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Amayopevetal 1 avtiypogr], amodrkevor kot diavoun tng mopovoog epyaciog, €€ oAokAnpov 1
TUAHOTOG QUTAG, Yo epmoplkd okomd. Emtpénetan 1) avatdnwon, amobrkevon kat Stovopr] yio
OKOTO U1 KeEPOOOKOTLKO, EKTTALOEVTIKNG 1] EPELVNTIKNG PVGTG, Lo TNV TPpodOeon v avoupépeTa
1 mtnyn mpoélevong kat va dwatnpeital To mapdv prjvopa. Epotripate mov agopodv tn xprion g
epyooiag ylia kepdookomikd oKomd mpémel v atevBOVOVTOL TTPOG TOV GLYYPAPEQL.

Ot amdelg Ko Tor GUUTTEPAGHATA TTOL TEPLEXOVTOL GE QLUTO TO £YYPOPO eKPPELOLY TOV GLYYPOAPEQ

Ko dev mpémel va epunvevbel 0TI avtimpoowtebovy Tig enionpeg Béoelg Tov EOvikod Metodfiov
IoAvteyveiov.



HepiAnyn

e avtr) ™ dumhwpatikn, B acyoAnBolpe pe To oXeSIGHO PNXAVICHOV Ot TPOPANHA XwpoOe-
TNGTG LINPESLOV, OTTOVL N GTPATIYLKOL TOUKTEG EXOVV OLALPOPETLKEG TTPOTIUNCELS GE EVOL HETPLKO
x®po. Evag pnyoaviopog eivon pia cuvéptnomn mov éxel wg eicodo Tig Tomobesieg TV TaKTOV Ko
emoTpépel wg €£0do TIg Bécelg Twv vmnpeotodv. Kabe maiktng éxel otdy0 va eAaylotomoljoet to
KOGTOG TOV, dNAadT] TNV ATOGTACT) TOL ATTd TN KOVTIVOTEPT) LTt pecia. Autod To divel To kivnTpd va
dnAwoel dropopetikr) Torobecia amd tn Tpaypatikn Tov. o avtd To Adyo evdiapepopacTe Lo PL-
AoAnOng punyoviopots ov e€acaiilovv ot kavévog taiktng dev Oa wpeAnBei dnAwvovtag Yevdr
tomobeoio. [ va Eemepdoovpe T aduvopion KATOGKEVHG VTETEPHLVIOTIKOD GLAXAT O pnyotvicpoo
pe Ppoypévo AOYo TPOGEYYLONG, EGTIALOVHE T TPOGOYT HOG GE £VOL VTTOGUVOAO GTLYHLOTOIIMV IOV
elvon evotadn oe dwatapoyés. H évvolx tng evotdbelag oe Satapayég oplotnke mpdTn Popi o€
npoPAnpata Méyiorns Tourg xou émerta oe wpoPAnpata Clustering. Me ta evotabr oTiypdtumo
HOVTEAOTTOLOVIE TA GTLYHLOTUITAL TOV “TIPAYHATIKOV KOGHOL” ot omtoia ) BéATioTn Ao dev emnpe-
aleton oo pkpég Sratapayés ota dedopéva elc0dov. AQob To TpOPANpa xwpobétnong vrnpeciodv
elvor ToAb otevd ouvdedepévo pe to clustering Béhovpe vor Sovpe TwG PTopoUpe Vo oXeSLAGOU|LE
KOADTEPOULG PN AVIOHOVG, otV LITOBEGOUE OTL O T TTPAYHATIKE GTLYHLOTUTTO Elva evoTadn. Ae-
SOpEVWV TV BETIKGOV ATOTEAECUATWV GTT) YPOHLT), HOG VOLPEPEL VO SOVHE TG XVLTA YEVIKEDOVTOIL
KoL 68 GAAOVG PETPLKOVG XWOPOULG.

AéEerg kAedri

IpoPAjpata Xwpobétnong, Zxediacpdg pnyoviopov xwpic xpripata, Kowwvikr Emidoyn, Evoté-
Belo o drataparyég






Abstract

In this thesis, we study k-Facility Location games, where n strategic agents have different ideal
locations on a metric space. A mechanism maps the locations reported by the agents to k facilities.
Each agent seeks to minimize her cost, namely the distance between her location and the nearest
facility, which may incentivize her to misreport her location. Our goal is to design strategyproof
(i.e, no agent can benefit by misreporting her location) mechanisms with a bounded approximation
ratio to the optimal social cost. To overcome the impossibility results for deterministic strategyproof
mechanisms, we restrict our attention in perturbation stable instances. The notion of perturbation
stability was first introduced for the Max-Cut Problem and later was adapted for the Clustering
Problems. This captures the “real world” instances in which the optimal solution is well-defined and
unaffected by small perturbation on the input. Since k-Facility Location games and k-Clustering
are closely related problems, we are interested to see how perturbation stability can help us design
strategyproof mechanisms with stronger guarantees. Given the recent results in k-Facility location
in stable instances on the line, we are interested in extending those results in more general metric
spaces.

Key words

Facility Location Games, Mechanism Design without Money, Social Choice, Perturbation Stability
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Kot apydg 0o 10ela va evxaplotrow tov emiPAémovia pov k. POTAKT), TTOL e EVETVELGE VX LGYO-
AnO& pe to topéa tng Oswpnrikng [IAnpopopikrig ko ov mictePe 6TIG SLVATOTNTEG POV ATTO TNV
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KepdaAaro 1

Extetapévn EAAnvikn IepiAnym

1.1 Ewaywyn

2t mapovoa SuTAwpaTikT epyacio Oa aoyoAnbodue pe to TpdPAnpa tng xwpobétnong vin-
peotov. Yrobétovpe 6TL évar 6OVOAO TTouKTOV PBpiokovtal oe éva Ywpo Kot epelg emBupoldpe va
tomoBetricovpe vinpecieg ot Sapopetikég Bécelg oTo xwpo avtd. To kdGTOG KGBe TaikTn eivor 1)
aOoTACT TOL Ao TN TANCLEaTEPT) LINPecia. ZtoOX0g pog eivae v Bpodpe Tig PéATioTeg Béoelg
(OTE TO GLVOALKO KOGTOG TWV TTALKTOV Va elval 660 To duvartdv pkpotepo. To cuykekpipévo mpod-
PAnpo éxer pehetnBel extevodg TO60 6TO TEdIO TNG EMLGTHUNG TWV VITOAOYLGTOV OGO KoL 6TO Tedio
g emiyelpnolaknig épevvag. O Adyog eivou 6TL povtedomotel TANOOpa TpoPAnpdTev, OTWS TN £mL-
Aoyn TV Bécewv yTioipatog kawvodplwy PBipAtodnidv amd v kuPfépvnon faon Twv TpoTipcewy
TOV TOATOV.

Av yvopilovpe TiIg Tpaypotikég Tomobecieg TwV ToUKTOV TOTE PITOPOVHE VO TTPOCEYYIGOULE TN
BéAtiotn Abon apketd kohd. QoTd00, VIAPYOLY TOAAES EQAPUOYEG TTOV OL BéoELg TV TOUKTOV
dev elvan dnpooing YvwoTég kat Tpémel va SAMVOVTOL OTNV KEVTPLKT] opXT atd oTpATNYLIKODG
noikteg. Kabe maiktng éxel 6TOX0 Vo eAaLOTOTOLGEL TO KOGTOG TOV, XWpLg vo Tov edLapépel To
oLVoAikd k66ToG. Todpa 0 oTdY0G dev elvar povo va Ppodpe Tig Béoelg Twv LINPESLOY dAAE Vo
TIg faAovpe pe Tétolo TpOTo oL Kavévag aiktng dev propei va kepdicel dnAwvovtag Yevdr to-
noBecio. Evdiapepdpacte Aowmdv yio to oxedtaopd QLAaAnBov pnyxaviop®y yuo yia TpoAfpota
xwpobétiong.

Y& TOAAG TPOPAHATO GXESLAGHOD X OVIGUODV, OTTWG OL SNHOTPOTIES, ELGAYOUHE GTO HOVTEAO
TANPwpEG Yoo va eyyunBovpe 6T 1 avdBeon twv ayabov yivetoun pe riaindn tpdmo. Opwg, o
mepLlPEALOV KOVWOVIKNG emAOYTG OTtwG Tt TPoPAHaTa XwpoBEtnong vnpect®dv, propel va eival
mopavopo 1 avriBuco va emParovpe TAnpopés. lave oe avtr tnv Wéa Eekivnoe n edpeva amd Tovg
rocaccia kot Tennenholtz [#4] mdvw 610 oXeSLACHO TPOGEYYIOTIKOV UNYAVIGHOV XWPLG XPHHOTAL.

1.2 TIIpoPAnpata Xwpobétnong

pora O opicovpe To Pacikd poviélo Tov mpoPfAfpatog. Exovpe éva petpikd xopo (X, d),
omov d : X x X — Ry elvar pua ouvaptnon amdctaong petad Tov onpelov Tov yopov. H
ovvaptnon eivol peTpikt) mov onpaivel OTL Ve, y, 2z € Z: d(x,z) = 0 (tadtion), d(z,y) = d(y, x)
(ovppetpia) xou d(z, z) < d(z,y) + d(y, z) (tprywvikr oavicdtnTa). OL aikTeg £X0LV P 8aVLIKT
tonobesio 6tov xdpo. Eva otiypidotuno amotedeiton artd Tig 00l Twv TAUKTOV 6T0 X©OPO T =
(1 ey Tn).

K&Be maixtng dnAover tn Béomn tov oto pnyaviopd M. Evog vieteppiviotikdg pnxaviopdg eivar
piot cuvépTnom ov amelkovilel To 6OHVOAO TV dNAwBivTwy Bécewv TV ToUKTOV T ot k vinpeoieg
(c1, ...y Ck). AvticTolya évag Tuyalomomnpuévog pnyoviopog M amekovilel To cOvolo twv dnAwbé-
VIV BécE0V TOV TUUKTOV T o€ o mboavotikr katovopr and k vinpeoieg. (¢, ..., k).

To k6oT0G K&Oe TaikTn eivan ) amdoToo TOL ATTd TN TANGLEGTEPT LITNpecia, cost(x;, M (Z)) =
mini <j<i{d(z;, cj)}. To xovwviko kdoTOG VOGS pPrjxavicpos M eivar To GOPOLoHA TV KOGTMOV TV
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kY, cost(Z, M (Z)) = > 1" cost(z;, ).

Ké&Be maiktng elvon otpatnytkog kat éxel oTOX0 v e oY LoTOTOLoEL TO kKOGTOG Tov. O prpyovi-
OpOG £xeL 0TOYO VA EAAXLOTOTOLNOEL TO KOWWwVIKO K66TOoG. H Srapopd avtr) wbel toug maikrteg va
dnAdcoovv Pevdn tomobesio yioe va kepdicovv. I avtd evdiopepdpacte yioo LAaAnOng pnyovi-
OpoUG oL oMpaivel OTL kKavévog maiktng dev propel va kepdicel Aéyovtag Pépato.

>1n ovvéyewa B dovpe T Paoikd amoteAéopata yio TpoPArpaTa xwpoBETnong LITNPeECLOV.
[Ipdta Ba avarboovpe TN mePINTWOTN TOL Ol TAUKTEG elval TOTOOETNHEVOL OTI YPOWYT KoL GTN)
GULVEYELQ TT) TEPLTTWGT] OV OL TTaikTeg elvor Tomobetnpévol oe dévpa.

Muwx vtnpecic oTn YPOoppn

Otav Béhovpe va TomoBetricovpe o vtnpecica, 1 Béon tov didpecov maiktn eivan BEATIOTN KO
tavtoxpova elvar pLhainOng. H Baoikn 1déa eivar 0Tt 0 povadikodg TpoOTog oL €vag TaikTng propet
va oA\ GEer tn Béon Tng vnpesiog eivon va SnAwoel pia Béon ard ) “GAAn” pepié Tov dudpecov.
Avtd, dpwe, Ba éxel wg amoTéAecpa 1) LINPETio VoL TAEL TTLO PaKPLi 0 GXECT) HE TI TPOYHATLKY
Tov Béon. Apa dev vIT&PYEL TPOTOG KATOLOG Tk TG va kepdioel Aéyovtog Yépata.

Oesopnua 1.2.1 ([40]). O punyavioudés wov tomobetei Thv vanpecia oo didueco waikTy eivar PEATIOTOS

Kot pLAaArong.

—@ ¢ oo ® o —o—

X1 X2 X:3 X4 X5 X6 X7

Yxnuo 1.1: Bédtiotn Abomn yuo pio vnpecio 6T Ypopupn

Abo vrnpecieg oTN YPOPUN

Ortav Bélovpe va Toobetriocovpe d0o vnpecieg to TPOPANpa yiveton mo dbokolo. Apxikd,
prtopovpe evkoAa vor Sovpe 0Tt 1) PéATioTn Abon dev eivon PLAaARONGg. Mmopolpe vor xwpioouvpe
Toug aikTeg oe V0 cOvoAa, To dei kot TO APLOTEPD, AVAAOYA |LE TNV LINPEGIOL TTOL TTPOTLLOVV.
Opwg évog maiktng propel v dnidoet puo Béon ov va tov falel 6to GAAo ohvoro artd avtd mov
QVIKEL TPAYPATIKY, £TOL OOTE VO PEPEL TNV LINPECIX TOL EKELVOL TOL GUVOAOUL TTLO KOVTL GTNV
TPAYHOTLKT] TOL Béom.

O pévog TpdIog oL pITopovpe vor TomofeTrioovpe TIG LTNPesieg pe PLAOANON TpoTO eivar var
T1g PdAovpe oto 1o Se€i ko otov Mo apiotepd maiktn. [lapatnpodpe OTL LTTOYPEWTLKA O TTLO CPL-
0TePOG TTALKTNG OVIKEL GTO apLloTePO GVVOAO KoL avTioTolyo o mio de€id maiktng aviikel oto Se&l
oVvoro. Me awtd to TpdTo eEacpaiilovpe ppaypévo Adyo tpocéyylong. Emumiéov, tomobetdvrag
TIG LN PEoieg OTIG akplovég Béoelg mapatnpovpe OTL kavévag maiktng dev pmopel vo kepdicet dr-
Advovtag Siopopetikr}, apod 0 povog TpoOTOg var aAAGEel Béomn pia vinpecia eivor vo hel Lo
POtk pL.

Oeopnuo 1.2.2 (Two EXTREMES [#4]). O unyaviopds mov tomobetei 115 vrnpeoies orovg S0 axpiavouls
maikteg eivou QUAaAOng kou éxel Adyo mpooéyyiong (n — 2).

O Two EXTREMES &lvol 0 HovadlkOG VTETEPULVIOTIKOG HIXAVIOPOG HE Ppaypévo AOYO TPOGEY-
yiong [23]. Av emitpélovpe 6TO Y OVIOPO VoL X PTOLHOTTOLGEL TUXOLOTI T HTTOPOVHE VoL TTETUYOVE
TOAD kaAOTEPO AOYO mpooéyyiong. O proportional pnyaviopog eivo griadiOng kot éxel otabepd
Abyo mpocéyylong. AtoucOntikd tomobetel Tn mpmTN vINpPecia Tuxain oe pLa otd TIg Béoelg TV
TOUKTOV Ko 1) dedtepn) T tomobetel ot Béomn kdurotov maiktn pe mbavotnTa avaioyn g amod-
GTOOTNG TOV OO T TPAOTI) VAN PECL.
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(b) AvéBeon oToug dv0 axplovols TaikTeg
Opropog 1.2.1 (Propotional Mnyaviopdg [B4]). INa éva oriypdérono & = (21, ...y ), oL Ooeig twv §vo
UTTNPECLAV ETAEYOVTAUL JiE TN TaPaKATw Tuyaia Siadikacio:
e Brjua 1: EmAéyovue évai € N tuyaia. TomoBetolue ) mpddtn vrnpecia ¢ oty Oéon x;

e Bijpa 2: Eotw d; = d(c1, ;) n andotacn tov naikty j and tn npdry towobeoia. EmAéyovue o

. ) d . . , —
J pe mbavornra S TomroOsTovpe 0 devtepn vnpecio ca oty Oéon x;.

Oeopnua 1.2.3. O Proportional pnyaviouds eivan pidaiifns kau éxer Adyo mpocéyyions o moAv 4.

