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Arnayopebeton n aviypagt, anodrixeuon xou Slovopr] Tne tapovoag epyactag, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
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ITepiindm

H Ontixonoinom Iotoplog eivon éva npdogata tpotadéy tedfBinua tTexvnThc VoNuooivng mou cuVBULALEL TEOXAY-
oelg and Ta medla TNE GpaoNe UTONOYIGTWY, NG ENelepyaolas PUOXTC YADOGCUS Xol TNG YEVVNTIXAC TEYYNTAS
vonpoouvne. O otdyoc elvan va dnpovpyndel éva chotnua mou vo mopdyet o oxoloudior exdvey and Lo
"oTopla" eloddou mou amoteheiton amd mPoTAoE PuUOLXE YAGOGUG 1 GAAN oelplaxt| TAnpogopia. Ol exdveg
TEETEL VAL AVTIOTOLYOUY OTLC TpoTdoelc o mpog wio, vor efvon ixavomomnTind peaMoTIXEG %o VoL SLTNEovY Lot
alonon cuvénelag xou oelploxic Tpoddou. Autd to medPinua oyetileton otevd e to nedla TopUYWYNE EXXOVAS
and xelyevo xou Blvieo and xelpevo.

H epyasia mou ewodyet to mpdfinua [29] npoteivel enione tnv mpdTn apyLtextovin| Tou to npooeyyilel: éva
Fevynuxéd Avtayoviotxd Aixtuo (GAN), tou onolou mponyeitan éva oyfuo xwdixonolnone tne o topliog Paoto-
uévo ot Avadpouixd Nevpwvixd Aixtua (RNN). O evowpatouéves npotdoeic tpopodotolvton Slaboyind ot o
oTolfa avaBEopXdY Lovadwy woll ue ohOXANEo To VONUITIXG TAAioLO ELGOB0U, YIoL TNV TOEUYWYT] SLIVUCUETLY
ocuvihxng ye enlyveon tng lotoploc. Autd ot cuvéyela TapéyovTal oe €va BixTuo druLoupYiag EXGVWY Yiot TNV
napaywyn e oxorovdiog ontixononone.

Ye auth v epyooio tepopatiloyacte pe mopodlayés oto apyxd dixtuo pe Bdorn Tic mpdogateg egehilelg
otouc topeic tne dnwovpyiag exdvoc Ld cUVIRXN xou peToywYhS axoloudiog oe axohoudio (evalhoxtixde
TPOTOC OVTIETAOTIONS ToL dtou mpoPAfuatoc). Anhady yenowonotolue évay Transformer Encoder [54] yio
VO XWOXOTOCOLUE To vonuatixd mhalolo tne totoplog xan pio evnuepwpévn doury GAN nou Baotleton oty
apyLtextovixh tou povtéhou SAGAN [65] yia mo otadeph exnaideuon xou BEATIOUEVY ToLdTNTA EXOVAC.

ITpotelvouye eniong 6Uo VEoug unyaviopols Teocoy e Yiol axohoudlee eixdvwy, eunveucuévol and tov Trans-
former Decoder, yio vo Bondfioet 1o dixtuo vo udidel Tig e€apTHOEIC YoEAXTNEIOTIXWY GE OAN TNV oxohoudia xou
vo BEATIOOEL TN cuvoy 1] oTo TopayOuEvo anotéhecua. Aol meplypddouue to apyd mAoioto, yetoBdAhouue
évay aptiud amd auTtée TIC ToEOUETEOUS Xal ToPOLCLELOUUE Ta EVRHUATE Hoc ME TNV eATida Vo Tpooeyyioouue
UL ETLTUYNUEVY apyLTEXTOVIXT] TeEAeuTalog Teyvohoyiag yio Tnv Ontixonoinon Iotoplac.

AgZeig-xhetdid — Tevvnund Avioywvietind Aixtua, Ontxonoinon Iotopiog, Anuouvpyio Ewdvoc arnd
Kelpevo, Anuiovpyla Bivteo and Kelyevo, Metaywyr axohovdioc oe axohoudia, Transformer, ITpocoyy

vii






Abstract

Story Visualization is a recently proposed Artificial Intelligence task combining challenges from the fields of
computer vision, natural language processing and generative AI. The aim is to create a system that produces
a sequence of images given an input "story" consisting of natural language sentences or other information
elements. The images should correspond to the sentences one-to-one, be satisfyingly realistic and maintain
a sense of consistency and serial progression. This problem is closely related to the fields of Text-to-Image
and Text-to-Video generation.

The paper introducing the task [29] also proposes the first architecture tackling it: a Generative Adversarial
Network preceded by an RNN-based story encoding scheme. The embedded sentences are successively fed
into a stack of recurrent cells along with the entire input context, to produce story-aware conditioning vectors.
These vectors are then provided to an image generator network to create the visualization sequence.

In this thesis we experiment with variations on the original network based on recent advances in the fields of
conditional image generation and sequence-to-sequence transduction (another way to view the same task).
Namely we use a Transformer Encoder [54] to reason about the story context and an updated GAN structure
based on SAGAN [65] for stabler training and improved image fidelity.

We also propose two novel attention mechanisms for image sequences inspired by the Transformer Decoder,
to help the network learn feature dependencies across the sequence and improve consistency in the generated
storyboard. After describing the initial framework we vary a number of these parameters and present our
findings in hopes of approaching a successful state-of-the-art Story Visualization architecture.

Keywords — Generative Adversarial Networks, Story Visualization, Text-to-Image Generation, Text-to-
Video Generation, Sequence-to-Sequence Transduction, Transformer, Attention
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Euyaplotieg

Ye enflonuo eninedo Yo ek Vo euyaELoTHOW TOV xVELo 2TAUOU xou Toug xuploug Mioha xon AAeEovdpidr yio
Ty moAUTIY Bordeio Toug oty exnévnon aUTAC TS Simhwpatixnc, xan TN Moagla Avunepoalou yia tn otevy
GUVERYAOTO UAC XU TNV AVEXTIUNTY CUVELOQORA TNE xord” 6An TN Bladxacia. Euyapeiote enlone to GRNET yua
TNV TUEOY T TV UTOAOYIOTIXWY TOp®Y Yot TNV SledorywyY| TWV TELOUUTwLY.

Yo o SaxpUBpeyta, VAW VoL EUYAPLETACK TN UNTEEA XAl TOV TUTERA LOU Yiot OAT) TOUS TNV arydmn xou oo TAplén
oe 6hn pou TN otablodpoula. Euyopiotd enlong toug ouuudyoug pou oto IHapadooloxd, yio Tic XUAEC CTIYUES
mou {Hoape Ta Ypdvia gog autd, xadoe Eextvioaye poli xou Byhxope pall ahadBntol and v dAkn mhevpd. Téhog
V€AW Vo EUYAPLETHOW TOUG UTOAOLTOUE PIAOUE HoL, Toudleolg xal QoLTNTLXoUE Yol ywelc autole dev Yo Huouy
tinota an’ doa elpon GruEpAL.

Todxac Nuxdraog, NogufBplog 2021
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Chapter 1

Extetoapevn Ilepiindn oto EAAN VX



Chapter 1. Extetapévn Ieplindn oto EXAnvixd

1.1 Oewentixd YTroBadeo

H teyvnt vonpooivn éxel npoywpenoel onuovtnd and Ty ep@dvion tne utoroytotixic Yewploc Tou Alan Turing
[10] xan toug mpdtoue Turing-tAipelc teyvnTols vevpdves [32]. Autd nou xdmote anoteholoe o npooTddelo
evomolnong Twv Yodnuatixdy xdtw and éva eviaio Yewpntind mhololo €yel yetatpanel tig teheutaieg dexaetieg
oty emdlwén e xatavénone, poviehomoinone xa unépBaone tne avipodmivng xavotntoc oe xdde topéa. H
pnyevier) pdidnom, xon tor teheutoda yeodvio 1 emtuyio e Bodidic udinone, wog enétpedoay va To SNUoveYHooUUE
CUCTAHATA TOU ETUTUYYAVOUV EVIUTWOLOXS OTOTEAECUATO avIpOTLYOU X X0l UTER-AvIpOTLYOU ETUTEBOU OTIC
diepyaoiec Tic onolec 0 eyxépahde poc éyel e€ehyVel vo extelel.

‘Eva and 1o mo onpoavtixd medla épeuvag tne TeXvNTAS Yonuoouyng anotelel 1 6paot) unoroylotodv. H dpaon
UTOAOYLO TV EVOL 1) EAETY) CUCTNUATWY OV AMOCXOTOUV Y TUEVOUTGOUY X0l VoL LOVTEAOTIOLCOUY YUEAX TNELO-
T exovog oe diepyaoies mou oyetilovton e Ty avlpdnivny ot avtiindn. Awypovixa, ov e€ehi€elc oTov
Touéo autd 0dynoav oe ToMAEC onuoavTixés xouvotopies, 6nwe VPnAic axplBetac talvéunon ewmdvwy [11] xau
aviyveuon avtixelévmv[61], xodoe xar onuavtiés Tpobddous atov Topéa Tne TEXVATAC vonuoosivng uyelog, Tou
untoBondd tnv wteixd didyvwon xaw Yepaneia (66, 49, 2|.

1.1.1 Tevvntxy Ilpocéyyion

Eva auth 1 toivountins mhevpd Tng oTaTlo A pdinong elde v ep@avion TOAGDY ETTUYNUEVGDY HOVTEAGY
¢ tehevtaieg dexaetieg, dev unopel va eimwiel To Blo yia TN Yevxd mo dvoxoln yevvnuixy mpocéyyion. H
povtehomoinot cOVIETWY XATAVOUWDY SEBOUEVWY, OIS ElVaL 1) PUOLXY) YADCOA 1) Ol pEXMOTIXEG ElXOVES, BlalTERY
ot Padud vhomoinong evée GUGTHUNTOC xavol Vo Ttaedyel véo Selypata Tou QalvovTal TeleTixd ot évay dvipwno
TOEOTNENTY TUPOVGLALEL (Lot OELRd omd TpoxhNoeLs, oL omoleg enlong elvon ueTafBAnthc duoxohiug avdloya Ue Tov
010 TV dedopévwy. Koadog n andédoorn tou ulixod unoloyiotdv (hardware) Bektidhveton cuveY®S xou Ta
vevpwvixd dixtua yivovton mo Podid xon mo meplmhoxa, 1 TEOCEYYLON WA CUYVE TOAUTEOTUXAC XATAVOUNC
OE QUTOUC TOUS YWpEoUC Jedouévwy LPniwy dwotdoewy €xel eCelyVel oe epeuvnTixf meployy avlovéuevou
EVOLUPEQOVTOC.

H mpdodoc npo twv tehevtainwv eTdv Atav apyn, we dixtua 6w to Restricted Boltzmann Machines [48] [14,
§20.2] va anodewviovton actodf oty exnaldeuo, un TEoXTXd OTN YEHON XU OVETOEXY OF AMOTENECUTAL
H epgdvion twv Variational Autoencoders (VAEs) [24] xou twv Generative Adversarial Networks [15] éyel
emupépel YeYdhn Beltinon oe diepyaoies dnwe 1 mopaywy emxdévey dvev cuviixne [22, 23] xou und cuvdrixn
[57, 58], xadde xou 1 moparywyy Piveo [45].

Figure 1.1.1: Ewdvec nou napdyovron and to StyleGANv2 [23]

1.1.2 Tevvntuxd LovtéAa UTO CLUVUXT

Yty mepintwon odvieong dedouévny und cuvdixm, €xel xatafinidel ueydhn tpoomdielo yio To OYESLIOUS UOV-
TEAWY YLoL TN Onulovpyia OTTIXWY dEBOUEVWV Topayduevwy and xelpevo. Evag aprdudc epyaoiidyv Tou Topoucid-
Couv eviunwaolaxd anotehéouato €)ouy SLohadio Tel oe BLaPOpETIXES TUPUANAYES, HUPTUROVTOC U Hoxpd Topeld
apyrtextovixrc efepedvnone. Ou Reed xau cuvepydtee [42, 43] napouciooay pior mpdiun opyttextovixy Tou
EMNEENCE TOANS UETAYEVEC TERU OYEDLA, YENOLLOTOLOVTAS Evay VEo xwdixormoint) RNN-CNN yia to xelpevo xou
TUPAYOVTAS GUECTA ELXOVES OTNV TEAXY ToUg avdAuoT. H otabiond) xApdxwon tev yapaxtnelo Tixey dnwe yive-
tou ano to StackGAN [63] mou napousiacay o Zhang xou oL GUVERYETEC TOU, WOTOXNOAY ETUONE TOAAATAOUS
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1.1. Oewpnuxd YTroBadpo

emtuyNuévoug andyovoug [64, 62, 67]. TrAplay oxdun xou oplopgéva ey yelpfuata tpog T dnulovpyia Bivieo and
xelyevo [28], av xou 0 Touac NS TopaywYAS PIVIED elvor oxdpo O TEMWO GTEBI0 ot TOAD O AMOUTNTIXOS,
EMOUEVLS Bev Exouv axdur emiteuydel aloonueinTo anoteléopata.

This bird has wings This bird has wings This is a grey bird ~ This bird has a short This bird hasa This particular bird This bird 1s a lime  This yellow bird
that are grey and ~ that are black and  witha brown wing  brown bill, a white  white throat and 2 has abelly thatis  green with greyish  has a thin beak and
has a white belly. ~ has a white belly.  and a small orange eyering. and a dark vellow bill and vellow and brown.  wings and long jet black eyes and
beak. medium brown grey wings. legs. thin feet.
crown.

GAN-INT-CLS

StackGAN

AttnGAN

DM-GAN

Figure 1.1.2: X0yxplon poviéhwy mopaywyhc emxdvos and xelyevo [67]

1.1.3 Omrntuxonoinon wctopiog

Ta 800 mpooavagpeptévta Vépata eUnvEoLY €va PuUOoS evdldueco oto véo Ttopéa tne Omntixonoinone totoplag
(Story Visualization - SV), o omolog meptypdpeton and toug Li et al. [29] we 1 dnwovpyio woac axohoudiog
exovev Tou Pooileton oe pla cUVTOUN 16 Toplo YE TEOTACELS PUOLXAS YAOGGOC 1 GANES ONUAGLONOYIXES TTANEO-
poplec. H epyaocia daveiletoar and tov touéo tng olvieong emxovag and xelyevo otny emdlwén e aviiototylog
XEWEVOU-EXOVaG, xadde xou tng ouvieong PBivico and xelyevo Aoyw g emlATnong ouvenelog PETUED TwY
xapé. Eni tou napdvtoc, Myee Behudoeic éyouv npotadel yia autéd to dhoxoho Yépa [27] xou undpyel ENewdn
XATEAANAOY GUVORWY BeBopévev xou LedddwY aflohéynong.

1.1.4 Axolouvdia o axolouvIia

‘Evoc dhhog tpdmog yia vo del xavelg Ty omtixonoinor totoplag elvar ¢ TEOBANUA UETAYwYhS oxoloudlag
oe oxoloudlo, opola ue TNV autoUaTy UeTdppaoy. Ta yovtéra petaywyhc oaxoloudlac oe axoloudlo elvan
€voe Touéas LEAETNG Tou Tou xohUTTeTon Xuplng and v Enegepyacia uoiic Ihédooog (Natural Language
Processing - NLP), ue tnv eotioon va xiveitan otoblaxd and tor oavadpouxd veupwvixd dixtua [51, 8] npoc povtéha
nou Pacilovta oe unyoviopolc npocoync [5]. Auth n téom xopupddnxe pe tov Transformer [54], éva onpavtind
dixtuo mou extehel epyaoiec NLP ypnowwonoidvtag amoxhetotixd unyoviopols tpocoyfc. Ané v egpdvior Tou,
o Transformer €yel npotyundel otny €peuva Yo TNV amhr) TOL TEOGEYYLOT), ATOBOTIXY| EXTOUBEUCT) X0 EVTUTLGCLAXS,
anoteréopata. IIoAAd Sodedouévo povtéha €youv emextadel mdvew otov opyixé Transformer yio awtdpotn
petdppaon [59] xou povtehonolnon yhdooag (12, 31, 41], oupnepihauBavouévou tou GPT-3 [6], evoc yoviéhou
puoxic YAOOooog avd va exteléoel ula mowahia epyaoldv oe oyedov avipdmvo eninedo. Transformers xou
dhhot unyaviopol mtpocoyfc €youv enlong yernoionondel oe EQUEUOYES GpAOTC UTONOYLOTOV 6Tou elval txavol
VoL T0 BEATUO60VY UTdpyovuoes tpoceyyioels, wodaivovtag mohinhoxeg e€opthoels mou ol cuvridelg uédodol mou
Baoilovton otn cuvEMET Bev xatagépvouy va anotundoouy [39, 65].
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd

Elvar 0 cuvbuooudg autdv Twv Tpdo@atwy Teoddwy MOU EVETMVEUSHY TNV TEOCEYYLOY Yog 0TO €pYO0 TG OT-
Tixomolnong Lo toplag, Ue TNV eANBO VoL GUVELG(PEPOUUE GE €Vl LOVTEAO TTOU UTOPEL VAl AMOTUTOEL TIC THY TOQOLY-
OY1 axoAOLILOY EWOVKV XAl THY AVTIETOIOT YAWCOIXAG-0TTXAC TANEOQOoRloC.

