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ITepiindn

Y1y mopodoa Simhwuatixr epyaoto, ToapouctdleTal ot XovoTouog Ao Yia To TeoBANU
Tou BEATIOTOU GYEDLHOUOL TopElag 0 oTaTXd, TAYPWS YVwoTd tep3dihovta. H mpocéyyion
HoG, ETTEENEL O €Val POUTOT Vo ThoNyNUEl UE ACPIAELN TIPOC OTOLOBHTOTE TEOOPIOUO EVTOS
€VOG UTOGUVOAOU TOU YWOEOU ERYIUCIAS TOU, UE TNV YLPHOT EVOS TUPUUETELXOL EAEYXTY| oL [Ba-
oileton otnv Yewpla Teyvntdv Auvvopuxav Hediwv (TAII). H Behtiotdtnto emtuyydvetar pe
™V eqappoyy texvxodv Evioyutinic Mddnone (EM). ITo ouyxexpiuéva, ol Topduetpol Tou
duvoxol mediou puduilovtan xatdhinia péow evog ahyopldpou xhiong TOAMTIXAC Ue oxoTo
NV ehaytoTonolnon uag cuvdptnong xootoug. lIlapd Toug TEpLOpIoPOUS TNE, 1 TEOTEWVOUE-
v Y€0000¢ UTOPEl Vo ATMOTEAECEL UIdl ONUAVTIXT TEOCUHXY OTIC 1N UTEEYOUCES TEYVIXES

BérTioTou oyedlocuol Topelag.

AéCeic KAeowk

Béhtuotog Xyedaopog Hogetag, Hopopeteinde Exeyxtic, Teyvntd Auvvouixd Hedlo, Evi-
oyuti) Mdinon, Akyderduoc Kiiong Ilohtixrg






Abstract

In this thesis, a novel solution is presented for optimal motion planning in static,
fully-known environments. Our approach allows a robot to safely navigate towards any
destination within a subset of its workspace by using a parametric controller based on Ar-
tificial Potential Field (APF) theory. Optimization is achieved through the application of
Reinforcement Learning (RL) techniques. More specifically, the parameters of the underl-
ying potential field are adjusted appropriately with a policy gradient algorithm in order
to minimize a cost function. The proposed method is not without its limitations, but can

still be a valuable addition to the arsenal of established motion planning approaches.

Keywords

Optimal Motion Planning, Parametric Controller, Artificial Potential Field, Reinforce-

ment Learning, Policy Gradient Algorithm






Euyoaplotisg

Oa fieha xatopyds va expedow Tic Vepués You euyaplotiec otov xoinynt x. Kovota-
vtivo Kuptaxdémouho yia tnyv eniBhedn authc tng Simhwpatixng epyactiog xoddg xon yia 6Ao
T0 evdlapépov mou €dele xad'OAn TN Budpxeta tng. Enlong, Vo AHdeha vo mw éva tepdoTio
EUYAELO TG oToV xonyNTh x. Xapdhouno MreyAoOhn xa ctov utodrgio dddxtopa avo-
yiwtn Povooéa yio 6hn v xadodhynon xo tn oTHEIEN TOU UOU TROGEPEQIY, 1) EXTOVNOT
e Otmhwpatixng epyaociog dev da ftav duvaty ywelc T Pordeid touc. Téhog, Vo HUeha
VO ELYOPLCTACK TNV OXOYEVELR OV XAl GAOUE Toug avip®dToug Tou HToy BimAa You, yia T

CUUTORAG TAOT) TOUC OAAL AUTAL T YEOVLAL.
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Chapter

Extetaupevn Ilegiindn

1.1 Ewoaywyn

To npdBrnua Béhtotou oyedaopol nopeiog (Optimal Motion Planning) evéc poundt
nep ouBdver Ty elpeot wog BEATIOTNC X aoporols Btadpounc ueTal BUo onuelwy oTo
Ywpeo. Meydhn éugaon €yel dodel otny edpeomn AICEMY TOU PAXEOYEOVIOL AUTOU TEOBAAU-
T0¢, T0 omolo eppavileTon o TOXIAES LOPYES AOYW IBLUTECOTHTWY OTWS Efval oL Un-oAdvouoL
Teploptopol xou 1 UToeEn eunodiny oto yweo. Iopd ty mTAndoea drdéouny epyaheiny ixa-
VOV VoL OV TIETWT{O0LY TéTolo TRoBARUATO, UTEOYEL oXOUT TEQIOELO YLl TNV AVATTUEY X0l T1|
Behtiwon twv HoN undpyovTwy YeVddmV.

Y1y mapoloa gpyacia, oxOTOS Uog Eivol 0 OYEBIUOUOC EVOS XOUVOTOUOU TUPUUETELXOV
eheyxt) mou Vo yelpiletan oAhay€C oTOV TEAXG GTOYO TOU POUTOT TO ATOTEAECUATING., OLPalL-
POVTUC TNV AVAY XY Yio UTOAOYIO TIXN oY) OE TAPwS YVWoToUS, oTatinols ywmeous. Me tov
UTOAOYLOUO EVOC GET TORUUETEMY, TO POUTOT Vot €YEL TN BUVATOTNTA VO TAOTYEITOL UE ATPAAELL
TPOC OTIOLOVONTOTE TEAIXO GTOYO Tou PploXEToL EVIOE EVOC TROXA)OPLOUEVOU UTOGUVOAOU TOU
nepBdiiovtog tou. H Bedtiototnra emtuyydvetan puduiloviag xotdhhnho Ti¢ TWéS Twy ma-
PUUETEOY TOU EAEYXTH PE TNV Yenon Evioyutinic Mddnone (Reinforcement Learning), éto
(OOTE VO EAAYLOTOTOLE(TOL PLal CLVHETNOT XOGTOUS Olyws Vo BlaxuBEDOVTOL 1) AGPIAELDL XOTA
TNV TAOHYNON X 1) TEAXT) GOYXALOT, GTO GTOYO.

Mio and Tic evp€nwe YVOoteg Yedodoug Tpoceyylong TeolBANudTwyY oyedlacuol TopElag,
Tdvew oty onola Yo Baclotolue oe auth TNV epyaota, elvon 1 uédodog Teyvntdv Auvvauixmy
ITediwv (Artificial Potential Field) [1]. ¥t uédodo auth, to poundt poviehonoteiton we éva
cwuatidlo Tou xveltow LTS TNV emEEON Vo duvouxol Tedlou Tou xadopileton and Tor EUTOILYL
XL TOV TEAMXO 6TOY0 Tou pounoT. To eunddla avamaplo TmvTaL omd Eva amwinTnd dSuvaUxod
Tedio, EVE 0 TEMXOC GTOYOG AmO VO EAXTIXG, UE OXOTO TO POUTOT VoL YTAGEL GTO OTOYO OTO-
pebyovTac TN o0YxpouoT xutd T didpxeta Tng TAonynone. To ueydho pelovéxtnua autig Tg
ped6dou elvon 1 UTtoEEn TOTIXWY Ay {OTWY TOL €YOUV WS ATOTEAECUA VO TAYLOEVOUY TO pO-
unét. Ldotoc0, Aoon 610 TEOBANUL 0LTH BOUNXE PE TNV YEHOT OLVUUXOY TEBIWY BaclouévmY
oe appovixéc ouvaptioels, ta Teyvntd Appovind Auvvopxd Iledio (Artificial Harmonic Po-
tential Fields) [2], Adyw tng WBLOTNTAC TWV 0PUOVIXGDY GUVAPTACEWY VoL YNV Topouatdlouv
TOTUXE EAYIG TOL

Yty nopoloa epyooia, enexteivouye v Yédodo twv Teyvntdv Appovixdyv Auvopuixov

[Tedimv ouvdudlovtde ) Ue TV Tpooéyylon ouvopthoeny axtvixic Bdone (Radial Basis



Chapter 1. Extetopévn Hepiindn

Function Approximation) [3]. Exgedlovtac tic napopétpouc tou Teyvntold Appovixol Au-
vouxol Iedlov ¢ éva otaduiouévo dipolopa cuvapTAoewy axtvixic Bdong xo urtohoyilo-
VoG To Bdpn aUTY, UTOPOVUUE VO XUTOUGKEVGGOUUE EVAV TOQUUETEXO EAEYXTH) Tou Yo 00myel
TO POUTIOT UE ACYUAEL GE OTOLOONTOTE ETHUUNTO GTOYO EVIOS EVOS LTOGUVOAOL TOU Y(MEOU
epyooiag.

Me tnv avadiatinwor tou Teofifuatog BEATIOTOU oYEdLcU0 Topelag we éva TEOBATLL
Evioyutixne Mdinong, unopolue vo uhomolAcoupe €vay olyoptdpo xododixrc xAlong ue tpo-
Bor) (Projected Gradient Descent) yia tnv enthuot| tou. H npoBolf towv napopétemy xatd
TNV OLdpxeta TNG EXUAUNONG YIVETOL (OOTE VoL XATOYUROGCOUYE TNV AGPIAELN TOU TEG{OU TAO-
fynone. Térog, n yerion Evioyutuaic Mddnone matlet onuavtind poho xaddg pog anahhdoscel
a6 TNV entAuoT) pLo SOOKOANG UN-YEUUUXTG LERXNC Slopopixhc El0WAaNE Yol TOV UTOAOYLOUO

NG CLVAETNONE XOCTOUG.

1.2  Awtdnwon [poBAuatog BéATiotou Yyediacuol Ilo-
eclag

'Ectw €vo onuelond pounot, tou Thonyeltal eviog evog BLodldoTaTou, PeayUEévou, GUVE-
%ol ouvéhou G C R? | e ecwtepnd Blonexpiuéva eunddin O; C G,i = 1, ..., M. Opilouye
WS TOV Ypeo epyastac Tou poundt W, 1o abvoho W = G — Uf\il O;. Emmiéov Yewpolye éva

Telxd onueio otéyo pg. To poundt xwveltow cOupova ye T duvauxy e&iowon:
p=u, pt=0)=peW (1.1)

6mou p € W ebvor 10 ddvuopa xatdotaonc (dnh. ¥éom tou poundt) , u = u(t) : R — R? ebvou
wa eloodog eréyyou (Snh. torydTnTa €l06B0U) xou e P ouuBolilouue Ty apyixh Yéon Tou
coundt. H Abon tou mpofifuatoc BérTiotou oyedacuol mopeloc mepthopfdvel Ty cVpeoT

Hlog TOMTIXAG EAEYYOU U TOU ENOYICTOTIOLEL TNV TAEAX AT CLUVAETNCT XOGTOUC:
V(p,pa) = /0 [QUp(7;p); pa) + R(u(r))] dr ¥p € W (1.2)

H ocuvdptnon xéotoug (1.2) mepthopPBdver évav 6po mou oyetiletar pe To JAVUCUA Xo-
tdotaone Q(p(T;D); pa) xou €vay Tou Exel va xdvel Ye v gicodo R(u(T)), émou p(t;p) =
f(f u(p(7;p)) dr+p etvon 1 hoon tne (1.1). O bpoc R ehayiotonotel tny evépyeta eloddou eved
0 6p0¢ Q TWWEEL TO POUTOT Yl 6CO TEPIGOOTERO YPOVO UEVEL LOXEUE OO TOV TEAXO GTOYO

xan ETAEYOVTAUL WS eENC:

Q(p(7;p); pa) = allp(7:p) — pal® (1.3)
R(u(7)) = Blu(r)|? (1.4)

onou «, B eivon Yetinég nopdueteol. Enouyévee 1 ouvdptnon x6ctoug umopel va ypapTel:
Vio.pa) = [ lolo(rio) = pul? + Al dr v € W (1.5)



1.3 Teyvntd Avvouxd Apuovixd Iedio

Y16y0¢ Yo 6TV Topoloa BITAWUTIXNY EpYasid, EVOL 1) XATAOXELY| EVOC EAEYXTT) TTOL Vol
ToEdyEL ac@ahy| TEdi TAOYYNONG TEOS OTOLOONTOTE TEAXO OTOYO EVIOC EVOC UTOGUVOAOU

S C W tou ydpeou epyoaciog xan Yo ehayiotonolel Tawtdypova Ty cuvdetnon (1.5).

