EoNIKO METTZOBIO TIOATYTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAT MHXANIKON YTIOAOTISTON

TOMEAY TEXNOAOIIAY [IAHPO®OPIKHY KAI Y HIOAOTIETON
EPrasTHPIO MIKPOYIIOAOTISTON KAI WHSIAKON Y YSTHMATON

Acceleration of Computer Vision Algorithms for
Star Trackers on SoC FPGA Platforms

AIMIAOMATIKH EPTrAYIA

I[Tavouvcdmovioc Baociisioc

Emﬁkénwv: Anuftplog Xolvtprng
Kodnyntic E.M.IL

EPrAsTHPIO MIKPOYIIOAOTIETON KAI WHSIAKON Y YSTHMATON
Adva, Mduog 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE
MICROPROCESSORS AND DIGITAL SYSTEMS LAB

Acceleration of Computer Vision Algorithms for
Star Trackers on SoC FPGA Platforms

DirLOMA THESIS

Panousopoulos Vasileios

Supervisor : Dimitrios Soudris
Professor N.T.U.A.

MICROPROCESSORS AND DIGITAL SYSTEMS LAB
Athens, May 2022

Edvixé Metodpio Ilohuteyvelo
Syoh Hiextpohdywv Minyovixddv xou Mnyavixev Troloyiotov
Topéag Teyvohoyloc IIAnpogopxric xou Yrnoloyiotody

Epyaotipio Muxpobnoioyiotev xow ¥neloxdy Yuotnudteny

Acceleration of Computer Vision Algorithms for
Star Trackers on SoC FPGA Platforms

AIMIAOMATIKH EPTAYIA

ITavouvcdmovioc Baociisioc

EnBAéEnwv: Anurrpioc Solvienc
Kodnyntic E.M.IL.

Evxpidnxe and v teiuels) e€etactiny| emtponn) Ty 13n Mafou 2022.

(Tmoypagr) (Troypagr) (Troypagry)
Anurteloc Xolvtprng Kovotavtivog Xunliog Iovarydtng Toavdxag
Kodmyntic E.M.IL Avan. Kodnyntic A.ILO. Kodnyntic E.M.II

AWva, Mduog 2022

Edvixé Metodpio Ilohuteyvelo
Syoh Hiextpohdywv Minyovixddv xou Mnyavixev Troloyiotov
Topéag Teyvohoyloc IIAnpogopxric xou Yrnoloyiotody

Epyaotipio Muxpobnoioyiotev xow ¥neloxdy Yuotnudteny

(Troypagr)

IIANOYZOIMOTAOEX BASIAEIOXE
Awmwpatotyog Hiextpohdyog Minyoavinde xon Mnyoavixdg Troroyiotov E.M.IL

Copyright (©) —All rights reserved ITavoucdnoviog Baoiielog, 2022.
Me empUioln ToavTOC SIXOUMUATOC.

Anayopebetan 1 avTiypopy|, amotixeust) xat Slavour| Tne topovoag epyaociog, €€ olo-
(AAPOL 1) TUNUAUTOS AUTAS, Yid euTtopixd oxomo. Emtpéneton 1) avatinwor, anodfxeuon
%0 OLAVOUY| YLl OXOTO 1) XEEOOOXOTUXO, EXTILOEUTIXAS 1) EPEUVNTIXNS PUOTC, UTO TNV
TEOUTOVEST] VoL AVOPERETOL 1) TINYT) TEOEAEUCTC XAl VoL OLUTNEELTOL TO POV VUL
Epwthuata mou agopodv TN Yeron e epyaciag yio XEpO0OXOTIXG OXOTO TEETEL VA
amevivVoVToL TEOG TOV GUYYEUPE.

ITepirndm

O dlaoTnuixég egapuoyéc anattoldy emaxelBy) xan Ypryopn €0pec) TOU TEOCAVATONOUOU TwV do-
PLPSEWY, x4t To onolo Pmopel va emteuydel Lovo pe TNV ypron aviyveutmy aoTeptdy (star trackers).
Avuto 1o bpyavo anotehelton amd Evay ontxd aodnThpa, o onoloc cLlaUBdvel EGVES TOU OUPVOD,
xo xat@AANAO Pneland LAXS Tou aviyvelel To Ao TéPLA TNS EOVAS XAl TOL AVTIOTOLYEL O YVWoToUg
X8eTeS, e oxond v extiunon g Yéong tou Sopugdpou 6To BdoTnua. Adyw Tou peydhou apld-
©oU BEBOPEVLV TTOU TUPEYEL 1) XAUEPX, 1) dLadlxaoior avlyVELUONEC Ao TEPLY EYEL HEYHAO UTOAOYLOTIXG
%xO0TOC KO CUVETC 1) EXTEREDT] TN OE €VOV YEVIXOU 6X0ToU EVOLUUTLUéVo enelepyaoth Yempelta
un anodotixr. Emmléov n olyypovn tdon adlomoinone epmopixol dmelaxot ulixot (Commercial
Off-The-Shelf HW) yia egopuoyéc duuothpatog, pac odnyel oto va eletdoovpe tétolou eidoug oTol-
¥elot yior Ty vhoTolnon tng dpyltexTovXrg enedepyaciac BedouEvev, 6K Yio Tapdderyua wa vdninc
avdAuong xduepa oe cLYBUAGHO Ue éva udmiic anédoone COTS FPGA.

e auth ™y epyacio, napovotdleton 1 emtdyuvon tne Sodxaoiog xevtpaplopoatog (centroiding)
oe wla COTS FPGA mhatgodppa, xatd tnv onola extigdrar 1 oxpldic ¥éon twv aotepidy ploc e
x6vag. 2to mhaiolo auto, votetolvtan BUo ahydpLiuol mou yopoxtneilovtal and dlapopeTind eninedo
axpifelag xou TohumAoxdTnTog, oL onolol BeEATICTOTOOUYTOL ol UAOTIOLOUVTOL OTO LA YEY/OLOTOL-
dvtag xou Tic 800 pedddouc npoypappotiopod FPGA, dniadi pe ypriony VHDL xou HLS (C++). ‘Etot
elvon Suvorty) 1) Sieaywyn plog avoluTtixrig LEAETNE TwV TAEOVEXTNUATWY ToU TapEyEL 1 xdde pédodog.
I v ebdpeon e BélTiotne Abone oto mpoBAnua tng aviyveuone acTepldy mpaypatonoleiton plo
extevic e€epedivnom Tou ydpou oyedlaong, xatd TV onola Ta oyedlooUéva LOVTEAN EAEYYOVTAL UE
XENON TEYYNTOV ExXGVKY Xt aElohoyoUvTon HE Xplthpla TNV oxp{Bela xat Tov ypdvo extéleonc.

H anhémta touv akydprduouv Kévtpou Bapttnrag (Center of Gravity) emtpéner v emtdyuvon
xatd 2 wéEelg peyedoug, ahhd 1 axpiBela aviyveuone uropet vo Yewendel un uxavomomntuer. Yuvenng,
npotelvouue ula xouvotépa mAHewe doyetevuév FPGA ulonoinon, 1 onola mapoucidlel dptotn o-
xpBeta xou VPMAY a0t Aut Basiletar otov akyderduo Ieriyopou I'raovooiavod Towpidopatog
(Fast Gaussian Fitting) o omolog emtayUveton xatd 25 gopéc. Ltnv epyooio e&nyeltan péow piog
evdekeyolg avdiuong, nwg 1 VPNAH TOAUTAOXOTNTO TOU OAYOoE(dUoL, TOU GUVBEETOL dPENXTA YE TNV
vPnhn xenon népwy oto FPGA, nepiopilel tnv cuvolixy emitdyuvor. H npotewvouevn apyltextovixn
elvon XaTIAANAY yioL XeHOT| OE EQUPUOYES TEAYUATIXOU Yeovou, xadde dleuxohbvel Ty encéepyaocio
OEBOUEVOY X0 ETITRETEL TNV TAUPSAANAT] EXTENECT) TWV BLAPORLY BIEPYATLDY TTOU GUVUTHREYOLY GE EVaLY

QVLYVEUTY| AOTEQLOV.

AgCeic KAeod

Aviyveuthc Aotepldyv, Kevtpdpiopa Aotepiddv, FPGA, VHDL, HLS, BeAtiotonoinon oto TAwo,

Emtdyuvon, Kévtpo Baplbtntag, I'efyopo I'naoucoiavd Talpaoua

Abstract

Space applications demand precise and fast measurement of the satellite’s orientation, which can
only be achieved with the use of star trackers. This instrument consists of a camera sensor which
captures sky images and appropriate digital hardware that detects the stars within the image and
matches them to known maps, targeting to determine the satellite’s attitude in the inertial space.
The large amount of sensor data makes the task of detecting stars computationally intensive and
therefore its execution on a general purpose embedded processor is inefficient. Additionally, the
latest trends of utilizing Commercial Off-The-Shelf (COTS) HW in space leads us to examine such
components in the processing architectures, i.e., a high-resolution camera and a high-performance
COTS FPGA.

In this thesis, we present the acceleration of the centroiding process on COTS FPGA plat-
forms, during which the precise position of each star in the image is estimated. Two centroiding
algorithms which demonstrate different levels of accuracy and complexity have been adopted. We
optimize and implement these algorithms on hardware using both VHDL and HLS (C++) as FPGA
programming methods and perform extensive design space exploration to find the most efficient
solution. An in-depth study of the advantages that each method provides is also presented. The
hardware models are validated using simulated star images and evaluated in terms of computation
time and centroiding accuracy.

The simplicity of the Center of Gravity algorithm enables a high degree of acceleration by 2
orders of magnitude but its accuracy might be considered insufficient. Therefore, we propose a fully
pipelined novel FPGA implementation that features excellent accuracy and high efficiency. This
design adopts the Fast Gaussian Fitting algorithm which is accelerated by 25x. A thorough analysis
that describes the limitation of achieved acceleration due to high complexity and high FPGA
resource utilization is provided. Ultimately, this architecture is suitable for real-time applications
as it removes the bottleneck of data processing and can enable parallel execution of the processes

involved in a star tracker.

Keywords

Star Tracker, Star Centroiding, FPGA, VHDL, HLS, Hardware Optimization, Acceleration,
Center of Gravity, Fast Gaussian Fitting

Euyapiotieg

Oa Hdela va euyaplo THOW and xoEdlde Toug x.x. I'idpyo Aevtdern xou Baciin Aéwv yia tnv ddoyn
ouvepyaoio mou elyoue xodoOAn T Sidpxelo exnévnone tTne dimhwuatixic epyaciac. T tic xadopt-
otég ouuBouléc ot xaipia onueior xon Tov TEocwTXd YEdVo Tou diEdecay WoTe va ohoxAnewiel To
napdyv €pyo.

Euyoptotdd Yepud tov x. Mdvo Koupavtdxn and v etouplor Infinite Orbits, o omolog mapelye
0 Véuo xan Toug ahyopLlHoUS TG gpyaciog xo anoTéAece Wlol TAOUGLYL TNYT XOUVOTOUWY WOEDY Xal
HEYAAOU EVOLOPEPOVTOC.

‘Eva tepdotio euyopiotd otov x. Anuitelo Lolvten, and tov onolo eunvévotnxa Baditato xatd
7 BdpxeElad TwY OToLBOY You ot o onolog xaddploe TEPICCOTERO amd xdde GAAOY TNV axodNUolxn
pou mopela.

Axour, éva peydho evyaplotd otnv Katahiva, yia tv uvtopovh xou) othelln nou pou mopeiye
OGN0V AUTOV TOV XALQO.

Téhog, dev Umopdd moEd Vo APLEE®MOL aUTO To €pY0 GTOUG YOVElG pou Mtadpo xou Koateplva, xou
otnv adepen pou Mtovpbva, ywelc Ty unoothpln xo Tic Yuoiec Twv omolwv tinota dev Vo oy

duvato.

Contents

IIepirndm

Abstract

Evyopiotieg

Contents

List of Figures

List of Tables

Extetaupevr Iepiindn

0.1

0.2

0.3

0.4

0.5

0.6

Elooyoynd . . o o
0.1.1 Kivnteo oo
0.1.2 Aviyveutéc ACTEQLOOY o o Lo
0.1.3 Xtoyoc Epyactaco
Oewenmind Tmofodpo
0.2.1 MeTaoyNUATIOUOC DUVTETAYUEVOV © « « o o v v v v v e i
0.2.2 H Avdyxn ywo Subpixel AxpiBelaro oo
Adyopripol Kevrpaplogotog . . . o o o Lo
0.3.1 Alyopudpog Kévtpou Bapltnrog oo
0.3.2 Aklyépiiuoc Ienyopou I'vaovooiavod Tapdopatog .. . o o o oo L L
Ipotewodpeveg FPGA Apyitextovixée o oo oo
0.4.1 Ewoaywyh oo
0.4.2 Alyépiuoc Kévtpou Bapbtnac o Lo
0.4.3 Ahyépiuoc I'enjyopou I'raoucoiavod Tapidopatog .. . o o o 0oL L.
AZIONOYNON APYLTEXTOVIXADY .« « o o o o ot
0.5.1 AZwohéynom AxplBetag Lo
0.5.2 AZWAOYNON ATOB0ONG oo
0.5.3 AZwohéynon Katavdhwone Ildpwvo oo oo
DUUTEQAOUOTO o v v v v v e v v v i
0.6.1 X0vodn
0.6.2 Mehhovtue Epyoola oo oo oo

6 Contents

1 Introduction 41
1.1 Satellites 41
1.1.1 Applications e 41
1.1.2 Subsystems L 42

1.1.3 Trends o e 43

1.2 Star Trackers oL 44
1.2.1 Operation & Layout L 44
1.2.2 Processing Flow 45
1.2.3 Modern Designs e 48

1.3 Project Objective e 49
1.4 Thesis Outline e 49
2 Background 51
2.1 Space Navigation e 51
2.1.1 Coordinate Systems L L 51
2.1.2 Accuracy Measurement 55
2.1.3 Fieldof View 58
2.1.4 Performance Limiting Factors 58

2.2 Field Programmable Gate Arrays L 60
221 OVerview e 60
2.2.2 Performance Advantages 61
2.2.3 System-on-Chip FPGAs 62
2.2.4 Register Transfer Level Programming Model: VHDL 63
2.2.5 High Level Programming Model: C++ 65
2.2.6 Hardware Performance Metrics 66

2.3 Related Work L 67
2.3.1 Processing Algorithms L 67
2.3.2 FPGA Implementations 69

3 Considered Centroiding Algorithms 71
3.1 Center of Gravity Algorithm o 71
3.1.1 Definition 71

3.1.2 Proposed Modification for Implementation on FPGA 72

3.2 Fast Gaussian Fitting Algorithm 0L 75
3.2 1 Overview e 75
3.2.2 Motivation 75
3.23 Definitiono 76
3.2.4 A Linear Least Squares Problem 7
3.2.5 Centroiding Process o 83
3.2.6 Proposed Modifications for Implementation on FPGA 86

4 Proposed Hardware Designs 89
4.1 System Specifications Lo 89
4.1.1 Configuration and Process Integration 89
4.1.2 Performance Requirements 91

4.2 Center of Gravity Algorithm o o 91

421 VHDL Model 91

Contents 7
4.2.2 CH++ Model o 107

4.3 Fast Gaussian Fitting Algorithm o L. 112
4.3.1 OVerview e e e e e 112

4.3.2 Floating Point Arithmetic oL 112

4.3.3 Input Function L 113

4.3.4 Cholesky Function L 117

4.3.5 Output Function 119

4.3.6 Proposed Centroiding Architecture 121

5 Design Evaluation 125
5.1 Dataset Generation 125
5.1.1 Centroid Position L 126

5.1.2 Brightness Level 126

5.1.3 Gaussian Radius 126

5.2 Accuracy Experiment 126
5.3 Performance Experiment L oo o 128
5.4 Resource Utilization Evaluation 0 L. 130

6 Conclusion 133
6.1 Summary e e 133
6.2 Future Work e 133
Bibliography 137

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1

2.2

2.3

24

2.5

2.6

2.7

2.8
2.9
2.10
2.11
2.12
2.13

3.1

Satellite orbits in altitude classification. 41
Abstract diagram of the most common satellite subsystems. 42
A simplified illustration of a typical star tracker layout. 44
Star tracker’s processing pipeline.o Lo 46

A bright region over a number of pixels represents a real star in a zoomed-in night
sky photo. Image taken from von Wielligh [1]. 46

Mlustration of the Earth Centered Inertial frames. Image is taken from website with
unknown author [2]. L Lo 52
Ilustration of the relationship between the image plane and the sensor body coor-
dinate systems. Image taken from Qianetal. [3]. 52
Image Plane Coordinate System. Origin is the first pixel in the top-left corner the
axes are named x or j for columns and y or i for rows. Red curved line shows the
raster scan processing method. L oL 53
Mlustration of ECI and Sensor Body coordinate systems together. Star coordinates
from example are also displayed. Image taken from Qian et al. [3]. 54
Mlustration of the axes used to determine boresight accuracy performance with re-
spect to the camera-lens system. In the diagram are displayed the following; gray
plane: camera sensor, red axis: boresight, gray circle: FOV, green-blue axes: cross
boresight motion, red circle: about boresight rotation. Image is taken from website
with unknown author [4]. L 56

Cross boresight accuracy explained. Image is taken from website with unknown

author [4]. L 57
About boresight accuracy explained. Image is taken from website with unknown

author [4]. L L 57
Basic FPGA structure. Image taken from Xilinx [5]. 60
Structure of a DSP Block. Image taken from Xilinx [5]. 61
Software-Hardware Co-Design Flow. Image taken from lecture notes [6]. 62
ZYNQ-7000 SoC Block Diagram. Image taken from Xilinx. 63
Register Transfer Level Development Workflow 64
High Level Development Workflow 65

The curve of ¢(r;). The value of ¢(r;) converges to 1 with the increase of SNR.
When r is equal to 3, the value of ¢(r;) is equal to 1.1507. When r is equal to -3,
the value of ¢(r;) is equal to 0.8109. Image taken from [7].. 76

9

10

List of Figures

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35

5.1

Flow diagram of the proposed centroiding process based on the FGF. Image taken
from [7]. . . . o o
Evaluation experiments of the proposed method’s accuracy against popular cen-
troiding algorithms. CG: Center of Gravity, WCG: Weighted (Squared) Center of
Gravity, GF: Proposed Algorithm, GA: Gaussian Analytic, GF: Gaussian Fitting.
Images taken from [7]. L L
The colored part of the plane corresponds to the positions of all centroids on the
image plane. Red asterisks represent the positions where FGF performs better than
CG and blue dots the opposite. Image taken from [7].

Illustration of the data transmission between clustering and centroiding blocks. . .
Simplified block diagram of the proposed hardware architecture.
RTL model of the MAC block.
Simulation of the MAC block. L
RTL model of the AC block.
Simulation of the AC block.
RTL model of the CU block.
FSM that describes the CU function.
Simulation of the CU block. L
Complete RTL representation of the Input Block.
Simulation of the Input Block. 0oL
RTL block model of the Divider IP Core.
Simulation of the Divider IP Core.
RTL block models of the FIFO IP Cores.
Simulation of the FIFOIP Core.
Simulation of the pre-division FIFO contents.
Complete RTL representation of the Buffer.
Simulation of the Buffer.
Complete RTL representation of the Divider Block.
Simulation of the Divider. Lo
RTL model of the Output Block.
Simulation of the pre-addition FIFO contents.
Simulation of the Output Block.o L.
RTL model of the proposed architecture.
Simulation of the proposed architecture.
Abstract block diagram of the proposed C++ architecture.
Scheduling of the operations in the Input Function
Block-level handshake between Input and Output Functions.
Simulation of the Input Function.
Simulation of the Output Function.
Abstract block diagram of the proposed FGF architecture.
Simulation of the Input Function. o L.
Simulation of the Output Function.
Block-level handshake between Input and Cholesky Functions.
Block-level handshake between Input and Output Functions with regard to data b.

Overview of the placement of each design on the FPGA.

85

86

90
92
93
93
94
94
94
95
96
96
97
98
99
100
101
101
102
103
103
104
104
105
106
106
106
107
109
111
111
111
112
121
122
122
122

List of Tables

1.1

3.1
3.2

4.1
4.2

5.1

5.2
5.3
5.4
5.5
5.6
5.7

Modern Star Tracker Specifications Lo Lo 48
Available Methods for Solving Linear Systems 81
The total time consumption of each algorithm on 10,000 star images. Data taken

from [7]. . . . o e 85
Calculation of the bit width for each integer coefficient a;; 114

Definition of each coefficient type, based on the multiplicand and multiplier formats. 115

Mean centroiding error between hardware and software implementations on each

dataset.o 127
Detected centroids by the CG software and hardware implementations. 127
Detected centroids by the FGF software and hardware implementations. 128
Comparison between FPGA implementations (1). 128
Comparison between FPGA implementations (2). 128
Total consumption time of each implementation in seconds. 129
FPGA resource utilization. 130

11

Extetopevn Ilepiindmn

0.1 Ewaywyn

And v npdtn extdéEevon dopupdpou, tou Sputnik 1 1o 1957, Tohkd €xouv akhdEel oo Tedio TwV
SO TNUIXOY TEYVOROYIDY. AbdYw e eEEMENS TV UMXMV, TS NAEXTEOVIXAC Xl TNS ETUOTAUNG TWV
UTOAOYIOTOY TIC TEAeUTaleg dexaetieg Exel UTdpEel peydin tpdodoc otny e€epelivnon TOU SLUCTAUATOS
xau €yel avomtuydel pla onuovtn daotnuixy utodoun, tng onolag Paoixd ctolyelo anoteholv ol
dopugpdpeot. H auénuévn anddoon xon 1 uPnin adlomotio 1wy oOYYEOVERY UTOAOYIGTIXDY GUGTNUATKY
emTEénel TNV Onuiovpyia ToAumAoxdtepwy ahyopliuwy xor TNy Slayelplon TeplocdTEpWY BEBOPEVLY,
evéd o xivduvog BAIBNe e€outiag TN ovpdviag oxtivoBoriog Exet ehayiotonoimniel. ‘Etol ol Suvatdtnteg
AVAPORIXE UE TNV EXUETIANEUCT] TOU BLACTAUATOS OAOEVOL Xall ETEXTEIVOVTOL UE ATOTEAECUO TNV CUVEYT
EUPAVIOT] XoUVOTOUWY TEYVOROYLOV. Extoc and tic xhaowés xadnuepvés unneeoiec nou Poaoilovta
GTOUS B0opLPOEOLE, OTWE Ol UETEWPOAOYIXEC TEOPBAEPELC XaL 1) Bopugopixt| TNAESGEACT), 1 CUYYPOVN

tdom oyetileton Ye TNV TapoY T UTNPECLOY e dopupdpouc Tou Peioxovton KBN ot tpoyid (in-orbit).

0.1.1 Kivnteo

H napoloa dimhwyatixy epyacio avantdydnxe oe cuvepyooia ye tnv etawpla Infinite Orbits, 1
omola Ypnolomolel XavoTOUES TEYVOMOYIEC HE OXOTO TNV mopoyh TéTowwy utnpectdy. H onupavti-
%x61epn €€ AUTOY aopd TNy enéxtact {whc TwY dopuPdpwy, xatd TNy onola amouteltal 1 LVAVTNON
(rendezvous) 8o Tétolwy oyMudTwy xou 1 mpdodeon (docking) tou evéc oTo dhho, e UEYAAN o-
xp(Belo xou oo@dhela, xdtL To omolo €yel anodelydel Wialtepa BOoUOAO AOYW NS WY CUVERYOTIXAC
GUUTERLPOPAS TOU GTOYEUHEVOL BOPUPOEOU GE CUVBUAOUS UE TOUS XIVOUVOUS Xl TA YORUXTNELO TIXE
e yewotauxic tpoytdc (GEO). H Baow éa tne ouyxexpiuévne unnpeoiog eivan 1 xpron evic ui-
%POTEPOL BOPLPOEOL WS EVORAAXTLXY TNYTH xoWoUwy Yo Evay TahatdTeERO dopuPdpo Tou PidvelL oTo
Téhog g Lwnig Tou, 1 omolo ev yével xadopileton and ta Siondéotpa xodotua. AouBdvovtog unddiy Ty
VPN ToAuTAoxdTNTA X TO VPNAG xb6aTOC Tou YapaxTnellouv éva dopugopind cloTNUA, TO omolo
TopoAo Tou Ymopel vau glvo TAHewS AelToLpYIXd Tpénel var avTixatacTodel Aoyw élhewdng evépyelag,
elvon dedopévo Twe 1 cuYxeEXEWEVT utneesta xoho T duvath T Sldowon Tépwy xaL T Uelwon Tou
®xHoTOUC.

Baowy npobnddeon yia v mpaypatonoinon tétoiny TORITAOXWY EQapUoY®y eivar 1 Umopdn
evoc oTIBapol %ot AUTOHVOUOU CUCTALNTOC TAONYNONG TeaypaTixol yedvou. H cuyxexpwévn epyaocia
aoyohelton pe to mpdPBAnua Tne TAoRyNoNG waxpds euBéletas (far-range navigation), xatd v onoia
EXTIUATOL 1) GYETLXY TPOYLA TOL BOPUPOEOL W TEOS XATOLO GANO AV TIXE(UEVO, T.Y. €Vary dANO Sopupdpo,
DOTE PYE TIC XATIAANAES XWWNOEIC UETA Omd MEMEPAUOUEVO YEoVixd Bidotnua va Beedolv otnyv (Bl
TpoYL8 xou va efvan duvarth 1 mparypatonoinon tou {nrobuevou pavteBol. Eva depehiddec otouyeio e
autdvoung mhoynong elvon 1 adtdAewnty xou emaxplnic yvaorn tne 9éong tou dopupdeou, To omoio

unopel vo emteuydel HOVO PE TN YEHON TWV AVLYVEUTHOV QO TERLOV.

13

0.1.2 Aviyveutéc Aoteplodv

O aviyveutée aotepldv avixouy oto Lootnua Kadopiopol & Eréyyov Oéone (Attitude Deter-
mination & Control System) evéc dopupdpou xou 1 Aettoupyio Toug Baoileton ot uédodo mpooavo-
TOAGUOU TTOU YpNOHLOTO00G0Y oL TAELBEUTES VLol YLAGBES YedVLa, SNAadY OTNY TAUPATAENOT 0C TERLY.
ITio ouyxexpiuéva cLAAUPAVOVTAC ELXGVES TOU OUEAVOU ol YPMOLLOTOLWVTAS XUTIAANAOUG ahyopil-
poug, xodopilovtal oL YECEIC TWV AGTEPLOY TNG EXOVAC X0 XATOTIY AVTIC TOLYLONE TOUS OE YVWo To0¢
Ydptec actépwy elvon duvath 1 ebpeot TNe axpBolc Yéong Tou dopupdpou oTo didoTnua. Mio Tumxy

didtadn evoc aviyveutn aotepldv diveton oto Lyhuo 0.1.

SoC FPGA
CPU . Tuotnua EAéyxou
©¢ong

FPGA

[vo=0 |

Kauepa MvAun

IxAra 0.1: Amlonojuevn avanapdotoon Wac TUTXC SETAENS AVLYVEUTY AOTEQLDV.

O aviyveutée aotepuwy ebvan dpyava ovlextind otny xooux| axtvoBoiia tou arotehobvton amd
plot NAEXTPOVIXY XAUEPA Xol XATIAANAA NAEXTEOVIXE. 3T oUYYEOVY HOR®Y| TOUS YeNoLwonololLy ulo
vPnire avdivong CMOS xduepa 1 ool dnwovpyel pla por| dedopévwy mou odnyeitol otnv Yovdda
eneepyaociog, 6mou apywd evtonilovton ol aoTépes péow emelepyooiog ewdvac xou VOTEPA YENOL-
HOTIOLOVVTOL AYOELIOL oVOY VORLOTE TPOTOTWY Yia Vo avTloTolydolv aToug YVwoTolg oupdvioug
ydetec xou va Beedel) axpPric Véon touc. Adyw tou tepdotiou apripol pixels mou mopdyel o o-
o awodnthpoc, N eneepyacio toug anoteAel pla unohoyloTixd amoutnTxy epyaocta. AouBdvovtac
LGPV TV avaryxn Yo Aettovpyio TparypaTinod yedvou, 1 exTéAecT) auTHS NS dladixaciog oe évay ma-
padoaLoxsd YeEVIXOU oxomol eneepyao T elvon Un amodoTixy o GUVETKE elval avaryxalo 1 Yeron evog
System-on-Chip (SoC) nov cupneprauPdver évo COTS FPGA. Xe éva tétoo olotnua, 1o FPGA
ouvideg cuvdéetan amevdelag GTOV UCUNTHRA ELGOBOU UECW EVOC TPWTOXOAAOL LPMAAS TaydTNTOC
yio TNy enegepyasia NS EXOVAC XoL OTH GUVEYELX O UPNATC ambdoong enelepyac ThE YenolLonolelTal
yiar TNV €0pECT) TOU TEOGAVATOAGUO) TOU BOPUPOEOL.

AOY® TRV UN IBAVIXODY PLTOYRAPLXDY GUXDY TIOU YENOWOTOOVVTOL GTOV TEAYUTIXG XOGHO, 1) pON
dedOPEVKY TOL ToRdYETOL omd ToV auoUnTipa TeEpEyel aoTépLa TOU QalvovTon YoAd 6T0 avipdmivo udrt,
xad®¢ 1 PTEWVT] TANPOoPOpla dlayéeton oe vay aptdud and pixels SnuiovpydvTac PwTEVEC GUOTASES

(clusters). Evo této10 Yoh6 aotépl gaivetan oto Lyfua 0.2.

IxAra 0.2: Mia gowtewh neployn YOpw and éva thidoc pixels avtiotouyel oe éva npayuatixd aotépl plag
YUY TERVIG PwTOYpAplaC.

14

Me dedopévn ulo Pnprat eedvo tou nepléyel TéTolou ldoug aoTépla xou XUAUTTEL Eva Uixpd UEpog
Tou YuyTtepvod oupavoy, To {ntoluevo elvar 1 edpeon tng axeBolc Yéong tou dopupdeou. H Abom
oe auT6 To TEOBANU Utopel var Sovel and TNV ahucida Sladaotidy Tou gaiveton oTo Lyhua 0.3.

FPGA CPU

P - Avixveuon Aotepidv Avayvdpion AaTepldv

-

ML | . Sovierayubves |
Kev >

Suotadoroinon Taiptaopa

S0otnua EAéyxou
©gang

J Kapé Bivteo

&
N

Katdhoyog
AGTEPLOV
ExAua 0.3: H oxohoudio tov Bladixaotdv mou TepléyovTtal o€ EVay oL VEUTY AOTEPLOV.

H mpdtn and tic tpeic dadixasies ovopdleton cvotadononon 1\ opadomnoinor (clustering) xou
elvon UTELYUVY Ylo THY AVOLYVEOPLOY) TWV PWTEVGY TEPLOYWY GE piot exdva xou Yot Ty eaywy Twv
avtioTolywy pixels. Autd emTtuyydvETOL UE TNV TROCTENAGT] OAOXATENG TNG ELXGVOC XL TNV GUYXELOT
e pwtewétntoc (intensity # brightness) xadevédc pixel pe xdmoo xotdohl. Etor xdde cuotdda
dnuovpyeitar and éva GUVOAO YEITOVIXGY pixels Ye ixavomomnTiny uTevoTnTaL.

Y1 ouvéyeia o clusters mou mpoéxuday odnyoivtan otny Swdacia xevtpopiopatog (centroid-
ing) pe oxomd NV elpeon tou xévipou xdlde meployfic-aoteptol. Kdle tétoo dioddotato xévtpo
avTioTolyel otny Yéon Tou mpoyuaTxol acTepol oTo eninedo g dnelaxnc ewdvag xon 1 yerion
AATEANAWY ahyoplduwmy emitpénel Tov utohoyiopd Tou pe VPN oxplBela ot eninedo subpixel.

Tehxd t0 #évipo xdde aoteplol ypnowonoteiton and tnv dodixacio tawpdopatoc (matching),
%ot TNV omolo To EVTOTIOUEVA aoTERLY avTIoToL(oVToL O YVWOoTd aoTépia UE YpRom XoTahdY WY UE
GXOTO TNV XATAVONOY TNE EXAOTOTE VEONC TOU BOPLUPOEOL GTO BACTNUAL.

Etvor yeyovoe e ot 800 mpdteg dradixaoiec enelepydlovtan peydho oprdud and pixels, eved 7 te-
heutala epapudlel toAbThoxoug alyopiduoug oe dedouéva yoaunioy dlactdoewy. AouBdvovtag urddy
QUTE TOL YOEOXTNELO TS xelveTal avaryxafog 0 BlaywEIoUOS TV ERYIOLOY, OOTE oL VO UTOAOYIC TIXA
amoutnTixée ddixasies va uhonoindoly 6to FPGA pe oxond tny emitdyuvorn toug, evéd 1 o ohvidetn
@pdomn va avarntuydel otov enelepyacth xou va Bedtiotonowniel oe eninedo Aoylouxoo.

Ye xde neplntwon yio tny eniteudn Aettoupylog mparydortixod Ypdvou eivol amapaftnTn 1) Taedhhnin
EXTENEDT) TWV BLEQYAOLOY OV TERLYPAPTMAY, OoTE xdde pio vo exteheltan otov Bixd tng puUd Xxou 1)

Ta 0Tt Tou cUVOAXOD cVCTNUA Vo TEpLopllETon Hovdyo amd TNy SlodecldtnTo TV BedoPévev.

0.1.3 X16yoc Epyaciag

O x0plog oTé)0¢ TOU TAEGYTOG EPELYNTXOY €pyou elvan 1) Behtio tomolnon Tne Bladaciog xevtpo-
plopartog oe plo SoOC FPGA mhatgopua yia plo Sedopévn didtaln evdc aviyveuts) aoteptdyv. Auth n
oudtoln napéyeton and v Infinite Orbits xon anotekeiton and 1o napaxdtew otouyeia.

1. EZotouixeuuévoc GuvBLacUOC XAUEROC XOL PAUXOU UE:

o Ontxd nedio (Field of View): 15.5° x 15.5°
o Avdluon emdvag: 2048 x 2048 pixels
e Bdboc pixel: 12 bits

2. Avamntugiox] mhaxéta ZedBoard nou evowpatdver to Xilinx ZYNQ-7020 SoC

15

O1 Booixéc mpodlaypapéc enldoone Tou aviyveuty| aoTepLdY divovton xdted.

o Anddoon mpaypotixol ypovou nepinou 1-2 xapé avd deutepdhento

o Méco opdhua uixpoTepo amd 3 BeUTEPORETTA TNG HolpdS K¢ TEOS Tov onTd GEova TNS XAUEEUS
(boresight)

Or avtioTouyeg mpodaypagpéc yia to centroiding mou AMigdnxoay unddiv xotd T oyedioor Twv LOVTEALY

elval oL TopodTe.
o Emtdyuvon twv akyopiduwy xevrtpoapiogoatog yio Bértiot enclepyaoio dedouévwy
e Tumxé uéoo subpixel opdiua wxpdtepo amd 0.1 pixels

TN Tov oxonéd autd, mpotelvovton 800 BLUPORETIXEG BEATIO TOTOINUEVES OPYLTEXTOVIXEC TTOU OVUTTUC-
covtat 010 FPGA xat utodetodv tnv teyvinn tne dloy€tevone e oxomd tov Ypryopo UTOAOYLOUS TOU
XEVTPOU TV Ao TERLOVY PE LMY axpeifelo. Emnpdoieta, npayportonoteiton wio avolutixy oOyxplon
TV VAoTooewy w¢ mpog Ty taydtnta, v axpifeia xou v yenotwonoinon ndépwv oto FPGA.
Yta mhodota Tne epyoaoiag yenowwonoiinxay xar ol 80o dardéoipol TpdTol npoypouuationold FPGA,
elte pe I'\dooa Ieprypagric Thwol (Hardware Description Language) eite ye I'hédooa Tnrod Eni-
nédou (High Level Language). ITio cuyxexpipévo aiohoyhdnxay xow ouyxeldnxay ta anotehéopota
npoypoppatiopol e VHDL xaw C++.

16

0.2 Oewpntxd Tro6Bodpo

0.2.1 MeTaoyNUATIOROG LUVIETAYUEVLY

‘Eva onuovtind epdtnpo mou propel vo tpoxdler oyetixd pe tov Tpono hettoupyiog evoc aviyveuty
G TEPLWY, aPopd TO Twe uToloyileton N mparyuatxd Y€on evdc acteplol 6To Btdo TN pe dedopévn
™ ¥éom tou oo eninedo e Ynproic ewdvag. Tot Ty amdvtnomn oautod Tou EEKTAHATOS amoLTe(Tol 1)
ELOAYWYT| TELOV DLUPOPETINY CUC TNUITWY CUVTETAYUEVRY, XOUEVOL EX TWYV OTOIWY TUPEYEL CUYXEXPL-
MEVA TAEOVEXTHUATA OE BLapopETIXEC TPOoEYYIoES Tou U e&€taom TEOBAUATOC TEOGUVITONCUOD
ToU B0pLPSEOL.

T v nepiypagr e ¥éone twv aotepldv we mpog TN I'm yenowwonoteiton €va yewxevtpnd
xapTectoavd adpavelaxd clotnua cuvtetayuévwy tou ovoudleton Earth Centered Inertial J2000 »ou
€xeL TNV apy M TwV af6vewY Tou 0To XEVTpo g I'ng dnwe galveton oto Lynua 0.4. Adyw twv tepdoTiwy
AMOCTAGEWY TWV OLEAVILY COUITWY ANd TOV TAAVATY YA, Yo Evay Tapatnenty mou Beloxeta otny
emupdvela i xovtd otny emgdveta e I'ne (.. o€ évay dopupdpo) dha o oo TépLar Lotdlouy Vo €xouv
Vv (Blo ueydhn andotacy, cav vo Beloxovion ayxiotpwuéva oe éva opaipind TAéypo audaipetng M
dmepng oxctivag. o v 0pdn mepiypagpn g H€ong autdV TV CWPUATWY YeNoULoTOoLEToL VoL GRUIELXO

cUOTNUA, HE CUVTETAYHEVES TNV Be&id avidworn a xou TNy amdxAloT 6.

K

Satellite

Celestial north pole

Celestial sphere

Earth's equatorial plane /|

Y

j

~—Celestial equator

Intersection of equatorial
and ecliptic planes
~

. Right ascension, a
/ X
o1

Vernal equinox, y

.

Exhua 0.4: Tewxevipnd Lootnua BUVTETAYUEVHDVY

H depemddng Aertovpyia plac guwrtoypapenic xduecpac etvar 1 teofoly) evég onueiov and tov tplo-
BldoTato Yweo oTo diodldctato eninedo tng ewodvac. H yewueteinh) avtiotolyla mou opilel auth tnv
TeoBoAY| umogel var TepLYpapel EUXONGTERO UE TNV ELOAYWYY) EVOC XAPTECLAVOL GUC THUATOS CUVTETAY-
HéveV e opyh) TO XEVTPO NG xduepas, To omolo ovoudleton cbotnua oduatoc aodntrien (sensor
body). ¥to Eyfua 0.5 Siveton to cuyxexpluevo cbotnua oe cuvduooud e to Tplto oo TN CUVTE-
Tayuévey, to omolo tautileTton Ye TNV emidvela Tou alodiTnea xou etvor To Slodldotato eninedo Tng
eovac.

To anotéheopa evig ahyderipou xevipaployatoc exppdlel tn Véomn evdc aoteplol 6To BIodLdo ToTo
eninedo g ewdvag, x4TL To omolo dev Exel PUOIXS VoMU XAVWE TO CUYXEXPWEVO GG TNUA CUVTETAY-
HEVLY yenotpotote(ton yior euxola xou anhonolnon twy urtohoylopwy. Eniong n Swdixacio taiptdoua-
TOC YO VoL AVTIO TOLYIOEL TA EVTOTUOUEVAL 00 TEPLOL GTOUS YVWO TOUE XATUAGYOUS YeeldleTtal var yvwpellel
T 9€om Toug GTOV TELOBLACTUTO YWEO oL Oyl OmAG EVTOC TNG EXOVOC. LUVETKDS elvon avaryxoda 1)
ebpeom xou xotavonon g oyéong uetafl e mpaypatixic 9éong evog Ao TEpLOD GTOV YMEO Xl TNS

Y€one Tou centroid oTny eixdvaL.

17

(XY, 2)

* *(u.dp

i

o

O

IxAra 0.5: Avanopdotaon tou Luothuatoc Louatoc Aodnthpa xa touv Emnédou Ewxdvoc.

H oyéon auth nnydler and tnv Bl tn dadosio oynuatiopod plog Pnelaxhic euxévog, n onola
unopel va ywelotel oe 800 Bladoyixolc yetaoynuatiopole cuvtetayuévoy. O mpwtoc elvan évag
HETACYNUOTIOUOE TEQIOTEOPNC O TO YEWXEVTEXS GUOTAHA GTO CUOTNUA COUATOS UGUNTHEA Xo
unopel va avohudel ye tn Bordela tou Lyruatog 0.6.

IxAua 0.6: Xuvduaouévn avarapdotaon ['ewxevtpixod Luothpatog xou Tuotiuatoc Lopatog Atodntrpa.

‘Eva onpelo npog xatorypagn mou Beloxeton oTov YOpo, TEPLYPAPETOL UE CPUPLKES CUVTETAYUEVES (S
A; = [ad]T. Av ypnowonomdel n xapteciavi popghic Touc, 1o onueio autd exppedleTa WC:

U COs (L COS
Ai= |V | = |sinacosd (0.1)
W sin ¢

To (8o onuelo pe avapopd oto cloTNUo cWUATOE AUoUNTHEN EXPEALETUL WC:

A;=[XY 2" (0.2)

O UETAOYNUATIONOS TEQLOTROPHC DIVETOL ToEOXATE.

XYz =MV w* (0.3)

18

6mou M o mivaxag meplotpopric. Xenolonoldviae Ty dpy” e 3-1-3 neploTpopnc CUVTETAYUEVLY

tou Euler o nivoxag autde opileton we:

cosy siny 0| |1 0 0 cos¢ sing 0
M= |[—siny costyp 0| |0 cosf sinf| |—sing cos¢p O (0.4)
0 0 1] |0 —sinf cos#d 0 0 1

6mou P, 8 xan @ elvon oL Ywvieg TeEpIoTROPRC.
O Beltepoc o CELPd HETAGYNUATIOUOS AVATAELOTA TNV TEoBoAT evOC oruelou and Tov TELoBLAcTAUTO
XOPO0, EXPEUCUEVOS TAE0V OTO GUCTNUN OWUATOS auodnThpd, oTo dlodidotato eninedo exdvac. H

TpoPohn} auth ovoudleton “TpoonTixy| TEoBoAY xou oplleTon TUPAUXATE.

;

elvon oL ouvtetayuéveg Tou onuelov oTo eminedo TN bV o cuveyn Wopgr| xou f 1

X

- (0.5)

s
~Z

émou [z y]T
goTIaXY) AmOOTAOY. LT OLUVEYELX UE Wia amAt| SloxpltonolnoT TeoxUTTOLY oL GUVTETAYUEVES o€ pixels.

H napandve Swduacio exppdlel padnuatixd tov tpémo oynuatiogol plag ¢meloxne exoévoe. H
avtioTpopn dladixaocio HeTaoY NUATIONOD antd TIC BIEBIACTATES OTIC TPLOOLIC TUTEG CUVTETAYUEVEC OVO-
udleton Hoooapuoyr Oéone xou elvan amopaltnTy yia Ty eVpeST) TN Tpaypatixrg Yéong evdc aoteplol

GTO YWEO pe dedouévn tn Béon Tou GTNY exdva.