1.2 3Xyetixéc ApYLTEXTOVIXES

Ye autd 10 xepdhono e€etdloupe teelg opyttextovinés GAN nou Yeyehltdvouy T cUVELGPopd Woc. AuTd To Yov-
TENL €Y0UY OYEBIACTEL Vi DLUPOPETIXES EQPUPUOYES TORAYWYNG ELXOVIG UTO GUVITXT], dAAd GUVOMXE TOREYOUY
o Paoind oTolyelor Yol TNV xaTAvONoY Tou xe@ohaiou 6, 6Tou ToEoLCLdloupE TIC WOEEC Wog Yo Eval oUYYEOoVO
GAN ontxonoinong otoplag mov Booiletow oty npocoy.

To StackGAN elvar évor onuavtixd opdonuo Yo T dnutovpyla exdvoc and xelyevo mou €yel ennNpedoel TOANES
epyaoiec yio To Véua 1600 and dnodm dourc oo xan exnadeutixrc npocéyyione. ‘Etol, To Yewpolye puoxd
npoxdtoyo tou StoryGAN, Tou TpwTéTUTOL PoVTENO omTxoTolnoNS o Toplag, Tou €xel davelotel oe yeydho Pa-
Y6 and autéd. Emnhéov to Self-Attention GAN (SAGAN) napouscidleton v¢ €vo TpdoPato LOVTENO TapaYWYHS
EXOVOY UTO GLVIHXT TTOU YENOWOTOLEL VEGTEQU ORYLTEXTOVIXG YUQPUXTNEIO TIXA Xol Unyaviololg o tadeponoinong
e exnaldeuog, mou UYeTOOVTOL EUPEWS amtd VELPWWIXE BixTua Tar TeheuTalal Ypovia. Enlong yenouwonotel évay
UNYOVIoUS TEOCOYHC MoV EVETVELSE O PEYAAO Pordud Toug Bxolg HAG XAUVOTOUOUS UNYAVIOMOUE YLol THY €X-
padnom YoEaXTNEIC TIXWY OE axohoudles EdOVWLY.

1.2.1 StackGAN

Hponyoluevee epyooiec i T dnwoupyio exdvwy pe Bdorn to xelyevo [42, 43| npoonddnoav vo nopdEouv
exoveg Thpoug avdiuong ancudelag, e anoTéAoeua To OElYHOTA VO UTOAELTOVTOL GE MEWCTIXOTNTO XUl AET-
topépeta. To StackGAN, nou mpotddnxe and touc Zhang et al. [63] nétuye ta npdta onpovtxd Pehtiouéva
ATOTEAEGUATA GTNY TORAYWY T EXOVAS ol XEUEVO, DNULOVEYWOVTAS O TABLAXE TNV TEAXY) ELXOVA UE TOAAUTAS O Td-
B avtarywvio tinAc exnaldeuone. Apywd, dnuovpyelton pa edva younhic avédhuone 64x64 (Stage-I GAN),
OMOTUTOVOVTOG Tl EVPUTERA YOROXTNELOTIXG TNS EXOVaC UE Bdom To XElUEVO Xou GTN GUVEYELN EVAS BEVTEPOS
yevvitopoc (Stage-II GAN) Boowletar oty medtn exdva yior Vo dnuiovpyrioel anotéheoua ugmhfic avdiuong
256x256. Ateuxpiviotéc exnoudebovton xat oto 800 otddla. H Bia epyaoio tpdtelve évav véo tpdmo enadénong
0V dedouévwv exmaidevong, mou ovopdletar Enadinon Luvidxne.

I Conditioning | |
| Augmentation (Ca) | I
Text descriptiont  Embedding | Ha | |
B . I &
This bird is grey with |
white on its chest and —» | . {0, 1}
has a very short beak | | |
| [
- I
| %o | 64 x 64 Compression and I
LNy L | Aatimages) L | seatalRenicaton
Embedding g, Embedding ¢,
M e d —_——
I | . 256 x 256 Compression and
conditioni |
onditioning i ial Replicati
: mentation > ,?%J‘j,a%; ‘ real mags Spatial Replication
| o,
______ ; &% : 4
ool 5 I s
Stage-| results e
: 10, 1}
| | E
| 16 | a
‘ ‘ 256 X256
L Stage-1l Generator G for refinement ‘ results Stage-1l Discriminator D

Figure 1.2.1: H apyitextovixn tou StackGAN.

Enabinon Tuvihixng

Ta cOvoha Sedopévwy Tou yenotwomolodvTon Yo T dnuiovpyia ewdvog and xelyevo €youv and tn @boN TOoUC
TEOPBANUATIXG Y oEOXTNELOTIXG IOV EMNEEGLOLY apVNTXE TNV exmaldeua. Ot Teplypa@és ovamdPEUX T ToREYOLY
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1.2. Yyetxée Apyltextovinéc

évar TOAU apatd GUVONO GE VoL YMORO YOPUXTNELOTIXWY VPNADY Do TAoEWY, XooTOVTIG TNV TPOCEYYLOT| UAC
xotavouric TiavoTATLY 0T0 ev AdYw clvoho BUoxoAr. T va yivel o ytpog opiopol mo cuveync xou vo uddet
To dixtuo va elvon abpavéc oe Wxpéc Blaxupdvoelc VEoNe 0TOV YMPO AVITAPdoTIONS, TEOTEIVETAUL VoS VEOC
TEOTOC AOENONG TV BEBOPEVLV:

Avtl vo exnandeuter to GAN oe wa avomopdoTaon Tou xelwévou ¢y, AauBdveton éva tuyaio deltypa ¢ and pla
ToAudIdo Tty yxaouotavh xotovoud N (u(er, B(pr))) te wéoo 6po u(pr) xou o daryvio mivaxa cuVBLIOUAVoNS
Y(pr), appbTERA CUVIPTACELS TOV aVIapac Tdoewy Tou xelwévou. To didvuopa é yenotweler we YeTofAnTh
oV xng, eved ol (Bleg ol CLUVAPTACELS LUAOTIOLOUVTOL ¢ VEUPWVIXY BixTua UE PETUBANTEC TUPUUETEOUS, EX-
noudeupéva tapdhinia ye to undroito StackGAN. T vo e€oopaliotel 1 ogoldTnTa TNS avamopdotaone, N
anoxion, Kullback-Leibler petal tne npooeyyilopevne Gaussian xatovounc xow g xavovixic npootideto
OTY CUVHETNOT AMWAELIC TOU YEVVHTOPA 0S 6p0¢ oudionolnong:

DN (@), Z(en) IN(0, 1))

Autéc o bpog Bondd oty anoguyy| unepmpocoppoYrc Slopéoou expdinone wog "ouuntuypévne" onueloxic
XOTAVOUNC 1) ULOG XATAVOUNC TOU OmOXALVEL Tdpal TOAL amd TNV XAVOVLXY.

1.2.2 StoryGAN

Ou Li et al. ewofyayay to npdinua e ontixonolone wotopiog [29] we @uoxd Bdueco YETAE) TV EPYUOLOV
e dnulovpyloc ewodvag and xelpevo xou Blvteo and xelyevo. O oxomnde elvan va dnuovpyrdel pio axoroudio
EXOVOY TIOU EE0ETAOVTOL OO €VOL GUVOAO TEOTAGEWY 1oL oy Nuatilouy o cuvextix lotoplo. H Bacur Siepyaoia
Eemepvd TNV anmAT| SLoBoY XY EPUPUOYT EVOC HOVTENOU XEWEVOL-EXOVIC, apol Ol TapayOueEvES EdVES ypetdleTon
VoL Blatneoly Lo alodn o) OTTIXNE Xol EVVOLOAOYIXAC GUVETELNS Xol Tpoddou. ‘Evag yevvAtopag mou dev yvwellet
To mAalolo oto omolo avixel Wia exxova Yo anoTOyEL, BlvovTag €va U1 CUVEXTIXG ATOTEAECUA.

o 1o oxomd autd ewohydn to StoryGAN, éva yevwntixd avtaymwoTixd UOVIENO TOU UTOpEl Vo Tapdyel
alknhouylec exodvac ano diadoyéc meotdoewyv. To Bixtuo yenowonolel Wia SOUY] AVUBLOUXDY VEURKVLXGY
dixtowy (RNN) nou eunotilel Tic avanapao TCES TwY TPOTACE®Y UE TANPOYOopies and TN cuvoly| totopla,
xordodnywvTac TN dnulovpyla wiag exodvos and évay untd cuviixn Yevvrtopa eixOVoc TapdPolo aTr dour| Ue To
StackGAN xou dhhec apyttextovixée olvieone exovae ond xelpevo [42]. O yevvhtopoc G exnondedeton avtory-
VO TG pe 800 Bieuxpiotég. O Sleuxpio g emovag Diy, €xel oxomo va alohoyfioel T6c0 Yoo gaiveton 1)
eXova oe UYXELOT UE TOL TEAYUATIXE SESOUEVAL XoL TTOCO OVTATOXEIVETAL GTNY TEOTACT), EVE O SLEUXEWLOTAC LOo-
toplag Ds; exnandedeton yiar vor Stacpailel 0 cuvEmelo UETOED TV EXOVLY, DEBOUEVOL TOL VONUATIXOU TAALGIOU.

Image Discriminator Story Discriminator
“r
Generated Sequence of @ @ @ @
Images "
aiy piy r “
Image Image Image Image
Generator Generator Generator b Generator

Full Story ___ﬁ_‘ll_\ ____Q_‘ZZ_‘ ____ﬁ_‘ﬂi, ___@:‘EI,
hyof o hyt ) har A hr_qf 3
S E> — lText2G|st:* —’lTCKtZGIStIfi':‘TEXIZGISt:_’ e - .\Text26|st:
4 - _-__I - _-__l - -.--4 _——1_.__1

A gr -

GRU

F
KL (N (p(S), diag(e?(S))||0(0. 1)) 51 &€ 53 & €y 538 €3 e sr&er

Figure 1.2.2: H 8oy tou StoryGAN.




Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Kwdixornowntyg totopiag

ITpoxewévou va avtiwetwmotel 1 aouvéyela Tou mohutomou Bedopévwv, ol Zhang et al mpotelvouv To
unyoviopd Enduinone Buvdixne. To [63] yenowwonoweitar yia v xwdxormolnon tne wtoploc. Oréxdnen
7 wtopio amewoviletow oe éva younhic dotaone dudvuoua hg pe derypoatolndlo uiog xatovoprc Gauss
ho ~ N(u(S),2(S)) 6mov 10 p xou to I elvar cuvaptioec e otoploc S. Autd 1o ddvuopa TopéyeTon
WS 1) AEYIXT XEUUUEVT] XUTACTAOT 0ToV xwdixomointy| voruatog RNN nou neptypdipetan mopaxdte.

O Blog 6po¢ xavovixonolong npootideton oTNV anMAEL YEVWATELOC:

Lxr = Drr(N(u(S), %(S))IN(0,1))

Kwdixonointhg vorpatog

Do Ty mopory oy Tou Blaviouatog cuviixng yio xdde tapayduevn exdva yenollonolelton gL oTolBayUévn doun
RNN. To xatédtepo eninedo tou RNN yenowonotel tumixée povédes GRU [9], eved to avdtepo yenotuonotel
o topodhary ) wovddwy GRU mou npotelveton and toug Li et al. ovopaléuevee Text2Gist. Autéd to Seltepo
oTpwpa elvon xou auTd Tou omolou M xpLYPY| xaTdoTao apyixoroleiton To Sidvuoua hg. Ta xdde Brua t ot
axohoudio to eninedo GRU hayfdver toopetpind 96puPoc € pall ye v mpdtaon s xou 1 €€0dog Tpopodoteito
oto en{nedo Text2Gist mou 1 cuvdudlel pe Thnpogoples Tou TpoépyovTat and to Thaloto Tne totoploc. H el
€€000¢ 0, elvan To Sidvuoua ou eAéyyel T dnulovpyio ewdvac. Av g, hy elvon ol xpugéc xatactdoec tou GRU
xan tou Text2Gist xehd avtiotoiya, To otoBayuévo RNN elvon Sounpévo wg:

it, gt = GRU(Sm €t,Gt—1)
O¢, ht = TextQstt(zt, ht—l)

O oplopde v Tpotelvopevwy xehwy Text2Gist €xel we e€ic:

2 =0, (W.ig +U.hy—1 + )

ry = o (Wyiy + Uphy—1 + by)

hi = (1= 2) © he—1 + 2e © o (Whie + Up(1: © he—1 + bp))
or = Filter(iy) * hy

To Filter(.) eivon o ouvdptnon nov avuotolyilel to ddvuoua 4 o€ €vol TOAUXAVOAIXG PilTpo Tou Yenot-
pormoteiton Yo 1x1 cuvéh&n ye Vv xatdoTtaon he, WOTE Vo CUVOUBOEL TOTUXEC XAl TEPLPERELAXES TANPOYORIES
o anoTeAsouoTiXd otn dadixacto dnpovpyloc evée Blaviouatog cuvInunc.

Atsuxpiviotic Euxoévac

O Bieuxpvio g ewoévac Diy,, tou StoryGAN Aettovpyel ol nopdpola Ye autdv Tou mpotelveton oTtny epyaocia
tou StackGAN. H uévr Sapopd elvon ott pall Ue TNy TEOTEWOUEVT] EOVO Xl TO AvVTIGTOLYO BLEVUCUA AVATEdo-
TAUONG TOU XEWEVOU, Aopfdvel emTAE0V xou ohoxAneo To mhaiclo tne wotoplog xodde elvon amopaltnto Yo TV
TAPAY WY TNS TEAXNAS EOVAC.

Areuxpivictic Iotoplog

O Aieuxpiviotic Iotoplag avamaplotd t6c0 v Lotoplor 660 xou TV mapay6uevy axohovdio exdvwy oe évay
XOLVO YPO TEOXEWEVOL Vo utoloyloTel uia Boduoroyio ogoldtntac Yetold toug.

‘Evoc  xwdiconomntic  ewdvac  mopdyer ot oelpd  amd  BloavOoHoTo  YApoxXTnElo TIXGY  Einge(X) =
[Eimg(x1), ..., Eimg(xr)] and wa exdva eio68ou X nou cuvevdvovton ot éva eviao didvuoua eved etvon évog
XWOKOTONTAC XEWEVOU XAVEL TO (BLO Yiot OAEC TIC TPOTACELS GTNY Lo Toplal S, FNULOVEYDOVTAS UL GELRY Y OPOXTNELO-
TV %EWEVOLU Eyyy(X) = [Eygi(81)s - ., Erge(s)], mou enione ouvevavovton. To tehxd peydho droaviouota
noAamhacidlovton atolyelo Tpog oTolyelo %ot TEOPOBOTOVVTAL GE €Val YRUUUXO UETACYNUATIONS, [60B0VOUOS
pE éval TATIpwS CUVOESEUEVO OTpOUA UE OLYUOELDT evepyomolon:

Dy(X,S) = o (W' (Eipng(X) ® Bt (S)) + B)

6mov D (X, S) elvon 1 tedueh Badporoyia opotdtntac nov xavovixoroteiton oe [0, 1].
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1.2. Yyetxée Apyltextovinéc

“Poraro and Crong
E> <::' ’ mT;L ch fishing together.”

@ “Poraro has a fish
% E:> <::I E,:Z:g, <::I on his fishing rod.”
% “Crong is looking at

E:> <¢1:| E.,Tx., <:I the bucket.”

Real / Fake?

Figure 1.2.3: Aoy tou Story Discriminator

1.2.3 SAGAN

To mpbogota uno cuviinn GAN yio exdvee [37, 34| gaiveton v €xouv yeyahltepn emtuyio ot exdves dmou 1
LGN XA TO YEOUO ELVOL To TLO ONUOVTLIXE YoEUXTNELOTIXG, OARS BUCHOAEDOVTOL UE T1) SOUT| TWV AVTIXEWUEVWV XAl
dMheg poxpivég e€aptioelc. To mpdPinua unopel vo anododel GTov Eviova TOmXd YoEaxXTARO TWV GUVEMXTIXOVY
pihtpwy, Tou elval 0 xVPLOC TUTOG CTEPWUATOE TOU YENOUOTOLELTAL Yia Th dnovpyia exovewy Ldniig avdhuong,
apol cLYHBWE TEOTWAVTAUL AOYW TNG UTOAOYLIOTIXAC TOUC OmOS0TIXOTNTOG.

