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Anayopebetan 1 aviiypapy), anodnxeuoy xou dlavour| tne mapovoag epyaotiog, €€
0hOXAAPOL 1} TUAUATOC AUTHE, Yid EUTOpO oxomd. Emtpénetan 1 avatinwon,
anoUxeEVaT) xou BLOVOUY| YLOL GXOTIO U1 XEEOOGKOTUXOS, EXTIOUDEUTIXAG ) EQELYNTIXNC
puoNg, LTS TNV TEoUndVeor Vo avapépeTal 1) YY) TEOEAEUGTC Xal VoL SloTneeiton To
Tapoy urivuue. Epwtuata mou agopolv tn xeron tne epyaciac yia xepdooxomind
oxond mEEnel var ameLHiVoOVTOL TPOC TOV CUYYEAPEL.

Ou andelc xou T CUUTEPAOUATA TOU TEQLEYOVTOL OE AUTO TO EYYEAUPO EXPEALOLY
TOV cuYYpapEa xou dev TEENEL Vo epunveELVEl TL AVTITEOCKTEVOLY TIC ETIONUES
Béoeig Tou Edvixod Metodfiou IoAuteyvelou.
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Ouv Awdixaociec Anogdoewv Markov (Markov Decision Processes 1, MDP vy
ouvtopin) anotelolY éva and o onpavTxdTepa epyaheio enthuone tpoPAnudtov
anogdoewy und ofefoundtnTa TNV oHUEEOY NUEpa. XENOLLOTOUVTAL XATE xOp0V
oe olUyypOVeES QapUoYES, Wlaitepa o auTES Tou agopoly Evioyutixr Mddnon.
Ye autd, évoc naixtng xohelton vo AdBeL amogdoelc oL onoleg Tpoxaholv YeTaforéc
670 TEPBEANOV TOU eVG eTTAEOV TOL AmodiBoLY Uia avTooBr-xivnTeo, TEoXELUE-
VOU VO HEYLOTOTIOLACEL AUTAY TNV avTaol3r). Avardywe Ye To av o apiduog Twy
ATOPIoERY TOU Xaheltar Vo xdvel o Tpdxtopag elvan Tenepacuévos 1 dnelpog, To
MDP yapoxtneiletar we Henepaouévou 1 Anelpouv Opilovta.

To MDP Ilenepacuévou Opllovta emAéyovTon O ApXETES EPUOUOYES EVOVTL
tou Arnelpou, epdoov avuxatontpilouvy xohdtepa TEOBAAUNTA TOU TEOYUOTIXOV
x6ouou, to onola €€ oplogol xdmote Yo oloxAnpwdolyv, 6mwe ce mpoBAfuoTa
drayelplone mépwyv. Evrolrolg, éva onuavtind npdBinua mou eggaviCouy éyxeiton
oV wviun mou xatohopfBdvel 1 Moo mou urohoyileton, WIiTEPA OE TEPLTTWOELS
6mou 0 aAYOELINOC EXTEAE(TAL OF CUOXEUES TIEPLOPLOUEVKY BUVATOTHTLY LALXOV,
omw¢ xivntd 1 tablets.

Yy mapovoa epyacio mpotelvovton duo véec pédodol mou avtetwnilouv
to meéBAnue uvAung twv MDP Ilenepacuévou Opilovta. Ou pédodor autég
emA€youv va anodnxebouy ot UvAUN €va U€pog TNG AUCTC XL GTY CUVEYELDL VO
YENOWOTOLOUV VTS YLol ERAVUTIONOYLOUS TNG UTOAOLTING, AVAAOYX UE TIC EXACTOTE
avdyxec. H mpdytn, mou ovoudleton Adon Pilag, amoutel onuovtixd Ayoteen
puviun xan oyedov Blo ypdvo extéheone pe v emxpatéotepn pédodo mou
yenowonoteitoan we thpa yio enthuon MDP. H dettepn Aoon (Aoyopuduwd Avon)
amodnxevel axdun wuxpedTepo Uépog tne Alone otn uvApn (oxedov undouved), ue
Lo wxen emPBdpuvon yedvou.

Ta mopondve cuumepdopota, a@od Yepehddnxay mputlotng VYewpntixd,
emPBefoudyinxay o TElpoATIXEG, O HON UTHEYOVTY, TEOCUPUOCUEVO OTIC
avdyxeg, TeXYNTE debopéva mou agopoly Blayelplon TopwY CUCTASWY UTOAO-
YIOTOV, TOGO Yio TOV YeOVo EXTEAEONC TV ohyopiluwy 600 xat YLol TNV Uviun
mou xotahoufdvouy. Emmiéov, ouyxplinxay t6c0 e Ndn undpyovie uetddoug
xS xol Ue TPooEYYLoTXES Yedddoug enlAvong.

H ouvelogopd pog péow authc Tne epyaoiog EYXELTol 010 YEYOVOS TG, UE
NV TEOTACT AUTAV TWV VEwV olyopliuwy, o yenotne mou oflonotel MDP oty
EXAOTOTE EQPUPUOYY| EYEL TNV BuVITOTNTA Vo eTAEEEL TNV Abom-alyderduo mou e&-
unneetel 600 TO BUVATOY KUADTERA TLC AVEYXES TOU, AVIAGYWS UE TO CUGTNUO TOU
OlodéTel.

Téhog, éyive npoondiela PedtioTonolnong Tou ypdvou extéleons Tou Bacixol
enavalnruxol odyopiduou enthuone MDP Arneipou Opilovta (Value Iteration) pe
xenon geaypdtwy dote va ewwdel o ypdvog obyxiione. Evtoltolg, ol mpoond-
Yetec frav avemtuyels, mbavde eloutiog tne epopuoyic mou emhéydnxe yio ali-
ohéyMoM,.

AgZeic-KAedia: MogxoPlovée  Awobixaciec Anogdoewy, Ewioyvti-
) Mddnom, Awyelpion Hépwy, Henepaouévoc Opilovtag, Anepoc Opilovtag,
Xopw| Iloaumhoxdtnta, Xeovixt Ilohumhoxdtnta, Aévtpo Avadixic Avalhtnong






Abstract

Markov Decision Processes (MDPs) are one of the most important statisti-
cal tools utilized towards solving decision problems under uncertain conditions.
They are widely used in modern application, especially those involving the Rein-
forcement Learning framework. In such problems, an agent is required to make
decisions which incur changes to its environment while also granting them a
reward, acting as a motivation. The decisions the agent makes must be chosen
such that the total reward they receive is maximized. Depending on whether
the number of choices the agent makes is finite or infinite, the MDP can be
characterized as having a Finite or Infinite Horizon.

Finite Horizon MDPs are preferred in a variety of application over the In-
finite Horizon ones, as they better simulate real world problems, which must
eventually terminate, such as resource management problems. Nevertheless,
an important issue they present involves the memory the solution occupies on
the system it runs, especially when the algorithm is executed in machines with
limited hardware abilities, such as mobile phones or tablets.

In this work two new MDP-solving methods are introduced dealing with the
memory problems Finite-Horizon MDPs face. Those methods opt for storing in
memory a part of the solution and utilizing it to recalculate every other part of
the solution as needed. The first, known as Root Solution, requires much less
memory and almost the same execution time as the most predominant method
used to solve Finite-Horizon MDPs. The second method, known as Logarithmic
Solution, stores an even smaller, almost non-existent, part of the solution in
memory with a small toll on execution time.

The above results were first and foremost discussed and proven in theory and
validated afterwards using experiments on pre-existing, fit-to-need, simulated
data regarding elastic resource management in cloud computing clusters. Those
experiments involved execution time, memory needs as well as comparisons of
the newly introduced methods with pre-existing ones and approximations. Our
contribution through this thesis lies on the fact that, having suggested those
new algorithms, any user desiring to utilize a FHMDP in their application is
now able to opt for the algorithm that meets their needs as best as possible,
depending on the system the possess.

Finally, an attempt towards optimizing the execution time of the funda-
mental iterative Infinite-Horizon MDP solving algorithm (Value Iteration) was
made. This attempt involved calculating upper and lower bounds of the func-
tion the algorithm is iterating over to greatly reduce the execution time. Despite
the attempt, our efforts did not turn out to be fruitful, probably because of the
application used for evaluation.

Keywords: Markov Decision Processes, Reinforcement Learning, Resource
Management, Infinite Horizon, Finite Horizon, Space Complexity, Time Com-
plexity, Binary Search Tree
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0 Extetapevn EAAnvixr Tlepiindn
0.1 Ewaywyn

H nopoloa Simhwpoatixf] epyaoio aoyohleiton ye v Pehtiwon olydprduwy
enihvone Awduaotdyv Anogdoewy Markov (MDPs) we npog v ywpeixr] Tolu-
mhoxdétnta. Ta MDPs yenowonolobvtan extetapéva oe yia tAndodpo o0y eovwy
EQapUOYWY, Wialtepa epbdoov elvon To Baocxd gpyoleio mou yenowwomoleiton oo
mhalolo g Evioyutinic Mddnong, evog xhddou e Mnyavuaie Mddnone ue
tepdotia annynon. ‘Eva MDP anotekel éva otatiotind yoviéro mou npoomodel
VO LOVTEAOTIOMOEL €Vl TEOPBANHA TOU TEAYUATIXOU XOOUOU.  XE auTo, EVag
TedxTopag xoheitan vor Adfel anogdoelg ol omoie Tou amodidouy avtauoBEg eV
emnEedlouy XaL TNV XATICTACY, TOU CUCTAUATOS, UE OXOTO Vo UEYLO TOTOLAGEL
™V cuvohxr) avtapolB3y) mou Yo GUAREEEL UECL TWV amopdoewy, elte uéypl vo
Tparypatonolfioel boeg ano@doelc €youvv oplotel €€ apync elte uéypl vo @pTdoel
OE Lol TEAXY XOTAOTACN-0TOY0. LNV TN TERInTWoT), E@dcoV 0 apltuds Twy
Brudtwy elvar menepacuévog xan oplopévog ex mpooluiov, to MDP unopel va
yapaxtneiotel we Ilenepacpévou Opllovta. e avtiletn neplntwon, dtav dnhady
0 mpdxTopug elte dev Yvwpllel ex TV MEoTépwy TOV dpliud TWV ATOPACEWY
mou Yo xAnel vo Adfet, elte o apdude autde elvan (powvopevind) dnepoc, to
MDP Sundéter ‘Anepo Optlovta. H povtehonoinon evde olbyypovou npofifuatog
odnyel cuyvd otny dnulovpyla ToAUTAoxwy MDP, ta onola emAbovton dUoxolo
X0 oMot TOOY OEXETOUSC UTOAOYIoTIXOUC Topous. To mpdyuota yivovrton axoun
O BUOUEVH av avahoYLo TEl XaveElS OTL OAO ol TIEPLOCOTERES EQPUPUOYES TPEYOUV
oe QopNTéc CUOXEVES, 6T xNtd 1) tablets, ta omolo drdétouv meploplopéveg
XOVOTNTES amd TAELEAS LALXOU, 6mwe 1 wvAun RAM. Q¢ ex toltou, 1 avdyxn
BeAtioTomoinone twv KON unapyoviwy ahyoplduwy yia v eniluon twv MDP
ebvar mo onuavtxry and noté. H mapoloa epyacio mpotelvel duo véoug ahyo-
plduoug enthuone MDP Ilenepacpévou OpiCovta, ue paydaieg Beltidoec otny
amoUTOUPEVY XaTd TNV extéleot pviAun. O mpdtog €€ autkv amatel tov (Blo
¥eovo extéheone pe v o1 undpyovoa Bértiotn AboT), v o debtepog Sadétel
ENGYLOTEC AMAUTACELS OE UVAUT], HE Wio Uixpn] EMPBAPUVET) GTOV YedVo EXTENEOT.
Axour, éyive mpoomdieia yio BeAtiwon tou ypdvou extéleong Tou akyoplduou
Value Iteration mou yenowonoieiton xatd x6pov oe eappoyéc MDP Amneipou
OplCovta, ywpic dpwe to anotehéouato vor elvol To AVUUEVOUEVOL.



0.2 Oceswpntxd YroBadpeo

INo xahOTepn xotavénor Twv BeATOoENY TV alyopituwy Tou tpoteivovton oTny
Evétnra 0.4, anawtelton Yewpnuiny YepyeMworn twv evvoldyv twv Markov Decision
Processes, xa0¢¢ xou v odyoplduwy mou yenoiuonolodyvTol yio ETiAUcT auTOY.

0.2.1 Markov Decision Processes

Onwe 70N avagépdnxe oty Ewoaywyr), uo Awdwoscia Anégacenv Markov
(Markov Decision Process ¥ MDP) eivou éva otatiouxd poviého mou yenot-
pomoteiton ylol HovTeEAOTOo EVOC TEOBANUATOS TOU TEAYHATIXOU XOGUOU GTO
omnolo évog mpdxtopas (agent) oAAnhemidpd Ue to MEPBAAAOV TOU, 1) CUUTERLPOPS
Tou omnolou elvon pn vieteppviotixr. H oddnkenidpooyn auth ouvyPolvel ye tnv
Hop®Y| amopdoewy Tou TedxTopa xaL exTéAecT) dpdoewv, ol omoleg emnpéalouv
Y xatdo ooy Tou cucThuatog. Kdbe tétoia andgacy houBdver ywea ot pla
OSLYXEXPWEVY Ypovix| oTiyun, 1 omola ovopdleton enoyy andgoone (decision
epoch). Autéc oi ypovixée oTiypés umopolv va ebvan Soxprtés ¥ ouveyels. Lta
mhalota auThC Tne epyaoioug Yo eoTidoouue oe Blaxpitéc enoyéc andgaonc. To
cUVORo Tou TEpLEYEL OAEC TIC eMOYEC andpoone ouuBorileton wg H. Avoldyng e
To av To TAYoC TV oTolyelwy auTodh Tou cUVOLOUL Elvor TETEPACUEVO 1| ATELRO,
o MDP yapoxtnpiletor we¢ Menepaopévou Opilovta (Finite-Horizon) ¥ ‘Areipou
Op{Covta (Infinite-Horizon) avtictouya.

Ye udie enoyr) andpaong, o npdxtopoc BeloxeTton OE Uio XOTAC TAGT) TOV GUGTY-
patog, éotw s. To olvolo 1o onolo TepLéyel GAeC TIC XATAC TAGELS TOU GUG THUATOS
oupPohiCetan ye S. Xe xdde wo € autodv, o mpdxTtopas Unopel vor eTAEEEL xou Vol
exteréoel Wia Opdiom and €vo cLYXEXPIEVO GUVOAO Bpdoewy Tou elvon Blodéaiues
oTNV eXdoTOTE XATdo Toon. To cUVoRo BuVITHOY dpdoEwY UG XATACTAONG S CLU-
Bohiletan pe A(s). Enlong, ue A oupPBoliletar to oUvoro to onolo mepLéyet dheg

Tic mbavéc Spdoeic Tou Tpdxtopa o xdde xatdotacy, dnhadh A = |J A(s).
ses
Emiéyovtoc xon exTer®dVTOS plo 8pdor, o medxtopas AopuBdvel wia avtopolBy,

7 omola elvon évog Poduwtoe aprdpde (Vetinde, apvntinds f undév), Tou TEoXUTTEL
and TNy mpaypotixr) cuvdptnon R(s, a) mou yopaxtneilet to MDP. Ev cuveyela,
o mpdxtopac YeToolvel oe Wia VEO XATAC TUON UE U] VIETEQUIVIG TXO TpoTo. Autd
ocupPaivel BIOTL oe xdde xatdoTaon s xan yio xdde emheypévn dpdon a, o mEdx-
Topog €yel mdavétnta p(jls, a) va petagpepdel oty xatdotaon j. Opiloupe v
ouvdptnon T'(s,a,j) n onola wolta ye p(jls,a). Ta o ouyxexpévn xatdo-
Toon s xou dpdon a, oheg ol mbavdtnteg petdPoong adpoilouv oty vovdda. H
ouvdptnon uetdBoone T galveton 6Tt Sev €xel uvAur and Tov TpoTo oL oploTNXE,
dnhadt) 1 enduevn xatdotaon otny omolo Bo uetofel o npdxtopag e€aptdTon U6Vo
and TNV Tpéyouca XuTdoTAc) oTNV onola Pploxétal xS XaL TNV EMAEYUEVT
dpdon.

‘Eyovtac oploel ta mapamdve peyédn, umopolue vo oplcOuUE QopuUaiLo-
Td o Awduacio Anogdoswy Markov wg Ty GUAROYH TWV AVTIXEWEVWY
{H,S,A,T,R}.



0.2.2 EmAibovtag to MDP

Baowd xivntpeo yio tov mpdxtopo evoc MDP 6nwe autd meplypd@tnxe Topamdve
elvon 1 yeyiotomoinon tne cuvohuic avtouoBric mou Yo AdBel uéoo amd dheg
Tic anogdoelc tou. Av cuuBolicouue ye T v televtala emoyr| andgoons (n
onola 6NV TepinTwon Tov Aneipou Opilovta tooltan pe dnelpo), TOTE 1 cUVONXT
avtapgol3n mou Yo Adfel o mpdxTopag UETE TNV emoyT andguong t elvaw: Gy =
Zz‘T:t-s-l ;.

Ye nepintddoelg ‘Aneipou Optlovta, dmou o dve bplo tne ddpolone anetp(le-
Taw, 1) oelpd amoxhivel, Tpdypa To onolo Onwe Yo BodUE GTNY ENOUEVY) UTOEVOTNTA
xahotd v enihuon adlvary. Ilpoxeiuévou vo avTiueTwmo el auTtéd To TEOBANU,
elodyeTol évae TopdyovTag Exntwone 7y oto ddpoloua, Ue oxomd vo eE0oPahi-
oet Ty alyxhon. H véa cuvohuxry avtopor pe éxntwon woovton ye: Gy =

T i ’ ’ Z Z ’
Yoico V' Ritey1 H oOyxhon eivon eoopahiopévn yio tipés tou v uetadd 0 xou 1.

H 7 tou 7y ennpedler Ty Bopbtnta mou anodidel o TpdxTopas oIS avTalolBEC.
Av o nopdyovtog éxtnmong evon undév 1 xovtd oto undéyv, o mpdxtopoc Yewpel
ONUAVTIXOTERES TIC QUECES avTopolBES, apol O TopdyovTag Tou Tolhanioctdle-
Ton pe xqde yehhovter) avtopolBy) efvar 6ho xou mo xovtd oto pndév. Avtiveta,
av 1 TR Tou ¥ TElVEL TNV Yovdda, o medxTopas divel TepdoTio BopdTnTo OTIC
peAhovTIXES avTapolBEC.

Ytdyoc¢ tou mpdxtopa etvar vor avaxoAber T BENTIoTn Spdiom Yo xdde xatdo-
Taom otny onola unopel va Peedel, ue oxond v yeylotonoinon TwV avTopoBHY
tou. Opilovtag we mohTix plor avTioTolylon YETOE) TWV XATAOTACEWY XAl Ti-
PavothTwy emAoyhc pia Bpdone a amd v xdde XATAGTAOT, UTOPOVUUE VoL OlVO-
dlaTunooLUE TOV 0T6Y0 Tou TEdxTopa Aéyovtac 6Tt mpoomodel vo avaxollpel
Vv Bértiotn nohtuer. H T tng moltixic m ylar plat 8pdon @ oE ULol XATdo oo
s oupPorileta we w(als).

IMpoxewwévou vo cuVBEAUOLYE TOV TEAXTOEA GTNY SLadixacio TWY ATOPICEDY
Tov, opilouue éva xpithplo Yia auToy Ue Bdon to omolo Vo pnopel vo xatovoel
660 weENpo 1 6yt elvon va Bpedel oe xdde xatdotoon. Xuyxexpuyéva, opiloupe
¢ ouvdptnon ofiog xdie xatdoTtaong Sedouévne TOMTXAC T 6G:

Vﬂ—(S) = Eﬂ[Gt|St = S] = }Eﬂ- [Z’yiRi+t+1
=0

St:S:|

H ouyxexpiévn cuvdptnon xat’ oustay exppedlel TNV EXTUOUEVT GUVORXTY avTa-
polBn) mouv Yo AdBel 0 mpdxTopaC EEXVMVTUG Ond TNV XATACTACT § X0l OXONOU-
Vdvtag v mohtix . Opllouue enlong xou v cuvdptnon Spdomng-aglag yior yiot
CUYXEXPWEVY) XATAC TUOY), BEdoT Kol TOALTLXY WG

Qﬂ'(sva) = En[Gt|St =54 = a] =E, {ZVZRHtH
i=0

S’t:s,At:a]

Ot mopomdive cuvapTAOELS ETLTEETOUY TNV 00YXELOT KETAED TOATIXOY WS eENG: Wi
ol 7 elvon Bellotdtepn 1 to (Blo BéEATIoT) piog ToMTXAC T oy 1 cuvdpTNoT,
ofiog tne T elvon yeyohUtepn 1 ton and v avtictoryn tne 7’ ot xdde xatdotaon



5. "Eva MDP unopel va €yet mapoamdve tng wag Bértioteg ntoltixés. H ouvdptnon
aglag autay elvon: V*(s) = max e p(m) Vr(s), 61ou P(m) to chvolo tou nepLéyet
OAheC TIC TOATIXES Yo €va ouyxexpiévo MDP m.

Mrogel vo amodelydel 6TL 1) cuvdptnom aglos Tov 0ploTNXE TAEATAVE LXAVOTOLE!
v e€hg avadpouxy| oyéaon, 1 onola xou ovopdletan E&lowon Bellman:

Ve(s) = Z m(als) Zp(s’, rls,a)(r + vV (s"))
a r,s’

Kat'ouoiav, 1 ouvdptnon ofiac pog xatdotaons »¢ Teog Wa CUYXEXPLUEVN
TOMTIX T TEOXVTTEL WE 1) EXTWWUEVT THY TN dueong avTopol3rc mou Yo AdfBetl o
TEAXTOPAS GTO EMOUEVO PR GUY TNV EXTHIWHEVY avTopolBt) tou Yo AdBel o mpdx-
Topag EEXVOVTOC and TNV EMOUEVYN XATdoTooT oty onola Yo yetofel, axolou-
Yodvtoe Ty tohtxdy . H Béhniotn ouvdptnon aliac (Snhadh auth mou avtio-
Touxel oty Béhtiotn mohtxn) elvon exelvn mou peyiotonoteiton oe xdde xatdo-
TaoT, Onhady:

Va(s) = max 3" p(s',rls,a)(r +1Va(s')

Avty n elowon eivan yvwoti we E&loworn Bektiotétnrog Bellman.
Arnodewvieton bt yia nenepacyuévo MDP, dniad MDP pe nenepacuévo aptdud
XATAOTACEWY xou Bpdoewy (xat oyt anopaitnta nenepacuévo opllovta), 1 EZlowon
Behuotétntag Bellman €yel yovaduer Ao, epocov xplfel uéoa tng éva 0ot
600V eEIOMOOEWY OCEC XAl Ol XATUC TACELS TOL cuoTAaTog. Evtoltolg, 1 Abon
aUTOU TOL LS THUTOC deV elvan TdvToTe amA) undleot), agol TEEREL Vo Loy bouY
Teelc Vepehddelc mpobnodéoeic:

o No yvwplloupe Ghec TIC TOROUETPOUC TOU CUOTAUATOS EX TWV TEOTEQWV.

o No dldétouye TIC amopodTNTES TEOBLAYPAUPES UTOAOYLOTIXDV TOPWY %Ol
uvAung v va emhuidel 1o oOoTNUN OE PEXMOTIXG YEOVO oL UE PEOMCTIXN

PVAUT.

o No woyler  Mapxofiav Bi6tnta oto obotnuo (loyver €€ oplopol av
uropole Vo xataoxeudoovye MDP)

H mpdtn xau 1 tpltn mpobndleon apxetd cuyvd toybouy, To TEdYUITd OUWS
dev elvan €ToL xan yior Ty Sevtepn), agol elvan oux ohiyeg ol @opéc mou éva MDP
(oS o oyeTd wixpol yeyédoug) ypeldletar U pealoTixd Ypovo H Uvhun Yo
vor emhuet.

Ipoxewévou vo Audel 1 E€lowon Bedtiotétnrag Bellman oxdun xon tav dev
Loy Vel ) devtepn npobndieon, emotpoatebovion TpoceyyloTixéc pédodol, ue xpta
tov Auvvopixé Ilpoypoppationsd.  Av woyler n mpdtn %ot 1 ity mpolnddeon,
unopel xavelc va unoloyioel Ty cuvdptnom afiog Yo Uit CUYXEXPWEVY TOATIXT
7 yenowonowdvtog Ty E¢lowon Bellman wg avadpouuxy e€iowon we:

Vi(s) = Zw(a|s) Zp(s’7 rls,a)(r +vVi—1(s"))

a r,s’



H ouyxexpwévn avadpouixy) e€lowor, apol cuyxhiivel, Ya éyel utoloyicel Ty
ouvdpTnon agiog Yior o CUYXEXEWUEVY) TOALTIXY, Ywelc OUWS Vo UTdpyEL EYYUNoT
6Tl oty ewvan BEATIOTN. Oa unopoloe xavélg vo emavordfBel auth TN Sladuxaoia
yio Lot GAAT TOMTIXH Xl OTNY GUVEYELDL VAL TNV CUYXELVEL UE AUTHY TTOU UTOAGYLOE
vopltepa, xpot@vTag tTeEAxd Ty mo Bértiotn. ‘Emeita, 7 Swdixacia propel vo
enavokngUel yia dheg Tic toltxég Tou MDP. Auth 1 Mon ovoudleton Extiunon
Montixhe ( TpdPBredn Mohtxic) xou 6mwe yivetow cogpée dev eivon Wuaitepa
anodotx) ool eivan e€avtintny]. Iapdha avtd, 1 Extiunon Ilohitixrc elvon éva
onpavtixd gpyadelo Yo ToV LTOAOYLOUS NG ocuvdptnone adiog uag TolTC.
Ynuedveton 0Tt Yo EAeY Y0 cUYXAoNS Ypnotronoelton 1 U€yLotn Slopopd petald
Tohatdic xou VEog TG ouvdptnong adlog Yo pla xatdoTao, Ue Tov olyderduo va
teppatilel av auty elvon pxpdtepr and Eva EMAEYUEVO XATWOPAL.

Mo axdun Aoor nepihopBaver TNy avtolhoy ) Spdoewy PLog TOMTIXAS oV duTo
empépel Behtiotonoinon avthc. Me dAho Aoy, xortdlovtoc xdde xatdotaony,
TEOoTOOUUE Vo BLamoTOCOVUE av oAAdLovTog Ty 1HON emheyuévn dpdon pe pia
GAAn n ouvdptnom oflag BEATIOVETOL KoL oV Vo EXTEAOUPE TNV ovtolhoyy). Autd
unopel va exppaotel wC AMANCTO Xpltrhplo péow Tng e&lowone LTohoYLopol TG
véag, BEATIOTOTERNC TONTIXAG WE:

7'(s) = argmax Q. (s,a) = argmapr(s’, rls,a)(r +Vx(s"))

r,s’

. H pédodog ye v onola plar mohitixt| petatpéneton oe plar BeATiototepT) ovoudle-
T Bedtlwon ITodtidc.  Auty elvon xou 1 Bdon yia Tov TpidTo TEOCEYYIoTIXO
ohyoprdpo mou ovopdletoan Enavddndn we mpog v ol (Policy Iteration).
Hexwvavtag and wia tuyado, apyxr toltixy, egapudélovue v Extiunon Hoktuic
Yior UTOAOYIOoUO TN ouvdptnong adioc. Eneita, emdidnovye Behtivwon HHohtuic.
Av 1 mohtix) mpdrypatt oANEEeL, emavoloudvoupe To mponyoluevo Brua Eovd,
oAg 0 ahyopripog tepuatilel xou emoTeepetal 1) BEATIOTY, TAéOV, TOATIXY.

