
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Πληροφορικής και Τεχνολογίας Υπολογιστών

Τεχνικές Ταυτοχρονισμού για την Υλοποίηση Αποδοτικών Δένδρων
Αναζήτησης σε Πολυπύρηνα Συστήματα

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Δημήτριος Δ. Σιακαβάρας

Αθήνα, Δεκέμβριος 2021

Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Πληροφορικής και Τεχνολογίας Υπολογιστών

Τεχνικές Ταυτοχρονισμού για την Υλοποίηση Αποδοτικών Δένδρων
Αναζήτησης σε Πολυπύρηνα Συστήματα

ΔΙΔΑΚΤΟΡΙΚΗ ΔΙΑΤΡΙΒΗ

Δημήτριος Δ. Σιακαβάρας

Συμβουλευτική Επιτροπή: Γεώργιος Γκούμας
Νεκτάριος Κοζύρης
Παναγιώτης Τσανάκας

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 23η Δεκεμβρίου 2021.

.

Γεώργιος Γκούμας
Αναπληρωτής Καθηγητής ΕΜΠ

.

Νεκτάριος Κοζύρης
Καθηγητής ΕΜΠ

.

Παναγιώτης Τσανάκας
Καθηγητής ΕΜΠ

.

Διονύσιος Πνευματικάτος
Καθηγητής ΕΜΠ

.

Παναγιώτα Φατούρου
Καθηγήτρια
Πανεπιστήμιο Κρήτης

.

Κωνσταντίνος Σαγώνας
Αναπληρωτής Καθηγητής ΕΜΠ

.

Χρήστος Κοτσελίδης
Καθηγητής
University of Manchester

Αθήνα, Δεκέμβριος 2021

.

Δημήτριος Δ. Σιακαβάρας
Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών
Εθνικό Μετσόβιο Πολυτεχνείο (2021)

Copyright © Δημήτριος Δ. Σιακαβάρας, 2021
Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος
αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη κερδο-
σκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης
και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκο-
πικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και
δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του ΕθνικούΜετσόβιουΠολυτεχνείου.

Η παρούσα διατριβή αφιερώνεται στους γονείς μου
Δημήτρη και Μελπομένη στους οποίους χρωστάω τα πάντα!

Περίληψη

Τα ταυτόχρονα δένδρα αναζήτησης είναι μία από τις πιο ευρέως χρησιμοποιούμενες δομές δε-
δομένων για την αποθήκευση και ανάκτηση δεδομένων σε σύγχρονες πολυνηματικές εφαρμο-
γές. Παρά τον πολύ μεγάλο όγκο σχετικής δουλειάς, παραμένει ακόμα σημαντική πρόκληση
η υλοποίηση ταυτόχρονων δένδρων αναζήτησης υψηλών επιδόσεων. Αυτό οφείλεται κυρίως
στο γεγονός πως τόσο οι κλασσικές μέθοδοι συγχρονισμού (δηλαδή η χρήση κλειδωμάτων και η
χρήση ατομικών λειτουργιών) όσο και οι πιο πρόσφατες (δηλαδή η τεχνική Read-Copy-Update
και η Transactional Memory) δεν είναι αρκετές από μόνες τους ώστε να προσφέρουν λύσεις
που θα είναι γενικές και εύκολα υλοποιήσιμες αλλά και την ίδια στιγμή θα προσφέρουν υψηλές
επιδόσεις σε διαφορετικά σενάρια εκτέλεσης και επίπεδα συμφόρησης στη δομή.

Σε αυτή την εργασία εξετάζουμε τους τρόπους με τους οποίους μπορεί να χρησιμοποιηθεί η
TransactionalMemory για την υλοποίηση ταυτόχρονων δένδρων αναζήτησης υψηλής επίδοσης.
Πιο συγκεκριμένα, παρουσιάζουμε την RCU-HTM, μία τεχνική συγχρονισμού που συνδυάζει τις
τεχνικές Read-Copy-Update (RCU) και Hardware Transactional Memory (HTM) και: α) υπο-
στηρίζει την υλοποίηση ταυτόχρονης έκδοσης οποιουδήποτε τύπου δένδρου αναζήτησης, και
β) επιτυγχάνει πολύ υψηλές επιδόσεις για ένα μεγάλο εύρος σεναρίων εκτέλεσης. Υλοποιούμε
και αξιολογούμε ένα σημαντικό αριθμό δένδρων αναζήτησης με χρήση του RCU-HTM και συ-
γκρίνουμε την επίδοσή τους με ένα πλήθος ανταγωνιστικών ταυτόχρονων δένδρων. Η αξιολό-
γηση μας δείχνει πως τα δένδρα που χρησιμοποιούν το RCU-HTM έχουν υψηλότερες επιδόσεις
από τους ανταγωνιστές τους, και ακόμα και στις ελάχιστες περιπτώσεις που δεν είναι τα κα-
λύτερα, η επίδοσή τους είναι πολύ κοντά στην καλύτερη υλοποίηση. Αυτό, σε συνδυασμό με
την ευκολία προγραμματισμού που προσφέρει η τεχνική RCU-HTM την καθιστούν την πρώτη

vii

viii

τεχνική συγχρονισμού που μπορεί σχετικά εύκολα να εφαρμοστεί σε κάθε τύπου δένδρου ανα-
ζήτησης χωρίς να επηρεάζεται σε μεγάλο βαθμό η επίδοση τους.

Λέξεις κλειδιά: δομές δεδομένων, ταυτόχρονες δομές δεδομένων, δένδρα αναζήτησης, συστήματα
παράλληλης επεξεργασίας, πολυπύρηνα συστήματα, τεχνικές συγχρονισμού

Abstract

Concurrent search trees are one of the most popular and widely used family of data structures.
They are used in applications where it is necessary to store a large volume of sorted data with the
ability to efficiently search, insert, remove, as well as more advanced operations, such as range
queries. Due to their importance, a large amount of research has led to many different types of
search trees with different characteristics such as, for example, the max allowed length of a path
of the tree. Each search tree provides different performance guarantees for each tree operation
and each tree is chosen based on the needs of the specific application.

With the proliferation of multicores, where multiple threads execute concurrently and access
shared data, concurrent data structures have become a critical component of parallel applications.
In concurrent data structures it is necessary to coordinate the concurrent accesses by multiple
threads in a way that guarantees the integrity of the data structure and the correctness of the
operations. This coordination is achieved using some kind of synchronization mechanism such
as, locks, hardware-provided atomic operations, Read-Copy-Update (RCU) and Transactional
Memory (TM).

Despite the high amount of prior work, it still remains challenging to implement highly effi-
cient concurrent search trees. This is mainly due to the fact that both traditional synchronization
methods (i.e., locks and atomic operations) and more novel ones (i.e., Read-Copy-Update and
Transactional Memory) fail to provide solutions that are generic and at the same time able to
attain high performance under diverse execution scenarios.

Until recently, TM was mainly implemented in software and used through a library. How-
ever, recently two of the biggest processor manufacturers, Intel and IBM, have added support

ix

x

for Transactional Memory in the hardware level, allowing TM to be used without the large over-
heads imposed by the software implementations. In this work, we explore howHTM can be used
to implement highly efficient concurrent search trees. More specifically, we present RCU-HTM,
a synchronizatiom mechanism that combines RCU and HTM, and: a) supports the implementa-
tion of a concurrent version of any type of search tree, and b) achieves high performance across
all execution scenarios.

In RCU-HTM threads that modify the tree structure in any way work in copies of the affected
part of the tree. Once their local copy is ready, they use HTM to validate that the part of the tree
that will be replaced has not been modified in the meanwhile and, if this is true, to replace the
old part of the tree with their new modified version.

To showcase the capabilities of our technique, we implement and evaluate multiple RCU-

HTM trees and compare their performancewith several state-of-the-art competitors. More specif-
ically, we apply RCU-HTM to 12 different types of binary, B+-trees and (a-b)-trees and com-
pare against several state-of-the-art implementations that use 4 different synchronization mech-
anisms, namely locks, atomic operations, RCU, and HTM. We evaluate the trees under multiple
different execution scenarios by varying the size of the keys stored in the tree, the size of the trees,
the operations mix, and the number of threads, for a total of 630 execution scenarios for each
implementation. We also evaluate the search trees using two well-known real-life benchmarks,
namely TPCC and YCSB, which are widely used for the evaluation of database management sys-
tems. Our evaluation shows that in the majority of executions, RCU-HTM trees outperform their
state-of-the-art alternatives, and even in the few cases where they do not, their performance is
very close to that of the best performing implementation.

Keywords: data structures, concurrent data structures, search trees, parallel processing systems,
multicores, synchronization techniques

Εκτενής Περίληψη στα Ελληνικά

Τα δένδρα αναζήτησης αποτελούν μία από τις πιο κλασσικές και ευρέως διαδεδομένες δομές
δεδομένων. Χρησιμοποιούνται σε εφαρμογές όπου απαιτείται η διατήρηση μεγάλου ταξινο-
μημένου όγκου δεδομένων με δυνατότητα γρήγορης αναζήτησης, εισαγωγής, διαγραφής και
επιπλέον λειτουργιών, όπως είναι η αναζήτηση εύρους τιμών. Λόγω της σημασίας τους, ένα
μεγάλο πλήθος ερευνητικών εργασιών έχει προτείνει πολλούς διαφορετικούς τύπους δένδρων
με διαφορετικά χαρακτηριστικά όπως είναι, για παράδειγμα, το μέγιστο μήκος που μπορεί να
έχει ένα μονοπάτι μέσα στο δένδρο. Κάθε τύπος δένδρου προσφέρει και διαφορετικές εγγυήσεις
επίδοσης για την κάθε λειτουργία και κάθε δένδρο επιλέγεται με βάση τις ανάγκες της εκάστοτε
εφαρμογής στην οποία θα ενσωματωθεί.

Με την επικράτηση των πολυπύρηνων επεξεργαστών, όπου πολλαπλά νήματα εκτελούνται
ταυτόχρονα και πιθανώς προσπελαύνουν κοινά δεδομένα, οι ταυτόχρονες δομές δεδομένων
έχουν γίνει σημαντικό μέρος των εφαρμογών αυτών. Στις ταυτόχρονες δομές δεδομένων είναι
αναγκαίος ο συντονισμός των ταυτόχρονων προσπελάσεων από διαφορετικά νήματα με τρόπο
που να διατηρείται η ακεραιότητα της δομής και να εξασφαλίζεται η ορθή εκτέλεση όλων των
επιμέρους λειτουργιών. Ο συντονισμός αυτός επιτυγχάνεται με τη χρήση κάποιου μηχανισμού
συγχρονισμού όπως για παράδειγμα τα κλειδώματα, οι εντολές ατομικής προσπέλασης μνήμης
που παρέχονται απο τους σύγχρονους επεξεργαστές, η τεχνική Διάβασε-Αντίγραψε-Ανανέωσε
(Read-Copy-Update) και η μνήμη δοσοληψιών (Transactional Memory).

Τα ταυτόχρονα δένδρα αναζήτησης είναι μία από τις πιο ευρέως χρησιμοποιούμενες δομές
δεδομένων για την αποθήκευση και ανάκτηση δεδομένων σε σύγχρονες πολυνηματικές εφαρμο-
γές. Παρά τον πολύ μεγάλο όγκο σχετικής δουλειάς, παραμένει ακόμα σημαντική πρόκληση
η υλοποίηση ταυτόχρονων δένδρων αναζήτησης υψηλών επιδόσεων. Αυτό οφείλεται κυρίως

xi

xii

στο γεγονός πως τόσο οι κλασσικές μέθοδοι συγχρονισμού (δηλαδή η χρήση κλειδωμάτων και η
χρήση ατομικών λειτουργιών) όσο και οι πιο πρόσφατες (δηλαδή η τεχνική Read-Copy-Update
και η Transactional Memory) δεν είναι αρκετές από μόνες τους ώστε να προσφέρουν λύσεις
που θα είναι γενικές και εύκολα υλοποιήσιμες αλλά και την ίδια στιγμή θα προσφέρουν υψηλές
επιδόσεις σε διαφορετικά σενάρια εκτέλεσης και επίπεδα συμφόρησης στη δομή.

Μέχρι πρόσφατα, η Transactional Memory χρησιμοποιούταν κυρίως μέσω κάποιας βιβλιο-
θήκης που την υλοποιούσε σε επίπεδο λογισμικού. Ωστόσο, τα τελευταία χρόνια δύο απο τις με-
γαλύτερες εταιρείες παραγωγής επεξεργαστών, η Intel και η IBM, έχουν προσθέσει υποστήριξη
για Transactional Memory σε επίπεδο υλικού, αφαιρώντας με αυτό τον τρόπο τις μεγάλες καθυ-
στερήσεις που εισάγονταν από τις υλοποιήσεις σε επίπεδου λογισμικού. Σε αυτή την εργασία
εξετάζουμε τους τρόπους με τους οποίους μπορεί να χρησιμοποιηθεί η Transactional Memory
για την υλοποίηση ταυτόχρονων δένδρων αναζήτησης υψηλής επίδοσης. Πιο συγκεκριμένα,
παρουσιάζουμε την RCU-HTM, μία τεχνική συγχρονισμού που συνδυάζει τις τεχνικές Read-
Copy-Update (RCU) και Hardware Transactional Memory (HTM) και: α) υποστηρίζει την υλο-
ποίηση ταυτόχρονης έκδοσης οποιουδήποτε τύπου δένδρου αναζήτησης, και β) επιτυγχάνει
πολύ υψηλές επιδόσεις για ένα μεγάλο εύρος σεναρίων εκτέλεσης.

Στην RCU-HTM τα νήματα που τροποποιούν τη δομή του δένδρου με οποιοδήποτε τρόπο
δουλεύουν σε αντίγραφα του τμήματος του δένδρου που επηρεάζουν. Μόλις το τοπικό τους
αντίγραφο είναι έτοιμο, χρησιμοποιούν την HTM ώστε να επιβεβαιώσουν πως το μέρος του
δένδρου που θα αντικατασταθεί δεν έχει στο μεταξύ τροποποιηθεί από κάποιο άλλο νήμα
εκτέλεσης και, αν αυτό ισχύει, να αντικαταστήσουν το παλιό αντίγραφο με το τοπικό τους,
το οποίο περιλαμβάνει τις κατάλληλες τροποποιήσεις.

Για να δείξουμε τις δυνατότητες της τεχνικής μας, υλοποιούμε και αξιολογούμε ένα ση-
μαντικό αριθμό δένδρων αναζήτησης με χρήση του RCU-HTM και συγκρίνουμε την επίδοσή
τους με ένα πλήθος ανταγωνιστικών ταυτόχρονων δένδρων. Πιο συγκεκριμένα, εφαρμόζουμε
την τεχνική RCU-HTM σε 12 διαφορετικούς τύπους δυαδικών δένδρων, Β+ δένδρων και (a-b)-
δένδρων και συγκρίνουμε με πλήθος άλλων υλοποιήσεων που χρησιμοποιούν 4 διαφορετικούς
μηχανισμούς συγχρονισμού, τα κλειδώματα, τις ατομικές λειτουργίες, το RCU και το HTM.
Αξιολογούμε τα δένδρα αναζήτησης κάτω από πολλά διαφορετικά σενάρια εκτέλεσης μετα-
βάλλοντας το μέγεθος του κλειδιού που αποθηκεύεται στο δένδρο, τον αριθμό των κλειδιών
που αποθηκεύονται στο δένδρο, το μείγμα από λειτουργίες που εκτελούνται καθώς και τον
αριθμό των νημάτων που εκτελούν ταυτόχρονα λειτουργίες. Όλοι οι διαφορετικοί συνδυασμοί
αυτών των παραμέτρων μας δίνουν 630 διαφορετικά σενάρια εκτέλεσης για κάθε δένδρο ανα-
ζήτησης. Επίσης, αξιολογούμε τα δένδρα χρησιμοποιώντας δύο μετροπρογράμματα που χρη-
σιμοποιούνται κατα κόρον για την αξιολόγησης συστημάτων βάσεων δεδομένων, τα TPC-C
και YCSB. Η αξιολόγηση μας δείχνει πως στην πλειονότητα των πειραμάτων τα δένδρα που
χρησιμοποιούν το RCU-HTM έχουν υψηλότερες επιδόσεις από τους ανταγωνιστές τους, και

xiii

ακόμα και στις ελάχιστες περιπτώσεις που δεν είναι τα καλύτερα, η επίδοσή τους είναι πολύ
κοντά στην καλύτερη υλοποίηση. Αυτό, σε συνδυασμό με την ευκολία προγραμματισμού που
προσφέρει η τεχνική RCU-HTM την καθιστούν την πρώτη τεχνική συγχρονισμού που μπορεί
σχετικά εύκολα να εφαρμοστεί σε κάθε τύπου δένδρου αναζήτησης χωρίς να επηρεάζεται σε
μεγάλο βαθμό η επίδοση τους.

xiv

Ευχαριστίες

Με την ολοκλήρωση της συγγραφής της παρούσας διατριβής, ένα πολύ όμορφο ταξίδι εννέα
ετών φτάνει στο τέλος του. Μέσα σε αυτά τα χρόνια έχω γνωρίσει, συναναστραφεί και συνερ-
γαστεί με πάρα πολλά αξιόλογα άτομα καθένα εκ των οποίων με βοήθησε με τον τρόπο του να
ανταπεξέλθω στις υψηλές απαιτήσεις της διεξαγωγής ενός διδακτορικού αλλά και να εξελιχθώ
σαν ερευνητής αλλά κυρίως σαν άνθρωπος. Η συνύπαρξη και η καθημερινή συναναστροφή με
αυτούς τους ανθρώπους ήταν που έκανε όλη αυτή την πορεία τόσο απολαυστική που δε θα την
άλλαζα με τίποτα!

Αρχικά, θα ήθελα να ευχαριστήσω απο τα βάθη της καρδιάς μου τον επιβλέποντα καθηγητή
μου, Γιώργο Γκούμα, για τη συνεχή καθοδήγηση του όλα αυτά τα χρόνια. Η ικανότητα του
να μου δίνει συνεχώς κίνητρο για να συνεχίζω την πορεία μου προς την ολοκλήρωση του
διδακτορικού ήταν καθοριστική. Ήταν πάντα εκεί για να προσφέρει λύσεις στα αδιέξοδα που
προέκυπταν και να μου δίνει ώθηση να συνεχίζω, σε περιόδους που η έρευνά μου φαινόταν να
βρίσκεται σε τέλμα. Ένα τεράστιο ευχαριστώ οφείλω στον μεταδιδακτορικό ερευνητή Κωστή
Νίκα. Η όρεξη και η διάθεσή του να βοηθήσει, είτε μέσα απο πολύωρες τεχνικές και μη συζη-
τήσεις, είτε γράφοντας ο ίδιος κείμενο, είναι που τον κάνουν ξεχωριστό. Δε θα ξεχάσω ποτέ
τα ξενύχτια που έριξε ώστε να προλάβουμε να υποβάλλουμε εντός της διορίας εργασίες σε
συνέδρια.

Θερμές ευχαριστίες οφείλω επίσης στον κύριο Νεκτάριο Κοζύρη ο οποίος από τα προπτυ-
χιακά μου χρόνια μου μετέδιδε την απίστευτη ενέργεια και αγάπη του για το αντικείμενο της
επιστήμης των υπολογιστών. Ακόμα, τον ευχαριστώ επειδή μου έδωσε την ευκαιρία να γίνω
μέλος του εργαστηρίου υπολογιστικών συστημάτων. Ευχαριστώ θερμά τα υπόλοιπα μέλη της
επταμελούς μου επιτροπής, τον κύριο Παναγιώτη Τσανάκα, τον κύριο Διονύση Πνευματικάτο,

xv

xvi

την κυρία Παναγιώτα Φατούρου, τον κύριο Κωνσταντίνο Σαγώνα καθώς και τον κύριο Χρήστο
Κοτσελίδη για τον χρόνο τους και για τα πολύτιμα σχόλια τους σχετικά με την εργασία μου.

Στο εργαστήριο υπολογιστικών συστημάτων, όλα αυτά τα χρόνια, γνώρισα πάρα πολλά
αξιόλογα άτομα και τους ευχαριστώ όλους έναν προς έναν για όλες τις στιγμές που ζήσαμε.
Όλοι συνεισφέρανε ώστε να μετατρέψουν τα χρόνια του διδακτορικού μου απο μία επίπονη
διαδικασία σε ένα απολαυστικό ταξίδι που θα μου μείνει για πάντα αξέχαστο. Ευχαριστώ
ιδιαιτέρως τα παιδιά με τα οποία ήρθα πιο κοντά, την παρέα των ηλεκτρολόγων του Ταρτούφου,
τον Αντρέα, τον Δημήτρη, την Ιωάννα, τον Κωστή, την Νικέλα, τον Ορέστη, τον Παναγιώτη, τον
Στράτο και την Χλόη. Δεν θα μπορούσα να φανταστώ καλύτερη παρέα για να περάσω αυτά
τα χρόνια. Οι ατελείωτες συζητήσεις επι παντός επιστητού και τα αμέτρητα γέλια μας ήταν
η καλύτερη αποφόρτιση όταν τα πράγματα δυσκόλευαν. Επίσης, ευχαριστώ ιδιαίτερα τον
Τάσο Νάνο ο οποίος ήταν πάντα εκεί, όποτε τον χρειαζόμουν, για να βοηθήσει είτε σε τεχνικά
ζητήματα είτε σε προσωπικό επίπεδο.

Ακόμα, θα ήθελα να ευχαριστήσω τα παιδιά με τα οποία συνυπάρξαμε στην διαχειριστική
ομάδα του εργαστηρίου. Συγκεκριμένα, τους Βαγγέλη Αγγέλου, Στέφανο Γεράγγελο, Γιάννη
Γιαννακόπουλο, Κωστή Παπαζαφειρόπουλο, Γιάννη Παπαδάκη και Χρήστο Κατσακιώρη. Μας
συνέδεσε η αγάπη μας για τους υπολογιστές και η επιθυμία μας να δουλεύουν τα μηχανήματα
του εργαστηρίου όπως πρέπει. Δε θα ξεχάσω ποτέ τις ατελείωτες τεχνικές συζητήσεις και
διαφωνίες μας, τις δύσκολες νύχτες που έπεφταν τα ρεύματα και έπρεπε να ανέβουμε στο
εργαστήριο για να τα επαναφέρουμε και όλα όσα ζήσαμε σαν ομάδα αυτά τα χρόνια.