ITeproocodTepeg amod Vo VIINPETiEg OTN YPOPPN

Onwg eidape to mpoPAnpa yiveton opketd mo dOokolo akdpa kar ov BéAovpe va tomobeti)-
oOoULpE HOVO V0o LTI PETieg 6T YPoppn. Aev prtopolpe AoUTOV VoL TTEPLUEVOUE KOAVTEPX QITOTEAE-
opata otav Bélovpe va tomobetrjoovpe meplocOTEPEG otd SVO LN PECiEG. 2T TPAYHOTIKOTN T
propovpe va Sel€ovpe OTL dev LTTAPYEL VIETEPILVIGTIKOG GLAXANONG HXOVIGHOG e @poypévo AbYo
nmpooéyylong yie k > 3. Autd toylel akOpo KoL ylor GTIYHLOTUTTO pe 4 ToikTeG Kot 3 LI pecied.
Mmopotpe va deikoupe OtL, Omwg ko TpLy, oL dvo vrnpecieg mpémel va TomobetnBodv cTovg dvo
aKPLOLVOUG Ttk TeG Yo var elvort eLAaANONG o pnyoviopog. H Paoikr) déa tng amddeléng eivar 6tL
dev pmopovpe pe LAaAnOn Tpodmo va emAéEovpe oe molo maiktn Oa TomoBetnBei n) vinpecio.

Oeopnua 1.2.4 ([23]). Aev vrdpyer vieppuvionikog QIAaAOnG unxaviopos ue ppaypévo Adyo mpooeyyi-
ons vk > 3.

Yrdpyel o ToAD GNHOVTLKT] OLKOYEVELO VIETEPILVIOTIK®OV HIJXOVICHOV YL TPOPATHaTR X WPO-
Bétnonc. AtuobnTikd 1 otkoyéveln Twv percentile pnyoviopov “crdel” To GTLYHLOTLTIO G€ TUAHHATO
oUpQwva pe éva Stvuopa p kot Tomobetel pio vinpecio oe kGbe TURpO.

Opropdg 1.2.2 (p-Percetntile Mnyoaviopoc [51]). Evag percentile unyaviouds éxer éva mpokabopiopévo
Sdidvvopa o = (p1, ..., pr) té€roio dore 0 < p; < ... < pp < 1. O upyaviopudg romoBetei ) j-ooth
UTTNPECLR OTO P;-00TG TUIHCL TOV OTLYUIOTUTTOV.

¢j =iy iy =[(n—1)-pj]+1

HMapaderypo tov (0.25,0.75)-percentile pnyoaviopov. e éva oTiypidtuno pe 9 maikteg o pn-
xoviopog 0o tomobetei Tig vinpesieg otov 3o maiktn (|8 - 0.25] + 1 = 3) ko oTOV 70 TTAiKTY
([8-0.75] + 1 =T7), ave€dptnTo omtd TIg OECELG TV TOUKTOV.

>
>
>
-
>
=
-1

>
1

b
>
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Avtot oL pnyoviopoi eivor @LAaAlOng yia k&Be k > 2. Eivow oAl onpavtikd vor oTHELOCOVE
6tL To Stavvopa eivar tpokaBopiopévo ko dev e€apTdTat amd To oTLYHLOTLTTO. AUTOG elvat Kol 0 Ao-
YOG 1Tov eivor @LAaANONG oL pnyavicpoi. Ot vinpecieg TomoBeTovvTal oe cLyKekpéveg Béoelg oTo
oTLypLoTLUTTo aveEapTnTa oo Tig Béoelg Twv makT®dv. O pOVog TPOTOG KATTOLOG TTalK TG Vo aAAGEEL
n Béon o v peciag eivon va dnidaoel tomobesio oe GAAo Tprjpe. Onwg ot pio vnpecio Ko To
dwapeco maiktn, vt ) aAdayn Oa méel Ty vinpecio o pokpid. To PELOVEKTNHX AUTOV TV Un)-
XOVIOHOV elvar OTL dev £XOUVV TTEMEPATEVO AOYO TPOGEYYLoNG Y k > 3, OTTwG pag LITodNA®veL Ko
T0 Tponyovpevo Bedpnpa. O povog percentile pnyovicpodg pe ppoypévo Adyo tpocéyylong eivat o
(0, 1)-percentile pnyaviopdg mov eivar loodbvopog pe tov Two EXTREMES pnyoaviopd. Ze k&be GAAn
TEPINTWOT PITOPOVHE VO SHLOVPYTITOVHE £VOL GTLYHLOTUIIO GTO OTTOLO OL TTAKTEG TTOV £XOUVV LITPE-
oleg oTig Béoelg Toug va elvar KOVTd peTo€d TOUG eV OL TAULKTES IOV eV £XOUV LINPECLEG VAL elvo
pakpLé. Aot ot pnyoaviopoi dev “kortovv” To oTiypLdtumo Bo éxovv oA kakd AOyo TTpocéyyLong.

Eival oAb onpavtikd va mopatnprjoovpe 0TL 0 HOVog TPOTOG Yot Vo EXOVHE QPPAYHEVO AOYO
npocéyylong eivar va tomobetricovpe pia vinpecio oe k&be PéAtioto cluster, SnAadr ce kdbe
opdda wov e€umnpeteiton od TNV S vnpesia oty PéATIoTH Abom. Opwg avtd dev propodpe
VO TO TTETOXOVHE pe PLAOANOT TpoTTo S10TL 1) Sopn) Twv opddwv aAA&lel dtav évag maikTng dnAdvel
Yevdr) tomobecia. Avtd To eKpeTOAAEDOVTAL OL Tk TEG Yl va kepdicovv. Av, amd tnv GAAn, 6é-
Aovpe va éxovpe GAOARONG pnyoviopovg dev mpémel va “kortdpe” Tn Sopn Twv opddwv XAvovTog
OHWG TO TEMEPAOHEVO AOYO TTPOCEYYLOTG.

Amd TV GAAN TAevpd, propope vou TeTOYOVHE KAADTEPA OTOTEAEGHATA OV ETLTPEPYOVHE GTOVG
HNXOVIGHOUG VoL X proLportotjoouy tuyondtnto. [lpota mpotddnke o INVERSELY PROPORTIONAL Mr)-
xoviopog [18], o omoiog eivon n/2-npoceyylotikds yio k-vnnpeoieg pe n = k + 1 naiktec. Enerta,
npotéOnke o EQuaL Cost [24] yio k vinpecieg kot avbaipeto aptBpd mouktdv, o omolog metuyaivel
AOYO TPOGEYYLONG TO TTOAD N.

k=1 k=2 k>3

Nreppviotikdg | 1[40] | n — 2 [44] | oo [25]

Tuyowomoinpévog | 1[40] 4 [34] n [24]

IMivokag 1.1: TuykevTpoTIKOG TIVOKAG TV KAADTEP®V AOYWV TPOcEYYLoNG Y TPoPAnpaTa X»-
pobétnong k vnpeciodv ot Ypappn.

TomwoBétnon vnnpecwv oe dévrpa

Ta dévtpa elvart évag L0 YEVIKOG HETPLKOG XDPOG OTTO TN YO, pe tapopoteg tdtotnteg. Otav
Bélovpe v TomoBeTricoupE pio LIINPEGia, OTTWG KoL 6T Ypoppn, 1 BéATioTn Ador eivon erAoAnOng.

Oesopnua 1.2.5 ([49]). O punyavioudg mov tomobetei Thv vnpecio oro didueco waikTy eiven pidaAndng
Kot PEATIOTOS i TO KOIVWVIKG KOOTOG.

H Paoikr) déa eivan idwa pe tn ypoppr. O povog tpodmog évag maiktng va adddtel tn Béon tng
vnnpeciog eivon va dnAdoet 6TL n Béom Tov eivan arrd TNV AN peptd tov dpésov. Etol dpwg n
LN PECLO TTNYALVEL TTLO HOKPLAL.

Av 6pwg Béhovpe va tomoBetjoovpe dvo vmnpecieg To TPOPANpa yiveTon oAl o dvokolo.
Apyikd va onpeldoovpe OTL 1} évvola Tov o de€Llov Kol TOL Mo apLoTEPOL TTOUKTN dev peETOPE-
petal ot dévrpa. Mmopoivpe va detovpe 6TL axdpo ko dtav dévtpo amoteleital omtd kAadix (3
nuevBeieg [0, 00) pe kown apxr), dev vITdpxeL VIETEPHLVIOTIKOG P AVIGHOG Yot T Tomofétnomn dvo
vrnpeciov [23].
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1.3 EvotdOceia oe Awxtapaxég o tpofAnpata Xvotadomoinong

Toug meplocdTepoLg adyopiBpovg Touvg xapaktnpilovpe Pact tng enidoong Tovg 6To XeLpo-
tepo mbovd oTryptdTuTTo. AV Ko eivot TOAD GTHOVTIKO EPYOAELo GTNV KaTavOnon Tne amddoong
evOg alyopiBpov éxel ko kol apvnTiké xapoktnplotikd. Eva ortd to kupldotepa eivon 0tL Tox
XELPOTEPX GTLYHLOTUTIO, TTOV MITOPEL Vau e peOLY ONHOVTIKA TNV amddocT) Tov alyopibpov, dev
elvor mBavd va eppavioTovy GToV TPayPRaTikd KOGpo. [ v, Tor Tedevtaia xpdvia 1) épevva ExeL
OTPAPEL OTNV OVAALCT) TEPAL TNG XELPOTEPNG TEPITTWOTNG. YTTAPXOUV SLaPOPETIKES TEXVIKEG HECTL
amd TIG oToieg PITopovpe peAeTcOVNE T péor mepintwon. Epeig 0o aoyoAnBolpe kuping pe tnv
“evoTdBela o€ Sataporyés”. Te avTd To povTéNO Bewpolpe OTLT PéATIoTN AboT eivon kahd oprlopév,
IOV oNpaivel Tt dev emnpedletal amd pkpég ardayég otnv eicodo tov mpofAfpartog. Me avtd to
TpoOmo drorywpilovpe T oTiypLoTLuTa oL oilel var peAetrioovpe, avTd dnAadn mov eppavifovral
ot pdkn, amd avutd ov dev a&ilel.

ITio cuykekpipéva Bo peretricoupe To TpoPAnpa cvcsTadomoinong oe evoTodr) GTLYHLOTUTTA. XTO
TpOPANpa cuotadonoinong okomdg eival va xwploovpe Evo GOVOAO GTHELWV TOL XDPOL G€ OPADEC,
hoTe T oMpEia TOL VKoLV GTNV iSar Opddo vt ivart “Opol” evd Ta onpeia o€ SLPOoPETIKEG OpdL-
deg va glvan “Brarpopetikd”. Avtd eivan éva amd o oAb yvwotd N P-hard mpofArpata. ITapodo
autd, o€ evoTadr] oTypdTLTTA PHITOPOUHE Vo Ppodpe autodoTikd T PédTioTn Adon.

Opiopodg 1.3.1 (k-Zvotadomoinom (Clustering)). T éve avvodo onueivv X kou pic pn-apvytiky ov-
vapmmon d : X x X — [0,00) 7o clustering C = (C1, Cs, ..., Cy) eivar 0 Siaywpiopds twv onpeiov
oe k un-xevd obvoda pe kévipa ¢y, ..., C, TA OTTOLX EAQYICTOTOLOUV TO GEPOIOA TWV ATOOTATEWY TWV
onueiwv ard ta kévipa tovs (The k-median objective):

k

Z Z d(c;, )

i=1 \z€C;

Onwg meprypdyope koL mapomdve to evotadr otiypdotuna tov clustering eivon avtd ota
omoiax 1 PéAtiotn Ao dev emnpedleton amd allayég otnv elcodo. O pobnpatikdg TpodTOg Vo
opiooupe auTég TIg “aAAoyES” eivar var SNHLOVPYHOOLHE KOVTLVR OTLYHLOTUTTA 6T OTTOlot £Var LITO-
oVUVOAO TV WTOOTAGEWV PHETOED dVO0 onpeiwv éxel petwbel xatd éva maphyovta v, pe v > 1. Apa
Oa Aépe éva oTiypoTUTTO eVvoTaBEG av 1) PEATIOTN ADoT Tapapével 1) Sl o k&Be TOAVO KOVTIVO
OTLYHLOTULTTO.

Opopodg 1.3.2 (y-dwatapoyny). Ny > 1, e y-Siarapaytj evog petpikov ydpov (X, d) eivar évag
dAdog yopos (X, d') mdvw ora iSia onueia térolog dore:

d'(z,y) € [id(w,y),d(w,y)]

Opopodg 1.3.3 (y-evotdBeiar). Eva oriypidrvmo (X, d) eivan y-evorabés yio pia avrikeuevikiy ouvdp-
tmon ® av vrdpyer éva k-clustering C' = C1, ..., Cy, tétoio dote, yia ke y-Siarapayr (X, d'), ro C
va wapapével To povadiko PéAtioro k-clustering.

Bdion owtod Tov 0plopol TpokdITTOUY 3 ONHAVTLKEG OLOTNTEG YLO TIC OTOOTACELS HETOED OT)-
peiwv amd Spopetikd cluster.

Opiopodg 1.3.4 (y-Center Proximity). e xdmowo v > 1, éva y-evorabés ortiypdruvmo pe povadiko PéA-
nioto clustering C'1, ..., Cy xou fédtiora kévipa cy, ..., ¢k ikavomolel To y-center proximity. I §vo
diapopetixcd cluster C; kou C; kou xdmoio onpeio x; € Cy:

d(zi, cj) > yd(x;, c;)
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Afqupa 1.3.1 (y-Weak Center Proximity). Iy > 2, éva y-evotabég oniyuorumo e povadiké fértioro
clustering C, ..., Cy, xou féAniora kévipa c1, ..., cj, ikavomotel To y—weak center proximity. I kdmoio
x € Cikay ¢ Cy:

d(l‘,y) > (7 - 1>d([E, Cz’)
Afppa 1.3.2 (Cluster Separation Property). Eorw C1, ..., Cy 10 povadixé pédtioro clustering evog
y-evotaboig otiypotrvmov ey > 2. N ta x4, ), € C; kw to x5 € Cj (i # j) 1oyver:

(=17,

2y

T o clustering évag od TOUG O GUY VA XPTCLULOTTOLOVIEVOLG OAyopiBuovg eivar o single-
linkage. Zexivéer pe n cluster (o onpeio) ko oe k&e Pripa evover ta Svo mo “kovtvd” cluster,
péxpig 6tov peivouv k cluster. T avtd to mopdderypa Bewpodpe dtL 1 amdcTact dvo clusters di-
VETOL ot TNV EAAYLOTH oUTOGTOOT) €VOG oTpeiov outd To éva cluster kou evog onpeiov amd to GAdo.
BAémoupe 611 avtdg 0 adydpiBpog Pacileton ot amootdoelg peTafd Twv onpelwv. Av To oTLy-
potLTo eivon evotabég propel owTdG 0 alyoplBpog va Ppet tn PéATiotn Adon; Yrdpyet éva amhod
aVTLITap&SELY o TOL AUTOG 0 AAYOPLOpOG aToTLYXAVEL. AG LTTOBEGOUE OTL EXOULE VOl GTLYHLOTUTTO
pe 4 dwapopetikég tonobeoieg, éotw & = (x1, T2, T3, T4), EVag TaikTNG eivon oTn Tomobecia 1 Ko
M maikteg o€ k&Be pia omd TG vITOAouTES. XTOY0G PaG eivar va TomobeTricovpe 3 v pecieg.

Yxnuo 1.3: Avtimopaderypa tov single-linkage

d(zi, xj) > (24, x7)

Eivou ebkoro va Sobpe 6TL i PéATioTn Abor eivar va totoBetrioovpe ta kKévTpa oTig Béoelg x2,3
KoL 4 Ko vo ELTTNPETICOVHE TOV 1 OUTO TO KEVTPO 6TO 2. To GUVOALKO KOGTOG TNG PEATIOTNG
AMoong eivon 2. Opwg o single-linkage B evioel oe éva cluster Tig Oéoelg x3 ko z4. Avt 1) Adon
Opwg éxel k6oTOg M.

Me pia pikpr) Tpomosoinen oTov mopamdve oalyopLlOpo popovpe vo taipvoupe movto T PEN-
TIoTn Abo1 oe evoTadn oTiypotuma. Avti v otopatdpe ot k clusters ouveyilovpe péxpl va pei-
vel éva cluster ko 6T cuvéyela pe Suvapikd TPOYPAPPATIOHO PItopolpe v Bpodpe To BEATIOTO
k-clustering.

Anppa 1.3.3. O single-linkage adyopiBuog Ppioker wavra ) Pédtiorn Avon av, kau pévo av, kabe PEA-
Tioto cluster eivau vITOSEVTPO TOV EAGYIOTOV CUVEKTIKOU SEVIPOU.

Sxnpo 1.4: Ta édtiota cluster eivoun vtodévrpa Tov EXA.

To mapamave Appo toydet diott o single-linkage pmopel va ptid€el k-clusterings apoipovrog
k — 1 axpég ano to dévrpo. Av ta clusters Sev elvan vitodévtpa Sev vLILAPYEL TPOTOG Var TAL PTIAEEL.

