EoeNIKO MET=OBIO ITOAYTEXNEIO
X XOAH HAEKTPOAOTQN MHXANIKQN KAI MHXANIKQN YTIOAOTISTON

)
5
Bl

TOMEAY® THMATQN, EAETXOY KAI POMIIOTIKHZ

.‘A(\"

R
% e
L] _‘g",/‘-‘%
7 NPOMHOEVS . $

s

A Multi-Task BERT Model for Schema-Guided
Dialogue State Tracking

AITIAQMATIKH EPTrAsIA

TOoU

EAEYOEPIOY KAITEAQNH

ErBAénov: AAéEavbpog IMotapiavog
AvarmAnpetng Kabnyning

AB1nva, Iouviog 2022

EeNIKo MET=0BIO IIOAYTEXNEIO

2X0AH HAEKTPOAOTQN MHXANIKON KAI MHXANIKQN YIIOAOTIETQN

TOMEAT THMATQN, EAETXOY KAI POMIIOTIKHE

A Multi-Task BERT Model for Schema-Guided
Dialogue State Tracking

AITIAQMATIKH EPTrAzIA
TOou

EAEYOEPIOY KAITEAQNH

ErmBAénov: AAéEavbpog IMotapiavog
AvarmAnpetng Kabnyning

Eykpifnke amnod tnv tpipedn) eetactiky) ermtporntr) tyv 14n Iouviou 2022.

(Yroypagn) (Yroypagn) (Yroypagn)

AAEEavdpog Totapiavog Kovotavtivog T¢apéotag Ztepavog KoAdag
AvarAnpet)g Kabnyniujg AvarnAnpoetg Kabnyntig Kabnyng

Abrva, Iouviog 2022

EeNIKo MET=0BIO IIOAYTEXNEIO

2X0AH HAEKTPOAOTQN MHXANIKON KAI MHXANIKQN YIIOAOTIETQN

TOMEAT THMATQN, EAETXOY KAI POMIIOTIKHE

Copyright (C) - All rights reserved. Me v ermguladn navidg S1kaioPatog.
EAeuBéprog KaneAdvng, 2022.

Arnayopevetal n avitypadr, arnobrikeuon Kat diavour) tng rapovoag epyaociag, £§ 0AOKApou
1] TUOPATOG AUTHG, V1d EUOp1ké okoro. Ermtpénetal n avatunaorn, anobrkeuon Kat diavo-
JI) Vi OKOIO 11 KEPOHOOKOITIKO, EKMIAISEUTIKNAG 1] EPEUVITIKLG QUONG, UTO TV IpoUnobeon

va avadEépetal 1 iy npoéAsuong Kat va dlatnpeitat 1o apov prjvupa.

To mepiexopevo autng g epyaociag dev annyel anapaitnta tig anoyeig 1ou THnpatog, tou

EruBAénovta, 1 g EMMITPOIING TTOU TV EVEKPLVE.

AHAQZH MH AOI'OKAOITHY KAI ANAAHWHY ITPOZQIIIKHY EYOYNHZ

Me mAnpr) emiyveor TV OUVETIEL®V TOU VOHPOU TEPi MVEUPATIKOV S1IKAIOPATOV, dNAdve evu-
moypadeg OtTl £ipal aroKAE10TIKOG ouyypadéag g apovoag [Ttuylakng Epyaoiag, yia v
0AoKAfpwor TG oroiag Kabe PorBsia eival MANPOSG AVAYVOPIOHEVE KAl AvaPEPETAL AETTTO-
pepwg oty gpyacia autt). 'Exe avagépel mAnpwg Kat pe oagpeig avapopeég, O0Aeg T1G TNYES
xpnong debopévav, andoyewv, 9€0emwv KAl MPOTACERV, 100V KAl AEKTIKOV avapopov, eite
Katd kuptodedia eite BAOEL EMNOTNPOVIKAG TIApAdpacng. AvadapBave v IPOCKIUKI Kt
ATOMIKY £UBUVH OTL OE TEPIMI®OT] ATIOTUYXIAG 0TV UAOTION 0N TRV AVROTEP® SNA®OEVIOV oTotl-
Xelwv, elpat untdAoyog €évavilt AOYoKAOING, YEYovog mou onpaivetl anotuyia oty ITtuyiakn
pou Epyaoia kat katd ouvérnela arnotuyia anoktnong tou TitAou Zrnoudav, mépav 1ov Aomov
OUVETIEI®V TOU VOPOU TIEPT MVEUPATIKOV SiIKA®Pdtov. Andove, ouvenwg, otl auty n Iltu-
xwakr) Epyaocia nipoetoipdactnke kat 0AOKANPpOONKe Ao £péva MPOoKITIKA KAl ATTIOKAEI0TIKA
Kat ot1, avadapBave mANp®g OAEG TIS CUVETIEIEG TOU VOHPOU OTNV TEPITI®OT KATd TNV oroia
anodexOel, draxpovikd, ot n gpyacia autr 1 THNpPaA g 6ev pou avnketl H10tt eivat mpoidv

AoyokAor)g AAANg mveupaTiKLG 610K oiag.

(Yroypa@rj)

EAeuBéprog KameAopvng
14 Iouviou 2022

Iepidnyn

Ta Stadoyikd ouotrpata ouxvd Xpnotpornolouv to unoouotnpa Dialogue State Tracking
(DST) ywa va odorAnpwoouv emtuXwg) oudninon. To DST €xetr okomd va mapakoAou-
Yel 10 o160 TOU Xprotn Katd 1 diapKela evog S1aAdyou Katl €ival éva apKeETd AMALTTIKO
npoBAnpa os multi-domain oevdapia. To schema-guided DST eivat pia véa mpoogyyion,
otnv oroia 1o oxnpa, dnAadn pia Alota aro ta vrootnpigopeva redia kat ripobeoeig padl pe
avanapaotdoelg 0 QUOIKI YA®Wood, Iapexetal yia kabe uninpeoia tou Siaddyou. Ilpdopateg
state-of-the-art vAomou)oeig tou DST Baocilovial ota oxrnpata MoKiAA@v U peol®v ya va
BeATIOO0OUV TNV EUPEOTIA KAl Va MTPAYHATOIO10UV Zzero-shot yevikeuon oe véa domains, opog
tétoteg pEBodot xperaloviat ouvhOwg oAlarnda transformer poviéda peyaing kAipakag kat
peyaldeg akodouBieg 10660u yia va £€xouv KaAr anodoor.

Ze autn] SutAe@patikn epyacia, mpota £10ayoupe td Bacikd g PnXavikng padnong,
g Babiag pabnong, g enedepyaoiag QUOIKIG YADNOOAS Kal TV S1AAOYIK®OV CUCTHAT®V
eotialoviag oto DST. Zin ouvéxela, mpoteivoupe éva HovieAo MOAAATAQV gpyaciov Baot-
opévo oto BERT yia va AUcoupe tautoxpova ta tpia DST npoBAnjpata: mpdBAewn mpodOe-
ong, npoBAeyn {nrovpevav nediov kat avabeon tpov nediov. EmumAéov, mpoteivoupe pa
ArodoTiKY Kal QeBmAT] KOSIKOTIOINOo TOU 10TOPIKOU TOU S10A0Y0U Kdal TOU OXNHATOS TRV
UTINPECIROV TTOU SeXVOUE OTL BEATIOVEL TIEPATTEP® TNV ATIOB00T).

Kadikomnoloupe povo toug 600 tedeutaioug yupoug Tou §1addyou, pia PJikprn avanapdota-
on yld T0 OXNHd KAt TV Ponyoulevr Katdotaon tou §iadoyou. O mponyoupevog yupog tou
OUCTHATOG avarapiotatdl PECK T®V UTIOKEIPNEVOV S10AOVIKOV EVEPYEIWV CUOTHIATOS TTOU
BeAtidvel onpavukd myv akpiBela tou DST. T'a 10 mpoBAnpa avdbeong tpev nediov mpo-
00£toupie emiong PNXaviopoug HETadopds TV Medinv ou Pyaxvouv Iponyouevoug yUpoug
KA1 KATAoTAoElS 51aA0Y0U y1d va avaktrjoouVv v T otav autd anateitat. 'Evag ap1Bpog a-
IO KEPAAEG KATNYOPLOTIOiNoNG IoU naipvouv og €10080 d1apopa PEpn g KOSIKOTIOUIEVNS
arntdé o BERT akolouBiag exkmaidsvovial tautoxpova yia v eniAuon wov 1plev rpoBAn-
patev.

H a&oAoynon oto ouvodo debopévav SGD beixvel ol n anddoon tng MPooLyylong pag
Serepvdet Katd moAu autt] tou ouotrpatog avapopag SGP-DST kat eivat kovid oto state-of-
the-art, eve eivatl oAU Atydtepo anmatntikiy o€ UMOAOY10TIKOUG Topoug. Ilpaypatonolovyie
avaAutika ablation studies rou egetdlouv toug KaBoP1oTIKOUG MTAPAYOVIESG Yia TV ermtuyia

TOU HOVIEAOU Hag.

Aégerg KAe1dua

HNXavikn pabnon, Pada pabnorn, enefepyaocia puokrg yAdwooag, bert, diadoyika ou-

otfjpata, dialogue state tracking, 11d0non noAAamieov epyaciov

MinAouatxny Epyaoia n

Abstract

Dialogue systems often employ a Dialogue State Tracking (DST) component to su-
ccessfully complete conversations. DST aims to track the user goal over the course of
a dialogue and it is a particularly challenging task in multi-domain scenarios. Schema-
guided DST is a new approach, where the schema, i.e. a list of the supported slots and
intents along with natural language descriptions, is provided for each dialogue service.
Recent state-of-the-art DST implementations rely on schemata of diverse services to i-
mprove model robustness and handle zero-shot generalization to new domains, however
such methods typically require multiple large scale transformer models and long input
sequences to perform well.

In this diploma thesis, we first introduce the basics of machine learning, deep le-
arning, natural language processing and dialogue systems focusing on DST. We then
propose a single multi-task BERT-based model that jointly solves the three DST tasks
of intent prediction, requested slot prediction and slot filling. Moreover, we propose an
efficient and parsimonious encoding of the dialogue history and service schemata that is
shown to further improve performance.

We only encode the last two utterances, a compact schema representation and the
previously predicted dialogue state. The preceding system utterance is represented as
its underlying system actions which significantly benefits accuracy. For the slot filling
task we additionally incorporate slot carryover mechanisms that search previous dialogue
utterances and states to retrieve values when necessary. A number of classification heads
which take as input various parts of the BERT-encoded sequence are jointly trained to
perform the tasks.

Evaluation on the SGD dataset shows that our approach outperforms the baseline
SGP-DST by a large margin and performs well compared to the state-of-the-art, while
being significantly more computationally efficient. Extensive ablation studies are perfor-

med to examine the contributing factors to the success of our model.

Keywords

machine learning, deep learning, natural language processing, bert, dialogue systems,

dialogue state tracking, multi-task learning

MinAouatxny Epyaoia B

OTOUG YOUVELG LUOU

Euyxaploticg

Ba nbela Katapxfv va euxaplotoe tov kabnynt k. AAégavdpo Iotapiavo yla v
enmiBAeyn autrg g dUMAepATKYG epyaciag Kal yia v eukalpia mou pou €8woe va v
EKTIOVI|O® 0T0 epyaotr)pto SLP-NTUA.

Erniong euxapioto 6uaitepa toug Yroynpioug Adaxtopeg Eubupn Fewpyiou kat Mopyo
[Mapaokeuoroudo yia v kabodrjynor| toug Kat Vv e§alpeTtiKY] oUuvepyaoia nou eixape.

Euxaptlote ermmAéov toug kaOnyntég k. Tladéota kat K. KoAAwa nmou aviarokpibnkav
P mpoBupia va OUPPETACXOUV OV TPTHEAT] EMTITPOITY).

TéAog 9a 1Beda va euxaplotom TV OIKOYEVELA F10U KAl ToUg @iAoug 10U yia v Kabo-

dnynon kat v ow)p€n rou pou rpocédepav 6Ada autd ta xpovia.

AB1jva, Iouviog 2022

EAevdépiog KameAaung

AinAouatxny Epyaoia

Ileplexopeva

Hepidnyn

Abstract

Evuxaploticg

0 Extetapévn EAAnvikn Iepidnyn
0.1 E10AYOVI] « « « « v v v e
0.1.1 KivIITPO .+ . v v v o e e e e e e e e e e e e e e e e e e e
0.1.2 ZUVEIOPOPES « . v v v v v e e e e e e e e e e e e e e e e e
0.2 To Schema-Guided Dialogue Zuvodo Aedopévev
0.3 Zyxeuxr) BBAOYPAdIa . . . L oL L e e e e e e e e e
0.4 TIPOTEWVOHEVO POVIEAD . . « v v v v v e e e e e e e e e e e e e e e e e e
0.4.1 ZUPBOAOHOL« o e e e e e e
0.4.2 Avamapdotaon €10000Uo u i i e e e e e e e
0.4.3 TIpoBAnpa mpoBAeyng POOEONG « « « v v v v v b v e e e e e e
0.4.4 TIpoBAnpa mpoBleyng NTOUPEVGOV MESIOV o o v v o v o . .
0.4.5 TIpoBAnpa avddeong ROV IESIOV . . . v v v v v v v v v v e e e e
0.4.6 Meta@opd TESIOV . . . v v v v v v e e e e e e e e e e e e e e
0.4.7 Exmaidsuon moAAATIAQV EQYACIOV . .« v v v v v v v v e e e e e
0.5 TIEIPAPATA .« v v v v v e
0.5.1 EZAYOVYI ETKETOV . . « ¢ v v v v v v v e e e e e e e e e e e e
0.5.2 EmaiBeunn] v v it e e e e e e e e e e e e
0.5.3 TIpoerefepyaoia KAl EIMAUENOT] « « v v v v v v v v e e e e e e e e e e
0.6 Amotedéopatda KAt OUCHTNOT] « « v v v v o v v v e e e e e e e e e e e e e
0.6.1 ZUYKPION PE AAAEG EPYAOIEG + + v v v v v e e e e e e e e e e e e
0.6.2 Ablationstudyo
0.6.3 Emidpaon tov pnxaviopov Petapopdg mediov o o oo .. L .
0.6.4 ZUTTNOL . .« v v v v i e e e e e e e e e
0.7 ZUPMEPAOHATA + + v v v v o e e v e e e e e e e e e e e e e e e e

0.8 MeAAOVUIKEG TIPOEKTACELS « « « v v v v v e e e e e e e e e e e e e e e e e e

1 Introduction
1.1 Motivation e e e e e e e e e e e e e e e
1.2 Contributions e e

1.3 Thesisoutline e e e e

MinAouatxny Epyaoia

19
19
19
20
20
22
23
24
25
25
26
26
26
27
27
27
28
28
29
29
29
30
30
30
31

I[NEPIEXOMENA

2 Machine Learning 35
2.1 Machine learning approaches L0000 35
2.1.1 Supervised learningo 35
2.1.2 Unsupervised learning 36
2.1.3 Reinforcementlearning.o 36

2.2 Machine learning concepts o000 o000 36
2.2.1 Lossfunction e 36
2.2.2 Gradientdescent 37
2.2.3 Bias-variance tradeoff L Lo 37

2.3 Machine Learning Methods 38
2.3.1 Decisiontrees L0 e 38
2.3.2 Support-vector machineso o oL 39
2.3.3 Linear regressiono e e e e e 40

2.4 Neural Networks and Deep Learning 40
2.4.1 Artificial Neural Networks 40
2.4.2 Introduction to Deep Learning 41
2.4.3 Activation functions Lo Lo 41
2.4.4 Learning through backpropagation 42
2.4.5 Regularization oo 42
2.4.6 Recurrent neural networks 44
2.4.7 Attention mechanismo 47
2.4.8 The Transformer, 48

2.5 Transfer Learningo 51
2.6 Multi-Task Learning o 51
3 Natural Language Processing 53
3.1 NLPtasks o e 53
3.2 N-gram Language Models 54
3.3 Distributional hypothesis - word embeddings 54
3.83.1 THAf.o 55
3.3.2 Co-occurencematrixo oo 55
3.3.3 Word2vec e 55

3.4 BERT ot e e e e e e 57
3.4.1 Architecture L 57
3.4.2 Inputsandoutputso oL 57
3.4.3 Pre-trainingo 58
3.4.4 Fine-tuning Lo o 58
3.45 ROBERTa it ittt it et e 58

3.5 XLNet o e e e e e e e 59
3.6 TH . . . e e 60

AinAouatxny Epyaoia

I[NEPIEXOMENA

4 Dialogue Systems 63
4.1 Introduction to dialogue systems 63
4.1.1 Open-domain dialogue systems 63
4.1.2 Task-oriented dialogue systems 65
4.2 Dialogue state tracking Lo 68
4.2.1 Datasets Lo e e 68
4.2.2 Discriminative and generative DST 69
4.2.3 DST as machine reading comprehension 71
4.2.4 Schema integrationin DST 71
5 Multi-Task Schema-Guided Dialogue State Tracking 73
5.1 The Schema-Guided Dialogue Dataset 73
52 Relatedwork o o e 74
5.3 Baseline system 1: Multiple task-specific BERT modules and comparison of
Encoder architectures00 e 76
5.3.1 Encoder architectures 0. 76
5.3.2 Modules e e e e e e 78
5.3.3 Experimental Setup 0000 81
5.3.4 Results and Discussion 82
5.4 Baseline system 2: Unified slot BERT module and encoding of system actions 83
5.4.1 Inputrepresentation forslots 83
5.4.2 Unified slotmodule 83
5.4.3 Experimentalsetup. L0000 84
5.4.4 Resultsand discussion., 85
5.5 Proposed model 85
55.1 Notation 86
5.5.2 Inputrepresentation Lo oL 87
5.5.3 Intent predictiontasko 87
5.5.4 Requested slot predictiontask 87
5.5.5 Slotfillingtask 87
5.5.6 Slotcarryovero e e 88
5.5.7 Multi-task training 0oL o oo 88
5.6 Experimental Setup e e 88
5.6.1 Label Acquisition 0oL 88
5.6.2 Training Setup e 89
5.6.3 Preprocessing and augmentationo, 89
5.7 Resultsand Discussion 89
5.7.1 Comparison tootherworks 89
5.7.2 Ablationstudy Lo 90
5.7.3 Effect of slot carryover mechanisms 91
5.7.4 Discussion e 91

MinAouatxny Epyaoia

I[NEPIEXOMENA

6 Conclusions 93
6.1 Conclusions e e e e e e e e 93
6.2 Futurework e 93

Bibliography 104

AinAouatxny Epyaoia

KataAoyog Zxnpatwov

2.1

2.2

2.3

‘Eva napadetypa oxfjpatog yia v vnnpeoia Payment. To oxnpa mepie-
Xt pa Alota and nedia kat mpobéoetg. Ta media sivarl eite katnyopika eite
HN-Katnyoplkd Kat yla ta katnyopikd diverat Alota pe 1ig mbaveg tipég. E-
rmrAéov, KABe mpobeon anapiOpel ta anattovpeva Kat Td Poatpetika nedia
TIOU 0 XPNOoTNG IPEMEL va 8A0eL yia va aAANAerudpAoel Pe T CUYKEKPIIEVT)
mpoBeon. TInyn: [1] o o o o o e e
'Evag 6tdAoyog ard 1o Flight domain. Ot vninpeoieg A kat B priopouv va
Xpnotporoinfouv wg diernagr| oto domain. ITapodo mou npoopépouv v id1a
AETOUPYIKOTNTA, UTIAPXOUV MIKPEG H1adOPOTION)0ELS OTO O TOUG €meldr)

evdexopévag mpogpyovial ano drapopetikoug oxediaotég APL IInyn: [1] . . .
Anoorniaopa 61aAdyou Pe EMONPEIMOELS Y1a KATIO0UG YUPOUG

Ot eioodo1 yia 11§ Kepadég ipoBAeyng mpodbeong, rpoBleyng {NTOUPEVOV TTe-
blwv, avabeong tpov nediov kat petadopdg nediov @aivoviat yia 1o mpotet-
vopevo poviédo moAAarmdov gpyaociwv BERT (mave pépog), padl pe éva na-
padelypa K@S1KOTOINong Tou yUpou KAl ToU 10ToP1KoU H1aAdyou 1ou sivat -
10080g oto poviédo BERT (kat® pépog). [Ipooélte ta xpouata g e10080u otig
KePAAEG KATNYOP10TION0G (TTAVE PEPOG) TTIOU AVIIOTOLXOUV otd Stdpopa HPEPT
g akodouBiag e10060u (kat® pépog). a autd 1o napdadetypa, n vnnpeoia
0TOUG YUPOUG TOU OUCTHATOG KAl ToU Xprjotn eival) Restaurants_2. H mipon-
youpevr nipoBeon FindRestaurants aAAddet ounv ReserveRestaurant. Kavéva
niedio Bev {nteital amo 1o Xprjotn. IOV IIPONYOUEVO YUPO TOU OUCTHIATOG, TO
ouotnpa rpoodépet v TPy “World Gourmet” yia 1o riedio restaurant_name
ou o ¥pnotng arodexetal (petadopa nediov in_sys_uttr). O yprnotng divet
TG TIpEG “six in the evening” kat ‘4’ yia 10 Pn-Katnyopiko rnedio time kat to
Katnyopiko nedio number_of_seats. H tiun tou date 6ev Aéyetatl apeoa aAda
urtovvoeitatl ot €xel avagpepBel mponyoupévag (petadopd nediou in_cross_-
service_hist amno pa niponyoupevn uninpeoia (Homes_1)). Mépog tng e160dou

TAPAAEITIETAT. + v v v v v e

Visual illustration of the bias and variance errors. The top left image is
the perfect scenario with the right balance for the bias-variance tradeoff.

Source: http://scott.fortmann-roe.com/docs/BiasVariance.html

SVM optimal hyperplane. Source: https://medium.com/@cdabakoglu/what-1is-

support-vector-machine-svm-fd0e9e39514f

A feedforward neural network with one hidden layer. Source: https://

commons.wikimedia.org/wiki/File:Neural_network.svg

AinAouatxny Epyaoia

24

38

39

http://scott.fortmann-roe.com/docs/BiasVariance.html
https://medium.com/@cdabakoglu/what-is-support-vector-machine-svm-fd0e9e39514f
https://medium.com/@cdabakoglu/what-is-support-vector-machine-svm-fd0e9e39514f
https://commons.wikimedia.org/wiki/File:Neural_network.svg
https://commons.wikimedia.org/wiki/File:Neural_network.svg

KATAAOT'OZ ZXHMATQN

2.4 A neural network with 2 hidden layers before (a) and after (b) applying
dropout. Source: [2] Lo 43
2.5 An example of early stopping. Training stops when the validation set
error starts increasing which indicates overfitting. Source: https://www.
researchgate.net/figure/Early-stopping-based-on-cross-validation_figl 3302948 44
2.6 A RNN model (left) and its unrolled structure (right). Source: [3] 44
2.7 Examples of RNN usages. Source: [4] 45
2.8 A LSTM cell. The yellow rectangles represent the four neural network lay-
ers. Source: https://www.researchgate.net/figure/Structure-of-the-LSTM-
cell-and-equations-that-describe-the-gates-of-an-LSTM-cell_fig5_329362532 46

2.9 An encoder-decoder model translating a sentence from English to Chinese.

Source: [B] e e e e e e e e e e 47
2.10 Attention mechanism. Source: [6] oo .00, 48
2.11 Multi-head attention. Source: [7] oo oo 50
2.12 The encoder-decoder transformer architecture. Source: [7] 50
3.1 The two word2vec model architectures. Source: [8] 56

3.2 Visualization of embeddings that capture the similarities between words.
Source: https://medium.com/@nuripurswani/word2vec-for-talent-acquisition-
ab20a23e01d8 L Lo e e e e e e e e e 57

3.3 BERT is first pre-trained on large corpora and then fine-tuned on task-
specific datasets. Source: [9]o 57

3.4 BERT input sequences and classification heads for different tasks. Source:

O] . . e e 59

3.5 Illustration of XLNet’s permutation language modeling objective for predict-

ing xs with different factorization orders. Source: [10] 60
3.6 T5 model on various downstream tasks. Source: [11] 61
3.7 T5 pre-training and fine-tuning. Source: [12]. 61
4.1 Retrieval-based architecture. Source: [13] 64
4.2 Encoder-decoder based architecture. Source: [14] 64
4.3 A traditional pipeline TOD system. Source: [15] 66

4.4 An example of a MDP. Green circles correspond to states, orange circles
correspond to actions and orange arrows to rewards. Source: https://en.
wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.
SV v v e 67

4.5 An example dialogue with dialogue state annotations from MultiWwOZ 2.1.

The slots span two domains: restaurant and attraction. Source: [16] 69

5.1 An example schema for a Payment service. The schema contains a list
of slots and intents. Slots are either categorical or non-categorical and a
list of possible values is provided for categorical slots. Furthermore, each
intent lists the required and optional slots that the user should provide

when interacting with the particular intent. Source: [1] 74

AinAouatxny Epyaoia

https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-that-describe-the-gates-of-an-LSTM-cell_fig5_329362532
https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-that-describe-the-gates-of-an-LSTM-cell_fig5_329362532
https://medium.com/@nuripurswani/word2vec-for-talent-acquisition-ab20a23e01d8
https://medium.com/@nuripurswani/word2vec-for-talent-acquisition-ab20a23e01d8
https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg
https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg
https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg

KATAAOT'OZ ZXHMATQN

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

A dialogue from the Flight domain. Services A and B can be used as an
interface to the domain. Although they offer the same functionality, there

are slight differences in their schema because they may come from different

API designers. Source: [1]o oo 75
Dialogue fragment with DST annotations for some user turns 75
Fusion Encoder L o 77
Cross Encoder. s 78

Intent prediction. The active intent is “FindApartment” which has the fol-
lowing description: “Find an apartment in a city for a given number of

bedrooms”. e e e e e 78

Requested slot prediction. The user requests the value for two slots: “aver-

age_rating” and “street_address”.o L. 78

The Slot Filling Status module identifies that in this particular example only
one slot is “active” (“appointment_date”), all the other slots in the service

take the “none” status. L s 79

Non-categorical slot filling. For the slot “origin” the slot filling status is

“active”: the user has given the value “Toronto Ontario”. 79

Categorical slot filling. For the slot number_of_riders the slot filling status

is active: the user has given thevalue 3. 80

In this example, the target slot “location” has the status of “cross_service_-
carryover”. This means that the Cross-service Carryover module must find
the appropriate source slot (“city”). The full example is illustrated in Figure
B.12. . L s e 80

Examples of in_service_carryover (left) and cross_service_carryover (right). 81

The unified slot module (top) along with an example input sequence corre-
sponding to the categorical slot “number_of_seats” (bottom). In this example
the slot is not requested (requested status = none) and the user gives a value
for the slot (user status = active). The categorical head picks the given value
from the list of possible values (number_of_seats = 4). Note that the start
and end heads are not activated in this example; they are only activated for

non-categorical slots.o Lo 84

AinAouatxny Epyaoia

KATAAOT'OZ ZXHMATQN

5.14 The inputs to the intent prediction, requested slot prediction, slot filling and

slot carryover heads are shown for our proposed multi-task BERT model
(top), along with an example encoding of the utterance and dialogue history
that is the input to the base BERT model (bottom). Note the color coding of
the input to the classification heads (top) that matches the various parts of
the input sequence (bottom). For this example, the service in the system and
the user utterance is Restaurants_2. The previous intent FindRestaurants
changes to ReserveRestaurant. No slots are requested by the user. In the
preceding system utterance, the system offers the value “World Gourmet”
for the slot restaurant_name which the user accepts (slot carryover in_sys_-
uttr). The user gives the values “six in the evening” and “4” for the non-
categorical slot time and the categorical slot number_of_seats. The date
value is not uttered but it is implied that it has been mentioned before (slot
carryover in_cross_service_hist from a previous service (Homes_1)). Part of

the input is truncated for illustration purposes.