0.2.2 H Avdyxn v Subpixel AxpiBeia

‘Eva e€loou onuavtxd dewpentind {Atnuo apopd Tov Tpdmo Ue Tov 0molo TeoxOTTEL 1) Teodlay popT|
opdlpartog, tou olugwva ye Ty Evéotnta 0.1.3 opileton ot 0.1 pixels. Eivon npogavég nwe 1 oaxplBela
oe eninedo pixel, 1 omola elvon Lwtinhc onpacioc o cuothuata eneepyaciog edvac, dev €yel and
uévn TNE PuUOLX LTOGTACT) XS avapépeTon o€ eval BoninTuind cOOTNUA CUVTETAYHEVWY. DUVETKOS
xplveton omopaftnTn 1 xatavonon e avitiotolylag petadd tne axplBelag wg mpog Tov omtixd d€ova
(boresight), dnhadh tne mpaypotixhc axplBetac otov Ywpo, xou tTne axp{Betac ot eninedo pixel.

To ontwd nedio (FOV) pioc xduepac opileton we 1 oteped ywvia yéow tne onolug o aodntipoc
elvan evalodnroc oe nhextpopayvntiny axtivoBola. Aniadh expedlel T0 Y€pog TOU TEAYUATIXOD
%x6oUOU, GE UOlPES, oL Elvol 0pUTO Omd TNV AGUEES Kol GUVETWS TPoBdihetar péow tne dladixaciog
OYNUATIOHO) EXOVLV OE €vay Tenepaouévo aptdpd and pixels. T xdde Sudtaln xduepoc-paxol o
FOV xa n avdluon tng exovog, dniady o aptdpodg twv pixels oe xdde didotaor, elvar yveoTd.
JUVETME TO YEPOS TOU TEAYHOTIXOD TELOOLAOTUTOU XOOUOU ToU XoAbTTETAL amd €va pixel dlveton and

TNV TOEOXdTwL oy,

Molpec FOV
Pixel II\ydoc Pixel

(0.6)

Me deSopéva tar yopaxTneloTixd tne awodntiptag ddtalne mov mapéyet 1 Infinite Orbits xou Aoy~
Bavovtag Lo Twe €va BEVTEPORETTO AVTIOTOLYEl OTO ﬁ e polpag, mpoxintel o aptdude TV

BELTEPONETTWY TNE polpag Tou xahimTovTar amd €vo pixel.

Acvutepdhenta. Molpeg _ FOV 155 B
Pixel = Pixal - 3600 = Adwon 600 = 2048 - 3600 = 27.246 (0.7)

Arnodewvieton howmov, nwg 1 {ntoduevn axplBela twv 3 SeUTEPOAENTWY TNG LOIPE WS TPOG TOV OTTIXO
d&ova petagppdletan ot Pnelaxt| axplBeta nepinou 0.1 pixels.

19

0.3 AAlyopuiupor Kevrpopiopatog

0.3.1 AMNydéprdupog Kévipou Boapltntag

H ypfion tou ahydpripou Kévtpou Boapitntac (Center of Gravity) amotelel tnv mo napadootoxi
npocéyylon oo nedBinua centroiding xardwe etvon o o anAdg xou yYeryopog diadéoipog akyderiuoc.
To xévtpo x&de aoteplol (Te, Ye) opileton amd évay aprduntixd péco oe xdde Sidotaon oUWV UE

TOV TOEOXATL TUTO.

- Zfixi
- =5
e = sz;f" (0.9)

6o ta adpoiopato vohoyilovta we Tpog dAa ta pixels i evic cluster, pe ouvtetaypévee (24, ¥i),

(0.8)

T

xan I; ebvon) potewvotnta xdde pixel otny xhipoxa Tou yxetl.

Adyw e amhdTnTag Tou cuyxexpévou ahyopldpou, N anddoon Tou yevixd teptopileton and Ty
v evoncdnoia mou epgpaviler ooy YopuPo uroBdipou xon 6To GPdAUN TOTOL S-XauTOANG Tou elvol
éugputo otny dodixacio derypotohndioc.

I va ebvon duvat) 1 TARENG EXUETIAAEUCT] TWV TAEOVEXTNUATHY TOU TROGYEREL 1) LAOTO(NOT EVOG
alyopiduou ot éva FPGA elvan amopoftntn 1 xatdhhnin tponomolnen tou wote v taupldlel xalitepa
OTOL Y oEAXTNRLOTIXG VTN TNE TAaTpdpuas. Mia and tic Bacixdtepeg apyéc dPnpraxhic oxedlaong etvou 1
ehoyLotonoinon tou peyédoug Twy onudtwy, dnhadh Tou aprduod twv Pneiny (bits) tou anutodvion
Yot TRV avomoapdotacy Touc. Me autév Tov Tedno UewdvovTal oL TdeoL xou To AoYixd em{neda mou
omoUTOUVTOL Yot X8de UTOAOYIOUO Ue amoTéAeoUa TNV oyediooT BEATIOTWY XUXAWUATWY.

Yougwva ye Tic odnyieg mou nopéyel 1 Infinite Orbits, Yewpelton nwe xdde pwtewvn neploxn €xet
TeTpaywvixd oyfipa. AouBdvovtac undédhy autd to yapoxtnplotixd, ol eélomaoels Tou alybprdpov CG

UTOPOUY VOl UETATEATOUY GTNY TORUXATL LORPY.

> Liw;
=7 (0.10)
> Liys

omou Tot X xou Y avTioTololV oTny TewTn OTAAN %ol YeUUUY Tou TeTpaywvixol cluster avtiotoiya

Te=X+

yc:Y+

xou xdde Levyog (x4, ¥;) exppdlel TAéov Ty andotoon xdle pixel ¢ oand TRy medTn oTHAN X yeouuy.

Anhodyy, oe avtideon ye g E€owoeic 0.8, 0.9 6nou xdlde tétoo Lebyoq anoterel tic andluteg
CUVTETAYUEVES EVOC pixel Ue avapopd 6To eninedo TNe euxovag, TAEoV exEAlEL TIC OYETIXES CUVTETAY-
HEVEC ¢ Tpog To cluster. Eneldr| mpogovidg ol OYETIXES CUVTETAYUEVES ATALTOVY CNUAVTIXG UXEOTERO
oprdud dmelev yior v ovanapao Todody 6e oy€oT UE TS AMOAUTEC GUVTETAYUEVES, Ol TPAEELS TTOU O-
ptlovtar otov aprdunth xou otov napovopast twv Efiodoewy 0.10, 0.11 anatobv Avydtepoug ntdpoug

%o extehoUvVToL TayUtepa Ue anotéheoya TNy eniteudrn BEATIOTWY Oy EBLUIOUOY.

0.3.2 AMNydépripog I'eyopou I'raovooiavo’d Tawpidopatog

O Bevtepog alydprluog mou uvodetRinxe ota Thalolo ToL TAPOVTOC EPELYNTLXOD EpYOUL AVAXEL OTNV
owoyévela v uedodwy Tapldopatoc (fitting methods) xou avopéveton va ddoet to xahltepa omoTe-

Aopota we Tpog TNV axpifela cuyxpltixd ue dhoug Toug dladéatpoug alyopidpouc xevtpopiopatoc. H

20

Baowxn 1o auTeY Twv Pedodwy elvor Twe xdde e Tteployn, dniadr xdde cluster, yovielonoteitan
and i Luvdptnorn ECdniwone Ynueiou (Point Spread Function), n onolo unopel va mpooeyyiotel
and o I'vaouooiavh xotavoun xar otodyog elvol 1) €0pECT] TV TUPUUETEWY AUTAS TNES XATAVOUNC.

IIio cuyxexpéva, Yewpeltoan nwe 1 xdde aotépt expedleton amd TNV mapaxdtw I'xaovosciavy cu-

vépTtnon.

(i —) (yi— yc)2> (0.12)

2 - 2
20% 20,

S(wi,yi|v) = Aexp <—

omou (x;, Y;) ebvan oL Yvwotég ouvtetayuéves xdle pixel xa v = (4, ¢, Ye, 0z, 0y) Vol oL &YVOOTES
TOPAUETEOL TIOU TEETEL VoL UTOAOYLoTOUV. A elvor To TAGTOC NG CLUVAVINOTNC TOU AVATAPLOTE TNV
YEVIX QOTEVOTNTA TOU AoTEPLOV, dNhadt 660 auidveto t0 A 1600 To PwTEWS elvan o avtioTolyo
cluster. Erniong to Lebyoc (¢, ye) exppdlel T0 x€VTpO TOU AGTEPLOY EVE TOL Oy, Ty OMOTEAOVY TNV
TUTIXY AmOXMOT) TG GUVERTNONE WS Tpog xde dSidotaon. A&ilel va onuelwdel twg otny e€etalduevn
epapuoYY) amoutelton LoV o 1) EVEECT) TWV TUPUUETOWY Te, Ye.

To Angdév orjua mou anewxovileton oe xddte pixel Tne exdvog oplleton we:

I, =S, +N; (0.13)

6mou I; elvon 1 mapatnEoVUeV! QuTEVOTNTY, S; livan 1 Tearyotiny utewvotnta xar N; ebvar o mpo-
otépevog Y6puBoc mou axohoulel eniong wla I'vaovooiavi xatavou.
O xhaoixde ahyderduoc I'raovooiavol Taptdopatoc (Gaussian Fitting) unoloyilel tic {nrodue-

VEC TAPUUETEOUC PE BAoT TNV TAEAXETw AVTIXEWWEVIXY CUVAETNOT).

Z = argmin Z[zi]Q = arg minZ[Ni]Q (0.14)
Vooieu Vooieu

omov z; = I; — S; = N; avamaplotd v andéoTao), PETHED NG mopdtneoluevne i I; xou g

Tiig mou optlet 1 utofbéoxovoa I'naouooiovy xatavopr), Tou meénel vo ehaytotoromdel. Av xou avth

N mpocéyyion divel ta BélTioTa anoteréopata and drnodm axpifetac, 1 E&loworn 0.14 mepiypdpel évo

TEOBANUAL UN YROUUXAOY EAGYLOTWY TETRPOYWVKY UE CUVETEW N eTAUGT Tou va Yopoxtneileto ond

uPMhéc unoloyloTinég analtioelc xou €Tol N u€dodog auth| vo xad{otaton un amodotiny Yl eQapuoYEC
TeayUoTiXo) Yeovou.

O ahyberduoc Tphyopou I'vaovooiavold Topdopatoc (Fast Gaussian Fitting) petaoymuatilet

To dpy 6 TEOBANU OE €vol TEOBANUA YOOUULXWY EAYIOTWY TETPAYOVWY ol UTopel va mpooeyyloel

oe xAeloTh pop®n TI¢ MoelC TN apyAc Pedodou ywelc antieieg otny oxplBeio eVed TaUTOYEOVA

netuyalvel LPNAY emtdyuvon xou avdextxdtnta oto Yopufo. Auty 1 tpononoinoy Pasiletoun oTny

eappoyY) Tou hoydpwuou oty E&ioworn 0.14, n onola yetd and éva obvoro Brudtwy malpvel v

TUEOXATE TEAXT TNG LOP®N.

H= arg‘fnin Z[qﬁ(n—)Ni]Q (0.15)

Yuyxpivovtac tic E€lodoeic 0.14, 0.15 yiveton avtihnnté mwe o FGF anotekel pla otaduiouévn exdoyn
tou GF ayopidpou, e ta Bden va tpoxintouy and tov dpo ¢(r;), o onolog €€ opiopol elvan cuvdptnom
Tou onuatodopuPol Aéyou (SNR). H ypoagini tapdotacy authc tne cuvdptnong divetar oto Ly fuo
0.7.

Yuumepatveton Aoty mwe edv €va cluster mepiéyet pixels ye onpatodopuPind Adyo peyaidtepo
and plo cuyxexpyévn Tr Gdote N T ¢(r;) auTdY Ty pixels va elvon opxetd xovtd oto 1, tdte
n E&iowon 0.15 npoceyylotxd tautileton pye tnv E&iowon 0.14 xow étot o odydprdpoc FGF divel to

21

ExApoer 0.7: H xoundin tou ¢(ri). H tud tou ¢(r;) ouyxhiver oto 1 pe v adénon tou SNR. Otav 10
r eivon (oo pe 3, n Twh tou @(r;) wolton pe 1.1507. ‘Otav to r elvan (oo ye -3, n T oL G(r;) ol Ye
0.8109.

(Bl amoteréopata pe tov GF. Anhad netuyaiver tnv (Bio axpifeta, emAbovtog wotdéco €vo ToAD To

omh6 medPAnue. Avantiooovtag vy EZlowon 0.15, npoxintel 1 mopaxdte pop®.

H = arg min Z(Ilscfm + Iiyfn + Lixip + Liyig+ Lk + I; In Ii)2 (0.16)
mnpak ey

H E&lowaon 0.16 teprypdpel 10 npog enlAucn TpoBANUd YOUUUMXGY EASYIC TWY TETROYWVKY HE 5 dyve-
O TEC MOPAUUETEOUE M, 1, P, g xou k. Autég opilovton pe Bdon Tic mporypotixd {nrodpeves I'raouootavég

TUPUUETEOUC CUUPOVAL UE TA TOUEOXATE.

_ 1
m= 202
_ 1
n= 202
T
e (0.17)
— _Ye
q gi
xT
k= 2o+ s —LInA
z y

It v enfhuon tou ypauwxod mpofAiuoatog xar Ty edpeon tou ool elayiotou epapudlovton ot
pepée mopdywyotl, ol onoleg tievton {oeg ye to 0. 'Etol nopdyovton 5 ypopuiéc eliodoeic pe b

oY VOOTOUS, oL ontoleg ovopdlovtar xavowixés eéioddoeis xan divovtar xdtwit.

[Z amf] m+ [Z amiani] n+ [Z amiapi] p+ [Z amiaqi] a+ [Z amiaki] k=—Yama; (0.184)
[Z amiani] m+ [Z an?] n+ [Z aniapll p+ [Z aniaqi] a+ [Z aniaki] k=3 ana; (0.188")
[Z amiapi] + [Z aniapi] n+ [Z ap?] P+ [Z apiaqi} q+ [Z apiaki] k=— Z ap;a; (0.18Y")
[>" amiags] m+ [S" aniaqi| n+ [apiags] v+ [S- ad?] g+ [agiaks| k= = 3" agias (0.18%)
[Z amiaki] m+ [Z aniaki] n+ [Z apiaki] P+ [Z aqiaki} a+ [Z ak$] k=—3"akia (0.18¢)

Ou ouvtekeotéc am;, an;, ap;, agq;, ak; xou a; oplotnxay yio AMAGTNTA HE XPNON TWV YVWOTWY

m
m

CUVTETAYHEVODY X0 TNG YVWOTAS puTewvontag xdle pixel dmwe galvetan mapoxdte.

22

am; = Im?

an; = Liy?

= (0.19)
aq; = Iiyi

ak; = I;

a; = I; In I;

Yuvodilovtoag TV mapamdve ovdAuaT, Exel xaTaoTEL Pavept] 1) ATAOTOMGT) TOU dEYLXOL W1 Yo~
uxoV mpofAnuatoc, xadde o FGE olybprduoc arnoutel tny anhy enflucr tou ypouuixol cueTiuotog

5x5 mou oplletan and T E€iowaoeic 0.18 xou to onolo oe ahyeBpuxn) pop@n mvixwy YedpeTon we:

Ax=b (0.20)

Yougowva ye v Yewpla Iooppixnic AhyeBpag, o mo anodotxde olyderdpoc enthuong evoc ypoy-
uxol cuvothpatoc ebvan N Iogayovtonoinon Cholesky. ¥to onuelo owtd meénet va Toviotel Twe oL
padnuatixée npobnodéoelc v Ty yenowononon e pevddouv Cholesky ixavomotobvton otny und
eZétaon egappoyr. H Baocuer éa authic tng wedddou elvan 1 anodduncr tou apyxol meofAfuatog
e E€lowong 0.20 oe 8Vo anholvotepa tpoBAfuota mou divovtal xdtedL.

Ly=b (0.22)

Autd emituyydveTar Ue TNV ToEAYOVTOTONGoT] TOU Ttivaxo GUVTERESTOV A TG TopaxdTe.

A=LL" (0.23)

6mou L évac xdtw Tplywvixde mivoxag mou unoAoy(letor ue v e@apuoyr) Tou olydprdpou Cholesky.
Kotémy, pe dedoyévo to Sidvuopa twv otadepdv dpwv b, elvar Suvat n enliluon tne E&icwone 0.22
¢ PO TO BLAVUCUA Y XL OTY) GUVEYELX 1) EUPECT) TOL dYVKGTOL Bloviouatog X péow e E€iowone
0.21. Telxd, yenoLHOTOLOVTIS TOV 0plopd TV X Topopuétewy and v Eicwon 0.17 uroloyileton to

%€VTpo Tou cluster omwe Qalveton ToEOXATE.

Te= —50

yc:_%

oy = ﬁ (0.24)
p> &

Azexp (m‘i‘ﬂ—)

Avtiotowya pe v tpomonoinon tou mpdhdTou aiyopiduou yia BéATioTn vhomoinon oto FPGA,
npoteiveton e€lo0U N XPHOT TWV OYETIXWV CUVTETOYUEVWY OVT(TV ANOAUTOY CUVTETAYUEVKY XEUE
pixel otic napandve e€lodoels, Gote vo ehaytotonomdel 1 yeon Aoyixdy tdépwv. Me autdv Tov
TEOTO opyd LTOAOY(LEToL TO OYETIXG (EVTPO X&Ve cluster ue avapopd oty TEMTY YEUUWT X0t GTAAN
TOU XAl OTNY CUVEYEL Ye omhn npdodeon tne ¥€ong tou cluster péoo oty exdva mpoxdnTouy Tol
Unrodpeva centroids. A&iler vo onuetwdel nwe 1 Slodixaocia auth, ev anovaia avokutixic padnuatixhc
anddellng, elvar €yxupn xodde 1 unoPdoxouca I'vaovooiavi cuVEETNONG X CUVETRS TOCO oL TLéC
Twv pixels 660 xau t0 ®€vtpo Tou cluster, eEopTdvian Lovo and Tic b mpoavapepVeices TapoUETEOUS
xa etvor ave&dptnteg and 10 GOOTNUA CUVTETAYUEVGY.

23

0.4 Ilpotewdueveg FPGA Apyitextovixeg

0.4.1 Ewaywyn

Boowde otdyog g napolooug SimAwuatixic epyaolag elval 1) ETULTAYUVOT TWY TEOAVAPERUEVTLVY
ahyoplduwy xevipapiopotoc oe pla FPGA mhatgodpua. Aaufdvovtag unddiv to biattepa yopoxtnet-
oTwd xdde aryopiduou emhéydnxe dlapopeTiny) oTpaTnYIX o)edLIoUo0 Yia xdUe Evay, UE OXOTO TNV
oVATTUEN BEATIOTOV HUXAOUETOY X0t TNV EEAYWYT YENOULWY CUUTERUOHUATELY.

Agevog Moyw tng anhdtntag tou CG ahydprduou elvon edxohn n poviehononon tou oto Eninedo
Metagopde Kataywentdv (Register Transfer Level) pe yprion e VHDL xoadae outh ouvendyeton
pxed uéyedog xdduxa xou emiTeénel TV enlteun BEATIOTNG UAOTOINONG G GUVTOUO YPoVIXd BLdcTnua.
Emniéov xadiotaton duvath n oyedlaon xuxhouatog xou oe HLS yenowwonowwvrog v C++ pe otdyo
Ny e€epelivnoT Tou YWEou oyedlaong xou TNV GUEST) GUYXELOT TWY 500 TEOYPUUHATIOTIXGDY UEVODWY.

Agetépou 1 vdPnih rorvmhoxdtnto Tou FGE ahydpripou xadiotd anodotin) tny vhonoinon tou
uévo oe LPNAG eninedo, xodde oo TV povtelonoinon touv oto RTL Ho anoutoltay éva Wiaitepa
HEYSGAO Ypovixd Bidotnua. Iapdio awtd n HLS npocéyyion tou cuyxexpipévou ahyopiduou emitpénel
v e€avTANTIXY e€epelivnon Tou Ypou oyedlaong wote vo emtevyVel pio BEATIoTN Ao,

Iot var ebvan duvarth 1 oyediaon evog Pngloxod xuxhduoatog, oe xdde nepintwon elvon avoryxolo
N xHEPWOTN PEPXWY XAVOVKV GYETIXE UE TNV HOp®T TOL €xouv Ta dedouéva eleddou. Onwg €xel
avagpepdel, To Sedouéva Tou centroiding cucthuaTog Tapdyovton and TNV dladixacio TN cUCTASOTO-
inong, 1 onola enlong vAonoteitar 610 FPGA, xou Yewpeitar nwe yetagpépovton péow evog xatdihnhou
TPWTOXOAAOU LVPNATC Tory O TNTOC.

Yopgwva pe tic 0dnyleg mou mopéyel 1 Infinite Orbits, Aoyw plog ddixacioc tpoeneepyaotoc
nou Aopfdvel pépog xatd T Sidpxeta Tou clustering xou ovopdleton binning, to clusters nou mpdxettan
vou Aopf3dver To und oyedlaon clotnua Yewpeitan 6TL Bploxovta evtdg emdvoy peyédoue 1024x1024
pixels, dnhadn n npoenelepyacio auth dnuiovpYel exdveg WONS AVIAUGTG OE OYECT PE TG APYIXES
EXOVES TIOL ToRdyovToL antd Tov aodnthpa. Emnpdoleta avopévetar mwg ta Anguévto tetpaymvixd
clusters Yo éyouv ehdiyioto péyedoc 3x3 xou uéyloto péyedog 5x5 pixels.

AopBévovtog unddy Tic Topamdve Teodlaypapéc xaddhe xaL Ta LOLTEPA YoPUXTNELO TIXE TNS EPap-
poYHC €xel oupmepadel WS 0 MO UTOBOTIXGS TPOTOC PETUPORAS TNG TANEOPoplac, omd TNV dladiacio-
nopaywyd (clustering) otnv Swduacio-xatavohwth (centroiding), etvou e cuveyr| uetddoon twv pix-
els to éva petd to dhho (streaming). Mio amAOUCTEVUEVY] AVATOPAC TUOT) TOU AVTIOTOLOU XAVOALOD

HETOPORAE TwV dedopévwy Bivetar oto Lyrua 0.8.

Jugtadan Juotdda n+1

L L
r LS R

v 5o oo Too Tor Toa T Joml oo [[= T e [[

npog -
Kevipapiopa

Xpbvog
IxAra 0.8: Avanopdotaon tne peTapopds dedouévwy and o clustering cVotnua oto centroiding cVotnuo.

‘Onwe napatnpeiton, mpv) Yetddoon tne @wtewotntag xdde pixel, mou amotehel v yprown
Thneogopla yiot Ty £0peaT) Tou xEVTEOL xdde oo TeploY, PeTabideTon £val cUVoAo amd Borndntnd dedo-
uéva. Apywd, hopfdveton) IV mou evnuepdvel yia to wéyedoc tou cluster mou axoloudel. Av
yia mopddetyo loyVel N = 5, tote T0 embuevo cluster ovopéveton va €xet uéyetog 5x5. Xt ouvéyela

TUEEYOVTAL Ol TWES To XAl Yo TOU AVTLOTOLYOLY OTIG apyLXEC cUVTETHYUEVES Tou cluster oo eninedo

24

e exovag, dnhadn oty TedTn oTAAN xau Yeouu tou avtiotoiya. Telxd yetadidovton ot Tiwéc
6wV Ty pixel axohoulddvtoe Ty cupPotixd uédodo mpoomélaone wog Pngroanic edvoc (raster
scan). Me dedopévo mwe 1 évtaon evic pixel avanaplototo ye 12 bits, to neplocdtepa LETAED TwV

METAUBWOOUEVWY TAXETWY, TEOXVTTEL WS TO XUVIAL EL06DOL TEENeL avTioTolyo va €yel Thdtog 12 bits.

0.4.2 AMlyoépripoc Kévipou Boapltntag
VHDL Movtélo

‘Eva arAonoinuévo umhox didypopda TNG TEOTEWVOUEVTC apyLtexTovxrc topouctdleto oto Yynua 0.9.

clk YnoouaTnua Eicédou YnoouoTnua Algipeong YmoouoTnua EE630u
rst Evraon ABpolopa X
— MAC_X
Jiuvlamvuévn
X
ABpoicya
' XY
Aedopéva Movéda | Evraon Abpoioal | Buffer MnAiko Aedopéva
_CeoonEva | f : ETNG ———+ g — ;
Elo6d0u EA£yxou AC ' L (Mpoowpwvi) AnoBkeuon) | ABpoiopall Awpsng ABpoloTig EE630U
i —_—
— EuvTeTaypévn
: Buffer
‘Evtaon (Mpoowpivh AMoBNKeUOT)
MAC_Y e

Suvtetaypén ‘ABpotopa Y
Y

AndAUTES ZuvTeTaypéves

EyxApo 0.9: Amhonomnuévo unhox ddypapuo tne tpotewvdpevne CG (VHDL) opyitextovixic.

To cotnua ywelletar o 3 utocucthpata Tou cuyypeoviloviar and éva xowd pordt (clk). Kdde
UTOCVO TN TIEPLEYEL Evary aplid amd HOVEDES TOU TRy LATOTOLOUV TIC VEUEAIMDELS TPAEELS OTO Yo~
Aotepo eninedo. Lo tny neplypopy| Tne tepapyiog ToU GUVOAIXOU GUG THPATOS Yenotuonolinxe douixn
neprypapn oty VHDL xou i Ty yovteronoinoy tne axoloudloxric Aoy oto yaunidtepo eninedo
vovethdnxe eptypagy| cuuneptpopds. Katd tny avdntuén tou cuotiuatog, doxiudotnxe éva UeYdAo
TAAY0oC BLapopeTXdY LAoTooEWY Yio xde povdda. To xpitrplo e Bdon to omolo emhéydnxov
oL BEATIOTEC TEPLYPAPEC TV TOL AMOTEAECUOTA, WS TPOS TOUS TOEOUS Xat TO XPICoLIO UOVOTYTL, Tou
nopdryovtay and v dadixaoia tne Aoyiic ovdeone (Logic Synthesis) oe xdde nepintwon.

Y10 cbotnue Tou Lyfuatoc 0.9 to dedouéva apyixd Aaufdvovton amd to unocLoTNUa elo6dou. Ot
dVo povédec MAC (Multiplier Accumulator) xou v pio povéda AC (Accumulator) etvon unediduveg
Y10 TOV UTONOYIOHO TV 800 aptduntdv ot Tou xovol Tapovouaoth ota 800 xhdopato tou optlovta
ané tov alydprdpo CG. Q¢ eioddoug haufBdvouv oe xdie xOXAO TNV POTEWVOTNTA Xal TI OYETIXEC
ouvtetaypéveg evog pixel. Mougwva ye) Baou Yewplo Suadnhc aprduntixnc to anotéheoud Tng
npbodeone M oprdudy twv N dnelov, anatel NV + logy M dnela yia tnv avorapdotacn tou. Me
Bedouévo mwe Aoyw Tou péylotou peyédouc twv clusters ol oyetixée ouvtetaypéves ypetdlovton 3
Yl yia v opdf avomapdotacn toug xau o Uéyiotoc aprdude pixels elvon 25, mpoxintel nwe o
aptduog N oty nepintwon tov aprduntdy wwolta ye N = 12 4+ 3 = 15 ¢mela Aoyw tou yivoyevou
XL OTNV TEPINTKON Tou TopovouaoTh looltal ue N = 12 dmelo. Emedr) woydel 32 > 25, édmou 32
elvon 1) wxpdTepn dovoun tou 2 1 omola elvon peyohitepn and tov apldud Twv adpoloudTtewy, TEoXOTTEL
WS YL TNV OWOTY ovamapdoTtacT) Ty aptduntdy amoutovvtar 15 + log, 32 = 20 ¢nela evéd yia tov
napovopaoTh ancutovvtar 12 4 log, 32 = 17 dmneplo.

A&iler va onueiwdel mwe yioo v BEATIOTH UAOTOINOY TWV GUYXEXPWUEVKY UTOROYIOTIXOY BOUDY
elvon amapaitnn 1 xeron DSP povddwyv. Avuidétwe, n Movédo Eréyyou (Control Unit) nou eivon

25

uTELBLUYY Yo TOV EREYYO TWV UTOAOLTWY HOVABWY X0l TNG UETABOONS TNS TANEOPOpRlc, XoL GUVETHS
elvow pio e€ohoxhrfipou hoyiny| povdda, yovteromoleiton wg utoa Mnyoavy| Henepaouévwyv Kataotdoewy
(Finite State Machine) xat v omtolelton pe YpHoT HOVO AOYIXGDY XUTTHPWY.

‘Eva 18ialtepo yopaxtnelo tind tne cuYXEXpEVNG apyltextovixic elvon 1 xeron Aprduntixrie Xto-
Yepfic Trodotoric (Fixed Point Arithmetic) avt yio v onuovtind nohurhoxétepn Aptduntixd
Kwntic Trodao tohic (Floating Point Arithmetic), tng onolag 1 xpfion o€ cUSTARNTA IOV EYOUY K
%x0pLo HEANHAL TNV YEYLoTOTOIMoN TNg ToUTNTag Elvar cuVATLE PN amodexth. Avtidétwe n Aptduntu
Ytadepric Trodootorrc elvar oD anodotixh xadoe emTEEnEL TNV OAOXAAPWOT| TEAEEMY TRy HLTL-
%0V aptiumy xatd el peyédoug taybtepa. To yopoxtneloTind Yelovéxtnua authc Tne aptduntixic
elvon g ouvidwe odnyel oe anwdheta axplBelac xal CLVETOC TEENEL VoL Ypnoulonoleltal Ue Tpocoy).
Yt ouyxexpyévn nepintwon, npénetl vo yenowpononiel 1o xotdhinho mhfidoc dnplwy i v avo-
TapdoTAoT) TOL deXudIX00 Pépoug EVOC TpayaTixol aptduol, e oTéyo TNy emiteuln xavoroTixhc
oxpifetog ywels dpwe mepitth adEnom e hoyixiic TOAUTAOXOTNTOS.

‘Evag mpaypatinée aptdude pe Bdon v cuyxexplpévn avomopdotaot opileton dnwe pofvetat xdtwit.

xr = b[_F_1b]_F_2 . blbo.b_lb_g .. -b—F—lb—F

omou 1 axpifelo xadoplleton and to Mydtepo onpovtind dmeio b_ g, 6mov F to tAndoc twv ¢melicnvy
de€iotepa TN unodlootorc. To ehdyioto mhidog tétoiwy Ynplwy mou ixavonotel Ty Tpodloypapn

opdipartoc pxpdtepou and 0.1 pixels etvon F' = 4 xaddc:

1
2= F —94 = = 0.0625 < 0.1

Enedq n npdén mou agopd meaypatixols apltiuolds oTny cuYXEXpUIEVN eQopUloyn elvan 1 dlalpeon,
N vAomoinon Tou TNAixou we apud otatepric uTodiac ToAAC 0dnyel oe onuavTixy peiwon twv {nto-
OUEVWY TIOPWY %Ol TWY AOYIXMV EMTEDMY TOU AMUUTOUVTOL YLol AUTY TNV TEAEY, UE AMOTEAECUA TNV
pelwon e xadustépnone (latency) xou tou xplowov povonatiol.

I v medcn tne Swadpeone oty e€etalduevn apyitextovixr emhéydnxe n yeron wiac €roung
IP povddag and tov xatdroyo IP tn¢ Xilinx, o onolog ddétel éva mAdog vionoioewy mou Bo-
ollovtar oe dlapopeTtinole olyopldpous Swadpeone. T'a Tic avdyxeg tou cuocthuatog emthéydnxe o
ohyoprduoc Radix-2, o onoloc ypnowonotel pévo hoyixd xOttopa, dniadr Look-Up Tables (LUT)
xou xatarywentéc (Flip Flop).

H mo onpavtixd, oyedioaotixf emhoyt agopd tov pudud Sexnoupewtndtnrog (throughput) tne
ouyxexpwévng IP yovddag, o onolog mpénet va emhey el houBdvovtag unddiv To Wiaitepa YopoxTn-
PLloTWXE oLV GUVOAXOD cucTApatog. Eneldy| n diadpeoy anotekel tny mo noAdTAoXN X TwV Bactxy
optduNTOY TEGEEWY, avauéveTon Vo amoTtehel To xploo mopdyovTa anddoone NG aEYLTEXTOVIXNAS.
Tt autéy TOV AOYO Opyid emhéyUnxe 1 yenor evoc povadixol Blawpétn mou Vo mpoypatonolel xal
g 800 dpéoeic mou anoutel o CG alydprduog, wla yia xdde ddotoor. Emniéov, clupuva e Tic
odnyioeg tng Infinite Orbits, 1 napaywyy twv clusters and 1o choTnua cucTadonoOiNCNAUS AVUUEVE-
Ton va ebvon plor oyetnd apyr) Swodixactio ye eldyiotn xaduo tépnon uetafl dladoyxdyv clusters ylpw
otoug 70 x0xhoug. AUTO TO YoPUXTNPEIO TIXG ETUTEETEL TNV ETUAOYY| TOU UXPOTEPOL EX TLV dlardéotuwy
PLIUAY BEXTAUEEWTIXOTNTAS, O OTolog EMTEENEL TNV exxivinon 1 dialpeong avd 8 xdxAoug poloyioy,
ME OXOTO TNV EAUYIGTOTONGCT] TWV ATOUTOVUEVWY TOPWV.

To yeyovoc mwe 80o Supéoelc o efunneetodvTon and €vay Xovo BlouEETn Ue OYETIXA WixEN
TaryOtnTa Snpoupyel plo avdyxn yio oetplaxt] anodixeucy) xou TeooTéAUoT) Twv dedopévwy, xdTL Tou
urodnhove) xevon woc First-In-First-Out (FIFO) uvAunc. Enedy pdhiota amouteiton n toutdypovn
anoVfxeuc 800 BEBOUEVLY Xau 1) TEOGTEAAOT) EVOG XAdE OTLYWUY), 1) XENOLWOTOLVUEVT] UVHUN TRETEL VoL
EYEL TNV AVOTNTAL Yelwong Tou puiuol UeTapopds dedopévey. Amodelytnxe mwg 1 Wavixy Aoor o

26

autd to TEdBANUa elvar 1 yerion wag actupetene IP FIFO puvAunc o éva petaPBatixd amodnueutind
H€co PETAED TOU UTOGUGTAUATOC ELGOBOU, TOU TORAYEL TOUS ApLIUNTEC Yol TOV TOPOVOUAOTY, Xal TOU
BLapéT), TOU TOUG XAUTAVUAGDVEL. ENUELOVETL Twe ot (Slou timou uvAun tomoveteiton petalld twv
UTIOGUGTNUATOV EI0OB0U xou e€6B0u, xadde to tekeutaio ev oelpd utocvoTnua elvar urekiuvo yia
NV Te6c¥ECT TV AMOAUTOY GUVTETAYUEVWY OTA OYETIXA XEVTPA TOU €YOUV UTOAOYLOTEL, Ylo TNV
TPAY WYY TWV TEAXOY centroids.

Oloxhmpiyvovtag, €xet o&io vo onuetwdel Twe N SEXTUEEDTIXOTNTA TOU GUVOAXO) GUCTAUATOS
xadoplleton and 0 UTOGUCTNUA ELGOBOU €V TO XplowWo Uovondtl, dnAadh 1 uéylotn cuyvoTnTa

hertovpylog, and tov IP Sloupétn.

C++ Movtéro

‘Evo amhonoinuévo didypaypo tou wodivapou C++ cuothuatos topovoidletor oto MyAua 0.10.

clk
-) Zuvaprtnon Eig6dou Zuvaprnon EE6dou
rst
R ———
ABpolopa X B ,

. ; oxo ;
Aedopéva ~ DSP Bpbyo A8poiwouall -~ Alaips)c(x S & Agdougva
Elo6d0u : POXOS Aepotopa Y . pEANS EE6Bou

: » ABpolonc
! AnOAUTEG ZUVTETAYMEVEG
... >

ExAra 0.10: Andonomnpévo urhox ddypopua tne npotewvduevne CG (CH4) apyntextovixhc.

Y10 HLS ta Souxd otoyela evég cuothuatog eivan on C++ cuvaptrioelg, ol onoleg avtiotoly(Co-
vtow oe unoovothpote (blocks) oty RTL epopyio eved 1o oplopota xéde cuvdptnone ouvtidevion
oe RTL 90pec. Xuvende to npotevdpevo C++ clotnua elvor mopduolo e mpog T Sour Tou pe Ty
RTL nepintwon. 'Eva and ta onpavixdtepa mhcovextiuate tne HLS npocéyyione elvou to yeyovoe
WS 0 PETAYAWTIOTAC e€dyel autdpata TNy Aoyixnh eréyyou and tov mnyofo xwdda xou dnuiovpyel
éva FSM yio var ta€voprioet Tic Sudpopeg mpdelc. Autr| 7 Sadixacta elvon 1oodivaun pe Ty Unopgn
¢ RTL Movédac EAéyyou xou cuveng dev etvor mhéov avoryxala 1 ent vhonoinon te. Katd tny
aVETTUEN TOU CUGTAUATOS BOXUACTNXOY BLAPOPES TEPOTOTOLACELS GTOV TNYOLO XMOLXA YE OXOTO TNV
napary YY) Tou BéATiIoTou xuxhouatoc. To xpithiplo aflohAdynone auTdY TV TPOTOTOoEWY HTov To!
anoteréopata Tou naphyaye 1 C Lovdeon (C Synthesis) o xdle nepintwon.

H ouvdptnon ewobédou npayyatonotel tnv (Bl Aettoupyio ye to avtiotoyo RTL unoclotnua nou
TEQLY PAPNUE THPATAVE, ONAXDT) AoBdvel Tnv poY) Bedopévey elcddou, Tpowldel Tic andhUTES CUVTETY-
uéveg ot ouvdptnom e£6dou xou urohoyilel Toug 800 apriunTtéc xou Tov mopovouac Ty xdde cluster.
O unohoyiopol autol mpaypatonololvtal evtdg wlac téhela pwlaouévne epapylag dUo enovoAnmTL-
%6V Ppdywv (loops), oL onolo Tepiéyouy cuvolxd Teelc evioréc. Me SeSouévo 10 TeTparywvixd oy fo
Twv clusters to 6plo xde Bpdyou oot e To TEOTO Bedouévo Tou hauBdvetan Yo xdde cuoTAdA,
onAody) ue v ir N. HoapatneRdnxe nwe o yetayAnttiotic vhomotel avtopata tig 0o MAC npdeic
ue DSP xOttapa. Avtidétng auto dev xatéotn duvatd yio v AC mpdén, o0te e TNV eQoppoyY| Twv
oyeTxdy odnydy (directives) mou drodéter to HLS epyoheio. To yeyovde autd delyvel mwg pepinée
popéc To epyalelo meplopilel TNV npdofacy Tou oyEBlUoTH oTa YaunAdTERY ETinEd oyEdlaoTC.

Avapévopeva 1 cuvdpetnon e€660u elvar UTEGYUYY YIA TOV UTOROYIOUS TWY XEVTRWY TWYV ACTERLDY,

péow apyd ploc Slabpeong yio TNy €VPEST, TOU OYETXOV XEVTPOU Xl XATOTLY TPOCYETOVTAG TIC

27

anéhuteg ouvtetayuéveg. Avtiotoiya pe v nepintwon e RTL apyitextovinic, pla Yepehicddng
oYEdLoTINY EMAOYT apopd TN Yeron evoc xowol Sloupétn mou Vo unoloyilel xan To 500 oyeTIXd
centroids (¢ Tpog Tic dV0 BAGTAGELS), UE OXOTO TNV ENAYLIGTOTOINCY) TOU YMEOU TOU XatohauBdveTol
oto FPGA. Metd and avahutxd éheyyo, amodelytnxe nwg 1 yeron ulog povédac Sipeone ebvou
duvaTh Lévo edv oL dUo oxetxéc C++ evioréc Tonodetnioly evidg evog xowvol Bedyou, eva 1) yerion
TV oxeTxdY dladéoiuwy directives dev 0dnyoloe oo emtuuntd anotéreopa. E&icou onuavtu etvan
7N mopatienon tee avedptnta and to throughput tou dionpétn Tou unopel vo opicel 0 oyedlaothc Héow
Tou 6pou Initiation Interval (II) tou Bpdyou, to HLS epyohelo mévtote napdyer éva GUYXEXEWWEVO
OLoEETN e TN MEYLOTY BUVATY) BIEXTUEEWTIXOTNTA, O oTolog dnhadH exxivel plor véo Sladpeom avd xOxho
pohoytol. Autd xotadexviel TOC 0 PETAYAWTTIOTAC Bev emitpénel xopla Tpomononon Tou dlotgétn
and Tov yeNotn, oe avtlieon ye v mepintwon tou VHDL yovtélou 6mou Htav duvaty 1 extevig
napapetponoinoy tou. A&ilel va onpetwlel TS 1 CUYXEXPYEVT LOVASH LAOTIOLELTOL YENOLLOTOL)OVTAC
povéya LUTs xouw FFs. Enilong, tovileton mwe ol Bpdyol xon twv 800 GUVIPTACENY €YOUV XATACTEL
TAjewS BloyeTeuuévol Héow NG gapuoyic Tng odnylac Pipeline.

Ye wla C++ apyrtextoviny 1 dienogr| HETOE) TwV BLAPopwy SUVAVTHCELY elval xplown Yo TNy
OUVOAXY| am6B00Y TOU GUCTAUATOC Xot CUVETDS TEémeL var Bektiotonote{ton. Autéd enetelydn ue
™ xenon e oyveric Dataflow odnyloc, n omolo dnuioveyel pla tohdmhoxn dopr| emxowmviag Tou
ETMUTEENEL OTI OYETIXEG CUVAPTNTELS VAL EXTEAOUVTOL TUREARTAA. 3TO TEOTEWOUEVO GOCTNUA, QUTH 1|
doun) anoteleiton and 5 FIFO xavdhio mou yetagpépouy tar anoteAéopato TS Xuvdptnone Ewoodou.
Elvon mpogavég mwe 1 e@appoyn tou cuyxexpiuévou directive vnoxathotd tny enty wovielonolnon
TWV EVOLIUESWY XOVOALWY, TOU elvol amopaftnTn xotd TNV oYEdocT 0TO EMUMEDO TWV HATUYWENTHOV.
Qo600 0dNYEl ot onuavTN: adENom Twv anatoluevewY Topwy Tou FPGA, ol onolol ypnoyiomolobvto
yio TNV VAOTOMNON xUElWE UV X0l TOAVTAEXTEOY. LNUELOVETAUL TS OTY) CUYXEXELWUEVY Tepintwon
o xavdha emxoveviag uhoroovvta pe Lewploxols Katoywentéc LUTs (Shift Register LUTS) xou
optlovton e T0 UixpoTERO Buvatd Yéyetog Twv 2 YEoewy PVAUNG, ENEdT To BEBOUEVA XAUTAVAAGVOVTOL
oo TNV CUVAETNGT EE6B0U EVay XUXAO PETH TNV TUEAYWYT) TOUG XAl GUVETE ToL XovahLol Sev yepllouy
TOTE.

