
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Δομική και περιγραφική πολυπλοκότητα δύσκολων

προβλημάτων μέτρησης με εύκολο πρόβλημα απόφασης

Διδακτορική διατριβή

της

Αγγελικής Χαλκή

Επιβλέπων: Αριστείδης Παγουρτζής, Καθηγητής

Αθήνα, Ιούλιος 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Computation and Reasoning Laboratory

On structural and descriptive complexity of hard counting
problems the decision version of which is easy

PhD Thesis

by

Aggeliki Chalki

Supervisor: Aris Pagourtzis

Athens, July 2022

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Τομέας Τεχνολογίας, Πληροφορικής και Υπολογιστών

Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Δομική και περιγραφική πολυπλοκότητα δύσκολων

προβλημάτων μέτρησης με εύκολο πρόβλημα απόφασης

Διδακτορική διατριβή της Αγγελικής Χαλκή

Τριμελής συμβουλευτική επιτροπή: Αριστείδης Παγουρτζής (επιβλέπων)

Ευστάθιος Ζάχος

Δημήτριος Φωτάκης

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 22η Ιουλίου 2022.

............................

Αριστείδης Παγουρτζής Ευστάθιος Ζάχος Δημήτριος Φωτάκης

Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ Καθηγητής ΕΜΠ

............................

Ανδρέας Γαλάνης Αντώνιος Αχιλλέως Lane Hemaspaandra

Αν. Καθηγητής Επ. Καθηγητής Καθηγητής

University of Oxford Reykjavik University University of Rochester

............................

Κωνσταντίνος Κούτρας

Αν. Καθηγητής American University of the Middle East

Αγγελική Χαλκή

Διδάκτωρ Ηλεκτρολόγος Μηχανικός και Μηχανικός Υπολογιστών Ε.Μ.Π.

Copyright © Αγγελική Χαλκή, 2022.

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήμα-

τος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή για σκοπό μη

κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προ-

έλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για

κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα. Οι απόψεις και τα συμπεράσμα-

τα που περιέχονται σε αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευθεί

ότι αντιπροσωπεύουν τις επίσημες θέσεις του Εθνικού Μετσόβιου Πολυτεχνείου.

Abstract

In this thesis, we study classes of counting problems the decision version of which is easy. The

complexity class #P, introduced by Valiant [149], contains the counting versions of NP problems.

We focus on #PE [122], the class of #P functions the decision version of which is in P. In fact,

we are mostly interested in a subclass of #PE, namely TotP [102], which contains essentially all

self-reducible #PE functions. TotP has also an interesting simple syntactic characterization: a

function belongs to TotP if it counts the number of all paths of an NPTM. Notably, TotP is a

robust class; it has nice closure properties and natural complete problems under parsimonious

reductions, i.e. reductions that preserve the number of solutions. We study the class TotP from

different angles:

1. We discuss the first complete problems for TotP under parsimonious reductions that were

first presented in [22, 13]. In particular, the problem Size-of-Subtree has been in-

troduced by Knuth as the problem of estimating the size of a backtracking procedure’s

tree [105] and has been studied from many perspectives.

2. Efficient and exact counting is very rare, so the main research interest in the area of

counting complexity is to classify counting problems with respect to their approximability

and design approximation algorithms for those that can be approximated. In this quest,

properties of problems in TotP are important. We examine the relationship of TotP to

the class of approximable counting problems, namely FPRAS. Some of the relevant results

presented here, have appeared in [22, 24].

3. To deal with the previous question, we needed to define classes with counting problems

the decision version of which is in RP. We examine one such problem, namely #Exact

Matchings, with respect to its exact and approximate computation. #Exact Match-

ings is a generalization of counting perfect matchings in graphs that contain both black

and red edges.

4. Then we turn our attention to logical characterizations of classes of counting problems.

We build upon previous work in the area of descriptive complexity of counting problems.

We give logical characterizations of two robust subclasses of TotP and determine their

relationship with the class FPRAS [24]. Most importantly, we provide a logical character-

ization of TotP, which was an open question in the area of descriptive complexity [15]. To

express self-reducibility, we add recursion on functions over second-order variables to the

logic QSO introduced in [15], which, we believe, is of independent interest.

5. We investigate the power of counting the total number of paths of an NPTM by introducing

classes of decision problems defined by properties of TotP functions. These classes can be

seen as tot-counterparts of traditional classes. We explore the relationship among the

newly introduced classes and their ‘#P-definable’ analogs. We also build upon a result

by Curticapean [52] and we examine complete problems for some of these classes that are

defined as variants of the problem of counting perfect matchings in a graph.

Keywords: computational complexity, descriptive complexity, counting problems, easy decision

problem, class #P, fpras for counting problems

Περίληψη

Σε αυτή τη διδακτορική διατριβή, μελετάμε κλάσεις μετρητικών προβλημάτων τα οποία έχουν εύκολο

πρόβλημα απόφασης. Η κλάση πολυπλοκότητας #P, την οποία εισήγαγε ο Valiant [149], περιέχει

τις μετρητικές εκδοχές NP προβλημάτων. Το ενδιαφέρον μας εστιάζεται στην#PE [122], την κλάση

των #P συναρτήσεων που έχουν αντίστοιχο πρόβλημα απόφασης στην P. Θα μελετήσουμε κυρίως

μια υποκλάση της#PE, η οποία ονομάζεται TotP [102] και περιέχει τις αυτοαναγώγιμες συναρτήσεις

που ανήκουν στην #PE. Η TotP έχει επίσης ένα ενδιαφέροντα, απλό συντακτικό χαρακτηρισμό: μία

συνάρτηση ανήκει στην TotP αν μετράει το πλήθος όλων των μονοπατιών μίας μη-ντετερμινιστικής

μηχανής Turing πολυωνυμικού χρόνου (NPTM). Είναι αξιοσημείωτο ότι η TotP είναι εύρωστη

κλάση: έχει επιθυμητές ιδιότητες κλειστότητας και φυσικά πλήρη προβλήματα ως προς φειδωλές

αναγωγές, δηλ. αναγωγές που διατηρούν το πλήθος των λύσεων. Θα εξετάσουμε την κλάση TotP

από διαφορετικές οπτικές γωνίες:

1. Θα ασχοληθούμε με τα πρώτα TotP-πλήρη προβλήματα ως προς φειδωλές αναγωγές, που

παρουσιάστηκαν αρχικά στα [22, 13]. Ειδικά το πρόβλημα Size-of-Subtree έχει οριστεί

από τον Knuth ως το πρόβλημα υπολογισμού του μεγέθους του υπολογιστικού δέντρου μιας

backtracking διαδικασίας [105] και έχει μελετηθεί με πολλούς τρόπους.

2. Ο αποδοτικός ακριβής υπολογισμός μετρητικών προβλημάτων είναι πολύ σπάνιος. Για αυτό

το λόγο, βασικός στόχος σε αυτή την περιοχή είναι η ταξινόμηση των μετρητικών προβλη-

μάτων με βάση την προσεγγισιμότητά τους και ο σχεδιασμός προσεγγιστικών αλγορίθμων

για όσα μπορούν να επιλυθούν με αυτό τον τρόπο. Σε αυτή την αναζήτηση, οι ιδιότητες των

προβλημάτων της TotP είναι σημαντικές. Θα εξετάσουμε τη σχέση της TotP με την κλάση

των προσεγγίσιμων προβλημάτων FPRAS. Κάποια από τα αποτελέσματα που παρουσίαζουμε

εδώ είναι από τα [22, 24].

3. Για να απαντήσουμε το προηγούμενο ερώτημα, ορίσαμε κλάσεις μετρητικών προβλημάτων με

αντίστοιχο πρόβλημα απόφασης στην κλάση RP. Μελετάμε ένα τέτοιο πρόβλημα, το πρόβλημα

#Exact Matchings, ως προς τον ακριβή υπολογισμό του και τη δυνατότητα προσέγγισης

της τιμής του. Το #Exact Matchings είναι μια γενίκευση του προβήματος μέτρησης

τέλειων ταιριασμάτων σε γράφους που περιέχουν μαύρες και κόκκινες ακμές.

4. Δίνουμε λογικούς χαρακτηρισμούς για κλάσεις μετρητικών προβλημάτων. Βασιζόμενοι σε

προηγούμενα αποτελέσματα στην περιοχή της περιγραφικής πολυπλοκότητας για μετρητικά

προβλήματα, δίνουμε χαρακτηρισμούς δύο εύρωστων υποκλάσεων της TotP και προσδιορίζου-

με τη σχέση τους με την κλάση FPRAS [24]. Το σημαντικότερο αποτέλεσμά μας είναι ο

λογικός χαρακτηρισμός της TotP, το οποίο αποτελούσε ανοιχτό ερώτημα [15]. Για να εκ-

φράσουμε την αυτοαναγωγιμότητα, προσθέσαμε στη λογική QSO [15] αναδρομή ορισμένη σε

συναρτήσεις που δέχονται δευτεροβάθμιες μεταβλητές ως ορίσματα. Θεωρούμε ότι αυτό το

είδος αναδρομής έχει ανεξάρτητο ενδιαφέρον.

5. Εξερευνούμε την ισχύ που προκύπτει από τη μέτρηση του πλήθους των μονοπατιών μιας

NPTM εισάγοντας κλάσεις προβλημάτων απόφασης, τα οποία ορίζονται μέσω ιδιοτήτων TotP

συναρτήσεων. Αυτές οι κλάσεις μπορούν να θεωρηθούν tot-ανάλογα παραδοσιακών κλάσε-

ων. Διερευνούμε τη σχέση μεταξύ των κλάσεων που ορίζουμε εδώ και των παραδοσιακών

αντίστοιχων κλάσεων. Βασιζόμενοι σε ένα αποτέλεσμα του Curticapean [52] εξετάζουμε

πλήρη προβλήματα για αυτές τις κλάσεις που ορίζονται ως εκδοχές του προβλήματος μέτρη-

σης τέλειων ταιριασμάτων σε κάποιο γράφο.

Λέξεις-κλειδιά: υπολογιστική πολυπλοκότητα, περιγραφική πολυπλοκότητα, μετρητικά προβλήμα-

τα, εύκολο πρόβλημα απόφασης, κλάση #P, fpras για προβλήματα μέτρησης λύσεων

Acknowledgments

I have been in CoreLab for almost one quarter of my life. There are not enough words to

express my gratitude to all the people that I have met and worked with during the past years.

First and foremost, I would like to thank my supervisor Aris Pagourtzis who taught me not

only computational complexity, but also how to be patient, optimistic, and respectful to both

science and people.

I thank Stathis Zachos for showing me how sharing can make you a better person and

researcher.

I thank Dimitris Fotakis for being always positive and supportive. His attitude towards

research and teaching has been very inspiring for me.

I thank Kostas Coutras for trusting me and for giving me valuable advice (that I never

followed as he would say).

I thank Antonis Achilleos for bearing with me in several periods through these years. He

was always present when I wanted his opinion and help. I thank him for his generosity in both

research and life.

I thank Lane Hemaspaandra for providing me useful and interesting information relevant

to this thesis’ subject. His deep insight into structural complexity helped me improve parts of

this thesis.

I thank Andreas Galanis for agreeing to be part of my committee (twice). I am very glad

and honoured. I thank him for his willingness to give me his attention and invaluable feedback.

I thank Andreas Göbel for revealing some of the beauty of counting complexity to me. I

also thank him for being so patient with me and for the pleasant discussions we had.

I thank Eleni Bakali, Antonis Antonopoulos, Stavros Petsalakis, and Petros Pantavos for

the hours that we spent talking and writing together. This thesis could not have been completed

without them.

I thank Petros and Dora for helping me and being so kind to me all these years.

I thank Elli, Christina, Giannis, JimGen, Vaggelis, Thomas, Thodoris, Vasiliki, Petros,

Zachos, and every other person that has been part of the logic study group. This group has

been a source of energy, ideas, and knowledge over the past years.

I thank Pouran, Eleni, Antonis, Stavros, Thanasis, Peter Pan, Natalia, Giannis, Jela, Pana-

giotis Pats, Eleni Psar, Alkis, Panagiotis Grontas, Marianna, Sotiris, Loukas, Stratis, Zeta, Ka-

terina, Lydia, Dimitris, and all other members of CoreLab that have made this place so special.

I thank Natalia for being my friend, so supportive and generous.

I thank my friends for their understanding and support in every choice I have made. I

thank Alexandros for being there for me. I thank my parents Panagiota and Giorgos, and my

brother Tolis for believing in me and for encouraging me from the start to the end.

Aggela

vi

Εκτεταμένη περίληψη στα ελληνικά

Εισαγωγή

Με τον όρο πρόβλημα μέτρησης αναφερόμαστε σε μια συνάρτηση που αντιστοιχίζει μια είσοδο σε

ένα πρόβλημα απόφασης στο πλήθος των λύσεων που έχει το πρόβλημα για αυτή την είσοδο. Για

παράδειγμα, το #Sat είναι μια συνάρτηση που αντιστοιχίζει έναν προτασιακό τύπο στο πλήθος

των αναθέσεων αληθοτιμών για τις οποίες ο τύπος ικανοποιείται. Η κλάση τέτοιων συναρτήσεων,

για τις οποίες το αντίστοιχο πρόβλημα απόφασης βρίσκεται στην κλάση NP, είναι η κλάση #P,

που όρισε ο Valiant [149]. Ισοδύναμα, η #P είναι η κλάση των συναρτήσεων που μετρούν τα

μονοπάτια αποδοχής μη-ντετερμινιστικών μηχανών Turing πολυωνυμικού χρόνου, για τις οποίες θα

χρησιμοποιούμε το συμβολισμό NPTMs.

Είναι ενδιαφέρον ότι πολλά προβλήματα από διαφορετικά επιστημονικά πεδία μπορούν να εκ-

φραστούν ως μετρητικά. Αναφέρουμε ενδεικτικά τα παρακάτω.

1. Η συνάρτηση διαμέρισης στη στατιστική φυσική [81, 90, 91, 115].

2. Ο υπολογισμός του όγκου ενός κυρτού πολύτοπου στην υπολογιστική γεωμετρία [58].

3. Ο υπολογισμός της permanent στη γραμμική άλγεβρα [149].

4. Υπάρχουν προβλήματα βελτιστοποίησης με αβεβαιότητα που απαιτούν τη μέτρηση του πλήθους

των λύσεων. Για την ακρίβεια απαιτείται η μέτρηση λύσεων που είναι προσεγιστικά βέλτιστες

(και όχι απαραίτητα βέλτιστες λύσεις) [129, 117].

Πολύ λίγα προβλήματα μέτρησης μπορούν να επιλυθούν ακριβώς σε πολυωνυμικό χρόνο (π.χ.

το πρόβλημα #2Col). Για αυτό το λόγο μας ενδιαφέρει να εξετάσουμε ποια μετρητικά προβλήματα

μπορούν να προσεγγιστούν. Τα μετρητικά προβλήματα που μπορούν να προσεγγιστούν με τη

χρήση ενός πλήρως πολυωνυμικού πιθανοτικού προσεγγιστικού σχήματος (fpras), είναι προβλήματα

με εύκολο πρόβλημα απόφασης (για την ακρίβεια πρόβλημα απόφασης στην κλάση BPP). Στην

vii

αναζήτηση προσεγγίσιμων μετρητικών προβλημάτων, η κλάση#PE, η οποία περιέχει τα προβλήματα

στη #P, τα οποία έχουν αντίστοιχο πρόβλημα απόφασης στην P, είναι κεντρικής σημασίας. Σε

αυτή τη διατριβή, εστιάζουμε σε μια υποκλάση της #PE, την κλάση TotP. Σχεδόν όλα τα γνωστά

προβλήματα μέτρησης που επιδέχονται fpras ανήκουν στην TotP και οι κλάσεις που αποτελούνται

μόνο από τέτοια προβλήματα περιέχονται στην TotP.

Η TotP είναι η κλάση των συναρτήσεων που μετρούν το συνολικό αριθμό των μονοπατιών

των NPTMs. Εκτός από αυτόν τον απλό δομικό χαρακτηρισμό, η TotP έχει έναν ενδιαφέρο-

ντα εναλλακτικό ορισμό. Είναι η κλάση όλων των αυτοαναγώγιμων μετρητικών προβλημάτων με

πρόβλημα απόφασης στην P, η οποία επίσης είναι κλειστή ως προς φειδωλές αναγωγές [123]. Η

TotP είναι μια εύρωστη κλάση, όπου χρησιμοποιούμε τον όρο ‘εύρωστη κλάση’ όπως ορίστηκε από

τους συγγραφείς του άρθρου [15]: μια κλάση θεωρείται εύρωστη αν είτε είναι κλειστή ως προς

την πρόσθεση, τον πολλαπλασιασμό και την αφαίρεση κατά ένα, είτε έχει φυσικά πλήρη προβλήμα-

τα [15]. Συγκεκριμένα, η TotP ικανοποιεί και τις δύο αυτές συνθήκες όπως θα δείξουμε στην

παρούσα διατριβή.

Η TotP έχει επίσης έναν χαρακτηρισμό μέσω συναρτήσεων που υπολογίζουν το μέγεθος δια-

στημάτων [84, 27]. Η TotP είναι η κλάση των συναρτήσεων μέτρησης του μεγέθους διαστήματος,

το οποίο ορίζεται μέσω κάποιας πολυωνυμικής ολικής διάταξης A για την οποία (1) υπάρχει πολυω-

νυμικού χρόνου αλγόριθμος που δεδομένης εισόδου υπολογίζει το κάτω και άνω όριο του διαστήμα-

τος, (2) υπάρχει πολυωνυμικού χρόνου συνάρτηση LNA που δεδομένου στοιχείου, επιστρέφει το

λεξικογραφικά πλησιέστερο σε αυτό που ανήκει σε κάποιο δεδομένο διάστημα.

Σε αυτή τη διατριβή, θα παρουσιάσουμε αποτελέσματα δομικής και περιγραφικής πολυπλοκότη-

τας για την κλάση TotP.

Δίνουμε τους ορισμούς των κλάσεων #P, #PE και TotP, κάποιες προτάσεις που ισχύουν για

τις μεταξύ τους σχέσεις, παραδείγματα προβλημάτων που ανήκουν στην TotP και χρήσιμες ιδιότητες

αυτής της κλάσης.

Ορισμός 0.1. (α) ([149]). #P = {accM : Σ∗ → N |M είναι μία NPTM}, όπου

accM (x) = #(μονοπάτια αποδοχής της M με είσοδο x).

(β) ([122]). #PE = {f : Σ∗ → N | f ∈ #P και Lf ∈ P}, όπου Lf = {x | f(x) > 0}.

(γ) ([102]). TotP = {totM : Σ∗ → N | M είναι μία NPTM}, όπου

totM (x) = #(όλα τα μονοπάτια της M με είσοδο x)− 1.

Χρησιμοποιούμε τα παρακάτω είδη αναγωγών μεταξύ μετρητικών συναρτήσεων. Η κλάση FP

viii

είναι η κλάση των συναρτήσεων που μπορούν να υπολογιστούν σε πολυωνυμικό χρόνο.

Turing αναγωγές. Η f ανάγεται στη g ως προς Turing αναγωγές, το οποίο συμβολίζουμε

f ≤p
T g, αν ισχύει f ∈ FPg. Αν η αναγωγή χρησιμοποιεί μόνο μία κλήση στο μαντείο, συμβ.

f ∈ FPg[1], τότε γράφουμε f ≤p
1-T g.

Φειδωλές αναγωγές. Η f ανάγεται στη g ως προς φειδωλές αναγωγές, το οποίο συμβολίζουμε

f ≤p
pars g, αν υπάρχει συνάρτηση h ∈ FP, τέτοια ώστε για κάθε x ∈ Σ∗

, ισχύει f(x) = g(h(x)).

Αναγωγές γινομένου. Η f ανάγεται στη g ως προς αναγωγές γινομένου, το οποίο συμβολίζου-

με f ≤pr g, αν υπάρχουν h1, h2 ∈ FP τέτοιες ώστε για κάθε x ∈ Σ∗
ισχύει f(x) = g(h1(x)) ·h2(x).

Αναγωγές που διατηρούν την προσεγγισιμότητα (AP αναγωγές). Η f ανάγεται

στη g ως προς αναγωγές που διατηρούν την προσεγγισιμότητα, το οποίο συμβολίζουμε f ≤AP g,

αν υπάρχει πιθανοτική μηχανή Turing M που καλεί ένα μαντείο, η οποία παίρνει ως είσοδο ένα

στιγμιότυπο x της f και 0 < ε < 1 και ικανοποιεί τις παρακάτω τρεις συνθήκες:

1. για κάθε κλήση του μαντείου η είσοδος είναι της μορφής (w, δ), όπου w είναι στιγμιότυπο

της g, και 0 < δ < 1 είναι μια σταθερά σφάλματος τέτοια ώστε δ−1 ≤ poly(|x|, ε−1),

2. αν το μαντείο είναι ένα πιθανοτικό προσεγγιστικό σχήμα για την g, τότε η M είναι ένα

πιθανοτικό προσεγγιστικό σχήμα για την f .

3. η M είναι πολυωνυμικού χρόνου ως προς |x| και ε−1
.

Αν για δύο συναρτήσεις f , g ισχύει f ≤ g και g ≤ f για κάποια αναγωγή ≤, τότε λέμε ότι οι

f και g είναι ισοδύναμες ως προς τη ≤.

Διαισθητικά, ένα μετρητικό πρόβλημα είναι αυτοαναγώγιμο αν η τιμή του μπορεί να υπολογιστεί

σε πολυωνυμικό χρόνο δεδομένων των τιμών του ίδιου προβλήματος για (πολυωνυμικά πολλές)

μικρότερες εισόδους.

Θεώρημα 0.1 ([123]). (α) FP ⊆ TotP ⊆ #PE ⊆ #P. Οι εγκλεισμοί είναι αυστηροί εκτός αν

P = NP.

(β) FPTotP[1] = FP#PE[1] = FP#P[1]
.

(γ) Η TotP είναι η κλάση των αυτοαναγώγιμων #PE συναρτήσεων, η οποία, επιπλέον, είναι κλειστή

ως προς φειδωλές αναγωγές.

Τα παρακάτω προβλήματα είναι αυτοαναγώγιμα και ανήκουν στη #PE, άρα είναι προβλήματα

της κλάσης TotP.

ix

1. #DNF: το πρόβλημα μέτρησης των αναθέσεων αληθοτιμών που ικανοποιούν έναν προτασιακό

τύπο σε κανονική διαζευκτική μορφή.

2. #2Sat: το πρόβλημα μέτρησης των αναθέσεων αληθοτιμών που ικανοποιούν έναν προτασια-

κό τύπο σε κανονική συζευκτική μορφή όπου κάθε απλή πρόταση περιέχει δύο λεκτικά.

3. #HornSat: το πρόβλημα μέτρησης των αναθέσεων αληθοτιμών που ικανοποιούν έναν προ-

τασιακό τύπο σε κανονική συζευκτική μορφή όπου κάθε απλή πρόταση περιέχει το πολύ ένα

θετικό λεκτικό.

4. #MonSat: το πρόβλημα μέτρησης των αναθέσεων αληθοτιμών που ικανοποιούν έναν προ-

τασιακό τύπο σε κανονική συζευκτική μορφή όπου κάθε απλή πρόταση περιέχει μόνο θετικά

λεκτικά.

5. #BiPerfMatch: το πρόβλημα μέτρησης των τέλειων ταιριασμάτων ενός διμερούς γράφου.

6. #PerfMatch: το πρόβλημα μέτρησης των τέλειων ταιριασμάτων ενός γράφου.

Γενικά για έναν προτασιακό τύπο που είναι σε κανονική συζευτκική μορφή θα χρησιμοποιούμε

την αγγλική συντομογραφία CNF (2CNF, 3CNF στην περίπτωση που θέλουμε να διευκρινίσουμε

ότι κάθε απλή πρόταση περιέχει 2 ή 3 λεκτικά αντίστοιχα).

TotP-πλήρη προβλήματα

Η #P είναι ισοδύναμη με την TotP ως προς Turing αναγωγές, αλλά ακόμα και με μια υποκλάση

της TotP, την SpanL [9], που περιέχει μόνο προσεγγίσιμα προβλήματα. Αυτό σημαίνει ότι όλα τα

προβλήματα που είναι#P-πλήρη ως προς Turing αναγωγές, είναι επίσης TotP-πλήρη ως προς Turing

αναγωγές. Για παράδειγμα, όλα τα προβλήματα 1-6 που αναφέρονται παραπάνω είναι TotP-πλήρη

ως προς Turing αναγωγές. Αυτή η παρατήρηση δικαιολογεί τον ισχυρισμό ότι οι Turing αναγωγές

θολώνουν τις δομικές διαφορές μεταξύ των μετρητικών κλάσεων [103].

Αντίθετα, χρησιμοποιώντας φειδωλές αναγωγές μπορούμε να διακρίνουμε διαφορές μεταξύ

μετρητικών κλάσεων και των δύσκολων προβλημάτων τους. ΄Ενα βασικό χαρακτηριστικό αυτών

των αναγωγών είναι ότι διατηρώντας το πλήθος των λύσεων, διατηρούν την ύπαρξη fpras. Αν

f ≤p
pars g και η g επιδέχεται fpras, τότε η f επιδέχεται fpras.

x

TotP-πλήρη προβλήματα προς φειδωλές αναγωγές

Παρακάτω δίνονται οι ορισμοί των πρώτων TotP-πλήρων προβλημάτων ως προς φειδωλές αναγω-

γές. Παρουσιάστηκαν και μελετήθηκαν αρχικά στο [25] και στο [22]. Πρόσφατα δημοσιεύθηκε το

άρθρο [13], το οποίο επεκτείνει τα προηγούμενα αποτελέσματα. Τα αποτελέσματα της Υποενότητας

2 παρακάτω, είναι από το τελευταίο άρθρο.

Ορίζουμε τη μερική διάταξη ≤tree πάνω στο σύνολο N να είναι η ανακλαστική, μεταβατική και

αντισυμμετρική σχέση για την οποία ισχύει: αν y = 2x+ 1 ή y = 2x+ 2 τότε x ≤tree y.

Πρόβλημα 1.#Tree-Monotone-Circuit-Sat.

Είσοδος: ΄Ενα λογικό κύκλωμα Cn, μη-αύξον ως προς ≤tree.

΄Εξοδος: #Tree-Monotone-Circuit-Sat(Cn) := |{y ∈ {0, 1}n : Cn(y) = 1}|.

΄Εστω (U,≤) ένα μερικά διατεταγμένο ζεύγος. Το V ⊆ U λέγεται κλειστό από κάτω αν για

κάθε y, x ∈ U , ισχύει (y ∈ V και x < y) ⇒ x ∈ V . ΄Εστω Cn ένα λογικό κύκλωμα με n πύλες

εισόδου. Το V ⊆ {0, 1}n λέγεται Cn-αποδεκτό αν για κάθε x ∈ V , Cn(x) = 1.

Πρόβλημα 2. Max-Lower-Set-Size.

Είσοδος: ΄Ενα λογικό κύκλωμα Cn με n πύλες εισόδου.

΄Εξοδος: Το μέγεθος του μέγιστου Cn-αποδεκτού συνόλου που είναι κλειστό από κάτω ως προς τη

μερική διάταξη ≤tree.

000

001

011

111

100

010

101 110

Αν περιορίσουμε τη διάταξη ≤tree στο σύνολο Nk−1 =

{0, 1, . . . , 2k − 1} και επιπλέον χρησιμοποιήσουμε τις δυαδικές

αναπαραστάσεις των στοιχείων του Nk−1, παίρνουμε μια μερική

διάταξη πάνω στο {0, 1}k, την οποία επίσης θα συμβολίζουμε

≤tree. Ονομάζουμε Tk το δυαδικό δέντρο που αναπαριστά την

≤tree στο {0, 1}k.

Για παράδειγμα, το πλήρες δυαδικό δέντρο T3 που απεικονίζεται παραπάνω αναπαριστά τη

διάταξη ≤tree στο {0, 1}3.

Πρόβλημα 3. Size-of-Subtree.

Είσοδος: ΄Ενα κατηγόρημα A : Tk → {0, 1}, το οποίο είναι υπολογίσιμο σε πολυωνυμικό χρόνο και

μια κορυφή u του Tk.

΄Εξοδος: Το μέγεθος του μέγιστου υποδέντρου S ⊆ A−1(1) με ρίζα u.

xi

000

υ

001

011

111

100

010

101 110

Για παράδειγμα, στο διπλανό σχήμα δίνεται ένα στιγ-

μιότυπο του Size-of-Subtree. Ισχύει ότι u = 000,

k = 3 και το κατηγόρημα A παίρνει την τιμή 1 για τις

γκρι κορυφές. Η έξοδος του προβλήματος είναι 5.

Παρακάτω δίνουμε τον όρισμο για έναν k-clustered-monotone τύπο. Κρατάμε τον αγγλικό όρο

εδώ γιατί το όνομα του επόμενου προβλήματος #Clustered-Monotone-Sat προέρχεται από

αυτόν.

1. ΄Εστω ϕ ένας 3-CNF τύπος και k ∈ N. Ορίζουμε τη συνάρτηση fkϕ : {0, 1}k → N

τέτοια ώστε fkϕ(a) = #(αναθέσεις αληθοτιμών που ικανοποιούν τη ϕ και έχουν πρόθεμα a)

για κάποιο a ∈ {0, 1}k.

2. ΄Ενας 3-CNF τύπος ϕ με n μεταβλητές λέγεται k-clustered-monotone για κάποιο k ≤ n, αν

για κάθε a, b ∈ {0, 1}k τέτοια ώστε a ≤tree b, αν fkϕ(a) = 0 τότε fkϕ(b) = 0.

Πρόβλημα 4. #Clustered-Monotone-Sat.

Είσοδος: y = (ϕ, k,M), όπου ο ϕ είναι k-clustered monotone, και M είναι η περιγραφή μιας συ-

νάρτησης για την οποία ισχύει M ∈ FP και M(a, ϕ) = fkϕ .

΄Εξοδος: #Clustered-Monotone-Sat(y) := #(αναθέσεις αληθοτιμών που ικανοποιούν τη ϕ).

Συνέπειες

1. ΄Ενας απλός αλγόριθμος επίλυσης TotP-δύσκολων προβλημάτων

Το πρόβλημα Size-of-Subtree είχε οριστεί καταρχάς από τον Knuth [105] ως το πρόβλημα υ-

πολογισμού του μεγέθους του δέντρου ενός backtracking προγράμματος. Στο ίδιο άρθρο ο Knuth

πρότεινε έναν απλό αποδοτικό πιθανοτικό προσεγγιστικό αλγόριθμο, ο οποίος ακολουθεί τον πα-

ρακάτω αναδρομικό υπολογισμό. Ξεκινώντας από την κορυφή u, υπολογίζει το πλήθος των παιδιών

της u για τα οποία το κατηγόρημα A παίρνει την τιμή 1.

1. Αν το A δεν παίρνει την τιμή 1 για κανένα από τα παιδιά της u, σταματάει.

2. Αν για ένα παιδί της u το A παίρνει την τιμή 1, συνεχίζει αναδρομικά με αυτό το παιδί.

xii

3. Αν το A παίρνει την τιμή 1 και για τα δύο παιδιά της, επιλέγει ένα από αυτά με πιθανότητα

1/2 και συνεχίζει αναδρομικά.

Ο αλγόριθμος θεωρεί ότι κάθε κορυφή είναι αντιπροσωπευτική για το επίπεδό της, δηλ. ότι όλες

οι κορυφές που ανήκουν στο ίδιο επίπεδο με αυτή έχουν το ίδιο πλήθος παιδιών για τα οποία το

κατηγόρημα A παίρνει την τιμή 1. Μέ βάση αυτή την υπόθεση, δίνει μια εκτίμηση για το ζητούμενο,

δηλ. το μέγεθος του μέγιστου υποδέντρου με ρίζα u που περιέχει μόνο κορυφές για τις οποίες το A

παίρνει την τιμή 1. Η αναμενόμενη τιμή του αλγορίθμου είναι η τιμή που θέλουμε να υπολογίσουμε.

Η διακύμανση μπορεί να είναι εκθετική στη χειρότερη περίπτωση.

2. Εκθετικού χρόνου κάτω φράγματα για το πρόβλημα Size-of-Subtree

Στην παρούσα εργασίαΘα δείχνουμε κάτω φράγματα για τον υπολογισμό του Size-of-Subtree,

όταν κάποια από τις παρακάτω υποθέσεις ισχύει.

• Υπόθεση εκθετικού χρόνου (ETH): Δεν υπάρχει ντετερμινιστικός αλγόριθμος που να απο-

φασίζει το 3Sat σε χρόνο exp(o(n)).

• Πιθανοτική υπόθεση εκθετικού χρόνου (rETH): Δεν υπάρχει πιθανοτικός αλγόριθμος που

να αποφασίζει το 3Sat σε χρόνο exp(o(n)), με πιθανότητα σφάλματος το πολύ 1/3.

• Μετρητική υπόθεση εκθετικού χρόνου (#ETH): Δεν υπάρχει ντετερμινιστικός αλγόριθμος

που να υπολογίζει ακριβώς το #Sat σε χρόνο exp(o(n)).

Τα αποτελέσματα δίνονται στο παρακάτω θεώρημα. Το N συμβολίζει το ύψος του πλήρως

δυαδικού δέντρου που είναι μέρος ενός στιγμιοτύπου του Size-of-Subtree.

Θεώρημα 0.2. (αʹ) Αν ισχύει η rETH, δεν υπάρχει πιθανοτικός αλγόριθμος που να υπολογίζει

το Size-of-Subtree ακριβώς σε χρόνο exp(o(N)).

(βʹ) Αν ισχύει η #ETH δεν υπάρχει ντετερμινιστικός αλγόριθμος που να υπολογίζει το Size-of-

Subtree ακριβώς σε χρόνο exp(o(N)).

(γʹ) Αν ισχύει η rETH δεν υπάρχει πιθανοτικός αλγόριθμος που να προσεγγίζει το Size-of-

Subtree με πολλαπλασιαστικό παράγοντα (1± 1
4) σε χρόνο exp(o(N)).

xiii

3. Το #Sat είναι ισοδύναμο με το #Clustered-Monotone-Sat ως προς AP

αναγωγές

Κάθε TotP-πλήρες πρόβλημα ως προς φειδωλές αναγωγές είναι ισοδύναμο με το #Sat ως προς

αναγωγές που διατηρούν την προσεγγισιμότητα. Γνωρίζουμε ήδη ότι τα προβλήματα #2Sat και

#MonSat έχουν επίσης αυτή τη σχέση με το #Sat. Αυτό όμως που κερδίσαμε εδώ είναι το

εξής: Το #Sat είναι AP-ισοδύναμο με το #Clustered-Monotone-Sat, δηλ. ένα πρόβλημα

μέτρησης αναθέσεων αληθοτιμών που ικανοποιούν έναν τύπο, το οποίο έχει τις παρακάτω ιδιότητες:

1. μπορούμε να αποφασίσουμε σε πολυωνυμικό χρόνο αν ένας δεδομένος τύπος είναι ικανοποι-

ήσιμος,

2. για κάθε λύση υπάρχει κάποια γειτονιά αναθέσεων αληθοτιμών, για τις οποίες μπορεί να

αποφασιστεί αποδοτικά αν περιέχουν κάποια λύση.

Σχέση μεταξύ των κλάσεων TotP και FPRAS

Σε αυτή την ενότητα, εξετάζουμε υπό ποιες συνθήκες ισχύει TotP ⊆ FPRAS, καθώς και ο αντίστρο-

φος εγκλεισμός FPRAS ⊆ TotP. Κάποια από τα αποτελέσματα έχουν παρουσιαστεί στο [22]. Εδώ

ακολουθούμε τον τρόπο παρουσίασής τους στο [24].

Καταρχάς ισχύει το παρακάτω θεώρημα για την κλάση #P.

Θεώρημα 0.3. #P ⊆ FPRAS αν και μόνο αν RP = NP.

Το παραπάνω θεώρημα μπορεί να επεκταθεί για την TotP. Επίσης, κάθε συνάρτηση f ∈ TotP

η οποία επιδέχεται fpras, ανήκει στην κλάση FPRAS′, δηλ. μπορεί να επιλυθεί από fpras που δεν

κάνει ποτέ λάθος στην περίπτωση που ισχύει f(x) = 0. Ισχύει λοιπόν το παρακάτω θεώρημα.

Θεώρημα 0.4. TotP ⊆ FPRAS αν και μόνο αν TotP ⊆ FPRAS′ αν και μόνο αν RP = NP.

Ενώ για τον αντίστροφο εγκλεισμό έχουμε το εξής αποτέλεσμα.

Θεώρημα 0.5. Αν FPRAS ⊆ TotP τότε P = RP.

Η απόδειξη του τελευταίου θεωρήματος υπήρξε αφορμή για τον ορισμό δύο κλάσεων, των

#RP1 και #RP2, που περιέχουν προβλήματα μέτρησης με αντίστοιχο πρόβλημα απόφασης στην

κλάση RP.

xiv

΄Εστω M μία NPTM σε κανονική μορφή, δηλ. για είσοδο x, η M έχει 2p(|x|) μονοπάτια

για κάποιο πολυώνυμο p, ή αλλιώς η M κάνει p(|x|) μη-ντετερμινιστικές επιλογές. Ορίζουμε το

σύνολο MR = {M | M είναι NPTM σε κανονική μορφή και για κάθε x ∈ Σ∗
είτε accM (x) =

0 είτε accM (x) > 1
2 · 2

p(|x|)}.

Ορισμός 0.2. #RP1 = {f ∈ #P | υπάρχει M ∈MR τέτοια ώστε για κάθε x ∈ Σ∗,

f(x) = accM (x)}.

Ορισμός 0.3. #RP2 = {f ∈ #P | Lf ∈ RP}, όπου Lf = {x | f(x) > 0}.

Τα παρακάτω προβλήματα ανήκουν στην κλάση #RP1. Το πρώτο πρόβλημα σχετίζεται με το

πρόβλημα Polynomial Identity Testing, στο οποίο δεδομένου ενός πολυωνύμου μας ενδιαφέρει αν

είναι ταυτοτικά ίσο με το μηδενικό πολυώνυμο. Είναι γνωστό ότι υπάρχει αποδοτικός πιθανοτικός

αλγόριθμος για αυτό το πρόβλημα, αλλά αν αποδειχθεί ότι επιλύεται σε ντετερμινιστικό πολυωνυμικό

χρόνο, τότε θα αποκτήσουμε ένα νέο κάτω φράγμα για την κλάση NEXP σε σχέση με την επίλυση

των προβλημάτων της από κυκλώματα πολυωνυμικού μεγέθους [95].

#NonZerosForPIT.

Είσοδος: ΄Ενα πολυώνυμο p(x1, ..., xn) βαθμού d πάνω σε ένα σώμα F, τέτοιο ώστε |F| ≥ 3d .

΄Εξοδος: Ο αριθμός των σημείων (y1, ..., yn) ∈ Fn3d για τα οποία ισχύει p(y1, .., yn) ̸= 0.

Το σύνολο F3d είναι ένα σύνολο 3d στοιχείων του F που μπορούν να επιλεγούν ντετεριμινιστικά

από μία μηχανή Turing.

Το δεύτερο πρόβλημα είναι μια μετρητική εκδοχή του προβλήματος απόφασης αν ένας φυσικός

αριθμός είναι σύνθετος. Δεδομένου n > 2, ο n μπορεί να γραφεί ως 2s · d+ 1, όπου s, d ∈ N+
και

d είναι περιττός. ΄Ενας φυσικός αριθμός 0 < a < n ονομάζεται πιστοποιητικό για τη συνθετότητα

του n, αν ισχύει το (α) ή το (β):

(α) an−1 ̸≡ 1 (mod n),

(β) an−1 ≡ 1 (mod n) και ισχύουν οι δύο επόμενες σχέσεις:

ad ̸≡ 1 (mod n) και a2
r·d ̸≡ −1 (mod n), για όλα τα 0 ⩽ r < s.

Τα δύο επόμενα προβλήματα είναι οι μετρητικές εκδοχές των προβλημάτων Exact Match-

ing [125] και Blue-Red Matching [120], τα οποία ανήκουν στην κλάση RP [119, 120], αλλά δε

γνωρίζουμε αν ανήκουν στην P.

#Exact Matchings.

Είσοδος: ΄Ενας γράφος G = (V,E), ένα υποσύνολο των ακμών E′ ⊆ E και ένας ακέραιος k.

΄Εξοδος: Το πλήθος των τέλειων ταιριασμάτων του G που περιέχει ακριβώς k ακμές από το E′
.

xv

#Blue-Red Matchings.

Είσοδος: ΄Ενας γράφος G = (V,Ered ∪ Eblue), και δύο ακέραιοι w και B.

΄Εξοδος: Το πλήθος των ταιριασμάτων μεγέθους τουλάχιστον B που περιέχουν το πολύ w ακμές

από το Eblue και το πολύ w ακμές από το Ered.

Η ισχύς που προκύπτει από τη μέτρηση του πλήθους όλων

των μονοπατιών

Ορίζουμε την κλάση GaptotP ως την κλειστότητα της TotP ως προς αφαίρεση. Με βάση ιδιότητες

συναρτήσεων της TotP και της GaptotP, ορίζουμε τις παρακάτω κλάσεις προβλημάτων απόφασης.

Κλάση

Συνάρτηση f

στην κλάση:

Αν x ∈ L: Αν x /∈ L:

UtotP TotP f(x) = 1 f(x) = 0

FewtotP TotP

f(x) ≤ p(|x|) για

κάποιο πολυώνυμο

p και f(x) > 0

f(x) = 0

⊕totP TotP f(x) είναι περιττός f(x) είναι άρτιος

ModktotP TotP f(x) ̸≡ 0 (mod k) f(x) ≡ 0 (mod k)

SPtotP GaptotP f(x) = 1 f(x) = 0

WPtotP GaptotP

f(x) = g(x) για

κάποια g ∈ FP με

0 ̸∈ range(g)

f(x) = 0

C=totP GaptotP f(x) = 0
f(x) ̸= 0 [εναλλ. ο-

ρισμός: f(x) > 0]

PtotP GaptotP f(x) > 0
f(x) ≤ 0 [εναλλ. ο-

ρισμός: f(x) < 0]

Αποδεικνύεται ότι η κλάση GaptotP ταυτίζεται με τη GapP, δηλ. την κλειστότα της #P ως

προς αφαίρεση. Επίσης, εκτός από τις κλάσεις UtotP και FewtotP που είναι ίσες με την κλάση P,

αποδείξαμε ότι κάθε μία από τις υπόλοιπες είναι ίση με την αντίστοιχη κλάση που ορίζεται μέσω

κάποιας #P ή GapP συνάρτησης, όπως φαίνεται παρακάτω.

xvi

UtotP = P

FewtotP = P

⊕totP = ⊕P

ModktotP = ModkP

SPtotP = SPP

WPtotP = WPP

C=totP = C=P

PtotP = PP

Για τις κλάσεις⊕P και C=P αυτό ήταν αναμενόμενο, επειδή ήταν ήδη γνωστά πλήρη προν=βλήματα

για τις δύο αυτές κλάσεις που ορίζονται από κάποια TotP συνάρτηση. Πιο συγκεκριμένα, τα προ-

βλήματα αυτά ήταν το ⊕Pl-Rtw-Mon-3CNF [150] και το DiffPerfMatch=0 [52].

Πλήρη προβλήματα για τις κλάσεις ⊕P, ModkP, SPP, WPP, C=P και PP

• Για κάθεμία από τις κλάσεις ⊕P, ModkP, SPP,WPP, C=P και PP αποκτήσαμε μια οικογένεια

πλήρων προβλημάτων, τα οποία ορίζονται μέσω κάποιου TotP-πλήρους προβλήματος ως προς

φειδωλές αναγωγές και όχι μέσω κάποιου #P-πλήρους (ή NP-πλήρους).

• Ακολουθώντας το αποτέλεσμα του Curticapean [52] για τηνWPP για την κλάση C=P, δείξα-

με ότι οι κλάσειςWPP και PP έχουν πλήρη προβλήματα, που ορίζονται μέσω της TotP συνάρ-

τησης #PerfMatch, τα οποία ονομάσαμε DiffPerfMatch=g και DiffPerfMatch>0

αντίστοιχα.

• Το πρόβλημα DiffPerfMatch=g είναι το πρόβλημα του να αποφασίσουμε αν η διαφορά της

συνάρτησης #PerfMatch σε δύο δεδομένους γράφους είναι ίση με 0 ή με μία πολυωνυμικά

υπολογίσιμη τιμή, όταν έχουμε την υπόσχεση ότι ένα από τα δύο ισχύει. Αποδείξαμε ότι αν

ισχύει η πιθανοτική υπόθεση εκθετικού χρόνου (rETH), τότε το DiffPerfMatch=g δεν

μπορεί να αποφασιστεί από κάποιον υποεκθετικό αλγόριθμο.

• Το πλήρες πρόβλημα DiffSat=1 για την SPP ανάγεται στο να αποφασίσουμε αν η διαφορά

της συνάρτησης #PerfMatch σε δύο δεδομένους γράφους είναι ίση με 0 ή με μία εκθετικά

μεγάλη τιμή. Θα άξιζε να εξετάσουμε πώς ένα ενδεχόμενο θετικό αποτέλεσμα για το πρόβλημα

#PerfMatch μπορεί να δώσει κάποιο αποτέλεσμα για τα προβλήματα της SPP, όπως είναι

το Graph Isomorphism και το USat.

xvii

Περιγραφική πολυπλοκότητα δύσκολων μετρητικών προβλη-

μάτων με εύκολο πρόβλημα απόφασης

Για την περιγραφική πολυπλοκότητα, το ερώτημα που πρέπει να απαντηθεί είναι το εξής: Ποια λογική

είναι κατάλληλη ώστε να μπορούν να εκφραστούν τα προβλήματα μιας κλάσης πολυπλοκότητας και

μόνο αυτά;

Για την κλάση NP, αποδείχθηκε από τον Fagin [64] ότι χρειαζόμαστε την υπαρξιακή δευτερο-

βάθμια λογική, που συμβολίζουμε ∃SO∃SO∃SO, ισχύει δηλ. NP = ∃SO για πεπερασμένες δομές.

Για την κλάση #P, αρχικά στο άρθρο [132], δείχθηκε ότι #P = #FO για πεπερασμένες

διατεταγμένες δομές. Πρόσφατα στο άρθρο [15], οι συγγραφείς ορίζουν την κλάση ΣQSO(FO)

και αποδεικνύουν ότι και αυτή ταυτίζεται με τη #P για πεπερασμένες διατεταγμένες δομές. Για

παράδειγμα, ο τύπος

α = ΣX.∀x∀y
(
X(x) ∧X(y) ∧ x ̸= y)→ E(x, y)

εκφράζει το πλήθος των κλικών σε ένα γράφο. Η ερμηνεία του τύπου α σε κάποια πεπερασμένη

δομή, που κωδικοποιεί ένα γράφο στη συγκεκριμένη περίπτωση, δίνει ένα φυσικό αριθμό, ο οποίος

ισούται με το ζητούμενο. Γράφουμε [[α]](G) = #Cliques(G).

Στο άρθρο [15] διατυπώθηκαν δύο ερωτήματα που θα μας απασχολήσουν σε αυτή την ενότητα.

1. Ποιος είναι ο λογικός χαρακτηρισμός της TotP;

2. Μπορούμε να ορίσουμε εύρωστες υποκλάσεις της TotP και να προσδιορίσουμε τη σχέση τους

με την κλάση FPRAS;

Λογικός χαρακτηρισμός της TotP

Για να δώσουμε ένα λογικό χαρακτηρισμό της κλάσης TotP, χρησιμοποιούμε αναδρομή πολυωνυ-

μικού βάθους. Παρακάτω θα ορίσουμε το πολυωνυμικά φραγμένο σταθερό σημείο ενός τελεστή

που δρα πάνω σε συναρτήσεις. Στη συνέχεια, θα περιγράψουμε πώς μας βοηθά να εκφράσουμε το

πλήθος των μονοπατιών μιας μηχανής Turing.

Παίρνουμε ως βάση τη λογική ΣQSO(∃SO) και προσθέτουμε σε αυτή ένα συναρτησιακό

σύμβολο που παίρνει ως ορίσματα δευτεροβάθμιες μεταβλητές. Οι τύποι αυτής της λογικής δίνονται

από την παρακάτω γραμματική.

α := ϕ | s | f(X1, ..., Xl) | (α+ α) | (α · α) | ΣX.α (1)

xviii

όπου η ϕ είναι μια υπαρξιακή δευτεροβάθμια πρόταση, f είναι ένα συναρτησιακό σύμβολο και

X1, . . . , Xl είναι δευτεροβάθμιες μεταβλητές. Προσθέτουμε επίσης στη λογική τον τύπο [pbfpf α](
−→
X),

όπου το σύμβολο pbfp προέρχεται από το polynomially-bounded fixed point (πολυωνυμικά φραγ-

μένο σταθερό σημείο) και θα αποτιμάται με αναδρομή πολυωνυμικού βάθους.

Ορίζουμε το SOFk ως το σύνολο όλων των συναρτήσεων h : (P(Ak))l → N. ΄Εστω A

μια δομή στο λεξιλόγιο σ και [pbfpf α](
−→
X) όπου η f έχει πλειομέλεια l. Για να ορίσουμε τη

σημασιολογία του [pbfpf α](
−→
X), ερμηνεύουμε το α(

−→
X, f) ως έναν τελεστή Tα στο SOFk. Για

κάθε h ∈ SOFk και (S1, ..., Sl) ∈ (P(Ak))l, ισχύει ότι:

Tα(h)(
−→
S) = [[α(

−→
X, f)]](A, V, F)

όπου το V είναι μια δευτεροβάθμια ανάθεση στη δομή A έτσι ώστε V (Xi) = Si, i ∈ {1, ..., l} και

η F είναι ανάθεση για την f στη δομή A τέτοια ώστε F (f) = h.

Ορίζουμε την ακολουθία συναρτήσεων {hi}i∈N, hi : (P(Ak))l → N, τέτοια ώστε

• h0(
−→
S) = 0 για κάθε

−→
S ∈ (P(Ak))l και

• hi+1 να οριστεί ως Tα(hi) για κάθε i ∈ N.

Υπάρχουν δύο περιπτώσεις: είτε υπάρχει n ∈ N τέτοιο ώστε hn+1(
−→
S) = hn(

−→
S) για κάθε

−→
S ∈

(P(Ak))l, και τότε ισχύει hj = hn για κάθε j ⩾ n, είτε δεν υπάρχει τέτοιο n. Μας ενδιαφέρει αν

υπάρχει κάποιο τέτοιο n που να είναι μικρότερο από το |A|m, όπου m είναι η μέγιστη πλειομέλεια

κάποιας δευτεροβάθμιας μεταβλητής που βρίσκεται στην εμβέλεια του ποσοδείκτη Σ. Στη συνέχεια,

ορίζουμε το πολυωνυμικά φραγμένο σταθερό σημείο ενός Tα ως εξής:

pbfp(Tα) =


fn αν fn = fn+1 για κάποιο n ⩽ |A|m

f|A|m αν fn ̸= fn+1 για κάθε n ⩽ |A|m.

Ορίζουμε τη σημασιολογία του [pbfpf α](
−→
X) ως pbfp του Tα, δηλ:

[[[pbfpf α](
−→
X)]](A, V) =


fn(V (

−→
X)) αν fn = fn+1 για κάποιο n ⩽ |A|m,

fl(V (
−→
X)) αλλιώς, όπου l = |A|m.

Χωρίς βλάβη της γενικότητας, θεωρούμε ότι για κάθε TotP συνάρτηση υπάρχει μια δυαδική

μηχανή Turing N , τέτοια ώστε η συνάρτηση δίνει το πλήθος των μονοπατιών της N μείον 1 ή ισο-

δύναμα, το πλήθος των διακλαδώσεών της. Μπορούμε να εκφράσουμε το πλήθος των διακλαδώσεων

της N με τον τύπο [[[pbfpf tot](
−→
C)]](Ax, VI), όπου

xix

• Ο τύπος tot είναι ο εξής:

tot(
−→
C , f) :=∃

−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗)+

Σ
−→
C0.

