EONIKO METTOBIO ITOAYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTTIOAOTIZTON
TOMEAY TEXNOAOTIAY [TAHPO®OPIKHE KAI YTIOAOTIETON
EPrastHPIO MIKPOYOAOIIESTON KAI WHIIAKON L YSTHMATON

HW /SW Co-Design and Preprocessing for
Accelerating Star Trackers on SoC FPGA

AIIIAOMATIKH EPrAvIA

TOL

[Tarahouxd EypovounA

EnmBArenwyv: Anuftpoc Xodvieng
Kodnyntic E.M.IL

EPrasTHPIO MIKPOYTIOAOTIETON KAI WHSIAKON L TSTHMATON
Adnva, Todhog 2022

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

HW /SW Co-Design and Preprocessing for
Accelerating Star Trackers on SoC FPGA

AIIIAOMATIKH EPrAsIA

ToLV

IMarahouxd Eppavouii

EnmBArénwyv: Anuftploc Xodvreng
Kodnyntic E.M.IL

Eyxpldnxe and tnv teiuerr eCetactinr emtpony| tnv 301 Iouviou 2022.

(Yroypagn) (Ymoypagn) (Ymoypagr))
Anufteloc Yolvteng Havaryidtne Toavdxog Awoviolog Pelone
Kodnyntic E.M.IL Kodnyntic E.M.IL Kodnyntic E.K.ILA

Adva, Todhog 2022

Edvixé Metodfio Iloauteyvelo
Eyoh) Hihextpohdywv Mnyavixwy xou Mnyovixodv YTroloyiotoy
Touéag Teyvoroyiog [IAnpogpopurc xa Troloyiotdy

Epyaotfpio Muxpobnoloyiotadv xar Ungoxwmy LucTnudtey

(Troypagn)

ITATTAAOYKAY EMMANOTHA
Amhopotovyoc Hiextpohdyoc Mryovinde xou Mnyovinde Troroyotov E.M.IL

Copyright (C) —All rights reserved ITamohouxdc Epuoavour), 2022.
Me empOioln TovTOC SIXOUMUATOC.

Anayopeletan 1 avTrypopy|, amotixeust) xat Slavour| Tne topoloug epyaociog, €€ olo-
(AAPOL 1) TUNUATOS AUTHS, Yid EuTtopixd oxomo. Emtpeneton 1) avatinwor), anodfxeuon
%0l OLOVOUY| YLoL OXOTO 1) HEEOOOKOTUXO, EXTIOUOELTIXNS 1| EPELYNTIXNG PUONE, UTO TNV
TEOUTOVEDT] VoL AVOPERETOL 1) TINYT) TEOEAEUGTC XAl VoL OLUTNEETOL TO TGV VUL
Epwtuata mou agopodv TN Yenon e epyaciag Yio XEpO0OXOTIXG OXOTO TEETEL VA

amevdivoVToL TEOG TOV GUYYEUPE.

HeptAngm

Or o tnuég epappoyég amontoly tayela xou axpln UETENOT TOU TROCAUVATOMGHOU EVOS
00pPUPOEOL, AYTL TTOL UTOEEL VoL ETLTELYVEL UOVO UE TN YEHOT ALY VELTAOY doTERWY. To dpyava
ot amoteholvTaL omd Eva Pnplaxd oo UNTAEA EXOVAS TOU XATAYRAPEL TOV 0UPAVO, XS
xou omo Pnpioxd LAXO To OTolo aviyVEVEL ToL Ao TEQLOL OTNY EXOVOL Xl Tar avTioToly (el o€
YVWGTOUC 0GTEPLOUOUE XUTAAOYOU WOTE Vo Tpocdloploel T ¥éomn Tou Bopupdpou GTo adpa-
veloxo obotnuo. H aviyveuon actépwy eivon LPNATC TOAUTAOXOTNTAUC %ol ATMOUTEL UEYIAOUS
Xeovoug extéleone, Wiwe edv yenotponotolvTal cuUUBATIXOl UXEOETEEERYUCTES. LUVETAOS, N
VALY MY YLOL VLY VEUTES Ao TEPWY UPNATC amdBocNng 001 YNoE 0TNY AUEAVOUEVT] YV OT) EUTOPLXEDY
CUOXEVUWY VAXOU «ATd TO pdPLly OE BLIC TNUXES EQUOUOYES.

Y1y nopoloo SITAOUATIXY EQYACIN AVITTUGCOUNE O VO EVOWUATWUEVO cUGTNuA SoC
FPGA ta otddia npoenelepyociog SeB0UEVOV TNG TROYPUUUATIO TIXNC PONC EVOC VLY VEUTH
oo TEPWY TaL oTolal APoEOVY TNV OHABOTOMGT EXOVOCTOLYEIWY Yo PElwoT Tou OYxou Bedo-
HEVWY, 0L TNV OVEYVEUGT] GUGTABWY TIOL YENOHLOTOLOUVTAL YO TOV UTOAOYLOUO XEVTPOELDMV.
Emmiéov, vlonolelton yiar AOYIoUXT) TEOGEYYIOT TOU EXTEAELTAL OTOV EMEEEPYAC TN TNG TAXT-
(pbpuac xon cuyxplveton pe o evowuatouévo HW/SW clotnue doov agopd tny anédoorn. H
opyLtextovixy] utootnellel TNV emxownvio uetalld Twv PS xa PL otowyelnv tou SoC péow
Twv AMBA AXI npwtoxohhwy, xadoe eniong xor Tn SuVaUXY| TEOCUQUOYT TOU XATw@Aiou
TIOU YENOWOTOLE(TOL XATd T1 cuoTadoToNoT avdloya ue to eninedo YopBou Tng exdvoc.

To chotnud pog eZetdotnxe pe PEAMOTIXES EOVES TTOU €Y0uV An@iel oe Uiar amoaTOAY) TNG
NASA xou o€iohoyeiton w¢ mpog Ty anddoao, tn yeror mépwy Tou FPGA xau v xatavdhwon
oyvoc. Eivow xavo yia axplfny aviyveuorn exatoviddny cucTtddwy eviog Tou Thaciou tng
EoOVoG EmTayUVOVTOC TNV exTéAETT) xatd 60 popéc cuyxpitixd ue Tov ARM eneéepyaots Tou
SoC FPGA, eve) extipdrtar ott 1 emitdyuvon uropet va auEndel éwg xan 108 gopéc. Telwd,
1 EVOWUATOUEYN LVAOTOMGT Tou GUVBUALEL UALXO ot AOYLopxd elvol txavr yiol anédoon oe
TEAYHATIXO YEOVO, XM EMWQERELTAUL OTO TNV AEYLTEXTOVIXT ToedAANANG enelepyaciog Tou

FPGA xou ti¢ eidwd npocopuoopéves Texvixég VAoTolnorng.

AéCeic KAewdod

Aviyveutéc aotépwy, SoC, Zynq FPGA, Yuotabonoinon, Ouadonoinon, Katwehinon,
Yuvduaoudc HW/SW, Egopuoyéc Awotiatog

Abstract

In space applications it is critical to measure the satellite’s orientation fast and pre-
cisely, which can be only achieved using star trackers. This setup consists of a digital
image sensor that captures images of the sky, as well as hardware that detects stars and
maps them to known constellations in order to determine the inertial attitude of the satel-
lite. Star detection is a process of high complexity due to large amounts of image data
and thus, it takes significant time to execute, especially when operating on conventional
microprocessors. Thus, the need for high performance star trackers leads to the use of
Commercial Off-The-Shelf (COTS) FPGAs, which offer great parallelisation opportunities
and provide remarkable speedups.

In this thesis, we focus on the implementation of an efficient algorithm for accelerating
preprocessing operations of star trackers on COTS SoC FPGAs. More specifically, we
develop a HW/SW embedded system for accelerating the preprocessing stages of a star
tracker pipeline on Xilinx’s Zynqg. These stages refer to the image binning that decreases
the data volume, and to the detection of clusters from which centroids will be subsequently
extracted. The proposed architecture exploits parallelisation at multiple levels via para-
metric HDL circuit design. The HW/SW co-design integrates the PS and PL parts of
Zynq, whose communication is established via AMBA AXI protocols. Our integrated sys-
tem supports dynamic adjustment to the threshold used in clustering process depending
on the noise floor level of the image frame.

The proposed design is tested with real images captured on a NASA mission and
is evaluated in terms of performance, resource utilisation and power consumption. A
software-oriented approach running on the PS of the SoC is also developed and compared to
our HW/SW embedded system. Our proof-of-concept implementation accurately detects
hundreds of clusters within the image frame while accelerating the execution, resulting
to a speedup of 60x compared to the ARM processor with an estimated increase up to
108x. Hence, this HW/SW co-design achieves real-time performance as it benefits from

the FPGA’s parallel processing architecture and our custom implementation techniques.

Keywords

Star Tracker, SoC, Zynq FPGA, Clustering, Binning, Thresholding, HW/SW Co-
Design, Space Applications

Euyapiotieg

Oa fideha vo eLYaELOTACK TEWTIGTWS Tov eMPBAETOVTA X))y NTYH oL x. Anuriten Lolvien
TOU UE EUTOTEVUNXE YLt TNV EXTOVNOT TNG DIMAWUATIXAC You gpyaotac. Enetta, Yo Aieka
VoL EUYAPLOTHOW EEYWELETA TO ueTaddoxTopind epeuvnth Iidpyo Aevtden xou tov urodriglo
owdxtopa Baolin Aéwv yia vy adidieintn Bordeio xou tnv mohdTiun xadodrynon mou pou
Tpocégepay. Axour, o Heha va evyaplothion Wialtepa to ['dvvn Xtpatdxo yio Tic xalpleg
OUUPOVAES xa TUPEUPBAOELC TOU TV OF TO TEaxTixd {NTHUoTaL.

Emmiéov, evyaplote Yepud 1o Mdvo Kovuoavtdxn xou tnyv etonpeia tou Infinite Orbits yio
TNV ToEOY | TEYVOYVWGtag, an’ TNV omolo xaTéG TN BUVATY 1) EVOOYOANGY) UOU UE TO GUYXEXPL-
uévo Yéua.

Oa Hleha EMTEOCVETHOC VAL EUYAPLOTAGE TNV OWXOYEVELS OV YIdL TNV UTOUOVY|, TNV UTO-
oThEEN ot TNV EUmIoTOo0VN Tou pou €0eile xardohn T Bidpxeia Tng goltnong wou. Télog,
VEAW VoL eLY PO THOW WBLETER TOUG PIAOUE LOU YO TIC GTLYHES TTOU HOLOUGC TAXUUE KOl YLaL TOUG
omoloug VoL euyvwuochvn Yo T SUvoUT xat To Téog Tou pou divouy va oaxohoLUHow To

OVELRA HOL.

Contents

ITepiAndn 1
Abstract 2
Evyopiotieg 3
Contents 5
List of Figures 8
List of Tables 12
Extetapévn Ilepiindn 14
1 Introduction 27
1.1 Motivation e 27

1.2 Thesis Scope e 28

1.3 Project Objectives e 30
1.4 Thesis Outline e 30

2 Background 33
2.1 Star Trackers 33
2.1.1 Star Tracker Characteristics 34

2.1.2 Sub-pixel Accuracy 35

2.1.3 Theoretical Background o000 36

2.1.4 Algorithms 38

2.1.5 Commercially Available Star Trackers 39

2.2 Related Work L 40
2.3 Space Navigation 41
2.3.1 Celestial navigation for satellites 41

2.3.2 Celestial navigation for deep space probes 42

2.4 Rotational Kinematics 43
2.4.1 The Earth Centred Inertial (ECI) 43

5

Contents

2.4.2 Euler Angles
2.4.3 Coordinate Transformation
2.5 SoC FPGA Overview o ..

2.5.1 Xilinx Zynq SoC FPGA Architecture

252 AXHM Lite o
2.5.3 AXI4 Stream
254 DesignFlow.,

3 Development on the Zynq SoC FPGA
3.1 HW/SW Co-design of Averaging 2D Binning

3.1.1 High Level Architecture
3.1.2 Low Level Implementation
3.2 HW/SW Co-design of Clustering
3.2.1 Cluster detection algorithm
3.2.2 High Level Architecture
3.2.3 Low Level Implementation
3.2.4 Performance-Wise Optimization

3.2.5 System Integration

4 Experimental Evaluation

4.1 Experimental Setupo,
4.2 Results and Analysis on Zynq FPGA

5 Conclusion and Future Work

Bibliography

102

104

List of Figures

N O Ot s W N

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17

3.1
3.2
3.3

AopopeTind eineda OpABOTOMONS EXOVOCTOLYEIDY. 16
Yyedotr anexovion tou mupriva Ouadonoinong Ewovootowyelov. 17
Mnyoviopog avalitnong emovooTolyelwy.o 19
Audrypoppor porig yior TN AAdN TV BEBOUEVLY EXOVOC. 20
LY EDAOTIXY AVATORICTACT] TOU TURHVOL XUCTABOTOMONG. « « « v v v v v o o o 21
AvamopdoTac XOTUUERIOUOD DIEQYUOUMDY. .« . . o o o 22
Extyouevn xatavdhwor 1oy 00g Yo To OAOXANEWUEVO GOOTAUAL. « « « 24
Block diagram of a typical Star Tracker. 29
System-on-Chip Layout. 29
Process Flow of a Star Tracker. 29
Pointing and rolling accuracy schematic of the star tracker [1]. 34
Different Stars Utilising Hyperacuity technique [2]. 36
Image sensor’s perspective Projection model [3].. 37
High level process flow of an ADCS. 38
Types of radial distortion [4]. L. 39
The Earth-Centred Inertial (ECI) frame [5]. 44
Roll-Pitch-Yaw notation for Euler angles [6].. 45
Euler Angle Sequence (3,1,3).o 45
Coordinate model of a star tracker [7]. L. 46
Celestial coordinate system to star tracker’s coordinate system [7]. 47

Pinhole Camera Model: ideal projection of a 3D object on a 2D image [8]. . 48

Field Programmable Gate Array (FPGA) schematic [9]. 49
Xilinx Zynq SoC FPGA Architecture [10]. 50
Channel architecture of reads [11]. 53
Channel architecture of writes [11]. 53
FPGA Design Flow. 55
VHDL code to synthesized design conversion. 56
Different levels of averaging binning. 59
Processing flow of the integrated system. 59
Block design of the HW /SW integrated system. 61

8

List of Figures 9

3.4

3.5

3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26

3.27
3.28
3.29
3.30
3.31

3.32
3.33
3.34

3.35
3.36

4.1
4.2
4.3
4.4

Zynq7 Processing System block design.o 61
AXI DMA Block Diagram [12]. 63
Averaging 2D Binning block design. L. 63
Block design of the Binning kernel. 0L 64
Adder Tree Structure for 2x2 binning. 65
Behavioural Simulation of the input FIFO buffer handling. 66
Behavioural Simulation of the output FIFO buffer handling. 67
Serial-to-Parallel block. oo 67
Behavioural simulation of Serial-to-Parallel operation. 68
Generic block design of Adder Tree. 68
Behavioural simulation of MAC operation. 69
Visualization of light spreading in a defocused star. 70
Configuration of Neighbourhoods of Search. 71
Processing flow of the HW/SW Co-design for Clustering. 72
Image partitioning in sliding windows. 73
Clustering block design. o oL 73
Data transmission pipeline. o oL 74
Block design of the Clustering kernel. 75
Ilustration of every possible case for reading operation of starting pixels. . 76
Determination of Region-of-Interest. 7
Example of the addressing operation. 78
Pipeline of the processing steps handled by mainFSM. 79
Behavioural simulation of driving TREADY signal for a 256x256 image

and winHeight of 16 rows. o oL 81
Behavioural simulation of upperThresLoc. 81
VHDL code of the function that computes the addresses. 82
Behavioural simulation of fsmdram. 0oL 82
Behavioural simulation of neighChecker. 83

Ilustration of the correlation between the operations performed by fsm4RAM

and neighChecker blocks. 84
VHDL code transformation regarding signal overflow. 86
Visualization of task partitioning. oo 88

Mlustration of the three individual sub-processes performed by neighChecker

component. L 89
Pipeline of the processing stages of the HW/SW Co-design. 90
Block design of the HW/SW Co-design. 90
Zedboard Development Board [13]. 93
Board Connection Setup [13]. 94
Post execution result as shown in SDK terminal. 94

Estimated Power Consumption of Binning component. 95

10 List of Figures
4.5 Behavioural simulation of an output detected cluster.. 96
4.6 Visualisation of a detected cluster on MATLAB. 96
4.7 Post execution results as shown in SDK terminal after clustering operation. 97
4.8 Estimated Power Consumption of Clustering component. 98
4.9 Behavioural simulation of the Binning-Clustering co-design. 98

4.10 Post execution results as shown in SDK terminal after Preprocessing oper-

ation. 98
4.11 Estimated Power Consumption of the Integrated System. 99
4.12 Analytic overview of the consumed power for each individual block. 99

4.13 Hierarchical presentation of the FPGA resource utilisation. 100

List of Tables

2.1

3.1

4.1

4.2
4.3

4.4
4.5

4.6

Buyxprunog Hivoxag pe tic ouyvotnTeg pohoYlol Tou eTeTeELYINCUY XATOTLY
BEATIOTOMOMOEMY . o v v v v v v v v i e et e e e e e
LOyxplon UEowV YeoveY eXTENEONC UETHED TwV 800 TEOCEYYIoEWY Yo XdUe
€VOL OO TOL VAOTIONUEVOL OTOLYElO o

Xperon mopwv tou FPGA vyl to ohoxdnpwuévo chotnua.
Table of commercially available star trackers.
Table of the achieved clock period per component after optimisation

Comparison of mean execution time between SoC FPGA and ARM CPU
for Averaging Binning operation
Resource Utilisation of FPGA for Binning implemented design.
Comparison of mean execution time between SoC FPGA and ARM CPU
for Clustering operation
Resource Utilisation of FPGA for Clustering implemented design.
Comparison of mean execution time between SoC FPGA and ARM CPU
for the Integrated HW/SW Co-design
Resource Utilisation of FPGA for the Integrated System.

12

95

Extetopevn Ilepiindmn

Ewcoaywyn

H nopotoa Simhwuatix epyacto Sielrydn o cuvepyaota ye v Infinite Orbits, plo eton-
eelar oL Bpac TrploToLElTAL TN Bloc T Blopmyovior xou TaEEYEL XUVOTOUES UTNEEGTES Yial
dopupopd cucThuaTa. O Sloo TNUXES EQUPUOYES Efval YEVIXA OLUTEPX OTAUTNTIXES OlEQY-
oleg xan eivon CwTnrg onuaciog To vo xavorotovvTon cuyxexpuléveg teodlaypapéc. Tlpénet va
yopoxtneilovton and uPnhd eninedo auTOvVOUidg WOTE Vol ENXYIOTOTOLOUVTAL OL XJUC TERHOELS
TOL €lodyovTon amd Tor xavehlar emxovemviag xou eréyyou mou PBeloxovto oe mepBdAlov -
0dpoug. Emmiéov, to 50pupopixd UG TAUATO TEETEL VO UTOEOVY VoL AELTOURYOUV AOLOAEITTWS
xan Ywelc TeofAiuota 1 €0Tw va elvon ot Y€on Vo ot aVTHIETWTICOUY UE AOPANELNL KoL GUVE-
TOC TEETEL Vo Sloxatéyoval and evpwotia. Téhog, mpénel var elvon e€otpeTnd Y yopa MOTE
VoL AVTATOXEIVOVTAL GUEGO X0l VoL AV TIETOTLOUY aveMUUNTES XATAC TACELS TTOLU UTOEOLY VoL
OBMYHOOUV OE oTUYHUOTAL.

To dpyavo excivo mou mopéyet T duvatdtTnTa Toryetag xou LPNAC axpelfetac pétenong yia
TOV TPOGOLOPLOUO TOU TROGAVATOMGOUOU EVOS BORUPOEXOV GUG TAUATOS EVAL O OVLYVEUTYC O-
otépwy. O aviyveuthc aoTépwy amoteheiton and éva omTind cVOTNUA Xou omd TO (Lo
uAhx6. To ontixd cbotnuo mepthauBdvel éva Pnplaxd aointhea exovac Tou TEABdeL Qo-
ToYpaplEC TOL OLPAVOD Ol OTOLEC YENOHLOTOLUVTAL ATd TO UAXO YL TOV TEOGOLOPOUO TNG
¥éone tou Bopugdpou. To LAxd mephopfdvel xdmoo cloTnua encéepyaciog Tou eivon cu-
VAYWS XATOL0¢ Uixpoenelep Yo TS, O 0TOl0g TEAYHATOTOLEl TOUG AMEAiTNTOUC UTOAOYLOHOUE
yio Vo e€dyel yprowes mAnpogoptec. H Siaduacio auth anoteieiton and emuépoug UTOAOYIo TI-
%4 oTadL Yepd amd Tar onola topouctalovion oTo TAAIoLO AUTAS TNE OITAWUATIXAC EQYACTOC.
Cevixd, n aviyveuon actépwy yopuxtnelleton amd UPNAT UTOAOYLO TXH TOAUTAOXOTATA 1) OTOLAL
evioyVETOL OO TO YEYOVOCS 0Tt amanteltan encéepyacion UeYEAoLU 6YXOU SEBOUEVLV ATOTEAWVTAS
£T0L TEPLOPLO TIXO THEAYOVTA OTNV ATOBOGT|, TOU CUC TAUATOC, WOIWE €AV 1) EXTEAECT] TEOLYUTO-
nolelton o€ %dmolov cUUPATIXG UIXPOETEEERYATTY.

To teheutala ypdvia, 1) avdyxrn Yiot AmOBOCELS TEAYUATIXOU YEOVOUL €Yel OTEEPEL TO EVOLO-
pEEOV OE GAES EVOANOXTIXES BNULOLEYWVTAS VEEC TAOELS 6NV PBrounyovias Tou SLc THUTOS.
IT\éov, €youue paydalor adENoT YENONS EUTOPIUDY CUCKEVELKDY UAXO) «OTd TO PdpLy OE Blo-
CTNUXES EQUPUOYEC HE TNV To dladedouévn and avtéc va elvon ta FPGA, agob n ayopd
TapEYEL 01 EVa UEYEAO €0POC TAATPORUMY XATIAANAES VLol TETOLOU EIBOUE EQUPUOYES.

Yo mhadola Siepedivnong Tou medlou egapuoydy twv COTS FPGA oto dudotnua ue Ti¢

14

omoieg aoyolelton To Epyactriplo Mixpobnoloyiotdv & ¥nglaxwy Yuctnudtwy, Siexnepal-
OUNXE 1 BIMAGUOTIXY oUTYH 1 OTtolol TEOYUATEDETOL TNV AVATTUEY oAyoplduwy oe éva evon-
patouévo cbotnua SoC FPGA ol omolot uhomoloby tar TedTol 0TddLL TNG TEOYROUUATIO TLXNS
EONC EVOC avlyVeuTH| aoTépwy. AuTd Tor oTddLo apopolV TNV TEoeTeEepyacior GEBOUEVKDY XaL
ywetlovton otig e€rg 500 UTOBLERYAGIES: TNV OPABOTOINGT TWV EXOVOC TOLYEWY UE OXOTO TN
pelwon Twv BloTdoenmy TNg UTo enedepyacion EOVAC oL TNV oAVl VEUCT] CUCTABWY UG TEPL-
@V evtog Tou mAatotou authg. Ol e€aydueves aUTEC CUCTABES YPTOULOTOLOUVTOL GTO ETOUEVAL
oTEdLL Yior TOV UTOAOYIoUG Tou Uoug Tou BopuodEou. Lxomdg elval Vo aELOTOCOVUE TIC
BLVATOTNTES TNG TAATPOPUIC TOU UAIXOU TROTEVOVTOC UL AEYITEXTOVIXT TOU GLVOUALEL T6TO

TO hOYLlouX6 660 xat To LA tou SoC FPGA.

OewpnTtixd LVNoBeadpo

Ot aviy TeuTéC Ao TERWY YENOWOTOOLYTAL YIol TOV TPOGOLORIoUs NS Yéomg evog Blao -
%00 oxdPoug, EMEWDN TapEYoLY TN PEYAAUTERT axplfBela and onolovdfroTe dAAOV aucUNTHPA.
[Tpoxewévou va yeyiotoromiel n axpelBeta tng extiunong tng Véong evdg acteplol, 1 Ady-
N TOU EXTEUTEL QUTO ATOXEVTRAPETAL OE YAOXES ELXOVOTTOLYElwY Ueyétoug amd 3x3 €wg
15x15 avdhoya e ta yopaxTnelo Tixd Tou awonthpa eodvac. H eEdmhworn tou @utodg mou
ATOTUTIWVETOL OTA EIXOVOCTOLYEL TN EOVOC TOU ouoUNTHRA TERLYPAPETOL amd U NUATINES
ouvopthoelc mou ovopdlovtar PSE (Point Spread Functions) ot onoleg eivar ouctootind I'xo-
ouclavég ouvapTthoelc. Ev cuveyela, ypnoyonotobvton xotdAAnAol olydptduol avory voeLong
TEOTUTWY OL OTO[OL PE TNV XATIAANAY enelepyaoion Twy GEBOUEVWY UTOEOVY Vo EXTWUACOUY
TOV TPOCUVATOAIGUO TOU GUCTAUATOS PE axpifela ecovooTotyeiou xdtw amd 1o.