Ohoxhnpivovtag, ofilel va toviotel mwe mopdpola pe v RTL opyitextovinr, n SiexnoipewTti-
%x6TNTOL TOL GUVOAIXOL Gua TAUATOS Xadop(leTal amd To UTOGVG TN ELGOB0V EVE TO Xp{oLWo LovoTdTt,

ONAadY| N LEYLo TN cuyvoTnTa Aettovpylag, and TN Lovdda diaipeomng.

0.4.3 AMlydépripog I'eyopou I'raovooiavo’d Tapidopatog

H xowvotopa FPGA vhonoinor mou npotelvetan oe auth Ty dimhwuatixy epyaocta, Bacileton otov
akyderdpo I'eyopou I'vaouvooiavold Tapidopatog ye otéyo v enitevlrn yeyding axpifBelog xon to-
yOmnroc. ‘Onwe eEnyfidnxe, Aoyw e LEYEANE TOAUTAOXSGTNTAC TOU CLYXEXPWEVOL alyopituou dew-
ehvnxe TpoTwdTERT 1) Hovie onolnon Tou cusTAuatog ot C++, xadde To HLS pewwvel Tov anantolye-
vo ypbdvo oyedloong xan mapéyel T duvatdTnTa Yo Yeryoer enairideuon xon extetouévn e€epedvnon
Tou xpeou oyedloong, dieuxollvovtag €tol Ty ebpeon piog Bértiotne Aone. ‘Eva amlonowuévo
umhox didypaupa tng npotewvouevne FGF apyttextovinrc divetow oto Uyrua 0.11.

‘Onwe unopel xovelg vo mopatnenoe, pio Baoixy Bla@opd TNS CUYXEXPWEVNC AEYITEXTOVIXAC OF
oy€om pe TiC TpomNYoUpEveS elval g UTOAOYILEL U6VO TO GYETIXG Xl d)L TO OTOAUTO XEVTEO TOU clus-
ter, ye ovapopd dnhadt) otny e Yeouuh xat othin. H e€ynon avtic tne oyedlououxnc emhoyhc
Yo Sodel ot ouvéyeta. Tlpémel va onueindel, TS xaTd TNV OAOUANPKOOY) TWV SLAPORKY CUCTNUATLY
(clustering, centroiding, matching) yiot tnv Snurovpyio evoc OAOXANEEUEVOL VLY VEUTY| O TEPUDY, OE
auth TNV mepintwon ebvan amapaitnTn plo plo wxe Tpomomnoinon oTov xWda TS dladxaciag Talpl-

dopatoc, mou vhomolelton GTNY TAeLEd ToL eTedepYao TN, MOTE Vo Tpaypatonoleital) tpdcdeon Twv

28

clk Suvaptnon Eicédou ZuvépTnon Cholesky Suvaprnon EE65ou
rst Mivakag
SuvteAeoTav A
i Kdtw Tpiywvikdg A
Agdopeva ~ DSP Boébyo | Cholesky MivakagL | ErfAuon Zuothpatog Aedopéva
Elob6d0uU ! poxog Nivakag Stabepiv | Mapayovrtomnoinon e Avtikatdotaon EEbd0u
' ‘Opwv b
E ATOAUTEG

SUVTETAYMEVES

SxAna 0.11: Amhomomuévo uniox ddypappa tne mpotewouevne FGE apyitextovinic.

AMOAUTWY GUVTETAYUEVWY UE TOL OYETIXA XEVTEA Ylal TNV €0PEOT) TWV TEAXWY centroids.

Miot Jepeddng diapopd petald Twy LAOTOGEWY GTO LALXS Twv 800 ahyopliuwy xevipopioyatog
apopd v yeron Aprduntuac Kivntic Trodiaotohrc v v nepintwon tou FGF. Xovopud o FGF
ahyopLiuoc expedletar omd tic E&owoeic 0.18, 0.23, 0.20 ot onoleg meptéyouy éva tepdotio aptdud
npdewy ye mpaypotixole aprdpote. o napdderyuo wovdya to 8e&l uépoc tne Eéiowong 0.18 oplle
évay Aoydprduo, évav molhamiaociaoud xan uia agaipeon yio xdde pixel. T va ebvan anodotixy n
xeon Apdunuxhc Xtodepric Trodaotohic elvon avayxaiog o xadopiopde tou peyédous, dnhadn
Tou apLiuol Twv Pmelny, xadevdc and ta evdidueca oo, x4t To onolo eivon TEAXTXE AdGVATO.
Avtdétwc, 1 ypron e Floating Point avanapdotaong etvon Slodtepo e0x0oAn xou moparywyLxh xatd
tov mpoypoppatiopnd pe C++, xodde ov mpdéelc xan ot amoutolyeves petatpomés avtotoly(lovtat

avtopota o xatdhinia Floating Point IP xOttapa mou Swordéter v Xilinx.

Emniéov 1 ouyxexpiuévn apripntixn diadétel To mAsovéxTnua Yeryopng xou enaxpBoig enelepyo-
olag 1600 PxpdY 600 ol YEYSAwY aptdudy, xdtt To omolo elvar WBLalTepa GNUAVTIXG Ylol TNV TOEOUGOL
EQAPUOYY), OOV ATMOUTE(TOL O UTONOYLIOUOS ax€potwy oLy TOAAGY duadedv dneiny drwe o pavel
napoxdtew. 201600, TO UEOVEXTNUA TNG YENONS AELIUMY xivnTAS UTOBLIG TOAAS elval 1) OYETIXE Ye-
YEAT TOAUTAOXOTNTA TOUG, 1) OTOLo AVALEVETOL VAL OBNYHOEL OE UEYIAES UTOAOYLOTIXES AMAULTHOEL IOV

petapedlovtol oe YeYohlTepa Xou To apYd Prplaxd xuxhouaToL.

‘Eva Bactxd yopaxtneloTixd tou cuyxexplévou aprduntixol cuo thgatog elval twe unopel va avo-
TAPLO T Eval HEYEAO £VpOC apLiuy e avtitipo pio uelwon tne axplBeloc. Ewbixdtepa, ol diadéouolr FP
aprdpol Sev elvon opoLdpop@ XaTavEUNUEVOL XADMS 1) Blapopd UETUED SLUBOYIXWY OELIUMDY IOV AVOTo-
plotavto axeBog e€optdtar and Ty exdotote xhipoxa otny onolo Beioxovtar. ‘Etol o uixpdtepec
xhipaeg avanopiotavton axpBde neplocdtepol aptdpol cuyxplTind pe Tic peyahltepeg xhlpoxee. E-
Tewn Aowndv ol wxpol aprdpol dSiatneolv ueydAn axpifeia oto dexadnd Toug UEpog, emAEYUNXE O
uToAoYLoUOE UOVO TwV GYeETXAY centroids evog cluster, to onolo etvon pixpol aprduol evog axépoiou
gnplov. Avtdétwg n npdoleon Twv peYdhwv andiutwv cuvteTayUévey Jo 0dnyoloe oe antAeld
axpiPeloc oto xplowwo xhaouatind pépoc. H npdoldeon auvth wotdco, unopel ebxoha var Tpoyotonol-
noel oty mAeupd tou enelepyac Ty 6mou cuvidwe yenodonoleiton apriunTier SITARC axpelBelag xan

elvon duvaty n dlatenon e emduuntic axpeifelog.

H npdytn ouvdptnon tou Eyfuoatog 0.11 ebvar uneduvn yior Tov UTOAOYLIOUO TOU Tvoxa GUVTEAE-
otV A xou Tou dlavbouatog otadepny 6pwv b, ctolyelo ta omola opllouy Tic xavovixéc eglomoelg
(E&iowon 0.18). Autd emtuyydvetan e v ypfon evoce, avtiotowyou pe v CG uhonoinom, dinhod

enovaAnTTiXol Bpdyou Tou TEPLEYEL DLUPORETIXES TAEOV EVIOAEC.

To mp®To YEPOG TWV EVIOAMY 0POPOUY TOV UTOAOYLOUS TOU GUUMETEIXOU Tiivaxo A, Tou omolou to

AT TELYWVIXO UEEOG BIVETAL TOQUXATE.

29

> am;
Samzan; Y an?
A=Y amiap; Y apiag Y ap? (0.25)
Yoamiaq; Y anagq Y apiag; Y aq;
Samiak; Y anak; > apiak; Y agiak; Y ak?

‘Onwe gatveton, yioo xdle ocuvtekeoth) anawteiton €vag apiiudg mpdewy mou mepthaufdvouy ta
dedoyéva eloddov. To mAfidog twv bits mou amartolvton yio TV avandpdotacy xdde cuVTEAETTY
TEOXUTTEL UE EQupUOYT| amAfc Vewpliog Buadxev aptdudy. O mivoxag 0.1 Tepléyel Ta CUYXEVTEWTIXG
otouyela yior Toug 13 povadixolc cuvteleoTtég Tou Tivaxa A.

ITivaxag 0.1: Troloyiopds tou mAfidous Ynplwy yia xdde axépono cUVTENECTY a4j

‘Opoc | Mopy1 | IIAMfO0oc ¥ngiwy || Yuvieieotrs | ITAfOoc ¥nplny
am? 2z} 36 ait 41
an? Iyt 36 a22 41

am;an; Ifa:%yf 36 aio 41

am;ap; If:z:? 33 asy 38

am;aq; Il?a:?yi 33 as1 38

an;ap; Ifyfxz 33 ass 38

an;aq; Ifyf 33 42 38
ap? I?a? 30 ass 35
ag; Iy 30 Q44 35

ap;aq; Ifxlyl 30 a43 35

ap;ak; I?% 27 ass 32

aq;ak; Ifyi 27 asy 32
ak? 17 24 ass 29

H mo onuavtixn npdxAnoyn mov avietoniotnxe xatd tny oyedloorn tng cuvdptnone eleodou
agopovoe Tov TEéTo umohoyiopol xdde cuviekeotr) oto FPGA. Autd unopel va yivel xoidtepa
xortavonTéd e éva topddetype. Eotw o ouvteheotic ass = Y I2x;, 1o tov onolo anoutelton pio MAC
TpdEn yio xde pixel. To ywéuevo [2x; uropel var umohoyloTel ye dlo dlapopeTinolc Tpdnoue, Elte
oc I? -z f og (Liz;) - I;. Av xou o évay cupPoatind enelepyaoti n emhoyf Petafld Twv dU0 HoppGY
elvon aofpavty, autd dev toylel oty dmgplaxy) oyediaon. Il cuyxexpéva, mapatnehinxe nwe o
HLS petaylottotic vhonoiel 1o npdto yvdpevo, 24x3 Pnplwy, pe LUTS, xou to Seltepo yivouevo,
15x12 AL, e xOttapa DSP.

Av xau o€ XAmoLEC TEPLTTMOELS 0 TEOTOS VAOTOINGNE TETOLWY YIVOUEVKY BeV EYEL UEYAAT onuooia,
amodelytnxe Twe oty U e€étaon epopuoyn 1 vhomoinan ue yerion LUTs odnyoloe oe adEnon tou
xplowou povonatiod xou Yelworn e andédoong. o tov Adyo autod uetd and eEavtintiny| e€epedvnon
Tou YOpou oyedlaong, xatd Ty omoio eEAEYYUnxay Ghot ot duvatol (31) tpdmoL uToAoYLoPOL TwY 13
OCLVTEAEGTWY, emAEYONxe 1 LAomoinon Toug ue yovdadeg DSP.

Mio cuvortxy| neplypapt] Tou axelBole TpdTou LAoToMONG TWV cLVTEAESTWY divetan otov Iivaxa

30

0.2. T euxohio opileton 1 td€n TV CUVTEAESTWY (oM Pe TNV SOVOUN TWV GPWY TWV CUVTETAYUEVLY

EVG %o OL BUO CUVTETAYUEVES Tj, Y; VEWPOLVTOL LGOBUVOUES KO CNHUELDVOVTOL UE X;.

ITivaxag 0.2: Opopdc xdde tOnou cLVTEAESTOY, HE Bdomn TRV Lop®Y TOU TOANATANCIAOTHOU o TOU

TOAATAACLAOTH.

Td&Zn | TOrog | IIoAhanhaciacwos | IIAAOog ¥neiny | Bondntixog ‘Opog
4 I*x} (I;x?)(I;x?) 18x18 I;x2, I;x;
3 =} (I;x2)(I;x;) 18x15 I;x?
2 I*x? (Iix;)(I;x;) 15x15 I;x;
1 IZx; (Iix;)(I;) 15x12 I;x;

To debtepo Pépoc TV EVIOAWY Tou PedyOL OTNV GUVAETNOT €L06B0L APOEd TOV UTOAOYLOUS TwWV

otadep®v 6pwv b;, oL onolol divovtal oe pop®n mivaxo TopaxdTe.

— > am;a; > (I22?)InI;
— > an;a; - (I?y?)ln[z
b=|—-Yapia; | = |- (I2z;)In]; (0.26)

— > aga; — > (Iy;) In I
—Zakiaii —Z(Ig) lnIi

Etvar ovepd mwg o hoydprduoc anotehel v mpdtn npdln mporypatxdyv aptducdv tou FGE ou-
oTAUATOG o TparypoTomoleltal pe éva ewdixd xOTTopo aniig axpifelac xivnTHS UTOBLUG TOANS ToU
vhonoteiton pe 13 DSP. Téco autd 1o x0tT0p0 660 xou 1) povéda petatponic ot aptdpols xivntig u-
TOdLC TOATG TV oxépaiwy GpwYv Tou Beloxovta evide nopévieone, n onola yenotwonotel uévo LUTs
xan FFs, mopdyovtow autépata and to gpyorelo. Avtictoyol unoloyiotixol muprveg mou ulonolo-
Ovtow pe DSP extelolv tic mpdEelc ToU TOAATAACLIOUOU Xal TNG AQUUPESTC. LNUELDOVETAUL TS OO
oL Tupfvee elvar TAAEWE BLoYETEVUEVOL Xal CUVETHS GAEC ot mpdlels eEumnpetolvtal amd éva povadind
avTlypago.

Avuté mou éyer WBuaitepn onpacia elvon to yeyovée nwe téoo 1 xaduotépnon (latency) 6co xou
7 dexnoupentxdtnia (throughput) e ocuvdptnone ewwddou xadopilovior and Tic npdlelc xvnthc
unodluotohric. Agevde, 1o latency xdlde emavdindmne tou Bedyou opileton amd v oxoroudia Twv
npdEewyv mou amouteiton Yo xdde pixel otoug dpoug b;. Auth 1 oxohoudia amoteheiton and plo pe-
Tatpony| oxépatov ot mpaypatixd aprdud, évay Aoydprduo, évay molhamioctaoud xau uio agaipeo.
Agetépou, o Initiation Interval tou Bpdyou meplopileton and TN wovdda agaipecnc xivnThg unodla-
oToNc. Xuunepeopatind, 1 vloVETnon aptdunTixic xvnthc UTodao ToAfg teptopilel TNy anddoor e
GLVAPTNONG ELGABOU X0t XOROVIWS TOU GUVOALXOU GUCTAUNTOS, EVE TowTtoypova xadopilel xou v
GUYOAXT xATAVIAWGCT TopwY oTo FPGA.

H 8ebtepn ouvdptnom tou umhox diaypdupatog tou Xyfuatog 0.11 etvon vredduvn yioo Ty mo-
paryovtonoinomn tou mivaxa cuvteheot®v A oclugova pe v Eglowon 0.23. Autd emtuyydvetar pe

yenon tou Alyoprduou Cholesky mou meplypdgpeton amd Toug Topaxdtew TUTOUG.

(0.27)

(0.28)

omou Iy, l;; ebvon tar otoyela evtog xou extog g xdplag dlarywviou avtioToya.

Av xou to HLS epyalelo napéyel Sidpopec vhomoiioelc Tou cuyxexplpévou ahyoplduou yéow tng
BBrodiune yeopuuxnc dhyePpog, anodelytnxe nwe dAec LAOTOLUVTOY W ERAVUANTTIXOL ohybpLipoL
TIou Ypnoylonotoloay xdmola tepapyia ETaVOANTTXGDY Bpdywy. 'Etol ol dlardéoiueg apyitextovixnég dev
TEPLElYAY TO YopaxXTNELoTiX6 TNne Bloyétevong xau topovaiolay peydin i 11, ue ouvéreia 1 yerion
Toug va xplvetan pn anodotix. o autd 1o Adyo, emhéydnxe 1 anochvieon autody Twv Bedywy ue
yerion e odnyiog Pipeline xau v dnpoupyio wlac Eedimhwpévne Stoyeteupévne ouvdptnone. Auti
ouvdptnom extehel Tic tpdEetc mou opilovtan and tic E€iomoeic 0.27, 0.28 yenoionoldviog tny e VXt

NG BLOYETEVONG UE OXOTO TOV UTOAOYIOHS TOU XATw TELywvixol mivaxa L, mou divetar mopoxdtw.

l11 = /a1l
a 2
Iz1 = 721 l22 = Vag — 121

11

a: agzo—loqls 2
lan = 72+ lgp = #8227 218L 133 = agz — 13, —ls2

_ a4y _ a42—l21l4y _ a43—l31l41—1321l40 _ 72 g2 _ 2
lan = 7 lag = Toa lug = Tos lyg = y/aqa — 13 — 13, —las

_a _ aga—laql _ asz—l31l51 —l32l _ aga—la1lsy —laalse—lasl _ Py 2 2 2
ls1 = % lgy = % lgs = W lgq = 2s4=larls) 1422 s2=laslss o0 — \/%5 — 12, — 12, — 12, — 154

Avutéd nou a€ilel va toviotel elvon Twg Tapd TRV YeHom BloxETeuang, N ToOTNTA TNS CUVEETNONG
neploplleton and Tig éuputeg e€apthoelc mou epavilel o alyoprdpog Cholesky. Autéc ol e€optioeic
apopolY Toug Gpoug Tou €xouv onuciwilel ye évtovn yeoapn. Elvar goavepd mwg yio Tov unohoyloud
xqde Blorydviou oTolyelou amoute(ton vo €xel umohoylo¥el mEoNYoLUEVLC To axEBME TO APLoTERS
otolyelo, 1o onolo e T oelpd Tou egapTdtal and To Sy Vo oTolyelo TNE Bixrig Tou GTHANG. Xuvendq
onulovpyeiton plo ahvoido e€aptroewy mou Eextvdel and To TEKTOo oTolyelo 111, xoTahiyeL oTo teheuTaio
otouyelo lss xou xadopilel 10 cuvokixd latency tne cuvdptnong.

Avth) 1 ahboBa amoteeltan and 3 npdlelc mpoyTXOY aprdty Tou enavokopBdvovTon Yo xde
othhn, o agaipeoy yia Tov LTOAOYIOUS TOL UTOEWLOU TV Loy dVIWY oTolyelwy, plo TeTpaywvixs
pila yioo Tov ebpeon tou dlaydviou otoiyelou xou uia Sodpeon yia Tov uohoyiopol Tou aTolyeiou
e endpevng oepde. o v pelwon g xaduotépnong, avtl yio Ty yeovoPBoga axohoutia ploc
tetpoywvnc ptlag xou plog Slalpeong mou amouteiton Yl TNV EUPECT] TWV OTOLYEWY XdTw and TN
Blay®vio, ETAEYINUE 0 LTONOYLOUOS TOUC UECK TOANATAUCIACUOD PE TNV AVTIOTEOPY TETEOYWVIXT
pilo, 1 omola unohoyileton euxohdtepa e yprion Wiog EWBAC HOVEDBAS XIVNTHG UTOBLIGTOAAS OV
ouddeter to HLS epyareio. Auth n oyxediaotixd emhoyn odnyel oe uelwon g xaduotépnong xotd
140 xOxhoue, wotéco anoutel TN yeron emniéov 9 DSP. Télog unoypaupileton e eneldy) OAec ot
UTIOAOYIOTIXES LOVEDBES XWVNTHC UTOBLGTOMAG elvan TATpwe BloyeTeupéveg, amoutelton 1 YeHoT Loviyo
plag yio xdde mpdén.

‘Onwe elvar avopevouevo, 1 cuvdetnor e£6dou elvar unebduvn yio Ty enfluon Twy 800 ATV
YeUUXOY TeoBAnudtwy tou opllovtar and tic E€iowaoeic 0.21, 0.22, ye anhf avixoatdotaor. Kdtwh

napouctdlovton xou oL dUo eELODOELC OE HOP®T TUVEXWY.

lin ot 31 lar st Z1 Y1
la2 32 laz 52 T2 Y2
laz laz Is3| |w3| = |y3 (0.29)
lag 54| |74 Ya
i lss| |25 | Y5 |
I (7 b |
la1 22 Y2 ba
ls1 l32 a3 ys| = |bs (0.30)
lar laz lag lag Ya by
[Is1 ls2 lss lsa Iss| |ys| |bs]

Katd o yvwotd, emhbovtoc mpodta Ty debtepn e&lowaon npoxintouyv oL mopoxdte 8o oxohoutieg

TPAEEWY UE OTOYO TOV UTOAOYIOHO TOV 8YVOOTWY TOPOUETEWY T;.

b1
- 0.31o
I (|
by — L
ys = 2L721Y1 (0.31B")
22
— Loy — L
vy = bs 31:Lyl 32Y2 (0.31y")
33
. by — Laiys —LL42y2 — Lazys (0.31%)
44
bs — Ls1yr — Lsays — Lszys — L
ys = 25 Lowys = Lsays = Losys = Loaya (0.31¢")
Lss
Y5 '
e Y5 0.32a
° T Ly (|
iy
gy = AT 2455 (0.328")
Laa
— L —L
g = Y3 LesTs — LaaXa (0.32y")
L33
— Losws — Loagws — L
oy = Y2 25%5 — Lo4®q — Lg3X3 (0.32%")
Lo
— Liszs — L — Ligzy — L
11

Me amhf mapathenon Twy mopandve eElotoewy elval gavepd twe xdde dpog apod uTohoYIoTEL,
yenouwlomoteltar otov oprdunty Tou enduevou dpou. Auth 1 xatdotaoy xatadexviel wla EupuTn o-
Auoido e€apthioewy mou meplopilel TNy TaybTNTA TNE cUVOAXC cuvdptnong. La xdde dpo y; N =3 M
ouyxexpévn e€dotnon opiletal and €vav tolhamhactacud, uia agalpeor xou plo Sialpeor. H aivoido
e€apthoewy Tou xoopllel TNy cuvohixy xotuc tépnor TS cuVETNoYG anotehelitar and 11 Blanpéoele,
8 oA ATAACIAOUO0E Xt 8 OPUUEECELS. LNUELOVETHL TS €NELWDY OAOL 0L LTOAOYLOTIXOL TUPNVES €-
tvan TAHewe doyeteupévol, éva avtiypopo xodevoe eEunnpetel oheg T mpdgec. Telwxd, ta oyeTnd

centroids Bploxovton ye TNV eXTEAEST) TWV ToEOXATE TEAEEWY.

Ty ,

e = —— 0.33
y 22s (0.33)
T3 ’

e = ——— 0.33

Yuvodilovtag, mapatneridnxe mwe 1 cuvdptnon eww6dou xodopilel TNV BIEXTOUPEWTIXOTNTA TOU
oLVOMXO0U UG THUNTOC Xa LVETKE 0 PLINGE (IT) Twv axdhoudwy cuvapthoewy emAéydnxe (cog e
autrc. H ouvohixd xaduo tépnor tou cuotiuatog xadopiletar and to dlpolopa twv empépous xodu-
oteprioewy. Tny yeyalbtepn € autdv Ty epgavilel 1 ouvdptnomn e€68ou Aoy w TN UEYIANC ahualdac
eZopTAoEwY oL euavileTon XoTd TNV ETUAUGT TV YEOUIXOY CUCTNUATOV UE ATAY AVTLXUTAO TOO.
Ye udde mepintwon, 1 enidoon tou FGF cuothuatoc neptopiletar and v yprion e Aptduntucic
Kwnthc Trodlaotohic.

33

0.5 AZ&ohdéynomn ApylteXToviX®Y

ot Ty a€lohGYNon TWY apYLTEXTOVIXWY XEVTRRIoUOTOC Tou meplypdpnxay elval anapaitntn 7
dieaywyr) evde ouvohou melpaudtwy. Ewbwdtepa, ypnowonoidnxoay teyvntd Sedouéva aoTERLLY
(clusters) pe otoéyo v ovyxplon twv FPGA vlorolfioenmy pe toug avtiotolyoug ahyopituouc oto
roYlouxo, e Tpog TNy axplBelo xat tov ypdvo extéhreons. Emmpbdodeta eréyydnxe n xatovdiwon
nopwy 010 FPGA and xdie apyitextovixy.

‘Ol T telpdiporta o eninedo Aoyloxol npayuatonoidnxay pe yerion e MATLAB 2016A oe
ounvpnvo Intel Core i5 2.6 GHz eneepyaot. T v avdntun twv VHDL xou C4+4 xuxAoudtwy
070 VMO yenowonofuinxay o epyaieio Xilinx Vivado Design Suite 2019.1 xou Xilinx Vivado HLS
2019.1 avtiotowya. ‘Ola tor povtéra vAomodnxay oto Xilinx ZYNQ-7020 SoC nou evowuatehvetol
otnv Avamtulion Ihaxéta ZedBoard.

To teyynt6 chvoho dedouévwy dnuovpyRinxe ue yeron ploc I'naovooiavnc PSF nou avamtydnxe
oe ouvepyooio ye tny Infinite Orbits. Ou napduetpol g cuvdptnone emhéydnxay ye tétolov tpdno
wote vo dnutoupyel clusters, ota onola dhol ot ahydpriyol Topovcldlouy xahd anoteréopota, Xodhe
otoyog eivon 1 obyxplor petagd twv vlornoloewy ot software xau hardware xau oyt 1 a&lohdynon
v By Twv aryopiduwy. To teyvntd dedoyéva anotehobvton and tela dlagopetixd cbvora 10000
delypdtov, Bdon twv onolwv Yo mapovslacTody To TeElpaaTiXd anoteAéopata. To mpwTo chvoho
neptéyel clusters yeyédoug 3x3, 1o deltepo clusters peyédouc 5x5 xou To Tplto MEPLyEL clusters xau

Twv 600 TOTWVY.

0.5.1 AZ&woAoéynon Axpifciag

‘Eva obvnieg yelovéxtnua xatd tnv vlonoinon oalyoplduwy oto vAd elvon 1 anwieio oaxplBelag.
T Ty extéheon v mewpopdtoy axpifBetac yenotwonoinxe n petpw tne Euxdeldeiac Anéotaone
HETOEY TV ®EVTpwV Tou UToAOY(LovTon 610 AoYIoWXS (Ts, Ys) XL TWY AVTIOTOLY WY EXTIWHOEWY OTO

ulMx6 (xp, yr). O tOmoc e peTpinic opdlpotoc diveton xdtwih.

e=/(zn — o) + (yn — ys)? (0.34)
To péoo o@dhua xevtpaplopatog UETAED hoYIoWXOU Xal LAXOU Yo xdde chvoho dedopévev diveton
otov Iivoaxa 0.3.

ITivaxag 0.3: Méoo ogdhuo xevipoplopatos Letold LAXOU xot hoylowxol oe xdde olvoho JESOUEVLV.

Acdopéva
AXyoéervOpog 3x3 5x5 Meuwtd
CcG 0.047814 | 0.048162 | 0.047990
FGF 0.000004 | 0.000020 | 0.000005

Etvor mpogavég mwg 1 axpifela oe subpixel eninedo cuvddel e Tic oyedlaoTixée emAoYEC TOL €YOLY
yivel. Agevde, 1o opdhua otny mepintwon tou FGF alydprduou eivon auentéo Aoyw tng uodétiong
e apLiuNTIXAC XIVNTAHC LTOBLHGTOATG amAng oxeifelag. Agetépou, To opdiua tng CG viomonong oo
FPGA eivar auénuévo Aoyw tng anholotepne aptduntixic otadeprc unodiactoric. Tapdha autd, n
xerion 4 Suadxdy Pneiwy Yo Ty avamapdotacy Tou uépoug dedldtepa TN LTodlaoToANC e€acpaiilel
Twe o€ x80e TEpInTWoT 1 andxAoT] PETAED TV UAOTOCE®Y GE LAXG Xt hoylopixd dev Yo Eemepvd
ta 0.1 pixels. Edv ypnowonowotvtay nepioadtepa duadixd ¢nela, to opdhua otov Ilivoxa 0.3 da

HELWVOTAY.

34

IMopoxdtes divovtor tar amoteréopato Onme TeoxUTTOLY Yot xdde alybderduo oto software xou oto

hardware yio 4 tuyalo detypoato and 10 oOvolo dedouévwy.

ITivaxag 0.4: Evtomouéva xévipo and tig vhomotfoeic Tou alydptduouv CG 010 hoylouixd ot 6To UAXO.

Ipaypatixr TR CG SW CG HW
X Y X Y X Y
210.593130 | 899.672780 || 210.846683 | 899.876934 || 210.8125 | 899.875
945.137136 | 729.932595 || 945.352640 | 729.947333 || 945.3125 | 729.9375
135.510762 | 829.973985 || 135.816945 | 829.990032 || 135.8125 | 829.937
753.193434 | 791.639461 || 753.391853 | 791.720189 753.375 | 791.6875

ITivaxag 0.5: Evtoniopéva xévtpa and tic vhonooels tou alydptduou FGF oto hoyiowuxd xou 610 vAMxX6.

IMpaypatixh Tiwn FGF SW FGF HW
X Y X Y X Y
210.593130 | 899.672780 || 210.592542 | 899.673227 || 210.592539 | 899.673221
945.137136 | 729.932595 || 945.137295 | 729.932511 || 945.137295 | 729.932514
135.510762 | 829.973985 || 135.511087 | 829.973674 || 135.511093 | 829.973673
753.193434 | 791.639461 753.193277 | 791.639544 || 753.193274 | 791.639544

Eivar mpogavég mwg o odydpuduoc FGE elvou xuplapyog 6cov agopd tnv oxp{Beta.

potveton 6Tt 0 alyopriuog CG aduvatel vo IXavVOTOAoEL TIG TPOodLorypaéS axoua xou oTo software
xade mopovotdlel opdipa peyokitepo and 0.1 pixels ot teyvntd Sedopéva. Autd onuaivel tog
oxbue xou 1 EmAoYY| TEpLooOTER®Y dUadIXWY YNplwy Yiol TNV avanapdoTooy ToU XAACUATIX0) UEPOUS
Twv centroids oto VAS, Yo 0dnyoloe oe un ixavoromuxt| axpifeta. Avtidétwe, mpoteivetan 1 emhoyn
evOg XaTahANhOTEROL aptdpol and xhaouatxd Ynpio uévo otav elvan Siordéoiua mporydortind dedouéva

Ao TEPLLY, GOTE va elvan duvath 1 a€lohdynon tne mpaypatixic enidoong tou CG akyodpripou.

0.5.2 A&wloynon Anddoong

To mo onpavtixd melpopa Tou ToEdVTOC epeLVNTXXOD €pYO0U, aPopd TNV PETENOT TOu YPedVou e-
xtéheong xdie vhonoinong twv ahyoplduwy, ue oxomd Ty alohdynon e emhoyhg avdntuéng Toug
oe FPGA. Xtoug Ilivaxeg 0.6, 0.7 nopoucidleton yio cOYXELoN TwV SLPORETIXDY VAOTIOLGEWY OTO

VA0, 6oV aopd TIC YeTEéC Tou latency, Tou throughput xou Tou critical path.

ITivaxoag 0.6: XOyxplon yetald twv FPGA vlonomoewy (1).

Movtélo Latency | Initiation Interval | Critical Path (ns)
CG VHDL || N?+442 N2 +3 3.141
CG HLS N?+37 N2 +6 3.942
FGF 8N? 4 643 8N? + 37 5.921

T va glvon Buvath) 1 ELXOAOTERT] XATAVONOY TV ATOTEAECUAT®WY To latency xor To Initiation
Interval éyouv exgpoactel w¢ cuvaptAoelc Tou aptipol Twv pixels N. ‘Onwg elvon avouevouevo, ova-

Qopxd pe auTéc Tic 800 UETELXES TapaTNEE(TOL TAPOUOLY CUUTERLPOEE omd T 800 LAonotioel; Tou CG

35

ITivaxag 0.7: Zoyxpon petadd twv FPGA vionowoewy (2).

Movtélo Mévyiotn Juyvotnta (MHz) | Max Throughput (million clusters/s) | Enwtdyuvon (x)

CG VHDL 320 18 200
CG HLS 250 12 160
FGF 170 1 25

oalyoprduou. Qotoco 1 CH+4 apyitextovixny| nopouctdlel uetwpévn xaduotépnon Aoyw g Yerong
tou toyvpol Dataflow directive, to onolo dnulovpyel autdpata TNy dlemopr) HETOEY TV CUVOVTHOEWY,
og oLVBLACUOS UE TNV YpNom VoS Yeryopou dlanpétn mou exxwvel wla dialpeon avd xUxho poloyloU.
Avudétwg, oty nepintwon e RTL neprypagric ¥tov anapaitnt 1 yeron evéc IP Sioupétn pe youn-
A6tepo pUINO xS xou 1 VhoToinoT eviiduecwy buffers yia xaduo tépnon e yetapopds dedouévwy.
Avtiotoiya, to VHDL povtélo napouctdlel audnuévn Slexmoupemtixdtnta xadoe 1 Youniod emnédou
neprypar) oto RTL emitpénet mo Aentouepy| wovieronolnoy tng emtduunthc CUUTERLPORAC.

H mo onpovte Stopopd peta€d twy 800 WoVTEAWY a@opd TNy u€ylotn cuyvotnta Asttouvpyiag. To
Yeyovde we To auEnuévo xplotwo wovordtt tov C++ LovTéAou TEoXVTTEL GTO ECWTERLXO TOU BLoupéT,
o onolog vhomotelton awtépata and tov HLS petayAonttiot) xa 8ev elvon duvaty 1 tponomoinoy tou,
anodeviel Twe 1 anddoor neptopileton and to Blo To gpyolelo.

Emuniéov napatnpeeiton nwg n FGF apyttextovin elvon onpovtind mo apyr) and to CG cuo thpata,
%dTL TO OTOl0 AMOPEEEL ATd TNV ONUAVTIXE UPNASTERT TOAUTAOXOTNTA TOU CUYXEXPWUEVOL ahyoplluou.
‘Onwe éxer avohudel extevie, t6co to throughput éco xou to latency meplopilovton and Tic UTONO-
YIOTIXES HOVEdES xivNTHG uTodlao Tohrc. Axdua, oluguwva ue Tic avagopés tou HLS epyaheiov, o
xplowo povomdtt dnuovpyeiton Adyw auTdy TwV povddny. MaloTa, To Yeyovdg nwe anotelsiton xatd
82% and xaduotépnom dacuvdécenwv (net delay) anodewviel nwe N wéyloTtn cuvydtnta Aettoupylac
neploplleton and TV LPNAY XATAVIAWOT) TOPWY oL oPelieTar otV LPNAY Tohuroroxdnta. Tlopdia
T, HETE amd ol e€avThnTixt] e€epelivnom TOL OYEBAOTIXOU XDPOU ATOSELYTNXE WS 1) CUYXEXPLLEVT,
apyrtextoviny ebvon 1 BérTiotn duvarh xotd Ty HLS mepuypopy.

Ytov Ilivaxo 0.8 moapovotdletar 0 GUVOAXOS YEOVOC exTEAEOTC XddE PLOVTENOL.

ITivaxag 0.8: Tuvohxdc yedvoc extéeone xdde vhomoinong oe deutepdiento.

Acsdopéva || CG SW | FGF SW || CG VHDL | CG HLS | FGF HW
33 0.126010 0.217139 0.000377 0.000591 0.006457

585 0.125483 0.269169 0.000880 0.001221 0.014036
Mi&ed 0.151671 0.234976 0.000628 0.000906 0.010237

Aopfdvovtac unody ta apriuntnd dedopéva and toug Iivaxee 0.7, 0.8 elvan mpogavég nwg ebvou
duvat 1 emttdyuvor tou alyopituov CG xatd 2 téeic peyédoue, evdr o FGFE alydpripog emtoydveton
xatd 25 gopéc. Ilpogavie n emtdyuvorn tou FGE olyderduou nepropileton and tnv moiumhoxdtnto
Tou, 1 omnofo avuxatonteiletan ot aunuévn {RTnom TopwY xo 00NYEel GE PELWUEVT DIEXTOUEEWTIXOTNTA
xou auEnuévo xploo povondtt. Me dedopévo ydhiota nwe 10 80% autol anoteeiton omd xaduotépnon
dlaouvdEoewy elva pavepd mwe mpoxidnTel £va TEdBANua cuppoenone oto FPGA, 1 onola ennpedlel
Gueca Ty duvaty emtdyuvor. e xdie neplntwor, unopel vo loyvetoTel xavelc TwC 1) TEOTEWVOUEYT
HOUVOTOUOL OPYLTEXTOVIXY) TOPOUGCIALEL €VOl GNUAVTIXG TAEOVEXTNUA ToyUTNTAS, DLUTNEWVTAS UAANoTA

PN axelBeta, ye amotéheopor vo etvol XaTAANAT Yol XplOWES EPUPUOYES TIROYUOTIXOU YEdVOU.

36

0.5.3 A&uwloéynon Katavdiwong Ilopwy

Yrov Iivaxa 0.9 magouoidletar 1 xatavdinon tépwy oto FPGA xdle vhonoinone. e mopévieon

Blvovtan oL cuvoixol mdpot mou eivar Stardéotuol oto ZYNQ-7020 SoC.

ITivaxag 0.9: Koatavdhwon tépwv oto FPGA.

Movtéro | LUT (53200) FF (106400) DSP (220) BRAM (140)
CG VHDL 255 466 3 2
CG HLS 1362 1466 2 0
FGF 8661 13761 55 0

Mia eviuagpépovoa tapathenon etvor nwg o0 C++ povtého tou CG akydprdpou amoutel neplocde-
poug Aoyixolg mépoug cuyxpettixd ue o VHDL povtého. Autéd umopel va e&nyniel and to yeyovoce
e to Teheutaio yenotwonotel 2 BRAMs yia v uhonoinon twv FIFO xavahidyv, evédd otny nepinto-
on e HLS npocéyyiong autd vhonotolvto awtouata pe Shift Register LUTs. Aopfdvovtog unddy
1600 toug auENuévous thpoug 660 xau To AWENUEVO xplowo povondtt tou C++ yovtélou, cuvdyetal

T0 oupunépacya nwe 1) HLS mpocéyyion dev odnyel oe BéATioto wbxhwpa.

Avayevépeva, n FGE vhonoinon amoutel onuavtixd nepiocotepoug népoug 610 FPGA xdti mou
anoppéel and TNV cophe peyahitepn toAvthoxdtnta te. A&ilel va onueiwdel tog o peydhog aprdude
ané DSP ogeiheton otov yeydho aprdud mapdhhnhwy mpdéewy Tou apopoly To SedoEva ELGOBOU XAl
otV Xenon optdunTixhc XvnThAg LTOBLAGTOATC.

Téhog, ebvan onpoavtind va eheyydel n npaypatiny tonodétnomn xdide xuxhduatoc oto FPGA dmwc

dtvetan and to Vivado. O ypoc mou xatohapfdver xdte viomoinoy gaiveton oto Lyfuo 0.12.

(') CG VHDL (B") CG HLS (v') FGF

IxAra 0.12: Zodvodn tne tonodétnone xde xuxhdpatoc oto FPGA.

O avgnuévog ydpeoc mou amoutelton yioo 0 CH++ wOxhoyo etvar plor oxduor EVBeEn TV Blopoptv
HETAED TV 800 TEOYEUUUATIOTIXWY Uedodwy, xadde n VHDL uropel va anautel tov yeyoldtepo
oyedlaotxd ypdvo oahhd divel tn Bértiotn vhomoinon oto FPGA. Erniong, n tonodétnon tou FGF
povtéhou oto FPGA e&nyel tov Adyo yio Tov onolo 1 xaductépnon dSlacuvdécewy anotelel Tov xUplo
nopdyovta Tou xpiolpou povonatiol xat TeEAd meplopilel TNV anddoon TOU GUOTAUATOS. XUVOAXA,
TOTEVETAL TS 1 TEooEY Lot tou tpolAfpatog e HLS dev umopel va 8doel xahitepa anoteréouara,
xdtL o omolo mdavdde va elvon Buvatdy edv o ahyoptiuoc FGE neprypagel oe eninedo RTL ye VHDL.

37

0.6 Xvunepdopota

0.6.1 X0vodn

Yty mapodoa Simhwpatixnd epyascia tagoustdleton 1 emtdyuvor 800 alyoplduwy xevipapliopatog
oe plo mhatpdpuo FPGA, pe oxond v yerion touc oe olUyypoves daotnuixés egapuoyésc. Kade uv-
homoinon nopovoidlel SwpopeTtixd mheovexThuata ot TeAxd TeoxinTel évag cuuPiBacpde (trade-off)
ueTo ¥ axpifetag xoun oy TNTOG, 0 onolog avtxatonTeiletal TANPKC oTIC anaTHoels Topwy Tou FPGA.
O aryoprtuog Kévtpou Bapltnrag, Adyw tne amhétntag tou, emitoyvinxe xatd 2 té€elg yeyédoug
oAAG 1 axp{Beta Tou amid neplopiotnxe evtoc 0.1 pixels oe oyéon pe 1o software povtého. Avudétwe,
o mo noAumAoxog alydprduog I'efyopou I'vaoucoiavol Tapidopatog emtoydvinxe xatd 25 @opéc,
dlatnewvTog TopdAAnAa detotn axplBela. Autr n ulomnoinon oto FPGA omotehel plo npewtotunn op-
YLTEXTOVIXY TIoL UTopel va yenotwomoindel oo mAaiota tng Bladxactac evioniogol Ao TERLWY, 1) ontola
elvon Lotng onuootiog yio Ty enaxplfn xou Y1 Yopo TpoCavaTOMGUS TV S0pUPORKY GTO BLAC TN
AopBdvovtoc unédiv To yeyovoe mee 1 axpifelo evoc aviyveutr oo teptdy xodopileton xuping omd Ty
dladixacior xevtpaplopatog, T0 TEOTEWOUEVO UoVTENO eEac@ohilel mwg TS cuYXEXEWEVES TPolTo-
Véoeic (m.y. yprion xduepas VPNAAC avdhuone xou txavoroTtixd clustering) etvon Suvath 1 aviyvevon
TOU XEVTPOU TWV OCTEPLOV PE apeANTED opdipa. TTapdhinia etvar xotdAAnio yio Aettoupyio udpmniod
puduol xadde uropel va enegepyactel 10000 ot nepinou 10 ms.

Emnpécldeta, oe autd to gpeuvnuind €pyo peietdvton oe Bddog ol pédodol mpoypaUudTionon
FPGA e ypriony VHDL xau C+4. Expetadhevtrixaue ta TASOVEXTNHA TNG EUXOAiog xou Tng VPnAnc
napay wyxoTNTog ou Yapaxtnellouv to HLS yia v mpaypotononon e€aviinuxic e€epebivnone tou
Y WEOoUL oyediaone xou exTETOMEVOU EAEYYOU. Aev Yo fTay aAAGS duvath 1 avdnTuéy xou enaideuct
TELOV LOVTEAWY GE TG0 GOVTONO Yeovixd dudotnua. Ewbwd n VHDL neptypagy) tou FGFE ahybprduou
Yo Aoy Wiaitepa amantnTer. 20Ttd00, 1 TOLOTNTA TWV anoTteAeoudTny Tou napéyel 1} RTL povteho-
noinom etvon adlaupioBriTnTn. Axdua xou oty nepintwon tou oAl aniob CG ahyderdpou, to HLS
dev fitav oc Véom va netdyel) BéATioTn amddoon mou nopatneeitan 6to VHDL povtého, 6cov a-
QoA TNV UEYLO TN CUYVOTNTA AELTOVEYIAC XU TNV XATAVIAWoY Topwy. Téhog, moTebetar TKS axoua
neplocdTeEY amodoon unopet va e€oydel and tov FGFE ahydprduo edv uhonoinet pe yprion tne VHDL.

