3
55

‘68 5

oV

- "“\’
. ;\'3‘;
NPOMHOEVS .
A
nvp$opo

to

EOGNIKO METXOBIO ITOAYTEXNEIO
3XOAH HAEKTPOAOT'QN MHXANIKQN KAT MHXANIKOQN
YITOAOTIXTOQN
TOMEAY. TEXNOAOTTAY. ITAHPO®OPIKHY KAI YIIOAOTIXTOQN

ATITAQMATIKH EPTAYIA

Runtime Resource Management on Serverless
Computing Architectures

Iwdvvng Paxivog
A.M. : 03116158

EnBrenwy : Anurtpiog 1. Yolvreng
Kadnyntic EMII

Adfva,
Pefpoudprog 2022

EOGNIKO METXOBIO ITOAYTEXNEIO

3

TOMEAY. TEXNOAOI'TAY. [TAHPO®OPIKHY. KAI YIIOAOI'TXTOQN

nvVp$opro

NPOMHOE o

N

AITTAQOMATIKH EPTAYIA

Runtime Resource Management on Serverless
Computing Architectures

Lwdvvne Poxivoc
A.M. : 03116158

Enrénwy : Anufteoc L. Xodvteng
Kodnynthc EMII

Toewelc Emtpons) E&étaong

(Troypagr) (Troypapn) (Troypagr)
Anprtploc Yolvteng Havaryiwtng Toavdnog Lothplog Z001g
Kodnynthc Kodnyntic Avaminpwtric Kadnyntic
EMII EMII Xogoxomeio Havemotiuo

Huepopnvia EEétaong:
04 Moptiouv 2022

Y XOAH HAEKTPOAOTI'QN MHXANIKOQN KAT MHXANIKOQN YIIOAOTTXTON

Copyright ©- All rights reserved Iwdvvng Paxivog, 2022.

Me empOtaln xdie duconduotog.

Arnayopeletar 1 avtiypapr, armodrxeucr xou dtavouy| Tne moapoloog gpyaciog, & oloxhrpou 1
TUAUXTOS AUTAS, Yia euntopixd oxomod. Emtpéneton 1 avatinwor, amoviixeuon xou dlavour| yio
OXOTO [T XEEDOOKOTUXO, EXTIUOELTIXAG 1| EPELVTIXTC PUOTC, UTO TNV TEoUTOUEST] VoL avapepEToL
N TNYT) TEOEAEUOTE Xt Vo dtaTneeital To Tapdy urvupa. Epwthuatoa mou agopolv T yenon trng

epyaoiog Yo xepdooxomX6 6Xx0Td TEETEL VoL armeLYOVOVTAL TPOS TOV CUYYQRUPE.

(YTroypapn)

Iwdvvng Paxivog
Amhwpoatovyoc Hiextpohdyog Minyavixdc xar Mnyovixoe Troroyioteov E.M.II
©2022 - All rights reserved.

In memory of my grandmother,
Rodanthe Maria.

ITepiAndm

H évvowr Yurvaptioasg-oav-Trnpeoia umopel vor yopoxtnelotel »¢ o YeAAoV
NG VEQOUTIOAOYLO TIXHC, ATOTEAMVTOG Uit AVABLOUEVT, PLAOCOGIa TOLU ATOANSCOEL
TOV TPOYQEUUUITIOTH amtd dtaryetplo Tixd Vepato. LOpQwvo UE AUt TO HOVTEAO, 1)
YVWOTY| HovOoRDixY| apyltexToVIXr) xA0E epapuoyic amonte{ton var avTixatos Tordel
Ao EVOY YEAPO aveCHPTNTWY %ol EQAUEPWY CUVIRTHOEWY. Mdhiota, autég eltho-
TOL VO EVEQYOTIOLOUVTOL XOL VO EXXLVOUV ETELTO OmO EEWTEQIXE YEYOVOTY, OTWC
TNV amOCTOAY) Slmo TeELTNRlY amd evay yenotn. Toautdypova, and v mheupd
TOU TPOY 0L, TEOBAAUATA OTWS 1) OLIECLUOTNTA, 1) XAYIUHWOUOTN T, 1) XUTOUVOUT
(POPETIOL .0l TEETEL VAL AVTLIETWTLOTOVY Ywpelg TEOUTEOY0UoH YVOOT| TNG CUUTEER-
LPOPAC XA TWV UTOAOYLTIXWY ATOUTACENY TOU XMOLXA TV YPNOTOY TOUC.

Y€ auTd ToL TAaoLaL, OL TI8EOY oL TEOCPEEOUY DLAPOPEU TIOXETA YPEWTEWY AVIAOY
UE TOUC DLESLUOUC TTOPOUC (ensiepyacw’]q, UVAUN, amoUInxeuTinog Y meog % TA.)
YLt ToL XOVTEWVER, TOU a€LOTOLOLYTOL YIOL TNV EXTEAECT) TWV CUVIOTHOEWY OUTOV.
AV TUYOC, AVTE AVUYHACTINE CUVUTIELY OUV UE GAA OUOELDY| UECA GE EVOL UMY AV
OXODECTIOTY TEMEQUCHEVWY TOpwY. H mpoavageielon, Aotmdy, aveniBhentn ey vixn
XATAVOUTC TOPMY OEV EYYUATAL XOUULO XMW OPLOUEVT] TOLOTNT UTNEECLMY oVUPO-
OLXA UE TOV YPOVO EXTEAEOTC TWV CLUVORTHOEWY XAl GUVOAWY QUTWV.

Kot xoupoie, didgopeg evarhoxtixée €youv npotadel yia tnv eniluon autic
Ne aduvapiag xar Ty Tapoyn Tng Iowdtntas Tnpeoiag, ol omoleg av xou ETMTUY Y-
YOUV EVOLUPEPOVTO AMOTEAECUATA, VO TEQOVY OE GUUPUTOTN T UE UTdPYOVTES [Bif3-
MoOrec/cpyolelar 1) EMXEVTOOVOVTUL O TEPLOPICUEVES EQPUOUOYES. E AUTHY T1)
oimhwpater, e€epeuvolue to Poldr Axohoudiog, éva epyaheio eAéyyou ypovoxa-
YucTtéenone to omolo duvouxd mopoxoloudel TIC XANOEC CUVaPTAOEWY OF Uid
cuoTolylol UTOAOYIO TV X0 ETUTEETEL TNV EXTEAEGT] CUVAPTNOLOXMY AXOAOLVLLY
eVTOC Tou Tpoxadoptopévou yeovixol oplou. Avo uetodohoyieg eAEyyou oxolou-
UUnxay, pe v uplo vor meTuyodvel €wg xou 2% ueiwomn otn coPapdTnTor TWV
YEOVIXOY TORUPBLACEWY XAl OE OPLOUEVES TEPLTTWOELS Vo TIC eCakelpel TAPWC.

Ae€eig KAedid— unoloyio iy ywelc dloxoulo t1), Xuvaptrioeic-cav- T npeota,
ToloTN T UTNEEStag, axoloudieg ocuvapthoewy, KuPepvritng, OpenWhisk

Abstract

Function as a service or FaaS represents the next frontier in the evolution of
cloud computing being an emerging paradigm that removes the burden of con-
figuration and management issues from the developer’s perspective. However,
this relatively new technology, like any other, surely comes with its caveats.
For starters, the whole well known monolithic approach has to be replaced by a
DAG of standalone, small, stateless, event driven components called functions.
At the same time, at the cloud provider’s side, problems like availability, load
balancing, scalability and others has to be resolved without ever knowing the
functionality, behavior or resource requirements of their tenants code.

In this context, vendors offer certain billing plans concerning the available
resources (CPU, memory & cold storage size etc) of the containers/sandboxes
that functions run on. Unfortunately, these containers have to coexist with
others in a runtime of a host with finite shared resources. Thus, with the latter
passive resource allocation technique there’s no guarantee of a well defined
quality of service or QoS in regards to functions’ and function sets’ latency.

Various efforts have been made towards the holy grail of QoS, but they either
lack in compatibility with existing serverless frameworks, or they are limited in
specific applications. In this thesis, we explore Sequence Clock, a latency tar-
geting tool that actively monitors serverless invocations in a cluster and offers
execution of sequential chain of functions, also known as pipelines or sequences,
while achieving the targeted time latency. It was developed in Go, wrapped as
a helm chart (a packaging format for Kubernetes) and focuses on OpenWhisk
deployments on top of Kubernetes’ clusters. Two regulation methods were uti-
lized, with one of them achieving up to a 82% decrease in the severity of time
violations and in some cases even eliminating them completely.

Keywords— serverless computing, faas, QoS, target latency, sequences, Open-
Whisk, Kubernetes

FEuyapiotieg

Apywnd, Yo ko vor exppdow TV vy vwpoclvn you otov emBAénovta Ko-
Unynth AnuAteto 1. Yolvten tou Edvixod Metodfou Iloduteyvelou. Agevac,
UOU TPOCEWPEQE TY OUVATOTNTA Xou TNV EUxotEldl Vo amoTeEAEow Uehog tou K-
yao tnelou Mixpolnohoyiotay xar Unelaxody Luotnudtey (MicroLab), exmtovodv-
TOC TNV OIMAWUOTIXNY HoU epyocio o€ auTd. AQETEPOL, APLEQWOE EXTEVY| YPOVO
otnv oadxacto avalAtnone evoc Yéuatog, mou Tawptdlel YUE TOL EQELVNTIXG OV
eVOLapépovTa xa apUolel OTIC XAIOEIC Xt IXAVOTNTES [HOV.

Toutdyeova, 1 0edopévn epyaocio dev Vo unopovoe vo mparyuoatomoiniel ywelc
TNV OLVELGPOEA xot X odYNoT TwV UEADY Tng ouddac Edge & Cloud Comput-
ing, Tou ev Aoyw gpyaotneiov, 1 orola xat anopTileTon amd Tol UEAN YwTrelo 200,
Anuoc¥évn Macolpo & Ayihiéo Tlevetomouro. Ou poxpooxehelc cuvaVTHCELS
X0l O XATOUYLOUOC LOEWY XU TEOTACEWY, TOU EAABOY YMEU OE AUTES, CUVTEAECUY
OTNY oETIOTNTA TOU EQELVITIXOU UTMOTEAEOUAUTOS, OAAG XUl GTNV TEOOWTLXY| OV
autoPeAtinon yopw and Tov Yweo Tou serverless computing.

‘Ocov apopd T0 GTEVO OIXOYEVELXO UoU TERSEANOY, Yo flUeha VoL ELYUELGTHOW
TOUG YOVE(C You, oL omtolot ue othAptEay xad” OAT) TN BLEEXELN TKV CTIOUBWY HOU GTO
QEYAOTERO TEYVOAOYWO (Bpupa Tne ywpeac. Télog, emduucd vo avapepdod otnv
xoTEAA Yovu, Oeodpa, TN onolac 1 Puyoroyixy| xat cuvacUNUATIXY UTOGTAHELET
ATaY 1) xVNTHELOS SOV Yo vor TETOY W TOUS GTOYOUS UOu.

Acknowledgments

Firstly, I would like to express my gratitude to my supervisor, Professor
Dimitrios I. Soudris of the National Technical University of Athens, who offered
me the privilege and opportunity to be part of the Microprocessors and Digital
Systems Laboratory (Microlab). Not only that, he also devoted a significant
amount of his time, in order for me to find a subject, that resonated with my
interest of research and corresponded to my skills and personal capabilities.

In addition, this thesis couldn’t be developed, if it wasn’t for the contribution
and guidance of the members of Edge & Cloud Computing team, which consists
of Sotirios Xydis, Dimosthenis Masouros & Achilleas Tzenetopoulos. Time
consuming meetings and non trivial discussions with these fine colleagues were
the main reasons that lead to this flawless scientific result.

As far as my closest persons are concerned, I would like to thank my parents,
that supported me throughout my studies in the oldest higher education insti-
tution of the country. Last but not least, it is proper to mention my girlfriend,
Theodora, whose psychological and emotional support comprised the driving
force that helped me achieve my goals.

11

Contents

Hepirngm
Abstract
Evyagiotieg
Acknowledgments

Extetapevn Ilepiindn

1 Ewoaywyno
2 Ocwpntnd TmoBadpoo
2.1 KuBepvAtne o oo
2.2 Apache OpenWhisk
3 Avvopury Awyelplon Iopwv oe Apyttextovinég
Ywplc AloxouloTo
3.1 Modnuatixol opuahioyol & Optopol
3.2 lpotewouevn Abon: Podér Akodovldiag.
4 Arnoteléopata & Alohdynon L
4.1 Hewpopatued Admo&n o oo oo
4.2 Y0yxeton OpenWhisk & Poloyol Axoloudiac
4.3 Epunvetla Anotekeoudtov & Iopddola L.
5 Yovodn & Mehhovtixd Souketdo
5.1 YXovobm Lo
5.2 MeAovtid| OoVAed L L

1 Introduction

1.1 Cloud Computing
1.1.1 Infrastructure as a Service (IaaS)
1.1.2 Platform as a Service (PaaS)
1.1.3 Software as a Service (SaaS)

1.2 Serverless Computing: Is it the future?
1.2.1 Microservices vs Serverless

1.3 From Monolith to Workflows

23
25
25
27

29
29
29
33
33
34
36
37
37
38

1.3.1 FaaS as a programming model
1.3.2 Latency as a QoS metric
1.4 Thesis Overview

Related Work

2.1 Metrics Collection
2.1.1 Deathstar Bench
2.1.2 Other Approaches

2.2 Resource Management in serverless computing
2.2.1 Llama
2.2.2 FaastLane

2.3 Our Approach

Background

3.1 Cloud, Virtualization and Containerization

3.2 Kubernetes: A Container Orchestration Platform
3.2.1 Kubernetes Architecture
3.2.2 Kubernetes Objects
3.2.3 Helm & Helm Charts

3.3 Apache OpenWhisk
3.3.1 General Information
3.3.2 OpenWhisk Architecture
3.3.3 Action Invocation’s Steps
3.3.4 Actions’ Runtime
3.3.5 Special Topics

3.4 OpenFaas

3.5 The Go Programming Language

Motivational Analysis & Observations

4.1 Experimental Infrastructure
4.1.1 Systemsetup
4.1.2 Benchmarks Suites
4.1.3 Monitoring & Metrics Collection Mechanisms

4.2 Observing Target Latency
4.2.1 Impact of Resource Contention
4.2.2 Impact of Cold Starts
4.2.3 Impact of Concurrency & Queueing Phenomenona
4.2.4 CPU Quotas Affection

14

45
45
45
46
46
46
46
47

49
49
o0
ol
53
o8
29
59
60
62
64
64
66
67

69
69
69
71
76
79
79
82
82

5 Sequence Clock: A latency targeting tool for serverless function

sequences

5.1 Mathematical Modeling & Problem Definition

5.2 Proposed Solution: Sequence Clock
5.2.1 An Overview of the Sequence Clock’s Architecture
5.2.2 Deployer
5.2.3 Sequence Controller
5.2.4 Watcher Supreme
5.2.5 Watcher o
5.2.6 Resource Distribution Algorithm
5.2.7 Conflicts Policy
5.2.8 Regulation Mechanism

5.3 Sequence Clock CLI
5.3.1 Overview
5.3.2 Architecture

6 Evaluation

6.1 Experimental setup L.
6.1.1 Abstract Analysis
6.1.2 Technical Configurations

6.2 OpenWhisk’s Analysis
6.2.1 99-th Percentile, Mean & Time Latency Extraction . . .
6.2.2 Time Latency’s Distribution per Sequence & Function
6.2.3 Time Latency across Time
6.2.4 Violations” Analysis
6.2.5 Resource Utilization Monitoring

6.3 Comparing Dummy SC & SC with OpenWhisk
6.3.1 Generic Sequences’s Analysis
6.3.2 SeBS Sequences’ Analysis
6.3.3 Causes of Failure
6.3.4 Dummy SC Superiority Paradox

7 Conclusion and Future Work
7.1 Summary ...
7.2 Future Worko

7.2.1 Development Scope,
7.2.2 Research Scope

8 Appendix
1 PID Controllers
1.1 Proportional Term

102
103
106
106
107

111
111
111
112
114
114
115
117
117
118
120
120
128
131
132

135
135
136
136
137

1.2
1.3

Integral Term .
Derivative Term

16

List

=~ W N

Sy Ot

1.1
1.2

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6

of Figures

Amlornownuévo Tapdderypa Yuvdptnons-oav-Trnpecia 24
Apytextovix) Tou Podoyiov AkodovOiag 30
Yuyxpivovtoc to OpenWhisk pe to P.A. yio tnv axohoudio stgb . 34
OpenWhisk vs Polér Axohoudiac: Kotavour; tou Xuvteheot

HoapaPLdoewy yio Ty oxohoudior stg6 35
Yuyxetvovtoac to OpenWhisk pe to P.A. yio tnv axoloudio stg3 . 35
OpenWhisk vs Pohér Axohoudiac: Katavour; tou Yuvteheot

Hapafidoewy yia Ty axohovdio stgd 36
Yuyxpivovtoc To OpenWhisk pe to P.A. yioo tnv axohoudio p643 36
OpenWhisk vs Pohét Axohoudlac: Iotdypayua Tou XuvieAeoTr

Hapafdoewy yia Ty axohovdio p643 36
Abstract comparison 39
Simple Example of serverless 42
Containers Legacy 50
Kubernetes Logo 50
Kubernetes Components 51
Node-Pod-Container Abstraction 54
Kubernetes Resources Abstraction. 56
Abstract Representation of PV & PVC 57
Helm Logo o8
Helm Chart Directory Structure 58
OpenWhisk Logo, 59
OpenWhisk Architecture 60
OpenFaas Logo 66
Go’s mascot, the gopher 67
Top sample output for master node 79
Pipeline p024879 time latency for various rps levels. 80
Pipeline stg6 time latency for various rps levels. 81
Cold Starts affection to time latency. 82
Queueing effect on time latency 83
CPU Quotas affection on function time latency. 84

17

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3
6.4

6.5
6.6

6.7
6.8
6.9
6.10

6.11
6.12

6.13

6.14

6.15
6.16

Abstract Representation of a Sequence 85

Sequence Clock Architecture 87
Deployer Abstract Representation 88
Deployer’s Files” Structure 89
Sequence Controller steps L. 90
Watcher’s Structure 94
Registry Data Structure 95
Watcher’'s Workflow L. 97
Sequence Clock CLI 107
Check command usage 108
Create command usage 108
Delete command usage 109
Config command execution example 109
Help command usage 110
Version command output 110
Abstract Representation of a pipeline experiment. 112

OpenWhisk: Target Latency Extraction from the 99th-percentile 115
OpenWhisk: Distribution of Time Latency for stg6 for various
rps values L L 116
OpenWhisk: Distribution of Time Latency for each function of

stgb for various rps values 116
OpenWhisk: Time Latency of p024879 as a function of time . . 117
OpenWhisk: Violations’ Percentage of the sequence stg6 for var-

ious rps values 118
OpenWhisk: Distribution of Vioaltion Factor for stg6 118

OpenWhisk: Per Node Load Average during experimentation . . 119
OpenWhisk: Per Node System Memory Utilization during ex-

perimentationo 119
OpenWhisk: Per Node CPU utilization during stg6 experimen-
tation L. 119

Comparing OpenWhisk, Dummy SC, and SC with stg6 pipeline 120
OpenWhisk vs Dummy SC vs SequenceClock: Violations’ Per-

centages for stg6o 121
OpenWhisk vs Dummy SC vs SequenceClock: Violation Factor
KDE plot for stg6 121
OpenWhisk vs Dummy SC vs SequenceClock: CPU Usage Per-
centage for stgb6 122

Comparing OpenWhisk, Dummy SC, and SC with stg3 pipeline 123
OpenWhisk vs Dummy SC vs SequenceClock: Violations’ Perc-
dentager for stg3 123

6.17

6.18

6.19
6.20
6.21
6.22
6.23
6.24

6.25
6.26
6.27
6.28
6.29
6.30
6.31

6.32
6.33

8.1

OpenWhisk vs Dummy SC vs SequenceClock: Violation Factor

KDE plot for stg? 123
OpenWhisk vs Dummy SC vs SequenceClock: CPU Usage Per-
centage for stg3 124

Comparing OpenWhisk, Dummy SC, and SC with mtg6 pipeline 125
Comparing OpenWhisk, Dummy SC, and SC with mtg3 pipeline 125
SequenceClock: Time Latency per rps value for mtgs 126
Comparing OpenWhisk, Dummy SC, and SC with mpg3 pipeline 127
Comparing OpenWhisk, Dummy SC, and SC with mpg6 pipeline 127
Comparing OpenWhisk, Dummy SC, and SC with mpg6 & mpg6

pipelines 128
OpenWhisk vs Dummy SC vs SequenceClock: Violations’ Per-
centage for p643 128
[OpenWhisk vs Dummy SC vs SequenceClock: Violation Factor
Histogram for p643 129
OpenWhisk vs Dummy SC vs SequenceClock: Time Latency per
rps value for p051463 129

Comparing OpenWhisk, Dummy SC, and SC with p051463 pipeline130
OpenWhisk vs Dummy SC: Violations’ Percentage for p051465 . 130
OpenWhisk vs Dummy SC: Violation Factor’s Probability Den-

sity for p051463 131
Comparing OpenWhisk’s with Dummy SC’s Violations for stg3 133
Comparing OpenWhisk’s with Dummy SC’s Violations for p02/879134
OpenWhisk vs Dummy SC: Violation Factor’s Histogram for mpg6 134

Block Diagram of a PID controller 145

19

List of Tables

1 Hpodaypagég Hepapatinic Yuotovylog o oL L 33
4.1 Cluster Specifications 69
4.2 Frameworks’ Versions 70
4.3 SeBS Functions IDs 74

21

Extetopevn Ilepliindn

1 Ewaywyn

Tnv ofjuepov Nuépa, 6Ao xat TEPIGCOTEREC UTNEEGTEC TpowV0UVTOL Xl EXTEAOUV-
T 670 Troloyiotind Négoc. Me tov GUVEYMC AUEAVOUEVO AVTAYWVIGHO XOL TOV
Yeovo ddeone otny ayopd vo ddpapotiCel xaiplo pdho oe EToUPEIEC GUVLPIO-
UEVEG UE TO AOYIOMLXO, Ebval AmOAITWE QPUOLONOYLXO TTROYPUUUNTIO TEG KOl UT) AVLXOL
var ovoNToUY AUGELS TTIOU PELYVOUV TOV YPOVO UAOTOINOTC X0l TOUC ETULTRETOUY VoL
APOCOIWIO0OY GTNY ETLYELNUATIXT AOYIXT| TNG EXAOTOTE EQPUPUOYTC.

Me tnVv 1deodo Twv yedvwy £Youv TEOoXVPEL BLAPOEI LOVTENA TNS VEPOUTOAO-
YO TS, x¥EVa amd To OToloL TPOCPEREL DLUPOPETIXG ETUTEDN AUPALPECTC HOL OL-
apopETIXG Pordud Blarywelouol Tng dtayelplong UTOBOUMY amd TNV AVATTLET EQaE-
Loy v, firot Trodourj-oav-Trnpeota (Infrastructure-as-a-Service, laaS) [1, 2, 3],
I\avgpdpua-oav-Trnpeoia (Platform-as-a-Service, PaaS) 2, 3, 4, 5], Aoyiopukd-
oav- Trnpeota (Software-as-a-Service, SaaS) [2] xou mAéov Yuvaptioes- oav-
Yrnpeoia (Function-as-a-Service, FaaS). I'a 1o televtaio, t60divapoc 6poc
anotehel xou . Trodoyotikny ywpls Awkopotr) (Serverless Computing), €ve
EYEL YopoxTNEWOTIXEL amtd TOANOUS %ol WG EVOL XoUVOVPLO TEOYPUUUATIO TIXO UOV-
ého and uévo tou [6].

LUYAEXQWEVY, TO HoviEho Yurvaptnoeg-oav-1mnpeoia €yel YopoxTNOOTEL WS
uior avodumpevn apyrtextovind avdmTuinctegapuoydy, n otolo aroxplnTEL TN BL-
OYELEPLOT TWVY OLIXOULOTWY OO TOUC EVOLXLAOTEC TOU UTOAOYLOTIXOU VEPOUS [7].
Hpogavag, Eva tapduoto eninedo apaipeons TEOcPEQETUL 08 DLUPORETIXG Bardud
X0l OO UTOAOLTIOL LOVTEADL TWV ETOUELWY TEOUNUEUTHOY TOU UTAOYIGTIXOU VEQOUC.
To yapaxtneloTixd mou xdvel To poviého Luvvaptioes-oar-1nnpeoia vo Eeywpetle
elvol TO YEYOVOS TS 1) CUUPBATIXA X0 EVEEWS YVWOTY| Aoywr) ulag povoldunnc
EQUPUOYTC TEETEL Vo avTixatao Tadel amd Evar GUVOLO EQRUEPWY Xat Ywpelc xatdo-
Taon ouvopThoewy. Kdie cuvdptnomn extehelton oe Eva Ceywplotd mepBEAlOY,
YVWOTO xal WS XOVTEWVER, To omolo etvon emiong BpayUBlo. Autd onualver ot
EVOL TETOLO XOVTEWVER ONuLoupyelton, 6Tay 1) XAom TS avTioTolyNg cuvdETNOoNG
mearypatonondel xou avtioTorya agatpeitar agpdTou To avtioTolyo aftnuo £yel €&-

umneeTnUel.

VEyel ypnowonotndet o dpoc avdntuén we uetdppacy tou ayyhxol épou deployment, o onoloc ductuyde dev
elvon andhuta loodivopog.

23

Event pa———
T — —
PFicture Upload

- Serverless Function
Client Storage

Figure 1: Amlomoumuévo Ilapdderyyo Yuvdptnons-oav-1rnpeoia.

Me auth 0 AoYxr, oL TEOYEAUUUATIOTES YEEWVOVTAL OVE XAOT] CLVHETNONG
xaL OEV TANP@VOLY adpavelc Topouc. EmmAcdy, auth 1 TPOCCEY YO TROCYEREL
UMY OVIOHOUE QUTOUATNG XAYOXWOOTNTAC, Oloryelolon opaiudteny xat SldeouoTn-
To OE TOAMEG YeEwYpapixeg meployéc. Ilap" ol awtd, xavelc pmopel edxola va
OLUTUTIOOEL AVNOLYIEC OYETIXEG UE TNV ACPAAELNL X0 TNV TOLOTNT ATOUOVOOT,
% ol TopeUBoAEC PETAE) CUVORTACEWY TWV (BLWV oL OLUPOPETIXWY EVOLXL-
Ao TV elvat avomdpeuxtes [7].

> xdie mepintwon, ol Yuvaptnoeg-oav-1nnpecia Topouévouy 6To TEOOXAVIO
xaL oamoTeEAODY plor EVTUTWOtaxy) TEYVoloyia, edv alloToloLVToL XATUANAAWS, YTOL
OE EPUPUOYES UE DLOXOTTOUEYY Acttoupyio 6Tou 1 cuVTAENOT HoXEOPBLLY TEPLBAA-
Aovtwv eivon xootofopa [8].

And tov Movordo otic AxohouvVieg

‘Onwe npoavagépoue, otnv Apyitektovikn ywpis Awakopiotn, ula EQooUoYY
TEETEL Vo UETAUPEAOTEL 0 oUVOAO amd aveldptnTee ouvapTHoelS. Autéc xaholv
N ot TV GAAN, emXovmVolY PETAC) TOUC %ot AVTOAACOUY DEDOUEVA, UE TNV OL-
adtaotar auty| va umopel vor avamopactodel wg €va poinpatixd yedgo. H mo
omhr) poppn Wlag TETolog dtadxactag amotehel 1 oxoroudony| exTéleoT) TETOWWY
oLVOPTHOEWY Xou avTioolyel oe pio Aoto. Amd 6w xou oto €€hc Yo amoxaholue
TETOLOUC YRdpous akodoudies.

‘Ocov agopd ToV YpOVO EXTEAEONC TETOLWY YEAPLY, OEV UTHEYEL Xapia eYyinon
(ue ta uéypl oTiyuhc YvwoTd epyaheta) ot Ya elvon xdtw and évo tpoxadoplopévo
610, x4t To onolo Yo propovice va petappactel we Iowwtnta Trnpeotas (Quality
of Service, QoS). I'a va emteuydel xdtL t€T010, XplveTon amapoitnTn N Yehon evog
o €CEALYUEVOL CUOTAUATOC DlaryElplong TOpwY.

ITepieyopevo ALTAOUATIXNAG

Yy napoloo Simhwpatixd, topovotdleton to Sequence Clock (Poidt Axohou-
Vlog), we pla mavy) Aoon ot mapafidoeg Tou QoS oTov YEOVO EXTEAEOTC
oxohouhov cuvapthoewy TuTou serverless. To Poldr Axohoudiac amotehel €va
XATAVEUNUEVO ERYUAELD EAEYYOU, TO OTtolo Tapaxohoulel OAEC TIC XANOELC GUVORTT-
cewv TUTOU serverless oe pia cuoTolylo uThoylo TV X TepooTadel vo xadoploet
TOV YeOVo extéleonc oTo eninedo axolouvdioc. Xto muprver Tou ollomolel pio

24

dmAnotn TEoGEY YoM UTOAOYLOUOU TOU GPAAINTOC (YVKoTtd xou we slack) and tov
oToY0, Yall e évay eheyxtr) Tomou PID yio tov unohoyloud tng mocéotwong g
Kevtpiic Movddac Enegepyacioc (KME) o uetofAnth eréyyou.

2 OczswpenTtxd TroBadpo

Axolovlei pio topoustaon Twv TEYVOROYLOY X0l TwV EPYOAEIwY TOU HEAETHUOY
xou aCloTolunxoy xoTd T OLdEXEL AUTAC TNG OLTAWHATIXAC EpYoiog.

2.1 KuBepvAtng

O KuBepvitne (Kubernetes) eivon pior mhortpoppo ovotxtol x@oixa yior) Oi-
ALY ELPLOT EPUPUOY WY EYHIBWOTIOUEVWY OE XOVTELVER, 1) OTIO{O TROCYEREL BUVUTOTNTA
Stobppwone autey ot avtopotiopols (9. Ev mepthider, mpoopépet Siahax-
TIXOTNTO OTNV AEtTOUEYol XAUTAVEUNUEVWY GUOTNUATOY. Metall dAAwy, duva-
TOTATES TIOU BLWETEL AMOTEAOLY 1) eVORY {0 TEWOT amOUNXEUTIXGY UECWY, 1) ETOVO-
(OB EPUQUOY WY OF TAAUMOTERES EXDOTELS, 1) XAUTUVOUY| UTOAOYIC TIXOL (OpTiou X.o.
‘Ol owtd ebvan eQuetd e v dladpgpwor apyeiwy puduicewy xal ye) ypnon
gpyoleiwy NG yeouunc eviodawyv. Emniedv, avohaufdver tnv amodnxeborn xou ot-
ayelplom eLAUCVNTOY TANEOPOELHY, OTWC DTG TEUTHELOL YENOTWY, UE TN YENOoT
CUVIG TWOWY Tou omoxahel puotikd (secrets) ywpic vo undpyet o @oBoc dlappohc
otov xmdwa [10, 9].

Mia cuctoyta Sloaxoplo Ty, otny onola £yetl Tonovetniel o KuBepvitng, amote-
Aefton amd €va un xevo oOVOho UTOAOYLG TRV, ot omolol yapaxtnetlovton we xoufol
epydtec (nodes) xau o&tomololvton yior TV QLAOEEVELD TWY AMUPA{TNTWY CUVIGT-
WOWY TWV EQPUQUOYWOY. ATO TNV GAAN, éva GOVORO O GUVIGTWOES EAEYYOU OL-
ayetpiCovtal auTtolg Toug xOUPBouc, EVE TaTOY POV EVTOTILOLY X0l aVTATOXEIVOV-
Ton 0€ €EWTEPIXA YEYOVOTA, TolpVoVTaC XUVOAXEC ATOPACELS [11, 4].