Ευχαριστώ επίσης τα παιδιά τα οποία έκαναν τη διπλωματική τους μαζί μου, τον Χαρά-
λαμπο Στυλιανόπουλο, την Χριστίνα Γιαννούλα, τον Κωνσταντίνο Καζατζή, τον Παναγιώτη
Μπίλλη, τον Μάριο Καρδάρα, τον Σωτήρη Δραγώνα και τον Γιώργο Δημητρακόπουλο. Η
συνεργασία με τον κάθε έναν ήταν εξαιρετική και η δουλειά που έκαναν με βοήθησε πάρα πολύ
για την ολοκλήρωση του διδακτορικού μου.

Θα ήθελα να ευχαριστήσω και κάποιους πολύ σημαντικούς ανθρώπους στη ζωή μου. Ευχα-
ριστώ ιδιαίτερα τον Βασίλη Μπούγλα, ο οποίος ήταν ο άνθρωπος που μου μετέδωσε την αγάπη
για τους υπολογιστές, όταν ακόμα ήμουν μικρός και αυτός εργαζόταν στο γραφείο του πατέρα
μου, και με έκανε να θέλω να ασχοληθώ με αυτό το αντικείμενο. Τον ευχαριστώ πάρα πολύ για
όλο τον χρόνο που αφιέρωσε τότε για να μου δείξει πως δουλεύει ένας υπολογιστής, να παίζει
μαζί μου παιχνίδια στον υπολογιστή του γραφείου και να επισκευάζει τους υπολογιστές που
είχα στο σπίτι. Επίσης, ευχαριστώ πάρα πολύ τους φίλους μου, και την κοπέλα μου, οι οποίοι
αποτελούν ένα σημαντικό κομμάτι της ζωής μου και την κάνουν πολύ πιο όμορφη.

Τέλος, δε θα μπορούσα να μην ευχαριστήσω την οικογένειά μου. Τις δύο μου αδερφές,
Κωνσταντίνα και Κυριακή, οι οποίες είναι πάντα δίπλα μου και με στηρίζουν σε όλες μου τις
δυσκολίες. Απεριόριστη ευγνωμοσύνη οφείλω στους δύο μου γονείς, Δημήτρη και Μελπομένη,

xvii

στους οποίους χρωστάω τα πάντα. Τους ευχαριστώ για τη στήριξή τους, την απεριόριστη
αγάπη που μου έχουν δώσει και την υπομονή τους.

xviii

Contents

1 Motivation 29
1.1 Serial Search Trees: no one-size-fits-all . 31
1.2 Concurrent Search Trees: making things even worse 32
1.3 The programmability-performance tradeoff . 35
1.4 Our approach: RCU-HTM . 37
1.5 Structure of the thesis . 39

2 Background 41
2.1 The Map Interface . 41
2.2 Search Trees . 42
2.3 Transactional Memory (TM) . 44

3 Concurrent Search Trees: State-of-the-art 47
3.1 Lock-based Search Trees . 47

3.1.1 Coarse-grained Locking . 47
3.1.2 Contention-Adapting Locking . 48
3.1.3 Fine-grained Locking . 50

3.2 Lock-free Search Trees . 50
3.2.1 Compare-And-Swap (CAS) . 51
3.2.2 High-level lock-free primitives . 51

3.3 RCU-based Search Trees . 51
3.3.1 RCU with coarse-grained locking . 52

xix

xx Contents

3.3.2 RCU with fine-grained locking . 54
3.4 HTM-based Search Trees . 56

3.4.1 Coarse-grained HTM with single lock fallback 56
3.4.2 3-Path HTM . 56
3.4.3 Consistency Oblivious Programming with HTM 57

4 RCU-HTM 59
4.1 High Level Overview . 59
4.2 How to use RCU-HTM . 62
4.3 The RCU-HTM class . 62
4.4 Correctness . 66
4.5 RCU-HTM Search Tree Examples . 67

4.5.1 Example 1: Internal AVL binary search tree 67
4.5.2 Example 2: B+-tree . 70

4.6 Memory Reclamation . 73

5 Experimental Evaluation 75
5.1 Experimental Setup . 75
5.2 Search Tree Implementations . 75
5.3 Benchmarks . 76

5.3.1 Microbenchmark . 78
5.3.2 TPC-C . 78
5.3.3 YCSB . 79

5.4 Experimental Results: Microbenchmark . 80
5.4.1 Evaluation of RCU-HTM with a predefined baseline serial search tree . . 80
5.4.2 Overall scalability evaluation of RCU-HTM 82

5.5 Experimental Results: TPC-C and YCSB . 85
5.6 Experimental Results: Memory Reclamation . 87

6 RangeQuery Operations in RCU-HTM 89
6.1 Background . 90

6.1.1 Range Queries . 90
6.1.2 B+-trees . 91
6.1.3 Concurrent RQs in B+-trees . 91

6.2 Previous Approaches . 93
6.3 RQs in an RCU-HTM B+-tree . 94

6.3.1 Overview . 94
6.3.2 Implementation . 95

Contents xxi

6.4 Experimental Evaluation . 97
6.4.1 Impact of B+-tree node size . 98
6.4.2 Overall scalability . 99

7 Conclusions & Future Work 103

8 Δημοσιεύσεις 105

Bibliography 107

xxii Contents

List of Figures

1.1 Different types of search trees. 30

1.2 Normalized performance (compared to the best in each case) of 9 serial search
trees in a single-threaded execution. For each search tree we have 90 different
execution scenarios. 31

1.3 Performance of concurrent search trees in a multi-threaded execution. For each
search tree we have 90 different execution scenarios. 34

1.4 Qualitative assesment of the programmability-performance tradeoff for concur-
rent search trees. 35

1.5 Comparison of HTM-based, RCU-based and RCU-HTM based internal AVL trees. 38

2.1 An example insertion of key 1 followed by the rebalance phase in a serial internal
AVL tree. 43

3.1 The structure of a CA tree. The image was taken directly from the authors’ orig-
inal paper [SW15]. 49

4.1 Insertion of key 1 followed by rebalancing in an RCU-based internal AVL tree. . 60

4.2 An erroneous execution of two threads inserting keys in an AVL tree. Thread T2
installs its copy on a removed node so its modification does not become visible
to other threads. 61

xxiii

xxiv List of Figures

5.1 Evaluation of the synchronization mechanisms when applied to a specific base-
line serial search tree. For each execution scenario we find the synchronization
mechanismwith the highest throughput and use it to normalize the rest through-
puts. This way, the y axis shows the percentage difference of the throughput of
each synchronization compared to the best achieved throughput for the specific
serial search tree and execution scenario. Every boxplot include 630 execution
scenarios. 81

5.2 Scalability evaluation of concurrent search trees with 8 bytes key size. Each plot
includes the five best performing search trees. The rows represent different tree
sizes and the columns different mix of operations. Notice the differences in the
y-axis range between the figures. 83

5.3 Scalability evaluation of concurrent search trees with 64 bytes key size. Each plot
includes the five best performing search trees. The rows represent different tree
sizes and the columns different mix of operations. Notice the differences in the
y-axis range between the figures. 84

5.4 Performance of concurrent B+-trees and (a-b)-trees for YCSB and TPC-C bench-
marks. 85

5.5 Scalability of concurrent B+-trees and (a-b)-trees for each index of the TPC-C
benchmark. 86

5.6 Performance of avl-int-rcu-htm when memory reclamation is performed. 88

6.1 Example of a B+-tree. Only a part of the tree is depicted. Gray nodes are the
internal nodes that are used only for directing traversals to the appropriate leaves. 90

6.2 A non-linearizable execution of two RQs that run concurrently with two updates.
The two RQ threads observe the two updates in different order. We only show
the leaves that are involved in the four operations. 92

6.3 Performance of RCU-HTM B+-trees with varying B+-tree node sizes (i.e., order
of the tree). The top row shows the throughput and the bottom row shows the
associated percentage of aborted transactions. 99

6.4 Performance of concurrent maps with RQ support for RQ size 100. 100
6.5 Performance of concurrent maps with RQ support for RQ size 100K. 101

List of Tables

2.1 The size of the transactional buffers provided in our Broadwell server. 45

5.1 Baseline serial search trees used in our experimental evaluation. 76
5.2 Concurrent serial search trees used in our experimental evaluation. We also ex-

perimented with coarse-grained locking trees with reader-writer locks, but the
results were very similar to when using a spinlock. In total, our evaluation in-
cludes 52 concurrent search trees. 77

5.3 The parameters of our artificial microbenchmark. In the operations mix parame-
ter, l-i-r indicates percentage of lookup(), insert() and remove() operations respec-
tively. 78

5.4 The tableswith their respective indexes and the transactions executed in the TPC-
C benchmark. In our experiments we set W to 10. 79

5.5 The tables with their respective indexes and the transactions executed in the
YCSB benchmark. 80

6.1 Concurrent map implementations that were used in our evaluation. 97

xxv

xxvi List of Tables

List of Listings

2.1 The Map interface. 42
3.1 A search tree protected by coarse-grained synchronization. 48
3.2 Additions to theMap interface to enable support for Contention-Adapting locking. 49
3.3 Insert operation for a contention-adapting search tree. 49
3.4 Additions to the Map interface to enable support for RCU-SGL 52
3.5 A search tree with RCU-SGL synchronization. 52
3.6 Implementation of insert_with_copy() for an internal AVL tree. 53
3.7 Implementation of Citrus, a concurrent unbalanced internal search treewith RCU

and fine-grained locking. 54
4.1 An example using an AVL RCU-HTM tree. 62
4.2 The RCU-HTM class. 63
4.3 The methods that need to be implemented by any data structure that will be used

with RCU-HTM. 63
4.4 Template code for all RCU-HTM implementations. 64
4.5 The methods necessary to apply RCU-HTM for an internal AVL binary search

tree. The remove_with_copy() method is implemented in a similar fashion to in-

sert_with_copy() and we omit it here for brevity. 68
4.6 Themethods necessary to apply RCU-HTM for a B+-tree. The remove_with_copy()

method is implemented in a similar fashion to insert_with_copy() and we omit it
here for brevity. 71

27

28 List of Listings

CHAPTER 1

Motivation

As Steven Skiena states in his book¹, the dictionary abstract data type (ADT) is one of the most
important data structures in computer science and search trees are the most common data struc-
tures used for its implementation. A dictionary, also known as map or associative array², stores
key-value pairs and supports four operations, namely, lookup(key), insert(key, value), delete(key)
and range_query(key1, key2).

With the proliferation of multi-core systems the need for concurrent data structures has be-
come evenmore intense. Related research around simple data structures such as linked lists, hash
tables, etc, has resulted in several efficient implementations that scale well for high numbers of
threads. In such simple data structures, whose operations typically involve a very limited num-
ber of modifications, it is relatively easy to apply fine-grained synchronization schemes, using
either locks or hardware-provided atomic operations, and allow multiple threads to efficiently
access the data structure concurrently.

On the contrary, search trees may need to support complex operations such as rebalancing
the tree and replacing a node in the high levels of the tree with one that lays in the last level
of the tree. These operations may affect a large number of tree nodes and make the application
of fine-grained synchronization challenging. For this, proposed fine-grained approaches do not

¹The abstract data type “dictionary” is one of the most important structures in computer science. Dozens of data
structures have been proposed for implementing dictionaries, including hash tables, skip lists, and balanced/unbalanced
binary search trees. This means that choosing the best one can be tricky., The Algorithm Design Manual, by Steven S.
Skiena

²https://en.wikipedia.org/wiki/Associative_array

29

https://en.wikipedia.org/wiki/Associative_array

30 Chapter 1. Motivation

(a) Unbalanced internal bi-
nary search tree

(b) Balanced internal bi-
nary search tree

(c) Balanced external binary search
tree

(d) Balanced B+-tree

Figure 1.1: Different types of search trees.

support these operations and resort to trees that are unbalanced or relaxed-balanced and external
(i.e., store all the data in the last levels of the tree) or partially-external (i.e., mark nodes instead
of physically removing them). On the other hand, coarse-grained synchronization mechanisms,
such as locking the whole tree or using transactional memory, which can easily support bal-
anced and internal trees, lead to excessive serialization of tree operations even when these oper-
ations modify different parts of the tree. In this work we propose a synchronization mechanism,
called RCU-HTM, which closes the gap between coarse-grained and fine-grained synchroniza-
tion mechanisms and provides applicablity (i.e., can be applied to any search tree) along with
high performance across a wide variety of execution scenarios.

1.1. Serial Search Trees: no one-size-fits-all 31

1.1 Serial Search Trees: no one-size-fits-all

Search trees come in many different flavors depending on the number of keys stored in each
tree node (i.e., binary trees and (a-b)-trees), the balancing guarantees (i.e., unbalanced, relaxed-
balanced and balanced) and the way data is stored in the nodes of the tree (i.e., internal, partially-
external and external). Four examples of different search trees are shown in Figure 1.1. Apart
from the above three basic parameters that categorize a search tree, there can be other character-
istics that also differentiate one from another. Some examples include: the splay tree which keeps
the most commonly accessed elements on the top levels of the tree for faster acquisition [ST85];
the treap, a combination of a tree and heap where each node has a weight and the nodes with
the largest weights are placed at the top levels of the tree [AS89].

All these different variations of search trees, along with many more, make it hard for the
designers of applications to choose the appropriate search tree for their use case. Each search
tree is appropriate for someworkloads but may not be a good choice for another. We validate this
with a simple set of experiments with Figure 1.2 presenting the results. We evaluate 9 different
search trees under 90 execution scenarios with different key sizes, number of keys in the tree and
operation mixes. For every scenario we normalize the throughput of all trees to the throughput
of the best performing tree. As the figure shows, all trees have high variance and can be the best
in some cases while in others are up to 15% close to the best execution.

Figure 1.2: Normalized performance (compared to the best in each case) of 9 serial search trees
in a single-threaded execution. For each search tree we have 90 different execution scenarios.

32 Chapter 1. Motivation

1.2 Concurrent Search Trees: making things even worse

In multi-threaded environments we need to implement concurrent search trees, i.e., trees that
allow multiple concurrent threads to execute operations on them without compromising the
integrity of the data structure. This adds an extra parameter on the different possible execution
scenarios, i.e., the number of threads, which significantly increases the difficulty of choosing the
appropriate search tree for a specific application. Even worse, the design and implementation
spectrum of concurrent search trees is much larger than the serial one since we now also have
to choose between several different synchronization mechanisms. When a programmer needs to
find the best concurrent search tree candidate for an application he/she has the following choices
regarding the synchronization mechanism to use:

• Locks (lock-based trees). Locks can be applied on search trees in coarse-grained, medium-
grained or fine-grained way depending on the size of the parts of the tree a single lock may
protect. In coarse-grained implementations we only have a single global lock to protect
the whole tree. Coarse-grained locking is trivial to implement for any type of search tree,
however, the excessive serialization of operations does not allow concurrent threads to ex-
ploit the available parallelism that trees provide through their multiple disjoint tree paths.
Contention-adaptive locking [SW15] is a medium-grained application of locks, in which a
baseline serial data structure is used and is split accordingly when high levels of contention
are observed. Contention-adaptive trees allow multiple threads to work concurrently on
disjoint paths of the tree but they have two disadvantages. First, they require from the un-
derlying serial data structures to support join and split operations, which for some types
of search trees is difficult to implement efficiently. For example, in balanced trees, such
as AVL, it is very challenging to join and split trees while at the same time maintaining
their balancing guarantees. Second, contention-adaptive trees require an additional tree
structure on top of the baseline search trees, which in high contention cases induces high
traversal overheads. State-of-the-art lock-based search trees [BCCO10, DVY14, CGR13]
use fine-grained locking schemes where each tree node is protected by a different lock.
While these approaches allow for maximum concurrency between threads, which typi-
cally translates to higher performance, they are hard to design and implement because the
programmer has to manually add code to lock/unlock a large number of locks per oper-
ation. This complexity is the main reason why these trees do not support complex tree
operations such as rebalancing.

• Hardware-provided atomic operations (lock-free trees). Lock-free search trees ex-
ploit the hardware-provided atomic instructions, such as Compare-and-Swap (CAS) and
Load-Linked-Store-Conditional (LL/SC), either directly [EFRvB10, HJ12, NM14, CDT14,

1.2. Concurrent Search Trees: making things even worse 33

RM15] or indirectly with higher level primitives, such as Double-Compare-Single-Swap
(DCSS) and Load-Linked-Store-Conditional-Extended (LLX/SCX), both implemented on
top of CAS [Bro17, BPA20]. The first category provides very high performance but the
direct use of low-level atomic primitives makes it hard to support complex operations such
as rebalancing. When using higher level primitives more complex operations can be sup-
ported, such as local rebalancing steps in relaxed-balanced trees, but each operation is
translated in multiple CAS instructions, thus inducing severe overheads.

• Read-Copy-Update (RCU-based trees). In RCU-based search trees threads that need
to modify the tree first create a copy of the affected subtree and then replace its old ver-
sion with their new modified one. This replacement is performed in a single atomic step
and this allows reader threads to traverse the tree without using any kind of synchro-
nization. However, updaters still need to be synchronized in some way, and this is done
using either coarse-grained locking or fine-grained locking. In the fine-grained locking
approach [HW14] updaters use a single lock and only one of them can access the data
structure at any time. This design is simple to implement but serializes all operations that
modify the tree. A fine-grained locking scheme can be used along with RCU [AA14] to
allow for concurrent updates, but this complicates the implementation of complex tree
operations such as rebalancing.

• TransactionalMemory (TM-based trees). TransactionalMemory is either implemented
in software as a library (STM) or provided by the hardware (HTM). In this workwe only use
HTM since STM implementations typically induce very high runtime overheads [CBM+08].
HTM can be applied on search trees in either a coarse-grained or a fine-grained way. In the
first case, tree operations are simply enclosed in an HTM transaction in a way similar to
the coarse-grained locking approach. In contrast to locking, HTM optimistically executes
concurrent operations, and serializes them only when they conflict with each other. This
serialization is achieved using a non-transactional fallback path, that is executed when a
transaction has repeatedly aborted for a number of times, in which a global lock is ac-
quired causing all concurrent operations to halt. This coarse-grained HTM approach is
easy to implement and provides high performance under certain circumstances. However,
such coarse-grained transactions are large, both in terms of memory size and time dura-
tion, and are thus prone to transactional aborts. Brown et. al [Bro17] have proposed the
3-path HTM approach, which, instead of resorting to a global lock upon repetitive trans-
actional aborts, uses a middle transactional path and a lock-free non-transactional fallback
path. The middle and fallback paths can execute concurrently, thus avoiding the serializa-
tion of operations that occurs in the classic 2-path coarse-grained approach. Consistency-
Oblivious programming (COP) [AAS11, AK14] uses smaller transactions by splitting the

34 Chapter 1. Motivation

tree operations in two parts: a read-only prefix and an updating suffix. Only the updating
suffix is enclosed inside a transaction. Although COP indeed reduces the transaction size
relatively to the coarse-grained HTM synchronization, it still has two drawbacks; first,
lookup operations need to use transactions and hence pay their overhead, and second, the
whole update operation is enclosed in a single transaction, leading to a large transactional
write set which results in a high probability of conflicts.

All these different synchronization mechanisms cause the design and implementation space
of search trees to expand significantly. However, things get more complicated from the fact that
not all synchronizationmechanisms are actually applicable to all serial search trees. For example,
fine-grained mechanisms such as fine-grained locking and CAS-based lock-free can not be ap-
plied to strictly balanced search trees, because the rebalancing operations require multiple nodes
to be modified in a single atomic step. This limitation can lead to contradicting situations, where
a serial search tree works well for a serial application but when parallelizing this application the
appropriate synchronization mechanism may not be applicable to this search tree.

Figure 1.3 presents how close each concurrent search tree performs to the best performing
tree for the different execution scenarios. Each boxplot includes 630 different execution scenarios
for each search tree. The results validate that no search tree provides sustainably high perfor-
mance across all the different execution scenarios as there is large variation for every single one.
It is thus not possible to choose a single best implementation.

1.3 The programmability-performance tradeoff

As explained, choosing the right synchronization mechanism for a given workload is not an easy
task. Another property to consider is the programmability effort required for each synchroniza-
tion mechanism.

Coarse-grained synchronization is trivial to implement; each operation is simply enclosed
inside a critical section and the programmer does not need to know the implementation details
of the data structure. Coarse-grained synchronization can thus be implemented on top of any
serial data structure. However its downside is the excessive serialization of operations as only
one thread can be in the critical section at any time. Even if reader-writer locks are used, the
serialization of the writers induces very high overheads. According to Amdhal’s law³, this se-
rialization puts an upper limit on the performance of the data structure; when a large part of
the application time is spent on accesses on the data structure, coarse-grained implementations
become the bottleneck for the whole application. In general, coarse-grained strategies are easily

³https://en.wikipedia.org/wiki/Amdahl's_law

https://en.wikipedia.org/wiki/Amdahl's_law

1.3. The programmability-performance tradeoff 35

Figure 1.3: Performance of concurrent search trees in amulti-threaded execution. For each search
tree we have 90 different execution scenarios.

Figure 1.4: Qualitative assesment of the programmability-performance tradeoff for concurrent
search trees.

36 Chapter 1. Motivation

applicable but typically fail to exploit concurrency. Only locks and HTM can be applied in such
a coarse-grained way.

On the other hand, fine-grained synchronization enables higher parallelism, thus achieving
higher performance, but is commonly tailored to a specific version of a data structure. For less
complex data structures than search trees, such as linked lists and hash tables, fine-grained strate-
gies are able to provide high performance with relatively simple and generic implementations.
Unfortunately, this is not the case for complex data structures such as search trees, mainly for
two reasons. First, for some search trees, an operation may need to modify multiple memory
locations, a fact that greatly complicates fine-grained approaches. Second, the large variety of
different search tree implementations make it challenging to come up with an approach generic
enough to be applicable on all these versions.

This creates a programmability-performance tradeoff. Figure 1.4 presents the different syn-
chronization mechanisms that can be currently leveraged for concurrent search trees and where
they stand in the programmability-performance spectrum. We should note here that programma-
bility is too hard to quantify, so we qualitatively assess it based on our experience with under-
standing and implementing these methods. It is not our intention to strictly rate each method,
but rather show the greater picture and the pattern that emerges.

Coarse-grained synchronization lies at the top left corner of the spectrum, being the most
straightforward to apply on any serial search tree with absolutely no knowledge of its internal
details. Coarse-grained locking, however, is the worst performance-wise even when reader-
writer locks are used. HTM allows some degree of parallelism by allowing multiple transactions
to execute concurrently and only serializes them in case of conflicts. The problem with coarse-
grained HTM is that tree operations typically read andmodify several memory locations, making
the occurring transactions large both in terms of memory space and time duration; this leads to
large number of transactional aborts and low performance.

