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ITepiindm

H rnpéogatn avdmtuén otn dotnuixy Blounyavia €yel eMOTACEL TNV TEOCOYT GTO
Aopupdpo we Tanpeola(AnY). O tpwtapyxdc otéyoc Tou AwT eivon Vo YEYIGTOTOL-
OEL TN YPNON TV TOPWY GE TEOYLY ELGEYOVTUS TORUAANAL VEEC EVVOLEG, OTILG 1) LOEX TNG
enelepyaociog BeBouévemy ETAVL oe Evay 50puPoeo. Ol TEOCPATES TACEIC TNE AYORdC TRO-
tetvouv véeg teyvoloyies, 6mwe Deep/Machine Learning v|/xow Teyvnt Nonuoolvn, yia
1 Qo T Brounyavia. H xplown mtuyr eivon 1 puiolevia xa 1 eXTEAECT) DLUPOPETINGY
AOYLOUXOY OE o apnENUEVT TAATQOpUA LALXOD, 1 omoio Yo avodLlopop@mveTal €X VEOU
ToTxd. Baowod pdho oty eniteudn tou otdyou autol ExEL 1) EXOVIXOTOINGT).

Ye auth) T Aimhwpotixd Epyaota, Siepeuvoiue 800 otpatnyinés eixovixonoinong 1 oAAdg
oo mavolc unodmeioug,tov Jailhouse Hypervisor o to Docker Containers. Xpnot-
nomowwvtag éva Raspberry Pi xou Linux, xotaoxeudloupe xat SLalop@mdVoule €Vor TAROS
Aertoupyixd Jailhouse "owocUotnua" mpoxeévou vo a&lohoYHGOUUE TNV ETUOEUGT, TOU
Jailhouse Hypervisor ce autd xon vor cuyxplvoupe €v PEPEL TNV amOBOCH TOU UE QT
twv Docker Containers. H ueiétn tou Jailhouse Hypervisor cto Raspberry Pi pag
odrynoe oto cuunépacua 6Tt T Docker containers npoc¥étouy uixey| tocdtnta emBdouv-
ONG CLUOCTHUATOC XL UTOPOLY Vo GuVOLAGTOLY Ue tov Jailhouse ylo va mopeyouv Eva
UTOPOVOUEVO Xl ACPUAES TERBAANOV pe TNV eveM&la Tou TopéyeL 1) TEX VXY NG Yerong
container. ‘Ocov agopd TNV VIETEQUIVIOTIXY CUUTERLPOEE. TOU CUCTHUOTOS, TO TEWTOL
EUPAMATY YOG OYETIXG UE TNV ETOPAOT GTNY AMOOOOT] TEUYUAUTIXOV YEOVOU Elvan apXeTd
iavorounTxd xan eviappuvtind. Emmhéoyv, emfBefoumooue To toyvupd yapeti tou Jailhouse,
TNV ATOPOVWOT), 0ol BV dnuLoveYHUNXE TEOBANUL O XovEVaL amd To GEVARLA EXTENECTC
Hog, xomg xoL TV aduvaior Tou, TN UEWoT TG amdBooTg TNG EPUQUOYAS OTUY ETLXOLV-
VOOV Tl XEA UETAEY TOUg 1) 1 %xivnoT Tou SladAou GUCTAUATOS ALEAVETOL.

Aéeic KAewdtd — Ewovixonoinorn, Jailhouse Hypervisor, enelepyaocia oto

00pLPOEo, Aopupdpog we Trneeoio, Docker Containers, Raspberry Pi, Swotnu
Lounyovia, anouovmwaoT), anddoon TEAYUATIXOU YeOVoU
Bropny uoveoT UREEAE XP

1X






Abstract

Recent growth in the space industry has drawn attention to Satellite as a Service (SaaS).
The primary goal of SaaS is to maximize the use of orbital resources while introducing
novel concepts, such as the idea of data processing onboard a satellite. Recent market
trends suggest novel technologies, such as Deep/Machine Learning and/or Artificial
Intelligence, for the space industry. The crucial aspect is hosting and executing diverse
software across an abstract hardware platform, which will be re-instantiated regularly.
The key component to this objective is virtualization.

In this Diploma Thesis, we investigate two virtualization strategies or we could say two
potential candidates, namely the Jailhouse Hypervisor and Docker Containers. Using a
Raspberry Pi and Linux we build and configure a fully functional Jailhouse "ecosystem"
in order to evaluate the effect of the Jailhouse hypervisor on it and partially compare
its performance to that of Docker containers. The study of the Jailhouse Hypervisor on
the Raspberry Pi led us to the conclusion that Docker containers add a small amount
of system overhead and can be combined with Jailhouse to provide an isolated and
secure environment with the flexibility provided by the containerization technique. In
terms of observed deterministic behavior, our preliminary findings regarding the effect
on real-time performance are quite satisfying. In addition, we confirmed Jailhouse’s
strength, isolation, which did not pose a problem in any of our execution scenarios, as
well as its weakness, the decrease in application performance when cells communicate
or system bus traffic increases.

Keywords — Virtualization, Jailhouse Hypervisor, onboard data processing, Satel-
lite as a Service, Docker Containers, Raspberry Pi, Space Industry, isolation, real-time
performance
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Euyaplotieg

Apywd, Vo ndcha va ex@pdon TNV evyvouocLvn you otov emPBiénovio Kodnynt
Arnunteto Lolvien ylo TNV EUToToc0V ToU You €0ele Ue TNy avddeon authc Tne BLmAw-
potixig epyaotog, aAAd xou Yol TG TOAUTIUES GUUBOUAES Xt o001y NoY| Tou 660V aopd
ToL METETELTA EMAy YEAUATXG Jou Bruata. Erniong, suyopioto Yepud tov petadidoxtopind
epeuvnth) [dpyo Aevtden xa tov unodhgio dwdxtopa Anpociévn Macolpo yio Tig
TONOTUES XATEVIUVTHPLES YEUUUES %ot GUUSBOUAES TTOU UOU TROGEPERY XOTA T1) OLdpXELYL
eEXTOVNONG TNG OIMALUATIXAS auTHS, xadadg xan yiow Ty doyn ouvepyoaoio poag. Ac da
uropoloa vo tapaeldhe vo avapepde otny owoyévela tng OHB-Hellas xou wwitepa otoug
Mathieu Bernou xau X{povo BEAha, Tou e €xavay Vo VWG antd TNV TeeTN OTLYUT HEPOS

™me.

‘Evo yeydho guyoploted oToug cuppolttnteg Jou xon wiaitepa otoug Lmpo 11, Xootiva
Y., Adnva T., Fewpyio 2., Bakevtiva K., 'Edek I'., Ltégavo A. yia dhec Tic otiyuég
TOU TMEPAOoUUE X Yl Ti¢ atehelwteg oulntioelc mou xdvope. Emmiéov, do Hieha va
guyaploThHow Tov Tdvyn 2. yio Ty moAuTyy) othpllY| Tou xaTd TN BIdEXEL CLYYPUPHS
NG SImALUUTIXG aUTAS xadMe xon yia Ty ToAO Ty Borletd Tou ot ydealn Tne UETETELTY
ETOYYEAUATIXHC HOU TOPELNC.

Téhog, TO UEYUAVTEPO EUYUPLOTE) AVAXEL DIXOUWHUATIXG OTNY OLXOYEVELS oL XaL LOLaiTEQ
otoug yovelg wou Hilo xon Adnvd xan ota adépgio pou Nixo o Xerioto mou otéxovion
TAVTA GTO TAEUPO OU XoL UE EXAVAY TO ETOHO TOU Elon OHUEQRL.
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Extetopevn EAAnvixn [epiindn

Eiooywy™

Zolpe oe Wi enoyy) 6mou 1 cURhoYY xou 1) enedepyacio dedouévmy SadpouatiCouy ou-
ol TG oo oty xadnuepvr (oY Tov avlporwy. O emyeipfioelg, ot xuBepvioele,
ot Prounyavieg, oL un xepdooxomxol 0pYuvIGUOl Xou 1) ETCTNUOVIXY| €0EUVOL TAEAYOUV
xou UotpdlovTar €vay Gveu TEONYOUUEVOU 6Yxo Bedouévev. O Slotnuixds Touéos Ot-
adpopatilel xaipto poho ot AN aUTOY TV BEBOPEVKDY, TOCOTIXWY 1| TOLOTIXWY, PO
UTOPOUKE Xl GUAAEYOUUE LmTE BEBOPEVOL amd BOPUPOEOUS TOU ETUTEETOLY TNV EYXLET
aviyveuoT TEPIBUANOVTIXGY X0 XAYOTIXDY OAALYOV.

Ye avtideon ye Tic TeheuTaleg TAOES TNG AYOPdS TOU Bl TNULXOU TOPEN, Ol ToEUBOG!-
%ol BOPLPOEOL ETUXEVTOWVOVTAL XUPIWS OTNV EXTENEDT] CUYHEXQUEVWY LoXEOTEOVECUWY
amOGTOAWY 670 dLdoTnua. ‘Eyouv oyediaotel yia va exteholy udvo uio cuyxexpluevr ee-
Yoola xotd T BIdEXELN TN AmOG TOAYG TOUG Xau 1) dLdipxetar {w1ig Toug lvar Teoxaoplouévn
Emnpécieta, o ypovoBopa avdmtuln xat Soxiur Tou Qavep@VeL To UPNAS x6GTOC OYEDI-
aopo0 ot ovdmTLENG oL %EUPEL Evag BopuPOEOC. AuTdg elvor 0 AOYOC TOU 1) BLaC THULXT
ayopd etvan meplopiouévn. H dmodn mou xuplapyel otov dwotnuixd topéa etvon var dodel
TEOTEQOULOTNTA GTNV VIETEQUIVIC TIXT) CUUTERLPOEE ToL dopugodpou. 'Etot, n teyvohoyio tou
cuvniletar va yenoyloToleltal UéypL xon GHUERX Yial Th OnuLoupyio xon TNV EXTOLEUCT) TOU
00pLPHEOL BV Elval 1) TLO EVIUEPWHEVT). AVTl var yenotonotndoly VEEC xou ETOVIC TUTIXES
TEYVOAOYIES, TROTILOUVTOL TEYVIXES TIOU EPEUREUNXOY TIELY YEOVLL X MS EYOUY BOXULO-
Tel emavelnupéva. pe ‘Etot, 1 OAN WOEa OEV aVTATOXEIVETOL GTLC TIRUYUATIXEG AVEYHES TOU
XOOUOU UOG.

Hopdhhnhar, capxeTd cuY VA 1) TOCOTNTU TWV UXATEQYACTOV OEBOUEVWV TOU ToEEYOVTAL
amo GUY POV GRYAVH ETAVE OTOUG dOPLPOEOUS elval TOND UEYUAUTERT OO QUTY| TOU
uropel va yetadovel oto €dapog. Autd xorhotd amapalTnTn T1 YeNoN BLpPORMY TEYVIXOY
ouumleong Twv Bedopévwy Yo TN Uelworn Tou dyxou touc. H dAn dradwacio andxtnong
OXATERYUOTGY BEBOUEVWY, UETAPORAS Xl ATOUNUEUGHS TOUC GTO BOPUPORO UE OXOTO TN
ouuTieon xou UETAB0CT Toug 0T Ed0pog, 6Tou eV TEAEL Vo Yivel 1 emelepyaoia Toug, elvor
aEXETE TOAUTAOXT] Xa Y EOVOBoEa.

To televtoda yeovia, 0 OOTNUXOS TOPENG OCUVEYWS EMEXTEIVETOL, (PEQPVOVTUC OTO
Teooxvio TNV évvola Tou Aopupdoou we Trnpeota. Ipwtapyxds Tou 6Té)0C Elvan va
UEYIOTOTOLACEL TN ¥PHOT TWV TOpwY Tou Boloxovioal o Teoytd UG TAVOVTIS TUEdAANAL
VEEC IOEEC XalL TEYVIXECS, OTLC 1) Evvola TG eNECeRYATlaC BEBOUEVWY ETEVEL GTO BOPUPHLO.



Ewooywyr

O tdoeg g ayopds YdAoTa, TEOTEVOLY TNV ETEXTACT, TOU aELIIOL TV DOPUPOELY
mou LYETOOY aUTH TNV WEN, EVE ELGAYOLY TEYVOROYIEC PEYPL TWEA dYVWOTES OTr| O
oo T Bropnyavio, 6o n Botd/Mnyovieh Mddnon xou/f n Teyvnti Nonuooivn. Ot
TEYVOLOYiEC AUTEC TOPOUGIALOLY ULd XUVOTOUO, ATOTEAECUATIXT UEV0BO UTOAOYIGUOD TWV
ATUQUUTNTOV ATOTEAECUATOVY, TOU UEWWVOVEL TNV TEAXT UETUPORE DEBOUEVLY GTO EDUPOS
ATOGUUPWEILOVTC TIG OIXTUAXES YROUUES OVAUESA OE Y1) YO OLACTNHL.

Efvow ologdvepo and ta mapandve 6t o Aopugpdoog wg Trneeoio odnyel otn yeron
xoUvoTOU®Y TEYVohoYL)Y. Ot mahtof, cupfotixol xon EBd XATAOHEVAGUEVOL BORUPOEOL
meémel v adhd€ouv 1) vo avtixataoTodoly.  Kde Sopugdpog ogeilel mhéov va e&-
umneetel TOAUGEIIUES EQUOUOYESC XL ATOCTOAES, UTOUTMVING Hlol EVol aprENUEVT TANT-
poOEUA LAXOD Yiot TNV UTOC TARIET X0l EXTEAECT) TOAAATAWY BLPORETIXGY Aoytouxwy. To
Baowd cuoTaTind auThc TG UETABaong eivan 1) ecovixoroinon.

ITeoxAoeig xouw Xuvelcpopd AlnAwpoatixng Epyaciag

H exovixomnoinom elvon pro eupetar €vvola ue TOAES eEEWOIXEVUEVES ETEXTATELS X0 TEYVIXEC.
ITpoxewévou vo xadoptotel ota Teyvoroyio elvar mo cuuBaTr Ue T avayXes Uog, lval
ATUEUUTNTO VO AVTYETWTCOUUE OPLOUEVES TPOXAACELS UE BAOT TIC YEVIXEG AMALTYOELS XAl
TEPLOPLOHOUS TGV BOPUPORKY YL TNV EXTEAECT] AOYLOULXOU X THS XPLOYOTNTIG.

Yuvoruxd ol TpoxAfioelc auTég elvou
1. Amoudvworn — Avdxtnon
2. Anédoor Hpaypotiod Xedvou
3. Enovayenotuonoinon
4. Amiotnta - Buehila
5. PuuxdTNTA TPOS TOV YPNoT

Ye outh T OmhwpaTixd) epyoola, OF Ul TEOOTGUELN VO OVTWETWTICOUUE  Tig
mpoavagepieioeg Tpoxhroelg, yeketdue to Jailhouse Hypervisor eyxoteotnuévo oe
EVOWUATOUEVT) CUOKELY|. 2DTOYOC Hog elvor Voo eEETACOUUE xat VoL A€LOAOYHOOUUE TOV av-
TixTuTo Tou €yel 0 hypervisor 6to cUGTNUA GTO TAAGLO TG EXTENECTC EQUOUOYMY X TNG
XPLOWOTNTOG, CUYXEIVOVTUC QUTAY TNV TEYVIXY| EIXOVIXOTOINoNG HE TN Onutovpyia xov-
Tévep o, To ouyxexpiéva, T Docker xovtévep. Apywd, dnulovpyolue éva TAHEOS
AELTOLREYIXO CUOTNUA ToU amoTehelton amd uo TAaT@opua VAol mou Teeyel Linux, to
Jailhouse Hypervisor xou €vor Linux non-root xeA{, to onolo mpocapudcoue aviroyo ue
TIC avayxeg ag. Autd To olotnua, To onolo avagpépouue we «Jailhouse owocVoTnuoy,
Yo yenowwonowmiel ¢ cpyolelo dmou e&etdloupe xou aflohoyolue tny enidpaon Tou Jail-
house Hypervisor oto Jailhouse otxocUoTNud o SNULOULYMVTOS Xl EXTEAGVTAS OLAPOL
OEVAPLL EXTEAEOTC.




Lyetin|) BiSAoypagpla

> xetwxr] BiBAtoypapia

H evomra outy eletdlel  TEEYOUOEC  AVTITPOOWTEVTIXES TEPLTTWOE  ADOEWY
ELXOVIXOTIOINONG O OYETIXEC TEYVIXEC TIOU NOT) YENOWOTOLOUVTOL 1) €YOLY TN DUVATOTNTA
va. yenotonotnioly oTov Slo TN Touéa, AauBdvovTag uTodn T TEEYOUCES TACELC.

To mopoadetypata mou Yo avapepdoly emAEYOVTOL On6 TEGOEQLS XAUTNYORIEC TOU AVTLO-
Toly00V OE TECOEQLC TAGELS OTNV Tpéxouoa/ps?\kovnxﬁ uto¥ETnoT TN Elxovixonolnong

ot Bropnyoviall]:

— Aboeig Pouclopéveg O BloywEIoUd TURTHVAL XUl XEOTUEY VAL TTOU O1uLoupY fidnxoy
xuplwg yioo ) Plopnyovio xar ToV (RGO TWV  EVOOUATWHUEVLY  CGUC TNUSTWY.
Avapopud xdmoleg amo autég elvon T hoytopwxd PikeOS, Xtratum Hypervisor, Bao
Hypervisor, Quest-V xou Jailhouse Hypervisor o onotoc 9o avarudel peténeito.

— Aboeic mou mpoomaoly va aloTOACOUY ToL TAEOVEXTAUATA TWV UTARYOVTLY hy-
pervisor yevixoU oxomnol, 6mwe o Xen xow o KVM, xou va Toug mpooapudcouy otig
ATAUTHOELS TOU XAADOU.

— XpnoWonolwvTag T TWO TROCPUTEC DUVATOTNTEG OTOUOVWONS OTO UALXO (n.X.
ARM TrustZone) yio tnv enitevln emmédwy amouovemong TouU AmuTolvIaL and To
Blopmyovixd TpdTUTOL.

— Xe oUyxpwon de Tig oudfotixég pedodoug ewxovixomoinomg, AUCEC TOU yENol-
HOTIOLOVY EAAPELE ELXOVIXOTIOIMGT), OTwe xovTévep 1) unikernels, oe uio Tpoomdielo
vor petw el To amotimwua 0T uviun xon vor augndel 1 evehi&io

AZiler va onuewwdel n Snuoupyla pog véo TAATPOPUAC TOU OTOYEVEL Vo ELGENTDEL GTY)
OLUOTNUIXY] XOLYVOTNTAL Xl VO OAAGEEL TOV TEOTO ToU aVTWUETOTILOVTOY UEypl TWE To
xplowoa yioo TNV ac@diela cucTidata LPnirc anddoone. o avoiutixd, to SELENE
[2, 3] elvor o auto-eleyybuevn a€lOmOTH TAATQOPUA Yl CUGTANOTO Xplotung onuooiag
Yoo T ao@dhetd, Bactouevn o Eva GOVORO XPICWMY YLl TNV ACQAAELNL UTOAOYLIOTIXMY
TAXTQOPUGY ToL BactlovTal OE GTOLYE AVOLY TOU XMOXA, OTWS 1) APYLTEXTOVIXH GUVOAOU
evtoh&v RISC-V, 1o GNU/Linux, xou o Jailhouse hypervisor, mou ta yeketroouue oe
QUTY) TN OLTAWUOTLXY EpY Tl

Avth 1 elehypévn umohoylo Ty TAATPOPUN GTOYEVEL VoL ONULOURYNOEL VoL aPnENUEVO
CUCTNUO XL VO TO TROCUPUOCEL OTIC EXAOCTOTE ONMAULTHOELS XOL TEQPLOPLOMOUS OLAUPOPE-
TIXOV EQapuoy®y oAdlovtag T puddicelc Tou cucTtiuatog.  Toautdypova, eyyud-
ToL AELTOURYIXES WOLOTNTES ATMOUOVWONG, ETUTEENOVTAS TN CUVUTOEET AOYIOUXMY WXTAS
HELOWOTNTOG XOU X TGV ATAULTHCERY 0mOd00TG, 6NV (dlar Thatpdouc LALXoL. Télog, axdua
€vog oxoToO¢ Ebval 1) AMOTEAEOUATIXNY EXTEAECT] EQUOUOY®Y AOYLOULXOL LYol uToAOYLO-
TixoU gopTiou pe TN Porielol CUYXEXPIEVLY ETITOYLVTOV.

