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Arnayopeletal 1 avTiypopt|, amotixeucT) xoun Slovoun TG Taeoloag SITAWUATIXNC Epyaciog
€€’ 0AOXAPOU 1| TUAUATOS QUTAC, VLo EUTopnd oxond. Emtpéneton n avatinwot, antodrixeuct
X0 OLOVOUY| Y10l OXOTIO U1} XEEDOOXOTUXO, EXTIUUOELTIXNS 1) ERELVNTIXNG PUOTE, UTO TNV TEOUTO-
Yeon va avapépeTon 1) Ty TROEAEUOTC o Vo SlaTneeltar To Tapov prvupa. EpwmtAuata tou
apopolY TN YeNoN NG EPYACIAC YLl XEEOOOXOTIXO GXOTO TEENEL Vo ameLiVoOVToL TEOS TO
ouyypapéa. Ot andelg xou To GUUTEPACUTA TOU TEPLEYOVTAL GE OUTO TO €YYRUPO EXPES-
Couv 10 ouyypaéa xal Bev TEETEL Vo epunveudel OTL avTitpoonwTedouy TIC enionues VEoeS
Tou Edvixol Metoofiou IloAuteyveiou.



IMepiAndm

Ye auth TV epyaocio YeeTdue Eva TEOBANUO HETAPORAS UEUINONS Yo EEATOUXEUUEVO GUGTY -
HOTOL CUGTACEWY, TIOL Vol ETUTEETEL GE OLUPORETIXES OUAOES YENOTWY Va ardalvouy GUVERYATIXG
TIC TPOTWUNOELS TOUG Ywpelg var wotpdlovto LW TIXES TANEOPople HETAZ) TOUC. DUYXEXPWIEVA,
Yewpolue €vay server mou €yel TEOoOPBuoT HOVO OE BEGOUEVO TTOU TEOXUTTOUY OmO TNV GAATN-
AETBPUOT, TWV YENOTWY PE TO CUGTNUO XU OYL OO TO UTOAOLTA TROOWTLXA TOUG YopoX-
metoxd. Movtehomololue autéd to clotnua we éva Multi-armed bandit npéBinua (MAB)
HE CEXYWPIOTES UNYAVES GUOTAOEWS Yo XGUE Oudda YeNnoTayY. LTdY0¢ ToU CUCTANATOS Elval
VoL TEOOOLOPIOEL TIC TEOTWNOELS TNS XAde OUddUC YENOTAOY, VO XATATAEEL TOUS YPHOTES OTIG
OUADES QUTES, XU OVAANOYOL UE TNV XATATAEYN QUTH VO TOUG XAVEL TS XATIAANAES CUCTAGELS
(OOTE VoL UEYIOTOTOMNGEL TNV avToolf3r) Toug mpog to clotnua. 20tdoo, hauBdvovtag un-
oy TNV amovsia YVOHONG OYETIXG UE TA YURUXTNELO TIXA TV OUEDWY 0N X0l EBIXOTERN TV
YENOTOY, YiveTal avTIANTTé OTL 0 server dev umopel va umohoyloel Ta mporypotixd rewards
e xdde opddac mpog tic mbavéc cuoTdoels (arms) Tou cucTAUNTOC. AVt autol, xplveto
oxoTOC 0 unohoyloude causal bounds yio to reward mou mEooidel oTo GUOTNUA TO AdVE
arm. Méow twv oplwv autdv pmopel var yivel uetapopd yvoong UeTald TwV opddny xou
va tpoxUel €tol évag véog causal-constrained UCB ahydpriupoc, mou Yo emitpénel o€ xdie
oudda yenoTt®y va pdder Tnv xahOTepn EMAOYT TOU umopel Vo TG TEOCHEREL TO GVOTNUA
a&LOTIOLOVTOC TANEOPORIEC and T UTOAOLES ouddes. 'Eva Paocind yopoxtneloTixd Tou ah-
yopiduou pog etvar 1 ovdTNTd Tou Vo avTWETWTICEL GHIAUUTA XAUTE TNY OUABOTOINCT TWY
YENOTOV OE BLUPORETIXEC OUADES YENOTWY, YEYOVOS THave WG Xou 1) opdda oTny omoia
avixel o xdde yerotng Vewpeltan TAnpogopla dyvewotn otov server. Tétola o@dhuata unopel
vo. 00nyrficouy ot user selection bias mou unopet va emnpedoet Ty Sodixacio exudinong. o
VO OVTIHETWTICOVUE QUTAHY TNV TEOXANCT), eopuolouue o e-greedy uédodo, mouxelévou
1600 va emitpanel 1) dixann e€epedvnom 6wV TwV arms Tou GUCTAUNTOS G0 Xt Vo BeATiwiel
axp{Belor opadonoinong xotd TN Sidpxelo TN expdinone. Méow tne Sieloywync aprduntixmy
TELRUUATWY amodEXVUETAL OTL 0 TROTEWOUEVOS ahydprduog Eemepvd pedodoug pdinong mou
dev hafdvouv vrddm olvte v napén atidtnrac (causality) oto clOotnua, ok olTe xou
Vv Untoegn Addoug opadoTolinong TV YeNoT®Y TOL GUC THUNTOS.

AéZeic-Khesid: EEatopixevpévo Svotnua Xvotdocewy, Opadonoinon
XENOTWV, LuvepYaTiXy padnor, Metagopd nadnong, Awtiotnta, Causal
bounds, UCB






Abstract

In this paper we study a transfer learning problem for personalized recommendation
systems to allow distinct user groups defined by distinct preferences to learn from each
other without sharing private information. Specifically, we consider a server that has ac-
cess only to user-click data points but not to any other personal user attributes. We model
this system as a federated multi-armed bandit (MAB) problem with distinct bandit ma-
chines for each user group associated with distinct reward functions. The goal is to learn
the true user types and rewards while maximizing the user clicks by adapting the arm
selection strategy. Since, in the presence of unobserved user group preferences, the server
cannot compute the true click-through rates (rewards) for each user group, we instead
propose to compute causal bounds on the true click-through rates that by design contain
the true values. Transferring these bounds to the different user groups, we obtain a new
causal-bound-constrained UCB algorithm that allows each user group to learn their best
arm by taking advantage of information from other groups. A key feature of our algorithm
is its ability to deal with errors in the clustering of users to different user groups, which is
possible since the true user group membership is assumed unknown to the server. Such er-
rors can result in user selection bias and, therefore, bias in the learning process. To address
this challenge, we implement an e-greedy method to enable fair exploration and improve
clustering accuracy during learning. We present numerical experiments that demonstrate
that our proposed algorithm outperforms non-causal federated learning methods that do
not account for clustering errors, especially for user types that constitute the minority of
a data set.

Keywords: Recommendation System, Federated Learning, Personalization, Clustering,
Causality, Transfer Learning, Causal Bounds, UCB.
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1 Avdivon IpoBAruatog

‘Eotw éva abotnua cuctdoeny nou nepthaufBdvel M miovéc TpoTdoEelS, xol Tou 0moiou
oL ypfoteg xatavéuovtal o€ N Bla@opeTixolg TOTOUC YENOTWY, CUUPWVO UE ULol GToERT
xatovour) Prr. Trodétouue 6TL évag TOnog yenotn u opileton wg o TUTog Ypnotn Tou €yet e&-
€PELVNOEL TNV ETAOY T U o1 EXEL ETLYVOOT TOL YEYOVOTOC OTL Tou apécet. H oudda otnyv omola
avixel 0 xdie yeHoTng, xddS ETONG XAl Ol TEOTIUNOELS TOU TEOG TLC UTOAOLTES EMLAOYES TOU
CUC TAUATOS UTOREL VoL ETNEEACTOVY Omd TAl TPOCWTLXA TOL GTolyelo xou yapaxtnelo Txd. o
Topdderypa, oto [9] N ouvanoUnuatixd xatdoTtoon evoc yehoTn mapaxoloudeiton xat Yenot-
HOTOLE(TOL TPOXEWEVOU TO GUGTNUN VoL UTOREL Vo TROTEVEL Eval XaTdAANAO €ldog youoixhc. Ta
HOVTEAA TTOLU GUVOEOUV TOL YoEaXTNROTIXd eVOC Yehotn ue To feedback tou mpog to cbotnua
elvon mowdAa. Tt mopdiderypa, undpyouy TepInTOoES oTig onoleg Yewpeltar 6TL N Tpotiunon
EVOC YPNO TN TROG Uidt TEOTAUOT) TOL GUC TAUATOS GUVBEETOL UE TOL YOPUXTNELO TIXA TOU UEGH EVOS
Yeopixol povtélou [11], [8]. IIpoxewévou vo TeooTaTeElCOUUE TO AMOEENTO TWV YENOTMY
OLATNEOVTOG XEUPE TOL YORUXTNELO T TOUS X0 ETONG Vo NV XAVOUUE UTOVETELS OYETIXE UE
T0 €(00C TOU UOVTEAOU TOU GUVOEEL TOL YORUXTNELO TIXA TWV YPNOTWY UE TS TROTWHOCELS TOUC
(M. Ypauuix6 Yovtéro), Jewpolue Tov TOmO YehoTn ¢ TN POV TAnpogopia Tou urnopel
va yenotomointel xatd Tt Sdpxelo TG PdINoNe xou Tov avTHETWTICoUPE »¢ To ofTio Tou
enneedlEl TLIO TEOTYWHOEIC TWY YENOTWY TEOS TI TPOTAOELS TOU GUC THUATOC.

‘Onwe o xdde cloTNUA TEOTACEWY, 0 OTOYOC Elvar Vo ueyLoTomotnUel 1 GUVOAXT| av-
Tapol31), 1 omolo oe auTAY TNV TEEITTWOT LWodLVaUEl UE TO av dpece oE Evav yenoTr uia
gm0y Tou Tou mpotelvetan (pe avtopoBh 1) # by (ue avtapoBn 0). Qotdoo, dedouévou
OTL UTOUETOUUE OTL oL YENOTEC €youy HON e€epeuvroet Ula ETAOYT TOU TOUg 0RETEL, OL XUPLOL
GTOYOL TOUg Elval var xordoplooLY TIC TEOTWNACELS TOUS TIC UTOAOLTES TPOTAGEL, TOU GUCTY-
HOTOC X0l VoL amoaaiocouy mota amd autég Yo pmopovoe va eivon 1) deltepn BEATIOTN Moy
70U, AWTUTGVOUPE T0 TEGPANUY we éva MAB mou opiletan and Ty mherddo (U, X, YV (X)),
omou n U € {1,...,N} elvou pio tuyodor petaBAnth mou poviehonotel tov tOno ypHotn, To
X e {1,..., M} eivon o tuyodo LeToaBANTA TOU LTOBEXVUEL TNV ETAOYT EVOG amd Tar M arms
xou to Y (x) elvon 1 ouvdptnomn avtapolBhic tou oyetileton pe tov Beaylova X = x dedouévou
Tou tUnou yeot U = u. Luyxexpéva, 1o Y (x) aviinpoowredel tny mdavotnta va apéoet
oe évay yenotrn TUTou u 1 emhoy . Xe xde ypovixd Briua, emAéyeton €vac yprnotne TOTou
u oUupova ue TNy xotavour Py, Me Bdon tig mAnpogopieg mou mopeyel o server yia Tov cuy-
XEXPUWEVO YENHOTN, 0 ToTuxdg client emAéyel pio and Tig emhoyég mou npénel va e€epeuvnioly
and tov yenotn xa Tou TNy nepotelvel. H aviauo3n tou mpoxintel axoloudel T cuvdptnon
TEOTWACEWY Tou Yprotn Y.

Aedouévou 6Tt oL YehoTeg Unopoly va Tadivoundoly ot ouddeg avdhoyo Ue Tov TOTO TOUC,
oyeddlouye uio federated apyttextovinr| mou umopel vo emitpédel oe TapduoloUg YENOTES Va
EXTIUOEVGOUY GUVERYUTIXA TO XOLVO HOVTEAO TTROTWUNCEWY TOUS, OELOTOLOVTAS TUPIAANAL TIE
TANPOYPOPRIEC TOU ATOXTWVTOL UG GANOUS TUTOUS YENOTOVY. MLOUPOVA Ue auTY TN BlatdTwonn,
unopet va Yewpniel 6Tt yia xde yerjotn undpyel €vac Tomixdg client mou tou xdvel cuoTAcELS
xou OTL 0AOXANEN 1 Bladcacion udinong emontedeton and vy xevipwd server. Ambd v
TAEURA TOU server, Ta Yova Slodéctya dedouéva eivon data-points tng popgric user-arm-click,
ME TOV TOTO TOU YEHOTN VA TOPUUEVEL EVAS TUEAYOVTUC dYVWOTOS Teog Tov server. ()¢
ATOTEAECUA, AT TNV TAEVPA TOU SErVer, ol UOVES TANPOPORIEC TOU UTOPOUY VO UTOAOYLIGTOUY
e Pefondtnra eivon causal bounds mou meplopilouv Ty avtopolfr Tou avTtioTolyel oTo arms
ToL ouothatog [22]. Enopévec, o xiplog otdyoc eivan va oyediaoTtel pa pédodog mou Borndd
Tov server vo unohoyloel e€atouixevpéva causal bounds yio xdde arm xou yio xdde tOnO
YENOTN XU TEPALTERE VAL EVIOYVUOEL T1) Bladixacior udinong and tny TAELRd TWV YENOTOV.

15



2 Ilepirypapry Alyoplduou

Ye autr} TV evotnta mpotelvoupe évav alyoprduo Baciouévo otov UCB mou haufBdvel
UTOYN TO YEYOVOC OTL 0L YENOTEC AVAXOUV GE BLAPOPETXO0UE TUTOUG YENOTWY XL YENOULOTOLE
aUTH TNV TANEopopla Yiar Vo Steuxohivel Tn dladxacta pdinone. Eetdloupe tny npotetvouevn
pédodo 1600 ambd TNV TAEUPE TOL YEHOTN GCO XAl Omd TNV TAEUPd Tou server. Apywxd,
aVOADOUUE TOV TEOTIO UE TOV OTOLO O server YprnoWonolel Ta Bedouévo TN Hop@nc user-arm-
click mou arnoctéAlovton amd TOUG TEALTES, TEOXEWEVOL Vol OUAOOTOLCEL TOUC YPNOTES OE
OLUPOPETIXEC OUADES YPNOTWY. X TN CUVEYELN, TEQLYPAPOLUE T UEVOBO Yo TOV UTOAOYLOUO
T600 confidence 660 xou Twv causal opiwv yia xdde oudda yenotr, Ta onola Vo AsttovpyHicouv
W¢ UECO UETAPORAS Hdinong T6éco UeTall yenoTdv Tou (Biou TUTOU GGO oL BLUPOPETIXV
TOnWY Yenotoyv avtictoiya. Télog, e€nyolue tn ddixacio dnuiovpyiog dedouévwy and Ty
TAEUPA TV TEAATOY, 1 omolo emnpedleton xupiwe and Tov alyoprduo causal-UCB 4 mou
epapuoleton o€ xdde TeRdTn.

