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Euyoeiotieg

Me v mepdtwon authc e Awmdwpatixic Epyoaoioac ohoxAnpddvovtal TautdyYpove oL TeoTTUYi-
axéc omoudéc pou oto EMII, 1o mpthto pou axoadnuoixd eniteuyyo, xadode xal 1 eloaywyr Lou oTov
xweo e Mnyavirie Mddnone.

Oa Hieha vo euyaplothow mpntiotwng Tov Kadnynti pov x. AléEovdpo Iotouidvo, apyixd yia
Tic evilapépouoes BlahéZelc xou TNV ouunepiAndn cUYYEOVWY EpELYNTIXGY UEVOdWY oTa HoiorTd
TOU, TIOU UE EVETVEUGOY VoL Aoy oAU Ue TO avTixelyevo, xou ev cuveyela yiot TNV Blapxt| evaoydinomn
TOU UE TNV EEELVNTIXY WOV TPOooTdIELL, XoC %ok Yol T HETABOCT TOAITAEUPLY YVAOCEWY YETa amd
1Wéeg, oulntroelg, oAAG xa xpLtixr) xatd Ty enifiedn authc tne epyaociag.

‘Eva yeydho euyopiotw ogelhow otov INidpyo Iapaoxeudénovro yioo tmv moAdTiun Bordelor xon
xadodnynom, ahhd xou Tig xodoplo TES 1€eg Tou xord OAN T Bidpxeia exmovnone avtrhg e Awmhw-
patuec. Elgon emmiéov euyvoduwy yia Toug GAoUE xo CUUQPOLTNTES OV, YE TOUS OTO{OUS AVTUAALC-
oopEe ouveEY WS oxéels, avnouylec oAld xou utooTieEn 6Ao autd To SldoTHUOL.

Téhog, Yo Hdeha va evyaplothion and ta Badn tng xaedldc pou toug yoveic wou, Moagla xou Xtého,

yiol OhaL.

Xplotiva Xoptletdnn

Adva, Todviog 2022






ITepiindn

O dvipwrol elpacte xowwvixd TAdoyate, xou 1 emBiwon xou sunueplo pog eloptdton and v
AMOTEAECUATIXY ETUXOVWVIN HaC UE TOUG dhAouc. AuTh emituyydvetal P€ow NG XoTavonone Thnpo-
(POPLLY oo TOAATAEC Ao INTNELIKES TINYES X0 ™S Xou YE TN XeNon AOYMAC Yial TNV EEXY WY CUUTERUO-
pdtev, Tpoxeévou vo avtanoxprdolpe avdhoya. To Social Video Question Answering eivou o
epapuoyr Mnyoavixhc Mddnong yio Tov EAeYy0 TwV IXAVOTATOV XOWWVIXTE CUANOYLO TIXE EVOC Tpdx-
Top TEYYNTAC VONUooLVNG, nou Pociletal 0To %aTtd TOCO UNOpEl Vo ANAVTNOEL OE EPWTACELS VW
oe éva dedopévo Bivieo. Mmopel va anantel nepinhoxoug GUVBUAOUOUE AVIYVIELOTS CUVILCUNUATWY,
YAwooAg xatavdnong, xow Aoyixic xat cUANOYLOTIXAS oxéPng.

Ye auth ™ Awmhopatixy Epyaoia, eotidlovye 6Tov eVIOTIOUS SLapope TV TEooeYYIoE®Y Yia
Social Video Question Answering ue ypnon Badeidc Mddnong, uéoa and v ofomoinon meonyol-
HEVWY EPYOOLOV O dlopopeTinols Touelc 6mwe 1 ‘Opaon "Troroyiotdv xou 1 Enegepyacia Puowric
IMNwoococ. Kotd tn didpxela Tne €peuvde pag axorovdiooue 800 dlapopeTinéc npooeyyioels.

Y10 mpddTo Yépog TN epyaoiog poc, oloToloUUE T BUVATOTNTEG CUAAOYLO TIXAC TOMNAATAGY [B1)-
pdtwv tou Compositional Attention Networks (MAC) xou mpoteivouye pla TOAUTPOTUXY EMEXTAUOT
(MAC-X). To MAC-X Booiletan oe éva avadpopuxd xehl mou extelel ENAVOANTTIXG GUYYWVEUOT
pecaiou eTLTESOU TPOTXOTATMY EL0GJ0L (OTTIXT, AXoUG TIXY, XEIUEVO) 0t TOAAATAG G TédLlo GUANOYLO-
KOV, YEMOWOTOIOVTASC VOV UNYAVIOUO YEOVIXAC TpoooyNc. XTn cuvéyelo cuvdudloupe to MAC-X
pe LSTM yio eneepyacia ypovixc eioédou o wior apyltextovixy and dxpo ot dxpo. O cuyxpel-
Txéc yehétee pag delyvouv étu 1) mpotewoduevr apyttextovixy MAC-X unogel vo oélonolioel anote-
AeoUoTixd Tol TOAUTEOTLXA OTOLYEl ELGOBOU YENOWOTOUOVTUS UNYAVICHOUS CUYYWVEVCTS Uecalou
emnédou. Egopuolovye to MAC-X ot0o cOvolo dedopévwv Social IQ) xou emtuyydvoupe ambdiutn
Behtiwon 2,5% 6c0v agopd T duadnr| axpiPela o oyéon ue TV Teéyxouoa xaTdo oo atyuns.

370 deltepo pépog TNE epyosiag Yoc, oxoAoudolue TNV XateLYUVOT TNG AmAVTINONG EPWTACEWY
péoa amd meplypapés Bivteo, mou AopufBdvouue Yéow NS evioyuong Twv SLoAdYwY Ue TAnpogoplec and
™V aviyveuon xowwvixwy evielfeny, cuyxexpluéva cuvalodnuatixéc mAnpogopieg Yo to PAéuua.
Avtr elvon 1 mpdTn Popd, €€ dowy Yvwpllouyue, Tou Tpotelveton Eva T€Too cVoTNUN eEaywYNE Yopon-
TNELOTIXOY WS oyedlacuévo Yo xowvwvixd Bivteo. ewpopoatildpacte ye diapopetixés uedddoug
OnuLovpyiag TERLYPUPHC PUOXAC YADCOUS omd Uiot EVOLAUEST) BouY| YRUPHUATOSC %ol TTUPEYOUUE CUY-
xplTnée peréteg yia dlopopetnd povtéha tonou BERT xou eninedo exnaldevone. Egopudlovye
u€dodd yag oto olhvolo dedouévwy Social 1Q xa emtuyydvouue onuovTinés BeATIOOE o OyéoT Ue

T Baowr anddoon.

AéEeic KAeoud

Badeid Mdidnor, Avtéuatrn andvinorn epwtioewy oe Bivteo, Kowwvix culloyiotxr, Autéuatn
ATV TNOT EPWTHCENY XOWKVIX0U Tepleyouévou ae Bivieo, Compositional Attention Networks, MAC,
Kowwvixéc evdeileic, Aviyvevon Bréppartoc, Aviyveuorn cuvaiodiuatos, Enelepyasia Puoiic I'hédo-
oog, Transformers, BERT.






Abstract

Humans are social creatures; our survival and well-being depends on our effective communica-
tion with others. This is achieved through perceiving and understanding information from multiple
sensory modalities as well as reasoning and arriving to conclusions, in order to respond accordingly.
Social Video Question Answering is a Machine Learning task to test the social reasoning abilities
of an Al agent, based on how accurately it can answer questions on a given video. It can require
sophisticated combinations of emotion recognition, language understanding, cultural knowledge,
logical and causal reasoning, on top of non-social layers of comprehension about physical events.

In this Diploma Thesis, we focus on discovering different approaches for Social Video Question
Answering that leverage Deep Learning methods, through building on previous work in different
fields such as Computer Vision and Natural Language Processing. We take two distinct approaches
in the course of our research.

In the first part of our work, we propose a novel deep architecture for the task of reasoning about
social interactions in videos. We leverage the multi-step reasoning capabilities of Compositional
Attention Networks (MAC) [1], and propose a multimodal extension (MAC-X). MAC-X is based
on a recurrent cell that performs iterative mid-level fusion of input modalities (visual, auditory,
text) over multiple reasoning steps, by use of a temporal attention mechanism. We then combine
MAC-X with LSTMs for temporal input processing in an end-to-end architecture. Our ablation
studies show that the proposed MAC-X architecture can effectively leverage multimodal input
cues using mid-level fusion mechanisms. We apply MAC-X to the task of Social Video Question
Answering in the Social IQ dataset [2] and obtain a 2.5% absolute improvement in terms of binary
accuracy over the current state-of-the-art.

In the second part of our work, we follow the direction of question answering on video captioning,
which we obtain through augmentation of the dialogue transcripts with explicit social cues detection
information, namely emotional eye-gaze information. This is the first time, to the best of our
knowledge, that a feature extraction pipeline specifically designed for social video is proposed,
standing in as a general framework for leveraging social information in video. We experiment with
different natural language caption generation methods from an intermediate graph structure, and
provide ablation studies for several BERT [3]-like language models and fine-tuning levels, as well as
a hierarchical summary scheme based on question conditioning via extractive question answering.
We apply our method to the Social IQ dataset [2] and obtain significant improvements over the

baselines.

Keywords

Deep Learning, Video Question Answering, Social reasoning, Social Video Question Answering,
Compositional Attention Networks, MAC, Social cues, Eye-gaze detection, Emotion recognition,

Natural Language Processing, Transformers, BERT
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Extetapévn Ileplindmn

Eiwcaywyn

Kodnueptvd, ta epedlopoata mou deyouacte 1660 and Tov Quoixd 660 xou and Tov Pnplaxd x6cuo
elvon og ToAMmAEC pop@éc (TpomxdtnTee) xou peydiec moootntee. Elvow onuovtind va avarntio-
COVTOL TEAXTORES TEYVNTAC VONUooUVNg ue oxond vo Bondoldv toug avidp®dnouc otny xodnuepvn
Toug AAANAETBEUOT) UE AUTOV TOV TERICTIO OYXO TOAUTEOTUXWY BEBOUEVKV, UETELILOVTOG TIC ATENELEC
Toug, eumioutilovtag Ti¢ eunelpiec Toug xou TawTOYPOVe TpooTatelovids toug. Lo va Swoouue
EVOL CUYXEXQUEVO TUPABELYUO EQPUEUOYWY OTOV TEAYUATIXO xO0Uo Yio xadévay and autolc Toug
TEELS UVNTRPLOUC TapdyovTES, Umopolue va egetdoouue ta axdhovda. Ilpdtov, cuothuata teyvnTic
VONUoGUVNE ToL elvol EXTABEVIEVAL VAL XATAVOOUY TO 0TS TERIBAAROV 1) TIC XOWWVIXES IAANAETLOPE-
oelc YUPW TOUG UTOPOUY Vo Tapéyouy oualac T Bordeia oe droua pe mpoPAfuate 0w TOPAWOT
N auTloud, TaEEYOVTAC TOUg TANEOYORIES Yial TO TeE3IAAOV TOUC TOU BEV UTOEOVY Vo AMOXTHCOUY
uévol touc. Aeltepoy, amd TIC €EUNVEC GUGTACELS XL TNV AVAXTNOT TOAUPECLXOU TEQLEYOUEVOL, E6C
TOL GUC THRTA ETAVENUEVNE TEAYUOTIXOTNTOS Yiot YUy oy wYIX0oUE Xou EXTUSELTIX0UE GXOTOUE, EXEL BO-
Vel ueydhn éugaon 1600 and TNV EEELYVNTIXY XOLVOTNTA 6CO XL Ad T Blounyavict OTOV EUTAOUTIONS
e xadnuepwric Cofe. Téhog, éva onuovtnd mpéBinua elvor o eviomopds pnropxrc ploous ota
xowovixd dixtua [13], xodde ocuyvé exel dvipwrol otoyonowbvtar e Bdon tn UAY, To @ONo A Tov
6eE0VUAXS TOUS TPOCOVUTOMOUO, YE ONMOTEAEOHUN VO UTOQEPOLY and cofapd mpoflifuota Yuyixic
vyelog, aAAG xol Vo GTOYOTOOVVTAL OE EYXARIOTA UiooUS OTOV TRAYRATIXG XOGUO.

H 6paon xou n yAdooo elvar 600 and Tic mo Yepehiddelg xan o€loonuelwTeg IXAVOTNTES TOU av-
Vpdmvou vou, agol 1 dpooT| ETULTEENEL T1) dNUOLEYIN VONTIX®Y EVVOLDY TOU BLapopeTixd dev Yo LT-
Yoy, OTWS TO YEOUO XAl TO QKC, XL 1) YAWOooA €xel T S0voun va yetatpédel OAn tnv arodntnploxn
eumelplar 08 AUTEC TIC OTOLYELODELS VONTIXES EVVOLEC XOL VAL TLC CUVOUAOEL Yol VoL dnovpYfoel oUv-
Yeteq véeg W6éeg, DlEUXOADVOVTAC €TOL TN OXEPN UAVOVTUS KAUTEPLOPLO T YP1OT| TENEQUCHEVGY UECLVY
[14]. H cddneniBpoom tne YAOOOOS UE TNV GpOoT) TORUXLVEL TOUC EPELYNTES VAL EVTOTHGOUY TIC OYECELS
AVEUESA OE TPOTUXOTNTES, VO TLC CUVBUAGOLY XaL VA TG AWTLOAOYNOOLY UE GXOTO TNV AN anopdoewy.
Mo onuoavtixd epopuoyn otn pnyavixy exudidnor dpaonc-yhwooog elvar autr tou Visual Question
Answering (VQA), nou anoutel and tov npdxtopa Al va anavtAcEL uiat EpdTNom QUOIKAC YAMCOUS YE
Bdiom pa etcdvo. Mo onuovtid tedxAnor etvat 6TL Aoy e oTATIC TGOV TNE WLOTHTOY 1) YAWOo UTopEt
vo anotehel mapdyovta pepohndiog xan va etvar éva mo ebxoho ofua yia udidnon ond v ewxdva, Ue
AnOTEAEOUA LOVTEAN GRUOTIC-YADTCTUS VO Ay VOOUV EVIEAMS TIC OTTXES TANEOQOPIES TPOC OYPENOS TNG
EXPETANAEVONG NS YAWOTAC.

Ot dvipowmot elpoote xowvwvixd nhdopoata. H emPlowon xou 1 eunuepio pog e&optdron and v
anoteAEoHATIXY ETUXOVWVIN UaS PE TOUG dAAouc. AuTh emtuyydveton Yéow tne avtiindng xou tne
XATAVONOTG TANEOPOELOY otd TOAMATAES auo¥nTnetaxés TNyec xodde xaL ue TN ¥eron Aoyxrng Yo
v eEoywYn oupnepaoudtwy, TEoxewévou vo avtanoxptdoiue avdhoya. Ilio ouyxexpyéva, Bo-
owlbpoote oy avoétTnTe xatavénone e Puyinic xatdotoong Sy ovipmdrwy (Tou TepLho-

Béver npodéoeic, xivintpa, cuvaoMuata), péow e enelepyasiog TANEOYOPIOY OTWS TO BAEuua
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TOUS, 1 EXQEUOT] TOU TPOOMTOU, 1 YADOCU TOU oWUATOS (OTAOT, YELPOoVoUies) xau 0 TOVOS NG
puvic Touc. Mepwol dvipwmol, av xou ToAD €€unvol, OTKS dToUo Ue dlotapayt aUTIoTIX0) @do-
potos (AA®), Sev unopolv va Suxpivouv autéc tic evdeilele, xadde Aettovpyolv xupiwe pe Bdom
AOYWXEG X0 OVTIXEWHEVIXEG TANEOQORIES, 0TS CUUPBNIVEL UE TIC TEPLOCOTERES EPUPUOYES UNYAVLXNC
pddnone. H dnulovpylo prog pedddou andvinong epwTHoEwY Yia autd To VEUa unopel vo Ypnoluedoel
16060 w¢ TEéTOC exntaldevong atouwy ue AAP dhote va avayvwellouvy Tétoleg cuUTERLPOEES, Xt
X0 YL LOVTER UnyovixAc udinone wg epopuoyy andvinong epwtioewy. H Autépotn Andvinon
Epwtioewv Kowwvixol Ilepieyouévou oe Bivteo (Social Video Question Answering) efvan pla e@op-
poyh Mnyoavixie Madnong yio Tov EAEYY0 TV IXAVOTHTWY XOWKOVIXHS CUANOYLIO TIXHS EVOC TRAXTORO.
teyvnthc vonpoolvne (Al agent), nou Booileton oT0 xatd n6c0 propel vo anavtAcel o€ epOTHOELS
Téve oe €va dedopévo PBivieo. Mnogel vo anantel nepinhoxoug cuvduacpols avoryvebpelong cuvalcdn-
HETWY, YAWGOXAS XaTavonong, Aoyixhc xou culhoyloTixrie oxédng, mépa and un xowwvixd eninedo

XATAVONONS Yol QPUOIXE YEYOVOTAL.

‘Exovtac ouctac txd éva tedBAnpo culhoyiotixic (reasoning), avtholyue unveuon and évo Tuuo
e Bihoypapioc VQA mou ovoudleton veupoouUBoAxd HovTERD xol EGTIALEL GTNY XATAOXEVY] VEUR-
WVIXOVY HOVTEAWY EVEH TOUTOYEOVA ETLTEENEL 60T GLUBOAXS GUANOYIOWS LPNAOL enédou. A autd
eoTudlouue o€ TEOCEYYIOELS O XOVTE OTN VEUPWVIXT| Topd 6T GUBolixt Theupd, dtwe to Learning
from abstraction [15] xou To Memory Attention Composition (MAC) Network [1]. To Aixtuo MAC
emiyelpel vor GUAAABEL TN Aoy TN OXEPNE EXTOC OO TNV XATACHELT VEUPWVIXDY OVITUPAC TACEWY
and to dedopéva xat dntoveYINXE Yo EPAUPUOYES TTOL amantolV oXOTULUY GUANOYIC TIXH| amd YEYOVHTA
O€ CUUTERAOUATA AOY L TOU BOUNUEVOU %O ETOVOANTITIXO) CUC TAUATOS GUAAOYLOUOD TOL.

Y10 mpdTo YEpog auTg TG epyaciog, TpoTelvoupe W TEocEY Yo and dxeo e dxpo Tou PacileTan
oe o todutpomx enéxtaon tou MAC Network yio tnv egappoyt tou ato Social Video Question
Answering, tou ovopdleton MAC-Extend (MAC-X). AZionololue Tic cUMOYLOTIXES duVaTHTNTES TOU
MAC xou Booilouye to MAC-X o€ évo emovohouBavouevo xeAl Tou exTeAel enAVaANTTLXY CUYXOVEUGT)
(fusion) peoofou emmEdOL TEOMIXOTHTWY ELGGDOU (OTTIXT|, AXOLUCTIXH, XElUevo) oe TOMNATAS GTddLa
CUANOYLOUOU, YENOUWLOTIOLOVTAS EVOY UNYAVIOUO YPOVIXAC TPOCOYHG. LT CUVEXELN cLVOLALOLUE TO

MAC-X ye ta LSTM vy enegepyacia ypovixfic EL0OB0U GE [Lal ApYLTEXTOVLXT] Od GXEO OE AXEO.

Qotéc0, auth 1 TEOGEYYIOT, OTWE XL Ol MEpLocdTERES epyaoieg otn BiBMoypapla, Yewpoldy To
Bivteo wc yio cuveyn TNYn mou TepLEyEl ElCOU ONUAVTLXG YARUXTNELOTIXE TTOU TEENEL VoL EEETACTOUV.
Av xon auth 1 yevixn npocéyyion €xel vOnua oTIC TEpLoa6TERES EQappoYEéc VQA omou ol gpwthoelc
avapépovtal 6To TEpBEAoY, Ta avTixelyeva B Tic evépyelec xan Ta yeyovéta, to Social VQA agopd
Toug avlp®TOUE XaL TS CAANAETUBEAOELS TOUC HECE TWV OTOIWY AVTOAAICGOUY TOCO AeEXTXES OGO
%ol Un Aextixég mAnpogopiec.

Yto deltepo pépoc autrc Tng epyaoiog, mpotelvouue W TEOGEYYIoT emadENong UECw AUESTC
aviyveuong xowwvixeyv evdelenmv and to Bivieo xar oOvBeoTc TOUC Ue Tol GTOUO TOU GUUUETEYOUV
OTNY XOWWVIXTH aAANAeTiBpao, 1) omola povielonoleltan Ye ypron Tou BAEUUATOC TWV YTV Yiol Vol
oxnuotioetl yoaprupata BAéuuatog yio xdde oxnv. Méoa and autd, Bélouue eniong va Blepeuvicouue
v unddeon 6Tt to BAéupa umopel vo suvodioel To xovwvixd Bivteo. To vo emhéEoupe g vo ened-
EQYOO TOVUE QUTA ToL YEaPHUTa BPAEUUATOC UE OTHYO VOL ATAVTHOOUUE GE EPWTAOELS QUOIXAC YADOTUS
TOU ATAUTOVY XOWWVIXG CUAROYIONG, XWVATOTOOVUACTE and Tty oxéhovdn epyacio. Xto [16], ot
ouyyeapeic utootneilouv 6t to NLP ypeetdletar xowwvind mhaiclo yiar vo emitdyel mpayatixd, ew-
POVTOC TO WE TO TEAELTAO OTABLO Yiar Vo emTeUyUel Wal TEayHaTXd TAENG XATAVOTOT) TOU XOCUOU
péow e Yhwooog. 1o cuyxexpyéva, n tpdodog tou NLP opileton and tny xatdxtnor Slapope Ty
World Scopes (WS), to xadéva mo yevixd and to nponyoluevo, tadvopnuéve we Corpus, Internet,

Perception (multimodal), Embodiment, ot Social.
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Avtidvrog éunvevon omd authiv TNV avduoT, Theaue T xateduvon extaidevong evog LoVTENOU
xodopd NLP péow tne petdgpoone nolutpomxic etoédouv (WS3) nou neptéyel xovmvixée evieilels
(WS5) ot yAdooa, dnuovpydviac enednynuatxd xeluyevo Bivieo (video captions). 'Eva mpdo-
UeT0 TAEOVEXTNUA TNE TPOCEYYIONEG O CUYXELOT UE Tal HOVTEAA amd dxpo o€ dxpo elvon 1 TpdoleTn
Buvatdtnta eneynone téoo o TEPINTHOOELS ETLTUY(0C GO0 XU OE TERITTOCELS anoTuyiag, XM To
evdidpesa anoteréopata (video captions) unopolv va pog Bondfioouvy vo anocuvEcoupe Tic aduvoies
TOU TUAUATOG TNG XATAVONONG TNG XOWVWVIXNG OXNVAS Omd TLC aBUVAUIES TOU TUAUATOS TNG EMAOYNS
andvinong. Auth 1 TpocéYYion TapaxdUTTEL ETione To TEOBANUA TS YAWSoxS pepoindlag Twy to-
AUTEOTUXWY LOVTEAWY, T OTIolol TELVOUY VOl ETLXEVTROVOVTOL OTLC TANROPORIES XEWEVOU EVE oy VOOolY

TAnpogoplec and JAAES TEOTUXOTNTES.

ITeotewvbueveg Ilpooeyyioslg

ITpoocéyyion and dxpo oc dxpo: MAC-X
Enioxénnon

Ye autd To mMpdTo Wépog TNE epyaolug Yag, mpotelvoupe pla Tohutpomixy enéxtacy, tou MAC
Network vyi to Social-1Q, rmov ovopdletor MAC-Extend (MAC-X). To xivntea authc Tne mpocéy-
yiong ebvon 6t To MAC: 1) mpoopildtay yio €QopUoyEc Tou anontodv CLANOYLOTIXT ond YEYOVHTH oE
GUUTEEAOUOTO AOY ) TOU BOUNUEVOU X0l ENAVOANTTIXOU GUCTAUATOS GUAAOYIGHOU TOU Xal 2) anotehel-
Tou and Yovddes xan Aettouvpyieg yevixob oxomnol. Ilioteboupe dti autd Tar yopaxtnelo Tixd to xarho-
ToUV xotdAANA 0 Yiat To Social-1Q xou pior toyver| Bdomn yio Ty epappoyT Tou Kowvwvixol Yuiloyiouol
%o} xou yio omoladnnoTe e@uproy” cuhhoylopol. To poviého pog Pastleta oto dixtuvo MAC, wo
oVaBEOULXT AEYLTEXTOVIXY) Uixoug p xau Bidotoong d mou oplleton and To xehl Mvrung, Ilpocoyng xou
Yivdeonc (Memory, Attention and Composition / MAC) nou extelel éva Bhpo cUMNOYLOTIAC @ e
Bdomn v mpocoyy| dedopévne uiog Bdone yYvooewy xou evog epwthuatoc. To xehl MAC anotekel-
Tan and TEELC Aeltovpyixég povades, ™ Movdda EAéyyou, tn Movdda Avdyvwone xou tr Movédo
Eyvypagphc. Auth n oeipd wovddwy diaBdlel and tor YopaxtTnelo Tnd elo6d0L UE TEOTO TOU EAEYYETI
and YEPOC TNG EPWTNONGC Xol TN VALY Otd TEOTYOVUEVES OVOLY VIGELS, TIROYWEWVTISC GTNV EVOWUATWOT
Toug oTNY TEéYouca uviur. ‘Eva and to mo onpavtind yoeoxtneio Txd tou xeAol elvon o dlaywpelo-
uoc petoll eréyyou (c;) xan pvAune (m;) mou emPdhet, xou 6t N olnAenidpaon petald e Bdone
YVOOEWY X0 TOU EpOTHUNTOC Blauecolofeital uovo HECL XATAVOUWY TlovoTATKY. 2Tn Sladoyn Twv
GUYVORLXGY P GUVEY MY ETAVORAPEWY, EYEL TNV LXAVOTNTA VoL otvamatplo T8 audolpetar TOAOTAOX AL 0XUXALXSL
yeopfuata cLAhoyloTxhc pe davotixd tpémo [1].

