
Εθνικό Μετσόβιο Πολυτεχνείο
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών
Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

HW/SW Co-Design and Preprocessing for

Accelerating Star Trackers on SoC FPGA

Διπλωματική Εργασία
του

Παπαλουκά Εμμανουήλ

Επιβλέπων: Δημήτριος Σούντρης

Καθηγητής Ε.Μ.Π.

Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

Αθήνα, Ιούλιος 2022

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

HW/SW Co-Design and Preprocessing for

Accelerating Star Trackers on SoC FPGA

Διπλωματική Εργασία
του

Παπαλουκά Εμμανουήλ

Επιβλέπων: Δημήτριος Σούντρης

Καθηγητής Ε.Μ.Π.

Εγκρίθηκε από την τριμελή εξεταστική επιτροπή την 30η Ιουνίου 2022.

(Υπογραφή) (Υπογραφή) (Υπογραφή)

.............................

Δημήτριος Σούντρης Παναγιώτης Τσανάκας Διονύσιος Ρεΐσης

Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Μ.Π. Καθηγητής Ε.Κ.Π.Α

Αθήνα, Ιούλιος 2022

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Τομέας Τεχνολογίας Πληροφορικής και Υπολογιστών

Εργαστήριο Μικροϋπολογιστών και Ψηφιακών Συστημάτων

(Υπογραφή)

...

Παπαλουκάς Εμμανουήλ
Διπλωματούχος Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © –All rights reserved Παπαλουκάς Εμμανουήλ, 2022.

Με επιφύλαξη παντός δικαιώματος.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολο-

κλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση

και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την

προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα.

Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να

απευθύνονται προς τον συγγραφέα.

Περίληψη

Οι διαστημικές εφαρμογές απαιτούν ταχεία και ακριβή μέτρηση του προσανατολισμού ενός

δορυφόρου, κάτι που μπορεί να επιτευχθεί μόνο με τη χρήση ανιχνευτών αστέρων. Το όργανα

αυτά αποτελούνται από ένα ψηφιακό αισθητήρα εικόνας που καταγράφει τον ουρανό, καθώς

και από ψηφιακό υλικό το οποίο ανιχνεύει τα αστέρια στην εικόνα και τα αντιστοιχίζει σε

γνωστούς αστερισμούς καταλόγου ώστε να προσδιορίσει τη θέση του δορυφόρου στο αδρα-

νειακό σύστημα. Η ανίχνευση αστέρων είναι υψηλής πολυπλοκότητας και απαιτεί μεγάλους

χρόνους εκτέλεσης, ιδίως εάν χρησιμοποιούνται συμβατικοί μικροεπεξεργαστές. Συνεπώς, η

ανάγκη για ανιχνευτές αστέρων υψηλής απόδοσης οδήγησε στην αυξανόμενη χρήση εμπορικών

συσκευών υλικού «από το ράφι» σε διαστημικές εφαρμογές.

Στην παρούσα διπλωματική εργασία αναπτύσσουμε σε ένα ενσωματωμένο σύστημα SoC

FPGA τα στάδια προεπεξεργασίας δεδομένων της προγραμματιστικής ροής ενός ανιχνευτή

αστέρων τα οποία αφορούν την ομαδοποίηση εικονοστοιχείων για μείωση του όγκου δεδο-

μένων, και την ανίχνευση συστάδων που χρησιμοποιούνται για τον υπολογισμό κεντροειδών.

Επιπλέον, υλοποιείται μια λογισμική προσέγγιση που εκτελείται στον επεξεργαστή της πλατ-

φόρμας και συγκρίνεται με το ενσωματωμένο HW/SW σύστημα όσον αφορά την απόδοση. Η

αρχιτεκτονική υποστηρίζει την επικοινωνία μεταξύ των PS και PL στοιχείων του SoC μέσω

των AMBA AXI πρωτοκόλλων, καθώς επίσης και τη δυναμική προσαρμογή του κατωφλίου

που χρησιμοποιείται κατά τη συσταδοποίηση ανάλογα με τα επίπεδο θορύβου της εικόνας.

Το σύστημά μας εξετάστηκε με ρεαλιστικές εικόνες που έχουν ληφθεί σε μια αποστολή της

NASA και αξιολογείται ως προς την απόδοση, τη χρήση πόρων του FPGA και την κατανάλωση

ισχύος. Είναι ικανό για ακριβή ανίχνευση εκατοντάδων συστάδων εντός του πλαισίου της

εικόνας επιταχύνοντας την εκτέλεση κατά 60 φορές συγκριτικά με τον ARM επεξεργαστή του

SoC FPGA, ενώ εκτιμάται οτι η επιτάχυνση μπορεί να αυξηθεί έως και 108 φορές. Τελικά,

η ενσωματωμένη υλοποίηση που συνδυάζει υλικό και λογισμικό είναι ικανή για απόδοση σε

πραγματικό χρόνο, καθώς επωφελείται από την αρχιτεκτονική παράλληλης επεξεργασίας του

FPGA και τις ειδικά προσαρμοσμένες τεχνικές υλοποίησης.

Λέξεις Κλειδιά

Ανιχνευτές αστέρων, SoC, Zynq FPGA, Συσταδοποίηση, Ομαδοποίηση, Κατωφλίωση,

Συνδυασμός HW/SW, Εφαρμογές Διαστήματος

1

Abstract

In space applications it is critical to measure the satellite’s orientation fast and pre-

cisely, which can be only achieved using star trackers. This setup consists of a digital

image sensor that captures images of the sky, as well as hardware that detects stars and

maps them to known constellations in order to determine the inertial attitude of the satel-

lite. Star detection is a process of high complexity due to large amounts of image data

and thus, it takes significant time to execute, especially when operating on conventional

microprocessors. Thus, the need for high performance star trackers leads to the use of

Commercial Off-The-Shelf (COTS) FPGAs, which offer great parallelisation opportunities

and provide remarkable speedups.

In this thesis, we focus on the implementation of an efficient algorithm for accelerating

preprocessing operations of star trackers on COTS SoC FPGAs. More specifically, we

develop a HW/SW embedded system for accelerating the preprocessing stages of a star

tracker pipeline on Xilinx’s Zynq. These stages refer to the image binning that decreases

the data volume, and to the detection of clusters from which centroids will be subsequently

extracted. The proposed architecture exploits parallelisation at multiple levels via para-

metric HDL circuit design. The HW/SW co-design integrates the PS and PL parts of

Zynq, whose communication is established via AMBA AXI protocols. Our integrated sys-

tem supports dynamic adjustment to the threshold used in clustering process depending

on the noise floor level of the image frame.

The proposed design is tested with real images captured on a NASA mission and

is evaluated in terms of performance, resource utilisation and power consumption. A

software-oriented approach running on the PS of the SoC is also developed and compared to

our HW/SW embedded system. Our proof-of-concept implementation accurately detects

hundreds of clusters within the image frame while accelerating the execution, resulting

to a speedup of 60x compared to the ARM processor with an estimated increase up to

108x. Hence, this HW/SW co-design achieves real-time performance as it benefits from

the FPGA’s parallel processing architecture and our custom implementation techniques.

Keywords

Star Tracker, SoC, Zynq FPGA, Clustering, Binning, Thresholding, HW/SW Co-

Design, Space Applications

2

Ευχαριστίες

Θα ήθελα να ευχαριστήσω πρωτίστως τον επιβλέποντα καθηγητή μου κ. Δημήτρη Σούντρη

που με εμπιστεύθηκε για την εκπόνηση της διπλωματικής μου εργασίας. ΄Επειτα, θα ήθελα

να ευχαριστήσω ξεχωριστά το μεταδιδακτορικό ερευνητή Γιώργο Λεντάρη και τον υποψήφιο

διδάκτορα Βασίλη Λέων για την αδιάλειπτη βοήθεια και την πολύτιμη καθοδήγηση που μου

προσέφεραν. Ακόμη, θα ήθελα να ευχαριστήσω ιδιαίτερα το Γιάννη Στρατάκο για τις καίριες

συμβουλές και παρεμβάσεις του πάνω σε πιο πρακτικά ζητήματα.

Επιπλέον, ευχαριστώ θερμά το Μάνο Κουμαντάκη και την εταιρεία του Infinite Orbits για

την παροχή τεχνογνωσίας, απ΄ την οποία κατέστη δυνατή η ενασχόλησή μου με το συγκεκρι-

μένο θέμα.

Θα ήθελα επιπροσθέτως να ευχαριστήσω την οικογένειά μου για την υπομονή, την υπο-

στήριξη και την εμπιστοσύνη που μου έδειξε καθόλη τη διάρκεια της φοίτησής μου. Τέλος,

θέλω να ευχαριστήσω ιδιαίτερα τους φίλους μου για τις στιγμές που μοιραστήκαμε και για τους

οποίους νοιώθω ευγνωμοσύνη για τη δύναμη και το πάθος που μου δίνουν να ακολουθήσω τα

όνειρά μου.

3

Contents

Περίληψη 1

Abstract 2

Ευχαριστίες 3

Contents 5

List of Figures 8

List of Tables 12

Εκτεταμένη Περίληψη 14

1 Introduction 27

1.1 Motivation . 27

1.2 Thesis Scope . 28

1.3 Project Objectives . 30

1.4 Thesis Outline . 30

2 Background 33

2.1 Star Trackers . 33

2.1.1 Star Tracker Characteristics . 34

2.1.2 Sub-pixel Accuracy . 35

2.1.3 Theoretical Background . 36

2.1.4 Algorithms . 38

2.1.5 Commercially Available Star Trackers 39

2.2 Related Work . 40

2.3 Space Navigation . 41

2.3.1 Celestial navigation for satellites . 41

2.3.2 Celestial navigation for deep space probes 42

2.4 Rotational Kinematics . 43

2.4.1 The Earth Centred Inertial (ECI) 43

5

6 Contents

2.4.2 Euler Angles . 43

2.4.3 Coordinate Transformation . 46

2.5 SoC FPGA Overview . 48

2.5.1 Xilinx Zynq SoC FPGA Architecture 50

2.5.2 AXI4 Lite . 52

2.5.3 AXI4 Stream . 54

2.5.4 Design Flow . 54

3 Development on the Zynq SoC FPGA 58

3.1 HW/SW Co-design of Averaging 2D Binning 58

3.1.1 High Level Architecture . 59

3.1.2 Low Level Implementation . 64

3.2 HW/SW Co-design of Clustering . 69

3.2.1 Cluster detection algorithm . 69

3.2.2 High Level Architecture . 72

3.2.3 Low Level Implementation . 79

3.2.4 Performance-Wise Optimization . 86

3.2.5 System Integration . 89

4 Experimental Evaluation 92

4.1 Experimental Setup . 92

4.2 Results and Analysis on Zynq FPGA . 93

5 Conclusion and Future Work 102

Bibliography 104

List of Figures

1 Διαφορετικά επίπεδα ομαδοποίησης εικονοστοιχείων. 16

2 Σχεδιαστική απεικόνιση του πυρήνα Ομαδοποίησης Εικονοστοιχείων. 17

3 Μηχανισμός αναζήτησης εικονοστοιχείων. 19

4 Διάγραμμα ροής για τη λήψη των δεδομένων εικόνας. 20

5 Σχεδιαστική αναπαράσταση του πυρήνα Συσταδοποίησης. 21

6 Αναπαράσταση καταμερισμού διεργασιών. 22

7 Εκτιμώμενη κατανάλωση ισχύος για το ολοκληρωμένο σύστημα. 24

1.1 Block diagram of a typical Star Tracker. 29

1.2 System-on-Chip Layout. 29

1.3 Process Flow of a Star Tracker. 29

2.1 Pointing and rolling accuracy schematic of the star tracker [1]. 34

2.2 Different Stars Utilising Hyperacuity technique [2]. 36

2.3 Image sensor’s perspective Projection model [3]. 37

2.4 High level process flow of an ADCS. 38

2.5 Types of radial distortion [4]. 39

2.6 The Earth-Centred Inertial (ECI) frame [5]. 44

2.7 Roll-Pitch-Yaw notation for Euler angles [6]. 45

2.8 Euler Angle Sequence (3,1,3). 45

2.9 Coordinate model of a star tracker [7]. 46

2.10 Celestial coordinate system to star tracker’s coordinate system [7]. 47

2.11 Pinhole Camera Model: ideal projection of a 3D object on a 2D image [8]. . 48

2.12 Field Programmable Gate Array (FPGA) schematic [9]. 49

2.13 Xilinx Zynq SoC FPGA Architecture [10]. 50

2.14 Channel architecture of reads [11]. 53

2.15 Channel architecture of writes [11]. 53

2.16 FPGA Design Flow. 55

2.17 VHDL code to synthesized design conversion. 56

3.1 Different levels of averaging binning. 59

3.2 Processing flow of the integrated system. 59

3.3 Block design of the HW/SW integrated system. 61

8

List of Figures 9

3.4 Zynq7 Processing System block design. 61

3.5 AXI DMA Block Diagram [12]. 63

3.6 Averaging 2D Binning block design. 63

3.7 Block design of the Binning kernel. 64

3.8 Adder Tree Structure for 2×2 binning. 65

3.9 Behavioural Simulation of the input FIFO buffer handling. 66

3.10 Behavioural Simulation of the output FIFO buffer handling. 67

3.11 Serial-to-Parallel block. 67

3.12 Behavioural simulation of Serial-to-Parallel operation. 68

3.13 Generic block design of Adder Tree. 68

3.14 Behavioural simulation of MAC operation. 69

3.15 Visualization of light spreading in a defocused star. 70

3.16 Configuration of Neighbourhoods of Search. 71

3.17 Processing flow of the HW/SW Co-design for Clustering. 72

3.18 Image partitioning in sliding windows. 73

3.19 Clustering block design. 73

3.20 Data transmission pipeline. 74

3.21 Block design of the Clustering kernel. 75

3.22 Illustration of every possible case for reading operation of starting pixels. . 76

3.23 Determination of Region-of-Interest. 77

3.24 Example of the addressing operation. 78

3.25 Pipeline of the processing steps handled by mainFSM. 79

3.26 Behavioural simulation of driving TREADY signal for a 256×256 image

and winHeight of 16 rows. 81

3.27 Behavioural simulation of upperThresLoc. 81

3.28 VHDL code of the function that computes the addresses. 82

3.29 Behavioural simulation of fsm4ram. 82

3.30 Behavioural simulation of neighChecker. 83

3.31 Illustration of the correlation between the operations performed by fsm4RAM

and neighChecker blocks. 84

3.32 VHDL code transformation regarding signal overflow. 86

3.33 Visualization of task partitioning. 88

3.34 Illustration of the three individual sub-processes performed by neighChecker

component. 89

3.35 Pipeline of the processing stages of the HW/SW Co-design. 90

3.36 Block design of the HW/SW Co-design. 90

4.1 Zedboard Development Board [13]. 93

4.2 Board Connection Setup [13]. 94

4.3 Post execution result as shown in SDK terminal. 94

4.4 Estimated Power Consumption of Binning component. 95

10 List of Figures

4.5 Behavioural simulation of an output detected cluster. 96

4.6 Visualisation of a detected cluster on MATLAB. 96

4.7 Post execution results as shown in SDK terminal after clustering operation. 97

4.8 Estimated Power Consumption of Clustering component. 98

4.9 Behavioural simulation of the Binning-Clustering co-design. 98

4.10 Post execution results as shown in SDK terminal after Preprocessing oper-

ation. 98

4.11 Estimated Power Consumption of the Integrated System. 99

4.12 Analytic overview of the consumed power for each individual block. 99

4.13 Hierarchical presentation of the FPGA resource utilisation. 100

List of Tables

1 Συγκριτικός Πίνακας με τις συχνότητες ρολογιού που επετεύχθησαν κατόπιν

βελτιστοποιήσεων . 23

2 Σύγκριση μέσων χρόνων εκτέλεσης μεταξύ των δύο προσεγγίσεων για κάθε

ένα από τα υλοποιημένα στοιχεία . 23

3 Χρήση πόρων του FPGA για το ολοκληρωμένο σύστημα. 24

2.1 Table of commercially available star trackers 39

3.1 Table of the achieved clock period per component after optimisation 89

4.1 Comparison of mean execution time between SoC FPGA and ARM CPU

for Averaging Binning operation . 94

4.2 Resource Utilisation of FPGA for Binning implemented design. 95

4.3 Comparison of mean execution time between SoC FPGA and ARM CPU

for Clustering operation . 97

4.4 Resource Utilisation of FPGA for Clustering implemented design. 98

4.5 Comparison of mean execution time between SoC FPGA and ARM CPU

for the Integrated HW/SW Co-design . 99

4.6 Resource Utilisation of FPGA for the Integrated System. 99

12

Εκτεταμένη Περίληψη

Εισαγωγή

Η παρούσα διπλωματική εργασία διεξήχθη σε συνεργασία με την Infinite Orbits, μια εται-

ρεία που δραστηριοποιείται στη διαστημική βιομηχανία και παρέχει καινοτόμες υπηρεσίες για

δορυφορικά συστήματα. Οι διαστημικές εφαρμογές είναι γενικά ιδιαίτερα απαιτητικές διεργα-

σίες και είναι ζωτικής σημασίας το να ικανοποιούνται συγκεκριμένες προδιαγραφές. Πρέπει να

χαρακτηρίζονται από υψηλά επίπεδα αυτονομίας ώστε να ελαχιστοποιούνται οι καθυστερήσεις

που εισάγονται από τα κανάλια επικοινωνίας και ελέγχου που βρίσκονται σε περιβάλλον ε-

δάφους. Επιπλέον, τα δορυφορικά συστήματα πρέπει να μπορούν να λειτουργούν αδιαλείπτως

και χωρίς προβλήματα ή έστω να είναι σε θέση να τα αντιμετωπίζουν με ασφάλεια και συνε-

πώς πρέπει να διακατέχονται από ευρωστία. Τέλος, πρέπει να είναι εξαιρετικά γρήγορα ώστε

να ανταποκρίνονται άμεσα και να αντιμετωπίζουν ανεπιθύμητες καταστάσεις που μπορούν να

οδηγήσουν σε ατυχήματα.

Το όργανο εκείνο που παρέχει τη δυνατότητα ταχείας και υψηλής ακρίβειας μέτρησης για

τον προσδιορισμό του προσανατολισμού ενός δορυφορικού συστήματος είναι ο ανιχνευτής α-

στέρων. Ο ανιχνευτής αστέρων αποτελείται από ένα οπτικό σύστημα και από το ψηφιακό

υλικό. Το οπτικό σύστημα περιλαμβάνει ένα ψηφιακό αισθητήρα εικόνας που τραβάει φω-

τογραφίες του ουρανού οι οποίες χρησιμοποιούνται από το υλικό για τον προσδιορισμό της

θέσης του δορυφόρου. Το υλικό περιλαμβάνει κάποιο σύστημα επεξεργασίας που είναι συ-

νήθως κάποιος μικροεπεξεργαστής, ο οποίος πραγματοποιεί τους απαραίτητους υπολογισμούς

για να εξάγει χρήσιμες πληροφορίες. Η διαδικασία αυτή αποτελείται από επιμέρους υπολογιστι-

κά στάδια μερικά από τα οποία παρουσιάζονται στα πλαίσια αυτής της διπλωματικής εργασίας.

Γενικά, η ανίχνευση αστέρων χαρακτηρίζεται από υψηλή υπολογιστική πολυπλοκότητα η οποία

ενισχύεται από το γεγονός οτι απαιτείται επεξεργασία μεγάλου όγκου δεδομένων αποτελώντας

έτσι περιοριστικό παράγοντα στην απόδοση του συστήματος, ιδίως εάν η εκτέλεση πραγματο-

ποιείται σε κάποιον συμβατικό μικροεπεξεργαστή.

Τα τελευταία χρόνια, η ανάγκη για αποδόσεις πραγματικού χρόνου έχει στρέψει το ενδια-

φέρον σε άλλες εναλλακτικές δημιουργώντας νέες τάσεις στην βιομηχανία του διαστήματος.

Πλέον, έχουμε ραγδαία αύξηση χρήσης εμπορικών συσκευευών υλικού «από το ράφι» σε δια-

στημικές εφαρμογές με την πιο διαδεδομένη από αυτές να είναι τα FPGA, αφού η αγορά

παρέχει ήδη ένα μεγάλο εύρος πλατφορμών κατάλληλες για τέτοιου είδους εφαρμογές.

Στα πλαίσια διερεύνησης του πεδίου εφαρμογών των COTS FPGA στο διάστημα με τις

14

οποίες ασχολείται το Εργαστήριο Μικροϋπολογιστών & Ψηφιακών Συστημάτων, διεκπεραι-

ώθηκε η διπλωματική αυτή η οποία πραγματεύεται την ανάπτυξη αλγορίθμων σε ένα ενσω-

ματωμένο σύστημα SoC FPGA οι οποίοι υλοποιούν τα πρώτα στάδια της προγραμματιστικής

ροής ενός ανιχνευτή αστέρων. Αυτά τα στάδια αφορούν την προεπεξεργασία δεδομένων και

χωρίζονται στις εξής δύο υποδιεργασίες: την ομαδοποίηση των εικονοστοιχείων με σκοπό τη

μείωση των διαστάσεων της υπό επεξεργασία εικόνας και την ανίχνευση συστάδων αστερι-

ών εντός του πλαισίου αυτής. Οι εξαγόμενες αυτές συστάδες χρησιμοποιούνται στα επόμενα

στάδια για τον υπολογισμό του ύψους του δορυφόρου. Σκοπός είναι να αξιοποιήσουμε τις

δυνατότητες της πλατφόρμας του υλικού προτείνοντας μια αρχιτεκτονική που συνδυάζει τόσο

το λογισμικό όσο και το υλικό του SoC FPGA.

Θεωρητικό υπόβραθρο

Οι ανιχτευτές αστέρων χρησιμοποιούνται για τον προσδιορισμό της θέσης ενός διαστημι-

κού σκάφους, επειδή παρέχουν τη μεγαλύτερη ακρίβεια από οποιονδήποτε άλλον αισθητήρα.

Προκειμένου να μεγιστοποιηθεί η ακρίβεια της εκτίμησης της θέσης ενός αστεριού, η λάμ-

ψη που εκπέμπει αυτό αποκεντράρεται σε μάσκες εικονοστοιχείων μεγέθους από 3×3 έως
15×15 ανάλογα με τα χαρακτηριστικά του αισθητήρα εικόνας. Η εξάπλωση του φωτός που
αποτυπώνεται στα εικονοστοιχεία της εικόνας του αισθητήρα περιγράφεται από μαθηματικές

συναρτήσεις που ονομάζονται PSF (Point Spread Functions) οι οποίες είναι ουσιαστικά Γκα-

ουσιανές συναρτήσεις. Εν συνεχεία, χρησιμοποιούνται κατάλληλοι αλγόριθμοι αναγνώρισης

προτύπων οι οποίοι με την κατάλληλη επεξεργασία των δεδομένων μπορούν να εκτιμήσουν

τον προσανατολισμό του συστήματος με ακρίβεια εικονοστοιχείου κάτω από 1σ.

