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Anoryopeteton 1 avtiypagn, amobixeuon xau Swvour T mopoloas epyociog, €€ oXNoxApou N
TuAaTog auTAS, yio eumopixd oxond. Emteéneton n avatdnwomn, anobixcucn xou Sioavour yio
OXOT U1 XEEDOOKOTUXOS, EXTAUDEVTIXAS 1 EPELYNTIXNC PUOTNGE, LTS TNV TEoUTEDETT Vor avapépeTon
1 TYH TEOENEUSTC Xan Vo dlatneeitan To mapdy urvuua. Epwthuata mou agopolv 0 xerion tne
epyootag yia xepdooxomxd oxond neénel vo aneubivovtal Tpog Tov GuYYpapEd.

Or andeic xon To GUUTERHOUATA TTOU TEPLEYOVTAL OE OUTO TO EYYPAPO EXPEACOUY TOV GUYYEUPE
xon Oev mpémel vo epunveuBel 6Tl avtinpocwnelouy Ti¢ enlonues Béoec tou EBvixod Metodfiou
TTohuteyveio.



Iepixndn

Yy napoloa epyaoio egetdlovpe T (Un-)olyxhion uiog oelpds YVOo oY okyopBuwy Belti-
ocTono{nong y Tov unoroyloud onuelwv wopporniag Nash oe malyvia 800 ouddwv undevixol
abpolopatoc. To matyvia 800 ouddwy undevixol abpolopatoc PToEOLY Vo LOVTIENOTOGOLY TN
duvaux e olyxpouvong petadd 300 avTITBEUEVLY PEpOY Ywpelc Vo XATaQEDYOUV GE OmAGIXO-
nolnom Tou YOVTENOL e uiot cUYXEouan UETOEY BV0 HeTo-TouxTOY. And dmoln vroloyioTnhc
noxumhoxdtnTag, delyvouue 6Tl To TEOBANUA uToroyiopol onuelwy wopponiac Nash eivan CLS-
OUOKONO. 2T CLVEYELD, AmOBEXVOOUUE OTL yiar Wlar ouxoyévela Ty viwy dV0 opddwy, plo oelpd
oAyopiBuwy tpmtou Pabuol (GDA, OGDA, EG, OMWU) arotuyydvouv va cuyxiivouv. Xtov
avtinoda, cUVELCQEPOUPE TOV GYEDLIOUG EVOC VEOL alyoplBuou mpdTtou Pabuold mou xdtw ond
wavée ouvbnixeg ouyxiver o onuelo wooppotioc Nash 600 on cuyxexpwévn ouxdyevela mot-
vviov 600 xou oe onowdinote Talyvio (Tboavd un xupté-un xoiho). Télog, napovoidlovye Evay
oplBud mEpUUdTOY OE aPYITEXTOVIXES VEupwVIXKY BixTiwy (GANS) érou n poviehomoinom toug
¢ olyxpouan 8Vo ouddwy €xel Tpovoutlaxd edlo eQuproyic.

A€Zelg »xXewdid: Oewplo towyviov, Behtiotonoinon, Mébodor Hpwtou Babuol, Auvvopixd Xu-
othuota, Yroloyiotixy Ilohuthoxdtnta.



Abstract

In this dissertation we examine the (non-)convergence of an array of commonly used min-max
optimization algorithms for the purpose of computing Nash equilibria in two-team zero-sum
games. Two-team zero-sum games can model the dynamics of a conflict between two opposing
parties without over-simplifying the model into a mere conflict between two meta-players.
From a computational complexity perspective, we show that the problem of computing Nash
equilibria in this class of games is CLS-hard. Consecutively, we prove that in a simple, yet non-
trivial, family of two-team zero-sum games a list of first-order methods (GDA, OGDA, EG,
OMWU) fail to converge. On a brighter note, we contribute the design of a novel first-order
algorithm that provably converges under some sufficient conditions that we provide both in
the aforementdioned family of games as well as any (possibly nonconvex-nonconcave) game.
Finally, we present a number of experiments in “multi-agent” generative adversarial neural
networks whose training process can favorably be modelled as a two-team zero-sum game.

Keywords: Game theory, Optimization, First-Order Methods, Dynamical Systems, Compu-
tational Complexity.
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Evyapiotieg

Apyind ogeilw vo euyaploThiow Toug duecoug auvepydteg wou tov xoldnynth Iodvvn Hovoryéa xou
Tov 8oxTopa TAEOY Moavirn Bhotdxn. Elpon suyvouwmy vyl Ty UmoTocUvVr TOU UOU TROC@pE-
POIVE, ToL EVOLUPECOVTO TEOPAAUATA TOU YOU GUGTACOVE, T COREN YVICEDY TIOU UOU UETEPEQAY
OANG O YLoL TO YEYOVOG OTL UOU amoxdALpay Tdoo oxdUa Tedrypate UTdeyouv Tou dev v vopilo.
Emnmiéov, ogeilo va euyaplotiow tov xabnynt Anuhten Pwtdxn o onolog ue pinoe ot Bewpla
umohoylouol xou woli pue tov xalnynth Aploteidn Hoyouptlr éxouv e€acpaiioel uéow tou epyo-
otnelov Corelab tic avayxaiec cuvBixes Hote evtde tou Ilouteyvelou vo hauPdvel xdpa épeuva
ot BewenTiny) TAEURE TNE ETUOTAUNG UTONOYIGTOV 1) omola a€LdVeL Vo €peTol oe BIINOYO UE TO
oebvég yiyveohou g emoTAUNG.

H Simhopotind epyacio o téxeton, dTwe 0 001Y0¢ GTOUBKY TNG OYONNS HAS, OC TO EMUC TEYUOUA TNS
pabntelog oty oxorn. 2¢ ex T00ToL BeV OPENW EVYUPIOTIES LOVEY O CTOUS GUECOUE GUVERYATES
HoL o TNy gpyacio auTH AANS o 6 Toug avBp®roug Tou Ue oTARIEVE GUVOLGHMUATIXG Yo UNIXE Xan
KoL mpoopépave avextiunteg eunelpleg xou Yvoels 6co onoltdala. OENm Vo EUXUEIG THOM TOUC
yovelg you yua Ty dveu dpwv entlpovn oTRREY Toug LAY ot cuvalcBnuatxd, T odvTeopsd You
Ebo mou ftav e pou otnv npoondbeld wou xan tor adépguor pou Aéomouva, Idcova xar Booiin
TOU oV XAl VEAPOTERD oL Yabalvouy cuveyme xawvolpyia tpdryuota. Ogellw vo euyoploTHow Toug
pidoug pou BoryyéXn, 'EXAN xaw Oavdon xat Toug GINOUC TOU AméXTNOU GTY) GYONT Xou e Exovay
HE TNV Topousiar TOUG VoL TNV ayamion Teploaotepo: Ty Ayyehixy, T Baoukixy, tov I'ideyo,
Avuntea, tov Nixo xou tov Nixo, tov Owud, tov Oodwer, tov Luthen xou tov XeroTo.
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Kegdlowo o

Ewocoywyixod onuelopo

Méow e mapovooe dimhopatixic epyaoiac, eEAT{OUYE Vo TEaryUATOTOWCOUPE it GUVTOUT ovo-
oxomnon Towc npoopates efehilelc ot Oewplor Ilouyviov xou tn Betiotonoinon xow tehixd va
pi&oupe puc oY xaTavonoT Uiag HEANOY ToRY XWVIGUEVNS XAGoTE oy Viwy, Tov Towyviny 800
ouddwv. Emxevipwvépacte iaitepa o1 min-max fetiotononon yio Tov UTONOYLOUS LGOREO-
niog Nash oe nolyvia undevixoi-abpoiopotoc 800-ouddwv, eV ETIONG TUPEYOUUE EVoL ATOTENECUA
UTIONOYIO TS BUOXONOC Yiat TO TEOPANUO TOU UTONOYICHOY TOUC.

Iow euPoabBivoupe oe teyvixd Béuarta, uTdEyel pla TOXND QUOLXY| ERWTNOY Tou Unopel vo Béoel
xdnoog: Tatl mpémer var poc evilagpépel 1 Ocwpla Iouyviov; H andvinorn etvon 61l Bo mpénet
vo poc evotagépet 1 Oewplo Houwyviov 600 pag evdlapépel To mod AopPdvovion ol opboroyixég
anoQdoel; ot TEPPEINNOVTU OTIOU GUUPEPOVTA GUYXPOVOVTOL. LNUELOVOUUE TOAD GUVOTTIXG Wia
o topixy) avadpopn g Ocwpliog Houyvioy.

3 UvTopo wotoeixd onueiopna H olyypovn Ocwpla Mavyviov aoyoleitar ye v padhy-
patixn) exTUNoT TOu TEOTOU GTEATNYLXNG BPAONC OE XAUTUC TACELS OOV MU TES AANNAETLOEOUY
peta€l Toug Aehoytouéva xar otpatnyxd. ‘Onwe urnopel xavels va pavtédet, ol dvbpwrol avéxabev
npoonafoloay vo xatarfilouv oe Bewplec BéNTIOTOV oTpaTNYXDY oANANAeTdpdoewy. TIoN) motv
eumAoolv ta pobnuotind otig Bewpleg autée, n otpatnyx oxédm oY owovould, THY TOAITIXY
xou T oTpaTiwTxéc unobéoelc elye oulntnBel pntd and tov Ivdd moluuadyr) Chanakya [28] Hon
and tov 4o adva T.X. EVE oxOUn vopltepa xol eWBIXd Yol TS OTEATIOTIXES uToBéoel and Tov
Kuwélo ginécogo Sun Tzu tov 60 ouwva m.X..

‘Eva evdlopépov otypdotuno npiiune pabnuatixne noyviobewpntixne oxédne €xel xdvel moXd
mhovd T eppdvic| Tou 610 Bafulwviaxd Torpotd (0-500 w.X.). Exer utootnewybdel ot wa
(pouvoUEVIXd TapdBoln AVon oe éva TedPANUa yeeoxonioc mou tpocpépel To Takuold cuprintel
pe 0 obyypovn Noom tne Bewploc Ty viov Tou nucleolus oto Jewpla magyviowy ovvegyaoiag[4].
Puoxd, UTOPOUUE VAl ETLOTUAVOUPE TNV EXBOCT| TOU XNAGLX00 TAEOV XeWEvou Tov Von Neumann
xow Morgenstern [66] wc o 0pbonpo yio Ty €vopdn ToU TPoYEGUUATOC Yo wat paldnuotixd Bewpla
tov mawyviov xa e otpatnyxrc. ‘Opwg, unhplay TEPITTOOELS O YABNUATIXG XoL OLXOVOULXS
xelyevo 6nou xevtpxés évvoleg g alyypovre Oewplog oy viwy éxavay pla tpotdNela eupdvion.
Eexwvovtag and tov 180 audva, SNUELDVOURE OTL lal ETLOTONY Ye nuepounvia to 1713 7 omola
anodideton otov Charles Waldegrave [5] avapépel o minimax ANoon wxtic otpatnyic oe Eva
Towy vl pe xoptid (to mouyvidt “le Her”). O Augustin Cournot, oe éva tpdBAnua oryotwiiov pe
dvo emyephoec [12] tpoogépet wa Noon Tou cuunintel ye v wopponio Nash yia nalyvia d0o
TOULXTOV.



2 Kegdhowo a. Ewaywyixd onuelowpa

Emmiéov, éva épyo udlotne onuaociog yia to medlo eivan 1 anddeln tou Nash yio tnv Omopén
wwopponudyv Nash oe xdfe nenepaouévo naiyvio [43].



Kegdiaro 3

Extetoevn eAAnvoylwoon
nepindn

Y auTO TO XEPINOUO TPOCPEPOUNE Widt TEQIANTITLXY) TUPOLUCLAGT] TWY TMEQLEXOUEVWY TN Epyaoiog
ot eV, B mepihopBdvovion opiopol Bacixmv evvoumy xon évo oxaplpnua Tng €peuvag
pag. T Aentopépeteg nopanéunovye oto appendix o To avTioTOO Y YAOYADCCO TUHU TOU
TUEOVTOS XEWEVOL.

B.1 Kupth aavdluvomn xou BelTtiotonoinon
H évvowa tng xvptdrnrac avoxdntel cuvexwe otn Bewplo fedtiotomoinone. Ta tov Xoyo autdy
Bewpolue oxdmuo va avapépouue xdnotoug Bactxolc oplopols amd TNV XUETY AvVANUOT).

Apywd opilouue to xvT6 0vwolo:

Optopde 1 (Kupté atvoro). Eva ovvodo S C RY xaleirar xvoté drav yua xdde 8bo tov oroyeia
x,y €S xaw xdde X € [0,1] o oroyeio z = Az + (1 — N)y avijxer oto odvoro S.

Axolouvbel 1 évvola e xvpTC ovvagTHoewc:
Optopdc 2 (Kupth ouvdptnon). Mia ovvdotnon f pe medlo opioud éva xveté otwolo S e
f 8 = R xaleirar xvotn dray ypa xdde 8vo oroyeia tov mediov ogiouod tng x,y € S xar xdde

A € 10,1] wyver n axdlovdn avodrnra:

o+ 1 =XNy) <Af(x) + (1 =2 f(y)

Afppor 1 (Aviootnta Jensen). Eotw pia xveth ovvdetnon f: S — R xat otoyeia x4, ..., xy €
S. Ta xdde ovvoro ovvteleotdy ay,. .. an pe a; > 0,Yi € [n] xar Y, a; = 1 wyder n axdrovin
anootnTa:

f (Z aﬂi) < Zflif(l”i)-
H om6deln tou teleutalov Nuuatog éneton and Tov 0plodd TN XUPTHS CLUVEETNONG.

3



4 Kegdhawo B. Extetopévn eNknvéyhwoon meplndn

B.2 Boaowxeg €vvoleg Bswplog mowyviov

B.2.1 ITalyvio o€ XAVOVIXA LOPYN

Optopdc 3 (Taiyvio oe xavovixd| woppn)). Eva malymo oe xavovxn popeih opiletar we n mherdda
I' =TV, A, u) anotshotuern and:

o &va memepaouévo otworo N and N maixtoies, N = {1,--- N}

o ula ovAdoyh and memepaouéva otwola A = {A1,--- , AN} dmov A; elvar o obvolo Twy
Sadéoyuwy auuydy otoarmyxdy/xvhoewy oty maixtowa i

o uia Stavvoparin ovvdotnon w = (ug, -+ ,un) TNG 0molas To i-00TS oToLyElo AVTITEOTWTTEVEL
™ owdotnon wpéleias/xépdove e malxtoiac i, u; : A(A) = R mov amemoviGer xaravo-
uéc mbavdrnrag eni rwv orgarnyudy oe éva Paluwtd péyedos, Ty wedlea/to xépdos mov
amoxouilel m maixToia vy

Me A(A;) ovuPorioupe 10 povémieyua mbavotitwv el tou cuvdrou A;, dnhadr to clvoro
ANV TV davuoudtey @ ue Sldotaon d = |A;| xou x4 > 0, ZZ:O zq = 1.

‘Eva Sudvuouo otpatnyrc yior Ty mabxteta ¢ oplleton wg éva didvuoua & mbavotitwv enl twv
otpatnyxay & € A(A;). ‘Otav poviya éva otorgelo tou @ eivon un-undevixd, téte 1o didvuopa
oautd ovoudletar auync otparnyxn eve 6TaY TO JAVUoUA EXEL TUPATAVW omd Eval Un-undevixd
otowxeio ovoudletan puxty oToarmymen.

Opiopo6c 4 (TIoiyvio dbo-rtoauxtdv pndevixot-abpolopatoc). Eva maiyvo §o-mawmetdy pndevixot-
adlgoiouarog oe xavomxt) popen ogiletar we n madda T = T(N, A, u) dnov:

o 10 mhjdoc rwy mantdy evar (IN| = 2

® 0 ypoc otoarnyxdy A megidyer 8o memepaousva obvola aquydy otoarmpxdy ya xdde
nalxroia A= {Aq, As}

o ya ) ovvdgTnon u = (u1,u)’ oyler —u; = us = u xar u = ' Ay dnov A € R™™™ pe
n=|Ai], m = |Ay].

H noixtpio e ™ otpatnyd) y exéyyet ) otiAn tou nivaxa A xow npoonafel var peyLoToTooEL
TNV TOGOTNTA U EVE 1) TOUXTELL OTEUTNYIXH T ENEYYEL TN YEUUMY) TOU Tivaxo TpooTaddvTag Vo
ENOYLO TOTOLAGEL TNV U.

To mowyvidL autd umopel va xwdixononbel oty mapoxdte Topdso too:

min  max ' Ay.
zEA(A1) yeA(A2)

Me Bdon to Minimax Becdpnua tou Von Neumann yvop{louvue 6tu:

min  max «' Ay= max min x' Ay.
TEA(A1) yEA(A2) YyEA(As) zEA(AY)

Anhod1| ye amholc bpouc, dev €xel onuacio mola and tic dVo naixtples Bo nadel tpod . Elte nalet
AT 1) T TEL-YpouUY) EITE 1) X TEL-CTANTY, Ol BENTIOTEC GTEAUTNYIXEC TOUC TAUPUUEVOLY Ol
(Blec OTWC X Ol TANPOUESC TOUC.

‘Evac moX0d ank6g xon anodotixde Teomog va “Nocouue” tar mouyvidia S0o-taux TtV Undevinol-
abpolopatog elvon péow tou yoauuxod moyoauuatiopod. MahioTa, 1 toyuey| xo achevic Svixd-
TNTA TOV YROUULXOV TTROYEUUUOTIONOU TPoc@Eépouy Wia evalhaxtixy anddelln tne tou Bewpruatog
tou Von Neumann.
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B.3 3Xnueia tcopporniag Nash

H napandve “ANoon” tou mouyvidtol ebvon plor ToXd eduer nepintwon autol mou otn Bewpio mowyvi-
v ovoudlouue onuelo woggomiac Nash, dnhodr| ploc xotatdotacons ond Ty onoio xavels /ol
TouTne/nalx el Sev unopel Vo TUPEXHNIVEL LOVOPEROS Kol VoL ATTOXOWUICEL XUNVTERT] TATPWWLY.

Opiop6c 5 (Enueio Iooppotniac Nash). Eva ypwduevo xaravoudy mbavorivowy © = (1,...,%,)
amotedotuevo and xaravoués x eni tov A; oe éva maiyvo peyioromoinons xégdovs ovoudletar onuelo
woppotioc Nash edv ya xdile malxroia @ € [n] xar xdde aquyn oroarmpueh a; € A; wyder 1
axdlovdn anodrnra

Eona [ui(a)] > Eans [ui(ag; ai—1)] (NE)

Ta onuela wopponioc Nash etvor Théov avagaipeto xoupdtt tne Bewplac navyviov xa dGoxola
Ba unopolice va pavtactel v teENeutalo xwele auTtAv. XNy meoydaTixdTnTa N anddelEn TNne
UmopEhic Toug ot xdbe nenepacpévo Todyvio (SNS. Tadyvio pE TEMEPAOUEVO TARBOC TOUXTMY Xou
OTEATYXDV) YpoViXd ETeTal TNE €xdoomne Tou TpdTou xewévou Bewploc towyviwy.