AinAouatxny Epyaoia

KatdalAoyog IItvarkwv

1 ZUYKPON PE AAAEG EPYAOIES« L L L e e e e e e e e e 28
2 Ablation study 28
3 Enidpaon 1oV PNXaviop®v PETAPOPAS « « v v v v v v e e e e e e e e e e 29
5.1 Baselinesystem lresults 82
5.2 Baseline system 2 results on the slot fillingtask 85
5.3 Comparisontootherworks. 89
54 Ablationstudy. 90
5.5 Effect of carryover mechanisms 90

MinAouatxny Epyaoia

Kegpalato m

Extetapévn EAAnvikn IlepiAnyn

0.1 Ewayoyn

0.1.1 Kivntpo

Mrnxavég rmou Prnopouv va ocuntouv PE QUOIKO TPOTIO PE avOp®ITIoug £X0UV AITOTEAEOEL TO
AVTIKEIPEVO OUTOITIKOV £PY®V EMMOTNHOVIKEG @aviaciag. [Tapoda autd, Aoy® TV tedeutaiov
e€eAi§ewv oV TEXVIU) VO 100UV KAl IO OUYKeKPIpéva ot Babia pabnorn, eugur| Stadoyt-
KA ouotijpata apXidouv va yivoviatl mpaypatkot)ta etuXaivoviag KAtl ITou IIPOonyoUHEV®S
fitav povo ot @aviaoia pag. Anpogiieis ynoraxkoi fonboi onwg) Siri,) Cortana, to Google
Assistant, n Alexa KA ival 1Kavol va €KTEAEC0UV €PYAOIEG 1)/KAl VA PUXAYDYI)OOUV TOUG
XPYOTES PEOW® OUYTHOEDV.

Miua adloonueiotn Katnyopia mpaktopov oulinong sival ta SiaAoyikd cuotrjpata mpo-
oavatoAlopéva oe OUYKEKPIEVO okomo (task-oriented). Tétolwa cuotrjpata otoxevouv va
Bonbrijoouv toug XP1roteg va OAOKANPGOOOUV KaONpeptveg dpaotnplotnteg Onwg va KAvVouv
KPATNOon 0€ £0T1ATOP10, va KAgioouv eottjpla KA. 'Eva kpiowio unoouotnpa oe éva task-
oriented 6taAoyiko cuotnpa eivat to Dialogue State Tracking (DST) rou napakoAouBei kat
KAtaypadel 10 0TOX0 TOU XPotn Katd tn 6idpkeia moAAarmiev yupeov tou Siadoyou. Me
Baon ta Adyla tou tedeutaiou yupou tou Staddyou (utterance) kat 1o 10TOPIKO TOU H1aAoyou,
10 DST mpoBAémetl v Kataotaor tou 6tdAoyou (dialogue state) mou aroturnovel 10 otOX0
10U ¥prjotn. H kataotaon tou diaddyou nou ipoBAepOnKe £metta xprotponoleitat ano dAla
UTIOCUOTHATA V1d VA avakinBouv ototxeia ano pia faocn 6edopévav, va eKteAeotouv o1 evep-
yeleg Tou €xouv {ntnBei anod 1o xpriotn Kat va anavijoouv katdAAnia [15]. ITo npoodara,
1a ouothpata nou €xouv rpotabel eivar multi-domain- propouv va xeipiotouv rmoAAanAd
O6tadoyika domains otov 1610 6iaAoyo.

H Unapn odoéva kat au§avopevav §1adpopeTikeV UMNPECIOV MTOU MPOodEpovTal arod tda
surnopika task-oriented cuot)pata odrynos v avartugn tou kabodnyoupevou ard to
oxnua mpotunovu (schema-guided paradigm) [1]. Auto to POTUTIO £XE1 OKOITO VA ETTPEYPEL
ota poviéda DST va SouAevouv oe véeg, Ayvaoteg urnpeoieg Baoiddpieva ot yvoon Iou
£€XO0UV AITOKTAOEL AT TG UTpeoieg rmou idav katd v eknaibevon. H niepiypadr) oe Quoikr)
YA©OOQ TOU OXNATOg T®V UTNPeol®v KaBodnyel to 110ViEAo o€ TETola Katvoupla oevapld.

[MapdAAnla, ipéopata poekmniadevpeva transformer yAwooikd poviéda onwg to BERT
[17] xat to T5 [11] €xouv deiet e€arpetikr arodoor oe roAAd rpoBAnpata Katavonong @u-
O1KNAG YAwooag. Aoy® tng (paong nposknaidsuong oe peyala ouvoda dedopévev, pabaivouv
Va KAtavoouv T YA®ood PEC® Mmapadelypldtov Katl PETEMELTd PITOPOUV va IIPOCaPl0GTOUV

o€ ouykekpéva poBAnpata onwg 1o DST péon pag adikaociag yveotng og fine-tuning.

MinAouatxny Epyaoia m

0. Extetapévn) EAAnvikr) Iepidnyn

Tétowa poviéda sivatl ouvendg katdAdnda yia Stadoyikd cuotijpata eattiag g Kavotntag

Toug va YSVlKSlj Oouv.

0.1.2 ZuvelogopEg

Ze auty) Sumdepatikn epyaocia, mpoteivoupe éva povieédo ioAdanAev epyaociov (multi-
task) Baoiopévo oto BERT mou Auvel tautdypova ta tpia DST mpoBAnpata: mnpoBAsyn
nipoBeong (intent prediction), mpdBAeyn {nrovpevev nediov (requested slot prediction) kat
avdBeon tipev nediov (slot filling). EmumAéov, kataokeuddoupe pia arodotiky] Kat @e1dmAn
OUVOTITIKI] avarnapdotaocn yld 1o 81dAoyo Kat 1o oxfpa mou deixvoupe ot feAtidvel onpa-
VKA Vv anoboorn eve eivatl Atyotepo UTIOAOY10TA anattnuikn. To mpotevopevo PoviEAo pag
Eernepvd katd moAu oe anddoon 10 cuotnpa avadopdg (baseline) kat np anodoor) tou eivat
Kovta oto state-of-the-art. AvaAutika ablation studies amokaAurnitouv v enidpaon kKaBe

OTPATNYIKLG TOU POVIEAOU pag oto rpoBAnpa avabeong ipov nediov.

0.2 To Schema-Guided Dialogue ZuvoAo AsSopévov

Ye aut v epyaoia xpnowpomnoovpe 1o Schema-Guided Dialogue (SGD) Zuvolo Ae-
dopévav [1], éva multi-domain task-oriented ouvolo 6ebopévav peydAng kKAipaxkag mmou
axrolouBei 1o schema-guided npoturo. To SGD miepiexet 21,106 Sradoyoug oe 20 domains
kat 45 vunnpeoieg vnepBaivovtag oe kKAipaka dadda ouvoAda Sedopévav. ZunrneptdapBavet
EMONPEWOELS TIOU dleukoAuvouv roAdarAd task-oriented Hiadoyka mpoBAnpata oneg 1
Katavonon @uoikng yAwooag (Natural Language Understanding - NLU), to DST kat v
napayeyn anavinong. To ouvolo 6edopévav meplExel mepypadeg 0 PUOIKY YADOOA TV
dlapopev otorxeiwv ToU oxNPatog- éva mapddsiypa oxnuatog @aivetat oo Xxnua 1. I'a va
a&odoynOei n zero-shot ! wavotnta yevikeuong oe kawvoupieg unnpeoieg kat domains, oto
erionpo ouvolo Soxkipwv (test set) 10 77% tov H10A0YIKOV YUP®V TIEPIEXOUV TOUAAYX10TOV pild
unnpeoia ou dev eivatl apovoa oto oUvodo exnaideuong. Me autdv tov tporo, Siverat to
KivnTpo yia v oxediaon evog eVOTIOUIEVOU POVIEAOU Yid OAEG TIG UIINPECiEG KAl TO oXNpud
divetal wg eicodog.

Xto Schema-Guided DST track tou 8ou Dialogue System Technology Challenge, o1 oup-
petéxovieg avérttugav zero-shot DST kaBobnyoupeva arnd 10 oxrpa povieda Baoctopéva oto
ouvolo debopévav [18]. Ta DST mpoBArjpata arotedouv v npoBAeyn g evepyng npobe-
ong tou xpnotn (intent prediction), tov nediov mou {nrovvral ano 1o xpnotn (requested
slot prediction) kat tov TGV rou divoviat yia ta nedia anod 10 Xpnotn €0G T0V CUYKEKPL-
pévo yupo (slot filling). Enopévag, Sewpouiie wg kataotaor Staddoyou (dialogue state) v
evepyr) mpoBeor), ta {nrovpeva rnedia katl 1a eguydpla nediov-tipev yia éva yupo mapoio
mou 1a duo npota npoBArjpata mo ouxva dewpouviat NLU mpoBAnpata. Xe multi-domain
dladdyoug, pma Sexwpiotr) katdotaor Siaddyou urtodoyidetatl yia Kabe urtnpeoia rmou undpyxet

oto diadoyo.

11e Tov 6po zero-shot learning avagepopacte oto poBAnua oto oroio Katd tn diapKeia afloAdynong KATo1ou
HOVIEAOU PNXavikng padnong undpxouv dedopéva mou dev €xouv napatnpnbei otnv exknaidsuon

m Awtflopatkn Epyaoia

0.2 To Schema-Guided Dialogue ZuvoAo Aedopévav

service_name: "Payment"” Service
description: "Digital wallet to make and request payments"

name: "account_type" categorical: True Slots
description: "Source of money to make payment”
possible values: ["in-app balance”, “debit card”, “bank”)

name: "amount” categorical: False
description: "Amount of money to transfer or request”

name: "contact name" categorical: False
description: "Name of contact for transaction”

name: "MakePayment" Intents
description: "Send money to your contact”

required_slots: ["amount"”, "contact name"]

optional_slots: ["account_type" = "in-app balance")

name: "RequestPayment”
description: "Request money from a contact”
required_slots: ["amount”, "contact_name"]

Ixnua 1: 'Eva mapdabdeiyua oxnuatog yia mv vnnpeoia Payment. To oxnua mepiexet pia
Aiota ano mebdia kar mpodéocig. Ta media eivat €ite Kamyopka eite UN-Katyopika Kat yia
a kamyopwd Oivetar Aiota pe tg mdaveg tpeg. EmmAsov, kade mpodeon amapiduel ta
anartovpeva Kat 1a mpoapetikd media mou o xpnotng mpenel va dwoet yia va adinismidpaoet
uUe ™ ouykekpevn mpodeon. Inyn: [1]

'‘Onwg priopouie va doupe oto Lxnpa 1, urdpxet pia oxéon petady v unootnpigope-
vov 1ipoBéoenv katl niediov. Kabe mpobeon anapiBpel amattovpeva Kat mpoaipetika nedia.
MropoUpe va katnyoplororjooupie éva nedio og informable 11 non-informable avdaloya
HE TO av 0 XProtng EIMTPEETAL VA SAOEL T Y1ld AUTO. ZTIG EMOMEVEG EVOTITEG UTTODETOUIE
ot éva niedio eivatl informable av sivat eite anaitoUPevo €11e MPOAPETIKO O TOUAAYX10TOV Pia
nipoBeon. Ta 1o mpoBAnpa avabeong tpwv nediov Yewpoupe povo ta informable nedia wg
unoyndila eve orotodrrote redio (informable 1) 6x1) propet va {nnOei.

Ot petpikég aglodoynong yia o npoBAinpa tou DST oto SGD ouvoldo dedopévav eivat ot

aroAouBeg oupgpwva pe [1]:

e Active intent accuracy: To 1T0000T0 T®V YUP®V ITOU MIAAEL O XPHOTNG Y1d TOUG OITo-

loug €ytve owotr) PoBAeyn yia v evepyr) rpobeor.

e Requested slot F1: To macro-averaged F1 score ywa ta {ntoupeva nedia otoug
yUpoug tou xprotn. [upot xwpig {nrovpeva nedia otnv npaypatiky (ground-truth)

Katl otV Kataotaon 6taAdyou mou rpoBAEpOnke apaleinovat.

e Average Goal Accuracy: H péon axkpiBeia onotrng npoBieyng tov nediov otoug oxe-
TiKoUG yupoug. Iledia yia ta omoia dev €xel avateBel tyur) ot ground truth katdotaon
tou S1addyou apaleinoviat. Ma ta pn-katnyopika nedia, éva fuzzy score avtuiotoiyi-

ong (fuzzy matching score) xpnotponoieitat yia va avtapeiyel ev HEPEL OOOTEG ATTA-

Awtlopatkn Epyaoia m

0. Extetapévn) EAAnvikr) Iepidnyn

VINOES.

e Joint Goal Accuracy: H péon axkpiBeia owotr|g poBleyng 0Awv tov nebiov o Evav

OUYKeKPIEVO YUpo. Ta ta pn-katyopika niedia, éva fuzzy matching score xpnowo-

ToteiTal yia va aviapeiyel v PEPEL OOOTEG ATIAVILOELS.

User
Flight

Service A SearchFlight:

origin = Baltimore
Intents: destination = Seattle
SearchFlight, num_stops = 0
ReserveFlight

SearchFlight:
SI.Ot.s' origin = Baltimore
Zzgtl::{ation destination = Seattle
— stops: num_stops = 0
depé;n, depart = May 16

return, ... return = May 20

Find direct round trip flights from Baltimore to Seattle.

Flying out May 16 and returning May 20.

System

FindFlight:
depart = Baltimore
arrive = Seattle
direct_only = True

Sure, what dates are you looking for?

FindFlight:

depart = Baltimore
arrive = Seattle
direct_only = True
depart_date = May 16
return_date = May 20

OK, | found a Delta flight for 302 dollars.

Flight
Service B

Intents:
FindFlight,
ReserveFlight

Slots:

depart,

arrive,
depart_date,
return_date,
direct_only, ...

Zxnpna 2: 'Evag dwafoyog ano 1o Flight domain. Ot unnpeoieg A kat B umopouv va xpnotpuonor-
ndovv w¢ Siewagn oto domain. IlapdoAo ToU mPOoPEpouv TN ibla AETOUPYKoTNTIa, UTAOXOoUV
WKOEG H1apOpOTOUOEIS OTO OXNUA TOUS ETELOT) EVOEXOUEVOS TPOEPOVTAl amod SlapopeToUs

oxebiaotég APL Ilnyn: [1]

[Find me an apartment]

In which area to look?

[Search in Fremont]

How many bedrooms?

Homes_1:
active_intent: FindAppartment
requested_slots: []

« [slot_values: {area=Fremont,

3 bed rooms

I

Alborada Apartments has 3 bed rooms

number_of_beds=3}

and 2 baths, is located at 1001
Beethoven Common and costs $3900

Should i schedule a visit to it?

Yes, please do

[.]

[Find me a restaurant there]

In Fremont there is the World Gourmet

Restaurants_2:

active_intent: ReserveRestaurant
requested_slots: []

slot_values: {category=unlimited,
date=March 5th, location=Fremont,
number_of_seats=4,
restaurant_name=World Gourmet,

Book me a table there for 4 people
at six in the evening on that day

time=six in the evening}

Y

Please confirm: Booking a table for 4 people at 6
pm on March 5th at the World Gourmet Fremont

Restaurants_2:
active_intent: ...
requested_slots:

Yes, thats fine. Is there vegetarian
food, whats the rating?

[has_vegetarian_options, rating]
slot_values: ...

Zxnpa 3: Anooraoua 61afoyou Ue EMIONUEIDOCELS Yla KATOIOUG YUPOUS

0.3 XIxetki BiBAloypadia

To SGD-baseline [1] ipaypatonoiet fine-tuning oto poviédo BERT pe Bdon toug o

TeAeUTaioug yUPOUG KAl OUVEVAVEL T K@S1Komonpéveg povadeg (tokens) pe ta embeddings

AinAouatxny Epyaoia

0.4 TIlpotetvopevo poviedo

TOU oXNHatog - Ta kedikorownpéva pe 1o BERT otoikeia tou oxfjpatog. Ta embeddings tou
oX1Npatog ivat UroAoylopéva mpv v eKmnaideuorn. Xt ouveéxeld, KePaAég KAtnyoplomoin-
ong (classification heads) nmaipvouv wg £10060 T0UG KOHIKOTIOINPEVOUG YUPOUG ToU S1adoyou
kat Siagpopetikd embeddings ToU oXfjaATOS KAl TTAPAYOUV TG TOAVOTNTEG TOV KAACE®V yid
KABe mpoBANa.

Karowa aro ta poviéda rou €xouv npotabei mpaypartonolovv fine-tuning oe évav api6-
16 ard fexoplotd nposkriadeupéva poviéda yia kdbe unorpoBAnpa pe eicodo toug uo
TeAeutaioug yUpoug Kat v neptypadrn Kabe otoixeiou tou oxrjpatog (rediou 1] mpobeong)
[19, 20]. ErurpooBétng, yia va aviipeoItioouy 1o poBAnpa g pakponpobeopng gaptn-
ong petadu nebiov (BAéne Evotunta 4.2.4) Xpnotpornolovv pnxaviopoug petadopdg rnediov.
To SGP-DST [19] ka1 1o ouotnua SPPD [20] xpnoipomnolouv évav aplBpo aro mpoeKnatdeu-
péva povieda BERT kat utoBetouv v ripoogyylorn moAAandev nepacpdtev (multi-pass) kat
€101 xpetadoviatl moAAardd niepaopata anod 10 BERT yua kabe yupo tou Siaddyou.

Ot state-of-the-art pébodot [21, 22] Sev Baoilovial oe pnxaviopoug petapopdg nedicov:
exkratdevovial pe 0AOKANPO TO 10TOPIKO ToU dladoyou. Ta mAeovektrpata €OV TIPOOEY-
ylogwv eivat 61t aropeuvyouv 1] OUCOWPEUOT oPaApdiav Kat 1) arodoon eivatl kaAutepn arno
pebodoug pe prxaviopoug petagopdg rediov. To paDST [21] mpaypatorotet fine-tuning oe
évav aplBpo amno npoeknaldeupéva povieda pe 0AOKANPO 1o 61dAoyo Kat £xel apatnpnOet
OT1 pHeyadog aplBpog amod Xe1poKivita KATaoKEUAoPEVa Xapaktnplotikd kat erauinor) edo-
Pévev propouv va BeATIOo0UV IOAU v arodoorn ota Katnyopika redia. Amnod v aAdn, 1o
D3ST [22] paypatorotet fine-tuning oe éva povo T5 poviédo yia 0Aa ta urorpoBAnpata
€ T MPOOEYY10n €vOg mepdopatog (single-pass) 6nAadr) 0Asg o1 meplypadég yla 1o oxnua

evevovtal Kat tpogodotouviat oto poviedo padi pe to Siddoyo.

0.4 IIpoteivopevo povtéAo

Ze autv Vv evotnta, Impoteivoupe €va Poviédo rmoAdarmlev epyaciev Bactopévo oto
BERT mou nipaypatornotei tautdoypova v npoBAeyn mpobeong, tv mpoBieyrn {nroupevev
nediov Kat v avdbeon Tpev nediov. L10 IPOTEWVOHEVO HOVIEAO, U00ETOUE PNXAVIOHOUS
petagpopdg nediov Kat KOS1KomoloUpe POvVo ToV apéomg ITPONYOUHEVO YUPO TOU OUCTHd-
T0G KAl TOV TPEXOVIA YUPO TOU XProtn Orwg ota cuothpata avadpopds (BAéme Evounta 5.3
Kat 5.4). EmumAéov, o mponyoupevog yUpog TOU OUCTHATOG avarapiotactal CUVOITTIKA d-
Slorolovtag TG urokeipeveg S10A0yIKEG evépyeleg TOU ouotrjpatog (system actions). Ta
va ermteuyfel pa o anodotiki Kat PeEB®AL avanapdotaon g £10060u, Kadikomoloupe
0Aa 1ta ororyeia tou oxnpatog padl Xpnolpornoiwviag Povo Ta OVOHATd TOUG KAl CUNIIEPL-
AapBavoupe emMAEKTIKA TIPONyoUpeveg Kataotaoelg H1adoyou. Autr) eival n mo OnpaviiKy
Slapopd ot ox£on pe ta ouctpata avapopdg. To rmpotevopevo PoVIEAo 1ag Sermepvdet Katd
TIOAU o¢ anodoor) 1o cuotnua avagpopdg SGP-DST kat ermtuyyavetl arnnodoorn kKovid oto state-
of-the-art. AvaAutika ablation studies aroxkaAuntouv v enidpaocn KAOs oTPATNYIKAG TOU
povtédou pag oto npoBAnpa g avabeong Tip®V nedimv.

H apyttektoviky] 1ou poviédou moAAarmAev epyaociov @aivetat oto Xxnua 4. O yupog
TOU XPHOTn, O IPONYOUHEVOS YUPOG TOU OUCTHPATOG, Td OXHpata Kat mponyoupeveg DST
mAnpogopieg (BAtmie Mépn 1 éwg 5) kodwomnolouviat péow BERT. Atagopstika koppdatia

Awtflopatkn Epyaoia m

0. Extetapévn) EAAnvikr) Iepidnyn

Lo . X number_of_seats: 4 restaurant_name: World Gourmet
Active intent: ReserveRestaurant Requested slots: [] time: six in the evening date: March 5th
e J e
Al 4 Jﬁ r R} 4
[intent status] [intent value | [regstatus] [userstatus | [start[end | [categorical| [carryover status] [cross-service]

[PaT] [CLS] || [SERVICE] restaurants 2 [ACTION] Offer [SLOT] restaurant name [VALUE] World Gourmet [ACTION] Offer [SLOT] location [VALUE] Fremont | [SEP]
M lBook me a table there for 4 people at six in the evening on that day | [SEP]

[SERVICE] restaurants 2 || Active intent : find restaurants ‘[INTENT] reserve restaurant || [INTENT] find restaurants ‘[INTENT] [NONE]

[SLOT] restaurant name : [NONE]||[SLOT] date : [NONE] | [SLOT] time : [NONE] .. [SLOT] number of seats : [NONE]| [VALUE] 1 |[VALUE] 2 .. [SLOT] rating...
[SERVICE] homes 1||[[SLOT] visit date : March 5th|[SLOT] system address : 1001 Beethoven Common .. [SEF]

Zxnpa 4: Ot givobot yia g kepaiés mpobAsyng mpodeong, mpobAsyns Nrovusvev tediov,
avadeong v tediov Kat petagpopdg tediov gaivovial yia 1o MPOTEWOUEVO UovTéAo toAAa-
AoV gpyaciwv BERT (nave uépog), uadi ue éva mtapadetyua Kodkonoinong tou yUupou Kat Tou
1otopkov dajloyov mou eivar eicobog oto povtéfio BERT (kate puépog). Ipooéte ta ypouara
¢ £L0060U 0TI¢ KePaeg Katnyoplomoinong (Tave ugpog) mou avtiotoyouv ota diapopa Uepn
¢ arxofouvdiag e100bou (Kdtw Uepog). Iia auto 1o mapadetyua, N UTnPEeTia oToug yupoug Tou
ovotuatog kat tou ypnotn swar n Restaurants_2. H mponyovusvn mpodeon FindRestau-
rants ajiiafet otv ReserveRestaurant. Kavéva medio Sev {nteitat amo 10 ypnotn. Ztov
TPONYOUUEVO YUPO TOU CUOTHUATOG, TO oUuotnua mpoo@épet v tun “World Gourmet” yia to
nedio restaurant_name mou 0 xpnotng anodExetat (uetapopa tediov in_sys_uttr). O ypnong
biver tig Tuég “six in the evening” katr ‘4’ yia 1o un-rkaryopuko nedio time kat 10 Katyopu<o
nedio number_of_seats. H tr twou date 6ev Aéystar aueoa afjla umovvosital OtL £xel ava-
eePIel Tponyouucveg (ustagopd ediov in_cross_service_hist ano pia mponyoupuevn unnpeoia
(Homes_1)). Mépog tn¢ e100dou mapafeinetat.

g Kadwonoupéveg akodloubiag (BAére avtiotolkion pe xpopata oto oxnua) divoviatr g
eloodog o evvid KeaAég KATNYOPLOMOinong mou AUvouv ta npoBAnpata tng rpobleyng
nipoBeong (2 repadég), tng npoBleyng {nrovpevev nediov, g avabeong Tipov nediov (4
KePadég) kat petapopdg nediov (2 kepaAcg).

0.4.1 Zup6oAilopoi

'Eote n pia vninpeoia tou diadoyou, I(n) 1o oUvoldo tov npobicemv oty unnpeoia (rou
ouprniepldapBavel v e1d1kn Kevr) pobeon [NONE]) kat S(n) to oUvoAo 1tev rediowv oty u-
ninpeoia. Ta media xwpilovial oe KATNYOPIKA KAl PN-KATNyopikd. 'Eote Sqqi(n) € S(n) to
OUVOAO TRV KATNYOPIK®V MESIOV KAl Sponcar(1) € S(11) 10 0UVOAO TV PN-KATHYOPIK®V MEdiRV.
INa kabe katnyopko medio, Eva ouvolo mbavev TPV V(s), s € Sg(n) etvat Stabéowpo. E-
riiong, KaOe medio propet va eivat informable 1) 6x1 avaloya pe 1o av o Xprjotng eMpEnetat
va dooet Tipr) ya auté. To Siyr(n) C S(n) vnodnAwvet ta informable nedia tng unnpeoiag.

YroB<toupe 6t Katd 10 yUpo Tou Xpnotn t oe éva diddoyo pe N urninpeoieg 9¢Aoupe va
npoBAéwoupe v Katdotaor Tou dtadoyou yia tnyv umnnpeoia n. Ouocwaouka 9éloupe va
npoBAEWoupe v evepyr] npdBeon int(n) (intent prediction), ta {nrovpeva mnedia req(n) C
S(n) (requested slot prediction) kat tig Tipég yia ta nedia mou Sivoviat and 10 XPnotn
usrSlotValue(s), s € Sipr(n) (slot filling).

IMa kabe uvnnpeoia n’,1 < n’ < N, 10 prevint(n’) vnodnAmvel v PONyoOUNEVY &-
vepyn mpdbeon. Ermrdéov, yia kabes nebio s € S(n’), 1o prevUsrSlotValue(s) uriodnlwovel

mv tedevtaia T mou 800nke amo Tov Xprotn yia 1o S. AKOPA, XPNOUOIOlOUME TO

m Awtflopatkn Epyaoia

0.4.2 Avanapdaotaor e10060u

prevSysSlotValue(s) kat 1o sysUttrSlotValue(s) yla va urodndoooupe v tedeutaia Tir)
napovoa oe pua S1aAOYIKY €VEPYEWD OUOTHHIATOG, TPV 10 yupo t — 1 KAl otov yupo (tou
ouotrpatog) t — 1 avtiotoixa. a ta prevSysSlotValue(s) kat sysUttrSlotValue(s) xpnowio-
TTOI0UHE POVO S1AAOYIKEG EVEPYEIEG TOU CUOTHHATOS ITOU MEPIEXOUV TO Nedio S KAl arpiBmg
pla T yua to nedio. e MepUnoelg mou 1 npdbeon 1) n tr) tou nediou eivat adewa
XPNOotoloU e TV Ty [NONE].

XpNOoI0MOI0UHE TO Sprep V1A VA UTIOSNAGOOUNE TO 0UVOAO eV nediov s € S(n'), n” # n
yla ta oroia eite 1o prevUsrSlotValue(s) eite to prevSysSlotValue(s) 6ev eivat [NONE] kat to
prevSlotValue(s) yla va uvrodnAmooupie v tedeutaia toug tyr). Av 1o prevUsrSlotValue(s)
bev eivatl [NONE] 1éte XPNOOMIOI0UHIE AUTHY TNV TIHT] AAA®OG XP1OH0ITOI0UE TO
prevSysSlotValue(s).

Ia kaBe redio s XPnoonoloUe emIpoodeta Suadikd XapaKInPloTKA Xpin(s). Ta dua-
81kd xapakinplotika eivat ta akodouba: 1) av i uninpeoia eivat kawvouptla oto diadoyo 2) av
n vnipeoia evadddooetat (§ev ftav mapovoa oty MPONyoUHevVn Kataotaor) tou dialdyou) 3)
av akpBng pla Tipn yia to edio undapyet oto yupo Staddyou ocuotrpatog 4) av akpiBog pia
TN yia 1o edlo umdapxel o mPOonyouHReVoUg YUPOUg ouotpatog 5) av to medio eivat umno-
XPEMTIKO O€ TOUAAX10TOV ia 1poBeon 6) av 1o medio sival mPoalpeTiko oe OAEG T1G TIPOOECETS.

[Tapopola XapaKinpelotika £€Xouv xpnotpornoindet and [19].