Baowoéuevo oe autéc tic dopxée apyéc, To MAC-X eldyel mhnpogoplec and nohhamiéc mnyéc,
BLILOPPAOVEL TNV TEOCOYT| TOLU UE TNV THE0DO TOU YPOVOU avTl TOU Y(OEOU, EXTEAEL ULl GUYYWVEUOT
pecalov ETTEBOL OTLC EVOLUECES AVATUPUSC TAGELS TWV TPOTUXOTHTLY X TEAXY ETLTEETEL TNV ANAVTNOT
EPWTHCEWY TOANATATC ETAOYNC O TOAUTPOTUXE deBopéva. Mid eMoXOTNCT TNG AEPYLTEXTOVIXNAC TOU
povtélou Yl TV eqapuoyr tou Social Video QA qaiveton oto oyrua 1 %o 1 dpyitextovixy Tou
BeAtiwpévou xehol gaiveton oto oyfua 2. XTic ENOPEVES EVOTNTES, OAEC 0L EELOMOELS Xat T oy AaTaL
TepLypdpovTal Yol TN Buadixy| Tep(TTWoN Yo anhGTNTA xou Uropoly va enextadoly anevdelag yio Ty

neplntwon tecodpwy eMAOYMY oty onola avapépouue enlone anoteléoyata.

Movddec Etcddou

‘Onwe gatvetow 610 oyxfua 1, ot €lcodol YAWGOWNE TEOTXOTNTAC TOU ONOTEAOUVTOL amd TNV

epdNoN (Q), ™ petorypoapy| dokdyou (T') xou Tic owotég xou Aavdoouéves anavtioes (Ag, Ay av-
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What is the relationship | > LsT™
Q between the three people? BERT 1

—
D161

LSTM
—>|
0:00:05.440 ~>>0 00:06.900

Ky
ay
ey H
hy are you lying to everyone 7| KAc

—]
AL They are friendly towards each other _BERT—)‘ LST™M
Ay They are hostile to each other —BERT- LST™M J

Figure 1. Emokdnnon tng mpotevouerns apxITeKTOVIKNIGS ané dKpo o€ AdKpo, e €TIKeVTpo To OIkTUO
MAC-X: Yra apiotepd, n epdtnon (Q), kapé Pivreo (V), petaypapn dwddyov (T'), axovotiki)
eloodog (Ac) kadds kar cwotés (A1) kar eopalpéves (As) arnavtioes eupavifovtar yia tn dvadikij
nepintwon. Ta yapaktnpiotikd tovs kwdikormotovvtar pe LSTM, mpwv and tn xpron oto MAC-X 1
o€ tehikr) tabwounon uall pe tny tekevtaia uvniun my,. Avo mavopoidtunor taEivountés kdvovy
TS TPoPAEYEIS Y1, Yo 01 oToleS aTn TUvéxEla XpnoLotoolyTal Yia Tov UTOAOYIOUG TOU 0@pdAaTos

oty e&lowon (7).

Y1

0000000

0:00:00.000 —> 0:00:01.340

G Tatoate « MAC-X
0:00:01.340 --> 0:00:02.420 LST™M T

0:00:02.420 --> 0:00:02.920
No!

Mp

G000

Y2

0000000

tioToya), xwdxomololvton apyixd ue yopaxtnolotxd BERT teleutaioc xpuphc xatdotaong, eved
1 tpordtnta dpacne (V) pe Densenetl6l (D161) yio xéde xopé (oto 1fps) xou 71 axovotixt
tpomxdtnto (Ac) pe COVAREP. Yt ouvéyeia tepvolv omd oppidpoua LSTM twv onolwy ot €é€odol
anoterolv Tic Bdoec yvwone Ky, K xon Kac v Tnv onty, Sloahoywer) xou axousTixy €lcodo
avtiotoya, xou Tic Aéeic ye Bdomn ta cupgealdueva O yioo Ty gp@tnom. O xpupéc xaTao TAoELS
g, a1, XOL G2 YENOWOTOLOUVTOL WG OLUVUCHATIXT OVUTOQRAC TAOT YL TNV EEWTNOY XL TIC ATAVTHCELS
avtiotoyo. H Sdotaon €€6dov twv LSTM eivon d, 6mou d eivan 1 didotaon tou poviéhou MAC.
Kdéde plo and e Bdoeic yvodone pnopel va meprypogel o¢ KjLXd = {ki|L}, 6mou L eivan to prxoc

axohoudiag NG TEOTUXOTNTAS § OTY YeovixY| dldotaon t.

To xeni MAC-X
Movéda EAéyyou

H Movéda EXéyyou (Ewéva 2) mopapével (Bua e Ty apy x| doytTEXTOVIXT X UTOpEl Vo cuVO-

wotel e
s

Ci = ZU(fC(fcq([Ci—lqu(Q)]) © Os)) Oy (1)

s=1
omou S elvan 0 apLiudg Twv AMEewy e Bdom ta ouuppaldueva, o 1 cuvdptnon softmax xou fr = W +b
elvon feedforward dixtua evéc emmédou. Ltny mopandve e&lowor, divetar tpocoyr ot hé€elc O e
Bdon mAnpogoplec and TNV €pdTNOY ¢ XL TO TEONYOUUEVO GTOLYE(D EAEYYOU C;—1, TPOXEWEVOU VL
evnuepwiel 1 tpéyovoa ¢;. Autd 1o ¢; xabopllel pe Bdon mowd pépoc tne epwtnone Vélouue va

e€dryoule YVOHON omd TG TPOTUXOTNTES EL0HBOL aTo TEéYoVv Briua cUANOYLIOROU.

IToAhamtAéc Movddeg Avdayvwong

Io Ty avdyvewon and tig Bdoelg Yvoong, npotelveton ot anih xhwvornoinom tne Movddag Avdryv-
wong Y xdde TpomixdTnTa, 6mou 1 xadeulo AauPdvel éva avtiypago Tou mporyoluevou cTolyelou

eNEyyou xou pviAune (BA. oyfua 2). Auth 1 Tpooéyylon ETLTEENEL 0TOV ENEYYO ¢; Vo amodidel TpoooyT
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Ci-1 o A : Ci
4 Control Unit T
q, O — :
- (c)
N <V
> V
| Read |Tj
( Ky —> Unit 1
v - O
—) . 0
mi ) |~ Read |nT |© Un
< > ) = Write Unit
K Unit 2 O
T - )
VSN ® A
”| Read fi Ac
Kac— Unit 3
\_ _J

Figure 2. To avadpopxd keAi MAC-X oo i 00td to Bripa ovddoyiopod: H modvtpomkn enékraon
tov keA1o¥ MAC exbnAdvetar pe tny kAwvoroinon tng Movddas Avdyvwons kar tny enakédovdn
ovyxdvevon twy e€ayduevwy TANPoYopItY TwY TPOTKOTHTWY T Tpw and tny evowudtwon otn
MVIIUT M.

aveldptnTa oTic BlaopeTIXéS TpomXdTNTESC 6TO (Blo Brua cLANOYLOUOD, EVve TawTdypova e&opTdtal
and po pviun mou datneeitan cuAhOYWE yia dheg. Tar mopddelyua, ol mponyolueveg TAnpogopieg
and TIC MYNTXES Xl OTTTXES TREOTUXOTNTES Vol UTopoloay VoL EVOL CIUAVTIXES YLoL TOV TROGOLOPLoUd
NC ENOUEVNE TO YPHoWNe TAneooplac ou Vu evonuotwiel and t yetaypapr tou dhdyou. H

Aertovpyio xdde povddag avdyvwaong j oplleton wg

Iy = fok([fm(miz1) © fr(k]),K]]) (2)
rg = Za(fr(ci © Izjt)) ) kf (3)
t=1

omou j = V,T, Ac elvan oL SlopopeTinéc TpomUOTATES. DTNV TEHOTN and TI¢ Topandve eELOMOELS, oL
Thnpogoplec Ig’t cLMéyovton and TN Bdor yvoong g TeomxéTntag § o xdde Héom t ot ypovixn
e axorovdo. Auth 1 mhnpogopla Yewpeltar 61t oyetileton UdVO TEOUEETIXE UE TNV TEONYOVUEVT
WVAUN i1, xou éToL To apyixd ki ouvdéeta emione oo ddvuoua eieb6dou e eliowone (2). Lty
eZiowon (3), n npocoyr mou Pacileton oto TEEYOV oTOLYElD EAEYYOL ¢; ExTEAETAL GTO If’t, Yo vt

Snovpyndel o tpéyov 7 yio xdde Movéda Avéyvworc.

IToAuTpomixr, Juyywveuon

It vor Tpaty LU TOTOLACOUPE ULl GUY XOVEUGCT] UECA(OU EMITEBOU, CUYYOVEVOUUE TIC TEOTUXOTNTEG OE

. . . Ny . / . j . ,
oUTO TO GTUBLO GUVEVVOVTOC TO EVOIAUECH ATOTEAEGUOTOL EEYOUEVNE YV T Yiat xdde TpomixoTNnTaL
J xou mepvovtog ta péoa and éva eninedo feedforward, dnuplovpydvTag anoteieouatind €vo eviafo

eninedo xowngc avamapdoTaoNnG 7; Yol OAES TIC TeomxOTNTEG. AUTS @aivetan 6TO oYU 2 xou oTNY
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eglowon
T, = W/[TV ’I“T TAC] + b/ (4)

AR AR AN ]
H egoppoyy Tng mTOMTEOTUXAC GUYYOVEUOYNS GE AUTO TO TLO ECWTEPXO oTddo Peloxetal ot avri-

Yeom pe Tic anholoTepeg UeBOB0UC apYdTEPNG CUYYWOVEVSTS, PE TNV cUYXELoN Toug Vo culntelto

AETTOPERGOS oTNY evoTNTa «ATmoTteAéopata xar cLlhTNON».
Movdda Evypapfs

H Movdada Eyypagphc (oyfuo 2) evowpatover Tic cUVOMxéC TAnpogoplec ; omd Tic Hovadeg
AVEYVWONES GTNY TEOTYOUUEVY UVAUN 11 XAk £TOL AMOXTE TNV TEEYOUC UVAUT M.

mi = for([Mmi—1,7]) (5)

Yty mapodoa epyascia Topaeltovue Ta TEocpeTixd otolyela Tng Movdadoc Eyypagric mou npoteivov-

tou o710 [1] xadde 1 yerion toug dev anodelydnxe onuavtind W,

Movéda EE6d0u

Metd anéd p cuveyelc emavohielc tou xehob MAC-X, dnwe meplypdetal oTIC TEOMYOVUEVES
EVOTNTES, 1) TENXT] UVAUY T, CUVEVVETOL UE TNV OVATOEACTAOY) TNG EPWTNONG ¢ Yia Vo dnuiovpy el
0 Thaioto oto onolo Ya npénel vo emheyel 1 owoth andvtnon (oyfua 1). Autéd cuvevdveTo TEpatTéP®
pe xodeplor and T anaviioec a,as xou petafiBdletar oe navopoldtuna feedforward Sixtuo 8o

emnédwy yla tovounon, ta onola e€dyouv tic tpoPrédelc
Y1 = W[qa My, (11} + ba Y2 = W[qa My, (12} + b (6)
omov y; and yo elvon ol mpoPrédelc TwV CWOTOV xou havDaoUEVWY AmaVTHOEWY avTioTolya. TN
ouvéyela unoloyilouye To cUVIETO Gpdiua
N N

L= (S0~ 12+ ( Do) ™)

i=1 =1

2=

omou N elvon 0 apldudc Tev BelyHdTeY o pla TopTido. Ynuelwtéov OTL mpdxeitan yior TV (Blor peteLxn
o@dhpoTog o epgavileton oTov dpyind xO3xa Tou dtédnxe yio to Social-IQ oto [2]. H Suaduxr

axp{Belor A2 SlaTundveTaL WG
M

42= 51> 4h) ®)

i=1

6mou M elvon 0 cuvolixde aptdude detypdtwy 6To olvolo yia To onolo uroloyiletar 1 oxp{Beta.

Arnoteréopata xou oculATNOoT

211 ouvéyela ToEOUCLALOVYE TO ATOTEAEGHUATI YId TNV TROTEWVOUEVT] UEYLTEXTOVIXTY] XOL Tig UeVd-
doug Baocung anddoong and avanopaywyn. ‘Ola to anoteréopata utohoyilovton xotd UEco 6po omd
névte exteréoelc. OL tpomxdtnies eloaywyfc ocuuBoiilovtar we @ yia Ty epdTnoT, A yio Ti¢ amov-
Thoele, V' yla ta omtixd xoé, Tyl T petorypoept| Stahdyou xaw Ac yio Ty oxous x| elcodo. Xtov
nivaxar 1 ouyxpivoupe to poviéro poac (MAC-X) pe to Pacwnd povtéda LSTM xou TMFN pe Bdon
Suadinry oxpifela (A2), oe yio ety alyxpoNe Yol BLPOPETIXOUE GUVBLAGUOUE TWY TPOTUXOTATLV
eloédov. Kdlde cuvduooude unodnhovetar and Tic TpomxdTnTe oy yenotwonotlel. Iapatnpeitan 6T

%o oTol 5U0 Pacind HOVTEND 1) TOAUTEOTIXOTNTA OEV Efval AmaEAiTNTA EVERYETIXY VIO TNV ATOBOCT), XAl
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propel axdun xou vo Ty unoPoduioet onuovtixd. Avtideta, to MAC-X anodidet xahbtepa 6tav yenot-
HOTIOLOUVTAL GAEC OL TPOTUXOTNTES, CNUELDVOVTAS Wior amdhuty Bedtimwon axpiBetac 0,25% oe oyéon
HE TIC AVTIOTOLYES ELGOBOUC UEUOVWUEVNC TEOTUXOTNTOG, YEYOVHC TOU UTOBEVUEL TNV 0p6TNTA TWY
uedodwy efaywyng yYvoong xu cuyywvevong. Toutdypova eivan mohd anoteheouatind otic puiui-
GELC HOVOTPOTUXAC ELOAYWYTG, EemepvVTos T600 To Baowd povtého LSTM éco xaw to TMFN xotd
TouNdytoTov TévTe TocooTlaleg wovadeg. ‘Ocov agopd TNy mopatneoluevn onuocio xdde tpomuxdtn-
TAC, OL OTTIXES XOU OXOLOTIXEC Loppéc gaiveTon va amodiouv xolUtepa ota PBaowxd povtéha LSTM
xar TMFEN avtiotoya, eved 1o MAC-X enwgpeleitoan e&icov and dhec tic tpomxdtnrec. Emmiéov,
delyvoupe 6L M yphon HOVO TWV TROTUXOTHTWY EPMTNONG ot ardvinone (h oxdua xar pévo ne
andvinone) oto LSTM emtuyydvel anddoom nohd néve and v tuyaio, emPefouddvovtog tny UTopin

Y oo uepohnlag 6to 6UVoro emixdpwong.

Teomxdtnreg LSTM TMFN MAC-X
A 63.22 (£0.41) -

QA 64.51 (0.58) - -

QAV 64.82 (£0.67) | 65.67 (£0.38) | 71.01 (£0.24)
QAT 64.54 (£0.57) | 65.51 (+£0.43) | 70.97 (£0.44)
QAAc 64.17 (+£0.32) | 65.89 (+0.32) | 71.00 (+0.30)
QAVTAc 63.73 (+0.71) | 65.62 (+0.55) | 71.25 (40.15)

Table 1. Melérn oUykpions twv tpomkoTtiTwY €10600V Kal Twy Baoikdy HovTélwy, avapéportas
anotedéopata 0to 6vadiké oUYodo emkUpwons.

Ytov mivaxo 2 napouctdlovue por LEAETN oUYXELONG TOU BElYVEL TNV OMOTEAECUATIXOTNTA TNG
ueddBou cLYYOVELONC HECULOL ETUTEDOV, EEMEPVMVTIC TNV ANOBOCT] AEYOTERNS CLUYYWOVEUCTIC XAl OTLS
000 petpixée. XTnv melpopatiny dloaudppnwan tou Beltepou eldoug cuyywveVoNg, xdle TpomxoTN T
Biépyetar and éva eviehnds Eeyxwptotéd dixtuo MAC, twv onolwv ot é€odol cuyywvelovtal ce oUTd
70 teAixd oTABL0 UE TOV (Blo TPOTO OTWE OTN CUYYWVELUST Pecalov emEdou, Ty etoéAdouy GToug
tehxoUg to€ivountéc. Autd Bely Vel TO TAEOVEXTNUA TWV TPOTWV CUYYWVEUCTC GTO EVOLIUECO GTABLO
AVOTOEACTAOYG GTA HOVTENX, OTIOU OL GUANOYIXES YN \OUIES TTANROPORiES TOUE Unopoly Vo untoBAndoly

oe mepautépw eneéepyaoio and xowvou.

Movtéha ‘ A2 ‘ A4
MAC ype Apyh Zuyydvevorn | 70.59 (£0.62) | 46.46 (+0.26)
MAC-X 71.25 (£0.15) | 47.22 (+0.60)

Table 2. MeAérn oUykpiong ndvw o0to 0Tdd0 TNS TOAUTPOTIKNHG OUYXWOVEUONS, AVAPEPOYTAS
aroteAéopata yia to oUYoA0 €MKUPWInNS Yia OAES TIS €10000US TPOTIKOTHTWY.

Ytov Ilivoxa 3 cuyxplvouye v anddoon Tou TEOTEVOUEVOU UOVTEAOU UE TEVTE TPONYOUUEVES
uevdédoug tereutaiog teyvohoyiog, avapépovtag anoTeAEoUATA Xal OTIC BUO UETPXES VLol TO GUVOAO
enxVpwone. Hapatnpolue wa Pedtinon axpiBeloc 2,3 — 2,6% and v mpornyoluevn xahltepn eni-
doon ot Suaduxr et axpifBeac (MCQA [17]), AowBdvovtoc unddn ) Swaxduaver. ‘Ocov agopd
™V PETPX TOMNNOTAGY emAoYDY (A4), hopfdvouue cuyxpiowo amoTeEAEOUATO UE TO HOVTENO UE TNV
xahUtepn anddoon TACO-Net [18]. Tnuewwtéov ot to TACO-Net petpd pntd tn cuvéneio UeTall
x&de andvinong xaL TeoTUXATNTAS, CUUBIALOVTIC GTNY EVPWGC TIA TOU HOVTEAOU GTNV TEPITTWOT) TOA-
MmOV emAoy®y. Xuvohxd, uéow tng vhomnoinone xou epopuoyic tou MAC-X, oplooue pior véa

x0AOTEPY amdBoaN Yiol TN SLAdLXY HETEIXT amdBooNe Tou cLVOIOU dedouévwy Social-1Q).
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Movtéha A2 A4
TMFEN [2] 65.62 36.24
Removing bias [19] 67.93 -
TACO-Net [18] 68.19 49.08
Perceptual score [20] 68.65 -
MCQA [17] 68.80 38.30
Ours (MAC-X) 71.25 (£0.15) | 47.22 (40.60)

Table 3. XVUykpion enidoons pe tny tedevtaia texvoroyia oto ovvodo emklpwons tov Social-10).
Avagépovpe aroteléopata pe péon Tiun kar TUTKN antékAon o€ 5 eKTEAETES.

ITpocéyyion Enadinong: Emogaze
Emioxdénnon

Ou neploodtepec mponyolpeves epyaoieg Yewpoly To Bivieo we wa cuvey YR méve otnv onola
uTopel Vol UTOAOYLO TEl XATOLO XATAVOUT| TEOCOYAC. AV %o QUTH N YEVIXT| TEOGEYYION EXEL VONUA OTLC
neploobtepee eqappoyéc VQA xou Video QA, émou ol epwtrioec avagpépovial oto nepl3dilov, ta
avTixelyeva 1 tig evépyeleg xau ta yeyovota, to Social Video QA nepiotpépeton yhpw and toug av-
Yendnoug xou Tig oA Nhemdedoelg Toug. Edv empdueito va ywploouue oe douxés LoVEBES To XOVWVIXE
Bivteo, téTE auTéC Vo ATV TA ATOUN TTOU CUPUETEYOUV OTIC AAANAETUBEAOELS XAl Ol TANPOPORIES OV
AVTAAAAOGOLY, TOGO AeXTIXEC 600 xou Ur). Ol dvipnmmol emXovwvoly HECK YADCOUS Xol U1 AEXTIXWY
ONUATOV OTWE EXPEACELC TPOTKOTOL, BAEUUOTA, YEROVOUIES XoL YAWDCCO TOU GOUTOS.

Emniéov, avthdvtag éunvevon ond 1o [16], mou dnhdvel éTL 1 xotavdnon e Quotic YAMooog
Yo ohoxAnewdel H6vVo Ue TNV EVOWUATOOY TNE TOAUTEOTUXAC XL XOWVWVIXAC onpacloloyioc, emhéEaue
v exnaideuot) evéc apyde NLP yovtéhou pe mohutpominy elcodo (WS3) mou meptéyet xowvmvixée ev-
deiZeic (WS5), pihtpoplopéves yia vor TEpLEY oLy pévo dedouéva BAéupatos, Sedouévo ouvaiodnudtey,
BEBOUEVIL OVOLYVEIPLONC AVTIXEWMEVWY Xal BESOUEVH GUVOULALIG, OAOL UETAPEAUCUEV GE YADOOA, OTNY
ovaio e&dyovtac neptypagéc Bivteo.

Avuté vnootnpiletan enlone and epyaoies yio VQA nou expetahhebovTal TIC aVOTEPES GUANOYLO-
THES XAVOTNTES TWV UOVTEAWY QPUOLXNC YADOCOUS O oUYXELON PE TA HOVTEAX HPUOTNC UTOAOYIGTH
ToU TEVOUV Vol Vol TLO EVOTIXTOOY, XUl TUPUXIUTTOUV TO TEOBANUO YAWOOWAC Uepolndlac mo-
AUTEOTUXWY HOVTEAWY TOL Telvouv Vo ecTidlouv oTnV TANEopopia XEWEVOU 0ol elvor EUXONOTERO VA
Medolv oTatloTixég TANpogopleg amd autd, eVE ayvoouvTal TANeopopiec and GAAEC TEOTUXOTNTEC.
‘Eva emmhéov TAEOVEXTNU aUTHE TNG Teooéyyiong etvon 1 awénuévn duvatdtnta encérynong 16co ot
TEQINTOOELC eMLTUY 0C 600 Xl OE TEPINTOOELS amoTuyiag, XD To YoEUXTNELO T Tou avlyvelovTal
xa Beloxovron otic heldvteg unopoly va avtixatontellouvy autd mou e€dyel To choTnUa and Ta xopE,
%Ol T EVOLAUETH AMOTEAEGUATO UTOPOUY VoL S BoNUicouy var amocUVIEGOLUE TLC adLVOiES TOU TUR-
HOTOC TNS XATAVONONE TNS XOWOVIXAS oXxNVAC amd TIC AdUVAUIES TOU TUAUATOE EMAOY NS OmAVTNOTG.

Yy napodoo epyacio, ETAEYOUUE VoL ETAVEACOUYE Th AEXTIXT| XATAVONGT TWV XOWVWVIXWY OAAT-
AETUOPACEWY PE TO CLUVALCUNUAUTIXG TEPLEYOUEVO TOU TPOCWTOL TOU UETAPECETAUL UECW TOU BAEuuo-
TOC TWV HATIOV. DUYXEXPWEVA, Yio Xdde aviyveuuévo dtopo s oe éva xopé Peloxouye To dTouo
t oto omolo ctoyelel to BAéupo tou xou xadopillovue to Prépua g = (s,t). Autd To PAéppa
pEPEL Eval CUVALCUNUATIXG Xl €VOL TEOEETIXG AexTid Bdpog, edv To dtouo elvon emlong o ouh-
nic W, = (face emotion[, uttered phrase]). Emnhéov, ye otéyo ) dwthonon uévo tov uhnidtepou
XOWVOVIXOU TEQLEYOUEVOL, Tol BAEUUATO GIATEEOOVTOL XPAUTOVTOC LOVO TOV OULANTH Xl TO ATOUO Tou
xoltdlel, ue anotéheopa évay yedpo Gy = {(s,t), (t,7)} yio 10 xapé f. ‘Olot oi cuypetéyovteg ndy-
Bot (&roya) Unopolv vo TepLYpapoly HE 6POUC OTTIXAC ERPEVIONG, YWELOUEVOUS GE YUpaXTNELO TIX

xon {dog avuxeévou, m.y. s := attr + obj. Me autr 1 Swtdnwon Tou TEOBAAUATOC, HATUCHEUY-
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0:00:00.000 --> 0:00:01.340
Okay ! - That's a lie
0:00:01.340 --> 0:00:02.420
You don't have a beard ?
0:00:02.420 --> 0:00:02.920
No!

0:00:05.440 --> 0:00:06.900
hy are you lying to everyone ?|

Figure 3. Emokdnnon tng mpotewduevns apxitektovikng enavénons kar andvtnong epwtioewy
Tdvw o€ keluevo, Tou amoteleftal and éva aoUyxpovo TUNRMA Tapaywyns meptypapdy Bivteo (apio-
Tepd ), axolovloluevo and éva oUyypovo turua exmaidevons (6e&id). Yra apiotepd, o1 Tpels
aviyveutés tov PAéuuatog, cuvvaionuatos kair avtikeiuévowy avtiotoya, ouvvovdlovtar o€ uia
evdidueon dour) nov unopel va epunvevdel ws ypdeos PAepudtowy. Me tny mpoolnkn wng ueta-
Ypagns S1aAdyou Kai Tng avayvopions tov opAnTr, tapdyetar pia nepypapr) Baciopévn o€ kavoveg,
mpoaipetikd axolovBoluevn and povtélo mapdgpacns. AvtéS o1 meprypagpés Pivteo otn ouvéyea
xpnotponoolyTal yia andvTnon epwtioewy ToAAaTATS €MAOYNIS o€ TpoekTadevuéva HovTtéla Timov
BERT, mpv toug tehikols talvountés.

Coupe meptypa@és QuUOXfc YADOOUS PESL €VOC GUVONOL XOVOVWYV, EXTEAMVTOGC €TOL [lal HETATEOTHN
yedpou oe xelpevo. Autéc ol meplypoagéc eneepydlovion mpootpeTixd and éva dixTtuo mopdpeaong,
yiou va oporyOel TEpLIOGOTERO PUOLS XOU UE TIEPLOCOTERES TIOPUANAYES TEpLEY OUEVD. AUTEC oL heldvTeg
Bivteo pe enixevipo tov dvlpwno yenoiwonoobvtal we TepBdihov eloaywy e o€ HOVTEAL YADGGOC
tonov BERT yua tnv extéheot) anavtAoewy ot epwTHOELS TOMATAOY ETAOYOV.