0.6.2 MeAhovtixry Epyaocio

Io var elvon SuVOTH 1) TANIENC XATAVONOT TWV TAEOVEXTNUATOV TNG TEOTEWOUEVNS TEWTOTUTNG
AEYLTEXTOVIXAG, Elval amapaltnTn 1 EVOWUATWOT NS O €Vo TATREC CUCTNUO AVEYVEUOTC ACTERLMV.
IBovind, otoyebouue 0TV YENOWOTOMOY) TOU CUYXEXELIEVOU UOVTEAOU OE MEANOVTIXEC DAOTNULXES
anootoléc e Infinite Orbits.

Enlong Yewpelton Wloitepa ypriowog o éAeyyoc tng anddoone OAWY TwV UNOTIOLACEWY GE TEALY (o
Txég emdveg aoteploy. To xouvotépo wovtého avouévetar vo embellel avtioTolya dplotn axpifeia.
Qo 1600 elvan eVBLaPEREOVY 0 EAeYy0¢ TNE cLUUTEELPOoEAS TwV CG uovTéhwy, xadde dev xatdpepay va ma-
poucLdcoLY afloonuelwTa anoTehéouato oTa TEXVNTE Bedopéva. Xe mepintwaon mov o olyoprduoc CG
emdel€el ixavomounTixy cuuneplpopd, tpotelvetal 1 dle€aywyr evog o evBehey) EAEYYOU, OYETXE UE
10 avaryxolo TAdog BuadixwyY PNElny yia TNV Avandpdo THoT TOU XAACUTIX0U pépouc Twv centroids,
pe otdyo v eniteudn xahltepne axpifelac oto vhd. Téhoc, n VHDL meprypopr tou FGE oh-
yopLriuou miavadg va UTopéoel var SWoEL tiot XAAUTERY) EXGVOL AVOPOPXE UE TNV PEYLOTY) AmOB0CY) TOU
umopel vo e€oydel. Ilapodha autd, OTwe TovioTNXE, 1 ATOB0CT TNE TEOTEWOUEVNG JEYLTEXTOVIXTS Elvol
IXOVOTIOLNTIXT] Xl GUVETKE unopel ebxola va yenotdonoiniel oe olyyEOVOUC OVLYVEUTEC AOTEQLEY,

Tou onualvel Twe plo Tepaitépw emTdyUVoT Sev Yo 0dnYoLoE GE oNUAVTING XEEDT).

38

Chapter 1

Introduction

Since the launch of the first satellite, Sputnik 1 in 1957, a lot has changed in the field of space
technologies. In the recent decades space exploration has seen significant progress and an extensive
space infrastructure has been developed. Hundreds of daily services rely on this infrastructure, such
as weather forecasting, satellite television and navigation systems [8]. As computer, electronics and
material sciences advance, a growing number of institutes and companies are attracted to the field

of space exploitation.

1.1 Satellites

1.1.1 Applications

The most fundamental element of the established space infrastructure are artificial satellites.
These vehicles orbit Earth at different heights, speeds and along different paths and can be used in
a variety of applications. One of the most common use is for communications purposes. Typically,
communications satellites cover large areas of the Earth’s surface and are able to connect remote
regions without visual contact, in cases where a terrestrial connection would be unaffordable or
impossible. A significant number of sciences like astronomy and earth science are highly benefited
by satellites, as they provide land survey data or can be used as space telescopes. Although an
increasing number of space vehicles is constantly launched to observe objects of the outer space,
the most common type of orbit is the geocentric, which is divided in the orbits shown in Figure
1.1.

Medium Earth Orbit

Low Earth Orbit

High Earth Orbit

Figure 1.1: Satellite orbits in altitude classification.

Geostationary Orbit (GEO) circles Earth along equator with an altitude of 35,736 km and has

a high commercial and strategic value. Satellites in this orbit travel with exactly the same rate as

41

Earth and as a result from a terrestrial observer they look like fixed points in the sky, which makes
them useful for reliable broadcasting applications. The Low Earth Orbit (LEO) is the closest orbit
to Earth’s surface, ranges in altitude from 160 - 2,000 km and nearly 7,500 satellites are located
there. Due to this proximity, this orbit can be used for high resolution satellite imaging and is
expected to play an important role to the terrestrial 5G networks [9]. Unlike the GEO case, LEO
satellites are not obliged to always follow a specific path around Earth, their plane can be tilted.
However, their relatively low altitude leads to a decreased Field Of View (FOV) and therefore
in order to increase coverage, groups of satellites are launched together and form a net around
Earth, called constellation. Medium Earth Orbit (MEO) lies between LEO and GEO, providing

navigation services such as the Global Positioning System (GPS).

1.1.2 Subsystems

Independently of space mission and selected orbit, each satellite includes some basic subsystems
which cooperate in order to achieve functionality and reliability. A simplified schematic of these

subsystems is given in Figure 1.2.

Attitude Determination &

Control
Propulsion General Control Telemetry & Command
Power Temperature Control

Figure 1.2: Abstract diagram of the most common satellite subsystems.

The desired function of a satellite is usually achieved using information collectors (e.g., cameras,
particle detectors) to gather data, and communications equipment (e.g., antennas, repeaters) to
transmit them to terrestrial stations. Gravitational forces due to sun’s and moon’s gravity tend to
disrupt satellites’ trajectories making altitude determination critical in any space mission, not only
for navigation and orbit preservation purposes but also because the service’s quality depends on it.
For example, highly pointing antennas and star photo shooting can’t tolerate variations regarding
the satellite’s position or velocity. Propulsion System includes thrusters that fire chemical gases and
together with the Attitude Determination and Control System (ADCS) creates a closed loop that
determines the necessary manoeuvres in any given moment. The temperature difference between
the side of the satellite which is seen by the sun and the other one that isn’t can be significant
and such gradients must be monitored and controlled by the Temperature Control System as
they could critically damage the functionality of the vehicle. Power System consists of a primary
power generator (solar cells) that convert solar to electrical energy, a secondary power generation
(rechargeable accumulator) that provides the required energy when there is no visual contact with
the sun, and a supplement line in order to distribute it among the different parts of the satellite.
Furthermore the Telemetry, Tracking & Command System monitors the other subsystems and
transmits relevant data to the General Control System, while at the same time it determines the

orbit’s parameters and provides terrestrial stations with satellite tracing data.

42

1.1.3 Trends

1.1.3.1 Motivation

In the last decade, there has been a huge advancement of electronics and computer science.
One of the many fields that has been strongly affected is space technology. The decreasing physical
size of hardware imposes stricter constraints on available performance (e.g., smaller solar panels
limit the ability of power collection) and subsequently better solutions should be found. A typical
example are the CubeSats [10], whose low cost feature led to their extensive utilization in LEO
applications. The increasing performance and reliability of processing systems, allow more data
and more complex software to be exploited, while the risk of damage due to space radiation is
minimized. As a result the limits of space exploitation are pushed even further and a bunch of
highly innovative technologies are constantly made available. Apart from the terrestrial cases, that
have been briefly mentioned, the modern trend is to provide services to the already in-orbit space
assets. Considering the fact that almost 1,000 satellites are launched every year [11], it is easily
understood why immediate and future markets with a value over $10B are available [12].

This thesis was developed in collaboration with Infinite Orbits, a company that utilizes the most
innovative technologies in Space Robotics in order to successfully provide an arsenal of in-orbit
services. These trending services can be divided in docking and non-docking and are described

next.

1.1.3.2 Services

Two of the most important non-docking services are space-based space surveillance [13] and
in-orbit inspection [14]. The concept of both is to use an inspector-satellite in order to observe
and estimate with high precision the orbits of space objects, such as other satellites, asteroids and
debris.

The game-changing service however is life extension which requires rendezvous and docking
with extreme accuracy and safety [15]. Docking is the mechanical process of joining one space
module (i.e., satellite) to another one and is accomplished with robotic assistance. The process
that precedes docking, is called rendezvouz and its goal is to firstly arrive at the same orbit and
then approach the target satellite. Life extension service has proven to be a very challenging case of
rendezvous and docking due to the non-cooperative nature of the aimed satellite, the risks involved
and the characteristics of the target orbit (GEO).

Every satellite has a finite lifetime that depends on the amount of fuel it can carry. When
they run out of fuel, they retire even though they may be fully functional in the scope they serve,
and must be replaced by a new vehicle. The estimated lifetime of a GEO satellite is 15 years.
Considering the complexity of these satellites and the huge construction ($200M) and operation
costs ($20M/year) it is understood that this situation could be characterized as a massive waste
of technological capabilities and money. The basic concept of the life extension service is to use a
small satellite that can be docked onto a satellite, that has retired or reaches the end of its lifetime,
in order to provide an alternative propulsion system [16].

Even though satellite collision accidents are extremely rare, more than 27,000 pieces of orbital
debris, also called “space junk”, threaten human spaceflight and robotic missions. This kind of
debris varies in size and consists of non-functional spacecrafts, abandoned launch vehicle stages,
mission-related debris and fragmentation debris. The process of regenerating an already retired
satellite can be very useful in means of debris active removal. Similar docking services include

debris avoidance [17] and satellite repair or maintenance.

43

1.1.3.3 Key Technology: Autonomous Navigation

In order for such complex applications to be realized, a robust, autonomous and real time
operating satellite navigation system is required. The high cost of the involved satellites means
that mistakes cannot be tolerated, making the usage of space communications channel, which
is characterized by high latency and a potential loss of connection due to fading, unacceptable.
Therefore, ”"smart” software that could process a wide variety of high rate information is required.
Generally, the autonomous navigation process is divided into two categories, near range and far
range navigation. The former, which is out of the scope of this research, is concerned with pose
(position and altitude) determination of target object for inspection and docking, in distances
lower than 250 meters. In this thesis, high accuracy and real time performance solutions to the

problem of far range navigation are proposed.

1.2 Star Trackers

Far range navigation refers to the relative orbit estimation with respect to other space objects
(i.e., satellites) in order to perform autonomous rendezvous. Today this process can start with an
initial separation distance of up to 2,000 km. A fundamental element of autonomous navigation
is the satellite attitude information, which must be constantly available and, as mentioned, is
extracted through the Attitude Determination & Control System. In the past, ADCS has used
various types of attitude sensors like sun sensors, horizon sensors, RF sensors or magnetometers
(coils). However, it has been proven that the demand for high accuracy in modern applications

can only be achieved using star trackers [18].

1.2.1 Operation & Layout

Star Trackers could be considered as a modern take to ancient technology, as they are based on
star observation in order to determine satellite’s position in the celestial sphere, much like travelers
and sailors did for thousands of years. More specifically these instruments, exploiting the fact that
astronomy has provided the positions of many stars with a high degree of accuracy, capture night
sky images and by analyzing the placement of the surrounding stars using software algorithms,
can determine the exact location and attitude of the satellite. This process is valid and accurate
due to the fact that for every pair of bright stars in the sky there is a unique angular separation

between them [19]. A typical star tracker layout is described next.

\ SoC FPGA
CPU Attitude Control System
FPGA

Figure 1.3: A simplified illustration of a typical star tracker layout.

[@o=o |

Star Trackers are radiation-hardened instruments that consist of an electronic camera and the
associated processing electronics, providing a vision-based navigation. Earlier designs used Charge

Coupled Devices that could capture a limited number of stars, while extensive external processing

44

was required to transform data from the CCD referenced to inertial referenced coordinates, which
usually led to poor performance. State-of-the-art star trackers [20] integrate Complementary Metal
Oxide Semiconductor (CMOS) technology in camera sensor in order to provide higher resolution
at lower costs [21].

Then the input video stream is driven to the processing unit, where image processing is per-
formed in order to detect the stars and pattern recognition algorithms are used to map them to
known constellations and positions. Finally the output attitudes, which are referenced directly to
the inertial space, are used by the rest of ADCS for the appropriate actions. During this operation
the amount of pixels provided by the input sensor and need to be processed is huge, resulting in a
high computational task. Considering the need for real time operation, the execution of the whole
process in a conventional processor is inefficient, making the use of System-on-Chip (SoC) which
integrates also a Field Programmable Gate Array (FPGA) necessary. In a typical configuration,
the FPGA would directly connect to the image sensor through a high speed stream protocol in
order to perform image processing and then the high performance processor would be used to
perform attitude determination.

This kind of designs are fully autonomous, allow high speed batch image processing and provide
very accurate results, while the total consumed power is kept low due to the characteristics of
modern SoCs.

It should be highlighted that in space domain, FPGAs are used to improve the performance
of space applications, as they outperform the conventional general-purpose processors (e.g., the
radiation-hardened CPUs that have been used in space missions). In particular, the space com-
munity employs both space-grade [22, 23, 24] and Commercial Off-The-Shelf (COTS) [25, 26, 27]
FPGAs (e.g., Zynq). Besides accelerating computationally intensive DSP functions, FPGAs are
also used as framing processors in co-processing architectures [28, 29, 30], where they perform tasks

such as I/O handling, data transcoding, and data compression.

Operation Modes

In modern systems there are two different modes of operation, as Liebe [31] suggests. Lost In
Space (LIS) is a fully autonomous mode in which the whole input frames are analyzed. Tracking
Mode succeeds LIS phase and uses the information previously obtained in order to increase the
processing rate. This is achieved by adopting a windowing technique which allows limited search
in smaller areas around the previously found stars. Although tracking mode is extensively used
today, the critical phase which defines a star tracker’s maximum operation rate is LIS and therefore
only this case is discussed in this thesis.

1.2.2 Processing Flow

Given a two-dimensional image which contains only a small portion of the night sky, the problem
is to determine the satellite’s exact attitude in the inertial space. The solution to this problem can
be found using the chain of blocks appearing in Figure 1.4.

Initially night sky images are captured, forming a video input stream. Due to the non-ideality
of the camera’s lens, each star in an image is blurred, creating a bright region which covers more
than one pixel. The size of this region depends on various sensor’s characteristics such as aperture
size and focus setting. A zoomed-in image of such a blurred star is shown in Figure 1.5.

Even if one can intuitively think that this effect leads to a drop in accuracy, this is not the
case. If an ideal sensor could be used, the captured star would be limited inside a single pixel.

However, since the minimum reference unit in image processing is one pixel, the accuracy would be

45

FPGA CPU

Star Detection Star Identification

Video Frames Clustering —e Centroiding

Attitude Control System

Star Catalog

Figure 1.4: Star tracker’s processing pipeline.

Figure 1.5: A bright region over a number of pixels represents a real star in a zoomed-in night sky photo.

Image taken from von Wielligh [1].

also limited to one pixel. In reality the observed blurring spreads the underlying information over
several pixels making the estimation of a star’s center with subpixel accuracy possible. Therefore
in real applications, depending on the anticipated star’s intensity, lens is purposely defocused in

order to typically create regions of 3x3 or 5x5 pixels, which are also called clusters (of stars).

1.2.2.1 Clustering

The first of the three processes shown in Figure 1.5, called clustering, is responsible for distin-
guishing the bright regions from the rest of the image and extracting the respective pixels. For
this purpose, in LIS mode the whole image is searched and each pixel’s intensity is compared to a
threshold, which determines if the pixel could belong in a cluster. When a set of neighboring pixels
is found, a desired region is detected. During this process, constraints over the allowed size and
shape of the expected clusters are established. For example the maximum and minimum number
of pixels are limited, while too many neighboring bright pixels may indicate invalid light sources
like planets or nearby debris and too small regions could represent noise effects. It should be also
mentioned that the threshold value can be pre-defined based on the application details or can be
dynamically adjusted and dependent on the accuracy results at the end of the described processing

pipeline.

1.2.2.2 Centroiding

The extracted clusters are then passed to the centroiding process, that aims to determine their
centers, which for the rest of this thesis will be called centroids. These two-dimensional centroids
(x- and y-axis) correspond to the real locations of stars on the image plane and are used later in
order to calculate the angular distances. During this phase, a suitable algorithm is applied to the
valid clusters in order to achieve centroid extraction with subpixel accuracy. In this work different

optimized approaches to this process are proposed.

46

1.2.2.3 Matching

The final task in the described flow is matching, during which the detected stars are matched
to known catalogue stars in order to understand satellite’s orientation. This process uses the most
complex algorithms that perform pattern recognition usually on the angular distances between the
celestial bodies. Today large catalogues that cover the entire sky, optimized for low power and
low computational demands are available, containing information for thousands of stars and star
separations. In literature there have been many suitable matching algorithms proposed [32], which
demonstrate different optimizations or extract different features. One should also notice that these
algorithms could reject certain stars as false stars, if no matches or matches with low confidence
are found, leading to error reduction. The results of this process could then be used by navigation

filters to estimate relative orbits and command the Control System to make the appropriate moves.

1.2.2.4 Process Integration

Clustering and centroiding tasks constitute the Star Detection phase. On the one hand, these
tasks process a large number of pixels, as clustering accesses entire frames and centroiding pro-
cesses multiple clusters, which makes both of them computationally intensive. On the other hand
matching process, which constitutes the Star Identification phase, operates on low dimensional
vectors and performs more complex calculations.

In state-of-the-art designs, this scenario is suitable for process partition and co-design, where
the computationally intensive tasks are developed on the FPGA system side, in order to be accel-
erated, and the more complex tasks on the processor side of the SoC, in order for software based
optimizations to be performed. Hardware optimizations of various centroiding algorithms are the

main concern of this research.

This kind of design decision removes the bottleneck of data processing and makes the time
needed for image capturing the critical factor, as far as update rates are concerned. More specifi-
cally, there is a period of time which is called integration (or exposure) time and is the time needed
for the sensor to be exposed to light, in order to provide stars with a desired level of brightness.
Longer exposure times lead to brighter stars but limit the star tracker’s update rate. Note that
the integration time is also dependant on other factors such as sensor’s sensitivity, lens’ aperture
and satellite’s speed. For example, in fast changing dynamic conditions (i.e., high slew rate) blur
effects tend to be more challenging and care should be taken regarding the exposure time and
processing algorithms [33].

In order for the described process chain to achieve real time performance, it is necessary that the
related tasks are interleaved. Ideally, while centroiding calculates a cluster’s centroids, clustering
is processing the next bright region of the image and the sensor has already started to integrate
the next frame. In this way, each process is free to execute on it’s own pace, limited only by the

availability of data in the intermediate channels (i.e., buffers).

Finally it should be highlighted that the assumptions that are made during the star detection
phase define the eventual performance of the overall design. For instance, approximations during
clustering regarding the allowed cluster’s shape and size could affect accuracy as well as processing
speed. Similarly, the centroiding algorithm could determine the level of robustness to noise, which
is a very important feature considering the noisy nature of space applications. Generally any error
in centroid detection is propagated down the algorithm pipeline and reduce the overall accuracy

of the star tracker.

47

1.2.3 Modern Designs

Second generation star trackers are capable of accuracies in the arcsecond range while update
rates are typically 0.5 to 10 Hz. Especially in high performance ADCS which are used in agile
micro- or nanosatellites and include a Control Moment Gyroscope (CMG) [34], the demands for
high update rates are even stricter.

As satellites have a limited lifetime dependent on energy resources, power consumption is also
a very important feature. Especially in smaller Cubesat compatible star trackers consumption is
in the order of 1W, while in larger communications satellites cases of 10W are very usual. The
trend towards smaller satellites demands instruments of decreased physical volume and mass.

When a commercial star tracker is to be chosen more characteristics should be taken into con-
sideration. Some of these characteristics are Field of View, maximum slew rate and star catalogue

size. A short list of state-of-the-art star trackers is displayed in Table 1.1.

Table 1.1: Modern Star Tracker Specifications

Model Name CT-2020 ASTRO APS ST400 ST-16RT2
Manufacturer Ball Aerospace Jena-Optronik AAC Clyde Space | Sinclair Interplanetary
Accuracy (arcsec) 1.5 <1 10 5

Update Rate (Hz) 10 16 5 2

Power (W) <38 <12 0.7 <05

Max Rate (deg/s) 8 <5 >1 <3

Mass (kg) 3 2 0.28 0.158
Volume (cm) 14.8 x 58.4 15.4 x 15.4 x 23.7 54x54x9.1 6.2x5.6x3.8

CT-2020 is the latest available star tracker of the HAST (High Accuracy Star Trackers) series
[35] designed by Ball Aerospace. It provides LIS accuracy in the order of 1.5 arcseconds, which
improves either if two units are equipped onboard or when operating in tracking mode. This high-
performance product provides a fast LIS update rate of 10 Hz, while full performance with moon
in FOV and with 15 degrees sun angle is also achievable.

ASTRO APS is one of the four hosted TDPs (Technology Demonstration Payloads) of ESA
(European Space Agency) currently carried on Alphasat, a mobile communications service space-
craft in GEO of Inmarsat, in order to validate in-orbit performance, robustness and lifetime and
enable its use on other space vehicles. It uses the most advanced radiation hard CMOS Active
Pixel Sensor detector technology for long-term missions in GEO, with a lifetime longer than 18
years. Optimized software algorithms are also used to identify and compensate for anomalies in
captured images. Update rates up to 32 Hz are available on demand, while sun up to 26 degrees
and earth up to 20 degrees in FOV are allowed.

Compared to the already described products, the ST400 is characterized by lower mass, lower
power, smaller physical size and is designed for usage on pico- and nanosatellite platforms. Optional
baffles in order to perform while sun is up to 40 degrees in FOV are available.

ST-16RT2 is the most power efficient case in the given table, a feature which comes at a price
of lower update rate. However, unlike the ST400 this update rate refers to LIS mode which is
the default processing mode for each frame, meaning that zero initial acquisition time is required.
Optional usage of baffles can provide sun avoidance up to 34 degrees in FOV.

It is important to mention that full performance is usually available only up to a specific

48

satellite slew rate. Above that threshold, lower accuracies are expected. The described products
are just a small portion of the modern second generation star trackers. A significant number of
companies and universities have developed custom implementations in the past years. Apparently
larger instruments designed for large satellites like CT-2020 and ASTRO APS outperform smaller
ones in most areas. However more compact star trackers cost less, consume less power and can be

used in the increasingly popular nanosatellite applications.

1.3 Project Objective

It can be easily realized by now that second generation star trackers are very complex systems
which require excellent integration and cooperation of the underlying systems and algorithms,
in order to achieve real time operation and high accuracy. Star Detection phase can be the
limiting factor regarding execution speed due to the computational intensive task of processing
large amounts of data, which indicates that much of the system optimization can be done in this
step.

The main objective of the project is to optimize the centroiding process on a SoC FPGA
platform for a given system configuration. This configuration is provided by Infinite Orbits and
combines a custom CMOS image sensor, a custom lens and the ZedBoard development board,
which hosts the Xilinx ZYNQ-7020 SoC. This custom design allows complete control over the
entire software-hardware pipeline and will be used in future space missions, led by Infinite Orbits.
The basic requirements that the total system needs to meet are the following:

e Real time performance of 1-2 frames per second

e Mean accuracy error of less than 3 arcseconds across boresight

In this thesis we propose two different optimized architectures implemented on the FPGA side
of the SoC, that perform fast and accurate centroid calculation in a pipelined fashion. In this way,
the system doesn’t need to wait the calculation of a cluster’s centroids to be completed before it
starts operating on the next cluster. The calculated centroids are then used by navigation filters
in order to perform efficient computation of relative orbits with accuracy error less than 1%. The
integration of the proposed architectures into the custom pipeline, allows the system to achieve
the desired performance.

As part of the research presented in this thesis, two different centroiding algorithms have
been used in order to create a baseline and a novel design. Comparisons between the algorithms
related to speed, accuracy and FPGA resources are present in this thesis. FPGA programming
methods with a Hardware Description Language or a High Level Language have been both used
during system development. More specifically, VHDL and C++ approaches will be introduced and
evaluated.

1.4 Thesis Outline

In Chapter 2 basic background knowledge necessary for the rest of this thesis and related work
will be discussed. Chapter 3 analyzes the considered centroiding algorithms and their performance,
while the whole development process is explained in Chapter 4. The evaluation of the proposed

designs is given in Chapter 5 and the final conclusions are found in Chapter 6.

49

Chapter 2

Background

2.1 Space Navigation

This section covers basic theory in space navigation.

2.1.1 Coordinate Systems

Throughout this project three different coordinate systems are used, while each of them provide
specific advantages when different approaches to the attitude determination problem are required.
The details and the relationships between these systems are explained next.

2.1.1.1 J2000 Earth Centered Inertial

Since the studying objects in this thesis are satellites and stars which revolve around Earth,
or alternatively around the center of the Earth, the choice of an Earth-centered coordinate system
can heavily simplify the equations of motion that describe the orbital motion of these objects. The
ease in calculations is even greater when the chosen frame is inertial, which means that it does
not accelerate (rotate) and it is fixed in space relative to the stars. Otherwise if an non-inertial
frame was chosen, the calculation of a relative velocity component would be necessary, making the
studied system more complex.

The most suitable frame for this application is the Earth Centered Inertial J2000, which is a
Cartesian coordinate system with its origin fixed at the center of the Earth. The fundamental plane
(x-y plane) is the equatorial plane and the principal axis (x-axis) points to the Vernal Equinox
direction. The term J2000 is used to define that the x-axis is aligned with the direction of the point
where the Earth’s equator intersected the Earth’s orbit plane at 12:00 on 1 January 2000. The
z-axis runs along the Earth’s rotational axis as it was at that time, pointing North (celestial North
Pole). Y-axis is rotated by 90° east on the equatorial plane with respect to x-axis and completes
the right handed orthogonal system.

Due to the great distances to Earth that stars have, for an observer on Earth or close to it
(i.e., on a satellite), they seem as they are equally far away and fixed on a sphere of arbitrary
or infinite radius. Consequently in order for a such distanced object’s position to be accurately
expressed a spherical coordinate system should be used. The typically used coordinates are right
ascension, denoted as «, and declination, denoted as §, which are the angles measured from the
Vernal Equinox and the equatorial plane respectively.

A very enlightening illustration of ECI frames is given in Figure 2.1.

o1

K
Satellite

Celestial north pole |Z

Celestial sphere

Earth's equatorial plane /|

Declination, &

Y

j

——Celestial equator

Intersection of equatorial
and ecliptic planes

Right ascension, a

X
Vernal equinox, y

Figure 2.1: Illustration of the Earth Centered Inertial frames. Image is taken from website with unknown
author [2].

2.1.1.2 TImage Plane & Sensor Body Coordinate Systems

The fundamental function of a camera sensor is to project information from the three-dimensional
world onto a two-dimensional image, which can be viewed in a monitor or on a printed paper. An
image is a two-dimensional pattern of brightness and is formed based on a geometric correspondence
between points in the scene (3D world) and points in the image [36]. In order to establish this
correspondence and explain how the projection is performed, two different coordinate systems are

introduced and illustrated in Figure 2.2.

(X.Y.Z)

* (0,8)
x

!

O

O

Figure 2.2: Illustration of the relationship between the image plane and the sensor body coordinate

systems. Image taken from Qian et al. [3].

An ideal pinhole camera is an abstract camera model, which describes a box with a small hole
in it [37] and it is often used in order to mathematically model the operation of the typical more
complex cameras. In a pinhole, each point in the image corresponds to a particular direction
defined by a ray from that point through the pinhole, exploiting the fact that light travels along
straight lines. Cameras use a lens in order to bend light waves into a narrow beam that produces
an image on the film. Thus the pinhole camera produces the same type of upside-down, reversed

image as a modern camera.

52

Figure 2.2 displays such a pinhole camera model. The optical axis is defined to be the perpen-
dicular from the camera center to the image plane and is also called lens boresight. A convenient
Cartesian coordinate system, is introduced with the origin at the camera center, denoted as O,
and the z-axis (principal axis) aligned with the optical axis, pointing towards the image. Fixing
the system origin at the sensor center simplifies the problem as the external parameters (position
and orientation of the camera) are known and don’t need calculation [38]. Apparently this system,
which is called sensor body coordinate system, is related to the camera viewpoint in 3D space and
can provide information about the objects being imaged.

As illustrated in Figure 2.2 the image plane is a two-dimensional coordinate system which is
aligned with the image sensor surface, represented by the points A, C and D. For digital images
the coordinates are expressed in pixels and in digital signal processing problems the system origin
is typically defined as the first pixel in the top-left corner of the sensor. For the rest of this project,
the adopted image coordinate system will follow this typical definition and the raster scan method
will be adopted for image transmission and processing purposes, as Figure 2.3 suggests. Note that
indexing starts from 0 in order to conform with the manner that an array is usually indexed in

computing systems.

X (or j) axis

y (or i) axis

m,1 m,n

Figure 2.3: Image Plane Coordinate System. Origin is the first pixel in the top-left corner the axes are

named z or j for columns and y or ¢ for rows. Red curved line shows the raster scan processing method.

2.1.1.3 Coordinate Transformation

The result of a centroiding algorithm is expressed in the 2D image plane coordinates, ideally
with subpixel accuracy. However, this result has no physical substance as the image plane itself is
used only for convenience. In order for the matching algorithm to match the calculated centroid
to a real star using the sky catalogue, information about the detected star’s real position in the
inertial space should be available. Although this research is only concerned with data processing
and centroid calculation, it is important to establish the correspondence between a star’s real
location and its centroid position in the captured image.

This correspondence is naturally derived from the image formation process itself. This process
can be divided in two different coordinate transformations. The first one is a rotational trans-

formation from the 3D ECI coordinate system to the 3D Sensor Body coordinate system and is

93

shortly described below, based on a paper from Qian et al. [3] and Figure 2.2.
A point in 3D the real world (i.e., a star) is expressed as A; = [a 6]T in the ECI system, if

spherical notation is used. If Cartesian notation is used instead, the new expression is the following.

U COS (v COS
A;= |V | = |sinacosd (2.1)
w sin &

The same point, with respect to the sensor body system in Figure 2.2 is notated as:

A =[XY 27 (2.2)

The usage of a rotational transformation is valid, assuming that the sensor is fixed at the center
of the Earth. This is a safe assumption, considering the very small distance between the satellite
and the center of the earth in comparison to the arbitrarily large distance between the satellite

and the stars. This transformation is defined below.

XY 2T =M[UV W] (2.3)

where M is a rotation matrix. Using the principle of 3-1-3 Euler coordinate rotation [39], it can

be written as follows.

cosy siny 0] |1 0 0 cos¢p sing O
M= |—siny costyp 0| |0 cosf sinf| |—sing cos¢ 0 (2.4)
0 0 1] |0 —sinf cosf 0 0 1

where 1, 6 and ¢ are the 3D rotation angles, which are displayed in Figure 2.4.

Figure 2.4: Illustration of ECI and Sensor Body coordinate systems together. Star coordinates from

example are also displayed. Image taken from Qian et al. [3].

Sensor’s boresight orientation is aligned with Z-axis and is expressed as [Jp]”, while angle 1
defines the rotation around the boresight. The relations of the other rotation angles with the

boresight are the following.

54

0 =90° — & (2.5)
¢ = 90"+ ap (2.6)

By combining equations 2.3, 2.4 ,2.5, and 2.6, the star’s sensor body coordinates are expressed

below.
X costy siny Of |1 0 0 cos¢p sing 0| |cosacosd
Y| =|—siny cosyp 0| [0 cosf sinf| |—sing cos¢ 0] |sinacosd (2.7)
Z 0 0 1| |0 —sinf cos@ 0 0 1 sin &

The second transformation represents the projection of a point from the real world to the two-
dimensional image plane. A slightly modified image plane with its origin at the center of the sensor’s
surface O’ is depicted in Figure 2.2. This transformation is named ”perspective projection” and is
defined by Horn [36] as follows.

lx

Y

where [zy] are the image plane coordinates of the point’s projection in the continuous domain and
17

X
Y

f
=2 (2.8)

f the focal length. In order to acquire the coordinates expressed in pixels [z’ y']*, scaling, using
the image resolution N, IV, and translation to the top-left corner, using the distances between

the old and the new plane origin d,, d,, are performed using the following formula.

x
 — 2.10

The explained process describes mathematically how a digital image is formed. The reverse
process of converting the 2D image plane coordinates to the 3D ECI coordinates is called Position
Calibration and is performed before matching in order to acquire a detected star’s position in the
inertial space. These 3D vectors are the actual input of the matching algorithm and are used to
find the angular distance between stars.

More about image formation, optical systems, computer vision and photogrammetry can be
found in literature. Horn [36], Forsyth et al.[37], Castleman [40], Hecht [41] and Saleh et al. [42]
provide fundamental knowledge on these fields.

2.1.2 Accuracy Measurement

Similar to the coordinate systems case, two types of error and accuracy are typically used in
space navigation applications. The basic theory of accuracy-error measurement is covered next.
2.1.2.1 Boresight Accuracy (Sensor body coordinate system based)

As already defined in Section 2.1.1.2; the optical axis or boresight is the perpendicular from
the camera center to the image plane, meaning that boresight is actually the direction along which

the camera-lens system is pointing. A star tracker’s accuracy performance is typically expressed in

95

terms of angular distance error with respect to the boresight. For commercial products two error
measurements are usually provided, which both have several names.

Cross (also called across, x-y, pitch-yaw) boresight error is related to the location of image
plane on the celestial sphere. About (also called z, roll) boresight error is related to the rotation
angle of image plane on the celestial sphere or equivalently to the twist around boresight. Figure

2.5 illustrates the axes that are used in order to determine motion with respect to the boresight.

cross axis L

Figure 2.5: Illustration of the axes used to determine boresight accuracy performance with respect to
the camera-lens system. In the diagram are displayed the following; gray plane: camera sensor, red axis:
boresight, gray circle: FOV, green-blue axes: cross boresight motion, red circle: about boresight rotation.

Image is taken from website with unknown author [4].

For a given camera-lens system, fixed on the axis origin and aligned with the gray plane, Field
Of View is denoted as a gray circle and boresight as a red axis. Blue and green axes form a cross
and the rotation of the satellite about them is related to the cross boresight accuracy. Similarly, the
rotation about the red axis has to do with the about boresight performance. A rotation about the
boresight along with rotations about the cross-axes constitutes the combined attitude accuracy of
the star sensor. An analytical definition of both these accuracies is provided in [43]. However such
an extended analysis is out of the scope of this thesis and therefore only a graphical description is
given next.

The angular accuracy regarding the boresight directions can be better understood by observing
Figures 2.6, 2.7. Remember that in digital systems accuracy is tightly related with resolution due
to quantization. Quantization step size defines the minimum unit of reference that can be used,
which in case of image processing is a pixel. Its attributes (i.e., number and size of pixels in an
image) originate from the quantization parameters.

In Figure 2.6 the side view of a star tracker is displayed, where pixels are shown as circles on
the right and focal length is marked as [. The cross boresight accuracy depends on the angle that
the sensor would need to rotate for a star’s information (i.e., intensity) to move from one pixel to
its neighbor. For a given sensor size, higher resolution means smaller pixels across each direction.
An increase in resolution or focal distance can accordingly increase the system’s cross boresight
accuracy.

In Figure 2.7 the front view of a star tracker is displayed, where pixels are shown as circles and

sensor’s size is marked as r. Similarly, the about boresight accuracy is equal to the angle that the

o6

Side view or top view of star tracker Pixels of the sensor

Bore sight Focal point

*
Cross axis resolution < | >

Figure 2.6: Cross boresight accuracy explained. Image is taken from website with unknown author [4].

sensor would need to rotate for a pixel’s information to move to its neighbor. It depends not only
on the sensor’s size but also on the position of the captured star on the image plane. Increasing the
sensor’s size or the resolution leads to increased accuracy. The closer to the boresight the captured
star is located, the worse the about boresight error gets.

front view of star tracker About axis resolution

Figure 2.7: About boresight accuracy explained. Image is taken from website with unknown author [4].

After the provided descriptive explanation of the two most important error measurements,
it should be noted that accuracy is usually quoted in 1o and 3¢ values. For narrow-angle star
trackers, the about boresight error is proven to be about 6-16 times worse than cross boresight
error [31, 44, 45]. Commercial products’ datasheets usually focus on the cross boresight accuracy
and therefore performance in Table 1.1 is expressed with respect to the same metric system.

Tan et al. [46] proposes a novel approach on compensating the cross boresight error induced
due to the complex dynamic conditions that describe a star tracker’s motion. In his work, he
correlates adjacent star images together with their angular relations, which are determined by a
gyroscope sensor. Increased compensation performance is achieved when 2 different cameras are

used onboard.

2.1.2.2 Pixel Accuracy (Image plane coordinate system based)

It has been explained that the calculated centroids are expressed using two-dimensional coordi-
nates with respect to the image plane. In order to estimate the accuracy of the related algorithm,
it is necessary to use an error metric, that is derived from the same coordinate system and can
simplify calculations. The appropriate metric is the two-dimensional euclidean distance between
the calculated and the true (ground truth) centroid and is expressed in the pixel level. If the ground
truth centroid is denoted as ¢ = [z, y.] and the estimated centroid as & = [Z §.] the pixel-level

centroiding error is calculated as follows.

€= \/(ic - xc)2 + (Z}c - yc)2 (211)

For the rest of this thesis, this definition of the centroiding error will be used.

o7

2.1.3 Field of View

Until now, it should be clear that accuracy with respect to the boresight is tightly connected
with the sensor body coordinate system, while accuracy with respect to pixels is correspondingly
related with the image plane coordinate system. As a result, the pixel-level error has no physical
substance by itself but its use is essential in digital signal processing problems. Similar to the cor-
relation between the two coordinate systems that has been previously described, a correspondence
between pixel-level and boresight accuracies should be found in order to be able to estimate the
overall system’s performance based only on software results.

It is known that the (angular) Field of View of an optical sensor is the solid angle through
which the sensor is sensitive to electromagnetic radiation. It is a camera-sensor configuration
specific feature and is usually found in the provided datasheets. It is related to the focal length f
and the sensor size h, that is the photosensitive area, which can be derived by the product of total
number of pixels along a single dimension and pixel’s size. FOV if not given, can be calculated as
shown below.

FOV = 2arctan(%) (2.12)

Apart from the usefulness of FOV as a system specific feature, it can be used in order to convert
from pixel accuracy to boresight accuracy and conversely. For a given camera-sensor configuration
the FOV and the total number of pixels along both dimensions are known. As the FOV expresses
the part of the real world, in degrees, that is visible through the camera and this part is projected
onto a finite number of pixels, the part of the 3D scene that a pixel covers can be found using 2.13.

degrees FOV

— 2.13
pixel Number of Pixels ()

This mathematical relationship gives the number of degrees of the FOV, or equivalently the
number of degrees of the real world view, that correspond to a pixel within the captured image.
For example, let’s consider the technical characteristics of the ASTRO APS product described in
Section 1.2.3. FOV is 20°x20° and the detector resolution is 1024x1024 pixels. Consequently, each

pixel covers 1(2)% = 0.0195° of the FOV. An arcsecond is ﬁe of a degree, that is 2.7777 x 104"

That means that each pixel corresponds to 592~ = 70.3125” (arcseconds).

It has already been highlighted that state-of-the-art implementations such as the one currently
analyzed have accuracies better than 10 arcseconds. ASTRO APS is characterized by error lower

than 1 arcsecond (1o) cross boresight. This level of accuracy corresponds to accuracy around

1
70.3125

performance of the Star Detection phase is crucial.

= 0.0142 pixels, which is of subpixel level. This analysis clarifies why the so called subpixel

2.1.4 Performance Limiting Factors

As every real world application, space navigation also suffers from real world sources of error.
In this section, the primary reasons that affect the accuracy of the overall system are shortly

discussed.

2.1.4.1 Application Nonspecific

Due to the non-existence of optimal optical devices, vision-based applications suffer from lens
distortion. This effect appears as variations in image magnification and more specifically, it causes

different projection of an object onto different sections of the image. For instance, a captured

o8

object’s size depends on whether it is projected near the center or the edges of the image. In
reality, these lens aberrations appear in many forms as Weng et al. [47] and Simon [48] have
described. However because of lens’ symmetry, the most common pattern of this effect is radial
symmetry, which leads to displacement of a point in the radial direction. Lens aberrations are
more intense when larger apertures are used.

This kind of optical imperfection induces one of the most significant errors and therefore appro-
priate precautions should be taken. Brown et al. [49] exploited the property of radial symmetry
and expressed lens distortion as a high order polynomial of radial distance. If such a model is
available, camera calibration must be performed in order to correct the problems that arise by this
embedded distortion. Even if sensor manufacturers sometimes provide the polynomial coefficients,
an iterative algorithm should be used in software before matching, for better results.

As part of the Sunsat microsatellite’s development, Jacobs [50] proposed a fast and simple
calibration procedure, based on Brown’s model, which requires only a few stellar images. In his
thesis, he describes a method that corrects both lens distortion, by determining the polynomial
parameters, and errors occurring due to non-optimal placement of the sensor relative to the optical
axis and centre of the lens. Generally, several models of lens distortion exist and each of them
demands a different calibration technique. Ricolfe et al. [51] evaluated several models and proposed
an appropriate calibration method.

Apart from camera calibration, care can also be taken during clustering process. Considering
that this effect appears worse near the image’s edges, a crop factor is usually introduced which
limits the search area to a smaller rectangular. In this way the processing of very distorted clusters
is avoided and propagated error is reduced. Ultimately, calibration determines the accuracy of
angular measurements and consequently the overall system’s performance. More about proposed
calibration methods can be found in [52, 53].

Another source of error, which is always present in digital sensors, is noise. Even if the used
instruments are highly resilient to space radiation, some noise is always absorbed. A simple and
adequate model that can be used is the Additive White Gaussian Noise (AWGN). The clustering
and centroiding algorithms are usually responsible for eradicating errors caused by noise. However,
if for some reason high levels of noise exist, the centroiding error increases and the final results are

inaccurate.

2.1.4.2 Application Specific

The problems mentioned in the previous section are to a great extent solved, as they concern
several scientific fields and much relative research has been done. On the contrary, a number of
application specific factors can indeed limit the accuracy performance of the star tracker.

Although extracted clusters are constrained over size, sunlight reflections on the star tracker
window or nearby debris and satellites can create optical illusions that may confuse the star identi-
fication algorithms. Similarly, planets and other celestial bodies can appear as stars in the image.
Infinite Orbits has explained that only a small fraction of the total stars seen in an image are used
in attitude determination, e.g., 6 or 7 stars out of 50. Taking into account this guideline, the false
stars can be safely filtered and excluded using the star catalogues during matching.

Care should also be taken during the mechanical construction of the satellite with regard to
the relative placement of the various systems. If for example the propulsion system is placed close
enough to the star tracker, thrusting gases could cause contamination and blur of the FOV and
lead to poor performance.