0.4.2 Avanapaotaocn £100660u

'Eva apadeiypa e10080u gaivetat oto Zxnua 4. 1o M€pog 1 Kad1KOmo1oU e TOV aPE0®g
TIPONYOUHEVO YUPO TOU OUCTHHATOS ®G Hta Alota amnd evépyeteg. Z1o Mépog 2 Kadikomolouie
TOV TPEXOVIA YUPO TOoU ¥pnotn. XZto Mépog 3, n evepyn umnpeoia n, v mponyoupevn
evepyr) npdBeon prevint(n) kair 0Aeg TG UTIOWNP1EG TPOOECELG TTIOU AVI)KOUV OThV UTpeoia
n anapBpouvvrat. To Mépog 4 mepiéxetl) Alota pe oAa ta nedia s € S(n). Av s € Syr(n)
nipooBetoupe 1o prevUsrSlotValue(s) kat av s € Seqt(n) N Sips() pooBEtoupe emutAéov OAeg
Tg Tpég oo V(s). To Mépog 5 mepiéxel 0Aeg 11§ adAeg urnpeoieg mou £€Xouv epdaviotet
vopitepa oto diadoyo. Ta kdBe unnpeoia anapi®poupe ta {euydpla nediav-TIPNOV Ao
IPONYOUHEVEG KATAOTAOEIG H1aAdYOU 1] S1aA0YIKEG EVEPYEIEG OUCTNNATOG, S € Sprep Kal TG
Tpég toug prevSlotValue(s). IIpooBétoupe) A&En “system” nipv arnd rnebia rou £xouv 600¢i
and 10 ouotpa ya va ta diagopororjooupe aro redia mou £xouv Ho0el amo 1o Xprotn
(dnAadr) mou undpXoUV Og TIPONYOUHEVEG KATAOTACELS TOU d1aAoyou).

Ia 10 oxnua xpnotponolovpe Povo ta ovopata yia ta nedia kat tig mpobéoeig avii yua
TG TIAT)PEIG TIEPTYPAPES TOUG OE (PUOIKI] YA®OOA TTOU XPNOIHOIIoouvIal anod aAAeg epyaoiss.
'Evag apibpog ano npocappoopéva (custom) tokens mpootiBetat oto AeSiddyio tou BERT

TIOU UTIOSE1KVUOUV TIpoBeoelg, edia KATT.

0.4.3 IIp66Anpa npoBAsywng npoOsong

Kegalr intent status. IlpaypatorioloUpe Suadikr] KAtyop10Ioinor otV K@S1KOo-
pévn [CLS] avarnapdotacn yia va TpoBAEWYOUE TV KATAOTAOT NG NMPOBeong wg evepyr) 1

oxL.

Awtflopatkn Epyaoia m

0. Extetapévn) EAAnvikr) Iepidnyn

Kegaln intent value. T'a kdBe ripdBeor) i € I(n) npaypartoriotovpe Suadiky] KAt yoplomno-
inon otv Kedkonownpévy tou [INTENT] avarnapdotaon yia va npoBAEyoupe av o Xprotng
evaAldaooel og AUtV v IPodeot).

Av 1 katdotaor g PoBeong eival evepyn TOTE EMMAEYOUE TNV TTPOOEOT) He T PeyaAute-

pn mBavotnta intent value. Alagopetikd Kpatdpe v ponyoupevy nipobeon prevint(n).

0.4.4 IIpo6BAnpa npoBAewng {nrovpevov nedicov

Kegalr requested status. I'a ka6e niedio s € S(n) nmpaypatonoovpe Suadikr Katnyoplo-
Moinorn otV KOSIKOoTonpevn tou [SLOT] avarapdotaon oto Mépog 4 yia va anopacicoupe

av {nteitatl otov IpEXovIa yupo ToU XProtn.

0.4.5 IIpoBAnpa avadeong TIpAOV Nediwv

Kegaln user status. Ia xaBe nedio s € Syyr(n) Ppiokoupe v katdotaon Xprotn user
status xpnowonowwviag v kedikoronpévn tou [SLOT] avanapdotaocn oto Mépog 4 yia va
anodpacicoupe av n Tipr divetal otov tpExovia yupo xprjotr. Ot mbavég Kataotdoelg Xprotn
etvat: none, active kat dontcare.
Kegaldn categorical. T'a ta kamyopikd nedia s € Siyyr(n) N Sqq(n) mpayparornoovpe
duadikn katyoproroinon ya kabe mbavr) tun v € V(s) oty kadwkoroinpévn g [VALUE]
avarnapdotaon yia va rpoBAéyoupe av eival mapouod Oto YUpPO T0U XP1OTL).
Kegpaldég start kat end. Ta ta pn-kamyopikd nedia s € Sipr(n) N Sponcar(n) Ppiokoupe
NV apXy Kat 10 T€A0g TOU aroondopatog (span) péoa oto yupo X1 ot IIPayHATOol)vIaS
Katnyop1loroinon otnv ouvéveorn kabe token oto yupo xprjotn Kat g KOSIKOMOUHPEVNS
[SLOT] avarnapaotaong.

Av 1 katdotaorn XpnHotn ivat active, n T 1 1o andéoriacya pe) Peyalutepr mbavotn-
ta ermAéyetatl ya 1o riedio. Av) kataotaon xpron eivat dontcare, n e16ikn tyur) dontcare

avartibetat oto nedio.

0.4.6 Mctagopa nedicov

O xphfjotng dev divel mdavia pntd Vv upn yia 1o nedio addd propsi avt'autou va ava-
@EpPETal og TIPONyouPevoUg Yupous. Ma autd 1o Adyo, oxediadoupe pnxaviopoug Petapopdag
niedio yia va avaktrjooupe Tipég yia redia amo v 1p€xouoa 1) anod IIponyouleVveg UTTPEOLES.
Kegaln carryover status. I'a kd6e nedio s € Siyr(n) mpoBAénioupie NV KATAOTAO HETa-
@opdg (carryover status) xpnoiponoi®viag v Kodikomoinpuévr tou [SLOT] avarapdotaon
oto Mépog 4 yia va Bpoupe tyv ninyr) g tpng tou rediou. Ia v katdotaon petapopdg
ot ubavég tipég eival: none, in_sys_uttr (oto yupo tou cuotjpatog), in_service_hist (oto
10TOPIKO NG UTnpeoiag) kat in_cross_service_hist (oto 10top1k6 dAAng uninpeociag).

IMa 1o in_sys_uttr 1o nedio evrpepwvetal oUPP®vVaA P TV T IOV €ival mapouod OTov
AP€0®G TIPONYOUHEVO YUPO tou ouotnpatog sysUttrSlotValue(s). Tia 1o in_service_hist to
niedio evnuepovetal cupd@va e TV T MOU £ivatl apouoa g MPONyoupeveg S1aA0YIKEG
EVEPYEIEG OUOTNATOG Tng urmpeoiag n, prevSysSlotValue(s). Ztug mapandve 5Uo mept-
MIWOELG, O XPNOTNG ArodEXETAL TV T TTOU £€Xel 600el amd 10 ouotnUa KAl ArAog Peta-

(PEPOULIE TNV TN

m Awtflopatkn Epyaoia

0.4.7 Exnaibeuorn moAAarmlev epyaciov

Kegalrn cross-service. 'ia kabe 1iedio s' € Sprep(n) mpaypatornoovje Suadikr| Katnyoplo-
oinon Ot OUVEVOOT] NG K@OIKoTopévng g [SLOT] avanapdotaong oto Mépog 5 pe v
Kodkomowpévn [SLOT] avanapdotaon tou s oto Mépog 4 yla va arnogpacicoupe av mpay-
patoroteital petagopd g Tung and to nedio s’ oto medio s. To medio pe tn peyadutepn
mbavétnta s’ XPNoomnoteital wg Ny yid v TP S av 1 Katdotaon petagopdg sivat
in_cross_service_hist. Ze autv v nepimworn, avabétoupe v tpn prevSlotValue(s’) oto

nedio s.

[Tpota eAéyyoupe v KATAOTAOnN XPHOTN KAl av 8ev elval none evpep®VOULLE TV TIUn
avddoya pe myv £5060 mg. AAwg, eAéyxoupe ermiong v Katdotaor petadopds. Av Ipo-
BA&wel 011 MPETEL va Yivel PeEtadopd, EVIHIEPOVOULE TV T Tou Tebiou avaloywg. Av Kat
1 KATdotaon XPHotn Kdl 1] Katdotaor PeTtapopdg eival none tote 1) T apapévet 1 ida

He Vv nponyoupevn katdotaon diadoyou, prevUsrSlotValue(s).

0.4.7 Exrnaidsuon nmoAAanA®v £pyaciav

I'a g kepalég katnyoplomnoinong intent status, intent value, categorical, start, end kat
cross-service egayouyie g rubavotnteg v KAdosav pe éva feedforward veupoviko 6iktuo
60 emunedwv. Ta 1g kepadég katnyoplornoinong requested status, user status kai car-
ryover status ouvevovoupe ta duadikd Xepomointa XapaKINPlOTIKA Xpin(S) HETA T0 TIPWTO

erinedo.

Exnaibevoupe tautdyxpova OAeg TG KEPAAEG KATNYOPLOMOINONG, XPNOUHOMOI®VIAS TO
cross entropy loss yla kd0e kepadr). a 1o mpoBAnua g mpodBleyng npobeong to loss
etvatr Ly = wiLyystar + WaLlinwa, V1@ 10 PoBAnpa ng npdBieywng {nrovpevev nediov 1o
loss eivat Ly = Lyegstar Xal yia 1o mpobAnua g avabeong tpwv nediov 1o loss eivat
Lz = wsLysr + WaLearry + WsLeat + WeLstart + W7Llena + WsLeross. TeAkd, 10 0UvoAKS loss
opi¢etat wg L = Ly + ALy + AsLs.

0.5 IIepapata

0.5.1 Efayoy1 £TIKETOV

IMa va egayoupe g suxeéteg (labels) yia v katdotaon Xpriotn KAt Petadopdg Xpnot-
poroloupe TG H1aAoYIKEG EVEPYELEG XPTOTI KAl PAXVOUNE IIPONYOUHEVOUS YUPOUG KAl Ka-
taotacelg S1addyou yia va Bpoupe v ninyr yla 1o nedio. Oewpovpe éva nedio informable
av Kait povo av eival €ite anattoupevo eite IPoalpetiko os pia toudayxiotov nipobeon. Ta
KABe YUPO TPEXOUHE TO POVIEADO PIOVO OTI§ UTNPECIEG TTOU eUMMAEKovIal (UTnpeoieg pe tou-
Aayxtotov piia adAayr) otnv Katdotaot) tou 61aA0you oto yUpo) oupdeva JE TS IIPAYHATIKESG
(ground-truth) kataotdoeig d1aldyou kat Katd v eKnaidevorn kat Katd v afloAoynor yla
va eivat dikain n ouykplon pe ddAeg epyaoieg. H eicobog 1ou poviédou mepiéxel mpaypa-
TIKEG TIPONYOUHEVEG KATAOTACELS §1aA0yoU KaAtd tnv eKnaibeuon Kal KAtd v a§loAoynon

XPNOLHIOIIO0UVIaAL AUTEG TTOU £X0UV IPoBAedOel TTPONYOUPEVRG.

Awtlopatkn Epyaoia

0. Extetapévn) EAAnvikr) Iepidnyn

[Tivakag 1: Zvykpion pe adieg spyaocieg

Zvotnpa Movtédo IMapapetpot JGA Intent Acc Req Slot F1
SGD-baseline [1] BERTgpAsE 110 ex. 25.4 90.6 96.5
SGP-DST [19] 6 X BERTgasE 660 £K. 72.2 91.9 99.0
paDST [21] 3 X RoBERTagasg+ XLNetarge 715 ex. 86.5 94.8 98.5
D3ST [22] (Base) T5gasE 220 ex. 72.9 97.2 98.9
D3ST [22] (Large) T5LARGE 770 ex. 80.0 97.1 99.1
D3ST [22] (XXL) THxxL 11 61o. 86.4 98.8 99.4
Ipotewvopevo (51G11e00G eKTEAETEDV) BERTgAsE 110 =k. 82.7 94.6 99.4
IIpotetvopevo (pEcog 0pog 3 eKTEAECEDV) BERTgase 110 &x. 825+1.0 94.7+05 99.4+0.1

[Tivakag 2: Ablation study

Suotnpa JGA Avg GA
IIpotetvopevo 82.7 95.2
X®pig 61adoy1KEG EVEPYEIEG CUOTIIATOS 71.9 91.6
pe meptypadég nediov 78.3 94.1
X®PIg MPONyouHeEVeEG KATACTAOCELS 79.8 94.0
X0plg eravinon oxnpatog 80.5 94.9
Xwpig ernavinon oxnuatog & word dropout 78.1 94.3
Xwpig duadika yapaktplotka 81.0 94.4

0.5.2 Exnaidsuon

Xpnowponotovpe v vdorowjon v BERT uncased poviéAov mou mapéxetal amnod 1o
huggingface 2. Tia 6Aa pag ta melpdpata xpnotponoovne 1éyefog yia to batch 16 xat
dropout rate 0.3 yia 11§ kedpaAég katnyoplororjoetg. Xpnotpornoovpe tov AdamW adyopiB-
po BeAtiotonoinong [23] pe ypappikd warmup Sidpkeiag 1o 10% tev fnpdtev eknaibeuong
Kat pubpo exknaibeuvong 2e-5. Emdéyoupe 1o poviédo mou €xet v BéAtiotn anodoon pe

Bdaon 1t petpikn) JGA oto ouvolo avartrtuing (development set).

0.5.3 IIpoenceepyaoia kat enavinon

Ipoere€epyalopiaote ta oTolXeia 10U oXHIATog Kat Tig S1aAoyIKEG EVEPYELEG TOU OUOTHHA-
106 adalPOVIAg TI§ KAT® rmavdeg Kat xopiloviag tig Aggeig otav ivat oug poppég CamelCase
Kat snake_case. AvukaBiotoupe tuxaia (p = 0.1) ta tokens €10660uU otov yUpo TOU XPr|otn
e 1o token [UNK] (word dropout) kat avakateUoupe t) oe1pd epdpAvions TOV OTOXEIRV TOU
schema ota Mépn 3-5 katd) didpkela g ekmnaidevong ornwg mpoteivetal ano [24]. E-
rurAéov epappoloupe tuxaia (p = 0.1) ernavdnon 6edopévav (ermmavinon oxnuatog) pEow
aVIIKATAoTaong OUVOVUPGV Kal tuxaiag avadidtadng otug rpdbeoeig, nedia kal oug TpEg

ota Mépn 3-4 péow tou [25].

m Awtflopatkn Epyaoia

0.6 Armotedéopata Kat oulnnon

[Tivakag 3: Emifpaon tov unyavioumv UeTapopag

Suotnpa JGA Avg GA
[Ipotevopevo 82.7 95.2
X@pig in_sys_uttr 62.8 87.0
X®pig in_service_hist 76.4 92.7
Xwpig in_cross_service_hist 66.8 84.4
SGD-baseline [1] 25.4 56.0
Xwpig in_service_hist & in_cross_service_hist 61.6 81.9
Kavévag Pnxaviopog 36.5 68.5

0.6 AmnoteAéopata Kai oulntnon

0.6.1 XuUyrplon pe aAAeg epyaocieg

Ztov mivaka 1 ouykpivoupe 1o 81k6 pag (rpotewvopevo) poviedo pe ta SGD-baseline,
SGP-DST, paDST kat tpetg vdororjoetg tou D3ST pe petabAnto péyebog. To SGD-baseline
[1] mpaypatorotei fine-tuning oto BERT pe toug §Uo tedeutaioug yupoug wg eicobo rat
Xpnotporotet urtoAoylopéva ek v npotépev BERT embeddings yia to oxnpa. To SGP-
DST [19] xpnotporotel toug §U0 teAeUTaioug yUpPOUS Kal PNXAVIOHoUS Petadopdas yia va
avaktroetl TipEg yia niedia mou eixav avapepOei oe mponyoupevoug yupoug. To paDST [21]
kat 1o D3ST [22] k081K011010UV 0AOKANPO TO 10TOPIKO S1aA0YO0U PEXPL TOV TPEXOVIA YUPO Kal
urtoAoyi¢ouv v kataotaorn §1aAoyou amno v apXn. AvapEpPoupe T1G PETIPIKEG KAl TV apldpo
MAPAPETP®V ota npoeknatdevpieva poviéAa nou yivoviat fine-tuned amno kabe 1pébodo.

H 11€6060¢ pag &enepvaet Eekabapa 1o SGP-DST ot 6Aa ta npoBAfjpata urodeikvuoviag
0Tl 01 oTpaATNY1KEG pag eival anotedeopatikeg. Kdrmola aro ta poviéda 1mou Xpnotpornotouy
0AOKANPO 10 61aAoy0 Eerepvouv oe arodoor) To PoVIEAO Pag, 810G Otav XPro1oroloUV oAU
rieploootepeg rapaperpoug (D3ST XX1) 1) epappodouv EPIOCOTEPA XELPOTIONTA XAPAKTINP1-
oTiKA, e181KOUG Kavoveg Kat enavudnorn diaddyou péow back-translation (paDST). ZuvoAika,
1] TIPOTEWVOHEVT] TIPOCEYYOT EMITUYXAVEL arnodoor kovid oto state-of-the-art mapd to moAu

PKPOTEPO POVIEAO KAl TV ITI0 OUVIOUI avariapdotaon 10080u.

0.6.2 Ablation study

IMpaypatoroloujie éva ablation study (Ilivakag 2) yia va dei§oupe) ouvelopopa rabe
piag amo TG MPOTEWVOPEVEG OTPATNYIKEG Yia 1o MPoBAnpa tng avabeong tpwv nediov. H
AVTIKATACTAOT TOU YUPOU CUCTHATOG HE £va 0UVOAO aro §1adoyikeg eveépyeleg (Xwpig Stado-
YIKEG EVEPYELEG OUCTAIIATOG) €XEL TN PeyaAUTepn emirntoorn oty arodoorn (BAéme akoAoubia
e10060u Mépog 1 oto Zxnpa 4). Ot 51adoyikEG evépyeleg TIEPIEXOUV TTIOAU PaCiKEG TTANPOPO-
pieg Onwg ta ovopata tev rnedimv KAl 11§ avtiotoixeg Tiég Toug rmou Bonbdve 1o poviedo pag
va avayvepioet ola niedia {nrouviatl, ipoopépovrat (Offer), ermBeBaidvovrar (Confirm) xvAm
Kat va IpoBAEYEeL TV KATACTAOT XPH Ot Kat Petadopdg e peyadutepn akpiBeia. H anodoon
MEPTEL OTAV XPNOHOIIO0UE KAl TI§ TEPypadEg yia ta informable iedia tng tpéxouoag umn-

peoiag (pe meprypagég nediov, PAénie Mépn 3-4 ng €10060u). Adpalp®viag TtV IPONyouHEvn

2h‘ctps://huggingface.co/docs/transformers/model,doc/ber‘c

Awtlopatkn Epyaoia m

https://huggingface.co/docs/transformers/model_doc/bert

0. Extetapévn) EAAnvikr) Iepidnyn

ipoBeorn Kat rponyoupeveg TG yia niedia ota Mépn 3-4 (Xwpig ponyoueveg KAtaotdoelg)
napatpovpe Ot 1 anddoorn nEPtel aAdd erniong n ekmnaidevon yiveratl mo yprnyopn Aoy®
¢S PKpOTEPNG akoloubiag e10odou. Ilapatnpoupe emiong BeAtiwon otav MPAypatonoloupe
enauvinon oxnuatog kat word dropout rubavotnta enetdn) autég ol otpatnyikeg Bondouv v
aroduyt] unepeknaidevong (xopig enavinon oxnuatog & word dropout). Ta yeiporoin-
1a duadika XapaKInPloTIKA PIopouVv va @(eAoouv eAdxiota 10 cuotnpa (xopis duadika

XAPAKINP1OTIKA).

0.6.3 EnidSpacn TV pnxaviopov petagpopdg nediwv

Zrov [Tivaka 3 deixvouyie v enidpaor) 1ev d1adpopnv pnxaviopeov petapopdg rediov. a
auTd ta repapata o poviedo exkratdevetal pia gopd Kat katd) didpkeia mg a§loddynong
avtikafiotoupe kABe Katnyopia Katdotaong pnxaviopou pe 1o “none”. 'Onwg avapevotav,
X®pPIig To “in_sys_uttr” mapatnpeital n peyaAviepn enimoon oty anodoon. To “in_cross_-
service_hist” eival emiong onpaviiko Aoy® tou peydiou apidpou multi-domain Siaddywv.
Agpapoviag 1o “in_service_hist” uniapyetl Atyotepn enidpaon oty anddoor. Xwpig 1o “in_-
service_hist” katl 1o “in_cross_service_hist” (xpnowonowwviag povo toug 6o tedeutaioug

yUpoug) e§akoAouboupie va srmtuyxdvoupe peyadutepn akpiBela amno to SGD-baseline.

0.6.4 Zulntnon

Aei€ape 6T TO MIPOTEIVOIEVO CUOTN A UIToPel va BeAT®oel §pacTikA Ty arddoor] o OXEoT
pe 1o ouotnpa SGP-DST rou xprnowpornotel emiong pnxaviopoug petagopdg nediov. Amo ta
MEPAPATIKA ATOTEAECIIATA CUNRIIEPAIVOULLE OTL Ol OTPATNYIKEG Yia v Snpoupyia piag amno-
dotikr|g akoAouBiag e10060u eival arnotedeopatikeg. [HapdAAnda, 1o cuotna XPNOOIIOEL
povo éva BERT poviédo kat 1 @e1dwAr] akodoubia €10060U eMMTPETEL TV EMMAUON TGV TPV
npoBAnpatev pe éva povo népacpa ano to BERT yia kdBe yupo. Auto kdvel 1o cuotnua
MEPIOCOTEPO UTIOAOYIOTIKA ATIOS0TIKO.

Y& ouykplon pe 1o state-of-the-art, n rmo agiddoyn dagopd sivat 61 aglornoovpe pnya-
VIopoUg petadopdg rnediov, opwg 1 Kod1Komoinon oAOKANPOU 10U 10TOP1IKOU ToU §1aAoyou
€XEl KaAUtepn anodoor). X1 S1Kid pag mMPooEyylon Td ovopatd T®V OTOIXEIDV TOU OXIATOg
etvatl mo anodotkd arod Tig MANPELS MEPLypadeg Tig oroieg dev Katapepape va evompa-
TOOOUNE Pe ermtuyia oto poviedo pag. EmrAéov, 1o mpoekmaibeupévo poviédo pag (BERT)
etvat pikpotepo. To paDST xpnoporotlel peydAo aplbpo Xepornointav XapaKinplotiKOV Kat
KAvOveV TIOU Arattouv Xe1poKivrty oxediaon kat evdexopévag ivatl unepBoAikd egeibikeu-
Héva yia 1o ouvolo Gedopévav. Amo tnv addrn, to D3ST netuyxaivel peyaduvtepo JGA aro
TO ITPOTEWVOIEVO POVIEAO pag povo pe) peyaldutepn €ékdoon tou TH mou €xer 100 @opég
neploootepeg niapaperpoug ano 1o BERT. ZuvoAkd, 1o ouotnpd pag sivat 1mo UrmoAoy1otika

arodoTIKO Kat £Xel Ikavotnta enéKtaong (scalable) os peyaAutepa oxnpata Kat 51aAoyous.

0.7 ZTupnepaopata

Ye aut) 1 Sumdepatiky epyaocia, pedetoape oe PaBog 1o aviikeipevo tou schema-

guided dialogue state tracking. Kavape pia e10ayoyn 0€ ONIAVIIKEG EVVOLEG TG HIXAVIKESG

m Awtflopatkn Epyaoia

0.8 MeAAOVIIKEG TIPOEKTACELS

pdabnong xkat avapépaiie KAMOleg TPOoPATEG ONHAVIIKEG IIP0OS0Ug oty Badia pabnon. Ava-
Avoape ta RNNs, ta LSTMs, to pnxaviopo npocoxng kat tov transformer kabwg emiong kat
OU0 ONPAVIIKEG KAl EUPERG XPIOTPIOTIOIOUPEVEG TEXVIKEG PABnong: 1 peragopd pabnong
KAt) padnon nmoAdardev epyacwwv. ‘Ernetta eotidoape oto nedio g enefepyaoiag guot-
KNG yAoooag. ITo ouykekpipéva, adou KAvape pia £10ay®yn oc mapadooiakd yA®ooKd
HOVIéAa IPOX®PNOANE OtV IIAPOUCiacn POVIEPVOV YAROOIKOV POVIEA®V Baoclopévev otov
transformer onwg to BERT ka1 to T5.

Kavape pia avaokornon tov S1adoyikev ouctnpatev egetdloviag pebodoug, rmpokAnoelg
Kat poroug a§loddynong v §Uo KUpev Katyoplov: Stadoyikd cuothjpata avoiyirg ou-
{fitmong (open-domain) Kat pooavatoAlopéva o€ OUYKEKPIPEVO oKoro (task-oriented). X1n
ouvExew ermKevipwoape to evdlapépov pag oe oto dialogue state tracking xkai rmapouot-
doape v TeAeUtaia €pguva mou €xel yivel oto ouykekpipévo nedio . Iapatnproape ot ta
ouotfpata kabodnyovupeva amnod 1o oxnpa (schema-guided), mou anookorouv oto va dia-
X®P1o0UV TO POVIEAO ATTO T1§ UTIOOTNPIJOPEVES UTIPEDIEG, £XOUV KEVIPIOEL TO EVOIAPEPOV NG
EPEUVITIKI)G KOWVOTNTAG TeAeutaia.

[Tpota peAetrjoape 1o schema-guided dialogue state tracking kai kataokeuaocaje §uo
cuotpata avadopdag. XIn CUVEXEla IIPOTEivape éva Katvotopo cuotnpla MoAAAmA®v epya-
owv ywa 1o schema-guided dialogue state tracking Baoiopévo oe éva povo BERT poviédo
Kal pa anodotiky Kat e1dmAr) avanapaotaon eicodou. To ouotnpd pag avupetomnidel pia
kpiopa npoBAnpata DST tautoxpova. Amnodoon kovia oto state-of-the-art ermtuyyavetat
XPNOTHOTIOIROVTAG TIOAU PIKPOTEPO HOVIEAO Katl KoSikoroinon e1066ou. Metadu tov dtapopwv
TIPOTEIVOPEVROV BEATIOOE®V OTO 11OVIEAD Selyvoupie OTL 1 cUVOYN TOU APECKS TIPONYOUHIEVOU
YUPOU Tou ouotrpatog pe 81adoyikeg evépyeleg Hivel) peyaAutepn auinon otnv anodoon.
Zpatyikeg Onwg n mpoobeot MPONyouHeEvaV KATaotdoenv Stadoywv, n snavgnon dedo-
HEVRV Kal 1] TIPOCHNKI XEIPOIIOINTOV XAPAKINPIOTIKGV BEATIOVOUV TEPATTEP® TNV ATIO800T).

[Tiotevoupe OTL AUTEG Ol OTPATNYIKEG PIOPOUV va KaBodnyrjcouv tnv oxediaon cuotn-
patwv DST nou xapaktnpiloviat anod akpiBeia, eridoon, ave§aptnoia aro v oviodoyia Kat
Kavotnta emnéKraong oe peyaloug multi-domain 61adoyoug, mpdypa mou eivat onpaviiko

o€ EPAPHIOYEG OTOV TIPAYHATIKO KOOLO0.

0.8 MecAAOVTIREG MPOEKTACELG

Zto péAdov mBaveg PeAAOVIIKEG TIPOEKTACELS PITOPOUV VA CUNIEPIAAPBAVOUV

e Tnv avtuikatactacn touv BERT and iwoxupotepa povtéda nmou £xouv uypnAdtepn
zero-shot an6doon kat evéexopévmg prnopouv va BeAtickdoouv tnv arpibesia oe
unnpeoicg nmou Sev £xouv Se1 Katd v ernaidevorn. a napddsiypa, rapodo
rtou 1o D3ST akolouBel pia amir) mpooeyylon napayeyng akoloubiag (seq2seq), £xet

state-of-the-art anédoon 6tav xpnowpomnoiel) peyaAuvtepn ékdoor) tou TH.

¢ Iepartépw npoekrnaidsuon twv poviédwv oe oxeTika npoBAfpata. 1o Kepdiaio
4 delyvoupe ot n npoeknaideuon oe mpoBAnpata Onwg 1 PNXaviKy KAatavornor Ket-
pévev (machine reading comprehension - MRC), ywa v oroia nepioodtepa ouvo-

Aa G6edopévav peyddng xkiipaxkag eivar Siabéopa, pnopet va wpednoet to DST. To

Awtflopatkn Epyaoia m

0. Extetapévn) EAAnvikr) Iepidnyn

schema-guided DST eivat akopa 1o oxetko pe 1o MRC aro ta napadociaka mpo-
BAnNpata DST kabmg deiyvoupe ot 1 eprypadn) tou rediou/mpobeong propet va de-
wpnBel og n gpoon oto npoBAnpa tou MRC (BAéme Kepadaio 4). INapoda auvta, n
TIPOCEYY101] 114G ATIAVIAEL TIOAAATTAEG ‘€PWTNOELS’ TAUTOXPOVA KAl €101 1] IIPOEKTIAideU-
on napadooakev poviedov MRC mou araviouv pévo pia epotnon yla kKabe xopio

KePEVoU Prtopet va xpeladetatl va tpomnoroinOet.