To Self-Attention GAN [65] elvon évor povtélo mou mpoteiveton and toug Zhang et al. yio vo avtigeTwmotel autd
T0 anoTéAeoya, Ue xivnTeo 1o TEdoPaTo XoUA BNUOPIAUC TwY LOVTEAWY Tpocoy T otny encéepyacio Pualhc
Yhoooog [5, 54] xadde xou v naporywyh edvag [62, 39]. IlapdAAnha e TOV TPOTELVOUEVO UNYAVIGUS UTO-
TPOCOYNC TOL ELOAYOVTOL TOCO GTO YEVWATOPA 600 Xl GTO BlELXELVLOTY, oL cuYYpageic utootneilouv T yeron
oLYYPOVWV TEXVIXGOY cTalepontolong yio TV exnaldeuo) , 6nwe Pacpoaties Kavovixonoinon Bapdv [35] xou tov
Kavévo Evnuépnone Avo Xpovixdv Khpdxwv [18].

Movzélo

To povtého axohouvdel Ty TUTXY oY) EVOC YEVVHTORO TOU ALEAVEL GTOBLAXA TNV DLACTUCT TWY YAOUXTNELOTLXV
%O EVOC DIEUXPLVOTY| IOV T1) UELOVEL, OIS TEQLYPAPETOL XAl OTLE TOPOTAVG ORYLTEXTOVIXES. 2TO YEVVATORA, Ol
ETUXETEC BEBOYEVOV BLVUCUATOTOUYTOL, Xl ALEdvVoVTaL G avdAuoT Yio TNV Topaywyy e ewdvog e€6dou. O
BLEUXELVOTAC AoBAVEL Lol TPOTELVOUEVT] EXOVAL Yol TO avTioTolYo Bldvuoua eTxéTog, xal Topdyet éva Poduwtd
anotélecpa oo €060, TN TdavoTnTo To (VYOS EOVAC-XEWWEVOL VoL TPOERYETAL antd TO oUvoAo dedopévwy. H
abgnon xau pelwon g ddotaone extehotvton and Yroheirtixd Mrlox [17] tou petaoynuatilouy to evdidueca
YORUXTNELOTIXA TNE EMOVOE PE CUVEMXTIXA 0TpWMaTa. To MEWTOTUTO aPYLITEXTOVIXS TUAHA TOU LOVTEAOU Elval
1 HOVEBO AUTO-TEOCOY NS ToV elodyeTon Uiot Popd UeTa€d TeV TROaVIPEPIEVTOVY UTAOX VIO NHATIOHOU ot Xdie
dixtvo.

H evétnta auto-tpocoyic, epnveuspévr and 1o un tomxd poviého nou eworfiydn and touc Wang et al. [56],
hertoupyel pe ypopwx avtioTtolylon yoeaxTneloTixey ewdvag (xovdhia) ota Siovioporta ¥Aewdiod, THuhe xou
eputhaTos (Yenowortoudvtog Ty oporoyia Tou Transformer [54]).

Ytadeponoinomn exnaidsuong

To SAGAN neplopilet tn otodepd Lipschitz tou Sieuxpvoti [3] uéow Pacuatixfc Kavovixonoinone [35], woc
TEYVIXAC ToL amodedetyuéva elvan anoteeoyatixy ot otadeponoinon tng exnaldevong, EVE TUPUUEVEL UTONO-
yioTxd anoteheopotins,. Eunveuouévo and touc Odena et al. [38] otnv épeuvd Toug oyetnd ye T onuacia
NS XAAAC TEOCOPUOYTC TOL YEVVHTORA Yid oTalept] exnalBeuo, 1 Qacuatix xavovixoroinoy yenoylonoieiton
nepautépw 0To YevvATopa Yia Bedtimon tng adyxAong Tou poviéhou. H yeron tne pacpatinic Kavovixoroinong

7



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

%O Yol TOUG BUO avTITEAOUC UELDOVEL ETIONG TNV VALY XY YLOL TOANATAEG EVIUERDGELS TOU BLEUXEIVIC TN VA ETOVAA-
N, To omolo elvor yror cuVRING Tey v yia T Behtiwon tng ToldTnTag Tou Topayouevou delypatog oto GANS.

Xenowonoolvta enione Eeywptotol puduol expddinone yia to yevvitopa xou 1o dievxpwvoth (Kavovae Evnuée-
wone Avo Xpovixdv Khpdxnwv / Two Time-scale Update Rule - TTUR), wa teyvixn mou npotelvouv ot Heusel
et al. [18] v v xatamoléunon e avicoopotioc udinone mou eugavileton ouyvd oty exnaldevon GAN
peTagd Ty do dutbwy. Eivaw obvnldec va BAémouye anotedéopato youninig TolOTNTAS and To YEVVATORA Vo Ef-
vou EToEX T Yo var EEYERACOUY VRpic OTNY EXTUBEUOT] TO BIEUXEVIO TH, TTOU ONUALVEL OTL TO HOVTENO BEV CUYXAIVEL.
To TTUR emitpénet oe €vav xahd oyedlaopévo dayweloth va xwvelton tpog éva BéhTioto onuelo yenyopdtepa,
OBNYWVTOG TO YEVVATOPA VoL tapdiyel xohUTepa delypata. Auth| 1 Tpocéyylon npoTiudtal ano T XehHon SLopope-
TixoU aprduol Brudtev exnaldeuong avd emoyr yio xdde dixtuo, xadog elvon mo anodotixy and drnodm yedvou
exTéleoTg.

1.3 Omntwxonoinon Iotoplag pe Ilpocoyn

Ye auth TNy epyacia mpotelvoupe €va evnuepwuévo TAalolo Yl To TeoBinua tne Ontixonolnone Iotoplag pe
Bdon v epdvion ey Tpocoyfc Yo Ty enelepyacio axohoudlidy xol XAVOTORIES GTO GUVOPES TEOBANUAL
e dnuoupyiag edvwy. Apyixd, cuviotolue T xpfion evée Transformer Encoder [54] ¢ avuxatdotaon g
dourc RNN nou mpoteivetar and toug Li et al. yia to StoryGAN [29], yiat vor xwdixomouioet to mhaiolo tng
totoplac oto Sdvuoua cuviixng yia xdde TopoydUEVY ELXOVAL.

Q¢ deltepn oLVELTPORE, GUVIGTOUPE T XeHoN EVOS Bixtlou Topdpolo ue To SAGAN v avtaywwio T pdinon,
X0 TELRUATI{OUUCTE YE TN YENON TEOCUETWY UNYAVIOU®OY TEocoyHc Ylot TNV evioyuorn tne oxohouthaxhc
GUVETELNG X0 TEOOBOL UETOED TWV YUPAXTNELO TIXWY TWY EXOVWY ToL dntovpyolvTal. Extdg and tnv mpocoy),
Tou npoteivetar 0to SAGAN [65] (61ou oL tonodeoiec tne exdvoc cuvtidevtan pe topaxorolinon dhhwy Tono-
Yeoldv oty (Bl exxdvar), Siepeuvolye enione TV ATOTEAECUATIXOTNTO TOV UINYOVIOUMY TpOCOoYHS HETAE) TwV
exoveVY tNg axolouldiog, napduota ye tov Transformer Decoder. Avagépouye enlong Aentopeptdc tor oamoteAéo-
HOTOL TGV TELQOUATIOUMY PAC UE ToL SLApOopot TUAUOTA Yol TIE TUPAUUETEOUC oWTOV Tou TAauciou.

1.3.1 TevvAtopog

H cloodoc oto yevwiropa G mou g@aivetan oto oyfApa 1.3.1 elvon por axohroudior cupBorwy sy, mdavedg
XWOXOTOUEVDL amtd Evay xatdAAnho xwdixotonth (énwe o Universal Sentence Encoder [7], oty mepintwon
TPOTACEWY PUOKAC YADCTUS) OE JAVUCUATIXES avanapaoTdoels ¢y, t € [1,T] dmou 1o T elvar To pixoc dAwv
TV LOTOPLMY 0TO GUVOAO DEBOUEVV, X0l UTEPTHPAUETPOS TOU LOVTEAOU.

To dixtuvo doyeltar e to €€ YapaXTNELOTIXA:
o Auwavuopatiny Enduénon yio dha tar Slaviopota eloodou.

o Xpron evog xwdixononty Transformer Encoder yio Ty evowudteon oNuaclohoyixdy TANRoQoptdyY onod
v otoplo oe xdde Bidvuopa.

o Trepderypororndio xal UETACYNUATIOUOC TWV YALUXTNPLOTIXWY TNS EXOVAC UE TN YENOT UTOAELTTIXGDY
UTAOX.

o IIavn napeuBols Tov e€Xg UNyovioUeY TeocoyNg:
1. Evdo-mpocoyr, dnhadn oe xdde edva o pnyoviopds ntpocoyhc énwe npoteiveton yio to SAGAN.

2. Awr-mpocoyn: ‘Omou ta xavdha TV emdvey g axoloudiog CUUTERLPEROVTOL WS XEPUAES GTNVY
Mohuxepahnt Hpoooy?, (Multi-head Attention) tou Transformer, xou ta xAewdid, ot Tiwée xou ot
EpWTNATELS AL TPOERYOVTOL UTO TLC ELXOVES.

3. Hpoocoyh Kwdixonomtr-I'evvitopo: ‘Opota pe tny dve, aAAd oL epwTAoE TRoEpyYovTaL omd To Ol-
aviouata cuvinung, épola ue TNy tpocoy” Kwdixonomti-Anoxwdixononty otov Transformer.
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1.3. Ontuonoinon lotoplag pe Ilpocoyr

Generator

Sentence 1 } Upsampling 1

Sentence 3

Upsampling 3

Sentence 4 Upsampling 2

%%%
S Ty
Sentence 2 I Upsampling Imgge

Figure 1.3.1: T'evvfjtopog




Chapter 1. Extetopévn Iepihndn ota EAAnvid

Image
Discriminator

A

|

Repeat Replicated
L \-Lh'ex‘t Featuras

y

Image —L | Image

Drownsamplin.
{ReallFake) — L \| | Features

Sentence

Figure 1.3.2: Aweuxpiotic Exdvac
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1.4. Iewdporo

1.3.2 Aweuxpiviotric Ewxdvacg

O oxonde tou deuxpnot emdévac Diy, (Ewdva 1.3.2) eivon vo Staxpiver petald emdvwv and to ohvoro de-
BOUEVLV XL TEYVNTOVY EéVwy. T'a To ox0md auTd, YENOWOTOLEl Tal YUPUXTNEIOTIXE TOU XEWEVOU @p TNG
avtioToyne mpdtaone e wotoplac, To Thaicto (dnh. Tic dhhec mpotdoeic TN toTtoplac) xou TNV ewdva I Tpog
a€lohoynor. To mhaiolo elvon onuavtxd yia Tov Sleuxpvio Ty, eneldr] xdde exdva mou avtiotolyel oe ulo Tpo-
Taom oTNy toTopla e€aptdton amd TIC UTONOLTES Yiol VoL oynpatioel ToAAES and Tic Aentouépeieg. Avahoyioteite
To axdrouda TopadelypaTar

1. "Ilpociéote Evay x6xxvo Yetodxd x0fBo. X1n ouvéyela npocdéote Evay xitetvo xOALVDpo."
2. "M othovéta pouvotay €€w amd to mapddupo. ‘Hrov wo yadern ydta."

Yy npwtn neplntwom, 1 devteer) emdva eE0pTATAL ANO TO VONUATIXG TAA(GLO OTo 0ploTERE, EVEK GTY delTepn
TEPITTWON, 1) TEMTYN EXOVa TEENEL VoL €XEL ETlYVWOT| Tou TAouciov Tpog tal deid.

O Bieuxpiviotrc ewdvog mpooplletan vo todivourioel xde exova Eeywplotd, oyt wg Pépog tTne axorouvdiog
oty omolo. avixet. Qot6c0, dhec oL TapayOPEVES EdVES Wac loToplog aflohoyolvtor TopdAAnhaL, Yl Vo
enw@eAndolue and v napdhhnin @born tou Transformer.

To dixtuo dopéiton ye to e€rig yapoxTnELoTLXE:

o Xprion evog xwdonounty| Transformer Encoder ylo Ty eVvowpdtenon onuacloAoyixdy TANeo@opLdy and
v lotoplo og xdde Bdvuopa.

o Troderypatondion xou UETUCYNUUTIOUOC TOV YAUPOXTNPLOTIXDY TNS EXOVOC UE TN XPNHOY UTOAELTTIXOVY
UTAOX.

o IIwoavy| nopepPBory| evdo-tpocoy g, dNhady oe xde edVAL O UNYAVIOUOS TEOCOY A OTWS TEOTElVETAL Yial
w0 SAGAN.

o JUVEMXTIXO PLATEUPLOUN TWY YUPUXTNPLOTIXWY ELXOVOG Xl XEWIEVOU TAUTOYPOVA YLl Ao X0Lvo) pdinom
TV e£0pTHOEWY, TPOg TAEVOUNOTS TN TELdduC Eloddou (tpdtaoy, lotopla, exbva).

1.3.3 Aieuxpiviotrc Iotoplag

O dieuxpvio thc totoplac Dy Aettoupyel mohd Topdpota pe autéy oto StoryGAN. Xxonde tou eivan vo emBdAel
ouvoy | xou ouclao T EZEMEN xatd urixog e axohoudiog emdvey (I, ..., Ir) ye v exuddnon evée xowvol
YWPOU YORUXTNPIO TIXWY Yiol TEOTACELC Xt exoves. Ta yopoxtneiotixd tne emdvag umofBdhhovian o peiwon
delypatolndlac ypnowonowwdvtag to (Blo eldoc UTOAEITTIXOU UTAOX PE TO BIEUXEVICTY EXOVAE, YLoL Vol Tol
TROBAAAEL GE €val YO TOL TPooRIlEToL Yiol XOLVTY] YpNoT) UE TA YoeoxTNELO Td XeWwévou. ‘ONol Ta Yapax TNeLo Tixd
edvog vy Ty (Bl lotoplar cuvevevovTol oe éva eviaio dLdvuoua.

And v Theupd Tou xeWEVoL, Eva TApwe cuvdEdeUEvo eninedo avtioTotyilel GAeC TIC aVUTEUO TEOELC TEOTACEWY
(@15 .., 07) OF DAVICUOTA GE AUTOHY TOV XOWVO YMOEO, Ao ENONC CUVEVOVOVTAUL GE EVOL UEYENO DLAVUGHOL YOpoX-
TNELO TV XEWEVOL. 2Tn GuVEYELd, Tar 800 Blaviouato ToMATAACLAloVToL ovE GTOLYELD Xl TO AmMOTENEGUA
nepvd Yoo amd €vo TAHewe ouVBEdEUEVO aTpmua Yia Vo e&dyoude i Boduoloyia opotdtnrog:

Dy (I,y....I7), (1,...,07)) =0 ((W‘gt(lmage(ll, «ooy I7) @ Text (1, . . .,goT)) + b)

1.4 Ilsipapota

1.4.1 Ileipapo: Kavovag evnuépmwong TeldY YpOVIXOY XALLEAXWY

Epnveuouévol and to [18], mpoonadolye va Ppolue wa Pedtiotn avahoyio pududy uddnone yio to tpio dixtua
dratnpemvTac TopdAinia avahoyio evpépwone 1/1/1 pe oxond v mo anodotiny exnaidevon. H apyitextovinn
TOU YENOWOTOLOVUE Ylot aUTES Tig Boxipée elvon auty mou Qalveton ot oYNUOTA TNS TEONYOVUEVNE EVOTNTIC,
eZoupdvTag Toug unyaviopolc tpocoyfc. T ta oxdhouda mepdpata yenowonolovue 1o Adam optimizer [25]
pe B1 = 0,5 xou B2 = 0,999. Metd and 20 enoyéc, ot puduol pdinone pewdvovioar 6to wod, we cuvndileton yio
TNV Tpocéyylom ehayioTou.
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Chapter 1. Extetapévn Iepiindmn ota EXAnvixd
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Figure 1.3.3: Aweuxpwiotic Iotoplag
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1.4. Iewduota

Toapatnpodue 6t dtav o yevvATopas Lodolvel YENYopoTERD Ond TOUC BIEUXPILOTES, OAOXATPO TO HOVTEAO UT-
OQEPEL OO XATIPPEEVCT) GUC THUATOS:

Figure 1.4.1: (opiotepd) Hopaydeioa axoroudia (Seiid) Mporypotnd| oxoloudio

O vyevvAtopag Eeyelder elxola xan Toug 800 Blevpiotée and vwplc (axdun xou dtav dnuoupyel oyeddv Ty
(B axoroudiar) odnydvrac Ty exnoideuon oe adLEEodo, dedouévou 6Tl oL Blaxpioelc dev Pmopodv va tapdyouv
ONUAVTIXES TOEOYDYOUS o vl xardodnyoly 1 drutoupyio edvev.