2.1 Avdivorn alyoplduou and tnv TAsupd Tou Server

Kotd tn dwdwacta pydinong, o server €yel mpdoBacy UOVO OE BEDOUEVH TNC LOPYHS
(u,a,r) Tou ouYXEVTEPGUNXAY and Toug YPHOTES, OTOU @ Elvon TO arm nov eEETAOTNAE XL T
n avtopol3y) tou 869nxe (1 % 0). Aedouévou dtL Bev TopéyovTol TANPOPORIEC GYETIXY UE TOV
TUTO TOU YENOTY, Ol UOVES BELUIEC YVWOELS TTOL UTOPOUY VoL UTOAOYLIOTOUV GTOV Server €ivol
T causal bounds otny avopevépevn avtopolBr evoc arm [22]. Ye authv Ty tepintomon, €0To
Pry = Pr(X =2,Y =y) n mdoavétnto 1o arm x vo €yet v avtopos v, n onola unopel va
UTOAOYLOTEL YENOWOTOLOVTAS To OEGOUEVA TTOU OMOCTEANOVTAL OTO Server and TOUC TEAUTES.

Yewpotpe X € {1,...M}, Y{0,1}, xododc xou 6Tt T0 pyy Slveton eite w¢ eumelpd
EXTIHOUEVN TWT ELTE WC EX TWV TPOTEPWY YVwaoT. Tote 1 avouevouevn avtauol3n evog arm X
YWl YVOOoN TwV GUYXEXPIEVOY TUTWY TV Yenotoy, E[Y |do(X)], To unopel va optodetniet
ano:

Pr(X=2,Y=1)<E}Y|do(X =2)] <1-Pr(X =2,Y =0) (1)

2.1.1 Opadonoinon Twv YenoTwy ctov Server

[Tpoxewévou ta causal xou upper confidence bounds mou unoloyilel o server va ohn-
Yebouv yia xdle yeHotn, elvol amopaltnTn 1 OPAdOTONCT TWV YENOTWY XAl O BLUYWELOUOS
TOUC OE OUADESC TOPOUOLWY EVOLPEROVTWY. O olydprduog Tou yenoLoToLe(Ton Yior auTH 1
otadwaota, 3, elvon éva heuristic mou ypnowonolel to 6edoPEva TOU TUEEYOVTAL UTO TOUG
YENOTES, YA VO TOUC OUUBOTIOLACEL GE GUUTAEYHATO GOUPWVOL UE TS TROTWHACELS TOUG. LUY-
xexpéva, o server utoloyilel éva Bidvuoua & Yl xdde YEHOTN TOU AVTITEOCWTEVEL TN U€oT)
avtopol3h) Tou yia xdde arm. TN CUVEYELX, PE TN Ypron Tou olybdprdpou opadonolnong
KMeans, o server unoget va opadonotioel toug yprioteg o N ouddec. Auth| n opadomoinon
elvol dPXETH WOTE O Server Vo ToEEYEL OTOUC YPNOTES OAA T ATOPALTNTA GV OpLaL, T OTola
xeedlovton yioe Tov ahyopriuo causal-UCB nou Ya e@apuoctel and TNy TASURE TwV TEAATMY.

Emuniéov, oe nepintwon nou o tpoénoc mou opillovtal oL TUTOL TV YeNoTY, O QUTAY TN
dlatinwon TeoBAUaToC, elvon uo TANEo@opia YVWoTYH atov server, o olyoptduoc 3 mopéyel
eniong heuristic mou xadopllel mol oudda, amd autéc mou dnuloveyolvTon amd to KMeans,
avtiotolyel oe mowov tOno yenotn. H Boowy) w6éa autod tou alyoplduou Bacileton otov
0pLoWO6 TV TUTLY YENOTN. 2¢ €X TOUTOU, 1) ETLOHUAVOT| TWY OUddwY enneedleTon and TO ToLo
arm €yet TN UEYOAUTERT avTouolB) 6To xEVTpo xdde ouddoc, eved SLacoMTETAL OTL XAVEVAS
TUTOG YEHoTN OeV ExEL exywenlel 6 6V0 BLUPOPETIXES OUADES.
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Algorithm 1 Clustering and Labeling Algorithm

Require: For each user u a vector x,, with their average reward for each arm
1: Use KMeans to separate users into N groups based on their vector x,,.
2: For each group i created, compute the Center of the group ¢;, which portrays the
average rewards per arm of the users that were assigned at the mentioned group.
3: Assign each group to a user type by solving the following linear programming problem:

N
minimize Z —CiY;
i=1
M
subject to Zcz[k]yz[k] =1, i=1,...,N,
k=1

N
> cilklyilk] =1, k=1,...,M,
=1
yilk] €[0,1], i=1,...,N and k=1,...M

: Let I; be the user-type user ¢ according to the server
:fori=1,...,N do

li < argmaxyeqy, ary vilk], where i € {1,... N'}
end for

2.1.2 Avavéwon twv Upper xaw Lower Confidence bounds twv avta-
polBwy Twy arms

Mohic o server AdBel éva data-point tne poppic (u, a,r) and évay cuyxexpWEvo YehoTn,
TO TEOTO Priua lval Vo avaVEWOEL ToL Gve xou xdtw confidence dplor Tou arm a cTov TONO
YENOTN TOU OVAXEL O U, GOUPWVA UE TOV Server.

‘Eotw éva data-point (u, a, ) nou anoctéletar and Tov Yphotn U, 0 0Tolog UMWV UE
TOV server avixel 6Tov TOno Yenotn k. X1n cuvéyela, €dv ¢y lvon o apldude TwY GUVORXGY
dedouévmy mou cUAAEYovTaL Yioe Tov TOTo Yehotn k, Nila] o oprdudc twv dedopyévmv mou
SLMEYIMUaY YL Tov TOTO YeRoTn k oYeTXd Pe To apy a xou T'[a] N cuvohuh avtouol3h Tou
éyeL cuNey Vel péypL oTiyuAc Yio To arm a otov k t0mo ypfiotn, To uch xa o lcb tou Y¥d]
UTopEoUV Vo evuepwioly cUUpmVA PE Toug axdrovloug TUTOUC:

UCB(Y*(a)) ;‘;f[“a]] + 4 /1.5?32’“], 2)
LCB(Y*(a)) ]’”V’jg]] . /1.5;’32’]. (3)

[Topd To yeyovoe 6Tt uroloyilovian 1600 Ta dvew 600 xou Tor xdtw confidence bounds,
ol Tomwol mehdteg ypeidlovTtar uovo To dve dpto dTay medxeltal vo xadoplcouy Tolo arm
Yo TEEMEL Vo TPOTEIVOUY aTouG YenoTeg oe xdlde ypovxd Priua. 261660, 0 UTOAOYIOUOS
TOU XATOTEPOU oplou elvan eniong amapaitnTog, xowg amotehel Evay emmAéov TEPLOPLOUS
mou Yo YENOWOTOLACEL O server xatd Tov UToAoyloud Twyv causal bounds. Kdie popd mou
arhdler To upper confidence bound tng avtapgoBrc Tou TONOL K yia VoL GUYXEXPUEVO arm,
1 EVNUEPWHEVT €X000T Tou Vol ATOCTEAAETAU GE OAOUG TOUG YPENOTEC TOL GUUPOVA UE TOV
server oviixouv ctov egetalouevo TUTo Ypnotn, k.
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2.1.3 Ymnoloyiwopog twy Causal bounds yia TNy AVAUEVOUEVY] avTa-
Qo7 Twv arms

Edv AdBouue umddn tnv Umopdn SlapopeTindy TOTwY YeNoTrn 6T0 6OOTARN TOU UTUXOLY
oty xoatavour Py, tote 1 avouevopevn avtopoldr) E[Y—do(X)] unopel va enextadel we:

N
E[Y|do(X)] = PHE[Y*|do(X)). (4)
=1

Méhic Beedolv 1 evuepwdolv ta confidence bounds tou Y*(a), eivor duvatd vo amox-
Yoy causal bounds yw E[Y?|do(X = a)], 6mou i oe{l,- -+, N}\{k}, ypnotponoivoc 1o
causal bounds tou E[Y'|do(X = a)] oto (6) xou tnv avéivon oto (9).

‘Eotw UCausal(a) xou LCausal(a) o dve xon xdte causal bounds touv E[Y|do(X = a)]
6mwe unohoyileton oto (6). Eotw Py 1 xotavoun tov tinmy yehotn mou €xel Beet o server
wéow tnc opadomoinonc xoaw UCB(Y*(a)), LCB(Y*(a)) to evnuepwuéva confidence bounds
yioo TV avTtool3n Tou a oe TUTo yehotn k. XN cuvéyew, Ta avoTtepa causal opla yio
TNV avTopolBy) Tou a oe TUTOUS YPNOTY BLUPORETIXWY amd TwV k umopolv Vo UTOAOYIGTOUY
emhbovTag T0 oaxéAoudo TeOBANUa BeATicToToliNnoNC.

minimize  — Y*(a)
N .
subject to ZP(U =7)-Y’(a) < UCausal(a),

7j=1

N .
> P(U = j)-Y7(a) > LCausal(a),
j=1

Y/(a) € [LCB(Y?(a)),UCB(Y?(a))], j=1,...,N

Yo mepamdve TeéBinua Petiotonoinong, To Y(a) aviitpoownelel To dve causal 6plo
Tne avtopol3fc Tou arm a yio Tov i TOmo Yehotn. Elayiotonowbvtoc Ty th tou —Yi(a),
XUTOPEQVOUUE Vo AdBoude TN HEYLOTN BuvaTh Ty Yiot auTtd To dve Opto. ITlpoxewévou va
Angiel €va dvew causal 6plo yia 6Aoug Toug TUTOUS YeNoTY), elvar amapaitnTo vor Audel auTtd
T0 TpOPAnua Bedtiotonoinone N gopéc v ¢ €€ {1,--- , N}\{k}. Edv Sodel onowdrinote

1
TEONYOUUEVY YVMOT GYETXA PE TOUG TUTOUS YENoTN Xou TLE TeoT ol Toug (.. ;EZ; €

[0,3,0,6]), uropet vo yenotponotniel we évac EMMAEOV TEPLOPLOUOS OTO ToPATAVG TEOBATLAL
Behtiotonoinong Yy vo fondnoel ta causal Gplor vor Yivouy mo ouoTned.
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2.2 Avdivon alyoplduou and tny nAsved twyv Clients

And v mhevpd Twv TEAATOY, Yewpeltar OTL xdde yeHoTne Yvwellel Tov TOTo Tou, Tou
onualvel 6Tl yVopilel Tola EMAOYT TOU CUCTAUATOS TOU 0REGEL 10N Xalt TOLES Efval oL UTOAOLTES
oL TEETEL VoL eEEPELVNTEL TIEpanTépw. §2¢ amoTéAEoUa, xaTd T Sidpxeta Tne pudinong, oc xdde
YeNotn oL emhoyég mou Yo Tou TapouctdlovTal Yo TEoEpyoVTaL amo EVa LYXEXEWEVO pool of
arms, av&Aoyo TOU TUTOU TOU YEHOTN, XL O xdUe Ypovixd Bruc To arm mou Yo emAéyeTon Yo
elvar auTo pe TIC XoAOTERES TpooTTIXEC avTaolBhc (ot TpoorTtixée avtapolBric xadopilovton pe
Bdom to dve bpta oy arms). To data-points mou Snulovpyolvta amd oty T Sadixacio Yo
yenowornomndoly amd Tov server oty dadxacta opadonoinone Twv yenotov. Ilpoxewwévou
vo 8olel 1 BUVITOTNTA GTOV Server Vo OuadOTOCEL WO TA TOUS YENOTES Xl Vo BEATLOCEL
v axp{Bela opadonoinong, elvar amapaltnTo oTNY opyr Tou alyopiluou vo tpaypatonoie
wor dlxoun e€epedivon Twv emAoy®y Tou cuoThdatoc. T'o va avTiuetwricovye auThv TNV
Tedxhnao, epapuolovye wa uédodo e-greedy, oTny onola To € efval Ylal TUPAUETPOS CUVTOVLO-
noU mou mpooupuolel TNy e€epedivnon Tou akyoplduou yio xdie yeHoTn xaTd To TEOTA BridaTa
NG TPOGOUOIWOT.

Algorithm 2 Causal bound constrained e-greedy-UCB

Require: List of Users U, Pool of arms X, UCB bounds on the rewards per arm for each
user type YV (X), causal bounds on YV (X) (both bounds are provided by the server),
number of time steps T'

1: e=0.1
2: fort=1,...,7T do
3:  Choose randomly one user w from U.

Let k be the user’s true type.

a < argmax, min{UCB(x), UCausal(z) }, where x € X\k

flag = random.choice([1, 0], [¢,1 — €])

if flag == 1 then

a < random.choice([X])

end if

10: 7 « random.choice([1, 0], [1 — Y*(a),Y*(a)]), where r the reward provided

11:  Send the data point (u,a,r) to the server.