H ropandve yédodog, av xar Aettovpyixn, dev elvar Wloltepa anodotixy oty
med&r), e€outloc tne exteTauévng yerone e Extiunong Hohuxrc. H Sedtepn
X0l O AmoB0TIXY TPOCEYYLOTXY AOOT), TPOXUTTEL oV ETUAEEOUIE VoL EXTEAECOUYE
povo wor erovaingmn e Extiunone Hohitue ) @opd, eved omodewcvietan ot
oev mapaBidalovton o ouvifxeg olyxhong. Katoutiv tnv Aoy, n avadpopixt
ouvdptnon Bellman yetatpéneton oe:

Vi(s) = maaXZp(s', rls,a)(r +yVi—1(s"))

r,s’

Q¢ cuVIAXN TEPUATIONOU NG AVUBPOUNE YPNOLWOTOEITOL Xl TEAL 1 UEYLOTN
Bapopd cuvdptnone adiog Twv xataotdoewy. O ohydprdpoc autde, Tov ovopdle-
tou Enoavddndm w¢ npog v A&ia (Value Iteration), mapovoidletar avolutind oe
eudoxddixa otov Alyoprduo 1



Algorithm 1 Enavdindn ¢ npoc v A&la

1: function VALUEITERATION(®)

2 Initialize Vipp(s), Vausz(s), Q(s,a) and w(s) (arbitrarily)
3 0 o0

4: while § > 6 do

5: 0«0

6 for s € S do

7 for a € A(s) do

8 Q(s,a) «+ 0

9: for s’ € S(s) do

10: Q(s,a) < Q(s,a) +T(s,a,s)(R(s,a,s") + Vimp(s))
11: end for

12: end for

13: Vauz (8)  max, Q(s, a)

14: 7(s) = argmax, Q(s, a)

15: end for

16: V;&mp — Vauz

17: end while

18: return V and 7

19: end function

Me S(s) cupfolileton T0 UTOGUVORO TWV XATAGTAGEWY TOU GUC THLATOS TOL Ef-
vau tpooBdotua and Ty xotdoTtac s. LNy neplntwon nov o opilovtag tou MDP
elvon yvwotdg xau menepacpévog, 1 dladiacio emovalauBdveton yi tdéoa Briwarta
660 xou o péyedoc Tou opilovia, dev yenowonoteiton (amapalTnTo) o ToEdYOVTUC
EXTTWONG 7Y, EVO elvon amapaftnTo vor amodnxeutel oTr YUVAUN 1 TOATIXY TOU UT-
ohoyiletan oe xdde Bripo Tou odyopiduou (un otdoun Tohtixy).

0.2.3 Ofwenpa Turnpike

Yuyvé n enihuon MDP Ilenepaouévouv Opillovta pmopel va anodelytel toAbmhoxn
oxOUN XAl PE TIC ToEATAvVe PEATIOTOTOCELS, EQocoY e€dptdtal and To uéyedog
tou opllovta N. Avtideta, oe nepintddoelg Anelpou Opllovta ol cuviixeg elvon
COPOC TO OPAAES, Aol 1 olyxAloT unopel vo emitevydel TOAD yenyopdtepa and
6,1 oe éva avtiotolyo MDP Ilenepaocuévou Opilovta.

H "petatpony” evoc MDP Ilenepacpévou Opllovta oe Anelpou elvan emitedé-
), XenollonoldvTag éva Yewpnua nou ovoudletoar Oedenuo Turnpike. Xoupova
ue awtd, oe xdde MDP Ilenepaouévou Opllovta xou yio xdde Tiun Tou nopdyovia
EXTTOONG 7Y, UTEpYEL évag aplduds evamopewdvtwy Bnudtov N*(7y), yvwotoc e
Axéparoc Turnpike, éw¢ xow Tov onolov 1 oAty tou unohoy(letan elvon otdoun
XL TEOXUTTEL eXTEAOVTOC Tov olyoprduo enihuong ‘Ameipou Opilovta. Xpnot-
pomolvTos auté To yeyovoe, eva MDP Ilenepaouévou Opilovta Yo ynopovoe va
emhudel we e€hc: unohoylletan 1 moAiTiny) cav o opllovtac vo ftav dnelpog xou
yenowonoteiton yior vo Angdolv anogdoeic and oprdud Prdtov N (uéyedoc opi-
Lovta) €mc xouw N*(7y). ‘Encita, to MDP avtpetwniletu we MDP Ilenepaouévou



Opilovta, pe yéyedoc opilovta N*(y) —1 ondte o yYpnotlomoleltan tia XAaooix)
Aoom. H Suoxola autol Tou ahyoplduou €yxeltal 0To YEYOVOS WS BEV UTHPYEL
cagpic TeéTog éupeong Tou Axepaiou Turnpike.

0.3 Mia Ynueiworn yie tnv Beltiotonoinorn ‘Ancsipou
Opilovta

Iopatnerdnxe ot undpyel meprdnplo Bedtiwong otov ypdvo emlhuone tou oh-
yopiduou Enavidndne we npoc v AZla (Value Iteration), npoonaddvtac va
(pEAEoLUE TNY cLVAETNOT dpdomng-a&iag X XATAUTOV TOV TPOTO VO ATOXAELG TOUY
dpdoelg oL onoleg eyyunuéva dev odnyoly oe Béhtiotn Aoon. Xuyxexpiuéva, ta
Gvey xa xETW PedyUaTo TNE cUVEETNONG dpdorc-atiog utoloyloTnxay oe:

Q*(s,a) < maxr +ymax V*(s”) = Qu(s,a)
s’',r s’

Q*(s,0) > minr +ymin V*(s") = Qi(s,a)

Apyxd Brua Ttou alyopituou elvor 0 UTOAOYLOUOC AUTGY TOV GV ol XETw
oplwv. Autd guoxd mpaypatomoleiton agol €youv Teé€el oplouéveg enavahiidelg
tou Value Iteration, ®ote 1 ouvdptnon ofiag va éyer 1dn Cexwnhoer va ouyx-
Avel.  Emmiéov, vrmoroyileton yio xde xotdotacn to U€YIoTo *dTw Qpdyia
TV ouvVdpTHoELY dpdonc-adlagc tne. Téhog, yia xdlde xatdotaon xan v xdde
Bpdom, av To Qv Pedypa TS cuvdptnone dpdonc-ofiug autod Tou cuvduao-
pol xatdotaonc-adioc elval UixpdTERO omd TO PEYLOTO XATW QPEAYU TG XoTdo-
TaoNG, 1) Opdon dlaypdpetal epoOcoV dev unopel eyyunuéva vo o0dnyrioel ot BEATIOTO
AMOTENEGHAL.

Iapohn v Yewenunr deyehiwon, 1 nelpopatin) o&loAOYNON TWV AmoTE-
Aeopdtwy Bev amédwoe %aupmoUS, YE TOUS YPOVOUC ToU oNuelddnxay vo efvol
YeoTERPOL 1 (ool e autolg Ywelc TNV eQaproYn Twv eayudtwy. Evac mdovog
Aovog etvon o wxpde apldude Suvatev dpdoewy oe xdde xatdoTooy, 6mwg Vo
dobue oty Evotnta 0.5, nou elye e anotéheoyo va uny anoxAelovto dpdoeic.

Ynuetdveton 6Tl 6To TaPeAYOV €youv mpotadel apxetd povtéha mou yenol-
pomoloty Ty 18€a ppdine e ouvdptnone o&lag, 6mwe gaiveton oto [Mac67],
[SBT79], [Whi82] and [DWGT11].

0.4 Ocswpentxy Ocsuciinvon Behtiotonoinong Ilenepao-
wévou OpilovTa

0.4.1 'H8rm Yrdpyouvoec Aloelg

‘Onwe 1dn avagépdnre oty Ewoaywy?, ol Adn undpyouvoec Aoelg Twv mpof-
Anudtwv MDP Ienepaocuévou OpiCovta emdéyovton onuovixhic Bedtinong otig
anouthoelg oe pviAun. o va xatavondel mou €yxeiton to medPBinuo uviung, Yo
avagepdolue apyixd oe duo Ho1 undpyovoeg uedodoug enthuong MDP Ilenegoo-
uévou Opilovta. H mpdtn €€ autdyv ota mhaiota autrc tng epyaoio anoxaheiton
Agelvic Adon (Naive Solution), agol elvon 1 npdTtn Aot TOL €pyETAL GTOV VOU,
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Baolouévn oty yédodo Value Iteration mou yenoiwomoteiton Bdn yia Tov Anelpo
Opilovta. Auth 1 Moon vrohoyiler xdde mivaa tohtinic (xou cuvdptnone oiog)
yio xdde oprdud Brudtwy Tou amopévouy, YeMNoULoTolOVTaS xdle Qopd Tov Tpo-
NYOUUEVO Ylol VO UTOAOY(OEL TOV EMOUEVO, %ot AmoUNXELOVTAC Toug GAouC OTH
uviAn. Do xdde andpoon mou hauBdver o medxtopag, 0 Tivaxdg TOMTIXAC TOU
avtiotolyel otov apriud Brudtwy mou Tou anopévouy avaclpeTol and TNV Uviun
xal ool yenotwonoindel oty cuvéyela SorypdpeTo.

'Onwg elvon Quoixd, 0 cLYAEXPWEVOC ahYORLILOC EXYEL YEOVIXT] TOAUTAOXOTNTA
avdhoyn Tou peyédoug Ttou opllovta Y otadepd opiiUd HUTUGTACEWY XoL
dpdoewy, apol extehel tooeg emavolfelc 6co xa to péyedog Tou opilovto.
H xdde wo €€ avtdv ebvon mohumhoxdtntae O(|S|?A[), onbte ocuvolxd 7
rohumhoxdtne mou mpoxntel ebvor 1 O(N|S|2|A]). H ywewd mohumhoxdtna
andé v dAAn elvon eniong ypouuix ¢ mpog to uéyetdog tou opllovta, Aol
anoUnxedeton €vag mivoxac peyédoug doeg xal oL xatacTdoels v xdde optdud
EVOTOPEWVAVTWY Brudtwy, xou utohoyileton oe O(N|S]).

Mo 8eltepn oxédn ue oxond tny peinon tTng ywetxig toAuthoxdtnrog Yo Aoy
vou unv amotdnxeteton xavévag mivoxag TolTixAg ot uviun xou vo utoloyilovton
6hot 6mote autod elvon anopaitnto. Auth efvon xou 1 Abon In-Place, obugpwva pe
Vv omola, oe xde aprdud Prudtev, o mpdxtopas unoroyilel TRV TOATIX TOU
avtioTolyel o aUTOV, Ywele Vo anoUnNxeleEl XAVEVO EVOLGUECO AMOTEAECUA, TNV
YENOWOTOLEL Y10l Vo AEPBEL TNV omOQPooT), Xol EMELTA TEOYWEE GTNV ENOUEVT.

‘Onee xadiotaton cagée, 1 ywewxr TohuthoxdTnTa autol Tou adyoplduou etval
O(]5]), apol to Told 3 ivaxee elvar anodnxeupévol oTn LvAUN avd Tdoo oTIYUR,
xou evTeADdS aveZdptntn tou ueyédoug tou opilovta. To peydho mpdBinua oautic
NG TPOGEYYLONG, WOTOCO, EYXELTOL GTOV AMOUUTOUUEVO YEOVO EXTEAEONC. XUY-
XEXPWEVA, aUTOG ElVOl TETROYWVIXOS wE Tpog To péyedog Tou opllovta, apod Yo
x&de apriuéd evamopevdviwy Prpdtov K onoutodviar O(K|S|?|A|) mpdec, eved
o K xupoatveton and N €wc 1.

0.4.2 TIIpooceyyiotixéeg Aboelg

Kot tnv yerétn twv pedédwy enthuong MDP Ilenepacuévou Optlovrta ehéyydnxe
1 am6d0o XU SUO TEOGEYYLOTXOY MioewY, ol onoleg Bucilovtal oto Bedpnua
Turnpike mou mepieypdpnxe oty evotnra 0.2, Xodugpova ye outd, yio optdud
Brudtwy peyahitepo and évay axépoto ng 1 ToATXY yiveton ototiny avedapThTng
TV Budtev AauBdvovtoc utddly To Topandve, Yo uropoloe xavelc va loyvpLoTel
OTL W Yewpntiny anodotixy wédodoc yio Ty enthuor evog MDP llenepocuévou
Ogilovta Yo Aoy va unohoytoTel gl otatin) ToATxs, oo o opilovtac va Aoy
dmelpog, va yenotponowndel autr and to evamoueivavta Briwata N éwg tov axépoto
Turnpike ng xou éneita yia to emouevo N — ng Vo UTohOYLOTEL Lol EEywploTh
oAty Y xdde Brya xatd ta yvwotd. . H duoxohlo wotdoo éyxeitar otny
gbpeom autoL Tou axepaiou ng. o Tov Adyo autd, ot Buo tpoceyyloTxés pédodol
mou e&etdoape LodETouv OTL Yo ueYdAeS TuéC Tou opilovta (UeYohUTEpES TLV
200 Prudrov) autds o axéponog Vo Exel OYETIE YOUUNAT TR, X0t WS EX TOVTOU 1|
{BLor mohiTiny) unopel va yenotwomoiniel xou yior o teheutalo frigata ywelc yeydieg
anmheleg axpifetag.
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H npdtn pédodoc mou amoxorolue Ipocéyyion tou Amepou Opilovta (4
amhoe Ipooéyyion v cuvtopio) extehel tov odyopripo Value Iteration xotd
T YVwo & xou broloyiler pa otatn Toltxr) Yewphvtas 6Tl o opilovtag eivon
dreipog. ‘Emeita, auth 1 mohtixn yenowomnoteltan yior xde BAuoa. Xnuoocio o
oty TNV pédodo €xel xou 1) ETAOYT TOU TUPAYOVTU EXTTWONS Y, 0poL ennpedlel
To Bdpoc mou divel o mpdxtopac oe yelhoviixéc anogdoelc tou. ‘Oco UixpbdTepo
TO Y, 1600 UeYAAUTERO Bdpog diveTon oe dUECES ATOPATELS, OTOTE UIXEES TWES TOU
v gEunnpeToly TepLoabTeEpo Uixpolc opilovies, v avtideta 600 peyolltepoc 0
op{lovtog 1660 ®UAUTERO ATOTENECUOTO AVOUEVOUPE Yol TUES TOU Y XOVTE OTNV
povada. H molumhoxdtnta awthc tng pedddou eivar 601 xou auTh EVOS XAAGOLXOV
ahyopidpou emihuone MDP ‘Ancipou Opilovia, dnhadh O(|S|?|A]), evedr ywewd
etvan {BLor pe tou In-Place.

H 8eltepn uédodog unoroyilel xatd Ta YVWOOTA TNV TOATIXY TOU OVTLO TOLYEL
oe evanopelvovto aptiud Prpdtwy N, écoc dnradh xou o opilovtog, xou yenot-
pomotel auToV Yot vor AdBeL OAec TiC anogdoels. Autéd avouévetar vo BMOEL ap-
%ETE xohd amoTeAéopaTo Yot UeYdheS TS opilovta, agol eivon okl mdavd o
axéponog Turnpike vo eunepiéyeton otov opllovta, doo uixpdtepn ebvar 1 Tuh
oUW T600 avopévouue va téoel 1 anddoor. H ypovir) molumhoxdtnta extiddton
oe O(N|S[2|A])) evéy n ywewt etvon (Bio pe tou In-Place.

0.4.3 Avonm Pilac

O Mooeg mou mpotelvovton yia Uelwon tng ywetxnrc tolurmhoxdtnrog ywelc tny
TepdoTia ypovixy emPdpuvon tne In-Place Mong xan ywplc tnv anodieta axpiBetog
TOV BLO TEOCEYYIoTXWOY Aoewy oTnellovTal oty toopponio petald e Ageloie
Abone xon tne In-Place Adorg.

H npcdytn €€ autidv ovoudleton Abon Pilac. Xougwvo ue authy, xatd Tov UToh-
0YLoUS TOU TEMTOU Tivoxa TOMTIXAS, aUTOL dnhadT] ue deixtn 660 %o 1o péyedog
Tou op{lovta, anodnxedoval O(\/Jv) ax6un nivaxeg ouvdptnong aglog, autol Twy
onolwy ot deixteg elvon mohhamAdota e eiloag tou peyédouc tou opllovta. O
xdde vmoloyiopde ETOUEVOL Tivao EEXVE amd TOV AMOVNXEVUEVO THVOXA UE TOV
ueyohUtepo deixtn avtl and tnv apyh. Emniéov, o xdde ddotnua pixoue VN,
™V TeKOTN @opd mou umoloyiletan o mivaxag tou omolou o deixtng avtioTouyel
070 T€A0G TOU Bl THUATOC amoUnxedovTol xaL 6A0L Ol EVOLAHETOL, ueE emPBdpuvon
O(V'N) axdun nivaxec cuvdptnong o&iog we tpog ) wviun. H ouyxexpiuévn Mo
napouctdletar oe Peudoxddixa otov Alydplduo 2. Enueuwdvetar 6Tl 1 cLUVEETNON
calculateV alues mou avagépeton uTOhoYILEL XL ETLOTEEPEL TOV TVAXA TOU AVTLO-
Totyel oTov delxtn Tou TEDTOL oplopatog, EextvavTac and Tov Tivoxa Tou diveTton
o< TpLto dptopo (Ue delxtn tov apldud mou diveton we dedtepo dptopa). Emmiéoy,
av to Tétapto Oplopa teVel oe true, anoVnxebovion 6ot oL evOldUEcoL Tivaxe
cuvdptnong a&lac mou unoloyilovta.
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Algorithm 2 Abon Pilog

1: procedure ROOTSOLUTION(N)

2: V « zeros(N)

3 steps = N

4: for i = 0 to N step [V/N]| do

5: calculateValues(i + |V'N|,i,V, false)

6: end for

7 if indexStack.top() < N then

8 calculateValues(N,indexStack.top(), valueStack.top(), true)
9: end if
10: while steps > 0 do

11: if indexStack.empty() then

12: caleulateValues(steps, 0, zeros(N), false)

13: else if ((steps + 1)mod|vV/N|) == 0 then

14: calculateValues(steps, indexStack.top(), valueStack.top(), true)
15: end if

16: V <« valueStack.top()

17: chosenAction = calculate Best Action(V [currentState)])

18: takeAction(chosenAction)

19: steps = steps — 1
20: end while

21: end procedure

H Moon auth anodewevieton 61t éxel ypovixh tolumhoxdtnta O(N|[S[2|Al), B
dInhady| (aovunteotxd) ye autiv e Agerois Aborg, epdoov anodnxedovral xat
oL evdldpecol mivaxee oe xdde didotnua pixouc VN. Ané Tty G, 1 yeew
rohumhox6tnta eivor e TéEne Tou O(VN|S|), agod avd ndou oTiyus oty uvhun
Beloxovtor anodnxeupévol 2v/ N rivaxec phxouc |S|.

0.4.4 AoyoptOuixrn Adon

H deltepn AOon mou mpotelvouue EMyElRel VoL UELOOEL axdun TEPLOCOTERO TNV
YX0EW TOAUTAOXOTNTA, UE Wt lxet| Yeovixn emfBdpouvon. H Aoon aut, mou
ovoudletar Aoyaptdu Abor, axohoudel Ty Aoy e Avadxric Avalitnone
yio va anogacioel molot nivaxeg cuvdptnong aglag Vo anodnxeutody ot pvhAun.
I va utohoyiocouue évav mivaxa ye delxtn target apywxd duo deixteg I, r op-
yomololvtar oe 0 xoau N avtiotorya. O eixtng k mou unodewxviel tov mivoxa
mou e€etdloupe xdde Qopd Eexvd and to HTT, OANOC amd ToV UEYOAUTERO BelnTn
NnoN anovnxeupévou mivaxo ot pviun. Eneita Slaxplvouye TpelC TEQITTOOELS:

o Av o delxtng k ebvar o Znrtoluevog, unohoyllovpe Tty ocuvdptnom
o&lag Tou ywplc va amodnxebouue xavéva evildueco anotéheoyo. Eneita,
emoTEéPETOL AUTY 1) cLVETNOT a&lag.

o Av o Seixtng k ebvor pixpodteEpog and autév mou Pdyvouue, o mivoxog
ouvdptnone aflac mou avtoTtolyel otov delxtn k urmoloyileton xou amo-
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Onpedeton otn uviun. ‘Emeita, o delxtne [ nafpvel ty tud k + 1, o delxtng

r dev ahhdlet, eved o Belxtng k unoloyiletan Eavd we HTT ‘Emeita, epbdoov

I <7 n Swdicaoto emavohauBdveta €wg wtou Peedel o k.

o Av o deixtng k elvar peyoahUtepog and autédy mou Pdyvoupe, o delxtng =

nadpvel Ty T k—1, o delxtne I dev ahhdlet, evdd o delxtne k uroloy{letan

Eavd e HTT ‘Eneita, epocov | < r n daduacio enavolopfdvetar €wg Tou
Beedel o k.

Egbcov oe xdlde avalAtnon xar unoloylopd mivaxo TpoyHoTOTOLE(ToL ot
Avodixr; Avalhtnon, to mold logy(N) mivaxee Yo edeyydolv (xou dpa {owe
anodnxevdolv oty pviun). Evoc Swgpopetinde tpdmoc ontxonolnong tou
ahyoplduou unopel vo emtevydel av oxegptolue éva vonté 8évdpo Buadixnic
avalhnong, Tou onolou xdde eninedo elvar yYeudto extdc lowe and To teEheuTalo.
To 8évdpo autd mepLEyel GAouc Toug BEIXTES TWVY TUVAXWY cuVpTNnoNe adiog and
1 éwe N. Kdde qopd nou ypeialdpacte évay mivoxa e Seixtn k, anodnxedovron
oTn Wviun ohol ot mivaxeg cuvdptnong ofiag Twv onolwy ol delxteg Bploxovtan
670 povordtt and v pila mpog Tov delxtn k xon ebvan wixpdtepol tou k. T xdde
emavuToAoYIop6 mivaxa, Eexwvdue and Tov mivaxo pe Tov Yeyohltepo Selxtn mou
elvon 1dN amoVnxevpévos otn uviAun. To mopandve Stoxpivoviar ot Peudoxddina
otov Akyéprdpo 3. Autdc o alybprduoc yenowonoteitar otov Alyderduo 4 ya
v enthuon Tou MDP.
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Algorithm 3 Bonintxy Xuvdptnon Anodrxevone Hivdxwy Yuvdptnone A&loc

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

function TREETRAVERSAL(targetIndex, N)

[+0
7+ N
k< B
Vip - |
if notindexStack.empty() then
if indexStack.top() == targetIndex then
Vimp < valueStack.top()
valueStack.pop()
indexStack.pop()
return Vi,
else
k « indexStack.top()
end if
end if
while [ <r do
if kK == target then
if indexStack.empty() then
calculateValues(k, 0, zeros(N), false)
else
calculateValues(k, indexStack.top(), valueStack.top(), false)
end if
valueStack.pop()
indexStack.pop()
Vimp < valueStack.top()
break
else if k < target then
if indexStack.empty() then
calculateValues(k, 0, zeros(N), false)
else if indexStack.top()! = k then
calculateValues(k, indexStack.top(), valueStack.top(), false)

end if
l=k+1
I+r
k=t
else
r=k—1
I+r
b= b
end if
end while

return Vi,

41: end function
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Algorithm 4 Aoyapuduxr Abon

1: procedure TREESOLUTION(N)

2 steps < N

3 V]

4 while steps > 0 do

5: V <« treeTraversal(steps, N)

6 chosenAction = calculateBest Action(V [currentState])
7 take Action(chosenAction)

8 steps = steps — 1

9: end while

10: end procedure

ArnodewvieTtar 6Tl 1 ypovix) mohumhoxotnTo. awtod Tou oAyoplduou elvan
O(N log,y(S)|S|?|A|), yewdtepn dnhady| oe oyéon we authy e Agperole Adonc.
Evtoltowg, 1 ywewd nohunhoxdtnto ebvon O(logy (N)[S]), pe anotéleoya to
uéyedoc tneg uviung mou amoutelton yio anovxeuone TN TOATLXS va efvon oyeddv
UNBUULVO.

0.5 Ilepiypayy YAonoinong

ITpoxewévou vo ehéYEouPE Ta TOEATAVE VEWENTNE EVRTHATA XODME Kol VAL GLUYXE(-
VOUUE TIG ETULBOCELS TV Blapopnyv alyopliuwy, xataoxeudoade nelpduota o tnello-
MEVOL OTNY eQopUoYY| ou meplypdpeton otny epyooio [LKKKI7]. Tuyxexpyéva,
To TEOBANUA TOU TEUYUUTEVETAL 1) CUYXEXPUEVY epyaoio apopd wa cuGTAdA UT-
ohoYLoTOV ot Véog, 1 omnolo diayetplleton wio Bdom dedouévev. Auth hoyufBdvel
OUTHAUATO AVAY VOGS XU EYYEUPHAC DEBOUEVLY, €V umopel vor UETOBAAAEL TNV UT-
ohoyloux g toyd mpoovétovtag B apoupdvtog eixovixéc unyovée (VMs). O
TEEXTOPUC O AUTHY TNV EQapUoYh dpa we opyavwthc (coordinator) tne cuotd-
doc, TPOCVaPUUEWVTAUS ELXOVIXES UNYOVES XATE TLC AVAYHES TOU CUCTHUATOS, WOTE
vo e&umneeteitan 600 T0 duvarTédy apTidTERA TO PopTio. Ot duvatéc Tou dpdoelc me-
proptlovtan oe TEOcVHNXN ULog EXOVIXAS UNYAVNG, OPolpEDT) LG ELXOVIXNC UNY VS
7 Sorthienon e xatdoToong e ouoTadag we Exet (xoapla evépyela). Ol xataotd-
oelc Tou MDP npoxintouy Bdoet Tou apidpol Twv EOVIXGOY Unyavey Tou eivol
EVERPYEC %O TOU EMEPYOUEVOU QopTiou.