Στη διαστημική πλοήγηση απαιτείται ένα σταθερό σύστημα συντεταγμένων ως σημείο α-

ναφοράς ώστε να υπάρχει συσχέτιση με το αντίστοιχο σύστημα του κινούμενου διαστημικού

οχήματος. Το σύστημα που χρησιμοποιείται ονομάζεται Earth Central Inertial (ECI) και η

αρχή των αξόνων του είναι ακριβώς στο κέντρο της Γης, χωρίς να ακολουθεί όμως την κίνησή

της. Ο ανιχνευτής αστέρων συσχετίζει το ECI με το σύστημα συντεταγμένων του οχήμα-

τος που τοποθετείται στο κέντρο μάζας του προκειμένου να εξάγει πληροφορίες σχετικά με

τη θέση αυτού. Προκειμένου να γίνει η συσχέτιση της θέσης του ανιχνευόντος αστέρα στο

πλαίσιο της εικόνας με την πραγματική του θέση στον ουρανό, απαιτούνται κάποιοι μετασχημα-

τισμοί στα αντίστοιχα συστήματα συντεταγμένων. Αρχικά, οι συντεταγμένες του αστέρα στο

ECI σύστημα πρέπει να μεταφερθούν στο αντίστοιχο σύστημα συντεταγμένων του οπτικού

αισθητήρα. ΄Επειτα, πρέπει να γίνει η προβολή της θέσης του αστέρα από τον τρισδιάστατο

χώρο στο πλαίσιο της δισδιάστατης εικόνας, το οποίο επιτυγχάνεται με τη χρήση του μοντέλου

κάμερας pinhole, το οποίο παρέχει μια απλή περιγραφή της σχέσης μεταξύ των τρισδιάστατων

συντεταγμένων ενός σημείου και της προβολής του σε μια ιδανικής κάμερας η οποία θεωρείται

σημείο αναφοράς. Το τελευταίο βήμα αφορά τη μεταφορά από το σύστημα συντεταγμένων της

εικόνας στο σύστημα συντεταγμένων του εικονοστοιχείου (Εικόνα 2.11).

Η παρούσα διπλωματική εργασία επικεντρώνεται στην υλοποίηση ενός αλγορίθμου για

ανιχνευτές αστέρων σε μια συσκευή υλικού SoC FPGA αξιοποιώντας τις δυνατότητες που

15

προσφέρει λόγω της ευελιξίας και της απόδοσής της. Οι συσκευές SoC FPGA συνιστούν μια

καινοτόμα βελτιωμένη προσέγγιση στο χώρο των πλατφορμών υλικού καθώς περιλαμβάνουν

στο ίδιο ολοκληρωμένο chip έναν επεξεργαστή καθώς επίσης και ένα FPGA. Κατά συνέπεια,

έχουν μεγαλύτερο βαθμό ολοκλήρωσης, χαμηλότερη ισχύ και υψηλότερο εύρος ζώνης επικοι-

νωνίας μεταξύ του επεξεργαστή και του FPGA. Ως εκ τούτου, τα SoC FPGA συνιστούν μια

ιδιαίτερα ανταγωνιστική εναλλακτική προσέγγιση έναντι των συμβατικών μέσων υλικού της

αγοράς. Για τις ανάγκες της διπλωματικής αυτής, χρησιμοποιήθηκε η πλακέτα Zedboard της

AVNET η οποία περιλαμβάνει το σύστημα Xilix Zynq-7020 SoC.

Υλοποίηση του στοιχείου για την Ομαδοποίηση Εικονοστοιχείων

Το πρώτο στοιχείο του συνδυαστικού μας συστήματος υλικού/λογισμικού είναι υπεύθυνο

για την ομαδοποίηση εικονοστοιχείων σε δισδιάστατη εικόνα. Η τεχνική αυτή είναι ευρέως δια-

δεδομένη σε εφαρμογές που βασίζονται σε συστήματα οπτικών αισθητήρων και αφορά το συν-

δυασμό των τιμών γειτονικών εικονοστοιχείων ώστε να σχηματιστεί ένα υπερ-εικονοστοιχείο

και να αυξηθεί κατά κάποιον τρόπο το μέγεθος του αισθητήρα εικόνας. Ως εκ τούτου, πε-

τυχαίνουμε την αποτελεσματική αύξηση της ευαισθησίας του εικονοστοιχείου που προκύπτει

με κόστος τη μειωμένη χωρική ανάλυση. Επιπλέον, σε εφαρμογές όπου επεξεργάζονται ει-

κόνες μεγάλου μεγέθους είναι πολύ ευεργετική τεχνική για την απόδοση του συστήματος

καθώς οι διαστάσεις της εικόνας μειώνονται σημαντικά. ΄Ετσι, όχι μόνο μειώνεται ο χρόνος

επεξεργασίας, αλλά και οι απαιτούμενοι πόροι ελαττώνονται σημαντικά.

Σχήμα 1: Διαφορετικά επίπεδα ομαδοποίησης εικονοστοιχείων.

Το συγκεκριμένο μπλοκ που υλοποιήσαμε, λειτουργεί σε περιοχές εικόνας 2×2 ή 4×4
με βηματισμό 2 ή 4 αντίστοιχα και υπολογίζει τη μέση τιμή τους. Λαμβάνοντας υπόψη τις

απαιτήσεις του πρότζεκτ, επιλέξαμε να προχωρήσουμε με ομαδοποίηση 2×2 κρίνοντας πως είναι
καταλληλότερη επιλογή για τη διατήρηση της ισορροπίας μεταξύ της ανάλυσης της εικόνας και

της ευαισθησία της.

΄Οπως έχει ήδη αναφερθεί, η προτεινόμενη αρχιτεκτονική του συστήματός μας συνδυάζει

τόσο το υλικό (PL) όσο και το λογισμικό (PS) του Zynq SoC FPGA. Για λόγους απλότη-

τας, στην παρούσα εφαρμογή οι εικόνες είναι αποθηκευμένες στο μνήμη της πλατφόρμας, αντί

να λαμβάνονται από τον αισθητήρα εικόνας. Και στις δύο περιπτώσεις, ο επεξεργαστής ε-

ίναι ο διαμεσολαβητής ώστε να προωθούνται τα δεδομένα από τη μνήμη ή την κάμερα στην

προγραμματιστική λογική. Ως εκ τούτου, πρέπει να διαμορφωθεί καταλλήλως το σύστημα

16

ώστε να επιτυγχάνεται η επικοινωνία μεταξύ των δύο διαφορετικών υπο-στοιχείων της πλατ-

φόρμας. Επομένως, το στοιχείο μας έχει διαμορφωθεί ώστε να υποστηρίζει το πρωτόκολλο

AXI4-Stream ώστε να μπορεί να λαμβάνει έγκυρα δεδομένα από το PS.

Η μονάδα ομαδοποίησης εικονοστοιχείων αποτελείται από δύο βασικά υπο-κυκλώματα. Τα

εισερχόμενα εικονοστοιχεία της εικόνας λαμβάνονται σειριακά ακολουθώντας σάρωση τύπου

raster, δηλαδή από δεξιά προς τα αριστερά και από πάνω προς τα κάτω στο πλαίσιο της εικόνας.

Συνεπώς, απαιτείται ένα κύκλωμα που θα λαμβάνει τα εικονοστοιχεία σειριακά και με κάποιο

τρόπο θα τα προωθεί στα επόμενα στάδια παράλληλα. Εν προκειμένω, τα εικονοστοιχεία λαμ-

βάνονται ένα-ένα και ομαδοποιούνται σε τετράδες ώστε να υπολογιστεί η μέση τιμή τους και

να προκύψει ένα υπερ-εικονοστοιχείο. ΄Ενα ακόμα ζήτημα εδώ είναι πως πρέπει να σαρωθεί μια

ολόκληρη γραμμή εικόνας ώστε να μπορέσει να ξεκινήσει η διαδικασία υπολογισμού των μέσων

τιμών. Οι γραμμές επεξεργάζονται σε ζευγάρια και η πρώτη από κάθε ζεύγος αποθηκεύεται

προσωρινά σε έναν FIFO buffer. Αυτό προσθέτει σημαντική καθυστέρηση στη λειτουργική

απόδοση του συστήματος. Παρ΄ όλ΄ αυτά, ο επιταχυντής FPGA υποστηρίζει παράλληλη επε-

ξεργασία, επομένως ο υπολογισμός των μέσων τιμών κάθε πλέγματος 2×2 και η αποθήκευση
της επόμενης γραμμής εικόνας συμβαίνουν ταυτόχρονα.

Σχήμα 2: Σχεδιαστική απεικόνιση του πυρήνα Ομαδοποίησης Εικονοστοιχείων.

Το έτερο μπλοκ είναι η μονάδα πολλαπλασιαστή-συσσωρευτή (MAC) η οποία λαμβάνει

παράλληλα τις τιμές των εικονοστοιχείων της 2×2 ή 4×4 γειτονιάς. ΄Οπως βλέπουμε στην
Εικόνα 2, το πρώτο υπο-κύκλωμα είναι μια δομή δέντρου από πλήρεις αθροιστές που πραγ-

ματοποιεί ταχύτατα προσθέσεις αξιοποιώντας τον παραλληλισμό. Στη συνέχεια, το συνολικό

άθροισμα μεταβιβάζεται στον Διαιρέτη ο οποίος υπολογίζει τη μέση τιμή διαιρώντας απλώς

με το 4 (ή με το 16). Γενικότερα στον προγραμματισμό υπολογιστών, οι αριθμητικές μετατο-

πίσεις συνιστούν έναν πολύ αποτελεσματικό τρόπο για τις πράξεις του πολλαπλασιασμού ή της

διαίρεσης. Η μετατόπιση των bit προς τα αριστερά κατά n θέσεις σε έναν δυαδικό αριθμό έχει

ως αποτέλεσμα τον πολλαπλασιασμό του επί 2n, ενώ αντίστοιχα η μετατόπιση των bit προς τα

δεξιά κατά n θέσεις καταλήγει σε διαίρεση με το 2n. Συνεπώς, ο διαιρέτης απλώς εκτελεί μια

αριθμητική μετατόπιση προς τα δεξιά κατά N-bit στο άθροισμα εξόδου του δέντρου αθροιστή,

όπου N είναι η αντίστοιχη διάσταση του τετραγωνισμένου πλέγματος που χρησιμοποιείται

στην ομαδοποίηση. Η έξοδος του κυκλώματος αναφέρεται στο νέο υπερ-εικονοστοιχείο της

παραγόμενης εικόνας.

17

Συνδυαστική υλοποίηση HW/SW για τη Συσταδοποίηση

Το κύριο θέμα που πραγματεύεται η παρούσα διπλωματική είναι η υλοποίηση ενός απο-

δοτικού αλγορίθμου για συσταδοποίηση των εικονοστοιχείων που συγκροτούν αστέρι. Αυτό

είναι το πρώτο στάδιο της προγραμματιστικής ροής ενός Ανιχνευτή Αστέρων. Ο παραδοσια-

κός τρόπος προσέγγισης για ανίχνευση των αστέρων στην εικόνα περιγράφεται ακολούθως.

Αρχικά, κάθε εικονοστοιχείο συγκρίνεται με ένα σαφώς καθορισμένο κατώφλι και εάν η τιμή

του είναι μεγαλύτερη ή ίση, τότε ορίζεται καταλλήλως μια περιοχή ενδιαφέροντος εντός της

οποίας πραγματοποιείται η αναζήτηση του αστέρα. Κατα τη διάρκεια της αναζήτησης εντός

της περιοχής ενδιαφέροντος χρησιμοποιείται ένα άλλο, συνήθως μικρότερο κατώφλι για τη

σύγκριση των τιμών των εικονοστοιχείων. Τα γειτονικά εικονοστοιχεία που βρίσκονται πάνω

από το λεγόμενο κατώφλι αύξησης, συγκεντρώνονται σε ομάδες και σχηματίζουν μια συστάδα

σε ένα μέγιστο πλέγμα 5×5 εικονοστοιχείων. Ο σχεδιασμός πάνω στο υλικό είναι ιδιαίτερα
απαιτητικός εξαιτίας των δομών δεδομένων και της έλλειψης χρήσιμων συναρτήσεων. Επειδή

λοιπόν ο αλγόριθμος συσταδοποίησης είναι από τη φύση του επαναληπτικός και χρησιμοποιεί

αναδρομικές υπορουτίνες, είναι πολύ σημαντική η βελτιστοποίησή του ώστε να έχει χαμηλούς

χρόνους εκτέλεσης.

Μηχανισμός Αναζήτησης Εικονοστοιχείων

Μετά την κατωφλίωση με το πρωταρχικό κατώφλι, επιτελείται η αναζήτηση στην περιοχή

ενδιαφέροντος για κάθε ένα εικονοστοιχείο που εντοπίστηκε. Προκειμένου να επιταχυνθεί

η διαδικασία αυτή, προτείναμε έναν μηχανισμό αναζήτησης με σκοπό τη μείωση των απαιτο-

ύμενων κύκλων ρολογιού. ΄Ετσι, θεωρούμε τα εικονοστοιχεία που προέκυψαν από το πρώτο

κατώφλι ως σημεία εκκίνησης της αναζήτησης και στο εξής θα αναφέρονται ως ’εικονοστοιχεία

εκκίνησης’. Αρχικά, για κάθε εικονοστοιχείο εκκίνησης ελέγχονται τα 8 γειτονικά του εικο-

νοστοιχεία στο πλέγμα 3×3 συγκρίνοντας τις τιμές τους με το επονομαζόμενο ’αυξανόμενο
κατώφλι’ και στη συνέχεια πραγματοποιείται η ίδια διαδικασία για κάθε ένα από αυτά που έχουν

τιμή μεγαλύτερη ή ίση αυτού. Η διαφορά όμως έγκειται στο οτι κάποια από τα γειτονικά εικο-

νοστοιχεία της 3×3 περιοχής έχουν ήδη ελεγχθεί προηγουμένως. Η διαδικασία αναζήτησης
των εικονοστοιχείων περιορίζεται στις εξής 9 περιπτώσεις που αποτυπώνονται στην παρακάτω

Εικόνα 3. Κάθε εικονοστοιχείο που εξετάζεται φέρει έναν αριθμό που υποδηλώνει τη σχετι-

κή του θέση στη γειτονιά στην οποία ανιχνεύτηκε ώστε να αναγνωρίζεται σε ποιά από τις 9

περιπτώσεις βρίσκεται και να ελέγχονται τα αντίστοιχα εικονοστοιχεία.

Διαδικασία λήψης δεδομένων εικόνας

Στο σημείο αυτό θα αναλύσουμε λίγο περισσότερο σε βάθος τα επιμέρους στοιχεία που

απαρτίζουν τη μονάδα Συσταδοποίησης. Πρωτίστως, να αναφέρουμε πως σε αυτήν την πε-

ρίπτωση χρησιμοποιήθηκαν τα πρωτόκολλα επικοινωνίας AXI4 Stream καθώς επίσης και AXI4

Lite. ΄Οσον αφορά το πρώτο πρωτόκολλο, εξυπηρετεί την επικοινωνία με το μπλοκ Ομαδο-

ποίησης εικονοστοιχείων απ΄ το οποίο λαμβάνει τα εικονοστοιχεία της νέας επεξεργασμένης

εικόνας, ενώ το δεύτερο εξυπηρετεί τη δυναμική προσαρμογή κατωφλίου λαμβάνοντας τις τιμές

από έναν συγκεκριμένο καταχωρητή στη μνήμη του SoC FPGA. Προκειμένου να είναι δυνατή

η αναζήτηση των αστεριών εντός της εικόνας, είναι απαραίτητη η προσωρινή της αποθήκευση

18

Σχήμα 3: Μηχανισμός αναζήτησης εικονοστοιχείων.

στο τμήμα του PL όπου εκτελείται η συσταδοποίηση. Ωστόσο, εξαιτίας των περιορισμένων

πόρων του FPGA, καθίσταται αδύνατη αποθήκευση ολόκληρης της εικόνας ακόμα και με-

τά την ομαδοποίηση των εικονοστοιχείων που υποδιπλασιάζει τις διαστάσεις της. Συνεπώς,

η εικόνα στέλνεται τμηματικά σε κομμάτια που ονομάζουμε ’κυλιόμενα παράθυρα’ και έτσι

πραγματοποιείται η αναζήτηση συστάδων. Συνεπώς η διαδικασία επεξεργασίας της εικόνας

παρουσιάζεται στο παρακάτω σχήμα. Τα κυλιόμενα παράθυρα είναι επικαλυπτόμενα προκει-

μένου να είναι κατά το δυνατόν πιο ακριβής η αναζήτηση των συστάδων. Η επικάλυψη είναι

προκαθορισμένη και παραμετροποιήσιμη και σχετίζεται άμεσα με το μέγεθος των συστάδων

που είναι προς αναζήτηση. Πιο συγκεκριμένα, η περιοχή ενδιαφέροντος ορίζεται γύρω από

το εικονοστοιχείο εκκίνησης οριοθετώντας γύρω του μια τετραγωνική περιοχή 7×7. Η τιμή
αυτή προκύπτει ώστε να είναι δυνατή η ανίχνευση συστάδων σε πλέγμα μέχρι και 5×5. ΄Ετσι
λοιπόν, εάν το εικονοστοιχείο εκκίνησης βρίσκεται στις τελευταίες γραμμές του παραθύρου,

δεν μπορεί να οριστεί η απαραίτητη περιοχή ενδιαφέροντος και χωρίς βλάβη της γενικότητας,

θεωρούμε οτι η συστάδα εντοπίζεται καλύτερα στις παρακάτω γραμμές της εικόνας οπότε και

εξετάζεται στο επόμενο παράθυρο.

Περιγραφή του πυρήνα Συσταδοποίησης

Το περιγραφικό διάγραμμα του πυρήνα Συσταδοποίησης απεικονίζεται παρακάτω στην Ει-

κόνα 5. ΄Ολα τα επιμέρους στοιχεία του μπλοκ ελέγχονται από μια μηχανή πεπερασμένης

κατάστασης (FSM). Αρχικά, τα εισερχόμενα ομαδοποιημένα εικονοστοιχεία εξετάζονται από

το upThresLoc στο οποίο πραγματοποιείται η πρώτη κατωφλίωση, πρωτού καταλήξουν στη

19

Σχήμα 4: Διάγραμμα ροής για τη λήψη των δεδομένων εικόνας.

μνήμη RAM όπου και αποθηκεύονται προσωρινά. Οι συντεταγμένες των εικονοστοιχείων που

προκύπτουν από την πρώτη κατωφλίωση αποθηκεύονται στην αντίστοιχη στοίβα. Οι main-

Stack και compStack είναι δομές που αποτελούνται από 3 στοίβες εκ των οποίων οι δύο είναι

για τις συντεταγμένες i, j των εικονοστοιχείων και η τρίτη αναφέρεται στη σχετική θέση

αυτών που ανιχνεύτηκαν στην 3×3 γειτονιά αναζήτησης. Τα δύο κύρια μπλοκ είναι αυτό
της fsm4ram και του neighChecker. ΄Οσον αφορά το πρώτο, η λειτουργία του χωρίζεται σε

3 κατευθύνσεις οι οποίες είναι οι εξής: η πρώτη αφορά τον υπολογισμό διευθύνσεων στις

οποίες θα γράφονται τα αντίστοιχα εισερχόμενα εικονοστοιχεία στη μνήμη, η δεύτερη αφο-

ρά τον υπολογισμό των κατάλληλων διευθύνσεων των εικονοστοιχείων κατά τη διαδικασία

συσταδοποίησης και η τρίτη σχετίζεται με τον υπολογισμό διευθύνσεων κατά την εξαγωγή

της συστάδας που ανιχνεύτηκε. Σχετικά με το δεύτερο και σημαντικότερο υποστοιχείο, αυ-

τό επιτελεί ουσιαστικά τον έλεγχο της συσταδοποίησης. Δέχεται τις τιμές των κατάλληλων

εικονοστοιχείων στη γειτονιά αναζήτησης και τις συγκρίνει με το αυξανόμενο κατώφλι. Εάν

προκύψει οτι κάποιο απ΄ τα εικονοστοιχεία ανήκει στη συστάδα, τότε εξάγονται οι συντεταγ-

μένες αυτού ώστε να ελεγχθούν μετέπειτα τα δικά του γειτονικά εικονοστοιχεία. Παράλληλα,

επιτελείται και η διαδικασία υπολογισμού των διαστάσεων της συστάδας. Αρχικά, ορίζονται 4

μεταβλητές με τις συντεταγμένες του εικονοστοιχείου εκκίνησης οι οποίες αντιστοιχούν στο

πάνω, κάτω, δεξί και αριστερό άκρο της συστάδας καταγράφοντας ουσιαστικά τις κινήσεις που

πραγματοποιούνται κατά την αναζήτηση εντός της περιοχής ενδιαφέροντος. ΄Οταν ολοκληρω-

θεί η διαδικασία υπολογίζεται η διάσταση της τετραγωνικής συστάδας και οι συντεταγμένες

του άνω αριστερού εικονοστοιείου αυτής. Στο σημείο αυτό, αξίζει να σημειωθεί πως είναι πι-

θανό να εντοπιστεί ένα μόνο εικονοστοιχείο εντός της περιοχής ενδιαφέροντος. Σε αυτήν την

περίπτωση θεωρούμε πως δεν συνιστά έγκυρη συστάδα οπότε και απορρίπτεται. Επιπλέον, δεν

αποκλείεται να προκύψει και συστάδα σε πλέγμα 7×7, όμως σε αυτήν την περίπτωση εξαιτίας
των προδιαγραφών που δόθηκαν από την Infinite Orbits, επιλέγεται ένα τμήμα 5×5 εντός του
πλέγματος αυτού το οποίο και εξάγεται. Τα υπόλοιπα στοιχεία του πυρήνα συσταδοποίησης

20

είναι η μνήμη στην οποία αποθηκεύονται τα κυλιόμενα παράθυρα και ένα ακόμα που ονομάζεται

Map και ουσιαστικά είναι κι αυτός μια μονάδα μνήμης. Ως ένας τρόπος για βελτιστοποίηση

του αλγορίθμου αναζήτησης, εισήχθη το συγκεκριμένο στοιχείο στο οποίο καταγράφονται

τα εικονοστοιχεία που έχουν ελεγχθεί προκειμένου να αποφεύγονται επαναληπτικοί έλεγχοι

για αυτά στην περιοχή ενδιαφέροντος. Αυτό επίσης υποδηλώνει πως ένα εικονοστοιχείο θα

ελεγχθεί στο πλαίσιο μίας και μόνο συστάδας.

Σχήμα 5: Σχεδιαστική αναπαράσταση του πυρήνα Συσταδοποίησης.