12: end for

[MopatneRdnxe 6T ywelc v evowpdtwon tng pedodou e-greedy otov ahyodprduo, 7
axp{Belo opadomoinone amd TNV TAEUEE TOU server, oaxOun Xol G TEPITTMOOELC OTOL Ol TUTOL
xenotn Siépepay uetald toug, dev Yo pmopoloe v BeAtiwiel opxetd xatd TN GLodixacta
udinone. Mohic ta causal bounds cuyxhivouv, xuglapyolv évavtl Twv upper confidence
bounds xo avayxdlouv toug tomxolg clients vo SLoAéyouy xou vor TEOTEVOUY TdvTa To (Blo
arm. ‘Otav to causal dpla fjtay cwoTtd, auTtog 1 emhoyt Tou Yo yvotay Yo Atav 1 féATioT,
dtapopeTixd Oyt. Kou otic 8Vo nepintidoelg, wot6c0, oL yeroteg dev Yo elyav tnv euxoupio
Vol €EEQEUVACOLY TIC UTONOLTIEG ETULAOYES TOU CUCTHUATOS Xou €TaLl 0 server dev Yo elye pia
TLO OAOXATIPWUEVT] EXOVOL OAWY TV TEOTNOEWY TOUC. (1C amoTEAECUA, BEGOUEVOL TOU OTL 1|
opadonoinom Pociletar 0TV exTiunoT TOU server yio Ti TEOTUNOELS TWV YPNoTWY, 1 axp(Beld
Ne Oev Yo UTopoUCE VoL EIVOL IXOVOTIOLNTIX).

Me 1 yédodo e-greedy, oi Tomixol clients elyov tn duvatéHTnTa Vo e€gpELVCOUY OAEC
TIC EMAOYEC TOU CUOTAUATOS X0 VOl AMOXTACOLY Lo XUAOTEEN LOEL YL TIC TEOTIUNOELS TWV
yenotov. Me autév Tov TPOTO, O Server UTOPECE Vol XUTAVOTOEL To EVOLUPEROVTA TOUG XAl
€TOL VO XUTAUPEPEL VAL OUOBOTIOLCEL TOUG YPNOTES UE UEYOADTERT oxp{BELal, TOUALYLIGTOV OTIC
TEPLTTWOELS TOU oL TOTOL YenoT®y Aty dlapopetixol petall toug. Tdoo n mopduetpog €
600 %o 0 YpOVOS xatd Tov onolo 1 pédodoc e-greedy Vo otopathoel va elvon evepyr, elvan
tuning parameters mtou umopoly va 0ploToly cOUPLVL Ue TNV eEETAlOUEVT] TEOGOUOIWTT) Xl

TO TEOPBANUAL.
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3 Illeipapato xow AnoteAéopota

‘Eotw éva olotnua TpoTtdoewy Tou onolou oL YpRoTeC unmopoly vo opadonotnioly ot 3
suer-types (N = 3) xou yunopolv va emhéZouv dpdpa and pa opdda 3 arms (M = 3). Kdade
arm oVTITPOCWTEVEL ULol SlapopeTnr] xotnyopio dpdewy xou xdde tomog yenotn k oplletan
©C 1) oUdda YeNoTWY Tou €youy efepeuviicel To arm k xou yvwpeilouv ot elvon 1 BérTioTn
emhoyn) Toug. O eMOUEVOC 0TOYOC TV YENoT®Y elvol var eEEEEUVACOLY ToL UTOAOLTIOL arms Xal
Vo udouy o efvon 1) 0eUTER XAAUTERT ETAOYY| TOUG.

Oewpolue 6TL undpyouv 100 yproTteg GUVOEDEUEVOL GTO GUGTNUA ot OTL Ywellovton oTig
3 opddeg olupwva pe v xoatavoul Py, = 0,2, Py, = 0,3 xaw Py, = 0,5. Ipwv &ex-
wroel 1 Swadixacto expdinong, To cLoTnua CUAAEYEL Evay aptiud opyxey data-points ovd
XPNOTN, TEOXEWEVOU O Server vo opyXoTolfoeL TNy ouadonoinon. Autd ta dedopéva yenot-
HOTOLOUVTOL ETLOTC YLl TOV TEOGOLOPLOUO TWV AEY XMV TWOY TV opiwy uch avd timo yero.
Luyxexpyéva, oto TELpdUaTo Tou Tporydotototinxay, xdie yeRoTne Tapéyel TEVTE apyixd
oedouéva Tou CUAAEYOVTOL UE BAoT TNV TOTXY TOALTIXY TOU TEOTEVEL TO XUAUTEPO arm Yo
xdde yerotn ye miovotnta 0,6 xou €vo amd Tar dAka 600 arms pe mdovotnTa 0,2 To xordéva.

Metd tnv mpoeTolwacio 1660 TNE OUABOTOIMONG GTOV SErver OGO Xl TOV GVt Xl XATE
oplwv eumiotocivng, o alyoprduog exteheiton yiar 200000 ypovixd Bruata. Xe xdide ypovixd
Brua, o T, évac amd Toug 100 yeroteg emAéyetan Tuyaio xou Tou Topouctdleton €vog Beaylovag
GUUPEVL UE TO HOVTEAO TTOL TOL TapElyE 0 Sloxouothc. ‘Eotw 6Tt o yphotng mou eéetdotnxe
avixe oTov Tono yenotn k xou o Beaylovag mou Tou doUnxe Aoy Beaylovag a. Xtn cuvéyela,
7o regret Tou TOmOU YERoTN k, Yo Tov omolo 1 xohltepn avtopo eivor pF, oto ypowixd
Briua T urnoloyileton olugwva pe v axdhovdn eicwaon:

T
regreth = Tk — Z Y*(a) (5)
t=1

[t var elvon yevixd €yxupa Tor amoTtehéouata, 1 xVpLo TPOCOUOIWCT| TEAYUATOTOLE(TOL 25 (QOEg
XU TO TENXO Tegret mou mopouLcLdleTal AVTITPOCWTEVEL TO UECO Tegret OAWY TwV BOXIUDY.

Ta anoteAéopato TwV TEWUUdTOY cuyxelvovtol e autd d0o benchmarks. To mpdTo
e€oxohovlel vo mpoomadel Vo opaBOTOOEL TOUC YPHOTES OTNV TAEUPA TOU BLOXOULOTY Xol
VoL EXTLBEVTEL TO LOVTENO TOUC GUAROYIXA, AAAG oty VOEL TNV U Y VOO TWwY TANEOQORLOY
xou unobserved context. ¢ amotéheoya, dev unoloylloviar 00Te yenowonoolvTou causal
bounds xatd tn didpxela Tng porinotaxhc dadixactiog xou ETol xouio TAnpogopia Tou AoufBdve-
Tow oo Lo oudda dev petapépeton oe dAAn. To dedtepo benchmark dev AaufBdver unddn 6Tt
oL Ypoteg Umopel Vo €Y0UV BLUPOPETING UOVTERN XU CUVETWS TEOTHINOELS X0 YENOULOTOLEL
opooTovdlaxy Uddnon yior var exmoudedoel €val xovo HOVTENO Yiol OAOUG TOUG YPNOTES Ywelg
VoL ETULYELRTOEL OUADOTONCT] 1) oUTLOT) UETAPORAL.

Ye authy TNV evoTnTa, UTdpyouv dLo xVpla tetpduata tou die&dyovto. H mpdtn e€etdle
TOUC TUTOUS YENOTWY TOL elvan apXeTd SlapopeTixol ueTall Toug xou o xdde TOno Yenot 1
0e0tepn BEATIOTN emAoyT| Blaépel TOAD and TNy TeAeutala. Xto BeVTEpo TElpoua, oL TUTOL
XENOTWY €Y0LUV TOMES OUOLOTNTES PETAEY TOUC, TOEONO TOU TOL TEAYHOTIXG TOUS UOVTEAN
elvor VePeMwdOS dLopopeTixd.
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3.1 TVrol yprotn mou dLapégouy uetadd Toug

Yy oy Tou meduoatog, elvar onpovTixd vo xadoploToly Tar aAndivd povtéha mou
emNEedlouy TIC aVTAUOBES TWV YENOTOV TEO¢ Toug Bpaylovee Tou cuoThuatoc. Apyuxd,
xdde évag and Toug 100 yproteg Tou cucTAUATOC exyweeltar oe évay amd Toug 3 TUTOUG
Yenotoy, ougwva e Ty xatavour) Py, = 0,2, Py, = 0,3 xou Py, = 0,5. X110 ouvéyela,
Ol TROTWNOELS TWV TUTWY YEHOTN TEOS TAL arms oAVILTPOCWTEVOVTNL oo TL¢ THavOTNTES TOU
eugaviCovton otov mivaxa 77, Enouéveg, to aAndivo yoviého mou optletar yia xde tOn0
yenot, elvor oty mpaypaTxoTNTA 1 MiavOTNTA EVag YeNoTNG TUTOL K Vo xdvel XA GE Evay
Beaylova a xan €Tl vor Tou mapéyet plor avtopolfn ton ue 1.

Ytov olybprduo Tou TEPLYPAPETOL TUEUTAVE, eival Tdovd O BLUXOUIGTAC VoL €YEL TEO-
NYOUUEVES YVWOELC Yiot Tl LOVTEAN xGUE TOTOU YPNOTH XO, TLO CUYXEXPLIEVA, YLl TN OYECT)
HETAED TV YoVTEAWY. AuTh 1 yvaor Yo uropoloe va Yeweniel we a priori mhnpogopieg mou
ToEéyovTaL amd oTATICTXES 1) dhAeg €peuveg. Tétoleg mAnpogoplec Yo umopolcay va yenol-
ponondolv oTov unoloyloud Ttwv causal bounds we emnAéov meploplondc GTO TEOBANUA
Behtiotonoinong mou mepypdpeTal 6Ty evotnTa 3.2.3. Xe auth TV evotnta, e&etdlouue
eniong edv auTH N YVWOoT), €4V elvor 0wOTY, UTopel Vo ETMTOYVVEL TEAXSE TN CUYXAON TWV
causal bounds xa emopévig Twv wovTEAwY Tou yodalvovton 6Toug TEAATES, 1) EAV To GQUA-
potor Yo emnpedoouy Ty axpifeia Tou ahyoplduou.

Table 1: Probability table that describes the preferences per user type.

User_typel | User_type2 | User_type3
Pr(X =army,Y =1) 1 0.2 0.8
Pr(X =army,Y =1) 0.8 1 0.4
Pr(X =arms, Y =1) 0.3 0.9 1

3.1.1 Xowpic eminAéov neplopltololg

Apyixd, otn BlTOTWOY TOU TEQLYRAPNXE TOEATAVE, 0 0AYOELIUOC LAoTOLELTOL YwRlg TN
YEY\OM EMTAE0V TANEOPORLMY 1| TEQPLOPLOUWY OTA HOVTEAA TV YeNoTwy. O x0plog alyopriuog
Tou paper ouyxplvetar ye autév evog anrold UCB mou vloroiel eniong opadonoinorn otov
OlaxopLo Ty, oahhd Bev uohoYilel 00OTE YENOWOTOLEL XAVEVA UTLONOYLXO OPLO EVEK) TPOTELVEL
omha otoug meAdtec. H amddoor toug adloloyelton pe Bdor to Sudypouua regret, 6To onoto
10 regret unoloyiletan onwe palvetoan oty e&iowon 10, xou v axp{Bela T ouadonoinang

amo TNV TAEUPE TOU BLUXOULOTY.

User 1

User 2

Regret
&
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40 4
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204
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—— Without Bounds
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T T
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(a) With and Without causal bounds (b) Clustering Accuracy

Figure 1: Comparison of the algorithms with and without causal bounds, while not
using any constraints.
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And auth v mpocouoiwon, umopel vo mopoatnendel dti mapdlo mou 1 yeron causal
bounds uropel vo emtaylvel ) Swodixacia exudinone yia oplopévoue ypnotec (o€ auThv
™V Tepintomon Yia yeRoTES Tou avixouy 6Tov TOTo 2), Yevxd dev Ya ennpedoet SpooTixd TNy
anodoot tou cuoThwatoc. Elvar yvewotd 6Tl xatd tov unoloyioud twv causal bounds, to
OpLOL EUTLOTOCVUVNG YPTOYLOTOO0OVTOL (G ETLTAEOY TTEQLOPLOUOS 6TO TEOBANUA BedTioTonolnomg.
Emopévee, n obyxhion twv atioxodv opiewv e€optdtar and Tn oUYXAon TV oplwy EUTo-
TOGUVNG Xl G ATOTEAEOUA, OTAY BEV UTHPYOLY GAAEC TANEOGORIEC TOU UTOPOUV VoL YN oL-
ponoindolv cto TEOBAnua BeAtiotonoinong, To aTloxd Gplal OEV UTOPOUV Vo BEATIOCOUV
OPAUCTIXG To TEMXY ATOTEAEGUATO TOU GUG TAUATOG.

3.1.2 XwoTol nepropiopol

Evé ta causal bounds Sieuxohivouy oplouévoug yehotes va pordoalvouv 1o WOVTERO TOUG
TLO YPTYOQPX, YEVIXA OEV XAVOUV UEYIAT SLopopd oty amddoon Tou ahyoplduou, xadde 1
Behtiwor| Toug elvan ahAnAévdeTn pe T Pertinon Twv oplwv eumictocivne. 2¢ ex tolTou,
elvor Tpogaveég GTL OTOLBHTOTE GWOTY TEONYOUUEVT TAnpogopia Yo uropoloe vo Bondnoet
To causal bounds va yivouv o auoTNEd XAl ETOUEVKC O YEHOWA TLO YRTYOREI Al To OpLa
EUTLOTOCUVTG.

INo tov Aoyo mou e&nyrinxe napandvew, o auth TNV evotnta e€eTdlOVUE TNV TERITTWON
OTOU O BLIXOUOTAG EYEL YVOOY OYETIXA UE TN O)Eon UETAE) TOV UOVTEAWY TWV YENOTWYV.
Yuyxexpuéva, xdde Qopd mou o Blaxoulo T eTAVEL To TEOBANUA PeATioTOTOINCNC TOV TEQL-
Yedgeton otny evotnta 3.2.3, yenotwonolel enlong Toug axdrouvous TERLOPIoHOUC:

Y=(1)

2

0 03< Y@ o7

e 0.1 <0.6
Like before, the paper’s algorithm is compared to the one that neither computes nor uses
causal bounds.

—— Without Bounds .
User 1 User 2 User 3 Clustering's Accuracy

40 0.9 -
0.8 1

304
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T T T T T 7
0 25000 0 50000 [} 100000 Without Bounds
Timesteps Timesteps Timesteps T T T T T T T T T
o 500 1000 1500 2000 2500 3000 3500 4000

(a) With and Without causal bounds (b) Clustering Accuracy

Figure 2: Comparison of the algorithms with and without causal bounds, while
using correct constraints.