‘Ortav Srotnpeitar yopunhoc o pududc Tou yevvhtopa, 1 odEnon Tou pudrod Tou BleuxpEVIoTY EdVog AmodexVOETOL
6Tl odnyel To YevvATopa 0N dnuiovpY(al EXEVWY TOU AVTIOTOLYOUV MO XOVTE OTIC TANEOQoplEC ELGOBOV.

O yevvAtopog padolvel To YERHYopd TN WG TH AVTLOTOLYLON YLl TO YEWHo Xl oY Ua UETAUED EMOVOC Xl TEQL-
YPAPIC.

Av&dvovtac to puiud exudinone tou dleuxpviot tlotoplag, TaEATNEOVUE EcwE HEYONDTERY CUVETELL OE OAEC
g ewoveg. To avtixelueva Swotneodv to mAndog xan ) Yéor toug oe OAn TNV LoTopla TIC TEPLOTOTEPES POREQ.
Or yaunAdtepot puduol udinone goiveton eniong vo enneedlouy avTioTOLYION XEWEVOU-EXOVAS, UE TO YEVVATOR
vau dnutovpyel ewdveg pe hdbog yeoua, oyfuo xou péyedoc okl mo cuyvd.

Enopévuc, vrootnpilovye 6tL elvan w@éhpo yio Toug 800 dieuxpviotés va padoivouv mepinou 4 @opéc mo
yefyopa and to yevwitopa. Oswpolue 6t ta lrg = 0,0001, Irp,, = 0,0004, Irp,, = 0,0004 eivon BérTioTaL,
xaddde vPmhotepol puduol uddnone amodelydnxoy vrepBolnd ypriyopot. XenolonoloUe auThY T Blaudp@won
Yio UETAYEVECTEPX TELPAUOTA, EXTOC €4V dleuxpLviletol BlapopeTixd.

1.4.2 IIeipapo: Aupcpdinnrogc Kwdixorowntng

Trootpilouue 6T 1 yprion evoe Transformer Encoder elvor Béhtiot yior Ty xwdixonoinom Tou VoRuatos ota
dlaviopato cuviixng wog oxohoutiag, ahAd To vor VTOTIGTOUV BEATIOTEC AVTIOTOLYIOELC YIoL TA YUEAXTNELO-
wxd evéc cuvohou dedouévwy oe tétola Tepimhoxy depyaoio uropel va anodetydel dvoxoro. To davioyarta
EVNUEPWUEVDL amtd TO TAECLO Efvol omopa TNTA X0l L0l TO YEVVATORO XAl TOV BIEUXPVIC TT) ELXOVaG. Bewpolue OTL
o dleuxpio e toToplag umopel va pddel emapxelc avtio TolyloelC VLol AVUTAEAo TAGELC XEWEVOU XOUL EXOVWY ol
xowvol ywpic xopla dueon avdyxn dAine enelepyaociog, xadde e€etdlel ohdxAnees ahhnhovyies mopdhhnia.

Aiepeuvolpe ) ypriorn evoc "ApepdAnmton” xwdoromn T, Tou 0nolou oL TUPEUETEOL EVIUEPOYVOVTAL OTd XOLVOD
ané TO YEVVATOPA XAl TOV SLeuxpo T edvac. Trodétoupe 6Tl évag TéTolog xwdixononthc Yo pddouve plor ava-
TUEAO TUGT| AXOAOUTLMY TTOL ATAWS Xwdixonolel To amapaitnTo TAX(CLO Y welc Vo BIVEL TAEOVEX TN OE OTOLOBTOTE
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

(a) Hporypotind axohovdio

) LR: 0,0001
) LR: 0,0002
) LR: 0,0004

Figure 1.4.2: AY&nomn tou pudpol exudidnone tou Image Discriminator.

(a) Hporypotinh axohoudio

) LR: 0,0001
) LR: 0,0002
) LR: 0,0004

Figure 1.4.3: AGEnom tou puduol exuddnone tou Story Discriminator.

avtinoro. ‘Onwe gaiveton otnyv edva, 1 ewpla pog amoderydnxe cwoth. Ilpoonadrcoye eniong vo exnandes-
GOUUE TOV XWOXOTOWNTY Vo AofBdvel eniong moporydyoug amd To Sleuxplo Ty loToplog, ohhd dlamio twooue 6T
aut 1 Teoo N LY YEEL TOV 0 xwWdLXOTONTY, e ornueio vo Yordofvel EVIEAMS TOPIAOYESC AVATAPAC TACELS TOU
YOEOU YORUITOC.
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1.4. Iewduota

(a) Hporypotinh axohovdio

(b) Eeywpiotol xwdxonomtég

c¢) Oudérepoc Kwdixonomtic

(d) Oudérepoc xwdixonomnthc (pe exnoudevon and To
Sieuxpviot totoplag)

Figure 1.4.4: H ypriorn evé¢ auepbANTTOU XWOXOTOINTY) HETACYNUATIOTH QolveTon va divel tor xohltepa
anotehéopata, mopdro mou Ou dofoduioelc and to Story Discriminator Brdmtouv v anddoon.

(a) Hpoypotinh axohovdia

(b) Eeywpiotol xwdxonomtée

c¢) Oudétepoc Knwduomonthg

(d) Oubdérepoc xwdixorointhc (e exnondeuoy and to
Bievxpiviot toToplag)

Figure 1.4.5: 'Eva d\ho napddetypo Apepdinntou Kwdixornomts mou delyver ta (dia oupnepdopato.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

O nopduetpol tou Transformer eivol e OAeg T MEQINTWOOELS: dpodel = 912, xeoréc npocoxNe Npeads = 8
%ot Nigyers = 6, (010 e 1o apyixd oyédio Transformer nou mpotdinxe and toug Vashwani et al. [54] Tt 6hat
To. apouactaléueva anoteréopata exnatdelouye To povtého yia 120 emoyéc. I tor umdhoima TelpdUoTd pog
yenowonololue évay Auepdinnto Koduxononty| 1660 yla yevvhtelo 600 xal Yo To dleuxpiviot!) Ewdvag.

1.4.3 IIeipapo: ITpodépuavorn Pudwod Exuddnong

MéypL thpo exnoudetope tov Apepdinnto Kwdomomt| yenowwonowdviae tov Adam optimizer [25] pe &e-
Y 0ELOTOUS pLOUE EXPAINCNE YIot TS TOEOYWYOUS OV ETLOTREPOVTOL TOGO Amd TO YEVVATOEO 600 XoL 06 TO
BLEUXPVIO TH EOVIC.

H apywt| epyooio yio tov Transformer [54] mpotelvel éva cuyxexpyévo oyédlo npoypoppatiopol puduol ex-
udinone mou Yo yenotwonowndel poli pye tov ertiotonomt Adam yia exnaidevor Transformer apyitextovixwy.
Yougwva pe o oyxfua, o pultudg exudinone Yo npénel medTa vor awEndel yoauud yio évay aprdud Brudteyv
TEOVEQUOVONG XKoL GTY) GUVEYELDL VOL LELWVETAL AVOANOYIXA PE TNV avTio Tpogn TeTparywvixt| pila Tou aptduol tev
GUVOAXGY BNpdtev:

-0,5

1,5
model )

lrate = d . min(step_num_0’5, step__num - warmup__steps

‘Eva Brjuo Yewpelton 6Tt elvan pla eviaio toptido dedopévwy mou diépyetal péow Tou dixtiou. Alhayn tou puduold
uddnong v warmupsteps = 4000 xon warmupsteps = 8000 unopelte vo deite mopoxdte:

0.0007 ~ —— warmup_steps=4000
warmup_steps=8000
0.0006
0.0005 A
0.0004 A
0.0003 A

0.0002 4

0.0001 4

0.0000 4

T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 1.4.6: Pududc exudidnong oe oyéon pe tov aptdud twv Prudtwy, yio T didotaon poviéhou 512.

Yuyxplvouye tor amotehéoyata TNG exnaidevong Ye auth T oteatnywy Bektiotonoinong oc olyxplon ue ouTy
TIOU TEPLYPAPETAL OTOL TOPAUTEVE) TELQGUATOL.

Iopatneobye 6Tl 1 pédodoc amotuyydvel va exnatdedoel ToV xwdixomolnt| TepBdANovTog, Ye AmoTENEOUA WS
enl To MAEloTOV TMUPGAOYES AVUTUPAOTACELS IOV JEV Blvouv ouclaoTixd anoteréopata. Trnodétoupe 6TL ALTO
ouuPoivel emeldn to mpoTevopevo clotnpa Bedtiotonoinone AauBdver Lddn UOVO TO dimoder XU TOV 0pLOUO
Twv Brpdtev tpodéppavong, avayxdlovtag €tol to puiud exudinone vo mopoyelvel yevixd Told udnidtepog
amd auto mou €youv ol Bedtiotonontéc Adam oty mponyoluevr dlotaln. Autd mpoxahel xan Ty amotuyia
ocUYXMoNE Tou Bixthou.

1.4.4 Ileipapo: Yrneprnopdusteor Transformer

Iewapotilépacte ye dlapopeTinéc TWES yia Tig mapauétpous Tou Transformer Encoder.

Ta anoteréopatd poag delyvouv 6Tl 0 apyixdC UETAOYNUATIOTAS UE dmodel = 512, Npeads = 8, Nigyers = 6
elvon mpdrypatt Béhtiotog yia to épyo uog. H uelwon tou aprdpol twv xepardv anodelydnxe 6Tl elvan dueoa
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1.5. Yvurépaoyata xou Melhovuxég xateudivoelg

(a) Hporypotind axohoudio

(b) O pudude pddnong psw)verou %ot o Hutou xdve 20
EmOYEQ.

c¢) Hpotewdpevn Behtiotonoinon ye 4000 Brpota
npodépuavong)

(d) Mpotewvéuevn Bertictonoinon e 8000 Prpota
npodépuavong)

Figure 1.4.7: Y0yxpion pedddwyv npoypappatiopol tou puduod pdinone.

el yior TV anddooT), eved ol BadiTEpoL UETACYNUATIOTEG amodelyUnxay va €youv unepBoiixd cuph nedio
QVOTUPACTACEWY YL VoL exTtoudeuToLy pe emituyio oe 120 enoyéc.

1.4.5 Ileipapo: Mnyaviopol Ilpocoyng

ITpoomadolyue vo xenoloToCOVPE TOUC TROTEWVOUEVOUS UNYOVIOUOUC TROCOYHE OIS TERLYPAPOVTAL GTNY TEO-
NyoUuevn evétnta o€ GUVBLACUS UE TO undhoimo povtéro pog. Ilpoonadroaue va yenouylonotjooupe xdie
unYavlopd Tpocoy g Bladoyxd 6To YeEVhTopa, EEXvOvTag amd Ty Evdo-npocoyn xan petd tny npocixn Auo-
npocoytc xau Ilpocoyrc Kwdwoiroumnth-I'evvritopa. Ilpocdétoupe enlone Evbo-npocoyn otouc 8o Bieuxplyv-
o TéC.

TTewpapatiotixoue enlong Ue TNV TOMOVETNOT TV €V AOYK UNYAVIOUWY OF BlapopeTixd eninedo Tng dladixaolog
oadhayhic peyédoug e exdvag (adEnomn avédluong - upsampling/yelwon avédiuvong - downsampling), doxud-
Covtog €dv oL unyoaviopol Yo ftay emtuyelc 6Tay e@apuoloviay ot YupaxTnelo Tixd uPnAdTepng 1 YoaunhoTeeng
dudotaong avtiotoyo. Iapd Tic xahltepeg npoonddeléc yoc, OAeC oL TUPUAANYEC OB YNOAUY AVATHPEUXTA OE
XUTAPEEVCT] CLUC THLITOC!

1.5 Xvunépacuata xow MeAhoviixeg xatevdidvoelg

To anoTEAECUATO TOU TELRUUATIOHOU O UE TNV TEOTEWVOUEVY OPYLITEXTOVLXY), TAEOTL BEV €lval GUECH EVTUTIWOL-
oxd, éyouv anodellel ta mAeovexTiota e tpocéyyionc poc. ‘Evac Transformer Encoder etvon évor éyxupo xon
AMOTEAEGHATIXG GUGTAPA Yiat T1) AN TANEOPORLOY YOHUOTOS oo TNV Lo Toplol ywels Ty avdyxn dounc RNN 7
edixéc TponomoLnoelc oe avadpopxéc povades. TTohhamiéc moparioyéc Tou Lovtéhou pag €B8el&oy TNy xavoTnTa
TPy WYHS oxXOhoUILDY EOVKY ToU ERPavilouy OTTIXE YopOXTNELOTIXG AVTIOTOLYO HE AUTE OTIC ELOOYOUEVES
npotdoelc. Awthinxe enlong 1 cuvEREL o8 Gha OYEDOV TOL OTTIXEL YUPOXTNELOTIXE EXTOC amd TO OYHKOL XOL TO
vld. Ta npoavapepdévta anoteholy amodelly e Loy Uog TWY UNYAVIGUOY TPOGOYNS oxXoUN ot 6 UPNAGDY
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

(a) Hporypotind axohoudio

) Dimension: 256, Heads: 4, Layers: 6

(¢) Dimension: 512, Heads: 4, Layers: 6
(d) Dimension: 512, Heads: 8, Layers: 6

(e) Dimension: 512, Heads: 8, Layers: 8

) Dimension: 768, Heads: 12, Layers: 6

Figure 1.4.8: Xiyxpion nopauéteny yio tov Transformer Encoder.

BLo TAoEWY BLUVUCUATIXEG aXONOVDIES, OTC QUTEC TOU OTOTEAOVUVTOL Al ELXOVEC.

O mpoTtetvouevol unyoviopol Tpocoyric dev AMéPeEaY CNUAVTIXY ATOTEAECUATA YO TNV (P, WOTAHCO TLOTEVOUUE
OTL aUTO elvol AOYw TEQLOPLOUEVGLY TELRUUATWY and TAELRAS HaS Xl O)L EYYEVES ENATTOUA TNS TEOCEYYLONC.
Oewpolye 6TL 1 Tpocoyy| tonou Transformer Decoder - pall pe nepautépw pliuion vrepnopauétowy - elval To
XAELOL YLOL VOL AVTIHETOTLGTOUY Tol GQAAIATA TTOLONTAUC TOU ELOAYOVTAL UG TO UTOAOLTO HOVTENO.

Qo1660, TOEUTNEACUUE EVaL CNUAVTIXG ATOTEAEGUN UE TNV ooy WYY evoc aucpdinmtou Transformer Encoder.
)
Ao 600 yvopiloupe, undpyouy Myec €we xoula, AVTAYWVLIO TIXES UPYLTEXTOVIXES IOV YETNOULOTOLOVY Lol TOOGEY-
yion "dncdhddwonc", 6mou éva xovd TUAUA TOU SLXTUOU SLOXAABMVETIL GE EVaY YEVVATORO Xal EVory BIEUXPVIG T
Tou exmoudevovTon and xovol, AapfBdvovTag Topay®Yous xou and Toug d0o xatd Ty omotodddoor. Koatd 1
Yveoun yag outy elvan glar yevidtepa eqopudoiun datinwon yia to Fevvnuind Avtaywviotind Aixtua, émou éva
dixtuo "Stwtntc" Vo unopoloe va AdBel ool xan and Toug 800 avTINGAOUS Yia Vo TPOBAAAEL €X VEOU T
dedouéva EloddoL GE ULol avamopdo TaoT Tou dnutoupyel (oouc dpoug avtaywviouol Ywelc va cuvoel xavévay.
(o W ¢ n npLovey e YWVIOHOU Y

Agv emiyelpriooye Vo eXTAOEVCOVUE TO BixTUO OE €val To TERIMAOXO GUVOAO BEBOUEVKY, OTWE TO GUVOAO Oe-
douévmv xwvouuévmy oyediwy Pororo-SV [29], to onolo Sev eivon eupéwe Swadéoiwo. Oo unostnpilope dpwe
vo exnoudeuTel 1) mapoloa, N xahlTepa, W BEATIOUEVY €XB00Y) QUTAHC TNG UEYLTEXTOVIXNE OF €va TETOL0 GUVOAO
dedouévev yio va mapatnTdel plo o ouclao Tin e@apuoyY| Twy Blwy Wewy ot éva o 80oxolo TEdBANUL
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1.5. Yuurépaoparta xor Merhovuxée xatevdivoels

(a) Evdo-npocoyy ot yopaxtnpiotind peyédoug 32x32

(b) EvBo-npocoyf oe yapaxtnelotxd yeyédouc 16x16, ye d-tpocoyr oto Generator

(c¢) EvBo-rnpocoyh oc yapaxtnelotixd yeyédoug 32x32, Ue Da-TpocoyT ol TEOGoYN
Kwodwoimomthi-I'evvAtopa 610 yevvhtopa

Figure 1.4.9: "O)ec ol mapaANay€C TV UNYOVIOUOY TEocoy g 0dNnyoly o€ XaTdppeuoy) CUGTAUATOC.

povteromoinong. Einiloupe ot Vo mpoxidel pla tétola Pehtiwpévn éxdoor, dlopdwvovtog Tic eAAeldelg mou
TEOXGAETAY YOUNAT| TOLOTNTO OTIG EMUEQOUE TRy OUEVES EIXOVES UG, XUMOE Xl XUTAPEEVCT) CUCTHUNTOS GTO
nelpodal TV TOAATAGY UNYAVIOUOY TEOGOYNS.