Y1 Swo T Thorynon amouteiton €var oTordepd UG TNUA CUVTETAYHEVWY 0G ONUElD -
VaPoEAS WOTE VoL UTERYEL GUCYETION UE TO AVTIGTOLYO GG TN TOU XWVOUUEVOU OLIC TNULXOU
oyfuatoc. To obotnua mou yenowonoteiton ovopdleton Earth Central Inertial (ECI) xou n
oY) TV aOVwy Tou elvar axpB3®s oto x€vTeo g I'ng, ywelc va axolouviel dunme Ty xivnot
e O aviyveutrc aotépwv cuoyetiler to ECI ye 1o abotnua cuvteTtayUévmy Tou oy fud-
To¢ Tou TomoveTelTal 0TO XEVTEO UALAS TOU TEOXEWEVOU Vo EEAYEL TANEOPORIES OYETIXG UE
N Véomn auto. Ipoxewévou va yivel 1 cuoyétion e H€ong Tou oy VELOVTOS Ao TERA OTO
TAAOLO TNG EOVOC UE TNV TEAYUATIXT) TOU VECT GTOV 0UEAVO, ATOUTOVVTAL XATOLOL UETUCY UL
TIoUOl oo AvVTIo TOLY O GUC TAUATO CUVTETAYUEVGY. ApYLXd, Ol CUVTETAYPEVES TOU AOTERA OTO
ECI cbotnua mpénetl vo petopepdolv 6To avtioTolyo oOCTNUA CUVTETOYUEVKDY TOU OTTIXOU
aointiea. Emerta, npénet va yiver) mpofolr) tne ¥€ong tou actépa and Tov TELOOLEC TUTO
Y®EO GTO TAALGLO TNE BLOOLAC TATNE ELXOVAS, TO OTOLO EMITUYYAVETOL UE T1| X101 TOU HOVTEAOL
xduepag pinhole, To onolo mapéyel plar A teptypapn TS oxéong HETAE) TwV TELOOLAO TOUTWY
CLVTETAYPEVWY EVOC GNUElOL xou TN TEOBOAYC TOL GE Lot VXS Xduepag 1) omolo Yewpeiton
omnueio avagopds. To teheutaio Briua agopd TN UETAPOEA Amd TO GOCTNUN CUVTETAYUEVWY TNG
eOVaG 0T0 GUOTNUA CUVTETAYPEVKDY TOU exovooTolyeiov (Ewdva 2.11).

H nopoloa dimhwuatixn epyoacia EmXEVIPOVETAL oTNY UAoToinon evog alyopliuou yio

oV veuTég aoTépwy oe Uit cuoxeur] Lol SoC FPGA aglonouwvtag Tig BuvatodtnTeg mou

15

TEOGPEREL AOY L TNg euehi&iog xan Tng anbdoorc tng. O cuoxeuéc SoC FPGA cuvictolv wa
AAVOTOUA BEATIWUEVY TPOCEYYLON GTO YWEO TWV TAATPORU®Y LAX0D xadwe tepthaufdvouy
o70 (B0 ohoxAnpwuévo chip évav enelepyaoty| xado enlong xaw éva FPGA. Katd cuvénela,
€y ouv YeyolUTERo Bordud ohoxhpwong, yaunidteen oyl xo uimAdtepo ebpog LOVNG EMXOL-
voviog ueta&l tou enelepyaoth) xou Tou FPGA. Q¢ ex toltou, ta SoC FPGA cuvictolv puo
LOLOUTEQOL OVTAYWVIG TIXT) EVAAAOXTIXT| TEOGEYYIOT EVAVTL TV GUUBATIXWY HECWY UAXOL NG
ayopdc. o g avdyxeg tng BtmAwuoatinic autig, yenotworolinxe n thoxéta Zedboard tng
AVNET n onolo mepihopféver to obotnua Xilix Zyng-7020 SoC.

YAoroinor tou octoiyeiov yia Tnv Opadonoinorn Ewxovootolyesiowy

To mpdto oToLyelo ToU GUVBLAG TIXOY UaS CLUG TARNTOS LAXOU/AoYlouxol etvat utebuvo
yia TNy opadomoinot eixovoc tolyeiwy oe diodido totn exdva. H teyviny| auth etvor eupéwg Blo-
0edouEVT o€ eQapUOYEC ToL BouctlovTal 68 GUC TAUATO OTTIXWY UCUNTHEWY XAl APOEd TO GUV-
OLUCUO TV TUMV YELTOVIXWY EIXOVOCTOLYEIWY (OOTE Vo oY NUATIO TEL EVal UTER-ElXOVOTToLYElD
xan var auéndel xatd xdmolov tedmo To péyedog Tou aodnThca ewdvag. ¢ ex TolTou, TE-
TUYAVOUUE TNV AMOTEAEGUATIXY VENOT) TN EVatcUNGiog TOU ELXOVOGTOLYEIOL TTOU TEOXVTTEL
UE XOOTOC TN UELWUEVT ywpeix| avdlucT. Emmiéov, oe eqopuoyéc onou enelepydlovion €i-
AOVEC pEYAAOU UeyEDoug elvon TOAD EUEQYETIXY TEYVIXT| YL TNV AmOBOCT) TOU GUOTHUATOS
%10 Ol BLUCTACELS TNG ELXOVAS PELOVOVTOL onuovTixd. ‘Etol, byl pévo UeumveTtol o ypévog

enelepyaoiog, oANd XU Ol ATOUTOVUEVOL TTOROL EAXTTVOVTOL GNUAVTIXG.

Original Image 2x2 binning Original Image 4x4 binning
(A2]s[«a[T T} 7 (1]2]s]]s5]6[7 8]
[9]10n]12 | | i [9[10]11]12]13]14]15]16] ‘ L ‘ 5 ‘
17[18|19 20 | (17]18]18]20]21 22|23 24|
2526|2728 | |:> [25]26]27[28]29[30]31]32] |::> J
(| 33|34(35(36 3738 39 40
(| 41 (4243 (4445 46 |47 |48 s .

(| 49|50|51 |52 53|54 55 |56
[________] 57|58|59|60 61|62 63 64

E

(b)
IyApo 1 Awpopetind enineda opadonoinong eixovostolyeinv.

To ocuyxexpuévo umhox mou UAOTIOWCUUE, AElTOURYEL O TEployEg edvag 2X2 1) 4x4
ue Pruatiopd 2 1 4 avtiotoryo xar vnoloyilelr) yéon T touc. Aoufdvovtac unddn T
AmOUTAHCELS TOL TEOTLEXT, ETMAEEAUE VO TROY WETICOUKE UE opadomoinom 2X2 xplvovtog twg elvou
HATOAANAGTERY EMAOYT Yo TN SLoTienoT NG LoopeoTiag UETAUEY TNG AvAUGTC TNS ELXGVOC XaL
e evoncdnota .

‘Onwe éyel NON avagpeplel, 1 TEOTEWVOUEVT APYITEXTOVIXT] TOU CUCTAUATOS Uag GUVOUALEL
1600 10 VAS (PL) 600 xou 10 hoylopxd (PS) tou Zyng SoC FPGA. T Adyoug amhdn-
TAC, OTNY TOEOVCU EQPUPUOYY| Ol EIXOVES £Vl ATOUNXEVPEVES OTO UVAUN TNG TAATQOPUAC, VT
vo AapPdvovton and tov awodnthpa eodvac. Ko otig 800 mepittwoelc, o enelepyao i &-
tvou o drauecolafnthc wote vor TeomYolvTon Tor OEBOUEVA AT TH UVAUN 1| TNV XGUEEA OTNV

TEOYEAUUUATIC T Aoyixr|. €l¢ ex ToUTOU, TEETEL Vol Blaop@mUel xaTaAAAAWS To oo TN

16

OOTE VoL EMTUYYAVETOL 1) ETUXOVWVIA HETAED TV U0 BLOPORETIXWY UTO-GTOLYEIWY TNE TANT-
popuac. Emouévec, to otoyelo yog €yet dapoppwiel wote vo utootneilel 10 TEwTOXOANO

AXI4-Stream wote vo umopet va AopfBdver €yxupa dedopéva and to PS.

H povdda opadonoinong exovootolyelwy anoteheltan and 600 Boacixd uto-xuxinuote. To
ELOEPYOUEVA EXOVOOTOLYELN TNG EXOVAS AopfdvovTal GELpLOXd aXOAOUIOVTISG GAEMWOT TUTOU
raster, SnAadn omod Se€Ld PO ToL APLE TERSL YOl UG AV TEOC T XATL OTO TAAGLO TNE EUOVAS.
Yuvenog, anoutelton éva xOxAwuo mou Yo AouBAvEL ToL EXOVOC TOLYELD GELOLIXE X0 UE XATOLO
Teomo Va To tpowiel oTa emodUEV oTAdLW TaEdAAnAa. Ev mpoxewéve, ta eixovoc touyeion hay-
Bévovton €vo-€vor xou OUAdOTO0VTAL OE TETPAOES WOTE VoL UTOAOYIGTEL 1) UECT) TYLH TOUG %ol
vor tpox el éva unep-eovooTolyelo. ‘Eva oxoua {Atnua €66 elvon twe tpénet vor capemdel pla
ONOXANOT YROUUY| EIXOVAC DOTE VoL UTORECEL VoL EEXIVACEL 1) BladLxaalor UTOAOYIGUOU TwV YUECWY
Tov. Ou ypouués enelepydlovtar oe Leuydpla xou 1 TewTr amd xdde (ebyog anotnxevetan
mpoowpwd o évav FIFO buffer. Auté npooiétel onuavting xaductépnon otn Aettovpyxt
anodoor tou ouothuatog. lap” 6N autd, o emtayuvtic FPGA unootneilel mopdAAnAn ene-
Eepyoaoia, ETOUEVOC O UTONOYLIOUOS TV UECKY TIMV xdde TAEYpaTog 2X2 xou 1 amodrixeuon

NG EMOUEVNS YROUUNG EXOVIC GUUPAVOUY TauTOY POV

Binning Kernel

! Serial-to-Parallel 1 MAC
' FIFO DFF DFF —4 | Adder Tree
i DFF - (owider)

ByxApo 2: Yyediotixn anewdvion tou nupriva Opadonoinong Ewovootoiyeiwy.

To étepo umhox eivar 1 povdda nolhamhaoctaoth-cuconpeuth (MAC) 1 onolo AopPdvet
TEAAANAL TIC TWES TwV ExovooTolyelwy g 2x2 1 4x4 yertowds. ‘Omwe PAénoupe otnv
Ewéva 2, 10 mpdto umo-xdxAnuo eivon plar doun 6évtpou and mAYeelc adpolcTEC ToU TEoy-
patonotel ToyUTaTo TEOCUECELS AELOTOLWVTAS TOV TUPUAANAONG. LT CUVEYELY, TO GUVOAMXO
ddpoloua petafBiBaleton otov Alupétn o onolog unohoyilel TN Yéon Tin SlapdvTag Amhadg
pe to 4 (1 pe to 16). Ievindrepo 6TOV TEOYEUUUATIOUS UTOAOYLGTOY, Ol optdunTixéS UeToTo-
Tloelc oUVIGTOOY €vay TOAD AMOTEAEGUATIXG TEOTIO YLa TIC TEAEELS TOU TOAAATAACLACUOD 1) TNG
owdpeone. H petatomion twyv bit npog o aptotepd xotd n Y€ocic o Evay duadixd apLiud €yel
¢ AMOTEAEOUA TOV TOMAATAACIAOUO TOU ETL 21, VG avTioToly o 1) METATOTLON TwV bit Tpog Ta
0e€1d xatd n Véoeig xatahfyel o€ Blalpeom Ue To 2n. NUVETWS, 0 BlouEETng Mg EXTEAE! Lol
oprdunTxy petatémion npog to deid xatd N-bit oto dipoloua e€680u Tou Gévtpou adpoio T,
omou N elvar 1 avtioTolyn BIACTAON TOU TETPUYWVIOUEVOU TAEYHATOS TOU YENCULOTOLE(TOL
otnv opadonoinon. H €£060¢ ToU XUXADUATOC OVOPERETAL OTO VEO UTER-ELXOVOCTOLYEID TNC

TUEAYOUEVNC ELXOVIG.

17

Yuvduaoctix? vhornoinony HW/SW yia tr Xvuotadonoinor

To x0plo Yéua mou TpayUaTEETOL 1 ToEOLoA BITAWUATIXY Elvor 1) UAOTIOINOT EVOG aTo-
60T00 aAyoplduou yio cUGTABOTOMGT TV EXOVOCTOLYEIWY IOV CLYXEOTOLY 0o TépL. AUTO
elvol 10 TEMTO GTABLO TN TEOYEUUHATIO TIXNC POoNC evog Aviyveut Actépnmv. O mapadoota-
%0C TPOTOC TROGEYYLONG Yo OVEYVEUCT] TV ACTEQMY GTNV EMOVO TERLYEAPETIL ax0AoUHwC.
Apywd, xdie eovooTolyeio cuyxpiveton Ye Eva GapnS XAJOPLOUEVO XUTOPAL XL EQV 1) TN
Tou elvan peyohiteen 1 lom, téTe opiletar XoUTaAANAWS Ui TEPLOY T EVOLAPEPOVTOS EVTOS TNG
omnolac mparypatomoleiton 1 avalhtnon tou actépa. Koata tn didpxeo tne avalitnone eviog
TN TEPLOYNC EVOLUPEROVTOS YENOWOTOLETOL EVal GARO, CUVATWC UXEOTEQCO XATW@AL Yol T1)
oUYXEIOT TWV TOY TV eovooTolyeiwy. Ta yertovixd ewovootolyela mou Belioxovton mhve
oo TO AEYOUEVO XATWPAL AIENONG, CUYKEVTRWVOVTOL GE OUddES xou oY NUATICOLY Lo UG TEdAL
o éva PEYLoTo TAEYHa 5X5 exovootolyelwy. O oyedlaouoc Téve oto U elval Wdlodtepa
amouTNTNOG EEATIOG TWV BOUMOY BEBOPEVLY Xl TNS ENAELYNE YEHoWwWY cuvapTAoEwY. Eneldr
hotmov o ahyopriuog cuctadomoinong elvon amd TN QUCT) TOU ETAVIANTTIXOS XOL YETOWLOTOLEL
AVaBEOIXES UTOPOUTIVES, Elvor TOAD onuavTxy 1 BeAticTonolnon Tou wote va Exel Yaunioig
YEOVOUC EXTEAECTC.

Mnyaviouos AvalAtnone Ewovootouyeionv

Metd TV XaTWOMWOT UE TO TEMTURYIXO XATWPAL, ETTERE(TOL 1 avalATNOT OTNY TEPLOY T
evolagpépovtog yia xdde éva eovootolyelo mou eviomiotnxe. Ilpoxewévou vo emitayuviel
1 Otadaota auTy, TEoTeElVaUE Evary UnNyoviops avalATNoNG UE OXOTO T1) UEIOT TV AMaLTO-
Ouevey x0xAwv poloylol. ‘Etol, Yewpolue ta eixovostolyeior mou mpoéxuay omd To TedTo
HATOPAL w¢ omnela exxivnong Tng avalntnong xou oo e€hAe Vo avapépovtan we 'eixovos Totyelo
exxtvnonc’. Apywxd, yio xdie eixovootolyeio exxivnong eAEyyovTon o 8 YELTOVIXE TOU ELXO-
vootolyela oto MAEypa 3X3 cuyxplvovtoag TIC TWES TOUC UE TO ETOVOUALOUEVO "aUEAVOUEVO
XATOPAL xou 0T cUVEYELX TEayoToTtote(Ton 1) {Bar Braduxacion yia xde Eva amd auTd Tou €youv
Ty peyohitepn 1 ton autol. H dlapopd oume €yxettal 6To 0Tl X3moLd amd T YELTOVIXY ELXO-
vooTolyela Tng 3X3 meptoync €xouv 1on eieyydel mponyouuévwe. H Swodixacio avalftnong
TWV EOVOo ToLyelwv Teploplleton oTig e€XC 9 TEPLTTOOCELC TOU OTOTUTOVOVTOL GTNV TORAUX ST
Ewoéva 3. Kdie exxovostolyelo mou e€etdleton pépet Evay optdud mou UTOONAWYVEL Tr OYETI-
x| Tou V€orn oTN YEITOVIA GTNV OTolol AVl VEUTNXE DHOTE VoL avary vewplletal o€ motd amd Tic 9

TEPIMTOOELC PploxeTon xan vor EAEYYOVTAL ToL AVTICTOLY A ELXOVOC TOLYELdL.

Awodixacio Mdne dedouévmy exovog

Y10 onueio autd Yo avolloouue Ayo mepiocdtepo oe Bddoc ta emuépous cTolyela Tou
amaptilouv TN wovdda Xuotadonoinong. Ipwtiotwe, vo avagépouye mwg oe auThy TNV TE-
elntwon yenowonotinxay ta tewtdxorha emxovwviag AXI4 Stream xadde entong xou AXI4
Lite. "Ocov agopd t0 TpdT0 TEWTOX0ANO, eEutnpeeTtel TNV emxownvio ye To urthox Ouado-
nolnong ewovooTolyelwy an’ 1o omolo hauBdvel To ExXOVOCTOLYEl TNG VEUS ETEEERYATUEVNC
EXOVOG, EVW TO OEVUTEPO EEUTNEETEL T1) BUVIUIXT] TEOGUPUOYT| XUTWPAIOU AAUPBAVOVTAC TIC TWES
oo €V CUYXEXEHIEVO XorToywenTh ot wviun Tou SoC FPGA. Tpoxeiuévou va eivon Suvaty

N oavolATNoT TWV G TEPLWY EVIOE TNG EWOVAC, Eivol amapaftnTn 1 TEocwev Tng arnodrixeuon

18

1o 1 2 §
* * *
i3 % 4 *x 5 §
* * *
16 7 8 | |

EyxAue 3: Mnyoviopoc avalftnone elxovooTtolyelomy.

oto tufua Tou PL 6nou exteleiton 1 cuotadonoinon. (261600, eCoutiog TwV TEPLOPIGUEVLV
mopwv tov FPGA, xadlototon addvatn anodixeuon ohOXANene Tng eXoVoC oxoud Xol Ue-
T4 TNV oUadOTOMaN TWV EXOVOCTOLYEIWY Tou UTOBITAACLALEL TIC BIOTAGELS TNG. DUVETKG,
7 €OV CTEAVETOL TUNUATIXG O XOUUATIL TTOU OVOUACOUUE "xUALOUEVA Topdupa’ xa €Tt
Tparypotomoleiton 1 avalATnon cucTABwWY. Luvenwe 1) Sadixacia emedepyaoiog TG EOVAC
ToEOLCLACEToL 0TO TaPaXdTw oyAuc. To xuAtdueva mapddupa Elvor ETXAAUTTOUEVO TEOXEL-
HEVOL Vo elval XaTd To SuVaTOV o a3 1 avalATnon Twv cucTddwy. H emxdiudm etvon
TeoxaJOpLOUEVY) XAl TORUUETEOTOLAGLUN Xt oyeTileton dueoa pe To péyedog TV UG TAdWY
mou eivan mpog avalntnor. Ihio cuyxexpwéva, 1 meployr| evilagpépovtog opileton Yopw amd
T0 ewmovooToLyelo exxivinong optodeTdvTag YOpw TOu Uia TeETpaywvixr) Tepoy 7x7. H twn
QUTY| TEOXUTTEL WOTE VoL Efval duVATH 1) aviyVEUGT CUCTABWY GE TAEYUA U€yEL xon 5X5. 'Etol
AOLTOY, €AV TO €XOVOCTOLYElo exxivnong Peloxetol OTIC TEAEUTAUES YPOoUUES TOU TapardlEou,
0ev unopel vor oploTel 1 amopaktnTn TEELOY Y| EVOLAPELOVTOC xou ywelc BASPN Tng yevixoTnTag,
Yewpolue 0Tl 1 cLCTAdA EVTOTILETo UMD TERA OTI TAUPAUXATE YEUUUES TNG EXOVAS OTIOTE ol
eZetdleTal 0T0 EMOUEVO ToEEIUEO.

[Teprypagy| Tou muprva Xuotadoroinong

To mepLypapxd SLdypapuo Tou Tuprva LucTtadonolnong aneixovileton topoxdte otny Ei-
x6va 5. ‘Oha tar emu€poug oTotyEld TOU UTAOX EAEYYOVTOL OO ULOL UNYAVY) TETERUOUEVNC
xatdotaone (FSM). Apyxd, to eloepyduevo opadonoinuéva eovootolyeia e&etdlovtat and

to upThresLoc oto onolo mpaypatomoleltan 1 TEOTN (ATOPAKOT, TEOTO) xATIAREOLY OTN

19

Receive
Window

Pause

Transmission

IxApa 4: Adypoppo pofg yioe T Mn twv dedopévwy exdvos.

uviun RAM 6mou xou amodnxedovioa Tpocwetvd. Ol GUVTETAYUEVES TMV ELXOVOC TOLYEWY TIOL
TEOXUTTOUY ATO TNV TEWTN XATOPAlwoT arodnxedovion otny aviictolyn otolBo. Ot main-
Stack xou compStack etvor Souég mou anoteholvTa and 3 6TolBeg ex Twv onolwvy ol 5Vo eivon
Yo TIC CUVTETAYMEVES 1, j TwV ewovooTolyelwy xou 1 teltn avagépeton oTrn oyetixy Yéon
QUTOY TIOU VI VELTNXAY TNV 3X3 yertowd avalhmong. To 80o xdplor umiox eivon outd
¢ fsmdram xou tou neighChecker. ‘Ocov agopd to mp®To, 1 Acttoupyior Tou ywelleton o
3 xoteudivoelg ol omoleg elvon oL e€AC: 1 TEWTN APoEd TOV UTOAOYIOUO BleLIOVoEWY OTIC
omnolec Vo ypdpovTar Tar avTioToLYo ELOERYOUEVA EIXOVOGTOL el OTN UVHuN, 1) OEVTERT ApO-
ed TOV UTOAOYLOUO TV XATIAANAWY OLevivVoEWY TV EXOVOCTOLYEIWY Xotd T Oladixacio
ouotadonoinong xat 1 teitn oyetiletar pe Tov utohoyioud drevdivoewy xotd TV eCoywy
TNC CUGTABOC TTOU VLY VEUTNXE. LYETIXA UE TO BEVTEPO 0L CMUAVTIXOTEQO UTOCTOLYE(D, aU-
T6 EMTEAEL OUCLACTIXG TOV EAEYYO TN cucTadonoinong. A€yeton TIC TWES TWV XUATIAANAWY
EIXOVOC TOLYEIWY OTY| YELTOVLE avallTNoNG Xk TI¢ SUYXEIVEL UE TO auEaVOUEVO XoTO@AL. Edy
TeoxOPEL OTL XdmoLo am’ Tl EXOVOT TOLYElo AVXEL TN UG TAOW, TOTE EEAYOVTOL Ol CUVTETAY-
uéveg autol WoTe va eAeyydoly YeTénerta To 81xd Tou yeltovixd euxovoototyelo. IlopdAAnha,
emTeEAe(ToL 1o 1) BladLxacior UTOAOYIOUOD TKV BLAG TAGEWY TNE oo Tadas. Apywd, opiCovton 4
UETUBANTES UE TIC CUVTETAYUEVES TOU EXOVOCTOLYEIOL eXxiVNONE OL OTOlEC AVTIoTOLYOUY GTO
T8V, %34T, Oe&l X APLOTERPS dXEO TNE CUCTABUC XATAYPAPOVTIS OUCLAC TIXEL TS XIVACELC TTOL
TEOYHATOTOLO0VTAL XoTd TNV ovollATNoT EVIOS NG Teptoy e evitagpépovtog. ‘Otay ohoxAnpn-
Vel 1 Swodicacio utoloyiletar 1 BIACTAOT TN TETEAYWVIXTC CUCTABSC O Ol GUVTETOYUEVES
TOU Qv apLoTEPOL Eovoc Tolelou autrg. Xto onuelo auto, aliler va onueiwdel twg eivon mi-
Yovd VoL EVIOTUG TEL £VOL UOVO EIXOVOG TOLYED EVTOE TNG TIEPLOY NG EVOLAPEQOVTOG. M€ QUTHY TNV
nepinTtomon Yewpolue Twe 0EV GUVIGTY £YXUET CUCTAdA OTIOTE Xt amopplnTteTal. EmmAéoy, dev
amoxAeleTon vor TEoxUPEL X cLGTABN oE TAEYMA 7TX 7, oUW oe aUTHY TNV Tepintwon edoutiog
TV TEOJLYEAP®Y Tou 66Uy ard Tty Infinite Orbits, emAéyeton Evar Turjuo 5x5 evidg Tou

TAéypatog autod To onofo xou e€dyetan. Ta umdhoima oToryela ToL TUEHVa CUG TABOTOMONG

20

elvo 1 WvAun otny omolo anovnxedovta Tor XUALOUEVA Ttaeditupa xat £Var axOUo ToL OVOUdLEToL
Map xar ovclocTxd elvon xt auUTOC Wial hovada uviune. 2¢ €vag teomoc yia Bedtictonolnon
Tou alyopituou avalAtnone, oy dn To CUYXEXPWEVO GTOLYED GTO OTOlD XoTaYEAPOVTIL
Ta exovoc Ttolyeio Tou €youv eleyyel Tpoxewévou va anogedyovTal enavaknmTixol €AYy oL
yioL qUTd oTNY TEpLoy T evBlapépovtog. Autod emiong LUTOBNAGVEL Twe éva eixovoaTolyeio Yo

eheyyVel oto Mhaiolo plag xou povo GUC TEdC.

[Clustering Kernel

binning pixel dd
i il upThresLoc — —‘ fsm4RAM = Map ‘
I
i " m g
B
clusters
RAM mainFSM g
l 2
coordinates pixels

41— neighChecker

| mainStack |———|:ump5tack|

—1'7 coordinates]

Sy 5: Yyedoo i avanoedoTtacy Tou tuphve Yuotadoroinomne.

Behtiotonomoeig w¢ mpog Ty anddoot)

Y10 onuelo autd Vo TOPOUCIACOUUE UERIXES amd TIC BEATIO TOTOLACELS TOU TEAYHATOTOL-
foope. Koto tn Swadixacio avéyvewong, undeyouy OploUEVES UXPUES TEQLTTWOEL, OGOV APORJ.
TN V€01 TOU XEVTEIXOU EIXOVOG TOLYEIOU TTOU BLAPOPOTIOL00V T1) BIAUORPKCT) TNG YELTOVLAG OVaL-
{hmnone. Autég ol epintwoelg eugaviovial 6Tav 1o xevTpxd eovooTtotyeio Peloxetal ota
dxpar Tou TaEalPOL TOL CTULVEL OTL GUVOREVEL UE AtyOTERX oMo 8 elxovooTotyela, ondte dev
UTOEEL VoL OYNUATIOTEL YETOVIA 3X 3. TNV TEQIMTWOY YOG, O APYIXOS XWX YEAPTNXE UE
TETOLOV TPOTO ToL TiEpLElyE TOMNS eppwAcupéva if-else. Autdg o TpdTog GUYYRAPHC (WBIXA UE
Bdomn Tov mpoypauuaTioud o YAOooeg uPnhol emimédou eivon EEUEETIXG AVATOTEAEGUATINGS
Yior oYESLIOUO UAXOD xardde emneedlel TOV TPOTO UE TOV OTO0 AMOTUTVETAL 1) AOYIXT| TAVL
oe aut6. Trmodétovtag nwe xdde xatdotaoy if avuinpoownedel pla diepyacio mou exteleiton
a6 v FSM, opadonololue Ti¢ mapduoles diepyasieg mou exteAoOVTOL UTO TNV (BLor cLVIYXT.
Auth 1 teyvixn umopel v gpunveutel we €vog TPOTOC XATUUEQIOUOU EQYACLMY Xal 0dNYEl oE
evioyvor tou topoAAniiouol. Auth n Behtiotonolnon yiveTal TEQIGGOTEQO XATAVONTY UE TNV
TEAUXATR EXOVAL 6.