AVAANLCT TEYVIXEOV ELXOVIXOTOINONG

H evotnra auty| meptypdpel AenToUepnS TIC Baoxés Tteyvoloyieg mou BlEmouy auTrhyv 1
UEAETY), cuumepthoBavopévne TN EVVOLIS TNG ELXOVIXOTIOMNONS X TGV OlAQPOpwY EBGOY




Avédluon TExVIX®Y ExovIXoToinong

NG xS XL TOL PnNyoaviopol Tou hypervisor xot Twv OldPopwy TOTWY Tou, avolyovTag
TO OpoOHO YL To xe@dhato Tou Jailhouse Hypervisor.

Ewcovixonoinon

H exovixornoinorn etvar évag eUp€mg yenoLoToloVUEVOS 6pOC TOU UTOREL Vol EpUNVEUTEL
xou vou opto el e dLdpopoug Tedmoug Ue Bdor To mhalolo xan TIC TEYVoAoYiEC Tou Yenot-
pormoolvTol. AV TpooTadcoUUE VoL BOCOUUE EVY TEPIEXTIXG UAAA UGAAOY apnenuévo
optopod NG AEng «ewovixoroinomy Yo unopoloaue vo TOUUE OTL elvon ol TEYVohoyia
TOL UOG ETUTEETEL VA TYEOUPE €Val eviafo, PUOXO GOGTNUO UAXO) %ot DLotMVTIS TO Vol
ONULOUPYTICOUPE TOAMTAL EtXOVIXG Tept3dhhovTa, Tou cuVATWS OVOUdLoVTOL EXOVIXES
unyovée.  Autd ta mepiBdhhovia Umopolyv Vo AEITOURYOUY TOuTOYpova XL avedpTnTo
T0 €va amd To dAho. Tt Tov TPOGBLOPIOUS EVOC GUYAEXPWEVOL TUTIOU EXOVIXOTIOMNGCTG
YENOWOTOL00VTAL plo 1) TEPLOCOTERES TEYVIXES, OTWS 1) XATATUNOY) UAIXOU Xal AOYIoUX0U,
N %01 yenon Yeovou, 1 HepWt| 1| TANENS TEOCOUOIWST) UnyaviuaTtog, 1 eCopolnwaon, 1
ToloTNTe TS uTneeciog x.o. [4].

INotl ewcovixonolnon;

H ewovixomoinon umopel vo Vewenldel wo amd Tic Mo eAXUCTIXEC OQYITEXTOVIXES
OTEATNYIXES YLOL TNV VAOTOINGT) GUC TNUATOY UXTHAG XELOWOTNTIC, ONAXDT TNY EVOWUATOON
OLUPOPETIXY  OTOLYEWY  hOYLoUX0) UE OLopopeTind  €ENINEdN XQIOWOTNTOG OF Lol
XOLVOYENOTY TAUTQOEUA UAXOU.

Or Bopugdeol amoTeEAOUVTOL amd CUCTHUTO UE X TY XplotpoTnTa. Me dAAa Abyta, cuy vl
€)0UV TOLAAYLOTOV €val oToLyElo TpayuaTxo) yedévou oto omnofo elvar (wTxhc onpactag
VoL 0AOXANEWUI0UY GUYXEXQIIEVES BEACTNELOTNTES UECO O €Val VIETEQUIVIOTIXO, EYYUT-
uEvo ypovixd mhaicto. Mnopel eniong va mpootedel Eva otovyelo un mporyuatinol yedvou,
10 omolo cuvilwe yenoonoleiton yior TAnpoople xou emelepyaocia BEBOYEVKDY OE TEaY-
Hotxd ypovo, dioyeipion 1) Sladppnaon cuaThuaToc. [5]

Ta otouyelo mporypatinod Yeovou Umopoly Vo ETNEEACTOUY ATO TEOYEUUMUNTO UY) TEY-
HOTIXOU YPOVOU YWRIg TNV TEYVIXT TNE EXOVIXOTOINONG, APOU UmoUTE(Ton GLY VA Blay WELOo-
HOG X0l EXTEAEST) TOV BLOPORETIXDY TROYROUUATLY Ot [ Eeyweto T uoxr) CPU. Xenot-
HOTIOLWVTOS TNV ELXOVLXOTIOINOT, B1dpopa oToLyEld UTOPOLY VoL GUY Y wVELHo0Y OE Lo eviador
TAATPOPUN BLATNEWVTAS TUEAAANAL TNV TEAYUATIXO0) YEOVOL AXEQULOTNTA TOU GUG THUITOS

5]

Teyvixeg euxovixonoinong

Trdipyouv BLUPORETINES TPOCEYYIGELS Yol TNV EQPUQUOYT EIXOVIXOTOINONG, XATIAANAES Yial
OLpopETIXES XutaoTdoeg. Teyvinég omwe 1 maylda xan pipnon(trap and emulate), n
TATIPNG EXOVIXOTIOINGT Yol 1) TOEUEOVIXOTOINGCT] elvol apXeTd ONUOPLAElC xon CUVIGTOUV
TOMES Qopéc xatdhhnhn Abon. Ilop” Ao autd, otny mepintwon yag Y€hovue vo epop-
HOCOUUE TNV EIXOVIXOTONGT, OE €VOL EVOWUUTWUEVO GUOTNUA, OTOU 1) ATAOTNTA CUVIOTA
avamoonacto ototyelo. H pliuion xou 1 Slopdppemon Ty TEOoVAPECOUEVLY DLABLXACLHOY
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umopel var amofel apxeTd BOOXOAT|, WOIHTEPA VLol EVOWUATWUEVEG CUOKEVES. Emnoueva,
Y10 TNV TEOCOUOIWOT) AVEEHQTNTWY CUCTNUATWY, XATIAANAY TEYVIXY| Vewpelton 1 oToTixy
xortdtunon (static partitioning) mou anopoviver npoypduuata 1 epyaciec oe cLYXEXPEVA
xouudTior Tou TEEyovTog VAoL. Ta Soywplouéva Tepi3dAlovTa ot eninedo Aoyiouixol
cLVBEOVTAL [E Blaywplopéva TepBdihovTag o eminedo VAoV, Teptopilovtag Tov aptiud
TWV AELTOVRYIXOY CUCTNUGTWY ovVE QUOIXO TUEY VAL OE EVAL.

‘O)ec ot mpooeyYioEIC EMTEETOUY TOV BLoYWELOUO UEUOVOUEVKDY Xl LWTIXWY EQYUCLMY Ao
TIC AMy6TEpO xplotec. 20Td00, N eveMElo TOU TPOCPEREL 1) TATIENS EMOVIXOTOINCT] AVTL-
otaduiletan amd TNV €y YUNOT VIETEPUIVIO TIXTC CUUTERLPORACS Ao T1 CTATIXY XUTATUNOT).
Aedopuévou OTL BLUPOPETINES CTEUTNYIXEG EIXOVIXOTOINONG AVTIOEOUY BLUPORETIXG OTO
A0, xodeplar EYEL EYYEVT) TAEOVEXTAUOTA VLol CUYXEXQUIEVES EQUOUOYEC.

Ye pla TpoCEYYLon OTATIXNG XATATUNONS, Ol QUGLXOL TOPOL TNE TAAT(QOPUIS Teplopilouy
Tov apiud TV oe Asttoupyio EOVIXGY TEPUBUAAOVTGY.  ToL CUCTAUNTA PE OTATIXY
XATATUNON TEOCPEEOUV Tal (Dlor TAEOVEXTHUUTA YIO TOV OLUYWEIOHO TV ERYACLOY, Elte
auTég ot gpyaoiec uxtig xplowng onuaciog oyetilovton e Ty ac@dieta €{Te Pe TN AgL-
Tovpyia mEayUoTXOU YedVou. doTOHCO, O TPOYPUUUATIONOS TWY EQYUOLOY EMNEEdCEToL
MYOTERO, ETELDY| OL PUOLXOL TTOPOL GUVOEOVTOL TLO OTEVE X0 GUECOL UE T ELXOVIXS TEQLBGA-
ovta.  Autd xahotd v meptypagpnleion TEYVIXT XATIAANAGTERT VIOl EVOWUATOUEVYL
OUC TAUATA UE TIEPLOPIOUEVOUS UTIOAOYLO TIX00E TOPOUG.

H £€vvoia Tou hypervisor

AveZdptnta and to ol TEYVIXT Eovixoroinong Yo egapuociel, oL TEPIoCOTERES €Y OUV
oav acixd cucTtatxd toug Tov hypervisor. ‘Evoc hypervisor efvan éva otpwua Aoyio-
ol TTou Bloywellel T6POoLUS LAXOU TEOXEWEVOU VoL TEEEEL TOAATAES EXOVIXES UNYOVES
oty Bl puo| unyov. Aedouévou OTL oL EoVixég Unyavég eivon aveldptnTeg and To
UAXO TOu Quool unyaviuatog, ol hypervisors xadiotodv duvatr TNV xah0TERN oL TLO
AmOBOTIXY YPHOY TOU CUCTAUATOS Xl TGV OldEoUmY Topwy. Enedy| évac hypervisor
ETUTEETEL O TOAAUTAES ELXOVIXES UNYAVES VO EXTEAODVTAL OE EVOL UOVO QUOIXO Uy VN,
MELOVEL TIG UTOLTHOELS EVEQYELUS, YWOEOU XAl CUVTYPNOTG.

Trdpyouv dVo xOptor tunol hypervisor. "TlOmog 1" ¥ "bare-metal" xou "TUmog 2" 7
"hosted". "Evag hypervisor timou 1 cupmepipéoeton ¢ Eva Aol AELToupY G oOoTNUA
xou exteheiton amevieiog 0To UAG Tou xeEVTEXO) UTOAOYLGTY), EVG €vag hypervisor TOmou
2 extelelton ¢ eMMALOVY ETUTEDO AOYLOUIXOU OF VO AELTOVEYWXO GUCTNUAL, TOQOUOL UE
GANES EQaPUOYES.

Jailhouse Hypervisor

H evétnra auth| elvar agiepwuévn otov Jailhouse Hypervisor, Tov mpwtaywviot|) autig
e Oimhwpatinic epyaotac. Avahbouue tnv €vvola xar Tr Asttoupyia tou Jailhouse o
omofog mpdxertan vo eéepeuvniel oe Bddog, vo peretniel xon vor aglohoyniel.

O Jailhouse (6] |7] elvon évoc hypervisor ototixfc xotdtunong mou Bacileton oe Linux xau
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Cexivnoe and tov Jan Kiszka, emixegarn mpoypopuatioty| otn Siemens, AG. Ilpoogépet
VPMAS ETUMEDO AMOUOVOOTNC UETAEY TV XATATUNOEWY TOU, Ol OTOIEC UTOPOUY VoL EXTEAOUY
elte egapuoyéc yuuvol petdiiou (bare-metal) eite vo grhoZevolyv olhdxhnea Aettovpyixd
ovothuata. H tpéyouca éxdoon tou Jailhouse elvon 1 0.12 xon €yel evepyt| umooTthpln
TEOYEAUUUATIOT®Y X0t xowvotntac. Trootneilel apyttextovixéc ARM, ARM64 xou x86 xou
TEOCQATO EXAVE Ta TEKOTA Tou Bruata Teog TNV utoothpln e RISC-V apyitextovinsc

18] 2]

O Jailhouse hypervisor dev umopeil vo Tagivouniel e TNy auoTnet| Tou 6EOU EVVOL GE [l
ex Twv 800 xatnyopiec (TOmou 1 ¥ Torou 2)[9]. Avtideta, anotelel évay uBedixd TOnou
1 xou TOmou 2 hypervisor |7]. Méhic evepyonoinlei, o jailhouse exteheiton eyyevie oe
Ao OTwe €vag hypervisor tomou 1 ywelc vo tapeufével xdmoto evoldueco eminedo xau
ywelc xoplo avdyxn e€wtepiniic unoothping. Qotdoo, arouteiton Linux yia ) @dptwon
xou TN dtadpwon Tou Jailhouse. Me dhha Adyia, To Linux yenoiuonolelton w¢ QopTtewtig
(bootloader), ahh& OYL S XEVTPXO AELTOVEYIXO GUCTNUO Tou QLAo&evel Tov hypervisor.

O Jailhouse mpoTwd TNV amAdTNTA EVOVTL TV TOAGOY %o TOAUTAOXGY AELTOURYLOY. Avti
VoL yenoulomolel ToAOTAOXA xou YeOVOBOREC TEYVIXES (napa—)smovmonoirpng, OTWC Hd-
vouv ot Xen xat KVM, 7o Jailhouse napéyet uévo xatdtunomn uAixol (ExUetodeudpevos
TIC EMEXTACELS EOVIXOTOINCNG TNC EXAGTOTE Tc)\arcpéppag), ARG oxoOTIHN OEV TPEYEL
oUte "scheduler" olte emxovixéc CPU. Mévo (Ayot) mépot mou dev umopolv, avihoyo Ye
NV LTOO THELEN UALXOU, Vo YWELOTOVY UE QUTOV TOV TRPOTO, EIXOVIXOTIOOUVTOL OE ETTESO
AOYIOUIXOU.

Metatpéner ta ouppetewd cuoTiuata tolomiic enelepyooioc (SMP) oe cuothuota
acUUPETENG TOMNATAYC eneéepyaoiag (AMP) ewodyovtac «exovind eunootoy YeTay Tou
ovothuatog xat tou Btoviov 1/0. To clotnua yweileta ot yepovwpéva Tep3dhhovTa
mou ovoudlovton "xehd". Kdde ekl @uiolevel évav emioxéntn xou €yel €va olvoro
EXYWPENUEVRDY TTOPWY (CPU, mneptoyée UVAUNG, OUOXEUES PCI) touc omoioug eréyyet
mAfewe. H Boulewd tou hypervisor etvan vo Suoryeipileton tor xeAd xon vor Sotnpeel Ty
ATOUOVWGT) ETALY Toug, dtaopuiilovtac 0Tt Tor xehid dev Vo mapepPotvouy petoll Toug
UE U1 amodextéd Teomo. And Ty omtixy| Tou U0V, o dloaukog cuoThuato €axolouiel
VoL EVOIL XOLVOYENOTOS, EVG TO AOYLOULXO EIVOL QUAXXIOUEVO O XEMS XaL UTOPEL vor EYEL
TedoBaoT uévo o€ €val UTOGUVOLO QUGIXOU UAXOU, aUTO Tou Toug €yel exywpniel. Auth
1 TEOGEYYIOT Vol O YEYOWT| YId EXOVIXOTIONGCT] EPYUCLOY TOU AmonToOY TAYIEN EAEY YO
¢ CPU. Ta moapadelypota nepthopfBdvouy epyaciec eEAEyyou mpaypatixol Yeovou oL
HOXQOY POVIEG ERYUCIEC UTOAOYLO TGOV LPNATC amdBooTg.

AvdnTtuin

H evémnto aut| agopd tny €peuva xat avdmtuén Tou cucTAuaTog Hog, Tou "Jailhouse owo-
ovoTAuatoc", To onolo amoteheiton Amd Lol TEAYPUTIXT TAATPOOUA UALXOU, CUYXEXQUEVA
Lol EVOWUATOUEVT cuoxeur, Tov Jailhouse Hypervisor xou éva mArjpws Acttoupyxd Linux
non-root xehi TEOCUPUOCUEVO GTIC avayXeS pag. AvaAbouue T Sodixacior XaTaoxeung
TOu cUCTHUTOS To oroto Va yernotponotniel yior TNy exTEVH alOAGYTON %o EXTIUNGCT TOU
Jailhouse Hypervisor.
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Metd and xdmota oulhtnomn xan ouyxpeicels ueTall mdavaoy urtohneiwy, xatainloue oTo
ouumépacpa 6Tt to Raspberry Pi 4 Model B eivar 1 o xatdAhnin emAoyr| eVoOUaT®UEVNG
CUOXEUNG YLl AUTH) T1) UEAETT).

[a vor eyxataothioouye xon va tpéoue Ue emituyio to Jailhouse otnv miaxéta rpid Va
TEETEL VoL XAVOUPE ToL EENG:

— Tlofpvoupe to Linux distro tng emhoync pag
— Khwvorowolue 1o anodetrpio tou Jailhouse and to git

— Opolwe xhwvorotolue éva Linux 6évtpo ye xatdAANAES TPOCUPUOYES WOTE VL UT-
oo tnellet tov Jailhouse xt étot ytiCouue xou ExxVOUUE TO BN UAC TEOCUPUOCHUEVO
TPV

— XtiCoupe xou exterolue tov Jailhouse Hypervisor

O Jailhouse mpénet vo UETOYAWTTIOTEL e avTixelpeva muprva. Emouévee, yeewoldpacte
TEOTA EVal avTlypapo Tou TNYlou xWOW ToU TPV XaL Vo To petayAwtticouue. To
Jailhouse amoutel éxdoorn mupAva >=4.7. Edw, Yo yenowonojcouue tnv éxdoor Kernel
5.10.31 %/xau 5.10.27-rt mou napéyeton and tn Siemens/Jan Kiszka [10].

H etepopetayhdtuon (cross-compilation) oe évar unydvnua x86 eivon olyoupa mo yph-
Y0P, WOTOCO elvol Lo ETLEEETNG O AdT) 08 GUYXQELOT UE TNV HETXAYAWTTION OTNV TAOXETA.
Kdmnotog unopel vo emAéZel TNy evoTNTA TOU AVTIOTOLYEL OTNV XATACTOOY ToU. ElTE Ta
eyyevy| ytiolpata elte v eTepoueTayA@TTION. AV Xou UTdEY oLV TOAAG xOoWd BriuaTo
HETOEY TeV 000, UTdEYoUV ETLONG ONUUVTIXES DLUPOREC.

ITpénel vo BecueloouUE €x TwV TEOTERKY T UvAun yia Jailhouse Hypervisor xou yio to
TEPAUTEPW HEMG X0 TO XdvoulE péow Tou device tree overlay, yapoxtnoiotixd tou Rasp-
berry Pi. Enione, petayiottiloupe xa mpoodétoupe to exteréoipo tou Arm-Trusted-
Firmware, anapaitnto otovyeio yio Tnv ogodt| Aettovpyla tou Jailhouse.

Avdntun tou Linux non-root xeAiov

Ye authy TNV umoevoetnTa Yo meprypddoupe Ta Briuato Tou oxoloudoaue Yo vor ovamTOE-
ouue To Linux non-root xeii poc.

Apywnd Soxaudoaue TN AEITOLEYIXOTNTO TOU NON-T00t XEALO) (QORTWVOVTIS TOV TURHVL
xou €va eN&yloTo .cpio apyelo, mapuévo and to anwldetrpto jailhouse-images|11]. Xpnot-
HOTIOLOVUE TNV UTEEY0UCH DLORPMOT) Yol TNV EYLTEXTOVIXY| armb4 »¢ avapopd yia 11
ONUtoLEY o TOU TPOCUPUOCUEVOU TR VAL KOl ELXOVAS UAS.

Anutovpyrioaue Tov mpooapuoouévo Linux muprvor xou exévo pog ue to Buildroot|12].
[Mpdxetton yia €va gpyoleio mou amhomolel xo AUTOUATOTOLEL T1) BLUOLXAUGTN XATACHEVTG
evog TApoug xon exxvioou Tept3dAiovtog Linux yio Ve eVOWUATWUEVO GUCTNUA,
o&LOTOLOVTAS TNV ETEPOUETAYAMTTION YO VO XUTAOTEL BUVITY| 1) XATUOXEUT| BLUPORKY
mhatpopuwy otdywy (hardware target platforms) oe pla eviador pnyovh avdntuing mou
Baotleton oe Linux. To Buildroot uropel va dnuiovpyrioel tnv amapaitntn ahuolda €o-
yohelwv TohamAAc petoryhdTTione (toolchain), va dnuiovpyhoet éva plixd choTnuo op-
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yelwv(root filesystem), va petoyhottiosr pa ewdva muprva Linux xou va dnuiovpyr-
oet évay popTwth exxivnonc(bootloader)yio évar evowuatwuévo clotnua A unopel va
EXTEAECEL OTIOLOVONTOTE AVECHQTNTO GUVOLAOUS QUTHOV TWV EpYaot®y. ['io mapddetyua,
umopet vo yenowonotniel ua avedptnTta eYXATECTNUEVY ahuoida epyahelwy ToAaTANC
petayhwttiong(toolchain), eved to Buildroot amhde vor xataoxeudoet to pilixd obotnua
opyelwv[13].