Kodoe 1 epyaocia oyetileton otevd ge to Tohd o eXTEVEHE HeheTnuéva Yéuato Tng eixovag and xeluevo xou tng
petatponic oxoroutiag-oe-axoloudia, yia vo Teotelvel xavelc apyttextovixég ahhayég eWdxd yia To TEOBANUL
SV népa and autd mou KoM xahdmteton o auth TN Olatelfr), Vo mpénel xupiwe va mpofBiédel Behtidoelg oe
omoLBNHTOTE and aUTEC TIg XATEVIUVOELS - eV 1) poT| TNng éumveuong Yu énpene mdavotata va elvon avtidetn oe
auth) TV neplntwon. ‘Ocov apopd Tic TpEyouces TATELS, WS HEAAOVTIXY epyacio Yo urnopoloaue vo emBaAAoLUE
MEYOADTERY) CUVETELD AVTIOTOYIONG XEWWEVOU-EXXOVAS UEow evog e€wTepixol BixTOou Omwe to DAMSM mou
npoteivetan oto AttnGAN [62].

Qotéoo, o Féhope va mpoTtelvoupe BV GYETIXES WOEEC LENNOVTIXTC €pELVAS, TIEOC OPEAOS LWOLIETERX TN EPELVAS

19



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

yioe v Ontixonoinon Iotoploc. Ipwta, dedopévou 6Tt Ta chvora Bedopévev Tou dnutoveyHinxay yia auThY TNV
epyooia elvon AMya, Yoo Oéhope vo mpotelvoupe uia speuvnTey Wéa yia T dnuovpyio vég uovtélou oyedlacuévou
yioo T dnulovpyior CUVOAWY BEBOUEVWV: ZEXIVOVTASC OmO TO TOMAA BNUOPIAT) OYOMACUEVA CUVOAA BEBOUEVWVY
Bivteo [53, 44, 60] yio epyaoiec dnwe neprypopy| Quotxhc yYAwooas yia Bivieo, Yo urnopoloe xavelc vo oyedidoet
éva dixtuo Topduolo o Aettoupyia e por apyltextovix obvodne Bivteo [55, 13] mou Yu Atav exnoudeupévo va
hauBdvel 600 éva Bivieo, 600 xou TNV avTloTOLYY) TEQLYEUPT] XEWEVOU TOAAWY TEOTACEWY XU VoL ETLAEYEL (Lol
axohoudio xapé and o Bivieo yio xdde npotaon. H epyacio Yo uropotoe vo Jewenldel wg obvolm Bivieo unod
ouvinun, Ye xdmoleg WiontepotnTeg: Lot napddelypa, edv undpyouy npotdoelg 1' otny meptypay, oyt wovo Vo
npénel vo undpyouy T’ xape €680V and To Bivieo, aAAd auTd To xopé Yo Teénel va efvon Lo utooxoioudia TwY
xopé Tou Bivieo, mou onuaivel 6Tt xavéva emAeYUEVO xopé Bev Tpénel vo epgaviletar oTtny €€080 mpLy and Eva
TponyoLpevo tou 6to Bivieo. I'o to oxond avtd, ohdxAnen 1 oxohouvdia xewwévou Yo mpénet vo Angldel un’ 6¢n
yia v maporyVel 1 é€odog xou wia Badporoyia avtiotolytone und cuvirixn da npénel va hapBdveton unddn yio
xdde Ledyog xapé-TpdTaong, SEBOUEVKDV TV Xpé oL eTAEInxay Yo GAAEC TPOTACELC.

Trdpyet entong EMNReLdn *ATIAANADY UETEIXWY Yio TNV 0ELOAOYNOT| TWV TPOTELVOUEVKY LOVTEAWY OTITIXOTO(NoTG
otoplag.  Muvenodg elvon agldhoyn 1 mpoonT] €peuvag yio pio peTpr] oxetin) ue tnv Frechet Inception
Distance [18] yio axoloudicc edvwv. Auth 7 petp do mpénel vo mopdyel pla TeEAx andotacy yio d0o
oeT axohoLIOY EXOVWY, AoBdvovtae UTOPY TEGO TNV OUOLOTATO YOUPAXTNELOTIXMY G0 XaL TNV AAANAOUYLAXT
CUVETELAL

Téhog, evioppivoupe TNy tpooTdlela ToPUYWYNE EXOVWY UPNAGTEPTC AVAAUGTC BLaTNEMVTIC TORdAANAL TNV
TOLOTNTA, YE TNV TROCUTXY TEPLOCOTEPWY UTOANTTIXWY UTAOX oTa dixTua. Acdoyévou GTL ToL UTOANTTIXG UTAOX
[17] etvon xohbtepa TNV EXUdINCT GUVIETWY AVATUPAUGTACEWY YOPUXTNELOTIXMV EXOVMV XAl AVTIOTEXOVTOL OTHY
egapdvion mapoyywy oto Badld veupevind Suxtua, Yewpolue 4Tt elval TAEOVEXTNUO AUTHE TNS TEOCEYYIONG TS
o oxoroution ewdvev vdmiétepng avdiuong Yo propodoe va mapoydel and yio xaky vAomolnon tou mhaiciou
o, anheg awEdvovtoc Tov aptdud Twv unepdelypatornLdy amo Tic onolec Yo TEPACOUY TA YOEUXTNELGTLXA.

Yupnepaopotind, TIoTeVOUPE OTL aUTH 1 TPty yLoT mou Baciletal oTNy TpocOYY Yo TNV onTonoinoy Lotoplag
elvon 1 oplY| Bladpour| meog véa uovtéla state-of-the-art xou mdovede wio ueydin Bordeia oto ocuvagéc épyo tng
onwovpyiag Bivieo and xelpevo. Iapd to yeyovég ot auty| 1 epyaocio dev elvon 1 xotodnxtxs) tpoomdielo
enthuong Tou mpofBhiuotoc avapopxd e Ti¢ TeEAxES oxoloudiec, eAniloupe va €youpe avollel to dpduo mpog
wo BéATiotn apyttextovixn SV, mou Yo epgoaviotel oe pehhoviixy épeuva.
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Chapter 2. Introduction

Artificial intelligence has progressed significantly since the emergence of Alan Turing’s computation theory
[10] and the first Turing-complete artificial neurons [32]. What was once an attempt to unify mathematics
under a singular theoretical framework has in recent decades become a pursuit to understand, model and
surpass human capability in every area of activity. Machine learning, and in recent years the success of deep
learning, have enabled us to create systems that achieve impressive human or beyond-human level results in
tasks our brains have evolved to perform.

One of the most important fields of artificial intelligence is computer vision. Computer vision is the study of
systems meant to classify and model image features in tasks related to human perception and ability. Over
the years, advancements in this field have led to many important state-of-the-art innovations such as highly
accurate image classification [11] and object detection [61], as well as significant advancements in healthcare
Al assisting medical diagnosis and treatment [66, 49, 2].

2.1 Motivation

2.1.1 Background

While this classification side of statistical learning saw the emergence of many successful models over the
last decades, the same cannot be said for the generally more difficult generative approach. Modeling the
distributions of complex data, such as natural language or realistic images, to the point of creating a system
capable of generating new samples that seem credible to a human observer presents a number of challenges,
especially dependent on the type of data. As hardware performance keeps improving and networks become
deeper and more complex, capturing an often significantly multimodal distribution on these high-dimensional
data spaces has become a research area of growing interest.

Most progress before recent years was slow, with networks such as Restricted Boltzmann Machines [48] [14,
§20.2| proving unstable in training, impractical in use and producing inadequate results. The emergence of
Variational Autoencoders (VAEs) [24] and Generative Adversarial Networks [15] has caused great advance-
ments in tasks such as unconditional [22, 23] and conditional [57, 58] image generation, as well as video
generation [45].

Figure 2.1.1: Tmages generated by StyleGANv2 [23]

In the conditional case, a great amount of effort has gone into designing models to generate visual data
conditioned on text. A number of papers showcasing impressive results have been branching out into different
variants, displaying a long line of architectural exploration. Reed et al. [42, 43] presented an early architecture
that influenced many later designs, using an novel RNN-CNN encoder for text and generating full resolution
images. The gradual scaling of features as seen in StackGAN [63] presented by Zhang et al. also spawned
multiple successful descendants of its own [64, 62, 67]. There have even been some forays into generating video
from text [28], although the task of video generation is still in its infancy and significantly more challenging,
so notable results have yet to be achieved.

2.1.2 Story Visualization

The two aforementioned topics inspire a natural midpoint in the novel task of Story Visualization (SV),
described by Li et al. [29] as the generation of an image sequence based on a short story made up of natural
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2.2. Contribution

This bird has wings This bird has wings This is a grey bird ~ This bird has a short This bird has a This particular bird This bird 15 a lime ~ This yellow bird

that are prey and ~ that are black and ~ with a brown wing  brown bill, a white white throat anda  has abelly thatis ~ green with preyish  has a thin beak and

has a white belly.  has a white belly.  and a small orange  eyering. and a dark yellow bill and vellow and brown.  wings and long jet black eyes and
beak. medium brown grey wings. legs. thin feet.

Crowi.

AttnGAN StackGAN GAN-INT-CLS

DM-GAN

Figure 2.1.2: Comparison of Text to Image methods
"DM-GAN: Dynamic Memory Generative Adversarial Networks for Text-to-Image" [67]

language sentences or other semantic information. The task borrows from Text-to-Image in its pursuit of
language-image correspondence, as well as Text-to-Video in its aim for consistency across frames. Currently
there are few improvements on this challenging topic [27] as well as a scarcity of viable datasets and evaluation
methods.

2.1.3 Sequence-to-Sequence

Another way to view the same SV task is as a sequence-to-sequence transduction problem, similar to machine
translation. Sequence-to-sequence models have been an area of study primarily pursued by Natural Language
Processing (NLP) research, with the focus shifting gradually from Recurrent Neural Networks [51, 8] towards
attention based models [5]. This trend culminated in the Transformer [54], a seminal framework that performs
NLP tasks using attention mechanisms exclusively. Since its appearance, the Transformer has been favored
for its simple approach, efficient training scheme and impressive results. Many prevalent models have been
built atop the original Transformer for machine translation [59] and language modelling [12, 31, 41|, including
GPT-3 [6], a natural language model capable of performing a variety of tasks at a near-human or beyond-
human level. Transformers and other attention mechanisms have also been used in computer vision tasks
where they are capable of better learning complex dependencies that common convolution-based methods
fail to capture [39, 65].

It is the combination of these recent advances that motivated our approach to the task of Story Visualization,
in the hopes of contributing towards a model that can capture the nuances of image sequence generation and
language-to-vision temporal correspondence.

2.2 Contribution

The main objective of this thesis is to research various improvements on the original StoryGAN and experi-
ment with different implementations of our architectural proposals.
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Chapter 2. Introduction

To that end we:
e Examine the effects of using a Transformer encoder in place of the original RNN.
e Apply more recent architectural approaches to the image generating GAN.

e Explore the effects of attention mechanisms in the model, both as presented in the SAGAN architecture
and by proposing two novel attention mechanisms for image sequences.

2.3 Thesis Structure

This thesis consists of seven chapters, the first being this introduction. Chapters 3 and 4 aim to familiarize the
reader with the theoretical background necessary to follow our experiments. Chapter 3 covers basic Generative
Adversarial Network theory, while Chapter 4 examines the three GAN architectures most influential to our
approach: StackGAN, StoryGAN and SAGAN. Chapter 5 describes the original Transformer framework,
including a general explanation of attention mechanisms. Chapter 6 describes all the proposed elements of
our model in detail, presenting an initial setup for a Story Visualization network. In Chapter 7 we relate five
experiments evaluating the effect of different parameter variations and component ablations in the proposed
architecture. Finally, Chapter 7 concludes this work, summarizing our findings and proposing some future
directions in the research for an improved Story Visualization model.
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Chapter 3

(Generative Adversarial Networks

Generative Adversarial Networks (GANSs) are a training framework in which a generator network attempts
to capture a desired data distribution and generate new instances while competing against a classifier called
the discriminator. The discriminator’s job is to learn to differentiate between samples produced by the
generator from samples taken from the real data distribution. The two networks are trained in parallel until
the discriminator isn’t able to distinguish generated samples from the genuine ones.

Contents
4.1 StackGAN . . o o o e e e e e e e e e e e e e e e e e e e e e 30
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Chapter 3. Generative Adversarial Networks

3.1 Original Formulation

The original GAN framework proposed by Goodfellow et al. [15] consists of two Multilayer Perceptrons
representing the objective functions G(z;6,) and D(x;04). G is a function mapping random noise z following
a prior distribution with z ~ p, to the data space. D is a function mapping a sample z; from the same
data space to a scalar value p; = D(x;) representing the probability the sample comes from the real data
distribution. 6, and 64 are the parameters of the generator and discriminator networks respectively.

The training of the two networks is analogous to the game theory concept of a minmax game with objective:

mén max V(D,G) = Egpyora@log(D(x))] + Euop. (o) [1 — log(D(G(2)))]

Meaning that the generator is trying to minimize the discriminator’s ability to recognize its own produced sam-
ples as non-genuine. A Nash equilibrium is reached when the discriminator outputs D(z) = D(G(z)) = 0.5,
meaning the generator is producing samples that are indistinguishable from the real ones.

According to Goodfellow et al. it is favorable in practice to use an alternative formulation of the problem
where instead of minimizing 1 — D(G(z)) the generator aims to maximize D(G(z)) since the original function
may not provide sufficiently large gradients at the start of training, when the discriminator can distinguish
between real and generated samples with high confidence.

Training such a system of networks can be done with gradient descent by backpropagating the classification
error of the discriminator J(P) to the parameters of the generator, essentially using the discriminator network
as a differentiable loss function to provide gradients for 6,,.

3.2 Conditional GANs

A conditional GAN [33] is similar to the original formulation, the only difference being in the input of the
generator and discriminator network. Along with random noise z following a specified prior p,, the generator
network may receive additional information ¥, usually dubbed ’'conditioning variable’ or ’conditioning vector’.
The conditioning vector is meant to guide the generator towards producing samples from different subareas of
the target distribution, such as in the case of labeled image generation or sequence-to-sequence transduction.
The additional information is usually provided to the generator at the input stage (concatenated with the
random noise) and to the discriminator along with the sample to be evaluated.

The minmax game between generator and discriminator now has an alternative objective, defined as

minmax V(D, G) = Eypg, (o) 109 (D(2y))] + By @) [1 — log(D(G(2]y)))]

where y is the conditioning vector for each sample.

3.3 DCGAN

Figure 3.3.1 illustrates the generator of this seminal contribution of Radford et al. [40] to the task of image
generation.

The generator makes use of transpose convolutions to upsample the random input towards a full-resolution
image, while the discriminator follows a typical convolutional image classifier architecture (e.g. AlexNet [26],
VGG-16 [47]) to output the probability the image is generated or real. Both networks are implemented using
transpose and strided convolutions to change the resolution of images directly in intermediate layers, instead
of relying on techniques such as pooling layers and nearest neighbor upsampling. This approach is meant
to allow the network to learn more complex rules to directly rescale the image into the new feature space,
yet it has its shortcomings: in the generator case, using transpose convolutions (deconvolutions) causes the
well-known issue of the "checkerboard effect" on produced images (figure 3.3.2). Thus, in subsequent years,
the decoupling of rescaling and learning of features has become prevalent, usually by means of a technique
such as nearest-neighbor or bilinear interpolation, followed by a separate convolution filter.
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Figure 3.3.1: The DCGAN generator.