Avtuxeipeva tou Kufepvntn

To avtixetyeva H oo Topot (Vo uny YIvETow UYYNomN UE TNV EVVOLOL TWV TOPWY
evoc xouPou) tou Kufepviitn amotelolv ovtdtnteg nou yopoxtneilouv ot Tepl-
YPAPOLY TNV XAUTIo TaoT) ToL cUG THUATOS. A@dTou dnuoupynioly, o KuBepvitne
mpoomadel vo eCacgariosr v umaedr Touc. H Onuoupyio, petofohy| xou -
YEUPY| AUTWV TWV AVTIXEWEVLY elvan epixTy| uéow tne Atenagric [Tpoypauuatiouol
Eqopuoydv (API) tou KuBepvitn. ‘Olec ot oyetinéc mAnpo@oplec ylor auTég Tig
evépyeleg TomodeTolvton oE apyela LopgdTuTou yaml , To omola umopolvy vo ol-
torondoly amd didpopa epyaieia 6Twe o kubectl (1 diemapr) yeouuunc EVIOAGOY
Tou Kuepvitn). ‘Eva nopddeyiuo tétotou opyeiou €yet totodetniel mopondte.

apiVersion: apps/vl
kind: Deployment

25

metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 2 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Kdée avtixeiyevo tou KuBepvitn mepthapfBdver 600 medla, mou 1o SLolop@n-
Youv, 1{ToL To spec xou 1o status. T'o Tp®To TEETEL VoL 0PLO TEL XAt TNV OnuLovpyeia
TOU, TEQLYQPAPOVTAS TANPOPORIES Yiol TNV ETMIUUNTY| XAUTACTACT) TOU AVTIXELUEVOU.
Avtdétwe, To status mepLypdgel TNV TEEYOUON XATAGTOOT TOU TOEOU, 1| oTold
EVNUEROVETAL amtd Tov (Blo Tov Kufepvrtn xou Tic cuviotmoeg tou. Xty ouaia,
Ol GUVIGTWOES EAEYYOU ERYALOVTOL CUVEYMS WOTE 1) TEAYUATIXY) XAUTUCTACT) VOl
towtiletan pe v emduunty [12].

Emypopuotind, opioyéva amd tar To yvwotd aviixelueva tou KuBepvAtn elvan
TaL axodhova

+ Ovopatoywpeol (Namespaces): 3Xtoyclouy GTnV omOPOVOGT BLPOPE-
IOV GUVOALY a6 TOPOUC Yéoa oty (Bla cucTouyia [13].

o Pod: H uxpdtepn unoroyiotixn yovddo nou unopel vo doyeototel o Ku-
Bepvritne [14]. Xtnv ouota anoteheiton and €va alVOLO €VOC 1| TEQLOGOTERWY
XOVTOVEQ.

» Deployment: Mnogel va yopoxtneiotel we eva 6OVOAO amtd UTOAOYLETIXOUC
Topoue, TapadElyUaTog Ydeny éva cbvolo and Eeywetotd pods [15].

o DeamonSet: 'Eva tétoo avtixelyevo eCacgaiiler 6t xde xépfog A Eva
LTOGVUVOLO XOPPLY PNOEEVOLY éva avlypapo and éva optopévo pod [16].

« Yrneeoieg (Services): Amnoteholv pla agalpeon mou opilel éva vonto
oUVOAO am6 pods xou ToV TPOTO ETUXOVWVINE OTIOLUGONTOTE CUVIG TGOS EXTOC
auToU TOU GUVOAOL UE avTd [17].

¢ MaxpoéfBioi/Enipovor Toépor (Persistent Volumes): Ytov muprva
TOUC Ol TOUOL ATOTEAOUY XATAAOYOL apyElwY, oToug onoloug dudpopa pod
éyouv mpdofBaor [18]. O poxpdflor/enipovol ToUOL amOTEAODY EWBIXY XATN-
Yopla aUTGYV, Ol OTOlOL BEV AVAXOUV OE XOVEVAY OVOUITOYMEO %Ol UTHEY 0LV
0To GUOTNUO aVeLapTHTWS amd TNV Tl eVOEYOUEVwY pod, Tou €youv
Te6ofaon oo TepLEyOUEVE Toug [19].

26

2.2 Apache OpenWhisk

To Apache OpenWhisk amotehel pio xatoveunuévn tAotgopua UTOAOYLOTIXAS
Ywelc dloxoutoTy), Tou avaAoUPBAVEL TNV EXTEAECT] CUVIRTACEWY WG ATOXQPLOT) OF
eCwtepnd yeyovota [20]. Me v yeron xovtévep tonouv Docker w¢ nepiBdihov
Yoo xde ouVEETNOT), TEOCPEREL GUUPUTOTNT PE TANTWEN YVOOTOV EQYUAELLY,
omoe KuBepvitne, OpenShift xou Docker Compose [20, 21]. O cuvapthcels, Tou
amoxahouVTAL actions, dUVTAVTOL Vo avamTuyUoly yenotuorolwvag plo TAnioea
OO YADOOEG TEOYPAUUUATIONOU, EVK TAUTOYPOVA TEOCPEQETOL 1) DUVATOTNTA Vi
opadomotnioly ce axoroudiec, Twv onolwy 1 enidoon entyetpeiton vor BeATiwiel
a6 to Sequence Clock.

ApyrtexTOovix

To 6ho cloTtnuo amoteAelton amd TIC axOAOVVEC CUVIOTWOOES, xde plo amd TIC
onolec Tehel Evay BLoOpETIXG POAO:

o NGiNX: Anotekel To onuelo elcddov tne xAfone ulac ocuvdptnone. Fevixd,
70 NGINX elvon Aoyiopixd avoxtod xmoxd, Tou oloTOLELTAL WS BLUXOULOTAS
loTOGEABWY, Blauecohafithc, eglooppontntic goptiov x.T.A. [22].

« EXxeyxtrvc (Controller): Aettoupyel ¢ o puUoThc TOL GUOTAUNTOC,
©xdWC TEOCPEREL TNV OLETPT] TEOYQEOUUATIONOL epoapuoy®y tutou REST
yioe dtayelplon oviothtwy mou mepthauBdvovtar oto OpenWhisk. Mdhota
avoho3dvel Ty emxowvwvia ye Ty Bdor dedouevewy CouchDB yia v ow-
Yevixonolnomn ot TNy €€LOUCLOBOTNOT| TV YENOTOV.

« CouchDB: H CouchDB eivan €vo napddetypa un oyeotoxic Bdong dedouevwy,
mou adlomoteiton amd to OpenWhisk yio v xotorypopy| dlamoteutnelwy,
UETUOEBOUEVWV, OVOUATOYMEMY, XAMC ETONG XAl TWV OPIOUMY TWY CUVIPTH-
oewv. Ol eyyYpuPec TV TEAEUTAUWY TEQLAOUPBAVOUY XUPlE TOV xWOOLXA, TIC
TEOXAJOPLOUEVES TIOURUUETOOUC ELGOBOU X0l TUY OV TEPLOPLOUOUC GTOUC UTALTOU-
UEVOUC UTIOAOYIOTIXOUE TTOPOUS TNG CLVAETNOTNS, oL oTolol TNG EmBdAlovTOL
XATE TNV EXTEAEOT).

« E&iwoopponnthig Poptiov (Load Balancer): To cuyxexpuévo otouyeio
OEV amoTEAEL EEYWPLOTY| CUVIOTOO, AR UEpog Tou EheyxTr, To onolo eAéyyel
CLUVEY (S TNV XATAC TAUCT] TWY CUVIC TWO®Y TOL amoxahovvTon w¢ Emixaieotéc.
AlotnpovTag Pio ogarper) xova Yo To oUoTnua, YVwellet Tolo Emxoleotéc
elvow BtadEotol, WOTE va Toug Tpowioel Ta altnuoto TeEpl exTéEAEONC TWV
oLVOETHOEWY [23].

o Kafka: 'Eva axoun cbotnua avoixtol xwmoixo and 1o (dpuua Apache , mou
YenoWoTOLEToL Yior EVOLUEST) amOVXELOT] Xou ETxovwVia Tou Eheyxty| pe
touc Emuxaieotéc.

27

« Emuxaieoctég (Invokers): Mnopolv ebhoya vo yopaxTtnolotody we 1
®AEOLY TOU GUCTAUATOC, XoMS OVOAUUBEVOUY Vo EXXIVCOUV TIC OLAPOPES
OLVUPTNOELC OE CeYWELoTd xovTévepe. o xdie ouvdptnorn dnuloupyeiton xou
EXVE(TOL €Val EEYWELOTO XOVTELVER, GTO oTolo ol Emxoleotéc elodyouv Tic
ATOEULTNTES TUPAUUETEOUS ELGOBOU X0 ATO TO OTOLO UVUXTOUV TO UTOTEAECHA.
MoAic 1 extéleon TN exdoTOTE CLUVAETNONG OAOXANEWVEL XaL UETE TO TEPUC
TOU OMOUTOUUEVOU YPOVIXOU OLOC TAUXTOG, TO OYETIXO XOVTELVED DLy PApETOL
a6 T0 GOCTNUA.

Brpata Extéleong plog Xuvdetnong

2TIC ETOUEVEC YPoUUES, Vo ETLYELPTICOUUE Vo TERLY PAPOUUE GUVOTTIXG ToL BriuorTa
TOU TEUYUATOTOOUVTOL ETELTA TNG XAV omg piog ouvdptnone tou OpenWhisk xa
Yo teply pdpoulE Teg oL TEoavaPePUEES GUVIC TOGELC CUVERYACOVTOL X0l ETILXOLV-
wvolv petalld toug [23]. H Sadaoio exxvel pe ty Mdn evoc HTTP artuartog
tOmou POST xou énerta axohovdolyv ol e€ic evépyelec:

1. To aftnua)\cxp@d(vewt an6 tov dxouto) NGINX xan mopoadidetar otov
Eleyxt.

2. O Eheyxtfic emxovwvel pe tn Bdon Sed0PEVOY, OOTE VO TIGTOTOLACEL TOV
yeriotn xan va BeBarwiel 6Tl elvon e€ouctodoTNUEVOS YloL TNV EVEQYELX TOU
outettan.

3. Eg@bcov to nponyoluevo Briuc ohoxinpwiel emtuye, o Eheyxthc unofdiiel
VEO EpWTNHOL 0TN Bdom, auTh TN Qopd {NTHVTC TNV EYYEUPT TN CUVETNOTNS
X0l TIC TANPOYORIEC IOV AUTH TEPLEYEL.

4. O E€oopponntric emiéyel tov BéATioTo Emxaleoty), otov onolo otélvel t0
OYETIXO Uvupa uEow Tou ouothuatoc Kafka.

5. Autog e tn oelpd tou {nTd amd TNV BAcT) GEBOUEVWY TOV XWOXA TNG CUVEOTY-
ong xa elTe dNULoVEYEL 0T0 TEPBAAAOY AUTOUUTH EVOL XOVTELVER YLoL T CUVEE-
tnon o, elte atelton otov KuPepvAtn 1 dnuioupyeto véou pod? [24]. e
%&e TEQIMTWOT), OL TUPGUETEOL ELGABOU TEOPOBOTOLYTAL TNV GLVEETNOT), TNG
omolag 1 EXTENEDT] EXNIVEL

6. MoAic 1 extérect) ohoxANewUEl EMITUYMC, TO AMOTEAECUO AVAXTATOL OO TOV
avtioTtoryo Emixoieotr, o onolog to anotnxelel poall yue dtdpopec UETEIXES Xol
0edouéva (oyeTind e TV exTéAeon Tng cuvdpTnone) ot Bdon Sedouévwy.

2H eumhoxt| tou KuBepvhtn nparypatonoeiton edv n emhoy? KubernetesContainerFactory etvou evepyomowmuévn
vyt Toug Emixoieotéc.

28

H dnuovpyeio véou pod/container Ya tpayotonoindel otn nepintwon tou dev
uTdEyEL Olordéoo oto ot ATOXUAOUUE AUTAY TNV XUTAOTACT WS Puypr]
exxivnon (cold start). e avtidetn nepintwon, 1o altnua Yo ixavonowniel amd
TOV UTIERY WV UNYOVIOUO XAl 1) XaTdoTooT auTy yopoxtneileton we Jepun exxivnon
(warm start).

3 Avvouwxn Awayeipion 1Idpwy o Apyttextovixég
Ywels AlaxouloTh

3.1 Moadnupatixoi Poppaiicuol & Opiopol

'Eotw s pla axohovdio and n ouvaptioei fo, fi,..., fu—1. Allomolobye dovuo-
HoTxd ouuPBollopd xou yedpouue s = (fo, fi,..., fn-1). Botw I o emduuntoc
OUYOAXOC YPOVoC extéleong Yo TNV axohoudia s. Kotd tnv extéheon I tne
axohoudiog authc cLUPoACoupE UE T TOV UETPOUUEVO YPOVO EXTENEOTC Yol xdle
ouvdptnon f; i 0 < i < n—1. Tty extéreon auth, Yo Acue 6TL 1 axoroudio
5 OEV IXOVOTIOINOE TOV GTOYELHEVO YPOVO exTENEONC 1| OTL Tapafiace Tov otdyo
xou v Towdtnra Trneeotoc, €dv woyler n aviotétnra Ti(s) = Sigt; > 1. Ye
avtivetn mepintwon, Adue 6TL 1 oxoroudio ixavornolel tov otoyo B Ty Iowdtnta
Trneeotag. Terog, BagtiCoupe Ty TocdTNTA Tis)=t) (¢ CLVTEAECTY| Topoloomg.

Me Bdon to topandve, umopoUue eUXOAA Vo optooups 70 TEOBANUa TNe ITowdtn-
tac Yrnpeotog v tng axoroudiec cuVPTACEWY YwElC OLUXOUGTY, WS TNV OL-
adixaota EAAYLOTOTOONG TOU TAHOUS TWV YPOVIXGMY THEUBIUCEWY Yia EVal 0pLO-
uevo mhploc exteréocwy. Evalhoxtind, xavelc dUvotal va emtyelploel TNy eAoryLoTo-
moinom tou cuvtekeo T TopaBlaonc yia Tic TapaPidcelc tou cuyBatvouv. ToviCetan
WS ToL 000 TEOBAUAT OEV elvall LGOBUVOUY, AAAS EVOL XUADS OYEDIAOUEVO CUCTYUA
ogeilel vor Aofdver utddny xan T 500.

Emniéov, edv o mpofhemouevoc yedvoc exteheons T; xde cuvdptnone fi yio
0 <@ < n evar YvOOTOC, UTOpoUUE Vo opwoups cog Xa)\ocpco‘cmoc (slack) ™me
cuvdpTnorg f; Ty mocotTa slacky, = X520 7; — Si_o te = Xi—o(7; — t;). Tty
oy Y| ouvdptnon fi opllouue Undevixy on)\apomw. Edv n tocétnta awth| ebvon
Yeter, 1 extéheon tne oxoloudloc TpomopeleTal TOU GTOYOU, eV Ot avtideTn
TepinTwon Enetou.

3.2 IIpotewouevrn Ador: PoAdr Axoloviliag

Enwoxonnon tng Apyitextovixng

To PoAér AxodovOiag (PA) eivon évor xatoaveunuévo cloTnUo oL amoTEAEL-
ToL OO TEELS OLUPOPETIXES CUVIGTWOES, Ntol Tov Ilpoypauuatiotr, Tov Avdrtato
Iapatnpntn xou toug Iapatnentés. Kdade plo amd avtéc amotehel Eeywplotd
avTixeluevo tou Kulepvrtn. Emmiedv, umdyer pla emnpdoldetn ocuvolthoo tou

29

ovopdleton Awayeiprotris Akodovdiag, o omolog a&loTolEl TIC BUVATOTNTES oL EL-
ehéio Tou OpenWhisk, amoteh@vtag plo Eeywploth cuvdptnom yia xdie axolou-
Vlo. Mo agprpnuevn avamapdcTaoT TOU GUC THUATOS TUPOUCIALETOL OTNY EXOVA
2.

Kubernetes
Cluster
f — N 1h . "\
| ¥
OXO ®) &) &)
h 4
st ®®® @®®
Template
Deployer J Actions - Docker Actions - Docker
Containers Containers
1 . - ,
{ N y
r Y r
Requests’ Registry] Registry]
Cataleg —_— —_—
L) L)
-
Watcher Client
L PID Controller PID Controller
2a
Watcher > Conflict —t Conflict
| Supreme ! \ Resolver .. Resolver
. 2 ’
\ Watcher / \ Watcher |
\ A A L .
\ Master Node / \ Node, / \ Node,, /

Figure 2: Apyttextovixt; Tou Poloyiov Akolouvdiag

Emypoppotind, to obotnua mopdyet yio xdie oxoroudio tpog pbdulon ulo Ce-
Yoweot ouvdptnon uéoa oto OpenWhisk, tov Awayeipiot) Axolovdias (mop-
TOXohL x0xhoL TNV EXXOVa 2). O povadixde oxomde e Umapdhc Tou ebval apevax
va exterel TNy xhnon (1b) tne xdde ouvdptnong tne oxoroudiac (xde cuvdptnon
UVOTIOPLO TATOL UE EVOY XITEWVO XOXAO TNV exXOVa 2) X0t APETEPOU VO GUAAEYEL
OLdPOPES UETEWES Yoo TNV exdotote exteheot. H Bla ouviot@oo emxowvwvel
(1) pe tov Avdtato Hapatnpner), aTtoOUEVOS Yot TOPOY T UTOAOYLO TIXWY TOPMY.
Avutdc, ev ouveyela, yetagepet To aviioToryo altnua otoug Iapatnpntés, ol onoio
Beloxovton o xde xOuBo BroyelpllovTaC Xal XATOUVEUOVTUC 6GO TO BUVITOV TO
olxana Toug mépoug tou. Kde Iapatnpntng, cOugpomve ue tor An@gUEVTA ouThuATA,
TEOCYEREL TEQLOGOTERT) UTOAOYIGTUIXY| Loy) OE XOVTEWVED AXOAOLTLMV UE OEVITIXT
YaAdpwon), V6 TAVTOY POV apatpel UTOAOYIO TN Loy D amd xOVTEWVED oxoAoV eV
ue Vet yaAdpwon. H yetoffAntn eAeyyou, Tou yenoidonoteitat, ebvat) 1ocooT-
won e KME (CPU quotas).

30

ITpoypappatiotng

O Ipoypappatiorns eivon plor ToAD amhy| aAAd ToUTOYPOVA AEXETE LOYUET CU-
VIOTOOO. LUYXEXPWEVA, OTOYEVEL OTNY AUTOPATOTOINCT TNS ONUOURYELNS TWV OL-
APOEWY axoAOLLWY Yia ToV YeNoTr. Kdti T€Tolo elvon e@uxtd Yeow g BIETapNC
neoyoppotiopolb (API) mou mpoogéper xou tne yerone tou merdtn tou Open-
Whisk.

Alayeiptotrc Axolouvdiag

O Auwayeprotis Axolovdiag elvon 1 LOVAOIXY CUVICTMON TOU GUCTAUATOSC 1)
omoio Oev elvon Yoxeofio. To Pohdt Axohoudiag €yel oyedotel ye oeBaoud
mpo¢ to o 1o OpenWhisk xau emopevwe Yo amoteholoe plor onuavTixy oo-
Toylo, €4V O UNyoVIoNOC OUAAOYNC UETEIXWY XoL YPOoVOUETEou tlye uhomotniet
UE OLYXEVTPWTIXO TEOTO. AVl ylor auTd, Yoo TNV extéleon xdie axohoudiog
utar EeywploTy| ouvdptnor, o Awyepiotrs Axolovdiag, exTelelton Ue OXOTO Vol
xohel xdde empépouc cuvdptnon xou vo Tpowldel TNV €£006 TG OTNY ETOUEVT).
Tautdyeo- va, etvar uteduvog ylor TNV xatoypadt| TS YaAdpwong tTne axohou-
Vo metv amd xdie extéleon, tng omolag Ty T Holl Ue Ghheg ueTEXéC Tpowiel
OTNV CUYXEVTEWTIXT cuVioToa Tou Avatatov Hapatnpntn. To teheutaio, Tpory-
wotorotettan otay o drAnotog alyderduoc elvar evepyonolnuévoe, o omotog {ntdel
am6 toug Iapatnpntég Toug amapaitnToug TOEOUC, UE oXO0TO Vo puiuicel Tov ypdvo
extéleone. Koatd tnv vionolnon autrc g OmAwpatixnc neAeTAONxe Evag emt-
TAEOV “ahyopLiuoc, amoxaloluevog we dummy, o onolog ayvoel Tnv UToEEN TwWV
Iapatnpntoy xon BV TEUYUATOTOLEL UTAULOTA TEOS XAVEVOY %OUBO YLoL TOROYT
emnhéov ntoocootwone e KME, agrivwvioc tny petaSAnty| eAcyyou ehebiepn.

Avotatog Iopatnentig

O pdhoc tou Avdtatov Ilapatnpntr) ebvar xevipinds, ahdd Oyl WoLitepa TeR(-
TAOX0C, XIS ATAA YENOUEVEL ¢ 0 SlauecohaB3NTAC UeToly Twv Aayepotay
Axolovhiwr xou twv Ilapatnpntody. Avtl ol mpdTol Vo ETXOVWVOLY Ue xdie
x6uPo Eeywplotd (xdtt o omolo Yo eworiyaye emnhedy ypovoxaductépnon), Teo-
TWATOL VO ETUIXOWVWYOUY acUYYeova UE Wid xou WOVO GUVIGTOO, auTY Tou Avd-
tatov Ilapatnpner. O tekeutaiog, pwtd xde xouBo LeywploTd WoTe Vo udiet
oe molo onuelo tne cuctolylog BeloxeTol TO *OVTEWVER, OYETINO UE TNV EXTEAEDT)
NS exdoToTE ouVdETNonc. MOAic auth 1 TAnpogopla Yivel YVwo Ty, o Avadtatog
Iapatnpntng YETAPEREL TO OYETXO Al TUPOY NG TOPWY GTOV GYETXO %xOUfo,
WOTE VoL EXXVAOEL 1) OLodxacior pudutone.

YTV TEQIMTWOTN TN Yuxpr)S €KKIVNoNg OV UTGEYEL DLEGUIO XOVTEWVED OF
xovéEvay amod Toug xOpufBoug Tng ocucTolyloc. AUTO CUVETEYETAL TWEC XAVEVIS XOU-
Bog dev Va amoavtioet Yetnd. Xe authv oxplBng Ty tepintwon, emAéloue o Ava-

31

tavos Ilapatnpntrs vo unv extelel xouio TEQUUTERW EVERPYELXL XAl 1) EXTEAEOT) TNG
oxohoudiog va cuveyilel ywple pOdwon. Xe mpoyeg exdooels, elye allomoiniel
évag unyaviopoc oguyopétenone (polling) yio v otadoxr elpeoT Tou x6UBou
EYXATACTAOTC TOU EXACTOTE XOVTEWVER. AUCTUYOC 1) CUYXEXQIIEVT TEOGEYYION
TUEARYYE EVTOVN XIVNoT 6TO BixTuo xau 0dNyoloe o unoAettovpylo. ot auToV
oxEYBOE TO AOYO ETUAEYUNNUE 1) APALPEST) AUTOY TOU YUPAUXTNPEIC TLXOU OTNV TOPEia
e avdnTuing. e xdle mepinTwot), TEpauTépw UEAETN amantelton YOpw amd Tnv
oloyelpton Twv Puypwr exkivioew.

Hapatnentis

Arnotehel v xbpla cuvicTwoo Tou cucThuatoc. Kdle xoufoc tne cuotnyloc
TEPLEYEL EVOL XOVTEWVER OTO omolo TeEyel evac Tlapatnpntig ue TNV oAEUOBLOTNTA
OLUOLEAOUO) TWVY UTOAOYLOTIXMY TOPWY X0k TNV PUUULOT TOU ¥EOVOU EXTEAECTC
TV axohouthwy, ye Bdorn To avtioTorya aTAUTA.

‘Ocov aopd 1 doUT| T, EUTERIEYEL DUO ECMWTERIXOVS UNYAVIOUOUC, ATOL EVay
otoxoutoTy| xou Tov Emduty) Yuykpotoewy. O eCunneetntrc amAd TROCQEREL TNV
XATEAANAT Olemopt|, OOTE Vo elvon SLod€oLUeS oL BLdpopes Aettovpyiec oe Aond
otowyelo TNg ouotolyloc. Ao TNV dAAN, o EmAvtng Yuykpoloewy ooy pdgel
TOL ELOEPYOUEVOL OUTAUATA, TOUS TROCPEPOUEVOUS TOPOUC OF XAUE XOVTEVER XAl
emxowvwvel ue Tov unyavioud Docker tou xde xoufou. T tnv xotarypogpr) Twy
TEEYOVTIWY auTnudtoy oftomoteltar pla doun dedopévwy, to Apyeio (Registry), oto
OTIOl0 XAUTOYWEEITOL, ETUTAEOV, 1) XUATACTACT] TWYV XOVIEWVER TOU XOuBOou.

EAleyxtric PID

O EAeyxtris PID etvon pla amhy) cuvdptnor, péoo otoug Ilapatnpntés, n onola
Oéyetal UETPMES OTWS TNV yaAapdTnta x8Ve cuvdptnone (avaroynds 6pog), To
ddpolopo TwY TEONYOUUEVDY PETEHOEWY ouTo) Tou Ueyédous (0AOXANEWTIXOC
6POC) 1oL TNV YAUAAPTNTO TNS TEONYOUUEVNS cuvdpTnone (dpog mapayhyou). Me
Bdon auTEC TIC TYWES ETOTEEPEL TNV TOCOTNTA XATd TNV onola meémel var augniel
1 vo uetwel n tocbotwon e KME tou exdotote xovtewvep.

AXyopripog Katavourg Ilopwy

‘Onwe ebvar uoxd xdde xopBoc dlardéTel Evay TETEPAOUEVO aptiud TUENVLV.
Enopevee, amouteiton 1 ebpeot evog Tpdmou xatd Tov onolo Yo yivetan evag dixanog
OLoolpaoog Tng mocdotwong e KME ota didpopa xovtétvep, 6tav o xdle
xoUPog gTdvel ot xatdoTaoT xopeopoL. Kdti t€tolo elvon duvatodv va ouufel, €dv
70 40pOLoUN TWV TOCOCTHOEWY, Tou atte(ton 1) xdde ouvdptnor, uteplel To TAdoC
TV Sleouwy Tupvwy. Lo autdv axelBng Tov Aoyo, o xdie Ilapatnontrs dev
TEOoPEREL o€ 1A xovTEVED TO TAUOC TwV quotas mou Tou UTEdelle o FAeyktnig

32

PID, odXd €va tocootd A authc. O moapdyovtag A mpoxOnTel and Ty axdlovin
Lot AT pOEUOUAA:

Neares T saturation

A={ T 0
1 , otherwise
Yy edlowon 1 w¢ Negres cLpforiCoupe t0 TAHog Twv TupRvewy Tou xéufou, wg
T v mpoemheypévn tepiodo tne KME xou w¢ r; tnv tocétnta quotas tne KME,
mou athOnxe 1 i-00TY| cuvdptnon f;.

[t Ty amoguyY| Tou E€0VUYLE TIXOU UTOAOYLOUOU TOU opOoloUNTOC OTNY U~

TV POPUOUAA, xavelc UTopel Vo e€dyel TNV axdhoulT) avadpoulxn oyéon:

Ncores T Ncores AR)\old

/\new = N — (2)

T o
% + Tnew — Told Ncores T + (Tnew - TOld)))\Old

Me ToUg 6POUC Tpey KA Tl AVATUPLOTOUKE TNV VEA XOU TNV TAANY TY| TV quotas
¢ KME mou autidnxe 1 exdotote ouvdptnon.

IToAwtixy) XuyxpoLoswy

Kotd tnv extéieon mohhamhov oxohoudwv, ot Ilapatnontés xohodvtal vo
eMAUGOUY €va emmAéoy TEOBANU, oUTO TOU OLOWOLEUcUO) TOPWY UETAEY aLTy-
UdTwY, Tou agopoLy TNV Bl cuvdptnor. Mia TETol xUTACTHOT EVOEYETOL VO
meoxLeL €8V ToAATAEC xAAoELC TNE (Blog axohoudiag TEYUATOTOLVVTOL THUTO-
YQOVAL, UE ATOTEAECUOL DLUPOLETING UTAUOTA VO EUPAVIC TOUV YLt TO (Bl XOVTEWVED.
Ye authy TNV mepintwon, anogaocioaue ot Ilapatnpntég vo axolovdricouv uio
TOMTIXY, XoTd TNV onola Yo OOOOLY TEOTEPULOTNTA GTO AUTNUA TOU APORS. TNV
oxohoudlo ue T ueyahbTeer yeovixn emfBdpuvon.

4 Arnoteiéopata & AZiohdynon

4.1 Iletpapotinny Ardtoln

Mo to mewpopatind pépoc tne Atmhwpoatinic allomololue uio cuc Tolylo TE6odpwY
EXOVIXMY UNYOVNUSTWY. M€ Xa¥EVor amd auTd EVOL EYXATECTNUEVY] 1) OLotVOUT
Ubuntu 20.04 LTS pe tnv 5.4 €éxdoor tou nuprva Linux. Ilepoutépw Aemtouépelec,
OYETIXEC E TIC TPOOLAYRUPES AUT®Y, Bploxovion 6Tov TopoxdTe Ttivona.

| Pohog | POhog oto OpenWhisk Apgwduog IMuprivewy MvyvAurn Swap
0 | master none 2 7.77 GiB off
1 | worker invoker 4 15.6 GiB off
2 | worker invoker 4 15.6 GiB off
3 | worker invoker 2 15.6 GiB off

Table 1: ITpodiorypagéc Tewpapotinic Yuotoyiag.

33

Ané toug téooepic xopPouc, évac adtlomolelton we o xVplog xoufoc, otov onolo
ToTo¥eTOUVTUL Ol XEVTEIXEG cuVoTwoeg Tou KuPBepvhtn xou tou OpenWhisk. O
UTIOAOLTIOL YENOWEVOUY ¢ OEUTEREOVTES XOUPoL, oToug omoloug TomoveTouvTo
CUVIGTWOES YENOTWY, XIOC ETIONE XKoL To XOVTEVER TWV CUVILTHOEWY.

O unéptatog otdyog yioo TNV 0edopévn oucTolylo elvon 1 alloAdynon tng eml-
000N TV axohoulwy, uTd TNV eTPBOAY| Slapdpwy emEdwY “Tleonc”. O TpdmoC
YL vo tocotnxomotniel xdtt t€Tolo elvan yEow tne YeToBornc Tou puluoL XAHGEWY
TV 0x0 oLV, HTOL 1) EXTEAEST) AARETEANAWY *AioEWY plog axohoudiag ue Evoy

1

otodepd LG TPs 1| LoodLVAUN avd oTadepd Yeovixd BtdoTnuo At = s

4.2 3Oyxpion OpenWhisk & Polhoyiob Axolouvdiog

Mo tor etpdpotd pog aélonototue pla TANmeo axohouthiey Tou €youy TeoxUpeL
TO00 Omo YEVXEC CGUVORTHOEIC anattnTixee w¢ pog TNy KME, 6co xou and mo
peahloTiéC Epapuoyéc Tne couitog SeBS [25, 26]. And 1o olvolo autdhv Topd-
YOUUE TIC axohoudiec uixoug TelwyY cuvapThoEwY stg3, mtg3, mpgs, p021, pb43
xou ¢ axorovdiec uixoug €L cuvapThoewy stgb, mtgb, mpg6, p024879, p051465.
Hopandtey TopadETOLUE Tal AMOTEAECUOTA VLol OPLOUEVES ATO QUTEC.

Avdivorn I'evixwyv Axolovdiwy

Q¢ axoroudiec avagopdc alomolovtan 1 stgb, ue yeovo 31064 mseconds xou
N stg3 pe yeovo 8917 mseconds. H diapopd Toug oTo Ufxog amodetxvieTol, €V
TEAEL, TOG EYEL ONUAVTINY| ETUTTWOT) OTOV TEAXO YPOVO.

