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Amnayopebeton 1) avTrypapt, amodrixeuct) xou dlavour| Tng tapoloag epyactiog, €€ 0AOXAAEOU 1) TURAMO-
TOC QUTAG, YLt EUTOPLXO oxomo. Emtpénetar 1 avatiTwoT), anoUhxeuon xaL Slovour| Yol XoT6 un
%EEBOOHOTUXG, EXTUDELTIXNE 1} epeuVNTIXAC POOTNE, UTO TNV Tpolndleon Vo avapépeTon 1) TNy Teo-
€hevong xou va datnpe(ton To mopdy urvuua. EpwthAuata mou agopolv Tt yeron tne epyactiog yia
%epd00oX0TUIXG oXOTO TEETEL Vo ameLivovToL TEog Tov cuyypapéa. Ot andelc xou Ta GUUTERAOUA-
TOL TOU TEPLEYOVTAL O AUTO TO EYYPUPO eXPEALOUY TOV CUYYRUPEN XL OEY TEEMEL Vo epunveudel

OTL avTimpoowTevouy Ti¢ entonueg Yéoeg Tou Edvinod Metodfiou Hohuteyveiou.



Abstract

In this thesis, we study classes of counting problems the decision version of which is easy. The
complexity class #P, introduced by Valiant [119], contains the counting versions of NP problems.
We focus on #PE [122], the class of #P functions the decision version of which is in P. In fact,
we are mostly interested in a subclass of #PE, namely TotP [102], which contains essentially all
self-reducible #PE functions. TotP has also an interesting simple syntactic characterization: a
function belongs to TotP if it counts the number of all paths of an NPTM. Notably, TotP is a
robust class; it has nice closure properties and natural complete problems under parsimonious
reductions, i.e. reductions that preserve the number of solutions. We study the class TotP from

different angles:

1. We discuss the first complete problems for TotP under parsimonious reductions that were
first presented in [22, 13]. In particular, the problem SIZE-OF-SUBTREE has been in-
troduced by Knuth as the problem of estimating the size of a backtracking procedure’s

tree [105] and has been studied from many perspectives.

2. Efficient and exact counting is very rare, so the main research interest in the area of
counting complexity is to classify counting problems with respect to their approximability
and design approximation algorithms for those that can be approximated. In this quest,
properties of problems in TotP are important. We examine the relationship of TotP to
the class of approximable counting problems, namely FPRAS. Some of the relevant results

presented here, have appeared in [22, 241].

3. To deal with the previous question, we needed to define classes with counting problems
the decision version of which is in RP. We examine one such problem, namely #EXACT
MATCHINGS, with respect to its exact and approximate computation. #EXACT MATCH-
INGS is a generalization of counting perfect matchings in graphs that contain both black

and red edges.

4. Then we turn our attention to logical characterizations of classes of counting problems.
We build upon previous work in the area of descriptive complexity of counting problems.
We give logical characterizations of two robust subclasses of TotP and determine their
relationship with the class FPRAS [24]. Most importantly, we provide a logical character-

ization of TotP, which was an open question in the area of descriptive complexity [15]. To



express self-reducibility, we add recursion on functions over second-order variables to the

logic QSO introduced in [15], which, we believe, is of independent interest.

5. We investigate the power of counting the total number of paths of an NPTM by introducing
classes of decision problems defined by properties of TotP functions. These classes can be
seen as tot-counterparts of traditional classes. We explore the relationship among the
newly introduced classes and their ‘#P-definable’ analogs. We also build upon a result
by Curticapean [52| and we examine complete problems for some of these classes that are

defined as variants of the problem of counting perfect matchings in a graph.

Keywords: computational complexity, descriptive complexity, counting problems, easy decision

problem, class #P, fpras for counting problems




Hepiingn

Ye auTh| TN SLdoxTopIXT| SLTEUBT], UEAETAUE HAACELS UETENTIXWY TROBANUATOVY Tor omtola €ouy 0X0NO
TedPBAnua andgoone. H xhdorn molumhoxdtntac #P, v onola ewofyaye o Valiant [119], nepiéyet
Tic petpnTixés exdoyéc NP npofinudrtwy. To eviiagépov pog ectidleton otnv #PE [122], tnv x\don
TV #P cuvaptcewy Tou €youv avtioTtolyo TeoBAnua andgaong oty P. Oa yeketicouye xuplwg
o utoxAdon tne #PE, 1 onolo ovopdleton TotP [102] xat mepléyet Tig auToovay OYUES CUVAPTHOELS
mou avrxouv oty #PE. H TotP éyel eniong éva evotagpépovta, amhd GUVTAXTIXG YopuXTNEIoNO: Ula
ouvdptnon avixel otny TotP av yetpdel To TARYOC OAWY TWV HOVOTUTIOV Ul UN-VIETEQUIVIOTIXAC
unyovic Turing modvwvupxol yeévou (NPTM). Eivor ofioonueiwto 6t 1 TotP eivan edpwotn
xAdom: €yel emUUNTES WLOTNTES XAELOTOTNTOC Xl QUOIXE TAY|EN TEOBAALITA WG TEOG PELOWAES
avaywYES, ONh. avaywyEéc mou dlatneoly To TARdoc Twv Aloewy. O eEetdooupe TNy xAhdon TotP

Ao OLUPOPETIXEC OTMTIXES YWVIEC:

1. ©a aocyoinolue ye o mpdTor TotP-mArien mpoBAuata we mpog QPEWWAES avaywyEg, Tou
TopouctdoTxay apyixd oto [22, 13]. Ewlwd to mpbéBAnua SIZE-OF-SUBTREE €yelL 0ploTel
om6 Tov Knuth w¢ 1o mpdBinuo unoloyiopod tou Yey€doug Tou UTOAOYIGTIXOU BEVTPOU UL

backtracking diadixactog [105] xau éyel pehetniei ue Torholc tpdTOUC.

2. O amodotxdg oxpBhc UTOAOYIOUOSC UETENTIXGY TROBANUAT®Y elvon TOAD odviog. T ot
T0 AOYO, Baoxdg GTOY0C GE aUTH TNV TEPLOY Y| Elvol 1) TOEVOUNOT TV UETENTIXOV TEOBAN-
HATeVY Ue BAoT TNV TEOGEYYIOWOTNTY TOUC XOl O OYEBIOUOS TROCEYYICTIXMY oAyopliuwy
yioe 660 unopoly va emAutoly Ue auTd ToV TEOT0. X auTh TNV avalATNoT), oL LOTNTES TWV
TpofAnudtwy tne TotP etvon onuavtixés. O e€etdoouue tn oyéon tne TotP e tnv xAdon
TV TpoceyYlowny tpolinudtey FPRAS. Kdnow and to aroteréopata mou napouciolouue

ed0 elvon amd ta [22, 24].

3. T vor amovTACOUUE TO TEONYOUUEVO EQOTNUM, OPIOOUE HAACELS HETENTIXWY TEOBANUITWY UE
avtioTtoryo TpoBhnua andgacns otny xhdon RP. Meletdue éva tétolo npdfBinua, o medBAnua
#EXACT MATCHINGS, w¢ Tpo¢ ToV axpl31) UTOAOYLOUO TOU Xal T BUVITOTNTO TROCEY YOG
e T Tou. To #EXACT MATCHINGS elvon piot YEVIXEUGT] TOU TROPBHHATOC UETENONG

TEAELWY TAUPLIOUITWV GE YRAPOUS TOU TEPLEYOUV UOUPES XAl XOXXIVES OXUES.

4. Alvoupe hoyixolg yoeaxTnelopols Yio XAJCELS YETENTXOV TEoBANudtwy. Boowlduevol oe

TEONYOVUEV ATOTEAECUATA OTNV TEPLOYY| TNG TEQLYPUPIXHC TOAUTAOXOTNTAUS Yol HETENTIX



TpoBAAuaTa, BivoulE YapaxTNELoUoE 800 EVPWOTWY LTOXAdCEWY TN TotP o tpocbdlopilou-
ue T oyéon touc ye v xAdon FPRAS [24]. To onuavtixdtepo amotéleoud pog elvon o
Aoyxoe yapaxtneopds e TotP, to onolo anoteloloe avouytéd epwtnuo [15]. T vor ex-
(PEACOUPE TNV ouToVAYWYWOTNTY, TeocVécaue ot hoyix ) QSO [15] avadpour| oplopévn oe
CLVAPTACELC TTOL BEYoVToL deuTEPOPAIULES UETUPBANTES WS oplopata. Ocwpolue OTL aUTd TO

eldog avadpournc €yel aveldpTnTo EVOLOPEROV.

5. EZepeuvolue tnv 1oy0 mou mpoxintel and TN WéTenon Tou TARUOUC TWV UOVOTUTIOV HULIG
NPTM eicdyoviag xhdoeig npofAnudteny andgaons, to onota opillovion yéow wiothitwy TotP
OoLVAPTACEWY. AUTEC Ol XAJOELS UTopoLY Vo Yewpenloly tot-avdhoya Tapadootloxdy xAdoe-
ov. Agpeuvolue ) oyéon PEToD TV XAACEWY ToU 0piloUPE EBE %ol TWY TUEAUSOCLIXDY
avtiototywy xAdoewv. Baolopevol oe éva anotéheopa tou Curticapean [52] eZetdlouye
A en TeoBAAUNTA Yo qUTES TIC XAdoE Tou 0pllovTal we eEXBOYEC TOU TEOBAAUATOS UETET-

oNG TEAELOV TUPLAOUATODV GE XATOLO YRAPO.

A€Zeig-%AELBLd: UTOAOYLO TIXY| TOAUTAOXOTNTA, TEQLYPAUPIXY| TOAUTAOXOTNTA, UETENTIXS TEOBA -

Ta, €0xolo TEOBANUA andgacne, xAdon #P, fpras yia mpoBAruota pétenone Acewyv
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Extetapévn neplindn ota eAAnvixd

Ewooaywyn

Me tov 6po mEOBANUO UETENONS AVAPEPOUICTE OE Uiol GLVAETNON Tou avTioTolyilel wa elcodo ot
€va TEOPBANUA andpaong oto TAYog TV AIoEWY Tou €xel To TEOBANU Yio auTY| TNV elcodo. Ta
TapddELyUa, To #SAT eivon uioe cuvdptnon tou avtiotolylel €vav mpotactaxd TONo oto mARYog
TV avadécewy ahndoTuody yia Tic onoleg o TOnog wavornoteitar. H xhdon tétouwy cuvapthoewy,
yia Ti¢ omoleg To avtioTowyo mEOBAnua andgaone Peloxeton oty xhdon NP, eivon 1 xhdon #P,
mou bpoe o Valiant [119]. IoodOvaya, 1 #P eivou n xhdon twv cuvaptioewy Tou yetpolv o
HOVOTETLOL AOBOY NG UN-VTETEQUIVIOTIXGY Uy ovedy Turing mohuwvuuixol ypovou, Yo Tic onoleg Ya

yenowonoloLue to cupfoiiond NPTMs.

7 Z 4 4 4 4 4 e 4 7
Etvor evolopépov 61t ToANE TpoAAuaTa amd BLapopETIXG ETOTNUOVIXE TEDio UTOPOUY VoL EX-

PeaoTOOV WG PETENTXE. AVaQEPOUUE EVOELXTIXG T TUPUXATE.

1. H ouvdptnon Swéplone otn otatotind guotx [31, 90, 91, 115].
2. O unohoylopdc Tou YxouL eVic xUPTOL TOAITOTOU GTNY UTONOYLOTIX YewueTpla [H5].
3. O unohoylopds Tne permanent ot ypouuxh ShyeBpa [149].

4. Trdpyouv npofifuata BeAticTonolnong e aefoundtnTa Tou anoutoly TN uéTenon Tou TAdoug
Twv Aoewv. Ta v axpifeia anoutelton 1 pétenon Aoewy mou elvon TEOCEYLOTING BEATIOTES

(xou Oy amopaitnTa BéATiotes Moewg) [129, 117].

ITohO Aiyo mpoPAfuarto pétenone unopoly vo emAudolyv axplBMe 68 TOAUWYLULXS YEOVO (T.).
0 poPANue #2CoL). T autd o héyo pag evOlapépet Vo eEETACOUPE Tola UETENTIXG TpoBhAuaTta
umopolV vo mpooeyytotoLy.  Ta yetentind TEoPARUATO TOU PTOEOUV VO TROCEYYLOTOUV UE 1)
Xehom evoc TAHewS TOALWYLULIXOV TdovoTixol TpoceyyioTxol oy fuatog (fpras), elvon mpoBAfuoto

ue evxoho TEdPAnua andpaone (yio v axpifela tpdBinua andgacnc otnv xhdon BPP). Ttnv

vil



avolHTNOT TROCEYYIOWMY UETENTIXWY TEOBANUATWY, 1 xhdon #PE, n omola nepiéyet ta mpofAruota
otn #P, 1o onola €youv avtictowyo medBAnua andgaone otnv P, elvar xevtpuxic onuacioc. e
ouTy TN SwtelBr), eoTidlouue ot wa utoxhdon e #PE, tnv xkdon TotP. Xyeddv dha o Yveotd
TpofAfuata Yétenong mou emdéyovton fpras avixouy otnv TotP xou ol xhdoeic mou amotehobvTon

Hovo amd TéTola TEoBAUaTa TEpLEovTaL oty TotP.

H TotP eivan 1 xhdon twv cUVIPTACE®DY TOU PETEOVY TO GUVOAXO Opilud TWV UOVOTIOTIY
twv NPTMs. Extéc and autév tov amhéd douixd yoapoxtnewoud, 1 TotP €yel évav evdlagpépo-
VTA EVOAOXTIXG 0optopo. Ebvar 1) xAdor OAwV TV aUTOOVIYOYWOY UETENTIXOV TEOBANUITWY UE
TpdPBAnua andpaone otnv P, n onola enione eivar xheloth we mpog peldwiéc avaywyée [123]. H
TotP etvon yia epwo T xAdom, 6TOL YENOWOTOIVUE TOV 60 ‘EUpWa TN XAACT OTWS 0Pl TNXE ATd
ToUG oLYYpuPeic Tou dpdpou [15]: wa xAdon Vewpeitoaw edpwotn av elte elvar xheloTh W TEOC
NV TEOcUEST), TOV TOANATAAGLICUO XU TNV aPolpecT) XaTd €va, elte €yel PUOXE TATET TEOPARM-
o [15]. Buyxexpwéva, n TotP ixavornowel xou tic 800 autée ouvidrixes 6mwe Vo delloupe otny
napoLoa BLaTEL3Y.

H TotP éye enlong évav yapaxtneiopd péow cuvapthoenmy tou utoloyilouy to péyedog dio-
omnudtwy [84, 27]. H TotP elvou n xhdomn twy cuvopthoewy pétenone tou yeyédous dloothuatoc,
0 omnolo opiletan Péow xdmotac ToAuwvuuxic ohxfc didtaine A yio tny onoio (1) undpyer Tohuw-
VULXOU YpoVoU ahyopldog Tou BedoUEVNE EIGOB0U UTOAOYILEL TO XATK XL AVey OPLO TOL BLUC THHO-
T0¢, (2) umdpyel TohuwvLUXOY Ypdvou cuvdptnon LN 4 mou S8edouévou crotyelou, emotpégel to

AEELXOYPUPXE TANCIECTEQO GE AUTO TOU OVAXEL O XATOLO BEGOUEVO BLAT TN

e auth) TN SLatelfn, Vol TOEOUCIACOUYE ATOTEAECUATO DOUIXTG XOL TEQLYPAUPLXNG TOANUTAOXOTY-

TaC Yot TV xAdon TotP.

Alvoupe toug oplopols Twv xhdoewv #P, #PE xa TotP, xdnolec npotdoeic mou woybouy yia
Tig ueTaE) Toug OYETELS, Tapadelyuota TpoBANudT®Y Tou avixouy otnyv TotP xou yeroweg wBioTnTES
AUTAC TNS XAAOTG.
Ogiwopdg 0.1. (a) ([119]). #P = {acey : ¥* — N | M eivar pia NPTM}, émov
accy(z) = #(povorndnia anodoxris tns M pe €ivodo x).

(B) ([122]). #PE={f :¥* = N | f € #P ka1 Ly € P}, énov Ly = {x | f(z) > 0}.

(v) ([102]). TotP = {totps : ¥* — N | M eivar pia NPTM}, émov

totpyr(x) = #(dka ta povordnia tng M pe eivodo x) — 1.

XpnouomoloUue To Topaxdte €0 avorywydy Yetald Uetentxev cuvaptiocwy. H xidorn FP

viii



elvol 1) XAdoT TV CUVIPTACEWY TOU UTOEOLY VO UTOAOYIGTOUY GE TOAUMYUUIXO YEOVO.

Turing avaywyeég. H f avdyeta otn g wc npoc Turing avaywyés, to onolo cuuBoiilouye
[ <% g, avioyter f € FPY. Av 1 avoywy yenowonolel uévo pla xhfon oto povteio, cupf.

fe |:|:>£1[1]7 T0TE Ypdpoupe f Sll)_T g-

Pedwiéc avaywyeg. H f avdyeta otn g we mpog gedwiéc avaywyée, To onolo cupfBoiilouue

[ <Bars g, av uTdpyeL cuvdptnon h € FP, tétowr dote v xdde = € ¥, woyber f(x) = g(h(x)).

Avaywyég yivopévou. H f avdyeton otn g wg mpog avaymyEg Yivouévou, To onoto cuuBoiilou-

ve f <pr g, av undpyouyv hi, hy € FP tétoiec dote yio xdde € X* woylet f(z) = g(hi1(x)) - he(z).

Avoaywyéc nou datneodv TNy npooeyylowwotnta (AP avaywyég). H f avdyeta
OTN g WS RO AVOYWYES TTIOLU BlATNEOUY TNV TROCEYYIoWOTNTA, To omolo cupfBoiilouvue f <ap g,
av undpyet moavotixy unyovy Turing M mou xokel éva pavtelo, n omola molpvel we elcodo éva

/ 7 / 14
oTiyutotuno = g f xou 0 < e < 1 xou IXavoToLEl TIC ToEOXATe TEELS CUVIAXES:

L.y x&de xhfon tou pavtelou 1 eloodog ebvor e popghc (w,d), émou w elvon otrypbTuTo

e g, xon 0 < § < 1 ebvon ot otodepd opdhpatoc tétola wote §~1 < poly(|z|, e 1),

2. av 1o povteio elvon évo THAVOTIXG TROCEYYIOTO oYU yiow TNV g, 16T N M elvon éva

TavoTING TREOCEYYIOTIXO Oy fud Yiot TNV f.