YNy neplnTwoT oV TEONYOUUEVES TANROYORIES VLol TIC TROTWHCELS TWYV YENoT®Y divovto
GTOV BLAXOULO TH| XAl YPTOULOTOL00OVTOL 1§ ETUTAEOV TEQLOPLOUOS 6TO TROBANUA BeATioToNoNnoNC,
elvon mpogavég 6TL 1) yerion causal bounds emitpénel 6To GOGTNUA Vo GUYXAIVEL OYEGOY AUECHS
TNV TEAYHATXY Tou xaTdotact. ‘Eyel mapatnendel 6ti 6tav autol ol emmiéov Teploptopol
elvon evepyol, Ta causal bounds cuyxiivouv oty TEAXY TOUC TWH YETA amd Alyo uévo onueia
oedouevey. ‘Otav ol mepopiopol mou mapéyovton ebvon akndeic, ol TeAxés TWES TV oplwy
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elvon eniong owotég xan TEooeYYILoLY TIC TPOTWNACELS TV YENOTWY, EMTEETOVIAS ETOL GTOUG
TOTX0UC GUGTACELS Vol XAVOLY oxpUBElc TPOTACES GTOUC YPNOTES.

3.1.3 AdVog meplopiopol mou ennpesdfouvy TNV ANG800T TOLU CUCTN-
patog

[Topdho oL UTEEY oLV TEQLTTOCELS TOL OL OWG Tol TEPLOPLOKOL UTOPOLY EVOEYOUEVKS Vo Bo-
NUACOUY TOUG TEAATES VO GUYXAVOUY GTO TEAYUATIXO TOUG HOVTEAD T YN YORd, 1) EVEWC Tia
TOU aAYOpiUUOU EVOVTL ECQPUAUEVGLY TEQLOPLOPMY Bev etvar eyyunuévn. H yenon haviaouévng
TEONYOUUEVNS YVOOTS Vo ETneedoet v TIC TWES TWV OUTIAXOY 0pltY XaL AVATOPEUXTA
Yol EMOEVMOEL TNV ATOB00T) TwV AAYOoRilUwY.

Ye authv TV evotnTa, e€eTdlouUe TNV TERIMTWOT XAt TNV omola 1) TEONYOUUEVY YVOOT
TOU PETAPEPUNHE GTOV DLAXOULG T EEVAL EGPAUAUEVT), XU GTNY TEXYUATIXOTNTA Yia TOUS Ppayioveg
2 xou 3, avtimpoownelel TV avtidetn oyéon amd Ty aAndhvr, 6teg gaiveton oToug axdAOU-
Youg TEPLOPLOUOUC:

°« 03< Y@ g7

e 0.1 <

The comparison between the algorithm with the wrong constraints and the one that
does not use any causal bounds is shown in figure 17

—— With Bounds
—— Without Bounds
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Figure 3: Comparison of the algorithms with and without causal bounds, while
using incorrect constraints.

Y auth TNV TPocouoinoT), elval TEOPAVES OTL ECPUAUEVOL TERLOPIOUOL EVOEYETAL VoL OL-
atapdEouy T TEAXE anoteréoyata Tou alyopldpou. ‘Otay dev diaopariletar 1 aAndvy| oyéon
HETOEY TWV TEOTYWACEWY TOV YeNoT®Y, livon duvatd yia Toug local clients va xdvouv mpotd-
OEL OTOUC YPHOTES TOU OEV Efval XATAAANAES Yial TOV TUTO TOUC, EMITRETOVTAS €T0L GTO regret
Tou alyoplduou va cuveyloel va augdveTtar xatd T SLdpxelor OANE TNS pordnotoxnc Sadixactag.
H anédoon tou cucthuatog 6ev aAAdlel UOVO Yio ToUG TOTOUS YENOTWY TOU GUVOEOVTOL UE
A&dog TAnpogopieg, o aUTHY TNV TERINTWOT 0 YENoTNG TANXTEo oYel 1 xou 2, oAk xan yio
TOUC UTOAOLTIOUG TUTOUS ¥eHoTN 3 Yo auTHY TNV Tpocouoiwot). Aedouévou 6TL To causal dpto
Yioo TNV TROTUNOT €VOS TUTOL Yenotn k Yo Beaylova a evnuepvetal xdde Qopd mou évag
dhhog TOmOg YenoT TapEyEL TANPOYORIES Yot TO CUYXEXEWEVO GXENOG, €4V 1) dAANAETDpaCT
TOUAGYIGTOV £VOC 06 TOUC TUTOUS YEHOTN AAAEEL, TOTE TO 6OVOAO eMNEedleTon TO GOOTNUA.
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3.1.4 AdVog neplopiopol mov dev enneedfouy TNV Andd00T TOL CUC TH-
potog

O xdploc atdyoc Tou ahyopiduou elvon vo Tpocdlopicel molo and Ta 600 UTOAOLT arms,
Tou Bev €youv dlepeLVNUEl oxoUn amd TOUC YENOTES, TOUC OPETEL TEQLOGOTERO. 1 TT GUVEYELL
olveTon To eAdyloTr regret €dv o Tomxog TEAdTNG TpoTelvel To optimal dpvpo cToug yeroTEC.
Q¢ ex ToUToL, elvon mdovd OTL oxoUN XoL OV OL TEOTYOUUEVES YVWOELS TOU BIvovTol GTOV
OLUXOULOTY| EIVOL ECPUNIEVES, XU OC ATOTEAEOUA TOL OPLYL TWV TEOTWNACEWY TWOV YENOTWV
Teog Tov PBeaylova elvon Aaviaouéva, o Sloxoutothc eZaxohovlel vo xatapépel va uddel Tov
Béhtioto Peaylova Twv yenotdv. AveZdptnta amd To Tow Elvol 1 EXTIUNGCT TOU BLUXOULOTH
(6woTA A yt) Yio TiC TRy UaTiXéS avTopolBES TwY TUTWY Yehoth Yia Toug Beayioves, epdoov
eCoxoroudel va pmopel va pdier molog Beoryiovag elvan xalbtepog and tov dhho, To clGTNUA
Yo emtOYEL TOV %0PLO OXOTO TOU.

ITpoxeyévou va anodel€oude OTL UTOREL VoL UTERYEL Lol TETOLOL TERIMTWOT), TEOCOUOUNCOUE
1) SLTOTWOT) TTOL TERLYPAPTHE TURATAVG Xl Yiot TO TEOBANua fehtioTonolnong mou emhiinxe
ano TOV SLIXOULOTH, BWoUE TOUG axdAovdous AavlacUEVouC TEQLOPIOHOUC:

e 04< XMW ¢

R 0.6§—§§0.7

0« 04<X® <06

‘Onwe xou Ly, 0 alyoprduog Tne epyaolog cuyXplveTal Ue aUTOV ToL 6ev AauPdvel uTogn
NV Unoedn auTioTNTAC 0To TEOBANUY, Xou ETOUEVKS OV yenotuonotel xavéva causal bound.

—— With Bounds
—— Without Bounds
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Figure 4: Comparison of the algorithms with and without causal bounds, while
using incorrect constraints.

Ané 1o oyfua 18, umopel va topatnendel 6TL Tapdho Tou o Soxoutcthg lye Aaviacuévo
TEPLOPLOUO OYETIXY UE TIC TROTWNTELS TWV YENOTOY, 1) Yeron atTiaxwv opiwy e€oxoloviel va
elval apxeTd yprowun Yo T oUYXALGT TOU GUOTAUNTOS. AV xou 1) Ty TNG avTopoBhic Tou
o meplpeve o Swoxopothc (E[Y"|do(X)]) Bev elvon owoty, o dioxouothc eZaxohovdel va
xatapépvel va pdiel moleg lvar oL xaAUTERES TREOTACELS Yiot xdie Yprotn.
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3.1.5 XUyxpion pe evay alyoprdpwo UCB nou dev xdvel opadonoinon

Méyper otiyunc, oc Oha To mapamdve TeElpduota, Yewprinxe 6Tt o Sloaxouiotic yvwetle
NV Onapdn TUTWY YEHOTN, XL OXOUT| TEPLOGOTERD, TOV TEUYUATIXG dpllud TV OUddwY TOU
cuoThdatoc. Enedr| n onuacio tng opadomoinong otov dloaxoplotr uropel vo opgpoBntniet,
VEWENOUUE OXOTUO VO CUYXQEIVOUUE TOV TEOTELVOUEVO OAYORWIUO UE TO AMOTEAECUATA TTOU
mopéyovtar and évo anhd UCB nou ayvoel tny Onapln tinwy yehotn 6to cloTnUa xaL dev
emyElpel xopio ogadonoinon. XMe autdv Tov ahyoplluo, 0 BLUXOULCTAC ToREYEL Eva GUVONO
AVOTEPRY 0pleV EUTIOTOCUYNG Tou lvan To (BLo Yo GAoUC TOUG YPNOTES, AveEdETNTO OO TNV
oudda yenotyv mou avixouv. H cbyxpion twv 600 alyopliuwy @aiveton 6to oyfua 19.

—— With Clustering and Bounds
—— Without Clustering
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Figure 5: With and Without Clustering at the Server

Etvar avtiinnto 6Tt 6Tay eV TEay A TOTOLELTOL OYaBOoToMoT), XIS Ol TEOTWUNACELS TV
YENOTOV BAPEROUY, O GUVBVACHUOS TWV BEBOUEVWY TOUC YIoL TNV EXUAUNGCT EVOS XOLVOU UOV-
TENOUL BeV umopel Vo 0dNYNoEL 6TA EMUVUUNTA ATOTEAECUOTA. D€ AUTAV TNV TERITTWON, Yio
TOEABELYUA, XAVEVAS amtd TOUG TOTUIXOVG TEAXTOPES OEV XUTAPEQVEL VoL UGUEL TO TRUYUATIXG
HOVTENO TV TRV TUTWY Yenotov. Ilapdho mou o Sxouc g ayvoel Ty UTaedn ouddwy
XENOT®Y, oL Tomxol TedxTopeg cLVEY(LOLY Vo XAVOUY UEPOANTTIXEC TEOTICELC GTOUC YENOTES
avdhoyo Ue Tov TOTO ToUS. AUTY 1) LEQOANTTIXT] X0 TIERLOPIOUEVT) GUAAOYY| OTUEIY BEBOUEVLV,
OE GUVBUUOUO UE TO YEYOVOS OTL O BLoXOUIOTAS Bev avaryvewpilel 6Tl To 0UVOAO BEBOUEVWY
TEOEPYETOL AT OLUPOPETIXES BLAVOUES, avaryxdlel To oUoTNUA Vo GUYXAIVEL o Adrdog TeAxT)
XATEG TOOT).
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3.2 Ilopoduoiol TOmoOL yenotoyv

Y10 TPONYOUUEVA TIEWRAUATA, OL TUTOL YPNOTOV TOU 0plGTNXAY HTAY UEXETA OLopPOEETLXOL
X0l Ol TPOTWNOELS TOUg SlEpepay UETAEY Toug. §20THC0, Uia GAAT EVOLIPELOUT TERITTWOT)
Tou unopel va e€eTaoTel elvan OTOY Ol YEHOTES BLUPORETIXWY TUTLY €YOLY TEAYHUATL TUEOUOLNL
yevon. ‘Oneg xan mewy, 6Ty apy’ TOU TEWRAUATOC elvol amapolTnTo Vo 0ploToly Tor aAndivd
HOVTENX TOU ETNEEALOUV TI AVTOUOBES TWV YENOTWY TTPOG Ta YEpLal TOU GUCTAHUNTOS. Apyixd,
xdde évoc amd Toug 50 YENOTEC TOU CUCTAUNTOS EXYWPEELTAL OE €vay amd Toug 3 TUTOUG
XENoTOVY, GlUQeV UE TN Bla xotavour (tou onuaiver Py, = 0,2, Py, = 0,3 xau Py, = 0,5).
1N CLVEYEL, OL TROTWACELS TWV TUTWYV ¥PNO T TEO¢ Toug Peayioveg avTinpocwrevovTon and
Tic mavotnreg mou eugaviCovton otov Tivaxa 4. ‘Oneg oe 6Aa To TEONYOVUEVY TELRAUATA,
xd0e opd Tou €vag YeNoTne apéocl ot €val dEUpo X XAVEL XALX OE QUTO, TOU TUPEYEL Uidt

avtapolBn fon ue 1

Table 2: Probability table that describes the preferences per user type.

User typel | User_type2 | User _type3
Pr(X =army,Y =1) 1 0.8 0.9
Pr(X =army, Y =1) 0.8 1 0.5
Pr(X =arms, Y =1) 0.2 0.4 1
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3.2.1 Correct Constraints

INo vae e€etdoouye TiC TATRELS BUVATOTNTES TOU ahyoplduou ot o TéTolo TEp(nTWoT),
unoVécoue OTL O BLAXOULOTAC ElYE ot TOAL XATOLEC CWOTEC TEONYOUUEVES YVOOELS Yidl TO
YoUoTO TOu YENoTN. Xuyxexpléva, xdde Qopd Tou O BLIXOMCTAS ETMAVEL TO TEOBANUA
BehtioTomoinong tne evotntag 3.2.3, yenowonolel eniong toug axdrovdous Teploplogols:

Y2(1)
e 0.8< Y3 <12

X1 ouvéyEl, 1) Yeapixy| Taedo TaoT Tou regret Tou xOplou ahyoplduou tng epyaciog Tou
YENOWOTOLEL OPLOPEVEC GWOTEC TEOTYOUUEVES TANPOYORIEC CUYXPIVETOL UE QUTY) TOU ATTAOU
akyoptiuou UCB mou dev ypnowlonotel xavéva alTlo oYX Oplo XaTd T OLIEXELL TNG €X-
udinonec. Eve to diaypduupata regret tne evotnrac 4.1 mopovcioloay uévo ta onuela de-
OOUEVWY TWV YPNOTWOV TOU CUYXEVTPOUNXAY CGWOTA 0TO dlaxouio T, Yo meémel var Angiet
U OTL Yo QUTAHY TNV TEPIMTWOT), oNueior GEOUEVWY ECPUAUEVA OUABOTIOLNUEVLY YENOTWV
umohoyiotnxav eniong oto regret. Ye TeAxY) avdALOT), oxOUa XL av €Vog YeNoTng Taglvoyei-
Ton Adog, e€axoloudel va ebvar duvatd yia To clotrua xan Toug local clients va xdvouv Tig
OWOTEC TPOTACELS.