(
∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆0(

−→
S ,
−→
C0,
−→
t∗)

)
· f(
−→
C0)

)
+

Σ
−→
C1.

(
∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆1(

−→
S ,
−→
C1,
−→
t∗)

)
· f(
−→
C1)

)
.

• Η Ax είναι μια πεπερασμένη διατεταγμένη δομή που κωδικοποιεί την είσοδο της μηχανής

Turing.

• VI είναι μια δευτεροβάθμια ανάθεση στη δομή Ax τέτοια ώστε VI(T) = TI , VI(E) = EI ,

VI(P) = PI , VI(Q) = QI και TI , EI , VI , QI είναι σχέσεις που κωδικοποιούν την αρχική

κατάσταση της μηχανής N .

• Ο τύπος ∃
−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗) εκφράζει ότι υπάρχει ένας ντετερμινιστικός υπολογισμός

της N που οδηγεί σε μια διακλάδωση τη χρονική στιγμή
−→
t∗ .

• ∆i(
−→
S ,
−→
Ci,
−→
t∗), i = 0, 1, εκφράζει ότι τη χρονική στιγμή

−→
t∗ η N κάνει τη μη-ντετερμινιστική

επιλογή i και οι
−→
Ci κωδικοποιούν την κατάσταση της μηχανής ακριβώς μετά από αυτή την

επιλογή.

• Το f(
−→
Ci) εκφράζει ότι η διαδικασία συνεχίζεται αναδρομικά.

Για τους ακριβείς ορισμούς των παραπάνω τύπων παραπέμπουμε στο Κεφάλαιο 5.

Η κλάση RΣQSOE προκύπτει αν περιορίσουμε τη λογική που μόλις ορίσαμε. Παρατηρούμε

ότι κάθε υπαρξιακός δευτεροβάθμιος τύπος μπορεί να ελεγχθεί κατά πόσο ισχύει σε μία δομή σε

πολυωνυμικό χρόνο. Ονομάζουμε κάθε τέτοιο τύπο SOE και δίνουμε ένα συντακτικό ορισμό.

Επίσης, κάθε ποσοδείκτης Σ εφαρμόζεται σε κάποια δευτεροβάθμια μεταβλητή, αλλά το άθροισμα

χρειάζεται να αποτιμηθεί το πολύ για μία αποτίμηση αυτής της μεταβλητής. Αυτό επίσης μπορεί

να γίνει σε πολυωνυμικό χρόνο. Η λογική που ορίζουμε ονομάζεται RΣQSOE, και ισχύει ότι οι

συναρτήσεις που ορίζονται μέσω αυτής αποτελούν την κλάση TotP.

Θεώρημα 0.6. RΣQSOE = TotP για πεπερασμένες διατεταγμένες δομές.

Δύο εύρωστες υποκλάσεις της TotP

Στα άρθρα [132, 15] είχαν οριστεί οι παρακάτω υποκλάσεις της TotP και είχε προσδιοριστεί η σχέση

κάποιων από αυτές με την FPRAS.

xx

• Η #Σ1 τα προβλήματα της οποίας ανάγονται στο #DNF ως προς αναγωγές γινομένου [132].

Ισχύει #Σ1 ⊆ FPRAS.

• Η ΣQSO(Σ2-HORN) για την οπόια το #DisjHornSat είναι πλήρες ως προς φειδωλές ανα-

γωγές [15]. Είναι ανοιχτό ερώτημα η σχέση αυτής της κλάσης με την FPRAS.

• Η ΣQSO(Σ1[FO]), η οποία είναι κλειστή ως προς πρόσθεση, πολλαπλασιασμό και αφαίρεση

κατά ένα. Ισχύει ΣQSO(Σ1[FO]) ⊆ FPRAS.

Ορίσαμε τις παρακάτω κλάσεις και αποδείξαμε ότι δεν είναι υποκλάσεις της FPRAS εκτός αν

οι κλάσεις RP και NP είναι ίσες.

• Η ΣQSO(Σ2-2SAT) για την οποία το #Disj2Sat είναι πλήρες ως προς φειδωλές αναγωγές.

• Η #Π2-1VAR για την οποία το#MonotoneSat είναι πλήρες ως προς αναγωγές γινομένου.

Μέτρηση ταιριασμάτων σε γράφους με μαύρες και κόκκινες

ακμές

Σε αυτή την ενότητα εξετάζουμε το πρόβλημα #Exact Matchings. Υπενθυμίζουμε τον ορισμό

του παρακάτω.

#Exact Matchings.

Είσοδος: ΄Ενας γράφος G = (V,E), ένα υποσύνολο των ακμών E′ ⊆ E και ένας ακέραιος k.

΄Εξοδος: Το πλήθος των τέλειων ταιριασμάτων του G που περιέχει ακριβώς k ακμές από το E′
.

Το πρόβλημα αυτό γενικεύει το #PerfMatch και έχει πρόβλημα απόφασης που ανήκει στην

κλάση RP, και πιο συγκεκριμένα στην κλάση RNC [119]. Δείξαμε ότι επίσης ανάγεται στο πρόβλημα

#Weighted Perf Match μέσω μιας αναγωγής που χρησιμοποιεί πολυωνυμική παρεμβολή.

Το πρόβλημα #Exact Matchings σε K3,3-ελεύθερους γράφους είναι αποδοτικά επιλύσι-

μο [152]. Δείξαμε ότι το ίδιο ισχύει για το ίδιο πρόβλημα σε K5-ελεύθερους γράφους. Στην

περίπτωση του #Exact Matchings σε διμερείς γράφους, αποδείξαμε ότι ανήκει στην κλάση

TotP, δηλ. το αντίστοιχο πρόβλημα απόφασης ανήκει στην P. Παραμένει ανοιχτή η ακριβής πολυ-

πλοκότητα αυτού του μετρητικού προβλήματος μετά την ολοκλήρωση αυτής της διατριβής.

Ως προς την παραμετρική πολυπλοκότητα, δείξαμε ότι το πρόβλημα #Exact Matchings

είναι #W[1]-δύσκολο, περιγράφοντας μία αναγωγή από το πρόβλημα #k-Matchings [51].

xxi

xxii

Contents

Εκτεταμένη περίληψη στα ελληνικά vii

Εισαγωγή . vii

TotP-πλήρη προβλήματα . x

Σχέση μεταξύ των κλάσεων TotP και FPRAS . xiv

Ισχύς που προκύπτει από τη μέτρηση του πλήθους όλων των μονοπατιών μιας μη-ντετερμινιστικής

μηχανής Turing πολυωνυμικού χρόνου . xvi

Περιγραφική πολυπλοκότητα δύσκολων μετρητικών προβλημάτων με εύκολο πρόβλημα

απόφασης . xviii

Μέτρηση ταιριασμάτων σε γράφους με μαύρες και κόκκινες ακμές xxi

List of Figures xxvii

List of Tables xxviii

1 Introduction 1

1.1 The complexity class #P . 3

1.1.1 The property of self-reducibility . 4

1.1.2 Fpaus and fpras for counting problems . 6

1.1.3 Reductions between counting functions . 8

1.2 Decision versus Counting . 10

1.3 The complexity class TotP . 14

1.3.1 Definition of TotP: counting all paths of an NPTM 14

xxiii

1.3.2 Properties of TotP problems: self-reducibility and easy decision 15

1.3.3 Characterization of TotP as a class of interval size functions 18

1.3.4 TotP is robust . 19

1.3.5 Closure of TotP under different kinds of reductions 20

1.4 Descriptive complexity of #P . 21

1.4.1 #P = #FO . 22

1.4.2 #P = ΣQSO(FO) . 23

1.5 A guided tour to this thesis . 25

1.6 Notes . 29

2 TotP-complete problems 31

2.1 The problem #Tree-Monotone-Circuit-Sat 32

2.1.1 TotP-hardness of #Tree-Monotone-Circuit-Sat 34

2.1.2 Membership of #Tree-Monotone-Circuit-Sat in TotP 36

2.1.3 Extension to monotone circuits with respect to other partial orders 37

2.1.4 The case of the partial order being part of the input 38

2.2 Problems related to partially ordered sets . 39

2.3 The problem Size-of-Subtree . 40

2.3.1 Hard instances of Size-of-Subtree . 43

2.3.2 On the exponential-time complexity of Size-of-Subtree 43

2.3.3 Implications on the approximability of TotP 46

2.4 The problem #Clustered-Monotone-Sat . 48

2.5 Discussion of results . 51

2.6 Notes . 52

3 Relationship between TotP and the class of approximable counting problems 54

3.1 On #P versus FPRAS . 54

3.2 On TotP versus FPRAS . 55

xxiv

3.2.1 (Non)inclusion of TotP in FPRAS . 56

3.2.2 Classes of counting problems the decision version of which is in RP 56

3.2.3 Unconditional inclusions . 59

3.2.4 Conditional inclusions (possible worlds) and consequences of

FPRAS ⊆ TotP . 60

3.3 Discussion of results . 62

3.4 Notes . 63

4 On the power of counting the total number of paths 65

4.1 Tot-definable classes . 67

4.1.1 The class GaptotP . 68

4.1.2 The classes UtotP, FewtotP, ⊕totP, and ModktotP 69

4.1.3 The gap-definable classes SPtotP, WPtotP, C=totP, and PtotP 72

4.1.4 Variants of the Valiant-Vazirani and Toda’s Theorems 73

4.1.5 Complete problems for C=P, WPP, and PP definable by the TotP function

#PerfMatch . 74

4.1.6 An exponential lower bound result for the problem DiffPerfMatch=g . 78

4.2 Discussion of results . 80

5 Descriptive complexity of counting problems the decision version of which is

easy 82

5.1 Two robust subclasses of TotP: ΣQSO(Σ2-2SAT) and #Π2-1VAR 83

5.1.1 The class ΣQSO(Σ2-2SAT) . 83

5.1.2 The class #Π2-1VAR . 88

5.2 A logical characterization of TotP . 92

5.2.1 Functions over relations and recursion in QSO 93

5.2.2 A logic for expressing TotP functions . 96

5.2.3 A logic that captures TotP . 101

xxv

5.2.4 An alternative way to define RΣQSOE and capture TotP 106

5.3 Discussion of results . 110

5.4 Notes . 111

6 Counting matchings in graphs with edge colors 113

6.1 Related work on counting matchings . 114

6.2 The problems Exact Matching and Blue-Red Matching 117

6.2.1 Optimization version of Exact Matching in bipartite graphs 122

6.3 The problem #Exact Matchings . 124

6.3.1 #Exact Matchings in general graphs 124

6.3.2 #Exact Matchings in K3,3-free graphs 126

6.3.3 #Exact Matchings in K5-free graphs 127

6.3.4 #Exact Matchings in bipartite graphs 128

6.4 Matching polynomials . 133

6.4.1 The univariate matching polynomial . 134

6.4.2 The multivariate (vertex) matching polynomial 136

6.4.3 The multivariate edge matching polynomial 138

6.4.4 The multivariate homogeneous red-black polynomial 139

6.4.5 The multivariate homogeneous exact matching polynomial 142

6.4.6 Examples of expressing the matching polynomials using the permanent . . 143

6.4.7 Facts and remarks about the matching polynomials defined here 146

6.5 Discussion of results . 149

7 Conclusion 152

Appendix A

Glossary - Γλωσσάριο 155

References 157

xxvi

List of Figures

1.1 NPTM M for which it holds that totM (Ĝ) = #BiPerfMatch(G), where Ĝ is

the binary encoding of the bipartite graph G depicted on the top of the figure. . 17

1.2 Relation of FPRAS to counting classes below #P. 26

2.1 The infinite perfect binary tree TN. 33

2.2 The complete binary tree T3. 34

2.3 An instance of Size-of-Subtree. It holds that u = 000, k = 3, predicate A

takes the value 1 on the gray vertices, and the output of the problem is equal to 5. 42

3.1 Unconditional inclusions. 59

3.2 Conditional inclusions. The following notation is used: A → B denotes A ⊆ B,

A ⊣ B denotes A ̸⊆ B, and A 7→ B denotes A ⊊ B. 59

5.1 Inclusions and separations that have been shown in [132, 123, 15, 14] under no

assumption. The following notation is used: A→ B denotes A ⊆ B and A 7→ B

denotes A ⊊ B. 83

5.2 Inclusions and separations in the case of P = RP ̸= NP. The following notation is

used: A→ B denotes A ⊆ B, A ⊣ B denotes A ̸⊆ B, and A 7→ B denotes A ⊊ B. 92

5.3 NPTM M for which it holds that totM (x) = #DNF(ϕ), where x is a binary

encoding of ϕ = (x1 ∧ x3) ∨ (¬x2 ∧ x3). 108

6.1 The resulting instance of Max Flow with Lower Bounds. When we write

f = c on an edge e, for some c ∈ R, we mean that l(e) = u(e) = c. For example,

if e ∈ Ered, then l(e) = u(e) = wred. The red color of edge (u1, v1) denotes that

edge (u1, v1) ∈ Ered in graph G. 122

xxvii

List of Tables

1.1 The complexity status of some decision problems and their counting versions. . . 11

1.2 The exact and approximability status of some counting problems. 14

1.3 The semantics of QSO formulas. 24

4.1 Definitions of the classes UP, FewP, ⊕P, ModkP, SPP, WPP, C=P, PP. 66

4.2 Definitions of the classes UtotP, FewtotP, ⊕totP, ModktotP, SPtotP, WPtotP, C=totP,

PtotP. 70

6.1 The complexity of #PerfMatch in some minor-free graphs. 115

6.2 The complexity of counting perfect matchings, all matchings, and k-matchings in

general, bipartite, and planar graphs. 116

6.3 The complexity of the problem Perfect Matching and some of its variants

discussed here. 120

6.4 The parameterized complexity of the problems #k-Matchings and #Exact

Matchings. 126

xxviii

Chapter 1

Introduction

A counting problem is a function that maps an instance of a decision problem to the number

of solutions that the problem has on input this particular instance. For example #Sat is a

function that maps an input formula to the number of its satisfying assignments. The class

of functions, for which the corresponding decision problem is in the class NP, is the class #P,

introduced in Valiant’s seminal paper [149]. Equivalently, functions in #P count accepting paths

of nondeterministic polynomial time Turing machines (NPTMs).

Interestingly, various problems from different scientific fields can be expressed as counting

ones.

1. Computing the partition function, in statistical physics [81, 90, 91, 115]. For example, the

partition function of the hardcore model is a generalization of the problem of counting

independent sets in a graph [155].

2. Computing the volume of a convex body, in computational geometry [58].

3. Computing the permanent, in linear algebra [149].

4. Determining the probability that a given network becomes disconnected due to edge fail-

ures, in network design [97].

5. Computing the social cost of a given mixed Nash equilibrium, in selfish games in algorith-

mic game theory [69].

6. There are optimization problems that require counting solutions to some corresponding

decision problem [129, 117].

1

Chapter 1 Intoduction

When we consider counting, non-trivial facts hold. For example, both the NP-complete

problem CNF and the polynomial-time solvable problem DNF have counting versions that are

#P-complete under Turing reductions. Although no counting problem with an NP-complete

decision version can be efficiently approximated unless RP = NP [59], among counting problems

with a decision version in P there are some that have a polynomial-time randomized approxi-

mation algorithm (e.g. #DNF [98]) and others that cannot be approximated efficiently unless

RP = NP (e.g. #IS [57]).

Since very few counting problems can be exactly computed in polynomial time (e.g. counting

spanning trees [107, chapter 6]), the interest of the community has turned to the complexity

of approximating them. In this quest, the class #PE [122] of problems in #P with a decision

version in P is of great significance, since counting problems that admit a fully polynomial-time

randomized approximation scheme (fpras) can be found only among those with an easy decision

version (i.e. in BPP). In this thesis, we focus on a subclass of #PE, namely TotP [102]. Notably,

almost all known counting problems that admit an fpras belong to TotP.

TotP is the class of functions that count the total number of paths of NPTMs. In fact,

a function in TotP is defined to be equal to the number of computation paths of an NPTM

minus one, so that functions in TotP can take zero values as well. Except for this simple

structural characterization, it was shown in [123] that TotP has a noteworthy property that can

be considered as an alternative definition: it is the class of all self-reducible problems with a

decision version in P, which is also closed under parsimonious reductions.

TotP is a robust class, where we consider robustness as defined by the authors of [15]; a class

is considered to be robust if either it is closed under addition, multiplication, and subtraction by

one or it has natural complete problems. In particular, TotP satisfies both these requirements

as we discuss later on.

Finally, TotP can also be characterized via interval size functions [84, 27]; it is the class of

interval size functions which are defined on some P-definable total p-order A via polynomial-

time computable boundary functions, where in addition the lexicographically nearest function

for A, LNA, is efficiently computable.

We are going to present results about TotP from the viewpoint of structural and descriptive

complexity. The reader can find a guided tour to this thesis in Section 1.5.

A.Chalki Thesis 2

Chapter 1 Intoduction

1.1 The complexity class #P

The standard model of computation under which we study counting complexity is the nonde-

terministic Turing machine. In particular, we focus on polynomial-time complexity, thus the

model of interest is the nondeterministic polynomial-time Turing machine (NPTM). We assume

a fixed alphabet, conventionally Σ = {0, 1}, in which we encode both problem instances and

solutions. The symbol Σ∗ denotes the set of all finite strings over the alphabet Σ. The length

of a string x is denoted by |x|. For an NPTM M , there is some polynomial p such that for any

x ∈ Σ∗, all computation paths of M on input x have length at most p(|x|). An NPTM M is in

standard form if for any x, each path of M(x) is encoded by a string of length exactly p(|x|).

We say that M is in normal form if it is in standard form and, in addition, for any x there are

exactly 2p(|x|) computation paths in M(x).

A relation R ∈ Σ∗ × Σ∗ can be interpreted as assigning to each problem instance x ∈ Σ∗,

a set of solutions {y ∈ Σ∗ | R(x, y)}. For example, consider the relation RPM which associates

with each undirected graph G, the set of perfect matchings of G.

RPM = {(x, y) |x ∈ Σ∗ is an encoding of a graph G and

y ∈ Σ∗ is an encoding of a perfect matching of G}
.

A number of naturally defined problems are related to each relation of the above form. We

are interested in the existence, counting, and uniform generation problems.

• Existence: Is there a y ∈ Σ∗, such that R(x, y)?

• Counting: How many y are there such that R(x, y)?

• Uniform generation: Generate uniformly at random a y ∈ Σ∗ that satisfies R(x, y).

Definition 1.1. A language L belongs to NP if there is a polynomial-time decidable relation R

and a polynomial p such that x ∈ L⇔ ∃y
[
|y| = p(|x|) and R(x, y)

]
.

Equivalently, L ∈ NP if there is an NPTM M such that

x ∈ L⇔M(x) has an accepting computation path.

Definition 1.2 ([149]). A function f : Σ∗ → N belongs to #P if there exists a polynomial-time

decidable relation R and a polynomial p such that for every x ∈ Σ∗,

f(x) =
∣∣{y ∈ Σ∗ | |y| = p(|x|) and R(x, y)}

∣∣.
A.Chalki Thesis 3

Chapter 1 Intoduction

Equivalently, #P = {accM : Σ∗ → N | M is an NPTM}, where accM (x) =#(accepting compu-

tation paths of M on input x).

The decision version of a function f ∈ #P is the following problem: ‘Given x, is f(x)

non-zero?’. Equivalently, ‘Given x, is there a y, such that R(x, y)?’, or ‘Given x, is there at least

one accepting path of M on input x?’, where M is the NPTM corresponding to f . For each

function f ∈ #P an associated language Lf = {x ∈ Σ∗ | f(x) > 0} can be defined. Clearly,

Lf ∈ NP.

1.1.1 The property of self-reducibility

Self-reducibility is an important property that has been extensively studied since Trakhtenbrot

first introduced the notion of autoreducibility in 1970 [145]. Interesting approaches to this

property can be found in [83], where one can see self-reducibility as a technique, and in [7], in

which the authors prove that a strong self-reducibility property can amplify lower-bound results.

Regarding counting solutions of a problem, self-reducibility implies that almost uniform sampling

from the set of solutions is equivalent to approximate counting them [94]. The definition of self-

reducibility used by Jerrum et al. in [94] is due to Schnorr [134]. Although there are problems

which are not self-reducible unless P = NP, such as counting k-colourings, k ≥ 4, in planar

graphs [101], most problems satisfy this property. So self-reducibility can be seen as being the

rule and not the exception.

We first give the definition of self-reducibility for a relation.

Definition 1.3 ([134, 94]). A relation R ∈ Σ∗ × Σ∗ is self-reducible if the following hold.

1. There is a polynomial p such that R(x, y) ⇒ |y| = p(|x|).

2. There are polynomial-time computable functions ψ ∈ Σ∗ ×Σ∗ → Σ∗ and σ : Σ∗ → N such

that for every x ∈ Σ∗

(a) σ(x) = O(log |x|),

(b) p(|x|) > 0⇒ σ(x) > 0,

(c) |ψ(x,w)| ≤ |x| for every w ∈ Σ∗ with |w| = σ(x), and

(d) R(x, y1...yn)⇔ R(ψ(x, y1...yσ(x)), yσ(x)+1...yn) for every y1...yn ∈ Σ∗.

Intuitively, the solution set associated with a given instance of a problem can be expressed

in terms of the solutions sets of a number of smaller instances of the same problem. Polynomial

A.Chalki Thesis 4

Chapter 1 Intoduction

p gives the length of the solutions to instances. Given an instance x and initial segment w of

length σ(x) of any solution to x, ψ(x,w) is an instance x′, such that w concatenated with any

solution to x′ forms a solution to x.

Next we define a version of self-reducibility for counting functions. This kind of self-

reducibility first appeared in [123] and then was generalized in [25]. Informally, a function

is self-reducible if its value on an instance can be recursively computed by evaluating the same

function on a polynomial number of smaller instances. By generalizing, we allow recursive

computations on, not necessarily, smaller instances.

Definition 1.4 ([123, 25]). A function f : Σ∗ → N is called poly-time self-reducible if for all

x ∈ Σ∗

(a) f can be processed recursively by reducing x to a polynomial number of instances h(x, i),

where h is polynomial-time computable and 0 ≤ i ≤ r(|x|) for some polynomial r. Formally,

for every x ∈ Σ∗,

f(x) = t(x) +

r(|x|)∑
i=0

g(x, i)f(h(x, i)).

(b) The recursion terminates after at most polynomial depth. Formally, the depth of the recur-

sion is q(|x|), for some polynomial q and for every x ∈ Σ∗ and
−→
j ∈ {0, . . . , r(|x|)}q(|x|),

f(h̃(x,
−→
j)) can be computed in polynomial time,

where h̃ is the extension of h such that h̃(x, ε) = x and h̃(x, j1...jk) = h(h̃(x, j1...jk−1), jk).

(c) Every instance invoked in the recursion is of polynomial size in |x|. Formally, there is a

polynomial p, such that for every x ∈ Σ∗, k ≤ q(|x|), and
−→
j ∈ {0, . . . , r(p(|x|))}k it holds

that |h̃(x,−→j)| ∈ O
(
p(|x|)

)
.

Note that if the instances h(x, i) are of smaller size than x, that is |h(x, i)| < |x| for every

x and i, 0 ≤ i ≤ r(|x|), then requirement (b) holds trivially. Moreover, (c) requires that all

instances that f will be computed on, must be of polynomial length in |x|, which also holds if

h is of decreasing length.

We prove below that self-reducibility of a relation is a more general property than the

poly-time self-reducibility of the corresponding function.

Proposition 1.1. Let R : Σ∗ × Σ∗ be a relation and f : Σ∗ → N be the function that for every

x ∈ Σ∗, f(x) = |{y ∈ Σ∗ | R(x, y)}|. If R is self-reducible, then f is poly-time self-reducible.

A.Chalki Thesis 5

Chapter 1 Intoduction

Proof. The value of f on an instance x can be expressed in the following way.

f(x) = |{y | R(x, y)}| =
∑

w∈Σσ(x)

|{y′ | R(ψ(x,w), y′)}| =
∑

w∈Σσ(x)

f(ψ(x,w))

where ψ and σ are as in Definition 1.3. So poly-time self-reducibility for f is satisfied, since

|Σσ(x)| is polynomial in |x| and ψ is polynomial-time computable, that also returns instances of

smaller length.

The inverse fact is not necessarily true. That is, if a function f , associated with a relation

R as above, is poly-time reducible, then R is not necessarily self-reducible. First, h(x, i) may

be of greater length than x in Definition 1.4, whereas ψ(w, x) of Definition 1.3, are always

instances of smaller length than x. Second, even if we restrict ourselves to functions h such that

|h(x, i)| ≤ |x|, it may be the case that requirements of Definition 1.3 are not satisfied. However,

as far as we know, there is no problem that has a poly-time self-reducible counting function and

not a self-reducible relation.

1.1.2 Fpaus and fpras for counting problems

The probabilitic Turing machine (PTM) is the usual basis for defining randomized complexity

classes and randomized algorithms. A probabilistic Turing machine T is a Turing machine

equipped with special coin-tossing states. Each coin-tossing state q has two possible successor

states qh and qt; when T enters state q, it moves on to state qh with probability 1
2 and to state

qt with probability 1
2 .

For two probability distributions π and π′ on a countable set Ω, define the total variation

distance between π and π′ to be

||π − π′||TV =
1

2

∑
ω∈Ω
|π(ω)− π′(ω)| = max

A⊆Ω
|π(A)− π′(A)|.

A sampling problem is specified by a relation R ⊆ Σ∗ × Σ∗ which includes pairs (x, y)

of problem instances x and solutions y. An almost uniform sampler for a solution set R is a

randomized algorithm that takes as input an instance x of the problem and a sampling tolerance

δ and outputs a solution Y (a random variable of the coin tosses made by the algorithm) such that

R(x, Y), and the variation distance between the distribution of Y and the uniform distribution

on the set {y | R(x, y)} is at most δ. If {y | R(x, y)} = ∅, we allow the almost uniform sampler

to output a special symbol ⊥. An almost uniform sampler is fully polynomial, denoted by fpaus,

if it runs in time polynomial in |x| and log(δ−1).

A.Chalki Thesis 6

Chapter 1 Intoduction

Definition 1.5. A randomized approximation scheme for a counting problem f : Σ∗ → N is

a randomized algorithm that takes as input an instance x ∈ Σ∗, an (accuracy) error tolerance

ε > 0, and a (probability) error tolerance δ > 0 and outputs a value f̂(x) ∈ N, such that for

every x,

Pr[(1− ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] ≥ 1− δ.

We speak of a fully polynomial randomized approximation scheme, denoted by fpras, if the

algorithm runs in time bounded by a polynomial in |x|, ε−1, and log(δ−1).

Remark 1.1. If we remove randomness from an fpras, then we obtain a deterministic fully

polynomial-time approximation scheme, denoted by fptas. So, an fpras outputs a (1 ± ε)-

approximation with probability 1.

For any self-reducible f ∈ #P the following facts are true.

1. f admits an fpras if and only if f admits an fpaus [94].

2. Any polynomial-time approximation algorithm that provides a polynomial multiplicative

approximation error can be boosted to achieve the quality of approximation demanded by

an fpras [137].

So, unlike optimization problems that exhibit an hierarchy of possible degrees of approxi-

mation, there is one notion of approximation algorithm for counting problems, namely fpras.

We are going to call the counting problems that admit an fpras, approximable (and so

inapproximable are the counting problems that do not admit an fpras).

We define the class FPRAS to be the class of all #P problems that are approximable. All

the problems in FPRAS are AP-interreducible to each other and also the class is closed under

AP reductions.

Definition 1.6 ([59, 24]). A function f belongs to FPRAS if f ∈ #P and there exists an fpras

for f .

#DNF (or any other counting problem that admits an fpras) can be considered as a rep-

resentative of this class. We can alternatively define FPRAS to consist of all #P problems that

are AP-interreducible with #DNF.

A.Chalki Thesis 7

Chapter 1 Intoduction

1.1.3 Reductions between counting functions

Reductions between counting functions have been introduced in the literature in a similar man-

ner to the Turing/Cook and Karp/many-one reductions between languages. These reductions

do not need to be limited to counting functions and in fact, they have been defined and used

more generally. In this thesis we are going to need the following five types of reductions; below

f, g ∈ #P and FP is the class of functions computable in polynomial time.

Definition 1.7 ([149]). Poly-time Turing reductions. f reduces to g under poly-time Turing

reductions, denoted by f ≤p
T g, if f ∈ FPg.

Definition 1.8 ([108]). Poly-time 1-Turing reductions. f reduces to g under poly-time

1-Turing reductions, denoted by f ≤p
1-T g, if f ∈ FPg[1].

Definition 1.9 ([136]). Parsimonious reductions. f reduces to g under poly-time parsimo-

nious reductions, denoted by f ≤p
pars g, if there is a function h ∈ FP, such that for every x ∈ Σ∗,

it holds that f(x) = g(h(x)).

Definition 1.10 ([132]). Product reductions. f reduces to g under product reductions,

denoted by f ≤p
pr g, if there are h1, h2 ∈ FP such that for every x ∈ Σ∗ it holds that

f(x) = g(h1(x)) · h2(x).

Definition 1.11 ([59]). Approximation preserving (AP) reductions. f reduces to g under

approximation preserving reductions, denoted by f ≤AP g, if there is a probabilistic oracle Turing

machine M that takes as input an instance x of f and 0 < ε < 1 and satisfies the following

three conditions:

1. every oracle call made by M is of the form (w, δ), where w is an instance of g, and

0 < δ < 1 is an error bound satisfying δ−1 ≤ poly(|x|, ε−1),

2. M meets the specification for being a randomized approximation scheme for f whenever

the oracle meets the specification for being a randomized approximation scheme for g, and

3. the run-time of M is polynomial in |x| and ε−1.

We also use the following notation.

(a) If f ≤AP g (resp. f ≤p
T g, f ≤

p
1-T g, f ≤

p
pars g, f ≤p

pr g) and g ≤APf (resp. g ≤p
T f , g ≤p

1-T f ,

g ≤p
pars f , g ≤p

pr f), then we say that f and g are AP-interreducible (resp. Turing-equivalent,

1-Turing-equivalent, parsimonious-equivalent, product-equivalent), and we write f ≡AP g

(resp. f ≡p
T g, f ≡p

1-T g, f ≡p
pars g, f ≡p

pr g).

A.Chalki Thesis 8

Chapter 1 Intoduction

(b) For a class of functions F, we denote by Closure≤(F) the closure of F under ≤, where

≤∈ {≤p
T, ≤

p
1-T, ≤

p
pars, ≤p

pr, ≤AP}.

Remark 1.2. Poly-time Turing reductions between functions were introduced by Valiant [149]

and are also called Cook in [123], since they can be seen as the analog of Cook reductions be-

tween sets. Valiant [149] proved that every #P function can be solved in polynomial time using

an oracle call to the problem of computing the permanent of a (0, 1)-matrix. Zankó [158] formal-

ized polynomial-time many-one reductions, which is the precise type of reductions under which

computing the permanent of a (0, 1)-matrix is #P-complete; polynomial-time many-one reduc-

tions are weaker than parsimonious reductions, since there is an additional poly-time computable

function ϕ and f(x) = ϕ(g(h(x))) and they are stronger than poly-time 1-Turing reductions

which allow access to the initial instance x during the polynomial-time computation, that is

f(x) = ϕ(x, g(h(x))). Poly-time 1-Turing reductions were introduced as metric reductions by

Krentel in [108], where they were used between optimization problems.

Parsimonious reductions were defined in [136] between counting problems; here we provide

a more general definition of parsimonious reductions between functions. In [123] parsimonious

reductions are called Karp (or poly-time many-one) as they can be considered as the analog of

Karp (or poly-time many-one) reductions between sets. Also earlier, Vollmer [153] uses the term

polynomial-time functionally many-one reductions for parsimonious ones.

Here we are going to use the terms given in Definitions 1.7–1.11. In specific, when we refer

to poly-time Turing (resp. poly-time 1-Turing) reductions, we just write Turing (resp. 1-Turing)

reductions.

Parsimonious reductions are product reductions, where h2(x) = 1 for every x. Product

reductions are Turing reductions where only one oracle call is needed. The same holds for

parsimonious reductions, where in addition, the answer of the oracle cannot be changed. Par-

simonious and product reductions are trivially AP reductions, whereas Turing reductions and

AP ones are not comparable to each other. An AP reduction from f to g means that an fpras

for g yields an fpras for f . If an fpras for f is not possible, then an AP reduction from f to g

means that g admits no fpras either.

Remark 1.3. Notably, parsimonious reductions are provably stronger than poly-time many-one

reductions as defined by Zankó in [158], and as a consequence, they are stronger than 1-Turing

reductions. Faliszewski and Hemaspaandra have shown in [65] that the Shapley-Shubik power

index is #P-complete under poly-time many-one reductions, but cannot be #P-complete under

A.Chalki Thesis 9

Chapter 1 Intoduction

parsimonious reductions.

1.2 Decision versus Counting

Counting solutions using an oracle to deciding whether a solution exists, and con-

versely

Counting using an oracle to decision classes: Can we solve a counting problem by having an

oracle to some decision problem? We provide two theorems that answer this question when

‘solve’ is replaced by ‘approximate using either an fpras or an fptas’ and the oracle calls are

made to the class NP and Σp
2 = NPNP, respectively.

Theorem 1.2 (Valiant–Vazirani bisection technique [151]). For any f ∈ #P, there exists a

probabilistic TM M equipped with an NP-oracle, which for every input (x, ε, δ) ∈ Σ∗×R+×R+

produces an output M(x, ε, δ) such that

Pr(M(x, ε, δ) approximates f(x) within ratio (1 + ε)) ≥ (1− δ).

Moreover, the running time of M is bounded by a polynomial in |x|, 1/ε, and log(1/δ).

Theorem 1.3 (Stockmeyer’s Theorem [140]). For any f ∈ #P, there exists a deterministic TM

M equipped with a Σp
2-oracle, which for every input (x, ε) ∈ Σ∗×R+ produces an output M(x, ε)

such that

M(x, ε) approximates f(x) within ratio (1 + ε).

Moreover, the running time of M is bounded by a polynomial in |x| and 1/ε.

Both the Valiant–Vazirani bisection technique and Stockmeyer’s Theorem can also be found

in [94].

Solving decision problems using an oracle to counting: Which decision problems can be effi-

ciently solved using an oracle to counting? Toda’s Theorem states that the whole polynomial

hierarchy can be solved in polynomial time using only one oracle call to the class #P.

Theorem 1.4 (Toda’s Theorem [144]). PH ⊆ P#P[1].

The previous three theorems justify the next comment by Dyer et al. [59]: “Informally, from

a complexity theoretic perspective, approximate counting is much easier than exact counting.

The former lies just above NP, whereas the latter lies above the entire polynomial hierarchy.”

A.Chalki Thesis 10

Chapter 1 Intoduction

NP-completeness versus #P-completeness

#P-completeness ?
=⇒ NP-completeness

1. Under Turing reductions: Is the decision version of a #P-complete problem under Turing

reductions, NP-complete? The answer is not always. Table 1.1 includes different combi-

nations of hard-easy counting and hard-easy decision versions.

ProblemProblemProblem Decision versionDecision versionDecision version Counting versionCounting versionCounting version

Sat NP-complete
#P-complete

under parsimonious

[16, Theorem 17.10]

3-Coloring NP-complete #P-complete

under parsimonious [28]

2-Coloring P FP [61]

DNF P
#P-complete

under Turing

Bipartite Perfect

Matching
P

#P-complete

under Turing [149]

Monotone Sat trivial #P-complete

under Turing [146]

Independent Set trivial #P-complete

under Turing [146]

Table 1.1: The complexity status of some decision problems and their counting versions.

Some remarks on Table 1.1. The problem of counting 2 colorings of a graph, namely

#2Col, can be shown to lie in FP using the dichotomy result of [61]. Alternatively, note

that #2Col admits the following simple efficient algorithm: if the input graph is not

bipartite, then there is no 2 coloring of the graph. Otherwise, every connected component

of the graph can be colored using 2 colors in exactly two different ways. So, the number

of 2 colorings of the input graph is equal to 2k, where k is the number of connected

components of the graph. The problem #DNF is #P-complete under Turing reductions

since for any CNF formula ϕ, it holds that #Sat(ϕ) = 2n −#DNF(¬ϕ), where n is the

number of variables of ϕ.

A.Chalki Thesis 11

Chapter 1 Intoduction

2. Under AP reductions: The same question with respect to AP reductions has also a negative

answer. A counterexample is the problem #IS of counting the independent sets of all sizes

in a graph, which is hard under AP-reductions [59], but its decision version is trivial, since

in any non-empty graph there is always an independent set of size 1.

3. Under parsimonious reductions: However, the same question with respect to parsimonious

reductions has a positive answer: Every #P-complete problem under parsimonious re-

ductions has an NP-complete decision version. For example, consider #Sat. For any

#A ∈ #P, there is a parsimonious reduction from #A to #Sat, which is also a reduction

from the decision version of A to Sat.

NP-completeness ?
=⇒ #P-completeness

1. Under Turing reductions: Is the counting version of an NP-complete problem, #P-complete

under Turing reductions? The positive answer to this question still remains a conjecture.

Conjecture 1.1 ([59]). Every NP-complete problem has a #P-complete counting version

under Turing reductions.

This question was also examined in [67] as follows. Recall that a problem in NP is defined

by a polynomial-time decidable relation R (as in Definition 1.1), which is not necessarily

unique. In [67] every such relation is called a witnessing relation (or a witnessing scheme)

and can define a counting version of the problem which belongs in #P (see Definition 1.2).

A natural question arises: Do all NP-complete problems have (only) #P-complete counting

versions? As the following theorem states, the answer to this question is negative with

respect to 1-Turing reductions and under some structural conditions. For a definition of

the class FewP [8], we refer the reader to Table 4.1 in Chapter 4.

Theorem 1.5. ([67, Theorem 3.11]).

(a) If there is an NP-complete set L that with respect to some witnessing relation RL is

not #P-complete under 1-Turing reductions, then P ̸= P#P.

(b) If P ̸= P#P and NP = FewP, then each NP-complete set has some witnessing scheme

with respect to which it fails to be #P-complete under 1-Turing reductions.

2. Under AP reductions: In this case we have the following theorem.

Theorem 1.6 ([59]). Every NP-complete problem has a #P-complete counting version

under AP reductions.

A.Chalki Thesis 12

Chapter 1 Intoduction

3. Under parsimonious reductions: It has been proven that there is an NP-complete problem

that its counting version is not #P-complete under parsimonious reductions unless P =

NP [43]. This problem is k-Edge Coloring in k-regular graphs, where k ≥ 3.

Approximability of a counting problem versus having an easy decision version

f ∈ FPRAS
?
=⇒ f has an easy decision version

1. f ∈ FPRAS⇒ Lf ∈ BPP: The decision version of any counting problem in FPRAS is a

problem in BPP [75].

Proposition 1.2. If f ∈ FPRAS, then Lf ∈ BPP.

Proof. By Defintion 1.5, if we can have an (1 ± ε)-approximation of f(x) with bounded

probability error, then we can determine whether f(x) > 0 with two-sided bounded prob-

ability error.

2. If an NP-complete problem has a counting version that admits an fpras, then RP = NP [59]:

We also refer the reader to Theorem 3.1 of Chapter 3 for a proof of this fact.

f has an easy decision version ?
=⇒ f ∈ FPRAS: Not always. The negative answer here is under

the condition that RP ̸= NP. Table 1.2 includes two counterexamples, namely #IS and #2Sat.

Some remarks on Table 1.2. For a proof of the fact that #Sat does not have an fpras

unless RP = NP the reader can also see the proof of Theorem 3.1. The problem #IS is a

well-studied counting problem as it is a special case of the problem of computing the partition

function of the hardcore model in statistical physics. The result of [57] was later improved by

Sly [138] and Galanis et al. [73]. Inapproximability of #2Sat under the assumption RP ̸= NP

is a consequence of the following simple reduction from #IS to #2Sat: consider a variable xv

for every vertex v of the input graph to #IS and write a conjunction of clauses, where a clause

(¬xv ∨ ¬xu) is added to the conjunction, for every edge (v, u) of the graph.

Furthermore it is conjectured that specific counting problems the decision version of which is

in P, have no fpras; the class #RHΠ1 [59] contains problems AP-interreducible with #BIS, that

is the problem of counting independent sets in a bipartite graph, which it is widely believed not

to be approximable. In fact, #BIS is considered to be of intermediate complexity, i.e. neither

approximable nor as hard as #Sat, and it emerges in several approximation trichotomy results

A.Chalki Thesis 13

Chapter 1 Intoduction

ProblemProblemProblem DecisionDecisionDecision

versionversionversion

ExactExactExact

complexitycomplexitycomplexity

ApproximabilityApproximabilityApproximability

statusstatusstatus

#Sat NP-complete
#P-complete

(under parsimonious)

no fpras unless

RP = NP [59]

#IS P
#P-complete

(under Turing)

no fpras unless

RP = NP [57]

#2Sat P
#P-complete

(under Turing)

no fpras unless

RP = NP

#DNF P
#P-complete

(under Turing)

fpras [98]

#NFA NL
#P-complete

(under Turing)

fpras [14]

Table 1.2: The exact and approximability status of some counting problems.

for classes of counting problems—see for example [60, 74]. The definition of the class #RHΠ1

is given Definition 5.1 of Chapter 5.

1.3 The complexity class TotP

1.3.1 Definition of TotP: counting all paths of an NPTM

The class that contains all the functions in #P with a decision version in P is #PE (#PEasy).

Recall that given f ∈ #P, Lf = {x ∈ Σ∗ | f(x) > 0} is defined to be the decision version of f .

Definition 1.12 ([122]). #PE = {f : Σ∗ → N | f ∈ #P and Lf ∈ P}.

The complexity class TotP is a subclass of #P that is defined as the class of functions that

count the total number of computation paths of NPTMs.

Definition 1.13 ([102]). TotP = {totM : Σ∗ → N | M is an NPTM}, where totM (x) = #(all

computation paths of M on input x)− 1.

A.Chalki Thesis 14

Chapter 1 Intoduction

Remark 1.4. Let M denote an NPTM and TM(x) denote its computation tree on input x.

W.l.o.g. we can assume that, for any x, TM(x) is binary, i.e. every vertex of TM(x) has at most

two children. In other words, at any time the computation of M on x is either deterministic or

a nondeterministic choice is made between exactly two branches. That is because, if there are

m > 2 nondeterministic choices for some state-symbol combination, we can modify M by adding

m − 2 new states so that the modified Turing machine (1) simulates the computation of M on

x, (2) makes only nondeterministic choices between two branches, and (3) has the same total

number of paths as M .

Therefore, the computation of any machine M on input x can be seen as a binary tree

TM(x), where a branching is created in the computation tree whenever M has to select between

two choices. Then,

totM (x) = #(all paths of M on input x)− 1 = #(all branchings of TM(x)).

Sometimes we abuse notation by writing totM (x) = #(all branchings of M on input x).

Since an NPTM has at least one computation path, the ‘-1’ in the definition allows TotP

to capture functions that take zero value on some inputs. In [80] the function totalM (x) is

introduced to denote the total number of M on input x without subtracting 1. Note that the

functions defined via totalM instead of totM are contained in TotP: given a function f , such that

for some NPTM M and every x ∈ Σ∗, f(x) = totalM (x) = #(all paths of M on input x), an

NPTM M ′ can be easily constructed such that totalM ′(x) = totalM (x) + 1, for every x. Then,

it holds that totM ′ ≡ totalM and so f ∈ TotP.

The following subsection reveals how the choice of totM allows many natural counting

problems to lie in TotP. At the beginning of Subsection 4.1 we refer to interesting decision

classes defined in [80] via the function totalM .

1.3.2 Properties of TotP problems: self-reducibility and easy decision

The following theorem summarizes the relationship among classes defined so far. Here, FP

denotes the class of natural-valued functions that are computable in polynomial time.

Theorem 1.7 ([123]). (a) FP ⊆ TotP ⊆ #PE ⊆ #P. The inclusions are proper unless P = NP.

(b) FPTotP[1] = FP#PE[1] = FP#P[1].

(c) TotP is the closure under parsimonious reductions of self-reducible #PE functions.

A.Chalki Thesis 15

Chapter 1 Intoduction

Theorem 1.7(a) and (b) state that the classes TotP, #PE, and #P are 1-Turing-equivalent,

but they are not parsimonious-equivalent unless P = NP.

Theorem 1.7(c) gives an alternative characterization of problems in TotP. As a result, TotP

is a very large class with problems from many different scientific fields, which share the two

aforementioned simple properties of being self-reducible and having an easy decision version.

At the same time, by having a simple syntactic characterization, TotP unifies all these problems

and makes their class amenable to having complete problems.

We elaborate on the two different characterizations of TotP with an example.

Example 1.1. Consider the problem #BiPerfMatch of counting perfect matchings in a bipar-

tite graph. Its decision version is the problem of determining whether there is a perfect matching

in a bipartite graph and it is in P. #BiPerfMatch is also self-reducible since the number of

perfect matchings in G equals the number of perfect matchings containing some edge e plus the

number of perfect matchings not containing edge e. Computing the two latter numbers is equiv-

alent to counting perfect matchings in two subgraphs of G, namely G0 and G1, respectively. G0

results from G by removing e together with its endpoints, whereas G1 results from G by removing

only e (without removing its endpoints).

Let G be an input bipartite graph and e1, ..., em be an enumeration list of its edges. Consider

an NPTM M that, at its first step, determines whether there is a perfect matching in G. If the

answer is no, it halts. Otherwise, it generates a dummy path and starts a recursive computation

as follows. It checks whether there is a perfect matching containing the first edge appearing in

the enumeration list, namely e1, and whether there is one not containing e1.

• If the answer is yes for both cases, M chooses nondeterministically to add e1 to the perfect

matching or not and proceeds recursively with G0 and G1, respectively. It also removes

from the enumeration list all edges removed from G.

• If the answer is yes for exactly one case, M deterministically proceeds recursively with the

corresponding subgraph, i.e. either G0 or G1, and it also removes from the enumeration

list all edges removed from G. In the case of G consisting of just two vertices u, v and the

edge e = (u, v), M halts.

Since M removes at least one edge at each step, the depth of the recursion is polynomial in

the size of G. Finally, notice that every sequence of nondeterministic choices corresponds to a

perfect matching and so the definition of TotP is satisfied; the number of perfect matchings of

A.Chalki Thesis 16

Chapter 1 Intoduction

stop

stop

stop stop

Figure 1.1: NPTM M for which it holds that totM (Ĝ) = #BiPerfMatch(G), where Ĝ is the binary encoding

of the bipartite graph G depicted on the top of the figure.

G equals the number of all paths minus one. The computation of M on input a bipartite graph

with seven edges is depicted in Figure 5.3.

Using similar arguments, we can prove the following proposition.

Proposition 1.3. The following problems belong to TotP.

(a) #DNF (counting satisfying assignments of a DNF formula),

(b) #2Sat (counting satisfying assignments of a 2SAT formula),

(c) #HornSat (counting satisfying assignments of a CNF formula, every clause of which

contains at most one positive literal),

(d) #MonSat (counting satisfying assignments of a CNF formula, every clause of which con-

tains only positive literals),

(e) #BiPerfMatch (counting perfect matchings in a bipartite graph)

(f) #PerfMatch (counting perfect matchings in a general graph),

(g) #IS (counting independent sets of any size in a graph).

Proposition 1.4. If a problem in TotP has a polynomial number of solutions then its solutions

can be enumerated in polynomial time.

A.Chalki Thesis 17

Chapter 1 Intoduction

Proof. For every problem in TotP the computation tree of an NPTM can be constructed like in

Example 1.1. If the number of solutions is bounded by a polynomial in the input size, then this

construction is a polynomial-time enumeration of the problem’s solutions.

Proposition 1.4 is also a corollary of [133, Lemma 4.10] which states that any self-reducible

relation with an easy existence version has a polynomial delay enumeration algorithm.

1.3.3 Characterization of TotP as a class of interval size functions

Interval size functions were introduced by Hemaspaandra et al. [84]. The study of this kind

of functions started with the observation that most counting classes obscure factors like orders

on solution sets. Interestingly, counting classes can be characterized as classes of functions the

values of which are equal to the size of an interval defined by some order. For example, #P is

the class of interval size functions of P-decidable partial p-orders.

A binary relation over Σ∗ is a partial order if it is reflexive, antisymmetric, and transitive.

A partial order A is a total order if for any x, y ∈ Σ∗, it holds that (x, y) ∈ A or (y, x) ∈ A. We

say that an order A is P-decidable if A ∈ P and that it is a p-order if there exists a bounding

polynomial p such that for all (x, y) ∈ A it holds that |x| ≤ p(|y|). We denote by (x, y)A the

open interval (x, y)A = {z ∈ Σ∗ | x <A z <A y} and we also use [x, y]A, [x, y)A and (x, y]A

for the closed, right-open and left-open intervals respectively. For any interval I, we denote by

||I|| = |{z ∈ Σ∗ | z ∈ I}| the size of I.

Definition 1.14. A function f : Σ∗ → N is called an interval size function on an order A if

there exist boundary functions b, t : Σ∗ → Σ∗ such that for all x ∈ Σ∗, f(x) = ||(b(x), t(x))A||.

Proposition 1.5. For any function f , the following are equivalent:

1. f ∈ #P.

2. there exist a partial p-order A ∈ P and functions b, t ∈ FP such that, for all x ∈ Σ∗,

f(x) = ||(b(x), t(x))A||.

3. there exist a total p-order A ∈ P and functions b, t ∈ FP such that, for all x ∈ Σ∗,

b(x) ≤A t(x) and f(x) = ||(b(x), t(x))A||.

For an order A we write x ≺A y to abbreviate (x <A y ∧ ¬∃z(x <A z <A y)). We say that

x is a predecessor of y, or y is a successor of x. If A≺ = {(x, y) | x ≺A y} is in P, we say that A

has efficient adjacency checks.

A.Chalki Thesis 18

Chapter 1 Intoduction

Definition 1.15. IF≺p is the class of interval size functions defined on P-definable partial orders

with efficient adjacency checks via polynomial-time computable boundary functions.

Proposition 1.6. IF≺p = #PE.

Bampas et al. [27] added various other feasibility constraints to interval size functions

defined on P-decidable p-orders. In particular, if we add a polynomial-time computable lexico-

graphically nearest function, then we obtain the class TotP.

Definition 1.16 ([27]). LNA : Σ∗ × Σ∗ × Σ∗ → Σ∗ is the lexicographically nearest function for

A: LNA(x, y, z) is the string w ∈ [x, y]A such that w is closest to z in the lexicographic order

(breaking ties arbitrarily). If [x, y]A is empty, then LNA(x, y, z) is undefined for any z.

Definition 1.17. IFLNt is the class of interval size functions defined on some polynomial-time

decidable total p-order A via polynomial-time computable boundary functions where in addition

LNA ∈ FP.

Proposition 1.7 ([27]). IFLNt = TotP.

1.3.4 TotP is robust

The class TotP is also a robust class in the sense that it has natural complete problems (which

will be shown in Chapter 2) and it is closed under addition, multiplication, and subtraction by

one, as shown below. This notion of robustness was suggested by Arenas et al. [15].

Proposition 1.8. TotP is closed under addition, multiplication, and subtraction by one.

Proof. We are going to show that if f, g ∈ TotP, then h1 = f + g, h2 = f · g, and h3 = f−̇1 also

belong to TotP. Specifically, h3 : Σ∗ → N is defined by

h3(x) =


f(x)− 1, if f(x) ̸= 0

f(x), if f(x) = 0

.

Let Mf , Mg be NPTM such that for every x ∈ Σ∗, f(x) = totMf
(x) = #(paths of Mf on

x) − 1 and g(x) = totMg(x) = #(paths of Mg on x) − 1. We are going to construct M1, M2,

and M3 such that hi(x) = totMi(x) = #(paths of Mi on x)− 1, for i ∈ {1, 2, 3}.