Moving to the right of the spectrum, the synchronization mechanisms become more fine-
grained, requiring more programming effort but providing higher performance. We first en-
counter techniques that combine RCU with locks, namely rcu-sgl and rcu-fgl. In rcu-sgl updaters
are serialized using a single lock, which, similarly to coarse-grained locking, leads to poor per-
formance. In rcu-fgl, updaters are synchronized using fine-grained per-node locks. Consistency-
oblivious programming (COP) uses HTM in a fine-grained way. Rather than enclosing the whole
tree operation in a transaction, it splits the operation in three steps; traversal, validation of the
traversal and modifications phase. Only the last two phases need to be enclosed in an HTM
transaction and while this gives some performance benefits, it still requires large transactions.

Fine-grained locking and lock-free implementation lie at the bottom right end of the spec-
trum. Fine-grained locking techniques use one lock per tree node. This greatly complicates the
design and implementation of these trees, because the programmer is required to get into the

1.4. Our approach: RCU-HTM 37

details of the tree operations and add the logic for acquiring and releasing all these locks. Re-
garding lock-free trees, there are two categories based on the atomic primitives that are used;
those that directly exploit the low level atomic instructions, such as CAS, and those that use
higher level primitives, such as Double-compare-single-swap (DCSS) [HFP03] and load-linked-
store-conditional-extended (LLX/SCX) [BER13]. The first category is the most difficult to design
and implement. This is due to the fact that hardware-provided atomic instructions can only
work on one, or at most two consecutive, memory locations. It is thus very difficult to imple-
ment advanced operations of trees, as for example, the rebalancing of a tree. Double-compare-
single-swap (DCSS) [HFP03] and load-linked-store-conditional-extended (LLX/SCX) [BER13] are
implemented on top of CAS and provide a more flexible way to the programmers to perform
atomic operations that include more than one memory locations. These two techniques facil-
itate the design and implementation of a lock-free concurrent search tree but they incur very
high overheads.

1.4 Our approach: RCU-HTM

This thesis focuses on concurrent search trees and aims to improve the programmability-perform-
ance tradeoff. More specifically, we propose, implement and evaluate a novel synchronization
technique that targets the top right corner of the programmability-performance spectrum. We
call this technique RCU-HTM, since it is a combination of RCU and HTM. RCU-HTM can be ap-
plied to any kind of search tree and provides high and robust performance. It leverages both RCU
and HTM to implement concurrent search trees that exhibit the benefits of both schemes, namely
asynchronized read-only operations and optimistic concurrent execution of updaters. To demon-
strate the gains of combining these two synchronization mechanisms, we compare in Figure 1.5
the performance of an RCU-HTM internal AVL tree (avl-int-rcu-htm) with the two coarse-grained
implementations that use RCU with coarse-grained locking (avl-int-rcu-sgl) and coarse-grained
HTM (avl-int-cg-htm). In the left, read-only case the three implementations achieve similar per-
formance. The advantages of RCU-HTM become evident when update operations are performed.
Even when only 20% of operations are updates, the performance of both RCU and HTM drops
for different reasons; RCU serializes updaters with a global lock and HTM encounters a high
number of conflicts. On the other hand, RCU-HTM maintains its high performance on all three
contention levels.
In a nutshell, RCU-HTM exploits RCU and HTM in the following way:

- RCU: Readers enjoy the properties of RCU-based implementations, that is, they are com-
pletely asynchronized and unaffected by concurrent updates. This is achieved by having updaters
perform their modifications on copies of the affected nodes rather than directly on the shared

38 Chapter 1. Motivation

Figure 1.5: Comparison of HTM-based, RCU-based and RCU-HTM based internal AVL trees.

tree. The copies are then atomically installed in the tree by modifying a single node’s child
pointer.

-HTM: Updaters enjoy the properties of HTM-based implementations, that is, they are opti-
mistically executed concurrently and serialize only when conflicts are present. To exploit HTM,
we modify the RCU-based coarse-grained implementation in the following ways: first, we aug-
ment the traversal phase to store the state of the traversed nodes as we need it to validate later
that no other updater has modified them in the meanwhile; second, when the copy is ready to be
installed in the shared tree, we execute an HTM transaction where we atomically perform two
steps: 1. we validate that the nodes to be replaced have not been modified since they were read,
and, 2. we install the copy in the tree.

The contributions of this thesis are the following:

• We create a library of concurrent search treeswhich contains several C andC++ implemen-
tations and can be used through a well-defined API. This is, to the best of our knowledge,
the most complete library of concurrent search trees since it contains a very large number
of implementations both from related research papers and the ones that are presented in
this thesis. The library is publicly available at the author’s github page⁴.

• We propose, implement and evaluate the RCU-HTM synchronization technique describing
all the necessary details to implement an RCU-HTM search tree. We use an internal AVL
tree and a B+-tree as examples, but we provide all the necessary guidelines for the same
procedure to be used for any type of search tree.

• We implement RCU-HTM versions of 12 types of search trees, showcasing the applicabil-
ity of the RCU-HTM technique. We implement 3 unbalanced binary search trees (internal,
partially-external and external), 6 balanced binary search trees (internal, partially-external

⁴https://www.github.com/jimsiak/concurrent-maps-cpp

https://www.github.com/jimsiak/concurrent-maps-cpp

1.5. Structure of the thesis 39

and external versions of both AVL and Red-Black trees), 1 relaxed-balanced partially-
external AVL tree, a B+-tree (i.e., the external version of a B-tree) and an (a-b)-tree (i.e., a
relaxed-balanced variant of a B+-tree).

• We evaluate RCU-HTM search trees and compare their performance with several state-
of-the-art implementations that use 4 different synchronization methods, namely, locks,
atomic operations, RCU and HTM. Our evaluation includes three benchmarks, one arti-
ficial microbenchmark and two real-life benchmarks, namely, TPC-C and YCSB. Our ex-
perimental results show that RCU-HTM is able to provide sustainable performance under
various execution scenarios.

• We incorporateDEBRA, a state-of-the-art epoch-basedmemory reclamation scheme [Bro15],
in the RCU-HTM trees to make them practical to use in large-scale, long-running applica-
tions. We then evaluate the overheads induced by this memory reclamation scheme, and
show that RCU-HTM based trees are able to maintain their high performance even when
reclamation is performed.

• We implement range query operations for the RCU-HTM based trees. Range queries are
very popular operations for the map ADT especially when they are used as indices in
database management systems.

1.5 Structure of the thesis

The rest of this thesis is structured in the following way; Chapter 2 provides all the necessary
background information and Chapter 3 performs an overview of the state-of-the-art approaches
that currently exist for concurrent search trees. In Chapter 4, we analyze the proposed synchro-
nizationmechanism, namely RCU-HTM and in Chapter 5 we present the experimental evaluation
results. In Chapter 6, we explain how we can add support for efficient range query operations
in RCU-HTM. Finally, Chapter 7 summarizes the findings of the thesis along with some future
extensions of the work.

40 Chapter 1. Motivation

CHAPTER 2

Background

In this chapter we provide the necessary background information. We first present the interface
provided by our search tree implementations and then explain some basic concepts around search
trees. Finally, we explain how we use the hardware transactional memory (HTM) instructions
that are provided on the Intel processors we used in our experiments.

2.1 The Map Interface

As mentioned in Chapter 1, we use search trees to implement the map ADT which stores key-
value pairs and supports insertions, deletions, lookups and range queries on these pairs. In our
library amap is represented by theMap class that is shown in Listing 2.1. All search trees inherit
this base class and implement their own specific versions of the four methods. In this thesis
we mainly focus on the lookup(), insert() and remove() operations and dedicate Chapter 6 to the
efficient implementation of range queries with RCU-HTM. Lookup() searches for the given key
and returns either the value associated with it, in case the key is found, or a special value object
called NO_VALUE. Insert() adds the given key-value pair in the map if the key is not already
present; otherwise, NO_VALUE is returned to indicate the the new key-value pair was inserted.
Remove() removes the given key and its associated value from the map and returns its value; if
the key was not found in the map, NO_VALUE is returned.

41

42 Chapter 2. Background

1 template <typename K, typename V>
2 class Map {
3 public:
4 V lookup(K& key);
5 V insert(K& key, V& val);
6 V remove(K& key);
7 int rangeQuery(K& lo, K& hi, vector<pair<K,V>> kv_pairs);
8 };

Listing 2.1: The Map interface.

2.2 Search Trees

Themost popular data structures to implement maps are search trees, such as binary search trees,
B-trees, (a-b)-trees, radix trees, splay trees, and others. Each tree has different characteristics and
thus is a better candidate for different execution scenarios. Nevertheless, they all share some
basic characteristics presented in this section. These common characteristics allow us to devise
a synchronization mechanism that can be applied to any type of search tree. More specifically,
in all search trees each operation is split into two phases:

• Traversal phase: A read-only phase in which a set of nodes is being traversed until the
appropriate node is reached. This set of nodes is called the access path of the operation. In
a range query operation the traversal phase may need to extend to more nodes.

• Modification phase: A read-write phase in which the tree is modified according to the
given operation, i.e., a key-value pair is inserted or removed from the tree. This phase also
includes the rebalancing of the tree in the case of a balanced search tree, such as AVL or
a B-tree. Read-only operations, such as lookups and range queries, do not include this
modification phase.

Algorithm 1 shows the generic structure of an update operation, i.e., an insertion or a re-
moval of a key-value pair, in a serial search tree, and Figure 2.1 depicts the execution of up-
date_and_rebalance() of an internal AVL tree. While some details of the implementation may
vary for different search trees (e.g., AVL, B+-trees, balanced/unbalanced), the general procedure
remains the same and follows the two phases discussed before. During the traversal we store the
access path in the accpath array with top indexing the last node accessed to enable the reverse
traversal of the tree if rebalance needs to be performed.

The most complex operations that can be encountered in a search tree are the following:

1. Balancing the tree. The perfomance of search tree operations depends highly on that of
the traversal phase [DGT15], which in turn depends on the length of the access path. In
unbalanced trees, access paths can become too long, leading to poor performance. Balanced
trees, such as AVL, Red-Black and B+-trees, eliminate such long paths by rebalancing the

2.2. Search Trees 43

Figure 2.1: An example insertion of key 1 followed by the rebalance phase in a serial internal
AVL tree.

ALGORITHM 1: Update operations in serial search trees.
1 int st_update_seq (st *st, K& key, V& value)

// Traverse the access path.
2 st_traverse(st, key, &accpath, &top);

// Returns 0 if tree has not been modified, 1 otherwise.
3 ret = update_and_rebalance(st, key, value, accpath, top);
4 return ret;

tree, when necessary, after insertions and deletions. Rebalancing is a complex operation
because it modifies several nodes and in a concurrent search tree exclusive access to all
of them needs to be granted prior to modifying them. Relaxed-balanced trees stand in the
middle between unbalanced and balanced. In this case, the rebalancing is split in multiple
local steps which can be performed independently. This decreases the complexity of the
rebalancing operation and the synchronization overheads, but long traversed paths can
still be observed, that negatively affect the performance of the search tree.

2. Removing an internal node. To remove an internal node (e.g., a node with two children
in the case of a binary search tree) from an internal search tree, we first need to replace
its key with the key of its successor node, that is the node that contains the first key that
is larger than the key of this node. After this replacement, we remove the successor node
from the tree. While this kind of internal node removal is common for serial search trees,
in a concurrent search tree extra care needs to be taken. Otherwise traversals that search
for the successor’s key may be led astray to the previous position of the successor instead
of the new one. To avoid such incorrect executions, traversals need to synchronize with
concurrent updaters. External trees overcome this complexity by storing the actual data on
external nodes. This way deletions always take place at the lowest levels of the tree, thus
requiring less synchronization. External trees, however, have two drawbacks; first, they
require more nodes, i.e., twice the nodes of an internal tree, and second, the traversal paths
are longer due to traversing the routing nodes. Partially-external trees [BCCO10] require
less nodes than external ones but still more than internal ones. In these trees, internal

44 Chapter 2. Background

nodes are not physically removed from the tree but are only marked as deleted. Deleted
nodes are still traversed, thus increasing the length of the access paths.

All the different combinations of the above search trees, combined with the various struc-
tures of tree nodes (e.g., B+-trees versus binary trees) result in a large design and implementation
space for search trees. Different trees are appropriate for different execution scenarios. As dis-
cussed in Chapter 1, for concurrent search trees things get more complicated since fine-grained
synchronization schemes, which exploit parallelism, can not be applied to all search trees while
coarse-grained schemes are generic but provide poor performance. In many cases this makes it
extremelly difficult to choose the appropriate type of search tree for a specific application and
combine it with a high performing synchronization scheme. Our RCU-HTM technique moves the
synchronization scheme out of the decision path, as it can be applied to any search tree while
maintaining high performance under all the workloads of our evaluation methodology.

2.3 Transactional Memory (TM)

Transactional Memory (TM) [HM93] is a synchronization mechanism based on the idea of trans-
actions in database management systems (DBMS). A transaction is a block of code that is guar-
anteed to execute atomically. In the context of a DBMS, a transaction accesses database records,
while in the context of low-level synchronization a TM transaction accesses memory locations.
The main goal of TM is to remove the burden of synchronization from the programmer and
delegate it to the TM system, which can be either implemented as a software library (STM) or
integrated in hardware (HTM).

Since 2013, most research has focused around STM and HTM implementations integrated in
simulators. Although STM approaches [ST97, HLMS03, HLM06] have provided some encour-
aging results, they typically incur very high overheads compared to the corresponding serial
data structures severely harming their popularity. The overheads mainly arise from the need
to track each and every memory access and maintain the read- and write-sets of the transac-
tions. Simulator-based HTM approaches on the other hand [TPK+09, FSBA11] have shown very
promising results, but the lack of support on real hardware discouraged further research efforts.
This changed when Intel and IBM released processors with HTM support. Intel added their
Transactional Synchronization eXtensions (TSX) in processors based on the Haswell architec-
ture and all their successors. Similarly, IBM’s Power8 provides support for assembly instructions
which enable HTM.

2.3. Transactional Memory (TM) 45

The experiments of this thesis have been executed on an Intel Broadwell processor which
supports TSX and provides the following assembly instructions to manage hardware transac-
tions ¹:

• XBEGIN : Starts an HTM transaction. This instruction returns a status code which indi-
cates whether a transaction has just started or a transaction has been aborted, as when a
transaction aborts, the execution flow returns to the point where XBEGIN was called.

• XEND: Commits an HTM transaction.

• XABORT : Explicitly aborts a transaction. A representative code can be passed to the abort
instruction to enable the distinction among different abort reasons.

• XTEST : Returns true or false depending on whether the code currently executes in trans-
actional mode or not.

The basic TM characteristics of the TSX implementation are the following:

• Lazy data versioning: TSX uses lazy versioning. All memory writes performed inside a
transaction become visible to other threads only after the transaction successfully commits.

• Eager conflict detection: Upon the detection of a conflict the transaction immediately aborts.

• Cache line granularity: Conflicting operations are detected at a cache line granularity. This
can result in false conflicts when concurrent threads modify disjoint parts of a cache line.

• Strong isolation: TSX provides strong isolation, meaning that a conflict is detected even if
the conflicting access occurs in non-transactional code.

• Best-effort: TSX is a best-effort HTM. This means that no forward progress is guaranteed
using only transactional mode, and a transaction may always fail to commit. It is therefore
necessary that the programmer implements a non-transactional fallback path.

In general, a transaction may fail to commit (abort) for various reasons including:

• Data conflict: When another thread, executing in transactional or non-transactional mode,
writes to a memory location that belongs to the transaction’s read or write set.

• Capacity abort: When the transaction’s footprint has exceeded the size of the transactional
buffers that are used to store the read- and write- set of an HTM transaction. Table 2.1
presents their size for the Broadwell processor used in our experiments.

¹IBM’s HTM implementation is very similar

46 Chapter 2. Background

Read set (Total / Per HW thread) Write set (Total / Per HW thread)

4MB / 2MB 22KB / 11KB

Table 2.1: The size of the transactional buffers provided in our Broadwell server.

• Explicit abort: When the programmer explicitly aborts the transaction.

• Other: A transaction may abort due to several other reasons including interrupts, unsup-
ported instructions, system calls etc.

CHAPTER 3

Concurrent Search Trees: State-of-the-art

In this chapter we provide an overview of the current state of concurrent search trees. The aim
of this chapter is to summarize all the different synchronization mechanisms that can be applied
on search trees and discuss the advantages, disadvantages, limitations and the implementation
challenges of each mechanism. In the following sections we provide snippets of C++ code that
facilitate the understanding of our main points. The reader can access all implementations in our
library’s github repository ¹.

3.1 Lock-based Search Trees

3.1.1 Coarse-grained Locking

Coarse-grained locking is the easiest approach to allow concurrent access to search trees. The
programmer needs only to enclose each one of the four operations inside a critical section pro-
tected by a single lock. There is no need for the programmer to have any knowledge of the
internal implementation details and can use the serial search tree as a black box. Listing 3.1
shows the C++ class that wraps a serial search tree with coarse-grained locking. The same code
is used for the coarse-grained HTM implementations that we discuss later. All operations are
simply wrappers of the corresponding serial search tree operations, executed inside a critical
section, which is either a lock-based critical section or an HTM transaction. Although trivial

¹https://github.com/jimsiak/concurrent-maps-cpp

47

https://github.com/jimsiak/concurrent-maps-cpp

48 Chapter 3. Concurrent Search Trees: State-of-the-art

to implement, these coarse-grained locking approaches do not provide high performance since
they serialize all operations, thus hindering concurrency.

1 template <class K, class V>
2 class cg_st : public Map<K, V> {
3 private:
4 Map<K,V> *serial_st;
5 cg_sync *sync_mechanism;
6 public:
7 cg_st(Map<K,V> *prot, string& sync_type) {
8 serial_st = prot;
9

10 if (sync_type == "cg-htm") sync_mechanism = new cg_sync_htm();
11 else if (sync_type == "cg-rwlock") sync_mechanism = new cg_sync_rwlock();
12 else if (sync_type == "cg-spinlock") sync_mechanism = new cg_sync_spinlock();
13 }
14
15 V lookup(K& key) {
16 sync_mechanism->cs_enter_ro();
17 V ret = serial_st->lookup(key);
18 sync_mechanism->cs_exit();
19 return ret;
20 }
21
22 V insert(K& key, V& val) {
23 sync_mechanism->cs_enter_rw();
24 V ret = serial_st->insert(key, val);
25 sync_mechanism->cs_exit();
26 return ret;
27 }
28
29 V remove(K& key) {
30 sync_mechanism->cs_enter_rw();
31 V ret = serial_st->remove(key);
32 sync_mechanism->cs_exit();
33 return ret;
34 }
35 };

Listing 3.1: A search tree protected by coarse-grained synchronization.

3.1.2 Contention-Adapting Locking

Contention-Adapting (CA) search trees were proposed by Sagonas et. al [SW15]. The structure
of CA trees is shown in Figure 3.1. The actual data is stored in sequential data structures and on
top of these data structures an additional tree based structure is maintained, which consists of
a set of routing and base nodes. When searching for a specific key, they locate the appropriate
sequential data structure, i.e., find the corresponding base node by following a path of routing
nodes. Each sequential data structure is protected by the base node’s lock.

Every base node maintains statistics about the contention level in its sequential data struc-
ture, i.e., the times that its lock was found to be already acquired. Under certain circumstances
when the contention level is found to be very high or very low, the sequential data structure is
either split to two base nodes or joined with a sibling base node sequential data structure respec-
tively. Thus, for CA synchronization mechanism to be applicable to a sequential data structure,
the data structure must support split and join operations. The interface of the methods that

3.1. Lock-based Search Trees 49

should be implemented by the sequential data structure is shown in Listing 3.2. If these two
methods are available, the implementation of the Map methods is straightforward. Listing 3.3
presents the implementation of the insert() operation; lookup() and remove() are identical.

Figure 3.1: The structure of a CA tree. The image was taken directly from the
authors’ original paper [SW15].

1 template <typename K, typename V>
2 class Map {
3 public:
4 ...
5
6 //> Methods necessary to support Contention-Adapting locking
7 void *split(void **right_part);
8 void *join(void *other_ds);
9 };

Listing 3.2: Additions to the Map interface to enable support for Contention-Adapting locking.

1 void adapt_if_needed(base_node_t *bnode, route_node_t *parent, route_node_t *gparent) {
2 if (bnode->lock_statistics > STAT_LOCK_HIGH_CONTENTION_LIMIT) {
3 split(bnode, parent);
4 bnode->lock_statistics = 0;
5 } else if (bnode->lock_statistics < STAT_LOCK_LOW_CONTENTION_LIMIT) {
6 join(bnode, parent, gparent);
7 bnode->lock_statistics = 0;
8 }
9 }

10
11 V insert(K& key, V& value) {
12 V ret;
13 base_node_t *bnode;
14 route_node_t *parent, *gparent;
15
16 while (1) {
17 bnode = find_base_node(&parent, &gparent, key);
18 bnode->lock();
19 if (!bnode->is_valid()) {
20 bnode->unlock();
21 continue;
22 }
23 ret = bnode->serial_st->insert(key, value);
24 adapt_if_needed(bnode, parent, gparent);
25 bnode->unlock();
26 return ret;
27 }
28 }

Listing 3.3: Insert operation for a contention-adapting search tree.

50 Chapter 3. Concurrent Search Trees: State-of-the-art

3.1.3 Fine-grained Locking

Several fine-grained locking search trees have been proposed [BCCO10, DVY14, CGR13] and all
use one lock for each tree node. There are two major problems with fine-grained locking. First,
the design and implementation procedures are complex and error-prone since the programmer
needs to manually write all the code to acquire and release multiple locks. Second, complex tree
operations, such as rebalancing, would require a very large number of nodes to be locked, stoping
other concurrent operations from accessing large parts of the tree for a large time duration.
Also, specifically for rebalancing, the reverse traversal of the tree performed during rebalance,
increases the risk of deadlocks with conflicting operations that traverse the tree in the typical
root-to-leaves direction.

In order to avoid locking large parts of the tree, all current fine-grained locking trees [BCCO10,
DVY14, CGR13] are based on relaxed-balanced AVL trees, where the rebalancing procedure fol-
lows the algorithm presented by Bouge et. al [BGMS98]. This splits a rebalancing operation
which may span a large subtree, in multiple independent rebalancing steps, which affect only
a set of two or three nodes. These rebalancing steps can either be triggered immediately after
an insertion or removal of a node [BCCO10, DVY14], or can be delegated to a thread that is
responsible only for rebalancing the tree [CGR13].