Oewpnpa 1 (Nash). Kdde nemepaouévo nalyvio N mamtdy éyet tovddyioroy éva onueio woggomias
Nash.

H onédelén tou Bewpripatoc Pacileton ot éva Bedpnua otabepol onuelov. Luyxexpiuéva, o John
F. Nash anédeile 1o Bedpnua 1o 1950 pe to Beddpnua otabfepol onuelov tou Kakutani eved o
1951 pe yprion tou Bewpruatog otofepol onuelov tou Brouwer.

YNUELOVOUUE OTL 1) ambdelEn U€ow TNe yeNone tou Bewpruatog otabepol onueiouv tou Brouwer
OE cUVETNON HE TNV anddell)| Tou TeENeuTaiou Péow TOu AAUPATOC Tou Sperner éyet anodevyfel
xaibplac onuootog yia v e€EMEN e Bewplac ToAuT oxdTNToC UToNOYIoHOU oNueiny tooppoTiog
Nash.

B.4 MEebodol PerTicTonoinong ntpwTtouv Pabuov

H enihuom tou mouyvidol Pécw Ypouixol TEoYPUUUATIONOU APopd OE €VaL “‘CUYXEVTEWTIXG” TpOTO
enihuong. Anhadr, ol maixteg mpémel var eumioTeuTolY €vay anyoplluo o omolog e elcodo To
nouyvidL B avaBéoel oe wdfe maixtn plo otpoT YLy,

Av avtibeto BéNovye xdbe madxtpla va uropel va udder evdd mailer, anoxevipouéva, Ba mpénel va
oxolouBricouye évar BlapopeTind LTdBELYpa ETiAVGTE TToLY Viwy.

Envypappotixd Ba avagépouye tov peto-anyoplfuo tne oxvnerc online xatontpunc xatdfoonc
(lazy online mirror descent).

To mhaicto oto onolo pobaiver pio madxtpia givar awtd tne online xupthc Bedtiotomoinone (A
Tou emavokaufoavouevou Touyvidiod). Xe xdbe ypovixh otryuh tn nalxtpla emhéyel pla xivnon a
a6 €val GOVONO BUVATHY XVACEWY EVG Uia avtinalog emiéyel pio xupTy cuvdptnon xé6cToug fr.
Yxondg tng makxTpLog efvan Vo UETOVIWOEL EX TWV UOTEPWY TIG ETUAOYES TNE TO ALYOTERO BUVATO.

H évvoia tou regret xou tng egopdiuvuvorng Ilpotol whfioouue yio TOv PETO-
aAy6etBuo oxvnenc xatontpxic xatdfaong TEENEL Vo oplooupe 800 axpoywvlaleg évvoleg, 1. tnv
évvola Tou regret (“petdvolac”) xofne xou 2. Ty évvola e eZoudiuvone (regularization).

O peto-onydpbpoc xatomtpnhc xatdfoone yevixeel Tov olySplbupo xatdBaone x\ione (gradient
descent). Avti va tparypatonoioet 1o Briua xatdBaone eubéws oTov ¥Mpo Tov PETAPANTOY, Tpory-
patonolel xatdfoct GTOV WP TWV “TANEWHUMY” xol 6T GUVEXELXL TEOBENEL TN VEX TIUH GTO YDEO
Twv yetontey. o 1o Pua xatdfacne yenoiwonoteiton xan pla cuvdptnon eoudiuvone R. H
TOEIANIAT EXayIo TOTTOINGT TOU X6GTOUC e TNV eNayloTonoinon e “andataong” (mou endyet 1
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ouvdptnon e€ogdiuvons R) mporyoluevou xou enéuevou onueiou uhonotel Tov cuuPiPooud avdye-
oo GTNV avdryxn xatdBacng oL TNV ovaryXn Un-andxNong and Ty Teheutala Ty T pETofANTAC.

O peta-aryopiBuoc online mirror descent O peto-o\y6ptBuoc oxvnefic xatontexic
xatdPaone neplypdpetar and v e€Xc oxéon, é0to Y1 1 R(y1) = 0 xou &1 = Br(x,y1).

yi+1 = (VR) ™ (VR(y:) — V fi(@1))
Ty1 = argmin Br(®, Yit+1),
reX
pe Br v “andotaon” Bregman (Bregman divergence) n onola opileton yio 1 cuvdptnon e€o-
uduvone R.
H évvowr tou regret etvon éva pétpo vor oloONOYHOEL EX TV LUCTEPWVY 1] TOUXTELL TG EMAOYEC
XWACEWY TOU €XAVE XUTA TNV DLIOKELN TOU TOUYVLOLOU CUYXEIVOVTOS TIC UE TNV xoX0TEPT BuvaTy
emhoyy| xlvnong, dnhodh:
T T
Reg™ =" fi(a") —min ) fi(a®)
t=0 “ =0
Dot tnv e€opdhuvor emAéyoupe LoyLEd-XUPTEC GUVOETHoES OTwg Ty, TNV f2-vopud XaL TNV
apvnuxy evipornota. H yerion Blapopetindy cuvapthcewy eoudiuveng odnyel oe Blapopetinoic
aryoptbuouc.
T v nepintoon xphone e la-vopuac avaxtolue tov axyoptbpo xatdfoone xhione (gradient
descent) yio Tov éva oyt (e oo tonoinon) xou tov alybebuo xatdfoaornc/avifoone xhi-
onc(gradient descent-ascent) yio Toug dVo malytec. Eved pe v ypron tne apvntnhic eviponiog
tov o\yo6plBuo multiplicative weights update.

B.5 Auvvaplxd cuCTHRXATA X0 EVC TABELA

‘Onwg oe ToANoUg Topelc Twv pabnuatiedy xou e pnyavixic, €tol xou otn Bewpla Bertio Tonol-
nong, 1 Bewpio Twv Suvauixdy cuoTNUdTwy anodewvietar eEdywe xEHowun xoL onuavtxr. Adpd,
évar duvox6 oo tTnua anaptileton and 1. Tov ybpo pdoewy dnadh xdbe duvath xatdotaon oty
omnolo umopel vo Peebel éva ahotnua 2. Tov yedvo o omolog dUvatan va elvon BlaxpLtdg 1 cuveyhc
3. évav xavova yoovxtc e&ibnc mou unaryopelel T To clo TN peTafaivel amd ulo xatdotaon
OE HATOLOL GANT).

Suyrexpuléva, UTdeyuov xuplng dVo eldn BuVIUXDY cUCTNUATWY: Stapogixés e5towoels xou e5low-
oeic Sapogdyy Tou TEpLYEdPouV TNV eEENEN cUG TNUATWY OE GUVEYN Xou Blaxpltd YEdvo avtioTolyo.

Avvoptxd CLCTARATL CLVEYOVS YXEOVOL Trobétoupe tov yboos pdoewy S C R™
va efvan évar avouxté ohvoro xou tny f ula cuveyde dwpoplowrn anewdvion pe f : S = S. H
axdXovbn wopen opilel éva avtdvopo, ovveyo yodvov Suvaixd clCTNUL:

dx
ar = f(x).

Avvoixd CUC TARATA JLaAXELTOVU XEOVOUL II&\, Bewpolue TOV YMPO XAUTACG TUCEWY
S C R" w¢ éva avolyté cOvoro xan f plo amewovion f: S = S. Toéte éva avtdvopo, Saxgirod
J00vov duvoxd cUo TN UTopel var TepLypapel Wg:

pF+D) — f(a:(k)).

6
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‘Encton 6Tt oL emavarnmTixol ohybetbuol unopolv va teptypa@oly ye oxeddv mpopav Tpdno and
duvauLxd cuaThuata Slaxpeitod xpdvou. H napatrienon anodewvieton Wiantépws Bondntnn oty
AVENUGT ol ATOBELET GUYXAONE Xl UN-CUYXNLONG ETOVONTTTIXGDY ohyop(Buwy.

H évvoia tng evotdbeiag xatd Lyapunov ES6 ewodyouye v évvolo tou onueiou
woppotiog xatd Lyapunov:

Optopdc 6 (Xnueio wopporioc/otafepd onuelo). Eva onueio & € S xaleltar onueio woggomiac
Tov Svvapuxot ovotiuatos f : S = S av:

0=f(z)

Koahobye éva onpelo tooppomioc & pepovwpévo edv dev undpyet yettovid U tou & tétola ko Te T0
onueio & va elvon o povadxd ornueio woppomiac oty U.

Oplopoe 7. Oszwenote to avtdvopo Svvauxd ovotnua f:
1) — f(x(k))

To onueio woogoomiac & = 0 xalefra:

o svoradés edv, pa xdde € >0, 36 = 0(e) > 0 térowa oe:

|2 <6 = |a®| <&, Vk>0

o aoradéc edv dev elvar aotadns

o aovurTwTIXd gvoradécs edv eivar evoradéc xar emmAdoy o & pmogel va emAeydel térowo
woTe:
|z <6 = lim z® =0
k— o0

Ou yenotponololue Toug bpoug otallepomoinon xaw ovyxiion ulag emavonmixic Stodixaciog xabde
1 acvunTOTXH euoTdfela evdg oTtabepol onuelov avTioTolyel oyeddv axplfoe otr oUyxilon o
aTo.

Stable
Unstable
Asymptotically Stale
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B.6 TITaiyvie 600-0ndBwV pNdevixolL abpoicuatog

Efyaocte m\éov oe Béom va xdvoupe Novo Yo To x0pto Yépoc Tng Boulelds pog to omolo eoTidlel
oe modyvior BUo-ouddwv undevixov-abpoloyatog. Xto madyvia autd éva tenepacuévo TANBoc mou-
%TOV elvol yweloU€vo oe 800 opddes. Autd mou evvoeiton €86 pe Tov dpo “oudda’ meptoptleTon
0710 YeEYOVOS OTL ONoL/ONec oL TanTeS/TaixTplee wolpdlovTon To (Blo axplne xépdoc to omnolo
dopop@veTon amd T XWAELS x8Be mabx T/ TodxTptag.

Avotned whevtag, o oploudc divetan og e€nc:

Opiopdg 8. ‘Eva mabymo §bo-ouddwy os xavovuenh popen ogitetar and pia mledda T = T(N, A, u)
nov amoteleitar and

o éva memepaouévo mhndoc mamrowy N, ywoiouévowy o 8o ouddec A, B pe ka xar kp to
aMog matxtoies avtiotoya ovtws dore: N = Na UNp ={Ay, -+, Ax,,B1, -+ ,Bry}

o éva memegaouévo wAndoc xwmoewy (1 aquydy orparnyoedy) A; = {1, ..., an, } avd naixtoa
ieN

o 71 ovvdeTNon weileiac/xépdovs xdde ouddac ua,up : A = R, dnov A =[], A; ovufolile
. alnlovyia and dles tg midavés Sapopdioec oToarnymdy Tov oVAOV TWY TAKTOLDY
= (QAy,s - QA OBy, OBy ) 876 1) aTouxT) wpélaia plac maixToas evar Tavtdonun
pe auth Twy ovuraytowdy e, 6A8, u; = ua & uj =up Y(i,j) € Na x Np.

e autd To YEVIXO CUYXEIUEVO, Ol TAUiXTEIEC UTOPOLY VoL EVERYNOOUY e BAOT [ixTéS oTQaTMyKES,
ON8, xatavopéc mbavothtwy s € A(Ag) enl twv xwviceov ai € Ag. Avtiotorya, opillouye To
YIVOUEVO XUTAVOUOY T = (SA,s -, 54, , ), Y = (8Bys- -+, SB,, ) WS TNV oTROTNYLXA TS Xd0E Opd-
dac. Ev téhet, 0o ypdpoupe X = [[icpr, Xi = [Lien, A(A), Y = [Licn, Vi = [Licnr, A(A:)
ONUELOVOVTOS TOV XOE0 OAV TV THVOY oTpatny Xy xdbe ouddac A, B.

‘Opota e ta Si-ypoputxd modyvia 500 TUXTOV, 0L GUVIPTACELS WPERELNS TV 500 OUddWY UTopoLY
VoL EXPRAGTOVY PE TN Ypfon evéc tarvori-xégdove A,B € R™ pe 7 = [[;c\ |Ai| Sivovrag
wopr:

us =AY & up = BY

‘Otav o Talyvio 8Vo opddwv etvor undevixo’ afpoloyatog €youpe otL:

U= —Ug = Upg.

B.6.1 Tia TNV UTOXOYLOTIXY] TOAUTAOXOTNTA UTOAOYLoKoVL Nash
Lcopponiag

To mpdTo QUoS EpWTNUA TOU UToEEL Vor ovox el HeTd Tov oploud ploc xhdone mawyviov eivon to
1660 BUOONT, LUTONOYICTIXE PTopel vor amodelyBel 1 andmeipa UTONOYIOUOY onuelwy tooppoTiog
Nash. I'iat vor To amavticoupe autd delyvoupe 6Tt ula xXdon monyviov yvoo g duoxoiiog puropet
vo avary el oe malyvio §00-ouddwy undevixov-abpoiopatoc. Autd BéPata Tpodidet to “xdtw @pdrypa”
e Buoxoiag Toug xou Oyt TO “Gvw”. Anhadr, amodexvioupe oTL To TEOPANUA utohoyiouol Nash
oopponiog oo ev Aoy Todyvia etva §voxoAo yia piot XNAOT) UTOXNOYLG TIXAC TONUTAOXOTNTAG UANS
oL TAnES.

H »\dom molumhoxdtntag yia Ty onola 0 unoloylouds e-npooeyylotixiic Nash woopporiog el-
vou duoxohog elvon 1 xhdon CLS. e auth) v x\dor ta mpofinuata emdéyovton piag cuvdp-
TNong Suvaxol 1) OTolal ENATTMOVETAL ETl TV UOVOTATIOY TOU BENTLOVOUY TNV TROCEYYLO TXN
Noon. H anédeln Pooileton otny avorywyy evée mawyviou cuppdenone oe éva talyvio 80o-ouddwv
undevixov-abpoicuatoq.
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BOewenpa 2. To npdfinua vroloyiopod e-mpooeypotieod onueiov Nash wopponiac eivar CLS-
dvoxolo.

B.6.2 Tia tn Bcwpia BekTicTONOInOoNE 0TOV LUNOAOYLoWS Nash -
copponiag o nalyvia 8Vo-oUddwY

To Beltepo Yépog TV amoteNeoUdTLY og Yo T Bewpla Twv Towyvioy 5Vo-ouddwy undevixoi-
abpolopatoc eotidlel ot YpRon ETAVOANTTIXGY oY 0p(Buwy TedhTou PaBuol yio Tov uTtohoyioud
Nash onpeiov woopgomiac.

IIpotol exBécoupe T0 TMPWTO CPVNTIXG AMOTENECUO TPETEL Vo TPOGBEGOUPE €va OpLOUS Yidt TOV
yopaxtTneloud Tev onuelwyv Nash woopponiog.

Optopdc 9 (Acbevie evotaby) onuela woppornioc Nash). Forw éva onueio wogooniac Nash
x = (21,...,2p). Eotw éu évac maberns j arldler o woerh) otoarnymt) tov x; oe pla auyn amd
boec mailer pe undevixny mdavérnra Hon. Av ddow or dAdow maixtes —j mapaueivovy adidpogor oe
aveny Ty atlayn we mpos g aquiyels orparmymés mov mallovy pe Jetixn) mdavdrnra fon, toTe ToO
onuelo woggomiac x xaleltar aolevds evoradés.

Thpa TopoUCIALOVPE TO TEOTO XL TLO YEVIXO OTOTENEOUS HOC:

BOewpenpa 3. Ta un aodevdc evoradn onueia wopponiac eivar aotaldn ya tov atydpiduo gradient
descent-ascent. Andadn, o atydoduos gradient descent-ascent ovyxdiver oe avtd pe mbavérnra
0.

Ipoywedue ctov opioud evdg mouyviou dLo-ouddwv undevixol-afpolopatog pe 800 TaUXTEIES ovd
oudda. To molyvio xwdixonoleiton ye tov e€nfg xavdva: “cuvtovicou Ue Tic cupTalxTELES xou taie
évar oy VISt matching pennies, un cuyypoviotelc xou xdoe xatd w”, 6mou w elvan plor BeTiny
o tafepr| TUPAUETEOC TOL T VLBLOD.

To mouyvidt awtd To xaholpe generalized matching pennies (GMP) xou opileton and tov nopaxdto
nivoot:

KK KI')TK TT

KK 1,—1 w, —w -1,1
KI'TK | —w,w 0,0 —Ww,w
| 1,1 w—w | 1,-1

Adppo 2 (Movadixd ornueio wopponioc Nash). To malymo generalized matching pennies supa-
viGer éva xat povadixd onueio wogpomiac Nash equilibrium to omolo eivar to

H owoyévewr auth) mouyviov eved elvon amhr, mopopével ula ooyEévela mouyvimy Ur xupTov-
un xoAwV TUEONO TOU 1) UN-XUETOTNTA OPEINETOL AMADC GTNY TONUYROUUIXOTNTA TNS cUVAp-
mone ogérewc. Emnhéov mopatnpodue 6TL o o madyvior ouTtd mingex maxyey u(x,y) #
maxyecy Mingey u(x, y).

TMopdXa autd tar modyviar autd ebvon pior amh ) xon Quoy| yevixeuon Ty viwy 800 ToUXTOV.

9



10 Kegdhawo B. Extetopévn eNknvéyhwoon meplndn

Oewpenua 4 (O akybpbuor GDA, OGDA, EG xar OMWU omoruyxo’cvouv) BOswpnote 10 mai-
o GMP pe w € (0,1). Yrodéote ngpa < 4117 Nogpa < min(w, ) npe < 5, xat Noywy <
min (1, %) ((pgawam ané to péyedoc pruaros yia tovg GDA, OGDA EG, xat OMWU ayti-
oroyya). Ioyder sz oo GDA, OGDA, EG xat OMWU ovyxdivovr ue mavdrnra 0 drav emiléyovue
TVYala TG QQYIXES TUUES TWY OTQATNYIXDY.

TéNog, onuewdvouue TN péBodo mou cuveloPépape YLoL TOV UTONOYLoUS onuelwy oopporiog Nash
1600 og malyvia BVo-ouddwy undevixol abpolopatog 660 xou ot xdfe TOAVADS PN xVETO-UN xolho
70 omolo XavVoToLEl TNV v UVEY XN ToU AVAPEPOUNE.