Emmiéov n nopoy | 0plou€vey Topolhaydv o Uio Teply popt| Baclouévr oe xavoves o tny xdvel
O QUOLXY) YO ETOUEVWLE TILO XOVTE 6T dedouéva mpoexnaideuone twv transformer-based poviéhwy.
e outh Ty epyacio VAomololue TNV mapdpeaon Uéow backtranslation. H Baocud 1déa Tou back-
translation elvou 6T, uéow NG UETAPEAOTS ULOG TEOTAONS OE GAAY) YAWMOOO 0oL GTY) CUVEYEL TNG
peTdppaone Tow oty apyxh (e 800 avtioTol o TEOEXTUSEVUEVE LOVTERN UETAPEAONG, T.)Y. trans-
formers), n tehinn é€0do¢ Vo amotehel wor wixpt| mopakhay) T €l06dou, odhd Bev Vo €xel ydoeL To
vonud tne. Autd dev oupPaivel e GAAoL LOVTEND TOL €YOUV EXTOUOEUTEL EWBXE YIoL TNV EPUPUOYT TNS
napdppacne, énwe to Th, xadde autd o wovtéha Telvouv va apoupoly YeNoWes TANeogoples xou vo

TPoG¥ETOUV U1 PEAALG TIXEC AETTOUERELES.

ITpotewwopeva poviEAa

H Baowxn 5o elvor 0 TELROPATIONOS PE TN XPNOT YUPAXTNPLOTIXWY Ad UEYIAA TPOEXTAUDEVUEVOL
povtéha yAdooag cav to BERT 7 n emhextiny exmaldeuoy oplopévwy amd to tereutola eminedd
TOUG, Yol TNV EQOPUOYY AmdvInome o€ epwThoels ToAamArc emhoyhc. Autd ogeletan 6T0 OTL TO
enawinuévo olvolo dedopévmv Tou dnuoupyricape eivar wixpd (Wévo 1015 povadixée meptypopéc Biv-
T€0) xou umopel vo mopatnendel btu éyel moAD SlapopeTinf xatovou and To oWy oTo onolo €xel
npoexnoudeutel to BERT. Ilepopatlopacte ye 800 uovtéra, to Baowr) éxdoon BERT xau v
peYdAn éxdoon RoBERTa, nponyouuévme exmatdeuuévo oe €va gGANO oOVONO BeBoUévwy andvInong
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epwThoewy ToManmMc emhoyrc xewwévou, To RACE [21]. To tehevtaio emhéyeton pe otdyo vo
Eexuvioel ue xohOTepeg apyixomolfoelc Bap®dy Yl TNV (Bl EapuoyY), XoL ETOUEVKC VoL TERLEYEL TO
oEVEpLo PETAPOPAS exdinone ot Blopopetinolc wévo topels avtl yio Slopopetind Touéo xaL EQap-
poyY. Emniéov, nelpapatilouacte Ye évo mo emietind oyfua eEXTaBEVONE YId TO UXPOTEPO LOVTENO
DistilBERT .

‘Eva dhho {htnua xatd ) }enom TETOLY YAWSGIXWY HOVTIEA®Y Yo TNV epUNVEld UEYTAWY OYXWY
xelwévou elvol 6Tl To péyloto pRxog elcaywyhc elvan meploplopévo, my. oc 512 1 1024 otoiyelo
avédroya pe To povtéro. T va to avtipetwnicovye autd, melpopaTioTixope Ye TN obvodrn uéow
egaywyuic andvinong cpwtroewy, yenowonowwvtac BERT exnowdevyévo oto edaywyind cbvoho
dedopévmv epwtonavticeny SQUAD [22]. H béa eivan vo e&dyouue ypfowun minpogopla and v
elcodo mou e€upTdTal amd TNV EPWTNON XAl VO TPOYWEHOOUKE GTNY ANAVTINOT] TNG EPWOTNONS TOAUTAAG
emhoyc Bdoel authc e WxpdTepnc TANpogopiac. 201600, N eEay WYX ANAVTNOY EPOTACEWY EYEL
enfone éva péyloto urnog ele6d0L, To onolo odnYel oTNV WEN TNE EXTEAEOTC AUTHOY TWV TEPAAPEWY UE
LEQUPY O TEOTO OF ULXEOTERA UERY) TOU XEWEVOUL XAl OTT) GUVEYELX OTO ATOTEAECUA TG CUVEVWOTE TWY
OmOCTOCUETLY. AUTd Tor xpdTERa UEET UTtopolY Vo Angdoly elte yENoLoToIOYTaG TUNUOTOToNno

ounvhc (and v €080 SyncNet mou aviyveder Ty odhayf) Mdne xdpepac) eite x6Bovtag oe loa uépn.

O tpoémog e Tov onolo elodyovTon Ta H€EY) TOU CUCTAUNTOS AMAVTACTS EPWTACEWY OE VOl LOVTEROD

twonou BERT unogel va neptypagel we e€hg, yio 0 Suadin) e@opuoyh:

By = bert([CLS] + CTX + [SEP] +Q + A;)

Es = bert([CLS]+ CTX + [SEP] + Q + As) )

omou o CTX elvan 1) meptypopt) Tou Bivieo mou dnuiovpyroope, to By xou Ey elvan tar yopoxtnelotixa
CLS telxol emmédou xat 10 + unodnidver cuvéveor. Ot ntpofrédec e€6dou Yy, Ya = f(EL), f(E2)
6mou 1o f elvan évog ypouwxds Totvountic TPOQodoTOUVTAL GE TUTLXY OAELY SLUGTAVPOVUEVNG

evtpomiog Holl He TNV ETUXETA OWOTAS AMAVTNOTG.

Arnoteléopata xouw cLlATNOY

Kdmolo mpdtor amoteAéopator TOL TAPUUE YE CUTH TNV OEYLTEXTOVIXY TOEUYWYNHS XOWVWOVIXWOY TEQL-
yeapav Bivteo elvar doxpdlovtog tor tpoexmoudeuuéva povtého BERT base xaw RoBERTa eminhéov

fine-tuned oto cUvolo BedoPévwy ATAVTINONC EPOTACEWY XATAVONONG TAVW OE UEYIAA XE(UEVA, TO

RACE.

Iopatneotue 6Tt to BERT base, xadwc dev ewvan fine-tuned yio tnv e@apuoyh e andvinorng
EPWTHOEWY TOMAUTATG ETMAOYAC TAVL OE PEYAAA XEUEVD, BEV UTOPEL VO EXUETOANEVUTEL ETUTUY WS TG
neptypageg Blvteo, eved dpwe euvoeiton and TN yerion evog aggregated emotion tag and ého To video
poll Ye TNV gpdTNON XoU AMAVTNOT), BElYVOVTUS TN CUCYETION TWV EPWTHOEWY UE To ouvaloUnua. And
v dAAN, 1o RoOBERTa RACE, anobidet xahbtepa 6Tay yenolnonololvton ol enauEnNUEVES TEPLYPAUPES
HOG, Yol CUYXEXPLUEVOL axdpa XahOTepa YE To emtmAéoy Brua Tne napdppaong.

Emmhéov va onueiwdel 6Tl €86 YENOWOTONOOUE TO HOVTENX TorywUEVa, €ved To fine-tuning dev
Bornoe. Ta meipdpata xou oL avahdoELS Pag 0To deUTERO Uépog NG epyaciag eve dev elvan oTo (Blo
eninedo wELOTNTOC PE TOL TPWTOL Yépoug, Yewpolue ot divouv xdmota eviappuvTInG anoTeEAécUATA,

Wlwg 600V apopd Ta EVOLIUESA TOLOTIXE AMOTEAECUATA TOU TolpVOUUE amd To gaze graphs xou Tig

TEQLY PUPEC.
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Elcodoc BERT RoBERTa RACE
QA 74.37 (£0.06) 79.05 (£0.05)
QA-+transcript 74.34 (£0.05) 78.50 (£0.06)
QA emo 74.87 (£0.00) 79.24 (£0.05)
QA-+rule-based ctx 73.12 (£0.05) 79.43 (+0.06)
QA-+paraphrased ctx | 74.21 (£0.07) 79.56 (+0.06)

Table 4. Xvyxpitikn) puekén exnaidevong taéivountn ndvw o€ yapaxtnpiotikd televtaiov emmédov
e Bdon dwagopetikd emineda emavénong ewsdédov. Avapépouvue anotedéopata pe péon nun kai
TUMIKT) andkAion) o€ & exTeléoels.

YVUTEPACUATA

e authv TV gpyoaoia, diepeuvolue 500 Toll dlapopeTixéc Tpooeyyioel yia Ty egapyuoyY| Social
Video Question Answering, cuyxexpéva yio 1o cUvoho dedopévev Social-IQ. Autéd €yive yio va
Biepeuvnoly edixd ol BuvaTéTNTEG oL AElMOUY GUYVE amd T CUOTARATO UNYoVXAC exPdUnong,
ohAG elvan Tohd amapoitnteg edxd oto Social Video QA, onwe ol Aettovpyie entod culloyiopold
X0l VY VEUOTNG XOWVOVIXOY EVOEEEwY.

Y npTr TpocéyyloT, axolovdolue éva oyfua exoldEVoNG and dXEO OE BXEO YENOWOTOL)V-
tac mpoexmoudevpéva yopoxtneotixd CNN xou yopoxtnelo Tixd Hyou, xou eEXTENOVUE TN CUYYWVEUST
TEOTIXOTATOY Péow o enéxtaons tou dwtiov MAC nou ovoudlouue MAC-X. Ilo cuyxexpiuéva
napovctdlouvpe To MAC-X, wa nohutponixy| enéxtoaot tou dxtbou MAC v va yepiletan obvieteg
€QapUOYES GUANOYIOUOU TOAAATAGDY ETAOYDV X0l TOAATADY TEOTUXOTATWY, 61w To Social-1Q, 6mou
to adlohoyolue xau hapPdvoupe anoteréopata to ool EEMEPVOUY TG UTHPYOUCES TO OmOSOTIXES
pevédoug. Kotahyouue oto cuunépaouo Tl oL SoUxé apyég xommg xol 0 GUAAOYIoHOS clvdeong
propolv vo anodelydoly yerotua yio to Social Video Question Answering, oto omnoio - €€ 66wV yv-
wptlouye - avtn N xatevduvor epapudleton yia et Qopd. Mropolue nepatépw va emBefoutdoovye
and Tic ouyxpltée yac peréteg 6t to MAC-X unopel va enwpekniel oanoteheoyotixd and OAec TiC
TEOTUXOTNTES XU OTL 1) CUYYOVEUCT| UECA(OU EMITEDOU UmodIBEL ONUAVTING xAAUTERA A TNV ApYOTERT
GUY Y OVEUOT).

1N Sebtepn pocéyyion, axoloudolyue Ty xatebuvon extéheonc tou VQA oe neprypagéc Bivteo,
Tig onoleg haufdvouye P€ow TG eMadENONC TV UETAYPUPMY BIAOY®Y UE TANPoPopieg cuvalcY -
T0¢ 070 BAéppa xordog xan dhAo yopoxtnelo Txd tng exxovoc. Ta cuvoncnuatixnd BAEupata cuvdEouv
Toug aVJPOTOUC TIOU EUTAEXOVTOL GE Lol XOWOWIXY) oxMVvH, T ontola QLATpdpovTon UEcw aviyveuong
OUANTAY, N omolo Toug cuVBEEL emtiong P TN ueTaypapt] dlakdyou. Elvaw n npddtn @opd mou - and
660 yvwpilouye - mpotelvetar éva T€T0l0 GUOTNUA eEXYWYNG YOPUXTNELOTIXWDY EWBXE TYEBIAGUEVO
yior Xowwvixd Bivieo. Oewpolpe 6Tt Tapéyet €va YEVIXG TAUOLO Yiol TN ENEEERYUOIA TWV XOVWVIXMDY
mAnpogoplwy ot Pivieo. Emmiéov, yéow tng emadénong Twv HETOYPAPOY TV SWAGYWY Xol NG
Onuovpylag meptypagpmy Bivteo, napéyouue enione pa Bdon otnv omola uropolue va otnploupe mo
eZehypéveg yedddoug dnpovpyiag Teptypaptv ot xownvixd Bivieo. Téhog, mopéyouvue cuYXpELTIXES
peréTeS Yio ToMAG povtéda yhwooog tonou BERT xau enineda exmaidevone, xoddde xou €va tepopyixd

oo teplhndne mou Baoiletar oe cboTNUO EEayWYXNC ANEVTINONG EPWTHOEWY.
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Chapter 1

Introduction

1.1 Motivation

Everyday, the sensory input one receives both from the physical and the digital world comes
in multiple modalities and overwhelming quantity. It is crucial that AI agents are developed in
such a direction that they aid humans in their everyday interaction with this huge amount of
multimodal data, by alleviating their shortcomings, enhancing their experience, and at the same
time protecting them from harm. To give a concrete example of a real-world application for each
of these three motivating factors, we can consider the following. First, Al systems trained to un-
derstand the visual environment or the social interactions around them can provide meaningful
assistance to people with physical or mental disabilities like blindness or autism, by giving them
information about the world that they cannot get on their own. Second, from smart media recom-
mendations and retrieval in applications like YouTube and Netflix, to augmented reality systems
for entertainment and educational purposes, there has been great focus from both the research
community and the industry towards enriching daily life. Finally, an important problem is hateful
media detection on the internet [13], as people are targeted based on their race, gender, or sexual
orientation, leading to serious mental health problems and even real-world hate crimes.

Vision and language are two of the most fundamental and most remarkable capabilities of
the human mind, since vision enables the creation of mental concepts that would not otherwise
exist such as colour and light, and language has the power to distill all sensory experience to
these elementary mental concepts and combine them to create complex new ideas, thus facilitating
thinking through making an “infinite use of finite means” [14]. The interaction of language with
vision motivates researchers to identify the relations between the modalities, combine and reason
about them for decision making. A prominent task in vision-and-language machine learning is
the task of Visual Question Answering (VQA) [23], which requires the AI agent to answer a
natural language question based on an input image. An important challenge is that language can
inadvertently impose strong priors, which give it a tendency to be an easier signal to learn from
than the visual modality, resulting in vision-and-language models that completely disregard visual
information in favor of exploiting language biases.

Humans are social creatures; our survival and well-being depends on our effective communica-
tion with others. This is achieved through perceiving and understanding information from multiple
sensory modalities as well as reasoning and arriving to conclusions, in order to respond accordingly.
More precisely, we rely on the ability to understand other peoples’ mental states (which include
intentions, motivations, feelings), through processing information like their eye gaze, facial expres-
sion, body language (posture, gestures), and tone of voice. Some people, albeit very intelligent like

people with ASD, cannot discern those cues as they operate mainly on logical and factual informa-
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tion, as is the case with most machine learning tasks. The invention of a question answering task
for this matter serves both as a way to train people with ASD to recognise such behaviours, as
well as machine learning models when framed similarly to other question answering tasks. Social
Video Question Answering is a task to test the social reasoning abilities of an agent, based on how
accurately they can answer questions on a given video. It can require sophisticated combinations
of emotion recognition, language understanding, cultural knowledge, logical and causal reasoning,

on top of non-social layers of comprehension about physical events.

Having a problem at hand that is essentially a reasoning task, we draw inspiration from a
portion of VQA literature called neurosymbolic models that focuses on building neural models
while at the same time enabling explicit high level symbolic reasoning. From these we focus on
approaches closer to the neural rather than symbolic side, such as Learning from abstraction [15]
and Memory Attention Composition (MAC) Network [1]. Memory Attention Composition (MAC)
Network attempts to capture the logic of thought in addition to constructing neural representations
from the data and was intended for tasks that require deliberate reasoning from facts to conclusions

on account of its structured and iterative reasoning.

In the first part of this work, we propose an end-to-end approach based on a multimodal exten-
sion of the MAC Network [1] for Social Video Question Answering, called MAC-Extend (MAC-X).
We leverage MAC’s reasoning capabilities and base MAC-X on a recurrent cell that performs it-
erative mid-level fusion of input modalities (visual, auditory, text) over multiple reasoning steps,
by use of a temporal attention mechanism. We then combine MAC-X with LSTMs for temporal

input processing in an end-to-end architecture.

However, this approach as well as most work in literature regards video as a continuous source
containing equally important attributes to consider attending to. Although this general approach
makes sense in most VQA tasks where questions refer to the environment, objects, or actions
and events, Social Video QA revolves around people and their interactions through which they

exchange both verbal and non-verbal information.

In the second part of this work, we propose an augmentation approach of explicitly extracting
social cues from video and connecting them to the people participating in the social interaction,
which is modeled through eye-gaze to form scene-specific gaze graphs. Through this, we also wish

to explore the hypothesis that eye-gaze can summarize social video.

To choose how to process these gaze graphs for the goal of answering natural language questions
that require social reasoning we consider the following motivating factor. In [16] authors make the
case that NLP needs social context to truly succeed, marking that as the last stage to obtain a
truly complete understanding of the world through language. More specifically, the NLP progress
is defined by the conquering of different World Scopes (WS), each one more general than the last,

ordered as Corpus, Internet, Perception (multimodal), Embodiment, and Social.

Drawing inspiration from this analysis, we take the direction of training a purely NLP model
through translating multimodal (WS3) input that contains social (WS5) clues into language, effec-
tively performing captioning. An additional benefit compared to end-to-end models is the added
explainability both in success and in failure cases, as the intermediate results (video captions) can
help us decouple the inabilities of the social scene understanding part from the inabilities of the an-
swer inference part. This approach also bypasses the language bias problem of multimodal models,

which tend to focus on the textual information while ignoring information from other modalities.
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1.2 Contributions

Our main contributions are the following:

e We present MAC-X, a multimodal extension of the MAC Network [1], featuring temporal
attention, a mid level fusion mechanism, and multiple-choice Video Question Answering

capabilities.

e Through using MAC, we obtain a model for social reasoning that uses explicit reasoning
steps, and apply it to the challenging Social-1Q dataset [2], analysing its performance through

ablation studies and comparison to prior state-of-the-art methods.

e Our ablation studies show that the proposed MAC-X architecture can effectively leverage
multimodal input cues using mid-level fusion mechanisms, and we obtain a 2.5% absolute

improvement in terms of binary accuracy over the current state-of-the-art.

e We uncover an important aspect of language bias in the Social-1Q dataset, which exists in
analogy to most VQA datasets and was hidden behind a miscalculation in the precomputed

embeddings.

e We introduce a novel pipeline for Social Video Question Answering based on explicitly de-
tecting social cues and connecting them via eye gaze. Through this, we provide a framework
for leveraging social information in video, which can be adapted, extended, and used with

multiple different machine learning architectures for question answering.

e We propose translating multimodal detections in natural language, to use the resulting video
captions as context for question answering, and provide a baseline for future social captioning

approaches.

e We perform ablations between different pre-trained language models, and observe that aug-
mentation through social cues enhances the pure dialogue understanding by a significant

amount.

1.3 Thesis Outline

In Chapter 2, Machine Learning Background, we provide the theoretical foundations for the
reader to familiarize themselves with the field of Machine Learning, with a focus on Supervised
Learning techniques and the more recent advances of Deep Learning, as well as Transfer Learning,
to which most of the recent achievements in Artificial Intelligence can be attributed.

In Chapter 3, Multimodal Machine Learning, we explore and analyse the theory, as well as
the previous work in the field of Multimodal Machine Learning, in which this Thesis belongs.
In particular, we dive more into the Vision and Language modalities, and the task of Question
Answering, both in images and in video.

In Chapter 4, Social Video Question Answering, we define the problem that this Thesis ad-
dresses, which is Social Video Question Answering, and review the available datasets as well as the
previous work, focusing on the Social-1Q dataset. Additionally, we provide different setups for the
baselines of our experiments, comparing different approaches and analysing characteristics of the
dataset.

In Chapter 5, Proposed Approaches, we present our two different approaches to the task, which
are applied to the Social-IQ dataset. The first one, which we will refer to as the end-to-end
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approach, offers an extension of the MAC network and is compared to multiple baselines as well
as the state-of-the-art. The second one, offers an augmentation approach to the Social-IQ data,
which consists of incorporating social information from the video in textual descriptions, and is
analysed in multiple setups comparing to the unaugmented data.

In Chapter 6, Conclusions, we discuss our research efforts and draw conclusions on their limita-
tions, as well as future work that could build and enhance them. We end with a dedicated section

considering the ethical implications of applying this research in real world use case scenarios.
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Chapter 2

Machine Learning Background

2.1 Introduction

Machine Learning is a branch of Artificial Intelligence (AI) which focuses on the use of data to
algorithmically imitate the way that humans learn, gradually improving performance on tasks that
require some level of intelligence to complete. It was defined in the late 1950s by Al pioneer Arthur
Samuel as “the field of study that gives computers the ability to learn without explicitly being pro-
grammed”. In traditional programming, computers are given detailed instructions to follow which,
for tasks like recognizing different people or objects in images, verges on the impossible. Machine
learning takes the approach of letting computers learn to program themselves through experience
(i.e. observing a set of example data) with the help of statistical models and optimization algo-
rithms. This set of example data is called the training data, and the process of learning from this
data is called training. The more data, the better the program. The set of parameters that can
be refined through this training, along with their underlying architecture is often described as a
machine learning model. Human programmers choose a machine learning model to use, supply the
data, and optionally tweak the model’s external parameters to help push it toward more accurate

results.

Earlier efforts in artificial intelligence focused on expert knowledge systems which, based on
logical inference rules, derived new fragments of knowledge or reasoned over statements. This is
also referred to as symbolic Al and is characterized by serious limitations such as the difficulty
of formally describing all possible knowledge based on a given task. Machine learning approaches
such as neural networks were initially disregarded due to infeasibility concerns which, however,
were refuted by the technological developments around storage and processing power, enabling the
success of modern artificial intelligence with real life applications practically everywhere. In fact,
most current advances in Al involve machine learning, causing the terms to be used interchangeably.
Deep Learning is a branch of machine learning that focuses on deep neural network architectures,
leveraging huge amounts of data to learn what are called meaningful representations. The main
difference from shallow architectures and other machine learning algorithms is that those often
require more structured data to learn, thus depending on human intervention to determine a set
of hand-crafted features, while deep learning automates much of this feature extraction process,
enabling the use of larger data sets. In this way, deep learning can also be thought of as scalable
machine learning. From this point on we will refer to "non-deep" machine learning methods with

the term "classical machine learning" for clarity.
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Types of Data

Machine Learning can be divided in fields depending on the source of input data, and whether
a single or multiple sources are used. Data sources are often referred to as "modalities", and can
either come from measurements of quantities in tabular format, or in signal format. Such signals
can include 1D timeseries such as stocks data and brain signals, as well as 2D signals such as
images and video, and many ideas in machine learning are evolved from concepts in the field of
signal processing. In the case that a machine learning model uses, or a task requires data from a
single modality, the respective model or task is called unimodal, and in the case multiple modalities
are required they are called multimodal. Some important areas that emerged from different types
of data are Natural Language Processing (NLP), Computer Vision (CV), Speech Processing, and

Recommender Systems, to mention a few.

Types of Learning

There are two main approaches in using the data machine learning is based on. The first one
involves labeling a set of data with ground truth information and using algorithms that optimize
performance through minimizing the total loss (error) of predictions with respect to those ground
truth labels, pushing the model to a better internal set of parameters that describes the data better.
The ability of the model to perform well in projecting accurate representations of data outside the
distribution of this labeled training data is called "generalizability". This first approach involving
labeled data (supervision) is called Supervised Learning.

The second approach, called Unsupervised Learning, is based on learning from the internal
structure of the data through finding similarities by which they can be grouped, or projecting
them into a space where they can represent different classes or clusters.

We will delve more into these two approaches, as well as their hybrid combinations in the next
sections. In our discussion of supervised and unsupervised learning next, we will explore different
models from the viewpoint of classical machine learning. Most algorithms in the next sections are
what is called parametric, meaning an assumption on the distribution of the data is made in order
to describe it using a finite set of parameters. We will identify instances of the non-parametric
models as we come across them. The following discussion in the next sections largely follows
Bishop’s [24] book.

2.2 Unsupervised Learning

Unsupervised learning models are utilized for two main tasks — clustering and dimensionality

reduction.

2.2.1 Clustering

Clustering is the problem of grouping together different data points based on certain factors
of similarity that they share in some multidimensional space. According to [24] we can think of a
cluster as a group of data points whose inter-point distances are small compared with the distances

to points outside of the cluster.

K-Means

K-means clustering is one of the simplest and most popular clustering algorithms. In k-means

there is a predefined number of clusters k, each corresponding to a centroid. These centroids
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are points in the space of the data, which are randomly initialized. The main objective of the
K-Means algorithm is to minimize the sum of distances between the points and their respective
cluster centroid.

This is described by the objective function J = fo:l Zszl Tokel|Xn — pgl %, rok € {0, 1} which
represents the sum of the squares of the distances of each data point x,, to each centroid p.
Our goal is to find values for the r,; and the p; so as to minimize J. This is achieved through
an iterative process with two steps per iteration corresponding to optimizations with respect to
rnk and g respectively, which is repeated until convergence. These two stages correspond to the
expectation (E) and maximization (M) steps of the EM algorithm which we explore later.

The "means" in k-means is derived from the fact that at the M-step when setting the derivate
with respect to p;, to zero and solving for p; we get the mean of all the data points assigned to
the cluster k. At each iteration, each data point is assigned to the cluster that minimizes the sum,

and then the centroids are recalculated as the mean of the data points assigned in each cluster.

Gaussian Mixture Models

K-means is a hard clustering method, which means that each point is associated to one and
only one cluster. In that approach, there is no probability measure to describe the degree to which
a data point is associated with a specific cluster. In probabilistic (or soft) clustering, data points
are clustered based on the likelihood that they belong to a particular distribution.

The Gaussian mixture distribution can be written as a linear superposition of Gaussians in the
form p(z) = Z,If:l TN (x|, 2i). Each gaussian is identified by k € {1,..., K}, where K is the
number of clusters of our dataset and 7y is the mixing coefficient for each Gaussian, the sum of
which should be 1.

In case the mean and variance are not known, the Expectation-Maximization (EM) algorithm
is commonly used to estimate the assignment probabilities of a given data point to a particular

data cluster.

Expectation Maximization

The expectation maximization (EM) algorithm is used to perform maximum likelihood estima-
tion in the presence of latent (missing or unobserved) variables. It achieves this by first estimating
the values for the latent variables, then optimizing the model, and repeating these two steps until
convergence.

The goal is to maximize the log likelihood InP(D|6), D = Dgp0qJ Dpeq through the maximizing
the expectation Ep, ,[InP(D|0)| Dgood, #*)]. The Expectation step comprises of computing the
expectation in this last expression, and the Maximization of updating the parameter 8(9) at the
ith iteration. In the EM algorithm the two steps of Expectation (E) and Maximization (M) are
repeated iteratively until convergence is reached for the estimation of the latent variable (%),

This missing values paradigm can be applied to the case where the actual missing information
lies in the assigned cluster of the data, and through assuming a Gaussian or Gaussian Mixture

distribution, EM can be used to predict their latent parameters.