Another problematic casewith fine-grained lockingwhen applied specifically to binary search
trees, is when an internal node needs to be removed from the tree ². In this case, the node will be
replaced by its successor, i.e., the leftmost node in its right subtree. The successor may be found
several levels lower and all the nodes leading to the successor need to be locked, otherwise op-
erations that search the successor’s key may be led to the wrong direction. Current fine-grained
locking implementations avoid this problematic case by using two different techniques. Bron-
son’s [BCCO10] and Crain’s [CGR13] search trees use a partially external tree structure, where
each node has a marked field which indicates whether its key-value pair is currently present in
the map or not. Marked nodes are still present in the structure of the tree but their key-value
pair does not actively participate in themap data structure. To avoid these marked nodes, which
lead to increased traversal times, Drachsler’s tree [DVY14] uses two additional pointers on each
node to point to the predecessor and the successor node respectively. These pointers are then
used by traversals to locate the correct location of a node that has been displaced.

3.2 Lock-free Search Trees

Lock-free search trees exploit the hardware-provided atomic instructions, such as Compare-and-
Swap (CAS) and Load-Linked-Store-Conditional (LL/SC). These two variants are used in a very

²This is not a problem in B+-trees since it is never the case that an internal node needs to be removed.

3.3. RCU-based Search Trees 51

similar way, so from now on we will only refer to CAS. Several lock-free search trees have
been proposed [EFRvB10, HJ12, NM14, CDT14, RM15, Bro17, BPA20, WPL+18], which either
use CAS directly (CAS-based) or use Double-Compare-Single-Swap (DCSS) and Load-Linked-
Store-Conditional-Extended (LLX/SCX), two high level synchronization primitives that are im-
plemented on top of CAS.

3.2.1 Compare-And-Swap (CAS)

In CAS-based lock-free trees [EFRvB10, HJ12, NM14, CDT14, RM15], it is challenging to support
operations that typically modify multiple nodes, such as rebalancing and internal node deletion.
The problem arises from the restriction of CAS instruction to a single memory location and it is
the reason why these lock-free binary search trees are unbalanced. For the same reason, lock-
free search trees are either external trees [EFRvB10, NM14] or partially-external [HJ12, CDT14,
BER14, RM15], which may lead to long traversal paths, especially for large trees.

3.2.2 High-level lock-free primitives

High-level lock-free primitives, such as DCSS and LLX/SCX provide extended CAS operations
which validate that multiple locations have not been modified (instead of only one when using
the typical CAS operation), and modify a single one. These two techniques have been applied
on search trees but they incur high overheads. DCSS augments each memory location with a
tag field which is manipulated using bitwise operations. This is very expensive in the case of
complex search tree operations, where multiple memory locations need to be read and validated.
LLX-SCX adds an SCX record on each tree node, and requires multiple CAS operations to execute
a complex search tree operation.

3.3 RCU-based Search Trees

Read-Copy-Update [MS98] is a synchronization mechanism ideal for mostly-read workloads. It
is widely used in the Linux kernel and on several production libraries. Two RCU-based trees
can be found in the literature, specifically for search trees, one by Howard et. al [HW14] and
one by Arbel et. al [AA14]. In RCU, read-only operations do not use any synchronization and
are never affected by concurrent operations. To enable this, update operations create copies of
the appropriate parts of the search tree prior to modifying them and, when their private copy is
ready, they install it in the shared data structure by changing only a single node’s child pointer.
This change is performed in a single atomic step, allowing concurrent readers to safely read either
the old or the new version of the specific subtree.

52 Chapter 3. Concurrent Search Trees: State-of-the-art

While read-only operations can safely run concurrently with other read-only and/or update
operations, update operations still need to be synchronized in some way. The two aforemen-
tioned search trees [HW14, AA14] use locks to synchronize updaters, the first one uses coarse-
grained locking, i.e., a single updaters lock for the whole data structure, while the second one
uses fine-grained locking, i.e., one lock per tree node.

3.3.1 RCU with coarse-grained locking

Relativistic programming [HW14] uses RCU with a single lock to synchronize updaters (we will
refer to this implementation as RCU single-global-lock, RCU-SGL). Its implementation is sim-
ple and shown in Listing 3.5. The rcu_sgl class wraps a serial search tree. For a serial search
tree to be used with RCU-SGL, three methods need to be implemented which are shown in List-
ing 3.4. The advantage of RCU-SGL is that these three methods can be implemented relatively
easily. As an example, Listing 3.6 presents the implementation of insert_with_copy() for an ex-
ternal AVL tree. Traverse_with_stack() and install_copy() are omitted since their implementation
is trivial. The first one is similar to a serial search tree traversal, with the only addition that
the pointers followed by the traversal are stored in the provided stack. install_copy() simply
changes the appropriate child pointer of connection_point to point to the newly created private
copy, i.e., priv_copy. As already mentioned, the lookup() method simply calls the correspond-
ing lookup() method of the serial search tree. The insert() method uses traverse_with_stack(),
insert_with_copy() and install_copy() methods after the acquisition of the updaters_lock.

1 template <typename K, typename V>
2 class Map {
3 public:
4 ...
5
6 //> Methods necessary to support RCU-SGL
7 V traverse_with_stack(K& key, void **stack, int *stack_top);
8 void *insert_with_copy(K& key, V& val, void **stack, int *stack_top,
9 void **priv_copy);

10 void *delete_with_copy(K& key, void **stack, int *stack_top,
11 void **priv_copy);
12 void install_copy(K& key, void *connection_point, void *priv_copy);
13 };

Listing 3.4: Additions to the Map interface to enable support for RCU-SGL

1 template <typename K, typename V>
2 class rcu_sgl : public Map<K,V> {
3 private:
4 pthread_spinlock_t updaters_lock;
5 Map<K,V> *serial_st;
6 public:
7 rcu_sgl(Map<K,V> *serial_st) {
8 this->serial_st = serial_st;
9 pthread_spin_init(&updaters_lock, PTHREAD_PROCESS_SHARED);

10 }
11
12 V lookup(K& key) { return serial_st->lookup(key); }
13
14 V insert(K& key, V& val) {

3.3. RCU-based Search Trees 53

15 void *stack[MAX_STACK_LEN];
16 void *connection_point, *priv_copy;
17 int stack_top;
18
19 LOCK(&updaters_lock);
20 V ret = serial_st->traverse_with_stack(key, stack, &stack_top);
21 if (ret != NO_VALUE) {
22 UNLOCK(&updaters_lock);
23 return ret;
24 }
25 connection_point = serial_st->insert_with_copy(key, val, stack, &stack_top,
26 *priv_copy);
27 serial_st->install_copy(key, connection_point, priv_copy);
28 UNLOCK(&updaters_lock);
29 return NO_VALUE;
30 }
31
32 //> remove() is exactly similar to insert(), except for the call to
33 //> insert_with_copy() which is replaced by delete_with_copy().
34 V remove(K& key) { ... }
35 };

Listing 3.5: A search tree with RCU-SGL synchronization.

1 void *insert_with_copy(const K& key, const V& value, void **stack, int *stack_top, void **privcopy) {
2 node_t *connection_point;
3 node_t **node_stack = (node_t **)stack;
4
5 //> Initiate the private copy with the new node.
6 *privcopy = new node_t(key, value);
7 connection_point = *stack_top >= 0 ? node_stack[*stack_top--] : NULL;
8
9 //> Empty tree case

10 if (*stack_top < 0) return connection_point;
11
12 while (*stack_top >= -1) {
13 //> If we've reached or passed root of the tree, return.
14 if (!connection_point) break;
15
16 //> If no height change occurs we can return.
17 if ((*privcopy)->height + 1 <= connection_point->height) break;
18
19 //> Copy the current node and link it to the local copy.
20 node_t *curr_cp = node_copy(connection_point);
21
22 curr_cp->height = (*privcopy)->height + 1;
23 if (key < curr_cp->key) curr_cp->left = *privcopy;
24 else curr_cp->right = *privcopy;
25 *privcopy = curr_cp;
26
27 // Move one level up
28 connection_point = *stack_top >= 0 ? node_stack[*stack_top--] : NULL;
29
30 // Get current node's balance
31 node_t *sibling;
32 int curr_balance;
33 if (key < curr_cp->key) {
34 sibling = curr_cp->right;
35 curr_balance = node_height(curr_cp->left) - node_height(sibling);
36 } else {
37 sibling = curr_cp->left;
38 curr_balance = node_height(sibling) - node_height(curr_cp->right);
39 }
40
41 if (curr_balance == 2) {
42 int balance2 = node_balance((*privcopy)->left);
43
44 if (balance2 == 1) {
45 *privcopy = rotate_right(*privcopy);
46 } else if (balance2 == -1) {

54 Chapter 3. Concurrent Search Trees: State-of-the-art

47 (*privcopy)->left = rotate_left((*privcopy)->left);
48 *privcopy = rotate_right(*privcopy);
49 }
50 break;
51 } else if (curr_balance == -2) {
52 int balance2 = node_balance((*privcopy)->right);
53
54 if (balance2 == -1) {
55 *privcopy = rotate_left(*privcopy);
56 } else if (balance2 == 1) {
57 (*privcopy)->right = rotate_right((*privcopy)->right);
58 *privcopy = rotate_left(*privcopy);
59 }
60 break;
61 }
62 }
63
64 return connection_point;
65 }

Listing 3.6: Implementation of insert_with_copy() for an internal AVL tree.

3.3.2 RCU with fine-grained locking

Arbel et. al [AA14] introduced Citrus, an RCU based search tree which uses fine-grained lock-
ing to synchronize updaters. This way updaters can run concurrently allowing for much better
performance. However, the problem with fine-grained locks is the difficulty to support complex
operations such as rebalancing. For this reason, Citrus is an unbalanced tree.

1 int validate(node_t *prev, node_t *curr, int direction) {
2 int result;
3 result = !(prev->marked);
4 if (direction == 0) result = result && (prev->left == curr);
5 else result = result && (prev->right == curr);
6 if (curr != NULL) result = result && (!curr->marked);
7 return result;
8 }
9

10 int do_insert(const K& key, const V& value, node_t *prev, node_t *curr,
11 int direction) {
12 node_t *new_node;
13 LOCK(&prev->lock);
14 if(!validate(prev, curr, direction)) {
15 UNLOCK(&prev->lock);
16 return 0;
17 }
18 new_node = new node_t(key, value);
19 if (direction == 0) prev->left = new_node;
20 else prev->right = new_node;
21 UNLOCK(&prev->lock);
22 return 1;
23 }
24
25 V insert(K& key, V& value) {
26 node_t *prev, *curr, *new_node;
27
28 while(1) {
29 rcu_read_lock();
30 int direction = traverse_with_direction(key, &prev, &curr);
31 rcu_read_unlock();
32
33 // Key already in the tree
34 if (curr != NULL) return curr->value;
35

3.3. RCU-based Search Trees 55

36 if (do_insert(key, value, prev, curr, direction) == 1) return NO_VALUE;
37 }
38 }
39
40 int do_remove(node_t *prev, node_t *curr, int direction) {
41 LOCK(&prev->lock);
42 LOCK(&curr->lock);
43 if(!validate(prev, curr, direction)) {
44 UNLOCK(&prev->lock);
45 UNLOCK(&curr->lock);
46 return 0;
47 }
48
49 if (!curr->left) {
50 curr->marked = true;
51 if (direction == 0) prev->left = curr->right;
52 else prev->right = curr->right;
53 UNLOCK(&prev->lock);
54 UNLOCK(&curr->lock);
55 return 1;
56 } else if (!curr->right) {
57 curr->marked = true;
58 if (direction == 0) prev->left = curr->left;
59 else prev->right = curr->left;
60 UNLOCK(&prev->lock);
61 UNLOCK(&curr->lock);
62 return 1;
63 }
64
65 node_t *prevSucc = curr;
66 node_t *succ = curr->right;
67 node_t *next = succ->left;
68 while (next != NULL){
69 prevSucc = succ;
70 succ = next;
71 next = next->left;
72 }
73
74 int succDirection = 1;
75 if (prevSucc != curr){
76 LOCK(&prevSucc->lock);
77 succDirection = 0;
78 }
79 LOCK(&succ->lock);
80 if (validate(prevSucc, succ, succDirection) && validate(succ, NULL, 0)) {
81 curr->marked=1;
82 node_t *new_node = new node_t(succ->key, succ->value);
83 new_node->left = curr->left;
84 new_node->right = curr->right;
85 LOCK(&new_node->lock);
86 if (direction == 0) prev->left = new_node;
87 else prev->right = new_node;
88 urcu_synchronize();
89 succ->marked = true;
90 if (prevSucc == curr) new_node->right = succ->right;
91 else prevSucc->left = succ->right;
92 UNLOCK(&prev->lock);
93 UNLOCK(&new_node->lock);
94 UNLOCK(&curr->lock);
95 if (prevSucc != curr) UNLOCK(&prevSucc->lock);
96 UNLOCK(&succ->lock);
97 return 1;
98 }
99 UNLOCK(&prev->lock);

100 UNLOCK(&curr->lock);
101 if (prevSucc != curr) UNLOCK(&prevSucc->lock);
102 UNLOCK(&succ->lock);
103 return 0;
104 }
105
106 V remove(K& key) {

56 Chapter 3. Concurrent Search Trees: State-of-the-art

107 node_t *prev, *curr;
108 int direction;
109
110 while(1) {
111 rcu_read_lock();
112 direction = traverse_with_direction(key, &prev, &curr);
113 rcu_read_unlock();
114
115 // Key not found
116 if (!curr) return this->NO_VALUE;
117
118 const V del_val = curr->value;
119 if (do_remove(prev, curr, direction) == 1) return del_val;
120 }
121 }

Listing 3.7: Implementation of Citrus, a concurrent unbalanced internal search tree with RCU
and fine-grained locking.

3.4 HTM-based Search Trees

3.4.1 Coarse-grained HTM with single lock fallback

The most straightforward way to apply HTM on a search tree is to enclose each operation in an
HTM transaction, essentially replacing the single global lock of the coarse-grained locking im-
plementation. As already discussed in Chapter 2, HTM provides no guarantees that a transaction
will commit, it is thus necessary for the programmer to provide an alternative non-transactional
fallback path that executes after a number of transactional aborts. In coarse-grained HTM im-
plementations this fallback path simply acquires the lock, aborting any other concurrent trans-
actions, and serializes the operation. Although trivial to implement, these coarse-grained ap-
proaches do not provide high performance since they suffer from large numbers of transactional
aborts due to the large size of their transactions, both in terms of memory locations and time
duration.

3.4.2 3-Path HTM

The classic coarse-grained HTM approach consists of 2 execution paths for each operation; the
transactional path, which executes the operation inside a transaction, and the non-transactional
fallback path which acquires a single global lock. When an operation enters the fallback path, no
other operation can run concurrently, which greatly degrades performance. Brown et. al [Bro17]
introduced 3-path HTM, where each operation consists of 3 execution paths, the fast, middle and
slow paths. The fast path is the same as in the classic 2-path approach and executes the opera-
tion in a transaction. The middle path still uses a transaction but it is modified so as to be able
to execute concurrently with the slow path. Finally, the slow path uses the lock-free LLX/SCX
primitive to synchronize concurrent operations. The 3-path HTM approach allows concurrency

3.4. HTM-based Search Trees 57

between operations that execute themiddle and slow paths, thus avoiding the excessive serializa-
tion of operations in the non-transactional fallback path of 2-path HTM.The advantage of 3-path
HTM is that it adapts the high performance of 2-path HTM under low contention scenarios and
still allows concurrent operations to execute under high contention.

3.4.3 Consistency Oblivious Programming with HTM

Consistency-Oblivious programming (COP) [AAS11, AK14] provides a way to use HTM with a
smaller footprint than the coarse-grained HTM synchronization. A search tree operation in COP
is divided into two parts: a read-only phase, and an updating read-write phase. The read-only
phase runs without any synchronization and includes the traversal of the tree. This traversal may
lead to a false location due to concurrent modifications on the path that the operation follows.
The updating phase starts an HTM transaction with two objectives; it first validates that the
traversal has led to the right location, and perform any writes needed by the operation.

Although COP indeed reduces the transaction size relatively to the coarse-grained HTM syn-
chronization, it still has two drawbacks; first, lookup operations need to use transactions and
hence pay their overhead, and second, the whole update operation (including the rebalance step)
is enclosed in a single transaction, leading to a large transactional write set, which results in a
high probability of conflicts.

58 Chapter 3. Concurrent Search Trees: State-of-the-art

CHAPTER 4

RCU-HTM

This chapter presents themain contribution of this thesis, i.e., RCU-HTM, a novel synchronization
mechanism that can be applied to search trees to create highly efficient concurrent implemen-
tations. We first give a high level overview of RCU-HTM and then provide all the necessary
information about how RCU-HTM can be used, together with two examples of RCU-HTM based
search trees. We also provide an informal correctness proof by defining the linearization points
of the RCU-HTM operations. Finally, we explain how we applied a memory reclamation scheme
on RCU-HTM, which helps avoid excessive use of memory and makes RCU-HTM practical to use
in real-life long-running parallel applications.

4.1 High Level Overview

RCU-HTM combines Read-Copy-Update (RCU) with Hardware Transactional Memory (HTM) in
a novel way and takes advantage of their key performance characteristics, i.e., asynchronized
read-only operations, and, optimistic concurrent execution of updaters, respectively. At the same
time, RCU-HTM mitigates their limitations, i.e., serialization of updaters and large transaction
sizes. RCU-HTM is, to the best of our knowledge, the first synchronization mechanism that sus-
tains high performance over a wide range of execution scenarios, as our experimental evaluation
validates, and combines it with wide applicability on all types of search trees.

RCU is used in the exact same way as in RCU implementations with coarse-grained lock-
ing [HW14]. Updaters perform their modifications on private copies of the appropriate nodes,

59

60 Chapter 4. RCU-HTM

Figure 4.1: Insertion of key 1 followed by rebalancing in an RCU-based internal AVL tree.

instead of in-place, as depicted in Figure 4.1. When the private copy is ready, updaters install it in
the shared tree in a single atomic step by modifying one child pointer of a single tree node, called
the connection point. In this way, readers can safely traverse the tree without synchronization,
as they will observe either the previous unmodified or the new modified version of the affected
nodes; both cases produce correct results as they can be successfully linearized (the correctness
proof can be found in Section 4.4).

While RCU already provides asynchronized read-only operations, the novelty of RCU-HTM
lies in leveraging HTM to optimistically synchronize updaters. The most straightforward way
of using HTM is to replace the updaters’ global lock used in the coarse-grained locking ap-
proach [HW14], with an HTM transaction. However, this solution has two drawbacks: first, it
creates large transactions which are subject to conflict and capacity aborts, and second, update
operations that do not modify the tree, still pay the overheads of using transactions. To avoid
these, RCU-HTM performs the traversal phase and the creation of the private copy of update
operations outside of its transactions. It encloses only the installation of the private copy, i.e.,
the update of a single child pointer, along with a validation step that is necessary to ensure that
the modified nodes can safely be replaced by their new version.

To illustrate why the validation step is necessary, Figure 4.2 presents an erroneous concurrent
execution of two insert operations when no validation is performed. In Figure 4.2a both threads
execute insert_and_rebalance_with_copy() and create their private copies. Thread T1 executes
install_copy() first and replaces 3 nodes. Afterwards, thread T2 installs its copy under the original
node 5, since this is the version of the node it read during its traversal phase. However, the node
with key 5 has been replaced in themeanwhile by T1’s newmodified version and themodification
of T2 is thus discarded. We avoid such erroneous executions in RCU-HTM by adding a validation
step which ensures that the nodes to be replaced have not been modified since they were read.
To achieve this, when we traverse the tree and create the modified copy, wemaintain a validation
set which contains the pointers of the access path plus the sibling pointers of the copied nodes.
We then validate that all these pointers have not been modified in the meanwhile. In the example
of Figure 4.2, thread T2 would fail in the validation step, because the left pointer of node 9 (which

4.1. High Level Overview 61

(a) Both threads execute in-
sert_and_rebalance_with_copy().

(b) T1 executes install_copy(). (c) T2 executes install_copy().

Figure 4.2: An erroneous execution of two threads inserting keys in an AVL tree. Thread T2
installs its copy on a removed node so its modification does not become visible to other threads.

is part of its access path) has changed. This would cause T2 to restart its operation instead of
installing its copy on the removed path of the tree.

RCU-HTM is able to deliver two key properties of concurrent data structures: a) applicability
to multiple types of search trees, and, b) high and sustainable performance accross different
execution scenarios (i.e., different combinations of key size, tree size, mix of operations and
number of concurrent threads). These properties are further analyzed below:
Applicability of RCU-HTM. RCU-HTM can be applied to any search tree where RCU is appli-
cable; that is, any search tree whose update operations can be performed by copying the affected
set of nodes and then installing the modified copy by swapping a single child pointer. Exam-
ples of such types of search trees are binary search trees (unbalanced/relaxed-balanced/balanced,
internal/partially-external/external), B-trees, B+-trees, (a-b)-trees and radix trees. In our current
implementations of RCU-HTM search trees, we do not use parent pointers to perform the reverse
traversals of the trees but we store the access path in a stack. This is not restrictive, since all the
search trees we encountered could easily be implemented in such a way.

Another advantage of RCU-HTM is that the procedure of applying it, is very similar across
different types of search trees, enabling a programmer who has implemented one RCU-HTM

based search tree to use a very similar procedure for any other type of search tree. This facilitates
the easy and timely implementation of multiple concurrent RCU-HTM trees. This is not true for
other highly efficient fine-grained synchronization mechanisms, such as fine-grained locking
and lock-free approaches, where each type of search tree requires a complete rethinking of how
and when should locks be acquired or which pointers can be swapped using CAS operations.
Performance of RCU-HTM. The main performance benefits of RCU-HTM come from its com-
pletely asynchronized read-only operations, both lookups and unsuccessful updates, i.e., inser-
tions that find the key already in the tree and deletions that do not locate the key to be deleted.
Lookups do not lock any node or perform any CAS operation or HTM transaction nor do they
perform any additional checks during the traversal of the tree. Their performance is thus similar
to their serial counterpart. Unsuccessful update operations are also completely asynchronized.

62 Chapter 4. RCU-HTM

The only added overhead compared to the serial version, is that we store the traversed point-
ers in the validation set. Although this is not used, since unsuccessful updates do not need to
perform the validation step, we do not know this a priori and therefore still need to store those
pointers. On the other hand, successful update operations pay the overhead of copying nodes
and validating the stored pointers. The validation overhead though is low, since these pointers
have been recently accessed and can be found in the highest levels of the cache hierarchy with
high probability. As our evaluation shows, these overheads are outweighed by the performance
benefits of RCU-HTM.