Βελτιστοποιήσεις ως προς την απόδοση

Στο σημείο αυτό θα παρουσιάσουμε μερικές από τις βελτιστοποιήσεις που πραγματοποι-

ήσαμε. Κατα τη διαδικασία ανάγνωσης, υπάρχουν ορισμένες ακραίες περιπτώσεις όσον αφορά

τη θέση του κεντρικού εικονοστοιχείου που διαφοροποιούν τη διαμόρφωση της γειτονιάς ανα-

ζήτησης. Αυτές οι περιπτώσεις εμφανίζονται όταν το κεντρικό εικονοστοιχείο βρίσκεται στα

άκρα του παραθύρου που σημαίνει ότι συνορεύει με λιγότερα από 8 εικονοστοιχεία, οπότε δεν

μπορεί να σχηματιστεί γειτονιά 3×3. Στην περίπτωσή μας, ο αρχικός κώδικα γράφτηκε με
τέτοιον τρόπο που περιείχε πολλά εμφωλευμένα if-else. Αυτός ο τρόπος συγγραφής κώδικα με

βάση τον προγραμματισμό σε γλώσσες υψηλού επιπέδου είναι εξαιρετικά αναποτελεσματικός

για σχεδιασμό υλικού καθώς επηρεάζει τον τρόπο με τον οποίο αποτυπώνεται η λογική πάνω

σε αυτό. Υποθέτοντας πως κάθε κατάσταση if αντιπροσωπεύει μια διεργασία που εκτελείται

από ένα FSM, ομαδοποιούμε τις παρόμοιες διεργασίες που εκτελούνται υπό την ίδια συνθήκη.

Αυτή η τεχνική μπορεί να ερμηνευθεί ως ένας τρόπος καταμερισμού εργασιών και οδηγεί σε

ενίσχυση του παραλληλισμού. Αυτή η βελτιστοποίηση γίνεται περισσότερο κατανοητή με την

παρακάτω εικόνα 6.

΄Οπως περιγράφηκε προηγουμένως, υπάρχει ισχυρή συσχέτιση μεταξύ των εργασιών που

εκτελούνται από το fsm4RAM και το neighChecker. Επομένως, η ίδια λογική που περιγράφηκε

21

Σχήμα 6: Αναπαράσταση καταμερισμού διεργασιών.

παραπάνω υιοθετήθηκε και από τη μονάδα neighChecker, ώστε να σχηματίζονται έξι επιμέρους

μπλοκ για αύξηση του παραλληλισμού. Ωστόσο, η ιδέα μπορεί να επεκταθεί και στα χαμηλότερα

επίπεδα της σχεδίασης. Για κάθε εισερχόμενη τιμή του εικονοστοιχείου, πραγματοποιούνται

τρεις λειτουργίες ελέγχου, ώστε να μπορεί να θεωρηθεί το εικονοστοιχείο ως μέρος μιας

συστάδας. Αυτά τα τρία βήματα ελέγχου περιγράφονται ως εξής:

• Σύγκριση με το αυξανόμενο κατώφλι και αποφυγή επανελέγχου

• ΄Ελεγχος ώστε το προς έλεγχο εικονοστοιχείο να βρίσκεται εντός της περιοχής ενδια-
φέροντος

• Εξαγωγή συντεταγμένων και ενημέρωση των διαστάεων της συστάδας

΄Ετσι, αντί να εκτελούνται αυτά τα τρία αλληλοεξαρτώμενα στάδια ελέγχου, διαχωρίζονται

σε τρεις μεμονωμένες και ανεξάρτητες διεργασίες. Καθένα από τα έξι υποσυστήματα που

σχηματίζονται εκτελεί αυτά τα ξεχωριστά στάδια ελέγχου. Κάθε ένα εξ αυτών ενεργεί σαν

να ικανοποιούνται οι υπόλοιπες δύο συνθήκες ελέγχου και προκύπτει ένα τελικό σήμα ώστε

εάν ικανοποιούνται και οι τρεις τα αποτελέσματα που εξάγονται να θεωρούνται έγκυρα. Με-

τά τα βήματα βελτιστοποιήσεων που περιγράφησαν παραπάνω, καθώς και κάποια άλλα που

εξετάζονται αναλυτικά στο κύριο μέρος της διπλωματικής εργασίας προέκυψαν τα παρακάτω

αποτελέσματα που αναγράφονται στον Πίνακα 1.

22

Πίνακας 1: Συγκριτικός Πίνακας με τις συχνότητες ρολογιού που επετεύχθησαν κατόπιν βελτι-

στοποιήσεων

Στοιχείο Περίοδος Ρολογιού
Βελτιστοποιημένη

Περίοδος Ρολογιού

Ποσοστό

Βελτίωσης

upperThresLoc 3.7 ns 2.4 ns 35.1%

fsm4RAM 5 ns 5 ns 30%

clusterCal 4.3 ns 3.2 ns 25.6%

neighChecker 9.4 ns 4.4 ns 53.2%

Clustering kernel 11.2 ns 4.3 ns 61.6%

Πειραματική Αξιολόγηση

Η πλακέτα που χρησιμοποιήθηκε για τη πειραματική αξιολόγηση του συστήματος που υ-

λοποιήσαμε είναι το Zedboard το οποίο περιλαμβάνει το Zynq-7020 SoC FPGA. Η σχεδίαση

του υλικού πραγματοποιήθηκε στο εργαλείο Vivado Design Suite v2019.1 της Xilinx ενώ

επιπλέον χρησιμοποιήθηκε το συμπληρωματικό εργαλείο Xilinx Software Development Kit

(XSDK) για τη δημιουργία ενσωματωμένων εφαρμογών που εκτελούνται στον διπύρηνο επε-

ξεργαστή ARM Cortex του Zynq SoC, έτσι ώστε να εδραιωθεί την επικοινωνία PS-PL. Στο

πλαίσιο της παρούσας διπλωματικής, τα πειράματα που πραγματοποιήθηκαν επικεντρώνονται

στα στάδια προεπεξεργασίας των δεδομένων ενός ανιχνευτή αστέρων δίνοντας έμφαση στην

επιτάχυνση του αλγορίθμου συσταδοποίησης. ΄Οπως έχει ήδη αναφερθεί χρησιμοποιήθηκαν

εικόνες σε μορφή κλίμακας του γκρι με ανάλυση 2048×2048, αν και το σύστημα εξετάστηκε
και με εικόνες μικρότερου μεγέθους. Το σύνολο δεδομένων εισόδου δημιουργήθηκε από ένα

αποθετήριο που περιέχει το πλήρες αρχείο καταγεγραμμένων φωτογραφιών από τη διαστημική

αποστολή Cassini της NASA που ελήφθησαν από το Φεβρουάριο του 2004 έως το Σεπτέμ-

βρίο του 2017 [14]. Στον παρακάτω συγκεντρωτικό Πίνακα 1 παρουσιάζονται τα αποτελέσματα

όσον αφορά την απόδοση των επι μέρους συστημάτων για τις δύο διαφορετικές προσεγγίσεις

οι οποίες αφορούν το συνδυασμό υλικού/λογισμικού στο Zynq SoC FPGA, καθώς επίσης και

την υλοποίηση λογισμικού που εκτελείται στον ARM επεξεργαστή της πλατφόρμας.

Πίνακας 2: Σύγκριση μέσων χρόνων εκτέλεσης μεταξύ των δύο προσεγγίσεων για κάθε ένα από

τα υλοποιημένα στοιχεία

Σύστημα ARM SoC Επιτάχυνση

Εκτιμώμενος

χρόνος

εκτέλεσης

Εκτιμώμενη

επιτάχυνση

Σύστημα

Ομαδοποίησης
1607.5 ms 33.6 ms 47.9x 16.8 ms 95.8x

Σύστημα

Συσταδοποίησης
383.1 ms 8.9 ms 43.1x 5.11 ms 75.4x

Πλήρες

Σύστημα
2050.3 ms 34.1 ms 60.2x 18.9 ms 108.2x

23

Ο παρακάτω συγκεντρωτικός πίνακας παρουσιάζει μια σύνοψη της χρήσης πόρων του

FPGA μετά την αποτύπωση της λογικής στο υλικό.

Πίνακας 3: Χρήση πόρων του FPGA για το ολοκληρωμένο σύστημα.

Πόροι Χρήση Διαθέσιμοι Χρήση (%)

LUT 8837 53200 16.61

LUTRAM 849 17400 4.88

FF 11733 106400 11.03

BRAM 20 140 14.29

Τέλος, η Εικόνα 7 παρουσιάζει την εκτιμώμενη κατανάλωση ισχύος του FPGA η οποία

υπολογίζεται περίπου στα 1.795 Watt. ΄Οπως βλέπουμε, η δυναμική ισχύς που καταναλώνε-

ται αφορά το μεγαλύτερο μέρος της συνολικής ισχύος σε ποσοστό 92%, ενώ το αντίστοιχο

ποσοστό της στατικής ισχύος εκτιμάται σε μόλις 8%. Επιπλέον, αξίζει να αναφερθεί πως

όσον αφορά τη δυναμική ισχύ, για το μεγαλύτερο μέρος της υπεύθυνο είναι σύστημα του

επεξεργαστή του Zynq SoC FPGA σε ποσοστό περίπου 94%.

Σχήμα 7: Εκτιμώμενη κατανάλωση ισχύος για το ολοκληρωμένο σύστημα.

Συμπερασματικά, η προτεινόμενη αρχιτεκτονική σχεδίασης χρησιμοποιεί λιγότερο από 20%

των πόρων του FPGA για κάθε συστατικό στοιχείο. Ως εκ τούτου, δίνεται η δυνατότη-

τα ανάπτυξης πρόσθετων στοιχείων HDL για την ολοκλήρωση των αλγοριθμικών βημάτων

του ανιχνευτή αστέρων. Σε τελική ανάλυση, υλοποιήσαμε ένα στοιχείο στο Zynq-7020 SoC

FPGA που συνδυάζει το υλικό με το λογισμικό και επιτελεί τα πρώτα στάδια προεπεξεργασίας

δεδομένων με εκτιμώμενη κατανάλωση ισχύος στο chip κάτω από 2 Watt.

Συμπεράσματα και Μελλοντικές Προεκτάσεις

Η παρούσα διπλωματική εργασία πραγματεύεται την ανάπτυξη ενός επιταχυντικού αλγο-

ρίθμου για την προεπεξεργασία δεδομένων ενός ανιχνευτή αστέρων, ο οποίος υλοποιείται

σε μια συνδυαστική αρχιτεκτονική υλικού/λογισμικού σε μια πλατφόρμα SoC FPGA. Πιο

συγκεκριμένα, η προεπεξεργασία χωρίζεται σε δύο βήματα λειτουργίας τα οποία είναι η ομα-

24

δοποίηση εικονοστοιχείων και η συσταδοποίηση αντίστοιχα. Και οι δύο λειτουργίες σχεδι-

άστηκαν, υλοποιήθηκαν και δοκιμάστηκαν μεμονωμένα χρησιμοποιώντας πραγματικές εικόνες.

Επιπροσθέτως, παρουσιάζεται μια λεπτομερής επισκόπηση των βελτιστοποιήσεων που πραγ-

ματοποιήθηκαν στον αλγόριθμο συσταδοποίησης αξιολογώντας τις επιτευχθείσες συχνότητες

λειτουργίας. Επιπλέον, οι προτεινόμενες αρχιτεκτονικές αναπτύχθηκαν και σε επίπεδο λογι-

σμικού ώστε να εκτελεστούν στον ενσωμεταμένο ARM επεξεργαστή του Zynq SoC FPGA.

Ο συνδυαστικός σχεδιασμός Υλικού/Λογισμικού υπερτερεί πλήρως έναντι της εκτέλεσης στο

επεξεργαστή όσον αφορά την απόδοση καθώς κατάφερε να μειώσει το συνολικό χρόνο εκτέλε-

σης κατά περίπου 60 φορές, ενώ εκτιμάται οτι η επιτάχυνση αυτή μπορεί να αυξηθεί έως και

τις 108 εάν το σύστημα πιάσει το μέγιστο της εκτιμώμενης συχνότητας λειτουργίας. ΄Οσον

αφορά την κατανάλωση ενέργειας, η συνολική ισχύς εκτιμάται περίπου στα 1.8W, πράγμα που

σημαίνει πως η προτεινόμενη αρχιτεκτονική είναι κατάλληλη για ένα ευρύ φάσμα οικονομικά

αποδοτικών διαστημικών εφαρμογών. Τέλος, το προτεινόμενο ενσωματωμένο σύστημα είναι

σχετικά μη απαιτητικό όσον αφορά τη χρήση των πόρων του FPGA, αφήνοντας περιθώριο

για πρόσθετες υλοποιήσεις υλικού που αφορούν την προγραμματιστική ροή ενός συστήματος

ανιχνευτή αστέρων.

Η μελλοντική μας εργασία θα επικεντρωθεί στη βελτίωση της απόδοσης του συστήματος,

συμπεριλαμβανομένης της περαιτέρω εξέτασης των παραμέτρων που περιορίζουν τη συχνότητα

λειτουργίας, ώστε να επιτευχθεί η μέγιστη εκτιμώμενη συχνότητα και να αυξηθεί περαιτέρω

εάν είναι δυνατόν. Επιπλέον, θα εκτελέσουμε περαιτέρω πειράματα ώστε να επεκτείνουμε

την αξιολόγηση και την επαλήθευση των τεχνικών μας με τη χρήση πραγματικών δεδομένων

προσαρμοσμένων στις απαιτήσεις της Infinite Orbits. Τέλος, ο κύριος στόχος μας είναι να

συνδυάσουμε το προτεινόμενο σύστημα με τις υπόλοιπες προγραμματιστικές διαδικασίες ώστε

να ολοκληρωθεί το σύστημα του ανιχνευτή αστέρων και να συμπεριληφθεί σε μια μελλοντική

διαστημική αποστολή καθοδηγούμενη από την Infinite Orbits.

25

Chapter 1

Introduction

This chapter’s goal is to describe the motivation behind this work and introduce readers

to some of the problems appearing in space industry. In addition, it contains the main

scope of the thesis, as well as a brief outline of it.

1.1 Motivation

Nowadays, the technological evolution has brought significant achievements in almost

every scientific field. More specifically, when it comes to space industry, the progress that

has been made has had great influence on the development of human society. However,

other than opening up new horizons and opportunities, some major challenges have arisen.

This current thesis was conducted in cooperation with Infinite Orbits in the context

of the research activity of the Microprocessors and Digital Systems Lab regarding the

applications of COTS FPGAs in space. Infinite Orbits is a company which operates in

space industry and provides innovative in-orbit services. Among the cases that Infinite

Orbits, as well as other companies are facing appears to be life extension. Satellite’s

lifespan ranges between 12 and 18 years, but the prevailing design life remains at 15 years.

As per NSR’s recent study, commercial GEO communications satellites in-orbit today

have an average age of 8.9 years[15]. The idea of in-space service prolonging the life of

a satellite in orbit is yet to be accomplished. Instead, of replacing the entire satellite,

we could get another one to rendezvous and dock onto the outdated system providing

a refueling source. Life extension is reportedly a very challenging case of rendezvous

and docking due to the difficulties associated with the non-cooperative nature of the

target satellite, the risks involved and the characteristics of the orbit, and thus extreme

accuracy and safety is required. The main idea proposed by Infinite Orbits to resolve

these challenges, is developing an embedded satellite navigation system which uses neural

network-based models for image processing aiming to achieve real-time performance using

a custom FPGA accelerator.

There are specific requirements that system in orbit needs to meet and are summarised

as follows. First of all, the communication channel of the satellite is characterised by high

27

latency and unreliability. Thus, the software is expected to be smart enough and capable

of high levels of autonomy. Another challenge is that satellites involve excessive costs and

therefore mistakes must be avoided. The system needs to work constantly or at least be

able to fail safely. Because of the mission’s nature and lack of validation environment on

ground, it is really exacting to achieve robustness. Finally, fast performance is needed so

that the system is responsive to deal with unwanted situations and avoid accidents. Some

of the most common instruments to measure satellite’s orientation fast and precisely are

star trackers.

Determining the position of a satellite plays a prominent role among the majority of

space missions. This type of information is vital for space navigation, firing thrusters

which control altitude and pointing antennas to required positions. There are various

types of sensors used for attitude determination, some of the most common are horizon

sensors (or conical Earth scanners), sun sensors, star sensors and magnetometers[16]. Each

type can be used individually or in combination with the others and in the aggregate they

constitute part of an integrated attitude determination and control system (ADCS).

Among the above instruments mentioned, star trackers are capable of providing high

accuracy for attitude determination. In many cases where there are demanding scientific

objectives, an attitude control system of high accuracy is required. It is therefore under-

stood why star trackers are of high importance. Additionally, there are missions where a

certain level of agility is required for specialized tasks. For example, satellites should be

agile and maneuverable as it considerably increases the return of earth and science mission

data making them more efficient.

1.2 Thesis Scope

In this thesis, we focus on the first stages of a star detection algorithm which in

particular are associated with the preprocessing of the image captured by the sensor of

the system. More specifically, we propose an efficient algorithm which applies in a star

tracking system that detects clusters of stars, which are to be used during the next stages

for centroid extraction. Furthermore, we aim to implement a HW/SW co-design which

runs at a SoC FPGA accelerated system in order to achieve fast performance.

We suppose that we have a satellite in orbit that is being provided with frames that

were captured by the system’s sensor. Each frame is a two dimensional image that contains

only a portion of the night sky. Star trackers, need to evaluate this data and determine the

attitude recognising patterns of constellations and mapping them to known star positions

in a catalogue. The challenge here is that large images need to be processed and the

computation should be fast and accurate as long as star tracker’s update rate depends on

that. Thus, we can understand that fast execution while processing each frame is critical

to achieve real-time performance.

Several commercial star tracker solutions exist but are not easily accessible. They are

of high cost and it is often a preferable option to develop a custom one according to the

28

mission’s requirements. The block diagram of a typical star tracker is shown below in

Figure 1.1.

Figure 1.1: Block diagram of a typical Star Tracker.

Generally, star trackers play an important role to the entire satellite’s Attitude Deter-

mination and Control System (ADCS) and they consist of a CMOS Image Sensor that is

exposed to light and digital hardware that processes the data. Usually, a System-on-Chip

(SoC) device which integrates a processor, a Field Programmable Gate Array (FPGA)

including interconnections, memory and some peripherals all in one chip, is responsible

for the processing of the image data. When considering CPU & FPGA co-processing,

the most prominent devices are the COTS SoC FPGAs, which integrate both types of

processors in a single chip [17]. However, space community employs both space-grade

[18][19][20][21] and Commercial Off-The-Shelf (COTS) [18][22][23] FPGAs. In general,

FPGAs are not only utilised to accelerate complex DSP functions of high computational

intense, but they can be used as well as add-on processors in co-processing architectures

[24][25][26] where they perform operations such as I/O handling, data transcoding and

data compression.

Figure 1.2: System-on-Chip Layout.

Figure 1.3: Process Flow of a Star Tracker.

The sequential process flow of a Star Tracker is shown in figure 1.3. Exposure time is

29

the first stage of the process and is the time needed for the sensor to produce image data

of the night sky. Afterwards, data are processed on the FPGA platform so as to extract

centroids which consequently are forwarded to the processor. The final stage of the process

is matching. During that stage, a pattern recognition algorithm is executed in order to

identify the extracted centroids by mapping them to a known star catalogue. The main

scope of this thesis is to develop an efficient algorithm that performs the preprocessing

tasks and is presented in Chapter 3. That is a non trivial problem due to the limitations

of the FPGA platform while certain requirements of the star tracker need to be met such

as robustness, low cost, precision and low power consumption.

1.3 Project Objectives

This thesis was a collaboration of Microlab-NTUA and Infinite Orbits and due to

their uttermost contribution it was completed successfully. In addition to their excessive

support, Infinite Orbits provided a custom camera lens which is to be used for future

work and extension of this thesis. More specifically, the lens is a backside illuminated

(BSI) scientific CMOS image sensor, with 4MP resolution (2048×2048) and 12 bits per

pixel whose size is 6.5 μm. For the development and evaluation of the system a COTS

SoC FPGA was utilised and in particular, Zedboard 7020 chip that hosts Xilinx ZYNQ

SoC with ARM processor. Thus, the project objective is to optimise an algorithm used

for star trackers and can be applied to an entire ADCS, on Zynq SoC for that specific

image sensor which is provided by Infinite Orbits. However, as it will be discussed in

the following chapters, the proposed system has been designed to be configurable in order

to adjust to different conditions according to the mission’s requirements and therefore it

supports many different camera types. The specifications of this project are the following:

• Field of View (FOV): 15.5◦×15.5◦

• Image Resolution: 4 MP

• Pixel Depth: 12 bits

• Real-time performance of 1-2 frames per second

• Accelerated clustering algorithm

• Low Power Consumption

1.4 Thesis Outline

The remaining of the thesis is structured as follows.

Chapter 2 presents the full background, which is helpful to completely understand

the concept of our ideas and implementations in the following chapters. It involves some

30

general information about star trackers, their characteristics and what is the main pur-

pose they are used for. In addition, we will review some of the related work that has

been published or is currently available for space missions and finally, we will provide an

overview of SoC FPGAs, as well as a general outlook of the interconnection protocols that

are used.

Chapter 3 focuses on the ideas that our algorithm is based on. We analyze quite

extensively the proposed architectures presenting them both at high and low level. The

first subsection of this chapter emphasizes on the averaging binning, while the second one

describes the main algorithm for cluster extraction. Finally, we review the optimization

steps we made aiming to achieve high performance.

Chapter 4 presents the experimental evaluation of the proposed system, along with

a results section which basically compares the hardware to the software outcomes. It also

refers to the power consumption and resource utilisation of our integrated system.

Chapter 5 is the final chapter, summarizing the conclusions drawn from the total

contributions of our work.

31

Chapter 2

Background

In this section we are going to present background material for the explanation of the

methods and ideas that have been used in the main part of the thesis. Our main focus is

on the background of star trackers regarding some of their characteristics and algorithms

used for their development.

2.1 Star Trackers

A star tracker is an optical device that measures the positions of stars. As long as this

happens to a high degree of accuracy, a star tracker on a satellite or spacecraft may be

used to determine its orientation with respect to the stars. In order to do this, the star

tracker needs to obtain an image of the stars and measure their apparent position using

pattern recognition algorithms so as to identify them compared to their known absolute

position on a star map.

Generally, star sensing and tracking devices can be divided into three major classes

which are star scanners, gimbaled star trackers and fixed head star trackers. Star scan-

ners use the spacecraft’s orientation to provide the searching and sensing function while

gimbaled star trackers search out and acquire stars using mechanical action. Finally, the

last class of star trackers has electronic searching and tracking capabilities over a limited

field of view[27].

Attitude determination based on charge couple devices (CCD) area array image sensors

was pioneered in the early 1970s. There are the so-called “First-Generation CCD Star

Trackers” and consist of a CCD sensor, associated optics and dedicated electronics[28].

Within the last decade, a new generation of star trackers has been developed which involves

units identified as “Second-Generation Star Trackers”. The main difference from the prior

generation is that pattern recognition algorithms are performed autonomously so as to

identify constellations using internal catalogues. In addition, they are more advanced as

expected and they are capable of high performance in adverse conditions.

33

2.1.1 Star Tracker Characteristics

Commercial star trackers vary in terms of performance according to their characteris-

tics. Depending on the mission’s requirements, there are several parameters that can be

adjusted in order meet these exact objectives.