2.2.2 Dimensionality Reduction

When our input features exceed a threshold of dimensionality, we often want to utilize methods
to reduce these dimensions. This is mainly an effort to combat a phenomenon known as the curse

of dimensionality, which is actually an umbrella term for many phenomena that occur when dealing
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with data in much higher-dimensional spaces than the 3d physical world. The most common of
these problems is that as dimensionality increases, the volume of the space increases so fast that
the available data become sparse. This has two main consequences, firstly that in order to ensure
that the machine learning algorithm has "seen" enough examples of each combination of values
during training, the amount of data needed needs to grow exponentially with the dimensionality. A
standard rule of thumb is that there should be at least 5 training examples for each dimension in the
feature representation, or the model will start overfitting the training data and fail in out-of-sample
generalization. Secondly, clustering relies on distance measures such as the Euclidean distance to
quantify the similarity between observations. If the distances are all approximately equal, then all
the observations appear equally alike (as well as equally different), and no meaningful clusters can
be formed.

The general idea of dimensionality reduction is to locate underlying trends in the features,
combinations of which can describe the entirety of the samples. These underlying trends hidden in
the features are often called latent features, and every other feature is re-written in terms of their

exposures to these latent features.

PCA

We aim to describe our input features as linear combinations of a reduced number of com-
ponents such that the distances, or variance, between the resulting samples is maximized. The
input features are often highly correlated, so the greatest reduction in features will be achieved
if each component is chosen to be uncorrelated to the others. These components are called the
principal components, and this method the Principal Components Analysis (PCA), which is a
non-parametric method. In essence, PCA creates a set of principal components ranked by variance

which are uncorrelated, and end up low in number as lower ranked components are thrown away.

2.3 Supervised Learning

Supervised learning models are utilized for two main tasks, regression and classification, which
we will analyse next. The goal of all supervised learning algorithms is to correctly model a mapping

function f that projects an input feature space X to an output label space Y.

2.3.1 Regression

Regression is used to identify the relationship between a dependent variable (output label) and
one or more independent variables (input features) and is typically leveraged to make predictions
about future outcomes. The label here is a value in a continuous space, which the model is called

to predict.

Linear Regression

As the name suggests, linear regression models have the goal of finding the optimal line that
best describes the data points, a process described as "fitting“ the data. The key property of
linear regression is that it is a linear function of its parameters w. In its simplest form, it is also
a linear function with respect to the input variables x, but a much more useful class of functions
can be obtained through applying a fixed set of non-linear functions to the input, known as basis

functions.
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M-1 M—1
y(x) = wo+ Y wid;(x) = Y wig;(x) = w'P(x) (2.1)
j=1 §=0

where ¢; are the fixed nonlinear basis functions (¢o = 1) and M the total number of parameters
in the model.

The error of estimating the curve for N data points can be described by

Z[tn - WT¢(Xn)]2 (2.2)

also known as the sum of squares error (loss) function, with respect to the ground truth values ¢,
Another metric called mean squared error (MSE) refers to the unbiased estimate of error variance,
which is the sum of squares divided by the number of degrees of freedom (usually N).

The optimal parameters w are those that minimize this function, which is called the least
squares solution. To find the least squares solution for all the samples at once would be too costly
in the case of large datasets. Sequential algorithms, also known as on-line algorithms, consider the
data points one at a time or in small batches, and update the parameters after each batch.

As known from basic calculus, the values minimizing a differentiable function can be calculated
through setting its gradient equal to zero and solving for the desired variables. We can obtain a
sequential learning algorithm by moving in the direction of —VE one batch at a time, which is

what is done in the technique of stochastic gradient descent, summarized in the update equation
w) = w _ v E (2.3)

where 7 is a parameter called learning rate. This type of parameter that is external to the model’s
parameters is called a hyperparameter. The initial model parameters are set to a (usually) random
starting vector w(®.

If too many parameters M are used (and therefore number of basis functions), the curve that
will be estimated from the training data will not leave any room for variability in the test data.
This results in a generalization problem called overfitting, where the model ends up being too
case-specific to the data it was trained on.

To overcome overfitting, we can add a regularization term to the error function, called a regu-
larizer.

Brota(w) = E(W) + AR(w) (2.4)

One of the simplest regularizers is weight decay, given by the equation
L 7
R(w) = W W (2.5)

It is called weight decay because it urges the weight values to decay close to zero.

A more general regularizer is given by the equation
M
R(w) = 53" luyl" (26)
j=1

which for q=1 gives the lasso regularizer (also called L1) and for q=2 the ridge regularizer (L2).
Of these two, both minimize loss through minimizing the less important features w;, but lasso can

actually render w; = 0 because even small values of w; are enough to cancel out the error. This is
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useful in the case a kind of feature selection is desired.
Even though the family of linear models in which linear regression belongs to has significant
limitations which we explore later, they form the foundation for many more sophisticated models,

and ultimately all of neural networks.

2.3.2 Classification

Classification, as the term indicates, is the task of assigning a class label to each data sample,
given a set of pre-defined classes. Each sample in the training set is paired with a ground truth label
out of these classes. In the case that there are only two classes, it is called a binary classification
task, and multi-class classification otherwise. It is similar to clustering in unsupervised learning, but
with the difference of making an assumption on what the groupings are that we want to recognise
in our data. A further categorization that can be made is between generative and discriminative
classification models. In generative models, the distribution of the data is explicitly modelled,
whereas discriminative models focus on optimizing an objective function to best discern between
the classes, thus implicitly modeling the data in the underlying parameters.

To measure the success of a classification model we employ some evaluation metrics as well,
apart from error metrics. To describe the most important of those briefly (for the binary task),
given the TP (true positive), FP (false positive), TN (true negative) and FN (false negative)
predictions: (A) Accuracy = (TP+TN)/(TP+FP+FN+TN), is the most intuitive and most used
and it is simply a ratio of correctly predicted samples to the total samples, (B) Precision =
TP/(TP+FP), is the ratio of correctly predicted positive samples to the total predicted positive
samples, (C) Recall = TP/(TP+FN), is the ratio of correctly predicted positive samples to the
total positive samples, and lastly (D) F1 score = 2*(Recall*Precision)/(Recall+Precision), which

provides a better accuracy measure for imbalanced class distributions.

Bayes Classifier

Naive Bayes is generative classification approach that adopts the principle of class conditional
independence from the Bayes Theorem.

P(y|x) = ZEIET) (X;&I)D @)

(2.7)
This means that the presence of one feature does not impact the presence of another in the

probability of a given outcome, and each predictor has an equal effect on that result.

K-Nearest-Neighbours

K-nearest neighbor, also known as KNN, is a discriminative non-parametric algorithm that
classifies data points based on their proximity and association to their surrounding samples (neigh-
bours). This method makes the assumption that similar data points can be found near each other.
As a result, it aims to calculate the distance between data points, usually through Euclidean dis-
tance, and then it assigns a category based on the most frequent category (ground truth label) in

the area.

The Perceptron

The Perceptron is the simplest type of neural network. It is also called a single layer neural

network. It consists of a single neuron that models a linear combination of the input features,
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each z; multiplied by a weight parameter w;, which is then mapped to the output, which is 0 or 1
depending on whether a threshold b called bias is met. The input features are also often described
as the input layer, although they are not modeling any transformation function (but the identity),

and this is not added in the total count of layers in the neural network.
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Figure 2.1. The analogy of the artificial neuron (right) to the biological neuron (left). Source:
cs231n.github.io

These parameters w;, b are updated through an iterative algorithm, with the goal of mapping
the most inputs to the correct output. This is called the Perceptron Learning Algorithm, and it
could be seen as the predecessor of the Gradient Descent which is the algorithm on which modern
neural networks are build on. Starting by initializing the weights randomly, it updates them by
iteratively going through every sample in the training set and for each misclassified sample, pushes
the weights to the opposite direction of the false prediction by the amount of each sample. This is

repeated until convergence. We can define the this algorithm mathematically as

Un = f(W(T)Xn)

A (2.8)
W(TJrl) = W(T) + n(yn - yn)xn

which is repeated for all examples n in the training set.

The perceptron algorithm can be said to use a 0-1 loss function, where for each incorrect
prediction you incur a penalty of 1 and for each correct prediction no penalty. If we were to assign
classes in a soft manner, we could apply a transformation function like the logistic before doing
the final classification, which we will introduce in the next section. This is called an activation

function of the neuron, which in the perceptron is simply the linear (identity) function.

AND OR XOR

) @ |0 *x |@® *

Figure 2.2. The XOR analogy to the non-linearly separable data classification problem. A single
neuron perceptron fails to solve this. Source: pyimagesearch.com

A single neuron cannot possibly model non-linearly separable data, as it can only model a line

function. To combat this, more layers need to be introduced, composing the multi-layer perceptron

which is the first neural network and which we will introduce in section 2.3.3.
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Logistic Regression

While linear regression is leveraged when dependent variables are continuous, logistic regression
is selected when the dependent variable is categorical. Instead of fitting a linear function to the
training data, now we use what is called a logistic function that models the probability that a

sample falls in a category (class). For the binary classification case, this can be expressed as

p(Ci]$) = y(¢) = o(w" ¢) (2.9)
with p(C2|@) = 1 — p(C1|¢) and where ¢ = ¢(x) and
o(a) = H% (2.10)

is the logistic function. The resulting decision boundaries will be linear in the feature space ¢ of
the fixed non-linear basis functions, and these correspond to non-linear decision boundaries in the
original x space, which means that linearly separable classes in ¢ need not be linearly separable in
the original observation space x.

1—t,

We can write the likelihood function as p(t|w) = Hfj:l yin(1—yy,) for which we can define

the error (loss) function from the negative logarithm

N
E(w) = —Inp(t|w) = Z [tnlny, + (1 — t)In(1 —y,)] (2.11)

where y,, = y(¢,,) is called the cross entropy loss function.

Logistic regression is a discriminative model, and it leverages the optimization function of
maximum likelihood, in the form of cross entropy loss to find the most accurate classification of
the data. MSE loss does not apply in the case of logistic regression as using MSE means that we
assume that the underlying data has been generated from a normal distribution, when actually
categorical variables fall into the case of a Bernoulli distribution.

We can define a sequential algorithm with stochastic gradient descent like in linear regression.

In the case of multi-class classification, the logistic function turns into the softmax function

p(Ck|®) = yk(p) = softmaz(a) (2.12)

where
etk

Set

and the likelihood and cross entropy functions are generalized.

softmax(ay) = (2.13)

N K
3N tarlnynk (2.14)

n=1 k=1

Support Vector Machines

Support Vector Machines are a type of discriminative classification algorithm. We will define
an SVM classifier for the binary classification problem. In Support Vector Machines (SVMs), data
points from different classes that lie the closest to each other define a set of support vectors. If
we visualized the lines defined from each class’s support vectors as the side-walk on the two sides

of a street, the goal of the SVM is to make this street as wide as possible, and draw the line
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discriminative function right in the middle.

However this only describes the case of data that are linearly separable. In the case of non-
linearly separable data, the SVM employs what is called the kernel function, which transforms
the data in a higher dimension such that they are linearly separable. A commonly used kernel
function is the RBF. To reduce the computational cost of this transformation, the kernel trick is
used, which avoids calculating the kernel function for a single data point and instead depends on
the product of the kernel functions for two different data points, this way computing a distance

score instead.

2.3.3 Neural Networks

In Linear and Logistic Regression we described models for regression and classification that
composed of linear combinations of fixed basis functions. However, due to the curse of dimension-
ality, if the basis functions are fixed before the training data set is observed, their number needs to
grow exponentially with the dimensionality D of the input space. There are two main properties
of real data sets that are leveraged by neural networks in order to solve this problem. First, due to
often highly correlated input features, the data vectors can lie close to a non-linear manifold whose
intrinsic dimensionality is smaller than that of the original space. Second, target variables may
depend on just a small number of possible directions within that data manifold. Neural network
models, through using adaptive basis functions, can make the regions of input space over which
the basis functions vary correspond to the data manifold, as well as select the directions to which
they respond.

The way these adaptive basis functions are formed, is that each basis function is a nonlinear
function of a linear combination of the inputs, where the coefficients in the linear combination
are the adaptive parameters. This requires a hierarchy of layers of parameters, which can be
represented in the form of a network diagram, where the nodes (corresponding to parameters) are
called neurons. In this section we will discuss the simplest neural network form that consists of

only two layers of neurons.
M D
2 1
u(x) = FQ_wid B wi ') (2.15)
j=0 i=0

The first neural network called the Multi Layer Perceptron can be also seen as a descendant of
the perceptron. The perceptron was unable to handle non-linearly separable data. To solve this
problem, the MLP introduces a second layer of neurons, apart from the single neuron output layer
we saw in the perceptron, called the hidden layer. For example for the XOR problem, an MLP
with a single hidden layer can be designed such that there are an OR and NAND hidden neurons,

and an output AND neuron, composing the desired function.

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

Figure 2.3. Neural Network with single hidden layer (left) as well as two hidden layers (right). It
can also be viewed as a Multilayer Perceptron, which succeeds in classifying non-linearly separable
data. Source: cs231n.github.io
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In order to add the hidden layer, another necessary component for the Multi Layer Perceptron is
a non-linear activation function. Without a non-linear transformation, the stacking of two neuron

layers is simply a linear transformation of the input, and so equivalent to a single layer.

Neural network training is composed of the forward and the backward pass. The process of
evaluating the final output y can be interpreted as a forward propagation of information through
the network. As for the backward pass, in order to compute the gradients required for gradient
descent, we arrive at the algorithm called backpropagation. Backpropagation is a way to calculate
the gradients of the loss with respect to each of the model weights, through following the chain

rule starting from the output layer all the way to the first layer until all components are known.

OL _ OL da; _ OL 9y; Oa;  OL da Oy; da;  OL dy Oa Oy; Oa;

dw;  daj Ow;  dy; da; dw;  da dy; Ha; dw; Ay Ha Ay, da; dw;

(2.16)

In order to do this, we need a loss function that is differentiable, as opposed to the one used
by the perceptron algorithm. As we saw in the logistic regression section, a good loss function for

the classification task is cross entropy loss.

Additionally, neural network research has, over the years, explored other optimizers apart from
stochastic gradient descent (SGD), other activation functions apart from the logistic, and other
regularization methods apart from loss terms. More specifically, the Adam optimization algorithm
(Kingma et al.) provides an extension to SGD, which computes individual adaptive learning rates
for different parameters from estimates of first and second moments of the gradients, and has been
proven to be more efficient. In addition, Loshchilov et al. demonstrated that L2 regularization is
significantly less effective for adaptive algorithms than for SGD, and proposed an improved ver-
sion of Adam called AdamW. As for the activation functions, the logistic function suffers from the
problem of vanishing gradients and thus cannot be used in networks with many layers, a problem
which the Rectified Linear Unit (ReLU) overcomes by utilizing a (mostly) linear function (gradients
remain proportional to the activations), given by the equation a(x) = max{0,2}. This is actually
a non-linear function as negative values always output zero, allowing complex relationships in the
data to be learned. As for the fact that it is not differentiable at zero, this is not a problem in prac-
tice, and the gradient is assumed to be zero there. Additionally it is less computationally expensive
and can achieve representational sparsity. Finally, as regards different types of regularization, a
dropout layer can be introduced which randomly sets input units to 0 with a given probability,
helping to prevent overfitting, and the technique of early stopping is employed to perform model
selection on a validation set according to some metric, and stop the training before overfitting

occurs.

Neural networks are said to be universal approximators, meaning that a two-layer (single hid-
den layer) network with linear outputs can uniformly approximate any continuous function on a

compact input domain, provided the network has a sufficiently large number of hidden units.

2.4 Deep Learning

In this section we will talk about the advances that achieved the breakthrough in leveraging
huge amounts of data and left behind the era of expert knowledge and feature engineering. The

area which we call deep learning was enabled by the creation of deep neural networks.

40



2.4.1 Feed-forward Neural Networks

2.4.1 Feed-forward Neural Networks

In the Deep Learning world where there are many different kinds of architectures for neural
networks, the vanilla neural network introduced in the previous section is most often called a feed-
forward neural network (FFNN), or a fully connected neural network, to differentiate especially
from cases where neural networks are either recurrent or sparsely connected, which we will examine
in the next sections. In general, feed-forward neural networks are good in the case that the input
features are independent with each other: not parts of a sequence, not points in a grid, because
of the permutation invariance of the inputs in the neuron operation, i.e. relative position does not

matter.

2.4.2 Convolutional Neural Networks

What would happen if we were to flatten all pixels of an image and give it as input to a FFNN?
Some problems with this setup are that (A) it would require too many parameters (B) it would not
be able to factor in pixel relative positions, as the order in a FFNN is permutable - which means
that the network would not be able to recognize patterns. When thinking of a way to factor in
those relative positions, there is an important property that we want to take under consideration.
Vision, and more specifically the task of visual recognition, is governed by positional invariance -
meaning the same object is recognised regardless on where it is placed on the visual field. It is
intuitively obvious that it would be desirable to maintain this property in the neural network. The

modeling of such a property in a neural network’s design is called an inductive bias.

Figure 2.4. 96 filters learned by the first convolutional layer of AlexNet. Source: [4]

The operation that manages to solve all of the above requirements at once, is convolution. The
first paper to introduce Convolutional Neural Networks (CNNs) was [25]. This operation can be

described as

(I« EK)(i,5) =YY I(i+m,j+n)K(m,n) (2.17)

where T is the image and K is a filter (kernel). The output of the convolution is often called
a feature map. Strictly speaking, the above equation corresponds to cross-correlation, but it is
equivalent to convolution in the context of CNNs.

When applying convolution we slide the filter through the image, each time shifting by a step-
amount and restricting the receptive field to a small patch. This is what makes the CNN a sparse
network, which only calculates weights while seeing a portion of the input at a time.

From signal processing we recall that we use convolution to describe frequency filtering in
the time domain (when applying the fourier transform, convolution is turned into multiplication).

What we want is to filter the input image with a range of filters - if this were traditional computer
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vision these would be pre-defined / engineered to produce specific results such as edge detection
with the Laplacian of Gaussian (LoG) filter. Since in machine learning we want everything to be
learned straight from the data, these filters will be learnable as well - so they make up some of the
network’s parameters. What filters essentially do, is to recognize the same pattern regardless of

its absolute position.

Input Kernel Output
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Figure 2.5. Top: convolution with a single kernel on a single channel input. Middle: convolution
with a single (3D) kernel on multiple channel input, resulting in single channel output. Bottom:
convolution with multiple (3D) kernels on multiple channel input, resulting in multiple channel
output. Source: d2l.ai

We pass an image through multiple learnable filters - each of which extracts different kind
of information - this information is much lower in dimension and higher in information density
than the pure image pixels. To learn features at different scales, we can stack one convolutional
layer after another - this way the filters in the first layers learn to extract more low-level and
general patterns, such as edges, and the last more high-level, task-specific patterns, which are often
less interpretable. Between convolutional layers, it is important to apply a non-linear activation
function, just like between regular fully connected layers, to enable learning more complex patterns
by stacking layers. Additionally, it is desired to reduce the dimensionality and increase the number
of filters after each convolution layer, to enable learning a wider range of more high level (abstract)
patterns as the layers progress. To do this, a pooling layer (most often max) is applied, which
downsamples the input volume spatially and independently in each depth slice. This also leads to
a reduction in the model parameters as we move to deeper layers which learn more details, which
can also reduce overfitting. The features after the final layer can then be passed into a regular

FFNN, followed by softmax for classification.
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Figure 2.6. VGGNet architecture: notice how the resolution of the output images decreases as
the number of filters increases. Source: [5]

2.4.3 Recurrent Neural Networks

Often we want to model sequential data, meaning variable length sequences such as text, speech,
or any time series data. In addition, for this type of data we may want to make predictions based on
context - meaning the inputs are not independent, and their order and proximity matters. Regular
FFNNs have fixed sized inputs, and lack the notion of order (you can permute a sum anyway you

want).

one to one one to many many to one many to many many to many
f t ot m 1 f ot
t t ﬁ ﬁ t t ﬁ t t ot t
Figure 2.7. The different sequential applications approached through the introduction of RNNs.
Source: karpathy.github.io
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We need to allow previous outputs to be used as inputs (by making the neural network recurrent)
in order to keep contextual information, called a hidden state. This allows for the model weights

to be shared across time, and it can be described by the following equations

hy = o(Wanae + Winhe—1 + by)

(2.18)
yr = o(Whyhe + by)

where h; is the hidden state at timestep ¢ and y; the output.
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Recurrent Neural Networks (RNNs) [26] can be used to encode sequences into a single vector
(final hidden state), or to output another sequence. In general, sequence tasks can be divided
in the following groups (figure 2.7); one to one (no sequence, e.g. image classification), one to
many (e.g. image captioning), many to one (sequence classification), many to many (two kinds,
generating future sequences or transforming the one to another - e.g. text generation and machine

translation respectively).
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Figure 2.8. RRN and LSTM comparison. Source colah.github.io

Despite its effective modeling of sequential tasks, the vanilla RNN suffers from the problem of
exploding/vanishing gradients. This is due to backpropagation through the (unfolded) feedback
loop, which reinforces extreme values through repeated multiplication as sequences get longer.
To solve this problem, another recurrent network was introduced, called the Long Short Term
Memory network (LSTM) [27]. The key to the LSTMs is the cell state, which runs straight
down the entire chain, with only some minor linear interactions. This enables information to flow
through unchanged, while allowing to remove or add information only as regulated through gates.
An LSTM has three of these gates, to protect and control the cell state.

fi=0Wgsxy + Whrhi—1 + by)

it = 0(Wairs + Whihi—1 + b;)

or = 0(Waomt + Whohi—1 + b,)

¢t = tanh(Wyexs + Whehi—1 + be)

(2.19)

€t = Ci_1 % fr T x G4

hy = o4 * tanh(ct)

The forget layer f;, learns what we want to forget from the previous hidden state and current input,
which the forget gate applies it to the cell state through multiplication. Then, new information
is added by the input gate, which is learned again through the input layer ¢;. Finally, the output
gate is used to produce the new hidden state, which is just like in the vanilla RNN except it is also
conditioned on the current cell state we just produced. The LSTM models long term dependencies

better than RNNs - but not so good still, as we will see more of that next.
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2.4.4 Attention Mechanisms

In applications, recurrent neural networks often only use the final hidden state to model a
sequence, to be used in a successive network. However this creates a bottleneck for very long
sequences and fails to model long term dependencies, even with the optimizations we saw in the
LSTM. This became especially evident in the task of neural machine translation, where the goal
is to translate a sentence from one language to another. Because of the way the last hidden state
is aggregated, the system pays more attention to the last parts of the sequence, corresponding to
the current step at the translation. There is no way to factor in other positions, or give more
importance to some of the input words compared to others while translating the sentence. For
example, translations between languages like french and english inherently require to take into
account words in different positions than the one at the current step - as the syntax imposes

different order in many cases.

Attention mechanisms [28] are inspired by human attention and memory. Memory can be
described as attention through time, so if a network with better memory is desired, it would make
sense to explicitly learn on which inputs to factor in more - taking them all into consideration (with
the restraint that the factors sum to 1). These factors are called attention weights, and we say
that the model pays more attention on a sequential input step that has a bigger weight assigned to
it. These weights are learned through a regular FFNN and they can be different for each output

of a seq2seq model.

Let h;, s¢ be the hidden states of the input and output RNNs respectively. The input context
vector to the output RNN will be defined as:

ct = E oy ihy
i

at; = softmaz(score(st, h;))

(2.20)

where score(st, h;) is a learnable alignment scoring function. Some scoring functions proposed for

attention can be seen in the table.

Additive [28] vatanh(Welse, hi))
Bilinear [29] sTWahi
Dot-Product [29] sTh;
S;Fhi
Scaled Dot-Product [6] =

Table 2.1. Different attention scoring functions

The specification of "soft attention" means that the function varies smoothly over its domain

and, as a result, it is differentiable.

Attention was soon applied in many areas outside machine translation, including computer
vision and multimodal translation tasks (e.g. image captioning) [30], where there is need for
attention between image regions and words in a sentence. Vision research was directed away from

grid-based features and bottom up processing and more towards region-based and top-down [31].

Note that very deep neural networks already learn a form of implicit attention, but attention
is such a useful and important property that we want to insert it explicitly as an inductive bias to
the model. This very insightful idea has proved groundbreaking in modern machine learning, as

we will also see next.
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2.4.5 Transformers

However, even with the use of attention in networks such as the LSTM, the modelling of long-
term dependencies in the recurrent setting still leaves room for improvement. Another downside
of recurrent networks with attention is that they are very computationally expensive, due to back-
propagating for every recurrent step and input/output score. One of the main novelties introduced
in the Transformer [6] architecture is to replace recurrency with positional encodings on fixed size,
feed-forward input sequences, and compute attention between different parts of this same vector,
thus bypassing both the vanishing gradient and the computation cost problems caused by back-
propagation in recurrent networks. In addition, the Transformer lends itself to parallelization, due

to the multiple heads mechanism it employs which we will explore shortly.

Self-attention via Scaled Dot-Product

Self-attention, also known as intra-attention, is an attention mechanism relating different po-
sitions of a single sequence in order to compute a representation of the same sequence. Borrowing
terminology from information retrieval and databases, we define the Scaled Dot-Product attention
as the alignment scoring (via dot-product) on a series of keys (K) by a series of queries (Q), fol-
lowed by softmax and application of the resulting weights on a series of values (V') to compute the
output context representation. These keys, queries, and values are learnable linear transformations
of the input vectors X - it is in this parametrization of the K, (), V' that the attention distribution

is learned.
K=WgX, Q=WgoX, V=WyX

QK™ (2.21)
ViV

In the context of neural machine translation, each row in the query matrix corresponds to each

C = softmazx(

next-to-be translated word, for which we score the alignment to each of the rows in the key matrix.
Through the parametrization of the @) and K, the highest scoring value will not necessarily be
assigned to the row corresponding to the same input in the sequence, but will rather be distributed
to the rows in V in the way that helps towards the most accurate translation. Note that the
division of the dot-product by the square root of the keys’ dimension (scaling) is performed for
stabilizing the gradients in the case that the dot-product becomes too large in larger dimensions
dy.

Multiple attention heads

In the attention mechanism of the Transformer, not only one set of (Wi, Wg, Wy ) matrices are
learned, but a multitude of h such matrices, specifically 8 in the original paper. These are called
“attention heads” and the resulting context matrices from computing self-attention with each of

them are concatenated and linearly transformed to form a single context matrix.

