EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON

ITeplopiopdg Ttou ywpeou avalrTnong Tou

concolic testing uecw oTATIXAS AVAALONG

AIIIAOMATIKH EPrAsIA

TOoLV

AIONTXIOY YITHAIOIIOYAOY

EnBiénwy Kadnyntnc: Kwothc Soydvog
Av. Kodnyntic E.M.IL

Adrva, 16 Maptiou 2022

NATION TECHNICAL UNIVERSITY OF ATHENS

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

Reducing the search space of concolic testing via

static analysis

SENIOR THESIS
of

DIONISIOS SPILIOPOULOS

Supervisor : Konstantinos Sagonas
Assoc. Professor NTUA

Athens, 16th March 2022

Edvixé Metodfio Iloauteyvelo

Eyoh) Hiextpordywv Mnyavixay xou Mnyovixodv YTroloyiotev
Touéag Teyvohroyiog [TAnpogpopixric xar Troloyio TV
Eeyoaothplo Teyvoloylog Aoylopxod

Ileplopiopdg tTou ywpeou avalrInong Tou

concolic testing uEcw OTATIXAC AVAALOTG

AIIIAOMATIKH EPrAvIA

TOL

AIONTYXIOY XITHAIOIIOYAOY

EnBiénwy Kadnyntnc: Kwothc Soydvog
Av. Kodnynmic E.M.IL.

Eyxpidnxe and v tpwelr eZetaotixf emtponi tyv 16/03,/2022.

(Tmoypagn) (Ymoypagn) (Tmoypagn)
Kovotavtivog Xoyovog "Apne Hoyouptlhc Anurteloc Pwtdxng
Av. Kodnyntic E.M.IL Kodnyntic E.M.IL Av. Kodnyntic E.M.IL

Adva, 16 Moptiou 2022

(Yroypagn)

AIONYTZIOY XITHAIOIIOTAOX
Awmhwpatovyog Hhextpohdyog Mnyoavindg xar Mnyovixdg Troroyoteov E.M.IL
Copyright (©) Ennhénovhog, 2022 — All rights reserved

Me empOAaln TavTog BIXoUMOUATOS.

Amaryopeletar 1 avTypan, anodrixeucn xa dlavouy| Tng mapoloug epyactag, €€ olo-
YA\POL 1) TUUOTOC AUTAC, Yid EUTOpixd oxomo. Emteéneton 1 avotinwaor, arodrixeuon
%0l BLAVOUT| YLoL OXOTO U1 XEEOOOXOTIXO, EXTAUOEUTIXNG 1) EQEUVNTIXAC QUONG, UTO TNV
TEOUTOVEDT) VoL AVOPERETOL 1) TTINYT} TEOEAEUGTC XAl Vou OLUTTEETAL TO TTaPOY VUL
Epwthuata mou agopodv 11 yenon e epyasiag Yo XEpB0OXOTIXG OXOTO TEETEL VA
ameudivovtar Teog Tov ouyypugéa. Ou ambdelc xon To CUUTEPACUTO TOU TEPLEYO-
VTOL O AUTO TO E€YYRUPO EXPEACOLY TO GUYYQPUPEN X OEV TEETEL VoL EpUNVELVEL OTL
AVTITEOOKTEVOLY TG entlonueg Véoelg Tou Edvixol Metodfiou Iohuteyvelou.

HeptAngm

O éleyyoc mpoypopudtwy etvor xplowwog yio TNV avdntun olomoTwy eqopuoyoy. To con-
colic testing etvan pio teyviny White-Box testing, n onola emdidxet Ty autdpatn dnutovpyia
TOAMATAGY ELGOOWY YL EVHL TEOYQOUUAL, TEOXEWEVOU VO EVIOTUOEL GHAINIATO XATE TNV EXTENE-
on. Auth n teyvixn avtwetwnilel 1o TEOBANUN evOg TOAD UeydAou Yweou avalATnong omod
HovoTdTioL EXTEAECNC, TOLU oTolou 1 e€gpelivnon elvan yEoVIXd amawtnTixr. Xe ouTh T Ol
TAwPaTXn epyaota avantOydnxe plo pédodog yia T UelwoT Tou Yweou avalTNnong XAvVovTaS
xeron e oTaTxig TANEoYopiag €VOS TROYEIUUATOS YL TNV APolpEST) TV XAUOWOY TOU
0ev opdryouv opdhuata. d¢ oTUTIXNY) TANEOYORIA YENCHIOTOLUUE TO APNENUEVO GUVTUXTIXG
OEVTPO TOU TPOYEAUUATOS, XadWE Xal Toug TUTOUS Tou TopEyovTtol o auto. H pédodoc auth
avortUydnxe oto CutEr, éva epyaheio yia concolic testing tng YAOGOUC TROYEOUUATIOUOY
Erlang. Axéua, n pédodog ehéyydnxe ue NOn LTdEYOVTO TEOYEAUUOT, XUdMC Xou VEO EWBIX
OYEBLACHUEVA YLl TOV OXOTO aUTOV, TEOXEWEVOU Vo avadetyVel 1 yenowdtntd tng. Téhog,
TopaTidEVTon Tal AMOTEAECUATO TOU EAEYYOU QUTOU, OTOLU QPAUiVETAL OTL Ol YPOVIXES UTMOUTHACELS
Tou concolic testing pmopolyv va yetwdoly paydala Ye T yprion authg Tng uedodou agalpeong

UNEOWV.

AéCeic KAeod

Concolic Testing, CutEr, Erlang, 'Eieyyoc mpoypoupdtenv, White-Box Testing, Meiwon
X ®EOoL avalATNoNG

Abstract

Software testing is crucial for developing any reliable application. Concolic testing is a
White-Box testing technique, which tries to create various inputs for a program automat-
ically, in order to locate runtime errors. This technique though suffers from a vast search
space of execution paths that is inefficient and time-consuming to fully traverse. In our
work, we propose a method to reduce this search space by exploiting the static informa-
tion in a program and pruning branches which will certainly not produce errors. As static
information, we use the program’s abstract syntax tree, as well as the type annotations
provided. This method was implemented in CutEr, a concolic testing tool for the Erlang
programming language. We have also tested our method with custom programs and real
world code. Finally, we report the results of our testing and show that the time perfor-
mance of concolic testing can be immensely increased by using our method for safe branch

pruning.

Keywords

Concolic Testing, CutEr, Erlang, Software Testing, White-Box Testing, Search Space Re-

duction

II1

Euyapiotieg

O Aeha va evyaplotiow Tov Kwoth Yaydva yio Ty xododriynor Tou xot To evolapépov
TOU, TO0O O€ VEUATA TIOU 0PoEOVY GTNY OLTAWUATIXY MOV, OGO XL OE GTNV TEOCWTLXY UOU
eZéMEn. Tov euyaplotd Tou npoondinoe ethxpvd yio xdde Lhtnua vo emAudel ye Tov Théoy
0pV6 TE6TO. Oua fieha axdua va evyaptoThow Tov Nixo Ianacmipou mou yéow tng dplotng
OLdooXAhioG TOU UE EVETVEUGE VoL 00 O UE TOV CUYXEXPLUEVO TOUEN XAl YIoL TNV IXAVOTNTOL
xan Ty diddeot| Tou va divel Aoon oe xdde mEdPAnua yenowlorowwvTag TNy Podeld avtiAndn

Tou. Alo¥dvopon TuyEEdS oL Elyo TNV EUXAEIN VO CUVERYOCTE Xoik UE TOUS 000,
Euyopioted tov ‘Ayyelo I'idvtailo yia 6An tou Ty avidlotedr| Bordeta xar othielln.
Télog, euyoPIoT® TOAD TNV OXOYEVELS HOU X0t TOUS QIAOUG LoV, TIOU UE BLUUORPOCAY GTOV

dvdpmno mou elyon oruepa xou Tou NTay dimha wou ot xdde oTiyur g Lwhc pov. Idwitepa

Yo Hleha va euyoptoThow TV Aovdn Tou Ue LUTOCTARLEE OAAL QUTA TAL YEOVLAL.

Aloviolog XnnAoTovAog
16 Mogptiouv 2022

Contents

Extevig Ilepiindn ota EAAN VI
Elooaywyn . . o o
Oewentind YmOPodpo
Erlang o .
Concolic Testing
[Teproplopdc Xwpov AvalATnome o o o v v oot
Auvvouixoe ‘Eheyyoco oo Lo
Yratep AvBhuom ...

[ewapotind AnoteAéouato xot NUUTERAOUATO . « o v v v v e e

1 Introduction
1.1 Problem Statement
1.2 Thesis Organization

2 The Erlang/OTP System

2.1 The Erlang Language
2.2 The Erlang Compiler
2.3 CoreErlang
2.4 Erlang Types
2.5 Built-in Types

2.5.1 User-defined Types

2.5.2 Function Signatures 0

3 Concolic Testing

3.1 The Basics of Concolic Testing
3.2 Challenges and Limitations
3.3 Search Space Exploration 0oL
3.4 CutEr . .. 0.

4 Search Space Reduction via Safe Branch Pruning
4.1 Overview e
4.2 Dynamic Check

11
12

15
15
15
16
17

VIII Contents

4.3 Static Analysis 21
4.3.1 Contract Gathering 21

4.3.2 Callgraph Processingo o 23

4.3.3 Type Annotation 26

4.3.4 Error Annotation L 35

4.4 Search Space Reduction 40

5 Experimental Results 43
5.1 Strengths and Limitations 43
5.2 Erlang Standard Library Code Samples 44

6 Conclusion and Future Work 47

Bibliography 53

List of Figures

2.1 Module node definition.o oL 7
2.2 Values node definition. 7
2.3 Let node definition. 8
2.4 Letrec node definition. Lo oL 8
2.5 Case node definition. 8
2.6 Clause node definition. L L 8
2.7 Call node definition. 9
2.8 Apply node definition. 9
4.1 Static Analysis Flowchart 20
4.2 Contract Gathering Flowchart. Unhandled is a set initialized to hold all

functions defined in the modules that are involved in the callgraph. Travers-

ing the modules will convert signatures to erl_type form and remove these

functions from the Unhandled set.. 22
4.3 Signature with constraints. It is the signature of the lists:keyfind/3

function of stdlib. 23
4.4 Graph Processing Flowchart. Initial Callgraph is a directed graph that

possibly contains SCCs. We find the SCCs and merge the ones that have

common nodes. If the entry point is part of an SCC then the whole SCC

becomes the new entry point. L. 24
4.5 Callgraph with SCCs example. £3/1 and £4/1 belong to two SCCs which

are merged into one. £3/1 and £4/1 constitute another SCC. 25
4.6 Callgraph Processing. On the left figure we present the original callgraph.

On the right figure we present the resulting callgraph after merging the SCCs. 26
4.7 Simple Addition 27
4.8 lists:lasto L 27
4.9 Different argument typesat callo 000 28
4.10 List Comprehension 28

List of Figures

4.11 Type annotation algorithm flowchart. NoSpec is a set containing all func-
tions with no user provided signature. OpenSet is initialized to hold all
functions with a user defined signature. The symbol table contains all the
signatures of functions and can contain signatures computed for functions
in the NoSpec set. A change in types might be an encounter of a call to
function in the NoSpec set with argument types different than the so far
computed for this function or a change in any node type computed. Updat-
ing the open set includes pushing the f in the open set and any functions
belonging to NoSpec that are called and have to get an updated signature
(done in process “Update Symbol Table”)

4.12 List Comprehension AST. In line 5 the closure {'1c\$~0',1} is introduced
which is recursive. It calls itself in the apply node in line 17.

4.13 In this example, an unreachable clause will be added by the compiler, since
it doesn’t consider that X will be of type boolean and thus will have values
true or false. L.

4.14 Unreachable clause AST. The unreachable clause is in line 29, added by the
compiler.o

4.15 Values as argument incase o

4.16 Values as argument in case. The case statement in line 4 has as argument
a values node (line 6) which contains the two arguments of the function, 0
and 1. e e

4.17 Known variable in pattern L L

4.18 Case argument has the type of {number, number} | number. The first
pattern is just a tuple. We have to use the tuple part of the union, not the
whole union.

4.19 Simple function that produces an error when its argument isnot 1

4.20 AST of function in Fig. 4.19. The argument of the function is the variable
with name 0 and the call to error is done in line 16.

4.21 Branches in the call of g/1 in line 6 can be pruned since paths from that
point cannot produce an error. e e

4.22 Branches in the call of g/1 in line 6 can be pruned since it cannot produce
an error. Branches in the call of g/1 in line 5 can not since they have to be
explored in order to lead to the erroneous clause in line 7.

4.23 If the signature of erlang:+/2 remains (number (), number()) -> number ()
then the expression X + 1 will be annotated with the type number (). This
will result in the type of the call to g/1 being invalid since number () is not
a subtype of integer().

4.24 The variable introduced in the let node in line 5 is the argument of the
case node in line 11. This means that we should not prune the call to the
function g/1 in line 8 even if it is error-free, because we wouldn’t be able to

create inputs that explore all the clauses of the case node.

39

List of Figures XI
4.25 Program verifying the Collatz conjecture for a number. 42
5.1 It is very difficult to calculate the callgraph of this program. 44

List of Tables

2.1

2.2

4.1

4.2

5.1

Types with their corresponding AST representations. Ln corresponds to the
line in the file where the type is declared. 13
Miscellaneous types and aliases of types with their corresponding AST rep-

resentations. Ln corresponds to the line in the file where the type is declared. 14

distrustTypedependent effect on maybe_error. The dynamic check will

need a boolean value of the maybe_error annotation, which originally can

take 3 values (true, false, type_dependent). The distrustTypedependent
flag decides whether the type_dependent value will be perceived as false

0 v o 1= 21

Result A ® B of combining two maybe_error annotations A and B.. 37

Table consisting of the entry points from lists where the analysis improved
the performance of CutEr. For each entry point, we report the number of
solved and unsolved models with the analysis enabled and disabled. All the
tests were done with depth for the CutEr BFS of 15 because some wouldn’t
terminate in reasonable time with the default depth of 25. 45

XIII

Extevnic Iepiindn ota EAANvVIXd

e autd To XEPIAAO TOPOVCLELETAL 1) DITAWUATIXNY EPYUGIA TOU EXTOVAUNXE UECHL UL EXTE-

Touévng mepiAndng oo EAANVIXG.

Ewcaywyn

Ta UG TALATE UTOAOYIGTOV OTOTEAOUY GUERA AVATOCTINGTO UEpog xde avipdmivng dpa-
OTNELOTNTOC. 2YEOOV OAEC oL Bladixacieg NG avipdTVNG EMXOVWVING, TWV UETAPORMOV, TWV
avTodory v, Tne uyetog, e Yuyoarywylog, e yokdewong x.At. e€apTdVTOL omd ToL UG THUATA
UTOAOYIOT®Y Yiot TNV LAomoinoy| Toug. H Aettovpyia autddv twv cuotnudtwy xodopileton and
€val 6UVOAO 0ONYLWY, To Aoylowtxs. To hoylouixd mepthopfdvel To GOVOAO TWV TEOYEU-
HATOVY, TV SLIBIXACLOY Xl TWV POUTIVGY Tou oyeTilovTton Ye Tn Aettoupyio evog cuoTAUA-
T0C LTOAOYLO TGV [1]. AuT6 TO hoYoUIXd AVATTUCOETOL OO TLEOY POUALALTLO TES, OL OToloL
YEd(POUY TO GUVOAO TWY EVIOADY W XWX EXPEUCUEVO GE Uiol 1} TEPLOGOTEREC Y AW OOES
TEOYPALUATIOUOV xat e€acparilouy 6Tt extehel Tnv emduunty Aettovpyla. ot va emiteu-
yOel auTo, elvon oNUaVTIXG TO TEOLOY AOYLOUIXOD O)L LOVO VO AVTATOXEIVETOL GTIC AMOLTHOELS,
A& xou va etvon defect free, dnhadr| va unv UTdEYOLY CPAAUATR GTOV XDOOLXA TOU Vo
001 yolouy ot anEOBAETTY] GUUTERLPORY TOU TEOLOVTOG.

Ye autd 1o onuelo yiveton yerowog o EAeyyog meoypaupdTtwy. O éleyyog meoypo-
pdtwy yenowlomotelton yiar vor avgniel n mdavotnTo vou uny undpyouy Addn oTo Aoyiouwxo,
®oTe auTo va ebvan o€lomioTo xou ac@aréc. O €heyyog TEOYpaUUUdTLwY Utopel va dlaywpeto Tel
oe dVo xoatnyopiec: Black Box Testing xou White Box Testing [2, 3]. To Black Box
Testing unopel va yenowonoiniel axdun xouw 6Toy BV UTEEYOLY TANEOPORIEC OYETXE UE TNV
EOWTEQPIXY| DO TOU XWOLXA, TG AETTOUEPELESG UAOTIOMNONE N TIC ECWTERIXES OLUOPOUES. XTO
White Box Testing 1 ecwtepiny| dour|, 0 oyedlooUog xou 1) XWOXOTOINGT TOU AOYLOUIXOU
elVol YVWOTE %o YEMNOWOTO0OVTAL YL TOV EVIOTIOUO CQIUAUATLY. XTnv Topoloa epyacia,
eondlovue uévo oto White Box Testing xou otoug tpdmoug BeAtinong twv uQLoTaUEVGY
ued6dwY eAEYYOU AUTAC TNG XaTNHyoploC.