1.3 Teyvntd Avvopixd Appovixd I1edia

To duvouLxd Tedio TOL EYOUUE UAOTIOLAGEL YIoL TNV AGQPIAT TAOYYTOT) TOU QOUTOT EVTOS TOU
Y&eou gpyasiog, Bactletar otny uédodo twv tdvels (panel method) ye apuovixéc cuvoptroelc

[2] xou opileTon we:
K

®(p;po) = Y ¢(p; pi)wi = wTé(p; pe) (1.6)
=0
6mou pe = {po,P1,02, sPK}, Po=pa EW — W, p; e W i=1,..., K etva e (K+1)-
TAELAO0 TTOU TIEPLEYEL TOL XEVTEA TWV UPUOVIXWY CUVIPTACEWY BAoEwY ¢;, Tar omtolo TotodeTo-
OVToL exThC Tou Ybpou gpyaciac W (ue elaipeon 0 pp = pg) xot w = [wo, w, . . ., wk]|T ebvou
€val OLdvuoUaL Tou TEpIEYEL To avTioTolyo Bdpog Tne cuvdptnong Bdong ¢;.

To clvoho twv cuvapthoewy Bdocwv ¢(p; pc) opileton we:

o(pipc) 2 [p(pipa) d(psp1), -+, dW; pr)]T: W — REX! (L.7)

omou 0 axdAoUY0og dPUOVIXOS OPOC TOTOVETEITOL OTOV TEAXO GTOYO Pg TOU POUTOT:

é(p; pa) = In(llp — pall) (1.8)

Ou undrotneg ocuvoptroelc Bdoelc emhéyovtar oOupwva ue to [4]. Ta appovind téve tomode-
TOUVTOL EXTOC TOU YOEOL EPYUTiOC (MOTE VoL amopUyoLUE Tic Wlopoppies (singularities) evtog

TOU YOEOU.

1.4 From-All-To-A-Point (FATAP) EAeyxthg

Me Bdon to Teyvnid Apuovixd Auvvauxd Iledlo mou €youue oploel, mpotelvoupe Ttov
axdrovdo noapopetpd FATAP (From-All-To-A-Point) ekeyyt, yio v acgolr thofynon
TOU POUTIOT TPOG €VaL LOVadIXG TEAXO oTuelo-0TOY0 pg € W — OWV:

u(p) = —|lp — pal*Ve(p; pc) = —llp — pall*V T (05 pc)w (1.9)
OToL:
P — Dd
Vo (p:pyg) = — % 1.10

Acedopévne g Wiouopplag mou topouatdlel 1 xhion tou nedlov @ 6to TENXO oNpeio-oToHY O,
YENOLLOTOLOUUE TOV 60 ||p — pal|* dote vo e€aopoticouye Ty eustdela Tou Vopou eAEyyoU
GTOV TEMXO OTOY0 pg, Yot wo > 0

H aopdreio Tou medlou mpoxintel emBIANOVTAS TNV ToEUxdTw GYEoN:
nT(z)u(z) > 0,Vz € OW (1.11)
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6mou n(z) eivor 10 xavovixd didvuoua Tou ey VEL TPOC TO ECWTEPIXG TOU YWEOL ERYOLOC
oe x&de onueio Tou cuvbpou xou u(z) To ddvuoua TS ToydTNTOS o xdde évar amd auTd Ta
onueto. Hoapdro mou 1 cuviinn acgareiog (1.11) mepthouBdver 6o tor onueior ToL GUVGEOL
Tou Ywpou epyaociac OW, anodewvieTon TKg 1 ao@dheio Tou edlou eivon eyyunuévn axdun
xou oy 1 oLVIHXKN Loy VEL Yior évay TETEpaoévo aptipd onueiny tou ouvépou [5]. H ouvidixn
aoohelag (1.11) unopel vo exppaoTel we Evo GUGTNU YROUUIXWY AVICMOENY 1S Tog T Bden

TWV CUVAPTACELY Bdocwy. Xe pop@n mivaxa ypdpeton wg e€ng:
ATw <0 (1.12)

omov A = [Aq,..., AN] xou A; = nT(2)VPT(2i;pc).

Emopévwe, oL mopduetpol Tou apuovixol tediou mou e€acpaiilouy tn alyxhion oTo TEAMXO
oNuelo-oTOY0 UE ACPIAEL, UTOPOUY Vo TEoXV(OUY amd TNV ENLAUCT) TOU TUEAXETEL TETEAY K-
Vixo0 TEoBAUoTOC:

rr%li)n|]w||2, s.to ATw < —e,wg > 0 (1.13)

omou € > 0 évag pxpodg aprludg MoTe va ano@lyYoLUE TNV UNdeVIX?) A0oT GTO TETPAYWVIXO
TeoBAnua. TeomomoudvTog xATIAANAL TO TETEAYWVIXG TEOBANUA, UTopoUUE Vo Yécouue me-
ploplopols oTe To Bdpog Tou avTIoToLEl OTOV dpUoVIXG 6po Tou ToTodeTeltal oToV TEAXO
otyo, vo tpoxintel (oo e Ty povdda (wp = 1). Me tov tpémo avtd eZacparilovye 6Tt ot

apYEC Hog TONTIXES Var avAxouy oTNV (Bl oixoYEvela AOGEWY.

1.5 From-All-To-A-Subset (FATAS) EXeyxtvc

Eipaote étoyor vo napouotdoouye tov xowvotdépo FATAS (From-All-To-A-Subset) ehey-
%), Apywd, Yewpolue tnv e€r¢ moapauetponoinon twv Bapwy tou FATAP eheyxt:

w = w(pa; pca) = WTs(pa; pea) (1.14)
O nivaxag W € REXEHD) iy éva véo oeT mapouétpwy 6T0U poa = {Pa.1s Pd2, - » Pd.Ke s
pai ER%i=1,..., Ko ebvor 1o xévtpa TV UVOpTACE®Y BUCEWY, PE TO OET TWV CUVIPTHOE-

wv Bhoewv va opiletan we n aviiototyie s(pa;pea) @ (W — OW) — REe) yia wa dedopéwn
ETAOYT) XEVTPWV.

[Topdro mou 1 emAoYY| TV GUVIETACEWY VTGV UTopel va yivel audalpeta, mpotelvouue TNy
Yehon ouvapthoewy oxtivixiic Bdone (Radial Basis Functions) ye opolbpoppa xatoveunuéva
xévtpa. H ouvdptnon axtivixfc Bdong elvon wa ouvdpetnor, n T g omolag eloptdton
uovo and TNV andoTacT) Tou oplouatog Tne amd éva otaldepd onuelo mou ovoudleton xEVTpo.
Ot cuvaptroeig oxtvinhic Bdong YenoWoToloUYTOL Yol TNV TROCEYYICT] TV YORUXTNEIGTIXWY
ULOC OUVEETNONG XOVTE OTO %EVTPo Toug. LTnv mopoloo gpyocia emAiéloue I'xaouotovég

CUVUPTACELS, OV EVOL OO TIC TILO EVEEMS YEMOULOTOOVUEVES CUVIRTHOELS aXTVIXAC BAong:
$(r) = e

6mou 1 = ||pg — pd,i|| ebvon n evxdeldela andotaon peTah TOL TEAXO) GTOHYOU KoL TOU L-0GTOU



1.5 From-All-To-A-Subset (FATAS) Eheyxtic

XEVTPOL, Xau € ULol TopdeTpog Tou puluiler Ty eCacVévion (decay) tne ouvdptnong.

To onuelo xhedl etvon 6TL yior Evay Bedouévo mivaxo W xan éva otadepd tehxd onuelo-
otdyo o€ évo UTOGUVORO TOL YWpou epyaciac pg € S C W, 7 e&iowon (1.14) diver otodepd
Béon w € REFL xan enopévec 1o medlo:

®(p; pas pc) = ¢"(p; o)W Ts(pa; pca), pa € S (1.15)

elvon appovixd xou 1 xhion tou yivetow:

V& (p; pa;pc) = VoI (p; pc)WTs(pa; pea), pa € S (1.16)

[ var xévoupe 1o medio (1.15) yeouuind ¢ TPoC TIC XAUVOUPLEC TUPOUETEOUS, YENOULO-
TOLOVUE TNV TOEOXATE WOLOTNTA oL Loy Vel yia €vay Tivoxa A, SlacTdoewy m X n xo. €vay
nivoxa B, r X ¢

vec(AXB) = (BT ® A)vec(X) (1.17)

Enopévoe n oyéon (1.16) yivetou:

vec(V®(p; pa; pc)) = VO (p;pa;pc) = (sT(pa; pey) © VT (p;pe))vec(WT),pg € S (1.18)
OTOL

sT(pa; po,) ® VT (pspe) € R
W = vec(WT) € RE(K+1)

H ocuviixn acgaielag yedpeton wg e&hc:
nT(2)(sT(pa; pca) ® VPT(2;pc))ib < 0,V2 € OW, Vpg € S (1.19)

1 omola elvon Yo we tpog ta Bden w. Ilopdho mouv n cuvirinn acpareiog (1.19) nepiéyet
xade Tehnd onpelo oté)0 Yéca 6To LTocUVoro S, N ac@dheta etvor EYYUNUEVT oy auTY| Loy Ve
YL Utal TAELA00 TEAXWY ONUEY P 2 {pai,pa2, - Pam} - H oLV xrn acahetag unopel va

EXPEACTEL OTWE XA TIELY, WS EVU CUCTNUO YRUUUXDY OVICOOERY 1§ TEOS TG TORUUETEOUS W:

AT <0 (1.20)

omou A= [Ar,..., An], ue A = [sT(pai pca)] @ (07 (2)VYT (2 0))]
To oet nopapétpnv W npoxintel emALOVTAS TO axohoLlo TETEUYWVIXO TEOBATUL:

min||w||?, s.to AT < —e, wo(pa) = W{s(pa; pca) >0 (1.21)
w

6mou wo(pq) ebvor to otodutopévo dpotopa tou avtioTolyel 6To Béeog ToL dEUoVIXOU GEOU TIoU
Tomo¥eTolUE 0TOV TEAXO GTOY O Tou PoUToT. Lol vor eacpallcouye OTL Ol 0PYIXES TOMTIXES

avAXoLY oTNV Ol owoYévela ADoEWY, ETEXTEVOLUE TIC cuvapThoelc Bdoelc pue tov axdlouvdo
b
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TEoOTO:
$(pa;pca) = (1 s(pa; pea)l (1.22)
Enouévec 1o xavolplo oet napapéteey yiveta W € RUKHDXEHD) 5y
w = @ (pa; pca) = WT3(pa; poa) (1.23)
w = vec(WT) (1.24)
To tetpaywvixd tedPinua (1.21) yivetou:
min||w||?, s.to A < —¢, Aeq = Beg (1.25)

OTOU UE XUTAAANAOUG TEQLOPLOUOUE LIGOTNTAS UTOROVUE Vo ETUBAANOUUE TOV TEQLOPLOUO:
Wi=]10 -0 (1.26)
X0l ETOUEVKC:
W{5(pd; pea) = 1 (1.27)

H Xoon oto tetpaywvind npdBinuo (1.25) amotehel v opyinh LaC TOATIXT, TOU EYYULTOL
TNV AoQPEAELL XU TNV CUYXAOT TEOC OTOLOONTOTE TEALXO GTOYO €VIOC TOU UTOGUVOAOU S.
Avth n moltn| Ya Bedtiwdel ye v yenon Evioyvutuae Mdinone wote va ehaytotonotel Ty
ouvdptnon xéotoug (1.5) yio xdde tehnd otdY0 pg € S.