—— With Bounds

—— Without Bounds .
User 1 User 2 User 3 Clustering's Accuracy
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Figure 6: Comparison of the algorithms with and without causal bounds, while
using correct constraints for similar User-types.

Ané 1o accuracy plot, umopel vo mapatneniel 6t oc autd To mElpoua o ahyopLiuog
ATOTUYYAVEL VoL OUABOTIOLACEL OWOTA Toug YeNoTes. AoufBdvovtag unon TIC TROTYAOELS TWY
YENOTAOV, UTopoVUE Vo UTOVEGOUUE OTL OL YEHOTES oL GLVHTWE Exouv opadononidel e Addog
TEOTO avixouy elte oTov TONo Yenotn 1 elte o 3, xaddg auTéS oL 500 ouddeS elvon TUEOUOLES
xal umopolv eUXoAA Vo cuyyéovTal PETaZ) Toug. 26TO00, axdun xou O aUTH TNV TEP(TTWao,
oL TOTUXOL TPAXTOPES 0TO MAEURS TWV TEAATAY, E€aX0A0UTO0V VoL XATAPEOVOLY VoL XAVOLY TIG
OWOTEC CUGTACELS TOU UEYLOTOTOLOUV T1 GUVOAXT avTopolfn) 1) avtioTolyo EAdyLoTOTOL00Y
170 TeEAXO Tegret. Emmicov, umopel va mapatnendel i yior dhAn pior popd 1 yefom ouTLomney
oplwv umopel vor SleuxollveL T oUYXALOT) TOU aAYOELIUOL TO YRNYORX GTNY TEOYUOTIXY| XAl
TEMXT] TOU XAUTAOTUO.
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3.2.2 XUyxpion pe evay alyoprdpwo UCB nou dev xdvel opadonoinor

[Tpoxewévou va egetaotel n onuacio e opadonoinong otov dlaxoulo T, xelveta anapaitnTn
1 GUYXELOT TOU TEOTEWVOUEVOU OAYORLIUOU UE TO AMOTEAEGUATO TTIOU TIOREYOVTAL OO EVOL ATTAO
UCB mou ayvoel tny Unopn SLapope TNy LOVTEAWY YENOT®Y 6TO GUOTNUN Xot BEV Ly ElpE!
xapio ogodomoinon. e autdv Tov alyoprduo, 0 BLXOUIG TG TOREYEL EVal GUVOAD OVOTERWY
oplwv gumoToolVNg ToL elvor To (Blo Yot GAOUC TOUC YEHOTES, AVeLdETNTa omd TNV OUdda
yenotav mou avixouv. H cbyxpon twv 600 ahyopiduny qatvetar oto oyrfuo 21.

—— with Clustering and Bounds
—— Without Clustering
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Figure 7: With and Without Clustering at the Server

Mropei va mapotneniel 6Tl 6TNY TERIMTWON TUPOUOIWY TUTKY YENOTWY 1) opadonoinoT Sev
elvor amopalTnTr SUVATOTNATA, Ywelc TNV omola To cUCTNUA EVOEYETOL Vo unV elval ot VEoT va
XATOVONOEL TIC TPOTIUAOELS TWV YENOTOV XOL VOL UMV XAVEL TIC OWOTEG ouaTtdoelc. Avtiveta, 1
oUadOTOLNCT) UTOPEL axOUT xot Vo EUTOBICEL T1 GUYXALGT) TOL ahyopiluou, EVEM 1) andd0GT TOU
UTOEEL VoL uny elval TG0 GUVETE 660 aUTH Tou amhol akyoplduou UCB ywpic ouadomoinon
(6mwe gaiveton amd TN Bloxdpoven TOV Yeapnudtwy ATng).
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3.3 T'evixn] oulrnon

And Tic Topandve TEOCOUOLWOEL; UTopel Vo Topatnenlel 6Tl 0 TEOTEWVOUEVOS ahyopLl-
uoc, 4, umopel vor amodmoel xahOTepa 1 TOUAAYIoTOV EE{00U XUAO UE TO ONUELD AVAPOEAS TOU
eZetdotne (ohyopripoc UCB mou vhorotel opadonoinon oto Sloxopotr). e TEpInTWoELS
OTIOU YENOWOTOLOLYTOL GWOTOL TEPLOPIGUOL YLl TOV UTOAOYLOUO TWV OUTIOXMY 0plwY, 1) omo-
0oo1 Tou aAyoplduou Bedtiwvetar dpacTxd. Xe avtideon pe to onueio avapopds, To 4 civan
TLO CUVETES, OTWE QPUUVETOL oIt T1) GTEVY| SLOXOUAVOT) TWV BLAY QOUATEDY AOTNG %o SLEUXOADVEL
N CUYXAIGT] TOU CUCTAUOTOS TO YPNYORO OTNV TEAYHATiXY ToU XatdoToor. And tnv dAln
TAEUR, EQY 1) TRONYOUUEVY] YVMOT] TOU AMOCTEAAETAL OTOV BLAXOULO TH| Elvor AavIoouévn xa
Olatopdooel TNV W€ TOU €YEL O DLAXOUICTAC Yo TN OYECT UETUED TWV TEOTWACEWY TWV
XENOT®Y, 1 YeNoN ATohoYIX®Y 0plwv eviéyeTtal Vo unv emteédel 6Toug Tomxolg TENATES Va
uddouv TNV ahNdetar TwV YENOTOV. HOVTEAO xaL €TGL VO TOUC XAVEL XATIAANAES CUCTACELS.
Qotoo0, civar THavo axoun xou Ue TN YENOT ECPUNIEVKY TEQLOPLOUWY VoL UNV ETNEEACTEL 1|
an6dooT) Tou oAyoplduou, EpocoV 0 Blaxouo TASC ECUXOAOUTEL VO XATUPERVEL VO TPOGOLOPIEL
TOL0 GXENOG TPOTIY TEPLIGOOTERO O XAVE YEHOTNG.

‘Ocov agopd v axp{Belo opadonolnone tTwv alyopiduwy, urnopel vo eitwiel 6TL 1 e@ap-
noyn tng wevodou e-greedy elvon amopaltnTr TEOXEWEVOU O BLUXOULOTAG VO ATOXTHACEL Lot TILO
OMOXANEWUEVT EXOVIL TWV TROTIUACEWY TWV YENOTMY Xl ETCL VO XATUPEPEL VO TLC OUABOTOL -
OEL UE OWOTO TEOTO. LTNV TEUYUATIXOTNTO, oxOUa XL av 1) oxplBelar opadomoinong dev pTdoet
oe UmMAé Toc0GTo, 1) ouadonoinan oTov dlaxouo T Ya unopovoe va Yewendel cwoth. Ta
TOEABELY U, OTNV TERITTWAT TOEOUOLWY TOTWY YENOTAOY, TapdAo Tou 1) axplBela opadonoinong
oev pnopoloe vo utepBel TNy Ty Twv 0,6, 1 opadomoinoy mou ENaBE YW HTOY UXOU CE
Yé€an va fondrioet Toug Tomixolg TEAATES VoL UEToUV TIC TEOTWNACELS TV YENOTWY XAl VoL TOUS
mpotelvel T0 60O TO oxéNog 6To XdE Brua-Bru.

Téhog, unopet va tapatneniel 6Tl UTEEYOLY TEQITTOGCELS OTOU 1 (BLoL 1) opaBOTOIMOT) UTOEEL
vou Yewpniel mepitth. Ta mopddetypa, dv ol TOToL Yot VoG GUGTALATOS EYOUV JEXETA
TOEOUOLES TREOTACELS TPOC Toug PBpayloves, opxel amA® Vo GUVOUBCETE T BEGOUEV TOUC
polt yioe vor pdidouv oL Tomixol TEAATES TIC OWOTEG GLUOTACEL Yo xde Yerotn. H mpoondieia
ouadoToinohc Toug, amd TNV AR TAEUEd, TEOGUVETEL Uiot GAAY TUPAUETEO GTO GUCTNUA TOU
TEETEL VoL udrdel xou w¢ anoTéAeoya eunodilel T padnotlaxt| diadixactio. 2otdoo, edv ol TiToL
yerotn eivon SapopeTixol YETOE) TOUG, 1 UM OUAdOTOINCT TOUG OTO TAGL TOU OLUXOULOTH
unopel vou efvor et Yot T 0OYXALGT TOU CUCTAUATOS GTNY TROYUOTIXTH TOU XUTACTAO).
Aedouévou 6Tt Wi TéTola TANEoQopia ElVOL YEVIXE Y VWOTN GTOV SLUXOULOTY, 1) OUadoTonoT
TWV YENOTWY O OUAOES AVAAOYO UE TO YOUGTO TOUC EYYUATOL TNV amdd00m Tou ahyopliuou.
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4 Introduction

4.1 Previous Work - Current Innovation

Personalized recommendation systems have many applications ranging from therapy
decision in medical applications [6], [7] and news article recommendation [11], [12] to online
marketing [2], [15]. These systems generally involve multiple clients that collaborate with
each other via a central server to learn optimal recommendation strategies that depend
on their individual preferences. The objective is, e.g., to maximize the total click rates of
the individual clients. This problem can be formulated as a Multi-Armed Bandit (MAB)
problem where the arms represent different options available to the clients and the clients
need to decide which arm to pull to maximize their accumulative reward. The MABs used
by the clients to learn their local optimal decisions are coordinated by the central server
so that system becomes a Federated Learning (FL) system. Compared to traditional FL
that relies on existing data to learn a shared prediction model for all clients, here data
are generated online and the optimal decisions are personalized to the individual client
preferences. As in most FL literature, we assume that the clients do not share their private
data with each other or the central server [14], [1].

Different variations of federated MAB problems have been proposed in recent litera-
ture. Initial attempts did not take into account the possible heterogeneity between the
clients and proposed methods of learning one main global model for everyone. For example,
[19], [17] develop methods to ensure efficient client-server communication and coordina-
tion such that the global bandit model is optimally found, even though both acknowledge
the existence of different local models at each client. On the other hand, [11] and [3]
assume that all clients act according to the same linear model and develop a UCB-type
algorithm to allow the clients to collaboratively learn the best recommendations. More
recently, personalized Federated MAB methods have also been developed to account for
diversity among the clients. Specifically, [4] proposes a method to find an initial shared
model that both current and new clients can use as an initialization to learn their local
optimal decision. The work in [20] extends the method developed in [19] to balance both
generalization (finding an optimal global bandit model) and personalization (defining a
local bandit model per client). Lastly, [8] assumes different linear models for each client
that are coupled together through global common parameters, and proposes a method
based on federated learning.

A common limitation of MAB methods is that they generally require a large number
of samples to find the optimal arm. This limitation becomes even more pronounced in per-
sonalized federated MAB problems where clients have different preferences and, therefore,
form smaller populations that are more difficult to sample sufficiently. One way to address
the sampling complexity of MAB methods is using Transfer Learning (TL)[[23]] and the
knowledge gained from one “source” task to solve a new “target” learning problem; see,
e.g., [16], [18]. In personalized federated MAB problems, TL can transfer information from
one client type (source) to another (target), reducing in this way the sampling complexity
of learning optimal recommendation strategies for all individual clients. However, in a
system whose clients have varied preferences and transfer of information happens through
the central server that does not have access to private client information, the source data
available at the server and the target data at the clients will possibly be heterogeneous.
Both the unknown information, [21], and this heterogeneity between the source and target
data in TL problems, [10], are known to introduce bias in the learnt policies or value
functions. To control the bias that can be caused due to non co-founder parameters,
[13] proposes a UCB and a Thompson Sampling algorithm and addresses both linear and
non-linear causal constrained MAB problems. Respectively, [22] proposed a causal bound
constrained UCB algorithm to transfer information from an expert agent (source) to a
learner agent (target) in an attempt to surpass the bias caused to users’ different models.

In this paper, we propose a new UCB-type algorithm for personalized federated MAB
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problems that employs causal bounds to transfer information across different client types
with different private preferences. The goal is that clients in the same group collaborate
to train a common model. More specifically, we define a client’s type as a contextual
variable that affects a client’s reward function. We assume that this context is subject to
a fixed distribution and is only known by the clients locally. Without this information,
the central server cannot compute the true expected reward for each client type, e.g., the
true click-through rate. Instead, it can compute causal bounds that provably contain the
true reward. To transfer information across user types, we express the true reward of
each arm as a linear model that combines the unknown rewards and context probabilities
of the different user types that can be estimated using clustering. Since the true reward
is bounded by the causal bounds, we finally obtain linear constraints on the unknown
rewards for each arm and all different user types that provide new UCB-type bounds that
are coupled across the different MABs, achieving in this way transfer across user types.
A key feature of our algorithm is its ability to deal with errors in the clustering of users
to different user groups. Such errors can result in user selection bias and, therefore, bias
in the learning process. To address this challenge, we implement an e-greedy method to
enable fair exploration and improve clustering accuracy during learning.

To the best of our knowledge, causal Transfer Learning for personalized federated
MARB problems has not been studied in the literature. Perhaps the most closely related
work to the proposed method is [5]. In [5] users are assumed to belong to different groups
of different models; for them to train their unique model, an iterative algorithm that
alternates between estimating the cluster identities and minimizing the loss functions is
suggested. Compared to [5], here users not only can collaboratively train their group’s
common model, but they can also transfer information to other user types accelerating
their learning processes.
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4.2 Structure of Diploma Thesis

The rest of the diploma thesis is organized as follows. In section 5 to 9, we analyze
some theoretical and technical terms that are used in this project. Specifically, we present
the definitions of recommendation systems, Federated Learning and Multi-armed Bandit
problems that are necessary for the comprehension of the problem’s structure. Moreover,
we explain 2 of the project’s key notions, causality and clustering. After the theoretical
examination of the problem, we explain its formulation in section 10. Then, we analyse
the proposed algorithm in section 11 both from the server’s and the clients’ perspective.
Last but not least, we examine the algorithm’s performance by conducting numerical
experiments in section 12 that cover all the possible scenarios.
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5 Recommendation Systems

A recommender or recommendation system constitutes a subclass of information filter-
ing system, whose main goal is to predict the rating a user would give or the preference of
a user towards an item. Recommendation systems are used in a variety of areas, with the
most commonly recognised examples being playlist generators for movie, video and music
services, product recommenders for online stores, or content recommenders for social me-
dia platforms. They are mainly used for providing both personalized content, in order to
improve the on-site experience by creating dynamic recommendations for different kinds
of audiences, and better product search experience, by categorising the product based on
their features.
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Figure 8: Illustration of the logical process of a recommendation system.