Anppa 1.3.4 ([4]). O single-linkage fpioker t fédtiorn Avon yia kdbe 2-evorabés oriypdrumo.
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1.4 TIIpofAnporo Xwpobétnong oe Evotadn Ztirypiotona
Onwg eidope ko mapodve 1 faoctkry duokorio Twv TpofAnpdtey xwpobétnong eivar:

(i) Av Bélouvpe ppaypévo Adyo mpocéyylong mpémel va TomobeTricoupe TIG LI pecieg Phon TV
ATOOTACEWV PETAED TV TTAKTOV. EToL Opwg oL pnyaviopol dev eivor griaAnong.

(i) Av Bélovpe ELAaAONG pnxaviopotg dev mpémel v “kortdpe” to otiypiotuno. Etol dpwg ot
unxaviopoi dev éxovv @porypévo AGyo TpocéyyLong.

Av OpeG VTTOBEGOUIE OTL TO TTPAYHATLKA GTLYHLOTUTTO elvor VTN, HTTOPOVHE Vo oY ESLAGOVLE
HNXoviopoUg pe kahbTtepeg eyyunoels; To féAtiota cluster ota evotadn oTiyptdTUTY Elvat edKOA
dtoywplotpa mov onpaivel 0TL propolpe va tomobetricovpe pia vnpecio oe k&Be PéATioTo cluster
Yot var €XOUpe Ppoypévo AOYO TTPOGEYYLOTG AL TRLTOXPOVA OL TTAUKTEG £XOLV ALyOTepT) SUVOUN
oto va oA GEoLY Ta BéATIoTa cluster. AEilel v onpeldcovpe OTL aLTO dev elval ePLKTO XwpLg va
vtoBécoupe OTL TO GTLYHLOTUTTO elvol eVOTABEG, akOpA KO VO LINPEGLES GTN YPOUMT).

H Paoikr) Stapopd peta€d tng mponyoOpevng evotnTog Kol authg lval 0TL oL TaikTeg elvat
otpatnykol. K&be maixktng éxer o dikaiopo va dnidoel onoladrimote Béor embupel aveEdptnra
amd 1 mpoypotiky tov. Avtifeta, ot dixtapayég mov xproyonoovpe yio vo deiovpe 0TL Eva
oTLYHLOTUTIO elvan evoTalbéc TapdyovTal pe cuykekpLpévo Tpdmo. Amd €4 ko mépa, Ba vtobécoupe
OTL TOL TTPOYHATIKA OTLYHLOTUTTX TTOL Bax €€l var XeLPLoTEL évog Pnyovicpdg eival evatadr] ko Ba
peletricovpe TN dOvapun o éxel évog aiktn vo oAAGEeL Ty €€0d0 Tov pnYovicpHoD.

lNo T evotadr oTryptdTua £xovpe d00 TOAD onpovTikég WOLOTNTEG OV B oG YarvoLy TOAD
XPT|OLUEG OTI) CUVEXELX.

Appa 1.4.1. Eotw éva y-evotabés otiypidtumo T, pey > 2. Tote ke PéAnioro cluster eivaun vmodévipo
ToU SEVTpOv.

Afppa 1.4.2. Eotw éva y-evotabéc oriydromo, pey > 2 + /3. Ao to cluster separation property
éyovue oni yia ke tomobecio x; kdBe ecwtepiky ambéotaon eivai pUKPOTEPY amo Kabe eEwTepikt:

d(zi,xj) > d(z;, 2}) Vo, v € C; & z; € Cj

M apvntiky mapatrpnon yio tn Bédtiotn Adon eivon 6t Sev eivon AaAniOng av mepiéyel
éotw ko éva cluster pe éva povo maiktn (singleton cluster). Ag voBécovpe OtL TO TPOYHATIKO
oTIYpLOTUTO ivan ot g eikdvag [L5d. Av évag maiktng Snhdoer pio Béon “ToAd pakpi” ad
TOVLG LITOAOLTOVG TTarikTeg TOTE Bar €xelL i vIINpecio TN Béon oL dAwce eV TO LITOAOLTO OTLY-
poTuTo B eEvmnpetnBel ad k — 1 vanpeoieg. Onwg paiveton kot ot etkdva ta dvo cluster B
evebouv kot £Tot o Taiktng mov SAwaoe Yeudr) Béon KaThpepe Vo PEPEL HLLAL LITNPEGLAL TTLO KOVTX GTN)
npaypatikn Tov B0éon. To TpoPAnpa eivar dtL ko tar d00 oTiypLoTLTTA elval Y-gvotadn kal dev pro-
polpe pe K&molo TPOTO var SLorYWPLCOLHE AV TO GTLYHLOTUTIO €ivOlL TPAYHATIKO 1) oV €XeL TPOKLEL
oo koot aAAoyT). [loapdha LT, OTO TPAYRATIKG GTLYHLOTUTIA TTOV HOVTEAOTTOLOUV TTPOPANpaTY
XWPOBETNONG LIINPESLOV elvar PLOLKO Vo LIToBEcoupe OTL dev vIt&pyoLV singleton clusters.

(a) Apykd oTLypioTLTTO (b) To otiypdTLTTO pETE TNV XANCLYT).
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Algorithm 1: OPTIMAL

Result: Mo avdBeon k-vrnpecidv
Input: Eva otiypidtuno & k-Facility Location.
Yroloytopdg tov Bédtiotou clustering (Cy, . .., Ck). Eoto ¢; 1 dupeon Béon tov cluster C;.
if (3i € [k] with |Cs| = 1) or (3 2, 2 € Ci and xj, 2; € C; with
max{d(z;, v;), d(z;,2})} > d(zi,z;)) then
| Output: “Aev tonoBetovvton vinpeoieg”™
else
‘ Output: O k-vrnpeoieg tonoBetovvron otig Oéoerg (cy, . . ., Ck)

To devtepo Pripa Tov adyopibpov Aettovpyei wg Prpo etarnBevong. To cluster separation property
elval avaykaia ovvBikn yio Tnv evotdBela, emopévwg av éxel TapafPlactel eipocte clyovpol OTL
K&rolog maiktng éxel dnAdoel Yeudr) tomobesia. Av dpwg éva otiypdtuno “mepdoel” Tov éleyyo
dev onpaiver 6t eivon evotabég. Emiong, vo onpeidoovpe 6TL prropovpe arodotikd va eAéyEoupe
OAeG TIG AMOPALTNTEG ATTOOTACELG. ZOUPWVAL e TO AjUpa ka&Be PéATioTo cluster eivar vtodé-
VTPO TOU SEVTPOU, EMOpEVWG apkel va eAéyEoupe Tig k — 1 axpég petad twv dtapopetikdv cluster.

Osopnua 1.4.1. O OPTIMAL pnyaviouds eivar pilations kau Pédtiorog yia to mpdfAnua ywpobétnong
UITNPETIEOY OTay TO oTLYOTUTTO eivan 2 + /3 evoTabeés.

Sketch. Eotw évag maiktng ov avikel 6to C; dnAdvet pua GAAN tomobecio pe okomd v pépet pua
LTINPEGLA TTLO KOVTQ OTN TTPpayHaTiky) Tov Tomobecic. O HOVOg TPOTTOG TOL PITOPEL VO TO TETUXEL
autd elvan va Snhdoer pia Oéon x} TéTol HGOTE GTN TEPLOXT) TOL TTHYE VoL XPELNGTEL pict ETUTAEOV
vINpecio Yo va Toug eEumnpeTrioel (To TomLkd KO0oTog avENOnke). Avtd £xel wg amotéAecpa to C;
va evwbel pe o yertovikd Tov (to tomikd k6oTtog petddnke). Onwg paivetot kot 6TV elkOVR aItd
KQTW 1) LINPEia 6TO GLVEVOHEVO cluster eivot Lo KOvTd amd Tnv vrnpecia wov o tov eumnpe-
Tovoe av éleye TNV aAnBelo.

Opwg emerdn to otrypdTumo eivon evotabég eite Ta dvo yertovikd cluster ot meployn o wrye
0 z; Oa mapaPralovv v eAdyloTn eEwTepikt) amdcTooT eite LT 1) dAAayn) Sev B eivan euicty).
MtopoOpe VoL TPOGOHOLOGOVHE TNV AAAXYT] 6T KOOTH He pia y-Statopoyt]. AQol To opyLKO GTLY-
potumo eivon evotabéc to PéATioto clustering dev alAélel. Opwg, avtd onpaivel OTL 0 PNYOVICROG
dev Oa ékave avtr) TV addayr) 00TE 6TO GTLYHOTUTTO TTOL 0 T; éxeL dnhdoel Tn Béon 2.

Ixnpo 1.6: Tbovr} kepdopodpa adday
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1.5 Avoiwxtd mpofAnpata

211G apotdve evotnteg eidope ta factkd amoteAéopata yio o TpoPAnua xwpobétnong vmrn-
PECLOV CAAA Ko amrd ov TTnyalel n dvckoiia Tov TpofAfpatog. EmimAéov, eidape nwg av eotid-
COUHE OTA “TTPAYHATIKE GTLYHLOTUTTA, OITO TT) OKOTTLA TNG AVAALONG TV A yopibpwy épat TnG YeL-
poOTEPNG TEPITTWOTG, PITopolpe oXedLAooupe KaADTEPOLG OAYOpiBpoLS Yo TpoPArjpata Tov eival
TOAD SVoKOA 6TN Yevikh epintwot.Ztov OPTIMAL U oviopo eidayjie OTL TPEmeL var TOKAELGOVE
TA GTLYHLOTLTIO IOV TepLéyovy singleton clusters 810t évag maiktng propet va dniwoet po Béon
TTOAD pakpld yix va kepdioet. T v avtipetwmicovpe autd to mpdPAnpa pia eviiopépovoa tdéa
elva va eplopioouvpe to e0pog Twv mbavev tomobeoiodv mov propel va dniooel k&be Taiktng oe
oX£€0T) e TN TPAYHATIKT Tov Tomobesia. Xe avth TN Tepintwon mpémel vo Sovpe TOCO eVOTAOEG
TPETEL VAL ELVOL TO GTLYHLOTUTTO WGTE 1) PEATIOTN ADoT) var elva @LAaANBNG. Mo &AL katedBuvon
elvan v “yahophoovpe” Tov oplopd tng evoTdbelag oe éva ov eivar o Thavd var TEpLYpa@eL
T Tpaypatik otiypotuma. Exel tpotabel otn fifAoypagia yx to clustering ta (7, €)-evotadr
OTLYHLOTLTIA, 6T oToia yix k&be y-Sratapoyr) T0 TOAD éva pLkpd TOc00TO € onpeiwy aAA&lovv
cluster.
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Chapter 2

Introduction

“How can a group of individuals choose a winning outcome from a given set of options?” This is
a question that has been studied in various fields like sociology (social choice theory), economics
(game theory), and most recently, computer science (algorithmic game theory and computation so-
cial choice). Throughout this thesis, we will focus on the algorithmic aspect of the previous question
and, specifically, on how we can effectively achieve a desirable outcome. These types of problems are
studied in the field of Algorithmic Mechanism Design, an intersection between Economic Theory and
Computer Science. In classic mechanism design, the goal is to design a system for multi-participant
environments. Depending on the setting, we are interested in different performance objectives like
revenue maximization and social welfare maximization. Since the agents are strategic and rational,
the system needs to ensure that all the agents will behave as the designer intended. Algorithmic
mechanism design also considers computational constraints. Using tools from theoretical computer
science while respecting game-theoretic constraints, the goal is to design efficient mechanisms.

2.1 Motivation

The Facility Location Problem is one of the most fundamental and well-studied problems in Theoret-
ical Computer Science, Operation Research, and recently Algorithmic Mechanism Design. Such
problems are motivated by natural scenarios in Social Choice, where the government plans to
build a fixed number of public facilities in an area like schools, libraries, or hospitals(e.g., see [39]).
Apart from locating actual facilities, the problem has a wide range of applications, including non-
geographic problems such as selecting a committee to represent people with differing political views.

Let us look at it as an optimization problem first. The goal is to find the optimal placement
of facilities to minimize transportation costs given a set of locations in a metric space. However,
there are many applications where the locations are not publicly known and have to be reported
by strategic agents. Now the goal is to design a strategyproof mechanism, i.e., does not incentivize
agents to lie, which is also efficient with respect to the optimal solution. In many settings in Mecha-
nism Design (e.g., auctions), payments guarantee that the optimal solution is strategyproof. On the
other hand, payments could be illegal or unethical in Social Choice environments, such as Facility
Location games[48]. Procaccia and Tennenholtz [4#4] showed that strategyproofness could also be
achieved without payments by sacrificing the solution’s optimality, thus initiating the research on
Approximate Mechanism design without Money.

Since then, the problem has been studied in many different settings and generalizations. There
are two survey papers to get a complete overview of the problem: one for mechanism design for
Facility Location Problems [15] and one for approximation algorithms for Facility Location and
Clustering Problems [3]. In this thesis, we are going to focus on the mechanism design aspect of the
problem. This problem has been studied for different metric spaces. One of the most researched set-
ting is the k-Facility Location on the line ([23, 24, B0, 35, 42]). It is also been researched for restricted
metric spaces more general that the line(e.g., trees, circles, and plane [2, [17, 21, 29, 38]) and general
metric spaces ([25, 34]). Another direction is to design mechanism for different objective functions,

25



like maximum cost [44, 24] and mini-sum-of-squares[20]. For all those variations we assume that
all the facilities are homogeneous. Recently, there is some work where the facilities serve different
purposes ([33, 32, 50]). There are also considered not single-peaked preference profiles ([37, 16, 19])

In this thesis, we are going to focus on the classic k-Facility Location games, where k£ unca-
pacitated facilities are placed in a metric space based on the preferences of n strategic agents. Our
goal is to minimize the social cost objective, namely the sum of the distances from each agent to
the nearest facility. When the agents are located on the real line, we have a complete characteri-
zation of deterministic strategyproof mechanisms. For one facility, the mechanism that places the
facility at the median location is strategyproof and optimal with respect to the social cost [44]. For
two facilities, the only strategyproof mechanism that exist places the facility at the leftmost and
the rightmost locations (Two EXTREMES mechanism) and has an approximation ratio at most n — 2
[44, 23]. However, for three or more facilities, there is no deterministic anonymous strategyproof
mechanisms for k-Facility Location with a bounded approximation ratio [23]. On the positive side,
randomized mechanism achieve better approximation ratios. For 2-Facility Location games Pro-
PORTIONAL MECHANISM achieves a constant approximation ratio of 4 [34]. The INVERSELY PROPOR-
TIONAL MECHANISM [18] has n/2-approximation ratio for k-facility location games withn = k + 1
agents. Fotakis and Tzamos [24] proposed the EQuAL CosT a randomized strategyproof mechanism
with an approximation ration at most n for any number of agents.

k=1 k=2 k>3
Deterministic | 1[40] | n — 2 [44] | oo [25]
1[40]

[40 4 [B4] n [24] |

Randomized

Table 2.1: Best known results of approximation ratio for k-Facility Location on the line

When the agents are located on more general metric spaces than the line, the problem becomes
much more complicated. For tree metrics, for one facility the mechanism that places the facility
at the median location is strategyproof and optimal [49], but for two or more facilities there is no
deterministic strategyproof mechanism with a bounded approximation. When the agents are located
in a circle then any strategyproof mechanism is a dictatorship.

We can overcome the difficulty of the problem by giving “additional power” to the mechanisms.
Nissim, Smorodinsky, and Tennenholtz first proposed the class of imposing mechanisms [42]. In that
class, the mechanism can restrict the way agents are allowed to exploit the outcome. In the Facility
Location setting, for example, agents are forced to connect to the facility closest to their reported
location, even if there is a facility closer to their true location. This way, an agent that misreports
has a greater connection cost since she cannot select the facility closest to her ideal location. Using
the same techniques, Fotakis and Tzamos [25] showed that the Winner Imposing version of the
Proportional mechanism for the k-Facility Location is strategyproof and has an approximation ratio
of at most 4k. The mechanism requires that any agent that has a facility at her reported location
connect to it.

Another way to ensure strategyproofness and better approximation ratios is to consider mecha-
nisms with local verification. This was first introduced by Green and Laffont [31]. In order to model
partial verification, they restricted the set of each agent’s allowable deviations to a so-called corre-
spondence set. Later, Nisan [41] proposed a mechanism with verification for scheduling problems
in unrelated machines, where each machine is controlled as a selfish agent. The mechanism has two
stages: first, in the declaration phase, the agents report their types(namely the time of execution
for each job) and the mechanism returns an allocation; then, in the execution phase, each machine
executes the tasks it is allocated. The payments are given after the execution, so the mechanism
can verify if the agents reported their true types and punish those who lied by reducing their pay-
ments. This notion of local verification has been adapted for different settings, see for example
(6, 14, 13, 5, 7, k4.
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Note that in the class of imposing mechanisms, the mechanism does not know whether or not
an agent lied, but the way it restricts any agent’s post-action options ensures that any lying agent
will be penalized. On the other hand, a mechanism with verification can identify agents that lied
and punish them.