¢ ITPATNYIKEG Yld TV EVOXOHAT®ON MPONYOUHEVOV YUPKV KAl MEPLOGOTEPKV MAT)-
POPOPLAOV CXETIKAOV PE TO OXNA, ONKWG Ol MEPLYPAPEG TOV OTOLXEIWV TOU, XW-
pig TNV auvinon tou prjroug tng £16660vu. a nmapddeiypa, Eva avadpopiko poviédo
(rt.x. LSTM) nou ouAevet oto eminedo tou yupou Sitaddyou da propouoe va pabet va

K®S1KOTOlEL Xpr)oteg TANPOPOPieg Atd IIPONYOUHEVOUS YUPOUS.

e Ilepioocotepn enavinon Sed6opévwv yla TV avilpetOnon TV npobAnpdatov u-
nepeRnaideuong otig unnpeoicg nMou 1o povtédo BAEnetl Kata tnv eknaidsuon.
O ap1Bpog auteV TV UMNPEoIOV £lval MEPIOPIOPEVOS KAl EMMOPEVAOS TO POVIEAO £ival
£UAA®TO Ot unepeKnaidevon katl ‘aropvnuoveuor]” 1oug. Asgi§ape pia armdn teEXVIKY
entaugnong Hedopévav aAAd 1o eKAETTUONEVEG PITOPOUV ETiONG va e§epeuvnBouv. Qg
mapdadelypa, PeAAOVIIKEG EMEKTACELS PITOPOUV va uAorolouv back-translation (pe-
TAppaor aro ta ayyAikd oe pa deutepn yAwooa Kat ava petadppaoc arod) devtepn

vA®ooa ota ayyAikd) pe poviéda transformer.

¢ Evoopdtworn tou kKaBodnyoupevou amno to oX1jjia NPoTUnou Kat o aAAa Unoou-
otnfpata tou §taAoyou 1) akopa ot Stadoyoug ano arpn ot axpn (end-to-end).
[Tpokrepévou va Kataokeudooupe éva oUotnpld Imou S0UAEUEL OTOV MPAYHATIKO KOGHO
etval onpavuko va eknatdsvooupie £va uroouotnpua yveoto &g dialogue policy (BAére
Kegpdalaio 4), wotoco 1o rpoBAnua dev £xet peAetnBel apketd. Mia rmbavr) kateubuvon
elval ouotuata and akprn oe akpn rou pabaivouv apdAAnAa va mpoBAgrouv v

Kataotaor) tou Staddyou aAdd Kat va arnokpivovial oto Xprotr).

m Awtflopatkn Epyaoia

Chapter E

Introduction

1.1 Motivation

Machines that can have natural conversations with humans have been a theme in
utopian science fiction. However, due to the latest advances in artificial intelligence and
particularly deep learning, intelligent dialogue systems are becoming a reality, achieving
what was once just a product of imagination. Popular virtual assistants such as Siri,
Cortana, Google Assistant, Alexa and others are able to perform tasks and/or entertain
users through conversations.

An important category of conversational agents is task-oriented dialogue systems. The
aim of such systems is to assist users in accomplishing daily activities like reserving a
restaurant, booking tickets etc. A critical component of a task-oriented dialogue system is
Dialogue State Tracking (DST) which tracks the user goal over multiple turns of dialogue.
Based on a spoken utterance and the dialogue history, DST predicts the dialogue state
which represents the user goal. The predicted dialogue state is then used by other com-
ponents to retrieve elements from a database, perform the actions requested by the user
and respond accordingly [15]. Most recently proposed systems have been multi-domain;
they can handle multiple conversational domains in the same dialogue.

Motivated by the ever-increasing number of diverse services used by commercial task-
oriented systems, the schema-guided paradigm was developed [1]. The goal of this
paradigm is to allow DST models to work across new, unseen services relying on the
knowledge acquired by the services they saw during training. The natural language de-
scription of the services’ schemata guides the model in such new scenarios.

At the same time, recent pre-trained transformer language models such as BERT and
T5 show outstanding performance on many natural language understanding problems.
During the pre-training phase on large datasets, they learn to understand language by
examples and then they can be adapted to specific tasks such as DST through a process
known as fine-tuning. Such models are therefore suitable for dialogue systems because

of their generalization ability.

1.2 Contributions

In this thesis, we propose a multi-task BERT-based model that jointly performs three
DST tasks: intent prediction, requested slot prediction and slot filling. Furthermore,

we construct an efficient and parsimonious abstracted representation of the dialogue

Awtlopatkn Epyaoia m

Chapter 1. Introduction

and schema that is shown to significantly improve performance while achieving greater
computational efficiency. Our proposed model significantly outperforms the baseline
system and achieves near state-of-the-art performance. Extensive ablation studies reveal

the impact of each strategy of our model on the slot filling task.

1.3 Thesis outline

In Chapter 2 we provide the necessary machine learning background knowledge. We
first introduce traditional machine learning approaches which we build on to explain deep
learning. We describe how neural networks, recurrent neural networks, the attention
mechanism and transformers work. We also discuss about two widely used learning
techniques: transfer learning and multi-task learning.

In Chapter 3 we introduce Natural Language Processing (NLP), the most common NLP
tasks and modern approaches to NLP: word embeddings and language modeling with
transformers.

In Chapter 4 we discuss about dialogue systems focusing on task-oriented systems
found in virtual assistants. We study how deep learning can be applied for the various
dialogue system components.

In Chapter 5, after a literature review on the task of Schema-Guided Dialogue State
Tracking, we introduce two baseline systems and we present our proposed system, a
Multi-Task BERT-based model. We conduct extensive experiments and ablation studies
to reveal the impact of our proposed strategies. We compare it to other models and we
highlight the benefits of our approach.

In Chapter 6 we summarize our work and our main findings and we provide ideas for

future work.

m Awtflopatkn Epyaoia

Chapter E

Machine Learning

Machine learning (ML) is a subfield of Artificial Intelligence. It studies algorithms that
can automatically improve (learn) with the help of data. Such algorithms are not explicitly
programmed to perform their tasks but they instead leverage models that learn to make
predictions from the training data. ML is a suitable solution to a problem if its complexity
makes traditional algorithms hard to program. For example, autonomous driving and
natural language understanding are two tasks that can be performed easily by humans
but writing rule-based algorithms for them would be far from trivial. ML is also suitable
when the need for adaptivity is important. Because ML models rely on data, the scale of
which becomes larger and larger nowadays, they are more robust - able to generalize to
new inputs [26].

ML has applications in numerous fields including computer vision, natural language
processing, speech recognition, healthcare and robotics. It offers solutions that avoid
limitations of traditional algorithms. The availability of large scale data and computational
advancements have made ML increasingly popular and more accessible. Researchers
design increasingly more sophisticated ML approaches which require less manual effort

and are more effective.

2.1 Machine learning approaches

2.1.1 Supervised learning

In supervised learning, the training data examples are input-output pairs: (xi, yi),
(x2,Y2), ..., (X1, yn) and we assume that there is an unknown function y = f(x) which
maps the inputs x; (features) to the outputs y; (labels). Models have to predict a function

f that approximates f based on the training data [27].

Two common types of supervised learning are classification and regression. In clas-
sification, examples belong to categories or classes and the problem is to identify the
correct class based on the features. For example, given an image, a classification task is
to predict whether the animal in the image is a dog or a cat. In regression, the task is to
find the relationship between the input variables (features) and output variables (labels).
The difference with classification is that labels are not limited to a set of possible classes
but are numerical values. An example of a regression task is predicting a stock price

based on information like previous prices.

MinAouatxny Epyaoia m

Chapter 2. Machine Learning

2.1.2 Unsupervised learning

Unsupervised learning algorithms learn patterns from unlabelled data. Instead of
relating features to their associated labels, they learn the structure of the data relying
solely on the features. Unsupervised tasks include clustering in which data have to be
separated into groups (clusters) with similar features and anomaly detection which aims

to identify rare items (outliers) in a set of data that may indicate an anomaly [28].

2.1.3 Reinforcement learning

In reinforcement learning, agents interact with an environment by taking actions
based on the state of the environment. These agents try to maximize the value of the
reward function which relates to how close the outcomes are to the desired result. In this
way, they favor actions which are more likely to have desirable effects and avoid actions
which may produce less desirable effects. Different from supervised learning, the ground-
truth labels are not known, the only learning signal is the reward that they observe in the
environment after their actions. Learning involves finding a balance between exploration
(trying actions that have not been tested before) and exploitation (relying on behaviors
that are known to be effective) [29].

2.2 Machine learning concepts

2.2.1 Loss function

The loss function maps the model’s predictions to a real number representing the cost
of those predictions. Therefore, a small value for the loss is better as it suggests that
the model has learned from the data. ML methods find the optimal parameters for the
function f by minimizing the total loss function of the examples on the training set. The
total loss over the training set is called cost function although the terms loss and cost
function are often used intechangeably.

Mean Squared Error (MSE) is a loss function used in regression problems.

1 &
MSELoss = — Z (i —)2 2.1)

i=1

Cross-entropy is a loss function commonly used in classification problems. For every

example the loss is calculated by the formula:
c
CrossEntropyLoss = Z y; - logy; (2.2)
i=1

where C the number of classes.
Hinge loss is another loss function for classification problems. If the possible outputs

are t = 1 then for a single example it is defined as:
HingeLoss = max(0,1 —t - y) (2.3)

m Awtflopatkn Epyaoia

2.2.2 Gradient descent

2.2.2 Gradient descent

Gradient descent is an iterative optimization algorithm which finds the local minimum
of a differentiable function based on its first order gradients. It is the most popular
optimization algorithm in ML. Gradient descent is used to find the model parameters that
minimize the loss function. The model starts with some (often random) initial parameters
which are then adjusted in steps. The new parameters are found by taking steps in the
opposite direction of the gradient of the cost function.

Formally, in each step n the parameters p, are updated according to the following
equation:

Pn = Pn-1 — nVJ(Pn) (2.4)

where 7 > 0 is the learning rate, a parameter that controls the speed of training and J(:)
the cost function. The learning rate should be neither too small nor too large. A small
learning rate often leads to slow convergence making the training process longer. On
the other hand, a large learning rate may not allow the model to arrive at the optimal
parameters because it bounces back and forth near those parameters.

There are three variants of gradient descent based on the amount of data processed
before taking a step. Processing the entire dataset once corresponds to a training epoch

but during one epoch there may be multiple gradient descent steps.

1. Batch gradient descent: The cost function is calculated by processing all training
examples and then parameters are updated. This gives the most accurate approx-
imation for the gradient of the cost function and it therefore results in a stable
convergence. However, it may converge to a suboptimal local minimum and re-

quires the entire dataset to be loaded in memory.

2. Stochastic gradient descent (SGD): The cost function is calculated for each training
example separately and then parameters are updated. The more frequent updates
make training faster but because the gradient is approximated, noisy gradients can

interfere with training stability.

3. Mini-batch gradient descent: This is the most popular method that combines the
strengths of the first two variants. The dataset is split into training batches (the size
of which is usually a power of 2 between 16 and 512) and the gradient is estimated
based on these training examples before taking a step. This gives a more accurate
gradient estimation than SGD and is more computationally efficient than both other

variants because batches are small enough to fit in the GPU memory.

2.2.3 Bias-variance tradeoff

The bias error is caused by imposing too many assumptions for the function f and
thus not being able to learn the relationships between the features and the labels. For
example, a linear classifier often has a high bias when the data distribution is complex and

a linear function is not enough to explain them. This phenomenon is called underfitting.

Awtflopatkn Epyaoia

Chapter 2. Machine Learning

Underfitted models cannot find the required patterns in the data in order to make accurate
predictions.

The variance error is caused by learning too much from the data and as a result
modelling the random noise present in the dataset. Models with a high variance tend
to fluctuate a lot even when small changes are observed in the data. This phenomenon
is called overfitting. The ability of an overfitted model to generalize to new, unseen

examples is often poor.

Low Variance High Variance
o
wv
X
/m
3 .
Q
-
o
o, > o, °
.
w
=
m
<
.20
Jas

Figure 2.1: Visual illustration of the bias and variance errors. The top left image is the
perfect scenario with the right balance for the bias-variance tradeoff. Source: http://scott.
fortmann- roe.com/docs/BiasVariance.html

When the model is too simple and has few parameters it usually has a high bias and
a low variance. On the other hand, models with too many parameters generally have a
lower bias and a higher variance. The difference between the two error types is called
bias-variance tradeoff. It is important to find the right balance between bias and variance
so that the model can effectively learn from the training data and at the same time be

capable of generalizing to new examples.

2.3 Machine Learning Methods

2.3.1 Decision trees

Decision trees are non-parametric models which can be used to predict values based
on simple rules on the features. To reach a conclusion about the predicted value a se-
quence of tests of certain conditions is performed. Therefore, the decision tree is traversed
until a leaf node which represents the final prediction. Decision trees can be used for
both classification and regression tasks. They are very easy to interpret and visualize
but their main disadvantage is that they are prone to overfitting and thus do not always

generalize to unseen data.

m Awtflopatkn Epyaoia

http://scott.fortmann-roe.com/docs/BiasVariance.html
http://scott.fortmann-roe.com/docs/BiasVariance.html

2.3.2 Support-vector machines

2.3.2 Support-vector machines

Support-vector machines (SVMs) perform binary linear classification by maximizing
the width of the gap between samples of the two classes. However, SVMs can even be
used when the data examples are not linearly separable by using the kernel trick and
mapping them to a higher dimension where they are linearly separable. There are many
hyperplanes that divide data into two classes but SVMs find the one where the distance

between the nearest points from each class and the hyperplane is maximized.

Maximum\
margin

i
1

) X

Figure 2.2: SVM optimal hyperplane. Source: https://medium.com/@cdabakoglu/what-is-
support-vector-machine-svm- fd0e9e39514f

Assuming that the optimal hyperplane (see Figure 2.2) is described by:
wix-b=0 (2.5)

the SVM algorithm optimization problem involves minimizing ||w|| subject to
Yi (wTXi - b) > 1for i =1,...n where the i-th example is described by the feature vector

x; and the label y; € {1, —1}. The function that estimates the class for a new sample is:
f(xi) = sgn(wa —b) (2.6)

If the examples are not linearly separable a loss function can be defined by incorpo-
rating the hinge loss (defined in Section 2.2.1) and thus allowing some examples to be

misclassified:

1 n
Loss = fAllw|? + | = Z max (O, 1-y; (wai - b)) 2.7
n
i=1
and by optimizing it we can find w and b.

AinAouatxny Epyaoia m

https://medium.com/@cdabakoglu/what-is-support-vector-machine-svm-fd0e9e39514f
https://medium.com/@cdabakoglu/what-is-support-vector-machine-svm-fd0e9e39514f

Chapter 2. Machine Learning

2.3.3 Linear regression

For regression problems we can use linear regression when it is safe to assume that
there is a linear relationship between features and labels. Assuming that there is only

one input feature x, the output is given by:
y=mx+b (2.8)

We can use the MSE loss function as defined in Section 2.2.1:
1 n
Loss = N 2 (yi — (mx; + b))? (2.9)

i=1

and by optimizing it we can find m and b.

The above formulation describes simple linear regression where both the input x and
the output y are scalars. However, we can easily generalize to multiple input variables
(multiple linear regression) and multiple output variables (general linear models). Fur-
thermore, generalized linear models are the extension of linear regression to classification

problems where the labels are discrete rather than continuous. For example, logistic

L

regression relies on the logistic function f(x) = Py s
e

to convert the output y (logit) to

probabilities for each class.

2.4 Neural Networks and Deep Learning

2.4.1 Artificial Neural Networks

Artificial neural networks or simply neural networks are a class of models whose
function is inspired by the animal brains. A neural network consists of connected neurons
which transmit signals between them.

We can define a neuron as a function which takes a number of inputs, calculates their

weighted sum and then passes it to a non-linear activation function to produce the final

output. Formally a neuron with m inputs x;, X2, . . ., X, produces the output:
m
y= CP(Z wixi] (2.10)
i=0
where xg = 1 is an additional fixed input, wo, wy, ..., wy, are the weights corresponding
to xp, X1, ...,Xxn and ¢ a non-linear activation function.

A neural network can be seen as a directed graph with the neurons represented as
nodes and the weights between them represented as edges. It consists of input neu-
rons which receive the inputs, output neurons which calculate the outputs (e.g. class
probabilities in classification problems) and possibly hidden neurons between them.

Typically, by neural network we refer to a feedforward network whose neurons are
organized in layers (see Figure 2.3). Each layer takes as input all neurons of the previous
layer (fully-connected layers). Thus, the network consists of the input layer which takes

as input the features, the hidden layer(s) which produce intermediate representations and

m Awtflopatkn Epyaoia

2.4.2 Introduction to Deep Learning

finally the output layer which calculates the output. Mathematically, the overall network

computes the output vector g(x) using the following equation:
g0 = fE(WEEH (WL Y (W)) 2.11)

where L is the number of layers, W! = (w}k) are the weights between layer l and [— 1 and

flis the activation function which is applied after the layer L.

v

v

Figure 2.3: A feedforward neural network with one hidden layer. Source: https://commons.
wikimedia.org/wiki/File:Neural_network.svg

2.4.2 Introduction to Deep Learning

Deep learning (DL) is a category of machine learning based on deep artificial neural
networks. The main motivation behind DL is to limit the amount of feature engineering.
Traditional ML approaches struggle to process input data of high dimensions like text
or images and must rely on manual feature extraction in such scenarios. In constrast,
deep networks with multiple layers are capable of processing raw data by automatically
creating intermediate representations in the first layers and using them to make their
predictions in the last layers. This technique enables the model to discover patterns in

data on its own and is called representation learning.

2.4.3 Activation functions

In this section we will briefly mention some activation functions that are typically used

in neural networks.

1. Sigmoid function. It maps a scalar x to a number in the range of (0, 1) and is

commonly used for output probabilities.

o(x) = (2.12)

l+e™
2. Hyperbolic tangent (tanh) function. It maps a scalar x to a number in the range

Awtlopatkn Epyaoia m

https://commons.wikimedia.org/wiki/File:Neural_network.svg
https://commons.wikimedia.org/wiki/File:Neural_network.svg

Chapter 2. Machine Learning

(-1,1).
e —e™
tanh(x) = ———— 2.13
anh(x) g ()

3. Rectified linear unit (ReLU) function. It is commonly used as an activation func-

tions for input or hidden layers.

0 ifx<o0
ReLU(x) = (2.14)
x ifx>0

4. Gaussian Error Linear Unit (GELU) function. An alternative to the ReLU function.

GELU(x) = %x(l + erf(%)) (2.15)

5. Softmax function. It takes as input a J-dimensional vector x and outputs positive

numbers which sum to 1.

e
Softmax(x;)) = ——— fori=1,...,J (2.16)
S e

2.4.4 Learning through backpropagation

Backpropagation is an algorithm which enables the efficient calculation of the gradient
of the cost function with respect to each weight in feedforward neural networks. These
gradients are used by gradient descent to find the optimal weights as described in Section
2.2.2. It works by applying the chain rule starting from the end of the network (layers
closer to the output) and working backwards. Backpropagation is a dynamic program-
ming algorithm because redundant computations are avoided by leveraging intermediate
computed terms.

Assume that the network is described by Equation 2.11 and for an input-output pair
(xi, g(x;)) the cost function is C(y;, g(x;)) where y; the ground-truth label. In this case,
we want to compute the partial derivatives dC/ 8w}k with respect to the weights. Instead
of computing these terms independently, backpropagation starts from the last (output)
layer and works backwards finding the gradient with respect to the weighted input of each
layer. These terms are calculated recursively and are used to find the partial derivatives.

A detailed explanation of the algorithm can be found in [30].

2.4.5 Regularization

In Section 2.2.3 we discussed about underfitting and overfitting. Neural networks,
especially deep neural networks, rarely underfit because they often have a lot of param-
eters, however overfitting is common. Techniques that help ML models avoid overfitting
and generalize better are called regularization techniques. In this section we will describe

the most widely used regularization techniques in (deep) neural networks.

e L1 Regularization. L1 regularization aims to penalize large values for the weights

m Awtflopatkn Epyaoia

2.4.5 Regularization

w of the network by adding the term ||w|| to the loss function:

L =L+ Alwl 2.17)

e L2 Regularization or Weight Decay. L2 regularization works similarly to L1 regu-

larization but adds the term ||w]||? to the loss function:

L' =L+ A|w|? (2.18)

e Dropout. Dropout [2] chooses a random subset of neurons during each training
iteration and removes it. Because this random dropout of neurons is only performed
during training, this method can be seen as an efficient averaging (ensemble) of
different neural networks greatly improving generalization by forcing the neurons to

learn representations independently of other neurons.

)..

’

<)
N
%
A
~
N\

XX
xX
N
XX
N

3

A
Y
X
@
N/

<
0
N
(e
DA
N\

*

{)

(>

”,
v
J/

W
S
X
X
78

@

(a) Standard Neural Net (b) After applying dropout.

Figure 2.4: A neural network with 2 hidden layers before (a) and after (b) applying dropout.
Source: [2]

e Early Stopping. In early stopping we keep one small part of the training set (de-
velopment or validation set) which is not fed to the model but is rather periodically
used to estimate the generalization ability of the model as it is being trained. When
we observe that the performance on the validation set starts getting worse we stop

training as this may be an indicator of overfitting.

e Data Augmentation. The more training examples the network sees the less likely
it is to overfit. Data augmentation creates more examples by artificially augmenting
the dataset. For images, data augmentation techniques include scaling, flipping,
rotating etc and for text swapping words, replacing with synonyms or deleting words

are common options.

Awtlopatkn Epyaoia m

Chapter 2. Machine Learning

Error

Validation set

:
3
E Training set
3

0 Early Number of
stopping iterations

Figure 2.5: An example of early stopping. Training stops when the validation set error starts
increasing which indicates overfitting. Source: https://www. researchgate.net/figure/Early-
stopping-based-on-cross-validation_figl 3302948

2.4.6 Recurrent neural networks

So far we have focused on feedforward networks which do not form cycles or loops.
However, such networks are not suitable for problems in which the input features do not
have a fixed size i.e. in sequence problems. Recurrent neural networks (RNNs) are types
of neural networks which better model variable size sequences by keeping an internal
hidden representation or state serving as a type of memory. Typically, for each input unit
in the sequence they calculate the new hidden state based on the previous hidden state
and the current input. This enables processing of sequences with variable lengths while

keeping the number of parameters fixed (Figure 2.6).

SR O O
re=ni !

!

v
v

Vol

Figure 2.6: A RNN model (left) and its unrolled structure (right). Source: [3]

A type of a RNN network is the Elman network [31] and it works as follows: For each
time step t, the input x; and the previous hidden state h;_; are used to derive the current
hidden state h; (Equation 2.19). Then, based on h; the output y; is given by Equation
2.20.

hy = op (Wpxt + Uphe_1 + by) (2.19)

Yt = 0y (Wyhe + by) (2.20)

where oy, and oy are two activation functions and Wy, U, Wy, by, by are trainable param-

44 | AmmAouatxn Epyaoia

https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948
https://www.researchgate.net/figure/Early-stopping-based-on-cross-validation_fig1_3302948

2.4.6 Recurrent neural networks

eters. Note that the training parameters are the same for every time step enabling the
processing of potentially large input sequences without increasing the model size. The
hidden state h;_; is the only way to look back in previous parts of the sequence and it
should therefore capture all the necessary information about the “past”.

RNNs allow to perform various tasks on the processed sequence [4]. Some examples

of RNN usages for different sizes of inputs and outputs (see Figure 2.7) include:

e One to many. The input is of fixed size and the output is a sequence. Example:

creating image captions with input a fixed size image and output a sentence.

e Many to one. The input is a sequence and the output is of fixed size. Example:

classifying a movie review as positive or negative.

e Many to many (input and output with different sizes). Both the input and the
outputs are sequences but they do not have the same size. These types of RNN
models are commonly referred to as Sequence to Sequence (seq2seq) models [32].

Example: translation of a sentence from English to French.

e Many to many (input and output with same sizes). Input and output sequences
are of the same size. Alternatively, this can be seen as sequence labelling (assigning
a label to each part of the sequence). Example: identifying named entities (persons,

locations, organizations, etc) in a sentence (named entity recognition).

one to many many to one many to many many to many

Figure 2.7: Examples of RNN usages. Source: [4]

Training of RNNs is possible with backpropagation through time (BPTT), an algorithm
that extends standard backpropagation [33]. It works by unrolling the RNN model (see
Figure 2.6) and accumulating errors across all time steps. However, it has been observed
that for long sequences error gradients vanish (vanishing gradient problem) and conse-
quently learning becomes slower. Modifications to the “vanilla” RNN model that have been
proposed to eliminate the vanishing gradient problem include Long-Short Term Memory
(LSTM) networks [34] and Gated Recurrent Units (GRUs) [35]. Based on [3] we will de-
scribe how LSTMs work.

LSTMs solve the vanishing gradient problem and enable the network to learn long-

term relationships by adding the concept of the cell state. The cell state is not present in

Awtflopatkn Epyaoia m

Chapter 2. Machine Learning

the vanilla RNN and it allows for controlled addition or removal of information with gates

as shown in Figure 2.8.

he

A
Gt {0 N G
'\xj +—' l .'
/1anh
ft itﬁd‘) Otr*
o a tanh a
== | -aft

e LSTM cell

Figure 2.8: A LSTM cell. The yellow rectangles represent the four neural network layers.
Source: https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-
that-describe-the-gates-of-an-LSTM-cell_fig5_329362532

The following equations are used by the LSTM cell:

Jt= U(Wf “[he—1,] + bf) (2.21)
it = 0 (W; - [he-1, %] + by) (2.22)
C¢ = tanh (W¢ - [hy—1, X] + bc) (2.23)
Ci =fi* Cio1 + iy % G (2.24)

o = 0 (W [he—1, X¢] + b,) (2.25)
h; = o; * tanh (Cy) (2.26)

The function tanh(-) which outputs numbers in the range of (-1, 1) is used as the ac-
tivation function. Additionally, the sigmoid function o(-) is used for gate layers outputting
numbers between O and 1. The outputs of the gates are then multiplied with vectors
to control which numbers of the vector to keep (close to 1) and which numbers to erase
(close to 0).

e Removing information from the cell state. Based on the previous hidden state
hi—1 and the current input x;, the “forget gate layer” (Equation 2.21) controls which

information to remove (forget) from the cell state.

e Storing information to the cell state. Equation 2.22 describes the “input gate
layer” which decides which of the values in the cell state should be updated. The

new candidate values C; are then created by another layer (Equation 2.23).

e Updating the new cell state. The cell state is updated based on f;, i and C;
(Equation 2.24).

m Awtflopatkn Epyaoia

https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-that-describe-the-gates-of-an-LSTM-cell_fig5_329362532
https://www.researchgate.net/figure/Structure-of-the-LSTM-cell-and-equations-that-describe-the-gates-of-an-LSTM-cell_fig5_329362532

2.4.7 Attention mechanism

e Output. The “output gate layer” (Equation 2.25) allows specific parts of the cell
state to the output (Equation 2.26).

A limitation of RNNs is that only information from the past (previous time steps) is ac-
cessible. However, in some problems future information is also important. Bidirectional
RNNs (Bi-RNNs) were proposed [36] to address this issue. Bi-RNNs process the sequence
both in the forward direction as the standard unidirectional RNN and the backward di-
rection (starting from the last token and working towards the first one). The backward
mode is usually implemented with a separate hidden layer. Therefore, for every time step
two hidden states are produced H; E one for each direction and are concatenated to
produce the final hidden state h;. The vanilla RNN cells can be replaced by LSTM or GRU
cells resulting in bidirectional LSTMs (Bi-LSTMs) and bidirectional GRUs (Bi-GRUs).

2.4.7 Attention mechanism

In the previous section we mentioned that RNNs (usually LSTMs) can be used for
seq2seq problems like machine translation. These seq2seq models are usually composed
of the encoder (an LSTM which processes the input sequence) and the decoder (another
LSTM which generates the output sequence) [32]. The encoder produces the context
vector which is usually its last hidden state and passes it to the decoder as its first
hidden state. However, especially when the input sequence is large, it is difficult for the
encoder to learn to capture all of its information to a fixed-sized context vector and as a

result it may forget parts of the sequence.