Cmultihead = COHC&t(CVl7 ceey C}L)WO

KT (2.22)
QiK, Wi
Vdk

This idea of learning multiple attention distributions intuitively attributes to the notion that at-

where C; = softmax(

tention in the human and artificial neural network is meant to have specializations; for example
we can have a separate attention mechanism for figuring out the right pronoun to use to address

someone based on a sentence, and a separate for knowing how that sentence impacted us emo-
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tionally. This can be seen as giving the model the ability to jointly attend to information from
different representation subspaces at different positions [6]. From another perspective, multi-head
attention is also beneficial because it is a form of model ensembling, which also helps performance
by itself.

Positional encoding

We still haven’t addressed how the order of the words is modelled in the transformer - how did
it manage to dispense with the recurrent architecture? The information of absolute and relative
positions of the tokens must be encoded in their vector representations. This can be done via sum-
mation of a position-representative vector to each input embedding, called the positional encoding.
This vectors’ function over the inputs must both be periodic and have variable frequency, to model
both relative and absolute distance. The following sinusoidal function covers these requirements,

and additionally gives the advantage of being able to scale to unseen lengths of sequences.

PE(pos, 2i) = sin(pos/10000%/4)

, (2.23)
PE(pos,2i + 1) = cos(pos/10000%"/%)
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Figure 2.9. The Transformer architecture. Source: [6]
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Encoder-Decoder architecture

Preceding both the encoder and the decoder side of the model, inputs are initially embedded
via a trainable embedding layer, before being summed with the positional encoding.

The encoder produces an attention-based representation for each input token in the sequence.
It consists of 6 identical blocks of two submodules, the multi-head self-attention layer and a point-
wise fully connected feed forward network, where point-wise means that the linear transformations
of the elements in the sequence share the same weights, similar to a convolutional filter of size 1.
Additionally, each submodule contains layer normalization and a residual connection which can
help preserve useful information from previous layers.

The function of the decoder is to retrieve information from the encoded representation, and
based on that, output a new sequence. The architecture is almost exactly the same as the encoder,
with two key differences. First, there is an additional multi-head attention submodule in each
repeating block called the "Encoder-Decoder Attention" layer, which functions the same as the
multi-head self-attention, except that it takes the Keys and Values matrices from the output of
the encoder stack, and the Queries from the layer below it. Second, the multi-head self-attention
layer is only allowed to attend to earlier positions in the output sequence, through masking future
positions before the softmax step (-inf before the softmax, so that it becomes a zero after).

The output layer is a simple fully connected neural network that projects the vector produced
by the stack of decoders into the logits vector, which is much larger in size - the same as the size
of the model’s vocabulary. After a softmax layer, the word with the highest probability is chosen
as the output for the current time step. It is interesting to notice that the overall operation of
the transformer layers does a form of squeezing and expanding in the dimensions, as the creation
of the QKV matrices squeezes, and the output linear expands. This is often performed when
learning intermediate representations in neural networks in general, for example CNNs also reduce

dimensionality dramatically, only to expand to a million-class logit vector.

2.5 Transfer Learning

To describe the subject of transfer learning, we first need to introduce the concepts of domain
and task. Plainly speaking, the task is the objective a model aims to perform, e.g. recognize objects
in images, and the domain is where the data is coming from, e.g. daylight images from security
cameras. More formally, a domain D consists of a feature space X and a marginal probability
distribution P(X) over that feature space, where X = {x1,29,...,x,|z; € X}. Given a domain
D = {X,P(X)}, a task T consists of a label space Y and a conditional probability distribution
P(Y|X) to be learned from the training data. Ideally, if we want to train a model to perform
a task on some target task and domain, it is natural that we would want to have training data
from the same domain. If we want to use supervised learning, the training data for this task also
has to be labeled. This stands in contrast with the abundance of diverse target domains that
require machine learning solutions, for which it is near impossible to have enough data, let alone
labeled data. Note that the domain can change very easily if even a fraction of the data collection
conditions change, e.g. time of day, location, traffic.

Therefore, in reality, most real world ML use cases are only enabled if it is possible to make
predictions on the target tasks, having done most of the training on a different (source) domain and
task. In the general case, without any modifications most models will fail to do this successfully.
How little these conditions need to change for a machine learning model to be thrown off, is in

direct relation to its generalizability capacity. Transfer learning is the research subject that studies
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how to transfer as much common knowledge as possible between different domains and tasks, i.e.
to use whatever might be useful to the target domain or task and throw away domain or task
specific biases. Given a source domain Dg, a source task T, a target domain D, and a target
task T, the objective of transfer learning is to learn the target conditional probability distribution
P(Yr|Xr) in Dy with the information gained from Dg and Ts where Dg # Dp or Ts # Tr.
Since both the domain and task are described by tuples of two elements, there are two ways in
which each of the above inequalities can manifest, namely the domains having completely different
feature spaces, or just different distributions over that space (e.g. in text, different languages vs.
just different topics), and respectively the tasks having completely different labels or just different
distributions of labels in the data.

In most cases, a limited number of labeled target samples, which is much smaller than the
number of labeled source examples are assumed to be available. The above conditions lead to the
idea that, given a large amount of labeled data in a general source domain and task, we could first
train models there, and then use the resulting weights to initialize models for training in smaller,
more specific datasets. These steps are called pre-training (in the source dataset) and fine-tuning
(in the target dataset). When fine-tuning, it is common practice to disable weight updates on some
layers, a process called "freezing", so that the model does not forget useful information from the
source dataset, as well as to use much smaller learning rates for the same reason. In addition, it
is also common to use the pre-trained model as a feature extractor, for input features in another
model. If the target task in which we fine-tune the model is different from the source task, it is
also called a "downstream task", and the source task a "pre-training task"

Assuming models that are in the form of repeated identical blocks, as it was the case with CNNs
and Transformers, if the source dataset is large and general enough and the model respectively
deep enough, the features learned by the first layers of blocks tend to be more general, and the
layers closer to the final prediction obtain more task-specific customizable representations. For
this reason, the first layers are the ones that we freeze, so as not to forget the useful, general

representations, and the last layers the ones that are fine-tuned.

2.5.1 The Imagenet Revolution

In order to motivate the application of transfer learning in the field of computer vision (CV) we
must understand what accounts for the outstanding success of large convolutional neural networks
on ImageNet [32]. Imagenet is the first large scale visual database for object recognition including
more than 14 million hand-annotated images of more than 20,000 categories with a typical category
consisting of several hundred images. Models trained on ImageNet seem to capture relevant and
general features about the structure and composition of animals and objects. As a result, the
ImageNet task seems to be a good proxy for general computer vision problems, as the same
knowledge required for it is also applicable to a wide range of other tasks. Useful representations
that capture broad information about how an image is built and the combinations of edges and
shapes it includes are usually stored in one of the final convolutional layers or early fully-connected
layers in large convolutional neural networks trained on ImageNet. A brief overview of the different
CNN architectures that have succeeded in this task is given as follows. AlexNet [4] was the first
convolutional neural network to do well on Imagenet, due to its bigger depth of 8 layers, utilization
of GPU processors, and use of the ReLU non-linear activation function. VGGNet [5] increased the
number of layers to 16 and 19 layer variants, and utilized the smallest possible receptive fields (3x3
convolutional filter) which was what enabled it to have more weight layers. ResNet [33], is much

deeper and includes several variations in the order of hundreds of layers. This was made possible by
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utilizing skip connections or residual connections to jump over some layers, in this way preserving
base information in a very deep network and preventing phenomena such as the vanishing gradient.
ResNet is also the first CNN to use the technique of Batch Normalization. Finally, in DenseNet
[34], extending the idea in ResNet, each layer obtains additional inputs from all preceding layers
and passes on its own feature-maps to all subsequent layers. Since each layer receives feature maps
from all preceding layers, the network can be more compact thus achieving higher computational
and memory efficiency.

A slightly different task than object recognition is that of object detection which additionally
requires to localize the predicted classes in the image and often recognize multiple different objects
in a single image. An important class of models for this task are the region based CNNs (R-
CNNs) which include a series of improvements, namely the Fast R-CNN [35] and the Faster R-
CNN [36]. The vanilla R-CNN |[37] performs forward propagation by using a CNN per region
proposal from the input image, extracting features to be used for predicting its class and bounding
box. Although the R-CNN model uses pretrained CNNs to extract image features, for thousands
of region proposals from a single input image the computing load makes it infeasible to use in
real-world applications. However, since these regions usually have overlaps, independent feature
extractions lead to much repeated computation, and so the Fast R-CNN [35] performs a single
CNN propagation on the entire image. To improve its accuracy the Fast R-CNN model usually
has to generate a lot of region proposals in selective search, which Faster RCNN [36] combats
through replacing the selective search with a region proposal network which is jointly trained with
the rest of the model including its loss over proposals in the overall objective function.

Due to the scarcity and general nature of large pre-training datasets such as Imagenet, as well
as the huge depth of the models required for state-of-the-art performances, very few people train
an entire CNN from scratch. Utilizing transfer learning, it is common to pretrain a CNN on a very
large dataset, and then use it either as an initialization or a fixed feature extractor for the task of
interest. This has revolutionized the ease at which the community can leverage the capabilities of

these deep networks.

2.5.2 The BERT Family

NLP background

In order for machine learning models to process words, these first need to be represented
numerically in vectors that can be used in the models’ calculations. These vectors are called word
embeddings. In the beginning, these had the simplest form possible, meaning a one-hot vector
the size of the known vocabulary, with the value 1 at the index corresponding to the current
word and all the others 0. Alternatively, in a process still similar to one-hot embeddings, the
mathematical significance of words in documents can be reflected as well, through TF-IDF (Term
Frequency - Inverse Document Frequency) embeddings. In those, the value of the current word
corresponds to its significance in the document (instead of 1), which is computed as the product of
the Term Frequency and the Inverse Document Frequency metrics. The former corresponds simply
to the frequency of a word in the current document, i.e. the ratio of the word’s instances over
the total words in the document, while the latter is the logarithm of the ratio of the total number
of documents to the number of documents in which the word occurs, and measures how rare the
word is.

However, apart from being inefficient due to their extreme sparsity, these sparse representations

are also inaccurate as they fail to model the relationships between words. For example, the words
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"Hower" and "plant" will correspond to different indices which will make their vectors’ cosine
similarity equal to zero, which conceptually is not the case. In Word2Vec [38], word representations
manage to capture semantic as well as syntactic relationships, for example that "king" is to "man"
what "queen" is to "woman", as well as that the relationship between "had" and "has" is the same
as between "was" and "is". There were two major pretraining tasks employed in those language
models for computing word representations, continuous-bag-of-words (CBOW) and skipgram. In
a CBOW model, a target word is predicted given its surrounding context in the form of a "bag of
words" where order does not matter. The skipgram model has the reverse goal, which is to predict
the context of a word based solely on its representation. This is the first attempt in self-supervised

learning, which we will delve more into in the next section.

After the Word2Vec and other similar approaches such as Glove vectors, the need arose to
have different representations for the same word used in different context. For example, the word
"arm" has different meaning when referring to the part of the body, and different when referring
to weapons or equipment. ELMo [39] uses bi-directional LSTMs to create contextualized word-
embeddings, by taking the entire sequence into consideration before assigning an embedding to the
word. The LSTMs are trained on predicting the next word in a sequence of words, a tasked called
Language Modelling (LM).

However, to model long term dependencies better, an attention mechanism would need to
be inserted, which as we saw is costly in recurrent language models. Even the simple LSTMs’
computational inefficiency is enough to discourage pre-training in huge enough datasets (the level
of Imagenet or more, such as training on the whole internet text) to achieve successful transfer
learning. This gave rise to the idea of solving language modeling the same way as seq2seq problems,
through the idea of self-attention. In addition, the task of next word prediction (classic LM)
reminds us of the transformer decoder, which is exactly what the openAI' transformers in the GPT
[40, 41] series consist of - stacked decoder layers (only without the encoder-decoder attention). One
can notice that in this setup, the only difference the decoder has from the encoder is the masking of
the future tokens, as well as the fact that using stacked decoder layers seems to have one important
drawback compared to ELMo - the context used is uni-directional, again due to the masking of
future tokens. This gave rise to the idea of BERT [3], which we explore in depth shortly.

Self-supervised learning

Even with the advantages of transfer learning, labeling huge amounts of data for the pre-
training task is still an unresolved issue which has a human bottleneck - while at the same time
unlimited unlabelled data is being generated constantly. However, unsupervised learning is often
difficult and less effective than supervised learning. Self-supervised learning is a learning scheme
that empowers us to exploit a variety of labels that come with the data for free, by framing a
supervised learning task in a way that uses a portion of the data as labels to be predicted from
the rest of the data. This self-supervised task can sometimes be unrealistic but is chosen in such a
way that it drives the model to the desired direction. The final performance of this invented task
is of no importance, rather we are interested in the learned intermediate representation with the
expectation that it can carry good structural biases and can be beneficial to a variety of practical

downstream tasks. One of the first uses of self-supervised learning was in language modeling.

Thttps://openai.com/
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BERT (Bidirectional Encoder Representations from Transformers)

BERT [3] uses the encoder side of the transformer, of which the main advantage compared to
using the decoder side with the classic LM task (like in GPT [40]), is that the constraint for using
only past inputs is lifted and the representations’ context is bidirectional. It is not unexpected
that a representation that learns the context around a word rather than just before the word is

able to capture its meaning more accurately, both syntactically and semantically.

ﬁ’ Mask LM Mask LM \ /@/%AD Start/End Spax
£ 3 »

BERT BERT

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 2.10. Comparison of BERT pre-training versus fine-tuning configurations. The down-
stream task shown on the right is the task of extractive question answering, where the model outputs
a start/end span prediction. Source: [3]

This is achieved by setting a bidirectional LM task, instead of the classic LM, called Masked
Language Modeling (MLM), which is what was called the "cloze" task in earlier literature. The
idea is to randomly mask 15% of tokens in each sequence, by replacing them with a spacial token
[MASK], to be used for prediction. The output size is only 15% of the input size. However, this
token would never be encountered in fine-tuning which would make the distributions of the tasks

too different. To overcome this a trick is employed, namely, of the chosen random tokens to mask
e 80% are replaced with [MASK]
e 10% are replaced with a random word
e 10% are kept the same

Furthermore, an additional task is introduced to promote sentence-level understanding, as many
downstream tasks involve the understanding of relationships between sentences. The objective of
this task is to perform binary classification on whether one sentence is the next sentence of another,
and it is called the Next Sentence Prediction (NSP) task. Sentence pairs (A, B) are sampled so
that:

e 50% of the time, B follows A
e 50% of the time, B does not follow A

The two sentences A and B are separated by a special token [SEP], and concatenated as input to
the model. Before sentence A, a special [CLS] token is inserted, which is later used as input to the
final classifier for prediction. The objective of this classification token is to learn the aggregated

representation of the inputs that is useful for classification.
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BERT's total pre-training loss is the sum of the mean MLM likelihood and mean NSP likelihood.
BERT also introduces some novelties in the way the input word embeddings are formed, compared

to the transformer. More specifically, they are formulated as the sum of three parts:

1. WordPiece tokenization embeddings: Instead of using tokenization at word level, words are
further divided into smaller sub-word units in order to handle words with common root or

rare words more effectively.

2. Segment embeddings: If the input contains two sentences, embeddings that denote on which

sentence a token belongs in are added.

3. Position embeddings: Positional embeddings are learned rather than hard-coded as it was in

the vanilla transformer.

As for BERT’s downstream tasks (i.e. the tasks that the model weights learned in the pre-
training tasks of MLM and NSP can be fine-tuned for), these correspond to a very wide range,
including but not limited to (1) entailment, (2) extractive question answering, and (3) text clas-
sification or sequence tagging. At the output, the token representations are fed into an output
layer for token level tasks, such as sequence tagging or extractive question answering, and the
[CLS]| representation is fed into an output layer for classification, such as entailment or sentiment
analysis [3], as well as multiple-choice question answering.

Succeeding the release and widespread adoption of BERT, a multitude of variations and im-
provements over its vanilla architecture were proposed, such as RoBERTa [42] and DistilBERT
[43], which are two of the most popular. RoBERTa [42] (stands for Robustly optimized BERT
approach), is a retraining of BERT with optimized training methodology and much more data and
compute power. RoBERTa’s optimizations include the removal of the Next Sentence Prediction
(NSP) pre-training task and the introduction of dynamic masking which makes the masked token
change during the training epochs. In addition it recommends the use of larger batch sizes. In an
opposite direction of the optimizations in RoBERTa, it is often needed to reduce computational
costs and use a smaller network to approximate the performance. DistilBERT [43] learns a dis-
tilled (approximate) version of BERT, retaining 97% performance but using only half the number
of parameters. It employs a technique called distillation, which approximates a trained large neu-
ral network’s output distributions by a smaller network, through posterior approximation and the
use of Kulback Leiber divergence in the optimization function. In addition, it omits token-type

embeddings, pooler layers and half of the layers from the vanilla BERT.
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Chapter 3

Multimodal Machine Learning

3.1 Introduction

Human perception and understanding of the world involves multiple sensory modalities such
as vision, hearing, smell, taste, and touch. The word "modality" refers to the source of a signal,
whether this is a measurement from the physical or the digital world, and machine learning research
problems that are referred to as "multimodal" require the use of multiple such sources. For example,
an inherent multimodal source is video, as it includes image, sound, and often text.

Thus, artificial intelligence systems need to be able to process and capture interactions between
these modalities in order to gain an in-depth understanding of their environment. From early
research on audio-visual speech recognition to the more recent explosion of interest in vision and
language models, multi-modal machine learning is a vibrant multi-disciplinary field of increasing
importance and with extraordinary potential [7]. The goal of multimodal machine learning is to
design models that can process and relate information from multiple modalities, often through
learning a common joint representation.

It is common that multimodal machine learning involves multiple disciplines of machine learning
such as Computer Vision and Natural Language Processing, as each of those deal with a different
modality; in this case vision and language, a combination which we will specifically analyse in
depth in this chapter. An important theme in multimodal machine learning revolves around the
fact that different modalities are also characterized by different statistical properties. In this case,
images are mainly represented in the scale of pixels which contain dense and diverse information
while text is represented through much sparser word embeddings.

The main challenges posed in the multi-modal setting, and consequently the direction of the
methods approaching them, can be divided in five categories following Baltrusaitis et al.’s [7] tax-
onomy: representation learning, fusion, alignment, translation, and co-learning. In this chapter we
will focus on techniques in the fusion, alignment, and translation domains, as well as focus on deep
multimodal learning, leaving aside earlier classical machine learning multimodal approaches. It has
to be noted that in deep learning the representation learning technique is a subset of fusion (early

and mid-level approaches), where the main goal is to compute meaningful joint representations.

3.2 Techniques

3.2.1 Fusion

The goal of multimodal fusion is to predict the task’s target variables through joining infor-

mation from multiple modalities, which may differ in their predictive power. Fusion methods are
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often divided in early (i.e. at the input feature level), late (i.e. after the uni-modal predictions),
and mid-level (i.e. at the intermediate representation level). Another fusion type mentioned in
literature is hybrid fusion, which combines outputs from early fusion with uni-modal outputs in a
late fusion manner [44].

Early fusion often only requires the concatenation of the input features, followed by the training
of a single model, making the pipeline easier compared to late and hybrid approaches. It also
consists the simplest kind of joint representation learning, as it can learn to exploit the correlation
and interactions between low level features of each modality. In contrast, late fusion fuses the uni-
modal predictions through methods such as averaging [45] and voting-schemes [46]. An advantage
compared to early fusion is that it enables modelling each modality separately, which is often better
due to the statistical differences in their content, at the cost, however, of ignoring the low level

interactions between modalities.

Joint [Q Q-0 Qj

Optional :/[..",..J [.......J [.......J

Intermediate .

\
I
I

_________________________ —_—_—

Unimodal  (©©--00] (00:-00) (000 0)

X1 X2 Xn

Figure 3.1. Joint representation learning through early or optionally mid-level fusion. Source:

17

The problem of learning multimodal joint representations, also described as the projection of
uni-modal representations together into a multimodal space, is most generally modelled by the case
of mid-level fusion, and is expressed by figure 3.1, and the equation x,, = f(x1, ..., X, ), where the
function f is often modelled by a fully connected neural network (FFNN) layer. More specifically,
when creating multimodal joint representations with mid-level fusion in neural networks, each
modality is first processed separately with one or more layers, followed by a layer that projects
the modalities into a joint space [23, 47, 48, 49]. The joint multimodal representation can then be

passed through another network or used directly for prediction.

3.2.2 Alignment

The goal of alignment is to identify the direct relations between parts of the input from multiple
modalities, for example the areas of an image corresponding to a text caption’s words. This is
often achieved through employing similarity measures. There are cases where the multimodal
downstream task also corresponds to the alignment problem and the supervision is provided exactly
for those targets, in which case we call that a problem of explicit alignment. In most cases however,
multimodal alignment will be used as an intermediate or latent step for another task, where there
are no supervised alignment examples and is referred to as an implicit alignment problem.

Translation, which we will delve more into in the next section, can also be formulated to contain
alignment as an intermediate step, where in the case of an encoder-decoder model this is needed in

order for the encoder module to not be required to summarize the whole input into a single vector
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representation. This implicit alignment is often achieved through employing attention mechanisms,
which compute a soft score of importance on the input, and allow the decoder to focus on more
important tokens, as we saw in the dedicated section of the previous chapter. Implicit alignment
through attention is also commonly applied to the question answering task, either uni-modal or
multi-modal, as it enables the alignment of the question words with part of an information source

such as text, image, or video.

3.2.3 Translation

Translation deals with the problem of mapping data from one modality to another, which are
heterogeneous to each other as well as often have an ambiguous, or subjective relationship. For
the example of video captioning, there are several correct ways to describe the events and content
in a video, which can differ in terms of perspective and focus - e.g. they can be more object or
human centered. Multimodal translation is a long studied problem, with early work in speech
synthesis [50], visual speech generation [51], video description [52], and cross-modal retrieval [53].
An especially popular problem is visual scene description, which includes image [54] and video
captioning [55], where not only detecting the salient parts in a visual scene is required, but also to
generate linguistically correct and comprehensive sentences describing them.

Translation techniques can be categorized in the example-based and generative types. The
former use a static dictionary for the connection between modalities, while the latter train a
model to predict the translation output. Generative models are much more difficult to build since
they require an added capacity to generate sequences successfully, with temporal and structural
consistency. An example of a very prominent recent generative multimodal translation model is
the DALL-E series [56, 57]. On the other hand, example-based algorithms are constrained by
their training data and dictionary, but are much easier to design and apply. They can be further
categorized in retrieval-based and combination-based algorithms where the first directly use the
retrieved translation without further processing, and the second rely on more complex rules to

create translations based on several retrieved instances.

3.3 Vision and Language

Vision and language are two of the most fundamental and most remarkable capabilities of
the human mind, since vision enables the creation of mental concepts that would not otherwise
exist such as colour and light, and language has the power to distill all sensory experience to
these elementary mental concepts and combine them to create complex new ideas, thus facilitating
thinking through making an “infinite use of finite means” [14]. Humans routinely perform tasks
through the interactions between vision and language, supporting the uniquely human capacity to
talk about what they see or hallucinate a picture on a natural-language description.

The interaction of language with vision motivates researchers to identify the relations between
the modalities, combine and reason about them for decision making. Language can inadvertently
impose strong priors since it is easier to get statistical information from (due to the sparse granu-
larity of the linguistic domain), which give it a tendency to be an easier signal to learn from than
the visual modality, resulting in vision-and-language models that completely disregard visual infor-
mation in favor of exploiting language biases, leading to an exaggerated sense of their capabilities
and no real understanding of the visual content. There is no clear solution to this caveat, and it
has been a direction for research in multiple works, while several datasets are constructed in such

a way that models that rely mostly on uni-modal signals will perform poorly [13, 58, 59].
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Vision and language tasks can be categorized in three major areas. (A) Generation tasks,
for example in image captioning text descriptions are generated for a given visual input, and in
text-image generation visual output is generated from a textual input. (B) Classification tasks, for
example in multiple-choice Visual Question Answering the correct answer to a question is chosen
given a visual input, and in Visual Entailment statements regarding a visual input are classified as
correct or incorrect. (C) Retrieval tasks, for example in image retrieval images are retrieved based
on a textual description. These tasks challenge systems to understand a wide range of detailed
semantics of an image, including objects, attributes, spatial relationships, actions and intentions,
and how all of these concepts are referred to and grounded in natural language.

Vision and language is a domain with many end tasks, such as visual question answering,
captioning, image retrieval, visual grounding, and more. This makes it ideal to apply the logic of
transfer learning with general self-supervised pre-training tasks, and multiple downstream tasks
like we saw in BERT. This gave rise to a new family of BERT-based models, that enhances the
language model setup with the visual modality, through approaches that include image object
region features from CNN backbones together with the word tokens and invent masking tasks for
those as well. In this next section we proceed to describe these general purpose vision and language

models, and introspect into their inner workings, through our own analyses and implementations.

3.3.1 Vision and Language in the BERT family

In the original transformer configuration for language, the concept of self-attention is intro-
duced. Here, this is extended for vision as well as cross-modality relations, giving rise to two
self-attention mechanisms and a cross-attention mechanism. This cross-attention configuration is
actually a way to perform the technique of modality alignment that we saw earlier, as it scores
an explicit weight for each combination of modality tokens. In addition, these models compute
joint representations for the modalities, through aggregating useful information during the unsu-
pervised pretraining tasks (such as masking). Models can be roughly categorized into single-stream
and two-stream architectures, where in the first visual and text features are processed by a single
transformer model, while in the two stream by separate ones. In the first case, cross attention
is implicit and hidden inside the token’s self-attention, while in the second case it consists of an

explicit separate attention module.
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(a) Masked multi-modal learning (b) Multi-modal ahgnment predlctlon

Figure 3.2. The different multimodal pretraining tasks in the ViLBERT model. Source: [8]

First, some important single-stream models are the following. In VisualBERT [60], image
features extracted from object proposals by Faster-RCNN are viewed as unordered input tokens
and fed into a BERT-like transformer encoder together with the text in a single stream. Multiple
layers process the text and image inputs together, and the joined representations are trained
with two pre-training tasks, Masked Language Modeling with the image without masking image
region features, and Sentence-Image Prediction. In UNITER [61], a single-stream model with

more pretraining tasks is introduced, namely Masked Language Modeling (MLM), Masked Region
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Modeling (MRM) with three variants, Image-Text Matching (ITM), and Word-Region Alignment
(WRA). In contrast to other similar methods that use random masking, authors propose conditional
masking on pre-training tasks. In Unified Vision-Language Pre-Training for Image Captioning
and VQA [62] authors propose a shared transformer network for both encoding and decoding,
in contrast to most existing methods that contain separate encoder and decoder models. It is
trained with two unsupervised pre-training tasks that differ only in the context on which the
prediction is conditioned on, Bidirectional and Sequence-to-sequence (seq2seq) Masked Vision-
Language Prediction.