0.5.1 Awxpopég pe tnv Apywxr} YAonoinon

Apyixd, elvan onuovTind vor avapépOUUE TO WS TPOCUPUOCOUE TNV EQPURHOYY OTIC
avéyxeg pog. To mewpdpara oy yeauuéva oe Python 3, ondte petagpdotnxay o
C++, n onola Yewpolye Tl TpocPépel TeploGOTERES BUVATOTNTES Yiol UEAETN TRV
peyedov mou pag eviiépepay, dnhadn yedvou xou pviune. Emniedv, otny ouy-
HEUPUIEVT] EQUPUOYT, OL EPELVNTES NAEY YUY TECTEPLS BLAPORETIXOUE ahyopituoug
entAvone Tou MDP nou dnuiovpyeiton and autéd to mpolAnua. Lo tig avdyxeg Tou
TELPAUOTOS Yo, ETAEEUUE VO YENOULOTOLACOUPE HOVO ToV €vay €€’ ouT®Y, ToV
amho0oTERO, dNAAdH ToV xhaoowxd ahyopripo enthuong MDP. Ynuewdvoupe ot
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Tapého mou o ahyoprdpog €tpeye cav oe MDP Anelpou Opllovta ota nelpdporto
TOV EQELVIT®Y, To Briwato To omolo eExTEA0VOE HTAY TENEQUCUEVO OE dpltud. LTl
Owd pog mewpdpata, Yewpooue 6TL 0 TEdxTOPAC YVWELLEL EX TWV TEOTEPMY TO
uéyedog Tou opilovta, xou emouévwg extehel akydprduo enihuone MDP Ilenegoo-
uévou Opilovta. Télog, to poviéro dev ftay Yvwotd €€ apyfic oTov mpdxTopa,
ondte exelvog to Yddouve SuvoLXE, AVAVEDVOVTAS TLC ToPoUETEous autol T600
xoTd TNV exnaideuct 600 xan xotd TNy oflohéynor. Xtnv Oy pac neplntwon,
Yewpoope 6Tl HETE TO TEAOC TG EXTALBELONE TOU TEAXTOPA AUTOHC ATOXTA TANEN
ermontelol Tou wovtéhou, dnhady| yvwpeiler Ghec Tic TaPOPETPOUS UTOY, EVE QUTEC
dev adhdlouv.

0.5.2 IIepiypaypr KAdoswv

To yovtého nou ypnowonotidnxe ota nelpduota o Tnelletol oe plo Sour| anoTeAoU-
pevn amo xAdoec. H Baoixdtepn €€ autdv elvon 1 xhdon QState, 1 onolo mep-
IEYEL TANPOPOPIEC TOU APOROVY OE VALY GUYXEXPUIEVO GUVBLICUO XUTAC TACTC XAl
opdone. H xAdorn State avanopiotd plo xdtactocr tou MDP xou mepéyet plo
QState v x&de duvaty dpdon. To Blo to povtédro, Tou expedletar uéow NG
xhdong M DPModel anotekeiton and wa State yio xdde xotdotact tou. H dour
auth ebvan Bl pe exeivny mou ypnowonodnxe oto [LKKK17]. T tic avdyxeg
KOS, XATAOXEVACOUE o ¥AdoT tou enextelvel v M DPModel xon nepuhayfdvel
Toug véoug alyoplduoug enthuone Tov MDP Ilenepaouévou Opilovta, yvwo g o
FiniteM DPModel. 'ty exnaideuon opileton emnhéov xau 1 xAdon Complex,
1 omola TEPLEYEL TANEOPOPlES TTOU aPOPOUV GE EVa GEVAPLO TORPOCUOIWONS PopTiwY
YioL TNV GLUCTEDAL.

0.5.3 Exnoidsuon

Do v exnaddevorn yenowonoidnxe n xhdon Complex. e xdde Pruo ex-
maidevong, o mpdxtopag eite emAéyel tuyaio pio dpdom amd TS EPIXTEC PE TU-
Yovotnta € elte amhéde vnoroyilel xan emhéyel Ty BéATioTn dpdon ue mdavotnTa
1 — € (uéVodoc e-greedy). 'Emneita, n dpdon extekeiton xou o npdxtopac AapPdvel
To anoteléopatd e péow tne xhdong Complex, to onola xou yenowonolel yla
vou avavewoel to wovtého. Kdde 500 Bruata, extedelton 1 ouvdptnorn Value It-
eration ®ote o mpdxTopos Vo Unopel va anogacioel Ty BEATIOTH dpdon Yo TO
EVNUELWUEVO HOVTENO.

0.5.4 AZioAoYTMOoTM

Agol exnoudeutel o mpdxtopag, extehel xadévay and toug emheypévouc ohyo-
plduouc enthuone MDP Ilenepacpévou Opilovta. Kdde @opd mou culhéyer o
avTopoLB) TNV TEocUETEL OE Wit e PETUBANTY, OCTE Vo TNV ouyxpelvel Ye Tnv
avtiotoyn Twv dhhwv ahyoplluwy. Emmiéov, yetpdton 1 ypovixr didpxeio €x-
téheong tou xdde ohyoplduou, xadodg xou 1 uviun mou yenowonoiinxe xotd
Vv extéheon (N péylotn wviun tou peteRdnxe uelov v apyixh wvAun axeBoc
ety Eexwvnoet 1 extéreon). O embboelc Twv ahyopiduwy oto Topandve xpLthpta
TopoLGLElovTon avVohUTIXE OTNY ENGUEV EVOTNTOL.
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0.6 Ilstpopatind AnoteAéopato

Iopaxdte TopovoldlovTon Ta TELPOUATIXG ATOTEAECHATA TKVY AAY0pilUwY ToL cUY-
xpldnxav. Autol eivon: 1 Agelric Avon, n Avon In-Place, n Abon Pilag, n Aoya-
prdunry Avom, n Hpocéyyion Aneipouv Opllovta xou 1 Ilpocéyyion Turnpike.

0.6.1 XVyxpion AviopolBov

ITpoxewévou va emPeBaiwidel 1 oxplBela Twv Tpotewduevwy Aooewy, €ylve oY xp-
IO TV AVTUUOLB3®Y TOU CUAAEYEL O TEEXTOPUC OF TEVTE DLUPOPETIXES TEPLITTE-
oelc: e évay omolovdinote odyprduo eniluone Ienepaopévou Opillovta (etvon
ohot 1eodlvapol), ue teewc Hpooeyyioew Aneipouv Opillovta pe Siopopetind v xo-
Ve xan pe v Ilpooéyyion Turnpike. TI'o xdde plo €€ avtdyv, Soxiwdotnxoy
20 SuapopeTind povtéra yia 20 Sopopetinég Tiwée opldviwy. Ta anoteréopota
napovatdlovton otny Ewxdva 0.1
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Ienepaopévoc Opilovtag vs. Ilpocéyyion Henepaouévoe Opilovtac vs. Hpooéyyion (K)
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Figure 0.1: IIdvew apiotepd: péomn T TS SUVOAXAS avTopol3ic Tou GUAAEYETOL
amd tov TedxTopa o€ 20 BlapopeTINd TELRdUTA WS TPog To Uéyedog Tou opilovTa,
oTlc meplnToel Twv ahyoplduwy Ilenepacuévou Opllovta xar tpwwv Ilpooey-
yioewv Aneipouv Opilovta pe petafinté v = {0.1,0.3,0.99}. ITdves dedud: xoavov-
IXOTIOUNUEVT] TT) cUVONXTHC avTopoBric (uéon TR cuvolxfc avtapolBhc Sl Ty
péon avopevéopevn aviagolr tou Ienepaopévou Opilovta, oTic TEPITTOOES TWV
ahyopiduwy Ilenepacpévou Optlovta xon tpiwyv Ilpoceyyicewv Anelpou Opilovta
e petaBAnté v = {0.1,0.3,0.99}. Kdto apiotepd: péorn Tuh tne cUVoRXAc avTo-
potBric Tou GUAAEYETAL omb TOV TEdxTopa ot 20 BLaPOPETINE TELRGUATI (C TEOS TO
péyedoc tou opllovta, oTiC TEPINTWOELS TV ahyoplduwy Ilenepacuévou Opilovta
xow e Ipooéyyione Turnpike. Kdtw delid: xavovixomomnuévn tiury cuvohixic
avtapoBric (péomn tuh cuvolxic avtapolBric Siot T UET) oVaUEVOUEVT oV TaUOLBT
tou llenepaouévou Opilovta, ot mepintwoel twv ahyopiduwny Ilenepacuévou
Opilovta xau tne Hpooéyyione Turnpike.

O xavovixomoinuéveg exdveg dnuroveyinxoay WoTe vo SloxplveTal TLo EUXONL
7 Slapopd GTNV AVTAUOLBT TOU GUYXEVTEWVOLY OL AAYOELIUOL, BLLEWVTIG TNV UECT
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T NG ouVohxc avToolBrc yia xdde Tir opllovta pe tnv avtioTolyr avauevo-
pevn Ty mou vroloyileton and tov aryoprtuo Ilenepaouévou Opilovta, epdoov
oawtdg voroy(lel TNV PEYLOTN avoevOUEVY avTapolBY) olupwva pe Ty dewpla.

Epunvévovtac ta anoteréopata, mapatnpolpe 6tL ol duo llpoceyyioeic ye
~v = {0.1,0.3} votepolv onuavtxd évavtt tou ahyoplduou Ilenepacuévou Opi-
Covta. O xahOTepEC TOUC EMBOCELS EMLTUY YAVOVTOL YLot Pixpéc TiéS Tou opllovTa,
omwe ebval puoxd, aol o tpdxtopag yivetan puwmixdc. Avtideta, n Ilpocéyyion
ue mopdyovta éxntwong 0.99 culkéyel avtapollr) oyeddv dor xan o alyoprtuog
Ienepaoyévou Opilovta. Téhog, to Blo toylel xou yia tnv lpocéyyion Turnpike,
ME TNV XOUTUAN NS va elvar oyedov mavopoldtuny e avtny tou llenepocuévou
Op(Covta. Mo mdovy) e€hynom yia TiC TG0 XoAEG EMBOCELS TWV BUO TEAELTAUWY
npooeyyloewy elvar 1 éMhewdn mowiog dpdoewy Tou Yovtélou, Ue amoTENECUA OL
TOMTIXEC Vo unv Slapoponotodval Wiattepa uetadd Tou.

0.6.2 XUyxpion MetafBAntov AviopolBoy

To anotehéopato avopévetal vo dlapoponotndoly 6e LOVTENS OTIOU OL AV TOUOLBES
elvon ueTofBANTéC xan cuvapTAoEL TS enoyNg andgacng. llpoxewévou va npoco-
HOLWOOULUE €Val TETOLO HOVTEND, Vewphooue 6Tl G xGUe ENOYY| AmOPooTC 7, VLol Lot
CUYXEXPWEVY) XATAOTAUOT) S XOL WA CLYXEXPWEVY Tidavy Bpdon a wio avTapol3h
undeviloTay Ue xUxhxd Tpomo xdlde Qopd. LMUEldVETUL OTL O UTOAOYIOUOS NG
BérTiotng moAtinic oty mepintwon Twyv Ipoceyyioewy e yetaintéd mapdyovta
EXTTWONG €YLve VeEwpdVTag 0Tt oL avtapolBés dev ahhdlouv (dnhadt| ue Tic apyixéc
TiéC avTapoBeyV), apol dev Ya yivétay va enttevy 9 olyxhior. To anoteréoparta
napouatdlovton oty Eixdva 0.2.
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Ienepaopévoc Opilovtog vs. Ilpocéyyion Henepaouévoe Opilovtac vs. Hpooéyyion (K)
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Figure 0.2: IIdvw apiotepd: péomn tiuh e oLVOAXAC avTopol3ric Tou cUAAEYETOL
amd tov TedxTopa ot 20 BlapopETIXG TELRdUUTA WS TPog To Uéyedog Tou opilovTa,
oTlc meplnToel Twv ahyoplduwy Ilenepacuévou Opllovta xar tpwwv Ilpooey-
yioewv Aneipov Opilovta pe petafinté v = {0.1,0.3,0.99}. ITdves dedid: xavov-
IXOTIOUNUEVT] TIT) cUVONXTC avTopolBric (uéon TR cuvolfc avtapolBhc Sl Ty
péon avopevéopevn aviagolr tou Ienepaopévou Opilovta, oTic TEPITTOOES TWV
ahyopiduwy Ilenepacpévou Optlovta xon tpuwyv Ilpoceyyicewv Anelpou Opilovta
e petaBAnté v = {0.1,0.3,0.99}. Kdto apiotepd: péorn Tuh tne cUVOAXAG avTo-
potBric Touv GUAAEYETAL 0mb TOV TEdxTopa oE 20 BLUPOPETING TELRGUATI (C TEOS TO
péyedoc tou opllovta, o TEPINTWOELS TwV ahyoplduwy Ilenepacuévou Opilovta
xow e Ipooéyyione Turnpike. Kdrtw delid: xavovixomomnuévn tiury cuvohixic
avtapolBric (péon tuh cuvolxic avtapolBric Siot T UET ovaEVOUEVT oV TaUOLBT
tou Ilenepaouévou Opilovta, ot mepintwoel Twv aryopiduwy Ilenepaouévou
Opilovta xou tne Hpooéyyione Turnpike.

Ta drorypdyparo tne Ewdvog 0.2 napovoidlouy wuaitepo evdagépov. ‘Opola ue
TNV TeRINTWoT TWwV U LETABANTOY avtopolBdy, ot Ilpoceyyioeig ye tig pxpdtepeg
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TWéc Tou Topdyovto éxmtwong, onhadr 0.1 xa 0.3 napouvcidlouvv moll youn-
Notepeg emdboelc ouvyxpttuxd ue tov Ilenepacuévo Optlovta. Avtideta duwe
ME TEONYOLUEVKCS, Ol PETOBANTES avTauolBéc €youy ETUNTWOY Xl oTNY anddoor
e Ipooéyyione pe v = 0.99, n onolo gaiveton petd Blog va ayyiler to 90%
e avauevopevng cuvolic avtapoB3nig. Télog, ueydhn ntwon nopovoldlet xou
n anédoon e Ilpooéyyione Turnpike, ye v xaumdAn 6TO XUVOVIXOTOLNUEVO
Oudrypopua vo ebvon axouar younidteen xou tng Ilpocéyyione pue v = 0.99. e
xdde meplntwon, To BEATIOTA AmOTEAECUOTA ETUTUY YAVOVTOL UE YeHoT| ahyoplduou
Ienepaoyévou Opilovta, YEYOVOS TOU TOV XAMOTA VAV TIXATAC TUTO O TEPLTTE-
oelg UETABANTOV avTadoBKv.

0.6.3 XVyxpion Xpodvou Extéleong

'Eyovtag edpoucdaet TNy unepoyt) Twv ahyoplduwy Ilenepacuévou Opilovta évavtl
v Ipooeyyicewy, onuavtd elvoar 1 oOyxpion petold autdyY, TG00 OOTE Vo
dlamo oLy xan TELoUATIXG oL VewenTIXEC EXTMACELS TNE YPOVIXNC TOUS TOAUL-
TAOXOTNTAS 600 ol Vo avadelyYoly To Tpotepuata xou aduvauieg Toug. Xuy-
xpldnxov we mpog tov Ypovo extéreone ol alydprdpol Agerole Abong, Abong
Piag xou Aoyaprduixic Abong. Xnuewdveton 6Tl dev nopousctdlovial To anoteréo-
pato tng In-Place Along, wog xou ¥tav addvato vo extelectel o peahloTind
XEOVO axdun xan yior oxetxd wxpés tiwés opllovia. To anoteréoparta nopouctd-
Covton oty Ewéva 0.3

Xpo6voc Extéleone (200 xotactdoelc) Xpo6voc Extédeone (2000 xatootdoeLs)
= Ageddc e Ageric
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Figure 0.3: Aplotepd: hoyoptduixd Yed@nuo UE TOUC YpOVOUC EXTENEOTC TV Oh-
yoplduwv Agéhouc Abone, Abong Piloc xow Aoyaprduxic Abong we tpog to yéye-
Yog Tou opilovta oe povtéro pe 200 xatactdoelg. Ac&id: Aoyaprduxd yedenua ue
TOUG XpOVOUC exTéREaNS TwV alyopliuwy Agélouc Avong, Abone Pilog xou Aoya-
erduic Abong we mpog to uéyedoc tou opilovta oe yovtého ue 2000 xatoo tdoelc.

Ta anoteréoparta nopovctdlovion oe hoyoptduxoie d€oveg eaitiog tneg pay-

22



datac adénone twv tuodv. Hapatneolue dti ol evdelec Twv aryoplduwy Agelol
Abone xan Abone Pilag etvon oyeddv napdiinieg, ye authv tne Pilag va elvon
ehapedds YAdTERE, YEYOVOS TO 0molo UTOBEXVUEL OTL ACUUTTWTIXG OL YEOVIXES
nohurhoxdtnteg Twv duo elva oeg, we avthy e Pilag va elvon peyokitepn xatd
wa otodepd. H Aoyaprdpnr Aborn napatneeiton nwg Aopfdvel ueyohitepes Tipég
oe oyéon Ue Tic dAheg Buo xoumUAeg yio xdde Tiwn Tou opllovta, eved alveton va
€xel peyahitepn xAlom, yeyovog mou epunveleTol av avUAOYLOTOUUE TOV hOYOpL-
Vb mopdyovia otny e£iomoN TOATAOXOTNTOS. LUVONXE, 1) TELROUATIXT) UEAETT
gpunvedel TAHEWS Ta VEWENTIXA ATOTEAECUOTA TNG YPOVIXNS TOAUTAOXSTNTUC.

0.6.4 XUyxpion Anowtrioswy MvAung

To onuavTix6TEPO XELTARLO Yol TNV GUYXELOT TOV TAUPATAVE ohyopldumy anoTteAel
N uviun mou amouteiton amd Tov xodéva xotd TNy extéheon. O odydprduol mou
ouyxplvovton elvon xon mdA 0 Agelric Abor, n Abon Pilac xou 1 Aoyoprduixs
Abon. Ta anoteréopata mov mapovotdlovion oty Ewdva 0.4 agopolv v di-
apopd HEYLOTNG UVAUNG Tou UeTednxe xatd TNy exTéAEoT xou aEYiXAC UVAUNG
mou peTpinxe auéonc YeTd Ty exmaldeuon.
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Figure 0.4: IIdvew Aplotepd: Metpnleioo Siopopd U€yiotng Ue apyixr UvAun o
Megabytes yio povtéro pe 200 xatactdoelg. 1dve Aedid: Extipduevn dopopd
HEYLOTNG UE ap)Lx) wviun oe Megabytes yio wovtého ye 200 xatactdoeig. Kdtw
Apiotepd: Metpnieioo dlagpopd péylotng pe apyixn uviurn oe Megabytes yio pov-
tého e 2000 xataotdoeg. Kdtw Aedid: Extiumduevr diapopd UEylotng Ue apyixt
uviun oe Megabytes yia povtélo pe 2000 xotac tdoelc.

IMopatnpeeiton 6TL To TEPAUUATING ATOTEAEGUATA GUUPWVOLY e UeYdAO Pordud
ME TOL EXTWWOUEVR. LNUELdVETAUL OTL Yiot exTlunon e UvAuNG urnoloyiooye tov
péyloto apitud mivaxwy mou elvon anodnxevpévol ot UVAUN Yia xdde olydpt-
Yo xou xdde Tn opilovia xou Tohhamhaotdooye auTdV Tov aptdud el To péye-
Yo¢ Tou TOnoL dedouévwv Tou (floating point) wote va mpoxUer N avauevouevn
. ‘Ooeg Slopwvieg UTEEYOLY GUVIVTHOVTAL GE ONUELN TOU 1) XoUTOAT TWV TRoY-
HaTXOV peTprioewy elvan otodepr). Autéd ocupPaivel SldTL 1 pvrun avatideton pe
TN pop@n oeMdwY, emouévne elvar mdavé vo avatedel TeplocdTeRT UviunN ond 6,Tu
elvon omopaitnTo, Ye anotéheopo 1 adénon tou opilovta vo uny empépet avdieon
neplocdTepng, apol apxel 1 1o undpyouca. H Aoyaprdpu Ao gaiveton va Exel
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NV xoAUTEET enlBoon ye Blapopd oe oyéom Ue Tic SAAeS Buo, evéd n Abon Pilag
CUUTERLPEPETAL APXETA BeEATIOTOTERN OE OYéam pe TNV Agelr) Abor 660 peyahvel
o opilovtag, 6Twe avapévope and v Yewpla.

0.7 Erniloyoc
0.7.1 XupnEpdopATR

Méoa and outhv v epyaocio emdidope va Pehtiotonojooupe aryopiduoug
enthuong MDP 1600 w¢ npog Tov ypdvo extéheonc 600 Xal TEOC TG AVAYXES OF
uvAun. Suvodilovragc:

o O ahydpripoc Value Iteration napouoidlel onpoavtixd mpofiruota yedvou
extéheone. H 8éa mou mpotelvape oe authv Ty epyacia agopodoe @edén
e ouvdptnone o&iac-dpdone pe oxond v andppudr dedoewy TOU EYYUN-
péva dev obnyoboav oe BéATiotn AUon. Evrtoltowg, to anoteréopata dev
fTay Ta avopevoueva, owg edautlag tng emheypévn epopuoync. Ilopdia
autd, undpyel Teprdnpto Bedtiwone e pedodou oe yelhovtny epyaocio ye
UTIOG Y OPEVO. UTOTEAEGUATAL.

o Ou xiaocowol olydprdpol enihuone MDP Ilenepacuévou Opilovta ywhai-
vouv 6cov aopd TNV ywelx Tohuthoxdtnta. T'a autdv tov Adyo, npotel-
VOUUE BUO VEOUS aAYOPLIUOUC PE OMUOVTIXG UELWUEVES YWEIXES ATOULTAOELS
ol UNOOWVY| YeOoVIXT ETBAEUVOT) YIa ERAVUTOAOYLOUOUE TUVAXGY CUVAETNONG
afoc.

o Téhog, eletdoope xou mpooeyylotxols ohyoplduouve enfhvone MDP
Ienepacuévou Optlovta, pe eloupetixéc emdboelc oe urn PeToANTd pov-
o, Qotdoo, Ta TEdyUATa HTOY BLUPOPETIXG G UOVTEAX Ue UeToBANTEC
AV TOOLBES, XD TOVTOC EVTOVT TNV avdryxr OTapdng XAoooxdY ANOGEWY.

0.7.2 MeAhovTtixh Epyoacia

Ov BeltioTonomoell TOU TAPOUGLICTAXAY AMOTEAOLUY LoyUEES PBdoelg yiol Ueh-
AovTiXéc eMeXTAoELS XU BEATIOOELS.  Xuyxexpiuéva, 1 uédodoc @edéng yla Ty
nepintwon tou Value Iteration o uropoloe va doxipactel oe teploodTeEPES, MO
HATIAANAES EQapUOYEC EQOTOV T YewpenTixd Tng Yeuéha elvon otépea. To dvew
xon x4t @edyuota o uropoloav va BeAtiwdoly, dote Ta meprdmplo vo elval
axdun xpdtepaL.

Avthdvtac éunvevon and Ty WEn Twv gpoyudtwy, Yo unopoloe xavelc va
unoloyloel dvw xal xdTe QedypaTo Yloo TNV cuvdptnoT dpdong-a&lac ywele va
unohoyloel v Bl TV ouvdptnon Yot xde xatdotaon. Kdde enavdindn tou
ahyoplduou Vo €pepve Ta PEAYUATA IO XOVTE TO €val GTO dANO, UEYPL TOU TEAXA
Yol LooOVTAY PE TNV TROYUATIXT T TNG cuvdpetnong dpdong-oéiog, anoppintovtag
dpdoelg oty mopela.

Avagopixd ye tov Ilenepaocuévo Opllovia, 1o Paocixd medPinua twv oh-
yvoplduwyv mou mpotddnxav ebvar 1 ypovixny emPBdpuvorn mou ewwdyeton AOY®
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enavunohoylopdy mvixwy cuvdptnone o&lag. Epdoov xatd tnv npodtn extéheon
Tou akyoplduou voloyilovtar dhol ol mivaxeg cuvdptnong o&lac yio xdde Briua,
Yo umopoloe xavélg vo a€lOTOoEL QUTHY TNV TANpoQopla WOTE Vo emLToyOVEL
Toug enavunoloylopols. ‘Etol, o ypdvoc extéheonc tne Aoyapduixric Adone
lowe minotale avtolc e Agelolc B tne Abone Pilac, xadiotdvtac tnv v mo
anodotixy| pédodo enthuone MDP Ienepacuévou Optlovta.

1 Introduction

In this section, we aim to establish the challenges we are faced with when utiliz-
ing the Markov Decision Process framework in use cases such as Reinforcement
Learning, while suggesting methods to overcome them. We also present prac-
tical applications of the framework and related work that has been executed
towards similar optimizations.

1.1 Motivation

Over the last decade, Reinforcement Learning has rapidly gained lots of pop-
ularity, finding use in a variety of modern applications [Li19]. This machine
learning technique can be used to model real-world problems, with or without
a large dataset, as it can also learn from experience. A crucial requirement,
however, is that the world modeled must follow the Markov property, further
discussed in Section 4, to be represented as a Markov Decision Process.

A Markov Decision Process (to which we will be referring to as a MDP
throughout this thesis) is a statistical model, defined by states and actions,
which are made by an agent. Every action yields a reward, which can be positive
or negative towards the agent. Moreover, an action induces a reaction of the
system, which transitions to a new state according to a probability.

Depending on the number of decision the agent is required to make, more
specifically whether this number is finite or infinite, the MDP can be character-
ized as having a Finite Horizon (FHMDP) or Infinite Horizon (IFMDP). In the
first case, the agent knows beforehand exactly how many decisions they are re-
quired to make and that their decision making process will terminate once they
achieve that number. On the other hand, in an IFMDP, the process’ termination
occurs when the agent reaches a special state known as a terminal state (defined
beforehand) or when an outer source instructs them to terminate. Regardless of
the size of the horizon, the agent’s goal throughout this process is maximizing
the total reward they will receive through their actions.

As the use cases of the MDP framework become more demanding and com-
plex, so does the model, resulting in huge state spaces with large numbers of
possible actions. As a result, both the memory requirements and the execu-
tion time of MDP solving algorithms grow exponentially, often rendering the
algorithm practically impossible to execute. In addition, it is possible for many
modern applications using the MDP framework to be running in devices not
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able to fulfill those demands, such as smartphones and tablets, making the need
for optimization of such algorithms more relevant than ever.

This master thesis delves into methods of optimizing FHMDP solving algo-
rithms with regards to the memory requirements, providing support to an issue
which cannot otherwise be dealt with, as having memory constraints is usually
solved by acquiring extra memory which is often costly.

1.2 Applications

Most modern day applications of MDPs involve Infinite-Horizon MDPs, espe-
cially considering the big uprising of Reinforcement Learning, which mostly
operates on infinite horizons. However, there are still many use cases for Finite-
Horizon models, mainly in resource management, treatment planning and rout-
ing problems.

An important application of FHMDP in resource management, which
also highlights the importance of the findings of this thesis, is described in
[COM™09]. This work suggests a software for optimizing phone call times in
mobile phones, by deciding the timing to perform background actions, such
as email synchronization. In particular, it is assumed that one of the most
important functions of a mobile phone is voice calls, and the ability to perform
them is crucial. As a result, the amount of battery remaining should be suffi-
cient enough to perform average voice calls. Every state of the model consists
of the current time and battery remaining. An action would be synchronizing
emails (in the background) or not, or in a second case, whether to turn on the
WiFi radio. The transition probabilities come from the stochastic nature of
the duration and occurrence of the phone calls, which could be obtained after
user modeling. The finite horizon of the model is the time (partitioned into
multiples of a time unit) between two battery recharges. The MDP is then used
to calculate an optimal policy array, of size N|S|, where |S| is proportional to
the remaining battery and time units since the time synchronization (or WiFi
activation) was last performed. The agent can then use this stored array to
make decisions at every time step. An important issue mentioned in this work
was the size of the optimal policy array, as it is proportional to both the horizon
and the number of states, while a mobile phone’s RAM remains relatively
smaller than that of a personal computer. Although the researchers managed
to decrease the number of states dramatically (which may also result in a
reduction to the model’s granularity), we believe that the methods suggested
in Section 4 could optimize the performance even further.

