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ITepiindn

H vécoc Altoyduuep elvon To ovTIXElUEVO ONOEVOL X0 TEQIOGOTEQMY UEAETWV, APOL o-
TOTEAEL Uit AT TIG ONUAVTIXOTEPES VEUPOEXPUAIC TIXES aoVéveieg. H yprion unohoylotixwmy
HEBOBWY Yiot TNV BLEY VWO, TNV HEAETN OAAS X0 TNV OVTWETWTLOT TNG VOGOU Yvepeilel porydola
avantugn. Ou olyypoveg uédodol yenoylomololy TohuteoTxd dedouéva, Ue Wialtepn Eupoon
OE AMEWOVIO TIXA xou YEVETIXG Bedouéva. Tl tnv amotinwor, tny enelepyacio, Tov peTaoyn-
HATIONO, ARG XL TNV XATNYORLOTOINCT TwV 0edouévmy epapuolovTal, w¢ ent To TAelcTov,
uédodol unyovixrg udinong. Xto tAalolo Tng TapolLcag diTAWUATIXAS EpYaciog, diepeuvolvTal
EXTEVWS OLUPORETNES UEV0BOL AVEAUGTIC BEDOUEVWY, UNY VXS UaInong odhd xou Bardetds veu-
ewVIXC pudinong, xadde xou oL HETAEY TOUC GLVBUACUOL Yo TNV XATHYORPLOTOMoT) SEBOPEVLY
am6 To oUVoAo Sedopévwy Alzheimer’s Disease Neuroimaging Initiative mou npoépyetan and
TdoYOVIES and VOGO ANTOYSUUER, GTOUN UE Lo VONTIXY| DLUTOEY T, Xol PUCLOAOYIXE. dTOUOL.
To 6OvOhO BEBOUEVLV TIEPLEYEL ATEOVIC TIXE %o YEVETIXG BedouEva amd 1302 cupueTEyovTES.
E¢etdlovton pédodol avdiuorng dedouévey, mepthopBavouévewy twv Deep Canonical Correla-
tion Analysis, Multiple Correspondence Analysis, Orthonormal Projective Non-Negative
Matrix Factorisation xou Factor Analysis of Mixed Data. I'io tny xatnyoglomoinon twy dedo-
uévwy yenowornouinxay Support Vector Machines xadc¢ xon pédosol Ensemble Classifiers.
Ta yovtéha mou Teoéxuay amd ToUg GUVBLACHOUS TWV ToEATAVE UEIOdwWY, a&lohoyinxay
¢ mpog TNy axpeifeia, to F1 score, xou tnv e&icopponnuévn axpifeld toug. Ilopatideton ou-
YxerTxr) a&loAGYNON %ol GYOMACUOC TWV ATOTEAECUATWY XIS Xl TEOTAGELS UEANOVTIXNAG

€PELVOC.

Agleic KAewod

Noéocog Ahtoyduuep, "Hmo Nontuey Awtapoyr, Boded Nevpwvixry Mddnon, Mnyovixn
Mdinor, Data Analysis, Classification, Deep Canonical Correlation Analysis, Non- Nega-

tive Matrix Factorization, Correspondence Analysis, Radiomics






Abstract

Alzheimer’s Disease (AD) is the subject of an increasing number of studies, as it is the
most common cause of dementia — a continuous decline in thinking, behavioral and social
skills that affects a person’s ability to function independently. The use of computational
methods for the diagnosis, study, and treatment of Alzheimer’s disease has enjoyed rapid
growth. Currently, machine learning methods are applied for the visualization, processing,
transformation, and classification of data related to the disease. Modern methods utilize
multi modal data, with particular emphasis on imaging and genetic data. In this Thesis,
the use of a multitude of data analysis and Machine and deep learning methods is investi-
gated in order to classify data from the Alzheimer’s Disease Neuroimaging Initiative dataset
into AD patients, mild cognitive impairment patients, and cognitive normal people. The
dataset contains imaging and genetic data from 1302 participants. in the present Thesis,
the performance of Data Analysis methods including Deep Canonical Correlation Analysis,
Multiple Correspondence Analysis, Orthonormal Projective Non-Negative Matrix Factori-
sation and Factor Analysis of Mixed Data is presented, along with the performance of
classification methods including Support Vector Machines and Ensemble Classifier meth-
ods. Various combinations of these methods were evaluated in terms of accuracy, F1 Score
and balanced accuracy. The results of the study are comparatively presented and future

directions are discussed.

Keywords

Alzheimer’s Disease, Mild Cognitive Impairment, Deep Learning, Machine Learning,
Data Analysis, Classification, Deep Canonical Correlation Analysis, Non-Negative Matrix

Factorization, Correspondence Analysis, Radiomics
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Kegpdiaio

Extevrc EAAnvixy] Tleplindn

1.1 Ilepiypaypr Tou meolAruatog

Or veupoexpuNoTIXEC ao¥Evele amoTEAOUV Wia OAOEVa GLUYVOTEEY autior YavdTou oTIC o-
VETTUYHEVESC YWeeg. Ou ac¥éveleg autég, Omme 1 vOoog ARToYdUER, ohAd XaL OLoTapa €S
omwe ) Hmo Nontie Avotapoyy, etvon cuvriielg xuplwe oe dtopa peyolbtepng nhxiog, ue to
NAXLOXO YXEOUT TwV 65 Ypovkv xou dve va eivon autd mou emneedleton mepiloabtepo. Y ro-
hoy(leton 611 wovo otic HILA., 6.5 exatopudpla dtoya mdoyouv and tnv voco AAtoyduuep
OHUERXL, EVE TOYXOOWUINS 0 aptdUog auTOG UTOREL Var pTdvel Tar 35 exatoupdpla. Ol exTiunoelg
auTég avopéveton var auindoly oe 135 exatoppdpla TOyXOoUIwS, xot TOMES amd aUTES TiC
TepITTOOoELS efvar adtdyvwotee A dev avtipetwrilovton xav. ([1],[2])

Kotd tn didpxeiar Tng guotohoyinfic Topelag Tne YHRUVOTS, 0 avlp®TVOC EYXEQANOS EU-
povilel aAAoy€, TOCO AVATOUIXES OGO Xal AELTOURYIXES, TOU (QOUVETOL VO ETLTOYOVOVTOL GE
acVevelg pe tétotou eldoug actéveleg. O avlp®Omvog eY*EPAAOS aVaTTUGOETAL UEYPL TNV NAL-
xlot TV 25 €TV, xo OTNV CUVEYEL YAVEL GUVEXNOS VEUEIXT UELa, 0BNYWVTIG OE EYXEQUNXT)
aTEOPi, o XATAC TACT) TOU UEAETATAUL EXTEVAIC, X3ET OTNV TEO0O0 TOU TOPEN TNE LATEIXHC O-
newovione. To gouvouevo g atpogiog emtoybvetal oe pepixols aclevels apxetd onuovTixd,
XL oTNY TEPIMTWOoT TNg vooou Altoyduuep, 0dnyel oc amocOVIEST) Xl ATMAELL VELPMVKY,
xa TeEAxd og Vdvaro.

To anotehéopata g vocou Altoyduuep eugaviCouv Wiaitepn moailopopplio, xou etvon
EUPOVT| OYL HOVO XAWIXEL, OAAG X0l OF OTELXOVICTIXES CUPMOOELC X YEVETIXEC €peuvec. AdYw
e younAinic entyvwong, N HNA xo n véoog Ahtoyduuep ouyvd anodidovion havioouéva ot
YHEAVOT), EVE AOYW TNG AVAYXNS EVOS EUTELPOL LITEOL Yia T OL&YVWOT), TOMES TEQLTTWOELS
TEUUEVOUY aBLAYVKOOTES. §20TOC0, YiveETal UEYSAN EEEUVIL YO TN UEAETT TWV CUUTTWUATOY,
TV TV arTLedv, xoog xou Tng Vepameiog Tng VOG0, Ue 0ploPEVES EXTIUNOELS Vo avefBdlouv
TO GUVOAXO XOGTOC TNE €RELVAC Yol TNV VOGO AATOYQuUER OF BEXADES BloEXATOUUUEL DOASQLAL.
Emmiéov, yia 10 cuvOhx6 x60T0¢ Yo TNV LYelovouxy tepldordn nou oyetileton ye acvevelc
oL 8oy oLY and voco Ahtoyduuep yia To €tog 2020 otic HITA éyel extiundel 6Tt elvon mepinou
300 Sroexatoppieta dordpea. ([2], [3])

ITapd Toug onuavtieolg Topoug, dev éxel Peetel caprc avtior Yoo Ty voco Altoyduuep,
oev €xel Peedel opiotixn uédodoc medAndng xan xoplo uédodog Yepanelog dev ATy €LEEMC
ETUTUYTC.

[o v avTetoniorn Tou TEofAAUATOC TG Sldyvwone TN vooou Ahtoydiuep xadng xat



Kegdhowo 1. Extevic ExAnvuei Iepiindn

e HNA, xadodg xon yioe Ty mpoBiedn xan 11 poviehomoinot Twy avTioTolywy TOpEWDY ToU,
€yeL onuooteudel uior TAnddpa YeAeTY. 'Eva x0vé yopoxtnelotind ToAAGY UEAETGY, lval 1|
XENON UNYOVIXOY PEVOOKY xat pedodwy Bodide wdinong, wixd ota anoteAéopato Uedodwy
VEUPOUTIELXOVIONG, OAAGL X0l GTAL YEVETIXA X0 OTOL XAVIXE BEGOUEVO TOU GUAAEYOVTAL OO TOUS
acvevelc. OuAoyol tiow and auth TNy Tpoondleia eivon oL TEOOBOL GTNY LATELXT] ATELXOVIOT) XL
1N CUYXAOVIOTIXY QOENTT) TV UTOAOYLIOTIXWY IXAVOTATWY Tot TEAELTOLA YedVIa, XA HoTMVTOG
TIC TO TOAOTAOXESG X0 XAAVTERES UTOAOYIGTIXEG HEVODOUS EPUOUOCUYIES XL TEAUXTLXEC. ([4],
[5])

O1 neplocdTepeg PEAETES YENOWLOTIOLOUY BEGOUEVO VEUPOUTEIXOVIONC TTOU GUAAEY UMMV UE
T e¥O00UC ATEMOVIONS Loy VNTIXO) GUVTOVIGHOU Xl TOpOoYpaplas exnounic tolitpoviny,
ToL GUAAEY Uy amd TN Bdon dedopévwy Alzheimer’s Disease Neuroimaging Initiative. To
OEDOUEVIL ATEXOVIONC LY VA GUVOBEVOVTAL amd BlodeixTeg, xomg xaL UE ATAOUE VOUXAEOTION-
%00 mohupoppopole (SNPs), oxdun xon Sedouéva and xAVIKES BOXIIES TTOU TEOYUATOTOLO-
Ovta a6 e€ouatodotnuévous ttpole. ([6], [7], [8]).

Eve yevixd ta mo moAOTAoxo LOVTEAX TOU YENOULOTO0V BLUPORETIXOUE TEOTOUS BEGO-
HEVWYV Elyoy xaAUTERT AmdBOOCT), BEV UTGOYEL EVOTONUEVT] TEOCEYYIOT X0l 1) TOWAOHop@ia
TWV EQUPUOCUEVLY HOVTEAWY ebvan yapaxtneloTixny|. 201600, oL TEPLOCOTERPES UEAETEG ETLXE-
vTpwvovTal elte otny tadvounor edv €vo unoxetuevo elvar aclevic ue voco Altoyduuep 1
Oy, %L oTNY TEOBAEYN TN Topelag TNG YOGOU, EVE OPLOUEVES EQYACIES EMUXEVTROVOVTOL OTNV
TeéPBredn edv évog aoVevic pe HNA Yo yetatpanel oe Ahtoyduuep. [4]

‘Eva xowd npbBinua mou Enpene vo EEMERACOLY OL TEQLOCOTERES UEAETES TAY 1) UTEQTAT-
VOPA YopoXTNELOTIXWY Tou elyay Tor Bedopéva, eved elyory oA Alya Belypota. Autd ebvon
YVOOTO ¢ TO TEOBANUO TN «XUTARUC TNS DO TATIXOTNTACY %O OLY VY cUoYETICETaL YE Ta
Brototpxd dedopéva. Ta dedopéva yopaxtnpilovtar and Tohd peydhes draotdoes (€Wdixd otny
TEpInTwoN TN VEupoamexdvions), ahhd Alya delypoto. Autd €yel Tn CUVETEL VoL UNY OTTL-
%0ToloLVTAL EUXOAA Ta OEGOUEVYL, XoTMOE X TNV AVATOTEAECUATIXOTNTO OTNY EXTUUBEVTT] TWV
HOVTEAWY, AOY® TOu UixpoL aptduol detypdtov. o vor anogevydoiv ta mpoavagpepdévta
npolAfuata, €youv yenowonomndel teyvixéc avdhuong dedouévev, and amhéc my. Principal
Component Analysis, 1} tepimhoxeg,6nwe 1 yenon Badide uddnong, yio mapddelypo VELpWVL-
xov dixtowy. (9], [10], [11])

H epyaoio autr emyelpel va Snulovpyfoet pla cuyXELTixr avaAuon TV HeFO8wY unyovixic
udinone xon twv alyoplduwy mou egapudlovion 6To TEOBANUL TNg TEOBAedng edv éva dTouo
elvor yvwotaxd guotohoyixd, éxet HNA 7 voco Altoyduuep. To 5edouévo cuRAEyInxay uéon
ToU cLVOhoL dedouévey ADNI xou o cuyxexpéva, BeBoUEVELY amedviong Tou eEApUNooy

amd cap®oelg poryvntixic topoyeaploc T1, pall ye yevetxd dedopéva ye tn woppr SNP.

1.2 Aoun tnc AwmAwpatixie Epyaciog

H epyoaoio auth ywelleton oc 8 xepdiona, CUUTERLAAUBAVOUEVWV TWV XEPIAALWY TNG EL-
caywyhc. To Kegpdhoo 3 eiodyel oplouéveg Vewpentinéc €VVoLES Yiol TNV AVTWETOTIOT TOU
TEOBAAUATOC TTOU TERLYPAPETAL GTO ELCAYWYIXO XEPANAO, TTOU APOREA TOV oVIPWTILVO EYXEPA-
ho xan oplopéves Poaoinég apyéc oyetxd e Tic Pedodoue unyovixhc xat Bodide uddnone mou
yenowornotinxayv. To Kegpdhowo 4 e€nyel tn yedodoroyia mou yenowonotfinxe, yor cOVTo-



1.3 Ilepeyodpeva tne Awmhwpotixne Epyaotioc

U1 TEELYPUPT) TOU GUVOAOU BEBOUEVWY TOL YENOHIOTOLAUNXE, TIC TUPUUETEOUS TV UEVOBMY,
%S oL TIG PETPHOELC Yot TNV a€lOAOYNOT| TOUC. 2TO XEPIANO 5, ToEOoUGLALoVToL OpLoUEVaL
amoTeAéoUTA amd TNV TPooTdlel BEATICTOTOMGNS TV LOVTEAWY TOU YENCWOTOW UMY 0p-
yYoTERX Yol TIC EpYaaieg Ta&vOUNoNg Xt 6TO XEPAAoLo 6 ToEOUCLELOVTOL ToL ATOTEAEGUATO TNG
tagwounonc. Télog, ota xepdhona 7 xou 8, e€dyovVTal CUUTERAOUATA OO TORUTNEYOELS TOU
Eyway yio T amoTteAéopata, oLLNTOLVTUL UEANOVTIXEG EMEXTACELS Xt XaTeUTUVOELS, xaddg

xan ot mpoxTxol Teploplopol auTthg TG epyaoiag.