5.1 Approaches to the design of a recommendation system

One of the most common approaches for designing a recommendation system is Content-
Based Filtering. Content-based filtering methods create a description of the system’s
items and a profile for the users. A user’s profile relies not only on the user sign-in mech-
anism, but also on the user’s interaction with the system. These kind of recommenders
treat recommendation as a user-driven classification problem and learn a classifier for the
user’s preferences based on an item’s features. These algorithms recommend items sim-
ilar to those that a user liked in the past or is examining in the present. In particular,
various candidate items are compared with items previously rated by the user, and the
best-matching items are recommended.

The second most popular approach to the design of a recommendation system is Col-
laborative Filtering. The methods of this approach are based on the assumption that
users who seemed to have similar preferences in the past will agree in the future, and that
they will continue to like items similar to those they liked in the past. A key advantage of
the collaborative filtering approach is that it does not rely on machine analyzable content
and therefore it is capable of accurately recommending complex items such as movies with-
out requiring an ”understanding” of the item itself. However, this approach also has some
major limitations. One of them is the problem of cold start, since there are not enough
data for a user or an item new to the system, in order for an accurate recommendation to
be made. Moreover, in many of the environments in which these systems are implemented,
there are millions of users and products. As a result, a large amount of computation power
is often necessary to calculate recommendations, and thus making scalability one of this
approach main problems. Lastly, sparsity is a limitation that also need to be dealt with,
since even active users will only have rated a small subset of the overall database.
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Figure 9: Principles of Collaborative and Content-based Filtering

Another approach to design the recommender system is to consider the recommen-
dation problem as reinforcement learning problem. In this format, the user could
be seen as the environment in which the agent, recommendation system, acts in order to
receive a reward (e.g. a click or engagement by the user). While traditional learning tech-
niques rely on supervised learning approaches that are less flexible, reinforcement learning
recommendation techniques allow to potentially train models that can be optimized di-
rectly on metrics of engagement, and user interest. This aspect of reinforcement learning,
meaning the fact that the models or policies can be learned by providing a reward to the
recommendation agent, is of particular use in the area of recommender systems.
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Action

Recommend a

song
skip not skip

Reward

Figure 10: Example of Reinforcement Learning in Recommendation Systems

Last but not least, a recommendation system that is recently gaining more in popu-
larity is the Risk-aware recommender systems. The majority of existing approaches
to recommender systems focus on recommending the most relevant content to users using
contextual information, and completely ignore the risk of disturbing the user with un-
wanted notifications. However, it is important to consider the risk of upsetting the user
by pushing recommendations in certain circumstances, for instance, during a professional
meeting, early morning, or late at night. Therefore, the performance of the recommender
system depends in part on the degree to which it has incorporated the risk into the rec-
ommendation process.

35



6 Federated Learning

6.1 Introduction to Machine Learning

Artificial intelligence (AlI), intelligence demonstrated by machines, is an academic term
that was founded in 1956 and since then has experienced several waves of interest. One of
the types of Al that has dominated the scientific research in the recent years is Machine
Learning. Machine Learning is the field of understanding and building methods that learn
from data and use the knowledge gained to improve on some set of tasks. The methods
mentioned compute models based on sample data, called training data, in order to predict
or make decisions and thus allowing software applications to become more accurate at
estimating an outcome, without being explicitly programmed to do so.

Taking into account the way an algorithm learns in order to become more accurate to its
predictions, machine learning can be categorized into three main approaches; Supervised
Learning, Unsupervised Learning and Reinforcement Learning. Specifically, Supervised
Learning refers to algorithms that build mathematical models based on a set of data
that contains both the inputs and the desired outputs. On the other hand, Unsupervised
Learning algorithms train on data that have no information on the desired output, and
extract estimations based only on the inputs. Lastly, Reinforcement Learning is a method
that teaches a machine to complete a multi-step process with clearly defined rules. It is
used in environments where software agents ought to take actions so as to maximize some
notion of cumulative reward.

Often, algorithms and theories used in Machine Learning are related to those met in
other scientific fields like Data Mining, Statistics and Optimization. In more details, there
are methods that can be applied to both ML and Data Mining problems, but while the
first focuses on predictions and estimations based on already known aspects of the data,
the latter targets the discovery of unknown properties in the data. Moreover, even though
statistics and ML are quit related in terms of the methods used in both fields, they defer
in their in their main objective; statistics’ goal is to extract population inferences from
a data sample, while ML is used to find general predictive patterns. Last but not least,
ML is closely correlated to the field of Optimization, since many learning problems are
formulated as minimization of some loss function on a training set of examples. As a
matter of fact in the current thesis, that proposes an algorithm based on ML methods,
the main goal is the minimization of a regret function.

In recent days, Machine Learning is used in a wide range of applications. The most
well-known and studied example of the ML in use is the recommendation engine. In
addition to that, other uses of ML include the following:

e Customer relationship management software that uses ML to identify the
most important messages that need to be answered faster and to even suggest po-
tential responses.

e Business intelligence that uses ML in their software to recognize important data
points, patterns of data points and anomalies.

e Self-driving cars that via ML algorithms make it possible for a autonomous car
to adapt at the current environment and alert the driver respectively.

Taking into account the wide range of application that Machine Learning can be used
to, and its ability to easily identify trends and patterns in large volume of data without the
demand for human intervention, it is no wonder that ML has gained so much in popularity
in the recent years. However, ML comes with disadvantages as well. First and foremost,
Machine learning projects are typically driven by data scientists, and thus the learning
process requires expensive software infrastructure that can process a large amount of data
in a short period of time. Furthermore, there is also the problem of machine learning bias.
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Algorithms trained on data sets that exclude certain populations or contain errors can
lead to inaccurate models that will fail or even become discriminatory.

6.2 Definition of Federated Learning

Federated or Collaborative Learning is a Machine Learning method that trains a de-
centralized model across multiple edge devices that varies from smartphones, to medical
wearables, to IoT devices etc.They use their local data samples to collaboratively train
a shared model, without however exchanging their private data or information with each
other or with a central location. This approach differs from traditional centralized machine
learning techniques where all the local data-points are uploaded to one server. It, therefor,
allows personal information to remain in local sites, reducing possibility of personal data
breaches.
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Figure 11: Structure of a Centralized Federated System

Since no data is shared at a global level, the general principle of Federated Learning
consists in training local models on local data samples and then exchanging parameters
(e.g. weights and biases of neural networks, upper confidence bounds, causal bounds etc.)
between local devices and the central server to generate a global model common for all
these devices. The algorithms used in Federated Learning rely on an iterative process that
contains a set of clients-server interactions known as federated round. Each round begins
with the current global model being transmitted to all participating clients. Afterwards,
by producing new local data samples, clients develop a set of newly trained local models,
which are then aggregated and processed by the server in order for an updated version of
the global model to be created. Such a federated round can be summarized as follows:

e Initialization of the system: The server selects a machine learning model (e.g.
confidence bounds) that is either pretrained on the central server or isn’t trained
at all. Then clients are activated and wait for the server to announce them the
calculation tasks.

e Distribution of global model: The initial model created at the server’s side is
distributed to the clients

e Local training: Each client trains the model locally on their private data, according
to a pre-specified fasion determined by the central server.
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e Reporting: When locally trained, the updated models are sent back to the central
server. The updates from all clients are averaged and aggregated into a single shared
model, improving its accuracy.
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Figure 12: Federated Round

The federated Learning analysed thus far, is the centralized version, in which a cen-
tral server is responsible for the orchestration of the algorithms’ different steps and the
coordination of all the participating clients. However, Federated Learning can also be
decentralized. In Decentralized FL setting, the clients are able to coordinate themselves
in order to obtain the global model. In this structure, due to the fact that model updates
are exchanged only between interconnected clients without the orchestration of the central
server, single point failures can be avoided.

6.3 Advantages and Disadvantages of Federated Learning

Federated learning is an emerging area in machine learning domain and it already
provides significant benefits over traditional, centralized machine learning approaches.
The main advantage of using FL methods is to ensure data privacy. Since no local data is
exchanged or uploaded externally, it is more difficult to hack into it. On the contrary, in
FL only machine learning parameters are exchanged, which can also be encrypted before
sharing between learning rounds in order to extend secrecy. Moreover, Federated Learning
is a method that is often used in cases where personalization is needed (application domains
that involve a large set of heterogeneous clients). The central model delivers information
on global patterns, and allows participating clients to adapt its outcomes on their peculiar
preference. Federated Learning methodology can easily be adapted to generate two or more
models at once in a multi-task learning framework. This version is called Heterogeneous
federated learning.

Despite its innovative main idea, Federated Learning is far from perfect and actually
faces a lot of technical limitations. To begin with, it is a method that is considered quite
expensive, since frequent communication between clients and the server is required. This
translates into high demand for storage capacity and large bandwidth and thus more
investment requirements. In addition, even though data privacy is one of FL’s main
concerns, it cannot always be guaranteed. For instance, the fact that there are multiple
devices for collecting and analyzing data, actually increases the attack surface and makes
it harder for hacking attempts to be prevented. Also, despite the fact that only models,
and not raw data, are communicated to the central server, models can possibly be reverse
engineered to identify client data. Last but not least, lack of access to clients’ information
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and hiding training data can create problems during the learning process. For example, it
could make it harder to identify unwanted biases entering the training process, or it might
even allow attackers to alter the global model according to their will.

6.4 Federated Learning Applications

Undoubtedly, Federated Learning’s key principal, which enables continual learning on
end-user devices while ensuring data privacy and secrecy, has made it quite suitable for
recent problems. Although there are many limitations that need to be surpassed and it is
still being actively researched and improved, there already are applications in which FL
is practically used.

1. Healthcare: Considering that protected health information can’t be shared that
easily due to recent regulations, Healthcare is one of those industries that can benefit
from federated learning the most. In this way, masses of diverse data from different
healthcare databases and devices can contribute to the development of Al models,
while complying with regulations.

2. Advertising: Advertising as an industry, relies on each individual user’s data in
order to achieve personalization of the local models and make appropriate and suit-
able recommendations to the clients. However, nowadays users are becoming more
concerned with their privacy and the amount of data that is shared and thus be-
coming public. Therefor, Federated Learning is a technique that can be applied in
order for the clients’ demands to be satisfied.

3. Autonomous vehicles: Since Federated Learning is capable of providing real-time
predictions, the approach is used in developing autonomous cars. The information
may include real-time updates on the roads and traffic conditions, enabling con-
tinuous learning and faster decision-making. This can provide a better and safer
self-driving car experience. Although, at the moment, there is only research being
conducted in the direction of FL being implemented in automotive industry, it is
estimated that federated learning can reduce training time in wheel steering angle
prediction in self-driving vehicles.
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7 Multi-armed Bandit problem

The problem of a recommendation system is usually formulated as a multi-armed
bandit problem (MAB). In those kind of problems a different set of resources (arms) must
be allocated between various clients in a way that maximizes their expected gain, when
each client’s properties are only partially known at the time of allocation, and may become
better understood as time passes or by allocating arms to the clients. During the learning
process, each client provides a random reward from a probability distribution specific to
that client. The objective of the system is to maximize the sum of rewards earned through
a sequence of arm pulls. The crucial tradeoff a recommender faces at each trial is between
”exploitation” of the arm that has the highest expected payoff and ”exploration” to get
more information about the expected payoffs of the other arms.

Considering one client, the MAB problem can be seen as a set of real distributions
Ry, -+, Ry, each distribution being associated with the rewards delivered by one of the
M arms.Let pq,---, pua be the mean values associated with these reward distributions.
The client iteratively pulls one arm per round and observes the associated reward, based
on the objective of maximizing the sum of the collected rewards. The bandit problem is
formally equivalent to a one-state Markov decision process. The regret r after T rounds
is defined as the expected difference between the reward sum associated with an optimal
strategy and the sum of the collected rewards:

where p* = ml?x i and r; the reward on round t.

8 Causality

Causality, also referred to as cause and effect, is influence by which one event, process,
state, or object - the cause - contributes to the production of another event, process, state,
or object - the effect - where the cause is partly responsible for the effect, and the effect is
partly dependent on the cause. Generally, a process has many causes, which are also said
to be causal factors for it, and all lie in its past, while an effect can in turn be a causal
factor for many other effects, which all lie in its future. Causality is an abstraction that
indicates how the world progresses, so basic a concept that it is more apt as an explanation
of other concepts of progression than as something to be explained by others.

8.1 Types of Causes

Causes can sometimes be distinguished into three main types, as explained bellow:

e Necessary causes: A causal factor x can be characterised as a necessary cause of y
if the presence of y necessarily implies the prior occurrence of x, while the presence
of x does not guarantee the occurrence of y.

e Sufficient causes: A causal factor x can be characterised as a sufficient cause of
y if the presence of x necessarily implies the subsequent occurrence of y, while the
presence of y does not imply the prior occurrence of x.

e Contributory causes: A causal factor x can be characterised as a contributory
cause of y if in a specific case was among several co-occurrent causes, but it cannot
be considered neither necessary nor sufficient cause.
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8.2 Causal Calculus

Generally causality can be formulated by various theories, like counterfactual or prob-
abilistic ones. In this paper causality is examined in the form of causal calculus. When
experimental interventions are infeasible or illegal, the derivation of a cause-and-effect
relationship from observational studies must rest on some qualitative theoretical assump-
tions, usually expressed in the form of missing arrows in causal graphs such as Bayesian
networks or path diagrams. The theory underlying these derivations relies on the distinc-
tion between conditional probabilities, as in P(y|z), and interventional probabilities, as in
P(y|do(z)).The theory of causal calculus - also known as do-calculus - permits one to in-
fer interventional probabilities from conditional probabilities in causal Bayesian networks
with unmeasured variables.
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9 Clustering

Clustering is the task of grouping a set of objects in such a way that objects in the
same group are more similar to each other than to those in other groups. Each one of
these groups is called cluster. It is a main task of exploratory data analysis, and a common
technique for statistical data analysis, used in many fields, including machine learning that
is this paper’s main concern. Clustering itself is not one specific algorithm, but the general
task to be solved, that can be achieved by various algorithms that differ significantly
in their understanding of what constitutes a cluster and how to efficiently find them.
Clustering can therefore be formulated as a multi-objective optimization problem. The
appropriate clustering algorithm and parameter settings depend on the individual data
set and intended use of the results. After all, clustering as such is not an automatic task,
but an iterative process of knowledge discovery or interactive multi-objective optimization
that involves trial and failure. Thus, It is often necessary to modify data preprocessing
and model parameters until the result achieves the desired properties.

