with their parameter space
to achieve up to a 100% fooling rate. These attacks produced very subtle
corruptions, dependent on the attack configurations and the dataset. Since
white-box attacks are on the one hand the optimal way to measure robust-
ness, but on the other hand pose a non-realistic adversary, we also compared
them with the black-box Boundary attack and found that it is a strong and
effective of an attack. Interestingly, after implementing the TRADES adver-
sarial training algorithm [Zha+19] we clearly observed a lower fooling rate
in all attacks, as well as a trade-off between the classification accuracy and
the ability of models to become robust to adversarial examples.
Furthermore, since it has been previously suggested that adversarial ex-
amples contain fundamental differences in their frequency space profile in
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comparison to benign images, we aimed at exploring these effects and ten-
dencies by computing the Fourier transform of attack perturbations, denoted
as AN, By visualizing A" (across N adversarial examples) we found that
corruptions are sensitive to the [, distance metric chosen by the adversary,
the dataset’s frequency properties, as well as the target model architecture.
Although our initial goal was to work towards clarifying the debate between
robust and non-robust features of models, we found this to be a delicate prop-
erty not entirely observable in the frequency domain that needs even more
extensive research and experimenting. Nevertheless the differences in the
distribution of perturbations across the frequency domain is an encouraging
observation and justifies the success of frequency-related detection mecha-
nisms such as [CH20] and [Har+21].

6.2 Future work

The area of adversarial machine learning has made impressive progress in
recent years, nevertheless some questions remain open which we want to
discuss with respect to our future research intentions.

Since adversarial training yields the most effective defense method, we
propose that TRADES as well as other similar methods should utilize even
stronger (and more efficient) attacks than the PGD attack (e.g. the bound-
ary attack) in order to increase their robustness towards a wider variety of
attacks. This topic would need both theoretical and experimental proofs
since so far only the PGD method has been proven to solve the saddle point
problem of equation 3.2 effectively [Mad+19]. This comes hand-in-hand with
creating robust models in other machine learning tasks beyond image clas-
sification, such as self-supervised learning and Natural Language Processing
models.

We are also interested in investigating the effect of training models on fil-
tered images, with respect to their generalization ability as well as robustness
properties, with the prospect of further manipulating the features learned by
CNNs. This could lead to architectural changes of common ML and DL
models in order to boost their ability to learn semantically meaningful fea-
tures. Furthermore, accuracy as the benchmarking metric and optimization
goal of models should be reconsidered, since it doesn’t capture the quality
of the learned data representations or its robustness (and hence we experi-
ence the trade-off between robustness and accuracy). Research also shows
that bridging the gap between human and machine vision can reveal inter-
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esting properties on both ends that can lead towards better interpretable Al
systems. As an example, authors in [Pet+19] proved that by using human
(and thus noisy) labels on CIFAR-10 images rather than the dataset labels
classifiers are trained in a robust manner, while [Lan+21] proved that clas-
sical CNN architectures perform better in an alignment to human attention
than modern attention-based models (e.g. [Fuk+19]). Thus we believe that
utilizing such experimental methods or even a human visual understanding
prior (which was also proposed in [Ily+19]) in computer vision models is a
fruitful future direction.

On a final note, we are very positive about the increasingly popular shift
of the Al community towards more safe and reliable tools and hope to sys-
tematically incorporate reliability and robustness against diverse attacks to
the Al development pipeline.
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Appendix A

Additional attacks run on

CIFAR-10 images

So far we have shown our attack results when running untargeted attacks,
which as we discussed previously seek to find adversarial examples that move
away from the true class and towards the closest classes in a bounded neigh-
bourhood. We also experimented with targeted attacks where the adversary
defines what the output class for the adversarial example should be. We run
our attacks with 200 samples and targeting all classes for each sample. As
expected this setup is difficult in the case of a large number of classes so we
present results only for the CIFAR-10 dataset in tables A.1 and A.2.