‘Onwe TeplypdgnUe TEONYOLUEVKCS, UTERYEL oY URT CUCYETION PETOEY TWV EQYACLOY TOU

extehovvtan and To fsmdRAM xou to neighChecker. Emouévwg, 1 (8o hoyiny| mou neptypdpnxe

21

--------------------- Regular Cases

A= - (centreRow = 0')

. else if (centreCol = 0) {_|
N I code
4]
, else {
; i code

;)

Lo
0001 '

centreRow = winl-[eig,ht-l]

,'" " if (centreRow = 0) { _//

caseBox
L

s -“alse if (centreCal = lmageDlm--l.]'{ ~
" e code o

’ s }
N
L :
=/

% /i code

A }

centreCol = 0

centreCol = imageDim-1

Starting Pixel in Corner
YxAua 6: Avanopdotaot xaToaheptogod BlEpYaoLMY.

Topamdve uodeTrRdnxe xou and TN wovada neighChecker, wote vo oynuatilovton €€ empépoug
uThox Yo adEnom Tou TapahAnAtopoL. (201600, N 1o unopel vo emextadel xou oo YaunAotepa
enineda tng oyedloone. [No xdde eloepyduevn TWH TOL EXXOVOCTOLYEOU, TEUYUATOTOLOUVTOL
Teelg Asttoupyieg ehéyyou, ote va pmopel va Yewpniel To ExoVOCTOLYED WG UERPOS HLlag

ouoTtddag. Autd ta Tpla Briuata eAéyyou TEpLypdpovTon W eENg:

o Y0yXEomN UE TO AUEAVOUEVO XATOPAL KOl ATOPUYT) ETUVEAEY Y OU

o 'Eheyyoc Bote 10 Tpog éAeyyo exovocTolyelo va Bploxeton evidg Tng meploy g EVOLO-
(p€povTog

o Eloywyr cuVTETOYUEVODY Xl EVIUERWOT] TWY DLACTAEMY TNS CUCTAONC

‘Etot, avtl vo exteholvton autd Tor Tplar ahAnloegaptouevo otddia eréyyou, dlaywpetlovio
OE TEEIC PEUOVOUEVES xou aveldptntee Olepyaoleg. Kaldéva and ta €61 unocuothuata Tou
oynuatilovto extelel autd to EeywploTd oTtddlo eréyyou. Kdde éva €& autodv evepyel ooy
VO IXOVOTIOLOOVTAL OL UTOAOLTES BUO cUVDTXES EAEYYOU XalL TEOXUTTEL Vel TEALXO GUoL WOTE
€4V IXOVOTOLOUVTOL XAl Ol TEELS ToL AmoTEAEOUOTA TToU e&dyovTon Vo Yempolvton yxupa. Me-
& Ta Priwato BEATICTOTOOEWY TOU TEPLYEAPTIOAY TAUPATAVE, XM XaL XAmol GAAXL Tou
eZetalovtar avahuTIXd aTo xUpLo PEROS TNG SIMAWUATIXNC Epyaciog Teoéxudoy Ta TaUEUXATe

amoteAéopaTa oL avarypdgovton otov Iivoxa 1.

22

IMTivaxag 1: Suyxertixog Iivoxag ye tic ouyvotntee poloylod mou enetedyunouy xatémy BeAti-

CTOTOCEWY

Ytowxelo ITepiodog Poloyiol ;ESP)EZ;GOZO;OOTSYE’:::O Bl_iz:iowc;:g
upperThresLoc 3.7 ns 2.4 ns 35.1%
fsm4RAM 5 ns 5 ns 30%
clusterCal 4.3 ns 3.2 ns 25.6%
neighChecker 9.4 ns 4.4 ns 53.2%
Clustering kernel 11.2 ns 4.3 ns 61.6%

IMetpopatixry ASwoAoynon

H mhoxéta mou yenowonotfinxe yia Tn TeELpapatix| alloAdYNoY TOU CUCTAUNTOC TOU U-
Aornotfoope etvar to Zedboard to omoio mepthowfdver o Zyng-7020 SoC FPGA. H oyebdioon
Tou LAoU mpaypatonoinxe oto epyarelo Vivado Design Suite v2019.1 tn¢ Xilinx eve
emmiéov Yenowononxe to cuunAnenuotixd epyoieio Xilinx Software Development Kit
(XSDK) yua 0 Snuiovpyio EVOOUATOUEVLY EQUOUOYMY TOLU EXTENOUVTOL OTOV JIUPNVO ENE-
Eepyao) ARM Cortex tou Zyng SoC, étol ote vo edpouwidel tnv emxowvwvia PS-PL. ¥1o
Thaiolo TG ToEoVCUS BITAWUATIXNAG, TO TEWRSUATO TOU TEXYUXTOTOLAUNXAY ETUXEVTOWVOVTAL
oToL GTABL TEOENEEERYUTIUG TV OEBOUEVWV EVOC OVLYVEUTY| A0 TERWY OlvOVTAC EUPACT) TNV
eMTAYUVOT Tou alyoplduou cuctadomoinone. ‘Omwe €yel KoM avageplel yenowonouidnxoy
EOVEC OE LoP@PT) XAUAXOC TOU YxpL pe avdAuon 2048x2048, av xou To cUC TN EEETACTNXE
xaL e Eoveg Uixpotepou ueyedoug. To olvolo dedopévwy elcddou dnuoupyinxe amd éva
amo¥ETHpLo TTOL EPLEYEL TO TANPES UPYEID XATAYEYPAUUUEVDY POTOYEAUPLOY ATO TN BLUC TNUXT
aroctol) Cassini tng NASA nou edfiginoay and 1o PeBpoudpio tou 2004 €wg To Xentéyu-
Belo Tou 2017 [14]. Etov napoxdte cuyxevipwtixd Iivaxa 1 napoustdlovtar ta anoteAéopata
OGOV APOEd TNV ATOO0CT| TWV ETL PEEOUS CUC TNUATOY YL TIC 000 BLUPOPETIXEC TROOEY YioELS
ot onolec apopoly o GUVBLUCUS LAV /Noyiouxol oto Zyng SoC FPGA, xadde enione xou

v vhonoinomn Aoyiopxol mou exteieiton otov ARM enelepyaot| Tng mTAATQORUIC.

IMivaxacg 2: Tiyxplon yéowy ypdvev extéheons Hetoll twv dVo mpooeyyioewy yia xdde éva and

Ta vhomolnuéva otolyela

Extipopevog B ,
Ybotnpa ARM SoC | Emtdyuvon xeo6vog x“"“"’“e‘”’]
, ETUTAYLVOT
exTEAEOTNC
ST
JOTE 1 1607.5 ms | 33.6 ms 47.9x 16.8 ms 95.8x
Opadonoinong
5%
ORI 383.1ms | 8.9 ms 43.1x 5.11 ms 75.4x
Yuotadomoinong
TIMApec
) 2050.3 ms | 34.1 ms 60.2x 18.9 ms 108.2x
YooTnua

23

O mopaxdtey cUYXEVTEWTIXOS Tvoxag TopoLotdlel Uit cuvodn Tng ¥eHong TopwY Tou

FPGA petd tnv anotinwon g Aoyixhc 6To UAXO.

ITivaxag 3: Xperion népwy tou FPGA Yo to ohoxhnpwuévo abotnua.

II6por | Xphon | Awxdéoipor | Xenon (%)
LUT 8837 53200 16.61
LUTRAM 849 17400 4.88
FF 11733 106400 11.03
BRAM 20 140 14.29

Téhog, n Ewoéva 7 nopouctdlet Ty exTidodUevn xatavdiwor toyboc tou FPGA 7 omola
umohoyiletan tepinou ota 1.795 Watt. ‘Onwg BAémouye, 1 duvauix) Loyl TOU XATUVAUAGYVE-
Tow apopd To UEYANDTERO UEPOC TNG GLVOAMXC Loy VOC GE T0c0aTo 92%, Ve TO avTioTOLYO
1000616 e otatic oyboc extdton ot pole 8%. Emmnhéov, aliler va avapepdel mog
0GOV 0opd TN BuvoXT oYU, Yo To UeYoAUTERO Pépog TNE umebluvo elvor GLCTAUA TOU

eneZepyaoth tou Zyngq SoC FPGA oe nocoot6 nepinov 94%.

Summary

Power analysis from Implemented netlist, Activity derived from constraints On-Chip Power
files, simulation files or vectorless analysis.

Dynamic: 1649 W (529%)
Total On-Chip Power: 1.795 W
Design Power Budget: Not Specified Clocks: 0.057wW (3
Power Budget Margin: N/A BT Signals: 0.019 W
Junction Temperature: 45,7°C Logic: 0.016 W
Thermal Margin: 39.3°C (3.2 W) B BRAM: 0.021 W
Effective 8JA: 11.5°C/W W P57 1.535 W
Power supplied to off-chip devices: O W 5% Device Static: 0,125 W

Confidence level: Medum

Launch Power Constraint Advisor to find and fix
invalid switching activity

SxAua 7 Extuoduevn xotavdheon woyog Yol 1o 0OhoxXANpwuévo cUGTNUOL.

YuUnepaouaTiXG, 1) TEOTEWOUEVT 0pYLTEXTOVIXY o)EdlaoNS Yenoylorolel Ay6tepo amd 20%
Twv mopwv Tou FPGA Yyl xdde cuctotind otoyelo. ¢ ex toltou, divetar 1 SuvaTtdHTN-
Ta avdnTuéng npdcletwy otolyeiwv HDL yia tnv ohoxhrpworn towv alyopiduxady Bnudtony
TOU ALY VEUTY| aoTépwy. Xe TeAxy| avdiuor, vAorooaue €va oTtotyelo oto Zyng-7020 SoC
FPGA mou cuvdudlel o UAxS Ue TO hOYIoUIXO xou ETITEAEL Tal TPWTA GTABL TROoETEEERYATTAG

OEDOUEVMV UE EXTIUOUEVT] XATAVIAWOT Loy Vo 6To chip xdtw and 2 Watt.

Yvunepdopata xow MeAhovtixee Ilpoextdoelg

H nopoloo dimhouotiny epyaoior TeoryUoTEVETOL TNV oVATTUEY EVOSC ETUTOYUVTIXOV GAYO-
eldpou ylor TNV mpoemegepyaoior SEBOUEVWY EVOC AVLYVEUTH] a0 TEPWY, O OTolog LAOTOLE(TOL
OE [l CLVBUUCTIXY dEYLTEXTOVIXH LAXOU/Aoylopxol o uior mhatgpopua SoC FPGA. Ilwo

ouyxexptéva, 1 tpoenelepyacio yweiletar o Yo Briuata Aertoupyiog tar omola lvon 1) opo-

24

oomoinom ewxovoctolyelwy xou 1 cucTadonoinon avtioTtorya. Ko ol 800 Aeitoupyieg oyedi-
Go Tray, UAOTOLAUMXOY X0t BOXLUAC TNV UEUOVWUEVE YENOWOTOUOVTAS TEUYUUTIXES ELXOVES.
Emnpociétng, mapovoldletal plot ASTTOPERHC EMGKOTNGT| TV BEATICTOTO|CEWY TOU TEoY-
patomoldnxay atov ahyderipo custadortoinong a€loAoYWVTS TIg emLTeELYUeloeEg CLUYVOTNTES
Aertovpylog. EmmAéov, oL mpoTevoueves dpyltexTovxég avamtuyInxoay xou ot eminedo Aoyl
ool WoTe va exTEAecTOOY oTov evowpeTopévo ARM enelepyacth tou Zyng SoC FPGA.
O ouvduaotixde oyediooudc Thixol/Aoylopxol LrepTepel TAARMC EVAVTL TNG EXTENEOTC GTO
ene€EPY T TH OGOV UPORA TNV ATOB0GT) XAVOS XATAPERE VO UELWOEL TO GUVOAIXO YEOVO EXTEAE-
ong xotd mepinou 60 Qopés, evd exTiudTal OTL 1) EMTAYLVOT aUTH Uropel vor auéndel €wg xou
Tic 108 €dv T0 oo TNUA TACEL TO PEYLOTO TNG EXTIHOUEVNG oL VOTNTaC Aettovpyioc. ‘Ocov
APOEAL TNV XATAVAAWOT) EVERYELNC, 1) GUVOAXT Loy ¢ exTudrtan Tepimou ota 1.8 W, mpdryua mou
ONUOLVEL TIWC 1) TEOTEWVOUEVT] AEYITEXTOVIXT| €IVOL XATAAANAT Yiot VAl EUPY (PAGUN OLXOVOUIXSL
ATOBOTIXY OLUC TNULXWY EQURUOYOY. TEAOC, TO TEOTEWOUEVO EVOOUATWUEVO GUGTAHA vl
OYETIX U AmaTNTIXO OGOV apopd T YeNon Twv mopwyv tou FPGA, agprvovtag neprddplo
Yt TEOGUETEG UAOTIOLACELS UALXOU TOU apopoLY TNV TEOYRAUUUATIO TIXT) pOY) EVOS CUC THUITOS
OVLY VEUTY| A0 TEQWV.

H pehhovtuq pog epyacio o emxevipwiel otn Bedtioon tne anddoong tou cucThUaTOC,
CUUTERLAOUBAVOUEVNC TNG TEPAUTERW EEETACTC TWV TUPUUETEWY TOL TERLOPIlouY TN cUYVOTNTA
Aertovpylog, oTe var emteuy Vel 1 UEYIOTN EXTWWUEVT CUYVOTNTA xou Vo auniel Tepontépw
edv elvon duvatdv. Emmiéov, Vo extehécoue TEQUTERPW TELQAUATA WOTE VO EMEXTEVOUUE
NV 0€LOAOYNOTN oL TNV ETOAAUEUCT) TWV TEYVIXOV HOG UE TN YENOT TEAYUATIXWY BeB0UEVELY
TpoCUpUOcUEVLY 0Tl anatthioelc T Infinite Orbits. Télog, o xUplog otdy0¢ Yog elvor va
GUYOUACOLUE TO TEOTEWVOUEVO GUCTNUO UE TIC UTOAOLTES TROYPUUHUATIOTIXES OLUBIXAGIES WOTE
VoL oOhoxhnpwiel 10 GOOTNUN TOU OVLYVEUTY| ACTEQMY Xl VO GUUTERANGUEL GE Uior UEAAOVTIXT

Sl TNULXY) anocTolr) xadodnyoluevn and tnv Infinite Orbits.

25

Chapter 1

Introduction

This chapter’s goal is to describe the motivation behind this work and introduce readers
to some of the problems appearing in space industry. In addition, it contains the main

scope of the thesis, as well as a brief outline of it.

1.1 Motivation

Nowadays, the technological evolution has brought significant achievements in almost
every scientific field. More specifically, when it comes to space industry, the progress that
has been made has had great influence on the development of human society. However,
other than opening up new horizons and opportunities, some major challenges have arisen.

This current thesis was conducted in cooperation with Infinite Orbits in the context
of the research activity of the Microprocessors and Digital Systems Lab regarding the
applications of COTS FPGAs in space. Infinite Orbits is a company which operates in
space industry and provides innovative in-orbit services. Among the cases that Infinite
Orbits, as well as other companies are facing appears to be life extension. Satellite’s
lifespan ranges between 12 and 18 years, but the prevailing design life remains at 15 years.
As per NSR’s recent study, commercial GEO communications satellites in-orbit today
have an average age of 8.9 years[15]. The idea of in-space service prolonging the life of
a satellite in orbit is yet to be accomplished. Instead, of replacing the entire satellite,
we could get another one to rendezvous and dock onto the outdated system providing
a refueling source. Life extension is reportedly a very challenging case of rendezvous
and docking due to the difficulties associated with the non-cooperative nature of the
target satellite, the risks involved and the characteristics of the orbit, and thus extreme
accuracy and safety is required. The main idea proposed by Infinite Orbits to resolve
these challenges, is developing an embedded satellite navigation system which uses neural
network-based models for image processing aiming to achieve real-time performance using
a custom FPGA accelerator.

There are specific requirements that system in orbit needs to meet and are summarised

as follows. First of all, the communication channel of the satellite is characterised by high

27

latency and unreliability. Thus, the software is expected to be smart enough and capable
of high levels of autonomy. Another challenge is that satellites involve excessive costs and
therefore mistakes must be avoided. The system needs to work constantly or at least be
able to fail safely. Because of the mission’s nature and lack of validation environment on
ground, it is really exacting to achieve robustness. Finally, fast performance is needed so
that the system is responsive to deal with unwanted situations and avoid accidents. Some
of the most common instruments to measure satellite’s orientation fast and precisely are
star trackers.

Determining the position of a satellite plays a prominent role among the majority of
space missions. This type of information is vital for space navigation, firing thrusters
which control altitude and pointing antennas to required positions. There are various
types of sensors used for attitude determination, some of the most common are horizon
sensors (or conical Earth scanners), sun sensors, star sensors and magnetometers[16]. Each
type can be used individually or in combination with the others and in the aggregate they
constitute part of an integrated attitude determination and control system (ADCS).

Among the above instruments mentioned, star trackers are capable of providing high
accuracy for attitude determination. In many cases where there are demanding scientific
objectives, an attitude control system of high accuracy is required. It is therefore under-
stood why star trackers are of high importance. Additionally, there are missions where a
certain level of agility is required for specialized tasks. For example, satellites should be
agile and maneuverable as it considerably increases the return of earth and science mission

data making them more efficient.

1.2 Thesis Scope

In this thesis, we focus on the first stages of a star detection algorithm which in
particular are associated with the preprocessing of the image captured by the sensor of
the system. More specifically, we propose an efficient algorithm which applies in a star
tracking system that detects clusters of stars, which are to be used during the next stages
for centroid extraction. Furthermore, we aim to implement a HW/SW co-design which
runs at a SoC FPGA accelerated system in order to achieve fast performance.

We suppose that we have a satellite in orbit that is being provided with frames that
were captured by the system’s sensor. Each frame is a two dimensional image that contains
only a portion of the night sky. Star trackers, need to evaluate this data and determine the
attitude recognising patterns of constellations and mapping them to known star positions
in a catalogue. The challenge here is that large images need to be processed and the
computation should be fast and accurate as long as star tracker’s update rate depends on
that. Thus, we can understand that fast execution while processing each frame is critical
to achieve real-time performance.

Several commercial star tracker solutions exist but are not easily accessible. They are

of high cost and it is often a preferable option to develop a custom one according to the

28

mission’s requirements. The block diagram of a typical star tracker is shown below in

Figure 1.1.

[(socPPEA

CPU g | FPGA

| -

Figure 1.1: Block diagram of a typical Star Tracker.

CMOS

vy

Generally, star trackers play an important role to the entire satellite’s Attitude Deter-
mination and Control System (ADCS) and they consist of a CMOS Image Sensor that is
exposed to light and digital hardware that processes the data. Usually, a System-on-Chip
(SoC) device which integrates a processor, a Field Programmable Gate Array (FPGA)
including interconnections, memory and some peripherals all in one chip, is responsible
for the processing of the image data. When considering CPU & FPGA co-processing,
the most prominent devices are the COTS SoC FPGAs, which integrate both types of
processors in a single chip [17]. However, space community employs both space-grade
[18][19][20][21] and Commercial Off-The-Shelf (COTS) [18][22][23] FPGAs. In general,
FPGASs are not only utilised to accelerate complex DSP functions of high computational
intense, but they can be used as well as add-on processors in co-processing architectures

[24][25][26] where they perform operations such as I/O handling, data transcoding and

- 5
Processor
JART

+ .

Figure 1.2: System-on-Chip Layout.

data compression.

Y

| FPGA | | cPu |
‘.ﬂllmage Frames Clustering —| Centroiding Matching H ADCS]

Star Catalogue

Figure 1.3: Process Flow of a Star Tracker.

The sequential process flow of a Star Tracker is shown in figure 1.3. Exposure time is

29

the first stage of the process and is the time needed for the sensor to produce image data
of the night sky. Afterwards, data are processed on the FPGA platform so as to extract
centroids which consequently are forwarded to the processor. The final stage of the process
is matching. During that stage, a pattern recognition algorithm is executed in order to
identify the extracted centroids by mapping them to a known star catalogue. The main
scope of this thesis is to develop an efficient algorithm that performs the preprocessing
tasks and is presented in Chapter 3. That is a non trivial problem due to the limitations
of the FPGA platform while certain requirements of the star tracker need to be met such

as robustness, low cost, precision and low power consumption.

1.3 Project Objectives

This thesis was a collaboration of Microlab-NTUA and Infinite Orbits and due to
their uttermost contribution it was completed successfully. In addition to their excessive
support, Infinite Orbits provided a custom camera lens which is to be used for future
work and extension of this thesis. More specifically, the lens is a backside illuminated
(BSI) scientific CMOS image sensor, with 4MP resolution (2048x2048) and 12 bits per
pixel whose size is 6.5 ym. For the development and evaluation of the system a COTS
SoC FPGA was utilised and in particular, Zedboard 7020 chip that hosts Xilinx ZYNQ
SoC with ARM processor. Thus, the project objective is to optimise an algorithm used
for star trackers and can be applied to an entire ADCS, on Zynq SoC for that specific
image sensor which is provided by Infinite Orbits. However, as it will be discussed in
the following chapters, the proposed system has been designed to be configurable in order
to adjust to different conditions according to the mission’s requirements and therefore it

supports many different camera types. The specifications of this project are the following:

e Field of View (FOV): 15.5°x15.5°

Image Resolution: 4 MP

Pixel Depth: 12 bits

Real-time performance of 1-2 frames per second

Accelerated clustering algorithm

Low Power Consumption

1.4 Thesis Outline

The remaining of the thesis is structured as follows.
Chapter 2 presents the full background, which is helpful to completely understand

the concept of our ideas and implementations in the following chapters. It involves some

30

general information about star trackers, their characteristics and what is the main pur-
pose they are used for. In addition, we will review some of the related work that has
been published or is currently available for space missions and finally, we will provide an
overview of SoC FPGAs, as well as a general outlook of the interconnection protocols that
are used.

Chapter 3 focuses on the ideas that our algorithm is based on. We analyze quite
extensively the proposed architectures presenting them both at high and low level. The
first subsection of this chapter emphasizes on the averaging binning, while the second one
describes the main algorithm for cluster extraction. Finally, we review the optimization
steps we made aiming to achieve high performance.

Chapter 4 presents the experimental evaluation of the proposed system, along with
a results section which basically compares the hardware to the software outcomes. It also
refers to the power consumption and resource utilisation of our integrated system.

Chapter 5 is the final chapter, summarizing the conclusions drawn from the total

contributions of our work.

31

Chapter 2
Background

In this section we are going to present background material for the explanation of the
methods and ideas that have been used in the main part of the thesis. Our main focus is
on the background of star trackers regarding some of their characteristics and algorithms

used for their development.

2.1 Star Trackers

A star tracker is an optical device that measures the positions of stars. As long as this
happens to a high degree of accuracy, a star tracker on a satellite or spacecraft may be
used to determine its orientation with respect to the stars. In order to do this, the star
tracker needs to obtain an image of the stars and measure their apparent position using
pattern recognition algorithms so as to identify them compared to their known absolute

position on a star map.

Generally, star sensing and tracking devices can be divided into three major classes
which are star scanners, gimbaled star trackers and fixed head star trackers. Star scan-
ners use the spacecraft’s orientation to provide the searching and sensing function while
gimbaled star trackers search out and acquire stars using mechanical action. Finally, the
last class of star trackers has electronic searching and tracking capabilities over a limited
field of view|[27].

Attitude determination based on charge couple devices (CCD) area array image sensors
was pioneered in the early 1970s. There are the so-called “First-Generation CCD Star
Trackers” and consist of a CCD sensor, associated optics and dedicated electronics|28].
Within the last decade, a new generation of star trackers has been developed which involves
units identified as “Second-Generation Star Trackers”. The main difference from the prior
generation is that pattern recognition algorithms are performed autonomously so as to
identify constellations using internal catalogues. In addition, they are more advanced as

expected and they are capable of high performance in adverse conditions.

33

2.1.1 Star Tracker Characteristics

Commercial star trackers vary in terms of performance according to their characteris-
tics. Depending on the mission’s requirements, there are several parameters that can be
adjusted in order meet these exact objectives.

Accuracy

As we have pointed earlier, accuracy correlates with the star tracking algorithms. The
more demanding the application is, the more increasing the need is to develop algorithms
of high accuracy, and so the performance becomes computationally intensive. Liebe in his
article describes extensively how performance accuracy is measured[29]. Actually, there
are two types of accuracy metrics when we refer to star trackers, pointing accuracy and
rolling accuracy. Accuracy measurement is essentially the angle error curve of pointing
and rolling axis with respect to the boresight[1]. Usually, they are also referred as cross
boresight accuracy (pitch and yaw) and about boresight accuracy (roll) correspondingly
and are quoted in 30 values. Cross boresight errors are significantly less than about
boresight errors and modern star trackers are capable of accuracies that range from 0.1
to 20 arcseconds (cross boresight)[30]. In order to achieve such low levels of accuracies,

sub-pixel accuracy is critical while executing centroid detection.

Star
Tracker

Figure 2.1: Pointing and rolling accuracy schematic of the star tracker [1].

Field of View

The size of the Field of View is probably the most important parameter. A narrow
FOV implies high precision and is a requirement for astronomical star trackers. Low cost
general purpose star trackers offer wide FOV whose size ranges from a few degrees to over
40° diagonally and are usually utilized as a part of the ADCS in micro satellites. High
precision star trackers are capable of accuracies of 1 arcsecond. On the contrary, the typical
precision of general purpose star trackers is about 15 to 20 arcseconds. However, decreasing
the FOV has some disadvantages as well. First of all, it is more difficult to determine
the initial attitude. When the FOV contains a small number of stars, the algorithm
tend to reject the frame. Moreover, a much bigger star catalogue is required, which is
significantly undesirable since it increases the amount of memory needed. Furthermore,
initial attitude acquisition becomes a more complicated task and also the complexity of

pattern recognition algorithms increases rapidly with the number of stars [2].