• Subtraction by one: M3 on x simulates Mf on x with a few modifications as follows. If

Mf has only one path, then M3 does exactly what Mf does. If Mf makes at least one

A.Chalki Thesis 19

Chapter 1 Intoduction

nondeterministic choice, M3 copies the behavior of Mf , but while simulating the leftmost

path, before making a nondeterministic choice, it checks whether one of the choices leads

to a deterministic computation. The first time M3 detects such a choice, it eliminates

the path corresponding to the deterministic computation and continues the simulation

of Mf . Notice that M3 can recognize the leftmost path since computation paths can be

lexicographically ordered. In this case, M3 has one path less than Mf . In both cases, it

holds that h3(x) = totM3(x) = totMf
(x)−̇1 = f(x)−̇1.

• Addition: If one of the machines, let’s say Mf , has one computation path on input x,

then f(x) = 0. So, on input x, M1 checks whether either Mf or Mg has exactly one path

and if this the case, it simulates the other one, i.e. Mg or Mf , respectively. Otherwise,

on input x, M1 simulates M3 and Mg nondeterministically, i.e. in two different branches.

Since #(paths of M3 on x) = h3(x) + 1 = f(x) and #(paths of Mg on x) = g(x) + 1, we

have that #(paths of M1 on x) = #(paths of M3 on x) + #(paths of Mg on x) = f(x) +

g(x) + 1. This implies that totM1(x) = f(x) + g(x) = h1(x).

• Multiplication: If one of the machines, let’s say Mf , has one computation path on input

x, then f(x) = 0. So, on x, M2 checks whether at least one of Mf and Mg has exactly

one path and if this is true, it generates one path and halts. Otherwise, consider the

function h4 : Σ∗ → N such that h4(x) = g(x)−̇1 for every x ∈ Σ∗ and the NPTM M4

such that h4(x) = totM4(x). On input x, M2 generates two branches. The first branch

is a dummy path. On the second branch, M2 simulates M3 and M4 sequentially. So,

#(paths of M2 on x) = #(paths of M3 on x) ·#(paths of M4 on x)+1 = f(x) ·g(x)+1 =

h2(x).

For the classes #P and #PE, the following facts are known.

Proposition 1.9. (a) ([121]). #P is not closed under subtraction by one unless SPP ⊆ NP.

(b) ([123]). #PE is not closed under subtraction by one unless P = NP.

1.3.5 Closure of TotP under different kinds of reductions

Below we prove a proposition about the closure of TotP under different kinds of reductions that

have been defined in Subsection 1.1.3.

Proposition 1.10. (a) TotP is closed under parsimonious reductions.

(b) TotP is closed under product reductions.

A.Chalki Thesis 20

Chapter 1 Intoduction

(c) TotP is not closed under Turing reductions unless P = NP.

(d) TotP is not closed under approximation preserving reductions unless P = RP.

Proof. (a) This is true by Theorem 1.7(c).

(b) Let f ∈ TotP and g ≤p
pr f . Then for every x ∈ Σ∗, it holds that g(x) = f(h1(x)) · h2(x) for

some h1, h2 ∈ FP. The functions f ◦ h1 and h2 are both in TotP. So, g ∈ TotP, since TotP is

closed under multiplication.

(c) If TotP is closed under Turing reductions, then #Sat ∈ TotP, since #Sat ≤p
T Permanent

and Permanent ∈ TotP. This would imply that P = NP.

(d) TotP contains problems that are approximable, such as #DNF. Every problem in FPRAS

can be trivially reduced to #DNF under aporoximation preserving reductions. So if TotP is

closed under approximation preserving reduction, then FPRAS ⊆ TotP, which in turn implies

that P = RP. The last implication is proven in Corollary 3.5 of Chapter 3.

1.4 Descriptive complexity of #P

In the area of descriptive complexity, we are interested in determining the type of logic that is

needed to express the problems in a complexity class. In specific, to capture counting problems,

the following two approaches are relevant to our work [132, 15]. We include some notation,

facts, and theorems to introduce the reader to previous useful results.

A relational vocabulary σ = {Ra11 , ...,R
ak
k } is a finite set of relation symbols. Each relation

symbol Ri has a positive integer ai as its designated arity.

Definition 1.18. A structure A = ⟨A,R1, ..., Rk⟩ over σ consists of a set A, called the uni-

verse of A and relations R1,...,Rk of arities a1, .., ak on A, which are interpretations of the

corresponding relational symbols.

A finite ordered structure is a structure with a finite universe and an extra relation ≤, which

is interpreted as a total order on the elements of the universe.

In what follows, we shall not make a notational difference between the relations Ri and

their interpretations Ri and denote both by Ri.

For example, a graph is represented as a finite structure using the vocabulary σG = E2

corresponding to the edge relation. A boolean formula ϕ in conjunctive normal form with at

most three literals per clause, called a 3CNF formula, can be encoded as a finite structure using

A.Chalki Thesis 21

Chapter 1 Intoduction

the vocabulary σ3CNF = {C3
0 , C

3
1 , C

3
2 , C

3
3}, where Ci(x1, x2, x3) iff ¬x1∨ ...∨¬xi∨xi+1∨ ...∨x3

appears as a clause in ϕ.

We consider that a counting function takes as input a finite ordered structure. The value

of the function on some input is the number of feasible solutions to the counting problem

corresponding to this function.

Given a relational vocabulary σ, the set of First-Order logic formulas (FO formulas) over

σ is given by the following grammar.

ϕ := x = y | R(−→x) | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ⊤

where x, y are first-order variables, R ∈ σ, −→x is a tuple of first-order variables, ⊤ represents a

tautology.

The logical symbols of Second-Order logic (SO) include all the logical symbols of FO and

also an infinite set of second-order variables, denoted by uppercase letters X,Y, Z, Each

second-order variable X has an arity, denoted by arity(X). The set of SO formulas over σ is

given by:

ϕ := x = y | R(−→x) | X(−→y) | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃Xϕ | ⊤

where x, y are first-order variables, R ∈ σ, X is a second-order variable, −→x ,−→y are tuples of

first-order variables, and ⊤ represents a tautology.

In addition, we are going to use the boolean connectives ∧,→, the quantifier ∀, and the

symbol ⊥ that represents the negation of a tautology.

1.4.1 #P = #FO

Definition 1.19. Let σ be a vocabulary containing the relation symbol ≤. Let f be a counting

function with structures A over σ as instances. Let −→x = (x1, ..., xv),
−→
X = (X1, ..., Xr), , r, v ≥ 0,

and r + v > 0, be sequences of first-order and second-order variable symbols, respectively. We

say that f ∈ #FO if there exists a first-order formula ϕ(−→x ,
−→
X) with relation symbols from σ∪

−→
X

and free first-order variables from −→x , such that,

f(A) = |{⟨
−→
X,−→x ⟩ | A |= ϕ(−→x ,

−→
X)}|.

Classes #Πn, #Σn, n ≥ 0, are defined as in the above definition, when Πn, Σn formulas are

used, respectively, instead of arbitrary first-order formulas. For every n, Σn (resp. Πn) formulas

A.Chalki Thesis 22

Chapter 1 Intoduction

is the set of FO formulas of the form ∃−→x 1∀−→x 2...∃−→x n−1∀−→x n ψ (resp. ∀−→x 1∃−→x 2...∃−→x n ψ) if n is

even, or ∃−→x 1∀−→x 2...∀−→x n ψ (resp. ∀−→x 1∃−→x 2...∀−→x n ψ) if n is odd.

For example, the problem of counting satisfying assignments of a 3CNF formula is in #FO,

since

#3Sat(A) = |{⟨T ⟩ | A |= ∀x1∀x2∀x3
(
C0(x1, x2, x3)→ T (x1) ∨ T (x2) ∨ T (X3)∧

C1(x1, x2, x3)→ ¬T (x1) ∨ T (x2) ∨ T (X3)∧

C2(x1, x2, x3)→ ¬T (x1) ∨ ¬T (x2) ∨ T (X3)∧

C3(x1, x2, x3)→ ¬T (x1) ∨ ¬T (x2) ∨ ¬T (X3)
)

where A is a structure over σ3CNF . In specific, #3Sat ∈ #Π1.

The class #P coincides with #FO and in fact, with #Π2. By considering #FO and its

subclasses, the following hierarchy is formed below #P.

Theorem 1.8 ([132]). (a) #P = #FO = #Π2 = #Πn = #Σn over finite ordered structures.

(b) #Σ0 = #Π0 ⊊ #Σ1 ⊊ #Π1 ⊊ #Σ2 ⊊ #Π2 = #P.

1.4.2 #P = ΣQSO(FO)

Given a vocabulary σ, the set of Quantitative Second-Order logic (QSO) formulas over σ are ob-

tained by also using quantitative quantifiers—addition quantifier Σ and multiplication quantifier

Π—over first- and second-order variables. QSO formulas are defined as follows.

α := ϕ | s | (α+ α) | (α · α) | Σx.α | Πx.α | ΣX.α | ΠX.α (1.1)

where ϕ is an SO formula over σ, s ∈ N, x is a first-order variable, and X is a second-order

variable.

Let A be a structure over a vocabulary σ, v be a first-order assignment for A, and V be a

second-order assignment for A. Then the evaluation of a QSO formula α over (A, V, v) is defined

as a function [[α]] that on input (A, V, v) returns a number in N. The function [[α]] is recursively

defined in Table 1.3. A QSO formula α is said to be a sentence if it does not have any free vari-

able, that is every variable in α is under the scope of a usual or a quantitative quantifier. Notice

that if α is a QSO sentence over σ, then for every structure A, first-order assignments v1, v2

for A and second-order assignments V1, V2 for A, it holds that [[α]](A, v1, V1) = [[α]](A, v2, V2).

Thus, in such a case we use the term [[α]](A) to denote [[α]](A, v, V) for some arbitrary first-

order assignment v and some arbitrary second-order assignment V for A.

A.Chalki Thesis 23

Chapter 1 Intoduction

[[ϕ]](A, v, V) =


1, if A |= ϕ

0, otherwise

[[s]](A, v, V) = s

[[α1 + α2]](A, v, V) = [[α1]](A, v, V) + [[α2]](A, v, V)

[[α1 · α2]](A, v, V) = [[α1]](A, v, V) · [[α2]](A, v, V)

[[Σx.α]](A, v, V) =
∑
a∈A

[[α]](A, v[a/x], V)

[[Πx.α]](A, v, V) =
∏
a∈A

[[α]](A, v[a/x], V)

[[ΣX.α]](A, v, V) =
∑

B⊆Aarity(X)

[[α]](A, v, V [B/X])

[[ΠX.α]](A, v, V) =
∏

B⊆Aarity(X)

[[α]](A, v, V [B/X])

Table 1.3: The semantics of QSO formulas.

For example, the problem of counting cliques in a graph G can be expressed as [[αclique]](G),

where αclique = ΣX.∀x∀y(X(x) ∧X(y) ∧ x ̸= y)→ E(x, y).

The syntax of QSO formulas is divided in two levels: the first level is composed by SO

formulas over σ and the second level is made by quantitative operators of addition and multi-

plication. By parameterizing one or both of these levels, we define different sets of formulas and

different counting classes. We denote ΣQSO the fragment of QSO formulas where first- and

second-order products are not allowed. ΣQSO(FO) is the set of ΣQSO formulas obtained by

restricting ϕ in (1.1) to be an FO formula. In general, ΣQSO(L) formulas are ΣQSO formulas

obtained by restricting ϕ in (1.1) to be in L.

Definition 1.20. We say that f ∈ ΣQSO(FO) if there exists a ΣQSO(FO) formula α such

that [[α]](A) = f(A), for every ordered finite structure A over σ.

Remark 1.5. ΣQSO(FO) denotes a set of logical formulas, whereas ΣQSO(FO) denotes a

class of functions. For every logic L, we can define a corresponding class of functions as above

and denote it by L.

Theorem 1.9 ([15]). #P = ΣQSO(FO) over finite ordered structures.

A.Chalki Thesis 24

Chapter 1 Intoduction

Definition 1.21. (a) A formula α in ΣQSO(L) is in L-prenex normal form (L-PNF) if α is of

the form Σ
−→
X.Σ−→x .ϕ(

−→
X,−→x), where

−→
X and −→x are sequences of second- and first-order variables,

repsectively, and ϕ(
−→
X,−→x) is in L.

(b) A formula α in ΣQSO(L) is in L-sum normal form (L-SNF) if α is of the form
n∑
i=1

αi,

where each αi is in L-PNF.

Proposition 1.11. ([15, Proposition 5.1]). Every formula in ΣQSO(L) can be written in

L-SNF.

Corollary 1.1. Every formula in #P can be written in FO-SNF.

1.5 A guided tour to this thesis

Many of the results presented in Chapters 2 and 3 are from Eleni Bakali’s PhD thesis [22].

However, they are presented here since they are tightly connected to further results and discus-

sion developed within these two chapters. They are also necessary to follow several results and

arguments presented later on in the context of this thesis.

Chapter 2 is about the first TotP-complete problems under parsimonious reductions. The

first natural TotP-complete problem, denoted by #Tree-Monotone-Circuit-Sat, is the

problem of counting the number of satisfying assignments for a circuit that is monotone un-

der a specific partial order on the set of all assignments {0, 1}n. As a corollary, the problem of

counting the satisfying assignments for monotone circuits, where the monotonicity is defined by

a partial order which is part of the input, is hard with respect to both exact and approximate

computation.

Among others, a particularly interesting problem, which is called Size-of-Subtree, turns

out to be TotP-complete. It was first introduced by Knuth [105] as the problem of estimating the

size of a backtracking tree, that is the tree produced by a backtracking procedure. Although this

problem has been studied under various perspectives (see Section 2.3 for the related references),

its worst case complexity had remained open. This was partially due to the fact that, unlike

most problems in counting complexity, it does not relate to logical formulas or to common

graph theory problems, and cannot even be expressed as a constraint satisfaction problem.

TotP-completeness of Size-of-Subtree under parsimonious reductions settled its complexity

status.

Combining TotP-completeness of Size-of-Subtree with an algorithm of Knuth [105] for

A.Chalki Thesis 25

Chapter 1 Intoduction

the problem, it can be shown that any problem in TotP admits a polynomial-time randomized

approximation algorithm the error of which depends on the imbalance of the Turing machine’s

computation tree that corresponds to the problem. We also provide exponential-time hardness

results for the problem Size-of-Subtree under variants of the exponential-time hypothesis

(ETH) which were first presented in [13]. In particular, we show that under #ETH there is

no deterministic algorithm that solves Size-of-Subtree in subexponential time and under

the randomized version of ETH, rETH, there is no randomized algorithm that approximates

Size-of-Subtree within a (1± 1
4)-multiplicative factor in subexponential time.

Finally, we discuss TotP-completeness of a satisfiability problem, denoted by #Clustered-

Monotone-Sat. An instance of #Clustered-Monotone-Sat exhibits interesting proper-

ties that allow navigation among its solutions and enumeration of them with only a polynomial

delay from a solution to the next one. Since this problem is AP-interreducible with #Sat, ap-

proximating #Sat in polynomial time is equivalent to approximating it on instances for which

efficient navigation among solutions is possible. This supplements the current knowledge re-

garding the hardness of #Sat, where the scattering of solutions of a typical CNF formula and

the consequent lack of navigability between them is, often provably, considered as the reason

of failure of many algorithms for the problem. Thus any further research regarding the un-

conditional (im)possibility of approximating #Sat can be restricted to instances for which an

efficient algorithm for navigation between solutions exists.

In Chapter 3 the relationship between the class TotP and FPRAS is examined. Most

problems proven so far to admit an fpras belong to TotP, so a reasonable question is whether

FPRAS ⊆ TotP. Of course, problems in FPRAS have a decision version in BPP, so if P ̸= BPP

this is probably not the case. Therefore, a more realistic goal is to determine assumptions under

which the conjecture FPRAS ⊆ TotP might be true. The world can be considered as depicted

in Figure 1.2, where #BPP denotes the class of problems in #P with a decision version in BPP.

#P

#BPP

#PE

FPRASTotP
?

Figure 1.2: Relation of FPRAS to

counting classes below #P.

This picture was refined in [22] by proving that (a)

FPRAS ⊈ TotP unless P = RP, which means that proving

FPRAS ⊆ TotP would be at least as hard as proving P = RP

and (b) TotP ⊈ FPRAS if and only if RP ̸= NP. This

not only indicates that there are problems in TotP which do

not admit an fpras, it also shows that TotP versus FPRAS

is essentially an equivalent formulation of the RP versus NP

problem.

A.Chalki Thesis 26

Chapter 1 Intoduction

Furthermore, FPRAS lies between two classes that can be seen as counting versions of RP

and BPP. Moreover, the class FPRAS′ defined here as the subclass of FPRAS with zero error

probability when the function value is zero, lies between two classes, namely #RP1 and #RP2,

which can both be seen as counting versions of RP.

Both #RP1 and #RP2 seem to be interesting since they contain some natural counting

problems the decision versions of which are in RP, but have not been shown to lie in P. However,

the two classes do not coincide unless RP = NP. It was shown in [22] that #RP1 ⊆ FPRAS which

implies that #NonZerosForPIT and #CompositenessWitnesses, two counting problems

defined here, have an fpras.

Chapters 2 and 3 also contain Notes Sections—Sections 2.6 and 3.4, respectively—in which

we outline where the relevant results were first presented.

In Chapter 4 we introduce classes defined by properties of functions that count the total

number of computation paths. They can be seen as tot-counterparts of classes defined via

functions that count the number of accepting paths or via gap functions [66]. At first, we were

interested in the class that gives information about the least significant bit of a TotP function,

namely ⊕totP. According to Toda’s astonishing result, ⊕P, PP, and #P are, in a sense, at least

as expressive as the polynomial hierarchy. This also holds for the class TotP, since PTotP = P#P.

Here we explore the power of the tot-definable class ⊕totP, which turns out to be exactly equal to

the class ⊕P. In an analogous manner, we define the classes GaptotP, UtotP, FewtotP, ModktotP,

SPtotP, WPtotP, C=totP, and PtotP. We compare them with their analogs, definable by either

#P or GapP functions. We show that each one of them coincides with its counterpart (definable

by either a #P or a GapP function), except for UtotP and FewtotP, which are both equal to the

class P.

Moreover, building upon a result by Curticapean [52] that C=P has a complete problem

definable by the TotP function #PerfMatch, we show that WPP and PP have also complete

problems definable by #PerfMatch. This, together with [52], can be seen as an alternative

proof of the fact that the classes C=totP, WPtotP, and PtotP coincide with C=P, WPP, and PP,

respectively.

Finally, we examine the complexity of the promise problem DiffPerfMatch=g, which is

essentially the problem of determining whether the number of perfect matchings of two graphs is

either zero or equal to a given value. This problem is WPP-complete and also SPP-hard. First,

we give a lower bound for this problem under the randomized exponential-time hypothesis

A.Chalki Thesis 27

Chapter 1 Intoduction

(rETH). Second, due to the hardness of DiffPerfMatch=g for SPP, a positive result for

#PerfMatch would have consequences for any problem in SPP. A seminal problem in the

class is GraphIsomorphism [106, 17, 19], a well-known intermediate NP problem, the exact

complexity of which is still a major open question in computational complexity.

In Chapter 5 we focus on logical characterizations of robust subclasses of TotP. We build

upon previous work in descriptive complexity of counting problems [132, 15]. Arenas et al. [15]

raised the question of defining classes in terms of descriptive complexity that capture either

TotP or robust subclasses of TotP, as one of the most important open questions in the area.

A robust class of counting problems needs either to have a natural complete problem or to be

closed under addition, multiplication, and subtraction by one [15]. In specific, TotP satisfies

both the above properties. Note that #P and #PE are not closed under subtraction by one

(under assumptions about NP) [121, 123].

In particular, we define two subclasses of TotP, namely ΣQSO(Σ2-2SAT) and #Π2-1VAR,

via logical characterizations; we show robustness of both classes by providing natural complete

problems for them. Namely, we prove that the problem #Disj2Sat of computing the number

of satisfying assignments to disjunctions of 2SAT formulas is complete for ΣQSO(Σ2-2SAT)

under parsimonious reductions. This reveals that problems hard for ΣQSO(Σ2-2SAT) under

parsimonious reductions cannot admit an fpras unless RP = NP. We also prove that #MonSat

is complete for #Π2-1VAR under product reductions. Our result is the first completeness result

for #MonSat under reductions stronger than Turing. Notably, the complexity of #MonSat

has been investigated in [84, 27] and it is still open whether it is complete for TotP, or for a

subclass of TotP under reductions for which the class is downwards closed. Although, #Π2-1VAR

is not known to be downwards closed under product reductions, our result is a step towards

understanding the exact complexity of #MonSat. This first part of Chapter 5 was presented

in [24].

In the second and last part of Chapter 5 we define the logic RΣQSOE and prove that it

captures TotP. Arenas et al. defined recursion on the quantitative level. They extended QSO

with function symbols over first-order variables and defined a notion of least fixed point over

functions, which allows counting. Analogously to the decision classes FO(LFP) and FO(TC) that

capture P and NL, respectively, they defined two classes, namely RQFO(FO) and TQFO(FO),

that capture FP and #L, respectively [15]. They also mentioned that if a specific operator

defined using recursion, namely the path operator, included free second order variables, it would

probably give alternative ways to capture FPSPACE, or even #P.

A.Chalki Thesis 28

Chapter 1 Intoduction

Here we introduce function symbols defined on second order variables and a polynomially

bounded partial fixed point operator over functions along the lines of [112]. We believe that

this is of independent interest and could help to capture superclasses of #P. Then, we pose

restrictions to our language, since the resulting logic is more expressive than needed.

In Chapter 6 we examine two problems that belong to #RP2, i.e. the class of problems in

#P that have a decision version in RP. Both these problems, namely #Exact Matchings

and #Blue-Red Matchings, are generalizations of counting perfect matchings in a graph. To

start with, we focus on #Exact Matchings, the problem of counting perfect matchings with

exactly k red edges in a graph that has both black and red edges. We give a hardness result for

the problem with respect to parameterized complexity: #Exact Matchings is #W[1]-hard.

Computing #Exact Matchings in K3,3-free graphs has already been resolved by Mul-

muley et al. who described an NC algorithm for it [119]. We show that #Exact Matchings

can also be computed in polynomial time when it is restricted to K5-free graphs. Then we turn

our attention to #Exact Matchings in bipartite graphs. We have not concluded yet whether

this problem has an fpras or it is inapproximable.

Motivated by a technique developed recently by Anari et al. [6], which was used to show that

counting k-matchings in planar graphs has an fpras, we study matching polynomials generated

by different matching problems: counting perfect matchings / all matchings / k-matchings /

exact matchings. The technique of [6] connects the mixing time of a Markov chain defined on

the set of matchings with the zero-free region of the generating polynomial of the problem. So

we are interested in regions of the complex plane in which polynomials related to #Exact

Matchings have no roots.

We consider this last chapter a starting point for dealing with the complexity of #Exact

Matchings in bipartite graphs.

Every chapter includes a Discussion of results Section. Chapter 7 contains open questions.

1.6 Notes

A survey on classes of counting problems the decision version of which is easy—either in the class

P or in RP—can be found in [23], which contains an overview of the work on such classes under

different viewpoints: Turing machine based definitions, decsriptive complexity, approximability

of them, their characterizations as classes of interval size functions, and so on.

A.Chalki Thesis 29

Chapter 1 Intoduction

A.Chalki Thesis 30

Chapter 2

TotP-complete problems

Many counting problems are known to be #P-complete under Turing reductions. The seminal

result of Valiant [149] states that computing the permanent of a matrix with entries in {0, 1},

which is equivalent to counting perfect matchings in bipartite graphs, is such a problem. Since

then, many other problems that are hard for #P under Turing reductions have been determined.

Especially, many dichotomy theorems for several counting classes have been proven [50, 40, 41,

43]. A dichotomy theorem for a class of counting problems states necessary and sufficient

conditions under which a problem is either in FP or #P-hard under Turing reductions.

As we already mentioned, TotP and #P are equivalent under Turing reductions. Among the

known #P-hard problems under Turing reductions, the ones that belong to TotP, are also TotP-

complete under this kind of reductions. Some examples are #DNF,#MonSat, #BiPerf-

Match (or Permanent), #IS, and #2Sat. In fact, under Turing reductions, #P is even

equivalent to SpanL, a subclass of TotP defined in [9], every problem of which admits an

fpras [14]. These observations support the fact that Turing reductions blur structural differ-

ences between counting classes [103].

On the contrary, parsimonious reductions can distinguish counting complexity classes inside

#P. For one reason, by preserving the number of solutions, they also preserve the existence

of a solution. Second, by being AP reductions, they also preserve approximability of counting

problems; if a class with approximable problems was proven to be parsimonious-equivalent with

#P, then all the problems in #P would be approximable, which in turn would imply RP = NP

(see Theorem 3.1). Third, classes with a Turing machine-based definition, like #P and TotP,

are closed under parsimonious reductions.

The above properties and observations justify the urge to study completeness under par-

31

Chapter 2 TotP-complete problems

simonious reductions. A first problem that is complete for TotP under such reductions is, of

course, the generic one:

Definition 2.1. (The generic TotP-complete problem) fgen.

Input: (M,x, 1t), where M is a (binary) TM, x ∈ {0, 1}∗, and t ∈ N.

Output: fgen(M,x, 1t) :=(the total number of computation paths of M on input x, of length at

most t) - 1.

In this chapter we discuss the first natural—in the sense that no Turing machine is provided

as input to their instances—TotP-complete problems under parsimonious reductions. The fol-

lowing results can be found in [25, 13] and in Eleni Bakali’s PhD thesis [22]. We have included

a Notes Section (Section 2.6) which describes in detail where each result first appeared.

2.1 The problem #Tree-Monotone-Circuit-Sat

The first problem that was shown to be TotP-complete under parsimonious reductions is #Tree-

Monotone-Circuit-Sat. We provide the definitions of the tree partial order and the problem

#Tree-Monotone-Circuit-Sat and the proofs of its TotP-hardness and its membership to

TotP. The result can then be extended to monotone circuits with respect to other partial orders.

A tree is called (a) binary if every vertex has at most two children, (b) full binary if every

vertex has either zero or two children, (c) complete binary if every level of it, except possibly

the last one, is completely filled and all vertices in the last level are as far left as possible, (d)

perfect binary if it is full binary and complete, i.e. all interior vertices have two children and all

leaves have the same depth.

Definition 2.2. We define the tree partial order, denoted by ≤tree, on N as the reflexive,

transitive, and antisymmetric binary relation, such that if y = 2x + 1 or y = 2x + 2 then

x ≤tree y.

The tree partial order can be represented graphically on the plane by drawing a node for

each natural number and connecting the node of a number with the nodes of its immediate

successors. The resulting graph is the tree depicted in Figure 2.1 (note that labeling of the

edges in this figure is not related to the partial order defined above), denoted by TN. The

root of the tree is labeled with 0, its children are labeled with 1 and 2, and so on. Note that

x ≤tree y if and only if y is some descendant of x on TN. So, by enumerating the nodes of the

A.Chalki Thesis 32

Chapter 2 TotP-complete problems

0

1

3

...

0
...

1

0
4

...

0
...

1

1

0
2

5

...

0
...

1

0
6

...

0
...

1

1

1

Figure 2.1: The infinite perfect binary tree TN.

infinite binary tree by the left to right ‘breadth first search’ (BFS) enumeration, we obtain a

representation of the tree partial order.

Let dTN(u, v) denote the length of the path connecting u and v in TN. We keep TN in mind

in order to define some useful mappings.

Definition 2.3. The following functions are defined :

1. path : N → {0, 1}∗. It maps n to the binary string that describes the path that starts

from the root of TN and ends at the vertex with label n. For example, path(3) = 00,

path(9) = 010, path(0) = ε, where ε is the empty string.

2. num : {0, 1}∗ → N. It is is defined as the inverse mapping of path.

3. bink : {0, 1, . . . , 2k − 1} → {0, 1}k. It maps a vertex n ∈ {0, 1, . . . , 2k − 1} of TN to its

binary representation padded with leading zeroes, so as to have length k. For example,

bin6(3) = 000011, bin4(9) = 1001, and bin3(9) is not defined.

In addition, bin−1
k is the inverse of bink. For simplicity, we slightly abuse notation and use

bin and bin−1, when the length of the binary representation is clear from the context. For a

vertex u of TN, path(u) is the concatenation of labels of edges connecting 0 with u as shown in

Figure 2.1.

The functions path, num, bink, and bin−1
k are polynomial-time computable. This can be

seen clearly by their equivalent definitions below.

Proposition 2.1. (a) Let, for a binary string s, number(s) be its value in N.

num(s) = number(1; s)− 1,

where ; denotes string concatenation.

(b) The function path can be computed recursively:

A.Chalki Thesis 33

Chapter 2 TotP-complete problems

• path(0) = ε

• path(k) = path
(⌈

k
2

⌉
− 1

)
; parity(k)

where parity(k) =

 1 , if k even

0 , if k odd
and ; denotes string concatenation.

Definition 2.4. If we restrict ≤tree on {0, 1, . . . , 2k − 1} and apply bink, we obtain a partial

order on {0, 1}k, which, abusing notation, we also denote by ≤tree.

Tk denotes the binary tree representing ≤tree on {0, 1}k.

000

001

011

111

100

010

101 110

Figure 2.2: The complete binary tree T3.

For example the complete binary tree T3 depicted

in Figure 2.2 represents the order ≤tree on {0, 1}3.

Now the problem #Tree-Monotone-Circuit-

Sat can be defined as follows.

Let Cn denote a Boolean circuit (see [16, p. 107]

for a formal definition) with n input gates and let Cn(z)

be the output of Cn on input z ∈ {0, 1}n.

Definition 2.5. We call a Boolean circuit Cn non-increasing with respect to ≤tree if for every

x, y ∈ {0, 1}n, x ≤tree y implies that Cn(x) ≥ Cn(y).

Definition 2.6. #Tree-Monotone-Circuit-Sat, abbreviated to #TMC.

Input: A Boolean circuit Cn, non-increasing with respect to ≤tree.

Output: #TMC(Cn) := |{y ∈ {0, 1}n : Cn(y) = 1}|, i.e. the number of satisfying assignments

for Cn.

2.1.1 TotP-hardness of #Tree-Monotone-Circuit-Sat

As we discussed in Remark 1.4, for any NPTM M and input x, we have that

totM (x) = #(all paths of M on input x)− 1 = #(branchings of TM(x))

where TM(x) denoted the binary computation tree of M .

The sequence of nondeterministic choices of a computation of M can be represented as a

binary string y (a left branching corresponds to ‘0’ and a right branching to ‘1’). When we write

M(x, y) we refer to the output of the Turing machine M on input x and nondeterministic choices

A.Chalki Thesis 34

Chapter 2 TotP-complete problems

y. Specifically, M(x, y) = 1 if M accepts x with nondeterministic choices y and M(x, y) = 0

otherwise.

#TMC was shown to be TotP-hard by reducing the computation of any function h ∈ TotP

to #TMC. The key idea is the following. By definition, there is an NPTM M such that for

any input x, h(x) = totM (x). Let TM(x) denote the corresponding computation tree. Consider

extending TM(x) to a perfect binary tree SM(x) with the same height, so that all leaves of

the original TM(x) tree and all their descendants are labeled as ‘halting’. Therefore h(x) =

#(branching vertices of TM(x)) = #(non-‘halting’ vertices of SM(x)).

Given an h ∈ TotP and an input x, we can construct a circuit C, non-increasing with

respect to ≤tree, such that the number of accepting inputs of C equals h(x). To do that, we

use a bijection between inputs of C and paths from the root to vertices of SM(x). C accepts

an input if and only if the corresponding path ends at a non-‘halting’ vertex of SM(x), which in

turn corresponds to a branching vertex of TM(x).

Theorem 2.1. For any h ∈ TotP, it holds that h ≤p
pars #TMC.

Proof. Let h ∈ TotP, and let M be the corresponding NPTM with computation binary tree

TM(x). Recall that for every input x, h(x) = totM (x) = #(branchings of TM(x)). Let p be a

polynomial bounding the running time of M , thus the height of TM(x) is at most p(|x|).

We construct an NPTM M ′ such that for every instance x of h:

(i) TM ′(x) is a perfect binary tree of height p(|x|) + 1.

(ii) #(accepting paths of M ′(x)) = #(branchings of TM(x)).

(iii) For y1, y2 ∈ {0, 1}p(|x|)+1, if y1 ≤tree y2, then M ′(x, y1) ≥M ′(x, y2).

In order to describe M ′ we make use of the functions path and bin defined in Definition 2.3.

The operation of M ′ on input x proceeds as follows:

1. Guess a binary string y of length p(|x|) + 1. Let ny = bin−1(y).

2. Compute z = path(ny).

3. Simulate M on input x and nondeterministic choices z.

• If the simulation reaches a halting state of M (possibly using only a prefix of z), then

output 0.

A.Chalki Thesis 35

Chapter 2 TotP-complete problems

• If the simulation uses all bits of z without reaching a halting state of M , output 1.

We show that the aforementioned properties (i), (ii), and (iii) hold.

(i) The computation tree of M ′ is a perfect binary tree of height p(|x|) + 1, since the only

nondeterministic choices are made in Step 1 (Step 3 is deterministic).

(ii) The number of accepting paths of M ′ equals the number of branchings of M , since M ′

outputs 1 if and only if z corresponds to a computation path of M ending at a branching;

recall that bin and path are bijective.

(iii) To prove the third property, it suffices to show that for all y1, y2 such that y1 ≤tree y2 if

M ′(x, y1) = 0 then M ′(x, y2) = 0. If y1 ≤tree y2, then z1 = path(bin−1(y1)) is a prefix of

z2 = path(bin−1(y2)). This means that whenever M ′ simulates M with nondeterministic

choices determined by z2, it first passes through the same states as when it simulates

M with nondeterministic choices determined by z1. So, M ′(x, y1) = 0 means that the

simulation of M reaches a halting state using (some of) the bits of z1. Thus the remaining

bits of z2 are ignored and 0 is returned, therefore M ′(x, y2) = 0.

In order to complete the proof, we have to construct for each input x of h a circuit Cxn

with n = p(|x|) + 1 input gates, that simulates the computation of M ′ on input x, i.e. for all

y ∈ {0, 1}n, Cxn(y) =M ′(x, y).

It is well known that a construction of a circuit that simulates a Turing machine can be

done in polynomial time (see e.g. [124, pp. 171–172]) and the size of the circuit is quadratic to

the running time of the Turing machine.

Cxn is non-increasing w.r.t. ≤tree since M ′ has this property (due to (iii)). Thus, we have

that |{y ∈ {0, 1}n : Cxn(y) = 1}| = #accM ′(x) = totM (x), i.e. #TMC(Cxn) = h(x) so the

reduction is parsimonious.

2.1.2 Membership of #Tree-Monotone-Circuit-Sat in TotP

To show that #Tree-Monotone-Circuit-Sat belongs to TotP, an NPTM can be constructed

such that for every non-increasing circuit w.r.t. ≤tree, the number of branchings of its compu-

tation tree is equal to the satisfying assignments of the circuit.

Theorem 2.2. #TMC ∈ TotP.

A.Chalki Thesis 36

Chapter 2 TotP-complete problems

Proof. We are going to construct an NPTM M such that for every monotone circuit Cn:

#TMC(Cn) = #(branchings of TM(Cn)).

Since Cn is non-increasing with respect to ≤tree, M can be constructed as follows.

1. M starts with checking whether the assignment corresponding to 0 is unsatisfying, so

it first checks whether Cn(0n) = 0. If this is the case, it halts. Otherwise, M chooses

nondeterministically one of the successors of 0n with respect to ≤tree, i.e. either 0n−11 cor-

responding to the natural number 1 or 0n−210 corresponding to 2 and proceeds recursively

with this one.

2. If M reaches an assignment y ∈ {0, 1}n which corresponds to a leaf of Tn, then in the case

of Cn(y) = 0, M again halts. Otherwise, it makes a nondeterministic choice between two

different computation paths. At each path, M just halts without doing anything else.

Note that the depth of the computation of M is polynomial in n and every binary branching of

its computation tree corresponds to a satisfying assignment of Cn.

Note that #TMC is a promise problem, since it is not known how to check efficiently

whether a circuit is non-increasing w.r.t. ≤tree. To resolve this issue, we can simply extend the

function #TMC on non-valid inputs, i.e. circuits that are not monotone w.r.t. ≤tree, to be equal

to totM (x), where M is the NPTM which emerges from the membership of #TMC in TotP (on

valid inputs).

2.1.3 Extension to monotone circuits with respect to other partial orders

The particular choice of the functions path and num, and the directly related partial order ≤tree,

is not the only possible one to yield a TotP-complete problem. It suffices to encode strings of

bounded but possibly different length, corresponding to paths of the NPTM of a TotP function,

as strings of equal length, corresponding to inputs to the final circuit. That is, we need a family

of bijections {Ek}k∈N, where Ek :
⋃k−1
i=0 {0, 1}i ∪ {0k} → {0, 1}k. Each such encoding implies a

partial order ≤∗
k on {0, 1}k for every k.

Fix such a family {Ek}k∈N and let #A be the problem of counting the number of accepting

inputs of a circuit monotone w.r.t. ≤∗
m, where m corresponds to the number of input gates of

the circuit. #A can be proven to be TotP-complete by modifying the proofs of this section,

provided that {Ek}k∈N has the following properties.

A.Chalki Thesis 37

Chapter 2 TotP-complete problems

• To show that #A is TotP-hard we need E−1
m to be easily computable, so that the reduction

takes polynomial time. The reduction is parsimonious since Em is bijective. For example,

simple padding would be a simpler solution, but inadequate, since it is not 1-1.

• To show that #A is in TotP, it must be easy to find the minimum element in {0, 1}m

with respect to ≤∗
m, i.e. to calculate Em(ε), where ε is the empty string. Furthermore, for

every x ∈ {0, 1}m, it must be easy to compute the set of its immediate successors w.r.t.

≤∗
m. We note that if E−1

m is easily computable, then these properties become equivalent

to Em being easily computable.

In conclusion, the proofs given above work if we choose an encoding that is an easily com-

putable and easily invertible bijection. Although an encoding which is simple and natural was

chosen (in the sense that it does not involve elaborate error correcting codes e.t.c., it is just a

BFS enumeration in binary representation), we stress that for every encoding with the afore-

mentioned properties, such as the binary representation of the depth-first-search enumeration,

the corresponding problem is also TotP-complete.

This fact serves as a starting point for someone who needs to prove TotP-completeness for

some other family of circuits (e.g. for monotone circuits under the standard notion of monotonic-

ity). To that end it would not be necessary to design a reduction from scratch. It would suffice

to design a—probably elaborate—encoding of the nodes of a tree (such as an error correcting

code) with the aforementioned desired properties.

2.1.4 The case of the partial order being part of the input

In mathematics a monotone function is a function between two ordered sets that preserves

or reverses the order of its domain. A circuit, as a function from {0, 1}n to {0, 1}, can be

or not be monotone if we equip {0, 1}n with some partial order. For example, in computer

science literature ([16, Chapter 14.3]), the standard notion of a monotone circuit is defined with

respect to the partial order induced by the edges of the boolean hypercube: a y ∈ {0, 1}n is

an immediate successor of x ∈ {0, 1}n if y is obtained by flipping a bit of x from 0 to 1 and a

circuit is monotone with respect to this partial order if its output does not decrease when we

change the value of an input gate from 0 to 1.

We saw that for some specific partial orders, counting satisfying assignments to the corre-

sponding monotone circuits is TotP-hard. This has an immediate consequence on the hardness

of an analog of #TMC, where a partial order is given as part of the input.

A.Chalki Thesis 38

Chapter 2 TotP-complete problems

Corollary 2.1. On input a natural number n ∈ N, a partial order p on {0, 1}n, and a circuit

C with n input gates, which is monotone with respect to p, the problem of counting the number

of satisfying assignments of C is #P-complete under both Turing and AP reductions.

Proof. Since #Tree-Monotone-Circuit-Sat is TotP-complete under parsimonious reduc-

tions, it is also #P-complete under Turing and AP reductions. Then, the result is obtained by

generalization.

Note that for an arbitrary partial order, the problem might not belong to TotP, but it is

easy to see that it always belongs to #P, hence the conclusion.

Beware that the above corollary does not imply that the problem is hard for each specific

partial order, since the partial order is considered as part of the input. Theoretically speaking

there may exist some partial orders for which the corresponding problem admits either an exact

efficient algorithm, or an fpras.

2.2 Problems related to partially ordered sets

In this section, we are interested in problems of computing the size of a subset of a partially

ordered set satisfying some additional properties.

An upper-set of a partially ordered set (U,≤) is a subset of U which is upwards closed.

An uper-set of (U,≤) is called principal if it is the smallest upper set containing a particular

element of U . Lower sets are defined similarly as downwards closed subsets of U .

Computing the size of the maximum lower set of ({0, 1}n,≤tree), all elements of which are

accepted by a given circuit Cn, is TotP-complete under parsimonious reductions. This implies

that computing the size of the maximum lower set of an arbitrary given partially ordered set,

all elements of which share an arbitrary given property P , is TotP-hard under parsimonious

reductions. It also implies that computing the size of a principal upper set is TotP-hard under

parsimonious reductions, thus also #P-hard under both Turing and AP reductions.

Definition 2.7. Let (U,≤) be a partially ordered set.

(a) A subset V ⊆ U is called a lower set if for all y, x ∈ U , (y ∈ V and x < y) ⇒ x ∈ V .

(b) A subset V ⊆ U is called an upper set if for all y, x ∈ U , (y ∈ V and x > y) ⇒ x ∈ V .

(c) The smallest upper (resp. lower) set containing x ∈ U is called principal and it is denoted

A.Chalki Thesis 39

Chapter 2 TotP-complete problems

by ↑ x (resp. ↓ x).

Definition 2.8. Let Cn be a circuit with n input gates. We will call a subset V of {0, 1}n

Cn-accepting if for all x ∈ V , Cn(x) = 1.

Definition 2.9. Max-Lower-Set-Size.

Input: A circuit Cn with n input gates.

Output: The size of the maximum Cn-accepting lower set w.r.t. ≤tree.

Theorem 2.3. The problem Max-Lower-Set-Size is TotP-complete under parsimonious re-

ductions.

Since every boolean circuit can be considered to compute a property, i.e. a predicate P :

{0, 1}n → {0, 1}, where P (x) = 1 iff x has the property P , we get the following corollary.

Corollary 2.2. Let (U,≤) be a partially ordered set and P a property (equivalently a predicate

P : U → {0, 1}). The problem of computing the size of the maximum lower set of U , all elements

of which share property P , is TotP-hard.

Corollary 2.3. Let (U,≤) be a partially ordered set and an element x ∈ U . The problem of

computing the size of the principal upper set ↑ x is TotP-hard.

Proof. Take an instance Cn for Max-Lower-Set-Size. We set U = {0, 1}n, x = 0n, and we

construct a partial order ≤p on {0, 1}n such that ↑ 0n equals to the maximum Cn-accepting

lower set w.r.t. ≤tree .

We define ≤p to be the reflexive, transitive, and antisymmetric binary relation such that

x ≤p y iff [(y = 2x+ 1 or y = 2x+ 2) and Cn(x) = Cn(y)].

The result is immediate if we compare the above partial order with the tree partial order

in Definition 2.2; observe that we get ≤p if we break every chain of subsequent elements in

({0, 1}n,≤tree) at the points where x ≤tree y and Cn(x) ̸= Cn(y).

2.3 The problem Size-of-Subtree

The problem Size-of-Subtree was initially introduced by Knuth as the problem of estimating

the size of a backtracking procedure’s tree [105]. There is a number of papers that study

this problem from many perspectives and algorithms which succeed in many special cases and

practical instances. Knuth provided a probabilistic algorithm practically useful, but with an

A.Chalki Thesis 40

Chapter 2 TotP-complete problems

exponential error in the worst case. Modifications and extensions of Knuth’s algorithm have

been presented and experimentally tested in [130, 47, 104]. However, they exhibit no significant

improvement on worst case instances. There are also many heuristics and experimental results

for the problem restricted to special backtracking algorithms, or special instances to them,

see e.g. [36] and references therein. Surprisingly there exist fpras for random models of the

problem [71, 147]. Also quantum algorithms for the problem have been studied [10]. Stockmeyer

provided unconditional lower bounds for the problem under a model of computation which is

not equivalent to the Turing machine, namely a variant of the (non-uniform) decision tree

model [140]. Stockmeyer’s result implies (unconditionally) that a family of algorithms based on

a certain type of sampling methods cannot yield an fpras for the problem.

Size-of-Subtree is the estimation of the size of a tree given in succinct representation. We

consider the input tree S to be a subtree of the complete binary tree Tk of height k, containing

the root of Tk, or some other given vertex of Tk.

By succinct representation, we mean that the description of the tree is not polynomial to its

size, but rather to its height. For example, a truth table AS : V (Tk)→ {0, 1} that implements

the indicator function of S, where AS(u) = 1 if and only if vertex u of Tk belongs to S, could also

be an instance to the above problem. But it would not be interesting since the size of that tree

could be trivially computed in linear time with respect to the size of the input. The interesting

cases are those where the indicator function AS is implemented succinctly, e.g. by a circuit of

size polynomial to the number of input gates, i.e. polynomial in |u| where u is a vertex of Tk.

Another example of such a succinct representation is by giving as input a backtracking procedure

that generates this tree. The latter case was in fact the origin of this problem [105]. The related

complexity theory question is whether we can estimate the size of such a tree without traversing

it exhaustively.

Clearly, the circuit that emerges from our main reduction in Theorem 2.1 constitutes a

succinct representation of the tree containing the branching vertices of the computation tree of

any problem in TotP on any input. So it turns out that the problem is TotP-complete under

parsimonious reductions. This resolves its worst case complexity, since it implies that it is

#P-complete under both Turing and AP reductions.

Definition 2.10. Size-of-Subtree, abbreviated to fss.

Input: A polynomially computable predicate A : Tk → {0, 1} and a vertex u of Tk.

Output: The size of the maximum subtree S ⊆ A−1(1) with root u.

A.Chalki Thesis 41

Chapter 2 TotP-complete problems

000

u

001

011

111

100

010

101 110

Figure 2.3: An instance of Size-of-Subtree. It holds that u = 000, k = 3, predicate A takes the value 1 on

the gray vertices, and the output of the problem is equal to 5.

Note that height k can be implied by |u|. Equivalently, the number k could be given as

part of the input. An instance of Size-of-Subtree is given in Figure 2.3.

Theorem 2.4. fss is TotP-complete.

Proof. (a) TotP-hardness: Let g ∈ TotP and let x be some input for g. We will map x to

an input for fss. Since g ∈ TotP, there exists an NPTM Mg that runs in time q(n) for some

polynomial q, s.t. #(branchings of TMg(x)) = g(x). We construct a deterministic polynomial-

time TM M ′
g;x s.t. M ′

g;x(y) = 1 iff the nondeterministic string y represents a computation

path of Mg on input x that stops at a branching. The input to fss is z = (M ′
g;x, 0

q(|x|)). So

fss(z) = #(branchings of TMg(x)) = g(x). The details of the reduction are inherited from the

proof of Theorem 2.1, thus omitted.

(b) TotP-membership: fss has an easy decision because for every input y = (A, u), fss(y) =

0 iff A(u) = 0.

Also fss is self-reducible. Let v1, v2 be the children of u. It holds that if A(u) = 1, then

fss(A, u) = fss(A, v1) + fss(A, v2) + 1,

otherwise fss(A, u) = 0.

The reduction terminates after at most n = |u| steps and the size of the sub-instances is

polynomially related to the size of the initial instance, so the conditions of self-reducibility are

satisfied.

A.Chalki Thesis 42

Chapter 2 TotP-complete problems

2.3.1 Hard instances of Size-of-Subtree

As was already mentioned, Size-of-Subtree is easy for many practical instances and for some

random models of it. On the other hand there are instances for which Size-of-Subtree is

hard to approximate; in other words, it cannot be efficiently approximated unless RP = NP.

Definition 2.11. Let n1, n2, n ∈ N be such that n1+n2 = n. We call (n1, n2)-tree a binary tree

of height at most n that consists of a perfect binary tree of height n1, from at most one leaf of

which hangs another perfect binary tree of height n2.

Theorem 2.5. The problem Size-of-Subtree restricted to (n/2, n/2)-trees, cannot be approx-

imated in polynomial time within a multiplicative factor (1± 1
4), unless RP = NP.

Proof. We show that Size-of-Subtree on (n/2, n/2)-trees is inapproximable by reducing

USat—the satisfiability problem restricted to formulas that have at most one satisfying assignment—

to it.

Consider the standard NPTM M for Sat: the respective computation tree on input ϕ

is a perfect binary tree of height n. Each leaf corresponds to a truth assignment to the n

variables and to the output ‘1’ if and only if the assignment is satisfying for ϕ. We define

another NPTM M ′ that simulates M and halts whenever M returns ‘0’, else M ′ makes another

set of n nondeterministic choices and halts.

Unsatisfiable formulas correspond to a perfect binary tree of height n (case 1), while for-

mulas with one satisfying assignment correspond to a tree of height 2n consisting of a perfect

binary tree of height n from one leaf of which hangs another perfect binary tree of height n

(case 2).

If we could approximate the size of any (n/2, n/2)-tree, for any n, within a multiplicative

factor (1± 1
4), then we could distinguish between cases 1 and 2, and thus we could distinguish

between satisfiable and unsatisfiable formulas of USat. By the Valiant-Vazirani Theorem [151],

which probabilistically reduces Sat to USat, we get the conclusion.

2.3.2 On the exponential-time complexity of Size-of-Subtree

TotP-completeness of Size-of-Subtree implies exponential-time hardness results for the prob-

lem. The lower bounds shown below are relative to variants of the exponential-time hypothesis

(ETH) [89], which states that 3Sat—the satifiability problem on 3CNF formulas—cannot be

A.Chalki Thesis 43

Chapter 2 TotP-complete problems

solved in subexponential time. In particular, the variants we need here are the randomized

version rETH, introduced in [45], and the counting version #ETH introduced in [56]. Let n

denote the number of variables of the input formula. The three aforementioned variants of the

exponential time hypothesis are as stated below.

ETH: There is no deterministic algorithm that can decide 3Sat in time exp(o(n)).

rETH: There is no randomized algorithm that can decide 3Sat in time exp(o(n)), with error

probability at most 1/3.

#ETH: There is no deterministic algorithm that can compute exactly #Sat in time exp(o(n)).

Note that the hypothesis rETH is stronger than ETH, which in turn is stronger than #ETH,

in the sense that rETH⇒ ETH⇒ #ETH. The weaker an assumption is, the stronger a hardness

result is. On the other hand, stronger assumptions sometimes yield tighter lower bounds.

For Size-of-Subtree let N be the height of the perfect binary tree, subtree of which is

the input tree.

Theorem 2.6.

(a) Under rETH there is no randomized algorithm that computes Size-of-Subtree exactly in

time exp(o(N)).

(b) Under #ETH there is no deterministic algorithm that computes Size-of-Subtree exactly

in time exp(o(N/ logN)).

(c) Under rETH there is no randomized algorithm that approximates Size-of-Subtree within

(1± 1
4)-multiplicative factor in time exp(o(N)).

Proof. (a) Under rETH there is no randomized algorithm that computes #2Sat exactly in time

exp(o(m)), where m is the number of clauses of the imput formula ϕ [56].

Consider the following NPTM M for #2Sat. First keep a list l that indicates whether

variable i has been considered. At the beginning set l(v)← ‘not considered’, for every variable

v. Halt if all variables are set to ‘considered’.

Begin with the first clause. If the first variable v11 of that clause is not yet considered, check

if ϕ is satisfiable with v11 set either to true or false. If both hold, choose nondeterministically to

set v11 to one of these two values. Else, set it to the unique satisfying value, or halt if neither

A.Chalki Thesis 44

Chapter 2 TotP-complete problems

holds. Then set l(v11)← ‘considered’ and set ϕ← (ϕ with v11 fixed to the chosen value). Proceed

with the second variable of the first clause, if it is not considered so far (and the computation

has not halted yet). Repeat the same procedure for the rest of the clauses, until a halting state

is reached.