4.2 How to use RCU-HTM

An RCU-HTM based concurrent search tree is represented with the rcu_htm class which is a
subclass of our main Map class. Listing 4.1 presents a simple example of creating and using an
RCU-HTMAVL tree. Any other search tree that implements the methods presented in section 4.3
can be used in the same way. The only difference, in comparison to any otherMap object, is that
the constuctor of the RCU-HTM tree takes as argument an instance of a tree which needs to
implement the methods that we describe in the following sections. Apart from that, an instance
of the rcu_htm class can be used in exactly the same way as an instance of the base Map class.

1 #include "rcu-htm.h"
2 #include "avl.h"
3
4 void main()
5 {
6 avl<int, void*> *avl_tree;
7 rcu_htm<int, void*> *rcuhtm_tree;
8
9 avl_tree = new avl<int, void*>();

10 rcuhtm_tree = new rcu_htm<int, void*>(avl_tree);
11
12 for (int i=0; i < 1000; i++)
13 rcuhtm_tree->insert(i, (void *)i);
14
15 void *ret = rcuhtm_tree->find(100);
16 assert(ret == (void *)100); // Value found
17
18 rcuhtm_tree->remove(100);
19
20 void *ret = rcuhtm_tree->find(100);
21 assert(ret == NO_VALUE); // Value not found
22 }

Listing 4.1: An example using an AVL RCU-HTM tree.

4.3 The RCU-HTM class

The source code of rcu_htm class is shown in Listing 4.2. Two private fields are added; up-
daters_lock is the lock that is used by the updater threads when they need to enter the non-
transactional fallback execution path, and, seq_ds is the data structure that is protected by the

4.3. The RCU-HTM class 63

RCU-HTM technique. For the two methods contains() and find(), RCU-HTM just calls the re-
spective serial method, since RCU-HTM traversal operations do not use any synchronization.
Regarding the rangeQuery() method we explain how it can be implemented in Chapter 6.

1 template <typename K, typename V>
2 class rcu_htm : public Map<K,V> {
3 private:
4 pthread_spinlock_t updaters_lock;
5 Map<K,V> *seq_ds;
6
7 public:
8 rcu_htm(Map<K,V> *seq_ds) {
9 this->seq_ds = seq_ds;

10 pthread_spin_init(&updaters_lock, PTHREAD_PROCESS_SHARED);
11 }
12
13 bool contains(K& key) { return seq_ds->contains(key); }
14 pair<V,bool> find(K& key) { return seq_ds->find(key); }
15 int rangeQuery(K& key1, K& key2, vector<pair<K,V>> kv_pairs);
16 V insert(K& key, V& val);
17 pair<V,bool> remove(K& key);
18 };

Listing 4.2: The RCU-HTM class.

1 V traverse_with_stack(K& key, void **stack, int *stack_indexes, int *stack_top);
2
3 void install_copy(void *connpoint, void *privcopy, int *stack_indexes,
4 int connpoint_stack_index);
5
6 void validate_copy(void **stack, int *stack_indexes, int stack_top);
7
8 void *insert_with_copy(K& key, V& value,
9 void **stack, int *stack_indexes, int stack_top,

10 void **privcopy, int *connpoint_stack_index);
11
12 void *remove_with_copy(K& key,
13 void **stack, int *stack_indexes, int *stack_top,
14 void **privcopy, int *connpoint_stack_index);

Listing 4.3: The methods that need to be implemented by any data structure that will be used
with RCU-HTM.

The methods insert() and remove() of rcu_htm require that the underlying sequential data
structure implements a set of methods. The exact interfaces of these methods are presented in
Listing 4.3 and are the following:

• traverse_with_stack() : This method performs the traversal of the tree. It is very similar to
the classic tree traversal with the addition that we also maintain a stack of pointers to the
nodes that have been accessed during the traversal (i.e., the stack argument) as well as the
index of the child that has been chosen on each node (i.e., the stack_indexes argument).

• insert_with_copy() : This method generates a private copy of the part of the tree that will
be affected by the insertion of the given key-value pair. It does not modify the tree in any
way as any node that needs to be modified is copied. The private copy is a subtree which
is pointed to by privcopy. The method returns a pointer to the connection point, i.e., the
node of the original tree where the generated private copy will be attached.

64 Chapter 4. RCU-HTM

• remove_with_copy() : Thismethod, similarly to insert_with_copy(), generates a private copy
of the affected part of the tree with the given key removed.

• validate_copy() : This method validates that the part of the tree that will be replaced by the
operation has remained unchanged since the copy was created. If some part of the tree
has changed, the operation is aborted and starts again.

• install_copy() : This method is responsible for installing the copy of the subtree that has
been generated by the call to either insert_with_copy() or remove_with_copy(). It is as sim-
ple as changing a single node’s child pointer.

These methods are not hard to implement and can be debugged in a serial manner without
the need to take into account concurrent threads’ interleavings. The programmer needs to ensure
that the node copies are created when necessary and that the validation set contains all the nodes
that will be replaced by the operation. In our future work we aim to facilitate this even further
by creating a library or a compiler plugin to make this procedure automatic.

With these five methods available, the insert() and remove() operations of the respective
RCU-HTM concurrent search tree are implemented as presented in Listing 4.4. We only show
insert(), since remove() is implemented in exactly the same way by just replacing the calls to in-

sert_with_copy()with remove_with_copy(). The RCU-HTM update operation performs the traver-
sal and the creation of the private copy without any synchronization (lines 14–23). Then val-

idate_and_install_copy() validates, in a single atomic step using an HTM transaction, that the
nodes to be replaced have not been modified by another concurrent updater and installs the pri-
vate copy in the shared tree. If RCU-HTM continuously fails to complete the operation (i.e., the
operation has been restarted forMAX_OPERATION_RETRIES times due to transactional aborts),
we fallback to the plain RCU-based algorithm, to ensure forward progress, where updaters are
serialized using a single global lock (lines 33–48).

1 template <typename K, typename V>
2 V rcu_htm<K,V>::insert(K& key, V& val)
3 {
4 void *node_stack[MAX_STACK_LEN];
5 int stack_indexes[MAX_STACK_LEN], stack_top, index;
6 void *connection_point, *tree_cp_root;
7 int retries = -1;
8 int connection_point_stack_index;
9

10 //> First try with the RCU-HTM way ...
11 while (++retries < MAX_OPERATION_RETRIES) {
12 ht_reset(tdata->ht);
13
14 //> Asynchronized traversal. If key is there we can safely return.
15 V ret = seq_ds->traverse_with_stack(key, node_stack,
16 _stack_indexes, &stack_top);
17 assert(stack_top < MAX_STACK_LEN);
18 if (ret != this->NO_VALUE) return ret;
19
20 connection_point = seq_ds->insert_with_copy(key, val,
21 node_stack, stack_indexes, stack_top,

4.3. The RCU-HTM class 65

22 &tree_cp_root,
23 &connection_point_stack_index);
24 bool installed = validate_and_install_copy(connection_point, tree_cp_root,
25 node_stack, stack_indexes,
26 stack_top,
27 connection_point_stack_index);
28 if (installed) return this->NO_VALUE;
29 }
30
31 //> ...otherwise fallback to the coarse-grained RCU
32 ht_reset(tdata->ht);
33 pthread_spin_lock(&updaters_lock);
34 V ret = seq_ds->traverse_with_stack(key, node_stack,
35 stack_indexes, &stack_top);
36 assert(stack_top < MAX_STACK_LEN);
37 if (ret != this->NO_VALUE) {
38 pthread_spin_unlock(&updaters_lock);
39 return ret;
40 }
41 connection_point = seq_ds->insert_with_copy(key, val,
42 node_stack, stack_indexes, stack_top,
43 &tree_cp_root,
44 &connection_point_stack_index);
45 seq_ds->install_copy(connection_point, tree_cp_root,
46 stack_indexes,
47 connection_point_stack_index);
48 pthread_spin_unlock(&updaters_lock);
49 return this->NO_VALUE;
50 }
51
52 template <typename K, typename V>
53 bool rcu_htm<K,V>::validate_and_install_copy(void *connpoint, void *tree_cp_root,
54 void **node_stack, int *stack_indexes,
55 int stack_top, int connection_point_stack_index)
56 {
57 unsigned int status;
58 int validation_retries = -1;
59
60 while (++validation_retries < MAX_VALIDATION_RETRIES) {
61 while (updaters_lock != LOCK_FREE) ;
62
63 status = TX_BEGIN(0);
64 if (status == TM_BEGIN_SUCCESS) {
65 if (updaters_lock != LOCK_FREE)
66 TX_ABORT(ABORT_GL_TAKEN);
67
68 seq_ds->validate_copy(node_stack, stack_indexes, stack_top);
69 seq_ds->install_copy(connpoint, tree_cp_root,
70 stack_indexes,
71 connection_point_stack_index);
72 TX_END(0);
73 return true;
74 } else if (ABORT_IS_EXPLICIT(status) &&
75 ABORT_CODE(status) == ABORT_VALIDATION_FAILURE) {
76 return false;
77 }
78 }
79 return false;
80 }

Listing 4.4: Template code for all RCU-HTM implementations.

66 Chapter 4. RCU-HTM

4.4 Correctness

In this section we discuss the correctness of the RCU-HTM synchronization mechanism. We
use the well-known correctness condition of linearizability [HW90] and define the linearization
point for each operation, i.e., the point at which the operation’s modifications become visible to
other threads. The linearization points of the RCU-HTM technique are similar for any type of
search tree that is applied to, constituting one more advantage relative to other synchronization
mechanisms that may require a different lengthy correctness proof for different search trees.
The only thing a programmer who implements an RCU-HTM search tree needs to do, is to make
sure that all the necessary pointers have been added in the validation set. We focus on the AVL
example given in Section 4.5 but the same correctness reasoning stands for any RCU-HTM search
tree.

Lookup operation. The reasoning about the linearizability of lookup in RCU-HTM is identi-
cal to other RCU-based implementations [AA14, HW14]. In all RCU-based algorithms, including
RCU-HTM, updaters commit their copies by modifying a single memory location, i.e., the ap-
propriate child pointer of the connection point. Since single-word reads and writes are atomic,
readers observe either the old or the new version of the data structure. Moreover, because RCU-
HTM avoids performing any rotations directly on the tree, traversals never follow a wrong path.

RCU-HTM lookups are identical to those of the serial version of the tree. A lookup operation
that observes an empty tree is linearized at the point where the root of the tree is read as NULL.
When the tree is not empty, the linearization point is at at the point whenwe read the appropriate
child of the parent of the leaf node that contains the key. There is a time window between the
read of this child pointer and the point at which the lookup operation returns, during which the
leaf node may have been removed from the tree by some concurrent insertion or deletion. Even
then, however, the lookup is safely linearized before this update operation.

Update operations. We can easily prove the correctness of the update operations if we
consider the main three characteristics of RCU-HTM design. First, HTM guarantees that all op-
erations enclosed inside a transaction are executed atomically, i.e., the validation and installation
of the modified copy in the shared tree (lines 63–71 of validate_and_install_copy() in Listing 4.4)
can be seen as one indistinguishable operation, which greatly facilitates our proof. Second, when
an updater resorts to the fallback path with the updaters’ lock (due to multiple consecutive failed
transactional attempts), no other updater executes concurrently. This is guaranteed by lines 61
and 65 of validate_and_install_copy(). At line 61, an updater waits until the updaters’ lock is
released before starting a transaction, and at line 65, the updaters’ lock is checked and, if it is
locked, the transaction immediately aborts. By reading the value of the updaters’ lock at line
65, we add it in the transaction’s read-set in order to trigger a conflict abort, in case another
updater acquires the updaters’ lock during the transaction’s lifetime. Such a conflict abort will

4.5. RCU-HTM Search Tree Examples 67

cause any updater that executes a transaction to retry from line 60 and will consequently spin at
line 61 until the updaters’ lock is released. Third, operations executed by one thread can never
be observed by other threads ”half-done”, i.e., a thread will never read a node which is being
concurrently rotated. This is true because updaters install their copies by changing a single child
pointer and the modification of a single memory word is atomic. Thus, a thread will see either
the whole result of another operation (i.e., the whole modified subtree copy) or nothing (i.e., it
will read the old version of the subtree). This allows RCU-HTM to avoid problematic situations
in the asynchronized reverse traversal performed by updaters. During this reverse traversal, an
updater may observe a different tree than the version it observed during the root to leaf traversal.
Despite this inconsistent view of the tree, the updater will safely proceed (e.g., without causing a
segmentation fault due to reading a stale sibling pointer) to the validation step, which will then
fail and cause the updater to restart its operation.

Unsuccessful update operations (i.e., inserts that find the key in the tree and deletes that do
not find it) do not modify the tree structure and are linearized similarly to a lookup operation,
i.e., at the point when the node containing the searched key is read. Successful update operations
(i.e., inserts that do not find the key in the tree and deletes that do find it) modify the tree and are
linearized in one of two points depending on whether they managed to complete their operation
using transactions or resorted to the fallback path. As already mentioned, an updater that resorts
to the fallback path by acquiring the updaters’ lock does not allow concurrent updaters and its
operation is linearized at the time when the lock is acquired, i.e., inside the insert() in Listing 4.4
at line 33. An updater that executes the common transactional path runs concurrently with other
updaters; however, since HTM guarantees that all the accesses inside a transaction are atomic,
these update operations are linearized at line 72 of Listing 4.4, when a hardware transaction
commits installing the private copy of the operation in the tree.

4.5 RCU-HTM Search Tree Examples

In this section we present two example implementations of RCU-HTM based trees. The first is
an internal AVL binary search tree and the second one is a B+-tree. The full C++ code of the two
search trees along with all the other RCU-HTM trees can be found in our library’s github repo ¹.

4.5.1 Example 1: Internal AVL binary search tree

The code for the internal AVL binary search tree is presented in Listing 4.5.
Traverse_with_stack() follows the classic tree traversal procedure with the only addition that

we store the traversed nodes in the stack array as well as the direction that was taken on each

¹https://www.github.com/jimsiak/concurrent-maps-cpp

https://www.github.com/jimsiak/concurrent-maps-cpp

68 Chapter 4. RCU-HTM

node (i.e., left or right child pointer) in the stack_indexes array. stack_top indicates the length of
the traversal path.

Install_copy() is also very simple. It just checks whether connection_point is NULL. If this is
the case, the root of the tree needs to be updated to point to the private copy. Otherwise, the
private copy is attached as the appropriate child of the node that is the connection_point.

Validate_copy() performs the validation of the nodes to be replaced. The validation in our
implementation is split in two phases. In the first one in lines 44–50 we validate that the access
path of the operation has not been modified. This ensures that no other concurrent operation
has in the meanwhile removed any of the nodes in this path. The second validation in lines
52–59 ensures that all the nodes that have been added in the validation set have also remained
unmodified. We implement the validation set as a simple statically sized hash table, withHT_LEN
buckets each of a predefined size. For all our search trees we found that a hash table with 16 64-
length buckets suffices. Each thread has its own hash table which is stored as the ht field of a per
thread global structure called tdata.

Insert_with_copy() proceeds in the following way. It initiates the private copy with a new
node that contains the key-value pair (lines 70–73). It then traverses the tree in the opposite
direction (i.e., from the reached node up to the root) to perform the appropriate rebalancing
actions. At each step of this reverse traversal, it copies the current node and attaches this copy
to the private copy (lines 90–98). Then it performs any necessary rotation on the private copy
(lines 115–139). The reverse traversal ends in three cases: a) when it reached the root of the tree
(lines 83–84), b) when it encounters a node whose height has not been updated (lines 86–88),
and, c) when a rotation has been performed which means that no further rebalancing is required
(lines 126 and 138). When the operation is finished privcopy points to the new modified version
of the affected part of the tree.

1 V traverse_with_stack(K& key, void **stack, int *stack_indexes, int *stack_top)
2 {
3 node_t *parent, *leaf;
4 node_t **node_stack = (node_t **)stack;
5
6 parent = NULL;
7 leaf = root;
8 *stack_top = -1;
9

10 while (leaf) {
11 node_stack[++(*stack_top)] = leaf;
12 stack_indexes[*stack_top] = (key <= leaf->key) ? 0 : 1;
13
14 if (leaf->key == key) break;
15 parent = leaf;
16 leaf = (key < leaf->key) ? leaf->left : leaf->right;
17 }
18
19 if (*stack_top >= 0 && node_stack[*stack_top]->key == key)
20 return node_stack[*stack_top]->value;
21 else
22 return NO_VALUE;
23 }
24

4.5. RCU-HTM Search Tree Examples 69

25 void install_copy(void *connpoint, void *privcopy, int *stack_indexes, int connpoint_stack_index)
26 {
27 node_t *connection_point = (node_t *)connpoint;
28 node_t *tree_copy_root = (node_t *)privcopy;
29 if (connection_point == NULL) {
30 root = tree_copy_root;
31 } else {
32 int index = stack_indexes[connpoint_stack_index];
33 if (index == 0) connection_point->left = tree_copy_root;
34 else connection_point->right = tree_copy_root;
35 }
36
37 }
38
39 void validate_copy(void **stack, int *stack_indexes, int stack_top)
40 {
41 node_t **node_stack = (node_t **)stack;
42 node_t *n1, *n2;
43
44 for (int i=0; i < stack_top; i++) {
45 n1 = node_stack[i];
46 int index = stack_indexes[i];
47 n2 = (node_t *)((index == 0) ? n1->left : n1->right);
48 if (n2 != node_stack[i+1])
49 TX_ABORT(ABORT_VALIDATION_FAILURE);
50 }
51
52 for (int i=0; i < HT_LEN; i++) {
53 for (int j=0; j < tdata->ht->bucket_next_index[i]; j+=2) {
54 node_t **np = (node_t **)tdata->ht->entries[i][j];
55 node_t *n = (node_t *)tdata->ht->entries[i][j+1];
56 if (*np != n)
57 TX_ABORT(ABORT_VALIDATION_FAILURE);
58 }
59 }
60
61 }
62
63 void *insert_with_copy(K& key, V& value, void **stack,
64 int *stack_indexes, int stack_top, void **privcopy,
65 int *connpoint_stack_index)
66 {
67 node_t *tree_copy_root, *connection_point;
68 node_t **node_stack = (node_t **)stack;
69
70 //> Start the tree copying with the new node.
71 tree_copy_root = new node_t(key, value);
72 *connpoint_stack_index = stack_top;
73 connection_point = stack_top >= 0 ? node_stack[stack_top--] : NULL;
74
75 //> Empty tree case
76 if (stack_top < 0) {
77 *privcopy = (void *)tree_copy_root;
78 return (void *)connection_point;
79 }
80
81 while (stack_top >= -1) {
82 //> If we've reached and passed root return.
83 if (!connection_point)
84 break;
85
86 //> If no height change occurs we can break.
87 if (tree_copy_root->height + 1 <= connection_point->height)
88 break;
89
90 //> Copy the current node and link it to the local copy.
91 node_t *curr_cp = node_new_copy(connection_point);
92 ht_insert(tdata->ht, &connection_point->left, curr_cp->left);
93 ht_insert(tdata->ht, &connection_point->right, curr_cp->right);
94
95 curr_cp->height = tree_copy_root->height + 1;

70 Chapter 4. RCU-HTM

96 if (key < curr_cp->key) curr_cp->left = tree_copy_root;
97 else curr_cp->right = tree_copy_root;
98 tree_copy_root = curr_cp;
99

100 // Move one level up
101 *connpoint_stack_index = stack_top;
102 connection_point = stack_top >= 0 ? node_stack[stack_top--] : NULL;
103
104 // Get current node's balance
105 node_t *sibling;
106 int curr_balance;
107 if (key < curr_cp->key) {
108 sibling = curr_cp->right;
109 curr_balance = node_height(curr_cp->left) - node_height(sibling);
110 } else {
111 sibling = curr_cp->left;
112 curr_balance = node_height(sibling) - node_height(curr_cp->right);
113 }
114
115 if (curr_balance == 2) {
116 int balance2 = node_balance(tree_copy_root->left);
117
118 if (balance2 == 1) { // LEFT-LEFT case
119 tree_copy_root = rotate_right(tree_copy_root);
120 } else if (balance2 == -1) { // LEFT-RIGHT case
121 tree_copy_root->left = rotate_left(tree_copy_root->left);
122 tree_copy_root = rotate_right(tree_copy_root);
123 } else {
124 assert(0);
125 }
126 break;
127 } else if (curr_balance == -2) {
128 int balance2 = node_balance(tree_copy_root->right);
129
130 if (balance2 == -1) { // RIGHT-RIGHT case
131 tree_copy_root = rotate_left(tree_copy_root);
132 } else if (balance2 == 1) { // RIGHT-LEFT case
133 tree_copy_root->right = rotate_right(tree_copy_root->right);
134 tree_copy_root = rotate_left(tree_copy_root);
135 } else {
136 assert(0);
137 }
138 break;
139 }
140 }
141
142 *privcopy = (void *)tree_copy_root;
143 return (void *)connection_point;
144 }

Listing 4.5: The methods necessary to apply RCU-HTM for an internal AVL binary search tree.
The remove_with_copy() method is implemented in a similar fashion to insert_with_copy() and
we omit it here for brevity.

4.5.2 Example 2: B+-tree

Thecode for the B+-tree is presented in Listing 4.6. Install_copy() and validate_copy() are identical
to the respective methods in the internal AVL trees. In fact, these two methods could be part of
the generic code of RCU-HTM, instead of being search tree specific. However, the RCU-HTM base
class would then need to be aware of the internal structure of the node of the search tree it is

4.5. RCU-HTM Search Tree Examples 71

applied to. Therefore, to keep the RCU-HTM base class as generic as possible, we leave these two
methods in the implementation of each different search tree.

Similarly to the internal AVL tree, traverse_with_stack() here follows the classic B+-tree
traversal procedure; the only addition is that we store the traversed nodes in the stack array
together with the direction that was taken on each node (i.e., the index of the child that was
chosen on each node) in the stack_indexes array. stack_top indicates the length of the traversal
path.

In the B+-tree, insert_with_copy() is simpler than the one in the AVL case, because here re-
balancing is done only when a node is full. This method performs a reverse traversal of the tree
until it either reaches the root (lines 76–83) or encounters a node where splitting is not necessary
(lines 97–102). While reverse traversing the tree, the appropriate nodes are copied and attached
to the private copy (lines 88–92).