1.6 Bektiwotonoinorn tou FATAS eheyxty] pue xerion Evi-
oyvTxne Mddnong

‘Onwg oploaye otnv evotnta 1.2, 10 npdPAnua Bértiotou oyedlocuol mopeiag ovdryeton

oTNY €0PECT) WS TOMTIXAC EAEYYOU U TIOU EAXYIGTOTOLEL TN CUVIRTNOT XOOTOUG:
V) = [ lallotrip) — pal? + Bllutr) P dr v € W (128
OplCoupe v axdhoudn Xauthtoviovy cuvdetnon ue Bdorn ) ocuvdptnon xdéotoug (1.28):
H(p,u,VV) = VVTu+allp = pal* + Bl (1.29)
H ouvirinn Bertiotétnrac Hamilton-Jacobi-Bellman (HJB) Siveton oné:

H(p,u*,VV*) =0 (1.30)

/ 7 z ’ 7 7 ’ 8H(p,u,VV*) _
xou ) BEATIOTN TOMTL EAEYYOL TPOXUTTEL amd T1) CUVITXN GTAGWUOTNTOG gl [y =

0 w¢ e&ne:

* ]' *
ut = =5V (1.31)

IMo v Beolue T BEATIOTN TOATIXN EAEYYOL U™ YEEWCOUACTE WULal VOAUTIXY| EXPEAOT) VLo



1.6 Bektiotonoinon tou FATAS ekeyxtn pe yprion Evioyvtixie Mddnong

™ ouvdptnon xéotouc V*(p;pg) n onola umopel va mpoxdier avtixadiotdvtog ) BéATIo)
moltixry eléyyou ot ouvdrixn Bedtiotétntoe HIB (1.30) xou emibovtog pia mold d0oxoln
UNFY e peple| Btapopx| e€lowaon. T'a vor to amo@iyoupue auto, Ho avablaTUTHCOVUE TO
TEOBANUA pag oo €va TeoBinuo Evioyutrie Mdidnong xou Yo vhomoiioouye évay ahyoprduo
xhlone mohtxic (policy gradient) yio vo Bpolue tnv BEATIOT TOATIXT EAEY Y OU.

H ehayotonoinom e ouvdptnong xéotoug (1.28) cuunintel ye tnv edpean tng BEATIGTNC
TolTixfc ENEY oL u* xou Tou xbéoToug V* Tou ixavoroloty Ty cuvifixn otactuétntoc (1.31).
Auté avdyetan ot lpeon Twv Tapauétemy W* tou eheyxth, Tou odnyolv oe BéhTioTo tedio
mhofynong. O alybprduog xAlong TOATIXC TOU €YOUUE YPNOWOTOWGEL Yiot TNV BeATioTonoln-
oM TV TAPoETEWY, lval Bactouévoc atov ahyderduo Bektinong toltxdv (Policy Iteration),

1 omoio elvor Yior EVPEWS YVWO TH TEY VX Tou AOvel Ty e&lowon HIB [6].

AvcoriTHM 1.1: Off-line Policy Iteration

Require: Any admissible control policy (9 and tolerance ¢ > 0
while ||u(*1) — 4| > ¢ do
1) Calculate VV® based on policy u(?
2) Update the control policy: u(i 1) = —%VV(Z')
3)i+—i+1
end while

"Eyovtog ¢ 6160 va Beolue Tic Béhtiotec nupopétpouc W* tou FATAS eheyy i, ypdpou-
ME:
ul = T T 5(pg; peg) (1.32)

OTOU:

o= —|lp - pal*Vo(p; pc)

Enopévoc, ot tapduetpor W oe xdle enavdlndn (iteration) tou alyopiduou, divovtos and Ty
enihuon tou teTpaywvixo tpoflhiuatoc (1.33). To clvolo pg eivar 10 GUVORO TV TEMXGDY
OTOY WY TOU POUTOT TOU YENOUWOTOACOUE GTNY CUVUAXT OCPUAELNS VIOl VAL ATOXTHCOUUE TNV

oEYLXY) HOIG TTOALTLXY.

. 1 ,
. min_ HUTWT(Hl)§(Pd;pcd) + —vv® (pa)||* Vpa € pa (1.33)
w=vec(WT) 20

subject to ATw < 0

[ vo eqopudéooupe tov akydprduo xadodinic xhione pe mpoPolt| (Projected Gradient
Descent) ylor Tl TopaUéTPOUC TOL EAEYXTY, T 0p{lOUUE TNV OVTIXEWEVIXY CUVHETNOM
(objective function) (1.34).

MOWT) = o7 (p)WT5(p; ped) + ;vap,pdw (1.34)

Ot TopduEeTEOL TOU EAEYXTY EVIUERWVOVTAL UE TOV axolovdo TpdTO:
W =W — aVip M(WT) (1.35)
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o6ToL:

Vo MOTT) = 2(3(pas poa) © o(0)) (07 (0) T8 (pas pea) + ;vap,pd)) (1.36)

KADKet1)y s v ebvon

ebvan 1 xareviuvon xodédou (descent direction) (V5 M(WT) € R
0 pviude exudinone.

Mo Tov umohoyioud g xatediuvong xodddou yeetdletar vor utohoyicouue Ty xAion TG
ouvdpTnong x60toug V' vl Ghoug Toug TEAXOUS GTOYOUC Py € pg. Lo Ty yelwon g u-
TohOYIo TXAC ToAUThoxdTNTaC, ot xdde enavdhndn tou akyopiduou, dtav unohoyllovue TNV
xhon Tng ouvdpTnong x6oToug Yenolonoolpe uovo N onuela, Tuyaio eTAEYUEVa and To
olvoho pg, 6mou N < m xou m eivon 0 apriuog Twy onueiwy Tou cUVOLOU Pi. XTN CLVEYELY,
Yoo x8Ve pgi, 6mou 1 < i < N Yo unoloyiooupe wa extipnon tne xhione VV(p,pa;). Ta
va yivel auto, Vo ypelaoTel TE®ToL Vo UTOAOYICOUUE Wial EXTIUNGCT] TNS CUVARTNONS XOGTOUS
yioe x8de TENXO OTOYO Pgj, EMADOVTAG €va oo TN Blapopxy e€lowoewy. o teputépw
QVTWETWTLON TN UTOAOYLO TIXTE emBdpuvong, 1 exTiunon Tng ouvaeTNonNg XOGTOUS, Xl Xt
oLVETELL 1) exTiunon TNS xhiong, Yo yivouv yio éval UTOGUYOAO TOU Y(MEOU EpYOCIAS UE OTO-
TENEOUA 0 Al YOprIUOC pog vo amotehel Evay Mini-Batch ahydprduo xadodixrc xhiong. Téhog,
yior Vo amoxTHOOVUE TNV xatebuvon xadodou Va utohoyloouvye Ty péom T g oxéong

(1.36) vy dhec g moptidec (batches) xou yio Ghoug Toug TEMXOUC GTOYOUC Py

K;

%(*g(pdi?pCd) ® a(p;)) (0T (p;)WTE(pai; pca) + iVV(pj,pdi))
1 T

N
. 2
- T) —
Vi M(WT) = = ;:1 53

j=
(1.37)

O pudude expdinone (learning rate) a urohoyileton Ue TNV Yprom EVOC TROCUPUOC TIXOU
olyopiduou, Tou mnydlel and tov ahydprduo ADADELTA [7]. H Swpopd petald twy 80o
ahyopliuwy elvon 6TL eved 0 TEAeuTAlOC UTOAOYICEL Evar BLapopeTind puIUS exudinong yio xdde
TOPAUETEO, 0 ahybprdude uag urtoloy(let évav xadohxd (global) pudud exudidnone yenotuo-
TOLWVTAC TANROYOEiEC and TIC xAloelc OAwY Twv topauéteny. H tpononoinom auty €yive yioti
OTIC TPOCOUOIWOELS, €Vog XAVOAXOC LGS EXUAINOTE AMOBELYTNXE TO AMOTENECUAUTIXOC.

To Bripota tou ohyopldupou napoustdloviar otov olyopripo (1.2).

AvcoritaMm 1.2: Computing learning rate update at iteration 1

Require: Decay rate p , Constant €
Require: Initial parameters w(®) = vec(WT()
Require: Initialization of accumulation variables E[step?]o = 0, E[Aw?]g =0
fori=1:N do .
1) Compute gradient stepl) = Vyr M (WT)
2) Accumulate Gradient E[step?|; = pE[Step?U](i,l) +(1- p)step?v(l)

3) Compute Update: Aw; = —%St@?g)

where RM S[x]; = \/E[2?]; + €
4) Accumulate Updates: E[Aw?]; = pE[Aw?];—1 + (1 — p)Aw?
5) Apply Update : w't = w® + Aw;
end for




1.6 Bektiotonoinon tou FATAS ekeyxtn pe yprion Evioyvtixie Mddnong

Téhog, v va eaocpaiicovye 6Tt evnuepnvovtag Tig tapauétpoug Tou FATAS eheyxty| dev
Yo mopaPlactoly ol teptoptopol e cuviixng aogaheiog (1.20), petd and xdde enovdhndn
Tou oAyoplduou, €dv 1 cuvinixn éyel topafBlacTtel, utohoyilouue TV oploymvia TEOBOAY TwV

EVNUEPOUEVOY TIUROUETEMY T8V 670 xUpT6 ToAledpo Q [8] mou opileton and:

O = (& e READEHD . j15 < o) (1.38)

O tereotiic mpoforfc Py oplleton wg edfic:

P(i9) = arg min [ — 53 (1.3
weQ
xa anotehel €va mEdBAnua Bedtiotonolnong, n Alon Tou onolou elvar Yovadixr, AOYw NG
xupTéTTAC ToU ToAUESpoy Q. Tha vor amopiyoupe Ty enthuon evée TETEOYOVIXOD TROBMAUO-
T0¢, yenowonotolue évay ahyberduo xuxhixdv mpofoloy (cyclic projection algorithm) [9],
o omolog yag emteénel va Pploxouue v optoywvia Tpoorr) evog onuciov endvw oTny TouY
XUPTOV CUVOAWY, EXTEAMVTAC Lol oxohoudia and TpoBolés, EexwploTtd ot xde xupTd GUVOAO
ou opileton amd Tov Nuiydeo Agw < 0. Hapdlo mou 1 ohyXon Tou ohyopiduoy civar apyH
Yior UEYSAO aptdud xUETGV GUVOAWY, elvar wa ToAD onuavTixy Bedtiwon évavtl Tng enthuong

EVOG TETPAYWVIXOU TROBAAUATOC.