Time profiling of 'stg6' Box plot of end-to-end latency for 'stg6' Quality of Service: Violations for Pipeline 'stg6'

180000 ’
framework

160000 | M Openwhisk
BN Dummy sc
140000 1 mmm Sequence Clock

160000 1 openwhisk

—— Dummy sc
—— Sequence Clock

100 1 mmm Openwhisk
N 90| = Dummy sc
B Sequence Clock

140000

120000

> soe

J 120000 *
100000
100000

. “i
a '
/ 80000 * 4
+
""" i"""i";;i';‘#'i;i'k "“"" =

80000

latency (msec)
latency (ms:

60000

Percentage of QoS Violations

40000

20000 20000 s e

010 015 020 025 030 035 040 045 0.50 0.1 0.15 0.2 0.25 0.33 0.4 0.15 0.2 0.25 0.33 0.4
ps (1/sec) ps (1/sec) rps (1/sec)

(a) 99-0 Exatootnudeto. (b) Kartavour, tou Xpdvou. (c) Hooooté HoapoPidoewy.

Figure 3: Yuyxpivovtag to OpenWhisk pe to P.A. v v axoroudio stg6.

Ané to didrypoppor (3) xovele pmopel vor cuumEpdvel Tor axdhouda:

« H emioyy dayelpione tne xdie axorovdiog and pio Eeywpeliot cuvdptnon
X0l OL OTOEOUUTNTES HETAUPOPES DEDOUEVLY, IOV OUTT) GUVETEYETAL, OEV ETLPEQEL
xdmota xaduoTtépnom dtbou, e€ol xot 1 ouuTeptpopd Tou Dummy PA.

o O dmAnotog alyoptduog o 0 EAEYATAC XUTUPEQVOLY VU TEQLOPICOLY TOV
YEOVO eXTENEOTC Y0PW U6 TOV EMYUUNTO GTOYO VLA TYWES TOU I'PS UIXPOTERES

34

ToU 0.33, eV Yio HEYUAUTEQES DUCTLUY(C ETULPELOLY YPOVOUS YELPOTEQOUC UTO
70 {6to To OpenWhisk.

‘Eyovtoc avagépel ta Topandve, SmoTMVoUPE ond To Sidypoppo (3¢) 6Tt To
PA eugaviCel mapoafidoeic yia Oho T eminedo rps. o Tipée uixpdtepeg tou 0.33, o
Srorypdupota (3b) xon (4) uodnhdvouy dtL dev elvan PeEYEANS xplotpdTnTaC, ohhd
xovelc umopel vor utootneilel 6Tt T€Tolou eldoug ToEUPLAcELS OEV TaHEOUGLALOVTOY
oo B0 To OpenWhisk €& apytc yior awtd Tor emineda mieomge.

framework = Openwhisk framework = Dummy sc framework = Sequence Clock

=
N
L

rps E rps R rps
0.5 0.5 0.5
0.45 | | 0.45 | | 0.45
— 04 0.4
0.33
0.25
0.2
0.15
0.1

=
o
s

Probability Distribution

o N » o o]
L L L

0 2 4 6 0 2 4 6 0 2 4 6
Violation Factor Violation Factor Violation Factor

Figure 4: Kotavour tou Xuvteieoty| upafidoswy yio tnv axoroudia stgb.

Hpoywewvtag pe To stg3, €neita amd ToUEATAENOT] TWV AVTIoTOLY WY Olory -
UaTwY, YiVETow CUPES TS axOhOUHEC UIXPOTEQOL UHXOUC UTOPECOUY ALY OTERO
and adEnon tou yeoévou extéreonc. Tautdyova, dune, to Sidypoupo (5a) delyvel
utor oxdun Ly Tou GuoTHUATOS, 1 omtola efvan 1 aduvapio BeATioToTOONE TOL
PID ekeyxtr yio Ohec Tic axohouvdiec xou cuvopTtioelc, xadne To stgs Tapouctdlel
GaA G ToEPC HATAC TUOTC.

Time profiling of 'stg3* Box plot of end-to-end latency for 'stg3' Quality of Service: Violations for Pipeline 'stg3'
25000
13000 | — Openwhisk + framework 100 1 mmm Openwhisk
—— Dummy sc 22500 B Openwhisk 90 | HEE Dummy sc
—— Sequence Clock BN Dummy sc B Sequence Clock

12000 20000 B Sequence Clock

11000

latency (msec)

10000

. by
-l amgsL P S I

010 015 020 025 030 035 040 045 050

Percentage of QoS Violations

0.2 025 033 0.4 0.4!

0.1 0.15 0.2 025 033 0.4 0.45 0.5
rps (1/sec) rps (1/sec) ps (1/sec)

(a) 99-0 Exatootnudplo. (b) Katavout, tou Xpbvou. (c) Hoooot6 HapoPidoewy.

Figure 5: Yuyxptvovtoc to OpenWhisk pe to P.A. yia v oxohouvdio stgs3.

35

framework = Openwhisk

framework = Dummy sc

framework = Sequence Clock

25

- ps ps rps

S 50 0.5 0.5 0.5

3 0.45 0.45 0.45

5 s — 04 — 04 — 0.4

a — 025 — 033 — 033

Z 10 — 0.2 — 0.25

3 — 02

3 — 015

[=} 4 4

: A —
oL . : ; ; . . ; . — : . : :

00 02 04 06 08 00 02 04 06 08 00 02 04 06 08

Violation Factor

Violation Factor

Violation Factor

Figure 6: Kotavour| tou Yuvteheoty| [opofidocwy yia tnv axorovdio stgs.

Avdédivorn Axolovdiwv tng Xouitag SeBS

H cuunepupopd v mo peadhAloTix®y X0 AoULeY BV amOXAIVEL AT6 AUTH TWV TLO
Yevixwy, pe 1o PA vo cupmepipépeton xohlTeQU OE UEYEAOU Urxoug oxohoudies.
Hoapaxdtey mapatidovton tor amotehéoporta yia TV axohoudia p64S.

13000

12000

11000

latency (msec)

10000

9000

(a

Time profiling of 'stg3'

—— Openwhisk
—— Dummy sc
~—— Sequence Clock

25000
22500
20000
3
2 17500
> 15000
2z
g
B 12500

10000

7500

=

5000

010 015 020 025 030 035 040 045 0.50
ps (1/sec)

) 99-0 Exatootnuéplo.

Box plot of end-to-end latency for 'p643'

¢ framework
Bl Openwhisk
= Dummy sc
mm Sequence Clock

(2
‘

bk i g

0.15 0.2 025 033

ps (1/sec)

0.4 0.45 0.5

(b) Katavour, tou Xpdvou.

Figure 7: Yuyxptvovtog to OpenWhisk pe 10 P.A. v

framework = Openwhisk

framework = Dummy sc

Quality of Service: Violations for Pipeline 'stg3'

B Openwhisk
= Dummy sc
B Sequence Clock

Percentage of QoS Violations

0.1

0.15 0.2 025 033

ps (1/sec)

0.4 0.45 0.5

(c) Hooooté HoapoPidoewy.

v axohoudior pb4S.

framework = Sequence Clock

121 ps rps rps
2104 =3 05 == 05 == 05
% = 0.45 = 0.45 = 0.45
5 81 0.4 0.4 0.4
2 6l == 033 == 033 0.33
g = 0.25 mm 0.25 = 0.25
8 41 = 02 = 02 = 0.2
§ = 01 = 0.15

27 1 = 01

0 1 | | [| | B il | ,

0 1 2 3 0 1 2 3 0 1 2 3

Violation Factor

Violation Factor

Violation Factor

Figure 8: Kotavouy| tou Yuvtekeots| [lopafidoewy yio tnv axorovdia p643.

4.3 Eppnveia Anoteleopdtoyv & Ilopddoga

2TIC YPOUUES IOV 0x0AoVTOUY TopaETOUUE AUTIEC TOU OONY MOV GTNY adLVALX
tou Pohoylol Axoloudioc va urepteprioel evavtt Tou OpenWhisk. ‘Onwe €yive
OUPES OTA TUPATIAVE DLOYRUUUATI, O YEOVOC EXTEAECNC TWV AXOAOUTIMY CUUTEER-
p€peTan ¢ piot Tuyakor PETABANTY UE TNV OLUCTIORA TNG AVTIOTOLY NG XATUVOUNG
var auEdveTon oo ueyokOtepa enineda ticone. H pliuion péow tng mocdotwong

36

¢ KME, nou avtiotowyel oc xdlde xovtévep, @olveton OTL XUTUPEQVEL VoL TIEPL-
OPIOEL TNV XATOVOWUY| AUTHY Yot THIEC DUOTUY WS UXPOTEPES TOU ETUTEDOU T'PSs, TO
onol0 GUVTEAEGE OTNV BLAUOPYWGCT) TOU GTOYEUUEVOLU YEOVOU EXTEAECTC. AUt
EQUNVEVETU WG BUVATOTNTA ETUBEADLYONG TWV CUVIPTHOEWY YLol UXPOTEQES TWIEC
TV quotas xou ToauTOYEOVY AdLVUUIN ETULTAYUVONG Yot THEC UEYUADTEPES amtd
ula meplodo e KME. Emnmiéoyv, xpivetar amopaitnto va 9i€oupe 1o Yéuo ocuv-
TOVIOUOU TV xePOWY Tou eheyxth) PID. Yuyxexpweéva, oe optopéve axolouvdieg
CUUTIEQLPERETAL WC BEATICTOTOINUEVOC, UE TNV YEOVIXT| XaTovour vo teptoplleTo
ONUAVTIXY YUPW UTO TOV TEOXOORIOUEVO GTOY0, EV® OE GAAEC 00N YEl O GpdAU
o ToERTiC XUTAOTAUOTC.

Ev cuveyela, plo e&fynon enelyet yioo tnv omodoTixdTERT, CUUTERLPORE TNS
dummy, ywelc eniBiedn éxdoone tou Pohoyiol Axolouvdioc. To Srarypduuata
€0ELEAY UELWUEVO TTOGOGTO TORUBIACEWY Xol THUTOYPOVY) UETATOTILCT| TN XATUVOUNS
TOU ouVTEAEOTY| Topafidoswy eyyUTepa oto UNdEv. To teheutaio cuvemeydTan
WS ol TopafLdoelc Tou TpoxuTTouy elvar Atydtepo evtoves. H epunvela mou npoo-
(PEEOLKE YLloL QUTHY TNV cuuTepLpopd Pactletoun oto yeyovoe nwe to OpenWhisk
OVOAOUBAVEL TNV EXTEAEDT] TWV DLIPOPWY UXOAOLILOV UE CUYXEVTPWTIXO TEOTO,
T0 0Tolo ATOBEVUETAL OTL BEV XALaXWVETUL €0X0oAa. AVTWIETWS, TO TEOTEWVO-
uevo alotnua oflomotel EEYwEIoTH GUVIETNOY (ETOUEVMC XL XOVTEVER) YioL TNV
oLayelplon xdle Ceywplothc axorouvdiog, xatavépovtac to ETBUANOUEVO QopTio
X0l 0ONYWVTUG O XUADTEPOUC YPOVOUC.

5 X0vodn & MeAhoviixr 6ovAeld

5.1 X0Ovodnm

e authy v Atmdopotixr) Epyaoto, epeuviooue tic tpoxhoeic tapoyhic Ilowotn-
Tog Trnpeoloc oe apyltextovineg ywplc dtaxouoth. To uroloyiloTxd poviého
Yuvdptnon-oav-Trnpeoia mopouctdoTnxe xou ollohoyHUnxe TopdAANAo ue OLd-
popec BBholfxee, epyarela xou 0 dour avtwy, 6mwe o OpenWhisk xau to
OpenFaas, mopdhhnio ue tnv dour Touc.

Méow extevoy melpaudtoy, avoyvopiooue touxihouc Topdyovieg Tou £youy ula
eNOPUOT) GTOV YPOVO EXTEAEOTE TWV UXONOUTODY X0 ETUXEVTRWOUUE TO EVOLUPEQOV
UOC OTOV XOPECUO TV LUTOAOYLOTIXWY Topwv. Ta mewpduato €detloy, xatd péco
60, Wla exdeTiny| adENoT 0TOV YEOVO EXTEAECTC TMV 0XOAOUTMY XoTd TNV aENo
ToU PUUOY XAAoEWY, e TNV TEOPAedudTNTA TOU CUTAUNTOC Vo oxoroudel uio
TapouoLa Lolpa.

To endpevo Brua oty Te€youca Aimhwuatixr oy 1 avdntuln tou Polo-
Y100 Axolouvdiog, To onolo anoteAel Eva epyaieio EAEYYOU TOU YEOVOL EXTEAECTC
0XOAOUTHOY apYITEXTOVIXNAG Y welS dtoxomo T MEow ulag oelpd Telpoudtwy Teoy-
wotomot{dnxe oUyxelon ye to Bto to OpenWhisk, mou €6eile mwe to Poldl

37

Axolovdioc etvor txavo va emBpadiverl axohovdiec cUVPTACEWY xaL Vo TETOYEL
o€ YaUNAoUS pUTUOUS XA OEWY HATAVOUES UXQEOTEPNS DLUOTIORAS TOU YPOVOU EX-
TENEONC HE UEOT) TULY XOVTA OTOV TEOETUAEYUEVO 0TOYO0. ATd TNV GAAT, 1 Ywelc
en{BAedn éxdoomn tou Awayeipiot) AkoAdovOicdy xaTdPERE VoL UEWOOEL TO TOGOGTO
TWV TOEUPBLICEWY XoL Vo TEPLOPIOEL TO PEYIOTO TNG XATUVOUNC TOU OUVTEAEOTH

rapapiaons.

5.2 MeAlovtixy) dovAeld

Yoy uehhovTiny| BoVAELY, xavelc Yo pmopoloe vo eEeTdoEL EVay CUVOUNOUS TOU
dmAnotov ahyopriuou xou tne ywelc eniBiedn éxdoone tou Awayepiot Akodov-
Oiag. Aut) 1 mpdTaoT TEOoXUTTEL and TNV dlmloTwon twe o eAeyxthc PID, ue
Vv e0duton Twv quotas e KME, etvan ixavoc va neplopioet Tov ypdvo extéleonc
YUPw amd TOV TEOXMIORLOUEVO GTOYO UE UiXEY| DLOXOUAVOT YLOL YUUNAES TYIES TOU
evduol xhfoewy. Avtdétwe oe cuviixeg auénuévng mtieong, amodeEXVIETAL TS
N yowelc enlBiedn npoceyyion odnyel oe wixpdTepo aptiud mapafLdoewy and To
(6to to OpenWhisk.

Emniedy, enclyel 1 cUpeon TopoU€Tewy Tou Yo anoTEAECOUY ATODOTIXOTEQES
UETUPBANTES EAEYYOL Yoo TNV pUUULON NG ETBOONE TWV CUVUETACEWY XL TWV
oxOhOLILOY WG dueoT cuvETEL. TTodripior ueYEDT amoteAOLY 1 GLUYVOTNTA POAO-
vl e KME tou unyoaviuatoc owxodeonotn, to €0poc {ovng Oixtiou XTA.
Hopdhhnha, evotagpépouoa Va oy pio perétn mou Ya allohoyoloe Evay duvouLxo
UNYAVIOUO huxpns exkivnong xou optlovTiag XAUSXWOTNS TV ouVapTHoEny. Kdtt
TETOLO DUVATOL VO ATOTEAEDEL €val ETULTAEOV B TPOC TOV GTOY O TNS TOAUTOUNTNG
Iowdtntog Trnpeotuc, xadmc EVOEYETOL OE OPLOUEVES TEQLTTWOELC VO CUUPEQEL,
amo yeovixic dmodng, 1 dnuiovpyelor EVOC VEOU XOVTEWVER EVOVTL TNG AVOUOVAC 1)
NG TUPGAANANG EXTEAEOTC OTO (DLO XOVTELVEQ.

38

Chapter 1

Introduction

Nowadays, there is in ever-increasing number of workloads pushed and exe-
cuted on the Cloud. As the competition increases and the Time-to-Market plays
a significant role in software oriented companies and startups, it is natural for
developers and engineers to be interested in solutions that would potentially
decrease development time and allow them to focus on their application’s busi-
ness logic. An abstract comparison of various deployment models concerning
the relation of business logic focus and the programming stack implementation
overhead is placed in Figure 1.1.

Over the years various cloud computing models have emerged offering differ-
ent layers of abstraction and decoupling infrastructure maintenance from ap-
plication development, i.e. the well known infrastructure as a service, platform
as a service, and now function as a service. The latter, to which this thesis is
related, is often used interchangeably with the term serverless computing and it
is something more than just a cloud computing service, as it has been described
by many as a whole new programming model [6].

Of course, for completeness purposes, before moving to FaaS presentation, it
is wise to familiarize the reader with the concepts of cloud computing in general
and the other types of cloud computing services.

Serverless

D 0 ¢
Containers D B A
) () (0

we (100 (IHID)

Bare Metal

INCREASING BYSINESS LOGIC FOCUS

DECREASING STACK IMPLEMENTATION

Figure 1.1: Popularized comparison of various deployment models.[6]

39

1.1 Cloud Computing

According to PCMag Encyclopedia, cloud computing etymology is "hard-
ware and software services from a provider on the internet (the cloud)" [1]. In
more depth, cloud computing is a delivery of computing services, i.e. storage,
databases, networking, and analytics, over the internet to offer faster innova-
tion, resources, and economies of scale [2]. Some key benefits of cloud computing
are the following:

Cost: It eliminates capital expense of purchase and maintenance of hard-
ware equipment

Speed: Tt is so called "self service”. Users manage the entire process from
start to finish with flexibility and without the pressure of capacity planning
even for vast amounts of computing resources.

Scalability & Performance: The ability to scale elastically and provide a
service in various geographic locations would be impossible otherwise.

Productivity: There are no time consuming I'T management chores.

Reliability: It makes data backup and recovery easier and less expensive as
data can be mirrored at multiple redundant sites on the cloud providers’
network.

Security: A broad set of policies, technologies, and controls strengthen your
security posture overall, helping protect your data, apps, and infrastructure
from potential threats.

As we mentioned above, most cloud computing models fall into four broad
categories which include [aaS, PaaS, SaaS, and FaaS with tech giants such as
Amazon, Google, and Microsoft offering all of them. A brief description of each
one is placed below.

40

1.1.1 Infrastructure as a Service (IaaS)

It is also called cloud hosting or wutility computing and it provides only a
base infrastructure. That means that through high level APIs, it is possible for
users to rent I'T infrastructure like servers, virtual machines, storage, network
bandwidth and operating systems on a pay-as-you-go basis [1, 2, 3]. In case
of VMs, a hypervisor hosts a large number of virtual machines, while offering
the ability to scale them up or down depending on tenants’ requirements [4].
Examples of TaaS are among others AWS EC2, Google Computing Engine,
Microsoft Azure, and Digital Ocean.

1.1.2 Platform as a Service (PaaS)

This type of cloud computing service offers the user an on-demand environ-
ment for developing, testing, delivering, and managing software applications
onto the cloud. Building and maintenance of the underlined infrastructure is
completely shifted from the user to the provider, while control over the deployed
application and configuration settings are still feasible from the consumer’s per-
spective (2, 3, 4, 5]. Famous examples of PaaS are Google App Engine, Cloud
Foundry, Heroku, AWS Elastic Beanstalk, Openshift and others.

1.1.3 Software as a Service (SaaS)

Software as a service is a method for delivering software applications over the
Internet on demand and typically on a subscription basis [2]. The applications
are accessible from various thin client interfaces, such as a web browser or a
program interface [4], which means that nowadays one has definitely used a
SaaS application at least once in their lifetime, as typical examples include
YouTube, Slack, DropBox, Google Suite and the list goes on. Similarly to
PaaS, the underline infrastructure, i.e. applications, runtime, data, middleware,
operating systems, virtualization, servers, storage and networking, are managed
completely by vendors, while consumers are limited in specific configurations of
application-dependent settings.

41

1.2 Serverless Computing: Is it the future?

Having said all the above, an interesting question rises. What exactly is
serverless or FaaS and where does it lie between all this? Serverless can be
defined as an emerging application deployment architecture that completely
hides server management from tenants [7]. Of course, this is also the case
in previously mentioned and older vendor plans. Its main idea and original
characteristic, though, is the fact that a monolithic application must be replaced
and implemented by a set of short-lived, stateless and event-driven functions,
thus the name FaaS. An oversimplified example of this, shown in Figure 1.2,
is a picture upload from a user as the event and the transfer of this data into
a database as the function [6]. Each function is being executed in a dedicated
instance (usually a container), which is also ephemeral. That means that it will
be deployed whenever an invocation occurs and will be deleted after handling
the current request.

:/..-- -.._\..
(\ —_——
Event —
\ J

T B —— e N
./' \\\
Picture Upload

- Serverless Function
Client Storage

Figure 1.2: Simple example of a serverless function.

In these manner, tenants are charged on per invocation basis without paying
for idle resources. In addition, due to its core idea and the lack of boot sequence
in containers, this approach potentially offers auto-scaling mechanisms, fault
tolerance and multiregional availability. For example, an increase in incoming
requests can be handled with the addition of new containers and a load balancer.
Faulty containers can again be replaced by new ones in a matter of seconds. On
the contrary, one might express some significant concerns about security and
quality of isolation as interference is inevitable between different functions or
even different tenants [7]. Additionally, functions’ impermanence leads to the
need of persistent storage of data, in order for subsequent requests to operate on
it, e.g. S3 in AWS Lambda. This may introduce significant overheads compared
to in-memory computation of relative traditional applications [§].

Nevertheless, serverless is here to stay and remains an impressive technol-
ogy, when used properly, i.e. in applications with intermittent activity, where
maintaining long-running instances is cost inefficient [8].

42

1.2.1 Microservices vs Serverless

Before moving to further depth, it is considered necessary to distinguish
serverless computing from another, also much discussed, concept like Microser-
vices. The latter is not a cloud service type but an architectural pattern in which
an application is divided into a series of services as opposed to the so-called
monoliths (referring to applications where all functionality runs as a single en-
tity). The key difference with FaaS programming model is that microservices
are not stateless nor short-lived. It is common for a serverless application to
contain dozens of functions, that implement discrete units of application func-
tionality. On the other hand, it is common for a service-oriented-application or
SOA (implemented with the microservices’ architecture), to contain only a few
of them, which is also destined to be run continuously and not be triggered by
events [27].

1.3 From Monolith to Workflows

1.3.1 FaaS as a programming model

As we previously mentioned, in serverless computing an application must be
translated into a set of stateless and event-driven functions. These functions
need to call each other and share data in the process, resulting to the creation
of graphs, which from now on we are going to call workflows or pipelines.
Concerning the structure of these workflows, developers have the privilege to
select from various options that are best suited for each occasion. The simplest
of all is sequential execution of functions, which can be presented by a list-like
graph and be characterized as a sequence. Input dependence is being introduced
with pipeline branching and usage of if - else conditions. Even parallel execution
of functions can be utilized whenever the massive amount of resources for a brief
period of time is beneficial [8, 28].

1.3.2 Latency as a QoS metric

As far as the execution runtime of a pipeline is concerned, whichever its
structure may be, certain users’ configurations include various thresholds for
computing resources (memory limit, number of processes, timeout etc.) in the
function level [29]. Unfortunately, there is no guarantee for a certain time
latency concerning the overall workflow, which could be interpreted as the well-
known concept of quality-of-service or QoS. Even if a developer has find a tuned
configuration where their function behaves in a certain way, e.g. terminates
after t ms, this analysis is irrelevant if not useless. Each function instance
coexists with a plethora of others and competes for the resources of the host

43

machine. Having this said, for achieving a QoS concerning a workflow’s tail
latency, a more sophisticated runtime resource management system is required.

1.4 Thesis Overview

In this thesis, Sequence Clock (SC) is been presented as a potential solution
to QoS violations of the execution time latency of function sequences, i.e., the
simplest type of serverless functions’ workflows. SC is a distributed, latency
targeting tool that actively monitors serverless invocations inside a cluster and
tries to regulate execution duration at the sequence level. In its core, it utilizes
a greedy method for measuring the error (slack) from the target latency and a
PID controller for estimating the required amount of cpu quotas as the tuning
parameter. Moreover, a seemingly fair algorithm was developed for balancing
resources between the containers placed on the same host.

In the chapters that follow, we present among others, technologies like Open-
whisk, an opensource & distributed Serverless platform and Kubernetes, an
open-source system for automating deployment & scaling management of con-
tainerized applications. Chapter 5 includes an in-depth description of Sequence
Clock, it’s components and functionalities, while chapter 6 evaluates our pro-
posed framework, by comparing it with the default unsupervised Openwhisk
sequences, across different stressing scenarios and workloads.

44

Chapter 2

Related Work

With Sequence Clock being a multi component system, built on top of exist-
ing frameworks and developed with various technologies, a related work chapter
oughts to reference similar approaches concerning the ultimate goal, i.e. au-
tomatic resource management, and mention methods for serverless functions’
benchmarking.

2.1 Metrics Collection

2.1.1 Deathstar Bench

Although DeathStarBench [8] is a benchmark suite for microservices which
is a completely different concept from serverless, a simple reference to this is
considered necessary as the methods that proposes provided us with some useful
guidelines for our system’s smoke test.

In short, it was developed upon the design principles mentioned below:

o Representativeness: inclusion of popular open source applications, such
as nginx, memcached, MongoDB, RabbitMQ, MySQL, Appache HTTP

server, ardrone-autonomy and others.

o FEnd-to-end operation: accountability for the impact of inter service depen-
dencies.

o Heterogeneity: support for low and high level languages including C/C++,
Java, JavaScript, node.js, Python, html, Ruby, Go, Scala.

o Modularity: Conway’s law at it’s finest. In in a nutshell, following its
creators communication structure, microservices of DeathStarBench suite
minimize two-way communication and remain single concerned and loosely
coupled.

o Reconfigurability: easy swapping out of microservices for alternate versions.

45

The aforementioned suite consists from five independent applications, a so-
cial network, a media service, an e-commerce service and the drone swarm
coordination system.

2.1.2 Other Approaches

As every major cloud provider supports serverless, e.g., AWS lambda, Azure
Functions, and Google cloud functions, one should wonder about the charac-
terization of these provided services’ performance and resource management
efficiency. With this in mind, researchers [7] performed an extensive measure-
ment study. Areas of interest include tenant isolation, scalability, function
placement, cold start events, and instance lifetime and reusage.

2.2 Resource Management in serverless computing

2.2.1 Llama

Llama is a heterogeneous serverless framework for auto-tuning video pipelines
[28]. By the time of writing this thesis, it was the closest approach to ours as
it also uses time latency as target. In more depth, it calculates the target la-
tency for each invocation of the pipeline and utilizes a cost optimizer in order
to determine efficient configurations for each one of them. These configurations
correspond to parameters (the so called knobs) like sampling rate, batch size,
and type of hardware and can be tuned to meet the target latency while mini-
mizing execution cost. As far as its architecture is concerned, it is a serverless
framework by itself and doesn’t rely on commercial platforms. Its main ad-
vantages are compatibility with heterogeneous hardware (CPU, GPU, FPGA,
Vision Chips e.t.c.) and support for input dependent execution flow which is
crucial for performance and efficiency.

2.2.2 FaastLane

FaastLane [30] doesn’t offer a quality of service constraint, but it tries to
minimize workflow latency by eliminating function interaction and exchanges
of data between them. Instead of executing each function in a separate, isolated
container, it encapsulates the entire pipeline inside a single container instance.
Functions are executed as threads within a single process, while data sharing
is been replaced by simple load/store instructions. Isolation of sensitive data
is being implemented with Intel Memory Protection Keys (MPK) [31], while
parallelism is possible with fork of processes or spawning of new containers.

46

2.3 Our Approach

Our approach focuses on serverless pipelines that utilize OpenWhisk frame-
work deployed inside Kubernetes. In order to achieve the target time latency,
it monitors all invocations inside the cluster and tries to distribute computing
resources of each node fairly to function instances inside the same host. This
distribution of finite resources follows a "help the most needy" policy, while an
estimation for the requirements of each invocation is being given by a PID
controller. For each sequence, metrics are collected by a separate serverless
function who also acts as a timer by computing the current slack before each
invocation. As far as efficiency characterization is concerned, various test cases
were performed with different pipelines and sequence configurations. A compar-
ison is been conducted with the default scheme of sequences that OpenWhisk
provides, alongside the actively controlled Sequence Clock’s pipelines.

47

Chapter 3

Background

The purpose of this chapter is the familiarization of the reader with tech-
nologies, tools and frameworks that are been studied and used extensively in
serverless computing and the cloud world in general. Firstly, we introduce Ku-
bernetes along with its features, as one of the most common orchestration en-
gines. Then, concerning Serverless Frameworks, we focus on Openwhisk, while
we also mention OpenFaas. Lastly, a brief presentation of the programming
language named Go is included.

3.1 Cloud, Virtualization and Containerization

Understanding the importance of the following tools and their capabilities,
can be achieved by looking various deployment options over the years. Tra-
ditionally, organizations ran applications on physical servers, where there is
no way for defining resource boundaries. Thus, resource allocation issues had
emerged and the proposed solution of running everything in an isolated and
unique machine was not viable for obvious reasons. The introduction of virtu-
alisation allowed the deployment of multiple virtual machines (VMs) on single
physical servers’ CPUs, while offering a level of security as the information of
one application cannot be freely accessed by another application. Of course,
drawbacks of this approach do exist with first and foremost performance. Vir-
tualizing the entire OS is slow and that is why containerization, a new concept
emerged. Just like VMs, containers utilize their own filesystem, share of CPU,
memory, process space etc., but they are considered ligthweight and portable
across platforms. [4, 9]

49

Traditional Deployment Virtualized Deployment Container Deployment

Figure 3.1: The evolution of Virtualisation and Containerisation *

Most serverless frameworks utilize containerization technology for isolating
functions of the same or different tenants. This raises the problem of how au-
tomation of containerized workloads, load balancing, provisioning, and scaling
are being handled. So, container orchestration engines come in place, while in
fact some serverless frameworks utilize one. In general, container orchestration
tools are mainly responsible for performing the following tasks [32]:

o Allocating resources among different containers.

Scaling containers up or down based on workloads.

Routing network traffic and balancing loads.

Assigning services and applications to specific containers.

Deployment and Provisioning.

As far as Apache Openwhisk’s approach is concerned, it offers compatability
with state-of-the-art orchestrators like Kubernetes, OpenShift and even Docker
Compose. However, we are going to focus mainly on Kubernetes, as SC is built
on top of it.

3.2 Kubernetes: A Container Orchestration Platform

Kubernetes, also known as K8s, is an open-source plat-
form for managing containerized workloads and services,
that facilitates both declarative configuration and au-
tomation [9]. It was developed by Google in 2008 and
handed over to the Cloud Native Computing Foundation

(CNCF) in 2014 [32]. Its name originates from Greek (yu- Figure 3.2: K8s Logo *
Bepvrtne), meaning helmsman or pilot.

Thttps://kubernetes.io/docs/concepts/overview /what-is-kubernetes/
Zhttps://github.com /kubernetes/kubernetes/blob/master/logo/logo.sve

20

K8s, in general, provides a framework for running distributed systems re-
siliently. Among others, this means that service discovery and load balancing is
controlled with ease. In addition, storage orchestration is possible by mounting
storage systems of various types, while self healing and automatic rollouts/roll-
backs can be handled via simple configuration files or command line interfaces.
Resource allocation or automated bin packing sets thresholds on the resources,
e.g., amount of CPU and RAM, that containers have access to, making the
best use of a system’s resources. Last but not least, storage and management
of sensitive information like passwords, OAuth tokens, and SSH keys is possible
without the fear of exposure in the code stack, through the usage of secrets [9]

3.2.1 Kubernetes Architecture

A Kubernetes cluster consists of a non empty set of worker machines, called
nodes, that are used for running containerized applications. The worker node(s)
host the necessary components of the application workload. On the other hand,
a set of control plane’s components manages the worker nodes inside the cluster,
making global decisions as well as detecting and responding to cluster events.
For simplicity reasons, the latter components are placed on a single machine,

called main or master®, where placement of user oriented elements is discour-
aged. [4, 11]

API server
Cloud

provider Cloud controller

API manager

B - (optional)
0
|

: Controller

- manager

sted
Node Node (persistence store) =

kubelet

klme\sl kube-proxy
@ @ Scheduler
J-proxy, k-proxy,

e s s S s S S S S S — — Control plane ——————-

Node

Figure 3.3: Components inside a Kubernetes cluster *

3The term was used in the past bibliography extensively, making its complete elimination difficult. As we
acknowledge its political incorrectness, we will try to minimize its appearances in this text. We apologize
beforehand for this situation.