1 V traverse_with_stack(K& key, void **stack, int *stack_indexes, int *stack_top)
2 {
3 node_t **node_stack = (node_t **)stack;
4 int index;
5 node_t *n;
6
7 *stack_top = -1;
8 n = root;
9 if (!n) return NO_VALUE;

10
11 while (!n->leaf) {
12 index = n->search(key);
13 node_stack[++(*stack_top)] = n;
14 stack_indexes[*stack_top] = index;
15 n = (node_t *)n->children[index];
16 }
17 index = n->search(key);
18 node_stack[++(*stack_top)] = n; stack_indexes[*stack_top] = index;
19
20 if (*stack_top >= 0 && index < n->no_keys && n->keys[index] == key)
21 return (V)n->children[index+1];
22 else
23 return NO_VALUE;
24 }
25
26 void install_copy(void *connpoint, void *privcopy, int *stack_indexes, int connpoint_stack_index)
27 {
28 node_t *connection_point = (node_t *)connpoint;
29 node_t *tree_copy_root = (node_t *)privcopy;
30 if (connection_point == NULL) {
31 root = tree_copy_root;
32 } else {
33 int index = stack_indexes[connpoint_stack_index];
34 connpoint->children[index] = tree_copy_root;
35 }
36 }
37
38 void validate_copy(void **stack, int *stack_indexes, int stack_top)
39 {
40 node_t **node_stack = (node_t **)stack;
41 node_t *n1, *n2;
42
43 for (int i=0; i < stack_top; i++) {
44 n1 = node_stack[i];
45 int index = stack_indexes[i];
46 n2 = (node_t *)n1->children[index];
47 if (n2 != node_stack[i+1])
48 TX_ABORT(ABORT_VALIDATION_FAILURE);

72 Chapter 4. RCU-HTM

49 }
50
51 for (int i=0; i < HT_LEN; i++) {
52 for (int j=0; j < tdata->ht->bucket_next_index[i]; j+=2) {
53 node_t **np = (node_t **)tdata->ht->entries[i][j];
54 node_t *n = (node_t *)tdata->ht->entries[i][j+1];
55 if (*np != n)
56 TX_ABORT(ABORT_VALIDATION_FAILURE);
57 }
58 }
59 }
60
61 void *insert_with_copy(K& key, V& val, void **stack,
62 int *stack_indexes, int stack_top, void **privcopy,
63 int *connpoint_stack_index)
64 {
65 node_t **tree_copy_root = (node_t **)privcopy;
66 node_t **node_stack = (node_t **)stack;
67
68 node_t *cur = NULL, *cur_cp = NULL, *cur_cp_prev;
69 node_t *connection_point;
70 int index, i;
71 K key_to_add = key;
72 void *ptr_to_add = val;
73
74 while (1) {
75 //> We surpassed the root. New root needs to be created.
76 if (stack_top < 0) {
77 node_t *new_node = new node_t();
78 new_node->insert_index(0, key_to_add, ptr_to_add);
79 new_node->children[0] = cur_cp;
80 *tree_copy_root = new_node;
81 break;
82 }
83
84 cur = node_stack[stack_top];
85 index = stack_indexes[stack_top];
86
87 //> Copy current node
88 cur_cp_prev = cur_cp;
89 cur_cp = cur->copy();
90 for (i=0; i <= cur_cp->no_keys; i++)
91 ht_insert(tdata->ht, &cur->children[i], cur_cp->children[i]);
92
93 //> Connect copied node with the rest of the copied tree.
94 if (cur_cp_prev) cur_cp->children[index] = cur_cp_prev;
95
96 //> No split required.
97 if (cur_cp->no_keys < 2 * BTREE_NODE_DEGREE) {
98 cur_cp->insert_index(index, key_to_add, ptr_to_add);
99 *tree_copy_root = cur_cp;

100 break;
101 }
102
103 ptr_to_add = cur_cp->split(key_to_add, ptr_to_add, index, &key_to_add);
104
105 stack_top--;
106 }
107
108 *connpoint_stack_index = stack_top - 1;
109 connection_point = stack_top <= 0 ? NULL : node_stack[stack_top-1];
110 return (void *)connection_point;
111 }

Listing 4.6: The methods necessary to apply RCU-HTM for a B+-tree. The remove_with_copy()

method is implemented in a similar fashion to insert_with_copy() and we omit it here for brevity.

4.6. Memory Reclamation 73

4.6 Memory Reclamation

Several approaches have been proposed to reclaim the memory used by concurrent data struc-
tures that allow optimistic readers, i.e., where concurrent threads read parts of the data structure
which may have been deleted by other threads in the meanwhile [MS98, Mic02, Fra04, HLMM05,
HMBW07, Bro15, BGHZ16,WIC+18]. This is a challenging task which is typically considered or-
thogonal to the research around concurrent data structures and is usually omitted from related
work. However, since RCU-HTM stresses memory with its node copies, we augment our ap-
proach with memory reclamation to validate that any benefit from RCU-HTM is not cancelled by
excessive memory use. In this section we explain how an epoch-based reclamation scheme can
be integrated with RCU-HTM without compromising its high performance, as our experimental
results validate.

More specifically, we integrate DEBRA [Bro15], a state-of-the-art epoch-based reclamation
technique with low overhead. Alternative techniques like EBR [Fra04], QSBR [MS98], QSense
[BGHZ16] and IBR [WIC+18] can also be integrated to RCU-HTM. In future work we intend
to integrate and evaluate these techniques as well. To make this work more self-contained, we
describe the necessary concepts of DEBRA herein. DEBRA defines four operations: leaveQstate(),
enterQstate(), retire() and isQuiescent(). leaveQstate() is invoked before the execution of each tree
operation and enterQstate() at the end of the operation. These two function invocations define
the end and start of a thread’s quiescent period respectively. A thread t is quiescent when it does
not execute some tree operation, thus not accessing any tree nodes. In DEBRA each thread has
a quiescent bit which indicates whether the thread is in a quiescent state or not.

An epoch is defined as a time window during which each and every thread has been in a
quiescent state at least once. To keep track of epochs, DEBRA has a global variable which stores
the current epoch number e. Whenever a thread leaves a quiescent state, it reads e and stores it
in a local variable. Next, it attempts to determine whether the global epoch e can be advanced,
which is the case if each thread is in a quiescent state or its locally stored epoch is less than
or equal to e. Thread t incrementally checks all the other threads, amortizing the cost over n
leaveQstate() invocations. A local variable checked keeps track of the number of threads that t
has already checked and once all threads are checked, thread t performs a CAS to increment the
current epoch.

To remove a node from the tree, a thread t invokes the retire() function. Each thread has three
private bags of nodes that have been recently removed from the tree. At any point, one of these
bags is the currentBag and whenever t removes a node from the tree, it adds it to the currentBag.
When t observes an epoch change (i.e., its locally stored epoch is less than the global one) it
changes its currentBag to the oldest of the three bags. The previous contents of this bag can

74 Chapter 4. RCU-HTM

be freed to the operating system since it is guaranteed that no other thread holds references on
them. More details about the correctness of DEBRA can be found in the original paper [Bro15].

The bags of tree nodes that each thread occupies are implemented as singly-linked lists of
blocks. Each block contains up to B pointers to tree nodes and a next pointer that points to its
successive block in the list. In our experiments we have set B to 256 as also indicated by the
authors in the paper [Bro15]. Moreover, each thread has a private allocation bag which is used
for allocating tree nodes. When the contents of a reclamation bag are safe to be freed (i.e., when
the epoch has advanced) we move all its blocks to the allocation bag to allow the nodes that
they include to be re-used. If the allocation bag exceeds a threshold we free its contents. In our
experiments we have set this threshold to 6MB per thread. When allocating a tree node, if the
allocation bag is empty we allocate more memory from the operating system.

CHAPTER 5

Experimental Evaluation

5.1 Experimental Setup

We conduct all our experiments on an Intel Broadwell-EP server with an Intel Xeon E5-2699 v4
processor with 22 physical cores and 44 hardware threads. We set the processor to run at a fixed
frequency of 2.2GHz with TurboBoost mode disabled. Each core has private 32KB L1 and 256KB
L2 caches, while a 56MB L3 cache is shared by all cores. The server has 256GB of RAM running
at 2134MHz. The OS is Debian 8.3 with kernel version 4.7.0. In order to manage hardware
transactions, we use the processor’s transactional synchronization extensions (TSX) ¹. We only
use the restricted transactional memory (RTM) mode of TSX, which provides more flexibility
and allows us to retry a transaction a number of times before resorting to the non-transactional
fallback path.

5.2 Search Tree Implementations

Our library of search trees includes several implementations which can be found in the author’s
github page ². We use 9 serial search trees as our baseline, which are shown in Table 5.1, and we
implement concurrent versions of them using the aforementioned synchronization mechanisms,

¹https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
²https://www.github.com/jimsiak/concurrent-maps-cpp

75

https://en.wikipedia.org/wiki/Transactional_Synchronization_Extensions
https://www.github.com/jimsiak/concurrent-maps-cpp

76 Chapter 5. Experimental Evaluation

Serial Search Trees
Name Node Type Balancing Type
1 btree B-tree Yes External
2 abtree B-tree Relaxed External
3 bst-unb-int Binary Unbalanced Internal
4 bst-unb-pext Binary Unbalanced Partially External
5 bst-unb-ext Binary Unbalanced External
6 bst-avl-int Binary AVL Internal
7 bst-avl-pext Binary AVL Partially External
8 bst-avl-ext Binary AVL External
9 treap Binary internal / Fat leaves Unbalanced External

Table 5.1: Baseline serial search trees used in our experimental evaluation.

including RCU-HTM. The full list of concurrent search trees used in our experiments are pre-
sented in Table 5.2. Coarse-grained locking and HTM mechanisms are applied on all the serial
implementations. The same is true for RCU with coarse-grained locking and for our RCU-HTM
mechanism, yet we do not include the RCU-HTM treap in our evaluation since it does not provide
any additional useful insights.

5.3 Benchmarks

We use three benchmarks; one artificial microbenchmark and two macrobenchmarks which re-
semble the way that concurrent search trees are used as indexes on database systems. For all
benchmarks the following are true:

• We pin each software thread on a dedicated hardware thread in such a way as to first
utilize all the physical cores of the machine, i.e., up to 22 threads, and only for more than
22 threads we utilize the processor’s hyperthreads.

• We validate that the tree structure is in a consistent state, after the end of any benchmark
execution, by checking first that the keys are ordered properly and then performing any
other appropriate structural checks depending on the type of the tree (e.g., in an AVL tree
we check whether the AVL variants still hold for every node). Moreover, we validate that
the number of elements in the tree is correct given the total number of insertions and
deletions that were performed.

• We use the scalable memory allocator call jemalloc ³ since the standard libc memory allo-
cator does not perform well under multi-threaded workloads.

³http://jemalloc.net/

http://jemalloc.net/

5.3. Benchmarks 77

Name #serial Node Type Balancing Type
Coarse-grained Locking

One version for each serial search tree.
Contention-Adapting Locking

bst-unb-int-ca-locks 3 Binary Unbalanced Internal
bst-unb-pext-ca-locks 4 Binary Unbalanced Partially External
bst-unb-ext-ca-locks 5 Binary Unbalanced External
treap-ca-locks [SW15] 9 Binary internal / Fat leaves Unbalanced External

Fine-grained Locking
bst-unb-hohlocks 5 Binary Unbalanced External
avl-int-drachsler [DVY14] 6 Binary Relaxed AVL Internal
avl-pext-bronson [BCCO10] 7 Binary Relaxed AVL Partially External
avl-pext-cf [CGR13] 7 Binary Relaxed AVL Partially External

Lock-Free
abtree-llxscx [Bro17] 2 B-tree Relaxed External
ist-brown [BPA20] 2 B-tree Relaxed External
bst-ext-natarajan [NM14] 5 Binary Unbalanced External
bst-ext-ellen [EFRvB10] 5 Binary Unbalanced External
bst-ext-llxscx [Bro17] 5 Binary Unbalanced External

RCU with coarse-grained locks
One version for each serial search tree, except from 9.

RCU with fine-grained locks
rcu-fgl [AA14] 3 Binary Unbalanced Internal

Coarse-grained HTM
One version for each serial search tree.

3-Path HTM
abtree-3path [Bro17] 2 B-tree Relaxed External
bst-ext-3path [Bro17] 5 Binary Unbalanced External

COP-HTM
avl-int-cop [AK14] 6 Binary AVL Internal
avl-ext-cop [AK14] 8 Binary AVL External

RCU-HTM
One version for each serial search tree, except from 9.

Table 5.2: Concurrent serial search trees used in our experimental evaluation. We also exper-
imented with coarse-grained locking trees with reader-writer locks, but the results were very
similar to when using a spinlock. In total, our evaluation includes 52 concurrent search trees.

• We performnomemory reclamation during our experiments, similarly to priorwork [AA14,
NM14, Bro17] on concurrent data structures. In Section 5.6 we evalute the performance of
our RCU-HTM trees when an epoch-based memory reclamation scheme is applied.

• We run every experiment in our evaluation 10 independent times and report the geometric
mean. We did not observe a significant variance for any of our experiments.

78 Chapter 5. Experimental Evaluation

Microbenchmark parameters
Parameter Values
Size of keys 8, 64 and 256 bytes
Number of keys in the tree 100, 1K, 10K, 1M, 10M keys
Mix of operations 100-0-0, 90-5-5, 80-10-10, 50-25-25, 20-40-40, 0-50-50
Number of threads 1, 2, 4, 8, 16, 22, 44
Total execution scenarios 3 ∗ 5 ∗ 6 ∗ 7 = 630

Table 5.3: The parameters of our artificial microbenchmark. In the operations mix parameter,
l-i-r indicates percentage of lookup(), insert() and remove() operations respectively.

5.3.1 Microbenchmark

We have implemented an artificial microbenchmark to evaluate the performance and scalabil-
ity of the concurrent search trees using various configurations of key size, number of keys in
the tree, mix of operations and number of threads, for a total of 630 different execution scenar-
ios for each search tree. The various configurations of these parameters are given in Table 5.3.
Although this is not a real-life benchmark, it allows the analysis and evaluation of the different
search trees under various execution scenarios and is a benchmark that is very commonly used in
related work on concurrent data structures [BCCO10, Bro17, AM15]. The benchmark execution
comprises the following:

• A warmup phase, during which a single thread inserts random keys into the tree until it
is filled with half of the keys of the key range. Since, in all our operation mixes, insert and
remove operations are performed with the same probability, the size of the tree does not
significantly fluctuate during our executions.

• An execution phase, during which we spawn the worker threads, which repeatedly per-
form lookup, insert or remove operations with randomly selected keys. The execution
phase lasts for a predefined time duration, which we currently set to 5 seconds. We have
validated that longer time durations produce similar results.

5.3.2 TPC-C

TPC-C is a realistic on-line transaction processing (OLTP) benchmark ⁴. It simulates the oper-
ation of an order-entry system where a population of terminal operators executes transactions
against a database. These transactions include entering and delivering orders, recording pay-
ments, checking the status of orders, and monitoring the level of stock at the warehouses. We
use the TPC-C implementation of the DBx1000 database management system [YBP+14] ⁵ and
have modified their code to use our concurrent search trees as index to the tables.

⁴http://www.tpc.org/tpcc/
⁵https://github.com/yxymit/DBx1000

http://www.tpc.org/tpcc/
https://github.com/yxymit/DBx1000

5.3. Benchmarks 79

TPC-C tables and indexes
Table Name Index Name #elements Access pattern
Warehouse WAREHOUSE_IDX W Read-only
District DISTRICT_IDX W ∗ 10 Read-only

Customer
CUSTOMER_ID_IDX W ∗ 30K Read-only
CUSTOMER_LAST_IDX W ∗ 30K Read-only

Item ITEM_IDX 100K Read-only
Stock STOCK_IDX W ∗ 100K Read-only

Order-line
ORDERLINE_IDX ≥ W ∗ 300K Insert-only
ORDERLINE_WD_IDX ≥ W ∗ 300K Insert-only

Order ORDER_IDX ≥ W ∗ 30K Insert-only
New-order NEWORDER_IDX - Unused
History - - Unused

TPC-C transactions
Transaction Index accesses Transaction Index accesses

Payment

read from WAREHOUSE_IDX

NewOrder

read from WAREHOUSE_IDX
read from DISTRICT_IDX read from CUSTOMER_ID_IDX
read from CUSTOMER_ID_IDX read from DISTRICT_IDX

or for 10-15 times:
read from CUSTOMER_LAST_IDX read from ITEM_IDX

read from STOCK_IDX
insert into ORDER_IDX
insert into ORDERLINE_IDX
insert into ORDERLINE_WD_IDX

Table 5.4: The tables with their respective indexes and the transactions executed in the TPC-C
benchmark. In our experiments we set W to 10.

The database consists of 9 tables for which 10 indexes are created. The complete list of tables,
indexes and the transactions that are executed in our implementation are presented in Table 5.4.
This is a very insightfull benchmark for our experimental evaluation for two reasons; first, it
is a classic database benchmark and closely resembles a real-life application, and, second, the
different access patterns and sizes of the indexes represent different kind of workloads for the
underlying data structure.

5.3.3 YCSB

The Yahoo! Cloud Serving Benchmark (YCSB) ⁶ is a benchmark that represents a single table
database with a single index on top of it. The information about the table, the index and the
executed transactions is given in Table 5.5. YCSB includes a single transaction which executes
only lookups in the index, so it does not provide much additional insights in our evaluation,
however we included it since it is a very commonly used benchmark. Similarly to TPC-C, we
use the YCSB implementations of the DBx1000 database management system [YBP+14].

⁶https://en.wikipedia.org/wiki/YCSB

https://en.wikipedia.org/wiki/YCSB

80 Chapter 5. Experimental Evaluation

YCSB tables and indexes
Table Name Index Name #elements Access pattern
MAIN_TABLE MAIN_INDEX 24M Read-only

YCSB transactions
Transaction Index accesses

Read-only Transaction
for 16 times:

read from MAIN_INDEX

Table 5.5: The tables with their respective indexes and the transactions executed in the YCSB
benchmark.

5.4 Experimental Results: Microbenchmark

The microbenchmark allows us to evaluate the concurrent search trees under several different
execution scenarios using various combinations of the four parameters, namely, the size of the
keys, the number of keys in the tree, the mix of operations and the number of concurrent threads.

We analyze our results in two directions. The first one evaluates RCU-HTM when the un-
derlying baseline serial search tree is predefined. The aim of this kind of evaluation is to assess
whether RCU-HTM can provide a concurrent version of any type of search tree without incurring
high overheads when compared to the other synchronization mechanisms that can be applied to
the specific serial search tree. The second direction evaluates whether RCU-HTM provides high
performance on each and every one of the execution scenarios under consideration. Given that
RCU-HTM can be relatively easily applied to all search trees, our aim is to validate that, for every
execution scenario, there is at least one RCU-HTM based search tree that performs better, or at
least very close to, the other alternatives.

5.4.1 Evaluation of RCU-HTM with a predefined baseline serial search tree

We aim to show that RCU-HTM is a competitive synchronization mechanism regardless of the
baseline serial search tree on which it is applied. This, in tandem with the simplicity of applying
RCU-HTM on different search trees, makes RCU-HTM, to the best of our knowledge, the first
synchronization mechanism that is widely applicable and at the same time highly efficient.

To compare RCU-HTM with the other synchronization mechanisms, we find the maximum
achieved throughput, for each execution point and for each baseline serial data structure, and
normalize all other throughputs to this maximum. This gives us a percentage of how close to the
best each implementation performs. Figure 5.1 presents the results in boxplots which summarize
multiple execution scenarios.

B+-trees. Regarding B+-trees we have 5 concurrent implementations, three that use coarse-
grained locking and HTM synchronization, one with RCU-SGL and one with RCU-HTM. In this
case, RCU-HTM provides the most stable performance and in the majority of executions its

5.4. Experimental Results: Microbenchmark 81

Figure 5.1: Evaluation of the synchronization mechanisms when applied to a specific baseline
serial search tree. For each execution scenario we find the synchronization mechanism with the
highest throughput and use it to normalize the rest throughputs. This way, the y axis shows the
percentage difference of the throughput of each synchronization compared to the best achieved
throughput for the specific serial search tree and execution scenario. Every boxplot include 630
execution scenarios.

throughput is more than 80% close to the best one achieved. There are some outliers where RCU-
HTM is up to 40% close to the best; all these outlier points are executions with a small number of
threads, i.e., one or two threads, where RCU-HTM performs worse that the coarse-grained imple-
mentations due to the overheads of copying nodes and validating the private copies. However,
for more than two threads RCU-HTM allows more concurrency than coarse-grained B+-trees and
outperforms them.

(a-b)-trees. In the case of (a-b)-trees we have more synchronization mechanisms that can
be applied. Apart from the coarse-grained implementations, we also have three lock-free ap-
proaches by Brown et. al [Bro17, BPA20]. In this case, RCU-HTM implementations perform
between 33%-100% relative to the best implementation at each execution point. Similarly to B+-
trees the cases where RCU-HTM performsmuchworse than the other implementations is in cases
with a small number of threads.

82 Chapter 5. Experimental Evaluation

Unbalanced binary search trees. When applied to unbalanced versions of binary search
trees RCU-HTM is highly performant and competitive with other synchronization mechanisms
in most of the execution scenarios. The three versions of RCU-HTM based binary search trees
(i.e., internal, partially-external and external) have throughput more than 70% in the 75% of the
cases.

AVL binary search trees. In all versions of AVL binary search trees (i.e., internal, partially-
external, external) RCU-HTM implementations are clearly among the best ones on the vast ma-
jority of execution points. In the internal version RCU-HTM is 40%-100% close to the best one,
however, in the majority of executions it is more than 70% close. The same is true for partially-
external versions. In the external AVL trees RCU-HTM performs even better, achieving perfor-
mance more than 90% close to the best one in the majority of execution scenarios.

OverallRCU-HTM evaluation. Overall, RCU-HTM is a competitive synchronizationmech-
anism for each and every baseline serial data structure. Other synchronization mechanisms
either fail to provide robust performance over all the different execution scenarios (i.e., coarse-
grained synchronizationmechanisms) or are limited to specific serial data structures and are hard
to be implemented (i.e., fine-grained synchronization mechanisms). RCU-HTM is a solution that
is both applicable to any serial search tree and also maintains high performance on all execution
scenarios.

5.4.2 Overall scalability evaluation of RCU-HTM

In the previous section we compared RCU-HTM with the other synchronization mechanisms
when the baseline serial data structure was predefined. In this section we perform an overall
scalability evaluation to show that by exploiting RCU-HTM, we can provide an efficient concur-
rent search for every execution scenario.