1.3 Ilepieyopeva tng Awnmdwuatixne Epyaociag

1.3.1 Ocewpntxd unoBadeo - Avipwnivog Evyxépaiog

Kodae 1o avipdnivo odpa yepvd, oha to dpyove uplotavtal emdpdoelc mou oyetilovtol
ue TV nhixda, 6mwe xan o eyxéparog. Tdco QuoLoAOYINE 6GO XL YVWOTIXY, UTHEYOLY UEXETES
oAy EC TTOU UToEOoVY Vo TaEATNENUIOUY OC HEEOS TG PUCLOAOYIXNC BLABXAGLOC YHEOVONS TOU
eyxepdiov. [12]

M omd Tig x0pieg Aettovpyieg Tou eyxépaiou Tou ennpedletal eivon qUTH TNG UVAUNG, UE
To dTopol LEYUADTERWY NALWY Vo elpaviouy cuy v TNV TdoT var EEYVOUY OVOUATO AVTIXEL-
HEVWYV 1| TEOCHOTMY, Vo ETUVUAIUSEvOUY EpmTAOELS, Vo Totoletoly Aaviaouévo avTixelpeva,
VoL YEVOVTAL X0 VO BUCXOAEDOVTAL VoL AVIXAAEGOUY TIANPOQOpieg Yevxd. Emmiéov, unopel va
EMNEEACTOUV OL YAWGOIXES BEELOTNTES, OTIKE TO AeEIAOYIO Xau OL YAWOOIXES BeELOTNTES, xS
X0 M XovOTNTaL EXPEINONG VEWY BeZLoTATWY Xot TOMATAGY epyaotiv. [13]

Evo ta mpoovapeptévta GUUTTOUOTA EVoL TOAD TOEOUOLA UE TOL CUUTTWUATO TOU THEOU-
owdlouvv n HNA xou 1 vécoc tou Ahtoyduuep, tar uotohoyxd potiBo yrpavong anoxitvouv
o6 owtd e HNA xou e vocou Ahtoyduuep. To amoteléopota NS GUOLOAOYIXTE YHEAVONS
ToU eYXEQPIAOU YapoxTneilovTon and TV mepioTaotlaxy Toug oo, eved n HNA xo 1 vocog
Altoyduep eppaviCouv o GUVETY GUUTTOUOTA, To 0Tl OE OPLOUEVES TEQLTTWOOELS G TodLA-
%3 ETUOEVOVOVTAL, 1) CUVOBEVOVTOL ol GAAN CUUTTOUATO AVOLAG, OTWS CUYYUOT, GAAAYES
Sddeone xon dhha. [14]

H Amo yvwotd eacdévnon elvon wior xatdotoon evog atéuou mou yopoxtnelletoul and
TEOBAAUNTA UE TN UVAUT, TN YA®Goo, T oxédn A v xelon. LuvAdng mopatneeiton uetald
TOU OTAdOV TNE PUOLOAOYIXTC YVWOOTIXAG EXTTWOTNE TOU GUUPLVEL GTOUG av)p®OTOUS AOYW TNG
YHPUYONG XAl TNG OPUUATIXAG TTWONG TNG YVOOTIXNAG IXAVOTNTS TOU EVOL EUPAVHE 0T ATOHA
pe dvolo. To droua ye MCI €youv anmheior pvAUNG 1 SRR AmOAEL YVOOTIXAS IXAVOTNTAC,
Tou LTEPPRALVEL TN QUOLOAOYIXY UElwoT AdYw NAxiog xat dev €youv dvota. [15]

H véooc tou Ahtoyduuep etvan pio veupoexpulotixn ac¥évelo tou enneedlet Tov EYXEQUAO
1600 Prohoyixd 600 xau YvwoTxd. Avagpéplnue yia Tewmtn @opd and tov A. Alzheimer to
1906, ahhd meprypdpnxe wg ac¥éveio uohg petd to 1910, and tov E. Kraepelin. H vécog
Altoyduep elvon 1 o xown autior dvolag, Evag 6pog Tou yenoulonotettal yior Vo TEpLypdipet
L0l OUBBO CUUTITWHATOVY TOU TERLAUBAVOLY PElWwoT TNG UVAUNG, TOU GUAAOYIOUOD Xou GAAWY
deZlothtwv oxédne. Avagépetan 6Tt 1) véoog Ahtoyduuep eudivetan yio nepinou to 70% Twv
neptntoeny dvowac. ([16],[17],[18])

To6co 1 vococ Ahtoyduuep 660 xou n HNA €youv onuavtind mo emoevmUEvo CUUTTOUATO
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amo QUTA TNS PUOLOAOYLXNG YHPOVONG, ME TNV VOGO AAToYdiucp Vo elvol TROOOEUTIXT, ONAadT
TOL GUUTTOUOTA TNE EVIEVOVTOL PE TO TEPUOUO TOU YeOVOoL, 0dnywvTag oTov Ydvato. T tny
HNA xou v véco Altoyduucp 6ev undpyel amodederyuéva oftio, ahhd undpyouv eviellelg
TEPBAUAAOVTIXDV XL YEVETIXDV Ty OVTwy xwvdlvou. Ko yio tig 800 mepintdoels, 1 puolxn
AoXUNOT), 1 XOWWVIXOTOMNOT XAl 1) LYLAC 0L LOOPROTNUEVY DlUTEOYY| €YOUV CUCYETIOTEL UE
YOUUNAOTERY TOCOOTA eppdvions Twv acdeverdv. ([19],[20], [21], [22])

‘Evo yeydho pépog tne UEAETNG, TNG XATAVONONS XA TNG OLAYVWONG TV VEUROEXPUAL-
OTXOY ACUEVELDY Efval TEYVIXES ATELXOVIONG TOL EYXEPANOU, OTKC 1) Loy VNTIXT] ToUoYpapio
(Magnetic Resonance Imaging). H teyvixry MRI hertoupyel ye ) pétenon tou evepyelaxol
ofuartog v (cuvAdwe) Tuphivey LBEOYGVOU, WS amoTéAeoud BLEYERONC omd eEWTEPIXOVE TToh-
nolg padlocuyvothtwy. Ihotebetar 6Tt 1 Aettoupyio Tou eyxepdiou cuoyetileton pe dopxég
%0l AELTOURYIXES GUVOEGELS, XAl (C EX TOUTOU O TROGOLOPIGUOS TUTOTIONUEVKY X0l AELOTIG TWY
Hoppwy cuoyetioewy eivar (wTixAC onuaciag yia Ty xatavonon tng oOvOeong PETHE) TN
oEYLTEXTOVIXAS TOL EYXEPANOL xou Tne Aettoupyioc tou. ([23], [24], [25], [26])

[Tpoxewévou va ueretnidel ano yevetewhc dmodmng uior aoVEVELR, UEAETMVTOL UEUOVWUEVES
oalhayég oe vouxheotidia tou DNA, amoxololueveg Single Nucleotide Polymorphisms. I'ia
NV Voo Tou AAToYdiuER, oL ohhayEg auTég eoTidlovTon € VOUXAEOTIOL Tou BploxovTon oTa
yovidie APOE, APP, PSEN1 xou PSEN2. ([27], [28], [29], [30])

1.3.2 Ocewpntxd unoBadeo - Bacwxég pedodol

H uédodog Canonical Correlation Analysis eivon éva tumixd epyahelo mohuuetaSAnTHc
OTATIOTIXNC AVAAUCNC TIOU YENOWOTOLEITAL Yiot TNV ovaxdAL( xou TNV TocoTixomolnon ou-
oyetloewy Yetagd 800 cUVOAGY UETABANTOY. MNTdyog auThS TNe uevddou elvon va Bpedel évag
vetaoynuatiogdc (tpoBols) twy 800 GUVORWY PETABANTGRY, €10l HGOTE Vo cuoyetilovia 6To
uéyoto Bodud (uetpolpeva e cuoyétion). Ltn cuvéyew, ol TteoBohéc Beloxovton mporyuo-
TOTOLOVTAS LAt XOWT| oVEAUGT, GLYBLIXOPAVENS TwY 800 YETABANTGOY. [31]

H pédodoc Deep Canonical Correlation Analysis elvou yio enéxtaon tne pedodou CCA,
Tou oToyEVEL Var ovoxahOEL 1o Vo Udel cLOYETIOLOUE PETAED 800 GUVOAWY PETOBANTOV.
H pédodog unopel vor udder moAdTAOXES, Un YeouuUixés oyéoelg LTl Twv 800 Tuyainy Bio-
VUOUATOV X0 VoL TOL UETAOY NUATIOEL v U] YRoUULXd Yot VoL ToL GUGYETIOEL, EVE 1) TUTXH
uédodoc CCA Bev unopel. Ipoteiveton 1 yeromn twv Poadidy VELEWVIXDY BIXTOWY Yiol TNV TaU-
o) povn exUaINoT 800 Batedv un yeoupx®y avTtloTotyicewy 600 Tuyaiwy UeTABANTGY, xodog
Ta Bordid vevpwvixd dixtua €youv amodetydel OTL elvan xavd vor avamopio Tody Ue oxplBelar xan
oflomoTion Y1 YeUUUXES CUVOPTACELS TOU UOVTEAOTOOUV TOMOTAOXO BEBOUEVL TEOYUOTIXOU
x6opou. ([32], [33])

H pédodoc Paciletoun oto mépacya xdde Tuyoiou SLavOoUATOC PEGL EVOC VELPWVIXOD Ol-
%700V, CYEBLAOUEVOU YO EXTULOEVMEVOL VL HETACY NUATICEL TO TUY O BLAVUCUO U] YEOUULXAL.
Autéd Snuioupyel W avTioTolylon ot évay UTERY®EO TOU To ATOTEAECUNTA CUOYETI(ETOL Ko
ANOTEPQL UE TNV AvTLOTOlY o™ TOU avTioToLou (UETAOYNUATIONEVOU) TuYioU dlav)oUATOC.

Av 01 xou 02 etvan To SLavOOUOTA OAWY TOV TUEUUETEWY TV 0V0 dixTOwY, TOTE 0 GTdY0C

e pedodou etvar va feedodv ol THES TwV BlayUoUdTwY €TOL OOTE:
(07, 05) = argmaxy, o, {corr(fi(X1;01), fo(X2;02))}.



1.3.2 Oewpntixd undBadpeo - Baocixéc uédodol

[Canonical Correlation Analysis]

YyAua 1.1: Ta 6o mapdAAnda diktua, pall pe tn dwadpouri mAnpopopidv (Béan)

H pédodoc Multiple Correspondence Analysis (MCA) eivon o ey vixry avdiuong dedo-
HEVWY TTOL Y PNOHLOTIOLELTAL Yiot TNV avEAUGT) TNS SouNS EVOC apliol e00TNUEVLY XATTYOPIXMY
HETOPBANTOY oE €var olvoho dedopévwy. Eivar uia enéxtacr tng anAfg pedodou Correspon-
dence Analysis xout elvon mopdpota pe ) yvwot uédodo PCA. H pédodoc MCA exteheltan
oe évay mivoxa Oelxtn - mou ovopdleton entone ITAene Awleuxtinodg Ilivaxag - 1 oe €vav
mivoxar Burt. Mnogel enlong va Yewpniel we n pédodog PCA mou epopudletar otov ITAIL

H pédodoc Non-Negative Matrix Factorization (NMF) eivou pior pun enonteuduevn, molu-
HETOPBANTA, avahuTixy) p€dodog yio TNV xoTd TEOCEYYIoT TopayovTonoinor evog mivaxa V' oe
oVo mivaxeg W, H und Tov meploploud 6T Tor oTotyela Toug etvon un apvntixd: V = WH, étou
Gote H>0xou W > 0. [34]

M a&roonpeiwtn enéxtaon eivon auth g pedddouv Orthonormal Projective NMFE (OP-
NMF), 6mou ot cuvtereotég unohoyiloviar e oL TEOBOAES TOU TVOXO GTO EXTULMUEVO GTOL-
xelo W (H = WTV), evéd duatneeiton n opoxavovixdtnta oo extiodueve otouyela (WTW =
I). Qc anotéheopa, Gha ToL OTOLYEIDL CUUUETEYOLY OTNV AVOXATAOKEUT OAWY TwV SELYHdTwY
OedOUEVLY, TRdyUa TOU anuaivel 0Tt 1) emixdALn ueToD TWV EXTIUGUEVWY GToLyElwY elvon on-
MOVTLIXGL YUUNAOTERT), €YOVTAUC AYOTERES MUPUUETEOUS TTPOC EXUAINGT), Ve Sotnpeiton UPNAY
apandtnTa. [35]

Hopédpowa pe tnv pédodo MCA, n uédodoc Factor Analysis of Mixed Data (FAMD) efvou
HLOL TEY VXY VAAUGTIG DEBOUEVMV IOV YENOWOTOLELTAL YIoL TNV AVAAUGT) TNG OOUNE TWV UXTMY
dedopévwy, Tou oNualvel TO60 cLVEYT aELIUNTIXA 600 Xou xaTnYoEwd dedouéva. Xenoiuo-
rotelton enlong yio T pelworn tou aprduold TV SLICTACEWY TOU GUVOAOU GEOOUEVLV XaL TT)
Behtiwon tng epunvevotudtntoc. Baoiletu otic pedddouc MCA xa PCA.([36], [37])

O unyavéc dlavuoudtwy uvrtootheine Support Vector Machines - SVM elvon war owxo-

YEVELX LOVTEAWY TIOU YENOHLOTOLOUVTAL YLOL TNV XATHYoptonolnon TNy taAvdpouncn. O otéyog
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evoc SVM eivan vo emhé€el éva unepeninedo (m.y. wor evdeio ypauuy oe Slodidotato Yopeo,
éva eninedo oe tpodidotato) ou doywpellel xahlTepa €vol GUVORO BEBOUEVMV TOU ATOTENE-
{ton amd emonpaopéva delypota mou avixouy ot ula and Tig Lo xatnyopieg. H pyédodoc otnv
omnota Bootlovtar Tt SVM yio vo emitdyouvy autoév tov 6toyo elvar 1 emAoyr| 0o mapdhin-
AoV uTepeTineSwY Tou ywellouy Tic BUo xatnyopies étol dote 1 andoTaon LETED TOu (TO
neprdtpto) vo etvon péyo. [38]

H pédodoc Ensemble Learning efvan pior Teyvixr; cuvouaopol TOAGY UOVIEA®Y Ylo T
Behtiwon g anddoone Tne gpyactag, OTwe TEoBAAuNTa TAVOUNCNS, TUALVOROUNONS 1| TEO-
o€y yonNg X.AT. AuTo ETITUYYAVETOL UE TNV EQUPUOYT TV ({owe BIapOopETIXDY) HOVTEAWY OTa
Srodéouor dedopéva (1 €vol UTOGUYORO QUTMV ) XaL VO GUVOUGGOLY Tol OTOTEAEGUATA TOUG,
TPOXEWEVOL VoL Yivel xahUTepn tpoordieta enthuone tou tpoBiiuatoc. ([39], [40])

‘Eva tétolo olvoho (Ensemble) Snuoupyeiton cuvdudlovtog eite Slapopetind povtéia
elte LOVTEAN UE OLUPOPETIXES UPYLXOTIOLACELS TUPUUETEWY %ol Blaop@roels. TETola povtéla
umopel vou elvon oyeTd amhd, Omwe 6EvTpa amogdoewy, amiol talvountéc bayes ¥ SVM,
) o TEPIMAOXA, 0TS TOAUCTEWUTIXG perceptrons, 1 oaxouo xou dAAN cOVORA GUVORXAL.
Mo Booinr mtuyh tne emhoyng Tou Bacixol povtélou elvar 1 dnulovpyio opxetrhc Touaiiag
amoPewy, OnAadY| 1 Blapoponoinon UETOEY TwV BLY TV LOVTEAWY.

M yédodog exudinong cuvohou mou eqopudletar oTto TEOBANUA T Tadvounong tvat
outy| Tou Bagging 1} Bootstrap Aggregating, émou ta Baocxd povtéia exmoudebovion oe Be-
lypota Tou €youv oyedlaoTel and To apyxd GUVOAO BEBOUEVMV, UE OVTLXATAGTOOT), XoL To
Baowd povtéha etvon toktvountég tou Blou timou. To amoTeAéouaTta TV UELOVWUEVLDY To-
Evountodv cuvdudlovtow oe cTeatnyixy Pnpogoplac aminc mhelodnplag yia vo xodopioTel
TO OLVOAXO amoTéAecUa Tou cuvohou. 'Eva dAlo alloonueiwto mopddetyua lvor autd Tou
Adaboost, yia €éxdoor Tou eEVioyUTIXO) GUVOAOU, TEOGUPUOCUEVT YLl TO TEOBANUN TNS Tagl-
VOUNOoNG TOAATAGY xatnyoptwy. ‘Onee mpornyouuévng, o Setypota SeBoUEVKY eEXTUlOELOTC
UE BOOTOTRUMNED TEOEEYOVTOL OO ULOL ORY XS OUOLOUORPY OAAS CUVEYDC EEEAICOOUEVT] X0
Tavouy), dtaocpolilovtag 6Tt Tor Selyuato mou elyav mponyouuévng havioaouéva emornuaviel
eppaviCovTon To LY VE Xl ETOUEVLS EXTABEVOUY TOUC Baotxol TaEVoUNTES OTIC Tio BUCXO0-

Aec mepintwoetc. Ou Boowxol talvountée ouvdudlovton pe otoduopévn mhetodmelo. ([40],

[41])

1.3.3 MeYodoroyia

IMo v gpyacio auth yenowonomidnxay 6edouéva and 1o ADNI clvoro dedouévov. Ta
ATELXOVIOTIXG BEBOUEVA €YoV T Hop®T| 145 Tymy teploy @y evilapépovtog Regions of Interest
(ROI), nou hapPdvovtar and copwtéc MRI eite 1,5T eite 3T, ypnowonodvrag axohoudieg
ue otaduion T1. Ipoxewévou va Angiodv ol Twég évtaong ROI, yenowonoinxe n uédodog
MUlti-atlas region Segmentation utilizing Ensembles (MUSE) dnuioupydvtoc tic neployéc
evolapépovtog. Ta yevetnd dedouéva €youv TNV Loy 54 TOTwY cuacdnolag, Ue Tn Lopy
we N pop@h aprduol ahknhopoppnyv yowdinwy (0,1,2) yia xdde SNP, nou éyouv evtomotel
AmO YEVETXEG UEAETES TNG VOGOLU AAToyduuEp.

To olvolo dedouévwy éyel 1302 ouppetéyovtee, (56,91% dvdpec), ue péon nhxia 75,20

ETOV. Yo TOUC QvOpeS Avdpee xan 74,36 €. yio Ti¢ yYuvaixeg. To olvolo Bedouévev €xel 433



1.3.3  Medodoroyia

ouppeTéyovtes Tou yopaxtneiloviar we yvwotoaxd guotoloywol (Cognitive Normal - CN)
(33,25%), 626 acveveic ye HNA (48,07%) xou 243 aoVeveic ye vooo Ahtoyduuep (18,66%).
[Mparypatomowinxe yeouuixy| Tohvdopounon yio vo agatpedel omoladhmote TUYOV avemtiounT
enidpaomn mou oyetiCetan pe TNV NAwxia, o @UAo 1 To u€yetog Tou eyxepdiov. To yovtéro Tne
YEUUUXTE TohvOpounong epapuéotnxe otny oudda CN xaL 0 UETOCY NUATIOUOSC EQURUOCTNXE
EMELTA GE OAOXATIPO TO GOVONO DEQOUEVKV.

21N oLVEYELR, EPAUPUOCTIXAY TEYVIXES avdhuong dedopévwy, omwe OPNME ot dedouéva
amexovione, MCA ota yevetuxd 6edopéva § FAMD oe ohdxAneo 1o chvoho dedoyévev. Au-
Téc oL pédodol epupudCTNXAY TOCO OTa aEyixd dedouéva, 600 o oTny €£060 TN uedddou
DCCA, mpoxewévou va cuyxprdolv apydtepa. To anotéhecuo xadeplds and auTéS TIC TEYVL-
%€ AmOUNXEVTNXE OTN GUVEYELL VLol METAYEVECTERO TElpauaTiond. Téhog, xdlde éva and Ta
AMOTEAEGUOTA GUVOLUCUWY TwY UEVOdwY Tpopodotiinxe oe SVM xadde xou o tavountéc
ouvérou (ensemble classifiers).