To concrete execution £vog TEOYEUUUATOC AVUPERETAL OTNV TANET EXTEAEGT) TOU UE XATOLX
%8 xodoplopév (concrete) eicodo xar oty mapatAenon tne ocuuneplpopds touv. H cup-
Boluxh extéleot [4] civon évag tpoOTOC ENEYYOL EVOC TROYRGUUUTOS UECW TOU OTolou
mpoacdlopilovtan ol glcodol Tou TpoxoholV TNV extéheon xdie eVIOAAC Tou mpoypeduuatog. H

ouufol| Extéleon yenowonolel évay BLlepnVELTY], v TEOYROUUO TOU EXTEAEL OAES TIC

1

2 Extevijc Hepidngn ota EAAnvixd

EVTOAEC TOL XWOXA YwEIC xoplal TEOTYOVUEVT] UETATEOTY TOU XWOXO GE EVIOAES YAWOGCUC UT)-
yavic. Autodc o Slepunveutnic axoloudel TNV por) Tou TEOYEAUUATOS Xt UTOVETEL CUUBOAMXES
TWES YOl TIC EL0OBOUE TO, YWRIg VoL €YEL TANPOPORIES YLl TIC TEUYUUTIXES TYES ELOOO0L. TN
CUVEYELD, CUUTEQOLVEL EXPEATELS YIoL TIC TEAEELC Xak TIC UETOBANTES TOU TROYEAUUATOS, xondMg
xal TEpLopLoolg Yo To mavd amotehéopata xdie dloaAddwons. Emilovtag autod toug
Teploplopols, unopolue va xadopicouue moleg elcodol elvon oe Yé€an vo axohovicouv xdie
xh\&do. To concolic testing [5, 6] eivon o eV Tou gpunvelel to und e&étaon TEdYpEo-
HOL, TROYUOTOTIOLOVTOG ot concrete xow cUUBOAXT EXTEAECT] TAUTOYEOVA, XA XATHYEUPEL TO
HOVOTTL EXTEAECTS, ONAXDT| TNV 0xOhoLDid TOV BLUXAADWCEWY TOLU axOAOUI UKV XUTd TNV
extéleor. BAénovtag node 1 eloodog ennpéace autd TO HOVOTATL EXTEAECNC, ONULOVEYEL Evay
ouleuxTxd Aoyxo T0To, o omolog, av xavonomnldel and onoldr|Tote €lcodo, TO TEOYEAUUU
Yo axorouirioet To (Bto povordtl. TéAog, YenoylonouwvTag €vay ETAUTY TEQLOPLOUMY, AVOLEE
€vory 6p0 UTOU TOU TUTOU YLoL VoL ONULOURYYOEL Lot €l00d0 ou Vo axohovdoeL BLUQORETIXG
novorndtt extéheonc. Kdvovtag to autd cuotnuatind, 1 teyvixt o dicpeuviioet xdde mdavo
HOVOTITL EXTEAECTIC TOU TEOYQEAUUATOS Xou Vo xoTarypdel TolEC {0000l TapdyouUY GPAAUL
exTtéheong.

H teyvi oauth| epapudletar Yiot TOAES YAOOCES TEOYEOUUATIONOU XURIWE TROCTUXTIXES Ko
AVTIXEWEVOOTRAYPELS, YENOWOTOLOVTAS Uidt YoUUNAO) ETUTEDOL AVATURACTACT] AUTWY, OTWS 1|
assembly 7 to LLVM. To CutEr [7, 8] eivat éva epyaheio mou uhomotel authy TV Teyvix yla
v Erlang, n onola etvan pio cuvaptnolaxt| yahwooa npoyeoupoatiogol. To CutEr 6ev evepyel
oto bytecode mou dnuiovpyel o yetayhwttiotic tne Erlang, aAld oto Abstract Syntax Tree
(AST), 1o omola eivon pla eVOIdUEST AVATOPIOTACT, TOU TEOYEIUUATOS XoTd TN didpxela TG
UETAYADTTIONG.

H nopoloa epyaocta diepeuvd tpomoug adinong tng anédoone evog tétolou concolic testing

gpyaheiov.

BOeswpentixd YTroBadpo

Erlang

H Erlang etvor plor YAOGOO TEOYROUUUATIONOD, 1) OO0l OYEBLAGTNXE YLoL TNV OVETTUEY To-
EGMNAY TpoYpapUdTeY Tou “Teéyouv yio tavte’ [9]. H Erlang dnuovpyhinxe to 1986
oto Epyactrplo IThnpogopurc tng Ericsson, mpoxeluévou vor avTeETOToToOY Tl dTUTO TO-
BAAUoTo TOL UTAEY Y OTIC EQUPUOYES TNAEPLVING, AOYW TNG EYYEVOUS TOUC TUEAAANANG Act-
Toupyiog. Adyw NG oTOLBAOTNTAS TOV GTAVERHDY TNAETLXOVWVLOY, HTOV CNUAVTIXO VLol TNV
Erlang va nogéyel uhnir St eCLLOTNTA, AVOY Y] OE CPAAAATA XU EVNILERWTY] TOUL
TEOYPAUUATOS Xxatd TNV Asttoveyio. O hettovpyieg émpene enlong vo ebvan ‘soft
real-time’, mou onuaivel 6TL eV wdmoleg Yo Empene va SloaxdTTOVTOL oV OEV TEAElwVAY GE Eval
CUYXEXPWEVO YEOVIXO BAC TN, dAAES uTtopel Vo yeelaldTay vo emavohngdoly oe yio TéTola
nepintwon.

M eappoy?| Erlang aroteleiton amd modules. Kdde module petoyiwttiCeton Eeymplotd

Extevijc Hepiingn ota EAAnvixd 3

XL ApYOTERA (POPTWVETAL 0To olOTNUA Yedvou extéleone tne Erlang. Auté to olotnua
Yeovou extéleoTc Yenowonolel éva register based virtual machine nou ovoudleton BEAM.
O petayrottiotic petatpénet xde module oe BEAM bytecode xon 0 @optwthc pe Tnv oelpd
Tou To Uetatpénel oe threaded code.

IMo var dnuovpyrioer to BEAM bytecode, o yetayhwttiotic Erlang npwta availel to xeluevo
ToL TPOYpEdUUaTOS xou dnulovpyel To Abstract Syntax Tree (AST) tou module. AeSouévou
6t n Erlang nepiéyel syntactic sugar, 1o AST uvglotaton évoy evOIdUECO UETACY NUATIONO
Tou mapdyel To odlvopo ouvtaxtixd dévipo Core Erlang [10]. Télog, autd to dévtpo
petaoynuatileton oe BEAM bytecode.

H Core Erlang [10, 11] yenotuelet o¢ yio eVOLHUEST) avamapdo TaoT TNE YAWCOUS TEOYE-
patiopol Erlang. Ilepiéyet éva wixpd clvolo doucv, mpoopépel xadoupt) onuaclohoyla xa 1
petatponn and v Erlang oe autrv tnv avamopdo taon xadog xou 1 petatpony| and tnv Core
Erlang oe bytecode eivou apxetd anir. Efvar duvatov va extunwiel oe xelyevo mou etvon e-
Uxoho va Swac el xou vo eneepyaotel, Aoyw Tne amhic Ypouuatxhc tne. H onpoavtixdteen
Yerion tne elvol 1 BUVITOTTA AVATTUENS EPYUAELWY TIOU BEOUY GTNY AVATUEAC TUCT) TOU Y-
fou xdBwxa (6Twe avolutée Tomwy [12, 13, 14], otatixol avahutéc yior TapdAnAn ueTddoon
unvoudtov [15, 16, 17], epyaheio Soxpcdv [18, 19, 20, 21], epyareio avadiopydvemons xwot-
xo [22, 23, 24, 25], x.An.), anogebyovtog Ty mohumhoxdtnta tne mhrfpouc Erlang xou tng
Younhol emnédou avanapdotacnc tou BEAM bytecode. To epyoeio CutEr [7, 8], extehel
concolic testing oto Core Erlang AST.

H Erlang eivor dynamically typed xou dev amoutel tnv mapoyr| type annotations amd tov
xenotn. 2071600, oL TANEOPORIEC TWV TUTWY TWV BESOUEVLY UTHEYOUV GTO YEOVO EXTENE-
one xou eEAEyyovTon oe xdde Aettouvpylo Yoo v dtacpailoTel To type safety. Etol, undpyouv
primitive types otnyv Erlang. O mpoypauuatiotrg unopel va npocdécel type annotations yia
Aoyoug caghvelag Tou mpoyeduuatog. Emmiéov, autd to annotations umopolv va yernoio-
Totndoly and eEWTEPXE TEOYPAUUATO YIoL VoL AVAAUCOUY TOV XMOOLXA OE EVOL TLO CUYXEXQPLIEVO
mhaioto. O TpoypopuaTIo TAC UTopel Var SNAMGCEL XaL Vo 0plOEL XavoURIouUg TUTOUS YEYNOLOTOL-
ovTog To annotation type 1| opaque xau vo oploet records ye to annotation record. Emmiéov,
Ol UTOYPAUPES CGUVIRTAHCEWY UTopoLY va xoopioTody pe To annotation spec. ‘OAlo awtd To
annotations dev Vo Angdoly unddn amd TOV UETAYAWTTIOTH Yol UTEEYOUV YL VoL XEVOUV
TNV AVATTUET TOU XOOLXA O DOUNUEVT] X0 TEXUNELOUEVT), XM XL YLOL VO SLEUXOAUVOUV 1)

OLodixaoior amocPoAUdTLWoNS UEGK NG YeNONG EEMTEPXAOY ERYUAEIWY.

Concolic Testing

H Aé&n ‘concolic’ elvan amotéheoua g ouyyOveLong Twv Aéewv ‘concrete’ xou ‘symbolic’
TIOU AVTITEOCKTEDOLY TN OLTAY| AVATUEACTUCT TV TYWY XATY TN OLIEXELN TN OLEPUNRVEUOTS
TOU TpoYEdUUaTOC. XTo concolic testing, extekeiton To mEdYEoUUA xou UE CUUBOAXO oL UE
concrete tpono. To cuufolnd pépog tng extéleong elvan amopoaltnTo Yiar Tn Onuiovpyia TwV
VEWV €l060WY PEow TNG EMtAUCTG TEPLOpIoUMY ot 1) concrete extéleon elvan amapaitnTn Yio

v xadodnyfoer T oudBolxy| extéheon oe éva cuyxexpévo povordtt [26, 5, 7, 8, 27, 28].

4 Extevijc Hepidngn ota EAAnvixd

Kotd tn dudpxeia tng extéheong, dwutneeiton 1oc0 €va GUUPOAKG 6Go xou €va concrete me-
ey3dhhov. Xto concrete meplBdAlov €youue avtioTolyioelc and Tic METABANTES GTIC concrete
TWES TOUC, EV® 0TO GUUPBOAXO TEQIBAAAOV €YOUUE avVTIGTOLY(OEIC and TG UETABANTES OTIC
ouuPolixéc exppdoeic Touc. T va Eexvioet 1 Bradicacto, omontelton uLor apyxr elcodog, eite
Tuyako ToEoYOUEVYY ElTE TUPEYOUEVY UO TOV YENOTY. XTN) CUVEYELN, TO TEOYEUUMUO OLEQUTVE-
UEToL YE QUTAHY TNV €000 mopdyovtog o Bladpour| EXTEREOTC, BLITNEWVTAS TUPHAANAL TOUG
TEPLOPLOOUE antd To GLUPOAXO TEpBdAAOY ot xdle SrAwaor dlaxAddwone. H odleuén dhwv
QUTOY TWV TEPLOPLOUWY aynuatilel uio Aoyixr éxgpaot, 1 ontola Yo 0dnyroet xdie elcodo mou
v avorolel oTo {Blo povondtt extéieone. Etol, €dv omolocdrrote 6pog autol Tou TOToU
TOU QVTIOTOLYEl OE [Lol BLOXAEDWOT) GTO TEOYEAUUU AVTIC TEPEL, Ulal E[00B0C TOU IXUVOTIOLEL
Tov véo tUmo Va eEepeLVIOEL €Val BLPOPETIXO UOVOTATL, ATOXAVOVTAS ol TO TEOTYOUUEVO
oe auThv TNV OlaxAddwon. H diatrenon O AwY TwV LOVOTATIOV EXTEAECTNC XL 1) AVTIOTEO-
1) AV TV TWHAVOY 6pwV TOU AVTIGTOLY0VOY G OAOUS TOUG XAABOUG OE AUTE To HOVOTYTLAL
extéleong Yo xohlel avandpeuxta OAOXANEO TO YOEOo avalATNoNS TwV TIUVOY EL0OdWY.
Ipoxewévou va Beedel uia elcodog mou va ixavorotel xdde Vo xatnyopnua Tou SNULOVEYE-
fto, ypnolomoleiton €vag EMAVTAS TEPLOPLOPAY, OTwe To Ip_solve, to ECLiPSe [29] # to Z3
[30].

To concolic testing emtpénet evdeheyr| EAEYYO TOU TEOYRIUUITOS X EXUETUAAEVETOL TNV
EOWTEQIXT| OOUN TOU YIo TNV OTOTEAECUATIXT| EVPEDT) EIGOBWY TOU TAURAYOLY COIAIATO HAUTA
N Odpxeta extéreong. (2oTOC0, UTAEYOUV OLAPOEOL TERLOPIOUOL GE QUTY TNV TEYVIXY X
TOMES TROTEWOUEVES EVODOL VIOl TNV AVTIUETOTLCT TOUG.

H mo ducenilutn and auvtéc Tic npoxhnocic ebval 1 un mAnedtnta Tng eNtAUCTC TV TEQLOPL-
ouV. Avdhoya pe TO TEOYEOUUA ELGOBOU, EVAC TEPLOPLOUOC TIOU TTORAYETOL OO EVA LOVOTIATL
extéleong umopel va amontel TOAD Ypovo yia var eTALYEL amd TOV ETAUTY TEQLOPLOU®Y, O O-
molog umopel axdun xou vor uny etvan o Yéorn va Tov emhioel. Autd xahotd tnv Siepelivnon
OPLOUEVY TROYPAUUATMY adUVaTY, xadde dev Do eivan e@ueth 1 dnutovpyia vEwy etlcddwv [6,
5].

Mo g onuavTtxr) TedxAnot, 1 onolo amotehel To xVplo avVTIXEUEVO aUTAS TNS EpYaolag,
elvor To €0pog Tou yweou avalhtnone. Aveldptnta amd 1o péyedog TOU TEOYEGUUATOS, T
dedouéva mou Va mapaydoly xatd Ty extéheon Tou elvan miavov va eivon TOAAG. Axdun,
OpPLOPEVA LOVOTIATLO UTOEEL VoL €lvo TOAD UEYSAaL Xal VoL ONUtovpYo0V EXTEVELS EXPEACELC TE-
ploplou®y, oL omtolot efvar BUGXOAO VoL AVTHIETWTOTOLY oo Tov eMAUTH Teploplop®y. Tlapdia
autd, ebvan onpavtixd v Peedolv to miavd opdiuata exTEAEOTS OE EVa AOYIXO YEOVIXO
OLdoTnua, ondte TEENEL va xateuduviel 1 concolic EXTEAEOT OE GUYXEXPWIEVA LOVOTATLOL YET)-
owpomoldvTag ddpopes eupeTinéc uedddouc [31, 32, 33, 34, 35]. Autéc Sev UEWDVOUY TOV YHOEO
avalATnong aAAd emyelpoly Vo xateudivouy Ty avalTnoT Ue TETOLo TPOTo WOTE Vo Peetoly
o opdipota yenyopotepa. To CutEr xdvel avalrtnon breadth first ye opodetnuévo Badog.
TéNoc, TOMNS TEOYEdUUaTa UTOPEL Vo TOPOUCLELOUY Lol (U1 VIETEQUIVIO TIXT| CUUTERLPORE. (TT.).
YenotponoldvTag tuyoioug aprduolc). Autd amotehel TedBinua, xadde To HovoTdTt eXTEéNE-
ong unopel vor uny oyetiletal anoxAElo NG UE TN POPUOUAN TTOL TORdYETOL amd T SUUBOAIXY

exTtéheom), xal €101, Vo enod{lel Tov ahyopriuo vo Snplovpyoet eloddoug yia Ty e&epedivnon

Extevijc Hepiingn ota EAAnvixd 5

VEWV ETUAEYUEVODY XAAOWY.

IIeplopiopog Xwpou Avalntnong

H pédodog mou axohovdninxe oe autrv tnv epyaocio eoTidlel GTOV TMEQLOPIOUO TOU YOEOL
avalRtnong Tou concolic testing anoteémovtds 1o and o Vo axohovdnioeL 0pLOUEVOUS XAABOUC
TOU TROYPAUUATOS TOU €Y 0LV TpoxaloploTel W ‘UoPaAEl’ UEow Wlag oTaTXnC avdiuone. Me
TOV 0p0 ACQUAELS €0 EVVOElToL 1) BEBaOTNTA OTL O CLUYXEXPWEVOS XhABOC OeV Var xaTahnEEL
o€ opdida aveldptnTta and TNy elcodo tou Tpoypeduuatos. H uétdodoc autrh vhotowidnxe oo
epyoreio CutEr (7, 8]. H oot avéluon yivetar 6T0 ouvTaxTixd BEVTIPO TOU TpoYpduuaTtoc,
TocVETHVTUC G XddE XOUPO CUYXEXPWEVES EMOTUELOOEL;. Emetta, xatd tnv extéheot) Tou
concolic testing exteheiton €vog Suvauixdg EAEY YOS YENOLOTOLOVTOG AUTES TIG ETULONUEWDTELS,
o omolog anoxhelel Toug aoareic xAddoug amd péhhovoa e&epelvnon. O anoxAelondg autdg
yiveTon BUVATOC CTULATOVTIC TNV ATOVAXEUCT] TKV CUUBOMXMDY TEPLOPLOUWY OTIC ETERY OUEVES
Stoaxhadwaoele, xotog ywpic auvtéc o CutEr dev Yo npoonodfcel va togorydyet El6OB0US TEOC
e€epelivno| Toug.

H otatiny avéluon eivon utebduvn yior Ty tpocidixn twv €1 EMIONUELOCEWY GTOUS XOUBoUC:

e maybe_error: ‘Eyel tpeig duvatég Twéc. ‘Otay €yel Ty T true, o uTodévipo e pila
TOV GUYXEXPUEVO xOuPB0o umopel va toporydyet opdhuata. ‘Otav €yel tnv T false, to
UTOOEVTEO pE Il TOV CUYXEXPUEVO XOUP0 OEV UTOREL VoL TUEAYAYEL GOANIATI, OTOLO-
OfTOTE %o av elvor 1) €l0080¢ Tou TEOYEAUUaToS. ‘OTtay €yel Tny T type_dependent,
T0 UTOBEVTEO pe pilo ToV cUYXEXELEVO xOuUPo Oev umopel vo moparydyel opdhuato, de-
dopévou Tou OTL 1) €l00B0¢ IXAVOTIOLEL TNV LTOYEAPY) TOU EYEL OPLOTEL YLoL TNV CUVEETNON

TIOU TEPLEYEL AUTOV TOV XOUf0.

e type_dependent_unreachable: Emonueivon nou uropel va Pploxeton uévo oe clause
xouPouc evog case. Tmodnhdvel 6Tt autd ta clauses dev unopolv vo emAeydolv e

XAVEVaY TEOTIO AV 1) EI00B0C TNG CUVERTNONG LXAVOTIOLEl TNV UTOYRAPT TNS.

e force_constraint_logging: Boolean Twn. ‘Otav elvar oAnirg, dev mpénel va amop-

elouue enepyduevous xAddoug, 6mola xon av ivon 1) maybe_error emonuelwon Touc.

e distrust_type_dependent: Boolean tiun. ‘Otav elvar odnic, Yewpodue 6TL oL xépfol
ue emonueiwon maybe_error {on pe type_dependent Acitoupyolv cov va elyov TNy

avtioToryn emonueinon false.