H péfodoc eivan 1 e€c, ov 2zl =(x",y") xa o' = (HT HT) omou O, 0, elvau (Blog Sidotaoelg
ME T T, Y avTio oy

)
2B+ — 154 2k )+77( o ff((z(k) )) + K (2% — e(k))}

)
9+ —11,{9® 4 Pz — gk )}

Emmiéov K, P elvon mivoxeg xatdAAnhou yeyéfoug xan Utep-topdueteol Tou anyopifuou.
Mrnogolue vo eminéEovue K = k-1, P = p-I dote va e€acparicovye avepEdptntn exudbnon yia
%80 nalxteia. ‘Etol npoywedye oto enduevo Becdpnud pog:

Theorem P.6.1. Ynodéore éva maiymo 8vo-ouddwy undevixov-adpoiouaros obtws wote n wpélaa
s ouddac B va evar U(x,y) xar avtiotoga s ouddac A va shvar —U(x,y). Oswphote éva
onuelo wopponias Nash (x*,y*) pa to malywo. Emnléov éotw:

xar E 7o otvolo twy ibotyudy p tov H pe Setind moayuatind uépos, 8A8. E = {H's eigenvalues p :
Re(p) > 0}. YroOérovue dr o mivaxac H elvar avuiotoéyyuog xar emumléov:

Re(p)? + Im(p)*
,8 Igélg T(p) > r;leag Re( ) .

Oérovtac K =k -1, P =p - 1. Tore, vadoyer apxdvvrws wxpd usyedos friuaros n > 0 xar detxnd
Paduwtd p > 0 pa xdde k € (—F, —a) térowa dote 1 mporewduevn pédodos pe tovs mivaxes K, P
brws tovs emMébaue va ovyxliver tomuxd oto onueio (x*,y*).
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Chapter 1

Introduction

Through the present thesis, we hope to review recent advances in Game Theory and optimiza-
tion and ultimately shed some light on understanding a rather overlooked setting of games,
two-team games. We particularly focus on min-max optimization for Nash equilibrium com-
putation in two-team zero-sum games while we also provide a computational hardness result
for the problem of computing them.

Before delving into technical matters, there is a very natural question for someone to ask: Why
should we care about Game Theory? The answer is that we should care about Game Theory
as much as we care about how rational decisions are made. We very briefly look at different
dimensions of Game Theory and how it has interacted with other sciences as well as society.
Next, we talk about this field’s fascinating meeting with Computer Science at which point we
encounter several matters that organically give rise to the scientific concerns this thesis aspires
to address.

1.1 Game Theory from different perspectives

Short historical note Modern Game Theory is concerned with mathematically assessing
how to act in situations where strategical agents interact with each other. As one might guess,
people have always tried to come up with theories of optimal strategical interactions. Long
before mathematics was involved, strategic thought in the economy, politics, and military affairs
has explicitly been discussed by Indian polymath Chanakya [28] as early as the 4th century
BCE and even earlier particularly for military affairs by Chinese philosopher and strategist
Sun Tzu in the 6th century BCE.

An interesting instance of early mathematical game-theoretic thought has quite likely made
its appearance in the Babylonian Talmud (0-500 CE). It has been argued that an ostensibly
strange solution to a bankruptcy problem given by coincides with the modern game-theoretic
solution of the nucleolus in the theory of coalitional games[4].

Of course, we can pinpoint the release of Von Neumann and Morgenstern’s now classic text [66]
as the milestone for the start of the program for a mathematical theory of games and strategy.
But, there have been instances in mathematical and economic texts where central concepts
of modern Game Theory have made an early appearance. Starting in the 18th century, we
note that a letter dated 1713 and attributed to Charles Waldegrave [5] contributes a mixed-
strategy minimax solution to a game of cards called le Her. Augustin Cournot, in a problem
of duopoly [12] theorizes a solution that coincides with the Nash equilibrium for two-player

11
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games. Moreover, a work of utmost importance to the field is Nash’s proof of the existence of
Nash equilibria in every finite game [43].

Philosophical foundations of Game Theory A game in our context is nothing but a
metonymy for all situations entailing multiple agents that act strategically in order to maximize
their happiness/utility and whose actions affect each other. Of course, the notion of utility and
rationality can only be defined axiomatically. In Game Theory, we suppose that every agent’s
desire is to maximize a measurable quantity that is referred to as utility and a rational decision
is the one that maximizes it. This model of an agent’s desires can be traced back to the
utilitarian philosophy of Jeremy Bentham[6]:

Nature has placed mankind under the governance of two sovereign masters, pain
and pleasure. It is for them alone to point out what we ought to do, as well as to
determine what we shall do. On the one hand, the standard of right and wrong,
on the other the chain of causes and effects, is fastened to their throne. They
govern us in all we do, in all we say, in all we think: every effort we can make to
throw off our subjection, will serve but to demonstrate and confirm it. In words
a man may pretend to abjure their empire: but in reality, he will remain. subject
to it all the while. The principle of utility recognizes this subjection and assumes
it for the foundation of that system, the object of which is to rear the fabric of
felicity by the hands of reason and of law.

We will not argue philosophically whether this exclusionary binary of pleasure and pain is a
good model for the drives of a human person and sequentially the meaning of rationality (see
for example the intricate relationship between pleasure, pain, and a person’s drives drawn in
the work of Sigmund Freud [19]). Nevertheless, we note that even in the textbook that initiated
the project of Game Theory, «Theory of games and economic behaviory, the authors recognize
that the assumption of a numerical value that measures the utility is rather questionable.

Of course, a numerical value that can model the goal of a given agent and the assumption
that an agent’s sole motive is the maximization of this quantity makes for a convenient set of
assumptions in the analysis of strategic interactions.

There is an interesting further discussion on different aspects of Game Theory, briefly narrated
in [34].

Game Theory and Society Undeniably, the formal theory of games began as a part of
Economics. As such, it is bound to have implications that affect societal reality in one way or
the other.

Apart from its impact on Economics, Game Theory has been applied to military applica-
tions [16, 25] and [32] provides a very interesting historical retrospective of Game Theory’s
relations to other fields of society.

Game Theory and Biology Price laid the foundation of Evolutionary Game Theory
or the application of mathematical Game Theory to the genetic Darwinian competition of
evolving populations. Further, Smith and Price initiated game-theoretic research of animal
behavior. Ever since Evolutionary Game Theory has an established collection of works [69, 65,
60]. Many concepts that take into account the dimension of time originate from the encounter
in these fields. Further, the application of contemporary Game Theory results has yielded
mathematically informed conjectures about evolutionary phenomena [38].

12
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1.2 Game Theory & Computer Science

The formal encounter between Game Theory and the Theory of Computation has proven
immensely fruitful for both disciplines. It has yielded a number of directions and concepts that
would be extremely unlikely to have sprouted if the fields had kept on developing individually.
Of course, one of the forefathers of Game Theory, John Von Neumann, has been proven to
be one of the most important computer scientists to date and certain ideas have been shared
between the fields before the more recent formal encounter such as the Linear Programming
Duality theory and the Minimax theorem of Von Neumann.

Today, we can speak about such concepts as the Price of Anarchy and the Price of Stability,
the algorithmic Mechanism Design, the Complexity of computing equilibria, and a lot more
thanks to this fortunate meeting.

The internet itself has catalyzed the development of the field of Algorithmic Game Theory.
Mechanism design theory for example has a broad use in ad markets and auctions taking place
online in intensive volumes. Of course, prior to that, broadband sharing and competition
boosted the need for a theory of congestion games. Notably, algorithmic Game Theory landed
Koutsoupias and Papadimitriou, Roughgarden and Tardos, Nisan and Ronen the Godel prize
for the effects of selfish internet use.

Optimization in games After the ground rules of a game have been laid, what is effec-
tively left for an agent to do is to optimize her strategy or solve the game. We can draw a rough
distinction between algorithms that compute a solution to the game in a centralized manner
or a decentralized one. What is meant by centralized is that the computation of a solution is
performed by a central “authority” of some sort that has access to information regarding every
player while in a decentralized algorithm every agent performs necessary computation on their
own with the information that is only available to them.

As far as centralized algorithms go, Linear Programming offered a way to compute Nash
equilibria in two-person zero-sum games and the Lemke-Howson algorithm did so in two-person
general-sum games. The analysis of decentralized algorithms for equilibrium computation was
done by Julia Robinson [49] who proved the conjectured convergence to Nash equilibrium posed
in [9] for an algorithm (fictitious-play) under which every player acts upon self-interest in a
decentralized manner.

Applications in actual games So far we have not actually talked about Game Theory
applied in games. Actually, through the vehicle of optimization and Machine Learning tech-
niques, several games that were intricate and hard to mathematically reason about have been
“solved” in the sense that some computer software is able to beat the best human players in
each game.

Chess was probably the first game that received attention from the emerging computer science
community. Claude Shannon himself laid his hands on the problem of automating the strategy-
making in chess and contributed an algorithm [55]. Automated chess-playing has improved
in leaps and bounds giving rise to a super-human performance that uses Machine Learning
(reinforcement learning in particular) and optimization theory [56].

The game of backgammon received one of the first applications of optimization in games [64]
that achieved near-human performance through the use of reinforcement learning and a training
scheme that lets the learning agent play against itself.

Checkers is yet another game that has received interest early by the computer science commu-
nity. Arthur Samuel provided the Checkers Playing Program that additionally used Machine

13



14 CHAPTER 1. INTRODUCTION

Learning in its design [53]|. Finally, we mention the crown jewel of automated (board) game
playing that achieves super-human game performance.

The game of go is a board game invented in China more than 2500 years ago and has been
played continually since. It consists of a simple board, two sets of marbles, and two simple
rules. The number of legal moves has been estimated to be around 2.1 x 10170. The game
takes years to master and players receive formal training throughout Asia much like players
of Chess do in other parts of the world. Yet, Deepmind’s AlphaGo [57] managed to beat Lee
Sedol, probably the top player of the game in the world at the time, in four out of five games
in 2016.

Applications in Machine Learning This topic is of special interest for this thesis.
The connection between Machine Learning and Game Theory has as previously mentioned
contributed to several game-playing software applications able to beat the best humans. But
there are many advances in which game-theoretic reasoning made possible, including robust
machine learning models against so-called adversarial examples [36], long-standing state-of-
the-art generative models, namely Generative Adversarial Networks [21, 1].

1.3 Our Motivation

As we briefly mentioned, the joint encounter of Game Theory, Optimization, and Machine
Learning has borne fruit. We can now elaborate on some more technical issues that highlight
the necessity to investigate some settings that very naturally give rise to the question we
concern ourselves with in this thesis:

“Can we (efficiently) compute Nash equilibria in two-team zero-sum games?”

Generative Adversarial Networks Generative Adversarial Networks [21] are a math-
ematical device engineered to capture the parameters of unknown distributions in the form of
Nash equilibria of a (nonconvex-nonconcave) zero-sum game. The game is played between two
opposing neural networks, a generator G and a discriminator D. A generator strives to learn
to mimic a given dataset p. (e.g. pictures) with the goal of making the discriminator unable
to tell between a real sample and a generated/false one. Formally, the optimization objective
is the following:

mDin Hlé'lX ]Ezrwpml [10g D(Z)] + K. ~noise [log (1 -D (G (Z)))} (GAN Opt. Func.)

Since the beginning of GAN research, the instability of its training process (vanilla GDA) made
its presence felt, i.e. the model could enter cycles without ever approximating the distribution
(see [13] for a more nuanced analysis of this behavior). Apart from that, a phenomenon known
as mode collapse was observed — the model outputs samples whose features are centered around
a small subset (mode) of the real distribution. The Wasserstein-GAN [1] forces Lipschitzness on
the function of the discriminator network and uses a Wasserstein distance objective function in
an attempt to remedy cycling behavior and mode collapse. Plus, the training process leveraged
the (at the time novel) Adam optimization algorithm [30].

The theory-oriented part of the community attempted to give solutions to the drawbacks of the
training process. In fact, vanilla GDA was already known to converge only in average to Nash
equilibria in normal-form games. Averaging the parameters of nonconvex function approxi-
mators is irrelevant, hence the interest in methods with last-iterate convergence guarantees.

14
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In fact, [14] devised an Optimistic version of the Adam algorithm beating the vanilla-Adam
trained WGAN in terms of Inception Score.

Multi-generator/discriminator GANs A different approach to surpassing the obsta-
cles of GANs has been followed both by the application-oriented part of the community [44,
18, 26] as well as the theory-oriented one [2]. This approach focuses on the phenomenon of
mode collapse and proposes the addition of extra generators and/or discriminators to rem-
edy it. Arora et al. underline and prove the expressive superiority of multi-generator, multi-
discriminator GANSs.

Questions raised by multi-agent applications Although the results are promising,
the objective function landscape of games between two opposing teams and the training dy-
namics are not very well understood. We follow the thread of these questions and hope to shed
a fraction of light on the equilibrium learning dynamics of such settings.

1.4 Our Contribution

We contribute the proof of the CLS-hardness of Nash equilibrium computation in normal-form
two-team zero-sum games, a class-membership proof that remained elusive and remained an
open question. Next, we show that many first-order algorithms fail to converge in a very simple
(but non-trivial) family of two-team zero-sum games we designed. This family of games can
serve as a benchmark for theoretical and applied future advances. Lastly, we contribute the
design of a novel first-order method that leverages ideas from Control Theory and we manage
to describe a sufficient condition of the last-iterate local-convergence of the method to any
game that satisfies them.
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Chapter 2

Preliminaries

2.1 Convex analysis

Although in the current work we are concerned with nonconvex(-nonconcave) functions and
possibly nonconvex feasible sets, a preliminary note on convex analysis is deemed necessary.
Convex analysis is the field of mathematics occupied with the concept of converity. It is
inherently related to the concept of mathematical optimization and its ideas and tools are
omnipresent in fields like machine learning, leading to a dramatic rise of interest in the field in
recent years. Convexity is —intuitively speaking— about the property of elements of a set being
bound to end up in the same set after certain kinds of “interactions” amongst them. The reader
should probably have by now acquainted themselves with some kind of convexity throughout
their studies. Usually this incorporates thinking about convexity in terms of convex functions
and the property of things ending up in the initial set might seem somewhat confusing. We are
going to try and bridge the layman’s grasp of convexity as tangent lines of a curve remaining
below it at any point and the initial informal description about the property of sets whose
elements will under certain “operations” result in elements belonging to the initial set.

Notation

Notation will not stray from conventions most people hold when writing mathematics. The
d-dimensional Euclidean space will be signified by R?; scalars will be denoted with symbols
like z, y, «, B, etc while random variables will favor capital letters like X and Y. Vectors (be
they random or deterministic) will be written in the usual bold font: z, y, «, B, etc and £,
vector norms will be represented by || - ||,.

2.1.1 Convex Sets

Let’s consider the set of R as well as the sets R where d € N known. Vectors « € R are
d-tuples (21,2, ...,24). We will now move on to discuss certain concepts in the broad concept
of convexity limited to such subsets of R? and functions defined on them. Let’s start with the
elementary definition of a convex set. (We will use the words vector and point more or less
interchangeably for the time being).

Definition 2.1.1 (Convex Set). A subset C of R? is said to be conver when for every pair

17



18 CHAPTER 2. PRELIMINARIES

x,y € C C R? and every A € R for which 0 < A < 1 the following holds:
z=(1-Nx+ yeC

Geometric Interpretation. A set C is called convex when for every pair of points x,y every
point z on the straight line segment defined by the pair lies within C.

Theorem 2.1.1. The intersection of convex sets is a conver set.
Proof. Proof is trivial, easily derived from the definition. ]

Great. We defined what a convex set is using two vectors. What’s in for us if we are to consider
more than two vectors? Best we can do for the time being is a convex combination of vectors.
It’s really nothing fancy:

Definition 2.1.2 (Convex combination of vectors). Let there be n vectors &1, @, ..., x, € R?
and n non-negative coefficients A; such that Ay + A2 + ...\, =1, any vector z for which the
following holds is called a convexr combination of the former vectors:

M1+ Ao + ...+ Ay,

Geometric Interpretation. The set of the convex combinations of n vectors x; is the convez
hull of the set of points defined by x;.

Theorem 2.1.2. A set is convez iff it contains all the convex combinations of its elements.

2.1.2 Geometric concepts in R?

We will now move to define some extensions to certain concepts one finds quite familiar and
useful in 2-D or 3-D space in order to not only establish a common ground with regards to
vocabulary, but also help motivate intuitive geometric thinking as it can prove to be quite
valuable and fruitful in the context of convex analysis.

Definition 2.1.3. (Half-space) Given the space R", a vector a and a scalar b with a € R",
b € R then the set that is defined by the inequality:

aTwa,weR”

is called a (closed) half-space of R™ If the inequality holds strictly (i.e. a'x < b) the set is
called an open half-space of R".

Definition 2.1.4. (Hyper-plane) Let vector a € R™ and scalar b € R be constant and & € R”
a variable. The set of points that lie on the set H defined by the equation:

a x=0b
is called a hyper-plane.

Observe that a hyper-plane in R™ has dimension n— 1. The concept of the hyper-plane extends
what one naturally would call a line in R? (i.e. a sub-space of R? with a basis of dimension
1) and a plane in R3 (i.e. the sub-space of R3 that has a basis of dimension 2). One more
observation is that the vector a is perpendicular to the hyper-plane. Abusing the analogy we
draw between liners R? and hyper-planes in R?, we could also refer to a as the slope of the
hyper-plane.

18
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Definition 2.1.5. (Supporting half-space) Let C' be a convex set C € R™. A supporting
half-space is a half-space that:

e contains C

e has a point of C' on its boundary.
It follows naturally that one would define a supporting hyper-plane in the following way:

Definition 2.1.6. (Supporting hyper-plane) The boundary of a supporting half-space of a
convex set C' is called a supporting half-space.

2.1.3 Convex functions

Since we have already defined some fundamental ideas that will function as building blocks for
more complex concepts, we will move on to discuss the matters that will mainly concern us,
namely convexity with respect to a function.

2.1.3.1 Definitions

Let f be a function mapping values from R? to R. We can imagine f as defining a hyper-
surface in the joint space of its input space and its output space, R x R. The points above
that surface whose perpendicular projections on R? remain in dom f form the epigraph of the
given function. More formally:

Definition 2.1.7. An epigraph of a fuction f : R™ — R is said to be the set of points (x, u)
such that u > f(x) and it is noted as:

epif = {(z,p) [n > f(z)}

In 2.1 the epigraphs of two different function can be seen.