[opaxdte Qatvovtan oy NUaTixd oL BLadXAcleg TOU EQPUEUOCTNXAY, XIOS XAl 1) GELRA UE

TNV onola EPaUPUOCTNXAV:

Data Pipeline Overview

Data Analysis Techniques Transformation if necessary

(MCA, OPNMF, FAMD) (DCCA) Classification

Linear Regression

Yyfua 1.2 Emokdnnon diepyacior mov ekteAéoTnkay ota 6€douéva

ADNI Daaset

"
Genetic View [ 7
inear Regression DCCA

ADNI Dataset
Imaging View

Yyfua 1.3 Adypappa Pnpdtov mov axodovinOnikay

[o v pédodo DCCA, 1o clvoho Sedopévwy Yo TN BEATIOTOTOINCT TOU UOVTEAOU Y-
plotnxe oc tpla oUVOAA, TO OET exmaldevomg, emXDPWONS Xol BOXWAC, UE TO TEAELTAO Vo
oltnee(ton xpUPd amd TO POVTENO XUTd TN PACT EXTUOEUCTC, TEOXEWEVOU VoL DLACQUALG TEl
wor axetBric tedPredm oe dedouéva mou dev elyay TponyouuEvwe yenotporoindel. O Sloywpl-
oube petall twy oet frav 75% Yo To oeT exnaldeuone, 15% yio to oet emndpwone xou 10%
Yl TO GET BOXINS, YWEIOUEVO TuyaiaL.

LUYAEXQUIEVD, OL UTEPTUPAUETEOL TTIOU YenotuoTolinxay, tepthaufdvouy Tov aptdud Twv
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AELPWY ETUTESWY XAV ®E X0 TO PEYEVOC TOUC, TO PEYEVOS TOU ETUTEDOL EEO00U, TNV TUPAUETEO
xavovixomolnong, tov pudud exudinong, xadog xou to uéyedog moptidag. Autéc ol unepna-
PAUETEOL ETUAEY VNNV UETE OO EXTETAUEVES DOXUYES UE TNV xadepla, Ue TIC XAADTERES TIIES VoL
amoUnxebovton xaL var yenotdoroolval yio teondvnon. O aprdude tng emoyhc datneriinxe
oTic 100 enoyéc o 6AO TOV TERUUATIONS, XATL TOU NTAV AEXETO Yiot OAES TIC TEPLTTWOELS Yol
va otadepomoiniel To oxop axp{Belog emxdpwong.

‘Eywe mewpopationds ye 3 1 4 xpupd enineda, xoaddg EYve Qavepd OTL AOY® TG TOAUTAO-
%OTNTAG ToU TEOPBAAHATOC YeelaloTay €val opXeTd UEYFAO BIXTUO Xou Yl Tic 600 TpofBokéq.
To uéyedog TwV XEUPOY CTEWUATOY xUPUVOTAY antd 256 vevpwves €wg 1024 veupnveg avd
OTPOUA, UE OAOL Ta XPUPE CTEMUAT Vo EYOUV Tov (Blo aptiud vevpovny. ‘Ocov agopd to
uéyedoc tou otpmuatog e€680L, ElpopUTIOTAXAPE pe peyéln [10,50,100,150]. Emnmiéov, to
1060616 expudinonc xupavétay and 1074 éoc 1072 xou 1 Tapduetpoc TaxToToinoNC HToy
otnv meployf ond 1074 énc 1072, To péyedoc moptidac mou ypnowomnotfooue ftov elte
500 Setypota eite 1000 detypota. H ouvdptnon evepyonoinong ftav wa éxdoorn tou CCA
yenowonowwviag wa pédodo Bedtiotonolnong ywelc mopaywyous.

INo autd to ohvoro Bedouévny, epapudooue 1o OPNMFE otouc ydetec RAVENS twv
OEDOUEVMV ATEXOVIONG, ETELDY| £YEL ToEATNENUEL OTL ETULTUYYAVEL XOADTEQO AMOTEAECUATO ATO
ta MUSE ROI, eve) yeudvel Tic Blao TAoELg ToV 0E00UEVGLY. X auTh TNV epyacio, To dedouéva
amewxoviong meplopiotnxay oc 30 otouyeio. Axoua, egapuéotnxe MCA oto yeveTind dedo-
UEVAL, TEOXEWEVOU Vo UEWOOOUUE Oloctotixd To 54 SNP oe 10 mapdywya otoyelo. Téhoc,
otepeuvitnxe 1 uévodoc FAMD, 6mou o apidudg Twv TapayOUEVKOY o TotyElwY Té0nxe ot 12.

INo ta yovtéha xatnyoptonolong, yenowonotfinxay SVM, ue yeauuixd, TOAUGYUUIXO
X0l UE CLVAETNOT AXTIVIXTG BAOTS Yot CUVAPTACELS TURTVAL MUYXEXQUEVA, YO TOV YRUUUXO
TUPHVAL TELRUUATIOTAXAUE KOS TIPS TNV TowY xavovixomoinong L2, pe tig Tywée [0,00001, 0,0001,
0,001, 0,01, 0,1, 1, 10], wc mpoc TNV mapduetpo C (TUPHUETEOS XUVOVIXOTIOMONG) X G
TEOC TNV OTEATNYWXH TOEWVOUNOTNE TOAATAGY XaTnyopldy one-vs- rest. ‘Ocov agopd Tov
TOANUOVUIIXG TUEAVYL, TELOUATIOTAXOUE PE ToAUmVUIIXoUS Boduole [2,3,4,5], aveldptnteg
Twéc Gpwv [0,00001, 0,0001, 0,001, 0,01, 0,1, 1, 10], Twéc C Twv [0,00001, 0,00 0,001, 0,01,
0,1, 1, 10] xan téhoc Twéc ouvteeotwy Tuphva (tée g) [0,0001, 0,001, 0,01, 0,1, 1]. Téroc,
OGOV APOEA TOUC TUPNVEC CUVORTACEWY axTvVixNC Bdong, melpopatiothixaue pe Tiwée C twv
[0,00001, 0,0001, 0,001, 0,01, 0,1, 1, 10] xon Twéc ouvtereotwdv tuprva [0,0001, 0,001, 0,1,01,
).

[t Toug xATNYOPLOTIONTES CLUVOAOU, TEWRUUATIO THXOWE PE TiC Levddouc Bagging (Boot-
strap Aggregating) xou Adaboost. Kau yio tic 800 autée pedddoue, TEROUUTIO TAXAUE UE TOV
Boowxd tadivount va ebvan éva 8évTeo anogdocwy N €val yeouuixé SVM.

O cuvTtoviouog Tapau€Temy xou yior Tot 000 oUTA HOVTERX XIS ot Yiol Toug Pacinolg
Tagvountég Toug €ywve pe avalhtnon mAéyuoatog uall e o Tawpolueyn emixdpwon, Yen-
OLIOTIOLOVTOG b TTUYES.  LUYXEXEWEVA, YLoL To HOVTENO cuvohou Talvounty Bagging, ol
TOPAUETEOL UE TIC OTOLEC TELPAUATIO TAXAUE HTOY 0 optdUdC TV EXTUNTOY, Y TWwés [5,10,15],
To YéyloTa Oelypato Tou cLVOAOU Bedouévwy oTa omolo Yo UTopoloE Vo EXTIOUOEUTEL €vag
exTuntic, pe twée [60%, 80%, 100%]. ‘Ocov agpopd to poviého talvounth cuvéhou Ad-
aboost, ol TapPdUETEOL UE TIC OTIOIEC TELOOUOTIO TAXAPE NTOY XOU TIEAL O 0ELIUOC TWV EXTIUNTOY,

e autolc toug [5,10,15,50] o toug SAMME xon SAMME.R i tov ahydprduo evioyuong.



1.3.4 Beltuotonowoelg

To mococ 16 exudinone ylo autéd To Yovtéro Swtnerdnxe oto 1,0. T tov taivountn Bdong
TOU BEVTPOU ATOPIOTE, Ol TUPHUETEOL UE TIC OTOIEC TMELPAUUATIO TAXAUE HTAY TO XEITHELO TOU
EXTWNTA, Ue auTo va ebvon elte gini impurity eite entropy, uall ue 1o yéyioto Bddog, pe i
Téc Tou va gbvan [1,2,5]. Téhog, yia tov ypouuxd tadvounty Bdone SVM, nelpopotio Thxoue
ue Ty mopdueteo C, ye tic tpée e va ebvon [0,00001, 0,0001, 0,001, 0,01, 0,1, 1, 10].

[ty o€lohdynon v yoviéhwy, yenowonotinxay ol uetpxés tne axpelfetac, tng egi-
coppomnuevng axp{Belog xou tou F1 Score:

True Positive + True Negative
True Positive + False Positive + True Negative + False Negative

Accuracy =

True Positive True Negative

Balanced Accuracy = Avg(True Positive + False Negative+True Negative + False Positive

_ True Positive
F1 Score = True Positive + %(False Positive + False Negative)

1.3.4 BektioTtonowoelg

Mpdta am "6ha, exmoudeoupe to dixtuor DCCA ota avenelépyoota dedouéva, dnAadn Tig
145 tpéc ROI (amewcoviotind dedopéva) xou ta 54 SNP (yevetxd Sedopéva). Metd and
oUTO, hauBdvoude Tar yeveTxd dedouéva mou €youv petacynuatiotel oe MCA (10 yevetuxd
ototyelo) xou o LEUYaPOVOUPE PE Ta opyxd dedopéva amewdiong, dnhadh tic 145 tiuéec ROL
Téhoc, nelpopatiloyacte e Tov avtideto cuVBUUGUS, TOU elvor Tol BEBOUEVA ATELXOVIOTC TTOU
éyouv petooynuotiotel ye OPNMF (30 otowela anexdvione) xar ta LELYOPMVOUYE UE Ta
oEY X YEVETIXG Oedopéva, dnhady) to 54 SNP. H petpur allohdynong yio Tig mopopéTeous
TWV OXTUOY ATAY 1) CUCYETIOT UETAED TwV BU0 dewv e&ddou.

[Mo awtole toug melpapatiopols, Tapatneinxay To Tapuxdtw. Eivaw cagéc 6t dco me-
ploc6TEpOLS HOUPoug €yel To eninedo e€60ou, 1600 xahlTeR lvan 1) CUCYETION TV UETA-
OYNUATIOUEVRDY Bedopévwy. Emmiéov, eivon capéc 6TL t0 %pupd péyedog xou o apltiudg tou
OTPOUITOC €y0ouv UixpY| enidpact otrn cuoyétion €6dou. Mnopgel vo onuewwdel 6Tl Tepio-
COTERA XPUPA ETUTED XU TEPLOCOTEROL XOUPOL AVA XELUPO CTEMUI QPAULVETOL VO ETULTUY Y AVOUV
AAAVTERA ATOTEAEGUOTA, OANS 1) Dtapopd ebvon uxer. ‘Ocov agopd Tig Tapauéteous Yeyédoug
ToETIOUG, OTO TELRGUATE Hog To amotehéopota Tapaévouy Paowxd (B, H uévn addoyy) mou
TEATNPEETOL OGOV APOPA TOV YPOVO EXTIUOEUOTC, xowS 600 UXpOTERO elvon To péyedog Tng
TopTidog, TG00 TMEPLIOGOTEROS YPOVOS YEEWleTal TO HOVTENO avd ETOYY| Yiol Vo SlaTeéel To
oUVoAo Oedopévwy. To {Blo anotéheoua punopel vo tapatneniel xar ue Tov puud exudinong.
Télog, N TopdueTpog xovovixomoinong oaxolovdel TNy (Bla Aoyixr, ue TV ahhayr) TNS Vo unv

XAVEL OUCLAC TIXY| BLAPORd:

)
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Parameter Action Correlation (Negative Loss)
Output Dimension Size 1 (N
Hidden Layer Size 1 T
Learning Rate Medium to low LR is best
Batch Size Stays basically the same

Regularization Parameter Stays basically the same

Yyfua 1.4: Xuurepdopata ané tny BeAnioronoinon wwy diktiwy DCCA. (n vipnAétepn ou-
oxétion elvar emuuncrj)

1.3.5 Amoteiéopata

[Topousctdlovion GUVOTTIXG To ATOTEAEGHUATY, XAUNOE TO TAHUVOE TWV BLAPORETIXWY GUVOUL-

OUWY Yol ToL LOVTER EIValL APXETE UEYAAOS Yot TO XE@dhao TNne mepthndng.

INo va cuvolloovye ta anoteréopata, TopouctdloVUE Evay TVOXA UE TNV XOADTEQRT O-
xp(Bea, To F1 Score xou Tic woopponnuéveg PBaduoroyiec axpifeiag yia xdde povtého, uoll
ue pepuée onuewnoelc. To mapaxdte Sudypaupo ameixoviCel ta xaAbTEpa ATOTEAEGHAT XAVE

HOVTENOU, OOTE VO CUYXPIVOVTOL TO EUXOAAL.

Model Best Accuracy (%) | Best F1 Score (%) | Best Balanced Accuracy (%) Notes

RAW DATA 55.48 54.00 56.65 145 ROIs (Scaled) and 54 SNPs (Balanced). Both
AdaBoost DT.

DCCA-150-3 51.72 50.80 4582 Output Dlmensm.n 150, 3 .Hldd'en Layers, no
scaling or balancing. Imaging Linear.

OPNMEF 58.62 54.02 61.01 30 Imaging Compon.ents (Aft.er OPNMF)
Balanced only. Imaging Bagging SVM.

OPNMF + 30 Imaging Components (After OPNMF) and 54

DCCA-150-3 53.79 53.38 55.03 SNPs, then DCCA, then scaled and balanced.
Both AdaBoost SVM.

MCA 59.59 57.85 59.41 145 ROIs (Scaled), 10 Genetic components,

Balanced only. Both Poly SVM.

145 ROIs and 10 Genetic components (After
MCA + DCCA-150-3 52.05 50.10 53.37 MCA), then DCCA, then scaled and balanced.
Imaging Bagging SVM.

30 Imaging Components (After OPNMF) and 10

MCA + OPNMF 57.24 53.68 53.77 Genetic components (After MCA), Balanced only.
Both AdaBoost SVM.
10 Components, no scaling, no balancing. Both
FAMD 55.17 44.42 50.87 Poly / RBF SVM.

Eyfuo 1.5: I'a kdle povtédo, eppaviletar n kaAdtepn axpifea, to F1 score, kai n e iooppo-
nuévn akpifea mov emrelynke, pall pe onuesoeg mov e€nyoly tov ovrdvacé dedopévwy
ka1 napapétpwy mov xpnoiporowovrtal. Me tpdowo xpdua emonuaivortal ta kaAUtepa kai ta
devtepa kaAUtepa (avorytdtepo mpdowo) anoteAéouata mov éxovy emrevy Vel petaél dAwr Twy
HOVTéA Y.



1.3.6  Suvurepdopoata, cLLATNCT xou PEANNOVTIXES ETEXTACELS

Best Scores for each Model

65.00 B Best Accuracy (%) B Best F1 Score (%) Best Balanced Accuracy (%)
62.50
Maximum
60.00
57.50
55.00 —
PR | | P — | [ P ——  ETTR—————  Er— Average

52.50

Score

50.00

47.50

45.00

42.50

40.00

RAW DATA  DCCA-150-3  OPNMF OPNMF +DCCA  MCA MCA + DCCA MCA+OPNMF  FAMD
Model

Yyfuo 1.6: I'a kdOe povtélo, areixoviletar n kaAltepn axpiBea, F'1 score ka1 n e§i0opponn-
1évn akpifea.

1.3.6 Xvunepdopata, cLIATNOT xot LEANOVTIIXES ENEXTACELS

Auth n uerétn mpooplleton yior va elvor pLat eXTEVAS GUYXELOT TWV EQUPUOYOY TWV UEVOBWY
avdhuong BeBOPEVLY, xadm Xt TwV HEYOdwY unyavixnig xou Podide uddnong, mouv eqopudlo-
VoL 0To TEOBANUA TNG ToEVOUNONS YVWOLOXE QUOLOROYIXWY otouwy / atéuwy ye HNA /
ATOUWY Ue Voo AlToydiucp. Ao To €pyo mou emteAéTTNXE, UTHEYOLY Oplouéva Eexdiopa
unvopota. Ipdto and dha, ol teyvixég avdhuong dedoyévey omwe o MCA xou to OPNMF
elvon xalUtepec oe oUyxpton ue ta MUSE ROI ereidn to otoryeia OPNMEF BaociCovto oe
dedopéva evey o MUSE ROI npoépyovtan and npdtuna [42]. To MCA eivan eniong xahite-
e0 amd TN avenelépyaoTn YEVETIXY O, EMEDY) UETATEENEL ToL YEVETIXG Bedopéva oTov TOTO
TWYV 0EBOUEVWV ATEWOVIONG, XAVOVTAS ot TIC 000 Oelg var €youv To (Blo eldog. Emmiéov,
uédodoc DCCA, émwe avagépeton otny oyl epyaocia [43], dev elvar w@éhun yior outd TO
TEOPBANUA, TOUAG Lo TOV O)L Ywelc Tepaitépw exnaldeusT), WG TOCO AUEAVEL T1 CUCYETION UETA-
&0 twv anddewy, o cuugwvia pe Ty oy epyacta. Ou uédodot ensemble classifiers etvon
AVOTEPES AMO TIC AMAOIXEC UeVEBoUE peHovwuévou Tadvounty, onwg o SVM. Télog, clvon
COpES OTL 1) YPNOT| HOVO YEVETIXWY BEBOUEVKY OV apxel Yiol VoL BOOEL amoTeAéouata LPnAoTE-
eNe moLoTNTAG, xS BelyVouY uovo Teodiddeon Yo T voco. Ol cuvduaouol Tou TETUY AV Ta
%A TEPOL AMOTEAEOUATOL YeNoYLoToinoay anewdvion 1 aneixovion pall ue YeVeTixd 6edouéva,
elte 6edouéva aneixoviong yetaoynuatiouéva ye OPNME elte yevetxd dedopéva uetaoyn-
patiopéva ue MCA, cuvodeudueva eite and odvoha Bagging SVM eite pe éva moAuewvuuixd
SVM nuprva we ta&vountée.