Accuracy

As we have pointed earlier, accuracy correlates with the star tracking algorithms. The

more demanding the application is, the more increasing the need is to develop algorithms

of high accuracy, and so the performance becomes computationally intensive. Liebe in his

article describes extensively how performance accuracy is measured[29]. Actually, there

are two types of accuracy metrics when we refer to star trackers, pointing accuracy and

rolling accuracy. Accuracy measurement is essentially the angle error curve of pointing

and rolling axis with respect to the boresight[1]. Usually, they are also referred as cross

boresight accuracy (pitch and yaw) and about boresight accuracy (roll) correspondingly

and are quoted in 3σ values. Cross boresight errors are significantly less than about

boresight errors and modern star trackers are capable of accuracies that range from 0.1

to 20 arcseconds (cross boresight)[30]. In order to achieve such low levels of accuracies,

sub-pixel accuracy is critical while executing centroid detection.

Figure 2.1: Pointing and rolling accuracy schematic of the star tracker [1].

Field of View

The size of the Field of View is probably the most important parameter. A narrow

FOV implies high precision and is a requirement for astronomical star trackers. Low cost

general purpose star trackers offer wide FOV whose size ranges from a few degrees to over

40◦ diagonally and are usually utilized as a part of the ADCS in micro satellites. High

precision star trackers are capable of accuracies of 1 arcsecond. On the contrary, the typical

precision of general purpose star trackers is about 15 to 20 arcseconds. However, decreasing

the FOV has some disadvantages as well. First of all, it is more difficult to determine

the initial attitude. When the FOV contains a small number of stars, the algorithm

tend to reject the frame. Moreover, a much bigger star catalogue is required, which is

significantly undesirable since it increases the amount of memory needed. Furthermore,

initial attitude acquisition becomes a more complicated task and also the complexity of

pattern recognition algorithms increases rapidly with the number of stars [2].

34

Update Rate

The update rate basically depends on the exposure time and the processing time of the

image. There is a strong correlation between exposure time and the optical and hardware

design. The longer the exposure time, the more photons are captured by the image sensor

and this results to a better signal-to-noise ratio. Choices regarding the sensitivity of the

sensor, the aperture of the lens, the sky coverage and some other factors affect the exposure

time. Generally, it is required to have a specific number of stars on average in the FOV.

Thus, to compensate the decreased FOV, we usually increase aperture of the lens so as the

fainter stars to be captured. The aperture primarily determines image sensor’s sensitivity.

Increasing the exposure time is another technique that is used in order to increase system’s

sensitivity. However, this method has disadvantages as it leads to lower update rates and

smeary images that affect the performance of the ADCS. Therefore, exposure time and

accuracy are trade-offs for a stable star tracker. Lastly, second generation star trackers

need to process large amounts of data which is a significant limiting factor to update rate.

In this thesis we focus on the acceleration of a clustering algorithm used in a star tracker

sub-system in order to improve the processing speed.

Physical Characteristics

Physical dimensions of a star tracker are important factors which are to be taken into

consideration when discussing about commercial star trackers. The mass of a star tracker

usually varies from 1 to more than 20 kg. At this point, it should be mentioned that

aperture of the lens is proportional to the system’s mass and size. High-performance star

trackers are huge and are designed for more scientific space missions, hence the assumption

that they are more accurate. However, the increasing market for microsatellites tends to

push the interest towards smaller designs.

Other Characteristics

Other than the aforementioned, there are a few other characteristics that describe star

trackers such as power consumption, sky coverage, SNR, star catalogue size and average

number of stars tracked per frame. These all directly affect the performance of the system

in a certain way. However, as we discussed earlier, there are no optimal choices as there

are some trade-offs and so preference is given upon the parameters that meet the design’s

requirements.

2.1.2 Sub-pixel Accuracy

Generally, among the most limiting factors for the resolution of optical instruments,

is the size of the sensor’s pixel. In digital image processing, a sub-pixel resolution method

is utilized to enhance the resolution of images and therefore to improve the algorithm’s

performance. A widely known technique to increase the accuracy, is the hyperacuity

technique, also known as sub-pixel accuracy.

In a focused image, the star appears as a point source, so all the luminous power gathers

in a single pixel. However, images might often be slightly defocused, even if they’re taken

35

by an expensive image sensor of high accuracy. In these cases, a star occupies several pixels

in the image plane. This makes it easier to model the centre of the star mathematically.

It may seem intuitively inconsistent with the sampling theorem to increase the accuracy

beyond one pixel, but it is the a priori knowledge of the pointspread function that is utilized

in combination with the actual measure. The performance of the hyperacuity technique

is defined by the algorithm used to determine the center of the star [2]. The achieved

sub-pixel accuracy depends on the S/N ratio. Unlike the fancy mathematical models,

the hyperacuity technique normally uses empirical calibrations which appear to be really

consistent.

There is an enormous dynamic range of illumination between the brightest and the

dimmest star. The resolution is limited when digitalising the CCD signal received from

the sensor (typically 8 to 16 bits are used). This leads to a contrasting situation where the

brightest stars will overflow and the dimmest stars will be hardly perceived due to noise.

These different situations are shown in Figure 2.2

Figure 2.2: Different Stars Utilising Hyperacuity technique [2].

2.1.3 Theoretical Background

At this point it is important to introduce a theoretical background regarding the in-

formation that is obtained by the image. The image sensor captures only a small portion

of the night sky that contains just a fraction of the stars which often appear dimmer or

distorted. Stars within the FOV are projected onto an image plane, where their mag-

nitudes are converted to a corresponding electron count. The magnitudes are expressed

as two-dimensional Gaussian functions in order to account for the (u,v) image directions.

The standard deviation of each Gaussian is determined by the sensor and optics of the

system and is defined in units of pixel width.

The FOV is described here by only one angle, which is defined by the angle from the

center of the lens to the outer edge of it. Camera’s frame is defined with the z-axis pointing

out the boresight, y-axis out of the top of the camera and x-axis completes the right-hand

frame. Once the frame and the FOV are defined, we should determine camera’s attutude,

or orientation with respect to another reference frame. The most common one that is

used is the J2000 Earth centered inertial (ECI) frame [31]. Hence, the entire catalogue

in matching process is searched to find all stars within the camera’s FOV by determining

the angular distance between z-axis and each star’s ECI unit vector.

36

Figure 2.3: Image sensor’s perspective Projection model [3].

We should mention that each star on the is projected onto a two-dimensional image

frame and so a determination of the three-dimensional points that represent the unit vector

is needed. To do so, we should take into consideration some camera parameters: the

intrinsic parameters regarding the properties of the sensor; and the extrinsic parameters,

which are related to the location and attitude of the camera with respect to the inertial

frame. These parameters form the camera matrix. The image plane is digitized and forms

the (u,v) pixel array, so the characteristics of the optical system define how the plane’s

coordinates transform to the (u,v) pixel coordinates.

So far, we made a short report of how the pixel location for a star in the FOV is deter-

mined. When it comes to the image processing, we need to perform certain calculations

regarding the corresponding brightness of the image. In astronomy, the brightness, or

magnitude, of a celestial body is defined in a logarithmic scale and is often measured in a

specific wavelength, spectrum or photometric band. Typically, magnitudes are measured

in the visual or near-infrared spectrum, wavelengths from hundreds of nanometers up to

micrometers. Since we have a logarithmic scale, the closer to zero in absolute scale a star

is, the brighter it is.

The magnitudes of stars in the FOV corresponds to a number of electrons. The magni-

tude is related to solar irradiance, which is defined as the power per unit area emitted by a

star. Once the electron count is calculated through a series of steps, which are considered

superfluous for the needs of this thesis, we can determine the area of pixels taken up by

a star in the FOV. The electron count can be described by a two-dimensional Gaussian

function, which provides a more intuitive way in order to determine the spread of a star.

The standard deviation of the Gaussian is determined by sensor and optic parameters and

is kept constant for each star regardless of brightness.

37

2.1.4 Algorithms

Although star trackers might differ in quite a few parameters, they mostly follow the

same process flow. The entire process can be divided into four primary sub-processes that

cooperate to provide the system with the information needed for attitude determination.

Figure 2.4: High level process flow of an ADCS.

Centroid Extraction

The first step of the algorithm is to extract centroid positions of possible stars on the

image plane. This actually happens in three steps, thresholding, clustering and finally

centroiding. This thesis puts a strong focus on the first two steps proposing two optimised

algorithms for hardware implementation that will be discussed in detail on Chapter 3.

Some of the most common algorithms that are used for centroid extraction are the center

of gravity and the fast gaussian fitting.

Distortion Correction

Distortion correction is the process where lens distortion correction is done in order

to convert the image plane coordinates to the corresponding three-dimensional sensor

body coordinates in Cartesian form. Unfortunately, there is no perfect lens, so it is in-

evitable to have some distortion to the images due to variations in image magnification.

Although distortion can be irregular or follow many patters, the most commonly encoun-

tered distortions are radially symmetric and can be classified as either barrel distortions

or pincushion distortions[32]. Figure 2.5 illustrates these two types of radial distortions.

In barrel distortion, image magnification decreases with distance from the optical axis,

whereas in pincushion distortion it increases. Radial distortion can be corrected using

Brown’s distortion model, also known as the Brown-Conrady model. This model utilizes

a series of polynomial coefficients that are often provided by the lens manufacturer, but

in most cases, it is necessary to calibrate the camera and the lens.

Matching

During this step, pattern recognition algorithms are used to map constellations with

known star positions in a catalogue. The algorithms are of the lost-in-space type or

the recursive type, wich runs off of some prior position knowledge. One of the most

widely known star catalogue is the Hipparcos catalogue of nearby stars. The Hipparcos

catalogue was obtained from the European Space Agency’s Hipparcos astrometric mission

that operated from November 1989 to March 1993 viewing the celestial sphere. The

mission returned very high quality star astrometric and photometric data, specifically

high precision data on 118,218 stars. It is important to mention that this process is of

38

Figure 2.5: Types of radial distortion [4].

great complexity and software optimisations are required to improve its processing time.

Lately, new techniques have been proposed to accelerate this process using neural network

models.

Attitude Acquisition

The final step is the attitude acquisition. Once the centroids have been extracted an

matched to known ECI coordinates, they can be used to determine the satellite’s attitude.

There are many different types of attitude determination algorithms for star trackers in

use today. Some of them which are commonly used are the TRIAD algorithm as well as

the Quaternion Estimator (QUEST) algorithm.

2.1.5 Commercially Available Star Trackers

Indicatively, a list of commercially available star trackers with high performance stan-

dards is presented as follows in table 2.1.

Table 2.1: Table of commercially available star trackers

Manufacturer Redwire
Vectronic

Aerospace GmbH
Terma Ball

Model SpectraTRAC VST-68M HE-5AS HAST

FOV N/A 14◦ × 14◦ N/A 8◦ × 8◦

Update Rate 4 Hz 5 Hz 4 Hz configurable

Accuracy

(x, y axis)
10 arcsec 5 arcsec <1 arcsec <0.5 arcsec

Accuracy

(z axis)
27 arcsec 30 arcsec <5 arcsec N/A

Mass 0.475 kg 0.470 kg 1 kg N/A

Volume
120 × 61

× 61 mm

60 × 60

× 138 mm

120 × 120

× 33 mm
N/A

Power 2.5 W 3 W
1.5 W (camera)

5.5 W (processor)
N/A

Temperature -30oC - 55oC -20oC - 65oC -40oC - 70oC N/A

39

2.2 Related Work

A broad interest in space exploration has led to a proliferation of algorithms for star

detection that can be used for spacecraft’s attitude determination. Carl Liebe gives an

extensive overview in his articles about the operation and performance of autonomous

star trackers. He presents in detail the new class of second-generation star trackers. These

designs, are fully autonomous, have higher accuracy, smoother and more robust operation

and are capable of solving the lost-in-space problem. Star trackers are able to operate

in two basic modes: lost-in-space mode and tracking mode. In tracking mode, the star

tracker is provided with initial attitude information as a way of increasing the update

rate. In tracking mode the image is processed in portions during centroiding. Lost-in-

space attitude acquisition is a more complex task resulting to higher processing times, so

the advertised update rates of commercial star trackers often correspond to tracking mode

operation [30][2].

R. van Bezzooijen from the Lockheed Palo Alto Research Laboratory presents a de-

tailed development of an autonomous star tracker prototype including an in-depth evalu-

ation after testing with real data. The AST is designed to perform in lost-in-space mode,

to update its attitude autonomously and provide attitude information continuously as

well. The paper also describes a number of functions that are enabled or enhanced by the

AST including attitude safing, fast fault recovery, autonomous optical navigation and un-

calibrated attitude acquisition. He concludes that after performing realistic simulations,

the results showed that the AST with an 11.3◦ FOV, spatial accuracy of 10 arcseconds,

brightness accuracy of 0.3 magnitude, a database of 4148 guide stars, a highly efficient

non-iterative star pattern recognition algorithm, and an MC68030 class microprocessor

running at 25 MHz is capable of determining its attitude in approximately 0.6 s having

no initial attitude information. It is noteworthy that it can do so with a demonstrated

success probability of 99.25%, while the probability of false identification is less than 0.1%

[33].

Rufino et al. published a paper that demonstrates the enhancement of the centroiding

algorithm for a star tracker. The hyperacuity technique to image processing is analyzed

and an error-budget analysis is performed to find out type and magnitude of the effects on

centroiding. The centroiding error results to be a function of two parameters: a systematic

term and a random one, so numerical models of defocused point spread functions were

introduced to evaluate their contribution. Since the first error contribution is systematic, a

backpropagation neural network is adopted to improve the performance. He ends up that

the application of the correction to the PSF numerical models introduces an improvement

of the overall centroiding accuracy to 0.005 pixels [34].

Wei et al. presented a real-time star identification using synthetic radial pattern and

implemented a hardware design. Their paper proposes a novel lost-in-space algorithm for

star determination based on synthetic radial pattern, which is dedicated to the pipelined

paraller architecture of FPGAs. The synthetic radial pattern consists of two single radial

40

patterns connected by their two respective polestars. In the algorithm, the polestar-pair is

firstly matched and then radial pattern filtering is performed so as optimum identification

results can be obtained. This results to a significant reduced number of spurious matches.

They also developed a mathematical model to demonstrate the efficiency compared with

conventional radial algorithms. The algorithm was then described both in software and

FPGA implementation details. Software simulations have indicated that the proposed

algorithm was highly efficient, robust and less sensitive to false stars. In addition, the

time cost of less than 1 ms, demonstrates that the implementation can meet the real-time

requirements of high-dynamic star sensors [35].

2.3 Space Navigation

In recent years, there is a growing interest in deep space exploration. The current

approach for planetary navigation is based on ground-based radiometric tracking. This

technique is a bit of disadvantageous as the radio signals that are transmitted from a

spacecraft are very weak and have to be picked from background noise and additionally

it might take hours to reach the Earth. As there are several constraints for equipment

on board spacecraft, most of the complex communications technologies are incorporated

on ground. A new era of low-cost small satellites for space exploration will decrease

the reliance on ground-based tracking and provide a substantial reduction in operational

costs due to crowded communication networks. Autonomous navigation methods are

widely investigated and one of the most promising methods, is called crosslink radiometric

navigation which uses inter-satellite communication link. Fully autonomous navigation is

only possible if it is performed on-board without any intervention from ground. In general,

autonomy can provide minimal-cost if ground operations or hardware are reduced and lead

to increased performance [36].

2.3.1 Celestial navigation for satellites

Celestial navigation method requires knowledge of celestial bodies’ position (Sun,

Moon, Earth and stars) in inertial frame at certain time and correlation between their

observed position in the satellite body frame and the satellite’s position. Satellite’s posi-

tion and velocity can be defined by the error between the measured and estimated celestial

body data. For attitude determination, the measurements of stars are sufficient. For Low

Earth Orbit (LEO) satellites, the horizon sensing accuracy is the most determining factor

which affects celestial navigation accuracy. Regarding horizon sensing, there are two major

approaches: directly sensing horizon method and indirectly horizon sensing method. In

the first method, an horizon sensor is used to provide directly Earth-relative information

and as well as other celestial bodies’ direction. These measurements are often combined

with a Kalman filter to determine the orientation and attitude of a spacecraft. In the sec-

ond method, high accuracy star sensor and a mathematical model of starlight refraction in

the atmosphere are used to in order to provide information about horizon’s direction. The

41

method of directly horizon sensing is robust, prompt and easy to use due to simplicity.

However, the achieved navigation accuracy is insufficient, so the indirect method is highly

preferable. An alternative technique utilizes a combination of these two complementary

approaches providing a reliable celestial navigation system with a significant improvement

in terms of performance. Furthermore, the accuracy can be enhanced with a supplemen-

tary measurement technique such as the Doppler velocity related to on-ground operations

measured by a standard component. Navigation accuracy is affected by two major factors

which are the state model’s accuracy and the filtering method. Among the most common

filtering methods that are widely used, are the Extended Kalman Filter, the Unscented

Kalman Filter and the Particle Filter [36][37].

2.3.2 Celestial navigation for deep space probes

Navigation of satellites refers to the mission orbit’s knowledge with respect to the

central body (absolute) or with respect to another object (relative). It is also related

to the knowledge of where the object resides in the past, present and future[36]. Every

reported navigation method applicable for deep space is sorted to on-board and off-board

navigation method as of where navigation knowledge is obtained. Some of the most

common autonomous deep space navigation methods are presented as follows.

Optical navigation

Optical navigation refers to a variety of methods of determining the spacecraft states,

relative position and velocity between a spacecraft and a target body with on-board optical

sensors. Basically, optical sensors, whose characteristics determine resolutions, sensitivi-

ties, and uncertainties, estimate Line-of-Sight (LOS) to beacons or to known locations at

the surface. In principle, optical navigation methods compute a body position in the cam-

era reference frame and derive target location in space from the corresponding location in

the image frame [38]. The main advantage of these methods is that can be used in various

mission phases such as cruise, flyby, rendezvous, orbiting and landing. A few deep space

small satellite missions have planned to use one of the proposed optical methods. In brief,

optical navigation provides major advantages over other architectures, such as moderate

to high accuracy navigation solutions, while being compatible with all mission phases [39].

Pulsar navigation

Pulsar navigation uses the periodic X-ray signals emitted from pulsars to determine

spacecraft’s states by estimating timing and direction of the pulses arriving. Stable neu-

tron stars spinning nearly 1000 times a second, for example, can provide a solution for

autonomous navigation: the arrival time of each pulsar updates a temporal database and

subsequently the extracted data is used to determine or update attitude, position or ve-

locity of the spacecraft [40]. Probably, the most important advantage of this method is

that is capable of stabilizing on-board clocks via the periodic pulse signals. Furthermore,

it is applicable to missions not only in close proximity to Earth but in deep space as well.

Pulsars emit radio frequencies that range between 100 MHz and a few GHz. In order to

42

detect those signals, radio frequency systems require huge antennas with diameter greater

than 25 meters [41]. Overall, pulsar navigation offers a better and more accurate solution

over optical navigation. However, a major disadvantage of the first one, is the sensor size

and the required integration time which makes it incapable of operating in some mission

phases, such as close-proximity[39][42][43].

2.4 Rotational Kinematics

Kinematics is the study of motion of a system of bodies without directly considering

the forces or potential fields affecting the motion. Navigation requires a fixed reference

coordinate system so as to relate the corresponding moving frame of the spacecraft. This

fixed reference frame which in used for space navigation is known as Earth Centred Inertial.

2.4.1 The Earth Centred Inertial (ECI)

The Earth Centred Inertial frame, also known as Geocentric Equatorial Coordinate

System, is fixed in inertial space and positioned right at the centre of the Earth, but it

does not rotate following Earth’s motion. The fundamental plane contains the equator

and the positive X-axis points in the Vernal equinox direction. The Z-axis points in

the direction of the geographical North Pole and the Y axis consequently completes the

right hand set of coordinate axes [5]. It is assumed that celestial objects are inconsistent

units in great distances, so any position on the sphere is defined by the following two

coordinates: right ascension and declination. Right ascension α is the angle measured

from the vernal equinox considering that counterclockwise rotation has a positive angle

measure. Declination δ is the angle measured from the celestial equinox respectively. An

illustration of the ECI coordinate system is shown in Figure 2.6.

A frame associated with the spacecraft’s body is needed as well. This body frame is

fixed with respect to its vessel and its position is at the centre of its mass. Both ECI

and body frames are fundamentally important for attitude acquisition. The star tracker

provides the means find the correlation between the two coordinate systems and extract

information about the spacecraft’s attitude.

2.4.2 Euler Angles

The orientation of a rigid body with respect to an inertial reference frame N can also

be described by a sequence of three rotations, each about a single axis in the body frame

B. These three rotations are the most frequently used method for representing an object’s

attitude and are known as the Euler angles.

Coordinate Rotations

The special orthogonal group of all 3×3 rotation matrices is denoted by SO(3). A

coordinate rotation is a rotation about a single coordinate axis. Enumerating the x, y,

z-axes with 1, 2 and 3, the coordinate rotations, Ri : ℜ → SO(3), for i ∈1,2,3, are

43

Figure 2.6: The Earth-Centred Inertial (ECI) frame [5].

R1(α) =

1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)

 (2.1)

R2(α) =

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 (2.2)

R3(α) =

 cos(α) sin(α) 0

−sin(α) cos(α) 0

0 0 1

 (2.3)

Considering three coordinate rotations in sequence, in which the first one is an angle

ψ about x-axis, the second is an angle θ about y-axis, and the third is an angle ϕ about

z-axis. For the sake of brevity, we arrange these angles in a three-dimensional vector called

the Euler angle vector, defined by

u :=
[
ϕ, θ, ψ

]T
(2.4)

The function that maps an Euler angle vector to its corresponding rotation matrix,

Rxyz : ℜ3 → SO(3), for i ∈1,2,3, is

Rxyz(ϕ, θ, ψ) := Rx(ϕ)Ry(θ)Rz(ψ) (2.5)

As in the general case, if z ∈ ℜ3 is a vector in the world coordinates and z′ ∈ ℜ3 is

the same vector expressed in the body-fixed coordinates, then the following relations hold

44

[44]:

z′ = Rxyz(u)z (2.6)

z = Rxyz(u)
T z′ (2.7)

Euler Angle Sequence (3,1,3)

The most common sequence associated with the name Euler angles is (3, 1, 3), named

for Leonhard Euler, an 18th century Swiss mathematician and physicist. For aircraft

motion, we usually refer the motion to a horizontal rather than to a vertical axis. In a

description of aircraft motion ψ would be the ”roll” angle; ϕ the ”yaw” angle; and θ the

”pitch” angle [45].

Figure 2.7: Roll-Pitch-Yaw notation for Euler angles [6].

In the (3,1,3) rotation sequence the first rotation is an angle of ψ about z-axis (yaw),

the second rotation is an angle of θ about x-axis (roll) and the third rotation is an angle

of ϕ again about z-axis. The rotation sequence is depicted in Figure 2.8.

Figure 2.8: Euler Angle Sequence (3,1,3).