M yields a computation tree that branches at most twice for each clause, thus it has height

at most 2m. Add a dummy path to M (on instances with at least one solution) and the

original definition of TotP is satisfied; the number of branchings of M ’s computation tree equals

#2Sat(ϕ).

If Size-of-Subtree could be computed by a randomized algorithm in time exp(o(N)),

then by the above reduction the same would hold for #2Sat, which contradicts rETH.

(b) Under #ETH there is no deterministic algorithm that computes the Permanent ex-

actly in time exp(o(m/ log n)), where n is the size of the input matrix An×n, and m is the

number of non-zero elements in An×n [56]. Equivalently, there is no such algorithm for the

exact computation of #BiPerfMatch on input a bipartite graph with n vertices in each side

and m edges.

Consider the NPTM M for #BiPerfMatch of Example 1.1. M has a computation tree

that branches at most once for each edge, thus it has height at most m.

W.l.o.g. we assume that n ≤ m, otherwise a perfect matching trivially does not exist. Thus

if Size-of-Subtree could be computed in time exp(o(N/ logN)), then by the above reduction

#PerfMatch could be computed in time exp(o(m/ log n)), which contradicts #ETH.

(c) Under rETH there is no randomized algorithm that decides 3USat, i.e. the satisfiability

problem restricted to 3CNF formulas that have at most one satisfying assignment, in time

exp(o(n)), where n is the number of variables of the input formula [45].

Using the reduction of Theorem 2.5 a formula with n variables is reducible to a tree of

height 2n. Thus, similarly to the proof of Theorem 2.5, if we could probabilistically approxi-

mate Size-of-Subtree within (1 ± 1
4)-multiplicative factor in time exp(o(N)), we could also

probabilistically decide 3USat in time exp(o(n)), which contradicts rETH.

In Theorem 2.6, although (c) implies (a), the proof of (a) shows also that a subexponential

solution to Size-of-Subtree yields a subexponential solution to #2Sat, which is not implied

by (c).

A more recent result by Curticapean [54] implies a tighter lower bound for Size-of-

A.Chalki Thesis 45

Chapter 2 TotP-complete problems

Subtree under #ETH, than the one of Theorem 2.6(b).

Theorem 2.7. Under #ETH there is no deterministic algorithm that computes Size-of-Subtree

exactly in time exp(o(N)).

Proof. Under #ETH there is no deterministic algorithm that computes #BiPerfMatch ex-

actly in time exp(o(n)) on graphs with n vertices and O(n) edges [54].

Consider the NPTM M for #BiPerfMatch of Example 1.1 of height O(n) as in the above

proof. If Size-of-Subtree could be computed in time exp(o(N)), then #BiPerfMatch could

be computed in time exp(o(n)), which contradicts #ETH.

In fact by similar fine-grained reductions between Size-of-Subtree and other problems

in TotP, we can obtain the following results.

Theorem 2.8. If Size-of-Subtree can be probabilistically computed in time exp(o(N)), then

Permanent, #IS, and #2Sat can be probabilistically computed in time exp(o(m)), where m

is the number of non-zero entries of the input matrix, the number of edges of the input graph,

and the number of clauses of the input formula, respectively.

Proof. The proof is analogous to those of Theorem 2.6(a) and (b).

2.3.3 Implications on the approximability of TotP

A negative result

First, the following negative result about TotP is a corollary of Theorem 2.6(c).

Corollary 2.4. Under rETH, TotP ̸⊆ FPRAS.

Proof. By Theorem 2.6(c), under rETH there is no subexponential randomized algorithm that

approximates Size-of-Subtree within (1± 1
4)-multiplicative approximation factor. So, under

rETH there is no fpras for Size-of-Subtree.

A positive result

Second, we obtain a simple efficient randomized algorithm for TotP, which is an algorithm

described by Knuth in [105].

A.Chalki Thesis 46

Chapter 2 TotP-complete problems

It is known that for every problem in #P there is a trivial polynomial-time randomized

approximation algorithm, such that the expected value of its output equals the exact number

of solutions, but its error is exponential in the worst case ([77, chapter 6.2.2]). For any function

in #P with corresponding NPTM M , this algorithm chooses a polynomial-size sample of com-

putation paths of M uniformly at random and outputs the number of accepting paths in the

sample over the size of the sample, multiplied by the number of all paths.

For the problem Size-of-Subtree there is another algorithm due to Knuth [105], no better

in worst case. However, we have some additional information in the case of an exponential error.

Given an input tree, the variance of this algorithm depends on the level of imbalance of the

tree. A tree is considered to be perfectly balanced if all its vertices of the same depth have the

same degree. In fact, the algorithm works for any finite tree, not necessarily binary. It chooses

a random path of the tree, counts the number of vertices and children of the vertices along this

path, and estimates the size of the tree to be equal to the size of the perfectly balanced tree

that contains such a path.

The following theorem is a consequence of Theorem 2 of [105] and the TotP-completeness

of Size-of-Subtree.

Theorem 2.9. For any f ∈ TotP and every input x, there is a polynomial-time randomized

approximation algorithm that the expected value of its output equals f(x). The variance of the

output of this algorithm is given by

V ar(D) =
∑
v∈S

1

dv0d
v
1 . . . d

v
m−1

(|Sv1 | − |Sv2 |)
2 ,

where S is the computation tree of the NPTM corresponding to f , m is the depth of vertex v in

S, dvi , 0 ≤ i ≤ m − 1, is the number of children of the ith vertex in the path from the root to

v, and Svi , i = 1, 2, is the subtree of S rooted at the ith child of v, denoted vi. If vertex v has

either 0 or 1 child, then its contribution to the above sum is 0.

Proof. The result comes from applying equation (13) of [105] and by simplifying terms. We

used the facts that the probability of v to be encountered is 1/(dv0dv1 . . . dvm−1) and that the tree

S is binary, so every vertex has either 0, 1 or 2 children.

Note that the variance of the above algorithm depends on the amount of imbalance in S.

For example, if S was perfectly balanced, then the variance would be 0. On the other hand, if

S consisted of the root, a single path of height n− 1 on the left, and a full complete binary tree

of height n− 1 on the right, then the variance would be exponentially large.

A.Chalki Thesis 47

Chapter 2 TotP-complete problems

2.4 The problem #Clustered-Monotone-Sat

When #Tree-Monotone-Circuit-Sat is reduced to #Sat, the resulting formula has some

interesting properties, that unlike an instance of #Sat in general, allow us to navigate among

solutions and enumerate them one by one with only a polynomial delay from one solution to an-

other. The problem of counting satisfying assignments of such formulas is called #Clustered-

Monotone-Sat and it is a TotP-complete problem under parsimonious reductions. As a result,

#Sat is AP-interreducible with #Clustered-Monotone-Sat.

This means that approximating the number of satisfying assignments of any CNF formula

reduces to approximating the number of satisfying assignments of a formula for which navigation

between solutions is feasible and conversely. So, regarding the approximability of #Sat, it

suffices to either give an fpras for #Clustered-Monotone-Sat, or to prove unconditional

inapproximability that holds for clustered-monotone formulas as well (and, in fact, that holds

even when an algorithm for finding or counting solutions of certain prefix, or for navigating

between solutions, is provided along with the input formula). Moreover, the already known

conditional hardness of #Sat extends to the case of #Clustered-Monotone-Sat as well.

Both these problems do not admit an fpras unless RP = NP (see Theorem 3.1).

This is also relevant to the fact that approximate counting for self-reducible problems is

equivalent to uniform sampling from the set of solutions and sampling is usually accomplished by

Markov chains on the set of solutions, for which navigability is an essential property [92]. From

the study of random Sat certain phase transition phenomena have been discovered [46, 118, 109]

and rigorously proven [1, 2]. Specifically when we consider typical random CNF formulas of

density a (where a = (#clauses)/(#variables)), as we increase the density, we observe the

following phenomena. First of all, the number of solutions gradually decreases. Secondly, there

is a critical value a1 such that a random formula is satisfiable with high probability for a < a1

and unsatisfiable for a > a1 [46, 118, 2]. There is also another critical value a2 such that for

a > a2 the solution space of a typical formula shutters to a large number of clusters of fixed

variables [109, 1], so that (a) it is hard to find even one solution to the formula and (b) given

any cluster of solutions it is hard to find a different one.

Those results indicate which the hard instances of Sat are. It has also been proven that

this shuttering phenomenon is the reason of failure of the already known algorithms for Sat

(and #Sat) that are based on Markov chains, because this shuttering translates to ergodicity

breaking [4], since the state space of the corresponding Markov chains is not connected. TotP-

A.Chalki Thesis 48

Chapter 2 TotP-complete problems

completeness of #Clustered-Monotone-Sat implies that #Sat remains hard even when

navigation among solutions is possible, i.e. when ergodicity holds.

Definition 2.12. 1. For a 3CNF formula ϕ and k ∈ N we define fkϕ : {0, 1}k → N such

that fkϕ(a) = #(satisfying assignments of ϕ with prefix a) for a ∈ {0, 1}k.

2. A 3CNF formula ϕ with n variables is called k-clustered-monotone for some k ≤ n, if for

every a, b ∈ {0, 1}k such that a ≤tree b, fkϕ(a) = 0 implies fkϕ(b) = 0.

Definition 2.13. #Clustered-Monotone-Sat, abbreviated to #CMS.

Input: y = (ϕ, k,M), where ϕ is k-clustered monotone and M is the description of a function

such that M ∈ FP and M(a, ϕ) = fkϕ(a).

Output: #CMS(y) := #(satisfying assingnments of ϕ).

Theorem 2.10. #CMS is TotP-complete.

Proof. (a) TotP-hardness. We reduce #TMC to #CMS.

Let Ck be a Boolean circuit, non-increasing w.r.t. ≤tree, which has k input gates, one output

gate, and m more (inner) gates. We will map Ck to an input y of #CMS.

In the well known reduction of Circuit-Sat to 3SAT that can be found at [16, p. 111],

a formula ϕ on n = k +m + 1 variables is constructed, so that each variable corresponds to a

gate of Ck and

#(satisfying assignments for ϕ) = #(satisfying assignments for Ck).

We can construct ϕ in such a way that its first k variables x1, . . . , xk correspond to the k input

gates of Ck. For every xi, i ∈ k + 1, . . . , n, we construct (at most four) clauses that force xi to

be set to the same value as the output of the corresponding gate of Ck on input (x1, . . . , xk).

We next describe an algorithm which given a formula ϕ constructed in the above way and

an assignment a ∈ {0, 1}k to the first k variables of ϕ, decides whether there is any satisfying

assignment of ϕ with a as prefix. If such an assignment exists then it will be unique since each

one of the variables xk+1, . . . , xk+m+1 will have to be equal to the output of the corresponding

gate of Ck on input a. Thus this algorithm computes fkϕ in polynomial time.

The algorithm essentially simulates the original circuit Ck. It begins knowing the assigned

values of x1, . . . , xk and it computes the values corresponding to the output and the inner gates

of Ck. While there are variables which have not been assigned a truth value yet, it loops through

them. If such a variable xi corresponds to a gate gi of Ck that its inputs correspond to variables

A.Chalki Thesis 49

Chapter 2 TotP-complete problems

that have already been assigned some value by the algorithm, then the output of gi is assigned

to xi. It is guaranteed by the construction of ϕ that such a variable xi always exists. Finally,

when values have been assigned to all variables, the algorithm outputs whether ϕ is satisfied

by that assignment. If an arbitrary formula ϕ that does not correspond to a circuit is given as

input to the algorithm, the algorithm will always terminate and output either FALSE or TRUE.

For an exact description see Algorithm 1.

Algorithm 1
procedure A((a1, . . . , ak), ϕ) ▷ ϕ has n variables

for i← 1, k do ▷ The first k variables of ϕ correspond

xi ← ai ▷ to the input gates of Ck

end for

for i← k + 1, n do ▷ The rest of the variables correspond

xi ← UNDEFINED ▷ to the rest of the gates of Ck

end for

count← k ▷ #(variables of ϕ we have computed so far)

while count < n do

prevcount← count

for each i ∈ {k + 1, . . . , n} and each clause c that occurs in ϕ do

if xi = UNDEFINED and (xi appears exactly once in c) and

(no variable set to UNDEFINED appears in c except for xi) and

(the disjunction of literals of c that do not contain xi is FALSE) then

if c contains the literal xi then

xi ← TRUE

else

xi ← FALSE

end if

count← count+ 1

end if

end for

if count = prevcount then

return FALSE ▷ ϕ has not been constructed by our reduction

end if

end while

return ϕ(x1, . . . , xn)

end procedure

The running time of Algorithm 1 is polynomial in the size of the input. Let M be the

A.Chalki Thesis 50

Chapter 2 TotP-complete problems

description of a TM that implements this algorithm. We map Ck to the input y = (ϕ, k,M) for

#CMS.

(b) TotP-membership: Let y = (ϕ, k,A) be an input to #CMS. We describe an NPTM

with #CMS(y) + 1 leaves, thus showing that the problem lies in TotP.

The description of the NPTM is as follows. If A(0k, ϕ) = 0 then HALT, else choose non-

deterministically one of the following: 1. HALT, 2. EXPLORE(0k).

The nondeterministic process EXPLORE(a) for a ∈ {0, 1}k is defined as follows:

1. Let S be the set of children of a with respect to ≤tree. For every b ∈ S, simulate A(b, ϕ).

Let S′ = {b ∈ S | A(b, ϕ) > 0}. Let ρ = |S′| ∈ {0, 1, 2}.

2. Make a branching with A(a, ϕ) + ρ branches. For each one of the first A(a, ϕ) branches,

HALT. Each one of the rest corresponds to some b ∈ S′. Run EXPLORE(b) for the

corresponding b.

Since any TotP-complete problem under parsimonious reductions is also #P-complete un-

der AP reductions, we have the following corollary, with all its implications mentioned in the

beginning of this section.

Corollary 2.5. #Sat is AP-interreducible with #Clustered-Monotone-Sat.

This can be generalized to the following. #Sat is AP-interreducible with the problem of

counting satisfying assignments of a CNF formula for which an algorithm that allows efficient

navigation between satisfying assignments exists. By efficient we mean that (a) it is easy to find

one solution and (b) the graph that connects two solutions whenever the navigation algorithm

can go from the one to the other in polynomial time, is strongly connected and of polynomial

width.

2.5 Discussion of results

First and foremost, determining the first TotP-complete problems under parsimonious reduc-

tions gave some representative problems of TotP, namely the problems #Tree-Monotone-

Circuit-Sat, Max-Lower-Set-Size, Size-of-Subtree, and #Clustered-Monotone-

Sat.

A.Chalki Thesis 51

Chapter 2 TotP-complete problems

The TotP-complete problem Size-of-Subtree can express a well-known computational

problem, first introduced by Knuth and studied for years by researchers as discussed in Sec-

tion 2.3. This result has two bright sides. First, the complexity of this well-studied problem

was refined. Second, a simple efficient randomized algorithm was obtained for all problems in

TotP. Last but not least, the reductions from several (not only counting) problems to Size-of-

Subtree established exponential-time lower bounds results for this problem in Subsection 2.3.2.

One of there results states that under the randomized ETH, there is no subexponential ran-

domized algorithm that approximates Size-of-Subtree within (1 ± 1
4)-multiplicative factor.

We can also infer the following weaker result from the previous statement: If there is no subex-

ponential randomized algorithm for Sat, then TotP ̸⊆ FPRAS, which is also weaker than the

result of Corollary 3.1 (shown later on, in Chapter 3): If NP ̸= RP, then TotP ̸⊆ FPRAS.

Also as discussed in Section 2.4, TotP-completeness of a special case of #Sat, namely

#Clustered-Monotone-Sat, has as a result that #Sat ≡AP #Clustered-Monotone-Sat.

Other special cases of #Sat, namely #2Sat and #MonSat, are known to be AP-interreducible

with #Sat as well. But AP-interreducibility of #Sat to #Clustered-Monotone-Sat has

its own value, since it implies that designing an fpras for the problem of counting the number

of satisfying assignments of an arbitrary CNF formula reduces to designing such an algorithm

for the same problem on a CNF formula for which navigation between solutions is feasible

and conversely. Thus, regarding the approximability of #Sat, it suffices to either give an

fpras for #Clustered-Monotone-Sat or prove unconditional inapproximability that holds

for clustered-monotone formulas as well.

2.6 Notes

The first TotP-complete problems under parsimonious reductions were first presented in [25]

and in Eleni Bakali’s PhD thesis [22]. An extended version of these results was recently pub-

lished [13].

Most results of this chapter were presented in [22]. The results of Subsections 2.1.4 and 2.3.2

first appeared in [13]. Theorem 2.7, which states a stronger lower bound for Size-of-Subtree

under #ETH (compared to Theorem 2.6(b)), was first proven here, in Subsection 2.3.2.

For algorithmic results on TotP-complete problems we refer the reader to [20] and [21],

where an additive approximation algorithm for TotP problems and Markov chains for sampling

among solutions to TotP-complete problems are given and discussed, respectively.

A.Chalki Thesis 52

Chapter 2 TotP-complete problems

A.Chalki Thesis 53

Chapter 3

Relationship between TotP and the class of

approximable counting problems

The subject of this chapter is related to the following meta-question: If we can distinguish

efficiently between f(x) = 0 and f(x) ̸= 0, can we also achieve an efficient approximation of

f(x)? And what about the converse: does an efficient approximation of a counting function

imply that we can decide efficiently whether the function is non-zero?

As discussed in Chapter 1, if the counting version of an NP-complete decision problem has

an fpras, then RP = NP [59]. In Proposition 1.2 was shown that a problem that admits an fpras,

has a decision version in BPP. Remarkably, most approximable problems have a decision version

in P and are also self-reducible, so they belong to TotP. Hence, a first worthwhile question to

answer is whether FPRAS ⊆ TotP holds. This is answered by Corollary 3.5. For the converse

inclusion TotP ⊆ FPRAS, we know that TotP contains problems that are inapproximable unless

RP = NP, such as #IS [57]. Corollary 3.1 states that TotP ⊆ FPRAS is in fact, equivalent to

RP = NP.

Most of this chapter’s results were shown in Eleni Bakali’s PhD thesis [22]. Our presentation

follows [24]. In the Discussion of results and Notes Sections of the current chapter—Sections 3.3

and 3.4, respectively—we refer the reader to the works where these results were first presented.

3.1 On #P versus FPRAS

We start with the relationship between #P and FPRAS, the class of approximable #P problems

(see Definition 1.6). A corollary of Stockmeyer’s Theorem (Theorem 1.3) is that RP = NP

54

Chapter 3 Relationship between TotP and the class of approximable counting problems

implies the existence of an fpras for every function in #P. Inversely, if any function in #P

has an fpras, then NP ⊆ BPP, which in turn implies that RP = NP. These observations are

summarized in the following theorem.

Theorem 3.1. #P ⊆ FPRAS if and only if RP = NP.

Proof. If #P ⊆ FPRAS, then NP ⊆ BPP by Proposition 1.2 and so Sat ∈ BPP. Since Sat is self-

reducible, if it can be solved by a probabilistic Turing machine with bounded probability error,

then it can be solved by a probabilistic Turing machine with no false positives, by computing a

satisfying assignment [124, problem 11.5.18].

Assume that RP = NP holds. By Theorem 1.3, for any function f ∈ #P, there exists a

polynomial-time (in |x| and in 1/ε) algorithm which, using a Σp
2 oracle, approximates f within

ratio (1 ± ε). Since RP = NP is true, it holds that Σp
2 = RPRP ⊆ BPP [157]. Finally it is not

hard to verify that the aforementioned deterministic polynomial-time algorithm with access to

a BPP oracle, can be replaced by an fpras, that simulates the oracle calls itself.

Remark 3.1. Note that the second part of the proof of Theorem 3.1 can be obtained using the

Valiant–Vazirani bisection technique (Theorem 1.2) instead of Stockmeyer’s Theorem. Using

a similar proof, Dyer et al. showed that #IS is AP-interreducible to #Sat even when it is

restricted to graphs with maximum degree 25 [59, Theorem 4].

3.2 On TotP versus FPRAS

First, note that TotP contains almost all counting problems known to have an fpras, such as

#DNF [98], #BiPerfMatch [93], and #NFA [14]. However it also contains problems that are

inapproximable unless RP = NP. For example, #MonSat [114] and #IS [59] belong to TotP. Of

course, it includes all problems that are AP-interreducible with #BIS, the problem of counting

independent sets in bipartite graphs, which we believe that they form an intermediate class with

respect to approximability, i.e. neither they have an fpras nor they are AP-interreducible with

#Sat [59].

So it comes natural that an analog of Theorem 3.1 holds for TotP as well. To state the

theorem, we first define an ancillary class, namely the class FPRAS′.

Definition 3.1. f ∈ FPRAS′ if f ∈ FPRAS and there exists an fpras for f , as defined in

Definition 1.5, which also outputs f̂(x) = 0 with probability 1 in the case of f(x) = 0.

A.Chalki Thesis 55

Chapter 3 Relationship between TotP and the class of approximable counting problems

Proposition 3.1. If f ∈ FPRAS′, then Lf ∈ RP.

Proof. By Proposition 1.2 there is a BPP algorithm for Lf . By the definition of FPRAS′ and

the fact that f ∈ FPRAS′, the BPP algorithm for Lf can be modified so it has a zero error in

the case of ‘no’ instances. So Lf ∈ RP.

3.2.1 (Non)inclusion of TotP in FPRAS

The following result is, in part, a corollary of Theorem 3.1. It also states that if an fpras exists

for a TotP problem, then it can be modified so that, for every x ∈ Σ∗, such that f(x) = 0, it

outputs the correct value with probability 1.

Corollary 3.1. TotP ⊆ FPRAS if and only if TotP ⊆ FPRAS′ if and only if RP = NP.

Proof. The proof of RP = NP =⇒ TotP ⊆ FPRAS is completely analogous to that of RP =

NP =⇒ #P ⊆ FPRAS (see Theorem 3.1).

If TotP ⊆ FPRAS, then #IS has an fpras, which implies that RP = NP [57].

Now we prove that TotP ⊆ FPRAS iff TotP ⊆ FPRAS′. Suppose that TotP ⊆ FPRAS and

let f ∈ TotP. Then f ∈ FPRAS. We can modify the fpras for f so that it outputs f̂(x) = 0 with

probability 1 if f(x) = 0. We can do this since f(x) = 0 can be determined in polynomial time.

So, f ∈ FPRAS′. The other direction is trivial, since FPRAS′ ⊆ FPRAS.

Corollary 3.2. #P ⊆ FPRAS if and only if TotP ⊆ FPRAS.

Proof. By Proposition 3.1 and Corollary 3.1.

3.2.2 Classes of counting problems the decision version of which is in RP

The classes introduced in this subsection, which contain counting problems the decision version

of which is in RP, were used in the study of the opposite inclusion, i.e. whether FPRAS is a

subset of TotP.

If for a problem in #P, the corresponding counting machine has an RP behavior, i.e. either

the majority of the paths are accepting or all paths are rejecting, then the decision version of

the problem is in RP. The first class considered below, namely #RP1, contains such problems.

However, this seems to be a quite restrictive requirement. Therefore, a second class, which is

called #RP2 is defined next.

A.Chalki Thesis 56

Chapter 3 Relationship between TotP and the class of approximable counting problems

Definition 3.2. Let M be an NPTM in normal form. We denote by pM the polynomial, such

that on any input x ∈ Σ∗, M makes pM (|x|) nondeterministic choices.

MR = {M | M is an NPTM in normal form and for all x ∈ Σ∗ either accM (x) = 0 or

accM (x) > 1
2 · 2

pM (|x|)}.

Definition 3.3. #RP1 = {f ∈ #P | there exists an M ∈MR such that for all x ∈ Σ∗,

f(x) = accM (x)}.

Definition 3.4. #RP2 = {f ∈ #P | Lf ∈ RP}.

Note that #RP1, although restrictive, contains a counting version of one of the most rep-

resentative problems in RP, for which no deterministic efficient algorithms are known.

Consider the polynomial identity testing problem, denoted by PIT: Given a polynomial

p(x1, ..., xn) over some field F, decide whether p is not identically zero. 1 This algebraic prob-

lem captures many interesting and natural computational problems, such as testing equality of

two bitstrings in a distributed setting and bipartite perfect matching. Determining the com-

putational complexity of polynomial identity testing is considered one of the most important

open problems in the mathematical field of Algebraic Computing Complexity. A probabilistic

solution to it is based on the following lemma.

Lemma 3.1 (Schwartz–Zippel Lemma). Let p(x1, ..., xn) be a polynomial of degree d over a

field F. Assume that p is not identically zero. Let S ⊆ F be any finite set. Then, if we pick

y1, ..., yn independently and uniformly from S,

Pr[p(y1, ..., yn) = 0] ≤ d

|S|
.

Assume that d < |F|. A well-known randomized polynomial time algorithm for PIT, picks

y1, ..., yn uniformly and independently from F (if F is infinite, from a suitably large finite subset

of F). If p(y1, ..., yn) ̸= 0, the algorithm announces that p is not identically zero. In this case, the

algorithm never makes an error. Otherwise, if p(y1, ..., yn) = 0, the algorithm announces that p

is identically zero. In this case the Schwartz–Zippel lemma guarantees that the probability of

error is at most d/|F| < 1. So, PIT ∈ RP. Interestingly, if PIT has a deterministic polynomial

time algorithm then we would obtain new circuit lower bounds for the class NEXP [95], which

would be a remarkable consequence in complexity theory.
1In the literature, polynomial identity testing is the problem of deciding whether two polynomials are identical

or, equivalently, whether a polynomial is identically zero. Here we define PIT to be the equivalent problem of

deciding whether a polynomial is not identical zero.

A.Chalki Thesis 57

Chapter 3 Relationship between TotP and the class of approximable counting problems

We define here a counting version of PIT. For a field F, we denote by F3d a set of 3d

elements of F, which can be chosen deterministically by a Turing machine.

Definition 3.5. #NonZerosForPIT.

Input: A polynomial p(x1, ..., xn) of degree d over a field F, such that |F| ≥ 3d.

Output: The number of points (y1, ..., yn) ∈ Fn3d for which p(y1, .., yn) ̸= 0.

Another problem in #RP1 is the problem of counting the number of compositeness witnesses

as defined by the Miller-Rabin primality test, on input an integer n > 2: n is written as 2s ·d+1,

where s, d ∈ N+ and d is odd. An integer 0 < a < n is called a witness for the compositeness of

n if (a) or (b) holds: (a) an−1 ̸≡ 1 (mod n),

(b) an−1 ≡ 1 (mod n) is true and both the following congruence relations hold:

ad ̸≡ 1 (mod n) and a2r·d ̸≡ −1 (mod n), for all 0 ≤ r < s.

Definition 3.6. #CompositenessWitnesses.

Input: An integer n > 2.

Output: The number of integers a ∈ Z∗
n that are witnesses for the compositeness of n.

A prime number has no such witnesses, whereas for a composite number n, at least half

of the integers in Z∗
n are Miller-Rabin witnesses. Hence there exists an NPTM M ∈ MR that

has as many accepting paths as the number of witnesses. Note that in this case the decision

problem is in P: given a natural number n, it can be decided whether it is a prime number in

deterministic polynomial time by the AKS algorithm [3].

#RP2 contains natural counting problems as well. For example, two problems in #RP2 are

#Exact Matchings and #Blue-Red Matchings, which are counting versions of Exact

Matching [125] and Blue-Red Matching [120], respectively.

Definition 3.7. #Exact Matchings.

Input: A graph G = (V,E), a subset E′ ⊆ E and an integer k.

Output: The number of perfect matchings of G that contain exactly k edges in E′.

Definition 3.8. #Blue-Red Matchings.

Input: A graph G = (V,Ered ∪ Eblue) and two integers w and B.

Output: The number of matchings of size at least B with at most w edges in Eblue (blue edges)

and at most w edges in Ered (red edges).

Both Exact Matching and Blue-Red Matching belong to RP (in fact in RNC) as

shown in [119, 120], respectively; however, it has remained open so far whether they can be solved

A.Chalki Thesis 58

Chapter 3 Relationship between TotP and the class of approximable counting problems

in deterministic polynomial time. Therefore, it is also open whether #Exact Matchings and

#Blue-Red Matchings belong to TotP.

Proposition 3.2. (a) #NonZerosForPIT and #CompositenessWitnesses belong to #RP1.

(b) #Exact Matchings and #Blue-Red Matchings belong to #RP2.

3.2.3 Unconditional inclusions

#P

#BPP

#RP2 FPRAS

#PE FPRAS′

TotP #RP1

FP

Figure 3.1: Unconditional in-

clusions.

P ̸= RP ̸= NP

#P

#BPP

#RP2

#PE

FPRAS

FPRAS′

TotP #RP1

FP

P = RP ̸= NP

#P

#BPP

#PE=#RP2 FPRAS

TotP FPRAS′

#RP1

FP

Figure 3.2: Conditional inclusions. The following notation is used:

A → B denotes A ⊆ B, A ⊣ B denotes A ̸⊆ B, and A 7→ B denotes

A ⊊ B.

This subsection is about unconditional inclusions among the aforementioned classes. Sub-

section 3.2.4 explores possible inclusions under either the condition P ̸= RP ̸= NP or P = RP ̸=

NP.

The results are summarized in Figures 3.1 and 3.2.

Theorem 3.2. (a) FP ⊆ #RP1 ⊆ #RP2 ⊆ #P.

(b) TotP ⊆ #PE ⊆ #RP2.

Proof. (a) Let f ∈ FP. We will show that f ∈ #RP1 by constructing an NPTM M ∈ MR

such that on input x, accM (x) = f(x). On input x ∈ Σ∗, M computes f(x) and then it

computes i ∈ N such that f(x) ∈ (2i−1, 2i]. M makes i nondeterministic choices b1, b2, ..., bi.

Each sequence b = (b1, ..., bi) ∈ {0, 1}i determines a path. In particular, 0i is the first path and

b = 1i is the 2i-th path. M returns yes on every path that is between the first and the f(x)-th

path. So accM = f(x) and since f(x) > 2i−1, M ∈MR.

The other inclusions of both (a) and (b) are immediate from the definitions of the classes.

A.Chalki Thesis 59

Chapter 3 Relationship between TotP and the class of approximable counting problems

For the class #RP1 we have a guarantee that the number of accepting paths is polynomial

with respect to the total number of paths. In fact, their ratio is bounded by a constant. In

these cases there is an fpras for approximating the number of accepting paths using the Monte

Carlo method. The following lemma is the heart of the Monte Carlo method.

Lemma 3.2 (Unbiased estimator). Let A ⊆ B be two finite sets and let p = |A|
|B| . Assume we

take m samples from B uniformly at random and let a be the number of them that belong to A.

Then p̂ = a
m is an unbiased estimator of p and if m = poly(p−1, ε−2, log(δ−1)), then we have

that

Pr[(1− ε)p ≤ p̂ ≤ (1 + ε)p] ≥ 1− δ.

Theorem 3.3. #RP1 ⊆ FPRAS′ ⊆ #RP2.

Proof. For the first inclusion, let f ∈ #RP1. Then there exists an Mf ∈ MR such that

for all x, accMf
(x) = f(x). Let q(|x|) be the number of nondeterministic choices of Mf and

p = f(x)

2q(|x|)
. For any ε > 0 and 0 < δ < 1, we can compute an estimate p̂ of p, by choosing

m = poly(p−1, ε−1, log(δ−1)) paths uniformly at random. Then we compute f̂(x) = p̂ · 2q(|x|).

By Lemma 3.2 we have that

Pr[(1− ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] ≥ 1− δ.

If f(x) ̸= 0, then p > 1
2 , so m = poly(ε−1, log(δ−1)) and so we obtain an fpras for f . If f(x) = 0

then f̂(x) = 0, hence f ∈ FPRAS′.

The second inclusion is a straightforward corollary of Proposition 3.1.

Corollary 3.3. #RP1 ⊆ FPRAS′ ⊆ FPRAS ⊆ #BPP.

Theorems 3.2 and 3.3 together with Theorem 1.7 are summarized in Figure 3.1.

Corollary 3.4. #NonZerosForPIT and #CompositenessWitnesses belong to FPRAS.

Proof. It is immediate from Proposition 3.2 and Theorem 3.3.

3.2.4 Conditional inclusions (possible worlds) and consequences of

FPRAS ⊆ TotP

Further relationships between the aforementioned classes can be determined with respect to P

versus RP versus NP, so that two possible worlds inside #P emerge. All relationships proven

below are demonstrated in Figure 3.2.

A.Chalki Thesis 60

Chapter 3 Relationship between TotP and the class of approximable counting problems

Corollary 3.5. If FPRAS ⊆ TotP then P = RP.

Proof. If FPRAS ⊆ TotP, then #RP1 ⊆ TotP and then for all f ∈ #RP1, Lf ∈ P. So if A ∈ RP

via M ∈MR then #accM ∈ #RP1 and thus A = L#accM ∈ P. Thus P = RP.

Corollary 3.6. If #RP1 = #RP2 then RP = NP.

Proof. By Theorem 3.3, if #RP1 = #RP2, then both are equal to FPRAS′. This would imply

that TotP ⊆ FPRAS′ ⊆ FPRAS, since TotP ⊆ #RP2 by Theorem 3.2(b). Therefore, RP = NP

by Corollary 3.1.

Theorem 3.4. The inclusions depicted in Figure 3.2 hold under the corresponding assumptions

on top of each subfigure.

Proof. First note that intersections between any of the aforementioned classes are non-empty,

because FP is a subclass of all of them. For the rest of the inclusions, we have the following.

• In the case of P = RP ̸= NP.

– By definitions, #P ⊆ #RP2 ⇔ RP = NP. Therefore, RP ̸= NP⇒ #P ̸⊆ #RP2.

– By Theorem 1.7, the inclusions FP ⊆ TotP ⊆ #PE ⊆ #P are proper unless P = NP.

Therefore, P ̸= NP⇒ FP ⊊ TotP ⊊ #PE ⊊ #P.

– By Corollary 3.1, TotP ⊆ FPRAS ⇒ RP = NP. Therefore, RP ̸= NP ⇒ TotP ̸⊆

FPRAS.

– By Corollary 3.1, TotP ⊆ FPRAS′ ⇒ RP = NP. Therefore, RP ̸= NP ⇒ TotP ̸⊆

FPRAS′.

– By Corollary 3.1 and Theorem 3.3, #RP2 ⊆ FPRAS⇒ TotP ⊆ FPRAS⇒ RP = NP.

Therefore, RP ̸= NP⇒ #RP2 ̸⊆ FPRAS.

– By Theorem 3.3 and Corollary 3.1, #RP2 ⊆ FPRAS′ ⇒ TotP ⊆ FPRAS′ ⇒ RP = NP.

Therefore, RP ̸= NP⇒ #RP2 ̸⊆ FPRAS′.

– By Corollary 3.6, #RP2 = #RP1 ⇒ RP = NP. Therefore, RP ̸= NP ⇒ #RP2 ̸⊆

#RP1.

– By Theorem 3.1, #P ⊆ FPRAS⇔ RP = NP. Therefore, RP ̸= NP⇒ #P ̸⊆ FPRAS.

– By Theorem 1.7 and Corollary 3.1, #PE ⊆ FPRAS ⇒ TotP ⊆ FPRAS ⇒ RP = NP.

Therefore, RP ̸= NP⇒ #PE ̸⊆ FPRAS.

A.Chalki Thesis 61

Chapter 3 Relationship between TotP and the class of approximable counting problems

– By Theorem 3.3 and the previous result, #PE ⊆ #RP1 ⇒ #PE ⊆ FPRAS ⇒ RP =

NP. Therefore, RP ̸= NP⇒ #PE ̸⊆ #RP1.

– By Theorem 1.7 and Corollary 3.1, #PE ⊆ FPRAS′ ⇒ TotP ⊆ FPRAS′ ⇒ RP = NP.

Therefore, RP ̸= NP⇒ #PE ̸⊆ FPRAS′.

– By Corollary 3.1 and Theorem 3.3, TotP ⊆ #RP1 ⇒ TotP ⊆ FPRAS ⇒ RP = NP.

Therefore, RP ̸= NP⇒ TotP ̸⊆ #RP1.

• In the case of P ̸= RP ̸= NP.

In addition to all the above results we have also the following ones.

– By definitions, #RP2 ⊆ #PE⇔ P = RP. Therefore, P ̸= RP⇒ #RP2 ̸⊆ #PE.

– As in the proof of Corollary 3.5 we can show that #RP1 ⊆ #PE ⇒ P = RP holds.

Therefore, P ̸= RP⇒ #RP1 ̸⊆ #PE.

– By Theorem 3.3 and the previous result, FPRAS ⊆ #PE⇒ #RP1 ⊆ #PE⇒ P = RP.

Therefore, P ̸= RP⇒ FPRAS ̸⊆ #PE.

– Similarly, FPRAS′ ⊆ #PE ⇒ #RP1 ⊆ #PE ⇒ P = RP. Therefore, P ̸= RP ⇒

FPRAS′ ̸⊆ #PE.

– Similarly, #RP1 ⊆ TotP⇒ P = RP. Therefore, P ̸= RP⇒ #RP1 ̸⊆ TotP.

– By Theorem 1.7 and the previous result, #RP1 ⊆ FP ⇒ #RP1 ⊆ TotP ⇒ P = RP.

Therefore, P ̸= RP⇒ #RP1 ̸⊆ FP.

– By Corollary 3.5, FPRAS ⊆ TotP⇒ P = RP. Therefore, P ̸= RP⇒ FPRAS ̸⊆ TotP.

– Similarly, FPRAS′ ⊆ TotP⇒ P = RP. Therefore, P ̸= RP⇒ FPRAS′ ̸⊆ TotP.

3.3 Discussion of results

One direction of #P ⊆ FPRAS iff RP = NP, namely #P ⊆ FPRAS ⇒ RP = NP, is well-known

among researchers in the area of counting complexity. The inverse direction, i.e. that RP = NP

implies #P ⊆ FPRAS, has a proof that is based on arguments similar to those used in the proof

of [59, Theorem 4] and it was first stated as a theorem in [22]. This result was also extended

to the class TotP in the same work. Thus it holds that TotP ⊆ FPRAS iff RP = NP (stated as

Corollary 3.1 here).

To prove that FPRAS ⊆ TotP implies P = RP, the fact that #RP1 ⊆ FPRAS was used, i.e.

if the accepting paths are more than half of all paths, we can approximate them using the Monte

A.Chalki Thesis 62

Chapter 3 Relationship between TotP and the class of approximable counting problems

Carlo method (or an unbiased estimator). Then, the inclusion #RP1 ⊆ TotP would mean that

RP ⊆ P.

The class #RP1 contains a counting version of the PIT (Polynomial Identity Testing)

problem, which we define here and we denote by #NonZerosForPIT. Given an n-variable

polynomial p over a field F, #NonZerosForPIT is the problem of counting the non-zeros of

p in a finite and sufficiently large subset of Fn. As a result, #NonZerosForPIT has an fpras.

To the extent of our knowledge, this is the only counting problem that admits an fpras, and has

a decision version which is in RP, but it is not known whether it belongs to P.

Finally, the definition of #RP2, the class of all #P functions with a decision version in RP

turned our attention to two graph problems that are generalizations of counting matchings in

graphs. In Chapter 6 we examine the problem #Exact Matchings in restricted classes of

graphs with respect to its exact and approximate computation. This is the problem of counting

the number of perfect matchings with exactly k red edges in a graph with both black and red

edges.

3.4 Notes

The question about the relationship of TotP to FPRAS was first posed and studied in Eleni

Bakali’s PhD thesis [22], where most propositions and theorems of this chapter can be found.

Bakali also gave a more complete picture of the conditional relationships examined in Subsec-

tion 3.2.4, i.e. she considered four different possible worlds, the ones we explored here along with

two additional worlds that emerge under the assumptions P ̸= RP = NP and P = RP = NP.

The class FPRAS′ and the problems #NonZerosForPIT, #CompositenessWitnesses,

#Exact Matchings, and #Blue-Red Matchings were first defined and studied in [24].

Here we provided formal definitions of these four problems.

A.Chalki Thesis 63

Chapter 3 Relationship between TotP and the class of approximable counting problems

A.Chalki Thesis 64

Chapter 4

On the power of counting the total number of

paths

The relation of Toda’s celebrated theorem (Theorem 1.4) to the complexity classes ⊕P and PP

motivated our study of TotP-style variants of these classes, namely ⊕totP and PtotP, respectively,

in this chapter.

In Toda’s Theorem [144], two facts were combined to prove that PH ⊆ P#P. First, PH ⊆

BPP⊕P, where ⊕P [126] is the class of languages, decidable by an NPTM, where the acceptance

condition is that the number of accepting computation paths is odd. Second, BPP⊕P ⊆ P#P[1].

In other words, BPP⊕P is at least as powerful as the polynomial hierarchy and it can be decided

in polynomial time with just one oracle call to a #P function.

The second part of the proof of Toda’s Theorem implies that BPP⊕P ⊆ PPP and therefore

PH ⊆ PPP [144]. PP [75] stands for ‘Probabilistic Polynomial-time’ and it is a gap-definable

class; it is defined based on the difference (or the gap) between accepting and rejecting paths of

an NPTM. A language L is in PP if there is an NPTM M such that x ∈ L iff M(x) has more

accepting than rejecting paths. It is also as hard as #P in the sense that PPP = P#P [26].

Apart from the classes ⊕totP and PtotP, we introduce here other complexity classes defined

by properties of TotP functions. We build upon the study of classes that have definitions based

on the number of accepting paths, or the gap of an NPTM [66]. For example, the complexity

class UP was introduced in [148] along with unambiguous NPTMs, which means NPTMs that

have at most one accepting path. Over the years, many other classes of decision problems were

introduced by adding constraints to the acceptance condition of NP. We are going to focus

65

Chapter 4 On the power of counting the total number of paths

on the following classes: UP [148], FewP [8], ⊕P [126],1 ModkP [44],2 SPP [121],3 WPP [66],

C=P [136], and PP [136, 75]. The definitions of these classes are given in Table 4.1. Each of

them can be defined by properties of either #P or GapP functions.

Class Function f in: If x ∈ L: If x /∈ L:

UP #P f(x) = 1 f(x) = 0

FewP #P

f(x) ≤ p(|x|) for

some polynomial p

and f(x) > 0

f(x) = 0

⊕P #P f(x) is odd f(x) is even

ModkP #P f(x) ̸≡ 0 (mod k) f(x) ≡ 0 (mod k)

SPP GapP f(x) = 1 f(x) = 0

WPP GapP

f(x) = g(x) for

some g ∈ FP with

0 ̸∈ range(g)

f(x) = 0

C=P GapP f(x) = 0
f(x) ̸= 0 [alt-def:

f(x) > 0]

PP GapP f(x) > 0
f(x) ≤ 0 [alt-def:

f(x) < 0]

Table 4.1: Definitions of the classes UP, FewP, ⊕P, ModkP, SPP, WPP, C=P, PP.

Remark 4.1. (a) Note that Mod2P = ⊕P and ModkP for k > 2 is a generalization of ⊕P,

based on congruence mod integers other than two.

(b) The class ModkP was defined in [35] via the acceptance condition ‘x ∈ L iff f(x) ̸≡ 0

(mod k)’. On the other hand, in [44] ModkP was defined via the alternative condition

‘x ∈ L iff f(x) ≡ 0 (mod k)’ (under which the class of [35] would be coModkP).

(c) For the alternative definition of C=P, note that given a function f ∈ GapP, that satisfies the

first definition, we have that the function f2 belongs to GapP as well, since GapP is closed

under multiplication and f2 satisfies the alternative definition, i.e. x ∈ L, if f2(x) = 0,

whereas x ̸∈ L, if f2(x) > 0.
1The class ⊕P was defined independently under the name EP in [78].
2ModkP was also studied independently in [35] and [85].
3SPP was studied independently in [66].

A.Chalki Thesis 66

Chapter 4 On the power of counting the total number of paths

Known relationships among these classes are given below.

Proposition 4.1 ([131]). (a) UP ⊆ FewP ⊆ NP ⊆ coC=P ⊆ PP.

(b) FewP ⊆ SPP ⊆WPP ⊆ C=P ⊆ PP.

(c) SPP ⊆ ⊕P ⊆ ModkP.

In Subsections 4.1.1, 4.1.2, and 4.1.3, we introduce the classes GaptotP, UtotP, FewtotP,

⊕totP, ModktotP, SPtotP, WPtotP, C=totP, PtotP by properties of TotP functions. Their defi-

nitions are summarized in Table 4.2. We examine the relationship between each of them and

its counterpart, defined by the same property of either a #P or a GapP function. Except for

UtotP and FewtotP which coincide with P, all the other tot-definable classes are equal to their

analogs definable by #P functions. Thus, for the classes ⊕P, ModkP, SPP, WPP, C=P, and

PP, we obtain a family of complete problems that are defined by TotP-complete problems under

parsimonious reductions (and not by #P-complete), or equivalently, by problems in P (and not

by NP-complete ones).

In Subsection 4.1.4 we give variants of the Valiant-Vazirani and Toda’s Theorems. In

Subsection 4.1.5, we present problems definable by a TotP function, that are complete for gap-

definable classes, building upon a relevant result by Curticapean [52]. Finally, we study the

complexity of the problem DiffPerfMatch=g in Subsection 4.1.6.

4.1 Tot-definable classes

Although we focus on defining tot-counterparts of the classes described in Table 4.1, counting

the total number of paths of an NPTM has already been used to define analogs of the classes

RP, BPP, and PP in [80], which have been denoted by Rpath, BPPpath, and PPpath, respectively.

For example, Rpath is the class of languages L such that there exists an NPTM M such that for

all x ∈ Σ∗ it holds that x ∈ L if accM (x) >
1

2
· totalM (x) and x ̸∈ L if rejM (x) = totalM (x),

where totalM (x) denotes the total number of paths of M on x (not minus 1) and accM (x),

rejM (x) are the number of accepting and rejecting paths of M on x, respectively. Remarkably,

Rpath = NP and PPpath = PP [80]. The relationship of BPPpath to other classes, such as PNP[log],

the Arthur–Merlin class MA, and Σp
2, has been studied in [80].

A.Chalki Thesis 67

Chapter 4 On the power of counting the total number of paths

4.1.1 The class GaptotP

For a Turing machine M , we define ∆M(x) = accM (x)− rejM (x), where accM (x), rejM (x) are

the number of accepting and rejecting paths of M on x, respectively.

Definition 4.1. A function f : Σ∗ → N is in GapP iff there exists an NPTM M such that for

all inputs x, f(x) = ∆M(x).

Equivalently, GapP = {∆M : Σ∗ → N | M is an NPTM}.

GapP is the closure of #P under subtraction and its functions can take negative values.

Theorem 4.1. The following are equivalent:

1. f ∈ GapP.

2. f is the difference of two #P functions.

3. f is the difference of a #P and an FP function.

4. f is the difference of an FP and a #P function.

In other words, GapP = #P−#P = #P− FP = FP−#P.

If we consider the difference of two TotP functions instead of #P ones, we can define a

variant of GapP as follows.

Definition 4.2. A function f belongs to the class GaptotP iff it is the difference of two TotP

functions.

It turns out that the class GaptotP is exactly the class GapP.

Proposition 4.2. GaptotP = GapP.

Proof. GaptotP ⊆ GapP is straightforward, since TotP ⊆ #P. For GapP ⊆ GaptotP, note that for

any #P function f , there exist NPTMs M , M ′ such that f(x) = accM (x) = totM ′(x)− totM (x),

where we obtain M ′ by doubling the accepting paths of M . So for any g ∈ GapP there exist

NPTMs N , N ′, M , M ′ such that g(x) = accN (x)−accM (x) = (totN ′(x)−totN (x))−(totM ′(x)−

totM (x)) = (totN ′(x) + totM (x))− (totN (x) + totM ′(x)) = totM1(x)− totM2(x), where M1, M2

can be constructed as described in Proposition 1.8.

Corollary 4.1. GaptotP = GapP = #P − #P = TotP − TotP = #P − FP = FP − #P =

FP− TotP = TotP− FP.

A.Chalki Thesis 68

Chapter 4 On the power of counting the total number of paths

Proof. To prove #P − FP = FP − #P = FP − TotP = TotP − FP, we show that FP − #P ⊆

FP− TotP. This is essentially a proof for #P− FP ⊆ TotP− FP as well.

Let g ∈ FP and f = accM ∈ #P. Then, g(x)−f(x) = g(x)−(totM ′(x)−totM (x)), whereM ′

is obtained from M by doubling its accepting paths (as in the proof of Proposition 4.2). W.l.o.g.

we assume that the computation tree of M is a perfect binary tree (or in other words, M is in

normal form), so we have that g(x)− (totM ′(x)− totM (x)) = g(x)− (totM ′(x)− (2p(|x|)− 1)) =

g′(x)− totM ′(x), where g′ ∈ FP with g′(x) = g(x) + 2p(|x|) − 1 for any x.

For a #P function accM , it holds that rejM (x) = 2p(|x|)−accM (x) is also a #P function. For

example, counting unsatisfying assignments for a CNF formula is in #P. On the contrary, for a

TotP function totM , we do not know whether (2p(|x|)−1)−totM (x) belongs to TotP. For example,

if counting unsatisfying assignments for a DNF formula ϕ is in TotP, then determining if there

is an unsatisfying assignment for ϕ is in P, which in turn means that determining whether the

CNF formula ¬ϕ has a satisfying assignment is in P (note that in this case we have to consider

p(|ϕ|) = n, where n is the number of variables of the input formula ϕ). On the other hand,

Corollary 4.1 implies that (2p(|x|) − 1)− totM (x) and in fact, every #P function is in GaptotP.

4.1.2 The classes UtotP, FewtotP, ⊕totP, and ModktotP

The definitions of the classes UtotP, FewtotP, ⊕totP, and ModktotP are analogous to those in

Table 4.1, but instead of #P or GapP functions, functions in either TotP or GaptotP are used to

define them. They are summarized in Table 4.2.

The class UP appears in the well known Valiant-Vazirani Theorem which states that there

is a randomized reduction from an instance of Sat to a CNF formula which has at most one

satisfying assignment.

Theorem 4.2 (Valiant-Vazirani Theorem [151]). NP ⊆ RPUP.

Below, we explore the computational power of the tot-definable class UtotP.

Proposition 4.3. (a) P = UtotP.

(b) UtotP ⊆ UP.

(c) If UP ⊆ UtotP, then P = UP (and thus RP = NP).

Proof. (a) Let L ∈ UtotP. Then there exists an NPTM M such that x ∈ L iff M has 2 paths,

whereas x ̸∈ L iff M has 1 path. On any input, the polynomial time Turing machine M ′

A.Chalki Thesis 69

Chapter 4 On the power of counting the total number of paths

Class Function f in: If x ∈ L: If x /∈ L:

UtotP TotP f(x) = 1 f(x) = 0

FewtotP TotP

f(x) ≤ p(|x|) for

some polynomial p

and f(x) > 0

f(x) = 0

⊕totP TotP f(x) is odd f(x) is even

ModktotP TotP f(x) ̸≡ 0 (mod k) f(x) ≡ 0 (mod k)

SPtotP GaptotP f(x) = 1 f(x) = 0

WPtotP GaptotP

f(x) = g(x) for

some g ∈ FP with

0 ̸∈ range(g)

f(x) = 0

C=totP GaptotP f(x) = 0
f(x) ̸= 0 [alt-def:

f(x) > 0]

PtotP GaptotP f(x) > 0
f(x) ≤ 0 [alt-def:

f(x) < 0]

Table 4.2: Definitions of the classes UtotP, FewtotP, ⊕totP, ModktotP, SPtotP, WPtotP, C=totP, PtotP.

simulates either the unique path or the two paths of M deterministically and it either rejects

or accepts, respectively. This is a proof of (b) as well. Inversely, if L ∈ P, then there is an

NPTM N , which, for any input x, simulates the corresponding deterministic computation and

generates one or two paths if the answer is ‘no’ or ‘yes’, respectively.