Téhog, undpyouv ToArég mdavéc yeAhoviinég xatevdivoelc. Oa unopoloe xavels vo e€e-
PEUVACEL, BlaPopeTX00g alybpriuoug BeATIoTOTOMONS, CUVIPTHOELS EVERYOTOINOTC XAl YEVL-

%3 OLOUPORETIXES UPYLTEXTOVIXES Ylal Tl TToEAAANALL VEURWVIXS dixTua TNng uevddou DCCA. Mia
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GAAn xoteduvon umopet va efvan 1) ad&nom 6edopévwy 1 1) dnuiovpyia CUVIETIXDY BEBOUEVWLY,
TEOXEWEVOL Vo EUTAOLTIOTEL TO GUVORO BedoUEVwY. ‘Ocov apopd TG TEYVIXES avahuoTG Oc-
oopévwy, 1 uédodog OPNME etvor auty| mou Yo unopoloe va wgeiniel and tov nelpopationd
UE BLopopeETXG optdud oTolyElwVY, XATL TOu BeV EYLVE OE QUTH TN PEAETN AOY® TEQLOPLOUWY
oTny unoloylo Tt loyV. Emmiéov, uropolyv va yenowwornointolyv mo cdvietol taivountéc,
onwe tawvountéc MLP xou K-Nearest Neighbors. Autéd unopel enlong vo enextadel otig
ued6doug cuVORoL, Oyt UOVO Yo Tor Booind LOVTERS TAEVOUNTY, 0AAG xou Yo Tig Yedddoug
ouvorou. TEhog, yior vor VTHIETWTLO TEL TO {ATNUO TWV BLUPORETIXWY WS TEOS T PUOCT| XL TOV
OO TEORBoAGY, Vo unopoloe xavelg va SlepeLVNOEL T1) YeNon TwV Poditdy AUTOXWOIXOTOTWOY

TEOXEWEVOL VoL afBAuViel To TEOBANUA TOU YELPLOUOD XATNYORIXMDY OEDOUEVLY.
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Introduction

A rapidly growing cause of death in the developed countries are neurodegenerative
diseases. Diseases such as the Alzheimer’s, as well as disorders such as Mild Cognitive
Impairment are most prevalent on old people, with ages equal or older than 65 years old,
being the group that’s most affected by them. It is estimated that in the US alone, 6.5
million people are suffering from Alzheimer’s Disease today, while globally this number can
be as high as 35 million. Those estimations are expected to grow to 135 million globally,
and many of them are undiagnosed and or untreated even today.(|1],[2])

During the normal course of aging, the human brain displays changes, both anatomical
as well as functional, that seem to be accelerated in patients with such diseases. The
human brain is developed until the age of 25 years, and after that it continuously loses
neural mass, leading to brain atrophy, a condition that is studied extensively, thanks to
advances the field of medical imaging. The atrophy effect is sped up in some patients quite
significantly, and in the case of the AD, it leads to neuronal decay and loss, and eventually
death.

The effects of AD vary quite significantly, and are apparent not only clinically, but in
imaging scans and genetic surveys as well. Because of low awareness, MCI and AD are
often mistakenly associated with getting older, while due to the need of an experienced
practitioner for the diagnosis, many cases go undiagnosed. However, a great deal of research
is being done on studying the symptoms, potential causes, as well as the treatment of the
disease, with some estimates putting the total cost of Alzheimer’s research in the tens of
billions USD. Furthermore, for the total cost for the healthcare related to AD patients for
the year 2020 in the US has been estimated to be around 300 billion USD. (|2], [3]).

Despite the considerable resources, no clear cause has been found for AD, no definitive

prevention method has been found, and no treatment method has been widely successful.

2.1 Contents of this Thesis

To tackle the problem of diagnosing Alzheimer’s as well as MCI, and also predicting and
modelling their respective courses, a plethora of studies have been published. A common
characteristic that many have is the use of machine and deep learning methods, especially
on neuroimaging, genetic and clinical data collected from patients of the diseases. The

main drivers behind this effort are the advances in medical imaging and the staggering
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growth of computational abilities in recent years, making more complex and better methods
applicable and practical. (4], [5])

Most studies employ neuroimaging data collected with the Magnetic Resonance Imaging
and Positron Emission Tomography methods, that were collected from the AD neuroimag-
ing Initiative database. The imaging data are often accompanied with biomarkers, as well
as Single Nucleotide Polymorphisms (SNPs), and even data from clinical tests performed
by licensed practitioners. ([6], [7], [8]).

While in general more complex models employing different modalities of the data per-
formed better, there is no unified approach, and the diversity of models is intriguing.
However, most studies focus on either classifying whether or not a subject is a patient of
AD and predicting the course of the disease, while some papers focus on predicting if a
patient with MCI will convert to Alzheimer’s. [4]

A common problem most studies had to overcome was the overabundance of features
that the data had, while having too few samples. This is known as the ‘curse of dimen-
sionality’ problem, and is associated with biomedical data. The data is characterised by
very large dimensions (especially in the case of the neuroimaging view), yet not enough
samples. This is due to the imaging techniques’ post-collection data processing, resulting
in very high dimensions, while the sample size is very low, due to the difficult, sometimes
inaccessible, expensive and long-lasting nature of the technique. This has the adverse
consequence of data not being easily visualised (since they cannot be interpreted in the
three dimensional space humans are familiar with), along with the tendency of the models
to overtrain and overfit on the low number of datapoints. To avoid the aforementioned
problems, data analysis techniques have been used, with them being as simple as PCA, or
as complex as employing deep learning, for example neural networks. (9], [10], [11])

This study attempts to create a comparative analysis of machine learning methods
and algorithms being applied to the problem of predicting whether a subject is cognitive
normal, has MCI, or AD. The data was collected through the ADNI dataset, and more
specifically, imaging data taken from T1-weighted MRI scans, along with genetic data in
the form of SNPs.

In this thesis, we also explore data analysis techniques in order to tackle the dimen-
sionality curse problem, as well as transformations and statistical analysis methods. To
convert the exceedingly dissimilar imaging and genetic views, we experimented with a
novel technique, called Deep Canonical Correlation Analysis, where neural networks are
used to learn a transformation of the different views’ features into a hyperspace that is
better linearly correlated than the raw data, and thus potentially easier to perform the
classification task.

Furthermore, we experimented with dimensionality reduction methods, such as Multi-
ple Correspondence analysis, Orthonormal Projective Non-Negative Matrix Factorization,
and Factor Analysis of Mixed Data. All of the possible combinations of the techniques
were used, and their effect on the classification task was compared.

For the classification task in particular, we present the results from applying Support
Vector Machines, which are widely regarded as a fairly simple, understandable, yet practical

and capable model, as well as Ensemble Learning methods such as Bagging and Adaboost



2.2 Structure of the Thesis

to the problem. For the ensemble methods, we experimented with Decision Trees and again
Support Vector Machines as base model classifiers, and the yielded results were compared

not only between them, but also to the single-classifier results.

2.2 Structure of the Thesis

This work is divided into 8 chapters, including the introduction chapters. Chapter
3 introduces some theoretical knowledge in order to tackle the problem described in the
introductory chapter, pertaining to the human brain and some fundamentals about the
machine and deep learning methods that were used. Chapter 4 explains the methodology
that was used, with a brief description of the dataset that was used, the parameters of
the methods, as well as the metrics to evaluate them. On chapter 5, we present some
results from the attempt at optimizing the models that were later used for the classification
tasks, and on chapter 6 the classification results are presented. Finally, on chapters 7 and
8, conclusions are drawn from observations made on the results, future extensions and

directions are discussed, as well as the practical limitations of this work.
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Theoretical Background

3.1 Human Brain

3.1.1 Aging

As the human body ages, all organs experience age-related effects, and so does the
brain. Both physiologically and cognitively, there are several changes that can be observed
as part of the normal brain aging process. [12]

Cognitively, memory (specifically episodic and semantic memory) is one of the core
areas that are affected. Older people may be forgetting names of items or persons, having
to repeat questions, misplacing items, getting lost, and having trouble recalling information
in general. Additionally, language skills such as vocabulary and language skills may be
affected, as well as the ability to learn new skills and multitask. [13]

Physiologically, the brain shrinks in the areas of the frontal lobe as well as the hip-
pocampus, the areas that are generally thought to be linked with higher cognitive function
and memory, at a rate of 5% per decade after the age of 40. This effect is due to the
grey matter shrinkage, which is attributable to neuronal cell death. Additionally, corti-
cal density decline is observed, meaning that the outer surface of the brain is becoming
thinner. This effect is more pronounced in the frontal and temporal lobes. White matter
also declines, with the myelinating regions of the frontal lobe being most affected by white
matter lesions. Finally, the levels of neurotransmitters such as dopamine and serotonin see
a steep decrease, an effect that has been associated with declines in cognitive and motor
performance. ([44], [45])

While the aforementioned symptoms are very much similar to the symptoms that Mild
Cognitive Impairment and Alzheimer’s Disease exhibit, normal aging patterns of decline are
divergent from the ones of MCI and AD. The effects of normal brain aging are characterized
by their occasional nature, while MCI’s and AD’s ones are more consistent, and gradually
worsen in some cases, and they are accompanied by other dementia symptoms, such as
confusion, mood changes and others. Furthermore, the physiological changes of the brain
are much more pronounced and significantly more severe. MCI and AD have a much more
noticeable effect on the person’s daily life, and some cases need assistance in order to

perform normal daily tasks. [14]
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3.1.2 Mild Cognitive Impairment

Mild Cognitive Impairment is a state of a person that is characterized by problems
with memory, language, thinking or judgment. It is usually observed between the stage
of normal cognitive decline that happens to humans due to aging and the dramatic fall in
cognition that is apparent to people with dementia. People with MCI have memory loss or
other cognitive ability loss, exceeding the normal decline due to age and are not demented.
15)

MCTI’s symptoms can manifest in many different functions of the human brain, in-
cluding weaker memory, poor reasoning and judgment skills, visual perception and others.
Frequently, MCI coexists with other illnesses or emotions, such as depression, anxiety,
irritability and aggression, or apathy. [19]

The cause of the disorder is unknown; it is believed that MCI is caused by the same
mechanisms that are thought to be responsible for the neuropathology of the early stages
of Alzheimer’s Disease, however that is unproven. Risk factors include age, family history
of AD or dementia, genetic factors, and other medical conditions such as diabetes, high
blood pressure, smoking, obesity, depression etc. [19]

People with diagnosed MCI have a significantly higher chance than that of cognitive
normal population to develop AD or some form of dementia. Despite the fact that there
is no standardized test for MCI, clinical characterization is achieved through the results
of various tests (such as mental tests, neurological exams, patient family history, brain
imaging and searching for biomarkers) and the informations that the patient provides. [20]

It is not exactly clear how to prevent MCI, but studies show that engaging in frequent
physical activity, maintaining a healthy and balanced diet, engaging socially with others,
being mentally active, reducing alcohol and not smoking may be mitigating factors to the

risk of developing the condition. [20]
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3.1.3 Alzheimer’s Disease

Alzheimer’s Disease is a neurodegenerative disease that affects the brain both biolog-
ically and cognitively. It was first reported by A. Alzheimer in 1906, but described as a
disease only after 1910, by E. Kraepelin. AD is the most common cause of dementia, a
term used to describe a group of symptoms that include decline in memory, reasoning,
and other thinking skills. It is reported that AD is responsible for about 70% of dementia
cases. (|16],[17],[18])

AD is a progressive condition, meaning the symptoms gradually appear and worsen over
time. Early symptoms include short term memory loss, decline in conversational abilities
and poor reasoning. As the disease progresses, patients have trouble recalling names, may
have confusion and obsessive, repetitive or impulsive behaviour, serious problems with
speaking and the use of language, and generally problems that require external assistance
in their daily life. In later stages of the disease, the patients have trouble with even the
most basic tasks, such as eating and moving, and require full time assistance. Gradually,
the condition of the patients deteriorates, ultimately leading to death. [21]

The cause of AD is unknown, but genetic and environmental risk factors have been
implicated. AD is linked with the formation and buildup of plaques (abnormal clusters of
protein fragments) of the protein amyloid B, and neurofibrillary tangles (twisted strands of
protein) of the tau protein. There are several hypotheses as to the disease’s origin, yet none
of them have been confirmed. There are two perhaps significant hypotheses, the amyloid
and the cholinergic Hypothesis. [22]

AD is a multifactorial disease, being associated with several risk factors, such as age
and gender, genetic factors, life style, coexistent or previous diseases, head injuries and
environmental factors. The most important however is age, with most AD cases having
a late onset that starts after 65 years of age. Normal brain aging is characterized by a
reduction in brain volume and weight, a loss of synapses, and the enlargement of ventricles.
These changes appear in AD patients as well, but more profound in general. There are
two categories of AD based on the age that it appears, Early Onset AD which is generally
familial and displays inheritance and has onset age that ranges from 30 to 60 years of age
(1-6% of cases), and late onset AD, which is by far more common and has age of onset
above 65 years. Genetic factors also play a significant role, with 70% of AD cases being
related to genetic factors. The genes APP, PSEN-1, PSEN-2 and most importantly ApoE
are associated with AD. ([22], [46])

In order to successfully diagnose the disease, a practitioner has to evaluate the person,
with multiple tests if necessary. The diagnosis is based on medical history, advanced
medical imaging of the brain (using CT or MRI or PET or SPECT), mental tests such as
the MMSE, blood tests and psychological tests for depression, since depression can either
be concurrent with Alzheimer’s disease, an early sign of cognitive impairment, or even the
cause. ([46], [47])

There’s currently no cure for Alzheimer’s disease, however there are certain medications
available that can temporarily mitigate the symptoms. Since the cause of the disease is

still unknown, there is no designated preventive roadmap. Despite that, frequent physical
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exercise, a healthy and balanced diet as well as staying mentally and socially active all

have been linked to lower rates of AD.



3.1.4 Fundamentals of MRI (Imaging - ROIs)

3.1.4 Fundamentals of MRI (Imaging - ROISs)

A big part of studying, understanding and diagnosing neurodegenerative diseases are
brain imaging techniques, such as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), Computerized Tomography (CT) and others. This work focuses on
data collected with the method of MRI, which were used to recognize signs of MCI and
AD.

The MRI technique works by measuring the energy signal of (typically) hydrogen nuclei,
as a result of excitation by external radio frequency pulses. The MRI technique is frequently
split into two different processes, based on the decay of the RF-induced nuclear magnetic
resonance spin polarization, named T1 and T2, each producing different results depending
on the signal and the tissue being imaged. Depending on the parameters of the process
being used, MRI can imprint pictures of the anatomy of the human body, as well as its
physiological processes. [23]

Oftentimes, to avoid examining every single point of space (commonly referred as a
'voxel” or volume-pixel), the scan is segmented in specified Regions Of Interest (ROIs).
These regions are produced by segmenting the original image, either automatically, using
Machine Learning methods or by employing previously computer computed brain atlases.
Specifying however, the aforementioned regions, is quite complex, since there is a great
variability of neuroanatomy between humans. It is believed that the brain’s function is
associated with structural and functional connectivities, and therefore identifying stan-
dardized and reliable is crucial for understanding the connection between the architecture
of the brain and its function. ([24], [25], [26])

Because the MRI method produces a tremendous amount of data for each scan, fre-
quently before the main task, preprocessing is applied to capture the desirable information,
while maintaining ease of data manipulation. Such methods include data augmentations,

feature selection, dimensionality reduction, etc.
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3.1.5 Fundamentals of genetics (SNPs)

DNA in humans is arranged in chromosome pairs, with each cell having in its nucleus
23 pairs, 22 of which are autosomes and 1 pair being the sex chromosomes. In each of
the 22 pairs of chromosomes, DNA is stored in identical copies, with specific chunks being
characterized as genes. A gene contains genetic information in the form of long sequences
of nucleotides (A,T,G,C).

If a change or variation in one or more nucleotide positions of a chromosome in the
DNA sequence is found, it is called a Single Nucleotide Polymorphism (SNP - pronounced
"snip") . If most humans have a specific certain nucleotide in a specific position of the
genome, and a SNP occurs in some individuals in that exact position, then this position
is said to have more than one allele. Because the DNA is stored in pairs of chromosomes,
a person’s DNA can contain in a specific position of the genome one SNP, two SNPs, or
no SNPs at all. ([27], [28])

Observed SNPs can be associated with a disease, however, it may not always directly be
the cause for that disease. An example of this is the APOE gene (chromosome 19 position
q13.32), which has been determined to be a risk factor for AD, specifically the €4 allele.
There are three versions of the gene in humans, €2, €3, and €4, with €3 being the most
prevalent, the existence of the €4 variant being a risk factor, while having two €2 alleles
being associated with lower probabilities of developing the disease. The disease however is
also associated with other gene mutations, such as mutations in the genes APP, PSENI,
PSEN2 and others, which especially influence the early onset variant of the disease. ([28],
[29], [30])

Recognizing the different SNPs that are contained in the human genome is the topic of
studies such as Genome Wide Association Studies (GWAS), which are a part of the field
of bioinformatics. Understanding the changes in the genome can help recognize how they

translate in the phenotype, help with their treatment and their prevention. ([48])
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3.2 Fundamentals of the Machine Learning and Deep Lear-

ning methods

3.2.1 Canonical Correlation Analysis

Canonical Correlation Analysis is a standard tool of multivariate statistical analysis
used to discover and quantify associations between two sets of variables. The aim of this
method is to find a transformation (projection) of the two sets of variables, such that
they are maximally associated (measured by correlation). The projections are found by
performing a joint covariance analysis of the two variables. [31]

This concept was introduced by C. Jordan (1875), but the method was initially de-
scribed by H. Hotelling (1936). It has been used extensively in many fields, such as eco-
nomics, medicine, psychology, etc., and has many extensions, such as the Kernel CCA.
(491, [50], [51])

Let X € R?, and Y € RP, two random vectors, and their respective covariances ¥1;
and Yoo, as well as the cross covariance X15. The aim of CCA is to find vectors , such that
the correlation p(a,b) = corr(a™X,b7Y’) is maximised.