4https:/ /kubernetes.io/docs/concepts/overview /components/

51

Control Plane Components

This category of distinct K8s’ units includes the following:

kube-apiserver: The unit that exposes components inside the cluster to
the outside world, through Kubernetes API. It is designed to be scaled
horizontally, with traffic being balanced between its instances.

eted: Consistent and highly-available key value store used as Kubernetes’
backing store [33].

kube-scheduler: Responsible for watching newly created Pods with no as-
signed node, and selecting the proper node for placement. Key factors that
result to this decision include: individual and collective resource require-
ments, hardware /software /policy constraints, affinity and anti-affinity spec-
ifications, data locality, inter-workload interference, and deadlines.

kube-control-manager: The component /s that run control processes. Var-
ious types of controllers fall into this category, like node controllers, end-
point controllers, and service account & token controllers.

cloud-control-manager: It embeds cloud-specific control logic, linking the
local cluster into a cloud provider’s API. It also separates out the compo-
nents that interact with that cloud platform from components that only
interact with the local cluster. If developers run Kubernetes on their own
premises (e.g. inside a learning environment of a single PC), this unit is
not present.

Worker Nodes Components

This category includes the following:

kubelet. An agent that runs on each node in the cluster. It makes sure that
containers are running in a Pod. The kubelet takes a set of specs that are
provided through various mechanisms and ensures that these containers
are running and healthy. The kubelet doesn’t manage containers which
were not created by Kubernetes.

kube-proxy. A network proxy for each node, implementing part of the Ku-
bernetes Service concept. It maintains network rules on nodes, allowing
network communication between internal components of internal compo-
nents with external elements.

container runtime. The mechanism that runs containers inside a single
node. Kubernetes supports several container runtimes like Docker, con-

52

tainerd, CRI-O, and any implementation of the Kubernetes CRI (Con-
tainer Runtime Interface).

3.2.2 Kubernetes Objects

Kubernetes objects or resources (not to be confused with node resources) are
persistent entities in the Kubernetes system. Kubernetes uses these entities in
order to represent the state of the cluster and once they are created the entire
system will constantly work to ensure their existence.

Creation, modification or deletion of objects is being held via the Kubernetes
API. All the necessary information for such operation can be described into a
yaml file, which then can be passed to various tools, like kubectl (kubernetes
cli), or used by Helm Charts (more on that later). An example of this can be
seen bellow.

apiVersion: apps/vl
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 2 # tells deployment to run 2 pods matching the template
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80

Almost every Kubernetes object includes two nested object fields that govern
the object’s configuration and that is spec and status. Spec must be set during
the creation of the object, providing a description of the resource’s character-
istics, i.e. its desired state. On the contrary, status describes the current state
of the object, supplied and updated by the Kubernetes system and its compo-
nents. The Kubernetes control plane continually and actively manages every
object’s actual state to match the desired state [12]. Unfortunately, during this
thesis we will not get in more depth concerning yaml format. Nevertheless, we
encourage potentially interested readers to read the documentation for further
understanding, if this is desirable.

It’s almost impossible to mention and explain every single object type of
Kubernetes, let alone user defined resources, but in the section that follows,
we will try to present a series of important object types, which also played a
significant role in SC’s implementation.

93

Namespaces

Namespaces provide a mechanism for isolating groups of resources within
a single cluster [13]. An object, depending on its type, might be either cou-
pled with a specific namespace (services, deployments, etc.) or considered a
cluster-wide object, which exists independent from namespaces’ presence (e.g.
persistent volumes). Same namespaced-objects ought to have different names,
where this obligation isn’t be cared accross different namespaces. We should
point out that namespaces cannot be nested inside one another and each re-
source must only be in one namespace.

Pods

Pods are the smallest deployable units of computing that can be created and
managed in Kubernetes [14]. To put it simply, a pod is a group of one or more
containers, with shared storage and network resources, and a specification for
how to run these containers. Details about how to be configured is kept inside
the etcd component [4].

Usually, explicit pod definition and creation is not common for developers,
as a workload resource might be used for this purpose, such as Deamon Sets or
Deployments. These offer a layer of abstraction for dealing with the logistics
of how pods are spun up, rolled out, and spun down [4]. Further more, pods
can be used by two main ways. These include either the one-container-per-pod
model, where the pod acts as a simple wrapper for the internal container, or the
encapsulation of an application composed of multiple co-located tightly coupled
containers. The aforementioned model should not be confiscated with a method
called replication. This term refers to the procedure of scaling an application
horizontally, by deploying multiple pods. [14]

Figure 3.4: Node-Pod-Container abstraction levels °

Shttps://kubernetes.io/docs/tutorials /kubernetes-basics/explore/explore-intro/

54

Deployments

As it was described above, a Deployment can be characterized as workload
resources. This means that a desired state is been described in a deployment and
the deployment controller will try to configure the actual state to the desired
one [15]. Among others, it is used to scale an app up or down, update an app to
a new version, or roll back an app to a known-good version. In case of failures,
deployments will try to reschedule faulty pods and always ensure the user that
the required number of pods is present.

DeamonSets

A DaemonSet ensures that all nodes or a specified subset of them run a copy
of a certain pod [16]. Addition or deletion of pods of interest is being handled
dynamically with the addition or removal of cluster nodes. Possible cases, where
this configuration is desirable, include:

o A cluster storage daemon on every node.
e A logs collection daemon on every node.

e A node monitoring daemon on every node.

StatefulSets

StatefulSets are yet another workload resource and used for provisioning
statefull applications [34]. Unlike a Deployment, a StatefulSet maintains a
persistent identifier for each of its pods, while providing a guarantee about the
ordering and uniqueness of those. Thus, these pods are not equivalent nor
interchangeable. In case of failure, these identifiers are used for matching ex-
isting Volumes (a term that we will analyze later) to new pods, that would be
rescheduled and replace the old ones.

Services

Until now, we have discussed kubernetes resources relative to application
deployment. It is obvious, that most of them will require communication with
the external world or with others applications inside the cluster. The reason why
this raises some basic concerns is the fact that pods are not permanent resources
(thus the need for workload resources), while remain time independent. This
means if a pod exists with a specific IP address at a certain point in time, there
is no guaranty that this will continue to be valid in the future. This is where
services fit into place. A Service is an abstraction which defines a logical set of
Pods and a policy by which to access them [17]. In other words, it exposes an

95

application running on a set of pods as a network service. Of course, there are
various types of services, with actually most of them to be characterized by a
superset-subset relation|[35, 17]:

1. ClusterIP: The simplest option which exposes the service on a cluster-
internal IP.

2. NodePort: Just like ClusterlP, it supplies the service with an internal IP,
but in addition exposes the hole service on a static port of each node. In
this way, the service is automatically reachable from within and outside
the cluster, provided apriori knowledge of a node’s external IP.

3. LoadBalancer: If the usage of an external cloud provider’s load balancer
is possible, then this service type is the way to go. Just like NodePort and
ClusterIP, a LoadBalancer typed service is also a NodePort type service,
meaning that it remains reachable with all the previously mentioned ways.

4. EzternalName: It’s the only category that may be considered separate
from the others. In short, it creates an internal service with an endpoint
pointing to a DNS name.

Service

Deployment

Figure 3.5: Kubernetes Resources Abstraction®

Persistent Volumes

On-disks files are ephemeral in containers just like containers themselves,
which might introduce some serious problems. For instance, failure of a con-

Shttps://kubernetes.io/docs/concepts/overview /components/

56

tainer implies loss of any files that were in it. In addition, with the existing
concepts, that we have already presented, file sharing between containers is
just not feasible (ignoring of course transfer over the network). The suggested
solution to these are, of course, Volumes. At its core, a volume is a directory,
possibly with some data in it, which is accessible to the containers in a pod
[18]. A specific category of those are Persistent Volumes.

In contrast with all the above types of Kubernetes objects, Persistent Vol-
umes are not namespace specific resources and can be referenced and used by
any namespace object. A PersistentVolume (PV) is a piece of storage in the
cluster that has been provisioned by an administrator or dynamically provi-
sioned using Storage Classes’. PVs are volume plugins like Volumes, but have
a lifecycle independent of any individual pod that uses the PV [19].

Persistent Volume Claims

As pods consumes node computing resources, a way for consuming persistent
volumes and volumes in general is needed. Persistent Volumes Claims or PVCs
is exactly that, a request for storage by a user. Claims can request specific
size and access modes, (e.g., ReadOnlyMany) [19]. At this point we should
clarify that persistent volume claims in contrast with persistent volumes are
namespace specific.

Developer Cluster admin
Responsibilites Responsibilities

4 N e)

/ ©) o o ®
\)L)

Figure 3.6: Abstract Representation of a StatefulSet, PVs & PVCs 8

ConfigMaps

A ConfigMap is an API object used to store non-confidential data in key-value
pairs [37]. This kind of information can be consumed by pods as environmental
variables, command-line arguments, or as configuration files in a volume. It

"A Storage Class is another K8s resource, that provides a way for administrators to describe the "classes" of
storage they offer. Different classes might map to quality-of-service levels, or to backup policies, or to arbitrary
policies determined by the cluster administrators [36].

8https://kylezs.blog/persistent-storage-kubernetes/

o7

must be noted, that they are not designed to store large chunks of data (actually
there’s a 1 MiB limit) and for such cases a type of Volume must be preferred.

Secrets

A Secret is an object that contains a small amount of sensitive data such
as a password, a token, or a key [10]. As confidential data must not be ex-
posed in application workflows, secrets are created independent of pods and
deployments. Thus, during operations of creating, viewing, and editing pods
and other resources of the cluster, secrets remain safe from potential intrud-
ers. Usage of secrets is similar with ConfigMaps but their purpose is storing
sensitive information.

3.2.3 Helm & Helm Charts

As every resource is described by a yaml file, it should

be clear by now that in cases of large applications and w
systems, it’s not wise to explicitly load every single com-

ponent of this application into the K8s cluster separately. HELM
In some cases, also, the developer might want to provide a M

specific parameter of the system during deployment time
(e.g. an API key to be stored using a K8s secret). The
need for addressing these issues gave birth to another con-
cept, the concept of a package manager just for K8s resources.

Figure 3.7: Helm Logo
9

In our case, Helm [38] is the package manager of Kubernetes and its pack-
aging format is called Helm Cart. A chart is a collection of (mainly yaml) files
that describe a related set of Kubernetes resources. This collection is stored
using a particular directory tree and can be versioned, deployed, and published
in specific archives. An example of this structure can be seen in the next figure.

= test
{} Chart.yaml
=charts
=templates
[_helpers.tpl
{} deployment.yaml
{} hpa.yaml
{} ingress.yaml

Bj NOTES. txt

{} service.yaml

{} serviceaccount.yaml

B=tests

L— {} test-connection.yaml
{} values.yaml

Figure 3.8: Helm Chart Directory Structure

9https://cncf-branding.netlify.app/projects/helm/

28

3.3 Apache OpenWhisk

In previous sections we explored Kubernetes, as an container orchestration
engine. However, as the main goal of this thesis is resource management in
serverless architectures it would be plausible to present a serverless framework.
The one that we will focus on is called OpenWhisk [20]. It was initially devel-
oped by IBM, but now it is considered an Apache Incubator Project [39] and it
is been administrated by the Apache Software Foundation (ASF).

Y

Figure 3.9: OpenWhisk Logo!"

3.3.1 General Information

Apache OpenWhisk is an open source, distributed serverless platform that
executes functions in response to events at any scale [20]. Under the hood,
it is using Docker containers for its functions, thus auto-scaling is easy and
fast. As far as deployments options are concerned, it offers compatibility with
many container frameworks such as Kubernetes, OpenShift, and Docker Com-
pose. However, the community endorses deployment on Kubernetes using Helm
charts (can be found in [21]), since it provides many easy and convenient im-
plementations for both developers and operators alike [20].

Functions, which in OpenWhisk’s case are called actions, can be developed
in any supported programming language and can be dynamically scheduled
and run in response to associated events (called triggers) from external sources
(called feeds) or from HTTP requests. The growing list of those includes Go,
Java, NodeJS, .NET, PHP, Python, Ruby, Rust, Scala and Swift. By the time
of writing this thesis, an experimental runtime for Deno is in-development.
Most importantly, even if the targeted runtime is not supported out of the
box, developers have the option to create, customize, and bundle their own
executables inside zip archives, which run on the Docker runtime. Last but
not least, actions can be declaratively chained together to form higher-level
programming constructs like sequences, whose performance will be targeted for
regulation by SC.

Ohttps://github.com/apache/openwhisk/tree/master /docs/images

29

3.3.2 OpenWhisk Architecture

Being an open-source project, OpenWhisk utilizes known projects like NG-
iNX, Kafka, Docker, and CouchDB. All of these components come together to
form a “serverless event-based programming service” [23].

=
—
CouchDB

Sl

Figure 3.10: OpenWhisk Architecture

NGiNX

The entry point of an invocation is the NGiNX component. In general,
NGiNX is an open source software for web serving, reverse proxying, caching,
load balancing, media streaming, and other [22]. It was started out as a web
server designed for maximum performance and stability, but also functions as
a proxy server for email, a reverse proxy and load balancer for HI'TP, TCP,
and UDP servers. In the case of Openwhisk, it is used for SSL termination and
forwarding appropriate HT'TP calls to the next component, the Contoller.

Controller

It is a Scala-based implementation of the actual REST API. Thus, it acts
as the governor and the interface for every user operation, including CRUD re-
quests!! for OpenWhisk entities and invocation of actions. Based on the HTTP
method of received requests, it clarifies the type of operation. The controller
communicates with the component of CouchDB, for authentication/authoriza-
tion purposes and for fetching the necessary records of the requested resource.

HCreate, Read, Update, Delete operations

60

CouchDB

CouchDB is a document-oriented database (NoSQL paradigm), in which each
document field stores a key-value map. Fields can be either a simple key /value
pairs, lists, or maps. A document-level unique identifier, as well as a revision
number (for each change that is made and saved to the database) are been
given to each document [40, 41].

Concerning OpenWhisk, CouchDB is used for registering information regard-
ing credentials, metadata, namespaces as well as the definitions of actions, trig-
gers'? and rules'®. Actions’ records mainly comprise function execution code,
default input parameters and resource restrictions imposed on the action itself
during execution, such as the memory.

Load Balancer

Although Load Balancer is not a separate component, rather than a sub-
part of the aforementioned Controller, it is considered a crucial element of
OpenWhisk. Its liability is maintaining a global view of the executors, called
Invokers, available in the system by checking their health status continuously.
In case of an action invocation, the Load Balancer, knowing which Invokers are
available, selects the most appropriate of them to invoke the action requested

23].

Kafka

Apache Kafka is an open-source distributed event streaming platform used
for high-performance data pipelines, streaming analytics, data integration, and
mission-critical applications [42]. In other words, it is a framework for stor-
ing, reading, and analysing streaming data. Kafka was originally created at
LinkedIn, for analysing the connections between millions of professional users.
It was given open source status and passed to the Apache Foundation in 2011
[43].

As a messaging system, it is used for buffering and persisting communications
messages between the controller and the invoker/s. This means that it lifts the
burden of buffering in memory, risking an OutOfMemoryFException, of both the
Controller and the Invoker, while also making sure that messages are not lost
in case the system crashes.

2Triggers are named channels for classes or kinds of events sent from Event Sources.
13Rules are used to associate one trigger with one action. After this kind of association is created, each time
a trigger event is fired, the action is invoked.

61

Invokers

They are are been characterized as the heart of OpenWhisk. Their main goal
is, of course, invoking actions in an isolated and safe environment using con-
tainers (mostly Docker containers). In order to do that, a container is spawned
per function invocation, in which the action code gets injected. There, it gets
executed using the parameters passed to it and after the result is obtained and
a short period of time has passed, the container gets destroyed (approximately
10 minutes).

At this point, a specific configuration choice for the invoker/s must be men-
tioned and that is Invoker Container Factory. In more depth, there are two
ways of deploying invoker components on Kubernetes [24]:

o Docker Container Factory: This implementation matches the architecture
used by the non-Kubernetes deployments of OpenWhisk. When developers
opt for it, invokers run on every cluster node and communicate directly
with the local docker deamon, to whom they send requests for creating
and managing user function containers. The primary advantages of this
configuration are lower latency on container management operations and
robustness of the code paths being used. Unfortunately, it does not lever-
ages the simplicity in resource management and security offered by Ku-

bernetes. Also, it can be used only if the underlying container engine is
Docker.

o Kubernetes Container Factory: This implementation is more of a Kubernetes-
native design. In this case, each invoker relies on Kubernetes to create,
schedule, and manage the pods that contain the user function containers
(a single container per pod). Obviously, that implies a higher latency is
introduced in the system, which with no additional configurations may re-
sult to poor performance. On the other hand, it surely takes advantage of
Kubernetes capabilities.

During SC’s development, the latter option was preferred and studied ex-
tensively, whereas it provided us with higher control over the system.

3.3.3 Action Invocation’s Steps

In the next lines, we will attempt to trace an action invocation and see
how the various components behave in this simple scenario. Starting off, an
invocation is the core concept of a serverless-engine functionality. That includes
execution of code fed by the user into the system and return of execution results.

It may occur either from associated events, external sources, or HI'TP requests.
As OpenWhisk API is completely HT'TP based and follows a RESTful design

62

[

(cacheable, stateless, etc.), an invocation is essentially an HTTP request against
the OpenWhisk system, with roughly the below structure.

POST /api/vl/namespaces/$userNamespace/actions/myAction
Host: $openwhiskEndpoint

The variable $userNamespace is referred to that namespace (at least one),
that the invoking user has access to. The concept of OpenWhisk’s namespaces
is similar to the one of Kubernetes, since its purpose is the same: user isolation
between actions. However, these two terms are not equivalent and must not be
confused. From this point on, references to both will occur and the distinction
will be clear to the reader by the context.

So, the much discussed operation starts with a POST request to the API
and the procedure contains the next steps:

1. After the HTTP request is handled from the NGiNX component, it is
handed over to the controller.

2. The controller communicates with CouchDB (the subjects database to be
precise) for authenticating the user and checking if he is authorized for
such operation as the specified action invocation.

3. If the previous steps succeed, the controller queries from the whisks database
of CouchDB, the action record and the information that comes with it.

4. The Load Balancer chooses the appropriate Invoker and a message is send
to the selected component via Kafka.

5. The selected Invoker fetches action’s code for CouchDB. Then, it either
creates a Docker container immediately (when Docker Container Factory
is enabled) or will request from Kubernetes the creation of a new pod
(when Kubernetes Container Factory is enabled).

6. Input parameters are provided inside the function and the execution initi-
ates.

7. After the function is executed successfully, the result is obtained by the
Invoker.

8. The Invoker, then, stores the result into the activations database of CouchDB,
alongside the log data that were fetched from the container. Also, it stores
the starting and ending time of the invocation of the action in the same
record.

Step 5 will occur in case that there is no available container/pod for this
function. We will call this situation a cold start. In case there is already an
available one, no new creation is needed as the function can be handled by that
containerized runtime. This situation is characterized as a warm start.

63

3.3.4 Actions’ Runtime

In this section, we will try to further explain the procedure that we call pre-
viously as "function execution’. Actions are stateless functions (code snippets)
that run on the OpenWhisk platform. Each function receives a dictionary-like
input parameter and returns another dictionary. In case of python, for instance,
an actual dictionary is used for that purpose and in case of a Go function a
map is used instead. An example of a python action is the following:

def main(args):

name = args.get("name", "stranger")
greeting = "Hello " + name + "!"
print (greeting)

return {"greeting": greeting}

In order for the specified container to run a function like the above, Open-
Whisk uses a small HT'TP server inside each container to provide two endpoints,
/init and /run, while exposing them at port 8080. The first one is used for re-
trieving action code and storing it as a runable entity into the /action directory.
Compiled type runtimes have also the need to compile the given code on the fly.
The previous stage is called initialization. After initialization, /run endpoint is

used for passing the necessary parameters into the runtime and finally run the
handler [44].

Openwhisk uses Alpine Linux as the base image and it has created new
Docker images for each supported language [45]. In each runtime, it has in-
stalled some basic dependencies and libraries. If external dependencies’ usage
is desirable, they must be placed inside the runtime. The process depends on
language option, for example in Python and Go zip archives are an option,
with virtual environments and vendor folders respectively [46, 47]. In case one
provides their own image, it has to expose the endpoints /init and /run at port
8080, as it was described [45].

3.3.5 Special Topics

Pre Warm Containers

Cold and Warm starts have already been defined. However, there is also
another type called pre warm and it refers to the situation where an available
container is already deployed inside the cluster, but the initialization stage
hasn’t yet started [44]. This scenario is feasible with NodeJS containers, which
remain deployed even after function termination. These containers/pods are
not coupled with a specified function, but after an invocation the hole process
of initialization must be restarted.

64

Concurrency

By default, each deployed pod/container is able to handle one request at a
time. If an invocation of the same action is been triggered before the termina-
tion of the running one, OpenWhisk will spawn a new pod/container resulting a
cold start. There is an option for increasing concurrency capabilities of a func-
tion, which behaviour will be discussed extensively in the next chapters as it
has much to offer from a research perspective. In a nutshell, from our personal
expirementation for functions based on Python and Go, increased concurrency
will not result to parallel execution of invocations, but to a queuing effect.

65

3.4 OpenFaas

OpenFaas [48] is another popular serverless framework, which was studied
during this thesis. Although, it was not used as the targeted environment for
Sequence Clock, we believed that a brief overview is required. OpenFaaS is
an open source serverless function engine where users can publish, run, and
manage functions on Kubernetes clusters. It is worth mentioning OpenFaas
Pro, a commercial distribution of the project for companies and enterprises
with some additional features [49].

2| OPENFAAS

Figure 3.11: OpenFaas Logo'4

The specified framework, when it’s deployed inside a Kubernetes cluster,
is managing the lifecycle of the containers through a custom Kubernetes con-
troller, called faas-netes [50]. Other key differences with OpenWhisk are related
to deployment and autoscaling methods. First of all, it does not dynamically
pack and execute code at runtime, which means that developers need to pre-
define and pre-built docker containers with their funtion inside. In addition,
two types of autoscaling mechanisms can be leveraged [51]. One is based on the
simple metric of requests per second, while the other is scaling by CPU and/or
memory utilization (only when OpenFaas is deployed using Kubernetes). Fur-
thermore, scaling-up from zero replicas is enabled by default, which means that
for every deployed function, there’s always a running container inside the clus-
ter. This leads to cold start elimination, but raises the problem of binding idle
resources.

For creating a function, one must use existing templates with various sup-
porting languages like Go, Java, Python, JavaScript, PHP, Ruby and C#. How-
ever, a template store provides many more. An example of a Go serverless
function is presented below.

package function

import (
n fmt n
)

// Handle a serverless request
func Handle(req [lbyte) string {

return fmt.Sprintf ("Hello, Go. You said: %s", string(req))
}

“https://github.com/openfaas/faas

66

3.5 The Go Programming Language

Go [52] is a statically typed, compiled language aiming high performance
server side applications. It was started back in 2007 by Robert Griesemar, Rob
Pike, and Ken Thompson and was published in 2012 as an OpenSource project.
Its design principles are simplicity and efficiency, but is mostly recognized for
the extremely fast compile times (compilation result is a single binary).

Import and export of code between projects is handled with ease, as Go
offers its own packaging and moduling system. Linking of published packages
from GitHub is also available. Moreover, as it was developed in a world of
multicore processors, parallelism and concurrency are supported out of the box
with goroutines, which are go functions that can run at the same time by
utilising multiple threads on a CPU.

| package main

. import "fmer

| func main() {

6 fmt.Println("Hello fellow Gophers!")
7 }

Notable projects that were implemented or still are maintained using Go are
Docker, Kubernetes itself, Helm, and of course Sequence Clock.

Figure 3.12: Go’s mascot, the gopher

!4Kenneth Lane Thompson (born February 4, 1943) is an American pioneer of computer science. Thompson
worked at Bell Labs for most of his career where he designed and implemented the original Unix operating
system. He also invented the B programming language, the direct predecessor to the C programming language.

67

Chapter 4

Motivational Analysis & Observations

In this chapter, we describe the computational infrastructure that was utilized
during SC development, alongside a detailed presentation of the benchmarks
suites, which were used. The latter include a third-party framework and a suite
of benchmarks that were developed alongside Sequence Clock. Later in the
same chapter, we explore various reasons that may lead a sequence’s invocation
into time latency violations.

4.1 Experimental Infrastructure

4.1.1 System setup

For the rest of the thesis, we consider a cluster of four virtual machines,
deployed on a set of physical servers. In each one of them Ubuntu 20.04 LTS
with 5.4 version of the Linux Kernel is installed as the operating system. Further
specifications are illustrated in table 4.1.

| Role | OpenWhisk Role Cores RAM Swap
0 | master none 2 7.77 GiB off
1 | worker invoker 4 15.6 GiB off
2 | worker invoker 4 15.6 GiB off
3 | worker invoker 2 15.6 GiB off

Table 4.1: Cluster Specifications.

The first of these four nodes is used as the master node component (needed
by Kubernetes), while the others are marked as workers. At the same time, each
worker node is labeled with openwhisk — role = invoker label, which means
that actions’ containers are placed only on those machines. All the workers
have the same amount of memory equal to 15.6 GiB, while we opted for some
diversity on CPU core count as the controlling parameter was based on it. The
high ratio between system memory and CPU cores allowed us to deploy &

69

invoke several function containers inside the cluster, without worrying about
RAM shortage and the cold starts that this would have resulted into.

Framework | Version
Docker 19.03.8
Kubernetes | v1.20.5
OpenWhisk v1.0.0
Helm v3.5.3

Table 4.2: Frameworks’ Versions.

As far as OpenWhisk deployment is concerned, the yaml file with the con-
figuration options is placed below. In more detail, KubernetesContainerFactory
was selected (lines 23-26) as this provides more control over functions’ con-
tainers over the DockerContainerFactory option. The available user memory
was set at ~34.8 GiB (line 9), which allowed 4 GiB of free memory in each
node!. Various limits (individual action concurrency, number of invocations
per minute, and number of concurrent invocations) were increased (lines 10-
15), while at the same time persistence was enabled (lines 16-19). The latter
has been made possible by deploying a separate NFS server inside the Ku-
bernetes’ cluster (specifically inside master node), which manages automatic
Persistent Volumes’ creation. This configuration choice was vital as it permit-
ted data preservation during node failures/restarts without a complete loss of
application state or the need for the OpenWhisk Helm Chart re-installation.

controller:
replicaCount: 2

3 whisk:

ingress:
type: NodePort
apiHostName: 192.168.1.243
apiHostPort: 31001
containerPool:
userMemory: "35635m"
limits:
actionsInvokesConcurrent: 999
actionsInvokesPerminute: 999
actions:
concurrency:
max: 999999

; k8s:

persistence:
hasDefaultStorageClass: false
explicitStorageClass: "nfs-client"
nginx:
httpsNodePort: 31001
invoker:
containerFactory:
impl: "kubernetes"
kubernetes:
replicaCount: 3

Ubuntu Desktop 20.04 LTS recommends 4 GiB of system memory for seemingless experience, thus this
threshold was used as a reference point.

70

4.1.2 Benchmarks Suites

Serverless Benchmarks Suite - SeBS

SeBS [25, 26] is a standardized platform for continuous evaluation, analysis,
and comparison of FaaS performance, reliability, and cost-effectiveness. It pro-
vides support for automatic build, deployment, and invocation of benchmarks
on AWS Lambda, Azure Functions, Google Cloud Functions, and a custom,
Docker-based local evaluation platform.

It consists of six categories of benchmarks, with each one having separate
serverless functions written in Python 3.6. These are:

o MicroBenchmarks: (sleep function)

o WebApps: (uploader, dynamic-html functions)

o Multimedia Apps:(thumbnailer, video-processing functions)

o Utilities: (compression function)

o Inference: (image-recognition function - not used in our experiments)

o Scientific: (graph-bfs, graph-mst, graph-pagerank, and dna-visualization
functions)

Characterization is based on resource consumption footprint and applications’
requirements (cpu utilization, memory, 1/0, code size etc.).

As it was developed targeting known platforms and not for OpenWhisk usage
out of the box, a lot of effort was put into converting them into deployable
components. The first and more crucial problem that we encountered was about
the usage of external libraries outside the default OpenWhisk’s runtime for
Python. More specifically, OpenWhisk uses pre-built images (with Alpine Linux
as the final base image) that use version 3.6, 3.7 or 3.9 of Python with some
common libraries, already embedded into them. In case one needs additional
libraries, there are three specific ways of deploying such actions:

« Create a zip archive with action’s code and additional packages’ code in
it, following a certain directory structure. Finally, provide this zip at the
time of action’s deployment.

o Create a virtual environment, where the additional packages will be in-
stalled. To ensure compatibility with the OpenWhisk container, package
installations inside the virtualenv must be done in the target environment,
thus the Docker image of OpenWhisk Python runtime must be used. Then
this zip archive can be offered during action’s deployment [46].

71

e Build an image from scratch by using the existing runtime of Python
openwhisk/python3action as the base image. During build process, the
developer has full control of what additional packages to install (Python
modules or Alpine Linux Distribution’s packages), what data files to store
inside it etc. The final image can be finally deployed inside OpenWhisk as
a blackbox [45].

The latter opens the door for third party Docker Images used for OpenWhisk
actions. The caveat to this, is the fact that if none of the given runtimes is used
as the base image, the endpoints (described in 3.3.4) that each action exposes
must be implemented manually. The option that allowed us to successfully
deploy the benchmarks was the third one with some of the reasons be the
following:

- Some libraries required external package installation with the default pack-
age manager for Alpine Linux, apk.

- Some functions required additional configuration steps, like manual sym-
bolic link creation for libraries [53].

- Some functions required some additional data as input in their runtime.

- Others needed compilation of a library from source code, as it was available
in this specific distribution.

Further more, most of the non trivial benchmarks use external cold storage.
For this reason, a MinlO service was deployed inside the cluster with a MinIO
tenant placed stratigically in the master node, offering four Persistent Volumes
of 5 GiB each for bucket creation. Last but not least, the functionality of each
action, that was used during this thesis is presented below.

Uploader Function This function is a network intensive one as it downloads
a file from a specific url and uploads it into the MinIO service.

Dynamic-HTML Function This function uses an HTML template stored in-
side the function’s Docker runtime and according to input type creates a new
one with dynamic size (the template contains an ul tag with a dynamic number
of li elements). We note that we removed the actual HTML template from

the result of this function, as it was violating the maximum output size that
OpenWhisk allows.

Compression Function As its name implies, it downloads an entire directory
of files from a bucket, compresses it into zip archive and re-uploads it in a
different bucket.

72

Graph-BFS Function This function uses the igraph python module and gen-
erates a random graph based on the Barabdsi—Albert model® [54] with a vari-
able size of vertices according to user’s input. The function, then, performs
a breadth-first search (BFS) on this graph and returns the computation time,
alongside the size of the graph. We note that initially the function return value
also included the result from the bfs() method, with the vertex IDs visited (in
order), the start indices of the layers in the vertex list, and the parent of every
vertex in the BFS. This information was later removed, due to the fact that
large values of input size were producing even larger dictionaries as output,
which violated OpenWhisk’s maximum output size.

Graph-MST Function Similarly, to the previous function, graph-mst gener-
ates a random graph (based on the Barabasi-Albert model) with a variable
size of vertices according to user’s input. For this graph, the function finds the
minimum spanning tree (mst) by using Prim’s algorithm.

Graph-PageRank Function This function performs the same operations as
the two latter for creating a random graph. On this data structure, it calculates
the Google PageRank® [55, 56] values of each vertex, i.e., a numerical weighting
with the purpose of "measuring’ its relative importance within the graph.