Encoder She — is > eating> a > green —| apple

Context vector (length: 5)

—C [0.1,-0.2, 0.8, 1.5, -0.3]

\ 4
Decoder W o> E P B =N - ER

Figure 2.9: An encoder-decoder model translating a sentence from English to Chinese.
Source: [5]

The attention mechanism was proposed to solve this problem [6]. Like the name
suggests, it allows to pay attention to important parts of the input mimicking cognitive
attention. Figure 2.10 shows how the original attention mechanism works. We suppose
that the input sequence [x;, X2, ..., xr] is encoded with a Bi-RNN model and we want to
generate the output sequence [y;, ys,...,yr]. The decoder takes as input its previous
hidden state s;—;, the previous output y;-; and a weighted sum of all of the encoder
hidden states to produce s;. By allowing the decoder to access all hidden states instead
of only the last one, the model can reason more effectively for the entire input sequence.
Furthermore, the attention mechanism allows different decoder steps to concentrate on

different parts of the input sequence.

MinAouatxny Epyaoia

Chapter 2. Machine Learning

In the paper, the output conditional probabilities are defined as:

PWelyr.. .. Yy—1.X) = g(Ye-1. S¢. ¢) (2.27)

where the hidden state s; is given by:

St = f(St-1, Yg-1. ¢) (2.28)

The context vector ¢; is the weighted sum of the encoder hidden states:

T
=) agh; (2.29)
J=1
and the weights are given by:
exp (etj)
ay (2.30)

- Z’;{:l exp (ex)

e = score (st_l, hJ) (2.31)

The function score(-,-) (alignment model) which estimates the degree of alignmen-
t/similarity of two vectors is a feedforward network in the original paper: score (s¢_1, h¢) =
VZ tanh (W [s¢-1; h¢]). Other works study different variants to the original attention mech-
anism [37, 38]. Although, this mechanism was at first proposed to solve seq2seq text
problems like machine translation, later works extended it to the computer vision field
[39].

}X1 }Xz }X3

Figure 2.10: Attention mechanism. Source: [6]

2.4.8 The Transformer

In 2017, the paper “Attention is All you Need” [7] introduced the transformer, a seq2seq
model which led to a revolution in the field of deep learning. In the previous section,
we highlighted the importance of the attention mechanism as a way to concentrate on

specific parts of the sequence. This helped RNNs improve their performance by eliminating

m Awtflopatkn Epyaoia

2.4.8 The Transformer

the problems arising from using only the last hidden state. However, the transformer
proved that the sequential processing is not needed at all provided that attention is
used. Transformer models process sequential data like RNNs but they remove the need
for recurrent computations and this allows for more parallelization and therefore lower
training times. Larger datasets can now be used and thus transformer models often
outperform RNN-based models.

Attention. The paper relies on an attention type called “Scaled Dot-Product Attention”.
Suppose that the input consists of vectors which represent words (words can be repre-
sented as vectors called word embeddings which will be expained in detail in the next
chapter). For each input vector x; we calculate three vectors: the Query vector q;, the Key

vector k; and the Value vector v;:

qi = x;Wy (2.32)
ki = XiWK (233)
v; = x;Wy (2.34)

where Wy, Wk and Wy are learnable weight matrices. The attention score a; from token

X; to token x; is computed as the dot-product between the query of x; and the key of x;:

We define the matrices Q, K and V where the i-th row is the vector q;, k; and v;

respectively. Then the attention output is:

Attention(Q, K, V) ft (QKT) \%4 (2.36)

ention(Q, K, V) = softmax .
Vdi

where the division by +/dj helps with numerical stability.

Furthermore, multi-head attention is introduced allowing each attention head to at-

tend to a different representation subspace:

MultiHead(Q, K, V) = Concat (head;, . . . , heady,) W°
(2.37)

where head; = Attention (QWiQ, KWLK , VWiV)
Multi-Head attention is shown in Figure 2.11.
Positional encoding. The transformer model has no way of knowing the positions of the
tokens (words) because, unlike in RNNs, recurrence is absent. To this end, the authors
of the paper opted for adding a positional encoding to the embeddings based on sine and
cosine functions:

PE pos.2i) = sin (pos/ 100002V dmodel) (2.38)

PE(pos 2i+1) = €08 (pos/10000% dmodel) (2.39)

where pos is the position, i is the dimension and dpege; is the embeddings dimension.

Encoder-decoder architecture. The encoder consists of N = 6 layers. In every encoder

layer, the input is passed by a multi-head self-attention layer and by position-wise feed-

Awtflopatkn Epyaoia m

Chapter 2. Machine Learning

t

Linear
A

Concat

A

[
Scaled Dot-Product J& h
Attention ~

| H [

Linear Linear Linear

Figure 2.11: Multi-head attention. Source: [7]

Output
Probabilities

Add & Norm

Feed
Forward

| Add & Norm |<_:

Multi-Head
Attention

r—>| Add & Norm |

Feed

Forward) Nx
|
Nx Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
A_ 2 A 2
_ J/ _ —)
Positional & ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs QOutputs

(shifted right)

Figure 2.12: The encoder-decoder transformer architecture. Source: [7]

forward layers. The decoder also consists of N = 6 layers. The difference here is that

before the feedforward layer there is an additional multi-head cross-attention layer that

m Awtflopatkn Epyaoia

2.5 Transfer Learning

enables the output to attend to the encoded input. The overall architecture is illustrated
in Figure 2.12.

2.5 Transfer Learning

Transfer learning (TL) is a learning paradigm which enables a model to use the knowl-
edge acquired during training for one task to solve another task that is related but dif-
ferent. For example, we could use the knowledge from a model that has been trained to
classify images as dogs or cats to classify other animals.

We will first introduce some concepts and then formally define TL. The definition
follows [40].

e The feature space X contains all possible input feature vectors.
e The label space Y contains all possible output label vectors.

e A domain D = {X, P(X)} is a tuple consisting of the feature space X and a marginal
probability distribution P(X) over the feature space (only from specific samples x; €

X)

e Atask 7 = {VY, P(Y|X)} is a tuple consisting of the label space Y and the conditional
probability distribution P(Y|X) which has to be learned.

The goal of TL is to learn P(Yr|Xr) in Dr by leveraging information learned from Dg
and 75 where Ds # Dr or Ts # 71 (either the source domain or the source task is

different from the target domain/task).

2.6 Multi-Task Learning

Apart from transfer learning, another learning paradigm that is widely used is multi-
task learning (MTL) [41]. In multi-task learning, we train a model to perform multiple
tasks at once. This is typically managed by optimizing two or more loss functions. The
loss functions may correspond to either tasks that we want to solve or auxiliary tasks
that help improve performance on the main task(s).

MTL motivates the model to exploit commonalities between the different tasks. It
introduces an inductive bias as the model learns to bias representations that are useful
for performing multiple tasks. As such, it acts as a form of regularization preventing
overfitting.

MTL is implemented in deep learning with either hard or soft parameter sharing:

e In hard parameter sharing the hidden layers are shared and each task has its own

task-specific output layers.

¢ In soft parameter sharing the tasks have separate layers and they are trained to

keep their parameters similar.

Awtflopatkn Epyaoia m

Chapter B

Natural Language Processing

Natural Language Processing (NLP) studies computational methods that process and
analyze natural language data. It is a field in the intersection of linguistics, computer
science and artificial intelligence. The term computational linguistics is often used as a
synonym to NLP as it extends linguistics to take advantage of computational approaches.

Although humans communicate with natural language every day, it is not trivial for
a computer to be programmed to understand language as deeply as humans do. Natural
language has rules that are too high level and abstract which makes writing computer
programs that are capable of understanding them difficult. Examples of characteristics
that indicate the challenging nature of natural language include ambiguities, words of
different meanings (homonyms) and coreference. NLP is therefore an interesting and

challenging research area.

3.1 NLP tasks
Typical applications of NLP include [14]:

e Part-of-speech tagging (POS tagging): It identifies whether each word in a sentence

is a noun, verb, adjective, adverb, etc.

o Named entity recognition (NER): It identifies and classifies named entities in a
sentence. Named entities may include persons, cities, countries, time/date expres-

sions etc.

e Machine translation (MT): Translation between two natural languages e.g. from

English to Chinese.

e Constituency parsing: It includes assigning a structure to a sentence called constituency-

based parse tree.

o Dependency parsing: A dependency-based parse tree is assigned to the sentence
which differs from constituency-based parse tree because it only displays relation-

ships between words.

e Coreference resolution: It identifies referring expressions and the referent (the

entity which they refer to).

e Question answering: It involves answering questions based on information or
knowledge.

MinAouatxny Epyaoia m

Chapter 3. Natural Language Processing

e Dialogue systems: Systems or agents which have conversations with a user. Such
conversational agents are mainly divided to task-oriented dialogue agents which aim
to assist the user to accomplish tasks and open-domain dialogue agents or chatbots
which mostly aim to mimic humans trying to entertain the user with unstructured

conversations. Chapter 4 comprehensively studies dialogue systems.
e Automatic speech recognition (ASR): Speech-to-text (STT) translation.

e Speech synthesis: Text-to-speech (TTS) translation.

3.2 N-gram Language Models

Language models (LM) assign probabilities to sequences of words and can predict the
next word based on the preceding words. Problems like speech recognition, machine
translation and POS tagging can benefit from language modeling. In this section we will
introduce a simple way to perform language modeling: n-gram language models.

The task of language modeling is to find the probability:
P(wi:m) = P(wy, wa, ..., wn) (3.1)

for a sequence with m words. By applying the chain rule of probability to Equation 3.1:

m
P(w1.m) = P(w1)P(wolw) . .. P(wilwim—1) = | | Pwic| wik) (3.2)
k=1
N-grams approximate the conditional probabilities by making the assumption that the

next word only depends on the n — 1 previous words (Markov property):
n
P(win) ~ | | P(wi | wie) (3.3)
k=1

Then the conditional probabilities can be computed using the frequencies of the n-grams

in the dataset.

3.3 Distributional hypothesis - word embeddings

In linguistics, the distributional hypothesis [42] refers to the property that words
with similar meanings usually appear in similar contexts. Firth [43] summarized and
popularized this hypothesis by the famous “you shall know a word by the company it
keeps”. According to this hypothesis, the meaning of words can be learned from their
distribution in texts. Words can be represented as vectors such that words with similar
meanings have a small distance. Linear algebra can be used as a tool to perform tasks on
these vectors. The advantage of models using distributional semantics is that they replace

manual feature engineering and they instead extract representations directly from text.

m Awtflopatkn Epyaoia

3.3.1 Tf-idf

3.3.1 Tf-idf

Term frequency-inverse document frequency (tf-idf) is a statistic which indicates the
importance of a word in a document. Tf-idf is a product of two statistics: term frequency
and inverse document frequency.

Term frequency:

Jta
Zt’edft’,d

where f; 4 is the number of appearances of the word t in the document d. Term frequency

tf(t, d) = (3.4)

is normalized by the total number of words in the document.

Inverse document frequency:

N
idf(t, D) = log ——— 3.5
(tD) = log o Tea) (55
where D is a collection of documents and N = |D|. The denominator is the number of
documents where the word t appears at least once. This statistic expresses how rare the
word is across the documents. Rare words have a larger inverse document frequency as
they are more “important” than common words like “the” or “and”.

Term frequency-inverse document frequency (tf-idf):
tfidf(t, d, D) = tf(t, d) - idf(¢, D) (3.6)

Words that have high term frequency and low document frequency have high tf-idf. These

words appear multiple times in a document but are not common in other documents.

3.3.2 Co-occurence matrix

The co-occurrence matrix is constructed by measuring how often words occur to-
gether. Two popular choices are the term-document matrix and the term-term matrix.
They can be used to derive sparse vectors for each word or document. Tf-idf is one way
to weigh the words in a co-occurrence matrix and thus improve the discriminating ability
of the vectors. Nevertheless, such methods produce vectors that are high-dimensional
(typically |V|-dimensional where V is the set of all possible words). Sparse vectors are not
perfect representations when used e.g. by neural networks because learning tends to be
difficult.

3.3.3 Word2vec

From the previous section it becomes clear that lower-dimensional vectors with dimen-
sions that better capture linguistic properties are a better solution for the representation
of words. These dense vectors which are usually called embeddings can be learned from
large datasets and then used for other tasks making them an example of transfer learning.
Embeddings can be classified as static embeddings like word2vec [8] or GloVe [44] and
contextualized embeddings like ELMo [45] or BERT [17]. Static embeddings represent

words as fixed vectors while contextualized embeddings are dynamic and depend on the

Awtlopatkn Epyaoia m

Chapter 3. Natural Language Processing

context. In this section we will introduce the word2vec algorithm.

The goal of word2vec is to learn high-quality dense distributed representations from
huge datasets and large vocabularies in a computationally efficient way. The authors of
the word2vec paper observed that previous architectures used a neural network with a
non-linear hidden layer which made training on large datasets impossible. Instead, they
choose a shallow network with a projection layer that projects the sparse input vectors
to vectors with a smaller dimension and an output layer. The training objective is to
reconstruct sentences based on the context and two architectures to achieve that were
proposed: continuous bag-of-words (CBOW) and continuous skip-gram (Figure 3.1).

In the CBOW architecture, the model predicts the word in the middle based on the
previous and next words. Every word is projected with the projection layer (the same
weights are used for all words) and then the vectors are averaged. This means that the
order of the words is irrelevant (bag-of-words).

In the continuous skip-gram architecture, the model predicts words found in the
context based on the word in the middle. More distant words are sampled less because

they tend to become less related to the middle word.

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

T w(t-2)
T w(t-1)
SUM -
j »T w(t) w(t) j’—”
T w(t+1)

T w(t+2)

CBOW Skip-gram

Figure 3.1: The two word2vec model architectures. Source: [8]

Syntactic and semantic word similarities are preserved by the embeddings. It is in-
teresting that even simple metrics such as cosine similarity and vector arithmetics can
be directly applied. For example, the vector man-woman+queen is close to the vector king.
More examples of related words are shown in Figure 3.2. Although the reasons of the
effectiveness of word2vec and related algorithms are not clear, a possible explanation is
that the training objective causes the projected word representations of similar words to
be close, confirming the distributional hypothesis. Embeddings derived from algorithms
like word2vec are usually the default choice for encoding words in sequence architectures

like those described in the previous chapter.

m Awtflopatkn Epyaoia

3.4 BERT

woman

man \ girl slower
\ father <‘ <o slow
cat king Auee" boy
slowest
dog \ mother k faster
\ cats daughter fast
France
do,

England longer
he fastest
Paris Italy \ she long
London \
himself

longest
herself &

Rome

Figure 3.2: Visualization of embeddings that capture the similarities between words.
Source: https://medium.com/@nuripurswani/word2vec- for-talent-acquisition-ab20a23e01d8

3.4 BERT

3.4.1 Architecture

BERT [9] is a multi-layer bidirectional transformer encoder. The authors of the paper
report results for two BERT variants with different model sizes: BERTgasg and BERTArGE-
BERTgasge has L = 12 transformer encoder blocks, the hidden size (size of the feedforward
networks) is H = 768, it has A = 12 self-attention heads and a total of 110M parameters.
For the larger version BERT arge the respective parameters are L = 24, H = 1024, A = 16

and a total of 340M parameters.

NSP Mask LM Mask LM \ /M@D Start/End Span\
DS *

BERT BERT

Masked Sentence A - Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair / Question Answer Pair

Pre-training Fine-Tuning

Figure 3.3: BERT is first pre-trained on large corpora and then fine-tuned on task-specific
datasets. Source: [9]

3.4.2 Inputs and outputs

The input is a sequence which may be one or two sentences depending on the task.

The input tokens are represented as embeddings (WordPiece embeddings are used). To

AinAouatxny Epyaoia

https://medium.com/@nuripurswani/word2vec-for-talent-acquisition-ab20a23e01d8

Chapter 3. Natural Language Processing

perform tasks such as classification two special tokens are introduced: [CLS] and [SEP].
[CLS] is always the first token of the sequence. For sequences consisting of two sentences,
they are separated with the [SEP] token and additional learnable segment embeddings are
added to the token and position embeddings.

Each token is encoded with BERT to a representation (embedding) of size H (768 for
BERTgasg). The special [CLS] token is used as a representation for the entire sequence
and is useful in sequence classification tasks. BERT embeddings are contextual meaning
that the same word will have different embeddings based on its context (the sentence that

is found in).

3.4.3 Pre-training

BERT is pre-trained on two large datasets: BookCorpus (800M words) and the English
Wikipedia (2,500M words). BERT’s pre-training includes two unsupervised tasks: Masked
Language Modeling (MLM) and Next Sentence Prediction (NSP). Pre-training requires a lot
of computational power and time. After pre-training, the model can be fine-tuned (further
trained) on downstream supervised tasks like question answering.

During MLM, 15% of the input tokens are masked and the model’s task is to predict

them. The tokens which are selected to be masked are:
e Replaced with the [MASK] token 80% of the time
e Replaced with a random token 10% of the time
e Left unchanged 10% of the time

NSP is used to teach the model to understand the relationship between two sentences.
The input is constructed by choosing two sentences such that the second one is the actual
next sentence 50% of the time and a random sentence 50% of the time. BERT’s task is to

predict whether the second sentence is actually the next one.

3.4.4 Fine-tuning

Pre-trained BERT models can be used for downstream tasks by adding classification
heads. Classification heads are neural networks that take as input the BERT embeddings
and output class probabilities. The weights of the BERT model can be fixed during
downstream training and in this case BERT is used as a feature extractor. However,
further training the entire BERT model along with the classification head (fine-tuning)
usually leads to better performance. Figure 3.4 shows some possible ways to use BERT

on specific tasks.

3.4.5 RoBERTa

RoBERTa [46] is a model that improves on the original BERT’s hyperparameter and

training choices. The main modifications introduced by RoBERTa are:

e [t is pre-trained longer with a bigger batch size on a larger dataset.

m Awtflopatkn Epyaoia

3.5 XLNet

Class
Label

G- G]G0

BERT

[fea]e] (o[l] [a

T

Sentence 1 Sentence 2

(a) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Start/End Span

LG Callan)i]- ()
BERT

[sa]l=] [][Ewn] (][]

Question Paragraph

(c) Question Answering Tasks:
SQUAD v1.1

Single Sentence
(b) Single Sentence Classification Tasks:
SST-2, CoLA
o B-PER (e}
* & o

BERT

el e (o] - [=]
I
\

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Figure 3.4: BERT input sequences and classification heads for different tasks. Source: [9]

e It does not use the next sentence prediction pre-training objective as the authors

concluded that similar or even slightly better results can be achieved without it.

e The sequences used for pre-training are longer.

e The masking is dynamic: The input tokens that should be masked are chosen before

feeding the input to the model rather than during the data preprocessing stage like

in BERT. This means that in different epochs, the same sequence will be masked in

a different way.

3.5 XLNet

BERT is trained with an autoencoding (AE) language modeling objective. This means

that it does not rely on Equation 3.2 to explicitly model the probability distribution of the

words in a sentence. Instead, BERT aims to reconstruct a corrupted sentence and thus

it is possible to leverage bidirectional context. The disadvantage of this approach is that

the words that have to be predicted are assumed to be independent.

On the other hand, autoregressive (AR) language modeling directly estimates the prob-

ability distribution of Equation 3.2. The conditional probability can be estimated with

either a forward or a backward pass of the sentence. Although AR models can be used

MinAouatxny Epyaoia

Chapter 3. Natural Language Processing

for tasks like natural language generation, they fall short of performing natural language
understanding when deep bidirectional context is required.

XLNet [10] is a transformer model that combines the benefits of both AE and AR
transformer models. It is a generalized autoregressive method and performs AR language
modeling with a newly introduced pre-training objective: Permutation Language Modeling
(PLM). PLM allows the model to consider bidirectional contexts by permuting the word
order in the sentence making it more suitable for natural language understanding tasks
than traditional AR models. Furthermore, as it does not rely on data corruption (using
[MASK] tokens), it avoids BERT’s pretrain-finetune discrepancy and unlike BERT, words
to be predicted are not assumed independent. XLNet borrows ideas from Transformer-
XL [47] which improves on the vanilla transformer allowing better performance on long

sequences.

mem®

mem(o) L . . .

Factorization order: 3 > 2 >4 > 1 Factorization order: 2 > 4 > 3 > 1

Factorization order: 1 > 4> 2 2> 3 Factorization order: 4 > 3> 1 > 2

Figure 3.5: Illustration of XLNet’s permutation language modeling objective for predicting
X3 with different factorization orders. Source: [10]

3.6 T5

Text-to-Text Transfer Transformer (T5) [11] is a model that leverages a unified text to
text formulation for all language problems. The authors of the paper introduced a new
dataset, the Colossal Clean Crawled Corpus (C4), which is two orders of magnitude larger

than Wikipedia, to accommodate the model’s pre-training. C4 is a cleaned version of

m AinAouatxny Epyaoia

3.6 T5

Common Crawl, a large dataset of crawled websites !.

T5 relies on natural language description of the downstream tasks instead of special-
ized classification heads as used by BERT (and related) models. The model is trained to
generate the predictions as text. For example, for the translation task from English to
German, the model may take as input the sequence “translate English to German: That is
good.” and should output “Das ist gut.” More examples of downstream tasks are shown

in Figure 3.6.

["translate English to German: That is good."

{ "cola sentence: The "Das ist gut."

course is jumping well."

"not acceptable“]
"stsb sentencel: The rhino grazed
on the grass. sentence2: A rhino
is grazing in a field."

"summarize: state authorities
dispatched emergency crews tuesday to
survey the damage after an onslaught

of severe weather in mississippi..”

"six people hospitalized after
a storm in attala county."

Figure 3.6: T5 model on various downstream tasks. Source: [11]

After a survey that compares many different approaches to transformer architectures
and pre-training objectives, the authors found that the best results can be obtained with
an architecture close to the vanilla encoder-decoder transformer and a denoising pre-
training objective (similar to BERT). The pre-training and fine-tuning phases are shown

in Figure 3.7.

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in]

Lily couldn't <M>. The waitress

had brought the largest <M> of believe her eyes <M>
chocolate cake <M> seen. piece <M> she had ever
Our <M> hand-picked and sun-dried peaches are <M> at our
<M> orchard in Georgia.

President Franklin D.
Roosevelt was born
in January 1882.

Pre-training

Fine-tuning
When was Franklin D. I
[Roosevelt born? 5

Figure 3.7: T5 pre-training and fine-tuning. Source: [12]

1https://commoncrawl.org/

AinAouatxny Epyaoia m

https://commoncrawl.org/

Chapter ﬂ

Dialogue Systems

4.1 Introduction to dialogue systems

Dialogue systems are designed to communicate with users in natural language. One of
the longest running challenges in artificial intelligence is developing intelligent agents that
can have conversations with the goal of entertaining humans, helping them accomplish
daily tasks or both. Therefore, dialogue systems generally fall into two categories [14, 48,
49]. Systems that aim to not only have engaging and long conversations but also satisfy
emotional needs of humans are called open-domain dialogue systems [13]. By contrast,
task-oriented dialogue systems [15] aim to help users achieve more domain-specific tasks
like booking flight tickets or finding a restaurant to eat. In this section we will introduce
general methods and challenges in dialogue systems and in Section 4.2 we will discuss
about a very important component that mainly task-oriented systems use: Dialogue State
Tracking (DST).

4.1.1 Open-domain dialogue systems

Early dialogue systems include Eliza [50], Parry [51] and Alice [52]. Such systems
are rule-based and work well on specific environments. Unlike traditional systems, most
modern systems are data-driven i.e. trained with human-human conversations without
relying on handcrafted rules. They are typically implemented with end-to-end architec-
tures that directly produce the response at each turn based on the dialogue context. The

response is produced by open-dialogue systems by either retrieval or generation methods.

Retrieval methods

Retrieval methods choose the best answer from a candidate set present in the corpus. In
Figure 4.1 the architecture of a retrieval-based system is shown. Based on the dialogue
context C and the input utterance X, retrieval algorithms are employed to retrieve the best
candidates from a set of input-output pairs which are collected offline. Matching models
consequently find the best output (next system utterance) Y by ranking the candidate
responses. To this end, traditional information retrieval algorithms are effective [53] but
more recently deep architectures are preferred. For example, BERT [17] can be used to
separately encode the candidate responses and the current dialogue and the similarity
between them can be calculated with the dot-product operation. Most sophisticated

approaches (e.g. [54]) can act as an alternative to make the pairwise comparisons.

MinAouatxny Epyaoia m

Chapter 4. Dialogue Systems

Context: C
: . Retrieved candidates .
Input: X Retrieval Output: ¥
Algorithms
Online
Offline

Matching

Input-Output
Pairs

Models

Repository

Figure 4.1: Retrieval-based architecture. Source: [13]

Generative methods

Alternatively, the problem can be formulated as a generation problem. In this case,
seq2seq encoder-decoder models as discussed in Chapter 2 can be used (see Figure 4.2).
Recently the best performing architectures are based on transformers [55, 56, 57]. Dia-
logue generation can also be performed with conditional variational autoencoders (CVAEs)

[58] or generative adversarial networks (GANs) [59].

That is quite an accomplishment and you should be proud!

t t t t t t
D

DECODER

ENCODER

T

[U:] | finally got promoted today at work!

[S:] Congrats! That’s great!
[U:] Thank you! I've been trying to get it for a while now!

Figure 4.2: Encoder-decoder based architecture. Source: [14]

Hybrid methods

Retrieval-based methods produce responses with high quality as they are written by hu-
mans but the they are limited to the data present in the corpus. On the other hand,
generation-based methods can produce unseen responses but are often not fluent or not
related to the dialogue. A lot of hybrid methods are proposed to benefit from the strengths
of both approaches. For example in [60] a candidate (prototype) response is retrieved and

then edited to match the context. This method results in relevant and diverse responses.

m AinAouatxny Epyaoia

4.1.2 Task-oriented dialogue systems

Challenges

One of the most common problems in dialogue generation is bland responses. Systems
based on seq2seq models prefer to respond with generic answers like “I don’t know”. The
reason is that they are trained to maximize the conditional probability P(S|T) of the re-
sponse T based on the context S and short answers that do not convey much information
can satisfy many possible contexts. Instead, [61] proposed to maximize the mutual infor-
%15?5)' Methods based on GANs [62] have also been used where
the generator tries to produce an answer which the discriminator cannot tell whether it

mation between T and S:

originates from a human or not. In addition, [63] proposed a model that mitigates the
issue by introducing latent variables that capture high-level semantic information of the
response.

Another issue is that dialogue generation models often produce inconsistent responses.
For example, when asked “How old are you?”, the system may respond with different an-
swers across turns. To address this problem, we can encode personas that reflect the
identity of the conversational agent [64] into representations called speaker embeddings.
Speaker embeddings capture information about the speaker such as their accent or their
preferred conversational topics. Datasets like PERSONA-CHAT [65] have helped research
on agents with consistent personality.

In some cases, a desired property of conversational systems is to ground the dialogue
in the real world. The dialogue can be ground in the personalities of the speaker [65],
in visual information [66] or knowledge [67]. Grounded models can respond based on
facts and may prove more useful in the real world. The implementation of such systems

involves encoding the external real-world information along with the dialogue context.

Evaluation

The quality of an open-domain dialogue system can be evaluated either by humans or
with automatic metrics. Humans can be asked to evaluate the engagingness, the repeti-
tiveness, how much sense the answers make etc. Although human evaluation is the most
accurate metric, it is expensive and time-consuming and therefore automatic metrics are
often used instead. Word-overlap metrics like BLEU [68], ROUGE [69] and METEOR [70]
calculate the similarity between the ground-truth and the generated sequences. More re-
cently neural metrics [71] have been proposed to evaluate dialogue generation by learning

to predict human-like scores.

4.1.2 Task-oriented dialogue systems

Task-oriented dialogue (TOD) systems are more goal-oriented and domain-dependent.
The domain knowledge is often represented by a structured ontology and the dependence
on such ontologies is a major difference between task-oriented and open-domain dialogue
systems. TOD methods can be classified as pipeline and end-to-end. In pipeline methods
the system leverages several components (modules): Natural Language Understanding
(NLU), Dialogue State Tracking (DST), Dialogue Policy and Natural Language Gener-

Awtflopatkn Epyaoia E

Chapter 4. Dialogue Systems

ation (NLG). A high-level illustration of the pipeline architecture is shown in 4.3. On the
other hand, end-to-end methods use a single model similarly to open-domain dialogue
systems. Pipeline methods are widely used because they are tend to be more accurate

but end-to-end methods are easier to build because they require fewer annotations.