[Mopaxdte napouctdleTon TEMTO 0 BUVOLXOS EAEYYOC, TTOU YENOWOTOLEL AUTES TIC ETLOTUEL-
OOELS, xaL VOTERA 1) GTUTLXY AVIAUGT) Tou Tig uToloyileL.
Avvapixog ‘Eleyyog

O duvouog €heyyog etvan uépog tou diepunveutr tou CutEr. e autdv yernoionoobvon

Teelc Boolean yetaffintéc uéow twv omolwv xplvetow t0 %0td mécov Yo amovnxeuTody oL

6 Extevijc Hepidngn ota EAAnvixd

eMEPYOUEVOL TiEploplopol oTo TedYpopua. Av dev amodnxeutoly, To CutEr dev o e€epeuvrioet
OLLPOPETIXES DLadPOUES, OEBOPEVOU TOL OTL O ETAUTAC TEPLOPIOUMY Oev Yo €xel mpdooo
GTOUC TEPLOPLOUOUE TIOU AVTITPOCWTEVOLY TIC ETMEPYOUEVES Dlaxhadoelg. Ot ueToBANTéS auTéG

elvon oL axdrouvdec:

1. constraintLogging apyixomnoinuévo oc true
2. isForced opywxomoinuévo oe false

3. distrustTypeDependent opyixomoinuévo oc false

Or ouvapTthcelc Tou anodnxedouy Toug TEpLoploole hauBdvouy Lt ddiv Tig 500 TEMTES YETO-
BANTEC yioe vo amogacicouy av Ya Aettovpyrioouy. Av 1 isForced elvon ahnic, toTe oL Teplo-
ptopol amodnxedovton aveldptnta and TIC TWES TwV LToAOITWY PeToBANTOY. XTnv avtidetn
nepintwon, ol neploplopol anotnxebovton av xou uovov av 1 constraintLogging elvon ahrn-
Ohc. H petofAnty| distrustTypeDependent undpyet yio vo enneedlet To nwe dloyetplleton o
OLVUIXOG EAEY YOG TIC ETUOTUEWDOELC maybe_error clugnva ue tov Iivoxa 4.1.

H hoywr| mou vhomotfdnxe yio Tov duvouixd Ereyyo cuvodiletar oTIC TUPUXATL TEQITTWOEL,

TIOL AVTLOTOLYOLY O xOUPoug Tou dloyetplleTon 0 SlepUNVELTHS.

e apply/call: Av o xéufoc éyel v emonuelwon distrust_type_dependent, 1 yeto-
BintA distrustTypeDependent Aoufdvel Tnv T true.

e let: Av o x6uPog éyel tnv emionuelwon force_constraint_logging, n petofSAnty

isForced Aoyfdvel tnv Ty true.

e case: Av 1 petofSinty isForced eivou ahnivic, 1 1 emtonueiwon maybe_error (ennpeo-
ouévn and tnv petafinty distrustTypeDependent) eivou aknifc, To dploua Tou case
xohettow ye TNy yetaBAntr isForced wg ahndn. "Yotepa, evionileton To clause nou Yo
Teé€el. Téhog, av 1 uetofAnty| isForced civar false xau 1 emonueiworn maybe_error
TOu ouYXEXEIEVoL clause eivon entlong false, 1 uetaBAnty| constraintLogging Aoy-

Bdver v Twn false.

A&ilel va onueiwdel 6Tl 1) xaTorypay| TWV TEPLOPLOUWOY UTORel var dlaxomel uovo ce xoufo
case, OTOU EMAEYETOL €VaL ACQUAEC clause eV TEPLEYEL XaL U aopoir clauses.
Ytatix AvdAvon

H ototixn avdivon ywelleta oc téoocpa oTddlo TOU Qaivovtal GTo BLdyeoUpo PONS OTNY
Ewova 4.1 To onolar avahbovton EEYwELoTE GTNY CUVEYEL.

Contract Gathering

Yty Erlang ot unoypagéc twv cuvapthoeny ou bploe o yenotng ovoudlovtol contracts.

Autd To OTABO TNE OTATIXAC AVAAUOTG PETUTEETEL ToL contracts TV GUVIRTHOEWY GE XATOLL

Extevijc Hepiingn ota EAAnvixd 7

pop®n mou va utooTneilel dldgopoug yelpiopole TOwy. H yoppy mou emiéydnxe clvar auth
mou opileton oTo module erl_types. Awxdétel TAen avanopdotao Twy Tinwy tne Erlang
xat uTooTnellel TpdEelc oe TUTOUE, OTWE 1) EVPEST] TOL EAGYIGTOU BUVATO) UTERTOTOU XATOUWY
TOTWY X 1) ApolpeEsT) TOTWY.

10 OTAOI0 QUTH, UETUTEETOVTAL TEMTA Ol OpLOoUEVOL amd Tov Ypnotr TOnol oc erl_types
xou €mELTa oL uToypaéc. Auto yivetan ue évay uToloyloud ctadepol onueiou, xadog xdmotoL
TUTOL) uToYPapES Unopel va optlovton Tety amd dhAoug Toug ontoloug yenoylonotovy. I't autov
TOV AGYO, GE AUTO TO OTADLO YENOWOTOLELTAL VoL GUVOAO amd TUTOUE TTOL BEV €YUV UETATEATEL
oxopo (opyixd mepléyov GAoug Toug TUTOUG) Xat 0 oAYOEIHOC UETOTROTG exTERElTon uéypt

70 6UVOAO a6 Vo Topopeivel oToERO.

Callgraph Processing

Ye autd To oTddlo urohoyiletan To callgraph tou mpoypedupatoc ye pila TNY cuVAETNOY TOUL
xaetton vor avadboel to CutEr. Me tov épo callgraph evvoolye 1o ypdgnuo mou we xoy-
Boug €yel oUVORTACELS Xat WS axpéS TIC xAfoelc Yetoll ouvaptrioewy. To callgraph etvou
xatevduvouevo yedgpnua. O utoloyioudg Tou yivetow pe yerorn tou xref to onolo elvan éva
cross reference epyaheto yia tny Erlang. To callgraph mou onulovpyeiton umopel va nepiéyel
x0xhoug xodoe 1 Erlang utootneilel avadpour| xan opolfaio avadpour;. Ot xOxAol oune om-
HLoUEYOUY TEOBANUAL, BLOTL YIol TO TEAEUTHLO TUNUO TNE O TATIXNS AVIAUGTC YEEWCETAL 1) YVMOT)
TWYV ETUONUEIWOEDY OAWY TWV CUVIPTACEWY, TOU XUA0UVToL ond uio untd eEétaocn cuvdeTn-
on i va emonuetwVel xou auth opdwg. 'V autdv Tov Adyo, autd To TR TNG GTUTLXNG
avdluone petateénel to callgraph oe oxuxAd xoateuduvouevo yedgnua Peloxoviac dAoUC
TOUC EPLEYOUEVOUC XUXAOUS Xol oV TIXA IO TWVTAS TOUg amd €vay xoufo. Metd and tny yeta-
Teomn, To callgraph mepiéyel x6ufBoug mou avTioTolyolV GE ula GLUVAETNOT XU xOUBoug Tou
AVTLOTOLY 00V GE €Vl GUVOAO GUVORTACEWY HE xUXAXEC oyéoelg. To tedeutalo TuAua Tng o-
VEAUGOTC UTOREL VoL ETLONUEWOOEL OAES TIC CUVOPTNOELS GTo xouvolplo callgraph exvavtog and
Ta pOAAA xou Ty aivovtag Teog TNy etla Tou ypagpruoatog o oepd depth first. ‘Otav o x6ufog
Tou avoAUETOL efvan A cuvdpTnoT, 1 emonueiwon e elvan amhy) xadog elvan YvwoTég ol
ETUONUELDCELS Yo OAEC TIC GLVAPTHCELS oL auTH Xahel. ‘Otay o x6uBog mou availeton ebvon
oUVOAO amd GUVOPTNTELS UE XUXAXT] OYECT), EMOTUELOVETAL XA)E plar omd TIC GUVOPTNOELS OTO
oUYOAO Y VOWVTAC TG XATOES CUVIRTHCEWY TOU BeV €y0ouv emonuelwiel axodua. Av undpiel
oANOLY) OTIG ETUOTUEUDOELS OTIOLICONTOTE AO TG CUVIRTHOELS OF AUTO TO 0UVOAO, 1) BladLxacio
enavahauPdvetor yio autd T0 clvoro. ‘Eva mapdderyuo autic tTng yetatponrc tou callgraph

otveton oty Ewdva 4.6 mou avtiotolyel oto module nou gaiveton otny euxdva 4.5.

Type Annotation

e autd To oTddlo, XA xOPBOC TOU CLUYTOXTIXO) BEVTPOU, ETUCTUELDOVETOL UE TOV TUTO TOL
OVOUEVETOL VOL EYEL XOUTA TNV EXTEAECT] AV 1) EI0OBOC *AVE CUVAPTNONE UTOXOVEL GTNY UTOYEA-
@1 mou Tapelye o mpoypouuaTioThAC. AuTd To dedouéva TOTWY elvor TOAD ONUAVTIXG Yot TO

TehevTado TUAUA TNG avBALOTS, XVKOS, YWEIC AUTY, To TEPLOCOTEPA TTEOYEAUUATI Vol ETPETE

8 Extevijc Hepidngn ota EAAnvixd

VO XATAYEAPOUY ¢ avaoporn. T'a mopddetypa, n tpdcVecr V0 TWWY OTO TEOYEAUUU OEV
elvon aopokric av v elvon YVmoTo 6Tl oL Tég auTég ebvan aprdunTixéc.

[Mo v emomnueinon Twv TOUTOY TV XOUPeY plag cuvdptnong, apyixoroteital éva tep3dAlov
oto omolo mpootilevTton Ta oployata Ye TOUG TUTOUS TOU ORPICTNXAY CTNY UTOYEUPY| TNS.
"Yotepa Blatpéyel To oLUVTAXTIXG 8EVTEo NG cuvdpTtnong o depth first oelpd xou cuunepaivel
Tov TUTo *diE xOUPou pe Bdon Toug TOToUC TwV TadlwY Tou. Eneldr| n ototiny avdiuorn neénet
VO XOTNYOPLOTIOLEL TOUS %OUBoUE Yiot TOUS OToloUG BEV EYEL UEXETA OEBOUEVA (G U1 ATPUAELS,
TO TAPOV TUNUA ETIONUEWDVEL TOUC XOUB0oUC Yiot Toug oToloug dev unopoloe va e€oydel o Timog
ue Befoudtnra, WoTe Vo uny toug AdBel ut’ 6y To EMdUEVO TUR L.

Mio onuavt emnpdoietn Aettoupyio autol TOU TUALATOS EVOL O EVTOTIOUOS TV clauses
Ta omolat Bev LTdPYEL TEOTOC v ey Vo0V GE xdmolo case OEB0UEVNS TNG TANEOpoplag Tou
€youye i Toug TuToug. TEtowr clauses UTdEYOLY APXETS GUY VA xUWWS, AV O TEOYEUUUI-
TIoTrC OV BAAeL oE xdmolo case €va clause TO OTOIO Vo XUAUTITEL OAEC TIG TMEQLTTAOOELS, TO
TEOCVETEL O UETAYAWTTIOTAC QUTOUATA. XE AUTO TO clause TMUPAYETOL €V CPIMIA EXTENE-
oNe %ATL ToL XGTE To clause pn ACPURES, XoL UE TNV OELEd TOU OAO TO BEVTEO amd exel
xau mdve. O tpomog ye tov omolo evtomilovtal autd Tor clauses yenoiwonolel Tov TONo Tou
oplopatog Tou case. ZEXVOVTOC Amd TOV TUTO TOU 0plOPATOS, APALEE(TOL O TOTOC TOU AVTL-
Tpoownevel xdle clause anmd autov. Av autdc o TOTOC xaToArEeL Vo elvor none TOHTE OeV
umdpyel tepintwon vo emheyVel enduevo clause.

Télog, T0 oTEBI0 AUTO TOEAYEL, OTOL ElVoL BUVATOV, TIC UTOYRAUPES TV CUVAPTACEWY TOU BEV
olvovTon amd TOV TEOYRUUUATIOTH (CTE Vo ETONUEIWOEL xat auTéc. To va unv mapéyeton uno-
YEoUPY| YLl XATOLL GUVEETNOT) OEV EVOL OTIAVLO, ELBIXA YIoL CUVIRTHCELS ToL OV elvon exported
xoL ETOUEVKS 1) YeNioT Toug elvon capric, xodwg teptoplleton uéoa oto module. Autd onuaivel
OTL XATOLES UTOYPOPES DEV €lval YVWO TEC GTNY apyh xat, 6Tay Beetoly, UTOPEL Vo ETNEEAC TO-
UV Ol CUVAPTACELS TTOU XAAOLY ULdl CUVERTNOT| UE TNV VEX UTOYQROPT. LUVETWS, AUTO TO GTAO0
elvon emlong évag umohoylopog otaepol onueiou xou emavalouBaveTo €¢ OTOU OEV UTHPYEL
AR T) OTIG ETUONUEWDOELS TUTIWY TWY GUVIPTACEWY X0l OEV UTHEYEL AAAXYY| OTIC UTOYQRUPES

TOU TOEAYOVTOL.

Error Annotation

Ye auTd To 0TAdo UTOROYILOVTOL Ol ETONUELWOELS TTOU ATOLTOUVTAL AN TOV SUVOUIXO EAEYYO
yioo Ty amodppudn xAddwy. Aedouévng tng oepde e v onola e&etdletan xdde cuvdpTnom
Omwe oploTnxe oTo TURua Tne dnuiovpyiag tou callgraph, Yewpolvton yia xdde cuvdptnon
YVWOTES Ol ETUOTUEUDOELS TV CUVIRTACEWY T ontoleg xoAel. H emonueiwon yivetoaw oe depth
first oelpd EextvdvTag amd To PUAAAL TOU GUYTOXTIXOU BEVTPOUL TNG CUVEETNONE KoL TN YUiVOVTAS
meoc v plla. Xuvenwe, v xdde x6ufo tou cuvtaxTol Bévipou Yo elval YVWOTES oL
EMONUELDCELS OAWY TWV TOUSLOY TOL. TNV YeVIXY| tepintwon yia xdde xoufo, n maybe_error
emonueiwon Tou xouBou eivar 0 GUVBLUCUOS TWV maybe_error EMONUEWCEWY TWV TLOLWY
TOU PE TNV TEdEn mou meptypdpetat otov Ilivaxa 4.2, 1 omolo wotdlel pe v mpdén tng ouleuéng
oTNY AoynY| PE TEElS TIEC.

Extevijc Hepiingn ota EAAnvixd 9

H emonuelwon force_constraint_logging umalver oe xoufoug toOnou let, ol omolol el
odyouv PeTafBAntéc mou Yo ypnowlonotndoly 6To Gplouo xdmolou un acgorolc case. Autol
ot let x6uPot evronilovion we e€hc: pe éva ovoho A (apyxomomuévo we xevd), xde Yeto-
BNt mou Peloxeton oto dploua evog un acpaholg case xoufou mpootiieton oto A. ‘Otav
avaAeTon évog let xopfog, apol avadpouxd avaluvdoly To moudld Tou, e€etdleTon av xdmola
omo TIC YETOPBANTES TOL Eloaydyel LTdEYEL 6To oUvoro A. AV vou, TOTE EMCNUELOVETAL UE
force_constraint_logging.

H emonuelwon distrust_type_dependent mpootietar oe xoufoug tonou call ¥ apply
TOLU XxaAoUVTAL PE oplouaTo TOUAdYLOTOV Eva ex TV oTtolwy dev elvan acporés. To dpioua
ouTo umopel va elvar cuvdpETNoT dpa EYEL VONUO VO YoROXTNEIOTEL AoPoAES ¥ un. Auth 7
ETONUEIOOT UTdEYEL OOTE VoL Efval BUVATOS O YoEAXTNEIOUOS TwV higher order cuvaptrcewy
¢ aoparelc X un. Otoav avodbeton wio higher order cuvdptnon Yewpolye ot o oplopata-
oLvaETHoELC oL Aopfdvel eivon acpolt| ue Bdon tnv utoypapr Tng cuvdptnong. H emorue-
{worn distrust_type_dependent umdpyel HOTE va avarpéael auThy TNy undlecn otay Peedel
wo xAfor oe wla higher order cuvdptnon ye xdmoto dplopa-cuvdptnor, mou eite dev clvan

AGPUAES, ElTE BEV UTUXOVEL GTNY UTOYQRUPT TNG XUAOLUEVNC CUVAETNOTG.

IMTelpopatind ATOTEAECUATA XAl DUUNELACUAT

Agol vhoroinxe 1 ouyxexpévn uédodog oto epyaielo CutEr éywvav Soxéc tng oe O
Qpopal TREOYEAUUATO, XATOLL Yot VoL avadElEouY TG WBLOTNTES Tig Ped6d0ou, xou xdmolo and TNy
BBrodxn tne Erlang. "Eva npdypouuo mou avadeixviel tny BeAtiworn mou emtuyydveton omod
TNV otaTxn avéhuon gaiveton oty Ewdvo 4.25. Autd 10 Tedypaol TEPLEYEL Lol OVOOROULXT
CLVAETNOTN xATL TOU VoL ONUIOVEYHCEL LOVOTIATI EXTEAECTC ATOTEAOVUEVAL ATO ATEOGOLOPLG TO
optdud SloxAadMoewy. ‘OAeC qUTEC GUWE OL BLAUAABWOELS AVTICTOLYOUY CTUTIXE 0ToUC (Bloug
A(OUPBOUC TOU GUVTAXTIXOU BEVIPOU, dpa, av QUTOL YUEAXTNELOTOUY ¢ acpaelc, to CutEr
Vo xoUTaAAEEL AUECHE OTO CUUTERAOHA OTL DEV UTAEYOLY €(COBOL TIOU TAUPAYOLY GEPIAUTA.
Auté eivar xan to mpaypatind anotéleoya, otayv exteieiton To CutEr pe outd to mpdypopua
w¢ eloodo. Me tnv mpooifxn tng otatxrg avdhuong mpooradel vo dnutovpyioel TeElC dla-
POPETIXEC EL0600UC xat TepUoTiCel aveldptnta amd to Bdiog tng e€epeliviong, eV, ywelic TNy
oty avdhuor, tpooradel vo SnuiovpynoEL ElOB0UC ToL aLEdvovTal e aELiUG, GUUPLVL
ue o Badoc tng elepedivnong. Xty mepintwon mou to Bdtog elvon 0TV TEOBLIYEYPAUUUEVT
oL Ty (Snhady| 25) tpoomadel va Snulovpyioel 15 BlopopeTinés eleddouC.