3. N M ebvor mohuwvuxol ypbvou we Teoc || xow e L.
Av vy 800 cuvoptroes f, g oylel f < g xou g < f o xdmota avaywyr <, tote Aue 6TL oL

f o g ebvon 1oodlvouee we mpog ™ <.

Ao OnTixd, €vo uETENTIXG TROBANUA EVOL CUTOAVOYWYILO oV 1) TLT) TOU UTopel Vo UTOAOYLOTEL
OE TOAUOVUIIXG YEOVO BEBOUEVLY TV TWMY Tou (Blou TEoBAAUATOC Yl (TOAUWVUUIXE TOAAES)

UXEOTERES ELGOBOUG.

Oedpnue 0.1 ([123]). (a) FP C TotP C #PE C #P. O1 eykdeionol elvar avotnpol €ktds av
P = NP.

(,8) FPTOtP[l] _ FP#PE[I] — FP#P[I]

(v) H TotP eivai n kAdon twv avtoavaydyuwy #PE owaptioewy, n otola, emmAéor, elval kAewotr

WS TPOS PEBWAES avaywyEs.

Ta mapaxdte mpoBifuata elvar autoovorywyyo xou avixouv otn #PE, dpa etvon mpofiAuata

e xhdong TotP.

1X



1. #DNF: 1o mpdfBinua u€tenong v avolécewy ahAndoTiudy Tou IXUVOToloLY €V TEOTAGLAXO

TOTO o€ XovoVIXT) BLlEUXTIXY HOR®T.

2. #25AT: 70 TEOPANUA YETENoNe TV avardEcenmy aANUOTIUMY TOU LXAVOTIOLOUY EVOY TROTUCL0-

%6 TUTO GE xovovixr) oLLEUXTIXT Lop@T) OTIOL XAVEe ATy TEOTACT| TEPLEYEL VO AEXTIXA.

3. #HORNSAT: 70 npéfinua u€tenong Ty avad€cewy oANUoTIIMY TOU IXAVOTIOOUY VOV TRo-
TACLOXO TUTO GE XovovIxT) GLULELXTIXT| LOP®PY| OTIOU XAUE omhn TEOTAOT TEPLEYEL TO TOAD Eval

Yetnd Aextind.

4. #MONSAT: Tt0 MEOPBAnua u€Tenong Twv avadécewy aAnNJoTIUdY TOU LXAVOTOLOUY EVaY TTpOo-
Taolaxd TOTO o€ xavovixt| GLULEUXTIXY Hop®T| OTou e amhr TedTaoY TEPLEYEL WOVO VeTixd

AEXTIXG.
5. #BIPERFMATCH: 0 mpdBAnuo H€Tenong Twv TEAELWY TURLICUATWY eVOS BLluepols Yedpou.

6. #PERFMATCH: T0 mpoBAnua UETENONG TWV TEAELOY TOURLIOUATWY EVOS YEAPOU.

Fevixd yio évay mpotactaxd TOTo Tou elvon o€ xavovixr) oLleuTxixY| pop@n Vo YENCILOTOIVUE
v ayyhur) ouvtopoypagia CNF (2CNF, 3CNF oty nepintwon mou ¥éhouye vo Sieuxpivicoupe

6Tl xdle amhr) mpdTaot Teptéyel 2 1 3 hextind avtioTtolya).

TotP-nAvien npolBAAuoata

H #P etvou 10odUvaun pe tnv TotP w¢ mpog Turing avaywyée, ahAd oxduo xou Ue Uiot UTOXAAOT)
¢ TotP, tnv SpanL [9], mou mepiéyel uévo mpooeyyiowo npofifuoata. Autd onuaiver dtu Gha o
npofAfuata Tou ebvar #P-thrien w¢ tpog Turing avaywyéc, elvon enione TotP-miripn we npog Turing
avaywyég. T mapdderypo, oha o TpofBAruata 1-6 mou avagpépovtan mopandve eivar TotP-mhrien
w¢ mpog Turing avoywyég. Auth n napathenon donohoyel Tov oyvplopd 6TL ol Turing avorywyég

YoAGVOLY TIc Bopxéc Dlapopéc PETAUEY TWY PETENTIXWY xAdoewy [103].

Avtideta, yenowonouwvTag PEMAES avaynmYES UTopoUUE Vo dloxplvouue Slapopés ueTady
UETENTIXOV XAACEWY %ot TwV BUOXOAWY TEOPBANUdTeY Toug. Evo Bacixd yoeoxtneloTind autoy
TV oVaywY®V eivar 6Tl Slatnewviac To TARYog Twv AUcewy, Sltneoly Ty Unopén fpras. Av

J <Bars g xou 1 g emdéyeton fpras, tote 1 f emdéyetoun fpras.




TotP-ntAven TeolApraTta TEog PEWWAES AVAYWYES

Hapaxdte divovton oL optopol Twv Te@Twy TotP-mAfpewy TeofAnudtwy ©¢ Teog QEWBMAES avaryw-
véc. Tapouotdotnray xon yehethinxay opyixd oto [25] xou oto [22]. Ipbogata dnpootekinxe to
Gedpo [13], to onolo enexteivel T tponyolueva anoteléopota. To anoteréopota tne YTroevotntac

2 mopaxdtw, elvon amd To teheuTaio dpipo.

OpiCoupe 1N pepiny| B18TolT <tree TAVE 0T0 0UVOAO N vo elvon 1) avaxhooTiny, wetaBortiny xou

AVTIOUUPETEW oyéomn Yo TNy omola oylel: av y =22 + 1y = 22 4 2 167 & <¢ree Y-

IMe6BAnua 1.#TREE-MONOTONE-CIRCUIT-SAT.
Eioodog: "Evo hoywd xOxhouo Cp, un-a0iov wg meog <ipee.
‘Eéodos: # TREE-MONOTONE-CIRCUIT-SAT(Cy,) := {y € {0,1}" : Cp,(y) = 1}

‘Eotww (U, <) éva pepwd datetaypévo Ledyoc. To VI C U Myetu kAewotd and kdtw ov yLo
xdde y,x € U, woylel (y € V xaw x < y) = z € V. 'Eow Cy éva hoyixd xixhoyo Ye n tOAeS

ewo6dov. To V C {0, 1} réyetow Cp-anodextd av yia xdde z € V, Cp(x) = 1.

ITe6BAnua 2. MAX-LOWER-SET-SIZE.
FEioooog: "Evo hoywd xixdoua Cy ue n mOAEC €LG600U.
‘Eéodog: To péyedoc tou Yéyiotou Cph-anodextol GUVOROL TOU EIVOL XAEIGTO ATO HATW WS TEOS TN

ueper| B1dtoln <ipee.

Av mepopioovye TN 0W8ToEN <ypee OTO oUVOMO Np_g =

/000\ {0,1,...,2F — 1} xou emmhéov ypnowonoioovue Tic duadxée

001 010 AVOTORAC TAGEL TV OTOLYElWwY Tou Nj_1, Tolpvouue o Uepxt
011/ \100 101/ \110 314ta€n méve oto {0,1}*, v onola enlonc Yo cupBoriloupe
111 <tree- Ovoudlouye T}, to BuABIKO BEVIPO TOU AVATAPLOTA TNV

<tree 070 {0,1}F.

e 4 7 Z 7 e 4
INo mapdderyyo, to e duadd évtpo T3 mou omelxoviCeETal TUPAUMAVEL AVATUPIOT 1|

018toEn <¢pee 070 {0, 1}3.

ITe6BANua 3. SIZE-OF-SUBTREE.
Eivodog: "Eva xotnybenua A : Ty, — {0, 1}, to onolo eivar utoloyiowo o€ ToAwYLUIXG Ypdvo Xt
wor xopugh u Tov Tj.

‘Eéobos: To péyedog tou péyiotou unodévipou S C A1) pe plla u.
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[Mo mapdderyua, oTto dimhavd oyrua diveTton €va GTLy-

péTUTO Tou SIZE-OF-SUBTREE. Ioylel 6t u = 000,

k = 3 xau to xatnyopnua A naipver Ty A 1 yio Tic
@ @ YxeL xopugéc. H é€oboc tou mpofAruatog eivon 5.

[Mopaxdte divoupe Tov dpitopo yia évay k-clustered-monotone tino. Keotdue tov ayyhixd 6po
€0® ylotl To dvoua Tou emduevou TEoPBAuaTog #CLUSTERED-MONOTONE-SAT TROEpyETol o

AVTOV.

1. 'Bow ¢ évac 3-CNF timog xaw k € N.  Optlouue tn ouvdptnon f!; : {0,1}} - N
TETOLL (OOTE f(’;(a) = #(avodéoeic ahndoTyddy mou txavotololy T ¢ xou €youy Teddeua a)

Yo xdmowo a € {0, 1}%.

2. 'Evag 3-CNF t0nog ¢ pe n pyetafBintéc Aéyetan k-clustered-monotone yio xdmow k < n, ov

Yo %80 a, b € {0,1}* téroia dote a <gree b, av f(];(a) =0 t6te fgg(b) =0.

IMe6BAnpa 4. #CLUSTERED-MONOTONE-SAT.
Eivodog: y = (¢, k, M), 6mov o ¢ elvou k-clustered monotone, xou M eivon 1 nepLypagpn pog ou-
véptnong yio v onola toyVet M € FP o M(a, ¢) = f(’;

‘Eéodos: #CLUSTERED-MONOTONE-SAT(y) := #(avadéoeic ahnotiudv mou ixavonotody ) ¢).

Yuvéneieg
1. 'Evag aniég aryoprdpog enilvong TotP-80oxolwy npofAnudteny

To npdéPinua SIZE-OF-SUBTREE eiye oplotel xotopydc ond tov Knuth [105] we 1o npdBinua u-
TohoYlouol Tou peyédoug Tou dévtpou evog backtracking npoypdupatog. Yto dio dpdpo o Knuth
TEOTEWVE Evay amhd amodoTd TAVOTIXO TEOGEYYIOTIXG ahyopriuo, o onolog axohoudel Tov mo-
EOXATL AVAOEOUIXO UTOAOYLOUO. ZEXVOVTAC ontd TNV xopu®n u, UTOAOY(LEL To TAHYOC TV ToudL)Y

e u Y o omolo To xatnydenuo A madpver Ty tun 1.

1. Av 1o A Sev mofpvel v T 1 yla xovévo amd Tor Toudld TNG U, CTOUATAEL.

2. Av vy éva moudl e u to A mabpver Ty Ty 1, cuveyilel avadpouxnd ue autd To Toudi.
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3. Av 10 A maipver v Twwn 1 xou yior o 500 ToudLd Tne, emAEYEL €val amd auTd Ye mavoTnTo

1/2 xau ouvey(let avadpopxd.

O oiydpripog Yewpel oTL xdde xopuEY| elvor avTimPOcWTELUTIXT VLot TO eNiNEdSd NG, ONA. OTL OAEC
Ol XOPLYES TIOU AVIXOLY GTO (Blo ETMedo Ue auTH €youv To (Blo TAYdog mawdlwy yia To. omtola To
xatnyoenua A tolpvel Ty T 1. ME Bdon auth tnv unddeor, Sivel i extiunon yia to {nroduevo,
onA. o péyedog Tou P€YLoTou LTOBEVTEOL PE plla u oL TEPLEYEL LOVO XOPUPES Yia TG oToleg To A
nafpvel Ty Ty 1. H avapevouevn tiur tou ahyopliduou eivar 1 tiur) mou 9é€houpe va utoloyicouye.

H Siaxdpavorn urnopet va elvon exdetiny) o yepdTepn TepinTwon.

2. Ex¥etixo0 ypdvou %xdTtw @edypata yio To TeoBAnua SIZE-OF-SUBTREE

Yy napovoa epyacio@o Selyvoupe xdtw @pdypaTo Yiol TOV UTOAOYIoUS Tou SIZE-OF-SUBTREE,

OTAY XATOLAL Ao TIC TOEOXATL UTOVETELS Loy VEL.
e Tnbdeon exdetnol ypévou (ETH): Aev undpyet vietepuvio xde ahydptdog mou vo ano-
pacilet 10 3SAT oe ypbdvo exp(o(n)).

o ITtdovouxy unddeon exdetinol ypdvou (rETH): Aev undpyer mdavotide ahydprduog mou

va amogacilel to 3SAT oe ypbévo exp(o(n)), pe mdavotnta o@dipatog o oAb 1/3.
e Metpnuxr vnddeon exdetixod ypovou (#ETH): Aev undpyet vietepuviotinde ahydprduog
mou vo urohoyilel axpBie To #SAT o€ ypbvo exp(o(n)).
Ta aroteréopota divovton oto mopoxdte Yewenua. To N ouyfoliler to Udog Tou TAHELS

BLABIXOY 6EVTEOL ToL Elval PEEOC EVOS OTLYULOTOTIOU TOoU SIZE-OF-SUBTREE.

Oedpnua 0.2. (a)) Av wydea n rETH, dev vrdpyer mbavotikds akydpidpos mov va vrodoyilel

0 SIZE-OF-SUBTREE akpifs o€ xpdvo exp(o(N)).

(B) Av woxte n #ETH bev vndpyer vteteppuviotikés akydpidpos mov va vrodoyiler to SIZE-OF-
SUBTREE akpifa§ o€ xpovo exp(o(N)).

(v) Av wyve n rETH bev vndpyer mbavotikds adydpiduos mov va mpooeyyiler to SIZE-OF-

SUBTREE pe molMamaoiaotikd rapdyova (1 + 1) o€ xpdvo exp(o(N)).
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3. To #SAT eivaw 10odVvopo pe to #CLUSTERED-MONOTONE-SAT wg npog AP

AVAY WY ES

Kdde TotP-mhripeg mpdfhnua we mpog Qedwhéc avaywyEée elval 10odOVauo UE To #SAT ©¢ Tpog
VoY wYES Tou Blatneoly TNV tpoceyylowotnta. I'vwpellouye 1o 6TL Tor TpoPAfuatar #2SAT xou
#MONSAT €youv eniong auth ) oyéon Ye 10 #SAT. Autd ouwg mou xepdlooye €6 elvar TO
eZhc: To #SAT eivon AP-1c080vopo pe 1o #CLUSTERED-MONOTONE-SAT, Onh. éva mpoBinua

uétenomng avard€ocmy ahnioTOY TOU XaVOToLUY €vay TOTO, TO OTOl0 EYEL TIC TOEOXAT WOLOTNTES:

1. umopolue Vol amoQaGICOVUE OE TOAUWYUUIXO YEOVO av €vag BedoUEVOS TOTOG Eival LXAVOTOL-

fowog,

2.y xdde Abom undpyetl xdmolor YELTovld avodécewy aAnoTIGY, Yio TIc omoleg umopel v

amo@acloTel AmodOTIXE oV TEPLEYOUV XdmoLo AUoM).

Yx€on petal Twv xAdoeswyv TotP xow FPRAS

Ye auth Ty evotnra, e€etdlouue uTo Toleg cuvixeg oy lel TotP C FPRAS, xodog xau o avtiotpo-
poc eyuheopds FPRAS C TotP. Kdmoto and tor amotehéoporta €youv mopouctaotel oto [22]. Edd

oxohoUDoVUE ToV TPOTO Tapoucioofc Toug oto [24].

Kotapydc woydel 1o napaxdte dedpnuo yia tny xhdon #P.

Ocwenua 0.3. #P C FPRAS av kai puérvo av RP = NP.

To mapandve Jempnua uropel va enextodel yioo Ty TotP. Eriong, xdde cuvdptnon f € TotP
1 omolo emdéyeton fpras, avixer oty xhdon FPRAS', 8ni. uropet va emhuidel and fpras mou dev

4 4 4 7 7 4 7 e 7
xdver moté Mddog otny mepintwon nou woyler f(z) = 0. Ioyber howndv to napaxdte Yedpnua.

Oempnpa 0.4. TotP C FPRAS av ka1 pévo av TotP C FPRAS' av ka1 pdvo av RP = NP.

Evo) yio Tov avtiotpogo eyxhelopd €youue To eEHC ATOTEAECUOL.
Ocwpnua 0.5. Ay FPRAS C TotP téte P = RP.
H anédeiln tou teleutaiou Yewpruatoc uthele agpopuy| yiot ToV 0plodd 800 YAJCEWY, TWY

#RP1 xou #RP2, mou mepiéyouy mpoAfuata Yétenong pe avtioTtolyo TeoBAnua andpouong oTny
x\don RP.
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Eotw M pia NPTM oe xavovixf| wopet, dnh. yi eloodo z, n M éyer 2P0 yovorndria
Yiot X8molo TohuGYLUO p, Y ahhidg n M xdver p(|x|) un-vietepuviotinée emhoyéc. Opilouye o
olvoho MR = {M | M eivau NPTM oe xavovixt| popph xou yio xdde x € X* eite accp(x) =

0 efte accpr(z) > 1 - 2p(2Dy,

Optopog 0.2. #RPy = {f € #P | vndpya M € MR térow dote ya kdde x € L,
f(x) = acen ()}

Opiowdeg 0.3. #RPy = {f € #P | Ly € RP}, dnov Ly = {z | f(x) > 0}.

To mopaxdtey mpoBiiuato avixouy otnyv xhdon #RP1. To mpdhto npdfinua oyetiCetoun pe to
npoBAnua Polynomial Identity Testing, oto onolo 8e8ouévou evog TOAUWVOUOU UaC EVOLUPEREL OV
elvon TowTOTXXG {50 e TO UNdeVXG ToALKVLUO. Elvor yvwotod 6Tl undpyel anodotindg miavoTindg
ahyoeriuog Yo auTd TO TEOBANUL, AAAS av amodety Vel OTL ETAVETOUL OE VIETEQUIVIOTING TOAUWVUULXO
XEOV0, TOTE Vol AmOXTHOOUUE €Val VEO XdTw pedyua yia Ty xAdon NEXP oe oyéon ue tnv enthuon

TWY TEOPANUAT®Y TNS amd XUXAGUATA TOAWVUUIXOL peyédoug [95].

#NONZEROSFORPIT.
Eivodog: "Eva mohudvupo p(xy, ..., x,) Poduol d ndve oe éva oopa F, tétowo wote |F| > 3d .

‘Eéodos: O oprduodc twv onuelowv (Y1, ..., Yn) € Fi, yio T onolot oy Vet p(yi, .., Yn) 7 0.