For compact notation, we write cθ := cos(θ), sϕ := sin(ϕ), etc. The function that

maps a vector of Euler angles to its rotation matrix is:

45

R313(ψ, θ, ϕ) = R3(ψ)R1(θ)R3(ϕ) =

=

 cψ sψ 0

−sψ cψ 0

0 0 1

 ·

1 0 0

0 cθ sθ

0 −sθ cθ

 ·

 cϕ sϕ 0

−sϕ cϕ 0

0 0 1

 (2.8)

2.4.3 Coordinate Transformation

The post-centroiding process as shown in Figure 2.4, is matching. In order to proceed

to this operation, coordination transformation is needed so as to yield centroid’s exact

position in the sky. This coordinate transformation technique is adapted to Wielligh’s

master thesis [46] and a paper by Qian et al. [7]. The first step required, is a rotation from

the ECI coordinates to the star tracker sensor’s body coordinate system. Consequently,

we need to project the image sensor’s coordinates onto the two-dimensional image plane.

Figure 2.9 illustrates exactly how the preceding coordinate systems mentioned are related.

Figure 2.9: Coordinate model of a star tracker [7].

The ECI coordinates of a star are expressed as (α, δ). The star tracker sensor body

frame is noted as (U,V,W) and the image plane coordinates are expressed as (x,y). Let

us assume that the camera boresight is right at the Earth’s centre. Any translation

transformation between the two coordinate systems can be ignored regarding the long

distance between the Earth and other stars considered fixed. A rotation-matrix, R is

expressed as follows: [
X,Y, Z

]T
= R ·

[
U, V,W

]T
(2.9)

where [U, V,W]T is the ECI celestial coordinates in Cartesian notation. Supposing that

we use the (3,1,3) Euler angles rotation sequence that was presented in the previous

subsection. From the equation (2.8) we have that the rotational matrix R = R313(ψ, θ, ψ),

where ψ, θ, ϕ are the 3D rotation angles as shown in Figure 2.8 respectively. As we can

46

Figure 2.10: Celestial coordinate system to star tracker’s coordinate system [7].

see in Figure 2.10, the rotation angles θ and ϕ can be expressed in relation to the boresight

as:

θ = 90◦ − δ0 (2.10)

ϕ = 90◦ + α0 (2.11)

where (α0, δ0) refere to the boresight orientation. The ECI coordinates vector of a fixed

star can be also expressed as: UV
W

 =

cαcδsαcδ

sδ

 (2.12)

Combining the equations (2.8), (2.9) and (2.12) we come up with the following result for

[X,Y, Z]T :XY
Z

 =

 cψ sψ 0

−sψ cψ 0

0 0 1

 ·

1 0 0

0 sδ0 cδ0
0 −cδ0 sδ0

 ·

−sα0 cα0 0

−cα0 −sα0 0

0 0 1

 ·

cαcδsαcδ

sδ

 (2.13)

where (α, δ) is the coordinate of a star in the ECI frame, (α0, δ0) is the selected boresight

orientation and ψ is the rotation angle about the boresight (z-axis of the sensor’s body

coordinate system).

The next step is to project that [X,Y, Z]T vector onto the image plane. Hence, we

need to project the three-dimensional points representing the unit vector of each star

onto a two-dimentional image plane. We use the pinhole camera model, which provides

a simple technique to describe the relation between the 3D coordinates of a point and its

projection an ideal pinhole camera. Through some similar triangles formed, the 2D image

47

coordinates [x, y]T are expressed as: [
x

y

]
=
f

Z

[
X

Y

]
(2.14)

where f is the focal length in millimetres.

Finally, to determine the pixel coordinates we need to scale the image plane coordi-

nates, rotate the axes and shift them to the right corner as shown in Figure 2.11. The

Figure 2.11: Pinhole Camera Model: ideal projection of a 3D object on a 2D image [8].

mathematical functions that describe this transformation are:[
u

v

]
= −[

1

Sx

1

Sy
]

[
x

y

]
+

[
ox

oy

]
(2.15)

where Sx, Sy is the pixel resolution divided by the size of the sensor and ox, oy represent

the coordinates of the sensor’s centre in pixel units.

2.5 SoC FPGA Overview

This current thesis, puts a strong focus on the implementation of an algorithm for

star trackers exploiting the FPGA features due to its flexibility and performance. Field-

Programmable-Gate-Arrays (FPGAs) are integrated semiconductor devices that are based

around a matrix of configurable logic blocks (CLBs) connected via programmable inter-

connects. Their major advantage is reconfigurability meaning that they can be repro-

grammed to desired application or functionality requirements after manufacturing. This

feature distinguishes FPGAs from Application Specific Integrated Circuits (ASICs), which

are custom manufactured for specific design tasks. Thus, FPGAs provide higher flexibil-

ity compared to ASIC solution. Although there are also one-time programmable (OTP)

48

FPGAs, the most dominant types are SRAM based which are capable of reprogramming

while the design’s evolving [47].

Figure 2.12: Field Programmable Gate Array (FPGA) schematic [9].

.

ASIC and FPGAs have different value propositions, and they must be carefully evalu-

ated before choosing any one over the other. While ASICs outperform FPGAs, the second

ones have evolved rapidly during the last decade and now they can easily reach signif-

icantly high frequencies. FPGAs consist of logic blocks, I/O blocks and a hierarchy of

reprogrammable interconnects allowing blocks to be wired together and interact. They

may also contain some complete memory blocks as well. These Configurable Logic Blocks

can be configured to implement complex combinational functions or simply implement

nearly any digital logic circuit.

FPGA is a constantly evolving technology, especially in terms of logic density and

speed. Among the newest improvements in the FPGA world are System-on-Chip (SoC)

FPGA devices. A SoC FPGA integrates a hard processor core and programmable logic

on the same die [48]. Consequently, they provide higher integration, lower power, smaller

board size, and higher bandwith communication between the processor and the FPGA.

They also include a set of peripherals, on-chip memory, and FPGA-style logic array, and

high speed transceivers. The three largest FPGA vendors, Xilinx, Altera and Microsemi,

manufacture SoC devices having in common that they put a hard ARM processor.

Comparing the utilisation of a stand-alone processor and a stand-alone FPGA, the

approach of a SoC FPGA is cheaper, consumes less power, and is easier to apply into

a design. Combining the two components implies reduced design time, smaller physical

size, hence lower cost. Another important benefit to using of SoC FPGAs is the faster

communication between processor and FPGA. Thus, increased bandwidth and reduced

latency are achieved. Therefore, SoC FPGAs have become a highly relevant competitive

alternative to their traditional counterparts [49].

49

2.5.1 Xilinx Zynq SoC FPGA Architecture

In this thesis, the Hardware used consists of a Zedboard development board that hosts

a Xilinx Zynq-7020 SoC device. At this point, a brief overview of the Xilinx Zynq-7000

SoC architecture is presented. The three main components that constitute the Zynq-7000

SoC FPGA, as depicted in Figure 2.13 are the following: the Processing System (PS), the

Programmable Logic (PL) and the AMBA AXI Communication Protocol.

Figure 2.13: Xilinx Zynq SoC FPGA Architecture [10].

Zynq Processing System

The PS is equipped with the following:

• 32-bit Dual core ARM Cortex-A9 processor capable of up to 1GHz operation fre-

quency

• 64 KB L1 Cache Memory

• 512 KB L2 Cache Memory

• 256 KB On Chip Memory (OCM)

50

• NEON and FPU extensions for Single Instruction, Multiple Data (SIMD) and float-

ing point processing

• Memory Management Unit (MMU)

• Snoop Control Unit (SCU), which manages the data cache coherency between the

two processors and L2 cache

Zynq Programmable Logic

Zynq-7000 SoC is equipped with the PS integrated with a 28 nm Artix-7 or Kintex®-7

based programmable logic which consists of:

• Configurable Logic Blocks which in turn includes:

– LUTs

– D Flip Flops

– Multiplexers

– Carry Chain Logic

• DSPs

• Block RAMs

• Clock Tiles

• Input/Output Blocks

• Various Interfaces

– Gigabit Transceivers

– XADC

– PCI

AMBA AXI Communication Protocol

The AXI4 Standard is an interconnect protocol which sets up the communication

between the Processing System and the FPGA. It belongs to ARM AMBA family of

microcontroller buses and allows the connection and management of many controllers

and peripherals in a multi-master design. It is worth mentioning that the protocol was

optimised for FPGA implementation through coordinated development with Xilinx as its

aim is high performance and high frequency system designs [50].

The AMBA AXI Communication Protocol follows a master-slave logic within its con-

nection. It is distinguished in two phases which are the address/control phase and the

data phase. Also, it has two separate channels for reading and writing and it allows single

and burst-based transactions that may as well be out-of-order. That means that read data

can be returned from slaves who response faster and are given priority above the slower

ones. There three variations of AXI4 protocols which are presented in brief as follows:

51

• AXI4

– Memory-mapped protocol

– Data burst transfer of up to 256 data words

– Bidirectional

• AXI4-Lite

– Simplified memory-mapped protocol

– Transfer of a single data word

– Bidirectional

• AXI4-Stream

– Non-memory-mapped

– Burst transfers of unrestricted size

– Unidirectional

In this thesis, we utilize the AXI4 Lite and the AXI4 Stream protocol in order to

establish the communication between the PS and the PL so as to implement the HW/SW

co-design for the accelerated clustering algorithm. Thus, a more extensive report about

the aforementioned communication protocols is presented below.

2.5.2 AXI4 Lite

The AMBA AXI protocol is suitable for high-bandwidth and low-latency designs and

provides high-frequency operation without using complex bridges. In addition it is suitable

for memory controllers with high initial access latency and it offers makes the implemen-

tation of interconnect architectures flexible.

The key features of the AXI protocol are that it has separate address/control and data

phases and that is capable of unaligned data transfers using byte strobes. Furthermore,

burst-based transactions with only the start address issued are processed and other than

that, it provides support for out-of-order transaction completion. Last but not least, it

has separate read and write data channels, that lead to low-cost Direct Memory Access

(DMA).

The AXI protocol is burst-based and defines the following independent transaction

channels:

• read address

• read data

• write address

• write data

52

• write response

An address channel carries control information that describes the nature of the data to

be transferred. The data is transferred between master and slave using either write data

channel to transfer data from the master to the slave, or read data channel to transfer

data from the slave to the master. In a write transaction, the slave uses the write response

channel to signal the completion of the transfer to the master. Figure 2.14 shows how a

read transaction uses the read address and read data channels, while Figure 2.15 shows

how a write transaction similarly happens. AXI4-Lite is a light-weight, single transaction

Figure 2.14: Channel architecture of reads [11].

Figure 2.15: Channel architecture of writes [11].

memory mapped interface. It has a small logic footprint and is a simple interface to work

with both in design and usage. The key functionality of AXI4-Lite operation is:

• all transactions are of burst length 1

• all data accesses use the full width of the data bus

– AXI4-Lite supports a data bus width of 32-bit or 64-bit

• all accesses are non-modifiable, non-bufferable

• Exclusive accesses are not supported

53

2.5.3 AXI4 Stream

The AXI4-Stream protocol is similar to the AXI4-Lite that was described above. As

well as the AXI4-Lite, it is used as a standard interface to connect components that wish

to exchange data. The AXI4-Stream protocol is used for applications that typically focus

on a data-centric and data-flow paradigm where the concept of an address is not present

or not required. Each AXI4-Stream acts as a single unidirectional channel for a handshake

data flow.

The protocol supports multiple data streams using the same set of shared wires, allow-

ing a generic interconnect to be constructed that can perform upsizing, downsizing and

routing operations. Thus, this particular protocol can be better optimized for performance

in data flow applications, but also tends to be more specialized around a given application

space.

Unlike AXI4-Lite protocol, AXI4-Stream interface does not require an address to pro-

ceed to the transaction. On the other hand, a single transfer is defined by a single TVALID,

TREADY handshake. The TVALID and TREADY handshake determines when informa-

tion is passed across the interface. A two-way flow control mechanism enables both the

master and slave to control the rate at which the data and control information is transmit-

ted across the interface. Therefore, this is the main principle which defines the protocol,

that in order for a transfer to occur, a handshake is required so both the TVALID and

TREADY signals must be asserted [51].

2.5.4 Design Flow

Computer Aided Design (CAD) tools are used as an interface between the user and the

hardware that turns the design ideas into FPGA programmable logic. Designs are written

in HDL, which stands for Hardware Description Language, and they are converted by the

CAD tool into a stream of bits used to program the FPGA. In this thesis we mainly used

Xilinx Vivado design suite. The Design Flow followed to implement our design is shown

bellow in Figure 2.16.

1. VHDL Description. We write the code in VHDL (Very High Speed Integrated

Circuit-VHSIC Hardware Description Language) which describes the desired func-

tionality of the hardware design. This includes all ports, logic, registers, arithmetic

blocks and a few other hardware blocks.

2. Functional Simulation. During this stage, a behavioural simulation is executed

in order to evaluate the logical functionality of the design. A waveform diagram

is produced which simulates inputs, outputs, wired signals and basically any value

imported in the design.

3. Logic Synthesis. Here, the HDL description is converted into a set of logic gates,

Flip-Flops, adders etc. A netlist between the individual components is also produced.

54

Figure 2.16: FPGA Design Flow.

4. Implementation. Here, the synthesized design is mapped to specific hardware of

the platform. In addition, optimizations occur and all the connections are placed

and routed in order to structure the designed circuit.

5. Bitstream Generation. A stream of bits called bitstream is produced after the

extraction of the implemented design.

6. FPGA Programming. The generated bitstream is exported to the FPGA platform

in order to configure and program it.

Vivado also has other useful features, that make designer’s life easier. For example, an

RTL design can be provided which exports the logic into a gate-level illustration. Figure

2.17 shows the different stages followed while transforming the HDL code to synthesized

design. The HDL code describe a simple synchronous adder which is capable of adding

two 2-bit numbers. The output products are the sum and the carry which identifies a

possible overflow.

55

Figure 2.17: VHDL code to synthesized design conversion.

56

Chapter 3

Development on the Zynq SoC

FPGA

Chapter 2 provided fundamental information and theoretical background necessary

to fully understand the core of our methods regarding the proposed algorithm for star

trackers. In the following sections, an extensive description of our proposed algorithm is

presented. Also, the optimisation steps followed are discussed in this section considering

the performance enhancement of the clustering algorithm.

3.1 HW/SW Co-design of Averaging 2D Binning

The first component of our HW/SW co-design performs averaging 2D binning. Pixel

binning is a feature becoming increasingly common in camera-based applications.

Let us introduce the idea of what a pixel is. Pixels, also referred as photosites, are

physical bits on a camera sensor that catch light in order to create pictures. A large pixel

is able to collect more light than a smaller one. Thus, when pictures are captured in low

light conditions, a sensor with large pixel size is required so as to achieve higher image

quality. High resolution image sensors, usually have a smaller pixel size sensor, which

might be limiting for the sensitivity of the camera.

In many applications, sensor resolution has exceeded the optical resolution which

means that the additional hardware complexity to increase pixel density, might be inca-

pable of increasing the image quality. However, if the size of each pixel in the high-density

image sensor becomes smaller, low sensitivity and noise amplification may occur, espe-

cially in low light images. To solve this problem, a proposed technique that is usually

adopted is pixel binning.

Pixel binning refers to the concept of combining the electrical charges of neighbouring

pixels together to form a superpixel resulting to an effectively increased size of the image

sensor. Therefore, we manage to increase the sensitivity of the resulting pixel at the cost

of reduced spatial resolution. Additionally, in applications where large image data need

to be processed, it is really beneficial for the algorithm’s performance to decrease the

58

image dimensions. Not only the processing time is reduced, but also the resources used

are significantly decreased. More precisely, the required memory is remarkably less, as for

example, the size of the image stored is under-quadrupled for a 2×2 binning. Usually,

pixels are combined in 2×2 or 4×4 grids to compose a single pixel. The Figure 3.1 bellow

depicts an example of two different levels of image binning. The original image has a size

of 8×8 pixels which corresponds to the maximum resolution. By binning at 2×2, each 2×2

grid combines into a pixel and the resulting image has only 16 pixels leading to reduced

resolution. Binning at 4×4 results to a 2×2 grid with just 4 pixels so arguably, there is a

noticeable reduction of image resolution.

Figure 3.1: Different levels of averaging binning.

3.1.1 High Level Architecture

At this point we will present a top-down architecture of the integrated system design.

Our approach is centered around the fast communication of the HW and SW components.

More specifically, we established the communication between the processing system (PS)

and the Programmable Logic (PL) of the SoC FPGA supposing that the image frames

are received from the camera. In this thesis, instead of receiving the images directly from

the camera, we assume due to simplicity that a set of different image frames captured

by the CMOS sensor has been stored in the internal DDR memory of the SoC device.

The implementation of our system is based on three stage processing pipeline as shown in

Figure 3.2. The stages are described as follows:

Figure 3.2: Processing flow of the integrated system.

59

1. The first stage refers to the stage of storing the image data to an allocated buffer in

DDR memory. This process is implemented in PS using the well-defined libraries for

the drivers of the memory unit in order to overcome the problem of limited memory

resources of the PL.

2. Next, the processing stage follows. In this stage, the stored image frames are trans-

ferred from PS to PL for processing where the Averaging 2D Binning component is

hosted. The binning component, and as well as the clustering component, which is

described in Chapter 3.2, are implemented in PL so as to exploit the capabilities of

the FPGA. In addition their parallel nature is well suited for implementation in this

platform and therefore we are capable of reaching high performance.

3. In the last stage, the results obtained from the processing stage, are transferred from

PL back to PS in order to be extracted to our Host PC for further use. Additionally,

the system is evaluated as of the validity of its functionality as well as of the achieved

performance. A SW-based algorithm is also implemented to be executed on the dual

core ARM processor and the results received from our system design are compared

to those produced by the SW operation.

PS-PL Communication

Image processing applications require high throughput rates and low latency data

transfers between the processor and the HW accelerator. Taking into consideration these

requirements, a streaming protocol is the most suitable approach for such applications. In

a streaming protocol data transactions are determined through a handshake mechanism

between the PS and the PL, which happens only at the beginning of the process and

afterwards, valid data can be transferred at every consecutive clock cycle. In order to

develop an efficient streaming communication, it should rely on a Direct Memory Access

(DMA) mechanism. DMA enables accelerator to perform direct access to system memory

and offloads CPU from being involved in data transfers. This mechanism considerably

boosts the overall system performance as CPU can keep working concurrently on other

tasks.

In this thesis, we use this approach to perform high throughput data transfers from

PS to PL and vice versa. As we’ve discussed in the previous section, in ARM-based SoC

FPGAs a widely used streaming protocol is the AXI4-Stream which relies on the well

established AMBA AXI4 protocol. However, the implementation of AXI4-Stream is a non

trivial task. The utilization of the protocol is arguably a major design challenge as of the

substantial amount of time spent for customization of the FPGA accelerator interface and

the validation of its operation in the integrated system.

Regarding the control signals transfers of the accelerator as well as the initialization of

the DMA, simpler communication protocols have been developed such as the AXI4-Lite

protocol which is also adopted in this project. In order to facilitate the implementation of

the PS-PL communication a proposed generic approach is proposed, which can be deployed

relatively fast and can be adjusted to meet specific application requirements.

60

Figure 3.3 presents an analytical block design of the integrated system. As we can see,

the block design consists of the Zynq processing system, our binning component, the AXI

DMA and some other peripherals. Each block is described bellow:

Figure 3.3: Block design of the HW/SW integrated system.

Zynq Processing System

The Processing System 7 core is the software interface around the Zynq-7000 platform

processing system. The Zynq-7000 family consists of an SoC style integrated PS and a PL

unit, providing an extensible and flexible SoC solution on a single die. The PS7 core acts as

a logic connection between the PS and the PL while assisting you to integrate customized

and embedded IP cores with the processing system using the Vivado IP integrator. More

specifically it stitches the interface signals with the rest of the embedded system in the PL.

The interfaces between the PS and PL mainly consists of three main groups: the extended

multiplexed I/O (EMIO), programmable logic I/O, and the AXI I/O groups [52]. A block

design which shows in detail all peripheral options and interfaces of the PS is illustrated

in Figure 3.4.

Figure 3.4: Zynq7 Processing System block design.

AXI Direct Memory Access

The Xilinx LogiCORE IP AXI Direct Memory Access (AXI DMA) core is a soft

61

Xilinx IP core for use with the Xilinx Vivado Design Suite. The AXI DMA provides

high-bandwidth direct memory access between internal memory and AXI4-Stream target

peripherals. Its optional scatter/gather (SG) capabilities also offload data movement tasks

from the Central Processing Unit (CPU). It provides a number of features for increased

productivity. These features are summarized below:

• It is AXI4 compliant providing enhanced flexibility to the user regarding the number

of the employed PL interfaces

• It also offers optional Scatter/Gather (SG) Direct Memory Access (DMA) support

• It supports multichannel operation of up to 16 channels and it is capable of two-

dimensional transfers in multichannel mode

• AXI4 data width support of 32, 64, 128, 256, 512 and 1,024 bits

• Primary AXI4-Stream data width support of 8, 16, 32, 64, 128, 256, 512 and 1,024

bits

• It inlcudes Optional Data Re-alignment Engine,which allows data realignment to

the byte (8 bits) level on the primary memory map and stream datapaths

Initialization, status, and management registers are accessed through an AXI4-Lite slave

interface. Figure 3.5 illustrates the functional composition of the core. Primary high-

speed DMA data movement between system memory and stream target is through the

AXI4 Read Master to AXI4 memory-mapped to stream (MM2S) Master, and AXI stream

to memory-mapped (S2MM) Slave to AXI4 Write Master. AXI DMA also enables up to

16 multiple channels of data movement on both MM2S and S2MM paths in SG mode.

The MM2S channel and S2MM channel operate independently. The AXI DMA provides

4 KB address boundary protection, automatic burst mapping, as well as providing the

ability to queue multiple transfer requests using nearly the full bandwidth capabilities of

the AXI4-Stream buses. Furthermore, the AXI DMA provides byte-level data realignment

allowing memory reads and writes starting at any byte offset location [12].

Averaging 2D Binning

At this point, let us present a detailed description of the Averaging 2D Binning block.

A high-level architecture of our developed component is presented within this subsection.

The binning component works on 2×2 or 4×4 image regions with stride 2 or 4 respectively

to calculate their mean value. Considering the requirements of our project, we chose to

proceed with 2×2 bins as a more appropriate option so as to keep balance between the

image resolution and its sensitivity. Figure 3.6 shows the extensive block diagram of our

binning kernel.

As we have mentioned, our component has been configured in order to support the

AXI4-Stream protocol so as to be able to receive valid data from the PS. More specifically,

we customised the ports of the component with the specified signals which compose the

62

Figure 3.5: AXI DMA Block Diagram [12].

master-slave logic and we implemented the handshake mechanism. At this stage, our

component receives the image data from TX DMA (the transmitting part of DMA) and

transfers the generated output to RX DMA (the receiving part of DMA). Both TX DMA

and RX DMA refer to the same AXI DMA block, although it is a common designing

choice to use two separate DMAs for the receiving and the transmitting part.