Extéc autol, n pédodoc Soxdotnxe oe Sudpopes cuvopTthoel; and to module lists tou
standard library tn¢ Erlang xou @dvnxe BeAtiwon oe apxetéc and autég 1 omolo cuvodiletan
otov Ilivaxo 5.1. No onuewwidel 6Tt dev elvan €dxoho va xadoptotel 1 T8N TS YEOVIXAC
Behtiwong, xaddg, o dha auTtd Tor TopadElyUaTa, 1 TEOC VXN TNG OTATIXNAG AVIAUGCTG TEOXUAEL
TNV e€epelivoT Tou YwEoL e GTadepd YEOVO, V), ywelc authy, o apiudc TpocTodelny
elopTdton amd To Bddog Tng e€epelvnomg.

To xlplo cuumépacya TOU TEOXUTTEL amd AUTAY TNV epyocio elvon OTL 1 oTaTxy avdiuon

unopel va Pehtiwoel TNy ypowxr enidoon Tou concolic testing, xaddg exyetodieleTan TNV

10 Extevijc Hepidngn ota EAAnvixd

oTATIXT| TANPOQOELN TOL TEOYEIUUATOS TToL OEV elvar dtardéotun xatd TNy dLdexela Tou concolic
testing. Emnlong, n ouyxexpwévn pédodoc unopel vo Aettoupynoel tautodypove pe Yedodoug
mou adhdlouv Ty oelpd eZepedivnong tou yweou avalitnone [31, 32, 33, 34, 35] xa dev Tic

avTixaoTd.

Chapter 1

Introduction

Computer systems nowadays are an integral part of every human activity; almost all pro-
cedures in human communication, transport, exchange, health, entertainment, relaxation,
etc. depend on computer systems for their realization. The operation of such systems is
defined by a set of instructions, namely the software. Software comprises the entire set
of programs, procedures, and routines associated with the operation of a computer system
[1]. This software is developed by programmers, who write the set of instructions as
code expressed in one or more programming languages and ensure that it executes the
desired functionality. In order to achieve this, it is important that the software product
not only matches expected requirements, but also is defect free, meaning that no bugs

or errors exist in the code that would result in unpredictable behavior of the product.

This is the point where software testing becomes useful. Software testing is used to
increase confidence that no mistakes exist in the software, so that it is reliable and secure.
Software testing can be separated into two categories: Black Box Testing and White
Box Testing |2, 3]. Black Box testing can be used even when there exists no information
about the internal code structure, implementation details or internal paths. In White
Box testing the internal structure, design and coding of the software are known and used
locating errors. In this work, we only focus on White Box Testing and ways to improve
existing testing methods of this category.

Concrete execution of a program refers to fully executing it with some well defined
(concrete) input and observing its behavior. Symbolic execution [4] is a testing means
of analyzing a program to determine the inputs that cause each program instruction to
execute. Symbolic execution uses an interpreter, a program that executes all code instruc-
tions without any previous transformation of the code into machine language instructions.
This interpreter follows the program and assumes symbolic values for the program inputs,
without having information about the actual input values. It then deduces unique expres-
sions for operations and variables in the program, as well as constraints for the possible
outcomes of each conditional branch. By solving these constraints, we can determine which
inputs are able to follow each branch. Concolic testing |5, 6] is a technique that inter-

prets the program under examination, symbolically and concretely simultaneously, and

2 Chapter 1. Introduction

records the execution path, which is the sequence of branches that were followed during
the execution. Seeing how the input affected this execution path, it creates a conjunctive
logical formula which, if satisfied by any input, the program will follow the same path.
Finally, using a constraint solver, it negates a term of this formula to create an input that
will follow a different execution path. Doing this systematically will cause the technique to
explore every conceivable execution path of the program, and record which inputs produce
a runtime error.

This technique is implemented for many programming languages covering imperative and
object-oriented ones, using the low level representation of these languages such as assembly
or LLVM. CutEr [7, 8] is a tool that implements this technique for Erlang, which is a
functional programming language. CutEr does not act on the low level bytecode created
by the Erlang compiler, but the higher level Abstract Syntax Tree (AST) representation,
which is created as an intermediate representation of the program during the compilation.

This thesis explores ways to increase the performance of such a concolic testing tool.

1.1 Problem Statement

The most important challenge any concolic testing tool faces is the large number of the
execution paths. Concolic testing generates the next input by selecting a branch of a
previous execution path, trying to follow the opposite branch direction. This implies that
the search space is exponential with respect to the number of branches. Additionally, the
number of branches may be virtually infinite in case of recursive calls, since the execution
path is recorded dynamically. This deems an exhaustive search impossible to be performed.
To traverse this search space, many search strategies have been proposed [31, 32, 33, 35,
34]. These have all been implemented on concolic testing tools acting on the low level
representation of the program. They essentially introduce a way to prioritize branches
to be chosen for exploration in order to reach points of interest in the program faster, or
accelerate the program statement coverage of the execution paths. Note that they do not
reduce the search space, they are just determining the order of its traversal. In CutEr
however, we are provided with a higher level representation of the program, which enables
us to extract more information statically.

We propose a strategy that performs a static analysis on the program, which a priori
excludes branches that are found to be safe from the concolic execution. Safe, in this
context, means that the program will not produce any runtime errors if this branch is
followed, regardless of the input. To do that, it exploits the type data that are present in
such a high level representation. In order to not divert the concolic execution from branches
that could potentially produce errors, and this way compromise the tool’s reliability,
this analysis is pessimistic. By reliability, we are referring to the tool’s ability to locate
runtime errors. This analysis should not prevent the tool from finding any errors that it
could previously find. As a result, when not enough information exists for a branch to be

characterized as safe, it is not excluded from the search. This strategy is implemented and

1.2 Thesis Organization 3

tested on CutEr.

1.2 Thesis Organization

In Chapter 2, we inspect the characteristics of the Erlang/OTP system. We also explain
how Erlang code is represented in its intermediate AST form, which will be used by CutEr,
and how the type information is present in the AST. In Chapter 3 we explain how concolic
testing works and its challenges and limitations. We also describe how CutEr works in order
to understand how it can be improved by our proposed method. In Chapter 4 we present
the algorithm used for safe-branch pruning. In Chapter 5 we gather some experimental

results. Finally, in Chapter 6 we give some conclusions and ideas for future research.

Chapter 2

The Erlang/OTP System

2.1 The Erlang Language

Erlang is a programming language, which was designed for developing concurrent programs
that "run forever" |9]. Erlang was created in 1986 at the Ericsson Computer Science Lab-
oratory in order to deal with the atypical problems that existed in telephony applications,
due to their inherit concurrency. Due to the importance of stable telecommunications, it
was important for Erlang to provide high availability, fault-tolerance and on-the-fly
update operations. Operations also needed to be "soft real-time", meaning that while
some would need to abort if they were not finished in a certain time interval, others might

need to be repeated in such case.

Processes in Erlang are more lightweight that standard operating systems (OS) processes
and their creation is fast. Process communication is realized asynchronously through mes-

sages which are traceable and safely transported.

Fault-tolerance in the case of Erlang does not mean that there will be no processes that
will fail, or no data will be lost. Instead, it means that even if that happens, the whole
system will not crash and will keep being operational. While this happens, processes may
start again and their code itself may be altered on the fly. This ensures that the system

will be always on and at the same time able to be updated.

Erlang is a strict and dynamically-typed programming language. This means that the
programmer does not have to provide type information statically in the program. However,
type safety is ensured in the runtime of the program by environment and, when a type
error occurs, a corresponding exception is raised. This behavior allows the programmer to

write code with more flexibility but retains the fault-tolerance that characterizes Erlang.

The Open Telecom Platform (OTP) is a middleware platform designed to run on top of an
OS and includes important tools for running Erlang, such as compilers, development tools
and libraries. It is based on certain design principles for processes, modules and directories,

in order to achieve the desired scalability [36].

5

6 Chapter 2. The Erlang/OTP System

2.2 The Erlang Compiler

An Erlang application consists of modules. Each module is independently compiled and
later loaded to the Erlang runtime system. This runtime system uses a register-based
virtual machine called BEAM. The compiler converts each module into BEAM bytecode
and the loader converts this bytecode into threaded code upon loading it.

To create BEAM bytecode, the Erlang compiler first parses the text of the program and
creates the Abstract Syntax Tree (AST) of the module. Since Erlang contains a lot of
syntactic sugar, the AST undergoes an intermediate transformation which produces the
equivalent Core Erlang Syntax Tree [10]. Finally, this tree is transformed into BEAM
bytecode.

2.3 Core Erlang

Core Erlang [10, 11] serves as an intermediate representation of the Erlang programming
language. It contains a small set of constructs, offers clean semantics, and the conversion
from Erlang to this representation as well as the transformation from Core Erlang to
bytecode is quite straight forward. It can be printed in a textual representation that is
easy to read and to edit, due to its simple grammar. Its most important use is the ability
to develop tools acting on the source code representation (such as type analyzers [12, 13,
14], static analyzers for message-passing concurrency |15, 16, 17|, testing tools [18, 19, 20,
21|, code refactoring tools [22, 23, 24, 25|, purity analysis tools 37|, etc.), avoiding the
complexity of full Erlang and its low-level BEAM bytecode representation.

The Erlang compiler itself can export a Core Erlang textual representation of the program.
This can be inspected, edited and given back to the compiler for the creation of the BEAM
bytecode. The recompilation of the edited Core Erlang program is necessary, since an
interpreter of Core Erlang does not exist. However, there exists an interpreter that can run
the ASTs stored in the debugging information of the BEAM representation of a module,
given that this module has been compiled with the option to include such information.
CutEr [7, 8], performs the concolic testing execution on the Core Erlang AST so we will
explore its structure more.

The Core Erlang Abstract Syntax Tree is represented in the Erlang compiler both through
records (in /lib/compiler/src/core_parse.hrl) and through abstract data types (in
/lib/compiler/src/cerl.erl). Both representations are equivalent and can be used
interchangeably. Moreover, there is an API defined in the cerl module, which enables the
manipulation of an AST. The grammar, the lexical analysis of Erlang and the properties
and significance of each AST node have been well documented in the literature [10, 38].
However, a general description of the Core Erlang AST is presented here too, as it will be
useful when presenting the algorithm. Note that when referring to an AST from now on,
we will mean the tree representation of a Core Erlang code.

Each AST comprises nodes, each of which represents an Erlang construct. We will use the

2.3 Core Erlang 7

module node as an example (Fig. 2.1), which is the root node of a module’s AST. Each
node is a record with name c_<node_name> (e.g. c_module). The first field of every node
record is its annotations. These may be populated by the compiler, but are extremely
useful as they can be manipulated by external programs too, without altering the behavior

of the program. In the case of the module node, the rest fields are:
e name: Contains the name of the module. It is a 1iteral node.
e exports: Contains a list with the exported types and functions of the module.

e attrs: Contains the attributes added by the user in the module. They can contain
type and signature definitions, as well as other arbitrary attributes. It is a list of two

element tuples containing the name of the attribute and the attribute itself.

e defs: Containins the function definitions of the module.

T - (c_module, {anno = [], / annotation list

2 name, /. module mame

3 exports, % module expors

4 attrs, / module attributes
5 defs}). % module definitions

Figure 2.1: Module node definition.

Other important nodes for this work are the values node, the let node, the letrec node,
the case node, the clause node and the call and apply nodes, which are all explained
below.

The values node is essentially a collection of other nodes. Its definition is presented in
Fig. 2.2.

T - (c_values, {anno=[]

2 es}). /4 List of values (each one is a node)

Figure 2.2: Values node definition.

The let node (Fig. 2.3) has a vars field, which is a list containing the names of the
variables bound in this let construct. The arg field represents the objects bound to those
variables and it may be a values node, if this 1let introduces more than one variable. Last,

the body field contains what is executed after the binding of the variables.

T - (c_let, {anno=I[],
2 vars, / let wariables
3 arg, % let argument

4 body}) . 4 let body

8 Chapter 2. The Erlang/OTP System

Figure 2.3: Let node definition.

The letrec node (Fig. 2.4) is essentially similar to the let node. Its purpose is to introduce
closures and bind them to a name. It contains a defs field, which is a list of two-valued
tuples. Each tuple holds the name of the closure introduced and its definition. The body

field contains the operations performed after the closures are introduced.

1 - (c_letrec, {anno=[]1,

2 defs, 4 function names with
3 4 function definitions
4 body}) . 4 letrec body

Figure 2.4: Letrec node definition.

The case node (Fig. 2.5), apart from its annotations, consists of the case argument and
the case clauses. The case argument can be a node representing some value, or a values
node. In the latter case, each clause will have a number of patterns equal to the size of

this values node, each one corresponding to a value of the values node.

T (c_case, {anno=I[],
2 arg, / case argument
3 clauses}). / case clauses

Figure 2.5: Case node definition.

The clause node (Fig. 2.6), holds a list of patterns (in the field pats), a guard containing
some assertions, and the body which holds all operations that will be executed if this clause
is chosen. Note that not all Erlang expressions are permitted to act as a guard, but only
a limited subset of them. The most common ones are various comparisons (e.g. >, =:=

etc.) and type assertions (eg. is_integer(X)).

T - (c_clause, {anno=[],

2 pats, 4 clause patterns
3 guard, / clause guard

4 body}) . 4 clause body

Figure 2.6: Clause node definition.

The call node (Fig. 2.7) represents a function call. It specifies the function to be called

specifying the module it is defined in, its name, and its arguments.

2.4 Erlang Types 9

TR (c_call, {anno=[],

2 module, / module mame

3 name, /A function name

4 args}) . / function arguments

Figure 2.7: Call node definition.

The apply node (Fig. 2.8) also represents a function call. In this case though, we are given
the name of the function which can be a variable bound to a closure or a function defined

in the same module. The node also holds the arguments of the function application.

TR (c_apply, {anno=[],
2 op, /4 apply opperation
3 args}). 4 apply arguments

Figure 2.8: Apply node definition.

2.4 FErlang Types

Erlang is a dynamically typed language and does not require any type annotations to be
provided by the user. However, the type information of data exists in the runtime and is
checked at each operation to ensure type safety. The programmer can give type annotations
for documentation and clarity reasons. Moreover, these annotations can be used by external
programs to analyze the code with a more specific context. The programmer can declare
and define user defined types using the type or opaque attribute and define records with
the record attribute. Furthermore, function signatures can be specified with the spec
attribute. All these attributes will not be taken into account by the compiler, and exist to
make the code development more structured and documented, as well as ease the debugging
procedure through static analysis tools such as Dialyzer [12]. We present briefly the types
in Erlang and how the user defined types and the function signatures can appear in the
AST.

2.5 Built-in Types

Everything in Erlang is a term. A term can be of any type, predefined or user defined.
The programmer can annotate something as a term using the term() or any() types. The

predefined types are summed up in the following listing.

e [Integer: It represents a whole number. To declare an integer type, we use integer ()

for any integer, neg_integer() for negative integers, non_neg_integer() for non-

10 Chapter 2. The Erlang/OTP System

negative integers, pos_integer () for positive integers, the <Lo>. . .<Hi> notation for

specifying a range of integers and just a constant for specifying a particular integer.
e Float: It represents a floating point number. To declare a float type, we use float ().

e Atom: An atom is a named constant. To declare an atom type, we use atom() or a

specific constant atom.

e DBitstring and Binary: A bit string is a consecutive number of bits stored in an area
of memory. In the case where this number is divisible by eight, it represents a binary.
To declare a bistring or binary type, we use the bitstring() notation for any bistring
and binary () notation for any binary. Additionally, the <<>> notation can be used,

inside which there can be specifications concerning the size of the bistring.

e Reference: It represents a unique term in an Erlang runtime system. To declare a

reference we use reference().

e [Fun: It represents a function type. To declare such a type, we use the fun() notation
for any function. Additionally, we can specify the return type with fun(...) -> Type
and furthermore, the argument types with fun(Tlist) -> Type.

e Port identifier: It is used to identify an Erlang port.
e Pid: A pid of a process. It uniquely identifies an Erlang process.

o Tuple: It is an ordered, fixed in size collection of types. To declare a tuple we use
tuple() for any tuple or {Typel, ..., TypeN} to specify the types of the fields of
the tuple.

o List: It is a compound data type with a variable number of elements. The el-
ements can be of different types. It can be declared using 1list() for any list,
nonempty_list () for non-empty lists, [Typell ... |TypeN] for constraining the types
of the terms the list contains or [Typell...|TypeN, ...] to further constrain the

list to be non-empty.

Apart from these types, some additional types have been defined for syntactic sugar. These

are:

e number (): KEither float or integer.
e char(): Representing a character. It is an integer range from 0 to 1114111.
e string(): List of chars.

e nonempty_string(): A non-empty list of chars.

2.5 Built-in Types 11

e Record: A record is a tuple with an atom as its first element. This atom is considered
the name of the record and the rest elements are considered the fields of the record.
A record can be declared using the record attribute and will be replaced by the

corresponding tuple in the compilation.
e boolean(): It consists of the atoms true and false.
e byte(): An integer in the range 0 to 255.
e node(): An atom that represents the name of an Erlang virtual machine node.
e module(): An atom that represents an Erlang module.

e mfa(): A tuple representing an Erlang MFA which stands for Module, Function,
Arity. It uniquely identifies a function defined in that module.

All types, if used in a user-defined type or a signature will appear in the AST in a specific
form. These forms are gathered in Table 2.1. In those type forms, the line in the file on
which the types were defined is present, is represented with Ln.

We add the miscellaneous types and the built-in compound types in Table 2.2, for clarity.