To cbvolo [F34 elvon €val Ovolro 3d otolyeiwy Tou F tou unopody vo eTAEYOUV VIETEQULIVIGTIXG

a6 plo unyavh Turing.

To deltepo mEOPBANUA elvor Uiot LETENTIXT) EXOOYT| TOU TEOBANUATOC AmOPUcE AV VIS PUOIXOS
aprdude ebvon cvvdetoc. Aedopévou n > 2, o n unopet va ypagel o 25 - d + 1, énou s,d € Nt xau
d elvou mepittog. ‘Evag guoidc apriudc 0 < a < n ovouydleton motonomntiké ya tn ovvdetétnta
Tou n, av toylel o (a) ¥ o (B):

(o) a1 #1 (mod n),
() a® 1 =1 (mod n) xou 16y00LV oL B0 enbuevec oyéoELC:

a?# 1 (mod n) xa a®?# —1 (mod n), yioa éha 10 0 < 7 < s.

Ta 800 endueva TpoBAfuaTo Elvor oL UETENTIXES EXDOYES TwV TEoBANUdTwY EXACT MATCH-
ING [125] xou BLUE-RED MATCHING [120], ta onola avixouv otnyv xAdon RP [119, 120], ahXd de

yvwetlouye av avixouy otny P.

#EXACT MATCHINGS.
Eivodog: "Evac yedpoe G = (V, E), évo unocUVORO TV axoY E' C E xou évac oxéponog k.

‘Eéobdos: To mhidoc twv téhewwy Tatptaoudtwy tou G tou teptéyet oxpBoe k axuéc ond to E.
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#BLUE-RED MATCHINGS.

Eivodog: "Evac yedpos G = (V, Ereq U Epjye), xou 800 axépator w xou B.

‘Eooog: To mAflog TV Touplacudtwy yeyédoug Touldytotov B mou Tepléyouy T0 TOAD W oxUES

a6 T0 Eppye %ot 10 TOAD w axpég and 10 Epeq.

H woybg mou mpoxdntel and tn wétenon tou tARdoug OAwV

TWY (LOVOTATLLV

OpiCoupe v xAdon GapiotP wg v xhewotdétnta e TotP we¢ npog agaipeon. Me Bdon wiotnteg

ouvapThoewy tNg TotP xou tng GapietP, opllouye Tic mopoxdte xhdoeic TeoBAnudtwy andpaonc.

Yuvdpotnon f
K)\d(GT] eTnen Av x e L: Av z ¢ L:
oTNV *Ado):
UtotP TotP flz)=1 fz) =0
f(x) < p(lz]) v
FewiotP | TotP xdmoo  mohudvupo | f(z) =0
pxo f(x) >0
BrotP TotP f(x) etvou tepittée | f(x) ebvou dptiog
ModyoP | TotP fz) #0 (mod k) | f(z) =0 (mod k)
SPotP GaptotP flz)=1 f(z)=0
fx) = g(x) v
WP P GapiotP xémow g € FP pe | f(z) =0
0 & range(g)
f(x) # 0 [evadh. o-
CoiotP GaptotP fl)=0 ,
popoc: f(x) > 0]
f(z) <0 [evodh. o-
PtotP GapiotP f(z) >0
plopoc: f(z) < 0]

Arnodewvieton 6Tt 1 xAdon GapiotP tautileton ye ) GapP, Snh. v xhewotdta g #P g

meog agalpeon. Eniong, extoc and tic xAdoelg UiotP xon FewyotP mou ebvan foec pe v xAdon P,

4 7 Ié 7 7 7 7. 7 7 4 7 4
amodeiaue 6Tt xdde plo amd Tic umdhoiteg ebvon {om ue v avtioTolyn xAdorn mou opileTon YEcH

xamowg #P 1 GapP cuvdptnong, omwg gaiveton mopaxdte.
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UitP =P

FeWtotP =P

ProtP = OP

ModkoiP = ModP

SPiotP = SPP
WPo:P = WPP
CototP = C_P
PeotP = PP

[N tig xhdoeig P xow CP autd oy avopevouevo, emeldy| oy 1on Y vwo Té Thven Teov=ARuato
yioe Ti¢ 600 auTtéc xhdoelg mou opilovton amd xdmoia TotP cuvdptnon. Ilo cuyxexpwéva, ta mpo-

BAAuoto awtd Atay 1o GPL-RTW-MON-3CNF [150] xou 1o DIFFPERFMATCH—g [52].

ITAYpn meofAqpata yia Tig xAdoeig ©P, ModyP, SPP, WPP, C_P xouw PP

o T xddepio and tic xAdoec &P, ModyP, SPP, WPP, C_P xou PP anoxtrcaye uio owoyéveia
TAfewVY TEoBAnudTeY, Ta omolo optlovto péow xdmoou TotP-tAvpouc mpofifuatoc wg tpog

PEWBWAES avorywyES xon Oyt péow xdmoou #P-tAipouc (H NP-tArpouc).

e Axolouddvtog to anotéieoya tou Curticapean [52] yio tnv WPP yio tv xhdorn C=P, deio-
ue 6T ot xhdoeig WPP xaw PP €youv mirien tpofiruata, mou opilovta péow tng TotP cuvde-
wnone #PERFMATCH, ta omola ovopdooue DIFFPERFMATCH—,; xou DIFFPERFMATCH~

avticTotya.

o To mpofBinua DIFFPERFMATCH— 4 lvon T0 TEOBANU0 TOL VoL amogQacicoupe o 1) Slapopd TNe
ouvdptnong #PERFMATCH ot 600 d6edopévouc ypdgoug eivon ton pe 0 7 ye pio mohvwvuuixd
umohoylown T, 6Tay €YOUE TNV UTOGYEST 6TL €val and Tar Vo toylel. Anodelloue OTL av
oyver n mioavotixr vnddeon exdetixol ypdvou (rETH), té6te 1o DIFFPERFMATCH—, Oev

UTOEEL VoL AMOPACIOTEL N6 %ATOLOY UTOEXVETING oy dpLiuo.

e To m\fpec mpofBinuo DIFFSAT—_; yia v SPP avdyetouw oto va amogacicoupe av 1 dlapopd
¢ ouvdpTtnone #PERFMATCH ce 600 6edouévoug yedpoug etvon iomn pe 0 7 ye uio exdetind
HEY AN Ty Oa d&ile va eEETACOUUE TS €V EVOEYOUEVO VETIXOG ATOTENEGUL YId TO TEOBAN UL
#PERFMATCH ynopel vo 5woeL xdnolo anotéAeopa yio ta tpoBAiuata tne SPP, 6w etvor

70 GRAPH ISOMORPHISM ot to USAT.
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IMepiypopixry TOALTAOKOTNTA BVOCKOAWY UETENTIXWYV TEOBATN-

RATWY UE EOXOANO TEOBANUA ATOPACTNS

[ot Ty TepypapLr) TOAUTAOXOTNTAL, TO ERWTTUO TTOL TEETEL VoL amavTnUel elvan To e€¥g: ot hoyinh
elvol XATEAANAN OOTE VoL UTOPOUY VoL EXPEAGTOLY To TEOBAAUAT UG XAGONE TOAUTAOXOTITAC X Ol

4 4
HOVO auTd;

Tty x\&on NP, anodetydnxe and tov Fagin [64] 6t yperolduacte tnv unopiaxy| deutepo-
Bt hoyuxr, mou cupPoriloupe SO, wyber dnh. NP = 3SO yio nenepacpéves Soyée.

T v xhdom #P, apyixd oto dpdpo [132], delydnxe 6t #P = #FO vy nenepaocpévec
dotetarypévee dopée. Ipbogata oto dedpo [15], or ouyypageic opilouv v xhdon LQSO(FO)
xa amodexviouY OTL o auTh) TauTileton we TN #P yio menepaouéveg Satetoryuévee douéc. o
TapddeLryUa, 0 TOTOG

a= EX.Vwa(X(x) ANX(y) ANz #y) — E(z,y)

expdlel to TAlog Twv XDV ot éva yedpo. H epunvela tou tOnou a o %dmOl TENEQUOUEVT
OouY), TOU XWOXOTOLEL £VOL YRAPO OTN CUYXEXPWEVY TeplnTwoT), dlvel Eva puotxd apriud, o omolog

oovton pe to {ntovuevo. Iedgouye [[o]](G) = #CLIQUES(G).

Yto dpdpo [15] Swartundinxay 800 epwtAuata Tou Yo yog anaoyohicouy o auTh TNV EVOTNTA.

1. Towog elvar 0 hoywodg yopoxtnelopos tng TotP;

2. MnopoUue va oplcouyue edpwoteg unoxhdoelg tng TotP xou va tpocdlopicouue 0 oyéon toug

ue v xAdon FPRAS;

Aoyxdg yapaxtnewowos tng TotP

[o var dwoouue €va Aoyind yapaxtneodd tne xhdong TotP, yenoiwonololue avadpour| ToAuwvu-
w0 Badoug. Tlapoxdtey Yo oploouvye To moOALOVLUIXE QeayUévo oTadepd onueio evoc TeAeo TN
TIOL Bpa VL CE CUVOPTACELS. 2Tr cuvéyela, VYa Teplypddouue tog yag Bondd va exgpdcouue To

mAloc TV povoraTidy piog unyovhc Turing.

Hoadpvoupe we Bdon ) hoyrp QSO(ISO) xou mpoc¥étove oe aUTH Eva GUVIETNOLOXOG
oluBolo mou maipvel we oplopata deutepofdiues petoAntéc. O TimoL authg Tng Aoyuxrg divovto

OO TNV TOEOXATE) Y QOUUATIXT).

a=¢ | s | f(X1,..X)) | (a+a) | (a-a) | EX.« (1)
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omou 1N ¢ elvon wa umopdlaxy) devtepoldiua TedTaon, felvar éva cuvaptnolaxd cluBolo xou
X1, Xy ebvan Seutepofdiiec petointée. Tlpooiétouye enione otn Aoyt tov tino [pbip, af (Y),
6mou 1o cVuBoho pbfp npoépyeton and to polynomially-bounded fixed point (rohuwvuuxd geory-

wévo otadepd onueio) xou Yo amotiudton pe avadpEopr| ToAUwVUIXoL Bddouc.

Opilouue 0 SOF; wc 10 6Uvoro GAwV Twv cuvapthoewy h : (P(AF))! — N. 'Eotw A
o Sour oto AeZihdyo o xou [pbfpg a](?) émou 1 f éyer mhewopérewa . T va oploovye T
onuactohoyia Tou [pbip; a](?), EQUNVEVOUUE TO a(?,f) oc évav teheoth Ty ot0 SOF. Tw
xdde h € SOFy xu (81, ..., S1) € (P(AM) woyve 6t

Tu(h)(S) = [[a(X, HI(A,V, F)

6mou 1o V elvon o devtepoPddua avédeon otn dopr A étol dote V(X;) = S, i € {1,...,1} xau

n F elvon avédeon yi tnv f ot doun A térowa wote F(f) = h.

OptZouyue v oxorovdia cuvapthoewy {h; bien, hi @ (P(AF))! — N, tétowr dote

o ho(?) = 0 vy xdde S e (P(AF))

o hit1 vo opotel we Ty (hi) yro xdde i € N.

Trdpyouv dVo nepimtwoelc: eite undpyet n € N této10 hote hn+1(§) = hn(?) Yoo xde S e
(P(AR)), xou t67e 10y0eL hj = hy, Yo %80 j > n, elte dev undpyet Tétoto n. Mog evdiapépet av
UTdpyEL XAmOoLo TETOLO 1 oL VoL ebvon tixpoTtepo amd o |A|™, 6mou m elvor 1 uéytoTn TAElOpENELD
xdmolog deutepofldiuac uetoAnthc mou Beloxeton otny euféela Tou TOCOdENK TN K. MTN CUVEYEL,
optlouye T0 TOAUWYLUIXA ppaypévo oToepd onueio evog Th, we e€hg:

In v fn = fn+1 Yo xdmolo n < |A|™

pbfp(Ta) =
fiapm v fn # fn+1 i xdde n < |A|™.

OptZouye tn onuactoroyia tou [pbfp, a](?) oc pbip tou Ty, dnh:

nV? av frn = fn w xdmoto n < |A|™,
[pbtp, a3y A vy = ) I = Jnsa v 4
AV aabe, brou L = |A]™.

Xoplg BASEN g yevixdtntog, dewpolue 6Tt Yo xdde TotP cuvdptnom undpyel war Suadixy
unyovh Turing N, tétolo doTe 1 ouVETNoT divel To TARYog Twv povoratiwy Tne N pelov 1 1A 1oo-
oLV, To TAYOC TKV BlaAadWoe®Y Tng. Mropolue va exppdcoouue To TARHOC TV BLaXAABOCENDY

¢ N pe tov torno [[[pbfpy tot](ﬁ) 11(Az, Vi), 6mou
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O timog tot etvar 0 e&hc:

tot(a,f) ::EI?EIt_*> branching(?, t_*>)+
Zﬁo. (H?Eltj (branching(?7 t_:) A Ao(g, C_Y(;, t_:)) . f(C—Y(;))—i-
_>

SC;. (EI?Elt_*) (branching(?7 t_:) A Al(g, C_‘i, t_:)) - f(C1))

o H A, elvar o menepaopévn dlatetaypévn doun mou xwdxonotel TNy €lcodo tTng unyovic

Turing.

o Vr ebvan pa deutepofdduia avddeon otn Sour A, tétow wote Vi(T) = T, Vi(E) = Ej,
Vi(P) = Pr, VI(Q) = Qr xou T7, Er, Vi, Qr €ivon oyéoeic mou xmdxonooly Ty apytxi

xatdo oo TG unyavig N.

7 % - % 14 / /. ’ / /4
e O Ttimoc 3?3 tx branchlng(?7 ty) expedlel OTL UTEEYEL EVAC VIETEPUIVIOTIXOS UTOAOYLOUOG

¢ N mou odnyel oe Wia SLaXAGDWOT TN YeOoVIXT oTiyuN t—*>

o Ai(?, a-, t_*>), i = 0,1, exppedlel 6TL TN Ypovxn oTIYUY t—*> N N %3AVeL TN UN-VIETEPUIVIOTIXT)
ETAOYT| T X0 OL a AWOOTOOLY TNV XATACTUCY] TNG UNYAVAG oxeBKS PETA amd auTh TNV

ETAOYY.

e To f(a) expedlet 6TL 1 Braduxaoto cuveyileTton avadEoULXdL.

Mo toug axpiPeic optopolc Twv Tapamdve TOTWY Taparéurouvde oto Kegpdioo 5.

H »\don RXEQsoe mpoxintel av meptoplcovpe TN Aoyixy| mou wolg oploope. Iopatnpolue
ot xde umapdlaxdg deutepofdiutog TOnog unopel va ekeyyel xatd oGO Wylel o plo dour oe
TohUWYUUIXG Yedvo. Ovopdloupe xdde tétoo tono SOE xau Sivouue éva cuvtoxtixd oploud.
Enlong, xde nocodeixtng X eqopuoletoan o xdmoto deutepoBdduta uetoBAnTty, aAld To dipoloua
yeetdleton var amotyunlel To mohd Yo plo anotiunon authc e MeTABANTAC. Autd emtlong umopet
vau Ylvel g moAvwvupxd yeovo. H hoywr| mou opilouue ovoudletaw R¥QsoE, xat toylet 6Tt oL

ouvapTAoElC Tou opllovton P€ow auThE amoTe oY TNV xhdon TotP.

Ocwpnua 0.6. RXQsoe = TotP ywr nenepaoéves dratetayuéves dopés.

Avo ebpwoteg uoxAdoelg Tng TotP

Yo dpdpa [132, 15] elyav oplotel ot mapaxdte utoxhdoec tne TotP xau elye npoodiopiotel 1 oyéon

xamolwv omd outéc pe tnv FPRAS.
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o H #% ta npoPAiuarta tne onolog avdyoviar oto #DNF w¢ npoc avarywyée yvopévou [132].
Ioyer #3%1 C FPRAS.

e H XQSO(X2-HORN) yia v ondia 1o #DISTHORNSAT €elvon TAHpEC 0C TPOC PEBWAES ovo-
ywyée [15]. Eivon avouyté epdtnua 1 oyéon autic e xhdone pe v FPRAS.

e H ¥QSO(X;[FO]), n onola eivar xhetoth we npoc mpdodeon, tohhamhaotoaoud xat apaipeon
xatd éva. Ioyver EQSO(X;[FO]) C FPRAS.

Oploaye Tic mapaxdte xhdoeic xou anodelEaye ot dev elvon unoxidoelg tng FPRAS extoc av

ol xAdoeic RP xaw NP elvou {oec.

e H XQSO(X2-2SAT) vy tnv omola to #DISI2SAT elvon TAAPES 1S TPOS PEBWAES avorywyEc.

o H #II5-1VAR yia tnv onola 1o # MONOTONESAT elvon TAARES ¢ TROG Avory WYES YIVOUEVOU.

MeéTpnon TupldoudTwY O YEAPOUS UE UAVEES KA HOXKIVES

AXUES

Ye auth) Ty evotnta e€etdlouye 10 TEOBANUA #EXACT MATCHINGS. TreviuuiCoupe Tov oplopd

TOU TOEAXATw.

#EXACT MATCHINGS.
Eivodog: "Evac yedpoc G = (V, E), évo unocUVORO TV axoV E' C E xo évoc oaxépatog k.

‘Eéobdos: To mhidoc twv télewwy Tanptooudtwy tou G tov teptéyet oxpBng k axuéc ond to E'.

To mpdBinuo autéd yevixelel To #PERFMATCH xou €yel TpoBAnua andpoacng Tou avixel oTny
xhdomn RP, xou o ouyxexpwéva otny xhdon RNC [119]. Aet€ope bt eniong avdryeto 6o TpdBinua

#WEIGHTED PERF MATCH péow Wag avaywyhc Tou YenoWonolel ToAuwvuuLXY TopedSoAT).

To mpofinua #EXACT MATCHINGS oe K3 3-ehellepoug ypdpoug eivon amodotixd emhdol-
wo [152]. Aci€aye 61t 10 Bl0 1oyel v to B0 TEéBAnue oe Ks-eheliepouc ypdpous. Ltnv
nepintwon tou #EXACT MATCHINGS o€ OWepelc Ypdpoug, amodelaue OTL AVAXEL GTNY Ao
TotP, dnA. o avtioToryo medPAnua andgaong avixel otnyv P. Tapauével avoryth 1 axpBric moAu-

TAOXOTNTA AUTOV TOU UETENTIXOL TROPBAAUATOC HETE TNV OAOXAPwaoT) aUTHS TG DlaTedrc.