We move on to describe the two-stream models next. In VILBERT [8], a two stream self-
supervised attention-based model is proposed, extending BERT’s architecture to visual-linguistic
tasks. It consists of two parallel BERT-style models operating over image regions and text seg-
ments. This structure can accommodate the differing processing needs of each modality and
provides interaction between modalities at varying representation depths. Analogous to BERT, for
pretraining, VILBERT uses Masked Multi-modal Modelling and Multi-modal Alignment Predic-
tion. LXMERT [63] is a model almost identical to VILBERT in the architecture, featuring slightly
enhanced pre-training tasks, namely Masked Object Prediction (both feature regression and la-
bel classification) and Visual Question Answering, apart from Masked Language Modeling and
Cross-Modality Matching. In ERNIE-ViL [64], authors propose a novel pre-training task for self-
supervised vision-language representation learning, that utilizes scene graphs extracted from the
text modality to incorporate alignments of detailed semantics into the joint representation. This
task is composed of Object, Attribute and Relationship Prediction, that correspond to masked
nodes on the scene graph. That way, it forces the model to extract object/attribute/relation-
ship information from the visual modality, through concentrating on semantic words rather than

common words like in MLM.

3.3.2 Attention maps: introspection and analysis

To better understand the functionality of the V-L BERT models’ attention mechanisms and
measure up their interpretability capacity, in this section we show plots of attention maps of the
LXMERT [63] model finetuned for the GQA [9] visual question answering dataset, which we have
produced ourselves through running inference and visualizing the results. We focus on the visual
self-attention maps and the modalities’ cross-attention maps.

For example, in Figure 3.3, we have an image of two women playing a game with a frisbee, in
which the shorter brown woman in the black shirt tries to block the taller white woman in the white
shirt. In the GQA dataset, this image is accompanied by the question "Who holds the frisbee?".
In the top right, we visualize the cross-attention map where larger weight values are given to the
connection of "who" and "CLS" to the (visually) detected "playing woman" and "white woman",
as well as to the connection of the whole question to "grey shoe", "green field", "purple shoe" and
"white frisbee". We can see that the model has gained some understanding of which of the two
women the question is referring to, as well as an understanding of the environment and background.
In the bottom figure we show the visual self-attention map, where the interesting connections can
be shown if we filter out the main diagonal of the matrix map. The main of these here are in
the 1st column, where "playing woman" and "white woman" are connected to "white shirt", 3rd
column, where "chainlink fence" is connected to "metal fence" and "grey fence", and 4th column
where "young woman" is connected to "black woman", "black shirt" and "playing woman". We
can see that the model has gained some understanding of which woman is wearing which shirt.

In the example above, we observe that the question’s answer is primarily mirrored in the
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(c) Vision self-attention map. Important connections lie outside of the main diagonal.

Figure 3.3. In the attention maps, larger attention weights are denoted by lighter colours. The
visualizations are produced by the author of this thesis. Image source: GQA dataset [9]

attention given by the "CLS" token, which is the token trained for classification in the original
BERT as well as V-L BERT models. In fact, 69.36% of those GQA test set samples which contained
the final prediction in the detected objects, showed attention in the object-CLS connection. As far

as the visual self-attention is concerned, in the previous example we noticed that we have to filter

out the main diagonal to extract useful pairs. Indeed, by using a small threshold for the minimum

attention weight and cutting out self-attended values, pairs like the following emerge.

Q: What color is the mountain peak? A: black
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Visual self-attention pairs:
(white clouds, blue sky), (large water, brown water), (green water, rocky rocks),

(green water, green shore), (rocky rocks, black rocks)

In the example we showcased in Figure 3.3, one can also notice a phenomenon where, apart from "CLS"
which usually contains the answer, very large attention weights are given on single (general) object across
all tokens of the question (even the special padding and separator tokens), which we have to visually filter
out when interpreting the map, to notice some of the smaller weight connections that are actually more
useful (for example "white woman" has actually lower attention weight values than "green field"). The
question here is how could we enforce this mathematically. This could be useful either simply for better

visualizations or to even use the maps themselves as input to another model.
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modal extension implementation, as well as all visualizations are produced by the author of this
thestis.
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In Attention is not only a weight [10], authors propose using the product of the attention weight o with
the transformed input vector’s norm || f(x)||, instead of just the weight, when analysing and interpreting
attention maps, which they call "norm-based analysis". This is proposed for the original BERT language
model, and can be described by the following equation.

Attention Measure = ||af(x)||, f(x)=xW" +b")W® (3.1)

Following this approach, we can easily extend the implementation for cross-attention in LXMERT, to
combat the respective problem we previously described. In Figure 3.4 we show an example of the question
"What is on the shelf at the bottom part of the photo?". We can see in the top row the effects of norm-
based analysis in the original language self-attention formulation, where it is very effective in eliminating
a useless distribution of weights in the separator token, and turning focus to more important syntactic
and semantic connections like "on" with "shelf", "at" with "bottom", and "of" with "photo". Similarly,
in the bottom row we can observe the effect of the norm for our implemented LXMERT cross-attention
extension, where more focus is given to objects that can potentially answer the question such as between
"what" and "glass shelf", "black speaker", and "blue rug", rather than "white ceiling" which is irrelevant

to the question.

3.4 Visual Question Answering

A prominent task in vision-and-language machine learning that has received the attention of both the
computer vision and natural language processing research communities, is the task of Visual Question
Answering. It requires the Al agent to answer a natural language question based on an input image,
either from a set of given answers (multiple-choice) or open-ended. It is sometimes described by authors
as a visual Turing test [65, 66, 67, 68] as it could be used to check if a computer can trick a human into
thinking it’s human, based on its visual and language understanding skills. First introduced in the paper
[23] along with the first dataset VQA-v1, it has inspired the creation of multiple datasets each focusing on
a different aspect of the task. Some important examples of these are VQA-v2 [58] and VQA-CP [59], where
visual understanding is promoted through making the same question have a different answer on different
images, and through explicitly changing prior distributions respectively, GQA [9], where questions promote
compositional reasoning and semantic understanding, and CLEVR [69] a diagnostic synthetic dataset that
tests a range of visual reasoning abilities.

A direction that has proven very successful in the VQA literature is combining modules of memory
and attention. In Dynamic Memory Networks for Visual and Textual Question Answering [70], Dynamic
Memory Network (DMN) which was previously successful in the Text QA task, is extended for applica-
tion in VQA. In Multimodal Residual Learning for Visual QA [71] the idea of deep residual learning is
extended for joint representations in vision and language attention networks. In Dual Attention Networks
for Multimodal Reasoning and Matching [72] the proposed architecture is composed of separate multi-
modal reasoning and matching modules. In the reasoning model visual and textual attentions interact via
collaborative inference, while the matching model estimates similarity between images and sentences using
the two attention mechanisms. Bottom-Up and Top-Down Attention for Image Captioning and Visual
Question Answering [31] proposed a combined bottom-up and top-down attention mechanism that enables
attention to be calculated at the level of salient image regions. In Deep Modular Co-Attention Networks
for Visual Question Answering [73] authors propose processing the images and questions through multiple
layers of self-attention and cross-attention.

Another approach in recent VQA research is neurosymbolic models, which attempt to strike a balance
between deep neural networks and older symbolic-Al approaches of functional programs and first order
logic to get the best of both worlds. The method presented in The Neuro-Symbolic Concept Learner [74]
translates sentences into symbolic programs which are executed on an object-based scene representation
and makes use of curriculum learning, while in Neural Module Networks [75] authors propose partly

differentiable models that use strong supervision to translate questions to functional programs and compose
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a question-specific neural network from a set of specialized modules. Moving towards a more neural
approach, the method proposed in Learning by Abstraction: The Neural State Machine [15] predicts a
probabilistic graph for the image semantics and performs sequential reasoning over the abstract latent space
of that graph, iteratively traversing its nodes to answer a given question. On the one hand, the dependence
of neurosymbolic models like [75] on externally provided functional programs and requirement of complex
reinforcement learning training schemes undermines their robustness and generalization capacities. On
the other hand, most deep neural network models are ultimately correlation engines that contain weak
inductive bias and learn all structure from the amount of data they are trained on, often causing them to fail
at generalization and few shot learning. In contrast to full neural, full symbolic, and other neurosymbolic
models, Memory Attention Composition (MAC) Network [1] attempts to capture the logic of thought in
addition to constructing neural representations from the data, exploiting the core ideas of attention that
underlie neural models, but also providing an architecture suited for soft symbolic reasoning.

It has to be noted here that all of the vision and language models described in the previous section
can also be fine-tuned for the downstream task of visual question answering, and achieve state of the art
performances, being some of the most competitive models in the task.

Another interesting approach is based on the superior reasoning and common sense abilities of language
models, and instead of fighting the tendency of multimodal models to depend on language, it translates
everything to this easier modality. In Tell-and-Answer: Towards Explainable Visual Question Answering
using Attributes and Captions [76] authors use pre-trained attribute detectors and image captioning models
to extract attributes and generate descriptions for the image, and use them in place of the image to infer
an answer to the question. The following are some benefits from this decomposition: (1) the attributes and
captions can reflect what the system infers from the image, providing some justifications for the predicted
answer (2) these intermediate results can help us identify the limitations of both the image understanding
part and the answer inference part when the predicted answer is incorrect. This adds explainability in both
success and failure cases. In Generating Question Relevant Captions to Aid Visual Question Answering
[77] the proposed model generates an image caption to help answer the question, with the novelty being
that this caption (what it focuses on) is also dependent on the question. In Image Captioning for Effective
Use of Language Models in Knowledge-Based Visual Question Answering [78] authors propose to use a
unimodal (text-only) procedure based on off-the-shelf captioning models for the image and pretrained
language models for question answering, specifically for tasks that require external knowledge. This is
based on the intuition that pretrained language models have been shown to include world knowledge much
more than models trained in other modalities. In their analysis they show that increasing the language
model’s size notably improves its performance and that even though automatic captions often fail to capture
relevant information (to the question) in the images, this is balanced by the better inference ability of the

text-only language models.

3.5 Video Question Answering

This same task can be formulated with video content. What changes is that the input now has a
temporal dimension, and may include audio and transcript of dialogue, which add to the difficulty of the
multimodal setting but also offer opportunities to exploit more of the data in the real world. Important
to consider is how the content of the questions is affected, as they may now deal with events (visual or
audio), and spoken facts. Instead of just testing object recognition capabilities, the task can also require
action and gesture recognition, conversation and story line understanding, as well as speech characteristics
such as prosody, timbre and pitch. Some important datasets are TGIF-QA [79] and AGQA [80], adding
actions to the VQA and compositional GQA settings respectively, TVQA [81] which incorporates data
from tv-series with questions that refer to the dialog and story line in addition to temporal video events,
and Social-1Q [2] that introduces the task of Social Video Question Answering through requiring the model
to learn complex relations between the characters, an emotional understanding, as well as common-sense

facts.
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In Motion-Appearance Co-Memory Networks for Video Question Answering [82] DMN is enhanced
with new mechanisms for Video QA, including a co-memory attention mechanism that utilizes motion
and appearance cues. In Beyond RNNs: Positional Self-Attention with Co-Attention for Video Question
Answering [83] authors replace the RNNs commonly used in Video QA with positional self-attention.
Heterogeneous Memory Enhanced Multimodal Attention Model for Video Question Answering [84] is
composed of three components, a heterogeneous memory to learn global context information from video, a
question memory to understand the semantics of the question, and a multimodal fusion layer to performs
multi-step reasoning by attending to relevant visual and textual hints with self-updated attention. Multiple
cycles of reasoning can be made iteratively to improve the final representation of the QA pair. Progressive
Attention Memory Network for Movie Story Question Answering [85] involves three main features, first an
attention mechanism that utilizes cues from both question and answer to progressively discard irrelevant
temporal parts in memory, second a fusion mechanism that dynamically calculates the contribution of
each modality for answering the question, and third a belief correction answering scheme that corrects the
prediction score on each candidate answer. In Dense-Caption Matching and Frame-Selection Gating for
Temporal Localization in VideoQA [86] image captions are utilized to identify objects and salient regions
and actions, in explicit textual format to allow easier matching for answering questions, in addition to
the video features. The model formulation includes dual-level attention (word/object and frame level)
and multi-head self/cross-attention for different sources (video and dense captions). Finally, the frame
selection problem is cast as a multi-label classification task and two new loss functions are introduced for

supervision with human frame selection annotation.

Similar to visual question answering, a line of work inspired from neurosymbolic approaches is also
evident. Hierarchical Conditional Relation Networks for Video Question Answering [87] proposes a general-
purpose reusable neural unit called Conditional Relation Network (CRN) that serves as a building block to
construct more sophisticated structures for representation and reasoning over video. It is used in a CRN
hierarchy whose branches represent sub-videos or clips, all sharing the same question as the contextual
condition. Neural Reasoning, Fast and Slow, for Video Question Answering [88] introduce a dual process
neural architecture for Video QA where they use MAC as System 2, which obtains input from a temporal
attention mechanism across space-time (System 1). This System 1 is almost identical to the unit they
propose in HCRN [87]. Their results showcase MAC’s potential for use in more complex settings of video

and multimodal input.

VideoBERT [89] builds upon the BERT model to learn bidirectional joint distributions over sequences
of visual and linguistic tokens, derived from vector quantization of video data and off-the-shelf speech
recognition outputs, respectively. For the pretraining task, for text-only and video-only the standard
masking objectives are used, and for text-video, a linguistic-visual alignment classification objective is
used. Learning Video Representations using Contrastive Bidirectional Transformer [90] builds on the
fact that in VideoBERT, vector quantization (VQ) loses critical fine-grained information, while in models
such as vilbert pre-trained visual encoders are needed to measure visual similarity. Authors propose a
way to train bidirectional transformer models on sequences of real valued vectors, using noise contrastive
estimation (NCE), without the use of pretrained models. HERO: Hierarchical Encoder for Video+Language
Omni-representation Pre-training [91] utilizes large scale pretraining of two different transformers for cross-
modal and temporal modeling respectively, with the help of the novel Video-Subtitle Matching (VSM) and
Frame Order Modeling (FOM) pretraining tasks in addition to Masked Language Modeling(MLM) and
Masked Frame Modeling (MFM). In Less is More: CLIPBERT for Video-and-Language Learning via Sparse
Sampling [66], sparsely sampled sub-clips from the input video are used in a ResNet backbone prior to
temporal pooling and addition of a 2D positional embedding for joint encoding with text input in BERT,
an architecture that is trained end-to-end in cross-modal pretraining and downstream task finetuning,
including Video QA. Predictions are derived for each sub-clip and later aggregated through a consensus

function (e.g. mean pooling) to obtain the task-specific loss.

In MMFT-BERT [92], authors propose a network comprising of three different pretrained BERT in-

stances for question and answer, object detection labels, and subtitles respectively, followed by a BERT-like
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transformer for fusion, and trained end to end with separate and joint loss functions. They also conduct
extensive ablation studies, many of which are also followed in this work. In a similar manner, BERT Rep-
resentations for Video Question Answering [93] explores a similar simplified setting with vector summation
for modality fusion, different separation token ablations, and different input pruning strategies including
TF-IDF. Focusing on that, it can be observed that in datasets such are TVQA where temporal localization
is provided, problems with subtitle content length can be easily avoided, but in datasets where there is no
such supervision one must either strategically prune or extract a meaningful summarization. The latter is
what [94] and [95] proposing, and the direction partly taken in aspects of our work. In Knowledge-Based
Video Question Answering with Unsupervised Scene Descriptions [94], authors propose extracting rich and
diverse information by processing scene dialogues, generating unsupervised video scene descriptions, and
obtaining external knowledge via weak supervision. The information generated by each of the above parts
is encoded with a Transformer and encodings are fused through a modality weighting mechanism. In On
the hidden treasure of dialog in Video Question Answering [95] authors treat dialog as a noisy source to
be converted into text description via dialog summarization, much like recent methods treat video. The
input of each modality is encoded by transformers separately, followed by a simple fusion method using

soft temporal attention.
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Chapter 4

Social Video Question Answering

4.1 Introduction

Humans are social creatures; our survival and well-being depends on our effective communication
with others. This is achieved through perceiving and understanding information from multiple sensory
modalities as well as reasoning and arriving to conclusions, in order to respond accordingly. More precisely,
we rely on the ability to understand other peoples’ mental states and make forecasts about their behaviour,
which, in the view of evolution, has proven critical in determining potential threats or advantageous
opportunities as well as to form and maintain relationships in order to fulfill safety and basic physiologic
needs [96].

Most humans seem to effortlessly understand other people’s mental states, (which include intentions,
motivations, feelings) without their having to directly communicate them, or can even discern them even
in the case where what they show is the exact opposite, as is the case with sarcasm. For example, someone
may express their dissatisfaction by saying "I’'m having so much fun", and others will be able to tell what
they truly feel, by factors like their eye gaze, facial expression, body language (posture, gestures), and
tone of voice. These are called non-verbal cues, and facilitate what is called non-verbal communication. In
general, the term social cues refers to both verbal and non-verbal signals, which guide conversations and
other social interactions by influencing our impressions of and responses to others [96].

The ability to perceive social cues and form conclusions about other people’s mental states is often
referred to as theory of mind (ToM) or mentalization and is already evident from ca. 18 months of age
[97]. Some people, albeit very intelligent in other matters like people with ASD, cannot discern those cues
as they operate mainly on logical and factual information, as is the case with most machine learning tasks.
The invention of a question answering task for this matter serves both as a way to train people with ASD
to recognise such behaviours, as well as machine learning models when framed similarly to other question
answering tasks.

Social Video Question Answering is a task to test the social reasoning abilities of an agent, based
on how accurately they can answer questions on a given video. It incorporates just one manifestation of
the human social cognition abilities, but it is very easy to formulate for artificial agents in a supervised
machine learning scenario. Compared to regular Video Question Answering, it consists of social and theory-
of-mind-related (as opposed to more factual) questions [11], with the focus being on people, rather than
objects/environment, and on interactions, rather than actions. It can require sophisticated combinations
of emotion recognition, language understanding, cultural knowledge, logical and causal reasoning, on top
of non-social layers of comprehension about physical events. It also provides a valuable methodology both
for studying social reasoning in humans (e.g. with ASD), and developing Al agents with social reasoning
skills. Implicitly, people are doing social-VQA-like reasoning every time they watch videos. Given the
amount of time that children now spend watching videos each day, such video watching is an major part
of social learning experiences for modern humans.

Social reasoning in artificial agents also has a strong connection with the goal of artificial general

intelligence. In [16] authors explain that NLP needs social context to truly succeed, marking that as the
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last stage to obtain a truly complete understanding of the world through language. More specifically, the
NLP progress is defined by the conquering of different World Scopes, each one more general than the last,

ordered as Corpus, Internet, Perception (multimodal), Embodiment, and Social.

4.2 Datasets

Social-1Q [2] is an unconstrained benchmark that introduced the task of Social Video Question An-
swering. It consists of human-centered videos in the wild (YouTube) featuring real-world interactions along
with social and theory-of-mind-related multiple choice questions that probe social judgment, motivations

and behaviors, mental states, and more. It is currently the only large scale Social VQA dataset.

Steven went, got the keys and we are
gonna have them back. That easy.

Icouldn’t... (Interrupts) But this was
Friday Matt! This was Friday. (serious face) ’ You said you were going to do it and

you are not doing it!

Q2: How is the man who is not being blamed responding to the situation? <advanced>
Al. He thinks the other man is slacking even if he is not saying it. <advanced>

A2. He is showing support for the woman by taking her side. <intermediate>

A3. He thinks he is better than both of the people arguing. <easy>

Ad. He doesn’t want to pick a side. <advanced>

(serious face)

Q1: How is the discussion between the woman and the man in the white shirt ? <intermediate> Q3: Why is the woman seem so overwhelmed? <advanced>

Al. The woman is blaming the man in the white shirt who seems to be in the fault. <easy> Al. Because a small problem became a huge problem. <intermediate>

A2. She is blaming her in a tense voice and not letting him defend himself. <advanced> A2. She has too much on her plate, and this new problem overwhelms her. <advanced>
A3.They are having a romantic conversation. <easy> A3.The woman is upset because the men are insulting her. <easy>

Ad. An active argument that both are blaming each other. <advanced> Ad. Because both of them men seem to be ignoring her. <intermediate>

Figure 4.1. FEzample from the Social-1Q dataset, along with annotations of bounding boxes and
non-verbal cues which are not included in the dataset. Source: [2]

TinySocial [11] dataset is a small Social VQA dataset that includes social VQA samples from popular
television and movie clips (on the order of 100 video clips, with 6-12 multiple choice questions per clip),
and is intended primarily for human consumption but can also serve as a useful test for artificial social
reasoning agents.

There are also some video QA datasets that include a few social questions along with a vast majority
of factual questions, such as TVQA [81], PororoQA [98] and MovieQA [99], as well as datasets that are
not video QA but probe social reasoning, such as visual commonsense reasoning [100], which evaluates
commonsense reasoning in VQA format, violin [101], which includes social reasoning skills in an entailment
format, the Theory of Mind Task dataset [102], which contains short textual stories and theory-of-mind
questions, and the Motivations dataset [103] which includes images of people labeled with their likely

motivations.

4.2.1 Social-1Q

Analysis

The Social-1IQ dataset consists of videos in the wild (from YouTube), that are primarily TV shows,
interviews, vlogging content, or TV series. This is a parameter that makes the dataset especially hard,
as the videos are as close as possible to what one would randomly watch on the internet. There is also
some variability in the active characters per video, meaning the characters that participate in the social
situation and are not bystanders. In Figure 4.2, it is observed that about 70% of the videos contain 2
or 3 active characters and a 20% having 4 or more characters. Video duration is typically 1 minute, in
contrast to other video QA datasets where videos are much longer (1 hour, MovieQA [99]) or shorter (a
few seconds, TGIF-QA [79]).
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Figure 4.2. Distribution of active characters per video. Source: [2]

The social questions in the dataset mainly refer to people as is expected for this type of human-
centered tasks, more specifically by their gender, as can be seen in Figure 4.3. Characterizations like
"people", "person", and "audience" are also evident. In a secondary level, one can see that there are often
affective and theory of mind related words such as "thinks", "feels", "wants", "happy", "sad", "angry", as
well as visual attribute descriptions such as colors, clothes, hair types, and activity specifications such as
"speaking" and "talking".
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Figure 4.3. Word frequency cloud on the Social-IQ questions and answers. Source: [11]

Following the analysis of [11], as shown in Figure 4.4 there are several types of clues relevant for
answering the question, which are mostly the words being said, the prosody of what is said (tone, volume,
pitch, etc), facial expressions, and body language (gestures, posture), rather than physical actions, objects
and events or the environment that the scene takes place. This is in consistency with the description of

the social video question answering task.

Authors in [11] also inspect the kind of answering process that is required for the questions, like inferring
emotions, relationships between people (either a surface relationship such as siblings, or a functional
relationship such as the conflict-starter), inferring the motivation or beliefs of people (labeled as reasoning),
or understanding the difference between surface meaning and deeper meaning, like in the case of sarcasm.
Here, it is found that the answering process is required to be based mostly on reasoning and emotion
recognition (Figure 4.5).
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words being said

28%.

prosody artistic effects

SocialVQA-InHouse
Social VQA-Crowd
SociallQ-Subset

facial environment

body language physical actions
Figure 4.4. Types of clues relevant for answering the question (human raters). Source: [11]

context
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o
emotion 4% relationship
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159, SocialVQA-InHouse

SocialVQA-Crowd
SociallQ-Subset

factual i reasoning

figure.of.speech prediction

Figure 4.5. Type of knowledge / reasoning process the question draws upon (human raters).
Source: [11]

Evaluation

The Social 1Q dataset (public release) contains 1015 videos, with six questions corresponding to each
video and each question having four correct and three incorrect candidate answers. The training set
contains 888 videos and the validation set 127 (87% - 13% split). In all experiments the above validation
set is used for evaluation and comparison of the models, as the private test set is reserved by the authors
for future challenges.

The dataset metrics are binary (A2) and four-way (A4) accuracy for the binary and multiple choice
tasks respectively, following the original formulation presented in [2]. For the binary task (A2) we take
all 12 combinations of correct and incorrect answers for a question, resulting in a dataset of 73,080 total
samples where the goal is to select the correct answer between the two. For the multiple choice task (A4)
we take all four combinations of one correct and three incorrect answers for a question, resulting in a
total of 24, 360 samples where the goal is to select the single correct answer from four choices. Note, the
performance of random choice is 50% for A2 and 25% for A4.

It has to be noted here, that although the dataset statistics mentioned above are the ones reported
by the authors, this is not really the case in the dataset. There’s a minority of the questions with either
fewer or more than 7 answers, and some with different correct/incorrect ratio. This affects the multiple
choice task’s formulation, as there is ambiguity as to how these cases should be handled. It also has to be
mentioned that there are 184 samples with missing transcripts, and the way this is handled in this work is

by substituting transcript with the empty string for those samples.
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4.3 Previous Work

For the task of Social Video Question Answering, the methods previously explored on Social-IQ typi-
cally make use of attention and fusion mechanisms, and can be summarized as follows. First, Tensor-MFN
(TMFN) [104] is a baseline created by performing architecture and hyperparameter search on TFN and
MFN models and combining them into a joint model. More specifically, TMFN uses Tensor Fusion for
multimodal fusion in the recurrent stages of MEN. MCQA [17] consists of two main components, "Multi-
modal Fusion and Alignment" which is the input fusion and alignment, and "Multimodal Context-Query
Alignment" which is the cross-alignment of joint context with query, where the query corresponds to the
question and answers. The chosen method for fusion is (pair-wise) co-attention performed on BiLSTM
encodings (for capturing context). The RNN-based model TACO-Net in [18] is also based on two basic
parts. First, temporal attention for the multimodal aligned features (BiLSTM encoded) and keyword
highlighting for the questions and answers, and second, a consistency measurement module that computes
cosine similarity between Q&A and multimodal data, and between modalities. This is then fed into a
multi-step reasoning module that outputs joint consistency measurement scores for all answers. In [19] the
authors suggest a regularization term to balance the clues between modalities, with the goal of maximizing
it while minimizing loss. This term is based on the functional entropy which they estimate via bounding

it with the functional Fisher information using the log-Sobolev inequality.