KarteBdloupe v €xdoorn tou Buildroot pe tnv omola 9éhouue vo douvkédouue. Xtnv
nepintworn pog etvon 1 2022-02-03. XenowwonotoVue »¢ avapopd To apyelo Slooppeong
Yoo TNV exéva Tou rootfs mou dnuovpyelton and to Jailhouse-Images xan otn cuvéyela
£QopU6LOVUE TIC amopol TNTES AAAYES GUUPOVAL UE TIC TROTIUNOELS [HOC.

XenowonotoUue to Tpocapuocuévo anodetrplo git mou yenoulomolooue Tpwtitepa yia
VoL OMULouRYNOOLUE ToV Tuprval dog, woall pe Ty (Bl Stopudppwon. Me autdv Tov tpdTo,
€y oupe TNV (Bl €xB00T TUEHVA, ETOPEVKC 1) A€LOAOYNOT) TG ATOBOCTC TOU GUC THUATOS XAl
oL Budpopeg cuyxpioelg mou Yo mpoxdouy elvon Eyxupec. AnuioupyoUUe Tov TUEY VL TR -
potixol yeovou 5.10.27-1t36. BeBawvouacte 6Tt o Tuprvag £xet Tov 0dnyo ivshmem-net,
TEOXEWEVOL Vo dnutouey el ot GOVOEST EXOVIXOU BIXTVOU UETAEY TOU TOOt oL TOL Non-
root xehto0.

To Buildroot dev mapéyetl dayelpioth maxétwy. Eilvow otn guhocogio Tou epyahelov 6T
yTilouue TNV EXOVA YOG UE OAAL TO TOXETO TTOL YPEWCOUUOTE EX TOV TEOTEPMY. LE AUTO
T0 TAGLCLO, YIOL TNV ELXOVA TOU GUOGTHUNTOC 0PYElWY oot eTAEYOUUE ToL amoEod TNTA TAXETL
Yl vor utootnei&oupe TNy exTéreoT) TwV oevaplwy yac. Kdvouue tic e€hc emhoyéc:

— Avtl va dnurovpyfiooupe éva .cpio rootfs, ytiCoupe éva RAM clotnuo apyelov,
oLVOEdEUEVO oToVv Tuprva Tou linux. O Adyog elvon 1 TEQLOPLOUEVT UVAUN TOU
otadéToupe yio To Linux non-root xehi pog.

— Eméyoupe ta moxéta tng python, tou docker xan twv rt-tests mou Yo o ypeeloo-
TOUV OTO UETENELTOL TELOGUATE LS.

Metd tn dnuoupyia Tou mupAva xaL NG exovag Tou onutoveyhoaue ye to Buildroot,
uetapépouue Ta apycio oto Raspberry Pi yio va "onx@oouye" to Linux non-root xeAl

oG,

Av xou tor 500 xeMd (To root xou To non-root) PToEoOLY VoL GUVEEVOVUY XL VoL ETLXOVGVT-
oLV UETAL) TOUG UECHL TEWTOXOAMWY BIXTUMONG, xou Adyw Tou ivshmem-net odnyou,
OUCLUOTIXG €Y OUUE €V OTOUOVWUEVO BIXTLO PETAE) TwV BU0 xehdy. [o va cuvdedel
emTuYOS To inmate xehi oo BladixTLO, To XEA Eila (root cell) Vo mpénet v yiver Spo-
pohoyntic dwctvou. Mo amhf Abon mou eqopudlouue elvon 1 dnuloupyio uLag yYégupag
OuxtVoU 6Tou glelc emouvdnTouue 6To xehl pila TNV TEayUOTIXY QUOLXY BleTapT| BixTOoU
xou 0pYOTEPA TNV Eovixt|. TEAOC xdvouUE XATOLEC TPOTOTIOOELS GTOV THVOXOL BLADROUMY
(routing table) tou non-root xeho¥ poc xan puduilouue to Docker va teéyet oty RAM,
agol ovolaoTixd xou To Linux non-root xehi teé€yer otn pvAun. IIiéov to Jailhouse
00CVGTNUG oG efvat ETOWO Xt TAHEWS AELTOLEYIXG Yo TNV EXTEAECT) BLAPORWY GEVORIWY
yioo TN peAETn xou extiunon tou Jailhouse Hypervisor.
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A&lorbéynon

H evotnra auth| apopd Ta telpdilata Tou Teayuatotot|dnxay yio T u€tenor Tng enidpaong
Tou Jailhouse Hypervisor otny an6doon egopuoydv Aoyiouxol mou €1pelay 6To cUGTNUY
Hog, xade xat 0TV A€LOAGYNOT| OPLOUEVGY UETEIXWY YLOL TOV TROGBLOPLGUO TNG GUVOALXNG
CUUTEPLPORGCS ToL hypervisor.

Xeovog exxivnong & ypodvog avaxtnong

e auTHY TNV UTOEVOTN T, Vot PETEHOOUNE TOV YpoVvo exxivnorg Tou Jailhouse ouxocuo -
potog. O yedvog exxiviong ebvar pioe ooyt TTLYT TG AmOdOoTE TOU GUG THUATOC,
ETELDN OL YPNOTEC MEETEL VO TEQLIEVOLY TNV EXXIVNOT TNG CUOKEVHC TELY T1) YETOLULOTOLY-
OOUV. XE TEQITTOOELS ATOTLYUC-0VAXTNOTS, O YPOVOG (erccxv)sxxivnong 1) avdxTnong etvon
eniong xplowog. Xty meplntmoy| Hag, YOUUE EVoL GUCTNUN UE EVA ELXOVIXO ETINEDO TOU
umopel var QUAoEEVHOEL TOOO TO XEIoLHIO AOYIoUIXG TOU BOPLUPOEOU GCO XAl BIAPOPES JAAES
emduuntéc eqapuoyéc. Eivou xaipto:

1. vo elpoote oc Véon va SLUORPWVOUNE €X VEOU Xl OUCLAOTIXG VO ETUVAPEPOUUE TO
obotnua wote unopel vor prho&evel SlapopeTinéc epoproyés (Tporyuatinol Ypdvou)

2. oe mepintwon pepc amotuylag WC EQUEUOYAC AoYLoUxoU, To cloTNU Vo
EMAVEXAHWVIOEL YWPLC Vo ETNEEAOEL TN CUVOAXT] ATOBOCT| TOV EQUOUOYMV.

'Etot, 0 ypdvog exxivnong tou custidotog Yewpeitar xpiooc.

MeTpdue Tov ypdvo exxivnorng tou Jailhouse owxocucthuatog, Tov Ypdvo emavexxiviong
TOU non-root xeAol xou Tov ypeodvo enavexxiviong tou Jailhouse owxocuotruatog. I
x&de YeTpwh| xdvope cuvohixd 50 petprioeic. Ta aroteréopata cuvoliCovton otov Hivoxa
1 xou oty Ewxdva 0.0.1.

Edv cuyxpivouue touc péoouc-medians xdie ypopixrc napdotaone xoutiol (box plot),
elvon mpoavéc 6Tl uTdpyeL Slapopd YETAED Tne Teltng opddac (o ypedvog enavexxiviong
ToL owoovothuatog Jailhouse) xou twv dAwv 800, xadde 1 Bidueon ypoupr Tou box plot
e Teltng ouddac Peioxeton €€w amd To TAUCIO TV YRUPXGY Tou TAdciou cUYxpLoTC.
Avuté elnyeltan ebxoha. o Ty teheuTaior opodix UETENOT YENOULOTOLCOUE Ulal ETLTAEOV
evtoly) tou jailhouse, tnv jailhouse disable. Aut n evtoly mpooc¥étel nepinou 0,4
deutepdAenTa EMTAEOV XADUGTEENOT GTO GUVORXO YedVo (emav)exxivnong oe clyxpeLon
UE TIC dAAEC BUO OuddES.

Yuyxplvovtag Tic 0V0 TEMOTEC OPAOES, O dEUOC TWV EVIOAGY Tou exteholvTal elval
mavopototutog.  H dudxpion agopd Toug TUTOUG EVIOAGY TOU YENOWOTOUVTAL.  XTO
TEMOTO GeVAELo, exTeAeltan 1 evToAt| jailhouse enable, v oto dedtepo oevdplo yenot-
uoroteiton 1 jailhouse cell destroy. Autéd unopel vo eudivetar yior Tn) dlopopd PeToEl
ToU €0pOUC SLITETUPTNHORIWY, xodd¢ Tor BEBoPEV TOU avapEPOVTAL Yiol TH DEUTERY) OUdDA
elvon TLO BLIOXOPTILOUEVO XolL DLUOTIORTL.

Yuvohxd, ta omotehéopoto LTOdEVOOLY €vay TEoBhéulo yedvo (emova)exxivione.
Qotéoo, n andxhon (outlier) oto box plot Tou ypEdvou ETAVEXXIVAONC TOU OIXOGUC TH-
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wotog Jailhouse pog wdet var avalntAcoude YeYahlTEQO dvw QEAYUA Yol TO GUVOAD TGV
Yeovwv (emova)exxivnong.

YOotnpa-Apdon Méocog-Mean | Mécog-Median | T. AnoxAiom
JH owoclotnuo exxivnon 1.4518s 1.4515s 0.0189s
JH non-root xeAl emavexxivnon 1.5072s 1.4697s 0.1306s
JH owooctotnuo enavexxivnon 1.8419s 1.8232s 0.0753s

Table 1: Méooc-Mean, Mécoc-Median, and tumixy| andxiion Twv yeovwy
(emav)exxivnone tou Jailhouse owxocuotiuatog

Jailhouse ecosystem - (Re)boot times
o

21
20

19
—

_— e

T

g 1T

—L
——

1

Boot |JH ecosystem  Reboot cell Reboot JH ecosystem

Figure 0.0.1: Xpdvol (emav)exxivnone tou Jailhouse oxocuotiuatog

Yuyxelttixry Alwoloynorn Amnoddoong:  IlgoBAnua twv N
BaocltAicowv

Ye auth TNV utoevotnTa Yo EMXEVTPWUOUUE OTN cuyXElTixt| allohdynor anddoons. O
UETEHOOUPE TOV YPOVO EXTEAECTIC LG EQUQUOYTC YL VO CUYXEIVOUUE TOV avTiXTUTO TOU
Jailhouse Hypervisor pe autév twv Docker xovtéivep.

To npéfinua twv N Bactlioodv elvon war yevixeuon tou yvewotol npoBAfuatoc tTwv 8
Bacthioowy, cLUPeVE Ue To omolo Teénel va Bpolue évay TeoTo vo Bdhouue 8 Poacilicoeg
o€ pa xhoownr| oxanaépa 8x8, wote xouio Pucthiooa vo unv uropet va emtedel 1 vor deydel
enileon and .

Berrape évav xoddixa python oto github [14]. Troloyilet dhec tic MICELS YENOHLOTOLDV-
Toc T wédodo tou backtracking xou éyel ypovixh tohuthoxdtnta O(N?). Expetodheleton
eniong TOV TUPAAANALOUO, WGTE VO UTOPOVUUE VAL EXTEAEGOUPE TOV XOOLXA Yo DLUPOPETINOUS
aprdpo0g VNUATOY.

Extéleom oto Linux Root xeAt pue €éxdoon 5.4.59+

Awéyoupe Ty €xdoon 5.4.59+ yia Tov TUEHVA Yog AOYw Ao ToylaC ot ATOXACENDY TV
ATOTEAEOUATOVY a6 TNV eXTEAEST) 6TOV 5.10.27-1t36. Extelolue Tov xOoixa tpoArjuotog

10
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Twv N Bacthioooy v N=12, 100 enavorfdelg xan yior 1 xon 2 vApota, 1600 O EYYEVES
Tepi3dhhov 660 xan ot éva xovtéwvep Docker. Ta amoteléopata mopoucidloviar otny
Ewoéva 0.0.2. O ypdvoc extéleone oto eyyevég meplBdAloy etvon hoyixdg. T v ex-
teheon peoa oe Docker xovtévep, o Yeoog ypdvog yia Tny extereot) e 1 viua elvou 5.8%
MEYOADTEQOG OE OYECT| UE TO EYYEVEC TEQPBAANOY, EVEK Yo TNV EXTEAEOT) UE 2 VIUOTA, 1|
abvZnon etvor 0,3%.

Raspberry Pi 4 Model B Raspberry Pi 4 Model B

using Preempt Jailhouse-customized Kernel 5.4 59+ using Preempt Jailhouse-customized Kernel 5.4.59+

(Queens: 12, Threads: 1, lterations: 100} Docker Container )
100 (Queens: 12, Threads: 1, Iterations: 100)

?DMMMWWM WWMMMNMMM

time to find all selutions (s)
time to find all solutions (s)

0 20 40 B0 B0 100 120
experiment time (min) - {duratien: 115.92 min) (] 20 a0 G0 80 100 120
experiment time (min] - {duration: 122.72 min)

(a) Byyevéc Hebptﬁoc)\)\dolv - 1 vipe (c) Docker xovtéivep - 1 viua
Raspberry Pi 4 Model B

using Preempt Jailhouse-customized Kermel 5.4 59+ Raspberry Pi 4 Model B
(Queens: 12, Threads: 2, Iterations: 100} using Preempt Jailhouse-customized Kernel 5.4.59+4
Docker Container
(Queens: 12, Threads: 2, Iterations: 100)

100

8
=] 8

2

time to find all solutions (s)

time to find all solutions (s)
w
-]

a0
o WWWNMMWV\W
o 10 0 30 40 50 60 Nl
experiment time (min) - (duration: 62.08 min}
( ) o 10 20 30 40 50 &0
b EYYEVéQ HEPLB&)\)\OV _ 2 experiment time (min) - (duration: 62.30 min)
4 7 7
vrjato (d) Docker xovtéivep - 2 viuatoa

Figure 0.0.2: Extéleon tou mpofifuatoc twv N Baciiocov oto root xell

Extéleon oto Linux non-root xeht

Exteholye 1o petpompdypoupo twv N facthico®v oto Linux non-root xeAl mou
onutovpyfoope xou Vécoue o Acttoupyio. Oo mpénel va Tovicoude, av xon avapépinxe
TEONYOUREVWLS, OTL 1) €xdooT Tou Tuphva etvar 5.10.27-rt36. H eyyevrc extéheon yia 1 xon
2 viuarto Sopxel xotd u€co épo 69,55 xou 37,25 deutepdrenta, aviicTtorya. H olyxpion
QUTWY TWY EVPTIUATOVY UE TOUS YEOVOUC EXTEAEOTC OTO TOOt XEAL AMOXUAUTTEL Uiot aENoT)
50,1% xon 42,3% otov ypdvo extéleone, avtiotorya. Ouoing, o ypdvoc extéheonc uéou
oe éva Docker xovtéwvep auEdveton xortd 2,7% xan 3,5% o évor xou 500 viuata, avtioTolya.

‘Ocov agopd tnv eyyevr| extéleot ancudelag oto non-root xeAl, n emppor| Tou Jailhouse
Hypervisor 6ev unopet va dixatohoynoel Tnv 1600 peydin adénon tou ypovou. Emniéoy,
oL BUAPXELES TOV EMAVOAAPENDY TOL PETENONMY Elval ONUAVTIXG HEYOADTERPES b AUTES Yid
NV exTéleoT) evidg evog xovtévep docker. Autd umodniadverl 6Tt To {Tnua oyetileTon Ye
Ta (Bt Tor ALToupYXd GLUOTNUATA GTo TOOt Xou Non-Toot el Oo TEETEL VoL AVaPEPOUUE

11
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OTL OL TUPYVEG XL OL EIXOVEC TIOU YPNOWOTOOUUE EYOLY TPOCUPUOCTEL 0O TOUG dNHULOVE-
YoUg xat ouvepydteg Tou TedTtlext tou Jailhouse Hypervisor. Emmiéov, o nuprvac 5.10
elvor BLIUOPPOUEVOC XAl TEOCUPUOCUEVOS Yol TAATPORUES YEVIXS arm oQYLTEXTOVIXNC, EVE
o muprvag 5.4 elvor TPOCUPUOGUEVOC EWBWXE Yiot TO raspberry pi, yeyovég mou mdave eE-
NYel TNV TEPdOTIN DLAPORE GTOUG YPOVOUS EXTEAEOTC.

Edv mapafrédouye tnv ampocdoxntn unoBdiuion tne amddoong otny eYYEVY| EXTEAEOT
XL E0TIICOUUE OTA AMOTEAEOUOTA amd TNV exTEAEOT o xovtewvep docker, 1 ehdylot
avénorn tou yedvou extéheorng delyver 6T o Jailhouse Hypervisor aoxel opehntéa emi-
0paoT OTNY AMOBOGCT, TV EPUPUOYOV AOYLOUX0U). LTNV TEUYUUTIXOTNTO, Ol eCoupETIXd
uxpéc drouudvoelg tou amewoviCovton otny Ewdva 0.0.3 xatadencvbouy v teoBAédiun
GUUTERLPORE TOU OLXOGUC THUUTOS S

Raspberry Pi 4 Model B Raspberry Pi 4 Model B
using Preempt Jailhouse-customized Kernel 5.4 53+ using Preempt-RT Jailhouse-customized Kernel 5.10.27-rt36
Jailhouse non-root cell customized Preempt RT Kernel 5.10.27-rt36 Docker Container inside Jailhouse linux inmate cell

(Queens: 12, Threads: 1, Iteratiens: 50) (Queens: 12, Threads: 1, Iterations: 100)

130 100

15

%

time to find all solut
=] 2
time to find all solutions (s)

D1 P N MV ap A VWA

lution:

o 20 40 80 80
experiment time (min) - (duration: 87.00 min) [} 0 a0 &0 a0 100 120

experiment time (min) - {duration: 126.07 min)

E e 1T ‘Ohov - 1 v
(2) YYEVEiSprinZ » BOV Ml (c) Docker xovtéivep - 1 viua

using Preempt Jailhouse-customized Kernel 5.4.59+ Raspbi :
pberry PFi 4 Model B
Jailhouse nonr(root cell custo;‘nzegi Preempt RT Keme)l 5.10.27-rt36 using Preempt-RT Jailhouse-customized Kernel 5.10.27-rt36
a0 Queens: 12, Threads: 2, [terations: 501 Docker Container inside Jailhouse linux inmate cell

(Queens: 12, Threads: 2, Iterations: 100)

100

3

%0

g 3

time to find all solutions (s)

&

time to find all solutions (s)

20 et A A PR AN
o 10 20 30 40 0
experiment time (min) - (duration: 44.20 min}

]

0 pu 20 0 40 50 B0
experiment time (min) - {duration: 64 48 min)

(b) Eyyevéc IepBdrhov - 2
Voo (d) Docker xovtévep - 2 vAuata

Figure 0.0.3: Extéleon tou mpofifuatog twv N Bactlicooy 6to non-root xeAl

Extéleon oto Linux non-root xeil - Ilpocopolwon goptiov cucTHUATOG

Méyper otiyuric, €youue exterécel Tov xwdwa Twv N Bactiiootkv 1660 610 100t XEA
otlac 660 xou oTo non-root xehi, alloroynmvrog Tov aviixtuto Tou Jailhouse Hypervisor
oTNV anddooT NG EQupUoYhG. Extodg and tnv extéleor Tou xmoixa To UGTNUA OEV elyE
CONUAVTXESY €pYAOLEC VO OMNOXANPWOEL, ETOUEVKS AUTO TO CEVAPLO BeV Yo uTopolce va
Yewpniel pealoTind. LNy TeoylaTxoTNnTa, T0 6VoTNUA TeooplleTon Vo exTehel TOANUTAY
TEOYEAUUUTA TaVTOYEOVY, CUVATWS O CeYwEIoTA XeAL. AUTEC Ol EQUOUOYEC EVOEYETAL
va teptopiCovton 1) vor unv meploptlovion amd TEPLOPLOUOUS TEUYUATIXO) YEOVOU XOoL Vol

12
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ATOTEAOUVTOL ATO AOYIOUXO YENOTOY 1) AoYlouixd xployung onuoaciog yio TNV anocToAY
TOU BOPUPOEOL.

Enopévwe, Yo enavardBoupe 1o melpopo exteA®dvTaC TOV x0)0Xa o€ €va Linux non-root
XEAL, TPOCOUOLVOVTAC ONUAVTXO opTio oTo Linux root xehi.

H eyyevrc extéheon oe €va Linux root ekl yio 1 xon 2 viuota dSopxel xatd péco dpo
115,40 xou 69,54 deutepdrenta, aviiotoiyo. H olyxplion autov TwvV evpnUdTwy Ue To
eupruaTa amd TNV eXTEAECT) GTO NON-Toot XEAl Ywelc emTAoV QopTlO ATOXUAITTEL Lol
avgnon 10,5% xan 33,1% otov Yeovo extéleonc, avtioToryo. Ouolwg, o ypdvoc extéleonc
oty mepintwon twv Docker xovtévep auldvetar xotd 6,6% xar 25,8% yio éva xou 800
viuota, avtioTolya.