I wantto find a | Natural Language Dialog State ’

Chinese restaurant. Understanding Tracking
Inform (cuisine=“Chinese”)
Dialog S 2lelee {—> | Knowledge
User ialog State | manager A
Query
\ Request (location)
“Where do you l Natural Language | _ Dialog Policy ’

Generation

wantto eat? ”

Figure 4.3: A traditional pipeline TOD system. Source: [15]

Natural Language Understanding

The first component of pipeline methods is NLU. Based on a single user utterance, NLU
generates a structured representation which usually consists of intents and slots. Intents
are functions requested by the user such as ReserveRestaurant and TransferMoney and
slots are elements mentioned in the utterance such as restaurant_name and account._-
type. NLU thus involves two tasks: intent prediction and slot filling. Intent prediction
finds the active intent in the user utterance from the list of intents present in the domain
ontology. Slot filling finds the slot-value pairs by tagging the user utterance tokens: each
token may be tagged as either part of one of the slots or not belonging to any slot. RNNs
were the traditional choice for NLU [72, 73, 74] while more recently BERT is becoming
more popular [75]. Although, intents and slots are the most common way to represent
the ontology, other representations that capture more complex dialogues can be used as

well.

Dialogue State Tracking

DST predicts the user goal for each dialogue turn given the entire dialogue. The user
goal is captured by the dialogue state which can be seen as an abstracted representa-
tion of the dialogue. Early works make the assumption of discrete predefined dialogue
states and model the task as a Markov Decision Process (MDP) [76]. Most recent works
represent the dialogue state as slot-value pairs [77] and the values are found with classi-
fication. Although NLU used to be required in order to produce a semantic user utterance
representation that the DST component could understand, nowadays a separate NLU
component is rarely used. For a more comprehensive review of DST methods see Section
4.2.

m Awtflopatkn Epyaoia

4.1.2 Task-oriented dialogue systems

Dialogue Policy

Given the dialogue state, the dialogue policy predicts the next system actions. System
actions are semantic representations of the information that should be present in the
system utterance e.g. Request (location) expresses that the system should request from
the user their desired restaurant location. The framework of MDPs is suitable for the
policy component and reinforcement learning (RL) is an ideal solution to the problem.
Typically, it is first trained with supervised learning offline and it is then fine-tuned with
RL. Note that unlike other components which are trained individually, RL fine-tuning
requires the entire system. Model-free RL frameworks [78] rely on the interaction with
human users. Alternatively, user simulators can replace real users [79] or model-based
RL algorithms [80] can integrate planning and alleviate the need for interactive training

with humans.

Figure 4.4: An example of a MDP. Green circles correspond to states, orange circles corre-
spond to actions and orange arrows to rewards. Source: https://en.wikipedia.org/wiki/
Markov_decision_process#/media/File:Markov_Decision_Process.svg

Natural Language Generation

The last component of TOD systems, NLG, generates the system utterance based on the
predicted system actions. This can be seen as a seq2seq task. Semantically Conditioned
LSTMs (SC-LSTMs) [81] are LSTMs that take into account dialogue act information to
produce better responses. SC-GPT [82] pre-trains GPT-2 [83] on a large NLG dataset
and fine-tunes on task-oriented generation tasks with few samples (few-shot learning)

achieving better performance.

End-to-end TOD systems

Despite the widespread use of pipeline methods and their proven stability, they have sev-

eral drawbacks including a complex system design, the requirement for more annotated

Awtlopatkn Epyaoia

https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg
https://en.wikipedia.org/wiki/Markov_decision_process#/media/File:Markov_Decision_Process.svg

Chapter 4. Dialogue Systems

data and the need for individual training of components which may lead to error accu-
mulation. Inspired by work in open-domain dialogues, end-to-end methods reformulate
TOD as a seq2seq task and directly generate the next system utterance based on the
dialogue history. [84] proposed a network that consists of several components but is
end-to-end differentiable and can therefore be trained as a single model. [85] used end-
to-end memory networks to reason over multiple turns. Sequicity [86] uses a two-stage
seq2seq model to first generate the dialogue state and then the final system utterance.
Furthermore, SimpleTOD [87] keeps the component-based approach and employs trans-
fer learning from large open domain datasets by using a pre-trained model such as GPT-2.

The pre-trained model solves all subtasks in a unified seq2seq approach.

Evaluation

Like in open-domain systems human evaluation is the most accurate metric for the qual-
ity of the system. The evaluation metrics measure whether the task was completed suc-
cessfully, the user satisfaction, the number of required turns etc. However, in practice
dialogue systems are more easily evaluated with automatic metrics. For NLU and DST,
slot and intent classification metrics are used e.g. intent accuracy and slot F1. Dialogue
policy uses inform rate, match rate and task success rate [15]. For NLG similar metrics
as in open-domain dialogues apply e.g. BLEU. These metrics are well-defined but they do
not necessarily represent the quality of the system in the real world. As a middle ground,
user simulation can be used to automatically evaluate the system although the research

on the field is still ongoing.

4.2 Dialogue state tracking

Dialogue State Tracking (DST) is an essential component of task-oriented dialogue
systems. As previously described, it tracks the user goals over multiple turns of dia-
logue. The dialogue state is then used by dialogue policy to predict the next system
actions and/or issue queries to knowledge bases. In most modern systems, DST takes
the natural language utterances directly as input without the need for intermediate NLU
representations for user utterances. However, many works leverage the produced sys-
tem actions instead of system utterances for past system turns [77, 88]. Being the first
component of such systems makes DST’s accuracy critical as with wrong dialogue state
predictions next components cannot function properly. In this section we will review re-
cent developments in the topic of DST modeling. For this section the goal of DST is to

estimate the dialogue state which consists of slot-value pairs unless mentioned otherwise.

4.2.1 Datasets

DST datasets require dialogues with annotations on the dialogue state level per user
turn. Some datasets contain single-domain dialogues such as DSTC [89], DSTC2 [90],
CamRest [91] and WOZ [77]. However, most recent datasets span over multiple domains

and provide a significantly more challenging testbed for DST systems. In multi-domain

m Awtflopatkn Epyaoia

4.2.2 Discriminative and generative DST

datasets, the user may interact with the system over more than one domains. For exam-
ple, a user may ask the system to search for a flight to Athens and then request attractions
in the area. Therefore, slots may take values from previous domains especially in turns
where domains are switched. Popular multi-domain datasets include MultiwOZ 2.0-2.4
[92, 16, 93, 94, 95] and the Schema-Guided Dialogue (SGD) dataset [1].

BRgent: I have two restaurants. They
are Pizza Hut Cherry Hinton and
Restaurant Alimentum.

User: What type of food do each

of them serve?

restaurant.name: Pizza Hut Cherry Hinton,
Restaurant Alimentum

User: I would like to wvisit a museum
or a nice nightclub in the north.

attraction.type: museum, nightclub

User: I would also like a reservation
at a Jamaican restaurant in that area
for seven people at 12:45, if there
is none Chinese would also be good.

restaurant.food: Jamaican (preferred), Chinese

User: I would prefer one in the cheap
range, a moderately priced one is
fine if a cheap ocne isn’t there.

restaurant.pricerange: cheap (preferred), moderate

Figure 4.5: An example dialogue with dialogue state annotations from MultiWOZ 2.1. The
slots span two domains: restaurant and attraction. Source: [16]

4.2.2 Discriminative and generative DST

Early methods [77, 96] use classification to find the values for slots assuming that
every slot has a predefined list of possible values. NBT [77] is a system that relies on
natural language utterances instead of the output of a separate NLU component. However,
discriminative approaches fail to scale to slots with many possible values. For example, it
is impossible to list the candidate values for a slot like restaurant_name because they are
too many and constantly changing. Therefore, during inference possibly unknown slot
values may appear and the system is not capable of handling them.

The Global-Locally Self-Attentive Dialogue State Tracker (GLAD) [88] uses global mod-
ules with shared parameters across slots as well as local modules for each slot. This
approach dramatically outperforms prior methods because it generalizes better to rare
slot-value pairs. Other works completely remove the need for slot-specific parameters
and are thus scalable to large sets of slots [97, 98]. However, such models can still not

handle slot-value pairs that are not present in the training dataset.

AinAouatxny Epyaoia m

Chapter 4. Dialogue Systems

Sequicity [86] formulates slot filling as a two-stage sequence generation task taking
advantage of simple seq2seq architectures. In the first stage it generates the dialogue
state (belief state) and in the second stage the final system response. To handle out of
vocabulary (OOV) words it utilizes an extension to the traditional seq2seq framework,
CopyNet [99], which allows copying of such OOV words. Another approach [100] is to use
the pointer network (PtrNet [101]). TRAnsferable Dialogue statE generator (TRADE) [102]
uses a state generator with an utterance copying mechanism to decode the values for each
slot separately achieving great zero-shot and few-shot performance as slots are indepen-
dent from the model design. COMER [103] decreases the computational complexity by
hierarchically generating the dialogue state: first the slots are decided and then for each
slot in the dialogue state its value is decoded. TripPy [104] uses three copy mechanisms
to retrieve the value for a slot: 1) span extraction from the user utterance 2) copying from

system inform memory 3) copying from a different slot from the dialogue state.

Hybrid approaches [105] can select whether to use classification or generation to find
the value for the slots combining the benefits of both strategies. This is very practical
in real-world dialogue systems because there are slots which can better be modeled as
categorical slots. For example, boolean slots like has_vegetarian_options in the restaurant
domain has only two possible values: true and false. Other types of categorical slots may
include numerical slots (where the number of possible values is limited) or other slots
with a small number of possible values like price_range which can be cheap, moderate
and expensive. The SGD dataset and recent MultiWOZ versions divide slots to categorical

and non-categorical and only provide possible values for categorical slots.

Some of the methods proposed until now rely on BERT to generate the word embed-
dings and therefore capitalize on transfer learning from huge datasets. Text-to-text trans-
formers like GPT-2 [83], T5 [11], BART [106] etc can also be used to build an end-to-end
generative dialogue state tracker without RNNs. SimpleTOD [87] treats all task-oriented
components as seq2seq tasks and employs a unified approach with a single causal lan-
guage model like GPT-2. MinTL [107] introduces a novel approach called Levenshtein
belief spans which model the differences between old and new dialogue states and apply
pre-trained plug-and-play sequence generation models like TS5 and BART. UBAR [108]
fine-tunes GPT-2 with input sequence all dialogue information: utterances, belief states,
database results and system acts. In this way, it jointly performs DST and response
generation. PPTOD [109] introduces a multi-task pre-training dialogue objective to plug-
and-play models. A prompt that contains natural language instructions for each TOD

task is used and allows to use a single model for all tasks.

Most recently, it has been found that the masked span prediction pre-training objec-
tive performs better than autoregressive language modeling and that pre-training with
seemingly irrelevant tasks like text summarization can help [110]. Pre-trained trans-
former language models have become dominant in DST modeling because of the transfer
learning capabilities and can be used for slot filling to find slot values with span extraction,

classification, generation or any combination of the above.

Awtflopatkn Epyaoia

4.2.3 DST as machine reading comprehension

4.2.3 DST as machine reading comprehension

Machine reading comprehension (MRC) is the task of automatically answering a ques-
tion based on a text passage [111]. The availability of large scale datasets and well
performing methods for MRC motivated us to study ways of applying transfer learning
from MRC to DST. DST can be seen as an MRC task if we consider the dialogue context
as the passage and “What is the value for slot x?” as the question [112]. It is also possible
to manually create the questions for each slot to better represent its meaning [113] e.g.
for the slot food of the restaurant domain, the question could be “What type of food does
the user want to eat?”. By encoding with BERT the pair of two sequences: the dialogue
and the question and then finding the answer (slot value) [113] achieves great zero-shot
and few-shot performance when pre-trained on MRC datasets. For categorical slots the
question (slot) and each one of the possible answers (values) can be encoded separately
and the value can be found by classification with the softmax function. On the other

hand, non-categorical slots can be found via span extraction.

4.2.4 Schema integration in DST

Nowadays, commercial task-oriented systems use an ever-increasing number of di-
verse services, i.e. interfaces to dialogue domains. This motivated the development of the
schema-guided paradigm [1], in which each service is defined by a structured ontology
called schema. The schema usually contains the list of the supported intents and slots
as well as natural language description for the various schema elements. For example, in
the SGD dataset the schema for the service Restaurants_1 has a slot with name party_size
and description “Party size for a reservation”. Many recently published datasets follow
this paradigm including: SGD [1], MultiWOZ 2.1 [16] and STAR [114].

An important goal of schema-based approaches is scalability and generalization, i.e.,
to build systems that are capable of handling completely new domains and services. To
decouple the schema from the architecture, the schema element names and descriptions
should be used as an additional input to DST models. The models can therefore generalize
to services that they have not seen before by relating semantically similar schema infor-
mation from the training set. This enables the ability to scale to services with different
schemata but similar functionality or even to completely new services of distant domains
without the need for further training.

The challenge of zero-shot generalization makes pre-trained transformer models such
as BERT, XLNet, GPT-2 and T5 the most popular choice for schema-guided DST. Models
that adopt the MRC formulation for the problem as described in the previous section are
generally capable of performing zero-shot generalization. Many models leverage the slot
descriptions present in schema-guided datasets replacing the plain slot names [115, 116].

Schema-guided DST approaches fall into two categories:

e Single-pass approaches: For each dialogue turn the utterances are passed by
the encoder only once. For example, this can be accomplished by pre-computing

the schema embeddings with an encoder like BERT before training. The encoded

Awtlopatkn Epyaoia

Chapter 4. Dialogue Systems

dialogue is then concatenated with the schema embeddings [1] or it attends to them
[117, 118] to generate the DST predictions.

e Multi-pass approaches: For each dialogue turn the utterances are concatenated
with each schema element description and are encoded separately. This allows
deep self-attention between the schema and the dialogue and significantly improves
performance on unseen domains [119]. However, it is less computationally efficient

and it does not scale well to schemata with many slots.

A possible solution to the efficiency problem is to limit the number of encoded utter-
ances for each turn making the input sequence smaller. However, there are cases (e.g.
the slot value update is delayed) when the system should search the dialogue history to
retrieve the slot value. DST systems can be designed to explicitly model slot carryover
[120] as a binary decision to copy the value from slots mentioned previously in the di-
alogue. To this end, the system keeps track of slot-value pairs from previous dialogue
states or system actions. In multi-domain dialogues the source slot may belong to a
previous domain in the dialogue (cross-domain or cross-service slot carryover).

Various schema-based slot carryover mechanisms have been proposed. The SPPD
system [20] predicts whether a slot carryover should take place and chooses the source
slot from a candidate source set. The slots in this set are found with a separate BERT
model that is trained to identify slots between which carryovers are made. SGP-DST [19]
performs DST with a number of fine-tuned BERT models including one for in-domain
slot carryover and one for cross-domain slot carryover with input the slots and pairs of
slot-target slots respectively. Such methods make multi-pass approaches more compu-
tationally feasible but usually perform worse than models that encode the entire dialogue

history and do not rely on slot carryover [22, 21].

Awtflopatkn Epyaoia

Chapter E

Multi-Task Schema-Guided Dialogue State Track-

ing

5.1 The Schema-Guided Dialogue Dataset

In this work we use the Schema-Guided Dialogue (SGD) dataset [1], a large scale
multi-domain task-oriented dataset following the schema-guided paradigm. SGD con-
tains 21,106 dialogues across 20 domains and 45 services exceeding other datasets in
scale. The included annotations facilitate multiple task-oriented dialogue tasks such as
NLU, DST and response generation. The dataset contains natural language descriptions
for the various schema elements; an example schema is shown in Figure 5.1. To evaluate
the zero-shot ! generalization ability to unseen services and domains, in the standard
test set 77% of the dialogue turns contain at least one service not present in the train
set. In this way, building a unified model for all services and using the schema as input
is encouraged.

In the Schema-Guided DST track of the 8th Dialogue System Technology Challenge,
the participants developed zero-shot schema-guided DST models based on the dataset
[18]. The DST’s tasks are to predict the active user intent (intent prediction), the slots
that are requested by the user (requested slot prediction) and the values for slots given
by the user until the turn (slot filling). Therefore, we consider the dialogue state as
the active intent, the requested slots and slot-value pairs for a turn although the first
two tasks are more often considered NLU tasks. In multi-domain dialogues, a separate
dialogue state is calculated for each service present in the dialogue.

As can be seen in Figure 5.1, there is a relationship between the supported intents and
slots. Every intent lists a number of required slots and optional slots. We can categorize a
slot as informable or non-informable depending on whether the user is allowed to give a
value for it. In the next sections we assume that a slot is informable if it is either required
or optional in at least one intent. We only consider informable slots as candidates for the
slot filling task although any slot (informable or not) can be requested.

The evaluation metrics for the task of DST on the SGD dataset are the following

according to [1]:

e Active intent accuracy: The percentage of user turns for which the correct active

intent has been predicted.

!zero-shot learning refers to the problem in which during evaluation of a machine learning model there
are data examples not observed in training

AinAouatxny Epyaoia

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

service_name: "Payment" Service
description: "Digital wallet to make and request payments”

name: "account_type" categorical: True Slots
description: "Source of money to make payment”
possible values: ["in-app balance”, “debit card”, “bank”

name: "amount” categorical: False
description: "Amount of money to transfer or request”

name: "contact name" categorical: False
description: "Name of contact for transaction”

name: "MakePayment" Intents
description: "Send money to your contact”

required_slots: ["amount”, "contact_name"]

optional_slots: ["account_type" = "in-app balance"

name: "RequestPayment"
description: "Request money from a contact”
required_slots: ["amount”, "contact_name"]

Figure 5.1: An example schema for a Payment service. The schema contains a list of slots
and intents. Slots are either categorical or non-categorical and a list of possible values is
provided for categorical slots. Furthermore, each intent lists the required and optional slots
that the user should provide when interacting with the particular intent. Source: [1]

o Requested slot F1: The macro-averaged F1 score for requested slots over the user

turns. Turns with no requested slot in ground truth and prediction are skipped.

e Average Goal Accuracy: The average accuracy of correctly predicting the slots over
eligible turns. Slots with no assigned value in the ground truth dialogue state are
skipped. For non-categorical slots, a fuzzy matching score is used to reward partial

matches.

e Joint Goal Accuracy: The average accuracy of correctly predicting all slots for a
turn. For non-categorical slots, a fuzzy matching score is used to reward partial

matches.

5.2 Related work

The SGD-baseline [1] fine-tunes a BERT model on the last two utterances and con-
catenates the encoded tokens with schema embeddings - BERT-encoding of the schema
elements. The schema embeddings are pre-computed before training. Then classification
heads take as input the encoded dialogue utterances and different schema embeddings
to output the class probabilities for each task.

Some of the proposed systems fine-tune a separate pre-trained model for each subtask

with input the last two utterances and each schema element description (slot or intent)

Awtflopatkn Epyaoia

5.2 Related work

User System
Flight : - Flight
Service A SearchElight Find direct round trip flights from Baltimore to Seattle. AEATEE Service B
origin = Baltimore depart = Baltimore
Intents: G = &SBeiES Sure, what dates are you looking for? | | arive = Seatfle Intents:
SearchFlight, num_stops = 0 direct_only = True FindFlight,
ReserveFlight ReserveFlight
- SearchFlight: Flying out May 16 and returning May 20. FindFlight: ——
orit;tij origin = Baltimore depart = Baltimore de;t:r.t
e aaton destination = Seattle OK, I found a Delta flight for 302 dollars. | | arrive = Seattle s,
num_stops, num_stops = 0 direct_only = True depart_date,
depart, depart = May 16 depart_date = May 16 return_date,
retum, ... return = May 20 return_date = May 20 direct_only, ...

Figure 5.2: A dialogue from the Flight domain. Services A and B can be used as an interface
to the domain. Although they offer the same functionality, there are slight differences in
their schema because they may come from different API designers. Source: [1]

[Find me an apartment]

In which area to look?

Homes_1:

active_intent: FindAppartment
requested_slots: []
slot_values: {area=Fremont,
number_of_beds=3}

[Search in Fremont]

How many bedrooms?

»

3 bed rooms

i

Alborada Apartments has 3 bed rooms
and 2 baths, is located at 1001
Beethoven Common and costs $3900

Yes, please do

[...]
[Find me a restaurant there]

Should i schedule a visit to it?

Restaurants_2:

active_intent: ReserveRestaurant
requested_slots: []

slot_values: {category=unlimited,
date=March 5th, location=Fremont,
number_of_seats=4,
restaurant_name=World Gourmet,
time=six in the evening}

In Fremont there is the World Gourmet

Book me a table there for 4 people
at six in the evening on that day

Y

Restaurants_2:

active_intent: ...
requested_slots:
[has_vegetarian_options, rating]
slot_values: ...

Please confirm: Booking a table for 4 people at 6
pm on March 5th at the World Gourmet Fremont

Yes, thats fine. Is there vegetarian
food, whats the rating?

Figure 5.3: Dialogue fragment with DST annotations for some user turns

[19, 20]. Furthermore, to address the issue of long-range slot dependency (see Section
4.2.4) they use slot carryover mechanisms. Both SGP-DST [19] and the SPPD system [20]
use a number of pre-trained BERT models and adopt a multi-pass approach needing to
perform multiple BERT passes per dialogue turn.

State-of-the art methods [21, 22] do not rely on slot carryover mechanisms; they
are trained with the entire dialogue history. The benefits of such approaches are that
error accumulation is avoided and performance is better than slot carryover methods.
paDST [21] fine-tunes a number of pre-trained models with the full dialogue and it is
observed that a large number of handcrafted features and data augmentation can greatly
improve performance on categorical slots. On the other hand, D3ST [22] fine-tunes a
single T5 model for all subtasks with a single-pass approach i.e. all schema descriptions

are concatenated and fed to the model along with the dialogue.

AinAouatxny Epyaoia

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

5.3 Baseline system 1: Multiple task-specific BERT modules

and comparison of Encoder architectures

In this section, we introduce a baseline system with six NLU modules which per-
form predictions about each user turn. The tasks of intent prediction and requested slot
prediction are solved with classification. For the slot filling task we perform classifica-
tion (categorical slots), span extraction (non-categorical slots) and implement carryover
mechanisms (see Section 4.2.4) to solve the long-range slot dependency problem. All the
predictions are combined with a rule-based DST Inference module to produce the dialogue
state for the specific turn. This approach is similar to [19] because we use a number of
separately trained modules but the modules for slot filling are slightly different. We addi-
tionally compare two Encoder architectures: the Fusion Encoder and the Cross Encoder

for encoding the dialogue and schema. The main goals of this section are to:
e Introduce a first baseline system and give examples of the tasks.

e Evaluate how the system performs when slot filling is seen as a two-stage prediction

problem with separately trained modules and slot carryover mechanisms.

e Compare the two Encoder architectures.

5.3.1 Encoder architectures

From the dialogue we choose to encode only the last two utterances: the preceding
system utterance and the current user utterance. For the schema we use the natural
language description of each schema element present in the dataset. Both architectures
are based on BERT and produce contextual representations for the dialogue and each
schema element.

More specifically, the Encoder produces the ucps token acting as a representation for
the entire sequence (utterances-schema element pair) and the encoded system and user
utterance tokens wy;-uy, which are used for span extraction (see Section 5.3.2). Each one
of the six modules uses a separate Encoder and classification head(s). Some modules
use additional binary features denoted by bin which are concatenated with ucs before

feeding the classification head.

Fusion Encoder

The Fusion Encoder (Figure 5.4) encodes the utterances and the schema element de-
scriptions separately with two BERT models. The Utterance BERT is fine-tuned while the
Schema BERT is fixed. The encoded tokens from Utterance and Schema BERT are then
projected to a lower dimension with the Utterance and Schema Projection respectively.
The projected representations are given as input to a Transformer Encoder that is trained
from scratch. This architecture is inspired by [119] but we also use the projections to

make the training of the Transformer Encoder easier.

Awtflopatkn Epyaoia

5.3.1 Encoder architectures

The advantage of the Fusion Encoder is that for each turn of the dialogue the ex-
pensive BERT pass is performed only once. The embeddings of the Schema BERT are
pre-computed before training. The Transformer Encoder enables self-attention between
the dialogue and the schema but it can use a smaller number of layers than BERT and

its input is of lower dimension.

FFN FFN FFN
B)

ucrs U UtTN

Transformer Encoder

Utterance Projection Schema Projection
bin Utterance BERT Schema BERT
J T J
hg hg
Preceding system and Schema element
current user utterance description

Figure 5.4: Fusion Encoder

Cross Encoder

The Cross Encoder (Figure 5.5) uses a single BERT model and takes as input the
concatenation of the utterances and the schema element descriptions. The [SEP] token
separates the utterances and the schema. This is a more common choice for the Encoder
architecture.

The advantage of the Cross Encoder is that early deep self-attention between the
utterances and the schema is enabled. Therefore, the final contextual embeddings are
better conditioned on the schema than the ones from Fusion Encoder. However, it is now
necessary to perform multiple BERT passes (as many as the schema elements) making

this Encoder less computationally efficient.

MinAouatxny Epyaoia

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

FFN FFN FFN
UucLs ’U/? UtTN
bin BERT
L J C J
- T T
[CLS] Preceding system and [SEP] Schema element [SEP]

current user utterance description

Figure 5.5: Cross Encoder

5.3.2 Modules

Intent module

The utterances and each one of the possible intent descriptions are encoded to classify
whether the intent is active or not in the current turn. Because in some turns there is no
active intent, we add an additional NONE intent with description “No active intent”. We
choose the intent with the highest probability as the active one.

This module uses one binary feature which indicates whether the intent was active
in the previous turn. This helps the model in situations where only the last system and

user utterances are not enough to predict the intent.

System: Can | get FindApartment
anything more? —

User: Get an apartment | Schodiiohii |
for me. | None |

Figure 5.6: Intent prediction. The active intent is “FindApartment” which has the following
description: “Find an apartment in a city _for a given number of bedrooms”.

Requested Slot module

The utterances and each one of the slot descriptions are encoded to predict whether
the slot was requested by the user. The module predicts a probability for each slot and

every slot with probability higher than 0.5 is considered requested.

System: There are 10 | stylist_name |
salons, how about 17 | phone_number |
jewels salon in oakland?

User: Where are they average_rating
located and what's their

rating? street_address

Figure 5.7: Requested slot prediction. The user requests the value for two slots:
“average_rating” and “street_address”.

AinAouatxny Epyaoia

5.3.2 Modules

Slot Filling Status module

The utterances and each one of the informable slot descriptions are encoded to predict
the slot filling status of the slot. Based on the predicted status we decide whether we
should update the slot value in the current turn and if so how. The possible values for
the status are: 1) none 2) active 3) dontcare 4) in_service_carryover 5) cross_service_-
carryover. The exact slot value update mechanism is explained in Section 5.3.2.

For this module, we use three binary features: 1) whether the slot has a value in
previous system history actions of the service, 2) whether the service that the slot belongs
to has been switched to in the current turn and thus not found in the previous user
turn, 3) whether the service is completely new in the dialogue. These binary features help
the model decide when it should perform in_service_carryover or cross_service_carryover.

They are similar to the ones proposed by [19].

System: What time and appointment_date
what day?

User: Sunday this week
at morning 9:30.

Figure 5.8: The Slot Filling Status moduile identifies that in this particular example only one
slot is “active” (“appointment_date?”), all the other slots in the service take the “none” status.

Non-categorical Slot module

The utterances and each one of the non-categorical informable slot descriptions are
encoded to find the span in the user utterance corresponding to the slot value. For each
token in the user utterance two probabilities are calculated: the probability that the token

is the start of the span and the probability that it is the end of the span.

System: When would you
like to travel and where
are you traveling from?
User: | will be traveling
from Toronto Ontario on
March 1st

origin

Figure 5.9: Non-categorical slot filling. For the slot “origin” the slot filling status is “active”:
the user has given the value “Toronto Ontario”.

Categorical Slot module

The utterances and each possible pair of a categorical informable slot description and
a candidate value for that slot are encoded to predict whether the value is given by the

user. We then select the value with the highest probability.

MinAouatxny Epyaoia

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

System: For how many | number_of riders: 1 |
people should i book the

cab for and will it be | number_of_riders: 2 |
shared?

User: There will be three number_of riders: 3
people and | am good with

shared ride. | number_of_riders: 4 |

Figure 5.10: Categorical slot filling. For the slot number_of _riders the slot filling status is
active: the user has given the value 3.

Cross-service Carryover module

The utterances and two slot descriptions are encoded to find the probability that a
cross-service carryover is performed between the first slot (source slot) and the second
slot (target slot). We use these probabilities to decide how to update the slot value as

explained in greater detail in section 5.3.2.

System: Your requested
appointment is booked.
User: | also want to watch
a movie while | am around city
there. | would like to watch
the movie at the California
Theatre.

location street_address

Figure 5.11: In this example, the target slot “location” has the status of “cross_service_-
carryover”. This means that the Cross-service Carryover module must find the appropriate
source slot (“city”). The full example is illustrated in Figure 5.12.