Figures 5.2 and 5.3 present the performance of the five best performing search trees for differ-
ent combinations of the size of key, number of keys in the tree and operations mix. We omit some
of the plots for brevity as they do not provide any additional insights. As all search trees scale at
least up to 22 threads, we nominate as best performing implementations those that exhibit the
highest throughput for 22 threads. We make the following observations:

1 RCU-HTM is among the five best performing trees in the majority of cases. No other compet-
itive concurrent search tree or other synchronization mechanism is more consistently among
the top five implementations. The only cases where RCU-HTM is not among the best imple-
mentations are in the 64 byte keys with 0% lookups. In these situations the size of nodes is
increased and copying such large nodes slows down the performance of RCU-HTM. However,
since keys are immutable in RCU-HTM, it is possible to avoid storing the keys in the node, by
storing pointers to these keys. This way, we can decrease the size of the node and avoid the

5.4. Experimental Results: Microbenchmark 83

Figure 5.2: Scalability evaluation of concurrent search trees with 8 bytes key size. Each plot
includes the five best performing search trees. The rows represent different tree sizes and the
columns different mix of operations. Notice the differences in the y-axis range between the
figures.

84 Chapter 5. Experimental Evaluation

Figure 5.3: Scalability evaluation of concurrent search trees with 64 bytes key size. Each plot
includes the five best performing search trees. The rows represent different tree sizes and the
columns different mix of operations. Notice the differences in the y-axis range between the
figures.

5.5. Experimental Results: TPC-C and YCSB 85

overheads of copying the whole keys. Some preliminary experiments have shown that this
can greatly reduce these performance overheads.

2 In read-only scenarios, with 100% lookup operations, RCU-HTM either provides the best per-
formance or very close to it. Only in the cases with 64 bytes keys for 1M and 10M keys it
is somewhat slower than ist-brown. The reason for this is that ist-brown uses interpolation
search inside the nodes, and thus performs fewer key comparisons on average. It is trivial
to use interpolation search in our RCU-HTM trees and we indeed tried this and got similar
throughput to ist-brown. We do not report these results in this thesis since we consider such
kind of optimizations orthogonal to RCU-HTM.

3 In read-write scenarios, RCU-HTMmaintains its very high performance. In the five cases with
64 bytes keys and 0% lookups where it is not among the top five implementations, it still
is competitive and performs at least 60% close to the best implementations in all execution
scenarios.

Overall, our scalability results validate that for every execution scenario we can exploit
RCU-HTM and implement a concurrent search tree with very high performance. This makes
RCU-HTM, to the best of our knowledge, the first synchronization mechanism that manages to
combine programmability/applicability with high performance for a wide spectrum of execution
scenarios.

Figure 5.4: Performance of concurrent B+-trees and (a-b)-trees for YCSB and TPC-C benchmarks.

5.5 Experimental Results: TPC-C and YCSB

In this section we evaluate RCU-HTM in two benchmarks that resemble real-life database ap-
plications and are widely used for the evaluation of database management systems. In both

86 Chapter 5. Experimental Evaluation

benchmarks the keys that are stored in the trees are 8 bytes long. Figure 5.4 presents the perfor-
mance of lock-free and RCU-HTM based B+-trees and (a-b)-trees since these are the best ones in
both benchmarks.

In YCSB, where only lookups are performed in a search tree that contains 25M keys, ist-
brown performs slightly better than RCU-HTM B+-tree thanks to the interpolation search that
we described earlier. However, even without the interpolation search optimization, RCU-HTM
B+-tree achieves a throughput of 60 Mops/sec, very close to the 64 Mops/sec of ist-brown. The
results in YCSB are similar to those in the microbenchmark, in the case of 10M trees and 100%
lookups.

Figure 5.5: Scalability of concurrent B+-trees and (a-b)-trees for each index of the TPC-C bench-
mark.

In TPC-C, which uses 9 search trees with different sizes and mix of operations, the RCU-HTM
B+-tree provides the highest throughput. The more complex access pattern of TPC-C requires a
search tree that consistently provides high performance across various tree sizes andmix of oper-
ations. Figure 5.5 presents the performance of concurrent B+-trees and (a-b)-trees on each index
of the TPC-C benchmark. RCU-HTM maintains its performance on all indexes, thus leading to
increased high aggregated performance for the whole benchmark. ist-brown, which was the top
performing tree in YCSB, provides high performance on the three large indexes with a read-only

5.6. Experimental Results: Memory Reclamation 87

access pattern (i.e., CUSTOMER_ID_IDX, ITEM_IDX and STOCK_IDX) but its performance de-
grades in small indexes (i.e., WAREHOUSE_IDX, DISTRICT_IDX and CUSTOMER_LAST_IDX)
and in indexes where only insert operations are performed (i.e., ORDERLINE_IDX, ORDER-
LINE_WD_IDX and ORDER_IDX). This performance variation under different access patterns
results in poor aggregated performance.

Overall, the evaluation with YCSB and TPC-C validates that RCU-HTM can be used in real-
life applications and provides high performance for a wide variety of execution scenarios. It is
consistently among the top performing implementations and this results in high performance
even in applications that have multiple search trees with different access pattern for each one,
as was the case for the TPC-C benchmark.

5.6 Experimental Results: Memory Reclamation

In this section we evaluate the performance of RCU-HTM with the DEBRA memory reclamation
scheme integrated. Although, we have applied DEBRA to all RCU-HTM based search trees, we
limit our evaluation here to an internal AVL tree, namely avl-int-rcu-htm as for all other cases
we drew similar conclusions. Figure 5.6 presents the performance of avl-int-rcu-htm with and
without memory reclamation enabled for three tree sizes and three operation mixes. The two
omitted tree sizes (2K and 2M keys) do not offer any different conclusion. As already mentioned,
each thread occupies up to 6MB of space at any time.

As expected, and visualized by read-only workloads, lookup operations are only slightly af-
fected by the reclamation scheme, since they do not allocate or reclaim any nodes; the only action
they perform is to modify the quiescent bit and, infrequently, increase the global epoch counter.
In the other two workloads, with update operations taking place, the reclamation scheme adds
overhead which reaches up to 30% in the case of 20K keys with 0% lookups. However, as the
figure showcases, in most cases the tree with the memory reclamation scheme enabled performs
very close to the one without it.

88 Chapter 5. Experimental Evaluation

Figure 5.6: Performance of avl-int-rcu-htm when memory reclamation is performed.

CHAPTER 6

Range Query Operations in RCU-HTM

There has been plenty of research around concurrent maps, however most of the related work
lacks support for range queries (RQs). Only a rather small number of concurrent maps provide
linearizable RQs [Cha17, ASS13, BCCO10, SW16, Win17, BBB+17, BA12]. The design and im-
plementation of a concurrent map that supports RQs is challenging due to the difficulty to guar-
antee their correct execution when interleaved with concurrent update operations, i.e., inserts
and deletes. The results of an RQ typically span several parts of the underlying data structure
and the access to all of them needs to use some kind of synchronization, such as locks and/or
atomic operations. Concurrent maps that use fine-grained locking are hard to efficiently support
RQs due to the high overheads of obtaining locks on all the nodes included in the range. Non-
blocking approaches, which use atomic operations such as Compare-And-Swap (CAS), are even
more challenging since the hardware provided atomic operations can only be used to synchro-
nize the access to a very limited number of memory locations, typically one or two. Transactional
memory (TM) [HM93] and Read-Copy-Update (RCU) [MS98] can facilitate the implementation
of RQs, however, they both incur high overheads both on the RQs and on the update operations.

RCU-HTM can be easily extended to support efficient concurrent RQs. In this chapter we
augment an RCU-HTM based B+-tree with support for RQs and show that along with its perfor-
mance benefits, RCU-HTM also greatly facilitates the support for RQs. This is achieved thanks to
the use of node copying for performing the B+-tree modifications and through the use of HTM
that allows multiple memory operations (reads and/or writes) to be performed in a single atomic

89

90 Chapter 6. Range Query Operations in RCU-HTM

Figure 6.1: Example of a B+-tree. Only a part of the tree is depicted. Gray nodes are the internal
nodes that are used only for directing traversals to the appropriate leaves.

step. With RCU-HTM, updaters work on copies of the affected parts of the underlying data struc-
ture rather than modifying them in place. When their modified copy is ready they install it in
the shared data structure in a single atomic step using an HTM transaction. This allows readers
to proceed safely without using any synchronization. As we show in our work, this also allows
RQs to use an HTM transaction to quickly get a snapshot of the leaf nodes that are to be included
in the RQ’s result.

In a nutshell, an RQ in our RCU-HTM based B+-tree proceeds with the following steps. First,
we traverse the tree until we reach the leaf node that includes the lowest key in the searched
range. Then, we start an HTM transaction, which uses the leaves’ sibling pointers to locate all the
leaves that contain keys inside the range. During this transaction we only store pointers to these
nodes and we do not have to copy them, since the keys of a node in our tree never change (when
a node’s key needs to change a copy is created which replaces the old node). As our evaluation
reveals, apart from their simplicity, RQs in our B+-tree provide high performance even under
workloads with high percentage of update operations. More specifically, we evaluate our B+-
tree implementation under different execution scenarios and against state-of-the-art concurrent
maps that also support RQs. We find that RCU-HTM greatly facilitates the implementation of
linearizable and efficient RQs.

6.1 Background

6.1.1 RangeQueries

A range query (RQ) operation in a map data structure returns the set of key-value pairs whose
key is between a range of keys [lowKey, highKey]. RQs are typically met and are of significant
importance in database and key-value store systems. Maps with RQ support can be implemented
with awide variety of underlying data structures, such as hash tables, singly-linked lists, skiplists,
binary search trees, B+-trees, etc. Each data structure has different performance characteristics
regarding RQs. Hash tables, for example, achieve low performance because the key-value pairs

6.1. Background 91

are not kept in sorted order, so an RQ translates into a lookup operation for each and every key
in [lowKey, highKey]¹.

Data structures like lists, skiplists and trees maintain the set of key-value pair in sorted order
and can support simpler and more efficient RQs. Lists and skiplists performwell when the stored
set of key-value pairs is relatively small, but for large sets, trees typically provide higher perfor-
mance due to the lower worst-case performance guarantees. Search trees support RQs either
by performing a breadth-first traversal of the tree or by augmenting each node with a sibling
pointer which leads to the node with the key that is immediately higher than this node’s key and
scanning this chain of sibling pointers starting from the first node with key higher or equal to
lowKey and ending at the last node with key lower or equal to highKey. External trees, which
keep the key-value pairs only in the leaves and internal nodes contain only keys to be used for
routing purposes, simplify the addition of sibling pointers since they only need to be added to
the leaves. Moreover, trees with fat nodes, i.e., nodes that contain more than one key-value pairs,
offer an advantage for RQs due to the improved locality of accesses for keys in the same node.

6.1.2 B+-trees

B+-trees are balanced external trees with fat nodes which makes them very good candidates for
implementing a map with RQ support and for this they are used as indexes in several database
management systems and in key-value stores. An example B+-tree is depicted in Figure 6.1.
B+-trees are external trees; the data is stored in the leaves and the internal nodes contain only
keys and are used for routing the traversals to the appropriate leaves. They support efficient
implementations of the three basic map operations, namely, lookup, insert and delete as well as
very fast and simple RQs. To facilitate RQs, every leaf contains a sibling pointer to reference its
right sibling. RQs start with a traversal to locate the leaf that contains the first key in the range.
Then, it horizontally scans the leaves, using the sibling pointers, until a key that is out of the
requested range is reached.

6.1.3 Concurrent RQs in B+-trees

While RQs in a serial version of a B+-tree are simple, in a concurrent setup the correct imple-
mentation of an RQ is challenging. Concurrent updaters may modify keys that are in the way
of the horizontal scan of the RQ and this may lead to inconsistent execution. An example of an
erroneous execution of two RQs, concurrently with two updates, is given in Figure 6.2. Threads
T1 and T2 perform an RQ for the same range of keys, [32-54]. Threads T3 and T4 insert keys
42 and 53, respectively. T1 and T2 follow the same path of leaves, however, the order in which

¹For some key types, e.g., strings, it is not possible to enumerate all the possible keys inside a given range. In these
cases hash tables are incapable of supporting RQs

92 Chapter 6. Range Query Operations in RCU-HTM

Figure 6.2: A non-linearizable execution of two RQs that run concurrently with two updates.
The two RQ threads observe the two updates in different order. We only show the leaves that
are involved in the four operations.

they read the sibling pointers of each leaf, causes them to observe a different ordering of the
two inserts. RQs that use our proposed approach use an HTM transaction to get a consistent
snapshot of this path of leaves. This way they avoid such inconsistent executions.

6.2. Previous Approaches 93

6.2 Previous Approaches

The importance of concurrent map data structures with RQ support resulted in a significant
amount of research efforts towards this direction. The related work can be split in two cate-
gories, namely, hand-crafted data structures, that is data structures that were carefully designed
and implemented to support RQs, and, general techniques that can be applied to several data
structures and be extended with RQ support. Our approach to use RCU-HTM stands in the mid-
dle of the two categories; each and every RCU-HTM based data structure can be augmented with
an RQ enclosed in an HTM transaction, as we explain in Section 6.3 for the case of B+-trees.
However, we believe that in some of these data structures (e.g., binary search trees) the large
memory footprint of the transactions will lead to low performance.
Hand-crafted data structureswith RQ support. K-ary trees [BH11] are similar to B+-trees, in
that multiple keys are stored in each node and the actual data is stored in the leaves. In contrast
to B+-trees, the internal nodes are always full and the leaves can even be empty. Moreover, k-ary
trees are unbalanced which makes them a good choice for applying lock-free synchronization.
In [BA12] k-ary trees are augmented with RQ support.

Snaptree [BCCO10] is a partially external relaxed-balance AVL tree that uses fine-grained
locks and supports snapshot operations, that is, getting a consistent snapshot of the whole tree,
which can then be used to execute an RQ. As shown in [BA12], the snaptree adds high overhead
to both updates and RQs since while taking the snapshot all concurrent updates are blocked.
Another downside of snaptree is the necessity to take a snapshot of the whole data structure,
even when the RQ concerns only a subset of the keys.
General techniques for supporting RQs. Transactional memory can be used in a straight-
forward way to implement a concurrent map with RQ support. All the operations, including the
RQ, are executed inside a transaction and the TM system guarantees safe and correct concurrent
execution. The problem with this approach is that software TMs (STMs) introduce very high
overheads [ASS13] and hardware TMs (HTMs) have limitations that make transactions more
likely to abort as they access more memory. Such coarse-grained TM concurrent maps are thus
rarely satisfactorily efficient.

Read-Copy-Update (RCU) [MS98] is a technique that allows readers to traverse the data struc-
ture without using any synchronization. Updaters create copies of the parts of the data structure
they need to modify and install their updated versions in a single atomic step. Readers can run
concurrently with updaters, however, in the original RCU implementations updaters are serial-
ized using a single lock. RQs can easily be executed if they also acquire this lock. However, this
approach significantly decreases the concurrency of updaters and RQs.

Read-Log-Update (RLU) [MSFM15] combines locking, RCU and some techniques from STM
and mitigates some of the limitations of plain RCU. With RLU, readers always see a snapshot of

94 Chapter 6. Range Query Operations in RCU-HTM

the data structure, so RQs can be easily implemented. However, as in RCU, updaters must block
waiting for all concurrent operations to finish.

Contention-adaptive (CA) search trees [SW15] use a dynamically regulated number of locks
to protect different parts of the data structure. The number of locks fluctuates depending on
statistics about the contention which are collected at runtime. The data structure is split in
dynamically sized sequential data structures and each lock protects one of these parts. When
increased contention is observed in some individual part, this is split in two. Respectively, when
decreased contention is observed, two parts are joined together. In order to keep track of the
multiple sequential data structures, an additional tree structure is kept on top of them. CA trees
were extended to support RQs [SW16], however they have two downsides. First, the additional
tree structure increases the number of nodes that need to be accessed during a tree traversal.
Second, an RQ may span several different sequential data structures, and locks need to be held
for all of them. In [Win17] an optimization is proposed which uses immutable sequential data
structures. This reduces the time during which an RQ must hold the appropriate locks.

The snap-collector [PT13] provides an object, which multiple threads can use to collabora-
tively build a snapshot of the data structure. A RQ can then use this snapshot to locate the keys
that are inside the requested range. As was the case for snaptree, snap-collector is inefficient
for small RQs since the snapshot includes the entire data structure. Moreover, it is not clear if
snap-collector can be applied to more complex (and more efficient, at least regarding RQs) data
structures than lists and skip-lists.

In [ARBM18] the authors exploit some characteristics of epoch-based reclamation techniques []
to implement an RQ provider which can be used by threads to execute consistent RQs. They pro-
vide three implementations of the RQ provider, a lock-based, a lockfree and one that uses HTM
transactions. Their approach can be applied to a variety of data structures. The downside is the
use of a global timestamp counter which is incremented by each RQ. As our evaluation shows,
data structures that use this approach perform worse than our RCU-HTM based B+-tree.

6.3 RQs in an RCU-HTM B+-tree

6.3.1 Overview

We build on top of an RCU-HTM based B+-tree and extend it to support very simple, linearizable
and efficient RQs. We exploit the fact that in an RCU-HTM B+-tree the keys of a leaf, and their
associated values, never change²; when a key needs to be added/removed from a leaf, a copy of
that node is created and replaces the old one. Based on that characteristic, an RQ can quickly take

²this is true for internal nodes as well, but this is irrelevant to our work

6.3. RQs in an RCU-HTM B+-tree 95

a snapshot of all the leaves involved in the RQ and then, without the need for synchronization,
read all their key-values pairs.

Our RQs proceed in the following way. First, we traverse the tree until we reach the leaf
node that includes the lowest key in the requested range. Then, we start an HTM transaction,
which uses the leaves’ sibling pointers to locate all the leaves that contain keys inside the range.
During this transaction we only store pointers to these nodes and we do not have to copy them,
as explained before. Inside the transaction we walk the list of sibling pointers and at each leaf
we compare the highest key in the request range with the highest key of the leaf. By doing this,
we avoid reading the whole array of keys which, for large node sizes, would result in adding
multiple cache lines in the transactional read-set. By reading only the highest key, we add one
cache line per leaf, thus we greatly decrease the memory footprint of the transaction.

6.3.2 Implementation

The C++ code for the RQ operation in our RCU-HTM B+-tree is given in Algorithm 2. The helper
function get_leaves() starts from a leaf node and performs a horizontal scan of the leaves using
the sibling pointers until a key larger than key2 is encountered. To minimize the duration and
the memory footprint of this scan, we do not scan all the keys on each node, we only compare
key2 with the highest key of the node. The helper function get_keys() scans all the leaves that
contain keys inside the range and store the keys and their associated values in an array that can
be returned to the caller of the range query operation.

The function bptree_rcuhtm_rquery first performs a traversal of the tree in line 24³ to find the
leaf that contains the first key in the requested range (or the leaf that would contain this key, if
the key is not present in the map). If the reached leaf contains all the keys in the requested range,
we can safely read and return the keys and their associated values without using transactions
(lines 25–28). Otherwise, additional leaves need to be scanned, and to do so safely and guarantee
linearizable execution this scan needs to be done atomically with respect to concurrent update
operations. We achieve this atomicity either with HTM transactions (lines 29–33) or with a
global lock that prevents the execution of concurrent updaters (lines 34–37). In lines 38–39, the
array rquery_leaves stores pointers to all these leaves that contain keys in the requested key
range. Since the keys (and the associated values) inside these leaves can never be modified, we
can safely use get_keys() to scan these leaves without using any synchronization.

³bptree_traverse() performs a typical traversal of the B+-tree following child pointers until the appropriate leaf is
reached.

96 Chapter 6. Range Query Operations in RCU-HTM

ALGORITHM 2: Range Query operation in RCU-HTM B+-tree and helper functions.
// Per-thread heap-allocated data

1 __thread int *rquery_keys;
2 __thread void *rquery_values;
3 __thread bptree_node_t *rquery_leaves;

4 int get_keys (bptee_node_t *leaf, int key1, int key2)
5 int i, j, nkeys = 0;
6 for i = 0; i < nnodes; i++ do
7 bptree_node_t *c = rquery_nodes[i];
8 for j = 0; j < n->nkeys; j++ do
9 if key1 < n->keys[j] && key2 >= n->keys[j] then
10 rquery_keys[nkeys] = n->keys[j]; rquery_values[nkeys++] = n->values[j];

11 return nkeys;

12 int get_leaves (bptree_node_t *leaf, int key2)
13 bptree_node_t *c = leaf; // Currently examined leaf
14 int nleaves = 0; // Number of leaves examined

15 while c && c->keys[c->nkeys-1] < key2 do
16 rquery_leaves[nleaves++] = c;
17 c = c->sibling;

18 if c then
19 rquery_leaves[nleaves++] = c;
20 return nleaves;

21 int bptree_rcuhtm_rquery (bptree *bpt, int key1, int key2)
22 int nleaves, nkeys;
23 int tx_retries = TX_MAX_RETRIES;
24 bpt_node_t *leaf = bptree_traverse(bpt, key1);

// If only one leaf is involved we can
// avoid transactions

25 if key2 < leaf->keys[leaf->nkeys-1] then
26 rquery_leaves[0] = leaf;
27 nkeys = get_keys_from_leaves(key1, key2, 1);
28 return nkeys;

// First try with HTM transactions
29 while tx_retries−− > 0 do
30 if TX_BEGIN() == TM_BEGIN_SUCCESS then
31 nleaves = get_leaves(leaf, key2);
32 TX_END();
33 break;

// If necessary, resort to the global lock
34 if tx_retries <= 0 then
35 lock_acquire(bptree->lock);
36 nleaves = get_leaves(leaf, key2);
37 lock_release(bptree->lock);

// Now we can read the keys from the leaves.
38 nkeys = get_keys_from_leaves(key1, key2, nleaves);
39 return nkeys;

6.4. Experimental Evaluation 97

Label Type RQ synchronization
btree-rcuhtm RCU-HTM B+-tree HTM
treap-ca Contention-adaptive treap [SW16] Contention-adaptive locks [SW16]
k-ary K-ary tree [BA12] Non-blocking
skiplist Fine-grained locking skip-list [HS08] Lock-free RQ provider [ARBM18]
citrus Citrus internal BST with fine-grained locking and RCU [AA14] Lock-free RQ provider [ARBM18]
lfbst Lock-free external BST [BER14] Lock-free RQ provider [ARBM18]
abtree Lock-free external (a,b)-tree Lock-free RQ provider [ARBM18]

Table 6.1: Concurrent map implementations that were used in our evaluation.

6.4 Experimental Evaluation

We conduct our experiments on a dual socket Intel Broadwell-EP server with two Intel Xeon
E5-2699 v4 processors each with 22 physical cores and 44 hardware threads, for a total of 44
and 88 physical cores and hardware threads respectively. We set the processors to run at a fixed
frequency of 2.2GHz with TurboBoost mode disabled. Each core has private 32KB L1 and 256KB
L2 caches, while a 56MB L3 cache is shared by all cores. The server has 256GB of RAM running
at 2134MHz. The OS is Debian 8.3 with kernel version 4.7.0.