S
g()

dom g

Figure 2.1: Two different functions with their respective epigraphs (the fading red
areas)

19
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Definition 2.1.8 (Convex function). A function f : R? — R is said to be convex when dom f
is convex and for any x,y € dom f for any ¢ € [0, 1] the following inequality holds:

flte+ (1 —t)y) <tf(z)+ (1 —-1)f(y)

When the latter inequality is strict we say that f is strictly convex.

This definition can extend to what we will call Jensen’s inequality, generalizing the inequality
from the convex combination of two points to a convex combination of n points is something
that can at times be proven quite useful.

Theorem 2.1.3 (Jensen’s inequality). Let f be a convex function, x1,xs,..., &y, € dom f
and A1, Aay ...y Am € [0, 1] such that Ay + A2 + ...+ Ay = 1. Then, it always holds that:

f()\lacl + Aoy + ...+ )\mazm) < >\1f(iL‘1) + )\Qf(wg) + ...+ )\mf(il:m)
Another definition of a convex function is the one that uses a function’s epigraph.

Definition 2.1.9 (Convex function — alternative definition). A function is convex when epif
is a convex set.

We can also demonstrate that the two latter definitions are equivalent.

For the sake of completeness, we will need to give the definitions of some more concepts, namely
that of the effective domain, which we have already used without giving a proper definition,
and that of a proper function.

Definition 2.1.10 (Effective Domain of a Convex Function). The effective domain of a convex
function dom f is the set of x s.t:

dom f = {z | f(z) < —oc}

Definition 2.1.11 (Proper function). A function f is called proper if its epigraph is non-empty
and contains no vertical lines.

Proposition 2.1.1. Let f be a convex function, f is proper iff there exists at least one point
@ such that f(x) < 400 and f(x) > —oo anywhere else. Or equivalently, its effective domain
dom f is non-empty and f takes at least one finite value.

One more theorem we are going to state about all convex functions, but not yet prove, is the
following one that can make us think of convex functions in an intriguing way.

Theorem 2.1.4. Fvery closed convex function f is the pointwise supremum of the colleciton
of all affine functions h such that h < f.

Geometric Interpretation. The latter tells us that if we consider a function f : R — R, the
curve defined by f can be described at any one of its points as the maximum value of all the
lines h for which h < f.

20
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2.1.3.2 First and Second Order Conditions

Of course, however easy it might be to grasp the definition, it could fall short in usefulness or
practicality with respect to trying to characterize a function as being convex or not. Luckily
the next two theorems —restricted on differentiable and twice differentiable functions— can offer
a way that can prove quite helpful in characterizing functions as convex or not.

Theorem 2.1.5 (First Order Condition). Let a function f : R? — R be differentiable. Then,
f is convex iff dom f is a convex set and for any x,y € dom f the next inequality holds:

fy) > f(x)+ V(@) (y - )

Geometric Interpretation. What the latter means is quite simple to comprehend. Given two
points z,y € dom f, regardless of their relative position (i.e. it could very well be z < y or
x> y), if we were to start following the tangent line to the curve that passes trough (z, f(z))
with horizontal direction that would lead to y, we will consistently find ourselves below f(y).
We tried to illustrate this in figure 2.2.

(v Vi@ —n) +

Figure 2.2: Illustration of the first order condition

Theorem 2.1.6 (Second Order Condition). Let a function f be twice differentiable and dom f
convex. Function f is convez iff for every x € dom f:

V2f(x) =0
(i.e. the Hessian matriz' of f is positive semi-definite or z' V2 f(x)z > 0,Vz)

2.1.4 Conjugate Transform & Fenchel’s inequality

In this section we are going to discuss the conjugate transform of functions. It is a transform
that maps the parameters of hyper-planes tangent to the curve of a function to a certain value.

0? o2 52
oa? 0r,0zs Oz, Oz,
o> 52 92
'Reminder: V2 = 912 Oz 8737% T 20 Oz,
? o2 52
Oxn Ox1  Oxyp Ox2 o @
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It may not be the first time one sees such a transform, one that shifts our attention to a
parameter space.

Our subject revolves around tangent lines (or hyper-planes for function domains with dimension
greater than 1) on a convex function. We will demonstrate a way that has been devised in
order to represent elegantly the whole set of these tangent lines.

Definition 2.1.12 (Convex conjugate). Let a function f be convex. We define its conjugate
transform as the function f* such that:

ff(p)= sup {p'z— f(x)}

xcdom f

Frankly the definition seems a bit awkward. Considering its geometric interpretation could
maybe shed some light as to what this is supposed to mean.

Geometric Interpretation. The conjugate transform of a function f is merely a function f*
that maps slopes a to the maximum available offset 8 such that the given line ax + 8 will be
tangent to the curve defined by f.

T

f*(tanby)

|

T P
£*(tans) .

n -

Figure 2.3: Geometric meaning of the conjugate transform

The conjugate transform f* of a function, f if certain conditions hold for the latter, can give
us all the information we need about f. Keeping in mind the theorem about f being described
as the point-wise supremum of all affine functions h such that A < f, it seems rather intuitive.
We will state this formally:

Theorem 2.1.7 (Fenchel-Moreau Theorem). Let f be lower semi-continuous’ and conver,
then:

fr=r (2.1)
2.1.5 Subgradients, subdifferentials
2.1.5.1 Definitions

This section is concerned with function that are not everywhere differentiable. Although we
cannot define a gradient at a given point, it may be sufficient to substitute an exact gradient

*Reminder: A function is lower semi-continuous at x if for every e > 0 there exists a neighborhood
U of xo such that f(x) > f(xo) — e Vo € U if f(z0) < +o00. Else if f(zo) — +oo then f(z) = +oo as
well.
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with slope-vectors that will always undeshoot the value of function in question for any given
pair of points.

However informal is the initial description of the subgradient might have been, the formal
definition does not fall far:

Definition 2.1.13. (Subgradient) Let a function f be convex. Any vector p is called a
subgradient of f at a point € dom f if for any z € dom f:

flz)> flx)+p'z—=

Definition 2.1.14. (Subdifferential) The set of every subgradient vector of a convex function
f at point x is called the subdifferential, 0f(x), of f at point .

In figure 2.4 we tried to illustrate a number of subgradients for the function f that is not
everywhere differentiable.

df (o)

Figure 2.4: The subdifferential df(x) is the set of all subgradients which are repre-
sented by the red lines. A subgradient at point xg will always undershoot the value of
f at any point z.

Since we have seen a quite intuitive definition of the subdifferential, why not use our intuition
as a stepping stone in order to grasp a more technical definition of it? Before we move on
to define subgradients alternatively, we will need to remind ourselves the notion of directional
derivatives.

Definition 2.1.15 (Directional Derivative). The directional derivative f'(-,-) of a function f
at point « in direction d is defined as:

o [ td) — f(@)
f'(a.d) = lim .

(Obviously, ¢t > 0)
We can now define the subdifferential with respect to the directional derivative.

Definition 2.1.16 (Subdifferential-Alternative Definition). The subdifferential 9f of f at
point @ is the set defined as such:

Of(x)={s|s'd < f'(x,d), vd € R}

Vectors s are the subgradients of f at point x.
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2.1.6 Fenchel’s inequality

Since we have now seen both the conjugate transform and the definition of the subgradient,
we can move on to state Fenchel’s inequality:

Theorem 2.1.8 (Fenchel’s inequality). For any subgradient vector p € f*(dom f*) and any
x € dom f the following inequality stands:

)+ flx)>p'x

2.1.7 Mean Value Theorems

Subgradients seem to magically lift restrictions placed upon the validity of known theorems
when functions are non-differentiable. An instance of this is the reinstatement of the mean
value theorem for functions that are convex but not everyhwere differentiable.

Theorem 2.1.9 (Differential form). Let a function f : R — R be convex. For any x,y €
dom f, there will always exist a t € (0,1) for which z =tx+ (1—1t)y and s € Of(z) such that:
fy)—fla)=z"y -z

Theorem 2.1.10 (Integral form). Let a function f : R — R be convexr. For any x,y € dom f
with z = tx + (1 — t)y and any collection of subgradients on points z(t), ¥t € [0,1] (i.e. for
every point between x and y):

fly) = f(x) = /tl (af(z(t)))Ty—:cdt

=0

2.1.8 Extending convexity theorems to non-differentiable functions

We can now extend some previously stated theorems for the convexity of differentiable functions
to functions that are not everywhere differentiable.

Lemma 2.1.11. The following are equivalent:
(a) f is convex
(b) (First Order Condition Analogue)

fy) > f(@) + 5. (y — ) (2.2)
(c) (Monotonicity of Subgradients)
(8y —82) (y—x) >0, Va,y and any s, € df(x), s, € If(y) (2.3)

2.1.9 Strong Convexity

As we can observe, if a function is convex it means that we can bound every value of the function
if it lies between two other given values of that function. There is one more — quite stronger —
bound we can define for certain functions. The latter functions are the ones that we are going
to call strongly convex. In strongly convex functions, values of the function intermediate to
any pair of points , y € dom f can be bound with combination of the previously stated bound
and an appropriate parabola (more or less what we would call a bowl).

Since there is not much consensus in the most popular texts on the matter and although some
authors choose to speak of strong convexity in the context of twice differentiable, we chose
to give a more liberal definition of strong convexity —following [24]— that is not immediately
concerned with differentiability.
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tf(z) +(1 —\t)f(wz)

(z2, f(x2))

— f(=)
(21, f(x1)

tf(z) + (1 =) f(w2) — 2t(1 —t) (22 — 21)?

Figure 2.5: A strongly convex function is not only bounded by the straight black line
but the red line as well

Jla) =27

//

Figure 2.6: Function f(z) = 2% is not strongly convex as f”(x) can be arbitrarily close
to 0 for x <0

Definition 2.1.17. (Strong Convexity) A function f : R™ — R is said to be a strongly convex
function with coefficient (more precisely, modulus) m if the latter inequality holds:

m
- —t

fltz+ (1 —t)y) < tf(@)+ A=) f(y) - St - t)llz - yl3

is convex.
Lemma 2.1.12. A function f is strongly convez if f(x) — 2||x||? is convez.

Remark 1. If f : R* — R is twice differentiable, then f is strongly convex iff the next sentence
holds for some m > 0:
V2f = mI

Lemma 2.1.13. The following sentences are equivalent to f being strongly convex with modulus
m (or m-strongly-convex ):

(a) fy) = f(2) + s (y— ) + 3 |y — 2l (2.4)

(b) (sy = 8:)" (y — ) > mlly — |3 (2.5)
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2.1.10 Lipschitz Condition

One way to implicitly speak of functions whose (sub-)gradients are bounded is to use the
definition of them being A-Lipschitz or not, specifically when the slope of every one of its
tangents is bounded by A. Such a function is said to satisfy the Lipschitz Condition.

Definition 2.1.18. (Lipschitz Condition) Let a function f : R™ — R™. The function is said
to be A-Lipschitz or to satisfy a Lipschitz Condition if there exists a constant A € R,A > 0
such that for any x,y € R™:

1£(y) = f(@)]] < Ally — |

We complement the definition with two examples of one function that satisfies the Lipschitz
Condition and is not everywhere continuous and one that is continuous everywhere and does
satifisfy the Lipschitz Condition.

f(z) =07z, x #0.5

Figure 2.7: The straight line that has one point of incontinuity satisfies the Lipschitz
Condition

(x) = Asinzx N YW

Figure 2.8: The tangents of Asinx at any given point x never get into the red area
defined by the two red lines defined for ¢’s that correspond to given x.
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2.2 Game Theory Basics

The term game theory is an almost euphemistic way of referring to the mathematical study of
interactions between self-interested agents modeling settings that can span from armed-conflict
to a game of rock-paper-scissors. Each agent’s interest is modeled through utility theory. A
player’s utility is the measure that is used to quantify the compatibility of an outcome of the
game with their interests.

A simple example

In order to help the reader gain some intuition, we start by stating a simple example:

Rock-Paper-Scissors Rock-paper-scissors is a game played between two players that lasts
only one round. Each player has a selection of 3 moves/strategies (namely rock, paper and
scissors). Each player picks their move and simultaneously reveal their choice. A player can
win or lose and there can be only one winner.

In terms conventional to game theory:

e this is a 2-person game

e cach one of the 3 moves is a (pure) strategy and can be thought of as three perpendicular
unit vectors, e, ez, e3. (More precisely strategy is the player’s all-or-nothing bet that
the corresponding move will win)

e The rule by which we decide which one of the played moves wins can either be formulated
as a matrix and in that case the matrix would be called a payoff matriz, or it could be
thought of as a function, in which case it would be called a payoff function

e the fact that only one player can be a winner for every instance of the game makes the
game a zero-sum game. Think about winning as having payoff 1 and losing as —1, in
that case the sum of every player’s payoffs equals to 0

The general case The latter may not always hold, in the sense that:

e a game may have more than two players. Such a game is obviously called a N-player
game

e a player need not go all-in on each move but can rather place partial bets on several
ones. Such a betting is called a mized strategy.

e it may not always be true that the sum of the payoffs is equal to zero. Such games are
called general-sum games

2.2.1 Normal-form Games

The normal form (also known as strategic form and matriz form) is a very common represen-
tation of games. This way of representing a game is its representation as the collection of the
utility gained by every player for each and every combination of different decisions they are
able to make. To be more precise, what we refer to as decision is more formally referred to as
a (pure) strategy.

More formally, we move on to the mathematical definition of a normal-form game:

Definition 2.2.1 (Normal-form game). A normal-form game is a tuple I' = T'(V, A, u) :
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e a finite set N of N players, N ={1,--- N}

e a collection of finite action sets A = {41, -+, Ay} where A; is the set of available pure
actions/strategies available to player 4

e a vector-valued function w = (u1,--- ,un) where the i-th entry is the utility function of
player i, u; : A(A) — R that maps a distribution of actions to the utility /payoff this
player enjoys .

As strategy vectors are probability vectors and probability vectors live in spaces commonly
referred to as probability simplices, we should provide a formal definition of what a simplex is:

Definition 2.2.2 (m-simplex). Consider an m-dimensional space and vectors vg, vy, ..., Umn
drawn from the former space. If the vectors v; — vg, ..., v, — vg are linearly independent, the
convex hull of these vectors (namely, the intersection of all convex sets that contain the points
Vo, .., Vm) Is sald to be an m-simplex, A™.

It may have become apparent that we can speak of the vectors vg, vy, ..., v,, as the vertices
of the simplex as well.

Definition 2.2.3. A simplex P is called a probability simplex or a standard simplex if

P:{x:90v0+...+9mvm:6i20,2&21}
=0

That means that all points of P lie in the convex set defined by the origin 0 and m unit
vectors of R™. We note that one very popular way of denoting the probability simplices of the
strategy-space is A(A).

2.2.2 Two-Player Zero-Sum Games

Definition The relationship between optimization and games enjoys an early start. This
becomes apparent with the intimate relationship shared between two-player zero-sum games in
normal-form and Linear Programming. In fact, Von Neumann’s Minimax Theorem predates
both the Duality Theorem of Linear Programming and Nash’s Theorem itself.

This kind of games is probably the most studied one. It provides a gentle start into the theory
of games and remains important to this day. A formal definition of a two-player zero-sum game
is the following:

Definition 2.2.4 (Two-Player Zero-Sum Game). A two-player zero-sum game in normal form
is a tuple I' = T'(V, A, u) with:

e the number of players |A| = 2

e the strategy space A consisting of two finite sets of pure strategies for each player A =

{51, 82}

o u=1uy=—u; andu = x' Ay where A € R"*"™ is the payoff matriz and vectors x, y with
x € A(S1), y € A(S2) being the possibly mixed strategy vectors of the row/minimizing
player and the column/mazimizing player respectively.
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Linear Programming Here we demonstrate how a two-player zero-sum game can be
formulated as a linear program and consecutively be “solved” in polynomial time. Without
invoking Nash’s theorem, by Strong Duality we can demonstrate that there exists a (possibly
mixed) strategy profile &,y from which no player can improve their utility by unilaterally
deviating. We refer the interested reader to the standard reference for Linear Programming|[29].
Let the two-person zero-sum game with a payoff matrix A € R**™ and vectors € A(S),y €
A(S2) controlled by the minimizing player and the maximizing player respectively.

What the minimizing player® seeks to succeed is to minimize the value u that the maximizing
player can take from them. This value has to be greater or equal than the value the maximizer
can accomplish with any one of their pure strategies which translates to the elementiwise vector
inequality " A < u. Keeping in mind that = has to remain in the simplex, we quickly derive
the following linear program:

minZu (2.6a)

s.t. x'A<u (2.6b)

(P) x'1=1 (2.6¢)
zq 2 0, Va € A (2.6d)

)

s.t. Ay > z 2.7b)

(D) y'1=1 (2.7¢)
yp > 0, Vb e B (2.7d)

We observe that the dual program is precisely the (symmetrical) objective of the maximizing
player; maximizing a value z that will be less or equal to every entry of the vector of payoffs
Ay.

It is straightforward to see that that the primal program is feasible and bounded, hence the
dual program will be feasible and bounded and the two programs will share the same value,
i.e. let &, u and g, 2 be the respective solutions of the two programs then:

u=x"Ag =2 (2.8)
By the Weak Duality of Linear Programming we also have that:
min  max x' Ay > max min z' Ay. (2.9)
TEA(S1) YyEA(S2) YEA(Sy) wEA(S))

We can now observe that there is no unilateral deviation from (&, y) that yields a utility better
for one of the two players:
&' Ay <z Ay <z Ag. (2.10)

As we will see, this is the definition of the Nash equilibrium in two-person zero-sum games.
We conclude this part by stating Von Neumann’s Minimax Theorem:

3or row player since they control the row of matrix A
4respectively, column player as they control the column of matrix A
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Theorem 2.2.1 (Von Neumann’s Minimax Theorem). For any two-player zero-sum game with
a n X m payoff matriz A, there exist a value V' — the value of the game — satisfying:

minmaxx ' Ay =V = maxminz ' Ay (2.11)
rzEX yey Yyey zeX

2.2.3 Solution Concepts

Apart form the concept of the Nash equilibrium that we roughly touched upon in 2.2.2 we will
discuss a number of different solution concepts starting from a formal definition of the Nash
equilibrium.

Different solution concepts become useful depending on the setting we seek to analyze and the
computational constraints we are subject. For example, in transportation networks inside a
city, the governing body of the city does not trust self-interested drivers for the reduction of
overall traffic and seeks to coordinate the congestion game played among car drivers through
traffic lights, mass transportation, closing certain parts of the network etc.

With regards to computation of a “solution” to a game, we will not be able to compute a Nash
equilibrium in polynomial time as seen in 2.2.2.

2.2.3.1 Pure & Mixed Nash Equilibria

The first solution concept that we will discuss is that of the pure Nash equilibrium. A pure
Nash equilibrium is a strategy profile consisting of only pure strategies from which no player
can improve their utility through unilaterally deviating.