(c) By (a), if UP ⊆ UtotP, then UP ⊆ P and RP = NP by the Valiant-Vazirani Theorem.

In fact, the classes UtotP and FewtotP coincide.

Proposition 4.4. (a) P = UtotP = FewtotP.

(b) If FewP ⊆ FewtotP, then P = FewP.

Proof. Part (b) is immediate from (a). For (a), let L ∈ FewtotP. Consider the Turing machine

M which has either more than 1 but polynomially many paths if x ∈ L or just 1 path if x ̸∈ L.

Then an NPTM, let’s say M ′, simulates deterministically all the paths of M and in the first case

M ′ makes a branching forming two paths, while in the second case it halts. So, L ∈ UtotP.

Next we show that the classes ⊕totP and ModktotP coincide with ⊕P and ModkP, respec-

A.Chalki Thesis 70

Chapter 4 On the power of counting the total number of paths

tively. As mentioned above, Toda showed that PH ⊆ BPP⊕P as an intermediate step for proving

his theorem. The proof was completed by proving that BPP⊕P can be decided in polynomial

time using an oracle call to #P. In fact, only the value of a #P function modulo 2m, for some

m, is needed. Since, PTotP = P#P, it also holds that PH ⊆ PTotP. It is natural to ask about the

power of classes that give information about either bits of TotP functions or the value of TotP

functions mod k.

Problems in ⊕P can be decided with the information of the rightmost bit of a #P function.

The class ⊕totP is the class of decision problems, for which the acceptance condition is that the

number of all computation paths of an NPTM is even (or the number of all computation paths

minus 1 is odd).

Proposition 4.5. ⊕totP = ⊕P.

Proof. ⊕totP ⊆ ⊕P: Consider a language L ∈ ⊕totP and the NPTM M such that x ∈ L iff

totM (x) is odd. Consider an NPTM M ′ that simulates M . Since, M ′ can distinguish the

leftomost path of M , it rejects on this path and it accepts on every other path. Then, x ∈ L iff

accM ′(x) is odd.

⊕P ⊆ ⊕totP: Let L ∈ ⊕P and M be the NPTM such that x ∈ L iff accM (x) is odd. Then,

we obtain M ′ by doubling the rejecting paths of M and add one more path. It holds that x ∈ L

iff totM (x) is odd.

We also give an alternative proof of Proposition 4.5. Let ⊕Pl-Rtw-Mon-3CNF be the

problem that on input a planar 3CNF formula where each variable appears positively and in

exactly two clauses, accepts iff the formula has an odd number of satisfying assignments. The

counting version of this problem, namely #Pl-Rtw-Mon-3CNF, is in TotP; it is self-reducible

like every satisfiability problem and has a decision version in P, since every monotone formula

has at least one satisfying assignment.

Proposition 4.6 ([150]). ⊕Pl-Rtw-Mon-3CNF is ⊕P-complete.

Corollary 4.2. ⊕totP = ⊕P.

Proof. Let L ∈ ⊕P. Then, it holds that x ∈ L iff f(x) ≡ 1 (mod 2) for some f ∈ #P. By

Proposition 4.6, there is an h ∈ FP, such that x ∈ L iff #Pl-Rtw-Mon-3CNF(h(x)) ≡ 1

(mod 2). So, define the TotP function g = #Pl-Rtw-Mon-3CNF ◦h. Then x ∈ L iff g(x) ≡ 1

(mod 2) and thus L ∈ ⊕totP.

A.Chalki Thesis 71

Chapter 4 On the power of counting the total number of paths

By generalizing the acceptance condition, we obtain ModktotP classes for any k ∈ N, which

in fact, is the class ModkP.

Proposition 4.7. ModktotP = ModkP.

Proof. The proof of ModktotP ⊆ ModkP is very similar to the proof of ⊕totP ⊆ ⊕P in Proposi-

tion 4.5.

For the inclusion ModkP ⊆ ModktotP, let L ∈ ModkP and M be the NPTM such that

x ∈ L iff accM (x) ≡ a (mod k), for some m ∈ {1, ..., k − 1}. Then, M ′ can be obtained from

M by generating k paths for every rejecting path and one more path (a dummy path). So,

#(paths of M ′ on input x)− 1 ≡ a (mod k). So, there is an NPTM M ′, such that totM ′(x) ≡

accM (x) (mod k).

Remark 4.2. The above proof shows that, not only equivalence or non-equivalence modulo k is

preserved, but also the value of the #P function modulo k is preserved.

Conclusion 4.1. So, we can say that if we have information about the rightmost bit of a TotP

function is as powerful as having information about the rightmost bit of a #P function. Toda’s

Theorem would be true if we used ⊕totP instead of ⊕P. Moreover, it holds that BPP⊕P ⊆ PTotP[1],

where it suffices to make an oracle call to a TotP function mod 2m, for some m. However, UtotP

is defined by a constraint on a TotP function that yields only nondeterministic Turing machines

with polynomially many paths. This means that UtotP gives no more information than the class

P and as a result, it cannot replace the class UP in the Valiant-Vazirani Theorem.

4.1.3 The gap-definable classes SPtotP, WPtotP, C=totP, and PtotP

By Proposition 4.2 and the definitions of the classes SPtotP, WPtotP, C=totP, and PtotP, we have

that these classes are equal to SPP, WPP, C=P, and PP, respectively.

Corollary 4.3. (a) SPtotP = SPP.

(b) WPtotP = WPP.

(c) C=totP = C=P.

(d) PtotP = PP.

The next corollary is an analog of Proposition 4.1. It is immediate from Proposition 4.1

and the propositions of Subsections 4.1.2, 4.1.3.

A.Chalki Thesis 72

Chapter 4 On the power of counting the total number of paths

Corollary 4.4. (a) P = UtotP = FewtotP ⊆ NP ⊆ coC=totP ⊆ PtotP.

(b) FewtotP ⊆ SPtotP ⊆WPtotP ⊆ C=totP ⊆ PtotP.

(c) SPtotP ⊆ ⊕totP ⊆ ModktotP.

4.1.4 Variants of the Valiant-Vazirani and Toda’s Theorems

Consider the following satisfiability problems.

⊕Sat = {ϕ | #Sat(ϕ) ̸≡ 0 (mod 2)}

ModkSat = {ϕ | #Sat(ϕ) ̸≡ 0 (mod k)}

Since #Sat is #P-complete under parsimonious reductions, ⊕Sat and ModkSat are complete

for ⊕P and ModkP, repsectively.

For any #A ∈ #P, we define two decision problems related to #A: ⊕A = {x ∈ Σ∗ | f(x) ̸≡

0 (mod 2)} and ModkA = {x ∈ Σ∗ | f(x) ̸≡ 0 (mod k)}. Then completeness results for ⊕A

and ModkA can be proven, provided that #A is TotP-complete under parsimonious reductions.

Proposition 4.8. Let #A be TotP-complete under parsimonious reductions. Then,

(a) ⊕A is complete for ⊕P,

(b) ModkA is complete for ModkP.

Proof. (a) It holds that #A ∈ #P, thus, by definition ⊕A ∈ ⊕P. Since #A is TotP-complete

under parsimonious reductions, the problem ⊕A is ⊕totP-complete. By Proposition 4.5, it is

also ⊕P-complete. The proof of (b) is completely analogous.

The following problems are related to the TotP-complete function #Tree-Monotone-

Circuit-Sat given in Definition 2.6.

⊕TMC = {C | C is non-increasing w.r.t. ≤tree and #TMC(C) ̸≡ 0 (mod 2)}

ModkTMC = {C | C is non-increasing w.r.t. ≤tree and #TMC(C) ̸≡ 0 (mod k)}

By Proposition 4.8, these are complete for ⊕P and ModkP, respectively.

The next three corollaries are derived from the Valiant-Vazirani Theorem (Theorem 4.2),

Toda’s Theorem (Theorem 1.4), and the results of this section.

Corollary 4.5. (a) NP ⊆ RP⊕totP.

(b) Sat ∈ RP⊕TMC.

A.Chalki Thesis 73

Chapter 4 On the power of counting the total number of paths

Proof. (a) A consequence of the Valiant-Vazirani Theorem is that NP ⊆ RP⊕P. So, by Propo-

sition 4.5, we have that NP ⊆ RP⊕totP.

(b) It is immediate from (a) and the ⊕P-completeness of ⊕TMC.

Corollary 4.6. (a) PH ⊆ BPP⊕totP.

(b) PH ⊆ BPP⊕TMC.

Proof. (a) It is immediate from Toda’s Theorem and Proposition 4.5.

(b) By Toda’s Theorem and the⊕P-completeness of⊕TMC, we have that PH ⊆ BPP⊕TMC.

Remark 4.3. Note that Proposition 4.8 allows us to replace ⊕TMC in Corollaries 4.5 and

4.6, by any other complete problem for ⊕P definable by a function that is TotP-complete under

parsimonious reductions.

Corollary 4.7. BPP⊕P ⊆ PTotP[1], where an oracle call to the value of a TotP function modulo

2m, for some m ∈ N, suffices.

Proof. In [144], Toda showed that BPP⊕P ⊆ P#P[1], where an oracle call to the value of a #P

function modulo 2m, for some m ∈ N, is used. By the proof of Proposition 4.7, this oracle call

can be replaced by an oracle call to the value of a TotP function modulo 2m.

The following two corollaries are also true.

Corollary 4.8. BPP⊕totP ⊆ PPtotP.

Corollary 4.9. PH ⊆ PTotP[1].

4.1.5 Complete problems for C=P, WPP, and PP definable by the TotP func-

tion #PerfMatch

Given a #P function #A : Σ∗ → N, we define the following decision problems associated with

#A:

DiffA=0

Input : (x, y) ∈ Σ∗ × Σ∗.

Output : Does #A(x) = #A(y) hold?

A.Chalki Thesis 74

Chapter 4 On the power of counting the total number of paths

DiffA>0

Input : (x, y) ∈ Σ∗ × Σ∗.

Output : Does #A(x) > #A(y) hold?

The next problem, namely DiffA=1, is a promise problem, i.e. the input to the problem

belongs to one of the following classes:

IY ES = {(x, y) | #A(x) = #A(y) + 1}

INO = {(x, y) | #A(x) = #A(y)}

DiffA=1

Input : (x, y) ∈ IY ES ∪ INO.

Output : Does (x, y) ∈ IY ES?

Proposition 4.9. For any function #A ∈ #P, it holds that:

(a) DiffA=0 ∈ C=P, DiffA>0 ∈ PP, and DiffA=1 ∈ SPP.

(b) If #A is #P-complete under parsimonious reductions, then DiffA=0, DiffA>0, and DiffA=1

are complete for C=P, PP, and SPP, respectively.

(c) If #A is TotP-complete under parsimonious reductions, then DiffA=0, DiffA>0, and

DiffA=1 are complete for C=P, PP, and SPP, respectively.

Proof. We show the proposition for the problem DiffA=0. The proof for the other problems is

completely analogous.

(a) We have that an instance (x, y) of DiffA=0 is a yes instance iff #A(x) = #A(y) iff

#A(x)−#A(y) = 0. The difference #A(x)−#A(y) is a GapP function, since it can be written

as #A′(x, y)−#A′′(x, y), where #A′(x, y) (resp. #A′′(x, y)) is function #A on input x (resp.

y), which means that #A′,#A′′ ∈ #P.

(b) A language L ∈ C=P can be decided by the value of a function f ∈ GapP: x ∈ L iff

f(x) = 0. By definition, f(x) = g(x) − h(x) for some g, h ∈ #P. Since #A is #P-complete

under parsimonious reductions, we have that g(x) = #A(t1(x)) and h(x) = #A(t2(x)), for

some t1, t2 ∈ FP. So, x ∈ L iff g(x)− h(x) = 0 iff #A(t1(x))−#A(t2(x)) = 0 iff (t1(x), t2(x))

is a yes instance for DiffA=0.

(c) By Corollary 4.3, a language L ∈ C=P can also be decided by the difference of two

functions g, h ∈ TotP: x ∈ L iff g(x) − h(x) = 0. If #A is TotP-complete, x ∈ L is decided by

#A(t1(x))−#A(t2(x)) for some t1, t2 ∈ FP.

A.Chalki Thesis 75

Chapter 4 On the power of counting the total number of paths

For example, the problem DiffSat=0 is complete for the class C=P. Note that this problem

was defined in [52], where it is called Sat=. We use a slightly different notation here, which we

believe is more suitable for defining other problems as well, that lie in the gap-definable classes

examined in this chapter.

The last problem we define is the promise problem DiffA=g. In this case, there is a function

g ∈ FP, 0 ̸∈ range(g), such that the input (x, y) ∈ Σ∗ × Σ∗ belongs to one of the following two

classes:

IY ES = {(x, y) | #A(x) = #A(y) + g(x, y)}

INO = {(x, y, g) | #A(x) = #A(y)}

DiffA=g

Input : (x, y, g) ∈ IY ES ∪ INO.

Output : Does (x, y, g) ∈ IY ES?

For example, the problem DiffSat=g takes as input two CNF formulas such that either

they have the same number of satisfying assignments or the first one has g(x) more satisfying

assignments than the second one. The problem is to decide which is the case. This is a general-

ization of the problem Promise-Exact-Number-Sat defined in [128]. Note that DiffSat=g

corresponds to a family of problems, one for each g ∈ FP, 0 ̸∈ range(g).

Proposition 4.10. (a) DiffA=g ∈WPP.

(b) Every problem in WPP is reducible to some DiffA=g, where

(i) #A is #P-complete under parsimonious reductions.

(ii) #A is TotP-complete under parsimonious reductions.

Proof. The proof is analogous to the proof of Proposition 4.9.

Remark 4.4. Compared to Proposition 4.9, Proposition 4.10 does not provide a concrete prob-

lem that is complete for the class WPP. For example, DiffSat=g is essentially a family of

problems, one for each g ∈ FP, 0 ̸∈ range(g).

Curticapean gave a first C=P-complete problem, defined by a function that is not #P-

complete, namely #PerfMatch [52]. By Proposition 4.9(c), we obtain a family of complete

problems for the classes C=P, PP, and SPP defined by functions that are not #P-complete under

parsimonious reductions.

A.Chalki Thesis 76

Chapter 4 On the power of counting the total number of paths

Although the problem #PerfMatch is not known to be either #P-complete or TotP-

complete under parsimonious reductions, DiffPerfMatch=0 is C=P-complete [52].

Proposition 4.11 ([52]). DiffPerfMatch=0 is complete for C=P.

Proof. In [52] a reduction from DiffSat=0 to DiffPerfMatch=0 is described. Given a pair

of 3CNF formulas (ϕ, ϕ′), two unweighted graphs G, G′ can be constructed such that

#Sat(ϕ)−#Sat(ϕ′) = 2−T (#PerfMatch(G)−#PerfMatch(G′))

where T ∈ N can be computed in polynomial time with respect to the input (ϕ, ϕ′).

We show the following proposition for the classes PP and WPP.

Proposition 4.12. (a) DiffPerfMatch>0 is complete for PP.

(b) Every problem in WPP is reducible to DiffPerfMatch=g defined by a function g ∈ FP,

0 ̸∈ range(g).

Proof. (a) The reduction of [52] described briefly in the proof of Proposition 4.11, is also a

reduction from DiffSat>0 to DiffPerfMatch>0.

(b) Given an input (ϕ, ϕ′) to DiffSat=g, which is defined by h ∈ FP, 0 ̸∈ range(h), the

problem reduces to DiffPerfMatch=g on input (G,G′), where G, G′ are the graphs of (a)

and g(G,G′) = 2T · h(ϕ, ϕ′). Then, (ϕ, ϕ′) ∈ DiffSat=g if

#Sat(ϕ)−#Sat(ϕ′) = h(ϕ, ϕ′) iff

#PerfMatch(G)−#PerfMatch(G′) = 2T · (#Sat(ϕ)−#Sat(ϕ′))

= 2T · h(ϕ, ϕ′) = g(G,G′).

Also, (ϕ, ϕ′) ̸∈ DiffSat=g if

#Sat(ϕ)−#Sat(ϕ′) = 0 iff

#PerfMatch(G)−#PerfMatch(G′) = 2T · (#Sat(ϕ)−#Sat(ϕ′)) = 0.

So, any problem in the class C=P (PP, WPP) is definable by the TotP function #Perf-

Match. This is an alternative proof for C=totP = C=P (PtotP = PP and WPtotP = WPP,

respectively).

A.Chalki Thesis 77

Chapter 4 On the power of counting the total number of paths

Corollary 4.10. (a) C=totP = C=P.

(b) PtotP = PP.

(c) WPtotP = WPP.

Proof. (a) Let L ∈ C=P. Then, it holds that x ∈ L iff #Sat(h1(x)) −#Sat(h2(x)) = 0 iff

#PerfMatch(h3(x)) −#PerfMatch(h4(x)) = 0, for some hi ∈ FP, 1 ≤ i ≤ 4. So, define

the TotP functions f1 = #PerfMatch ◦ h3 and f2 = #PerfMatch ◦ h4. Then f1, f2 are

TotP functions and we have that x ∈ L iff f1(x)− f2(x) = 0.

The proofs of (b) and (c) are completely analogous.

4.1.6 An exponential lower bound result for the problem DiffPerfMatch=g

Regarding the class SPP we cannot prove a similar result for the problem DiffPerfMatch=1.

However, we can prove the following fact.

Proposition 4.13. The problem DiffSat=1 is reducible to DiffPerfMatch=g.

Proof. Consider two 3CNF formulas (ϕ, ϕ′), with n variables and m = O(n) clauses, such that

either #Sat(ϕ)−#Sat(ϕ′) = 1 or #Sat(ϕ)−#Sat(ϕ′) = 0 holds.

Then, using the polynomial-time reduction of [52] two graphs G, G′ can be constructed

such that

#PerfMatch(G)−#PerfMatch(G′) = c|V | · (#Sat(ϕ)−#Sat(ϕ′))

where |V | = max{|V (G)|, |V (G′)|}} = O(n+m) and c ∈ (1, 2) is a constant depending on ϕ, ϕ′

and can be computed in polynomial time. Also, the graphs G and G′ have O(|V |) edges.

So, DiffSat=1 on input (ϕ, ϕ′) can be reduced to DiffPerfMatch=g on input (G,G′),

where g(G,G′) = c|V |.

Remark 4.5. Proposition 4.13 states that the smallest possible non-zero difference between

the number of satisfying assignments of two given 3CNF formulas can be translated to an

exponentially large difference between the number of perfect matchings of two graphs. In addition,

we can efficiently compute this number.

Curticapean proved that under ETH, the problem DiffPerfMatch=0 has no 2o(m) time

algorithm on simple graphs with m edges [52, Theorem 7.6]. The satisfiability of a 3CNF

A.Chalki Thesis 78

Chapter 4 On the power of counting the total number of paths

formula ϕ is reducible to the difference #PerfMatch on two different graphs, such that the

number of perfect matchings of the two graphs is equal iff ϕ is unsatisfiable. The reduction

follows the steps of the reductions that are used in the proof of Proposition 4.12.

Using the reduction of Proposition 4.13, we can prove the following corollary. We consider

the version of rETH, which asserts that probabilistic algorithms cannot decide if a given 3CNF

formula with n variables and O(n) clauses is satisfiable in time exp(o(n)).

Corollary 4.11. Under rETH there is no randomized exp(o(m)) time algorithm for

DiffPerfMatch=g on simple graphs with m edges.

Proof. Given rETH we cannot decide whether a given 3USat formula ϕ with m clauses is

satisfiable using a randomized algorithm that runs in time exp(o(m)) [45]. By applying the

reduction described in [52, Lemma 7.3] we can construct two unweighted graphs G and G′ with

O(m) vertices and edges, such that

• if ϕ is unsatisfiable, then #PerfMatch(G)−#PerfMatch(G′) = 0,

• if ϕ is satisfiable, then #PerfMatch(G) − #PerfMatch(G′) = c|V |, where |V | =

max{|V (G)|, |V (G′)|} and c ∈ (1, 2) can be computed in polynomial time.

So, 3USat on ϕ can be reduced to DiffPerfMatch=g on input (G,G′), where g(G,G′) =

c|V |. Thus an exp(o(m)) time randomized algorithm for DiffPerfMatch=g would contradict

rETH.

Remark 4.6. A different way to read Proposition 4.13 is the following. A positive result for

#PerfMatch would imply a corresponding positive result for DiffPerfMatch=g and there-

fore, for DiffSat=1. Of course, this positive result would be an exponential-time algorithm for

these problems!

For example, an fpras for #PerfMatch would yield an algorithm that distinguishes be-

tween

#PerfMatch(G)−#PerfMatch(G′) = cn and #PerfMatch(G)−#PerfMatch(G′) = 0

with high probability in time O(2mcn), where

n = max{|V (G)|, |V (G′)|} and m = max{|E(G)|, |E(G′)|} = O(n).

So, in time O(dn1), where d1 ∈ (1, 2).

A.Chalki Thesis 79

Chapter 4 On the power of counting the total number of paths

Because of the reduction of Proposition 4.13, the above algorithm is also an algorithm that

distinguishes between #Sat(ϕ)−#Sat(ϕ′) = 1 and #Sat(ϕ)−#Sat(ϕ′) = 0 with high prob-

ability in time O(dn2), d2 ∈ (1, 2), where n is the number of variables in ϕ, ϕ′. The same kind of

algorithm would then exist for all the problems in SPP. Among them

1. is the well-studied GraphIsomorphism [17], which is one of the NP problems that has

not been proven to be either NP-complete, or polynomial-time solvable so far [106, 19],

2. all the problems in UP, since UP ⊆ SPP (see Proposition 4.1).

4.2 Discussion of results

We conclude that knowing the least (resp. most) significant bit of a TotP function is as powerful

as knowing the least (resp. most) significant bit of a #P function. Also, the closure of TotP

under subtraction is the class GapP, i.e. it coincides with the closure of #P under subtraction.

This means that every gap-definable class is equivalent to a class defined by some property of

the gap of two TotP functions.

For the classes ⊕P, ModkP, SPP, WPP, C=P, and PP we obtained a family of complete

problems that are defined by TotP-complete problems under parsimonious reductions (and not

by #P-complete), or equivalently, by problems in P (and not by NP-complete ones). This was

not surprising for ⊕P and C=P, since complete problems defined by TotP functions (not even

known to be TotP-complete) were already known (see Proposition 4.6 and Proposition 4.11,

respectively). Interestingly, for the class C=P this complete problem is defined by the function

#PerfMatch. We determined analogous complete problems for WPP and PP.

Moreover, we showed that every SPP problem is decidable by the difference of #Perf-

Match on two graphs, which is promised to be either exponentially large or zero. The value of

the difference is exponentially large iff the instance of the SPP problem is a ‘yes’ instance. We

commented on the fact that an fpras for #PerfMatch would yield a randomized exponential-

time algorithm for every SPP problem (see Remark 4.6), such as GraphIsomorphism and

USat.

A.Chalki Thesis 80

Chapter 4 On the power of counting the total number of paths

A.Chalki Thesis 81

Chapter 5

Descriptive complexity of counting problems

the decision version of which is easy

In order to determine classes the problems of which admit efficient exact or approximate com-

putation, Arenas et al. [15] suggest to focus on classes that are contained in TotP and are robust

in the following sense: either they are closed under addition, multiplication, and subtraction

by one, or they have natural complete problems under parsimonious reductions. In general,

when we consider counting complexity classes, closure under addition and multiplication is de-

sirable, but also the three aforementioned closure properties allow us to manipulate witnesses of

the corresponding computational problems (add or remove witnesses). The latter requirement

guarantees that the class has a natural representative and the choice of parsimonious reductions

is due to the properties of these reductions we discuss in Chapter 2.

In the next paragraph we refer to some classes which are subclasses of TotP and either

satisfy the requirement of being robust or are contained in FPRAS. Most of them are defined in

the context of descriptive complexity.

#Σ1 and #RΣ2 are classes of counting problems that are reducible to #DNF under prod-

uct reductions [132], so problems that admit an fpras. The class ΣQSO(Σ2-Horn) has a natural

complete problem, namely #DisjHornSat, the problem of counting satisfying assignments for

disjunctions of Horn formulas [15]. The class ΣQSO(Σ1[FO]) is not known to have a natural

complete problem, but it is closed under addition, multiplication, and subtraction by one [15].

SpanL, which is the class of functions that count the number of different outputs of nonde-

terministic polynomial-time transducers, has a natural complete problem, namely #NFA, the

problem of counting the number of strings smaller than a string x that are accepted by a given

82

Chapter 5 Descriptive complexity of counting problems with easy decision version

NFA [9]. A quasi-polynomial randomized approximation scheme for #NFA was known for 25

years [96, 79], before an fpras was designed for the problem [14]. The latter result yields an fpras

for every problem in the class SpanL. It also makes SpanL the first and only class so far with a

Turing machine-based definition that is a subclass of FPRAS, but is not contained in FP (under

standard assumptions).

Already known relationships among the aforementioned classes and some other ones defined

in [132, 15] are depicted in Figure 5.1.

FPRASTotP

ΣQSO(Σ2-Horn) spanL #RΣ2ΣQSO(Σ1[FO])

FP

#Σ0

ΣQSO(Σ1)

#Σ1

Figure 5.1: Inclusions and separations that have been shown in [132, 123, 15, 14] under no assumption. The

following notation is used: A → B denotes A ⊆ B and A 7→ B denotes A ⊊ B.

5.1 Two robust subclasses of TotP: ΣQSO(Σ2-2SAT) and #Π2-1VAR

In this section, we complement previous work on robust subclasses of TotP. We introduce

two classes in the context of descriptive complexity, that have natural complete problems, the

decision versions of which are in the class P. Analogously to the classes #Σ1 and ΣQSO(Σ2-Horn)

for which the problems #DNF and #DisjHornSat are complete, repsectively, the classes

ΣQSO(Σ2-2SAT) and #Π2-1VAR introduced here, have the complete problems #Disj2Sat and

#MonSat, respectively.

We prove that several natural counting problems lie in these classes. Finally, we do not

expect these classes to be contained in FPRAS, since we prove that this would imply RP = NP.

5.1.1 The class ΣQSO(Σ2-2SAT)

First, we define the syntax and semantics of ΣQSO(Σ2-2SAT) formulas. To this end, we

will make use of the framework introduced by Arenas et al. [15] and described here in Subsec-

tion 1.4.2.

A.Chalki Thesis 83

Chapter 5 Descriptive complexity of counting problems with easy decision version

We define a literal to be either of the form X(−→x) or ¬X(−→x), where X is a second-order

variable and −→x is a tuple of first-order variables. A 2SAT clause over σ is a formula of the form

ϕ1 ∨ ϕ2 ∨ ϕ3, where each of the ϕi’s, 1 ≤ i ≤ 3, can be either a literal or a first-order formula

over σ. In addition, at least one of them is a first-order formula. The set of Σ2-2SAT formulas

over σ are defined as follows.

ψ := ∃−→x ∀−→y
k∧
j=1

Cj(
−→x ,−→y)

where −→x ,−→y are sequences of first-order variables, k ∈ N, and Cj are 2SAT clauses for every

1 ≤ j ≤ k.

The set of ΣQSO(Σ2-2SAT) formulas over σ is given by the following grammar.

α := ϕ | s | (α+ α) | Σx.α | ΣX.α (5.1)

where ϕ is a Σ2-2SAT formula, s ∈ N, x is a first-order variable, and X is a second-order

variable. So the syntax of ΣQSO(Σ2-2SAT) formulas includes only the counting operators of

addition +, Σx, ΣX, and in (5.1), ϕ is restricted to be a Σ2-2SAT formula.

Since ΣQSO(Σ2-2SAT) is a fragment of QSO formulas, the semantics of ΣQSO(Σ2-2SAT)

formulas can be obtained from Table 1.3 .

At this point, it is clear that for any ΣQSO(Σ2-2SAT) formula α, a function [[α]] is

defined.

Below we show that the class #RHΠ1 defined in [59] is contained in the class ΣQSO(Σ2-2SAT)

defined presently.

Definition 5.1 ([59]). A function f is in the class #RHΠ1 if, on any input structure A, f can

be expressed in the form

f(A) = |{⟨
−→
X,−→x ⟩ : A |= ∀−→y ψ(−→y ,−→x ,

−→
X)}|

where ψ is an unquantified CNF formula, in which each clause has at most one occurrence of

an unnegated variable from
−→
X and at most one occurrence of a negated variable from

−→
X .

Proposition 5.1. #RHΠ1 ⊆ ΣQSO(Σ2-2SAT).

Proof. Alternatively, the function f on a structure A can be expressed in the form

f(A) = [[Σ
−→
X.Σ−→x .∀−→y ψ(−→y ,−→x ,

−→
X)]](A).

The Restricted-Horn formula ψ is also a 2SAT formula. Therefore, f ∈ ΣQSO(Σ2-2SAT).

A.Chalki Thesis 84

Chapter 5 Descriptive complexity of counting problems with easy decision version

Proposition 5.2. The following graph problems belong to ΣQSO(Σ2-2SAT).

1. #2Col (counting 2 colorings of a graph).

2. #IS (counting independent sets of any size in a graph).

Proof. 1. Consider an input graph represented as a finite ordered structure G = ⟨V,E⟩. Then,

#2Col is defined by:

α2Col = ΣX.∀x∀y
(
E(x, y)→ (X(x) ∨X(y)) ∧ (¬X(x) ∨ ¬X(y))

)
.

2. The problem #IS is defined by:

αIS = ΣX.∀x∀y
(
E(x, y)→ (¬X(x) ∨ ¬X(y))

)
.

The class ΣQSO(Σ2-2SAT) contains problems that are tractable, such as #2Col, which is

known to be computable in polynomial time [61]. It also contains the problem #IS, which is AP-

interreducible with #Sat [59]. Finally, all the problems in #RHΠ1, such as #BIS, #1P1NSat,

and #Downsets [59], belong to ΣQSO(Σ2-2SAT) as well. The last three problems are complete

for #RHΠ1 under approximation preserving reductions and are believed to be of intermediate

complexity: neither they admit an fpras nor they are as hard as #Sat.

We next show that a generalization of #2Sat, which we will call #Disj2Sat, is complete

for ΣQSO(Σ2-2SAT) under parsimonious reductions.

Membership of #Disj2Sat in ΣQSO(Σ2-2SAT)

In propositional logic, a 2SAT formula is a conjunction of clauses that each one contains at

most two literals. In this subsection we assume that clauses of 2SAT formulas consist of exactly

two literals, since we can rewrite any clause of the form l, where l is a literal, as l ∨ l.

Definition 5.2. #Disj2Sat.

Input: A formula ϕ which is a disjunction of 2SAT formulas.

Output: The number of satisfying assignments of ϕ.

For example, the formula

(
(x1 ∨ x2) ∧ (¬x1 ∨ x3)

)
∨
(
(x2 ∨ ¬x3) ∧ (x3)

)
A.Chalki Thesis 85

Chapter 5 Descriptive complexity of counting problems with easy decision version

is a disjunction of two 2SAT formulas, where
(
(x1∨x2)∧ (¬x1∨x3)

)
is one of its two disjuncts,

(x1 ∨ x2) is one of its four clauses, and ¬x1 is one of its seven literals. The clause (x3) can be

rewritten as (x3 ∨ x3).

Theorem 5.1. #Disj2Sat ∈ ΣQSO(Σ2-2SAT).

Proof. Consider the vocabulary σ = {C3
1 , C

3
2 , C

3
3 , C

3
4 , D

2}. This vocabulary can encode any

formula which is a disjunction of 2SAT formulas. More precisely, C1(c, x, y) iff clause c is of

the form x ∨ y, C2(c, x, y) iff c is ¬x ∨ y, C3(c, x, y) iff c is x ∨ ¬y, C4(c, x, y) iff c is ¬x ∨ ¬y,

and D(d, c) iff clause c appears in the disjunct d.

Let ϕ be an input to #Disj2Sat encoded by an ordered structureA = ⟨A,C1, C2, C3, C4, D⟩,

where the universe A consists of elements representing variables, clauses, and disjuncts. Then,

it holds that the number of satisfying assignments of ϕ is equal to [[ΣT.ψ(T)]](A), where

ψ(T) := ∃d∀c∀x∀y
(
(¬D(d, c) ∨ ¬C1(c, x, y) ∨ T (x) ∨ T (y))∧

(¬D(d, c) ∨ ¬C2(c, x, y) ∨ ¬T (x) ∨ T (y))∧

(¬D(d, c) ∨ ¬C3(c, x, y) ∨ T (x) ∨ ¬T (y))∧

(¬D(d, c) ∨ ¬C4(c, x, y) ∨ ¬T (x) ∨ ¬T (y)
)

Thus, #Disj2Sat is defined by ΣT.ψ(T) which is a ΣQSO(Σ2-2SAT) formula.

Hardness of #Disj2Sat

Suppose we have a formula α in ΣQSO(Σ2-2SAT) and an input structure A over a vocab-

ulary σ. We describe a polynomial-time reduction that given α and A, it returns a propo-

sitional formula ϕαA which is a disjunction of 2SAT formulas and it holds that [[α]](A) =

#Disj2Sat(ϕαA). The reduction is a parsimonious reduction, i.e. it preserves the values of the

functions involved.

Theorem 5.2. #Disj2Sat is hard for ΣQSO(Σ2-2SAT) under parsimonious reductions.

Proof. By Proposition 1.11, α can be written in Σ2-2SAT-SNF, that is, in the following form.
m∑
i=1

Σ
−→
X i.Σ

−→x .∃−→y ∀−→z
n∧
j=1

Cij(
−→
X i,
−→x ,−→y ,−→z)

where each
−→
X i is a sequence of second-order variables and each Cij is a 2SAT clause. Each term

of the sum can be replaced by Σ
−→
X.Σ−→x .∃−→y ∀−→z

n∧
j=1

Cij(
−→
X i,
−→x ,−→y ,−→z)∧

∧
X ̸∈

−→
X i

∀−→u X(−→u) where
−→
X

A.Chalki Thesis 86

Chapter 5 Descriptive complexity of counting problems with easy decision version

is the union of all
−→
X i. Now we have expressed α in the following form.

m∑
i=1

Σ
−→
X.Σ−→x .∃−→y ∀−→z

n∧
j=1

ϕij(
−→
X,−→x ,−→y ,−→z).

The next step is to expand the first-order and sum quantifiers and replace their variables

with first-order constants from the universe A.

In this way, we obtain

αA :=
m∑
i=1

∑
−→a ∈A|−→x |

Σ
−→
X.

∨
−→
b ∈A|−→y |

n∧
i=1

∧
−→c ∈A|−→z |

ϕij(
−→
X,−→a ,

−→
b ,−→c).

Each first-order subformula of ϕij has no free-variables and is either satisfied or not satisfied

by A, so we can replace it by ⊤ or ⊥ respectively. Also, after grouping the sums and the

conjunctions, we get
m′∑
i=1

Σ
−→
X.

n1∨
j=1

n2∧
k=1

ψij,k(
−→
X).

The formulas ψij,k(
−→
X) are conjunctions of clauses that consist of ⊥, ⊤, and at most two

literals of the form Xt(
−→a l) or ¬Xt(

−→a l) for some second-order variable Xt and some tuple of

first-order constants −→a l. We can eliminate the clauses that contain a ⊤ and remove ⊥ from

the clauses that contain it. After this simplification, some combinations of variable-constants

may not appear in the remaining formula. For any such combination X(−→a), we add a clause

ψX,−→a := X(−→a) ∨ ¬X(−→a), since X(−→a) can have any truth value.

So, we have reformulated the above formula and we obtain

m′∑
i=1

Σ
−→
X.

n1∨
j=1

n′
2∧

k=1

ψij,k(
−→
X).

After replacing every appearance ofXt(
−→a l) by a propositional variable xtl, the part

n1∨
j=1

n′
2∧

k=1

ψij,k(
−→
X)

becomes a disjunction of 2SAT formulas. Finally, we introduce m′ new propositional variables

x1, ...xm′ and define

ϕαA :=
m′∨
i=1

n1∨
j=1

n′
2∧

k=1

ψij,k ∧ xi
∧
l ̸=i
¬xl.

The formula ϕαA is a disjunction of 2SAT formulas and the number of its satisfying as-

signments is equal to [[α]](A). Moreover, every transformation we described above, requires

polynomial time in the size of the input structure A.

A.Chalki Thesis 87

Chapter 5 Descriptive complexity of counting problems with easy decision version

It is known that #2Sat has no fpras unless RP = NP, since it is equivalent to counting all

independent sets in a graph [59]. Thus, problems hard for ΣQSO(Σ2-2SAT) under parsimonious

reductions, cannot admit an fpras unless RP = NP.

Proposition 5.3. ΣQSO(Σ2-2SAT) ̸⊆ FPRAS unless RP = NP.

Inclusion of ΣQSO(Σ2-2SAT) in TotP

Several problems in ΣQSO(Σ2-2SAT), like #1P1NSat, #IS, #2Col, and #2Sat are also in

TotP. We next prove that this is not a coincidence.

Theorem 5.3. ΣQSO(Σ2-2SAT) ⊆ TotP.

Proof. Since TotP is exactly the closure under parsimonious reductions of self-reducible functions

in #PE [123], it suffices to show that the ΣQSO(Σ2-2SAT)-complete problem #Disj2Sat is such

a function.

First of all, the decision version Disj2Sat of #Disj2Sat belongs to P. Thus #Disj2Sat ∈

#PE. Secondly, every counting function associated with the problem of counting satisfying

assignments of a propositional formula is self-reducible. So #Disj2Sat has this property as

well. Therefore, any ΣQSO(Σ2-2SAT) formula α defines a function [[α]] that belongs to

TotP.

Corollary 5.1. #RHΠ1 ⊆ TotP.

Proof. Immediate from Proposition 5.1 and Theorem 5.3.

5.1.2 The class #Π2-1VAR

To define the second class #Π2-1VAR, we will use the framework presented in [132] and described

in Subsection 1.4.1.

We say that a counting problem #B belongs to the class #Π2-1VAR if for any ordered

structure A over a vocabulary σ, which is an input to #B, it holds that

#B(A) = |{⟨X⟩ : A |= ∀−→y ∃−→z ψ(−→y ,−→z ,X)}|.

The formula ψ(−→y ,−→z ,X) is of the form ϕ(−→y ,−→z)∧X(−→z), where ϕ is a first-order formula over σ

and X is a positive appearance of a second-order variable. We call the formula ψ a variable, since

A.Chalki Thesis 88

Chapter 5 Descriptive complexity of counting problems with easy decision version

it contains only one second-order variable. Moreover, we allow counting only the assignments

to the second-order variable X under which the structure A satisfies ∀−→y ∃−→z ψ(−→y ,−→z ,X).

Proposition 5.4. The following graph problems belong to #Π2-1VAR.

1. #VC (counting vertex covers of any size in a graph).

2. #IS (counting independent of any size in a graph).

3. #DS (counting dominating sets of any size in a graph).

4. #EC (counting edge covers of any size in a graph).

Proof. 1. An input graph G to #VC can be encoded as a finite structure G using the vocab-

ulary σ = {V 1, EndPoint2}. The universe is the set of vertices and edges. V (u) iff vertex

u is a vertex and EndPoint(e, u) iff vertex u is an endpoint of edge e. Then,

#VC(G) = |{⟨V C⟩ | G |= ∀x∃y
(
(V (x) ∨ EndPoint(x, y)) ∧ V (y) ∧ V C(y)

)
}|.

So, #VC ∈ #Π2-1VAR.

2. An input graph G to #IS is encoded as a finite structure G exactly as in the case of #VC.

Then,

#IS(G) = |{⟨NIS⟩ | G |= ∀x∃y
(
(V (x) ∨ EndPoint(x, y)) ∧ V (y) ∧NIS(y)

)
}|

where NIS(y) indicates that vertex y is not in the independent set. #IS is expressed in

the exact same way as #VC, since the number of vertex covers in a graph is equal to the

number of independent sets. Hence, #IS ∈ #Π2-1VAR.

3. An input graph G to #DS can be encoded as a finite structure G over the vocabulary

σ = {E2}, where the universe is the set of vertices and E is the edge relation. Then,

#DS(G) = |{⟨DS⟩ | G |= ∀x∃y
(
(x = y ∨ E(x, y)) ∧DS(y)

)
}|.

4. An input graph G to #EC can be encoded as a finite structure G as in the case of #DS.

Then,

#EC(G) = |{⟨EC⟩ | G |= ∀x∃y
(
E(x, y) ∧ EC(x, y)

)
}|.

A.Chalki Thesis 89

Chapter 5 Descriptive complexity of counting problems with easy decision version

Completeness of #MonSat for #Π2-1VAR

Definition 5.3. #MonSat.

Input: A formula ϕ in CNF, in which all variables appear positive.

Output: The number of satisfying assignments of ϕ.

Theorem 5.4. #MonSat ∈ #Π2-1VAR.

Proof. Consider the vocabulary σ = {V ar1, C2} with V ar(x) to indicate that x is a variable

and the binary relation C(c, x) to indicate that the variable x appears in the clause c. Given

a σ-structure A = ⟨A, V ar, C⟩ that encodes a formula ϕ, which is an input to #MonSat, it

holds that #MonSat(ϕ)=|{⟨T ⟩ : A |= ∀c∃x
(
(V ar(c)∨C(c, x))∧V ar(x)

)
∧T (x)

)
}|. Therefore,

#MonSat ∈ #Π2-1VAR.

Theorem 5.5. #MonSat is hard for #Π2-1VAR under product reductions.

Proof. We show that there is a polynomial-time product reduction from any #B ∈ #Π2-1VAR

to #MonSat. This means that there are polynomial-time computable functions g and h, such

that for every strucrure A that is an input to #B we have #B(A) = #MonSat
(
g(A)

)
· h(A).

Suppose we have a problem #B ∈ #Π2-1VAR and a structure A over σ. Then, there exists

a formula ψ of the form ψ(−→y ,−→z ,X) = ϕ(−→y ,−→z) ∧ X(−→z) such that #B(A) = |{⟨X⟩ : A |=

∀−→y ∃−→z ψ(−→y ,−→z ,X)}|.

The formula ∀−→y ∃−→z ψ(−→y ,−→z ,X) can be written in the form

∧
−→a ∈A|−→y |

∨
−→
b ∈A|−→z |

ϕ(−→a ,
−→
b) ∧X(

−→
b).

By substituting first-order subformulas by ⊤ or ⊥ and simplifying, we obtain χψA :=
n1∧
i=1

n2∨
j=1

X(
−→
b i,j), where each

−→
b i,j is a tuple of first-order constants. To define χψA , we have

simplified the subformulas containing ⊥ and ⊤. As a result, there may be some combinations of

the second-order variableX and first-order constants that do not appear in χψA . Let n(A) be the

number of these combinations. The last transformation consists of replacing every X(
−→
b i,j) with

a propositional variable xij , so we get the output of the function g, which is g(A) :=
n1∧
i=1

n2∨
j=1

xi,j .

This formula has no negated variables, so it can be an input to #MonSat. Finally, since the

missing n(A) variables can have any truth value, we have #B(A) = #MonSat
(
g(A)

)
·2n(A).

A.Chalki Thesis 90

Chapter 5 Descriptive complexity of counting problems with easy decision version

#MonSat does not admit an fpras if a variable can appear in 6 clauses unless RP = NP.

In the case of monotone CNF formulas where each variable appears at most 5 times, the

problem has an fptas [114]. So, we have the following result.

Proposition 5.5. #Π2-1VAR ̸⊆ FPRAS unless RP = NP.

Inclusion of #Π2-1VAR in TotP

Theorem 5.6. #Π2-1VAR ⊆ TotP.

Proof. #MonSat ∈ TotP, since it has an easy decision version; a monotone CNF formula has

always a satisfying assignment, the one in which every variable is set to true. Also, TotP is closed

under product reductions by Proposition 1.10. Thus, every counting problem in #Π2-1VAR

belongs to TotP.

The following corollary can be obtained using standard reductions between counting prob-

lems. However, it is interesting that any problem in #Π2-1VAR inherits positive results for

#MonSat, since product reductions preserve the existence of fptas and fpras [132].

Corollary 5.2. (a) #VC, #IS, and #EC admit a fully polynomial-time deterministic scheme

(fptas) in graphs with maximum degree 5.

(b) #DS admits an fptas in graphs with maximum degree 4.

Proof. Consider #VC. If each vertex has degree at most 5, then after the reduction to #Mon-

Sat, we come up with a formula which is equivalent to a monotone formula in which every

variable appears in at most 5 clauses. But #MonSat restricted to such inputs, admits an

fptas [114] and product reductions preserve the existence of fptas (or fpras) [132].

Similar arguments hold for #IS, #DS, and #EC as well.

Remark 5.1. Corollary 5.2 is not surprising. We could obtain the same result via immediate

reductions from #VC, #IS, #DS, and #EC to #MonSat. In addition the following algo-

rithms are known for the aforementioned problems: (a) #EC admits an fptas [113], (b) #IS in

graphs with maximum degree 5 has an fptas [155], (c) the problem of counting dominating sets

in regular graphs admits an fptas when the maximum degree of the graph is ≤ 5 or ≥ 199 [37].

The introduction of #Π2-1VAR can yield similar results for any problem that lies in this

class.

A.Chalki Thesis 91

Chapter 5 Descriptive complexity of counting problems with easy decision version

Although completeness of #MonSat for #Π2-1VAR under product reductions, is the first

completeness result for #MonSat under reductions stronger than Turing, we would like to

prove #MonSat complete for a class under reductions for which the class is downwards closed.

This is a question raised by Hemaspaandra et al. [84]. Regarding the closure under parsimonious

and product reductions of #MonSat and #Π2-1VAR, we can say the following.

Proposition 5.6. (a) Closure≤p
pars

(#MonSat) ⊆ Closure≤p
pr
(#MonSat).

(b) Closure≤p
pr
(#Π2-1VAR) ⊆ Closure≤p

pr
(#MonSat) ⊆ Closure≤p

pr
(TotP). The first inclusion

is strict unless the class #Π2-1VAR is closed under product reductions. The second one is

strict unless #MonSat is complete for TotP under product reductions.

Relationships among TotP, FPRAS, and the classes defined here are depicted in Figure 5.2.

#P#PE

FPRASTotP

ΣQSO(Σ2-2SAT) #Π2-1VAR

#RHΠ1

Figure 5.2: Inclusions and separations in the case of P = RP ̸= NP. The following notation is used: A → B

denotes A ⊆ B, A ⊣ B denotes A ̸⊆ B, and A 7→ B denotes A ⊊ B.

5.2 A logical characterization of TotP

The logical characterization of #P is based on writing a ΣQSO(FO) formula that is essentially

a sum over all accepting paths. In the case of TotP we start from the logic ΣQSO(∃SO) which

allows us to express the existence of a branching. Once we find a branching we want to add 1

and continue recursively. Since the Turing machine is of polynomial time, the recursion suffices

to be of polynomial depth.

So, at first, we describe a logic, namely RΣQ∃SO, which is more expressive than ΣQSO(FO).

It is ΣQSO(∃SO) equipped with recursion. In this logic, we can express every TotP problem

based on the fact that it is self-reducible. We are going to give an example for #DNF.

A.Chalki Thesis 92

Chapter 5 Descriptive complexity of counting problems with easy decision version

Formally, in Subsection 5.2.1, we define logics equipped with a polynomially-bounded par-

tial fixed point operator over functions f : (P(Ak))l → N, which means that a function f takes

l sets in P(Ak) as arguments (in other words, l relations of arity k).

5.2.1 Functions over relations and recursion in QSO

First, we add the infinite set SOFS of second-order function symbols f to ΣQSO(∃SO). Each

symbol has an associated arity, denoted by arity(f). The set of SOk-FΣQSO(∃SO) formulas

over a vocabulary σ is defined by the following grammar:

α := ϕ | s | f(X1, ..., Xl) | (α+ α) | (α · α) | ΣX.α (5.2)

where f ∈ SOFS, arity(f) = l, and X1, ..., Xl is a sequence of second-order variables with

arity(Xi) = k for every 1 ≤ i ≤ l. Subscript k designates that for all i ∈ {1, ..., l}, Xi is of arity

k. As we already explained, ϕ is restricted to be an existential second-order formula.

Given a structure A over σ, F is a function assignment for A, if for every f ∈ SOFS with

arity(f) = l,

F (f) : (P(Ak))l → N.

Given first- and second-order assignments v and V for A, respectively, it holds that:

[[f(X1, ..., Xl)]](A, v, V, F) = F (f)(V (X1), ..., V (Xl)).

The domain of the function symbols we introduce here, consists of sets of k-tuples of the

universe. That’s why we call them second-order function symbols. Function symbols defined

in [15], representing functions h : Al → N, can be seen as first-order function symbols.

In the same way, given a logic L, we obtain SOk-FL by adding the function symbols in

SOFS into the syntax.

We define now the logic RSOk-ΣQSO(∃SO), where RSOk stands for second-order re-

cursion. The set of RSOk-ΣQSO(∃SO) formulas over σ includes ΣQSO(∃SO) formulas and

the formula [pbfpf α](
−→
X), where

−→
X = (X1, ..., Xl) is a sequence of l distinct second-order vari-

ables and α(
−→
X, f) is an SOk-FΣQSO(∃SO) formula with only one function symbol f with

arity(f) = l. The free variables of [pbfpf α](
−→
X) are X1, ..., Xl (and f is not considered to be

free).

Finally, RSO-ΣQSO(∃SO) =
⋃
kRSOk-ΣQSO(∃SO). RSO stands for second-order

recursion, ΣQSO represents that addition quantifiers over second-order variables are used, and

A.Chalki Thesis 93

Chapter 5 Descriptive complexity of counting problems with easy decision version

(∃SO) represents that ϕ in (5.2) is an existential second-order formula. In sequel we denote the

logic RSO-ΣQSO(∃SO) by RΣQ∃SO.

Define SOFk to be the set of all functions h : (P(Ak))l → N. Let A be a structure over

σ and [pbfpf α](
−→
X) with arity(f) = l. To define the semantics of [pbfpf α](

−→
X), we interpret

α(
−→
X, f) as an operator Tα on SOFk. For every h ∈ SOFk and (S1, ..., Sl) ∈ (P(Ak))l, it holds

that:

Tα(h)(
−→
S) = [[α(

−→
X, f)]](A, V, F)

where V is a second-order assignment for A such that V (Xi) = Si, i ∈ {1, ..., l}, and F is a

function assignment for A such that F (f) = h.

Our first attempt would be to use the Tarksi-Knaster Theorem to prove that a least fixed

point exists for an order-preserving Tα. In this direction, we define the partial order ≤f on

SOFk as follows: For two functions f, g with arity(f) = arity(g) = l, it holds that f ≤f g if

f(
−→
S) ≤ g(

−→
S) for every

−→
S . However, the requirement of (SOFk,≤f) being a complete lattice,

is not satisfied. A second idea would be to consider the support of a function and define h to

be a fixed point of Tα if supp(Tα(h)) = supp(h) [15]. But there are cases in which the support

of the operator reaches a least fixed point, but the function we are interested in, still increases.

We resolve this problem by defining the partial fixed point of an operator Tα along the

lines of [112]. Let us consider the sequence of functions {hi}i∈N, hi : (P(Ak))l → N, where

h0(
−→
S) = 0 for every

−→
S ∈ (P(Ak))l and let hi+1 be defined as Tα(hi) for every i ∈ N. Then,

there are two possibilities: either there exists some n ∈ N such that hn+1(
−→
S) = hn(

−→
S) for every

−→
S ∈ (P(Ak))l, and thus we say that hj = hn for every j ⩾ n, or there is no such n. If the first

case holds, then n ≤ 2l·|A|
k . So, it would be reasonable to define pfp(Tα) as follows:

pfp(Tα) =


fn if fn = fn+1,

f0 if fn ̸= fn+1 for all n ≤ 2l·|A|
k
.