Q¢ mpoc TNV mopAUETEXY) TOALTAOXOTHTA, Oetlope OTL To MEOPANUe #EXACT MATCHINGS

etvar #WI[1]-80oxoho, neptypdpovtog pio avorywyr and to tedBinue #k-MATCHINGS [51].
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Chapter 1

Introduction

A counting problem is a function that maps an instance of a decision problem to the number
of solutions that the problem has on input this particular instance. For example #SAT is a
function that maps an input formula to the number of its satisfying assignments. The class
of functions, for which the corresponding decision problem is in the class NP, is the class #P,
introduced in Valiant’s seminal paper [119]. Equivalently, functions in #P count accepting paths

of nondeterministic polynomial time Turing machines (NPTMs).

Interestingly, various problems from different scientific fields can be expressed as counting

ones.

1. Computing the partition function, in statistical physics [31, 90, 91, 115]. For example, the
partition function of the hardcore model is a generalization of the problem of counting

independent sets in a graph [155].
2. Computing the volume of a convex body, in computational geometry [53].
3. Computing the permanent, in linear algebra [119].

4. Determining the probability that a given network becomes disconnected due to edge fail-

ures, in network design [97].

5. Computing the social cost of a given mixed Nash equilibrium, in selfish games in algorith-

mic game theory [69].

6. There are optimization problems that require counting solutions to some corresponding

decision problem [129, 117].



Chapter 1 Intoduction

When we consider counting, non-trivial facts hold. For example, both the NP-complete
problem CNF and the polynomial-time solvable problem DNF have counting versions that are
#P-complete under Turing reductions. Although no counting problem with an NP-complete
decision version can be efficiently approximated unless RP = NP [79], among counting problems
with a decision version in P there are some that have a polynomial-time randomized approxi-
mation algorithm (e.g. #DNF [98]) and others that cannot be approximated efficiently unless
RP = NP (e.g. #IS [57]).

Since very few counting problems can be exactly computed in polynomial time (e.g. counting
spanning trees [107, chapter 6]), the interest of the community has turned to the complexity
of approximating them. In this quest, the class #PE [122]| of problems in #P with a decision
version in P is of great significance, since counting problems that admit a fully polynomial-time
randomized approximation scheme (fpras) can be found only among those with an easy decision
version (i.e. in BPP). In this thesis, we focus on a subclass of #PE, namely TotP [102]. Notably,

almost all known counting problems that admit an fpras belong to TotP.

TotP is the class of functions that count the total number of paths of NPTMs. In fact,
a function in TotP is defined to be equal to the number of computation paths of an NPTM
minus one, so that functions in TotP can take zero values as well. Except for this simple
structural characterization, it was shown in [123] that TotP has a noteworthy property that can
be considered as an alternative definition: it is the class of all self-reducible problems with a

decision version in P, which is also closed under parsimonious reductions.

TotP is a robust class, where we consider robustness as defined by the authors of [15]; a class
is considered to be robust if either it is closed under addition, multiplication, and subtraction by
one or it has natural complete problems. In particular, TotP satisfies both these requirements

as we discuss later on.

Finally, TotP can also be characterized via interval size functions |31, 27]; it is the class of
interval size functions which are defined on some P-definable total p-order A via polynomial-
time computable boundary functions, where in addition the lexicographically nearest function

for A, LNy, is efficiently computable.

We are going to present results about TotP from the viewpoint of structural and descriptive

complexity. The reader can find a guided tour to this thesis in Section 1.5.

A.Chalki Thesis 2



Chapter 1 Intoduction

1.1 The complexity class #P

The standard model of computation under which we study counting complexity is the nonde-
terministic Turing machine. In particular, we focus on polynomial-time complexity, thus the
model of interest is the nondeterministic polynomial-time Turing machine (NPTM). We assume
a fixed alphabet, conventionally ¥ = {0,1}, in which we encode both problem instances and
solutions. The symbol X* denotes the set of all finite strings over the alphabet . The length
of a string x is denoted by |z|. For an NPTM M, there is some polynomial p such that for any
x € ¥*, all computation paths of M on input x have length at most p(|z|). An NPTM M is in
standard form if for any x, each path of M(z) is encoded by a string of length exactly p(|z|).
We say that M is in normal form if it is in standard form and, in addition, for any x there are

exactly 2P07) computation paths in M (z).

A relation R € ¥* x ¥* can be interpreted as assigning to each problem instance x € X*,
a set of solutions {y € ¥* | R(x,y)}. For example, consider the relation Rpys which associates

with each undirected graph G, the set of perfect matchings of G.

Rpyr = {(z,y) |z € £* is an encoding of a graph G and

y € X" is an encoding of a perfect matching of G}

A number of naturally defined problems are related to each relation of the above form. We

are interested in the existence, counting, and uniform generation problems.

e Existence: Is there a y € ¥*, such that R(x,y)?
e Counting: How many y are there such that R(x,y)?
e Uniform generation: Generate uniformly at random a y € ¥* that satisfies R(z,y).

Definition 1.1. A language L belongs to NP if there is a polynomial-time decidable relation R
and a polynomial p such that x € L < Jy [|y| = p(|z|) and R(z,y)].
Equivalently, L € NP if there is an NPTM M such that

x € L < M(x) has an accepting computation path.

Definition 1.2 ([119]). A function f : ¥* — N belongs to #P if there exists a polynomial-time

decidable relation R and a polynomial p such that for every x € ¥*,

fla) ={y € =" [ Iyl = p(|2]) and R(z,y)}|.

A.Chalki Thesis 3



Chapter 1 Intoduction

Equivalently, #P = {accyr : ¥ — N | M is an NPTM}, where accyr(x) =# (accepting compu-
tation paths of M on input x).

The decision version of a function f € #P is the following problem: ‘Given z, is f(x)
non-zero?’. Equivalently, ‘Given z, is there a y, such that R(z,y)?’, or ‘Given z, is there at least
one accepting path of M on input x?’, where M is the NPTM corresponding to f. For each
function f € #P an associated language Ly = {x € ¥* | f(x) > 0} can be defined. Clearly,
Ly e NP.

1.1.1 The property of self-reducibility

Self-reducibility is an important property that has been extensively studied since Trakhtenbrot
first introduced the notion of autoreducibility in 1970 [1415]. Interesting approaches to this
property can be found in [33], where one can see self-reducibility as a technique, and in [7], in
which the authors prove that a strong self-reducibility property can amplify lower-bound results.
Regarding counting solutions of a problem, self-reducibility implies that almost uniform sampling
from the set of solutions is equivalent to approximate counting them [91|. The definition of self-
reducibility used by Jerrum et al. in [94] is due to Schnorr [134]. Although there are problems
which are not self-reducible unless P = NP, such as counting k-colourings, k£ > 4, in planar
graphs [101], most problems satisfy this property. So self-reducibility can be seen as being the

rule and not the exception.
We first give the definition of self-reducibility for a relation.

Definition 1.3 ([134, 91]). A relation R € ¥* x ¥* is self-reducible if the following hold.

1. There is a polynomial p such that R(z,y) = |y| = p(|z|).

2. There are polynomial-time computable functions 1 € ¥* x ¥* — ¥* and 0 : ¥* — N such

that for every x € X*

(a) o(x) = O(log |z]),

(b) p(|z]) > 0= o(z) >0,

(c) [(z,w)| < |z| for every w € £* with |w| = o(x), and

(d) R(xvylyn) A R(d)(l‘a yl"'ya(x))a ya(w)—i—l"'yn) for every y1..y, € X*.

Intuitively, the solution set associated with a given instance of a problem can be expressed

in terms of the solutions sets of a number of smaller instances of the same problem. Polynomial
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p gives the length of the solutions to instances. Given an instance x and initial segment w of
length o(z) of any solution to x, ¥)(x,w) is an instance z’, such that w concatenated with any

solution to z’ forms a solution to z.

Next we define a version of self-reducibility for counting functions. This kind of self-
reducibility first appeared in [123] and then was generalized in [25]. Informally, a function
is self-reducible if its value on an instance can be recursively computed by evaluating the same
function on a polynomial number of smaller instances. By generalizing, we allow recursive

computations on, not necessarily, smaller instances.

Definition 1.4 ([123, 25]). A function f : ¥* — N is called poly-time self-reducible if for all

T e Xt

(a) f can be processed recursively by reducing x to a polynomial number of instances h(x,1),
where h is polynomial-time computable and 0 < i < r(|z|) for some polynomial r. Formally,

for every x € ¥,
r(|=])

flx) =tx)+ ) gl ) f(h(z, ).

i=0
(b) The recursion terminates after at most polynomial depth. Formally, the depth of the recur-

sion is q(|x|), for some polynomial q and for every x € ¥* and 7 e {0,...,r(|z|)yel=D,
= — . . .
f(h(z, j)) can be computed in polynomial time,
where h is the extension of h such that h(z,e) = z and h(z, j1...51) = h(h(x, j1..-Je—1), Jk)-

(¢) Every instance invoked in the recursion is of polynomial size in |x|. Formally, there is a
polynomial p, such that for every x € ¥*, k < ¢(|z|), and 7 € {0,...,7(p(|z)}* it holds
S
that |h(z, j)| € O(p(|zl)).

Note that if the instances h(z,7) are of smaller size than z, that is |h(z,7)| < |z| for every
xz and 7, 0 < i < r(|x|), then requirement (b) holds trivially. Moreover, (c) requires that all
instances that f will be computed on, must be of polynomial length in |z|, which also holds if

h is of decreasing length.

We prove below that self-reducibility of a relation is a more general property than the

poly-time self-reducibility of the corresponding function.

Proposition 1.1. Let R : ¥* x X* be a relation and f : ¥* — N be the function that for every
xe X f(z)=|{y € X*| R(z,y)}|. If R is self-reducible, then f is poly-time self-reducible.
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Proof. The value of f on an instance x can be expressed in the following way.

f@)=Hy Ryl = Y W IRW@w). )= ) [w)

weXT (@) weXT (@)
where 1 and o are as in Definition 1.3. So poly-time self-reducibility for f is satisfied, since
|27(®)| is polynomial in |x| and v is polynomial-time computable, that also returns instances of

smaller length. O

The inverse fact is not necessarily true. That is, if a function f, associated with a relation
R as above, is poly-time reducible, then R is not necessarily self-reducible. First, h(z,7) may
be of greater length than z in Definition 1.4, whereas ¥ (w,x) of Definition 1.3, are always
instances of smaller length than z. Second, even if we restrict ourselves to functions h such that
|h(z,i)| < |z|, it may be the case that requirements of Definition 1.3 are not satisfied. However,
as far as we know, there is no problem that has a poly-time self-reducible counting function and

not a self-reducible relation.

1.1.2 Fpaus and fpras for counting problems

The probabilitic Turing machine (PTM) is the usual basis for defining randomized complexity
classes and randomized algorithms. A probabilistic Turing machine T is a Turing machine
equipped with special coin-tossing states. Each coin-tossing state ¢ has two possible successor
states g and g¢; when T enters state ¢, it moves on to state g with probability % and to state

q¢ with probability %

For two probability distributions 7w and 7’ on a countable set 2, define the total variation

distance between m and 7’ to be
/ 1 / /
= wlly = 5 3 Im(w) = 7'(w)] = max |w(4) - (A
we

A sampling problem is specified by a relation R C ¥* x ¥* which includes pairs (z,y)
of problem instances x and solutions y. An almost uniform sampler for a solution set R is a
randomized algorithm that takes as input an instance x of the problem and a sampling tolerance
0 and outputs a solution Y (a random variable of the coin tosses made by the algorithm) such that
R(z,Y), and the variation distance between the distribution of Y and the uniform distribution
on the set {y | R(x,y)} is at most §. If {y | R(z,y)} = 0, we allow the almost uniform sampler
to output a special symbol L. An almost uniform sampler is fully polynomial, denoted by fpaus,

if it runs in time polynomial in |z| and log(6~1).
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Definition 1.5. A randomized approximation scheme for a counting problem f : ¥* — N is
a randomized algorithm that takes as input an instance x € ¥*, an (accuracy) error tolerance
e > 0, and a (probability) error tolerance § > 0 and outputs a value f/(;) € N, such that for
every x,

Pr(1—¢)f(z) < f(2) < (1+)f(x)] 2 1 - 0.

We speak of a fully polynomial randomized approximation scheme, denoted by fpras, if the

algorithm runs in time bounded by a polynomial in ||, €71, and log(6~1).

Remark 1.1. If we remove randomness from an fpras, then we obtain a deterministic fully
polynomial-time approximation scheme, denoted by fptas. So, an fpras outputs a (1 £ €)-

approximation with probability 1.
For any self-reducible f € #P the following facts are true.

1. f admits an fpras if and only if f admits an fpaus [94].

2. Any polynomial-time approximation algorithm that provides a polynomial multiplicative
approximation error can be boosted to achieve the quality of approximation demanded by

an fpras [137].

So, unlike optimization problems that exhibit an hierarchy of possible degrees of approxi-

mation, there is one notion of approximation algorithm for counting problems, namely fpras.

We are going to call the counting problems that admit an fpras, approximable (and so

inapproximable are the counting problems that do not admit an fpras).

We define the class FPRAS to be the class of all #P problems that are approximable. All
the problems in FPRAS are AP-interreducible to each other and also the class is closed under

AP reductions.

Definition 1.6 ([59, 24]). A function f belongs to FPRAS if f € #P and there exists an fpras
for f.

#DNF (or any other counting problem that admits an fpras) can be considered as a rep-
resentative of this class. We can alternatively define FPRAS to consist of all #P problems that
are AP-interreducible with #DNF.

A.Chalki Thesis 7
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1.1.3 Reductions between counting functions

Reductions between counting functions have been introduced in the literature in a similar man-
ner to the Turing/Cook and Karp/many-one reductions between languages. These reductions
do not need to be limited to counting functions and in fact, they have been defined and used
more generally. In this thesis we are going to need the following five types of reductions; below

f,9 € #P and FP is the class of functions computable in polynomial time.

Definition 1.7 ([119]). Poly-time Turing reductions. f reduces to g under poly-time Turing
reductions, denoted by f <% g, if f € FPY.

Definition 1.8 ([108]). Poly-time 1-Turing reductions. [ reduces to g under poly-time
1-Turing reductions, denoted by f <V 1 g, if f € Fpoltl,

Definition 1.9 (|136]). Parsimonious reductions. f reduces to g under poly-time parsimo-
nious reductions, denoted by f <Pars g, if there is a function h € FP, such that for every x € ¥*,

it holds that f(z) = g(h(x)).

Definition 1.10 ([132]). Product reductions. f reduces to g under product reductions,
denoted by f <b. g, if there are hi,ha € FP such that for every x € X* it holds that
f(@) = g(hi(2)) - ha(2).

Definition 1.11 ([59]). Approximation preserving (AP) reductions. f reduces to g under
approzimation preserving reductions, denoted by f <ap g, if there is a probabilistic oracle Turing

machine M that takes as input an instance x of f and 0 < € < 1 and satisfies the following

three conditions:

1. every oracle call made by M is of the form (w,d), where w is an instance of g, and

0 < § <1 is an error bound satisfying 61 < poly(|z|,e~1),

2. M meets the specification for being a randomized approzimation scheme for f whenever

the oracle meets the specification for being a randomized approrimation scheme for g, and
3. the run-time of M is polynomial in |z| and e~ 1.

We also use the following notation.

(a) If f <ap g (vesp. f <% g, f <Y1 9, f <Pars 9, [ <pr 9) and g <apf (vesp. g <y f, 9 <V 7 f,
g <bars [, g <bx f), then we say that f and g are AP-interreducible (resp. Turing-equivalent,

1-Turing-equivalent, parsimonious-equivalent, product-equivalent), and we write f =ap ¢

(vesp. f =N g, f =010 9, [ ZBars 9, [ =br 9).
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(b) For a class of functions F, we denote by Closure<(F) the closure of F under <, where

Se {Sg" Sli)_Ta Sgars, SBI‘) SAP}

Remark 1.2. Poly-time Turing reductions between functions were introduced by Valiant [1.9]
and are also called Cook in [123], since they can be seen as the analog of Cook reductions be-
tween sets. Valiant [1/9] proved that every #P function can be solved in polynomial time using
an oracle call to the problem of computing the permanent of a (0, 1)-matriz. Zankds [155] formal-
ized polynomial-time many-one reductions, which is the precise type of reductions under which
computing the permanent of a (0,1)-matriz is #P-complete; polynomial-time many-one reduc-
tions are weaker than parsimonious reductions, since there is an additional poly-time computable
function ¢ and f(x) = ¢(g(h(x))) and they are stronger than poly-time 1-Turing reductions
which allow access to the initial instance x during the polynomial-time computation, that is
f(x) = ¢(x,g9(h(x))). Poly-time 1-Turing reductions were introduced as metric reductions by

Krentel in [108], where they were used between optimization problems.

Parsimonious reductions were defined in [130] between counting problems; here we provide
a more general definition of parsimonious reductions between functions. In [123] parsimonious
reductions are called Karp (or poly-time many-one) as they can be considered as the analog of
Karp (or poly-time many-one) reductions between sets. Also earlier, Vollmer [153] uses the term

polynomial-time functionally many-one reductions for parsimonious ones.

Here we are going to use the terms given in Definitions 1.7-1.11. In specific, when we refer
to poly-time Turing (resp. poly-time 1-Turing) reductions, we just write Turing (resp. 1-Turing)

reductions.

Parsimonious reductions are product reductions, where ha(z) = 1 for every z. Product
reductions are Turing reductions where only one oracle call is needed. The same holds for
parsimonious reductions, where in addition, the answer of the oracle cannot be changed. Par-
simonious and product reductions are trivially AP reductions, whereas Turing reductions and
AP ones are not comparable to each other. An AP reduction from f to g means that an fpras
for g yields an fpras for f. If an fpras for f is not possible, then an AP reduction from f to g

means that g admits no fpras either.

Remark 1.3. Notably, parsimonious reductions are provably stronger than poly-time many-one
reductions as defined by Zanké in [158], and as a consequence, they are stronger than 1-Turing
reductions. Faliszewski and Hemaspaandra have shown in [05] that the Shapley-Shubik power

index is #P-complete under poly-time many-one reductions, but cannot be #P-complete under
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parsimonious reductions.