2.5.1 User-defined Types

The programmer can define types using the primitive ones as attributes in the Erlang

program. The syntax for defining a type is:
- <name>(<arguments>) :: <definition>.

The definition may consist of any of the primitive types explained above, and unions of
them using the operator |. The arguments of a type are variables and can be used to
constrain the definition of the type. For example, here we define a tree type with its nodes

containing data of an arbitrary type.
- tree(X) :: {X, tree(X), tree(X)} | nil.

The AST representation of a user defined type is an attribute in the module with the

following form:

{{c_literal, [Ln],typel},
{c_literal, [Ln], [{<Tname>, <Definition>, [<Variables>]}]1}}

where <Tname> corresponds to the type name, <Definition> to its definition and [<Variables>]
to the names of the variables that the type uses. The tree type example has this corre-

sponding representation in the AST:

12 Chapter 2. The Erlang/OTP System

{{c_literal, [Ln],type},
{c_literal,
(Ln],
[{tree,
{type,Ln,union,
[{type,Ln,tuple,
[{var,Ln,'X'},
{user_type,Ln,tree, [{var,Ln, 'X'}]},
{user_type,Ln,tree, [{var,Ln,'X'}]1}1},
{atom,Ln,nil}]},
({var,Ln, 'X'}]1}]1}}

We see that the variable X is used in the definition with the form {var,Ln, 'X'}. This type
can then be used in another type or signature by specifying the type that the tree nodes will
contain (e.g. tree(integer())). The form through which a user-defined type is specified
is seen in the above example too and is {user_type,Ln,<Tname>, [<Variables>]}.

Instead of the type attribute, the opaque attribute can be used. The only difference
between those two attributes is that the opaque one is meant for type definitions of terms
whose internal structure is not supposed to be known and inspected outside of their defining

module.

2.5.2 Function Signatures

The programmer can declare the signature of a function via the spec attribute with this

syntax:
- <Name>(<Args>) -> <Ret>.

where <Name> is the name of the function, <Args> the types of its arguments and <Ret>
the return type. There is also an option, mainly for documentation purpose, to introduce

constraints through variables in such a signature. An example of such a constraint is:

- f(N) -> N when
N :: integer().

where we constraint the value of the variable N to be an integer.

2.5 Built-in Types

13

Class H Type Form
integer () {type, Ln, integer, []}
<Int> {integer, Ln, <Int>}
{type, Ln, range, [L, H]} where
<L>... L :: {integer, Ln, <L>},
Numeric H :: {integer, Ln, <H>}
neg_integer () {type, Ln, neg_integer, [1}
non_neg_integer () {type, Ln, non_neg_integer, [1}
pos_integer () {type, Ln, pos_integer, [}
float () {type, Ln, float, [1}
tuple () {type, Ln, tuple, any}
{} {type, Ln, tuple, [1}
Tuples {type, Ln, tuple, [T1,...,Tnl}
{Typel, ... TypeN} where Ti is a valid
type expression
list() {type, Ln, list, []}
nonempty_list() {type, Ln, nonempty_list, []}
0 {type, Ln, nil, [1}
{type, Ln, list, [T]1}
Lists [Typel where T is a valid type expression
corresponding to Type
{type, Ln, nonempty_list, [T]}
[Type, ...l where T is a valid type expression
corresponding to Type
bistring() {type, Ln, bistring, [1}
binary () {type, Ln, binary, [1}
{type, Ln, binary, <M>, <N>} where
<<_:M>> <M> :: {integer, Ln, M},
<N> :: {integer, Ln, O},
Bitstrings {type, Ln, binary, <M>, <N>} where
<L _i_kN>> <M> :: {integer, Ln, O},
<N> :: {integer, Ln, N},
{type, Ln, binary, <M>, <N>} where
<<_tM, _:_ixN>> <M> :: {integer, Ln, M},
<N> :: {integer, Ln, N},
atom() {type, Ln, atom, []}
Atoms
<Atom> {atom, Ln, <Atom>}

Table 2.1: Types with their corresponding AST representations. Ln corresponds to the

line in the file where the type is declared.

14 Chapter 2. The Erlang/OTP System

Type H Form

term() {type, Ln, term, [1}

any () {type, Ln, any, [1}

none () {type, Ln, none, []}

no_return() {type, Ln, no_return, []}
{type, Ln, union, [T1,...,Tnl}
Typel | ... | TypeN where T1i is a valid
type expression
reference() {type, Ln, reference, []}

port () {type, Ln, port, [1}

pid(O) {type, Ln, pid, [1}
number () {type, Ln, number, []1}

char () {type, Ln, char, [1}
string() {type, Ln, string, [1}

nonempty_string() {type, Ln, nonempty_string, []}

boolean() {type, Ln, boolean, []}

byte () {type, Ln, byte, [1}

node () {type, Ln, node, [1}
module() {type, Ln, module, []1}

mfa() {type, Ln, mfa, []}

Table 2.2: Miscellaneous types and aliases of types with their corresponding AST repre-

sentations. Ln corresponds to the line in the file where the type is declared.

Chapter 3

Concolic Testing

3.1 The Basics of Concolic Testing

The word “concolic” is a result of merging the words “concrete” and “symbolic” representing
the dual representation of values during the interpretation. In concolic testing, both con-
crete and symbolic execution is performed for a high path coverage. The symbolic part of
the execution is necessary to create the new inputs via constraint solving and the concrete
execution is needed to guide the symbolic execution on a concrete path [26, 5, 7, 8, 27, 28|.
During execution, both a symbolic and a concrete state is kept. In the concrete environ-
ment, we have mappings from variables to their concrete values, whereas in the symbolic
environment, we have mappings from variables to their symbolic values. For the process
to start, a seed input is needed, either randomly generated or user provided. Then, the
program is interpreted with this seed input producing an execution path, while keeping the
constraints from the symbolic environment at each branching statement. The conjunction
of all those constraints forms a logical expression, which will lead any input satisfying it
along the same execution path. Thus, if any term of this formula corresponding to a con-
ditional statement is negated, an input satisfying the new formula will explore a different
path, diverging from the previous one at this conditional statement. Keeping all the ex-
ecution paths and negating all possible terms corresponding to all the branches in those
execution paths will inevitably cover the whole search space of possible inputs. In order
to find an input satisfying any new predicate created, a constraint solver is used such as

Ip_solve, ECLiPSe [29] or Z3 [30].

3.2 Challenges and Limitations

Concolic testing allows for thorough testing and exploits the internal view of the program
in order to efficiently find inputs producing runtime errors. However there are various
limitations to this technique and many proposed methods to tackle them.

The most intractable of these challenges is the incompleteness of the constraint solving.

Depending on the input program, a constraint generated from an execution path may

15

16 Chapter 3. Concolic Testing

require a lot of time to be solved by the constraint solver, which may even be unable to
solve it. This renders some programs impossible to explore, as new inputs will not be able
to be created even for some feasible execution paths [6, 5].

Another important challenge is the search space explosion, which is the main focus of this
thesis. Regardless of the program size, the trace data that will be produced can likely be
too many. Some paths can even be very long and create large predicates which are hard to
be handled by the constraint solver. Despite this, we need to reach the possible runtime
errors in a reasonable amount of time, so we need to steer the concolic execution down
certain paths using various heuristics, with some of them presented in Section 3.3.

Last, many programs may have a non-deterministic behavior (eg. using random numbers).
This is a problem, because the execution path may not relate solely to the predicate
produced by the symbolic execution, and thus, prevent the algorithm from creating inputs
to explore the branches that it chooses.

Specifically in Erlang, which is a language aimed towards concurrent applications, concolic

execution can be more complex [39].

3.3 Search Space Exploration

To tackle the problem of the search space explosion in concolic testing, many approaches
have been proposed. The idea is to guide the symbolic execution in branches in a certain
order which will reach the bug in the program faster. The basic approach is to do a
bounded DFS or BFS search in the branches encountered which will inevitably find all
runtime errors but has to explore the whole search space. More advanced heuristics are

presented in the following subsections.

Random Search

One of the simpler heuristic to traverse the search space is the Random Branch Search
heuristic [31]. This algorithm selects for inversion a random branch from the previous
execution path. Despite its simplicity, it performs better than DFS or BFS. It even sur-

prisingly performs better, in certain cases, than other more advanced heuristics [32].

Control Flow Directed Search

Control-Flow Directed Search [31] uses the structure of the program to guide the dynamic
search towards paths that haven’t been previously discovered. It uses a weighted call and
control flow graph of the program. The weights are adjusted while uncovering new paths,
giving smaller weights to edges leading to unexplored branches. Then, the condition that
leads to the closest unexplored branch is selected to be inverted. This method performs a

better branch coverage per iteration than the ones presented so far.

3.4 CutEr 17

CarFast

CarFast [33] is a strategy exploiting coverage information to try and reach as many branches
as possible in a greedy manner. It always chooses for inversion a branch whose alternative
hasn’t been explored yet. Additionally, it prioritizes branches depending on a score value,
which is computed based on the number of statements that will be coverable through those

branches.

Context-Guided Search

Context-Guided Search [34] is in its core a BFS search on the execution tree. During the
search, it excludes branches whose “contexts” have already been explored. The context of
a branch is, in this case, defined as a sequence of preceding branches in the execution path
containing the branch in question. For a new depth d to be explored, all branches of this
depth are gathered. The algorithm continues the search for each candidate branch if their

context is not already considered. Then it proceeds with the nodes of depth d + 1.

Generational Search

Generational Search is a strategy used in SAGE [40], an Automated Whitebox Fuzz Testing
tool based on symbolic execution [35]. It uses an “incremental coverage gain” to guide the
concolic execution. Additionally, it does not select one branch at a time, but a whole path
and creates a new “generation” of branches consisting of all the opposite branches of the
selected path. Inputs are generated to search them, creating a number of new paths. The
path with the greatest “coverage gain”, which depends on the newly discovered statements

through this path’s execution, is selected to create the next generation of inputs.

3.4 CutEr

The method proposed in this work is built upon CutEr [7, 8, 38]. CutEr is a concolic
testing tool for Erlang. It acts upon the Core Erlang AST with a custom concolic (both
concrete and symbolic) interpreter and uses Z3 [30] as a constraint solver.

Most concolic testing tools act on a low level representation of the program. For instance,
KLEE [41] acts on LLVM code while SAGE [40] on x86 bytecode. This method certainly
has its benefits, as this low level representation is optimized by compilers and it is efficient
for languages like C and Java whose type system is similar on both the original code and the
compiled one. Erlang’s BEAM format loses the rich type information that the constraint
solver needs and this is why CutEr uses core Erlang AST.

The choice of the Z3 constraint solver was based upon its extra ability to handle recursive
data types natively. Apart from that, it is a powerful SMT solver that supports various
datatypes, extensional arrays, fixed-size bit-vectors, quantifiers and arithmetic.

CutEr’s interpreter uses four types of processes during the execution [7]:

18 Chapter 3. Concolic Testing

Interpreter processes, where the execution takes place.

e Supervisor processes, that oversee the execution.

Code servers, where the core Erlang ASTs are computed and stored.

Monitor servers, which monitor interpreter processes and gather occurred exceptions.

Regarding the heuristic with which the search space is explored, CutEr uses by default a
bounded BFS. The depth of the search can be set by the user. Additionally, the search
strategy is implemented as a separate module in a way that easily enables the creation and
use of a new heuristic.

Our method is implemented in two of these processes. The static analysis part is run by
the code server process, when obtaining the ASTs of the modules reachable by the entry

point of the concolic testing. The dynamic check is developed in the interpreter process.

Chapter 4

Search Space Reduction via Safe

Branch Pruning

4.1 Overview

Safe branch pruning is a technique that is used to prevent the concolic testing tool from
exploring unneeded paths. The algorithm that performs this task consists of a static
analysis and a dynamic check performed during concolic execution. The static analysis
annotates each node of the abstract syntax tree (AST) of all the functions that constitute
the unit as safe or unsafe and the dynamic check uses these annotations to decide which
branches should be excluded from the search. A simple flowchart of the static analysis is
presented in Fig. 4.1. Each part of the diagram will be explained in Section 4.3.

The annotated ASTs of the functions contain in each node an annotation called maybe_error
with values true, false or type_dependent. The value true means that running the sub-
tree of the AST rooted by this node can possibly produce an error. The value false means
that no error can happen regardless of input. Lastly, the value type_dependent means
that if the function is called with arguments conforming to its signature, then it will not
produce a runtime error in this subtree. Additionally, the following annotations might

exist in a node:

e type_dependent_unreachable: Present only in clause nodes that will not be reached

if the function is called with arguments satisfying its signature.

e force_constraint_logging: Boolean value. When true, regardless of the maybe_error

annotation, one must explore this subtree.

e distrust_type_dependent: Boolean value. When true, we do not trust the nodes

with maybe_error value of type_dependent.

Note that the analysis tries to be pessimistic, meaning that, when it is not sure about a
node, it will be marked with the maybe_error annotation as true. This way the ability of

the tool to locate all runtime errors is not hindered.

19

20 Chapter 4. Search Space Reduction via Safe Branch Pruning

Start

Gather Contracts

Process Callgraph

Type Annotation

Error Annotation

Stop

Figure 4.1: Static Analysis Flowchart

The dynamic check will be presented first to show the function of each of these annotations

and how they behave. After that, we will present each of the steps of Fig. 4.1.

4.2 Dynamic Check

The dynamic part of the algorithm is added in the interpreter. It introduces some options
to guide the constraint logging of the various branches through an extra parameter map.
Stopping the constraint logging at some point of the execution path, will not let the
constraint solver consider any proceeding branches to be explored. This is how the safe
branch pruning is performed. Whenever we reach a branch that we want to prune, we stop
the constraint logging for the rest of the execution. The parameter map contains three

boolean flags:
1. constraintLogging initialized to true
2. isForced initialized to false
3. distrustTypeDependent initialized to false

The logging functions take the first two of those flags under consideration before logging

anything. If isForced is true then everything else is ignored and logging proceeds normally.

4.3 Static Analysis 21

On the opposite case, only if constraintLogging is true then logging proceeds. The
distrustTypedependent flag alters the behavior of retrieving the maybe_error annotation

of a node according to Table 4.1.

maybe_error
yoe- true | type dependent | false
distrustTypedependent -

true true false false

false true true false

Table 4.1: distrustTypedependent effect on maybe_error. The dynamic check will
need a boolean value of the maybe_error annotation, which originally can take 3 val-
ues (true, false, type_dependent). The distrustTypedependent flag decides whether

the type_dependent value will be perceived as false or true.

Essentially, when this flag is true, the type_dependent value of maybe_error will be con-
sidered by the dynamic check as true, else as false.
The rest of the dynamic check takes place when encountering certain Core Erlang nodes,

where we adjust the values of those flags:

e apply/call: If the node is marked with the distrust_type_dependent annotation,
we set distrustTypeDependent flag to true.

e let: If the node is marked with the force_constraint_logging annotation, we set

isForced flag to true.

e case: If isForced is true, or maybe_error (depending on distrustTypeDependent)
is true, the argument of the case is called with the option isForced as true else
as false. After that, the clause that should be chosen is identified. Lastly if
isForced is false and maybe_error of the clause is also false, then it sets the option

constraintLogging to false.

Note that the only place that we disable the constraint logging happens in a case node,
where we can have such a node that can produce an error, but the currently chosen branch
is safe for execution.

The logging function now takes under consideration the constraintLogging flag and only

logs when it is true. This way, the safe branches will not be considered for exploration.

4.3 Static Analysis

4.3.1 Contract Gathering

In Erlang, contracts are the signatures of functions that can be defined by the programmer
using the -spec attribute [42]. The analysis needs the function contracts in some form

supporting various type manipulations. For this reason, the module erl_types was chosen.

22 Chapter 4. Search Space Reduction via Safe Branch Pruning

It has a full Erlang type representation and supports operations on types, such as finding

the least possible supertype of some types and type subtraction.

Start

Initialize Unhandled

Traverse Modules

Unhandled change?
yes

no

Stop

Figure 4.2: Contract Gathering Flowchart. Unhandled is a set initialized to hold all func-
tions defined in the modules that are involved in the callgraph. Traversing the modules
will convert signatures to erl_type form and remove these functions from the Unhandled

set.

Function signatures have a certain form in the AST of the module, which is different than
the erl_types one. Thus, there is a need for a conversion from the one form to the other.
The erl_types API provides a function erl_types:t_from_form/6 which converts such a
form to an erl_type. It needs to be provided with various data apart the form itself, such
as the exported types of all the modules needed by this form and the user defined types
of the module. If it does not have enough information, it fails to produce an erl_type.
To use it, we start by gathering the modules that will be reached by the entry point.
We also initialize a set called Unhandled with all the MFAs in those modules. For each
module traversed, we first try to convert its user defined types and records. Secondly, we
try and convert the contracts and, if the conversion succeeds, we remove them from the
Unhandled set. This is done until Unhandled remains unchanged in a whole traversal of

these modules. This way, we can handle types whose dependencies are defined later in a

4.3 Static Analysis 23

module or in different modules.

Two other forms that erl_types:t_from_form/6 can’t handle are records and types with
constraints declared using when like the one in Fig. 4.3. Records though are not really
present as entities in the ASTs of functions. A record is replaced by the compiler with
a tuple having as values the record’s name and its fields. In order to handle records, we
replace the aforementioned form with a temporary type declaration before giving it as input
in erl_types:t_from_form/6 and keep it stored. When encountering any type or contract
that refers to this record, the reference gets replaced by its equivalent temporary type. For
types with guards, we run a preprocessing step in the form which transforms this type to

an equivalent one with no guards and then it can be given to erl_types:t_from_forms/6.

1 - keyfind(Key, N, TupleList) -> Tuple | false when
2 Key :: term(),

3 N :: pos_integer(),

4 TuplelList :: [Tuplel,

5 Tuple :: tuple().

Figure 4.3: Signature with constraints. It is the signature of the 1ists:keyfind/3 function
of stdlib.

4.3.2 Callgraph Processing

In order to annotate a function successfully, we have to know whether the calls to other
functions can produce errors. This creates the need to annotate them in a specific order.
This order requires a callgraph to be computed. The callgraph is a directed graph that
has nodes corresponding to functions and edges corresponding to function calls pointing
from the caller to the called function. Only the functions reachable via a sequence of calls
originating from the entry point of concolic testing constitute the callgraph. This callgraph
is computed with the use of the xref module which is the cross reference tool of Erlang,
and can be used for finding various dependencies between functions and modules. We
start by adding to the xref server module of the entry point and ask for the edges of the
entry point to other functions. We then continue this process recursively for their modules.
When we don’t have any more functions to explore, we have created the callgraph as we
defined it.