Here we slightly change this definition. Let m be the maximum arity of a second-order variable

bounded by a quantitative quantifier, i.e. Σ or Π, in α. Then, we define the p-bounded (partial)

fixed point of an operator Tα to be the following.

pbfp(Tα) =


fn if fn = fn+1 for some n ≤ |A|m

f|A|m if fn ̸= fn+1 for all n ≤ |A|m.

A.Chalki Thesis 94

Chapter 5 Descriptive complexity of counting problems with easy decision version

We define the semantics of [pbfpf α](
−→
X) to be the p-bounded fixed point of Tα. More precisely,

[[[pbfpf α](
−→
X)]](A, V) =


fn(V (

−→
X)) if fn = fn+1 for some n ≤ |A|m,

fl(V (
−→
X)) otherwise, where l = |A|m.

(5.3)

We give an example of a TotP problem that belongs to RΣQ∃SO.

Example 5.1. The problem #DNF is in RSO1-ΣQSO(∃SO). Let σ = {V 1, D1, Pos2,

Neg2} be the vocabulary of a DNF formula and Aϕ = ⟨A = {v1, v2, ..., vn, d1, ...,

dn′}, V,D, Pos,Neg⟩ be a structure over σ, encoding an input ϕ. The universe contains n

variables and n′ disjuncts, relations V (v) and D(d) indicate that v, d are a variable and a

disjunct repsectively, whereas Pos(d, v) (resp. Neg(d, v)) means that variable v appears positive

(resp. negative) in disjunct d.

#DNF is defined as the p-bounded fixed point of formula dnf(True, False, f) given below.

dnf(True, False, f) :=∃T sat(T) ∧ EndOfRecursion+

ΣT1.ΣF1. (t1(T1) ∧ f1(F1)) · f(T1, F1)+

ΣT0.ΣF0. (t0(T0) ∧ f0(F0)) · f(T0, F0)

Now we give details for each subformula of dnf(True, False, f). The idea behind this formula is

that we start with empty relations True and False and at each recursive step, we fix a variable

vi to be either true or false. When all variables are set to either true or false, the recursion

ends.

1. EndOfRecursion := ∀v(V (v)→ True(v)∨False(v)). Formula EndOfRecursion is true when

we have assigned a truth value to every variable.

2. sat(T) := ∃d∀v
(
D(d) ∧ (Pos(d, v)→ T (v)) ∧ (Neg(d, v)→ ¬T (v)) ∧ (True(v)→ T (v)) ∧

(False(v)→ ¬T (v))
)
. Formula sat(T) states that there is a satisfying assignment for the

formula ϕ, when we have fixed some variables to either true or false. The fixed truth values

are given by the relations True and False.

3. The minimum variable that has not been assigned a truth value yet can be defined by the

formula min(vmin) := ∃d
(
Pos(d, vmin)∨Neg(d, vmin)

)
∧
(
¬True(vmin)∧¬False(vmin)

)
∧

∀v
(
(¬True(v) ∧ ¬False(v))→ v ⩾ vmin

)
.

4. Formula t1(T1) says that there exists a variable that appears in formula ϕ and has not been

assigned a truth value yet and sets the value of the minimum such variable to true. So,

A.Chalki Thesis 95

Chapter 5 Descriptive complexity of counting problems with easy decision version

t1(T1) = ∃vmin
(
min(vmin) ∧ T1(vmin) ∧ ∀u

(
u ̸= vmin → (T1(u) ↔ True(u))

))
. In other

words, t1(T1) defines the relation T1 that agrees with relation True on the values of all

variables, except one; T1 is also true for the minimum variable assigned neither to true

nor to false at the current step of recursion.

5. Formula f1(F1) defines relation F1 to be exactly the relation False. So, f1(F1) = ∀v(F1(v)↔

False(v)).

6. Similarly, t0(T0) defines T0 such that it is the relation True, whereas f0(F0) defines F0 to

be the extension of False that also holds for the minimum variable not assigned to either

true or false yet.

Then, [[[pbfpf dnf](True, Fasle)]](Aϕ, V) gives the number of satisfying assignments of

ϕ, where V is a second-order assignment for Aϕ such that V (True) = ∅ and V (False) = ∅.

Note that after n steps all variables are set to true or false and the recursion requires n + 1

steps until f0, f1, ... stabilizes. The maximum arity of a second-order variable bounded by the

quantifier Σ is m = 1 and the size of the universe is n+n′. So, #DNF(Aϕ) = fn+1(∅, ∅), where

n+ 1 ≤ |A|m = n+ n′.

5.2.2 A logic for expressing TotP functions

Let N be an NPTM that has a binary computation tree and uses time nc − 1 for inputs of size

n. We assume that N is the quintuple N = {Q,Σ, δ, qI , qF }, where Q = {q0, ..., qd−1} is the set

of states of size |Q| = d, Σ = {0, 1} the alphabet, qI = q0 is the initial state, and qF = qd−1 is

the final state. Let also k = max{c, ⌈log d⌉}. Here we assume that the tape of machine N is of

length nk and that once the machine accepts or rejects, it clears its tape, it moves its cursor all

the way to the left, and enters a unique final state qF . The transition relation δ maps a pair in

Q× (Σ ∪ { }) to at most two triples in Q× (Σ ∪ { })× {Stay, Left,Right}. If δ maps a pair

to only one triple, then we say that only choice 0 is possible. An input x of size n is encoded

by a structure Ax = ⟨{0, 1, ..., n− 1}, B⟩, where B represents the positions where x is 1.

We are going to describe the formula tot(T,E, P,Q, f) such that the interpretation of

[pbfpf tot](T,E, P,Q) gives the number of branchings of N , which is sufficient by Remark 1.4.

Second-order variables T (contents of the tape), E (end of zeros and ones on the tape), P

(position of the cursor), Q (state of the machine), each of arity k, will encode a configuration

of NPTM N .

A.Chalki Thesis 96

Chapter 5 Descriptive complexity of counting problems with easy decision version

To construct tot we need the following subformulas.

DetComp(S0, ..., Sm,
−→
t∗) which expresses the existence of a deterministic

computation on an input, encoded by the k-ary relations T,E, P,Q until

time −→t∗ .

NonDetChoice(S0, ..., Sm,
−→
t∗) which expresses that −→t∗ is the first time step

a nondeterministic choice is made during the computation.

∆i(S0, ..., Sm, Ti, Ei, Pi, Qi,
−→
t∗) which defines the contents of the tape,

the position of the cursor, and the state of N at time −→t∗ + 1 if nondermi-

nistic choice i was made at time −→t∗ ,where i ∈ {0, 1}.

Formula DetComp(S0, ..., Sm,
−→
t∗) is the formula given in the proof of Fagin’s Theorem [88]

with a few modifications.

DetComp(S0, ..., Sm,
−→
t∗) := input(S0, ..., Sm) ∧ transition(S0, ..., Sm,

−→
t∗)∧

nonfinal(S0, ..., Sm,
−→
t∗) ∧ deterministic(S0, ..., Sm,

−→
t∗)

where Si, 0 ≤ i ≤ m, are 2k-ary relations such that Si(−→s ,
−→
t) encodes that cell −→s contains

the symbol i at time −→t . Symbol i is one of 0, 1, when the cursor is not on cell −→s , or a

combination (q, σ) ∈ Q×{0, 1, }, when the cursor is on cell −→s . Recall that the input structure

has n elements ordered by a total order ≤, so we can use k-tuples of these n elements, to encode

nk cells (or time steps) and define the lexicographic order on them, which again we denote by

≤. We are going to use the expressions −→s ≤ −→u , −→s < −→u , −→s + 1, −→s + 1, −−→smax, −−→smin which are

all definable in first-order logic. Also, when we write −→si , we mean the i-th smallest cell with

respect to ≤. We use similar notation for time steps.

As for the second-order variables T,E, P,Q, T (−→si) is true iff cell −→si has the symbol 1, E(−→si)

denotes that all cells greater than −→si have the symbol , P (−→si) indicates that the cursor is on

cell −→si , and Q(−→si) means that N is in state qi. When we write E(−→si) (resp. P (−→si), Q(−→si)), it

is a shorthand for E(−→si) ∧ ∀−→u (−→u ̸= −→si → ¬E(−→u)) (resp. P (−→si) ∧ ∀−→u (−→u ̸= −→si → ¬P (−→u)),

Q(−→si) ∧ ∀−→u (−→u ̸= −→si → ¬Q(−→u))).

From now on, we denote the quadruple (T,E, P,Q) by
−→
C and the sequence (S0, ..., Sm)

by
−→
S . Note that we need both sequences

−→
C and

−→
S . Relations

−→
C encode a configuration,

A.Chalki Thesis 97

Chapter 5 Descriptive complexity of counting problems with easy decision version

let’s say c, which is the starting point of a deterministic computation. Then,
−→
S encode the

deterministic computation of N starting at c. When the first nondeterministic choice is made,

the configuration of the machine after this choice is copied again into
−→
C and the recursive

computation continues.

Formulas input, transition, nonfinal, and deterministic are defined below. Given a configura-

tion of N , formula input is used to force sequence
−→
S = (S0, ..., Sm) to encode this configuration

at time
−→
0 . The configuration is not necessarily the initial configuration of N and it corresponds

to some state qi, i ∈ {0, ..., d − 1}, some contents of the tape, and a position of the cursor.

These information will be passed to
−→
S and the time will be set to

−→
0 . So, for each state qi

we will need a different subformula statei, 0 ≤ i ≤ d − 1, which has free second-order variables
−→
Si = (S0, S1, S , S(0,qi), S(1,qi), S(,qi)).

statei(
−→
Si) := ∀−→s

(
E(−→s)→ ∀−→u

(−→u ≤ −→s →(
¬T (−→u) ∧ ¬P (−→u)→ S0(

−→u ,−→0)
)
∧(

T (−→u) ∧ ¬P (−→u)→ S1(
−→u ,−→0)

)
∧(

¬T (−→u) ∧ P (−→u)→ S(0,qi)(
−→u ,−→0)

)
∧(

T (−→u) ∧ P (−→u)→ S(1,qi)(
−→u ,−→0)

)
∧

−→u > −→s →
(
¬P (−→u)→ S (−→u ,−→0)

)
∧(

P (−→u)→ S(,qi)(
−→u ,−→0)

)))
Furthermore, for every tuple (−→u ,−→0), we want exactly one Sl, 0 ≤ l ≤ m, to be true. For

example, if for some −→u we have that T (−→u)∧P (−→u) is true, this should imply that S(1,qi)(
−→u ,−→0)∧∧

j ̸=(1,qi)

¬Sj(−→u ,
−→
0) is also true. So, we add similar conjunctions to every subformula above, such

that whenever Sl(−→u ,
−→
0) holds, no other Sj , j ̸= l, holds for the tuple (−→u ,−→0).

Now, we can define formula input as follows.

input(
−→
S) :=

∧
0≤i≤d−1

∀−→v
(−→v = −→si ∧Q(−→v)

)
→ statei(

−→
Si)

Formula transition describes all the deterministic transitions that can be made by N until

time step −→t∗ .

transition(
−→
S ,
−→
t∗) := ∀−→s ∀

−→
t (
−→
t <

−→
t∗)→∧

(i1,i2,i3)→d(i4)

Si1(
−→s − 1,

−→
t) ∧ Si2(−→s ,

−→
t) ∧ Si3(−→s + 1,

−→
t)→ Si4(

−→s ,−→t + 1)∧

∧
i ̸=i4

Si1(
−→s − 1,

−→
t) ∧ Si2(−→s ,

−→
t) ∧ Si3(−→s + 1,

−→
t)→ ¬Si(−→s ,

−→
t + 1)

A.Chalki Thesis 98

Chapter 5 Descriptive complexity of counting problems with easy decision version

where (i1, i2, i3) →d (i4) means that the configuration corresponding to −→s − 1,−→s and −→s + 1

containing i1, i2, and i3, respectively, is mapped deterministically to the configuration that

cell −→s contains i4. In other words, the conjunction is over all possible transitions that are

deterministic. Trivial transitions for cell contents that do not change and a conjunction which

states that for every tuple (−→s ,−→t) with −→t >
−→
t∗ no Sj is true are also included in the formula

transition.

Formula nonfinal guarantees that the computation has not reached its final state before

time −→t∗ .

nonfinal(
−→
S ,
−→
t∗) := ∀

−→
t
(−→
t <

−→
t∗ → ¬S(,qF)(

−→s min,
−→
t)

)
.

Formula deterministic states that the computation from time
−→
0 until time −→t∗ − 1 is deter-

ministic. Equivalently, at all time steps before −→t∗ , only choice 0 can be made by N , since there

is no possibility of a branching. Let γ1, ..., γp ∈ Q×{0, 1, } be exactly the symbol combinations

that lead to a nondeterministic choice. Then deterministic can be written as follows:

deterministic(
−→
S ,
−→
t∗) := ∀

−→
t ∀−→s

(−→
t <

−→
t∗ →

∧
γ∈{γ1,...,γp}

¬Sγ(−→s ,
−→
t)

)
.

Formula NonDetChoice(
−→
S ,
−→
t∗) expresses that −→t∗ is a time step at which a nondeterministic

choice is made by N .

NonDetChoice(
−→
S ,
−→
t∗) := ∃−→s

∨
γ∈{γ1,...,γp}

Sγ(
−→s ,−→t∗)

Formula ∆i(
−→
S ,
−→
Ci,
−→
t∗), i ∈ {0, 1}, defines relations

−→
Ci = (Ti, Ei, Pi, Qi), which encode the

configuration of N at time step −→t∗ + 1, if nondeterministic choice i was made at −→t∗ .

For example, if nondeterministic choice 1 was made at −→t∗ and S(0,q5)(
−→s3 ,
−→
t∗) represents that

this choice was made while N was in state q5, the cursor was on cell −→s3 , and −→s3 contained the

symbol 0, then the following formula encodes the transition that is made.(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→(

Q1(
−→si1) ∧ E1(

−→si2) ∧ P1(
−→si3) ∧

∧
−→s contains 1
at time −→

t∗+1

T1(
−→s)

)

where −→si2 is the greatest cell containing either 0 or 1, −→si3 ∈ {−→s2 ,−→s3 ,−→s4} is the position of the

cursor, and qi1 is the state of N at time step −→t∗ + 1. The first line represents the contents of

A.Chalki Thesis 99

Chapter 5 Descriptive complexity of counting problems with easy decision version

the tape at −→t∗ . We define formula γ∆i
j (
−→
S ,
−→
Ci,
−→
t∗) to be a conjunction of such formulas so that

it describes the transition from any configuration of the machine where Sγj (
−→s ,−→t∗) holds for

some −→s , to the configuration determined by choice i. The latter configuration is encoded by

Ti, Ei, Pi, Qi. So, for i ∈ {0, 1}:

∆i(
−→
S ,
−→
Ci,
−→
t∗) :=

∧
j∈{1,...,p}

γ∆i
j (
−→
S ,
−→
Ci,
−→
t∗)

Finally, let branching(
−→
S ,
−→
t∗) := DetComp(

−→
S ,
−→
t∗) ∧ NonDetChoice(

−→
S ,
−→
t∗). Formula tot is

defined as follows.

tot(
−→
C , f) :=∃

−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗)+

Σ
−→
C0.

(
∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆0(

−→
S ,
−→
C0,
−→
t∗)

)
· f(
−→
C0)

)
+

Σ
−→
C1.

(
∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆1(

−→
S ,
−→
C1,
−→
t∗)

)
· f(
−→
C1)

)
.

We have that

totN (x) = [[[pbfpf tot](
−→
C)]](Ax, VI)

where VI is a second-order assignment for Ax such that VI(T) = TI , VI(E) = EI , VI(P) = PI ,

VI(Q) = QI , and TI , EI , VI , QI are relations which represent the initial configuration of N . We

describe how this is possible by giving an FO formula that defines TI , EI , VI , QI .

Let B be the relation that encodes the input structure as a binary string of length n. We

assume that the cursor is on the first cell when N starts its computation and the input ends

at the (n− 1)-th cell. Let inputrulei, 0 ≤ i ≤ 2n − 1, be formulas that describe how relation B

defines relation T . For example, inputrule0(T) = ∀x¬B(x)→ ∀−→s ¬T (−→s). Then,

ψI := ∃TI∃EI∃PI∃QI
(
QI(
−→s0) ∧ EI(−−→sn−1) ∧ PI(−→s0) ∧

∧
0≤i≤2n−1

inputrulei(TI)
)

Note that tot is an RSOk-ΣQSO(∃SO) formula. The operator Ttot reaches a fixed point

in polynomially many steps; since the machine N runs for nc−1 steps, the formula nonfinal will

become false after at most nc−1 recursive steps. So, fnc(TI , EI , PI , QI) = fnc−1(TI , EI , PI , QI).

The maximum arity of a second-order variable bounded by the quantifier Σ is k ⩾ c. So the

interpretation of [pbfpf tot](
−→
C) returns the correct value, which is the number of branchings of

N .

A.Chalki Thesis 100

Chapter 5 Descriptive complexity of counting problems with easy decision version

A formula for counting the number of computation paths of N .

We can also write a formula, such that its interpretation is equal to the total number of paths

of N . Let FinalState be the formula

input(
−→
S) ∧ transition(

−→
C ,
−→
t∗) ∧ deterministic(

−→
S ,
−→
t∗) ∧ final(

−→
S ,
−→
t∗)

which is true if the machine reaches a final state at −→t∗ after a deterministic computation starting

from
−→
0 .

totpaths(
−→
C , f) := ∃

−→
S ∃−→t∗ FinalState(

−→
S ,
−→
t∗)+

Σ
−→
C0.

(
∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆0(

−→
S ,
−→
C0,
−→
t∗)

)
· f(
−→
C0)

)
+

Σ
−→
C1. [∃

−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆1(

−→
S ,
−→
C1,
−→
t∗)

)
· f(
−→
C1)].

In this case it holds that

[[[pbfpf totpaths](
−→
C)]](Ax, VI) = #(paths of N on input x) = totN (x) + 1.

5.2.3 A logic that captures TotP

Actually, we do not need the expressive power of RΣQ∃SO to write formula tot. First, notice

that all second-order formulas in tot can be reduced to propositional formulas the satisfiability

of which belongs to P. In more detail, they are reducible to disjunctions of Horn formulas.

Second, the formula

∃
−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗)

appears as a subformula in every summand that the function symbol f appears. Thus, we can

write tot in the form

tot(
−→
X, f) =∃

−→
X∃−→x ϕ0(

−→
X,−→x)+

Σ
−→
Y .∃
−→
X∃−→x

(
ϕ0(
−→
X,−→x) ∧ ϕ1(

−→
X,
−→
Y)

)
· f(
−→
Y)+

Σ
−→
Y .∃
−→
X∃−→x

(
ϕ0(
−→
X,−→x) ∧ ϕ2(

−→
X,
−→
Y)

)
· f(
−→
Y)

Finally, formula ∆0 (resp. ∆1) defines unique relations T0, E0, P0, and Q0 (resp. T1, E1,P1, and

Q1). Although the operators ΣT0, ΣE0, ΣP0, and ΣQ0 require the evaluation of the succeeding

formula

∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧∆0(

−→
S , T0, E0, P0, Q0,

−→
t∗)

)
· f(T0, E0, P0, Q0)

for every possible assignment for T0, E0, P0, Q0, the formula will be evaluated to zero for all

assignments but one. For the unique assignment defined by ∆0, the formula will be evaluated

to some natural number.

A.Chalki Thesis 101

Chapter 5 Descriptive complexity of counting problems with easy decision version

In what follows, first we give some formal definitions based on the observations we just

made. Then, we define a subclass of RΣQ∃SO and show that it captures the class TotP.

Definition 5.4. We say that ϕ is an SOE (SO-Easy) formula if ϕ is an existential second-

order formula ϕ = ∃
−→
Xψ(

−→
X), where

•
−→
X = (X1, ..., Xk), k ∈ N, is a sequence of second-order variables and

• ψ(
−→
X) is a Σ2-Horn formula, which means that ψ is of the form

ψ(
−→
X) = ∃−→x

∨
i

∀−→y χi(
−→
X,−→x ,−→y)

where each χi is an unquantified first-order formula in CNF form, in which each clause

may contain negative occurrences and at most one positive occurence of a relation Xj,

1 ≤ j ≤ k.

For an SOE formula, E stands for easy, since its satisfiability is reducible to the satisfiability

of a propositional formula, which can be solved in deterministic polynomial time. In fact, there

is a product reduction between the counting versions of these problems.

Let #DisjHornSat denote the problem of counting satisfying assignments of a disjuction

of propositional Horn formulas.

Proposition 5.7. Given a structure A and an SOE formula ϕ = ∃
−→
Xψ(

−→
X), the problem of

computing |{⟨
−→
X ⟩ : A |= ψ(

−→
X)}| can be reduced to #DisjHornSat under product reductions.

Proof. Formula

ψ(
−→
X) = ∃x1...∃xn

∨
1≤i≤t

∀y1...∀ym χi(
−→
X,x1, ..., xn, y1, ..., ym)

can be written as
∨

w∈An

∨
1≤i≤t

∧
u∈Am

χi(
−→
X,w, u). Each clause in any χi is a disjunction of some

(positive or negative) Xj and atomic formulas. The latter are either true or false in A. If an

atomic formula is not satisfied in A, then it is removed from its clause, whereas if it is satisfied

in A, its clause is removed from the formula.

By the previous transformations, we obtained a formula which is a disjunction of CNF

formulas, each clause of which has some literals of the form ¬Xj(
−→xl) and at most one literal of

the form Xj(
−→xl), where 1 ≤ j ≤ k and −→xl ∈ Aarity(Xj).

The last transformation consists of replacing every Xj(
−→xl) by a propositional variable zjl.

Let g(A) =
∨∧∨

zjl be the resulting formula. Now there may be some combinations of the

A.Chalki Thesis 102

Chapter 5 Descriptive complexity of counting problems with easy decision version

second-order variables
−→
X and tuples of elements of A, that do not appear in g(A). Let n(A) be

the number of these combinations. Then,

|{⟨
−→
X ⟩ : A |= ψ(

−→
X)}| = #DisjHornSat(g(A)) · 2n(A).

Definition 5.5. An SO formula ϕ(R) with free second-order variable R of arity k, defines R

uniquely if the following condition holds.

For any structure A, if A |= ϕ(R/S) and A |= ϕ(R/S′), then

for every (x1, ..., xk) ∈ Ak, it holds that S(x1, ..., xk) iff S′(x1, ..., xk).
(5.4)

Remark 5.2. Consider an SOE formula ϕ(R) that defines a relation R uniquely and let A

be a structure. Then by reducing ϕ to a disjunction of Horn formulas, we can find the unique

relation S such that A |= ϕ(R/S).

Definition 5.6. We say that a formula α is a ΣQSO(SOE) formula over a vocabulary σ if it

is given by the following grammar

α := ϕ | s | (α+ α) | (α · α) | ΣX.ψ(X) ◦ α(X) (5.5)

where ϕ is restricted to be an SOE formula, ψ(X) is an SOE formula that defines X uniquely

and ◦ ∈ {∧, ·}.

The set of RSOk-ΣQSO(SOE) formulas over σ is the set of ΣQSO(SOE) formulas

together with formula [pbfpf β](
−→
X), where β is of the following form:

∃
−→
Z ϕ0(

−→
Z)+

Σ
−→
Y .∃
−→
Z
(
ϕ0(
−→
Z) ∧ ϕ1(

−→
Z ,
−→
Y)

)
· f(
−→
Y)+

... +

Σ
−→
Y .∃
−→
Z
(
ϕ0(
−→
Z) ∧ ϕr(

−→
Z ,
−→
Y)

)
· f(
−→
Y)

(5.6)

where
−→
X = (X1, ..., Xn),

−→
Y = (Y1, ..., Yn), with arity(Xj) = arity(Yj) = k, k ∈ N, for every

j ∈ {1, ..., n},
−→
Z = (Z1, ..., Zm) with arity(Zi) = ki, i ∈ {1, ...,m}, and ∃

−→
Z
(
ϕ0(
−→
Z)∧ϕi(

−→
Z ,
−→
Y)

)
,

i ∈ {1, ..., r}, defines relations
−→
Y uniquely.

Definition 5.7. We say that f ∈ RSOk-ΣQSO(SOE) if there exists an RSOk-ΣQSO(SOE)

formula α such that [[α]](A) = f(A), for every finite ordered structure A over σ.

Analogously to RΣQ∃SO, we denote the union of RSOk-ΣQSO(SOE), for every k ∈ N, by

RΣQSOE.

A.Chalki Thesis 103

Chapter 5 Descriptive complexity of counting problems with easy decision version

Definition 5.8. RΣQSOE =
⋃
k

RSOk-ΣQSO(SOE).

Now we prove the main theorems of this work.

Theorem 5.7. Every function in TotP belongs to RΣQSOE.

Proof. We prove that formula tot is a formula in RΣQSOE.

• Formula ∃
−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗) can be written in the equivalent following form.

∃
−→
S ∃−→t∗branch(

−→
S ,
−→
t∗) := ∃

−→
S ∃−→t∗∃−→s∗

∨
γ∈{γ1,...,γp}

input ∧ transition ∧ nonfinal∧

deterministic ∧ Sγ(−→s∗ ,
−→
t∗).

This formula is an SOE formula, since the first-order formula

∃−→t∗∃−→s∗
∨

γ∈{γ1,...,γp}

input ∧ transition ∧ nonfinal ∧ deterministic ∧ Sγ(−→s∗ ,
−→
t∗)

is a Σ2-Horn formula.

• Formula ∆i, i ∈ {0, 1}, can be easily written as an equivalent Σ2-Horn formula. For

example, subformula(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→(

Q1(
−→si1) ∧ E1(

−→si2) ∧ P1(
−→si3) ∧

∧
−→s contains 1
at time −→

t∗+1

T1(
−→s)

)

can be replaced by(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→ Q1(

−→si1)∧(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→ E1(

−→si2)∧(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→ P1(

−→si3)∧∧
−→s contains 1
at time −→

t∗+1

(
Si1(
−→s0 ,
−→
t∗) ∧ ... ∧ S(0,q5)(

−→s3 ,
−→
t∗) ∧ ... ∧ Si2(−−→smax,

−→
t∗)

)
→ T1(

−→s).

Recall that in fact we have E1(
−→si2) ∧

∧
i ̸=i2 ¬E1(

−→si) instead of E1(
−→si2), which also gives

the right form here. The same holds for relations P1 and Q1.

• Formula ∃
−→
S ∃−→t∗

(
branching(

−→
S ,
−→
t∗) ∧ ∆i(

−→
S ,
−→
Ci,
−→
t∗)

)
, i ∈ {0, 1}, satisfies condition (5.4)

for relations Ti, Ei, Pi, Qi. Note that, given a structure A, there are unique relations

S1, ..., Sm, such that encode the computation of the machine N on input A. Furthermore,

formula ∆i gives unique relations Ti, Ei, Pi, Qi which depend on S1, ..., Sm.

A.Chalki Thesis 104

Chapter 5 Descriptive complexity of counting problems with easy decision version

• It is immediate from the previous facts that tot is of form (5.6) with only two summands.

It remains to prove that every function in RΣQSOE is a TotP function.

Theorem 5.8. Every function in RΣQSOE belongs to TotP.

Proof. We need to prove that for any formula α ∈ RΣQSOE there is an NPTM Mα with a

second-order assignment V stored in memory, such that for every input structureA, [[α]](A, V) =

totMα(A). Equivalently,

#(paths of Mα on input A) = [[α]](A, V) + 1.

We prove this by induction on the structure of α.

• If α = ϕ, then ϕ is an SOE formula, so it can be verified whether (A, V) |= ϕ in deter-

ministic polynomial time. If (A, V) |= ϕ is true, then Mα generates two paths and halts.

Otherwise, it just halts.

• If α = s, then Mα generates s+ 1 paths and halts.

• If either α = α1 + α2, or α = α1 · α2, then by induction hypothesis, there are Mαi ,

i = 1, 2, such that #(paths of Mαi on input A) = [[αi]](A, V)+1. There are also NPTMs

M ′
αi

such that #(paths of M ′
αi

on input A) = [[αi]](A, V) as described in the proof of

Proposition 1.8.

– If α = α1+α2, then Mα simulates M ′
α1

and M ′
α2

nondeterministically and generates

an additional (dummy) computation path.

– If α = α1 · α2, then Mα simulates M ′
α1

and M ′
α2

sequentially and generates an

additional (dummy) computation path.

So, in both cases, #(paths of Mα on input A) = [[α]](A, V) + 1.

• If α = ΣY.β(Y) = ΣY.ψ(Y) ◦β′(Y), then Mα can determine the unique relation Y , which

is defined by ψ, in deterministic polynomial time and then evaluate β′ in polynomial time,

by induction hypothesis.

• If α = [pbfpf β](
−→
X), then β has form (5.6) and Mα can evaluate [[α]](A, V) as follows.

It starts a recursive computation on input β where
−→
X = (X1, ..., Xn) are replaced by

V (X1), ..., V (Xn). First, it checks whether A |= ∃
−→
Z ϕ0(

−→
Z) is true.

A.Chalki Thesis 105

Chapter 5 Descriptive complexity of counting problems with easy decision version

1. If A |= ∃
−→
Z ϕ0(

−→
Z) is false, then Mα halts.

2. Otherwise, for every summand determines the unique relations
−→
Yi which are defined

by ∃
−→
Z
(
ϕ0(
−→
Z) ∧ ϕi(

−→
Z ,
−→
Y)

)
. For every

−→
Yi , it checks whether f(

−→
Yi) is not zero. This

can be done by checking A |= ∃
−→
Z ϕ0(

−→
Z), where

−→
X are replaced by

−→
Yi . For every

−→
Yi

with f(
−→
Yi) ̸= 0, Mα generates a different path. On each of the generating paths, the

computation continues recursively on input β(X1/Yi1 , ..., Xn/Yin , f).

3. If Mα is at the first step of the recursion and there is at least a sequence
−→
Yi such that

f(
−→
Yi) ̸= 0, then it also generates a dummy path, in which it does nothing but halts.

By definition of the p-bounded fixed point of the operator Tβ , if the chain {fj}j∈N stabilizes

for some j ≤ |A|k, where k is the arity of each Xi, it means that after k recursive steps, Mα

evaluates formulas to zero on every path and halts. In the case of the chain not reaching

a fixed point, then Mα stops the recursion after |A|k steps. In both cases, the number of

paths of Mα is equal to [[[pbfpf β](
−→
X)]](A, V) + 1.

Corollary 5.3. TotP = RΣQSOE over finite ordered structures.

5.2.4 An alternative way to define RΣQSOE and capture TotP

Although the logic just defined captures TotP, it seems that natural TotP problems cannot be

expressed using this language in an easy and natural way. That’s why we provide an alternative

(and very similar) definition of RΣQSOE, that will help us to express #DNF.

Definition 5.9. We say that a formula α is a ΣQSO(SOE) formula over a vocabulary σ if it

is given by the following grammar

α := ϕ | s | (α+ α) | (α · α) | ΣX.ψ(X) ◦ α(X) (5.7)

where ϕ is restricted to be an SOE formula, ψ(X) is an SOE formula that defines X uniquely

and ◦ ∈ {∧, ·}.

The set of RSOk-ΣQSO(SOE) formulas over σ is the set of ΣQSO(SOE) formulas

together with formula s+ [pbfpf β](
−→
X), where s ∈ N and β is of the following form:

∃
−→
Z
(
ϕ01(
−→
Z) ∧ ϕ02(

−→
Z)

)
+

Σ
−→
Y .∃
−→
Z
(
ϕ01(
−→
Z) ∧ ϕ1(

−→
Z ,
−→
Y)

)
· f(
−→
Y)+

Σ
−→
Y .∃
−→
Z
(
ϕ02(
−→
Z) ∧ ϕ2(

−→
Z ,
−→
Y)

)
· f(
−→
Y)

(5.8)

A.Chalki Thesis 106

Chapter 5 Descriptive complexity of counting problems with easy decision version

where
−→
X = (X1, ..., Xn),

−→
Y = (Y1, ..., Yn), with arity(Xj) = arity(Yj) = k, k ∈ N, for every

j ∈ {1, ..., n},
−→
Z = (Z1, ..., Zm) with arity(Zi) = ki, i ∈ {1, ...,m}, ∃

−→
Z
(
ϕ0i(
−→
Z) ∧ ϕi(

−→
Z ,
−→
Y)

)
,

i ∈ {1, 2}, defines relations
−→
Y uniquely.

Definition 5.10. We say that f ∈ RSOk-ΣQSO(SOE) if there exists an RSOk-ΣQSO(SOE)

formula α such that [[α]](A) = f(A), for every finite ordered structure A over σ.

Definition 5.11. RΣQSOE =
⋃
k

RSOk-ΣQSO(SOE)

In the following example, given a DNF formula ϕ, a binary tree is constructed such that

the number of satisfying assignments of ϕ is equal to

• the number of its paths,

• or equivalently, the number of its branchings minus 1.

Example 5.2. Let ϕ be an input DNF formula and x1, ..., xn be an enumeration list of its

variables. Consider an NPTM M that makes the following recursive computation on input ϕ.

M determines in deterministic polynomial time whether there is a satisfying assignment for ϕ.

If the answer is no or the enumeration list is empty, it halts. Otherwise, M picks the first

variable appearing in the list, namely x1, and checks whether there is a satisfying assignment

for ϕ0, i.e. ϕ with x1 assigned to false, and whether there is one for ϕ1, which is obtained from

ϕ by making x1 true. M removes x1 from the list and then

• if the answer is yes for both cases, M chooses nondeterministically to make x1 either false

or true and proceeds recursively with ϕ0 and ϕ1, respectively.

• if the answer is yes for only one case, M deterministically proceeds recursively with the

corresponding formula, i.e. either ϕ0 or ϕ1.

Since M removes at least one variable from the list at each step, the depth of the recursion is

polynomial in the size of ϕ.

The computation of M on input a DNF formula with three variables is depicted in Fig-

ure 5.3.

Example 5.3. The problem #DNF belongs to RΣQSOE since it holds that #DNF(ϕ) = [[1 +

[pbfpf dnf2](True, Fasle)]](Aϕ, V), where dnf2 is given below.

A.Chalki Thesis 107

Chapter 5 Descriptive complexity of counting problems with easy decision version

(x1 ∧ x3) ∨ (¬x2 ∧ x3)

(¬x2 ∧ x3)

x3

stop

x3 = true

x2 = false

x1 = false

x3 ∨ (¬x2 ∧ x3)

x3 ∨ x3

stop

x3 = true

x2 = false

x3

stop

x3 = true

x2 = true

x1 = true

Figure 5.3: NPTM M for which it holds that totM (x) = #DNF(ϕ), where x is a binary encoding of ϕ =

(x1 ∧ x3) ∨ (¬x2 ∧ x3).

dnf2(True, False, f) :=

∃T∃vmin
(
min(vmin) ∧ T (vmin) ∧ sat(T)

)
∧
(
∃T∃vmin(min(vmin) ∧ ¬T (vmin) ∧ sat(T)

)
+

ΣT1.ΣF1.
((
∃T∃vmin(min(vmin) ∧ T (vmin) ∧ sat(T)) ∧ t1(T1) ∧ f1(F1)

)
· f(T1, F1)

)
+

ΣT0.ΣF0.
((
∃T∃vmin(min(vmin) ∧ ¬T (vmin) ∧ sat(T)) ∧ t0(T0) ∧ f0(F0)

)
· f(T0, F0)

)
.

The second-order assignment V and subformulas appearing in dnf2 are defined in Example 5.1.

Note that [[[pbfpf dnf2](True, Fasle)]](Aϕ, V) is equal to the number of branchings that

exist in an NPTM constructed as in Example 5.2.

Theorem 5.9. Every function in TotP belongs to RΣQSOE.

Proof. The proof is the same as the proof of Theorem 5.7 where only the last case has changed.

Formula tot is of form s+ [pbfpf β](
−→
X), where s = 0 and β is of form (5.8) with ∃

−→
Z ϕ01(

−→
Z) =

∃
−→
Z ϕ02(

−→
Z) to be the formula ∃

−→
S ∃−→t∗ branching(

−→
S ,
−→
t∗).

Theorem 5.10. Every function in RΣQSOE belongs to TotP.

Proof. We need to prove that for any formula α ∈ RΣQSOE there is an NPTM Mα with a

second-order assignment V stored in memory, such that for every input structureA, [[α]](A, V) =

totMα(A). Equivalently,

#(paths of Mα on input A) = [[α]](A, V) + 1.

We prove this by induction on the structure of α.

• If α = ϕ, then ϕ is an SOE formula, so it can be verified whether (A, V) |= ϕ in deter-

ministic polynomial time. If (A, V) |= ϕ is true, then Mα generates two paths and halts.

Otherwise, it just halts.

A.Chalki Thesis 108

Chapter 5 Descriptive complexity of counting problems with easy decision version

• If α = s, then Mα generates s+ 1 paths and halts.

• If either α = α1 + α2, or α = α1 · α2, then by induction hypothesis, there are Mαi ,

i = 1, 2, such that #(paths of Mαi on input A) = [[αi]](A, V)+1. There are also NPTMs

M ′
αi

such that #(paths of M ′
αi

on input A) = [[αi]](A, V) as described in the proof of

Proposition 1.8.

– If α = α1+α2, then Mα simulates M ′
α1

and M ′
α2

nondeterministically and generates

an additional (dummy) computation path.

– If α = α1 · α2, then Mα simulates M ′
α1

and M ′
α2

sequentially and generates an

additional (dummy) computation path.

So, in both cases, #(paths of Mα on input A) = [[α]](A, V) + 1.

• If α = ΣY.β(Y) = ΣY.ψ(Y) ◦ β′(Y), then Mα can determine the unique relation Y which

is defined by ψ in deterministic polynomial time and then evaluate β′ in polynomial time

by inductive hypothesis.

• If α = s + [pbfpf β](
−→
X), then β has form (5.8). Mα evaluates [[α]](A, V) as follows. It

generates s + 1 different paths. On each of the first s paths, it halts. On the last path,

it starts a recursive computation on input β where
−→
X = (X1, ..., Xn) are replaced by

V (X1), ..., V (Xn). First, it checks whether either A |= ∃
−→
Z ϕ01(

−→
Z) or A |= ∃

−→
Z ϕ02(

−→
Z)

holds.

1. If both do not hold, then it halts.

2. If both hold, Mα generates two different paths, one for each ϕ0i. On the path

that corresponds to ϕ01, i ∈ {1, 2}, it determines the unique relations
−→
Yi which are

defined by ∃
−→
Z
(
ϕ0i(
−→
Z)∧ ϕi(

−→
Z ,
−→
Y)

)
and it proceeds recursively on input β where

−→
X

are replaced by
−→
Yi .

3. If exactly one of them holds, w.l.o.g let’s assume that only A |= ∃
−→
Z ϕ01(

−→
Z) is true,

then Mα determines the unique relations
−→
Y1 which are defined by ∃

−→
Z
(
ϕ01(
−→
Z) ∧

ϕ1(
−→
Z ,
−→
Y)

)
and it proceeds recursively on input β where

−→
X are replaced by

−→
Y1.

By definition of the p-bounded fixed point of the operator Tβ , if the chain {fj}j∈N sta-

bilizes for some j ≤ |A|k, where k is the arity of each Xi, it means that after k re-

cursive steps, Mα evaluates formulas to zero on every path and halts. In the case

of the chain not reaching a fixed point, then Mα stops the recursion after |A|k steps.

A.Chalki Thesis 109

Chapter 5 Descriptive complexity of counting problems with easy decision version

In both cases, the number of binary branchings of Mα on the last of its initial s + 1

paths is equal to [[[pbfpf β](
−→
X)]](A, V). The number of all paths of Mα is equal to

s+ [[[pbfpf β](
−→
X)]](A, V) + 1.

5.3 Discussion of results

Building upon previous work, we gave logical characterizations of two subclasses of TotP, namely

ΣQSO(Σ2-2SAT) and #Π2-1VAR, that have natural complete problems. Both these classes are

not subclasses of FPRAS unless RP = NP, since their complete problems #Disj2Sat and

#MonSat, respectively, are AP-interreducible with #Sat. Regarding the latter, which is

complete for #Π2-1VAR under product reductions, we provided Proposition 5.6, which is about

the closure of #MonSat, #Π2-1VAR, and TotP under product reductions and their relationship.

Most significantly, we answered an open question in the area of descriptive complexity of

counting classes, about the logical characterization of TotP: RΣQSOE = TotP over finite ordered

structures.

For an arbitrary TotP problem and its related binary NPTM M , computing the number

of branchings of M can be expressed in the logic RΣQSOE. Conversely, given a formula α

in RΣQSOE, there is an NPTM such that the number of its paths (minus one) is the value

of the interpretation of α. We achieved our goal by starting with a very rich logic, namely

ΣQSO(∃SO), and implementing the following steps.

1. We expressed the existence of a branching in the computation of an NPTM. This requires

an existential second-order formula which is SOE (SOEasy), i.e. it can be determined

whether it is satisfied in the input structure in polynomial time.

2. We added recursion to our logic, so we can add 1 whenever we find a branching and

continue recursively. Since the Turing machine is of polynomial length, we need recursion

of polynomial depth. Therefore, we introduced a polynomially bounded fixed point (p-

bounded fixed point).

3. We ensured that any sum over a second-order variable has to be evaluated on a single

interpretation of the second-order variable. Also this interpretation can also be determined

efficiently.

The recursion and fixed point introduced in this work could give logical characterizations

A.Chalki Thesis 110

Chapter 5 Descriptive complexity of counting problems with easy decision version

of superclasses of #P, or even #P. They can also be restricted; for example, specific operators,

such as the path operator, using free second-order variables could be defined and added to the

syntax of some logic (as Arenas et al. suggested [15]). We believe that this is an interesting and

meaningful line of future work.

In Section 5.2.4, we provided an equivalent, slightly different logic, that captures TotP and

allows us to express TotP-problems in a more natural and easy way.

5.4 Notes

The two classes ΣQSO(Σ2-2SAT) and #Π2-1VAR studied in Section 5.1 were first defined in [24].

A.Chalki Thesis 111

Chapter 5 Descriptive complexity of counting problems with easy decision version

A.Chalki Thesis 112

Chapter 6

Counting matchings in graphs with edge colors

In this chapter our aim is to examine counting problems the decision version of which is in RP.

We are interested in the following two problems defined in Chapter 3. In specific, we would like

to conclude whether these problems have an fpras or are hard to approximate.

#Exact Matchings (Definition 3.7 restated).

Input : A graph G = (V,E), a subset E′ ⊆ E, and an integer k.

Output : The number of perfect matchings of G that contain exactly k edges in E′.

#Blue-Red Matchings (Definition 3.8 restated).

Input : A graph G = (V,Ered ∪ Eblue) and two integers w and B.

Output : The number of matchings of size at least B with at most w edges in Eblue (blue edges)

and at most w edges in Ered (red edges).

The corresponding decision versions Exact Matching [125] and Blue-Red Match-

ing [120] are known to belong to the class RNC [119, 120] and it is not known whether they can

be solved in deterministic polynomial time.

#Blue-Red Matchings is at least as hard as #Exact Matchings, which, in turn, is at

least as hard as #PerfMatch. To start with, we are going to examine #Exact Matchings

since it seems to be ‘easier’ than #Blue-Red Matchings. In general graphs, it is a long-

standing open question whether #PerfMatch, a special case of #Exact Matchings, has

an fpras. So, it is reasonable that we focus on restricted classes of graphs, such as planar,

K3,3-free, K5-free, and bipartite graphs.

Next section discusses related work on problems of counting matchings.

113

Chapter 6 Counting matchings in graphs with edge colors

6.1 Related work on counting matchings

The problem #PerfMatch of counting perfect matchings in a general graph appeared along

with the definition of the complexity class #P [149] and was among the first problems to be

proven #P-complete under Turing reductions. In fact, its special case #BiPerfMatch, which

is equivalent to the problem of computing the permanent of an (n × n) matrix with entries in

{0, 1}, is #P-complete under Turing reductions [149].

Definition 6.1. #BiPerfMatch.

Input: A bipartite graph G = (U ∪ V,E).

Output: The number of perfect matchings of G.

Definition 6.2. Permanent.

Input: An (n× n) matrix A with entries aij ∈ {0, 1}.

Output: The permanemt of matrix A, that is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i).

Given a bipartite graph G = (U ∪ V,E), the biadjacency matrix A = (aij) of G is the

|U | × |V | matrix such that aij =


1, if (i, j) ∈ E

0, otherwise
. If |U | = |V |, then A is a square matrix and

perm(A) = #BiPerfMatch(G).

Chien [48] reduced the problem of counting perfect matchings in general graphs to com-

puting the determinant of random matrices. This determinant-based algorithm generalizes the

Godsil-Gutman estimator [76] and has an exponential running time in the worst case. Fürer

and Kasiviswanathan [72] proposed a simpler randomized algorithm together with some of its

variants.

An fpras for the problem #BiPerfMatch was presented by Jerrum, Sinclair, and Vigoda [93]

using a Markov chain Monte Carlo (MCMC) approach. This algorithm is also an fpras for com-

puting the permanent of an arbitrary matrix with non-negative entries. However, this Markov

chain is not rapidly mixing in general graphs [139].

In planar graphs—which are also the graphs that exclude K5 and K3,3 as minors—counting

perfect matchings can be solved in deterministic polynomial time by the FKT algorithm [100,

142]. This problem is even in NC [152]. Membership in NC is also true for the same problem

defined on K3,3-free graphs [152]. Counting perfect matchings in K5-free graphs is in TC [141].

A.Chalki Thesis 114

Chapter 6 Counting matchings in graphs with edge colors

Counting problem Complexity Exact algorithm

#PerfMatch in planar graphs FP FKT and NC algorithm

#PerfMatch in K3,3-free graphs FP NC algorithm

#PerfMatch in K5-free graphs FP TC algorithm

#PerfMatch in K8-free graphs #P-complete —

Table 6.1: The complexity of #PerfMatch in some minor-free graphs.

However, it was shown in [55] that counting perfect matchings in K8-free graphs is #P-complete.

The complexity of the four aforementioned problems is summarized in Table 6.1. Thilikos and

Wiederrecht recently proved in [143] a sharp complexity dichotomy for the problem of counting

perfect matchings in minor-closed graph classes. They provided a polynomial-time decidable

criterion to classify the problem on any graph G which excludes a finite set F of graphs as

minors, as either polynomial-time computable or #P-complete.

On the contrary, the problem #AllMatchings of counting the matchings of all sizes

is #P-hard under Turing reductions even when restricted on planar graphs [90]. Jerrum and

Sinclair have given an fpras for this problem defined on general graphs [92].

Counting matchings of size k in planar graphs is #P-complete under Turing reductions [90].

Counting matchings of size k in bipartite graphs has an fpras [70], since there is an easy reduction

from counting k-matchings to counting perfect matchings. This reduction works for general and

bipartite graphs, but not for planar graphs. Recently Anari et al. proved that counting k-

matchings in planar graphs admits an fpras [6]. They also gave an fpras for two versions of

weighted counting (for all weights) in planar graphs: (i) counting weighted matchings of size k

and (ii) counting weighted matchings of any size. The problem of counting weighted matchings

is defined below.

Definition 6.3. #Weighted Matchings.

Input: A graph G = (V,E) and a function w : E → R.

Output: Compute the sum

#Weighted Matchings(G) =
∑

M∈M(G)

∏
e∈M

w(e)

where M(G) is the set of matchings of G.

Remark 6.1. This problem can be defined such that we count weighted k-matchings or weighted

A.Chalki Thesis 115

Chapter 6 Counting matchings in graphs with edge colors

perfect matchings by just considering M(G) to be the set of k-matchings or perfect matchings,

respectively.

Results for the aforementioned variants of counting matchings defined on either general,

bipartite or planar graphs are gathered in Table 6.2.

Counting problem Complexity Approximation algorithm

#PerfMatch #P-complete a ras achieving (1± ε)-approximation

with O(ε−2 · 3n/2) trials

#PerfMatch

in bipartite graphs
#P-complete fpras

#AllMatchings #P-complete fpras

#AllMatchings

in bipartite graphs
#P-complete fpras

#AllMatchings

in planar graphs
#P-complete fpras

#k-Matchings #P-complete —

#k-Matchings

in bipartite graphs
#P-complete fpras

#k-Matchings

in planar graphs
#P-complete fpras

Table 6.2: The complexity of counting perfect matchings, all matchings, and k-matchings in general, bipartite,

and planar graphs.

Parameterized complexity

Counting k-matchings on unweighted graphs without multiple edges or self-loops is #W[1]-

hard [51]. The best known algorithms for counting k-matchings exhibit time bounds of the type

f(k)nΘ(k). Among them is the algorithm of [156] with a runtime of O(2k+o(k)
(
n
k/2

)
). Arvind and

Raman [18] gave a randomized algorithm with running time kO(k)nO(1), approximation ratio

1/kO(k), and error probability 2−n
O(1) for approximately counting the number of matchings of

size k in a graph with n vertices.

In [68], it was conjectured that counting k-matchings in bipartite graphs is #W[1]-hard in

A.Chalki Thesis 116

Chapter 6 Counting matchings in graphs with edge colors

the parameter k. The conjecture was proved by Curticapean [51]. He also proved that counting

k-matchings in planar graphs is #W[1]-hard [53]. For some bipartite graphs (with f(k) vertices

in one partition, for some function f) the problem of counting k matchings is fixed-parameter

tractable [156].

Parameterized complexity of the problem #k-Matchings is also included in Table 6.4.

6.2 The problems Exact Matching and Blue-Red Matching

The problem Exact Matching is defined on a graph G = (V,E) that has a set E′ ⊆ E of red

edges. We are going to call the edges in E \ E′ black.

Definition 6.4 ([125]). Exact Matching.

Input: A graph G = (V,E), a set of red edges E′ ⊆ E, and a positive integer k.

Output: Determine whether G contains a perfect matching involving exactly k edges in E′.

Let G = (V,Eblue ∪Ered) be a graph in which each edge is colored either blue or red; Eblue

is the set of blue edges and Ered the set of red edges. A matching M in G is called w-blue-red

matching if M ∩ Eblue ≤ w and M ∩ Ered ≤ w, that is, if it contains at most w edges of each

color.

Definition 6.5 ([120]). (a) Optimization version: Blue-Red Matching.

Input: A graph G = (V,Eblue ∪ Ered) and a positive integer w.

Output: Find a w-blue-red matching of maximum cardinality.

(b) Decision version: Blue-Red Matching(D).

Input: A graph G = (V,Eblue ∪ Ered), a positive integer w, and a bound B.

Output: Determine whether G contains a w-blue-red matching of cardinality at least B.

The problem Blue-Red Matchingmulti, that is a generalization of Blue-Red Match-

ing in multigraphs, can be reduced to BRM in simple graphs with red, blue, and uncol-

ored (white) edges. We specify a third set of initially uncolored edges as follows. Let G =

(V,Eblue ∪ Ered ∪ Ewhite) be a graph in which Eblue, Ered, and Ewhite are sets of blue, red, and

white edges, respectively. A matching M in G is called w-blue-red-white matching if there exists

a partition {Ewb, Ewr} of Ewhite such that M ∩ (Eblue ∪ Ewb) ≤ w and M ∩ (Ered ∪ Ewr) ≤ w.

Definition 6.6. (a) Optimization version: Blue-Red Matchingmulti.

Input: A graph G = (V,Eblue ∪ Ered ∪ Ewhite) and a positive integer w.

A.Chalki Thesis 117

Chapter 6 Counting matchings in graphs with edge colors

Output: Find a w-blue-red-white matching of maximum cardinality.

(b) Decision version: Blue-Red Matchingmulti(D).

Input: A graph G = (V,Eblue ∪ Ered ∪ Ewhite), a positive integer w, and a bound B.

Output: Determine whether G contains a w-blue-red-white matching of cardinality at least B.

The problem Blue-Red Matching(D) is at least as hard as Exact Matching, which in

turn, is a generalization of Perfect Matching. This fact is shown in the following proposition.

Proposition 6.1 ([120]). Perfect Matching ≤l
m Exact Matching

≤l
m Blue-Red Matching(D), where ≤l

m denotes the log-space many-one reduction between

languages.