The correlation p(a,b) can also be written as follows:

— aTYxyb
p VaTY x xa/bTXyyb

This is achieved by setting the a, b parameters as follows:

— 2
a=Yy%c, and

_1
b= X, d, where

_1 _1
c is an eigenvector of EX?XEXyE;%,ZYXZX?X,

1 1
1 i 2 -1 -3
and d is an eigenvector of ¥y Yy x Y Xxy Xy

The vectors a, b are called canonical correlation vectors, and the indices © = aTX and
v = bTY are called canonical correlation variables.

This process may be repeated min(q,p) times, and find subsequent projections. How-
ever, the new vectors are subject to the constraint that they are to be uncorrelated with
the previous ones, that is a;Xxxa; = b;Xyyb; =0, Vi < j.

CCA is implemented using Singular Value Decomposition on the correlation matrix.
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3.2.2 Deep Canonical Correlation Analysis

Deep Canonical Correlation Analysis is an extension of the standard Canonical Cor-
relation Analysis, created by G. Andrew, R. Arora, J. Bilmes and K. Livescu. As with
normal CCA, DCCA is a method that aims to discover and learn associations between two
sets of variables. [32]

In the case of DCCA, the method can learn complex, nonlinear relations between the
two random vectors and transform them again non-linearly to correlate them, whereas
the standard CCA cannot. The method is similar to the idea of Kernel CCA, where the
optimal projections are found on the kernel-transformed random vectors, such that the
resulting reproducing kernel hilbert space contains the variables in a manner that CCA
can be impactful. [33]

However, the problem with KCCA is the computation complexity, as the kernel matrices
become very large for real-world datasets, meaning that since it is a nonparametric method,
the time required to learn the transformation scales poorly with the size of the data.
Additionally, the KCCA method is also limited to the choice of the fixed kernel, meaning
they can’t be flexible for different types of datasets. [52]

To address these drawbacks, the use of deep neural networks is proposed, in order
to simultaneously learn two deep nonlinear mappings of two random variables. In their
paper, they focus on the performance metric of achieved correlation, and comparing it to
the correlation of the standard method. [32]

The use of deep learning, meaning neural networks with more than two layers, is
designated, since deep neural networks have been proven to be capable of representing
accurately and reliably nonlinear functions that model complex real world data. The
method is used to correlate different views of the same dataset, for example different
modalities of a biomedical dataset.

The method relies on passing each random vector through a neural network, designed
and trained to transform the random vector nonlinearly. That creates a mapping to a
hyperspace that results is better correlated to the mapping of the respective (transformed)

random vector.
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[Canonical Correlation Analysis]

View 2

Yyfua 3.1: The two parallel networks, along with the information path (arrows)

In the figure above, the two neural networks are shown, consisting of 5 layers, with the
red layer being the output layer, meaning the vectors that are maximally correlated, and
the blue layer being the input layer, meaning the original random vectors.

If 0, is the vector of all parameters (Wil, bll) of the first network, for each layer i, and
respectively 2 is the vector of all parameters (Wf,bf) of the second network for each
layer, then the training goal is equivalent to finding the optimum parameters such that the
correlation of the output of the networks f1(X7;61), f2(X2;602) given two random vectors
(views) (X1, X2).

That is described as follows:

(07, 03) = argmaxy, g, {corr(f1(X1;61), f2(X2;62))}

Supposing that Hi, Hy € R°*™ are the matrices that contain the respective out-
puts of the Neural Networks, for each of the training samples. The target then becomes
corr(Hy, Ha).

To train the networks, the computation of the gradient is needed, and its backpropaga-
tion in order to tune the networks parameters. The target is found using the same steps as
the standard CCA, while the computation of the gradient, as well as its backpropagation
is facilitated through singular value decomposition.

The authors of the original paper employed full-batch optimization, meaning that before
every single weight update step, the network scanned the full dataset. They also used the
Limited Memory Broyden—Fletcher—-Goldfarb—Shanno (L-BFGS) optimization method. In
order to initialise the parameter optimization for the two networks, they utilised a denoising
autoencoder for each layer of the networks. The network proposes uses a non-saturating

nonlinearity activation function, in the form of: If g : R — R, and g(z) = % + x, then the
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function s(x) = g~!(z) is the activation function, maintaining a sigmoid shape, and unit
slope at = = 0. ([53], [54])
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3.2.3 Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA) is a data analysis technique used to analyse
the structure of a number of dependent categorical variables in a dataset. It is an extension
of simple Correspondence Analysis, and is similar to the well known method of Principal
Component Analysis. [55]

MCA is used when a dataset contains variables that are described by nominal values,
such as "Male" and "Female", or "Red", "Green", "Blue", etc. The variables can also
contain quantitative values, split into categories. MCA is performed on an indicator matrix
- also called a Complete Disjunctive Table - or on a Burt table. It can also be viewed as
the PCA method applied to the CDT. [56]

Suppose there is a dataset containing only categorical variables, and its corresponding
CDT, X. Let K be the number of the nominal variables, and each nominal variable has
Jx levels and the sum of the Jx is equal to J. There are I observations. Then the table
X is actually the I x J indicator matrix.

We indicate the sum of all entries to be N, and compute the probability matrix Z =
fracX N. We also use the special vectors r, and ¢, which are the vector of the row totals
of Z, and the vector of column totals of Z respectively.

Then, if

D. = diag(c), D, = diag(r),

we have the factor scores of the MCA are obtained from the following singular value

decomposition:

ol

_1 _
M =D, *(Z —rc")D. * = PAQT,

where A is the diagonal matrix of the singular values, and the matrix of the eigenvalues
is A = A2, MCA decomposes the matrix into coordinates (or scores) of the factor space,

which can be found as follows:
_1
F = D, ?PA, for the row coordinates and

1
G = D, ?QA for the column ones.
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3.2.4 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NMF) is a unsupervised, multivariate, analytic
method for the approximate factorization of a matrix V' into two matrices W,H under the
constraint that their elements are non-negative: V = WH, such that H > 0 and W > 0.
[34]

The method was created by P. Paatero and U. Tapper, and further developed by D.
Lee and H. Seung ([57], [58]). It is used to reduce data dimensionality, perform clustering
tasks and find underlying structures within the dataset. Because the resulting factorization
contains non-negative elements, the method has the advantage of improved interpretability
compared to other data dimensionality reduction methods, and has the ability to produce
parts-based representation of the data, it has been applied in many different fields, such
as machine learning, computer vision, signal processing, data mining, medical imaging etc.
(I35], [591, [60], [61])

Lee and Seung’s multiplicative update rule is the basis of the method’s computation of
the W and H matrices, and has the characteristics of being iterative and element based.
However there are other ways, and it can be supplemented with additional constraints or
regularizations, leading to many extensions.

One notable extension is that of Orthonormal Projective NMF (OPNMF), where the
loading coeflicients are estimated as the projection of the matrix onto the estimated com-
ponents W (H = WTV'), while maintaining orthonormality on the estimated components
(WTW = I). As a result, all components participate in the reconstruction of all of the
data samples, meaning that the overlap between the estimated components is significantly
lower, having fewer parameters to be learned, while maintaining high sparsity. Addition-
ally, this variant relies on the original update rule (and thus is computationally easier than
the Projective NMF variant), and at the same time is able to generalize on unseen data

without the need of retraining. [35]
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3.2.5 Factor Analysis of Mixed Data

Similar to MCA, Factor Analysis of Mixed Data (FAMD) is a data analysis technique
used to analyse the structure of mixed data, meaning both continuous numerical as well
as categorical data. It is also used to in order to reduce the number of dimensions of the
dataset, and improve interpretability. It is based on the methods of MCA and PCA.([36],
[37])

Suppose there is a dataset containing both quantitative (numerical) and qualitative
(categorical) variables. Let Kj be the quantitative variables, @ the qualitative variables,
and K, the categories of the ¢ variable. We can denote the overall number of categories

of the qualitative variables as:
K2 = Zq Kq

Let K = K7+ K> be the total number of quantitative variables and indicator variables.
We assume that individuals have the same weight, and the diagonal metric of the

weights of the individuals is:
D=1l

The quantitative variables are represented by a vector of length 1, and the qualitative
ones by a cloud of datapoints N, of its centered indicators. FAMD aims to look for a
direction of v that maximizes the inertia (measure of weighted spread of the points) of the

R cloud. That goal is perfectly achieved by maximizing the following criterion:

ZkeKl T2(k7 /U) + quQ 772(Q7 ’U) ) Where

n%(q,v) is the squared correlation ratio between ¢ and v, and 72(k,v) is the squared
projection coordinate of variable k on v. [62]
FAMD’s number of resulting components can range from 1 to min(Ki,Q), where K

is the number of the quantitative variables and () is the number of the categorical ones.
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3.2.6 Support Vector Machines

Support Vector Machines are a family of models that are used for classification and
regression analysis. The model was initially introduced by C. Cortes and V. Vapnik and
has enjoyed considerable popularity since its creation, being one of the most widely used
Machine Learning Techniques. They have been applied to many scientific fields, such
as pattern recognition, image classification, biomedical research, petroleum exploration,
etc.([38], [63], [64])

The goal of an SVM is to choose a hyperplane (e.g. a straight line in two-dimensional
space, a plane in three-dimensional) that best separates a dataset consisting of labeled
samples that belong to one of two classes. The method that SVMs rely on to achieve
this goal is choosing two parallel hyperplanes that separate the two classes such that the
distance between them (the margin) is maximal. The data points on the margin maximizing
hyperplanes (supporting vectors) define the decision surface for the classification, as shown
below: [65]

Support Vectors.

Yyuo 3.2: Support Vectors are shown in orange, the decision boundary in blue, the dat-
apoints in green (squares for one class, stars for the other), and the dash lines are the
margin mazimizing hyperplanes. [60]

SVMs can be used for multi-class classification as well, through a one-vs-one scheme or
one-vs-rest approach, where decision boundaries are calculated between respective classes
or a class and the rest of the dataset in each case, respectively. [66]

SVMs enjoy a variety of advantages, such as efficiency in both low and high dimensional
spaces, memory efficiency, and being able to produce results in cases where the number of
samples is less than the number of dimensions. [67]

However, one major drawback of SVMs is that the standard model does not work on
datasets that are not linearly separable; that is one hyperplane cannot correctly divide
the classes. To get around that, SVMs use kernels. Thus, the dataset is first non-linearly
mapped through a kernel in a higher dimension space where the data is linearly separable,
and then the original SVM algorithm is performed. In this approach, one can use the kernel
trick to compute the transformations through the kernel function for the whole dataset.
[65]



3.2.6 Support Vector Machines

SMVs suffer from over-fitting issues, as well as being sensitive to parameter selection/-
tuning, such as the kernel function and regularization term choice, especially if the number
of parameters is much greater than the number of available samples. Additionally, SVMs

are not scale invariant, so scaling the dataset is highly recommended. ([67], [68])
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3.2.7 Ensemble Learning

Ensemble learning is a technique of combining a multitude of models to enhance the
performance of the task, such as classification problems, regression or approximation tasks
etc. This is achieved by applying the (perhaps different) models to the data available (or
a subset thereof) and combine their outputs, in order to make a better attempt at solving
the problem. [39]

An ensemble is created by combining either different models, or models with different
parameter initializations and configurations. Such models can be relatively simple, such
as decision trees, naive bayes classifiers, or SVMs, or more complicated, such as multi
layer perceptrons, or even other ensembles altogether. A key aspect of the base model
selection is to create enough diversity of opinions, that is differentiation between the models
themselves. [40]

The ensemble learning technique relies on two concepts: the way the dataset is used
to train the base models (how the data is introduced to the models) and the way that the

outcome of each base model is considered towards the combined outcome.

The method that is employed for training the base models can be as simple as dividing
the dataset by the number of models and feeding each subset to each model, or as strate-
gically complex as to involve feature selection along with data augmentation during the
phase of training the base models. Another approach might be introducing different views
of the dataset to different base models. [40]

Respectively, the method employed for combining the outcomes of the base models can
be as simple as simple majority voting (for example the most voted class in a classification
problem) or algebraic combiners, or more sophisticated and tailored to a specific problem

strategies.

The idea behind ensemble learning is to enhance the decision taken with group knowl-
edge; that is to reduce the likelihood of an unfortunate selection. While that is not guar-
anteed, there is empirical evidence that ensemble models achieve in general better perfor-
mance than that of single models, and in some case better than that of the average of their
base models. [40]

Another motive for employing ensemble methods is their ability to perform fairly well
both in big data tasks and when there isn’t adequate data for the successful training of a
single model. The big data case is handled with dividing the dataset into many subsets,
and training each model on a single subset, thus making the training phase much easier.
On the other hand, with a strategy such as bootstrapping, different base models can be
trained on different combination of samples of data, taken from the initial dataset, with

replacement, and treated as if they were independently drawn. ([40], [69])
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Classifier 1 < Decision boundary1 Classifier 2 = Decision boundary 2 Classifier 3 - Decision boundary 3

Feature 2
Feature 2
Feature 2

Feature 1

©Polikar, 2008 Feature 1
Yyua 3.3: Combining classifiers with different decision boundaries reduce error. [68]

One method of ensemble learning applied to the problem of classification is that of
Bagging, or Bootstrap Aggregating, where the base models are trained on drawn sam-
ples from the initial dataset, with replacement, and the base models are classifiers of the
same type. The individual classifiers’ outcomes are combined in a simple majority voting
strategy to determine the overall outcome of the ensemble. Another notable example is
that of Adaboost, a version of the boosting ensemble, adapted for the problem of multi-
class classification. As previously, bootstrapped training data samples are drawn from an
initially uniform but continuously evolving distribution, ensuring that samples that were
previously mislabeled are seen more often, and therefore training the base classifiers to the
most difficult instances. The base classifiers are combined in a weighted majority voting
manner. ([40], [41])

The different methods of ensemble classifiers have been applied to a number of fields,
such as assessing the risk of developing cardiovascular disease as a long-term diabetes

complication [70], error correcting output codes |71], feature selection [72], etc.
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Methodology

4.1 Data Pipeline Overview

The data of this thesis were obtained from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) database, a global research study that focuses on understanding better
how to prevent or delay the disease, as well as supporting the investigation on methods
of treatment. The study collects imaging, genetic, clinical, biospecimen data from people
with MCI, Alzheimer’s, as well as from people that are Cognitively Normal (CN). The data
was collected in 4 phases, ADNI1, ADNI2, ADNIGO and ADNI3. This study uses data
from all three phases, however only uses the genetic and imaging views of the dataset. For
more information on the dataset, please visit . (|73], [74])

The imaging data is in the form of 145 ROI values, acquired from scanners either 1.5T
or 3T, using T1-weighted sequences, depending on the phase. The images collected by the
scanners have been filtered through Quality Control, and have been preprocessed through
intensity normalization and gradient un-warping. In order to acquire the ROI intensity
values, the method of MUlti-atlas region Segmentation utilizing Ensembles (MUSE) was
used creating the regions of interest. ROIs values’ magnitude is analogous to the regional
volume of brain tissue, depending on tissue type. The Regions that these values correspond
to can be found in the appendix. ([75], [76])

As for the genetic data, each participant has values for 54 susceptibility loci, in the
form of SNPs, that have been identified by AD genetics studies. These values have been
filtered through QC, and as previously mentioned are int the form of number of alleles
(0,1,2) for each SNP. ([77], [78], [79], [43])

The dataset has 1302 participants, (56.91% male), with mean age 75.20 y.o. for males
and 74.36 y.o. for females. The dataset now has 433 CN participants (33.25%), 626 MCI
patients (48.07%) and 243 AD patients (18.66%). Following that, Linear Regression was
performed to remove any unwanted age, sex, or brain size related effect. The regressor
was fitted on the CN group, and the transformation was applied to the entire sample.
Subsequently, the data was transformed through experimentation, and the output of the
method was stored, in order to be compared with the raw data. Afterwards, data analysis
techniques were applied, such as OPNMF to the imaging data, or MCA to the genetic
data, or FAMD to the whole dataset. These methods were applied both to the original
data, as well as the output of the DCCA method, in order to be compared later. The


https://adni.loni.usc.edu/methods/documents/
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4.1 Data Pipeline Overview

result of each one of those techniques was then saved for later tasks. Finally, each one of

the results of combinations of the methods was fed to SVM as well as ensemble classifiers.

Data Pipeline Overview

Data Analysis Techniques Transformation if necessary

(MCA, OPNMF, FAMD) (DCCA)

Linear Regression Classification
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4.2 Linear Regression

Linear Regression is a statistical method that aims to learn the relationship between
dependent and independent variables. In our case, the goal is to study the shrinkage effect
that AD and MCI have on brain size, and therefore to study it properly we need to isolate
that effect. In order to do that, any effects that age, sex and different cranium sizes have,
must be removed. Finding out the pattern between the brain size, which is the 145 ROI
values, and the age the person has, as well as his/her gender and cranium size, is necessary
if we want to remove it.