Raspberry Pi 4 Model B Raspberry Pi 4 Model B
. using Preempt Jailhouse-customized Kemel 5.4.59+ using Preempt Jailhouse-customized Kernel 5.4.59+
Jailhouse non-root cell customized Preempt RT Kernel 5.10.27-rt36  jajlhouse non-root cell customized Preempt RT Kernel 5.10.27-1t36
Root cell with heavy CPU load Root cell with heavy CPU load
(Queens: 12, Threads: 1, Iteraticns: 50) Docker Container

130

{Queens: 12, Threads: 1, Iterations: 50)

e A A AN 100

" A I
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experiment time (min) - (duration: 67.20 min)

(a) Eyyevéc HepiBdhov - 1 viua

Raspberry Pi 4 Model B

(c) Docker xovtéivep - 1 viua

using Preempt Jailhouse-customized Kemnel 5.4.59+ Raspberry Pi 4 Model B

Jailhouse non-root cell customized Preempt RT Kemel 5.10.27-rt36 using Preempt Jailhouse-customized Kernel 5.4.59+
Root cell with heavy CPU load Jailhouse non-root cell customized Preempt RT Kemnel 5.10.27-1t36
(Queens: 12, Threads: 2, Iterations: 50) Root cell with heavy CPU load
100 3
Docker Container
- 100 {Queens: 12, Threads: 2, Iterations: 50)
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(b) Eyyevéc IlepiBdhhov - 2
VAU (d) Docker xovtéivep - 2 viuata
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Figure 0.0.4: Extéheon tou npofiuatoc twv N foacthocmy 6To non-root xeil ye
TPOCOUOIWOT GNUAVTIXOL QOopTIoU

Ynuewdvoupe 6Tt 1) Tocoo Tiala aOENCT ToU UEGOU YPOVOU EXTEAECTC amd €va OE BUO VAT
elvon onuavTied| xou ot 8Vo TepBdihova extéheonc. Autd To anotéheoua etval avoevo-
Hevo, xo®¢ TO PETPOTEOYEOUUN TTou exTehoVUE amoutel TOAAES mpoofdoelg oTr WvAun
(avdryveon xon eyypopry). AeBOPEvLY TwV TEPLOPIOUEVKDV TTORWY TNG XEUPHS UVHUNG TOU
Srondétoue, etvan BéBono dTL Vo avTipeTwTicoude apxetéc aotoyieg xpugrc uvhune (cache
misses) mou amoutoly nepantépw avalitnon otn wviun RAM. Qotéoo, €youue exywperoet
OTATIXG TOUG TOEOUS OTO Non-root xeAl pog xar 6ev unopel vo {ntroel nepilocotepa. Me
Teploplopévoug mépoug xou uviun RAM mou duatideton yioe To Linux non-root xehi, etvon

13



AZoldynon

OVATOPEUXTO Vol TEOXVPOUY TOME GQdhuaTa OEAIBOC, UE AMOTEAECUN TO TEOYQUUUI VA
avalnthoel T oehida 6Tov anovnxeutind yweo. H epopuoyn perf tou Linux emfBefoucdver
TOV PEYEAO 0prlud GQUAUATELY GEANDBAC TOU TEOYEAUUATOC.

O Blavrog emxowvoviag (bus) eivor xowvdc v ta xehd oto Jailhouse OWOCUGTNUG. o,
Omwg avapepinxe TEoNYoUUEVKS. ‘Oheg auTég oL aoToylEC TNG XPUPHC UVAUNG XoL T
OQAAUOTOL CEAMDBUG OE GUYOLAOUS UE TO PEYEAo @optio oTo Linux root xeAl, to omnolo
yenoomolel oe peydho Badud to dlavio, €xouv K¢ amoTEAEGUN QUENUEVT ETLOXEPLOTN T
(n omola awEdvetar pe Tov oprdud TV YNUAT®Y) Xat k¢ EX TOUTOU ONUAVTIXES XadUoTERY-
OELC.

H perétn poc emPBeforvel to petovéxtnuo tou Jailhouse Hypervisor otnv meplntwon
auénuévng xlvnong 6To Blawho ETXOLVOVING XoL, XATE CUVETELRL, TNV opVvNTIXy emldpoo
OTNV ANOOOCT| TV EQUQUOYOV.

Kaduotépnon llpoypauuaticpod ocs IuoTtruota
Ioayupatixob Xpdvou: cyclictest

To eméuevo Brua pag oty atohdynorn tou Jailhouse owocuotiuatog etvar vor eEAEYE-
OUUE TNV am6000Y| Teayuato) yedvou Tou. Ol epYaolec TEayHoTiXo) EVERYOTOLUVTAL
oLV Owe amd e€wTepnd CUUPBAVTA Y| TNV TEELOOLXY AT EVOC YpovodlaxoTTr. AuTéc Ue TNV
umAdTepn mpotepondTnTA Yo TEETEL VoL TOoYpauuaTiCovTon aESKS UETA TNV EVERYOTOINOT),
(KOTOCO GTNY TEAYPATIXOTNTA, UTEEYEL Uiot xorduo Tépnomn UETAEY TNE o Tiyung Tou Aapfdvet
YOpo To ouPPdy evepyomoinone xou T otryurc mou apyilet va exteheitan n epyooio[l5).
Auth n xaduotépnon, Yvewoth og xaduotépnon npoypouuatiopol(scheduling latency),
emnpeedlel Toug YEOVoUC avTiBEUoNS OAWY TWV EQYACLOY Xl ETBIAAEL €Vol XATW PEAYUL
oTNV XavOTNTOL TOL Lo TAUATOS v Tneel Tic mpodeouiec. Emopévee, 1 xaductépnon
TEOYEoUUTIONOU TEETEL Vo hopfdveton Lo dTav amogaciletar €dv €va GOGTNUA UTOREL
VoL TOREYEL TIG XATEAANAES Ypovixég SwfBefouoeic. o pia epmelpixr} allohdynon tng xo-
YUo TERPNONE TROYEAUUUATIONOY, yenolponotoue To cyclictest, éva mpdypauuo aviyveuong
TOL AVTHETOTILEL TOV U Ve w¢ Hadpo xouth xou avapépet ancuieiag TNV xaductépnon
TEOY QUUUATIOUOV.

‘Onwe avapépeton 0To YYELRiBLO Tou, To cyclictest|16] petpd e oxpifeto xou enavethnuuéva
N Olopopd YETAE) TNG TPOBAENOUEVNE OPUC APUTVIONS EVOC VAUOTOS XAl TG (EUS XA
NV omolo LUTVE TEAYUATIXG, TROXEWEVOU Vo TUREYEL GTATIOTIXG OTOLYEl OYETIXE UE TIG
xorduc TEPToELC TOU cLCTHUOTOC. MTopel v ueTEroeL X UC TERHOELS OE GUO TAUATOL TR~
HoTXOU YPOVOU TOU TEOXAAOUYTOL OO TO UALXO, TO UAXOAOYIOUXO XOL TO AELTOURYIXO
cLOTNAL.

H coulta doxuric o Bacileton oTnyv mopoxdte EVIOAN.
sudo cyclictest -1100000000 -m -S -p90 -i200 -h400 -q output.txt

Exteholue tnv evToA) oto mAalolo TévTe dlapopeTinmy oevapiny. To anoteléopata yo
Ta BLopopE TG oEVdpla TapouatdlovTon ToEoxdTe otny Eidva 0.0.5.
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Latency Raspberry Pi 4B
Preempt Jailhouse customized Kermel 5.4.59+
Jailhouse linux root cell with no cpu load
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CemepvoLy ta 100us, pe T péylotn andxpion xaduotépnong va @Tdvel tor 358us. Auth
elvan 1 xohOTeE TepinTwoT), xadog dev £yel tpocouolwiel tpdoieto poptio oto cloTNUa.
Kotd tn dudpxeia pag tumxhc doxung, to yevixd xéotog tou Cyclictest elvan younAo,
EMOUEVKC OEV EMBAAAEL onuavTiXy| TECT 0TO GUOTNUA. e OAEC TIC GAAEC TEQITTWOELS,
0XOUT) xoU UE EABYLOTEC TAPEUBOAES, elvan Buvatd var aviy veudel unépaon éve amd 400us
1 axdpa xon 1000us, ovaevOUEVO yior VoY TURTVAL 1) TEAYUATIX0) YEOVOU.

270 0e0TEPO GEVIPLO TO Lo TOYEAUUUA Uag Oelyvel 6TL 1 xaduc tépnor andxplong elvon vieTep-
Hvio T, xododg Oha Tar Belypato xaduo tépnong eunintouv oe éva tpoxaoptouévo 0poC.
H peyahOtepn amdxpion xoducTéenong, xol xaTd GUVETELN TO AVWTERO OPLO TOL EVEOUC,
elvon 85us. 2ot600, AUTO AmEYEL TOAD OO TO YEWOTEPO OEVAQLO, ENMEWN TO CUCTNUN BEV
€yel unoo el xopio tieon Adyw emnAéov @optiou.

To nelpapo emavohouBdveTton Ye Tpocopolnwor ueydhou goptiov oto Linux non-root xehi.
A6 to 1oTodYpauua TOU TEOXUTTEL BAETOUUE OTL Tal BELYUOTH TV XoJUCTEPHOEWY UT-
00eXVOoLY TNV {Blor cUUTEPLPOEE Teay AT yeovou. H péylotn xaduotépnorn amdxe-
tong ebvon 139 us. Auth n extéheon eivon 0,63 popéc o apyr amd uior looduVoT EXTEREDT)
Ywplc mpocouolnwon mieong cucThAuaTog, Toe’ Oha aUTA amoTeREl €va BuoTOTUIXG AV OYL
PEANOTING GEVIPLO.

Yny tetapn nepintwon enavoroufdvetar 1 extéleon Tou cyclictest, auty| TN @opd mpo-
copotdlovtag TauToyeova Bopl @optio xou ota dVo xehd. Iapatnpolue 6TL Tor Selypora
TV xJUoTEROEWY BLUTNEOVY TNV (BLo VIETEQUIVIO TIXY| CUUTIERLPORY TRUYUAUTIXOU Y EO-
vou. H péyiotn xaductépnon andxplong eivon 131us xau eumintel oto mpoxadoplouévo
elpog xoduoteprioeny. o Aoyoug mhnpdtnTag, Teédaue TNV eqopuoyt cyclictest xa oto
root xel, ye évo muprvor Un TpoydaTxol yeovou. TrhAelav apxeTés UTEpyEAoELS, oUY-
xexpipéva 0.04% yia to mpddto viua xan 0.01% yio to 8eltepo, evid 1 péytotn xaduotépnon
amoxplong Egptace Tor 19757us 1) ahhiwg 0.019 deutepdiental.

Téhoc, Véhoupe va dovue Tt Vo yivotay oe wa péon Teplntwor TpocouoldlovTac @opTtio
uecotou peyédouc. Auth TN @Qopd ue v extéheon Tou cyclictest oto non-root xehl,
onxovoupe éva axouo inmate xehl tpéyovtoag to bare-metal gic-demo. To delyporo
TWV ©xoUOTEPHCEWY DATNEOVY TNV {BLol VIETEPULVIOTIXY| GUUTEQLPORE TEAYHATIXOU YeOVOU,
eve 1) péytotn xoduotépnor amdxplong elvon 8dus xan eumimTEL Yoo GAAT Uit Popd GTO
TeoxadopLoUEVO EUPOC XUIUGTEROEWY.

Yvunepdopata & Merroviixeg Kateudivoelg

Ye auth) TN BimAUTX pyacion eEEPEUVACUUE BUO TEYVIXES ELXOVIXOTIOMNOTS, EVIQUPMY-
ta¢ otov Jailhouse Hypervisor. Xtlooue xon oticoue €va mAjews Aettovpyixd Jailhouse
oxocVoTNUo YE To omoio aflohoyolue TNy enldpacy tou Jailhouse hypervisor méve oe
aUTO XU €V UEPEL TO cuyxplvoupe ue oty Twv Docker xovtéwveps. H xatddinin oi-
apOEPLO YL To Y Tlowo xa To othowo tou Jailhouse owxocuoTiuaTog fToy plar apxeTd
nepimhoxn xon ypovoPopa dwadixactio. Agevog 1 @ion tng dadixactiog eivon tétol, WoTE
AVIAOYOL UE TO EVOOUATWUEVO GUCTNHO TTOU ETAEYETAL VoL IAAGCOUY 0pXETA ToL BriuaTor TG
X0l vor Te0GopUOLovVTaL OTNY EXAGTOTE TAATPORUA. AQETEQOL Yol TNV CUYXEXPUIEVT TAUT-
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(popUa TOU ETAEEOUE, DEV UTHRY OV CUYXEVTPWUEVES OONYIES Xl XATEVVUVTHARLES YROUUES,
omoTE EMpENE Vo PAEOUUE UPXETE, axOUoL Xou VoL Topal€coulE EpWTACES oTNY AloTa Tou
Jailhouse Hypervisor.

Mehetovtag, Aomov, tov Jailhouse Hypervisor endvew oto Raspberry Pi xatohyouue 6Tt
ta Docker xovtévepg mpocIETouy xpEg Ypovixeg dumdveg 6TO GUGTNUA Xl UTTOPOLY Vol
ouvduaoToUY emTUYWS ue Tov Jailhouse e€acparilovTog v amOUOVWUEVO Kol ACPUAES
Tep3dhhov o€ GUVBUUOUS UE TNV eUEEiol TOU TOREYEL 1) TEYVIXT TNS YPHONS XOVTELVERC.
‘Ocov agopd TNy enidEooY) GE CUCTARATO TEAYHATIXOU YEOVOU, TO ATOTEAECHATO HTOoV
OPUETA IXAVOTIONTIXG OO0V APOEE. TNV VIETEPUIVIOTIXT] CUUTERLPORE TIOU TOURUTNOTCE.
Ou peyioteg xaduoteprioetg Yo umopoloay var vou xpotepes ahhd o auTd OPelAeTaL Xou
T0 {dlo to Raspberry Pi mou 8ev mpotydton yio TNy avamtuln xploywy CUCTNUATOY
TpayUaTixoL yedvou. Emmiéoyv, emBefonwoope tn 6Uvaun tou Jailhouse, tnv aroudvwon,
TOL OE oG OMNULoVEYNOE TEOBANU OE XAVEVOL GEVAPLO EXTEAEOTC, OAAS xou TNV aduVolo
TOU, TN UElWOT) TNE AMOBOOTC TWYV EPUPUOYWY OTAY UTHOYEL ETXOLVWVIA UETAUED TWV XEMMY
1) auZnuévn xivnon oto dloawho emxolvmviog.

Mo yehhovtnt| xatediuvon tng dimhwpotinhic authc Yo Aoy (owg pior extevéoTteprn xau
TANEECTERT A€LOAOYNOT TNE ATOB0CNE TEAYHATIXOU YEOVOU UETOWVTAS YIo TORAOELY A TNV
xorduoTéENon BLaXOTAC UE TNV YPNOT EEMTEPIXMY GUOKELMY Xt epYaheiwy. Emlong, éva
CAtnua mou enelyel vor Andel elvon 1 TepLoplouévn) uviun Tou €youue otr didieon pag, €tol
(OOTE VAl UTOPECOUUE VoL TREEOUPE T.)Y. AOYIOWXO TEYVNTAC VOMUOGUYNG 1/ X0l UNYoVIXNC
udinong mouv mohhég Qopég amoutel apxeTolg dlardéoipoug TOPOUS Yia TN Blayelplor TwV
oedouévov. Emmiéov, BAémovtac 6Tl o Jailhouse €yet ¥\on extviioel va yiveton ayomntog
oTn oo Tu| xowétnta Yo Rtav wealo va apyioel vo e€etdleton 0 GUVOLACUOS TOU
Jailhouse ue to Docker containers xou var doxiuactel TeEAxd ETdvew o BopLUPOEO.
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Chapter 1

Introduction

‘ /s [e live in a data driven era where data collection and data processing play an

essential role in people’s everyday lives. Businesses, governments, industries,
nonprofits, and scientific research produce and share an unprecedented amount of data.
The space sector plays a key role in obtaining these data, whether quantitative or quali-
tative. We collect vital data from satellites that enables early detection of environmental
and climatic changes.

Space is widely recognized as one of the most promising areas for future scientific and
economic advancement. When it comes to boosting a country’s competitiveness and
growth while also providing the foundation for initiatives that attempt to better the
lives of its population, the sector of satellite-based services and applications has gained
widespread recognition as a valuable economic tool.

As opposed to the latest space sector market trends, traditional satellites are mainly
focused on executing specific long-term missions in space. They are designed to exe-
cute only one particular task during their mission, and their lifetime is predetermined,
meaning that after their mission they either burn up entering the earth’s atmosphere or
become space junk. Furthermore, the internal design of a traditional satellite suggests
that each avionic function of the whole system (e.g. orbit control, attitude control,
payload data processing etc) is implemented and contained in units so that it is quickly
replaceable in case of partial failure. The main drawback to this perspective is that
there is a large number of buses, networks and point-to-point connections being used
to achieve successful communication and data transferring among all different process-
ing modules, making the whole system a lot more complex and susceptible to human
mistakes.

Consequently, development and testing time have very large duration, even larger than
the mission itself sometimes, revealing the high costs of the satellite’s deployment.
That is the reason only few could manufacture and launch a satellite so far, thus the
space market being limited. Finally, the point of view that dominates the space sector
is to prioritize the deterministic behavior of the satellite. Thus, the technology used
for the satellite’s creation and launch is not the most updated one. Rather than that,
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technology that was invented many years ago and tested repeatedly is preferred, making
the whole concept not corresponding with today’s world’s real needs.

What is more, the amount of raw data generated by current instruments on board a
satellite frequently exceeds the amount that can be transmitted to the ground. This
necessitates the utilization of various data compression techniques in order to lower
their volume. The entire process of acquiring raw data, transmitting and storing it on
the satellite in order to compress and transmit it to the ground, where it will eventually
be processed, is quite complex and time-consuming.

Over the past few years, the space business has expanded, bringing satellite as a service
as a growing segment of the sector. Satellites have shifted from an upfront customer
purchase approach to a service model, requiring just the creation of a satellite subscrip-
tion plan as opposed to a satellite investment or purchase. Thus, the space business
has a considerably broader target audience, as the cost of sending an individual project
into space decreases by orders of magnitude.

Satellite as a Service’s primary objective is to maximize the utilization of orbital re-
sources while introducing novel ideas, such as the concept of data processing onboard
a satellite. The most recent market trends suggest expanding the number of satellites
adopting this concept, while introducing new technology to the space industry, such
as Deep/Machine Learning and/or Artificial Intelligence in general. Missions such as
providing remote sensing photography, radio-frequency signal gathering, communica-
tions, navigation, and other similar operations may now be carried out with the help
of AI/ML systems that demonstrate great potential in terms of security and efficiency.

ML algorithms for onboard data processing present an innovative, efficient method of
calculating the necessary findings, hence lowering the final data transfer to the ground,
taking into account, for instance, the vast volume of data being produced for subsequent
analysis on the ground.

It is evident from the above that SaaS is leading to flexible, software-defined technolo-
gies. Old, conventional, and purpose-built satellites should be changed or replaced.
Each satellite will serve numerous applications and missions, -requiring a single hard-
ware platform to support multiple software. Different SW must be deployed on the same
platform, necessitating HW abstraction and a hardware-agnostic HW implementation.
Virtualization is a key component of this transition.

1.1 Challenges

Virtualization is a broad concept with numerous specialized extensions and techniques.
In order to determine which technology is most compatible with our needs, it is neces-
sary to address certain challenges based on the general requirements and constraints of
satellites and the execution of software with mixed criticality.

1. Isolation - Recovery
From the security of individual electronic components to the safety of the
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entire spaceship, the methodology of fault detection, isolation, and recovery
(FDIR) is widely used in space engineering|[17|. For instance, current space
computer chips can execute calculations on a multiple, parallel basis, sometimes
voting to select which of an inconsistent set of findings is the most likely to
be reliable in an effort to recover from memory ’bit flips’ caused by space radiation.

Similarly, the FDIR technique uses sensor cross-checks to detect defects in
real time, isolating them as necessary before compensating using sensor or
actuator reconfigurations or, in the case of an emergency, an autonomous
collision avoidance maneuver.

In this context, we are looking for a virtualization method that correctly
isolates virtual environments. No partitions should interact with one another
so that, in the event of a failure, the failure does not spread to the satellite’s
vital components and satellite operation software. In addition, the system
must recover as rapidly as feasible (in real-time, for real-time applications) and
continue to function properly.