Proof. Perfect Matching ≤l
m Exact Matching: Given a graph G = (V,E) we construct

G′ by adding two vertices and one red edge between them. Then, there is a perfect matching

in G iff there is an exact matching with k = 1 red edge in G′.

Exact Matching ≤l
m Blue-Red Matching(D): Consider a graph G = (V,E), a set of

red edges E′ ⊆ E, and a positive integer k. If |V | is an odd number or k > |V |
2 , then G does

not contain a perfect matching involving exactly k edges in E′. In that case we construct a ‘no’

instance of BRM(D) (for example, any instance with 2w < B).

Otherwise, let w = max{k, |V |
2 −k} and r = w−min{k, |V |

2 −k}. Graph G∗ is obtained from

G by adding 2r new vertices u1, ..., ur, v1, ..., vr and r edges {u1, v1}, ..., {ur, vr}. The additional

edges are colored blue if k > |V |
2 − k, otherwise they are colored red. Furthermore, edges in

E \E′ are colored blue and edges in E′ remain red in G∗. Let B = 2w. The above construction

requires logarithmic space. It is not hard to check that G contains a perfect matching involving

exactly k edges in E′ if and only if G∗ contains a w-blue-red matching of cardinality B.

We define here two variants of Blue-Red Matching, namely the problems Exact BRM

and Exact-Equal BRM.

Definition 6.7. (a) Exact BRM.

Input: A graph G = (V,Eblue ∪ Ered ∪ Ewhite) and a pair of positive integers (k1, k2).

Output: Determine whether G contains a perfect matching involving exactly k1 edges in Eblue

and exactly k2 edges in Ered.

(b) We define Exact-Equal BRM to be the special case of the problem Exact BRM, when

k1 = k2.

A.Chalki Thesis 118

Chapter 6 Counting matchings in graphs with edge colors

We prove below that these problems are harder than Blue-Red Matching.

Proposition 6.2. Blue-Red Matching(D) ≤p
T Exact BRM ≤l

m Exact-Equal BRM,

where ≤p
T and ≤l

m denote the poly-time Turing reduction and the log-space reduction between

languages, respectively.

Proof. Blue-Red Matching(D) ≤p
T Exact BRM: Notice that there are no white edges in

the initial instance of Blue-Red Matching(D), but the resulting instance of Exact BRM

can have white edges.

If B > 2w, we construct a ‘no’ instance of Exact BRM.

Let w ≤ B ≤ 2w. Given an input ⟨G = (V,Ered ∪ Eblue), w,B⟩ to Blue-Red Match-

ing(D), we construct 2w − B + 1 instances of the Exact BRM problem, namely the graphs

Gm, 0 ≤ m ≤ 2w −B, where

⟨Gm = (V ′, Ered ∪ Eblue ∪ Ewhite), (k1m, k2m)⟩.

Let V = {v1, ..., vn} be the set of vertices in G. We add n new vertices u1, ..., un. We add white

edges {ui, uj} for every i ̸= j. We also add white edges {vi, ui} for every i ∈ {1, ..., n}. In other

words, we connect every vertex in V with a vertex in a clique of size n. In the m-th instance,

we set the positive integers to be k1m = w−m, k2m = B−w+m, i.e. we construct an instance

for every possible combination of red and blue edges that add up to B. Note that if G contains

a w-blue-red matching of cardinality > B, then G contains a w-blue-red matching of cardinality

exactly B.

It is not hard to see that there exists a w-blue-red matching of cardinality B in G if and

only if there exists a perfect matching with exactly k1m blue edges and exactly k2m red edges

in at least one of the graphs Gm.

If B < w, then we construct B + 1 instances of Exact BRM in the same way and we set

k1m = B −m and k2m = m in the m-th instance, where 0 ≤ m ≤ B.

Exact BRM ≤l
m Exact-Equal BRM: Let ⟨G = (V,Ered ∪ Eblue ∪ Ewhite), (k1, k2)⟩ be

an instance of Exact BRM. Without loss of generality, assume that k2 > k1. We construct

an instance ⟨G′ = (V ′, Ered ∪E′
blue ∪Ewhite), k2⟩ of Exact-Equal BRM by adding 2(k2 − k1)

vertices u1, .., uk2−k1 , v1, ..., vk1−k2 and the k2 − k1 blue edges {ui, vi}.

Corollary 6.1. Perfect Matching ≤l
m Exact Matching ≤l

m Blue-Red Matching(D)

≤p
T Exact BRM ≤l

m Exact-Equal BRM.

A.Chalki Thesis 119

Chapter 6 Counting matchings in graphs with edge colors

Decision problem Complexity

Perfect Matching P and RNC

Planar Exact Matching NC

Bipartite Exact Matching P

Exact Matching RNC

Blue-Red Matchingmulti(D) RNC

Table 6.3: The complexity of the problem Perfect Matching and some of its variants discussed here.

The following theorem gives the already known complexity of decision problems discussed in

this section. In Theorem 6.2, we show that Exact Matching is in P, by reducing it to a max-

flow problem. This fact will be significant when we study its counting version, i.e. #BiExact

Matchings. We gather all these results in Table 6.3.

Theorem 6.1. (a) ([62]). Perfect Matching is in P.

(b) ([99]). Perfect Matching is in RNC.

(c) ([12]). Planar Perfect Matching is in NC.

(d) ([119]). Exact Matching is in RNC.

(e) ([120]). Blue-Red Matchingmulti(D) is in RNC.

In the proof of Theorem 6.2 we are using a generalization of the Max Flow problem,

namely Max Flow with Lower Bounds. In this modified problem, the input consists of a

directed graph G = (V,E), nodes s, t, and two functions l, u : E → R and we seek a flow f with

maximum value such that l(e) ≤ f(e) ≤ u(e) at every edge e. There is a folklore polynomial-

time reduction from Max Flow with Lower Bounds to Max Flow and so the following

proposition holds.

Proposition 6.3 ([63]). Max Flow with Lower Bounds is in P.

Theorem 6.2. Bipartite Exact Matching is in P.

Proof. We are going to describe a reduction from Bipartite Exact Matching to Max Flow

with Lower Bounds. Given an instance G = ⟨(U ∪ V,E), Ered, k⟩, |U | = |V | = n, of

Bipartite Exact Matching, we construct a directed graph G′ = (V ′, E′) which consists of

all vertices of G together with two source vertices s1, s2 and a sink vertex t. G′ contains the

directed edges (s1, s2), (s2, u), for every u ∈ U , (u, v) for every edge (u, v) ∈ E, and (v, t)

A.Chalki Thesis 120

Chapter 6 Counting matchings in graphs with edge colors

for every v ∈ V . The lower and upper bounds are set as follows, where wred = 2(n − k) and

w = wred − 1 = 2(n− k)− 1.

• For e = (s1, s2) we set u(e) = l(e) = kwred + (n− k)w.

• For every e = (u, v) which is a red edge in G, we set u(e) = l(e) = wred.

• For every e = (u, v) which is not a red edge in G, we set u(e) = l(e) = w.

• For every e = (s2, u) or e = (v, t), we set l(e) = w and u(e) = wred.

An example of a resulting graph G′ is shown in Figure 6.1. We prove that there is an exact

matching with k red edges in G iff there is a flow of value kwred+(n−k)w in graph G′. If there

is an exact matching with k red edges and (n− k) black edges in G, then it is easy to see that

there is a flow of value kwred + (n − k)w in graph G′. For the inverse direction, we show that

for any flow of value kwred + (n− k)w, the following facts hold.

1. At most n edges that have their endpoints in U and V can carry a non-negative flow. The

flow that leaves from a vertex u ∈ U is routed on exactly one edge. Since the amount of

flow that reaches vertex u is either w or wred and the lower and upper bounds of edges

(u, v), u ∈ U , v ∈ V , are tight, this flow can be routed on either exactly one red or exactly

one black edge.

2. A flow of value kwred + (n− k)w has to use exactly k red edges and (n− k) black edges

that have their endpoints in U and V .

(a) A flow of value kwred + (n − k)w needs at least k red edges. Suppose that k′ red

edges are used, with k′ < k, then the rest of the flow must be rooted on black edges,

which can carry a flow of value w < wred each. So, more than (n − k′) black edges

will be needed, which contradicts 1.

(b) At most k red edges can be used in the solution. Suppose that instead of using k red

edges and n− k black edges, we replace 2 ≤ m ≤ n− k black edges with l < m red

edges. We can say that l = m− i for some i ∈ {1, . . . ,m− 1}. Then

mw = lwred ⇔
wred
w

=
m

l
⇔

2(n− k)
2(n− k)− 1

=
m

m− i
⇔

m = i · 2(n− k).

A.Chalki Thesis 121

Chapter 6 Counting matchings in graphs with edge colors

s1 s2 t

u1

u2

u3

v1

v2

v3

f = kwred + (n− k)w w ≤ f ≤ wred

f = wred

f = w

w ≤ f ≤ wred

Figure 6.1: The resulting instance of Max Flow with Lower Bounds. When we write f = c on an edge e,

for some c ∈ R, we mean that l(e) = u(e) = c. For example, if e ∈ Ered, then l(e) = u(e) = wred. The red color

of edge (u1, v1) denotes that edge (u1, v1) ∈ Ered in graph G.

Contradiction, since m ≤ n− k.

6.2.1 Optimization version of Exact Matching in bipartite graphs

Our motivation to study the optimization version of Exact Matching in bipartite graphs is the

following. There are randomized algorithms [29, 33] which approximate the value of a counting

function by using oracle calls to the corresponding optimization problem. This method produces

a very crude estimate, but gives some general information about the value of the function for

large n. For example, it allows to determine whether it is exponentially large in n. In the case of

a polynomial-time optimization problem, these randomized algorithms run in polynomial time.

Definition 6.8. Minimum Weight Perfect Matching in Bipartite Graphs.

Input: A bipartite graph G = (U ∪ V,E) and a weight function w : E → R ∪ {∞}.

Output: Find a perfect matching M minimizing w(M) =
∑
e∈M

w(e).

The following is an Integer Linear Programming (ILP) formulation for the minimum weight

perfect matching in a bipartite graph.

minimize
∑
(u,v)

w(u, v) · xuv

subject to
∑
v∈V

xuv = 1 for all u ∈ U

∑
u∈U

xuv = 1 for all v ∈ V

xuv ∈ {0, 1} for all u ∈ U, v ∈ V.

The Linear Programming (LP) relaxation of the problem is as follows:

A.Chalki Thesis 122

Chapter 6 Counting matchings in graphs with edge colors

minimize
∑
(u,v)

w(u, v) · xuv

subject to
∑
v∈V

xuv = 1 for all u ∈ U

∑
u∈U

xuv = 1 for all v ∈ V

xuv ≥ 0 for all u ∈ U, v ∈ V.

In the above LP instance, the constraint matrix of the polytope is totally unimodular, i.e.

every square submatrix has determinant 0, +1 or -1. As a result, any extreme point of the

polytope defined by these constraints is integral. So there is a polynomial-time algorithm for

finding minimum weight perfect matching in a bipartite graph.

For the Exact Matching problem, the optimization version is defined as follows.

Definition 6.9. Minimum Weight Exact Matching in Bipartite Graphs.

Input: A bipartite graph G = (U ∪ V,E), a subset E′ ⊆ E, an integer k, and a weight function

w : E → R ∪ {∞}.

Output: Find an exact matching M minimizing w(M) =
∑
e∈M

w(e).

This problem is described by the following ILP.

minimize
∑

(u,v)∈E\E′

w(u, v) · xuv +
∑

(u,v)∈E′

w(u, v) · yuv

subject to
∑
v∈V

(xuv + yuv) = 1 for all u ∈ U

∑
u∈U

(xuv + yuv) = 1 for all v ∈ V

∑
(u,v)∈E′

yuv = k

xuv, yuv ∈ {0, 1} for all u ∈ U, v ∈ V.

The LP relaxation is given by the same constraints but instead of the variables being

in {0, 1}, we have xuv, yuv ≥ 0. In this case, the constraint matrix is not in general totally

unimodular. This is a corollary of the following propositions that can be found in [135].

Proposition 6.4. Let M be a {0,±1} matrix with at most three non-zero entries in each column.

Then M is totally unimodular if and only if each submatrix of M with at most two non-zero

entries in each column is totally unimodular.

A.Chalki Thesis 123

Chapter 6 Counting matchings in graphs with edge colors

Proposition 6.5. Let M be a {0,±1} matrix with exactly two non-zero entries in each column.

Then M is totally unimodular if and only if the rows of M can be split into two classes such

that for each column: if the two non-zeros in the column have the same sign then they are in

different classes and if they have opposite sign then they are both in one and the same class.

Note that every instance of the above ILP has at most three non-zero entries. Also, one

can easily construct an instance, such that the constraint matrix has a submatrix for which the

condition of Proposition 6.5 does not hold.

We have not concluded whether the optimization version of #Exact Matchings in bi-

partite graphs is either in P or NP-hard. However, our attempt to prove that it is in P by using

the ILP formulation of the problem has failed.

6.3 The problem #Exact Matchings

6.3.1 #Exact Matchings in general graphs

The reductions of Proposition 6.1 between the decision problems Perfect Matching, Ex-

act Matching, and Blue-Red Matching(D), are parsimonious reductions between their

counting versions.

Proposition 6.6. #PerfMatch ≤p
pars #Exact Matchings ≤p

pars #Blue-Red Matchings.

Using polynomial interpolation, we show next that #Exact Matchings is reducible to

#PerfMatch in graphs with edge weights. Reductions that use polynomial interpolation are

Turing reductions. Another example of such a reduction is the one from #PerfMatch to

#Matchings given by Valiant [149].

Proposition 6.7. #Exact Matchings ≤p
T #Weighted PerfMatch.

Proof. Let ⟨G = (V,E), E′, k⟩ be an input to the problem #Exact Matchings. Define the

polynomialLet where mk is the number of exact matchings with k red edges. We can evaluate

P (x) at n/2 + 1 points using an oracle for #Weighted PerfMatch as follows. For every

integer 1 ≤ ρ ≤ n/2+1, we construct a graph Gρ = (V,E), which is G with the weight function

wρ : E → N, that assigns weight ρ to every (red) edge in E′ and 1 to every (black) edge in

E\E′. Then, we have that #Weighted PerfMatch(Gρ) = P (ρ). So, we make n/2+1 oracle

calls, one for each graph Gρ, 1 ≤ ρ ≤ n/2 + 1. Using polynomial interpolation, we can recover

A.Chalki Thesis 124

Chapter 6 Counting matchings in graphs with edge colors

the coefficients of polynomial P (x). In particular, mk is the output of the problem #Exact

Matchings on input ⟨G = (V,E), E′, k⟩.

Parameterized complexity

Let p#Cliques be the problem of counting cliques of size k in a graph G, parameterized by

k. Define the class #W[1] as the set of parameterized counting problems #A with #A ≤T
fpt

p#Cliques. Here, #A ≤T
fpt #B means that #A admits an fpt-algorithm that solves instances

(x, k) of #A with oracle access to #B, under the restriction that all oracle queries (y, k′) satisfy

the condition k′ ≤ g(k) for some computable g : N→ N. The following theorem gives evidence

that #W[1] ̸= FPT, where FPT is the class of fixed-parameter tractable problems.

Theorem 6.3 ([68]). Under #ETH, it holds that #W[1] ̸= FPT.

For more details we refer the reader to [68].

The problem #k-Matchings parameterized by k has been proven to be #W[1]-complete [51].

Below, we show a reduction from #k-Matchings to #Exact Matchings that implies #W[1]-

hardness for #Exact Matchings parameterized by k. The results discussed in this chapter

with respect to parameterized complexity are shown in Table 6.4.

Proposition 6.8. #k-Matchings ≤p
pr #Exact Matchings.

Proof. Let ⟨G1 = (V1, E1), k⟩, |V1| = n, be an instance of #k-Matchings. We construct

G2 = (V2, E2) and E′
2 as follows. First, we add n new vertices v1, . . . , vn to G1 and the

black edges (vi, vj) for every i, j ∈ {1, . . . , n} (a black n-clique). For every vertex ui ∈ V1,

i ∈ {1, . . . , n}, we add the black edge (ui, vi). The set E′
2 of red edges in G2 consists of all the

edges in E1.

Every k-matching in G1 can be extended to (2k)!
2kk!

exact matchings in G2. Let M be a

k-matching in G1. The k edges in M are k red edges in G2. An exact matching M ′ in G2

that extends M contains also an edge (ui, vi) for every matched vertex vi ∈ V1 not matched by

M . These extra edges are (n− 2k) in total. For the rest 2k vertices in the clique that are still

unmatched, there are (2k)!
2kk!

different ways that can be matched (the number of perfect matchings

in a complete graph with 2k vertices). M ′ contains the edges of one of these possible matchings

among the 2k vertices. Moreover, every exact matching with k red edges in G2 is obtained

uniquely by a k-matching in G1.

So #k-Matchings(G1) = #Exact Matchings(G2) · 2
kk!

(2k)! .

A.Chalki Thesis 125

Chapter 6 Counting matchings in graphs with edge colors

Corollary 6.2. #Exact Matchings is #W[1]-hard.

Proof. By Proposition 6.8 and #W[1]-hardness of #k-Matchings [51], we have that #Exact

Matchings is also #W[1]-hard.

Counting problem Parameterized

Complexity

Exact

algorithm

Approximation

algorithm

#k-Matchings #W[1]-complete O(2k+o(k)
(
n
k/2

)
) fptras

#Planar-k-Matchings #W[1]-complete — —

#Bipartite-k-Matchings #W[1]-complete — —

#Bipartite-k-Matchings

with f(k) vertices

in one partition

— fpt —

#Exact Matchings #W[1]-hard — —

Table 6.4: The parameterized complexity of the problems #k-Matchings and #Exact Matchings.

6.3.2 #Exact Matchings in K3,3-free graphs

#Exact Matchings was shown to be in NC by Vazirani [152]. This result is based on the

fact that we can efficiently compute the number of perfect matchings in any graph that has an

efficiently computable pfaffian orientation.

We roughly describe how we can compute the number of perfect matchings in a graph that

has a pfaffian orientation, such as a planar or a K3,3-free graph. For a detailed proof, we refer

to [42, Chapter 4]. An orientation
−→
G of an undirected graph G is an assignment of a direction

to each of its edges. An orientation is pfaffian, if for any two perfect matchings M , M ′ in G,

every cycle in M ∪M ′ is oddly oriented, which means that when traversing the cycle, in either

direction, the number of co-oriented edges is odd. Given a pfaffian orientation, we define the

A.Chalki Thesis 126

Chapter 6 Counting matchings in graphs with edge colors

skew adjacency matrix AS(
−→
G) = (aij : 0 ≤ i, j ≤ n− 1) of G by aij =


+1, if (i, j) ∈ E(

−→
G)

−1, if (j, i) ∈ E(
−→
G)

0, otherwise

.

Then, it holds that #PerfMatch(G) =
√
det(AS(

−→
G)).

Theorem 6.4 ([152]). #Exact Matchings in K3,3 graphs is in NC.

Proof. Let
−→
G be a pfaffian orientation of a K3,3-free graph G = (V,E) with a set E′ of red

edges, which can be computed in NC [152]. We assign to every edge e ∈ E the polynomial

pe(x) =


x, if e ∈ E′,

1, otherwise.

We construct the matrix AS(
−→
G) = (aij : 0 ≤ i, j ≤ n− 1) of G by

aij =


+pe(x), if (i, j) ∈ E(

−→
G)

−pe(x), if (j, i) ∈ E(
−→
G)

0, otherwise

.

Then
√
det(AS(

−→
G)) =

n/2∑
k=0

mkx
k, where mk is the number of perfect matchings containing k red

edges. So we compute the determinant of AS using the parallel determinant algorithm of [39],

compute its square root by interpolation, and return the coefficient of xk.

Since planar graphs are K3,3-free, we have the following corollary.

Corollary 6.3. #Exact Matchings in planar graphs is in NC.

6.3.3 #Exact Matchings in K5-free graphs

To compute the number of perfect matchings, the pfaffian orientation technique is not applicable

to K5-free graphs, because some K5-free graphs have no such orientation. The graph K3,3 is

such an example [116].

An algorithm for the problem #PerfMatch in K5-free graphs, that uses dynamic pro-

gramming, was described in [141]. It is based on the decomposition of K5-free graphs into 2-, 3-,

and 4-connected components studied by Wagner [154]. The components will be planar at some

point, except for one type of component, namely the Möbius ladder M8, which has constant

A.Chalki Thesis 127

Chapter 6 Counting matchings in graphs with edge colors

size. The algorithm of [141] reduces the problem of computing the number of perfect matchings

in K5-free graphs to the one for planar graphs. To solve the problem for an input K5-free graph,

the challenge was to combine the results for its planar components correctly. For details, we

refer to [141].

It is not hard to see that the aforementioned algorithm works even when the input is a

K5-free graph with edge weights and we want to solve #Weighted PerfMatch as defined in

Definition 6.3 (and Remark 6.1). This observation implies the following result.

Proposition 6.9. #Exact Matchings in K5-free graphs is in P.

Proof. As shown in Proposition 6.7, #Exact Matchings ≤p
T #Weighted PerfMatch. In

the reduction, the oracle calls are to #Weighted PerfMatch on graphs with edge weights

being natural numbers. Since #Weighted PerfMatch in K5-free graphs has a polynomial-

time algorithm in such graphs, #Exact Matchings in K5-free graphs is in P.

It is clear that if we restrict ourselves to a class of graphs that #Weighted PerfMatch is

polynomial-time computable, then #Exact Matchings is also polynomial-time computable.

So, if the dichotomy result of [143] can be extended to the weighted version of counting perfect

matchings, then it also holds for the problem #Exact Matchings.

6.3.4 #Exact Matchings in bipartite graphs

#Exact Matchings in bipartite graphs seems to be non-trivial, since neither approximability

nor hardness of approximation can be proven easily. After the completion of this thesis, this

problem remains open with respect to approximability.

Below we mention some cases where #Exact Matchings in bipartite graphs has an fpras.

The proof for each of them requires just some simple observations.

At the end of the current subsection, we propose and give a high level description of an

approach that we believe is promising for showing that an fpras for #Exact Matchings in

bipartite graphs exists. This approach when applied on a counting (or sampling) problem, it

makes use of the generating polynomial of the problem. This fact justifies the subject of the

next section, that is Section 6.4, which deals with various polynomials generated by matching

problems.

First, note that if we restrict ourselves to bipartite graphs, #Exact Matchings is a

A.Chalki Thesis 128

Chapter 6 Counting matchings in graphs with edge colors

problem in TotP.

Proposition 6.10. #Exact Matchings in bipartite graphs is in TotP.

Proof. By Proposition 6.2, the decision version of #Exact Matchings in bipartite graphs is

in P. It is not hard to see that the problem is also self-reducible. So, it belongs to TotP.

Case 1. The class of exact matchings is of polynomial size

By Proposition 1.4, if a TotP problem has polynomially many solutions, then there is a polynomial-

time algorithm that enumerates them.

Case 2. The class of exact matchings is dense

Let I = ⟨G = (U ∪ V,E), E′, k⟩ be an instance of #Exact Matchings. Let Mk denote the

class of exact matchings with exactly k red edges andM denote the set of all perfect matchings

of G. Suppose that
|M|
|Mk|

≤ p(|I|), for some polynomial p. Then we can simply call the fpaus

for the problem of perfect matchings in bipartite graphs [93] and return its output if it contains

exactly k red edges. Repeating this p(|I|) times, we expect to find an exact matching with k

red edges.

Case 3. A few vertices in U are adjacent to red edges

Consider that we are given an instance ⟨G = (U ∪ V,E), E′, k⟩ of #Exact Matchings in

bipartite graphs, in which red edges (i.e. edges in E′) are adjacent to only k +O(1) vertices in

U . We choose a set Sk of exactly k vertices in U and do the following. We are using a modified

biadjacency matrix A′ = (a′ij) of G so

a′ij =


1, if (i, j) ∈ E′ and i ∈ Sk

or (i, j) ∈ E and i ̸∈ Sk

0, otherwise

Then perm(A′) gives the number of perfect matchings of G in which all the vertices in Sk

are covered by red edges. The sum of the number of such perfect matchings for all choices of

Sk gives the number of exact matchings with k red edges. Since there are
(k+O(1)

k

)
= O(kO(1))

different choices of sets Sk, then by calling the fpras for computing each one of these O(kO(1))

A.Chalki Thesis 129

Chapter 6 Counting matchings in graphs with edge colors

many permanents [93], we obtain an fpras for the number of exact matchings. Of course, the

above arguments hold also in the case that red edges are adjacent to only k +O(1) vertices in

V . So we conclude to the following fact.

Proposition 6.11. There is an fpras for #Exact Matchings in any bipartite graph G =

(U ∪ V,E) with a set E′ ⊆ E of red edges, where the edges in E′ are adjacent to only k +O(1)

vertices in U (or k +O(1) vertices in V).

A promising approach

Here we are going to describe the technique presented in [6], which is used to sample efficiently

solutions of particular problems. The main idea is that there is a connection between efficient

sampling from a probability distribution and the zero-free region of the polynomial generated

by the distribution.

Because of the equivalence between approximate counting and approximate sampling for

self-reducible problems [94], this sampling technique yields fpras for the corresponding counting

problems. For example, as we have already mentioned in Section 6.1, it yields an fpras for

counting k-matchings in planar graphs.

Let µ :
([n]
k

)
→ R≥0 be a density function on the family of subsets of size k out of a

ground set of n elements. Our goal is to approximately sample from the probability distribution

Pµ[S] ∝ µ(S) efficiently. To do so we are going to define the following Down-Up Random Walk

on subsets of size ℓ and subsets of size k, for some l ≤ k.

Down-Up Random Walk.

For a density µ :
([n]
k

)
→ R≥0 and an integer ℓ ≤ k, we define the k ↔ ℓ down-up random walk

as the sequence of random sets S0, S1, . . . generated by the following algorithm:

for t = 0, 1, . . . do

Select Tt uniformly at random from subsets of size ℓ of St. (step 1.)

Select St+1 with probability ∝ µ(St+1) from supersets of size k of Tt. (step 2.)

Note that each step of this random walk can be efficiently implemented as long as k − ℓ =

O(1) and we have oracle access to µ. This is because the number of supersets of Tt is at most

nk−ℓ = poly(n), so we can enumerate them in polynomial time.

Down-Up Random Walk is time-reversible, has µ as its stationary distribution, and has

positive real eigenvalues [11]. Rapid mixing of the k ↔ l down-up walk is established by

A.Chalki Thesis 130

Chapter 6 Counting matchings in graphs with edge colors

showing that the generating polynomial of µ is zero-free in a symmetric sector of the complex

plane centered around the real axis. The generating polynomial of µ is defined next.

Definition 6.10. Let µ :
([n]
k

)
→ R≥0 be a density function. The multivariate polynomial gµ

defined as follows:

gµ(z1, . . . , zn) :=
∑
S

µ(S)
∏
i∈S

zi

is called the generating polynomial and encodes µ in its coefficients.

Theorem 6.5. Let µ :
([n]
k

)
→ R≥0 be a density function and gµ be the corresponding generating

polynomial. Suppose there is an open sector Γ ⊆ C of aperture Ω(1) centered around the positive

real axis in the complex plane, such that

z1, . . . , zn ∈ Γ⇒ gµ(z1, . . . , zn) ̸= 0.

Then for an appropriate value ℓ = k −O(1), the k ↔ ℓ has relaxation time kO(1).

We will see in Definition 6.12 that a polynomial that has a zero-free region like the one

described in the above theorem, is called α-sector-stable, where α is the aperture of the open

sector Γ.

The relaxation time is the inverse of spectral gap for a time-reversible Markov chain with

positive eigenvalues. If in addition, the starting point has not terribly small probability, the

mixing time can be polynomially bounded [111]. So, by the following corollary, we have that

the k ↔ ℓ random walk has a polynomially bounded mixing time.

Corollary 6.4. [111] Let µ :
([n]
k

)
→ R≥0 be a density function and gµ be the corresponding

generating polynomial. Suppose there is an open sector Γ ⊆ C of aperture Ω(1) centered around

the positive real axis in the complex plane, such that

z1, . . . , zn ∈ Γ⇒ gµ(z1, . . . , zn) ̸= 0.

Let also ℓ = k−O(1) be the value promised by Theorem 6.5. If the k ↔ ℓ down-up random walk

is started from S0, then

tmix(ε) ≤ O
(
kO(1) · log

(1

ε · Pµ[S0]
))

where tmix(ε) is the smallest time t such that St is ε-close in total variation distance to the

distribution defined by µ.

A.Chalki Thesis 131

Chapter 6 Counting matchings in graphs with edge colors

Corollary 6.4 establishes a connection between sector-stability and polynomially bounded

mixing time. For the interested reader, α-sector-stability implies that µ is spectrally indepen-

dent, i.e. an associated pairwise influence matrix has a bounded largest eigenvalue for the dis-

tribution and all of its conditional distributions. Using the results of other recent works [11, 5],

rapid mixing time is obtained. For details, we refer to [6, 11, 5].

Application of the Down-Up Random Walk in our case

We give some general ideas of how this sampling technique could be used in the case of exact

matchings in bipartite graphs.

Let ⟨G = (U ∪ V,E), E′, k⟩ be an instance of #Exact Matchings in bipartite graphs

with |U | = |V | = n, |E| = m, and |E′| = r. Given S ⊆ U ∪ V , we denote by G[S] (resp. G[S])

the subgraph of G induced by S (resp. the complement S of S). Given T ⊆ E′, we denote by

VT the set of vertices in U ∪ V covered by T .

First idea: If the following hold then the Down-Up Random Walk can be used for sampling

uniformly at random an exact matching of G.

1. The generating polynomial gµ is α-sector-stable for a constant α, where µ :
([2n]
2k

)
→ R≥0

is a density function defined on sets of vertices of size 2k such that

µ(S) =#(perfect matchings in G[S] with edges in E′)·

#(perfect matchings in G[S] with edges in E \ E′).

2. If step 2 of the Down-Up Random Walk is implemented using an fpras for computing µ

instead of a polynomial-time algorithm (or an oracle), then the same facts hold, i.e. the

Markov chain of the random walk has µ as its stationary and has rapid mixing time.

If 1 and 2 are true, then we implement the k ↔ ℓ down-up random walk to efficiently

sample a set S of 2k vertices with probability Pµ ∝ µ. Then we choose u.a.r. a perfect matching

in G[S] with edges in E′ and a perfect matching in G[S] with edges in E \E′. Combining these

two perfect matchings we obtain an exact matching with k red edges that has been chosen u.a.r.

Second idea: If the following hold then the Down-Up Random Walk can be used for sampling

uniformly at random an exact matching of G.

1. The generating polynomial gµ is α-sector-stable for a constant α, where µ :
([r]
k

)
→ R≥0 is

A.Chalki Thesis 132

Chapter 6 Counting matchings in graphs with edge colors

a density function defined on sets of red edges of size k such that

µ(T) =


#(perfect matchings in G[VT] with edges in E \ E′), if T is a matching

0, otherwise

2. If step 2 of the Down-Up Random Walk is implemented using an fpras for computing µ

instead of a polynomial-time algorithm (or an oracle), then the same facts hold, i.e. the

Markov chain of the random walk has µ as its stationary and has rapid mixing time.

If 1 and 2 are true, then we implement the k ↔ ℓ down-up random walk to efficiently sample

a set T of k red edges with probability Pµ ∝ µ. Then we choose u.a.r. a perfect matching in

G[VT] with edges in E \E′. Combining T with the perfect matching G[VT] we obtain an exact

matching with k red edges that has been chosen u.a.r.

In the following section we define matching polynomials. Those that are multiaffine and

homogeneous, i.e. each of their terms contains the same number of variables, are generating

polynomials of some density µ. The polynomials described in the first and second ideas above

are given in Subsections 6.4.4 and 6.4.5, respectively.

6.4 Matching polynomials

Let G = (V,E) be a weighted graph, i.e. a graph with edge weights. We are using v to denote

a vertex in V , e to denote an edge in E, and we to denote the weight of the edge e.

We are going to consider univariate and multivariate polynomials over C that have real

coefficients. Some first useful notions are the following.

• A multivariate polynomial is multiaffine if each variable has degree at most one.

• A multivariate polynomial is homogeneous if all non-zero terms have the same degree.

In specific, a multivariate multiaffine polynomial is homogeneuous if each non-zero term

contains the same number of variables.

We are interested in the zero-free regions of these polynomials. Definition 6.12 essentially

gives characterizations of polynomials with respect to their zero-free regions.

Definition 6.11. We denote by

(a) H+: the open upper half-plane of C.

A.Chalki Thesis 133

Chapter 6 Counting matchings in graphs with edge colors

(b) D: the open unit disc, i.e. D = {z ∈ C | |z| < 1}.

(c) Γα: the open sector of aperture απ centered around the positive axis, i.e.

Γα := {exp(x+ iy) | x ∈ R, y ∈ (−απ/2, απ/2)}.

Definition 6.12 ([38, 6]). (a) For an open subset U ⊆ Cn, we call a polynomial p ∈ C[x1, . . . , xn]

U-stable if

(z1, . . . , zn) ∈ U =⇒ p(z1, . . . , zn) ̸= 0.

(b) A polynomial p ∈ C[x1, . . . , xn] is said to be stable if

(z1, . . . , zn) ∈ Hn+ =⇒ p(z1, . . . , zn) ̸= 0.

Additionally, if p ∈ R[x1, . . . , xn], we say that p is real-stable.

A univariate polynomial is real-stable iff it is real rooted.

(c) A polynomial p ∈ C[x1, . . . , xn] is said to be Hurwitz-stable if

(z1, . . . , zn) ∈ Γn1 =⇒ p(z1, . . . , zn) ̸= 0.

(d) A polynomial p ∈ C[x1, . . . , xn] is said to be α-sector-stable if

(z1, . . . , zn) ∈ Γnα =⇒ p(z1, . . . , zn) ̸= 0.

Next we introduce the notion of same-phase stability.

Definition 6.13 ([110]). A polynomial p ∈ R[x1, . . . , xn] is said to be same-phase stable if one

of the following equivalent conditions is satisfied.

(i) For every −→t ∈ Rn+, the univariate restriction p(
−→
t x) is real-stable (and therefore real

rooted).

(ii) If arg(z1) = arg(z2) = . . . = arg(zn), then p(z1, . . . , zn) = 0 implies zk ̸∈ H+ for some k.

6.4.1 The univariate matching polynomial

Let A = (aij) be the n × n symmetric adjacency matrix of G, which means that the entry aij

is equal to we, where e = (i, j). The univariate matching polynomial is defined as follows.

A.Chalki Thesis 134

Chapter 6 Counting matchings in graphs with edge colors

Definition 6.14. We define the univariate matching polynomial by

pA(x) =

⌊n
2
⌋∑

0

hafm(A)x
m

where

hafm(A) =
∑

{i1,j1},...,{im,jm}

ai1,j1 · · · aim,jm

where the sum is taken over all unordered collections of m pairwise disjoint unordered pairs

{i1, j1}, ..., {im, jm}. We agree that h0(A) = 1.

Note that the coefficient hm(A) is the sum of all weighted matchings with m edges in a

complete weighted graph. In statistical physics pA(x) is the partition function of the monomer-

dimer model, where edges of the matching correspond to dimers and the vertices not covered by

the matching correspond to monomers (single atoms).

Theorem 6.6 ([82]). Let A be a n×n symmetric matrix with non-negative real entries. Then the

matching polynomial pA(x) is real-stable. More precisely, the roots of the matching polynomial

pA(x) are negative real.

Remark 6.2. It also holds that the polynomial

p′A(x) =

⌊n
2
⌋∑

0

hafm(A)x
n
2
−m

is real-stable. Proofs of the above theorem and this remark can be found in [82, 32].

The above result is important because Barvinok’s technique [32, Section 2] can be applied

to the partition function of the monomer-dimer model. Barvinok related a zero-free region

of a univariate polynomial with its efficient evaluation. The polynomial is considered on the

complex plane, i.e. the variable x takes complex values. Barvinok states that if a polynomial

P (x) =
∑n

i=1 cix
i of degree n is zero-free in a strip containing [0, 1] (on the complex plane),

then P (1) can be (1± ε)-approximated using c0, . . . , ck for some k = O(log n
ε). The basic idea

is to truncate the Taylor expansion of logP (x) at x = 0. Let g(x) := logP (x) and for k ≥ 0,

Tk(g)(x) :=

k∑
i=0

g(i)(0)

i!
xi, where g(i) is the i-th derivative of g.

Then Barvinok states that if P (x) is zero-free in the disk of radius β > 1 centered at the origin,

then there exists a constant Cβ such that for any 0 < ε < 1,∣∣∣exp(Tk(g)(1))
P (1)

− 1
∣∣∣ ≤ ε, for some k = Cβ log

n

ε
.

A.Chalki Thesis 135

Chapter 6 Counting matchings in graphs with edge colors

So, when the polynomial is zero-free in the disk of radius β > 1, then we can approximately

evaluate P (1) using the first O(log n
ε) terms of the Taylor expansion of logP (x) at the origin. If

the polynomial is zero-free in a strip of [0, 1], then we can apply a transformation to transform

it into a polynomial that is zero-free in the disk of radius > 1.

This technique has been used to construct deterministic quasi-polynomial-time approxi-

mation algorithms for evaluating a number of graph partition functions (for general graphs).

Related work can be found in [30, 19, 34, 31]. Patel and Regts [127] gave a polynomial-time algo-

rithm for computing the first O(log n) coefficients of a large class of graph polynomials when the

graph has bounded degree. In particular, they obtained fptas for evaluating the independence

polynomial, the Tutte polynomial, and computing partition functions of spin and edge-coloring

models in the case of bounded degree graphs.

6.4.2 The multivariate (vertex) matching polynomial

Below we define the multivariate (vertex) matching polynomial.

Definition 6.15. Let G = (V,E) be a graph with edge weights we, e ∈ E. We define the

multivariate (vertex) matching polynomial by

pV (xv1 , ..., xvn) =
∑
M∈M

weight(M)
∏
v∈M

xv

where M is the set of matchings, weight(M) =
∏
e∈M we, and n = |V |.

Note that each term corresponds to a different matching and each variable xv of a term

corresponds to a vertex that belongs to this matching. The coefficient of the term is the weight

of the matching. Matchings that contain the same vertices contribute similar terms to the

multivariate matching polynomial.

Remark 6.3. Alternatively, we can define the multivariate matching polynomial to be the fol-

lowing.

p′V (xv1 , ..., xvn) =
∑
M∈M

weight(M)
∏
v ̸∈M

xv.

The only difference here is that a term, corresponding to a matching M , contains a variable for

each vertex not covered by M .

Remark 6.4. Note that these polynomials are multiaffine, i.e. multivariate polynomials in which

each variable has degree at most one.

A.Chalki Thesis 136

Chapter 6 Counting matchings in graphs with edge colors

Theorem 6.7 ([82, 49]). Let G = (V,E) be a graph with non-negative edge weights we, e ∈ E.

The polynomials

pV (xv1 , ..., xvn) =
∑
M∈M

weight(M)
∏
v∈M

xv

and

p′V (xv1 , ..., xvn) =
∑
M∈M

weight(M)
∏
v ̸∈M

xv

are Hurwitz-stable, that is, if Re(z1) > 0, ...,Re(zn) > 0, then pV (z1, ..., zn) ̸= 0 (resp. p′V (z1, ..., zn) ̸=

0). In other words, they are zero-free in the right half of the complex plane.

Remark 6.5. The stability of pV and p′V is also true for the left half-plane (i.e. if Re(zi) < 0,

for every 1 ≤ i ≤ n, then pV (z1, ..., zn) ̸= 0 and p′V (z1, ..., zn) ̸= 0), but it does not hold for other

rotations of the right half-plane.

To encode k-matchings of a graph G, we use multivariate (multiaffine) homogeneous poly-

nomials, i.e. each term contains the same number of variables. Since the variables correspond

to vertices here, each term representing a k-matching M contains 2k variables corresponding to

the 2k vertices covered by M (alt. n−2k variables, one for each vertex not covered by M). The

multivariate homogeneous matching polynomial is defined below. In fact, given a graph

G, there is a family of such polynomials for G, one for each 1 ≤ k ≤ n.

Definition 6.16. Let G = (V,E) be a graph with edge weights we, e ∈ E. We define the

multivariate homogeneous matching polynomial by

pkV (xv1 , ..., xvn) =
∑

M matching of size k

weight(M)
∏
v∈M

xv

where weight(M) =
∏
e∈M we and n = |V |.

Proposition 6.12 ([6]). Let G = (V,E) be a graph with non-negative edge weights we, e ∈ E.

For any k, the polynomial

pkV (xv1 , ..., xvn) =
∑

M matching of size k

weight(M)
∏
v∈M

xv

is 1
2 -sector-stable.

Corollary 6.5 ([6]). Let G = (V,E) be a graph with non-negative edge weights we, e ∈ E. The

following polynomials are 1
2 -sector-stable.

p′
k
V (xv1 , ..., xvn) =

∑
M matching of size k

weight(M)
∏
v ̸∈M

xv,

A.Chalki Thesis 137

Chapter 6 Counting matchings in graphs with edge colors

p2nV (xv1 , ..., xvn , x
′
v1 , ..., x

′
vn) =

∑
M matching

weight(M)
∏
v∈M

xv
∏
v ̸∈M

x′v.

The former encodes k-matchings, whereas the latter is homogeneous in 2n variables and encodes

all matchings.

6.4.3 The multivariate edge matching polynomial

Analogously, the multivariate edge matching polynomial is defined as follows.

Definition 6.17. Let G = (V,E) be a graph with edge weights we, e ∈ E. We define the

multivariate edge matching polynomial by

pE(xe1 , . . . , xem) =
∑
M∈M

weight(M)
∏
e∈M

xe

where M is the set of matchings, weight(M) =
∏
e∈M we, and m = |E|.

In [110], the authors proved that the polynomial just defined is same-phase stable.

Proposition 6.13 ([110]). Let G = (V,E) be a graph with non-negative edge weights we, e ∈ E.

The polynomial pE(xe1 , . . . , xem) is same-phase stable.

Proof. Let G = (V,E) be a graph with non-negative edge weights wei , ei ∈ E, and let

(t1, . . . , tm) ∈ Rm+ . The univariate restriction pE(t1x, . . . , tmx) of the multivariate edge match-

ing polynomial for G, is the univariate matching polynomial for a graph G′ = (V,E) with edge

weights w′
ei = wei · ti. Since the latter is real-stable, by Definition 6.13, pE(xe1 , . . . , xem) is

same-phase stable.

Analogously to the multivariate homogeneous matching polynomial with variables corre-

sponding to vertices, we define here the multivariate homogeneous edge matching poly-

nomial. This polynomial encodes k-matchings, but each term contains exactly k variables,

since now variables represent edges (instead of vertices).

Definition 6.18. Let G = (V,E) be a graph with edge weights we, e ∈ E. We define the

multivariate homogeneous edge matching polynomial by

pkE(xe1 , . . . , xem) =
∑

M matching of size k

weight(M)
∏
e∈M

xe

where weight(M) =
∏
e∈M we and m = |E|.

A.Chalki Thesis 138

Chapter 6 Counting matchings in graphs with edge colors

As Proposition 6.12 states the multivariate homogeneous matching polynomial pkV is 1
2 -

sector-stable. We do not have an analogous result for pkE . In fact, this would be a strong result.

The following proposition states the implications that α-sector-stability of pkE would have.

Proposition 6.14. If the polynomial pkE(xe1 , . . . , xem) is α-sector-stable for a constant α, then

we have an fpras for counting k-matchings in general graphs.

Proof. We can efficiently sample a k-matching u.a.r. by applying the Markov chain of the Down-

Up Random Walk described in Subsection 6.3.4. In specific, the stationary distribution π ∝ µ

is the uniform distribution on k-matchings. Also step 2 can be implemented efficiently; to select

St+1 with probability ∝ µ(St+1) we look at all the k − ℓ sets of edges (the number of which is

O(nk−l)) and among them we keep the ones that will give us a matching (together with the ℓ

edges in Tt). We choose one of them u.a.r.

However, the multivariate homogeneous edge matching polynomial is α(k)-sector-stable

with α(k) = 1
2k depending on k, i.e. the number of variables in each term. In fact, we prove

below that every multivariate homogeneous polynomial, where each term has degree k, is 1
2k -

sector-stable.

Proposition 6.15. Let pk ∈ R[x1, . . . , xn] be a multivariate homogeneous polynomial, where

each term has degree k. Then pk is 1
2k -sector-stable.

Proof. The proof is based on the following facts. The product of two complex numbers z1 and

z2 is a complex number w that has absolute value |w| = |z1| · |z2| and argument (i.e. the angle

between the positive real axis and the line joining the origin and w, represented as a point in

the complex plane) arg(w) = arg(z1) + arg(z2). If arg(zi) ∈ (− π
2k ,

π
2k) for every i ∈ {1, . . . , n},

then the product of k zi’s is a complex number w with arg(w) ∈ (−π
2 ,

π
2). This means that w

belongs to the right half-plane. The sum of such complex numbers cannot be zero.

6.4.4 The multivariate homogeneous red-black polynomial

Now we define a polynomial that encodes exact matchings using variables that correspond to

vertices. We call this polynomial the multivariate homogeneous red-black polynomial.

Intuitively, a term gives information about the number of ‘red perfect matchings’ that cover

2k specific vertices times the number of ‘black perfect matchings’ that cover the rest 2n − 2k

vertices.

A.Chalki Thesis 139

Chapter 6 Counting matchings in graphs with edge colors

Let G = (U ∪ V,E), |U | = |V | = n, be an unweighted bipartite graph and E′ ⊆ E. Let

S = {u1, ..., uk, v1, ..., vk} be a set of 2k vertices such that u1, ..., uk ∈ U and v1, ..., vk ∈ V . We

define the following two weights for S.

• Wred(S) is defined to be the number of perfect matchings that exist in G[S] (i.e. the

induced subgraph of G by S) consisting only of red edges (i.e. edges in E′).

• Wblack(S) is defined to be the number of perfect matchings in G[S] consisting only of black

edges (i.e. edges in E \ E′), where S = (U ∪ V) \ S.

Definition 6.19. Let G = (U ∪ V,E), |U | = |V | = n, be an unweighted bipartite graph and

E′ ⊆ E. We define the multivariate homogeneous red-black polynomial by

pkrb(xu1 , . . . , xun , xv1 , . . . , xvn) =
∑

S⊆U∪V
|S∩V |=|S∩U |=k

Wred(S) ·Wblack(S) ·
∏
v∈S

xv.

Remark 6.6. Alternatively, let R be the biadjacency matrix of Gred = (U ∪ V,E′) and B be

the biadjacency matrix of Gblack = (U ∪ V,E \ E′). For a set S ⊆ U ∪ V , we denote by RS

(resp. BS) the submatrix of R (resp. B) which contains only rows and columns that correspond

to vertices in S. Then,

pkrb(xu1 , . . . , xun , xv1 , . . . , xvn) =
∑

S⊆U∪V
|S∩V |=|S∩U |=k

perm(RS) · perm(BS)
∏
v∈S

xv.

Note that a term of this polynomial consists of the product of 2k variables corresponding to

2k vertices, times a coefficient that is equal to the number of exact matchings of G, in which

these 2k vertices are covered by red edges.

We can obtain the homogeneous red-black polynomial by applying an operator on the ho-

mogeneous (vertex) matching polynomial defined in Subsection 6.4.2. Let ⟨G = (U∪V,E), E′, k⟩

be an instance of #Exact Matchings where G is an unweighted bipartite graph. Consider

the polynomials

pkV red(xu1 , . . . , xun , xv1 , . . . , xvn) =
∑

S⊆U∪V
|S∩V |=|S∩U |=k

Wred(S)
∏
v∈S

xv

p′
k
V black(xu1 , . . . , xun , xv1 , . . . , xvn) =

∑
S⊆U∪V

|S∩V |=|S∩U |=k

Wblack(S)
∏
v∈S

xv

A.Chalki Thesis 140

Chapter 6 Counting matchings in graphs with edge colors

Note that the former is the matching polynomial pkV defined on the graph Gred = (U∪V,E′),

whereas the latter is polynomial p′kV defined on Gblack = (U ∪ V,E \ E′). Then the polynomial

pkrb(xu1 , . . . , xun , xv1 , . . . , xvn) =
∑

S⊆U∪V
|S∩V |=|S∩U |=k

perm(RS) · perm(BS)
∏
v∈S

xv

is called the Schur product (or the Hadamard-Schur product) of pkV red and p′kV black [87].

Recall that D = {z ∈ C | |z| < 1} is the open unit disc. In [86] it was shown that

Dn-stability is preserved under the Schur product.

Theorem 6.8 ([86]). Suppose that for each S ⊂ {1, 2, . . . , n}, complex number aS and bS are

given. Suppose that

∑
S⊂{1,2,...,n}

aS
∏
j∈S

zj ̸= 0 and
∑

S⊂{1,2,...,n}

bS
∏
j∈S

zj ̸= 0

whenever |zj | < 1 for all j with 1 ≤ j ≤ n. Then also

∑
S⊂{1,2,...,n}

aSbS
∏
j∈S

zj ̸= 0

whenever |zj | < 1 for all j with 1 ≤ j ≤ n.

So the following corollary holds for polynomial pkrb.

Corollary 6.6. If both multivariate homogeneous matching polynomials pkV (x1, . . . , xn) and

p′kV (x1, . . . , xn) defined on an unweighted bipartite graph are Dn-stable, then the multivariate

homogeneous red-black polynomial pkrb(x1, . . . , xn) defined on an unweighted bipartite graph with

both black and red edges, is Dn-stable.

Proof. It is immediate from Theorem 6.8 and the fact that pkrb(x1, . . . , xn) is the Schur product

of pkV (x1, . . . , xn) and p′kV (x1, . . . , xn).

Remark 6.7. The assumption of Corollary 6.6 is very strong. If pkV (x1, . . . , xn) is Dn-stable,

then p′kV (x1, . . . , xn) = x1 · · · xn · pkV (x
−1
1 , . . . , x−1

n) is Dn-stable, where D = {z ∈ C | |z| > 1}.

This is true because if x ∈ D, then x ̸= 0 and x−1 ∈ D. The converse fact is also true, that is, if

p′kV (x1, . . . , xn) is Dn-stable, then pkV (x1, . . . , xn) is Dn-stable. So, the assumption implies that

both multivariate homogeneous matching polynomials pkV (x1, . . . , xn) and p′kV (x1, . . . , xn) are not

only Dn-stable, but also Dn-stable.

A.Chalki Thesis 141

Chapter 6 Counting matchings in graphs with edge colors

6.4.5 The multivariate homogeneous exact matching polynomial

In this section, we define a polynomial that encodes exact matchings using variables correspond-

ing to edges, namely the multivariate homogeneous exact matching polynomial. Since

we want to focus on solving the #Exact Matchings problem on unweighted bipartite graphs,

we define this polynomial for such graphs.

Let G = (U ∪ V,E), |V | = |U | = n, be an unweighted bipartite graph and E′ ⊆ E. Let

alsoMk
red be the set of k-matchings of G containing only red edges.

Let A = (aij) be the n× n biadjacency matrix of G such that,

aij =


1 if (ui, vj) ∈ E,

0 otherwise

Let

• A(ij) denote the (n − 1) × (n − 1) matrix obtained from A by crossing out the i-th row

and the j-th column and

• A|(0) denote matrix A where every aij , (ui, vj) ∈ E′ is set to 0.

Let Mk be a set of pairs {i1, j1}, ..., {ik, jk} such that i1 ̸= i2 ̸= ... ̸= ik, j1 ̸= j2 ̸= ... ̸= jk

and (i1, j1), ..., (ik, jk) ∈ E′. We define the weight of Mk as follows

W(Mk) = perm(A(i1,j1),...,(ik,jk)|
(0))

where perm(A) =
∑

σ∈Sn

∏n
i=1Ai,σ(i), for any square matrix A.