Using deconvolution.
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Figure 3.3.2: Comparison of transpose convolution to separate upsampling and filtering.
"Deconvolution and Checkerboard Artifacts" [36]
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Chapter 4

Relevant GAN Architectures

In this chapter we examine three GAN architectures that build the foundation of our contribution. These
models have been designed for different conditional image generation tasks, yet in summation provide the
fundamental blocks for understanding Chapter 6, where we introduce our ideas for an attention-based, modern
Story Visualization GAN.

StackGAN is an important milestone for Text-to-Image generation that has impacted many works on the
subject in terms of both structure and training approach. Thus, we consider it a natural predecessor to
StoryGAN, the original Story Visualization model that has greatly borrowed from it, while tackling a novel
but related task. We then move on to detailing StoryGAN’s approach to Story Visualization as well as its
architectural choices. Finally, we introduce the Self-Attention GAN as a recent conditional image generation
model that employs newer architectural and training stabilization devices, widely adopted by state-of-the-art
networks in the field. It also employs an attention mechansim that largely inspired our own novel mechanisms
for learning features accross image sequences.
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Chapter 4. Relevant GAN Architectures

4.1 StackGAN

Earlier works on image generation conditioned on text [42, 43] attempted to generate a full resolution image
at once, producing samples lacking in fidelity and detail. StackGAN, proposed by Zhang et al. [63] achieved
the first significantly improved results in the Text-to-Image task by gradually creating the final image with
multiple stages of adversarial training. First, a low-resolution 64x64 image is generated (Stage-I GAN),
capturing the broader characteristics of the image based on the text and then a second generator (Stage-11
GAN) is conditioned on the first image to produce a high resolution 256x256 result. Discriminator networks
train in both stages, again downsampled versions of x; ~ pgq¢ in the Stage-I case. The same paper proposed
a novel way of augmenting the training data, called Conditioning Augmentation (CA).

Conditioning | | “sta ge-1 Generator Gy | Stage-1 Discriminator Dy |
| Augmentation (ca) | | for sketch | I
Text descriptiont  Embedding ¢,/ Ha | | ‘ |
B ) I & |
This bird is grey with | |
white on its chest and —» | —> | = . {0, 1}
has a very short beak | | | I | =X |
| ! \ [ |
| Do | | * (o, | 64 x 64 Compression and I
| E™~N(D, 1) I | | real images Spatial Replication 1
Embedding g,

— —‘— _—— T = — — — = N —— T T T T e 1
| conditioni [ = ‘ 256 x 256 | Compression and |

| ondr 'Omr‘g real images Spatial Replication
| Augmentation | *qo;t:%, ‘ = : |
—————— NS X |
64 x B4 128512 ‘ |
Stage-| results ' I
|
| | e I
| 16 | |
‘ ‘ 256 x 256 |

L Stage-1l Generator G for refinement ‘ results

Figure 4.1.1: The architecture of StackGAN.

4.1.1 Conditioning Augmentation

The datasets used for most text-conditioned generation tasks by nature have problematic characteristics that
negatively impact training. Text descriptions inevitably produce a very sparse set in a high-dimensional
feature space, thus making learning a probability distribution on said set difficult. In order to make the
definition space more continuous and make the network learn to be imprevious to small positional variations
in embedding space, a new way of augmenting the data is proposed:

Instead of conditioning the GAN on an embedding of the text ¢, a random vector ¢ is sampled from a gaussian
distribution A (p(pt, X(p+))) with the mean p(p:) and diagonal covariance matrix 3(p;) being functions of
the text embeddings. The vector ¢ serves as the conditioning variable, whereas the functions themselves are
implemented as neural networks with learnable parameters, trained alongside the rest of Stack GAN.

Training the parameters of this stochastic process becomes possible using the reparametrization trick [24],
where a sample from a gaussian distribution with arbitrary mean p and covariance matrix diagonal o can be
produced as: é = u + 2 * o, where z ~ N(0,1). In addition, to ensure the smoothness of the manifold, the
Kullback-Leibler (KL) divergence between the learned Gaussian distribution and the standard one is added
to the loss function of the generator as a regularization term:

D, (N (p(er), E(p0)) IV (0, 1))

This term helps avoid overfitting by ways of learning a "collapsed" point distribution or one that deviates
too much from the standard Gaussian.

4.1.2 Stage-1 GAN

The first stage of StackGAN aims to create a low resolution image capturing the basic features of the text
description ¢;. After producing a conditioning vector ¢y ~ N (o, X(¢¢)), using the CA network, the generator
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4.2. StoryGAN

G and discriminator Dg are trained in a typical GAN scheme by modifying their parameters through gradient
descent on the following loss functions:

LDy = E(1 t)mpaara [109D0(L, 01)] + B tmpuara [109(1 — Do(Go(2, ¢), ¢1))]
Léy =Eonp. tmpaaral0g(1 — Do(Go(z,8), 1))] + AD L (N (1(eor), (s0¢)) [N (0, 1))

where Lp is maximized while L& is minimized. Iyt are a real image and text description coming from the
data distribution while z is the random noise sampled by a prior p,.

The conditioning vector ¢y is concatenated with random noise z and then passed through a series of al-
ternating nearest-neighbor upsampling and convolutional layers, to produce the 64x64 resolution image Ij.
The discriminator mirrors this approach by downsampling the image towards a Ny dimensional array of
4x4 feature grids. At this point the conditioning vector is spatially replicated to form a 4x4x N, tensor and
concatenated along the last dimension with the image features. The output feature tensor is passed through
a 1x1 convolutional layer to jointly learn from text and image features. A final fully connected layer outputs
the scalar representing the discriminator’s confidence in the veracity of the sample.

4.1.3 Stage-II GAN

In the second stage no additional noise input is used since the authors saw no benefit in providing the network
with extra randomness beyond what is inherent in the Stage-I image. Conditioning vectors ¢ based on the
text embedding are once again produced by a different Conditioning Augmentation network, allowing the
network to focus on different representations of the text while adding detail and correcting the previous
stage’s output. In this second stage the loss functions defining the optimization problem are:

Lp = E(Ivt)wpdata [ZOQD(I’ @t)] + ]ESONPGOJ"’Pdata [109(1 - D(G(SO, é)v QPt))]
LG = Esympay tnpaaa 109(1 = D(G(0,¢),¢1))] + AD (N (1), (e02)) IN(0, 1))

which are the same as the Stage-I expressions, except for the random noise z ~ p, being replaced by the
image sog = Go(z, ¢o).

The second stage generator follows an encoder-decoder architecture. As in the previous stage’s generator, the
conditioning vector ¢ is spatially replicated and concatenated in the channel dimension with a downsampled
version of the Stage-I image. The joint feature map is then passed through a series of residual blocks [17]
designed to learn multiple modes of the underlying text-image distribution. The result is finally upsampled in
the same way as in the Stage-I generator. The discriminator is similar to the Stage-I discriminator, requiring
only additional downsampling layers to reduce the larger-sized image.

The whole model is trained with the matching-aware rule proposed by Reed et al. [42] where the discriminator
is trained to classify both pairings of fake images with corresponding text descriptions and real images with
mismatched descriptions as non-genuine.

4.2 StoryGAN

Li et al. introduced the task of Story Visualization [29] as a natural midpoint between the tasks of Text-
to-Image and Text-to-Video generation. The purpose is to generate a sequence of images conditioned on a
set of sentences that form a coherent story. The task goes beyond simple sequential application of a Text-
to-Image model, since the produced images need to maintain a sense of visual and conceptual consistency
and progression. A generator that is unaware of the context an image belongs to will fail at producing an
adequate result.

To this end they introduce StoryGAN, a generative adversarial model that can generate images based on
sequential conditioning. The network uses an RNN structure that imbues the sentence embeddings with
context information, guiding the generation of an image by a conditional image generator similar in structure
to StackGAN and other text-to-image architectures [42]. The generator G is trained adversarially against
two discriminators. The image discriminator D, is tasked with evaluating how genuine the image seems
compared to the real data and how well it corresponds to the sentence, while the story discriminator Dg; is
trained to ensure consistency across images given the entire story context.
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Chapter 4. Relevant GAN Architectures
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Figure 4.2.1: The StoryGAN framework.

4.2.1 Story Encoder

In order to counter the discontinuity of the original data manifold, the Conditioning Augmentation mechanism
proposed by Zhang et al. [63] is used to encode the story. The entire story is mapped to a low dimensional
embedding ho by sampling a Gaussian distribution ho ~ N (u(S), X(S)) where 1 and X are the functions of
the story S, implemented as an Multilayer Perceptron trained alongside the rest of the network. The vector
ho is once again produced using the reparametrization trick described in section 4.1.1. This sampled vector
is provided as the initial hidden state in the context encoder RNN outlined below.

The same regularization term is added to the generator loss
Lir = DrrN(u(S), Z(5))IINV(0, 1))

to ensure the conditional manifold remains smooth and the approximated distribution doesn’t collapse to a
single point.

4.2.2 Context Encoder

To produce the conditioning vector for each generated image, a stacked RNN structure is utilized. The lower
layer of the RNN uses standard GRU cells [9], while the upper uses a variant of GRU cells proposed by Li
et al. called Text2Gist cells. This second layer is the one whose hidden state is initialized with the story
encoding hg. For each step t in the sequence the GRU layer receives isometric Gaussian noise €; concatenated
with the sentence s; and the output is fed to the Text2Gist layer that combines it with information derived
from the story context. The final output o; is the vector conditioning the image generation. If g, h; are the
hidden states of GRU and Text2Gist cells repectively, the stacked RNN is structured as:

it, gt = GRU (s, €4, g1—1)
O¢, ht = T€$t2GZSt(Zt7 h,tfl)
The formulation of the proposed Text2Gist cells is as follows:
Zt = Jz(Wzit + Uzhtfl + bz)
Ty = UT(WTit + Urht—l + br)
he = (1= 2t) ©hs1 4 2e © on(Whis + Upn(re © hy—1 + by))
or = Filter(iy) * hy
where z; and r; are update and reset vectors that work essentially in the same way as in the original GRU
cell. Filter(.) is a function that maps the vector é; to a multichannel filter used for 1x1 convolution with

state hy, that is meant to blend local and contextual information more effectively in the process of creating
a conditioning vector.
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4.2. StoryGAN

4.2.3 Image Discriminator

The image discriminator D;,, of StoryGAN works very similarly to the one proposed in the StackGAN
paper, feeding a single image - either generated Z; or real x; - through a series of downsampling blocks and
concatenating it with the spatially replicated conditioning vector s;, also including the entire story context in
the form of the story embedding hg described in section 4.2.2. The context is necessary as two images with
the same text description can vary greatly when informed by the rest of the story. The resulting array of
channels passes through a convolutional layer and finally to a fully connected layer with sigmoid activation,
mapping it to a single scalar D;, (8¢, ho, &) or Djm (8¢, ho, 2¢) representing the discriminator’s verdict.

4.2.4 Story Discriminator

The Story Discriminator maps both the story and the generated sequence into a common space in order to
calculate a similarity score between them.

TN ;
“Poraro and Crong
Ei E> E> <::' ’ m::,_, <::I fishing together.”

~ Al’l/
' N
B @ “Poraro has a fish
I E> E:> <::I E,:Z:g, <::I on his fishing rod.”
% “Crong is looking at

<¢1:| E.,Tx., <:I the bucket.”

o>
<
Real / Fake?

Figure 4.2.2: Structure of the Story Discriminator

An image encoder produces a series of feature vectors Ejpg(X) = [Eung(x1),. .., Eimg(zr)] from an in-
put image X that are concatenated into a single storyboard vector while a text encoder does the same
for all the sentences in the conditioning story S, producing a series of text feature vectors Fy.(X) =
[Etzt(81), ..., Ernt(s7)], that are also concatenated. The final big vectors are multiplied elementwise and
fed through a learned linear transform, equivalent to a fully connected layer with bias and sigmoid activa-
tion:

Dst(X, S) = U(wT(Eimg(X) © Etrt(s)) + b)

where Dy (X, S) is the final consistency score normalized in [0, 1].

4.2.5 Training
The objective function for StoryGAN is:

min max oL, + BLs + Lk1
0 Yris
where 6, 11, 1g are the parameters of the generator, image discriminator and story discriminator respectively,
and:
T
Lim = Z(E(act, st)[l0gDim (@1, 5¢, ho; ¥1)] 4+ E(e, s,) [log(1 — Dim (G(€, 5¢30), st, hos ¥1))])

t=1

Lo =Ex s)[logDst(X,S;95)] + Eesllog(l — Dt ([Ger, s¢:0)]i—1), S;10s))]

and constants a and 3 chosen before training to balance the losses of the two discriminators.
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Chapter 4. Relevant GAN Architectures

4.3 SAGAN

Recent image generation cGANs [37, 34| seem to do better in images when texture and color are the most
important features but struggle with the structure of objects and other long-range dependencies. The issue
can be attributed to the highly local nature of convolutional filters, the main layer type used for generating
high resolution images, usually preferred due to their computational efficiency.

The Self-Attention GAN [65] is a model proposed by Zhang et al. to counter this effect, motivated by the
recent popularity surge of attention models in natural language processing tasks [5, 54| as well as image
generation [62, 39]. Alongside the proposed self-attention module introduced in both the generator and
discriminator, the authors endorse the use of modern stabilization techniques for training, such as Spectral
Normalization of weights [35] and the two-timescale update rule [18].

4.3.1 Model

The model follows the typical structure of an upsampling generator and a downsampling discriminator as
described in the architectures above. In the generator, the dataset labels are embedded, reshaped and
upsampled to produce the output image. The discriminator downsamples a proposed image, integrates the
encoded image features with the conditioning embedding and produces a scalar output. Both upsampling
and downsampling are performed by residual blocks [17] transforming the intermediate image features with
convolutional layers. The unique architectural feature of the model is the self-attention module that is
introduced once among the rescaling blocks in each network.

The self attention module, inspired by the non-local model introduced by Wang et al. [56], works by linearly
mapping image features (channels) to the key, value and query vectors (using Transformer terminology, see
section 5.2).

Given an image feature tensor & € RE*YN_ where N are the total locations on the image plane and C' is the
feature (channel) dimension, attention scores are calculated for the weighted averaging of the value vectors:

Bj.i = softmax(s;j), where s;; = fq(a:i)Tfk(a:j)

where f,, fi are learned linear transforms of x (implemented as 1 x 1 convolutions) for the queries and keys
respectively, and said averages are mapped back into the original feature space.

Thus, the outputs 0 = (01, ...,on) € RE*Y are calculated as:

N
0j = fo <Z ﬂj,ifv(w)>

i=1

where f,, fo again are learned linear transforms for the value vectors and the output remapping to the
original feature space.

With fq, fx, fo the authors elect to reduce the channel number from C' to C = %, where k = 1,2,4,8 for

efficiency, and empirically claim no reduction in performance. The final output is an interpolation between
the attention module output and the input features:

Yi =70; +x;

Using the learned parameter 7 intialized to 0 the network can initially focus more on local information
provided by the convolutional layers and gradually incorporate more distant information provided by the
attention module.

The GAN is trained using the hinge formulation of the discriminator loss [30, 35]:
Lp = =E@y)piara min(0, =1+ D(z,))] = Eznp. yopaer, [min(0, =1 — D(G(2),y))]
Lo = =Eenp. yrpanra D(G(2),9)
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4.3. SAGAN

4.3.2 Stabilization

Spectral Normalization

Lipschitz continuity is a strong form of function continuity, requring a function to be limited in its rate of
change. Intuitively, a constant limit on the slope of the line between any two points of the function’s graph
must hold true for a function to be Lipschitz continuous. In other words, a Lipschitz constant of a real-valued
function f is a positive real K such that:

[f(21) = f(22)] < K |21 — 22
Often the smallest such K is reffered to as "the" Lipschitz constant of f.

SAGAN constrains the Lipschitz constant of the discriminator [3] via spectral normalization [35], a technique
that is proven to be effective in stabilizing training, while remaining computationally efficient. Inspired by
Odena et al. [38] in their research on the importance of well-conditioned generators for stable training, spectral
normalization is further used in the generator to improve convergence. It does so by maintaining consistent
parameter norms and helping to avoid unusual gradients. Use of spectral normalization for both adversaries
also reduces the need for multiple discriminator updates per iteration, which is a common technique to
improve the generated sample quality in GANs.