Finite-Horizon MDPs are greatly utilized in medicine as well. This frame-
work can be used for scheduling the way and order patients will utilize a medical
device in a hospital, as is discussed in [GBGG11]. In this example specifically,
there exists one (or more) computed tomography scanner(s) and patients want-
ing to use them are split into three categories, emergency patients (critical and
non-critical), inpatients and outpatients. Choosing which patient will use the
machine(s) out of those in the pool of waiting patients can be crucial towards
maximizing the revenue of the hospital (which also depends on the waiting time
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of each of the patients). The states of the model consist of the number of pa-
tients waiting from each category and whether a critical emergency patient is
waiting, to whom the highest priority is given. The possible actions refer to
which patient will be scheduled immediately (namely to which category they
belong). The transitions occur when new patients arrive in between uses of
the computed tomography scanner, while the reward is a function of the total
cost of the use of the machine, the cost of patients waiting and the revenue the
hospital makes from the particular patient using the machine. Finally, the hori-
zon refers to the number of time slots of machine use in a day (each use of the
machine is considered to require a constant amount of time). Results showed
that this method could, in most cases, maximize the profits when compared to
other traditional methods.

Another application of FHMDP in medicine involves cancer treatment plan-
ning. In [BL20], researchers used an FHMDP model combined with a preexist-
ing optimization model, to make gastric and gastroesophageal cancer treatment
planning more efficient. Such a planning is considered efficient when it min-
imizes the levels of toxicity the patient suffers and maximizing their survival
time. The states of the model represented different levels of toxicity while the
actions refer to the different regimens the patient could receive in the next deci-
sion epoch. Transition probabilities come mostly from other clinical trials and
statistical analyses, while the reward function involves the toxicity levels as well
as the expected survival time. The model’s horizon refers to the number of cy-
cles of the treatment. This method resulted in higher survival times and lower
levels of toxicity, and is deemed particularly useful in sequential treatment de-
cision making in clinical trials. Nevertheless, this model is limited by the data
set used for its parameters.

Finite-Horizon Markov Decision Processes can find great use in Game The-
ory, specifically in Routing Games. In a Routing Game, there exists a popu-
lation in a graph of nodes and edges. Every individual of the population acts
as an agent, which needs to decide the optimal policy to traverse the graph in
order to maximize a reward it will receive (or minimize a cost). An example
of a Routing Game used in [CS17] is a problem drivers of car sharing services
face: which path to follow in order to maximize their earnings while minimiz-
ing the cost (waiting time when competing with other drivers, fuel costs etc.).
The researchers in this work formulated this problem as an FHMDP Routing
Game, where the agents must find the optimal policy that they will follow, while
achieving Finite-Horizon Wardrop Equilibrium. While this term deviates from
the point of this work and is thoroughly explained in [CS17], we will briefly
mention that, in essence, such an equilibrium is achieved when there exists a
distribution of the population among the nodes such that for every node and
time step, the action chosen by the percentage of the population in that node
is the most optimal action possible (the one with the greatest value function).
Every agent in this example solves a FHMDP, with every node being a state,
every edge denotes a transition probability (could also be deterministic) and the
reward function is a summation of all the costs and profits mentioned before.
Results occurring when this logic was run in a simulation appeared to be very
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promising.

FHMDP approaches have also been proposed as a means of planning airline
meal preparations and adjustments. In [GLP04] an airline meal provisioning
plan was formulated as a FHMDP in order to minimize the airline’s losses.
Particularly, meals in a flight are prepared in advance, taking into account the
expected amount of passengers, as well as any special requests. Then, adjust-
ments are made and the meals are shipped to the airport to be loaded before
the flight. An excess number of meals can be costly to the firm, while a meal
shortage can lead to customers being lost, which although difficult to quantify,
is used as a metric in this paper. The horizon of the problem consists of only
a small number of epochs, which represent points in time prior to departure.
It should be noted that, the later an adjustment is made, the more costly it is
toward the airline. The model’s state take into account the number of meals
made/expected for this flight as well as the expected number of passengers.
The actions possible in each state represent increases or decreases of the num-
ber of meals available. After a certain decision epoch (known as the adjustment
period), this number is limited by the meal transport vehicle’s capacity. The
rewards in this case are negative and include all the costs mentioned above, as
well as meal transportation costs, which increase the later the adjustments are
made (horizon-dependent rewards, also known as non-stationary). The transi-
tions are stochastic, as they happen because of changes in the expected number
of passengers (such as cancellations). The results show that this model could
find great use in meal provision scheduling of long and medium duration flights,
with the short duration flights yielding worse results. The granularity of states
is a serious issue of the model, as the number of states is proportional to the
square of the plane’s capacity (as it is the upper limit of the number of passen-
gers and number of meals). Although the horizon is small, the number of states
is large (before any alterations to lower it, such as aggregation of seats). This
method can also be run simultaneously for a large number of flights, resulting
in huge needs in execution time and space, showing that the theoretical results
in Section 4 could be of value.

1.3 Related Work

While methods to speed up Value Iteration have been thoroughly examined,
optimizations on the classic Finite-Horizon algorithms are limited to practical
methods and heuristics, such as state space reduction, as applicable.

1.3.1 Time Complexity Optimizations

Value Iteration algorithm (described in depth in Section 2.5) is the most widely
used solution for Infinite-Horizon MDP problems, especially in Reinforcement
Learning. Nevertheless, its time complexity often proves prohibiting for large
MDPs, with huge numbers of states and actions. In Section 3.1 we propose
an optimization using value function bounds in order to eliminate suboptimal
actions and thus reduce the execution time needed. A plethora of attempts has

29



been made towards the same goal, using a bounding approach, all regarding the
calculation of accurate bounds.

The first time bounding the value function in order to eliminate suboptimal
actions was suggested was in 1967 by J. MacQueen [Mac67]. There, the upper
and lower bounds of the value function were defined as sequences which mono-
tonically converge to their correct values after a number of iterations. Later,
further improvements on this approach were introduced, such as those in [SB79],
applicable in both Finite- and Infinite-Horizon cases, including a new test for
suboptimal actions, which may be reintroduced at later stages of the iteration
process. Other approaches include calculating bounds in order to compute a
policy that is approximately optimal, as seen in [Whi82].

Another important optimization on the running time of a MDP solving algo-
rithm involves the concept of aggregation. This idea refers to grouping together
states of the MDP in order to reduce the state space and thus the execution
time, as most MDPs bear the so called ”curse of dimensionality” [Bell5]. One
of the earliest important works in state aggregation is that described in [RK02],
discussing a way to partition the MDP into subsets of states, aggregate states
inside those partitions and perform the known MDP-solving algorithms on the
newly-created Aggregated MDP. It was proven, however, that while this method
achieved a suboptimal policy (with a certain error tolerance) the time required
to perform the partitioning along with the solution was at least as much as that
needed to solve the original MDP.

Many methods of state aggregation have been suggested. The authors of
[LWLO06] present the unified results of those methods, concluding that there
exists a constant trade-off between retaining information about the model and
reducing the dimensionality of it. In essence, the greater the granularity of
the model, the more accurate calculations can be performed and thus the more
optimal the resulting policy, while a coarser model with fewer, aggregated states
could be solved more efficiently at the cost of accuracy.

The two optimizations of bounding and state aggregation have been used in
combination with each other in the algorithms suggested in [DWGT11]. The
first algorithm, known as Topological Value Iteration (TVI) performs Value
Iteration on the states in an order such that convergence is achieved as fast
as possible. This however requires that the graph representing the MDP does
not contain cycles. To achieve this, state aggregation is performed on groups of
states in which cycles exist and the MDP is transformed to a new aggregated
MDP without cycles. Nevertheless, many MDPs contain large cycles resulting
in a MDP with few number of aggregated states, containing lots of grouped
states. To cope with this problem, the authors suggest performing an action
elimination based on upper and lower bounds for each state-action pair. This
approach eliminates edges of the graph and hopefully lowers the number of
cycles. After the action elimination process, TVI is executed as normal after
the states have been grouped appropriately.

Another idea similar to that of aggregation is the idea of partitioning, in
other words dividing the state space into groups of states by some criterion. An
exceptional use of this concept is made in [WS03], where the authors describe
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partitioning the state space of the MDP, and, using a concept known as potential
information flow (meaning how drastic the change of the value function is in the
next iteration for some state-action pair) update only the states of a single
partition. Afterwards, the same process is repeated for the partition with the
next largest potential information flow, until the greatest potential information
flow of all partitions is below a threshold. This procedure was shown to achieve
great computational acceleration, even for MDPs with large state spaces.

Optimizations of time complexity have also been made with regards to
Finite-Horizon problems. One important heuristic, known as Temporal Con-
catenation, is described in [SX20]. This procedure suggests splitting the prob-
lem into two (or more) subproblems whose horizons add up to the horizon of
the original problem. Those subproblems with smaller horizons could be solved
in parallel and, after obtaining their respective policies, concatenate them to
create a unified policy for the original problem. This solution of course is not
guaranteed to be the optimal solution, but researches managed to find bounds
of the difference between the expected value of the optimal policy and the ex-
pected value of the concatenated policy (this difference is also known as regret).
The acceleration of computations was also important, as the problem was split
in two subproblems able to be solved in parallel, with the total execution time
being almost half the original (but not quite due to added overhead)

1.3.2 Space Complexity Optimizations

As already mentioned, the only attempts made towards solving the space com-
plexity issue of Finite-Horizon algorithms regard heuristics and case-dependent
optimizations. It has also been observed that developers often opt for other
solutions, such as linear programming, when applicable. The previous work we
shall present, however, regards optimization tactics falling under the first case.
It should be mentioned that, most memory optimization techniques regard the
model’s memory footprint rather than the non-stationary policy stored, unlike
our suggestions.

In [GLP04], for example, the authors mention that the state space grows
rapidly with the number of passenger seats. Each state of the model represents
a combination of seats and meals prepared, with both numbers being at most
equal to the maximum seat capacity of an airplane. This results in quadratic
increase of the number of states with respect to the number of seats. Even for
a small aircraft of only 108 seats, the amount of time needed for the calculation
is huge, while the total space required adds up the more models running simul-
taneously. In order to cope with this issue the authors used state aggregation,
meaning their experiments were performed on a model in which the ”seats” were
bins containing a number of actual plane seats (this number was referred to as
bin size).

In [DMWO08], researchers suggested a memory optimization on the Value
Iteration algorithm. In particular, this optimization is based on the External
Memory Value Iteration algorithm presented in [EJB07]. This algorithm rep-
resents the MDP model as a graph and operates on its edges, which show how

31



states are connected through the transition function. While an external memory,
such as a hard disk, offers much larger capacity than a RAM, the input-output
operations are much slower. To compensate for that, the edges of the MDP
graph stored in memory are sorted before each iteration in order to speed up
the process. This approach manages to utilize external memory, at the cost of
execution time. It should also be noted that if a large portion of memory is
available the algorithm cannot utilize it to make input-output operations more
efficient. It was shown that this algorithm requires a much larger time to execute
compared to Value Iteration.

An improvement of this model was suggested in [DMWO08] through an al-
gorithm named Partitioned External Memory Value Iteration. This algorithm
partitions the state space into blocks and then loads those from main memory,
making I/O operations more efficient. When compared to problems too big
for Value Iteration’s internal memory, its execution time was faster than that
of the EMVT algorithm by an order of magnitude. Both the above mentioned
methods are applied on Infinite-Horizon problems, and do not reduce the space
complexity of the algorithm, but rather utilize external memory such as hard
disks to store larger models. While those partitions described in [DMWO08] are
meant to be computed manually, the optimizations of [DW109] include auto-
matic partionining, leading to better overall partitions than those created by
human.

1.4 Objective

While solving FHMDPs appears to be efficient in theory, practice has shown
otherwise, bearing in mind the challenges mentions in subsection 1.1. This
thesis includes suggestions on memory complexity optimization of the MDP
solving algorithm in the Finite Horizon case.

In section 4.2 the readers are introduced to two new methods of solving FH-
MDPs, which are based on the preexisting algorithm known as Value Iteration,
analyzed thoroughly in section 2.5. A developer opting for a FHMDP can de-
cide between the preexisting algorithms, as well as the newly introduced ones,
depending on their needs, rendering the FHMDP algorithms more flexible and
versatile.

2 Definitions and Preliminaries

This section will be covering the theoretical material deemed necessary for bet-
ter understanding of the ideas introduced in Section 4. These include Markov
Decision Process fundamentals, as well as the algorithms used to solve them.
In addition, the concepts of time and space complexity are briefly discussed, as
they represent the theoretical basis on which the comparisons between methods
will be executed. Finally, we will also be referring to Machine Learning con-
cepts, emphasizing on Reinforcement Learning, a framework utilized in great
extent by the experiments that were carried out.
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2.1 Computational Complexity Theory

There exist problems which are considered decidable, in other words computa-
tionally solvable in theory. Realistically, however, the algorithm solving these
problems could have huge needs of execution time and memory, thus rendering
the problem practically unsolvable. In order to judge whether a solution to such
problems are acceptable, we define the metrics of time and space complexity.

Formally defining the concepts of time and space complexity requires having
defined the Turing Machine. The Turing Machine was invented by Alan Turing
in 1936 and according to himself it is a mathematical model of computation that
defines an abstract machine [Min67]. This machine possesses an infinite tape,
consisting of cells, from which it can read symbols, as well as write symbols
on them. The part of the machine performing these actions is a moving head,
which can go both left and right on the tape. There are also special states for
rejecting or accepting an input, which automatically terminate the processes
once the moving head lands on them. A Turing Machine has the same power as
any computer, meaning there exist problems that even it cannot find a solution
to.

Such a machine could be either deterministic or non-deterministic. The first
case suggests that after every computation the transition of the machine’s head
is deterministic and known, while in a non-deterministic Turing Machine this
transition could result in any state from a certain group, with some probabilities.
Nevertheless, it can be proven that any non-deterministic Turing Machine has
an equivalent deterministic one [Sip13].

2.1.1 Time Complexity

According to M. Sipser’s definition of Time Complexity: "Let M be a deter-
ministic Turing Machine that halts on all inputs. The running time or time
complexity of M is the function f : N — N, where f(n) is the maximum num-
ber of steps that M uses on any input of length n. If f(n) is the running time
of M, we say that M runs in time f(n) and that M is an f(n) time Turing
Machine. Customarily we use n to represent the length of the input.”

Calculating the exact running time of algorithm can get very complex and
so a metric of estimation is preferred. This form of estimation is known as
asymptotic analysis and is mainly focused on the importance of the highest order
term of f(n). As a result, we disregard every lower order term, as well as the
coefficient of the highest order term, because they affect the Time Complexity
far less than the higher order term for large length inputs.

Again, this can be formally expressed using M. Sipser’s definition of asymp-
totic upper bounds: "Let f and g be functions f,g : N — RT. Say that
f(n) = O((g(n)) if positive integers ¢ and ng exist such that for every integer
n > ng:

f(n) <cg(n)

When f(n) = O((g(n)) we say that g(n) is an upper bound for f(n), or more
precisely, that g(n) is an asymptotic upper bound for f(n), to emphasize that
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we are suppressing constant factors.” [Sip13].

In a realistic algorithm’s case, we estimate the time complexity of an al-
gorithm by counting the number of elementary actions performed by it with
regards to the length of the input, treating the time complexity of every ele-
mentary action as constant

2.1.2 Space Complexity

Similarly, we use M. Sipser’s definition of Space Complexity: ”Let M be a
deterministic Turing Machine that halts on all inputs. The space complexity of
M is the function f: N — N, where f(n) is the maximum number of tape cells
that M scans on any input of length n. If the space complexity of M is f(n),
we also say that M runs in space f(n)” [Sip13].

In other words, the space complexity of an algorithm is the amount of mem-
ory it occupies during its execution with respect to the input length. The
asymptotic notation described in the above subsection is also used in space
complexity in worst-case analysis.

2.2 Markov Decision Processes (MDP)

A Markov Decision Process is used to simulate a problem where a decision mak-
ing agent interacts with its environment, whose behavior is probabilistic. Every
decision the agent makes results in a different behavior of the environment. The
agent’s goal is to achieve the optimal sequence of behaviors of the environment
with regard to to some defined performance metric.

Every decision the agent makes is taking place in a point of time, commonly
referred to as a decision epoch. Those points in time could be either discrete
or continuous. Our main focus will be on discrete decision epochs, however we
briefly mention that if the decision points are continuous, the agent can make
decisions continuously (in other words at every decision epoch), or it can make
decisions at random points when a specific event occurs or the agent itself could
choose when its decision will be made.

The elements of the set of discrete decision epochs are known as stages
or periods. These elements could either refer to a single point in time or a
time interval. The number of elements in this set could be finite, for example
containing H = {1, 2, ..., N}, where each number refers to the step index of the
discrete time element, or it could also be infinite, namely H = {1,2,...}. The
first case renders the problem a finite-horizon problem, whereas the second case
consists an infinite-horizon problem.

At each decision epoch the agent finds itself in a particular state of the
environment. The set of possible states will be denoted as S. At every state of
S there exist a finite number of possible actions the agent can make. The set
of all possible actions the agent can make from every state will be denoted as
A, while the set of possible actions from a particular state s will be written as
A(s). By definition, A = |J A(s).

seSs
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Choosing an action a from a state s brings certain consequences upon the
agent. Firstly, the agent receives a reward r, namely a scalar value which is
produced by the real-value function R(s, a). This reward could be either positive
or negative.

After the reward is collected, the action the agent has chosen leads it to a
different state j accessible by state s and the decision making process begins
again. This transition is random and every accessible state from state s is
associated with a probability p(j|s, a), namely the probability that the agent will
be transferred to state j after choosing action a in state s. We define T to be a
function known as the transition probability function with T'(s, a, j) = p(j|s, a).
It follows that for a particular state s;:

Zp(5i|8jaa) =1
s, €S
a€A(sj)

We define the above transition probability function as memory-less, meaning
that the next state the agent finds itself into depends only on the current state
and the current decision made and is completely independent from past states
or decisions. This property is known as the Markov property.

Having defined the above objects, a Markov Decision Process is defined as
the collection of objects {H, S, A, T, R}. Every function in this collection is also
a function of time step ¢ (decision epoch) [Put94].

2.3 Solving the MDP

Solving a MDP is usually interpreted as finding the best possible action the
agent can make in each state and then having them make decisions based on
these actions in order to achieve the best possible score with regards to a certain
metric.

2.3.1 Rewards and the Discount Factor

In a Markov Decision Process, the agent’s goal is maximizing the total reward
they will receive, which is the cumulative reward they receive after every in-
teraction with the environment for a particular number of time steps (decision
epochs) or until they reach a terminal state. A terminal state is defined as a
state in which the agent cannot execute any more actions, cannot receive any
more rewards and cannot transition to any other state. If we write the reward
the agent receives after the decision epoch ¢ as Ry, then the expected cumulative
reward the agent is to receive after decision epoch ¢ can be expressed as:

T
Gi= Y R

i=t+1

, where T" means the final decision epoch.
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An observation that can be made with regards to the above sum is that
it is only valid in case where the decision problem can be broken down to
subsequences (called episodes), the number of which is finite. Each of these
episodes terminates once the agent reaches a terminal state. Those type of
problems are known as episodic problems.

Some problems, however, cannot be viewed as compositions of discrete
episodes, such as continuous control problems [LHP*19]. In these types of
problems, which are known as continuous problems, we assume that the agent
will be making decisions potentially indefinitely, rendering the above sum
divergent (in some cases). If, for example, every reward the agent can receive
in such a problem is a positive integer, the partial sums will keep increasing
with the addition of every new term, while the upper limit of the summation
will tend towards infinite, for the number of decision epochs is infinite.

A solution to the above problem is discounting the rewards the agent will
receive in the future, by introducing a factor v, known as the discount factor, to
the above infinite sum. Using the discount factor, the expected, now discounted,
cumulative reward of the agent becomes:

Gy = Z’YiRH-H-l
i=0

In this case, it can be proven that the series will definitely converge for
0 <~ <1 [Ber00].

The value of v affects how important future rewards are to the agent. In
particular, when v = 0, the agent becomes myopic, meaning they focus more on
maximizing only the immediate reward, which they will receive after executing
their next action. This fact can also be mathematically validated, since every
term in the expected discounted cumulative reward becomes 0, except the first
term:

Gy = R

On the other hand, the more « approaches 1, the more value is given to
future rewards. The expected cumulative reward of a Finite-Horizon MDP can
be viewed as an expected discounted cumulative reward with a discount factor
of 1.

2.3.2 Policies and Value Functions

In the previous subsection, we formally defined the agent’s goal during their
decision making process. The most logical continuation would be to define
the method by which the agent can discriminate between correct and incorrect
decisions leading them towards achieving their goal. In order to assist the agent
in their decision making process, we assign a value to every state, indicating
how beneficial or harmful it is for the agent to find themselves in this state.
Having this information available, the agent can choose the action which will
lead them to the optimal next state, the one with the largest value.

36



An appropriate function to express the value of every state is the expected
(discounted or not) cumulative of this state, in other words the cumulative
reward the agent is expected to collect starting from this state and performing a
number of steps thereafter (finite or infinite). The decisions the agent will make
are determined by a concept known as a policy, namely a mapping between the
states and a probability that the agent will choose a certain (possible) action in
that state, for every action of that state [SB18]. We write the probability that
action a will be chosen if the agent find themselves in state s as w(als).

Using the definition of a policy, we can also define the value function of every
state with regards to a policy 7 as:

V‘n—(S) = E,T[Gt|St = S] = Eﬂ- |:Z'YiRi+t+l
=0

St:S:|

which refers to the expected value of the total discounted reward the agent will
receive starting from state s and following policy 7 thereafter. This function is
known as the state-value function.

Another useful definition is that of the action-value function for a particular
given policy 7:

Qn(5,0) = E4[G1[S, = 5, A, = ] = E, [Z#Rmﬂ
=0

St—s,At—a]

The action-value function of a state s is the expected value of the total dis-
counted reward the agent will collect starting from state s, choosing action a
and following policy 7 thereafter.

It can be observed that the value function is particularly useful towards
calculating the agent’s optimal course of action. This is because such a function
acts as a way of comparing policies. The agent is certain a policy 7 is better
than another policy 7’ if and only if the value function of 7 is greater than
the value function of 7’ for every possible state. Formally, this can be express
as: Vi(s) > V./(s) for every s € S. The optimal policy of a MDP is the
policy whose value function is greater than or equal to the value function of
every other policy at every possible state, or equivalently if it is better than
every other policy. It follows that a particular MDP m can have more than
one optimal policies, which will of course have equal value functions at every
possible state. The value function of all of those optimal policies is known as
the optimal state-value function at every state s and can be express as:

V*(s) = Wg}r%) Ve (s)

, where P(m) means the set containing every possible policy of this particular
MDP m. Those optimal policies also have equal action-value functions at every
possible state, the optimal action-value function:

Q*(s,a) = max Qr(s,a)

TEP(m)
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2.3.3 Bellman Equations and Optimal Policies

An especially useful attribute derived from the above equations is that the value
function satisfies a recursive relationship. More specifically, it holds that, for a
random policy 7 and a state s of the model:

V-,T(S) = EW[G”St = S} = EW[Rt+1 + ’}/Gt+1|St = S}

= 7w(als) > > p(s'srls, a)(r +1Ba[Gria|Sia = )

s’ T

= wlals) Y p(s'rls,a)(r +4Va(s) (1)

7,8’

As already established, m(a|s) represents the probability that the agent will
choose action a if they find themselves in state s, in other words it is the
mathematical representation of policy w. The two summations over r and s
have been written as a single sum for the sake of convenience [SB18].

This equation can be interpreted graphically, using what is known as a
backup diagram, which can be seen in Figure 2.1. Every diamond-shaped node
represents a state of the system, while the circular nodes stand for a state-action
pair. In every diamond-shaped node, the agent can choose a possible action,
depending on a policy . The environment, then, reacts to this decision and the
agent is transferred to a new possible state, which depends on a probability p,
connecting it to the state-action pair. In addition, the agent is given a reward
r. Every edge of the diagram from a circular to a diamond-shaped node is as-
sociated with a reward r and a transition probability p. In a diamond-shaped
node, the agent is expected to choose one of the possible actions and transition
to the corresponding circular node of the lower level. In a circular node, the
agent will be transferred randomly (depending on the above mentioned transi-
tion probabilities) to a new possible state. The second (double) sum of Equation
1 represents the expected value of the agent’s gain while they are at a circular
node, under a policy which dictates the probability of deciding every action for
every possible state.

In a diamond-shaped node, the agent has already decided and executed an
action, therefore the only thing left for them is to transition to a new state.
This can be expressed by the corresponding recursive equation of the action-
value function as:

Qr(s,a) =Y p(s',r]s,a)(r +AV(s")) ()
r,s’
Using this equation, equation 1 can be written as:

Ve(s) =Y ml(als)Qn(s,a) (3)

a

In the previous section we mentioned that the value function is a way of
ordering policies, based on which we can define the optimal policy, meaning the

38



O

Co )
OECRORORORO

Figure 2.1: Backup Diagram visualizing the Bellman equations. Note that s;
can represent any of the system’s state

one which, when followed, yields the maximum possible expected cumulative
reward. Utilizing equations 1 and 2, we can define recursive equations for cal-
culating this optimal policy. It can be proven that the optimal value function
at a particular state s can be calculated as:

* / * /
Vi(s) = gleagzp(s ;rls,a)(r +yV7(s)) (4)
7,8

This equation is known as the Bellman optimality equation regarding the
value function. An abstract way to interpret this equation comes naturally,
when considering that in every state, the maximum value of the value function
of the optimal policy will occur by choosing the optimal action, meaning the one
which maximizes both the immediate expected reward as well as the expected
future reward (discounted or not). Similarly, the Bellman optimality equation
regarding the action-value function is:

Q*(s,0) = 3 p(s', s, a)(r + ymax Q*(s', a')) (5)
r,s’ @

It can be proven that, for finite MDPs (meaning MDPs with finite state
and action spaces, not to be confused with Finite-Horizon MDPs), equation 4
has a unique solution. As long as the optimal value function has a value for
every possible state, it follows that equation 4 (similarly equation 5) refers to a
system of equations with |S| variables, which is, in theory, solvable. If the agent
possesses the optimal value function for every state, then the MDP’s solution
becomes a simple problem of finding the action which will lead the agent to the
optimal state (the one with the maximum optimal value function) from every
initial state at which they can find themselves into. Things get even simpler if
the agent has the optimal action-value function at their disposal, since it already
contains what the optimal action of every state is.