2.2 Beyond Worst Case Analysis

The previous results are based on the worst-case analysis framework in which an algorithm is char-
acterized by its performance on the worst possible input. A good worst-case guarantee shows that
an algorithm works well without any assumptions. However, in many interesting problems, this
is impossible. To get better insight about an algorithms performance we want to move beyond the
worst-case [45].

Take the problem of linear programming, where the goal is to minimize (or maximize) a linear
objective function subject to linear constraints. Two algorithms solve this problem: the simplex
method (exponential time in the worst-case) and the ellipsoid method (polynomial in the worst-
case). Yet, empirically, simplex performs way better than the ellipsoid method.

In this work we are going to focus on Perturbation Stability. The notion of perturbation stability
was first introduced by Bilu and Linial [12] for the Max-Cut Problem. Intuitively stability implies
that small perturbation on the input does not change the optimal solution. By restricting our atten-
tion to stable instances, that model “real world” instances, we can find the optimal solution. This was
later adapted for clustering problems [9, [7, 8, 4, ]. Clustering is the task of grouping a set of points
in such a way that objects in the same group are more similar (in some sense) to each other than to
those in other groups. Clustering, as an optimization problem, is N P-hard for most commonly used
objective functions (e.g, k-median[36], k-center). However, simple clustering algorithms perform
well in practice because the clusters are well defined. The notion of stability captures the struc-
ture that is usually found in practical instances. Therefore, by restricting our domain to a subset
of instances, namely perturbation stable instances, we can design exact algorithms for an N P-hard
problem.

We will call a clustering instance ~y-perturbation stable if the optimal clustering remains the same
even if we scale down any subset of the entries of the distance matrix by a factor of at most . By
focusing on the geometry of the instance, we show that in stable instances, all the inter-cluster
distances are bounded by some intra-cluster distance. We will show three properties that hold in
any -stable instance: Center-Proximity (Definition §.2.1)), Weak Center-Proximity (Lemma }.2.1)) and
Cluster Separation Property (Lemma [£.2.9).

2.3 Facility Location on Stable instances and Contribution

Since clustering and Facility Location games are closely related problems, an interesting question
is whether we can achieve better results using the ideas and techniques from perturbation stability.
The main difficulty in both problems is identifying the optimal clusters, namely the groups of points
or agents that are served by the same center or facility. However, in Facility Location games, the
agents are strategic, which means even if only one agent misreports her ideal location, the new
instance can have a very different clustering structure than the original. Therefore, the question
actually is how much power an agent has in manipulating the output of a mechanism assuming
stability of the instance and, consequently, well-defined clusters.

Fotakis and Patsilinakos [22] initiate the study in that direction. The main idea is that the class
of instances that appear in the real world are stable, and therefore, the mechanism should perform
well only in those instances. Therefore, they consider the k-Facility Location games on the line
restricted on perturbation stable instance. They showed that the optimal solution is strategyproof
for (2++/3)-stable instance, if the optimal clustering does not include any singleton clusters. Let us
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point out that without any assumptions about the input, the optimal solution is not strategyproof,
even for 2-Facility location games on the line. To avoid the restriction on stable instances with
out singleton clusters the also proposed a randomized strategyproof mechanism with a constant
approximation ratio for 5-stable instances. Moreover, focusing on stable instances does not make
the problem trivial. Extending the impossibility result for k-Facility Location games with k£ > 3,
they also proved that there is no deterministic anonymous strategyproof mechanism for k-Facility
Location, with £ > 3, on (2 — §)-stable instances with bounded approximation ratio for any § > 0.

Our goal in this theses is to see how we can extend the previous results into more general met-
ric spaces than the line. In the unrestricted domain the problem becomes non-trivial even when
we want to place one in a circle or two facilities in a tree. We show that the optimal solution is
strategyproof for k-Facility Location for 2 + v/3 in tree metrics.
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Chapter 3

Mechanisms for Facility Location games

In this chapter, we will present the main results of the Facility Location Problem in more detail. To
better understand the problem, we will start with some useful definitions from the relevant field
of Social Choice. Then we will formally define the setting and the basic concepts of Algorithmic
Mechanism Design.

3.1 Social Choice and Single Peaked Preferences

Social choice theory is the study of collective decision processes and procedures. How can a group of
individuals choose a winning outcome (e.g., policy, electoral candidate) from a given set of options?
In the most general setting there is a set N of n agents and a set A of alternatives. Each agent has
a private order of the alternatives >; over the alternatives in .A. Let L be the set of all linear orders
of A. A social choice function f : L™ — A maps the agents’ preferences to a single alternative. A
social choice function must satisfy the following properties:

Definition 3.1.1 (Unanimous). A social choice function f is unanimous if, when all player prefer a
certain outcome more than anything else, then that outcome must be the alternative chosen by the
mechanism. That is, if 3a € A such thatVb € A andi € N,a >; b then f(>~1,...,>p) = a.

Definition 3.1.2 (Onto). A social choice function f is onto if any alternative can be reached given the
appropriate preference profiles That is, Va € A, 3% € L™ such that (%) = a.

Definition 3.1.3 (Pareto Optimal). A social choice function f is Pareto optimal if no other alternative
is more preferred by every agent than the alternative chosen by the mechanism. That is, if f(Z) = a
forai € L", then b € A such thatb =;, Vi € N.

Definition 3.1.4 (Strategyproof). A social choice function f is strategyproof if no agent can change
the outcome to a more preferable by misreporting her preferences. That is, for all preference profiles
>1,..., =n and any agent i, and any alternative preference =': f(=1, ..., i, ..., =n) =i f(>=1,...,
gy )

Our goal is to find the best possible outcome given the agents’ preferences. The first three
properties ensure that the selected outcome is efficient, namely desirable for all the agents. The
agents, on the other hand, are selfish and strategic, aiming to maximize their utility. This is why, if
we want the social function to be fair, the fourth property is crucial.

An other important property of social choice function is anonymity, namely that the selection is
based on the preference profiles only and not on the agent reporting it. This implies that all agents
count the same in decision making.

Definition 3.1.5 (Anonymous). A social choice f is anonymous if for all permutations w and all profiles
(>‘1a X >'n) €L f(>_1a ey >'n) = f(>_7r(1)a X >'7r(n))

There are social choice functions that do not satisfy anonymity. For example, a dictatorial social
choice function that always selects the most preferred alternative for a particular agent, ignoring
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the preference profiles of the rest of the agents. We will call this agent a dictator. A dictatorial social
choice function is strategyproof and Pareto optimal, but not fair because not all agents count the
same.

Definition 3.1.6 (Dictator). An agenti is a dictator in a social choice function f if forall =1, ..., =€ L:
f(~1,...,>n) = a wherea =; b,¥Yb € A withb # a.

A simple and intuitive example of a social choice function is the majority vote. If there are only
two alternatives then the majority is strategyproof. If there are 3 or more alternatives, however, the
majority is not strategyproof. An agent may change her preference profile to prevent her least liked
option from being selected. Unfortunately, there is an impossibility result that states we cannot do
anything better than a dictatorship when there are more that 3 alternatives.

Theorem 3.1.1 (Gibbard [28] - Satterthwaite [47]). Let f be an incentive compatible social choice
function onto A, where A > 3, then f is a dictatorship.

One way to overcome the impossibility result of the previous theorem is to introduce payments
into the model. There are many strategyproof mechanisms with money. The idea is that if an agent
misreports in an attempt to benefit, the extra payment from the mechanism will be more than the
actual decrease in the cost. However, as we mentioned before, we are interested in applications
where payments are not an option. So, in order to overcome the impossibility result without money,
we are going to restrict the domain of possible preference profiles to single-peaked preferences.
Preferences are said to be single-peaked if the alternatives can be represented as points on a line, and
each agent has a unique most preferred point (“’peak” preference) and points that are further from
her peak are preferred less. It is natural to assume that the agents have single-peaked preferences
for many problems. For example, in the Facility Location setting, where the government wants to
place public facilities, any agent would prefer the facility closest to her ideal location since any other
facility will only increase the transportation cost.

Definition 3.1.7 (Single-Peaked Preferences). Preferences are said to be single-peaked if the alterna-
tives can be represented as points on a line, and there exists an alternative a € A (the peak) such that
ifr<y<a = y>zandifa<zr<y = z>y.

Moulin [40] showed that if all the agents have single-peaked preferences, there exists a strategy-
proof mechanism that only depends on the peak of each agent.

Theorem 3.1.2. Assuming single peakedness, a rule f is strategyproof, onto and anonymous if and
only if there exists a1, az, ..., an, € [0, 1] such that for all peaks (1, ..., x,) € R.

3.2 Preliminaries for Facility Location Games

By the definition of single-peaked preferences we can see that a profile is single-peaked if for any
two points on the same side of the peak the agent always prefers the one which is closer to her peak.
But there is no way to now by “how much” agent i prefers alternative = over y. From now on, we
are going to assume that the agents rank the all the alternative locations based on the distance from
their peak.

Definition 3.2.1 (Facility Location). Let N = {1,..,n} be a set of agents. The agents are located in
a metric space (X, d), whered : X x X — Rxq is the distance function. The function d is a metric
on X satisfying d(z,z) = 0 forallx € X, d(z,y) = d(y,z) for all z,y € X (symmetry) and,
d(z,z) < d(z,y) + d(x,z) forall x,y, z € X (triangle inequality). Each agenti € N has a private
location x; € X. We refer to the tuple ¥ = (x1, ...zy,) as the location profile or instance.
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For a location profile Z and an agent i, let #_; denote the tuple & without the coordinate ;.
Similarly, for a non-empty set S of indices, let g = (z;);es be the locations of agents in .S and
T_g = (2;);¢5 the tuple ¥ without the location of agents in S.

Each agent reports her ideal location to the mechanism M. A deterministic mechanism M for
k-Facility Location maps an instance & to a k-tuple ¢ = (ci,...,c;) € X*. We let M (Z) denote
the outcome of M in instance Z. Similarly, a randomized mechanism M maps an instance 7 to a
probability distribution over k-tuples (c1, ..., ;) € X*.

For a location profile Z and a mechanism M, we define the connection cost of agent i as the mini-
mum distance of her private location to the closest facility, cost(x;, M (Z)) = mini<j<i{d(zs, cj)}.
The social cost of a mechanism M is the total distance of the agents’ locations to the nearest facility,
cost(Z, M(Z)) = > 1y d(z;, M(Z)).

Since each agent is strategic, it is easy to see that the goal of each agent is different from the
mechanism’s. The mechanism’s objective is to minimize the social cost, but each strategic agent
seeks to minimize its connection cost. This divergence between the two goals motivates an agent to
manipulate the mechanism by reporting a false location to achieve a better connection cost. This is
why strategyproofness is a crucial property that any mechanism should satisfy.

Definition 3.2.2 (Strategyproof). A mechanism is strategyproof if for all location profiles ¥, any agent
1, and all locations y:
cost(x;, M (z)) < cost(x;, M(x_;,y))

A mechanism can also be group strategyproof if for any coalition misreporting their location
simultaneously, at least one does not benefit. Formally:

Definition 3.2.3 (Group Strategyproof). A mechanism is strategyproof if for location profiles Z, all
coalitions S C N and all location profiles &' = (Z_g, x's), there exists an agenti € S such that

cost(z;, M(T)) < cost(z;, M(Z"))

Definition 3.2.4 (Image Set). For any mechanism M, the image set of agent i with respect to a location
profile ©_; is the set of all the possible facility locations the agent can obtain by varying her reported
location. Formally:

Il(f_l) = {CL € X :3dy e X with M(f_l,y)}

We can see the image set as the power an agent has on the mechanism. Any strategyproof
mechanism M always outputs some location in I;(Z_;) that is closest to the reported location as
shown in the following lemma.

Lemma 3.2.1. Let M be a strategyproof mechanism for the k-Facility game. For every location profile
Z € X™ and any agenti € N we have:
cost(y, M(Z_;,y)) = inf ){d(a,y)}

acl; (:i“,i
Proof. For the location profile #' = (Z_;,y) let a € M(Z'). Assume for contradiction that exists
a* € I;(Z_;) such that d(a*,y) < d(a,y). By the definition of the image set there exists a y* such
that a* € M (Z_;,y*). Then, if agent 7 is located at y she can benefit by misreporting to y* lowering

her connection cost from cost(y, M (Z_;,y)) to d(a*,y). This contradicts the assumption that M is
strategyproof O

We can extend the previous definition of image set from a single agent to a group of agents. For a
given mechanism M we define the image set of agents in a subset .S with respect to a location profile
Z_g as the set of all possible facility locations they can obtain by varying their reported location:

Is(Z_g) ={ae X : 3§ e X with M(Z_g,7)}
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We can also extend the previous lemma to hold for partial group strategyproof mechanisms,
when all agents in the coalition report the same location.

Lemma 3.2.2. Let M be a strategyproof mechanism for the k-Facility Location game. For every location
profile Z € X", any non-empty set of agents S C N, § and§j = (y, ..., y) we have:

cost(y, M(7_s,%)) =  inf ){d(a,y)}

aEIs(f,S

3.3 Facility Location on the Line

In this section, we are going to focus on Facility Location on the real line. Let N = {1,...,n} be
the set of agents. Each agent has a private ideal location z; € R. We can assume without loss of
generality that the locations in the location profile ¥ = (z1,...,x,) are ordered (z; < z3 < ... <
Zn), since we focus on anonymous mechanisms. Given an instance Z the most important locations
are the leftmost and the rightmost because they delimit the instance. We denote the leftmost location
as [t(Z) = min;en{x;} and the rightmost location as 7t(Z) = maz;en{x;}. The distance function
between any two locations is simply the length of the interval, d(z,y) = |z — y|.

3.3.1 Locating one facility

We start with the simplest setting. Given an instance & we want to place one facility that achieves
the best possible social cost in a strategyproof way.

Theorem 3.3.1. The mechanism that selects the median location of the reported instance is strategyproof
and optimal for the social cost objective.

Proof. We first show that the median location, med(Z), is the optimal solution. If  is odd the median
location is Z(,, 1 1)/2, if 7 is even any location in the interval [T1/2, T /241] is optimal without lost of
generality we consider z,,/; to be the selected location. Suppose the facility is placed at a location
to the left of the median location, let that location be x. Then, at least half of the agents’ connection
cost has increased by d(x, med(Z)), and at most half of the agents’ connection cost has decreased
by d(z, med(Z)). This makes the social cost of = higher than the optimal. The same holds for any
location selected to the right of the median.

We now show that the mechanism is strategyproof. The agent located at med(Z) has no initia-
tive to misreport her location, since her connection cost is zero. Suppose an agent ¢ located at x;
misreports to z,. Without loss of generality we can assume that z; < med(Z). If 2} < med(Z) then
the output of the mechanism does not change. If 2, > med(Z) the median location moves to the
right leading to an increase in her cost. O

3.3.2 Locating two facilities

This section extends the previous setting from locating one facility on the real line to locating two.
Now a mechanism returns a 2-tuple ¢ = (c1, ¢2) with the location of the facilities; we can assume
that ¢; < co. Each agent connects to the nearest facility with connection cost equal to cost(z, ¢) =
min{d(x,c1),d(z,c2)}.

Let us focus on the optimization problem of locating the two facilities without considering the
strategic agents’ motives. Let Z a location profile, and c¢y,co the optimal facility locations. We can
split the agents into two (non-empty) groups based on which facility they prefer. The agents that
prefer ¢; belong to the “left” set L(Z), and the rest belong to the “right” set R(Z). Using the same
argument as in the previous setting for one facility on the line, given the sets L(Z) and R(Z), the
optimal locations ¢; and ¢ are the median of each set. So, for an arbitrary location profile &, we can
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compute the optimal solution by selecting the locations that minimize the social cost over the (n-1)
choices for L(Z) and R(Z).

Unfortunately, the mechanism that selects the optimal solution is not strategyproof. The reason
is that the sets in the optimal solution are susceptible to minor changes, and the agents can benefit
from that. In order to design a strategyproof mechanism we need to extract L(Z) and R(¥) in a
strategyproof way. Since both sets are non-empty we are sure that the leftmost agent belongs to
L(Z) and the rightmost agent to R(Z). So the mechanism that places the facilities to the leftmost and
the rightmost agent is strategyproof and achieves (n—2)-approximation ratio. As we will see bellow
this is the only deterministic anonymous strategyproof mechanism with bounded approximation for
the 2-Facility Location game.

Theorem 3.3.2. The Two EXTREMES mechanism that places the facilities at the leftmost lt(Z) and the
rightmost rt(Z) is a (n — 2)-strategyproof mechanism for social cost.