Attack SR [, distance Iterations Step
C&W? 99% 0.41 800 -
C&W? 99% 0.396 400 -
C&W?  100% 0.227 200 -
PGD? 69.40% 0.494 200 0.1
PGD? 68.90% 0.49 500 0.1
PGD? 67% 0.489 200 0.07
PGD? 66.40% 0.494 500 0.07

Table A.1: Targeted attack results for the CIFAR-10 data set with an lo adversary
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Attack SR l, distance [, distance Iterations Step

PGD>  96.30% 1.1.45 0.03 30 0.007
PGD™ 97% 1.47 0.03 100 0.007
PGD>  97.70% 1.45 0.03 30 0.004
PGD®*> 97% 1.49 0.03 100 0.004

Table A.2: PGD targeted attack results for the CIFAR-10 data set with an [
adversary

CIFAR-10 BIRDS

1.0 1.0
0.8 0.8
0.6 0.6
04 04
0.2 0.2
0.0 0.0

Figure A.1: Visualization of AY for the boundary attack on the ResNet34 archi-
tecture trained on CIFAR-10 and BIRDS in 32x32 resolution (both cases achieving
99.50% SR on 200 test). We observe the model’s but also the dataset’s ”finger-
prints” in that the distortions have similar effects but span on different frequency

components.

EfficientNet _B0 GoogleNet

0.0

Figure A.2: Visualization of AV for the boundary attack on EfficientNet_B0 and
GoogleNet (with 100% SR on 200 test samples), which we only trained normally
with 99.11% and 99.17% accuracy respectively. They exhibit differences with
respect to their vulnerabilities, meaning the distortion distribution in different
Fourier.



Appendix B

Adversarial training setup and
frequency analysis results

In Section 5.2 we described the general adversarial training setup and results
without discussing the parameters used for maximizing the second loss term
in problem 4.4. In Table B.1 we present the inner PGD attack parameters
that were used. In the case of the EfficientNet_B0 architecture training a
robust model was significantly more difficult and with many parameter com-
binations we experienced a drop in accuracy on one hand, without a drop in
the success rate of attacks on the other. Thus we didn’t incorporate it in our
final experiments. It is worth mentioning that this could be connected to the
observation that adversarial robust generalization is far worse that standard
generalization as discussed in [RWK20)]

Model Iterations 17 e Norm 1, Epochs
CWCIFAR10 30 0.007 0.03 loo 0.01 45
ResNet34 40 0.007 0.02 loo 0.01 8

Table B.1: Parameters chosen for training our models with TRADES, specifically
the parameters of the inner perturbation calculation for each training sample
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Boundary C&W? PGD? PGD>

Figure B.1: Visualization of AV for all attack methods on the CWCIFAR10 model
when training with TRADES and A values of (from top row to bottom) 5, 2, 1
and 0.1.




Appendix C

Image filtering in the frequency
domain

In this section of the appendix we apply a range of low, high and band pass
filtering with different thresholds on a sample image from both datasets. The
filtering method is described in Section 4.5 and as discussed, the difference
between a Gaussian and a box filter is quite clear. This visualization helps
to understand the features that our models will generalize over and will be
most vulnerable to, as well as what it means to modify specific frequency
components. For example, since BIRDS images have high amplitudes and
information gathered in the lower frequencies (indicating that color properties
play a significant role) it is safe to assume that a model learns their correlation
to different classes and as such is vulnerable to their manipulation. This fact
is of course noticeable in our perturbation frequency visualizations. Our
experiments with different filtering methods and thresholds can be seen as
an introduction to exploring training CNNs on filtered images and possibly
gaining more knowledge as to what types of features they learn and are
vulnerable to.
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threshold : (2 8)  threshold : (2, 32) threshold : (4, 64)

band pass

Figure C.1: Low (Gaussian), high and band pass filtering applied on a CIFAR-10
(left) and a BIRDS (right) sample image.

threshold : 2

Gaussian filter

Box filter

threshold : 8

threshold : 32

Figure C.2: A comparison between a low pass Gaussian and box filter. The quality

of the reconstruction after applying Gaussian filtering in much superior and doesn’t

produce perceivable artifacts.
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