H nipoBol o€ éva xuptd olvolo mou opileton omd tov Nuiydeo Agw < 0 yiveta ue ypron

Tou axOAovdou TEAECTH:

vec(WTEHD) s iy,

I 2

P = vee(WTEH) — * T, (1.40)

bmou ny, ebvan o xavovixd didvucua 6To unepeTinedo mou oplletan omd T wétnTa Afw = 0.
Av ouyPoiicouye T 10 ywouevo T = P1Pa... Py 161€ €YoUye:

vec(WT(i)) = PQ(U@C(WT(i))) =T (W) as r — oo (1.41)

proj

Ytov ahyberduo (1.3) meprypdpetar o mAfene akydprduoc xadodinhc xhiong e TeoBoly,
Tou Yenowonofinxe Yy TNy Behtiotonoinon twv mapopétewy tou FATAS eleyxtr. Eivau
ONUOVTIXG VI OVOPEPOUIE GTL TOPAAO TOU OL TOPAUETEOL W EVIUEPGVOVTOL G Xdie emavihT-
¢ Tou akyopituou, N xAlon g cuvdptnong xdcToug enavunoloyileton xde k emavohriperc.
'Oty embLd*oVPE TNV EhaytoTonoiNom TN avuxeluevixfc ouvdptnong (1.34) otny i-oot ena-
vénbn tou alyopiduou, oxonde pog eivan Vo eépoupe TV Téyouca TohTixd ehéyyou ulitl)
000 To xovTd Yivetan oty dladéoudn TANpopopia TOU €YOUUE YLl TNV TOCOHTNTA —%vv(ﬂ.
EnavunoloyiCovtog tny xhion VV Ootepa and éva uovo Briua mpog tnyv xotebduvon xodédou,
0ev 0&lOTOLOVUE TAHEWS TNV Te€Youca TANpopopia Yo TNV BEATIOTOTOINGT TNE TOATIXAC MAC.
267600, 1 €TAOYT| HEYAAOU k €YEL OC AMOTEAEOUA, TEAXH, TNV UETAXIVNON (G TEOSG ULl XATE-
UYuvon Bactouévn oe TAnpogopia Tou dev eivan TAEoY €yxupn. Eva xatdAinho k pog emitpénel
VoL BEATIOVOUUE TIC TOMTIXES Lo €yxupa Xt Yeryopa, Balovtoc Tic BAoelc Yo Ypryopdtepn
oUyxAoT Tou olyoplduou pog.
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AvcoriTHM 1.3: On-Policy Projected Gradient Descent

Require: Initial parameters vec(WT() (safe), i = 0
Require: Number of steps k£ > 0 without recalculating VV Vpy
while vec(WT) has not converged do

1) Calculate VV® V¥p, using Mini-Batch Gradient Descent
2) Compute descent direction step’’) = Vi M(WT)

w

)
3) Calculate learning rate a(?
4) Update parameters vec(W T = pec(WTH) — oD step
)

5) Projection onto safe set: vec(WpT(Z;rl)) = PQ(WT(H'U) Q= {w € RUEADEFD
ATw < 0}
6)i<+i+1

if mod(i, k)! = 0 then
VvVt = vV vp, and skip 1)
end if
end while

1.7 Amnoteiécuata Ilgocoupoiwong

X1y evotnTa auTr Yol TUEOUCLAGOUUE To ATOTEAEGUATO TOU TOQUUETEXOV UAC EAEYXTY| OE
Eval TEYVNTO TePBdANoV oy uatog Tap. ‘OAEC Ol TPOCOUOLOCELS £YIVAY GTO TROYPAUUUATICTIXG
nepiBdihov tou Matlab. Yty eméva (1.1), napouctdleton o yhpog epyacias ToU poUT6T 6TOL
T0 EMAEYUEVO UTOGUVOAO TOU YWEOL YLa TO 0Tolo YEAOUUE 0 EAEYXTHG UAC VOL TIORAYEL AGPOAT
nedio Thorynone, ivon To oxtaopévo Tohdywvo. To umhe onuelo avamaploToly To XEVTEA Pod
Twv ['toovolavey cuvopthoewmy axtivixhg Bdong, eve To podpa onueia Toug TEAXOUE GTOY0US
Pd € pg Tou yenotponotiinxay otny cuviixn acpodeiag (1.19).

Me yprion tou alyopriuou xoodixhc xAlong Ue TEOBOAY|, 1) dpyixT) TOMTIXT TOU TEOEXU(PE
ond 10 TETPUY WIS TEoBAnua (1.25), pululotnxe xatdhhnho Wote vo eEhayto ToToLEl TNV ou-
véptnon x6ctoug (1.28) yio xdde tehnd onueio-otdy0 evidg TOU EMAEYPEVOU UTOGUVOLOU.
O mapduetpol TG cuVETNONG XO60TouG EMAEYTNXOY w¢ @ = 0.5, B = 0.5 xou emnAéoy,
ooV alyopLiuo xododixng xhlong, o apLiuog Twy Slaboy oy enavaliPewy yio Tic onoleg dev
yivetan emavumohoyloude e xAlong Tng cuvdETNoNg x6GTOUG OplcTNXE WG k = 5.

Yy ewdva (1.2), nopovordletar 1 o0yxAoN TwV TapoéTemy Tou eAeyxTh poll pe tov
eLvdus exudinone. Emmiéov, otic emdveg (1.3) e (1.6) amewovilovton ta xavovixonotnuéva
OLVUOHATIXG TEdlor TNG aEYIXAC XL TNG TEANC TOMTIXNAC Yl TEOOEPLS TEAXOUE GTOYOUC,
xadoe xou 1 Pertioon tng avtiotoryng ocuvdetnong xoctoug.  A&ilel vo onuewwidel otL N
XE\OT) OEUOVIXODY TOMTIXGV EYEL WG ATOTEAEGHO TNV ACUUTIEGTY POT) TV TRy OUEVLY TEDIWY,

EMOPEVLS OL BEATIOTEC TRPOYIEC TTOL TEOXVUTTOUY BeV elvor amapaltrta ehay{oTou Unfxoue.

1.8 Xvunecpdoupota

H u€90od6¢ pog, av xat ToAAG UTOGYOUEVT, BEV elvol XUATAANAAT Vo YELRLo TEL DUVOUIXE TIEPL-
Barhovto. Eniong, mepoptleton and tnyv eniiuot evoc BUGXOAOU TETEUYWVIXOL TROBAAUATOC.

/7

Ye mo mepimhoxa mepBdhhovta, Omwe €vag AdBueviog 1) €vag Yweog UE TOAAG EUTOBLY, OL
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(¢) Cost Improvement (d) Cost Improvement (% Percentage)

Figure 1.3: Initial Vs Final Vector Field for (0.8,3.5)
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Figure 1.4: Initial Vs Final Vector Field for (2.5,0.65)
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(¢) Cost Improvement (d) Cost Improvement (% Percentage)

Figure 1.5: Initial Vs Final Vector Field for (2.4,4.3)
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Figure 1.6: Initial Vs Final Vector Field for (4.2,4.2)



Chapter 1. Extetopévn Hepiindn

ATUTACELS UVANG XAAXDOVOVTL, EWBIXE OE TepLmTwoelc Tou Véhovue o FATAS eleyxtrc va
HAAUTITEL £VOL ONUAVTIXG XOPUATL TOL Yopou epyaciag. [Tup” dha autd, n uédodog yog, ue to va
TEOCPEREL AoPUAT TEDIA TAOTYNONE TEOS EVAL UTOGUVOAO TOU YWEOU £pYICLAG, UTOREL VoL aro-
tehéoel Eva oToudN0 EQYUAEID Yial TOXIAES EQUPUOYES OIS 1) EXTEAECT] BLAPOPWY EQYACLOY
o€ anoVnxeC TEOIOVTIWY 1 1 TpaypaTonolnon xadnxoviny eniBiedne.

Y& yehhovtixr) BovAetd, 1 LEVodo¢ pag pnopel va emextadel yia teplocoTeERES amd 600 Bia-
O TUOCELS, EVOWUATWVOVTUS GTOYAOTIXA GTolyelor oty duvouxr Tou eheyxty|. Emmiéov, dcov
apopd TN BéATIo TN Moon 6To TEOBANUL oyedlacuol Topelag, ot TopdueTEoL Tou xadopllouv TNV
e€aoVEVIon TwV CLUVUPTACEWY axTVXTS Bdong, uropoLy va Yewpnloly we emnAéov Topdue-
Teot unoxeipevol oe Bektiotonoinon. Téhog, onuoavtiny etvar 1 avdmtuln evog amodederyuévol
BEATIOTOU TEOTIOU TOTOVETNONG TWV XEVTPWY TV GLYUETACEWY BAcEMY Xxaddg xaL TV TEAL-
AWV CTOYWY otV oLV xn acpoleiog Twv topauéteny tou FATAS eheyxty, ye oxond tnv

eNAPEUVCT] TOU UTOAOYLO TLXOU XOGTOUC.
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Introduction

2.1 The Motion Planning Problem

The motion planning problem is defined as the problem of finding a safe path be-
tween two points while satisfying a set of constraints. While the task of motion planning
plays a vital role in robotics and more generally in the field of automation, it has several
applications in other fields, such as virtual environments, computer-aided design and com-
putational biology. More specifically, robot motion planning is a long-standing problem
that comes in a variety of forms due to peculiarities such as non-holonomic constraints or
the existence of obstacles in the robot’s path.

A lot of effort has gone into establishing control techniques that equip the robot with
the ability to safely converge to the desired goal position while ensuring the optimality
of its motion in the workspace. Additionally, suggested methods need to also take into
consideration the computational efficiency. Despite the existence of a plethora of tools
that tackle the motion planning task, there is still room for exploration of novel solutions
and improvement of existing ones.

In this work, we present a novel method for optimal reactive motion planning from
everywhere to a subset of a workspace, using a parametric controller for position-state
feedback. By applying Reinforcement Learning (RL) methods, we aim to optimize every
possible safe path that leads to a goal position within a subset of a two-dimensional,
constrained, but fully known workspace with internal fixed obstacles. More specifically, a
policy gradient technique is implemented, for the adjustment of the controller’s parameters,

to achieve optimality of the robot’s motion with respect to a specific cost function.

2.2 Motivation

The goal of this thesis is to present a novel solution to the motion planning problem
that tackles changes in the robot’s target position efficiently. It is true that in most real-
world applications only specific starting-ending point combinations are needed, and while
the use of online approaches can offer advantages with respect to computational complexity
compared to traditional offline solutions, the source of motivation behind this work is to
eliminate the necessity for computational power in fully known workspaces by finding a set

of parameters that allow the robot to navigate freely to any destination that lies within a
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predesignated part of its environment.

2.3 Related Work

Research on the motion planning problem has yielded many fundamentally different
solutions. The formulated approaches can be classified as roadmap methods (visibility
graph method, Voronoi diagram) [10] , methods based on cell decomposition [11] and
potential field approaches [1]. While decomposition-based methods and roadmaps can be
used in many practical applications, they suffer from computational burden in highly-
complex environments due to reliance on explicit representation of the obstacles in the
configuration space. These struggles paved the way for the development of sampling-based
algorithms such as Probabilistic Roadmaps [12] and Rapidly Exploring Random Trees [13].