Not all games have a pure Nash equilibrium. One that has is shown in table 2.1. The Nash
strategy is for both players to play action A.

Player 2
A B
Al (2,-2) ] (3,-3)
B | (1,-1)| (0,0)

Player 1

Table 2.1: A zero-sum game with a pure Nash equilibrium

The formal definition of a pure Nash equilibrium is the following:

Definition 2.2.5 (Pure Nash equilibrium). A pure strategy profile a = (ay,...,a,) of pure
strategies a; € A; in a utility maximization game is a Nash equilibrium (PNE) if for for every
player i € [n] and every pure strategy a; € A; the following inequality holds:

wi(a) > ui(afsa;_y) (PNE)

Next, we consider mized Nash equilibria which are guaranteed to always exist [42].

Definition 2.2.6 (Nash equilibrium). A product-distribution = = (z1,...,z,) of distributions
x; on A; of strategy profiles in a utility maximization game is a Nash equilibrium (NE) if for
for every player ¢ € [n] and every pure strategy a; € A; the following inequality holds:

]anz [u1 (a)} 2 anz [U’L (a;; ai*l)] (NE)
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For this case we give the example of the game of matching pennies. Two players, Max and
Rose, have a penny (coin) and pick either one of its side. Max wins when he draws the same
side as Rose, i.e.when he matches his side with hers; Rose on the other hand wins when she
draws the side that Max will not. The payoff matrix is given in table 2.2. The unique Nash
equilibrium is attained when both players pick each side of the coin uniformly at random, i.e.
each with probability %

Player 2

A B
Al (1,-1)| (-1,1)
B | (-1,1) ]| (1,-1)

Player 1

Table 2.2: The game of matching pennies

2.2.3.2 Correlated and Coarse-Correlated Equilibria

The next solution concept is due to [3]. It offers an alternative that steers off the complexity of
computing a Nash equilibrium along. Players are able to coordinate their actions with respect
to a source of randomness that is external to them. As such, we are not constrained to product
distribution of randomized strategies, but rather on a distribution on every pure strategy
combination. Formally, a correlated distribution belongs in the simplex defined on A, A(A)
and is not constrained in the product of simplices of every player’s actions A(A;) x -+ - x A(A,).

Definition 2.2.7 (Correlated equilibrium). A distribution x on the set Ay x- - - x A,, of strategy
profiles in a utility maximization game is a correlated equilibrium (CCE) if for for every player
i € [n] and every pure strategy a} € A; the following inequality holds:

Eone [ui(a)] > Eons [uiaj; ai—1)lai] (CE)

This solution concept has a very intuitive description. Instead of allowing players to randomize
their strategies independently, there exists a benevolent dictator that is trusted by all players.
The dictator samples a pure strategy profile a from x and reveals every a; privately to player
i. Given that player ¢ has observed the suggestion a;, they have no incentive to deviate given
that everyone else plays according to a. Moreover, Nash equilibria are also a special case of
correlated equilibria, hence CE are always guaranteed to exist.

A very natural example is the game played between two drivers on a road conjunction. The
players can select to cross the road (GO) or stay put (STOP). When they both cross the road,
a terrible accident takes place taking a toll on both players’ utilities. If the one of them stops
and the other one passes, they get a utility of 0 and 1 respectively. The payoff matrix is seen
in table 2.3. This game has two pure strategy Nash equilibria (STOP,GO), (GO,STOP) and
one mixed Nash equilibrium where both players play STOP with probability %. In general,
this is by no means an favorable state of affairs. It is only through the use of a traffic light that
a much preferable situation rises. Namely one where only one of the two drivers is instructed

to go each time and this driver is picked uniformly at random.
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Driver 2 Driver 2
GO STOP GO | STOP
Driver 1 GO_| (0,0 (0,1) Driver 1 GO 0 1/2
STOP | (1,0) | (—100,—100) STOP | 1/2 0

Table 2.3: A game between two drivers & and a CE

One more solution concept we define is that of the Coarse Correlated Equilibrium. Similar to
a correlated equilibrium, in a coarse correlated equilibrium there will be a suggested action a;
when «a is drawn from x. But a; will only be required to be a best response in expectation
before observing the instruction to play a;. The player must decide whether they will play
according to the instruction a; before seeing it. In the case that they were allowed to observe
it before deciding, there could very well exist a best-response other than a;. Formally:

Definition 2.2.8 (Coarse-correlated equilibrium). A distribution x on the set Ay x --- x A,
of strategy profiles in a utility maximization game is a coarse-correlated equilibrium (CCE) if
for for every player i € [n] and every pure strategy a; € A; the following inequality holds:

]anz [u1 (a)} Z anm [uz (a;; ai*l)} (CCE)

An example is given in tables 2.4. Let x be a distribution as the one seen on the right table
and a be one of its realizations. If both players decide to commit to instruction a without
seeing it, the expected payoff they will get is & - (14 1 —1.1) = 0.3. Now, let one player play
according to a and the other one deviate from a. If the deviating player plays actions A or B,
they will experience an expected utility of 0 while if they play C they will experience a utility
—13—1. No convex combination of 0 and =} is better than 0.3 hence no player has an incentive

3
to deviate from a without seeing it.

Player 2 Player 2
A B C A| B | C
Al 1) | (=1,-1) (0,0) Al1/3
Player 1 | B | (—1,—-1) (1,1) (0,0) Player 1 | B 1/3
cl (0,0 (0,0) | (-=1.1,-1.1) C 1/3

Table 2.4: A general-sum game and a CCE

2.2.3.3 Approximate Nash equilibrium

Finally, we define the notion of an approximate Nash equilibrium that becomes relevant when
we try to compute Nash equilibria in games that are not bi-linear. An e-apprxoimate Nash
strategy yields an outcome that any deviation is only better by at most a margin of e.

Definition 2.2.9 (e-approximate Nash equilibrium). A mixed strategy profile z = (x1,...,z,)
in a utility maximization game is an e-approximate Nash equilibrium (e-NE) if for for every
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player i € [n] and every deviation x} € A(A4;) the following inequality holds:

wi(z) > ui(zh;2-1) — € (e-NE)

2.2.4 The Nash Theorem

The proof of the existence of Nash equilibria in all finite games[42] is cornerstone not only to
game theory but also to an array of different scientific fields as well. It most certainly deserves
discussion on its own, and this is something we will do now.

Preliminaries In order to start talking about equilibrium points in games we need to
familiarize ourselves with a couple of tools. In order to prove the existence of an equilibrium
point in a finite N-person game we will need the Brouwer Fixed Point Theorem which in turn
needs Sperner’s Lemma.

We will use an analogy from a common practice in building wire-frames in order to get into
graph theory gently. For this purpose a graph’s edge will be represented by a stick and a joint
made out of playdough that will stand in the place of a graph’s vertex.

On Sticks, Colored Playdough, and Triangles (Sperner’s Lemma)

One dimension and Two dimensions We are given n buckets of playdough — each
bucket’s content is colored uniquely — and as many identical sticks as we like. Using playdough
to construct joints we connect sticks together. The joints are what we refer to as nodes or
vertices in graph theory and the sticks are called edges. The color of the playdough will remain
named as such.

Let us imagine a simple recipe for constructing however large structures starting from a single
dimension structure. Consider a line consisting by a series of edges connected consecutively
by edges. We pick 2 different colors to label with the rightmost and the leftmost vertices
respectively. Now, we can color the rest of the vertices using the same 2 colors.

Lemma 2.2.2 (Sperner’s lemma in a single dimension). Given a set of vertices and edges that
alternate forming a straight line with one vertex on each end of the line and two distinct colors;
if the two ends are colored differently and the intermediate vertices can be colored only by the
same two colors used for the two ends, then the number of color changes between the vertices
of line will be an odd number.

Of course, the latter are trivial. We shall now state the rule for building greater structures as
promised.

Top-Down Approach Form a large triangle consisting of 3 big sticks and 3 distinctly
colored pieces of playdough. We will now break every edge to as many pieces we may in order
to be able to create more connections within the initial triangle. But there are some rules to
that; every time you break one of the exterior edges you have to stick them back together using
playdough of the same color found on its ends. Also, every time you break one of the exterior
sticks you have to make sure that no other polygon than a triangle is formed, you will have
to break any other edge you find necessary while respecting the rule that every node of each
side of the exterior triangle is colored with either one of the colors found on the two respective
ends.
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The top-down approach may — in all honesty — seem a bit cluttered, so let’s try a bottom-up
one.

Bottom-Up Approach Consider a new bucket of playdough. The playdough is col-
ored gray and we will consider it as a colorless placeholder for replacing it later with one
that is colored. We construct a simple triangle with 3 sticks and gray playdough. We start
building up from the initial simple triangle by making sure the outer shape remains a tri-
angle by either adding two new sticks and a new joint. When and if - as required - the
outer edges still form a triangle we may stop the building phase and initiate the coloring
phase. For the coloring phase we pick a unique color for every one of the vertices of the
outermost triangle. We color every joint of the outside triangle — color as in replace the
gray plaster with a colored one — with strictly either one of the colors found on one of the
two ends. The interior vertices need to be colored as well, but we can do so randomly.

We remind the reader that such a wire-frame made of playdough and sticks is a graph G(V, E),
whose vertices V' are the joints made of playdough and its E are the sticks we used. The color
of the playdough is a label we assign to every vertex v € V. The colors can be equivalently
thought of as an integer.

Definition 2.2.10. A triangle is called distinguished if its vertices are colored by all 3 colors.

Lemma 2.2.3 (Sperner’s lemma on a planar graph). Every properly colored triangular subdi-
vision (or triangulation) of a triangle has an odd number of 3-colored triangles.

More than two dimensions In order to move on to more than two dimensions one should
seek for a generalization of the notion of a triangle. The generalization in question is a simplex.
In the 0-dimensional case a simplex reduces to a point, in the 1-dimensional case a simplex
reduces to a line, in the 2-dimensional case a simplex is a triangle, in the 3-dimensional case a
simplex is a tetrahedron (a pyramid whose every side is a triangle) and lastly a 4-dimensional
space is called a 5-cell (as it consists of 5 tetrahedra). Some authors symbolize m-dimensional
simplices (or m-simplices) with A™. We also define the “faces” of a given simplex as:

Definition 2.2.11 (k-face). A k-face of an m-simplex, is merely a k-simplex defined by a
subset of the m + 1 vertices of the initial m-simplex such that k& < m.

We name P the m-simplex defined by vg, vy, ..., Up.

Sperner coloring on an m-simplex Let S be a set of vertices and edges lying inside
an m-simplex including vertices and the edges of the m-simplex itself. The points of S define
smaller m-simplices that divide the larger simplex into disjoint spaces. S is also called a
triangulation of P. Keeping in mind that colors are refered to uniquley as color 0,1,2,...,m,
a valid Sperner coloring is a coloring of every vertex for which the following hold:

e Every one of the m + 1 vertices that define the m-simplex get a unique color 1 through
m + 1. (With no loss of generality and for the sake of clarity, the vertex v; gets the i-th
color.)

e Vertices of S that lie on a k-simplex defined by a subset of {vy, ..., v} can only receive
colors whose numbers coincide with the indices of the k + 1 vertices that define the
k-simplex in question. (e.g. vertices lying on a 4-simplex defined by {vg, va,v4,v5} can
only be colored with colors {0,2,4,5})
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Lemma 2.2.4 (Sperner’s lemma on an m-simplex). Given an m-simplex P, a division S
of P that retains a valid Sperner coloring with m + 1 colors, there exists an odd number of
m-simplices inside P that carry all m + 1 colors.

Brouwer Fixed Point Theorem

Theorem 2.2.5 (Brouwer Fixed Point Theorem). Let a set K C RY be convex, closed and
bounded. A functionT : K — K that is continuous has at least one x € K such that T (x) = x.

We prove the Brouwer theorem on K = A™ by means of the Sperner Lemma. We show that
there is a relation between entries of @ € K and T'(Q) that can be considered as a valid
Sperner coloring. We will talk of k-faces of A™ as being constituted by k vectors v, vectors or
the indices of these vectors interchangeably.

Proof. We consider the case that K = A™. Since every Q = (q1,...,qm) € K and
T(Q) = (T1(Q),...,Tn(Q))e K we know that:

Z%‘ZZTi(Q) =1

By means of the pigeon hole principle we can conclude that there exists at least one index j
such that ¢; > T;(Q).

If @ happens to lie on a k-face of the larger A™ simplex, we know that there are several
non-zero ¢q; > 0 with ¢ € I, where I signifies the indices of the vectors v, that constitute the
k-face in question. Apparently, for the rest ¢; s.t. i ¢ I, ¢; = 0.

Combining the two latter propositions, since the entries ¢; that refer to the vertices perpendic-
ular to the current k-face are zero, we can pick a j s.t. ¢; > T;(Q) from only the set of indices
that constitute the current k-face.

Picking an index from those that correspond to the set of vectors that construct a k-face is
directly equivalent to picking a color that is compatible to a Sperner coloring — remember that
a vertex’s color can only come from the set of colors of the vertices that constitute the k-face
in question.

We firstly use this rule on the vertices of A™ as to assign a number 0 through m + 1 to each
color.

Picking arbitrarily many points ); we can create an arbitrarily small triangulation S of P that
has a valid Sperner coloring. Thanks to the Sperner lemma for the multi-dimensional case, we
know that there is an odd number of cells (smaller m-simplices) of A™ such that every vertex
is uniquely colored. But, having a cell being uniquely colored means that for every vertex
QM. re{0,1,...m}:

0" > T,(Q™)

If all Q") can come infinitesimally close to each other depending on the number of initial

points in S, we can conclude that there will be such a point Q* = (¢7,. .., q},), infinitesimally
close to the points Q") of the distinguished simplex that since Yuar=1=>.T;(Q") and
q; > T;(Q*) it must inevitably hold that Q* = T'(Q*) |

2.2.4.1 Nash Equilibrium

We will consider a game in normal-form with finite players and finite moves for each player.
Just to be clear, a lowercase Latin letter (e.g. 1i,j,k) signifies one out of n players and a
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lowercase Greek letter signifies one of m moves. Each player’s strategy can be represented by a
vector T; = (Tia, Tify - - -, Tin,--.) € AL C R? whose every entry i holds the player’s betting
on the i-th move. It may be obvious that we consider that > A Tix = 1,230 > 0. More formally:

Definition 2.2.12 (Finite Game). ° A finite n-person game is:
® a general-sum game
e consisting of n players

e each player ¢ is associated with an m-dimensional strategy vector x; € A™. A mized
strategy vector is a vector whose entries sum to one. Pure strategies (i.e. x; = e;, for
some k € {1,...,m}) are special cases of mixed strategies.

e cach player i is associated with a payoff function p; : A™ x --- x A™ — [0,1]. Payoff,
N ——
n
the scalar value of a payoff function, could be referred to as wtility as well.

We will also define some auxiliary observations and notations; the k-th pure strategy of the
i-th player will be denoted by e;, and a mixed strategy x; = (x1,...,%,,) can equivalently
be written as ), zj.ei.. Also, s will be the tuple of all mixed strategies (x1,...,2y,) and a
swapping of i-th player’s strategy vector x; with a new one T; will conveniently be noted as
(s;T;). Successive substitutions ((s;T;);r;) will be indicated as (s;T;;7;). A pure strategy
k is said to be used by player ¢ when the coefficient x;; > 0. We also define p;, as replacing
player i’s mixed strategy with the pure strategy e;.

Theorem 2.2.6 (Nash Theorem[42]). Every finite N-person game has a Nash Equilibrium.

In plain English, the latter means that an equilibrium point is an n-tuple of mixed strategies
such that no player can unilaterally (i.e. by themselves) increase their payoff if the strategies
of all other players are held fixed.

Theorem 2.2.7 (Existence of Equilibrium Points). FEvery finite general-sum game has an
equilibrium point.

Proof. The proof we selected relies on the Brouwer Fixed Point Theorem. We will define a
function T : s — s’, that maps a strategy s to a new one s’.
First off, we observe that p; is linear with respect to every strategy vector x; and n-linear with
respect to all n of them. Consequently:
max p;(s;r;) = maxp;(s;e;
v pi(s;Ti) 2 pi(8; €ix)
Then we let a function ¢;,. be a continuous function used as an indicator of how much would

a player’s payoff would improve if they were to play a pure strategy x instead (deteriorating is
as good as no change at all):

¢ir = max{0, pix(s) — pi (s)}

With the help of the ¢; functions we move on to define a function T'(s) = s’ that will perform
an one-step payoff increase for every player’s strategy (if no increase is possible, payoff stays the

In a more general case, not all players need to have the same number of moves but this will not
concern us at the moment and we will not lose any of the generality from the conclusions we are going
to draw.
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same). The function in question can be seen as a two step process; namely it performs a step
in every dimension from x;, towards the pure strategy that improves the payoff for the given
player and then a scaling of every dimension in order to keep the sum of all the coefficients
> . Tix = 1. So for every strategy x, function T outputs a new one x’ s.t.:

step scaling

1

/

= (z, P
Z; (131, + Zd)m, lﬁ,) 1+ ZK (b’m
If s’ = s stays the same under T it means that no player can shift to a strategy that will make
their payoff better which makes s an equilibrium point. Conversely, if s is an equilibrium point
we need to observe that all ¢.(-) turn to zero which makes z} = (z; +0)1 = ;
Since T is continuous, bounded and closed on S = A™ x --- x A™ and S is convex, thanks

| ——

n
to the Brouwer Fixed Point Theorem, we can decide that there exists an equilibrium point, or
T(x) = x for every finite game. |

2.2.5 Potential games

A class of games that enjoys widespread popularity and has been thoroughly studied is the
class of potential games. Potential games are games where a single player’s deviation affects
the utility of all players. Moreover, there exists a single function that can track the deviation
of any player’s utility given their strategy deviation.

Definition 2.2.13 (Potential Game). Let a normal-form game I' = T'(NV, A, ). The game I'
is said to be an (ezact) potential game if there exists a function ® : A — R such that for every
player i, any strategy profile @ € A and any two different strategies a}, a} € A;:

®(a),a_;) — ®(a;,a_;) =u(a,,a_;) —ula,a_;) (2.12)

Definition 2.2.14 (Weighted Potential Game). Let a normal-form game I' = T'(NV, A, ). The
game ' is said to be a weighted potential game if there exists a function ® : A — R and a
vector w € RY,w; > 0 such that for every player i, any strategy profile @ € A and any two
different strategies a’,a! € A;:

D(a),a_;) —P(a),a_;) = w; (u(ag, a_;) —u(al, a_i)) (2.13)

Definition 2.2.15 (Ordinal Potential Game). Let a normal-form game I' = I'(V, A, u). The
game I is said to be an ordinal potential game if there exists a function ® : A — R such that
for every player 4, any strategy profile a € A and any two different strategies a’,a? € A;:

®(aj,a_;) — ®(a,a_;) >0 u(a),a_;) —ula,a_;) >0 (2.14)

2.3 Short note on optimization

Before discussing min-max optimization we need to discuss some rudimentary optimization
theory concepts. We consider a template constrained minimization problem (MP) with a convex
feasible set X. We define the tangent and normal cones at a given feasible point in order to
define first-order stationarity in the constrained setting.