DNA-Visualization Function This functions utilizes the squiggle Python mod-
ule [57], for visualizing a DNA sequence. Specifically, it downloads a file in the
FASTA format*, which stores the DNA sequence of the bacilus subtilis bac-
terium and then using this library it transforms it into a series of coordinates
for 2D visualization. Unfortunately, for the processing of the entire file, that
SeBS provided, the default 256 MiB of system memory that OpenWhisk pro-
vides was not enough. As the increase of the system’s memory limit for only one
function’s container would have resulted into inconsistencies and asymmetry in
our experiments, we used only the first 10000 lines of the related file as input.

Video-Processing Function This function calls the ffmpeg command for edit-
ing a video, downloaded again from the MinlO server. Available operations are

2A graph generated following th Barabasi-Albert model is characterized as a scale-free network, which means
that the probability P(k) that a vertex in the network interacts with k other vertices decays as a power law of
P(k) ~ k=7, with v being typically in the range 2 < v < 3.

3PageRank algorithm was developed by Larry Page and Sergey Brin as the original Google Search algorithm.
In April of 1998, Page and Brin published a research paper on the topic titled "The Anatomy of a Large-Scale
Hypertextual Web Search Engine’.

4In bioinformatics and biochemistry, the FASTA format is a text-based format for representing either nu-
cleotide sequences or amino acid (protein) sequences, in which nucleotides or amino acids are represented using
single-letter codes.

73

watermark, gif or mp3 conversion, while we opted for the first one during our
experiments. The final result is then re-uploaded in a different bucket.

Thumbnailer Function This action downloads a stream of data of an image,
stored inside a bucket of the MinlO server, resizes it and re-uploads it as stream
in a different bucket of the same server.

Sleep Function This function is a non trivial one, as its only purpose is to
sleep for a certain amount of time, provided by user’s input, and terminate
afterwards. The largest available value that it was used during the experiments
was one thousand seconds.

Each function was assigned a single number digit as an id, which was later
used in the names of the created pipelines. For example, the pipeline p021 con-
sists of the functions uploader,compression, dynamic-html with that particular
order. The related table with the id of each function is placed in 4.3.

S

Function
uploader
dynamic-html
compression
graph-pagerank
graph-mst
graph-bfs
dnavisualization
videoprocessing
thumbnailer
sleep

© 00 1O Ul Wi~ O

Table 4.3: SeBS Functions IDs

Generic CPU Intensive Benchmarks

In order for the impact of CPU saturation to appear on the conducted ex-
periments, the creation of CPU intensive benchmarks was crucial. In addition,
these benchmarks had to require the minimum amount of all the other compu-
tational resources, i.e., system memory, 1/O, cold storage usage, and network.
For this purpose, six generic Python functions implemented from scratch with
a structure like the following:

1 def main(args):
2 iterations = args.get("iterations" ,1000000)
3 for i in range (4):
4 foo = random.randrange (10,100)
for _ in range(iterations):

i cooooooooocs Computatienal paris —=coossssoss=s
7 # The actual operations don’t matter.

foo += pow(foo + 42,2)/(pow(foo + 42,2) + foo)

74

N

1

2
3
4

return {"result":"Computation ended"}

The function consists of two nested for loops with the outer one having a
constant iteration number of four and the inner part computing mathematical
expressions over the same variable. The actual expressiom and result don’t
matter, so by trying various combination we can produce five additional actions.
The sixth one was designed differently with sequential nested for loops and a
light weighted mathematical operation into the final loop (a simple addition).
Its code can be seen in the following snippet.

def main(args):
iterations = args.get("iterations" ,10)
for i in range(4):
foo = random.randrange (10,100)

for _ in range(iterations):
for _ in range(iterations):
for _ in range(iterations):
for _ in range(iterations):
for _ in range(iterations):
for _ in range(2):
foo = foo + random.choice([-1,1])
return {"result":"Computation ended"}

As far as the constant outer loop pattern in every function is concerned,
it was placed strategically in order to explore the behaviour of multi-threaded
& multi-processed applications®. The aforementioned functions are by default
single threaded applications, but by just using the multiprocessing and the
threading modules of Python we can convert them into the desired ones with
each iteration to be distributed to a single thread or process.

It is worth mentioning that by leveraging threads, the operation won’t be
executed in parallel but concurrently, so the application will not try to acquire
more than one cores. The way of how this is done is possible is placed in the
following code block.

from threading import Thread
import random

def bar(i,iterations):
foo = random.randrange (10,100)
for _ in range(iterations):
foo += pow(foo + 42,2)/(pow(foo + 42,2) + foo)

def main(args):

iterations = args.get("iterations" ,1000000)

threads = []

for i in range(4):
threads.append (Thread (target=bar,args=(i,iterations)))

for process in threads:
process.start ()

for process in threads:
process. join ()

return {"result":"Computation ended"}

=
°As we said earlier, the maximum number of cores per node in our cluster is four

75

1
2
3
1

In contrast, the multiprocessing module offers the usage of separate processes,
which will leave their footprint in more than one CPU cores as they will try to
get executed in parallel.

from multiprocessing import Process
import random

def bar(i,iterations):
foo = random.randrange (10,100)
for _ in range(iterations):
foo += pow(foo + 42,2)/(pow(foo + 42,2) + foo)

def main(args):

iterations = args.get("iterations" ,2000000)

processes = []

for i in range(4):
processes.append (Process (target=bar ,args=(i,iterations)))

for process in processes:
process.start ()

for process in processes:
process.join ()

return {"result":"Computation ended"}

Lastly, the naming convention for each function is mt<i>generic for the
multithreaded, mp<i>generic for the mutli-processed and st<i>generic for the
single-threaded. Accordingly, from those we constructed pipelines with three
and six functions giving them the names stg3,stgb,mtg3, mtgb, mpg3, and mpg6
respectively.

4.1.3 Monitoring & Metrics Collection Mechanisms

During the conduction of our experiments, a plethora of metrics were gathered
concerning pipelines’ behaviour, OpenWhisk’s functionality, nodes’ state, and
more. For collecting all the necessary measurements, various bash® scripts were
developed, with some of theme being presented in the next sections.

Functions’ Metrics

As far as functions’ behaviour is concerned, OpenWhisk offers extensive met-
rics from the logs of each function to the end to end latency, all accessible via the
CouchDB component. In order to gather the above information automatically
after each invocation, we developed the following bash script function.

function measurement (){
local counter=0
local id=$1
local res=("norecord" 0)
while [$counter -le 2]
do
wsk -i activation get $id > temp 2>/dev/null
if [$? -eq 0 1]
then
res=($(awk -f ./measurement.awk temp))
break

6Bash is the GNU Project’s shell—the Borne Again Shell [58].

76

fi
counter=$((counter + 1))
sleep 30s

done

rm temp

echo ${res[@]}

This routine queries OpenWhisk’s API by using the activation ID of the
specified invocation (line 7) and returns the result status of this invocation
alongside the total time of execution (line 17). The while loop of two iterations
is used for polling the the database for the result. In situations of high load,
OpenWhisk might write the new records after a period of time, thus the sleep
command of 30 seconds. Even more, in extreme cases it is possible some records
never to be inserted in the database. For this reason, we check if the query
executed successfully or not (line 8), while after two unsuccessful queries, the
functions returns the pair "norecord” & 0. In line 10, an awk’ script is used for
parsing only the necessary data from the entire activation record. Its contents
are the following.

BEGIN {
FPAT = " ([T J+) [(\"[7\"J+\")"
}
/(\x22end\x22\x34) | (\x22start\x22\x3A) | (\x22status\x22\x34A)/ {
gsub(/,/,"")
t=$2
if ($1 == "\"start\":") {
sum-=t
}
else if ($1 == "\"end\":") {
sum+=t
}
else if ($1 == "\"status\":") {
status=$2
}
}
7 END {
gsub (" ","", status)

printf ("%s %d",status,sum)

Pipelines’ Metrics

Gathering pipelines’ metrics follows the same pattern as the per function
method. OpenWhisk puts executions times inside sequences’ activation records,
while at the same time adds the activation ID of each function inside the
record of each sequence. The latter can be combined with the above scripts
for gathering comprehensive information for each pipeline invocation. Thus,
the measurement() function is used for per pipeline logging and the measure-
ment_per_function() is used for the internal function logging.

"The awk language is a domain-specific programming language (DSL), specialized for textual data manipu-
lation [59].

77

11

1

2

function measurement_per_function (){
local id=$1
local length=$2
id_array=($(wsk -i activation logs $id | awk ’{print $NF}’))
res=()
for function_id in ${id_array[@]}
do
res+=($(measurement $function_id))
done
echo ${res([e]}
}
Finally, all the data are saved in a csv format, for further manipulation with

the Python seaborn library.

Nodes’ Metrics

For completion purposes, nodes’ utilization metrics need to be collected via
the top command® and stored into csv format. This procedure has been made
possible with the script below. In this, the top command runs in batch mode (it
does not accept input) and fetches metrics every 0.5 seconds until the iterations
limit (-n flag). The latter is computed using the experiment time (provided as
a command line argument) plus a period of 120 seconds and multiplied by a
factor of two, as each update is done every 0.5 seconds. Finally, output is piped
into an awk script for parsing.

#!/bin/bash
DT=IV$1VI

3 Texp="$2"

1

NN NN NN NN

~

NS

n=$(((Texp+120) *2))
LOG_FILE="top_usage.csv"

top -b -d .5 -p 1 -n $n | awk \

-v cpulog="$LOG_FILE" -v dt="$DT"
/" top -/ {
temp = 10
for(i=1;i<=NF;i++) {
if ($i == "load") {
temp = i + 2
break
}
}
gsub(/,/,".",$temp)
load_avg = substr($temp, 1, length($temp)-1)
}
/Cpul\(s\)/ {
cpu=$2
}
/" [KIM]iB Mem/ {
used_mem = $8

total_mem = $4

printf "Ys %.3f %.3f %.3f %s %s\n",load_avg,used_mem,total_mem, (used_mem/
total_mem)*100,cpu,dt >> cpulog

fflush (cpulog)
})

8The top program provides a dynamic real-time view of a running system. It can display system summary
information as well as a list of processes or threads currently being managed by the Linux Kernel [60].

78

As one can understand from the awk part, the physical quantities that are
used are the following:

o Load Average: This indicates the system load average over the last minute.

« CPU state percentage: The percentage of total time (since the last update)
the CPU use for running un-niced user processes.

e Memory Usage: The awk script logs the amount of used system memory,
the total amount of system memory and the related percentage.

For reference, a sample output (with the -p flag, output is being reduced
into process’ number 1 metrics, i.e., systemd in systemd systems.) of the top
command for the master node is shown in Figure 4.1.

top -b -p1-n1
top - 14:40:53 up 3 days, 23:08, 1 user, load average: 7.05, 26.97, 23.28
1 total, 0 running, 1 sleeping, 0 stopped, @ zombie
3.6 us, 7.1 sy, 0.0 ni, 87.5 id, 1.8 wa, 0.0 hi, 0.0 si, 0.0 st
7957.3 total, 392.6 free, 4369.1 used, 3195.5 buff/cache
.0 used. 3421.0 avail Mem

9
0.0 total, 0.0 free, 0]

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
1 root 20 0 168352 10972 6944 S 0.0 0.1 8:38.28 systemd

Figure 4.1: Top sample output for master node.

4.2 Observing Target Latency

In the following lines we try to investigate various reasons that may lead a
serverless sequence to time violations and by that to clarify the importance and
complexity of this subject.

4.2.1 Impact of Resource Contention

It is only obvious that function containers, that coexist in the same host
machine, compete for various resources. These might be the network, the time
in the CPU, I/0O, system memory etc. Moreover, the more resource types
a function needs or to put it simply the more it depends on various resource
types, the more severe and noticeable the effect will be in the function execution
time elongation. Let alone function sequences where the delay stacks up.

To realize how this phenomenon is present and important even in well de-
signed and much used frameworks like OpenWhisk, one can simply watch the
behaviour of the end-to-end latency in regards to a quantity that represents
the cluster’s "pressure'. For instance, in Figure 4.2 the end-to-end latency of
the pipeline p024879 as a function of rps values is plotted” (the values in each

9The steps of this experiment is explained thoroughly in Chapter 6.

79

rps level are placed in boxplots). Each invocation is using different contain-
ers in order to mimic resource contention of different tenants’ sequences with
similar footprint. This was done possible by using different aliases for both
the sequences and the internal functions, for OpenWhisk to consider them as
nonidentical.

Box plot of end-to-end latency for 'p024879'

100000
80000
™
(0]
1%}
£
<~ 60000 1
(9]
C
g
£ 40000 4 T
20000 - ?
01 015 02 025 033 04 045 05

rps (1/sec)

Figure 4.2: Pipeline p024879 time latency for various rps levels.

From the above figure, two points should be made. First of all, it is clear that
higher rps levels lead to higher values for end to end latency. In fact, for this
pipeline, which depends on various system resources, the increase is exponential.
Secondly, there’s not only a mean level increase of the depending variable, but
also an increase of the variance of each level distribution. This means, that not
only a sequence gets delayed when more pressure is applied to the system, but
also the physical quantity of time latency becomes unpredictable.

CPU Saturation

To make things worse, during our experiments we observe similar behaviour
even for generic benchmarks that ping only the CPU. In Figure 4.3, the results
of the sequence stg6 are placed for the same experiment. In this case, CPU
saturation is one of the main reasons (others are network delay, OpenWhisk
queueing inside invokers etc.) behind this behaviour. In particular, for rps equal
to 0.5, one invocation occurs every 2 seconds for 2 minutes. With the minimum
value of time latency being over 20 seconds (actually the 25th-percentile minus
the 1.5 of the interquartile range [61]), there is a descent amount of time,
where at least one pipeline is executed at the same time with approximately

80

10 others!?. More precisely, the cluster offers in total 10 cores (two nodes with
4 cores and one with 2 cores), thus the above statement implies that there is
an amount of time where the total number of containers requiring a CPU is
greater than the available one.

Box plot of end-to-end latency for 'stg6’

40000 A
35000
o
(]
(]
£ 30000
>
(9}
C
(U]
% 25000 -
20000 - f é é
15000 - T T T
.1 0. 15 .2 0. 25 0. 33 0.4 0.45 0.5
rps (1/sec)

Figure 4.3: Pipeline stg6 time latency for various rps levels.

10With % equal to 0.5 and execution time equal to 20 seconds, during the execution of a pipeline and after
its invocation, 2 7 — 1 =9 additional invocations will occur. By adding the 9 invocations that precede, during
the entire life time of the sequence, 10 pipelines are running simultaneously.

81

4.2.2 Impact of Cold Starts

In Section 3.3.3, we introduced the concept of cold starts, according to which
when there is no available Docker container for an action to be executed, a new
one will be spawned adding a delay to the total execution time. How significant
this delay is and how it may change in various states of the cluster was yet to
be found. A way to test that, is to repeat the previous experiment and make
sure that each function invocation suffers from a cold start. In the next figure,
it is clear that such decision affects notably the time latency of the pipeline.

Execution times for pipeline p024879

200000 option
I No cold starts
175000 4 I Cold starts
150000 4
125000 4
100000 4 *

LSy \1113Tyy

75000 - i

¢
50000 A i
25000 ‘ ? |

0 - T T T
0.1 0.2 0.33 0.4 0.5
rps (1/sec)

Figure 4.4: Cold Starts affection to time latency!!.

4.2.3 Impact of Concurrency & Queueing Phenomenona

Concurrency in actions is a subject that has already been mentioned in Sec-
tion 3.3.5. One should easily understand that as resource contention is a concept
to worry about in the node level, the same applies in the container level, when
true concurrency is enabled (see prewarm containers in 3.3.5). However, this is
not the purpose of this paragraph. Instead, it is important to note that in cases
where OpenWhisk’s runtime doesn’t support truly concurrent invocations, even
if the latter is enabled, a Queueing effect will rise.

For example, Python’s runtime is implemented using the Flask framework
version 1.0.2, which does not support concurrent requests. By conducting the
already described experiment of sequential invocations of variable rps levels,
while forcing each function to reuse the container of previous invocations, we

1We note that the decrease of the mean in the last rps level concerning the option for cold starts occurs as
some containers may not got deleted by the last run resulting in some invocations to have found a ready-to-use
container. However, the hole distribution remains worse than the other option.

82

observe the result of this design decision. In Figure 4.5, end-to-end latency is
plotted as a function of the time of invocation for a period of 2 seconds and
various rps values. Normally, a bell curve is expected. On the contrary, due to
the aforementioned reason, a linear causality appears.

End-to-end latency for 'p024879' versus time of invocation
200000 A

175000 A

150000 -

125000 A

100000 -+

IULCIILYy \1113Ty)

75000 A

50000 -

25000 A

0 T T T T T T T
0 20 40 60 80 100 120

Time of invocation (sec)

Figure 4.5: Queueing effect on time latency

83

4.2.4 CPU Quotas Affection

An additional factor that has an influence on target latency is of course how
much time a function, i.e., a container, is allowed to use the host’s CPU. A way
to quantify this concept is through CPU quotas. In the lines that follow, we
explore the affection of this metric to pipelines’ latency. For this, we conduct
a single invocation of a pipeline after previously we have tampered with the
value of CPU quotas of the related Docker container. We repeat the process
ten times, in order to get a proper sample, and for various percentages of the
default CPU period of 100000 mseconds. The end-to-end latency the function
graph-bfs in regards to these CPU quotas levels is placed inside Figure 4.6.

CPU Quotas effect on function 'graph-bfs'

16000 - dan

14000 - 99th percentile

12000 A
10000 +

8000 A

latency (msec)

6000 -

4000 A

2000 A

20 40 60 80 100 120
Percent of CPU Quotas(%)

Figure 4.6: CPU Quotas affection on function time latency.

It is clear that with values less than 80 percent of a single CPU, the function’s
execution time starts to decelerate drastically. In addition, as the function does
not leverage multiple cores, after 100 percent of the available CPU period the
effects of quotas increase start to fade out. All the previous observations, that
also apply for other functions as well, motivate us to use CPU quotas as a
tuning parameter inside Sequence Clock.

84

Chapter 5

Sequence Clock: A latency targeting
tool for serverless function sequences

5.1 Mathematical Modeling & Problem Definition

Before moving on with our proposal, it is worth mentioning some basic math-
ematical definitions and concepts that rule the entire system, alongside some
conventions that we will follow from now on.

General Definitions

Let s be a serverless sequence or pipeline of n serverless functions fy, fi,...,
frn—1. We declare this by writing s = (fy, f1,..., fn_1), following a vector nota-
tion.

[— £ — £ e fs P A A

SEQUENSE §

Figure 5.1: Abstract Representation of a Sequence

Let [be the targeted time latency of the sequence. During an invocation I,
the measured execution time of function f; is ¢; for all 1,0 < i < n. We say
that the sequence s did not met the target latency [, or violated the targeted
latency [, or that a QoS violation occured when:

n—1

Ti(s) = t; > 1 for the invocation I
i=0

Respectively, we consider that sequence s met the targeted latency [, when:

n—1
Ti(s) = > t; <1 for the invocation I
i=0
In case of a QoS violation, we call the quantity % violation factor.

85

Problems’ Definition

The QoS problem is defined as follows. For any set of m invocations Iy, I1,...,
I,,_1 try to minimize the number Nyarion < m of the times that sequence
s violated the target latency [. Equivalently, try to maximize the quantity
m — Nyiolation- Another problem concering the QoS is the following. For any
set of m invocations Iy, I1, ..., I,,_1 and for any violation of s try to minimize
the wviolation factor. The above two problems are not equivalent, but a well
behaved resource management system should target both.

Slack

For a given experiment [of the sequence s = (fy, f1,..., fn_1) with target
latency [, let t; be the measured execution time of function f; with 0 <17 < n.
If we know that each function f; should run under 7; time, with 2?2—01 7 =1, we
define slack as follows:

i—1 i—1 i—1
slack; = slacky, | = slacky, = > 1, — >t = > (1, — t;)
=0 k=0 j=0

for function f; 1 <i<n

o If slack; > 0, then sequence execution is ahead of the target latency before
the execution of function f;.

o If slack; < 0, then sequence execution is behind the target latency before
the execution of function f;.

We also consider slack for the first function f; to be equal to 0, slacky =
slack(fy) =0

5.2 Proposed Solution: Sequence Clock

In this chapter, we present and analyze Sequence Clock in depth, a latency
targeting tool for serverless function sequences for OpenWhisk deployments
inside Kubernetes.

5.2.1 An Overview of the Sequence Clock’s Architecture

SC is a distributed system, which consists of three different components, i.e.
Deployer, Watcher Supreme, and Watcher/s. Each one of them is considered
a Kubernetes resource and exists inside the cluster independently. In addition
there is also another element called Sequence Controller, which is leveraging
OpenWhisk by being a serverless function by itself and being mapped to a

86

unique serverless sequence. An
given in Figure 5.2.

abstract representation of the entire stack is

Kubernetes
Cluster
OXO ®) &) &)
h 4
oo ®®® ®®®
Template
Deployer Actions - Docker Actions - Docker
Containers Containers
1a P —— ——
/ N { \ oY
Requests’ Registry] Registry]
Cataleg b E
L) L)
-
Watcher Client
L PID Controller PID Controller
2a
Watcher > Conflict —t Conflict
\ Supreme | \ Resolver \ Resolver
. o . -— T
- - 2 ’
\ Watcher / I\ Watcher]
\, Master Node / \ Node, / | Node, 4 /

Figure 5.2: Sequence Clock Architecture

In a nutshell, Sequence Clock deploys each controlled sequence, named Se-
quence Controller) (marked as orange circles in Figure 5.2), as an OpenWhisk
action, whose only purpose is to invoke (1b) each function (marked as yellow
circles in Figure 5.2) of the pipeline with the proper order and gather metrics.
The same component, during pipeline execution, communicates (la) with the
centralized service of Watcher Supreme, to whom it sends requests for resource
allocation (computing resources). The latter transfers these requests (2a, 2b)
to the Watchers, which are deployed in each node and they are responsible
for managing and distributing computing resources in the node level as fair as
possible. Each Watcher, depending on the received requests, offers further com-
puting power to containers of sequences with negative slack, while it reduces
the same quantity in containers of sequences with positive slack. The regu-
lated parameter that was used is CPU Quotas, while its effects on containers’
performance were studied extensively.

5.2.2 Deployer

The Deployer is a simple component that aims to automate sequence cre-
ation and deployment. It runs an HTTP server, implemented with the Gin

87

Web Framework [62] and exposes three endpoints /api/check, /api/create, and
/api/delete of a REST APIL.

o /api/check. This endpoint is used as just the liveness and readiness probe
for Kubernetes controllers. In short, K8s pings this periodically, in order
to ensure healthyness of the resource.

« /api/create. This endpoint is available for POST requests as it provides
the functionality of creating a new sequence (Sequence Controllers) of SC.
Information about this sequence, like the name, functions involved and
others, are sended URL encoded using an HTTP form.

o /api/delete. It is used for deleting existing sequences, while the name of
the function is expected as a query parameter.

The structure of the Deployer is simple, yet important for leveraging Se-
quence Clock as a usable tool. In Figure 5.3, all the inner components are
presented, as well as the operations that follow a request for sequence creation
(seen as arrows). After a POST request is received, the server calls template
handler (1), which is an abstraction for creating a new sequence. File Zipper
is called (2) from the template handler and it fetches a template of code for
the sequence controller (we are describing it more thoroughly in the following
paragraphs). After injecting sequence’s information in that template, it zips
the template with all the necessary dependencies into an archive (3). Finally,
the template handler provides (4) the archive to the inner whisk client (a wrap-
per for the OpenWhisk Go client), which sends it to the OpenWhisk’s API
deploying a new sequence.

Blank Template of <, Whisk Client
Sequence Controller

' ™ :

Gin server | 2% archive |
lapilcheck File Zipper
lapilcreate

\:Lthl.- delete Y, Template Handler

Deployer ——uses (2)

Figure 5.3: Deployer Abstract Representation

88

The file structure of this sub project, which functionality was discussed ear-
lier, is given in the next figure.

= deployer
& Dockerfile
(3 go.mod
[go.sum
=1internal
=controller
L— >openwhisk
" client.go
(3 go.mod
[go.sum
" main.go
"I request.go
= vendor
=templateHandler

7 fileZiper.go
) go.mod
(3 go.sum

" templateHandler.go

" main.go
=pkg
= sequence
) go.mod

(3 go.sum
"’/ Sequence.go

Figure 5.4: Deployer’s Files’ Structure

As far as Kubernetes leverage is concerned, the entire Deployer is a K8s’
deployment, which handles one pod (with one container). Its API is exposed
using a NodePort service, while the entire deployment is placed specifically into
the master node. In addition, the large file structure of sequence controller is
stored in a persistent volume inside the same node.

5.2.3 Sequence Controller

Sequence Controller is the only component that is not exactly deployed. SC
is designed with respect to Apache OpenWhisk, thus it would be inappropriate
to implement the metrics gathering mechanism and timer component of the
system as a centralized and persistent element.

Instead, for each sequence invocation a serverless action, the sequence con-
troller of this sequence, is executed, whose purpose is to invoke each function
and transfer its output to the next one. In addition, it is responsible to compute
the slack value for each function, as it was defined in section 5.1, as well as to
gather other metrics like the sum of previous slacks and the slack of the previ-
ous function. All these measurements are then sent to the centralized element
of SC, called Watcher Supreme, in order for the regulation mechanism to get
initiated. This entire process is presented with pseudocode (python like) in the
next lines and in the Figures 5.5a, 5.5b.

89

= R R
© 0w -~

NS N o= O

00 1o

WO N NN NN NN NN
© - o XN

algorithms = {

}

def

def

def

"greedy" :greedy,
"dummy " : dummy ,

main (args) :
return algorithms [ALGORITHM] (args)

dummy (args) :
res = args
for f in functions:
res = invoke (f,res)

greedy (args) :
result = args
slack = 0
sum_of_slacks = 0
previous_slack = 0

for f in functions:
t_start = Now()

request_resources_from_watcher ()

result = invoke (f,result)
reset_request_to_watcher ()
t_end = Now()

elapsed_time = t_end - t_start

Gather metrics
previous_slack = slack

slack = slack + profiled_time (f)

1st request
function invocation
2nd request

- elapsed_time

sum_of_slack = sum_of_slack + slack

return res

Sequence Controller

Request Resources (1a)

3

| s

o

S —

~—~ Reply with request id (1b)

> Watcher Sup

(a) Invocation Stage

Sequence Controller

Reset Request (2a)

£

[

\ 3

>
—
15 200 Reply (2b

Watcher Sup

(b) Reset Stage

Figure 5.5: Sequence Controller steps

Two elements must be pointed out. First, one can see two algorithms avail-
able for the sequence controller. They were implemented for experimental and

comparison reasons, with "greedy” being the actual component of the system
and "dummy" being, as the name implies, an approach that only calls the func-

90

tions of the sequence. Second, two requests to Watcher Supreme exist. The first
one is used for requesting resource allocation based on the slack value, while
the second one informs the system for the termination of each function.

5.2.4 Watcher Supreme

The role of Watcher Supreme is central but not specifically complex. It acts
as the entrypoint of sequence controllers to node Watchers. Instead of pinging
each node separately for the aforementioned requests, a sequence controller
communicates asynchronously with only one component, the Watcher Supreme.
The latter has the responsibility of finding in which node a function’s container
is or will be placed. When it obtains this information, i.e., when a node replies
positively, the specified component transfers the resource allocation request to
the related Watcher, for the regulation to start.

In its core it uses two dictionary-like data structures, which are called maps
in the Go programming language:

o Request Catalog: A map with a unique id for each request is used as the
key value. Similarly, a reference! to the node?, to which this request was
handed over, is been stored as a value. The purpose for this structure is
for the reset request that follows a function termination to be sent imme-
diately to the specified node (that handled the initial request for resource
allocation).

o Function catalog: It is used as a caching mechanism, while the Watcher
Supreme tries to remember which node replied for which function?. It is
also a map structure with function names as keys and references to the
node Watchers as values.

The Gin server, inside it, exposes again three separate endpoints, offering a
small RPC API:

o /api/check: Likewise, a liveness and readiness probe for Kubernetes.

o /api/function/requestResources: It is used for requests that demand re-
source allocation.

o /api/function/resetResources: It is used for requests that inform the sys-
tem for a function termination (in order to free the supplied resources).

Pseudocode of each handler of the above endpoints is placed below.

LGo supports pointers.

2 Actually, the node client that is used for the communication between Watcher Supreme and Watchers

3Kubernetes prefers to place pods into nodes that already have downloaded the necessary image. Thus, it is
wise to ask first the node that recently replied positive for the specified action.

91

)

®

Resource Request: /api/function/requestResources

def requestHandler ():
mutex_lock ()
request_id = counter
counter = counter + 1
mutex_unlock ()

requestResourceAllocationFromWatchers ()
return

As seen above, a mutex mechanism is utilized for synchronization purposes,
when a new id is produced for a new request.The function requestResourceAl-
locationFrom Watchers() is executed asynchronously with a go routine and its
functionality was basically described above. That is node discovery for the
container related to the specified function invocation.

def requestResourceAllocationFromWatchers (function):
mutex_read_lock ()
read functionCatalog[function]
mutex_read_unlock ()

if function in functionCatalog:
sendRequest (node)
if node repliess:
mutex_lock ()
requestCatalog[id]
mutex_unlock ()
return

node

for node in all nodes:
sendRequest (node)
if node replies:
mutex_lock ()
requestCatalogl[id] = node
functionCatalog[function] = node
mutex_unlock ()
return
return

If a cold start is going to occur, no related container is present inside the
cluster by the time of this operation, thus no Watcher node will reply positively.
In this case, nothing will happen and function execution will take place without
SC provision and control mechanism. In early development stages, this situ-
ation was being handled with a polling mechanism by the Watcher Supreme.
Unfortunately, this approach was producing a lot of network traffic (even if
node polling had been preceded by a sleeping period) and the Watcher nodes
were being used wrongfully. This resulted in poor performance and thus we
chose to remove this feature in future implementations. In any case, further
research is needed, related to cold start handling.

Reset Request: /api/function/resetRequest

As the previous request has demanded for further resource allocation (or
resource reduction in case of a positive slack), a mechanism for returning each

92

10
11

13
14

container into the initial state is needed. That is why this type of request is
necessary.

def resetHandler (id, function):
resetRequestToWatchers (id, function)

Similarly to requestHandler, resetHandler does nothing further than calling
asynchronously resetRequestToWatchers (using a goroutine). Pseudo code for
this code routine is placed below.

def resetRequestToWatchers(id,function):
while True:
mutex_read_lock ()
node = requestCatalogl[id]
mutex_read_unlock ()
if node found:
break

sleep for 5 msecs

sendRequest (node)
mutex_lock ()

delete (requestCatalog ,id)
mutex_unlock ()

The loop, again, is used as a polling mechanism in the extreme case of
really short lived functions (e.g. under 5 msec). In this case, there is a small
chance of the reset request to start being handled before the termination of
requestResourceAllocationFrom Watchers, as the latter needs to communicate
with the Watchers. If that occurs, without the loop mechanism, the specified
request will not be found inside requestCatalog and the process will fail.

It is considered essential to observe that every operation upon requestCatalog
and functionCatalog is executed with the usage of locking mechanisms to avoid
unwanted, unpredictable behaviour, due to dirty read/write operations.

As far as Kubernetes resources are concerned, Watcher Supreme is a deploy-
ment, which admins one pod, strategically placed inside the master node, while
a NodePort service is used for making the RPC API available to sequences.

5.2.5 Watcher

This is the main component of the system. A daemon set is used for deploying
exactly one Watcher to each cluster node, (except master node), while port
forwarding allows for each Watcher to listen on port 8080 of the host machine.
Its main purpose is to balance computing resources of each node and to regulate
sequences’ time latency based on the metrics that sequence controllers send. As
it can be seen from the figure below, it consists of two different components,
i.e., the Gin server and the Conflict Resolver.

93

Finction; Funetion
S.Eﬂk!
Function; Funetion
S.Eﬂk!