As we can see from Figure 3.6, the binning kernel is between two FIFO blocks. These

blocks refer the Xilinx FIFO Generator IP which is actually a buffer that follows the First

In-First Out logic. Both FIFOs have the minimum possible depth of 8 pixels. Supposing

that each image frame has a size of 4MP, this equals to 2048×2048 pixels so after binning

at 2×2, the output image contains 1024×1024 pixels. The main reason why we used these

FIFOs, is to secure that no pixels will be lost during the transmissions from and to the

DMA. For example, if the binning component for some reason is no longer ready to accept

data, it sends a signal to the TX DMA so as to pause the transmission. In that case, it is

possible that the TX DMA may continue sending pixels that are not supposed to be sent.

So, these data are temporarily stored in the buffer until the binning component re-enables

the transmission process.

Figure 3.6: Averaging 2D Binning block design.

63

Binning Kernel

Now, let us present a more detailed description of the Binning Kernel. Figure 3.7

illustrates the block design of the binning kernel. As we can see, it consists of two main

blocks which are the Serial-to-Parallel block and the Multiplier-Accumulator (MAC) unit.

First of all, we need to clarify that the image data are received serially following raster

scan ordering. This means that the binning kernel receives pixels row by row. Therefore,

a serial-to-parallel block is needed in order to forward multiple data coming serially in

consecutive clock cycles to the next blocks. Another issue is that an entire image row

needs to be scanned so as to be able to calculate the mean values in 2×2 regions. The

rows are processed in pairs of two and the first of each pair is stored temporarily in the

FIFO buffer. This adds significant overhead to the operational throughput. However, the

FPGA accelerator supports parallel processing, so mean values computation of each 2×2

grid and temporary storing of the following row happen concurrently.

Figure 3.7: Block design of the Binning kernel.

The other main block is the Multiplier-Accumulator (MAC) unit. This is the unit

where the 2×2 (or 4×4) bins are calculated. It consists of an Adder Tree and the Divider

block. The Adder Tree, as the name suggests, is a tree structure of full adders for paral-

lelism which performs fast additions. As we operate on 2×2 regions, the sum of 4 pixel

values needs to be calculated. Thus, the structure of the Adder Tree block is shown in

Fig. 3.8. There are two levels of additions which support parallelism. Firstly, the 4 pixels

are grouped in pairs of two and the output sums are added together on the second level

adder. Afterwards, the total sum is passed to the Divider which calculates the mean value

simply by dividing by 4. The output refers to the new superpixel of the generated image.

3.1.2 Low Level Implementation

Previously, we presented a high-level description of the Averaging 2D Binning compo-

nent. In this subsection, a more detailed overview of the implementation is discussed with

a low-level perspective.

Handshake process

The handshake process is mainly defined by the following rules:

• The TVALID and TREADY handshake determines when information is passed

accross the interface. A two-way flow control mechanism enables both the master and

64

Figure 3.8: Adder Tree Structure for 2×2 binning.

slave to control the rate at which the data and control information is transmitted.

For a transfer to occur both the TVALID and TREADY signals must be asserted.

• A master is not permitted to wait until TREADY is asserted before asserting

TVALID. Once TVALID is asserted it must remain asserted until the handshake

occurs. Once the master has asserted TVALID, the data or control information

must remain unchanged until the slave drives the TREADY signal HIGH, indicat-

ing that it can accept the data and control information. In this case, transfer takes

place once the slave asserts TREADY HIGH.

• A slave can assert TREADY before, during or after the cycle in which TVALID

is asserted. The assertion of TREADY might be dependent upon the value of

TVALID. A must either drive TREADY independently or pre-assert TREADY

to minimize latency. For example, a slave drives TREADY HIGH before the data

and control information is valid. This indicates that the destination can accept the

data and control information in a single cycle of ACLK. In that case, transfer takes

place once the master asserts TVALID HIGH.

Averaging 2D Binning

Now, let us explain how the handshake process is implemented on our VHDL code.

We assume that each component which transmits data acts as a master and the one which

accepts these data is the slave. In that case, TX DMA is the master and Averaging

2D Binning is the slave. However, the last one is also the master in the handshake

process between itself and the RX DMA. So, the block that follows the A2DB (here is

the AXI DMA) indicates whether it is ready to accept data by asserting TREADY IN.

TREADY IN as well as TVALID IN, which indicates the transmission of valid data from

the master (here the AXI DMA), must both be asserted so that data can be passed

within the input FIFO buffer to the Binning kernel. Hence, the signals wr en and rd en

which enable writing and reading operations for the input FIFO are defined by these

specific signals combined. The handling of these signals is particularly important because

it is actually triggering mechanism for the binning process. This process is described

65

in the Figure 3.9. We should mention that TREADY IN and TVALID IN signals are

used indirectly by referring to the corresponding delayed registered signals to achieve

synchronization.

Figure 3.9: Behavioural Simulation of the input FIFO buffer handling.

Similarly, the same logic is used to handle the output FIFO buffer. On the contrary,

writing operation is determined by the validity of the data produced by the Binning kernel

while reading operation is obviously defined by the TREADY IN. If AXI DMA is ready

to accept data, is drives TREADY IN HIGH and therefore valid data are exported from

the output FIFO directly to the output port of the component. The rd en signal that

enables reading from the buffer is driven by the output signal of an AND gate which

has TREADY IN and the inversion of FIFO’s own empty signal as inputs. Empty signal

becomes HIGH, if the buffer is empty. That means that reading is enabled if TREADY IN

is asserted, provided that there are valid data stored in the buffer.

It is noteworthy that there is a strong dependency between TREADY OUT and

TREADY IN signals. If the following component that receives data from A2DB is ready

to accept, then A2DB also indicates that it can accept valid data too, meaning that it

will drive TREADY OUT HIGH. Additionally, there is also an extra FIFO buffer of the

same depth as the aforementioned output FIFO buffer but its width size is of 1 bit. This

buffer is used to synchronize the TLAST OUT signal with the rest of the output signals.

Figure 3.10 shows the behavioural simulation of the how output FIFO buffer is handled.

It’s wr en and valid out signal of the Binning kernel are identical. As for rd en, it can be

expressed as:

rd en = TREADY IN AND [NOT(empty)]

Binning Kernel

As we have already explained, the functionality of Binning kernel is based on a Serial-

to-Parallel block and a MAC unit.

Serial-to-Parallel

We implemented our design so that it can support image binning at both at 2×2 and

4×4 regions using a generic variable named stride. For notational brevity, let us use the

letter N when referring to the stride. In order to be able to use in parallel the serially

incoming pixels, we need to store them temporarily until the fullN×N region is completed.

So in general, N − 1 entire image rows need to be scanned so that the computing of the

66

Figure 3.10: Behavioural Simulation of the output FIFO buffer handling.

Note: signals valoutf1 and doutf1 correspond to the valid and dout ports of the FIFO unit respec-

tively.

mean values of each region can start. Therefore, exactly N − 1 FIFOs of width equal to

the original’s image width are required. The Serial-to-Parallel also consists of a N × N

grid of D Flip-Flops which are connected in series as shown is Fig. 3.11. The pixels that

belong to the N -th row of the N ×N region are directly driven to the last D Flip-Flops

series. Afterwards, the pixels in the N×N grid are concatenated in a vector which is then

forwarded to the MAC unit. The wire that refers to the incoming pixels, is connected to

the input port of every FIFO. However, reading and writing operations are controlled by a

Finite-State-Machine (FSM). The FSM functionality is described as follows: the number

of the incoming pixels is counted and each of them is stored in the corresponding FIFO

according to its position on the image plane. For example, the pixels of the first row are

stored in the first FIFO, the pixels of the second in the second one and so on. The FSM

also produces enableMac signal which indicates whether the MAC unit receives valid data.

As we can see in Fig. 3.12, MAC unit receives valid data every N − 1 clock cycles.

Figure 3.11: Serial-to-Parallel block.

MAC Unit

As we have already described, MAC unit consists of an Adder Tree and a Divider.

The Adder Tree is a structure of Full Adders. The generic block design of MAC units is

67

Figure 3.12: Behavioural simulation of Serial-to-Parallel operation.

depicted in Fig. 3.13 regarding stride N . The tree structure has exactly 2 and 4 levels

of full adders for stride equal to 2 and 4 respectively. The exact number of levels of the

tree structure is generalised for strides at powers of two as log2(N
2). At first level, there

is a certain amount of full adders which is defined as N2

2 , where N refers to the stride.

Each subsequent level as we descend towards the base of the tree structure, consists of

a number of FAs that is equal to the one of its prior level divided by two. We should

mention that the bullets in the block diagram refer to one clock cycle delay caused by the

addition of D Flip-Flops. That is a very common technique used when designing pipelined

components so as to decrease the critical path. The critical path is actually the longest

path in the circuit and is a major limiting factor of the clock frequency. Supposing that

each pixel’s value is represented by a k-bit number, the resulting sum after each addition

has a length of k+1 bits, so as to handle a possible overflow. Thus, the total sum is a

number of k+ log2(N
2) bits. As for the TLAST OUT signal, MAC unit utilizes a counter

for the generated pixels, and knowing the exact number of them in the new image, it is

able to determine when the last pixel value is calculated. The total pixels number in the

generated image is used indirectly by converting it to its corresponding width and height.

Figure 3.13: Generic block design of Adder Tree.

68

Divider

In computer programming, arithmetic shifts can be really useful as efficient ways to

perform multiplication or division of binary numbers by powers of two. Shifting left by

n-bits on a binary number has the effect of multiplying it by 2n, shifting right by n-bits

results to a division by 2n. Therefore, the divider simply performs an arithmetic right shift

by N -bits to the output sum of the Adder Tree, where N is the corresponding dimension

of the squared grid used for binning. For example, if we operate binning at 2× 2 regions

with stride of 2, an arithmetic right shift by 2 bits occurs meaning that we divide by

4 and that is the resulting mean value of the generated pixel. Considering that binary

numbers cannot be expressed with decimal places, the result after division is rounded to

the nearest integer less than or equal to the actual result as if it was computed with a

calculator. Figure 3.14 shows the behavioural simulation of the MAC unit block while

binning at 2× 2.

Figure 3.14: Behavioural simulation of MAC operation.

3.2 HW/SW Co-design of Clustering

In this section the main core of our project is presented, which refers to the proposed

cluster detection algorithm for Star Trackers.

3.2.1 Cluster detection algorithm

In this current thesis, we developed an efficient algorithm that is able to detect clusters

in an image of a portion of the night sky. Clustering is the first processing step in a star

tracker operation. It is during this step where hardware optimisation is done to improve

operation frequency aiming to real-time performance. The proposed algorithm is designed

for hardware and is adapted to a MATLAB source code provided by Infinite Orbits.

A star on an image sensor can be considered a point light source for all practical

purposes. Generally, an image formation through a lens can be described by a Point

Spread Function (PSF). Depending on the aperture size and focus setting, the blurring

of the point light source changes. Spreading introduces additional information about the

star as it spreads the light source over several pixels. This allows centroiding algorithms

to determine the centre of a star to sub-pixel accuracy. Depending on the intensity of the

light source, defocusing is done so as to have stars spread over 3×3 to 5×5 pixel regions.

For the purposes of a star tracker, light spreading can be accurately approximated as a

2D Gaussian distribution. Figure 3.15 illustrates a zoomed-in image of a single star that

is slightly defocused.

69

Figure 3.15: Visualization of light spreading in a defocused star.

A traditional approach for star detection algorithms is described as follows. Firstly,

each pixel in the image is compared to a threshold that is usually pre-defined or it can be

adjusted dynamically. If the pixel value is greater than the threshold, a region of interest

is identified. Then the searching is focused on that specific Region of Interest (RoI), where

all the neighbouring pixels are checked with an alternative slightly decreased threshold.

Neighbouring pixels that are above the so called growing threshold, are clustered together

and form a cluster in a maximum grid of 5×5 pixels. Once all of the neighbouring pixels

are grouped, and the region is considered valid, a centroiding processing step is performed

on the region pixels. In this work, the optimised algorithm follow the same logic as the

traditional approach but is adapted for hardware-friendly calculations. When designing in

hardware, data structures and lack of useful functions are among the biggest challenges.

This cluster detection algorithm is reiterative by its nature and uses several recursive sub-

routines. Thus, it is vital to develop an algorithm which operates efficiently regarding the

operation frequency. That is a non trivial challenge, but we tried to utilize the charac-

teristics of the FPGA accelerator such as its ability for parallelism in order to improve

performance.

Growing Region Algorithm

As we already mentioned, the whole image plane is checked and pixels with value

above the threshold are stored temporarily in a stack data structure. Afterwards, each

pixel is considered as centre pixel of a cluster, which is referred as ”starting pixel”, and

forms a Region of Interest (RoI) where the search is focused. In every iteration while

searching within the RoI, the 8 adjacent pixels around the centre one form a 3×3 grid

called ”Neighbourhood of Search” (NoS) and each pixel in it is compared to the growing

threshold. The same procedure is repeated for every pixel inside the RoI whose value is

greater than the growing threshold and hence, it is considered as part of the cluster. As

we will describe extensively in the following paragraphs, the image is stored in a memory

block at the PL. So every reference to a pixel is actually a reading operation resulting to

a memory transfer so as to bring the required data. This is a considerably slow operation

as we know from computer architecture, so what we actually do is bringing from memory

exactly the pixels needed to form the NoS and don’t belong in the 3×3 region in which the

current central pixel was detected. An illustrative description of how the nine different

Neighbourhoods of Search are configured is shown in Fig. 3.16. The noted star represents

70

the centre pixel of the block which was identified during the first thresholding process.

Each pixel in the 3×3 NoS, is noted with a unique number that refers to its position in it.

For example, if the pixel on the right corner is part of the cluster, it is stored in the stack

so as to check its neighbouring pixels. So, instead of searching the entire 3×3 region, only

5 pixels need to be checked. The search of the alternative cases of pixel position happens

in a similar way. The identified pixels through the thresholding process, are grouped

together and form a square cluster that can be either 3×3 or 5×5. Another challenge for

our design was to avoid double and triple checks for the exact same pixel in the RoI. The

algorithm while searching for possible pixels that form a star, performs repeated checks in

3×3 regions, which belong to a relatively limited RoI. Hence it is very likely that the same

pixel might be checked more than once, which is not only restrictive in terms of efficiency,

but it may also lead to endless loops. This is a non trivial problem as in hardware we

have to deal with hard-to-handle data structures. What we did in order to resolve this,

was introducing a boolean map where the pixel positions in the image plane are assigned.

Every time a pixel within the RoI is checked, its position in the map, which refers to the

corresponding position on the image, is marked.

Figure 3.16: Configuration of Neighbourhoods of Search.

71

3.2.2 High Level Architecture

The proposed algorithm, is designed for hardware in order to take advantage of the

features offered by the FPGA accelerator. Here, the Clustering component is hosted on the

PL. Thus, it was implemented in a way to support AXI4 Streaming protocol in order to be

able to communicate with other peripherals. More specifically, the Clustering component

receives data directly from the DMA component as it is illustrated in the block design in

Fig. 3.17.

Figure 3.17: Processing flow of the HW/SW Co-design for Clustering.

As we can see, this block design is almost identical with the one depicted in Fig. 3.2,

although here the Clustering block took the place of the A2DB. In this case, the only

difference in the processing pipeline is the operation which is executed. The establishment

of the communication between the PS and the PL was based on the same logic and ideas

described analytically in subsection 3.1.1. However, it is worth mentioning how the blocks

interact. Due to the recursive nature of the clustering algorithm, it is imperative to store

the image in a memory block so as to be easily accessible. Therefore, we need to store the

image in the PL where the algorithm is performed. The problem here is that the FPGA

has limited resources, especially regarding memory, and so it cannot store the entire image

even after reducing its size after binning operation. This was a major challenge for our

design. We managed to resolve this issue by partitioning the image and transmitting it into

windows. Each window has certain dimensions which are pre-defined and are expressed

by two generic variables. The height is referred as winHeight and the width as imageDim.

In order to be more accurate and to provide valid clusters, each window has an M -lines

overlap defined by maxInd variable. Figure 3.18 shows exactly the configuration of the

sliding windows.

Clustering component

As we have already mentioned, Clustering component supports AXI4 Stream interface

in order to receive the pixel data after the binning process. The handshake mechanism

is implemented similarly as in the A2DB. The main difference is that we need to control

data transmissions as the image is sent partitioned. When a full window has been received

and stored, we need to send an identification signal to the AXI DMA to stop transmission

of the original image. The stages of this pipelined process are described in the following

diagram in Fig 3.20. We control the data transmission by driving the TREADY OUT

72

Figure 3.18: Image partitioning in sliding windows.

Figure 3.19: Clustering block design.

signal. Again, a pixel counter is used so as to determine whether an entire sliding window

has been received.

Considering that a star tracker should be able to operate under different conditions

that might affect its functionality and therefore its precision, we designed the integrated

system in a way that it can adjust to those conditions in order to meet the requirements

of the mission. For example, the image sensor used by the star tracker is a major factor

that have a significant impact on its performance. Depending on its specific characteristics

such as the lens apperture, sensitivity or calibration as well as the lighting conditions, the

image that is captured is affected substantially. Thus, we implemented a design which

is capable of tuning the threshold dynamically regarding the SNR ratio. For example,

invalid light sources such as planets, the moon or reflections from the sun are perceived as

noise sources. In these cases, it is really hard to distinguish a star from noise, so what we

actually do is configuring the threshold according to the levels of noise in the image. Thus,

the pre-defined value of the threshold implies a noise reduction technique and is defined

experimentally. In order to configure that value dynamically during the execution of the

algorithm, we set AXI4-Lite interface. As we can see in Fig. 3.19, there is an extra set

of ports named AXI LITE, so as to be able to receive data directly from the PS without

73

requiring a handshake. More specifically, AXI4-Lite protocol supports a set of 32-bit

registers which are addressed to well-defined positions in memory. Therefore, the desired

values of the threshold and the growing threshold are written to these specific addresses and

the Clustering component determines them, simply by reading the corresponding register.

Hence, our HW/SW co-design can be adjusted regarding the project requirements and

offers support for several camera types.

Finally, let us explain how TLAST OUT signal is driven. Due to the nature’s algorithm

it is clearly uncertain when the last cluster will be detected. Although it is quite unlikely,

there is a possibility that no clusters will be detected at all. Even in that case, our

component must indicate that the process has been completed. This is done by asserting

the TLAST OUT signal. Again, there is a signal named lastIter which is set when the

last sliding window is received. Also, the Clustering Kernel has a port that drives a

signal called endProc which indicates that the search of the current window is finished.

TLAST OUT is controlled by the logical conjunction of the aforementioned signals and is

followed by a valid data transmission of a zero pixel.

Figure 3.20: Data transmission pipeline.

Clustering Kernel

At this point, an in-detail description of the Clustering Kernel is presented. The exact

block diagram is depicted in Figure 3.21. As we can see, this block consists of several

units which interact and cooperate in order to perform the star detection algorithm. The

functionality of the clustering component is described by the following:

upperThresLoc

This unit, as the name suggests, performs a streamlined thresholding operation while

receiving the binned pixels. Every pixel that is received, is compared with the upper

threshold and if its value is greater or equal, its corresponding coordinates are stored in

the mainStack. Actually, mainStack consists of three individual stack structures, two for

the x, y coordinates of the pixel and one which refers to its position in the 3 × 3 NoS.

74

Figure 3.21: Block design of the Clustering kernel.

Every pixel identified during this process is supposed to be the initial point of the search

and furthermore it is the centre pixel of the square RoI. Thus, these pixels are referred as

starting pixels.

fsm4RAM

This is the second main block of the Clustering Kernel. What it actually does, is

converting the x, y coordinates of the pixels to the corresponding address of the RAM

memory block. This is a non trivial computation, because as it will be described in the

following paragraphs, RAM is considered as a cyclic buffer and all the functional operations

refer to a virtual address that needs to be transformed into the physical address. Moreover,

in every iteration the virtual addresses are mapped in a different way to the corresponding

physical addresses. Additionally, this block controls reading and writing operations of

both RAM and Map units.

neighChecker

The third main block of the Clustering unit is called neighChecker. This block performs

the growing region algorithm, meaning that it checks the adjacent pixels in a 3 × 3 region.

This was a major challenge for the proposed algorithm, since the way that it is executed,

affects the performance of the whole system significantly. As it has been already described

previously, an efficient pixel search mechanism was introduced in this thesis. Therefore,

this block needs to adapt to this mechanism in order to identify the exact position of the

incoming pixels in the image plane. Thus, it has knowledge of the centre pixel coordinates

in 3 × 3 grid, and it compares each neighbouring pixel to the growing threshold. The

results of this comparison are extracted as pixel coordinates as long at the pixel is part

of the cluster. These coordinates as well as the pixel’s position in the NoS are stored in

75

the corresponding stacks so that the referenced pixel to be consequently checked. The

neighChecker unit receives the centre pixel’s coordinates and a number that refers to its

unique position in the block that was detected. Having this information, it can determine

which of the 9 cases of NoS is currently being checked. For each distinct case, there are

extreme cases which must be taken into account. These cases arise when the central pixel

of the 3×3 region is located at the edges of the window, and therefore the NoS is configured

differently. Figure 3.22 shows every possible case where the centre pixel of the block is a

starting pixel.

Figure 3.22: Illustration of every possible case for reading operation of starting pixels.

At this point, let us describe how cluster determination occurs. As it’s already men-

tioned, pixels which are potentially part of a cluster are stored in mainStack. The algo-

rithm begins the search from the initial point referred as starting pixel. Then, the RoI

is determined according to a generic variable called maxInd that is pre-defined regarding

the project requirements. In this thesis, we assumed that there are clusters of maximum

5×5 pixels. Thus, the value of maxInd is equal to 3, so as to limit the searching area and

to be able to detect 5×5 clusters. An illustration of the RoI determination is shown in

Fig. 3.23 bellow. Once the searching within the RoI begins, the value of the stack pointer

of the mainStack is stored temporarily and specifies the initial state of the stack. During

the search into the RoI, the value of the stack pointer fluctuates depending on the amount

of pixels that belong to the cluster. So eventually, when the value of the stack pointer

becomes equal to the initial value, the search has been completed. In order to identify the

cluster dimensions, four variables are used which are initialized with the starting pixel’s

coordinates. Each variable refer to an up, down, left and right movement while searching

76

into the RoI. Upon completion of the cluster detection, these variables are forwarded to

an internal block called clusterCal. This block is responsible for computing the cluster

dimensions. Furthermore, it determines the coordinates of the up-left pixel of the cluster.

However, it might be possible that a single pixel has been detected within the RoI. In this

case, we suppose that an individual pixel cannot form a cluster so it is considered invalid

and is rejected. Additionally, it is possible that a cluster of 7×7 pixels is detected. In

that case, pixels in a 5×5 grid out of the total 7×7 region, are grouped together to form

a smaller cluster.

Figure 3.23: Determination of Region-of-Interest.

RAM

RAM is a memory block where each sliding window of the received image is stored.