Next, we will define a template min-max optimization problem that is known in optimization
literature as a constrained saddle-point problem (SP) and discuss some notions such as the
monotonicity of an operator that will prove useful in the discussion of the analysis of some
algorithms.
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2.3.1 Optimization

Let f be an objective function that we seek to minimize for a variable x that is constrained
inside the feasibility set X'. We can describe this problem succinctly as:

win f(z) (MP)
When X = R? we say that the problem is unconstrained. Unless certain properties hold for
the objective function (e.g. convexity), even finding a local minimum of the objective function
f can be NP-hard [41]. What we can only hope for is stationary points. More precisely,
approximate stationary points. But, before defining stationarity in a constrained optimization
problem, the definitions of the tanget cone and the normal cone are in order. We note that a
cone is a set S such that for all s € S C R? and every scalar A > 0 then also As belongs to S.

Tangent Cone The tangent cone is the set that contains every tangent vector of X to a

given point &. A tangent vector is defined as any d for which § = limy_, z’“t;w.
T (&) = {5 6= lim 22~ % vk e X} (2.15)
k—o00 tr

Normal Cone The normal cone is the set that contains all vectors that are negatively
correlated with every tangent vector, i.e. all vectors é for which (4,¢) <0, ¢ € Tx(&).

Na(@) = {6 | (6,¢) <0,¥¢ € Tx(#) | (2.16)

Effectively, we use these sets (the tangent and normal cone) in order to develop a constrained
optimization first-order stationarity condition that is equivalent to the stationarity condition
V f(x) = 0 of unconstrained optimization.

Finally, a first-order stationary point is a point & such that every direction in the tangent cone
is negatively correlated with the negative gradient of f. Intuitively, starting from & there is
no direction that we can follow that will lead to a new feasible point with which direction the
negative of the gradient is forming an acute angle. If there were such a direction, this would
lead to a reduction in the value of the objective function for a sufficiently small step towards
said direction.

Definition 2.3.1 (FOSP). Let f : X — R be a differentiable functions and & € X. The point
& is a first-order stationary point of f:

(-Vf(@&),x—x) <0, Vel (2.17)

or equivalently:
—Vf(@) e N(z). (2.18)

Further, we relax the latter condition for points where there is no significant decrease in the
objective function. This is the main definition of stationarity used in the analysis of iterative
optimization methods.
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Definition 2.3.2 (e-FOSP). Let f : X — R be a differentiable functions and & € X. The
point & is an e-approximate first-order stationary point of f:

(-Vf(@),x—&)<e VeelX,|z—i|=1 (2.19)

or equivalently:
*Vf(if)) S Nx(:ﬁ) + GBQ(l) (220)

where Ba(1) is a d-dimensional ball with a radius measured in f3-norm equal to 1.

2.3.2 Saddle-Point Problems

We let X € R”, Y C R™ be two compact convex feasible regions and f : X x )Y — R a
(possibly nonconvex-nonconcave) function. The following problem is referred to as a saddle-
point problem with f being the value function:
min max flz,y). (SP)

In the case that f denotes the utility function of the maximizing agent in two-person zero-
sum game, the saddle-point problem is equivalent to computing a Nash equilibrium of the
corresponding game.
Solutions to a saddle-point point problem can be represented as solutions to the Stampacchia
variational inequality:

(F(2),z— 2) (SVI)
where z" = (z",y ") and F(2) is the operator F(z) = (Vg f(z,y), —Vyf(z,y)).
In the special case that f is convex-concave, the (SVI) is equivalent to the Minty variational
inequality:

(F(z),z — 2). (MVT)

It should be noted that convexity-concavity of f is only a sufficient condition for the Minty
variational inequality to hold and that the inequality can hold in a nonconvex-nonconcave
f. In fact, [40] demonstrate how to exploit the (MVI) to prove last-iterate convergence to a
saddle-point/Nash equilibrium for a certain first-order algorithm.

Further, we say that an operator F' is monotone when for any two points z,2’ € X x V:

(F(z) - F(2'),z - 2') <0. (2.21)

On the Duality gap The duality gap is the value Gap defined as :

Gap = min max f(x,y) — max mi x, Duality Ga
P glelgr;ne;;f( Y) r;leggggf( ) (Duality Gap)

and is always non-negative be the weak duality theorem.

It is rather favorable to have a duality gap equal to zero in optimization and game theory. A
zero duality gap in linear programming allows us to use the dual of a given linear program
that can be potentially easier to solve by having less variables all the while having the same
optimal value as the primal.

By theorem 2.2.1 we are guaranteed to have a zero duality-gap in bi-linear functions (hence,
linear programming and two-player zero-sum games). But, it turns out that a zero duality-gap
exists in every convex-concave f(x,y). This theorem is due to Maurice Sion®[58].

SMaurice Sion was a mathematician born in Skopje (now in North Macedonia). He came from a
Ladino-speaking Sephardic Jewish family and spent his early years in Salonica, Izmir, and Beirut before
migrating to Canada.
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Theorem 2.3.1 (Sion’s Minimax Theorem). Let X C R™ and Y C R™ be compact conver sets
and a real-valued function f: X x Y — R for which:

o f(-,y) is lower-semicontinuous and quasi-convex for every fized y
e f(x,-) is upper-semicontinuous and quasi-concave for every fized x.

Then:

inf sup f(x,y) = sup inf f(x,y). (2.22)
zeX yey yeY ¢EX

We can also deduce the following corollary for convex-concave functions:

Corollary 2.3.1. Let ¥ C R™ and Y C R™ be compact convex sets and function f : X xY — R
be a continuous function that is convex-concave, i.e.:

o f(-,y) is convex for every fized y
e f(x,-) is concave for every fized x.

Then:
min mex flz,y) = mﬁxm;nf(m,y). (2.23)

2.4 Learning in Games & Online Convex Optimization

Minimizing Regret Both the field of Learning in Games [11] and the field of Online
Convex Optimization [22] are concerned with taking decisions on the fly in an optimal, math-
ematically informed manner. In every day life, a decision is deemed as a good one when you
least regret in hindsight. In fact, both aforementioned fields formalize this intuitive criterion
into the notion of regret. Regret in these fields can come in a couple of flavors. One of them,
also known as external regret, is defined as the difference between the accumulated payoff of
one’s decisions compared to the payoff of the best decision they could have made in hindsight.

2.4.1 The Repeated Game Model

Consider a finite normal-form game I' = I'(V, A, u) and a natural number T denoting the
number of times the same game I' is played. Without loss of generality, we assume that

for every player i, their utility w; is normalized u; : A(A) — [0,1]. At each round ¢, ev-
)

ery player ¢ selects a possibly mixed strategy ;" ultimately yielding the strategy profile

z®) = (zcgt)7 ce wg\t[)) It follows that, u;(z®) = E, .« [ui(a)]. Furthermore, the sequence of

strategy profile {az(t)}0<t<T induces a sequence of utilities {u(t) }0<t<T'

2.4.2 Online Convex Optimization Model

In the setting of online convex optimization, a player or decision-maker, is called to take a
series of sequential decision on-the-go — online — against an adversary or nature. At each step
t, the player commits to a decision x; € X’ and suffers a loss ¢; due to the adversary’s/nature’s
selection of a convex function f; € F. Of course, the losses to be incurred by each decision
cannot be known beforehand as it would beat the purpose of studying online decision-making.
We also have to note that, the losses and the decision set are bounded.

Formally, the protocol is as follows:

Additionally, due to the convexity of any f;(-) we can equivalently assume that f;(x:) = (y, T¢)
for some vector y; chosen by the adversary.
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Online Convex Optimization

Require: Convex set X
fort=1,2, .., Tdo
Player picks a decision x;
Nature picks a convex loss function f;
Player experiences loss ¢; = fi(x;)
end for

2.4.3 Regret and two ways to minimize it

In both models previously referenced, the objective we mentioned we would like to optimize
our choices against is a measure of regret. This comes to contrast the objective of (convex)
optimization that strives to minimize a given objective function. Particularly, we would like
minimize the external regret of our choices that we formally define as such:

2.4.3.1 Follow-The-Regularized-Leader

Follow-The-Leader Before defining the regularized version of this framework, we shall
define the non-regularized Follow-The-Leader approach, also known as fictitious play in Eco-
nomics.

The decision-maker assumes that they can minimize future regrets by making a decision in the
present that is optimal for the past. IL.e.:

t
Tipq = arg minz f(x,) (FTL)
z T=1

It is demonstrable that regret can be linear in the number of iterations. Suppose X to be
X = [-1,1] and the adversarial function space F = {—1/2x,1/2z}. Say that the adversary
picks —1/2x for even t and 1/2x for odd t. If the player follows FTL, they will fluctuate

between decisions —1 and 1 and the regret will grow linearly through time.
A natural approach is to help the decision-maker fluctuate less and manage to form more stable
trajectories. This can be achieved by means of regularization which informally means taking
into consideration previous choices and discouraging abrupt changes between two time steps.

The regularized version First, we observe from a standard convex analysis argument
that regret can be bounded by a linear function. Remember that all f; are convex functions,
as such for any two points x¢, &:

Define V; := V f(x;) and sum the latter inequality for all iterates x;, f; to get:

S @) = ful@ <Y V(. — ). (2.25)

Let a regularization function R(x) whose properties we shall shortly discuss and a hyper-
parameter 7. For the Follow-The-Regularized-Leader strategy, the decision-makes at each
time step ¢ the player picks a decision that optimizes the objective:

t
@11 = argmin {Z Ve + R(w)} (FTRL)
zeX

T=1
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Meta-Algorithm 1 Follow-The-Regularized-Leader

Require: Convex set X, parameter 7, regularization function R
1. &1 = argming »{R(x)}
2: fort=1,2, ..., Tdo

3: Player plays x; and experiences loss ¢y = fi(x¢)

4

5

Ty < argmingcy {n>.L Ve + R(z)}
: end for

Theorem 2.4.1. The FTRL algorithm succeeds a bound on regret at time T for every uw € X
as follows:

T
R - R
Reg®) < 203 V2 + OB R, (2:26)

t=1

Regularization functions In the context of the present work, we assume that the regu-
larizing function R : X — R is strongly-convex, smooth and twice-differentiable.
We define the diameter of a set X relative to a function R as:

Dp =, /max{R(x) — R(y)} (Diameter)
xy
Further, we should define a dual norm. Given a general norm || - ||, the dual norm is defined
as:
lyll« = sup {z"y"}. (2.27)
=<1

Moreover, we can define a matriz norm to be |z||a = Va&T Az. The dual matrix norm is
2]l ax = llz]la-r.

A quantity that is crucial in optimization is the residue of a first order Taylor approximation
also known as Bregman divergence.

Definition 2.4.1 (Bregman Divergence). The Bregman divergence with respect to a function
R is defined as:

Br(z,y) = R(z) — R(y) — VR(y) " (z — y). (2.28)

By the mean value theorem, the twice-differentiability of R, and the Taylor approximation we
can prove that there exists an intermediate point z = Ax + (1 — )y for some A € [0, 1], such
that

1
ay = 51Tyl (2.29)

1
Br(x,y) = §||3'3 .l

where || - || = | - |[v2g(z). Since the function is assumed to be strongly convex (hence the
matrix V2R(+) is positive definite ergo reversible), a dual norm can also be defined: |||z« =
]2« = |l&ll(g2(z))-1- As such, the Bergman divergence defines a local norm amenable to a
dual which is defined as: || - [[z,y« = || - [z« = | - [[(v2R(2))-1-

Furthermore, it should be noted that the inverse operator of the gradient (VR)~! which we
use is equal to the operator of the gradient of the convex conjugate R* of the given convex
function, i.e.:

VR™' = VR*. (2.30)
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2.4.3.2 (Online) Mirror Descent

An alternative meta-algorithm to minimize regret builds upon the gradient descent method
[35]. Mirror descent generalizes gradient descent to making it a lot more versatile. Instead
of performing updates directly in the feasible set (in that case the decision set), updates are
realized inside a dual space. The dual space is intrinsically defined through the choice of the
reqularization function R. The gradient of the regularization maps R? into itself. An update
is performed inside this vector field and the next iterate is acquired after an appropriate
projection.

There are two versions of Online Mirror Descent, an agile and a lazy one. For the agile one,
at every step ¢ a feasible point x; is used. For the lazy one (also known as Nesterov’s dual
averaging), while the algorithm runs, a feasible point x; is only retrieved at decision time
but the update of y;+1 uses the (possibly not feasible) previous iterate y;. The vector yo is
initialized in such a way that VR(yg) =0

VR(ytJrl) = VR(yt) - 77Vt (Lazy Version) (2 31)
VR(yi+1) = VR(x;) —nV, (Agile Version) '
2 = argming Bp(e.yrs) (2.32)

Meta-Algorithm 2 Online Mirror Descent
Require: Convex set X, parameter 7, regularization function R
1y = argy{VR(y) =0} and @ < argmingc v {Br(x,y1)}
2: fort=1,2, ..., Tdo
3 Player plays x; and experiences loss ¢ = fi(x¢)
&y {(VR)H(VR(y) —nVi) or (VR)™ (VR(@) — V) |
5
6

Xyy1 < argminge v Br(T, Yiy1)
. end for

For the Online Mirror Descent we have a regret on bound Reg after T iterations:

Theorem 2.4.2. The Online-MD algorithm succeeds a bound on regret at time T for every
u € X as follows:

(u) — R(z1)

T
R
Reg™) < Z | Br(@r, 2412 + o (2.33)
t

RS

Relation between FTRL and Online-MD We will not elaborate much on this, but
we will not that Follow-The-Regularized-Leader and the Lazy version of Online Mirror Descent
are equivalent.

Lemma 2.4.3 (FTRL Lazy Online-MD equivalence). Follow-The-Regularized-Leader is equiv-
alent to the Lazy version of Online Mirror-Descent given that {fi}1<i<r are linear functions.
2.4.4 Minimizing regret in predictable sequences

There exists a very interesting line of research that has risen in optimization that has prede-

cessors in Popov, Nemirovski’s Mirro-Prox and was ultimately formalized into a framework by
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[48]. We suppose the Online Convex Optimization protocol and the existence of a sequence
of reliable hints m; for the next loss gradient V; either due to estimation or side information.
This allows to use an optimistic variant of Mirror Descent (OMD).

Meta-Algorithm 3 Optimistic Mirror Descent
Require: Convex set X, parameter 7, regularization function R

1y = argy{VR(y) =0} and @ < argmingc v {Br(x,y1)}
2: fort=1,2, ..., Tdo

3y =argming n,V, y + Br(y,yt)

4

5

Tyl < argming y ntmtTiﬂ + Br(x, yt)
. end for

2.4.4.1 Certain instantiations of the Meta-Algorithms

The aforementioned meta-algorithms can assert more concrete instantiations. For example,
when we would like to perform (online) optimization over a feasibility set that is a (probability)
simplex, we can choose a (neg-)entropic regularization function. Of course, if we use the ¢2-
norm we can retrieve the gradient descent algorithm.

Negentropic regulizer With the regularization set to be the negentropic function R(z) =
>, (i) log (x(i)), the FTRL and lazy MD meta-algorithms give rise to the multiplicative
weights algorithm:

exp (—nV(i))
> exp (=nVe(j))

(?>-norm regulizer Respectively, with the £ norm set to be the regularization function
R(z) = |z, the FTRL and lazy MD meta-algorithms give rise to the gradient descent
algorithm:

LTiy1 = HX {a:t - nvt} (235)

Similarly, the same regularizers applied to the Optimistic Mirror Descent template along with
the “hint” sequence set to be m; = u;_1 give place to the optimistic multiplicative weight
updates and optimistic gradient descent algorithms.

2.5 First-Order Methods: Conditions and rates of con-
vergence

2.5.1 Standard min-max optimization first-order methods

As we have established the meta-algorithms from which common first-order methods originate,
we are ready for their explicit mathematical definition for the case of two-player zero-sum
games. Assume the function f : x;&; x x;V; — R and let x;,y; denote the i-th minimizer’s
and j-th maximizer’s strategy vectors respectively belonging to the sets X;, ); accordingly.
Also, let ® = (x1,-,x,) and y = (y1, -, Ym) denote the concatenation of the strategy vectors
of the n minimizers and m maximizers accordingly and X = x;&;,Y = x;);. Obviously, for
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two-player zero-sum games n = m = 1, X = &},Y = Y;. The optimization objective is the
following problem:

i 2.36
min max f(z.y) (2.36)

The operators Iy, ITy, are the projection operators to the corresponding sets X;,);. We now
list the iterative rule of the algorithms that are of concern:

Gradient Descent-Ascent

2" = Tx (@) —nVa, f@®,y®)

? i

Y =11y, Lyl 4y, f2®,y®)

Optimistic Gradient Descent-Ascent

2 =Ty {2l — 29V, f(2®,y®) 4§V, (@D, yt=D

y§t+1) — Iy, yj(_t) + QnVyjf(IL'(t),y(t)) _ nvyjf(fﬂ(t_l), yt=b
Extra Gradient Method
2 = {2 = e, @0,y )}, 2D =y {2 -, 2D,y )|
t+1 1 1
uy " =Ty {0V, @0y O) Y =T (g 4 vy, f@ ),y D) |

Multiplicative Weights Update Method

exp (—ani.kf(m(”,y(")))
>, 28 exp (—nVa, kf(m“)’y(”)>

(t+1) () exp (va],.’kf(m(f)fy(t)))

Yjk j o
Zl Y, exp nvyl,k f(m(t)7y(t))

) ol

Optimistic Multiplicative Weights Update Method

exp (*QWVIM F@® yN)4nVa, , f(@® 4/“’”)

$E7k_ ) = wg,; o
Zj Z;  exp 27lcmi‘k](w(t)7y(t)) ];“’i kf(m(t 1)ay(t b

exp (2nvyjf(ac“%y‘”)—nvyj,kf(:c“*“,y“*”)

>yt exp (znvymf(mm,ym)_nvylykf(zufl),yu—l))

2.5.2 Conditions and rates of Convergence

Conditions of Convergence For GDA and MWU a sufficient condition on convergence
to a NE is the convexity-concavity of the utility function.
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The convergence of OGDA has been examined by an array of papers. It was initiated by [48]
that provided the condition that for the latter inequalities hold for the regret of the iterates:

T T
R 1 _
Reg™ < o +ny |6 —m®|7 - 8 > [a — 2D (2.37)
t=1 t=2

Next, [62] generalized the latter to the more general regret bounded by the variance of utilities
condition:

T T
Reg™ < a+ 5 ul? w2 3 2l — 2D (2:38)
t=1 t=2

Mertikopoulos et al. have proven that for a (possibly nonconvex-nonconcave) function for which
a Nash equilibrium satisfies the Minty variational inequality the Extragradient Method con-
verges to a NE with a diminishing step-size. Recently, Cai, Oikonomou, and Zheng showed
tight last-iterate rates for both OGDA, EG in the constrained and the unconstrained setting
for the case of a monotone variational inequality for a constant step size.

minimum NE two-pl. NE two-pl.
smooth conv. Zero-sum Zero-sum non
function normal-form CONV.-CONc.
GDA# O(1/T) O(1/VT) -
MWU? O(1/T) O(1/VT) -
OGDA' — o(1/T) O(1/VT):
monotonicity
EG! - ~ o/ VT ):
monotonicity
OMWU! - O(1/7)

Table 2.5: #:average-iterate convergence, ":last-iterate convergence

Rates of convergence

2.6 Dynamical Systems

Dynamical systems are omnipresent in the Sciences and are used to model an abundance
of phenomena both in Nature and Engineering. Of course, since optimization encompasses
iterative processes, the theory of dynamical systems comes in more than handy in analyzing
optimization algorithms. A broad and rather vague way to describe dynamical systems consists
of 3 elements:

e a phase space, or the set of all possible states the system can be in
e t{ime which may be continuous or discrete

e a law of evolution across time that dictates how the system transitions from one state
to another
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There are two mainly used types of dynamical systems: differential equations and iterated
maps/difference equations describing the evolution of systems in continuous and discrete time
respectively.