4.4 Baseline Models

In this section we will describe several variations for the formulation of the baseline models. In all
of these, the language modality inputs (Q: question, A: answer, T: dialogue transcript) are encoded with
BERT embeddings, and the visual modality (V: video frames) with Densenet161 features for each frame.
Frames are always down-sampled at 1fps, and the transcript is truncated at 512 tokens since this is BERT’s
maximum input size.

As for the baseline architecture, both a simple classifier for the embeddings, and further LSTM pro-
cessing is explored. The latter follows the baseline models used by the authors in [2] and involves further
encoding the BERT last hidden state and frame feature sequences with LSTMs, before feeding them to a
linear classifier. For the former, either BERT pooler output or averaging of the last hidden state is used
to aggregate the sequences, in both cases followed by a linear classifier.

In the experimental setup for running the baseline models two distinct approaches can be seen, one
based on the reproduction of the pipeline in the published code of [2], and the other based on more intuitive
decisions for the loss function as well as other factors. We will describe these with regard to the binary

task for simplicity.

4.4.1 Reproduction and analysis

The first approach follows the code released by the dataset’s authors, where MSE loss is used to
train the model. More specifically, the loss described in equation 4.3 is used, which averages the batch’s
predictions beforehand.

In this setup, after all input sequences are encoded by LSTMs, they are fed into two linear classifiers
in this fashion:

Vi=f(Q+X " +4A), Ya=f(Q+X" +A,) (4.1)

where Q corresponds to the LSTM encoding of the question and Aj, As of the two answers, X* to the
concatenation of any number of LSTM encoded video features (e.g. V, T), and + denotes concatenation.

The LSTM encoding corresponds to the hidden state, and the output dimensions used here are the
same as in the authors’ code; 50 for the text modality and 20 for the visual.

The equations of the original MSE loss and the MSE loss used in the authors’ code are, respectively,
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the following:

N
1 i i
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where N is the number of samples in a batch.

Note that although we trained and evaluated our models with random order in the input choices
A1, Az and then grouped the predictions Y1, Y2 by their ground truth labels to compute the loss, validation
accuracy is not affected by training with the choices in specific order, as it is implemented in the author’s
code.

As for the binary accuracy, it is measured in the implementation by

M
Z (Yeor > Yine) (4.4)
1:1
instead of the standard I
i Z (argmaz(Yy,Ys) = G") (4.5)
i=1

where M is the number of samples in that set and G is the ground truth label. The difference between
the two is important, as the first is more strict in the sense that it never lets a prediction be classified as
accurate (by choosing the correct one by chance) when the logits for the correct and incorrect choices are
equal.

In this setup, and with using the precomputed embeddings and features provided by the authors, our
reproduction results for the baselines are shown in table 4.1, reporting on mean and standard deviation

over five runs.

Reported Reproduced
Modalities | test set A2 val set A2
QA 57.02 64.51 (+0.58)
QAV 63.91 64.82 (+0.67)
QAT 57.87 64.54 (£0.57)
QAVT - 64.61 (£0.72)

Table 4.1. Comparison of reproduced with reported binary accuracy results, for LSTM baselines
on BERT / D161 precomputed sequence features, using the loss in 4.3. We report results on mean
and standard deviation over five runs.

We can see a big gap between the reproduced and reported baseline for the QA modality, which can be
attributed to the authors’ claim! that the reserved test set is “more multimodal”, causing uni-modal models

to fail to generalize there, whereas in the validation set they overfit and exhibit over-stated abilities.

Modalities ‘ Precomputed ‘ From Scratch
QA 64.51 (£0.58) | 74.89 (£0.52)
QAV 64.82 (£0.67) | 75.33 (£0.64)

Table 4.2. Validation set binary accuracy comparison of precomputed BERT embeddings versus
computing them from scratch, for the LSTM baseline on BERT / D161 sequence features.

Furthermore, when computing our own BERT embeddings for the questions and answers, we achieve
a performance boost of 10%, resulting to 74.89% in QA, and 75.33% in QAV, as shown in table 4.2.
Computing the visual features from scratch on the other hand doesn’t have any effect. We take the

following steps to investigate the cause of this phenomenon. First, we change the accuracy measure from

Thttps://github.com/A2Zadeh/Social-1Q /issues /1 #issuecomment-521301071
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equation 5.8 to equation 4.5 when using their embeddings, and observe a +4% improvement. We further
change equation 5.8 from "greater" to "greater or equal" to model the extreme case of classifying all equal
as accurate and measure the impact that these equal cases make. We obtain an improvement of +11%,
whereas with our embeddings a difference of only +3% is noted. This is shown in the histograms of figure
4.6.
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Figure 4.6. Comparison of the validation set binary accuracy of the precomputed and computed
from scratch embeddings, for different accuracy metric schemes. In the precomputed embeddings,
an accuracy improvement of 11% is observed when considering equal logits as correctly classified.

Noticing that, we count the number of samples with the same embedding for correct and incorrect
choice, and for their embeddings it is 8.6% of the total samples, whereas in ours only 0.67%. In the train
set these percentages are 8.6% and 0.24% respectively, and in the val set, 8.5% and 3.6%, as shown in
figure 4.7. These samples are further inspected, and the 3.6% that has equal embeddings in both cases
indeed corresponds to bad samples, such as having "N/A" and "Bad clip" in all answers. The rest of the

equal embeddings in the precomputed have no obvious defects in their respective sample’s text.

% of samples with equal answer embeddings in the two sources

13
EE Total
I Train set
11 N Val set

12

10

precomputed from scratch

Figure 4.7. [Investigation results of the frequency of cases with correct and incorrect answers
having equal embeddings, in the precomputed versus from scratch embeddings. This significant
difference indicates an error in the authors’ computation.

Lastly, when calculating all combinations of binary answers for our embeddings, we end up with 2,500
more samples than in the precomputed, which can lead to better model weights and additional performance

improvement.
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Language Bias in Social 1Q

The performance described above, obtained when computing the embeddings directly from the raw
data of this multimodal dataset, is inconsistent with their statement "At a first glance, our bias analysis
experiments demonstrate minimal bias in the Social-1Q dataset coming from Q+A. BERT embeddings,
commonly known for their success in common-sense reasoning, show slightly higher performance than
random" [2]. We conclude that Social 1Q, like most multimodal and especially visual and video question

answering datasets [59, 105], also suffers from the effects of language bias.

Other remarks

In addition, as for the baseline provided by the authors’ proposed model TMFN, there are some
peculiarities that should be reported. When running the published code exactly as is, we get a reproduction
of 65.62% for TMFN. When completely removing TMFN’s output from the final classifier (leaving only
LSTM outputs), we obtain a performance of 66.17%. Moreover, we notice that both classifiers get both
the correct and the incorrect answer representations, just in different order. When further removing that,
performance drops to 62.13%, which leads us to think that TMFN’s performance can be attributed to this

trick. Similar peculiarities are also mentioned in [20].

4.4.2 Training with different losses

We notice that when using the standard MSE loss described in equation 4.2 instead of the one proposed
in the authors’ code 4.3, performance increases about 2%. Using this MSE also makes the models converge
much faster, e.g. in 2 epochs instead of 10.

Another approach is training with the more intuitive cross entropy loss computed between the batch’s

predicted logits and the labels for the correct answer, as described below, similar to [92, 18].

N C
Lecg = —% ZZGilog(U(Yj)) (4.6)
C

where N is the number of samples in a batch, C' the number of classes, G* the ground truth label, and o
the softmax function.

In all results below, our embeddings computed from scratch are used and accuracy is calculated ac-
cording to equation 4.5 (argmax). Again in this case we tested using their embeddings which resulted in
7% lower accuracy, due to the discarded samples as explained in the previous section.

In this setup for training with cross-entropy, two alternatives are shown for the text inputs, namely with
and without LSTM sequence encoding. Results for the LSTM baseline alternative with output dimension

set to 512 can be seen in table 4.3, reporting on mean and standard deviation over five runs.

Modalities ‘ LSTM

QA 77.77 (£0.31)
QAV 78.15 (£0.19)
QAT 78.42 (+0.21)
QAVT 78.72 (£0.22)

Table 4.3. Validation set binary accuracy for the LSTM baseline on BERT / D161 sequence
features, computing BERT embeddings from scratch and using Cross-Entropy loss (4.6).

We further investigate the impact of the LSTM’s output dimension in the QA baseline, and notice that
it has a considerable effect, with 76%, 77% and 77.8% mean accuracy for output sizes of 50, 100, and 512
respectively. In addition, we note that bidirectionality has no impact.

In the second alternative, where LSTM modelling is omitted, to aggregate the text sequences before
classification either the BERT pooler output is used (where the pooler linear layer needs to be trained as

well), or equivalently a weighted average of the last hidden state embeddings (weighted by the attention
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mask to factor out padding tokens). Comparative results between these different embedding schemes, as

well as different levels of fine-tuning are shown in table 4.4.

Embedding: Training BERT
CLS: Frozen 60.39
CLS: Fine-tuning pooler 74.37
LH: Frozen 75.10
CLS: Fine-tuning pooler + last 3 | 80.35
LH: Fine-tuning last 3 80.67

Table 4.4. Ablation study for different BERT embedding sources and fine-tuning levels.

Similar to [92, 93], the text modality inputs can be jointly encoded by BERT along with the questions
and answers, instead of separately, effectively performing text question answering. An ablation is performed

comparing the input order, which can be either like:

Ey = bert([CLS] 4+ Q + T + [SEP] + A1)

Ea = bert([CLS] + Q + T + [SEP] + As) )
or
Ey =bert([CLS|+T + [SEP] 4+ Q + A1) (4.8)
E; =bert([CLS|+ T + [SEP] 4+ Q + A2)
and then passed to a classifier together with other modalities’ inputs X* (e.g. V):
Vi = f(B1, X7), Ya=f(Ea,X") (4.9)

As shown in table 4.5, the order in equation 4.8 is more beneficial, which can be attributed to the fact
that it allows for more context to be inputted in the model without being truncated (truncation in the

BERT tokenization step can be performed in either of the two sentences).

Modalities ‘ BERT

QA 74.37 (£0.06)
QAT 4.7 74.39 (£0.05)
QAT 4.8 74.59 (40.05)

Table 4.5. Comparison of two different BERT input schemes, in training o classifier on BERT
pooler output embedding (CLS) and Cross-Entropy loss (4.6).

To summarize and connect the analyses of the above sections to our own research and experimental
process, we must make clear that the reproduction setup in section 4.4.1 with the precomputed input
embeddings and training loss, is what is used in the first part of our work in order to compare our end-to-
end method to the state-of-the-art techniques published on the dataset, while the more intuitive approach of
computing the embeddings from scratch and training with the standard cross-entropy loss for classification
shown in section 4.4.2 is used in the second part of our work, where we effectively perform text question

answering in a scheme similar to the one described above.
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Chapter 5}

Proposed Approaches

5.1 End-to-end Approach: MAC-X

5.1.1 Overview

In this first part of our work, we propose a multimodal extension of the MAC Network for Social-1Q),
called MAC-Extend (MAC-X). The motivating factors for this approach are that MAC: 1) was intended for
tasks that require deliberate reasoning from facts to conclusions on account of its structured and iterative
reasoning, and 2) consists of thoroughly general-purpose modules and operations. We believe that these
characteristics make it very well-suited for Social-1Q, and a strong baseline for the task of Social Reasoning
as well as any reasoning task.

Our model is based on the MAC Network, a recurrent architecture of length p and dimension d defined
by the Memory, Attention and Composition (MAC) cell which performs an attention-based reasoning step
i given a knowledge base and a query. The MAC cell is composed of three operational units, the Control
Unit, the Read Unit, and the Write Unit. This pipeline reads from input features in a way that is controlled
by part of the query and memory from previous readings, proceeding to incorporate that into the current
memory. One of its most important features is the separation between control (¢;) and memory (m;) that
it enforces, and that the interaction between the knowledge base and the query is only mediated through
probability distributions. In the succession of its total p recurrent iterations, it has the ability to represent

arbitrarily complex acyclic reasoning graphs in a soft manner [1].

What is the relationship | > LsTm
Q between the three people? BERT 1

0000000
J

O A
0:00:00.000 --> 0:00:01.340 O ap
Okay ! - That's a lie MAC-X mpy (Qr—contexi< Loss
0:00:01.340 --> 0:00:02.420 LSTM KT
—BERT

T You don't have a beard ?

@@

0:00:02.420 > 0:00:02.920
No'!

0:00:05.440 --> 0:00:06.900
hy are you lying to everyone 7

Kac
A1 They are friendly towards each other ’BERT—>| LSTM
Ay They are hostile to each other —BERT LST™ J

Figure 5.1. Overview of the proposed end-to-end architecture, centered around the MAC-X Net-
work. On the left, the question (@Q), visual frames (V'), dialogue transcript (T ), acoustic input (Ac)
as well as correct (A1) and incorrect (Ay) answers are shown for the binary task. Their features
are encoded with LSTMs, before use in MAC-X or in final classification along with last memory
my. Two identical classifiers make the predictions yi,ys which are then used to calculate the loss
in equation (5.7).
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Chapter 5. Proposed Approaches

Building on these structural priors, MAC-X extracts information from multiple sources, formulates
its attention over time instead of space, performs a mid-level fusion on the intermediate representations
of the modalities, and ultimately facilitates multiple-choice Question Answering on multimodal data. An
overview of the model’s architecture for the task of Social Video QA can be seen in Figure 5.1, and the
enhanced cell’s architecture is shown in Figure 5.2. In the following sections, all equations and figures are
described for the binary task for simplicity, and can be directly extended for the multiple choice task in

which we also report results.

5.1.2 Input Units

As shown in Figure 5.1, the language modality inputs which consist of the question (Q), the dialogue
transcript (7') and the correct and incorrect answers (A1, As respectively), are initially encoded with
last hidden state BERT embeddings, while the visual modality (V') with Densenet161 (D161) features for
each frame (at 1fps), and the acoustic modality (Ac) with COVAREP features. They are then passed
through bidirectional LSTMs whose outputs constitute the knowledge bases Ky, Kr and Ka. for the
visual, transcript and acoustic input respectively and the contextual words O for the question. The hidden
states ¢, a1, and a2 are used as the vector representation for the question and answers respectively. The
output dimension of the LSTMs is d, where d is the dimension of the MAC model. Each of the knowledge
bases can be described as K].Lx‘i = {ki|f,}, where L is the sequence length of modality j in the time

dimension ¢.

5.1.3 The MAC-X cell

Control Unit

The Control Unit (Figure 5.2) stays the same as in the original architecture, and can be summarized

as

S
ci =Y _o(felfea(lci-1, fo(@)]) © Os)) - O (5.1)

where S is the number of contextual words, o the softmax function, and f, are single layer feedforward
networks. In the equation above, attention is performed on the contextual words O based on information
from the question ¢ and the previous control ¢;—1, in order to update the current ¢;. This ¢; determines
what part of the question we want to extract knowledge about from the input modalities in the current

reasoning step.

Multiple Read Units

For reading from the knowledge bases, a simple cloning of the Read Unit for each modality is proposed,
each getting a copy of the previous control and memory (see Figure 5.2). This approach allows for the
control ¢; to attend to the different modalities independently at the same reasoning step, while at the
same time being conditioned on a memory that is kept collectively for all of them. For example, previous
information from the audio and visual modalities could be important to determine the next most useful

information to integrate from the transcript. The operation of each Read Unit j is defined as

Ly = fok([fm(mic1) © fu(k]),K]]) (5.2)
rl =Y olfelcioL],) K (5.3)

where j = V,T, Ac are the different modalities. In the former of the above equations, information Iij’t
is gathered from the knowledge base of modality j at each position ¢ in its temporal sequence. This

information is considered to be only optionally related to the previous memory m;_1, and so the initial k{
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5.1.4 Output Unit

7 Control Unit J' T
o)

Figure 5.2. The MAC-X recurrent cell in the i th reasoning step. The multimodal extension of
the MAC cell is manifested in the cloning of the Read Unit and consequent fusion of the modalities’
extracted information v before integration to memory m;.

is also concatenated in the input vector of equation (5.2). In equation (5.3), attention based on the current

control ¢; is performed on Iijyt, to create the current 7 for each Read Unit.

Multimodal Fusion

In order to perform a mid-level fusion, we fuse modalities at this stage by concatenating the interme-
diate extracted knowledge results rf for every modality j and passing them through a feedforward layer,
effectively constructing a single shared representation layer r; for all modalities. This is shown in Figure
5.2 and in the equation

ri =Wl el e+ (5.4)

Implementing the multimodal fusion at this innermost stage stands in contrast to simpler late fusion

methods, a comparison discussed in detail in Section 5.1.6.

Write Unit

The Write Unit (Figure 5.2) integrates the collective information 7; from the Read Units to the previous

memory m;—1 and thus obtains the current memory m;.
mi = frmr([mi-1,7i]) (5.5)
In this work we omit the optional components of the Write Unit proposed in [1] since their use did not

prove to be significantly beneficial.

5.1.4 Output Unit

After p recurrent iterations of the MAC-X cell as described in the previous sections, the final memory
my is concatenated with the question representation g to create the context on which the correct answer
should be chosen (Figure 5.1). This is further concatenated with each of the answers a1, a2 and passed to

identical two layer feedforward networks for classification, which output the predictions

Y1 = W[Qv mMp, al] + b7 Y2 = W[qz Mp, LLQ} +b (56)
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where y1 and y» are the correct and incorrect answer predictions respectively. We then compute the

composite loss
N N

L= (5 v - 1P+ (5 o) (57)

i=1
where N is the number of samples in a batch. We note that this is the same loss that is exhibited in the

original code released for the Social-IQ baseline in [2]. The binary accuracy A2 is formulated as

M
1 i i
A2 = Vi ;(?h > ys3) (5.8)

where M is the total number of samples in the set for which the accuracy is calculated.

5.1.5 Experimental Setup

In all experiments the validation set is used for evaluation and comparison of the models, as the
private test set is reserved by the authors for future challenges. For all input modalities, we use the
precomputed embeddings published in [2]. For the LSTM baseline, after all modalities are encoded, they
are concatenated and passed directly to the classifiers for final prediction. All experiments with the TMFN
baseline are reproduced on the validation set, and the original code released is used. For our model (MAC-
X), hyperparameters are set as p = 12, d = 512, and no self-attention or memory gate mechanisms from
[1] are used. All LSTMs are bidirectional, with output dimension d for use in the MAC-X cell. For the
comparison to previous state-of-the-art models in Table 5.3, we use their reported results on the validation
set. In all experiments, models are trained on 32 samples per batch, with Adam optimizer and learning
rate of 1073, for 10 epochs for LSTM and MAC and 50 epochs for TMFN.

5.1.6 Results and Discussion

We next show the results for the proposed architecture and reproduced baselines. All results are
averaged over five runs. Input modalities are denoted as ) for the question, A for the answers, V for the
visual frames, T for the dialogue transcript, and Ac for the acoustic input.

In Table 5.1 we compare our model (MAC-X) to the LSTM and TMFN baselines based on the binary
accuracy (A2), in an ablation study for different combinations of the input modalities; each combination
is denoted by the modalities it makes use of. It is observed that in both baselines multimodality is not
necessarily beneficial to performance, and can even degrade it substantially. In contrast, MAC-X performs
best when all modalities are used, marking a 0.25% absolute accuracy improvement over its single modality
input counterparts, which points to the soundness of its knowledge extraction and fusion methods. At the
same time it is very effective in the unimodal input settings, surpassing both the LSTM and TMFN
baselines by at least five percentage points. As for the observed importance of each modality, the visual
and audio modalities seem to perform best in the LSTM and TMFN baselines respectively, while MAC-X
benefits fairly equally from all modalities. In addition, we show that using just the question and answer (or
even just the answer) modalities in the LSTM baseline achieves performance well above random, attesting

to the existence of language bias in the validation set.

Modalities LSTM TMFN MAC-X
A 63.22 (£0.41) - -

QA 64.51 (£0.58) - -

QAV 64.82 (+£0.67) | 65.67 (+0.38) | 71.01 (£0.24)
QAT 64.54 (+0.57) | 65.51 (£0.43) | 70.97 (40.44)
QAAC 64.17 (+£0.32) | 65.89 (+0.32) | 71.00 (+0.30)
QAVTAc | 63.73 (£0.71) | 65.62 (+0.55) | 71.25 (£0.15)

Table 5.1. Ablation study on input modalities and comparison to baseline models, reporting on
A2 validation set accuracy.
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In Table 5.2 we present an ablation study that showcases the effectiveness of our mid-level fusion
method, outperforming a late fusion baseline in both metrics. In the latter’s setting, each modality goes
through a completely separate MAC Network, whose outputs are fused at that late stage in the same
manner as in our mid-level fusion, before entering the final classifiers. This indicates the advantage of
fusing modalities at the intermediate representation stage in the models, where their collective useful

information can be jointly processed further.

Models ‘ A2 ‘ A4
MAC w. Late fusion | 70.59 (£0.62) | 46.46 (£0.26)
MAC-X 71.25 (£0.15) | 47.22 (40.60)

Table 5.2. Ablation study on the multimodal fusion stage, reporting on the validation set with the
full set of input modalities.

In Table 5.3 we measure the performance of our proposed model against five prior state-of-the-art
methods, reporting on both metrics for the validation set. We observe a 2.3 — 2.6% accuracy improvement
from the previous state-of-the-art in the binary task (MCQA [17]), taking variance into account. As regards
the multiple choice task (A4), we obtain comparable results to the best-performing model TACO-Net [18].
Note that TACO-Net measures explicitly the consistency between each answer and modality, contributing
to the robustness of the model in the multiple choice setting. Overall, through implementing and applying

MAC-X we set a new leading performance for the binary task of the Social-IQ dataset.

Models A2 A4
TMFN [2] 65.62 36.24
Removing bias [19] 67.93 -
TACO-Net [18] 68.19 49.08
Perceptual score [20] 68.65 -
MCQA [17] 68.80 38.30
Ours (MAC-X) 71.25 (£0.15) | 47.22 (40.60)

Table 5.3. Performance comparison to state-of-the-art methods on the Social-1Q validation set.
We report averaged results and standard deviation over five runs.
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5.2 Augmentation Approach: Emogaze

5.2.1 Overview

Most of previous work regards video as a continuous source over which some attention can be computed.
Although this general approach makes sense in most VQA and Video QA tasks, where questions refer to the
environment, objects, or actions and events, Social Video QA revolves around people and their interactions.
If we were to modularize social video, then these modules would be the people participating in interactions
and the information they exchange, both verbal and non-verbal. People communicate through language
and non-verbal cues such as facial expressions, looks, gestures and body language.

In addition, drawing inspiration from works such as [16], which state that natural language understand-
ing will only be complete with the integration of multimodal and social semantics, we take the direction
of training a purely NLP model with multimodal (WS3) input that contains social (WS5) clues, filtered
to contain only gaze data, emotion data, object recognition grounding data, and conversation data, all
translated into language, effectively performing captioning.

This is also supported by works for visual and video question answering that take advantage of the
superior reasoning inference abilities of the natural language models, compared to computer vision models
which tend to perform more instinctive, system 1 processing, as well as bypassing the language bias problem
of multimodal models which tend to focus on the textual information since it is easier to get statistical
information from (due to the sparse granularity of the linguistic domain), while ignoring information from
other modalities. An additional benefit of this approach is more explainability both in success and in
failure cases, as the detected attributes in the captions can reflect what the system extracts from the
frames, and the intermediate results can help us decouple the inabilities of the scene understanding part

from the inabilities of the answer inference part.
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0:00:05.440 --> 0:00:06.900
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Figure 5.3. Qwverview of the proposed augmentation and text question answering architecture,
which is composed of an offline caption generation part (left), followed by online training (right).
On the left, the three detectors of eye-gaze, emotion, and objects are combined into a structure
that can be viewed as the gaze graph. With the addition of the dialogue transcript and the speaker
detection, a rule-based caption is produced, optionally followed by a paraphraser model. These video
captions are used for multiple choice question answering in pre-trained BERT models followed by
classifiers.

In this work, we choose to enhance the verbal understanding of social interactions with the emotional
content of the face carried through eye gaze. In particular, for each detected person s in a frame we find

the person t their gaze is targeted at and establish the gaze g = (s,t). This gaze carries an emotional
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and an optional verbal weight if the person is also the speaker W, = (face emotion[, uttered phrase]). In
addition, with the goal of retaining only the highest social content, gazes are filtered to keep only the
speaker and the person they are looking at, resulting in a graph Gy = {(s,t), (¢t,7)} for frame f. All
participating nodes (people) can be described in terms of visual appearance, in attribute and object form
i.e. s := attr + obj. From this formulation, we construct natural language descriptions through a set of
rules, effectively performing a graph-to-text conversion. These descriptions are optionally processed by a
paraphrasing network, to produce more natural and higher variation content. These human-centered video
captions are used as input context in NLP BERT-like language models to perform multiple choice question

answering on.

5.2.2 Feature extraction pipeline

In this work, we examine filtering multimodal interaction down to a series of key detections. These
correspond to different detection modules that are used to connect multimodal concepts to natural language

descriptions, performing in this way a late fusion of their predictions.

Eye gaze

First of all, an important component of social interactions is considered to be the eye-gaze between
people participating in them - meaning who looks at whom when uttering a specific phrase or displaying
certain characteristics such as emotions. The pretrained model gaze360 [106] is chosen for this purpose; it
is a model with 3D gaze capabilities. In this work we leverage it for inference and subsequent 2D projection
as we don’t have 3D data in order to use the extra dimension. Please see the future work section for how
this could be adapted.

In the gaze360 inference pipeline, first DensePose® [107] is used to detect accurate bounding boxes
for the people in the scenes, and keep those above a confidence threshold. The detections are further
cropped to contain the person’s head. Then a basic tracking via Intersection over Union (IOU) of the
head bounding boxes is employed, and a series of bounding box locations for each tracked id are saved.
The gaze prediction model takes as input the respective consecutive cropped head images for each tracked
id, to calculate their predicted gaze. The output prediction is in the form of relative coordinates for the
pointed end of an arrow indicating the gaze’s direction; this arrow’s stem coordinates are the approximate
eye coordinates. These are placed at the center of the head’s bounding box width and at 65% of its height.

Model outputs are in spherical coordinates and are converted to cartesian before use in the next steps.

(b) The projected (2D) gaze enhanced with emotion
(a) Eye-gaze detection (3D) from gaze-360 [106]. information.