In the simple case where this graph is acyclic, and thus represents a tree, we can annotate
each function starting from the leaves of the tree in a depth first search (DFS) order. This
way, we can know for each function whether any other called function is error-free or not,
since the subtree starting from this function is already annotated. However, this is not the
case for most callgraphs, especially in Erlang, which is a functional programming language
and uses recursion for many computations. A recursive function alone is a cycle containing

one node which points to itself. Larger cycles may exist through mutual recursion. More-

24 Chapter 4. Search Space Reduction via Safe Branch Pruning

over, cycles may have common nodes creating a strongly connected component (SCC) in

Start

Calculate initial Callgraph

the callgraph.

Find SCCs

Find new entry point

Stop

Figure 4.4: Graph Processing Flowchart. Initial Callgraph is a directed graph that possibly
contains SCCs. We find the SCCs and merge the ones that have common nodes. If the
entry point is part of an SCC then the whole SCC becomes the new entry point.

To tackle this problem we first define what will be done when the functions that we want
to annotate all belong to an SCC. In this case, we run a fix-point computation and in every
function annotation we exclude the calls to functions that we have not already processed
but do belong to the SCC. While doing this, we check if any annotations have changed or
any unexplored functions in the SCC have been encountered. If this is true for any of the
functions in the SCC, we run the analysis again to the whole SCC until fixpoint. If two
SCCs in the callgraph have at least one common node, then we have to run this fix-point
computation for the nodes of both SCCs simultaneously like they belonged to the same
SCC.

Knowing how to handle SCCs, we run a preprocessing step on the graph where all the
SCCs are identified and replaced by single nodes. In the new graph, the nodes are of the
form {function, <function name>} or {scc, [<list of functions in SCC>]}. Each
edge that previously pointed to any of the functions in the SCC, now points to the SCC
node and each edge that had one of these functions as a starting point, now has the SCC
as its starting point. This algorithm also returns the new entry point node that might
have changed due to belonging to an SCC. This procedure is depicted in the flowchart of
Fig. 4.4.

The new graph is a directed acyclic graph, and will be processed in a DFS order like
previously starting from the leaves and going towards the root. If the node processed is
just a function, we run the default error annotation (Section 4.3.4) and if it is an SCC we
run the fix-point computation.

The module in Fig. 4.5 poses a good example of this graph transformation.

4.3 Static Analysis 25

1 -module(funsil).
2 —export([£5/1]).

e f1(X) -> [error-free

5 case X of

6 3 > £2(2);
7 2 -> f2(1);
8 _ —>1

9 end.

10

u £f2(X) -> J error-free

12 case X of

13 3 > f1(2);
14 2 > f1(1);
15 _ > 1

16 end.

17

18 £3(X) -> / not error-free

19 case X of

20 3 > f4(2);
21 2 -> f4(1);
22 1 >1

23 end.

24

25 f4(X) -> / not error-free

26 case X of

27 3 > f4(2);
28 2 -> £3(1);
29 1 ->1

30 end.

31

32 f5(X) ->

33 case f1(X) of
34 1 > £3(X);
35 - ->1

36 end.

Figure 4.5: Callgraph with SCCs example. £3/1 and £4/1 belong to two SCCs which are
merged into one. £3/1 and £4/1 constitute another SCC.

26 Chapter 4. Search Space Reduction via Safe Branch Pruning

Here we have two mutually recursive functions, where one of them additionally calls itself.

The entry point is not part of an SCC. The simple SCCs here are:

e [funs1:f1/1, funsi1:f2/1]
e [funsl1:£f3/1, funsil:f4/1]

e [funs1:f4/1]

The two latter SCCs, which have a common function, get merged and belong to the same

node in the resulting graph. The starting and the final callgraph are shown in Fig. 4.6.
Callgraph Visualization

Original callgraph Merged cycles callgraph

Entry Node Entry Node
Normal Nodes. Normal Nodes
. funs1:f1/1 Cycle Nodes
| funs1f2/1 g

'y

v

funsl:f1/1
funs1:f4/1

funs1:f3/1

\ a1
ﬁmﬂﬂﬂ‘\ /

funs1:f5/1 funs1:f5/1

Figure 4.6: Callgraph Processing. On the left figure we present the original callgraph. On
the right figure we present the resulting callgraph after merging the SCCs.

4.3.3 Type Annotation

This type annotation process has the purpose of finding the type of each AST function node
if its arguments satisfy its contract. This is performed in order to leverage the type data
and further improve branch pruning. Without considering type information, our ability
to classify an Erlang program as error-free would be very limited. For example, a simple
addition cannot be expected to be error-free without knowing the types of its arguments.
However, modern Erlang uses type and function signature attributes in the program which,
enables the use of tools (such as the Dialyzer) to point out type discrepancies in them.
A programmer using these tools, can make sure that the function signatures provided are

correct. Thus, we can make our analysis find more safe parts of the program to prune

4.3 Static Analysis 27

given that we trust the function contracts. A very simple example is depicted in Fig. 4.7,
where function £/1 adds its argument to the constant integer 1. Without considering the
types of the arguments of £/1 the input [] produces an error. If we trust the signature of

this function though, we can prove that this function would never fail.

1 - f(integer()) -> integer().
2 f(X) ->
3 X+ 1.

Figure 4.7: Simple Addition

The type annotation of each AST node is happening by traversing the function ASTs and
propagating the node’s specified types. This can be achieved by using a table, namely the
symbol table, containing the signatures of other functions and the variables introduced as
arguments or in the function’s body.

The algorithm traverses the AST in DFS order again and starts annotating the leaves of the
AST with their type. Of course, this can not be deduced for every part of the AST nor for
every possible function. To be conservative, we ignore those nodes and don’t annotate them
at all in order for error annotation algorithm (Section 4.3.4) to ignore the type data for
them and mark them safely as error-free or not. This traversal in some cases cannot happen
only once, because not all functions have a contract. This does not mean that we cannot
know their signature though. If we inspect the code of lists:last/1 (Fig. 4.8), we see
that 1ists:last/1, which has a contract, calls lists:last /2 which does not. Such a pattern
is common in functional programming languages such as Erlang. However, lists:last/2
not only is not exported, but is only called by 1lists:1last/1. This means that if we know
the types of the arguments of lists:last/2 when it is called by lists:last/1, we can

use this as its contract and analyze it normally after that.

1 - last(List) -> Last when
2 List :: [T,...],

3 Last :: T,

4 T :: term().

¢ last([E|Es]) -> last(E, Es).

s last(_, [E|Es]) -> last(E, Es);
o last(E, []) -> E.
Figure 4.8: lists:last

To do this, we start by initializing a set called NoSpec containing all those functions in the

callgraph that do not have a signature. We also initialize an open set in the form of a queue

28 Chapter 4. Search Space Reduction via Safe Branch Pruning

that contains all the functions that do have a signature. While the open set is not empty,
we take the first element and apply the type traversal on it. During that, if we encounter
any calls to a function in NoSpec, we keep that call’s argument types. When the traversal
is over, we create the signature of the called functions by finding the supremum of their
argument types. This is done because a function may be called with different types in each
call instance. In Fig. 4.9, reverse/2 is called (1) by reverse/1 with an empty list as a
second argument and (2) by itself with a non-empty list. In this case we have to handle
reverse/2 as if it would take a non constrained list as an argument. If the newly created
signature is different than the previous one (which does not exist initially) then we put
this called function at the end of the open set, and the caller after that. This way we will
traverse the called function with its new signature first and then its caller. Additionally,
if we encounter any change in the type annotations of any node in a function, we put it in
the open set too. Lastly, if the function we were traversing is part of the NoSpec set, then
we check if we were able to deduce the type returned by the function and if yes, we update

its signature.

1 - reverse(Listl) -> List2 when
2 List1l :: [T],

3 List2 :: [T],

4 T :: term().

5 reverse(L) ->

6 reverse(L, [1).

s reverse([], Acc) -> Acc;
o reverse([H|T], Acc) ->

10 reverse(T, [H|Accl).

Figure 4.9: Different argument types at call

This fix-point computation is presented in the flowchart of Fig. 4.11.

We also have to take closures under consideration. Closures are introduced via a letrec
node in the AST and are bound to a variable. Defining closures is really common and is
even done automatically in case we have a list comprehension. In Fig. 4.10 we use a simple

list comprehension to add 1 to each element of a given list.

1 - f ([number)]) -> [number()].
2 f(X) ->
3 [y + 1 1] Y <-X].

Figure 4.10: List Comprehension

4.3 Static Analysis 29

Start

Initialize NoSpec, OpenSet

Pop f from OpenSet

Pass down types in f

Update OpenSet (yT Change in Types?

Update Symbol Table

no

OpenSet empty?

Figure 4.11: Type annotation algorithm flowchart. NoSpec is a set containing all functions

with no user provided signature. OpenSet is initialized to hold all functions with a user
defined signature. The symbol table contains all the signatures of functions and can contain
signatures computed for functions in the NoSpec set. A change in types might be an
encounter of a call to function in the NoSpec set with argument types different than the so
far computed for this function or a change in any node type computed. Updating the open
set includes pushing the f in the open set and any functions belonging to NoSpec that are

called and have to get an updated signature (done in process “Update Symbol Table”)

In the AST of the function shown in Fig. 4.12 we see that it this done by introducing a
closure in the letrec node in line 4. This closure is also recursive as it calls itself in line
17. As we do not know its signature yet, we have to create it similarly to how we found

the signatures of functions with no signatures.

30 Chapter 4. Search Space Reduction via Safe Branch Pruning

1 {c_fun,

2 [{function,{f,1}},5],

3 [{c_var,[]1,0}],

4 {c_letrec, [1,

5 [{{c_var,[],{'1c$"0',1}3},

6 {c_fun, 1, [{c_var, [1,3}],

7 {c_case, [1,{c_var, [1,3},

8 [{c_clause, [], [{c_cons, [],{c_var,[],'Y'},{c_var, [],2}}],
9 {c_literal, [],true},

10 {c_let, 1, [{c_var, [1,5}]1,

11 {c_call,],

12 {c_literal, [],erlang},

13 {c_literal,[],'+'},

14 [{c_var,[1,'Y'},

15 {c_literal,[],1}]},

16 {c_let, 1, [{c_var, [],6}],

17 {c_apply, [1,

18 {c_var,[1,{'1c$"0',1}}, [{c_var, [1,2}]},
19 {c_cons, [1,{c_var, [1,5},{c_var, [1,6}}}}},
20 {c_clause, [1, [{c_literal, [1,[1}],

21 {c_literal, [],true},

22 {c_literal, [1,[1}},

23 {c_clause, [compiler_generated], [{c_var, [1,4}],
24 {c_1literal, [],true},

25 {c_primop, [1,{c_literal, [],match_fail},

26 [{c_tuple,],

27 [{c_literal, [],function_clause},

28 {c_var, [1,4}1}13}13}}],

29 {c_apply, 1,

30 {c_var,[]1,{'1c$"0',1}}, [{c_var, [{function,{f,1}},5]1,0}]1}}}

Figure 4.12: List Comprehension AST. In line 5 the closure {'1c\$~0',1} is introduced

which is recursive. It calls itself in the apply node in line 17.

To do this, we perform a fix-point computation when we encounter a letrec node with
its own NoSpec set, called LetRecSpec. Inside it, when we find a call to something in the
LetRecSpec we keep the types of its arguments of that call to process them the same way.
When we return to the letrec node, we check whether any of these encountered calls to
functions in the LetRecSpec correspond to a closure defined in this specific letrec node
and if yes, we update their signatures and traverse them again. This check is provoked by

nested letrec nodes. When we finally find the signature of the defined closure, we keep it

4.3 Static Analysis 31

in a table which will be passed in the once again traversed function by the outer fix-point
computation. This is done so that when we reach the same letrec node, we will know the
signature of the closure and thus be able to compute the type of some nodes again with
types that don’t match the already existing ones. This results in a change that puts the
function in the open set again producing an infinite loop.

This type-propagation algorithm also tries to find case nodes with unreachable clauses
given the signature of a function. This is important because the Erlang compiler adds a
“catch all” clause to all case nodes that do not already have one, in which it calls the
match_fail primop. An example illustrating this is presented in Fig. 4.13. Since £/1
accepts a boolean as an argument, there is no input conforming to this signature that will

not reach one of the two case clauses in line 3. It will be added by the compiler s

1 - f(boolean()) -> atom().
2 (X)) ->

3 case X of

4 true -> ok;

5 false -> notok

6 end.

Figure 4.13: In this example, an unreachable clause will be added by the compiler, since it

doesn’t consider that X will be of type boolean and thus will have values true or false.

However, the Erlang compiler, since it does not consider signatures, adds a “catch all”
clause seen in line 29 in Fig. 4.14 to raise an error in case the argument does not match
some of the previous clauses. If we let the error analysis to annotate this AST, it will mark

the whole case as unsafe because it contains this unsafe clause.

To resolve this, we mark the unreachable clauses during the type analysis using the an-
notation type_dependent_unreachable in order for the next analysis to not take them

under consideration.

The algorithm processes the type t initialized as the case argument type. For every clause
it checks whether ¢ is none (). If it is, then this clause will not be reached and it is marked.
After this, the new t is constructed by subtracting the type represented by the pattern and
guards of the clause. If the union of the first n types of the first n clause nodes are a
supertype of the type of the case argument, then there can’t be any input to this case
that will reach the next clauses.

There remains the problem of deducing the type to be subtracted given the patterns and
guards of each clause. The type of the argument of the case node can be just a variable
or a values node. In the latter case, there exist several patterns in each clause, where
each one of them corresponds to a variable in the case argument like in Fig. 4.15 with its
AST shown in Fig. 4.16. We will examine the simpler case where the argument is just a

variable.

32

Chapter 4. Search Space Reduction via Safe Branch Pruning

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

{c_fun,
[{function,{f,1}},5],
[{c_var, [5],03}],
{c_let, (],
[{c_var, [1,957}],
{c_var, [{function,{f,1}},5],0},
{c_letrec, [],
[{{c_var, [],{match_472,0}},
{c_fun, 1,1,
{c_let,],
[({c_var, [1,1}]1,
{c_var,[]1,957},
{c_primop,
(6],
{c_literal, [],match_faill},
[({c_tuple, 1,
[{c_literal, [],case_clause},
{c_var, [1,1}1}1}3}3],
{c_case, [],
{c_var, [1,957},
[{c_clause, [],
[{c_literal, [],truel}],
{c_literal, [],true},
{c_literal, [8],0k}},
{c_clause, [],
[{c_literal, [],falsel}],
{c_literal, [],truel},
{c_literal, [10] ,notok}},
{c_clause,[]1, / compiler generated
[{c_var,[1,600}], 7 matches everything
{c_literal, [],truel},
{c_apply, [1,{c_var, [],{match_472,0}}, [1}}1}}}}

Figure 4.14: Unreachable clause AST. The unreachable clause is in line 29, added by the

compiler.

4.3 Static Analysis 33

©

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

- f(boolean(), boolean()) -> atom().
f(true, true) -> true;

f(false, true) -> false.

Figure 4.15: Values as argument in case

{c_fun,
[{function,{f,2}},5],
({c_var, [5],0},{c_var, [5],1}],
{c_case,
[{function,{f,2}},5],
{c_values,
s1,
[{c_var, [5],0},{c_var,[5],1}]1},
[{c_clause,
(5],
[{c_literal, [5],true},
{c_literal, [5],truel}],
{c_literal, [],truel},
{c_literal, [5] ,truel}},
{c_clause,
[el,
[{c_literal, [6],falsel},
{c_literal, [6],truel}],
{c_literal, [1,true},
{c_literal, [6] ,false}},
{c_clause,
[compiler_generated],
[{c_var, [1,3},{c_var, [1,2}],
{c_literal, [],true},
{c_primop,
(5],
{c_literal, [],match_fail},
[{c_tuple,
(51,
[{c_literal, [],function_clause},
{c_var, 1,3},
{c_var, [1,2}]131}}13}}

Figure 4.16: Values as argument in case. The case statement in line 4 has as argument a

values node (line 6) which contains the two arguments of the function, 0 and 1.

34 Chapter 4. Search Space Reduction via Safe Branch Pruning

In this case we will have one pattern and a guard in each clause. Not all guards can be
considered by this analysis. Currently are supported only guards of the form has_type (X)
(e.g.is_integer (X)), where we bound a variable to some type. For each clause we will
consider firstly the guard and secondly the pattern. If we encounter a guard that is not
supported then we assume that this clause represents the type none (). If it is supported,
the guard will be of the form has_type(X) and may be referring directly to the argument
of the case or in a variable found in the pattern of the clause. In the first case, we assume
that this clause corresponds to the type that the guard is constraining the argument to
be. In the latter case, we add the variable that the guard is referring to with the type that
the function is constraining it to be, in a separate symbol table. Then we consider the
pattern of the clause and convert it to an erl_type. In this conversion, all constructs,
such as lists and tuples, are preserved and the only extra logic applies on the encounter
of variables in the pattern. When a variable is encountered, we check whether it exists
in the symbol table of the analysis. If it does not, then we check whether it exists in the
secondary symbol table created when examining the guard. If it does then it is replaced by
the type in that symbol table. Else, it must represent an arbitrary type and gets replaced
by the type any(). However if it exists in the analysis symbol table, it represents the
type none (). This decision is made because the case will be of the form represented in
Fig. 4.17. Here, Y is of type integer () but the pattern Y can’t represent the integer ()
type because Y is just one integer value. Since we do not know this value, we cannot replace

the pattern with it and, being overall pessimistic, we replace it with none ().

1 - f(integer (), integer()) -> boolean().
2 £f(X, Y) >

3 case X of

4 Y -> true;

5 _ -> false

6 end.

Figure 4.17: Known variable in pattern

Being able to handle a case node with no values node as an argument, we extend the
algorithm to support those too. Here, we assume that the type of the argument is a tuple
type with its elements being the types of the values in the values node. Then, in each
clause, we deduce the type represented for each of the values with the above algorithm,
given the guard and patterns, and create a tuple out of these types to be subtracted from
the case argument type.