DST Inference module

The DST Inference module combines the results of the six aforementioned NLU mod-
ules and produces the dialogue state. For the tasks of intent prediction and requested
slot prediction, the active intent and the requested slots are found with the Intent module
and the Requested Slot module respectively whose functionality is straightforward.

For slot filling, the slot value update mechanism works in two stages. In the first stage
the status of a slot is predicted (Slot Filling Status module). In the second stage, depending
on the predicted status another module may be activated to find the corresponding value

if necessary:

e If the status is predicted to be none, then the slot keeps the value of the previous

dialogue state, if any, otherwise it is assumed to be not assigned.

e If the status is predicted to be active, then the slot is updated and the value is found
in the current user turn. In this case, depending on the type of the slot we activate

the appropriate module (Non-categorical Slot module or Categorical Slot module).

e If the status is predicted to be dontcare then the special value dontcare is assigned

to the slot, indicating that the user does not have a preference.

m Awtflopatkn Epyaoia

5.3.3 Experimental Setup

e If the status is is predicted to be in_service_carryover, then the slot is updated but
the user does not explicitly state the value of the slot in the current user utterance.
The value is either found in the preceding system utterance or in earlier system
turns of the current service. It can be extracted by the most recent system action
that contains one single value for the specific slot. Therefore, the DST module has
to find the most recent system action with the corresponding slot field matching the
slot in question. Subsequently, the value from the selected system action is copied
to the target slot.

e If the status is predicted to be cross_service_carryover, then the slot is also carried
over from earlier utterances. However, in this case the source slot is different than
the target slot and it comes from a different service than the current turn service. We
activate the Cross-service Carryover module to find the source slot. The candidate
source slots are all of the slots belonging to previous services that have appeared in
the dialogue state or system actions before the current turn as long as the source
and target slots have the same value type (e.g. both are numerical slots). Finally,

the most recent value for the source slot is copied to the target slot.

[.] [..]
User: Any other suggestions? User: | would like to find a salon.
System: What about Isla Restaurant in San System: Can you tell me the city where |
Bruno? should look for the salon?

User: | want the salon to be situated in
System actions of service 'Restaurants_1": Berkeley.
{OFFER(restaurant_name-=lsla

Restaurant), OFFER(city=San Bruno)}

Dialogue state of service

[...] ‘Services_1": {'city": 'Berkeley'}
System: It is moderate pricing and they are at
448 San Mateo Avenue [...]

User: Please can you make the reservation System: Your requested appointment is
booked.

User: | also want to watch a movie while | am
around there. | would like to watch the movie
at the California Theatre.

Dialogue state of service 'Restaurants_1":
{'restaurant_name': 'Isla Restaurant'}

Dialogue state of service
'Movies_1": {location':
'‘Berkeley'}

Figure 5.12: Examples of in_service_carryover (left) and cross_service_carryover (right).

5.3.3 Experimental Setup

We use the huggingface 2 implementation of the bert-base-uncased models. We use a

batch size of 64 and a dropout rate of 0.3 for the classification heads. We use the AdamW

2h‘ctps://huggingface.co/docs/transformers/model,doc/ber‘c

Awtlopatkn Epyaoia m

https://huggingface.co/docs/transformers/model_doc/bert

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

Table 5.1: Baseline system 1 results

System JGA Intent Acc Req Slot F1
SGD-baseline [1] 25.4 90.6 96.5
SGP-DST [19] 72.2 91.9 99.0
Baseline system 1 w. Fusion Encoder 37.5 92.5 97.2
Baseline system 1 w. Cross Encoder 55.1 93.3 98.5

optimizer [23] with a constant learning rate of 2e-5. We train each module separately for

a total of 10 epochs and perform early stopping based on the validation loss.

The Transformer Encoder has an input dimension of 128 (the Projection layers trans-
form the BERT outputs from dimension 768 to 128), a hidden dimension of 512 and
consists of 4 layers. It is trained from scratch unlike BERT which uses the pre-trained

checkpoints.

5.3.4 Results and Discussion

In Table 5.1, we compare Baseline system 1 with the Fusion Encoder and Cross En-
coder, SGD-baseline and SGP-DST. Cross Encoder outperforms Fusion Encoder in all
tasks indicating that performing early concatenation of the dialogue and the schema is
better. However, the differences between the Cross Encoder and the Fusion Encoder are
much larger in the slot filling task, because it is more challenging. The SGD-baseline per-
forms worse in all three tasks because the schema elements are encoded before training
and no self-attention is performed between them and the encoded utterances. Addition-

ally, it does not use slot carryover mechanisms or hand-crafted binary features.

In the task of intent prediction both our Encoders outperform SGP-DST. In SGP-
DST the binary feature indicating whether the candidate intent is found in the previous
dialogue state is provided with an additional context feature embedding added to BERT’s
token, segment and position embeddings. We instead directly provide this feature to the

classification head which possibly leads to our higher intent accuracy.

In the task of requested slot prediction SGP-DST slightly outperforms Baseline system
1 with Cross Encoder possibly because we do not use any hand-crafted features unlike
SGP-DST.

In the task of slot filling, our system outperforms the SGD-baseline indicating that the
slot carryover mechanisms and the Encoder architectures are effective but perform much
worse than SGP-DST. The most major difference between our methods is that we assume
that the slot carryover and the user giving a value for the slot in the current utterance
are mutually exclusive, however this is not always the case. In Section 5.4 we modify our

architecture trying to reach SGP-DST’s performance on the slot filling task.

m Awtflopatkn Epyaoia

5.4 Baseline system 2: Unified slot BERT module and encoding of system actions

5.4 Baseline system 2: Unified slot BERT module and encoding

of system actions

In this section, we focus on the slot filling task. We merge the slot-specific modules
except for the Cross-service Carryover module into one single module and apply multi-
task learning. We also modify the slot carryover mechanisms. Additionally, we replace the
system utterance with a representation derived from the system actions which we directly
encode along with the user utterance and the slot. Because of its superior performance
we keep the Cross Encoder architecture for the rest of the experiments. The main goals

of this section are to:

e Introduce a method to encode the underlying system actions from the preceding

system utterance.

e Improve the previous architecture’s slot filling performance by introducing a unified

module for the slots and modifying the slot carryover mechanisms.

5.4.1 Input representation for slots

For the slot-related tasks (requested slot prediction and slot filling) we use a single

BERT module. It takes as input the concatenation of the following:

e Preceding system utterance represented as the underlying system actions. For ex-
ample the utterance “In Fremont there is the World Gourmet” is represented by the
sequence [ACTION] Offer [SLOT] restaurant name [VALUE] World Gourmet [ACTION] Offer
[SLOT] location [VALUE] Fremont. A number of additional custom tokens are added

to BERT’s vocabulary.
e Current user utterance.
e Slot name and description.

e List of possible slot values (only if the slot is categorical).

5.4.2 Unified slot module

After it encodes the sequence, the module uses a total of six classification heads to

predict:
e The user status: 1) none 2) active 3) dontcare (1 head).

e The carryover status: 1) none 2) in_sys_uttr 3) in_service_hist 4) in_cross_service_-
hist (1 head). Compared to the Baseline system 1 we now separate the user status
(whether the user explicitly gives the value) and the carryover status because their
function is not mutually exclusive. For in service carryover we separate into two
cases: in_sys_uttr (the value is present in a system action of the preceding system

utterance) and in_service_hist (the value is present in a previous system action in

Awtlopatkn Epyaoia m

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

the dialogue). Nevertheless, the slot carryover mechanisms work as described in
Section 5.3.2.

e The requested status: 1) none 2) active (1 head).

e For non-categorical slots the span in the user utterance corresponding to the slot (2
heads) and for categorical slots its value with classification over the list of possible
values (1 head).

The user status, carryover status and requested status heads take as input the encoded
[CLS] token, the non-categorical span (start and end) heads take as input the encoded user
utterance tokens and the categorical head takes as input the max pooled representation
of the encoded tokens corresponding to each value. See Figure 5.13 for an example.

For every slot s we employ additional binary features xp:,,(s) (slightly different from the
ones in the previous architecture). They are provided as an additional input to the user
status, carryover status and requested status classification heads. The binary features
used are the following: 1) whether the service is new in the dialogue 2) whether the service
switched (it was not present in the previous dialogue state) 3) whether exactly one value
for the slot is found in the system utterance 4) whether exactly one value for the slot is
found in previous system utterances 5) whether the slot is required in at least one intent
6) whether the slot is optional in all intents. Similar binary features have been used by
[19].

none active none number_of_seats = 4
req status user status |carryover status| | start | categorical

4 4 4 4
BERT

’ [CLS] ‘ [ACTION] Offer [SLOT] restaurant name [VALUE] World Gourmet [ACTION] Offer [SLOT] location [VALUE] Fremont
[SEP] ’Book me a table there for 4 people at six in the evening on that day

[SEP] | |number_of_seats : Number of seats to reserve at the restaurant | | [SEP] ‘ 1 ‘ [SEP] ‘2 ‘

Figure 5.13: The unified slot module (top) along with an example input sequence corre-
sponding to the categorical slot “number_of seats” (bottom). In this example the slot is not
requested (requested status = none) and the user gives a value for the slot (user status =
active). The categorical head picks the given value from the list of possible values (num-
ber_of seats = 4). Note that the start and end heads are not activated in this example; they
are only activated for non-categorical slots.

5.4.3 Experimental setup

We fine-tune BERT and jointly train the classification heads. Depending on the slot
type only the relevant classification heads contribute to the loss. We create separate
batches for categorical and non-categorical slots and randomly shuffle them. All other

training and model hyperparameters are the same as in 5.3.3.

m Awtflopatkn Epyaoia

5.4.4 Results and discussion

Table 5.2: Baseline system 2 results on the slot filling task

System JGA Avg GA
SGD-baseline [1] 25.4 56.1
SGP-DST [19] 73.8 92.0
Baseline system 1 w. Cross Encoder 55.1 84.7

Baseline system 2 w. Cross Encoder 73.8 91.8

5.4.4 Results and discussion

In Table 5.2, we compare Baseline system 1, Baseline system 2, SGD-baseline and
SGP-DST on the slot filling task. Baseline system 2 outperforms Baseline system 1 and
matches SGP-DST’s performance. Compared to Baseline system 1, the most important
changes are that we separated the user status and the carryover status and we included
system actions for the system utterance. Although SGP-DST also considers system ac-

tions, it does so with handcrafted features.

The difference with SGP-DST is that they fine-tune a total of six BERT models while
we fine-tune only three: the Intent module, the Unified Slot module and the Cross-service
Carryover module. A more unified approach not only reduces training time but also
makes multi-task training possible. For example, unlike SGP-DST, we encode categorical
and non-categorical slots with the same model. However, it is still not easy to combine

all three DST tasks with this formulation and we need to explore alternatives.

5.5 Proposed model

In this section, we propose a single multi-task BERT-based model that jointly per-
forms intent prediction, requested slot prediction and slot filling. In the proposed model,
we adopt slot carryover mechanisms and encode only the preceding system utterance
and the current user utterance like in the previous baseline systems. Furthermore, the
preceding system utterance is abstracted and represented as its underlying system ac-
tions. To achieve a more efficient and parsimonious input representation, we encode all
of the schema elements together using only their names and we selectively include past
dialogue states. This is the most important change compared to the baseline systems.
Our proposed model significantly outperforms the baseline SGP-DST system and achieves
near state-of-the-art performance. Extensive ablation studies reveal the impact of each

strategy of our model on the slot filling task.

The multi-task model architecture is shown in Figure 5.14. The user utterance, previ-
ous system utterance, schema(ta) and past DST information (see Part 1 to 5) are encoded
via BERT. Different pieces of the encoded sequence (see matching color coding in figure)
are given as input to nine classification heads that perform the tasks of intent prediction

(2 heads), requested slot prediction, slot filling (4 heads) and slot carryover (2 heads).

Awtlopatkn Epyaoia m

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

Lo . X number_of_seats: 4 restaurant_name: World Gourmet
Active intent: ReserveRestaurant Requested slots: [] time: six in the evening date: March 5th
e J e
Al 4 Jﬁ r R} 4
[intent status] [intent value | [regstatus] [userstatus | [start[end | [categorical| [carryover status] [cross-service]

[PaT] [CLS] || [SERVICE] restaurants 2 [ACTION] Offer [SLOT] restaurant name [VALUE] World Gourmet [ACTION] Offer [SLOT] location [VALUE] Fremont | [SEP]
M lBook me a table there for 4 people at six in the evening on that day | [SEP]

[SERVICE] restaurants 2 || Active intent : find restaurants ‘[INTENT] reserve restaurant || [INTENT] find restaurants ‘[INTENT] [NONE]

[SLOT] restaurant name : [NONE]||[SLOT] date : [NONE] | [SLOT] time : [NONE] .. [SLOT] number of seats : [NONE]| [VALUE] 1 |[VALUE] 2 .. [SLOT] rating...
[SERVICE] homes 1||[[SLOT] visit date : March 5th|[SLOT] system address : 1001 Beethoven Common .. [SEF]

Figure 5.14: The inputs to the intent prediction, requested slot prediction, slot filling and
slot carryover heads are shown for our proposed multi-task BERT model (top), along with
an example encoding of the utterance and dialogue history that is the input to the base
BERT model (bottom). Note the color coding of the input to the classification heads (top) that
matches the various parts of the input sequence (bottom). For this example, the service in
the system and the user utterance is Restaurants_2. The previous intent FindRestaurants
changes to ReserveRestaurant. No slots are requested by the user. In the preceding system
utterance, the system offers the value “World Gourmet” for the slot restaurant_name which
the user accepts (slot carryover in_sys_uttr). The user gives the values “six in the evening”
and “4” for the non-categorical slot time and the categorical slot number_of _seats. The
date value is not uttered but it is implied that it has been mentioned before (slot carryover
in_cross_service_hist from a previous service (Homes_1)). Part of the input is truncated for
illustration purposes.

5.5.1 Notation

Let n be a dialogue service, I(n) the set of intents in the service (including the special
[NONE] intent) and S(n) the set of slots in the service. Slots are divided to categorical and
non-categorical slots. Let S.q:(1) € S(n) be the set of categorical slots and Sponcar(n) €
S(n) the set of non-categorical slots. For every categorical slot, a set of possible values
V(s), s € Scqt(n) are available. Furthermore, every slot may be informable or not depending
on whether the user is allowed to give a value for it. We denote the set of the service
informable slots as Si,r(n) € S(n).

Assume that at user turn t of a dialogue with N services we want to predict the
dialogue state for service n. Essentially we have to predict the active intent int(n) (intent
prediction), the requested slots req(n) € S(n) (requested slot prediction) and the values
for the slots given by the user usrSlotValue(s), s € Sir(n) (slot filling).

For every service n’,1 < n’ < N, we denote its previous active intent as prevint(n’).
Also, for every slot s € S(n’) we denote the last value given by the user for s as
prevUsrSlotValue(s). Furthermore, we use prevSysSlotValue(s) and sysUttrSlotValue(s)
to denote the last value present in a system action, before turn t — 1 and at (system) turn
t — 1 respectively. For prevSysSlotValue(s) and sysUttrSlotValue(s) we only use system
actions that contain the slot s and exactly one value for the slot. In cases where the intent
or the slot value is empty we use the [NONE] value.

We use S,y to denote the set of slots s € S(n’),n” # n that prevUsrSlotValue(s) or
prevSysSlotValue(s) is not [NONE] and prevSlotValue(s) to denote their previous value. If

prevUsrSlotValue(s) is not [NONE] we use that value otherwise we use prevSysSlotValue(s).

m Awtflopatkn Epyaoia

5.5.2 Input representation

5.5.2 Input representation

An example input can be seen in Figure 5.14. In Part 1 we encode the preceding
system utterance as a list of actions. In Part 2 we encode the current user utterance. In
Part 3, the active service n, the previous active intent prevint(n) and all candidate intents
belonging to service n are enumerated. Part 4 contains the list of all slots s € S(n). If
s € Sipr(n) we append prevUsrSlotValue(s) and if s € Scq(n) N Sipr(n) we also append all
values in V(s). Part 5 contains all other services found earlier in the dialogue. For every
service we enumerate slot-value pairs from previous dialogue states or system actions,
S € Sprep and their values prevSlotValue(s). We prepend the word “system” before slots
given by the system to differentiate them from slots given by the user (present in previous
dialogue states).

For the schema we only use the names for the slots and intents instead of their full
natural language descriptions used by other works. A number of custom tokens are

introduced to the BERT vocabulary to indicate intents, slots etc.

5.5.3 Intent prediction task

Intent status head. We perform binary classification on the encoded [CLS] representation
to predict the intent status as active or none.
Intent value head. For every intent i € I(n) we perform binary classification on its
encoded [INTENT] representation to predict if the user switches to that intent.

If the intent status is active we choose the intent with the highest intent value proba-

bility. Otherwise, we keep the previous intent prevint(n).

5.5.4 Requested slot prediction task

Requested status head. For every slot s € S(n) we perform binary classification on its
encoded [SLOT] representation in Part 4 to decide whether it is requested in the current

user utterance.

5.5.5 Slot filling task

User status head. For every slot s € Syr(n) we find the user status using its encoded
[SLOT] representation in Part 4 to decide whether a value is given in the current user
utterance. The user status classes are none, active and dontcare.
Categorical head. For the categorical slots s € Si;r(n) N Scq(n) we perform binary classi-
fication for every possible value v € V(s) on its encoded [VALUE] representation to predict
whether it is present in the user utterance.
Start and end heads. For the non-categorical slots s € Sir(1n) N Sponcar(n) we find the start
and end span index distribution in the user utterance by performing classification on the
concatenation of every user utterance token with the encoded [SLOT] representation.

If the user status is active, the value or the span with the highest probability is chosen
for the slot. If the user status is dontcare, the special dontcare value is assigned to the

slot.

Awtflopatkn Epyaoia

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

5.5.6 Slot carryover

The user does not always explicitly give the value for the slot but they may instead
refer to previous utterances. Therefore, we design slot carryover mechanisms to retrieve
values for slots from the current or previous services.

Carryover status head. For every slot s € S;,;r(n) we predict the carryover status using its
encoded [SLOT] representation in Part 4 to find the source of the slot value. The carryover
status classes are none, in_sys_uttr, in_service_hist and in_cross_service_hist.

For in_sys_uttr the slot is updated according to the value present in the preceding

system utterance sysUttrSlotValue(s). For in_service_hist the slot is updated according to
the value present in past system actions of service n, prevSysSlotValue(s). In the above
two cases, the user accepts the value given by the system and we simply carry that value
over.
Cross-service head. For every slot s’ € Sp,(11) we perform binary classification on the
concatentation of its encoded [SLOT] representation in Part 5 with the encoded [SLOT]
representation of s in Part 4 to decide whether we should carry the value over from slot
s’ to slot s. The highest probability slot s’ is used as the source for the value s if the
predicted carryover status is in_cross_service_hist. In this case, we assign the value
prevSlotValue(s’) to slot s.

We first check the user status and if it is not none we update the slot value accord-
ing to its output. Otherwise, we also check the carryover status. If it predicts that a
carryover should take place, we update the slot value accordingly. If both user and car-
ryover status are none the value remains the same as in the previous dialogue state,

prevUsrSlotValue(s).

5.5.7 Multi-task training

For the intent status, intent value, categorical, start, end and cross-service classifica-
tion heads we derive the class probabilities with a two-layer feed-forward neural network.
For the requested status, user status and carryover status classification heads we con-
catenate the slot binary features xpin(s) after the first layer.

We jointly optimize all classification heads, using the cross entropy loss for each head.
For the intent prediction task the loss is Ly = wj Lintstar + WaLinwar, for the requested slot
prediction Ly = Lyegstar and for the slot filling task Lg = w3 Lysr +WaLearry + Ws Leat + We Lstart +
w7 Leng + WeLeross. Finally, the total loss is defined as L = 1Ly + AsLy + AsLs.

5.6 Experimental Setup

5.6.1 Label Acquisition

In order to acquire labels for the user and carryover status, we use the user actions
and search previous turns and dialogue states to find the source for the slot. We consider
a slot as informable if and only if it is either required or optional in at least one intent.

For every turn we run the model only for the involved services (services with at least one

Awtflopatkn Epyaoia

5.6.2 Training Setup

Table 5.3: Comparison to other works

System Model Params JGA Intent Acc Req Slot F1

SGD-baseline [1] BERTgAsE 110M 25.4 90.6 96.5
SGP-DST [19] 6 X BERTgasg 660M 72.2 91.9 99.0
paDST [21] 3 X RoBERTagasg+ XLNet arge 715M 86.5 94.8 98.5
D3ST [22] (Base) T5gasE 220M 72.9 97.2 98.9
D3ST [22] (Large) T5LARGE 770M 80.0 97.1 99.1
D3ST [22] (XXL) T5xxL 11B 86.4 98.8 99.4
Ours (median result) BERTgAsSE 110M 82.7 94.6 99.4

Ours (avg 3 runs) BERTgASE 110M 825+1.0 94.7+05 99.4=+0.1

change in the dialogue state in the turn) according to the ground truth dialogue states
during both training and evaluation for fair comparison to other works. The input to
the model contains ground-truth previous dialogue states during training and during

evaluation the previously predicted ones are used.

5.6.2 Training Setup

We use the huggingface ® implementation of the BERT uncased models. For all our
experiments we use a batch size of 16 and a dropout rate of 0.3 for the classification
heads. We use the AdamW optimizer [23] with a linear warmup of 10% of the training
steps and learning rate 2e-5. We train for a total of about 55k steps and evaluate on the
development set every 4k steps. We choose the model that performs best based on the

JGA metric on the development set.

5.6.3 Preprocessing and augmentation

We preprocess the schema elements and the system actions by removing underscores
and splitting the words when on CamelCase and snake_case style. We randomly (p = 0.1)
replace the input tokens in the user utterance with the [UNK] token (word dropout) and
shuffle the order of the schema elements in Parts 3-5 during training as proposed by [24].
We also apply random (p = 0.1) data augmentation through synonym replacement and

random swap to the intents, slots and values in Parts 3-4 (schema augm.) via [25].

5.7 Results and Discussion

5.7.1 Comparison to other works

In Table 5.3 we compare our model to SGD-baseline, SGP-DST, paDST and three D3ST
implementations of variable size. The SGD baseline [1] fine-tunes BERT with the last two
utterances as input and uses precomputed BERT embeddings for the schema. SGP-DST
[19] uses the last two utterances and slot carryover mechanisms to retrieve values for
slots which were mentioned in previous utterances. paDST [21] and D3ST [22] encode

the entire dialogue history until the current turn and calculate the dialogue state from

3h‘ctps://huggingface.co/docs/transformers/model,doc/ber‘c

Awtlopatkn Epyaoia m

https://huggingface.co/docs/transformers/model_doc/bert

Chapter 5. Multi-Task Schema-Guided Dialogue State Tracking

Table 5.4: Ablation study

System JGA Avg GA

Ours 82.7 95.2

w/o system actions 71.9 91.6

w. slot descriptions 78.3 94.1

w/o previous state 79.8 94.0

w/o schema augm. 80.5 94.9

w/o schema augm. & word dropout 78.1 94.3
w/o binary features 81.0 94.4

Table 5.5: Effect of carryover mechanisms

System JGA Avg GA
Ours 82.7 95.2
w/o in_sys_uttr 62.8 87.0
w/o in_service_hist 76.4 92.7
w/o0 in_cross_service_hist 66.8 84.4
SGD-baseline [1] 25.4 56.0
w/o in_service_hist & in_cross_service_hist 61.6 81.9
w/o all 36.5 68.5

scratch. We report the metrics and the number of parameters in the pretrained model(s)
fine-tuned by each method.

Our method clearly outperforms SGP-DST in all tasks indicating that our strategies
are effective. Some of the entire-dialogue models outperform our model, especially when
they use much more parameters (D3ST XXL) or apply more handcrafted features, special
rules and dialogue augmentation through back-translation (paDST). Overall, the proposed
approach achieves near state-of-the-art performance despite using a much smaller model

size and a shorter input representation.

5.7.2 Ablation study

We perform an ablation study (Table 5.4) to show the contribution of each of the
proposed strategies on the slot filling task. Replacing the system utterance with a set
of system actions (w/o system actions) has the biggest effect on performance (see input
sequence Part 1 in Figure 5.14). The system actions contain key information including
the slot names and their respective values, helping our model identify which slots are
requested, offered, confirmed etc. and predict the user and carryover status most ac-
curately. Performance drops when we additionally include the slot descriptions for the
informable slots of the current service (w. slot descriptions, see Parts 3-4 of input). By
removing previous intent and slot values in Parts 3-4 (w/o previous state) we observe a
performance drop but also a training speedup because of the smaller input sequence.
We also observe an improvement by performing schema augmentation and word dropout
possibly because these strategies help to avoid overfitting (w/o schema augm. & word

dropout). The hand-crafted binary features can slightly benefit the system (w/o binary

m Awtflopatkn Epyaoia

5.7.3 Effect of slot carryover mechanisms

features).

5.7.3 Effect of slot carryover mechanisms

In Table 5.5 we show the effect of the various slot carryover mechanisms. For these
experiments the model is trained once and during evaluation we replace each carryover
status class with “none”. As expected, dropping “in_sys_uttr” has the biggest impact
on performance. “in_cross_service_hist” is also important because of the large number
of multi-domain dialogues. By removing “in_service_hist”, performance is less affected.
Without “in_service_hist” and “in_cross_service_hist” (by only considering the last two

utterances) we still achieve a higher accuracy than the SGD-baseline.

5.7.4 Discussion

The proposed system is shown to significantly improve performance over the SGP-DST
system that also uses slot carryover mechanisms. The experimental results indicate that
the strategies to create an efficient input sequence are effective. Furthermore, the system
only uses a single BERT model and the parsimonious input sequence enables solving
the three tasks with just one BERT-pass per turn. This leads to more computational
efficiency.

Compared to the state-of-the-art, the most important difference is that we utilize slot
carryover mechanisms, however encoding the entire dialogue history performs better.
In our setting the names of the schema elements perform better than the full schema
descriptions which we did not manage to effectively incorporate in our model. Additionally,
our pre-trained model (BERT) is smaller. paDST uses a large number of handcrafted
features and rules which require a lot of feature engineering and may be too dataset-
specific. On the other hand, D3ST achieves a higher JGA than ours only with the largest
version of T5 which has 100 times more parameters than BERT. Overall, our system is

computationally efficient and scalable to large schemata and dialogues.

Awtlopatkn Epyaoia m

Chapter E

Conclusions

6.1 Conclusions

In this thesis, we studied in depth the topic of schema-guided dialogue state tracking.
We first introduced important machine learning concepts and provided some recent deep
learning breakthroughs. We analyzed vanilla RNNs, LSTMs, attention and the trans-
former as well as two important and widely used learning techniques: transfer learning
and multi-task learning. We then focused on the field of natural language processing.
Specifically, after we introduced traditional language models we moved on to modern
transformer-based language models such as BERT and T5.

We provided an overview of dialogue systems examining methods, challenges and eval-
uation of the two main categories: open-domain and task-oriented dialogue systems. We
then focused our interest in dialogue state tracking and we presented the latest research
on the field. We noticed that schema-guided systems, which aim to separate the model
and its supported services, are gaining a lot of interest lately.

We first studied schema-guided dialogue state tracking and introduced two base-
line systems. We then proposed a novel multi-task system for schema-guided dialogue
state tracking based on a single BERT model and an efficient and parsimonious input
representation. Our system reasons for three critical DST tasks simultaneously. Close
to state-of-the-art performance is achieved, using a significantly smaller model and in-
put encoding. Among the various proposed enhancements to the model we show that
abstracting the preceding system utterance with system actions gives the biggest perfor-
mance boost. Strategies like appending previous dialogue states, data augmentation and
adding hand-crafted features further improve performance.

We believe that these strategies can guide the design of accurate, efficient and ontology-
independent task-oriented DST capable of scaling to large multi-domain dialogues, im-

portant in real world applications.

6.2 Future work

In the future, extensions to the work can include:

e Replacing BERT with stronger models which have better zero-shot perfor-
mance and therefore potentially improve accuracy on unseen services. For
example, although D3ST [22] works with a very simple seq2seq approach, it has

state-of-the-art performance when it uses the largest version of T5.