The last limiting factor that is mentioned is related to the three biggest celestial bodies that

99

are seen from locations close to earth, that is the earth, the sun and the moon. The presence of
any of them in the FOV during image capturing can heavily decrease star tracker’s performance.
That happens because of either the covered proportion of the FOV or the high brightness of the
body which makes stars disappear. In simple star trackers this case can severely harm the overall
functionality. However, as already described in Section 1.2.3, state-of-the-art commercial star
trackers can perform under some of these circumstances. Typically full moon is accepted in FOV
and optional or built-in baffles allow the presence of sun up to a specific angle. ASTRO APS
could also operate properly with a part of earth in sight. An increasingly popular trend against
this problem suggests the usage of two sensors with different orientations onboard in order to still

capture clear images even when one of them is blocked.

2.2 Field Programmable Gate Arrays

The main challenge of this thesis is the implementation of different algorithms on hardware,
in order to accelerate the computationally intensive task of centroiding. In this section, why an
FPGA is the most appropriate platform for acceleration and basic concepts of hardware design are

covered.

2.2.1 Overview

A Field Programmable Gate Array (FPGA) is an Integrated Circuit (IC) which can be pro-
grammed for different algorithms after fabrication. It consists of thousands or millions logic cells
that can be reconfigured in order to implement any digital circuit and any software algorithm. The
basic structure of an FPGA is displayed in Figure 2.8 and is shortly described next.

~)
] cLs cLe cLe cLB B
: cLB cLB cLB cLB :
: cLs cLe cLe cLB :
: cLB cLB cLB cLB :

Figure 2.8: Basic FPGA structure. Image taken from Xilinx [5].

The basic logic block of an FPGA is called Configurable Logic Block (CLB) and consists of
LUTs and FFs. A Look-Up Table (LUT) is the basic building block in current FPGAs and is used
instead of logic gates. It is a truth table of IV inputs which can implement a logic function of N
variables which accesses 2 memory locations [54]. The number of logic functions that an N-input
truth table can implement is 22N, while a typical case is N = 6 for Xilinx devices. When a large
logic function must be implemented, it is divided in simpler pieces and each of them is assigned to
a different LUT. LUTSs can also be used as data storage elements. A Flip-Flop (FF) is the basic

60

memory unit within the FPGA fabric and is always paired with a LUT to assist in logic pipelining
and data storage.

The true performance advantages of an FPGA are derived from the incorporation of CLBs
along with other computational and data storage blocks. The most complex computational block
available is the DSP block, which is actually an Arithmetic Logic Unit (ALU) embedded in the
programmable fabric. This dedicated core allows fast Multiplications-Accumulations (MAC) and

its structure is given in Figure 2.9.

48-Bit Accumulator/Logic Unit

] § []
A —]]
b EFDY

25x18

Multiplier
D —t=| —/‘

Pre-adder
F Pattern Detector

Xi3497

Figure 2.9: Structure of a DSP Block. Image taken from Xilinx [5].

The FPGA device contains also a number of embedded memory elements, among which are
Block RAMs (BRAMSs) and Shift Registers (SRLs). The BRAM is a dual-port RAM module
instantiated into the FPGA fabric to provide on-chip storage for a relatively large set of data.
When LUTSs are used as memory elements, their content is specified during configuration. These
are the fastest kind of memory available, because they can be instantiated in any part of the
programmable fabric, that is as close as desired to the operation that uses memory’s contents. The
combination of these dedicated elements provides the FPGA with the flexibility to implement any

software algorithm running on a processor.

2.2.2 Performance Advantages

Today FPGAs are widely used because they usually offer the same level of performance as
Application-Specific Integrated Circuits (ASICs), while they provide significant cost advantages at
the same time. Moreover, the fact that they can be dynamically reconfigured, in order to cover the
needs of different application, makes them more flexible and the development time is considerably
lower.

Compared to convenient processor architectures, the structures that comprise the FPGA fabric
enable a high degree of parallelism in application execution. Two are the main factors that allow
computationally intensive algorithms to run faster on an FPGA rather than on a CPU. The first
feature of such algorithm is the requirement of a great number of operations. In processor archi-
tectures there is only a limited number of ALUs available, that must be shared for all operations.
This case of limited resources leads to sequential execution of instructions. On the contrary, on
FPGA independent elements, for example LUTSs, are instantiated for each computation, thus in-
struction parallelism is maximized. In addition, computation algorithms usually need to process
a large amount of data, which means that memory accessing and architecture are also important.

It is known that processors suffer from time consuming accessing to external memories. In FP-

61

GAs however, fast memory architectures, spatially close to operations, are built to fit data layout,
meaning that the memory arrangement is actually tailored to the application.

Apparently, the big performance advantages are derived from the fact that when FPGAs are
targeted, the execution of a program is done in a custom program-specific circuit. Generally,
FPGAs demonstrate at least 10x the performance of a processor for computationally intensive

applications [5].

2.2.3 System-on-Chip FPGAs

A System-on-Chip is an IC that integrates a number of computing and other electronic compo-
nents, among which are a processor, memories and analog to digital converters (ADC), in a single
chip. Such tightly integrated architectures reduce power consumption, semiconductor die area and
cost less, while performance is heavily improved. Today, SoCs are widely used in the embedded
computing industry.

A SoC FPGA is an heterogenous platform which integrates together a CPU and programmable
hardware, that is an FPGA, along with memory interfaces and other peripherals. This archi-
tecture allows lower consumption of power, improvements in chip sizes and generally increases
performance, compared to older systems, where CPU and FPGA were connected through a central
interfacing circuit board. Perhaps the most important feature of a SoC FPGA is that provides low
communication overhead, therefore enabling efficient software-hardware co-design, which results
in increased productivity. A schematic that illustrates a typical co-design flow in a SoC FPGA is

given in Figure 2.10.

Requirements

)

Specification

Algorithm
Design

¥

System Design
+
HW/SW Partitioning

— —

Hardware Hardware/Software Software
Development <> Integrationand [« Development
and Testing Testing and Testing

System
Integration and
Testing

Figure 2.10: Software-Hardware Co-Design Flow. Image taken from lecture notes [6].

The most significant feature of this design flow is the offered convenience in developing software
and hardware independently. Typically, parts of an algorithm that are computationally intensive
are "redirected” to the FPGA side of the system for development. Respectively, parts that are
changing dynamically or correspond to control logic are implemented on the processor side. Ul-
timately, both parts are integrated into one that meets the system’s functionality. Today SoC

FPGAs outperform standalone CPUs in terms of performance and energy efficiency.

62

For the purposes of this research, a device from the ZYNQ-7000 SoC family, provided by Xilinx,
will be used. These products integrate a dual-core ARM Cortex-A9 based processing system (PS)
and 28 nm Xilinx programmable logic (PL) in a single device. The ARM Cortex-A9 CPUs are the
heart of the PS which also includes on-chip memory, external memory interfaces, and a rich set of
peripheral connectivity interfaces. A block diagram of a ZYNQ-7000 SoC is given in Figure 2.11.

Processing System

Flash Controller NOR, NAND, Muttiport DRAM Confroller
SRAM, Quad SP1 DDR3, DDR3L, DDR2

AMBA® Interconnect AMBA® Interconnect

MPCore

NEON™ SIMD and FPU NEON™ SIMD and FPU

ARNT Cortex™ - A8 ARM® Cortex™ - A8

Snoop Control Unit
2% SDID 512KB L2 Cache 256KB On-Chip Memory
with DMA
m IJTAG and Trace | Configuration mm

2xUSB
with DMA

Processor 1/0 Mux

2x GigE
wi)l(h ||]g,,|_q AMBA® Interconnect AMBA® Interconnect

Security
t ' ' ' AES, SHA, RSA

1222/

General-Purpose ACP High-Performance

AX1 Ports AXI Ports
e Programmable Logic e
Thermal Sensor (System Gates, DSP, RAM) 18 Lanes

Multi-Standard 1/0s (3.3V & High Speed 1.8V)

Serial Transceivers

Figure 2.11: ZYNQ-7000 SoC Block Diagram. Image taken from Xilinx.

Xilinx adopts the AXI protocol, which is part of the Arm Advanced Microcontroller Bus Archi-
tecture (AMBA) family of microcontroller buses, in order to offer high performance data transfer
between individual modules in the system.

As already stated, this thesis focuses on the PL side of the system in order to optimize cen-
troiding algorithms in terms of execution speed. The parallel processing power of an FPGA can be
exploited by adopting any of the two available FPGA programming models. As part of this work,
both models have been used and evaluated. The special features and advantages of each model are
the topic in the next two sections.

2.2.4 Register Transfer Level Programming Model: VHDL

The traditional programming model of an FPGA is centered on Register-Transfer Level (RTL)
descriptions using a Hardware Description Language (HDL) like Verilog or VHDL. In the context
of this project VHDL is used, which stands for Very (High Speed Integrated Circuit) Hardware
Description Language. The objective in this programming model is to describe the functionality of
the desired digital circuit, by using elements of the lowest level like wires, signals and by explicitly
handling registers and clocks. In Figure 2.12 the development workflow, which is followed when
an HDL is used, is illustrated.

63

Behavioral Simulation

h 4

Logic Synthesis

Y

Implementation

h 4

Bitstream Generation

FPGA
Configuration

Figure 2.12: Register Transfer Level Development Workflow

Initially, the system should be modelled using the HDL. VHDL provides three different design
styles. Dataflow style describes how data moves through the circuit by using concurrent statements.
In Structural description complex logic functions are composed by hierarchically interconnecting
simple building blocks. Behavioral description handles the circuit as a ”black box” and just models
the overall behaviour in a more abstract fashion.

Afterwards, Behavioral Simulation is executed in order to test the logical functionality of the
system. In reality this is just a software simulation that tests if the given RTL description is correct
in terms of behavior. The inputs of the Behavioral Simulation are the VHDL code, that describes
the design, and a testbench, written also in VHDL, that acts as stimuli to the circuit and provides
different input scenarios. This step is used for fast code debugging before the time consuming
processes that follow are carried out.

The next step is Logic Synthesis, during which the FPGA synthesis tool (i.e., Vivado Synthe-
sizer) that works as a compiler, generates a gate-level netlist given an RTL description. Synthesis
breaks the desired function into logic elements (i.e., LUTs, DSP etc.) and defines the connections
between them. These results are actually an estimate of how the function is going to be imple-
mented on the FPGA. Post-Synthesis Simulation is available in order to test if the generated RTL
retains the correct functionality.

The penultimate step defines how the synthesized design, that is the generated netlist, will
be implemented on the targeted FPGA. Implementation consists of three processes, mapping,
placement and routing. During mapping, optimizations on the given netlist are performed and the

logic function is translated to available components. Placement determines where each piece of logic

64

will be placed in the array of logic cells in order to minimize area and wire lengths. Finally, given
the placement results, routing finds a valid pattern of wires to connect the used components, while
aiming for area and wire delay minimization. Such wires are illustrated in Figure 2.8, where they
surround CLBs in an island-like style. Following implementation, Timing Simulation can provide
useful information about system’s functionality with respect to the given timing constraints.
Finally, a bitstream is generated and loaded into the FPGA’s ROM in order to configure it and

implement the desired circuit.

2.2.5 High Level Programming Model: C++

As the complexity of a logic function or a digital circuit increases, the complexity of the respec-
tive VHDL code increases in an exponential manner. That converts system design using VHDL in
a hard and time consuming task. For this reason, a High Level programming model that removes
the differences in programming models between conventional CPUs and FPGAs, and therefore
leads to decreased design complexity, has been developed.

High Level Synthesis (HLS) is an automated design process that transforms a high-level func-
tional specification to an optimized RTL description (netlist) suitable for hardware implemen-
tation. The usage of a high-level language inserts an abstraction level between hardware and
designer, which makes system development easier and faster. In the context of this project, C++
language will be used. The development workflow, which is defined from this high-level approach,
is illustrated in Figure 2.13.

— C Simulation

l

C Synthesis

l

C/RTL Co-Simulation

l

Export IP

Synthesis &

Implementation

Figure 2.13: High Level Development Workflow

65

Initially, the system should be modelled using a high-level language, i.e., C+4. One of the
most significant advantages that the HL, over the traditional RTL approach, exhibits, is that it
offers fast validation at the C-level. C Simulation step is used to test the functional correctness
of the C++ algorithm before synthesizing it into a netlist (Pre-Synthesis Validation). This can
be done by creating a C++ testbench, a process which is multiple times faster and easier than
designing an RTL testbench.

When a C++ specification is proven to operate properly, C Synthesis is executed to create the
RTL implementation. During this process, Vivado HLS Compiler extracts datapath and control
from the source code. Datapath is matched to operations and control extraction creates a Finite
State Machine (FSM) that sequences the operations in the RTL design. C Synthesis consists of
two phases, Scheduling and Binding. During scheduling the compiler determines which operations
occur at each clock cycle and binding determines which library core (logic cell) will be used for
each operation. The C Synthesis process is controlled and guided by user-defined constraints and
directives, regarding area and performance. This control over the Synthesis process can lead to
specific high-performance hardware implementations and enables rapid design space exploration,
which increases the likelihood of finding an optimal implementation.

The actual final step in this workflow is RTL Verification and is used to verify that the generated
RTL implementation is functionally identical to the original C4++ code. HLS tool has automated
this process, as it uses the already designed C++ testbench for this purpose. Because both the
RTL and C++ outputs are used during verification, it is also called C/RTL Co-Simulation. It
should also be mentioned that the HLS tool can generate trace files that show the activity of the
waveforms in the RTL design and which can be used to analyze and understand the RTL output,
exactly as it is done using the Post-Synthesis Simulation in the RTL-based approach.

When the hardware implementation that achieves the desired performance is created and ver-
ified, the RTL can be exported and packaged as IP either for use in a larger system or in order
to generate the bitstream and configure the FPGA. It should be highlighted that before exporting
a design, logic synthesis and implementation can be executed in order to confirm the accuracy of
the estimates made by the compiler during C Synthesis regarding performance and area.

Throughout Chapter 4, where the hardware implementations are discussed, the specific char-

acteristics, advantages and disandantages of each FPGA programming model will be made clear.

2.2.6 Hardware Performance Metrics

The final part of theory on hardware design that should be covered is related to the metrics
used for performance estimation. The degree of acceleration that is achieved when implementing
an algorithm on an FPGA is related to three different factors.

The first one is the Critical Path, that is defined as the slowest path in a circuit. This path
consists of logic delay, which is the effective delay due to operations, and net delay, which is
determined by the routing process. In complex designs which require large percentages of the
available resources, it is possible that the placement and routing problems cannot be solved optimal,
which can result to congestion and increased net delays.

Consider that a critical path is found between a source point A and a destination point B, where
A and B are points located inside the circuit. Critical path actually determines the minimum clock
cycle length allowed, in order for a signal starting from A to cross the entire path and arrive at B
on time, that is before the next clock cycle. Apparently critical path defines circuit’s maximum

operating frequency, which is given by the following formula.

66

1 1

Jmaa = clockmm CP (2.14)

The second factor is Latency, which is the number of clock cycles required for an operation, a
function or a circuit to be completed. The third factor is called Throughput, which is the rate at
which the system accepts new inputs. This feature typically determines the overall performance
of the design.

The design call usually made in FPGA implementations is to create fully pipelined designs.
This term refers to the process of segmenting data paths as much as possible by adding intermediate
registers. The generated smaller paths contain the least possible logic which makes them faster.
In this way, the maximum operating frequency, the throughput and the latency are all increased
and overall performance is improved.

Another metric that should always be looked after is Area, which refers to the amount of
available hardware resources required to implement the design. Among others these resources
include LUTSs, FFs and DSPs. Converting designs to fully-pipelined may lead to significant increase
in resource utilization. The larger the resource utilization, the greater the possibility of congestion
which can lead to sub-optimal implementation. Remember that a basic constraint when developing
on a specific FPGA is to not exceed the finite resources it provides.

2.3 Related Work

In the preceding sections a number of sources have been cited, regarding the performance
standards of modern star trackers and calibration methods. Because the main topic of this thesis
is the star detection phase, and more specifically the centroiding process, it is essential to lay

emphasis on previous work on related algorithms and FPGA implementations.

2.3.1 Processing Algorithms

Due to the increasing popularity of space navigation applications, a lot of researchers have

focused on developing and evaluating star detection or identification algorithms.

2.3.1.1 Clustering

Researchers from University of Stellenbosch seems to have been intensively concerned with space
navigation over the last decades. As part of developing the Stellenbosch UNiversity SATellite
(SUNSAT), Steyn et al. [55] implemented a modified Region Growing Algorithm to accelerate
clustering, which was initially proposed in [56]. The main idea was instead of checking all the
pixels in the image plane, to exploit the fact that the minimum size of a valid cluster is 3x3 pixels
and therefore access only every third pixel per row and column. The result was an increase in
speed of almost one order of magnitude. When a pixel was found to be brighter than the given
threshold, the area would star to grow by examining the four surrounding pixels. In this algorithm,
it is assumed that clusters can be of arbitrary shape.

Zhu et al. [57] proposed a novel clustering process, in which valid star pixels are linked by
pointers and stored in a cross-linked list. This list can then be used as input for the Region
Growing Algorithm, which starts with the first element in the list. This approach completes

clustering with a rate of 16 milliseconds per 1024x1024 frame.

67

2.3.1.2 Centroiding

According to Liebe [31], the traditional approach to the centroid calculation problem suggests
the use of a Center of Gravity algorithm (CG). More on this approach will be discussed in Chapter
3. Many variations and optimized versions of the CG algorithm are available in literature.

SUNSAT engineers [55] used a modified algorithm, in which the multiplying factor in the
numerator is not the the row/col number itself but a translated by 0.5 and scaled by the pixel size
version of it. They showed that the original CG algorithm can provide estimates with error less
than 0.2 pixels. Knutson [58] also adopted a modified version, in which the noise threshold was
subtracted from a pixel’s intensity before it was multiplied, in order to decrease computation time.
Also, this modification makes the calculation less sensitive to background noise [59].

In [60, 61] it has been proven that a weighted center of gravity algorithm (WCG), in which
sometimes for simplicity the weights are approximated by the corresponding pixels’ intensities
(squared CG), improves the accuracy of the centering approach. However, that does not apply
when the initial estimate of the CG is significantly false, for example due to high background noise.

Akondi et al. [62] proposed an iterative calculation of the centroid, while the weights are
updated in each step. Generally the accuracy of the Iterative WCG is higher but the computation
is significantly slower.

Except for the very popular CG approach, there is also a family of fitting methods which
is expected to yield the most accurate results [63]. These algorithms approximate a star as a 2D
Gaussian distribution and aim to find the Gaussian function, that is its parameters, that fits better
a given bright region.

Delabie et al. [63] provide an in-depth analysis and evaluation of the Gaussian fitting methods,
which refer actually to a nonlinear least squares optimization problem. The most accurate approach
is the two-dimensional, in which an asymmetric 2D Gaussian function is fitted to the data. They
also present a less computationally intensive approach, in which the 2D problem is divided to two
simpler 1D problems. This yields decent results when sensors with smaller FOVs are used. A
reduced version of the 1D problem is also proposed, according to which the outermost pixels of a
cluster are neglected as they are characterized by relatively low SNR (Signal to Noise Ratio). All
of the three problems are solved with the Levenberg-Marquardt algorithm.

In this paper, a novel Gaussian Fitting method, called Gaussian Grid Algorithm, is also pro-
posed. This approach transforms the initial complex problem to a linear least squares problem
using the logarithm function and expresses each pixel in the square cluster with respect to the
central one. In order to achieve the best possible accuracy, demonstrated by the 2D Gaussian
Fitting Algorithm, the solutions of the Gaussian Grid are only used as initial parameters to the
nonlinear problem. In this way, the highest accuracy of the 2D Gaussian Fitting Algorithm is
obtained, while the computation time is by 33% lower for a 5x5 cluster.

Another attempt to address the shortcomings of the standard 2D Gaussian Fitting method,
which are the increased computation time and sensitivity to the initial parameters, was made in
[64]. The Gaussian Analysis algorithm (GA) finds a closed-form solution of the Gaussian param-
eters, based on the marginal distribution of the intensity accumulation on both dimensions, with
significant time advantages. It is claimed to be the most accurate and efficient algorithm when the
size of the star spot is not bigger than 5x5 pixels. However, this method was validated only with
ideal, that is without noise, images.

Wan et al. [7] have proposed a novel Fast Gaussian Fitting Algorithm, which also transforms
the initial problem to a linear least squares problem. This approach is extensively discussed in
Chapter 3.

68

Lastly, in [65] a method with information theoretic weighting, in which signals are weighted
with a confidence interval based on the information content, was presented and evaluated against
the more traditional thresholding methods. However, this kind of approach is out of the scope of
this research and will be no discussed further.

2.3.1.3 Matching

Star Identification is a much more complex process and is therefore implemented on the proces-
sor side of the system. Since the first generation of star trackers, there have been a lot of matching
algorithms developed.

Erlank [66], as part of the CubeStar star tracker development project, classified matching
algorithms as subgraph and pattern matching. He described and compared the subgraph-based
Triangle and Match Group algorithms and the pattern-based Grid algorithm. He implemented
however, the Geometric Voting Algorithm, which was earlier published by Kolomenkin [67].

Wang et al. [19] proposed a false star filtering algorithm which can be used to increase the
robustness of a convenient matching algorithm when high levels of noise are observed. Their
algorithm achieves rejection of more than 700 false stars in less than 10 frames.

A modern method using a 1D Convolutional Neural Network is proposed in [68]. It seems highly
robust to noise and false stars while it achieves decent performance under dynamic conditions. In
the coming years, a significant boost in the contribution of Deep Learning to the Star Identification
phase is expected.

In-depth analysis and evaluation of star identification algorithms is provided in [69, 70].

2.3.2 FPGA Implementations

Von Wielligh [1] designed and validated an end to end star tracker which achieves 10 Hz update
rate in Lost In Space mode. He implemented clustering and centroiding as one integrated process on
the FPGA. Clustering was based on a modified version of the Growing Region Algorithm, refined for
streaming pixel data. In order to optimize the clustering algorithm for hardware implementation,
he adapted the idea of a rotating FIFO, described by Lindh [71]. For centroiding, the alternative
Center of Gravity method, in which the noise threshold is subtracted from the intensity values, was
used. The overall system demonstrates subpixel centroid detection at a rate of 98% but attitude
estimation was not so consistent due to a high percentage of false matches, responsible for which
was the matching algorithm.

Comparing Von Wielligh’s work with earlier star trackers which share the same processing
approach (i.e. Growing Region Algorithm and Center of Gravity), like CubeStar [66] or SUNSAT
[55], is a good paradigm of how the modern SoCs significantly improve performance. In these
older systems, before clustering was performed, the whole frames should be saved in memory and
pixel streaming was not possible. These waiting periods reduced the overall performance. Another
thing to mention was that CubeStar connected an FPGA board to a CPU board. However the
FPGA, due to the significant lower performance standards of the time, was only used as a buffer
between the sensor and the processor, in order to reduce the rate at which the data were driven
to the processor.

Zhou et al. [72] proposed a two-step star detection FPGA implementation. During clustering a
unique threshold for each frame was obtained. The first step defines the central pixel of a cluster,
by calculating the first derivative along both dimensions. Afterwards, the subpixel centroid was

determined using the standard CG calculation. It was proven that this approach demonstrates

69

better results than a standard one-step method only when high levels of background noise are
present.

Wang et al. [73] proposed an FPGA-based centroid extraction method with a dynamic rooted
tree architecture. This method merges the equivalence table in the process of scanning, such
that only one scan of the image is needed, and allows processing of irregularly shaped star spots.
Lastly a novel method implemented on FPGA, which calculates centroids using the First Fourier

Coefficient is proposed in [74].

70

Chapter 3

Considered Centroiding

Algorithms

In this thesis two centroiding algorithms that demonstrate different accuracy, computation
speed and complexity are used. These attributes result to significantly different implementations

on hardware. In this chapter, a thorough description of each algorithm is provided.

3.1 Center of Gravity Algorithm

As already stated, the use of the Center of Gravity (CG) Algorithm constitutes the most
traditional approach to the centroiding problem and it has been adapted by the most of the earlier
projects in literature. It is also called Center of Mass (CM) or Mass Center Algorithm.

3.1.1 Definition

Consider a cluster, each pixel of which was given an index i based on the raster scan method.
Then each pixel is denoted with its coordinates in the image plane (x;, y;), where x; refers to
the column number and y; to the row number. Remember that this notation is reversed to the
conventional digital image notation, in which the first dimension refers to the row number.

The simple formula which defines the centroid pair (z., y.) for a cluster is given below.

Iix;

Te = X:ZI- (3.1)
_ > Liyi

Ye ZIz'

where the sum is computed over all pixels i of the cluster and I; refers to the grayscale intensity

(3.2)

of a pixel, also called brightness or luminosity.

This is the less complex and faster centroiding algorithm available, but it demonstrates also a
performance limitation, which is partially derived from it’s high sensitivity to background noise
[59]. That can be better understood, if one consider a not so well defined cluster, which contains
some false pixels too. For example this could be the result of a non-optimal thresholding process,
as these pixels would not be really derived from the spread light source but they would have a
value sufficiently high to be included in the cluster. Due to the simple average mean calculation,

these pixels negatively affect the centroid location and contribute to less accurate estimation. In

71

order to mitigate this effect, a number of techniques can be used during the clustering process.
However this topic is out of the scope of this research. Generally, the accuracy of this algorithm is
also restricted by the S-curve error which is inherent in the sampling process due to undersampling
[75]. Nevertheless, it is expected that the CG algorithm will provide centroid estimates with a

minimum accuracy of 0.2 pixels [50].

3.1.2 Proposed Modification for Implementation on FPGA

When an algorithm is intended to run on hardware, it should be optimized in advance, in order
to fully exploit the benefits that the FPGA platform provides. One of the most basic principles in
hardware design is to minimize the bit width of each signal. That reduces the resources and the
logic levels required to complete an operation and results in an optimized design.

In the context of this work, one of the most important assumptions is that each star is spread
over square regions, which means that each provided cluster is of square shape. This assumption
is based on the guidelines given by Infinite Orbits, as their camera-sensor system is configured in
a manner to provide this type of data. More on this topic will be discussed in Chapter 4.

Given a cluster of N pixels, Equations 3.1, 3.2 can be written also as:

N
E Lix;
i=0

=0 (3.3)
I;
N
> Ly
Ye = i=](\)] (34)
> 1

~.
o

Based on the above assumption, each cluster contains a number of consecutive rows and columns.
If the starting row and column are denoted as Y and X respectively, equations will be:

N

DO L(X + &)

where (Z;, g;) is a pixel’s distance to the first column and row in pixels. This distance expresses
actually the relative coordinates in the cluster, compared to the absolute coordinates (z;, y;) in
the image plane. For a 3x3 cluster ; gets 3 different values, that are 0, 1, 2. x; = 0 is true for the
3 pixels of the first column, #; = 1 for the 3 pixels of the second column and #; = 2 for the 3 pixels
of the third column. The same applies to the second dimension. Based on simple mathematical

properties, Equation 3.5 will be:

72

N

N N N
Z LX + Lz, Z LX Z Lz X Z I Z L7
=0

=0 =0

_ _ ; i =0
Te = N - N TN - N TN =
VNS SYARED SRR SN o'
i=0 i=0 i=0 i=0 i=0
N (3.7)
_ i=0
= .= X+ ~
I;
i=0
Similarly, Equation 3.6 transforms to:
N
Z I;y;
ye=Y + =1 (3.8)

I;

N
=0
A simple example is given, in order to demonstrate the benefits that this simple mathematical
modification provides. Consider an extracted 3x3 cluster which starts at row 300 and column 580

of a frame, as displayed below.

300 | 4 5 6

301 | 7 8 1

302 | 2 3 4

580 581 582

The value in each pixel represents its intensity. These values have been chosen just to ease the
example’s calculations, although the observed intensities in the real application will be much higher.

If Equations 3.3, 3.4 were used, the calculations would be the following.

9
>t
‘=0 b80-4+581-5+582-6+4580-7+581-8+582-1+580-2+581-3+582-4
N 445+6+7+8+1+24+3+4

0

Te =
>
 580(4+7+2)+581(5+8+3)+582(6+1+4) 23238

= 580.95
44+5+6+7+8+14+2+3+4 40

73

9
Zliyi

i

300-4+4+301-7+302-24+300-54+301-8+302-3+300-6+301-14302-4
4+5+6+7+8+1+2+3+4

=0
Ye = N
E I;
0

3

 300(4+5+6) +301(7+8+1)+302(2+3+4) 12024

= 300.85
44+5+64+7+84+14+24+3+4 40

The same result is yielded if Equations 3.7 and 3.8 are used.

0-44+1-54+2-640-74+1-8+2-14+0-2+1-3+2-4

9
E Lix;
im0

. = 580
. N 80+ A4516+7+8+1+213+4
I;
1=0
04+74+2)+1(5+8+3)+2(6+1+4) 38
= 580 =580 + — = 580.95
T I st6t7+8t1+2+3+4 T
9
Zfiyi
_ S0 300 04 1-T42:240-541-842:340-6+1-1+2-4
Yem N T I+546+7+8+1+2+3+4
I;
1=0
C0(4+5+6)+1L(T+8+1)+2(2+3+4) 34

— 300 + 2= = 300.85
41546+ 7+8+1+2+3+4 10

The benefits of the proposed modification can be better understood by comparing the multi-
pliers, marked with bold. The large multipliers in the first case are represented in hardware with
more bits than the multipliers in the second case. In this specific example numbers 300 and 580
require 9 and 10 bits respectively, while the multipliers in the second case (0, 1, 2) are represented
using only 1 and 2 bits.

It is known that generally the result of a multiplication of a n1-bit number with a ne-bit number
requires nj +nq bits to be represented correctly. Thus in the first case, significantly more resources
are demanded for the partial products, resulting in a non-optimal design. This overhead is removed
using the modified Equations 3.7, 3.8.

For the rest of this work, in order to simplify the notations, the sums’ limits will be dropped

and instead of the Z;, §; symbols, x; and y; will be used. The final form of the equations are shown
below.

Las

vo=X + ZZII (3.9)
Ii [

ye=Y + Zz I?’ (3.10)

3.2 Fast Gaussian Fitting Algorithm

3.2.1 Overview

The second considered algorithm belongs to the fitting methods family. As already mentioned,
the sensor system is configured in a way to purposely spread the captured star over a wide area
of pixels. Basic theory on how this is achieved using defocused optics can be found in [56]. The
region formation can be modeled by a Point Spread Function (PSF). Fitting methods approximate
this function as a 2D gaussian distribution and aim to estimate the Gaussian parameters, that is
the Gaussian function which better fits the given data. The adopted algorithm was proposed by
Wan et al. [7].

3.2.2 Motivation

Fitting methods rely on the assumption that the source intensity of each pixel i in a cluster

can be expressed by a 2D Gaussian function, which is defined below.

2 2
S(xi,yi|v) = Aexp <— (=: 20;':) — (%20;0)) (3.11)
where (2;, y;) are the pixel’s known coordinates on the image plane and v = (A, ¢, Y, 05, 0,) are
the unknown Gaussian parameters that should be determined. A is the amplitude of the function
and represents the brightness level of the star, meaning that as A increases the star spot gets
brighter altogether; x., y. are the centroids of the star and o, o, represent the standard deviation
of the function along both dimensions. Note that for the examined application only the x., y.
parameters need to be found.

Suppose that a received image signal for a pixel ¢ is modeled as:

I, =5, +N; (3.12)

where I; is the observed intensity, S; the source (real) intensity and N; is the added noise, which
also conforms to a Gaussian distribution. The standard Gaussian Fitting Algorithm (GF) estimates

the function parameters using the corresponding objective function, which is displayed below.

Z = arg min Z[ZAZ (3.13)
Vo eu
where z; = I; — S; = N; represents the distance between the observed value I; and the underlying
Gaussian function’s value, that should be minimized. If there is no noise in the images, i.e., N; = 0,
then the given cluster can be perfectly approached by a Gaussian function. However, this is not
true in real applications and therefore the best possible approach should be found. U is the set
which contains all the pixels of the cluster.

This approach is expected to give the most accurate results among all the available centroiding
algorithms [59]. However, since Equation 3.13 is a nonlinear least squares problem, it is also the
most complex one which results in a high computational burden and therefore makes it unaffordable
for real-time applications. This problem can be solved with iterative algorithms, such as the
Levenberg-Marquardt or the Trust-Region-Reflective. Although these algorithms are generally
sensible to the initial parameters’ choice and converge to local and not global minima, Delabie et

al. [63] showed that these problems are not important in the examined context.

()

3.2.3 Definition

Even though a number of similar algorithms that don’t solve Equation 3.13 and speed up the
GF approach have been developed, none of them is able to demonstrate the same accuracy. The
Fast Gaussian Fitting Algorithm (FGF) is used in this research, as it seems to be the only one
that can approximate the solution of the GF in a closed-form without iterations and without loss
in accuracy, while achieving high noise robustness and high efficiency, which is critical for the star
tracking process. The basic theory of the FGF algorithm, taken by the relative paper, is discussed
next.

The main idea is to transform the objective function to a simpler form by performing the
logarithm operation on both I; and S; in Equation 3.13. The transformed objective function is

now:

G = argmin Z[gi]Q (3.14)
V. ieu

where g; = In I; —In S;. Apparently if Equations 3.13, 3.14 share the same solution, then the FGF
is an accelerated version of the GF. This would be the case if there was no noise in the images,
which is however not true. Therefore it should be expected that the two problems are probably

not equivalent. Using simple mathematical properties, the term g; is transformed as shown below.

gi—lnli—lnSi—Ii<1—|—Ni)1n<1—|—5i>— Ii¢<Ni> (3.15)

where ¢ (f;) = (1 + %) In (1 + %) Ifr;= %, then ¢ (%) can be written as:

6(rs) = (1 +7i)In (1 + 1) (3.16)

Ti

Note that |r;| represents the SNR of a pixel. The curve of ¢(r;) is illustrated in Figure 3.1.

Figure 3.1: The curve of ¢(r;). The value of ¢(r;) converges to 1 with the increase of SNR. When r is
equal to 3, the value of ¢(r;) is equal to 1.1507. When r is equal to -3, the value of ¢(r;) is equal to 0.8109.
Image taken from [7].

76

Focus on the positive side of the ¢(r) axis. As the SNR of a pixel increases, ¢(r) converges to
1. By substituting Equation 3.12 into Equation 3.13 and if Equation 3.15 is multiplied by I;, the

objective functions are:

Z = argmin) [N;]? (3.17)
V. deu
H = argmin Y _[¢(r;) N;]? (3.18)
V. ieU

This means that the FGF can be considered as a weighted GF with the weight of each pixel
determined by ¢(r;). If pixels with SNR greater than a certain value are selected to ensure that
¢(r) of these pixels is close enough to 1, Equation 3.18 is approximately equal to Equation 3.17
and therefore FGF provides the same results with GF.

Until now, the only actual modification to the FGF objective function was the multiplication
with I;. By writing function H with the initial notation, which was based on term g;, we get a

different form of the same objective function.

H = argmin Z[Ilvgi]z = arg min Z[Ii(lnIi —InS)))? (3.19)
V. deu Vo oieu
By substituting Equation 3.11 into Equation 3.19, the latter is converted to:

Lz} | Ly; Lwewi Lyeyi | Liwl | Ly? ’
H = i e L — = S+ LInl;—I;InA 3.20
arg‘fnlnEZU (20% + 202 o2 o2 202 + 207 +I;1n n (3.20)

Let us define the parameters m, n, p, ¢ and k as it is shown below.

1
m= 202
_ 1
n= 207
. Tc
p=-3% (3.21)
— _ Ye
q 3’2’
x C
k= 552 —l-;{?—lilnA
z y

If Equation 3.21 is substituted into Equation 3.20, then the objective function gets its final form
which is the following.

H = argmin Z(Iix?m + Ly?n + Lxip + Liyiq + Lk + I; In I;)? (3.22)
m,n,p,a,k ;=0

Obviously, Equation 3.22 describes a linear least squares problem, which can be efficiently
solved in a closed-form, compared to the initial nonlinear least squares GF problem (Equation
3.13). Overall, it has been proven that, under specific conditions, i.e., using pixels with high enough
SNR, the FGF algorithm has the same accuracy with the GF algorithm, and it is significantly faster
as it is not an iterative method.

3.2.4 A Linear Least Squares Problem

3.2.4.1 Problem Statement

It is clear that the Gaussian fitting approach, for each cluster aims to find the function f, that

is the function’s parameters v, that represents the observed data, that is the cluster’s pixels. For

(i

a single pixel-observation 4, this function is expressed as below.

vi = f(xi,8) (3.23)

where scalar y; is called dependent variable, x; = [zi1, Zs2, ... ,scl-p]T is a column vector of p
variables, called independent variables or regressors, and 3 are the p unknown function parameters.
In the examined application there are N pixels expected, with N > p. That makes the equations
system overdetermined, which usually has no unique solution and thus an approximation method,
such as the Least Squares, is required. Therefore, Equation 3.23 could be written as:

yi =i +e = f(xi,8) e (3.24)

where e; represents the approximation error, or the difference between the observed value y; and
the estimated value §; = f(x;, B), and is called residual. Note that 3 refers to the real (unknown)
parameters that generate the observed data, while B refers to the approximated parameters that
will be estimated.

The difference between FGF and GF is that the proposed method suggests that the relationship
between the dependent variable y; and the regressors x; in Equation 3.23 is linear. Note that this
doesn’t mean that the regressors themselves should be linear, it just means that y; should be
written as a linear combination of parameters 3. In other words, FGF suggests that the following

equation is a reasonable approximation of the statistical process that generates the data.

yi=xi B+e (3.25)

The problem of estimating the unknown parameters 3 in Equation 3.25 is a linear regression
problem. Estimating the parameters means finding the expressed by Equation 3.25 hyperplane that
has the minimum distance to the given data. The Least Squares method does so by minimizing

the sum of squared residuals as shown below.

N N N
S = arg minz e? = arg min Z(yl —x;' B)? = argmin Z(xiTB —yi)? (3.26)
B =0 B =0 B =0

The fact that the residuals are linear in the unknown vector 3 means that the problem is
a Linear Least Squares (LLS) problem. Moreover as the residuals are unweighted, Equation 3.26
describes the Ordinary Least Squares (OLS) variant. The Gauss-Markov theorem states that under
a given set of assumptions the OLS method is the optimal estimator of the unknown parameters.
By comparing Equations 3.22, 3.26, it is easily concluded that they have the same form and
therefore 3.22 is also a OLS problem.

It is known that the examined minimization problem has a unique closed-form solution, that

is a unique parameter vector 8 under the following conditions:
1. The number of observations N equals or exceeds the number of unknown parameters p.
2. The regressors z;; are linearly independent.

It is yet not clear however what is the number of parameters and which are the regressors in

Equation 3.22. Let us define the following correspondence between Equations 3.22, 3.26.

78

B =[m,n,p,q, k|
yi=—ILInl (3.27)
xi =Lz}, Ly?, Lixwi, Ly, 1]

It should be mentioned that the arbitrary choice of the dependent variable y; is done without loss
of generality for operational reasons. Moreover, although some of the regressors x;; are nonlinear,
the model remains linear as linearity is meant to be with respect to parameter vector 3. The
correspondence described in Equation 3.27 means that the estimated hyperplane that ”generates”

the observed data i is p = 5-dimensional and is described by the following equation.

Yi = w1 P+ xi2Pa + 2i3Ps + wiaPa + wisPs + e (3.28)
— —Ii In I,' = (Ila:f)m + (Lyf)n + (I,-xi)p + (Iiyi)q + (Il)k‘ +e;

It is now clear that the number of unknown parameters is p = 5 and which are the regressors
x;5, and therefore the critical conditions can be evaluated. The satisfaction of the first one depends
on the number of pixels in a cluster. It is required that a cluster should contain at least 5 pixels.
As it will be discussed in Chapter 4, in this thesis it is assumed that the minimum number of pixels
in a cluster is 9. By inspecting vector x; in Equation 3.27, it is obvious that the second condition

is also satisfied as the regressors are linearly independent.

3.2.4.2 Generating the Normal Equations

Until now it has been proven that FGF can provide a unique optimal solution by solving the
optimization problem stated in Equation 3.22. In this section, the initial steps towards this solution

are described.

The minimum of the objective function H is found by calculating the partial derivatives with
respect to the unknown parameters and setting them to 0. Since there are 5 parameters, 5 equations

are derived as shown below.

H
H

687 = Z 2Ly;e; =0 (3.29d)
H

% - Z 20e; =0 (3.29¢)

The sum’s limits have been dropped for simplicity reasons. Let us analyze only the first equation

below, after dropping the constant 2 from all the equations.

79

Y Lizfe; =0 = > Lal(Laim+ Lyin + Lixip+ Lyiq+ Lk + IInI;) = 0
= Y _[Laf](Liad)m + [Laf) Ly n + [Liaf](Liz:)p + [Lix?)(Liyi)g
+ [Lx?) (L) k + [La?)(LIn L) = 0 (3.30)
:>le I:c m+ZI:v Iyln+ZIx I:vlp+ZIx Liyi)q
+ Y L)L)k + Y [Liaf)(LIn L) =0
By inspecting the above equation, it can be seen that the factor inside the brackets is present in
all the partial products. The only difference between the 5 equations in 3.29 is this factor, and

for each equation it is equal to the multiplication term of the respective unknown parameter in

Equations 3.22, 3.28. These in-bracket terms for each equation are summarized below.

e Equation 3.29a: [I;x2

Equation 3.29b: [I;32]

Equation 3.29¢: [I;x;]

Equation 3.29d: [I;y;]

Equation 3.29e: [I;]

For the convenience of calculations, these factors will define the following parameters.

m; = Liz?
an; = Liy?
api = Liti (3.31)
agqi = Liyi
ak; = I;
a; =I1;InI;

By substituting these parameters into Equations 3.29, which are expanded like Equation 3.30, they

are converted to:

[Z am?] m+ [Z amzam] n+ [Z amzapl] Pt [Z amlaql} a+ [Z am;ak;] K+ amia; =0 (3.32a)
[Z amlanz] m+ [Z an’] n+ [Z anlapz] P+ [Z anlaqz] a+ [Z aniak;] k+3 ania; =0 (3.32b)
[Z amlapz] m+ [Z aniapi] n+ [Z apz-] P+ [Z apiaqi] a+ [Z apiaki] k+ > apiai =0 (3.32¢)
[Z amzaql] m+ [aniaqi} n+ [Z ap,-aqi] P+ [Z aq?] a+ [Z aqiaki] k+3 " agia; =0 (3.32d)
[Z amiak;] m+ [Z amaki] n+ [Z apiaki] p+ [Z aqiaki] a+ [Z ak%] k+ 3 akia; =0 (3.32¢)
This is a linear system of 5 equations in 5 unknown parameters m, n, p, ¢, k. These equations are

called normal equations which when solved, the parameter estimates are yielded. If the constant

terms are transferred to the right side of the equations we get:

80

[Z amf] m+ [Z amiani] n+ [Z amiapi] P+ [Z amiaqi] a+ [Z amiakl} k=—3amia; (3.33%)
(> amiani|m+ [S-an?] n+ [3 aniapi] p+ [aniaa] a+ [amaki| k = = 3 ania (3.33D)
[Z amiapi] m+ [Z aniapi] n+ [Z ap%] P+ [Z apiaqi] a+ [Z apiaki] k=—>"apa; (3.33¢)
[Z amiaqi] m+ [Z aniaqi] n+ [Z apiaqi] p+ [Z aqf] a+ [Z aqiaki] k=-3"aga; (3.33d)
[Z amiaki] m+ [Z aniaki] n+ [Z apiaki] P+ [Z aqiaki] a+ [Z ak?] k=—akia; (3.33¢)

In a matrix notation, the above system is written as:

AB=b (3.34)

where A is the coefficient matrix, ,@ the unknown column vector and b the constant column vector.