Proof. To show the approximation ratio consider the location profile with n agents, where one agent
is located at 0, n — 2 agents are located at ¢ > 0 (arbitrarily close to 0), and one agent at 1. The
optimal solution places one facility at € and the other at 1. The social cost of the optimal solution is
SC* = e. The social cost of the solution outputted by the mechanism is (n — 2)e = (n — 2)SC"*,
since (n — 2) agents have connection cost equal to e.

We now show that the mechanism is also strategyproof. Let & be a location profile. Any agent
reporting a location in the interval [{¢(Z), rt(Z)] cannot change the output of the mechanism. How-
ever, if an agent reports a location 2’ € (—o0,lt(Z)) U (rt(Z), 00) will move the facility further
away from her ideal location. So, no agent can benefit by misreporting her location O

In the paper [#4] Procaccia and Tennenholtz proved that any deterministic strategy proof mech-
manism for 2-Facility Location game has approximation ratio of at least 1.5. This result was later
improved to 2 [35], and then to (n — 1)/2 [34] . Fotakis and Tzamos [23] proved a tight lower
bound of n — 2. From the latest result we conclude that the Two EXTREMES mechanism is the only
deterministic, anonymous, strategy-proof mechanism with a bounded approximation ratio.

The takeaway from the previous section is that we cannot improve the linear approximation ratio
for any deterministic strategyproof mechanism. So, the next question is if we can achieve better
results with randomized mechanisms. Fortunately, the answer is yes. The Proportional Mechanism
[B4] is strategyproof and achieves a constant approximation ratio. The idea for this mechanism
is very simple and intuitive. Place the first facility uniformly at random among all the reported
locations and the second with a probability proportional to its distance from the first. However, is
not that simple to prove that the mechanism is indeed strategyproof with constant approximation
ratio.

Definition 3.3.1 (Proportional Mechanism). Given a location profile ¥ = (x1,...zy,), the location of
the two facilities are decided by the following random process:

e Round 1: Choose agent i uniformly at random from N. The first facility c, is placed at x;

e Round 2: Let dj = d(c1,x;) be the distance from agent j to the first facility. Choose agent j

; . d; I ‘
with probability Sion The second facility is placed at x;.
Theorem 3.3.3. The proportional mechanism for the two-Facility Location game is strategyproof.

Proof. Let costy(x;, M (X)) denote the expected cost of agent ¢ when the mechanism places the first
facility facility on x. The agent that has a facility at her location experiences after the first round
zero cost, so costy(xy, M(Z)) = 0. Since the first facility is selected uniformly at random, we have
that for any agent ¢ her total cost is:
cost(x;, M (Z)) ! z”: costy(x;, M (%)) ! Z costy(x;, M(Z))
i = - k(Ti, =— k(L
"= Ly
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Let ' = (&, }) be the location profile after the deviation of agent i. We need to show that she
cannot decrease her cost by misreporting her location. We need to show that for all k& # i:

cost(x;, M(x)) < cost(x;, M(Z"))
Fix the first facility on zj. The expected cost of agent ¢ to the second facility, conditional on the
first facility is at x, is:

Z] 1 d d(x“ x])
Z;L:I d]

n
d.
cost(ca, ;) E Pricy = xj] - d(z4, z5) = E Z J d(xi,azj) =
k= 1

Then we have that the cost of agent ¢ is the minimum between the distance to x; and the expected
distance to the second facility:

costy(z;, M(Z)) = min {di7 Zj=1 dzl. d(z;, ) }
ijl d;
> j—1 dj min{d;, d(w;, z;)}
- Z?:I d;
> jzi djmin{d;, d(z;, ;) }
i Y d;

Let d; = d(cy,x}). The cost of agent 7 if she misreports is:

Zj;éi dj min{diy d(xia x])} n d; min{di, d(l’i, 1‘;)}

t i M £')) =
costulee MT) = =G G (@ —dy TS dy+ (d— dy)

We can get the following relation between costy(x;, M (%)) and costy(x;, M(Z')):

costy(x;, M(Z)) 37—, d; | dimin{d;, d(z;, 7))

costy(r;, M(7')) = —=x - (3.1)
> e ds + (d; — di) > i1 ds + (d; — di)
We need to distinguish two cases:
(i) d; < d;: we have that costy(z;, M (Z)) < costy(x;, M(Z')) because dnJ:(Z, 7y > 1and

the second term in the previous equality is non-negative.
(ii) d; > d;: This case is not that simple. If we subtract cost,(x;, M (%)) from (B.1), we have:

—(d; — d;)cost(xz;, M(Z))  d;min{d;,d(x;,x})}

costy,(zi, M(Z')) — costy(zi, M (7)) = ST di+ (d — dy) S di + (d — d;)
j=1%j i % j=1j i — i

So it suffice to show that:
d; min{d;, d(z;,x})} — (d; — d;)costy(z;, M(Z)) > 0 (3.2)

We need to show that (B.9) holds for both cases:

(a) If min{d;,d(z;,2,)} = d;. We have that d; > cost(x;, M (Z)) because agent i always
selects the facility closest to her location which cannot be further than the facility placed
ad . We also have d;, > d, — d;. By multiplying the previous inequalities we have that

(B.9) holds.
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(b) If min{d;, d(z;,x})} = d(z;, x}). We have that d; = d; > cost(z;, M(Z)). From triangle
inequality we have d(z;, ;) > d; — d;. Again by multiplying the previous inequalities
we get that (3.2) holds.

O]

It is very interesting that an agent cannot gain even if she knows where the first facility is placed
after the first round.

Theorem 3.3.4. The approximation ratio of the Proportional mechanism for the two Facility Location
game is 4 for any metric space.

The proportional mechanism is the best know randomized strategyproof mechanism for 2-Facility
Location game. The previous know result [35] has an approximation ratio of n/2. A a constant up-
per bound is a great improvement to the previous liner bound, but there is still a big gap between
the upper bound and the only know lower bound for randomized mechanisms, which is 1.045[B5].

3.3.3 Locating more than two facilities

As we previously saw the problem becomes significantly more difficult when we want to locate
two facilities instead of one. For the 2-Facility Location games we saw that Two EXTREMES is the
only deterministic and it has a linear approximation ration. Therefore, we cannot expect any better
results for k-facility location games, when £ > 3. In fact we have a very negative result: there is no
deterministic anonymous strategyproof mechanism with bounded approximation for £ > 3 [23].
This holds even for n = k + 1 agents. We are going to focus on the intuition behind the proof and
present a sketch-proof. We will refer to deterministic, anonymous, and strategyproof mechanisms
with a bounded approximation ratio (in terms of n and k) as nice mechanisms.

The proof heavily relies at well-separated instances, namely instances with £ — 1 isolated agents
and two nearby agents. Let ¥ = (z1|xa|...|z, x1+1) be a well separated instance. The optimal
solution is to serve all the isolated agents by a different facility and the two nearby by from the
remaining facility. First, we are going to show some properties of nice mechanisms.

Proposition 3.3.1. Let M be a nice mechanism for k-Facility Location on the line. For any (k + 1)-
location instance Z, M1(Z) < x9 and My (%) > xy,

Proposition 3.3.2. Let M be a nice mechanism for k-Facility Location. Forany & = (z1|z2|...|xk, Tg4+1)
well separated instance, My(%) € [zk, Tk11]

The following propositions show that in well-separated instances if a mechanism places a facility
on the left of the nearby agents and we “push” both agents to the right, while keeping the instance
well-separated, the rightmost facility remains on the same agent. Similarly, if a mechanism places
a facility on the right of the nearby agents and we “push” both agents to the left then the rightmost
facility remains on the same agent.

Proposition 3.3.3. Let M be a nice mechanism for k-Facility Location and let ¥ = (x1|x2|...|zk, Tp11)
be a well separated instance such that My(¥) = xy. Then for every &' = (Z_{j, py1}> T)» Tpyp) well
separated instance with xj, > x)_ it holds My (Z') = x),

Proposition 3.3.4. Let M be a nice mechanism for k-Facility Location and let ¥ = (x1|x2|...|Tk, Tp11)
be a well separated instance such that My, (%) = xy11. Then forevery &' = (Z_{j jq1y, T, T)ppq) well
separated instance with xj 1 < xj_, it holds My (%) = 7.,

Using the previous propositions we can show that any anonymous nice mechanism for k-facility
location on (k + 1)-agent instances always allocates facilities to the leftmost and to the rightmost
agent.
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Lemma 3.3.1. Let M be a nice mechanism for k-Facility Location with k > 2 andn = k + 1. Then
for all instances & = (1, ..., xp+1) withxy < ... < 241, M1(Z) = x1 and My (Z) = zp41.

We can now show that there is no nice mechanism for k-Facility Location when k£ > 3.

Theorem 3.3.5. For every k > 3, any deterministic strategyproof mechanism for k-Facility Location
withn > k + 1 agents on the line has an unbounded approximation ratio.

The previous propositions and the lemma describe how any nice mechanism should “behave”.
Suppose that there is a nice mechanism M with a bounded approximation for 3-Facility Location.
Let & = (z1|z2|x3, x4) be a well-separated instance. By Lemma x1 and x4 have a facility. And
since the instance is well-separated agent x5 is served by the facility at x4.

Figure 3.1: ¥

Let us remind the definition of the image set (Definition B.2.4). The image set of an agent i
is the set of facilities the agent can obtain by varying her reported location. Any interval in the
complement of an image set I;(Z_;) is called a hole. By Lemma we have that the mechanism
places a facility at the location in I;(Z_;) nearest to the location of agent i. Since agent z3 is not
allocated a facility in & there is a hole in the image set [3(Z_3) around x3. Let [ and r be the
locations in I3(#_3) nearest to z3 on the left and on the right.(let the red lines represent the hole).
Now consider the location profile ¥ = (¥_3,1 + €¢). By Lemma the mechanisms should place a
facility at [, since [ is the nearest location in the image set.

X

Figure 3.2: i/

Now consider the location profile 2 = (i/_4,1) = (¥{_3 4}, {/,[ + €} ). The mechanism is anony-
mous, which means we can rearrange the indices so that 1 < z9 < 3 < x4. As a result, agents
3 and 4 switch indices in ¢ and Z. We have that M is strategyproof. Since in  and in Z there is an
agent at [ + € and in 2’ an agent is moving closer to [, M should keep a facility at . By proposition
we have that x4 has a facility because ¥ and Z are well-separated instances and the nearby
agents move to the right. But this way in 2" the nearby agents are allocated two facilities which
makes the cost arbitrarily larger than the optimal.

Figure 3.3: 7
Even if we cannot have deterministic strategyproof mechanisms with a bounded approximation
ration for the k-Facility Location games with k > 3, there is a class of deterministic strategyproof

mechanisms [51] for any & > 2. A percentile mechanism splits the instance into k parts, based on
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a predefined vector p € (0,1)*, and allocates one facility at each part. One might think how can
this class of mechanisms be practical if there is no guaranty for the outcome. However, in most
“real world” applications the designer has some knowledge of the preferences of the participating
agents. This allows for empirical optimization of the vector p. Let us formally define the percentile
mechanisms.

Definition 3.3.2 (p-percentile mechanism). The percentile mechanism is specified by a vector p =
(p1, ..o, pr) where 0 < py < ... < pi, < 1. The mechanism locates jth facility at the p;th percentile of
the reported locations.

cj=wx; ij=[(n—1)-p;j]+1

To better understand the mechanism let # = (z1, ..., x9) be a location profile with 9 agents. The
(0.25,0.75)-percentile mechanism will place the first facility at ¢; = x3 since [8-0.25] +1 = 3
and the second facility at co = 7 since |8 -0.75| +1 = 7.

e e *—o 0 0o o — .
X1

Xy

=
>
o]
=
-~
>
>

Figure 3.4: Example of (0.25, 0.75)-percentile mechanism for 9 agents

Lemma 3.3.2. The percentile mechanism is group strategyproof for any p.

Proof. We are going to prove the lemma for & = 2 but the proof is similar for k > 2. Let ¢ = (cy, c2)
be the locations of the facilities when all the agents report their true preferences and & = (¢}, ¢)
be the locations after agents in a subset S C NN deviate from their true locations. Let A; = ¢; — ¢}
and Ay = ¢}, — co. Now we need to show that at least one agent in S does not benefit from the
deviation. There are four cases to consider:

(i) A1 > 0and Ay > 0. That means that the first facility is moved to the left and the second to
the right. In order for this to happen there is one agent that has an ideal location z; € (c1, c2)
who reported a location either to the left of ¢; or to the right of cp. Otherwise the facilities
could not move in such way. Now the cost of agent ¢ is:

cost(z;, M(Z")) = min(d(z;, c)), d(x;, ¢5))

> min(d(z;, c1),d(x;, c2))
= cost(x;, M(Z))

(i) A1 > 0and Ay < 0. Now both facilities moved to the left. That means there is an agent ¢ with
x; > o, that reported a location to the left of co. Her cost is:

cost(x;, M(Z')) = z; — ¢y > x; — co = cost(z;, M(T))

(iii) Ay < 0and Ag > 0. This case is completely symmetric to the previous case.

(iv) A; < 0and Ag < 0. The first facility is moved to the right and the second to the left. As in the
second case there is an agent to the right of cy that reported a location to the left. She cannot
benefit from this deviation.

Note that if A; = 0 and Ay = 0 represents the case where neither facility moves and no agent
benefits from the deviation. So without loss of generality we can assume that at least one of A; or
Ay is non-negative.

O]
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The main idea behind the proof is that the mechanism selects where to open a facility without
“looking” at the instance. Like in the example above in any instance (with 9 agents) the (0.25,0.75)-
percentile mechanism will place the facilities at the 3nd and 7th agent respectively without looking
at their actual locations. In order for an agent to change the outcome of the mechanism she would
have to report a location 2’ in a different part than her true preference. Like in the setting with one
facility (and the median location) this deviation would move the facility further away making it a
non profitable deviation.

The Two EXTREMES mechanism mention above belongs in the class of percentile mechanism
with a vector = (0, 1). It is also the only mechanism within the family of percentile mechanisms
that has a bounded approximation ratio. For any p # (0, 1) we can create an instance with arbitrarily
small cost but since the mechanisms does not “look” at the instance the solution will have arbitrarily
large cost. Consider a location profile Z = (0,¢,1) where € > 0 but arbitrarily close to 0. The
(0,0.6)- percentile mechanism will allocate the facilities to the first two agents. It is easy to see that
the cost of the optimal solution is € but the cost of the solution of the mechanism is 1 — €. Thus, the
approximation ratio is unbounded.

Randomized mechanisms

Again we may get better results if we consider randomized mechanism for k-Facility Location
on the line. Unfortunately, a simple extensions of the proportional mechanism is not strategyproof
even when k£ = 3. The first two facilities are allocated like in the Proportional mechanism and the
third is placed on a location of an agent with probability proportional to her minimal distance to
the first two facilities.

Consider this counter-example: there exist ng agents at 0, n; agents at location 1, ny agents at
location 142 and 1 agent at location 14z +y. Here ng is sufficiently large such that we can assume
the first facility to be always located at 0. In this configuration, let y = 100, z = 1019, n; = 50
and ny = 4. An agent at location 1 may have the incentive to misreport to location 1+x.

If we take a closer look at the instance, we can see that the distance between locations 0 and 1
is 1, and between locations 1 + = and 1 + z + y is y. By selecting = 10'%°, the distance between
locations 1 and 1 4 «x is huge compared to the other two distances. By construction, the mechanism
places the first facility at 0. Since the second facility is placed with a probability proportional to
the distance to the first facility, the agent’s deviation to 1 + z increases the probability the second
facility is placed at 1 + x. But that also means that the third facility has an increased probability of
being placed at her true location, making that mechanism manipulable.

Due to the negative results in the general setting new approaches were proposed. Imposing
mechanisms was proposed by Nissim, Smorodinsky, and Tennenholtz [42], namely mechanisms
able to restrict how agents exploit their outcome. Fotakis and Tzamos [25] showed that the winner-
imposing version of the Proportional mechanism is strategyproof for the k-Facility Location game,
and achieves an approximation ratio of at most 4k. In this setting any agent that “wins” a facility at
her reported location must connect to it, even if there is a location closer to her ideal location. The
mechanism runs in k£ rounds and allocates one facility at each round. For each ¢ = 1, ..., k let Cy
denote the facility set after the /th round.

Definition 3.3.3 (Winner Imposing Proportional Mechanism). Given a location profile & = (x1, ...xy,),
the mechanism runs the following random process:

® Round 1: Choose agent i uniformly at random from N. The first facility is placed at ;. Let
Cr = {@i}

e Round /(,¢ = 2,....k: Let dy = d(xy,Cy_1) be the distance from agent { to the closest facility.
Choose agent £ with probability %. The (th facility is placed at xy, and agent x, connects
€

toit. Let Cy = Cy_1 U {xy}
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3.4 Facility Location on general metrics

In the section, we are going to present the most interesting results of the Facility Location games in
more general metric spaces than the line. As we saw in the previous section, the problem becomes
much more difficult as the number of facilities increases. In general metric areas, however, even the
placement of one facility is not trivial.