In practice, however, solving the above recursive equations using classical
methods is rather computationally complex. Three basic requirements that
need to by fulfilled in order for the equation to be solved are:
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e Knowing all the system parameters beforehand

e Having the required computational and memory resources to solve the
system in a realistic time and space

e The Markov property must hold

Usually the first and third conditions are fulfilled, it is unlikely, nevertheless,
that the second one will always hold. As an example, we can consider a simple
game of backgammon, which, when modeled, results in a state space of ap-
proximately 102° states, rendering the immediate computation of the system
practically impossible [SB18]. Naturally, approximate solutions must be used,
with the dominant one being Dynamic Programming

2.4 Policy Iteration

The first approximate method for computing the optimal policy using the Bell-
man recursive equations is based on Dynamic Programming, as already men-
tioned. Dynamic Programming is an important algorithmic tool, which dictates
breaking the problem down to subproblems, finding the optimal solution to ev-
ery single one of them and then composing those solutions to obtain the optimal
solution to the initial problem. If the final step is possible, meaning that the
optimal solution to the initial problem can occur as a composition of the optimal
solutions of its subproblems, then we say that the initial problem has optimal
substructure [CLRS09].

In order to apply a solution that utilizes Dynamic Programming, we must
assume that both the first and the third condition hold, meaning we know
all of the system’s parameters beforehand (the transition probabilities and the
rewards), as well as our model satisfies the Markov property. If we make the
above assumptions, we can compute the value function for a given policy (which
dictates the values of the m(als) probabilities) by solving the system of |S]|
equations of 1. The existence of the solution is assured, as long as v < 1 or the
termination is certain for every possible state s. In the k** step of the iteration,
the value function is updated according to the following rule:

Vi(s) = Y w(als) Y p(s',rls,a)(r + Vi1 (s')) (6)
a r,s’

It can be proven that equation 6 does converge for k& — oco. At the end
of the iteration, when convergence will have been achieved, the values of the
equation will be the value function under policy 7. This method is known as
Policy Evaluation (Prediction), as it computes the value function for a particular
policy, which may not necessarily be the optimal. In other words, we can use
this algorithm to ”guess” what the optimal policy is, by trying out (brute force)
every single policy and compare their value functions. Note that, in practice,
this method requires two arrays (at first sight) to execute, one to store the values
of the value function of step k—1 and another to store the value function of step
k which is computed. It has been proven, however, that the computation can be
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executed in-place, with just one array, which will be updated dynamically. This
means that during the update of step k, values already computed at step k& may
be used, which in fact accelerates the convergence. Finally, we must address
that, in order to check for convergence, we use the maximum difference between
old and new values of the value function, namely:

I§1€a§(|vk(8) —Vi—1(s)| < 6

where 6 is the difference threshold, defined by the user

As already mentioned, while the method described above is useful, it alone
is not efficient enough for computing the optimal policy, for it relies solely on
guesses. Nevertheless, it is a valuable tool in calculating the value function of
a policy and thus helping to find a better one. A better policy than a given m
can occur if we observe that, at a particular state s, choosing a different action
than the one dictated by m and following 7 thereafter yields better results than
blindly following 7 everywhere.

The above statement is a special case of a general theorem, called the Policy
Improvement Theorem. According to the Policy Improvement Theorem, if for
a pair of deterministic policies m, 7'

Qn(s,7'(s)) = Va(s)

for every state s € S, then policy 7’ is more optimal than (or as better as) m,
meaning that:
Vi (8) > Vz(s)

for every s € S
If we apply the above exchanging actions logic for every state and every
possible action, we obtain a greedy method for computing a more optimal policy:

7'(s) = argmax Qr(s,a) = arginapr(s’, rls,a)(r+Vz(s")) (7)

r,s’

This new greedy policy chooses the action that maximizes the immediate
reward in the next step according to V. and satisfies the conditions of the Policy
Improvement Theorem. The method by which a policy m can be improved and
transformed to policy 7’ is known as Policy Improvement.

Having already improved a given policy m and obtained new, more optimal
policy 7/, one would think to further improve the already improved policy «’.
This idea is the foundation of the first approximate algorithm used to solve the
Bellman equations, which is known as Policy Iteration

The essence of this iterative method is constantly calculating the value func-
tion and then improving the policy, until it converges to the optimal. Starting
from a randomly selected initial policy, in every step we calculate its value func-
tion using Policy Evaluation. Afterwards, we improve it by applying Policy
Improvement. This process is then repeated for the improved policy again and
again, until convergence is achieved, which is certain for finite MDPs. This idea
is presented in pseudocode in algorithm 5.
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Algorithm 5 Policy Iteration

1: function POLICYITERATION(6)

2 Initialize V'(s) and 7(s) (arbitrarily)
3 optimal Policy = false

4: while !optimalPolicy do

5: 6=0

6 while § < 6 do

7 for s € S do

8 v V(s)

0 V(s) o Xy p(s's7ls, @) (r + AV ()
10: § + max(é, [v — V(s)]
11: end for

12: end while

13: policyStable = true

14: for s € S do

15: oldAction = m(s)

16: n(s) = argmax, »,. . p(s',rls,a)(r + YV (s))
17: if oldAction # 7(s) then

18: policyStable = false

19: end if
20: end for
21: end while
22: return V and 7

23: end function

2.5 Value Iteration

Policy Iteration, though useful and more efficient than Policy Prediction, of-
tentimes is still not sufficient, as it involves extensive, repetitive use of Policy
Evaluation, which is both time inefficient and also grows rapidly as the number
of states grows larger.

The solution to this problem appears by deciding to stop Policy Evaluation
prematurely rather than wait for convergence. To be exact, even one iteration is
enough, while it can be shown that the convergence conditions are not violated.
The above modification leads to a new algorithm, known as the Value Iteration
algorithm, which is extensively used in modern problems.

This method is based on transforming the recursive Bellman equation 4 to
an update rule of the values of the iteration:

Vie(s) = mélxXZp(s'7 rls,a)(r +vVi—1(s")) (8)

r,s’

To terminate the recursion, we can again use the maximum difference be-
tween old and new value of the value function. It will be compared with an
arbitrarily chosen threshold €. Value Iteration is presented in pseudocode in
algorithm 6
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Algorithm 6 Value Iteration

1: function VALUEITERATION(6)

2 Initialize Vipp(s), Vausz(s), Q(s,a) and w(s) (arbitrarily)
3 4« o0

4: while § > 0 do

5: 6+ 0

6 for s € S do

7 for a € A(s) do

8 Q(s,a) 0

9: for s’ € S(s) do

10: Q(s,a) + Q(s,a) +T(s,a,8)(R(s,a,8") + Vimp(s"))
11: end for

12: end for

13: Vauz (8) + max, Q(s, a)

14: m(s) = argmax, Q(s,a)

15: end for

16: Vvtmp — Vauz

17: end while

18: return V and 7

19: end function

With A(s) we represent the set of all available actions at state s, while S(s)
indicates the set of states accessible from state s. In algorithm 6, operations
have been written in detail (opposite algorithm 5) as this particular algorithm
is the main tool this thesis will focus on improving and so parts of it should be
able to be seen explicitly.

2.6 Finite-Horizon

All the above algorithms for finding the optimal policy are applied on Infinite-
Horizon MDPs, meaning that the agent thinks they will be making decisions
indefinitely or until they reach a terminal state.

In the case where the MDP’s horizon is predetermined and finite, with a
length of N, the agent knows in advance how many steps they will make and
could theoretically compute the optimal policy for every possible number of
remaining steps with great accuracy. An important factor in this computation
is the number of steps remaining, which is non-existent in the Infinite-Horizon
case.

Every step of the Value Iteration represents a number of remaining steps of
the horizon. As a result, execution until convergence is not required, so we opt
for as many iterations as the length of the horizon. However, for every value
of steps remaining we must save a different policy, resulting in greater memory
needs during the execution of the algorithm, growing along with the length of
the horizon (at least in the basic/naive case). We can also omit the discount
factor 7, as there is no longer need for convergence, and so every optimal value
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function value represents the expected cumulative reward without discount that
the agent will collect starting from a particular state and following a particular
policy thereafter.

2.7 Turnpikes and Planning Horizons

In many cases, Finite-Horizon MDP problems prove to be absurdly demanding
in terms of execution time and memory. Comparing an Infinite-Horizon MDP
to Finite-Horizon one, we can easily observe that, if the horizon N is large
enough, the times Value Iteration will be executed are much more than those
needed for convergence in the IFMDP case. Additionally, an Infinite-Horizon
MDP results in only one optimal policy, independent of the actions that have
already been made or will be made in the future. As a result, the solution can
be achieved by storing O(1) arrays of length |S| in memory, resulting a total
space complexity of O(]S]). The above facts lead to the conclusion that being
able to approximate the Finite-Horizon MDP solution as an Infinite-Horizon
MDP will yield the most optimal results, both in terms of time and space.

As it so happens, such an approximation can be made, as proven by Shapiro
[Sha68] (also mentioned in [LP19] and [Put94]). According to that work, for any
FHMDP (must also be finite and not have variable rewards and/or probabilities)
and discount factor v there exists an integer N*(v), known as the Turnpike
Integer, where the decisions made in steps k > N*(v) are the same as the ones
decided in the Infinite-Horizon case. In other words, the agent can solve the
MDP (of horizon N) as if its horizon was infinite and come up with an optimal
policy, independent of time. Then, they can follow this policy from N to N —N*
steps remaining. Then, they solve again this MDP as an FHMDP with horizon
equal to NV — N* — 1 and result in a different policy for each time step.

Notice that this result can only be applied if the optimal policy of the corre-
sponding Infinite-Horizon MDP is a single decision rule, meaning it cannot have
2 optimal actions for a single state, as is shown in [Sha68]. The above results
naturally raise the question: How can one find the Turnpike Integer (also known
as Planning Horizon) ? Unfortunately, a concrete answer does not exist so far,
there are, however, ways to bound this number, described in detail in [LP19]
and [Put94].

In our experiments in the following sections, we chose many different values
of v and observed approximately what the value of the Turnpike Integer is, by
examining the convergence of the optimal policy, which did not yield sufficient
results. Another way of executing this approximation algorithm is to run a
FHMDP solving algorithm up until the length of the horizon and, assuming the
horizon is sufficiently large, use the optimal policy of steps remaining equal to
the length of the horizon to make decisions for the whole horizon. This is of
course expected to yield suboptimal results, as, after the planning horizon, the
optimal policy of the FHMDP should be used.
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2.8 Non-Stationary MDP

We define a Non-Stationary MDP (NSMDP) as follows: a NSMDP is an MDP
whose transition and reward functions depend on the decision epoch. It is
defined by a 5-tuple S, T, A, P;, R; where S is a state space; T'=1,2,.., N is the
set of decision epochs with N < oo; A is an action space; P, = p(s’|s, a, t)the
probability of reaching state s’ while performing action a at decision epoch ¢ in
state s; Ri(s,a,s’) is the scalar reward associated to the transition from s to
s' with action @ at decision epoch ¢ [LR20]. In other words, NSMDPs’ reward
and transitions functions are also a function of time. As a result, the policy
is also dependent on time, and is thus non-stationary. This type of MDPs has
lots of applications in real-world problems, as described thoroughly in Section
1.2. The agent could either know how the values of those functions will change
with regards to time in advance, or they could be completely ignorant to the
adjustment methods. It is, however, possible for a solution to be found (for
the first case) using the FHMDP algorithms described below. There are also
other ways of solving this type of MDPs (for the second case), as is explained
in [LR20] (using the Risk-Averse Tree-Search Algorithm).

2.9 Machine Learning

The idea of a machine being able to think as a human and solve complex prob-
lems has been around since the ancient times, but it was not until 1956 that
scientific research was actually made, creating the field of Artificial Intelligence.

Along with Artificial Intelligence, rose another great scientific topic, namely
Machine Learning. The belief that a computer could learn and perform tasks as
well as the human brain (and even exceed it), although dazzling, soon faded and
gave way to more realistic ideas. It was indeed possible to have a computer learn
a task, but it would be unimaginably hard to have the same machine perform
multiple tasks imitating the human brain.

During the early stages of the development of Artificial Intelligence and
Machine Learning, the goal was for the computer to be able to fast and efficiently
solve complex problems humans could not. Researchers were faced with a much
harder challenge when they tried to have a computer solve a problem which
could not be formally defined, although the human brain could easily solve it.
This led to the realisation that the way to have the computer solve it was to
train it with experience.

To better understand the core concepts of Machine Learning, we adopt T.
Mitchell’s definition of it: ” A computer program is said to learn from experience
F with respect to some class of tasks T and performance measure P, if its
performance at tasks in 7', as measured by P, improves with experience E”
[Mit97].

Machine Learning tasks are categorized in three groups depending on the
feedback the computer receives in the current system.
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2.9.1 Supervised Learning

In Supervised Learning problems, input data consists of the input samples along
with a corresponding label assigned to them by a knowledgeable external source.
The learning process then can aim for the computer to assign every new sample
that arrives to one of a finite number of labels, occurring from the input training
data labels, and is thus a Classification task. If the desired output is a number
of values for a finite number of continuous variables instead of labels, the task
is considered a Regression task [Bis07].

2.9.2 Unsupervised Learning

In a case where the input data consists only of the input samples, without
labels or any other values placed by an external source, the learning task is
characterized as Unsupervised Learning. In such problems, the objective of the
computer could be to discover groups of data bearing similarities and organize
them into clusters (Clustering), or to assume the data follow a set distribution
and try to define it formally (Density Estimation) or even to decrease the number
of dimensions of the input data and project them to lower dimension spaces in
order to visualize them (Visualization) [Bis07].

2.9.3 Reinforcement Learning

Reinforcement Learning is a method for the computer (also referred to as the
agent) to learn what to do in an environment, which actions to make in every
possible state it finds itself, with the sole purpose of maximizing and obtained
scalar reward. Every decision the agent makes affects the reward it receives,
as well as the next state it ends up in. Consequently, the agent is in a con-
stant trade-off between exploitation and exploration, with the former meaning
choosing actions which it already knows yield an adequate reward, while the lat-
ter refers to the agent exploring new paths through different, seemingly worse
rewarding actions, in order to possibly discover even greater rewards on the way.

Reinforcement Learning differs greatly from Supervised Learning, as the
latter has the computer use labels put on the data by an external knowledgeable
source to generalize the way it categorizes each sample as to correctly recognize
the category samples not given in the dataset belong to. This way the computer
does not learn from its own experience but rather from directions given to it
by the external source, making it difficult to learn without large datasets and
effort to label them.

It also differs from Unsupervised Learning, which tries to discover hidden
patterns in a dataset without labels or any other interference from an external
source. In both cases the agent learns and executes its task without labels on
the dataset samples or other interference by an external source, but in Rein-
forcement Learning it tries to maximize an obtained reward rather than trying
to find patterns and associations between the samples of the dataset [SB18].
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2.10 Reinforcement Learning Methods

In all algorithms described in this Section, it was assumed that the agent knew
all of the system’s parameters in advance. They could then use those accurate
estimations of the parameters to calculate the optimal policy and follow it to
obtain the optimal results (maximum cumulative reward). In real-world appli-
cations, however, the agent rarely knows all of their environment beforehand. In
order to overcome this problem, the agent must of course learn its environment,
which is achieved by performing actions. It could be that the agent executes
an optimal policy calculation algorithm, based on their current knowledge of
the environment and has achieved a great result, but could be missing out on
an even greater total reward due to their lack of knowledge of "hidden” system
parameters (which are yet to be discovered).

The agent’s view towards the system plays a crucial role in how the learning
process is carried out. There are two fundamental approaches of Reinforcement
Learning, namely model-free learning and model-based learning.

2.10.1 Model-Free Learning

By model-free we refer to an algorithm that does not utilize any reward or
transition functions but rather relies solely on the defined states, actions and
observations made during the calculation of the optimal policy [SB18].
Perhaps the most common method of model-free learning is the Q-Learning
method, proposed by Watkins [WD92]. The goal of this method is to esti-
mate the values of the state-action value function using the agent’s experiences.
Firstly, states and actions are defined to describe the environment. Afterwards,
state-action values are initialized arbitrarily for every state-action pair. The
agent can then start making decisions. After they make a decision to follow
action a from state s, the obtain a reward r and transition to a new state s'.
Utilizing this information, the agent can estimate the value of Q(s, a) as follows:

Qeap(s,a) =1+~V(s") =71+ 7 max Q(s',a") (9)

This quantity can be added to the corresponding state-action value func-
tion’s value that the agent already knew, to combine both prior and newly ob-
tained knowledge. The agent, then, obtains a new estimation of the state-action
function:

Q(s,a) = (1 —a)Q(s,a) + aQezp(s,a) (10)
The newly introduced parameter a is known as the learning rate and affects
how fast the agent will learn from experience. It has been proved that the agent
can successfully learn and achieve the optimal policy using this algorithm if it
is executed for every action of every state an infinite amount of time and a is
decayed in an optimal manner.
We can observe that Q-Learning offers a very efficient method of learning
and solving dynamically a Reinforcement Learning problem. Its great disad-
vantage, however, is that a large number of experiences is needed in order for
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the estimation to be accurate. This is because at every decision the model only
updates the values regarding its previous state and chosen action, while no new
information is obtained about any of the other actions or states of the model.

2.10.2 Model-Based Learning

In the context of model-based learning, the agent attempts to utilize experiences
as a way of learning the model’s parameters and then, after the estimation those
parameters is sufficiently accurate, they can attempt to calculate an optimal
policy based on this knowledge.

Every time the agent makes a decision, they will receive a reward and tran-
sition to a new state. This information can be used to update the reward and
transition estimation for this initial state, decision and new state. After a large
number of such experiences, the agent can perform an optimal policy calculation
algorithm as usual, such as Value Iteration, and use it for its decisions. Then
the process is repeated until the estimation of the model parameters is believed
to be accurate. Although this method produces an accurate estimation of the
environment which can be stored and be re-used for future calculations, it comes
with a great computational cost.

Methods to faster approximate the model usually involve updating the value
functions directly. The most fundamental is known as Dyna-Q [SB18]. After
an experience, the agent updates its corresponding reward and transition values
and performs the following update on the state-action value function involved:

Q(s;a) = R(s,a) +7 Y T(s,a,s) max Q(s',a’) (11)
a’€A
s'eS

Then, the same operation is performed on k£ random state-action values.
This speed up the process rapidly. There exist also other methods which are
optimizations on the Dyna-Q. Two examples are Prioritized Sweeping [MA93]
and Queue-Dyna [PW98], which involve assigning priorities to states and up-

dating those states using these priorities instead of randomly.

2.10.3 Exploration Strategies

In both of the cases described above, the agent could fall into the trap of ex-
ploitation, by choosing the best action to their knowledge, neglecting the ex-
ploration of different actions which may lead to even greater rewards. In order
to achieve optimal results, the agent must find a balance between exploring as
best they can and exploiting the most optimal actions to their knowledge.

A simple strategy that achieves this equilibrium is known as the e-greedy
Method. This method dictates that, before every decision the agent faces, in-
stead of deciding the optimal action (to their knowledge) they might make a
decision at random, based on a probability €. In other words, at every decision
the agent can either choose a completely random action with probability e, or
execute their decision making process as normal with probability 1 — e. This
probability does not necessarily stay constant throughout the decision making
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process, but could also be adaptive [dd17] (for example it could diminish the
more knowledge the agent acquires).

3 A Note on Optimizing the Value Iteration Al-
gorithm

As already mentioned in Section 2.3.3, an important requirement in order to be
able to solve the Bellman Equations and thus the MDP is having the required
computational and memory resources. We also established that, even in cases
of MDPs that seem simple at first, the execution time needed to solve them is
often unrealistic. Considering the above, optimizing the time complexity of the
Value Iteration algorithm is a well-known obstacle in MDP optimization theory.
In this Section, we discuss attempts already made towards this goal, as well as
our own proposed optimization and the results it yielded.

3.1 Proposed Solution

While the main focus of this work is optimizing the space complexity of Finite-
Horizon MDPs, an attempt towards improving the execution time of Value Iter-
ation in the case of Infinite-Horizon MDPs was made. The idea of our proposed
method was bounding the state-action function in way such that some actions
would be discarded altogether. This way, when Value Iteration is executed, some
actions will not be considered towards calculating the value function, and, thus,
neither will their corresponding transitions, practically reducing the execution
time.

The first step to this approach was to calculate sufficient upper and lower
bounds for every state-action value. Earlier, in Equation 5, we established that
the optimal state-action function depends on the immediate reward as well as
the optimal next state’s state-action function, or in other words, the optimal
next state’s value function, as max,ca Q*(s,a) = V*(s). The first term of
Equation 5 can be bounded above as follows:

q1(s,a) = Zp(s’,ﬂs, a)r < rgarxr (12)

7,8’

In other words, the expected immediate reward the agent will collect by
being in state s and performing action a is always less than or equal to the
maximum reward accessible from state s and action a. By symmetry, we obtain
an inequality for below bounding:

q(s,a) = Zp(s’, rls,a)r > rgigr (13)

r,s’

Regarding the second term of Equation 5, an above bounding can be per-
formed:
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g2(s,a) =7 _p(s,rls,a)V*(s') < ymax V*(s') (14)
S
r,s’

This expresses the fact that, the total discounted reward the agent is ex-
pected to receive after performing action a from state s and transitioning to
a new state s’ is always less than or equal to the maximum expected total
discounted reward the agent will receive starting from an accessible state. Sym-
metrically, we can also observe that:

q2(s,a) = vzp(s’,ﬂs, a)V*(s') > 7 min V*(s) (15)

s

Adding together inequalities 12 and 14, we obtain an upper bound for the
state-action function of a particular state and action pair:

Q*(s,a) < maxr +ymax V(") = Qu(s,0) (16)
Similarly, we derive a lower bound:
Q*(s,a) = min7 + v min V(s") = Qi(s, a) (17)

Notice that, in both inequalities, the maximum (or minimum) reward might
come from a state different than that of the maximum (or minimum) optimal
value function.

In practice, we would execute the calculation of upper and lower bounds for
every state-action pair of the model, and then, for a particular state s, delete
all those actions from the possible actions list, whose upper bound is lower than
the maximum lower bound of s, as we are certain that no optimal result could
be achieved by opting for those actions. Both the calculation, as well as the
deletion are presented in Algorithm 7.
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Algorithm 7 Calculate Bounds

1: procedure CALCBOUNDS

2 for s € S do

3 s.mazxLBound < —oo

4 for a € A(s) do

5: currMax < —oo

6 currMin < oo

7 for s’ € S(s) do

8 currMazx < max(currMaz, V*(s'"))
9: currMin < min(currMin, V*(s'))
10: end for

11: Q(s, a).upper Bound <— yeurrMax + max(Q(s, a).rewards)
12: Q(s,a).lower Bound + ~ycurrMin + min(Q(s, a).rewards)
13: s.maxLBound < max(maxzLBound, Q(s, a).lower Bound)

14: end for

15: end for

16: for s€ S do

17: for a € A(s) do

18: if Q(s,a).upper Bound < s.maxLBound then

19: deletea fromA(s)

20: end if

21: end for

22: end for

23: end procedure

We consider that the QStates are represented as objects in our implemen-
tation, that have two members, upper Bound and lower Bound corresponding
to the values of the bounds discussed earlier. A State, also represented as an
object, has the member mazLBound, equal to the maximum lower bound of
its QStates. After we calculate those upper, lower and max lower bounds, we
delete every action whose upper bound is less than the maximum lower bound
of a particular state s from its possible actions list, and we repeat this process
of deletion for every state in S.

The time complexity of the first loop is O(|S|?|A]), as the first loop iterates
over every state, action and neighboring state, while the second loop iterates
over every state and action, resulting in O(|S||A]). In total, the time complexity
of caleBounds is O(|S|?|A| + |S||A]) = O(|S]?| A]).

A natural question arising is when to perform the bounds’ calculation, as
performing them when our information about the value function of nearby states
is not sufficient could lead to deletion of optimal actions by accident. As an
example, we consider a fully observable MDP, whose value function is set to an
initial value (e.g. 0) at every state. One idea is updating the bounds every time
the value functions are updated, which does not have optimal performance, as
the calculations saved be discarding actions are far less than those required to
recalculate the bounds at every iterations.
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In the case of a model-based approach, such as the one used in our Finite-
Horizon experiments [LKKK17], one could calculate the bounds after the train-
ing of the model has been completed. During training, Value Iteration is exe-
cuted at scarce points in time, thus the agent has a (maybe incomplete) value
function value at every state.

We attempted this method in a different experiment. However, the results
we obtained were not what we desired. The total execution time seemed to have
increased even more with the addition of bounds’ calculation. An explanation
for this fact could be that, as we will be seeing in Section 5, our model consists
of at most 3 actions at each state (add 1 VM, remove 1 VM, no operation).
Although the state space might be large, only very few actions were actually
deleted, thus resulting in more time spent calculating the bounds than saved
after the deletion. Our theory, nevertheless, still has room for improvement and
could be the foundation of further optimizations of the Infinite-Horizon Value
Iteration’s execution time.

3.2 Prior Attempts on Optimizing Time Complexity

While our attempt did not yield any fruitful results, we theorized that it could
in other use cases. As already stated in Section 1.3.1, the concept of bounding
the value function in order to eliminate suboptimal actions has interested many
researchers. Most applications, however, refer to either Linear Programming
approaches of solving the MDP or utilize action elimination along with other
techniques.

4 Optimizing Finite-Horizon MDP Algorithms

As it has already been established, Bellman recursive equations offer an accurate
solution to the Finite-Horizon MDP problems in the case of discrete time. In
order to execute those equations in an algorithmic framework, however, a great
amount of time and memory resources are required, depending on the applica-
tion. In this section, we delve into the pre-existing solutions to the problem, as
well as proposing two new algorithms with improved space complexity.

4.1 Pre-Existing Solutions

The known methods of solving a fully observable FHMDP are efficient in only
one of two ways at a time: either they are as quick as it gets in execution or
they occupy the minimum possible amount of memory. Their results will be
used as the basis, on which we will construct our models and will also serve as
comparison targets for our method’s results.

4.1.1 Naive Solution

One of the most prevalent solutions for fully observable FHMDPs is the Naive
Solution as we call it. This solution refers to computing every policy for every
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decision epoch (meaning every number of steps remaining) and store them in
memory after they are computed. When the agent finally starts making deci-
sions, they will be able to very quickly recall the policy for the current number
of steps they have available, make a choice using it and then delete it. The
process is then repeated for the next number of remaining steps until the agent
has completed a number of steps equal to the length of the horizon.

This solution written in pseudocode is presented in algorithm 8. We assume
that every policy, which consists of an array of length equal to the number of
states, is stored in a stack. As a result, at any given time on top of the stack lies
the policy with the largest number of steps remaining. Note that the numbers
of steps remaining of the stack’s entries are the positive integers 1 through k, in
descending order starting from the top (where k is the number of steps remaining
currently to the agent). This stack in algorithm 8 is represented by policyStack,
while the array containing the current policy is represented by policy Array. We
assume that policyStack is initialized outside this function and can be accessed
by it globally. We also consider given the takeAction function, which takes the
chosen action as argument and executes it, rewarding the agent and transferring
them to the next state, which is calculated in a probabilistic way. This function
is different and depends on the context of the application.