3.2.4.3 Solving a Linear System

The previous analysis has proved that the solution to the fitting problem is equivalent to the
solution of the linear system in Equation 3.34. Therefore, instead of choosing a complex iterative
algorithm to yield the Gaussian parameters, the task is to chose a simple method to solve the
linear system.

There are a few methods that can be adopted to solve a linear system, which differ in complexity
and therefore not all of them can be used in real-time applications. Apart from the analytical
methods, numerical algorithms also exist. Typically the latter category is useful when the examined
systems are of a high order. However for 5x5 systems, the use of these algorithms is prohibited, as
their iterative nature would significantly limit the design’s efficiency. For a system of n equations
in n unknowns, the most important analytical methods and their arithmetic complexities are
summarized in Table 3.1.

Table 3.1: Available Methods for Solving Linear Systems

Name Complexity
Cramer’s Rule O(n!*n)
Gauss Elimination O(n?)
LU Decomposition O(n?)
Cholesky Decomposition O(n?)

Apparently the Cramer’s Rule is highly inefficient as it requires the calculation of n+1 determi-
nants of order n, while Gauss Elimination requires much less time to perform the same calculations.
However the algorithm that is practically preferred in computing systems is the LU Decomposition
and it’s variant, called Cholesky Decomposition.

Ideally, we would like to solve the linear system using the Cholesky Decomposition (also called
Cholesky Factorization) method as it requires roughly the half operations compared to the LU.
Cholesky method is widely used in Monte Carlo simulations and Kalman Filters, but it sets a
constraint regarding coefficient matrix A; In order for this method to be used, A should be positive
definite.

There is number of criteria that determine if an matrix is positive definite. However, as it can

be concluded by inspecting Equation 3.33, matrix A is not a priori known, it is determined only

81

after a cluster is provided. Thus, no one of the available criteria can be used to verify if the positive
definiteness condition is satisfied. For this purpose, we should make reference to the OLS theory.
Based on the p regressors x;, the dependent variable y; and the p unknown parameters ﬁi, the

theoretical form of the p normal equations for n pixels-observations is displayed below.

ZZ-szxszk = injyiz j=1...,p. (3.35)

i=1 k=1 =1

In matrix notation, the normal are written as:

(X™X)B=X"Y (3.36)

and the optimal parameters are expressed as:

B=X"X)"'XTY (3.37)

Evidently, Equations 3.34, 3.36 have the same form based on the following correspondence.

A=X'X (3.38)
b=X"Y '

The matrix A = X" X is known as the Gram matrix and is positive definite if and only if the
matrix X is of full rank, that is its columns are linearly independent. Using Equation 3.27, we
already proved that the regressors x;; are linearly independent for each observation i. Therefore
the columns of matrix X are linearly independent and the coefficient matrix A is positive definite.
Ultimately this means that the most efficient method for solving the linear system in Equation
3.34, the Cholesky Decomposition, can be used.

As its name suggests, the Cholesky algorithm, as well as the LU, is based on decomposing the

linear system into two simpler systems, that can be solved very easily, as shown below.

A=LL" (3.39)

where L is a lower triangular matrix and L its transpose, an upper triangular matrix. How the
matrix L is calculated, will be discussed in Chapter 4, where the implementation of the algorithm
is described.

In order to conform with the standard notation used in linear systems for convenience, let us
now change the notation in Equation 3.34 by substituting the unknown parameter vector B for the

unknown variable vector x. Equation 3.34 is converted to:

Ax=b (3.40)

From now on there will be no other reference to the regressors, so the unknown vector x should
not be confused with the prior notation. By substituting Equation 3.39 into 3.40, the problem is

transformed to the following:

LL'x=b (3.41)
By setting L x =y, the system is decomposed into the following two simpler problems.

82

L'x=y (3.42)
Ly=5>b (3.43)

As both L and b are known, the second system (3.43) is firstly solved with respect to the
unknown variable vector y with forward substitution. Afterwards, the first system (3.42) is solved
with respect to the unknown parameter vector x with reverse substitution.

This process yields the OLS estimate for the parameter vector x = B = [m,n, p,q k]T.
The final step is to calculate the Gaussian parameter vector v, given in Equation 3.11 and more
specifically the cluster centroids z., y.. These parameters are found using the definitions from
Equation 3.21 as follows.

(3.44)

Q
8
\
‘ |
= —
o 8- vk

n

A:exp(% g—k)

3.2.5 Centroiding Process

The main concern so far was the characteristics and functionality the FGF algorithm. Based on
Equations 3.17, 3.18 it is considered that the FGF demonstrates approximately the same accuracy
as the GF, if and only if the pixels ¢ involved in the calculation, are characterized by ¢(r;) close
enough to 1, that is they have SNR greater than a certain value.

In star images however, due to the uncertainty of the noise and star intensity, it is expected
that not all pixels in an extracted cluster will satisfy this precondition, and it is also not known
which of them do. For this reason Wan et al. [7], did not use the FGF as a complete centroiding
algorithm, but they proposed a centroiding system based on the Fast Gaussian Fitting algorithm.
The flow diagram of this system is illustrated below.

Star image Star spot !’ Initial selection L] Fast Gaussian 3| Pixel-wise SNR |
extraction | of pixels fitting estimation
. __ __ Thefirststep _ __ _| __ _,
. A 2
‘ Reselect pixels p| FastGaussian Star centroid
‘ based on SNR fiting ‘

|l __ __ _Thesecondstep __ __ |

Figure 3.2: Flow diagram of the proposed centroiding process based on the FGF. Image taken from [7].

The first step of this method intends to roughly estimate the SNR, of each pixel in the cluster by
getting a solution of the underlying Gaussian parameters using the FGF. Based on this estimation,

the pixels that satisfy the precondition of high enough SNR are given as input to the FGF in order

83

to calculate the final centroids. This operation for a given cluster of N > 5 pixels is summarized

below.

1. In the first step the SNR of each pixel is estimated.

(a) Initially a limited number of pixels are selected, based on the fact that brighter pixels
have higher SNR, in order for the FGF to be able to provide accurate results. The five
brightest of the cluster are selected to form the set U’.

(b) The FGF is performed over the initial set U’ in order to roughly estimate the Gaussian

parameters (A’,x;,y,,0%,0,). These parameters are used to establish the PSF using

Equation 3.11 as following.

- (zi —x)® (yi—y.)?
S’L = A/ exp <— 20_;2 — 0_;/2 (345)

(c¢) The established PSF is used in order to estimate the source intensity S; for all pixels
i =1...N. Then the noise intensity and consequently the SNR of each pixel 7 can be
estimated as shown below.

Ni=1I-8; (3.46)

7 = SNR; = | 2| (3.47)

2. Using the SNR estimation for each pixel of the cluster, the second step calculates the final
centroids.

(a) For a given SNR threshold T', that defines a certain proximity of ¢(r;) to 1, the pixels
of the cluster with estimated SNR greater than this threshold, are selected to form the
final set U. This re-selection is expressed below.

U={i, SNR, > T} (3.48)

(b) The FGF is performed over the final set U to estimate the Gaussian parameters again.
Comparing with the first execution of the FGF, more pixels are involved this time and
the results will be more accurate.

In [7] the proposed centroiding process has been extensively evaluated against the most im-
portant centroiding algorithms that have been mentioned in Section 2.3.1.2. The most interesting
experiments are those in which, the accuracy is measured while changing the standard deviation
(0z, 0y), the noise level or the brightness level A of the Gaussian PSF. Details about the image
generation and parameter selection can be found in the paper and are purposely omitted here. The
generated error curves are summarized in Figure 3.3.

These experiments prove that the centroiding error of the proposed algorithm is almost the
same as that of the GF, less than of the other algorithms, under all circumstances.

It is evident, that the FGF-based method is more robust to noise than the CG. When the
centroid moves along the x-axis in the subpixel level, the centroiding error curve of the latter also
suffers from the S-curve error as expected. Is is also apparent that the accuracy of the GF and
FGF algorithms is kept unaffected when saturated pixels are present (Figure 3.3d). This is due
to the fact, that as stated in [7], saturated pixels are excluded during pixel selection by definition.

This kind of pixel filtering is essential for the fitting algorithms, because they are expected to be

84

0.04

—+ CG
004 E———e 0.035 | E'[\ éVFCG
—B— WCG ~
0.035 > GF —0--GA
—{O--GA 0.03 1 Proposed
0.03 Proposed 5
- £ 00251
£ 0.025 -4 R
® ! 002 F
5 oo s \
3 =] &
g Z 0015\
§ 0015 g \
0.01 \
0.01
G 0.005 *
. .005, \ LO-
0.00: _
P L A 0
O 152 154 156 158 16 05 07 09 11 13 15 17 19 2
star spot postion (x) star spot Gaussian radius (nr)
(a) Changing Centroid Position (b) Changing Gaussian Radius
0.06 0.08
E—— —+ CG
| |TEWee 007 | |—8—WCG
0.05 > GF I
—O--GA > GF
Proposed 006 |—¢--GA
5 0.04 5 Proposed
=} £ 005
] o
4 2
£ 003 £ 0.04
b 8
€ & 0.03 |
$0.02 F o
0.02
0.01

R 0.01f & s
»” L B e sy .»w?@fg/

0.005 0.01 0.015 0.02 0.025 0.03 0 02 04 06 08 1 12 14 16 18 2

oo PP Por o o o

noise level (ax) star spot brightness level (A)
(¢) Changing Noise Level (d) Changing Brightness Level

Figure 3.3: Evaluation experiments of the proposed method’s accuracy against popular centroiding
algorithms. CG: Center of Gravity, WCG: Weighted (Squared) Center of Gravity, GF: Proposed Algorithm,
GA: Gaussian Analytic, GF: Gaussian Fitting. Images taken from [7].

very sensitive to flat saturated sub-regions within a cluster, as such regions distort the cluster’s
Gaussian-like shape. This phenomenon has been also detected in [61].

Another experiment has been conducted, which allows a closer comparison of the considered
in this thesis algorithms, CG and FGF, with respect to the position of the detected cluster on the
image plane. The results of this experiment are displayed in Figure 3.4.

Apparently the FGF demonstrates an overall dominance over the CG algorithm. The positions
that the CG performs better locate mainly near the edge of the FOV, due to the distortion of the
optical system which is greater there, as already explained. This effect leads to clusters, whose
intensity shape does not strictly conform to a Gaussian function, which consequently reduces the
accuracy of the FGF [59].

Lastly the results of the efficiency experiment, which measured the total time consumption of
each algorithm on 10,000 star images are given in Table 3.2.

Table 3.2: The total time consumption of each algorithm on 10,000 star images. Data taken from [7].

Method CG WCG GF GA FGF
Time (s) | 1.3504 1.3878 58.9863 1.4915 3.9675

It is confirmed that CG, due to its low complexity, is the faster algorithm available. The

85

\ # Proposed performs better than CG

1800 CG performs better than Proposed

i fod
1600

N

=
(=3
o
TEELk -

e
v
o
%)

1200 E K %‘%

1000 FEETEE:

0]
EOEOE)3
Ll

x
(=]
o

X ol
4

S

y-coordinate in FOV (/pixel)

<2}
=]
o

*
*
IR

et

400

*
o

200
200 400 600 800 1000 1200 1400 1600 1800

x-coordinate in FOV (/pixel)

Figure 3.4: The colored part of the plane corresponds to the positions of all centroids on the image plane.
Red asterisks represent the positions where FGF performs better than CG and blue dots the opposite.
Image taken from [7].

most important finding is that FGF indeed improves the efficiency of the Gaussian Fitting algo-
rithm without reducing the accuracy. This feature makes it suitable for the real-time application

examined in this research.

3.2.6 Proposed Modifications for Implementation on FPGA

As already explained in the CG case, when designing a system on the FPGA, some modifications
on the respective software algorithm are usually required in order to exploit better the benefits
provided by the hardware platform.

3.2.6.1 Changing the Centroiding Process

In Section 3.2.5 the proposed in [7] centroiding process was analyzed. In order to achieve high
accuracy under the uncertain and noisy space environment, the FGF algorithm is executed twice.

If the centroiding system illustrated in Figure 3.2 is to be implemented on hardware, it is
expected that the FGF algorithm will be the design’s critical component, with respect to both
resource utilization and performance. There are two possible solutions in order to manage this
component.

The first and most straightforward option, would be to implement the proposed system using
two separate FGF blocks. It should be expected that in this case the resource utilization would
be significant, possibly leading to timing problems due to area congestion and consequently to
a drop in performance. One should remember, that apart from the centroiding algorithm, the
clustering algorithm should also be implemented on the FPGA. Thus extra care should be taken
when evaluating the trade-off between resources and performance.

The second option is to implement a single FGF block that will be used by both processing
steps. However, creating feedback loops is generally not a very hardware-friendly design method.
It can be also expected that the establishment of a feedback loop, would decrease the system’s
throughput, compared to the first design option, as the next cluster will need to wait longer before

it can be driven to the FGF block. This extra time is determined by the time required, in order

86

for the previous cluster to be processed by the Pixel-wise SNR Estimation, Pixel Reselection and
FGF (for the second pass) blocks. Approximately, the use of a single FGF Block and creating a
feedback loop would reduce the throughput by 50%.

Fortunately, already before this problem was taken into consideration, Infinite Orbits had
determined that the accuracy provided by the FGF algorithm, if the whole extracted cluster is
used in the first place, is sufficient regarding the mission’s requirements. In other words they have
determined that if the FGF algorithm is used as a complete centroiding method, instead of the
proposed more complex process, the requirement of cross-boresight error is satisfied.

Therefore for the rest of this thesis, it is assumed that the centroids are extracted by a single
execution of the FGF algorithm. It is important to point out that the drop in accuracy due to
the modification of the proposed system can be even lower, if appropriate care is taken during
clustering. More specifically, if the threshold value used in clustering is slightly increased, which
means that the extraction criterion is stricter, then the provided clusters will be brighter and
the respective pixels will have a higher SNR. This threshold value can be either predefined or
dynamically adjusted. In the first case the increased threshold means that, if for a given set
of data (pixel intensities), a 5x5 cluster was previously extracted, for the same data a 4x4 or
3x3 cluster will eventually be extracted. Otherwise, in order for the clustering threshold to be
dynamically adjusted, a feedback channel from the Matching process to the Clustering process
should be established. This channel can provide information to the clustering algorithm regarding
the overall accuracy of the system. Therefore, if lower accuracy than expected is observed, the
clustering can be instructed to increase the threshold value in order to provide ”better” data to
the centroiding algorithm, which is ultimately the critical factor as far as accuracy is concerned.

It should be also noted that in this work, it is assumed that the exclusion of the saturated
pixels is accomplished during clustering and that clusters with no saturated pixels are expected.

Lastly we highlight, that the described design call removes completely the need to implement
the Pixel-wise SNR Estimation component, which includes the operations stated in Equations 3.45,
3.46, 3.47. The fact that these operations would be performed for each pixel means that this block

would add a significant number of cycles to the system’s total latency, that are eventually avoided.

3.2.6.2 Changing the Reference System

Similarly to the CG algorithm modification, the second change of the FGF algorithm aims to
minimize the bit widths within the design. However, unlike the CG case, there is not an analytical
proof that can verify the validity of the intended modification, due to the large number of complex
operations (e.g. exponential, powers etc.). The correctness of this change will be verified through
an example.

Consider the following two clusters, which have been detected within a frame. Remember that

the indexing in the adopted raster scan starts from 0.

300 | 4 5 6 0 4 5 6
X X

301 | 7 8 1 1 7 8 1

302 | 2 3 4 2 2 3 4

580 581 582 0 1 2

87

Each cluster will be processed in the same way. Initially the intensity values and the respective
coordinates will be used in order to calculate the coefficient matrix A and the constant vector b
(Equation 3.33) and then the Cholesky Decomposition will be performed in order to calculate the
centroids. Apparently, the matrices of each cluster will differ.

It is true that the estimated centroid subpixel position is correlated with the intensity values, as
these values are generated by the underlying Gaussian function, whose one fundamental parameter
is the real centroid itself. It’s also true that the Gaussian distribution that generates the data and
the respective centroids, is independent from the pixel coordinates. Considering also the uniqueness
of the OLS solution which has been proved in Section 3.2.4, a given set of data (i.e., pixels and
centroid) is always generated by the same Gaussian function and is independent from the position
of the cluster within the image plane.

With regard to the examined example, this means that the centroid’s position for both clusters
will be the same. This position is marked as a blue x. Note that the second given cluster can be
considered either as a cluster which starts at first row and column or the same cluster as the first
but with coordinates that refer to a pixel’s distance to the cluster’s first row and column (relative
coordinates). In other words it has been proven that the centroid estimation is independent from
the reference system that is used. The estimated position is the same if either the absolute (within
the image plane) or the relative (within the cluster) coordinate system is used.

That allows us to always use the relative coordinate system in order to minimize the bit widths
of all the partial results within the design, similarly to the CG case. Finally, when the relative
centroid is estimated, the absolute coordinates, that is the first row and column, of the cluster will
be added in order to yield the real location of the star centroid in the image plane.

88

Chapter 4

Proposed Hardware Designs

The main objective of this thesis is the acceleration of the considered centroiding algorithms on
an FPGA platform. In this chapter the implementation of each proposed hardware architecture
is described. The encountered designing trade-offs and the differences in development process
between the FPGA programming models are thoroughly explained. Technical details and results
of the simulations, performed in order to test and verify the implemented systems, are also provided.

The accuracy and performance evaluation of the proposed designs is covered in Chapter 5.

4.1 System Specifications

4.1.1 Configuration and Process Integration

In order to better understand the implementation details of the centroiding process, it is nec-
essary to firstly establish the background regarding the system’s configuration and the framework
within which the proposed designs operate.

Considering the configuration created by Infinite Orbits, the algorithms have been implemented
on the ZedBoard development board, which hosts the Xilinx ZYNQ-7020 SoC. The PL features
of this platform will be discussed in Chapter 5. The provided system includes also a custom high
speed sensor-lens system, with the following specifications.

e Field of View: 15.5° x 15.5°
e Image Resolution: 2048 x 2048 pixels

e Pixel depth: 12 bits

Therefore the gray-scale intensity of each pixel is represented with 12 bits and each image
consists of 2048 rows and 2048 columns. Using a high speed streaming protocol the image data are
read-out by the clustering process, which is also expected to be implemented on the FPGA side
of the system. During clustering, a pre-processing technique called data binning takes place. This
technique is typically used in order to reduce the effects of errors occurred during quantization. In
our case, binning is performed by averaging the values of 2x2 regions of pixels and then rounding
the calculated value towards the nearest equal or smaller integer. This method creates an image
with half the initial resolution, that is 1024 x 1024 pixels. After binning, clusters are extracted

from the frame and are supplied to the centroiding block.

89

As already stated in Chapter 3, it is assumed that each cluster is of square shape. More
specifically, Infinite Orbits have recommended that each star in the captured image is spread over
regions of 3x3 to 5x5 pixels. Consequently, the implemented designs are expecting as input clusters
of these dimensions.

A basic prerequisite when designing a hardware system, is to know the format of the input
data, which depends on the previous block in the pipeline. For this reason, it is important to
establish the interface between the clustering (producer) and the proposed (consumer) blocks.
The term ”interface” refers to both the physical communication channel (e.g., possible intermediate
components, number and width of IO ports) and the format of the transferred data. Since both
systems are implemented on the FPGA, it is assumed that the interface consists of a single buffer,
which holds the produced data until the consumer is able to receive and process them. Due to the
nature of the examined application, it has been determined that the most efficient way to transfer
data is by streaming pixels one-by-one. An abstract representation of the established streaming
channel is shown in Figure 4.1.

Cluster n Cluster n+1

A A
- RS R

IN—1 N-1

N | Xg | Yo | lo,0 | lo,1 | lo,2 | ||0,N-1| l1,0 | 4,1 | N | Xg | Yo |
To Centroiding <

Time »

Figure 4.1: Illustration of the data transmission between clustering and centroiding blocks.

Before the reception of the pixel intensities, which are the genuine information for centroid
detection, a set of auxiliary data in a package-like format is transferred for each cluster. The first
package is a number that stands for the dimension of the following cluster. If a 5x5 cluster has
been extracted and is to be received, then N = 5. Afterwards x¢ and yy are provided, which
express cluster’s first column and row in the image plane respectively. Finally the intensities of the
cluster’s pixels, following the raster scan pattern are streamed. Immediately after the reception of
the last pixel’s intensity, the streaming of the next cluster can start.

Since the expected clusters have a maximum size of 5x5 pixels, 3 bits are required to represent
the N data. As stated, binning results in an image of 1024x1024 pixels, from which the clusters
are extracted. Consequently, the number of bits that are required to represent xy and g is 10.
However, the image sensor generates high depth pixels whose intensities are expressed using 12
bits. Since all of these data are transferred through a single channel, the respective port of the

implemented blocks has a width of 12 bits. This will apply in all of the proposed architectures.

As already mentioned, the matching process is expected to be developed on the ARM proces-
sor by Infinite Orbits. This process will be receiving the calculated centroids through the high
performance AXI interface. The establishment of the described interfaces allows the interleaved
integration of the processing blocks. Thus, while our proposed design calculates the centroid of
a cluster, matching will be calculating the angular distances between stars of the previous frame,
clustering will be extracting the following clusters and the image sensor will be integrating the
next frames.

90

4.1.2 Performance Requirements

Before analyzing the proposed designs, it is essential to explain how the overall system’s re-
quirements introduced in Section 1.3 are related to the objectives that where placed during im-
plementation. For convenience the basic requirements that the total system needs to meet are

restated below.

e Mean accuracy error of less than 3 arcseconds across boresight

e Real time performance of 1-2 frames per second

Initially we should estimate the system’s required accuracy in pixels. Considering that an
arcsecond is Wloo of a degree and by applying the sensor’s specifications in Equation 2.13 we can
calculate the correspondence between arcseconds and image pixels as follows.

arcseconds degrees FOV 1557

=22, =27.24 41
600 = 2o - 3600 = 27.246 (4.1)

Mathematically the required cross-boresight accuracy translates to a typical subpixel accuracy

pixel ~ pixel ~ Resolution -

of roughly 0.1 pixels. However it should be mentioned that the specifications provided by Infinite
Orbits allow small deviations, as the maximum accepted error is assumed to be 0.25 pixels.

On this point, it should be also pointed out that this thesis puts focus only on the hardware
implementation of the centroiding process and doesn’t develop an end-to-end star tracker. Con-
sequently it is not possible to evaluate the proposed designs over the required overall update rate
of 1-2 Hz. Instead during development, a more flexible objective of achieving the highest possible
throughput was placed. For the same reason, the AXI interface between the PL and the PS hasn’t
been developed. Instead, in this thesis both FPGA programming models have been extensively
studied.

4.2 Center of Gravity Algorithm

As already explained, the CG algorithm is the most traditional and simple approach to the
centroiding problem. In this thesis it has been adopted as a baseline design. Both VHDL and C++
have been used in order to implement a CG-based model, which allowed a detailed comparison

between the two programming models. The implemented designs are described next.

4.2.1 VHDL Model

4.2.1.1 Overview

At first VHDL was used in order to provide an RTL description of the centroiding block. A
simplified block diagram of the proposed hardware architecture is displayed in Figure 4.2.

The system is divided in 3 sub-blocks, which are displayed with different colors and are syn-
chronized under one global clock (clk). Each of these blocks contains also a number sub-modules,
displayed with blue color, that perform the fundamental operations in the lowest level. During
development with VHDL, the structural design style was adopted in order to easily describe the
system’s hierarchy. In order to model the sequential logic inside the lowest level’s blocks, the
behavioral style was used.

The operation of each displayed element will be explained in the following sections. For each

developed block, a number of different architectures were tested. The criterion based on which

91

clk Input Block Divider Block ‘Output Block
= [
rst Intensity Sum X
—_—
J oot
sum X /Y
Input Data Control | Intensity suml | B Quotient Output Data
uffer - uoien
- 1. . [Eisnsh - .
Unit AC Ll (Parallel to Serial Converter) Sum | Divider Adder
—_—
= 1
e I | Coordinate
— !
' Buffer
Intensity {Sum Y Parallel to Serial Converter)
MAC_Y H |(Paralolto Sorl Convertor) |
Coords Y
Absolute Coordinates

Figure 4.2: Simplified block diagram of the proposed hardware architecture.

a specific format was preferred over the others was the Logic Synthesis results. This is a typical
method when designing on hardware, as Logic Synthesis creates the respective RTL model and
estimates the final circuit with sufficient accuracy. It is important to mention, that due to the low
complexity of the CG algorithm, in most cases the differences regarding the estimated resources
were very small, e.g., 1-2 FPGA primitives (LUT or Registers). Although in some cases these
differences could be eradicated during implementation, as a number of optimizations are performed,
it is critical to adopt a systematic method of comparing different descriptions. Therefore even
such small differences were taken into account and the optimal model was chosen based on Logic
Synthesis minimum resources and shortest critical path.

As in every sequential digital circuit, apart from the clock, a reset signal is necessary in order
to initialize and reset the system. In this design, this signal is denoted as rst, is connected to each

building block and is active high, unless it’s stated otherwise.

4.2.1.2 Input Block

The ”front-end” of the CG circuit is the Input Block and is responsible for calculating the

numerators and denominator of the CG formula, given in Equations 3.9, 3.10 and repeated below.

> L,
> 1
> Liyi

c = Y
Y * > 1

. =X+

Multiplier Accumulator

One of its basic elements is the MAC (Multiplier Accumulator) block, which calculates the sum
in the numerator of the fraction and its RTL model is given in Figure 4.3.

This block is controlled by the Control Unit (CU) through the enable en and initialization
mac_init signals. Through the bright port a pixel’s 12-bit intensity value I; is provided, while
at the same time in the 3-bit coord port the relative coordinate x; is available. The maximum
number of pixels per cluster is 5 x 5 = 25 which means that the maximum number of products to
be summed is 25. It is known from basic binary arithmetic theory that when M numbers of N bits
are added, the result is represented with N + log, M bits. Since 32 > 25, where 32 is the smaller
power of 2 larger than the number of products, and N = 12 + 3 = 15 due to multiplication, the
output port should be 15 4+ log, 32 = 20 bits wide.

92

bright[11:0]

clk |
coord[2:0 L — result[19:0
en |
mac_init

MAC

Figure 4.3: RTL model of the MAC block.

The MAC block can be implemented in several ways on hardware regarding operation and
resources. Various behavioral descriptions were tried and it was determined that the lowest critical
path was achieved when the block was mapped to a DSP core. This result was anticipated as this
core can perform the MAC operation in the most efficient way. Because the synthesizer didn’t
generate this core automatically, the use_dsp48 attribute was used instead. The exact operation

of the MAC block, verified in behavioral simulation, is shown in Figure 4.4.

& clk
& en

& mac_init

| coord2:0]
" bright{11:0]
> W result19:0]

Figure 4.4: Simulation of the MAC block.

As it can be seen, the first pixel can be provided one cycle after the initialization signal. When
simulations are visually observed, one must remember that if a signal is asserted at the exact
moment when the clock is asserted, it cannot be read in this cycle. This is due to the setup time,
which demands an input signal to be stable for a short period of time prior to the clock’s positive
edge. Therefore, the signal is actually read at the next positive edge. The MAC block generates a

result with latency = 0, which means instantly after it reads the respective input.

Several other models were also tried. If the input data were provided in parallel with the
initialization signal and it was required to instantly calculate the result, the respective critical
path was significantly larger, as expected. Thus the optimal model is the one that was presented.
Since CG requires the calculation of two numerators, one for each dimension, two MAC blocks

were instantiated.
Accumulator

The denominator which is common for both dimensions and represents the sum of intensities

is implemented with a similar block, called AC (Accumulator). This block is given in Figure 4.5.

The width of the output port is calculated as 12 +log, 32 = 17 bits. The operation of this block is
the same as for MAC and it is shown in Figure 4.6. The accumulation operation was also mapped

to a DSP core. It was found that otherwise the synthesizer estimated a slightly larger critical path.

93

ac_init |
bright[11:0] L _ result[16:0]
clk |
en |
AC

Figure 4.5: RTL model of the AC block.

& clk
&en

4 ac_init

> W |bright{11:0]
> W result[19:0]

Figure 4.6: Simulation of the AC block.

Control Unit

The most complex module in the Input Block is the Control Unit (CU) which is responsible
for controlling the other blocks and the data flow between them. The RTL model of this block is

given in Figure 4.7.

— abs x[9:0
— abs y[9:0
ck | —_bright[11:0
data_in[11:0] L _ | en
rst |] init
valid_in | — rel x[2:0
— rel y[2:0
| valid_sum

Cu

Figure 4.7: RTL model of the CU block.

Initially it checks if the input data should be received and processed, based on the valid_in signal
which indicates their validity. This kind of signal is typical in digital systems and is generated
by the clustering system. When valid data are available, the CU initializes the MACs and AC
and supplies the input intensities through the bright port. At the same time, based on the N
package which is always received at the start of a transmitted cluster, it generates internally the
relative coordinates of each pixel and passes them through the rel_z and rel_y ports. This block is
implemented as a Finite State Machine. Its structure is introduced in Figure 4.8 in order for the
overall function to be better explained.

This FSM represents the process followed for each cluster. Each edge corresponds to the value

94

valid_in = 1 and final pixel not reached

g State 0 s 5 3 State 3
State 1 State 2

Set Invalid Output valid_in = 0 and final pixel not reached

Read ¥
MAG & AG Iniiaization

I valid_in = 1 (new luster)
Road N

@imonsion)) MAC & AC Enabling

alid in=0 | final pixel reached | valid in=1

= state 4a =
Set Valid Output o 6

Figure 4.8: FSM that describes the CU function.

of the walid_in signal one cycle after the operation inside the source box. Suppose we start at
State 0, after either the power up or the processing of a previous cluster. As long as the input is
invalid, nothing happens. The first valid input corresponds to the N package which informs the CU
regarding the cluster size. If the next data is invalid, the system goes to an idle state until the next
valid input is received. Apparently the same procedure is followed regardless of the current state.
Otherwise, the system moves to State 1, where the next package, which is the starting column X,
is read. Similarly, at the next active cycle the starting row Y is read. After that, the intensities
are streamed through the input port. For each intensity two respective coordinates are generated
(for both dimensions) and these three data are passed to the computing blocks.

The most important part of the FSM is the transition from State 3 to State 4. Based on the
N package, the CU keeps track of the received pixels and is able to recognize when the last pixel
has been received. When this happens, there are two possible transitions at the next cycle. In
each case the valid_sum signal is asserted in order to inform the next blocks that there are valid
sums available, calculated by the MACs and AC. If the next input data is invalid, then the FSM
returns to State 0 and waits for the next cluster to start. However it is possible, that data from
the next cluster are transferred immediately after the one which was just processed. Thus, if the
next data is valid, it means that the N package from the next cluster has been received. Then
the FSM skips State 0, moves to State 1 and waits for the X package. This architecture enables
the system to operate with the highest possible throughput, as there is no ”adjustment” period
between consecutive clusters required.

Apart from the Divider Block, that receives the wvalid_sum signal in order to accept the cal-
culated sums, this signal is also driven to the Output Block, which at the same time reads the
cluster’s absolute coordinates X, Y through ports abs_z and abs_y respectively. More on this will
be discussed later on.

Due to the nature of the CU module, it has been implemented only with logic cells, that is
LUTs and registers. The simulated CU is displayed in Figure 4.9.

Notice how the output port bright follows the input port data_in with a delay of 1 cycle, due
to the required setup time as explained. Similarly the MACs and AC read the intensity values one
cycle after the bright signal is updated. This is why the valid_sum signal is asserted one cycle after

the last intensity is passed through the bright port.

Overall Input Block
When the described modules interconnect, the Input Block is formed. Both the Input Block’s

RTL model and the internal interconnections as generated in Vivado are shown in Figure 4.10.

95

u
u
u
u
u
u
u
u

> W|bright{11:0]

Figure 4.9: Simulation of the CU block.

clk
data_in[11:0]
rst

valid_in

InputBlock

abs x[9:0]

abs y[9:0]

sum_bright[16:0]
sum_x[19:0]

sum_y[19:0]

valid_sum

(a) RTL model.

Denominator

ac_init
bright]11:0] result{16:0] . i
sum_bright[16:0]
~ O sum_brighi[16:0]
en
AC
MAC _X
! bright{11:0] o
clk
coord[2:0] result{15:0] i
sum_x[19:0
- - D sum_x(19:0]
ControlUnit mac_init
1] MAC
QES—"[::? [abs_x9:0]
. [abs_y[2:10]
clk bright[11:0] MAC Y
. . data in[11:0] en =
data_in[11:0] +
-inf11:0] rst init bright{11:0] G
rst [— .
valid_in [valid_in red_x[2:0 clk
- rel_y[2:00 coord[2:0] result[19:0] i
sum_y[19:0
valid_sum en D _yl 1
CU mac_init
MAC

(b) RTL schematic.

Figure 4.10: Complete RTL representation of the Input Block.

[valid_sum

Lastly, it is important to evaluate the examined block regarding the hardware metrics of latency
and throughput. This can be easily done through simulation, which is displayed in Figure 4.11.
Note that the signal new_cluster hasn’t been implemented and is used in simulation for illustration

purposes only.

A cluster of N pixels corresponds to N + 3 cycles of valid data, that is N cycles for the

96

Figure 4.11: Simulation of the Input Block.

pixels themselves and 3 cycles for the initial auxiliary data. Since the CU is able to process
the next cluster immediately after the previous cluster’s last pixel the Input Block demonstrates
Throughput = N2 + 3 cycles. The latency analysis is a little more complex. As explained, the CU
drives the input data to its output port one cycle after the valid_in is asserted, due to the setup
time. Correspondingly the computing blocks read their input, and provide output, one cycle after
they are enabled. Since there are N intensities, 3 initial packages and 1 cycle due to this delay,
Latency = N? + 4 cycles.

Even though intuitively the latency should be measured with respect to the read cycle, usually
it is measured from the moment in which the input is asserted as valid, which is one cycle earlier.
For the rest of this thesis, this measurement method will be adopted. Lastly, it should be noted
that for convenience, in simulations small numbers are used throughout this work. In the real

application significant larger values are expected.

4.2.1.3 Fixed Point Arithmetic

At this point it is essential to shortly explain a concept that was adopted during system devel-
opment. Fixed Point Binary Arithmetic is widely used in Digital Signal Processing applications
to represent fractional numbers as a replacement to the significantly more complex Floating Point
Arithmetic. In this representation a binary number consists of an integer and a fractional part,
which are separated by the binary point.

Consider a I + F = N-bit number x, where I is the amount of integer bits and F' the amount

of fractional bits. This number is expressed as:

N—-1
z=>Y 2", (4.2)
n=0
where n is the bit position starting from the Least Significant Bit (LSB). Apparently, the bits on
the right of the binary point carry negative weights, which means that they represent numbers
smaller than 1.

Due to its close relationship with the integer representation, Fixed Point Arithmetic is highly
efficient and allows high performance fractional number operations. In hardware designs where
the performance is usually the most important objective, the use of Floating Point representation
is unaffordable. It is computationally very demanding and therefore costly in terms of area and
clock cycles. On the contrary, Fixed Point is by orders of magnitude faster but leads to loss of
precision and should be used with caution.

Since there is a minimum required precision specification in our application (Section 4.1.2), the
use of Fixed Point numbers to represent the subpixel fractional centroid is vital. The operation

which involves fractional numbers in the CG algorithm is the division. If the quotient is imple-

97

mented as a fixed point fractional number, the resources and logic levels required for the division
are heavily reduced resulting in lower latency and shorter critical path.

A fractional binary number, defined as in Equation 4.2, is written as below.

Tr = bjfpflb[,F,Q ce blbo.bflbfg N bfpflb,F

where the subscript value is the weight of each bit. Apparently the ”step size” which refers to the
resolution of a given fixed point representation, that is the accuracy level, is determined by the
LSB b_r and therefore the number of fractional bits F'.

The minimum number of fractional bits which satisfies the imposed requirement is F' = 4 as:

1
2~ F =94 = - 0.0625 < 0.1

4.2.1.4 Divider Block

The second block in the proposed pipeline is the Divider Block, which is responsible for calcu-

lating the subpixel centroids within the cluster, that is the relative centroids.

Divider

Of course the fundamental module of this block is the Divider. It is known that the division
is the most complex of the four basic arithmetic operations. In order to design high performance
hardware, the Xilinx LogiCORE IP Divider Generator core is provided which offers three different
division algorithms, allowing choice of resource, throughput and latency trade-offs. Due to the
nature of our algorithm, a basic demand regarding the division operation is to produce a result
with fractional remainder. The LUTMult solution doesn’t offer this output type and was therefore
rejected.

The most powerful algorithms are the Radix-2 non-restoring algorithm and the High Radix
algorithm. The former uses only FPGA primitives (LUTs and FFs) and solves one bit of the quo-
tient per cycle. The latter exploits DSP Slices and Block RAMs and is implemented as an iterative
engine, solving multiple bits of the quotient per cycle. However, due to the use of prescaling prior
to the iterative division, it causes an overhead of resource which makes this solution recommended
for larger operands. By executing Logic Synthesis, it was indeed found that this algorithm uses
more than twice the amount of resources that the Radix-2 requires.

The block diagram of the produced IP Divider core, based on the Radix-2 algorithm is given
in Figure 4.12.

E"— S_ANIS_DIVISOR

= = axiz_divisor_toata[23:0]
= 4 z_axiz_divisor_tready

= P =_axis_divizor_tvalid

EI— S_AXIS_DIVIDEMD

- z_axiz_dividend_tdsta[23:0]

— A z_axiz_dividend_tready

M_8XI5_DOUT —
m_axis_dout_tosta[23:0] b
m_axis_dout_tvalid b=

= P =_axis_dividend_tvalid
- aclk

ﬁ arezetn

Figure 4.12: RTL block model of the Divider IP Core.

98

This cores adheres to the AXI4-Stream protocol which means that all the inputs and outputs
are conveyed on AXI4-Stream channels. The input channels consist of the tdata, tvalid input
signals and the tready output signal. The output channel doesn’t contain a tready signal in this
implementation. The validity of an input signal depends on the value of the tvalid, which together
with the tready perform a handshake to transfer a message, through the tdata, which is the actual
payload. The output tready indicates if the divider is ready to accept new data. Another feature
of the AXI4-Stream specification is the implementation of an active low reset signal, which means
that the input active high signal must be inversed. Moreover, both tdata ports are extended to
fit a bit field which is a multiple of 8 bits. Since the dividend and divisor are 20 and 17 bit wide
respectively, they are padded to 24 bits. By definition, the quotient has the same bit width as the
dividend, that is 20 bits, while the fractional remainder is chosen to be 4 bits as explained.

Radix-2 algorithm offers a range of throughput options which result in different resource uti-
lization. The most important design call during the whole development process had to do with
the divider throughput choice. Due to division’s high complexity, which makes it the CG system’s
critical operation, it is usually preferred to minimize the number of this operation in the algorithm.
Since a single core can provide high throughput, it was decided that only one core for the divisions
on both dimensions will be implemented, in order to efficiently exploit hardware resources.

In order to choose the throughput of the critical core, the rate at which the clusters are provided
should be taken into account. It is expected that the minimum latency of the clustering block will be
at least 70 cycles, which is a considerable value. This enables us to choose the slowest specification,
which is one division per 8 clock cycles, in order to minimize the required resources.

In Radix-2 algorithm, latency is a function of the dividend and fractional remainder bit widths,
denoted as A and F' respectively, and of the selected throughput. In our case, Latency = M + F +

3 = 27 cycles. The complete operation of the divider core can be seen in Figure 4.13.

E-I-H .------

Figure 4.13: Simulation of the Divider IP Core.

As expected, the core asserts the tready signal every 8 cycles. If both tready and tvalid are
asserted in the same cycle, a transfer occurs and the input data are read. The respective output
is produced 27 cycles after the positive edge of the tready signal.

Buffer

Considering the fact that every cluster requires two divisions and only one core, with relatively
low throughput, is implemented, a requirement for in-order buffering and retrieval arises. This
behavior corresponds to a First-In-First-Out (FIFO) memory queue. As part of development, a
number of custom descriptions were tested. However it was determined that the best Quality
of Results (QoR) was achieved when the Xilinx LogiCORE IP FIFO Generator core was used.
This fully verified core provides various optimized configurations with respect to performance and

resource utilization.

99

For the purposes of our system, a Native Interface FIFO was used, which can be customized
to utilize BRAM, Distributed RAM or Built-In FIFO resources. Since the FIFO is intended to be
placed before the Divider core a specific constraint regarding its operation is imposed. As showed,
the Divider core (consumer) asserts the tready when it’s ready to process new data. In order for
the core to read new data, the tvalid of the producer should be high at the very same cycle. The
FIFO core offers two modes of operation. The standard mode is a typical memory-like mode, in
which a read operation must be issued and the stored value is provided at the output port one
cycle after the positive edge of the read signal. As this read operation relies on the Divider’s tready
signal, this mode of operation is not acceptable. On the contrary, the First-Word Fall-Through
(FWFT) mode corresponds to a typical FIFO-like operation where the first data automatically
appears on the output bus until the appropriate read signal is asserted.

Remember that the process of accepting two data in a single cycle, that is both numerators, and
passing once at a time, refers also to a Parallel to Serial Conversion process. After an exhaustive
exploration of the available FIFO types, it was determined that this bus width conversion is
performed more efficiently when instead of two FIFOs, that store each numerator independently,
a single non-symmetric FIFO is used. This kind of structure accepts two different data in a
concatenated form of N bits, separates them internally, and provides at the output port one data
of % bits. In our case, one FIFO for storing both numerators concatenated and one FIFO that
stores two duplicates of the denominator are implemented. Their RTL models are shown in Figure
4.14.

ll= FiFo_wriTE
[Il= FiFo_wriTE

— A ful
03 B din[33:0
— > din380] A > e
— B wren — P owr_en
Il = FiIFo_READ |l|— FFo_rEsD
— 4 empty — 4 empty
— o dou190] — 0 dout[16:0]
— P rd_en — P rd_en
— clk — clk
= grst = orst

Figure 4.14: RTL block models of the FIFO IP Cores.

This function results in input ports of twice the output port’s bit widths. The input data bus
used for reading data is called din, while the output data bus driven when reading from the FIFO is
called dout. Both FIFOs operate concurrently. The write_en signals are handled by the Input Block
and indicate when valid sums are available for storage from MACs and AC. The read_en signals
are connected to the Divider’s tready signal as explained. This process, during which a following
block drives a handshake signal which is used as input by a previous one is called back-pressure.
The overall operation of this type of FIFOs is illustrated in Figure 4.15.

In this simulation, small values represented in the hexadecimal system are used for convenience.
Notice how a complex input, which consists of two values, is fractionated and one value appears on
the output in every moment. It is also important to notice that when the FIFO is empty, expressed
with a high empty signal, and a write is issued, the newly received value is placed on the output
port three cycles after the rising edge of the write_en signal.

When a memory module is implemented on hardware systems, it is vital to accurately determine

100

> % din[39:0]
@ wr_en
8 rd_en
W dout19:0]

& full

8 empty

Figure 4.15: Simulation of the FIFO IP Core.

the required storage size. On the one hand, if smaller blocks than required are used, the system
will probably not meet its objectives. On the other hand, if a more conservative approach is taken
and a deeper FIFO is implemented, an overhead in resources occurs as more logic than necessary
is assigned.