1.2 Decision versus Counting

Counting solutions using an oracle to deciding whether a solution exists, and con-

versely

Counting using an oracle to decision classes: Can we solve a counting problem by having an

oracle to some decision problem? We provide two theorems that answer this question when
‘solve’ is replaced by ‘approximate using either an fpras or an fptas’ and the oracle calls are

made to the class NP and ¥5 = NPNP respectively.

Theorem 1.2 (Valiant—Vazirani bisection technique [151]). For any f € #P, there exists a
probabilistic TM M equipped with an NP-oracle, which for every input (z,e,0) € £* x RT x R

produces an output M (x,e,d) such that
Pr(M(z,e,0) approzimates f(x) within ratio (1+¢)) > (1 —9).
Moreover, the running time of M is bounded by a polynomial in |x|, 1/e, and log(1/0).

Theorem 1.3 (Stockmeyer’s Theorem [110]). For any f € #P, there exists a deterministic TM
M equipped with a ¥5-oracle, which for every input (z,e) € T* x RT produces an output M (z, )
such that

M (z,¢e) approzimates f(x) within ratio (1 + ¢).
Moreover, the running time of M is bounded by a polynomial in |z| and 1/¢.
Both the Valiant—Vazirani bisection technique and Stockmeyer’s Theorem can also be found
in [94].

Solving decision problems using an oracle to counting: Which decision problems can be effi-

ciently solved using an oracle to counting? Toda’s Theorem states that the whole polynomial

hierarchy can be solved in polynomial time using only one oracle call to the class #P.

Theorem 1.4 (Toda’s Theorem [111]). PH C P#PlI

The previous three theorems justify the next comment by Dyer et al. [59]: “Informally, from
a complexity theoretic perspective, approximate counting is much easier than exact counting.

The former lies just above NP, whereas the latter lies above the entire polynomial hierarchy.”

A .Chalki Thesis 10



Chapter 1

Intoduction

NP-completeness versus #P-completeness

#P-completeness N NP-completeness

1. Under Turing reductions: Is the decision version of a #P-complete problem under Turing

reductions, NP-complete? The answer is not always. Table 1.1 includes different combi-

nations of hard-easy counting and hard-easy decision versions.

Problem

Decision version

Counting version

SAT

NP-complete

#P-complete

under parsimonious

[16, Theorem 17.10]

3-COLORING

NP-complete

#P-complete

under parsimonious [ ]

2-COLORING P FP [61]

DNF ) #P-complete

under Turing

BIPARTITE PERFECT P #P-complete
MATCHING under Turing |1419]

MONOTONE SAT trivial #P-complete
under Turing |1410]

INDEPENDENT SET trivial #P-complete

under Turing [ ]

Table 1.1: The complexity status of some decision problems and their counting versions.

Some remarks on Table 1.1. The problem of counting 2 colorings of a graph, namely

#2CoL, can be shown to lie in FP using the dichotomy result of |

|. Alternatively, note

that #2CoL admits the following simple efficient algorithm: if the input graph is not

bipartite, then there is no 2 coloring of the graph. Otherwise, every connected component

of the graph can be colored using 2 colors in exactly two different ways. So, the number

of 2 colorings of the input graph is equal to 2¥, where k is the number of connected

components of the graph. The problem #DNF is #P-complete under Turing reductions
since for any CNF formula ¢, it holds that #SAT(¢) = 2" — #DNF(—¢), where n is the

number of variables of ¢.

A.Chalki Thesis
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2. Under AP reductions: The same question with respect to AP reductions has also a negative

answer. A counterexample is the problem #1IS of counting the independent sets of all sizes
in a graph, which is hard under AP-reductions [59], but its decision version is trivial, since

in any non-empty graph there is always an independent set of size 1.

3. Under parsimonious reductions: However, the same question with respect to parsimonious

reductions has a positive answer: Every #P-complete problem under parsimonious re-
ductions has an NP-complete decision version. For example, consider #SAT. For any
#A € #P, there is a parsimonious reduction from #A to #SAT, which is also a reduction

from the decision version of A to SAT.

R
NP-completeness = #P-completeness

1. Under Turing reductions: Is the counting version of an NP-complete problem, #P-complete

under Turing reductions? The positive answer to this question still remains a conjecture.

Conjecture 1.1 (|59]). Every NP-complete problem has a #P-complete counting version

under Turing reductions.

This question was also examined in [67] as follows. Recall that a problem in NP is defined
by a polynomial-time decidable relation R (as in Definition 1.1), which is not necessarily
unique. In [67] every such relation is called a witnessing relation (or a witnessing scheme)
and can define a counting version of the problem which belongs in #P (see Definition 1.2).
A natural question arises: Do all NP-complete problems have (only) #P-complete counting
versions? As the following theorem states, the answer to this question is negative with
respect to 1-Turing reductions and under some structural conditions. For a definition of

the class FewP [3], we refer the reader to Table 4.1 in Chapter 4.

Theorem 1.5. ([67, Theorem 3.11]).

(a) If there is an NP-complete set L that with respect to some witnessing relation Ry, is

not #P-complete under 1-Turing reductions, then P # P#P.

(b) If P # P#P and NP = FewP, then each NP-complete set has some witnessing scheme

with respect to which it fails to be #P-complete under 1-Turing reductions.

2. Under AP reductions: In this case we have the following theorem.

Theorem 1.6 ([59]). Every NP-complete problem has a #P-complete counting version

under AP reductions.
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3. Under parsimonious reductions: It has been proven that there is an NP-complete problem

that its counting version is not #P-complete under parsimonious reductions unless P =

NP [13]. This problem is k~-EDGE COLORING in k-regular graphs, where k > 3.

Approximability of a counting problem versus having an easy decision version

f € FPRAS N f has an easy decision version

1. f € FPRAS = L; € BPP: The decision version of any counting problem in FPRAS is a
problem in BPP [75].

Proposition 1.2. If f € FPRAS, then Ly € BPP.

Proof. By Defintion 1.5, if we can have an (1 &+ ¢)-approximation of f(z) with bounded
probability error, then we can determine whether f(z) > 0 with two-sided bounded prob-

ability error. O

2. If an NP-complete problem has a counting version that admits an fpras, then RP = NP |

We also refer the reader to Theorem 3.1 of Chapter 3 for a proof of this fact.

f has an easy decision version EN f € FPRAS: Not always. The negative answer here is under

the condition that RP # NP. Table 1.2 includes two counterexamples, namely #1S and #2SAT.

Some remarks on Table 1.2. For a proof of the fact that #SAT does not have an fpras
unless RP = NP the reader can also see the proof of Theorem 3.1. The problem #IS is a
well-studied counting problem as it is a special case of the problem of computing the partition
function of the hardcore model in statistical physics. The result of [57] was later improved by
Sly [138] and Galanis et al. [73]|. Inapproximability of #2SAT under the assumption RP # NP
is a consequence of the following simple reduction from #IS to #2SAT: consider a variable x,
for every vertex v of the input graph to #IS and write a conjunction of clauses, where a clause

(mxy V —zy,) is added to the conjunction, for every edge (v, u) of the graph.

Furthermore it is conjectured that specific counting problems the decision version of which is
in P, have no fpras; the class #RHIM; [59] contains problems AP-interreducible with #BIS, that
is the problem of counting independent sets in a bipartite graph, which it is widely believed not
to be approximable. In fact, #BIS is considered to be of intermediate complexity, i.e. neither

approximable nor as hard as #SAT, and it emerges in several approximation trichotomy results
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Problem Decision Exact Approximability
version complexity status
P-complete «
#SAT NP-complete 7 p no fpras unless

(under parsimonious) RP = NP [ ]

#1S p #P-complete no fpras unless
(under Turing) RP = NP [ ]
H#2SAT p #P-complete no fpras unless
(under Turing) RP = NP
#DNF p #P-complete fpras [04]

(under Turing)

4NFA NL #P-complete
(under Turing)

fpras [14]

Table 1.2: The exact and approximability status of some counting problems.

for classes of counting problems—see for example [60, 71]. The definition of the class #RHIMy

is given Definition 5.1 of Chapter 5.

1.3 The complexity class TotP

1.3.1 Definition of TotP: counting all paths of an NPTM

The class that contains all the functions in #P with a decision version in P is #PE (#PEASY).

Recall that given f € #P, Ly = {zx € ¥* | f(x) > 0} is defined to be the decision version of f.
Definition 1.12 ([122]). #PE={f:X* = N | f € #P and Ly € P}.
The complexity class TotP is a subclass of #P that is defined as the class of functions that

count the total number of computation paths of NPTMs.

Definition 1.13 ([102]). TotP = {toty; : ¥* — N | M is an NPTM}, where toty(x) = #(all
computation paths of M on input x) — 1.
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Remark 1.4. Let M denote an NPTM and Ty denote its computation tree on input x.
W.l.o.g. we can assume that, for any x, Ty s binary, i.e. every vertex of Thy(,) has at most
two children. In other words, at any time the computation of M on x is either deterministic or
a nondeterministic choice is made between exactly two branches. That is because, if there are
m > 2 nondeterministic choices for some state-symbol combination, we can modify M by adding
m — 2 new states so that the modified Turing machine (1) simulates the computation of M on
x, (2) makes only nondeterministic choices between two branches, and (3) has the same total

number of paths as M.

Therefore, the computation of any machine M on input x can be seen as a binary tree
Thr(z), where a branching is created in the computation tree whenever M has to select between

two choices. Then,
totyr(x) = #(all paths of M on input x) — 1 = £ (all branchings of Tay(z))-

Sometimes we abuse notation by writing toty(x) = # (all branchings of M on input x).

Since an NPTM has at least one computation path, the -1’ in the definition allows TotP
to capture functions that take zero value on some inputs. In [30] the function totalps(z) is
introduced to denote the total number of M on input x without subtracting 1. Note that the
functions defined via totaly; instead of tot; are contained in TotP: given a function f, such that
for some NPTM M and every x € ¥*, f(x) = totalp(z) = #(all paths of M on input z), an
NPTM M’ can be easily constructed such that totaly;(x) = totalp(z) 4+ 1, for every x. Then,
it holds that toty; = totalpys and so f € TotP.

The following subsection reveals how the choice of totp; allows many natural counting
problems to lie in TotP. At the beginning of Subsection 4.1 we refer to interesting decision

classes defined in [30] via the function totaly;.

1.3.2 Properties of TotP problems: self-reducibility and easy decision

The following theorem summarizes the relationship among classes defined so far. Here, FP

denotes the class of natural-valued functions that are computable in polynomial time.

Theorem 1.7 ([123]). (a) FP C TotP C #PE C #P. The inclusions are proper unless P = NP.
(b) FPTOtP[l] — FP#PE[l] — FP#P[l]

(c) TotP is the closure under parsimonious reductions of self-reducible #PE functions.

A .Chalki Thesis 15



Chapter 1 Intoduction

Theorem 1.7(a) and (b) state that the classes TotP, #PE, and #P are 1-Turing-equivalent,

but they are not parsimonious-equivalent unless P = NP.

Theorem 1.7(c) gives an alternative characterization of problems in TotP. As a result, TotP
is a very large class with problems from many different scientific fields, which share the two
aforementioned simple properties of being self-reducible and having an easy decision version.
At the same time, by having a simple syntactic characterization, TotP unifies all these problems

and makes their class amenable to having complete problems.

We elaborate on the two different characterizations of TotP with an example.

Example 1.1. Consider the problem #BIPERFMATCH of counting perfect matchings in a bipar-
tite graph. Its decision version is the problem of determining whether there is a perfect matching
i a bipartite graph and it is in P. #BIPERFMATCH is also self-reducible since the number of
perfect matchings in G equals the number of perfect matchings containing some edge e plus the
number of perfect matchings not containing edge e. Computing the two latter numbers is equiv-
alent to counting perfect matchings in two subgraphs of G, namely Go and G1, respectively. Gy
results from G by removing e together with its endpoints, whereas G results from G by removing

only e (without removing its endpoints).

Let G be an input bipartite graph and ey, ..., en, be an enumeration list of its edges. Consider
an NPTM M that, at its first step, determines whether there is a perfect matching in G. If the
answer is no, it halts. Otherwise, it generates a dummy path and starts a recursive computation
as follows. It checks whether there is a perfect matching containing the first edge appearing in

the enumeration list, namely e1, and whether there is one not containing ey .

o [f the answer is yes for both cases, M chooses nondeterministically to add ey to the perfect
matching or not and proceeds recursively with Gy and Gy, respectively. It also removes

from the enumeration list all edges removed from G.

e [f the answer is yes for exactly one case, M deterministically proceeds recursively with the
corresponding subgraph, i.e. either Go or G1, and it also removes from the enumeration
list all edges removed from G. In the case of G consisting of just two vertices u,v and the

edge e = (u,v), M halts.

Since M removes at least one edge at each step, the depth of the recursion is polynomial in
the size of G. Finally, notice that every sequence of nondeterministic choices corresponds to a

perfect matching and so the definition of TotP is satisfied; the number of perfect matchings of
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a
stop stop

Figure 1.1: NPTM M for which it holds that tot (G) = #BIPERFMATCH(G), where G is the binary encoding

of the bipartite graph G depicted on the top of the figure.

G equals the number of all paths minus one. The computation of M on input a bipartite graph

with seven edges is depicted in Figure 5.3.

Using similar arguments, we can prove the following proposition.

Proposition 1.3. The following problems belong to TotP.

(a) #DNF (counting satisfying assignments of a DNF formula),
(b) #2SAT (counting satisfying assignments of a 2SAT formula),

(¢) #HORNSAT (counting satisfying assignments of a CNF formula, every clause of which

contains at most one positive literal),

(d) #MONSAT (counting satisfying assignments of a CNF formula, every clause of which con-

tains only positive literals),
(e) #BIPERFMATCH (counting perfect matchings in a bipartite graph)
(f) #PERFMATCH (counting perfect matchings in a general graph),

(9) #1S (counting independent sets of any size in a graph).

Proposition 1.4. If a problem in TotP has a polynomial number of solutions then its solutions

can be enumerated in polynomial time.
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Proof. For every problem in TotP the computation tree of an NPTM can be constructed like in
Example 1.1. If the number of solutions is bounded by a polynomial in the input size, then this

construction is a polynomial-time enumeration of the problem’s solutions. O

Proposition 1.4 is also a corollary of [133, Lemma 4.10| which states that any self-reducible

relation with an easy existence version has a polynomial delay enumeration algorithm.

1.3.3 Characterization of TotP as a class of interval size functions

Interval size functions were introduced by Hemaspaandra et al. [$4]. The study of this kind
of functions started with the observation that most counting classes obscure factors like orders
on solution sets. Interestingly, counting classes can be characterized as classes of functions the
values of which are equal to the size of an interval defined by some order. For example, #P is

the class of interval size functions of P-decidable partial p-orders.

A binary relation over X* is a partial order if it is reflexive, antisymmetric, and transitive.
A partial order A is a total order if for any x,y € ¥*, it holds that (z,y) € A or (y,x) € A. We
say that an order A is P-decidable if A € P and that it is a p-order if there exists a bounding
polynomial p such that for all (z,y) € A it holds that |z| < p(Jy|). We denote by (x,y)a the
open interval (z,y)a = {z € ¥* | <4 z <4 y} and we also use [z,y]4, [z,y)a and (x,y]a
for the closed, right-open and left-open intervals respectively. For any interval I, we denote by

I1I|| = [{z € £* | z € I'}] the size of I.

Definition 1.14. A function f: ¥* — N s called an interval size function on an order A if

there exist boundary functions b,t : ¥* — ¥* such that for all x € ¥*, f(x) = ||(b(x),t(x))l|.

Proposition 1.5. For any function f, the following are equivalent:

1. fe#P.
2. there exist a partial p-order A € P and functions b,t € FP such that, for all x € X*,
f(@) = 1[(b(z), t(x))all.

3. there exist a total p-order A € P and functions b,t € FP such that, for all x € X*,
b(z) <at(z) and f(z) = [[(b(x),t(x))all.

For an order A we write x <4 y to abbreviate (x <4 y A =3z(z <4 z <4 y)). We say that
x is a predecessor of y, or y is a successor of x. If A, = {(z,y) | x <4 y} is in P, we say that A

has efficient adjacency checks.
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Definition 1.15. IFS is the class of interval size functions defined on P-definable partial orders

with efficient adjacency checks via polynomial-time computable boundary functions.

Proposition 1.6. IF; = #PE.

Bampas et al. [27] added various other feasibility constraints to interval size functions
defined on P-decidable p-orders. In particular, if we add a polynomial-time computable lexico-

graphically nearest function, then we obtain the class TotP.

Definition 1.16 ([27]). LN : ¥* x ¥* x ¥* — ¥* is the lexicographically nearest function for
A: LNy(z,y, z) is the string w € [x,y]a such that w is closest to z in the lexicographic order

(breaking ties arbitrarily). If [x,y]a is empty, then LN 4(x,y, 2) is undefined for any z.

Definition 1.17. IFEN is the class of interval size functions defined on some polynomial-time
decidable total p-order A via polynomial-time computable boundary functions where in addition

LN4 € FP.

Proposition 1.7 ([27]). IFEtN = TotP.

1.3.4 TotP is robust

The class TotP is also a robust class in the sense that it has natural complete problems (which
will be shown in Chapter 2) and it is closed under addition, multiplication, and subtraction by

one, as shown below. This notion of robustness was suggested by Arenas et al. [15].

Proposition 1.8. TotP s closed under addition, multiplication, and subtraction by one.

Proof. We are going to show that if f,g € TotP, then hy = f +¢g, ha = f-g, and h3 = f—1 also
belong to TotP. Specifically, hs : ¥* — N is defined by

Fla) =1, i f@) #0
fa), it f@) =0

h3(1‘) =

Let My, My be NPTM such that for every x € X, f(z) = toty, (z) = #(paths of My on
r) — 1 and g(z) = toty,(x) = #(paths of My on z) — 1. We are going to construct My, Ma,
and Msz such that h;(z) = totys, () = #(paths of M; on z) — 1, for ¢ € {1,2,3}.

e Subtraction by one: M3z on x simulates My on x with a few modifications as follows. If

My has only one path, then M3 does exactly what My does. If M; makes at least one
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nondeterministic choice, M3 copies the behavior of My, but while simulating the leftmost
path, before making a nondeterministic choice, it checks whether one of the choices leads
to a deterministic computation. The first time M3 detects such a choice, it eliminates
the path corresponding to the deterministic computation and continues the simulation
of My. Notice that M3 can recognize the leftmost path since computation paths can be
lexicographically ordered. In this case, M3 has one path less than My. In both cases, it
holds that hz(x) = tota, (x) = toty, (z)—1 = f(x)—1.