34

Update Rate

The update rate basically depends on the exposure time and the processing time of the
image. There is a strong correlation between exposure time and the optical and hardware
design. The longer the exposure time, the more photons are captured by the image sensor
and this results to a better signal-to-noise ratio. Choices regarding the sensitivity of the
sensor, the aperture of the lens, the sky coverage and some other factors affect the exposure
time. Generally, it is required to have a specific number of stars on average in the FOV.
Thus, to compensate the decreased FOV, we usually increase aperture of the lens so as the
fainter stars to be captured. The aperture primarily determines image sensor’s sensitivity.
Increasing the exposure time is another technique that is used in order to increase system’s
sensitivity. However, this method has disadvantages as it leads to lower update rates and
smeary images that affect the performance of the ADCS. Therefore, exposure time and
accuracy are trade-offs for a stable star tracker. Lastly, second generation star trackers
need to process large amounts of data which is a significant limiting factor to update rate.
In this thesis we focus on the acceleration of a clustering algorithm used in a star tracker
sub-system in order to improve the processing speed.

Physical Characteristics

Physical dimensions of a star tracker are important factors which are to be taken into
consideration when discussing about commercial star trackers. The mass of a star tracker
usually varies from 1 to more than 20 kg. At this point, it should be mentioned that
aperture of the lens is proportional to the system’s mass and size. High-performance star
trackers are huge and are designed for more scientific space missions, hence the assumption
that they are more accurate. However, the increasing market for microsatellites tends to
push the interest towards smaller designs.

Other Characteristics

Other than the aforementioned, there are a few other characteristics that describe star
trackers such as power consumption, sky coverage, SNR, star catalogue size and average
number of stars tracked per frame. These all directly affect the performance of the system
in a certain way. However, as we discussed earlier, there are no optimal choices as there
are some trade-offs and so preference is given upon the parameters that meet the design’s

requirements.

2.1.2 Sub-pixel Accuracy

Generally, among the most limiting factors for the resolution of optical instruments,
is the size of the sensor’s pixel. In digital image processing, a sub-pixel resolution method
is utilized to enhance the resolution of images and therefore to improve the algorithm’s
performance. A widely known technique to increase the accuracy, is the hyperacuity
technique, also known as sub-pixel accuracy.

In a focused image, the star appears as a point source, so all the luminous power gathers

in a single pixel. However, images might often be slightly defocused, even if they’re taken

35

by an expensive image sensor of high accuracy. In these cases, a star occupies several pixels
in the image plane. This makes it easier to model the centre of the star mathematically.

It may seem intuitively inconsistent with the sampling theorem to increase the accuracy
beyond one pixel, but it is the a priori knowledge of the pointspread function that is utilized
in combination with the actual measure. The performance of the hyperacuity technique
is defined by the algorithm used to determine the center of the star [2]. The achieved
sub-pixel accuracy depends on the S/N ratio. Unlike the fancy mathematical models,
the hyperacuity technique normally uses empirical calibrations which appear to be really
consistent.

There is an enormous dynamic range of illumination between the brightest and the
dimmest star. The resolution is limited when digitalising the CCD signal received from
the sensor (typically 8 to 16 bits are used). This leads to a contrasting situation where the
brightest stars will overflow and the dimmest stars will be hardly perceived due to noise.

These different situations are shown in Figure 2.2

Figure 2.2: Different Stars Utilising Hyperacuity technique [2].

2.1.3 Theoretical Background

At this point it is important to introduce a theoretical background regarding the in-
formation that is obtained by the image. The image sensor captures only a small portion
of the night sky that contains just a fraction of the stars which often appear dimmer or
distorted. Stars within the FOV are projected onto an image plane, where their mag-
nitudes are converted to a corresponding electron count. The magnitudes are expressed
as two-dimensional Gaussian functions in order to account for the (u,v) image directions.
The standard deviation of each Gaussian is determined by the sensor and optics of the
system and is defined in units of pixel width.

The FOV is described here by only one angle, which is defined by the angle from the
center of the lens to the outer edge of it. Camera’s frame is defined with the z-axis pointing
out the boresight, y-axis out of the top of the camera and x-axis completes the right-hand
frame. Once the frame and the FOV are defined, we should determine camera’s attutude,
or orientation with respect to another reference frame. The most common one that is
used is the J2000 Earth centered inertial (ECI) frame [31]. Hence, the entire catalogue
in matching process is searched to find all stars within the camera’s FOV by determining

the angular distance between z-axis and each star’s ECI unit vector.

36

P. = (X,Y,Z)

image

-~
1

1

]

1

1

1

I

]

1

! .
! origin
I

1

1

1

]

L

-

I

Figure 2.3: Image sensor’s perspective Projection model [3].

We should mention that each star on the is projected onto a two-dimensional image
frame and so a determination of the three-dimensional points that represent the unit vector
is needed. To do so, we should take into consideration some camera parameters: the
intrinsic parameters regarding the properties of the sensor; and the extrinsic parameters,
which are related to the location and attitude of the camera with respect to the inertial
frame. These parameters form the camera matrix. The image plane is digitized and forms
the (u,v) pixel array, so the characteristics of the optical system define how the plane’s

coordinates transform to the (u,v) pixel coordinates.

So far, we made a short report of how the pixel location for a star in the FOV is deter-
mined. When it comes to the image processing, we need to perform certain calculations
regarding the corresponding brightness of the image. In astronomy, the brightness, or
magnitude, of a celestial body is defined in a logarithmic scale and is often measured in a
specific wavelength, spectrum or photometric band. Typically, magnitudes are measured
in the visual or near-infrared spectrum, wavelengths from hundreds of nanometers up to
micrometers. Since we have a logarithmic scale, the closer to zero in absolute scale a star

is, the brighter it is.

The magnitudes of stars in the FOV corresponds to a number of electrons. The magni-
tude is related to solar irradiance, which is defined as the power per unit area emitted by a
star. Once the electron count is calculated through a series of steps, which are considered
superfluous for the needs of this thesis, we can determine the area of pixels taken up by
a star in the FOV. The electron count can be described by a two-dimensional Gaussian
function, which provides a more intuitive way in order to determine the spread of a star.
The standard deviation of the Gaussian is determined by sensor and optic parameters and

is kept constant for each star regardless of brightness.

37

2.1.4 Algorithms

Although star trackers might differ in quite a few parameters, they mostly follow the
same process flow. The entire process can be divided into four primary sub-processes that

cooperate to provide the system with the information needed for attitude determination.

Image Data Centro_n:l —— Calibration —— Matching ———» Aml.uij_e
Extraction Acquisiion

Star Catalogue

Figure 2.4: High level process flow of an ADCS.

Centroid Extraction

The first step of the algorithm is to extract centroid positions of possible stars on the
image plane. This actually happens in three steps, thresholding, clustering and finally
centroiding. This thesis puts a strong focus on the first two steps proposing two optimised
algorithms for hardware implementation that will be discussed in detail on Chapter 3.
Some of the most common algorithms that are used for centroid extraction are the center
of gravity and the fast gaussian fitting.

Distortion Correction

Distortion correction is the process where lens distortion correction is done in order
to convert the image plane coordinates to the corresponding three-dimensional sensor
body coordinates in Cartesian form. Unfortunately, there is no perfect lens, so it is in-
evitable to have some distortion to the images due to variations in image magnification.
Although distortion can be irregular or follow many patters, the most commonly encoun-
tered distortions are radially symmetric and can be classified as either barrel distortions
or pincushion distortions[32]. Figure 2.5 illustrates these two types of radial distortions.
In barrel distortion, image magnification decreases with distance from the optical axis,
whereas in pincushion distortion it increases. Radial distortion can be corrected using
Brown’s distortion model, also known as the Brown-Conrady model. This model utilizes
a series of polynomial coefficients that are often provided by the lens manufacturer, but
in most cases, it is necessary to calibrate the camera and the lens.

Matching

During this step, pattern recognition algorithms are used to map constellations with
known star positions in a catalogue. The algorithms are of the lost-in-space type or
the recursive type, wich runs off of some prior position knowledge. One of the most
widely known star catalogue is the Hipparcos catalogue of nearby stars. The Hipparcos
catalogue was obtained from the European Space Agency’s Hipparcos astrometric mission
that operated from November 1989 to March 1993 viewing the celestial sphere. The
mission returned very high quality star astrometric and photometric data, specifically

high precision data on 118,218 stars. It is important to mention that this process is of

38

¢ \
Barrel Distortion Pincushion Distortion

Figure 2.5: Types of radial distortion [4].

great complexity and software optimisations are required to improve its processing time.
Lately, new techniques have been proposed to accelerate this process using neural network
models.

Attitude Acquisition

The final step is the attitude acquisition. Once the centroids have been extracted an
matched to known ECI coordinates, they can be used to determine the satellite’s attitude.
There are many different types of attitude determination algorithms for star trackers in
use today. Some of them which are commonly used are the TRIAD algorithm as well as
the Quaternion Estimator (QUEST) algorithm.

2.1.5 Commercially Available Star Trackers

Indicatively, a list of commercially available star trackers with high performance stan-

dards is presented as follows in table 2.1.

Table 2.1: Table of commercially available star trackers

Manufacturer Redwire Vectronic Terma Ball
Aerospace GmbH
Model SpectraTRAC VST-68M HE-5AS HAST
FOVv N/A 14° x 14° N/A 8° x &°
Update Rate 4 Hz 5 Hz 4 Hz configurable
Accurac.y 10 arcsec 5 arcsec <1 arcsec <0.5 arcsec
(x, y axis)
A
ccuf'acy 27 arcsec 30 arcsec <5 arcsec N/A

(z axis)
Mass 0.475 kg 0.470 kg 1 kg N/A

120 x 61 60 x 60 120 x 120
Volume % 8 x N/A

X 61 mm X 138 mm X 33 mm

1.5 W
Power 25 W 3W (camera) N/A
5.5 W (processor)

Temperature -30°C - 55°C -20°C - 65°C -40°C - 70°C N/A

39

2.2 Related Work

A broad interest in space exploration has led to a proliferation of algorithms for star
detection that can be used for spacecraft’s attitude determination. Carl Liebe gives an
extensive overview in his articles about the operation and performance of autonomous
star trackers. He presents in detail the new class of second-generation star trackers. These
designs, are fully autonomous, have higher accuracy, smoother and more robust operation
and are capable of solving the lost-in-space problem. Star trackers are able to operate
in two basic modes: lost-in-space mode and tracking mode. In tracking mode, the star
tracker is provided with initial attitude information as a way of increasing the update
rate. In tracking mode the image is processed in portions during centroiding. Lost-in-
space attitude acquisition is a more complex task resulting to higher processing times, so
the advertised update rates of commercial star trackers often correspond to tracking mode
operation [30][2].

R. van Bezzooijen from the Lockheed Palo Alto Research Laboratory presents a de-
tailed development of an autonomous star tracker prototype including an in-depth evalu-
ation after testing with real data. The AST is designed to perform in lost-in-space mode,
to update its attitude autonomously and provide attitude information continuously as
well. The paper also describes a number of functions that are enabled or enhanced by the
AST including attitude safing, fast fault recovery, autonomous optical navigation and un-
calibrated attitude acquisition. He concludes that after performing realistic simulations,
the results showed that the AST with an 11.3° FOV, spatial accuracy of 10 arcseconds,
brightness accuracy of 0.3 magnitude, a database of 4148 guide stars, a highly efficient
non-iterative star pattern recognition algorithm, and an MC68030 class microprocessor
running at 25 MHz is capable of determining its attitude in approximately 0.6 s having
no initial attitude information. It is noteworthy that it can do so with a demonstrated
success probability of 99.25%, while the probability of false identification is less than 0.1%
[33].

Rufino et al. published a paper that demonstrates the enhancement of the centroiding
algorithm for a star tracker. The hyperacuity technique to image processing is analyzed
and an error-budget analysis is performed to find out type and magnitude of the effects on
centroiding. The centroiding error results to be a function of two parameters: a systematic
term and a random one, so numerical models of defocused point spread functions were
introduced to evaluate their contribution. Since the first error contribution is systematic, a
backpropagation neural network is adopted to improve the performance. He ends up that
the application of the correction to the PSF numerical models introduces an improvement
of the overall centroiding accuracy to 0.005 pixels [34].

Wei et al. presented a real-time star identification using synthetic radial pattern and
implemented a hardware design. Their paper proposes a novel lost-in-space algorithm for
star determination based on synthetic radial pattern, which is dedicated to the pipelined

paraller architecture of FPGAs. The synthetic radial pattern consists of two single radial

40

patterns connected by their two respective polestars. In the algorithm, the polestar-pair is
firstly matched and then radial pattern filtering is performed so as optimum identification
results can be obtained. This results to a significant reduced number of spurious matches.
They also developed a mathematical model to demonstrate the efficiency compared with
conventional radial algorithms. The algorithm was then described both in software and
FPGA implementation details. Software simulations have indicated that the proposed
algorithm was highly efficient, robust and less sensitive to false stars. In addition, the
time cost of less than 1 ms, demonstrates that the implementation can meet the real-time

requirements of high-dynamic star sensors [35].

2.3 Space Navigation

In recent years, there is a growing interest in deep space exploration. The current
approach for planetary navigation is based on ground-based radiometric tracking. This
technique is a bit of disadvantageous as the radio signals that are transmitted from a
spacecraft are very weak and have to be picked from background noise and additionally
it might take hours to reach the Earth. As there are several constraints for equipment
on board spacecraft, most of the complex communications technologies are incorporated
on ground. A new era of low-cost small satellites for space exploration will decrease
the reliance on ground-based tracking and provide a substantial reduction in operational
costs due to crowded communication networks. Autonomous navigation methods are
widely investigated and one of the most promising methods, is called crosslink radiometric
navigation which uses inter-satellite communication link. Fully autonomous navigation is
only possible if it is performed on-board without any intervention from ground. In general,
autonomy can provide minimal-cost if ground operations or hardware are reduced and lead

to increased performance [36].

2.3.1 Celestial navigation for satellites

Celestial navigation method requires knowledge of celestial bodies’ position (Sun,
Moon, Earth and stars) in inertial frame at certain time and correlation between their
observed position in the satellite body frame and the satellite’s position. Satellite’s posi-
tion and velocity can be defined by the error between the measured and estimated celestial
body data. For attitude determination, the measurements of stars are sufficient. For Low
Earth Orbit (LEO) satellites, the horizon sensing accuracy is the most determining factor
which affects celestial navigation accuracy. Regarding horizon sensing, there are two major
approaches: directly sensing horizon method and indirectly horizon sensing method. In
the first method, an horizon sensor is used to provide directly Earth-relative information
and as well as other celestial bodies’ direction. These measurements are often combined
with a Kalman filter to determine the orientation and attitude of a spacecraft. In the sec-
ond method, high accuracy star sensor and a mathematical model of starlight refraction in

the atmosphere are used to in order to provide information about horizon’s direction. The

41

method of directly horizon sensing is robust, prompt and easy to use due to simplicity.
However, the achieved navigation accuracy is insufficient, so the indirect method is highly
preferable. An alternative technique utilizes a combination of these two complementary
approaches providing a reliable celestial navigation system with a significant improvement
in terms of performance. Furthermore, the accuracy can be enhanced with a supplemen-
tary measurement technique such as the Doppler velocity related to on-ground operations
measured by a standard component. Navigation accuracy is affected by two major factors
which are the state model’s accuracy and the filtering method. Among the most common
filtering methods that are widely used, are the Extended Kalman Filter, the Unscented
Kalman Filter and the Particle Filter [36][37].

2.3.2 Celestial navigation for deep space probes

Navigation of satellites refers to the mission orbit’s knowledge with respect to the
central body (absolute) or with respect to another object (relative). It is also related
to the knowledge of where the object resides in the past, present and future[36]. Every
reported navigation method applicable for deep space is sorted to on-board and off-board
navigation method as of where navigation knowledge is obtained. Some of the most
common autonomous deep space navigation methods are presented as follows.

Optical navigation

Optical navigation refers to a variety of methods of determining the spacecraft states,
relative position and velocity between a spacecraft and a target body with on-board optical
sensors. Basically, optical sensors, whose characteristics determine resolutions, sensitivi-
ties, and uncertainties, estimate Line-of-Sight (LOS) to beacons or to known locations at
the surface. In principle, optical navigation methods compute a body position in the cam-
era reference frame and derive target location in space from the corresponding location in
the image frame [38]. The main advantage of these methods is that can be used in various
mission phases such as cruise, flyby, rendezvous, orbiting and landing. A few deep space
small satellite missions have planned to use one of the proposed optical methods. In brief,
optical navigation provides major advantages over other architectures, such as moderate
to high accuracy navigation solutions, while being compatible with all mission phases [39].

Pulsar navigation

Pulsar navigation uses the periodic X-ray signals emitted from pulsars to determine
spacecraft’s states by estimating timing and direction of the pulses arriving. Stable neu-
tron stars spinning nearly 1000 times a second, for example, can provide a solution for
autonomous navigation: the arrival time of each pulsar updates a temporal database and
subsequently the extracted data is used to determine or update attitude, position or ve-
locity of the spacecraft [40]. Probably, the most important advantage of this method is
that is capable of stabilizing on-board clocks via the periodic pulse signals. Furthermore,
it is applicable to missions not only in close proximity to Earth but in deep space as well.

Pulsars emit radio frequencies that range between 100 MHz and a few GHz. In order to

42

detect those signals, radio frequency systems require huge antennas with diameter greater
than 25 meters [41]. Overall, pulsar navigation offers a better and more accurate solution
over optical navigation. However, a major disadvantage of the first one, is the sensor size
and the required integration time which makes it incapable of operating in some mission

phases, such as close-proximity[39][42][43].

2.4 Rotational Kinematics

Kinematics is the study of motion of a system of bodies without directly considering
the forces or potential fields affecting the motion. Navigation requires a fixed reference
coordinate system so as to relate the corresponding moving frame of the spacecraft. This

fixed reference frame which in used for space navigation is known as Earth Centred Inertial.

2.4.1 The Earth Centred Inertial (ECI)

The Earth Centred Inertial frame, also known as Geocentric Equatorial Coordinate
System, is fixed in inertial space and positioned right at the centre of the Earth, but it
does not rotate following Earth’s motion. The fundamental plane contains the equator
and the positive X-axis points in the Vernal equinox direction. The Z-axis points in
the direction of the geographical North Pole and the Y axis consequently completes the
right hand set of coordinate axes [5]. It is assumed that celestial objects are inconsistent
units in great distances, so any position on the sphere is defined by the following two
coordinates: right ascension and declination. Right ascension « is the angle measured
from the vernal equinox considering that counterclockwise rotation has a positive angle
measure. Declination ¢ is the angle measured from the celestial equinox respectively. An
illustration of the ECI coordinate system is shown in Figure 2.6.

A frame associated with the spacecraft’s body is needed as well. This body frame is
fixed with respect to its vessel and its position is at the centre of its mass. Both ECI
and body frames are fundamentally important for attitude acquisition. The star tracker
provides the means find the correlation between the two coordinate systems and extract

information about the spacecraft’s attitude.

2.4.2 Euler Angles

The orientation of a rigid body with respect to an inertial reference frame N can also
be described by a sequence of three rotations, each about a single axis in the body frame
B. These three rotations are the most frequently used method for representing an object’s
attitude and are known as the Euler angles.

Coordinate Rotations

The special orthogonal group of all 3x3 rotation matrices is denoted by SO(3). A
coordinate rotation is a rotation about a single coordinate axis. Enumerating the x, vy,
z-axes with 1, 2 and 3, the coordinate rotations, R; : R — SO(3), for i €1,2,3, are

43

Satellite

Celestial north pole

el

Celestial sphere

Earth's equatorial plane

—
S—

Intersection of equatorial
and ecliptic planes
~

——
-
-
-

——Celestial equator

Vernal equinox, y

Figure 2.6: The Earth-Centred Inertial (ECI) frame [5].

1 0 0
Ri(a) = |0 cos(a) sin(a) (2.1)

10 —sin(a) cos(a)]

[cos(a) 0 —sin(a)]
Ry(a)=1| 0 1 0 (2.2)

|sin(a) 0 cos(a) |

[cos(a) sin(a) O]
R3(a) = | —sin(a) cos(a) 0 (2.3)
0 0 1]

Considering three coordinate rotations in sequence, in which the first one is an angle
1) about x-axis, the second is an angle # about y-axis, and the third is an angle ¢ about
z-axis. For the sake of brevity, we arrange these angles in a three-dimensional vector called

the Fuler angle vector, defined by

U= [QS,G,@Z)]T (2.4)

The function that maps an Euler angle vector to its corresponding rotation matrix,
Ryys : R3 — SO(3), for i €1,2,3, is

As in the general case, if z € 2 is a vector in the world coordinates and 2’ € 2 is

the same vector expressed in the body-fixed coordinates, then the following relations hold

44

[44]:
2" = Ryy.(u)z (2.6)

z= Rzyz(u)Tz' (2.7)

Euler Angle Sequence (3,1,3)
The most common sequence associated with the name Euler angles is (3, 1, 3), named
for Leonhard Euler, an 18th century Swiss mathematician and physicist. For aircraft
motion, we usually refer the motion to a horizontal rather than to a vertical axis. In a

description of aircraft motion ¢ would be the "roll” angle; ¢ the "yaw” angle; and 6 the
"pitch” angle [45].

Figure 2.7: Roll-Pitch-Yaw notation for Euler angles [6].

In the (3,1,3) rotation sequence the first rotation is an angle of ¢ about z-axis (yaw),
the second rotation is an angle of § about x-axis (roll) and the third rotation is an angle
of ¢ again about z-axis. The rotation sequence is depicted in Figure 2.8.

-
z,

Z

Figure 2.8: Euler Angle Sequence (3,1,3).

For compact notation, we write cg := cos(0),ss := sin(¢), etc. The function that

maps a vector of Euler angles to its rotation matrix is:

45

R313(1,0,¢) = R3(¢)R1(0)R3(9) =

cy Sy 0 1 0 0 cy6 S¢ O
=|—sp cp O] [0 cog sg| |—54 cop O (2.8)
0 0 1 0 —sp co 0 0 1

2.4.3 Coordinate Transformation

The post-centroiding process as shown in Figure 2.4, is matching. In order to proceed
to this operation, coordination transformation is needed so as to yield centroid’s exact
position in the sky. This coordinate transformation technique is adapted to Wielligh’s
master thesis [46] and a paper by Qian et al. [7]. The first step required, is a rotation from
the ECI coordinates to the star tracker sensor’s body coordinate system. Consequently,
we need to project the image sensor’s coordinates onto the two-dimensional image plane.

Figure 2.9 illustrates exactly how the preceding coordinate systems mentioned are related.

(X.Y.Z)
* (a,8)

Figure 2.9: Coordinate model of a star tracker [7].

The ECI coordinates of a star are expressed as («,). The star tracker sensor body
frame is noted as (U, V,W) and the image plane coordinates are expressed as (z,y). Let
us assume that the camera boresight is right at the Earth’s centre. Any translation
transformation between the two coordinate systems can be ignored regarding the long
distance between the Earth and other stars considered fixed. A rotation-matrix, R is

expressed as follows:
[X,Y,Z}T:R- [U,V,W]T (2.9)

where [U,V,W]T is the ECI celestial coordinates in Cartesian notation. Supposing that
we use the (3,1,3) Euler angles rotation sequence that was presented in the previous
subsection. From the equation (2.8) we have that the rotational matrix R = Ra13(¢, 0,v),

where 1, 0, ¢ are the 3D rotation angles as shown in Figure 2.8 respectively. As we can

46

Figure 2.10: Celestial coordinate system to star tracker’s coordinate system [7].

see in Figure 2.10, the rotation angles 6 and ¢ can be expressed in relation to the boresight

as:

6 = 90° — & (2.10)

¢ =90° + ap (2.11)

where (ap,dp) refere to the boresight orientation. The ECI coordinates vector of a fixed

star can be also expressed as:

U CaCs
V| = |saCs (2.12)
w Ss

Combining the equations (2.8), (2.9) and (2.12) we come up with the following result for
XY, 2]

X cy Sy 0 1 0 0 —Say Cag O CaCs
Y| =1|-sp cp O [0 5 ¢cso| |—Cap —Sap O [5aCs (2.13)
Z 0 0 1 0 —csy S5 0 0 1 Ss

where (a, d) is the coordinate of a star in the ECI frame, (o, do) is the selected boresight
orientation and v is the rotation angle about the boresight (z-axis of the sensor’s body
coordinate system).

The next step is to project that [X,Y, Z]T vector onto the image plane. Hence, we
need to project the three-dimensional points representing the unit vector of each star
onto a two-dimentional image plane. We use the pinhole camera model, which provides
a simple technique to describe the relation between the 3D coordinates of a point and its

projection an ideal pinhole camera. Through some similar triangles formed, the 2D image

47

coordinates [z, y]T

are expressed as:

(2.14)

where f is the focal length in millimetres.

Finally, to determine the pixel coordinates we need to scale the image plane coordi-

nates, rotate the axes and shift them to the right corner as shown in Figure 2.11. The

‘World Coordinate
System

*EZw

Image Coordinate

System
[L (Xw, Yw, Zw)
X P Y
H Image Plane| -7
L AT G) T
. o Ko S| TS
Camel:‘.(sizﬁiﬂmate :;=f (i, vi, ™ i oY 4
' e v (0.0)

o ol it
Projection ..=2¥--
Center =

vi
' i
'L (u, v)

Pixel Coordinate
System

Figure 2.11: Pinhole Camera Model: ideal projection of a 3D object on a 2D image [8].

mathematical functions that describe this transformation are:

u|l 1 1. |z Oy
o =5 5y T o,

where S;, Sy is the pixel resolution divided by the size of the sensor and o,, 0, represent

(2.15)

the coordinates of the sensor’s centre in pixel units.