MinAouatxny Epyaoia m

Chapter 6. Conclusions

e Further pre-training models on related tasks. In Chapter 4 we showed that pre-
training on tasks like machine reading comprehension, for which more large-scale
datasets are available, can benefit DST. Schema-guided DST is even more related
to MRC than traditional DST tasks as we showed that the slot/intent description
can be seen as the MRC’s question. However, our approach answers multiple “ques-
tions” at the same time and therefore pre-training from traditional MRC models that

only answer one question for each passage may need to be adapted.

e Strategies to incorporate earlier utterances and more information about the
schema, such as the descriptions of its elements, without increasing the input
size. For example, a turn-level recurrent model (e.g. LSTM) could be used to learn

to encode useful information from previous utterances.

e More data augmentation to avoid the problems of overfitting to seen services.
The number of services seen during training are limited and therefore it is very
easy for the model to overfit and “memorize” them. We showed a simple data aug-
mentation technique but more sophisticated ones may perform even better. As an

example, future work can implement back-translation with transformer models.

e Incorporating the schema-guided paradigm in other dialogue components such
as the dialogue policy or even to end-to-end dialogues. In order to build a real-
world system it is also important to train a dialogue policy component, however this
problem is less studied. One possible direction could be end-to-end systems that

jointly learn to predict the dialogue state and respond.

m Awtflopatkn Epyaoia

Bibliography

[1] Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta ka1t Pranav Khai-

(2]

(3]

(4]

(5]

(6]

tan. Towards Scalable Multi-domain Conversational Agents: The Schema-Guided
Dialogue Dataset, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever xat Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting. Journal of Machine Learning Research, 15(56):1929-1958, 2014.

Understanding LSTM Networks. https://colah.github.io/posts/2015-08-
Understanding-LSTMs/.

The Unreasonable Effectiveness of Recurrent Neural Networlks. http://karpathy.
github.i10/2015/05/21/rnn-effectiveness/.

Lilian Weng. Attention? Attention! lilianweng.github.io, 2018.

Dzmitry Bahdanau, Kyunghyun Cho kat Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N Gomez, Lukasz Kaiser kat Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

[8] Tomas Mikolov, Kai Chen, Greg Corrado kat Jeffrey Dean. Efficient Estimation of

Word Representations in Vector Space, 2013.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee kat Kristina Toutanova. BERT: Pre-

(10]

(11]

training of Deep Bidirectional Transformers for Language Understanding. CoRR,
abs/1810.04805, 2018.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdi-
nov kat Quoc V. Le. XLNet: Generalized Autoregressive Pretraining for Language
Understanding. CoRR, abs/1906.08237, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li ka1 Peter J. Liu. Exploring the Limits of Transfer Learning
with a Unified Text-to-Text Transformer. CoRR, abs/1910.10683, 2019.

[12] Adam Roberts, Colin Raffel ka1 Noam Shazeer. How Much Knowledge Can You Pack

(13]

Into the Parameters of a Language Model? CoRR, abs/2002.08910, 2020.

Minlie Huang, Xiaoyan Zhu kat Jianfeng Gao. Challenges in Building Intelligent
Open-domain Dialog Systems. CoRR, abs/1905.05709, 2019.

MinAouatxny Epyaoia m

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

BIBLIOGRAPHY

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

[27]

Daniel Jurafsky kat James H. Martin. Speech and Language Processing (2nd Edi-
tion). Prentice-Hall, Inc., USA, 2009.

Zheng Zhang, Ryuichi Takanobu, Minlie Huang ka1 Xiaoyan Zhu. Recent Advances
and Challenges in Task-oriented Dialog System. CoRR, abs/2003.07490, 2020.

Mihail Eric, Rahul Goel, Shachi Paul, Abhishek Sethi, Sanchit Agarwal, Shuyang
Gao kat Dilek Hakkani-Tar. MultiOZ 2. 1: Multi-Domain Dialogue State Corrections
and State Tracking Baselines. CoRR, abs/1907.01669, 2019.

Jacob Devlin, Ming Wei Chang, Kenton Lee kat Kristina Toutanova. BERT: Pre-
training of Deep Bidirectional Transformers for Language Understanding, 2018.

Abhinav Rastogi, Xiaoxue Zang, Srinivas Sunkara, Raghav Gupta kat Pranav
Khaitan. @ Schema-Guided Dialogue State Tracking Task at DSTCS. CoRR,
abs/2002.01359, 2020.

Yu-Ping Ruan, Zhen-Hua Ling, Jia-Chen Gu kat Quan Liu. Fine-Tuning BERT for
Schema-Guided Zero-Shot Dialogue State Tracking. CoRR, abs/2002.00181, 2020.

Miao Li, Haoqi Xiong kat Yunbo Cao. The SPPD System for Schema Guided Dialogue
State Tracking Challenge. CoRR, abs/2006.09035, 2020.

Yue Ma, Zengfeng Zeng, Dawei Zhu, Xuan Li, Yiying Yang, Xiaoyuan Yao, Kai-
jie Zhou xkai Jianping Shen. An End-to-End Dialogue State Tracking System
with Machine Reading Comprehension and Wide & Deep Classification. CoRR,
abs/1912.09297, 2019.

Jeffrey Zhao, Raghav Gupta, Yuan Cao, Dian Yu, Mingqiu Wang, Harrison Lee,
Abhinav Rastogi, Izhak Shafran kat Yonghui Wu. Description-Driven Task-Oriented
Dialog Modeling. CoRR, abs/2201.08904, 2022.

Ilya Loshchilov kat Frank Hutter. Fixing Weight Decay Regularization in Adam.
CoRR, abs/1711.05101, 2017.

Sungdong Kim, Sohee Yang, Gyuwan Kim kat Sang-Woo Lee. Efficient Dialogue
State Tracking by Selectively Overwriting Memory. CoRR, abs/1911.03906, 2019.

Jason Wei kat Kai Zou. EDA: Easy Data Augmentation Techniques for Boosting
Performance on Text Classification Tasks. Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), oeAideg 6383-6389,
Hong Kong, China, 2019. Association for Computational Linguistics.

Shai Shalev-Shwartz kat Shai Ben-David. Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

Stuart Russell kat Peter Norvig. Artificial intelligence: a modern approach. 2002.

AinAouatxny Epyaoia

BIBLIOGRAPHY

[28] Geoffrey Hinton kat Terrence J Sejnowski. Unsupervised learning: foundations of

neural computation. MIT press, 1999.

[29] Richard S Sutton kat Andrew G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[30] Ian Goodfellow, Yoshua Bengio kat Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[31] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.

[32] Ilya Sutskever, Oriol Vinyals xat Quoc V. Le. Sequence to Sequence Learning with
Neural Networks. CoRR, abs/1409.3215, 2014.

[33] P.J. Werbos. Backpropagation through time: what it does and how to do it. Proceed-
ings of the IEEE, 78(10):1550-1560, 1990.

[34] Sepp Hochreiter kat Jurgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735-1780, 1997.

[35] Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau kat Yoshua Bengio.
On the properties of neural machine translation: Encoder-decoder approaches. arXiv
preprint arXiv:1409.1259, 2014.

[36] Mike Schuster kat Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing, 45(11):2673-2681, 1997.

[37] Minh-Thang Luong, Hieu Pham kat Christopher D. Manning. Effective Approaches
to Attention-based Neural Machine Translation. CoRR, abs/1508.04025, 2015.

[38] Denny Britz, Anna Goldie, Minh-Thang Luong kat Quoc V. Le. Massive Exploration
of Neural Machine Translation Architectures. CoRR, abs/1703.03906, 2017.

[39] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan
Salakhudinov, Rich Zemel ka1 Yoshua Bengio. Show, attend and tell: Neural im-
age caption generation with visual attention. International conference on machine
learning, oeAideg 2048-2057. PMLR, 2015.

[40] Sebastian Ruder. Transfer Learning - Machine Learning’s Next Frontier. http://

ruder.io/transfer-learning/, 2017.

[41] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Networlks.
CoRR, abs/1706.05098, 2017.

[42] Zellig S. Harris. Distributional Structure. <i>WORD< /i>, 10(2-3):146-162, 1954.
[43] J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1-32, 1957.

MinAouatxny Epyaoia

http://www.deeplearningbook.org
http://ruder.io/transfer-learning/
http://ruder.io/transfer-learning/

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

(55]

[56]

[57]

Jeffrey Pennington, Richard Socher xat Christopher Manning. GloVe: Global Vectors
for Word Representation. Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing (EMNLP), ogAideg 1532-1543, Doha, Qatar, 2014.

Association for Computational Linguistics.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee kat Luke Zettlemoyer. Deep contextualized word representations, 2018.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer kat Veselin Stoyanov. RoBERTa: A Robustly
Optimized BERT Pretraining Approach. CoRR, abs/1907.11692, 2019.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc V. Le kat Ruslan
Salakhutdinov. Transformer-XL: Attentive Language Models Beyond a Fixed-Length
Context. CoRR, abs/1901.02860, 2019.

Jinjie Ni, Tom Young, Vlad Pandelea, Fuzhao Xue, Vinay Adiga xat Erik Cambria.
Recent Advances in Deep Learning Based Dialogue Systems: A Systematic Survey.
CoRR, abs/2105.04387, 2021.

Jianfeng Gao, Michel Galley kat Lihong Li. Neural Approaches to Conversational Al
arXiv:1809.08267 [cs], 2019. arXiv: 1809.08267.

Joseph Weizenbaum. ELIZA—a Computer Program for the Study of Natural Language
Communication between Man and Machine. Commun. ACM, 9(1):36-45, 1966.

Kenneth Mark Colby, Sylvia Weber kat Franklin Dennis Hilf. Artificial paranoia.
Artificial Intelligence, 2(1):1-25, 1971.

Richard S Wallace. The anatomy of ALICE. Parsing the turing test, oeAibeg 181-210.
Springer, 2009.

Tie Yan Liu kat others. Learning to rank for information retrieval. Foundations and
Trends@ in Information Retrieval, 3(3):225-331, 2009.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux kat Jason Weston. Real-
time Inference in Multi-sentence Tasks with Deep Pretrained Transformers. CoRR,
abs/1905.01969, 2019.

Alec Radford kat Karthik Narasimhan. Improving Language Understanding by Gen-
erative Pre-Training. 2018.

Thomas Wolf, Victor Sanh, Julien Chaumond kat Clement Delangue. Transfer-
Transfo: A Transfer Learning Approach for Neural Network Based Conversational
Agents. CoRR, abs/1901.08149, 2019.

Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao,
Jianfeng Gao, Jingjing Liu kat Bill Dolan. DialoGPT: Large-Scale Generative Pre-
training for Conversational Response Generation. CoRR, abs/1911.00536, 2019.

AinAouatxny Epyaoia

BIBLIOGRAPHY

[68] Tiancheng Zhao, Ran Zhao kat Maxine Eskénazi. Learning Discourse-level Diver-
sity for Neural Dialog Models using Conditional Variational Autoencoders. CoRR,
abs/1703.10960, 2017.

[59] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter ka1t Dan Jurafsky. Ad-
versarial learning for neural dialogue generation. arXiv preprint arXiv:1701.06547,
2017.

[60] Yu Wu, Furu Wei, Shaohan Huang, Yunli Wang, Zhoujun Li ka1t Ming Zhou. Re-
sponse generation by context-aware prototype editing. Proceedings of the AAAI Con-
ference on Artificial Intelligence, topog 33, oeAideg 7281-7288, 2019.

[61] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao kat Bill Dolan. A
diversity-promoting objective function for neural conversation models. arXiv preprint
arXiv:1510.03055, 2015.

[62] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville kat Yoshua Bengio. Generative Adversarial Networks,
2014.

[63] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe, Laurent Charlin, Joelle
Pineau, Aaron C. Courville kat Yoshua Bengio. A Hierarchical Latent Variable
Encoder-Decoder Model for Generating Dialogues. CoRR, abs/1605.06069, 2016.

[64] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao kat Bill Dolan. A Persona-
Based Neural Conversation Model. CoRR, abs/1603.06155, 2016.

[65] Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela katJason
Weston. Personalizing Dialogue Agents: I have a dog, do you have pets too? CoRR,
abs/1801.07243, 2018.

[66] Abhishek Das, Satwik Kottur, Khushi Gupta, Avi Singh, Deshraj Yadav, José M. F.
Moura, Devi Parikh xat Dhruv Batra. Visual Dialog. CoRR, abs/1611.08669, 2016.

[67] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng Gao,
Wen-tau Yih kat Michel Galley. A Knowledge-Grounded Neural Conversation Model.
CoRR, abs/1702.01932, 2017.

[68] Kishore Papineni, Salim Roukos, Todd Ward ka1 Wei Jing Zhu. Bleu: a method for
automatic evaluation of machine translation. Proceedings of the 40th annual meeting

of the Association for Computational Linguistics, oeAideg 311-318, 2002.

[69] Chin Yew Lin. ROUGE: A Package for Automatic Evaluation of Summaries. Text
Summarization Branches Out, oeAideg 74-81, Barcelona, Spain, 2004. Association

for Computational Linguistics.

[70] Satanjeev Banerjee kat Alon Lavie. METEOR: An Automatic Metric for MT Evalu-

ation with Improved Correlation with Human Judgments. Proceedings of the ACL

MinAouatxny Epyaoia m

BIBLIOGRAPHY

(71]

[72]

(73]

(74]

[75]

[76]

[77]

(78]

[79]

(801

(81]

Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation
and/or Summarization, oeAibeg 65-72, Ann Arbor, Michigan, 2005. Association for

Computational Linguistics.

Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier,
Yoshua Bengio kat Joelle Pineau. Towards an Automatic Turing Test: Learning to
Evaluate Dialogue Responses. CoRR, abs/1708.07149, 2017.

Kaisheng Yao, Geoffrey Zweig, Mei Yuh Hwang, Yangyang Shi kat Dong Yu. Recur-
rent neural networks for language understanding. Interspeech, oeAideg 2524-2528,
2013.

Kaisheng Yao, Baolin Peng, Yu Zhang, Dong Yu, Geoffrey Zweig kat Yangyang
Shi. Spoken language understanding using long short-term memory neural networks.
2014 IEEE Spoken Language Technology Workshop (SLT), oeAibeg 189-194. IEEE,
2014.

Dilek Hakkani-Tur, Gokhan Tir, Asli Celikyilmaz, Yun Nung Chen, Jianfeng Gao, Li
Deng xat Ye Yi Wang. Multi-domain joint semantic frame parsing using bi-directional
rmn-lstm. Interspeech, ogAideg 715-719, 2016.

Qian Chen, Zhu Zhuo xat Wen Wang. Bert for joint intent classification and slot
Sfilling. arXiv preprint arXiv:1902.10909, 2019.

Steve Young, Milica Gasi¢, Blaise Thomson kat Jason D Williams. Pomdp-based
statistical spoken dialog systems: A review. Proceedings of the IEEE, 101(5):1160-
1179, 2013.

Nikola Mrksi¢, Diarmuid O Séaghdha, Tsung Hsien Wen, Blaise Thomson kat Steve
Young. Neural belief tracker: Data-driven dialogue state tracking. arXiv preprint
arXiv:1606.03777, 2016.

Zachary Lipton, Xiujun Li, Jianfeng Gao, Lihong Li, Faisal Ahmed ka1 Li Deng. Bbg-
networks: Efficient exploration in deep reinforcement learning for task-oriented dia-
logue systems. Proceedings of the AAAI Conference on Artificial Intelligence, top10g 32,
2018.

Weiyan Shi, Kun Qian, Xuewei Wang kat Zhou Yu. How to build user simulators to

train rl-based dialog systems. arXiv preprint arXiv:1909.01388, 2019.

Baolin Peng, Xiujun Li, Jianfeng Gao, Jingjing Liu, Kam Fai Wong kat Shang Yu
Su. Deep dyna-q: Integrating planning for task-completion dialogue policy learning.
arXiv preprint arXiv:1801.06176, 2018.

Tsung Hsien Wen, Milica Gasic, Nikola Mrksic, Pei Hao Su, David Vandyke xkat
Steve Young. Semantically conditioned lstm-based natural language generation for

spoken dialogue systems. arXiv preprint arXiv:1508.01745, 2015.

AinAouatxny Epyaoia

BIBLIOGRAPHY

[82] Baolin Peng, Chenguang Zhu, Chunyuan Li, Xiujun Li, Jinchao Li, Michael Zeng
xat Jianfeng Gao. Few-shot natural language generation for taslk-oriented dialog.
arXiv preprint arXiv:2002.12328, 2020.

[83] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever
kat others. Language models are unsupervised multitask learners. OpenAl blog,
1(8):9, 2019.

[84] Tsung Hsien Wen, David Vandyke, Nikola Mrksic, Milica Gasic, Lina M Rojas-
Barahona, Pei Hao Su, Stefan Ultes kat Steve Young. A networlk-based end-to-end

trainable task-oriented dialogue system. arXiv preprint arXiv:1604.04562, 2016.

[85] Antoine Bordes, Y Lan Boureau xkat Jason Weston. Learning end-to-end goal-
oriented dialog. arXiv preprint arXiv:1605.07683, 2016.

[86] Wengiang Lei, Xisen Jin, Min Yen Kan, Zhaochun Ren, Xiangnan He xkat Dawei
Yin. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-
sequence architectures. Proceedings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), oeAibeg 1437-1447, 2018.

[87] Ehsan Hosseini-Asl, Bryan McCann, Chien Sheng Wu, Semih Yavuz kat Richard
Socher. A simple language model for task-oriented dialogue. Advances in Neural
Information Processing Systems, 33:20179-20191, 2020.

[88] Victor Zhong, Caiming Xiong kat Richard Socher. Global-Locally Self-Attentive En-
coder for Dialogue State Tracking. Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), oelideg 1458~

1467, Melbourne, Australia, 2018. Association for Computational Linguistics.

[89] Jason Williams, Antoine Raux, Deepak Ramachandran kat Alan Black. The Dialog
State Tracking Challenge. Proceedings of the SIGDIAL 2013 Conference, oeAibeg
404-413, Metz, France, 2013. Association for Computational Linguistics.

[90] Matthew Henderson, Blaise Thomson kat Jason D. Williams. The Second Dialog
State Tracking Challenge. Proceedings of the 15th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (SIGDIAL), oeAibeg 263-272, Philadelphia,
PA, U.S.A., 2014. Association for Computational Linguistics.

[91] Tsung-Hsien Wen, Milica Gasic, Nikola Mrksic, Lina Maria Rojas-Barahona, Pei-
Hao Su, Stefan Ultes, David Vandyke kat Steve J. Young. A Network-based End-to-
End Trainable Task-oriented Dialogue System. CoRR, abs/1604.04562, 2016.

[92] Pawel Budzianowski, Tsung Hsien Wen, Bo Hsiang Tseng, Inigo Casanueva, Ste-
fan Ultes, Osman Ramadan xkat Milica Gas§i¢. MultiWOZ-A Large-Scale Multi-
Domain Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling. arXiv preprint
arXiv:1810.00278, 2018.

MinAouatxny Epyaoia m

BIBLIOGRAPHY

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

Xiaoxue Zang, Abhinav Rastogi, Srinivas Sunkara, Raghav Gupta, Jianguo Zhang
rat Jindong Chen. MultiWOZ 2.2: A dialogue dataset with additional annotation
corrections and state tracking baselines. arXiv preprint arXiv:2007.12720, 2020.

Ting Han, Ximing Liu, Ryuichi Takanabu, Yixin Lian, Chongxuan Huang, Dazhen
Wan, Wei Peng xat Minlie Huang. MultiWOZ 2.3: A multi-domain task-oriented di-
alogue dataset enhanced with annotation corrections and co-reference annotation.
CCF International Conference on Natural Language Processing and Chinese Comput-
ing, oeAibeg 206-218. Springer, 2021.

Fanghua Ye, Jarana Manotumruksa kat Emine Yilmaz. Multiwoz 2.4: A multi-
domain taslk-oriented dialogue dataset with essential annotation corrections to im-

prove state tracking evaluation. arXiv preprint arXiv:2104.00773, 2021.

Matthew Henderson, Blaise Thomson kat Steve Young. Deep neural network ap-
proach for the dialog state tracking challenge. Proceedings of the SIGDIAL 2013
Conference, oeAibeg 467-471, 2013.

Elnaz Nouri kat Ehsan Hosseini-Asl. Toward Scalable Neural Dialogue State Track-
ing Model. CoRR, abs/1812.00899, 2018.

Liliang Ren, Kaige Xie, Lu Chen kat Kai Yu. Towards Universal Dialogue State
Tracking. CoRR, abs/1810.09587, 2018.

Jiatao Gu, Zhengdong Lu, Hang Li xat Victor O. K. Li. Incorporating Copying Mech-
anism in Sequence-to-Sequence Learning. CoRR, abs/1603.06393, 2016.

Puyang Xu kat Qi Hu. An End-to-end Approach for Handling Unknown Slot Values
in Dialogue State Tracking. CoRR, abs/1805.01555, 2018.

Oriol Vinyals, Meire Fortunato kat Navdeep Jaitly. Pointer Networks, 2015.

Chien-Sheng Wu, Andrea Madotto, Ehsan Hosseini-Asl, Caiming Xiong, Richard
Socher kat Pascale Fung. Transferable Multi-Domain State Generator for Task-
Oriented Dialogue Systems. CoRR, abs/1905.08743, 2019.

Liliang Ren, Jianmo Ni kat Julian J. McAuley. Scalable and Accurate Dialogue State
Tracking via Hierarchical Sequence Generation. CoRR, abs/1909.00754, 2019.

Michael Heck, Carelvan Niekerk, Nurul Lubis, Christian Geishauser, Hsien-Chin
Lin, Marco Moresi kat Milica Gasic. TripPy: A Triple Copy Strategy for Value Inde-
pendent Neural Dialog State Tracking. CoRR, abs/2005.02877, 2020.

Jianguo Zhang, Kazuma Hashimoto, Chien-Sheng Wu, Yao Wan, Philip S. Yu,
Richard Socher kat Caiming Xiong. Find or Classify? Dual Strategy for Slot-Value
Predictions on Multi-Domain Dialog State Tracking. CoRR, abs/1910.03544, 2019.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Veselin Stoyanov kat Luke Zettlemoyer. BART: Denoising

AinAouatxny Epyaoia

BIBLIOGRAPHY

[107]

Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension. CoRR, abs/1910.13461, 2019.

Zhaojiang Lin, Andrea Madotto, Genta Indra Winata kat Pascale Fung. MinTL:
Minimalist Transfer Learning for Task-Oriented Dialogue Systems. CoRR,
abs/2009.12005, 2020.

[108] Yunyi Yang, Yunhao Li kxat Xiaojun Quan. UBAR: Towards Fully End-to-End Task-

Oriented Dialog Systems with GPT-2. CoRR, abs/2012.03539, 2020.

[109] Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai xat Yi

Zhang. Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System.
CoRR, abs/2109.14739, 2021.

[110] Jeffrey Zhao, Mahdis Mahdieh, Ye Zhang, Yuan Cao xkat Yonghui Wu. Effective

[111]

[112]

[113]

Sequence-to-Sequence Dialogue State Tracking. Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, oeAideg 7486-7493, Online
and Punta Cana, Dominican Republic, 2021. Association for Computational Lin-

guistics.

Chengchang Zeng, Shaobo Li, Qin Li, Jie Hu xat Jianjun Hu. A Survey on Ma-
chine Reading Comprehension: Tasks, Evaluation Metrics, and Benchmark Datasets.
CoRR, abs/2006.11880, 2020.

Shuyang Gao, Abhishek Sethi, Sanchit Agarwal, Tagyoung Chung xkat Dilek
Hakkani-Tur. Dialog State Tracking: A Neural Reading Comprehension Approach.
CoRR, abs/1908.01946, 2019.

Shuyang Gao, Sanchit Agarwal, Tagyoung Chung, Di Jin kat Dilek Hakkani-Tir.
From Machine Reading Comprehension to Dialogue State Tracking: Bridging the Gap.
CoRR, abs/2004.05827, 2020.

[114] Johannes E. M. Mosig, Shikib Mehri kat Thomas Kober. STAR: A Schema-Guided

[115]

[116]

Dialog Dataset for Transfer Learning. CoRR, abs/2010.11853, 2020.

Zhaojiang Lin, Bing Liu, Seungwhan Moon, Paul A. Crook, Zhenpeng Zhou,
Zhiguang Wang, Zhou Yu, Andrea Madotto, Eunjoon Cho kat Rajen Subba. Lever-
aging Slot Descriptions for Zero-Shot Cross-Domain Dialogue State Tracking. CoRR,
abs/2105.04222, 2021.

Chia-Hsuan Lee, Hao Cheng kat Mari Ostendorf. Dialogue State Tracking with a
Language Model using Schema-Driven Prompting. CoRR, abs/2109.07506, 2021.

[117] Vahid Noroozi, Yang Zhang, Evelina Bakhturina kat Tomasz Kornuta. A Fast and

[118]

Robust BERT-based Dialogue State Tracker for Schema-Guided Dialogue Dataset.
CoRR, abs/2008.12335, 2020.

Hwaran Lee, Jinsik Lee kat Tae-Yoon Kim. SUMBT: Slot-Utterance Matching for
Universal and Scalable Belief Tracking. CoRR, abs/1907.07421, 2019.

MinAouatxny Epyaoia m

BIBLIOGRAPHY

[119] Jie Cao katYi Zhang. A Comparative Study on Schema-Guided Dialogue State Track-
ing. Proceedings of the 2021 Conference of the North American Chapter of the Associa-
tion for Computational Linguistics: Human Language Technologies, oeAideg 782-796,

Online, 2021. Association for Computational Linguistics.

[120] Chetan Naik, Arpit Gupta, Hancheng Ge, Lambert Mathias kat Ruhi Sarikaya.
Contextual Slot Carryover for Disparate Schemas. CoRR, abs/1806.01773, 2018.

m AinAouatxny Epyaoia

	Περίληψη
	Abstract
	Ευχαριστίες
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Κίνητρο
	Συνεισφορές

	Το Schema-Guided Dialogue Σύνολο Δεδομένων
	Σχετική βιβλιογραφία
	Προτεινόμενο μοντέλο
	Συμβολισμοί
	Αναπαράσταση εισόδου
	Πρόβλημα πρόβλεψης πρόθεσης
	Πρόβλημα πρόβλεψης ζητούμενων πεδίων
	Πρόβλημα ανάθεσης τιμών πεδίων
	Μεταφορά πεδίων
	Εκπαίδευση πολλαπλών εργασιών

	Πειράματα
	Εξαγωγή ετικετών
	Εκπαίδευση
	Προεπεξεργασία και επαύξηση

	Αποτελέσματα και συζήτηση
	Σύγκριση με άλλες εργασίες
	Ablation study
	Επίδραση των μηχανισμών μεταφοράς πεδίων
	Συζήτηση

	Συμπεράσματα
	Μελλοντικές προεκτάσεις

	Introduction
	Motivation
	Contributions
	Thesis outline

	Machine Learning
	Machine learning approaches
	Supervised learning
	Unsupervised learning
	Reinforcement learning

	Machine learning concepts
	Loss function
	Gradient descent
	Bias-variance tradeoff

	Machine Learning Methods
	Decision trees
	Support-vector machines
	Linear regression

	Neural Networks and Deep Learning
	Artificial Neural Networks
	Introduction to Deep Learning
	Activation functions
	Learning through backpropagation
	Regularization
	Recurrent neural networks
	Attention mechanism
	The Transformer

	Transfer Learning
	Multi-Task Learning

	Natural Language Processing
	NLP tasks
	N-gram Language Models
	Distributional hypothesis - word embeddings
	Tf-idf
	Co-occurence matrix
	Word2vec

	BERT
	Architecture
	Inputs and outputs
	Pre-training
	Fine-tuning
	RoBERTa

	XLNet
	T5

	Dialogue Systems
	Introduction to dialogue systems
	Open-domain dialogue systems
	Task-oriented dialogue systems

	Dialogue state tracking
	Datasets
	Discriminative and generative DST
	DST as machine reading comprehension
	Schema integration in DST

	Multi-Task Schema-Guided Dialogue State Tracking
	The Schema-Guided Dialogue Dataset
	Related work
	Baseline system 1: Multiple task-specific BERT modules and comparison of Encoder architectures
	Encoder architectures
	Modules
	Experimental Setup
	Results and Discussion

	Baseline system 2: Unified slot BERT module and encoding of system actions
	Input representation for slots
	Unified slot module
	Experimental setup
	Results and discussion

	Proposed model
	Notation
	Input representation
	Intent prediction task
	Requested slot prediction task
	Slot filling task
	Slot carryover
	Multi-task training

	Experimental Setup
	Label Acquisition
	Training Setup
	Preprocessing and augmentation

	Results and Discussion
	Comparison to other works
	Ablation study
	Effect of slot carryover mechanisms
	Discussion

	Conclusions
	Conclusions
	Future work

	Bibliography