It supports reading and writing operations which are controlled by the enabling signals

re and we respectively. The depth of the RAM block is defined regarding the window’s

dimensions, hence it is equal to winHeight×imageDim pixels (fig. 3.18). Since the sliding

windows are overlapping, the total amount of the incoming binned pixels in each iteration

(except for the first and the last one) is equal to (winHeight −maxInd) × imageDim.

Thus, we use a virtual pointer that points to the physical base address of the current sliding

window. Every block in each iteration refers to the virtual coordinates of the pixel in the

window. Figure 3.24 represents the addressing operation for the first three iterations with

an overlap of 3 image rows. Due to simplicity, we suppose that the RAM block is a 2D

array of the same size as the window. On the left side, the numbers refer to the physical

addresses as if they were actual image rows. On the right side, the virtual pointer (vp)

points to the corresponding physical base address of the window in RAM. The numbers

on the right side, indicate the physical coordinate of the image that refers to its row.

Map

Map is actually a memory unit that operates as a boolean map. It is designed similarly

77

Figure 3.24: Example of the addressing operation.

to the RAM block and has the same size. The only difference between them is that it

stores data of 1 bit. Reading and writing operations are driven by the same signals used

in RAM. Each address of the block, represents a pixel on the window in the corresponding

address in RAM memory. As we described earlier, when checking of the neighbourhood is

completed, the central pixel’s position on the Map is marked with an ace which indicates

that it has been checked. Once, this happens, it cannot be checked again meaning that a

pixel can belong to only one cluster.

mainStack

The mainStack is used for notation brevity, and it actually refers to a set of three stack

structures. The first two are used to store row and column coordinates of the pixels on

the sliding window. The third one is used to store the relative position of the detected

pixel in the 3×3 NoS. Each position is represented by a number in range 0 to 8 and is

used to improve reading operation from the memory. Hence, 4 bits are required for the

data width in order to be able to store the specific positions. The stack has an enabling

port and a port that defines whether push or pop happens. In addition, it has an output

port for the stack pointer so as to provide the current state of the stack as well as empty

and full output signals.

compStack

This unit consists of a set of three stacks as well and is a complementary structure

to the mainStack. These stacks are used to store the same objects as in the mainStack.

Starting pixels with row coordinate greater or equal to winHeight−maxInd are stored in

compStack in order to be checked within the next sliding window. Starting pixels that are

bellow that borderline, cannot define a 7×7 RoI and we assume that the cluster is better

detected among the following image rows. Before, storing these pixels to the compStack,

we need to convert the coordinates into the virtual coordinates of the next sliding window

so that they follow the same notation.

mainFSM

The last block of the Clustering Kernel is the mainFSM which is a finite state machine

that controls the interaction between the individual components. It drives the signals of

78

reading and writing operations for both the RAM and the Map and it actually handles the

individual processing steps of the clustering algorithm. The pipeline of these consequent

stages is shown in the following diagram.

Figure 3.25: Pipeline of the processing steps handled by mainFSM.

Design parameters

At this point, the exact values of the main generic variables that have been used in

this design are listed bellow:

• Data width: 12 bits

• Original Image Size: 2048×2048

• imageDim: 1024

• winHeight: 16

• Column Width: 10 bits (Columns in range 0 to 1023)

• Row Width: 4 bits (Rows in range 0 to 15)

• Cases Width: 4 bits (Cases in range 0 to 8)

• Depth of RAM and Map: 16384 (imageDim×winHeight)

• Address Width: 14 bits (Address in range 0 to 16383)

• Depth of mainStack: 1024

• Depth of compStack: 512

3.2.3 Low Level Implementation

In the previous subsection, a high-level description of Clustering component was pre-

sented. Here, a more detailed overview of the low-level implementation is discussed.

Clustering Component

As shown in Fig. 3.19, two FIFOs are used in order to support the handshake mecha-

nism. Reading and writing operations for these IPs are handled exactly as it was described

79

for the Averaging 2D Binning. However, it is worth presenting how the data transmis-

sion is controlled. Firstly, a set of constant variables is introduced so as to indicate the

exact number pixels that are received per sliding window. The total number of iterations

required so as the entire image to be processed is obtained as follows:

itDiv = (imageDim-winHeight) ÷ (winHeight-maxInd)

itMod = (imageDim-winHeight) mod (winHeight-maxInd)

if (itMod = 0) {
totalIter = itDiv+1

} else {
totalIter = itDiv+2 }

In each iteration, a certain amount of pixels are supposed to be received. For every

possible case, the exact number of the incoming pixels are calculated as follows:

px1stWin = imageDim×winHeight

pxPerWin = imageDim×(winHeight-maxInd)

pxLastWin = imageDim×itMod

Every time the transmission of an entire window is completed, an iteration counter

increases its value. There is also a pixel counter for the incoming data so as to indicate

whether the transmission should be paused comparing its value to the aforementioned

variables. Thus, TREADY OUT is driven by a signal named pxtReady based on the pixel

counter as well as by an output signal of the Clustering kernel named recNext which indi-

cates that the search operation is finished. Also, there is no need to assign TREADY OUT

when the entire image has been checked so the inversion of lastIter is used as well.

TREADY OUT = (pxtReady OR recNext) AND [NOT(lastIter)]

That process of how the handshake mechanism is implemented is illustrated bellow in

Figure 3.26.

As for the AXI4 Lite communication, an instantiated IP block is provided by Xilinx

Vivado suite which implements the logic architecture needed in order to support the AXI4-

Lite protocol. What we did, was simply adding the desired user logic so as to read from

the specified registers and export the data to the top level architecture of our Clustering

component.

Clustering kernel

At this point, an analytical low-level description of each individual component of the

Binning kernel is presented.

upperThresLoc

As we already pointed out, this block performs the initial thresholding and identifies

the starting pixels while receiving the incoming binned pixels. Two variables are used

which basically are mapped to the equivalent virtual coordinates of the sliding window.

80

Figure 3.26: Behavioural simulation of driving TREADY signal for a 256×256 image and win-

Height of 16 rows.

Since the first sliding window has been received, the row coordinate is re-initialized to

the value of maxInd to match the overlap. Although it is not necessary for our project,

a mechanism to stall the operation is developed so as to remain idle when a pause in

transmission occurs, excluding the case of a complete window transmission, caused by the

de-assertion of TREADY IN signal.

Figure 3.27: Behavioural simulation of upperThresLoc.

fsm4RAM

Regarding the functionality of this particular block, we could say that is partitioned

into three basic operations which concern the generation of addresses for reading and

writing from/to the memory units. The first one is about the addresses in which the

incoming pixels are written in the RAM block. The second one is the most complex and

refers to the generation of addresses where the desired pixels are stored in RAM. This

process, needs to adapt to the growing region algorithm that was described in paragraph

3.2.1 and also needs to cover every possible extreme case. As we already mentioned before,

these extreme cases arise when the central pixel of the 3×3 neighbourhood is located at the

edges of the window plane. In the following chapter, an extensive description is presented

of how these cases are formed so as to improve the performance of the system and achieve

higher clock frequency. Briefly, these extreme cases are divided as follows: every possible

relevant position where the pixel was detected and happens to be in the first row of the

window; respectively for the last window row as well as for its first and last column. The

last alternative case only concerns the starting pixels and is depicted in figure 3.22. The

81

third operation that is performed in this block, is about generating the reading addresses

so that the clustered pixels to be exported.

The fsm4RAM receives a pulsing signal that indicates whether to start the reading

or writing process. It also receives the current coordinates of the central pixel and its

relative position in the 3×3 NoS so as to be able to compute the desired addresses. As for

the cluster-centric reading, it is provided with the calculated cluster dimension and with

the up-left pixel’s coordinates. Supposing that the cluster dimension is equal to K, the

addresses of the corresponding K×K region are produced.

In order to calculate each address, it requires knowledge of the physical base address

of the RAM block. Thus, it has an input port to receive the window row where the vp

points. We developed a function which given the i and j coordinates as well as the vp,

computes the physical address in the RAM. The following picture shows the exact VHDL

code used to implement this function.

Figure 3.28: VHDL code of the function that computes the addresses.

Figure 3.29: Behavioural simulation of fsm4ram.

neighChecker

This block is responsible for the growing thresholding operation. It receives the values

of the adjacent pixels within the 3×3 region and it compares them to the growing threshold.

If their value is greater than or equal to the threshold, it gives as outputs the corresponding

coordinates and the relative position of the detected pixel in the grid, which is referred as

caseBox. However, there are a few more conditions which need to be met so that a pixel

to be considered as part of the cluster. We could split the pixel check into three individual

processes. First of all, a pixel needs to be inside the RoI so as to be considered as part

of the cluster. Secondly, it is obvious that value needs to be over the threshold so as to

check its neighbourhood. Finally, as we are trying to improve the algorithm performance,

82

an increased level of efficiency is required. Thus, the idea is to exclude unnecessary pixel

searches which add considerable latency. This happens when the pixel to-be-checked is at

the corners of the window. However, it might belong in the cluster so it should be marked

in the Map as well.

Other than the aforementioned operations, the neighChecker block also keeps track

of the positional movement while the searching within the RoI happens. As we already

described, a set of variables is used so as to store the outer edges of the cluster that is

currently detected. Whenever a new central pixel is checked, its coordinates are compared

to these exact variables and they’re updated if needed.

This component actually receives pixel values. Therefore, it is crucial that it has

knowledge of the centre pixel’s relative position on the image plane. In order to obtain

this knowledge, it receives the i, j coordinates as well as the caseBox of the current central

pixel in the 3×3 grid, so as to map the incoming pixel values to the actual pixel’s position

in the sliding window. So, the correlation must be determined between the addresses

generated by the fsm4ram and the pixel values received by this block. This procedure is

illustrated in the following Figure 3.31.

Figure 3.30: Behavioural simulation of neighChecker.

RAM

The RAM block consists of a basic logic as of its design implementation. However, it

is worth mentioning how the addressing operation is controlled. During the first iteration,

a full window is received so as to fill the memory. In this case, the virtual and the physical

addresses are identical, as the first pixel of the image is stored to the first memory address,

the second pixel to the second address and so on. The memory addresses of the RAM

block are consecutive in the PL memory; however let us consider it as a 2D array where

in each cell a pixel is stored. So, here the virtual pointer points to first row of the array

meaning that the first pixel is located to address 0. Supposing that the overlap between

the windows is of maxInd=3, the last three rows of the image are kept, and the next

(winHeight−maxInd) rows are received to complete the sliding window. During second

iteration, the first row of this current window is supposed to be the first one among the

three rows kept from the previous window. Thus, the virtual pointer points to this exact

83

Figure 3.31: Illustration of the correlation between the operations performed by fsm4RAM and

neighChecker blocks.

row which is stored in the (winHeight −maxInd)-th physical row of the RAM. All the

above are summarised for each iteration as follows:

• In every iteration: VP = VP-maxInd. If maxind > VP, then

VP = winHeight+VP-maxInd

• The physical row of the image is in the following range:

iter×(winHeight-maxInd) ≤ i ≤ iter×(winHeight-maxInd)+winHeight-1

Map

The Map unit is driven by the exact same signals as for the RAM. Hence, reading

and writing operation happen concurrently. We should mention that while the incoming

binned pixels are being stored to the RAM memory, a writing operation occurs to the map

as well, so as to clear the marked cells which refer to the previous sliding window.

mainStack & compStack

The mainStack and compStack follow the stack data structure logic. As we’ve already

mentioned, they consist of three separate stack units of the same depth. However, they

are able to store data of different widths according the generic variables that are defined

by the project requirements. They support a single channel meaning that push and pop

operations cannot happen at the same time. These operations are controlled by two input

signals, one which defines what kind of operation occurs and one that generally enables it.

mainFSM

This last component named mainFSM, is responsible for handling the individual pro-

cesses. Figure 3.25 presents the pipelined steps that are controlled by this FSM. First

84

of all, we need to clarify that each iteration is divided into three main stages. These

stages are defined by which component operates to mainStack. During the first stage, the

binned pixels are being received and stored to the RAM memory. While this is happening,

the upperThresLoc is performing the thresholding so it writes to the mainStack. When

the storing process has been completed, the data from the compStack are copied to the

mainStack until it becomes empty. Afterwards, the algorithm is executed meaning that

neighChecker operates to mainStack by writing the coordinates of the detected pixel. So

these components should be able to drive a single port. When designing in hardware, it

is not trivial how to handle this. The way it is resolved, is by designing a multiplexer

(MUX) which has as inputs the three individual signals and is controlled by a selecting

signal which is driven by mainFSM. For each stack we have three different MUXs; one for

the data to-be-stored and two for enable and rd/wr signals.

The mainFSM uses the components output signals to identify which processing step

should be executed next. For example, every time a neighbourhood is checked, it reads

the state of the mainStack’s stack pointer which is compared to the initial state of the

mainStack after popping the starting pixel. If initSP and currSP are equal, we proceed

to the extraction stage, where as the name suggests, the cluster is being extracted to

the output. In order to achieve synchronization between the individual operations, the

mainFSM uses a counter named cc, so having knowledge of the latency introduced by each

block it can determine which processing step will happen.

As it was described in the previous paragraphs, it is possible that a cluster of a single

pixel is detected. This cluster is discarded as we suppose that it is invalid. What we do

is driving the second and the third bit of the signal that holds the cluster dimension into

an OR logic gate. If the dimension is equal to 1 (001 in binary), the output of the gate

is 0. This signal is driven to an AND logic gate with the validOut signal which indicates

that a valid output is exported from the Clustering kernel. This is a way to ground the

validOut signal efficiently in case that an invalid 1×1 cluster is detected.

Finally, we will describe how it is identified whether the growing region algorithm of

a pixel is executed in this current window or not. We introduced three separate signals

for each condition that needs to be met so that the pixel will be checked. These three

conditions are checked individually and are defined as follows:

• pass1 is set if current pixel’s row is less than (winHeight-maxInd)

• pass2 is set if current pixel is not a starting pixel

• pass3 is set if the last sliding window of the image is processed

These three signals are driven to an OR logic gate, which means that if none of the

above conditions is met, the pixel should be checked within the next sliding window and

therefore, it is stored to compStack.

85

3.2.4 Performance-Wise Optimization

At this point let us present the main optimisation steps that we followed in order to

improve the algorithms performance. In order to measure the improvement we used some

timing constraints and we tried to achieve the highest possible post-implementation clock

frequency. The description mostly refers to the steps that increased the clock frequency

significantly.

First of all, a widely used technique is to store the incoming data to registers instead

of using the inputs directly. Most commonly, the output data are stored in registers before

being exported. In both methods, we manage to lower the critical path, which refers to

the path with the maximum delay between input and output. In our design where, data

are forwarded from one component to another, and in some cases to multiple blocks, we

limited the critical path of the entire design along the paths of the internal blocks. As

it will be discussed in the following paragraphs, the critical path of the Clustering kernel

concerns the neighChecker block, which is the most complex one.

upperThresLoc

A technique that was adopted by almost every block which refers to pixel coordinates

is that we handle signal overflow. After performing a lot of experimentation, we came

to conclusion that it is an exceptionally slow operation to reset a signal, especially for

signals of many bits. In terms of hardware, resetting a signal to a specific value such as

0 or 1 implies connecting it to ground or Vdd (supply voltage). So, instead of setting a

variable to zero, we take advantage of the overflow that happens when a signal that holds

the maximum possible value is increased. Additionally, an if-else condition in VHDL is

converted to circuit logic for hardware that is probably implemented by a multiplexer. By

that proposed transformation, it is obvious that we simplify the circuit’s logic. As shown

in fig. 3.32, for each of the three conditions, the logic for j signal is identical. As for the i

signal, we can see that on the left code it follows a different logic for each condition while

on the right code these cases are decreased.

Figure 3.32: VHDL code transformation regarding signal overflow.

fsm4RAM

One major improvement to this block’s performance was precomputing some of the

variables used. More specifically, in this unit the central pixel’s coordinates are received

and the addresses of the adjacent pixels in the 3×3 region are computed. According

to the caseBox, a different address needs to be calculated. So, instead of performing

86

these calculations in a series of nested if-cases, the addresses of every pixel in the NoS

are calculated all at once at the beginning of the process. Thus, the logic blocks used

to implement these calculations in hardware are excluded from the path resulting to a

significant reduction of the critical path latency.

Additionally, the overflow handling technique is also used in this block for the genera-

tion of the writing addresses. The coordinates are controlled in a similar way as described

previously. However, they are used indirectly by the developed function so as to compute

the corresponding address.

As it is already discussed there are some extreme cases regarding the position of the

central pixel that differentiate the reading operation from the RAM memory. These cases

occur when the central pixel is located at the edges of the sliding window meaning that

it borders less than 8 pixels so a 3×3 neighbourhood cannot be formed. In our case, the

code was written in a way that it contained a series of nested if-else statements. This

high-level-language (HLL) programming-based way of code writing is highly inefficient

for hardware designs. We suppose that each if-statement represents an individual task

performed by an FSM. So what we actually do is group together the similar tasks that

are performed under the same condition. This technique can be interpreted as a way of

task partitioning and it results to a derived parallelism. This process is explained more

clearly in the illustrated Figure 3.36 bellow. For example, those cases which involve the

possibility of a centre pixel to be located in the first row of the window, are grouped into

a separate task which operates constantly regardless of whether the condition from which

they arose is satisfied. Therefore, the code is divided into six separate units that operate

autonomously and individually and each of them generates its corresponding results. In

the end, there is a multiplexer that simply identifies which condition was met in order

choose the output data correctly.

neighChecker

This block is actually the block that performs the most demanding operations and

therefore it consists of the most complex logic. So it is clear that it vital to improve its

performance in order to increase the operation frequency of the whole system.

As described earlier, there is a strong correlation between the operations performed by

the fsm4RAM block and the neighChecker. Therefore, the same logic described above for

the fsm4RAM was also adopted by this unit so that six individual blocks to be formed to

increase parallelism. Yet, the idea can be expanded to the lower levels of the design. For

every incoming pixel value, three check operations happen so that it can be considered as

part of a cluster. These three processing steps are described as follows:

• Comparison to the growing threshold and rechecking avoidance

• Check so that the pixel to-be checked is within the RoI

• Coordinates extraction and cluster dimension update

So instead of performing these three interdependent functional levels, we split them into

87

Figure 3.33: Visualization of task partitioning.

three individual and independent processes. Each of the six so-formed sub-components

performs these separate processing stages. It needs to be mentioned that the third pro-

cess, which is responsible for the coordinates computation and the update of the cluster

outer edges, acts as if both of the two other conditions are satisfied. Each of these two

sub-processes, drive a well-defined signal which holds the post-checking result. If either

condition is not met, the output signal, which indicates the validity of the output data,

is grounded. The challenging task was how to handle the extreme cases where a pixel is

located to the corners of window. If the pixel belongs to the cluster region, there is no

need to check the neighbouring pixels, as it is certain that they have been already checked.

However, an update to the cluster dimensions should happen if needed. Again, there are

two blocks; one for the regular and one for the extreme cases, where each of them operates

as if their own condition is satisfied. So, it is required that they communicate with each

other in order to keep the cluster dimensions updated.

Map

The last idea that is proposed in this thesis in order to improve the algorithm perfor-

mance is the implementation of a Map. As it’s been already described, this map keeps

track of the checked pixels in the sliding window so as to avoid unnecessary actions. More

specifically, there are two levels of rechecking avoidance control. The first one, is operated

88

Figure 3.34: Illustration of the three individual sub-processes performed by neighChecker com-

ponent.

by the mainFSM while a pair of pixel coordinates is popped out of the mainStack. If the

corresponding pixel’s value on the Map is equal to one, the pixel has been already checked

so it is rejected and the next pair of coordinates is received. The second level of rechecking

control is performed by the neighChecker block as described in the previous paragraph.

The block basically receives the input pixel’s value as well as its corresponding value on

the Map and acts proportionally.

After proceeding to the aforementioned performance-wised optimisation steps, the re-

sults regarding the achieved clock period are presented to the following Table 3.1.

Table 3.1: Table of the achieved clock period per component after optimisation

Component
Clock Period

Before Optimisation

Clock Period

After Optimisation

Percentage

Improvement

upperThresLoc 3.7 ns 2.4 ns 35.1%

fsm4ram 5 ns 3.5 ns 30%

clusterCal 4.3 ns 3.2 ns 25.6%

neighChecker 9.4 ns 4.4 ns 53.2%

Clustering kernel 11.2 ns 4.3 ns 61.6%

3.2.5 System Integration

In this subsection, we present the integrated system which contains both the Averaging

2D Binning and the Clustering component. The A2DB component as well as the Clustering

component are hosted on the PL. More specifically, the Clustering component receives data

after the binning process and it follows the A2DB component as it is illustrated in the

block design in Fig. 3.35.

As we can see, it is almost the same block design as the one depicted in Fig. 3.17, with

the difference that the Averaging 2D Binning block interpolates. In that case, there are

89

Figure 3.35: Pipeline of the processing stages of the HW/SW Co-design.

two extra stages in the processing pipeline which apparently refer to the binning process.

The binned pixels are directly forwarded to the Clustering component and transmitted

to the AXI DMA so as to be stored to the DDR. When a full window has been received

and stored, we need to send an identification signal to the A2DB unit so as to pause

the transmission and it will subsequently inform the AXI DMA to stop its individual

transmission of the original image. The fifth step actually is refers to the reading operation

from the DDR memory handled by the processor, where we are able to extract the results

to our Host PC. One more significant difference between this design and the one pictured

in fig. 3.17, is that the data received from A2DB aren’t consecutive. However, this does

not affect the operation of the system at all. The block design of the integrated system as

it is configured in Vivado Design Suite is illustrated in the following figure 3.36.

Figure 3.36: Block design of the HW/SW Co-design.

90

Chapter 4

Experimental Evaluation

In this chapter, a complete overview of the experimental setup is presented regarding

the tools and the datasets being used for our experimental and evaluation procedures.

Additionally, a full report of the interfaces results and an in-depth performance analysis

regarding the resource utilization of the FPGA, the operation frequency and the power

consumption is discussed. Finally, an estimation is of the entire star tracker system perfor-

mance is made so as to demonstrate the capabilities of our proof-of-concept architecture.

4.1 Experimental Setup

Firstly, the experimental setup and the specifications of the board, on which the ex-

periments were conducted, is presented. Our target evaluation System-on-Chip FPGA,

as mentioned, is Xilinx Zynq-7020 SoC. An extensive description of the SoC architectures

was already discussed in Chapter 2.5. The CAD tool utilised for HW design was Xilinx

Vivado Design Suite v2019.1 for Ubuntu Linux Operating System. In addition, we used

the supplementary tool Xilinx Software Development Kit (XSDK) to create embedded

applications running on the dual ARM Cortex processor of the Zynq SoC so as to set up

the PS-PL communication. Finally, the images used for the simulations were processed in

MATLAB 2018a, in order to be converted into the desired format. More specifically, text

files were created containing the pixel values of the 2048×2048 greyscale images. These

files were simply imported to the DDR memory of the SoC FPGA implying a simplified

test case where the images are received from the image sensor.