2.5 SoC FPGA Overview

This current thesis, puts a strong focus on the implementation of an algorithm for
star trackers exploiting the FPGA features due to its flexibility and performance. Field-
Programmable-Gate-Arrays (FPGAs) are integrated semiconductor devices that are based
around a matrix of configurable logic blocks (CLBs) connected via programmable inter-
connects. Their major advantage is reconfigurability meaning that they can be repro-
grammed to desired application or functionality requirements after manufacturing. This
feature distinguishes FPGAs from Application Specific Integrated Circuits (ASICs), which
are custom manufactured for specific design tasks. Thus, FPGAs provide higher flexibil-

ity compared to ASIC solution. Although there are also one-time programmable (OTP)

48

FPGAs, the most dominant types are SRAM based which are capable of reprogramming

while the design’s evolving [47].

|
L]

1| |11

SERNERRRERENE

Configurable
Logic
= Blocks

Ie]
Blocks

\

Block
AMs

NENEEENNEERNEERENEE,
O SO R S R
)l iy

0 o
ARERARRERRRARRRER

Figure 2.12: Field Programmable Gate Array (FPGA) schematic [9].

ASIC and FPGAs have different value propositions, and they must be carefully evalu-
ated before choosing any one over the other. While ASICs outperform FPGAs, the second
ones have evolved rapidly during the last decade and now they can easily reach signif-
icantly high frequencies. FPGAs consist of logic blocks, I/O blocks and a hierarchy of
reprogrammable interconnects allowing blocks to be wired together and interact. They
may also contain some complete memory blocks as well. These Configurable Logic Blocks
can be configured to implement complex combinational functions or simply implement
nearly any digital logic circuit.

FPGA is a constantly evolving technology, especially in terms of logic density and
speed. Among the newest improvements in the FPGA world are System-on-Chip (SoC)
FPGA devices. A SoC FPGA integrates a hard processor core and programmable logic
on the same die [48]. Consequently, they provide higher integration, lower power, smaller
board size, and higher bandwith communication between the processor and the FPGA.
They also include a set of peripherals, on-chip memory, and FPGA-style logic array, and
high speed transceivers. The three largest FPGA vendors, Xilinx, Altera and Microsemi,

manufacture SoC devices having in common that they put a hard ARM processor.

Comparing the utilisation of a stand-alone processor and a stand-alone FPGA, the
approach of a SoC FPGA is cheaper, consumes less power, and is easier to apply into
a design. Combining the two components implies reduced design time, smaller physical
size, hence lower cost. Another important benefit to using of SoC FPGAs is the faster
communication between processor and FPGA. Thus, increased bandwidth and reduced
latency are achieved. Therefore, SoC FPGAs have become a highly relevant competitive

alternative to their traditional counterparts [49].

49

2.5.1 Xilinx Zynq SoC FPGA Architecture

In this thesis, the Hardware used consists of a Zedboard development board that hosts
a Xilinx Zyng-7020 SoC device. At this point, a brief overview of the Xilinx Zyng-7000
SoC architecture is presented. The three main components that constitute the Zyng-7000
SoC FPGA, as depicted in Figure 2.13 are the following: the Processing System (PS), the
Programmable Logic (PL) and the AMBA AXI Communication Protocol.

Processing System

Flash Controller NOR, NAND, Multiport DRAM Controller
SRAM, Quad SP1 DDR3, DDR3L, DOR2

AMBA® Interconnect AMBA® Interconnect

NEDN"‘ SIMD and FPU NEON™ SIMD and FPU

’ ARM" Cortex™ - A9 ARM® Cortex™ - A9
Snoop Control Unit
2% 5010 512KB L2 Cache 256KB On-Chip Memory
with DMA
m ITAG and Trace | Configuration m

2xUSB
with DMA

Processor 1/0 Mux

2xEGigE
L AMBA® Interconnect AMBA® Interconnect

Security
AES, SHA, RSA

General-Purpose ACP High-Performance
AXI Ports AXI Ports

it A)I(thull:hiux Programmable Logic
Thermal Sensor (System Gates, DSP, RAM)

PCle® Gen 2
1-8 Lanes

Multi-Standard 1/0s (3.3V & High Speed 1.8Y) Serial Transceivers

Figure 2.13: Xilinx Zyng SoC FPGA Architecture [10].

Zynq Processing System
The PS is equipped with the following:

e 32-bit Dual core ARM Cortex-A9 processor capable of up to 1GHz operation fre-

quency
e 64 KB L1 Cache Memory
e 512 KB L2 Cache Memory
e 256 KB On Chip Memory (OCM)

50

e NEON and FPU extensions for Single Instruction, Multiple Data (SIMD) and float-

ing point processing
e Memory Management Unit (MMU)

e Snoop Control Unit (SCU), which manages the data cache coherency between the

two processors and L2 cache

Zynq Programmable Logic
Zyng-7000 SoC is equipped with the PS integrated with a 28 nm Artix-7 or Kintex®)-7

based programmable logic which consists of:
e Configurable Logic Blocks which in turn includes:

— LUTs
— D Flip Flops

Multiplexers
— Carry Chain Logic

e DSPs

Block RAMs

Clock Tiles

Input/Output Blocks

Various Interfaces

— Gigabit Transceivers
— XADC
— PCI

AMBA AXI Communication Protocol

The AXI4 Standard is an interconnect protocol which sets up the communication
between the Processing System and the FPGA. It belongs to ARM AMBA family of
microcontroller buses and allows the connection and management of many controllers
and peripherals in a multi-master design. It is worth mentioning that the protocol was
optimised for FPGA implementation through coordinated development with Xilinx as its
aim is high performance and high frequency system designs [50].

The AMBA AXI Communication Protocol follows a master-slave logic within its con-
nection. It is distinguished in two phases which are the address/control phase and the
data phase. Also, it has two separate channels for reading and writing and it allows single
and burst-based transactions that may as well be out-of-order. That means that read data
can be returned from slaves who response faster and are given priority above the slower

ones. There three variations of AXI4 protocols which are presented in brief as follows:

o1

o AXI4

— Memory-mapped protocol
— Data burst transfer of up to 256 data words

— Bidirectional
o AXI4-Lite

— Simplified memory-mapped protocol
— Transfer of a single data word

— Bidirectional
o AXI4-Stream

— Non-memory-mapped
— Burst transfers of unrestricted size

— Unidirectional

In this thesis, we utilize the AXI4 Lite and the AXI4 Stream protocol in order to
establish the communication between the PS and the PL so as to implement the HW/SW
co-design for the accelerated clustering algorithm. Thus, a more extensive report about

the aforementioned communication protocols is presented below.

2.5.2 AXI4 Lite

The AMBA AXI protocol is suitable for high-bandwidth and low-latency designs and
provides high-frequency operation without using complex bridges. In addition it is suitable
for memory controllers with high initial access latency and it offers makes the implemen-
tation of interconnect architectures flexible.

The key features of the AXI protocol are that it has separate address/control and data
phases and that is capable of unaligned data transfers using byte strobes. Furthermore,
burst-based transactions with only the start address issued are processed and other than
that, it provides support for out-of-order transaction completion. Last but not least, it
has separate read and write data channels, that lead to low-cost Direct Memory Access
(DMA).

The AXI protocol is burst-based and defines the following independent transaction

channels:
e read address
e read data
e write address

e write data

52

e write response

An address channel carries control information that describes the nature of the data to
be transferred. The data is transferred between master and slave using either write data
channel to transfer data from the master to the slave, or read data channel to transfer
data from the slave to the master. In a write transaction, the slave uses the write response
channel to signal the completion of the transfer to the master. Figure 2.14 shows how a
read transaction uses the read address and read data channels, while Figure 2.15 shows

how a write transaction similarly happens. AXI4-Lite is a light-weight, single transaction

Read address channel

Address
and control

E—
Master Slave

interface interface
Read data channel

Read Read Read Read
data data data data

-« A ———

Figure 2.14: Channel architecture of reads [11].

Write address channel

Address
and control

—_—
Write data channel
Master Write Write Write Write Slave
interface data data data data interface

Write response channel

Write
response

R —

Figure 2.15: Channel architecture of writes [11].

memory mapped interface. It has a small logic footprint and is a simple interface to work

with both in design and usage. The key functionality of AXI4-Lite operation is:
e all transactions are of burst length 1
e all data accesses use the full width of the data bus
— AXI4-Lite supports a data bus width of 32-bit or 64-bit
e all accesses are non-modifiable, non-bufferable

e Exclusive accesses are not supported

93

2.5.3 AXI4 Stream

The AXI4-Stream protocol is similar to the AXI4-Lite that was described above. As
well as the AXI4-Lite, it is used as a standard interface to connect components that wish
to exchange data. The AXI4-Stream protocol is used for applications that typically focus
on a data-centric and data-flow paradigm where the concept of an address is not present
or not required. Each AXI4-Stream acts as a single unidirectional channel for a handshake
data flow.

The protocol supports multiple data streams using the same set of shared wires, allow-
ing a generic interconnect to be constructed that can perform upsizing, downsizing and
routing operations. Thus, this particular protocol can be better optimized for performance
in data flow applications, but also tends to be more specialized around a given application
space.

Unlike AXI4-Lite protocol, AXI4-Stream interface does not require an address to pro-
ceed to the transaction. On the other hand, a single transfer is defined by a single TVALID,
TREADY handshake. The TVALID and TREADY handshake determines when informa-
tion is passed across the interface. A two-way flow control mechanism enables both the
master and slave to control the rate at which the data and control information is transmit-
ted across the interface. Therefore, this is the main principle which defines the protocol,
that in order for a transfer to occur, a handshake is required so both the TVALID and
TREADY signals must be asserted [51].

2.5.4 Design Flow

Computer Aided Design (CAD) tools are used as an interface between the user and the
hardware that turns the design ideas into FPGA programmable logic. Designs are written
in HDL, which stands for Hardware Description Language, and they are converted by the
CAD tool into a stream of bits used to program the FPGA. In this thesis we mainly used
Xilinx Vivado design suite. The Design Flow followed to implement our design is shown

bellow in Figure 2.16.

1. VHDL Description. We write the code in VHDL (Very High Speed Integrated
Circuit-VHSIC Hardware Description Language) which describes the desired func-
tionality of the hardware design. This includes all ports, logic, registers, arithmetic

blocks and a few other hardware blocks.

2. Functional Simulation. During this stage, a behavioural simulation is executed
in order to evaluate the logical functionality of the design. A waveform diagram
is produced which simulates inputs, outputs, wired signals and basically any value

imported in the design.

3. Logic Synthesis. Here, the HDL description is converted into a set of logic gates,

Flip-Flops, adders etc. A netlist between the individual components is also produced.

o4

VHDL
Description

|

Functional
Simulation

|

Logic Synthesis

!

Implementation
(mapping.
placing, routing)

|

Bitstream
Generation

|

FPGA
Programming

!

Test in HW

Debugging

Figure 2.16: FPGA Design Flow.

4. Implementation. Here, the synthesized design is mapped to specific hardware of
the platform. In addition, optimizations occur and all the connections are placed

and routed in order to structure the designed circuit.

5. Bitstream Generation. A stream of bits called bitstream is produced after the

extraction of the implemented design.

6. FPGA Programming. The generated bitstream is exported to the FPGA platform

in order to configure and program it.

Vivado also has other useful features, that make designer’s life easier. For example, an
RTL design can be provided which exports the logic into a gate-level illustration. Figure
2.17 shows the different stages followed while transforming the HDL code to synthesized
design. The HDL code describe a simple synchronous adder which is capable of adding
two 2-bit numbers. The output products are the sum and the carry which identifies a

possible overflow.

95

VHDL code

library IEEE;

use IEEE.std_logic_1164.ALL;

use isee.std_logic_unsigned.a11:
use leee.std_logic_arith.s11;

antity adder is

part(
clk @ in std_logic;

4 : in std_logic_vector(l downto 0);
5 : in std_logic_vector(l downto @);
SUM @ out std logic_vector(l downto @);
COUT : out std_logic

|

end addear;

architecture Behavioral of adder is
signal tsum : std_logic_vector(2 downto @) ;
signal tcout @ std_logic_vector(@ downto @);
begin

process(clk)
beagin
if rising_edge(clk) then
tsum <= ('G' & A) + ('0" & B):
end 1f;
end process;

SUM == tsum(l downto B8);
COUT == tsum(2);

and Behavioral ;

Figure 2.17:

RTL Design

tsumn_reg[2:0]

& IBUFI] st

0] S I “
sUF
& JBUF1] inst
1 3

“mUR
& IBUFO] s
e L

BI1:0] =~
“mur

plus0p_|

BIBUF 1] inst
[T

BUF

o IBUF_inst
o

ek C—=

D cout

20 suMiLol

RTL_REG
RTL_ADD
Synthesized Design
tsum_regla]
o SUM OBUFLa] st
s @ e ey SUML0)
toam{ B2 " omr
- | FORE
tsum_regi1]
1P SUM_OBUIL 1] st
b [Ty :
] -
. oauE
FGRE
tsum_regl2]
c: COUT_DBUF _inst
T s oY=t — [cour
I Ia osUF
TFORE

muF

56

VHDL code to synthesized design conversion.

Chapter 3

Development on the Zyng SoC
FPGA

Chapter 2 provided fundamental information and theoretical background necessary
to fully understand the core of our methods regarding the proposed algorithm for star
trackers. In the following sections, an extensive description of our proposed algorithm is
presented. Also, the optimisation steps followed are discussed in this section considering

the performance enhancement of the clustering algorithm.

3.1 HW/SW Co-design of Averaging 2D Binning

The first component of our HW/SW co-design performs averaging 2D binning. Pixel
binning is a feature becoming increasingly common in camera-based applications.

Let us introduce the idea of what a pixel is. Pixels, also referred as photosites, are
physical bits on a camera sensor that catch light in order to create pictures. A large pixel
is able to collect more light than a smaller one. Thus, when pictures are captured in low
light conditions, a sensor with large pixel size is required so as to achieve higher image
quality. High resolution image sensors, usually have a smaller pixel size sensor, which
might be limiting for the sensitivity of the camera.

In many applications, sensor resolution has exceeded the optical resolution which
means that the additional hardware complexity to increase pixel density, might be inca-
pable of increasing the image quality. However, if the size of each pixel in the high-density
image sensor becomes smaller, low sensitivity and noise amplification may occur, espe-
cially in low light images. To solve this problem, a proposed technique that is usually
adopted is pixel binning.

Pixel binning refers to the concept of combining the electrical charges of neighbouring
pixels together to form a superpizel resulting to an effectively increased size of the image
sensor. Therefore, we manage to increase the sensitivity of the resulting pixel at the cost
of reduced spatial resolution. Additionally, in applications where large image data need

to be processed, it is really beneficial for the algorithm’s performance to decrease the

o8

image dimensions. Not only the processing time is reduced, but also the resources used
are significantly decreased. More precisely, the required memory is remarkably less, as for
example, the size of the image stored is under-quadrupled for a 2x2 binning. Usually,
pixels are combined in 2x2 or 4x4 grids to compose a single pixel. The Figure 3.1 bellow
depicts an example of two different levels of image binning. The original image has a size
of 8x8 pixels which corresponds to the maximum resolution. By binning at 2x2, each 2x2
grid combines into a pixel and the resulting image has only 16 pixels leading to reduced
resolution. Binning at 4x4 results to a 2x2 grid with just 4 pixels so arguably, there is a

noticeable reduction of image resolution.

Original Image 2x2 binning : Original Image 4x4 binning
R R Noaaoaoun Yy
[9]wo]n]12 | L i [9[10]11]12]13]14]15]16] ‘ § ‘ , ‘
17/18/19|20 | i [17]18]19]20]21 |22|23 |24|
2526|2728 | |::> [25]2627(28]29[30]31 32 ::>)
(| 33|34(35 (36 37 38 39|40
(| 41 (42 (43(44 |45 46|47 48 . .

(| 49|50 51|52 |53 54 |55 |56
HEEEEEEE 57|58|59 |60 61|62 63|64

E

(b)

Figure 3.1: Different levels of averaging binning.

3.1.1 High Level Architecture

At this point we will present a top-down architecture of the integrated system design.
Our approach is centered around the fast communication of the HW and SW components.
More specifically, we established the communication between the processing system (PS)
and the Programmable Logic (PL) of the SoC FPGA supposing that the image frames
are received from the camera. In this thesis, instead of receiving the images directly from
the camera, we assume due to simplicity that a set of different image frames captured
by the CMOS sensor has been stored in the internal DDR memory of the SoC device.
The implementation of our system is based on three stage processing pipeline as shown in

Figure 3.2. The stages are described as follows:

Host PC

Dual Core Averaging 2D
ARM Binning

Processing System (PS) Programmable Logic (PL)

Figure 3.2: Processing flow of the integrated system.

99

1. The first stage refers to the stage of storing the image data to an allocated buffer in
DDR memory. This process is implemented in PS using the well-defined libraries for
the drivers of the memory unit in order to overcome the problem of limited memory

resources of the PL.

2. Next, the processing stage follows. In this stage, the stored image frames are trans-
ferred from PS to PL for processing where the Averaging 2D Binning component is
hosted. The binning component, and as well as the clustering component, which is
described in Chapter 3.2, are implemented in PL so as to exploit the capabilities of
the FPGA. In addition their parallel nature is well suited for implementation in this

platform and therefore we are capable of reaching high performance.

3. In the last stage, the results obtained from the processing stage, are transferred from
PL back to PS in order to be extracted to our Host PC for further use. Additionally,
the system is evaluated as of the validity of its functionality as well as of the achieved
performance. A SW-based algorithm is also implemented to be executed on the dual
core ARM processor and the results received from our system design are compared

to those produced by the SW operation.

PS-PL Communication

Image processing applications require high throughput rates and low latency data
transfers between the processor and the HW accelerator. Taking into consideration these
requirements, a streaming protocol is the most suitable approach for such applications. In
a streaming protocol data transactions are determined through a handshake mechanism
between the PS and the PL, which happens only at the beginning of the process and
afterwards, valid data can be transferred at every consecutive clock cycle. In order to
develop an efficient streaming communication, it should rely on a Direct Memory Access
(DMA) mechanism. DMA enables accelerator to perform direct access to system memory
and offloads CPU from being involved in data transfers. This mechanism considerably
boosts the overall system performance as CPU can keep working concurrently on other
tasks.

In this thesis, we use this approach to perform high throughput data transfers from
PS to PL and vice versa. As we’ve discussed in the previous section, in ARM-based SoC
FPGAs a widely used streaming protocol is the AXI4-Stream which relies on the well
established AMBA AXI4 protocol. However, the implementation of AXI4-Stream is a non
trivial task. The utilization of the protocol is arguably a major design challenge as of the
substantial amount of time spent for customization of the FPGA accelerator interface and
the validation of its operation in the integrated system.

Regarding the control signals transfers of the accelerator as well as the initialization of
the DMA, simpler communication protocols have been developed such as the AXI4-Lite
protocol which is also adopted in this project. In order to facilitate the implementation of
the PS-PL communication a proposed generic approach is proposed, which can be deployed

relatively fast and can be adjusted to meet specific application requirements.

60

Figure 3.3 presents an analytical block design of the integrated system. As we can see,
the block design consists of the Zynq processing system, our binning component, the AXI
DMA and some other peripherals. Each block is described bellow:

Averaging_2D_Binning_0 system fla_0 axismc
. a{+ stot 0. axis

2+ 000
£ o
sto7 1 A0S ooyl)
" resetn "
Averaging 2_Binming
System ILA AXI SmartConnect:
PS7.0_axi_periph axi gma 0 processing system? 0
st ps7.0 125M i+ s00_ax wax s it oon [} ooR
" Fxe0.0 +|| FIXED 10

[yp—— +|i

N

10 WAvVED oUT
_AX 6RO ACLK ZYNQ

TrCO WAVE OUT
S A PO ACLK

TrCo wAvE oUT

So0Ack WIS Moo AX! + it
oo et mXom

FOLK CLKO
FCLK RESETO_N

Processor System Reset AXT Interconnect AXI Direct Memory Access

ZYNQ7 Processing System

Figure 3.3: Block design of the HW/SW integrated system.

Zynq Processing System

The Processing System 7 core is the software interface around the Zyng-7000 platform
processing system. The Zyng-7000 family consists of an SoC style integrated PS and a PL
unit, providing an extensible and flexible SoC solution on a single die. The PS7 core acts as
a logic connection between the PS and the PL while assisting you to integrate customized
and embedded IP cores with the processing system using the Vivado IP integrator. More
specifically it stitches the interface signals with the rest of the embedded system in the PL.
The interfaces between the PS and PL mainly consists of three main groups: the extended
multiplexed I/O (EMIO), programmable logic I/O, and the AXI I/O groups [52]. A block
design which shows in detail all peripheral options and interfaces of the PS is illustrated

in Figure 3.4.

7

1/O Peripherals General
SPIO Settings Application Processor Unit (APU}
SWDT

Banko L

12C0
(15:0) 12C 1 —
CAN 0
L System Level
CAN 1 PP Control Regs
UART 0
— T
Vo UART 1
MUX GPIO v
(MI0) SD O v
IS < sp1____ |

e
USE 0 ;

USE 1 ocM 256 KB
ENETOD ¥ > Interconnect | SRAM
ENET 1 el Components
Bankl - Interconnect
Mio FLASH Memory -+ 1 l
(53:16) Interfaces —i] = |

E
<=
QUAD 5P <= pEVC | Programmable DDR2/3,LPDDR2
— Logic to Memary - Controller

. Interconnect

SMC Timing P
Calculation

DMA | |

™

ARM Cortex -A9 ARM Cortex -A9
CPU cPU

f4b.
AXI

Gic Snagp Control unit |

DMAB Slave
Channel 1 512 KB L2 Cache and Controller I Ports

Al

Memory Interfaces

ync

Processing System(PS)

I Clock

Resets ‘ Generation

0[1]2]3
CIRTIETETNNNI C1 E ESIE] [y ooy | pesipy JL L S
MIO (EMIO) . PS-PL AXI AXl AES/
Clock Parts Master Slave SHA
Ports Ports

5
IRQ High Performamce XADC
AX] 32b/64b Slave

Ports,

Programmable Logic(PL)

Figure 3.4: Zynq7 Processing System block design.

AXI Direct Memory Access
The Xilinx LogiCORE IP AXI Direct Memory Access (AXI DMA) core is a soft

61

Xilinx TP core for use with the Xilinx Vivado Design Suite. The AXI DMA provides
high-bandwidth direct memory access between internal memory and AXI4-Stream target
peripherals. Its optional scatter/gather (SG) capabilities also offload data movement tasks
from the Central Processing Unit (CPU). It provides a number of features for increased

productivity. These features are summarized below:

e It is AXI4 compliant providing enhanced flexibility to the user regarding the number
of the employed PL interfaces

e It also offers optional Scatter/Gather (SG) Direct Memory Access (DMA) support

e [t supports multichannel operation of up to 16 channels and it is capable of two-

dimensional transfers in multichannel mode
e AXI4 data width support of 32, 64, 128, 256, 512 and 1,024 bits

e Primary AXI4-Stream data width support of 8, 16, 32, 64, 128, 256, 512 and 1,024
bits

e It inlcudes Optional Data Re-alignment Engine,which allows data realignment to

the byte (8 bits) level on the primary memory map and stream datapaths

Initialization, status, and management registers are accessed through an AXI4-Lite slave
interface. Figure 3.5 illustrates the functional composition of the core. Primary high-
speed DMA data movement between system memory and stream target is through the
AXT4 Read Master to AXI4 memory-mapped to stream (MM2S) Master, and AXI stream
to memory-mapped (S2MM) Slave to AXI4 Write Master. AXI DMA also enables up to
16 multiple channels of data movement on both MM2S and S2MM paths in SG mode.
The MM2S channel and S2MM channel operate independently. The AXI DMA provides
4 KB address boundary protection, automatic burst mapping, as well as providing the
ability to queue multiple transfer requests using nearly the full bandwidth capabilities of
the AXI4-Stream buses. Furthermore, the AXI DMA provides byte-level data realignment
allowing memory reads and writes starting at any byte offset location [12].

Averaging 2D Binning

At this point, let us present a detailed description of the Averaging 2D Binning block.
A high-level architecture of our developed component is presented within this subsection.
The binning component works on 2x2 or 4x4 image regions with stride 2 or 4 respectively
to calculate their mean value. Considering the requirements of our project, we chose to
proceed with 2x2 bins as a more appropriate option so as to keep balance between the
image resolution and its sensitivity. Figure 3.6 shows the extensive block diagram of our
binning kernel.

As we have mentioned, our component has been configured in order to support the
AXT4-Stream protocol so as to be able to receive valid data from the PS. More specifically,

we customised the ports of the component with the specified signals which compose the

62

AXI4 Memory Map Read AX14 Stream Master (MM25)

I

MM2S Cntl/Sts Logic

I I

AXI4 Control Stream (MM2S)

AX|4-Lite Registers »| Scatter/Gather AX14 Memory Map Write/Read
S2MM Cntl/Sts Logic AX|4 Stream (S2ZMM)

!

AXI4 Memory Map Write AX|4-Stream Slave (SZMM)

Figure 3.5: AXI DMA Block Diagram [12].

master-slave logic and we implemented the handshake mechanism. At this stage, our
component receives the image data from TX_DMA (the transmitting part of DMA) and
transfers the generated output to RX_DMA (the receiving part of DMA). Both TX_DMA
and RX_DMA refer to the same AXI_DMA block, although it is a common designing

choice to use two separate DMAs for the receiving and the transmitting part.

As we can see from Figure 3.6, the binning kernel is between two FIFO blocks. These
blocks refer the Xilinx FIFO Generator IP which is actually a buffer that follows the First
In-First Out logic. Both FIFOs have the minimum possible depth of 8 pixels. Supposing
that each image frame has a size of 4MP, this equals to 2048 x2048 pixels so after binning
at 2x2, the output image contains 1024 x 1024 pixels. The main reason why we used these
FIFOs, is to secure that no pixels will be lost during the transmissions from and to the
DMA. For example, if the binning component for some reason is no longer ready to accept
data, it sends a signal to the TX_DMA so as to pause the transmission. In that case, it is
possible that the TX_DMA may continue sending pixels that are not supposed to be sent.
So, these data are temporarily stored in the buffer until the binning component re-enables

the transmission process.

5 AXIS [Aueraging 2D Binning]

FIFO —'| Binning Kernel }—- FIFO

M_AXIS<——

Figure 3.6: Averaging 2D Binning block design.