Continuous time dynamical systems Let the phase space S C R™ be an open set and
f be a continuously differentiable map with f : § — S. Then the following form denotes an
autonomous continuous (time) dynamical system:

dx

i (). (2.39)
We have assumed f to be continuously differentiable hence the ordinary differential equation
(2.39) with an initial condition x(0) = @y € S has a unique solution in a time interval ¢ € Z(x).
We represent this solution as ¢(t, o) and refer to it as the flow of the system. This happens
to be a generalization of the Picard-Lindelof theorem. By setting ¢:(xo) := ¢(t, o) we get a
function that describes the trajectory of the system with a given starting point at &y. Moreover,
we observe that the flow is continuously differentiable and its inverse ¢_;(x) exists and is also
continuously differentiable. Hence, the flow is a diffeomorphism in the maximal interval of
existence. Further, we note that ¢; o ¢5 = ¢4 for any t,s,t +s € Z.

Discrete time dynamical systems Again, let the phase space S C R™ be an open
set and f a map f : S — §. Then the autonomous discrete time dynamical system can be
described as:

2 D = (), (2.40)

There are certain points of the phase-space of a system that draw a surplus of interest. These
are the so-called equilibrium points of a system, i.e. points & where the system will not move
from once it has reached them (f(&) = 0 or ¢(&) = &). A very intriguing question is whether
the system will converge to such a given its trajectory starts in a neighborhood around it. The
theory of Lyapunov Stability is concerned precisely with this question.

2.6.1 Lyapunov Stability

Definition 2.6.1 (Equilibrium/Fixed point). A point & € S is said to be an equilibrium of
the dynamical system f:S — S if:
0= f(z) (2.41)

Equivalently, & is a fized point of the system’s flow function
() =x, Vtel (2.42)

We say that a fixed point & is isolated if there exists a neighborhood around x such that & is
a the unique fixed point in U.

Definition 2.6.2. Consider the autonomous system f:
zF D = f(20)

The fixed point € = 0 is:
o stable if, for each € > 0, 36 = d(¢) > 0 such that:

2D <6 = |2®| <e, VE>0
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o unstable if it is not stable

e asymptotically stable if it is stable and § can be chosen such that:

|29 <d = lim ® =0
k—r 00

We will use the terms stabilize/converge interchangeably as the convergence of an iterative
process corresponds to the asymptotic stability of the fixed point it converges to.

Stable
Unstable
Asymptotically Stale

Lyapunov’s first method How do we test the stability of a (possibly nonlinear) dynami-
cal system at a given equilibrium point & ? A straightforward way of asserting the stability of a
given fixed point & € S of f is testing the eigenvalues of the Jacobian matrix of f evaluated at
. Put otherwise, we linearize the system building upon the Taylor theorem for multivariable
functions:

fla) = f(&) + Iy (&) (2 — &) + Ol — &[|*). (2.43)
A

Theorem 2.6.1 (Lyapunov’s 1st Method — Continuous time). Let a continuous time, au-
tonomous dynamical system f and a point with & and matrizc A = J;(Z):

o if all eigenvalues of A have a real part negative, then the system is (locally) stable at &

o if there exists an eigenvalue of A with a real part positive, then the the system is unstable
at &

o if there exists an eigenvalue of A with a real part equal to 0, then the method is inconclusive
about the stability of the system at &.

When the system is a discrete time one an analogous theorem holds with respect to the eigen-
values of the Jacobian matrix of f.

Theorem 2.6.2 (Lyapunov’s 1st Method — Discrete time). Let a discrete time, autonomous
dynamical system f and a point with & and matriv A = V2 f|p—z:
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o if all eigenvalues of A have a magnitude less than 1, then the system is (locally) stable
at &

o if there exists an eigenvalue of A with a magnitude greater than 1, then the the system
is unstable at &

e if there exists an eigenvalue of A with a magnitude equal to 1, then the method is
inconclusive about the stability of the system at &.

Lyapunov’s second method As we have seen, Lyapunov’s first method might not be
conclusive in some cases and it is also not possible to draw conclusion about stability of non-
linear dynamics for a global scale. A second way that at times circumvents the aforementioned
caveats for checking the stability of a fixed point stems from the observation of mechanical
systems where when the system’s energy/potential is dissipated and reduced to zero, the sys-
tem is lead to a stabilize at an equilibrium. This way, through designing an appropriate scalar
function that plays the role of energy in a given dynamical system, we are able to decide upon
its stability. The function that we are searching for is called a Lyapunov function.

Before stating the method, we need to define what a postive semi-definite function is:

Definition 2.6.3 (Positive semi-definite function). A scalar continuous function V: SNN — R
is said to be locally positive semi-definite in N when:

e V(&) =0 for a given &

o V(x) >0, Vr e N,x # 2.

Of course, if N = S, the function is globally positive semi-definite. It is now possible to formally
define what a Lyapunov function is:

Definition 2.6.4 (Lyapunov function). A scalar function V' : SN D — R is said to be a
Lyapunov function for the system f and its equilibrium & € D if:

e it is positive semi-definite in a domain D containing &
e it has continuous partial derivatives
e V(£)=0and V(x) >0, Ve € D — {z}

e it has a time derivative that is negative semi-definite for any @ in the trajectory of the
system f, ie: V(x) <0, Vo € D.

Lyapunov’s second method (or direct method) is the following:

Theorem 2.6.3 (Lyapunov’s second method — Continuous time). Let a continuous time,
autonomous system f, an equilibrium &, and a domain D that contains it € € D C S. If there
exists a Lyapunov function V(x) : D — R with:

o V(£)=0 and V(x) >0, Y € D — {&}
e V(z)<0,VreD

then the equilibrium point & is stable.
Furthermore, if V(x) < 0, Y& € D — {x}, then the system is asymptotically stable.

As for discrete time systems, there exists an analogous theorem:
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Theorem 2.6.4 (Lyapunov’s second method — Discrete time). Let a discrete time, autonomous
system f, an equilibrium &, and a domain D that contains it & € D C S. If there exists a
Lyapunov function V(x) : D — R with:

e V(£)=0 and V(x) >0, Y € D — {&}
o V(ztt)) —vV(z®) <0

then the equilibrium point & is stable.
Furthermore, if V(D) — V(z®) < 0, V&©) € D — {&}, then the system is asymptotically
stable.

2.6.2 The stable-manifold theorem

The Center-stable Manifold Theorem is of utmost importance in the theory of dynamical
systems. It relates the subspaces spanned by the eigenvectors corresponding to eigenvalues of
magnitude less than 1, equal to 1 and greater than 1 (negative real part, real part zero, and
positive real part respectively for continuous time systems) at the linearization of the system
with the stable, center, and unstable manifolds of the phase space. In this way, we can prove
that the set of the initial conditions such that a given algorithm reaches an unstable (Nash)
equilibrium is of Lebesgue measure zero.

Theorem 2.6.5 (Center-stable Manifold Theorem (incomplete)). Let & be a fized point for
the C™ local diffeomorphism f : D — R™ where D is a neighborhood of & in R™ and oo > r > 1.
Let E* @ E° @& E" be the invariant splitting of R™ into the generalized eigenspaces of J(&)
corresponding to eigenvalues of absolute value less than one, equal to one, and greater than one
respectively. To each of the five J¢(& invariant subspaces E°, E® & E°, E°, E° & E", and E"
there is associated a local f invariant C" embedded disc Wi, Wie, Wi, WEY, and WL, tanget
to the linear subspace 0 and a ball B around zero in an adapted norm such that:
fWe)NDNWE, and if f*(x) € D, Vn >0, then x € Wpe. (2.44)
2.6.3 An example: leveraging dynamical systems theory in min-max
optimization
A simple (continuous) game of two Consider two players, z,y € R. They both pick

an arbitrary value in the hope of turning a utility function v : R x R — R to their favor. Player
1, corresponding to z, tries to minimize v while player 2, y, tries to maximize it.

Gradient Flow We allow every player to move with the same rate towards their goal.
Player x will want to minimize u (conversely, maximize —u), which means they will move
for every dt towards the direction —V u, while player y who seeks to maximize u will move
towards V, (u).

For z, we deduce:

=z —dtVau =
2 —x=—dtVyu=
o —x

dt

=-V,u=

dx
i 2.4
T Vau (2.45)
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Similarly for y, we can write:
du
dy

Conclusively, we define a first order system of differential equations:

{i = —Vyu(z,y) N

=V, (u) (2.46)

Yy = Vyu(xa y)

z = —=V(zy)
{y = Vy(zy) -

To=—y

y =z

z 0 -1\ [z

<y> - (1 0 ) <y> (247

Uniqueness of (0,0) as a Nash Equilibrium Point We remind ourselves that a
Nash Equilibrium point is a point (point meaning the tuple of strategy vectors of all players)
such that no player can unilaterally alter their strategy to turn utility to their favor if the
strategy vectors of all other players were to be fixed.
In our example, the strategy vector of each player is reduced to a scalar real variable. We
now move on to prove that only (z*,y*) = (0,0) can hold the prerequisites for it to be an
equilibrium point.
We observe that if @ = ¢ # 0, player y can alter their strategy to y — oo (or y = —o0) if ¢ < 0
(or ¢ > 0). The converse holds for y = ¢’ # 0.

But, if (x,y) = (0,0), we observe that no matter what each player alter their strategy to, utility
will stay the same. Hence, (0,0) is a unique equilibrium point for the game in question.

Distance from origin Let us define V(x,y) = 22 + y2. We observe that V is the squared
distance of the point (z,y) from (0,0). We derive with respect to time:

d _ d, 5 9
av(may) = ﬁ(fﬂ +y°) =

d dx dy

il — = L 9L
dtv(x’y) Tt + Yar =
d

7V (@) = 22(~y) + 2y(z) =
iV(m )=0=

dt 7y -

V(z,y) = const.

We can thus conclude that the distance of (x,y) remains constant through time.
Alternatively, we can find a closed form solution to 2.47:

{x = ¢ - cos(t) and {a? =c - cos(t) (2.48)

y = —c-sin(t) y =c -sin(t)

From either one of the solutions we get the following plot 2.9 of trajectories, either clockwise
or anti-clockwise:
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4 — Start at (—2v/2,—2v/2)
—— Start at (—¥%2,—¥8 )
Start at (3,0)

2,
> 0-
-2
—4 -
| | | | |
—4 -2 0 2 4
T

Figure 2.9: Example: Gradient flow trajectories of (z,y) starting from 3 different initial
points

Discretization Let us now consider the case of a discrete time version of the latter game.
Players still play their moves simultaneously. We will now demonstrate that the vanilla Gra-
dient Descent/Ascent based dynamic won’t converge. Not only does it not converge, but the
distance of (z,y) from (0,0) will grow exponentially! Players are notated with variables x, y,
which in our case happen to be scalars but in the general can be vectors. Notation z(™ denotes
the value of z at step n. The operator V, stands for the operator of a gradient with respect to
z of a given function. (e.g. V,(zw) = w ). If z is a vector in R, V is a vector with entries

(3%1, ceey a%d) and finally n denotes what is called a step size. It merely is a scalar for which
0<n<l.

Vanilla Gradient Descent/Ascent
() = () _ ¥y
y( D) = () 4 V0

2 D) = () _ ()

Thus we derive the following iterative process:

{N“) = () — py()

. . . (2.49)
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Non-convergence of vanilla Gradient Descent/Ascent We define the ratio of the
norm of the (z,y) vector between two sequential iteration of the process as p:
||(x(n+l) y(n+1 )

. 2
1@,y

Elaborating more on p:

o VG Oy
Ve + ()2

) (x n+1))

+ (") 549
S ) N (D) R
2o @ ™) —ny™)? + (y™) + na)?
()2 + (y(m)2
:>...:>

p=+/1+n?

It is obvious that p > 0 and more precisely if we define p =1 + €

p=1l+e=
Vi+ni=14+e=
e=+v/14+7n2—-1>0=0(n)

In the following figure 2.10 we can observe how will the vector (z,y) move trough time if it
were to start from 3 different random initial points.

Non-convergence through a Lyapunov stability argument Observe that the
latter dynamic can be written as a linear time invariant system in the following way:

£(n+1D) 1\ (2™
()= ) 60)
A

The eigenvalues of A are 1+ jn and 1 — jn. Observe that |1+ jn| = |1 — jn| > 1, Vn > 0.
Hence, for every n > 0 the Nash equilibrium point (0, 0) is (globally) unstable for the dynamical
system that corresponds to gradient descent-ascent. Hence GDA does not converge to a Nash
equilibrium.
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Figure 2.10:

1,000

200 — 00 Start at (-210.27 , -1.73)
—— Start at (13.51 , 107.38)
600 - Start at (—2928 5 —14766)

400 -
200 -
0-
—200 -
—400 -
—600 -
—800 -

—1,000 - /

—1,008-800—600—400—200 0 200 400 600 800 1,000
T

Example: GDA trajectories of (z,y) starting from 3 different initial points
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Chapter 3

Min-max optimization in
two-team zero-sum games

3.1 Two-team zero-sum games

Formally, a two-team game in normal form is defined as a tuple I' = T'(NV, A, u) consisting of

e afinite set of players N, split into two teams A, B with k4 and kp players correspondingly
such that: N = NaUNp ={A1,--- , Ak, B1, -, Brp}

e a finite set of actions (or pure strategies) A; = {az, ..., an,} per player i € N'

e cach team’s payoff function ua,up : A — R, where A :=[], A; denotes the ensemble of
all possible action profiles & = (a4, . .., QA OBy, - - - ,aBkB) while the individual utility
of a player is identical to her teammates, i.e., u; = ua & u; = up V(i,j) € Na x Np.

In this general context, players could also submit mized strategies, i.e, probability distributions
s € A(Ag) over actions «p € Ap. Correspondingly, we define the product distributions
T = (S4,,---:54,,), Y= (8By,-..,8B,,) as the teams’ strategies. Conclusively, we will write
X = [Tiea, X = [, ACAD), Y = [Lienr, Vi = [ien,, A(Ai) the space of mixed strategy
profiles of teams A, B.

Similar to bilinear two-player games, the teams’ utility functions can be expressed via payoff-
tensors A,B € R™ with 7 =[], [As| and acquire the form ' :

ug =AY & up = BY (3.1)
In terms of solutions, we focus on the per player Nash equilibrium (NE), i.e., a state strategy

profile s* = (x,y) = ((th’ cee SjlkA ) (83,5 s s*BkB )) such that

ui(s*) > wi(si; 87 ;)% for all s; € A(A;) and all i € N (NE)
The strategy profile s* is called pure if all player of both teams choose a single action; otherwise
we say that it is mixed. Finally, a two-team game is called two-team zero-sum if up = —up or
equivalently A + B = 0.

Tf &, y have shapes (i,5) and (k,1) that would be equivalent to: u = einsum('ijk1,ij,k1', A,
x, y)

*We are using here the standard shorthand (s1,...,s;,... ,8|a7) to highlight the strategy of a given
player ¢ € N versus the rest of players N\ {i}.
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Remark 2. On a quite technical note, for the rest of this work we will assume that a succinct
representation of the utility tensors of the game is available or —equivalently — that a payoff
oracle efficiently provides both the value of the utility function and its derivatives for a specific
input, an assumption that is consistent with the vast majority of the applications that are
described in the literature [61].

A first approach to computing NE in Two-Team Zero-Sum games. Due
to the multilinearity of the utility and the existence of a duality gap, the linear programming
method used in two-player zero-sum games can not be used to compute a Nash equilibrium. For
the goal of computing Nash equilibrium in two-team zero-sum games, we have experimented
with a selection of first-order methods that have been utilized with varying success in the
setting of the two-person zero-sum case. Namely, we analyze the following methods: )
Gradient Descent-Ascent ii) Optimistic Gradient Descent-Ascent i) Fxtra Gradient Method
w) Optimistic Multiplicative Weights Update Method .

The below folklore fact will play a key role hereafter.

Fact 1. Any fixed point of the aforementioned discrete-time dynamics on the utility function
necessarily corresponds to a Nash equilibrium of the game.

Hence, an important test bed for the long-run behavior of GDA, OGDA, and EG methods is to
examine whether these methods stabilize around their fixed points, which effectively constitute
the Nash equilibria of the game. In Section 3.2.2, we show that in the absence of pure Nash
equilibria, all the above methods fail to stabilize on their fixed points even for a simple class of
two-team game with (k4 = 2,kp = 2) , and as a consequence they fail to discover the mixed
Nash equilibria of the game.

The presence of these results demonstrates the need for a different approach that lies outside
the scope of traditional optimization techniques. Inspired by the applications of washout filters
to stabilize highly susceptible systems and the adaptive control generalizations of the former,
we design a new variant of GDA, “vaned” with a feedback loop that is dictated by a pair
of two matrices. Surprisingly, in contrast to the aforementioned conventional methods, our
proposed technique accomplishes last-iterate stabilization on its fixed point, i.e., the mixed
Nash equilibria of the team game.