Figure 5.4. From gaze to emogaze. The gaze detection is projected in two dimensions to compute
the target for a given source gaze in the 2D video source.

Thttps://github.com /erkil1452/gaze360
2https://github.com /facebookresearch /detectron2/tree/main /projects/DensePose
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We utilize two out of the three output coordinates, corresponding to the axes of the image (x, y) and
leave out the coordinate on the plane perpendicular to the image (z). We proceed to compute the target
for a person’s gaze. This is formulated as either (1) another person or (2) the audience, as we want the
descriptions we generate to be as human-centered as possible. In this way, objects are not considered as
targets for a gaze. The nearest person is selected via euclidean distance of the candidate targets’ eyes to
the extended line of the source’s gaze, with the additional constraint that this target lies in the (open)

half-plane defined by the gaze’s direction (due to our eyes’ placement in the front of our heads).

t= argminKEt — Gs) x (Ge — GS)'

fer 1Ge — G| , T={t| (B~ G.) (Ge — Gs) > 0} (5.9)

The gaze is noted as directed at audience when (1) there is no person in that half plane, or (2) the predicted
gaze’s absolute z coordinate exceeds a threshold, meaning that it was the dominant direction and that the

person is looking closest to the camera.

Emotion

The second component chosen to distil information in social videos is that of face emotion recognition.
We follow up on the hypothesis that some of the intent in people’s actions and words, as well as their
consequences is carried by the emotional state. Often, the cause and effect of people’s words and actions

can be observed from their emotional state at those moments in time.

ANEE -,
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Figure 5.5. The pre-trained F-RCNN model gives predictions for objects and attributes all over
the image. We want to limit this to the social scene participants, so we filter them through an I0U
threshold with the people’s head bounding boxes.

To that end, we finetuned Resnet50 [33] on an emotion recognition dataset from kaggle, FER-2013
[108]. The model outputs a prediction for one of 7 emotion classes; neutral, happy, sad, angry, scared,
surprised, and disgusted. We use the face detector from FaceNet® [109] to detect the faces in the head

Shttps://github.com /timesler /facenet-pytorch
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bounding boxes already detected from DensePose, and then feed them to the finetuned model to obtain

the predicted emotion.

Object and Attribute detection

A connecting component that helps to identify who takes part in the interactions recorded in a scene,
is detected attributes and objects that appear in the area of a detected person, for example what they wear
or what they hold. This is in accordance with the Social IQ questions which refer to people in this way
(e.g. "the man in the blue shirt"), in contrast to other datasets that use a character’s name and provide
these annotations in the dialogue transcript.

For this purpose we employed the Faster RCNN [36] pretrained network, finetuned in the Visual
Genome dataset® in order to predict attributes as well as objects. Of the detections we obtain in each
frame, we use those that exceed a confidence threshold to compute the Intersection over Union of their
bounding boxes with the detected people from DensePose. This way, we match detected attributes to

people.

Speaker detection

Another connnecting component is speaker detection, which is necessary to determine which visually
detected person utters each phrase in the dialogue transcript. Using the SyncNet [12] framework we detect
the speaker’s bounding box in each frame. More specifically, given confidence scores for each tracked
person at 25 fps (since this is the frame rate at which SyncNet operates), we choose the person that had
the highest overall confidence (sum) for all 25 frames as the speaker at 1 fps. If for all 25 frames no speaker
is detected that exceeds a confidence threshold, then no speaker is assigned. At the same time, given
the transcript timestamp annotations provided, we group transcript utterances at the level of 1 second
and match each of those to the selected speaker at that timestep. If an utterance spans multiple seconds,
then it is assigned to the speaker that was detected for the majority of this time. Finally, we connect the
detected speaker’s bounding box to the respective person’s head from DensePose through maximizing the

Intersection over Union score, similar to the process in the other submodules.

Track 2,.Conf 6.931
Track 3, Cont —1.422 Track 1, Conf 1.772

L
Track.0,.Conf 7.665

Figure 5.6. We utilize speaker detection from SyncNet [12], to connect the dialogue utterances to
the people in the scene. In this specific scene, the man in the middle is talking about the animals
the two men hold, while the man on the right makes a sound of pain while a small leopard bites
him.

Apart from connecting to the transcript, we utilize speaker detection to keep only the useful detected
gaze interactions; more specifically we keep only the speaker and the person he is looking at. From a social
perspective, the rest of the detected people can be considered as observers or bystanders, and will tend to

matter less to the overall storyline.

4from unc-nlp/frenn-vg-finetuned
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5.2.3 Video caption generation

Rule-based

To enhance the scene dialogues with our human-centered detections, we take the approach of construct-
ing natural language sentences that describe who says what, and who they are looking at at that time.
In this way, we ground our detections to the dialogue utterance, and construct a video caption storyline
with social and affective information. To stabilize the detected gaze at the desired utterance timestamp
we average it during a window around that time, as utterances can last several seconds and we want to

avoid sampling. The rule-based generation used is the following:

"At <timestamp>, the <emo><attr> says <trans> and looks at the <target>
[, who looks <target2>]", where

<target> = <emo2><attr2> | audience,

<target2> = back at <pronoun> | at the (<emo3><attr3> | audience),

and the [ ] mean optional, in case <target> is audience.
An example of three such frames after the rule-based conversion to natural language descriptions is:

At 0:25 the angry looking sitting young man says "I’mma direct my question to you guys
now" and looks at the audience.

At 0:29 the happy sitting man says "They know already !" and looks at the happy blonde
woman who looks back at him.

At 0:32 the happy blonde hair smiling woman says "Yeah they know already and I’m like '"we

already know what’s going on !"" and looks at the audience.

At this point, descriptions can be optionally grouped into visual scenes (change of camera shot), which are
additionally returned by the SyncNet model used for speaker detection. Otherwise, they can be used as a
single body of video caption text. Full descriptions usually range from 2,000-5,000 tokenized words.

Paraphrased

The idea here is that giving some variations to a rule based description will make it more natural and
therefore closer to natural language pretraining priors in large transformer-based models. In this work we
implement paraphrasing via backtranslation [110]. The core concept of backtranslation is that, through
translating a sentence to another language and then translating back to the original (with two respective
pretrained translation models e.g. transformers), the final output will be a slight variation of the input,
but will not have lost its meaning. This is not the case with other models specifically trained for the task
of paraphrasing, such as T5 [111], as these models tend to remove useful information and add imagined
details. The models used in for backtranslation are the pre-trained transformers for translation to and
from german, made available by fairseq®, WMT18.en-de and WMT19.de-en respectively. For example, the

three rule-based frame descriptions above are transformed to the following:

At 0:25 the angry seated young guy says, "I\’m asking you now, guys," and looks into

the audience.

At 0:29 "They already know!" says the cheerfully seated man, looking at the happy blonde
woman who is looking at him.

At 0:32 the cheerful blonde, smiling woman says: "Yes, they already know and I\’m like" we

already know what\’s going on!" and looks into the audience.
while T5 outputs:

"I’mma direct my question to you guys now" and gazes at the audience at 0:25.

At 0:29, the contentious sitting man looks at the smiling blonde woman who is

Shttps://github.com /facebookresearch /fairseq
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smiling at him.
"They know already know what’s going on," the happy blonde hair smiling woman

says at 0:32, and I’m like, "we already know what’s going on.".

5.2.4 Proposed models

The basic idea is to experiment with using embeddings from large pretrained BERT-like language
models, or selectively finetune some of their last layers, for the downstream task of multiple choice question
answering. This is because our created augmented dataset is small (only 1015 unique video descriptions),
and can be observed to have very different distribution from the corpus on which BERT is pretrained
on. We experiment with two models, the original BERT [3] base, and the RoBERTa [42] large, previously
finetuned for another text multiple choice question answering dataset, RACE [21]. The latter is chosen
with the goal of starting with better weight initializations for the same task, and therefore containing the
transfer learning scenario to just different domains instead of both different domain and task. Additionally
we experiment with a more aggressive finetuning scheme for the smaller model DistilBERT [43].

Another issue when using such language models for interpreting large volumes of text is that the
maximum input length is limited, e.g. at 512 or 1024 tokens depending on the model, which results in
truncating the context to only the first tokens. To combat this, we experimented with summarization
via extractive question answering, using BERT previously finetuned on an extractive question answering
dataset, SQUAD [22]. The idea is to extract useful information from the input context, conditioned
on the question, and move to answering the multiple choice based on that (smaller) extract. However,
extractive question answering also has a maximum input length, which leads to idea of performing these
summaries in a hierarchical manner on smaller parts of the context, and then on the concatenated result
of extracts. These smaller parts can be obtained either by using visual scene segmentation (camera shot
change detection from SyncNet output) or splitting into equal parts.

The way the question answering components are inputted in a BERT-like model can be described as

follows, for the binary task:

E1 =bert([CLS] + CTX + [SEP] + Q + A1)

(5.10)
E; = bert([CLS] + CTX + [SEP] + Q + A2)

where CTX is the context that corresponds to the video description we generated, F1 and FE» are the
final layer CLS token embeddings, and + denotes concatenation. The output logits Y1, Y2 = f(Eh), f(E2)

where f is a linear classifier are fed into standard cross-entropy loss together with the ground truth label.

5.2.5 Experimental Setup

In all experiments the validation set is used for evaluation and comparison of the models, as the private
test set is reserved by the authors for future challenges.

The hyperparameters for the feature extraction pipeline described in the respective section above are
described in detail as follows. For the eye-gaze detection, videos are first resampled at 1fps and the
densepose backbone used for the human bounding boxes is the rcnn r50 fpn, with a threshold confidence
of 0.8 for denspose person detection. The threshold for the gaze-360 bounding box IOU tracking is set
to 0.5, and after processing by the gaze-360 model, the threshold for z coordinate to be dominant and
therefore pointed at the camera is 0.9. For the emotion detector, we performed resnet50 finetuning on
imagenet black and white images before finetuning in the emotion dataset. For the object and attribute
detection, the threshold confidence for frenn detections is set to 0.3 and the threshold confidence for the
IOU between the frcnn and head bounding boxes for matching attributes to persons is 0.4, where there
is an additional limit to keep a maximum of 5 matched detections per person. For the speaker detection,
videos are resampled at 25 fps and the speaker is chosen with a confidence score of 5. Finally, at the

rule-based generation gaze averaging is performed on a window of 3 seconds.
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BERT embedding classifier is composed of two linear layers separated by tanh activation and dropout
of p=0.1, according to the BertForMultipleChoice implementation from huggingface®. The BERT and
DistilBERT models used are the base uncased provided by huggingface, and the RoBERTa RACE is
the large finetuned on RACE provided by LIAMF-USP’. The BERT model used for extractive question
answering is the base uncased finetuned on SQUAD2 from the huggingface community. BERT model layers
and classifiers are trained for 20 epochs and batch size 32, with AdamW optimizer and learning rate of

5% 107°, using a linear scheduler with no warmup steps.

5.2.6 Results and Discussion

In Table 5.4 we present our results in an ablation study for using different levels of input augmentation,
comparing the performance of two pretrained language models, BERT and RoBERTa RACE, the latter
of which is pretrained in the multiple choice text QA dataset RACE [21]. The different inputs tested for
ablation are the following. First the simple QA-only baseline, where in equation 5.10 the context is the
empty string, as well as the QA with the dialogue transcript given in the dataset as context. Then, to test
our augmentation pipeline, we present results for both the rule-based context as well as the paraphrased
context. We remind that the rule-based context includes both transcript and augmentation information
such as grounding and emotional gaze (emogaze), and that the paraphrased context (ctx) is the output of
the paraphraser with the rule-based context as input.

In these experiments, a classifier is trained on the last layer embeddings (from the [CLS] token), and
results are reported for the binary (A2) accuracy task, with mean and standard deviation over 5 runs.
In addition, the context (CTX) is cropped when it exceeds the language model’s maximum input tokens
size. We can see that the BERT model seems to benefit more from exploiting the language bias in the
questions and answers, than from using any augmentation input from the videos, which can even result in
a performance drop. This is suspected to be due to the fact that it hasn’t been fine-tuned for any context-
based multiple-choice downstream task, and simply ignores longer sequences of input instead of attending
to parts that are relevant to the question. On the contrary, RoOBERTa RACE performs best when given our
rule-based and paraphrased context as input. It is also interesting that the performance of the RoBERTa
model drops when the simple dialogue transcript is used, but when this is grounded and enhanced with our
detections it surpasses the QA baseline by 0.5%. Furthermore, the paraphrasing enhancement is observed

to improve the rule-based context, which is indicative of the benefit of more natural and diverse video

descriptions.
Inputs BERT RoBERTa RACE
QA 74.37 (£0.06) 79.05 (0.05)
QA -+transcript 74.34 (£0.05) 78.50 (£0.06)
QA femo 74.87 (£0.06) 79.24 (0.05)
QA+rule-based ctx 73.12 (£0.05) 79.43 (£0.06)
QA +paraphrased ctx | 74.21 (£0.07) 79.56 (+0.06)

Table 5.4. Ablation study for training a classifier on embeddings (CLS last layer) on different
levels of input augmentation. Results are reported on wvalidation set accuracy on average and
standard deviation over 5 runs.

However when we experiment with finetuning the encoders’ layers to different extents and with different
language models, it appears that the unaugmented input performs better (either only QA or QA with the
dialogue transcript as context) in all cases. Since this was not the case with the frozen RoBERTa model
in table 5.4, we are lead to hypothesize that, apart from the fact that the self-attention layers’ previous
training was on a much different distribution than our own descriptions, that the pre-training procedure

(simple MLM) on which they are conditioned on is not enough to model the relations between the detections

Shttps://huggingface.co/
"https:/ /huggingface.co/LIAMF-USP /roberta-large-finetuned-race
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in our descriptions, which follow the repetitive format of section 5.2.3. Ideas on how effective finetuning

could be performed are explored in detail in section 6.2.

Inputs 3-BERT | 1-RoBERTa RACE ‘ 5-DistilBERT
QA 80.11 81.99 79.83
QA +transcript 81.39 82.37 79.28
QA -+rule-based ctx 81.14 81.50 77.64
QA -+paraphrased ctx 81.06 81.74 78.89

Table 5.5. Ablation study for selectively fine-tuning layers in different language models on different
levels of input augmentation. Results are reported on validation set accuracy.

In table 5.6 we evaluate the effect of utilizing smaller extracts, or summaries, as input via different
extraction schemes, again in training a classifier on BERT’s last layer embeddings. This extraction is
performed by extractive question answering, again using a pretrained BERT model, this time on the
SQUAD [22]| dataset. The different input schemes included in this ablation are, first the simple QA-only
baseline and the input including our rule-based context truncated to the maximum input length, same as in
table 5.4. In "QA-+extract" a smaller extract is used as context along with the question and answer. This
comes from a single extraction from the whole rule-based context, in which case the context, as input to
the extractive-answering BERT is also truncated to the maximum input token size. In "QA-+equal-parts-
hierarchical extract", the input is splitted in equal parts, for each of which the extractive QA is performed,
and the resulting extracts are concatenated to be used as input for another extractive QA inference. The
final extract is used as context for the multiple choice question answering, again along with the question
and answer. Similarly, in "QA+visual-scenes-hierarchical extract", the visual scenes from the SyncNet
model [12] are used to split the input, followed by the same procedure.

So far, we have observed that with the rule-based context as additional input to the question and
answer, the BERT base model actually drops in performance, which is hypothesised to be attributed to
the lack of finetuning on large context question answering tasks. This is somewhat alleviated by the single
extract mode, but still no significant improvement can be observed from the simple QA-only baseline. As
the extract is still taken from a cropped context, there is no additional input seen by the model than
in the direct question answering on the cropped context, and no additional benefit from this apart from
solving the large input problem. When using the hierarchical scheme to create the final extract, we observe
an improvement of 0.3% over the simple QA-only baseline, which can be attributed to the sampling of
sentences from all over the context instead of simply the start, with the additional benefit of this sampling
being conditioned on the question. When comparing the splitting into equal parts or visual scene parts, the

equal parts seem to have better performance, although the visual scene parts still exceed the QA baseline.

Inputs BERT
QA 74.37
QA -+rule-based ctx 73.12
QA +extract 74.39
QA -+equal-parts-hierarchical extract 74.64
QA -+visual-scenes-hierarchical extract | 74.43

Table 5.6. Comparison of different summarization schemes, with the cropped rule-based context
and simple QA-only baselines. The final multiple choice BERT input is the extract, while the input
of the extractive question answering BERT is the rule-based context. Only the classifier is trained
in the main model.

Finally, we experiment with enhancing the question and answers with a single emotion word aggre-
gated from the detections of the whole video, to probe the sensitivity of the dataset’s questions on the
overall detected emotion of each video’s participants. Three different aggregation methods are tested, each
choosing the emotion with the highest of the following metrics. Firstly the emotion’s term frequency (tf),

secondly the term frequency - inverse document frequency (tf-idf) which normalizes the term frequency of
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the emotion in the video by the number of videos of the training set it appears in, and thirdly a modified
tf-idf (tf-idfm), where the term frequency is normalized by the frequency of the word in the training set

instead of number of videos with appearance.

Inputs ‘ BERT
QA 74.37 (£0.06)
QA +tf-emo 74.87 (£+0.06)

QA +tfidf-emo 74.81 (£0.06)
QA +tfidfm-emo | 74.86 (4-0.06)

Table 5.7. Training a classifier on embeddings of the questions and answers, enhanced only with
the aggregated emotion tag of the video. Results are mean and deviation over 5 runs.

All three of these metrics for aggregation of emotion seem to perform comparably, and a 0.5% im-
provement over the QA-only baseline can be achieved simply by using a single emotion word to describe
the video. This goes to show that Social-IQ has a big dependence on the emotion information, and that it

should be further enhanced in future work.
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Chapter 6

Conclusions

6.1 Discussion

In this work, we explore two very different approaches to the task of Social Video Question Answering,
specifically for the Social-1IQ dataset [2]. This was done to specifically explore capabilities that are often
missing from machine learning systems but are much needed especially in Social Video QA, such as explicit
reasoning operations and social cues detection.

In the first approach, we follow an end-to-end training scheme using pretrained CNN features and audio
features, and perform modality fusion through an extension of the MAC network [1] which we have called
MAC-X. More specifically we present MAC-X, a multimodal extension of the MAC Network capable of
handling complex multiple choice and multiple modality reasoning tasks like Social-1Q, where we evaluate
it and obtain state-of-the-art results. We conclude that structural priors as well as compositional reasoning
can prove useful to Social Video Question Answering, in which - to the best of our knowledge - this direction
is applied for the first time. We can further confirm from our ablation studies that MAC-X can effectively
benefit from all modalities and that mid-level fusion performs considerably better than the late fusion
baselines.

In the second approach, we follow the direction of performing question answering on captioning, which
we obtain through augmentation of the dialogue transcripts with emotional gaze information as well as
visual grounding attributes information. The emotional gaze connects the people involved in a social
scene, which are filtered from bystanders via speaker detection, which also connects them to the dialogue
transcript utterances. This is the first time to the best of our knowledge, that such a feature extraction
pipeline specifically designed for social video, is proposed. We suggest that it provides a general framework
for leveraging social information in video. Additionally, through augmenting the dialogue transcripts and
effectively performing video captioning, we also provide a baseline on which to base more sophisticated
social video captioning methods. Finally, we provide ablation studies for several BERT-like language
models and fine-tuning levels, as well as a hierarchical summary scheme based on question conditioning

via extractive question answering.

6.2 Future Work

End-to-end

First, an idea that was motivated by the analysis of intra and inter modality attention maps in chapter 3
was to use the resulting attention maps of models such as VILBERT [8] (or any other models that calculate
the alignment between modalities), as graph representations where each attention weight corresponds to
the weighted connection between two nodes, which can either be homogenous or heterogenous in terms
of modality, or alternatively form different subgraphs (as in works such as [112]) for each attention map.
These graphs would be processed either by a GNN or a soft neurosymbolic approach using graphs such as
the Neural State Machine [15], which is similar to MAC [1] but instead performs its sequential reasoning

91



Chapter 6. Conclusions

as an iterative computation of a differentiable state machine over a semantic graph.

As far as MAC-X is concerned, we plan on further experimenting with a hierarchical- MAC version
where each frame is processed separately by sub-MAC networks, and the final memories from each of the
frames’ forward passes are processed by the main MAC network. Modality fusion can manifest either
in the deeper per-frame level, which would make each sub-network a MAC-X network and the outer
a vanilla MAC network, or in the outer level with a different MAC network for each modality at the
frame level, and a MAC-X network to combine and fuse their respective final memories. Additionally, we
plan on investigating more sophisticated techniques of mid-level fusion for the purpose of learning better
intermediate multimodal representations, as well as explore a more tailored modelling of the multiple choice
task [18].

Another idea for an alternative end-to-end approach is to fine-tune recent promising large scale video
and language transformer models, such as CLIP-BERT [66] and HERO [91], which offer affordable end-
to-end learning for video-and-language tasks through methods like sparse sampling and hierarchical trans-

formers designed and tailored for the temporal dimension.

Augmentation

In our second approach, our utilization of the gaze prediction comes with two inherent problems. The
first is the percentage of "social" videos with only one person per frame (this can happen in TV pannels)
which renders gaze useless as they always look at the camera, and the second is the exact opposite case of
videos with more than three people per frame, where there is an actual need for 3D space and depth, as the
recipient of the gaze is often calculated incorrectly due to the 2D projection. An interesting approach since
we have 3D gaze predictions [106] but not 3D video, is to use video depth estimation [113] to differentiate
between gaze targets in different depths.

As far as quality improvements are concerned, there is much room for improvement, including the
cases of inaccurate face emotion predictions due to training in a fairly small dataset [108], or the speaker
identity when the speaker is not on the current scene / video frame. These can be approached respectively
through finetuning in a larger emotion dataset such as Affectnet [114], and utilizing speaker diarization
techniques in addition to speaker detection [115]. Furthermore, as for additional social cues that could be
detected from the video, some ideas would be body language (like gestures and posture) [116, 117], voice
prosody characteristics [118], and additionally, action recognition as further grounding reference. For the
video caption generation, some ideas for enhancement are to utilize some kind of rule guided GPT [119]
story generation to make descriptions more natural and randomized, as well as document retrieval from
knowledge bases for additional common sense and world knowledge information.

To improve the utilization of our video captioning intermediate results by the question answering
model, we plan on experimenting with different schemes such as a sliding-window BERT configuration
or a voting scheme on separate per-scene answer predictions [66, 95]. Another idea based on the need
to guide BERT more towards learning our specific rule based limited syntax (which is assumed to be
outside the distribution of its pre-training data), is to use self-supervised pretraining such as Masked
Language Modeling [120]. An interesting detail is that there are enough samples as this will be done on
sentence level and not video level. Based on this concept, we would also like to explore masking similar
to the relationship-attribute-object scheme used in ERNIE-ViL [64] as it is very similar to the structure
of our sentences. Finally, we plan on further pretraining in other QA datasets, both text QA and through
applying the feature extraction pipeline in e.g. TVQA [81], to then use in the smaller Social-1Q with
limited fine-tuning.

As respects the different approaches apart from translating the inferred gaze graph into language, a
very important idea to explore is using a Spatio-temporal GNN such as [121] which is specifically meant
for this kind of data. For this to be implemented, a more sophisticated face tracking method needs to be
employed (e.g. with face similarity) so that the same people correspond to the same nodes throughout
the video, regardless of scene changes. Similarly, a soft neurosymbolic approach like [15] extended in the

temporal dimension could be combined with the augmentative gaze graph approach.
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Use cases

A very interesting use case of a performant social video question answering system would be to help
people with ASD with an online system to which they can ask their questions and get answers, either
about videos online, shows and movies, or about their real-time surrounding social situations given access

through camera in an IoT device such as smart glasses.

6.3 Ethical Considerations

Some ethical considerations regarding both Social VQA, the current dataset, as well as our proposed
methods and use cases are the following.

Firstly, a system such as the one described above could end up having access to people’s footage
without their consent, as well as making impactful wrong predictions that could negatively influence
people’s relationships in the real world.

Secondly, this particular dataset categorizes (and refers to) people as men and women which is a
bad human bias to insert in Al agents, as it characterizes their gender identity based on their external
characteristics. This is a broader issue in computer vision datasets as by definition they only have access
to visual information, and removing this grounding from the social descriptions would result in poorer
information regarding who is who in the video.

Third, an important aspect to consider is that especially with such data and tasks, fairness and bias
analysis are necessary before use in real world applications. Such analyses can be separated in bias analysis
of the data, and bias analysis of the models [122]. In the first, some things to investigate could be, for
example, with what words does the word woman, man, black, white appear in most in the correct answer,
and what in the question. Such analyses for the data in the case of a two-stage solution such as our
augmentation approach should be applied in the intermediate results as well, to examine what biases the
feature extraction models impose. The second kind of analysis refers to which of the existing biases in
the data are reinforced by the proposed models, as well as what they carry from their pre-training data.
For example, one could seek answers to questions such as what percentage of answers correctly answered
contain the word woman, and which man, and whether this is consistent with the whole set of correct
answers, which answers incorrectly answered had the word woman in the correct answer and which man
(consistency with incorrect), and which questions with the word woman in the questions were incorrectly
answered and which with the word man.

We end this thesis by reinforcing the importance of these ethical considerations, if and when such a

system is considered for real world use-cases.
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List of Abbreviations

Al

ML

DL
GPU
Cv
NLP
NMT
LM
MLM
QA
VQA
RACE
EM
PCA
SVM
MLP
FFNN
MSE
SGD
ReLU
IoU
CNN
R-CNN
RNN
LSTM
BERT
RoBERTa
ViLBERT
GPT
GNN
TMFN
MAC
MAC-X
ASD
WS
ToM
IoT

Artificial Intelligence

Machine Learning

Deep Learning

Graphics Processing Unit

Computer Vision

Natural Language Processing
Neural Machine Translation
Language Modelling

Masked Language Modelling
Question Answering

Visual Question Answering
ReAding Comprehension dataset from Examinations
Expectation Maximization

Principal Components Analysis
Support Vector Machine

Multi Layer Perceptron

Feed Forward Neural Network
Mean Squared Error

Stochastic Gradient Descent
Rectified Linear Unit

Intersection over Union
Convolutional Neural Network
Region-based Convolutional Neural Network
Recurrent Neural Network

Long Short Term Memory network
Bidirectional Encoder Representations from Transformers
Robustly optimized BERT approach
Vision and Language BERT
Generative Pre-trained Transformer
Graph Neural Network

Tensor Memory Fusion Network
Memory Attention Composition
MAC-Extend

Autism Spectrum Disorder

World Scope

Theory of Mind

Internet of Things
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