Algorithm 8 Naive Solution

1: procedure NAIVESOLUTION (horizon)

2 Vemp = [

3 for : = 0 to horizon do

4: policyArray « []

5: Veouws < H

6 for s € S do

7 for a € A(s) do

8 Q(s,a) «+ 0

9: for s’ € S(s) do

10: Q(s,a) + Q(s,a) +T(s,a,s)(R(s,a,8") + Vimp(s))
11: end for

12: end for

13: Vauz (8) + max, Q(s, a)

14: policyArrayls] = argmax, Q(s, a)
15: end for

16: V;fmp — Vauz

17: policyStack.push(policy Array)

18: end for

19: for ¢+ = 0 to horizon do
20: chosenAction = policyStack.top()[currentState]
21: takeAction(chosenAction)
22: policyStack.pop()
23: end for

24: end procedure
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Regarding the time complexity of algorithm 8, we can observe the fact that it
contains two for-loops which iterate over the length of the horizon N. The first
for-loop contains three nested for-loops, which iterate over the states, actions
(only those available at current state s, A(s)) and neighboring states (only
those accessible at current state s, S(s)) respectively. The total worst-case time
complexity of the first for-loop is, as a result, O(N|S|?|A|). The second for-loop
does not contain nested loops, thus its time complexity depends only on the
function calls inside it. We consider the time complexity of takeAction trivial,
and so the time complexity of the Naive Solution comes only from the first
for-loop and is equal to O(N|S|?|AJ).

The space complexity in this case involves everything happening inside the
naiveSolution process, meaning that, again, the space occupied by takeAction
is trivial. In total, throughout the whole execution of the algorithm, N policy
arrays will be stored, each of length |S|. Thus, the total space complexity
turns out to be O(N|S]), which grows proportinally to the horizon’s length for
constant state spaces.

4.1.2 In-Place Solution

Another method deemed useful towards solving fully observable FHMDPs is the
In-Place Solution. The agent calculates only the value function (and thus the
policy array) of the decision epoch equal to the number of steps they have left
to make. As a result, they only need to store (at most) one policy array and two
value function arrays of length |S| in memory at any given point in time. The
great drawback of this method, however, is that, after the agent uses a policy
array, in order to calculate the next they must again start the calculation from
the beginning. As a result, the execution time of this algorithm is immensely
greater than that of the Naive Solution. The above statements are written in
pseudocode in algorithm 9.
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Algorithm 9 In-Place Solution

1: procedure INPLACESOLUTION (horizon)

2 Vemp < ||

3 Vaue <[]

4: stepsRemaining = horizon

5: while steps Remaining > 0 do

6 for i = 0 to stepsRemaining do

7 policyArray < [|

8 Veouz <[]

9: for s € S do
10: for a € A(s) do
11: Q(s,a) «+ 0
12: for s’ € S(s) do

13: Q(s,a) + Q(s,a) +T(s,a,8')(R(s,a,s") + Vimp(s'))
14: end for

15: end for

16: Vauz (8)  max, Q(s, a)

17: policy Array(s] = argmax, Q(s,a)
18: end for

19: end for
20: V;tmp — Vauz
21: chosenAction = policyStack.top()[currentState]
22: take Action(chosenAction)
23: stepsRemaining = stepsRemaining — 1
24: end while

25: end procedure

In algorithm 9, variable stepsRemaining is used, indicating the number of
steps remaining for the agent to make. This variable is initialized to the length
of the horizon and is decremented by 1 each time the agent makes a decision.
The total time complexity of this algorithms is O(|S]), completely independent
of the horizon, as at any given time at most 3 arrays are stored in memory, two
for the value function of the current and the previous step (Vimp , Vaus) and
one for the policy of the current step (policyArray).

The advantage of the memory needs being independent of the horizon’s
length is huge, especially in the cases of large horizons. Nevertheless, it comes
with a great drawback in execution time. Inside the while-loop in algorithm
9, we observe a for loop similar to the one found in the Naive Solution. This
for-loop is executed each time from 0 up to the number of steps remaining
to the agent. At the end of every iteration of the while-loop, the number of
steps remaining is decremented by 1. This while-loop is thus executed as many
times as the horizon’s length. Every iteration of this while-loop is of time
complexity: O(stepsRemaining|S|?|A|). In total, if we write stepsRemaining
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as j for convenience, the total time complexity turns out to be:
N N
NISPIAl+ (N = DISPIA| + ...+ [SP1A] = Y 5ISIP|Al = [S]P|A] Y i
j=1 j=1

This particular sum is known to be evaluated to N(AQH'I), and so its time com-

plexity is quadratic with respect to the length of the horizon and can be written
as O(N?2|S|?|A]). This solution, consequently, has tiny memory requirements
even for large horizon values, it requires, however, a huge time to execute, even
for relatively small horizon lengths, rendering it forbidding in cases of large
horizons.

4.2 Proposed Solutions

The two methods described above each have their own unique advantages, with
the Naive Solution achieving sufficient time complexity at the expense of mem-
ory occupied, while the In-Place solution requires the least amount of memory
possible, resulting in practically impossible execution times. The two methods
introduced in this section offer space complexity improvements with some (if
any) execution time burden, depending on the user’s needs.

During the discussion of this section, we assume that an index representing
the number of steps remaining is assigned to every value function array, which
contains the value function calculated for this number of steps remaining. We
will be referring to this value function array’s index simply as index, for the
sake of convenience.

4.2.1 Square Root Solution

Our first suggested solution is an improved version of the Naive Solution with
regards to the space complexity. This means that this solution has the same time
complexity (asymptotically) as the Naive Solution, while lowering the memory
needs at the same time. It is based on the Naive Solution, with a simple twist:
instead of storing every policy array (and value function array) in memory, we
can store only a few ”checkpoint” arrays and recompute every intermediate
array we might need.

By this reasoning, a good starting idea would be storing in memory the value
function arrays that correspond to indices that are multiples of the square root
of the total horizon’s length. As a result, the number of arrays stored would
no longer be linear with regards to the horizon, but in the orders of the square
root of the horizon N.

In practice, we would calculate every array up to the one whose index is
equal to the horizon’s length, storing every array whose index is a multiple of
the square root of the horizon in the meantime. Consequently, we would use
the value function array we obtained in the above step to compute the optimal
policy for the state the agent is in and the number of steps remaining. The
agent will then execute the chosen decision and delete the arrays from memory.
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Afterwards, the computation is repeated for the value function array of the next
index ( which is equal to the index used before minus 1, as the agent just made a
step). The big difference here is that this time the computation starts from the
last value function array calculated(the one with the greatest index out of those
stored in memory), resulting in less recomputations required. Graphically, this
can be seen in Figure 4.1.

Nevertheless, this solution does not yield the expected results, for it burdens
the algorithm’s execution time. In every interval of length v/N, N total compu-
tations of time complexity O(|S|?|A|) are needed. The reason for this is that,
in order to calculate every array in this interval, we need all of the arrays whose
index is lower than the one of the array we are trying to compute. By definition,
however, we do not store those arrays in memory, so recomputations have to be
carried out. Another way to view this issue would be to treat this process as exe-
cuting an In-Place Solution at every interval of length v/N, as every time we need
an array in this interval we have to recompute all those that come before it. Mak-
ing the above assumption, one can clearly observe that the time complexity of
every interval of length v/N is equal to the time complexity of the In-Place solu-
tion for a ”horizon” of length v/N. Using the asymptotic notation, we can write
the above result as O((v/N)?|S|?|A]) = O(N|S|?|A|). In addition, these calcula-
tions are used in every one of those intervals, v/N times in total. In conclusion,
the total time complexity turns out to be: O(VNN|S2|A]) = O(N2|S[2|A|).

Fortunately, this solution can be improved further with regards to the exe-
cution time, by storing in memory v/N more arrays. In every interval of length
VN, during the computation of the array with the maximum index (in that
interval) we store every intermediate array we compute and delete it after we
have used it. This way every array in this interval is calculated only once, re-
sulting in O(V/N|S|?|A]) time complexity in every one of those intervals, and
Jbecause there are v/N such intervals in total, the total time complexity is
O(VNVNIS|?|A]) = O(N|S|?|A[). The memory required increases by v'N ar-
rays, making it so that no more than 2v/N arrays of length |S| can be stored in
memory at any given time, resulting in a total space complexity of O(v/N|S]).

Visually, Figure 4.2 depicts the way arrays are stored in the case of a horizon
of length 16. On the left lie the value function arrays along with their indices.
Those stored in memory during the algorithm’s execution are colored in green.
On the right, one can observe that in the interval 12 up to 15 (which is of length
V16 = 4), having initially only the array of index 12 stored in memory, we
compute the array of index 15, using the array with the greatest index available
at any given time, while also storing it. Following this reasoning, at most 8
arrays can be stored in memory at any given point in time in this example,
which is exactly twice the square root of the horizon’s length.

Figure 4.2 graphically shows exactly how the above described computations
are executed at an interval of length v/N in the case of horizon equal to 16.
Specifically, at the interval starting with index 12 and ending with index 15 the
steps followed are:

1. Initially, only the value function array of index 12 is stored.
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Index | Value Function

10
11

13
14
15

Figure 4.1: Stored value function arrays (in color) at indexes multiples of 4,
square root of horizon length 16.

2.

We compute the value function array of index 13 using the stored value
function array of index 12 and we store it temporarily

We compute the value function array of index 14 using the stored value
function array of index 13 and we store it temporarily

We compute the value function array of index 15 using the stored value
function array of index 14 and we store it temporarily

We use the value function array of index 15 to compute the optimal policy,
the agent executes the chosen action and the value function array of index
15 is deleted from memory.

We use the value function array of index 14 to compute the optimal policy,
the agent executes the chosen action and the value function array of index
15 is deleted from memory.

We use the value function array of index 13 to compute the optimal policy,
the agent executes the chosen action and the value function array of index
15 is deleted from memory.

We use the value function array of index 12 to compute the optimal policy,
the agent executes the chosen action and the value function array of index
15 is deleted from memory.

This process is repeated at every interval of length v/ N.
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Figure 4.2: Computing value function arrays at indices 15...12; array stored in
memory in advance in green; arrays stored temporarily in memory throughout
the execution in yellow; arrays yet to be computed in white.

Algorithm 11 contains the above process written in pseudocode. Firstly, we
have to define the calculateValues function, presented in Algorithm 10, which
will be used to compute every value function array needed. The functions argu-
ments are: the index of the value function array we wish to compute (symbolized
as targetIndez), the largest index of a value function array stored in memory
(startingIndex), which is assumed to be 0 in the case of no array stored in
memory yet, as well as the value function array of startinglIndez, filled with
zeros in the case of startingIndex = 0. The fourth argument (tree) is a boolean
variable, which, when true, forces the function to save every intermediate value
function it computes at a stack, called the valueStack. On the other hand,
when its value is false, the function only stores the final value function array in
memory. Note that, whenever a value function array is stored in valueStack,
its corresponding index is also stored in a second stack, called the indexStack.
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Algorithm 10 Auxiliary function for calculating value functions

1: procedure CALCULATEVALUES(targetIndex, startingIndex, V, tree)
2 Vimp <V

3 Vaue <[]

4: for i = startingIndex + 1 to targetIndexr + 1 do

5: for s € S do

6 for a € A(s) do

7 Q(s,a) «+ 0

8 for s’ € S(s) do

0 Q(s,0) — Q(s,a) + T(5, 0, 5 )(R(5, 0, 5) + Vimp(5'))
10: end for

11: end for

12: Vauz (8)  max, Q(s, a)

13: end for

14: V;&mp — Vaum

15: Vauz <[]

16: if tree then

17: valueStack.push(Vimp)

18: indexStack.push(i)

19: end if
20: end for

21: valueStack.push(Vimyp)
22: indexStack.push(i)
23: end procedure

The actual Square Root Solution is executed by Algorithm 11, written in
pseudocode. Function root Evaluation takes as arguments the horizon’s length
and executes every computation necessary. In the first for-loop, the value func-
tion arrays whose index is a multiple of L\m | are computed, which are stored
in both the stacks (as the tree argument of calculateValues is set to false).
Afterwards, if the horizon’s length is not a perfect square, the last stored value
function array’s index will be smaller than the horizon’s length, which should be
the index of the last stored value function array, so every value function array
up to it is computed and stored in both the stacks.

Having stored these arrays, the model’s memory state is similar to this of
Figure 4.1, meaning there is a value function array stored for each multiple
of [vV/N|, as well as any excess arrays calculated in the second loop. Variable
steps, which is initialized to the length of the horizon, indicates the number of
steps remaining to the agent. This variable will be used as a counter in the
while-loop, which is the core of the algorithm. In particular, if the number of
steps remaining is one less than a multiple of |[v/N|, the case is similar to the
one described in Figure 4.2, thus every intermediate value function up the target
one are stored in memory (¢ree variable is set to true). If this is not the case,
the value function array will be already stored in the stack. Finally, the value
function array is loaded in variable V' and used to compute the optimal policy
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(calculate Best Action function), an action is decided and executed and, after
the number of steps is decremented by one and is greater than zero, the agent
repeats the process.

Algorithm 11 Square Root Solution

1: procedure ROOTSOLUTION(N)

2: V < zeros(N)

3 steps = N

4: for i =0 to N step [vV/N]| do

5: calculateValues(i + |VN|,4,V, false)

6: end for

7 if indexStack.top() < N then

8 calculateValues(N, index Stack.top(), valueStack.top(), true)
9: end if
10: while steps > 0 do

11: if indexStack.empty() then

12: calculateValues(steps, 0, zeros(N), false)

13: else if ((steps + 1)mod|vV/N|) == 0 then

14: calculateValues(steps,index Stack.top(), valueStack.top(), true)
15: end if

16: V <« valueStack.top()

17: chosenAction = calculate Best Action(V [currentState)])

18: takeAction(chosenAction)

19: steps = steps — 1
20: end while

21: end procedure

Observing the above algorithms, the theoretical results regarding the
complexities are confirmed. The time complexity of calculateValues is
O((targetIndex — startingIndex)|S|?|A]), as the outer for-loop depends
on the range of computation. In rootFEvaluation, the first for-loop is exe-
cuted v/N times, while each one of those is of the same time complexity as
calculateValues when the range is /N, resulting in a total time complexity
of O(VNVN|S]?|A]) = O(N|S]?|A|). Additionally, inside the while-loop,
calculateValues is called v/N times for intervals of range v/N, resulting in
a term of same time complexity as the former. Consequently, the total time
complexity of the algorithm is O(2N|S|?|A|) = O(N|S|?|A|). Regarding the
space complexity, at most 2v/N value function arrays of length |S| will be
stored in memory at any given point, plus their corresponding indices ( a
total of 2v/N indices of space complexity O(1)), confirming the total space
complexity of O(v/N|S|).
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4.2.2 Logarithmic Solution

In cases where space complexity is of the essence, while the execution time
needs to be reasonable (with some tolerance), an especially efficient solution is
the Logarithmic Solution (or Tree Solution).

The foundation of this idea is the Square Root Solution, discussed in 4.2.1,
along with the desire to lower the memory needs even further. This lead to the
realization that even less value function arrays need to be stored. a promising
asymptotic function with respect to the horizon, indicating the number of value
function arrays to be stored, is the binary logarithm of the horizon, or in symbols
logy N.

In order to better comprehend the solution to be described, we can visualize
mentally that the value function arrays are stored in a Binary Search Tree
[CLRS09]. Every node of this tree contains a key, which is responsible for
the ordering of the nodes, which is equal to the value function array’s index.
During the computation of a value function array V', only the intermediate value
function arrays whose indices lie in the path from the root to the index of V'
need to be stored. The longest path from the root to a node of the tree is of (at
most) length logy N (where N is the number of nodes, in this case the horizon’s
length), leading (at most) O(log, V) value function arrays stored at any given
point in time. Note that this is achieved only in the case where every level of
the tree is full (except maybe the last one). Such a tree can be found in 4.3,
with a horizon of length 16.

Figure 4.3: Binary tree representing the ordering of array’s indices.

We will be examining the example of the complete execution of the Loga-
rithmic Algorithm, in the case of a horizon of length 16. The steps described
below are represented graphically in Figure 4.4. Coloring a node with green
indicates that the value function array with the corresponding index is stored in
memory and ready to be used. On the other hand, the color yellow represents
that the corresponding value function array is currently used to compute the
optimal policy for this number of steps remaining and will be deleted from mem-
ory after an action is decided and executed. Finally, we color white the nodes
whose corresponding value function arrays are neither stored in memory, nor
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used for calculating the optimal policy. Note that, any computation from those
described below uses the value function array with the greatest index stored in

memory.
1. We compute up to the value function array of index 8 and we store it in
memory
2. We compute up to the value function array of index 12 and we store it in
memory
3. We compute up to the value function array of index 14 and we store it in
memory
4. We compute up to the value function array of index 15 and we store it in
memory
5. We compute up to the value function array of index 16 and we store it in
memory
6. We use array of index 16 to calculate the optimal policy for 16 steps
remaining and we delete it from memory afterwards.
7. We use array of index 15 to calculate the optimal policy for 15 steps
remaining and we delete it from memory afterwards.
8. We use array of index 14 to calculate the optimal policy for 14 steps
remaining and we delete it from memory afterwards.
9. We compute the value function array of index 13 and use it to compute
the optimal policy for 13 steps remaining.
10. We use array of index 12 to calculate the optimal policy for 12 steps
remaining and we delete it from memory afterwards.
11. We compute up to the value function array of index 10 and we store it in
memory
12. We compute the value function array of index 11 and use it to compute
the optimal policy for 11 steps remaining.
13. We use array of index 10 to calculate the optimal policy for 10 steps
remaining and we delete it from memory afterwards.
14. We compute the value function array of index 9 and use it to compute the
optimal policy for 9 steps remaining.
15. We use array of index 8 to calculate the optimal policy for 8 steps remain-
ing and we delete it from memory afterwards.
16. We compute up to the value function array of index 4 and we store it in

memory
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17.

18.

19.

20.

21.

22.

23.

24.

25.

We compute up to the value function array of index 6 and we store it in
memory

We compute the value function array of index 7 and use it to compute the
optimal policy for 7 steps remaining.

We use array of index 6 to calculate the optimal policy for 6 steps remain-
ing and we delete it from memory afterwards.

We compute the value function array of index 5 and use it to compute the
optimal policy for 5 steps remaining.

We use array of index 4 to calculate the optimal policy for 4 steps remain-
ing and we delete it from memory afterwards.

We compute up to the value function array of index 2 and we store it in
memory

We compute the value function array of index 3 and use it to compute the
optimal policy for 3 steps remaining.

We use array of index 2 to calculate the optimal policy for 2 steps remain-
ing and we delete it from memory afterwards.

We compute the value function array of index 1 and use it to compute the
optimal policy for the final step.
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Figure 4.4: Graphical representation of the Logarithmic Solution for the case of
horizon of length 16. Each of the graphs corresponds to a step described above.
The nodes corresponding to value function array stored in memory are colored
green, while those who are currently in use are in yellow.

The algorithm described above stores at most |log, N | arrays of length | S| at
once at any given point, in other words the same as the height of the imaginary
Binary Search Tree, resulting in a space complexity of O(]S|log, N).

This idea is also contained in Algorithm 13 in pseudocode. It makes use of
the calculateV alues function already defined in 4.2.1, as well as a new auxiliary
function, named treeTraversal, aiming to find the indices of the value function
arrays that need to be stored during each point of the execution. In particular,
this function follows the same logic as Binary Search [CLRS09], using variables
[, r as indices for the left and right end of the subarray. Variable k moves as if
the key searcing variable in a Binary Search. If there is a value function array
already stored in the stack, the search will ”continue” from this array’s index,
as can be seen in line 13, while, if the stack’s top is the value function we are
trying to calculate, the search is over and this array is returned (lines 8 through
11). If, however, the search is being carried out as normal and pointer [ is not
greater than pointer r, the algorithm can continue in one of three ways:

e If pointer k is the requested one, then we compute the value function
we need using calculateV alues, without storing any intermediate results
in memory, starting from the last stored value function array (namely the
one with the largest index or none if none is stored). Afterwards, the
computed value function array is returned and the function terminates.

e If pointer k is smaller than the requested, the value function array corre-
sponding to pointer k will be stored (because it lies on the path from the
tree’s root to the requested node in the imaginary Binary Search Tree),
and it is thus calculated using calculateV alues, similarly to the previous
case and stored. Afterwards, pointer [ moves one step to the right of k,
while k is updated to the arithmetic mean of [ and r. If [ is still not greater
than r the process is repeated once again.

e If pointer k is greater than the requested, the value function array cor-
responding to k is not on the path from the root to the requested node
in the imaginary Binary Search Tree, thus pointer r is set to one position
left of pointer k, while k is updated to the arithmetic mean of [ and r. If
[ is still not greater than r the process is repeated once again.

After the while-loop is terminated, the function returns array Vi, contain-
ing the requested value function.
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Algorithm 12 Auxiliary Function to store Value Function Arrays

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:

function TREETRAVERSAL (targetIndex, N)

<0
r< N
k+ B
Vip < |
if notindexStack.empty() then
if indexStack.top() == targetIndex then
Vimp < valueStack.top()
valueStack.pop()
indexStack.pop()
return Vi,
else
k < indexStack.top()
end if
end if
while [ <r do
if kK == target then
if indexStack.empty() then
calculateValues(k, 0, zeros(N), false)
else

calculateV alues(k, indexStack.top(), valueStack.top(), false)

end if
valueStack.pop()
indexStack.pop()
Vimp < valueStack.top()
break
else if k < target then
if indexStack.empty() then
calculateValues(k, 0, zeros(N), false)
else if indexStack.top()! = k then

calculateValues(k, indexStack.top(), valueStack.top(), false)

end if
l=k+1
k= lr
else
r=k—1
k=4
end if
end while

return Vi,

41: end function

Utilizing the above algorithm, the decision making process at each step of
the horizon is greatly simplified as can be observed in Algorithm 13. Similarly to
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the previous solutions, variable steps indicates the number of steps remaining to
the agent. For each one of them, the requested value function is computed, using
treeTraversal and used to calculate the optimal policy and thus the optimal
action.

Algorithm 13 Logarithmic Solution

1: procedure TREESOLUTION(N)

2 steps +— N

3 V]

4 while steps > 0 do

5: V <« treeTraversal(steps, N)

6 chosenAction = calculateBest Action(V [currentState])
7 take Action(chosenAction)

8 steps = steps — 1

9: end while

10: end procedure

In order to acquire the time complexity of the Logarithmic Solution, we must
first prove the following Lemma:

Lemma 4.1. In the Logarithmic Solution with horizon N, when calculating an
array of index X, the number of elementary calculations required is always equal
to the number of nodes in the left subtree whose root is the node with key X + 1
in the imaginary Binary Search Tree, except for the array with index N.

Proof. By elementary calculation we refer to calculating a value function array
of index k using a value function array of index k — 1, which can be completed
in O(|S|%|A|) time. As we already established, the Logarithmic Solution follows
the logic of Binary Search when the calculation of an array with index X is
necessary. In any Binary search performed in an array of length N starting
from number £ and containing every number up to k + NV, for any number X
the following equation is true:

N

X = llast(X) + W

(18)

By l145¢(X) we symbolize the left index of the last interval before finding X,
while by iter(X) we denote the number of iterations of Binary Search required
to find X. This equation holds because every time we iterate, the length of
the array is cut in half, as is denoted by the denominator of the fraction, while
in the last step (in which X is actually found) we find X just to the right of
llast (X) .

As shown in the Logarithmic Solution’s explanation, this algorithm performs
a Binary Search every time an array needs to be calculated. Every time the
index pointer of the Search moves to the right, the array to whose index the
left pointer points is stored in memory. This implies that, after calculating an
array of index X, on the top of the value function stack lies the value function
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array whose index is the left end of the last interval before finding X, or in other
words 145t (X).
Rearranging Equation 18 we obtain:

N
llast(X) =X - W
N
X —14+1—lea(X) = 9iter(X) "
N
(X —1) = liast(X) = Qiter(X) -1

The term on the left hand side of this equation is exactly equal to number
of elementary calculations that should be performed when requiring the array
of index X — 1, starting from the last array stored in memory after having
calculated the array of index X in the previous step, which is precisely {jqs:(X).
The term on the right is exactly equal to number of children contained in the
left subtree whose root’s index is X in the imaginary Binary Search Tree, as
the number of iterations to find X using a Binary Search is equal to the depth
of X in the Binary Search Tree (with the root being at depth 1 instead of 0).
Thus, we proved that the number of elementary calculations needed in order to
calculate the array of index X — 1 using the Logarithmic Solution is equal to
number of children nodes in the left subtree whose root is the node with index
X. O

Using the above Lemma, the algorithm’s time complexity can be calculated
as follows: firstly, the array of index N is calculated (N being the horizon’s
length), storing every necessary intermediate array in memory. Afterwards, for
every subsequent calculation, the number of elementary calculations performed
is equal to the number of children in the left subtree whose root is the node
representing the value function array calculated in the previous step. Every
level of the tree contains 2(i 4+ 1) nodes, where i is the depth of the tree at each
level, with the root being at level 0 (except maybe the last level). The tree
contains a total of log,(N) levels, as every level is full, except for maybe the
last. The total number of elementary calculations is given by:

69



log, (N)

TN = Y 2y 1)

=0
10%2(N)
N i
= > (5-2)
=0
log, (V)
Nlog,(N ,
_ og;( ), Y o (20)
1=0
_ Nlogy(N) 2lee2(N)+1_q
N 2 21
= Nlog;(N) YON 1
= O(Nlogy(N))

Each of these elementary calculations requires O(]S]?|A|) time, resulting in
a total time complexity of O(|S|?|A|N logy(N))

5 Description of Implementation

In this Section, we will be describing how the environment to test the algorithms
mentioned in the previous Sections was set up. We will be discussing the use
case of our model, how it was implemented, difficulties encountered along with
their solutions, as well as methods used for measuring the needed performance
metrics.

5.1 Use Case

The use case we chose for our problem was the one analysed in depth in
[LKKK17]. The problem introduced in the above paper regards a computer
cluster, which houses a distributed database. This cluster constantly receives
read requests, while the number of Virtual Machines, of which it consists, is
variable and can be changed by the agent depending on the needs of the sys-
tem (elasticity property). As a result, the only actions the agent can make are
adding a VM, removing a VM or doing nothing. The number of states the model
contains varies, depending on the maximum and minimum number of VMs that
can exist in the cluster at any time as well as the incoming load. The agent acts
a coordinator of the cluster, adjusting the number of active VMs in the cluster
as needed to both serve the incoming load and do so efficiently. Every state the
model can be at is expressed by a set of parameters, such as the total load and
the number of Virtual Machines. Using that information, the agent learns the
system’s parameters, trains on them and makes the optimal adjusting decision
every time it is required (indefinitely in theory).
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The authors compared 4 different algorithms, two preexisting and two newly-
introduced, to solve the MDP created to simulate the above problem. The first
two algorithms are the classic MDP (using Value Iteration in an Infinite Hori-
zon) and Q-Learning, while the two new approaches where both versions of the
other two using Decision Trees. We based our work on what was implemented
regarding the classic MDP approach with some changes to make the algorithm
better fit our approach.

First and foremost, it should be noted that, while the algorithm used in the
initial experiments was treated as an Infinite-Horizon MDP solving algorithm
(Value Iteration), it actually ran for a finite amount of steps. It was assumed
that the agent did not know the horizon’s length in advance and thus they could
not prepare for it accordingly. In our experiments, we treated the problem as
a Finite-Horizon problem, with the agent having prior knowledge about the
number of steps they are required to make.

Another important issue was the fact that the agent’s training was happening
not only throughout the training steps but also during the evaluation. This is
of course a valid model-based learning approach, rendering the model partially
observable. We, on the other hand, treated the model as fully observable, as
we had the agent learn the system’s parameters during the training phase as
normal, but believe that those parameters are constant and will not change
throughout the evaluation period.

Finally, changes were made in the model’s structure, regarding both time
efficiency and convenience. These are discussed in depth in the following Sec-
tions.