3.4.1 Tree Metrics

The first metric space that we are going to focus on is the tree, because it has similar properties to
the line. For the problem of locating one facility on a tree, we can obtain the same result as in the
line.

Theorem 3.4.1. The mechanism that selects the median location of the reported instance is strategyproof
and optimal for the social cost objective.

Proof. Using the same arguments as in the line we can easily show that the median location is
the optimal solution. The median on the tree is the location that when is viewed as the root all the
subtrees have at most half of the nodes. Suppose the facility is placed at a location x that is on subtree
T). Then, the connection cost for all agents on 77 (at most half) has decreased by d(z, med(Z)), but
the connection cost for the rest of the agents (at least half) has increased by d(x, med(Z)). This
makes the social cost of  worst than the median location.

The median location is also strategyproof since the only way that an agent can change the median
location is by reporting a location in a different subtree of the median. But this will only move the
facility further away from her true location. O

It gets a lot more complicated even if we consider 2-Facility Location games on tree metric. For
the next theorem we consider the star metric space. It consist of 3 half-lines [0, co) with a common
origin point 0. We can see it as 3 long branches starting from O. So, we refer to this metric as Ss,
and to the branches as by,b2 and bs. A location (z, b;) in S3 is determined by the distance x > 0
from the center and the corresponding branch. The distance between any two locations (z, b;) and
(' by) in S3is |x — 2’|, if | = " and = + 2’ otherwise.

Theorem 3.4.2. [23] Any deterministic strategy proof mechanism for 2-Facility Location game with
n > 3 agents in S3 has an unbounded approximation ratio.

The proof again relies on well-separated instances with 3 agents. The idea is that even in those
instances with an “obvious” optimal solution, there is no deterministic and strategyproof way to
determine where to place the facility that serves the two nearby agents.

3.4.2 Circle

We know that the tree is an acyclic graph, so the next natural question is what guarantees can we get
when we have a circle. Schummer and Vohra [49] prove that any strategyproof and onto mechanism
for locating one facility on a circle is dictatorial.

The circle metric space (S', d), where S' C R? is a circle in the two dimensional Euclidean
space and the distance function d(z, %) for 2,y € S! is the length of the minor arc spanned by =
and v.

The approximation ratio of any dictatorial mechanism is n — 1. This can be verified by a simple
example. Suppose n — 1 agents are located at « and one agent is located at y. The obvious optimal
solution is to place the facility at 2 with social cost equal to d(z,y). If the dictator is located at y
then the social cost of that solution is equal to (n — 1)d(z, y)
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Once again, we can use randomization to get a better approximation ratio. By selecting uni-
formly at random any location we can achieve constant approximation ratio.

Definition 3.4.1 (Random Dictator). The mechanism that selects a location uniformly at random from
the reported locations is strategyproof and has an approximation ratio of 2 — %

Proof. The mechanism is strategyproof because an agent that deviates if selected loses since the
location is further away from her ideal location and, if not selected, cannot change the outcome of
the mechanism.

For the approximation ratio, let y be the optimal solution. Since the mechanism selects a location
uniformly at random the expected social cost is:

cost (&, M (%)) = % DY d(wi )

1EN j#i

= Y deny) +dly. )

" ieN i
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There is also a mechanism for 2-Facilities in a circle. Since the mechanism for one facility in
the circle is dictatorial, we cannot expect that to change for 2 facilities. The mechanism works as
follows: it places the first facility at the location of the dictator, then it cuts the circle in half and
allocates the second facility based on the maximum distance in each semi-circle to the first facility.

Definition 3.4.2 (Circle mechanism for 2 Facilities). Given a location profile ¥ = (x1, ...xzy,) the first
facility is allocated at x1, the location of the first agent. Let &1 denote the antipodal of x1. There are
two semi-circles formed with 1 and 1 as endpoints, the left circle L and the right circle’ R. Let A and
B be the set of agents on L and R respectively. We assume agents at location x1 and &1 appear only in
A, and thus AN B = (. Define dy = maxicad(z1,x;) and dg = maz;cgd(xy1,x;). If B is empty
then dp = 0. The second facility is allocated as follows:

o Ifds < dp facility cy is placed on R with distance min{max{dp,2da},1/2} toc;
o Ifda > dp facility cy is placed on L with distance min{max{da,2dg},1/2} toc;

Theorem 3.4.3. [34] The circle mechanism for the 2-Facility Location game is strategyproof and has
an approximation ratio of at mostn — 1

There is a simple instance for which the circle mechanism has an approximation ration equal
to n — 1. Consider the location profile ¥ = (z1, ..., x,), where d(x1,z2) = d(x1,23) = 0.1 and
x3, ...Tyn. But 9 and x3 are in different sides of x1. The optimal solution is to place one facility at x;
(or x2) and the second facility at 3. The cost of the optimal solution is 0.1. But the circle mechanism
will place one facility at ; and the second facility at the left semi-circle at a distance 0.2 to the first.
The cost is (n — 1)0.1
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3.4.3 Euclidean Space

For a set of points in a two dimensional Euclidean space the geometric median is the point that min-
imizes the sum of the distances to the data points. The distance function is the Ly-Norm. Formally

given a set of points z1, ..., x,, € R the geometric median is:
n
med = argmin{ Z d(x;, y)}
y€R2 i=1

However, the geometric median can only be approximated.

Definition 3.4.3. In the Euclidean metric space with X = R™, a mechanism fis called a generalized
coordinate-wise median voting scheme with k constant points if there exists a coordinate system and
points ay, ..., ar, € (RU{—00,00})™ so that for every profile ¥ € R™ and everyj = 1,2,...,m:

J

M (%) = med(z], 2%, ....,2),al, ...,a},)

Where “med” denotes the median of the subsequent real numbers, and all coordinates are expressed
with respect to the given coordinate system.

Lemma 3.4.1. [43] In the Euclidean metric space with X = R? and an odd number of agents, a
mechanism M is Pareto optimal, anonymous and strategyproof if, and only if, it is a coordinate-wise
median scheme with 0 constant points.

The coordinate-wise median is strategyproof because it handles each coordinate separately. Us-
ing the same ideas as in the median on the line, the only way to change the median location is by
reporting a location on the other side. But this will move the median further away.

Lemma 3.4.2. [38] For X = R™ and the social cost objective, the coordinate-wise median mechanism
has an approximation ratio of at most \/m for any number of agents n.

3.5 Conclusion

In this chapter, we look at various settings for the k-Facility Location games. However, the goal was
the same: the design of a mechanism with desirable proprieties such as strategyproofness, Pareto
optimality, anonymity, and a bounded approximation ratio. Unfortunately, in most cases, this was
infeasible. Since strategyproofness is a property we always want to have, we need to sacrifice one
of the other two properties. We can have strategyproofness and a bounded approximation ratio on
the circle metric space, but not anonymity since the mechanisms admit a dictator. On the other
hand, in the case of the percentile mechanism, we have strategyproofness and anonymity but not a
bounded approximation ratio. The trade-off between strategyproofness and approximability is the
most interesting because it shows that those properties are incompatible. Intuitively, to achieve
a bounded approximation ratio in the multi-facility setting, we need to place one facility in each
optimal cluster; otherwise, we can construct an instance with an unbounded approximation ratio.
But, as we saw for 3-Facility Location games with 4 agents, there is no deterministic strategyproof
way to identify the optimal clusters and place the facilities even in well-separated instances.
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Chapter 4

Perturbation Stable Clustering

Clustering and Facility Location games are two closely related problems. This is due to the fact
that clustering, the primary optimization problem, and we know that is /N P-Hard in general metric
spaces. As we know very well, a problem is NV P-Hard if no polynomial algorithm solves every input
correctly. However, we are not interested in all instances but only those that appear in the real world.
For clustering, it is cleverly stated in the paper by Bilu, Daniely, Linial, and Saks that “clustering is
either easy or pointless”[11] and by Roughgarden, “clustering is hard when it doesn’t matter”[46]. But
what does this actually mean? Clustering is the task of partitioning a set of points into groups so
that points in the same group are “similar” and those in different groups are “dissimilar”. So in the
“real world”, we expect that the clusters are well-defined, meaning that “similar” points are relatively
close to each other and far from any other point. This translates to communities or neighborhoods
having “clear borders” in the Facility Location game, making it easy to identify them and locate the
facilities. In the following section, we will refer to these instances as “stable instances” and explore
all the interesting properties of stability.

4.1 Stable Clustering

Definition 4.1.1 (k-Clustering). Given a set of points X and a non-negative distance function d :
X x X — [0,00) a clustering C' = (C1,Cs,...,Cy) is the partitioning of the input points into k
non-empty sets that minimizes an objective function:

1. The k-median objective: minimize the sum of distances from points to their centers

k

Z Z d(ci, x)

=1 zeC;
2. The k-center objective: minimize the maximum distance of a point to its corresponding center

max d(z;, ¢;)
x,eC;
The k-median objective is equivalent to the social cost and the k-center to the maximum cost in
the Facility Location game.

We are moving to the formal definition of “well-defined” or stable instances in clustering. Intu-
itively, stability means all points in the same cluster in the optimal solution are close together and
that the clusters are well separated. It also means that the optimal solution is not affected by small
changes in the input. We can perturb an instance to create nearby instances by scaling down the
distance between any pair of points by a factor of at most -, with v > 1.

Definition 4.1.2 (y-perturbation). For v > 1, a y-perturbation of a metric space (X, d) is another
space (X, d’) on the same point set such that:

t(e.9) € | Lo o)
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Definition 4.1.3 (y-perturbation stability). | A clustering instance (X, d) is y-perturbation stable to a
given objective function ® if there is a k-clustering C = C', ..., Cy, such that, for every ~y-perturbation
(X,d"), C remains the unique optimal k-clustering.

There is also a weaker notion of stability called y-metric perturbation stability. In the definition
of stability the perturbed space d’ does not need to be metric (i.e. d’ does not have to satisfy triangle
inequality). In order for an instance to be -stable it needs to admit the same optimal solution in
every ~y-perturbation. For y-metric stability we only require that the optimal solution remains the
same for every y-metric perturbation a subset of y-perturbations. Thus, the class of y-metric stable
instances includes the class of -stable instances. The reason that we say ~y-metric perturbation
stability is a weaker notion of stability is because we relax the conditions for stability to more natural
ones, therefore allowing more instances in that class.

Definition 4.1.4 (7-metric perturbation stability). A clustering instance (X, d) is y-metric perturba-
tion stable to a given objective function ® if there is a k-clustering C = (', ..., C, such that, for every
~-metric perturbation (X, d’), C' remains the unique optimal k-clustering.

4.2 Properties of Perturbation Stable Instances

One of the most important properties for y-stable instances is the center proximity property which
implies that in the optimal solution every point is closer to its own center than to any other center.

Definition 4.2.1 (y-Center Proximity). Let~y > 1, any y-stable instance with unique optimal cluster-
ing C1, ..., Cy, and optimal centers cy, ..., ci, satisfies y-center proximity. For all distinct cluster pairs
C; and C; and any point z; € C;:

d(@i, c;) > vyd(w;, ¢;)

Proof. Let C; and C; be any two clusters in the optimal solution and x; € C;. We consider a ~-
perturbation of the original instance in which all distances among points in C; and points in C; are
scaled down by a factor . Since this is a valid perturbation, the optimal clustering remains the same.
Furthermore, since the distances within the clusters C; and C; are the same, ¢; remains the optimal
cluster center for C; and ¢; for Cj. In the perturbed instance z; still belongs in C; so d'(x;,¢;) >
d'(x, ¢;). From the way the perturbed instance is created we have that d'(z;, ¢;) = %d(aci, ¢j) and
that d'(x;, ¢;) = d(xi, ¢;). Therefore, d(z;, ¢j) > vd(x;, ¢;) O

An immediate consequence of y-center proximity is that any point is 7 — 1 times closer to its
own center than to any other point from a different cluster.

Lemma 4.2.1 (y-Weak Center Proximity). Let v > 2, any y-stable instance with unique optimal
clustering C1, ..., Cy, and optimal centers c1, ..., ¢y, satisfies y—weak center proximity. For any point
x € Ciandy ¢ C;:

d(z,y) > (y = 1)d(z, ¢:)

Proof. Let x be any point in C; and y any point in C;. We need to distinguish two cases:

(i) d(y,cj) > d(x,c;): By triangle inequality we have that d(y, ¢;) < d(y, z) +d(z, ¢;). Since the
instance is stable we have d(y, ¢;) > vd(y, ¢;) > vd(x, ¢;) from ~y-center proximity property.
Hence, we get that d(x,y) > d(y,¢;) — d(z,¢;) > vd(z,¢;) — d(z,¢;) = (v — 1)d(z, ¢;)

(i) d(y,c;) < d(z,¢;): Again by triangle inequality we have that d(z,¢;) < d(z,y) + d(y, ¢;).
From ~y-center proximity property we have d(z, ¢;) > vd(x, ¢;). Hence, we get that d(z,y) >
d(z,cj) — d(y,¢j) > vd(x,¢;) — d(z,¢;) = (v — 1)d(z, ¢;)

! This definition does not state that the optimal cluster centers must remain the same.
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We can use the previous properties and show that the distance between any two points from a
different cluster cannot be arbitrarily small.

Lemma 4.2.2 (Cluster Separation Property). Let C1,...,Cy be the optimal clustering of a ~y-stable
instance withy > 2. Let z;, x; € C; and x; € C; (i # j) then:

(=17,

d iy Lg
(x4, 25) > o

(xia Z’;)
Proof. Let C be the optimal clustering of Z. Let z;, 2, € C; have center ¢; and z; € C; (i # j) have
center c;. We have that:
vd(zi, ¢i) < d(z4,¢5) < d(xi, ¢;) +d(ci,¢j) =
("y — l)d(l'i, Ci) < d(Ci, Cj) (4.1)

Where the first inequality follows from the definition of the y-center proximity and the second
from the triangle inequality. We also have that:

d(ci, ¢j) < d(ci, ) + d(zi, z5) + d(zj, ¢j)

2
< ——d(xj, %) + d(xi, xj)

v—1
v+1

Where the first inequality follows from the triangle inequality and the second from the definition
of the y-weak center proximity.

Finally we have that:

d(zg, }) < d(xg, ¢) + d(cq, )

DL )+ ——d(eney)
po— Ti, T po— Ci, €
@@ 1 v+1
< —d(xi,xj) + ———
R S
2y
= ——d(x;, x;
- )

O

It is very important to note that the three properties presented above are necessary for stability
but not sufficient. We can easily construct a non-stable instance in which all the properties hold.
In the instance in figure we can easily verify that all the inequalities are satisfied for v = 3
for any € > 0. However, if we perturb the instance by scaling down the distances between agents
1 — T2, T2 — x3 and x3 — x4 by a factor ~, the optimal clustering does not remain the same. On
the left (figure [.1H) we have the same clustering as in the original instance. The cost of the left
clustering is % + 4. But if we place the centers as it is shown in the right (figure [.1d) the cost is
4 + e. If the original instance was stable the optimal solution should have remained the same for all
perturbations. Thus, the instance is not 3-stable.

Never the less, the center-proximity is still a very important property. We can define the notion
of y-center stability. A instance is y-center stable if in the optimal solution the center proximity
holds for every point. This is a weak notion of stability since it allows more instances in the class.
Figure [t.4 illustrates all the different classes of stability.
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a) Original instance.

e e

(b) Perturbed instance with the same clustering. (c) Perturbed instance with an alternative clustering.
Figure 4.1: Example of non stable instance that satisfies all the properties.
Definition 4.2.2 (y-center stability). A clustering instance (X, d), with optimal solution C=0,..,Ch,
is y-center stable to a given objective function ®, if any x; € C; satisfies:

d(.Ti, C]) > ’)/d(l‘“ Ci)

y-center stable

y- metric stable

General instances

Figure 4.2: Classes of stable instances

4.3 Algorithms for Perturbation Stable Instances

The greater the factor of stability, the more structured the points are. For example, in every 2-
stable instance from weak center proximity, we get that every point is closer to its optimal center
than any other point from a different cluster. It is also very interesting that for a stability factor of
v > 2+ /3 ~ 3.7 we obtain from the separation property that all points are closer to all other
points in their own cluster than to points in any other cluster. The next question is how we can use
the properties derived from stability in order to achieve better results. The first idea is to see how
existing algorithms perform on stable instances. Single-link clustering is one of the most commonly
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used methods for clustering that uses the distances between the points. It starts with n clusters of
size 1 (the data points), and at each step it merges the two clusters that have the minimum distance
until there are k clusters. One may think that if the instance is stable enough this algorithm could
return the optimal solution, since at each step it connects the two “closest” clusters. However, even
in simple stable instances single linkage fails to find the optimal clustering. Consider an instance
with 4 distinct locations ¥ = (x1, x2,x3,x4). Our goal is to place 3 facilities. There is one agent
located at 1 and M >> 1 agents located at every other location.