63

Binning Kernel

Now, let us present a more detailed description of the Binning Kernel. Figure 3.7
illustrates the block design of the binning kernel. As we can see, it consists of two main
blocks which are the Serial-to-Parallel block and the Multiplier-Accumulator (MAC) unit.
First of all, we need to clarify that the image data are received serially following raster
scan ordering. This means that the binning kernel receives pixels row by row. Therefore,
a serial-to-parallel block is needed in order to forward multiple data coming serially in
consecutive clock cycles to the next blocks. Another issue is that an entire image row
needs to be scanned so as to be able to calculate the mean values in 2x2 regions. The
rows are processed in pairs of two and the first of each pair is stored temporarily in the
FIFO buffer. This adds significant overhead to the operational throughput. However, the
FPGA accelerator supports parallel processing, so mean values computation of each 2x2

grid and temporary storing of the following row happen concurrently.

Binning Kernel

Serial-to-Parallel 1 MAC
FIFO DFF DFF 4 | Adder Tree
DFF —DFF) | (Divider |

Figure 3.7: Block design of the Binning kernel.

The other main block is the Multiplier-Accumulator (MAC) unit. This is the unit
where the 2x2 (or 4x4) bins are calculated. It consists of an Adder Tree and the Divider
block. The Adder Tree, as the name suggests, is a tree structure of full adders for paral-
lelism which performs fast additions. As we operate on 2x2 regions, the sum of 4 pixel
values needs to be calculated. Thus, the structure of the Adder Tree block is shown in
Fig. 3.8. There are two levels of additions which support parallelism. Firstly, the 4 pixels
are grouped in pairs of two and the output sums are added together on the second level
adder. Afterwards, the total sum is passed to the Divider which calculates the mean value

simply by dividing by 4. The output refers to the new superpixel of the generated image.

3.1.2 Low Level Implementation

Previously, we presented a high-level description of the Averaging 2D Binning compo-
nent. In this subsection, a more detailed overview of the implementation is discussed with
a low-level perspective.

Handshake process

The handshake process is mainly defined by the following rules:

e The TVALID and TREADY handshake determines when information is passed

accross the interface. A two-way flow control mechanism enables both the master and

64

N

FA FA

g

FA

|

Figure 3.8: Adder Tree Structure for 2x2 binning,.

slave to control the rate at which the data and control information is transmitted.
For a transfer to occur both the TVALID and TREADY signals must be asserted.

e A master is not permitted to wait untii TREADY is asserted before asserting
TVALID. Once TVALID is asserted it must remain asserted until the handshake
occurs. Once the master has asserted TVALID, the data or control information
must remain unchanged until the slave drives the TREADY signal HIGH, indicat-
ing that it can accept the data and control information. In this case, transfer takes
place once the slave asserts TREADY HIGH.

e A slave can assert TREADY before, during or after the cycle in which TVALID
is asserted. The assertion of TREADY might be dependent upon the value of
TVALID. A must either drive TREADY independently or pre-assert TREADY
to minimize latency. For example, a slave drives TREADY HIGH before the data
and control information is valid. This indicates that the destination can accept the

data and control information in a single cycle of ACLK. In that case, transfer takes
place once the master asserts TVALID HIGH.

Averaging 2D Binning

Now, let us explain how the handshake process is implemented on our VHDL code.
We assume that each component which transmits data acts as a master and the one which
accepts these data is the slave. In that case, TX_DMA is the master and Averaging
2D Binning is the slave. However, the last one is also the master in the handshake
process between itself and the RX_DMA. So, the block that follows the A2DB (here is
the AXI_DMA) indicates whether it is ready to accept data by asserting TREADY_IN.
TREADY_IN as well as TVALID_IN, which indicates the transmission of valid data from
the master (here the AXI.DMA), must both be asserted so that data can be passed
within the input FIFO buffer to the Binning kernel. Hence, the signals wr_en and rd_en
which enable writing and reading operations for the input FIFO are defined by these
specific signals combined. The handling of these signals is particularly important because

it is actually triggering mechanism for the binning process. This process is described

65

in the Figure 3.9. We should mention that TREADY_IN and TVALID_IN signals are

used indirectly by referring to the corresponding delayed registered signals to achieve

synchronization.

Figure 3.9: Behavioural Simulation of the input FIFO buffer handling.

Similarly, the same logic is used to handle the output FIFO buffer. On the contrary,
writing operation is determined by the validity of the data produced by the Binning kernel
while reading operation is obviously defined by the TREADY_IN. If AXI_ DMA is ready
to accept data, is drives TREADY_IN HIGH and therefore valid data are exported from
the output FIFO directly to the output port of the component. The rd_en signal that
enables reading from the buffer is driven by the output signal of an AND gate which
has TREADY_IN and the inversion of FIFO’s own empty signal as inputs. Empty signal
becomes HIGH, if the buffer is empty. That means that reading is enabled if TREADY_IN
is asserted, provided that there are valid data stored in the buffer.

It is noteworthy that there is a strong dependency between TREADY_OUT and
TREADY_IN signals. If the following component that receives data from A2DB is ready
to accept, then A2DB also indicates that it can accept valid data too, meaning that it
will drive TREADY_OUT HIGH. Additionally, there is also an extra FIFO buffer of the
same depth as the aforementioned output FIFO buffer but its width size is of 1 bit. This
buffer is used to synchronize the TLAST_OUT signal with the rest of the output signals.
Figure 3.10 shows the behavioural simulation of the how output FIFO buffer is handled.
It’s wr_en and valid out signal of the Binning kernel are identical. As for rd_en, it can be

expressed as:
rd-en = TREADY IN AND [NOT(empty)]

Binning Kernel
As we have already explained, the functionality of Binning kernel is based on a Serial-
to-Parallel block and a MAC unit.

Serial-to-Parallel

We implemented our design so that it can support image binning at both at 2x2 and
4x4 regions using a generic variable named stride. For notational brevity, let us use the
letter N when referring to the stride. In order to be able to use in parallel the serially
incoming pixels, we need to store them temporarily until the full N x N region is completed.

So in general, N — 1 entire image rows need to be scanned so that the computing of the

66

P
omp[7:0]

Figure 3.10: Behavioural Simulation of the output FIFO buffer handling.

Note: signals valoutfl and doutfl correspond to the valid and dout ports of the FIFO unit respec-
tively.

mean values of each region can start. Therefore, exactly N — 1 FIFOs of width equal to
the original’s image width are required. The Serial-to-Parallel also consists of a N x N
grid of D Flip-Flops which are connected in series as shown is Fig. 3.11. The pixels that
belong to the N-th row of the N x N region are directly driven to the last D Flip-Flops
series. Afterwards, the pixels in the NV x N grid are concatenated in a vector which is then
forwarded to the MAC unit. The wire that refers to the incoming pixels, is connected to
the input port of every FIFO. However, reading and writing operations are controlled by a
Finite-State-Machine (FSM). The FSM functionality is described as follows: the number
of the incoming pixels is counted and each of them is stored in the corresponding FIFO
according to its position on the image plane. For example, the pixels of the first row are
stored in the first FIFO, the pixels of the second in the second one and so on. The FSM
also produces enableMac signal which indicates whether the MAC unit receives valid data.

As we can see in Fig. 3.12, MAC unit receives valid data every N — 1 clock cycles.

L
) r 1
image data

—— FIFO »——4DFF)—DFF}_-----

+ FFO »— {(DFF)—DFF| ----- |oFF

N-1- -

. ®

. *
. ®
. .

e e s

' FAFO »— {DFF}—{DFF}--""~-- [DFF

o8} o

Figure 3.11: Serial-to-Parallel block.

MAC Unit

As we have already described, MAC unit consists of an Adder Tree and a Divider.
The Adder Tree is a structure of Full Adders. The generic block design of MAC units is

67

00) 01

0
E=—— " ———— —_——=
7] @00, (6. Y00, (6.12)... ((L2,3... {2 I (56,7, (6,7,

00000000 00010000 | 01020000 | 02030000 | 03040000 | 04050000 | 05060000) 06070000) 07050000 | 08090001

Figure 3.12: Behavioural simulation of Serial-to-Parallel operation.

depicted in Fig. 3.13 regarding stride N. The tree structure has exactly 2 and 4 levels
of full adders for stride equal to 2 and 4 respectively. The exact number of levels of the
tree structure is generalised for strides at powers of two as loga(N?). At first level, there
is a certain amount of full adders which is defined as NTQ, where N refers to the stride.
Each subsequent level as we descend towards the base of the tree structure, consists of
a number of FAs that is equal to the one of its prior level divided by two. We should
mention that the bullets in the block diagram refer to one clock cycle delay caused by the
addition of D Flip-Flops. That is a very common technique used when designing pipelined
components so as to decrease the critical path. The critical path is actually the longest
path in the circuit and is a major limiting factor of the clock frequency. Supposing that
each pixel’s value is represented by a k-bit number, the resulting sum after each addition
has a length of k+1 bits, so as to handle a possible overflow. Thus, the total sum is a
number of k +loga(N?) bits. As for the TLAST-OUT signal, MAC unit utilizes a counter
for the generated pixels, and knowing the exact number of them in the new image, it is
able to determine when the last pixel value is calculated. The total pixels number in the

generated image is used indirectly by converting it to its corresponding width and height.

N2
2
L
I 7
FA FA ------ FA FA
. EA cevennennanannn EA
logy (N7}
FA
L.

!

Figure 3.13: Generic block design of Adder Tree.

68

Divider

In computer programming, arithmetic shifts can be really useful as efficient ways to
perform multiplication or division of binary numbers by powers of two. Shifting left by
n-bits on a binary number has the effect of multiplying it by 2", shifting right by n-bits
results to a division by 2”. Therefore, the divider simply performs an arithmetic right shift
by N-bits to the output sum of the Adder Tree, where N is the corresponding dimension
of the squared grid used for binning. For example, if we operate binning at 2 x 2 regions
with stride of 2, an arithmetic right shift by 2 bits occurs meaning that we divide by
4 and that is the resulting mean value of the generated pixel. Considering that binary
numbers cannot be expressed with decimal places, the result after division is rounded to
the nearest integer less than or equal to the actual result as if it was computed with a

calculator. Figure 3.14 shows the behavioural simulation of the MAC unit block while

binning at 2 x 2.

Figure 3.14: Behavioural simulation of MAC operation.

3.2 HW/SW Co-design of Clustering

In this section the main core of our project is presented, which refers to the proposed

cluster detection algorithm for Star Trackers.

3.2.1 Cluster detection algorithm

In this current thesis, we developed an efficient algorithm that is able to detect clusters
in an image of a portion of the night sky. Clustering is the first processing step in a star
tracker operation. It is during this step where hardware optimisation is done to improve
operation frequency aiming to real-time performance. The proposed algorithm is designed
for hardware and is adapted to a MATLAB source code provided by Infinite Orbits.

A star on an image sensor can be considered a point light source for all practical
purposes. Generally, an image formation through a lens can be described by a Point
Spread Function (PSF). Depending on the aperture size and focus setting, the blurring
of the point light source changes. Spreading introduces additional information about the
star as it spreads the light source over several pixels. This allows centroiding algorithms
to determine the centre of a star to sub-pixel accuracy. Depending on the intensity of the
light source, defocusing is done so as to have stars spread over 3x3 to 5x5 pixel regions.
For the purposes of a star tracker, light spreading can be accurately approximated as a
2D Gaussian distribution. Figure 3.15 illustrates a zoomed-in image of a single star that

is slightly defocused.

69

Figure 3.15: Visualization of light spreading in a defocused star.

A traditional approach for star detection algorithms is described as follows. Firstly,
each pixel in the image is compared to a threshold that is usually pre-defined or it can be
adjusted dynamically. If the pixel value is greater than the threshold, a region of interest
is identified. Then the searching is focused on that specific Region of Interest (Rol), where
all the neighbouring pixels are checked with an alternative slightly decreased threshold.
Neighbouring pixels that are above the so called growing threshold, are clustered together
and form a cluster in a maximum grid of 5x5 pixels. Once all of the neighbouring pixels
are grouped, and the region is considered valid, a centroiding processing step is performed
on the region pixels. In this work, the optimised algorithm follow the same logic as the
traditional approach but is adapted for hardware-friendly calculations. When designing in
hardware, data structures and lack of useful functions are among the biggest challenges.
This cluster detection algorithm is reiterative by its nature and uses several recursive sub-
routines. Thus, it is vital to develop an algorithm which operates efficiently regarding the
operation frequency. That is a non trivial challenge, but we tried to utilize the charac-
teristics of the FPGA accelerator such as its ability for parallelism in order to improve
performance.

Growing Region Algorithm

As we already mentioned, the whole image plane is checked and pixels with value
above the threshold are stored temporarily in a stack data structure. Afterwards, each
pixel is considered as centre pixel of a cluster, which is referred as ”starting pixel”, and
forms a Region of Interest (Rol) where the search is focused. In every iteration while
searching within the Rol, the 8 adjacent pixels around the centre one form a 3x3 grid
called ”Neighbourhood of Search” (NoS) and each pixel in it is compared to the growing
threshold. The same procedure is repeated for every pixel inside the Rol whose value is
greater than the growing threshold and hence, it is considered as part of the cluster. As
we will describe extensively in the following paragraphs, the image is stored in a memory
block at the PL. So every reference to a pixel is actually a reading operation resulting to
a memory transfer so as to bring the required data. This is a considerably slow operation
as we know from computer architecture, so what we actually do is bringing from memory
exactly the pixels needed to form the NoS and don’t belong in the 3x3 region in which the
current central pixel was detected. An illustrative description of how the nine different

Neighbourhoods of Search are configured is shown in Fig. 3.16. The noted star represents

70

the centre pixel of the block which was identified during the first thresholding process.
Each pixel in the 3x3 NoS, is noted with a unique number that refers to its position in it.
For example, if the pixel on the right corner is part of the cluster, it is stored in the stack
so as to check its neighbouring pixels. So, instead of searching the entire 3x3 region, only
5 pixels need to be checked. The search of the alternative cases of pixel position happens
in a similar way. The identified pixels through the thresholding process, are grouped
together and form a square cluster that can be either 3x3 or 5x5. Another challenge for
our design was to avoid double and triple checks for the exact same pixel in the Rol. The
algorithm while searching for possible pixels that form a star, performs repeated checks in
3x3 regions, which belong to a relatively limited Rol. Hence it is very likely that the same
pixel might be checked more than once, which is not only restrictive in terms of efficiency,
but it may also lead to endless loops. This is a non trivial problem as in hardware we
have to deal with hard-to-handle data structures. What we did in order to resolve this,
was introducing a boolean map where the pixel positions in the image plane are assigned.
Every time a pixel within the Rol is checked, its position in the map, which refers to the

corresponding position on the image, is marked.

Lo 1 2 |
* * *
P13 & 4 x 51
* * *
| 6 7 8 | |

Figure 3.16: Configuration of Neighbourhoods of Search.

71

3.2.2 High Level Architecture

The proposed algorithm, is designed for hardware in order to take advantage of the
features offered by the FPGA accelerator. Here, the Clustering component is hosted on the
PL. Thus, it was implemented in a way to support AXI4 Streaming protocol in order to be
able to communicate with other peripherals. More specifically, the Clustering component
receives data directly from the DMA component as it is illustrated in the block design in
Fig. 3.17.

Processing System (PS) Programmable Logic (PL)

Figure 3.17: Processing flow of the HW/SW Co-design for Clustering.

As we can see, this block design is almost identical with the one depicted in Fig. 3.2,
although here the Clustering block took the place of the A2DB. In this case, the only
difference in the processing pipeline is the operation which is executed. The establishment
of the communication between the PS and the PL was based on the same logic and ideas
described analytically in subsection 3.1.1. However, it is worth mentioning how the blocks
interact. Due to the recursive nature of the clustering algorithm, it is imperative to store
the image in a memory block so as to be easily accessible. Therefore, we need to store the
image in the PL where the algorithm is performed. The problem here is that the FPGA
has limited resources, especially regarding memory, and so it cannot store the entire image
even after reducing its size after binning operation. This was a major challenge for our
design. We managed to resolve this issue by partitioning the image and transmitting it into
windows. Each window has certain dimensions which are pre-defined and are expressed
by two generic variables. The height is referred as winHeight and the width as imageDim.
In order to be more accurate and to provide valid clusters, each window has an M-lines
overlap defined by mazxInd variable. Figure 3.18 shows exactly the configuration of the
sliding windows.

Clustering component

As we have already mentioned, Clustering component supports AXI4 Stream interface
in order to receive the pixel data after the binning process. The handshake mechanism
is implemented similarly as in the A2DB. The main difference is that we need to control
data transmissions as the image is sent partitioned. When a full window has been received
and stored, we need to send an identification signal to the AXI_DMA to stop transmission
of the original image. The stages of this pipelined process are described in the following
diagram in Fig 3.20. We control the data transmission by driving the TREADY_OUT

72

imageDim

winHeight

1 maxInd
-t -

WERHuUIM

- A A A A ' 1

Figure 3.18: Image partitioning in sliding windows.

— &S AXIS Clustering
— &5 AXI

FIFO — Clustering Kernel — FIFO

M_AXIS<

Figure 3.19: Clustering block design.

signal. Again, a pixel counter is used so as to determine whether an entire sliding window

has been received.

Considering that a star tracker should be able to operate under different conditions
that might affect its functionality and therefore its precision, we designed the integrated
system in a way that it can adjust to those conditions in order to meet the requirements
of the mission. For example, the image sensor used by the star tracker is a major factor
that have a significant impact on its performance. Depending on its specific characteristics
such as the lens apperture, sensitivity or calibration as well as the lighting conditions, the
image that is captured is affected substantially. Thus, we implemented a design which
is capable of tuning the threshold dynamically regarding the SNR ratio. For example,
invalid light sources such as planets, the moon or reflections from the sun are perceived as
noise sources. In these cases, it is really hard to distinguish a star from noise, so what we
actually do is configuring the threshold according to the levels of noise in the image. Thus,
the pre-defined value of the threshold implies a noise reduction technique and is defined
experimentally. In order to configure that value dynamically during the execution of the
algorithm, we set AXI4-Lite interface. As we can see in Fig. 3.19, there is an extra set
of ports named AXI_LITE, so as to be able to receive data directly from the PS without

73

requiring a handshake. More specifically, AXI4-Lite protocol supports a set of 32-bit
registers which are addressed to well-defined positions in memory. Therefore, the desired
values of the threshold and the growing threshold are written to these specific addresses and
the Clustering component determines them, simply by reading the corresponding register.
Hence, our HW/SW co-design can be adjusted regarding the project requirements and
offers support for several camera types.

Finally, let us explain how TLAST_OUT signal is driven. Due to the nature’s algorithm
it is clearly uncertain when the last cluster will be detected. Although it is quite unlikely,
there is a possibility that no clusters will be detected at all. Even in that case, our
component must indicate that the process has been completed. This is done by asserting
the TLAST_OUT signal. Again, there is a signal named lastlter which is set when the
last sliding window is received. Also, the Clustering Kernel has a port that drives a
signal called endProc which indicates that the search of the current window is finished.
TLAST_OUT is controlled by the logical conjunction of the aforementioned signals and is

followed by a valid data transmission of a zero pixel.

Receive
Window

Pause
Transmission

Figure 3.20: Data transmission pipeline.

Clustering Kernel

At this point, an in-detail description of the Clustering Kernel is presented. The exact
block diagram is depicted in Figure 3.21. As we can see, this block consists of several
units which interact and cooperate in order to perform the star detection algorithm. The
functionality of the clustering component is described by the following:

upperThresLoc

This unit, as the name suggests, performs a streamlined thresholding operation while
receiving the binned pixels. Every pixel that is received, is compared with the upper
threshold and if its value is greater or equal, its corresponding coordinates are stored in
the mainStack. Actually, mainStack consists of three individual stack structures, two for

the x, y coordinates of the pixel and one which refers to its position in the 3 x 3 NoS.

74

[Clustering Kernel

binning pixels addr

— = upThresLoc }— fsm4RAM Map ‘

P
= Y
2

clusters
RAM mainFSM g
l =
coordinates pixels

N neighChecker

| mainStack |<—-|:ump5tack|

—‘l‘i coordinabes]

Figure 3.21: Block design of the Clustering kernel.

Every pixel identified during this process is supposed to be the initial point of the search
and furthermore it is the centre pixel of the square Rol. Thus, these pixels are referred as
starting pizels.

fsm4RAM

This is the second main block of the Clustering Kernel. What it actually does, is
converting the x, y coordinates of the pixels to the corresponding address of the RAM
memory block. This is a non trivial computation, because as it will be described in the
following paragraphs, RAM is considered as a cyclic buffer and all the functional operations
refer to a virtual address that needs to be transformed into the physical address. Moreover,
in every iteration the virtual addresses are mapped in a different way to the corresponding
physical addresses. Additionally, this block controls reading and writing operations of
both RAM and Map units.

neighChecker

The third main block of the Clustering unit is called neighChecker. This block performs
the growing region algorithm, meaning that it checks the adjacent pixels in a 3 x 3 region.
This was a major challenge for the proposed algorithm, since the way that it is executed,
affects the performance of the whole system significantly. As it has been already described
previously, an efficient pixel search mechanism was introduced in this thesis. Therefore,
this block needs to adapt to this mechanism in order to identify the exact position of the
incoming pixels in the image plane. Thus, it has knowledge of the centre pixel coordinates
in 3 x 3 grid, and it compares each neighbouring pixel to the growing threshold. The
results of this comparison are extracted as pixel coordinates as long at the pixel is part

of the cluster. These coordinates as well as the pixel’s position in the NoS are stored in

75

the corresponding stacks so that the referenced pixel to be consequently checked. The
neighChecker unit receives the centre pixel’s coordinates and a number that refers to its
unique position in the block that was detected. Having this information, it can determine
which of the 9 cases of NoS is currently being checked. For each distinct case, there are
extreme cases which must be taken into account. These cases arise when the central pixel
of the 3x 3 region is located at the edges of the window, and therefore the NoS is configured
differently. Figure 3.22 shows every possible case where the centre pixel of the block is a

starting pixel.

! ! : ! : ! ! !

* ! : ok : : Lo
...... SUNUIE [U S PN SRS S
A
i i i i i i ! !

i i i i i i ! !
______ R
"""" [|y e R | |
| i ' i ' i ! i
i | i i i | ' |
i i i i i i ' i
i i i i i i ' i
i i i i i i | i
—————— +-----d ————— ————— Rl TR
! ! ! : : :

o O T T M O O T e

i i
------ =mmmei p-mne- - R

i P | i ' i ' i

i P i | P ' P |

i i i | P i P i

S R N D N
______ I —| Y T [| T HR -

:’ """ | TTTTTTS [I TTTTTTS i
H [i] I i
i | ' ' | |
i : ! ! : :
A [
T ! * |
: : | :

Figure 3.22: Illustration of every possible case for reading operation of starting pixels.

At this point, let us describe how cluster determination occurs. As it’s already men-
tioned, pixels which are potentially part of a cluster are stored in mainStack. The algo-
rithm begins the search from the initial point referred as starting pixel. Then, the Rol
is determined according to a generic variable called mazInd that is pre-defined regarding
the project requirements. In this thesis, we assumed that there are clusters of maximum
5x5 pixels. Thus, the value of mazInd is equal to 3, so as to limit the searching area and
to be able to detect 5x5 clusters. An illustration of the Rol determination is shown in
Fig. 3.23 bellow. Once the searching within the Rol begins, the value of the stack pointer
of the mainStack is stored temporarily and specifies the initial state of the stack. During
the search into the Rol, the value of the stack pointer fluctuates depending on the amount
of pixels that belong to the cluster. So eventually, when the value of the stack pointer
becomes equal to the initial value, the search has been completed. In order to identify the
cluster dimensions, four variables are used which are initialized with the starting pixel’s

coordinates. Each variable refer to an up, down, left and right movement while searching

76

into the Rol. Upon completion of the cluster detection, these variables are forwarded to
an internal block called clusterCal. This block is responsible for computing the cluster
dimensions. Furthermore, it determines the coordinates of the up-left pixel of the cluster.
However, it might be possible that a single pixel has been detected within the Rol. In this
case, we suppose that an individual pixel cannot form a cluster so it is considered invalid
and is rejected. Additionally, it is possible that a cluster of 7x7 pixels is detected. In
that case, pixels in a 5x5 grid out of the total 7x7 region, are grouped together to form

a smaller cluster.

T T T T T T

[1l i ' ' 1

[| i ' ' 1

i i i ' 1 I

i | i ' ' 1

| | i ' ' 1
------ tommmmpmmmmm o Hninieiidy Mttty

i i i i ! 1

i i i i ! 1

' i | i ! 1

i i i i ! 1

i i i i ! 1
______ [PR R S —

| |

| |

| |

| |

| |
______ [—mmmah

*

"" maiind | o
! i
AP S I I I e
r | | | | :

R I
! B! ! ! !
------ e Ot LT S
i | B i | i i
' i ' [' |
| 1l | [| |
| 1 | [' |
i 1 i I i i

Figure 3.23: Determination of Region-of-Interest.

RAM

RAM is a memory block where each sliding window of the received image is stored.
It supports reading and writing operations which are controlled by the enabling signals
re and we respectively. The depth of the RAM block is defined regarding the window’s
dimensions, hence it is equal to winHeight x image Dim pixels (fig. 3.18). Since the sliding
windows are overlapping, the total amount of the incoming binned pixels in each iteration
(except for the first and the last one) is equal to (winHeight — maxInd) x imageDim.
Thus, we use a virtual pointer that points to the physical base address of the current sliding
window. Every block in each iteration refers to the virtual coordinates of the pixel in the
window. Figure 3.24 represents the addressing operation for the first three iterations with
an overlap of 3 image rows. Due to simplicity, we suppose that the RAM block is a 2D
array of the same size as the window. On the left side, the numbers refer to the physical
addresses as if they were actual image rows. On the right side, the virtual pointer (vp)
points to the corresponding physical base address of the window in RAM. The numbers
on the right side, indicate the physical coordinate of the image that refers to its row.