Another thing to note about this type annotation phase is its behavior when encountering
a call node. The symbol table used throughout this step is initialized containing various
built-in functions as described in Section 4.3.4. For each call node, we firstly gather the
types of the arguments. If any of them has an invalid type, then the call node has an

invalid type too. If all of them do, we fetch the signature of the function from the symbol

4.3 Static Analysis 35

table. What is fetched from the symbol table will in reality be a list of signatures, where
the more specific signatures precede the more general ones. The type of the call node is
the range of the first signature that is satisfied by the argument types. If no signatures
match, then the call node has an invalid type. This prioritization of signatures enables
us to specify the node type as much as possible.

Lastly, we have to examine how we determine the types of variables introduced in patterns
of clause nodes. For that to happen, the guard of the clause is analyzed just like in the
unreachable clause detection and the constraints of variables are added to a symbol table.
Then, we try to unify the pattern with the clause argument type. In the simpler case,
both the argument type and the pattern will be of the same type (e.g.list) and we can
recursively unify their parts. When we encounter a variable in the pattern, the type that is
left is bound to that variable (given that this variable is not in the symbol table). However
the types do not always match. For example, in Fig. 4.18, the argument type T is a union

of a tuple of two numbers and a single number. The first pattern is just a tuple of two

variables.

T - f ({number (), number()} | number()) -> number().
2 £(X) ->

3 case X of

4 {A, B} -> A + B;

5 A >A+ 1

6 end.

Figure 4.18: Case argument has the type of {number, number} | number. The first pat-

tern is just a tuple. We have to use the tuple part of the union, not the whole union.

To handle this situation, the unification algorithm creates the type T1, which is produced
by the subtraction of the type tuple(any (), any()) from T. T1 in this case is number ()
and is subtracted from T. The result is the tuple part of the union, with which we want to
unify the pattern. If it were impossible to subtract a tuple from T, T1 would be equal to
T, the resulting type would be none () and we would be sure that we cannot continue with

the unification.

4.3.4 FError Annotation

This part of the algorithm is responsible for deducing the maybe_error annotation for
all the nodes in the ASTs of functions as well as the force_constraint_logging and
distrust_type_dependent flags. For clarity, we will use the term “error-free” for a node
that can’t produce an error and has to be marked with the maybe_error annotation false.
We will start with a simple function as an example shown in Fig. 4.19. We can see that
the only part of the program that will produce a runtime error is the clause in line 4 where

the program calls the function error.

36

Chapter 4. Search Space Reduction via Safe Branch Pruning

1

f(xX) ->
case X of
1 -> ok;
_ -> error(error) / runtime error

end.

Figure 4.19: Simple function that produces an error when its argument is not 1

We provide the corresponding AST of this example in Fig. 4.20. We observe the call to the

error function in lines 16-20. In this example, we can’t prune any branches that contain

case nodes in order to reduce the search space of the program.

1

10

11

12

13

14

15

16

17

18

19

20

{c_fun,
[{function,{f,1}},5],
[({c_var, [5],0}]1,
{c_case,
(6],
{c_var, [{function,{f,1}},5],0},
[{c_clause,
(71,
[{c_literal, [7],1}],
{c_literal, [1,true},
{c_literal, [7],0k}},
{c_clause,
(el,
[({c_var, [1,3}]1,
{c_literal, [],true},
{c_call,
(el,
{c_literal, [8],erlang},
{c_literal, [8] ,error},
[{c_literal, [8],error}]}}1}}

Figure 4.20: AST of function in Fig. 4.19. The argument of the function is the variable

with name 0 and the call to error is done in line 16.

This annotation will be made in a DFS order. Each node in the AST will decide the

value of its maybe_error annotation depending on the maybe_error annotations of its

children. When we need to combine two maybe_error annotations, the result is summed

up in Table 4.2. This operation is equivalent to the conjunction operation in ternary logic,

but our true and false states are swapped. To avoid the confusion we will denote this

4.3 Static Analysis 37

operation with the ® symbol. However, it shares the associativity and commutativity of
A. Thus when having the maybe_error annotations X1, X, ..., X, of the n children of a
node, the annotation of this node will be X1 ® Xo ® ... ® X,,.

B

A®B
true | type dependent false

true true true true

A | type dependent || true type dependent | type dependent

false true type _dependent false

Table 4.2: Result A ® B of combining two maybe_error annotations A and B.

Naturally, in an AST of a function, calls to other functions can be found. With this emerges
the need to track which function calls can produce errors. This is why the analysis intro-
duces a symbol table in the form of a dictionary with the names of the functions as keys
and their maybe_error annotation as values. Furthermore, the functions must be pro-
cessed in a specific order if we want to have them in the symbol table when we encounter
them. The order of the annotation of the functions is described in Section 4.3.2. When
we examine a function we will assume that we know everything about the functions that
it calls. In Fig. 4.21 function example2:£/1 calls example2:g/1. example2:g/1 can’t pro-
duce an error, because regardless of the input, it will return a number. On the other hand,
example2:f/1 can produce an error, as it calls error depending on the value of the func-
tion’s argument. Moreover example2:g/1 should be annotated first (and will be) and added
to the symbol table in order for example2:£/1 to recognize its maybe_error_annotation
as false and mark the node of this call with the annotation false in line 6. The last
thing to note about this example is that the clause in line 6, since it can’t produce errors,
can be pruned, meaning that we don’t need to create different inputs in order to obtain
different results of g(X). As a result, in this example, in contrast to the previous one, we
would get a lower number of tries from CutEr in order to explore the program.

In Fig. 4.22 the need for a dynamic check (Section 4.2) is obvious. In line 6 we have a
call to an error-free function that can be pruned just like in Fig. 4.21. In line 5 we have
a similar call to the same error-free function. However, no branches in this call can be
pruned because the result of this call is the argument of a non error-free case construct.
The problem occurs because the interpreter in both calls will end up traversing the AST
of g/1 without any knowledge of the context of the call. We have to enforce the evaluation
and logging of the call in line 5 which is done in Section 4.2.

However, if we consider the AST of example3:f/2 provided in Fig. 4.24, we see that the
argument of the case node in line 11 is just a variable bound to the result of g/1 through
a let node. Now the interpreter won’t be able to know that this let node in line 4 will
bind a variable used in a non error-free case argument. Thus, the static analysis must
annotate this let node with the force_constraint_logging flag. These are identified by

introducing a set of variables s. When a variable in an argument of a non error-free case

38 Chapter 4. Search Space Reduction via Safe Branch Pruning

1 - (example?2) .
2 - ([£/11).

4« £(X) -> [not error free

5 case X of

6 1> gX);

7 _ -> error("error") / runtime error point
8 end.

9

10 g(X) ->] error free

11 case X of
12 1 ->1;
13 2 -> 2;
14 _ > 1
15 end.

Figure 4.21: Branches in the call of g/1 in line 6 can be pruned since paths from that point

cannot produce an error.

node is used, it is added to s. When a let node is encountered in the analysis, firstly it
analyzes the body of the let statement. This allows any non error-free case nodes to add
the variables they use to s. Then, it checks if the variables that it introduces are members
of s. If there is at least one such variable, then it is flagged to be logged, despite it being
error-free.

Having the type annotations from Section 4.3.3 we can handle calls to functions that are
error-free depending on their signature. They will have their maybe_error annotation
set to type_dependent. When encountering a call, we check whether the called func-
tion is error-free. If it is, then the call is error-free too. If its maybe_error annotations
is type_dependent and the call node has been marked with a valid type, the node’s
maybe_error annotation is also type_dependent. If it is not error-free, the call is not
error-free too.

Having the type annotated functions is not enough for this step. We need to start with
not just an empty symbol table, but rather with one that contains built-in functions which
are error-free or type_dependent. For this reason, many built-in functions with their
corresponding signatures have been gathered to initialize this symbol table. It is important
to mention that the signatures have been altered to cover a larger range of programs as
type_dependent. This is explained using Fig. 4.23.

Here, a function £/1 which accepts an integer () and returns an integer (), calls a func-
tion g/1 having the same signature. The signature that the function erlang:+/2 needs
in order to be error-free is just (number (), number()) -> number (). This is not enough

though to mark this program as error-free because the call to g/1 at line 3 accepts as

4.3 Static Analysis 39

1 - (example3d) .
2 - ([£/21).

+ £(X, Y) -> / not error free

5 case g(X) of / has to be searched
6 1 -> g(¥); / has to be pruned

7 _ -> error("error")

8 end.

1w gX) ->] error free

11 case X of
12 1 ->1;
13 2 -> 2;
14 _ > 1
15 end.

Figure 4.22: Branches in the call of g/1 in line 6 can be pruned since it cannot produce an
error. Branches in the call of g/1 in line 5 can not since they have to be explored in order

to lead to the erroneous clause in line 7.

an argument X + 1. Here both X and 1 are integers and thus subtypes of number(),
so they respect the signature of erlang:+/2. Thus, this call will have the type of the
range of erlang:+/2 which is number (). This creates a complication, since g/1 accepts
an integer () and this call to g/1 will be marked as non error-free. To solve this, we
just add integer () -> integer() to the signature list of erlang:+/2. By adding more
signatures, we can use the nature of the functions to further specify the type of their range.
Another example is the function erlang:div/2 which is not even safe, because with 0 as
a second argument it produces a runtime error. If it is called with a positive integer as
a second argument though, then it is safe and can be used in the analysis. So the signa-
ture (integer (), pos_integer()) -> integer () is put in the initial symbol table. This
symbol table is the one also used by Section 4.3.3 to derive the types of call nodes.

1 - f(integer()) -> integer().
2 f(X) > gX + 1). J X + 1 should type to integer

4 - g(integer()) -> integer().
5 gX) > X + 1.

Figure 4.23: If the signature of erlang:+/2 remains (number (), number()) -> number()
then the expression X + 1 will be annotated with the type number (). This will result in

the type of the call to g/1 being invalid since number () is not a subtype of integer().

40 Chapter 4. Search Space Reduction via Safe Branch Pruning

Regarding higher order functions, they introduce an issue when it comes to calling their
arguments. The function arguments can have their maybe_error annotation as true, false
or type_dependent. To further explain this, consider a higher order function f. If we try
to be pessimistic and mark f’s arguments a priori with true, then we cannot classify it as
error-free. This would be very restrictive. If we flag them with false, then we will blindly
consider every call to their arguments as error-free, which not the case in many scenarios.
Lastly, if we flag f’s arguments with type_dependent, we encounter the same problem
as before in case another function calls £ with a non error-free function that satisfies f’s
signature. To tackle this, we consider the function arguments of £ to be type_dependent.
When we encounter a call node to £, we check whether the arguments of the call are
error-free. If they are not, we mark this call node with the distrust_type_dependent
annotation. This way, the dynamic check (Section 4.2) will start handling type_dependent
nodes as non error-free and thus explore f. It is worth noticing that, instead of the
distrust_type_dependent flag, we could add the force_constraint_logging flag and
forcefully explore every branch, but this would explore even the strictly error-free paths
and prune less branches.

As far as letrec nodes are concerned, their handling requires the implementation of extra
logic, just like in Section 4.3.3. In the case of a list comprehension (recall Fig. 4.10 with
its AST in Fig. 4.12), a recursive closure is introduced. Since it is recursive, it should be
annotated just as if it was an SCC, as described in Section 4.3.2. Thus, it should ignore
calls to itself until it has been introduced in the symbol table. Note that, in contrast to

Section 4.3.3, we do not need any persistence in this case.

4.4 Search Space Reduction

The safe branch pruning algorithm is not meant to replace the algorithms presented in
Section 3.3. The strategy, through which the next branch to be explored is selected,
is independent. Regardless of that strategy though, safe branch pruning can massively
reduce which branches are candidates for search especially in cases of recursion. Consider
the function £/1 in Fig. 4.25. It calls £/2 which is a recursive function. This means that the
concolic interpreter will encounter an arbitrarily long sequence of branches when traversing
£/2, when all of them correspond to the case statements in lines 7,10 and 12.

Analyzing this program statically, we don’t have the same constraint, and tagging this
function as error free, steers the search away from all these paths. In this specific example,
CutEr tries to invert 15 different branches (for a default BFS search depth of 25), where
12 of them need unsatisfiable conditions to be met. On the other hand, with safe branch
pruning it will just try two satisfiable inversions and terminate, regardless of the search
depth. In conclusion, improvement will be really noticeable in programs that contain
recursive functions that can not produce errors, something not uncommon, especially in a

functional programming language.

4.4 Search Space Reduction 41

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

{c_fun,
[{function,{f,2}},4],
({c_var, [4],0},{c_var, [4],1}],
{c_let, (],
[{c_var,[]1,957}],
{c_apply,
(51,
{c_var, [5],{g,1}},
[({c_var, [4],0}]},
{c_case, [],
{c_var, []1,957%},
[{c_clause, [],
[{c_literal,[],1}],
{c_literal, [],true},
{c_apply,
(6],
{c_var, [6],{g,1}},
[{c_var, [4],1}]1}},
{c_clause, [],
[{c_var, [1,472}],
{c_literal, [],true},
{c_let,],
[({c_var, []1,5}],
{c_var, [1,957},
{c_call,
(71,
{c_literal, [7],erlang},
{c_literal, [7] ,error},

[{c_literal,[7],"error"}1}}}1}}}

Figure 4.24: The variable introduced in the let node in line 5 is the argument of the case

node in line 11. This means that we should not prune the call to the function g/1 in line

8 even if it is error-free, because we wouldn’t be able to create inputs that explore all the

clauses of the case node.

42

Chapter 4. Search Space Reduction via Safe Branch Pruning

10

11

12

13

14

15

16

17

18

19

20

21

f(integer()) -> boolean().

£(X) -> / error free

(X, .

f(integer(), [integer()]) -> boolean().

f(X, Found) ->

case X of
1 -> true;
->

case lists:member (X, Found) of
false ->

case X rem 2 of

0 ->
f(X div 2, [X|Foundl);
_ >
f(3 * X + 1, [X|Found])
end;
true ->
false

end

end.

Figure 4.25: Program verifying the Collatz conjecture for a number.

Chapter 5
Experimental Results

The proposed method was tested on real world code, as well as custom programs created
to validate its capabilities. These programs highlight the performance increase of the tool,
especially in cases of recursive functions with safe branches like in Fig. 4.25. We will
discuss about the strengths and limitations of this method in the following section, and

then present the results from testing it in code from Erlang’s standard library.

5.1 Strengths and Limitations

The main strength of this method is that it enables CutEr to verify programs that pre-
viously seemed intractable. What that means is that, even though CutEr efficiently finds
bugs within its reach, depending on the depth of the bounded BFS, recursive functions
can produce execution paths longer than any predetermined search depth. Additionally,
this method does not add any considerable overhead to the tool, as it just performs some
passes through the AST of the functions comprising the program.

The static nature of the method also has its limitations. Erlang is a dynamic programming
language, which makes the static analysis unable to predict the behavior of some programs.
Consider for example the program in Fig. 5.1, where taking module:h/0 as an entry point
it is difficult even to find that the callgraph contains module:gl1/1 and module:g2/2. Since
operations such as the one performed by module:f/1 are permitted, it is even impossible
in many cases to find the callgraph.

Apart from that, even though it is common practice to provide signatures for functions,
it is not mandatory and regardless of signature existence, the compilation and execution
of the program will proceed normally. If the programmer does not provide signatures,
then the ability of the static analysis to find safe branches will be extremely limited. The
correctness of the signatures is also not checked by the compiler so in the case where they
are faulty, the analysis may deduce false annotations for each branch. Fortunately, there
are programs such as the dialyzer that help the programmer ensure the correctness of
such signatures.

Finally, the determination of the type and safety of every node in the AST is undecidable

43

44 Chapter 5. Experimental Results

T - (module) .
2 - ([h/0]).

4 f(M, F) ->
5 M:F(4).

7 gl(X) -> X + 1.

9 gQ(X) -> X + 2.

i1 h(QO ->
12 Funs = [{module, g1}, {module, g2}],
13 [fM, F) || {M, F} <- Funs].

Figure 5.1: It is very difficult to calculate the callgraph of this program.

and thus, although the method can be improved, it will always consider some safe programs

to be unsafe and let CutEr completely explore them.

5.2 Erlang Standard Library Code Samples

To test the method on already existing code, the module 1ists from the Erlang standard
library was chosen. Each function was given as an entry point to CutEr and we gathered
the ones where the method improved the efficiency of the tool. In all other cases the
algorithm didn’t prune any branches, so the results remain unchanged. The ones where
pruning occurred are gathered in Table 5.1. Note that this improvement can’t be quantified
in this case, because all the improved entry points were found to be completely safe by the
analysis. This means that CutEr found no errors with the analysis enabled in constant time.
When, on the other hand, the analysis is disabled, CutEr will perform tests exponentially
dependent on the chosen depth of the BFS.

We observe that all those functions are recursive, and that is why CutEr will have to cover
a larger search space depending on the bounded BFS depth. One other positive result is
that when these functions are higher order and thus inherently more difficult to be provided
with valid inputs, this analysis handles them correctly. These are 16 functions out of the

52 exported functions in the lists module.

5.2 Erlang Standard Library Code Samples 45

. Solved /Unsolved
Entry point - 5 : -
With safe branch pruning ‘ Without safe branch pruning
lists:sum/1 1/1 4/11
lists:append/1 2/3 72/216
lists:map/2 1/10 15/123
lists:all/2 1/10 15/72
lists:any/2 1/10 15/72
lists:flatmap/2 1/10 25/143
lists:foldl/3 1/10 15/123
lists:foldr/3 1/10 15/119
lists:filtermap/2 1/10 363/1195
lists:foreach/2 1/10 15/123
lists:mapfoldl/3 1/10 8/74
lists:mapfoldr/3 1/10 15/120
lists:takewhile/2 1/10 15/72
lists:unzip/1 1/2 8/65
lists:unzip3/1 1/2 8/73
lists:last/1 0/1 14/15

Table 5.1: Table consisting of the entry points from 1ists where the analysis improved the
performance of CutEr. For each entry point, we report the number of solved and unsolved
models with the analysis enabled and disabled. All the tests were done with depth for the
CutEr BFS of 15 because some wouldn’t terminate in reasonable time with the default
depth of 25.

Chapter 6

Conclusion and Future Work

What we achieved with this thesis is to reduce the search space of concolic testing, which is
dynamic in nature, using the static information of a program. Although it was developed
for Erlang, this method could be implemented for other languages as well, given that the
concolic testing algorithm acts on some high level representation of the program. Moreover,
our method is not meant to replace all the search heuristics created for the same reason
and can work alongside them for even better results.