Two Time-Scale Update Rule

SAGAN uses separate learning rates for generator and discriminator, a technique proposed by Heusel et al.
[18] to combat the imbalanced learning that often occurs in GAN training between the two networks. It is
common to see low-quality results from the generator being enough to fool the discriminator early in training,
meaning the model has failed to converge. The TTUR allows a well designed discriminator to move towards
an optimal point faster, driving the generator to produce better samples. This approach is preffered to using
a different amount of training steps per epoch for each network, as it is more efficient in terms of execution
time.
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Chapter 5

The Transformer

Recurrent Neural Networks used to be the most prevalent neural framework for NLP with the advent of
GRUs [9] and LSTMs[19] and their applications in tasks like machine translation and language modelling.
Their use, no matter how effective, is by nature inefficient due to sequential calculation: the production
of each symbol s; requires a hidden state vector h; 1 created in the previous step. This characteristic of
RNNSs prevents any parallel processing of the sequence which hurts training times significantly. To counter
the problem, Vashwani et al. introduced the Transformer [54], an encoder-decoder scheme which processes
the entire sequence in parallel utilizing only attention mechanisms. The new network was highly efficient
in training since it avoided the sequential nature of RNNs and achieved state-of-the art results in machine
translation and language modelling tasks, as well as spawning highly prevalent successors [12, 31, 41, 6].

5.1 Architecture

The architecture of the Transformer is illustrated in figure 5.1.1. The model consists of 2 networks, an
encoder and a decoder. The encoder’s input is a sequence symbol representations (z1,...,z,) and it outputs
a continuous representation of the symbols z = (z1,...,2,), in the same vein as the "annotations" in the
attention encoder of Bahdanau et al. [5]. It consists of 6 layers, each one being itself a stack of two sub-layers:
a multi-head self-attention layer followed by a feedforward network. Each sub-layer has a residual connection
[17] around it and its outputs are normalized via Layer Normalization [4]:

output(z) = LayerNorm(z + Sublayer(x))

where Sublayer is either attention or linear mapping.

The decoder, as in most encoder-decoder schemes, works autoregressively [16], receiving as input its own
previous outputs. In training it’s also possible to employ the technique of "teacher forcing", feeding in the
expected output from the real data distribution. These outputs are offset by one position and masked to
prevent the decoder from attending to subsequent positions. The decoder structure is similar to that of
the encoder with the addition of an extra sub-layer in each of the 6 layers: after self-attention, the feature
sequence is fed to an encoder-decoder attention sub-layer, utilizing the encoder outputs (called "memory")
as keys and values in the attention mechanism described in section 5.2.

5.2 Attention

The paper describes a general definition of attention as an operation on three sets of vectors: queries, keys and
values. Keys and values can be viewed as pairings in a dictionary or table to be looked up by query-vectors of
the same dimension d,,,q4e; as the keys. This mechanism produces one output for each query vector. Each of
these outputs is a vector in value-space calculated as a weighted average of all the original value vectors, with
the weights being the dot product similarities of the query vector with each key, scaled by the v/do4er and
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Figure 5.1.1: The transformer architecture

passed through a softmax normalization [14, §6.2.2.3]. This particular approach is called Scaled Dot-Product
Attention, and other definitions of attention do exist. (e.g. additive attention [5]).

The whole process can be represented in matrix formulation as follows:

Attention(Q, K, V) = softma ( QKT >V
ntion(Q, K, V) = softmax | ———
\% dmodel

where @), K, V are the matrix-packed queries, keys and values respectively.

Instead of a single attention mechanism in each sublayer, the Transformer employs a tactic called Multi-
Head Attention (figure 5.2.1), where the sets of vectors are linearly projected in h different subspaces (heads)
R% and the attention function is calculated in each subspace. The final output for each symbol is the
concatenation of the outputs of each attention head in that position of the sequence, an approach which
allows the network to jointly attend to information from different representations of the same symbols.
MultiHead(Q, K, V) = Concat(heady, ..., head,) W
head; = Attention(QW2, KW/, viv))

where all Wi(.) are parameters of the attention sublayer. The original Transformer employs h = 8 heads,
dmodel =512 and dk = dm,odcl/h = 64.

This attention mechanism is used in two ways:
e Self-attention, where K, V and @ are all linear transformations of the outputs of the previous layer

e Encoder-Decoder attention in the layers of the decoder, where the queries come from the previous layer,
and the keys and values come from the outputs of the encoder
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Figure 5.2.1: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention.

In the decoder, both attention layers mask positions following the current symbol being produced by setting
them to —oo in the input of the softmax. This way the decoder can’t attend to future information about the
sequence.

5.3 Position-wise Feed-Forward Networks

Each layer of the encoder and decoder contains a fully connected feedforward net with ReLU activation:
FFN(z) = max(0, Wy + b1)Wa + bo

The input and output of the network both have dimension d;,04e; and the inner layer has dimension dfy =
2048.

5.4 Positional Encoding

In order to use the information of each symbol’s position in the sequence in the absence of recurrence or other
locality-sensitive elements (e.g. convolutional layers) the embeddings need to have this information encoded
into them. This is achieved by adding sine and cosine positional encodings of the same dimension to the
inputs of both encoder and decoder, of the form:

PEpOS,2i = Sin(pos/lOOOOQi/dmodel)
PEpos2iv1 = COS(pOS/lOOOOzi/dmodel)
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Figure 5.4.1: Positional Encodings as defined in the original transformer.
(source: "The Illustrated Transformer”, J. Alammar [1])

5.5 Training

The original transformer is trained with the Adam optimizer [25], and warmup’ learning rate scheduling.
Specifically the learning rate is adjusted over the steps of the optimizer using the following rule:

Irate = d_°°

model

-min(step_num~=°, step_num - warmup_steps™ )

Meaning the learning rate is increased linearly for the first warmup _steps steps and then decreased following
the inverse square root of the step number.

During training dropout [50] is applied for regularization to the outputs of each sub-layer and label-smoothing
[46] is used to improve the model accuracy and BLEU score.
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Chapter 6

Attention-based Story Visualization

In this thesis we propose an updated framework for the task of Story Visualization based on the emergence
of attention-based techniques for sequence processing and modern innovations in the related task of image
generation. First, we recommend the use of a Transformer Encoder [54] as a replacement for the RNN
structure proposed by Li et al. for StoryGAN [29], to encode the story context into the conditioning vector
for each produced image.

The authors of StoryGAN put considerable focus into creating an RNN module that captures the context of
the story for each produced conditioning vector, even going as far as creating a new RNN cell. We argue that
a transformer-based encoder can learn to imbue the conditioning vectors with the story context even when
such context is more complex, or the sequence fairly long (the datasets used in the original paper have stories
of length T =4 or T = 5). Attention mechanisms are capable of learning long-range dependencies across
symbol positions while also benefiting performance-wise from the parallel processing of the entire sequence.

As a second contribution, we recommend the use of a SAGAN-like network for adversarial learning, and ex-
periment with the use of additional attention mechanisms to reinforce sequential consistency and progression
across the features of generated images. In addition to the intra-image attention proposed in SAGAN [65]
(where image locations are synthesized by attending to other locations within the same image), we also ex-
plore the effectiveness of inter-image attention mechanisms for the sequence, similar to those of a Transformer
Decoder. We also detail the results of our experimentation with the various components and parameters of
this framework.

Figures 6.1.1, 6.2.1, 6.3.1 showcase one proposed variant of our framework for story length 7' = 4, using all
components as described in the rest of the chapter.

The structure presented is an example of the different architectural choices that can be made as we explore
the effects of adding and removing different elements or changing the network parameters. The model consists
of three networks, one generator and two discriminators. Similar to StoryGAN, one of the discriminators
is tasked with judging individual images on their plausibility, while the second enforces consistency across
images in the generated sequence.

6.1 Generator

The input to the generator network G seen in Figure 6.1.1 is a sequence of symbols s, possibly embedded
by an appropriate encoder (such as the Universal Sentence Encoder [7], in the case of natural language
sentences) into vector representations ¢y, t € [1,7] where T is the length of all stories in the dataset, and a
hyperparameter of the model.

6.1.1 Conditioning Augmentation

We recommend using a conditioning augmentation module, the same as StackGAN [63], as described in
section 4.1.1. The module achieves two purposes: First, as described, it promotes continuity in the data
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Figure 6.1.1: The generator network. In the embedding stage, the generator utilizes a transformer encoder.
The attention block may contain any or all attention mechanisms described in this section, although their
position relative to the upsampling blockscould vary.
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6.1. Generator

manifold by sampling conditioning vectors é from N (u(p¢), X(¢¢)) where p and the diagonal of 3 are learned
linear transformations of ¢;. The regularization term described in Section 4.1.1 is also used in the loss of the
generator.

Second, the same network can be used to map the dimension of ¢; to appropriate size since there’s no option
to do so beforehand in certain cases. One such case is the CLEVR-SV dataset presented later where the
"sentences" are presumed to be already embedded to a vector of fixed size.

6.1.2 Transformer Encoder

The input to this encoder can either be the text embeddings ¢, or the output of the Conditioning Augmen-
tation network ¢;.

The inputs are first added to positional encodings as described in the original transformer paper [54], in order
for the position of the symbols to influence transduction.

A transformer encoder is then used to produce context-aware conditioning vectors ¢; from the position-
encoded inputs. We presume that it is capable of encoding in this new sequence of vectors, all the relevant
information for the rest of the generator network to produce the image in position ¢, ¢ € [1, T}, relying com-
pletely on attention. The entire image sequence can then be generated in parallel as well, greatly improving
training efficiency.

6.1.3 Upsampling

The context-informed conditioning vectors ¢; are concatenated with gaussian noise z; ~ p, where p, is the
random input prior (in our case z ~ N(0,1)). This input is fed through a fully connected layer mapping
each one to dimension C - H - W where H, W are the height and width of the initial image channels to be
upsampled and C' their number. This output is rearranged in a tensor I, € RE*H*W and fed through a set
of residual upsampling blocks, similar to SAGAN [65].

The purpose of a residual block [17] is to learn a mapping F(x) = H(x) — x where H(z) is the actual
desired mapping in the underlying distribution. The final output of such a block is produced utilizing a
"skip connection" such that H(z) = F(z)+ . The authors of ResNet speculate that learning the residual is
easier than learning the original transformation and prove successful in countering the accuracy degradation
observed with increasing network depth.

In each upsampling block, the input image features I; are normalized via Batch Normalization [20] and passed
through a ReLU activation. Then, both spatial dimensions are doubled via nearest neighbor upsampling,
and a convolutional filter transforms image features while halving the channel dimension, to approximately
preserve computational complexity as the image planes get larger. The tensor is again normalized and passed
through ReLU activation as well as a final convolutional filter.

In order to add the input to the output we perform a minimal transform on the skip connection, using
nearest-neighbor upsampling to match the spatial output dimension and passing it through a learned 1 x 1
convolutional filter (equivalent to a linear transformation) to match the output channels.

After upsampling the features to the desired dimension H x W a final 3 x 3 convolution layer is used to
produce a 3-channel image, followed by hyperbolic tangent activation to remap pixel values into the range
[—1,1].

6.1.4 Spectral Normalization

Inspired by SAGAN, we make use of spectral normalization for our model. Spectral normalization is a method
that fixes the spectral norm (the maximum singular value) of the weight matrix of a model, by normalizing
the weights (meaning it does not directly change the outputs). It was proposed by Miyato et al. [35] as a
stabilization technique for the training of GANSs, by imposing a constraint on the Lipschitz constant of the
discriminator. This is the only hyperparameter of the process, which has been in practice proven to be of little
importance, since a value of 1 gives good performance in most tasks [65]. We use spectral normalization in the
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Chapter 6. Attention-based Story Visualization

convolutional layers of residual blocks in both the generator and the discriminator, based on the conclusions
by Odena et al. [38] that well-conditioned generators can also affect convergence and produce better results.

6.1.5 Attention
Intra-image Self-Attention

The first of three image attention mechanisms we experiment with in this framework is the one used in
SAGAN by Zhang et al. [65], described in Section 4.3.1. Operating on each image individually, an attention
layer is employed that assists the generator and discriminator in modeling spatial long-range dependencies
within the image.

In this formulation of attention, given an image tensor I; € RE*HXW Mimage features" refers to vectors of
dimension C calculated for each location of the image plane. These features are transformed into two spaces
operating as the key and value spaces as described in section 5.2 for the transformer.

The output of the self-attention layer is linearly interpolated with the input via a learnable parameter -,
which is expected to change throughout training to allow reliance on local features early on and long-range
dependencies later.

Inter-image Self-Attention

As part of this framework we propose a novel attention mechanism for the generator, inspired by the Trans-
former Decoder [54]. Viewing the Story Visualization task as a Sequence-to-Sequence transduction we exam-
ine the effects of attention in the image generation / decoding part of the process to enforce better sequential
consistency and sharing of context information between the images of the storyboard.

In a similar vein to the Transformer’s multi-head attention, image feature tensors are naturally separated into
distinct representations of the encoded information in the form of channels. Thus when we refer to "image
features" for these attention layers, we now refer to Iy = (4:1,...,%:,c) vectors of dimension equal to the
number of locations on the plane.

The Inter-image Self-Attention mechanism we experiment with mimics the Transformer Decoder’s self-
attention, by downsampling each channel ¢;; where j € [1,C], t € [1,T] of the image into 3 new planes

95t = fq(ijyt)

kiv= filije)

CIVE (TR
where j € [1,C], t € [1,T] and fq, fx, fo are implemented as convolutional filters to take advantage of
spatial locality to improve efficiency. We downsample the features in order to make the layer more eflicient,

due to the large number of heads (matrix multiplications) required. We also opt for convolutional filters to
take advantage of the local nature of image channels and again, maintain efficiency.

We then use the new features as the keys, queries and values and calculate the Scaled Dot-Product Attention
function for each head/channel as described in Section 5.2. The outputs of the layer are then calculated via
another array of convolutional filters f,, preceded by nearest-neighbor upsampling to return image features
to their original dimension.

Encoder-Generator Attention

The next attention mechanism we propose directly links the outputs of the encoder to the generated features
instead of relying solely on them as conditioning vectors. We model this after the Encoder-Decoder attention
of the Transformer and hypothesize it will help reinforce the story information distribution in each image,
since we observed great inconsistency in that area during early experimentation.

From an image feature perspective it works virtually identically to the Inter-Image Attention mechanism,
producing the k;;, v; = j,t vectors for each head / channel. For the g, vectors we linearly map the outputs

of the Encoder (Section 6.1.2): ¢;, = ch?tét learning weight matrix Wft as a parameter of the network.

We then calculate Scaled Dot-Product Attention as before.
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6.2. Image Discriminator
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Figure 6.2.1: The Image Discriminator. The transformer encoder might be the same or a different one
compared to the Generator, which is explored in Section ??7. Beyond that, D, operates on each image
individually. The attention block in this case refers to the Intra-image Attention module.

6.2 Image Discriminator

The purpose of the image discriminator D;,, (Figure 6.2.1) is to discern between images from the dataset
and generated images. To that end it utilizes the text features ; of the sentence corresponding to the image
in the story, the context (the other sentences in the story) and the image I; to be evaluated. The context
is important for the discriminator, because each image corresponding to one sentence in a story depends on
the rest to form many of its details. Consider the following examples:

1. "Add a red metallic cube. Then add a yellow cylinder."
2. "A silhouette was visible outside the window. It was a black cat."

In the first case, the second image depends on context to the left, while in the second case, the first image
needs to be aware of context to the right.

The image discriminator is meant to classify each image individually, not as part of the sequence it belongs
to. Yet all produced images of a story are evaluated in batch, to take advantage of the parallel Transformer
processing.

6.2.1 Transformer Encoder

Another instance of positional encoding followed by a Transformer Encoder is used for the same purpose as
described in the generator. The input embeddings for the sentences of an entire story ¢; are encoded through
alternating self-attention and linear layers to produce a sequence of context-imbued vectors ¢. Each of the
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vectors is meant to be used individually for the process of testing image-text correspondence alongside the
fidelity of the images.

6.2.2 Downsampling

Each image to be evaluated is passed through a series of residual downsampling blocks. Image features from
each layer are first passed through a Leaky ReLU activation, then a spectrally normalized convolutional layer
(see 6.1.4), remapping the C' x H X W tensor to double the channels. After another Leaky ReLU, a spectrally
normalized strided convolution layer downsamples the image features. We prefer this option to a pooling
layer due to the inferences made by Radford et. al in the original DCGAN work [40] (Section 3.3). The final
tensor has dimension (2C) x (H/2) x (W/2). For the skip connection, we perform a minimal transform as
described in Section 6.1.3.

6.2.3 Dropout

We have found it beneficial to use Dropout [50] in all residual blocks for the discriminators, to prevent
overfitting and overt coupling of individual layer units.

6.2.4 Attention

We use the same non-local intra-image attention mechanism described in sections 4.3.1, 6.1.5 in order to
assist the network in learning longer-range relationships of image features.