2. Real-Time Performance As previously indicated, Real-Time Performance must
also be established, not only for the needs of a given mission, but also for certain
satellite functions that must be done in real-time for the satellite to work as
intended.

3. Flexibility - Simplicity - Reusability The SaaS concept, as mentioned above,
demands the terms of flexibility and simplicity to be applied. A variety of different
SW has to be able to run on board the satellite in combination with a fast,
simple and efficient reconfiguration in orbit from mission to mission. As a natural
consequence, the same hardware platform has to be reused hosting different SW
with divergent needs and purposes.

4. User friendliness The user-friendliness of the virtualization approach to be cho-
sen is also crucial. For executable code/projects to be uploaded and executed,
the procedure must be straightforward to all potential users and easy to follow.

In this diploma thesis, we investigate the Jailhouse Hypervisor on an embedded plat-
form in an effort to address the aforementioned challenges. Our goal is to examine
and evaluate the impact of this hypervisor in the context of running mixed-criticality
applications comparing this virtualization technique with containerization and, more
specifically, Docker containers.

1.2 Contributions

The contribution of this thesis is twofold. First, we create a fully functional system
consisting of a Linux-powered hardware platform, the Jailhouse Hypervisor, and a Linux
non-root cell that has been customized for optimum operation. This system, which we
refer to as the "Jailhouse ecosystem," will be used as a tool for our second contribution.
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Specifically, we examine and assess the impact of Jailhouse Hypervisor on our Jailhouse
ecosystem by generating and executing various execution scenarios.

For the first part of this thesis:

e We run the Jailhouse hypervisor in both x86-64 and aarch64 architecture environ-
ment offered by the QEMU emulator, including executing pre-existing examples,
and gain insight into this topic.

e We install the Jailhouse hypervisor as a kernel module and deploy it on a Rasp-
berry Pi 4B board.

e We check the Jailhouse hypervisors’ functionality by running some basic com-
mands regarding creation and distraction of cells, as well as running some basic
demos.

o We investigate the proper configuration to be applied for our Linux non-root cell
in depth. After creating our customized Linux non-root cell, we perform a series
of setups to ensure that it is completely operational and adjusted to our needs.

For the second part of this thesis:

e We study the boot - recovery times of our Jailhouse ecosystem, an important
aspect of system performance.

e We do performance benchmarking. We measure the execution time of an applica-
tion to compare the impact of Jailhouse Hypervisor to that of Docker containers.
We run the benchmarking code natively and within Docker containers both in
Linux root and non-root cell and evaluate the different outcomes.

e We our Jailhouse ecosystem’s check real time performance.

1.3 Thesis Structure

The thesis is divided into 7 chapters. The following is an overview of the contents of
each chapter:

Chapter 2 contains a detailed survey of current representative cases of virtualization
solutions and related techniques that are already being utilized or have the potential
to be employed in the space sector, taking into account current industry trends and
dimensions.

In Chapter 3 we discuss in detail the essential technologies underlying this study, includ-
ing the concept of virtualization and its various sorts and the mechanism of hypervisor
and its various types, paving the way for the Jailhouse Hypervisor chapter.

Chapter 4 is dedicated to the Jailhouse Hypervisor, the protagonist of this diploma
thesis. We analyse the concept and operation of the Jailhouse Hypervisor, the primary
virtualization technique to be studied, explored, and evaluated.
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Our main research work is included in Chapters 5 and 6. Specifically, Chapter 5 is
devoted to the investigation and development of our system, which consists of a real
hardware target with custom Linux installed, the Jailhouse Hypervisor, and a fully
operational custom Linux non-root cell. We detail the process of constructing this
system, which will henceforth be known as the "Jailhouse ecosystem" and will be used
to evaluate the Jailhouse Hypervisor extensively.

Chapter 6 is dedicated to the experiments conducted to measure the impact of the
Jailhouse Hypervisor on application execution, as well as the evaluation of a number
of metrics to determine the hypervisor’s overall behavior. We focus on measuring and
studying the following sections:

1. The boot and recovery time of our Jailhouse ecosystem
2. The impact of Jailhouse Hypervisor on applications’ performance
3. The scheduling latency on the cells of the Jailhouse ecosystem

Finally, Chapter 7 summarizes the thesis’s findings and presents possible future direc-
tions.
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Chapter 2

Related Work

| his chapter examines current representative cases of virtualization solutions and
related techniques that are already being utilized or have the potential to be em-
ployed in the space sector, taking into account current industry trends and dimensions.

The examples are chosen from four categories that correspond to four trends in the
current or future adoption of virtualization in industry domains|1]:

1. Kernel and microkernel separation-based solutions created primarily for industrial
and embedded domains.

2. Solutions that attempt to leverage on the strengths of existing general-purpose
hypervisors and adapt them to industry requirements.

3. Utilizing the most recent isolation features in hardware (e.g., ARM TrustZone)
to achieve the isolation guarantees required by industry standards.

4. Compared to conventional virtualization methods, solutions that employ
lightweight virtualization, such as containers or unikernels, in an effort to reduce
the footprint and increase the flexibility

In addition, a new platform will be discussed that aims to enter the space community
and alter the way that high performance safety-critical systems have been treated up
until now.

2.1 Separation Kernel & Microkernel Approaches

2.1.1 XtratuM

Masmano et al. present the embedded hypervisor XtratuM [18]. It is a bare-metal
partitioning hypervisor that supports paravirtualization. At compilation time, the data
structures are predefined, so that every resource required is known beforehand. It has
an interface for hypercalls, each of which has a known execution time. Utilizing a
fixed cyclic scheduler, Xtratum facilitates temporal isolation across partitions. Each
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partition also contains its own operating system and applications executing in user-
mode without any shared memory region with other partitions, hence permitting spatial
separation. These partitions operate continuously, communicate, and are governed
by the hypervisor. In order to reduce temporal interferences, Xtratum only enables
interruptions for partitions that are actively executing.

User Partitions

Supervisor Partitions

PROCESSOR

Memory Manager m IP Communications

Clock & Timers Mgnt Interrupt Mgnt

Non shared

Health Monitor

Supervisor
Mode

Peripherals

Figure 2.1.1: Complete Systems Architecture as described in [18]

The aircraft industry is utilizing XtratuM to construct software building blocks for
future generic on-board software devoted to payloads management units. The Xtratum
hypervisor is used in the aerospace sector due to the increased need for security as well
as its capacity to meet the avionics’ criteria about predictability[18][19].

Xtratum supports several processors like Intel x86 family, SPARCv8 family, ARMv7,
ARMv8 and RISC-V|[20]. In particular, Wessman et al. [21]present the De-RISC plat-
form, the first RISC-V-based platform that includes the NOEL-V SoC from Cobham
Gaisler and the XtratuM hypervisor from fentISS. De-RISC combines multiple technolo-
gies and solutions that overcome the obstacles to their effective adoption in mission-
critical and safety-critical space systems.

2.1.2 PikeOS

SYSGO’s PikeOS [22]23] is a commercial hypervisor used in the avionics industry.
The real-time separation kernel approach of PikeOS enables the execution of separate
guest environments as well as native tasks. PikeOS uses paravirtualization, hardware-
assisted virtualization, and direct I/O access for running guest operating systems. The
PikeOS architecture is built on the .4 microkernel and is compatible with Intel x86,
ARM, PowerPC, SPARC v8/LEON, and MIPS processors. PikeOS natively supports
platforms with multiple cores. This solution implements three different scheduling
algorithms: priority-based, time-driven, and proportional share[1].
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Operating Runtime Native Drivers
System Environment
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EMBEDDING INNOVATIONS

Figure 2.1.2: PikeOS hypervisor layers [22]

PikeOS combines time- and priority-driven scheduling with best-effort scheduling for
non-critical tasks in order to payload applications. Specifically, it assigns a time-slice
statically whenever a real-time partition has no tasks to execute and donates CPU
time to non-real time partitions. PikeOS architecture complies to ARINC653 in that the
PikeOS microkernel is the only privileged software and has complete control over virtual
partitions. PikeOS supports several guest OSes like Android, RT-POSIX, ARINC653-
based, Java and RTEMS.

2.1.3 Quest-V

Quest-V [24] is a separation kernel that aims for configurable partitioning of CPU, mem-
ory and I/O resources amongst guests with minimum monitor activity. In particular,
each partition, or sandbox, encapsulates a subset of the machine’s physical resources,
which it manages independently of the hypervisor. Quest-V only requires a hypervisor
to initialize the system, recover from errors, and establish communication channels be-
tween sandboxes. Quest-V uses paravirtualization techniques to boot Linux kernel as
a guest and on hardware-assisted virtualization to achieve efficient resource (memory)
partitioning and performance isolation for subsystem components.

Quest-V research [25]investigates how hardware resources can be managed to enable a
power- and latency-aware system. The partitioning of virtual machines (VMs) onto sep-
arate machine resources enables power management per sandbox. Consequently, during
periods of inactivity, a sandbox may place its hardware into a suspend state, thereby
reducing its power consumption. Depending on their latency and energy requirements,
sandboxes may be suspended to RAM or to disk. When required, the sandbox can
then return to normal power consumption. Additionally, sandboxes can be migrated
between hosts to equalize system resources and reduce energy consumption. This allows
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for the placement of entire machines into low-power states upon the migration of all
sandboxes from those machines. Quest-V differs from conventional hypervisors in that
it permits virtual machines to suspend and resume hardware resources independently
of other virtual machines running on the same physical platform. This enables the
construction of systems that are cognizant of both power and latency.

2.1.4 Bao

Bao [26][27] is a lightweight, open-source, embedded hypervisor that aims to offer strong
isolation and real-time guarantees. Bao provides an implementation of the partitioning
hypervisor architecture that is minimal and built from scratch.

Designed primarily for mixed-criticality systems, Bao places a strong emphasis on fault
containment isolation and real-time behavior. The static partitioning hypervisor ar-
chitecture is implemented using only a minimal, thin layer of privileged software that
leverages ISA virtualization support. In addition, resources are statically partitioned
and assigned at the time of VM instantiation, and memory is assigned statically using
two-stage translation. Regarding time, exclusive CPU assignment eliminates the need
for a scheduler, which, in conjunction with the availability of per-CPU architectural
timers managed directly by the guests, enables complete logical temporal isolation. 10
is pass-through only, and virtual interrupts are mapped directly to physical ones.

Bao has no external dependencies, such as those on privileged VMs running large mono-
lithic general-purpose operating systems (such as Linux), and as a result, its TCB is
significantly smaller.

Currently, Bao is compatible with the Armv8 architecture. RISC-V experimental sup-
port is also available, but since it depends on the not-yet-approved hypervisor exten-
sions, the hypervisor has been tested only on QEMU virtual environment.

2.2 General Purpose Hypervisors

Xen and KVM hypervisors were among the most popular server virtualization solutions
in the past. Despite the fact that both Xen and KVM belong to the general-purpose
hypervisors category, they can be used as customized and functional solutions for em-
bedded systems and real-time cloud environments [28, 29, 30].

2.2.1 Xen

The Xen Project hypervisor [31] is a type-1 or baremetal open-source hypervisor re-
sponsible for managing CPU, memory, and interrupts. It is the first program to run
following the exit of the bootloader. The hypervisor is not aware of the existence of
[/O functions such as networking and storage.

The virtualized environments are divided into domains by the Xen hypervisor. It em-
ploys a specialized management interface, the Control Domain (or Domain 0 / Dom0),
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to manage the hypervisor’s runtime operation.

Dom0 can directly access the hardware, manages access to the system’s I/O functions,
and interacts with other Virtual Machines. The Xen Project hypervisor cannot func-
tion without Dom0, the first virtual machine launched by the system. In a typical
configuration, Dom0 includes the following functions:

e System Services: such as XenStore/XenBus (XS) for managing settings, the Tool-
stack (TS) exposing a user interface to a Xen-based system, and XenServer (XS)
for managing XenServer instances and Device Emulation (DE) in Xen-based sys-

tems that is based on QEMU.
e Native Device Drivers
e Virtual Hardware Device Drivers

e Toolstack: allows a user to manage the creation, destruction, and configuration
of virtual machines.

The other created virtual machines, known as Guest Domains, each run their own
operating system and applications. Several distinct virtualization modes are supported
by the hypervisor. Guest VMs are completely isolated from the hardware, meaning
they do not have access to hardware or I/O functionality. Consequently, they are also
known as unprivileged domain (or DomU).

RT-Xen is one of the most prominent real-time applications of Xen, providing a hi-
erarchical real-time scheduling framework. Xi et al. [32] conducted an empirical in-
vestigation of fixed-priority hierarchical scheduling in Xen, focusing on four real-time
schedulers: Deferrable Server, Periodic Server, Polling Server, and Sporadic Server. De-
ferrable Server is better suited for soft real-time applications, whereas Periodic Server
performs poorly in an overloaded environment.

Recently, Xen has been used as a component in Xilinx embedded systems. Xilinx
chooses Xen for the following reasons:

e It is a reliable and robust solution

e Recent developments of Xen take full advantage of ARMv8 and underlying vir-
tualization hardware, such as ARM System Memory Management Unit (SMMU)

e It has a free-of-charge license and an active user and developer community and
technical support that confirms its maintainability

2.2.2 KVM

KVM-based solutions are mainly based on patching the host Linux kernel or improving
KVM itself in order to comply with real-time constraints. The PREEMPT RT
[33] is a set of patches of the Linux kernel, which provide realtime guarantees (e.g.,
predictability, low latencies) still using a single-kernel approach. The PREEMPT
RT patch provides several mechanisms like high-resolution timers, threaded interrupt
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handlers, priority inheritance implementation, Preemptible Read-Copy-Update (RCU),
real-time schedulers, and a memory allocator.

In order to be compliant with real-time constraints, KVM-based solutions primarily rely
on modifying the host Linux kernel or enhancing KVM itself. PREEMPT RT [33] is a
collection of Linux kernel patches that provide realtime guarantees (such as predictabil-
ity and low latency) while maintaining a single-kernel approach. The PREEMPT RT
patch offers a variety of mechanisms, including high-resolution timers, threaded in-
terrupt handlers, priority inheritance implementation, Preemptible Read-Copy-Update
(RCU), real-time schedulers, and a memory allocator.

Kiszka et al. [34] designed a task-level scheduler that employs paravirtualization
techniques and collaborates with KVM via two new hypercalls in order to manage
threads with varying priorities. KVM functions as a real-time hypervisor by assigning
higher priorities to real-time threads within a virtual machine and lower priorities to
threads operating at the host layer. Cucinotta et al. [35] extended the Linux cgroups
interface to create a scheduling algorithm. The authors suggested using a variant of
the CBS (Constant Bandwidth Server)/EDF scheduler for inter-VM scheduling (at the

hypervisor level) and a fixed-priority scheduler within each guest virtual machine.

In a different study, Cucinotta et al. [36] investigate I/O issues. They intend to group
VM threads, KVM threads, and kernel threads required for I/O virtualization (e.g.,
network or disk) in the same reservation. Zhang et al.[37] implemented numerous real-
time tuning techniques. Using the PREEMPT RT patch on a Linux host. They
emphasized on the basis of a dual-guest scenario, they integrated an RTOS and GPOS
on a single instance of KVM.

2.3 ARM TrustZone-assisted Virtualization

To increase the isolation of virtual domains, the research community investigated the
possibility of utilizing hardware-assisted security solutions in the safety-critical domain.
ARM architectures with TrustZone [38] are the most widespread solutions.

This technology offers temporal and spatial isolation between the two execution envi-
ronments [39, 40, 41]. In particular, for virtualization purposes, these two worlds,non-
secure and secure, are used to run multiple VMs managed by hypervisor, operating in
monitor mode. Using ARM TrustZone with a dual-guest OS configuration, researchers
ran a general-purpose operating system (GPOS) in the non-secure world and a real-time
operating system (RTOS) with elevated privileges in the latter. This separates critical
from non-critical tasks running on top of the RTOS.

Utilizing the ARM TrustZone technology, Pinto et al. [42] demonstrate an intriguing
method for running a realtime operating system in parallel with Linux on a single
CPU. Their strategy preserves real-time capabilities by employing fast interrupts (FIQs)
exclusively for real-time-critical devices. These interrupts, unlike regular IRQs, arrive
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directly in the secure environment, where the real-time OS and hypervisor execute.
Normal interruptions occur in the non-secure environment, which is isolated from the
secure world.

2.4 Lightweight Virtualization-Containerization

In industrial areas, lightweight solutions based on OS-level virtualization with contain-
ers and unikernels are starting to be explored [1|. A current trend in the realtime area
is the adoption of OS-level or container-based virtualization. The objective is to replace
virtual machines with containers in mixed-criticality systems to achieve isolation with
a compact footprint [43]. In many situations, it is not necessary to host a whole oper-
ating system within a virtual machine (VM), especially when only certain OS features
are required. The fundamental idea is to improve the OS process abstractions (called
containers).The majority of Linux-based real-time container solutions in the literature
take one of two approaches: 1) the use of co-kernels such as [44] or 2) the modification
of the Linux scheduler [45].

2.5 SELENE Project

SELENE [2, 3| is a self-monitored Dependable platform for Safety-Critical Systems
that proposes a new set of safety-critical computing platforms based on open source
components such as the RISC-V instruction set architecture, GNU /Linux, and the
Jailhouse hypervisor, which we will study in this Diploma thesis, to solve the problem
of safety-critical systems with limited performance and/or lack of flexibility.

This sophisticated computing platform aims to:

1. build an abstract system and adjust it to the unique requirements and limits
of different applications by changing its environmental settings as well as the
system’s conditions;

2. guarantee functional isolation properties, enabling the coexistence of mixed crit-
icalities and performance requirements on the same hardware platform

3. achieve flexible diverse redundancy by leveraging the capabilities of the multicore

4. efficiently execute compute-intensive software applications with the help of specific
accelerators
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Chapter 3

Analysis of virtualization techniques

| his chapter discusses in detail the essential technologies underlying this study,
including the concept of virtualization and its various sorts and the mechanism
of hypervisor and its various types, paving the way for the Jailhouse Hypervisor chapter.

3.1 Virtualization

Virtualization is a commonly used term that can be interpreted and defined in a variety
of ways based on the context and the technologies employed. If we attempt to give
a comprehensive but rather abstract definition of the word ’virtualization’ we might
say that it is a technology that allows us to take a single, physical hardware system
and create multiple virtual environments, usually called Virtual Machines (VMs) by
dividing it. Those environments can run simultaneously and independently from one
another. One or more techniques such as hardware and software partitioning, time-
sharing, partial or complete machine simulation, emulation, quality of service [4] are
used, determining a specific type of virtualization.

Application VM, VM; ... VM,
Operating System Virtualization Layer
Hardware Layer Hardware Layer
1. Traditional Architecture 2. Virtualized Architecture

Figure 3.1.1: Traditional and Virtualized Architecture
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3.1.1 Why does Virtualization matter?

Virtualization can be considered one of the most appealing architectural strategies for
implementing mixed-criticality systems. i.e., to integrate software components with
different levels of criticality on a shared hardware platform

Satellites consist of systems with mixed criticality. In other words, they often have
at least one real-time component in which it is crucial to complete particular activities
within a deterministic, guaranteed time frame. A non-real-time component may also be
added, which is typically utilized for real-time information and data processing, system
management or configuration.|5]

Real-time components can be impacted by non-real-time programs without virtualiza-
tion, necessitating frequent separation and execution on a distinct physical CPU. Using
virtualization, various components can be merged on a single platform while maintain-
ing the system’s real-time integrity. [5|

3.2 Virtualization Techniques

There are different approaches to implementing virtualization, suitable for different
situations. The purpose of this section is to describe in general terms the virtualization
techniques in common use today.

3.2.1 Trap and Emulate

Trap and emulate is a method in which the user applications and guest operating system
of virtual machines both run in user mode, while the hypervisor runs in privileged mode.
Non-privileged instructions are executed natively on the hardware. When executing a
privileged instruction in virtual user mode, a trap to virtual kernel mode is triggered.
This results in a trap for the VMM to handle. The hypervisor assumes control of the
execution and emulates the behavior of the instruction to the guest operating system.
The required corresponding operations are conducted in the underlying ISA, and the
guest is then returned to user mode. Nevertheless, the Popek-Goldberg theorem states,
"For any conventional third generation computer, a virtual machine monitor may be
constructed if the set of sensitive instructions for that computer is a subset of the set
of privileged instructions" [46] which means that for virtualization to be feasible using
the trap and emulate method, every sensitive instruction must also be privileged.