For our evaluationwe used the C++ version of the benchmark code thatwas used in [ARBM18]
which the authors have made publicly available ⁴. Apart from the already provided concur-
rent maps, we implemented our RCU-HTM based B+-tree as well as the non-blocking k-ary
tree [BA12] and the contention adaptive treap [SW16]. The complete list of concurrent map
implementations that we used in our evaluation is presented in Table 6.1. All implementations
were compiled using GCC 4.9.2 with -O3 optimizations enabled.

The benchmark methodology consists of the following:

• In the warmup phase a single thread inserts random keys into the data structure until it is
filled with half of the keys of the key range.

• In the execution phase we spawn a number of worker threads, which repeatedly perform
lookup, update (insert or delete) and RQ operations with randomly selected keys. The
execution phase lasts for a predefined time duration, which we currently set to 5 seconds.
We have validated that longer time durations produce similar results.

• We use different operationmixes and label eachworkloadwith L%-U%-R%where L, U and R
are the proportions of lookups, updates and RQs, respectively. Updates are equally divided
between inserts and deletes, thus the size of the data structure does not vary significantly
throughout the execution. Our evaluation includes three different operation mixes; 0%-
0%-100%, 20%-40%-2% and 0%-50%-50%.

⁴https://bitbucket.org/trbot86/implementations

98 Chapter 6. Range Query Operations in RCU-HTM

• We use different key ranges which also determine the size of the data structure and, con-
sequently, the level of contention. Our experiments include ranges with 20K, 2M and 20M
keys.

• We used different RQ sizes, i.e., sizes of the requested key range. We execute experiments
for 100, 1K, 10K and 100K RQ sizes.

• For the already provided implementations of skiplist, citrus, bst and abtree [ARBM18] we
present the results of the lock-free RQ provider since this provided the best results.

• For the (a-b)-trees we set a = 6 and b = 16, as indicated by the authors in [Bro17] and
in [ARBM18]. This means that a node may contain 6 to 16 keys. For the contention-
adaptive treap we set the maximum number of keys a leaf can contain to 64 as indicated
in [SW16]. For the k-ary tree we have set the k parameter to 32 as indicated in [BA12].

• We pin each worker thread on a single hardware thread. The first 22 threads occupy the
22 physical cores of a single socket, 44 threads span two sockets and 88 threads use hyper-
threads.

• All reported results are the average of 10 independent executions with no significant vari-
ance.

6.4.1 Impact of B+-tree node size

In this set of experiments we aim to analyze what is the impact of the order of the B+-tree. The
order of the B+-tree defines the minimum and maximum number of keys a node is allowed to
have. More specifically, each node in the tree includes order up to 2 ∗ order keys. The size of
the node impacts our implementation in the following way. An RQ uses a transaction to get a
set of pointers to the appropriate leaves, the memory footprint of which is proportional to the
number of leaves and not to the number of keys inside the range. This is true because as we
traverse the list of sibling pointers, we only read the maximum key from each node and not the
whole array of keys. For this reason, RQs in our B+-tree benefit from larger nodes. However, as
the size of the node increases, the depth of the tree becomes more dense (i.e., uses less nodes to
store the same set of keys), thus increasing contention. This is the tradeoff we seek to analyze
and understand in this evaluation section.

Figure 6.3 presents the performance and the abort rate for RCU-HTM B+-trees with different
node sizes and for varying RQ sizes. The key range is set to 2M and the operation mix to 50%
updates and 50% RQs. For a small RQ size of 100 keys, the smaller the tree node the highest the
performance. For 44 and 88 threads, the trees with order 64 and 128 have a high abort ratio, thus
lacking in performance from the other trees with smaller nodes. This is attributed to the higher

6.4. Experimental Evaluation 99

contention imposed in a tree with fewer leves. For 10K RQ size larger node sizes are better due to
the smaller transaction sizes for the RQs. For 100K RQ size all our trees suffer from high number
of aborts. In our future work we aim to explore ways to execute RQs with smaller fine-grained
transactions, or ideally without executing any transaction, to overcome this limitation.

Figure 6.3: Performance of RCU-HTM B+-trees with varying B+-tree node sizes (i.e., order of the
tree). The top row shows the throughput and the bottom row shows the associated percentage
of aborted transactions.

6.4.2 Overall scalability

In this set of experiments we present the performance of our RCU-HTM B+-tree and compare
it with the state-of-the-art concurrent maps with RQ support. Figures 6.4 and 6.5 present the
throughput of all concurrent maps for RQ sizes of 100 and 100K keys. For the small RQ size,
our RCU-HTM B+-tree outperforms its competitors on almost all cases. Its high performance is
attributed to the low abort ratio for the HTM transactions that RQs execute. Only in the 20M
key range with 100% RQs, the k-ary tree outperforms it. In this case the k-ary tree benefits from
the absence of contention. Our implementation also suffers a performance drop for 44 and 88
threads on the 20K keys case with 40% and 50% updates. This is attributed NUMA effects due
to RCU-HTM’s node allocating and copying mechanism which stresses the memory subsystem
more than the other implementations.

For the large RQ size with 100K keys in the requested range our implementation is still the
best for the 20K and 2M cases. In the 20K case, the RQ size is actually 10K since this is the
size of the whole data structure. For this range size, our RCU-HTM B+-tree provides very high

100 Chapter 6. Range Query Operations in RCU-HTM

performance and scalability since it has very low transactional abort rates. On the larger trees,
where the majority of RQ transactions abort, its performance drops. Although, in the 2M case,
it still outperforms its competitors.

Figure 6.4: Performance of concurrent maps with RQ support for RQ size 100.

6.4. Experimental Evaluation 101

Figure 6.5: Performance of concurrent maps with RQ support for RQ size 100K.

102 Chapter 6. Range Query Operations in RCU-HTM

CHAPTER 7

Conclusions & Future Work

In this work we proposed, implemented and evaluated RCU-HTM, a generic synchronization
mechanism for implementing efficient concurrent search trees of any type (i.e., binary/B+-tree,
internal/external, balanced/unbalanced). By leveraging two well known synchronization meth-
ods, RCU and HTM, RCU-HTM manages to combine their benefits and avoid their limitations.
To the best of our knowledge, RCU-HTM is the first technique that is widely applicable to any
search tree and provides high performance under any execution scenario. Further, we make it
practical to use in large long-running applications by applying and evaluating a low-overhead
epoch-based memory reclamation scheme. Finally, we added support for range query opera-
tions which are of critical importance for applications that use concurrent dictionaries, such as
database management systems.

In our future work we plan to focus mainly on three directions. The first one is to automate
the process of parallelizing a serial search tree using RCU-HTM. As shown during the presenta-
tion of RCU-HTM implementations, most parts of RCU-HTM are re-used. We believe therefore
that it is possible to have a library and/or a compiler do all this repetitive work removing this
burden from the programmer. Our second direction is to apply RCU-HTM on transactional data
structures, that is data structures that can performmultiple operations in an atomic step. Finally,
we are also interested in exploring whether RCU-HTM can also support range updates, that is
operations that modify multiple key-value pairs in the data structure in an atomic way.

103

104 Chapter 7. Conclusions & Future Work

CHAPTER 8

Δημοσιεύσεις

Περιοδικά

• D. Siakavaras, K. Nikas, G. Goumas and N. Koziris: RCU-HTM: A Generic Synchroniza-
tion Technique for Highly Efficient Concurrent Search Trees. In Journal of Concurrency
and Computation: Practice and Experience (CCPE), Accepted 15 December 2020, Published
25 April 2021.

Συνέδρια

• D. Siakavaras, P. Billis, K. Nikas, G. Goumas and N. Koziris: Brief Announcement: Ef-
ficient Concurrent Range Queries in B+-trees using RCU-HTM. In Proceedings of the
32nd ACM Symposium on Parallelism in Algorithms and Architectures, July 14-17, 2020,
Philadelphia, PA, USA.

• F. Strati, C. Giannoula, D. Siakavaras, G. Goumas and N. Koziris: An Adaptive Concur-
rent Priority Queue for NUMA Architectures. In Proceedings of the ACM International
Conference on Computing Frontiers (CF 2019), April 30 - May 2, 2019, Alghero, Sardinia,
Italy.

105

106 Chapter 8. Δημοσιεύσεις

• M. Kardaras, D. Siakavaras, K. Nikas, G. Goumas, N. Koziris: Fast Concurrent Skip Lists
with HTM. In Proceedings of the International Symposia on High-Level Parallel Program-
ming and Applications (HLPP 2018), July 12-13, 2018, Orléans, France.

• D. Siakavaras, K. Nikas, G. Goumas, N. Koziris: RCU-HTM: Combining RCU with HTM
to Implement Highly Efficient Concurrent Binary Search Trees. In Proceedings of the 26th
International Conference on Parallel Architectures and Compilation Techniques (PACT
2017), September 9-13, 2017, Portland, Oregon, USA.

• D. Siakavaras, K. Nikas, G. Goumas, N. Koziris: Combining HTM and RCU to Imple-
ment Highly Efficient Balanced Binary Search Trees. In Proceedings of the 12th ACM
SIGPLAN Workshop on Transactional Computing (TRANSACT 2017), February 5, 2017,
Austin, Texas, USA.

• D. Siakavaras, K. Nikas, G. Goumas, N. Koziris: Massively Concurrent Red-Black Trees
with Hardware Transactional Memory. In Proceedings of the The 24th Euromicro Inter-
national Conference on Parallel, Distributed, and Network-Based Processing (PDP 2016),
Feb 17-19, 2016, Heraklion, Crete, Greece.

• D. Siakavaras, K. Nikas, G. Goumas, N. Koziris: Performance Analysis of Concurrent Red-
Black Trees on HTM Platforms. In Proceedings of the 10th ACM SIGPLAN Workshop on
Transactional Computing (TRANSACT 2015), June 15-16, 2015, Portland, Oregon, USA.

Bibliography

[AA14] Maya Arbel and Hagit Attiya. Concurrent Updates with RCU: Search Tree As an
Example. In Proceedings of the 2014 ACM Symposium on Principles of Distributed

Computing, PODC ’14, pages 196–205, New York, NY, USA, 2014. ACM.

[AAS11] Yehuda Afek, Hillel Avni, and Nir Shavit. Towards consistency oblivious program-
ming. In Antonio Fernández Anta, Giuseppe Lipari, andMatthieu Roy, editors, Prin-
ciples of Distributed Systems - 15th International Conference, OPODIS 2011, Toulouse,

France, December 13-16, 2011. Proceedings, volume 7109 of Lecture Notes in Computer

Science, pages 65–79. Springer, 2011.

[AK14] Hillel Avni and Bradley C Kuszmaul. Improving HTM scaling with consistency-
oblivious programming. TRANSACT, 2014.

[AM15] Maya Arbel and Adam Morrison. Predicate rcu: An rcu for scalable concurrent
updates. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, PPoPP 2015, pages 21–30, New York, NY, USA,
2015. ACM.

[ARBM18] Maya Arbel-Raviv, Trevor Brown, and Adam Morrison. Getting to the root of con-
current binary search tree performance. In 2018 USENIX Annual Technical Confer-

ence (USENIX ATC 18), pages 295–306, Boston, MA, 2018. USENIX Association.

[AS89] Cecilia Aragon and Raimund Seidel. Randomized search trees. pages 540–545, 11
1989.

107

108 Bibliography

[ASS13] Hillel Avni, Nir Shavit, and Adi Suissa. Leaplist: Lessons learned in designing tm-
supported range queries. pages 299–308, 07 2013.

[BA12] Trevor Brown and Hillel Avni. Range queries in non-blocking k-ary search trees. In
Principles of Distributed Systems, 16th International Conference, OPODIS 2012, Rome,

Italy, December 18-20, 2012. Proceedings, pages 31–45, 2012.

[BBB+17] Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar
Hillel, Idit Keidar, and Moshe Sulamy. Kiwi: A key-value map for scalable real-time
analytics. In PPoPP ’17, 2017.

[BCCO10] Nathan G. Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A practical
concurrent binary search tree. In Proceedings of the 15th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’10, pages 257–268, New
York, NY, USA, 2010. ACM.

[BER13] Trevor Brown, Faith Ellen, and Eric Ruppert. Pragmatic primitives for non-blocking
data structures. In Proceedings of the 2013 ACM Symposium on Principles of Dis-

tributed Computing, PODC ’13, page 13–22, New York, NY, USA, 2013. Association
for Computing Machinery.

[BER14] Trevor Brown, Faith Ellen, and Eric Ruppert. AGeneral Technique for Non-blocking
Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’14, pages 329–342, New York, NY, USA, 2014. ACM.

[BGHZ16] Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. Fast and
robustmemory reclamation for concurrent data structures. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’16, pages
349–359, New York, NY, USA, 2016. ACM.

[BGMS98] Luc Bougé, Joaquim Gabarró, Xavier Messeguer, and Nicolas Schabanel. Height-
relaxed avl rebalancing: A unified, fine-grained approach to concurrent dictionaries,
1998.

[BH11] Trevor Brown and Joanna Helga. Non-blocking k-ary search trees. In Proceedings

of the 15th International Conference on Principles of Distributed Systems, OPODIS’11,
page 207–221, Berlin, Heidelberg, 2011. Springer-Verlag.

[BPA20] Trevor Brown, Aleksandar Prokopec, and Dan Alistarh. Non-blocking interpolation
search trees with doubly-logarithmic running time. In Proceedings of the 25th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’20,
page 276–291, New York, NY, USA, 2020. Association for Computing Machinery.

Bibliography 109

[Bro15] Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There
has to be a better way. In Proceedings of the 2015 ACM Symposium on Principles of

Distributed Computing, PODC ’15, pages 261–270, New York, NY, USA, 2015. ACM.

[Bro17] Trevor Brown. A template for implementing fast lock-free trees using htm. In
Proceedings of the ACM Symposium on Principles of Distributed Computing, PODC
’17, pages 293–302, New York, NY, USA, 2017. ACM.

[CBM+08] Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng Wu, Stefanie
Chiras, and Siddhartha Chatterjee. Software transactional memory: Why is it only
a research toy? Commun. ACM, 51(11):40–46, nov 2008.

[CDT14] Bapi Chatterjee, NhanNguyenDang, and Philippas Tsigas. Efficient lock-free binary
search trees. CoRR, abs/1404.3272, 2014.

[CGR13] Tyler Crain, Vincent Gramoli, and Michel Raynal. A contention-friendly binary
search tree. In Proceedings of the 19th International Conference on Parallel Processing,
Euro-Par’13, pages 229–240, Berlin, Heidelberg, 2013. Springer-Verlag.

[Cha17] Bapi Chatterjee. Lock-free linearizable 1-dimensional range queries. In Proceed-

ings of the 18th International Conference on Distributed Computing and Networking,
ICDCN ’17, New York, NY, USA, 2017. Association for Computing Machinery.

[DGT15] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized Concur-
rency: The Secret to Scaling Concurrent Search Data Structures. In Proceedings

of the Twentieth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS ’15, pages 631–644, New York, NY, USA,
2015. ACM.

[DVY14] DanaDrachsler, Martin Vechev, and Eran Yahav. Practical Concurrent Binary Search
Trees via Logical Ordering. In Proceedings of the 19th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPoPP ’14, pages 343–356, New
York, NY, USA, 2014. ACM.

[EFRvB10] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-
blocking Binary Search Trees. In Proceedings of the 29th ACM SIGACT-SIGOPS Sym-

posium on Principles of Distributed Computing, PODC ’10, pages 131–140, New York,
NY, USA, 2010. ACM.

[Fra04] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-579, University
of Cambridge, Computer Laboratory, February 2004.

110 Bibliography

[FSBA11] Wilson W. L. Fung, Inderpreet Singh, Andrew Brownsword, and Tor M. Aamodt.
Hardware transactional memory for gpu architectures. In 2011 44th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 296–307,
2011.

[HFP03] Timothy Harris, Keir Fraser, and Ian Pratt. A practical multi-word compare-and-
swap operation. volume 2508, 05 2003.

[HJ12] Shane V. Howley and Jeremy Jones. A Non-blocking Internal Binary Search Tree.
In Proceedings of the Twenty-fourth Annual ACM Symposium on Parallelism in Al-

gorithms and Architectures, SPAA ’12, pages 161–171, New York, NY, USA, 2012.
ACM.

[HLM06] Maurice Herlihy, Victor Luchangco, andMarkMoir. A flexible framework for imple-
menting software transactional memory. SIGPLAN Not., 41(10):253–262, oct 2006.

[HLMM05] Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Nonblocking
memory management support for dynamic-sized data structures. ACM Trans. Com-

put. Syst., 23(2):146–196, May 2005.

[HLMS03] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer, III. Soft-
ware transactional memory for dynamic-sized data structures. In Proceedings of the

Twenty-second Annual Symposium on Principles of Distributed Computing, PODC ’03,
pages 92–101, New York, NY, USA, 2003. ACM.

[HM93] Maurice Herlihy and J. Eliot B. Moss. Transactional memory: Architectural support
for lock-free data structures. In Proceedings of the 20th Annual International Sympo-

sium on Computer Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993.
ACM.

[HMBW07] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole.
Performance ofmemory reclamation for lockless synchronization. J. Parallel Distrib.
Comput., 67(12):1270–1285, December 2007.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2008.

[HW90] Maurice P. Herlihy and Jeannette M.Wing. Linearizability: A correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

[HW14] Philip W. Howard and Jonathan Walpole. Relativistic red-black trees. Concurrency
and Computation: Practice and Experience, 26(16):2684–2712, 2014.

Bibliography 111

[Mic02] Maged M. Michael. Safe memory reclamation for dynamic lock-free objects using
atomic reads and writes. In Proceedings of the Twenty-first Annual Symposium on

Principles of Distributed Computing, PODC ’02, pages 21–30, New York, NY, USA,
2002. ACM.

[MS98] Paul E. Mckenney and John D. Slingwine. Read-Copy Update: Using Execution
History to Solve Concurrency Problems. In Parallel and Distributed Computing and

Systems, pages 509–518, Las Vegas, NV, October 1998.

[MSFM15] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-log-update:
A lightweight synchronization mechanism for concurrent programming. In Pro-

ceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages
168–183, New York, NY, USA, 2015. ACM.

[NM14] Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-free Binary Search
Trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPoPP ’14, pages 317–328, New York, NY, USA, 2014. ACM.

[PT13] Erez Petrank and Shahar Timnat. Lock-free data-structure iterators. In Proceedings

of the 27th International Symposium on Distributed Computing - Volume 8205, DISC
2013, page 224–238, Berlin, Heidelberg, 2013. Springer-Verlag.

[RM15] Arunmoezhi Ramachandran and Neeraj Mittal. A fast lock-free internal binary
search tree. In Proceedings of the 2015 International Conference on Distributed Com-

puting and Networking, ICDCN 2015, Goa, India, January 4-7, 2015, pages 37:1–37:10,
2015.

[ST85] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees.
J. ACM, 32(3):652–686, jul 1985.

[ST97] Nir Shavit and Dan Touitou. Software Transactional Memory. 1997.

[SW15] K. Sagonas and K. Winblad. Contention adapting search trees. In 2015 14th In-

ternational Symposium on Parallel and Distributed Computing, pages 215–224, June
2015.

[SW16] Konstantinos Sagonas and Kjell Winblad. Efficient support for range queries and
range updates using contention adapting search trees. In Xipeng Shen, Frank
Mueller, and James Tuck, editors, Languages and Compilers for Parallel Computing,
pages 37–53, Cham, 2016. Springer International Publishing.

112 Bibliography

[TPK+09] Saša Tomić, Cristian Perfumo, Chinmay Kulkarni, Adrià Armejach, Adrián Cristal,
Osman Unsal, Tim Harris, and Mateo Valero. Eazyhtm: Eager-lazy hardware trans-
actional memory. In Proceedings of the 42nd Annual IEEE/ACM International Sym-

posium on Microarchitecture, MICRO 42, page 145–155, New York, NY, USA, 2009.
Association for Computing Machinery.

[WIC+18] Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott.
Interval-based memory reclamation. In Proceedings of the 23rd ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPoPP ’18, pages 1–13,
New York, NY, USA, 2018. ACM.

[Win17] Kjell Winblad. Faster concurrent range queries with contention adapting search
trees using immutable data, 2017.

[WPL+18] Ziqi Wang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang, Michael
Kaminsky, and David G. Andersen. Building a bw-tree takes more than just buzz
words. In Proceedings of the 2018 International Conference on Management of Data,
SIGMOD ’18, page 473–488, New York, NY, USA, 2018. Association for Computing
Machinery.

[YBP+14] Xiangyao Yu, George Bezerra, Andrew Pavlo, Srinivas Devadas, and Michael Stone-
braker. Staring into the abyss: An evaluation of concurrency control with one thou-
sand cores. Proc. VLDB Endow., 8(3):209–220, November 2014.

	Motivation
	Serial Search Trees: no one-size-fits-all
	Concurrent Search Trees: making things even worse
	The programmability-performance tradeoff
	Our approach: RCU-HTM
	Structure of the thesis

	Background
	The Map Interface
	Search Trees
	Transactional Memory (TM)

	Concurrent Search Trees: State-of-the-art
	Lock-based Search Trees
	Coarse-grained Locking
	Contention-Adapting Locking
	Fine-grained Locking

	Lock-free Search Trees
	Compare-And-Swap (CAS)
	High-level lock-free primitives

	RCU-based Search Trees
	RCU with coarse-grained locking
	RCU with fine-grained locking

	HTM-based Search Trees
	Coarse-grained HTM with single lock fallback
	3-Path HTM
	Consistency Oblivious Programming with HTM

	RCU-HTM
	High Level Overview
	How to use RCU-HTM
	The RCU-HTM class
	Correctness
	RCU-HTM Search Tree Examples
	Example 1: Internal AVL binary search tree
	Example 2: B+-tree

	Memory Reclamation

	Experimental Evaluation
	Experimental Setup
	Search Tree Implementations
	Benchmarks
	Microbenchmark
	TPC-C
	YCSB

	Experimental Results: Microbenchmark
	Evaluation of RCU-HTM with a predefined baseline serial search tree
	Overall scalability evaluation of RCU-HTM

	Experimental Results: TPC-C and YCSB
	Experimental Results: Memory Reclamation

	Range Query Operations in RCU-HTM
	Background
	Range Queries
	B+-trees
	Concurrent RQs in B+-trees

	Previous Approaches
	RQs in an RCU-HTM B+-tree
	Overview
	Implementation

	Experimental Evaluation
	Impact of B+-tree node size
	Overall scalability

	Conclusions & Future Work
	Δημοσιεύσεις
	Bibliography