In our case, which closely follows the work made in [LKKK17], we assumed
that:

e The cluster size can vary anywhere from 1 to 20 VMs

e The only actions available at any point are: increase the cluster size by
1, decrease the cluster size by 1 or do not perform any operation. It goes
without saying that those actions are available to the agent only when
they can actually be performed. If for example there are already 20 VMs
in the cluster, the action ”Add 1 VM” is no longer available.

e The incoming load before training is in the form of a sinusoidal function,
namely: load(t) = 50 + 50sin(2Zt), while in the evaluation period its
frequency doubles.

e The percentage of the incoming load that is read requests is given by a

different sinusoidal function: r(t) = 0.75 + 0.25 sin(35%).

e The RAM size is 1024 for the first 220 steps, then 2048 for the next 220.

This pattern continues for any number of steps.

e The I/O operations per second are also given by a sinusoidal function of

time: io(t) = 0.6 + 0.4 sin(2%t)
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e The capacity of the cluster at a given point in time ¢ is given by:
capacity(t) = (10r(t) — io_penalty — ram_penalty)vms(t), where vms(t)
is the number of VMs currently in the cluster at time ¢. The parameter
io_penalty is 0 when io < 0.7, 10io(t) — 0.7 when 0.7 < io(t) < 0.9 and 2
otherwise. Finally, ram_penalty = 0.3 when the RAM size is 1024 and 0
otherwise.

e The reward after executing an action is given by:
reward(t) = min(capacity(t + 1), load(t + 1)) — 2vms(t + 1)

This implies that the agent is rewarded greatly when the capacity of the
system is enough to fully serve the incoming load, while it is penalized if
it over- or under-delivers.

All the above assumptions were implemented into a class named Complex,
as either functions or members. A useful member of this class was the current
time step, incremented after every action and used in the above functions. The
most important method of Complex is the execute_action function, which, when
given an action as input argument (an action refers to a pair of string and int,
with the first being either ”ADD”, "REMOVE” or "NO_OP” and the latter
717 or 70”) executes it, calculates the current measurements of the system and
returns the corresponding reward.

5.2 Classes

Before defining the actual MDP model, we must first discuss the components
of which it consists. The M DP Model class consists of abstract objects, called
States, representing the model’s states. Each of these States contains one
QState object for each of the possible actions the agent can make while they
are at it. This structure was also utilized in [LKKK17], we, however, translated
the code from Python to C++, making some changes for convenience and per-
formance. We also built the Finite M DP Model class upon the M DPModel as
a derived class extending the latter.

5.2.1 QState

We shall first analyze the Q.State object. Its members are:

e pair(int,string) action: The action this QState refers to. The string could
be "ADD”, "REMOVE”, "NO_OP”, while the integer could be 0 or 1.

e int num_taken: The number of times this action has been chosen.

e float qualue: The current value of the state-action value function for this
state-action pair.

e vector(int) transitions: Each index refers to a state, while the value at an
index expresses the time this state-action pair has led to this particular
state (the one of the index).
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vector(float) rewards: Each index refers to a state, while the value at an
index expresses the sum of rewards the agent received each time it chose
this action and transitioned to a particular state.

int num_states: The total number of states of the model.
vector(int) transtate: Contains the state IDs the agent can transition to.

vector(float) trans: Contains the transition probability to the state cor-
responding to the same index in transtate.

The members written in plain text were present in the implementation used
in [LKKK17], while those written in bold were added in our implementation.
transtate is a vector used to keep track of the possible states this action might
lead, without containing information about every single state, resulting in lower
vector length. The same goes for trans, which contains the transition probabil-
ities corresponding to the states in transtate.

Qstate’ s methods are:

void update(int state_num, float reward): Updates num_taken, transi-
tions and rewards when the action is taken.

pair(string,int) get_action(): Returns the action of this QState.

floatget_qualue(): Returns the value of the state-action value function for
this Qstate.

boolean has_transition(int state_num): Returns true if there is a transi-
tion to the state whose ID is equal to state_num.

int get_num_transitions(int state_num): Returns the number of times
the agent has transitioned to the state whose ID is equal to the state_num
after choosing this action.

float get_reward(int state_num): Returns the reward the agent gains after
transitioning to the state whose ID is equal to the state_num.

float get_reward(int state_num, int time_step): Returns the time-
dependent reward the agent gains after transitioning to the state whose
ID is equal to the state_num.

void set_qualue(float qualue): Sets the Qstate’s qvalue equal to the input
argument.

int get_num_taken(): Returns the number of times this action was chosen.
vector(int) get_transitions(): Returns the transitions vector.

vector(float) get_rewards(): Returns the rewards vector.
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The get_reward function written in bold is overloading the preexisting
get_reward function to extend its functionality to time-dependent rewards.
The original get_reward function returns the average reward the agent has
received when taking a certain transition (to a state whose state ID is given
by state_num) or zero if this transition has never been taken. The overloaded
function takes an extra argument, time_step, which expresses the decision
epoch for which we would like to know what the reward is. To simulate a
time-dependent reward, we chose a Round-Robin method, meaning that at
every time step only one of the available QState’s rewards is changed. At
any given point in time, for a particular State and action, one of the available
transitions is chosen to not return a reward. This transition leads the agent to
the State whose state_num is equal to time_step mod transtate.size(). The
modulo operator is what ensures that the variability of the rewards affects only
one transition at a time in a Round-Robin manner.

5.2.2 State

The next important abstract class is the State class. A State captures the
essence of the model’s state, holding important information about it. It’s mem-
bers are:

e vector(QStates) gstates: Holds every @QState of this state.
e int state_num: Unique int for every state, also referred to as state’s ID.
e int num_states: The total number of states of the model.
o float value: The value of the value function for this state.

e int best_gstate: Index of the @QState with the maximum qvalue in the
gstates vector

e boolean isBestQStateSet: Indicates whether the best Q)State has been
found.

e int num_visited: The number of times this state has been visited by the
agent.

e map(sting, pair(int, float) parameters: Contains the system’s parameters
in this state.

The isBestQStateSet variable indicates whether the best QState of the
model (the one with the maximum gvaue) has been calculated and set because,
if best_gstate was not set, this would create problems in a programming language
such as C++ in a translated implementation of functions.

A State contains of the following methods:

e void visit(): Increments num_visited by 1.

e int get_state_num(): Returns this state’s state_num (ID).
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void set_num_states(int num_states): Updates num_states to equal the
input argument.

float get_value(): Returns this state’s value.
int get_best_gstate(): Returns this state’s best_gstate.

pair(string,int) get_optimal_action(): Returns the action of this state’s
best QState.

int best_action_num_taken(): Returns the number of times the optimal
action was taken.

void update value(): Finds and sets the best_gstate of this State and
updates its value to equal the corresponding qualue.

map(string, pair(float, float)) get_parameters(): Returns this State’s
parameters.

void add_new_parameter(string name, pair(float, float) value): Adds a
new parameter to this State.

pair(float, float) get_parameter(string name): Returns the value of a
certain input parameter.

void add_gstate(QState q): Adds a new QState to the gstates vector.
vector(QStates) get_gstates(): Returns this State’s gstates.

*Qstate get_gstate(pair(string, int) action): Returns a reference (pointer)
to this State’s QState whose action is equal to the input argument

vector(pair(string,int)) get_legal_actions(): Returns all actions of this
State's gstates.

As one can see, no additions to the model were needed, just some modifi-

cations caused by the changes in some of the State’s member’s types described
earlier.

5.2.3 MDPModel

Having defined both the Q) State and State class we are ready to analyze the fun-
damental class which simulates the system and executes the solving algorithms,
the MDPModel. The MDPModel's members are:

e float discount: The discount factor used in Value Iteration.

o vector(States) states: Contains the States of the model.

o int current_state_num: The state_num (ID) of the State the agent is
currently at.
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int initial_state_num: The state_num (ID) of the State the agent was
initially at after training.

JSON parameters: The model’s parameters.
float update_error: The threshold for terminating Value Iteration.
int max_V Ms: Maximum number of VMs the cluster can have.

int min_VMS: Minimum number of VMs the cluster can have.

The members of this class all exist in the initial implementation described
in [LKKK17] and no new members were needed. The methods of M D P Model
are analyzed below in detail:

JSON _get_params(JSON pars) : Returns a JSON object containing the
input parameters in an appropriate form.

void set_state(JSON measurements): Sets the currentstate,um to that
of the State whose parameters correspond to the input measurements.

void _update_states(string name, JSON new_parameter): Creates a
new State for every combination of the old states and new_parameter
values. Then, sets the states member equal to a vector containing all the
newly created States.

int _get_state(JSON measurements): Returns the state_num of
the State of the model whose parameters correspond to the input
measurements.

void _set_mazima_minima(JSON parameters, JSON acts): If the
acts JSON contains the "add_VMs” or "remove_VMs” action(s), set the
max_V Ms and min_V M's members equal to the corresponding maximum
and minimum values in the parameters argument.

void _add_gstates(JSON acts, float initq): For each of the actions in
acts creates a @QState in each of the States (if the action is permissible),
with a gualue initialized to initq. Then, executes update_value for every
State of the model.

boolean _is_permissible(State s, pair(string,int) a): Checks if the given
action a is possible in State s.

pair(string,int) suggest_action(): Returns the optimal action of the State
with state_num equal to current_state_num.

vector(pair(string,int)) get_legal_actions():  Returns a vector con-
taining all possible actions of the State with state.num equal to
current_state_num.
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e void update(pair(string, int) action, JSON measurements, float reward):
Run after choosing an action during training. Visits the current State,
finds the next State, performs update and _q_update to the (QState chosen
and transfers the agent to the new State.

e void update(pair(string, int) action, JSON measurements, float reward):
Run after choosing an action during evaluation. Finds the next State
and transfers the agent to the new State.

e void _q_update(QState gstate, vector(float) V'): Updates the qualue of
gstate argument using the Bellman Equations with discount factor equal
to the discount member.

e void _q_update(QState gstate, vector(float) V, int time_step): Updates
the qualue of gstate argument using the Bellman Equations without dis-
count (Finite-Horizon), while if the time_step argument is given the reward
included in the calculation is time-dependent.

o void value_iteration(): Executes Value Iteration on the model using the
_q-update function on all Q)States of every State and the update_value
method of every State. Terminates when the Bellman Residual is smaller
than the update_error member.

e void getStateOnlyValues(vector(float) V'): Inserts the values of every
State of the model into V in the corresponding index.

e vector(pair(int,float)) getStateValues(vector(State) V'): Returns a vec-
tor of pairs containing the best_gstate (first term of pair) and value (second
term of pair) members of every State in input vector V.

¢ void loadValueFunction(vector(pair(int, float)) V)): The first term of
every pair in the input vector corresponds to a state_num and the second
to a value. Each of the model’s State’s best_gstate and value is set to the
corresponding index pair’s values.

e void loadBestQStates(vector(int) V): Set every model’s State's
best_gstate to the corresponding value in V.

Again, those methods written in bold are the ones added on top of the
initial model, as they were deemed useful for the Finite M DP M odel’s methods,
described next. The initial model had even more methods and members, which
were not included in our version since they could not be of use to us from our
theoretical point of view.

5.2.4 FiniteMDPModel

All of the algorithms described in Section 4 were implemented in a new class
extending M D P Model, called Finite M DP M odel. This class naturally inherits
every member and method of the base class M DPModel. The new members
FiniteM DPModel contains are:

(s



e stack(int) index_stack: A stack used to contain the indexes of the value
function vectors stored in memory throughout each of the MDP solving
algorithms’ execution.

e stack(vector(pair(int,float))) finite_stack: A stack used to contain the
value function vectors needed to execute the MDP solving algorithms’.
Each of the vectors are of length |S| and contain both the value of the
corresponding State and its best_gstate.

e stack(vector(int)) action_stack: A stack used to contain the best_gstate
vectors needed throughout the execution of the Naive MDP algorithm.
It was deemed more memory efficient to use a stack containing only the
best_gstate (equally, the optimal action) of every state and for every num-
ber of steps remaining in the case of the Naive algorithm, as no value
function will be re-used throughout its execution.

e float total_reward: The total reward the agent collects during evaluation.

e int steps_made: The number of steps the agent has already made during
evaluation.

e float expected_reward: The total reward the agent is expected to make
starting from the initial State they are before evaluation begins. Is ini-
tialized using a seed passed to the Finite M DPModel’s constructor as an
argument.

e default_random_engine eng: A random engine used to produce pseudo-
random numbers throughout the experiments.

e uniform real_distribution(float) unif: The distribution which the pseudo-
random numbers follow. In this case it is a uniform distribution from 0 to
1, meaning the number produced each time has an equal chance of being
any floating point number between 0 and 1.

e int mazr_memory_used: The maximum amount of memory used through-
out the execution of one of the algorithms (value either in bytes or kilo-
bytes, depending on the operating system).

e int init_memory_used: The initial amount of memory occupied by the
model at the beginning of every experiment (value either in bytes or kilo-
bytes, depending on the operating system).

More information about the pseudo-random numbers generating methods
can be found in [RNG]. The methods of this class are:

e void checkMemoryUsage(): Reads the current value of memory occupied
by the process and updates max_memory_used accordingly.

e void _g_update_finite(QState q, vector(pair(int, float)) V'): Updates the
qualue of q argument using the Bellman Equations without discount. V
argument contains best_gstate - value pairs for each State.
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void _g-update_finite (QState q, vector(pair(int, float)) V, int time_step
): Updates the qualue of q argument using the Bellman Equations without
discount using variable rewards (time-dependent). V argument contains
best_gstate - value pairs for each State.

float calcReward(vector(float) V): Calculates the average of the values
contained in V (sums all values and divides by |S]|). This is later used to
calculate value functions for States for which the agent got no information
from training (univisited).

float calcReward(vector(pair(int, float)) V): Calculates the average of
the values contained in V’s second term of each pair (sums all values and
divides by |S]). This is later used to calculate value functions for States
for which the agent got no information from training (univisited).

void takeAction(int corrAction, int time_step): Used to execute an ac-
tion. Randomly calculates which transition the agent will follow by choos-
ing input action corrAction, transitions them to the next state and adds
the reward to the model’s total_reward. If the time_step argument (op-
tional) is not set, the reward given is not time-dependent. Otherwise, the
time-dependent version of get_reward is used.

void calculateValues(int k, int starting_-index, vector(pair(int, float))
V, boolean tree): Executes calculateV alues algorithm (see Algorithm 10
in Section 4.2.1), with valueStack and indexStack in the pseudocode
being finite_stack and index_stack members of the model respectively.
In addition, the value of States never visited is set to the result of
calcReward.

float calculate Policy(int horizon): Used by the Naive algorithm, its func-
tionality is almost identical to that of calculateV alues, the only difference
being that it does not utilize the index_stack or finite_stack, but rather
the action_stack, where it stores only the best actions of each value func-
tion vector. In addition, it returns the largest index (step) value function’s
value at the agent’s initial State, which is equal to the expected reward
of the agent.

void naiveEvaluation(int horizon): Executes the Naive algorithm (see
Algorithm 8 in Section 4.1.1). Firstly, calculatePolicy is called. After-
wards, for every time step left to the agent, an action is popped from
action_stack and executed using takeAction.

void inPlace Evaluation(int horizon): Executes the In-Place algorithm
(see Algorithm 9 in Section 4.1.2). Calls calculateValues once for the
largest value of the horizon and uses it to set the expected_reward variable.
Then, for every step left to the agent, it calculates the value function vector
and thus the optimal action using calcualteV alues, starting from index 0
and saving no intermediate result in memory.
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void rootEvaluation(int horizon): Executes the Square Root algorithm
(see Algorithm 11 in Section 4.2.1). Calls calculateV alues for every multi-
ple of the horizon’s square root, always starting from the last index stored
in memory, and saves every value function vector (whose index is a mul-
tiple of the square root of the horizon) calculated in the finite_stack. If
the horizon is not a perfect square, and thus some value function arrays
have yet to be calculated, it calculates them and stores them in the stack.
Then, it starts making actions using the vectors stored in memory. If the
needed vector is not stored in memory, it calculates it starting from the
largest indexed vector stored, and also storing every intermediate result.
Every time and action is made, the corresponding vector is popped from
the stack.

void treeTraversal(int target, int horizon, vector(pair(int, float)) V):
Executes the tree traversal algorithm which stores every value function
vector whose index lies on the path from the imaginary tree’s root to the
target node (see Algorithm 12 in Section 4.2.2).

void treeEvaluation(int horizon): Executes the Logarithmic algorithm
(see Algorithm 13 in Section 4.2.2). For every step left to the agent, it
calls treelraversal to acquire the desired value function vector. It then
uses it to take an action and removes if from the stack.

void in finite Evaluation(int horizon): Executes the first Approximation
algorithm of the Finite-Horizon (with discount). Executes value;teration
once and uses the stationary policy calculated to take every action, as
many times as the horizon’s length.

void turnpike Evaluation(int horizon): Executes the second Approxima-
tion algorithm of the Finite-Horizon (Turnpike). Calculates up to the
value function vector whose index corresponds to the full horizon’s length
using calculateValues, without storing in memory any intermediate re-
sults. Then, every decision is made using this value function vector re-
gardless of the step, for every step of the horizon.

void runAlgorithm(model_type alg, int horizon): Executes the chosen
algorithm depending on the model_type. Also measures performance met-
rics (execution time and memory) and prints them in an appropriate form.

The model _type mentioned in runAlgorithm is the name of a custome vari-
able type, using the enum keyword of C++4. Its values can be: infinite,
naive, inplace, root, tree or turnpike. Each of the above evaluations uses
checkMemoryUsage at certain keypoints to get as accurate memory readings
as possible.

5.3 Training

The model learns the system it simulates by experience, which is provided by
the Complex class discussed earlier. Before training, a Complex scenario is
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initialized using user-defined parameters. Afterwards, the Finite M D P M odel is
created and its current state is set by receiving measurements from the scenario.
The user also provides the model with a number of training steps. For every step
in the training steps, the model either selects a legal action at random (with
probability €) or simply selects the optimal action (with probability 1 — €),
as the e-greedy method dictates. Then, the chosen action is executed in the
scenario, which yields a reward using the execute_action function, as well as
measurements about the current state of the system. The model is then updated
using the update function, with the input arguments being the chosen action,
the collected reward and the new measurements. Every 500 steps, the model
executes a single Value Iteration in order for its policy to be up-to-date with
the current information about the system.

After the training is completed, the trans and transtate vectors of the model
are set, using those transitions whose transition probability is greater than zero.
This is an optimization on the initial model, as will be experimentally verified
in Section 5.5. Finally, the model runs the chosen MDP solving algorithm and
prints the results.

5.4 Performance Metrics

In order to evaluate the performance of the MDP solving algorithms we utilized
three different metrics: the total reward collected, the execution time and the
memory occupied at runtime.

The total reward collected was measured by a member variable of the
FiniteM DP M odel class, namely total_reward, as was established earlier. Each
time the agent collected a reward during the evaluation period, it was added to
its total reward. This metric will later be compared to the expected reward of
the agent, also measured using a member of the class (expected_reward).

The execution time of each algorithm was performed using the Chrono C++
Library. More information about it can be found in [chr]. In the runAlgorithm
function, before executing any algorithm, the variable start is initialized to
the current date and time using a high_resolution_clock through the Chrono
Library. After the selected algorithm has run, another variable named stop gets
the value of the current date and time using the same method. The difference of
stop — start is stored in the duration variable and refers to the elapsed time in
microseconds. Note that the high_resolution_clock is the clock with the smallest
tick period implemented in this library, and should, in theory, yield the most
accurate time measurement results.

The most complex measurement was by far the memory occupied measure-
ment. The reason for this is that there is no known method to exactly mea-
sure how much memory a certain data structure occupies during runtime. A
workaround we managed to perform was to measure the initial memory before
any algorithm’s execution and periodically re-measure the memory occupied at
frequent points during the execution. Then, it was a matter of simply subtract-
ing the maximum of those measurements from the initial memory occupied.
Note that this method does not provide the actual amount of memory used by
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the data structure containing the value function vectors, but rather an overview
of the extra memory the algorithm needed to solve the MDP.

Implementing this measuring method differs between operating systems. An
efficient solution for systems running Windows OS is the Process Status API,
more specifically the getProcessMemorylnfo function, described in greater
detail in [psa]. This function is used to retrieve information about the process
that called it. One particularly useful among them is the WorkingSetSize is
the size of the pages of virtual memory this process has or is using (in bytes).

On the other hand, a Linux system can refer to a file containing all informa-
tion about a particular process, such as the one running the algorithms. This file
is known as /proc/[pid]/status, where pid is the process ID of the process whose
information we desire. In our case, pid = self. Among other information, the
one containing the value of the Virtual Memory size used by the process is the
one under VmRSS. The value is in kilobytes. This directory’s documentation
can be found in [lin]. Both of the methods mentioned above are considered
relatively insufficient when used for accurate measurements, which is not the
case in our experiments.

For better interpretation of the experimental results presented in the next
Section, we should discuss how the system’s memory is organised. In a typi-
cal operating system, each process does not have immediate access to physical
memory, but rather to a memory management concept known as Virtual Mem-
ory. This concept provides the illusion that the memory available to a process
is much larger than the actual physical one [Dei90]. Each physical address is
mapped to a virtual address using what is known as a paging table. A page is
the smallest unit of data for memory management in such a Virtual Memory
system, being a contiguous block of virtual memory. When a process needs ac-
cess to memory, the memory the system provides it is in the form of pages. This
fact will be useful in interpreting the experimental results of the next Section,
where the memory measured is always a multiple of the page size, signifying
that pages are given to a process whether they actual use it as a whole or not.

The experiments were conducted on a Linux server with Intel(R) Xeon(R)
E5-2687TW v3 @ 3.10GH CPU and 378 Gigabytes of RAM, while C+411 was
used.

5.5 Execution Time Improvement

Observing the initial model used in [LKKK17] revealed that optimizations could
be made regarding the actual execution time of the model’s algorithms. In
particular, the data structure used to iterate over a single state’s transitions
was the transitions vector, containing the number of transitions to each state,
even when this number is zero for the majority of them. After training, there are
many states which are never visited, resulting in an immediate reward of zero
for any transition from them and transition probabilities ﬁ We also noticed
that the more states the model has the more sparse it becomes, as most never
get visited. The addition of the transtate and trans vectors made it so that
the number of transitions the algorithms iterate over is much smaller than |S|.
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Furthermore, regarding the non-visited states, we know that the first part
of their value function referring to the immediate reward will always be 0, as no
information is known about their immediate rewards. As for the second part
which involves the value function of neighboring states, it will be the average of
all other states of the model, which can be calculated once and reused.

Implementing the above optimizations into the model led to great execution
time reduction, as can be seen in Figure 5.1, for the case of 200 and 2000 states.

Optimization on Execution Time
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Figure 5.1: Total running time in seconds of the Finite-Horizon algorithm for
200 and 2000 states. The curves colored in blue represent the initial method of
implementation, while those colored red are the optimized ones.

In Figure 5.1 the difference between the initial and optimized model is ap-
parent, especially in the case of 2000 states. As the states of the model grow
larger, so does the sparsity of those visited, resulting in greater execution time
improvements using this optimization technique.

6 Experimental Results

Having established the fundamentals of our implementation, experiments were
conducted in order to validate the theoretical results of Section 4. The three
categories on which the algorithms competed against each other regard the total
reward collected, the total execution time and the memory occupied.

6.1 Models to be compared

First and foremost we must summarize what algorithms will be compared, which
include both the preexisting methods as well as the newly proposed ones. Two
infinite approximation methods were also included for consistency, based on the
Turnpike theorem mentioned in Section 2.7.
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6.1.1 First Approximation of the Finite-Horizon

The Finite-Horizon MDP approaches to be compared vary in time as well as
space complexity. The first approach is an approximation of the Finite-Horizon,
using a type of Infinite-Horizon MDP. In particular, after the training is com-
pleted and the model is fully aware of the system and its parameters, a single
Value Tteration (until convergence) is executed. The agent then utilizes the val-
ues computed by this algorithm to make every decision for a finite number of
steps.

This method is an obvious approximation, balancing between infinite and
finite horizon. The Infinite-Horizon Value Iteration is used to calculate the
values for every state, because of the small time complexity (it is assumed
convergence happens in much less steps than the length of the horizon) and
small space complexity, as only one list of values for every state needs to be
saved in memory and used for every decision. This results in a total space
complexity of O(|S|?|A|) treating the convergence as almost instantaneous and
a total space complexity of O(]S|).

Of course this shortcut does not come without consequences. Because the
agent calculated the values as if the horizon is infinite without prior knowledge
of its actual length, it is bound to collect a much smaller reward than the true
Finite-Horizon approach, especially for smaller horizon values. In addition, the
agent uses the same ”guidelines” to make its decisions for every step, without
updating them every time the remaining steps get smaller, leaving itself prone to
loops of the same rewards when it could be acquiring larger rewards by following
an other small path for the final few steps.

It should be noted that, as v approaches 1, the accuracy of this approxi-
mation gets higher. This can be interpreted as an approximation to a Finite-
Horizon Value Iteration (which can be considered having v exactly equal to
1) with a horizon tending to infinity. Consequently, this affects the rate of
convergence, which gets significantly slower the closer v gets to 1.

This method is also expected to not yield optimal results in the case of Non-
Stationary MDPs, as it returns a stationary policy. In the case of NSMDPs, the
policy must be non-stationary, taking the time dependence into account.

6.1.2 Second Approximation of the Finite-Horizon

The second approximation of the Finite-Horizon MDP as Infinite-Horizon is
based on the Turnpike Theorem, described in Section 2.7. According to this
theorem, there exists a number of steps remaining ng such that for every number
of remaining steps greater than ng the policy is the same (stationary), given that
the horizon is sufficiently large.

To implement this idea, we had the agent calculate the policy up the hori-
zon’s length N, storing in memory at most 2 value function arrays, and then
using this policy array (of index N) to make every decision until the agent run
out of steps. Given that the horizon is sufficiently large and the MDP is Station-
ary, we expect the total reward collected to be slightly less than that collected
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by an actual Finite-Horizon algorithm, as the policy calculated by both algo-
rithms is the same for n > ng, but for the remaining N — ng steps only the
actual Finite-Horizon algorithm possesses the correct policy.

This algorithm is of the same time complexity as the Naive Finite-Horizon
algorithm O(N|S|?|A|), but its space complexity is |S| as it stores at most 3
arrays of length |S|, two value function arrays and the final policy array.

Note that, this method is expected to yield suboptimal results in the case
of Non-Stationary MDPs, as it calculates a stationary policy. In the case of
NSMDPs, the policy must be non-stationary, taking the time dependence into
account.

6.1.3 In-Place Finite-Horizon Algorithm

This algorithm manages to correctly calculate values and actions to be made
for the Finite-Horizon MDP problem utilizing the least possible space. This
is accomplished by calculating every array of values for every state and every
number of steps remaining when it is needed, starting from the beginning. Every
new array overwrites the previous, until the decision is made. This results in a
space complexity of O(|S]), as at most one list of values for every state is saved
in memory at all times.

Achieving the optimal space complexity of the Finite-Horizon Approxima-
tion described in 6.1.1 while making the correct calculations, though, comes at
a great temporal cost. For every number of steps remaining, the agent does
not have any knowledge of older values and so it must compute them again
from the very beginning. As established, this results in a time complexity of
O(N?|S|?|A|), rendering this method impractical for large horizons.