Next, an analysis regarding the required FIFO depth in our system is provided. Like the Divider
throughput, the FIFO depth also depends on the characteristics of the clustering process. If it
is expected that clusters are provided with a high rate, larger storing capabilities are demanded.
However, since the clustering block is not developed in this thesis, the most conservative solution
has been adopted.

It is known that the Divider core is able to accept new data every 8 cycles, which is expressed
with a rising edge of the tready signal. The FIFO’s input data are provided by the Input Block,
N2 + 4 cycles after the start of a cluster. The implementation of the FIFO cores was based on
the worst case scenario, which refers to the existence of an arbitrary number of 3x3 clusters in the
centroiding’s input buffer. It is required that the centroiding block should be able to serve this
amount of data without lagging. In this scenario, two input data are received from the Input Block
every N2 + 3 = 12 cycles and one output data is transmitted to the Divider core every 8 cycles.
Due to the differences in input and output rates and data sizes, it is expected that the FIFO will
be gradually filled. This situation can be better explained using the simulation shown in Figure
4.16.

W data_write[4:0]

Figure 4.16: Simulation of the pre-division FIFO contents.

The relative distance between the first assertions of the tvalid and wvalid_sum signals is not
important for the progress of the simulation. In the displayed figure, both signals are initially
enabled at the same cycle, which doesn’t allow the divider to read immediately the just received
data. The first read operation takes place 8 cycles later. The signals data_read and data_out refer to
the number of occupied memory positions in the output and input ports respectively. Remember
that the implemented FIFOs are non-symmetric, which means that one input memory position
corresponds to two output positions. Thus each time a high wvalid_sum is detected, one more
input and two more output positions are occupied. This simulation provides a detailed insight of
this process and by inspecting it, it is found that the number of occupied output positions (read

positions) follows the following formula.

Read Depth = 2 + ceil(%) 924 (g] (4.3)

101

where n is the number of write operations excluding the first one. In order to process a typical
number of frames, that is 20, supposing that there are roughly 6 clusters in each, it is n = 119.
Consequently we get:
Read Depth = 2 + f%] =62 — Write Depth = 31

Under the described assumptions, among the several depth solutions that the IP core provides,
the second smallest which defines Read Depth = 64 and Write Depth = 32 was chosen. Since
clustering is expected to produce data at a relatively slow rate and the existence of stacked data in
the input buffer will not be the case, this approach is very conservative and will not be used in the
actual implementation of the star tracker pipeline. However, due to the fact that this approach
requires only the second smallest configuration, it can be safely assumed that the induced overhead
in resources is not significant.

The combination of the two non-symmetric FIFOs creates the pre-division Buffer, whose RTL

block model and the respective FIFO interconnections are given in Figure 4.17.

ok |
rst |
sum_bright[16:0] buffer_out1[19:0]
sum_x[19:0] buffer_out2[16:0]
sum_y[19:0] tvalid
tready |
valid_sum |

BufferBlock

(a) RTL model.

sum_bright[16:0]_IBUF_Inst FIFO_denominator
sum_bright[16:0] > 1 | [~ _ O
clk_IBUF_inst
1 o ez : ck
o — > IBUF din33.0]
IBUF rd_en dout]16:0] D buffer_oul2[16:0]
sum_x[19:0] IBUF_inst srst B
sum_x[19:0] ! 2 wr_en
FIFO_numeralor EIFO AC
IBUF [+] -
sum_y[19:0] IBUF_inst ok D> buffer_out1[19:0]
sum_y[19] | o] din[32:0] dout{19:0] | tvalid i
= rd_an ampty 10 o
" [tvalid
IBUF ik
o RTL_INV
tready [» =
rst_IBUF _inst FIFO MAC
1 o -
rst
IBUF
valid_sum [_»

(b) RTL schematic.

Figure 4.17: Complete RTL representation of the Buffer.

The combined operation of those 2 FIFOs as a Buffer block is tested in simulation, as Figure 4.18
shows.

Notice how a FIFO’s empty signal is inverted in order to operate as an input tvalid signal for
the Divider core. At this point a note regarding the full signal, which is asserted when a FIFO is
full, should be given. This signal can be used by the CU as a control signal, in order to disable the
computing modules and stop the input processing when the Buffer is full. Thus the Input Block
stops the data generation and allows the consumer block, that is the Divider Block, to process the
already stored data and gradually empty the occupied memory slots. Apparently, this feature also

relies on the operation rates of the clustering block. Hence, in the proposed architecture the full

102

M' — M' - M' AT M' — M' - M' - M' R M' - M' . ﬂ' .

Figure 4.18: Simulation of the Buffer.

signals have not been used. However, one should remember that even when both star detection
blocks are integrated together, it is not expected for the Buffer to be completely filled, due to the
relatively slow rate of the clustering algorithm.

Overall Divider Block

The entire Divider Block RTL representation and the respective simulation, which can be easily

observed based on the previous analysis, are provided in Figures 4.19, 4.20.

o= S_AXIS_DIVISOR
¥ s _ais_sivisor_tiata[23:0]
A 5_axis_ivisor_tready

b 5 _aixis_dlivisor_tvalid
M_AaXIS_DOUT — [

_aixis_diout_tleta{23:0] b
m_sxis_dout_tvalid b

| — S_83S_DIVIDEND

B 5_aixis_dividend teiste23:0]
A s_axis_dividend tready

I 5_axis_dividend_tvalid

(a) RTL block model.

clk_IBUF_inst
ck !
IBUF
rst_IBUF inst rstn_i
I o (] o
rat
IBUF RTL_INV Diivision
sum_bright[16:0]_IBUF _inst BufferCone [+]
sum_bright[16:0] . °] .
= > quotient[23:0]
IBUF
lid_quot
sum_19:0]_IBUF_inst sum_bgh{16:0) | outer ounpisn [a_avia_avisor_veady > valid_quol
| - - flar_outz{16:0] |
n_x[19.0]
sum_x’]| - J.
IBUF = Divider
sum_y[19:0]_IBUF_inst yaRd am =
sum_y[19:0] . =2 BufferBlock
IBUF
valid_sum [»

(b) RTL schematic.

Figure 4.19: Complete RTL representation of the Divider Block.

Marked with blue color are the internal signals that define the cooperation between the Buffer
and the Divider Block. Due to the use of a buffering module, latency appears to be increased if
data is presented when previous data are still stored in FIFOs. This will always be the case for
the numerator on y-axis, which is used only after the other one. Hence only the Divider Block’s
minimum latency can be determined. If multiple clusters are congested in the input buffer, this
minimum latency is noticed only during the processing of the first set of data. The minimum
latency however depends also on the relative distance between the assertions of the valid_sum and
tready signals. Since the empty Buffer provides valid data on the output bus 3 cycles after the
respective valid input, the best case is observed when the walid_sum signal is enabled exactly 3
cycles before a valid tready. In this case the minimum latency is equal to 3 + 27 = 30 cycles.

The worst scenario regarding the relative distance of these two signals is if the valid_sum signal is

103

A s s e e
[B) S | S B B S S—

> W quotient{23.0]

Figure 4.20: Simulation of the Divider.

asserted 2 cycles before tready. In this case the latency is defined as 3 + 7 4+ 27 = 37 cycles.

In the integrated system that will be used in the actual application, it is expected that the
latency will be always equal to 3 + 27 = 30 cycles for the x-axis numerator and 30 + 8 = 38 cycles
for the y-axis numerator. The additional 3 cycles always appear, due to the slow producing rate
that the clustering process is expected to exhibit, which means the next cluster will always be
stored in an empty buffer. Hence, in order to be able to evaluate the different architectures, for
the rest of this thesis, the latency of the Divider Block will be assumed equal to 38 cycles.

4.2.1.5 Owutput Block

The most simple block of the pipeline is the Output Block, which performs the addition of the
cluster’s relative subpixel centroids to the absolute coordinates in order to produce the eventual
star centroid with reference to the image plane. The block diagram of the Output Block is shown

in Figure 4.21.

abs_x[9:0] L
abs Y] 9:0 L
clk axis
quotient[23:0] data_out[13:0]
rst valid_out
valid_coords |
valid_guot
OutputBlock

Figure 4.21: RTL model of the Output Block.

The absolute coordinates are provided by the CU, through ports abs_x and abs_y, at the same
cycle when valid sums are available, and the relative centroid is driven by the Divider Block. The
validity of the input depends on the values of the respective valid signals.

As explained, due to the attributes of the Divider IP core the quotient’s bit width is defined
as the sum of the dividend and fractional remainder bit widths, that is 20 + 4 = 24. By definition
the centroid will be detected within the range of the image plane, which is equal to the image’s
resolution. Since the provided image is of size 1024 x 1024, due to the binning procedure, the
maximum bit width that is required to represent the entire image plane is equal to 10 bits. For
this reason, internally the quotient signal is truncated and only the 14 LSBs are retained. Hence,
the star centroid’s value, which is transferred through the data_out port, will be represented using

10 integer and 4 fractional bits.

104

Beyond the validation signal, an auxiliary signal named axis can be used. As x- and y- centroids
are not calculated concurrently and therefore a single output port will be implemented, it is essential
to indicate the dimension to which a valid output value corresponds. Thus the low and high axis
values correspond to the x- and y- axes respectively. It is important to highlight that in an
integrated system, the axis signal can be omitted, as the matching algorithm on the CPU can be
adjusted to expect a x-, y-centroid sequence for each cluster.

Similar to the Divider Block case, it is required to use a buffer structure in order to be able
to store both absolute coordinates and retrieve one of them at a time. For this purpose the same
type of FIFO was configured, with input and output bit widths of 20 and 10 bits respectively. In
order to determine the demanded FIFO depth, an analysis based on the worst case scenario, that
was described in Section 4.2.1.4, was conducted.

According to this scenario, the Input Block provides two data every 12 cycles and the Divider
Block provides one quotient every 8 cycles, following an initial delay. This term refers to the
Divider Block’s worst minimum latency which was defined in Section 4.2.1.4 as 37 cycles. The

simulation that displays this scenario is given in Figure 4.22.

W data_write[4:0§ 05

Figure 4.22: Simulation of the pre-addition FIFO contents.

Similar to the previous analysis, it can be easily found that the required output depth (read

depth) at every moment follows a pattern that is described by the following formula.

3] (4.4)

where n is the number of write operations excluding the initial three. In order to process a typical

Read Depth = 7 + Ceil(g) =7+

number of frames, that is 20, which roughly correspond to 120 clusters, it is n = 117. Consequently
we get:

117
Read Depth =7+ [7—‘ =66 — Write Depth = 33

Therefore the same FIFO with Read Depth = 64 and Write Depth = 32 can be implemented
as part of the Output Block. It should be highlighted that the actual FIFO depth is generally
influenced by the selected Read Mode, and more specifically the FWFT mode, which is adopted
in our system, results in a FIFO with an actual depth which contains two slots more, compared
to the GUI indication. Eventually the selected core satisfies the depth requirements. However,
as was the case in the Divider Block, this approach is highly conservative and is expected to be
modified during system integration. This modification refers to the use of the most shallow FIFO
IP configuration available. The overall behavior of the Output Block can be seen in Figure 4.23.

Notice how the result is calculated at the same cycle with the quotient reading, which means
that the Output Block contributes 1 cycle to the total latency. The add operation was implemented
with LUTs and registers.

4.2.1.6 Proposed Centroiding Architecture

So far the basic building blocks of the proposed centroiding system have been extensively

described. The architecture was abstractly illustrated in Figure 4.2. The generated RTL represen-

105

4 valid_guot
& quotient|

W'l"'”""W‘"'”""W‘"'”""W‘"'”"”W""”"”W""”"”W""”"”W‘””'””W‘””'””N

Figure 4.23: Simulation of the Output Block.

tation is displayed in Figure 4.24.

clk_IBUF_inst
[l [
clk
IBUF
data_in[11:0] -
_inf11.0] > rsUIBUF_inst | data_inf11:0] sum_boghtl16:0] quotient[23:0]
| L) st aum 1 o
st e vaed_in aum y(1
valid_in |:>7J -
InputBlock DividerBlock
> ads
> data_out{13:0]
" walid_out

vald_coords

vakd_quot

OutputBlock

Figure 4.24: RTL model of the proposed architecture.

The entire design was tested and verified using Behavioral Simulation. The operation of the
proposed architecture up until the generation of the first set of centroids is shown in Figure 4.25.

Marked with blue color are the internal validation signals that provide useful insight regarding the

cooperation of the previously analyzed sub-blocks.

vaiue [UIRS

Value

440 ns

H"H"H"H"H"H"H"H"H"H"i

_dh_l_l- I I S IR
L]

[N N — S N E— [—
[e e e i U I S e

Figure 4.25: Simulation of the proposed architecture.

106

4.2.2 C++4 Model
4.2.2.1 Overview

Typically a hardware system is implemented only once, using either VHDL or C++ modelling.
However the relatively low complexity of the CG algorithm allowed us to design an additional
C++ based architecture, without much effort, in order to perform rapid design space exploration
and compare the Quality of Results (QoR) between the programming methods. A simplified block
diagram that describes the C++ system is illustrated in Figure 4.26.

;lk. Input Function Output Function
rst
—_
Sum X

Input Data sum1 ” Division & Output Data
— DSP Loop > o >
: Sum Y _| Addition Loop
E Absolute Coordinates

Figure 4.26: Abstract block diagram of the proposed C++ architecture.

The basic ”building elements” in HLS are the C++ functions, which are synthesized into blocks
in the RTL hierarchy, while the respective functions’ arguments are synthesized into RTL ports.
Hence, the designed system contains two basic functions that perform the operations required by
the CG algorithm. It should be mentioned that the design’s specifications regarding the variables’
bit widths are exactly the same as for the VHDL model, as they depend solely on the algorithm.

One of the most important advantages of the HLS approach is that the compiler automatically
extracts the control logic from the high level code and creates an FSM in order to sequence the
existing operations. This process is the equivalent to the RTL Control Unit and consequently
removes the demand of implemententing this module. The larger and more complex a system
is, the greater the benefits of the automatic control logic extraction are. One can notice that in
comparison to the diagram of Figure 4.2, the C4++ based architecture doesn’t contain any logic
related modules.

When designing in High Level the clock and reset signals are also automatically inferred and
there is no need for explicit definition. However the behavior of the reset signal can be configured.
In this design the default functionality was selected, that resets only the control registers which
are used in state machines and generate the IO protocol signals.

Usually a code that is designed for execution on a CPU, can be compiled without problem by
the HLS compiler in order to create an RTL implementation. Such a CPU-based design approach
however is not expected to demonstrate performance benefits. Instead, the code usually needs to
be modified in order to conform with a typical hardware development methodology.

During development several modifications on the source code and concepts were tested. The
typical method to evaluate them, is to execute C Synthesis and rely on the generated estimation
of the results expected after RTL synthesis. When almost optimal designs were reached, Logic
Synthesis and Implementation were also used to evaluate some low level details. The key features

of the proposed C++ architecture are described next.

107

4.2.2.2 Interface Definition

Initially the appropriate interface should be determined, in order for the data transfer through
the design’s ports to be synchronized automatically and optimally with the internal logic. Typically,
when designing in Vivado HLS a block-level I/O protocol is added, which controls the entire block.
More specifically, four ports are implemented which control when the block can start processing
data (ap-start), indicate when it is ready to accept new inputs (ap_ready) and if the design is
idle (ap_idle) or has completed operation (ap_done). In order to perform RTL Verification, this
protocol is required. However, when the complete star tracker will be integrated this protocol can
be omitted.

Afterwards a port-level 1/O protocol should be selected, in order to determine how the data are
sequenced in and out of the implemented block. Similar to the VHDL model a streaming interface
should be adopted for both input and output ports. The most suitable protocol is the AXI4-Stream,
which implements a direct point-to-point communication channel between two modules in the
FPGA fabric. Hence, the proposed centroiding block can receive and transmit data independently
of the previous and following blocks, as long as the respective channels allow, depending on their
state (full or empty). Since this interface is always extended to byte boundary, both input and
output ports are 16-bit wide.

It should be noted that for convenience the previously present axis port, which indicated the
dimension that corresponded to the provided centroid has not been included in this design. As
mentioned, when the block is to be integrated into the complete system, the CPU side can be
designed in a way to always expect sequences of x-, y-centroids. In total, both input and out-
put AXI4-Stream channels consist of three ports, tdata which is the payload and tvalid, tready
which perform the communication handshakes. Note that the selected protocol requires also a

synchronous active low reset signal.

4.2.2.3 Input Function

The designed C++ Input Function corresponds to the Input Block that was defined in the
RTL architecture. As shown in Figure 4.26 this function receives the input flow, forwards the
absolute coordinates to the Output Function and calculates the numerators and the denominator
of Equations 3.9, 3.10.

The entire computation is modelled by a single perfectly nested hierarchy of two loops. Consid-
ering that the expected clusters are of square shape, each loop corresponds to one dimension, while
the generally variable loop limits are defined by the N package, that is the cluster’s size, in each
execution. For the rest of this thesis, one execution of the C++ block will be called transaction.

This loop contains three simple instructions, which correspond to the two MAC operations
and the one accumulation (AC). The compiler automatically maps each MAC to a DSP core as
expected. However, that is not the case for the AC operation which makes use of LUTSs. It was also
found that this mapping was not possible even with the use of the Resource optimization directive.
This indicates that sometimes the HLS tool may limit the designer’s accessibility to lower levels of
the design.

It should be highlighted that the definition of one loop which contains all the operations is
necessary in order for them to be performed in parallel. The use of three different loops would result
in low performance sequential execution. Furthermore, it should be also pointed out that a nested
hierarchy was preferred to a single loop with limit equal to N2. In the first case, the multiplication

factors are the loop index i or j, which correspond to the y, x dimensions respectively, and a

108

sample from the input sequence, which corresponds to the streamed intensities. This sequence in
C++ is modelled as an array or a pointer and therefore a complex expression is used to determine
the ”address” of each sample, as a combination of i and j. If a single loop was implemented,
the array ”address” would be the loop limit ¢, while complex expressions that would contain the
division and remainder operations, with respect to the index ¢ should be used to express the x, y
dimensions-multipliers. In this case the compiler would implement these complex expressions as
hardware operations, while in the first instance it infers the input "array” internally without any
cost.

The loop’s iteration latency is determined by the DSP cores, which demonstrate a latency of 3
cycles. In order to improve the overall throughput and latency, it is essential to pipeline this loop
and allow loop iterations to be executed in an overlapping manner, as each iteration is enabled to
begin before the previous one is completed. In this way an Initiation Interval (II) of 1 is achieved
and the loop latency is defined as N2 4 1 cycles. A view of the scheduled operations within the
Input Function is provided in Figure 4.27.

Operation'Control Step | o | 1 | 2 | 3 | 4 | 5 |
5

data_in_V_read(read) |\
data_in_V_read_1(read)

data_in_V_read_2(read) \\
bound(™) |y

w Loop_¥_Loop_X
add_In534(+)
add_In534_1(+)
data_in_V_read_3{read)
mul_In700(")
mul_In700_1(*)
tmp3_V(+)
i+
tmpl_V(+)
tmp2_V(+)

=

-Ldop_V¥_Loop_X Ji=1

Figure 4.27: Scheduling of the operations in the Input Function

As it can be seen, the three cycles before the loop correspond to the three auxiliary input
packages of each cluster. By definition, when a loop hierarchy is pipelined it is automatically
flattened and therefore the calculation of the flattened loop’s limit is required. This calculation is
performed in parallel with the reading of the third package yy. It should be noted that pipelining
the loop increases the resource consumption. The overall latency of the Input Function is N2 + 5,
while apart from the loop latency and the 3 initial cycles, one additional cycle is required to enter
the loop structure.

Apparently, the throughput of the Input Function defines the design’s overall throughput. In
the context of HLS designs, throughput is expressed through the Initiation Interval (II) metric,
which is the number of cycles that are required before the function is executed again. The achieved
ITis N2 +6.

4.2.2.4 Output Function

The designed Output Function corresponds to both Divider and Output VHDL blocks and is
responsible for calculating the star centroid, using the data provided by the Input Block.

Similar to the VHDL model, the fundamental requirement is the use of one Divider core in
order to minimize area, while maintaining the same performance. After an exhaustive testing,
it was found that the two C++ division operations are mapped to a single division core only if
they are placed inside a loop, although dedicated optimization directives (Resource, Allocation)

are supposedly available for this purpose. This indicates that the engineers may sometimes need

109

to change their designing perspective, in order to control the HLS compiler’s behavior.

Similar to the Input Function, the designed loop should be pipelined in order to achieve high
performance and it is expected that the selected loop II will determine the throughput of the
divider core. However it was discovered that regardless of the specified II, the same divider core
was always implemented. It indeed demonstrated different throughput but the same amount of
resources were always used for the divider core.

This behavior can be explained, as though the HLS tool always infers the same core and adjusts
the external logic based on the II requirement. Hence in order to simplify the system, a divider
with throughput of one input per cycle was implemented, without any increase in resources. In
other words, the HLS tool doesn’t allow any modification on the divider core, compared to the
VHDL model in which extensive configuration was possible. This was also verified by the fact that
nor the core’s latency could be changed. Therefore a divider with Initiation Interval of 1 cycle and
Latency of 28 cycles was used. Apparently, the latency is automatically defined based on the size
of the operands. However it is greater than the latency of the IP core by 1 cycle. The divider is
implemented only with LUTs and FFs.

The loop rewind option was also selected in order for the Output Function to achieve an overall
IT of 2 cycles. Otherwise the function’s II would be dependent on the division latency, which is
much greater than the Input Function, and the design’s overall performance would be decreased.
Instead, the establishment of an II of 2 cycles makes the Input Function, which exhibits an II of
N? 4 6, the determining factor regarding the throughput of the overall system, as expected.

The total latency of the Output Block is 30 or 31 cycles and additionally to the division delay,
it contains one cycle for the addition operation and one cycle for entering the loop. The variable
latency is due to the control FSM.

4.2.2.5 Overall Data Flow

The interface between sub-functions in a C++4 design is critical for the overall system’s perfor-
mance and should be optimized. This is typically done using the powerful Dataflow directive, which
establishes a complex communication structure and allows the respective functions to operate in
parallel.

In the proposed architecture, this structure consists of five FIFO channels that store the results
of each task-function and establish a completely data driven handshake interface. This data-level
synchronization allows each task to execute at its own pace and therefore the overall throughput
is limited by the slower one, which in our case is the Input Function. Apparently the Dataflow
directive removes the demand of explicitly defining the intermediate FIFOs, as it was done during
RTL development. This kind of function pipelining causes a great increase in hardware resources
which are mainly used for implementing FIFO memories and multiplexers. The FIFOs in this case
have been implemented using multiple Shift Register LUTs (SRL). The established interface can
be better understood with the simulation results provided in Figure 4.28.

The ap_start signals activate a block in order to start processing data at the next cycle and the
ap_ready signals indicate when a function is ready to start again, by asserting an ap_start signal
at the next cycle. Lastly the ap_done signal shows that valid output data are available and that
the function has completed its operation.

Notice how the Output Function is always activated one cycle after the the Input Block is
completed. This behaviour ensures that the produced data will always be consumed one cycle
after their production and therefore the intermediate FIFOs will never be full. Furthermore it

allows resources minimization as the smallest FIFOs available, which contain only two memory

110

| Handshake

W ap_continue

Figure 4.28: Block-level handshake between Input and Output Functions.

slots, can be used.

In Figure 4.29 one execution of the Input Function can be seen. One can note that the overall
throughput, expressed with the block-level ap_ready signal, is indeed determined by the Input
Block.

Figure 4.29: Simulation of the Input Function.

It has been proven that the C++ model demonstrates a throughput, reduced by 2 cycles
compared to the VHDL model. This is due to the fact, that roughly the HLS compiler handles
functions as black boxes and therefore a single function can only restart execution if it has been
previously completed. In our example, the VHDL would restart immediately after the last intensity
was read. However, this is not possible in the C++ case as the Input Function must complete
operation, which only occurs 2 cycles after the last read operation, with the assertion of the ap_done
signal, and then restart.

At last, one snapshot of the same simulation which illustrates how the centroid values are
provided at the output bus by the Output Function is given in Figure 4.30.

H ap_clk

Figure 4.30: Simulation of the Output Function.

111

4.3 Fast Gaussian Fitting Algorithm

4.3.1 Overview

The novel FPGA implementation that this thesis proposes, is based on the Fast Gaussian Fitting
Algorithm in order to achieve both high accuracy and high efficiency. Due to the high complexity
of the considered algorithm, it was decided that C+-+ modelling was the most appropriate FPGA
programming method, because it reduces development time and allows fast verification and design
space exploration, which are fundamental requirements in order to reach an optimal solution. The

simplified block diagram of the proposed architecture is given in Figure 4.31.

clk Input Function Cholesky Function Output Function
;St’ Coefficient Matrix A
Lower Triangul
Input Data ConstantVectorb | Cholesky wer Tangular | System Solver | | output Data
: S E ” Decomposition g e g
P Substitution
Absolute

Coordinates

Figure 4.31: Abstract block diagram of the proposed FGF architecture.

The segmentation of the entire FGF algorithm in three different functions complies with the
three different processing steps that were described in Section 3.2. The functionality of each block
will be extensively explained. The basic details regarding reset behavior and I/O protocols are the
same as for the CG design and will not be further discussed.

The most important block-level difference compared to the previous centroiding blocks is that
the FGF system calculates the relative centroids, which refer to the distance from the cluster’s
first row and column, rather than the absolute centroids. This design call will be justified in the
following section.

Due to this modification, a respective small adjustment at the CPU side of the SoC system
is required, as the matching algorithm needs to perform the final addition in order to yield the
absolute centroid positions. Moreover, it should be noted that in process integration, the clus-
tering block could transmit each cluster’s absolute coordinates directly to the processor because
they aren’t used within the centroiding block. However, in order to comply with the previous
assumptions and be able to finally perform a valid evaluation, the input data channel was not
changed.

4.3.2 Floating Point Arithmetic

It could be said, that a fundamental difference between the FGF and CG hardware implemen-
tations is that the former adopts the Floating Point instead of the Fixed Point Arithmetic. It
has been explained that using Fixed Point representation of real numbers, exhibits great benefits
regarding timing and resource utilization because these numbers are handled as integers.

Roughly, the FGF algorithm is expressed by 3 basic equations, which were introduced in Chap-
ter 3 as Equations 3.33, 3.39, 3.41. These equations contain a huge number of operations on real
numbers, for example a logarithm, a multiplication and a subtraction for each pixel as shown only
in 3.33. In order to efficiently use fixed point numbers, the analytical determination of the size

of each intermediate signal is required. The amount of these signals and the complexity of this

112

process make this task practically impossible.

Instead, the use of floating point numbers is very easy and increases productivity, especially
when programming with C++, because the respective operations are automatically mapped to
Floating Point Xilinx IP cores, while conversions to and from floating point numbers are done
implicitly. One could argue that in order to avoid using floating point numbers, it would be
sufficient to just use a single fixed point format with a large fractional part, for example 30 bits,
for all intermediate variables, to achieve high precision but lower complexity. However as it will be
explained in the following section, in Input Function integers with large bit widths are calculated,
which makes the above design approach inefficient, as the transformation from a large integer
number to a real number during the first operation in Cholesky Function, requires an explicit bit
width determination regarding the involved variables. On the contrary, Floating Point Arithmetic
allows fast and sufficiently accurate processing of both small and large numbers and is the optimal
solution for the examined problem. However due to this design call and the high complexity of the

algorithm, it is expected that the generated circuit will demonstrate great computational demands.

At this point, it should be highlighted that the choice of not calculating the absolute centroids is
based on this adoption of the single-precision floating point format. The most important attribute
of this arithmetic system is that it provides great range with a cost of loss in precision. The result
of this dynamic range is that the numbers that can be represented are not uniformly spaced and
the difference between two consecutive representable numbers varies with the chosen scale. It is
expected that the integer part of a calculated relative centroid will be a positive 1 digit decimal
number as it is expressed with reference to the cluster’s first row and column. If the absolute
coordinate, which is the cluster’s position in the image plane, was added to this value, the result
would be typically three orders of magnitude larger. Since this result would be expected to be
found in a different scale, its critical fractional part, which defines the achieved accuracy, would
be also different, which means that a loss in accuracy would take place due to this operation.
Instead it is preferred that this simple addition to be performed on the processor code, where the

double-precision format can easily be used and the accuracy can be maintained.

Lastly, it is important to clarify that a use of the double-precision format in the proposed
hardware implementation would result in an even larger and slower circuit without exhibiting

equivalent gains in accuracy.

4.3.3 Input Function

As Figure 4.31 shows, the Input Function is responsible for calculating the coefficient matrix A
and constant vector b, that constitute the normal equations shown in Equation 3.33. This function
uses the same nested loop hierarchy that was implemented in the CG centroiding block, in order
to receive the pixel intensities in the same way. However, this loop contains a completely different

set of operations.

4.3.3.1 Calculating Coefficient Matrix A

At first, the method for calculating the coefficient matrix A will be explained. For convenience,
let us write the coefficients from Equations 3.33 in matrix notation. Since the matrix is symmetric,

only the lower triangular part will be displayed.

113

> am;
Samian; Y an?
A= |Y amap; 3 apiaqg; > ap% (4.5)
Yoamiaq; Y anagq Y apiag; Y, aq;
Samiak; Y anak; > apiak; Y agiak; Y ak?

By using the definition of the parameters am;, an;, ap;, ag; and ak; from Equation 3.31, and
considering that the intensities I; and the relative coordinates x;, y; are expressed with 12 and
3 bits respectively, the bit width of each term inside the sums can be calculated. By using the
known formula N + logo M, where M = 25 represents the maximum number of pixels per cluster,

the final bit width for each integer coefficient a;; can be also found. This procedure is summarized
in Table 4.1.

Table 4.1: Calculation of the bit width for each integer coefficient a;;

Term | Form | Bit Width || Coefficient | Bit Width
am? 2 36 ail 41
cm% Il-gyg1 36 o9 41

am;an; Ifxfyf 36 aio 41

am;ap; Ifxf 33 asy 38

am;aq; Ifxfyi 33 asl 38

an;ap; Ifyfxz 33 ass 38

an;aq; Ilzyz3 33 D) 38
apf Ifxf 30 ass 35
aqf I?yf 30 Q44 35

apiag; | Iy 30 a43 35

ap;ak; Ifxi 27 ass 32

aq;ak; I?y; 27 asy 32
ak? I f 24 ass 29

One should notice that there are 13 unique coefficients displayed in Table 4.1, because the
coeflicients a5, and ay4; if expanded, are found equal to ass and a4y respectively.

The most important design challenge that was faced during development had to do with the
way that each of the displayed products is implemented on the FPGA. Let us give a simple
example. Consider the coefficient asz = Y IfacZ For the calculation of this term, a MAC operation
is performed for each pixel. However the product I?x; that is accumulated each time, can be
computed in two different ways, either as I? - x; or (I;z;) - I;. In a conventional processor, the
sequence of calculating such integer products is insignificant, but in hardware designs that is not
the case. Consider the following segment of C++ code that calculates both as3 and as4, which are

of the same form, as only the coordinate term changes.

tmpd3 = Ii x Ii; ab3 = tmph3 * xi;
tmpdd = i * yi; ab4d = tmpbh4 = Ii;

114

It was found that the HLS compiler implements the final as3 and as4 products in a different
way. The first product is generated by a multiplication of 24x3 bits and is implemented using
LUTs, while the second product is generated by a multiplication of 15x12 bits and the compiler
implements it by using a DSP core. This is due to the fact that the inference of DSP cores for
a certain multiplication depends on the bit widths of its input operands. A general rule is that
in order to map a multiplication to a DSP cell, it needs to involve operands wider or equal to 10
bits. Otherwise, multiplications lower than this limit are implemented using LUTs. Furthermore
for the DSP48E cell, that is used by the ZYNQ-7020 SoC, the two involved operands can be at
most 25 and 18 bits wide respectively. If any of the operands exceeds the defined limits, multiple
DSPs will be combined for the product calculation.

In some applications there are no specific requirements regarding the way a multiplication is
implemented, while in others this detail is critical as far as latency or throughput are concerned.
In our case, it was proven that when one of the involved operands was small, the use of LUTs was
creating a bottleneck regarding the maximum achievable system’s frequency. More specifically,
because the second operand was represented using a relatively large number of bits (i.e., variable
tmpb3 is 24 bits wide), a multiplication structure that consisted of a large number of LUTs was
created. Ultimately it was found that within these structures long critical paths were emerged,
which were limiting the overall performance. For this reason, the implementation of all 13 coefficient
products using DSP cores is of critical importance.

In order for the DSP cores to be used, only integer multiplications must be performed and
the respective operands are defined based on Table 4.2. As described in the previous section, this
constraint, regarding the required range of numbers, affected the design call of using the floating
point system.

Moreover, it was also found that a simple DSP-based implementation was not always enough.
In some cases a loss of performance occurred, due to the precedent multiplications which formed

the auxiliary terms. For example, if the coefficient am; was defined as I? - z#, a long logic chain

IR

inside the LUT structures that calculated the auxiliary term as z* = 2222 was observed. In

order to achieve maximum performance, an exhaustive space exploration which tested all possible
multiplication formats, 31 in number, was conducted. The results of this research are summarized
in Table 4.2, where the multiplications that generate each type of coefficient are displayed.

For convenience, we define the order of a coefficient based on the number of coordinate terms
that are included in the product. Since both x; and y; have the same size, they contribute to the
result in the same way and thus they are considered as a single coordinate unit. For example the
terms I2x} and I2x?y? are both of 4th order, while the term I?z; is of 1st order. In the summarized

results both coordinate coordinates are denoted as x;.

Table 4.2: Definition of each coefficient type, based on the multiplicand and multiplier formats.

Order | Form | Multiplication | Bit Width | Auxiliary Term
4 I*x} (I;x2)(I;x2) 18x18 Ix2, Iix;
3 I3 (I;x2)(I;x;) 18x15 I;x?
2 I*x? (I;x;)(1;x;) 15x15 Lix;
1 I?x; (I;x;)(1;) 15x12 Iix;

Apparently, the illustrated optimal formats require the calculation of the following auxiliary

terms, which are all implemented with LUTs.

115

Lix;

Liy;
Lz} = (L) (w:)
Ly} = (Liy:)(yi)

4.3.3.2 Calculating Constant Vector b

The second set of operations inside the Input Function’s loop is concerned with the calculation
of the constant terms b; of the normal equations system (Equation 3.33). Les us write these terms
in matrix notation and use the the definition of the involved parameters, found in Equation 3.31,

to write the expressions with respect to the input data.

> am;a; =S (I22?)In
— > ansa; S (I2y?)In1;
b= |—Yapia; | = |- (I2x;)In]; (4.6)

- ag;a; — > (Iy;) InI;
— > ak;ai; —>(IHIn;

The terms inside the parentheses are also required for the coefficient matrix A and can be
considered to be known. The logarithm operation is the first encountered operation which involves
real numbers. In order for this calculation to be performed, the HLS compiler implements a
Conversion Block using logic cells (LUTSs, FFs) to cast the input intensities from integers to floats.
The number of the generated conversion blocks was found, during testing, to be dependent on
the loop’s interval, due to the different scheduling that the compiler accomplishes in each case.
The following floating point logarithmic operation is performed using a dedicated floating point
core which uses 13 DSP cells. Similarly, the terms inside the parantheses are converted by the
Conversion Block and the floating point multiplication and subtraction operations are performed.
The inferred floating point multiplication and subtraction cores were implemented using 3 and 2
DSPs respectively. These cores are fully pipelined and therefore a unique core for each operation
was used.

As theoretically expected, it was proven that the loop’s latency and interval were determined
only by the floating point operations. Specifically the floating point logarithmic operation demon-
strated a constant latency of 19 cycles. However it was found that the latency of the multiplication
and subtraction operations depends on the target clock constraint. Typical values were 5 cy-
cles for the multiplication and 9 cycles for the subtraction. Also, the conversion from integer to
floating point representation demonstrated a latency of 8 cycles. Therefore the sequence of opera-
tions required for calculating a constant term b;, which consists of one conversion, one logarithmic
operation, one multiplication and one subtraction, determines the latency of one iteration.

Moreover, it was found that the floating point subtraction was the limiting factor regarding the
minimum achieved Iteration Interval, which is ultimately defined as equal to the subtraction core’s
latency. It should be highlighted that the floating point operations contribute approximately to
the half of the FFs and the two thirds of the LUTs that are used by the Input Function.

In total, it can be concluded that the use of floating point cores limits the Input Function’s
performance and consequently the system’s overall performance, and determines the total resource

consumption.

116

4.3.3.3 Loss in Accuracy: Converting an Integer to Floating Point

In Section 4.3.3.1, the method of implementing the coefficients a;; has been extensively de-
scribed. It was also explained that in order to efficiently perform the involved multiplications,
DSP cores should be used, which requires the operands to be represented as integers. Ultimately
this process results in the creation of integers of significant bit widths, e.g., am; is expressed with
41 bits.

In the following section, it will be shown that all of the operations within the Cholesky Function
involve real numbers, which means that the integer coefficient matrix A should be converted to its
floating point equivalent. In order to exploit the conversion block that was by definition inferred
inside the Input Function, it was decided that the conversion of the coeflicients should be also
performed inside the first function, and specifically inside the loop.

However, a critical point that needs clarification refers to the amount of accuracy that is lost
during transforming a very wide integer (e.g. of 41 bits) to a narrower 32-bit single-precision floating
point number. It is known that in different scales, the distance between consecutive representable

integers also differs. For example, even though integers smaller than 224

are exactly represented,
larger integers are rounded. Typically integers between 2" and 2"*! round to a multiple of 2723,

Consequently if a a11 coefficient is actually expressed with 41 bits, then the cast to the respective
floating point number can cause in the worst case an accuracy loss of 27723 = 240-23 — 131072.
Although this number is quite large, what is most important is the relative loss in accuracy, which
is defined as the absolute value divided by the actual integer that can be represented in 41 bits,
and shows the loss with respect to the initial order of magnitude. Thus, for the case of a 41-bit

coefficient a;; we have:

Relative A L Absolute Accuracy Loss
elative Accuracy Loss = = =
Y Order of Magnitude on+l 241

2n—23 _ 240—23 _ 2_24 - 10—8

Apparently, this accuracy loss is insignificant and therefore the conversion to floating point

numbers can be safely done without any concerns regarding the centroiding accuracy.

4.3.4 Cholesky Function
Once the normal equations are defined, the Cholesky algorithm can be used in order to decom-
pose the coefficient matrix A according to the formula below, which is given in Equation 3.39.
A=LL"

where L is the lower triangular matrix that will be used later. The Cholesky Algorithm is defined

by the following formulas.

1 =
lLij = i (aij - Zlikljk> (4.8)
k=1

where l;;, [;; are the elements on and outside the main diagonal respectively.
The HLS tool provides a number of commonly used C++ linear algebra functions, which

include the Cholesky Function, with the HLS Linear Algebra Library. For every function, there

117

are several implementations available that offer different levels of optimization. Extensive analysis
and testing demonstrated that the three available Cholesky architectures were implemented as
iterative algorithms with certain loop hierarchies, and each of them adopted a different processing
and algorithmic approach. Consequently, these architectures displayed non-pipelined behavior
because their Iteration Interval was defined as 1 cycle greater than their Latency. Considering
the fact that this I was at best 5 times larger than the respective II of the Input Function, it is
obvious that if any of these Cholesky architectures was used, it would result in a low performance
non-pipelined centroiding block.

In order to achieve the desired performance levels a lower II was required, regardless of the final
latency. This was achieved by pipelining a given Cholesky function with the Pipeline directive,
which actually dissolved the loop hierarchy and created an unrolled data pipeline. By analyzing
the generated circuit, it was found that in this way it indeed followed the underlying sequence of
operations which is defined from Equations 4.7 and 4.8. This sequence of operations can be better

understood, by inspecting the pseudocode below, which describes the Cholesky algorithm.

Algorithm 1 Cholesky Algorithm

1: for all columns j do

i—1
2: calculate the diagonal element l;; = l;; = , | a;; — Z lfk, where i = j
k=1
3: for all rows i do)
-
4: calculate the rest of the column elements /;; = % (aij — Z likljk>
33
k=1

5. end for
6: end for

The produced lower triangular matrix L is defined as follows.

l11 = (/a1
a 2
lo21 = 72 l22 =+Vaze — 121

I11

a: agzao—loails / 2 2
131 — lfil 1 — 321 21031 1 — ass 131 132
aq ag2—lo1ly ag3—l31141—13214 2
l 1= llll l — 2 12;.’1 1 1 3 = 3 311 1 32042 1 — \/(Z l21 12 1 3
a as2—l21l5 as3—131l51—1321 asqa—l41l51—laglsa—1431
lrl f— llE')il ZVQ — 452 1251 51 l"3 — 453 31l‘5‘1 32052 15 — 0547411 ; 42°52 43°53 155 _ \/045r l21 l2

Pipelining the Cholesky algorithm expressed in the pseudocode 1, allows operations to be im-
plemented in an overlapping manner. However this pipeline is limited by the inherent dependencies
of the Cholesky method. These dependencies refer to the matrix elements which have been marked
with bold above. As one can see, in order to start processing the next column, that is to start
calculating the diagonal element of the next column, the element at the left of this diagonal element
(same row, previous column) should have been previously calculated. For example the element
loo requires the previous calculation of the lo; and the element l33 requires the l35. Each of those
”previous” elements can be calculated only after the calculation of the respective column’s diagonal
value. For instance, the element lo; requires the /17 and the element [35 requires the o5 diagonal
value. Consequently, the performance of the Cholesky Function is limited by the dependency chain
which starts at the first element of the L matrix, that is [1;, follows the bold elements by moving
down and right and ends at the last element 55.

This processing chain consists of three operations that are repeated for each column. A floating
point subtraction to calculate the term inside the square root of each diagonal element, except for

the first element l;; for which the subtracted value is 0, a floating point square root operation to

118

5

2

2
l53

2
Is4

calculate the actual diagonal value and a floating point division to compute the element below the
diagonal one. In order to improve performance, the HLS Cholesky Function instead of performing
the typical division operation to calculate the values outside the diagonal, it computes the diagonal

element’s reciprocal and then performs a floating point multiplication.

The HLS tool contains a dedicated floating point reciprocal square root core that can be used
in order to calculate the value i = %, in parallel with the actual diagonal value l;; = /7~ which
is computed with a simple square root operation. It was found that the HLS compiler schedules
the square root with a latency of 28 cycles, the reciprocal square root with a latency of 25 cycles
and the division with a latency of 30 cycles. Therefore, this alternative approach of calculating the
elements outside the diagonal, demonstrates a latency of 25 + 5 = 30 cycles, where 5 is a typical
value for the floating point multiplication latency. If the standard floating point division was used
however, the total latency would be 28 + 30 = 58 cycles. Since this calculation is performed 4
times within the dependency chain, the total gain in latency is approximately 140 cycles. However
it comes with a cost in resource consumption, as the floating point reciprocal square root core is
implemented with 9 DSPs, while the division core would require almost 800 FFs and 700 LUTs.

It should be mentioned that all of the referred cores are fully pipelined, which means that
the Cholesky pipeline uses only one instance of each one. As it was pointed out during the
Input Function analysis, the floating point addition and multiplication cores require 2 and 3 DSPs
respectively. Thus the total DSP consumption within the Cholesky Function is 14 cells. In total,
the proposed loop unrolling is essential in order to achieve the highest possible performance, but it

results in a great increase in area which is mainly expressed by the usage of additional 1000 FFs.