The Artificial Potential Field (APF) method involves modeling the robot as a particle
moving under the influence of a potential field that is determined by the set of obstacles and
the desired goal-position. In this approach, the obstacles to be avoided are represented by
a repulsive artificial potential and the goal is represented by an attractive potential so that
the robot reaches the goal without colliding with obstacles. The method’s major drawback
is the existence of local minima. Navigation Functions (NF) [14] are a subclass of APFs
that contributed towards broader implementation of these methods, but the avoidance of
local minima required extensive tuning. These issues were resolved by the introduction
of a class of APFs, namely the Artificial Harmonic Potential Fields (AHPF) [2|. AHPFs
are artificial potentials based on harmonic functions. The most important property of
harmonic functions is that they are free from local minima.

In this work, we expand upon AHPFs by employing a Radial Basis Function (RBF)
approximation [3]. The underlying AHPF parameters take the form of a weighted sum
of RBFs. Therefore, by calculating these weights, we can build a parametrized controller
based on APF theory, that allows the robot to converge safely to any desired goal position
within a subset of the workspace.

Optimality of the robot’s motion in the workspace is achieved through RL. Optimization
with RL has been successfully used in combination with harmonic-based motion planning
in the past [5]. In our case, we reformulate the optimal motion planning problem as a
RL one and we employ a Projected Gradient Descent (PGD) algorithm, which is a policy
gradient optimization technique, in order to solve it. Projection is implemented to ensure
that the parameters of the AHPF, that are subject to learning, don’t jeopardize the robot’s
safety. The implementation of RL plays an important role, as it enables the ability to avoid

solving a very hard non-linear partial differential equation for calculating the cost function.

2.4 Chapter Overview

In the following chapter we will present the optimal motion planning problem, along
with preliminary background on AHPFs, Optimal Control and RL. Afterwards, in chapter
4, we will design two parametric controllers. The first one allows the robot to travel safely to

a single desired goal position, and the second one is our novel proposed controller, that lets
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the robot perform navigation tasks whose endpoints lie within a subset of the workspace.
Then, we will present our proposed controller’s results, not taking the optimality of our
solution into consideration, along with the limitations of our approach. Subsequently, the
implementation of RL for the optimization of the robot’s movement in the workspace along
with results will be presented in chapter 5. Finally, in chapter 6 we will present an efficient
and robust method for optimal navigation between a predetermined sequence of waypoints

in a workspace, with the use of our novel proposed controller.
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Problem Formulation and Preliminaries

3.1 Problem Formulation

Consider a point-robot, that navigates within a two-dimensional bounded and con-
nected set G C R? | with inner distinct obstacles @; C G,i = 1,...,M. We define the
robot’s workspace W, the set W = G — Uf\il 0;. In addition, consider a goal-position

pq € W — OW. The robot moves in accordance with the single integrator dynamics:
p=u, plt=0)=peW (3.1)

where p € W is the state vector (i.e., robot’s position) , u = u(t) : R — R? is a control

input (i.e., input velocity) and p denotes the robot’s initial position.

We consider the optimal motion planning problem, the problem of developing a control

policy u that minimizes the following cost function :
V.0 = [ [QU(ripipa) + Blur))] dr vp € W (3.2

The cost function consists of a state-related term Q(p(7;p); pg) and a control input related
term R(u(7)), where p(t;p) = fot u(p(7;p)) dr + p is the solution of p = u, where p is the
initial state of the system p = p(0) and py denotes the goal position. Our goal in this work
is to present a novel parametric controller for the dynamics of Eq.(3.1), that produces
optimal and safe vector fields with convergence to any desired goal position in a subset
S C W of the workspace.

3.2 Preliminaries

This chapter aims at providing the main tools and background that are used in this
thesis. First, we will discuss the AHPFs implemented in this thesis. Next, we will present
some background in Optimal Control. Finally, we make a brief introduction to RL, as we
aspire to make the reformulation of the optimal motion planning problem as a RL one,

more transparent.
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3.2.1 Artificial Harmonic Potential Fields

The potential field implemented in this thesis, that allows the robot to safely navigate
within the workspace, is derived by using the panel method with harmonic functions [2]

and is defined as follows:

K

O(p;po) = Y ¢(pipi)wi = wT(p; pe) (3.3)
=0

Where pc é {p07p17p27 te 7pK}7 Po = Pd S W - 8W7pl S Wlai = 17 e 7K is a (K+1)_
tuple containing the centers of the harmonic basis functions ¢;, which are placed outside
the workspace W (except for pg = pgq) and w 2 [wg, w1, ..., wk]T is a vector containing

the respective weight of the basis function ¢;.

We form the basis functions’ set according to [4] :

o(pipe) = [6(p;pa), d(p;p1), -+ d(P3 p)]T : W — REX! (3.4)

More specifically, a single harmonic term is assigned to the robot’s goal position py as

follows:
o(p; pa) = In([lp — pall) (3.5)

and the rest of the basis functions are selected following the panel method as in [4]:

L;

owip) = [, Inlratp.p ) (3.

7

ra(p; i, 1) = llp = (pi + l[cos(0;), sin(6:)]T)]| (3.7)

where the integral runs over the length L; € Ry,¢ = 1,..., K of the respective panel
centred at p; € W' and 60; € [0,27),i = 1,..., K denotes the angle of the linear panel
w.r.t the coordinate system over which the integration takes place. All harmonic panels
are placed outside the workspace W to refrain from having singularities in the interior of

the workspace.

3.2.2 Optimal Control

Optimal control theory is an essential tool for many fields of engineering and especially
robotics. Consider the dynamical system governed by the equation & = f(z,u) and the

associated cost function:

Viz(t)) = /tOOL(:C(T),u(T))dT (3.8)

with state x(t) € R™ and control input u(t) € R™. Our interest lies in the determination
of a control input u*(t) € R™ that drives our initial state xo to a desired final state x;

while minimizing the cost function.

By splitting the time interval into [t, ¢+ At] and [t + At, 00) the cost function (3.8) can
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be written as:

t+AL
V(z(t)) = /t L(z,u)dr + V(z + Ax) (3.9)

Equation (3.9) describes all possible costs-to-go from time t. Let us define V* as the
optimal cost. Then, according to Bellman’s principle of optimality, the optimal cost-to-go
is:

t+AL
* — : * ) 1
V*(x(t)) u(T),tI%lTlI%t+At{/t L(z,u)dr + V*(z + Ax)} (3.10)

From equation (3.10) it is clear that if we know the optimal control from time t + At
onwards, we only need to determine the current control u(¢) on the interval [t, ¢ + At].
Studying the case where At — 0 we can rewrite equation (3.10) as a partial differential
equation for the optimal cost V*(x(t)) which is known as the Hamilton-Jacobi-Bellman
(HJB) equation:
min(L(z,u) + VVT f(z,u)) =0 (3.11)

u(t)
where VV denotes the gradient of the cost function with respect to x.

The Hamiltonian function is defined as:
H(z,u,\) = L(z,u) + AT f(x,u) (3.12)

Hence, the HJB equation can be written as
H(z,u",VV*) =0 (3.13)

Lastly, the optimal control policy v* is given by the stationary condition.

0H(xz,u, VV™*) B
o lumur = 0 (3.14)

3.2.3 Reinforcement Learning

Reinforcement Learning [15] is an area of Machine Learning that is concerned with
capitalizing on data accumulated over the behavior of an agent to learn optimal control
laws and policies. More specifically, an agent, can learn an appropriate sequence of actions
that maximize a reward, through interacting with its environment. The agent interacts
with its environment through sensory equipment, while concurrently taking actions by
following a policy, while each action presents a corresponding reward. The agent’s policy
is optimized with the goal of maximizing future rewards.

Given a deterministic policy we can write:
a=m(s): S—A (3.15)

to represent the action taken.
The state space S is composed of all the possible states that the agent can transition to
and the action space A is the set of all actions the agent can act out in the environment. The

agent arrives at a sequence of different states s € S by performing actions oy, € A through
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the policy 7. Each of these actions results in a positive or negative reward rp : SxA — R,.

In many cases the policy m can be written as a parametrized policy:
a=my(s): S— A (3.16)

where 6 is the parameter vector.
A policy 7 is evaluated by a quantity called the value function V;, which expresses the
"value" of implementing a policy w while in the state s. The value function consists of the

sum over the immediate reward rg along with the rewards of all subsequent states:
o0
Vr(s) = Z’ytrt|so =s (3.17)
t=0

where v is the discount rate that favors immediate over long term rewards.

Our aim in RL lies in determining a policy that maximizes the total reward acquired
by following the actions dictated by the policy. The techniques used to achieve this can
be categorized into model-based and model-free techniques [15], depending on whether a
model for the agent’s environment is known or not.

In the case of a parametrized policy, policy gradient optimization is one of the most
powerful tools we can employ. By directly optimizing the parameters 6 of the policy,
through gradient based methods like gradient ascent [16], we aim to find the parameters
that maximize the expected future reward. Hence, policy gradient methods can be for-
mulated as a maximization problem with the objective function being the expected future

reward:
o0

J(0) = Vay(s) = > _4'rilso = s (3.18)
t=0

The policy parameters in that case are updated as follows:

Op+1 = 0k +aVeJ(0) (3.19)
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From All To A Subset Motion Planning

In this chapter, we will firstly present the From-All-To-A-Point (FATAP) controller,
which is a parametric controller that allows a robot to safely navigate to a desired goal
position. Subsequently, based on the FATAP controller, we will construct the From-All-
To-A-Subset (FATAS) controller, that enables a robot to navigate to any goal within a

subset of its workspace.

4.1 From-All-To-A-Point (FATAP) Controller

By employing AHPF theory, we propose the following parametric controller for safe

navigation towards a single desired goal position pg € W — OW:

u(p) = —|Ip — pal>*VO(p; pc) = —lp — pall* VT (p; pc)w (4.1)
where
P —Pd
Voé(p:pg) = ———4_ 4.2

Since the gradient of the field ® exhibits a singularity at the goal position, the term
|lp — pal|? is employed to render the singularity at p = pg equal to zero, and the control
law stabilizing at pg for wg > 0.

In order to obtain a safe field during navigation tasks, the following condition is im-
posed:

nT(z)u(z) > 0,Vz € OW (4.3)

where u(z) is the underlying vector field dictating the robot’s motion and n(z) denotes
the normal vector at each point of the boundary pointing inwards. Although the safety
condition involves the whole set of points over the boundary OW of the workspace, this

property can be relaxed if the above inequality holds for a finite set of boundary points [5].

Theorem 4.1 (Theorem 1 of [5]). Consider the boundary OW of the workspace as well
as a finite number of uniformly distributed points p; € OW, j = 1..., N along with their
respective normal vectors nj = n(p;j), j = 1...,N pointing inwards the workspace. There

exists a number Ny € N such that
anuj>OVj:1,...,NwithN2No (4.4)
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guarantees safety over the whole boundary OV as described by (4.3).
The safety condition (4.3) can be expressed as a set of linear inequalities w.r.t the
weights of the basis functions. In matrix form, we express the safety condition as:

ATw <0 (4.5)

where A = [Ay1,..., An], with A; = nT(2;)VoT(2i;pc)-
Thus, the AHPF parameters that guarantee convergence and safety can be obtained

by solving the following constrained quadratic problem:
min||w||?, s.to ATw < 0,wg > 0 (4.6)
w

We should note here that in practice, to avoid the zero vector being the solution to the

quadratic problem (4.6) we employ a small constant € > 0 and solve the following problem:
min|jw||?, s.to ATw < —e, wp > 0 (4.7)
w

Due to the scale invariance of the potential field, we can modify the quadratic problem
(4.7) appropriately so that the restriction wy = 1 applies. By doing so we guarantee that
the obtained initial policies belong in the same family of solutions. Through RL, our initial
policy can be later improved upon to achieve not only the aforementioned convergence and

safety but also optimality with respect to a specific cost function.