3.2.2 Full Virtualization - Binary Translation

The aforementioned issue can be resolved with the binary translation technique that
enables full virtualization. In full virtualization, the primary hardware is made acces-
sible to the guest operating system, which is oblivious of such abstraction and has no
need for modification. Direct execution for non-sensitive instructions and binary trans-
lation for sensitive instructions or hardware traps allow for complete virtualization. The
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translation of kernel code replaces non-virtualizable instructions with new sequences of
instructions that have the desired impact on virtual hardware.

3.2.3 Paravirtualization

Paravirtualization is a technique that leverages communication between the hypervisor
and the guest OS to improve performance efficiency. This method includes altering
the kernel of the operating system to replace nonvirtualizable instructions with hyper-
calls that connect directly with the hypervisor of the virtualization layer. In addition
to providing hypercall interfaces for memory management and interrupt handling, the
hypervisor also provides interfaces for other crucial kernel activities, such as memory
management and interrupt handling. Paravirtualization differs from full virtualization
in that the unmodified operating system is unaware that it is virtualized and sensitive
OS calls are intercepted using binary translation. Depending on the workload, the per-
formance advantage of paravirtualization versus full virtualization can vary significantly.
Since paravirtualization is incapable of supporting unmodified operating systems, its
compatibility and portability are weak.

3.2.4 Static Partitioning

Setting up and configuring the aforementioned procedures can be difficult, particularly
for embedded devices where simplicity is essential. In order to simulate independent
systems, static partitioning isolates programs or tasks to specific pieces of the current
hardware. The software partitions are connected to the hardware partitions, limiting
the number of operating systems per physical core to one.

All approaches permit the separation of isolated tasks (such as numerous users sharing a
system) and vital jobs from less-critical chores (such as separating a secure domain from
a general-purpose domain). Nevertheless, the flexibility that full virtualization offers
is sacrificed by static partitioning in exchange for some guarantees of determinism.
Since different virtualization strategies react to hardware differently, each has inherent
advantages for specific applications.

In a static partitioning approach, the platform’s physical resources restrict the number
of viable virtualized environments. Whether the mixed-criticality tasks are related to
security, safety, or real-time operation, statically partitioned systems offer the same
advantages for separating them. The scheduling of tasks is less impacted, however,
because the physical resources are coupled more closely to the virtualized environments.
This makes partitioned systems more appropriate for embedded systems with limited
computing resources.

3.3 Types of Virtualization

Virtualization and its mechanism can be given a more comprehensive definition by
identifying its various subcategories. The primary distinction can be based on the
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technology or category of service to be virtualized [47]. This term is most commonly
associated with server virtualization, which is natural given the widespread adoption
of virtualization techniques on the server side. Nevertheless, there are numerous layers
of technology that virtualize a portion of a computing environment, and as a result,
there are various types of virtualization. Apart from server virtualization, terms like
CPU virtualization, storage virtualization, network virtualization, I/O virtualization,
and management /configuration

3.4 Concept of Hypervisor

A hypervisor (or sometimes referred to as Virtual Machine Monitor - VMM) is a software
layer that abstracts hardware resources in order to run multiple Virtual Machines (VMs)
or guests on the same physical machine.

Since the guest VMs are independent of the host hardware, hypervisors make it pos-
sible to utilize more of a system’s available resources and increase I'T mobility. This
means that they can be easily transferred between servers. Because a hypervisor allows
multiple virtual machines to run on a single physical server, it reduces energy, space,
and maintenance requirements.

3.4.1 Types of Hypervisor

There are two primary hypervisor types; "Type 1" or "bare metal" and "Type 2" or
"hosted". A type 1 hypervisor behaves as a lightweight operating system and runs
directly on the hardware of the host, whereas a type 2 hypervisor runs as a software
layer on an operating system, similar to other computer applications. Figure 3.4.1
depicts an abstract representation of the architecture’s system "joining forces" with the
different hypervisor types.

Guest
05 |

Guest
s

Guest Guest

Guest 0S Guest 0S |

Hardware Hardware

Type 1 - Bare Metal Type 2 - Hosted

Figure 3.4.1: Types of Hypervisor taken from [48|

The type 1 or bare-metal hypervisor is the most frequently deployed type of hypervisor,
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where virtualization software is installed directly on the hardware where the operating
system is normally installed. Due to their isolation from the attack-vulnerable os,
bare-metal hypervisors are extremely secure. Moreover, they perform better and are
more efficient than hosted hypervisors. Due to these factors, the majority of enterprise
organizations choose bare-metal hypervisors for data center computing requirements.

Hosted hypervisors run on top of the operating system (OS) of the host machine, as
opposed to bare-metal hypervisors which run directly on the hardware. Despite the
fact that hosted hypervisors operate within the OS, additional and different operating
systems can be installed on top of the hypervisor. The latency of hosted hypervisors
is larger than that of bare-metal hypervisors. This is due to the fact that communica-
tion between the hardware and hypervisor must pass through the additional OS layer.
Hosted hypervisors are sometimes referred to as client hypervisors due to their frequent
use with end users and software testing, where latency is less of an issue.
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Chapter 4

The Jailhouse Hypervisor

| his chapter is dedicated to the Jailhouse Hypervisor, the protagonist of this
diploma thesis. We analyse the concept and operation of the Jailhouse Hypervi-
sor, the primary virtualization technique to be studied, explored, and evaluated.

4.1 What is Jailhouse?

Jailhouse [6] [7] is a static partitioning hypervisor based on Linux, started by Jan
Kiszka, a lead developer at Siemens, AG. In 2013, Siemens, AG. decided to open source
it [8]. It offers a high level of isolation between its partitions, which can run either
bare-metal applications or guest operating systems. The current version of Jailhouse is
0.12, and it has active developer and community support. It supports ARM, ARM64,
and x86 architectures and has recently taken its first steps toward RISC-V support. (8]
2]

This scheme does not strictly adhere to the traditional classification of hypervisors
[9] ; rather, it is a hybrid of Type-1 and Type-2 hypervisors [7] : Once activated,
jailhouse hypervisor runs natively on hardware like a bare-metal hypervisor without an
underlying system level, without any need of external support. Nevertheless, Linux is
required for Jailhouse to be loaded and configured. In other words, Linux is used as a
bootloader, but not as a host operating system. From one perspective, this could be
interpreted as an attempt to successfully configure and port the hypervisor according
to the selected platform’s specific requirements, in a - relatively - abstract and simple
way. It is difficult to support the variety of hardware currently available. Linux, on the
other hand, is a robust operating system in terms of hardware support. This advantage
is used by Jailhouse to hijack Linux. The unusual deferred activation procedure of the
VMM has the substantial advantage of offloading the majority of hardware initialisation
to Linux, allowing Jailhouse to focus solely on managing virtualisation extensions.

Jailhouse hypervisor prefers simplicity over feature-richness. Instead of using complex
and time-consuming (para-)virtualisation schemes, like Xen or KVM, to emulate device
drivers and share physical hardware resources, Jailhouse only provides isolation (by
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exploiting virtualisation extensions) but intentionally neither provides a scheduler nor
virtual CPUs. Only (few) resources that cannot, depending on the hardware support,
yet be partitioned in that way are virtualised in software.

It converts symmetric multiprocessing (SMP) systems to asymmetric multiprocessing
(AMP) systems by introducing "virtual barriers" between the system and I/O bus. The
system is split into isolated partitions called "cells". Each cell runs one guest and has
a set of assigned resources (CPUs, memory regions, PCI devices) that it fully controls.
The hypervisor’s job is to manage cells and maintain their isolation from each other,
ensuring that cells will not interfere with each other in an unacceptable way. From a
hardware perspective, the system bus is still shared, whereas software is jailed in cells
and can only access a subset of physical hardware, the one assigned to them. This
approach is most useful for virtualizing tasks that require full control over the CPU;
examples include realtime control tasks and long-running high-performance computing
tasks. .

root cell non-root cells
P )
Physical { , _ shared
Memory E‘ Linux Linux RTOS memory VMM
4 t 444
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Figure 4.1.1: Concept of Partitioning in Jailhouse [7]

4.2 Phases of Operation

To activate the Jailhouse Hypervisor, it is necessary to build and load a Linux kernel
module (jailhouse.ko) containing the necessary firmware. After the execution of the
startup code and activation of the hypervisor, Linux continues to run as a virtual
machine and guest of Jailhouse, "jailed" in the so-called root cell.

The direct assignment of hardware devices allows Linux to continue operating nor-
mally. Except for minimal, optional debug helpers, Jailhouse does not require any
specific device drivers. Jailhouse assumes that guests do not need to share hardware
resources. To create additional partitions (called non-root cells), Jailhouse reassigns
Linux’s hardware resources (such as CPU(s), memory, PCI, and MMIO devices) to the
new partition. Therefore, Linux releases previously utilized hardware. This includes
physical CPUs: the configuration of a partition consists of at least one physical CPU
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and a certain amount of memory preloaded by the root cell with a secondary operating
system or bare-metal application.

Linux takes certain CPUs offline and invokes the hypervisor to create a new cell by
supplying a cell configuration describing the assigned resources. Other resources, such
as PCI devices, memory-mapped devices, and 1/O ports, can also be reassigned ex-
clusively to the new guest. The hypervisor prevents subsequent cell access to these
resources, thereby preventing accidental modifications. Non-root cells are capable of
being dynamically created, destroyed (resources are returned to the root cell), and
relaunched.
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i
3
H :
{| Bare | GUEST !
! :
3
H
3

Linux T|_' Linux : Metal os
Linux H
N/ ; i
Jallhouse : Jallhouse
: 1 H
Hardware Hardware E|cpu 0 icPU 1 |CPUN
. 3

............ e

2. Partitioning

1. Boot Phase Phase

3. Operational Phase

Figure 4.2.1: Phases of Operation

4.3 Enabling Jailhouse

To successfully enable Jailhouse we need to follow the steps decribed below:
— Build and install Linux on our target

— Compile(natively or cross-compilation) and Install Jailhouse on our target

Provide the necessary prior reserved memory regions to the hypervisor to function
properly. These memory reservations must be completed during the Linux boot.

— Load the jailhouse.ko module in our kernel
— Run jailhouse hypervisor
Those steps will be described thoroughly in Chapter 5

For the third step, the memory region in which Jailhouse operates must be physically
continuous. At this moment this can be done by prior reserving memory using the
"memmap=" kernel command-line parameter or via device tree overlay. When Jail-
house is enabled, the loader linearly maps this memory into the virtual address space
of the kernel. The offset from the base address of the memory region is stored in the
page offset field of the header. This makes the conversion from virtual to physical host
address (and vice versa) simple.
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The fourth step initiates the subsequent operations [49, 50]. The jailhouse user-space
program sends the JAILHOUSE ENABLE request to /dev/jailhouse, which instructs
the driver to invoke jailhouse cmd enable() (driver/main.c). In this function, CPU flags
are examined by the driver to determine which virtualization technology this CPU em-
ploys, after that the configuration binary (signature in the header) is validated. After-
wards, it calls the request firmware() function, which searches the /lib/firmware folder.
At the subsequent stage, the driver remaps the memory region reserved in step 3 to
the kernel address space memory , allowing user-space access to the hypervisor. Driver
copies this binary at the beginning of this memory region, followed by the subsequent
cell configuration. The function jailhouse cell create() is then called.

The final step in enabling Jailhouse is initializing the CPU [49]. In brief, the hypervisor
launches it by invoking the entry hypervisor() function for each CPU (leading to arch en-
try in hypervisor/x86/entry.S). Jailhouse must become an interface between cells (root
cell with Linux at this early boot time) and CPU cores, thereby saving the system’s
state and configuring its environment when CPUO initializes. It consists of configuring
paging for the hypervisor and APIC or GIC, creating the Interrupt Description Table
(IDT), creating the root cell and remapping Linux memory regions and devices, and
configuring Virtual Machine Extensions (VME). It also configures UART communica-
tion to write debug information, allowing the proper information to be displayed on
serial console. Next steps require the renew of the IDT and Global Descriptor Table
(GDT), reset the CR3 register (page table pointer), and configure the Virtual Machine
Control Structure (VMCS). Finally, the hypervisor sends a VMLAUNCH instruction,
which returns control to Linux. However, Linux no longer runs "on bare metal" but
rather in the "root cell" under Jailhouse.

4.4 Cell initialization and start

After the Jailhouse Hypervisor is enabled, different inmate cells can be initialized to
run demos. To create a cell to host a demo we run the following command

jailhouse cell create <path/to/conf.cell>

The binary configuration of the to-be-created cell is read and stored in memory. Later,
the JAILHOUSE CELL CREATE command is sent to the driver along with the
loaded binary’s address. The specified binary is copied from the user-space memory to
the kernel space, where it is checked. An image for the guest is created and includes
pointers to mapped memory for the guest’s regions and PCI devices. The driver then
leaves information about the new cell in sysfs and detaches Linux requested CPUs, PCI,
and any hardware devices requested from the Linux (root) cell.

When the driver issues the JAILHOUSE HC CELL CREATE hypercall, the next
stage begins. Hypervisor, upon catching it, it first instructs all new cell processors to
suspend except for the current one (which is executing this code).

The cell initialization process then begins. A procedure is invoked to save (already
reallocated to the guest) memory-mapped device locations and handlers. Afterward,
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after ensuring that no other entity owns any CPUs, all CPUs are claimed. The cell will
then be added to the list of cells.

To execute some inmate in the new cell it is needed to move it to the cell’s memory
region. This is done the following command:

jailhouse cell load <name-of-cell> <inmate.bin>

Every inmate is treated as a raw binary. This binary’s size must be less than or equal to
the region of guest memory where it will be loaded. The mechanism for transferring the
file into the cell’s memory is similar to that of previous instances. The driver transmits
JAILHOUSE HC CELL SET LOADABLE to the hypervisor and remaps loadable
guest regions to the root cell address space. The message "Cell name of cell> can be
loaded" should be displayed on the serial console at this point. The driver then stores
binary at the specified address.

Finally, to start the loaded cell we execute the following command:

jailhouse cell start <name-of-cell>

It triggers the hypercall JAILHOUSE HC CELL_ START, which causes the hyper-
visor’s cell start() to unmap all loadable regions from the root cell to the guest. The
state of the cell becomes JAILHOUSE CELL_ RUNNING and the cell starts.
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Chapter 5

Development

This chapter is devoted to the investigation and development of our system, which
consists of a real hardware target with custom Linux installed, the Jailhouse
Hypervisor, and a fully operational custom Linux non-root cell. We detail the process of
constructing this system, which will henceforth be known as the "Jailhouse ecosystem"
and will be used to evaluate the Jailhouse Hypervisor extensively.

5.1 Jailhouse QEMU Demonstration

Prior to installing and running Jailhouse on a real hardware target, familiarizing oneself
with the source code and its fundamental capabilities is advisable. Consequently, we
chose to run Jailhouse on the QEMU emulator. Since QEMU already emulates any
hypervisor-supported hardware device, it is relatively simple to run Jailhouse on "any
machine and architecture" we desire.

QEMU Installation

QEMU is available from the repositories of the majority of distributions, but we will
compile it from its source code [51].

$ wget https://download.gemu.org/qemu-version.tar.xz
$ tar xvJf gemu-version.tar.xz
$ cd gemu-version

$ ./configure --prefix=/path/to/qemu/build/dir --enable-kvm \
> --target-1list=x86_64-softmmu

$ make
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$ make install

We decide to connect using ssh on port 22223 from the host by executing ssh -p 22223
root@localhost. The VM listens on localhost’s TCP port 22223 (host).

1. Use of Jailhouse Images

We are going to use the Jailhouse Images [11] to generate a ready-to-use
reference image for the Jailhouse Hypervisor. Our virtual target is QEMU and
is only for examining the basic commands and functionality of Jailhouse.

We clone the jailhouse images repository and follow the instructions in README.
This repository is comprised of two primary components: build-images and the
start-gemu script. To initialize, QEMU requires an image created by the first
script. In this instance, the QEMU/KVM Intel-x86 and QEMU aarch64 virtu-
altarget emulators are chosen for configuring this type of machine. The second
script initializes the emulator with the produced image and displays certain com-
mands along with their parameters (found in the history) to run Jailhouse and
work with apic-demo cell / gic-demo cell and a (minimal) non-root Linux cell.

2. No use of Jailhouse Images Following this method, we create a virtual machine
from scratch, including all hardware requirements for the hypervisor. We used a
Debian GNU /Linux operating system image. Shown below is the parameters we
used for the VMs construction for x86 architecture

exec $QEMU -machine q35,kernel_irqchip=split -m 1024 -enable-kvm \
-smp 4 -device intel-iommu,intremap=on,x-buggy-eim=on \
-cpu host,-kvm-pv-eoi,-kvm-pv-ipi,-kvm-asyncpf,-kvm-steal-time,-kvmclock \
-drive file=./private.qcow2,id=disk,if=none \
-device ide-hd,drive=disk -serial stdio -serial wvc \
-nic user,hostfwd=tcp:127.0.0.1:22223-:22 \
-device intel-hda,addr=1b.0 -device hda-duplex

After the VMs creation we install jailhouse according to the official repository’s
guide[6]. We should prior reserve contiguous piece of RAM for the hypervisor
passing the reservation as parameter to the command line of the virtual machine’s
kernel.

5.2 Install and Run Jailhouse in real hardware target

After acquiring expertise with running jailhouse on a virtual target, we will attempt
to install and run the hypervisor on actual hardware. It is a process significantly more
complex but also more appropriate and accurate for testing Jailhouse’s functioning and
assess many metrics (scheduling latency, interrupt latency, temperature, etc.).
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Figure 5.2.1: Steps for proper build and run of our Jailhouse "ecosystem"

5.2.1 Device Selection

After some discussion and comparisons between possible candidates, we concluded that
Raspberry Pi 4 Model B is suitable for this study for the following reasons.

e Raspberry Pi 4B uses the 64-bit quad-core ARM Cortex-A72 processor @ 1.5
GHz. Its later model ( @ 1.8GHz ) has successfully qualified for launching to
space has passed stringent total ionizing dose (TID) radiation tests, achieving
100krad resilience.

e Huge processing power in a compact board and withing an affordable price
e Many interfaces (HDMI, Ethernet, onboard Wi-Fi, many GPIOs)
e Large community support, suitable for beginners

e Supports Linux, Python (making it easy to build applications)

Raspberry Pi 4B Main Components

64-bit quad-core
ARM Cortex-AT2
processor @ 1.5 GHz

4—— Gigabit Ethernet

M —— USB3
46B RAM

—— usB2

[

USB-C  micro HDMI
Power Supply ports

Figure 5.2.2: Raspberry Pi 4B Tech Specs
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We will further state the rpidb specifications

5.3

Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz
4GB LPDDR4-3200 SDRAM (depending on model)

2.4 GHz and 5.0 GHz IEEE 802.11ac wireless, Bluetooth 5.0, BLE Gigabit Eth-
ernet

2 USB 3.0 ports; 2 USB 2.0 ports.

Raspberry Pi standard 40 pin GPIO header (fully backwards compatible with
previous boards)

2 x micro-HDMI ports (up to 4kp60 supported)

Micro-SD card slot for loading operating system and data storage
5V DC via USB-C connector (minimum 3A*)

5V DC via GPIO header (minimum 3A*)

Power over Ethernet (PoE) enabled (requires separate PoE HAT)

Operating temperature: 0 — 50 degrees C ambient

Jailhouse Installation on Raspberry Pi 4B

This section will describe the steps we took to install and run Jailhouse on a Raspberry
Pi 4 board. Although some steps may appear inconsequential, they must be described
in detail because even the smallest change can result in errors.

To successfully install and run Jailhouse on rpi4 board we should do the following
things:

Take the linux distribution of our choice
Clone the Jailhouse repository

Clone a Linux tree with jailhouse enabling support to build and boot our own
custom kernel

Build and run Jailhouse

Linux Distribution

To first boot our board we choose to port it with Raspberry Pi OS Lite (64-bit), a
Debian Bullseye distribution with no desktop environment. An easy way to do this is
with the use of rpi-imager|52].

Kernel Versions: 5.10, 5.10-rt
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5.3.1 Building The Kernel

Jailhouse need to be compiled with kernel objects. Thus we first need a copy of kernel
source code and compile it.

Jailhouse requires Kernel Version >=4.7. Here, we'll use Kernel version 5.10.31 and/or
5.10.27-rt provided by Siemens/Jan Kiszka [10].

Cross-compilation on a x86 machine is definitely faster, nevertheless it is more suscep-
tible to mistakes in comparison with native build.

Someone can choose the section that corresponds to their situation; either the native
builds or cross-compilation. Although there are many common steps between the two,
there are also significant differences.

Compilation on Raspberry Pi 4B Board
First, we install git and build dependencies.