Registry

Y
Docker Client

-

s It

PID Controller

e "y

Conflict Resolver

Gin Server

Watcher

Figure 5.6: Watcher’s Structure

RPC API

Gin server exposes again three endpoints: /api/check, /api/function/rese-
tRequest, and /api/function/requestResources. The first one shares the same
existence purpose like the aforementioned same named endpoints, while the
others are used from the same services of Watcher Supreme. In more depth:

o /api/function/requestResources is used from Watcher Supreme to ask from
the Watcher to allocate more or less resources to the specified function (to
the related container inside the node, to be precise). If no such container
exists, Watcher will reply with a status 404 error response.

o /api/function/resetResources is used again from Watcher Supreme to in-
form the Watcher that the related action has ended and no more regulation
is needed.

Conflict Resolver

Conflict Resolver maybe is the most important subcomponent, as it monitors
containers’ resources and communicates with the Docker Daemon inside the
node via the socket /var/run/docker.sock, thus the Docker Client component
in Figure 5.6. Moreover, it leverages the Registry, a data structure that stores
all the ongoing action related requests and the state of each related container.

94

Registry

Registry is actually a dictionary that uses action names as keys. It was de-
signed with the principle that each user action invocation results to one pod/-
container inside the cluster. Such thing is not entirely true, as OpenWhisk will
try to scale out and spawn more containers if the invocation rate is high, i.e.,
higher than the execution rate with concurrency of the function being equal to
one. Fortunately, if one enables concurrency in such actions, the above state-
ment corresponds to reality.

On the other hand, the values of the dictionary are structs of type Function-
State, which store information like the container ID, CPU quotas of the same
container and the desired CPU quotas (the two quantities may vary in some
cases, as we will describe in 5.2.6). In addition to this, the id of the current ex-
ecution request is stored along with the ids of similar requests and the desirable
CPU quotas values.

Registry

4 ™
Sunction; } ol ‘ Quotas ‘ '

‘ Desired Quotas ‘

‘ Container ‘

[Requests)

| Current (id) |

Active

idy| g Quotas

id; | j Quotas

id>| i Quotas

Y | A

Figure 5.7: Registry Data Structure

PID Controller

The PID Controller is a Go function that accepts the metrics, that is the slack
(used by the proportional term), the sum of previous slacks (used by the integral
related term), and the previous slack (used by the derivative related term) sent
from sequence controllers. Then, it returns the amount of CPU Quotas increase
or decrease. As there is no fear of overshooting, only the proportional and the
integral terms were used.

| def controllerPID(metrics):
2 return -1 * (

95

Kp * metrics.slack + # proportional term
Ki * metrics.sumOfSlack + # integral term
Kd * metrics.previousSlack # derivative term

)

It is worth noticing the minus one term inside the function. It is used to
invert the final output, as negative values of slack should produce positive
output, thus allowing the Conflict Resolver to allocate more resources to the
specified function.

A simple example

Until now, the complete architecture of Watcher has been presented, but no
further information has been given on how these components are combined.
In the next lines, we will try to cover this topic by studying an example of a
resource Request, which is also being presented graphically in Figure 5.8. In this
situation, the steps that follow are:

1. Server receives a POST request for the action f; (which means that a
sequence controller is about to invoke it).

2. The server asks Conflict Resolver if such container exists.

3. Conflict Resolver first checks the Registry and if an f; key is not present,
it will utilize the Docker Client to search the local Docker runtime.

4. Conflict Resolver uses the PID controller, to which sends the metrics from
the specified request. An (algebraic) amount of CPU Quotas offset, relative
to the base value of CPU quotas (equal to the default amount of CPU
period in ms, in our case 100000 ms) is being produced.

5. The specified container gets updated with the offset CPU Quotas plus the
default value. A trimming process occurs in order for the regulated value
not to violate the total number of available quotas in the node, i.e., the
number of cores multiplied by the default CPU period. Respectively, a
minimum of five thousand (5000) quotas is used.

6. The Conflict Resolver updates the entire Registry and the Docker Run-
time using the Resource Distribution Algorithm (5.2.6) and Conflicts Pol-
icy (5.2.7).

96

E Y
J

Searches (3ii) Juotas (5
Quotas (on)

-~

Y

[PID Controller

"y

Conflict Resolver jQuots |

—> Gin Server I

Watcher

Figure 5.8: Watcher’s Workflow

5.2.6 Resource Distribution Algorithm

In the previous section 5.2.5 , it was mentioned that the desired quotas of
a function and its related container may be different from the actual quotas,
that the Conflict Resolver provided. This may occur due to an algorithm that
we developed in order to distribute fairly the available CPU quotas of the host
machine (on which each Watcher lies). This is done by multiplying each value
of the desired quotas with a lambda factor, whose formula is placed in equation
5.4. In the following lines, we place the proof for the computation of this factor
and we also describe how this operation may be optimized.

Factor)\

For a random node of the system, let T" be the default CPU period, N.ys be
the number of available CPU cores and n be the number of resource requests
handled by this node. Let, also, r; be the desired CPU quotas, that the Conflict
Resolver tried to provide for each 0 < ¢ < n — 1 request, and ¢; be the actual
amount of the same entity. Given this information, there are two possible cases.

e Case I:

n—1

;) L) S Ncores -T (51)

97

In this case, no resource contention occurs and we can safely provide to each
container the amount of CPU quotas that the Conflict Resolver computed using
the PID controller, thus ¢; = r; for 0 <71 <n — 1.

o Case II:

n—1

Z ri > Ncores T (52)
i=0
We characterize this situation as saturation and according to our approach the
amount of the actual CPU quotas ¢;, that each function will be provided with
by the Conflict Resolver, can be computed as:

G = Ar; (5.3)

In order for the saturation to be resolved and the CPU resources to be dis-
tributed fairly to each container, we demand the following:

qo + q1 + ...+ Gn—1 = Ncores -T @(53)
- (T0—|—T1+...+Tn_1) :Ncores'T@
Ncores T

n—1
2Ty
1=0

\ =

Consequently, the general formula for the lambda factor is the following:

Neares T sqturation

A={ X (5.4)
1 , otherwise

Physical Meaning

The physical meaning of the equations 5.3 and 5.4 is that in case of re-
source contention/saturation, i.e., in case that the functions’ containers require
a higher amount of CPU quotas (according to PID Controller’s output) than
the available, each one of them will be provided with a percentage of the re-
quested physical quantity. In addition, in each node the lambda factor lets the
ratio between the quotas of two functions untouched, meaning that actions with
negative slack will still be provided with higher resources than the ones with
positive or less (by absolute value) slack.

A computational example might be the following. If a node with one core
count and 7" = 100000 msec is responsible for the execution and provision of
two positive slack actions and these actions’ metrics indicate a CPU quotas
value of 50000 (half a CPU each), then no saturation occurs and lambda will
be equal to one. Alternatively, in the case that these actions’ metrics indicate
110000 and 15000 CPU quotas respectively (the first one has a negative slack,

98

while the second one has a positive slack), then A will be equal to 0.8, which
means that each function container will run with 80% of the required CPU
resources.

Furthermore, the equation 5.4 implies that each time a sequence sends a re-
sourceRequest to a Watcher node, the Conflict Resolver needs to iterate through
the elements of the Registry in order to compute the factor A again. However,
with some basic algebra we can show, that having the previous value of the
aforementioned entity with some additional information is more than enough
for computing its next value.

Optimization

As far as the computation of the A factor by the Conflict Resolver is con-
cerned, it is worth mentioning three different cases, where apriori knowledge of
its previous value can result to an O(1) computation.

Case I: Container Addition

Let n be the number of function containers, inside a random node at the
time point ¢, with r;, 0 < i < n — 1 symbolizing the desired quotas of each one.
Hypothetically, at the time point ¢ + 1, the n-th request shows up asking for r/,
quotas. In this case, concerning A(t) and A(t + 1), the following is true:

Ncores -T

- NCOTPS'T (57)
O

99

Case [/I: Container Removal

Let n be the number of function containers, inside a random node at the
time point ¢, with r;, 0 < ¢ < n — 1, symbolizing the desired quotas of each
one. Hypothetically, at the time point ¢ + 1, the function concerning the n-th
request terminates and the related resources must be unbound. In this case,
the following is true for A(t + 1):

At +1) = == ' (5.8)

n—1
)\(t + 1) l; Ti—Tn
(5.8) = (5.6) = =57

At+1) = =0 \(t) &00
_ZO ri + 1),
Ncores : T

- Ncores'T (59)
NORE

Case [11: Container Update

This case is about the situation where the (n — 1)-th function is still being
executed, the Conflict Resolver has already alloted ¢,—1 = A(t) - r,_1 quotas to
the related container and a new request shows up concerning the same function,
thus the same container. The process of how the aforementioned component of
SC decides the new value of 7/ for this container, will be presented in the next
section 5.2.7, but for the steps that follow we will consider this as granted.

Let n be the number of function containers, inside a random node at the
time point ¢, with r;, 0 < ¢ < n — 1 symbolizing the desired quotas of each one.
At the time point ¢ + 1, the function concerning the (n — 1)-th request needs
r! | # r,_1 quotas, while all the others still need r, = r;, 0 < i < n — 2 quotas.
In this case, the following is true:

Ncores T Ncores T Ncores T
A(t T 1) ol — n=2 — n—1 (510)
'Zo ri 'Zo Ti+ Thot 'Zo Ti + T — Tno1

100

Ncores'T

n—1

)\(t + 1) Z: T T 1= Tn_1
5.10) + (5.6) = = = &
() ())\(t)]\%irles'T
=
=0
n—1
2Ty
At+1) = — =0 () <60
> T+ Tho1 — Tn1
Ncores T
- Ncores'T (511)

/
A(t) T -1 — Tt

In conclusion, all the equations (5.7), (5.9), and (5.11) can be narrowed down
into one single recursive formula:

N. ..T Neores * T+ Aoid
A\ _ cores _ cores 0 5.12
o % + Thew — Told Neores - 1"+ (Tnew - TOld)))‘Old ()

As far as cases (I) and (II) are concerned, the above formula holds true if we set
Toig and 7., equal to zero respectively. Additionally, we should point out that
for this recursive equation to give valid results, A,4 should always be computed
by using the saturation term from (5.4) even if this gives values higher than one.
However, in the previous described situation, the actual values for ¢ quotas of
each container should still be produced with a A factor of one.

Pseudocode of the part of SC that handles A factor computation and cor-
rection of CPU quotas of each Docker container accordingly is placed below.
The sections of the snippet that are important is the usage of the non-recursive
equation 5.4 (line 10) and the behaviour in no saturation cases (line 25).

In more depth, when no previous value of A exists, i.e. when the Registry
is empty, the only way to compute the proper value of A without having the
Watcher to panic*, is by using equation 5.4. Last but not least, a full traversal
of the Registry for correcting the actual quotas value of each container can be
overlooked in only one case and that is if the previous state alongside the new
state of the system is not characterized by saturation. This happens only when
Anew and Ayq are greater or equal to one (values higher than one may occur by
using the well discussed formula even for no saturation situations).

def lowerBound(quotas):
Docker Daemon doesn’t permit
values less than 1000
if quotas <= 1000:
return 1000
else:

4Panic is a built-in function that stops the ordinary flow of control and begins panicking. After all functions
in the current goroutine have returned, the program crashes. It can be caused by runtime errors or it can be
called be directly by a function [63].

101

1
1
1
1
1

8
9
0
1
2
3
1

return quotas
def ReconfigureRegistry(q_new, q_old):
if lambda_old ==
Non recursive computation
sum = 0
for s in Registry:
sum = sum + S.T
lambda_new = N*T / sum
else:
Recursive computation
lambda_new = N*xT / (N*T/lambda_old + q_new - q_old)

if not (lambda_new >= 1 and lambda_old >= 1):
for £, s in Registry:
if lambda_new < 1:
Saturation
s.q = lowerBound(lambda_new * s.r)
else:
No saturation
s.q = s.r
updateContainerQuotas (s.Container, s.q)

lambda_old = lambda_new
return

5.2.7 Conflicts Policy

During execution of various pipelines and their functions, SC’s Watchers
need to solve an additional problem, which appears when different users try to
execute the same pipeline or similar pipelines at the same time. In more depth,
when requests reach a node and demand resources for the same function, thus
the same container, the node’s Watcher has to make a decision on what request
should be used. The problem occurs as different requests may and probably
will demand different amount of resources, i.e., one might have a higher (by
absolute value) slack than the other or even worse one might have a positive
slack and the other a negative one. In this case, we decided to follow a 'help
the one in need" method, according to which it is wise to regulate the related
container using the request with the higher amount of DesiredQuotas r.

Mathematically, this can be described as follow. Let f; be a random function,
whose container is being regulated by a node. Let m be the number of requests
that have reached this node and are related to the function f;. Each one of
them demands a value of quotas equal to 7;(f;) with 0 < j < m. Then, the
value of quotas, that the Conflict Resolver will try to allocate, can be defined
as:

ri =r(f;) = max r;(f;) (5.13)

0<j<m
If two requests have the same value for r, we opt for the one with the lower

value of id, i.e., we prioritize the older one.
The logic behind the formula 5.13 is that when an invocation of a function

102

has negative slack it needs desperately to be provided with more resources.
For regulation to exist, invocations that are far behind must be prioritized in
contrast with invocations that are on time or ahead of it. The latter will be
helped more than it is supposed and needs to, but it is obvious that there is no
such a big of deal if a pipeline terminates faster. The opposite is what we try
to eliminate.

As far as the implementation of this policy is concerned, it is placed in the
below code block and consists of a simple linear search algorithm.

def findNext(state):

maxid = -1
maxq = -1
for id, quotas in state.Requests.Active:
if quotas > maxq or quotas == maxq and id < maxid:
maxid = id
maxq = quotas

return maxid, maxq

The existence of the data structures, called Active, inside the Registry pro-
vide a way of keeping track all the running requests for a certain function. A
dictionairy-like structure was used over a max-heap (that would have optimized
the searching time of the maximum from the linear O(n) to O(1)), because we
opted for having O(1) lookup times during reset requests. Also, a max-heap
would have increased computational time complexity in other operations of the
Watcher, like the process of adding a new request.

At this point, it important to clarify a hypothesis that is hidden inside the
latter approach and actually has already been mentioned in 3.3.5. In order for
this policy to have a reason to be implemented, containers of each OpenWhisk
action need to allow concurrent invocations. In case that a queue mechanism
occurs, this policy is not optimal. In that case we believe that a queue-aware
policy might achieve better results. Unfortunately, in order to have a clear
answer on this, we believe that further research is needed.

5.2.8 Regulation Mechanism

Having explained extensively the architecture of each component of the sys-
tem and presented various algorithms or policies that each component uses, it is
now feasible to provide a full stack look inside the regulation mechanism. In the
following lines, pseudocode blocks of two Go methods of the Conflict Resolver
are presented, with the first being the UpdateRegistry(), while the second being
the RemoveFromRegistry().

Update Process

This method is called by the Gin server of the Watcher as it handles the
requests that each function sends. Basic operations that this method accom-

103

1
5
3
4

[
©

N =

1

NN NN NN NN N
o o - [SII NG d

plishes are:

As

- Search of related Docker containers
- Quotas updates
- Calls of ReconfigureRegistry() method, whenever this is necessary.

one can notice, it returns a Boolean variable depending on if the related

container was found inside the Docker runtime of the node. Based on this
value, the Gin server will then replies with an HTTP Status 200 or HTTP
Status 404 to the Watcher Supreme.

BASE_PERIOD

=

def

def

100000

UpdateRegistry(id, function, metrics):
mutex.Lock ()
if not function in Registry:
container = searchDockerRuntime (function)
if no container found:
mutex.Unlock ()
return false
Registry[function] = newState(container) # Data structure used
as values for the Registry

quotas_new = upperLowerThresholds (controllerPID(metrics) + T)
state = Registry[function]
if quotas_new > state.DesiredQuotas:
if state not empty:
Move current request
into Active section
state.Active[state.Requests.Current] = state.r
quotas_old = state.r

updateCurrentState (id, quotas_new)
updateDockerContainer (state.Container, quotas_new)

ReconfigureRegistry (quotas_new, quotas_old)
else:

Just add request into Active section.

Do nothing with the container!!

state.Requests.Active[id] = quotas_new

mutex.Unlock ()
return true

upperLowerThreshold (quotas) :
if quotas > N * T:
return N*T
elif quotas < 5000:
return 5000
else:
return quotas

As it should be clear by now, mutex mechanisms are a necessity also here,

protecting the Registry by dirty reads, simultaneous writes, and inconsistencies
in general. Moreover, a key point of this procedure is that quotas correction of
each container is happening with the desired new value (line 23) before the call

104

of the method ReconfigureRegistry() (line 27), which might correct it alongside
all the other containers by the factor A. This is crucial, as regulation for negative
slack invocations must be done as fast as possible.

Reset Process

The reversed operation is the RemoveFromRegistry() method, which handles
the reset request that follows an action’s termination. Basic operations of this
method include:

- Removal of the related request from the registry.

- Quotas change of the now unwanted Docker container of the function that
terminated.

- Registry Update in case of pending requests for the related function exist.

After a container is no longer needed, Conflict Resolver should reset the
amount of CPU quotas (line 6). At this point, there are two options. The
first is to reset it back to the default value that OpenWhisk uses and that is -1
(which means that there is no limit in the amount of CPU resources that the
container will try to acquire). The second one is to force the minimum possible
value, which is 1000 as we mentioned earlier. Between those two, after several
trials we found that the default value is better. A possible explanation to this is
that the minimum value of quotas slows down function execution dramatically
during the time window between function invocation and actual regulation from
each Watcher.

def RemoveFromRegistry(id, function):
mutex.Lock ()
state = Registry[function]
if state.Requests.Current == id:
if state.Requests.Active is empty:
updateDockerContainer (state.Container ,-1)
Registry.delete (function)
if Registry not empty:
ReconfigureRegistry (0, state.r)
else:
lambda_previous = 0
else:
quotas_old = state.r
state.Requests.Current, state.r = findNext(state)
state.q = state.r
quotaas_new = state.r
state.Requests.Active.delete(state.Requests.Current)
updateDockerContainer (state.Container ,quotas_new)
ReconfigureRegistry (quotas_new,quotas_old)
else:
state.Requests.Active.delete (id)
mutex.Unlock ()
return true

The more important parts are the following:

105

1. In line 14, the Go function findNext() is called, making usage of the Con-
flicts Policy.

2. In case of an empty Registry there’s no reason of calling ReconfigureReg-
istry() for computing A factor. During next request, the non recursive
formula 5.4 should and will be used.

3. In case of remaining requests for the selected function (else statement in
line 12), correction of quotas with the desired value (line 18) happens
before ReconfigureRegistry() for the same reason that described in method
UpdateRegistry().

The entire code for Sequence Clock will become available at https://github.com/
john98nf/SequenceClock after the publication of this Thesis.

5.3 Sequence Clock CLI

5.3.1 Overview

Similar to OpenWhisk and wsk cli tool [64], Sequence Clock has also a com-
mand line tool for offering the developers an easy way of managing pipelines.
The sequence-clock-cli is a command line tool developed in Go and it offers four
simple tasks:

o Connectivity checking with Sequence Clock API
o Configuration for usage between multiple clusters
o Creation of SC pipelines.

o Deletion of SC pipelines.

The help message of this tool can be seen below.

106

https://github.com/john98nf/SequenceClock
https://github.com/john98nf/SequenceClock

sc help
AN AN AN IN__\ -
VAR AN VAR AN VAR AN f:f 7/ AN
VAT AVANEAN FATASANEAN FATASANEAN f:f 7/ AR Y
AT AV Y FAY AR A NN FAY AR A NN f:f 7/ i\
AN NN AL ACA NN \: N AVAVARY
A AT ANV \N__/ \ INFLS
ACANAN A\ AR Y AR Y AR Y \Nee/__/
ASAYA / AR Y AR Y AR Y ACA NN
Nt/ S : : ACA NN \N__/

Nf__/ _ _ Nf__/

NS S
NN N

Fof__F NN\ /S
S U U VAN A T WY

L
:/

SequenceClock CLI @&
National Technical University of Athens
School of Electrical & Computer Engineering
Copyright ©@ 2022 Giannis Fakinos

A cli client for the latency targeting tool for serverless seguences
of fuctions, called SequenceClock.

Please make sure that cli is configured:
sc config
Examples of usage:

sC create my-awesome-sequence --functions stepl, step2, step3 -1 300
sc delete my-cool-sequence

Usage:
sc [flags]
sc [command]

Available Commands:
check Check kubernetes cluster for deployed sc pods
completion generate the autocompletion script for the specified shell
config Create sc-cli configuration file
create Create a new function sequence
delete Delete an existing function sequence
help Help about any command
version Print the version of SequenceClock tool

Flags:
-h, --help help for sc

Use "sc [command] --help" for more information about a command.

Figure 5.9: Sequence Clock CLI Help message
S S

5.3.2 Architecture

This tool is developed using the well known libraries Viper [65] for managing
configuration files & Cobra [66] for implementing the entire project. It consists
of five commands and an HTTP client, designed specifically for the Deployer

107

APT of Sequence Clock.

Check command

This command is used just for troubleshooting purposes as it hits the end-
point /api/check of the Deployer and prints a related message according to the
server’s response.

sc check -h
Check kubernetes cluster for deployed sc pods

Usage:

sc check [flags]

help for check

Figure 5.10: Check command usage

Create command

In order for a developer to deploy a sequence, that leverages Sequence Clock,
into OpenWhisk usage of the Deployer’s API is needed. Instead of manually
making the call to the related endpoint /api/create, one can simple use the sc
command, specify the internal structure of the pipeline, and lastly choose a
target latency. It even provides the option of setting time targets per function
of the pipeline, instead of the total time latency (which actually will be divided
equally to each sub-action). Moreover, with an additional flag called algorithm
a developer may set the algorithm that the Sequence Controller will use, i.e.,
greedy or dummy.

sc create -h
Create a new function sequence

Usage:
sc create [flags]

Flags:

--algorithm string Algorithm to be used by controller (default "dummy")
--execution-times int64Slice List of profiled execution times (in miliseconds) (default [])
--framework string Framework to be used (default "openwhisk")

--functions strings List of functions in the sequence (required)

--help help for create

--name string Sequence name (required)

--target-latency int Target latency (in miliseconds)

Figure 5.11: Create command usage

Delete command

As it is obvious, this command is used for deleting created sequences. The
related help message with its usage is placed in Figure 5.12.

108

sc delete -h
Delete an existing function sequence

Usage:

sc delete [flags]

help for delete
-n, --name string Sequence name (required)

Figure 5.12: Delete command usage

Config command

As it was mentioned earlier, in order for all the operations to be executed
sc must have access to the Deployer’s API. The latter is exposed by using a
Kubernetes service of type NodePort, which means that one only needs to know
the address of the master node of the cluster and the port that the service was
exposed to. After the installation of the related Helm Chart the necessary
commands for finding this information is shown on the screen, while the config
command of sc provides a way of saving this information into the config file
~/.sc-cli/config.yaml with ease.

sc config
4 Configuration for sc-cli is needed!

No DEPLOYER_IP variable was detected.

Please type it manually: 127.0.0.1
No DEPLOYER_PORT variable was detected.
Please type it manually: 4200

v/ Done

Figure 5.13: Config command execution example

By executing this command, sc will prompt the user for two things, i.e., the
address and the port number or it will fetch this information from the DFE-

PLOYER IP, DEPLOYER PORT environmental variables. After this step,
sc is ready to be used.

Help command

This command offers a help message for the entire cli, as it was shown in
Figure 5.9, or the usage message of a command, provided as command line
argument. Its structure can been seen bellow.

109

sc help -h
Help provides help for any command in the application.
Simply type sc help [path to command] for full details.

Usage:
sc help [command] [flags]

Flags:
-h, --help help for help

Figure 5.14: Help command usage

Version command

This command offers a regular functionality of command line arguments tools,
which is printing the current version of the software tool. By the time of writing
this Thesis, the current version is v1.0. Sample output is the following.

sC version

SequenceClock v1.0 - Copyright © 2022 Giannis Fakinos

Figure 5.15: Version command output

The entire code for Sequence Clock CLI will become available at github.com/
john98nf/sequence-clock-cli after the publication of this Thesis.

110

https://github.com/john98nf/sequence-clock-cli
https://github.com/john98nf/sequence-clock-cli

Chapter 6

Evaluation

In this chapter, we evaluate the results of our proposed approach in various
scenarios. In more depth, a detailed architecture of the experiment that we
performed for various pipelines is placed in Section 6.1, while the analysis of
OpenWhisk’s behaviour in this follows in Section 6.2. The Chapter ends with
the presentation of Sequence Clock’s performance in the same scenarios that
OpenWhisk’s pipelines were tested, both for the unsupervised (Dummy) and
the Greedy version of SC.

6.1 Experimental setup

6.1.1 Abstract Analysis

The ultimate goal was to explore sequence’s performance in various levels
of system pressure, various "stressing" scenarios. A way to quantify this, is to
tinker with requests per seconds concerning the invocations, i.e., to perform
sequential invocations of a pipeline with a constant rate rps or equivalently
with a constant time difference At = TP%S.

At this point, it is crucial for the integrity of the measurements to have a
complete control over the way each function invocation is being executed, i.e.,
by which container each request is being handled. If one allows reusage of a
container for the random function f;, then there is a high possibility during the
larger values of rps the queueing phenomenon to appear, as older invocations
might not have finished before new ones arrive. On the other hand, if one forces
concurrency of functions to be equal to one, then each invocation will spawn a
new container, if an available one does not exist, and cold start penalty will be
added in execution time.

For this exact reason, each function was deployed inside OpenWhisk with
an additional ID or alias in order for each invocation to be distinguishable
from other invocations (inside the experiment that we mentioned earlier) of the

same function for the same pipeline. Mathematically, this can be interpreted as

111

follows. Let a sequence s = (fo, f1, ..., fn_1) of n functions be the one that will be
tested. This pipeline will be deployed in OpenWhisk as so = (foo, f10 ---» f(n—1)0);
ey 50 = (foem=1), figm=1)» - fn—1)(m-1)) M times, where m is the number of
invocations that will happen during the experiment. Thus the notation f;; is
about the i-th function that deployed inside openwhisk with the j-th alias (for
example the action uploader will be deployed as uploadery,... , uploader,,_1)
m times). An abstract representation of the experiment and the notation is
presented in Figure 6.1.

| oo ¥ o o fo ¥ fasn P faze P faro |

Sequense Sp

«—at Joo ¥ A S e faan ¥ faan ¥ Faen
Sﬂ?{l‘ﬂ”‘f 3
< (n- 1)at > (s > fanr ¥ Fan [asian M azananan)
L sequense $,

Figure 6.1: Abstract Representation of a pipeline experiment.

This approach guarantees that every invocation request will be placed on a
separate container, eliminating wait times in Python actions and ensuring that
Sequence Clock Watchers will keep track of the incoming requests. As far as
cold starts times to be avoided, one can simple perform m dummy requests
before each execution and rps level for the needed containers to be put in place
inside the cluster.

6.1.2 Technical Configurations

As far as experiments’ parameters are concerned, the default period for each
rps level is set to 120 seconds, while At values are set to [10, 6.67, 5, 4, 3,
2.5, 2.22, 2] which makes rps value to fluctuate between 0.1 and 0.5 with an
approximate step of 0.15.

According to this, the highest value of m (for rps = 0.5) is equal to % = 60.
Unfortunately, 60 different implementations of a 3-function pipeline require
60 * 3 = 180 containers and thus 180 x 256 = 46080 MiB = 45 GiB of total
system memory inside the cluster. Even worse, if this pipeline is deployed with
SC 60 * 256 = 15360 MiB = 15 GiB of additional memory are required due to
Sequence Controllers’ containers. On the contrary, we mentioned that 34.8 GiB

112

5
6
3
9
10
11
12
13
14
15
16

I R T
S © 0w

N N =

NN NN N
N o w w d

(35635,2 MiB) were provided as user memory from OpenWhisk yaml file (see

Section 4.1). Thus, |#22>2] = [139.2] = 139 containers can fit into memory

of the cluster and L%j = 34 different aliases of SC 3-function pipelines can
be deployed at the same time inside the cluster. For the additional invocations
for rps levels higher than or equal to 0.33 (At = 3 = m = 2 = 40) a modulo
operation is used, with no performance overhead!. For 6-function sequences, as
it is desirable to retain the threshold of 34 aliases per pipeline, for each alias s;
the following is true s; = (fo(i mod 17), f1(mod 17)s -+ f6(i mod 17))-

The entire smoke test is implemented using the Bash scripting language and

an oversimplified version of it is presented with pseudocode above.

Variables $pipeline & $framework (openwhisk, dummy, sc)
are extracted by command line arguments
Code not shown

Actual Experiment
texp=120

7 max_implementations=34

duration=(10 6.67 5 4 3 2.5 2.22 2)
for dt in ${duration[@]}
do
---- Actual Invocations ----
echo "x Expirement for Dt = ${dt} sec"
n_total=$(python -c "print (int(${texplt/${dt}))")
cold_start
echo " - Starting actual experiment"
for ((n=0;n<$n_total;n++))
do
n_mod=$(mod ${n} ${max_implementations})
invoke ${pipeline}i${n_mod}${framework} --async >> owdev_id_${pipeline}_${n}
sleep $dt
done
echo " - Sleep for 2 mins"
sleep 2m

Measurements

echo " - Fetching measurements"

fetch_measurements

echo M e e e e e e e e e e e e e - — n
done

sleep 1m

echo "* Downloading logs from each node"
download_logs

echo "------ End of experiment ------ "

The function invoke is a wrapper for the wsk -i action invoke command of
the OpenWhisk CLI. As one can notice, the invocation happens with the non
blocking option in order for the script to continue its run.

!The (i + 34)-th invocation uses the same containers with the i-th one but starts execution of the j-th
function long after its termination from the previous invocation. Even if two requests overlap, the maximum
number of requests that a function invocation will wait for will be one due to the total amount of invocations
happening in 120 seconds. In addition, as we discussed in Section 4.2.3 the effect of latency elongation will be
linear and not exponential.

113

1

10
11

14

16

function invoke (){
local f=8%1
local option=$2
case $option in
--sync)
wsk -i action invoke $f --result > /dev/null

L)
--async)
wsk -i action invoke $f

*)
echo -n "Unkown option"
exit -1

¥
The code for smoke tests’ scripts of Sequence Clock will become available

at github.com/john98nf/sequence-clock-smoke-tests after the publication of this
Thesis.

6.2 OpenWhisk’s Analysis

In this section, we present the figures that will be used for evaluating Open-
Whisk’s performance along side the behaviour of Sequence Clock and its various
algorithms, i.e., dummy & greedy.

6.2.1 99-th Percentile, Mean & Time Latency Extraction

We draw the mean value and the 99-th percentile of time latency as functions
of rps values. Graphical representation of the 99-th percentile of time latency
was crucial for the extraction of a certain target time latency for each pipeline.
It is worth mentioning that it would be a mistake to perform an invocation of
each sequence and utilize the (almost random) execution time of each run as the
reference point. The reason is that it would be impossible to achieve that kind
of QoS, as it is unlikely for such sequences to run under those circumstances,
i.e., isolated and without "competition". Thus, a similar method with the one
proposed in [67] is performed. In more depth, we set the target latency for each
pipeline as the 99th percentile latency of the knee of the related plot, where the
application experiences a rapid increase in tail latency after exceeding a load
threshold (typically between 0.2 ~ 0.4 rps).

For automating knee location for each plot we utilize the knee Python mod-
ule, which is based on the findings of [68]. Whenever this algorithm is not
capable to locate such point, e.g., when the latency experiences linear increase
instead of exponential like, we perform a linear search to find at which point the
growth between each value and the next one is higher than a certain percentage
(normally 0.35%) relative to the original value. For instance, in Figure 6.2 on

114

https://github.com/john98nf/sequence-clock-smoke-tests

can observe the knee of the sequence stg6 to appear at 0.33 of rps resulting to
a target latency of 26956 mseconds.

Time profiling of 'stg6'

45000 4+ —— mean
—— 99th percentile
40000 -

35000 -

30000 A

latency (msec)

25000 -

20000 A

0.10 0.15 0.20 0.25 030 035 040 0.45 0.50
rps (1/sec)

Figure 6.2: OpenWhisk: Target Latency Extraction from the 99th-percentile.