6.2.5 Output

To produce an output scalar, each vector of dimension d,,oq¢; given by the encoder is spatially replicated to
create a dpmode; X H X W tensor that is then concatenated with the image features along the channel axis.
These features are then passed through a residual block to jointly learn from image and text features, a
method inspired by the discriminator in StackGAN [64]. A final fully connected layer mapping features to a
single scalar leads to a sigmoid activation function, ultimately producing a probability D;,,(I;) € [0, 1].

6.3 Story Discriminator

The story discriminator Dg; functions very similarly to the one in StoryGAN described in section 4.2.4. Its
purpose is to enforce consistency and meaningful progression along the image sequence (I1, ..., I7) by jointly
learning a common feature space for sentences and images. The image features are downsampled using the
same kind of residual block as the Image Discriminator (Section 6.2.2), to map them into a space meant to be
shared with the text features. All image features for the same story are concatenated into a single storyboard
vector.

On the text side, a fully connected layer maps all sentence embeddings (1, ..., ) to vectors in this shared
space, also concatenated into one big text feature vector. The two story-wide vectors are then multiplied
elementwise and the result is passed through a fully connected layer (equivalent to the StoryGAN formulation
of a linear transform with bias) to output the scalar "similarity score":

Dy (I1, ..., I7), (¢1, ..., o7)) = o ((W* (Image(I1, ..., Ir) ® Text(p1,...,¢r1)) +b)
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6.4 Training

Training our model requires minimizing the following three loss terms:

E

Lim =Y (B0 [109Dim (it, 01, ho; 1)) + Bz, 00 [109(1 = Dim (G (24, 15 0), 04, ho; ¥r1))])

1
Ly = Eqs)llogDst (L S;¥s)] + Ecsllog(1 — Dyt ([G (21, 015 0)]{21), Si b))
La =Bz ) [109(Din (G (21, 9130, 915 ho; ¥1))] + Be s[log(Dsi([G (21, 045 0)1{21), S5 905))] + Dre (N (14(S), ((S)) IV(0, 1))

~
I

where z; ~p,, I=(I1,...,I7), S = (p1,...,07)
We use the alternative formulation following [15] for the generator to provide sufficient gradients. We also

use the "matching aware" discriminator criterion as described by [42].

We also employ one-sided label smoothing by setting positive labels to 0.9 instead of 1.0, which has been
recommended by Salimans et al. [46] to avoid the pitfalls of regular label smoothing [52].

For all experiments, the Adam optimizer [25] is used for gradient descent and we experiment with different
learning rate values and scheduling schemes for the three networks, in consideration of the two time-scale
update rule [18].

We maintain balanced updates for all three networks and pursue convergence via the aforementioned tech-
niques to maintain training efficiency.
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Chapter 7

Experiments

In this section we experiment with different versions of the framework described above to determine their
effect on generated samples. We use the simpler object dataset proposed by StoryGAN as it can offer a
clearer picture of the variations between different generated sequences based on the same input. We concern
ourselves with the relative learning rate of the three networks, afterwards we evaluate the effects of different
transformer setups, and finally we evaluate the effect of the image attention mechanisms proposed in Section
6.1.5. Since the architecture is - by nature of the task - fairly complicated, for the purposes of this thesis we
elect to mostly focus on the sequential consistency and progression of generated images and the improvement
different applications of attention can offer.

7.1 Dataset

There are very few existing datasets that can be utilized for the task of story visualization and none specif-
ically tailored to it. Li et al. train StoryGAN on two datasets [29] modified for the task: An artificially
generated dataset (CLEVR-SV) containing images of 3D objects and matching vector descriptions rendered
with Blender, and a dataset of cartoon video clips (Pororo-SV) and matching text descriptions, normally
used for video question answering.

We elect to use the CLEVR-SV dataset for our experiments as the simplicity of the images makes evaluating
the result of different parameter or architecture variations more easily discernible. It also helps benchmark
our architecture against the reported results of StoryGAN.

In addition, CLEVR-SV is open source while the Pororo-SV dataset is harder to obtain.

The CLEVR dataset [21] was originally designed for visual question answering. It is a framework for pro-
grammatically generating images containing 3D rendered objects constrained within specific parameters. Any
given object is characterized by its shape (cube, sphere or cylinder), size (small or large), material (rubber
or metal) and one of 8 colors. Four objects are added one at a time, creating a four image "story".

The input sentences ; are vector representations of the objects present in each image, consisting of their
attributes and two real numbers indicating their position. These vectors could be considered as perfectly
encoded dataset-specific embeddings of any sentences describing the sequence, e.g. "A small red cube made
of metal is on the floor. A big yellow rubber cylinder is added to its left." On a dataset where descriptions
are actual text, a pre-trained encoder could be used such as the Universal Sentence Encoder [7] or even a
custom embedding process tailored to the data.

For training we generate 10,000 image sequences and corresponding descriptions and an additional 3,000 used
for testing.
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Figure 7.1.1: Example image from the CLEVR dataset

7.2 Resources

All our experiments were run on the national supercomputer system ARIS, maintained by the Greek Research
and Technology Network (GRNET). For training we distributed the load among two NVIDIA K40 GPUs.
Since the original StoryGAN was trained for 120 epochs to produce satisfactory results we set the goal of
finding an architecture that can do better when trained for the same number of iterations. Training for the
full 120 epochs on any of the described architectures takes approximately one and a half days.

7.3 Experiment: Three Time-scale Update Rule

Inspired by the Two Time-scale Update Rule [18] we attempt to find an optimal learning rate scheme for the
three networks while maintaining a 1/1/1 update ratio for the most efficient training. The architecture we
use for these tests is the one shown in the figures of Chapter 6 without any attention in the image scaling
layers, and separate transformer encoders for generator and image discriminator (see section 7.4). For the
following experiments we use the Adam optimizer [25] with §; = 0.5 and 3 = 0.999. After 20 epochs, the
learning rates are halved based on a typical scheduling scheme.

We observe that when the generator learns faster than the discriminators, the whole model suffers from mode
collapse:

The Generator easily fools both discriminators early on, even when generating virtually the same sequence
(i.e. being limited to one or a few modes of the target distribution), leading training to a stalemate since the
discriminators cannot produce any meaningful gradients to guide image generation.

When maintaining a low learning rate for the generator, increasing the Image Discriminator learning rate
proves to lead the Generator into creating images that correspond closer to the conditioning information.
(Figure 7.3.2)

The Generator is quicker in learning the correct matching for color and shape between image and description
vector, as well as learning to produce more concrete shape features, at least for large objects.

Increasing the learning rate of the Story Discriminator, we immediately observe greater consistency across
images. Objects maintain their position throughout the story and the correct number of objects for each
image is generated more often than not. Lower learning rates also seem to affect text-image matching, with
the generator creating images with wrong color, shape and size a lot more often. (Figure 7.3.3)

We thus maintain that it is beneficial for the two Discriminators to learn about 4 times as fast as the
Generator. We find Irg = 0.0001, Irp,,, = 0.0004, lrp,, = 0.0004 to be optimal, as higher learning rates
proved to be too fast for convergence. We use this configuration for later experiments unless specified
otherwise.
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Figure 7.3.1: (left) Generated sequence (right) Ground truth
Training the Generator Wlth faster LR than both Discriminators causes mode collapse.

) Ground truth

) LR: 0.0001

) LR: 0.0002

) LR: 0.0004

Figure 7.3.2: Increasing the learning rate of the Image Discriminator.
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) Ground truth

) LR: 0.0001

) LR: 0.0002

) LR: 0.0004

Figure 7.3.3: Increasing the learning rate of the Story Discriminator.
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7.4 Experiment: Impartial Transformer Encoder

We maintain that the use of a transformer encoder is prescribed to encode context into the conditioning
vectors of a sequence, but learning optimal mappings for the features of a given dataset in such a complicated
task can be proven difficult. Context-imbued vectors are necessary both for the Generator and the Image
Discriminator. We consider that the Story Discriminator is able to learn sufficient mappings for embeddings
and images jointly without any immediate need for other processing, as it considers entire sequences in
parallel.

We explore the option of utilizing one "Impartial" transformer encoder, whose parameters are updated jointly
by the generator and the image discriminator. We hypothesize such an encoder would learn a task-conducive
representation for embedding sequences that simply encodes necessary context without giving an advantage
to either adversary. As shown in figure 7.4.1 our intuitions proved to be correct. We also attempted to
train the encoder to further receive gradients from the Story Discriminator, but found this addition to be
"confusing" the encoder, to the point of learning completely mismatched representations of the context space.

) Ground truth

(b) Separate Transformer Encoder

¢) Impartial Encoder (Generator and Image
Discriminator gradients)

d) Impartial Encoder (All network gradients)

Figure 7.4.1: Using an Impartial Transformer Encoder seem to give the best results, even though gradients
from the Story Discriminator hurt performance.

Transformer parameters are in all cases: dpoder = 512, Npeads = 8 attention and Njgyers = 6, same as the
original Transformer design proposed by Vashwani et al. [54] For all presented results we train the model for
120 epochs. For the rest of our experiments we use an Impartial Transformer Encoder for both Generator
and Image Discriminator.
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) Ground truth

(b) Separate Transformer Encoder

c) Impartial Encoder (Generator and Image
Discriminator gradients)

d) Impartial Encoder (All network gradients)

Figure 7.4.2: Another Impartial Encoder example illustrating the same conclusions.
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7.5 Experiment: Warmup Scheduler

Until now we have been training the Impartial Transformer Encoder using the Adam optimizer [25] with
separate learning rates for the gradients flowing back from both Generator and Image Discriminator. We
decay the learning rate by halving it every 20 epochs.

The original transformer paper [54] recommends a specific learning rate scheduling scheme to be used along
with the Adam optimizer, considered optimal for training transformer-based sequence-to-sequence architec-
tures. According to the scheme, the learning rate should first be increased linearly for a number of warmup
steps and then decreased proportionally to the inverse square root of the number of total steps:

C 1‘5)

lrate = d-°° min(step _num™ ]‘5, step _num - warmup__steps

model

A step is considered to be a single batch of data passing through the network. The learning rate change for
warmupsteps = 4000 and warmupsteps = 8000 can be seen below:

0.0007 ~ —— warmup_steps=4000
warmup_steps=8000
0.0006
0.0005 4
0.0004 4
0.0003 4
0.0002 4

0.0001 4

0.0000 4

T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000

Figure 7.5.1: Learning rate against number of steps, for model dimension 512.

We compare the results of training with this optimization strategy compared to the one described in the
above experiments.

We observe the scheduler fails to train the context encoder, resulting in mostly nonsensical representations
that do not give meaningful results. We presume this is because the recommended optimizer only takes into
account d,,oqe; and the number of warmup steps, thus forcing the learning rate to generally remain much
higher than what the learning rates of the Adam optimizers in regular decay are. This causes the network
to fail to converge.
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) Ground truth

b) Learning rate reduced by half every 20 epochs.

) Recommended optimizer with 4000 warmup steps)

(d) Recommended optimizer with 8000 warmup steps)

Figure 7.5.2: Comparison of regular learning rate decay with the warmup scheduling proposed in the
Transformer paper.
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7.6 Experiment: Transformer Hyperparameters

We experiment with different values for the parameters of the Transformer Encoder. Specifically we attempt
to train the architecture in the figures of Chapter 6 without any image attention.

Our results show that the original Transformer with dpoder = 512, Nheads = 8, Niayers = 6 is indeed optimal
for our task. Reducing the number of heads proved to be immediately detrimental to performance, while
wider or deeper transformers proved to have too much representational capacity to be trained successfully in

120 epochs:

) Ground truth

) Dimension: 256, Heads: 4, Layers: 6
(¢) Dimension: 512, Heads: 4, Layers: 6
(d) Dimension: 512, Heads: 8, Layers: 6

) Dimension: 512, Heads: 8, Layers: 8

) Dimension: 768, Heads: 12, Layers: 6

Figure 7.6.1: Comparison of different hyperparameter settings for the Transformer Encoder.
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7.7 Experiment: Attention Mechanisms

We attempt to use the proposed attention mechanisms as described in Section 6.1.5 in conjunction with the
rest of our model. We tried using each attention mechanism successively in the Generator, starting from the
Intra-image Attention and adding Inter-image and Encoder-Generator Attention afterwards. We also add
Intra-image Attention to the two Discriminators.

We also experimented with the positioning of said mechanisms in different levels of the image scaling (up-
sampling/downsampling) process, testing whether or not the mechanisms would be successful when applied
to higher or lower dimensional features. Despite our best efforts, all variations inevitably resulted in mode
collapse:

(a) Intra-image Attention on features of size 32x32

) Intra-image Attention on features of size 16x16, with Inter-image attention in the
Generator

¢) Intra-image Attention on features of size 32x32, with Inter-image and Encoder-Generator
attention in the Generator

Figure 7.7.1: All variations of our attention mechanisms lead to mode collapse.
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Conclusion Future Directions

The results of our experimentation with the proposed architecture, despite not being immediately impressive,
have proven the merits of our approach. A Transformer Encoder is a valid and efficient system to capture
context information without the need for an RNN structure or special modifications to recurrent cells. Mul-
tiple variations of our model showed the ability to produce sequences of images that meaningfully display
characteristics proposed in the input sentences. They also maintained consistency on almost all visual fea-
tures except clear shape and texture. We consider this as evidence of the potency of attention mechanisms
even in highly-dimensional sequence-to-sequence tasks, such as when the sequences consist of images.

The newly proposed attention mechanisms did not produce significant results for the time being, yet we
believe this to non-exhaustive experimentation on our end and not an integral flaw of the approach. We
maintain that Transformer Decoder-like attention - along with further hyperparameter tuning - is the key to
eliminating the consistency errors introduced by the rest of the model.

Yet, we did observe a significant result in the introduction of an impartial Transformer Encoder. To our
knowledge there are few, if any, adversarial architectures that utilize a "forking" approach where a common
part of the network branches of into a Generator and a Discriminator jointly trained by receiving gradients
from both of them during backpropagation. It is our opinion that this is a generally applicable formulation
in Generative Adversarial Networks, where a "referee" network could take feedback from both adversaries to
remap the input data into a representation that creates a level playing field without favoring either one.

We did not attempt to train the network on a more complicated dataset, like the Pororo-SV cartoon dataset
[29] due to availability issues. We would endorse that this, or better, an improved version of this architecture
be trained on such a dataset to observe a more substantial application of the same ideas on a harder modeling
task. We would hope such an improved version would emerge, remedying the shortcomings that caused weak
fidelity in the generated individual images, as well as mode collapse in the attention mechanism experiment.

As the task is closely related to the much faster improving and more well-researched topics of Text-to-Image
and Sequence-to-Sequence generation, attempting to suggest architectural changes unique to the task beyond
what we have already covered in this thesis would mostly have to predict improvements in either of these
directions, while the flow of inspiration should most likely be the opposite in this case. As far as current
trends go, we would like to also attempt to enforce greater text-image matching consistency by way of an
external network such as the DAMSM proposed in AttnGAN [62].

Moreover, we identify two related ideas for future research, for the benefit of Story Visualization research
in particular. First, since datasets made for this task are few and lack diversity we would like to propose a
research direction towards developing a network designed to create feasible datasets: Starting off of one of
many popular annotated video datasets [53, 44, 60] for tasks such as natural language video description, one
could design a network similar in function to a video summarization architecture [55, 13| that would be trained
to accept both a video and its corresponding multi-sentence text description, and select a sequence of frames
from the video for each sentence. The task could be considered a conditional form of video summarization
with some task-specific idiosyncracies: For example, if there are T sentences in the description, not only
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should there be T output frames from the video, but those frames should be a subsequence of the video
frames, meaning no selected frame should appear before the one following it in the output sequence. To that
end the entire text sequence should be processed to produce the output and a conditional matching score
should be considered for each frame-sentence pairing, given the frames chosen for other sentences.

There is also a lack of appropriate metrics for the evaluation of proposed Story Visualization models. We
thus consider the possibility of researching a metric comparable to the Frechet Inception Distance [18] for
image sequences. This metric should produce a final distance for two sets of image sequences, taking into
account both feature similarity and sequential characteristics.

Finally, we would attempt to produce higher resolution images while maintaining fidelity by adding more
rescaling blocks in the networks. Since residual blocks [17] are better at learning complex image feature
representations and combat vanishing gradients in deep architectures, we consider it an advantage of this
approach that a sequence of higher resolution images could be produced from a good implementation of our
framework simply by increasing the number of upsamplings the features will go through.

To conclude, we believe this attention-based approach to Story Visualization to be the correct path towards
new state-of-the-art models and possibly a great aid to the parent task of Text-to-Video generation. Despite
this thesis not being the definitive attempt to solve the problem we hope to have paved the way to an optimal
SV architecture, to be seen in future research.
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