Note that edges (i1, j1), ..., (ik, jk) form a matching in Mk
red. The weight of this matching

is the number of perfect matchings with only black edges in the remaining subgraph of G. In

other words, it is the permanent of A(i1,j1),...,(ik,jk)|
(0), where A(i1,j1),...,(ik,jk)|

(0) is the biadjacency

matrix of G after deleting all the vertices of Mk and deleting all red edges of G.

Definition 6.20. Let G = (U ∪V,E), |V | = |U | = n, be an unweighted bipartite graph, E′ ⊆ E,

andMk
red be the set of k-matchings of G containing only edges in E′. We define the multivariate

homogeneous exact matching polynomial by

pkem(xe1 , . . . , xem) =
∑

Mk∈Mk
red

W(Mk) ·
∏
e∈Mk

xe.

A.Chalki Thesis 142

Chapter 6 Counting matchings in graphs with edge colors

6.4.6 Examples of expressing the matching polynomials using the permanent

The rationale behind this subsection is the following. The permanent of the biadjacency matrix

of a bipartite graph gives the number of perfect matchings of the graph. We examine here

how coefficients of the aforementioned polynomials, other useful quantities, or maybe an entire

polynomial can be expressed using the permanent of appropriate matrices. To start with, we

simplify the form of the polynomials as much as possible, so the following examples are for

unweighted bipartite graphs.

Example 6.1 (Multivariate homogeneous matching polynomial).

Consider the matrix A1 =


z1z4 0 z1z6

z2z4 z2z5 z2z6

z3z4 z3z5 0

 that corresponds to the following graph G1.

3

2

1

6

5

4

Note that:

1. The sum of permanents of k × k submatrices of A1 gives the multivariate homogeneous

matching polynomial pkV (z1, . . . , z6). So, it is 1
2 -sector-stable by Proposition 6.12.

2. perm(A1) is of the form C · z1 · · · z6, where C ∈ N is the number of perfect matchings of

G1. So perm(A) = 0 if and only zi = 0 for some 1 ≤ i ≤ 6.

Example 6.2 (Multivariate non-homogeneous red-black polynomial).

Consider the matrix A2 =


z1z4 1 0

1 z2z5 z2z6

z3z4 1 1

 that corresponds to the following graph G2.

3

2

1

6

5

4

Note that perm(A2) is the multivariate non-homogeneous red-black polynomial, i.e. the sum

of the homogeneous red-black polynomials pkrb(z1, . . . , z6), for every 0 ≤ k ≤ n. A term of this

A.Chalki Thesis 143

Chapter 6 Counting matchings in graphs with edge colors

polynomial is the product of some variables times a coefficient that is equal to the number of exact

matchings in which only the vertices corresponding to the variables (of the term) are covered by

red edges.

Example 6.3 (Multivariate homogeneous red-black polynomial in 2n variables).

(a) Consider the matrix A3 =


z1z4 z′1z

′
5 0

z′2z
′
4 z2z5 z2z6

z3z4 z′3z
′
5 z′3z

′
6

 that corresponds to graph G2 of Example 6.2.

Note that:

1. perm(A3) gives the following homogeneous polynomial in 12 = 2×(the number of vertices of G2)

variables.

g(z1, . . . , z6, z
′
1, ..., z

′
6) =

∑
S⊆U∪V

|S∩V |=|S∩U |

Wred(S) ·Wblack(S) ·
∏
v∈S

zv ·
∏
v ̸∈S

z′v

where Wred(S) and Wred(S) are defined in Subsection 6.4.4.

2. If polynomial g is α-sector-stable, then by [6, Proposition 54], if we set all z′v to 1, we

obtain an α-sector-stable polynomial. In specific, this is the non-homogeneous red-black

polynomial.

(b) Consider the matrices A31 =


z1z4 0 0

0 z2z5 z2z6

z3z4 0 0

 and A32 =


0 z′1z

′
5 0

z′2z
′
4 0 0

0 z′3z
′
5 z′3z

′
6

 that

correspond to graph G2.

Fix a k. Let A1S be a k×k submatrix of A31, where S denotes the set of rows and columns

in A1S. Then we denote by A2S the matrix that we obtain from A32 by keeping the rows and

columns in S (i.e. by deleting all rows and columns in S). Consider the polynomial that is the

sum of products A1S · A2S for all possible S. This polynomial is g(z1, ..., z6, z′1, ...z
′
6) restricted

to terms with 2k variables among z1, ..., z6 and 12−2k variables among z′1, ..., z
′
6. So, it encodes

exact matchings with k red edges and it is a generalization of pkrb (i.e. if we set all z′1, . . . , z
′
6 to

1, we get pkrb).

Example 6.4 (Multivariate homogeneous red-black polynomial).

Consider the matrices R =


z1z4 0 0

0 z2z5 z2z6

z3z4 0 0

 and B =


0 1 0

1 0 0

0 1 1

 that correspond to the same

graph G2 given below.

A.Chalki Thesis 144

Chapter 6 Counting matchings in graphs with edge colors

3

2

1

6

5

4

Fix a k. Consider a term to be the permanent of a k × k submatrix RS of R times the

permanent of the matrix BS. The sum of such terms for all possible S gives the multivariate

homogeneous red-black polynomial.

Example 6.5 (Multivariate non-homogeneous exact matching polynomial).

Consider the matrices A4 =


e1 1 0

1 e5 e6

e7 1 1

, R′ =


e1 0 0

0 e5 e6

e7 0 0

 and B′ =


0 1 0

1 0 0

0 1 1

 that

correspond to the same graph G2 given below.

3

2

1

6

5

4

Note that:

1. perm(A4) is the multivariate non-homogeneous exact matching polynomial, i.e. the sum

of the multivariate homogeneous exact matching polynomials pkem(z1, . . . , z6), for every

0 ≤ k ≤ n. A term corresponds to exact matchings containing the red edges appearing as

variables in the term. The coefficient of the term is the number of black perfect matchings

(perfect matchings containing only black edges) in the remaining subgraph.

2. Fix a k. Let a term be the permanent of a k×k submatrix R′
S of R′ times the permanent of

the matrix B′
S
. The polynomial that is the sum of all these terms, gives the homogeneous

exact matching polynomial pkem(z1, . . . , z6).

Example 6.6 (Univariate matching polynomial).

This example is about bipartite graphs that the diagonal of their biadjacency matrix has only zero

entries. Let A5 =


0 1 0 1

1 0 1 0

1 1 0 1

1 1 1 0

 be the biadjacency matrix of a bipartite graph G3 = (U ∪V,E),

A.Chalki Thesis 145

Chapter 6 Counting matchings in graphs with edge colors

|U | = |V | = n, that has only black edges. Then

perm(xI +A5) =
∑

M matching of size n−k
xk

which is a univariate polynomial encoding all matchings of G3. So, it is real stable [32, Chapter

5].

Example 6.7 (Univariate exact matching polynomial).

Let A6 =

x 1

1 x

 represent the graph G4 which is shown below.

2

1

4

3

Then perm(A6) = x2 + 1 is the univariate exact matching polynomial, i.e. the polynomial

obtained from the multivariate non-homogeneous exact matching polynomial by replacing all

variables by x. In general, the permanent of the biadjacency matrix with entries equal to x and

1 for red and black edges, respectively, may be sector stable, but it is not real stable (since i is a

root of x2 + 1).

6.4.7 Facts and remarks about the matching polynomials defined here

Remark 6.8. Let A be a matrix with non-negative entries and zero diagonal entries. Then

the permanental polynomial perm(xI + A) of A is a real-stable polynomial. This is based on

Example 6.6.

Remark 6.9. Let A = (aij) be the biadjacency matrix of the unweighted bipartite graph G =

(U ∪ V,E) which also has a set of red edges E′ ⊆ E, such that

aij =


1, if (i, j) ∈ E \ E′

x, if (i, j) ∈ E′

0, otherwise

Then perm(A) is the univariate exact matching polynomial

pem(x) =
∑

M perfect
matching

CM · x|E
′∩M |

A.Chalki Thesis 146

Chapter 6 Counting matchings in graphs with edge colors

where |E′ ∩M | is the number of red edges in M and the coefficient CM is the number of black

perfect matchings in the subgraph induced by the vertices not covered by the red edges of M .

This polynomial is not real-stable. This is based on Example 6.7.

In Example 6.5 we expressed the multivariate non-homogeneous exact matching polynomial

(i.e. the sum of the multivariate homogeneous exact matching polynomials pkem, 0 ≤ k ≤ n) as

the permanent of a relevant matrix (denoted by A4 in Example 6.5), which contains a variable

ei, 1 ≤ i ≤ E′, for every red edge, 1 for each black edge, and 0 otherwise. Below we prove

that this polynomial has a zero-free region, which is a circle around the point (0, 1), under some

conditions on the sum of the rows and columns of this relevant matrix. The proof is based on

the following theorem.

Theorem 6.9. ([32, Theorem 5.5.3]). Let A = (aij) be a n × n array of n2 complex numbers,

such that ∑
1≤i≤n

|1− aij | ≤
α · n
4

and
∑

1≤j≤n
|1− aij | ≤

α · n
4

for every 1 ≤ j ≤ n, and 1 ≤ i ≤ n, respectively, where

α ≈ 0.2784645428

is the positive solution of the equation

xex+1 = 1.

Then perm(A) ̸= 0.

Corollary 6.7. Let G = (U ∪ V,E), |U | = |V | = n, E′ ⊆ E, be a bipartite graph, that has

r = |E′| red edges, b = |E \ E′| black edges, and c = n2 − (r + b) pairs of vertices that are not

connected by an edge. Let also e1, . . . , er be an enumeration of edges in E′.

Consider the biadjacency matrix A = (aij) of G such that

aij =


eℓ, if (i, j) = eℓ

1, if (i, j) ∈ E \ E′

0, otherwise

Let Dr be the maximum degree of a vertex with respect to red edges (i.e. the maximum number

of red edges adjacent to some vertex) and Dc be the maximum number of non-neighbors of a

vertex in G. If all eℓ, 1 ≤ ℓ ≤ r, belong to the closed disc of center (1, 0) and radius αn−4Dc
4Dr

,

then perm(A) ̸= 0, where α ≈ 0.2784645428. The polynomial perm(A) is called the multivariate

A.Chalki Thesis 147

Chapter 6 Counting matchings in graphs with edge colors

non-homogeneous exact matching polynomial of G.

In other words, the multivariate non-homogeneous exact matching polynomial of G is Cr-stable,

where C ⊆ C is the circle with center (1, 0) and radius αn−4Dc
4Dr

.

Proof. By Theorem 6.9, if the sum of |1 − aij | in every row and every column is ≤ α·n
4 , then

perm(A) ̸= 0.

But the sum of a row (or a column) depends on the number of zeros (no edge) and the

number of eℓ’s (red edge) in the row. So, the sum of any row (or column) is upper bounded by
Dr∑
i=1

|1− eℓ|+Dc, which should be:

Dr∑
i=1

|1− eℓ|+Dc ≤
αn

4
=⇒

Dr∑
i=1

|1− eℓ| ≤
αn− 4Dc

4
where αn > 4Dc.

It suffices to have

|1− eℓ| ≤
αn− 4c

4r
for every eℓ, 1 ≤ ℓ ≤ r =⇒

(1− Re(eℓ))
2 + Im(eℓ)

2 ≤ (
αn− 4Dc

4Dr
)2 for every eℓ, 1 ≤ ℓ ≤ r

If all ei belong to the closed disc of centre (1, 0) and radius
αn− 4Dc

4Dr
, then the multivariate

non-homogeneous exact matching polynomial is not zero.

For the inequality αn > 4Dc, we have that

αn > 4Dc ⇐⇒ αn > 4(n− d)⇐⇒ (4− α)n < 4d⇐⇒ d >
4− α
4

n

where d is the minimum degree of a vertex.

For the sake of completeness, below we include three more propositions that have already

been stated earlier in this section.

Proposition 6.16 (Proposition 6.14 restated). If the polynomial pkE(xe1 , . . . , xem) is α-sector-

stable for a constant α, then we have an fpras for counting k-matchings in general graphs.

Proposition 6.17 (Proposition 6.15 restated). Let pk ∈ R[x1, . . . , xn] be a multivariate homo-

geneous polynomial, where each term has degree k. Then pk is 1
2k -sector-stable.

A.Chalki Thesis 148

Chapter 6 Counting matchings in graphs with edge colors

Proposition 6.18 (Corollary 6.6 restated). If both multivariate homogeneous matching polyno-

mials pkV (x1, . . . , xn) and p′kV (x1, . . . , xn) defined on an unweighted bipartite graph are Dn-stable,

then the multivariate homogeneous red-black polynomial pkrb(x1, . . . , xn) defined on an unweighted

bipartite graph with both black and red edges, is Dn-stable.

6.5 Discussion of results

In this chapter our goal was to examine #Exact Matchings, the problem of counting perfect

matchings with k edges in graphs with both black and red edges, with respect to its exact and

approximate complexity.

The decision version of the problem, namely Exact Matching is known to be in RNC [119].

We prove here that Exact Matching restricted to bipartite graphs can be reduced to a max-

flow problem and so it is in P.

#Exact Matchings was known to be computable in polynomial time in K3,3-free graphs.

We prove here that #Exact Matchings is reducible to #Weighted PerfMatch using

polynomial interpolation, so the polynomial-time algorithm for #PerfMatch inK5-free graphs

applies to #Exact Matchings in K5-free graphs as well.

In the case of #Exact Matchings in bipartite graphs we are left with several open

questions. We include below most of them and we add another one in Chapter 7. For details,

the reader can see Subsections 6.2.1 and 6.3.4.

1. In Subsection 6.2.1 we analyzed our motivation to determine whether the optimization ver-

sion of #Exact Matchings in bipartite graphs is in P. A polynomial-time computable

optimization version would yield a randomized algorithm described in [29], which distin-

guishes between #Exact Matchings(G) being polynomially or exponentially large. We

have not concluded whether the optimization version of #Exact Matchings in bipartite

graphs is either in P or NP-hard. However, our attempt to prove that it is in P by using

the ILP formulation of the problem failed. Moreover, it is worth-noting that a modifica-

tion of the algorithm in [29], based on the RNC algorithm for the decision version, and

not on a polynomial-time algorithm for the optimization version, may work for #Exact

Matchings. This is because the RNC algorithm for the decision version, can be extended

to output the minimum exact matching, where the m edges of the graph are randomly

assigned weights in {1, . . . , 2m}.

A.Chalki Thesis 149

Chapter 6 Counting matchings in graphs with edge colors

2. Can we design an fpaus for exact matchings in bipartite graphs? More precisely, can we

do one of the following?

(a) Can we modify the MCMC for sampling uniformly at random perfect matchings in

bipartite graphs so it works for exact matchings with exactly k red edges?

(b) Can we prove α-sector-stability either for the multivariate homogeneous red-black

polynomial or for the multivariate homogeneous exact matching polynomial and then

apply the technique of [6] (as was described in Subsection 6.3.4)?

3. Can we prove that #Exact Matchings in bipartite graphs is AP-interreducible with a

problem that is not expected to be approximable, such as #BIS, or even #PerfMatch,

which has an open approximability status? In fact, it would suffice to prove that it is

at least as hard as one of these problems, so we would focus on the question we pose in

question 1 and not on designing an fpras for the problem.

Regarding the question 2(b), we have stated some first facts and remarks about matching

polynomials in Section 6.4. However, at the time this thesis is completed, we are far from

proving α-sector-stability for the polynomials we mention in question 2(b).

Regarding the parameterized complexity of #Exact Matchings, we proved a hardness

result. By reducing #k-Matchings to #Exact Matchings, we concluded that the latter is

#W[1]-hard.

A.Chalki Thesis 150

Chapter 6 Counting matchings in graphs with edge colors

A.Chalki Thesis 151

Chapter 7

Conclusion

To conclude, we state below some open questions that can set the ground for future work.

1. We have presented some TotP-complete problems under parsimonious reductions. How-

ever, these problems are not among the well-known problems in TotP, for example #IS,

Permanent, etc. If any problem that admits an fpras, like Permanent, is TotP-complete

under parsimonious reductions, then RP = NP. If #PerfMatch was proven to be TotP-

complete, then its approximability status would be resolved, since its TotP-hardness would

imply that it has no fpras unless RP = NP. In Chapter 5 we referred to an open question in

relation to #MonSat; which class is #MonSat complete for, with respect to reductions

under which the class is closed? Can it be that it is complete for TotP under parsimonious

reductions?

2. The syntax of the logic RΣQSOE, which captures TotP over finite ordered structures, is

such that only one p-bounded fixed point appears. If we allow nested p-bounded fixed

points, will we obtain a logic that still captures TotP? Such questions arise quite naturally

when we deal with logics with fixed points. For example, first-order logic with nested

least fixed points has been proven to be the same as first-order logic with one least fixed

point [112].

3. Classes defined in the context of descriptive complexity are not closed under parsimo-

nious or product reductions in general. For example, every problem that is reducible to

#MonSat under product reductions, does not necessarily belong to the class #Π2-1VAR

defined in Chapter 5. The introduction of reductions defined in some logic (e.g. first-order

reductions) between counting problems, under which the aforementioned classes would

152

Chapter 7 Conclusion

be closed, could refine the classification of these problems in the context of descriptive

complexity. Such reductions have been defined and widely used between decision prob-

lems [88].

4. We would like to give logical characterizations of classes defined in Chapter 4 and examine

whether using them, we can obtain alternative proofs of well-known results, such as Toda’s

Theorem, closure properties of classes, etc. Note that, for example, the logical character-

ization of NL has given an alternative proof of the closure of NL under complement [112].

5. The most significant question that this thesis has not succeeded to answer is whether

#Exact Matchings in bipartite graphs has an fpras. Can we prove α-sector-stability

either for the multivariate homogeneous red-black polynomial or for the multivariate ho-

mogeneous exact matching polynomial and then apply the technique of [6] (as was de-

scribed in Subsection 6.3.4 of Chapter 6)? If not, can we show hardness of approximation

for the problem? In the latter case, can we prove that the optimization version of the

problem is polynomial-time computable and obtain a randomized algorithm for #Exact

Matchings in bipartite graphs along the lines of [29]?

6. Regarding the exact computation of #Exact Matchings, can the dichotomy result

of [143] be extended to the problem of counting perfect matchings in weighted graphs?

If the answer is yes, then the same dichotomy theorem holds for the problem #Exact

Matchings on minor-closed graph classes.

A.Chalki Thesis 153

Chapter 7 Conclusion

A.Chalki Thesis 154

Appendix A

Glossary - Γλωσσάριο

αναγωγή γινομένου

απλή πρόταση

αυτοαναγώγιμος

εύρωστη κλάση

K3,3-ελεύθερος γράφος

K5-ελεύθερος γράφος

κλειστό από κάτω σύνολο

λεκτικό

λογικό κύκλωμα

μαντείο

Μετρητική υπόθεση εκθετικού χρόνου

μονοπάτι αποδοχής

Πιθανοτική υπόθεση εκθετικού χρόνου

σταθερό σημείο

συζευκτική κανονική μορφή

συνάρτηση διαμέρισης

συνάρτηση μέτρησης του μεγέθους διαστήματος

ταίριασμα

Υπόθεση εκθετικού χρόνου

φειδωλή αναγωγή

φυσικό πρόβλημα

product reduction

clause

self-reducible

robust class

K3,3-free graph

K5-free graph

lower set

literal

boolean circuit

oracle

#Exponential-time hypothesis (#ETH)

accepting path

randomized exponential-time hypothesis

(rETH)

fixed point

conjunctive normal form (CNF)

partition function

interval size function

matching

Exponential-time hypothesis (ETH)

parsimonious reduction

natural problem

155

156

References

[1] Dimitris Achlioptas, Amin Coja-Oghlan, and Federico Ricci-Tersenghi. On the solution-

space geometry of random constraint satisfaction problems. Random Structures and Al-

gorithms, 38(3):251–268, 2011.

[2] Dimitris Achlioptas and Cristopher Moore. Random k-SAT: Two moments suffice to cross

a sharp threshold. SIAM Journal on Computing, 36(3):740–762, 2006.

[3] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P. Annals of Mathe-

matics, 160 (2):781–793, 2004.

[4] Mikhail Alekhnovich and Eli Ben-Sasson. Linear upper bounds for random walk on small

density random 3-CNFs. SIAM Journal on Computing, 36(5):1248–1263, 2007.

[5] Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. In Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1198–1211. ACM,

2020.

[6] Yeganeh Alimohammadi, Nima Anari, Kirankumar Shiragur, and Thuy-Duong Vuong.

Fractionally log-concave and sector-stable polynomials: counting planar matchings and

more. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Com-

puting, STOC ’21, Virtual Event, Italy, June 21-25, 2021, pages 433–446. ACM, 2021.

[7] Eric Allender and Michal Koucký. Amplifying lower bounds by means of self-reducibility.

Journal of the ACM, 57(3):14:1–14:36, 2010.

[8] Eric Allender and Roy S. Rubinstein. P-printable sets. SIAM Journal on Computing,

17(6):1193–1202, 1988.

[9] Carme Àlvarez and Birgit Jenner. A very hard log-space counting class. Theoretical

Computer Science, 107(1):3–30, 1993.

157

References

[10] Andris Ambainis and Martins Kokainis. Quantum algorithm for tree size estimation, with

applications to backtracking and 2-player games. In Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2017, pages 989–1002. ACM, 2017.

[11] Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-

dimensional expanders and applications to the hardcore model. In Proceedings of the 61st

IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham,

NC, USA, November 16-19, 2020, pages 1319–1330. IEEE, 2020.

[12] Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in NC. Journal of

the ACM, 67(4):21:1–21:34, 2020.

[13] Antonis Antonopoulos, Eleni Bakali, Aggeliki Chalki, Aris Pagourtzis, Petros Pantavos,

and Stathis Zachos. Completeness, approximability and exponential time results for count-

ing problems with easy decision version. Theoretical Computer Science, 915:55–73, 2022.

[14] Marcelo Arenas, Luis Alberto Croquevielle, Rajesh Jayaram, and Cristian Riveros. Ef-

ficient logspace classes for enumeration, counting, and uniform generation. SIGMOD

Record, 49(1):52–59, 2020.

[15] Marcelo Arenas, Martin Muñoz, and Cristian Riveros. Descriptive complexity for counting

complexity classes. Logical Methods in Computer Science, 16(1), 2020.

[16] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cam-

bridge University Press, USA, 2009.

[17] Vikraman Arvind and Piyush P. Kurur. Graph isomorphism is in SPP. Information and

Computation, 204(5):835–852, 2006.

[18] Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameter-

ized counting problems. In Proceedings of the 13th International Symposium on Algorithms

and Computation, ISAAC 2002 Vancouver, BC, Canada, November 21-23, 2002, volume

2518 of Lecture Notes in Computer Science, pages 453–464. Springer, 2002.

[19] László Babai. Graph isomorphism in quasipolynomial time (extended abstract). In Pro-

ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC

2016, Cambridge, MA, USA, June 18-21, 2016, pages 684–697. ACM, 2016.

A.Chalki Thesis 158

References

[20] Eleni Bakali. Self-reducible with easy decision version counting problems admit additive

error approximation. connections to counting complexity, exponential time complexity,

and circuit lower bounds. CoRR, abs/1611.01706, 2016.

[21] Eleni Bakali. On Markov chains for #Clustered-Monotone-Sat and other hard counting

versions with easy decision version. International Journal of Scientific and Engineering

Research, 9(3):1203–1211, 2018.

[22] Eleni Bakali. On properties of counting functions with easy decision version: complete-

ness, approximability, Markov chains, phase transitions. PhD thesis, National Technical

University of Athens, 2018.

[23] Eleni Bakali, Aggeliki Chalki, Andreas Göbel, Aris Pagourtzis, and Stathis Zachos. Guest

column: A panorama of counting problems the decision version of which is in P. SIGACT

News, 53(3):46–68, 2022.

[24] Eleni Bakali, Aggeliki Chalki, and Aris Pagourtzis. Characterizations and approximability

of hard counting classes below #P. In Proceedings of the 16th International Conference

on Theory and Applications of Models of Computation, TAMC 2020, Changsha, China,

October 18-20, 2020, volume 12337 of Lecture Notes in Computer Science, pages 251–262.

Springer, 2020. extended version: CoRR, abs/2003.02524.

[25] Eleni Bakali, Aggeliki Chalki, Aris Pagourtzis, Petros Pantavos, and Stathis Zachos. Com-

pleteness results for counting problems with easy decision. In Proceedings of the 10th In-

ternational Conference on Algorithms and Complexity, CIAC 2017, Athens, Greece, May

24-26, 2017, volume 10236 of Lecture Notes in Computer Science, pages 55–66, 2017.

[26] José L. Balcázar, Ronald V. Book, and Uwe Schöning. The polynomial-time hierarchy

and sparse oracles. Journal of the ACM, 33(3):603–617, 1986.

[27] Evangelos Bampas, Andreas-Nikolas Göbel, Aris Pagourtzis, and Aris Tentes. On the

connection between interval size functions and path counting. Computational Complexity,

26(2):421–467, 2017.

[28] Régis Barbanchon. On unique graph 3-colorability and parsimonious reductions in the

plane. Theoretical Computer Science, 319(1-3):455–482, 2004.

[29] Alexander Barvinok. Approximate counting via random optimization. Random Structures

and Algorithms, 11:187–198, 1997.

A.Chalki Thesis 159

References

[30] Alexander Barvinok. Computing the partition function for cliques in a graph. Theory of

Computing, 11:339–355, 2015.

[31] Alexander Barvinok. Approximating permanents and hafnians. Discrete Analysis, 2:34

pp., 2017.

[32] Alexander Barvinok. Combinatorics and Complexity of Partition Functions. Springer,

2017.

[33] Alexander Barvinok and Alex Samorodnitsky. Random weighting, asymptotic counting,

and inverse isoperimetry. Israel Journal of Mathematics, 158:159–191, 03 2007.

[34] Alexander Barvinok and Pablo Soberón. Computing the partition function for graph

homomorphisms with multiplicities. Journal of Combinatorial Theory, Series A, 137:1–

26, 2016.

[35] Richard Beigel and John Gill. Counting classes: Thresholds, parity, mods, and fewness.

Theoretical Computer Science, 103(1):3–23, 1992.

[36] Gleb Belov, Samuel Esler, Dylan Fernando, Pierre Le Bodic, and George L. Nemhauser.

Estimating the size of search trees by sampling with domain knowledge. In Proceedings of

the 26th International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,

Australia, August 19-25, 2017, pages 473–479. ijcai.org, 2017.

[37] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Ste-

fankovic. Approximation via correlation decay when strong spatial mixing fails. SIAM

Journal on Computing, 48(2):279–349, 2019.

[38] Julius Borcea and Petter Brändén. The Lee-Yang and Pólya-Schur programs. I. Linear

operators preserving stability. Inventiones mathematicae, 177:541–569, 2009.

[39] Allan Borodin, Stephen A. Cook, and Nicholas Pippenger. Parallel computation for

well-endowed rings and space-bounded probabilistic machines. Information and Control,

58(1):113–136, 1983.

[40] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. Jour-

nal of the ACM, 60(5):34:1–34:41, 2013.

[41] Andrei A. Bulatov, Martin E. Dyer, Leslie Ann Goldberg, Markus Jalsenius, and David

Richerby. The complexity of weighted boolean #CSP with mixed signs. Theoretical

Computer Science, 410(38-40):3949–3961, 2009.

A.Chalki Thesis 160

References

[42] Jin-Yi Cai and Xi Chen. Complexity Dichotomies for Counting Problems, volume 1.

Cambridge University Press, 2017.

[43] Jin-Yi Cai, Heng Guo, and Tyson Williams. The complexity of counting edge colorings and

a dichotomy for some higher domain Holant problems. In Proceedings of the 55th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,

USA, October 18-21, 2014, pages 601–610. IEEE Computer Society, 2014.

[44] Jin-Yi Cai and Lane A. Hemachandra. On the power of parity polynomial time. In Proceed-

ings of the 6th Annual Symposium on Theoretical Aspects of Computer Science, STACS

89, Paderborn, FRG, February 16-18, 1989, volume 349 of Lecture Notes in Computer

Science, pages 229–239. Springer, 1989.

[45] Chris Calabro, Russell Impagliazzo, Valentine Kabanets, and Ramamohan Paturi. The

complexity of unique k-SAT: An isolation lemma for k-CNFs. Journal of Computer and

System Sciences, 74(3):386–393, 2008.

[46] Peter C. Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard

problems are. In Proceedings of the 12th International Joint Conference on Artificial

Intelligence, IJCAI 1991, Sydney, Australia, August 24-30, 1991, pages 331–340. Morgan

Kaufmann, 1991.

[47] Pang Chen. Heuristic sampling: A method for predicting the performance of tree searching

programs. SIAM Journal on Computing, 21:295–315, 1992.

[48] Steve Chien. A determinant-based algorithm for counting perfect matchings in a general

graph. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2004, New Orleans, Louisiana, USA, January 11-14, 2004, pages 728–735. SIAM,

2004.

[49] Youngbin Choe, James G. Oxley, Alan D. Sokal, and David G. Wagner. Homogeneous

multivariate polynomials with the half-plane property. Advances in Applied Mathematics,

32(1-2):88–187, 2004.

[50] Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting

problems. Information and Computation, 125(1):1–12, 1996.

[51] Radu Curticapean. Counting matchings of size k is #W[1]-hard. In Proceedings of the

40th International Colloquium on Automata, Languages, and Programming, ICALP 2013,

A.Chalki Thesis 161

References

Riga, Latvia, July 8-12, 2013, Part I, volume 7965 of Lecture Notes in Computer Science,

pages 352–363. Springer, 2013.

[52] Radu Curticapean. The simple, little and slow things count: on parameterized counting

complexity. PhD thesis, Saarland University, 2015.

[53] Radu Curticapean. Counting matchings with k unmatched vertices in planar graphs. In

Proceedings of the 24th Annual European Symposium on Algorithms, ESA 2016, August

22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 33:1–33:17. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2016.

[54] Radu Curticapean. Block interpolation: A framework for tight exponential-time counting

complexity. Information and Computation, 261:265–280, 2018.

[55] Radu Curticapean and Mingji Xia. Parameterizing the permanent: Hardness for K8-

minor-free graphs. CoRR, abs/2108.12879, 2021.

[56] Holger Dell, Thore Husfeldt, Dániel Marx, Nina Taslaman, and Martin Wahlen. Expo-

nential time complexity of the permanent and the Tutte polynomial. ACM Transactions

on Algorithms, 10(4):21:1–21:32, 2014.

[57] Martin Dyer, Alan Frieze, and Mark Jerrum. On counting independent sets in sparse

graphs. SIAM Journal on Computing, 31(5):1527–1541, 2002.

[58] Martin E. Dyer, Alan M. Frieze, and Ravi Kannan. A random polynomial time algorithm

for approximating the volume of convex bodies. Journal of the ACM, 38(1):1–17, 1991.

[59] Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The

relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2004.

[60] Martin E. Dyer, Leslie Ann Goldberg, and Mark Jerrum. An approximation trichotomy

for Boolean #CSP. Journal of Computer and System Sciences, 76(3-4):267–277, 2010.

[61] Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomor-

phisms. Random Structures and Algorithms, 17(3-4):260–289, 2000.

[62] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–467,

1965.

[63] Jeff Erickson. Algorithms. University of Illinois, Lecture Notes, 2015.

A.Chalki Thesis 162

References

[64] Ronald Fagin. Generalized first-order spectra and polynomial time recognizable sets.

SIAM-AMS Proceedings, 7:43–73, 1974.

[65] Piotr Faliszewski and Lane A. Hemaspaandra. The complexity of power-index comparison.

Theoretical Computer Science, 410(1):101–107, 2009.

[66] Stephen A. Fenner, Lance Fortnow, and Stuart A. Kurtz. Gap-definable counting classes.

Journal of Computer and System Sciences, 48(1):116–148, 1994.

[67] Sophie Fischer, Lane A. Hemaspaandra, and Leen Torenvliet. Witness-isomorphic reduc-

tions and the local search problem. In Complexity, logic, and recursion theory, chapter 7,

pages 207–223. CRC Press, 1997.

[68] Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM

Journal on Computing, 33(4):892–922, 2004.

[69] Dimitris Fotakis, Spyros C. Kontogiannis, Elias Koutsoupias, Marios Mavronicolas, and

Paul G. Spirakis. The structure and complexity of Nash equilibria for a selfish routing

game. Theoretical Computer Science, 410(36):3305–3326, 2009.

[70] Shmuel Friedland and Daniel Levy. A polynomial-time approximation algorithm for the

number of k-matchings in bipartite graphs. CoRR, abs/cs/0607135, 2006.

[71] Martin Fürer and Shiva Prasad Kasiviswanathan. An almost linear time approximation

algorithm for the permanent of a random (0-1) matrix. In Proceedings of the 24th In-

ternational Conference on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS 2004, Chennai, India, December 16-18, 2004, volume 3328 of Lecture

Notes in Computer Science, pages 263–274. Springer, 2004.

[72] Martin Fürer and Shiva Prasad Kasiviswanathan. Approximately counting perfect match-

ings in general graphs. In Proceedings of the 7th Workshop on Algorithm Engineering

and Experiments and the Second Workshop on Analytic Algorithmics and Combinatorics,

ALENEX /ANALCO 2005, Vancouver, BC, Canada, 22 January 2005, pages 263–272.

SIAM, 2005.

[73] Andreas Galanis, Qi Ge, Daniel Stefankovic, Eric Vigoda, and Linji Yang. Improved

inapproximability results for counting independent sets in the hard-core model. Random

Structures and Algorithms, 45(1):78–110, 2014.

A.Chalki Thesis 163

References

[74] Andreas Galanis, Leslie Ann Goldberg, and Mark Jerrum. A complexity trichotomy for

approximately counting list H-colorings. ACM Transactions on Computation Theory, 9(2),

April 2017.

[75] John Gill. Computational complexity of probabilistic turing machines. SIAM Journal on

Computing, 6(4):675–695, 1977.

[76] Chris D. Godsil and Ivan Gutman. On the theory of the matching polynomial. Journal

of Graph Theory, 5(2):137–144, 1981.

[77] Oded Goldreich. Computational Complexity - A Conceptual Perspective. Cambridge Uni-

versity Press, 2008.

[78] Leslie M. Goldschlager and Ian Parberry. On the construction of parallel computers from

various bases of boolean functions. Theoretical Computer Science, 43:43–58, 1986.

[79] Vivek Gore, Mark Jerrum, Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. A

quasi-polynomial-time algorithm for sampling words from a context-free language. Infor-

mation and Computation, 134(1):59–74, 1997.

[80] Yenjo Han, Lane A. Hemaspaandra, and Thomas Thierauf. Threshold computation and

cryptographic security. SIAM Journal on Computing, 26(1):59–78, 1997.

[81] Frank Harary. Graph Theory and Theoretical Physics. Academic Press, 1967.

[82] Ole J. Heilmann and Elliott Lieb. Theory of monomer-dimer systems. Communications

in Mathematical Physics, 27:166, 1972.

[83] Lane A. Hemaspaandra. The power of self-reducibility: Selectivity, information, and

approximation. In Complexity and Approximation - In Memory of Ker-I Ko, volume

12000 of Lecture Notes in Computer Science, pages 19–47. Springer, 2020.

[84] Lane A. Hemaspaandra, Christopher M. Homan, Sven Kosub, and Klaus W. Wagner. The

complexity of computing the size of an interval. SIAM Journal on Computing, 36(5):1264–

1300, 2007.

[85] Ulrich Hertrampf. Relations among mod-classes. Theoretical Computer Science, 74(3):325–

328, 1990.

A.Chalki Thesis 164

References

[86] Aimo Hinkkanen. Schur products of certain polynomials. In Lipa’s Legacy: Proceedings

of the Bers Colloquium, United States, volume 211 of Contemporary Mathematics, pages

285–295. American Mathematical Society, 1997.

[87] Roger A. Horn. The hadamard product. Proceedings of Symposia in Applied Mathematics,

40:87–169, 1990.

[88] Neil Immerman. Descriptive Complexity. Graduate texts in computer science. Springer,

1999.

[89] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. Journal of

Computer and System Sciences, 62(2):367–375, 2001.

[90] Mark Jerrum. Two-dimensional monomer-dimer systems are computationally intractable.

Journal of Statistical Physics, 48(1-2):121–134, 1987.

[91] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the

Ising model. SIAM Journal on Computing, 22(5):1087–1116, 1993.

[92] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: An approach

to approximate counting and integration. In Approximation Algorithms for NP-Hard

Problems, chapter 12, pages 482–520. PWS Publishing Company, USA, 1996.

[93] Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation al-

gorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM,

51(4):671–697, 2004.

[94] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combina-

torial structures from a uniform distribution. Theoretical Computer Science, 43:169–188,

1986.

[95] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests

means proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[96] Sampath Kannan, Z. Sweedyk, and Stephen R. Mahaney. Counting and random generation

of strings in regular languages. In Proceedings of the 6th Annual ACM-SIAM Symposium

on Discrete Algorithms, 22-24 January 1995. San Francisco, California, USA, pages 551–

557. ACM/SIAM, 1995.

A.Chalki Thesis 165

References

[97] David R. Karger. A randomized fully polynomial time approximation scheme for the

all-terminal network reliability problem. SIAM Journal on Computing, 29(2):492–514,

1999.

[98] Richard M Karp, Michael Luby, and Neal Madras. Monte-Carlo approximation algorithms

for enumeration problems. Journal of Algorithms, 10(3):429–448, 1989.

[99] Richard M. Karp, Eli Upfal, and Avi Wigderson. Constructing a perfect matching is in

random NC. Combinatorica, 6(1):35–48, 1986.

[100] Pieter W. Kasteleyn. The statistics of dimers on a lattice : I. The number of dimer

arrangements on a quadratic lattice. Physica, 27(12):1209–1225, December 1961.

[101] Samir Khuller and Vijay V. Vazirani. Planar graph coloring is not self-reducible, assuming

P != NP. Theoretical Computer Science, 88(1):183–189, 1991.

[102] Aggelos Kiayias, Aris Pagourtzis, Kiron Sharma, and Stathis Zachos. Acceptor-definable

counting classes. In Proceedings of the 8th Panhellenic Conference on Informatics, PCI

2001, Nicosia, Cyprus, November 8-10, 2001, Revised Selected Papers, volume 2563 of

Lecture Notes in Computer Science, pages 453–463. Springer, 2001.

[103] Aggelos Kiayias, Aris Pagourtzis, and Stathis Zachos. Cook reductions blur structural

differences between functional complexity classes. In Proceedings of the 2nd Panhellenic

Logic Symposium, PLS 1999, Delphi, Greece, July 13-17, 1999, pages 132–137, 1999.

[104] Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. Estimating search tree

size. In Proceedings of the 21st National Conference on Artificial Intelligence and the 18th

Innovative Applications of Artificial Intelligence Conference, July 16-20, 2006, Boston,

Massachusetts, USA, pages 1014–1019. AAAI Press, 2006.

[105] Donald Knuth. Estimating the efficiency of backtrack programs. Mathematics of Compu-

tation, 29:122–136, 1974.

[106] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem:

Its Structural Complexity. Birkhäuser/Springer, 1993.

[107] William Kocay and Donald L. Kreher. Graphs, Algorithms, and Optimization. CRC Press,

2017.

[108] Mark W. Krentel. The complexity of optimization problems. Journal of Computer and

System Sciences, 36(3):490–509, 1988.

A.Chalki Thesis 166

References

[109] Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and

Lenka Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction

problems. Proceedings of the National Academy of Sciences, 104(25):10318–10323, 2007.

[110] Jonathan Leake and Nick Ryder. Generalizations of the matching polynomial to the

multivariate independence polynomial. Algebraic Combinatorics, 2(5):781–802, 2016.

[111] David A. Levin and Yuval Peres. Markov Chains and Mixing Times. American Mathe-

matical Society, 2017.

[112] Leonid Libkin. Elements of Finite Model Theory. Springer, 2004.

[113] Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers.

In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA

2014, Portland, Oregon, USA, January 5-7, 2014, pages 341–348. SIAM, 2014.

[114] Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In Proceedings of

the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego,

CA, USA, January 4-6, 2015, pages 1531–1548. SIAM, 2015.

[115] Michael Luby and Eric Vigoda. Fast convergence of the Glauber dynamics for sampling

independent sets. Random Structures and Algorithms, 15(3-4):229–241, 1999.

[116] William McCuaig, Neil Robertson, Paul D. Seymour, and Robin Thomas. Permanents,

pfaffian orientations, and even directed circuits (extended abstract). In Proceedings of the

29th Annual ACM Symposium on the Theory of Computing, El Paso, Texas, USA, May

4-6, 1997, pages 402–405. ACM, 1997.

[117] Matús Mihalák, Rastislav Srámek, and Peter Widmayer. Approximately counting

approximately-shortest paths in directed acyclic graphs. Theory of Computing Systems,

58(1):45–59, 2016.

[118] David G. Mitchell, Bart Selman, and Hector J. Levesque. Hard and easy distributions of

SAT problems. In Proceedings of the 10th National Conference on Artificial Intelligence,

San Jose, CA, USA, July 12-16, 1992, pages 459–465. AAAI Press / The MIT Press,

1992.

[119] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix

inversion. Combinatorica, 7(1):105–113, 3 1987.

A.Chalki Thesis 167

References

[120] Christos Nomikos, Aris Pagourtzis, and Stathis Zachos. Randomized and approximation

algorithms for blue-red matching. In Proceedings of the 32nd International Symposium on

Mathematical Foundations of Computer Science 2007, MFCS 2007, Ceský Krumlov, Czech

Republic, August 26-31, 2007, Proceedings, volume 4708 of Lecture Notes in Computer

Science, pages 715–725. Springer, 2007.

[121] Mitsunori Ogiwara and Lane A. Hemachandra. A complexity theory for feasible closure

properties. Journal of Computer and System Sciences, 46(3):295–325, 1993.

[122] Aris Pagourtzis. On the complexity of hard counting problems with easy decision version.

In Proceedings of the 3rd Panhellenic Logic Symposium, PLS 2001, Anogia, Greece, July

17-21, 2001, pages 21–29, 2001.

[123] Aris Pagourtzis and Stathis Zachos. The complexity of counting functions with easy

decision version. In Proceedings of the 31st International Symposium on Mathematical

Foundations of Computer Science 2006, MFCS 2006, Stará Lesná, Slovakia, August 28-

September 1, 2006, volume 4162 of Lecture Notes in Computer Science, pages 741–752.

Springer, 2006.

[124] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[125] Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of restricted minimum

spanning tree problems (extended abstract). In Proceedings of the 6th Colloquium on

Automata, Languages and Programming, ICALP 1979, Graz, Austria, July 16-20, 1979,

volume 71 of Lecture Notes in Computer Science, pages 460–470. Springer, 1979.

[126] Christos H. Papadimitriou and Stathis Zachos. Two remarks on the power of counting.

In Proceedings of the 6th GI-Conference on Theoretical Computer Science, Dortmund,

Germany, January 5-7, 1983, volume 145 of Lecture Notes in Computer Science, pages

269–276. Springer, 1983.

[127] Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms

for partition functions and graph polynomials. SIAM Journal on Computing, 46(6):1893–

1919, 2017.

[128] Tayfun Pay and James L. Cox. An overview of some semantic and syntactic complexity

classes. Electronic Colloquium on Computational Complexity, page 166, 2018.

[129] Reinhard Pichler and Sebastian Skritek. Tractable counting of the answers to conjunctive

queries. Journal of Computer and System Sciences, 79(6):984–1001, 2013.

A.Chalki Thesis 168

References

[130] Paul W. Purdom. Tree size by partial backtracking. SIAM Journal on Computing,

7(4):481–491, 1978.

[131] Rajesh P. N. Rao, Jörg Rothe, and Osamu Watanabe. Upward separation for FewP and

related classes. Information Processing Letters, 52(4):175–180, 1994.

[132] Sanjeev Saluja, K.V. Subrahmanyam, and Madhukar N. Thakur. Descriptive complexity

of #P functions. Journal of Computer and System Sciences, 50(3):493–505, 1995.

[133] Johannes Schmidt. Enumeration: Algorithms and complexity. Diplomarbeit, Leibniz Uni-

versität Hannover, 2009.

[134] Claus-Peter Schnorr. Optimal algorithms for self-reducible problems. In Proceedings of the

3rd International Colloquium on Automata, Languages and Programming, ICALP 1976,

University of Edinburgh, UK, July 20-23, 1976, pages 322–337. Edinburgh University

Press, 1976.

[135] Alexander Schrijver. Theory of Linear and Integer programming. Wiley-Interscience, 1986.

[136] Janos Simon. On some central problems in computational complexity. PhD thesis, Cornell

University, 1975.

[137] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly

mixing markov chains. Information and Computation, 82(1):93–133, 1989.

[138] Allan Sly. Computational transition at the uniqueness threshold. In Proceedings of the

51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October

23-26, 2010, Las Vegas, Nevada, USA, pages 287–296. IEEE Computer Society, 2010.

[139] Daniel Stefankovic, Eric Vigoda, and John Wilmes. On counting perfect matchings in gen-

eral graphs. In Proceedings of the 13th Latin American Theoretical Informatics Symposium,

LATIN 2018, Buenos Aires, Argentina, April 16-19, 2018, volume 10807 of Lecture Notes

in Computer Science, pages 873–885. Springer, 2018.

[140] Larry Stockmeyer. On approximation algorithms for #P. SIAM Journal on Computing,

14(4):849–861, 1985.

[141] Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect

matchings in K5-free graphs. Theory of Computing Systems, 59(3):416–439, 2016.

A.Chalki Thesis 169

References

[142] Harold N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics-

an exact result. The Philosophical Magazine: A Journal of Theoretical Experimental and

Applied Physics, 6(68):1061–1063, 1961.

[143] Dimitrios M. Thilikos and Sebastian Wiederrecht. Killing a vortex. CoRR, abs/2207.04923,

2022.

[144] Seinosuke Toda. PP is as hard as the Polynomial-Time Hierarchy. SIAM Journal on

Computing, 20(5):865–877, 1991.

[145] Boris A. Trakhtenbrot. Autoreducibility. Doklady Akademii Nauk SSSR, 192:6:1224 –

1227, 1970.

[146] Salil P. Vadhan. The complexity of counting in sparse, regular, and planar graphs. SIAM

Journal on Computing, 31(2):398–427, 2001.

[147] Radislav Vaisman and Dirk P. Kroese. Stochastic enumeration method for counting trees.

Methodology and Computing in Applied Probability, 19(1):31–73, 3 2017.

[148] Leslie G. Valiant. Relative complexity of checking and evaluating. Information Processing

Letters, 5(1):20–23, 1976.

[149] Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8(2):189–201, 1979.

[150] Leslie G. Valiant. Accidental algorithms. In Proceedings of the 47th Annual IEEE Sym-

posium on Foundations of Computer Science, FOCS 2006, 21-24 October 2006, Berkeley,

California, USA, pages 509–517. IEEE Computer Society, 2006.

[151] Leslie G. Valiant and Vijay V. Vazirani. NP is as easy as detecting unique solutions.

Theoretical Computer Science, 47:85–93, 1986.

[152] Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in K3,3-

free graphs and related problems. Information and Computation, 80(2):152–164, 1989.

[153] Heribert Vollmer. On different reducibility notions for function classes. In Proceedings

of the 11th Annual Symposium on Theoretical Aspects of Computer Science, STACS 94,

Caen, France, February 24-26, 1994, volume 775 of Lecture Notes in Computer Science,

pages 449–460. Springer, 1994.

A.Chalki Thesis 170

References

[154] Klaus Wagner. Über eine eigenschaft der ebenen komplexe. Mathematische Annalen,

114:570–590, 1937.

[155] Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the

38th Annual ACM Symposium on Theory of Computing, STOC 2006, Seattle, WA, USA,

May 21-23, 2006, pages 140–149. ACM, 2006.

[156] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting

weighted subgraphs. SIAM Journal on Computing, 42(3):831–854, 2013.

[157] Stathis Zachos. Probabilistic quantifiers and games. Journal of Computer and System

Sciences, 36(3):433–451, 1988.

[158] Viktória Zankó. #P-completeness via many-one reductions. International Journal of

Foundations of Computer Science, 2(1):77–82, 1991.

A.Chalki Thesis 171

	 englishgreekΕκτεταμένη περίληψη στα ελληνικάenglishenglish
	Εισαγωγή
	TotP-πλήρη προβλήματα
	Σχέση μεταξύ των κλάσεων TotP και FPRAS
	Ισχύς που προκύπτει από τη μέτρηση του πλήθους όλων των μονοπατιών μιας μη-ντετερμινιστικής μηχανής greekenglishTuringgreekgreek πολυωνυμικού χρόνου
	Περιγραφική πολυπλοκότητα δύσκολων μετρητικών προβλημάτων με εύκολο πρόβλημα απόφασης
	Mέτρηση ταιριασμάτων σε γράφους με μαύρες και κόκκινες ακμές

	List of Figures
	List of Tables
	Introduction
	The complexity class #P
	The property of self-reducibility
	Fpaus and fpras for counting problems
	Reductions between counting functions

	Decision versus Counting
	The complexity class TotP
	Definition of TotP: counting all paths of an NPTM
	Properties of TotP problems: self-reducibility and easy decision
	Characterization of TotP as a class of interval size functions
	TotP is robust
	Closure of TotP under different kinds of reductions

	Descriptive complexity of #P
	#P=#FO
	#P=QSO (FO)

	A guided tour to this thesis
	Notes

	TotP-complete problems
	The problem #Tree-Monotone-Circuit-Sat
	TotP-hardness of #Tree-Monotone-Circuit-Sat
	Membership of #Tree-Monotone-Circuit-Sat in TotP
	Extension to monotone circuits with respect to other partial orders
	The case of the partial order being part of the input

	Problems related to partially ordered sets
	The problem Size-of-Subtree
	Hard instances of Size-of-Subtree
	On the exponential-time complexity of Size-of-Subtree
	Implications on the approximability of TotP

	The problem #Clustered-Monotone-Sat
	Discussion of results
	Notes

	Relationship between TotP and the class of approximable counting problems
	On #P versus FPRAS
	On TotP versus FPRAS
	(Non)inclusion of TotP in FPRAS
	Classes of counting problems the decision version of which is in RP
	Unconditional inclusions
	Conditional inclusions (possible worlds) and consequences of FPRASTotP

	Discussion of results
	Notes

	On the power of counting the total number of paths
	Tot-definable classes
	The class Gaptot P
	The classes UtotP, FewtotP, tot P, and Modktot P
	The gap-definable classes SPtotP, WPtotP, C=totP, and PtotP
	Variants of the Valiant-Vazirani and Toda's Theorems
	Complete problems for C=P, WPP, and PP definable by the TotP function #PerfMatch
	An exponential lower bound result for the problem DiffPerfMatch=g

	Discussion of results

	Descriptive complexity of counting problems the decision version of which is easy
	Two robust subclasses of TotP: QSO(2-2SAT) and #2-1VAR
	The class QSO(2-2SAT)
	The class #2-1VAR

	A logical characterization of TotP
	Functions over relations and recursion in QSO
	A logic for expressing TotP functions
	A logic that captures TotP
	An alternative way to define RQSOE and capture TotP

	Discussion of results
	Notes

	Counting matchings in graphs with edge colors
	Related work on counting matchings
	The problems Exact Matching and Blue-Red Matching
	Optimization version of Exact Matching in bipartite graphs

	The problem #Exact Matchings
	#Exact Matchings in general graphs
	#Exact Matchings in K3,3-free graphs
	#Exact Matchings in K5-free graphs
	#Exact Matchings in bipartite graphs

	Matching polynomials
	The univariate matching polynomial
	The multivariate (vertex) matching polynomial
	The multivariate edge matching polynomial
	The multivariate homogeneous red-black polynomial
	The multivariate homogeneous exact matching polynomial
	Examples of expressing the matching polynomials using the permanent
	Facts and remarks about the matching polynomials defined here

	Discussion of results

	Conclusion
	Appendix A Glossary - englishgreek Γλωσσάριο englishenglish
	References