Addition: 1f one of the machines, let’s say My, has one computation path on input z,
then f(z) = 0. So, on input x, M; checks whether either My or M, has exactly one path
and if this the case, it simulates the other one, i.e. M, or My, respectively. Otherwise,
on input z, M simulates M3 and M, nondeterministically, i.e. in two different branches.
Since #(paths of M3 on z) = hz(z) + 1 = f(x) and #(paths of My on z) = g(z) + 1, we
have that #(paths of My on x) = #(paths of M3 on x) + #(paths of My on z) = f(x) +
g(x) 4+ 1. This implies that totas, (z) = f(z) + g(z) = hi(x).

Multiplication: If one of the machines, let’s say My, has one computation path on input
x, then f(x) = 0. So, on x, My checks whether at least one of My and M, has exactly
one path and if this is true, it generates one path and halts. Otherwise, consider the
function hy : * — N such that hy(z) = g(z)—1 for every x € X* and the NPTM M,
such that hy(z) = totpr, (x). On input z, My generates two branches. The first branch
is a dummy path. On the second branch, Ms simulates M3 and M, sequentially. So,
#(paths of My on ) = #(paths of M3 on x)-#(paths of My on z)+1 = f(z)-g(x)+1 =
ha(x). O

For the classes #P and #PE, the following facts are known.

Proposition 1.9. (a) ([121]). #P is not closed under subtraction by one unless SPP C NP.

(b) (I

|). #PE is not closed under subtraction by one unless P = NP.

1.3.5 Closure of TotP under different kinds of reductions

Below we prove a proposition about the closure of TotP under different kinds of reductions that

have been defined in Subsection 1.1.3.

Proposition 1.10. (a) TotP is closed under parsimonious reductions.

(b) TotP is closed under product reductions.
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(c) TotP is not closed under Turing reductions unless P = NP.

(d) TotP is not closed under approximation preserving reductions unless P = RP.

Proof. (a) This is true by Theorem 1.7(c).

(b) Let f € TotP and g <p f. Then for every z € ¥*, it holds that g(x) = f(h1(z)) - ha(z) for
some h1,hy € FP. The functions f o hy and ho are both in TotP. So, g € TotP, since TotP is
closed under multiplication.

(c) If TotP is closed under Turing reductions, then #SAT € TotP, since #SAT <}, PERMANENT
and PERMANENT € TotP. This would imply that P = NP.

(d) TotP contains problems that are approximable, such as #DNF. Every problem in FPRAS
can be trivially reduced to #DNF under aporoximation preserving reductions. So if TotP is
closed under approximation preserving reduction, then FPRAS C TotP, which in turn implies

that P = RP. The last implication is proven in Corollary 3.5 of Chapter 3. O

1.4 Descriptive complexity of #P

In the area of descriptive complexity, we are interested in determining the type of logic that is
needed to express the problems in a complexity class. In specific, to capture counting problems,
the following two approaches are relevant to our work [132, 15]. We include some notation,

facts, and theorems to introduce the reader to previous useful results.

A relational vocabulary o = {R{*, ..., R;*} is a finite set of relation symbols. Each relation

symbol R; has a positive integer a; as its designated arity.

Definition 1.18. A structure A = (A, Ry, ..., R;) over o consists of a set A, called the uni-
verse of A and relations R1,...,Rp of arities ay,..,ar on A, which are interpretations of the

corresponding relational symbols.

A finite ordered structure is a structure with a finite universe and an extra relation <, which

1s interpreted as a total order on the elements of the universe.

In what follows, we shall not make a notational difference between the relations R; and

their interpretations R; and denote both by R;.

For example, a graph is represented as a finite structure using the vocabulary og = E?
corresponding to the edge relation. A boolean formula ¢ in conjunctive normal form with at

most three literals per clause, called a 3CNF formula, can be encoded as a finite structure using
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the vocabulary oscnr = {C3, C3,C3,C3}, where C;(z1, 2, x3) iff =21 V...V —2; Vai 1 V... Vg

appears as a clause in ¢.

We consider that a counting function takes as input a finite ordered structure. The value
of the function on some input is the number of feasible solutions to the counting problem

corresponding to this function.

Given a relational vocabulary o, the set of First-Order logic formulas (FO formulas) over

o is given by the following grammar.

p=a=y | RT) | ~¢ | ¢Ve | Jzg | T

where x,y are first-order variables, R € o, 7 isa tuple of first-order variables, T represents a

tautology.

The logical symbols of Second-Order logic (SO) include all the logical symbols of FO and
also an infinite set of second-order variables, denoted by uppercase letters X,Y, Z,.... Each
second-order variable X has an arity, denoted by arity(X). The set of SO formulas over o is
given by:

¢:=ax=y | RT) | X(V) | "¢ | ove | Fwp | 3X¢ | T

where x,y are first-order variables, R € o, X is a second-order variable, ?,7 are tuples of

first-order variables, and T represents a tautology.

In addition, we are going to use the boolean connectives A, —, the quantifier ¥V, and the

symbol | that represents the negation of a tautology.

1.4.1 #P = #FO

Definition 1.19. Let o be a vocabulary containing the relation symbol <. Let f be a counting
function with structures A over o as instances. Let @ = (T1y ey Ty), Y =(Xy,..,X,),,rv>0,
and r +wv > 0, be sequences of first-order and second-order vartable symbols, respectively. We
say that f € #FO if there exists a first-order formula ¢(?, 7) with relation symbols from UUY

and free first-order variables from ?, such that,

FA) = (X, 2) | Al (@, X))}

Classes #M,, #%,, n > 0, are defined as in the above definition, when IT,, 3, formulas are

used, respectively, instead of arbitrary first-order formulas. For every n, ¥, (resp. Il,) formulas
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is the set of FO formulas of the form 371V Z9.. 37 n_ 1V », ¥ (resp. V23737, ) if n is
even, or 37 VT ..V 7y Y (resp. V2379 VT, ) if n is odd.

For example, the problem of counting satisfying assignments of a 3CNF formula is in #FO,
since
#3SAT(A) = [{(T) | A = Vo VaoVas (Co(zr, x2, x3) — T(x1) V T(22) V T(X3)A
Ci(x1, e, 23) — =T (1) VT (22) VT (X3)A
Co(x1, e, 23) — T (1) VT (22) VT(X3)A
Cs(x1, 22, 23) — =T (1) V T (22) V —T(X3))
where A is a structure over ozonp. In specific, #3SAT € #I1;.

The class #P coincides with #FO and in fact, with #[,. By considering #FO and its

subclasses, the following hierarchy is formed below #P.

Theorem 1.8 ([132]). (a) #P = #FO = #[y = #IN, = #X,, over finite ordered structures.
(b) #Xo0 = #Mo C #51 C #MM1 C #3¥p C #M2 = #P.

1.4.2  #P = YQSO(FO)

Given a vocabulary o, the set of Quantitative Second-Order logic (QSO) formulas over o are ob-
tained by also using quantitative quantifiers—addition quantifier 3 and multiplication quantifier

II—over first- and second-order variables. QSO formulas are defined as follows.

a:=9¢ | s | (at+a) | (¢ a) | Tr.a | Hzra | EXa | IX.« (1.1)

where ¢ is an SO formula over o, s € N, z is a first-order variable, and X is a second-order

variable.

Let A be a structure over a vocabulary o, v be a first-order assignment for A, and V be a
second-order assignment for A. Then the evaluation of a QSO formula « over (A, V, v) is defined
as a function [[«]] that on input (A, V,v) returns a number in N. The function [[«]] is recursively
defined in Table 1.3. A QSO formula « is said to be a sentence if it does not have any free vari-
able, that is every variable in « is under the scope of a usual or a quantitative quantifier. Notice
that if a is a QSO sentence over o, then for every structure A, first-order assignments vy, vo
for A and second-order assignments Vi, V5 for A, it holds that [[a]](A, v1, V1) = [[a]] (A, ve, V2).
Thus, in such a case we use the term [[a]](A) to denote [[@]](A,v, V) for some arbitrary first-

order assignment v and some arbitrary second-order assignment V for A.
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1, ifAEo
H¢H(~A7U7 V) = ):
0, otherwise
[[SH(.A,U, V) =S

[[041 + Oéz“(.A, v, V) = [[041]](./4, v, V) + HaQH(Av v, V)
[lo1 - aa]](A, 0, V) = [[aa]](A, v, V) - [[a2]](A, 0, V)

[Sa.a]l(4,0,V) =) [lall(Av[a/z], V)

a€A

[z.al](A,0,V) = ] [lal(A, vla/a], V)

a€A

[EXal(Av, V)= > [la]l(4 v, V[B/X])

BgAarity(X)

[MX.af](Av, V)= [ [adl(Av,V[B/X])

BgAarity(X)

Table 1.3: The semantics of QSO formulas.

For example, the problem of counting cliques in a graph G can be expressed as [[ciguel](G),

where aigue = XX VaVy(X(x) AN X(y) Nx #y) = E(x,y).

The syntax of QSO formulas is divided in two levels: the first level is composed by SO
formulas over o and the second level is made by quantitative operators of addition and multi-
plication. By parameterizing one or both of these levels, we define different sets of formulas and
different counting classes. We denote 3 QSO the fragment of QSO formulas where first- and
second-order products are not allowed. ZQSO(FO) is the set of QSO formulas obtained by
restricting ¢ in (1.1) to be an FO formula. In general, XQSO(L) formulas are QSO formulas
obtained by restricting ¢ in (1.1) to be in L.

Definition 1.20. We say that f € £QSO(FO) if there exists a XQSO(FO) formula o such
that [[a]](A) = f(A), for every ordered finite structure A over o.

Remark 1.5. XQSO(FO) denotes a set of logical formulas, whereas XQSO(FO) denotes a
class of functions. For every logic L, we can define a corresponding class of functions as above

and denote it by L.

Theorem 1.9 ([15]). #P = XQSO(FO) over finite ordered structures.
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Definition 1.21. (a) A formula o in XQSO(L) is in L-prenex normal form (L-PNF) if « is of
the form EY.E?.gb(?, 7), where Y and 7 are sequences of second- and first-order variables,
repsectively, and (;5(?, 7) s in L.

(b) A formula o in XQSO(L) is in L-sum normal form (L-SNF) if « is of the form Z o,

i=1

where each «; is in L-PNF.

Proposition 1.11. ([15, Proposition 5.1|). Ewvery formula in XQSO(L) can be written in
L-SNF.

Corollary 1.1. Every formula in #P can be written in FO-SNF.

1.5 A guided tour to this thesis

Many of the results presented in Chapters 2 and 3 are from Eleni Bakali’s PhD thesis [22].
However, they are presented here since they are tightly connected to further results and discus-
sion developed within these two chapters. They are also necessary to follow several results and

arguments presented later on in the context of this thesis.

Chapter 2 is about the first TotP-complete problems under parsimonious reductions. The
first natural TotP-complete problem, denoted by #TREE-MONOTONE-CIRCUIT-SAT, is the
problem of counting the number of satisfying assignments for a circuit that is monotone un-
der a specific partial order on the set of all assignments {0,1}". As a corollary, the problem of
counting the satisfying assignments for monotone circuits, where the monotonicity is defined by
a partial order which is part of the input, is hard with respect to both exact and approximate

computation.

Among others, a particularly interesting problem, which is called S1ZE-OF-SUBTREE, turns
out to be TotP-complete. It was first introduced by Knuth [105] as the problem of estimating the
size of a backtracking tree, that is the tree produced by a backtracking procedure. Although this
problem has been studied under various perspectives (see Section 2.3 for the related references),
its worst case complexity had remained open. This was partially due to the fact that, unlike
most problems in counting complexity, it does not relate to logical formulas or to common
graph theory problems, and cannot even be expressed as a constraint satisfaction problem.
TotP-completeness of SIZE-OF-SUBTREE under parsimonious reductions settled its complexity

status.

Combining TotP-completeness of SI1ZE-OF-SUBTREE with an algorithm of Knuth [105] for
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the problem, it can be shown that any problem in TotP admits a polynomial-time randomized
approximation algorithm the error of which depends on the imbalance of the Turing machine’s
computation tree that corresponds to the problem. We also provide exponential-time hardness
results for the problem SIZE-OF-SUBTREE under variants of the exponential-time hypothesis
(ETH) which were first presented in [13]. In particular, we show that under #ETH there is
no deterministic algorithm that solves SIZE-OF-SUBTREE in subexponential time and under
the randomized version of ETH, rETH, there is no randomized algorithm that approximates

S1ZE-OF-SUBTREE within a (1 £+ i)—multiplicative factor in subexponential time.

Finally, we discuss TotP-completeness of a satisfiability problem, denoted by # CLUSTERED-
MONOTONE-SAT. An instance of #CLUSTERED-MONOTONE-SAT exhibits interesting proper-
ties that allow navigation among its solutions and enumeration of them with only a polynomial
delay from a solution to the next one. Since this problem is AP-interreducible with #SAT, ap-
proximating #SAT in polynomial time is equivalent to approximating it on instances for which
efficient navigation among solutions is possible. This supplements the current knowledge re-
garding the hardness of #SAT, where the scattering of solutions of a typical CNF formula and
the consequent lack of navigability between them is, often provably, considered as the reason
of failure of many algorithms for the problem. Thus any further research regarding the un-
conditional (im)possibility of approximating #SAT can be restricted to instances for which an

efficient algorithm for navigation between solutions exists.

In Chapter 3 the relationship between the class TotP and FPRAS is examined. Most
problems proven so far to admit an fpras belong to TotP, so a reasonable question is whether
FPRAS C TotP. Of course, problems in FPRAS have a decision version in BPP, so if P # BPP
this is probably not the case. Therefore, a more realistic goal is to determine assumptions under
which the conjecture FPRAS C TotP might be true. The world can be considered as depicted

in Figure 1.2, where #BPP denotes the class of problems in #P with a decision version in BPP.

This picture was refined in [22] by proving that (a) #P
FPRAS ¢ TotP unless P = RP, which means that proving #BTPP
FPRAS C TotP would be at least as hard as proving P = RP /
and (b) TotP ¢ FPRAS if and only if RP % NP. This #TPE
not only indicates that there are problems in TotP which do TotP «—— FPRAS

not admit an fpras, it also shows that TotP versus FPRAS Figure 1.2: Relation of FPRAS to

is essentially an equivalent formulation of the RP versus NP cqunting classes below #P.

problem.
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Furthermore, FPRAS lies between two classes that can be seen as counting versions of RP
and BPP. Moreover, the class FPRAS’ defined here as the subclass of FPRAS with zero error
probability when the function value is zero, lies between two classes, namely #RP; and #RPs,

which can both be seen as counting versions of RP.

Both #RP; and #RP, seem to be interesting since they contain some natural counting
problems the decision versions of which are in RP, but have not been shown to lie in P. However,
the two classes do not coincide unless RP = NP. It was shown in [22] that #RP; C FPRAS which
implies that #NONZEROSFORPIT and #COMPOSITENESSWITNESSES, two counting problems

defined here, have an fpras.

Chapters 2 and 3 also contain Notes Sections—Sections 2.6 and 3.4, respectively—in which

we outline where the relevant results were first presented.

In Chapter 4 we introduce classes defined by properties of functions that count the total
number of computation paths. They can be seen as tot-counterparts of classes defined via
functions that count the number of accepting paths or via gap functions [66]. At first, we were
interested in the class that gives information about the least significant bit of a TotP function,
namely PiotP. According to Toda’s astonishing result, &P, PP, and #P are, in a sense, at least
as expressive as the polynomial hierarchy. This also holds for the class TotP, since PTotP = P#P,
Here we explore the power of the tot-definable class ®otP, which turns out to be exactly equal to
the class @P. In an analogous manner, we define the classes GapiotP, UtotP, FewiotP, Modyot P,
SPotP, WPotP, CootP, and PyotP. We compare them with their analogs, definable by either
#P or GapP functions. We show that each one of them coincides with its counterpart (definable
by either a #P or a GapP function), except for UyotP and Fewyo P, which are both equal to the

class P.

Moreover, building upon a result by Curticapean [52] that C_P has a complete problem
definable by the TotP function #PERFMATCH, we show that WPP and PP have also complete
problems definable by #PERFMATCH. This, together with [52], can be seen as an alternative
proof of the fact that the classes C_o:P, WPt P, and PyotP coincide with C_P, WPP, and PP,

respectively.

Finally, we examine the complexity of the promise problem DIFFPERFMATCH—,, which is
essentially the problem of determining whether the number of perfect matchings of two graphs is
either zero or equal to a given value. This problem is WPP-complete and also SPP-hard. First,

we give a lower bound for this problem under the randomized exponential-time hypothesis
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(rETH). Second, due to the hardness of DIFFPERFMATCH_, for SPP, a positive result for
#PERFMATCH would have consequences for any problem in SPP. A seminal problem in the
class is GRAPHISOMORPHISM [106, 17, 19], a well-known intermediate NP problem, the exact

complexity of which is still a major open question in computational complexity.

In Chapter 5 we focus on logical characterizations of robust subclasses of TotP. We build
upon previous work in descriptive complexity of counting problems [132, 15]. Arenas et al. [17]
raised the question of defining classes in terms of descriptive complexity that capture either
TotP or robust subclasses of TotP, as one of the most important open questions in the area.
A robust class of counting problems needs either to have a natural complete problem or to be
closed under addition, multiplication, and subtraction by one [15]. In specific, TotP satisfies
both the above properties. Note that #P and #PE are not closed under subtraction by one

(under assumptions about NP) [121, 123].

In particular, we define two subclasses of TotP, namely ¥XQSO(X2-2SAT) and #[1>-1VAR,
via logical characterizations; we show robustness of both classes by providing natural complete
problems for them. Namely, we prove that the problem #DI1SJ2SAT of computing the number
of satisfying assignments to disjunctions of 2SAT formulas is complete for ¥XQSO(X,-2SAT)
under parsimonious reductions. This reveals that problems hard for ¥XQSO(X2-2SAT) under
parsimonious reductions cannot admit an fpras unless RP = NP. We also prove that #MONSAT
is complete for #[1>-1VAR under product reductions. Our result is the first completeness result
for #MONSAT under reductions stronger than Turing. Notably, the complexity of #MONSAT
has been investigated in |34, 27] and it is still open whether it is complete for TotP, or for a
subclass of TotP under reductions for which the class is downwards closed. Although, #[1,-1VAR
is not known to be downwards closed under product reductions, our result is a step towards
understanding the exact complexity of #MONSAT. This first part of Chapter 5 was presented

in |24].