6.2.2 Time Latency’s Distribution per Sequence & Function

In order to observe the potential increase of the variance in time latency
we use box/violin plots for various rps values. A box plot assumes a single
distribution resulting in outliers’ exclusion, in contrast with a violin plot which
assumes a mixture of Gaussian distributions with unknown parameters. This
analysis is performed in both the sequence (seen in Figure 6.3) and the function
level (seen in 6.4). The latter also serve as a way of discovering the function
or functions that consume the most of the total time latency and suffer from
higher values of variance.

115

Violin plot of end-to-end latency for 'stg6'

80000 -

60000 -

20000‘0’4“‘

O = T T
0.1 0. 15 0.2 0. 25 0. 33 .4 0. 45
rps (1/sec)

latency (msec)

Figure 6.3: OpenWhisk: Distribution of Time Latency for stg6 for various rps values

For example, from the next Figure we can safely conclude that in stg6
the functions that consume the highest of the total end-to-end latency are

stgOgeneric and stg2generic.

Pipeline stg6: Time Latency per function

stOgeneric stlgeneric st2generic
16000 - 9000 $
8000 25000
14000
12000 7000 20000
2 ¢ 8 6000 g
£ 10000 - £ £
> = 5000 - < 15000 1
2 8000 A g i o
g § 4000 ' g
5 6000 i $ ® 30004 5 10000 $
4000 - ! S i 2000 A I ! i
i é 5000
zooo-iii* 1000 1 L L *i'*‘*
0.1 015 0.2 025 033 0.4 045 05 0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5 0.1 015 0.2 0.25 0.33 0.4 0.45 0.5
rps (1/sec) rps (1/sec) rps (1/sec)
st3generic st4generic st5generic
35000 ‘ 14000 -)
30000 L 12000 1 ? 8000 ~
F 25000] 10000 4 \ 8
g 20000 ' LI:>; 8000 A : + ; §. '
Q I Q 4
® 15000 - % 6000 2 4000 ‘
= = ¢ ¢ = (]
M ’
10000 1 i ; 4000 1 z * é 2000 1
5000 - 2000 _i 4 - i é i
01 015 02 025 033 0.4 045 05 0.1 0.15 0.2 025 033 0.4 045 05 0.1 015 0.2 025 0.33 0.4 0.45 0.5
rps (1/sec) rps (1/sec) rps (1/sec)

Figure 6.4: OpenWhisk: Distribution of Time Latency for each function of stg6 for various rps
values

One key point for both the sequence and the function level is that for higher
pressure circumstances, i.e., higher values of rps, not only time latency increases
but it also becomes more unstable and unpredictable.

116

6.2.3 Time Latency across Time

An additional way to explore and monitor sequence behaviour is to plot the
latter as a function of time for the specified interval of 120 seconds. If everything
runs as expected, a bell like curve must be observed, just like the one in Figure
6.5, where higher values of rps force higher values and curvature for this bell.
The physical interpretation of this lies on the previously placed Diagram 6.1,
where one can understand that invocations placed in the middle suffer from
higher degree of resource contention, resulting in higher values of execution
time.

End-to-end latency for 'p024879' relevant to time of invocation

rps
100000 - — 01
— 015
— 02
80000 — 025
< — 033
1%}
g — 04
>, 600007 — 045
E — 05
£ 40000 4
20000 -
p— i
———
0 20 40 60 80 100 120

Time of invocation (sec)

Figure 6.5: OpenWhisk: Time Latency of p024879 as a function of time.

6.2.4 Violations’ Analysis

As we have previously noted, there are two factors that can unveil the vio-
lations’ phenomenon, which are the percentage of the violations and the viola-
tion factor (see 5.1). If violations’ percentage is present regardless its value, it
doesn’t reveal a lot by itself, as the violations might not be severe relative to
the actual time latency. That is why, besides a bar plot of the previous physical
entity, like the one in Figure 6.6, a way to visualize how much an invocation vi-
olated the target, is needed. This is done by computing the violation factor and
by plotting its histogram? (just like the one in Figure 6.7a) or its probability
distribution function (like Figure 6.7b).

In the histograms that we opted for the height of each bin shows the number of observations inside the
related interval.

117

Quality of Service: Violations for Pipeline 'stg6'

0.5

0.45

0.4

©
)
w

0.0%

o©

N

S,]
1

rps (1/sec)

0:.0%

©
N
1

0.15 10:0%

0.1 10.0% I violations

0 10 20 30 40 50 60 70
Percentage of QoS Violations

Figure 6.6: OpenWhisk: Violations’ Percentage of the sequence stg6 for various rps values.

Quality of Service: Violation Percentage for Pipeline 'stg6' Quality of Service: Violation Percentage for Pipeline 'stg6'
16 T rps ps
| m £ 05 161 £ 05
14 £ 0.45 141 = 045
124 — 3 04 = 0.4
| = 033 1.2 = 033
10 - L B 0.25 . mm 025
g — = 02 2101 = 0.2
S 81 e . 0.15 308 . 0.15
- go.
. 0.1 . 01
& 0.6
4 R 0.4 /q;
| oo .
o LS IS 00 ~ s e
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.00 025 050 075 100 125 150 175 2.00
Violation Factor Violation Percentage
(a) Histogram (b) Kernel Distribution Estimate (KDE) Plot

Figure 6.7: OpenWhisk: Distribution of Vioaltion Factor for stg6.

6.2.5 Resource Utilization Monitoring

In search of true understanding of the cluster state, metrics like the CPU
Load Average, the CPU percentage for un-niced processes and the percentage
of system memory usage provide a basic understanding of what is going on
inside each worker node (invokers). All of them are functions of time and
are plotted as such (see Figures 6.8, 6.9, and 6.10). Furthermore, it is worth
mentioning that as the CPU percentage usage tends to reach its highest value
and descent immediately back to lower values, a better approach is to plot the
rolling average of the same quantity. An example is shown in Figure 6.10b,
which looks more comprehensive than Figure 6.10a.

118

node = node0 node = nodel node = node2

T 201

E rps

E 151 — 01
[— 0.15
s — 02
2 10 '
g — 0.25
o — 0.33
< 51 — 0.4
? —— 0.45
e .
Jou] 0- — 0.5

0 50 100 150 200 250 O 50 100 150 200 250 O 50 100 150 200 250
Time (sec) Time (sec) Time (sec)

Figure 6.8: OpenWhisk: Per Node Load Average during experimentation for sequence stg6.

node = node0 node = nodel node = node2

141 Te— 1 ps

— 0.1
- 1 = — 0.15

e f —_— 02
— 0.25
10 1 E E — 0.33
— 0.4

— 0.45
— 0.5

Used Memory Percentage (%)

0 50 100 150 200 250 O 50 100 150 200 250 O 50 100 150 200 250
Time (sec) Time (sec) Time (sec)

Figure 6.9: OpenWhisk: Per Node System Memory Utilization during experimentation for
sequence stgo.

node = node0 node = nodel node = node2

~ 100 '
x
o 80 4 rps
—
o —

60 1 '
& — 02
©
€ 401 — 0.25
§ — 0.33
a 20 — 0.4
2 | — 045
@) 0 i ! E — 0.5

0 50 100 150 200 250 O 50 100 150 200 250 O 50 100 150 200 250
Time (sec) Time (sec) Time (sec)
(a) OpenWhisk: Per Node Percentage of CPU.

9 node = node0 node = nodel node = node2
o 100
o
] rps
]]
2 80 — 0.1
5] 0.15
w60 '
; — 0.2
2 40 — 025
o — 0.33
£ — 04
= 204 .
§ — 045
g o4 . . . ! 4 . : . . 4 . ! I : — 05
© 0 50 100 150 200 2500 50 100 150 200 2500 50 100 150 200 250

Time (sec) Time (sec) Time (sec)

(b) OpenWhisk: 8 seconds Roling Average of per Node CPU Percentage.

Figure 6.10: OpenWhisk: Per Node CPU utilization during stg6 experimentation

Lastly, we note that metrics’ gathering exceed the interval of 120 seconds
and reach 240 seconds. As it would be impossible to know the exact moment,

119

when the rear invocations of each experiment will finish, we decided to run
the top script for a period of 240 seconds, which includes the querying pro-
cess of CouchDB, after the actual invocations’ termination. The above figures
(especially 6.8 and 6.10b) show that weaker systems (like node2) suffer from
higher values of CPU utilization, while the percentage of used system’s memory
remains constant at least for the time interval of 120 seconds.

6.3 Comparing Dummy SC & SC with OpenWhisk

In the following lines, an in depth study for the behaviour of OpenWhisk in
comparison with Sequence Clock and its two algorithms. The Dummy algo-
rithm was added, in order to reinsure us that sequences do not suffer from a
network delay offset due to sequence controllers’ mechanism. For our analysis,
we perform a plethora of tests by utilizing the pipelines stg3, stg6, mtg3, mtg6,
mpg3, mpgb from the generic suite and p021, p643, p024879, p051463 created
using the SeB Suite.

6.3.1 Generic Sequences’s Analysis

Single-Threaded Pipelines

Two single threaded pipelines are used, which are stg3 with a target latency
of 8917 mseconds and stg6 with a target latency of 31064 mseconds. Their
difference is the length of the sequence, which plays a crucial role on time
latency behaviour.

Time profiling of 'stg6' Box plot of end-to-end latency for 'stg6'

] 180000 -
160000 11— Openwhisk

—— Dummy sc
—— Sequence Clock

framework
160000 | HEE Openwhisk
Hl Dummy sc
140000 | mmm Sequence Clock

140000 -

> oo

120000 -
¢

=
N
o
o
o
o

100000 -
100000 -
¢

= ﬁ?ii*#dﬁ ______ ______ _______ ______

80000 1

latency (msec)
latency (msec)

60000 -

40000 -

20000 1 20000 sl g
O.I].O O.;I.S O.IZO O.‘25 0.I30 0.I35 0.210 0.;15 0.I50 0.1 0.15 0. 0. 25 0. 33 0. 0:5
rps (1/sec) rps (1/sec)
(a) 99-th Percentile for stg6. (b) Time Latency Distribution for stg6.

Figure 6.11: Comparing OpenWhisk, Dummy SC, and SC with stg6 pipeline.

From Figure 6.11a, one can conclude the following:

o As Dummy algorithm’s performance indicates, the mechanism of sequence
controllers does not result to any additional network delay.

120

e The Sequence Clock Greedy algorithm and the PID controller result in a
99-th percentile of time latency to be extremely near target latency for rps
values that are less than 0.33. Unfortunately, for higher values, SC not
only fails to regulate the specified quantity but ends up to be worse than

the default configuration of OpenWhisk.

The above arguments are confirmed also by Figure 6.11b, where Sequence Clock
seems to be more stable than OpenWhisk for the values that achieve a time

latency with a distribution near the target.

Having said this, one might rush to say that the analysis is over and regu-
lation happens for some rps levels. Unfortunately, by exploring the additional

plots and observations, a different opinion appears. From Figure 6.12, Sequence
Clock appears to have the highest violations’ percentage for all rps levels. For
the values that are beneath 0.33, as the boxplot in 6.11b and Figure 6.13 im-
ply, these violations are not severe. However, OpenWhisk originally never had

violations in these levels of system’s pressure.

Quality of Service: Violations for Pipeline 'stg6'

100 1 mmm Openwhisk
9o | HEE Dummy sc

I Sequence Clock
80 -

70
60 -

50

40 -

30

20

10

01— . . |
01 015 0

2 0.25 0.33 0.4
rps (1/sec)

Percentage of QoS Violations

0.45

0.5

Figure 6.12: Violations’ Percentage for stg6.

framework = Openwhisk framework = Dummy sc framework = Sequence Clock
c 12 A rps rps rps
.g 10 - 0.5 0.5 0.5
3 0.45 0.45 0.45
g 8 - — 0.4 — 0.4
a — 0.33
Z 61 — 0.25
a]] — 0.2
I l
o 0.15
£ 2 l\\ : — o
O T T T T T T T T = T T T
0 2 4 6 0 2 4 6 0 2 4 6
Violation Factor Violation Factor Violation Factor

Figure 6.13: Violation Factor KDE plot for stg6.

121

Furthermore, a look at the CPU usage is useful like the one present in Figure
6.14. From this, the conclusion derived is that for weaker systems like node?2,
Sequence Clock results into lower values of CPU usage, but with the drawback
of occupying CPU for a higher time interval. This can be explained by the fact
that, for such nodes, the A factor is being decreased rather quickly (due to the
numerator’s lower value in equation 5.4)

rps
— 0.1
— 0.15
— 0.2
— 0.25
— 0.33
— 0.4
— 0.45
— 0.5

framework = Openwhisk framework = Dummy sc framework = Sequence Clock

=
o
o

o<
o
L

IS o
o S
.
= apou

0apou

N
o
L

8 secs Rolling Avg of CPU Usage (%)

o
|

0 50 100 150 200 2500 0 50 100 150 200 250

= apou

8 secs Rolling Avg of CPU Usage (%)
Topou

0 0 50 100 150 200 250

= spou

Zapou

8 secs Rolling Avg of CPU Usage (%)

0 50 100 150 200 2500 50 100 150 200 2500 50 100 150 200 250
Time (sec) Time (sec) Time (sec)

Figure 6.14: CPU Percentage (8-seconds Rolling Average) for stgé.

Moving on with stg3, it is being clear that sequences with less functions
suffer less from latency elongation. Furthermore, Figure 6.15 reveals an addi-
tional disadvantage of Sequence Clock. The PID controller’s gains cannot be
optimized and tuned for all the pipelines, regardless their structure and inner
functions, as the values that resulted in well behaved regulation in stg6, now
result into a "steady state error' in stg3.

122

latency (msec)

the violation factor and violations’ percentage remain high for all the rps levels.

Probability Distribution

13000 -

12000 A

11000 -

10000 -

9000 -

Time profiling of 'stg3'

—— Openwhisk
—— Dummy sc

—— Sequence Clock

latency (msec)

/

010 015 020

0.25

030 035 040 045

rps (1/sec)

(a) 99-th Percentile for stg3.

0.50

25000 A
22500 1
20000 1
17500 -
15000 -

12500 -

' i,

10000

7500

Box plot of end-to-end latency for 'stg3'

¢+

framework
I Openwhisk
Il Dummy sc
I Sequence Clock

025 033 04
rps (1/sec)

(b) Time Latency Distribution for stg3.

Figure 6.15: Comparing OpenWhisk, Dummy SC, and SC with stg3 pipeline.

As far as violations are concerned, the situation is worse than stg6 as both

100 ~
90 1
80 -
70 1
60 1
50 A
40 A
30 A
20 1
10 A

Percentage of QoS Violations

Quality of Service: Violations for Pipeline 'stg3'

Il Openwhisk
I Dummy sc
I Sequence Clock

0.1 0.15 0.2

0.25

0.33

rps (1/sec)

0.4

0.45

0.5

Figure 6.16: Violations’ Percentage for stg3.

framework = Openwhisk

framework = Dummy sc

framework = Sequence Clock

251 - .
rps rps ps
20 1 ” 05 | | 0.5 | 0.5
—— 0.45 —— 0.45 —— 0.45
15 - — 04 i — 04] — 04
— 0.25 — 0.33 — 0.33
10 A — 0.2 i n — 0.25
5\ — 0.2
5_ =\ . 4 — 015
N —
O T T T T T T T T T T - T T T T
0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

Violation Factor

Violation Factor

Violation Factor

Figure 6.17: Violation Factor KDE plot for stg3.

123

However, concerning the CPU percentage usage, again Sequence Clock re-
quires the same or less (for weaker nodes) of CPU as one can observe from
Figure 6.18.

rps
— 0.1
— 0.15
— 0.2
— 0.25
— 0.33
— 0.4
— 0.45
— 0.5

framework = Openwhisk framework = Dummy sc framework = Sequence Clock

=
o
o

o]
o

o
o
= apou

Y
o
0apou

8 secs Rolling Avg of CPU Usage (%)
N
S}

o
s

= apou

8 secs Rolling Avg of CPU Usage (%)
T9pou

= apou

Zapou

8 secs Rolling Avg of CPU Usage (%)

0 50 100 150 200 2500 50 100 150 200 2500 50 100 150 200 250
Time (sec) Time (sec) Time (sec)

Figure 6.18: CPU Percentage (8-seconds Rolling Average) for stg3.

Multi-Threaded Pipelines

This category includes mtg3 with a target latency equal to 12526 mseconds
and mtg6 with a target latency equal to 31648 mseconds. According to the
following Figures, a similar situation with single threaded applications takes
place. The steady state error is higher in the 3 functions pipeline, while the
regulation mechanisms seems to be able to handle rps value lower than 0.33.

124

Time profiling of 'mtg6' Box plot of end-to-end latency for 'mtg6'

120000 1 —— Openwhisk 140000 framework ¢
—— Dummy sc Il Openwhisk
—— Sequence Clock 120000 1 mmm Dummy sc ¢ +

100000 -

I Sequence Clock

< 100000 -

80000 A
80000 1

latency (msec)
latency (msec

60000 - 60000 -

40000 -

40000 -

20000 1

0.10 0.15 0.20 0.25 030 035 040 045 0.50 0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5

rps (1/sec) rps (1/sec)
(a) 99-th Percentile for mtg6. (b) Time Latency Distribution for mitg6.

Figure 6.19: Comparing OpenWhisk, Dummy SC, and SC with mtg6 pipeline.

Time profiling of 'mtg3' Box plot of end-to-end latency for 'mtg3'
180004 Openwhisk ¢+ framework
—— Dummy sc 30000 1 ¢ EEE Openwhisk
—— Sequence Clock Il Dummy sc
17000 1 25000 B Sequence Clock
@ 16000]
[0} "
3 £ 200001
> 15000 >
c c
3 g 4
© 14000 ® 150001 * * * ? ? ' ?
S B N ey [C o HERPRY Ym RUREL RV NI PR D B
13000 - -y 'P? ﬁ ﬁ ﬁ #
10000 - $
—— N ¢ [} ¢
12000 A
010 015 020 025 030 035 040 045 050 01 015 02 025 033 04 045 05
rps (1/sec) rps (1/sec)
(a) 99-th Percentile for mtg3. (b) Time Latency Distribution for mitgs3.

Figure 6.20: Comparing OpenWhisk, Dummy SC, and SC with mtg3 pipeline.

Multi-Processed Pipelines

Before moving into the analysis of multi-processed pipelines, i.e., mpg3 with
target latency 19389 mseconds and mpg6 with target latency 26758 mseconds,
it is important to mention a significant problem of OpenWhisk’s API and Open-
Whisk’s Go client®. Specifically, there are two modes for invoking an action.
The first one is the blocking mode, where main’s program blocks (as the name
implies), until OpenWhisk replies. Respectively, the second one allows asyn-
chronous calls where OpenWhisk replies immediately only with the activation
ID. This can be used later for querying CouchDB for the action’s records.

The problem lies on the first one, where in high pressure situations Open-
Whisk replies as in the async mode. Such behaviour prevents Sequence Con-
troller from invoking the next function as it has no data to feed it. It would
be extremely easy for us to implement a polling mechanism inside it in such

3We have not yet located if the problem lies on OpenWhisk or just the Go client.

125

cases. However, this approach would have created unnecessary network traffic,
while Sequence Controller would have been waiting for the activation record to
be written inside CouchDB rather than the actual action to be terminated.

End-to-end latency for 'mpg3' relevant to time of invocation

Requests per seconds: 0.1 Requests per seconds: 0.15 Requests per seconds: 0.2 Requests per seconds: 0.25
50000 | 50000 { 120000
30000 45000 1
100000 -
45000 40000 +
9 T 25000 o T
g E E 35000 - é 80000 A
< 400007 < < 30000 N
20000 1 i
5 g & 25000 1 g 60000
® 35000 4 ® ® ®
= ® * 200001 < 40000 |
15000 -
30000 1 15000 ~ — successfull
—— successfull —— successfull 10000 4 —— successfull 20000 e failed
T T T T T 10000 + T T T T T T T T T T T T T T T
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
time of invocation (sec) time of invocation (sec) time of invocation (sec) time of invocation (sec)
Requests per seconds: 0.33 Requests per seconds: 0.4 Requests per seconds: 0.45 Requests per seconds: 0.5
250000
° » 200000 A 250000 - g
Je
200000 + 200000 1750001
_ _ o 150000 1 2000007
g g $ 125000 g o
[u] 4 [u) w 7 w 4 -
E 150000 £ 150000 - £ o o E 150000 o e .-...
> o . > > 100000 .. > ° o ©f° o
| o < 0o
& 100000 - . S 100000 - § 750001 51000001 oo S e o eete
& o ol & k] &
¢ 50000 /\ I\,
50000 - t
50000 + —— successfull 50000 A —— successfull 25000 /‘/_\ — successfull ﬂ —— successfull
/7 e failed N e failed 04 o failed 0] e failed
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
time of invocation (sec) time of invocation (sec) time of invocation (sec) time of invocation (sec)

Figure 6.21: SequenceClock: Time Latency per rps value for mtg3. Failed invocations are
marked as dots.

Consequently, the process of interpreting the results should be done with
extreme caution whenever SC sequences terminate with an action developer
error*. Such thing can be observed in Figure 6.21, where in higher rps values
most of sequence invocations experience this, resulting in lack of measurements.
Having mentioned this, we present the results for mpg3 in Figure 6.22 and for
mpg6 in Figure 6.23.

4OpenWhisk Go client replies with an error value "Request accepted, process not finished yet." whenever
this happen. Sequence Controllers read this error and panic, thus the action developer error.

126

Time profiling of 'mpg3' Violin plot of end-to-end latency for 'mpg3'

300000 4 —— Openwhisk 400000 1 framework
—— Dummy sc Il Openwhisk
| —— Sequence Clock Il Dummy sc
250000 .
300000 I Sequence Clock
'J 200000 g
g E 200000 -
& 150000 A ey
c c
£ £ 100000
— 100000 - - ‘
ARrSeTY! 1]
50000 A
0 ——
0.10 0.15 0.20 0.25 030 0.35 0.40 045 0.50 0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5
rps (1/sec) rps (1/sec)
(a) 99-th Percentile for mpg3. (b) Time Latency Distribution for mpg3.

Figure 6.22: Comparing OpenWhisk, Dummy SC, and SC with mpg3 pipeline.

Time profiling of 'mpg6' Violin plot of end-to-end latency for 'mpg6'
300000 -
—— Openwhisk framework
—— Dummy sc I Openwhisk
250000 - —— Sequence Clock 300000 | HEE Dummy sc
I Sequence Clock
'J 200000 9
g € 200000 -
g 150000 - g
=4 =
3 3
© © 100000
100000 “# ’
50000 04
010 015 020 025 030 035 040 045 050 01 015 02 025 033 04 045 05
rps (1/sec) rps (1/sec)
(a) 99-th Percentile for mpg6. (b) Time Latency Distribution for mpg6.

Figure 6.23: Comparing OpenWhisk, Dummy SC, and SC with mpg6 pipeline.

Concerning the above graphs, two points should be made:

1. Multi-processed functions, and thus pipelines, do not follow the exponen-
tial like curve when plotted against rps. Instead, a linear like behaviour
seems to occur, which actual is shown clearly in Figure 6.23a.

2. It would be disorienting to express that SC outperforms OpenWhisk, as
for rps values higher than 0.33 failures start to occur with the last rps
value not having a single successful invocation.

As far as violations are concerned, we observe the same performance, with
violations to occur in all rps levels (see 6.24a, 6.24b) even in relative low pressure
states.

127

Percentage of QoS Violations

6.

Quality of Service: Violations for Pipeline 'mpg3' Quality of Service: Violations for Pipeline 'mpg6'

100 1 mmm Openwhisk 100 1 mmm Openwhisk
90 | HEE Dummy sc 90 | HEE Dummy sc
I Sequence Clock I Sequence Clock

80
70
60
50
40 -
30
20 1
10

80
70
60
50
40 -
30
20 1
10

Percentage of QoS Violations

01 015 02 025 033 04 045 05 01 015 02 025 033 04 045 05
rps (1/sec) rps (1/sec)
(a) Violations’ Percentage for mpg3. (b) Violations’ Percentage for mpg6.

Figure 6.24: Comparing OpenWhisk, Dummy SC, and SC with mpg3 & mpg6 pipelines.

3.2 SeBS Sequences’ Analysis

As explained, in order to have a comprehensive evaluation we experiment with

the additional pipelines created with the more general applications of SeBS.

Pipeline p643

Similarly with the generic ones, like p643 with a target latency of 6023 msec-

onds, 3-function pipelines do not achieve the desired time latency and lead the
system to violations as Figure 6.25 shows.

Quality of Service: Violations for Pipeline 'p643'

I Openwhisk
1 = Dummy sc
I Sequence Clock

Percentage of QoS Violations
w
o

0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5
rps (1/sec)

Figure 6.25: Violations’ Percentage for p643.

128

framework = Openwhisk framework = Dummy sc framework = Sequence Clock

12 ps 1 ps 1 ps
05 | | 05 | |
0.45

IINNIN0,
IRRNNND,
IRRNNNED,

0.5
0.45
0.4
0.33
0.25
0.2
0.15
0.1

0.45
0.4 | 1 0.4 | 1
0.33 | | 033 | |
0.25 0.25
41 02 | - 02 | A
0.1
2 - - -
0 I | | | | B HW il |
0 1

0 1 2 3 1 2 3 0 2
Violation Factor Violation Factor Violation Factor

Figure 6.26: Violation Factor Histogram for p6435.

Pipeline p051463

Lastly, we compare the performance of the three different frameworks, when
used for the pipeline p0514635. It is important to note that in this pipeline a
behaviour similar the one we described in 6.3.1 occurs. Thus, unfortunately,
there are less of measured values for higher rps levels as showned from Figure
6.27.

End-to-end latency for 'p051463' relevant to time of invocation

Requests per seconds: 0.1 Requests per seconds: 0.15 Requests per seconds: 0.2 Requests per seconds: 0.25
70000 4) 70000 A ® o 4
. 70000 - 70000 1
65000 60000
60000 -
i 60000 -
g 60000 'g 50000 'g 'g
£ 55000 1 £ £ 50000 A £ 50000
> 4 > 4 > >
g 50000 g 40000 Q' 40000 A 2 40000
= 45000 1 = 2 g
° < 30000 £ 30000 - = 30000 -
40000 1
35000 4 — sulccessfull 20000 4 —_— su.ccessfull 20000 - — sulccessfull 20000 - —_— SL{CCESSfu”
o failed e failed o failed e failed
T T T T T T T T T T 10000 - T T r T T r T T T
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
time of invocation (sec) time of invocation (sec) time of invocation (sec) time of invocation (sec)
Requests per seconds: 0.33 Requests per seconds: 0.4 Requests per seconds: 0.45 Requests per seconds: 0.5
L]
90000 4 140000 160000 - 160000
80000 4 120000 - 140000 - 140000 -
g 70000 % 100000 g 120000 1 2 120000
£ £ € 1 €
£ 60000 1 £ £ 100000 £ 100000
> > 80000 - >
2 50000 - g 2 80000 - 80000
Q Q I
% 2 60000 5
= 40000 = = 60000 - 60000
40000 4
30000 + —— successfull —— successfull 40000 1 —— successfull 40000 —— successfull
20000 - e failed 20000 - o failed 20000 - e failed 20000 - o failed
0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
time of invocation (sec) time of invocation (sec) time of invocation (sec) time of invocation (sec)

Figure 6.27: Time Latency per rps value for p051463. Failed invocations are marked as dots.

Nevertheless for the lower values of rps, this phenomenon is negligible, so we
can draw a safe conclusion. In the case of p051463, as shown in Figure 6.28, the
mean value of time latency is closer to the target, but the entire distribution
in each level of rps experiences a significant variance (in contrast with stg6).

129

3

This is similar to the "steady state error"' that stg3 experiences, where the PID
controller functions as un-optimised and un-tuned component.

Time profiling of 'p051463'

160000 1 — Openwhisk
140000 _ Dummysc 1600001
—— Sequence Clock 140000 -
120000
— — 120000 -
]]
E 100000 E 100000
> >
g 80000 - 2 80000 4
8 3
£ 60000 K 60000 -
40000 _—— 40000
20000 - M 20000 -
0.10 015 020 0.25 030 035 0.40 0.45 0.50
rps (1/sec)

(a) 99th-Percentile of Time Latency for p051463.

Box plot of end-to-end latency for 'p051463'

framework
Il Openwhisk
3 EE Dummy sc ‘
I Sequence Clock
‘ I
¢
= L
——————— D B ﬂ B I I £ 3 o o
¢
e da a2 ’
0:1 0.I15 0:2 0.I25 0.I33 0:4 0.;15 0:5
rps (1/sec)

(b) Time Latency Box Plot for p051463.

Figure 6.28: Comparing OpenWhisk, Dummy SC, and SC with p051/63 pipeline.

Violations’ analysis of the aforementioned observations is placed below, where
both the violation factor’s density (see Figure 6.30) and violations’ percentage

(see 6.29) are being plotted.

Quality of Service: Violations for Pipeline 'p051463'

H Openwhisk
E Dummy sc

Percentage of QoS Violations

0.1 0.15

I Sequence Clock

0.2

0.25

0.33
rps (1/sec)

0.4 0.45 0.5

Figure 6.29: Violations’ Percentage for p051463.

130

framework = Openwhisk framework = Dummy sc framework = Sequence Clock

rps rps rps
2 81 1 0.5 7 1 05] 1 05
2 == 0.45 =1 045 = 0.45
§ 6 3 04 T 0/ 0.4 = 0.4
z == 0.33 == 0.33 = 0.33
; 4 1 Il 0.15 EE 0.25
€ — . 0.2
§ 24 «’L - B 0.15
I 0.1
0 T . . I ; .H : ! I L ||
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Violation Factor Violation Factor Violation Factor

Figure 6.30: Violation Factor’s Probability Density for p0514635.

6.3.3 Causes of Failure

It is really important to look for the reasons that lead Sequence Clock to
perform significantly worse than OpenWhisk and justify what exactly went
wrong. First of all, we must point out that measurements showed that time
latency behaves like a random variable, especially in high levels of rps. We
emphasize that, as every form of conventional regulation (resembling the CPU
quotas PID controller) will lead to a shift to distribution’s mean and a scaling
to distribution’s variance. Thus, violations will appear even in situations, where
they were absence, i.e., during lower values of rps. This would not have been
a problem in SC’s case, if these violations had remained between a reasonable
interval (eg. with a violation factor less than 0.1) and a reasonable percentage.

The real problem becomes clear while studying the behaviour in Figures
like 6.11a. One can observe latency to suffer from decelerating during rps
levels that are higher than the value which specified each target. For example,
target latency for the pipeline stg6 was set as the 99-th percentile of the latency
distribution during rps = 0.33, while SC seems to function worse for rps > 0.33.
The reason behind this is the fact that quotas changes seem to achieve a descent
result in decelerating actions and a terrible job in accelerating them. As CPU
Quotas indicate amount on the CPU during a certain CPU period, a quantity
larger than that will remain unexploited by the specified action if this action
does not have a need of that extra time.

Additionally, Sequence Clock is built with the perspective of trying to regu-
late action sequences without a prior knowledge of the functions’ code®. This
results the PID controller to perform as expected for certain pipelines and be-
have as non optimised for others. To put it simply, the gains which result to

5This is an oversimplification. Of course pipelines’ time profiling is needed, in order for targets to be
extracted. Still, Sequence Clock does not set limitations to the developer concerning programming languages,
actions’ code implementation, etc.

131

a responsive system for 6-function pipelines, at the same time lead 3-function
pipelines to a shifted latency distribution with action execution ending before
slack settles into the desired value of zero. Other pipelines ended up with a
latency that had a mean value near the desired one, but appeared with large
values of variance, which implies less stability.

6.3.4 Dummy SC Superiority Paradox

If one pays a close attention on Figures 6.12, 6.17, and 6.23b, they will notice
a strange and unexpected characteristic of Sequence Clock. Dummy algorithm
performs better than OpenWhisk not only concerning time latency, as it suffers
from less violations, but also concerning the violation factor density which is
closer to zero. The latter means that in cases, where the percentage of violations
is similar with the one of OpenWhisk, these violations are less severe.