2 20 1
1 '/‘h:i'l-\ M

J(,I KE Ka 14

Figure 4.3: An example that single linkage fails to find the optimal solution

The optimal solution is to place the centers at xo,x3 and x4 and connect z; to the center at
x2. The total cost of the optimal solution is 2. But the single-linkage clustering will merge the the
clusters at x3 and x4 and places one center between them making total cost of the solution equal
to M, which is arbitrarily larger than the optimal cost. Note that by construction the instance is
~-stable for arbitrarily large v, for a properly selected value of M.

But a variation of the previous algorithm can find the optimal solution for a sufficient +y stability.
It starts with n clusters of size 1. Instead of stopping at k clusters it continues until one cluster
remains. Then it finds the best k clusters of the resulting tree 7" using dynamic programming.

Lemma 4.3.1. Single linkage can find the optimal solution if and only if each cluster forms a subtree
of the spanning tree.

Proof. The single linkage algorithm outputs the best k-clustering among all the (Zj) different
choices. Every different clustering can be obtained by removing £ — 1 edges from the spanning
tree. This way all the & clusters are different connected components of 7', If some optimal cluster is
not a connected subgraph of T the algorithm cannot find it. O

This can be illustrated with a simple example.

Figure 4.4: The optimal cluster C; do not form a subtree of T

The function used to determine the distance between two clusters, is known as the linkage func-
tion. For different functions we get different stability factors for which we can find the optimal
solution.
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The first linkage function was proposed by Awasthi [[7]. At each step it merges the two cluster
C, C'" minimizing d;,(C,C"). The minimum distance between any two subsets A, B C X is
defined as:
dmin(A, B) = min{d(a,b)|la € A,b € B}

They prove that the single-linkage algorithm can return the optimal solution for a stability factor
3 when centers must be data points and for stability factor 2 + /3 for general metrics. With tighter
analysis Angelidakis showed [4] that the instance only needs to be 2-metric stable, when the centers
must be data points.

Lemma 4.3.2. Single-linkage with d,;, as the linkage function finds the optimal solution in every
2-metric stable instance.

Proof. By Lemma if every optimal cluster C; is a connected subgraph on the spanning tree 7'
then single-linkage returns the optimal solution. It is enough to show that the unique path that
connects any point a € C; to its optimal center ¢; on 7" does not leave the cluster C;. Suppose that
b is the next point on the path. Consider the step at which the single-linkage adds the edge (a,b)
to the spanning tree. At that step, a and ¢; belonged in different clusters, otherwise the edge (a, b)
would form a cycle. We have that d(a,b) < d(a, ¢;) or else the edge (a, ¢;) would have been added
instead of (a, b). By Lemma the previous inequality implies that b belongs to C;. By induction
all the points on the path between a and c; belong to Cj. U

The second linkage function was proposed by Balcan and Linang [9]. The single linkage algo-
rithm merges the clusters with the minimum closure distance. The closure distance between two
clusters C, C’ is the radius of the minimum ball that covers all the points in C' U C” and has some
margin from points outside of the ball. A ball around p with radius r is set of all points that have
distance from p smaller than r: B(p,7) := {q : d(p,q) < r}

Definition 4.3.1 (Closure Distance). The closure distance ds(C,C") between two disjoint nonempty
subsets C, C" C X is the minimum d > 0 such that there is a point c € C'UC" satisfying the following
requirements:

(i) Coverage: the ballB(c,d) covers C and C’, that is, C' U C" C B(c, d)

(ii) margin: points inside B(c,d) are closer to the center c¢ than to points outside, that is, Vp €

B(e,d), q ¢ B(c,d), we have d(c,p) < d(c,q)

Lemma 4.3.3. Single-linkage with ds as the linkage function finds the optimal solution in every 1++/2-
center stable instance.

4.4 Conclusion

Using the techniques from Beyond Worst Case Analysis helps us avoid the hardness results in the
general case. For clustering, we are able to design exact algorithms for a problem that is NP-hard
to even approximate. However, the notion of perturbation stability does not completely solves our
problem. There is an NP-hardness lower bound for the stability factor. For any € > 0, finding the
optimal k-center clustering for (2 — €)-perturbation stable instances is N P-hard, unless NP =
PR[8]. We also have that is N P-hard to find the optimal k-median clustering for (2 — €)-center
stable instances [[10]. Since the single-linkage algorithm only relies on the center proximity, which
means the previous algorithm is tight. However, the class of y-stable instances is a subclass of -
center stable instances, which means that the lower bound does not transfer immediately. To show
a lower bound for the class of y-stable instances or to find a better algorithm, we need a different
approach, specifically to include valid perturbations.
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One downside of this approach is that there is no algorithm that can find or even estimate the
~ for which an instance is y-stable. However, the notion of ~y-perturbation stability is still very
important because it captures all the instances that have a “clearly optimal” solution. That means
we are clustering with the correct objective, which is not susceptible to minor perturbations.
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Chapter 5

Facility Location on Perturbation Stable Instances

In the previous section we saw that when we focus on the average instances of a problem, namely
the “real-world” instances, we can avoid the hardness results and design better algorithms. Since
clustering and facility location games are closely related problems, in this section we are going to
see how perturbation stability in k-facility location games affects the design of mechanisms. Can
we design strategyproof mechanisms with a bounded approximation ratio using the properties of
stability? We have seen that in the simple setting where we want to locate 2 facilities in the line
any deterministic mechanism has (n — 1)-approximation ratio because the agents have the power to
change the clustering by misreporting their preferred location. So naturally it is very interesting to
investigate the power any agent has in changing the structure of the clustering when the instance
is stable and the clusters are well defined.

5.1 Facility Location in Trees

In this section, the agents are located in a Tree. With out loss of generality, we can view the tree with
the location of agent z; as the root. We first need to adapt the definition of perturbation stability
for the Facility Location games.

Definition 5.1.1 (y-Perturbation and ~y-Stability). Let N be a set of n agents located on a tree (T d),
where d is a metric distance function. Let & = (x1, ..., zy,) be a location profile. Let Z = (21, ..., z2m
denote the intersections on the tree, we will refer to them as phantom agents. A location profile T’ =
(@), ...,x}) € (T,d') is a y-perturbation of Z, for some =, if for every pair of consecutive agents x and
y (agents x and y can be any of x; — zj,x; — x; or z; — z; pairs) it holds:

t(a.9) € | Ldzp) o)

A k-Facility Location instance &, with optimalclusteringé = (¢, ..., C), is7y-(perturbation) stable,
if for every y-perturbation &’ of & C' remains the unique optimal k-clustering.

In order to properly define it we are going to assign phantom agents Z = (z1,...2,,) on every
intersection of the tree. A ~y-perturbation ¥’ of an instance # can be obtained by scaling down
any subset of pairs of consecutive agents, including the phantom agents, by a factor of at most ~.
We can see that every valid metric-perturbation (Definition §.1.4) of the instance & (only agents’
locations) can be performed by the process described above. Note that the distance between any
pair of actual agents x; and x; is scaled down by a factor of at most v because the length of every pair
of consecutive agents in the unique path that connects them is scaled down by a factor of at most
7. Moreover, the perturbed space is metric because the distance between x; and z; is the length of
the unique shortest path between x; and x;. Therefore, this class of y-stable instances includes the
class of y-metric stable instances. This notion of «-perturbation captures all the perturbations that
can be depicted on the same tree.
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Figure 5.1: An example of a location profile Z (black points) with phantom agents z’ on the intersec-
tions (gray points)

In the previous section, we showed that in general metric spaces in vy-stable instances, with
~v > 2, every cluster in the optimal solution forms a subtree in the minimum spanning tree. Similarly,
we can show that this property holds when the underline metric space is a tree 7.

Observation 5.1.1. Let & be a y-stable, with vy > 2, then in the optimal clustering c every cluster C;
forms a subtree.

Proof. For contradiction suppose there exist a cluster C'; that does not form a subtree, like in Figure
b.J Since the instance is stable we have that d(z;,,;) > (y — 1)d(x;,,c;). We also have that
the distance between any two points is equal to the length of the unique path that connects those
points, thus d(z,,¢;) = d(xj2,2;) + d(x;, ¢;). Using the previous inequality we get d(z;,, cj) >
(v = 1D)d(zj2,¢j) + d(zi, ¢;) = d(zi,c¢j) < (2—7y)d(zj,,cj). When vy > 2 the distance between
d(z;, cj) is negative but every distance function is non-negative. O

C C.

L

Figure 5.2: Example of a cluster that does not form a subtree.

As we mentioned before, perturbation stability implies that there is a structure in the original
location profile. In other words, the optimal solution is resilient to minor changes. In the facility
location setting, the agents are strategic, which means they are motivated to misreport in order to
reduce their connection cost. The idea is to see how much power a strategic agent has to change the
outcome of a mechanism with a single deviation now that the instance has a well-defined optimal
solution. Let us point out that an agent’s deviation is entirely different from a perturbation of an
instance. An agent can misreport at any location in the metric space, which may result in a non-
stable instance. However, after a perturbation, the distance between any two agents is at most
times smaller than in the original instance.
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5.1.1 The Optimal solution is strategyproof for (2 + \/3)stable instances

Algorithm 2: OpTIMAL
Result: An allocation of k-facilities
Input: A k-Facility Location instance Z.
Compute the optimal clustering (C1, ..., C)). Let ¢; be the median point of each cluster C;.
if (3i € [k] with |Cy| = 1) or (32,2} € Ci and zj, 2; € Cj with
max{d(z;, z}), d(z;,2})} > d(z;,x;)) then
| Output: “FACILITIES ARE NOT ALLOCATED”.
else
‘ Output: The k-facility allocation (cy, .. ., ck)

We next show that the the mechanism that returns the optimal solution is strategyproof for
(2 + 1/3)-stable instances whose optimal clustering does not include singleton clusters. We need to
exclude the stable instances with singleton clusters in their optimal solution from the mechanism
because there is always an agent that can benefit by becoming a singleton cluster. Consider a -
stable instance Z. Suppose an agent z; € C; reports a location 2’ far away from any location in 7
creating a different instance '. Since the mechanism allocates the facilities optimally 2’ becomes a
singleton cluster. Now the mechanism has to allocate k£ — 1 facilities to the remaining agents, which
means two clusters from the original optimal solution merge. We can always create an instance in
which cluster C; merges with its neighbor cluster C; which makes the new median closer to ;.
The main problem is that the new instance Z is also y-stable as the original and there is no way to
determine whether or not there is a deviation.

/

Figure 5.3: Singleton Deviation

b

It is also important to remember that we cannot efficiently estimate the stability factor of a given
instance. This is why we rely on the properties that derive from stability, since the properties are
necessary but not sufficient for stability. That also means that the mechanism serves instances that
are non-stable but satisfy the cluster separation property. We can efficiently check if the cluster
separation property is violated between any to clusters. Since every cluster in the optimal solution
forms a subtree, we only have to check if any of the k — 1 edges between 2 different clusters violates
the cluster separation property.

Theorem 5.1.1. The OpTIMAL Mechanism applied to (2 + /3)-stable instances of k-Facility Location
without singleton cluster in their optimal clustering is strategyproof and minimizes the social cost.

Proof. The mechanism returns the optimal solution, so we only need to prove that it is strategyproof.
Let any (2 + /3)-stable instance with optimal clustering C = (C4, ..., ). Suppose agent z; € C;
reports a location y in order to decrease her cost. Let i/ = (Z_;, y) be the instance after the deviation,
and Y be its optimal clustering.There are three possible deviations:
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1. If y is in the area of Cj, then the clustering structure would not change. But the median location
for one facility on trees is strategyproof and thus she cannot benefit from such deviation.

2. If y is a singleton cluster in Y, then the mechanism would not allocate any facilities, making her
cost infinite times larger.

3. If y is cluster together with agents from different clusters in C.

We will only focus on the third case since this is the only way she could benefit. In order for
the mechamsm to be strategyproof, we need to show that either the deviation is not profitable
(d(z, ) < d(zy, )) or that the cluster separation property is violated and no facilities are allo-
cated.

We have that y is clustered together with agents belonging in one or two clusters of C, let that
clusters be Cj and Cj. In Y the number of facilities serving agents from C; UC;U{y} are at least the
number of facilities serving agents from C'; UC) in C, because both C'and Y are optimal clusterings.
Suppose one facility is placed to an agent in C;. The original instance is 2 + \/3-stable, so by the
separation property we have that every agent is closer to every agent from her own cluster that to
any other agent from a different cluster. This implies that no agent in () is served by a facility in
z\ Cj.

Case 1: y is not allocated a facility in Y: This can happen in one of two ways:
Case 1a: y is clustered together with some agents from cluster C; and no facility placed in
Cj serves agentsin Z \ Cj in Y.
Case 1b: y is clustered together with some agents from a cluster C; and at least one of the
facilities placed in C; serve agents in £\ Cj in Y.

Case 2: y is allocated a facility in Y. This can happen in one of two ways:

Case 2a: y only serves agents that belong in Cj (by optimality, y must be the median location
of the new cluster, which implies that either y is not in the area of C; and only serves
one agent from Cj or y is in the area of C; and serves multiple agents).

Case 2b: In Y, y serves agents that belong in both C;_; and Cj.

We first consider the cases 1a and 2a, namely the cases where in Y there is a facility in C; that
only serves agents in C;. If there is only one facility allocated in C';U{y} then both clusterings C and
Y have the same structure, making x;’s deviation not profitable. So, in Y there must be two facilities
in C; U {y}. Suppose there is a location y such that the deviation is profitable, d(z;, C) > d(z;,Y).
Since Y is the optimal clustering for  we have that:

cost(if, C) > cost(§,Y)
cost(z,C) + d(y,C) — d(x;,C) > cost(Z,Y) +d(y,Y) — d(z;,Y) <
Y

)
d(y7 C_:) - d(y7 ) > COSt( 7}7) - COSt( 76) + d(xu é) - d(xu }_})
Since i’s deviation to y is profitable (d(x;, C) — d(z;,Y) > 0) we get:
d(y,C) —d(y,Y) > cost(Z,Y) — cost(z,C) 65.1)
= cost(C}, Y) - cost(C}, C) — cost(Z \ Cj, Y) — cost(Z \ C;, 0) '

We now consider a valid y-perturbation Z’ of the original instance Z: We first remove from the
instance all the agents from C'; and all the edges connected to them. This may break the instance in
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more than one connected components. By observation 5.1.1, we have that there is no cluster whose
agents belong in more than one connected components. Then, we scale down by + all the distances
between consecutive agents that are in the same connected component. By stability, the clustering
C remains the unique optimal clustering for Z’ therefore cost(Z’,C) < cost(Z’,Y). Since, in cases
la and 2a, the facility allocated to an agent of C; U {y} does not serve agents in Z \ C; in CandY
we have:

—

cost(Z',C) = cost(C},C) + flycost(i"\ c;,C)

- - 1 -
cost(Z',Y) = cost(C},Y ) + —cost(Z\ C},Y)
gl

Using that cost(Z’,C) < cost(Z',Y) and that for any v > 2 it holds % <1- % we get:

. L1 . .
cost(Cj,C) — cost(C,Y) < 5 (cost(a_c’\ C;,Y) — cost(Z\ Cj, C)) (5.2)
1 . .
<(1-2) (cost(f\ C;,Y) — cost(Z\ C}, 0)) (5.3)
Rearranging (6.3) we get:
. .1 . .
cost(Z,Y) — cost(Z,C) > 5 (cost(:f:'\ C;,Y) — cost(Z\ Cj, C)) (5.4)

We know that there are at least two facilities serving C;;U{y}. Let Y}, be the cluster that contains
y and some agents of C;. In case 1a, let ; € Y}, be the agent that has the facility. Then the decrease
in the cost of y due to the additional facility in Y is at most the decrease in the cost of an agent from
Cjin Y. In case 2a, where agent y has a facility, by optimally of Y, we have that y is the median of
the new cluster. If we view c; as the root of the tree then y has at least one agent from () as a child;
otherwise it would not be the median location. Therefore, the decrease in the cost of ¥ is at most the
decrease in the cost of an agent from C; in Y. (The case where y is not in the area of C; and only
serves one agent is equivalent to placing the facility on the other agent and serving y from there).
In both cases, we can bound from below the total decrease in the cost of C; due to the additional
facility.

d(y, C_”) — d(y, 17') < cost(C}, é) — cost(Cj,?) %

1 — —
< S (cost(f\ C;,Y) — cost(Z\ Cj, C)) =,

< cost(Z,Y) — cost(, C)
Which contradicts equation (5.1)).