LR learns the trend between the independent variables (age, gender, cranium size) and
the dependent variable (ROI volume), so calculating the difference from the computed
trend values and the real values is called the residual values. We use those residual values
as a means to recognize how intense the effect of the disease on the participant’s brain
size is, since the other independent variables’ effects have been subtracted, meaning that
if there was no effect, the trend between age, gender and cranium size would accurately
predict the brain size and there would be no error.

The model is trained on CN participants only, however all participants brain sizes are
predicted using the trend line learned, to find out the difference between the real values
and the predicted ones. We only keep the residual values, as they signify the difference
from the trend line, which is equivalent to the intensity of the disease’s effect.

The trend lines can be observed in the below figure for the ROI MUSE Volume 48
which is translated to the left hippocampus area. It is clear that while the CN (green)
population is centered around the x axis, meaning the brain size values are well predicted,
the MCI population (blue) is lower than predicted, and the AD population (red) is much
lower. This is expected, as the real brain size values are lower, since MCI and AD both

cause a shrinkage of the brain.

Regression on CN for MUSE Volume 48
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4.3 DCCA model training

In addition to the previously mentioned techniques, DCCA was used in order to trans-
form the two uncorrelated, different views into two that are more linearly correlated. The
choice of hyperparameters, the methods and class functions, as well as the parameter
optimization was subject to our experimentation.

As stated before, the DCCA model relies on two parallel networks, each taking as
input a view of the dataset, and producing the output that are the views but nonlinearly
transformed in order to use as subject for classification.

The dataset for the model optimization was split into three sets, the training, validation
and the test set, with the last one being kept hidden from the model during the training
phase, in order to ensure an accurate prediction on unseen data. The split between the
sets was 75% for the training set, 15% for the validation set, and 10% for the test set,
split randomly. This was done in order to ensure that the model had enough training
samples, as well as validation samples to achieve good accuracy scores without overfitting,
and enough test scores as to not skew the results.

The hyperparameters include the number of hidden layers as well as hidden layer size,
output layer size, the regularization parameter, the learning rate, as well as the batch size.
These hyperparameters were chosen after extensive testing with each one, with the best
values stored and used for training. The epoch number was kept at 100 epochs along
all experimentation, which was enough for all cases for the validation accuracy score to
stabilize.

We experimented with 3 or 4 hidden layers, as it became apparent that due to the
complexity of the problem, a big enough network was needed for both views. The original
paper used the same architecture for both of the networks, a logic we followed in our study
as well. The size of the hidden layers ranged from 256 neurons to 1024 neurons per layer,
with all hidden layers having the same number of neurons. As for the output layer size,
we experimented with sizes of [10,50,100,150]. One attempt was made with output layer
size of 300 in order to observe the effect of large output layer size in the correlation metric,
however the computation was extremely time-consuming. Furthermore, the learning rate
ranged from 107* to 1072, and the regularization parameter being in the range of 10~ to
1072, The batch size that we used was either 500 samples or 1000 samples.

The activation function was kept the same as the original paper, which was a sigmoid
function, and the error metric was the error metric as defined from the paper, a version
of CCA using a derivative-free optimization method. The optimizer function of the paper
was the L-BFGS second-order optimization method, however due to it being more difficult
to compute, the optimizer RMSProp was used, with similar results. The original paper
initialized the neural network using a denoising autoencoder, but this was out of the scope
of this study. [80]

The DCCA implementation we used was made with python by Z.Wu. The method
is implemented with pytorch, which supports for multi-GPU training, however this study
employed only CPU training. ([81], [82])
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4.4 Data Analysis Techniques

In our experimentation with the dataset, it was noticed early that the nature of the
different types of views of the dataset was an obstacle to the methods and the goals we
wanted to achieve. We hypothesized that the difficulty to achieve better classification
scores stemmed from the fact that the two views of data were different not only in type
(numerical vs categorical), but in the difference of the dimensions as well, making the
algorithms employed inefficient and/or not well suited for the task.

To remedy this situation, we experimented with data analysis techniques. Initially
we tried OPNMF, to reduce the number of imaging dimensions, to more closely match
the number of genetic dimensions. Then, we tried using MCA to transform the genetic
data from categorical to numerical, and finally we tried creating a combining transforma-
tion of the two views using FAMD, as a benchmark for the other methods. All possible
combinations of the methods were tested, in order to find the best possible mix.

A data analysis technique that this study explores is that of Orthonormal Projec-
tive Non-Negative Matrix Factorization. This method is used to dimensionally reduce a
dataset, while still maintaining interpretability, due to the non-negative nature of the ma-
trix decomposition. For this dataset, we applied OPNMF to the RAVENS maps of the
imaging data, because it has been observed to achieve better results than the MUSE ROls,
while reducing the dataset dimensions. In this work, the imaging data was reduced into
30 components. [42]

The number of the resulting components was chosen in a way that was close to the
number of the number of dimensions of the genetic data, close to the (later referenced)
number of MCA components, while not too small in order to retain most of the information
and minimize approximation error, and not too big in order for the method to have any
use. It is worth noting that the OPNMF method rescales the data, a much needed action,
since different ROIs have orders of magnitude different intensities, a feature that the SVM
classifiers benefit from.

Another data analysis technique that is used in this study is Multiple Correspondence
Analysis, which, as previously mentioned, analyses the structure of a number of dependent
categorical variables, and performs dimensionality reduction if necessary. For this dataset,
we applied MCA to the genetic data, in order to dimensionally reduce the 54 SNPs into
10 components. This had the added benefit of transforming the categorical data into
numerical, which we hypothesized would greatly enhance the outcome of the classification.

The method was performed using mca, a package for python which is intended to be
used along with pandas. [83]

The third and final technique we explored is Factor Analysis of Mixed Data, which com-
bines multiple views of the dataset, to create a transformation along with a dimensionality
reduction.

The number of the resulting components was chosen based on the fitting time, however
it was quickly observed that above 12 components, the time needed for computing the
resulting components was more than substantial, making the process of optimizing quite

lengthy and not feasible.
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The method was based on the implementation of the python package prince, an open-

source package developed by Max Halford. [84]
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4.5 Classification

The task we tried to enhance the models for was the one of classification. To solve
that, we chose the SVM family of models, and optimized it through parameter grid search,
which is exhaustive search of all the different parameter combinations.

As mentioned previously, SVMs can have different kernels, in order to accommodate for
non-linear datasets. We experimented with linear, polynomial, and radial basis function
kernels, which are among the most commonly used. For each kernel, its specific parameters
were optimized through grid search, and the results were evaluated on their ability to
generalize through cross validation.

For all of the different cases, we used the python library Scikit-Learn, and specifically
the sklearn.svim module. [85]

In particular, for the linear kernel we experimented with L2 normalization penalty,
[0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] C (regularization parameter) values, and one-vs-
rest multi class classification strategy. As for the polynomial kernel, we experimented with
polynomial degrees of [2,3,4,5], independent term values of [0.00001, 0.0001, 0.001, 0.01,
0.1, 1, 10], C values of [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10], and finally kernel coefficient
values (g values) of [0.0001, 0.001, 0.01, 0.1, 1|. Finally, as for the radial basis function
kernels, we experimented with C values of [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10|, and
kernel coefficient values of [0.0001, 0.001, 0.01, 0.1, 1].

Each kernel was given 1000 iterations in order to converge, and the cross validation
was done with 5 folds. The data was split into train and test splits, with respective sizes
of 80% and 20% of the initial dataset, without shuffling, as the data was already ordered
randomly. All of the combinations were run on all of the potential different combinations
on views of every data analysis techniques (imaging + genetic views, only imaging, only
genetic).

Furthermore, in addition to the simple method of the SVM models, we attempted to
use the method of ensemble learning to further enhance the classification outcome. For
that reason, we experimented with the methods of Bagging (Bootstrap Aggregating) and
Adaboost. For both of those methods, we experimented with the base classifier being a
decision tree or a linear SVM.

For all of the different combinations, we used the python library Scikit-Learn, and
specifically the sklearn.ensemble module.

The parameter tuning for both of those models as well as their base classifiers was done
with grid search along with cross validation, using 5 folds. Specifically, for the Bagging
classifier ensemble model, the parameters that we experimented with were the number of
estimators, with values of [5,10,15], the maximum samples of the dataset that an estimator
could train on, with values of [60%,80%,100%|. As for the Adaboost ensemble classifier
model, the parameters we experimented with were again the number of estimators, with
those being [5,10,15,50], and SAMME and SAMMEL.R for the boosting algorithm. The
learning rate for this model was kept at 1.0.

For the decision tree base classifier, the parameters we experimented with were the

estimator criterion, with it being either gini Impurity or entropy, along with the max depth,
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with its values being [1,2,5]. Finally, for the linear SVM base classifier, we experimented
with the C parameter, with its values being [0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10].

Before the classification task, if needed, balancing and scaling was applied. Balancing
the dataset was done through random undersampling, while scaling was performed utilizing
scikit-learn’s preprocessing module, and more specifically the StandardScaler function.
This function standardizes features by removing the mean and scaling to unit variance.

The metrics we chose for the classification task were those of accuracy, balanced ac-
curacy, and F1 score. The implementation of the metrics that was used was again from
Scikit-Learn. As for accuracy, it is the ratio of:

True Positive + True Negative
True Positive + False Positive + True Negative + False Negative

Accuracy =

As for the balanced accuracy, it is the ratio of:

True Positive True Negative )

Balanced ACCUTaCy = AUg(True Positive + False Negative+True Negative + False Positive

And as for the F1 score, it is the ratio of:

_ True Positive
F1 Score = True Positive + %(False Positive + False Negative)






Kegpdiaio

DCCA Optimizations

Before the classification, we must optimize the DCCA network parameters, and find

the ideal values and combinations. We do that for the different cases of the views.

First of all, we train the DCCA networks on the raw data, meaning the 145 ROI values
for the imaging view, and the 54 SNPs for the genetic view. After that, we take the MCA-
transformed genetic data (10 genetic components), and pair them with the original imaging
data, meaning the 145 ROI values. Finally, we experiment with the opposite combination,
which is the OPNMF-transformed imaging data (30 imaging components) and pair them
with the original genetic data, meaning the 54 SNPs.

As mentioned in the previous chapter, the parameter combinations we explored affect
the number and sizes of the hidden layers, the size of the output layer of the network, the
learning rate, the regularization parameter and the batch size. The following results are

after exhaustive search of the different parameter combinations.

The metric we optimized for is the correlation between the two views, after being
transformed by their respective DCCA network. Essentially we pass the data through
their own trained network, transforming them and measuring how linearly correlated they
have become. The total number of parameter combinations for each different case of the

views is 288.

For each parameter, we plotted for the different values the correlation achieved by the
worst combination of the parameter’s value with all the other possible parameters values,
the average correlation, as well as the best correlation. Since the implementation of the
DCCA network employed the correlation as a Loss function (assigned with a negative

signum, in order to be able to be minimized), we used that as the metric directly.
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Yyfua 5.5: Regularization Parameter vs Achieved Correlation

Based on the above figures, it is clear that the more nodes the output layer has, the
better the correlation of the transformed data is, not only on the best case, but on average

as well as on the worst case.

Furthermore, it is clear that the hidden layer size and number have little effect on the
output correlation, since not only the best, but also the average and the worst cases, the
correlation numbers seem to be the same. It can be noted that more hidden layers and
more nodes per hidden layer do seem to be achieving better results, but the difference is

minor.

As for the batch size parameters, in our experiments the results stay basically identical;
the only change being noticed in terms of training time, since the lower the batch size,
the more time the model takes per epoch to run through the dataset, hence more training

time for the same number of epochs.

The same effect can be noticed with the Learning Rate, since the best case is more or
less achieving the same results, however here we can observe that the average case benefits

from a medium Learning Rate value of 0.001.

Finally, the Regularization parameter follows the same logic, with its changing not

making a substantial difference, and on all accounts the results being identical.

To summarize the parameters’ effects, we can create the following table:



5.2 Transformed Genetic data: 145 ROI (Imaging) + 10 MCA components (Genetic)

Parameter Action Correlation (Negative Loss)

Output Dimension Size 1
Hidden Layer Size 1
Learning Rate
Batch Size
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N
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Stays basically the same

Stays basically the same

Yyfua 5.6: Learned Conclusions from DCCA optimizations on 145 ROI (Imaging) and 54
SNPs (Genetic)
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As before, we notice the same patterns. Increasing the output layer size results in an
increase in output correlation, hidden layer size and number of hidden layers seems to make
a small difference, and for the rest of the parameters the effect seems to be negligible. We

can sum up the parameter behaviour in the following table:
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Parameter Action Correlation (Negative Loss)
Output Dimension Size 1 (N
Hidden Layer Size 1 T
Learning Rate Medium to low LR is best
Batch Size Stays basically the same

Regularization Parameter Stays basically the same

Yyfua 5.12: Learned Conclusions from DCCA optimizations on 145 ROI (Imaging) and
10 MCA Genetic components
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Finally, in the case of the transformed through OPNMF imaging data combined with
the raw genetic data, we can see that the parameter behaviour is again the same. Once
again, output layer size increase correlates with better results, bigger hidden layer size,
along with increasing the number of hidden layers improves the output correlation but
only slightly, learning rate should be kept at a value of 0.001, and altering the other

parameters has little to no effect.
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Parameter Action Correlation (Negative Loss)
Output Dimension Size 1t T
Hidden Layer Size 1t T
Learning Rate Medium to low LR is best
Batch Size Stays basically the same

Regularization Parameter Stays basically the same

Yyfuo 5.18: Learned Conclusions from DCCA optimizations on 54 Imaging components
and and 54 SNPs (Genetic)
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Results

In this chapter, we introduce results the methods and combinations thereof we experi-
mented with achieved.

First, the classification results of the raw views are presented, meaning the imaging
data as is (145 ROIs) and the genetic data as is (54 SNPs), as a baseline. Those results
are contrasted with the results of applying DCCA to those data. Following that, the
classification results using MCA-transformed genetic data (10 genetic components) and the
original imaging data are presented, and contrasted with DCCA applied on top of that.
Afterwards, the respective results are presented after OPNMF (30 imaging components)
and then with DCCA on top of that, using the combination of MCA and OPNMF, and
finally after FAMD.

For the aforementioned combinations of methods, the classification results are presented
before and after scaling (if needed) and balancing, to highlight the effect those techniques
have on the task. Finally, to ensure that the effect of having both views is properly
documented, we perform the same task with both views, as well as keeping only one view,

testing imaging and genetic for every method.
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6.1 Raw data vs DCCA

As mentioned before, we consider as the baseline results the SVM classification on the
imaging and genetic data taken directly after LR on the ADNI dataset, and then compare

them with the methods we experimented with.

6.1.1 Without scaling or balancing:

N Accuracy
50 . Flscore
e Galanced Accuracy

20 A

Accuracy Score (%)

Both Linear without DCCA Both Poly without DCCA  Both RBF without DCCA  Both Linear with DCCA
SVM

Both Poly with DCCA Both REF with DCCA

Yyfuo 6.1: Classification metric scores using Both views (Imaging and Genetic), on the
SVM kernels (Linear, Polynomial, RBF), using raw data (3 left bar groups) vs using DCCA
(3 right bar groups)
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Imaging Linear without DOG#aging Poly without DCOMnaging RBF without DCCémaging Linear with DCCAImaging Poly with DCCA  Imaging REF with DCCA

SVM

Yyfua 6.2: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF), using raw data (3 left bar groups) vs using DCCA transformed
imaging data, trained on both views (3 right bar groups)
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SVM

Yyhua 6.3: Classification metric scores using only the Genetic view, on the SVM kernels

(Linear, Polynomial, RBF), using raw data (3 left bar groups) vs using DCCA transformed
genetic data, trained on both views (3 right bar groups)
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Yyfua 6.4: Classification metric using Bagging on the imaging and genetic data.
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Yyfua 6.5: Classification metric using AdaBoost on the imaging and genetic data.
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6.1.2 With scaling and balancing:
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Yyfua 6.6: Classification metric scores using Both views (Imaging and Genetic), on the

SVM kernels (Linear, Polynomial, RBF), using raw data (3 left bar groups) vs using DCCA
(3 right bar groups)
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Yyhua 6.7: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF), using raw data (3 left bar groups) vs using DCCA transformed
imaging data, trained on both views (3 right bar groups)
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Yyfuo 6.8: Classification metric scores using only the Genetic view, on the SVM kernels
(Linear, Polynomial, RBF'), using raw data (3 left bar groups) vs using DCCA transformed
genetic data, trained on both views (3 right bar groups)
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Eyfua 6.9: Classification metric using Bagging on the imaging and genetic data.
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Yyfuo 6.10: Classification metric using AdaBoost on the imaging and genetic data.