4.2  From-All-To-A-Subset (FATAS) Controller

We will now construct the FATAS parametric controller based on the FATAP controller.
First, consider the following parametrization for the weights of the FATAP controller:

w = w(pa; pcd) = WTs(pa; pcd) (4.8)

The matrix W € REX(E+1) ig o new set of parameters , where pog = {pa1,pa2, -,
Pd,Ke }sPdi € R2,i =1,..., K¢ are the positions of the centers of the basis functions, with
the set of basis functions defined as the mapping s(pg; pcq) : (W — OW) — RE¢ for a given
choice of basis functions’ centers. In the next section we will discuss our choice of basis
functions. The key insight here is that for a given weight matrix W and a constant desired
position in a subset of the workspace pg € S C W, equation (4.8) yields constant weights
w € RE*! and thus the field :

®(p;pa;s pc) = ¢"(p; o)W Ts(pa; pca), pa €S (4.9)

is harmonic, and its gradient becomes:

V&(p; pa; pc) = Vo' (p;pc)WTs(pa; ped), pa € S (4.10)
However, the field (4.9) is not evidently linear w.r.t. the new parameters. We remedy this
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by employing the following identity for an m x n matrix A and r X ¢ matrix B:
vec(AXB) = (BT ® A)vec(X) (4.11)
Thus equation (4.10) becomes:

vec(Ve®(p;pa;pc)) = VO(p;pa;pc) = (sT(pa; pe,) ® VT (pspe))vec(WT),pg € S (4.12)
where

sT(pa; pe,) ® VT (p; po) € RP*KelHD)

W = vec(WT) € RE(K+1)
Finally, the safety condition boils down to:
n'(2)(sT(paspca) ® VT (z3pc)) < 0,Vz € OV, Vpg € S (4.13)

which is evidently linear w.r.t. w. Although the safety condition (4.13) involves every goal
position inside the subset S, it can be relaxed if it holds for a finite set of goals pg £
{pd1sPda2, ** ,Pam} , due to the nature of Radial Basis Function (RBF) approximation,

which we will discuss shortly.

The safety condition can be expressed like before, as a system of linear inequalities
w.r.t the parameters w:
AT <0 (4.14)

where ‘Zl = [12{17 B AN]a with Az = [ST(pdi7pCd)] ® (nT(Z)v¢T(ZapC))]
Similarly to the FATAP controller, the parameters W can be obtained through a con-

strained quadratic problem:
min||w||?, s.to AT < —e, wo(pa) = W] s(pa; pca) >0 (4.15)
w

where wg(pg) is the weighted sum that is equal to the weight that corresponds to the single
harmonic term assigned to the robot’s goal position. To ensure that the obtained initial
policies belong to the same family of solutions, first, we extend our basis function in the

following way:

3(pa;pcd) = (1 8(pa; Pcd)] (4.16)

Thus, our new set of parameters becomes W € RUEe+Dx(K+1) 44
w =@ (pa; pea) = WT5(pa; poa) (4.17)
w = vec(WT) (4.18)

Furthermore, the constrained quadratic problem (4.15) becomes:

ISIB

min|w||?, s.to A < —¢, Aeqiv = By (4.19)
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where with proper equality constraints we can impose the following constraint:
Wi=110 ..0 (4.20)

and thus:

WY 3(pa; ped) = 1 (4.21)
The solution to the quadratic problem (4.19) consists of our initial policy’s parameters,
which guarantee safety and convergence for any goal position within the subset §. These
parameters will be later improved upon with the use of RL to achieve optimality with

respect to a specific cost function.

Summarizing, our proposed controller is given by:

u(p,pa) = —||p — pal >V (p; pc)WT3(pa; pca) (4.22)

Through this set of parameters W, we can express the weights of the AHPF for any desired
goal position within a subset of the workspace as a weighted sum of the basis functions.

We are now ready to discuss in the next section our choice of these functions.

4.3 Choice of Basis Functions

Although the basis functions may be chosen arbitrarily, we propose employing Radial
Basis Functions (RBFs) with uniformly placed centers. RBFs are functions whose value
depends only on the distance between the input and a fixed point, called the center. As
the distance between the point and the center increases, the value of the RBF gets smaller,
therefore RBFs can be used to approximate the local characteristics of a function close
to the center. RBF approximation [3| is universally applicable to both higher and lower
dimensions due to the excellent approximation properties of RBFs [17]. The centers of the
RBFs are placed not only within, but also outside the subset for which we want to obtain
safe navigation policies. The reason for this is that it helps us better approximate the

vector field parameters for goal positions near the boundary of our chosen subset.

In this work we employ Gaussian functions, which belong to the class of infinitely

smooth RBFs and are among the most commonly used RBFs:
8(r) = (@

where in our case, r = ||pg — pa|| is the euclidean distance between the goal position and

the 44, center and € is a tunable shape parameter that controls the decay of the RBF.

The tuning parameter € is chosen in a heuristic way, so that two neighbouring RBFs

overlap at 0.6:
$i(p";pa,i) = si+1(p"; Pa,i+1) = 0.6 (4.23)

where p* is the point in the middle of two neighbouring centers.
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4.4 Simulation Results

In this section we will present the results of our parametric controller for different goal
positions in two artificial workspaces. All simulations in this thesis were implemented in
Matlab on a PC running Windows 10, on an intel-i5 dual-core processor, with 8GB RAM.

In Fig.(4.1), we illustrate the first artificial workspace used to test our parametric con-
troller, which consists of a T-shaped outer boundary and one inner square-shaped obstacle.
The chosen subset for which we want our controller to produce safe navigation policies to,
is the highlighted polygon. The blue points represent the centers of the Gaussian RBFs
pcd, used to parametrize the AHPF weights and the black ones, the set of goal positions
pe involved in the safety condition (4.13). Similarly, in Fig.(4.2), we have chosen a subset
within a more complex, office-like workspace. In Fig.(4.3), we present four normalized vec-
tor fields that resulted for various goal positions inside the chosen subset of the T-shaped
workspace. All of them exhibit both safety and convergence to the goal position. Fur-
thermore, Fig.(4.4) contains four more normalized vector fields produced from the FATAS

controller for points within the designated subset of the workspace illustrated in Fig.(4.2).

Figure 4.1: T-Shaped Artificial Workspace

4.5 Discussion and Limitations

We shall now address our proposed approach’s limitations. First and foremost, the
constrained quadratic problem that has to be solved in order to obtain our controller’s pa-
rameters, is computationally very expensive. More complex environments, such as mazes,
or a workspace with many obstacles, require a higher amount of harmonic panels and more
normal vectors placed at the boundary to derive a vector field that guarantees safety. As
a result, we also need an increased number of basis functions and goal positions in the
safety condition (4.13). This results in a problem that is too memory intensive, especially

in cases where we want our subset to cover a large area of the workspace. Furthermore,
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Figure 4.2: Office-Like Artificial Workspace

employing goal positions near the boundary of the workspace in the safety condition, re-
sults in even greater computational issues, making our controller unfit for navigation tasks
near the boundary of a workspace.

Despite of our approach’s weaknesses, we can easily employ our method in simpler
environments for a subset that covers a large area of the workspace such as the T-shaped
workspace in Fig.(4.1). Also, for more complex environments, it is important to note that
the FATAS controller can still prove to be highly useful. It is not unreasonable for a
robot in a real-life scenario to be required to visit only a pre-determined area throughout
its work-life. In chapter 6 we will discuss an application of our novel controller for the

aforementioned scenario.
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Optimal Motion Planning Using Reinforcement Learn-

ing

In this chapter, we tackle the optimal motion planning problem with the use of RL.
First, we reformulate our problem as a RL one and provide a detailed description of the
implemented Projected Gradient Descent (PGD) algorithm that adjusts the parameters of
the FATAP controller for the minimization of our cost function. Afterwards, we extend
the algorithm for the FATAS parametric controller and in the last section, we present the

results of our novel controller’s optimization.

5.1 Problem Formulation

As we have established in chapter 2, we consider the optimal motion planning problem,

the problem of developing a control policy u that minimizes the following cost function:
V(p:pa) = / [Q(p(7;P); pa) + R(u(7))] dT Vp € W (5.1)
0

The cost function consists of a state-related term Q(p(7;p); pq) and a control input related

term R(u(7)) where:

Q(p(7;p); pa) = allp(7:p) — pal® (5.2)
R(u(r)) = Bllu(r)|? (5.3)

The R term minimizes the input energy and the Q term penalizes the robot for staying away
from the desired goal position as time evolves, while «, 8 > 0 are weighting parameters.

Thus, the cost function subject to minimization can be written as:
> 2 2
V(i) = [ lalp(rip) — pall + Blutr) |l dr vp € W (5.4)
0

We will now define the Hamiltonian function based on the adopted cost function (5.4):
H(p,u, VV) = VVTu+alp = pal* + Bllull* (55)
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The Hamilton-Jacobi-Bellman (HJB) optimality condition is given by:

H(p,u*,VV*) =0 (5.6)
while the optimal control policy is given by the stationary condition W!u:u* =0
as:

* 1 * =
ut = —%VV (5.7)

To obtain the optimal control policy u*, an analytic expression for the cost function
V*(p; pq) is required. By substituting the optimal control policy in the HJB optimality
condition (5.6) we can obtain such an expression at the cost of solving a hard non-linear
partial differential equation. The difficulty increases if we take into consideration the safety
conditions that need to be satisfied on the boundary of the workspace. Instead, by applying
a policy gradient optimization technique we can adjust the weights of our parametric
controller appropriately so as to satisfy the stationary condition as well as the safety over
the workspace boundary. In the next section, we shall discuss the reformulation of our
problem as a RL one, in order to apply the aforementioned policy gradient optimization

technique.

5.2 Optimal Motion Planning as a Reinforcement Learning
Problem

Looking at the optimal motion planning problem through the prism of RL, we can
interpret the robot as an agent interacting with its environment, the workspace . By
sensing its state (i.e., position) p € W, the robot takes action (i.e., input velocity) u € R?
through the parametrized policy (i.e., parametric controller) wu, (p). The value function,
corresponds to the cost function (5.4), which in our case is subject to minimization. Since
the robot’s policy consists of our parametric controller, and due to the nature of the robot’s
state and action space, our problem is a continuous, deterministic and model-based RL
problem.

The minimization of the cost function (5.4) coincides with finding the optimal con-
trol policy u* and the optimal cost V* that satisfy the stationary condition (5.7). Thus,
the solution of our RL problem is reduced to finding the optimal parameters w* of our
controller.