Map

Map is actually a memory unit that operates as a boolean map. It is designed similarly

7

A
3

0 0 & 0 32
‘[maxInd Al
I oo 1 £— vp
‘[maxInd 18 18
|3 pogrmmmmmm = 13 *— vp |3
15 ‘['“'“'“" 15 15 11
iteration: 0 iteration: 1 iteration: 2

Figure 3.24: Example of the addressing operation.

to the RAM block and has the same size. The only difference between them is that it
stores data of 1 bit. Reading and writing operations are driven by the same signals used
in RAM. Each address of the block, represents a pixel on the window in the corresponding
address in RAM memory. As we described earlier, when checking of the neighbourhood is
completed, the central pixel’s position on the Map is marked with an ace which indicates
that it has been checked. Once, this happens, it cannot be checked again meaning that a
pixel can belong to only one cluster.

mainStack

The mainStack is used for notation brevity, and it actually refers to a set of three stack
structures. The first two are used to store row and column coordinates of the pixels on
the sliding window. The third one is used to store the relative position of the detected
pixel in the 3x3 NoS. Each position is represented by a number in range 0 to 8 and is
used to improve reading operation from the memory. Hence, 4 bits are required for the
data width in order to be able to store the specific positions. The stack has an enabling
port and a port that defines whether push or pop happens. In addition, it has an output
port for the stack pointer so as to provide the current state of the stack as well as empty
and full output signals.

compStack

This unit consists of a set of three stacks as well and is a complementary structure
to the mainStack. These stacks are used to store the same objects as in the mainStack.
Starting pixels with row coordinate greater or equal to winHeight —maxInd are stored in
compStack in order to be checked within the next sliding window. Starting pixels that are
bellow that borderline, cannot define a 7x7 Rol and we assume that the cluster is better
detected among the following image rows. Before, storing these pixels to the compStack,
we need to convert the coordinates into the virtual coordinates of the next sliding window
so that they follow the same notation.

mainFSM

The last block of the Clustering Kernel is the mainF'SM which is a finite state machine

that controls the interaction between the individual components. It drives the signals of

78

reading and writing operations for both the RAM and the Map and it actually handles the
individual processing steps of the clustering algorithm. The pipeline of these consequent

stages is shown in the following diagram.

MO

Receive Complete Check
Window ransmission? yES | compStack

YES

h 4 J'
Check Pop from
[Start Process]—»[TS @ o
YES T
MO

Copyto |
compStack |

Figure 3.25: Pipeline of the processing steps handled by mainFSM.

Design parameters

At this point, the exact values of the main generic variables that have been used in

this design are listed bellow:
e Data width: 12 bits
e Original Image Size: 2048x2048
e imageDim: 1024
e winHeight: 16
e Column Width: 10 bits (Columns in range 0 to 1023)
e Row Width: 4 bits (Rows in range 0 to 15)
o Cases Width: 4 bits (Cases in range 0 to 8)
e Depth of RAM and Map: 16384 (imageDimxwinHeight)
o Address Width: 14 bits (Address in range 0 to 16383)
e Depth of mainStack: 1024

e Depth of compStack: 512

3.2.3 Low Level Implementation

In the previous subsection, a high-level description of Clustering component was pre-
sented. Here, a more detailed overview of the low-level implementation is discussed.

Clustering Component

As shown in Fig. 3.19, two FIFOs are used in order to support the handshake mecha-

nism. Reading and writing operations for these IPs are handled exactly as it was described

79

for the Averaging 2D Binning. However, it is worth presenting how the data transmis-
sion is controlled. Firstly, a set of constant variables is introduced so as to indicate the
exact number pixels that are received per sliding window. The total number of iterations

required so as the entire image to be processed is obtained as follows:

itDiv = (imageDim-winHeight) <+ (winHeight-maxInd)
itMod = (imageDim-winHeight) mod (winHeight-maxInd)

if (itMod = 0) {
totallter = itDiv+1

} else {

totallter = itDiv+42 }

In each iteration, a certain amount of pixels are supposed to be received. For every

possible case, the exact number of the incoming pixels are calculated as follows:

px1stWin = imageDim xwinHeight
pxPerWin = imageDim x (winHeight-maxInd)
pxLastWin = imageDim xitMod

Every time the transmission of an entire window is completed, an iteration counter
increases its value. There is also a pixel counter for the incoming data so as to indicate
whether the transmission should be paused comparing its value to the aforementioned
variables. Thus, TREADY_OUT is driven by a signal named pztReady based on the pixel
counter as well as by an output signal of the Clustering kernel named recNezt which indi-
cates that the search operation is finished. Also, there is no need to assign TREADY_OUT

when the entire image has been checked so the inversion of lastlter is used as well.
TREADY OUT = (prtReady OR recNext) AND [NOT (lastIter)]

That process of how the handshake mechanism is implemented is illustrated bellow in
Figure 3.26.

As for the AXI4 Lite communication, an instantiated IP block is provided by Xilinx
Vivado suite which implements the logic architecture needed in order to support the AXI4-
Lite protocol. What we did, was simply adding the desired user logic so as to read from
the specified registers and export the data to the top level architecture of our Clustering
component.

Clustering kernel

At this point, an analytical low-level description of each individual component of the
Binning kernel is presented.

upperThresLoc

As we already pointed out, this block performs the initial thresholding and identifies
the starting pixels while receiving the incoming binned pixels. Two variables are used

which basically are mapped to the equivalent virtual coordinates of the sliding window.

80

H = EEEEEEREN

T Y om Y om f
) A

I I
ACUH $ABUL 3 A0 ¥ A0 AL S A0l 0L 7 AELE ACLY FABGD T ABUL AR Y AHEd T 40U 0Rs ¢

i I R T T T

Figure 3.26: Behavioural simulation of driving TREADY signal for a 256x256 image and win-
Height of 16 rows.

Since the first sliding window has been received, the row coordinate is re-initialized to
the value of mazInd to match the overlap. Although it is not necessary for our project,
a mechanism to stall the operation is developed so as to remain idle when a pause in
transmission occurs, excluding the case of a complete window transmission, caused by the

de-assertion of TREADY _IN signal.

N s I N o B I . —

F] V68 Y) X]
{ {

| | | | X

0
97 98

Figure 3.27: Behavioural simulation of upperThresLoc.

fsm4RAM
Regarding the functionality of this particular block, we could say that is partitioned

into three basic operations which concern the generation of addresses for reading and
writing from/to the memory units. The first one is about the addresses in which the
incoming pixels are written in the RAM block. The second one is the most complex and
refers to the generation of addresses where the desired pixels are stored in RAM. This
process, needs to adapt to the growing region algorithm that was described in paragraph
3.2.1 and also needs to cover every possible extreme case. As we already mentioned before,
these extreme cases arise when the central pixel of the 3x3 neighbourhood is located at the
edges of the window plane. In the following chapter, an extensive description is presented
of how these cases are formed so as to improve the performance of the system and achieve
higher clock frequency. Briefly, these extreme cases are divided as follows: every possible
relevant position where the pixel was detected and happens to be in the first row of the
window; respectively for the last window row as well as for its first and last column. The

last alternative case only concerns the starting pixels and is depicted in figure 3.22. The

81

third operation that is performed in this block, is about generating the reading addresses
so that the clustered pixels to be exported.

The fsm4RAM receives a pulsing signal that indicates whether to start the reading
or writing process. It also receives the current coordinates of the central pixel and its
relative position in the 3x3 NoS so as to be able to compute the desired addresses. As for
the cluster-centric reading, it is provided with the calculated cluster dimension and with
the up-left pixel’s coordinates. Supposing that the cluster dimension is equal to K, the
addresses of the corresponding KxK region are produced.

In order to calculate each address, it requires knowledge of the physical base address
of the RAM block. Thus, it has an input port to receive the window row where the vp
points. We developed a function which given the i and j coordinates as well as the vp,
computes the physical address in the RAM. The following picture shows the exact VHDL

code used to implement this function.

if tempSum == winHeight-1 then
empRes = tempSum*imageDim + j;
alsa

empRes = (tempSum-wirHeight) *imageDim + j;

14 .
EE A

address := std_legic_vector(to_unsigned({tempRes, addrwidth

return address;

Figure 3.28: VHDL code of the function that computes the addresses.

ENESEEEEEEEEEEEEEEEEEEEEEEEEE SN RSN EEE NN NN N

Figure 3.29: Behavioural simulation of fsm4ram.

neighChecker

This block is responsible for the growing thresholding operation. It receives the values
of the adjacent pixels within the 3x 3 region and it compares them to the growing threshold.
If their value is greater than or equal to the threshold, it gives as outputs the corresponding
coordinates and the relative position of the detected pixel in the grid, which is referred as
caseBox. However, there are a few more conditions which need to be met so that a pixel
to be considered as part of the cluster. We could split the pixel check into three individual
processes. First of all, a pixel needs to be inside the Rol so as to be considered as part
of the cluster. Secondly, it is obvious that value needs to be over the threshold so as to

check its neighbourhood. Finally, as we are trying to improve the algorithm performance,

82

an increased level of efficiency is required. Thus, the idea is to exclude unnecessary pixel
searches which add considerable latency. This happens when the pixel to-be-checked is at
the corners of the window. However, it might belong in the cluster so it should be marked
in the Map as well.

Other than the aforementioned operations, the neighChecker block also keeps track
of the positional movement while the searching within the Rol happens. As we already
described, a set of variables is used so as to store the outer edges of the cluster that is
currently detected. Whenever a new central pixel is checked, its coordinates are compared
to these exact variables and they’re updated if needed.

This component actually receives pixel values. Therefore, it is crucial that it has
knowledge of the centre pixel’s relative position on the image plane. In order to obtain
this knowledge, it receives the i, j coordinates as well as the caseBox of the current central
pixel in the 3x3 grid, so as to map the incoming pixel values to the actual pixel’s position
in the sliding window. So, the correlation must be determined between the addresses
generated by the fsmdram and the pixel values received by this block. This procedure is

illustrated in the following Figure 3.31.

pl i OFT PO O LR R A

P

Figure 3.30: Behavioural simulation of neighChecker.

RAM

The RAM block consists of a basic logic as of its design implementation. However, it
is worth mentioning how the addressing operation is controlled. During the first iteration,
a full window is received so as to fill the memory. In this case, the virtual and the physical
addresses are identical, as the first pixel of the image is stored to the first memory address,
the second pixel to the second address and so on. The memory addresses of the RAM
block are consecutive in the PL. memory; however let us consider it as a 2D array where
in each cell a pixel is stored. So, here the virtual pointer points to first row of the array
meaning that the first pixel is located to address 0. Supposing that the overlap between
the windows is of maxInd=3, the last three rows of the image are kept, and the next
(winHeight — maxInd) rows are received to complete the sliding window. During second
iteration, the first row of this current window is supposed to be the first one among the

three rows kept from the previous window. Thus, the virtual pointer points to this exact

83

| | address |
i,] | caseBox =| fsm4RAM | =| RAM
i-j’é lf h &
§1?®/* 42 17, 23
123 l
i-1, -1, 0 I
— neighChecker I mainStack

Figure 3.31: Illustration of the correlation between the operations performed by fsm4RAM and
neighChecker blocks.

row which is stored in the (winHeight — maxInd)-th physical row of the RAM. All the

above are summarised for each iteration as follows:

e In every iteration: VP = VP-maxInd. If maxind > VP, then
VP = winHeight+VP-maxInd

e The physical row of the image is in the following range:
iter x (winHeight-maxInd) < i < iterx (winHeight-maxInd)+winHeight-1

Map

The Map unit is driven by the exact same signals as for the RAM. Hence, reading
and writing operation happen concurrently. We should mention that while the incoming
binned pixels are being stored to the RAM memory, a writing operation occurs to the map
as well, so as to clear the marked cells which refer to the previous sliding window.

mainStack & compStack

The mainStack and compStack follow the stack data structure logic. As we’ve already
mentioned, they consist of three separate stack units of the same depth. However, they
are able to store data of different widths according the generic variables that are defined
by the project requirements. They support a single channel meaning that push and pop
operations cannot happen at the same time. These operations are controlled by two input
signals, one which defines what kind of operation occurs and one that generally enables it.

mainFSM

This last component named mainF'SM, is responsible for handling the individual pro-

cesses. Figure 3.25 presents the pipelined steps that are controlled by this FSM. First

84

of all, we need to clarify that each iteration is divided into three main stages. These
stages are defined by which component operates to mainStack. During the first stage, the
binned pixels are being received and stored to the RAM memory. While this is happening,
the upperThresLoc is performing the thresholding so it writes to the mainStack. When
the storing process has been completed, the data from the compStack are copied to the
mainStack until it becomes empty. Afterwards, the algorithm is executed meaning that
neighChecker operates to mainStack by writing the coordinates of the detected pixel. So
these components should be able to drive a single port. When designing in hardware, it
is not trivial how to handle this. The way it is resolved, is by designing a multiplexer
(MUX) which has as inputs the three individual signals and is controlled by a selecting
signal which is driven by mainFSM. For each stack we have three different MUXs; one for
the data to-be-stored and two for enable and rd/wr signals.

The mainFSM uses the components output signals to identify which processing step
should be executed next. For example, every time a neighbourhood is checked, it reads
the state of the mainStack’s stack pointer which is compared to the initial state of the
mainStack after popping the starting pixel. If initSP and currSP are equal, we proceed
to the extraction stage, where as the name suggests, the cluster is being extracted to
the output. In order to achieve synchronization between the individual operations, the
mainFSM uses a counter named ce, so having knowledge of the latency introduced by each
block it can determine which processing step will happen.

As it was described in the previous paragraphs, it is possible that a cluster of a single
pixel is detected. This cluster is discarded as we suppose that it is invalid. What we do
is driving the second and the third bit of the signal that holds the cluster dimension into
an OR logic gate. If the dimension is equal to 1 (001 in binary), the output of the gate
is 0. This signal is driven to an AND logic gate with the validOut signal which indicates
that a valid output is exported from the Clustering kernel. This is a way to ground the
validOut signal efficiently in case that an invalid 1x1 cluster is detected.

Finally, we will describe how it is identified whether the growing region algorithm of
a pixel is executed in this current window or not. We introduced three separate signals
for each condition that needs to be met so that the pixel will be checked. These three

conditions are checked individually and are defined as follows:
e passl is set if current pixel’s row is less than (winHeight-maxInd)
e pass? is set if current pixel is not a starting pixel
e pass3 is set if the last sliding window of the image is processed
These three signals are driven to an OR logic gate, which means that if none of the

above conditions is met, the pixel should be checked within the next sliding window and

therefore, it is stored to compStack.

85

3.2.4 Performance-Wise Optimization

At this point let us present the main optimisation steps that we followed in order to
improve the algorithms performance. In order to measure the improvement we used some
timing constraints and we tried to achieve the highest possible post-implementation clock
frequency. The description mostly refers to the steps that increased the clock frequency
significantly.

First of all, a widely used technique is to store the incoming data to registers instead
of using the inputs directly. Most commonly, the output data are stored in registers before
being exported. In both methods, we manage to lower the critical path, which refers to
the path with the maximum delay between input and output. In our design where, data
are forwarded from one component to another, and in some cases to multiple blocks, we
limited the critical path of the entire design along the paths of the internal blocks. As
it will be discussed in the following paragraphs, the critical path of the Clustering kernel
concerns the neighChecker block, which is the most complex one.

upperThresLoc

A technique that was adopted by almost every block which refers to pixel coordinates
is that we handle signal overflow. After performing a lot of experimentation, we came
to conclusion that it is an exceptionally slow operation to reset a signal, especially for
signals of many bits. In terms of hardware, resetting a signal to a specific value such as
0 or 1 implies connecting it to ground or Vdd (supply voltage). So, instead of setting a
variable to zero, we take advantage of the overflow that happens when a signal that holds
the maximum possible value is increased. Additionally, an if-else condition in VHDL is
converted to circuit logic for hardware that is probably implemented by a multiplexer. By
that proposed transformation, it is obvious that we simplify the circuit’s logic. As shown
in fig. 3.32, for each of the three conditions, the logic for j signal is identical. As for the i
signal, we can see that on the left code it follows a different logic for each condition while

on the right code these cases are decreased.

if j < imageDim-1 then if j < imageDim-1 then
==]3+1; i<=1i;
elsif 1 < winHeight-1 then] <= j+1;
i ==1i+1; elsif i < winHeight-1 then
j == (others == '0'); i == i+1:
else IZD i <= j+1;
i == (others == '0"); else
j <= (others => '0'); i <= i+1:
end if; i == j+1;
end if;

Figure 3.32: VHDL code transformation regarding signal overflow.

fsm4RAM

One major improvement to this block’s performance was precomputing some of the
variables used. More specifically, in this unit the central pixel’s coordinates are received
and the addresses of the adjacent pixels in the 3x3 region are computed. According

to the caseBozx, a different address needs to be calculated. So, instead of performing

86

these calculations in a series of nested if-cases, the addresses of every pixel in the NoS
are calculated all at once at the beginning of the process. Thus, the logic blocks used
to implement these calculations in hardware are excluded from the path resulting to a
significant reduction of the critical path latency.

Additionally, the overflow handling technique is also used in this block for the genera-
tion of the writing addresses. The coordinates are controlled in a similar way as described
previously. However, they are used indirectly by the developed function so as to compute
the corresponding address.

As it is already discussed there are some extreme cases regarding the position of the
central pixel that differentiate the reading operation from the RAM memory. These cases
occur when the central pixel is located at the edges of the sliding window meaning that
it borders less than 8 pixels so a 3x3 neighbourhood cannot be formed. In our case, the
code was written in a way that it contained a series of nested if-else statements. This
high-level-language (HLL) programming-based way of code writing is highly inefficient
for hardware designs. We suppose that each if-statement represents an individual task
performed by an FSM. So what we actually do is group together the similar tasks that
are performed under the same condition. This technique can be interpreted as a way of
task partitioning and it results to a derived parallelism. This process is explained more
clearly in the illustrated Figure 3.36 bellow. For example, those cases which involve the
possibility of a centre pixel to be located in the first row of the window, are grouped into
a separate task which operates constantly regardless of whether the condition from which
they arose is satisfied. Therefore, the code is divided into six separate units that operate
autonomously and individually and each of them generates its corresponding results. In
the end, there is a multiplexer that simply identifies which condition was met in order
choose the output data correctly.

neighChecker

This block is actually the block that performs the most demanding operations and
therefore it consists of the most complex logic. So it is clear that it vital to improve its
performance in order to increase the operation frequency of the whole system.

As described earlier, there is a strong correlation between the operations performed by
the fsm4RAM block and the neighChecker. Therefore, the same logic described above for
the fsm4RAM was also adopted by this unit so that six individual blocks to be formed to
increase parallelism. Yet, the idea can be expanded to the lower levels of the design. For
every incoming pixel value, three check operations happen so that it can be considered as

part of a cluster. These three processing steps are described as follows:
e Comparison to the growing threshold and rechecking avoidance
e Check so that the pixel to-be checked is within the Rol
e Coordinates extraction and cluster dimension update

So instead of performing these three interdependent functional levels, we split them into

87

--------------------- Regular Cases

T (centreran = 9)
| if (centreRow = 0) {
../ code
} L (TP
else if (centreCol = 0) {_|
I code
]
else |
i code

PPl N . -// centreRow = winl-[eig,ht-l]
7 | if (centreRow =0) {

' i .

M. code

i e

vlse if (centreCal = lmageDlm--l.]'{ ~
e i code o

’ s }
N
L :
=/

% /i code
\

H

caseBox
L

centreCol = 0

centreCol = imageDim-1

Starting Pixel in Corner

Figure 3.33: Visualization of task partitioning.

three individual and independent processes. Each of the six so-formed sub-components
performs these separate processing stages. It needs to be mentioned that the third pro-
cess, which is responsible for the coordinates computation and the update of the cluster
outer edges, acts as if both of the two other conditions are satisfied. Each of these two
sub-processes, drive a well-defined signal which holds the post-checking result. If either
condition is not met, the output signal, which indicates the validity of the output data,
is grounded. The challenging task was how to handle the extreme cases where a pixel is
located to the corners of window. If the pixel belongs to the cluster region, there is no
need to check the neighbouring pixels, as it is certain that they have been already checked.
However, an update to the cluster dimensions should happen if needed. Again, there are
two blocks; one for the regular and one for the extreme cases, where each of them operates
as if their own condition is satisfied. So, it is required that they communicate with each
other in order to keep the cluster dimensions updated.

Map

The last idea that is proposed in this thesis in order to improve the algorithm perfor-

mance is the implementation of a Map. As it’s been already described, this map keeps
track of the checked pixels in the sliding window so as to avoid unnecessary actions. More

specifically, there are two levels of rechecking avoidance control. The first one, is operated

88

—| growing threshold

ixel check | Rol
P |

/" main process

normal cases

clustDim

extreme cases

\ J
o s

|

Figure 3.34: Illustration of the three individual sub-processes performed by neighChecker com-

ponent.

by the mainFSM while a pair of pixel coordinates is popped out of the mainStack. If the
corresponding pixel’s value on the Map is equal to one, the pixel has been already checked
so it is rejected and the next pair of coordinates is received. The second level of rechecking
control is performed by the neighChecker block as described in the previous paragraph.
The block basically receives the input pixel’s value as well as its corresponding value on
the Map and acts proportionally.

After proceeding to the aforementioned performance-wised optimisation steps, the re-

sults regarding the achieved clock period are presented to the following Table 3.1.

Table 3.1: Table of the achieved clock period per component after optimisation

Clock Period Clock Period Percentage
Component L. L.
Before Optimisation | After Optimisation | Improvement

upperThresLoc 3.7 ns 2.4 ns 35.1%
fsm4ram 5 ns 3.5 ns 30%
clusterCal 4.3 ns 3.2 ns 25.6%
neighChecker 9.4 ns 4.4 ns 53.2%
Clustering kernel 11.2 ns 4.3 ns 61.6%

3.2.5 System Integration

In this subsection, we present the integrated system which contains both the Averaging
2D Binning and the Clustering component. The A2DB component as well as the Clustering
component are hosted on the PL. More specifically, the Clustering component receives data
after the binning process and it follows the A2DB component as it is illustrated in the
block design in Fig. 3.35.

As we can see, it is almost the same block design as the one depicted in Fig. 3.17, with

the difference that the Averaging 2D Binning block interpolates. In that case, there are

89

Averaging 2D .
Binning H Clustering

Processing System (PS) Programmable Logic (PL)

Figure 3.35: Pipeline of the processing stages of the HW/SW Co-design.

two extra stages in the processing pipeline which apparently refer to the binning process.
The binned pixels are directly forwarded to the Clustering component and transmitted
to the AXI_DMA so as to be stored to the DDR. When a full window has been received
and stored, we need to send an identification signal to the A2DB unit so as to pause
the transmission and it will subsequently inform the AXI_DMA to stop its individual
transmission of the original image. The fifth step actually is refers to the reading operation
from the DDR memory handled by the processor, where we are able to extract the results
to our Host PC. One more significant difference between this design and the one pictured
in fig. 3.17, is that the data received from A2DB aren’t consecutive. However, this does
not affect the operation of the system at all. The block design of the integrated system as
it is configured in Vivado Design Suite is illustrated in the following figure 3.36.

wwwwwwww

Figure 3.36: Block design of the HW/SW Co-design.

90

Chapter 4
Experimental Evaluation

In this chapter, a complete overview of the experimental setup is presented regarding
the tools and the datasets being used for our experimental and evaluation procedures.
Additionally, a full report of the interfaces results and an in-depth performance analysis
regarding the resource utilization of the FPGA, the operation frequency and the power
consumption is discussed. Finally, an estimation is of the entire star tracker system perfor-

mance is made so as to demonstrate the capabilities of our proof-of-concept architecture.

4.1 Experimental Setup

Firstly, the experimental setup and the specifications of the board, on which the ex-
periments were conducted, is presented. Our target evaluation System-on-Chip FPGA,
as mentioned, is Xilinx Zyng-7020 SoC. An extensive description of the SoC architectures
was already discussed in Chapter 2.5. The CAD tool utilised for HW design was Xilinx
Vivado Design Suite v2019.1 for Ubuntu Linux Operating System. In addition, we used
the supplementary tool Xilinx Software Development Kit (XSDK) to create embedded
applications running on the dual ARM Cortex processor of the Zynq SoC so as to set up
the PS-PL communication. Finally, the images used for the simulations were processed in
MATLAB 2018a, in order to be converted into the desired format. More specifically, text
files were created containing the pixel values of the 2048 x2048 greyscale images. These
files were simply imported to the DDR memory of the SoC FPGA implying a simplified
test case where the images are received from the image sensor.

For the scope of this thesis, the conducted experiments focus on the preprocessing
stages of a star tracker emphasising on the accelerating clustering algorithm. As already
mentioned, greyscale images with resolution of 2048x2048 were used as inputs, although
lower sized images were tested as well due to the configurability of our system. An unbiased
input dataset was created from a repository of NASA that contains the full record of the
Cassini spacecraft’s raw images taken from Feb. 20, 2004 to Cassini’s end of mission on
Sept. 15, 2017 [14]. Figure 4.2 illsutrates exactly how the board is connected to the
development host PC so as to establish the USB connections for the UART and JTAG

92

programming.

Figure 4.1: Zedboard Development Board [13].

4.2 Results and Analysis on Zynq FPGA

In the following section the results of the implemented components are presented sep-
arately as well as the complete integrated system architecture. Each of them is analyzed
and evaluated regarding performance, power consumption and resource utilization.

Initially, we examined the correct functionality of our designs by performing be-
havioural simulations using specified testbenches. Consequently, experimental tests were
performed repeatedly for several image sizes and different parameters. However, for the
objectives of this thesis a single case scenario is discussed. Additionally, a software-oriented
implementation running on the PS of the SoC, which is adapted to the the HW designs, is
also developed and compared to our HW/SW embedded system regarding performance.

Averaging 2D Binning

We successfully performed data transmission without errors for 12-bit 2048x2048
frames at 125 MHz. We should mention that AXI4-Stream interface supports data trans-
missions at widths of powers of 2. Thus, each pixel is represented by a 16-bit value and
internally in the PL block it is handled as a 12-bit width number respectively. Addition-
ally, we managed to achieve the highest possible clock frequency at 250 MHz, although

within the integrated block design these timing requirements weren’t met due to remark-

93

USB Cable (JTAG)

Hiann

USB Cable (UART)

=
=
=
=

=

=

L

v

Micro
pC USB-B
Micro
USB-B Zyng

Z7020
AP SOC

Zedboard Development Board

Figure 4.2: Board Connection Setup [13].

ably slower DMA engine of the Zynq SoC. In that case, we achieved a total processing
time of approximately 33.56 ms on average containing the latency of the PS-PL loopback.
The total execution time as derived from the behavioural simulation in Vivado was ex-
tremely accurate as it produced a mean error of 0.0027 ms. As we can see, there is a
major difference between the measured processing timings as the proposed architecture is
significantly faster than the ARM processor. The following Table 4.1 presents the gained
speedup that we achieved with SoC FPGA acceleration compared to a single thread SW
implementation on ARM Cortex processor.