The following tables present the complete results for the raw data, as well as the

CA transformed data, for each model, for each metric, for each view, and either with or

without scaling and balancing. With green are highlighted the best values for each metric,

depending on whether scaling and balancing were applied:

Raw Data

Accuracy % Original Data Scaled and Balanced Data

Linear K. Poly K RBFK Bagging DT_| Bagging SVM | _AdaBoost DT | AdaBoost SYM | _ Linear K Poly K RBFK Bagging DT | Bagging SYM | AdaBoost DT | AdaBoost SVM
Both Views 49.43 51.34 51.34 52.49 41 50.19 35.63 52.74 52.74 52.74 53.42 53.42 51.37
Imaging View 5019 5134 5134 5172 36.02 H 37.16 50 53.42 53.42 5479 52.74 53.42 1863
Genetic View 45.98 51.34 51.34 52.11 51.34 41.76 44.83 411 41.78 41.78 46.58 37.67 | 47.26 | 36.3
E1 Score Original Data Scaled and Balanced Data

Linear K. Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT_| AdaBoost SVM | _ Linear K Poly K RBF K. Bagging DT | Bagging SYM | AdaBoost DT | AdaBoost SVM
Both Views 49.33 34.83 34.83 50.66 42.26 49.05 36.94 49.42 49.49 49.49 4851 50.2 45.29
Imaging View 49.99 34.83 34.83 50.47 36.02 37.73 47.8 51.12 51.12 5239 49.16 51.13 4739
Genetic View 41.28 34.83 34.83 46.71 34.83 38.39 40.74 38.78 40.71 40.71 36.82 3713 | 42.44 | 32.59
Balanced Accuracy| Original Data ‘Scaled and Balanced Data

Linear K. Poly K RBF K Bagging DT | Bagging SVM_|_AdaBoost DT_| AdaBoost SVM | _ Linear K Poly K RBF K. Bagging DT | Bagging SYM | AdaBoost DT | AdaBoost SVM
Both Views 475 3333 3333 49.09 39.41 47.58 34.48 54.96 54.78 54.78 54.59 54.46 H 52.96
Imaging View 4833 33.33 3333 46.97 39.16 33.07 51.94 55.3 55.3 55.7 53.81 54.73 49.79
Genetic View 3488 3333 3333 40.02 3333 31.99 35.29 42.66 429 429 47.72 38.03 | 49.11 | 3825

Yyfua 6.11: For each model and classifier, the metric scores for raw data classification are
presented. Highlighted green are the best performing models, for each metric.
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DCCA
‘Accuracy % Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 2713 50.19 50.19 2981 215 4713 4636 1863 47.95 4795 1315 50 39.08 4178
Imaging View 5172 52.11 5211 4789 2521 4828 4598 50 1863 4863 39.04 43.84 2384 a1
Genetic View 2424 5134 5134 52.49 2215 50.96 4559 3767 363 363 363 39.04 3836 3973
F1Score Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 164 38.16 3816 38381 22.63 221 4659 274 47.09 47.09 38.97 1827 38.76 396
Imaging View 50.8 4776 4776 2231 2515 1336 46.01 29.01 18.08 48.08 3858 22,63 439 3805
Genetic View 40.35 3483 3483 2054 2143 46.28 4478 36.73 3512 3512 3525 38.82 3812 3943
Balanced Accuracy| Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 22,04 33.73 3373 3338 37.05 36,52 4485 4997 7913 4913 1398 50.64 39.74 2338
Imaging View 25.82 20.45 2045 3561 22.85 36.21 4525 51.37 296 296 394 24555 2377 2228
Genetic View 3389 3333 3333 3554 35.92 39.04 383 386 37.41 3741 35.87 3932 3838 4054

Yyfuo 6.12: For each model and classifier, the metric scores for DCCA transformed data
classification are presented. Highlighted green are the best performing models, for each
metric.




6.2 MCA vs MCA - DCCA

6.2 MCA vs MCA - DCCA

Moving on from the classification of the raw data versus the DCCA transformed data,
we explore the effect that MCA has, and introduce the results of the classification. In this
part, we present the classification results, (a) of the data after the genetic view has been
transformed through MCA, and (b) of the DCCA transformed data after the genetic view
has been transformed through MCA.

6.2.1 Without scaling or balancing:

N Accuracy
50 mm Flscore
mm Ealanced Accuracy

20 1

Accuracy Score (%)

Both Linear without DCCA Both Poly without DCCA  Both RBF without DCCA  Both Linear with DCCA  Both Poly with DCCA Both REF with DCCA

SVM

Yyfua 6.13: Classification metric scores using Both views (Imaging and Genetic), on the
SVM kernels (Linear, Polynomial, RBF), using raw imaging and MCA transformed genetic

data (8 left bar groups) vs using DCCA transformed raw imaging and MCA transformed
genetic data (3 right bar groups)
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. Accuracy
50 4 — e Flscore
W Balanced Accuracy

20 A

Accuracy Score (%)

Imaging Linear without DOG#aging Poly without DCO#vaging RBF without DCCAmaging Linear with DCCA Imaging Poly with DCCA Imaging REF with DCCA

SVM

Yyfua 6.14: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF), using raw imaging data (3 left bar groups) vs using the DCCA
transformed imaging data, trained on raw imaging data and MCA transformed genetic data
(3 right bar groups).

N Accuracy
50 4 mm Fl score
mm Balanced Accuracy

20 1

Accuracy Score (%)

Genetic Linear without DCGEnetic Poly without DCCBenetic RBF without DCCAGenetic Linear with DCCA Genetic Poly with DCCA  Genetic RBF with DCCA

SVM

Yyfua 6.15: Classification metric scores using only the genetic view, on the SVM kernels
(Linear, Polynomial, RBF), using MCA transformed genetic data (3 left bar groups) vs
using the DCCA transformed genetic data, trained on raw imaging data and MCA trans-
formed genetic data (3 right bar groups).



6.2.1 Without scaling or balancing:
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Yyfua 6.16:  Classification metric using Bagging on the MCA transformed imaging and
genetic data.
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Yyfuo 6.17: Classification metric using AdaBoost on the MCA transformed imaging and
genetic data.
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6.2.2 With scaling and balancing:

N Accuracy

Hl F1 score
I Bala mw
o I I I

Both Linear without DCCA Both Poly without DCCA  Both RBF without DCCA Bolh Linear with DCCA  Both Poly with DCCA Both RBF with DCCA

Accuracy Score (%)
= 15 = 2

-
o

Yyhuo 6.18: Classification metric scores using Both views (Imaging and Genetic), on the
SVM kernels (Linear, Polynomial, RBF), using raw imaging and MCA transformed genetic

data (3 left bar groups) vs using DCCA transformed raw imaging and MCA transformed
genetic data (3 right bar groups)

N Accuracy

I F1 score
I Bala mw
o I I I

Imaging Linear without DG G®aging Poly without DCClénaging RBF without DCCPn’laglng Linear with DCCAImaging Poly with DCCA Imaging REF with DCCA

Accuracy Score (%)
= 1= = =

-
=]

Yyfua 6.19: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF), using raw imaging data (3 left bar groups) vs using the DCCA
transformed imaging data, trained on raw imaging data and MCA transformed genetic data
(3 right bar groups).



6.2.2 With scaling and balancing:

5 &
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Accuracy Score (%)
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I Accuracy
H F1 score
I Balanced Accuracy

Genetic Linear without DCO3enetic Poly without DCCBenetic RBF without DCCAsenetic Linear with DCCA Genetic Poly with DCCA Genetic RBF with DCCA

SVM

Yyfuo 6.20: Classification metric scores using only the genetic view, on the SVM kernels
(Linear, Polynomial, RBF), using MCA transformed genetic data (3 left bar groups) vs
using the DCCA transformed genetic data, trained on raw imaging data and MCA trans-
formed genetic data (3 right bar groups).

The confusion matrices of the MCA and MCA - DCCA models are shown, because
they performed exceptionally good:
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The Confusion Matrices for each class, per model, using both views (top row),
only the imaging view (middle row), and only the genetic view (bottom row). The three
left columns represent the CM of the raw imaging and MCA transformed genetic data
classification, while the three right columns represent the CM of the DCCA transformed
data classification.
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Yyfuo 6.22: Classification metric using Bagging on the MCA transformed imaging and
genetic data.
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Yyfuo 6.23: Classification metric using AdaBoost on the MCA transformed imaging and
genetic data.



6.2.2 With scaling and balancing:

The following tables present the complete results for the MCA transformed data, as well
as the DCCA transformed data after MCA transformation on the genetic data, for each
model, for each metric, for each view, and either with or without scaling and balancing.
With green are highlighted the best values for each metric, depending on whether scaling

and balancing were applied:

MCA
Accuracy % Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 50.19 5134 5134 5172 2291 7981 37.16 5753 59.59 59.59 5411 52.05 53.42 2932
Imaging View
Genetic View 49.04 5134 5134 5172 2981 4828 2981 3767 30.14 30.14 3151 35.62 30.82 3836
F1Score Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 49.99 34.83 3483 1925 2396 1962 36.25 526 57.85 57.85 50.29 2815 5236 28.43
Imaging View
Genetic View 35.19 3483 3483 36.96 35.01 35.24 3492 3721 13.96 1396 2762 3361 306 3845
Balanced Accuracy] Original Data Scaled and Balanced Data
Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM | Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM
Both Views 4833 3333 3333 47.17 2035 1808 3559 57.24 59.41 59.41 56.38 5467 5398 2988
Imaging View
Genetic View 3217 3333 3333 3438 325 3183 325 374 3333 3333 3369 3737 3072 383

Yyfuo 6.24: For each model and classifier, the metric scores for MCA transformed data
classification are presented. Highlighted green are the best performing models, for each
metric.

MCA + DCCA
Accura Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost VM| Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 26.36 50.96 50.96 44.44 45.59 46.74 49.81 40.41 37.67 37.67 45.89 411 4521 42.47
Imaging View 22,91 47.89 47.89 2636 26.74 47.13 4138 50 21.48 41.48 4315 52.05 2521 4521
Genetic View 39.08 51.34 5134 5134 2368 2368 2253 2041 34.93 34.93 3151 33.56 3836 3836
F1 Score Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 26.75 36.52 36.52 38.82 26.03 2142 29.71 39.99 37.69 37.69 35.49 2055 35.86 22.08
Imaging View 217 20.13 40.13 4177 26.92 3933 411 48.48 404 204 42.82 50.1 35.86 36.71
Genetic View 39.39 34.83 34.83 355 2345 38.87 22.86 2014 34.88 34.88 29.45 33.73 3757 37.65
Balanced Accuracy] Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|  Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|
Both Views 269 3357 3357 32.42 45.46 35.07 45.04 4101 37.91 37.91 4856 21.28 26.31 22.66
Imaging View 37.47 34.63 34.63 35.96 46.19 332 40.13 51.84 43.13 4313 43.62 53.37 46.31 46.27
Genetic View 34.05 3333 3333 335 3751 3243 41.05 4141 35.27 35.27 30.15 33.41 38.62 3864

Yyhua 6.25: For each model and classifier, the metric scores for MCA - DCCA transformed
data classification are presented. Highlighted green are the best performing models, for each
metric.
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6.3 OPNMF vs OPNMF - DCCA

Furthermore, we explore the effect that OPNMF has to the task of classification. To
that extent, we compare the classification results of (a) the data after the imaging view
has been transformed with OPNMF and (b) the DCCA transformed data, trained on the
raw genetic data and the OPNMF transformed imaging data.

6.3.1 Without scaling or balancing:

N Accuracy
50 4 | | mm Fl score
mm Balanced Accuracy

20

Accuracy Score (%)

0
Both Linear without DCCA Both Poly without DCCA  Both REF without DCCA  Both Linear with DCCA

SVM

Both Poly with DCCA Both REF with DCCA

Yyfua 6.26: Classification metric scores using Both views (Imaging and Genetic), on the
SVM kernels (Linear, Polynomial, RBF), using raw genetic and OPNMEF' transformed
imaging data (3 left bar groups) vs using DCCA transformed raw genetic and OPNMF
transformed imaging data (3 right bar groups)



6.3.1 Without scaling or balancing:

e Accuracy
. Flscore
50 4 - mm Balanced Accuracy

20 1

Accuracy Score (%)

Imaging Linear without DOG#aging Poly without DCOMnaging RBF without DCCémaging Linear with DCCAImaging Poly with DCCA  Imaging REF with DCCA

SVM

Yyfua 6.27: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF'), using OPNMF transformed imaging data (3 left bar groups)
vs using the DCCA transformed imaging data, trained on raw genetic data and OPNMF
transformed genetic data (3 right bar groups).

W Accuracy
50 mmm Flscore
mm Balanced Accuracy

20 1

Accuracy Score (%)

Genetic Linear without DCGEnetic Poly without DCCBenetic RBF without DCCASenetic Linear with DCCA Genetic Poly with DCCA - Genetic RBF with DCCA

SVM

Yyfua 6.28: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF'), using OPNMF transformed imaging data (3 left bar groups)
vs using the DCCA transformed imaging data, trained on raw genetic data and OPNMF
transformed genetic data (3 right bar groups).
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Yyfua 6.29: Classification metric using Bagging on the OPNMEF' transformed imaging and

genetic data.
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Yyfuo 6.30:  Classification metric using AdaBoost on the OPNMF transformed imaging

and genetic data.



6.3.2 With scaling and balancing:

6.3.2 With scaling and balancing:

I Accuracy

I F1 score
50 BN Balanced Accuracy
a0
n
20
0
0

Both Linear without DCCA Both Poly without DCCA  Both RBF without DCCA Bolh Linear with DCCA  Both Poly with DCCA Both RBF with DCCA

Accuracy Score (%)

Yyhuo 6.31: Classification metric scores using Both views (Imaging and Genetic), on the
SVM kernels (Linear, Polynomial, RBF'), using raw genetic and OPNMF transformed
imaging data (3 left bar groups) vs using DCCA transformed raw genetic and OPNMF
transformed imaging data (3 right bar groups)
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]

Yyfua 6.32: Classification metric scores using only the Imaging view, on the SVM kernels
(Linear, Polynomial, RBF'), using OPNMF transformed imaging data (3 left bar groups)
vs using the DCCA transformed imaging data, trained on raw genetic data and OPNMF
transformed genetic data (3 right bar groups).
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Yyfuo 6.33: Classification metric scores using only the genetic view, on the SVM kernels
(Linear, Polynomial, RBF), using raw genetic data (3 left bar groups) vs using the DCCA
transformed genetic data, trained on raw genetic data and OPNMF transformed imaging
data (3 right bar groups).
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Yyfua 6.34: Classification metric using Bagging on the OPNMEF' transformed imaging and
genetic data.



6.3.2 With scaling and balancing:
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Yyfuo 6.35:  Classification metric using AdaBoost on the OPNMF transformed imaging

and genetic data.

The confusion matrices of the OPNMF Bagging models are shown, because they per-

formed exceptionally good:
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Yyfua 6.36: The Confusion Matrices for each class, with Bagging, for the OPNMF trans-
formed imaging and genetic data.



6.3.2 With scaling and balancing:
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Yy 6.37: The Confusion Matrices for each class, with AdaBoost, for the OPNMF trans-
formed imaging and genetic data.

The following tables present the complete results for the OPNMF transformed data, as
well as the DCCA transformed data after OPMNF transformation on the imaging data, for
each model, for each metric, for each view, and either with or without scaling and balancing.
With green are highlighted the best values for each metric, depending on whether scaling

and balancing were applied:
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‘Accuracy % Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 51.74 5135 5135 47.49 52.9 2826 53.28 48.28 28.97 28.97 29.66 5517 2826 53.28
Imaging View [[153:28 5135 5135 2633 51.35 5174 5328 51.03 2897 28.97 55.86 58.62 5174 5328
Genetic View
F1 Score Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|
Both Views 51.51 34.85 34.85 4633 50.03 47.98 51.46 44.16 13.01 13.01 47.28 494 47.98 51.46
Imaging View |1 53:16 34.85 34.85 4586 50.52 51.46 51.46 48.08 13.01 13.01 5345 542 51.46 51.46
Genetic View
lanced Accural Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 1864 3333 3333 4157 2451 26.72 253 52.55 3333 3333 50.93 57.69 26.72 253
Imaging View [50.26 3333 3333 229 2578 2871 253 54.79 3333 3333 57.57 61.01 2871 253
Genetic View

Eyfuo 6.38: For each model and classifier, the metric scores for OPNMEF transformed data
classification are presented. Highlighted green are the best performing models, for each
metric.

OPNMF + DCCA
‘Accuracy % Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM| Linear K Poly K RBF K Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 45.95 47.88 47.88 50.58 20.93 52.9 46.33 49.66 49.66 49.66 24.14 46.9 28.97 53.79
Imaging View 48.65 49.42 49.42 50.97 47.49 43.24 50.19 49.66 49.66 49.66 43.45 50.34 47.59 51.03
Genetic View 45.95 45.56 45.56 50.58 45.17 51.35 45.56 40.69 40.69 40.69 35.86 3517 38.62 45.52
F1 Score Original Data Scaled and Balanced Data
Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|  Linear K Poly K RBF K Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM|
Both Views 46.08 47.25 47.25 22.38 40,56 50.14 26.2 46.52 49.03 49.03 2368 42.04 28.93 53.38
Imaging View 4878 4836 4836 4827 47.33 40.79 50.06 45.55 4854 4854 22,13 26.74 2681 48.01
Genetic View 44.72 4387 4387 36.34 2371 26.94 43.69 40.69 207 207 35.86 3452 3828 4552
Balanced Accuracy] Original Data Scaled and Balanced Data
Linear K Poly K RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT | AdaBoost SVM|
Both Views 445 43.08 43.08 36.1 38.11 43.42 47.34 51.4 50.95 50.95 45.2 49.62 49.56 55.03
Imaging View 47.06 4325 4325 2155 26.86 34.14 53.33 51.45 50.95 50.95 452 52.71 2917 48.01
Genetic View 386 37.57 37.57 3333 37.15 39.38 37.38 212 40.97 40.97 35.95 36.29 39.45 4533

Yyfuo 6.39: For each model and classifier, the metric scores for OPNMF - DCCA trans-
formed data classification are presented. Highlighted green are the best performing models,
for each metric.




6.4 Application of MCA to the genetic data along with OPNMF to the imaging data

6.4 Application of MCA to the genetic data along with O-
PNMF to the imaging data

Combining the two previous techniques, we now apply MCA to the genetic data, and

OPNMF to the imaging data, and combine the two transformed views for the classification
task.

6.4.1 Without scaling or balancing:
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Yyfua 6.40: Classification metric using both views (imaging and genetic) on the SVM ker-

nels (Linear, Polynomial, RBF'), using the MCA transformed genetic and OPNMF trans-
formed imaging data.
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Yyfuo 6.41: Classification metric using Bagging on the MCA and OPNMEF' transformed
imaging and genetic data.
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Yyfuo 6.42: Classification metric using AdaBoost on the MCA and OPNMF transformed
mmaging and genetic data.
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6.4.2 With scaling and balancing:

6.4.2 With scaling and balancing:
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Yyfua 6.43: Classification metric using both views (imaging and genetic) on the SVM ker-

nels (Linear, Polynomial, RBF), using the MCA transformed genetic and OPNMF trans-
formed imaging data.
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Yyfuo 6.44: Classification metric using Bagging on the MCA and OPNMEF transformed
imaging and genetic data.
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Yyfuo 6.45: Classification metric using AdaBoost on the MCA and OPNMF transformed
imaging and genetic data.