In the second and last part of Chapter 5 we define the logic R¥XQsog and prove that it
captures TotP. Arenas et al. defined recursion on the quantitative level. They extended QSO
with function symbols over first-order variables and defined a notion of least fixed point over
functions, which allows counting. Analogously to the decision classes FO(LFP) and FO(TC) that
capture P and NL, respectively, they defined two classes, namely RQFO(FO) and TQFO(FO),
that capture FP and #L, respectively [15]. They also mentioned that if a specific operator
defined using recursion, namely the path operator, included free second order variables, it would

probably give alternative ways to capture FPSPACE, or even #P.
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Here we introduce function symbols defined on second order variables and a polynomially
bounded partial fixed point operator over functions along the lines of [I12]. We believe that
this is of independent interest and could help to capture superclasses of #P. Then, we pose

restrictions to our language, since the resulting logic is more expressive than needed.

In Chapter 6 we examine two problems that belong to #RPs, i.e. the class of problems in
#P that have a decision version in RP. Both these problems, namely #EXACT MATCHINGS
and #BLUE-RED MATCHINGS, are generalizations of counting perfect matchings in a graph. To
start with, we focus on #EXACT MATCHINGS, the problem of counting perfect matchings with
exactly k red edges in a graph that has both black and red edges. We give a hardness result for

the problem with respect to parameterized complexity: #EXACT MATCHINGS is #W[1]-hard.

Computing #EXACT MATCHINGS in K3 3-free graphs has already been resolved by Mul-
muley et al. who described an NC algorithm for it [119]. We show that #EXACT MATCHINGS
can also be computed in polynomial time when it is restricted to K5-free graphs. Then we turn
our attention to #EXACT MATCHINGS in bipartite graphs. We have not concluded yet whether

this problem has an fpras or it is inapproximable.

Motivated by a technique developed recently by Anari et al. [6], which was used to show that
counting k-matchings in planar graphs has an fpras, we study matching polynomials generated
by different matching problems: counting perfect matchings / all matchings / k-matchings /
exact matchings. The technique of [(] connects the mixing time of a Markov chain defined on
the set of matchings with the zero-free region of the generating polynomial of the problem. So
we are interested in regions of the complex plane in which polynomials related to #EXACT

MATCHINGS have no roots.

We consider this last chapter a starting point for dealing with the complexity of #EXACT

MATCHINGS in bipartite graphs.

Every chapter includes a Discussion of results Section. Chapter 7 contains open questions.

1.6 Notes

A survey on classes of counting problems the decision version of which is easy—either in the class
P or in RP—can be found in [23], which contains an overview of the work on such classes under
different viewpoints: Turing machine based definitions, decsriptive complexity, approximability

of them, their characterizations as classes of interval size functions, and so on.
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Chapter 2

TotP-complete problems

Many counting problems are known to be #P-complete under Turing reductions. The seminal
result of Valiant [119] states that computing the permanent of a matrix with entries in {0, 1},
which is equivalent to counting perfect matchings in bipartite graphs, is such a problem. Since
then, many other problems that are hard for #P under Turing reductions have been determined.
Especially, many dichotomy theorems for several counting classes have been proven [50, 10, 11,

|. A dichotomy theorem for a class of counting problems states necessary and sufficient

conditions under which a problem is either in FP or #P-hard under Turing reductions.

As we already mentioned, TotP and #P are equivalent under Turing reductions. Among the
known #P-hard problems under Turing reductions, the ones that belong to TotP, are also TotP-
complete under this kind of reductions. Some examples are #DNF 2 MONSAT, #BIPERF-
MATCH (or PERMANENT), #IS, and #2SAT. In fact, under Turing reductions, #P is even
equivalent to SpanL, a subclass of TotP defined in [9], every problem of which admits an
fpras [11]. These observations support the fact that Turing reductions blur structural differ-

ences between counting classes [103].

On the contrary, parsimonious reductions can distinguish counting complexity classes inside
#P. For one reason, by preserving the number of solutions, they also preserve the existence
of a solution. Second, by being AP reductions, they also preserve approximability of counting
problems; if a class with approximable problems was proven to be parsimonious-equivalent with
#P, then all the problems in #P would be approximable, which in turn would imply RP = NP
(see Theorem 3.1). Third, classes with a Turing machine-based definition, like #P and TotP,

are closed under parsimonious reductions.

The above properties and observations justify the urge to study completeness under par-
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simonious reductions. A first problem that is complete for TotP under such reductions is, of

course, the generic one:

Definition 2.1. (The generic TotP-complete problem) fyen.

Input: (M, z,1%), where M is a (binary) TM, x € {0,1}*, and t € N.

Output: fgen(M,x,1%) :=(the total number of computation paths of M on input x, of length at
most t) - 1.

In this chapter we discuss the first natural—in the sense that no Turing machine is provided
as input to their instances— TotP-complete problems under parsimonious reductions. The fol-
lowing results can be found in [25, 13| and in Eleni Bakali’s PhD thesis [22]. We have included

a Notes Section (Section 2.6) which describes in detail where each result first appeared.

2.1 The problem #TREE-MONOTONE-CIRCUIT-SAT

The first problem that was shown to be TotP-complete under parsimonious reductions is # TREE-
MONOTONE-CIRCUIT-SAT. We provide the definitions of the tree partial order and the problem
#TREE-MONOTONE-CIRCUIT-SAT and the proofs of its TotP-hardness and its membership to

TotP. The result can then be extended to monotone circuits with respect to other partial orders.

A tree is called (a) binary if every vertex has at most two children, (b) full binary if every
vertex has either zero or two children, (¢) complete binary if every level of it, except possibly
the last one, is completely filled and all vertices in the last level are as far left as possible, (d)
perfect binary if it is full binary and complete, i.e. all interior vertices have two children and all

leaves have the same depth.

Definition 2.2. We define the tree partial order, denoted by <tree, on N as the reflexive,

transitive, and antisymmetric binary relation, such that if y = 2z + 1 or y = 2x + 2 then

T <tree Y-

The tree partial order can be represented graphically on the plane by drawing a node for
each natural number and connecting the node of a number with the nodes of its immediate
successors. The resulting graph is the tree depicted in Figure 2.1 (note that labeling of the
edges in this figure is not related to the partial order defined above), denoted by Ty. The
root of the tree is labeled with 0, its children are labeled with 1 and 2, and so on. Note that

T <gree y if and only if y is some descendant of x on Ty. So, by enumerating the nodes of the
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Figure 2.1: The infinite perfect binary tree Ti.

infinite binary tree by the left to right ‘breadth first search’ (BFS) enumeration, we obtain a

representation of the tree partial order.

Let drpy, (u,v) denote the length of the path connecting u and v in Tyy. We keep Tiy in mind

in order to define some useful mappings.

Definition 2.3. The following functions are defined :

1. path : N — {0,1}*. It maps n to the binary string that describes the path that starts
from the root of Ty and ends at the vertex with label n. For example, path(3) = 00,

path(9) = 010, path(0) = ¢, where € is the empty string.
2. num : {0,1}* — N. [t is is defined as the inverse mapping of path.

3. bing : {0,1,...,2F —1} = {0,1}*. It maps a vertex n € {0,1,...,2F — 1} of Ty to its
binary representation padded with leading zeroes, so as to have length k. For example,

bing(3) = 000011, biny(9) = 1001, and bin3(9) is not defined.

In addition, bink_1 is the inverse of biny. For simplicity, we slightly abuse notation and use
bin and bin~!, when the length of the binary representation is clear from the context. For a
vertex u of Ty, path(u) is the concatenation of labels of edges connecting 0 with u as shown in

Figure 2.1.

The functions path, num, biny, and bink_1 are polynomial-time computable. This can be

seen clearly by their equivalent definitions below.

Proposition 2.1. (a) Let, for a binary string s, number(s) be its value in N.
num(s) = number(1;s) — 1,

where ; denotes string concatenation.

(b) The function path can be computed recursively:
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e path(0) =¢
e path(k) = path ([g] - 1) ; parity(k)

- 1 i k even , ,
where parity (k) = and ; denotes string concatenation.
0 ,ifk odd

Definition 2.4. If we restrict <ree on {0,1,...,2¥ — 1} and apply bin,, we obtain a partial
order on {0, 1}’“, which, abusing notation, we also denote by <iree-

Ty, denotes the binary tree representing <iree on {0, 1}F.

For example the complete binary tree T3 depicted

000
VRN
1 1
Now the problem #TREE-MONOTONE-CIRCUIT- })0\ 9 0\
011 100 101 110
\
111

in Figure 2.2 represents the order <. on {0,1}3.

SAT can be defined as follows.

Let C,, denote a Boolean circuit (see [10, p. 107]
for a formal definition) with n input gates and let C,,(z) ~ Figure 2.2: The complete binary tree Ts.

be the output of C), on input z € {0,1}".

Definition 2.5. We call a Boolean circuit C,, non-increasing with respect to <ipee if for every

z,y € {0,1}", & <tree y implies that Cp(x) > Cp(y).

Definition 2.6. #TREE-MONOTONE-CIRCUIT-SAT, abbreviated to #TMC.

Input: A Boolean circuit C,, non-increasing with respect to <¢ree.

Output: #TMC(C,) := [{y € {0,1}" : C,(y) = 1}|, i.e. the number of satisfying assignments
for C,.

2.1.1 TotP-hardness of #TREE-MONOTONE-CIRCUIT-SAT

As we discussed in Remark 1.4, for any NPTM M and input x, we have that
totp () = #(all paths of M on input ) — 1 = #(branchings of Ty (,))

where T(,) denoted the binary computation tree of M.

The sequence of nondeterministic choices of a computation of M can be represented as a
binary string y (a left branching corresponds to ‘0’ and a right branching to ‘1’). When we write

M (z,y) we refer to the output of the Turing machine M on input = and nondeterministic choices
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y. Specifically, M(x,y) = 1 if M accepts x with nondeterministic choices y and M(z,y) = 0

otherwise.

#TMC was shown to be TotP-hard by reducing the computation of any function A € TotP
to #TMC. The key idea is the following. By definition, there is an NPTM M such that for
any input x, h(z) = totpy(x). Let Ty (,) denote the corresponding computation tree. Consider
extending Ty to a perfect binary tree Sj(;) with the same height, so that all leaves of
the original Ty(,) tree and all their descendants are labeled as ‘halting’. Therefore h(x) =

#(branching vertices of T)(,)) = #(non-‘halting’ vertices of Sy(y)).

Given an h € TotP and an input x, we can construct a circuit C, non-increasing with
respect to <tree, such that the number of accepting inputs of C' equals h(z). To do that, we
use a bijection between inputs of C' and paths from the root to vertices of Sys(,). C accepts
an input if and only if the corresponding path ends at a non-‘halting’ vertex of Sy(,), which in

turn corresponds to a branching vertex of T (y).

Theorem 2.1. For any h € TotP, it holds that h <pbus #TMC.

Proof. Let h € TotP, and let M be the corresponding NPTM with computation binary tree
Thi(z)- Recall that for every input x, h(z) = toty(z) = #(branchings of Th;(;)). Let p be a

polynomial bounding the running time of M, thus the height of T, is at most p(|z|).

We construct an NPTM M’ such that for every instance x of h:
(i) Tap(e) is a perfect binary tree of height p(|z[) + 1.
(ii) #(accepting paths of M'(z)) = #(branchings of Tyy(,))-
(iil) For y1,yo € {0, 1}PU=DHLif 4 <ipoe o, then M (z,y1) > M’ (z,12).
In order to describe M’ we make use of the functions path and bin defined in Definition 2.3.
The operation of M’ on input x proceeds as follows:
1. Guess a binary string y of length p(|z|) + 1. Let n, = bin~!(y).
2. Compute z = path(n,).
3. Simulate M on input x and nondeterministic choices z.

e If the simulation reaches a halting state of M (possibly using only a prefix of z), then

output 0.
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o [f the simulation uses all bits of z without reaching a halting state of M, output 1.
We show that the aforementioned properties (i), (ii), and (iii) hold.

(i) The computation tree of M’ is a perfect binary tree of height p(|x|) 4+ 1, since the only

nondeterministic choices are made in Step 1 (Step 3 is deterministic).

(ii) The number of accepting paths of M’ equals the number of branchings of M, since M’
outputs 1 if and only if z corresponds to a computation path of M ending at a branching;

recall that bin and path are bijective.

(iii) To prove the third property, it suffices to show that for all y;,ys such that y; <iree Y2 if
M'(z,y1) = 0 then M'(z,y2) = 0. If y; <tree y2, then z; = path(bin~1(y1)) is a prefix of
2 = path(bin"!(y2)). This means that whenever M’ simulates M with nondeterministic
choices determined by zo, it first passes through the same states as when it simulates
M with nondeterministic choices determined by z1. So, M'(z,y1) = 0 means that the
simulation of M reaches a halting state using (some of) the bits of z;. Thus the remaining

bits of zy are ignored and 0 is returned, therefore M'(z,y2) = 0.

In order to complete the proof, we have to construct for each input x of h a circuit C}

with n = p(|z|) + 1 input gates, that simulates the computation of M’ on input z, i.e. for all
ye {Ov 1}71’ Cg(y) = M/(xvy)'
It is well known that a construction of a circuit that simulates a Turing machine can be

done in polynomial time (see e.g. [124, pp. 171-172|) and the size of the circuit is quadratic to

the running time of the Turing machine.

C? is non-increasing w.r.t. <4 since M’ has this property (due to (iii)). Thus, we have
that [{y € {0,1}" : CZ(y) = 1}| = Faccepyr(x) = totpy(x), ie. #TMC(CE) = h(x) so the

reduction is parsimonious. O

2.1.2 Membership of #TREE-MONOTONE-CIRCUIT-SAT in TotP

To show that # TREE-MONOTONE-CIRCUIT-SAT belongs to TotP, an NPTM can be constructed
such that for every non-increasing circuit w.r.t. <y, the number of branchings of its compu-

tation tree is equal to the satisfying assignments of the circuit.

Theorem 2.2. #TMC € TotP.
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Proof. We are going to construct an NPTM M such that for every monotone circuit Cp:
#TMC(Cy) = #(branchings of T (c,))-

Since C,, is non-increasing with respect to <¢-ce, M can be constructed as follows.

1. M starts with checking whether the assignment corresponding to 0 is unsatisfying, so
it first checks whether C,(0") = 0. If this is the case, it halts. Otherwise, M chooses
nondeterministically one of the successors of 0" with respect to <jyee, i.e. either 0711 cor-
responding to the natural number 1 or 0”210 corresponding to 2 and proceeds recursively

with this one.

2. If M reaches an assignment y € {0, 1}" which corresponds to a leaf of T},, then in the case
of C,(y) = 0, M again halts. Otherwise, it makes a nondeterministic choice between two

different computation paths. At each path, M just halts without doing anything else.

Note that the depth of the computation of M is polynomial in n and every binary branching of

its computation tree corresponds to a satisfying assignment of C,,. O

Note that #TMC is a promise problem, since it is not known how to check efficiently
whether a circuit is non-increasing w.r.t. <;.... To resolve this issue, we can simply extend the
function #TMC on non-valid inputs, i.e. circuits that are not monotone w.r.t. <.ce, to be equal
to totpr(x), where M is the NPTM which emerges from the membership of #TMC in TotP (on

valid inputs).

2.1.3 Extension to monotone circuits with respect to other partial orders

The particular choice of the functions path and num, and the directly related partial order <tce,
is not the only possible one to yield a TotP-complete problem. It suffices to encode strings of
bounded but possibly different length, corresponding to paths of the NPTM of a TotP function,
as strings of equal length, corresponding to inputs to the final circuit. That is, we need a family
of bijections { E} }ren, where Ej, : Uf;ol{o, 1} U {0*} — {0,1}*. Each such encoding implies a

partial order <} on {0, 1}* for every k.

Fix such a family {Ex }ren and let #A be the problem of counting the number of accepting
inputs of a circuit monotone w.r.t. <y . where m corresponds to the number of input gates of

the circuit. #A can be proven to be TotP-complete by modifying the proofs of this section,

provided that { Ej }ren has the following properties.
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e To show that #A is TotP-hard we need E,,! to be easily computable, so that the reduction
takes polynomial time. The reduction is parsimonious since FE,, is bijective. For example,

simple padding would be a simpler solution, but inadequate, since it is not 1-1.

e To show that #A is in TotP, it must be easy to find the minimum element in {0,1}™
with respect to <¥ | i.e. to calculate E,,(e), where € is the empty string. Furthermore, for
every x € {0,1}™, it must be easy to compute the set of its immediate successors w.r.t.
<* . We note that if £ is easily computable, then these properties become equivalent

to E,, being easily computable.

In conclusion, the proofs given above work if we choose an encoding that is an easily com-
putable and easily invertible bijection. Although an encoding which is simple and natural was
chosen (in the sense that it does not involve elaborate error correcting codes e.t.c., it is just a
BFS enumeration in binary representation), we stress that for every encoding with the afore-
mentioned properties, such as the binary representation of the depth-first-search enumeration,

the corresponding problem is also TotP-complete.

This fact serves as a starting point for someone who needs to prove TotP-completeness for
some other family of circuits (e.g. for monotone circuits under the standard notion of monotonic-
ity). To that end it would not be necessary to design a reduction from scratch. It would suffice
to design a—probably elaborate—encoding of the nodes of a tree (such as an error correcting

code) with the aforementioned desired properties.

2.1.4 The case of the partial order being part of the input

In mathematics a monotone function is a function between two ordered sets that preserves
or reverses the order of its domain. A circuit, as a function from {0,1}" to {0,1}, can be
or not be monotone if we equip {0,1}" with some partial order. For example, in computer
science literature (|16, Chapter 14.3]), the standard notion of a monotone circuit is defined with
respect to the partial order induced by the edges of the boolean hypercube: a y € {0,1}" is
an immediate successor of z € {0,1}" if y is obtained by flipping a bit of z from 0 to 1 and a
circuit is monotone with respect to this partial order if its output does not decrease when we

change the value of an input gate from 0 to 1.

We saw that for some specific partial orders, counting satisfying assignments to the corre-
sponding monotone circuits is TotP-hard. This has an immediate consequence on the hardness

of an analog of #TMC, where a partial order is given as part of the input.
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Corollary 2.1. On input a natural number n € N, a partial order p on {0,1}", and a circuit
C with n input gates, which is monotone with respect to p, the problem of counting the number

of satisfying assignments of C is #P-complete under both Turing and AP reductions.