4.3.5 Output Function

In Section 3.2.4.3 it has been explained that the Cholesky algorithm is used in order to de-
compose the given linear system of normal equation and create two more simple problems. These

systems are defined in Equations 3.42, 3.43 and are shown below.

L'x=y
Ly =D

Both equations are simple enough to be solved with the substitution method. Considering that
the matrix L was calculated by the Cholesky Function and that the vector b was provided by the
Input Function, the second equation can be solved at first. Let us rewrite the equation in matrix

notation.

I Y1 by
la1 a2 Y2 ba
Is1 l32 33 y3| = |bs (4.9)
lan laz lag lag Ya by
Is1 Ils2 Is3 lsa Iss| |ys bs

Apparently the five equations that determine the unknown variables y; are the following.

119

Y1

Y2

Ys

Y4

Ys

_ by — La1y1 — Lasys — Lazys

_ bs = Lswyr — Lsaya — Lssys — Lsaya

by

L1
by — Lo1y1
L
bz — L31y1 — La2y2

L33

Ly

(4.10a)
(4.10D)
(4.10c)

(4.10d)

Lss

(4.10¢)

By inspecting the terms marked with bold, it can be seen that each result unknown y; is

used on the numerator of the next unknown y;,1. This inherent dependency limits the function’s

performance, as it defines the minimum possible latency. This limit is determined by the floating

point operations that constitute the observed dependency chain and are repeated for each term ;.

This set of operations includes a multiplication, a substitution and a division. Since the inferred

floating point cores are fully pipelined, the rest operations that are located in each numerator are

performed in parallel, by using a single instance for each operation.

As already explained, the division core demonstrates a latency of 30 cycles and is implemented

only with FPGA primitives (LUTs, FFs). Furthermore, the subtraction and multiplication opera-

tions have typical latencies of 9 and 5 cycles and are constructed with 2 and 3 DSPs respectively.

In the same way, we solve the second equation, which is shown in matrix notation below.

T
T2
T3
Ty

Ts5

Y3 (4.11)

With simple backward substitution we get the following final equations, that solve the system

and provide the desired parameter vector x.

Ts

T4

zs3

T2

T

¥s
Lss
ya — Lasxs
Ly
Y3 — L3sws — L3aXa

L33

Y2 — Lasws — Logwy — Logxs

Loo

y1 — Lisws — Liawg — Lizws — LioXa

(4.12a)
(4.12b)
(4.12¢)

(4.12d)

Lll

(4.12¢)

As expected, the same type of dependencies are also present in Equations 4.12, while the term

x5 depends on the term y5 of Equation 4.10e. The previously inferred floating point cores are also

used for the calculations involved in this set of equations.

Ultimately, the relative centroids are estimated using the following two floating point operations.

Tq
Ye=—5—
€ 21’2
z3

Le = ——
2$1

120

(4.13a)

(4.13Db)

In order for the division in Equation 4.13b to be performed immediately after the computation

of the unknown =z, the calculation should be performed as defined below.

1
ze=(—0.523) - - (4.14)

This is not required however for the y. centroid, while both multiplication and division are
scheduled in parallel with other operations which produce their results later. In conclusion, the
latency of the Output Function is determined by the described dependency chain, which consists
of 11 divisions, 8 multiplications and 8 subtractions. It should be also highlighted that the rest of
the computations are performed in parallel with the critical calculations and a single core for each

operation is inferred.

4.3.6 Proposed Centroiding Architecture

So far the basic building blocks of the proposed architecture have been extensively described.
It has been explained that in C++ hardware modelling, the interaction between the sub-functions
is critical for the overall performance. In our system this interaction is automatically optimized
by using the Dataflow directive.

Since the Cholesky and Output functions are implemented as unrolled data pipelines, we are
able to define an arbitrary small Initiation Interval, which however will result in greater resource
consumption for higher throughput. By contrast, the Input Function which corresponds to a
rolled loop pipeline is characterized by a maximum throughput due to the constraints that the
computing cores impose. We saw that the floating point subtraction operation determines the
iteration latency and thus both the latency and the II of the Input Function. Consequently,
demanding lower intervals from the succeeding functions is pointless, as the overall throughput of
the design will be eventually determined by the II of the Input Block. This behavior is illustrated
in Figure 4.32, as the overall system’s ap_ready signal is driven by the respective signal of the Input

Function.

]

¥ ap_done
on Handshake

data_in_}

W data_in

Figure 4.32: Simulation of the Input Function.

Notice how the centroiding block, reads consecutive input samples (i.e., intensities) with an IT
greater than 1, due to the limitation that the floating point core imposes, while the CG system
was able to process new data in each cycle. Furthermore, the way that the proposed block outputs
the detected centroids is displayed in Figure 4.33.

Ultimately in order to fully exploit the benefits of the Dataflow directive, the Initiation Interval
of both the Cholesky and the Output functions should be defined as equal to the respective value

of the Input Function. In this way, all the sub-blocks will execute at the same rate and they will be

121

#il centroi

&% centroi

Figure 4.33: Simulation of the Output Function.

always able to consume the respective input data, one cycle after their production. The interaction

between the first two functions is shown in Figure 4.34.

M. ap_continue

Figure 4.34: Block-level handshake between Input and Cholesky Functions.

As expected, the Cholesky Function will always restart one cycle after the production of its
input data, that is the coefficient matrix A. Therefore, the FIFO channel of 2 slots that the
HLS compiler used for the specific communication channel is sufficient. Figure 4.35 illustrates
the communication channel between the Input and Output functions, which involves the constant

vector b.

~ M Channel b (Input Function)
b_0_out_write 0

Figure 4.35: Block-level handshake between Input and Output Functions with regard to data b.

~ W Channel b (Output Function)

M b_0_read

This channel is generally more challenging, as the produced data cannot be consumed before
the intermediate Cholesky function is complete, which could result in a bottleneck if enough data to
fill the FIFO block were produced before the Output Block could start processing them. However
as it seems, the Cholesky function demonstrates a delay which allows the activation of the Output
function before the channel is blocked. Even though a FIFO of 2 slots is sufficient, the HLS
compiler implements a channel with depth = 3, a feature which the tool doesn’t allow the designer
to modify.

At this point, one last comment regarding the implementation of the C++ variables that
correspond to the transferred data between the sub-functions, that is matrices A, L and vector b,
should be made. The coefficient matrix A is required to be implemented as a set of registers, as
this format allows convenient handling within the Input Loop. On the other hand, if the matrix
was mapped to a Block RAM, a decrease in performance would be observed, because additional

cycles would be required in order to initialize the values of the C++ array and to issue the final

122

write operations, since a BRAM on the FPGA has a limited number on ports. Therefore the
Array Partition directive was used in order for all of the 15 unique coefficients to be implemented
as registers. Similarly, the constant terms have also been mapped to registers. Regarding the
triangular matrix L, due to the way that the Cholesky and Output functions process the data,
both channel types, that is a set of registers or a BRAM, are acceptable. Because the transferred
data are not so many and therefore the benefits of using a Block RAM are reduced, it was decided

to implement the elements of the matrix L as registers by also using the Array Parition directive.

123

Chapter 5

Design Evaluation

Once the theoretical and technical details of the proposed centroid detection designs have been
established, it is vital to conduct a set of experiments in order to evaluate their performance. More
specifically, simulated data were used and the hardware implementations were compared to the
respective software algorithms regarding the accuracy and computational time. Furthermore, the

FPGA resources demands of the various hardware models are discussed.

All of the software experiments are carried on the MATLAB 2016A platform, running on a
dual-core Intel Core i5 2.6 GHz processor. The VHDL system was developed on Xilinix Vivado
Design Suite 2019.1, while Xilinx Vivado HLS 2019.1 was used for the C++ designs. All of the
models have been implemented on the Xilinx ZYNQ-7020 SoC which is hosted on the ZedBoard
Development Board.

5.1 Dataset Generation

Since this thesis focuses only on the centroiding process and an end-to-end system is not
available, simulated star clusters were created in order to conduct the appropriate tests. For
this purpose a Point Spread Function (PSF), developed in MATLAB, was provided by Infinite
Orbits, which generates clusters according to the following equation.

2 2
202 oy

F= Aexp <(x¢ —z.)? (- yc)z) (5.1)

where x;, y; represent the i-th pixel in the image; ., y. are the ground truth centroids of the
cluster; o, o, represent the standard deviation of the function and A is the amplitude, which

represents the cluster’s brightness level.

In this chapter we compare the differences between the hardware and software implementations
of a specific algorithm and not the individual algorithms. More about the performance levels of
each algorithm are discussed in Section 3.2.5. Therefore, instead of evaluating the results on a
wide range of the Gaussian parameters, a specific set has been selected. Extensive exploration was
conducted in collaboration with Infinite Orbits, in order to find a set of parameters that create
clusters, on which both algorithms display sufficient performance. This parameter set is explained

below.

125

5.1.1 Centroid Position

Throughout this thesis it has been assumed that an accurate clustering algorithm generates
the clusters on which the centroiding algorithms operate. The centroid in such clusters is expected
to be located close to the center, which ensures that all pixels demonstrate a sufficient value of

intensity. Therefore for a cluster of size NxN, a centroid is placed within the following interval:

(%e, ye) € (0.25N,0.75N) (5.2)

It was observed, as expected, that if a ground truth centroid was placed in an edge pixel, not
enough bright pixels would exist inside the cluster and the Center of Gravity algorithm would fail.

5.1.2 Brightness Level

Considering the thresholding process that takes place during clustering, quite bright pixels are
expected. However, during simulation it was found that the amplitude parameter doesn’t heavily
affect the results, thus lower levels of brightness were also allowed. This parameter is restricted

within the following interval.

A€ (0.1,1) (5.3)

It should be noted, that no care has been taken regarding saturated pixels, and they may as

well be detected in the generated clusters.

5.1.3 Gaussian Radius

The most important parameter of the generated PSF was the two-dimensional standard de-
viation of the Gaussian distribution, which models the spread of the star spot and in reality it
depends on lens configuration. In order for both algorithms to achieve acceptable performance, a

symmetric PSF was assumed and the Gaussian radius o was defined as follows.

0=0,=0y=125 (5.4)

Using the described PSF, three datasets of 10,000 samples were created, which contained 3x3,
5x5 and both 3x3, 5x5 star clusters respectively. Lastly, we highlight that noise hasn’t been added
to the simulated data, because it is expected that noise would only affect the general performance
of the algorithm and not the differences between hardware and software results, which is the main

focus of the presented evaluation.

5.2 Accuracy Experiment

A possible shortcoming when implementing an algorithm on hardware, is a loss in precision.
Therefore, it is vital to evaluate the subpixel accuracy of the proposed designs by comparing the
provided centroid positions to the respective results produced in software. For this reason, Infinite
Orbits developed a MATLAB function for each algorithm, which was used to produce the baseline
results.

The accuracy of each implementation was measured using as error metric the euclidean distance
between the centroid estimated on hardware (xy, yp,) and the centroid calulated on software (x4, ys),

as shown below.

126

€= \/(xh - xS)Q + (yh - ys)2 (55)

Remember that a raw evaluation of the hardware results against the ground truth centroids
may lead to inaccurate conclusions, as in this case the algorithm’s performance is not taken into
account. If for example, due to some random condition, the software algorithm produces false
results but only the respective hardware and ground truth centroids are compared, a false conclu-
sion of bad hardware design could be extracted. Instead, it is important to evaluate how different
the hardware design behaves in comparison to the software function, regardless of the general
centroiding accuracy, which depends on the algorithm itself.

It is expected that both CG models will achieve the same accuracy, since they have been
designed in the same way. In Table 5.1 we present the mean centroiding error between software
and hardware for the CG and FGF algorithms.

Table 5.1: Mean centroiding error between hardware and software implementations on each dataset.

Dataset
Algorithm 3x3 5x5 Mixed
CcG 0.047814 | 0.048162 | 0.047990
FGF 0.000004 | 0.000020 | 0.000005

Apparently the subpixel accuracy is consistent with the design calls that have been made. It
is also clear that the single-precision floating point arithmetic that has been used in the FGF case
provides a significant advantage, as the differences between software and hardware are negligible.
It should be mentioned that the observed differences have to do with the use of double-precision
numbers in the MATLAB function, while the hardware system adopts single-precision accuracy
for lower logic complexity. On the contrary, the error in the CG algorithm is increased due to the
use of the simple fixed point division. As it is explained in Section 4.2.1.3, the 4 fractional bits
only ensure that the error will be lower than 0.1. If more fractional bits were used, the respective
errors in Table 5.1 would be decreased.

In order to obtain a better insight into the algorithms, in Tables 5.2, 5.3 we provide the
centroiding results as produced by the software and hardware implementations for four random
clusters.

Table 5.2: Detected centroids by the CG software and hardware implementations.

Ground Truth CG SW CG HW

X Y X Y X Y
210.593130 | 899.672780 || 210.846683 | 899.876934 || 210.8125 | 899.875
945.137136 | 729.932595 || 945.352640 | 729.947333 || 945.3125 | 729.9375
135.510762 | 829.973985 || 135.816945 | 829.990032 || 135.8125 | 829.937
753.193434 | 791.639461 || 753.391853 | 791.720189 753.375 | 791.6875

It is obvious that the FGF algorithm dominates as far as accuracy is concerned. Furthermore it
seems that the CG algorithm doesn’t meet the typical error requirement in software, as it displays
centroiding errors higher than 0.1 pixels on the simulated datasets. Consequently even if more

fractional bits were used in the CG design, the accuracy would still be insufficient regarding the

127

Table 5.3: Detected centroids by the FGF software and hardware implementations.

Ground Truth FGF SW FGF HW

X Y X Y X Y
210.593130 | 899.672780 || 210.592542 | 899.673227 || 210.592539 | 899.673221
945.137136 | 729.932595 || 945.137295 | 729.932511 || 945.137295 | 729.932514
135.510762 | 829.973985 || 135.511087 | 829.973674 || 135.511093 | 829.973673
753.193434 | 791.639461 || 753.193277 | 791.639544 || 753.193274 | 791.639544

typical error. For this reason, we suggest that a better selection of the number of fractional bits
should be done when a real star dataset is available and the actual performance of the CG algorithm

can be evaluated.

5.3 Performance Experiment

In the most important experiment presented in this thesis, we measure the consumption time of
each algorithm on all datasets, in order to establish the actual benefits of implementing a centroid-
ing process on the FPGA. Initially, a comparison between the different hardware implementations
should be provided, regarding the metrics of latency, throughput and achieved operation frequency.
The results for each FPGA design are displayed in Tables 5.4, 5.5.

Table 5.4: Comparison between FPGA implementations (1).

Model Latency | Initiation Interval | Critical Path (ns)
CG VHDL N? +42 N2 43 3.141
CG HLS N? 437 N? 46 3.942
FGF 8N? + 643 8N? + 37 5.921

Table 5.5: Comparison between FPGA implementations (2).

Model Max Frequency (MHz) | Max Throughput (million clusters/s) | Acceleration (x)
CG VHDL 320 18 200
CG HLS 250 12 160
FGF 170 1 25

The latency and throughput are expressed as a function of the number of pixels N in order
to obtain a better view of the differences between the designs. It should be mentioned, that the
provided latency for the VHDL model is an estimate and can’t be accurately measured due to the
usage of a buffer, as explained in Section 4.2.1.4. Furthermore, the two CG models demonstrate
some small differences in latency and throughput. The C++ implementation is characterized
by a lower latency due to the powerful Dataflow directive, which automatically constructs the
communication channels between the different functions, in combination with the fast divider core
which is able to receive one sample per cycle. By contrast the use of the IP Divider, which inputs

data at a slower rate results in increased latency. However the VHDL block is able to receive new

128

data sooner and offers better throughput. As explained in Section 4.2.2.5 this is due to the fact,
that the C++ loop-based functions aren’t able to re-execute before their previous run is complete.
However, when we model a design in the RTL we are able to describe the desired behavior more
accurately and create more ”flexible” blocks.

Perhaps the most important difference between the two models is that the HLS implementation
isn’t able to achieve the operation frequency of the VHDL model. While the latter can execute at
almost 320 MHz, the HLS block operates at 250 MHz, even though they model actually the same
algorithm. The generated reports place the Critical Path within the Unsigned Division core, which
is implemented with LUTs and is automatically inferred by the HLS compiler. We have highlighted
that the tool doesn’t allow the designer to intervene in this core. It is therefore concluded, that
the performance is limited by the HLS tool.

Apparently, the FGF implementation is quite slower than the CG designs which is a result of
the significantly higher complexity of this algorithm. According to the extensive analysis provided
in Section 4.3, the throughput of the design is limited by the floating point subtraction core which
calculates the constant vector b and is able to receive a new sample every 8 cycles. Moreover, the
data depedencies within the Linear Problem Solver and especially within the substitution method,
combined with the use of slow floating point cores, cause large delays. Ultimately the overall
complexity of the algorithm which requires a great use of resources, results in a relatively high
critical path. According to the generated reports, the critical path is created within the floating
point subtraction core of the Cholesky Block. It should be highlighted also that the net delay con-
stitutes the 82% of the total critical path which explains that the operation frequency is limited
during implementation, due to the high resource utilization, as it will be discussed in the next
section. Consequently, the placer and router aren’t able to find an optimal solution to the respec-
tive placing and routing problems, in order to implement a faster circuit. During development an
exhaustive space exploration was conducted, regarding the available Logic Synthesis and Imple-
mentation strategies provided by the Vivado tool, but no combination could provide better results.
Therefore it is estimated, that the best possible C++ implementation of the FGF algorithm has
been achieved.

After an in-depth description of the hardware-level differences between the various implemen-
tations, in Table 5.6 the total execution times of the algorithms on the provided datasets are
displayed.

Table 5.6: Total consumption time of each implementation in seconds.

Dataset || CG SW | FGF SW || CG VHDL | CG HLS | FGF HW

3x3 0.126010 0.217139 0.000377 0.000591 0.006457
5x5 0.125483 0.269169 0.000880 0.001221 0.014036
Mixed 0.151671 0.234976 0.000628 0.000906 0.010237

As it is expected, the CG algorithm is faster on both software and hardware. On software it
seems to be almost 2 times faster than the FGF algorithm which confirms the results from [7].
On hardware the VHDL implementation is slightly faster than the one produced with HLS. The
timing results are summarized in Table 5.5, which also displays the overall acceleration that each
proposed design achieves.

An acceleration of 2 orders of magnitude for the CG algorithm is observed, while the FGF
algorithm is executed approximately 25 times faster on hardware. Apparently, the acceleration

on this case is limited by the complexity of the algorithm which is reflected on the increased

129

demands for logic resources. As explained, the FGF implementation is mainly characterized by
low throughput and increased critical path. The floating point subtraction core within the input
loop imposes a constraint on the initiation interval, while the critical path is created within the same
type of core in the Cholesky function. Considering also the fact that this path is by 80% composed
of net delay, it is clear that the algorithm’s underlying high complexity, which is expressed with the
use of floating point cores, results in congestion of resources in the FPGA and ultimately defines
the amount of achieved acceleration. Nevertheless it can be claimed that the proposed novel design
provides a significant speed advantage, while the high accuracy is maintained, making it suitable

for real-time applications.

5.4 Resource Utilization Evaluation

In Table 5.7 we provide insight regarding the resource utilization on the FPGA for each im-
plementation. Within the brackets, we give the total number of each type of resources that are
available on the ZYNQ-7020 SoC.

Table 5.7: FPGA resource utilization.

Model | LUT (53200) FF (106400) DSP (220) BRAM (140)

CG VHDL 255 466 3 2
CG HLS 1362 1466 2 0
FGF 8661 13761 95 0

It can be seen, that the complexity of each algorithm reflects directly on its resources demands.
It is interesting that the C++ design of the CG algorithm requires quite more FPGA primitives
compared to the VHDL model. One explanation for this result is that the latter uses 2 Block
RAMs to construct the FIFO memories, while in the HL.S approach, according to the C Synthesis
reports the compiler infers Shift Register LUTs. Considering the increased area and increased
critical path that the C++4 model demonstrates, it is believed that the HLS tool doesn’t provide
an optimal solution.

Furthermore, it is obvious that the FGF implementation requires significantly more logic re-
sources on the FPGA. It should be mentioned that based on the HLS Synthesis reports and the
designed C++ code, an amount of 50 DSPs was expected, while the calculation of both the coef-
ficient matrix and the constant vector require in total 31 DSPs and the rest of the floating point
operations use 19 cores. However, it seems that the Logic Synthesizer inferred 5 additional DSPs.
In total the Input Function, which performs concurrently a large number of operations on the input
samples, seems to use the most of the resources.

Lastly, it is important to have a look at the actual placement of each model on the FPGA, as
it is provided by Vivado. In Figure 5.1 the consumed area in each case is displayed.

The expanded area which is required by the CG C++ circuit is another indication of the
differences between the two programming models. The VHDL description gives the optimal im-
plementation on the FPGA but comes with a cost in development time. Even though the FGF
implementation doesn’t use a very large percentage of the available resources, the placement on
the FPGA seems to be quite wide which makes routing delay the determining factor of the circuit’s
critical path. The visual inspection of the FPGA area can corroborate the claims regarding the

reasons behind limited acceleration in the FGF case. In total we believe that the HLS approach

130

(a) CG VHDL (b) CG HLS

Figure 5.1: Overview of the placement of each design on the FPGA.

isn’t able to provide better results, which perhaps could be obtained if the algorithm was described
in the Register Transfer Level with VHDL.

131

Chapter 6

Conclusion

6.1 Summary

In order to keep up with the requirements of modern space applications, in this thesis we
attempt to accelerate two star centroiding algorithms on an FPGA platform. Each implementation
demonstrates different advantages and ultimately a trade-off between accuracy and efficiency is
emerged and reflected on utilization of FPGA resources. The Center of Gravity algorithm due
to its simplicity was accelerated by 2 orders of magnitude but the accuracy was only constrained
within 0.1 pixels compared to the software model. On the contrary, the more complex Fast Gaussian
Fitting algorithm was accelerated by 25 times while maintaining excellent accuracy. This FPGA
implementation constitutes a novel design which can be utilized as part of the star detection process,
which is vital for precise and fast attitude determination in space. Considering the fact that the
star tracker’s accuracy is mainly determined by the centroiding process, the proposed model assures
that under the appropriate system configuration (e.g., high resolution sensor, sufficient clustering)
centroids with the lowest possible error will be obtained. Simultaneously it can enable very fast
update rates, since it can typically process 10,000 stars in 10 ms. However, it is unlikely that such
high rates can be required by a star tracker due to the high integration time that characterize the
optic sensor.

Furthermore, in this work the different FPGA programming models with VHDL and HLS
(C++) have been extensively studied. We exploited the advantages of convenience and high
productivity that the HLS provides in order to conduct exhaustive space exploration and testing.
It wouldn’t be otherwise possible to develop and validate three different models in such a short
period of time. Especially the VHDL modeling of the FGF algorithm would be considerably more
challenging. However the quality of results that the RTL modelling demonstrates is undisputed.
Even in the case of the very simple CG algorithm, the HLS didn’t achieve the optimal performance
of the VHDL design, as far as maximum frequency and resource utilization are concerned. We also
assume that even more performance can be extracted by the FGF algorithm if it is implemented
with VHDL.

6.2 Future Work

In order to fully understand the benefits that the proposed novel design can provide, it is
necessary to include it in the complete star detection pipeline. We intent to combine the proposed

centroiding implementation with the clustering and matching algorithms that have been developed

133

by a fellow colleague and Infinite Orbits respectively. Hopefully this fully custom star tracking
pipeline will be used in future space missions led by Infinite Orbits.

Regarding the work presented in this thesis, it is definitely useful to simulate the implemented
designs on real star images. The novel design is expected to demonstrate excellent accuracy once
again. However, it is interesting to observe the behavior of the CG models since they weren’t
able to produce remarkable results on simulated data. Should the CG software algorithm perform
better when real data are used, we suggest a more detailed exploration, regarding the number of
used fractional bits, to be conducted in order to enable the very fast hardware model to achieve
better accuracy.

Lastly, a possible VHDL description of the FGF algorithm could provide a better insight re-
garding the maximum underlying performance that can be extracted. However, as explained, the
efficiency of the proposed design is sufficient and therefore it can be used in all modern star trackers,

which means that even a higher acceleration with VHDL wouldn’t provide actual gains.

134

Bibliography

[1]

[10]

[11]

[12]

C. L. von Wielligh, “Fast star tracker hardware implementation and algorithm optimisations

on a system-on-a-chip device.” 2019.

“The different frames and the keplerian elements.” [Online]. Available: https://

adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/

Q. Hua-Ming, L. Hao, and W. Hai-yong, “Design and verification of star-map simulation soft-
ware based on ccd star tracker.” 2015 8th International Conference on Intelligent Computation
Technology and Automation (ICICTA), pp. 383-387, 2015.

“How is ”cross boresight” accuracy of ”about boresight” accuracy de-
fined?” [Online]. Available: https://space.stackexchange.com/questions/54034/

how-is-cross-boresight-accuracy-of-about-boresight-accuracy-defined
Xilinx, Introduction to FPGA Design with Vivado High-Level Synthesis.

I. Stratakos, “Lecture notes on design and implementation of image processing algorithms on
soc platforms for embedded applications.” May 2017.

X. Wan, G. Wang, X. Wei, J. Li, and G. Zhang, “Star centroiding based on fast gaussian
fitting for star sensors.” Sensors, vol. 18, p. 2836, 08 2018.

J. N. Pelton, S. Madry, and S. Camacho-Lara, Handbook of Satellite Applications. Springer
Publishing Company, Incorporated, 2012.

0. Kodheli, A. Guidotti, and A. Vanelli-Coralli, “Integration of satellites in 5G through LEO
constellations.” in GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017,

pp. 1-6.

F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Patrone, “Small satellites
and cubesats: Survey of structures, architectures, and protocols.” International Journal
of Satellite Communications and Networking, vol. 37, no. 4, pp. 343-359, 2019. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1277

“The space economy report.” [Online|. Available: https://digital-platform.euroconsult-ec.
com/wp-content /uploads/2020/07 /Space-eco-report-brochure.pdf

“Emerging space investment analysis, 3rd edition.” [Online]. Available: https://www.nsr.

com/?research=emerging-space-investment-analysis-3rd-edition %t E2%80%AF

E. M. Gaposchkin, C. von Braun, and J. Sharma, “Space-based space surveillance with
the space-based visible.” Journal of Guidance, Control, and Dynamics, vol. 23, no. 1, pp.
148-152, 2000. [Online]. Available: https://doi.org/10.2514/2.4502

137

https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/
https://adcsforbeginners.wordpress.com/tag/earth-centred-inertial-frame/
https://space.stackexchange.com/questions/54034/how-is-cross-boresight-accuracy-of-about-boresight-accuracy-defined
https://space.stackexchange.com/questions/54034/how-is-cross-boresight-accuracy-of-about-boresight-accuracy-defined
https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.1277
https://digital-platform.euroconsult-ec.com/wp-content/uploads/2020/07/Space-eco-report-brochure.pdf
https://digital-platform.euroconsult-ec.com/wp-content/uploads/2020/07/Space-eco-report-brochure.pdf
https://www.nsr.com/?research=emerging-space-investment-analysis-3rd-edition%E2%80%AF
https://www.nsr.com/?research=emerging-space-investment-analysis-3rd-edition%E2%80%AF
https://doi.org/10.2514/2.4502

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. P. Setterfield, “On-orbit inspection of a rotating object using a moving observer.” Ph.D.
dissertation, Massachusetts Institute of Technology, Department of Aeronautics and Astro-
nautics, 2017.

W. Fehse, Automated Rendezvous and Docking of Spacecraft. Cambridge university press,
2003.

C. Kaiser, F. Sjoberg, J. M. Delcura, and B. Eilertsen, “An orbital life extension vehicle for
servicing commercial spacecrafts in GEO.” Acta Astronautica, vol. 63, no. 1, pp. 400-410, 2008,
touching Humanity - Space for Improving Quality of Life. Selected Proceedings of the 58th
International Astronautical Federation Congress, Hyderabad, India, 24-28 September 2007.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/S0094576507003633

C. Bonnal, J.-M. Ruault, and M.-C. Desjean, “Active debris removal: Recent progress
and current trends.” Acta Astronautica, vol. 85, pp. 51-60, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0094576512004602

A. R. Eisenman, C. C. Liebe, and J. L. Joergensen, “New generation of autonomous star
trackers.” in Sensors, Systems, and Next-Generation Satellites, H. Fujisada, Ed., vol. 3221,
International Society for Optics and Photonics. SPIE, 1997, pp. 524 — 535. [Online].
Available: https://doi.org/10.1117/12.298121

G. Wang, W. Lv, J. Li, and X. Wei, “False star filtering for star sensor based on angular
distance tracking.” IEEE Access, vol. 7, pp. 62401-62411, 2019.

A. Read Eisenman and C. Liebe, “The advancing state-of-the-art in second generation star
trackers.” in 1998 IEEFE Aerospace Conference Proceedings (Cat. No.98TH8339), vol. 1, March
1998, pp. 111-118 vol.1.

E. Fossum, “CMOS image sensors: electronic camera-on-a-chip.” IEEE Transactions on Elec-
tron Dewvices, vol. 44, no. 10, pp. 1689-1698, 1997.

K. Maragos, V. Leon, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo, A. Pastor,
D. M. Codinachs, and 1. Conway, “Evaluation Methodology and Reconfiguration Tests on the
New European NG-MEDIUM FPGA.” in 2018 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS), 2018, pp. 127-134.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, R. Domingo, M. Verdugo, D. Gonzalez-Arjona,
D. M. Codinachs, and I. Conway, “Systematic Evaluation of the European NG-LARGE FPGA
& EDA Tools for On-Board Processing.” in 2nd European Workshop on On-Board Data Pro-
cessing (OBDP), 2021, pp. 1-8.

V. Leon, I. Stamoulias, G. Lentaris, D. Soudris, D. Gonzalez-Arjona, R. Domingo, D. M.
Codinachs, and I. Conway, “Development and Testing on the European Space-Grade BRAVE
FPGAs: Evaluation of NG-Large Using High-Performance DSP Benchmarks.” IEEE Access,
vol. 9, pp. 131877-131892, 2021.

C. Wilson and A. George, “CSP Hybrid Space Computing.” Journal of Aerospace Information
Systems, vol. 15, no. 4, pp. 215-227, 2018.

A. Pérez, A. Rodriguez, A. Otero, D. Gonzéalez-Arjona, A. Jiménez-Peralo, M. A. Verdugo,
and E. De La Torre, “Run-Time Reconfigurable MPSoC-Based On-Board Processor for Vision-
Based Space Navigation.” IEEE Access, vol. 8, pp. 59 891-59 905, 2020.

138

https://www.sciencedirect.com/science/article/pii/S0094576507003633
https://www.sciencedirect.com/science/article/pii/S0094576512004602
https://doi.org/10.1117/12.298121

[27]

[28]

[29]

[35]

[36]
[37]
[38]

[39]

V. Leon, G. Lentaris, D. Soudris, S. Vellas, and M. Bernou, “Towards Employing FPGA
and ASIP Acceleration to Enable Onboard AI/ML in Space Applications.” in IFIP/IEEE
International Conference on Very Large Scale Integration (VLSI-SoC), 2022, pp. 1-4.

V. Leon, G. Lentaris, E. Petrongonas, D. Soudris, G. Furano, A. Tavoularis, and D. Moloney,
“Improving Performance-Power-Programmability in Space Avionics with Edge Devices: VBN
on Myriad2 SoC.” ACM Transactions on Embedded Computing Systems (TECS), vol. 20,
no. 3, pp. 1-23, 2021.

F. C. Bruhn, N. Tsog, F. Kunkel, O. Flordal, and I. Troxel, “Enabling Radiation Tolerant
Heterogeneous GPU-based Onboard Data Processing in Space.” CEAS Space Journal, vol. 12,
pp. 551-564, 2020.

V. Leon, C. Bezaitis, G. Lentaris, D. Soudris, D. Reisis, E.-A. Papatheofanous, A. Kyriakos,
A. Dunne, A. Samuelsson, and D. Steenari, “FPGA & VPU Co-Processing in Space Applica-
tions: Development and Testing with DSP/AI Benchmarks.” in 2021 28th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), 2021, pp. 1-5.

C. Liebe, “Accuracy performance of star trackers-a tutorial.” Aerospace and Electronic Sys-
tems, IEEE Transactions on, vol. 38, pp. 587 — 599, 05 2002.

B. Spratling and D. Mortari, “A survey on star identification algorithms.” Algorithms, vol. 2,
03 2009.

L. Kazemi, J. Enright, and T. Dzamba, “Improving star tracker centroiding performance in

dynamic imaging conditions.” 2015 IEEE Aerospace Conference, pp. 1-8, 2015.

V. Lappas, “Practical results on the development of a control moment gyro based attitude

control system for agile small satellites.” 2002.

D. Michaels and J. Speed, “Ball aerospace star tracker achieves high tracking accuracy for a
moving star field.” in 2005 IEEE Aerospace Conference, March 2005, pp. 1-7.

B. Horn, Robot Vision, 01 1986.
D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, 01 2003.
Y. Liu and C. Pomalaza-raez, Self-Landmarking for Robotics Applications, 08 2011.

J. Diebel, “Representing attitude: Euler angles, unit quaternions, and rotation vectors.” Ma-
triz, vol. 58, 01 2006.

K. R. Castleman, Digital image processing, ser. Prentice-Hall signal processing series. En-
glewood Cliffs, N.J: Prentice-Hall, 1979 - 1979.

E. Hecht, Optics, 4th ed. Addison-Wesley, 1998.

B. Saleh and M. Teich, Fundamentals of Photonics. John Wiley Sons, Ltd, 1991. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/0471213748.gloss

M. P. Ramachandran, “Analytical derivation of star sensor accuracies due to centroid
error.” Sadhana, vol. 46, no. 4, p. 205, Oct 2021. [Online]. Available: https:
//doi.org/10.1007/s12046-021-01713-1

139

https://onlinelibrary.wiley.com/doi/abs/10.1002/0471213748.gloss
https://doi.org/10.1007/s12046-021-01713-1
https://doi.org/10.1007/s12046-021-01713-1

[44]

[45]

E. D. Aretskin-Hariton and A. J. Swank, “Star tracker performance estimate with IMU.”
2015.

T. Delabie, “Star tracker algorithms and a low-cost attitude determination and control system
for space missions.” 2016. [Online]. Available: https://lirias.kuleuven.be/retrieve/353369

W. Tan, S. Qin, R. M. Myers, T. J. Morris, G. Jiang, Y. Zhao, X. Wang, L. Ma, and
D. Dai, “Centroid error compensation method for a star tracker under complex dynamic
conditions.” Opt. Express, vol. 25, no. 26, pp. 33559-33574, Dec 2017. [Online]. Available:
http://opg.optica.org/oe/abstract.cfm?URI=oe-25-26-33559

J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy
evaluation.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 10,
pp- 965-980, Oct 1992.

S. R. E., Electro-Optics Handbook. RCA Corporations, 1974.
D. Brown, “Decentering distortion of lenses.” 1966.
M. J. Jacobs, “A low cost, high precision star sensor.” 1995.

C. Ricolfe-Viala and A.-J. Sanchez-Salmerén, “Lens distortion models evaluation.” Applied
optics, vol. 49, pp. 5914-28, 10 2010.

F. Zhou, Y. Cui, H. Gao, and Y. Wang, “Line-based camera calibration with lens distortion
correction from a single image.” Optics and Lasers in Engineering, vol. 51, no. 12, pp.
1332-1343, 2013. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0143816613001619

J. de Villiers, F. Leuschner, and R. Geldenhuys, “Centi-pixel accurate real-time inverse dis-
tortion correction.” Proceedings of SPIE - The International Society for Optical Engineering,
vol. 7266, 11 2008.

M. D. C. M. Morris R. Mano, Digital Design, 5th Edition. Pearson, 2013.

W. H. Steyn, M. J. Jacobs, and P. J. Oosthuizen, “A high performance star sensor system for
full attitude determination on a microsatellite.” 2004.

B. C. Greyling, “A charge coupled device star sensor system for a low earth orbit microsatel-
lite.” 1995.

X. Zhu, F. Wu, and Q. Xu, “A fast star image extraction algorithm for autonomous star
sensors.” in Optoelectronic Imaging and Multimedia Technology II, T. Shimura, G. Xu,
L. Tao, and J. Zheng, Eds., vol. 8558, International Society for Optics and Photonics. SPIE,
2012, pp. 443 — 451. [Online]. Available: https://doi.org/10.1117/12.999641

M. W. Knutson, “Fast star tracker centroid algorithm for high performance cubesat with air
bearing validation.” 2012.

R. C. Stone, “A comparison of digital centering algorithms.” The Astronomical Journal,
vol. 97, p. 1227, 1989.

D. A. Giancarlo Rufino, “Enhancement of the centroiding algorithm for star tracker measure

refinement.” Science Direct, p. 13, April 2001.

140

https://lirias.kuleuven.be/retrieve/353369
http://opg.optica.org/oe/abstract.cfm?URI=oe-25-26-33559
https://www.sciencedirect.com/science/article/pii/S0143816613001619
https://www.sciencedirect.com/science/article/pii/S0143816613001619
https://doi.org/10.1117/12.999641

[61]

[62]

[64]

[65]

[68]

[71]

[72]

[73]

[74]

M. Shortis, T. A. Clarke, and T. Short, “Comparison of some techniques for the subpixel
location of discrete target images.” in Other Conferences, 1994.

V. Akondi, M. B. Roopashree, and R. P. Budihala, “Improved iteratively weighted centroiding
for accurate spot detection in laser guide star based Shack Hartmann sensor.” in LASE, 2010.

T. Delabie, J. D. Schutter, and B. K. Vandenbussche, “An accurate and efficient gaussian fit

”

centroiding algorithm for star trackers.
pp. 60-84, 2013.

The Journal of the Astronautical Sciences, vol. 61,

H. Wang, E. Xu, Z. Li, L. Jingjin, and T. Qin, “Gaussian analytic centroiding method of star
image of star tracker.” Advances in Space Research, vol. 56, 09 2015.

B. R. Flewelling and D. Mortari, “Information theoretic weighting for robust star
centroiding.” The Journal of the Astronautical Sciences, vol. 58, no. 2, pp. 241-259, Apr
2011. [Online]. Available: https://doi.org/10.1007/BF03321167

A. O. Erlank, “Development of cubestar : a cubesat-compatible star tracker.” 2013.

M. Kolomenkin, S. Pollak, I. Shimshoni, and M. Lindenbaum, “Geometric voting algorithm
for star trackers.” Aerospace and Electronic Systems, IEEE Transactions on, vol. 44, pp. 441
— 456, 05 2008.

B. Wang, H. Wang, and Z. Jin, “An efficient and robust star identification algorithm based
on neural networks.” Sensors (Basel, Switzerland), vol. 21, no. 22, p. 7686, Nov 2021,
34833762[pmid]. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/34833762

B. Spratling and D. Mortari, “A survey on star identification algorithms.” Algorithms, vol. 2,
03 2009.

C. Padgett, K. Kreutz-Delgado, and S. Udomkesmalee, “Evaluation of star identification
techniques.” Journal of Guidance, Control, and Dynamics, vol. 20, no. 2, pp. 259-267, 1997.
[Online]. Available: https://doi.org/10.2514/2.4061

M. Lindh, “Development and implementation of star tracker electronics.” 2014.

F. Zhou, J. Zhao, T. Ye, and L. Chen, “Fast star centroid extraction algorithm with sub-pixel
accuracy based on fpga.” Journal of Real-Time Image Processing, vol. 12, no. 3, pp. 613-622,
Oct 2016. [Online]. Available: https://doi.org/10.1007/s11554-014-0408-2

X. Wang, X. Wei, Q. Fan, J. Li, and G. Wang, “Hardware implementation of fast and robust
star centroid extraction with low resource cost.” IEEE Sensors Journal, vol. 15, no. 9, pp.
4857-4865, Sep. 2015.

F. Kong, M. C. Polo, and A. Lambert, “On-sky results and performance of low latency
centroiding algorithms for adaptive optics implemented in FPGA.” in Unconventional and
Indirect Imaging, Image Reconstruction, and Wavefront Sensing 2018, J. J. Dolne and P. J.
Bones, Eds., vol. 10772, International Society for Optics and Photonics. SPIE, 2018, pp.
223 — 232. [Online]. Available: https://doi.org/10.1117/12.2320084

X. Wei, J. Xu, J. Li, J. Yan, and G. Zhang, “S-curve centroiding error correction for star
sensor.” Acta Astronautica, vol. 99, p. 231-241, 06 2014.

141

https://doi.org/10.1007/BF03321167
https://pubmed.ncbi.nlm.nih.gov/34833762
https://doi.org/10.2514/2.4061
https://doi.org/10.1007/s11554-014-0408-z
https://doi.org/10.1117/12.2320084

142

	Περίληψη
	Abstract
	Ευχαριστίες
	englishenglishContents
	englishenglishList of Figures
	englishenglishList of Tables
	Εκτεταμένη Περίληψη
	Εισαγωγή
	Κίνητρο
	Ανιχνευτές Αστεριών
	Στόχος Εργασίας

	Θεωρητικό Υπόβαθρο
	Μετασχηματισμός Συντεταγμένων
	Η Ανάγκη για Subpixel Ακρίβεια

	Αλγόριθμοι Κεντραρίσματος
	Αλγόριθμος Κέντρου Βαρύτητας
	Αλγόριθμος Γρήγορου Γκαουσσιανού Ταιριάσματος

	Προτεινόμενες FPGA Αρχιτεκτονικές
	Εισαγωγή
	Αλγόριθμος Κέντρου Βαρύτητας
	Αλγόριθμος Γρήγορου Γκαουσσιανού Ταιριάσματος

	Αξιολόγηση Αρχιτεκτονικών
	Αξιολόγηση Ακρίβειας
	Αξιολόγηση Απόδοσης
	Αξιολόγηση Κατανάλωσης Πόρων

	Συμπεράσματα
	Σύνοψη
	Μελλοντική Εργασία

	Introduction
	Satellites
	Applications
	Subsystems
	Trends

	Star Trackers
	Operation & Layout
	Processing Flow
	Modern Designs

	Project Objective
	Thesis Outline

	Background
	Space Navigation
	Coordinate Systems
	Accuracy Measurement
	Field of View
	Performance Limiting Factors

	Field Programmable Gate Arrays
	Overview
	Performance Advantages
	System-on-Chip FPGAs
	Register Transfer Level Programming Model: VHDL
	High Level Programming Model: C++
	Hardware Performance Metrics

	Related Work
	Processing Algorithms
	FPGA Implementations

	Considered Centroiding Algorithms
	Center of Gravity Algorithm
	Definition
	Proposed Modification for Implementation on FPGA

	Fast Gaussian Fitting Algorithm
	Overview
	Motivation
	Definition
	A Linear Least Squares Problem
	Centroiding Process
	Proposed Modifications for Implementation on FPGA

	Proposed Hardware Designs
	System Specifications
	Configuration and Process Integration
	Performance Requirements

	Center of Gravity Algorithm
	VHDL Model
	C++ Model

	Fast Gaussian Fitting Algorithm
	Overview
	Floating Point Arithmetic
	Input Function
	Cholesky Function
	Output Function
	Proposed Centroiding Architecture

	Design Evaluation
	Dataset Generation
	Centroid Position
	Brightness Level
	Gaussian Radius

	Accuracy Experiment
	Performance Experiment
	Resource Utilization Evaluation

	Conclusion
	Summary
	Future Work

	Bibliography