6.1.4 Naive Finite-Horizon Algorithm

The term Naive was chosen for this method as it express the first approach that
comes to mind for a Finite-Horizon MDP algorithm. As described in Section
4.1.1, this is the least optimal Finite-Horizon method regarding the space com-
plexity. The idea is to simply save every list of values for every number of steps
remaining while calculating the N-steps-remaining list of values.

The space complexity of this method is O(N|S|), growing linearly with the
length of the horizon. Nevertheless, because every list of values is calculated only
once and saved until used, the time complexity is in the orders of O(N|S|?|AJ).
As it was already mathematically proven in section 4, there is a lot of room for
improvement regarding this approach, which will be used as a reference point
in the following experiments.

6.1.5 Square Root Finite-Horizon Algorithm

Building on the previous Naive method, this approach achieves the same time
complexity of O(N|S|?|A|), while lowering the space complexity to O(v/N|S|).
As described in section 4, during the computation of the largest number of steps
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remaining list of values, a list of values corresponding to multiples of the square
root of the horizon N is stored in memory. Then, we treat every interval of
length |v/N| as a Naive Finite-Horizon MDP, starting from index (k —1)[v/N|
up to k|v/N|, where 1 < k < |v/N|, resulting in at most 2|v/N| lists of length
|S| to be stored in memory at every point in time. In addition, following this
procedure the total time complexity is L\/N | times the time complexity of the
Naive Finite-Horizon MDP, resulting in O(N|S|?|A|).

This method should, in theory, always be preferred over the Naive Finite-
Horizon MDP, offering less memory consumption in the same execution time.

6.1.6 Logarithmic Finite-Horizon Algorithm

Even greater reduction in space complexity can be achieved using this method
described in detail in Section 4.2.2, with a small trade-off in the time complexity
of the algorithm. Following the logic of a Binary Search Tree containing the
steps remaining, we store in memory the lists of values of every index in the
path from the root of the tree up to the index needed. This results in a space
complexity of O(log, (N)]S|) and a time complexity of O(N log, (N)|S|?|A]).

6.2 Reward Comparison

As already mentioned, a random number generator is used whenever needed
for the training and decision-making processes. In every execution, a seed is
provided to the model in order to ensure consistency in the results. It follows
that, for a particular seed, the total reward collected by each of the In-Place,
Naive, Square Root and Logarithmic Finite-Horizon algorithms is the same, as
they perform the same calculations but store a different number of arrays. Thus,
for the following comparison, both Approximations of the Finite-Horizon MDP
will be compared to one of the previously mentioned Finite-Horizon algorithms
(representing all of them), with regards to the total reward collected.

The values of every state at every number of steps remaining in a Finite-
Horizon MDP correspond to the expected total reward the agent is expected to
gain after starting from a particular state and making the optimal decision at
every state the find themselves into and for every number of steps remaining. In
practice, however, the actual reward the agent collects will almost certainly differ
from the expected reward. This is justified because no matter what decision the
agent makes, the actual state it transitions to (and consequently the reward it
collects) is determined by a probability function. If every decision the agent
makes is treated as a random experiment, it is almost certain that the agent
will, at some point, transition to an unwanted state and will have to continue
from there, especially for larger horizon values.

This could result in the agent collecting smaller rewards in the Finite-Horizon
case than in the Approximation case, although the first was proven to be more
optimal. Thus, the optimality of the Finite-Horizon over the Approximation
with regards to the reward collected will be evaluated after a number of repe-
titions of the experiment with a different seed, in order to eliminate statistical
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inconsistencies.

For this purpose, each one of the following three experiments was conducted
20 times with a different seed each time, in order to ensure that the rewards
collected are close to the values they would converge to after a large number of
experiments and pacify the effect of random events such as the ones described
above on the variance of the reward collected.

The parameters of the model used in this experiment are:

e Number of runs in each experiment: 20

e Training steps: 10000

e Minimum VMs: 1

e Maximum VMs: 20

e Initial VMs: 10

e e-probability: 0.7

e Number of States: 200

e Initial QValues: 0

e Actions: {add 1 VM, remove 1 VM, no operation}
e Value Iteration ~: {0.1, 0.3, 0.99}

e Value Iteration threshold: 0.1

e Number of steps before next Value Iteration during training: 500

e Horizon: {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200,
102400, 204800, 409600, 819200}

For better comprehension of the results, we also present a diagram con-
taining the expected reward for each of those algorithms in the case of this
Non-Stationary Model in Figure 6.1. The expected reward of the Turnpike Ap-
proximation is the same as that of the Finite-Horizon as the same value function
array (the one corresponding to index N) is used to perform the calculation.
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Figure 6.1: Mean value of the total expected reward in 20 different experiments,
in the case of the Finite-Horizon algorithm, three Approximations with different
values of the discount factor v = {0.1,0.3,0.99} and the Turnpike Approxima-
tion. Both axes are in logarithmic scale.

In Figure 6.1, we can observe that the Finite-Horizon and Turnpike Approx-
imation algorithm’s expected reward is identical, which is anticipated, as the
expected total reward is the value of the value function at the initial state of
the agent for ¢ = N steps remaining. Both of those agents use the same value
function for ¢t = N. The only difference is that, while the Finite-Horizon agent
calculates a new value function array at every step (and thus a different policy),
the Turnpike Approximation agent uses the same value function array (with
index N) to make each of their decisions.

Interestingly, the expected reward of each of the Approximation algorithms
with discount factor is constant regardless of the length of the horizon. This
can be interpreted by the fact that each of those agents performs the Value
Tteration value until convergence (which may occur at more or less iterations
than the horizon size) and the value function calculated is, thus, independent
of the horizon.

The average expected reward of each of these algorithms will be particularly
useful in the reward comparison performed in these experiments, as is shown in
the following two Figures.
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—5— Approximation, 7 = 0.1
Approximation, y = 0.3 | |
Approximation, 5 = 0.99

——  Finite-Horizon

-s- Approximation, v = 0.1
Approximation, v = 0.3
Approximation, v = 0.99

—— Finite-Horizon

107 £

108

Total Reward Collected

100 F

L L L 0.4 L L L
10% 10% 104 10° 10% 10% 104 107

Horizon’s Length (steps) Horizon’s Length (steps)

Normalized Total Reward Collected

Figure 6.2: Left: average total reward collected by the agent throughout 20
different experiments, with respect to the horizon’s length, in the cases of the
Finite-Horizon algorithm and three Infinite-Horizon Approximations with vari-
able v = {0.1,0.3,0.99}. Right: ratio of the average total reward collected by
the agent over the average expected reward calculated by the Finite-Horizon
agent.

The results derived by observing the diagram in Figure 6.2 present great
interest. We can observe that in any case, the most total reward accumulated
is achieved using a Finite-Horizon algorithm, with the results being identical,
if not greater, to those expected. On the other hand, both approximation with
low ~y values (namely 0.1 and 0.3) seem to yield much lower rewards compared to
the high v approximation and the Finite-Horizon algorithm. The values of the
horizon for which they present the greatest results are lower values, such as 100
time steps. In the case of the highly discounted approximation, the results are
almost identical to those of the Finite-Horizon. This is in accordance with the
Turnpike Theorem, which states that there exists an time step n, after which the
policy is stationary, which also depends on the value of 7. Finding this integer,
however, has proven to be a difficult problem, as there exists no concrete way
of doing so.
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Figure 6.3: Left: average total reward vs. horizon length, in cases of Finite-
Horizon and Turnpike Approximation. Right: ratio of average total reward over
average expected reward calculated by the Finite-Horizon agent.

Comparing the Turnpike approximation to the Finite-Horizon algorithm in
Figure 6.3 shows how well the approximation performs. In the left graph, the
difference in the total reward collected is almost non-existent, while, when the
results are normalized in the right graph, are indistinguishable. This shows that
the policy of the model is almost stationary, independent of the time step. Of
course, this is just the case for this particular model, which consists of many
states and a very small amount of available actions (at most 3 in each state).
As a result, the chance of a policy being completely different from another is
tiny. In other use cases, the optimal performance of the Finite-Horizon could
be more apparent.

Considering all the above observations, we conclude that, while the Finite-
Horizon algorithm is in theory the most optimal, approximations with or with-
out discounting can also yield approximately optimal results while consuming
less resources. Nevertheless, it is apparent that the Finite-Horizon algorithm
has a better performance regardless of the problem’s conditions when compared
to a discounted approximation, as in order to perform such an approximation
one must calculate the optimal discount factor value, which could be computa-
tionally demanding. In comparison to a Turnpike algorithm without discount,
while the Finite-Horizon algorithm should in theory be more optimal for small
horizon values, because larger horizon’s lengths ensure that the Turnpike Inte-
ger is contained within the horizon, this is not the case for our model. This
is mainly attributed to the scarcity of the model’s actions. We would expect
different results in more complex MDPs. The most optimal method to solve a
MDP, in theory, would be to use the Turnpike approximation up to the Turnpike
Integer and then perform a classic Finite-Horizon algorithm for all of the steps
remaining. This, however, requires calculation of the Turnpike Integer (or in
other words the integer at which the policy converges to an optimal stationary
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one) which can be demanding. In most cases of large horizon values, one can
omit this calculation and directly use the Turnpike algorithm for every step. As
we will see in the next experiment, however, this becomes a lot more inefficient
in Non-Stationary MDP problems.

6.3 Variable Reward Comparison

In the previous subsection, we concluded that Turnpike approximation algo-
rithms can be as optimal as accurate Finite-Horizon solutions while requiring
less memory resources when the MDP is stationary. Nonetheless, we expect the
Finite-Horizon algorithm to yield better results in the cases of Non-Stationary
MDPs, which were simulated in the experiments following.

As already described in Section 5.2.1, we chose to simulate variable rewards
(dependent on the decision epoch) in the following way: at each time step n
and for every state s and (available) action a, the reward the agent will receive
after transitioning to a neighboring state s’ will be zero if the index of s’ in the
list of possible transitions is equal to n mod |Sneighbors|. We can clearly see
that at each time step, only one available transition’s reward will be affected.

The parameters of the model used in this experiment are:

e Number of runs in each experiment: 20

e Training steps: 10000

e Minimum VMs: 1

e Maximum VMs: 20

e Initial VMs: 10

e e-probability: 0.7

e Number of States: 200

e Initial QValues: 0

e Actions: {add 1 VM, remove 1 VM, no operation}
e Value Iteration ~: {0.1, 0.3, 0.99}

e Value Iteration threshold: 0.1

e Number of steps before next Value Iteration during training: 500

e Horizon: {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200,
102400, 204800, 409600, 819200}

For better comprehension of the results, we also present a diagram con-
taining the expected reward for each of those algorithms in the case of this
Non-Stationary Model in Figure 6.4. Again, the expected reward of the Turn-
pike Approximation is the same as that of the Finite-Horizon as the same value
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function array (the one corresponding to index N) is used to perform the cal-
culation.

Expected Reward of All Algorithms (Variable Rewards)
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Figure 6.4: Mean value of the total expected reward in 20 different experiments
with variable rewards, in the case of the Finite-Horizon algorithm, three Ap-
proximations with different values of the discount factor v = {0.1,0.3,0.99} and
the Turnpike Approximation. Both axes are in logarithmic scale.

In Figure 6.4, we can observe that the Finite-Horizon and Turnpike Approx-
imation algorithm’s expected reward is identical, which is anticipated, as the
expected total reward is the value of the value function at the initial state of
the agent for ¢ = N steps remaining. Both of those agents use the same value
function for t = N. The only difference is that, while the Finite-Horizon agent
calculates a new value function array at every step (and thus a different policy),
the Turnpike Approximation agent uses the same value function array (with
index NV) to make each of their decisions.

Interestingly, the expected reward of each of the Approximation algorithms
with discount factor is constant regardless of the length of the horizon. This
can be interpreted by the fact that each of those agents performs the Value
Iteration value until convergence (which may occur at more or less iterations
than the horizon size) and the value function calculated is, thus, independent
of the horizon.

The average expected reward of each of these algorithms will be particularly
useful in the reward comparison performed in these experiments, as is shown in
the following two Figures.
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Figure 6.5: Left: average total reward collected by the agent throughout 20
different experiments, with respect to the horizon’s length, in the cases of the
Finite-Horizon algorithm and three Infinite-Horizon Approximations with vari-
able v = {0.1,0.3,0.99}. Right: ratio of the average total reward collected by
the agent over the average expected reward calculated by the Finite-Horizon
agent.

In the left graph of Figure 6.5 we present the average reward collected by
the agent at each one of the horizon values over the course of 20 experiments,
in four different cases: one Finite-Horizon model (using any of the algorithms
described in Section 4) and three Infinite-Horizon Approximation algorithms
with v = {0.1,0.3,0.99}. An immediate observation that can be made is that,
although the difference between the Finite-Horizon and Approximation (y =
0.99) curves is almost non-existent, the Finite-Horizon curve seems to always
be above it. The other two Approximations exhibit much worse performance,
which is obvious even by observation.

In order to further exaggerate the optimal performance of the Finite-Horizon
algorithm over those Approximations, we chose to normalize the results, by di-
viding each average total reward by the corresponding average expected reward
the Finite-Horizon algorithm calculated. We opted for this average expected
reward, as it is always appears to be more accurate than that calculated by the
Approximation algorithms and is considered the most accurate in theory.

The results of this normalization are depicted in the right graph of Figure
6.6. The Finite-Horizon agent is always above the other curves, almost always
equal to 1, meaning that the average reward collected is either a little less or a
little more than the expected.

That, of course, is not the case for the other three graphs. The two agents
using the Approximations with gy = 0.1 and v = 0.3 seem to collect significantly
lower total rewards than the Finite-Horizon algorithm. When compared to each
other, there is no clear winner, as their performance is almost identical. The
normalized graph clearly depicts that both those approximations manage to
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collect around 50% to 60% of the reward expected. In any case, the Finite-
Horizon algorithm outperforms both of those approximations by a large margin.

The results are even more interesting when we examine the results of the
highly discounted model. Unlike the constant rewards experiment, the agent
using an Approximation with v = 0.99 does not manage to prepare for the
variability of the rewards and thus accumulates a much smaller total, at just
below 90% of the reward expected. While this value is still high, it is considered
as sub-optimal, especially when compared to the Finite-Horizon algorithm.

We can conclude that, as expected, the Finite-Horizon agent outperforms
the three Approximation agents in all cases and should be preferred over them
in variable reward cases (NSMDPs), as it is the only way to achieve optimality
in reward collection, signifying successful calculation of the optimal policy.

Another important comparison is that between the Finite-Horizon algorithm
and the Turnpike Approximation, the results of which are presented in Figure
6.6.
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Figure 6.6: Left: average total reward collected by the agent throughout 20
different experiments, with respect to the horizon’s length, in the cases of the
Finite-Horizon algorithm and the Turnpike Approximation algorithm. Right:
ratio of the average total reward collected by the agent over the average expected
reward calculated by the Finite-Horizon agent, in the cases of the Finite-Horizon
algorithm and the Turnpike Approximation algorithm.

As before, the left graph contains the curves of the average reward collected
by the two agents over 20 experiments (log-log plot). In this case, we expect the
Turnpike Approximation agent’s performance to be close to that of the Finite-
Horizon agents’, as they both take into account the variability of the model’s
rewards. Indeed, the two curves differ by a small margin in the left graph,
signifying close performance of the two agents.

Performing the same normalization, however, sheds new light to the results
of the left graph. Looks can be deceiving, as one can clearly observe in the
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right graph that the Turnpike agent’s performance is oscillating at around 75%.
This performance is surprisingly even worse than that of the highly discounted
Approximation model.

Considering the above results, we conclude that any of the Finite-Horizon
algorithms proposed in Section 4 yields results in the case of a NSMDP (with
variable rewards), achieving performances no Approximation model can. Out
of the four Approximation models examined in this Section, the one with v =
0.99 had the best performance regarding the total reward collected, its policy,
however, is still suboptimal compared to that of the Finite-Horizon.

6.4 Time Complexity Comparison

As already mentioned, execution time is an extremely important metric when
it comes to a MDP solving algorithm. In this experiment, all 5 methods were
compared with respect to their time complexity. The metric used to perform
this comparison was the execution time of the policy evaluation for different
values of the horizon length.

The parameters of the model used in this experiment are:

e Training steps: 10000

e Minimum VMs: 1

e Maximum VMs: 20

e Initial VMs: 10

e e-probability: 0.7

e Number of States: {200, 2000}

e Initial QValues: 0

e Actions: {add 1 VM, remove 1 VM, no operation}
e Value Iteration v: 0.5

e Value Iteration threshold: 0.1

e Number of steps before next Value Iteration during training: 500

e Horizon: {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200,
102400, 204800, 409600, 819200}
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Figure 6.7: Left: log-log graph depicting the total execution time of the Naive,
Square Root and Logarithmic FHMDP algorithms for different horizon values
in the case of a model with 200 states. Right: log-log graph depicting the total
execution time of the Naive, Square Root and Logarithmic FHMDP algorithms
for different horizon values in the case of a model with 2000 states

In Figure 6.7 we observe the results of the comparison between three Finite-
Horizon MDP solving algorithms, namely the Naive, Square Root and Loga-
rithmic approaches. We chose not to depict the execution time results of the
In-Place algorithm, as it was not physically possible to execute those algorithms
because of enormous execution times, even for relatively small horizon values.
In addition, neither the Approximation algorithm with discount nor the Turn-
pike Approximation were included. Algorithms with different discount factors
belonging to the first category require tiny, constant amounts of time to execute,
as they do not take the horizon’s length into account. On the other hand, the
Turnpike Approximation algorithm requires approximately the same amount of
seconds as the Naive model to execute. Nevertheless, both of these Approxi-
mations yield suboptimal results regarding the rewards, as established in the
previous Sections and are not preferred over the Finite-Horizon algorithms.

The results in Figure 6.7 are again presented in logarithmic scale (log-log
graph) because of how large the values in both axes grow. What can be seen in
the graph is completely justified by the theoretical analysis performed in Section
4 regarding the time complexity of the graphs. All models were tested under
the same conditions, and so the |S|?|A| factor of their time complexity could be
treated as a constant C' (with | S| being 200 in the first experiment and 2000 in
the second). It can be observed that, in the case of |S| = 2000, the shape of
the curves is the same as that of |S| = 200 with a small upward shift, which is
expected as the constant C' is the one changing.

We theorized that the time complexity of the Naive approach is O(NC). The
equivalent time complexity in the logarithmic scale could be given by O(log N +
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log C). Treating log N as the new dependent variable X, the time complexity
becomes O(X). The graph of a function with this big-O notation is expected
to be a straight line, which is the case of the Naive approach as can be seen on
the graph.

The same can be said about the Square Root approach, as it was proven to
have the same time complexity as the Naive method. In the graph, its execution
time in logarithmic scale is correctly represented as a straight line which is
approximately parallel to the Naive approach, but differs by just a constant. If
we treat the equation of the Naive algorithm’s time complexity as Y = C; + X,
where Y = log(y), C1 = log(C) and X = log(N), then the equation of the line
representing the time complexity of the Square Root solution is approximately
Y = C1 + X + (5, as it is almost parallel to the first line but shifted slightly
upwards. Replacing those terms with their exponential equivalent, we obtain
that the time complexity is y = CC’N, where C’ = 10°2, which is exactly what
was expected in the theoretical analysis. Thus, we validate that the execution
time of the Square Root algorithm is asymptotically the same as that of the
Naive algorithm.

Finally, the Logarithmic solution graph appears to be above both of the
other graphs in each of the two experiments. This is of course expected, as
its time complexity was theorized to be of greater order than the one of the
other two algorithms. In both log-log plots, the execution time graph of this
algorithm is approximately a straight line, above both of the other two lines
and with greater slope. We can justify this result by analysing the equation
of the Logarithmic solution’s time complexity: we theorized that the execution
time is asymptotically y = C4N log, N. Applying log to both sides in order
to obtain the equation to be plotted in the log-log graph, we derive: Y =
Cs + X + loglog, N, where Y = logy, X =log N and C5 = log C4y. Changing
the logarithm’s base in the third term, we obtain the desired result: loglogy N =
loglog N —loglog 2 = log X+ K, where K = loglog 2. Thus, the log-log equation
turns out to be: Y = Cg+X +log X, where Cy = C5+ K, which is approximately
a straight line.

As far as the time complexity is concerned, we can confirm the results proven
in theory in Section 4. In other words, the Logarithmic solution is of slightly
higher time complexity than that of the Naive and Square Root solutions, with
execution times being tolerable, although higher. The Square Root approach is
asymptotically of the same time complexity as the Naive algorithm, as the only
differ by a constant. Those results imply that all three algorithms could be of
use (depending on the user’s needs) regardless, as their time complexity does
not differ by a large amount.

6.5 Space Complexity Comparison

The focus of our work is on optimizing the space complexity of the Finite-
Horizon algorithms. In the experiments presented in this Section, we managed
to measure the memory needs of each of the three Finite-Horizon algorithms,
namely the Naive, Square Root and Logarithmic approaches and compare them
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against each other, while also presenting how they match against the expected
theoretical results.
The parameters of the model used in these experiments are:

Training steps: 10000

Minimum VMs: 1

Maximum VMs: 20

Initial VMs: 10

e-probability: 0.7

Number of States: {200,2000}

Initial QValues: 0

Actions: {add 1 VM, remove 1 VM, no operation}
Value Iteration v: 0.5

Value Iteration threshold: 0.1

Number of steps before next Value Iteration during training: 500

Horizon: {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600, 51200,
102400, 204800, 409600, 819200}

Note that in order to acquire the expected memory values, we multiplied the
maximum number of value function arrays stored in memory during each of the
algorithms by their length times the typical memory footprint of the data type
the hold (in this case, a floating point number of single precision).
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Figure 6.8: Left: difference between the initial memory and maximum memory
occupied by each of the Naive, Square Root and Logarithmic FHMDP algo-
rithms for different horizon values in the case of a model with 200 states. Right:
difference between the initial memory and maximum memory expected to be
occupied by each of the Naive, Square Root and Logarithmic FHMDP algo-
rithms for different horizon values in the case of a model with 200 states.

The graphs presented in Figure 6.8 depict the results obtained by experi-
ments run on a model with 200 states. The right graph contains the amount
of memory expected to be needed in each horizon and for each algorithm. By
observation, we can see that the graphs in the left are very close to their theo-
retically expected form, with the exception of a few flat points. This is because,
as already established in Section 5.4, memory is given to an algorithm by the
system in the form of pages. Thus, in some cases (especially for smaller hori-
zon values) the extra memory required from a horizon value to the next can be
provided within the same page, creating the illusion that no extra memory is
needed.

This is especially obvious in the case of the Logarithmic approach. The total
memory occupied appears to be constant (and close to 0), with a slight increase
from N = 3200 to N = 6400, after which point the graph continuous to be
constant. This fact can be interpreted considering that, up until N = 3200 a
constant number of pages is sufficient for the algorithm’s memory needs. At N =
6400, another page is needed, which is enough for the rest of the experiment.

With all the above said, the theoretical results are completely validated.
The Naive model requires the most amount of memory, growing linearly with
the horizon. On the other hand, the Logarithmic approach has close to non-
existent memory needs compared to it, as it requires (almost) constant memory
even for large horizon lengths. We must not forget, however, that the execution
time required by the Logarithmic algorithm is much larger than that of the
Naive model. The Square Root model comes as a compromise between the two,
providing lower memory needs than the Naive algorithm, while requiring the
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same execution time (asymptotically).
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Figure 6.9: Left: difference between the initial memory and maximum memory
occupied by each of the Naive, Square Root and Logarithmic FHMDP algo-
rithms for different horizon values in the case of a model with 2000 states.
Right: difference between the initial memory and maximum memory expected
to be occupied by each of the Naive, Square Root and Logarithmic FHMDP
algorithms for different horizon values in the case of a model with 2000 states.

The results observed in Figure 6.8 do not change as much in Figure 6.9.
Because the number of states is larger, growth in the horizon’s length induces
greater growth in memory needs, when compared to those of the 200 states
model. As a result, the Naive and Square Root graphs appear to go smoother,
implying that every time the horizon grows one or more new pages are required.
Interestingly, the Logarithmic model continues to require tiny amounts of mem-
ory compared to the other two, even in this case and for longer horizons. A
constant amount of pages appears to suffice when the horizon ranges from 100
to 25600 steps. After that, one (or more) new pages are required, but their
number continues to be constant until the end of the experiment.

Note that, neither the Approximation techniques nor the In-Place algorithms
were included in these experiments. All of these models are of constant space
complexity with regards to the horizon, O(]S|), as they only need to store at
most two arrays of length |S|. The Approximations, however, yield subopti-
mal results regarding the Reward, while the In-Place model required enormous
amounts of time to execute.

In conclusion, the most optimal algorithm regarding the space complexity is
the Logarithmic, with the other two Finite-Horizon algorithms failing to even
come close to its memory performance. Between the Naive and the Square Root
algorithms, the latter shows very promising results, with the memory needs
growing much slower than that of the former as the horizon grows larger.
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7 Conclusion

7.1 Summary

Throughout this work, we attempted to optimize MDP solving algorithms with
respect to both execution time and space and measure the results of our efforts
using experiments. To summarize our results:

e Value Iteration, an algorithm used predominantly in the areas of MDPs
and Reinforcement Learning, presents serious time complexity issues. We
proposed an idea utilizing the concept of bounds of the value function,
tested in other forms by other authors. The results of our experimenting,
however, were not fruitful, perhaps due to the use case chosen. Never-
theless, there is still room for improvements regarding this technique and
future work could make use of it.

e Regarding the general space complexity issues FHMDPs face, we observed
that in many cases such MDPs struggle executing algorithms that yield
accurate solution due to memory constraints. In these cases, developers
tend to opt for heuristic methods for memory optimization as applicable.
Thus, an effective universal optimization technique is much needed.

e We also proposed two new algorithms reducing the space complexity of
traditional Finite-Horizon MDP solving algorithms as much in theory as
in practice. Our methods manage to require drastically less memory to
execute the FHMDP solving algorithms, with the small overhead of some
recalculations.

e We also examined the behavior of algorithms when compared with
Infinite-Horizon Approximation algorithms. The latter yielded promising
results when tested in non-variable reward and transition models. In Non-
Stationary MDPs, on the other hand, our FHMDP solving algorithms
outperformed every approximation we tested by a large margin.

7.2 Future Work

The optimizations presented in the above sections are a concrete basis for further
improvements. The bounding optimization we proposed could be tested in other
use cases to examine whether the time saved by action elimination is actually
more than that spent calculating the bounds. The bounding inequalities could
also be fine-tuned for thinner margins.

One could modify the idea of bounding as follows: upper and lower bound
for the state-action function are initialized, while we do not compute the actual
state-action function. In each of the algorithm’s iterations, the upper and lower
bound converge towards the same value: the state-action function’s value for a
particular state and action. In the process, actions would be eliminated, while
the bounds are constantly updated.
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As for the Finite-Horizon algorithms suggested, the main problem they pre-
sented was the overhead introduced by value function array recalculations. As
those calculations have happened during the initial run of the algorithm, one
could utilize the information provided after the calculation in order to speed up
any recalculation of the same value function array afterwards. Such an approach
could lead the time complexity of the Logarithmic solution to be close to that
of the Naive or Root solution, rendering it the most efficient FHMDP solving
algorithm out of those discussed in this work.
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