The policy gradient optimization algorithm used in this work is based on Policy Iter-
ation which is a widely used technique that solves the HJB equation [6]. We will discuss
how we can obtain the gradient of the cost function V later. Since what we aim to find

are the optimal values for the weights w, we write:
ulY) = gTy (D) (5.8)

where:

o= —|p—pal*Vé(p; pc)
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ALcorITHM 5.1: Off-line Policy Iteration

Require: Any admissible control policy (9 and tolerance ¢ > 0
while ||u(*1) — 4| > ¢ do
1) Calculate VvV @ based on policy u®

2) Update the control policy: u(+1) = —%VV(Z')
3)i+i+1
end while

Thus, the weights w on each iteration can be obtained by solving the following con-

strained quadratic problem:
4 1 ,
min : [|oTw Y 4 ﬁvvw |12 (5.9)

subject to ATw <0

Since we want to avoid the computational burden of solving a constrained quadratic
problem we will employ a PGD algorithm, which is is a policy gradient RL technique used
to solve constrained optimization problems. In the next section we will present the steps

of our algorithm and address any remaining issues.

5.3 Projected Gradient Descent

First, let’s define the following objective function:

M(w) = o7 (p)w + 215vv<p>r|2 (5.10)

Our controller’s parameters are then updated as follows:
witD = @ — 4V, M (w) (5.11)

where

VM (w) = 20(p)(0"(p)uw + 55TV ()

is the descent direction and «a is a tuning parameter called the learning rate.

We shall now address the following remaining issues. First, we will tackle the calculation
of the gradient of the cost function V. Subsequently, we will present the adaptive algorithm
used to calculate the learning rate a. Finally, we will discuss the implemented projection

algorithm.

5.3.1 Gradient of Cost Function

To obtain the gradient of the cost function V, first, we need an estimation for the
cost function. Such an estimation can be obtained by executing trajectories from initial

points across the boundary of the robot’s workspace W and solving a system of differential
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equations for each initial point.

() ]:[mm p(0) lzrq 5.12)
V(p; pa) rip,u)| [ V(pj;pa) 0
where r(p, u) = allp — pal|* + B]|ul® (5.13)

Solving (5.12) gives us the points p; in the robot’s trajectory that starts from a boundary
point p; and ends on the robot’s goal position pg. Also, for each point in the trajectory, we
obtain an estimation for the accumulated cost V(p;; pg). Thus, we acquire an estimation

for the cost-to-go for each point in the trajectory in the following way:
V(pispa) = V(pa;pa) — V(pis pa) (5.14)

Repeating this process for a finite number of uniformly distributed boundary points
allows us, through interpolation, to easily get the cost-to-go V(p) for all p € W. With an
estimation for the cost-to-go available, it is now easy to obtain its gradient for points in
a two-dimensional grid inside the workspace. To calculate the descent direction, we will
use the gradient of each point in the chosen grid and calculate the mean value of equation
(5.15) for all points.

1

357V () (5.15)

9 K
VeM(w) = - > opi) (e (pj)w +
j=1

Using points from all over the workspace will result in a Full-Batch training algorithm.
However, executing trajectories from a large number of initial boundary points increases
the computational complexity. To remedy this, we restrict ourselves to a randomly chosen
subset of the boundary points each time we need to calculate the descent direction. If we
choose this subset to include only neighbouring points, we are able to get an estimation for
the cost function in a small area of the workspace. Extracting the gradient and substituting
it in equation (5.15) to calculate the descent direction results in what is known as a Mini-
Batch training algorithm. In Fig.(5.1), we illustrate the difference between the two methods

of acquiring the gradient.

5.3.2 Learning Rate

The adaptive method used in this work to calculate the learning rate is derived from
ADADELTA [7]. This method inherits important benefits of the ADADELTA approach,
including robustness to noisy gradients and the lack of dependence on a manual learning
rate. The main difference is that ADADELTA has a separate dynamic learning rate per-
dimension, while our method produces a global learning rate by using the info from the
gradients of all parameters. The reason for this is that in practice, a global learning rate
proved to be more suitable for our problem. The steps of the algorithm are presented in
Alg.(5.2).
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Figure 5.1: Full-Batch vs Mini-Batch Training

ALGORITHM 5.2: Computing learning rate update at iteration i

Require: Decay rate p , Constant €
Require: Initial parameters w(®)

Require: Initialization of accumulation variables E|[step?]o = 0, E[Aw?]op =0

fori=1:N do ‘
1) Compute gradient stepg,) = VM (w)

2) Accumulate Gradient Elstep?]; = pE[stepy,];_1) + (1 — p)stepw

RM S[Aw];_1)
" "RMSstepw]; step

E[z2]; + €

3) Compute Update: A’LUZ =
where RM S[z]; =

4) Accumulate Updates: E[Aw?]; = pE[Aw?];—1 + (1 — p)Aw?

5) Apply Update : wt! = w® + Aw;
end for

w

2(i)

7
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5.3.3 Projection Onto Convex Sets

We use projection in the Gradient Descent algorithm to ensure that the updated un-
derlying AHPF parameters satisfy the safety conditions.

As we established in chapter 3, the safety condition can be expressed as a set of linear
inequalities w.r.t the weights w. Each inequality A;w < 0 defines a closed half-space, and
thus is a convex set [8]. The intersection of all the closed half-spaces defines a convex
polyhedral Q:

Q= {weREFTD: ATy <0} (5.16)

The projection operator Pg is defined as:
Po(w™) = arg min 1||w —w?|3 (5.17)
weQ 2

which itself is an optimization problem. Since Q is convex, the problem has a unique
solution. However, since we want to avoid solving a constrained quadratic problem, we
employ a cyclic projection algorithm [9]. The cyclic projection algorithm allows us to find
the orthogonal projection of a point in the intersection of a collection of convex sets by
applying a sequence of projections, individually onto each set. Although convergence is
slow for a large number of convex sets, it is a drastic improvement over solving a quadratic
problem. We can project onto each individual convex set defined by the closed half Apw <
0, with the use of the following projection operator:

w( « o

[l 12
where ng = ”1’2—:” denotes the normal vector to the hyperplane Aizw = 0.

If we denote T as the product 7 = P;1Ps... Pj, then we can get the orthogonal projection
of the weights w onto the convex polyhedral Q in the following way:

w® = PQ(w(i)) = W(w(i)) asr — oo (5.19)

proj

5.3.4 Complete Algorithm

We will now present the complete Projected Gradient Descent algorithm. Since in
our algorithm we calculate the gradient of the cost function using the policy subject to
optimization, it is considered an on-policy algorithm. It is important to mention that even
though we update the parameters w on each iteration, the gradient of the cost function
V is only recalculated every k iterations. When we attempt to minimize the objective
function M (w) in the 4, iteration, what we are aiming for is to make our current policy
ul*1) get closer to the available data —%vv(“. By recalculating VV after performing
only a single step towards the descent direction, we have not fully taken advantage of the
currently available data to optimize our policy. However, choosing a very large value for
k results in, eventually, moving in a direction based on data that is no longer valid for

our policy. A properly tuned value for k allows us to improve our policies faster and more
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accurately, laying the groundwork for faster convergence of our algorithm.

AvrcoriTHM 5.3: On-Policy Projected Gradient Descent

Require: Initial parameters w(®) (safe), 1 =0
Require: Number of steps k > 0 without recalculating VV
while weights have not converged do
1) Calculate VV) using Mini-Batch-Gradient Descent
2) Compute descent direction stepg) = VuM(w)
3) Calculate learning rate a(®)
4) Update weights w1 = () — a(i)stepg)
5) Projection onto safe set:wl(fg;) = Po(wltD)) : Q = {w e RE+D : ATy < 0}
6)i+i+1
if mod(i,k)! = 0 then
vVt = vV (® and skip 1)
end if
end while

5.4 Optimization of the FATAS Controller

In this section, we will present the Projected Gradient Descent algorithm that adjusts
the parameters of the FATAS controller so that the cost function (5.4) is minimized for
all pg € S, where § is the predesignated subset for which the controller can provide safe
navigation policies to.

Similarly to the FATAP controller, based on the Policy Iteration algorithm we can

obtain the policy u at each iteration by solving the following constrained quadratic problem:

, 1 .
min : [[u™*Y (pa) + 35VV O (pa) I* Vpa € po (5.20)
subject to AT <0 (5.21)

Since what we are aiming to find is the parameters W* of the FATAS controller, we

write:
ulH = T T 5(py; pea) (5.22)

where:

o= —|lp — pal*Vé(p; pe)

Thus, the parameters W on each iteration can be obtained by solving the constrained
quadratic problem (5.23). The set pg denotes the set of goal positions used in the safety

condition from which we derived our controller’s initial parameters.

. 1 .
min~ : HO’TWT(ZJrl)g(pd;pCd) + —VV(Z) (pd)H2 Vpd € pa (5.23)
w=vec(WT) 25

subject to ATw < 0
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To apply the Projected Gradient Descent algorithm for the FATAS controller’s param-

eters, first we define the objective function:

1

M(WT) = [|loT(p)WT(pas pea) + %VV(IMM)H2 (5.24)
Our controller’s parameters are updated as follows:
W) = 0 — aV M(WT) (5.25)
where
Vi M(WT) = 2(3(pa; pca) ® o(p)) (07 (D) WT3(pa; pca) + iVV(P, Pd)) (5.26)

26

is the descent direction (V5 M(WT) € REFDEAL)) and q is the learning rate.

As in the case of the FATAP controller, to compute the descent direction we need to
calculate the gradient of the cost function V', this time for all p; € pg. However, for
computational efficiency we shall use only N points, chosen randomly from the set pg each
time the descent direction is computed, where N < m and m is the number of points in
the set pg. Then, for each pg;, where 1 < ¢ < N, we will calculate an approximation of the
true gradient VV (p, pg;) by using mini-batches. Finally, we obtain the descent direction
by calculating the mean value of equation (5.26) for all mini-batches of the chosen N goal

positions:

K;

%(§(pdi;p0d) @ o(p;)) (a7 (p;)WTs(pai; pca) + iVV(Z%Z?di))

N

- 2

- T —
Vi M(WT) N ; i 28

j=1
(5.27)

The learning rate « is calculated with the same adaptive method we described in the
previous section which provides us with a global learning rate based on the descent direction

of all parameters.

Finally, to ensure the safety of our policies, if any of the constraints is violated during
the learning process, we need to find the orthogonal projection of our parameters onto the

convex polyhedral Q, defined by the safety condition:
Q = {w e RFADEFD . ATh < 0} (5.28)

The cyclic projection algorithm allows us to find the orthogonal projection onto the
convex polyhedral Q by performing a sequence of projections individually onto each convex

set defined by /Izzf} <0.

The projection operator onto the k;;, convex set is given by:

B vec(WTEHD) « iy,

Pj = vec(WTEHD) A
k

* (5.29)

where n; denotes the normal vector to the hyperplane defined by /i%if) = 0. If we denote
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T as the product 7 = P1Ps... P then we can write:

vec(WT(i)) = PQ(UGC(WT(i))) =T (WD) as r — oo (5.30)

proj

In Alg. (5.4), the complete Projected Gradient Descent algorithm for the optimization of
the FATAS controller’s parameters is presented.

AvcoriTHM 5.4: On-Policy Projected Gradient Descent

Require: Initial parameters vec(WT(0) (safe), i = 0
Require: Number of steps k& > 0 without recalculating VV Vpy
while vec(WWT) has not converged do
1) Calculate VV® V¥p, using Mini-Batch Gradient Descent

2) Compute descent direction step(i) = Vi M (WT)

W
3) Calculate learning rate a(

)

) ~ . ~ . . y
4) Update parameters vec(W T = pec(WTH) — a® step'?)