Now we consider cases 1b and 2b, namely the cases where some agents of C; are clustered with
agents of . Let Y}, and Y}, denote the clusters of Y that include all the agents of C;. Let Y;, be
the cluster that has agents from C; and C). Consider 1 € Y;; NCj, z € Y;; NCpand x2 € Y;, NC).
By the cluster separation property d(z1,z) > D,,, where D, is the largest intra-cluster distance
from x;. Since 1 and x3 belong in the same cluster in C we have that d(z1,x2) < Dy, . Therefore,
d(x1,z) > d(x1, z2) which violates the cluster separation property, since an intra-cluster distance is
greater than an inter-cluster distance. In this case, the mechanism will not allocate any facilities. [J
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5.2 Conclusion and Future Work

Remember that without making any assumptions about the instance, we cannot design strate-
gyproof mechanisms with a bounded approximation because we cannot identify the optimal clusters
in a strategyproof way. However, if we focus on perturbation stable instances, the structure helps us
avoid that problem. Now we can efficiently find the optimal solution and place the facilities within
each optimal cluster. We also showed that the strategic agents do not have the power to change the
structure of the instance for a stability factor v > 2 + v/3 because all the inter-cluster distances are
greater than the intra-cluster distances. This allows us to reduce the multi-facility location games
on stable instances to a one-facility location game and use all the known results.

In the OPTIMAL mechanism, we saw that we have to exclude the instances that contain singleton
clusters because an agent can deviate to a location far away and bring a facility closer to her true
location (singleton deviation). One way to overcome this problem is to limit the range of possible
locations each player can declare based on their actual locations. In this case, we must also see how
stable the instance must be in order for the optimal solution to be strategyproof.

Another direction is to assume a “weaker” notion of stability in the instances. In the literature,
(7, €)-perturbation stability was also proposed, which states that at most en total points can swap
into or out of each cluster under any v perturbation. These instances are more likely to describe
“real world” instances. However, the non-stable points may be harder to handle.

56



Bibliography

(1]

(2]

(3]

[10]

[11]

[12]

[13]

P. K. Agarwal, H. Chang, K. Munagala, E. Taylor, and E. Welzl, “Clustering under
perturbation stability in near-linear time,” CoRR, vol. abs/2009.14358, 2020. [Online]. Available:
https://arxiv.org/abs/2009.14358

N. Alon, M. Feldman, A. D. Procaccia, and M. Tennenholtz, “Strategyproof approximation of
the minimax on networks,” Mathematics of Operations Research, vol. 35, no. 3, pp. 513-526,
2010. [Online]. Available: http://www.jstor.org/stable/40800845

H.-C. An and O. Svensson, Recent Developments in Approximation Algorithms for Facility
Location and Clustering Problems. Singapore: Springer Singapore, 2017, pp. 1-19. [Online].
Available: https://doi.org/10.1007/978-981-10-6147-9 1

H. Angelidakis, K. Makarychev, and Y. Makarychev, “Algorithms for stable and perturbation-
resilient problems,” Proceedings of the Annual ACM Symposium on Theory of Computing, vol.
Part F128415, pp. 438-451, jun 2017.

A. Archer and R. Kleinberg, “Truthful germs are contagious: A local-to-global characterization
of truthfulness,” Games and Economic Behavior, vol. 86, pp. 340-366, jul 2014.

V. Auletta, R. De Prisco, P. Penna, and G. Persiano, “The power of verification for one-parameter
agents,” Journal of Computer and System Sciences, vol. 75, no. 3, pp. 190-211, may 2009.

P. Awasthi, A. Blum, and O. Sheffet, “Center-based clustering under perturbation stability,”
Information Processing Letters, vol. 112, no. 1-2, pp. 49-54, jan 2012.

M. F. Balcan, N. Haghtalab, and C. White, “k-center Clustering under Perturbation
Resilience,” ACM Transactions on Algorithms, vol. 16, no. 2, may 2015. [Online]. Available:
https://arxiv.org/abs/1505.03924v4

M. F. Balcan and Y. Liang, “Clustering under Perturbation Resilience,” SIAM Journal
on Computing, vol. 45, no. 1, pp. 102-155, dec 2011. [Online]. Available: https:
//arxiv.org/abs/1112.0826v5

S. Ben-David and L. Reyzin, “Data stability in clustering: A closer look,” Theoretical Computer
Science, vol. 558, no. C, pp. 51-61, nov 2014.

Y. Bilu, A. Daniely, N. Linial, and M. Saks, “On the practically interesting instances of maxcut,”
2012.

Y. Bilu and N. Linial, “Are stable instances easy?” Combinatorics Probability and Computing,
vol. 21, no. 5, pp. 643-660, jun 2009. [Online]. Available: https://arxiv.org/abs/0906.3162v1

L. Caragiannis, E. Elkind, M. Szegedy, and L. Yu, “Mechanism design: From partial to proba-
bilistic verification,” Proceedings of the ACM Conference on Electronic Commerce, pp. 266—283,
2012.

G. Carroll, “When are local incentive constraints sufficient?” Econometrica, vol. 80, no. 2, pp.
661-686, 2012. [Online]. Available: http://www.jstor.org/stable/41493830

57


https://arxiv.org/abs/2009.14358
http://www.jstor.org/stable/40800845
https://doi.org/10.1007/978-981-10-6147-9_1
https://arxiv.org/abs/1505.03924v4
https://arxiv.org/abs/1112.0826v5
https://arxiv.org/abs/1112.0826v5
https://arxiv.org/abs/0906.3162v1
http://www.jstor.org/stable/41493830

[15]

[16]

[17]

[19]

[26]

(27]

58

H. Chan, A. Filos-Ratsikas, B. Li, M. Li, and C. Wang, “Mechanism design for facility
location problems: A survey, CoRR, vol. abs/2106.03457, 2021. [Online]. Available:
https://arxiv.org/abs/2106.03457

Z. Chen, K. C. K. Fong, M. Li, K. Wang, H. Yuan, and Y. Zhang, “Facility location games
with optional preference,” Theoretical Computer Science, vol. 847, pp. 185-197, 2020. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0304397520305661

E. Dokow, M. Feldman, R. Meir, and I. Nehama, “Mechanism design on discrete lines and
cycles,” in Proceedings of the 13th ACM Conference on Electronic Commerce, ser. EC ’12. New
York, NY, USA: Association for Computing Machinery, 2012, p. 423-440. [Online]. Available:
https://doi.org/10.1145/2229012.2229045

B. Escoffier, L. Gourvés, K. T. Nguyen, F. Pascual, and O. Spanjaard, “Strategy-proof
Mechanisms for Facility Location Games with Many Facilities,” in 2nd International Conference
on Algorithmic Decision Theory (ADT’11), ser. Lecture Notes in Artificial Intelligence, vol.
6992. Piscataway, NJ, United States: Springer, Oct. 2011, pp. 67-81. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01285708

I. Feigenbaum, M. Li, J. Sethuraman, F. Wang, and S. Zou, “Strategic facility location
problems with linear single-dipped and single-peaked preferences,” Autonomous Agents
and Multi-Agent Systems, vol. 34, no. 2, pp. 1-47, oct 2020. [Online]. Available:
https://link.springer.com/article/10.1007/s10458-020-09472-9

M. Feldman and Y. Wilf, “Randomized strategyproof mechanisms for facility location and
the mini-sum-of-squares objective,” CoRR, vol. abs/1108.1762, 2011. [Online]. Available:
http://arxiv.org/abs/1108.1762

A. Filimonov and R. Meir, “Strategyproof facility location mechanisms on discrete trees,”
CoRR, vol. abs/2102.02610, 2021. [Online]. Available: https://arxiv.org/abs/2102.02610

D. Fotakis and P. Patsilinakos, “Strategyproof facility location in perturbation stable instances,”
in WINE, 2021.

D. Fotakis and C. Tzamos, “On the power of deterministic mechanisms for facility location
games,” CoRR, vol. abs/1207.0935, 2012. [Online]. Available: http://arxiv.org/abs/1207.0935

——, “Strategyproof facility location for concave cost functions,” in Proceedings of the
Fourteenth  ACM Conference on Electronic Commerce, ser. EC ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 435-452. [Online]. Available:
https://doi.org/10.1145/2492002.2482595

——, “Winner-imposing strategyproof mechanisms for multiple facility location games,” Theor.
Comput. Sci., vol. 472, p. 90-103, feb 2013. [Online]. Available: https://doi.org/10.1016/j.tcs.
2012.11.036

D. Fotakis, C. Tzamos, and M. Zampetakis, “Mechanism design with selective verification,” in
Proceedings of the 2016 ACM Conference on Economics and Computation, ser. EC ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 771-788. [Online]. Available:
https://doi.org/10.1145/2940716.2940743

D. Fotakis and E. Zampetakis, “Truthfulness flooded domains and the power of verification
for mechanism design,” ACM Trans. Econ. Comput., vol. 3, no. 4, jul 2015. [Online]. Available:
https://doi.org/10.1145/2790086

A. Gibbard, “Manipulation of Voting Schemes: A General Result,” Econometrica, vol. 41, no. 4,
p. 587, jul 1973.


https://arxiv.org/abs/2106.03457
https://www.sciencedirect.com/science/article/pii/S0304397520305661
https://doi.org/10.1145/2229012.2229045
https://hal.archives-ouvertes.fr/hal-01285708
https://link.springer.com/article/10.1007/s10458-020-09472-9
http://arxiv.org/abs/1108.1762
https://arxiv.org/abs/2102.02610
http://arxiv.org/abs/1207.0935
https://doi.org/10.1145/2492002.2482595
https://doi.org/10.1016/j.tcs.2012.11.036
https://doi.org/10.1016/j.tcs.2012.11.036
https://doi.org/10.1145/2940716.2940743
https://doi.org/10.1145/2790086

[29]

[30]

S. Goel and W. Hann-Caruthers, “Optimality of the coordinate-wise median mechanism
for strategyproof facility location in two dimensions,” CoRR, jul 2020. [Online]. Available:
https://arxiv.org/abs/2007.00903v4

I. Golomb and C. Tzamos, “Truthful facility location with additive errors,” CoRR, vol.
abs/1701.00529, 2017. [Online]. Available: http://arxiv.org/abs/1701.00529

[31] J. R. Green and ].-J. Laffont, “Partially Verifiable Information and Mechanism Design,” The

(32]

(33]

[34]

(38]

[43]

Review of Economic Studies, vol. 53, no. 3, pp. 447-456, mar 1986. [Online]. Available:
http://www .jstor.org/stable/2297639

M. Kyropoulou, C. Ventre, and X. Zhang, “Mechanism design for constrained heterogeneous
facility location,” in Algorithmic Game Theory: 12th International Symposium, SAGT 2019,
Athens, Greece, September 30 — October 3, 2019, Proceedings. Berlin, Heidelberg: Springer-
Verlag, 2019, p. 63-76. [Online]. Available: https://doi.org/10.1007/978-3-030-30473-7_5

M. Li, P. Lu, Y. Yao, and J. Zhang, “Strategyproof mechanism for two heterogeneous facili-
ties with constant approximation ratio,” in Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, ser. [JCAI’'20, 2021.

P.Lu, X. Sun, Y. Wang, and Z. A. Zhu, “Asymptotically optimal strategy-proof mechanisms for
two-facility games,” Proceedings of the ACM Conference on Electronic Commerce, pp. 315-324,
2010.

P. Lu, Y. Wang, and Y. Zhou, “Tighter bounds for facility games,” in Internet and Network Eco-
nomics - 5th International Workshop, WINE 2009, Proceedings, ser. Lecture Notes in Computer
Science, Dec. 2009, pp. 137-148.

M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means problem is NP-hard,”
Theoretical Computer Science, vol. 442, pp. 13-21, jul 2012.

L. Mei, M. Li, D. Ye, and G. Zhang, “Facility location games with distinct desires,’
Discrete Applied Mathematics, vol. 264, pp. 148-160, 2019. [Online]. Available: https:
//doi.org/10.1016/j.dam.2019.02.017

R. Meir, “Strategyproof Facility Location for Three Agents on a Circle,” Proceedings of the
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, vol. 4,
pp- 2120-2122, feb 2019. [Online]. Available: https://arxiv.org/abs/1902.08070v2

E. Miyagawa, “Locating libraries on a street,” Social Choice and Welfare, vol. 18, no. 3, pp.
527-541, 2001. [Online]. Available: http://www.jstor.org/stable/41060213

H. Moulin, “On strategy-proofness and single peakedness,” Public Choice 1980 35:4, vol. 35,
no. 4, pp. 437-455, jan 1980. [Online]. Available: https://link.springer.com/article/10.1007/
BF00128122

N. Nisan and A. Ronen, “Algorithmic Mechanism Design,” Games and Economic Behavior,
vol. 35, no. 1-2, pp. 166—196, apr 2001.

K. Nissim, R. Smorodinsky, and M. Tennenholtz, “Approximately Optimal Mechanism Design
via Differential Privacy,” ITCS 2012 - Innovations in Theoretical Computer Science Conference,
pp- 203-213, apr 2010. [Online]. Available: https://arxiv.org/abs/1004.2888v4

H. Peters, H. van der Stel, and T. Storcken, “Pareto optimality, anonymity, and strategy-
proofness in location problems,” International Journal of Game Theory, vol. 21, no. 3, pp. 221-
235, sep 1992.

59


https://arxiv.org/abs/2007.00903v4
http://arxiv.org/abs/1701.00529
http://www.jstor.org/stable/2297639
https://doi.org/10.1007/978-3-030-30473-7_5
https://doi.org/10.1016/j.dam.2019.02.017
https://doi.org/10.1016/j.dam.2019.02.017
https://arxiv.org/abs/1902.08070v2
http://www.jstor.org/stable/41060213
https://link.springer.com/article/10.1007/BF00128122
https://link.springer.com/article/10.1007/BF00128122
https://arxiv.org/abs/1004.2888v4

[44]

(48]

[49]

[50]

[51]

60

A. D. Procaccia and M. Tennenholtz, “Approximate Mechanism Design without Money,” ACM
Transactions on Economics and Computation (TEAC), vol. 1, no. 4, pp. 1-26, dec 2013. [Online].
Available: https://dl.acm.org/doi/abs/10.1145/2542174.2542175

T. Roughgarden, Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press,
2020.

——, “Lecture 6: Perturbation-stable clustering,” CS264: Beyond Worst-Case Analysis, 2017.
[Online]. Available: http://timroughgarden.org/w17/1/16.pdf

M. A. Satterthwaite, “Strategy-proofness and Arrow’s conditions: Existence and correspon-
dence theorems for voting procedures and social welfare functions,” Journal of Economic The-
ory, vol. 10, no. 2, pp. 187-217, apr 1975.

J. Schummer and R. Vohra, “Mechanism design without money,” Algorithmic Game Theory,
vol. 10, pp. 243-299, 2007.

J. Schummer and R. V. Vohra, “Strategy-proof location on a network,” Journal of Economic
Theory, vol. 104, no. 2, pp. 405-428, jun 2002.

P. Serafino and C. Ventre, “Heterogeneous facility location without money,” Theor. Comput. Sci.,
vol. 636, no. C, p. 27-46, jul 2016. [Online]. Available: https://doi.org/10.1016/].tcs.2016.04.033

X. Sui, C. Boutilier, and T. Sandholm, “Analysis and optimization of multi-dimensional per-
centile mechanisms,” in Proceedings of the Twenty-Third International Joint Conference on Arti-
ficial Intelligence, ser. JCAI’13. AAAI Press, 2013, p. 367-374.


https://dl.acm.org/doi/abs/10.1145/2542174.2542175
http://timroughgarden.org/w17/l/l6.pdf
https://doi.org/10.1016/j.tcs.2016.04.033

	Περίληψη
	Abstract
	Ευχαριστίες
	Περιεχόμενα
	Κατάλογος σχημάτων
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Προβλήματα Χωροθέτησης
	Ευστάθεια σε Διαταραχές σε προβλήματα Συσταδοποίησης
	Προβλήματα Χωροθέτησης σε Ευσταθή Στιγμιότυπα
	Ανοιχτά προβλήματα

	Introduction
	Motivation
	Beyond Worst Case Analysis
	Facility Location on Stable instances and Contribution

	Mechanisms for Facility Location games
	Social Choice and Single Peaked Preferences
	Preliminaries for Facility Location Games
	Facility Location on the Line
	Locating one facility
	Locating two facilities
	Locating more than two facilities

	Facility Location on general metrics
	Tree Metrics
	Circle
	Euclidean Space

	Conclusion

	Perturbation Stable Clustering
	Stable Clustering
	Properties of Perturbation Stable Instances
	Algorithms for Perturbation Stable Instances
	Conclusion

	Facility Location on Perturbation Stable Instances
	Facility Location in Trees
	The Optimal solution is strategyproof for -stable instances

	Conclusion and Future Work

	Bibliography