Also, the type information provided in the code is not only helpful for this static analysis,
but also crucial to cover a decent amount of programs. Without it, the only programs that
we could explore more efficiently would never be actually created for real applications.
As we saw in the experimental results, in many cases, while the search space can expo-
nentially grow with respect to the depth of the search, the safe branch pruning is able to
reduce it to some constant size, especially in cases of recursive computations.

As future work, we aim to improve this method in order for it to be able to handle even more
programs. Firstly, this could be realized by improving the algorithm used for detecting the
unreachable clauses in a case construct. The use of an SMT solver should be considered
in this case, since the constraints provided by the patterns and guards in the clauses
are complex. Secondly, while in Erlang it is possible to provide many signatures for a
function, this method does not consider functions with more than one signatures. This
could be improved by running the analysis for each signature separately and then merging
the resulting annotated ASTs produced. Lastly, right now our method does not support

bitstrings, which is something that could be implemented in the future.

47

Bibliography

1]

2]

3]

[4]

[5]

(6]

7]

8]

The Editors of Encyclopaedia Britannica. “software (computing)”. In: Encyclopedia

Britannica. URL: https://www.britannica.com/technology/software.

Mohd Khan. “Different Forms of Software Testing Techniques for Finding Errors”.
In: International Journal of Computer Science Issues 7 (May 2010).

Mohd Ehmer and Farmeena Khan. “A Comparative Study of White Box, Black Box
and Grey Box Testing Techniques”. In: International Journal of Advanced Computer
Science and Applications 3 (June 2012). DOI: 10.14569/IJACSA.2012.030603.

Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. “A Formal System for Testing
and Debugging Programs by Symbolic Execution”. In: Proceedings of the Interna-
tional Conference on Reliable Software. Los Angeles, California: ACM, 1975. 1SBN:
9781450373852. DOI: 10.1145/800027 . 808445. URL: https://doi.org/10.1145/
800027 .808445.

Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing En-
gine for C”. In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ESEC/FSE-13. Lisbon, Portugal: ACM, 2005, pp. 263-272.
ISBN: 1595930140. po1: 10.1145/1081706.1081750. URL: https://doi.org/10.
1145/1081706.1081750.

Koushik Sen and Gul Agha. “CUTE and jCUTE: Concolic Unit Testing and Explicit
Path Model-Checking Tools”. In: 18th International Conference on Computer Aided
Verification (CAV’06). Vol. 4144. LNCS. Springer, 2006, pp. 419-423. DOI: 10.1007/
11817963_38. URL: http://dx.doi.org/10.1007/11817963_38.

Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas. “Concolic Test-
ing of Functional Languages”. In: Proceedings of the 17th International Symposium
on Principles and Practice of Declarative Programming. New York, NY, USA: ACM,
2015, pp. 137-148. por: 10.1145/2790449.2790519. URL: http://doi.acm.org/
10.1145/2790449.2790519.

Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas. “Concolic Test-
ing of Functional Languages”. In: Sci. Comput. Program. 147 (2017), pp. 109-134.
DOI: 10.1016/j.scico.2017.04.008. URL: https://doi.org/10.1016/j.scico.
2017.04.008.

49

https://www.britannica.com/technology/software
https://doi.org/10.14569/IJACSA.2012.030603
https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/800027.808445
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/11817963_38
https://doi.org/10.1007/11817963_38
http://dx.doi.org/10.1007/11817963_38
https://doi.org/10.1145/2790449.2790519
http://doi.acm.org/10.1145/2790449.2790519
http://doi.acm.org/10.1145/2790449.2790519
https://doi.org/10.1016/j.scico.2017.04.008
https://doi.org/10.1016/j.scico.2017.04.008
https://doi.org/10.1016/j.scico.2017.04.008

50

Bibliography

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Joe Armstrong. “A History of Erlang”. In: Proceedings of the Third ACM SIGPLAN
Conference on History of Programming Languages. HOPL III. San Diego, California:
ACM, 2007, pp. 6-1-6-26. 1SBN: 9781595937667. DOI: 10.1145/1238844 . 1238850.
URL: https://doi.org/10.1145/1238844.1238850

Richard Carlsson, Bjérn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof
Nystrom, Mikael Pettersson, and Robert Virding. “Core Erlang 1.0 language spec-
ification”. In: Technical Report 2000-030. Department of Information Technology,
Uppsala University, Sweden, 2000.

Richard Carlsson. “An introduction to Core Erlang”. In: Proceedings of the PLI’ 01
Erlang Workshop. 2001.

Tobias Lindahl and Konstantinos Sagonas. “Detecting Software Defects in Telecom
Applications Through Lightweight Static Analysis: A War Story”. In: Programming
Languages and Systems: Proceedings of the Second Asian Symposium. Ed. by Chin
Wei-Ngan. Vol. 3302. LNCS. Berlin, Germany: Springer, 2004, pp. 91-106. DOI: 10.
1007 /978-3-540-30477-7_7. URL: https://doi.org/10.1007/978-3-540-
30477-7%5C_T7.

Tobias Lindahl and Konstantinos Sagonas. “Practical Type Inference Based on Suc-
cess Typings”. In: Proceedings of the 8th ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming. Venice, Italy: ACM Press, 2006, pp. 167—
178. por: 10.1145/1140335 . 1140356. URL: http://doi.acm.org/10.1145/
1140335.1140356

Tobias Lindahl and Konstantinos Sagonas. “TypEr: A Type Annotator of Erlang
Code”. In: Proceedings of the 2005 ACM SIGPLAN Workshop on Erlang. Tallinn,
Estonia: ACM, 2005, pp. 17-25. DOI: 10.1145/1088361 . 1088366. URL: http://
doi.acm.org/10.1145/1088361.1088366.

Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelmsson. “Message analysis
for concurrent programs using message passing”. In: ACM Trans. Program. Lang.
Syst. 28.4 (2006), pp. 715-746. DOI: 10.1145/1146813. URL: http://doi.acm.org/
10.1145/1146813.

Maria Christakis and Konstantinos Sagonas. “Static Detection of Race Conditions in
Erlang”. In: Practical Aspects of Declarative Languages, 12th International Sympo-
stum, PADL 2010, Proceedings. Ed. by Manuel Carro and Ricardo Penia. Vol. 5937.
LNCS. Madrid, Spain: Springer, Jan. 2010, pp. 119-133. DOI: 10.1007/978-3-642-
11503-5_11. URL: https://doi.org/10.1007/978-3-642-11503-5%5C_11.

Maria Christakis and Konstantinos Sagonas. “Detection of Asynchronous Message
Passing Errors Using Static Analysis”. In: Practical Aspects of Declarative Languages,
18th International Symposium, PADL 2011, Proceedings. Ed. by Ricardo Rocha and
John Launchbury. Vol. 6539. LNCS. Austin, TX, USA: Springer, Jan. 2011, pp. 5-18.

https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1007/978-3-540-30477-7_7
https://doi.org/10.1007/978-3-540-30477-7_7
https://doi.org/10.1007/978-3-540-30477-7%5C_7
https://doi.org/10.1007/978-3-540-30477-7%5C_7
https://doi.org/10.1145/1140335.1140356
http://doi.acm.org/10.1145/1140335.1140356
http://doi.acm.org/10.1145/1140335.1140356
https://doi.org/10.1145/1088361.1088366
http://doi.acm.org/10.1145/1088361.1088366
http://doi.acm.org/10.1145/1088361.1088366
https://doi.org/10.1145/1146813
http://doi.acm.org/10.1145/1146813
http://doi.acm.org/10.1145/1146813
https://doi.org/10.1007/978-3-642-11503-5_11
https://doi.org/10.1007/978-3-642-11503-5_11
https://doi.org/10.1007/978-3-642-11503-5%5C_11

Bibliography 51

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

DOI: 10.1007/978-3-642-18378-2_3. URL: https://doi.org/10.1007/978-3-
642-18378-2%5C_3.

Tamas Nagy and Aniko Nagyne Vig. “Erlang Testing and Tools Survey”. In: Pro-
ceedings of the 2008 ACM SIGPLAN Workshop on Erlang. Victoria, Canada: ACM,
Sept. 2008, pp. 21-28. DOI: 10.1145/1411273.1411277. URL: https://doi.org/
10.1145/1411273.1411277.

Manolis Papadakis and Konstantinos Sagonas. “A PropEr Integration of Types and
Function Specifications with Property-based Testing”. In: Proceedings of the 10th
ACM SIGPLAN Workshop on Erlang. Tokyo, Japan: ACM, 2011, pp. 39-50. DOI:
10 . 1145 /2034654 . 2034663. URL: http://doi.acm.org/10.1145/2034654 .
2034663.

Alkis Gotovos, Maria Christakis, and Konstantinos Sagonas. “Test-Driven Develop-
ment of Concurrent Programs using Concuerror”. In: Proceedings of the 10th ACM
SIGPLAN Workshop on Erlang. New York, NY, USA: ACM, Sept. 2011, pp. 51-61.
DOI: 10.1145/2034654 . 2034664. URL: https://doi.org/10.1145/2034654 .
2034664.

Maria Christakis, Alkis Gotovos, and Konstantinos Sagonas. “Systematic Testing for
Detecting Concurrency Errors in Erlang Programs”. In: Sizth IEEE International
Conference on Software Testing, Verification and Validation. ICST 2013. Luxem-
bourg: IEEE, 2013, pp. 154-163. pDor: 10.1109/ICST.2013.50. URL: https://doi.
org/10.1109/ICST.2013.50.

Huiqing Li and Simon Thompson. “Tool Support for Refactoring Functional Pro-
grams”. In: Proceedings of the ACM SIGPLAN Symposium on Partial FEvaluation
and Semantics-Based Program Manipulation. New York, NY, USA: ACM, Jan. 2008,
pp- 199-203. por: 10.1145/1328408.1328437. URL: https://doi.org/10.1145/
1328408.1328437.

Huiqging Li and Simon Thompson. “Clone Detection and Removal for Erlang/OTP
within a Refactoring Environment”. In: Proceedings of the ACM SIGPLAN Sympo-
stum on Partial Evaluation and Semantics-Based Program Manipulation. New York,
NY, USA: ACM, Jan. 2009, pp. 169-177. DOI: 10.1145/1480945 . 1480971. URL:
https://doi.org/10.1145/1480945.1480971.

Thanassis Avgerinos and Konstantinos Sagonas. “Cleaning up Erlang Code is a Dirty
Job but Somebody’s Gotta Do It”. In: Proceedings of the 8th ACM SIGPLAN Erlang
Workshop. New York, NY, USA: ACM, Sept. 2009, pp. 1-10. DoI1: 10.1145/1596600.
1596602. URL: https://doi.org/10.1145/1596600.1596602.

Konstantinos Sagonas and Thanassis Avgerinos. “Automatic Refactoring of Erlang
Programs”. In: Proceedings of the Eleventh International ACM SIGPLAN Symposium
on Principles and Practice of Declarative Programming. New York, NY, USA: ACM,

https://doi.org/10.1007/978-3-642-18378-2_3
https://doi.org/10.1007/978-3-642-18378-2%5C_3
https://doi.org/10.1007/978-3-642-18378-2%5C_3
https://doi.org/10.1145/1411273.1411277
https://doi.org/10.1145/1411273.1411277
https://doi.org/10.1145/1411273.1411277
https://doi.org/10.1145/2034654.2034663
http://doi.acm.org/10.1145/2034654.2034663
http://doi.acm.org/10.1145/2034654.2034663
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1145/2034654.2034664
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1109/ICST.2013.50
https://doi.org/10.1145/1328408.1328437
https://doi.org/10.1145/1328408.1328437
https://doi.org/10.1145/1328408.1328437
https://doi.org/10.1145/1480945.1480971
https://doi.org/10.1145/1480945.1480971
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1596600.1596602

52

Bibliography

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

Sept. 2009, pp. 13—24. por: 10.1145/1599410.1599414. URL: https://doi.org/
10.1145/1599410.1599414.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed Automated
Random Testing”. In: Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’05. Chicago, IL, USA: ACM,
2005, pp. 213-223. 1sBN: 1595930566. DOI: 10.1145/1065010.1065036. URL: https:
//doi.org/10.1145/1065010.1065036.

Nicky Williams, Bruno Marre, and Patricia Mouy. “On-the-fly generation of k-path
tests for C functions”. In: Proceedings of the 19th IEEE International Conference
on Automated Software Engineering. ASE ’04. USA: IEEE Computer Society, 2004,
pp. 290-297. DOL: 10.1109/ASE. 2004 . 1342749.

Nicky Williams, Bruno Marre, Patricia Mouy, and Muriel Roger. “PathCrawler: Au-
tomatic Generation of Path Tests by Combining Static and Dynamic Analysis”. In:
Dependable Computing - EDCC 5. Ed. by Mario Dal Cin, Mohamed Kaéniche, and
Andras Pataricza. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 281-292.
ISBN: 978-3-540-32019-7.

Mark Wallace, Stefano Novello, and Joachim Schimpf. “ECLiPSe: a Platform for
Constraint Logic Programming”. In: ICL Systems Journal 12 (Oct. 1997).

Leonardo de Moura and Nikolaj Bjoérner. “Z3: an efficient SMT solver”. In: Pro-
ceedings of the Theory and Practice of Software, 14th International Tools and Al-
gorithms for the Construction and Analysis of Systems. Vol. 4963. LNCS. Berlin,
Heidelberg: Springer-Verlag, Apr. 2008, pp. 337-340. 1SBN: 978-3-540-78799-0. DOT:
10.1007/978-3-540-78800-3_24.

Jacob Burnim and Koushik Sen. “Heuristics for Scalable Dynamic Test Generation”.
In: 2008 23rd IEEE/ACM International Conference on Automated Software Engi-
neering. 2008, pp. 443—-446. pDor1: 10.1109/ASE.2008.69.

Sooyoung Cha, Seongjoon Hong, Jiseong Bak, Jingyoung Kim, Junhee Lee, and
Hakjoo Oh. “Enhancing Dynamic Symbolic Execution by Automatically Learning
Search Heuristics”. In: IEEE Transactions on Software Engineering (2021), pp. 1-1.
DOI: 10.1109/TSE.2021.3101870.

Sangmin Park, B. M. Mainul Hossain, Ishtiaque Hussain, Christoph Csallner, Mark
Grechanik, Kunal Taneja, Chen Fu, and Qing Xie. “CarFast: Achieving Higher State-
ment Coverage Faster”. In: Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering. FSE ’12. Cary, North Car-
olina: ACM, 2012. 1SBN: 9781450316149. pOI: 10 . 1145 /2393596 . 2393636. URL:
https://doi.org/10.1145/2393596 . 2393636.

https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1109/ASE.2004.1342749
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ASE.2008.69
https://doi.org/10.1109/TSE.2021.3101870
https://doi.org/10.1145/2393596.2393636
https://doi.org/10.1145/2393596.2393636

Bibliography 53

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

42]

Hyunmin Seo and Sunghun Kim. “How We Get There: A Context-Guided Search
Strategy in Concolic Testing”. In: Proceedings of the 22nd ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering. FSE 2014. Hong Kong,
China: ACM, 2014, pp. 413-424. 1SBN: 9781450330565. DOI: 10 . 1145 /2635868 .
2635872. URL: https://doi.org/10.1145/2635868.2635872.

Patrice Godefroid, Michael Y. Levin, and David A Molnar. “Automated Whitebox
Fuzz Testing”. In: Network Distributed Security Symposium (NDSS). Internet Society.
2008. URL: http://www.truststc.org/pubs/499.html.

Ericsson AB. OTP Design Principles. 2021. URL: https://www.erlang.org/doc/

design_principles/des_princ.html.

Mihalis Pitidis and Konstantinos Sagonas. “Purity in Erlang.” In: vol. 6647. Sept.
2010, pp. 137-152. DOI: 10.1007/978-3-642-24276-2_9

Aggelos Giantsios. “Program testing by combining symbolic and concrete execution
with automatic generation of inputs”. MA thesis. National Technical University of
Athens, School of Electrical and Computer Engineering, Greece, 2014. URL: http:
//artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/16798.

Niloofar Razavi, Franjo Ivan¢i¢, Vineet Kahlon, and Aarti Gupta. “Concurrent test
generation using concolic multi-trace analysis”. In: Programming Languages and Sys-
tems - 10th Asian Symposium, APLAS 2012, Proceedings. LNCS. 2012, pp. 239-255.
ISBN: 9783642351815. DOI: 10.1007/978-3-642-35182-2_17.

Patrice Godefroid, Michael Y. Levin, and David Molnar. “SAGE: Whitebox Fuzzing
for Security Testing: SAGE Has Had a Remarkable Impact at Microsoft.” In: Queue
10.1 (Jan. 2012), pp. 20-27. 1SSN: 1542-7730. DOI: 10.1145/2090147 .2094081. URL:
https://doi.org/10.1145/2090147.2094081.

Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: Unassisted and Au-
tomatic Generation of High-Coverage Tests for Complex Systems Programs”. In:
Proceedings of the 8th USENIX Conference on Operating Systems Design and Im-
plementation. OSDI’08. San Diego, California: USENIX Association, 2008, pp. 209—
224.

Miguel Jimenez, Tobias Lindahl, and Konstantinos Sagonas. “A Language for Spec-
ifying Type Contracts in Erlang and Its Interaction with Success Typings”. In: Pro-
ceedings of the 2007 SIGPLAN Workshop on ERLANG Workshop. ERLANG °07.
Freiburg, Germany: ACM, 2007. 1SBN: 9781595936752. DOI: 10 . 1145/ 1292520 .
1292523. URL: https://doi.org/10.1145/1292520.1292523.

https://doi.org/10.1145/2635868.2635872
https://doi.org/10.1145/2635868.2635872
https://doi.org/10.1145/2635868.2635872
http://www.truststc.org/pubs/499.html
https://www.erlang.org/doc/design_principles/des_princ.html
https://www.erlang.org/doc/design_principles/des_princ.html
https://doi.org/10.1007/978-3-642-24276-2_9
http://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/16798
http://artemis-new.cslab.ece.ntua.gr:8080/jspui/handle/123456789/16798
https://doi.org/10.1007/978-3-642-35182-2_17
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/2090147.2094081
https://doi.org/10.1145/1292520.1292523
https://doi.org/10.1145/1292520.1292523
https://doi.org/10.1145/1292520.1292523