$ sudo apt install git bc bison flex libssl-dev make
Next we get the sources, which takes quite some time.

$ git clone -b jailhouse-enabling/5.10 https://github.com/siemens/linux
or
$ git clone -b jailhouse-enabling/5.10-rt https://github.com/siemens/linux

We need to adjust the kernel configuration so we take existing configuration [11] and
put it in a file e.g. mini.config

We adjust the configuration file according to our needs. For this study we specifically
added the following lines :

# we need to enable support for thermal sensors on our board which is a Broadcom
BCM2711 SoC
- CONFIG_BCM2711_THERMAL=y

# Depending if we want a linux kernel with or without the real time patch
- CONFIG_PREEMPT=y or CONFIG_PREEMPT\_RT=y

# It is also very important to include (probably manually) the following
lines so that Docker works properly
CONFIG_NAMESPACES=y

CONFIG_NET_NS=y

CONFIG_PID_NS=y

CONFIG_IPC_NS=y
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- CONFIG_UTS_NS=y

- CONFIG_CGROUPS=y

- CONFIG_CGROUP_CPUACCT=y

- CONFIG_CGROUP_DEVICE=y

- CONFIG_CGROUP_FREEZER=y

- CONFIG_CGROUP_SCHED=y

- CONFIG_CPUSETS=y

- CONFIG_MEMCG=y

- CONFIG_KEYS=y

- CONFIG_VETH=y

- CONFIG_BRIDGE=y

- CONFIG_BRIDGE_NETFILTER=y

- CONFIG_NF_NAT_IPV4=y

- CONFIG_IP_NF_FILTER=y

- CONFIG_IP_NF_TARGET_MASQUERADE=y
- CONFIG_NETFILTER_XT_MATCH_ADDRTYPE=y
- CONFIG_NETFILTER_XT_MATCH_CONNTRACK=y
- CONFIG_NETFILTER_XT_MATCH_IPVS=y
- CONFIG_IP_NF_NAT=y

- CONFIG_NF_NAT=y

- CONFIG_NF_NAT_NEEDED=y

- CONFIG_POSIX_MQUEUE=y
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- CONFIG_OVERLAY_FS=y

$ cp mini.config .config

$ make olddefconfig

Next we build and install the kernel, modules, and Device Tree blobs. We use the flag
-j4 to split the work between all four cores, speeding up compilation significantly.

$ make -j4 Image modules dtbs

$ sudo make modules_install

$ sudo cp arch/arm64/boot/dts/broadcom/*.dtb /boot/

$ sudo cp arch/arm/boot/dts/overlays/*.dtb*x /boot/overlays/

$ sudo cp arch/arm64/boot/Image /boot/Image_5.10

Cross Compilation for ARM64 on x86

First, we need a suitable Linux cross-compilation host. We use a x86 host with Ubuntu
18.04.Since Raspberry Pi OS is also a Debian distribution, many aspects, such as com-
mand lines, are similar.

To build the sources for cross-compilation, we make sure we have the dependencies
needed on your machine

$ sudo apt install git bc bison flex libssl-dev make libc6-dev libncursesb-dev
We select the desired toolchain e.g. Linaro [53]

We adjust the .config file according to jailhouse configuration and our needs, just as in
native build. Finally we execute:

$ make ARCH=armé4 olddefconfig
and to build the kernel, modules and Device Tree blobs:

$ make ARCH=arm64 CROSS_COMPILE=/path/to/gcc-linaro-version-x86_64_aarch64-linux-g
/bin/aarch64-linux-gnu- -j4 Image modules dtbs

To install the kernel, modules and dtbs we can either transfer the directory that contains
kernel source to Raspberry Pi or mount the compiled kernel-source directory on target
board.

#0n Host,
$ sudo apt-get update && sudo apt-get install -y sshfs

o1



Chapter 5. Development

#0n RaspberryPi,
$ sudo apt-get update && apt-get install -y sshfs make gcc

$ mkdir ~/linux-src

$ sshfs <remote user>Q@<remote ip address>:<linux source path> ~/linux-src
$ cd "/linux-src

$ make modules_install

$ cp -v arch/arm/boot/Image /boot/Image_5.10

$ sudo cp arch/arm/boot/broadcom/*.dtb /boot/

$ sudo cp arch/arm/boot/dts/overlays/*.dtb*x /boot/overlays/

#now reboot
$ sudo reboot

We need to prior reserve memory for the jailhouse hypervisor and we do it via a device
tree overlay The necessary code of jailhouse.dts:

Cross-Compilation of Arm Trusted Firmware:
On x86 Host:

$ git clone https://github.com/ARM-software/arm-trusted-firmware.git
$ cd arm-trusted-firmware

$ make CROSS_COMPILE=/path/to/gcc-linaro-version-x86_64_aarch64-linux-gnu/
/bin/aarch64-linux-gnu- PLAT=rpi4 DEBUG=1

$ scp “/arm-trusted-firmware/build/rpi4/debug/bl31.bin pi@[rpi4-ip4]:~/

On target:
$ sudo mv bl31.bin /boot/
[. . .1

[all]

enable_uart=1
armstub=bl31.bin
enable_gic=1
kernel=Image_5.10.27
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dtoverlay=aliases
dtoverlay=jailhouse

/dts-v1/;
/plugin/;
/A

compatible = "brcm,bcm2835";

fragment@0 {

};

target-path = "/";
__overlay__ {
reserved -memory {
#address-cells = <2>;
#size-cells = <1>;
ranges;

jailhouse@10000000 {
reg = <0 0x10000000 0x10000000 >;

fragment@l {

};

fragment@2 {

no-map;
};
}s
}s
target -path = "/scb/pcie@7d500000";
__overlay__ {
linux ,pci-domain = <0x00000000>;
};
target -path = "/";
__overlay__ {
reserved -memory {
#address-cells = <2>;
#size-cells = <1>;
ranges;
jailhouselinux@40000000 {
reg = <0 0x40000000 0x40000000>;
no-map;
};
};
};

Listing 5.1: Jailhouse Device Tree Overlay
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* X X X X X X X X *

/

/dts-v1/;
/plugin/;
/A

compatible

Jailhouse,

Authors:
Jan Kiszka <jan.kiszka@siemens.com>

a Linux-based partitioning hypervisor

Copyright (c) Siemens AG,

SPDX-License-Identifier:

2021

= "brcm,bcm2835";

fragment@0 {
target -path = "/";

__overlay__ {

aliases {

/* Needed to enable UART1 for use by TF-A */
uartl = "/soc/serial@7e215040";

/* Ensure stable /dev/mmcblk0 assignment x*/
mmcO0 = "/emmc2bus/emmc2@7e340000";
mmcl = "/soc/sdhci@7e300000";

Listing 5.2: Aliases Device Tree Overlay

5.4 Jailhouse GIC Demo Demonstration

GIC demo [6] (short for Generic Interrupt Controller) is an inmate typically used to
demonstrate fundamental Jailhouse features and functions. It is also the ARM equiva-
lent of APIC demo. It is a small program that configures an interrupt for the GIC timer
to fire at 10Hz measuring the actual time between events. It represents the disparity
between the anticipated and actual duration (called Jitter). The smaller the Jitter,
the less impact the Jailhouse Hypervisor has on the performance of the system and

applications.

We execute the GIC demo to familiarize ourselves with the fundamental jailhouse Linux
commands. Consequently, we first enable the jailhouse hypervisor and then establish
the inmate cell that will host gic-demo. Later, we load gic-demo into the rpi4 inmate
cell and launch it.

jailhouse enable jailhouse/configs/arm64/rpi4.cell
jailhouse cell create jailhouse/configs/armé4/rpi4-inmate-demo.cell
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jailhouse cell load rpi4-inmate-demo jailhouse/inmates/arch/arm64/gic-demo.bin
jailhouse cell start rpi4-inmate-demo

5.5 Linux Non-Root Cell Deployment

In this section we will describe the steps we followed to deploy our linux non-root cell.

Exploration starting Establish full network

; o Make adjustments Custom linux
from ‘default’ linux communication

to use docker in non-root cell
ram-disk runs!

non-root cell between non-root cell -
configuration root cell, internet
connection

01 02 03 04

Figure 5.5.1: Steps for proper deployment of custom linux non-root cell

At first we tested the functionality of the non-root cell by loading the kernel and a
minimum .cpio file, built inside jailhouse-images|11]. We use the existing configuration
for arm64 architecture as a reference to build our custom kernel and image.

We built our custom Linux kernel and image with Buildroot[12]. It is a tool that
simplifies and automates the process of constructing a complete and bootable Linux
environment for an embedded system, leveraging cross-compilation to enable the con-
struction of various target platforms on a single Linux-based development machine.
Buildroot can build the necessary cross-compilation toolchain, create a root file system,
compile a Linux kernel image, and generate a boot loader for an embedded system,
or it can perform any independent combination of these tasks. For example, an inde-
pendently installed cross-compilation toolchain can be utilized, whereas Buildroot just
constructs the root file system|13].

We chose to work with Buildroot for a couple of reasons:

— It a simple structure that makes it easy to understand and extend. After all it is
a set of Makefiles and scripts.

— It is designed with simplicity in mind. To prevent complexity and increased build
times, the basic Buildroot tool has been kept as simple as possible. This makes
it straightforward to learn and use.

— Buildroot generates a root filesystem image as opposed to a full-on distribution,
and that is what we need with Jailhouse.
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— Probably for the same reasons, Jailhouse Images use buildroot to create their
minimum non-root linux cell.

5.5.1 Design and Build

We download the version of Buildroot we wish to work with. In our case it is the
2022-02-03. We use the configuration file for the rootfile system image generated by
Jailhouse-Images as a reference and then we apply the necessary changes according to
our preferences.

Kernel

We use the custom git repository we used to build our jailhouse-enabling kernel for
Raspberry Pi, along with the same configuration. That way, we have the same kernel
version so the evaluation of latencies, later described in Chapter 6 is valid. We build the
real-time 5.10.27-rt36 kernel. We make sure that the kernel has the ivshmem-net driver,
in order to establish a virtual network connection between linux root and non-root cell.

Root Filesystem Image

Buildroot does not come with a package manager. It is in the tool’s philosophy that
we build our image with all the packages we need prior deployment. In this context,
for the root file system image we choose the necessary packages in order to support our
scenarios’ execution. We make the following choices:

— Instead of building a .cpio rootfs we build an initial RAM filesystem linked into
the linux kernel. The reason behind this is that the final file is about two times
smaller (125MB) than .cpio (250MB), which has to be extracted so the actual
size is much bigger, and we do not have the privilege of extend memory use.
Furthermore, as mentioned in Chapter 4, Jailhouse reserves continuous memory
for its components (hardware, cells etc). In the /proc/iomem file, the available
RAM regions, among others, are stated. We observe that there is 1GB of con-
tinuous RAM available. This size of memory we reserve, as also described in 5.3.1.

— We select packages related to networking applications and packages such as
iputils, ethtool, iptables etc, which help us establish an internet network connec-
tion.

— The package of Python language, along with external python modules are
essential for our scenarios’ execution.

— The whole docker platform (docker-cli, docker-engine, docker-compose, docker-
proxy) is essential for our scenarios’ execution.
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— The rt-test suite contains cyclitest and hackbench, which we will need for our
scenarios’ execution.

5.5.2 Deployment

After our custom kernel and rootfs Image build, we transfer the files in Raspberry Pi
to deploy the linux non-root cell.

We enable the Jailhouse Hypervisor and type the following command:

# jailhouse cell linux path/to/rpi4-linux-demo.cell path/to/Image_5.10-rt -d \
path/to/inmate-rpi4.dtb -c "console=ttyS0,115200 ip=10.1.1.3"

It is important to highlight the preconfigured PCI device in rpif-linux-demo.c. This
PCI device is of type JAILHOUSE SHMEM PROTO_VETH and because both cells
have the ivshmem-net driver, we see that a new ethernet interface becomes available.
A virtual ethernet connection has established and we can access the non-root cell via
ssh.

5.5.3 Non-root cell internet access establishment

Although both cells can connect and communicate with each other via networking
protocols, we essentially have an isolated network between the two cells. To connect
the inmate to the internet, the root cell will have to become a network router. A simple
solution could be to create a network bridge where we attach in the root-cell the real
physical network interface and later the virtual one.

After doing that the inmate should be in the same network and can use DHCP to get
a network configuration that will allow internet access just like the root-cell has.

Bridged clients will be on a separate subnet. We execute the script in Listing 5.3
in root-cell and afterwards we just disable and enable again the Jailhouse Hypervisor
(basically reboot the system).

Later on, we go to the inmate cell and type

# route -n

to check the IP routing table.

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.0.0 0.0.0.0 2556.0.0.0 U 0 0 0 ethO
172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 docker0

As we can see we need a route to any other destination through our default gateway
(we prior established its ip as 10.1.1.1). Thus, we execute the following command.
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# route add default gw 10.1.1.1 ethO

Now, we can see that we can reach any other destination

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
0.0.0.0 10.1.1.1 0.0.0.0 UG 0 0 0 ethO
10.0.0.0 0.0.0.0 2556.0.0.0 U 0 0 0 ethO
172.17.0.0 0.0.0.0 255.255.0.0 U 0 0 0 docker0

In addition, we need to fix the /etc/resolv.conf file. This file contains information
that is read by the resolver routines the first time they are invoked by a process. It is
basically used to configure the system’s Domain Name System (DNS) resolver so that
we can hit addresses with their human readable names and not by their IPs. Having
said that we delete the existing file, create another one and type nameserver 8.8.8.8
(Google’s DNS Server).
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#!/usr/bin/env bash
set -e
[ $EUID -ne O ] && echo "run as root" >&2 && exit 1

apt update && \
DEBIAN_FRONTEND=noninteractive apt install -y \
dnsmasq netfilter-persistent iptables-persistent

# Create and persist iptables rule.
iptables -t nat -A POSTROUTING -o wlanO -j MASQUERADE
netfilter -persistent save

# Enable ipv4 forwarding.
sed -i'' s/#net.ipv4.ip_forward=1/net.ipv4.ip_forward=1/ /etc/sysctl.conf

# The Ethernet adapter will use a static IP of 10.1.1.1 on this new subnet.
cat <<'EOF' >/etc/network/interfaces.d/ethO
auto ethO
allow-hotplug ethO
iface ethO inet static
address 10.1.1.1
netmask 255.255.255.0
gateway 10.1.1.1
EQF

# Create a dnsmasq DHCP config at /etc/dnsmasq.d/bridge.conf. The Raspberry Pi
# will act as a DHCP server to the client connected over ethermnet.

cat <<'EOF' >/etc/dnsmasq.d/bridge.conf

interface=ethO

bind-interfaces

server=8.8.8.8

domain-needed

bogus -priv

dhcp-range=10.1.1.2,10.1.1.254,12h

EQF

systemctl mask networking.service

Listing 5.3: Script to make Raspberry Pi a network bridge taken from [54|

5.5.4 Docker set-up in linux non-root cell

In this subsection, we will describe the Docker configuration required for proper oper-
ation. - As described in Chapter ref jailhouse chapter>, the Linux non-root cell boots
and operates in RAM. By default, all files generated within a container are stored on
a writable container layer, with data written to the filesystem of the host system. In
our instance, the "host" actually runs in memory, so building and/or running a Docker
container generates an error. Docker supports containers storing files in-memory on the
host machine. Such files are not persisted. As we run Docker on Linux, we will use
the tmpfs mount option to store files in the linux non-root cell’s system memory. We
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execute the following steps.

1. First, we stop the docker service and create a directory to use as mount point for
the tmpfs.

# /etc/init.d/S60dockerd stop
# mkdir /mnt/ramndisk

2. We mount the tmpfs to our mount point

# mount -t tmpfs -o size=512m tmpfs /mnt/ramdisk

3. We configure the docker daemon to use the desired directory. We copy all the
files from the docker default directory to our mount point.

# vim /etc/docker/daemon. json
# cp -r /var/lib/docker/* /mnt/ramdisk/

4. We export the DOCKER RAMDISK variable to make Docker work as root is
on a ramdisk.

# export DOCKER_RAMDISK=true

5. Finally, we start again the docker service.

# /etc/init.d/S60dockerd start

Now that Docker is properly configured and running, we have constructed our jailhouse
ecosystem, which consists of a jailhouse hypervisor running on a hardware platform and
a fully customized Linux non-root cell that is operational.
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Evaluation

This chapter is devoted to the experiments conducted to measure the impact of the

Jailhouse Hypervisor on application execution, as well as the evaluation of a num-
ber of metrics to determine the hypervisor’s overall behavior. We focus on measuring
and studying the following sections:

1. The boot and recovery time of our Jailhouse ecosystem
2. The impact of Jailhouse Hypervisor on applications’ performance

3. The scheduling latency on the cells of the Jailhouse ecosystem

6.1 Boot Time - Recovery

In this section, we will measure the boot time of our Jailhouse ecosystem. Boot time is
an important aspect of system performance because users must wait for the device to
boot before using it. In cases of failure-recovery, (re)boot time is also crucial. In our
case, we have a system with a virtualized layer that can host both the satellite’s critical
software and the desired applications. It is crucial that

1. we are able to re-configure and essentially re-instantiate the system to host dif-
ferent (real-time) applications

2. in case of a software application’s partial failure the system will reboot without
affecting the applications’ overall performance.

Therefore, having a quick boot time is critical.

We measure the boot time of our Jailhouse ecosystem’s from the time we execute the
command to enable the Jailhouse hypervisor until the time the command regarding the
creation and loading of the Jailhouse linux non-root cell exits. We took 50 measurements
boot time and the results are depicted in table 6.1 and figure 6.1.1. The distribution is
symmetric.
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Mean | Median | Standard Deviation
1.4518s | 1.4515s 0.0189s

Table 6.1: Mean, Median, and std. Deviation of Jailhouse ecosystem’s boot time
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Figure 6.1.1: Box Plot of Jailhouse ecosystem’s boot time

There might be cases where the linux non-root cell crashes and, therefore, has to be
rebooted. We measure the reboot time of the Jailhouse’s linux non-root cell from the
time we execute the command to destroy the non-root cell until the time the command
regarding the (re)creation and loading of the Jailhouse linux non-root cell exits. We
took 50 measurements boot time and the results are depicted in table 6.2 and figure
6.1.2. The distribution is positively skewed and has a wider range than the distribution
about Jailhouse ecosystem’s boot time.

In our scenario, we intentionally caused a kernel panic, as shown in fig 6.1.5 | in order
to freeze the linux non-root cell. Despite the fact that the linux image did not function,
the cell appeared to be operational and continued to be in running state. Thus, we
cause the non-root cell to reboot without having any interrupt by its state change from
running to failed.

Mean | Median | Standard Deviation
1.5072s | 1.4697s 0.1306s

Table 6.2: Mean, Median, and std. Deviation of linux non-root cell reboot time
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Time(s)
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Figure 6.1.2: Box Plot of Jailhouse ecosystem’s linux non-root cell reboot time

Finally, we measure the reboot time of our Jailhouse ecosystem’s from the time we
execute the command to disable the Jailhouse hypervisor until the time the command
regarding the creation and loading of the Jailhouse linux non-root cell exits. We took
50 measurements boot time and the results are depicted in table 6.3 and figure 6.1.3.
The distribution is symmetric and has a more narrow range than the two previously
mentioned distributions.

Mean

Median

Standard Deviation

1.8419s

1.8232s

0.0753s

Table 6.3: Mean, Median, and std. Deviation of Jailhouse ecosystem’s reboot time
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Figure 6.1.3: Box Plot of Jailhouse ecosystem’s reboot time

Our findings are presented in table 6.4 and figure 6.3.5. If we compare the medians
of each box plot, it is evident that there is a difference between the third group (the
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reboot time of the Jailhouse ecosystem) and the other two, as the median line of the
third group’s box plot sits outside the box of the comparison box plots. This is easily
explicable. For the last group measurement we used one extra jailhouse command;
jailhouse disable. This command adds about 0.4s extra latency in the overall (re)boot
time compared to the other two groups.

Comparing the first two groups, the number of commands executed is identical. The
distinction is on the command types employed. In the first scenario, jailhouse enable
is executed, whereas in the second scenario, jailhouse cell destroy is used. This may
account for the disparity between the interquartile ranges and score ranges, as the data
reported for the second group are more dispersed and scattered.

Overall, the results indicate a predictable (re)boot time. However, the outlier in the
box plot of the Jailhouse ecosystem’s reboot time pushes us to seek a bigger supremum
for the set of (re)boot times.