For the scope of this thesis, the conducted experiments focus on the preprocessing

stages of a star tracker emphasising on the accelerating clustering algorithm. As already

mentioned, greyscale images with resolution of 2048×2048 were used as inputs, although

lower sized images were tested as well due to the configurability of our system. An unbiased

input dataset was created from a repository of NASA that contains the full record of the

Cassini spacecraft’s raw images taken from Feb. 20, 2004 to Cassini’s end of mission on

Sept. 15, 2017 [14]. Figure 4.2 illsutrates exactly how the board is connected to the

development host PC so as to establish the USB connections for the UART and JTAG

92

programming.

Figure 4.1: Zedboard Development Board [13].

4.2 Results and Analysis on Zynq FPGA

In the following section the results of the implemented components are presented sep-

arately as well as the complete integrated system architecture. Each of them is analyzed

and evaluated regarding performance, power consumption and resource utilization.

Initially, we examined the correct functionality of our designs by performing be-

havioural simulations using specified testbenches. Consequently, experimental tests were

performed repeatedly for several image sizes and different parameters. However, for the

objectives of this thesis a single case scenario is discussed. Additionally, a software-oriented

implementation running on the PS of the SoC, which is adapted to the the HW designs, is

also developed and compared to our HW/SW embedded system regarding performance.

Averaging 2D Binning

We successfully performed data transmission without errors for 12-bit 2048×2048

frames at 125 MHz. We should mention that AXI4-Stream interface supports data trans-

missions at widths of powers of 2. Thus, each pixel is represented by a 16-bit value and

internally in the PL block it is handled as a 12-bit width number respectively. Addition-

ally, we managed to achieve the highest possible clock frequency at 250 MHz, although

within the integrated block design these timing requirements weren’t met due to remark-

93

Figure 4.2: Board Connection Setup [13].

ably slower DMA engine of the Zynq SoC. In that case, we achieved a total processing

time of approximately 33.56 ms on average containing the latency of the PS-PL loopback.

The total execution time as derived from the behavioural simulation in Vivado was ex-

tremely accurate as it produced a mean error of 0.0027 ms. As we can see, there is a

major difference between the measured processing timings as the proposed architecture is

significantly faster than the ARM processor. The following Table 4.1 presents the gained

speedup that we achieved with SoC FPGA acceleration compared to a single thread SW

implementation on ARM Cortex processor.

Figure 4.3: Post execution result as shown in SDK terminal.

Table 4.1: Comparison of mean execution time between SoC FPGA and ARM CPU for Averaging

Binning operation

Platform ARM CPU SoC FPGA Speedup
SoC FPGA

(Max Freq)

Speedup

(Max Freq)

Execution Time 1607.46 ms 33.58 ms 47.9x 16.78 ms 95.8x

In space applications, power consumption is among the most important factors when

considering a star tracker. Thus, in the Fig 4.4 we present the power consumption of the

Averaging 2D Binning block as it is estimated after implementation in Vivado. Finally, an

analytical overview of the resource utilisation of the FPGA is presented on the following

94

Table 4.2.

Figure 4.4: Estimated Power Consumption of Binning component.

Table 4.2: Resource Utilisation of FPGA for Binning implemented design.

Resources Utilisation Available Utilisation (%)

LUT 5739 53200 10.79

LUTRAM 803 17400 4.61

FF 8317 106400 7.82

BRAM 9 140 6.43

Clustering

This component is the main block of the preprocessing operation and and therefore

plays a prominent role in the performance of the integrated system design. Nevertheless,

let us present an extensive analysis of it before examining the whole system. Again,

the DMA engine is a limiting factor to the achieved operation frequency. A cross-clock

domain technique was proposed so as to resolve this issue, however due to the definition

of the required DMA parameters we weren’t able to drop the clock period bellow 7 ns

(∼ 142MHz). For correspondence purposes, we proceeded with a frequency of 125 MHz.

However, after the proposed optimisations which have been already discussed in Chapter

3.2.4, the achieved clock frequency is at 232 MHz out of 250 MHz maximum frequency

supported by Zync platform. Figures 4.5 and 4.6 depict an example of an output cluster

that was detected after the algorithm’s execution.

Again, several tests were conducted of different images and bellow an example is de-

picted of the output result in SDK terminal. The following Table shows the gained speedup

using the SoC FPGA accelerating platform. We should mention that the PS of the plat-

form can generate certain clock frequencies and therefore it cannot generate the required

clock period of 4.3 ns. Hence, the estimations refer to the closest possible frequency which

is 214 MHz.

As for the power consumption of this particular component, the estimated power as

reported by Vivado is listed bellow. Finally, the Table 4.4 below shows the resource

95

Figure 4.5: Behavioural simulation of an output detected cluster.

Figure 4.6: Visualisation of a detected cluster on MATLAB.

utilisation of the FPGA for the implementation of the Clustering HW/SW co-design.

Integrated System

At this point, having examined how the two main components behave individually,

let us present the full overview of the proposed system’s architecture. The achieved clock

frequency is at 125 MHz as well, although it is estimated that the whole system can operate

at a frequency which is defined as the minimum frequency among the compared operation

frequencies of the individual designed blocks. An example of a behavioural simulation is

figured at the following picture 4.9.

In order to check the functional validity of the integrated system, several tests were

performed on the SoC FPGA accelerating platform, where a software-based implemented

algorithm was also executed on the ARM Cortex A9 processor. The produced results were

compared autonomously leading to the following output extracted to the SDK terminal.

As we can see, the PS-PL cooperating mechanism totally outperforms the PS imple-

mented operation. The Table 4.6 summarises in detail the results regarding the perfor-

mance of the integrated system’s proposed architecture.

At this point, it is worth commenting on the considerable timing overhead added by

the binning operation and whether it effectively contributes in the entire preprocessing

operation. As we know, large images are being processed for the cluster detection. The

SoC FPGA has limited resources so the image processing occurs in sliding windows. Addi-

tionally, the size of each window is dependant to the original image’s size so larger images

might lead to smaller window transmissions adding considerable timing overhead as well

as increased resource utilisation. Considering all the above, we can assume that averaging

96

Figure 4.7: Post execution results as shown in SDK terminal after clustering operation.

Table 4.3: Comparison of mean execution time between SoC FPGA and ARM CPU for Clustering

operation

Platform ARM CPU SoC FPGA Speedup
SoC FPGA

(Max Freq)

Speedup

(Max Freq)

Execution

Time
383.14 ms 8.9 ms 43.1x 5.11 ms 75.4x

binning is not an unnecessary processing step for the entire clustering extraction operation.

Either way, the processing time of approximately 34 ms per image frame, which can be

decreased up to 19 ms, successfully leads to the detection of hundreds of clusters relatively

fast. As of the power consumption, an extensive analysis is illustrated in Figures 4.11 and

4.12. As we can observe, the PS is responsible for the 92% of the total power consumption

and among the other units of the integrated system, the clustering component is the most

demanding due to the computationally intensive logic operations performed.

Finally, the following Table 4.6 presents a post-implementation summary of the re-

source utilisation of the FPGA platform. In addition, Figure 4.13 illustrates an extensive

report of the FPGA resource usage at an hierarchical form.

In conclusion, our proposed design architecture utilizes <17% of the total chip’s re-

sources for every FPGA primitive to support the proprocessing operation of 4 MPs 12-bit

image frames. Hence, there is space for additional HDL components of the algorithmic

pipelined steps of the star tracker. Ultimately, we developed an accelerating algorithm for

cluster extraction on the Zynq-7020 SoC FPGA with estimated on-chip power consump-

tion bellow 2 Watt.

97

Figure 4.8: Estimated Power Consumption of Clustering component.

Table 4.4: Resource Utilisation of FPGA for Clustering implemented design.

Resources Utilisation Available Utilisation (%)

LUT 9254 53200 17.39

LUTRAM 987 17400 5.67

FF 12258 106400 11.52

BRAM 20 140 14.29

Figure 4.9: Behavioural simulation of the Binning-Clustering co-design.

Figure 4.10: Post execution results as shown in SDK terminal after Preprocessing operation.

98

Table 4.5: Comparison of mean execution time between SoC FPGA and ARM CPU for the

Integrated HW/SW Co-design

Platform ARM CPU SoC FPGA Speedup
SoC FPGA

(Max Freq)

Speedup

(Max Freq)

Execution

Time
2050.32 ms 34.06 ms 60.2x 18.94 ms 108.2x

Figure 4.11: Estimated Power Consumption of the Integrated System.

Figure 4.12: Analytic overview of the consumed power for each individual block.

Table 4.6: Resource Utilisation of FPGA for the Integrated System.

Resources Utilisation Available Utilisation (%)

LUT 8837 53200 16.61

LUTRAM 849 17400 4.88

FF 11733 106400 11.03

BRAM 20 140 14.29

99

Figure 4.13: Hierarchical presentation of the FPGA resource utilisation.

100

Chapter 5

Conclusion and Future Work

Nowadays, space applications have become extremely demanding and complex scien-

tific requirements need to be met. Taking these into consideration, we understand that

it is of vital importance to have a reliable attitude determination system which combines

high accuracy and real-time performance. For the time-being the identification speed is

the bottleneck of satisfying real-time requirements on the premise of robustness. Recently,

there is a growing interest in FPGA-based systems due to larger capabilities, lower costs

of reprogrammable logic devices and parallel processing architecture. Star trackers are in-

creasingly designed based on novel embedded HW platforms suchs as SoC FPGAs which

consist of an FPGA and a CPU core.

The work presented in this thesis demonstrates an accelerating algorithm for prepro-

cessing of a star tracker which is implemented in a HW/SW co-design on a SoC FPGA

platform. More specifically, the preprocessing is devided into two operation steps which

are averaging binning and clustering respectively. Both operations were designed, imple-

mented and tested individually using various real images. Additionally, performance-wised

optimisations for the cluster detection algorithm are also discussed and a detailed overview

of their effects on the operation frequency is presented.

The main core of this current thesis focuses on the integration of the aforementioned

sub-processes into a custom HW/SW co-design methodology so as optimise and map

efficiently the combinational logic to a compact embedded platform. Furthermore, the

algorithms were described in SW details and tested on the processing system of the SoC

FPGA as well. A full comparison between the proposed architecture designs is also pre-

sented leading to draw important conclusions. The HW/SW co-design totally outperforms

the ARM processor of the embedded device as it managed to decrease the processing time

by approximately 60x, although it is estimated that the speedup can be increased up to

108x. As of the energy consumption, the total on-chip power is estimated to be about

1.8 W meaning that the proposed architecture is highly suitable for a wide range of cost-

effective space applications. Last but not least, the proposed embedded system is relatively

non-demanding regarding the utilisation of the FPGA’s resources, leaving room for ad-

ditional HDL implementations for the purpose of a complete processing pipeline of an

102

ADCS.

Our future work will focus on the improvement of the HW performance including

further examination of the limiting parameters which affect the operation frequency, so

that our proposed system reach the maximum estimated frequency and even exceed it if

possible. Moreover, we will perform further experiments so as to extend the evaluation

and verification of our techniques using real data adjusted to the requirements of Infinite

Orbits. Finally, our major objective is to combine the proposed preprocessing design with

the centroiding and matching algorithms to complete the star tracker pipeline and include

that integrated system in a future space mission led by Infinite Orbits.

103

Bibliography

[1] T. Sun, F. Xing, X. Wang, Z. You, and D. Chu, “An accuracy measurement method

for star trackers based on direct astronomic observation,” in Scientific Reports, 2016.

[2] C. Liebe, “Star trackers for attitude determination,” in IEEE Aerospace and Elec-

tronic Systems Magazine, 1995.

[3] Stack Exchange, “Camera perspective projection model.”

[4] Photography Courses, “Look Out For Lens Distortion.”

[5] ADCS For Beginners, “The Different Frames and the Keplerian Elements.”

[6] P. Degond, A. Diez, and M. Na, “Bulk topological states in a new collective dynamics

model,” 2021, p. 28.

[7] Q. Hua-Ming, L. Hao, and W. Hai-Yong, “Design and verification of star-map simula-

tion software based on ccd star tracker,” in 8th International Conference on Intelligent

Computation Technology and Automation (ICICTA), 2015.

[8] L. Ortiz, L. Goncalves, and E. Cabrera, “A generic approach for error estimation of

depth data from (stereo and rgb-d) 3d sensors,” in 8th International Conference on

Intelligent Computation Technology and Automation (ICICTA), 2017.

[9] D. Soudris, “Reconfigurable architectures or FPGAs,” in NTUA-ECE, Class: Digital

VLSI - Lec. 5.

[10] Xilinx, “Zynq-7000 SoC).”

[11] ARM Developer, “AMBA AXI and ACE Protocol Specification.”

[12] Xilinx, “Axi dma v7.1,” in Vivado Design Suite, 2016.

[13] AVNET, “ZedBoard.”

[14] NASA-Solar System Exploration, “Cassini Raw Images.”

[15] Northern Sky Research, “Satellite EOL: Not One Size Fits All,” 2018.

[16] Istituto Nazionale di Fisica Roma, “Attitude Determination and Attitude Control,”

2015, p. 19.

104

https://tex.stackexchange.com/questions/96074/more-elegant-way-to-achieve-this-same-camera-perspective-projection-model
https://www.learningwithexperts.com/photography/blog/look-out-for-lens-distortion
https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://developer.arm.com/documentation/ihi0022/e/AMBA-AXI4-Lite-Interface-Specification
https://www.avnet.com/wps/portal/us/products/avnet-boards/avnet-board-families/zedboard/zedboard-board-family/!ut/p/z1/vVRdU6MwFP0r-OBjJiF8hcdQkRZLP0XbvOykkNqsBSrN4tZfv7G66zhTy-5olwdI7px77j1nmAMZnEFW8kbecSWrkq_1fc7cb5Hv9MxOByVREHtoPKKp2_cHlhlheLsH9KkfdinCfdTrW4gGyQVxr2NExy5kf9OPPngoauu_gQyyrFQbtYJz3pRCGVlVKlEqYy0XNa9352hfXlWFOEebusp_ZGr7WgSLite5vuWiMV7Oxr1UW2NbFbr6JPJ98e300gCWvJDr3fPoTSZzPZgQF_HlAnAsfGDjzAbcMQXwOUGm6xPL4-JV6h8twzjFaOwPaDQKu72OZ7VbxfaQY2a_BwzDIEDUmt5QMglwz_oNOGb3-y0OLHkU0MVwrmV6H-qwtY5GikeYllVd6D9s-o8udlHbBOeTE1rovVPSj4boa-nJlX6PHft6EtlTE12ap6W3vticNLnU5jgX6VVITUTc03qPT0v_We_jtoTQaS2_PzwwqiPxOQR_Kjj735mod8B10knutDSuVkCWywrODmM3RZoWxNqB-0m4TELLnsfNUzAABz9ssXukZ2e_ANR2aEc!/dz/d5/L2dBISEvZ0FBIS9nQSEh/?urile=wcm%3Apath%3A%2Favnet%2Bcontent%2Blibrary%2Favnethome%2Fproducts%2Favnet-boards%2Fdev%2Bboards%2Bkits%2Bsoms%2Fzedboard%2Fzedboard-board-family
https://solarsystem.nasa.gov/raw-images/cassini-raw-images/?order=earth_date+desc&per_page=50&page=0
https://www.nsr.com/satellite-eol-not-one-size-fits-all/#:~:text=A%20satellite%20launched%20in%20the,remains%20the%20prevailing%20design%20life.

[17] G. Lentaris, I. Stratakos, I. Stamoulias, D. Soudris, M. Lourakis, and X. Zabulis,

“High-performance vision-based navigation on soc fpga for spacecraft proximity oper-

ations,” in IEEE Transactions on Circuits and Systems for Video Technology, vol. 30,

no. 4, 2020, pp. 1188–1202.

[18] K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,

A. Pastor, D. M. Codinachs, and I. Conway, “Evaluation methodology and reconfigu-

ration tests on the new european ng-medium fpga,” in 2018 NASA/ESA Conference

on Adaptive Hardware and Systems (AHS), 2018, pp. 127–134.

[19] V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, R. Domingo, M. Verdugo,

D. Gonzalez-Arjona, D. M. Codinachs, and I. Conway, “Systematic Evaluation of

the European NG-LARGE FPGA & EDA Tools for On-Board Processing,” in 2nd

European Workshop on On-Board Data Processing (OBDP), 2021, pp. 1–8.

[20] C. Urbina-Ortega, G. Furano, G. Magistrati, K. Marinis, A. Menicucci, and

D. Merodio-Codinachs, “Flash-based fpgas in space, design guidelines and trade-off

for critical applications,” in 14th European Conference on Radiation and Its Effects

on Components and Systems (RADECS), 2013, pp. 1–8.

[21] V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo,

D. M. Codinachs, and I. Conway, “Development and Testing on the European

Space-Grade BRAVE FPGAs: Evaluation of NG-Large Using High-Performance DSP

Benchmarks,” IEEE Access, vol. 9, pp. 131 877–131 892, 2021.

[22] A. Pérez, A. Rodŕıguez, A. Otero, D. González-Arjona, A. Jiménez-Peralo, M. A.

Verdugo, and E. De La Torre, “Run-Time Reconfigurable MPSoC-Based On-Board

Processor for Vision-Based Space Navigation,” IEEE Access, vol. 8, pp. 59 891–59 905,

2020.

[23] V. Leon, G. Lentaris, D. Soudris, S. Vellas, and M. Bernou, “Towards Employing

FPGA and ASIP Acceleration to Enable Onboard AI/ML in Space Applications,” in

IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC),

2022, pp. 1–4.

[24] V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and

D. Moloney, “Improving Performance-Power-Programmability in Space Avionics with

Edge Devices: VBN on Myriad2 SoC,” ACM Transactions on Embedded Computing

Systems (TECS), vol. 20, no. 3, pp. 1–23, 2021.

[25] F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling Radiation Tol-

erant Heterogeneous GPU-based Onboard Data Processing in Space,” CEAS Space

Journal, vol. 12, pp. 551–564, 2020.

105

[26] V. Leon, C. Bezaitis, G. Lentaris, D. Soudris, D. Reisis, E.-A. Papatheofanous,

A. Kyriakos, A. Dunne, A. Samuelsson, and D. Steenari, “FPGA & VPU Co-

Processing in Space Applications: Development and Testing with DSP/AI Bench-

marks,” in 2021 28th IEEE International Conference on Electronics, Circuits, and

Systems (ICECS), 2021, pp. 1–5.

[27] Space Alliance, “Star Tracker Assembly-Introduction,” 2010.

[28] M. Salomon and W. Goss, “A microprocessor-controlled ccd star tracker,” 1976.

[29] C. Liebe, “Accuracy performance of star trackers-a tutorial,” in IEEE Transactions

on Aerospace and Electronic Systems, 2002.

[30] A. Eisenman, C. Liebe, and J. Joergensen, “The new generation of autonomous star

trackers,” 1997.

[31] Wikipedia, “Equinox (celestial coordinates).”

[32] P.Walree, “Distortion,” in Photographic optics, 2009.

[33] R. Bezooijen, “Autonomous star tracker development,” in IFAC Automatic Control

in Aerospace, 1992.

[34] G. Rufino and D. Accardo, “Enhancement of the centroiding algorithm for star tracker

measure refinement,” in Science Direct, 2002.

[35] Wei, Y. Zhao, G. Wang, and J. Li, “Real-time star identification using synthetic

radial pattern and its hardware implementation,” in Acta Astronautica, 2016.

[36] S. Schaire, S. Altunc, Y. Wong, O. Kegege, M. Shelton, and G. B. at al., “Investiga-

tion into new ground based communications service offerings in response to smallsat

trends,” in 32nd Annual AIAA/USU Conference on Small Satellites, 2018.

[37] F. Jiancheng and N. Xiaolin, “Celestial navigation methods for space explorers.”

[38] J. Rebordao, “Space optical navigation techniques: An overview,” in SPIE Digital

Library, 2013.

[39] E. Turan, S. Speretta, and E. Gill, “Autonomous navigation for deep space small

satellites: Scientific and technological advances,” in Acta Astronautica, 2022.

[40] S. Sheikh, D. Pines, J. Hanson, and P. Graven, “Spacecraft navigation and timing us-

ing x-ray pulsars,” in NAVIGATION: Journal of The Institute of Navigation, vol. 58,

no. 2, 2011.

[41] J. Dong, “Pulsar navigation in the solar system,” 2018.

106

http://www.spacealliance.ro/articles/view.aspx?id=201002250904
https://en.wikipedia.org/wiki/Equinox_(celestial_coordinates)

[42] K. Fujimoto, J. Leonard, R. McGranaghan, J. Parker, R. Anderson, and G. Born,

“Simulating the liaison navigation concept in a geo + earth-moon halo constellation,”

2012.

[43] K. Hill and G. Born, “Autonomous interplanetary orbit determination using satellite-

to-satellite tracking,” in Journal of Guidance, Control and Dynamics, vol. 30, no. 3,

2007.

[44] J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vec-

tors,” 2006, pp. 5–10.

[45] J. Peraire and S. Widnall, “Lecture L29 - 3D Rigid Body Dynamics.”

[46] C. Wielligh, “Fast star tracker hardware implementation and algorithm optimisations

on a system-on-a-chip device.” no. 59-61, 2019.

[47] Xilinx, “Field Programmable Gate Array (FPGA).”

[48] Altera, “What is an SoC FPGA?” in Architecture Brief.

[49] N. Torsvik, “SoC FPGA Evaluation Guidelines.”

[50] K. Maragos and D. Soudris, “Introduction to SoC FPGAs,” in NTUA-ECE, Class:

Digital VLSI - Lec. 7.

[51] ARM Developer, “About the AXI4-Stream protocol.”

[52] Xilinx, “Processing system 7 v5.5,” in Vivado Design Suite, 2017.

107

https://ocw.mit.edu/courses/16-07-dynamics-fall-2009/f5b25c0af8ec4f76776221c148ea15b3_MIT16_07F09_Lec29.pdf
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://datarespons.com/soc-fpga-evaluation-guidelines/
https://developer.arm.com/documentation/ihi0051/a/Introduction/About-the-AXI4-Stream-protocol

108

	Περίληψη
	Abstract
	Ευχαριστίες
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	Εκτεταμένη Περίληψη
	Introduction
	Motivation
	Thesis Scope
	Project Objectives
	Thesis Outline

	Background
	Star Trackers
	Star Tracker Characteristics
	Sub-pixel Accuracy
	Theoretical Background
	Algorithms
	Commercially Available Star Trackers

	Related Work
	Space Navigation
	Celestial navigation for satellites
	Celestial navigation for deep space probes

	Rotational Kinematics
	The Earth Centred Inertial (ECI)
	Euler Angles
	Coordinate Transformation

	SoC FPGA Overview
	Xilinx Zynq SoC FPGA Architecture
	AXI4 Lite
	AXI4 Stream
	Design Flow

	Development on the Zynq SoC FPGA
	HW/SW Co-design of Averaging 2D Binning
	High Level Architecture
	Low Level Implementation

	HW/SW Co-design of Clustering
	Cluster detection algorithm
	High Level Architecture
	Low Level Implementation
	Performance-Wise Optimization
	System Integration

	Experimental Evaluation
	Experimental Setup
	Results and Analysis on Zynq FPGA

	Conclusion and Future Work
	Bibliography