(K, P)-Vaned GDA Method. After concatenating the vectors of the minimizing and
the maximizing agents z*) = (z(®), y(®)) we can write our method, for appropriate matrices
K, P:

_ 20
204D 11 20 4 VVymeE(z(k)))) K (20 — a(k))}

KPV-GDA

Intuitively, the added variable 0™ holds an estimate of the fixed point, and through the
feedback law nK (z(F) — H(k)) the vector z stabilizes around that estimate which slowly moves
towards the real fixed point of the vanilla GDA dynamic (see Figure 3.1 for a typical evolution
of the state vector z and estimate vector 6). It is crucial to note that no additional fixed points
are introduced to the system.
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Figure 3.1: Typical KPV-GDA trajectory

3.2 Our main results

3.2.1 On the hardness of computing NE in Two-Team Zero-Sum
Games

We start this section by showing that computing a Nash equilibrium in two-team zero-sum
games is computationally hard and thus getting a polynomial-time algorithm that computes a
Nash equilibrium is unlikely.

Theorem 3.2.1 (CLS-hard). Computing a Nash equilibrium in two-team zero-sum games is
CLS-hard.

The main idea of the proof of Theorem 3.2.1 relies on a reduction of approximating Nash equi-
libria in congestion games, which has been shown to be complete for the interesting complexity
class of CLS, which contains the problem of continuous optimization. For concision, we defer
the proof of the above theorem to the paper’s supplement.

3.2.2 Instability of the most-common first-order methods

The negative computational complexity result we proved for two-team zero-sum games (Theo-
rem 3.2.1) does not preclude the prospect of attaining algorithms (learning dynamics, first-order
methods) that converge to Nash equilibria and thus can approximate them well enough. Unfor-
tunately, we can also prove negative results about convergence to Nash equilibria in two-team
zero-sum games of the well-established methods broadly used in classic two-player zero-sum
games.

In this section, we are going to construct a family of two-team zero-sum games with the
property that GDA, OGDA, EG, and OMWU fail to stabilize to Nash equilibria. This result
indicates how challenging and rich the setting of team zero-sum games can be and why provable
guarantees about convergence have not been established yet. This family of games may not
exhaust the hardness or richness of two-team games, but the mere fact that it exhibits such
challenges for all mentioned algorithms is telling of the challenges that lie with these games
both in terms of applications as well as in theory. Before defining the family of two-team zero-
sum games, we prove an important theorem which states that GDA does not stabilize around
mixed Nash equilibria. This fact is a stepping stone in constructing the family of team-zero
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sum games later. We present the proof of all of the below statements in detail in the paper’s
appendix.

Weakly-stable Nash equilibrium [31, 37]. Consider the set of Nash equilibria with
the property that if any single randomizing agent of one team is forced to play any strategy
in her current support with probability one, all other agents of the same team must remain
indifferent between the strategies in their support. This type of Nash equilibria is called
weakly-stable. Note that trivially pure Nash equilibria are weakly-stable. It has been shown
that mixed Nash equilibria are not weakly-stable in generic games® [31].

We can show that Nash equilibria that are not weakly-stable Nash are actually unstable for
GDA. Moreover, through standard dynamical systems machinery, that the set of initial con-
ditions that converges to Nash equilibria that are not weakly-stable should be of Lebesgue
measure zero. Formally, we prove that:

Theorem 3.2.2 (Non weakly-stable Nash are unstable). Consider a two-team zero-sum game
with utility function of Team B (y vector) being U(x,y) and Team A (x vector) being —U (x,y).
Moreover, assume that (x*,y*) is a Nash equilibrium of full support that is not weakly-stable.
1t follows that the set of initial conditions so that GDA converges to (x*,y*) is of measure zero
for step size n < % where L is the Lipschitz constant of VU.

3.2.3 Generalized Matching Pennies (GMP)

Inspired by Theorem 3.2.2, in this section we construct a family of team zero-sum games so
that GDA, OGDA, OMWU, and EG methods fail to converge (if the initialization is a random
point in the simplex, the probability of convergence of the aforementioned methods is zero).
The intuition is to construct a family of games, each of which has only mixed Nash equilibria
(that are not weakly-stable), i.e., the constructed games should lack pure Nash equilibria;
using Theorem 3.2.2, it would immediately imply our claim for GDA. It turns out that OGDA,
OMWU, and EG also fail to converge for the same family.

Definition of GMP. Consider a setting with two teams (Team A, Team B), each of which
has n = 2 players. Inspired by the standard matching pennies game and the game defined in
[54], we allow each agent i to have two strategies/actions that is S = {H, T} for both teams
with 2% possible strategy profiles. In case all the members of a Team choose the same strategy
say H or T then the Team “agrees” to play H or T (otherwise the Team “does not agree”).

HH HT/TH TT

HH | 1,-1| w-w | —1,1
HT/TH | —w,w 0,0 —w,w
Tr —-1,1 w, —w 1,—-1

Thus, in the case that both teams “agree”, the payoff of each team is actually the payoff for
the two-player matching pennies. If one team “agrees” and the other does not, the team that

SRoughly speaking, generic games where we add small Gaussian noise to perturb slightly every payoff
only so that we preclude any payoff ties. In these games, all Nash equilibria in all but a measure-zero set
of games exhibit the property that all pure best responses are played with positive probability.
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“agrees” gets payoff w € (0, 1) and the other team gets penalty w. If both teams fail to “agree”,
both teams get payoff zero. Let z; with ¢ € {1,2} be the probability that agent i of Team
A chooses H and 1 — z; the probability that she chooses T. We also denote x the vector of
probabilities for Team A. Similarly, we denote y; for i € {1,2} be the probability that agent
i of Team B chooses H and 1 — y; the probability that she chooses T and y the probability
vector.

Properties of GMP. An important remark on the properties of our presented game is due.
Existing literature tackles settings with:

o (weak-)monotonocity [39, 15],
e cocoercivity [70],
e unconstrained solution space [20]

. Our game is carefully crafted and —although it has a distinct structure and is nonconvex-
nonconcave only due to multilinearity— satisfies none of the latter properties. This makes the
(local) convergence of our proposed method even more surprising. .

The first fact about the game that we defined is that for w € (0,1), there is only one Nash
equilibrium (x*, y*), which is the uniform, i.e., ] = a3 = y7 = y3 = % for all agents 1.

Lemma 3.2.3 (GMP has a unique NE). The Generalized Matching Pennies game exhibits a
11y (11

unique Nash equilibrium which is (x*,y*) = ((3,3), (5, 3))-

Remark 3. The fact that the game we defined has a unique Nash equilibrium that is in the
interior of [0, 1]* is really crucial for our negative convergence results later in the section as we
will show that it is not a weakly-stable Nash equilibrium and the negative result about GDA
will be a corollary due to Theorem 3.2.2. Please also note that if w = 1 then there are more
Nash equilibria, in particular the (0, 0),(1,0),(0,1),(1,1) are also Nash equilibria (which are
pure).

The following Theorem is the main (negative) result of this section.

Theorem 3.2.4 (GDA, OGDA, EG, and OMWTU fail). Consider GMP game with w € (0,1).
Assume that ngpa < %, Nogpa < min(w, é), nee < % , and noywy < min (i, %) (bound on
the stepsize for GDA, OGDA, EG, and OMWU methods respectively). It holds that the set
of initial conditions so that GDA, OGDA, EG, OMWU converge (stabilize to any point) is of

measure zero.

Remark 4. Theorem 3.2.4 formally demonstrates that the behavior of algorithms in 7?7 are
not a result of bad parametrization, and in fact, the probability of the dynamics stabilizing on
the NE is equal to the probability of the initial value of the parameters coincide with the NE
(measure zero).

Remark 5 (Average iterate also fails). One might ask what happens when we consider average
iterates instead of the last iterate. It is a well-known fact [62] that the average iterate of no-
regret algorithms converges to coarse correlated equilibria (CCE) so we expect that the average
iterate stabilizes. Nevertheless, CCE might not be Nash equilibria. Indeed we can construct
examples in which the average iterate of GDA, OGDA, OMWU, and EG experimentally fail to
stabilize to Nash equilibria. In particular, we consider a slight modification of GMP; players
and strategies are the same but the payoff matrix has changed and can be found below (table
on the right):

Figure 3.2 illustrates that the average iterates of GDA, OGDA, OMWU, and EG stabilize to
points that are not Nash equilibria. Note that since our method (see next subsection) converges
locally, the average iterate should converge locally to a Nash equilibrium.
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= Proposed
0.6 - Method
- GDA
0.4 -
0.2 -
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HH HT/TH T
HH 2,—2 Z,—2 —2,2
HT/TH [ -1 0, —3:3
T —1,1 i, -2 1,—1

Figure 3.2: GDA, OGDA, & EG fail to converge to a Nash Equilibrium even in average

3.2.4 'Wash-out Filters & Adaptive Control

The aforementioned results indicate that to answer the tantalizing question of finding NE
in two-team zero-sum games, our machinery should be broadened outside the limits of the
textbook optimization arsenal. The mainstay of this effort and our positive result is the KPV-
GDA method defined in (KPV-GDA), inspired by the adaptive control toolbox and washout
filters. Our main statement shows that KPV-GDA stabilizes around any Nash equilibrium for
appropriate choices of matrices K, P. The formal theorem is given below:

Theorem 3.2.5 (KPV-GDA stabilizes). Consider a team zero-sum game so that the utility
of Team B is U(x,y) and hence the utility of Team A is —U(x,y) and a Nash equilibrium
(z*,y*) of the game. Moreover we assume

<—VimU(fB*7y*) —Va,U@",y")

£ % . % is tnvertible.
V2L Uz y*) Vi, U(z*,y") >

For any fized step size n > 0, we can always find matrices K, P so that KPV-GDA method
defined in (KPV-GDA) converges locally to (x*,y*).

The latter statement concerns the existence of matrices K, P. Below, we provide a sufficient
condition under which a simple parametrization of K, P (provably) guarantees convergence.

Theorem 3.2.6. Consider a two-team zero-sum game so that the utility of Team B is U(x,y)
and hence the utility of Team A is —U(x,y) and a Nash equilibrium (x*,y*) of the game.

Moreover let
e () Ty )
ViUl* y*) Vi, Uz y*)

and E be the set of eigenvalues p of H with real part positive, that is E = {H's eigenvalues p :
Re(p) > 0}. We assume that H is invertible and moreover

2 2
8= rpréi]r;l }W > r:leaéc Re(p) = o (3.2)
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We set K = k-1, P =p-1. There exist small enough step size n > 0 and scalar p > 0 and
for any k € (—pB,—a) so that KPV-GDA method defined in (KPV-GDA) with chosen K, P
converges locally to (x*,y™).

Remark 6. As long as conditions in Theorem 3.2.5 are satisfied, KPV-GDA locally converges
in any nonconvex-nonconcave game (hence, normal-form two-player zero-sum games as well).
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Chapter 4

Multi-generator /discriminator
Generative Adversarial
Networks

While simple tasks such as classification can have a very straightforward definition of the quality
of the resulting model (e.g. the accuracy score), generative models do have such a simple way
of assessing the quality of the learned model. Nevertheless, two measures are consistently used
when evaluating GANSs, inception score and Fréchet inception distance [23].

4.1 Inception Score

The inception score metric was introduce in [52]. It gets its name from the Inception classi-
fier [63]. The score tries to capture (i) the generation of distinct objects in each sample, (i4)
the generation of multiple objects in the generated samples. Hence, the entropy of the category
probability vector output p(y|-) for a given sample z the Inception classifier, p(y|z), has to be
low (distinct object in a sample gets labeled with a single category), while the entropy of the
marginal distribution of labels for the generated samples has to be high (multiple categories
are represented in the generated data).

IS(Pmodel) = €xp (Eznp,oia[KL(p(y]2))(Ip(¥)]) (IS)

4.2 Fréchet Inception Distance
The Fréchet inception distance (FID) [23] compares the activations of the hidden layers of the
Inception neural network for the generated and the real data. It is the squared Wasserstein

metric between the distributions of the real data represented represented a normal distribution
N (ftreal, Xreal) and the generated data similarly represented as N (fimodel; Zmodel)- L-€::

1 1\3
FID = ”,ureal - Mmodel”% +tr (Ereal + Zmodel -2 (Zrzeal : Zmodel . Zfeal) 2) (FID)
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4.3 On the expressive power of a GAN with finitely
many generators

Arora et al. examine the generalization, diversity, and expressivity of GANs in an insightful
theoretical way. With regards to the expressivity, they provide a quite informative argument
for the use of multiple generators instead of a single one which can be summarized in the
following informal theorem:

Theorem 4.3.1 (Expressivity of multi-generator GANs — Informal). Let the discrimintor D be
a neural net with p parameters. Then, a mizture of O(plog(p/e)/€?) generators can produce a
distribution D that the discriminator D will not be able to distinguish from D,eq with probability
greater than e.

4.4 Conceptual Experiments

In this section we will try to further motivate research into multi-GANs through two conceptual
experiments. The first experiment highlights the potential of our proposed method as it quickly
converges to a solution. The second one illustrates the expressive superiority of multi-GANs
over 1-vs.-1 architectures.

4.4.1 Learning a mixture of Gaussians using our proposed optimizer

Consider the case of M, a mixture of gaussian distribution with two components, C; ~ N (u, I)
and Cy ~ N(—p,I) and mixture weights 71,75 to be positive such that m + 72 = 1 and
1,72 # %

To learn the distribution above, we utilize an instance of a Team-WGAN in which there exists
a generating team of agents G, : R = R, Gg : R — R"”, and a discriminating team of agents
Dy i R" = R, Dy, : R™ — R, all described by the following equations:

Generators: G,(¢) =p+(, Go(z) = z2+6 (4.1)
Discriminators: Dy, (y) = (v,y) , Day(y) = 3, wiy? ‘
The generating agent Gy maps random noise z ~ N (0, I) to samples while generating agent
Gp(€), utilizing an independent source of randomness ¢ ~ AN(0, 1), probabilistically controls
the sign of the output of the generator Gyg. The probability of ultimately generating a sample
y = z + 0 is equal to ¢ + p, while the probability of the sample being y = —z — 0 is equal to
1—(p+0Q).

On the other end, there stands the discriminating team of D,,, D,,,. Discriminators, D, (y), D.,(y)
map any given sample y to a scalar value accounting for the realness or fakeness of it — negative
meaning fake, positive meaning real. The discriminators are disparate in the way they measure
the realness of samples as seen in their definitions.

We follow the formalism of the Wasserstein GAN to form the optimization objective:

Eyn~real [Dv(y) + Dw(y)}

mas yin Gp(C)+ (Do(Gow)) + Du(Go(w))) (4.2)
E.N(0,1),c~N(0,1) +

(1=Go(Q) - (Do(~Gaw)) + Du(~Go(v)))
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Figure 4.1: Parameter training of the configuration under different algorithms

Equation (4.2) yields the simpler form:

max min(m; — 7)o’ p — 2pv’ 0 + 070 + Z w;(p? — 02) (4.3)
v,w 0,p Z

It is easy to check that Nash equilibria of Equation (4.2) must satisfy:

0 = B, p=l-m=m
0 = —u, p=1—m =m9.
Figure 4.1 demonstrates both GDA’s failure and OGDA, EG, and our KPV-GDA method’s

success to converge to the above Nash equilibria and simultaneously to discover the groud truth
mixture.

4.4.2 Learning a mixture of Gaussians: a comparison between a
vanilla GAN and a multi-GAN

In the previous part we compared our proposed novel optimizer with some established one.
For this experiment we focus on the expressive power of multi-agent GANs. Our experiment
includes a dataset of a Mixture of 2-D Gaussians with 8 modes. Our architecture includes 8
“shallow” generators and discriminators with 2 layers of 2-16-2 ReLU activations, compared
with a “large” single-agent GAN with 4 layers of 2-128-256-1024-2 activations. Interestingly,
the giant one fails in a double sense; It demonstrates both mode-collapsing and mode-drop
phenomena without stabilizing. On the other hand, our architecture with a small number of
neurons achieves to fit the data well.

The iterations illustrate the step at which the model roughly stops learning/converges. We
observed no change after the demonstrated number of iterations.

Configuration Generator(s) Discriminator(s) Typical outcome
. 2-128-256-1024-2 2-128-256-1024-2 Mode coll. in ~ 1 x 10% iters.
4 4 .
Single GAN | # 1 { Linear w/ ReLU #1x { Linear w/ ReLU Mode drop in ~ 3 x 10° iters.
2-16-2 2-16-2 Distr. learned
i / 4 .
Mult-GAN ) 7 8x { Lincar w/ ReLU | 77 &% { Lincar w/ ReLU in ~3x 10% iters.
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Figure 4.2: From left to right: (i) Each generator of MGAN learns one mode of 8-GMM,
(ii) Mode Collapse of single-agent GANs, (iii) Single-agent GAN can’t discriminate
between the modes.

4.5 Experiments with real data

4.5.1 Mixture Generative Adversarial Nets

discriminator D

Y3
l distinguish between
w~Mule(m) 7 T

G1(2)

A A

z~P, | Tied parameters : \\(‘;u(z)
v v z -
— > — e L. i Tied parameters :
A A :
—— |
: : was used?
v v

Gk (2) X~ Pygra classifier C

Figure 4.3: The Mixture Generative Adversarial Net.

Hoang et al. designed a multi-generator GAN that at the time of its release achieved remarkable
performance in diverse datasets. The assemblage uses K generators with a fixed mixture vector
m = (m, -+ ,7k), a classifier used to promote diversity of the samples (with a corresponding
constant 3) and a discriminator. The training objective is the following:

G{IlinK IIllE)%X ]Ezepdata [log D(Z)] - EZE;Dmodel [(1 - 1Og D(z))] - ﬂ Z ﬂ-kEZEPGk [log Ck (z)]

(MGAN)

At the equilibrium of MGAN, the Jensen-Shannon divergence between Die, and Dpoqe iS
minimized.
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Table 4.1: Inception scores on different datasets. “—” denotes unavailable result.
Model CIFAR-10 STL-10 ImageNet
Real data 11.2440.16  26.0840.26  25.7840.47

WGAN [1] 3.824£0.06 -
MIX+WGAN [2] 4044007 - -
Improved-GAN [52]  4.36£0.04 - =
ALI [17] 5344005 - -
BEGAN [7] 5.62 - -
MAGAN [67] 5.67 - -
GMAN [18] 6.00£0.19 - =
DCGAN [47] 6.40+£0.05 7.54 7.89
DFM [68] 7.72£0.13 8.51+0.13 9.18+0.13
D2GAN [44] 7.15+0.07 7.98 8.25
MGAN 8.33+0.10 9.224+0.11 9.3240.10
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