As it is already mentioned, there is not one singular definition of the term ”cluster”,
which is practically one of the reasons why there are various clustering algorithms. While
a cluster is mainly understood as a group of data object, different cluster objects can
be employed by different researchers, with each one of them depending on a different
algorithm. Typical cluster models include the following:

e Connectivity models: As the name suggests, these models are based on the notion
that the data points closer in data space are more similar to each other than the
data points lying farther away. These models can follow two approaches. In the
first approach, they start with classifying all data points into separate clusters and
then aggregating them as the distance decreases. In the second approach, all data
points are classified as a single cluster and then partitioned as the distance increases.
The distance function chosen in each application is a parameter that can be tuned
according to the problem. While these models are very easy to interpret, they lack
in scalability when handling big datasets. Examples of these models are hierarchical
clustering algorithm and its variants.

e Centroid models: These are iterative clustering algorithms in which the notion of
similarity is described by the closeness of a data point to the center of the clusters.
K-Means clustering algorithm is a popular algorithm that falls into this category. In
these models, the number of clusters should be given as an input to the algorithm
applied, which makes it important to have prior knowledge of the dataset.

e Distribution models: These clustering models are based on the notion of how
probable is it that all data points in the cluster belong to the same distribution,
e.g. Normal or Gaussian. A popular example of these models is Expectation-
maximization algorithm which uses multivariate normal distributions. One of these
models main disadvantage is that they often suffer from overfitting.

e Density models: These models search the data space for areas of varied density
of data points in the data space. It isolates various different density regions and
assign the data points within these regions in the same cluster.

9.1 k-Means Algorithm

In this paper, the algorithm that is used for clustering users according to their features
is k-Means. k-Means clustering is a method of vector quantization, that aims to partition
n observations into k clusters in which each observation belongs to the cluster with the
nearest mean (cluster centers or cluster centroid), serving as an identity of the cluster.
This results in a partitioning of the data space into cells. Even though this problem is
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computationally difficult (NP-hard), there are multiple efficient heuristic algorithms that
converge quickly to a local optimal solution. These are usually similar to the expectation-
maximization algorithm for mixtures of Gaussian distributions. One of the biggest problem
of the k-Means-type algorithms is that they require the number of clusters, k, to be
specified in advance.
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Figure 13: k-Means

The most common algorithm uses an iterative refinement technique, that is often
referred to as ”naive k-means”, because there exist much faster alternatives. Given an

e mD
initial set of k centroids (mgl)’ g ), which is often computed by doing random partition

of the observations, the algorithm proceeds by alternating between two steps:

e Assignment step: Each observation is assigned to the cluster with the nearest
centroid, e.g. with the least squared Euclidean distance.

e Update step: After the assignment of the observations, the clusters’ centroids
should be recalculated.

The algorithm converges, when the observations’ assignments no longer change.

43



Part III
Experimental Part

44



@ \
O—0 O—0

(a) Client’s side (b) Server’s side

Figure 14: Causal graphs at the client’s and server’s side accordingly. U represents
the user type, which affects both the decisions and rewards provided at the client’s
side, but is unobserved at the server’s side.

10 Problem Formulation

We consider a recommendation system modeled with M arms, e.g., M possible rec-
ommendations, where the users belong to one of N different user types, according to a
fixed distribution Py. We assume a user-type u is defined as the type of user that has
explored arm v and is aware of the fact that they like it. Both a user’s type and their
preferences towards the rest of the arms can be affected by their personal features and
characteristics. For example in [9] a user’s emotional state is monitored and used in order
for the system to be able to suggest a suitable type of music. There can be various ways in
which a user’s feature affect their feedback to the system. For instance, there are cases in
which it is assumed that a user’s preference towards an arm is connected to their features
through a linear model [11], [8]. In order to protect the users’ privacy by keeping their
characteristics hidden, and also not make assumptions as to what kind of model connects
the users’ features to their preferences (e.g. linear model), we consider the user-type as
the only information that can be used during the learning process and we regard it as the
cause of the users’ preferences towards the arms.

As in every recommendation system, the goal is to maximize the overall reward, which
in this case is equivalent to whether a user liked an arm recommended to them (with reward
1), or not (with reward 0). However, since we assume that the users have already explored
an arm they like, their main goals are to determine their preferences towards the remaining
arms and decide which of them could be their second optimal choice. We formulate the
problem as a MAB defined by the tuple (U7 X, YV (X)), where U € {1,..., N} is arandom
variable that models the user-type, X € {1,..., M} is a random variable that indicates
the selection of one of M arms, and Y*(x) is the reward function associated with arm
X = x given user-type U = u. Specifically, Y"(z) represents the probability of a user of
type u liking arm x. At each time step, a user of type u is drawn independently from the
distribution Py. Based on the information provided by the server for that specific user,
the local client pulls an arm from the pool and recommends it to the user. The incurred
reward follows the user’s preferences function Y.

Since the users can be clustered into groups according to their type, we design a
federated learning framework that can allow similar users to collaboratively train their
common preference model while leveraging the information gained by other user types.
Under this formulation, it can be considered that for each user there is a local client-agent
that makes recommendations to them, and that the whole learning process is supervised
by a central server. From the server’s perspective, the only available data are user-click
data points, with the user’s type remaining an unobserved confounder. As a result, on the
server side, the only information that can be calculated with certainty are causal bounds
on the arms’ accumulated reward [22]. Therefore, the main goal is to design a method
that helps the server calculate personalized causal bounds for each arm and for each user
type and further to boost the learning process from the users’ ends.
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11 Algorithm Analysis

In this section we propose a UCB-based algorithm that takes into account the fact
that the users belong to different user-types and uses this information to facilitate the
learning process. We define the proposed method from both the client’s and the server’s
perspective. Initially, we analyze the way the server uses the user-click data points sent by
the clients, in order to cluster the users into different user groups. Afterwards, we describe
the method for computing both confidence and causal bounds for each user-group, as a
means of transferring learning both between users of the same type and different user-types
respectively. Lastly, we explain the data generating process in the clients’ side, which is
mainly affected by the causal-UCB algorithm 4 that is implemented at every client.

11.1 Server’s Side

During the learning process, the server only has access to data points of the form
(u,a,r) gathered by the users, where a is the arm examined and r is the reward that is
equal to either 1 or 0. Since no information on the user’s type is provided, the only certain
knowledge that can be computed in the server are causal bounds on the expected reward
of an arm [22]. In this case, let pyy = Pr(X = 2,Y = y) be the probability of arm x
having the reward y, which can be calculated using the data sent to server by the clients.

Consider X € {1,... M}, Y € {0,1}. Then given p,, either as an empirically estimated
value or an a priori knowledge, the expected reward of an arm X without knowing users’
specific types, E[Y|do(X)], can be bounded by:

Pr(X =2,Y =1) <E[Y|do(X =2)] <1-Pr(X =2,Y =0) (6)

11.1.1 Clustering at the server side

In order for the causal and upper confidence bounds that the server computes to apply
to every user, clustering the users and separating them into groups of similar interests
is essential. The algorithm that is used for this process, 3, is a heuristic that uses the
data provided by the users, to group them into clusters according to their preferences.
Specifically, the server computes a vector x for each user that represents their average
reward for each arm. Then, with the use of the clustering algorithm KMeans, the server
is able to cluster the users into N groups. This clustering is enough for the server to
provide the users with upper confidence bounds and causal bounds, which are needed for
the causal UCB-algorithm that will be implemented at the clients’ side.

Moreover, in case the way the user types are defined, in this problem formulation, is an
information known to the server, the algorithm 3 contains also a heuristic that determines
which group, created by the KMeans, corresponds to which user-type. The key idea of
this algorithm relies on the user-types’ definition. Therefor, the labelling of the groups is
affected by which arm has the largest reward at the center of each group, while making
sure that no user-type is assigned to two different groups.
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Algorithm 3 Clustering and Labeling Algorithm

Require: For each user u a vector x,, with their average reward for each arm
1: Use KMeans to separate users into N groups based on their vector x,,.
2: For each group i created, compute the Center of the group ¢;, which portrays the
average rewards per arm of the users that were assigned at the mentioned group.
3: Assign each group to a user type by solving the following linear programming problem:

N
minimize Z —CiY;
i=1
M
subject to Zcz[k]yz[k] =1, i=1,...,N,
k=1

N
> cilklyilk] =1, k=1,...,M,
=1

yilkl €0,1], i=1,...,N and k=1,...M

4: Let I; be the user-type user ¢ according to the server
5: fori=1,...,N do

6: i < argmaxyeqy apy Yilk], where i € {1,... N}

7: end for

11.1.2 Update Upper and Lower Confidence bounds for the arms’ re-
ward

Once the server receives a data point of the form (u, a,r) from a specific user, the first
step is to update the upper and lower confidence bounds of the arm in the user-type that
u is clustered to, according to the server.

Consider a data point (u,a,r) sent by the user u that according to the server belongs
to user-type k. Then, if ¢; is the number of total data collected for user-type k, N[a]
the number of data collected for user-type k concerning arm a and ri[a] the total reward
collected thus far for arm @ in user-type k, the uch and Icb of Y*[a] can be updated as:

UCB(Y*(a)) « ]@{;}] +4 /1.5%&, (7)
LCB(Y*(a)) ]’;;;f[‘;]] — /1.5232’“]. (8)

Even though both upper and lower confidence bounds are computed, the local clients
need only the upper bound when they are to determine which arm they should recommend
to the users at each time-step. However, the computation of the lower confidence bound is
also necessary, since it constitutes an extra constraint that the server will use during the
calculation of the causal bounds. Every time the upper confidence bound, of the reward
of type k for a specific arm, change, its updated version will be sent to all the users that
according to the server belong to user-type k.
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11.1.3 Computation of Causal bounds for the arms’ expected reward

If we take into consideration the existence of different user types in the system with
distribution Py, then the expected reward E[Y—do(X)] can be expanded as:

E[Y|do(X ZPUE [YF|do(X)]. (9)
=1

Once the confidence bounds of Y*(a) are found or updated, it is possible to acquire
causal bounds for E[Y?|do(X = a)], where i € {1,---, N}\{k} by using the causal bounds
of E[Y |do(X = a)] in (6) and the analysis in (9).

Let UCausal(a) and LCausal(a) be the upper and lower causal bounds of E[Y |do(X =
a)] as calculated in (6). Let Py be the distribution of the user-types that the server has
found through clustering, and UCB(Y*(a)), LCB(Y*(a)) the updated confidence bounds
of arm a in user-type k. Then, upper causal bounds for the reward of a in user-types other
than k can be computed by solving the following optimization problem.

minimize ~ — UCausal(Y"(a))
N .

subject to ZP(U =j)-UCausal(Y"'(a)) < UCausal(a),
jfl
ZP UCausal(Y(a)) > LCausal(a),

UCausal(Y'(a)) € [LCB(Y?(a)),UCB(Y(a))], j=1,....,N

In the above optimization problem, Y?(a) represents the upper causal bound of the
reward of arm a for user-type i. By minimizing the value of —Y*(a), we manage to
obtain the largest possible value for this upper bound. In order to obtain an upper causal
bound for all the user-types, it is necessary to solve this optimization problem N times

for i €ee {1,---,N }\{k:} If any prior knowledge concerning the user-types and their
Yia) o

preferences is given (e.g 3= @ € [0.3,0.6]), it can be used as an extra constraint in the

above optimization problem to help the causal bounds become tighter.
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11.2 Client’s Side

At the clients’ level, it is assumed that each user is aware of their type, meaning that
they know which arm they already like and what are the remaining ones that they need
to further explore. As a result, during the learning process, each user will be presented
with arms selected from a pool accustomed to their type, and at each time-step the arm
selected will be the one with the best prospects of reward (the prospects of reward is based
on the arms’ upper bounds). The data points generated from this process will be used by
the server in the clustering process of the users. In order to allow the server to correctly
cluster the users and improve the clustering accuracy, it is essential that at the beginning
of the algorithm a fair exploration of the arms is occurred. To address this challenge,
we implement an e-greedy method, in which € is a tuning parameter that adjusts the
algorithm’s exploration for each user during the first steps of the simulation.

Algorithm 4 Causal bound constrained e-greedy-UCB

Require: List of Users U, Pool of arms X, UCB bounds on the rewards per arm for each
user type Y'Y (X), causal bounds on Y'Y (X) (both bounds are provided by the server),
number of time steps T'

1. e=0.1
2: fort=1,...,7 do
3:  Choose randomly one user u from U.

Let k be the user’s true type.

a < argmax, min{UCB(z), UCausal(z)}, where x € X\k

flag = random.choice([1, 0], [¢,1 — €])

if flag == 1 then

a < random.choice([X])

end if

10: 7 ¢ random.choice([1,0], [1 — Y*(a), Y*(a)]), where r the reward provided

11:  Send the data point (u,a,r) to the server.

12: end for

It was observed that without the incorporation of the e-greedy method in the algorithm,
the clustering accuracy at the server’s side, even in cases where user-types varied from one
another, could not improve enough during the learning process. Once the causal bounds
converged, they dominated over the confidence bounds and forced the local clients always
pick and recommend the same arm. When the causal bounds were correct that arm would
be the optimal one, otherwise the sub-optimal. In both cases, however, users would not
have a chance to explore the rest of the system’s arms and thus the server would not
have a more complete picture of all of their preferences. As a result, since the clustering
is based on the server’s estimation of the users’ taste, its accuracy could not possibly be
satisfying.

With the e-greedy method, the local clients were allowed to explore all of the system’s
arms and create a better idea of the user’s preferences. This way, the server was able to
comprehend their taste and thus cluster them more accurately, at least in the cases that
user-types were more district. Both the € parameter and the time at which the e-greedy
method will stop being active, are tuning parameters that can be defined according to the
examined simulation and problem.
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12 Numerical Experiments and Results

Consider a news recommendation system whose users can be grouped into 3 user types
(N = 3) and can choose articles from a pool of 3 arms (M = 3). Each arm represents
a different category of articles and each user-type k is defined as the group of users that
have explored arm k and know it is their optimal arm. The users’ next goal is to explore
the rest of their arms and learn which one is their second best choice.