)

5) Projection onto safe set: vec(Wgr(Zj.—l)) = PQ(WT(H”) Q= {w e READKEHD)
AT < 0}
6) i+ i+1
if mod(i, k)! = 0 then
vVt = vV ¥p, and skip 1)
end if
end while

5.5 Simulation Results

In this section we will present the results of our implemented Projected Gradient De-
scent algorithm, by comparing the value of the adopted cost function as well as the policies
produced by our method, prior to and after optimizing the parameters of the proposed pol-
icy. The parameters in our adopted cost function were chosen as a = 0.5, 8 = 0.5 for all
simulations. In addition, the successive number of steps without recalculating the gradient
of the cost function in the PGD algorithm is set as k = 5.

In Fig.(5.2) the convergence of our controller’s parameters, along with the adaptive
learning rate a, are presented for the case of the FATAS controller of the T-shaped
workspace described in Fig.(4.1) of chapter 4. Furthermore, in Fig.(5.4) a comparison be-
tween the initial and the final, normalized vector fields for the goal position pg = (0.8, 3.5)
is depicted, along with the cost function’s improvement both as a difference and as a per-
centage of decrease. The inherent simplicity of this specific workspace leaves not much
room for improvement. Also it should be noted, that the use of an AHPF-based controller,
results in vector fields with incompressible flows and thus, the optimized trajectories are
not necessarily of minimum length. In Fig.(5.5) through (5.7), the same comparison is
done for three more goal positions of the T-shaped workspace.

Additionally, similar results are presented regarding the FATAS controller designed
for the more complex office-like workspace depicted in Fig.(4.2) of chapter 4, in Fig.(5.3)
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and Fig.(5.8) through (5.11).

The percentage of decrease clearly doesn’t give enough

insight, due to its ill-behavior for initial values close to zero. For example, in Fig.(5.11d), a

percentage decrease of —5.66% is attributed to an increase of the initial cost from 4.18 to

4.42. To gain a better perspective, one has to also take the difference between the initial

and final values of the cost function in Fig.(5.11c) into consideration as well.
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Chapter m

Multiple Waypoint Navigation using the FATAS Con-

troller

6.1 Motivation and Proposed Method

In this chapter, we propose a robust solution to the navigation problem of a robot, whose
objective is to visit a pre-determined set of waypoints within a completely known and static
workspace, with the use of our novel parametric controller. Our work is motivated by a
plethora of real-life scenarios such as a robot visiting different rooms of a warehouse to
execute tasks, or performing monitoring duties in certain areas.

When considering the aforementioned scenarios, a solution includes two steps, namely,
the waypoint-to-waypoint navigation and the optimal visiting sequence. After we assign
a safe navigation policy to each of the robot’s waypoints, first, we employ Reinforcement
Learning to turn those policies into optimal ones and in the next step, we find the optimal
order of visitation by solving an Asymmetric Travelling Salesman Problem (ATSP) [18] so
that the sum of all transition costs is minimized.

It is true that one can consider shrinking the waypoints down to individual points and
use the FATAP, instead of the FATAS parametric controller. Such an approach could be
adopted, for example, in a monitoring task. However, in that case, even a slight change
in the robot’s input goal position will render this approach unusable. Thus, by employing
the FATAS parametric controller along with the policy gradient optimization technique we
presented, not only we achieve safety and optimality, but also robustness w.r.t the goal

positions assigned to the robot.

6.2 Simulation Results

We consider the artificial workspace illustrated in Fig.(6.1). Our aim is to provide an
optimal solution to the navigation problem of a robot, whose goal throughout its work-
life is to visit the four depicted, green, star-shaped waypoints. Also, for convenience, a
unique number is assigned to each waypoint. To implement the FATAS controller for the
aforementioned problem, a square area is chosen around each waypoint. Then, for each
one, an initial policy is obtained with the steps we described in chapter 4. The centers of

the Radial Basis Functions pog (blue points) and the goal positions pg; € pa (black points)
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Figure 6.1: Artifical Workspace with Four Waypoints

used for the safety condition, are depicted in Fig.(6.1b). After obtaining our initial policies,
the Projected Gradient Descent algorithm we discussed on chapter 5, was implemented to
convert, those policies into optimal ones.

In Table 6.1, the initial transition cost matrix between each waypoint is summarized.
Furthermore, the final transition costs are shown in Table 6.2. Supposing one would pick
an initial route for the robot consisting of the cyclic permutation of waypoints (2 3 1 4),
according to Table 6.3, the sum of the initial transition costs amounts to 214.6. After
employing Reinforcement Learning to optimize our policies, the sum of the final transition
costs becomes 153.8. Moreover, by solving an ATSP, we obtain the overall optimal solution,
which consists of the cycle (4 3 1 2), with a corresponding cost of 53.34, leading to a 75.14%
decrease of the total cost. In Fig.(6.2), the initial and final trajectories of the robot are
shown. While Fig.(6.2a) depicts the trajectories of the robot in the initial cycle (2 3 1 4),
in Fig.(6.2b) the trajectories of the final cycle (4 3 1 2) are shown.

Start \ End || 1) (4,1) | 2) (1,1) | 3) (1,4) | 4) (4,4)
1) (4,1) - 7.25 100.68 7.65
2) (1,1) 7.94 - 153.51 19.28
3) (1,4) 31.31 40.20 - 9.71
4) (4,4) 9.25 22.13 22.73 -

Table 6.1: Initial Transition Costs

Start \ End || 1) (4,1) | 2) (1,1) | 3) (1,4) | 4) (4,4)
1) (4,1) - 6.22 68.24 6.16
2) (1,1) 5.76 - 120.50 10.43
3) (1,4) 14.77 25.07 - 6.30
4) (4,4) 6.50 12.37 21.94 -

Table 6.2: Final Transition Costs
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Cycle \  Sum Initial Transition || Final Transition || Percentage of De-
Costs Costs crease
(4312) 80.57 53.34 33.80%
(4321) 78.52 58.93 24.95%
(3421) 140.47 92.67 34.03%
(1324) 169.41 110.23 34.93%
(4123) 179.72 139.52 22.37%
(2314) 214.60 153.80 28.33%

Table 6.3: Sum of Transition Costs for each Cycle
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Figure 6.2: Comparison of trajectories between Initial and Final Cycle

To evaluate the robustness of our proposed method, first, let us consider the case of

a small disturbance when the positions of the four waypoints are passed to the robot.

The initial and final transition cost matrices for our controller are summarized in Table

6.4 and Table 6.5 respectively. In addition, the comparison between the initial and the

final transition costs is depicted in Table 6.6. We can see that despite the change in the

goal positions of the robot, we managed to obtain similar results, maintaining a 77.39%

decrease in the total cost between the initial cycle with the highest sum of transition costs

and the final cycle that consists of the overall optimal solution. In Fig.(6.3) a comparison

between the trajectories of the initial and the final cycle is shown.

Start \_End || 1) (3.99,0.99) [ 2) (1.02,1.03) | 3) (0.98,4.05) | 4) (4.01,3.97)
1) (3.99,0.99) - 7.14 111.94 7.56

2) (1.02,1.03) 7.66 - 177.92 18.66

3) (0.98,4.05) 32.72 43.90 - 10.10

1) (4.01,3.97) 8.97 21.99 23.54 -

Table 6.4: Initial Transition Costs (Small Disturbance)
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Start \_End || 1) (3.99,0.99) | 2) (1.02,1.03) | 3) (0.98,4.05) | 4) (4.01,3.97)
1) (3.99,0.99) - 6.04 73.50 6.07

2) (1.02,1.03) 5.63 134.32 10.16

3) (0.98,4.05) 15.29 26.06 - 6.46

1) (4.01,3.97) 6.36 12.11 22.82 -

Table 6.5: Final Transition Costs (Small Disturbance)

Cycle \ Sum Initial Transition || Final Transition || Percentage of De-
Costs Costs crease
(4312) 82.06 54.31 33.82%
(4321) 82.66 60.59 26.70%
(3421) 151.69 97.70 35.59%
(1324) 183.46 116.08 36.73%
(4123) 204.12 153.17 24.96%
(2314) 240.19 167.79 30.14%

Figure 6.3: Comparison of trajectories between Initial and Final Cycle (Small Disturbance)

Finally, let us consider a large disturbance regarding the positions of the waypoints.
The initial and final transition cost matrices for our method are summarized in Table 6.7
and Table 6.8 respectively. The comparison between the initial and the final transition
costs for the case of the large disturbance is depicted in Table 6.9. The decrease of the
overall cost between the two cycles of interest further increases to a total of 81.4%. Finally,

in Fig.(6.4) we present a comparison between the trajectories of the initial and the final

Table 6.6: Sum of Transition Costs for each Cycle (Small Disturbance)
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cycle for the case of the large disturbance.

4.5

ol

UJ
SN =
H@

(b) Final Cycle




6.2 Simulation Results

Start \_End || 1) (4.14,1.14) | 2) (0.86,0.86) | 3) (0.87,4.14) | 4) (4.12,3.89)
1) (4.14,1.14) - 9.04 117.47 6.49

2) (0.86,0.86) 11.18 - 283.69 21.55

3) (0.87,4.14) 47.61 63.78 - 11.89

1) (4.12,3.89) 9.37 27 29.62 -

Table 6.7: Initial Transition Costs (Large Disturbance)

H Start \_ End H 1) (4.14,1.14) ‘ 2) (0.86,0.86) ‘ 3) (0.87,4.14) ‘ 4) (4.12,3.89) H

1) (4.14,1.14) - 8.72 85.95 5.46
2) (0.86,0.86) 7.12 - 209.72 11.28
3) (0.87,4.14) 17.83 49.93 - 7.40
1) (4.12,3.89) 6.48 18.86 30.04 -
Table 6.8: Final Transition Costs (Large Disturbance)
Cycle \ Sum Initial Transition || Final Transition || Percentage of De-
Costs Costs crease

(4312) 107.82 67.87 37.05%
(4321) 111.07 92.56 16.67%
(3421) 167.54 119.33 28.78%
(1324) 212.17 153.64 27.59%
(4123) 313.99 232.32 26.01%
(2314) 364.80 251.87 30.96%

Table 6.9: Sum of Transition Costs for each Cycle (Large Disturbance)
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Figure 6.4: Comparison of trajectories between Initial and Final Cycle (Large Disturbance)






Chapter

Conclusions and Future Work

While our method shows promising results, certain limitations need to be taken into
consideration. Firstly, our novel approach is not suitable for dynamic workspaces. More-
over, by developing a controller for single integrator dynamics, stochasticity and non-
linearities are not being addressed. In addition, our method can only be applied in the
framework of two-dimensional navigation. Finally, regarding the computational complex-
ity, the necessity to solve a hard constrained quadratic problem to obtain our controller’s
parameters, becomes a hindrance in more complex environments. Despite the aforemen-
tioned issues, we believe that in future work, our proposed method has the potential to
grow into a valuable addition to the arsenal of established motion planning approaches.

In forthcoming work, our method may be expanded for higher dimensional cases while
incorporating noise and stochastic elements in the dynamics of the controller as well.
Furthermore, regarding our solution to the motion planning problem, one can also consider
the decay parameters of the Radial Basis Functions, as additional parameters subject to
optimization. Ultimately, it is important to mention that the development of a provably
optimal way to distribute the centers of the basis functions, as well as the goal positions
in the safety condition of the FATAS controller’s parameters, can be worked upon in order

to avoid unnecessary computational expense.
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