At this point an explanation is desirable on how such thing is possible. How
an "unsupervised" system handles invocations in high pressure situations better
than the supervised proposal and the default configuration of OpenWhisk? First
things first, superiority over the greedy algorithm of Sequence Clock is explained
by the aforementioned arguments of 6.3.3. However, this does not still provides
a solid answer on the outperformance over OpenWhisk. The argument that we
propose is simple. OpenWhisk handles sequences’ invocation in a centralized
way. No external or separated component is deployed inside the cluster with
the purpose of orchestrating invocations of a running pipeline. On the contrary,
Sequence Clock and thus Dummy Sequence Clock, deploys a separated action
for this purpose and thus a separated pod/container inside the cluster. This
decentralized way of invoking the internal functions of a pipeline offers more
scalability and achieves both goals that we discussed in section 5.1.

Moreover, if we accept the above argument as true, then we can also explain
the absence of network delay into Dummy execution even with the additional
transfer of data from an action to another. It is no secret that this approach
is not network optimised, as sequence controllers need to fetch each function’s
output and redirect it to next function’s input®. Yet, the absence of such
component (Sequence Controllers) in OpenWhisk’s sequences indicates that a
similar process occurs. In any case, data showed that if cluster nodes utilized
with a more clever way, scalability and stability is achieved more easily.

In conclusion, the cases where the above holds true is mainly in single
threaded pipelines, as Figures 6.31a & 6.31b indicate. Also, realistic SeBS
sequences experience similar behaviour (see Figures 6.32a & 6.32b). In multi-
threaded and multi-processed pipelines as the more intensive ones, Dummy SC

SFor a sequence of n functions s = (fo, f1,..., fn_1), Dummy Sequence Controller performs 2n + 2 data
transfers (including initial input and final output), while the actual needed data transfers are n.

132

suffers from approximately the same amount of violations’ percentages, but it
manages to maintain the violation factor lower than the values that OpenWhisk
allows. The latter is visible in Figure 6.33, where the maximum of violation
factor’s distribution shifts by 73% (it drops from ~ 10 to ~ 6) and in Figure
6.31b, where a similar shift occurs by a factor of 82%.

Quality of Service: Violations for Pipeline 'stg3'

100
Il Openwhisk
90 7 mmm Dummy sc
g 80
]
© 70
o
s
n 601
S
o 50
(]
g 40
8
S 301
o
& 20+
10 A
o |
0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5
rps (1/sec)
(a) Violations’ Percentage for stg3.
framework = Openwhisk framework = Dummy sc
25 A .
c rps rps
2 204 0.5 | 0.5
3 0.45 0.45
3 15 4 — 0.4 | — 0.4
a — 0.25 — 0.33
>
£ 10 — 0.2]
Q
© /4
-g . ‘\M -
[~
0

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8
Violation Factor Violation Factor

(b) Violation Factor’s Probability Density for stg3.

Figure 6.31: Comparing OpenWhisk’s with Dummy SC’s Violations for stg3.

133

Quality of Service: Violations for Pipeline 'p024879'

Il Openwhisk
Il Dummy sc

Percentage of QoS Violations

0.1 0.15 0.2 0.25 0.33 0.4 0.45 0.5
rps (1/sec)

(a) Violations’ Percentage for p024879.

framework = Openwhisk framework = Dummy sc
c 41 rps T rps
o 0.5 0.5
)
3 31 — 0.45 | 045
43 — 0.4 — 0.4
[a} 5 — 0.33 1 — 0.33
E — 0.25
=
3
el I \
[
o T T T T T \ T T T
0 1 2 3 0 1 2 3
Violation Factor Violation Factor

(b) Violation Factor’s Probability Density for p024879.

Figure 6.32: Comparing OpenWhisk’s with Dummy SC’s Violations for p024879.

framework = Openwhisk framework = Dummy sc

1 rps
2 1 05
-%’ . =1 0.45
o 0 04
> | mm 0.33
c = 0.25
Q I 0.2
§ T s 0.15
Il 0.1

0 2 4 6 8 10 0 P 4 6 8 10
Violation Factor Violation Factor

Figure 6.33: Violations’ Percentage for mpg6.

134

Chapter 7

Conclusion and Future Work

7.1 Summary

In this thesis, we investigated the challenge of offering Quality of Service
(QoS) in Serverless Architectures. The FaaS cloud computing model was pre-
sented with objective criticism concerning both its advantages and disadvan-
tages over its predecessors. Additionally, in order to achieve a thorough under-
standing of this concept, we studied extensively various FaaS frameworks, like
OpenFaas & OpenWhisk, their architectures and the usage of containerization
technologies inside them.

Time latency constrains for serverless pipelines by this day remain a grey area
for all the known Cloud Providers and open-source frameworks. Attempting to
observe the outcomes of this problem, we performed a plethora of experiments
at the function and at the sequence level by testing their performance response
during variations of different variables and configurations. We identified a vast
catalog of factors that have an impact on the pipeline’s end-to-end latency and
we concentrated on resource contention and system’s pressure. The experiments
showed, on average, an almost exponential growth in the time latency of a
pipeline when plotted against increasing invocations rates, with the stability
and predictability of the system following a similar fate. These observations
make clear the necessity of a dynamic runtime resource management system in
serverless platforms.

The next step to the development process was the design and the creation
of Sequence Clock, a target latency tool for serverless pipelines, which tries
to distribute fairly CPU resources into the hosted actions’ containers of each
node. Both the greedy version and the unsupervised/dummy version of Se-
quence Clock were evaluated by a set of runs, where the cluster was set under
various stress conditions of increasing rate of invocations. These runs were later
compared with the default performance of OpenWhisk under the same condi-
tions. This process indicated the capability of Sequence Clock’s control loop
to decelerate serverless pipelines and achieve in certain situations more stable

135

distributions of end-to-end latency near the specified target. The inability of
greedy Sequence Clock to reduce time violations’ percentages and to confine
the severity of these violations was also shown by the detailed analysis of sys-
tem’s metrics. However, the same experiments proved that dummy Sequence
Clock, an unsupervised, distributed and simpler approach was able to achieve
the same or even better results than OpenWhisk. In more depth, it reduced
the percentage of violations (in some cases even down to zero) and restricted
the maximum of violation factor up to 82% for 3-function pipelines and up to
73% for 6-function pipelines. Finally, an exhaustive explanation was provided
on the reasons that led Sequence Clock into this under-performed behaviour,
whenever the CPU quotas control is enabled and its unexpected superiority
over OpenWhisk with the usage of the dummy mode.

7.2 Future Work

In this thesis, although the extensive analysis that was presented concerning
the time violations problem, the proposals described were an immature attempt
to potentially offer a well-defined solution. Thus the absence of QoS in serverless
architectures remains an open issue.

In general, the direction where this study needs to be headed to depends
on the principles that one wants to build their framework/tool on. Before
the design of a new solution, a fundamental question needs to be answered,
i.e, should the framework be function aware demanding a prior knowledge of
actions’ requirements or not? The experiments taught us that more general
and adaptive practises come at a price of misshits between different situations,
while on the other hand they offer versatility and ease. Regardless the answer
that one wants to provide to the aforementioned question, in the following lines
they will find some interesting thoughts and proposals for future work for both
development changes and research opportunities.

7.2.1 Development Scope

As far as Sequence Clock and its regulation mechanism based on CPU quotas
are concerned, an interesting approach would be a combination of the greedy
algorithm and the dummy method. Evaluation showed that CPU quotas regula-
tion achieved descent results on low levels of rps by forcing latency distribution
to fluctuate around the target with small variance. On the other hand, Dummy
Sequence Clock achieved lower execution times than OpenWhisk even in situ-
ations of high invocations rates, where on average pipelines’ runtimes needed
to be accelerated. By these manners, our proposal is to test a configuration of
the Watchers that will use CPU quotas regulation for decelerating pipelines,

136

while in high contention situations and for pipelines with a negative slack (or
pipelines with a history of negative slack) it will let the function containers to
run uncontrollably, i.e. with the CPU quotas set to —1. A way of measuring
the contention levels would be nothing more than the value of the A factor.

Moreover, Sequence Clock is designed with the assumption that function
containers can run concurrently multiple requests. However, runtimes like the
Python’s one do not offer concurrency and instead use a queue mechanism. An
interesting change would be one regarding the Conflicts Policy, discussed in
5.2.7, where a queue aware approach and its performance could be tested in
related experiments. For example, the Active data structure could be modified
to include a timestamp for each request and use that for re-calculation of the
actual slack and the requested resources (quotas).

7.2.2 Research Scope

Although the latter optimizations and modifications might offer further infor-
mation into the phenomenon of time violations, a more crucial concept should
be studied and that is the parameters and configurations that could result in an
actual function’s latency decrease. Had these variables found, it would set the
foundations for future systems that could try to dynamically distribute, allo-
cate or control system’s resources for achieving the desirable result. Compeling
parameters include CPU clock (if a way of controlling host’s CPU frequency &
clock from inside the containerized runtime is found), network bandwidth (for
network intensive functions), memory bandwidth, and so on and so forth.

Lastly, further experimentation is required concerning a possible and dy-
namic decision process of cold starts, or a horizontal scaling mechanism in
general. Logic states that there might be a certain turning point where the
penalty of deploying a new container inside the cluster is less than the total
function’s execution time, if the system decides to reuse existing containers
(where resource contention between other concurrent requests or a possible
waiting queue might result into a significant time delay).

137

Bibliography

1]

2]

3]

[4]

[5]

(6]

[7]

8]

“Pcmag encyclopedia: Cloud computing,” https://www.pcmag.com/
encyclopedia/term/cloud-computing, accessed: October 28th, 2021.

“What is cloud computing: A beginner’s guide,” https://azure.microsoft.

com /en-us/overview /what-is-cloud-computing /#benefits, accessed: Octo-
ber 28th, 2021.

N. Suryavanshi, “What are cloud computing services [iaas,
caas, paas, faas, saas|,” https://medium.com/@nnilesh7756/
what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e,
nov 2017, accessed: October 25th, 2021.

A. Tzenetopoulos, D. Masouros, S. Xydis, and D. Soudris, Interference-
Aware Orchestration in Kubernetes, 10 2020, pp. 321-330.

T. Hou, “laas vs paas vs saas enter the ecommerce ver-
nacular: What you mneed to know, examples more,”
https://www.bigcommerce.com /blog /saas-vs-paas-vs-iaas/

#the-key-differences-between-on-premise-saas-paas-iaas, accessed: Octo-
ber 29th, 2021.

“What is serverless,” https://www.ibm.com/cloud/
learn /faas?utm_ medium=0Social&utm__source=Youtube&

utm content=000023UA&utm term=10010608&utm id=
YTDescription-101-What-is-Serverless- LH-Functions-as-a-Service- Guide,
July 2019, accessed: October 25th, 2021.

L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking
behind the curtains of serverless platforms,” in 2018 USENIX
Annual Technical Conference (USENIX ATC 18). Boston, MA:
USENIX Association, Jul. 2018, pp. 133-146. [Online]. Available:
https://www.usenix.org/conference/atc18 /presentation /wang-liang

Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He,
B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky,

139

https://www.pcmag.com/encyclopedia/term/cloud-computing
https://www.pcmag.com/encyclopedia/term/cloud-computing
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#benefits
https://azure.microsoft.com/en-us/overview/what-is-cloud-computing/#benefits
https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
https://medium.com/@nnilesh7756/what-are-cloud-computing-services-iaas-caas-paas-faas-saas-ac0f6022d36e
https://www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/#the-key-differences-between-on-premise-saas-paas-iaas
https://www.bigcommerce.com/blog/saas-vs-paas-vs-iaas/#the-key-differences-between-on-premise-saas-paas-iaas
https://www.ibm.com/cloud/learn/faas?utm_medium=OSocial&utm_source=Youtube&utm_content=000023UA&utm_term=10010608&utm_id=YTDescription-101-What-is-Serverless-LH-Functions-as-a-Service-Guide
https://www.ibm.com/cloud/learn/faas?utm_medium=OSocial&utm_source=Youtube&utm_content=000023UA&utm_term=10010608&utm_id=YTDescription-101-What-is-Serverless-LH-Functions-as-a-Service-Guide
https://www.ibm.com/cloud/learn/faas?utm_medium=OSocial&utm_source=Youtube&utm_content=000023UA&utm_term=10010608&utm_id=YTDescription-101-What-is-Serverless-LH-Functions-as-a-Service-Guide
https://www.ibm.com/cloud/learn/faas?utm_medium=OSocial&utm_source=Youtube&utm_content=000023UA&utm_term=10010608&utm_id=YTDescription-101-What-is-Serverless-LH-Functions-as-a-Service-Guide
https://www.usenix.org/conference/atc18/presentation/wang-liang

M. Espinosa, R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An
open-source benchmark suite for microservices and their hardware-
software implications for cloud amp; edge systems,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 3-18.
[Online]. Available: https://doi.org/10.1145/3297858.3304013

9] “What is kubernetes?” https://kubernetes.io/docs/concepts/overview/
what-is-kubernetes/, accessed: October 30th, 2021.

[10] “Kubernetes secrets,” https://kubernetes.io/docs/concepts/configuration/
secret/, accessed: October 30th, 2021.

[11] “Kubernetes components,” https://kubernetes.io/docs/concepts/
overview /components/, accessed: October 30th, 2021.

[12] “Understanding kubernetes objects,” https://kubernetes.io/docs/
concepts/overview /working-with-objects /kubernetes-objects/, accessed:
October 30th, 2021.

[13] “Kubernetes namespaces,” https://kubernetes.io/docs/concepts/
overview /working-with-objects /namespaces/, accessed: October 30th,
2021.

[14] “Kubernetes pods,” https://kubernetes.io/docs/concepts/workloads/
pods/, accessed: October 30th, 2021.

[15] “Kubernetes deployment,” https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/, accessed: October 30th, 2021.

[16] “Kubernetes deamonsets,” https://kubernetes.io/docs/concepts/
workloads/controllers/daemonset/, accessed: October 30th, 2021.

[17] “Kubernetes services,” https://kubernetes.io/docs/concepts/
services-networking/service/, accessed: October 30th, 2021.

[18] “Kubernetes volumes,” https://kubernetes.io/docs/concepts/storage/
volumes/, accessed: October 30th, 2021.

[19] “Kubernetes persistent volumes,” https://kubernetes.io/docs/concepts/
storage/persistent-volumes/, accessed: October 30th, 2021.

[20] “Apache openwhisk: Open source serverless cloud platform,” https://
openwhisk.apache.org/, accessed: October 31th, 2021.

140

https://doi.org/10.1145/3297858.3304013
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/kubernetes-objects/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/workloads/controllers/daemonset/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://openwhisk.apache.org/
https://openwhisk.apache.org/

[21] “Openwhisk deployment on kubernetes,” https://github.com/apache/
openwhisk-deploy-kube, accessed: October 31th, 2021.

[22] “What is nginx,” https://www.nginx.com/resources/glossary/nginx/, ac-
cessed: October 31th, 2021.

[23] “Openwhisk: System overview,” https://github.com/apache/openwhisk/
blob/master/docs/about.md, accessed: October 31th, 2021.

[24] “Openwhisk helm chart: Configration choices,” https://github.com/
apache/openwhisk-deploy-kube /blob /master /docs/configurationChoices.
md, accessed: October 31th, 2021.

[25] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoefler,
“Sebs: A serverless benchmark suite for function-as-a-service computing,”
in Proceedings of the 22nd International Middleware Conference, ser.

Middleware '21. Association for Computing Machinery, 2021. [Online].
Available: https://doi.org/10.1145/3464298.3476133

[26] “Sebs: Serverless benchmark suite,” https://github.com/spcl/
serverless-benchmarks, accessed: February 4th, 2022.

[27) C. Tozzi, “Microservices vs. serverless architecture,” https:
/ /www.sumologic.com /blog /microservices-vs-serverless-architecture/,
march 2021, accessed: October 27th, 2021.

(28] F. Romero, M. Zhao, N. J. Yadwadkar, and C. Kozyrakis, “Llama:
A heterogeneous & serverless framework for auto-tuning video analytics
pipelines,” CoRR, vol. abs/2102.01887, 2021. [Online]. Available:
https://arxiv.org/abs/2102.01887

[29] “Ibm cloud docs: Cloud functions - system details and limits,” https://
github.com /ibm-cloud-docs/openwhisk /blob /master /limits.md, accessed:
October 25th, 2021.

[30] S. Kotni, A. Nayak, V. Ganapathy, and A. Basu, “Faastlane: Accelerating
function-as-a-service workflows,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul. 2021, pp.
805-820. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation /kotni

[31] “Memory protection keys,” https://www.kernel.org/doc/html/latest/
core-api/protection-keys.html, accessed: October 27th, 2021.

141

https://github.com/apache/openwhisk-deploy-kube
https://github.com/apache/openwhisk-deploy-kube
https://www.nginx.com/resources/glossary/nginx/
https://github.com/apache/openwhisk/blob/master/docs/about.md
https://github.com/apache/openwhisk/blob/master/docs/about.md
https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/configurationChoices.md
https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/configurationChoices.md
https://github.com/apache/openwhisk-deploy-kube/blob/master/docs/configurationChoices.md
https://doi.org/10.1145/3464298.3476133
https://github.com/spcl/serverless-benchmarks
https://github.com/spcl/serverless-benchmarks
https://www.sumologic.com/blog/microservices-vs-serverless-architecture/
https://www.sumologic.com/blog/microservices-vs-serverless-architecture/
https://arxiv.org/abs/2102.01887
https://github.com/ibm-cloud-docs/openwhisk/blob/master/limits.md
https://github.com/ibm-cloud-docs/openwhisk/blob/master/limits.md
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html
https://www.kernel.org/doc/html/latest/core-api/protection-keys.html

[32] “Top 10 container orchestration tools,” https://appfleet.com/blog/
top-10-container-orchestration-tools/, march 2021, accessed: October
30th, 2021.

[33] “eted: A distributed, reliable key-value store for the most critical data of
a distributed system,” https://etcd.io/, accessed: October 30th, 2021.

[34] “Kubernetes statefulsets,” https://kubernetes.io/docs/concepts/
workloads/controllers /statefulset/, accessed: October 30th, 2021,

135] K. Wuestkamp, “Kubernetes services simply vi-
sually explained,” https://medium.com/swlh/
kubernetes-services-simply-visually-explained-2d84e58d70e5, october
2019, accessed: October 30th, 2021.

[36] “Kubernetes storage class,” https://kubernetes.io/docs/concepts/storage/
storage-classes/, accessed: October 30th, 2021.

[37] “Kubernetes config maps,” https://kubernetes.io/docs/concepts/
configuration/configmap/, accessed: October 30th, 2021.

[38] “Helm: The package manager for kubernetes,” https://helm.sh/, accessed:
October 30th, 2021.

[39] “The apache incubator,” https://incubator.apache.org/, accessed: October
31th, 2021.

[40] “Couchdb,” http://couchdb.apache.org/#about, accessed: October 31th,
2021.

[41] L. P. Warner Onstine, “What is couchdb and why should i care?” https:
//www.infoq.com/articles/warner-couchdb/, jul 2012, accessed: October
31th, 2021.

[42] “Apache kafka,” https://kafka.apache.org/, accessed: October 31th, 2021.

[43] B. Marr, “What is kafka? a super-simple explanation of
this important data analytics tool,” https://bernardmarr.com/
what-is-kafka-a-super-simple-explanation-of-this-important-data-analytics-tool /,
accessed: October 31th, 2021.

[44] M. Thoémmes, “Squeezing the milliseconds: How to make server-
less platforms blazing fast!” https://medium.com/openwhisk/
squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e995:
april 2017, accessed: October 31th, 2021.

142

https://appfleet.com/blog/top-10-container-orchestration-tools/
https://appfleet.com/blog/top-10-container-orchestration-tools/
https://etcd.io/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://medium.com/swlh/kubernetes-services-simply-visually-explained-2d84e58d70e5
https://medium.com/swlh/kubernetes-services-simply-visually-explained-2d84e58d70e5
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://helm.sh/
https://incubator.apache.org/
http://couchdb.apache.org/#about
https://www.infoq.com/articles/warner-couchdb/
https://www.infoq.com/articles/warner-couchdb/
https://kafka.apache.org/
https://bernardmarr.com/what-is-kafka-a-super-simple-explanation-of-this-important-data-analytics-tool/
https://bernardmarr.com/what-is-kafka-a-super-simple-explanation-of-this-important-data-analytics-tool/
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0
https://medium.com/openwhisk/squeezing-the-milliseconds-how-to-make-serverless-platforms-blazing-fast-aea0e9951bd0

[45] “Creating and invoking docker actions,” https://github.com/apache/
openwhisk/blob/master/docs/actions-docker.md, accessed: October 31th,
2021.

[46] “Creating and invoking python actions,” https://github.com/apache/
openwhisk /blob /master /docs/actions-python.md, accessed: October 31th,
2021.

[47] “Creating and invoking go actions,” https://github.com/apache/
openwhisk /blob/master/docs/actions-go.md, accessed: October 31th,
2021.

[48] “Openfaas: Serverless functions, made simple.” https://www.openfaas.
com/, accessed: October 30th, 2021.

[49] “Introduction to openfaas pro,” https://docs.openfaas.com/openfaas-pro/
introduction/, accessed: October 30th, 2021.

[50] “Faas-netes: Serverless kubernetes controller for openfaas,” https://github.
com/openfaas/faas-netes, accessed: October 30th, 2021.

[51] “Openfaas: Auto-scaling,” https://docs.openfaas.com/architecture/
autoscaling/, accessed: October 30th, 2021.

[52] “The go programming language,” https://golang.org/, accessed: October
30th, 2021.

[53] “Error loading shared library 1d-linux-x86-
64.50.2: on alpine linux,” https://dustri.org/b/
error-loading-shared-library-1d-linux-x86-64s02-on-alpine-linux.html,
accessed: February 5th, 2022.

[54] A.-L. Barabédsi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. [Online].
Available: https://www.science.org/doi/abs/10.1126 /science.286.5439.509

[55] S. Brin and L. Page, “The anatomy of a large-scale hypertextual web
search engine,” Computer Networks and ISDN Systems, vol. 30, no. 1, pp.
107-117, 1998, proceedings of the Seventh International World Wide Web
Conference. [Online]. Available: https://www.sciencedirect.com /science/
article/pii/S016975529800110X

[56] “The academic paper that started google,” https://blogs.cornell.
edu/info2040/2019/10/28 /the-academic-paper-that-started-google/, octo-
ber 2019, accessed: February 5th, 2022.

143

https://github.com/apache/openwhisk/blob/master/docs/actions-docker.md
https://github.com/apache/openwhisk/blob/master/docs/actions-docker.md
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://github.com/apache/openwhisk/blob/master/docs/actions-python.md
https://github.com/apache/openwhisk/blob/master/docs/actions-go.md
https://github.com/apache/openwhisk/blob/master/docs/actions-go.md
https://www.openfaas.com/
https://www.openfaas.com/
https://docs.openfaas.com/openfaas-pro/introduction/
https://docs.openfaas.com/openfaas-pro/introduction/
https://github.com/openfaas/faas-netes
https://github.com/openfaas/faas-netes
https://docs.openfaas.com/architecture/autoscaling/
https://docs.openfaas.com/architecture/autoscaling/
https://golang.org/
https://dustri.org/b/error-loading-shared-library-ld-linux-x86-64so2-on-alpine-linux.html
https://dustri.org/b/error-loading-shared-library-ld-linux-x86-64so2-on-alpine-linux.html
https://www.science.org/doi/abs/10.1126/science.286.5439.509
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://www.sciencedirect.com/science/article/pii/S016975529800110X
https://blogs.cornell.edu/info2040/2019/10/28/the-academic-paper-that-started-google/
https://blogs.cornell.edu/info2040/2019/10/28/the-academic-paper-that-started-google/

[57] “Squiggle library,” https://github.com/Benjamin-Lee/squiggle, accessed:
February 5th, 2022.

[58] “Gnu operating system: Gnu bash,” https://www.gnu.org/software /bash/,
September 2020, accessed: February 6th, 2022.

[59] “awk — linux manual page,” https://man7.org/linux/man-pages/manl/
awk.1p.html, accessed: February 6th, 2022.

[60] “top — linux manual page,” https://man7.org/linux/man-pages/manl/
top.1.html, accessed: February 6th, 2022.

[61] M. Galarnyk, “Understanding boxplots,” https:/ /towardsdatascience.com/
understanding-boxplots-5e2df7bcbd51, september 2018, accessed: Febru-
ary 6th, 2022.

[62] “Gin web framework,” https://github.com/gin-gonic/gin, accessed:
November 1st, 2021.

[63] “The go blog: Defer, panic, and recover,” https://go.dev/blog/
defer-panic-and-recover, accessed: February 2nd, 2022.

[64] “Openwhisk command-line interface wsk,” https://github.com/apache/
openwhisk-cli, accessed: February 3rd, 2022.

[65] “Viper: Go configurations with fang,” https://github.com/spf13/viper, ac-
cessed: February 3rd, 2022.

[66] “Github repository of cobra,” https://github.com/spfl13/cobra, accessed:
February 3rd, 2022.

[67] S. Chen, C. Delimitrou, and J. F. Martinez, “Parties: Qos-aware
resource partitioning for multiple interactive services,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’19. New
York, NY, USA: Association for Computing Machinery, 2019, p. 107-120.
[Online|. Available: https://doi.org/10.1145/3297858.3304005

[68] V. Satopaa, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a "kneedle"
in a haystack: Detecting knee points in system behavior,” in 2011 31st
International Conference on Distributed Computing Systems Workshops,

2011, pp. 166—-171.

144

https://github.com/Benjamin-Lee/squiggle
https://www.gnu.org/software/bash/
https://man7.org/linux/man-pages/man1/awk.1p.html
https://man7.org/linux/man-pages/man1/awk.1p.html
https://man7.org/linux/man-pages/man1/top.1.html
https://man7.org/linux/man-pages/man1/top.1.html
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://towardsdatascience.com/understanding-boxplots-5e2df7bcbd51
https://github.com/gin-gonic/gin
https://go.dev/blog/defer-panic-and-recover
https://go.dev/blog/defer-panic-and-recover
https://github.com/apache/openwhisk-cli
https://github.com/apache/openwhisk-cli
https://github.com/spf13/viper
https://github.com/spf13/cobra
https://doi.org/10.1145/3297858.3304005

Chapter 8

Appendix

1 PID Controllers

A PID Controller or propotional-integral-derivative controller is a control
loop mechanism employing feedback that is widely used in industrial control
systems and a variety of other applications requiring continuously modulated
control.

P Ke(t)
.
AE) S T B 65) LN T
- +
D K%

Figure 8.1: Block Diagram of a PID controller
1

Let y(t) be a measured process variable of a process (output) and r(t) be
the desired setpoint (input). Then, the open-loop control function in the time
domain can be described by the following formula:

de(t)
dt

, where e(t) = r(t) — y(t). The parameters K, Kp, Kp are called gains and
each one has a specific purpose:

u(t) :Kp'e(t)+K['/()t€(T)dT+Kp-

o Kp: Proportional gain.

o K. Intergal gain. It uses, of course an integral, which in practise is
a summation of past values (the history of the system). Its results are
sensible when there is a continuous error for a significant amount of time.

Thttps://commons.wikimedia.org/wiki/File:PID_ en.svg

145

When the error is eliminated, the integral term will cease to grow. This
will result in the proportional effect diminishing as the error decreases.

o Kp: With the derivative of the error, it tries to predict the future of the
system by watching any tendency for change, the rate of change.The more
rapid the change, the greater the controlling or damping effect.

Similarly, the transfer function (open loop) in the Laplace domain can be
written as follows (initial error value is considered zero e(0) = 0):

K
U(s) :KP+SI+KD-3
Thus, the close-loop transfer function can be written as:
14+ U(s)-G(s) R(s)

, where G(s) is the plant transfer function (the natural function of the sys-

tem), Y(s) and R(s) the laplacian transformation of the output and input
respectively.

1.1 Proportional Term

More or less, it defines the responsiveness of the system. The output that
it produces is proportional to the error values. This means that wrongly large
values of Kp may result in instability, while wrongly small values may result to
a weak system sensitive to external noise.

1.2 Integral Term

Usage of this type of control aims accelerates the movement of the process
towards setpoint and to eliminate an error called steady state error, which is
nothing more than the difference between the desired final output and the actual
one:

lime(t) =€
Faos () steadystate

The physical meaning of the reason why the integral term is best suited
for this is simple. Imagine a test case where the system has reached a point
very close to the desired state. The error is small and thus the proportional
contribution is small. In addition, if the rate of change of the error is zero, the
derivative term also is unable to contribute for the correction.

Potential drawbacks to its usage is overshooting the desired state as it sees
only the past and ignores the present.If this behaviour is dangerous for the
system, the integral term must used with caution.

146

1.3 Derivative Term

The derivative term predicts system behavior and thus improves settling time
and stability of the system. Maybe the most difficult gain to tune and it is never
used by itself. However, it is the only one that decreases overshooting effect.

147

	Περίληψη
	Abstract
	Ευχαριστίες
	Acknowledgments
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Κυβερνήτης
	Apache OpenWhisk

	Δυναμική Διαχείριση Πόρων σε Αρχιτεκτονικές χωρίς Διακομιστή
	Μαθηματικοί Φορμαλισμοί & Ορισμοί
	Προτεινόμενη Λύση: Ρολόι Ακολουθίας

	Αποτελέσματα & Αξιολόγηση
	Πειραματική Διάταξη
	Σύγκριση OpenWhisk & Ρολογιού Ακολουθίας
	Ερμηνεία Αποτελεσμάτων & Παράδοξα

	Σύνοψη & Μελλοντική δουλειά
	Σύνοψη
	Μελλοντική δουλειά

	Introduction
	Cloud Computing
	Infrastructure as a Service (IaaS)
	Platform as a Service (PaaS)
	Software as a Service (SaaS)

	Serverless Computing: Is it the future?
	Microservices vs Serverless

	From Monolith to Workflows
	FaaS as a programming model
	Latency as a QoS metric

	Thesis Overview

	Related Work
	Metrics Collection
	Deathstar Bench
	Other Approaches

	Resource Management in serverless computing
	Llama
	FaastLane

	Our Approach

	Background
	Cloud, Virtualization and Containerization
	Kubernetes: A Container Orchestration Platform
	Kubernetes Architecture
	Kubernetes Objects
	Helm & Helm Charts

	Apache OpenWhisk
	General Information
	OpenWhisk Architecture
	Action Invocation's Steps
	Actions' Runtime
	Special Topics

	OpenFaas
	The Go Programming Language

	Motivational Analysis & Observations
	Experimental Infrastructure
	System setup
	Benchmarks Suites
	Monitoring & Metrics Collection Mechanisms

	Observing Target Latency
	Impact of Resource Contention
	Impact of Cold Starts
	Impact of Concurrency & Queueing Phenomenona
	CPU Quotas Affection

	Sequence Clock: A latency targeting tool for serverless function sequences
	Mathematical Modeling & Problem Definition
	Proposed Solution: Sequence Clock
	An Overview of the Sequence Clock's Architecture
	Deployer
	Sequence Controller
	Watcher Supreme
	Watcher
	Resource Distribution Algorithm
	Conflicts Policy
	Regulation Mechanism

	Sequence Clock CLI
	Overview
	Architecture

	Evaluation
	Experimental setup
	Abstract Analysis
	Technical Configurations

	OpenWhisk's Analysis
	99-th Percentile, Mean & Time Latency Extraction
	Time Latency's Distribution per Sequence & Function
	Time Latency across Time
	Violations' Analysis
	Resource Utilization Monitoring

	Comparing Dummy SC & SC with OpenWhisk
	Generic Sequences's Analysis
	SeBS Sequences' Analysis
	Causes of Failure
	Dummy SC Superiority Paradox

	Conclusion and Future Work
	Summary
	Future Work
	Development Scope
	Research Scope

	Appendix
	PID Controllers
	Proportional Term
	Integral Term
	Derivative Term