It is assumed that there are 50 users signed in at the system and that they are separated
into the 3 groups according to the distribution P, = 0.2, Py, = 0.3 and Py, = 0.5. Before
the learning process begins, the system collects a number of initial data-points per user,
in order for the server to have an initialization of a clustering. Those data are also used
for determining the initial values of the ucb bounds per user-type. Specifically, in the
experiments conducted, each user provides five initial data that are collected based on the
local policy that recommends the best arm for each user with probability 0.6 and one of
the other two arms with probability 0.2 each.

After the initialization of both the clustering at the server and the upper and lower
confidence bounds, the algorithm is executed for 200000 time-steps. At each time-step,
T, one of the 50 users is randomly chosen and is presented with an arm according to the
model that the server provided him with. Consider that the user that was peeked belonged
to the user-type k and the arm that was given to him was arm a. Then, the regret of the
user-type k, for which the best reward is p*, at time-step T is computed according to the
following equation:

T
regreth. = Tk — Z Y*(a) (10)
t=1

In order for the results to be generally valid, the main simulation is conducted 25 times
and the final regret that is presented represents the average regret of all the trials.

The results of the experiments are compared to those of two benchmarks. The first one
still attempts to cluster the users in the server’s side and train their model collaboratively,
but ignores the existence of unknown information and unobserved confounders. As a
result, no causal bounds are computed or used during the learning process, and thus no
information gained from one group is transferred to another. The second benchmark does
not take into account that the users might have different models and thus preferences, and
uses federated learning to train one common model for all the users without attempting
clustering or causal transferring.

In this section, there are two main experiments that are conducted. The first examines
user-types that are quite different from one another and at each user-type the second
optimal choice declines a lot from the last one. In the second experiment, the user-types
have a lot of similarities between them, even though their true models are fundamentally
different. Moreover, for each user-type the arms at the pools do not vary regarding their
rewards.
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12.1 User-types that differ from one another

In the beginning of the experiment, it is essential to define the true models that affect
the users’ rewards towards the system’s arms. Initially, each one of the system’s 50 users
is assigned to one of the 3 user types, according to the distribution Py, = 0.2, Py, = 0.3
and Py, = 0.5. Then the user types’ preferences towards the arms are represented by the
probabilities shown in table 3. Therefor, the true model that is defined for each user type,
is actually the probability of a user type k clicking on an arm a and thus providing it with
a reward equal to 1.

In the algorithm described above, it is possible that the server has previous knowl-
edge on the models of each user type and, more specifically, on the relationship between
the models. This knowledge could be considered as an a priori information provided by
statistical or other surveys. Such information, could be used in the computation of the
causal bounds as an extra constrain in the optimization problem described at the section
3.2.3. In this section, we also examine whether this knowledge, if correct, is able to even-
tually accelerate the convergence of the causal bounds and thus of the models learnt at
the clients, or if inaccurate would affect the algorithm’s accuracy.

Table 3: Probability table that describes the preferences per user type.

User_typel | User_type2 | User_type3
Pr(X =army,Y =1) 1 0.2 0.8
Pr(X =army,Y =1) 0.8 1 0.4
Pr(X =arms, Y =1) 0.3 0.9 1

12.1.1 No constraints

Initially, in the formulation described above, the algorithm is implemented without
using any extra information or constraints on the users’ models. The paper’s main algo-
rithm is compared to that of a simple UCB that also implements clustering at the server,
but does not compute or use any causal bounds while proposing arms to the clients. Their
performance is assessed based on the regret plot, in which the regret is computed as shown
in the equation 10, and the accuracy of the clustering at the server’s side.
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Figure 15: Comparison of the algorithms with and without causal bounds, while
not using any constraints.

From this simulation, it can be observed that even though the use of causal bounds
might accelerate the learning process for some users (in this case for users that belong in

51



type 2), it will generally not affect drastically the system’s performance. It is known, that
during the computation of the causal bounds, the confidence bounds are used as an extra
constraint in the optimization problem. Therefor, the convergence of the causal bounds
depend on the convergence of the confidence bounds, and as a result, when there is no
other information that can be used in the optimization problem, the causal bounds cannot
drastically improve the system’s final results.

12.1.2 Correct constraints

While causal bounds facilitate some users learn their model faster, they generally do
not make much of a difference in the algorithm’s performance, since their improvement is
interrelated to the improvement of the confidence bounds. Therefor it is evident that any
correct prior information could help causal bounds become tighter and thus more helpful
faster than the confidence bounds.

For the reason explained above, in this section we examine the case where the server
has knowledge regarding the relationship between the users’ models. Specifically, whenever
the server solves the optimization problem described at the section 3.2.3, it also uses the
following constraints:

¢ 0.05 < 33 < 0.6
¢ 0.3< 1 <07
¢ 0.1 <10 <06

Like before, the paper’s algorithm is compared to the one that neither computes nor uses
causal bounds.
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Figure 16: Comparison of the algorithms with and without causal bounds, while
using correct constraints.

In the case where prior information on the users’ preferences is given to the server
and is used as extra constraint in the optimization problem, it is evident that the use
of causal bounds allows the system to converge almost immediately to its true state. It
has been observed that when those extra constraints are active, causal bounds converge
to their final value after only a few data-points. When the constraints provided are true,
the bounds’ final values are correct as well and approximate the users’ preferences, thus
allowing the local recommenders to make accurate suggestions to the users.
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12.1.3 Wrong Constraints that affect the system’s performance

Even though there are cases that correct constraints can potentially help the clients
converge to their true model faster, the algorithm’s robustness towards incorrect con-
straints is not guaranteed. The use of incorrect prior knowledge will possibly affect the
values of the causal bounds and inevitably worsen the algorithms performance.

In this section, we examine the case in which prior knowledge transferred to the server
is incorrect, and actually for the arms 2 and 3, represents the opposite relationship from
the true one, as shown in the following constraints:

e 0.05< M <06

y3(1) =
Y12
° 0.3 < 550 <07
Y2(3
e 0.1< Ylggg <0.6

The comparison between the algorithm with the wrong constraints and the one that
does not use any causal bounds is shown in figure 17
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Figure 17: Comparison of the algorithms with and without causal bounds, while
using incorrect constraints.

In this simulation, it is evident that incorrect constraints might disturb the algorithm’s
final results. When the true relationship between the users’ preferences is not ensured, it is
possible for the local recommenders to make suggestions to the users that are not suitable
for their type, and thus allowing the algorithm’s regret to keep increasing during all the
learning process. The system’s performance does not only change for the user types that
are connected to the wrong information, in this case user types 1 and 2, but also for the
rest of them, user type 3 for this simulation. Since the causal bound for the preference of
a user type k for arm a is updated whenever another user-type provides information for
that specific arm, if the interaction of at least one of the user types is altered, then the
whole system is affected.
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12.1.4 Wrong Constraints that do not affect the system’s performance

The main goal of the algorithm is to determine which of the two remaining articles,
that are not yet explored by the users, is liked the most by them. The minimum regret is
then given if the local client recommends the most likable article to the users. Therefor, it
is possible that even if the prior knowledge given to the server is incorrect, and as a result
the bounds of the users’ preferences towards the arm are wrong, the server still manages
to learn the users’ optimal arm. No matter what the server’s estimation is (correct or not)
for the actual rewards of the user-types for the arms, as long as it can still learn which
arm is better than the other, the system will still succeed its main purpose.

In order to prove that such a case can exist, we simulated the formulation described
above, and for the optimization problem solved by the server, we provided the following
wrong constraints:

¢ 0.4 <11 <06
¢ 0.6 <1 <0.7
¢ 0.4< 10 <06

As before, the paper’s algorithm is compared to the one that does not take into account
the existence of causality in the problem, and thus does not use any causal bounds.
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Figure 18: Comparison of the algorithms with and without causal bounds, while
using incorrect constraints.

From figure 18, it can be observed that even though the server was provided with
incorrect constraint regarding the users’ preferences, the use of causal bounds is still quite
helpful to the convergence of the system. Although the value of the reward that the server
would expect (E[Y"|do(X)]) is not correct, the server still manages to learn what the best
suggestions for each user are.
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12.1.5 Comparison with a UCB-algorithm that does no clustering

Thus far, in all the above experiments, it was assumed that the server new the exis-
tence of user-types, and even more, the actual number of the system’s groups. Since the
importance of clustering at the server might be questioned, we considered it appropriate
to compare the proposed algorithm with the results provided by a simple UCB that ig-
nores the existence of user-types in the system and does not attempt any clustering. In
this algorithm, the server provides one set of upper confidence bounds that is the same
for all the users, no matter which user-group they belong to. The comparison of the two
algorithms is shown at figure 19.
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Figure 19: With and Without Clustering at the Server

It is perceptible that when no clustering takes place, since the users’ preferences differ,
combining their data to learn one common model cannot lead to the desired results. In
this case for example, none of the local agents manages to learn the true model of the three
user-types. Even though the server ignores the existence of user groups, the local agents
keep making biased recommendations to the users according to their type. This biased
and restricted collection of data-points, combined with the fact that the server does not
acknowledge that the data-set is derived from different distributions, forces the system to
converge to a wrong final state.
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12.2 Similar User types

In the previous experiments, the user types that were defined were quite distinct and
their preferences varied from one another. However, another interesting case that can be
examined is when users of different types actually have similar taste. Like before, in the
beginning of the experiment it is essential to define the true models that affect the users’
rewards towards the system’s arms. Initially, each one of the system’s 50 users is assigned
to one of the 3 user types, according to the same distribution (meaning Py, = 0.2, Py, =
0.3 and Py, = 0.5). Then the user types’ preferences towards the arms are represented
by the probabilities shown in table 4. As in all the previous experiments, whenever a user
likes an article and clicks on it, they provide it with a reward equal to 1

Table 4: Probability table that describes the preferences per user type.

User typel | User_type2 | User_type3
Pr(X =army,Y =1) 1 0.8 0.9
Pr(X =army, Y =1) 0.8 1 0.5
Pr(X =arms, Y =1) 0.2 0.4 1
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12.2.1 Correct Constraints

In order to examine the full potentials of the algorithm in such a case, we assumed
that the server again had some correct prior knowledge on the user’s taste. Specifically,
whenever the server solves the optimization problem of section 3.2.3, it also utilizes the
following constraints:

0« 08< W 99

Y&(l) =
¢ 0.45 < 353 <038
0 02< ﬁg; <0.7

Afterwards, the regret plot of the paper’s main algorithm that uses some correct prior
information is compared to that of the simple UCB algorithm that does not use any causal
bounds during the learning. While the regret plots of section 4.1 presented only the data-
points of the users that were clustered correctly at the server, it should be taken into
account that for this case data-points of incorrectly clustered users were also accumulated
in the regret. After all, even if a user might be clustered the wrong way, it is still possible
for the system and the local clients to make the right suggestions.
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Figure 20: Comparison of the algorithms with and without causal bounds, while
using correct constraints for similar User-types.

From the accuracy plot, it can be observed that in this experiment the algorithm
fails to cluster the users correctly. Taking into account the users’ preferences, it can be
assumed that the users that are mostly clustered the wrong way belong to either user-
type 1 or 3, since those two groups are similar and can easily be confused for one another.
However, even in this case, the local agents at the clients’ side, still manage to make the
right recommendations that maximize the overall reward, or respectively minimize the
final regret. Moreover, it can be observed that once again the use of causal bounds can
facilitate the algorithm converge faster to its true and final state.
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12.2.2 Comparison with a UCB-algorithm that does no clustering

In order to examine the importance of clustering at the server, it is considered necessary
to compare the proposed algorithm with the results provided by a simple UCB that ignores
the existence of different user-models in the system and does not attempt any clustering.
In this algorithm, the server provides one set of upper confidence bounds that is the same
for all the users, no matter which user-group they belong to. The comparison of the two
algorithms is shown at figure 21.
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Figure 21: With and Without Clustering at the Server

It can be observed that in the case of similar user-types clustering is not a necessary
feature, without which the system might not be able to understand the users’ preferences
and not make the correct recommendations. On the contrary, clustering can even hinder
the algorithm’s convergence, while its performance might not be as consistent as the one
of the simple UCB-algorithm without clustering (as it can be seen from the variance of
the regret plots).
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12.3 General Discussion

From the above simulations it can be observed that the proposed algorithm, 4, can
perform better or at least as good as the benchmark examined (UCB-algorithm that
implements clustering at the server). In cases where correct constraints are used for the
calculation of causal bounds, the algorithm’s performance is drastically improved. In
contrast to the benchmark, 4 is more consistent, as it can be seen from the tight variance
of the regret plots, and facilitates the system converge faster to its true state. On the
other hand, if the prior knowledge sent to the server is wrong, and disturbs the idea that
the server has for the relationship between the users’ preferences, the use of causal bounds
might not allow the local clients to learn the users’ true model and thus make suitable
recommendations to them. However, it is possible that even with the use of incorrect
constraints the algorithm’s performance might not be affected, as long as the server still
manages to determine which arm each user prefers the most.

Regarding the algorithms’ clustering accuracy, it can be stated that the implementation
of the e-greedy method is essential in order for the server to obtain a more complete
picture of the users’ preferences and thus manage to group them together in a correct way.
Actually, even if the clustering accuracy does not reach a high percentage, the clustering at
the server could still be considered correct. For instance, in the case of similar user-types,
even though the clustering accuracy could not exceed the value of 0.6, the clustering that
occurred was still able to help the local clients learn the users’ preferences and suggest
them the right arm at each time-step.

Lastly, it can be observed that there are cases where clustering itself can be considered
unnecessary. For instance, if the user-types of a system have quite similar preferences
towards the arms, simply combining their data together is enough for the local clients
to learn the correct recommendations for each user. Attempting to cluster them, on the
other hand, adds another parameter to the system that needs to be learnt and as a result
hinders the learning process. However, if the user-types are distinct from one another, not
clustering them at the server’s side can be detrimental for the system’s convergence to its
true state. Since such an information is generally unknown to the server, clustering the
users to groups according to their taste guarantees the algorithm’s performance.

13 Conclusion

In this thesis we proposed a Federated MAB algorithm for recommendation systems
that take into account the users’ individuality and unique preferences, while attempting
to protect their privacy. The proposed algorithm, in most of the cases outperforms other
simple UCB-type algorithms and manages to accelerate drastically the learning process.
Theoretical analysis of the algorithm and more experimentation with the method and the
definition of clustering require further study.
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