The following tables present the complete results for the MCA and OPNMF trans-

formed data, for each model, for each metric, for each view, and either with or without

scaling and balancing. With green are highlighted the best values for each metric, depend-

ing on whether scaling and balancing were applied:

MCA + OPNMF

‘Accuracy % Original Data Scaled and Balanced Data
Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K’ RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 5212 5135 5135 4826 44.79 53.28 56.55 54.48 54.48 46.9 55.86 55.17
Imaging View
Genetic View
F1 Score Original Data Scaled and Balanced Data
Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K’ RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 51.94 3485 34.85 47.26 2394 51.46 5378 5325 53.25 38.87 5291 53.68
Imaging View
Genetic View |
Balanced Accuracy| Original Data Scaled and Balanced Data
Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SYM|  Linear K Poly K’ RBFK Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|
Both Views 3333 3333 4235 455 39.15 253 58.18 55.72 55.72 29.58 57.86 54.87
Imaging View
Genetic View | [ | |

Yyfuo 6.46: For each model and classifier, the metric scores for MCA and OPNMEF trans-
formed data classification are presented. Highlighted green are the best performing models,
for each metric.
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6.5 Application of FAMD to the dataset

6.5 Application of FAMD to the dataset

Another method for dimensionality reduction is Factor Analysis of Mixed Data. FAMD

combines both views, and creates a set of transformed components that contain information
from both sets of variables.

6.5.1 Without scaling or balancing:
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Yy 6.47: Classification metric using both views (imaging and genetic) on the SVM

kernels previously mentioned (Linear, Polynomial, RBF), using the FAMD transformed
imaging and genetic data.
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Yyfuo 6.48: Classification metric using Bagging on the FAMD transformed imaging and
genetic data.
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Yyfuo 6.49: Classification metric using AdaBoost on the FAMD transformed imaging and
genetic data.
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6.5.2 With scaling and balancing:

6.5.2 With scaling and balancing:
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Yyfua 6.50:  Classification metric using both views (imaging and genetic) on the SVM
kernels previously mentioned (Linear, Polynomial, RBF), using the FAMD transformed
1maging and genetic data.
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Yyfuo 6.51: Classification metric using Bagging on the FAMD transformed imaging and
genetic data.
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Yyfuo 6.52: Classification metric using AdaBoost on the FAMD transformed imaging and
genetic data.

The following tables present the complete results for the FAMD transformed data, for
each model, for each metric, for each view, and either with or without scaling and balancing.
With green are highlighted the best values for each metric, depending on whether scaling

and balancing were applied:

\ \ \ \ \ \ \ \
Accuracy % ‘ ‘ Original Data ‘ ‘ ‘ ScaIeL and Balanced Data ‘ ‘
Linear K Poly K’ RBFK ‘Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|  Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|
Both Views 54.41 49.43 53.26 52.87 53.26 48.63 48.63 4384 50.68 47.26 50.68
Imaging View
Genetic View
F1 Score Original Data Scaled and Balanced Data
Linear K Poly K’ RBFK ‘Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|  Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|
Both Views 44.42 44.42 4831 295 5175 51.83 2571 2326 2326 416 2453 26.21
Imaging View
Genetic View
Balanced Accuracy| Original Data Scaled and Balanced Data
Linear K Poly K’ RBFK ‘Bagging DT | Bagging SYM | AdaBoost DT |AdaBoost SVM|  Linear K Poly K RBFK Bagging DT | Bagging SVM | AdaBoost DT |AdaBoost SVM|
Both Views 2582 4352 4233 2657 25.98 5124 5124 2541 52.66 2973 53.77
Imaging View
Genetic View | | | | |

Yyfua 6.53: For each model and classifier, the metric scores for FAMD transformed data
classification are presented. Highlighted green are the best performing models, for each
metric.
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6.6 Results Summary

6.6 Results Summary

To summarize the results, we present a table with the best accuracy, F1 Score and

balanced accuracy scores for each model, along with some notes.

The diagram below

visualizes the best results of each model, in order for them to be compared more easily.

Model Best Accuracy (%) | Best F1 Score (%) | Best Balanced Accuracy (%) Notes
RAW DATA 55.48 54.00 56.65 145 ROIs (Scaled) and 54 SNPs (Balanced). Both
AdaBoost DT.
DCCA-150-3 51.72 50.80 45.82 Output Dlmensm_n 150, 3 _Hldd_en Layers, no
scaling or balancing. Imaging Linear.
OPNMEF 58.62 54.02 30 Imaging Compon.ents (Aft.er OPNMF)
Balanced only. Imaging Bagging SVM.
OPNMF + 30 Imaging Components (After OPNMF) and 54
DCCA-150-3 53.79 53.38 55.03 SNPs, then DCCA, then scaled and balanced.
Both AdaBoost SVM.
145 ROIs (Scaled), 10 Genetic components,
e Sadl Balanced only. Both Poly SVM.
145 ROIs and 10 Genetic components (After
MCA + DCCA-150-3 52.05 50.10 53.37 MCA), then DCCA, then scaled and balanced.
Imaging Bagging SVM.
30 Imaging Components (After OPNMF) and 10
MCA + OPNMF 57.24 53.68 53.77 Genetic components (After MCA), Balanced only.
Both AdaBoost SVM.
10 Components, no scaling, no balancing. Both
FAMD 55.17 44.42 50.87 Poly / RBF SVM.

Yyfua 6.54: For each model, the best Accuracy, F1 Score, Balanced Accuracy achieved are
shown, along with notes explaining the combination of data and parameters used. High-
lighted in green are the best and second best (lighter green) results achieved among all

models.
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Yyfuo 6.55: For each model, the best Accuracy, F1 Score and Balanced Accuracy are

plotted.
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Discussion

Looking at the results, we can clearly see that the models that achieve superior results
are the OPNMF and MCA models. The first model, employed the OPNMF technique in
order to transform the 145 ROI values for the imaging view of the dataset into 30 imaging
components. After that, without the genetic view, balancing on the imaging view was
performed, and the classification was performed after training a Bagging ensemble classifier,
using as a base model a linear SVM, achieving the highest balanced accuracy score, of
61.01%. The second model, utilized the MCA technique on the genetic view of the dataset,
reducing the 54 (categorical) values of the SNPs into 10 genetic components (continuous).
After that, along with the imaging view, balancing was performed, and the classification
task was carried out using the model of SVM (single classifier). The polynomial kernel as
well as the radial basis function were both used and both achieved identical results, which
are the best in accuracy and F1 Score, 59.59% and 57.85% respectively.

Published studies attempt to either classify patients with AD or CN, AD or MCI, or
predict the conversion rate of MCI to AD. This study attempts to classify simultaneously
all three classes (AD, MCI, CN), but with the help of the confusion matrices, observations
can be made for the performance of the models in the above tasks. These observations
can not however lead to conclusions about the performance of the models trained in this
thesis to the task of two class classification, since the models were trained for a three way
classification. Looking at the highest accuracy model’s (Bagging SVM ensemble classifier
on OPNMF transformed imaging data) confusion matrix, we can deduce that the accuracy
of the model at predicting AD vs CN is at 92.61%, which is in line with the results
achieved by similar SVM approaches ([86], [87]). However, there is a margin to AD vs CN
classification achieved scores compared to cutting-edge deep learning models, since they
can achieve accuracy scores of 97% or more ([88], [89]). MCI vs CN classification based
on the best models’ confusion matrix achieved 65.80% accuracy, worse than the state of
the art models published, that have an accuracy score of 86.57% [90]. Finally, AD vs MCI
classification scores achieved by the best model was 66.88%, worse than the state of the
art models, which achieved a score of 74.47% [91]. It has to be noted however, that the
models trained in this thesis were not only significantly simpler than the state of the art
ones, but also trained for the multi class classification task only.

It is immediately obvious that all models are achieving scores that are close to each

other, with their best variations being around 50% and above. That however is not the
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case for most variations of the models’ parameters, as is easily observable through the
figures of the fifth chapter (e.g. 6.11,6.12,6.24,6.25). Therefore, there is a clear benefit
in using the imaging view, since many genetic-only models are quite far from the best
models (achieving metric scores in the mid 30s). More importantly, no genetic-only model
has been able to achieve better results than another model that included the imaging
view. This is expected, since the genetic data do not contain any information about MCI
patients, and more importantly, the existence of AD risk alleles are not guaranteed to be
translated to having the disease. Furthermore, the information that is contained in the
neuroimaging data is very important, and many times is a better indicator than the genetic
data. Studies utilizing genetic only data have achieved prediction results that are worse
than the results of models that used imaging data and/or genetic data ([92], [93], [94]).
This is also evaluated by studies that have compared using the two views, and found that
using only genetic data is relatively worse [95]

Nevertheless, the same cannot be said for the opposite; that is there is no clear benefit
in including always using both the genetic and the imaging views, since models that have
both views (imaging and genetic) are often outperformed by imaging-only models, yet they
trade places depending on the model. For example, the two previously mentioned models
(that achieve the best metric scores) are imaging-only (the case of the OPNMF model),
and both views (the case of the MCA model).

There is no clear conclusion to be drawn about the benefit of the techniques of balancing
and scaling. In the cases of (a) the data having no data analysis technique applied to
them before classification, i.e. raw, (b) MCA-transformed genetic view models, (¢) MCA-
transformed genetic view and OPNMF-transformed imaging view models, balancing the
dataset and applying scaling if needed seems to help, while in the case of the rest of the
models it seems to worsen the results. This might be because information could be perhaps
lost due to the method of standard scaling.

As for DCCA, it is clear that the technique achieves its target, which is to increase
the linear correlation between the two views. However, one can clearly observe that it
produces objectively worse results than equivalent no-DCCA methods. Even in the case of
the original data, the DCCA transformed data produce results that are across the board
worse in every metric. This is compounded by the fact that the DCCA networks not
only took a considerable amount of time to train and optimize, but also the transformed
outputs were clearly more computationally expensive to classify and therefore the fitting
of the classifiers to the DCCA-transformed dataset took more time than that of their
no-DCCA counterpart methods. The aforementioned facts can only lead us to conclude
that the use of the method cannot be recommended for this type of problem, with the
reservation that the model was not adequately trained or had not a nearly enough number
of parameters. This however could very well go beyond the scope of this work, and is
discussed in the next chapter. One detail that should be noted is that the DCCA method
is not suitable for the great dissimilarity of the two views (the imaging being continuous
and the genetic view being categorical). We attempted to remedy that dissimilarity with
the MCA and OPNMF methods, which definitely improved the results of the models that

utilized the DCCA method, however none of the resulting methods could achieve the results
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that the no-DCCA equivalent methods could achieve. While the model has the ability to
non-linearly transform data in such a way that they are maximally correlated, this case is
not a suitable case, as proven by the results. One reason might be that neural networks
often require a much greater volume of data, and another might be that the two views are
different in nature.

An interesting result is that of FAMD, in which both views are transformed into a
reduced number of components. This method, as previously mentioned, is similar to per-
forming PCA on the continuous imaging view while performing MCA on the categorical
genetic view, but combined. In our case, we set the number of components to 10 due to
long computational time, which proved to yield worse results than many of the other meth-
ods. It is entirely possible that the number of chosen components might not be enough to
capture all of the information that the two views provide, and only achieve a substantial
dimensionality reduction.

As can be seen by the extensive figures of the previous chapters, or more conveniently
from the table’s 6.54 notes, the ensemble classifiers were in general more successful in pre-
dicting the class. This aligns well with the empirical knowledge that ensemble methods of
even simple (as decision trees and linear SVMs are) can improve upon the single method
performance, even if the single method is more complex. The performance of the ensemble
classifiers achieved not only better best-case results, but on average was better overall,
with even the worst performing parameter combinations beating out the worst performing
parameter combinations of the single classifier models of SVM. This was intuitively hy-
pothesized, emprically proven, as well as expected as it has been shown in other studies.
[96]

Moreover, comparing the different ensemble methods, it is not clear as to which method
has the clear edge. The two methods have comparable results, with Bagging seemingly
being in more models marginally better than AdaBoost. Furthermore, comparing the two
methods for the base model classifier, which are the decision tree model and the linear
kernel SVM, we can conclude that in nearly every case, the linear SVM base model is
better, for both kinds of ensembles. While the difference between the performances of
the two base models is not substantial, there is a clear trend. It is worth noting that
both of those base models were chosen for their relatively simplistic nature, because of
computational time limitations and as to create a basis for comparing single classifier
models to ensemble classifiers.

Overall, ensemble methods result in higher classification performance compared to sin-
gle classifier models. Concerning the single classifier model of the different SVM kernels,
we can see that in most cases the polynomial and RBF kernels outperform the linear ker-
nel. Additionally, the polynomial and RBF kernels seem to outperform in the best case the
linear kernel, however the linear kernel seems to be more robust. That can be seen in many
confusion matrices, where the polynomial and RBF kernels classify the dataset with very
poor performance. There is however, a very interesting note to be added, concerning the
models that had DCCA applied to the dataset before the classification task. In those cases,
the linear kernel is better than the polynomial and RBF kernels. This might indicate that

indeed the DCCA method achieves the goal of linearly correlating the two views, however
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that might be at the expense of information loss, as those models are beaten by simpler
methods without having DCCA applied to the dataset. This alone might be indicative of
the need for not only more computational time and power devoted to the training of the
DCCA parallel neural networks, but also the need for bigger and more complex variations
of the network explored. In agreement with the original paper, after we applied DCCA,
the transformed views were more correlated than the original ones, so we succeeded at the
goal of the DCCA method.

Another important aspect that can be observed is the success of the models in the
classification of a specific class. We can see that most models (except from the models
with distinctively poor overall performance) could reliably classify the patients that were
suffering from AD from the CN people, while struggling to accurately decide for the case
of the MCI class. The confusion matrices in the figures of the previous chapter highlight
exactly that, with most models having a high percentage of the upper left portion of their
confusion matrix well-defined, while the outer right and bottom part (which is the part of
the MCI class) being quite confounded. As an example, one can observe the confusion ma-
trices for the OPNMF method (no-DCCA), with the classifier being an ensemble classifier
especially on using both or only the imaging view (6.36 Bagging, 6.37 Adaboost), but also
the confusion matrices of the MCA method on both views, with scaling or balancing, using
a single classifier model (6.21 SVMs). This is indicative of the strong performance of the
model in AD vs CN classification, as well as the difficulty of the problem to distinguish
CN vs MCI and MCI vs AD, as the MCI class is apparently blurring the lines of the other
classes. Since the methods and the models were optimized and trained for the problem of
multi-class classification on the classes of CN, MCI and AD aforementioned should not be
taken as a fact, but rather as an indication of performance.

The utilization of the grid search and cross validation methods for the evaluation of the
different model parameters’ performance while producing extensive and very useful results,
was limiting the number of models that could possibly be explored. Both the optimizations
of the DCCA networks, as well as the classification methods training, took for every model
time in the order of hours. As a result, only relatively simple methods such as Support
Vector Machines and Decision Trees were selected to be explored, since training multilayer
perceptrons and similar methdos for each classification task and then optimizing them not
only with every model and every view, but also with their respective grids of parameters
was out of the question. Another limiting factor was the insufficient amount of data points
that are inherently available to studies like these, which is due to the nature of the problem,
since biomedical data and especially neuroimaging data are not only hard to collect, but
pose storing, processing and visualization problems as well. Finally, the time frame for this
study was not unbounded, and thus there had to be a selective process as to the direction
of experimentation.

Finally, as to what the future directions might be for further research on the lessons
learned from this work, there are many possible steps. One might be to explore, as men-
tioned previously, different optimization algorithms, activation functions and generally
different architectures for the parallel neural networks of the DCCA method. Another di-

rection might be data augmentation, or creation of synthetic data, as to enrich the dataset
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and unlock the potential of the DCCA method. Concerning the data analysis techniques,
the OPNMF method is one that could benefit from experimenting with different number
of components, something that wasn’t done on this study due to computational power lim-
itations. Furthermore, more complex classifiers can be used, such as MLPs and K-Nearest
Neighbors classifiers. That can also be extended to the ensemble methods, not only for the
base classifier models, but also for the ensemble methods, with other boosting methods
and methods such as stacking being obvious candidates. Finally, to address the issue of
the different in nature and type views, one could explore the use of deep autoencoders in

order to alleviate the problem of handling categorical data.
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Conclusions

This study was intended to be an extensive comparison of the applications of data
analysis methods, as well as machine and deep learning methods, applied to the problem
of CN / MCI / AD classification. From the work that was performed, there are some
clear messages. First of all, data analysis techniques such as MCA and OPNMEF are better
compared to the MUSE ROIs because the OPNMF components are data driven while
MUSE ROlIs are derived from templates [42]. MCA is also better than the vanilla genetic
view, because it transforms the genetic data into the type of the imaging data, making
both views have the same kind. Furthermore, the method of Deep Canonical Correlation
Analysis as stated in the original paper [43], is not beneficial to this problem, at least not
without further tuning, however it increases the correlation between the views in agreement
with the original paper. Ensemble classifier methods are superior to the simplistic single
classifier methods such as Support Vector Machines. Finally, it is clear that using only
genetic data is not sufficient to yield higher-quality results, as they only show predesposition
for the disease. The combinations that achieved the best results used imaging or imaging
along with genetic data, either OPNMF-transformed imaging data or MCA-transformed
genetic data, accompanied with either Bagging ensembles of SVMs or a polynomial kernel
SVM as classifiers.
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