System-action Mean | Median | Standard Deviation
JH ecosystem boot 1.4518s | 1.4515s 0.0189s
JH linux non-root cell reboot | 1.5072s | 1.4697s 0.1306s
JH ecosystem reboot 1.8419s | 1.8232s 0.0753s

Table 6.4: Mean, Median, and std. Deviation of Jailhouse ecosystem’s (re)boot times
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Figure 6.1.4: Box Plot of Jailhouse ecosystem’s (re)boot times
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Welcome to Buildroot

jailhouse legin: root

# echo ¢ > fproc/sysrq-trigger

55.188291] sysrq: Trigger a crash

55.188301] Kernel panic - not syncing:

55.188302] sysrq triggered crash

55.188305] CPU: 1 PID: 196 Comm: sh Not tainted 5.10.27-rt36 #3
55.188312] Hardware name: Jailhouse cell on Raspberry Pi 4 (DT)
55.188314] Call trace:

55.188316] dump_backtrace+8xe/ex1be

55.188330] show stack+8x18/8x70

55.188335] dump_stack+0xde@/ox12c

55.188341] panic+0xde/0x364

55.188344] sysrqg_handle crash+8xic/ex20

55.188358] _ handle sysrq+0x8c/0x1a8®

55.188353] write sysrq _trigger+0x94/0x140

55.188357] proc_reg write+0xa8/oxfe

55.188363] vfs write+oxfe/ox2de

55.188367] ksys write+0x6c/0x100

55.188371] _ arm64 sys write+0x20/0x30

55.188374] el® _svc common.constprop.@+0x78/0x1a0

55.188380] do_el® svc+0x24/0x90

55.188384] el0_svc+0x14/0x20

55.188389] el® _sync_handler+8x1a4/0x1be

55.188393] el@ sync+0x174/0x180

55.292553] SMP: stopping secondary CPUs

55.296543] Kernel 0ffset: disabled

55.300079] CPU features: 0x0040022,21002000

55.304411] Memory Limit: none

55.307518] ---[ end Kernel panic - not syncing: sysrq triggered crash ]---

Lo e W W W W W W W W W W W W W W W W W W W W W W W W W |

Figure 6.1.5: Intentional crash in linux non-root cell

6.2 Performance Benchmarking: N-Queens Problem

This section will concentrate on performance benchmarking. We will measure the exe-
cution time of an application to compare the impact of Jailhouse Hypervisor to that of
Docker containers.

The N-queens problem is a generalization of the well-known 8-queens problem, accord-
ing to which we have to find a way to put 8 queens in a classic 8x8 chessboard so that
no queen can attack or be attacked by another. A queen can attack another if they are
located on the same diagonal, row or column. In the case of the N-queens, N queens
are placed on a NxN board. The number of solutions is known, for example there are
92 solutions for eight queens.

We found a python code on github [14]. It calculates all the solutions using the method
of backtracking and has time complexity of O(N?). It also exploits parallelism, so we
can execute the code for different numbers of threads.
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6.2.

1 Execution in root cell with Linux Kernel 5.10.27-rt36-+

Execution in No Jailhouse environment

We execute the N-queens code in Raspberry Pi 4B in a Jailhouse-custom Linux Kernel
5.10.27-rt36+ and measure the execution time and temperature per iteration. The
results for N = 12, 100 iterations and 1, 2, 4 threads are presented below in Fig.6.2.1.

time to find all solutions (s)

1.
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Figure 6.2.1: N-Queens Problem Results for 1, 2 and 4 threads. Kernel
Version:5.10.27-rt36+

Execution time

Execution Time seems problematic when we compare the results with similar
execution scenarios. Specifically, the performance in PREEMPT RT 5.10.27-
rt36+ Kernel is two times worse than PREEMPT RT Raspbian Kernel 4.19.59.-
rt23-v7l4 in all three cases (1, 2, 4 threads) [55]. Nevertheless, we execute the
same python code in the Linux non-root cell to compare the results.

Temperature

Temperature rises as the number of threads increases, and mild temperature fluc-
tuations can be observed in each experiment. For proper function and optimal
performance, the Raspberry Pi Foundation recommends keeping the Raspberry
Pi device’s temperature below 85 degrees Celsius [Linuxhint|. In our case, the
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maximum temperature our Raspberry Pi reaches is around 72.5 degrees Celsius,
far below the maximum acceptable value.

Execution in Linux non-root cell

We execute the same python code in the Linux inmate cell we created and deployed.
We should highlight although previously mentioned, that the kernel version is the same
with the Linux root cell. The average execution times on the three environments are
gathered in Table 6.5. The time execution for 1 and 2 threads presents a 73.9%
and 73.1& increase respectively. This could not possibly caused by an overhead due
Jailhouse’s presence.

Kernel Version Threads | Avg Time(s)

4.19.59.-rt23-v 71+ 1 67.55

4.19.59.-rt23-v71+ 4 24.27
5.10.27-rt36+ without Jailhouse 1 159.23
5.10.27-rt36+ without Jailhouse 2 80.92
5.10.27-rt36+ without Jailhouse 4 43.23
5.10.27-rt36-+ Jailhouse non-root 1 276.96
5.10.27-rt36+ Jailhouse non-root 2 140.57

Table 6.5: N-queens benchmark: Average Execution Times in different environments

6.2.2 Execution in Linux Root-cell with Kernel 5.4.59-+

We decide to choose another kernel version for our Linux root-cell. Specifically we build
and port Jailhouse-custom Linux 5.4.59+ kernel. We repeat the previous experiments in
our Jailhouse ecosystem. We run the N-queens problem code both in native environment
and within a Docker container.

Native Execution

Again, we execute the N-queens code in Jailhouse-custom Linux Kernel 5.4.59-+, fo-
cusing on execution time. The results for N = 12, 100 iterations and 1, 2, 4 threads
are presented below in Figure 6.2.2. To have a complete evaluation, we measure the
temperature as well, in the 4-threads execution. The results are depicted separetely in
Figure 6.2.3.
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Figure 6.2.2: N-Queens Problem Results for 1, 2 and 4 threads. Kernel
Version:5.4.59+
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Figure 6.2.3: N-Queens Problem Result for 4 threads. Kernel Version:5.4.59+.
Temperature along with execution time

1. Temperature
Temperature rises as the number of repetitions increases for the first 10 iterations.
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After that, slight changes in temperature can be seen. Our Raspberry Pi reaches
a maximum temperature of 82.29 degrees Celsius, which is not too far below the
maximum permissible number. The Raspberry Pi’s performance will undoubtedly
begin to degrade as the temperature rises. In other words, a thermal throttling
condition is present.

2. Exexution Time
The execution time appears normal when compared to similar execution scenar-
ios. In particular, the performance of N-queens code running on the PREEMPT
5.4.59+ Kernel is comparable to that of the PREEMPT RT Raspbian Kernel
4.19.59.-rt23.v7l4. As a result, we choose to conduct all of our experiments using
the PREEMPT 5.4.59+ Kernel as the Linux root cell.

Execution in Docker container

We build and run a docker container using a python-alpine image. Our key concern is
that the size of the final image is as minimal as possible so that it may be utilized in the
Linux non-root cell, where memory is limited. The results for N = 12, 100 iterations
and 1, 2 threads are presented below in Figure 6.2.4.
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Figure 6.2.4: N-Queens Problem Results for 1 and 2 threads. Inside Docker Container
in Linux root cell. Kernel Version:5.4.59+

Our results are summarized in Table 6.6. For the 1-thread execution, the average time
within a Docker container is 5.8% longer than the native environment, while for the
2-thread execution, the increase is 0.3%.
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Environment | Threads | Avg Time
Natively 1 69.55s
Docker 1 73.63s
Natively 2 37.25s
Docker 2 37.38s

Table 6.6: Summarized results for N-queens benchmark: Jailhouse Linux Root-cell

6.2.3 Execution in Non-Root cell

We run the N-queen benchmark in the Linux inmate cell we created and deployed. We
should highlight although previously mentioned, that the kernel version is 5.10.27-rt36.

Native Execution

We first execute the python code directly on the Linux non-root cell without any pres-
ence of additional layers. The results for N = 12, 50 iterations and 1, 2 threads are

presented below in Figure 6.2.5.
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Figure 6.2.5: N-Queens Problem Results for 1 and 2 threads. Inside Linux non-root
cell. Kernel Version: root cell:5.4.594-, non-root cell:5.10.27-rt36

Execution in Docker Container

We build and run a docker container using the same python-alpine image for the exe-
cution in the Linux root cell. The results for N = 12, 100 iterations and 1, 2 threads

are presented below in Figure 6.2.6.
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Figure 6.2.6: N-Queens Problem Results for 1 and 2 threads. Inside Docker Container
in Linux non-root cell. Kernel Version: root cell:5.4.59+, non-root cell:5.10.27-rt36

The summary of our observations is shown in Table 6.7. Native execution in a non-root
Linux cell for 1 and 2 threads takes an average of 69.55 and 37.25 seconds, respectively.
Comparing these findings to Table 6.6 reveals a 50.1% and 42.3% increase in execution
time, accordingly. Similarly, the execution time of a docker container increases by 2.7%
and 3.5% for one and two threads, respectively.

Environment | Threads | Avg Time
Natively 1 104.40s
Docker 1 75.64s
Natively 2 53.04s
Docker 2 38.08s

Table 6.7: Summarized results for N-queens benchmark: Jailhouse Linux Non-Root
cell

Regarding native execution directly on a non-root Linux cell, the influence of the Jail-
house Hypervisor is insufficient to justify the time increase. In addition, the iterations’
durations measured are significantly longer than those for the execution within a docker
container. This indicates that the issue is related to the distribution of operating sys-
tems in the root and non-root cells. We should mention that the kernels and images
we use have been customized by the jailhouse hypervisor’s contributors. In addition,
the 5.10 kernel is configured and customized for arm architecture targets in general,
whereas the 5.4 kernel is customized particularly for raspberry pi, which likely explains
the enormous discrepancy in execution times that we discovered before.

If we overlook the unexpected performance degradation in native execution and focus
on results from execution in docker containers, the minor increase in execution time
demonstrates that the jailhouse hypervisor has a negligible effect on the performance
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of software applications. In fact, the extremely small fluctuations depicted in Figure
6.2.6 demonstrate the predictable behavior of our ecosystem.

6.2.4 Execution in Non-Root cell - Additional CPU Load

As of now, we have executed the N-queens code in both root and non-root cell, eval-
uating the impact of the jailhouse hypervisor on application performance. Apart from
the execution of the N-queens code, the system did not have any "significant" tasks to
complete, hence this scenario could not be considered realistic. In fact, the system is
intended to execute multiple programs concurrently, typically in separate cells. These
applications may or may not be constrained by real-time limitations and consist of user
software, or mission-critical avionics software.

Therefore, we will repeat the experiment by executing the N-queens code in a Linux
non-root cell and simulating significant CPU load in a Linux root cell. The process of
the load’s creation is further examined in Section 6.3.

Native Execution

We execute the python code again directly on the Linux non-root cell without any
presence of additional layers. The results for N = 12, 50 iterations and 1, 2 threads are
presented below in Figure 6.2.7
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Figure 6.2.7: N-Queens Problem Results for 1 and 2 threads. Inside Linux non-root
cell. Heavy cpu load in root cell. Kernel Version: root cell:5.4.594-, non-root
cell:5.10.27-rt36

Execution in Docker Container

We build and run the same docker container as used before, for the execution in the
Linux root cell. The results for N = 12, 50 iterations and 1, 2 threads are presented
below in Figure 6.2.8.
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Figure 6.2.8: N-Queens Problem Results for 1 and 2 threads. Inside Docker Container
in Linux non-root cell. Heavy cpu load in root cell. Kernel Version: root cell:5.4.59+,
non-root cell:5.10.27-rt36

The summary of our observations is shown in Table 6.8. Native execution in a non-root
Linux cell for 1 and 2 threads takes an average of 115.40 and 69.54 seconds, respectively.
Comparing these findings to Table 6.7 reveals a 10.5% and 33.1% increase in execution
time, accordingly. Similarly, the execution time of a docker container increases by 6.6%
and 25.8% for one and two threads, respectively.

Environment | Threads | Avg Time
Natively 1 115.40s
Docker 1 80.64s
Natively 2 69.54s
Docker 2 48.68s

Table 6.8: Summarized results for N-queens benchmark: Jailhouse Linux Non-Root
cell with heavy CPU Load

We note that the percentage increase in average execution time from one thread to two
threads is significant in both execution environments. This result is to be expected, as
the benchmark we are running demands numerous memory accesses (reads and writes).
Given our limited cache resources, it is certain that we will experience enough cache
misses that require a further search in RAM. However, our Linux non-root cell has been
statically assigned its resources and cannot request more. With limited resources and
RAM allocated for the Linux non-root cell, it is inevitable that several page faults will
occur, causing the program to look for the page in storage. Linux’s perf application
confirms the program’s high number of pagefaults.

The bus is shared by the cells in our Jailhouse ecosystem, as previously stated. All of
these cache misses and page faults in combination with the heavy CPU Load in the
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Linux root-cell, which heavily utilizes the bus, result in increased traffic (which rises
with the number of threads) and hence significant delays.

Our investigation confirms the disadvantage of the Jailhouse Hypervisor in the case
of higher bus traffic and, consequently, the negative influence on the performance of
applications.

6.3 Scheduling Latency on Real Time: Cyclictest

Our next step on Jailhouse’s ecosystem evaluation is to check its real time performance.
Real-time tasks are typically triggered by external events or the periodic expiration of
a timer. Real-time jobs with the highest priority should be scheduled immediately af-
ter activation, however in reality, there is a delay between the moment the activating
event takes place and the moment the task begins executing|15]. This delay, known as
scheduling latency, impacts the reaction times of all jobs and imposes a lower bound on
the system’s ability to meet deadlines. Therefore, scheduling latency must be consid-
ered when deciding if a system can give the appropriate temporal assurances. For an
empirical evaluation of scheduling delay, we employ cyclictest, a tracing program that
treats the kernel as a black box and reports scheduling latency directly.

As stated in its documentation, cyclictest|16] accurately and repeatedly measures the
difference between a thread’s intended wake-up time and the time at which it actually
wakes up in order to provide statistics about the system’s latencies. It can measure
latencies in real-time systems caused by the hardware, the firmware, and the operating
system.

Our test suite is based on the following command

sudo cyclictest -1100000000 -m -S -p90 -i200 -h400 -q output.txt
Specifically, we use the following options:

— 1100000000: 100M iterations (about 6.5 hours);

— m: lock current and future memory allocations to prevent Cyclictest pages from
being paged out of memory

— S: Standard SMP testing: options -a -t -n [56] and same priority of all threads
(Raspberry Pi has 4 Cores then 4 Threads)

— p90: priority of highest prio thread set to 90 (for the 4 threads, then: 90 89 88
87)

— 1200: interval for the first thread (in us).
— h400: dump histogram for max latency (up to 400us).

— @ print a summary only on exit.
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6.3.1 Execution with no system Load
Cyclictest - Non RT Kernel No system Load

Despite the fact that cyclictest is a real-time latency benchmark, we will attempt to
execute it on the Linux root cell kernel, i.e. PREEMPT 5.4.59+, which does not contain
Real Time Linux Patch. We anticipate that the results will not be satisfactory, yet we
conduct the study for comparison and thoroughness.
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Figure 6.3.1: Cyclictest execution in Linux root cell without any additional load

The generated histogram is depicted in Figure 6.3.1. We see a significant number of
latency samples that exceed 100us, with the maximum latency response reaching 358us.
This is the best-case situation, as no additional system stress has been simulated. Dur-
ing a standard test, Cyclictest’s overhead is low, therefore it does not impose a signifi-
cant stress on the system. In all other circumstances, even with minimal interference,
it is possible to detect an overrun above 400us or even 1000us.

Cyclictest - RT Kernel - No system Load

This time, the procedure is repeated for Linux non-root cells with a real-time kernel,
version 5.10.27-rt36. We anticipate that the results will reveal the system’s real-time
behavior.

Figure 6.3.2 shows the resulting histogram. Our histogram illustrates that response
latency is deterministic, as all latency samples fall inside a predetermined range. The
greatest delay response, as well as the range’s upper bound, is 85us. However, this
is hardly the worst-case scenario because the system has not been subjected to any
stress-load.
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Latency Raspberry Pi 4B
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Figure 6.3.2: Cyclictest execution in Linux non-root cell without any additional load

6.3.2 Execution with heavy CPU Load

To obtain the most precise latency measurements, Cyclictest should be run while the
assessed system is executing a load that is as comparable as possible to the real time
application for which the system is intended. The easiest technique to estimate the
latencies that an real time application would encounter on a particular system is to
run the actual RT application alongside Cyclictest and any other non-RT applications
that would usually be running concurrently. This approach has some drawbacks. For
instance, if programs produce system latencies infrequently, it could take Cyclictest a
very long period to detect them [57].

A second option is to simulate the load produced by the final application. In lieu
of accurately replicating the load that an application would apply to a system, as it
might be very complex and difficult, it is common practice to conduct a simulation that
stresses the system more than the application is expected to stress it.

We will simulate CPU load by using

1. Hackbench
2. Continuously read and write large amount of random data in a file

Hackbench [58] which is included in the rt-tests package, is a benchmark and stress
test for the kernel scheduler. Hackbench stresses the memory subsystem by repeatedly
creating and destroying threads, as well as interprocess communication. This stress
test can be combined with Cyclictest, which evaluates scheduling latencies, to simulate
system load.
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Load in Non-Root Cell

The experiment was repeated by simulating the aforementioned heavy load on a Linux
non-root cell. Figure 6.3.3 displays the resulting histogram. We see that the latency
samples indicate the same real-time behavior. The maximum response latency is 139
us. This execution is 0.63 times slower than an equivalent run without simulated system
stress. Nevertheless, this still remains a dystopian if not a realistic scenario
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Figure 6.3.3: Cyclictest execution in Linux non-root cell - heavy CPU load in
non-root cell

Load in both cells

The cyclictest execution is repeated, this time simulating a heavy load on both cells
simultaneously. The results are depicted in Figure 6.3.4. We observe that the sam-
ple latencies retain the same real-time behavior that is deterministic. The maximum
response latency is 131us, which falls within the range of acceptable latency. To be
thorough, we also ran the cyclictest application on the root cell’s non-realtime kernel.
There were multiple overflows, 0.04 percent for the first thread and 0.01 percent for the
second, and the maximum response delay reached 19757us, or 0.01 seconds.
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Latency Raspberry Pi 4B
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Figure 6.3.4: Cyclictest execution in Linux non-root cell - heavy CPU load in both
cells

Average system load

Finally, we want to simulate a medium-sized load to determine what would happen in
a typical scenario. This time, by executing cyclictest on the non-root cell we create
another inmate cell and load it with the bare-metal gic-demo. The sample latencies
maintain the same real-time deterministic behavior, whereas the maximum response
delay is 85us, which falls back within the predefined latency range.

Latency Raspberry Pi 4B
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Figure 6.3.5: Cyclictest execution in Linux non-root cell - average system load
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Conclusions & Future Work

In this Diploma Thesis, we explored two virtualization techniques, diving into the
Jailhouse Hypervisor. We constructed and configured a fully functional Jailhouse
ecosystem to evaluate the effect of the Jailhouse hypervisor on it and partially compare
it to that of Docker containers. The process of correctly configuring and establishing the
Jailhouse ecosystem was complex and time-consuming. On the one hand, the nature
of the process is such that, based on the selected integrated system, a number of its
steps change and adapt to the respective platform. On the other hand, there are no
centralized instructions and guidelines for the platform we chose, so we had to conduct
extensive research, including posting questions on the Jailhouse Hypervisor list.

The study of the Jailhouse Hypervisor on the Raspberry Pi led us to the conclusion that
Docker containers add a small amount of overhead to the system and can be combined
with Jailhouse to provide an isolated and secure environment with the flexibility offered
by the containerization technique. Regarding the effect on real-time performance, the
results were quite satisfactory in terms of observed deterministic behavior. Peak laten-
cies could be reduced, but this is due to the Raspberry Pi, which is not favored for the
development of mission-critical real-time systems. In addition, we confirmed Jailhouse’s
strength, isolation, which did not pose a problem in any execution scenario, as well as
its weakness, the decrease in application performance when there is communication
between cells or an increase in system bus traffic.

A potential future direction for this thesis could be a more extensive and comprehensive
evaluation of real-time performance, for instance by measuring interrupt latency using
external devices and tools. A further issue that must be resolved is the limited memory
available to us, so that we can run software such as artificial intelligence and /or machine
learning, which frequently require a great deal of available resources to manage the data.
In addition, given that Jailhouse is already gaining popularity in the space community,
it would be beneficial to begin investigating the possibility of combining Jailhouse with
Docker containers and testing it onboard a satellite.
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