BEGIN

Output took 22371492 clock cycles in HW.

Output took 0.033557 s in HW.
Output took 33.557272 ms in HW.

Qutput took 1067793086 clock cycles in SW.

Qutput took 1.601690 5 in SW.

Output took 1601.691231 ms in SW.

Execution succeded! Same data produced by SW and HW!
END

Figure 4.3: Post execution result as shown in SDK terminal.

Table 4.1: Comparison of mean execution time between SoC FPGA and ARM CPU for Averaging

Binning operation

SoC FPGA Speedup
(Max Freq) | (Max Freq)

Execution Time 1607.46 ms 33.58 ms 47.9x 16.78 ms 95.8x

Platform ARM CPU | SoC FPGA | Speedup

In space applications, power consumption is among the most important factors when
considering a star tracker. Thus, in the Fig 4.4 we present the power consumption of the
Averaging 2D Binning block as it is estimated after implementation in Vivado. Finally, an

analytical overview of the resource utilisation of the FPGA is presented on the following

94

Table 4.2.

Summary
Power analysis from Implemented netlist, Activity derived from constraints On-Chip Power
files, simulation files or vectorless analysis.

Dynamic: 1.588 W (929%)

Total On-Chip Power: 1.731' W
Design Power Budget: Not Specified Clocks: 0027w (2%
Power Budget Margin: N/A 9o% Signals: 0.011W (1%
Junction Temperature: 45.0°C Logic: 000w (1%
Thermal Margin: 40.0°C (3.3 W) B BRAM: 0.006 W (1%
Effective 8JA: 11.5°C/W W ST 1535 W (959
Power supplied to offchip devices: 0 W 3% Device Static: 0143 W

Confidence level: Medum

Launch Power Constraint Advisor to find and fix
invalid switching activity

Figure 4.4: Estimated Power Consumption of Binning component.

Table 4.2: Resource Utilisation of FPGA for Binning implemented design.

Resources | Utilisation | Available | Utilisation (%)
LUT 5739 53200 10.79
LUTRAM 803 17400 4.61
FF 8317 106400 7.82
BRAM 9 140 6.43

Clustering

This component is the main block of the preprocessing operation and and therefore
plays a prominent role in the performance of the integrated system design. Nevertheless,
let us present an extensive analysis of it before examining the whole system. Again,
the DMA engine is a limiting factor to the achieved operation frequency. A cross-clock
domain technique was proposed so as to resolve this issue, however due to the definition
of the required DMA parameters we weren’t able to drop the clock period bellow 7 ns
(~ 142MHz). For correspondence purposes, we proceeded with a frequency of 125 MHz.
However, after the proposed optimisations which have been already discussed in Chapter
3.2.4, the achieved clock frequency is at 232 MHz out of 250 MHz maximum frequency
supported by Zync platform. Figures 4.5 and 4.6 depict an example of an output cluster
that was detected after the algorithm’s execution.

Again, several tests were conducted of different images and bellow an example is de-
picted of the output result in SDK terminal. The following Table shows the gained speedup
using the SoC FPGA accelerating platform. We should mention that the PS of the plat-
form can generate certain clock frequencies and therefore it cannot generate the required
clock period of 4.3 ns. Hence, the estimations refer to the closest possible frequency which
is 214 MHz.

As for the power consumption of this particular component, the estimated power as

reported by Vivado is listed bellow. Finally, the Table 4.4 below shows the resource

95

Figure 4.5: Behavioural simulation of an output detected cluster.

img

[1024%1024 double

799 800 801 802 803 804 805 806
706
707
708
709
710
711
712
713
714
715
716
F17

~
AR RN SR ar=) RN AT RN AR

—
[CRRT RN [N A - RN RN RN

AR R R A RN Y R AT L AR]
uE @ o e e @ @ @ w u)
AR - A N R AL A RN Y
L ART RRE RN 1. Y0 BT R N
@@ @ @@ s s @ i
AR RN AR A S SN WL,

Figure 4.6: Visualisation of a detected cluster on MATLAB.

utilisation of the FPGA for the implementation of the Clustering HW/SW co-design.
Integrated System

At this point, having examined how the two main components behave individually,
let us present the full overview of the proposed system’s architecture. The achieved clock
frequency is at 125 MHz as well, although it is estimated that the whole system can operate
at a frequency which is defined as the minimum frequency among the compared operation
frequencies of the individual designed blocks. An example of a behavioural simulation is
figured at the following picture 4.9.

In order to check the functional validity of the integrated system, several tests were
performed on the SoC FPGA accelerating platform, where a software-based implemented
algorithm was also executed on the ARM Cortex A9 processor. The produced results were
compared autonomously leading to the following output extracted to the SDK terminal.

As we can see, the PS-PL cooperating mechanism totally outperforms the PS imple-
mented operation. The Table 4.6 summarises in detail the results regarding the perfor-
mance of the integrated system’s proposed architecture.

At this point, it is worth commenting on the considerable timing overhead added by
the binning operation and whether it effectively contributes in the entire preprocessing
operation. As we know, large images are being processed for the cluster detection. The
SoC FPGA has limited resources so the image processing occurs in sliding windows. Addi-
tionally, the size of each window is dependant to the original image’s size so larger images
might lead to smaller window transmissions adding considerable timing overhead as well

as increased resource utilisation. Considering all the above, we can assume that averaging

96

BEGIN

Output took 3011149 clock cycles in HW.
Output took 0.009036 s in HW.

QOutput took 9.035860 ms in HW.

Qutput took 256182424 clock cycles in Sw.
Output took 0.384274 5 in SW.
Output took 384.274020 ms in SW.

Total number of clusters found is: 466!

Total number of reduced clock cycles after optimisations inreading operation: 2951
Total number of reduced clock cycles after optimisations in aceMap: 11013

Total timing reduction after optimisation in aceMap: 0.088104 ms

Success story! Same data produced by SW and HW!

END

Figure 4.7: Post execution results as shown in SDK terminal after clustering operation.

Table 4.3: Comparison of mean execution time between SoC FPGA and ARM CPU for Clustering

operation

SoC FPGA Speedup

Platform | ARM CPU | SoC FPGA | Speedup (Max Freq) | (Max Freq)
ax Freq ax Freq

Execution 383,14 ms 8.9 ms 43.1x 5.11 ms 75.4x

Time

binning is not an unnecessary processing step for the entire clustering extraction operation.
Either way, the processing time of approximately 34 ms per image frame, which can be
decreased up to 19 ms, successfully leads to the detection of hundreds of clusters relatively
fast. As of the power consumption, an extensive analysis is illustrated in Figures 4.11 and
4.12. As we can observe, the PS is responsible for the 92% of the total power consumption
and among the other units of the integrated system, the clustering component is the most
demanding due to the computationally intensive logic operations performed.

Finally, the following Table 4.6 presents a post-implementation summary of the re-
source utilisation of the FPGA platform. In addition, Figure 4.13 illustrates an extensive
report of the FPGA resource usage at an hierarchical form.

In conclusion, our proposed design architecture utilizes <17% of the total chip’s re-
sources for every FPGA primitive to support the proprocessing operation of 4 MPs 12-bit
image frames. Hence, there is space for additional HDL components of the algorithmic
pipelined steps of the star tracker. Ultimately, we developed an accelerating algorithm for
cluster extraction on the Zyng-7020 SoC FPGA with estimated on-chip power consump-
tion bellow 2 Watt.

97

Summary

Power analysis from Implemented netlist, Activity derived from constraints On-Chip Power
files, simmulation files or vectorless analysis.

Dynamic: 1.650W (92%
Total On-Chip Power: 1.797 W
Design Power Budget: Not Specified Clocks: 0.058 W 4%
Power Budget Margin: N/A 92% Signals: 0.018 W
Junction Temperature: 45.7°C Logic: 0.01ew
Thermal Margin: 39.3°C (3.3 W) BRAM: 0.023 W
Effective GJA: 11.5°C/W W PST: 1.535W (93%

Power supplied to off-chip devices: OW
PP P 8% Device Static: 0.146 W

Confidence level: Medium

Launch Power Constraint Advisor to find and fix
invalid switching activity

Figure 4.8: Estimated Power Consumption of Clustering component.

Table 4.4: Resource Utilisation of FPGA for Clustering implemented design.

Resources | Utilisation | Available | Utilisation (%)
LUT 9254 53200 17.39
LUTRAM 987 17400 5.67
FF 12258 106400 11.52
BRAM 20 140 14.29

34,196791429 ms

Figure 4.9: Behavioural simulation of the Binning-Clustering co-design.

BEGIN

Output took 22801314 clock cycles in HW.
Output took 0.033557 s in HW.

Output took 33.557272 ms in HW.

Output took 1364584594 clock cycles in SW.
Output took 2.046877 s in SW.

Output took 2046.876829 ms in SW.

Total number of clusters found is 466!

Success story! Same data produced by SW and HW!
END

Figure 4.10: Post execution results as shown in SDK terminal after Preprocessing operation.

98

Table 4.5: Comparison of mean execution time between SoC FPGA and ARM CPU for the

Integrated HW/SW Co-design

SoC FPGA Speedup
Platform | ARM CPU | SoC FPGA | Speedup
(Max Freq) | (Max Freq)
Execution
. 2050.32 ms 34.06 ms 60.2x 18.94 ms 108.2x
Time
Summary
Power analysis from Implemented netlist. Activity derived from constraints On-Chip Power
files, simulation files or vectorless analysis.
Dynamic: 1.649 W
Total On-Chip Power: 1.795 W
Design Power Budget: Not Specified Clocks: 0.057 W
Power Budget Margin: N/A 909 Signals: 0.019w
Junction Temperature: 45,7°C Logic: oolsw
Thermal Margin: 39.3°C (3.3 W) M BRAM: 0.021 W
Effective 9JA: 11.5°C/W W PST: 1535w
Power supplied to off-chip devices: O W % Device Static: 0148 W
Confidence level: Medium

Launch Power Constraint Advisor to find and fix

invalid switching activity

Figure 4.11: Estimated Power Consumption of the Integrated System.

Utilization
I 1.649 W (
> 1 0.003 W (<1% of total)

I 1.646 W
1 <0.001W (=

1 0.006 W (1

1 0.006 W (

> 10012 W
> 0 0.018W (1%
> B 0.031W
0 0.036 W [
I 1.536 W (
I 1.536 W (

of total)

% of total)

A1 Name
Sysinteg_bd_wrapper
IE dbg_hub (dbg_fub)
[T Sysinteg_bd i (Sysinte
[T] rst_ps7_0_125M

sinteg_bd rst_ps7

0_125M_0)

@ ps7_0_axi_periph (Sysinteg_bd_ps7_0_axi_periph_0)

[T] Averaging_20_Binning_0 (
IE system_ila_0

[T axi_dma_0 (Sysint
[T] axi_smc (5 |
[T Custering_O (Sysinteg_bd_

[T] processing_system7_0

Int

of total)

Integ_bd

Integ_bd_sy

eg_bd_axi_dma_0_0

raging_2D_Binning_0_0)

Figure 4.12: Analytic overview of the consumed power for each individual block.

Table 4.6: Resource Utilisation of FPGA for the Integrated System.

Resources | Utilisation | Available | Utilisation (%)
LUT 8837 53200 16.61
LUTRAM 849 17400 4.88
FF 11733 106400 11.03
BRAM 20 140 14.29

99

aQa = £ % Hierarchy

-~
Name 1
Sysinteg_bd_wrapper
3F dbg_hub (dbg hub)
bd)

» [1] Averaging_2D_Binning_O (
> [axi_dma_0
> [I] axi_smc
» [1] Custering_0
> [I] processing_system7_0

» [1] ps7_0_axi_perip
> [rst_ps7_0_125M g
(Sysinteg_bd,

Slice LUTs
(53200)

8837
478
8359
238
1412
2286
2772
o]
513
16
1142

Slice Registers
(106400)

11733
727
11006
483
2008
3088
2945
o]

657
33
1812

F7 Muxes
(26600)

25
0
25
0
o]

n
w o ooN o

Slice
(13300)

3851
242
3618
162
642
864
1126

250
12
616

LUT as Logic
(53200)

7988
454
7534
237
1292
1800
2763
o]
452
15
g75

LUT as Memory
(17400)

849
24
825

120

466

61

167

Block RAM
Tile (140)

11733
0

20
2.5

5

0

10.5

Moo o

DSPs
(220)

20

o0 00000000

&
PHY_CONTROL
(4)

130

0

o]

0

o]

0

0

o]

0

0

o]

Figure 4.13: Hierarchical presentation of the FPGA resource utilisation.

100

Chapter 5

Conclusion and Future Work

Nowadays, space applications have become extremely demanding and complex scien-
tific requirements need to be met. Taking these into consideration, we understand that
it is of vital importance to have a reliable attitude determination system which combines
high accuracy and real-time performance. For the time-being the identification speed is
the bottleneck of satisfying real-time requirements on the premise of robustness. Recently,
there is a growing interest in FPGA-based systems due to larger capabilities, lower costs
of reprogrammable logic devices and parallel processing architecture. Star trackers are in-
creasingly designed based on novel embedded HW platforms suchs as SoC FPGAs which
consist of an FPGA and a CPU core.

The work presented in this thesis demonstrates an accelerating algorithm for prepro-
cessing of a star tracker which is implemented in a HW/SW co-design on a SoC FPGA
platform. More specifically, the preprocessing is devided into two operation steps which
are averaging binning and clustering respectively. Both operations were designed, imple-
mented and tested individually using various real images. Additionally, performance-wised
optimisations for the cluster detection algorithm are also discussed and a detailed overview

of their effects on the operation frequency is presented.

The main core of this current thesis focuses on the integration of the aforementioned
sub-processes into a custom HW/SW co-design methodology so as optimise and map
efficiently the combinational logic to a compact embedded platform. Furthermore, the
algorithms were described in SW details and tested on the processing system of the SoC
FPGA as well. A full comparison between the proposed architecture designs is also pre-
sented leading to draw important conclusions. The HW /SW co-design totally outperforms
the ARM processor of the embedded device as it managed to decrease the processing time
by approximately 60x, although it is estimated that the speedup can be increased up to
108x. As of the energy consumption, the total on-chip power is estimated to be about
1.8 W meaning that the proposed architecture is highly suitable for a wide range of cost-
effective space applications. Last but not least, the proposed embedded system is relatively
non-demanding regarding the utilisation of the FPGA’s resources, leaving room for ad-

ditional HDL implementations for the purpose of a complete processing pipeline of an

102

ADCS.

Our future work will focus on the improvement of the HW performance including
further examination of the limiting parameters which affect the operation frequency, so
that our proposed system reach the maximum estimated frequency and even exceed it if
possible. Moreover, we will perform further experiments so as to extend the evaluation
and verification of our techniques using real data adjusted to the requirements of Infinite
Orbits. Finally, our major objective is to combine the proposed preprocessing design with
the centroiding and matching algorithms to complete the star tracker pipeline and include

that integrated system in a future space mission led by Infinite Orbits.

103

Bibliography

[1]

T. Sun, F. Xing, X. Wang, Z. You, and D. Chu, “An accuracy measurement method

for star trackers based on direct astronomic observation,” in Scientific Reports, 2016.

C. Liebe, “Star trackers for attitude determination,” in IEEE Aerospace and Elec-
tronic Systems Magazine, 1995.

Stack Exchange, “Camera perspective projection model.”
Photography Courses, “Look Out For Lens Distortion.”
ADCS For Beginners, “The Different Frames and the Keplerian Elements.”

P. Degond, A. Diez, and M. Na, “Bulk topological states in a new collective dynamics
model,” 2021, p. 28.

Q. Hua-Ming, L. Hao, and W. Hai-Yong, “Design and verification of star-map simula-
tion software based on ccd star tracker,” in 8th International Conference on Intelligent
Computation Technology and Automation (ICICTA), 2015.

L. Ortiz, L. Goncalves, and E. Cabrera, “A generic approach for error estimation of
depth data from (stereo and rgb-d) 3d sensors,” in 8th International Conference on
Intelligent Computation Technology and Automation (ICICTA), 2017.

D. Soudris, “Reconfigurable architectures or FPGAs,” in NTUA-ECE, Class: Digital
VLSI - Lec. 5.

Xilinx, “Zyng-7000 SoC).”

ARM Developer, “AMBA AXI and ACE Protocol Specification.”
Xilinx, “Axi dma v7.1,” in Vivado Design Suite, 2016.

AVNET, “ZedBoard.”

NASA-Solar System Exploration, “Cassini Raw Images.”

Northern Sky Research, “Satellite EOL: Not One Size Fits All,” 2018.

Istituto Nazionale di Fisica Roma, “Attitude Determination and Attitude Control,”
2015, p. 19.

104

https://tex.stackexchange.com/questions/96074/more-elegant-way-to-achieve-this-same-camera-perspective-projection-model
https://www.learningwithexperts.com/photography/blog/look-out-for-lens-distortion
https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-Lite-Interface-Specification
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vVRdU6MwFP0r-OBjJiF8hcdQkRZLP0XbvOykkNqsBSrN4tZfv7G66zhTy-5olwdI7px77j1nmAMZnEFW8kbecSWrkq_1fc7cb5Hv9MxOByVREHtoPKKp2_cHlhlheLsH9KkfdinCfdTrW4gGyQVxr2NExy5kf9OPPngoauu_gQyyrFQbtYJz3pRCGVlVKlEqYy0XNa9352hfXlWFOEebusp_ZGr7WgSLite5vuWiMV7Oxr1UW2NbFbr6JPJ98e300gCWvJDr3fPoTSZzPZgQF_HlAnAsfGDjzAbcMQXwOUGm6xPL4-JV6h8twzjFaOwPaDQKu72OZ7VbxfaQY2a_BwzDIEDUmt5QMglwz_oNOGb3-y0OLHkU0MVwrmV6H-qwtY5GikeYllVd6D9s-o8udlHbBOeTE1rovVPSj4boa-nJlX6PHft6EtlTE12ap6W3vticNLnU5jgX6VVITUTc03qPT0v_We_jtoTQaS2_PzwwqiPxOQR_Kjj735mod8B10knutDSuVkCWywrODmM3RZoWxNqB-0m4TELLnsfNUzAABz9ssXukZ2e_ANR2aEc!/dz/d5/L2dBISEvZ0FBIS9nQSEh/?urile=wcm%3Apath%3A%2Favnet%2Bcontent%2Blibrary%2Favnethome%2Fproducts%2Favnet-boards%2Fdev%2Bboards%2Bkits%2Bsoms%2Fzedboard%2Fzedboard-board-family
https://solarsystem.nasa.gov/raw-images/cassini-raw-images/?order=earth_date+desc&per_page=50&page=0
https://www.nsr.com/satellite-eol-not-one-size-fits-all/#:~:text=A%20satellite%20launched%20in%20the,remains%20the%20prevailing%20design%20life.

[17]

[18]

[19]

[20]

[21]

[22]

[23]

G. Lentaris, I. Stratakos, I. Stamoulias, D. Soudris, M. Lourakis, and X. Zabulis,
“High-performance vision-based navigation on soc fpga for spacecraft proximity oper-

)

ations,” in IEEFE Transactions on Circuits and Systems for Video Technology, vol. 30,

no. 4, 2020, pp. 1188-1202.

K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,
A. Pastor, D. M. Codinachs, and I. Conway, “Evaluation methodology and reconfigu-
ration tests on the new european ng-medium fpga,” in 2018 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), 2018, pp. 127-134.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, R. Domingo, M. Verdugo,
D. Gonzalez-Arjona, D. M. Codinachs, and 1. Conway, “Systematic Evaluation of
the European NG-LARGE FPGA & EDA Tools for On-Board Processing,” in 2nd
European Workshop on On-Board Data Processing (OBDP), 2021, pp. 1-8.

C. Urbina-Ortega, G. Furano, G. Magistrati, K. Marinis, A. Menicucci, and
D. Merodio-Codinachs, “Flash-based fpgas in space, design guidelines and trade-off
for critical applications,” in 14th European Conference on Radiation and Its Effects
on Components and Systems (RADECS), 2013, pp. 1-8.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,
D. M. Codinachs, and I. Conway, “Development and Testing on the European
Space-Grade BRAVE FPGAs: Evaluation of NG-Large Using High-Performance DSP
Benchmarks,” IEEE Access, vol. 9, pp. 131 877-131 892, 2021.

A. Pérez, A. Rodriguez, A. Otero, D. Gonzalez-Arjona, A. Jiménez-Peralo, M. A.
Verdugo, and E. De La Torre, “Run-Time Reconfigurable MPSoC-Based On-Board
Processor for Vision-Based Space Navigation,” IEEE Access, vol. 8, pp. 59 891-59 905,
2020.

V. Leon, G. Lentaris, D. Soudris, S. Vellas, and M. Bernou, “Towards Employing
FPGA and ASIP Acceleration to Enable Onboard AI/ML in Space Applications,” in
IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),
2022, pp. 1-4.

V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and
D. Moloney, “Improving Performance-Power-Programmability in Space Avionics with
Edge Devices: VBN on Myriad2 SoC,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 20, no. 3, pp. 1-23, 2021.

F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling Radiation Tol-
erant Heterogeneous GPU-based Onboard Data Processing in Space,” CEAS Space
Journal, vol. 12, pp. 551-564, 2020.

105

[26]

[27]
[28]

[29]

[30]

[41]

V. Leon, C. Bezaitis, G. Lentaris, D. Soudris, D. Reisis, E.-A. Papatheofanous,
A. Kyriakos, A. Dunne, A. Samuelsson, and D. Steenari, “FPGA & VPU Co-
Processing in Space Applications: Development and Testing with DSP/AI Bench-
marks,” in 2021 28th IEEE International Conference on Electronics, Circuits, and
Systems (ICECS), 2021, pp. 1-5.

Space Alliance, “Star Tracker Assembly-Introduction,” 2010.
M. Salomon and W. Goss, “A microprocessor-controlled ccd star tracker,” 1976.

C. Liebe, “Accuracy performance of star trackers-a tutorial,” in IEFEE Transactions

on Aerospace and Electronic Systems, 2002.

A. Eisenman, C. Liebe, and J. Joergensen, “The new generation of autonomous star
trackers,” 1997.

Wikipedia, “Equinox (celestial coordinates).”
P.Walree, “Distortion,” in Photographic optics, 2009.

R. Bezooijen, “Autonomous star tracker development,” in IFAC Automatic Control

in Aerospace, 1992.

G. Rufino and D. Accardo, “Enhancement of the centroiding algorithm for star tracker

measure refinement,” in Science Direct, 2002.

Wei, Y. Zhao, G. Wang, and J. Li, “Real-time star identification using synthetic

radial pattern and its hardware implementation,” in Acta Astronautica, 2016.

S. Schaire, S. Altunc, Y. Wong, O. Kegege, M. Shelton, and G. B. at al., “Investiga-
tion into new ground based communications service offerings in response to smallsat
trends,” in 32nd Annual AIAA/USU Conference on Small Satellites, 2018.

F. Jiancheng and N. Xiaolin, “Celestial navigation methods for space explorers.”

J. Rebordao, “Space optical navigation techniques: An overview,” in SPIE Digital
Library, 2013.

E. Turan, S. Speretta, and E. Gill, “Autonomous navigation for deep space small

satellites: Scientific and technological advances,” in Acta Astronautica, 2022.

S. Sheikh, D. Pines, J. Hanson, and P. Graven, “Spacecraft navigation and timing us-
ing x-ray pulsars,” in NAVIGATION: Journal of The Institute of Navigation, vol. 58,
no. 2, 2011.

J. Dong, “Pulsar navigation in the solar system,” 2018.

106

http://www.spacealliance.ro/articles/view.aspx?id=201002250904
https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)

[42]

[43]

[44]

[45]

[46]

[51]

[52]

K. Fujimoto, J. Leonard, R. McGranaghan, J. Parker, R. Anderson, and G. Born,
“Simulating the liaison navigation concept in a geo 4 earth-moon halo constellation,”
2012.

K. Hill and G. Born, “Autonomous interplanetary orbit determination using satellite-
to-satellite tracking,” in Journal of Guidance, Control and Dynamics, vol. 30, no. 3,
2007.

J. Diebel, “Representing attitude: Fuler angles, unit quaternions, and rotation vec-
tors,” 2006, pp. 5-10.

J. Peraire and S. Widnall, “Lecture L.29 - 3D Rigid Body Dynamics.”

C. Wielligh, “Fast star tracker hardware implementation and algorithm optimisations

on a system-on-a-chip device.” no. 59-61, 2019.

Xilinx, “Field Programmable Gate Array (FPGA).”
Altera, “What is an SoC FPGA?” in Architecture Brief.
N. Torsvik, “SoC FPGA Evaluation Guidelines.”

K. Maragos and D. Soudris, “Introduction to SoC FPGAs,” in NTUA-ECE, Class:
Digital VLSI - Lec. 7.

ARM Developer, “About the AXI4-Stream protocol.”

Xilinx, “Processing system 7 v5.5,” in Vivado Design Suite, 2017.

107

https://ocw.mit.edu/courses/16-07-dynamics-fall-2009/f5b25c0af8ec4f76776221c148ea15b3_MIT16_07F09_Lec29.pdf
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://datarespons.com/soc-fpga-evaluation-guidelines/
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol

108

	Περίληψη
	Abstract
	Ευχαριστίες
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Thesis Scope
	Project Objectives
	Thesis Outline

	Background
	Star Trackers
	Star Tracker Characteristics
	Sub-pixel Accuracy
	Theoretical Background
	Algorithms
	Commercially Available Star Trackers

	Related Work
	Space Navigation
	Celestial navigation for satellites
	Celestial navigation for deep space probes

	Rotational Kinematics
	The Earth Centred Inertial (ECI)
	Euler Angles
	Coordinate Transformation

	SoC FPGA Overview
	Xilinx Zynq SoC FPGA Architecture
	AXI4 Lite
	AXI4 Stream
	Design Flow

	Development on the Zynq SoC FPGA
	HW/SW Co-design of Averaging 2D Binning
	High Level Architecture
	Low Level Implementation

	HW/SW Co-design of Clustering
	Cluster detection algorithm
	High Level Architecture
	Low Level Implementation
	Performance-Wise Optimization
	System Integration

	Experimental Evaluation
	Experimental Setup
	Results and Analysis on Zynq FPGA

	Conclusion and Future Work
	Bibliography