Proof. Since #TREE-MONOTONE-CIRCUIT-SAT is TotP-complete under parsimonious reduc-
tions, it is also #P-complete under Turing and AP reductions. Then, the result is obtained by

generalization. O

Note that for an arbitrary partial order, the problem might not belong to TotP, but it is

easy to see that it always belongs to #P, hence the conclusion.

Beware that the above corollary does not imply that the problem is hard for each specific
partial order, since the partial order is considered as part of the input. Theoretically speaking
there may exist some partial orders for which the corresponding problem admits either an exact

efficient algorithm, or an fpras.

2.2 Problems related to partially ordered sets

In this section, we are interested in problems of computing the size of a subset of a partially

ordered set satisfying some additional properties.

An upper-set of a partially ordered set (U, <) is a subset of U which is upwards closed.
An uper-set of (U, <) is called principal if it is the smallest upper set containing a particular

element of U. Lower sets are defined similarly as downwards closed subsets of U.

Computing the size of the maximum lower set of ({0,1}", <;cc), all elements of which are
accepted by a given circuit C),, is TotP-complete under parsimonious reductions. This implies
that computing the size of the maximum lower set of an arbitrary given partially ordered set,
all elements of which share an arbitrary given property P, is TotP-hard under parsimonious
reductions. It also implies that computing the size of a principal upper set is TotP-hard under

parsimonious reductions, thus also #P-hard under both Turing and AP reductions.

Definition 2.7. Let (U, <) be a partially ordered set.
(a) A subset V- C U is called a lower set if for ally,x € U, (yeV andx <y) =z € V.
(b) A subset VC U is called an upper set if for ally,x € U, (y €V andxz >y) =z € V.

(¢) The smallest upper (resp. lower) set containing x € U is called principal and it is denoted
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by T x (resp. | x).

Definition 2.8. Let C,, be a circuit with n input gates. We will call a subset V' of {0,1}"
Cp-accepting if for all z € V, Cp(x) = 1.

Definition 2.9. MAX-LOWER-SET-SIZE.
Input: A circuit C,, with n input gates.

Output: The size of the maximum C,,-accepting lower set w.r.t. <tree.

Theorem 2.3. The problem MAX-LOWER-SET-SIZE is TotP-complete under parsimonious re-

ductions.

Since every boolean circuit can be considered to compute a property, i.e. a predicate P :

{0,1}" — {0,1}, where P(x) = 1 iff z has the property P, we get the following corollary.

Corollary 2.2. Let (U, <) be a partially ordered set and P a property (equivalently a predicate
P:U — {0,1}). The problem of computing the size of the mazimum lower set of U, all elements

of which share property P, is TotP-hard.

Corollary 2.3. Let (U, <) be a partially ordered set and an element x € U. The problem of
computing the size of the principal upper set T x is TotP-hard.

Proof. Take an instance C,, for MAX-LOWER-SET-S1ZE. We set U = {0,1}", x = 0™, and we
construct a partial order <, on {0,1}" such that T 0™ equals to the maximum Cj,-accepting

lower set w.r.t. <ipee -

We define <, to be the reflexive, transitive, and antisymmetric binary relation such that

r<pyiff [(y=220+1ory=2x+2)and Cp(x) = Cp(y)].

The result is immediate if we compare the above partial order with the tree partial order
in Definition 2.2; observe that we get <, if we break every chain of subsequent elements in

({0,1}", <yree) at the points where & <;ree y and Cp(z) # Cp(y). O

2.3 The problem SIZE-OF-SUBTREE

The problem SIZE-OF-SUBTREE was initially introduced by Knuth as the problem of estimating
the size of a backtracking procedure’s tree [105]. There is a number of papers that study
this problem from many perspectives and algorithms which succeed in many special cases and

practical instances. Knuth provided a probabilistic algorithm practically useful, but with an
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exponential error in the worst case. Modifications and extensions of Knuth’s algorithm have
been presented and experimentally tested in [130, 47, |. However, they exhibit no significant
improvement on worst case instances. There are also many heuristics and experimental results
for the problem restricted to special backtracking algorithms, or special instances to them,
see e.g. |30] and references therein. Surprisingly there exist fpras for random models of the
problem [71, 147]. Also quantum algorithms for the problem have been studied [10]. Stockmeyer
provided unconditional lower bounds for the problem under a model of computation which is
not equivalent to the Turing machine, namely a variant of the (non-uniform) decision tree
model [110]. Stockmeyer’s result implies (unconditionally) that a family of algorithms based on

a certain type of sampling methods cannot yield an fpras for the problem.

SIZE-OF-SUBTREE is the estimation of the size of a tree given in succinct representation. We
consider the input tree S to be a subtree of the complete binary tree T}, of height k, containing

the root of T}, or some other given vertex of Tj.

By succinct representation, we mean that the description of the tree is not polynomial to its
size, but rather to its height. For example, a truth table Ag : V(1) — {0, 1} that implements
the indicator function of S, where Ag(u) = 1 if and only if vertex u of T} belongs to S, could also
be an instance to the above problem. But it would not be interesting since the size of that tree
could be trivially computed in linear time with respect to the size of the input. The interesting
cases are those where the indicator function Ag is implemented succinctly, e.g. by a circuit of
size polynomial to the number of input gates, i.e. polynomial in |u| where u is a vertex of T.
Another example of such a succinct representation is by giving as input a backtracking procedure
that generates this tree. The latter case was in fact the origin of this problem [105]. The related
complexity theory question is whether we can estimate the size of such a tree without traversing

it exhaustively.

Clearly, the circuit that emerges from our main reduction in Theorem 2.1 constitutes a
succinct representation of the tree containing the branching vertices of the computation tree of
any problem in TotP on any input. So it turns out that the problem is TotP-complete under
parsimonious reductions. This resolves its worst case complexity, since it implies that it is

#P-complete under both Turing and AP reductions.

Definition 2.10. SIZE-OF-SUBTREE, abbreviated to fqs.
Input: A polynomially computable predicate A : Ty, — {0,1} and a vertex u of Ty,.

Output: The size of the maximum subtree S C A~(1) with root u.
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Figure 2.3: An instance of SIZE-OF-SUBTREE. It holds that v = 000, k = 3, predicate A takes the value 1 on

the gray vertices, and the output of the problem is equal to 5.

Note that height k£ can be implied by |u|. Equivalently, the number k could be given as

part of the input. An instance of SIZE-OF-SUBTREE is given in Figure 2.3.

Theorem 2.4. f.; is TotP-complete.

Proof. (a) TotP-hardness: Let g € TotP and let 2 be some input for g. We will map z to
an input for fs. Since g € TotP, there exists an NPTM M, that runs in time ¢(n) for some
polynomial g, s.t. #(branchings of Ty (,)) = g(z). We construct a deterministic polynomial-
time TM M., s.t. My, (y) = 1 iff the nondeterministic string y represents a computation
path of M, on input z that stops at a branching. The input to fs is 2 = (MémofI(lw\)). So
fss(z) = #(branchings of Ty (,)) = g(z). The details of the reduction are inherited from the
proof of Theorem 2.1, thus omitted.

(b) TotP-membership: fqs has an easy decision because for every input y = (A, u), fss(y) =
0 iff A(u) = 0.

Also fss is self-reducible. Let vy, vo be the children of w. It holds that if A(u) = 1, then
fss(Aa U) = fss(Avvl) + fss(Aa U2) + 17
otherwise fss(A,u) = 0.

The reduction terminates after at most n = |u| steps and the size of the sub-instances is
polynomially related to the size of the initial instance, so the conditions of self-reducibility are

satisfied. O
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2.3.1 Hard instances of SIZE-OF-SUBTREE

As was already mentioned, SIZE-OF-SUBTREE is easy for many practical instances and for some
random models of it. On the other hand there are instances for which SIZE-OF-SUBTREE is

hard to approximate; in other words, it cannot be efficiently approximated unless RP = NP.

Definition 2.11. Let ny,na,n € N be such that ny +ng = n. We call (ny, ng)-tree a binary tree
of height at most n that consists of a perfect binary tree of height ny, from at most one leaf of

which hangs another perfect binary tree of height no.

Theorem 2.5. The problem S1ZE-OF-SUBTREE restricted to (n/2,n/2)-trees, cannot be approzx-

imated in polynomial time within a multiplicative factor (1 £ i), unless RP = NP.

Proof. We show that SIZE-OF-SUBTREE on (n/2,n/2)-trees is inapproximable by reducing
USAT—the satisfiability problem restricted to formulas that have at most one satisfying assignment—

to it.

Consider the standard NPTM M for SAT: the respective computation tree on input ¢
is a perfect binary tree of height n. Each leaf corresponds to a truth assignment to the n
variables and to the output ‘1’ if and only if the assignment is satisfying for ¢. We define
another NPTM M’ that simulates M and halts whenever M returns ‘0’, else M’ makes another

set of n nondeterministic choices and halts.

Unsatisfiable formulas correspond to a perfect binary tree of height n (case 1), while for-
mulas with one satisfying assignment correspond to a tree of height 2n consisting of a perfect
binary tree of height n from one leaf of which hangs another perfect binary tree of height n

(case 2).

If we could approximate the size of any (n/2,n/2)-tree, for any n, within a multiplicative
factor (1 £ %), then we could distinguish between cases 1 and 2, and thus we could distinguish
between satisfiable and unsatisfiable formulas of USAT. By the Valiant-Vazirani Theorem [151],

which probabilistically reduces SAT to USAT, we get the conclusion. O

2.3.2 On the exponential-time complexity of SIZE-OF-SUBTREE

TotP-completeness of SIZE-OF-SUBTREE implies exponential-time hardness results for the prob-
lem. The lower bounds shown below are relative to variants of the exponential-time hypothesis

(ETH) [29], which states that 3SAT—the satifiability problem on 3CNF formulas—cannot be
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solved in subexponential time. In particular, the variants we need here are the randomized
version TETH, introduced in [15], and the counting version #ETH introduced in [56]. Let n
denote the number of variables of the input formula. The three aforementioned variants of the

exponential time hypothesis are as stated below.

ETH: There is no deterministic algorithm that can decide 3SAT in time exp(o(n)).

rETH: There is no randomized algorithm that can decide 3SAT in time exp(o(n)), with error

probability at most 1/3.

#ETH: There is no deterministic algorithm that can compute exactly #SAT in time exp(o(n)).

Note that the hypothesis rETH is stronger than ETH, which in turn is stronger than #ETH,
in the sense that TtETH = ETH = #ETH. The weaker an assumption is, the stronger a hardness

result is. On the other hand, stronger assumptions sometimes yield tighter lower bounds.

For S1ZE-OF-SUBTREE let N be the height of the perfect binary tree, subtree of which is

the input tree.

Theorem 2.6.

(a) Under rETH there is no randomized algorithm that computes SIZE-OF-SUBTREE exactly in

time exp(o(N)).

(b) Under #ETH there is no deterministic algorithm that computes SIZE-OF-SUBTREE ezactly

in time exp(o(N/log N)).

(¢c) Under rETH there is no randomized algorithm that approzimates S1ZE-OF-SUBTREE within

(1 & 1)-multiplicative factor in time exp(o(N)).

Proof. (a) Under rETH there is no randomized algorithm that computes #2SAT exactly in time

exp(o(m)), where m is the number of clauses of the imput formula ¢ [50].

Consider the following NPTM M for #2SAT. First keep a list [ that indicates whether
variable i has been considered. At the beginning set [(v) < ‘not considered’, for every variable

v. Halt if all variables are set to ‘considered’.

Begin with the first clause. If the first variable v} of that clause is not yet considered, check
if ¢ is satisfiable with v1 set either to true or false. If both hold, choose nondeterministically to

set v% to one of these two values. Else, set it to the unique satisfying value, or halt if neither
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holds. Then set I(v]) < ‘considered’ and set ¢ + (¢ with v{ fixed to the chosen value). Proceed
with the second variable of the first clause, if it is not considered so far (and the computation
has not halted yet). Repeat the same procedure for the rest of the clauses, until a halting state

is reached.

M yields a computation tree that branches at most twice for each clause, thus it has height
at most 2m. Add a dummy path to M (on instances with at least one solution) and the

original definition of TotP is satisfied; the number of branchings of M’s computation tree equals
#2SAT ().

If S1ZE-OF-SUBTREE could be computed by a randomized algorithm in time exp(o(V)),

then by the above reduction the same would hold for #2SAT, which contradicts rETH.

(b) Under #ETH there is no deterministic algorithm that computes the PERMANENT ex-
actly in time exp(o(m/logn)), where n is the size of the input matrix A,x,, and m is the
number of non-zero elements in Ay, x, [50]. Equivalently, there is no such algorithm for the
exact computation of #BIPERFMATCH on input a bipartite graph with n vertices in each side

and m edges.

Consider the NPTM M for #BIPERFMATCH of Example 1.1. M has a computation tree

that branches at most once for each edge, thus it has height at most m.

W.l.o.g. we assume that n < m, otherwise a perfect matching trivially does not exist. Thus
if S1ZE-OF-SUBTREE could be computed in time exp(o(N/log N)), then by the above reduction

#PERFMATCH could be computed in time exp(o(m/logn)), which contradicts #ETH.

(c¢) Under rETH there is no randomized algorithm that decides 3USAT, i.e. the satisfiability
problem restricted to 3CNF formulas that have at most one satisfying assignment, in time

exp(o(n)), where n is the number of variables of the input formula |15].

Using the reduction of Theorem 2.5 a formula with n variables is reducible to a tree of
height 2n. Thus, similarly to the proof of Theorem 2.5, if we could probabilistically approxi-
mate SIZE-OF-SUBTREE within (1 & })-multiplicative factor in time exp(o(INV)), we could also

probabilistically decide 3USAT in time exp(o(n)), which contradicts rETH. O

In Theorem 2.6, although (c) implies (a), the proof of (a) shows also that a subexponential

solution to SIZE-OF-SUBTREE yields a subexponential solution to #2SAT, which is not implied
by (c).

A more recent result by Curticapean [54] implies a tighter lower bound for SIZE-OF-
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SUBTREE under #ETH, than the one of Theorem 2.6(b).

Theorem 2.7. Under #ETH there is no deterministic algorithm that computes SIZE-OF-SUBTREE

exactly in time exp(o(N)).

Proof. Under #ETH there is no deterministic algorithm that computes #BIPERFMATCH ex-

actly in time exp(o(n)) on graphs with n vertices and O(n) edges |51].

Consider the NPTM M for #BIPERFMATCH of Example 1.1 of height O(n) as in the above
proof. If S1ZE-OF-SUBTREE could be computed in time exp(o(XN)), then #BIPERFMATCH could

be computed in time exp(o(n)), which contradicts #ETH. O

In fact by similar fine-grained reductions between S1ZE-OF-SUBTREE and other problems

in TotP, we can obtain the following results.

Theorem 2.8. If SIZE-OF-SUBTREE can be probabilistically computed in time exp(o(N)), then
PERMANENT, #IS, and #2SAT can be probabilistically computed in time exp(o(m)), where m
1s the number of non-zero entries of the input matriz, the number of edges of the input graph,

and the number of clauses of the input formula, respectively.

Proof. The proof is analogous to those of Theorem 2.6(a) and (b). O

2.3.3 Implications on the approximability of TotP
A negative result

First, the following negative result about TotP is a corollary of Theorem 2.6(c).

Corollary 2.4. Under rETH, TotP ¢ FPRAS.

Proof. By Theorem 2.6(c), under rETH there is no subexponential randomized algorithm that
approximates SIZE-OF-SUBTREE within (1 4 %)—multiplieative approximation factor. So, under

rETH there is no fpras for SIZE-OF-SUBTREE. Ul

A positive result

Second, we obtain a simple efficient randomized algorithm for TotP, which is an algorithm

described by Knuth in [105].
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It is known that for every problem in #P there is a trivial polynomial-time randomized
approximation algorithm, such that the expected value of its output equals the exact number
of solutions, but its error is exponential in the worst case (|77, chapter 6.2.2]). For any function
in #P with corresponding NPTM M, this algorithm chooses a polynomial-size sample of com-
putation paths of M uniformly at random and outputs the number of accepting paths in the

sample over the size of the sample, multiplied by the number of all paths.

For the problem SI1ZE-OF-SUBTREE there is another algorithm due to Knuth [105], no better
in worst case. However, we have some additional information in the case of an exponential error.
Given an input tree, the variance of this algorithm depends on the level of imbalance of the
tree. A tree is considered to be perfectly balanced if all its vertices of the same depth have the
same degree. In fact, the algorithm works for any finite tree, not necessarily binary. It chooses
a random path of the tree, counts the number of vertices and children of the vertices along this
path, and estimates the size of the tree to be equal to the size of the perfectly balanced tree

that contains such a path.

The following theorem is a consequence of Theorem 2 of [105] and the TotP-completeness

of SIZE-OF-SUBTREE.

Theorem 2.9. For any f € TotP and every input x, there is a polynomial-time randomized
approximation algorithm that the expected value of its output equals f(x). The variance of the
output of this algorithm is given by

Var(D) = 3 g (1Sl ~15)?

vES

where S is the computation tree of the NPTM corresponding to f, m is the depth of vertex v in
S, df, 0 <1< m—1, is the number of children of the ith vertex in the path from the root to
v, and Sy,, © = 1,2, is the subtree of S rooted at the ith child of v, denoted v;. If vertex v has

either 0 or 1 child, then its contribution to the above sum is 0.

Proof. The result comes from applying equation (13) of [105] and by simplifying terms. We
used the facts that the probability of v to be encountered is 1/(dgdy . ..d",_;) and that the tree

m—1

S is binary, so every vertex has either 0,1 or 2 children. O

Note that the variance of the above algorithm depends on the amount of imbalance in S.
For example, if S was perfectly balanced, then the variance would be 0. On the other hand, if
S consisted of the root, a single path of height n — 1 on the left, and a full complete binary tree

of height n — 1 on the right, then the variance would be exponentially large.
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2.4 The problem #CLUSTERED-MONOTONE-SAT

When #TREE-MONOTONE-CIRCUIT-SAT is reduced to #SAT, the resulting formula has some
interesting properties, that unlike an instance of #SAT in general, allow us to navigate among
solutions and enumerate them one by one with only a polynomial delay from one solution to an-
other. The problem of counting satisfying assignments of such formulas is called #CLUSTERED-
MONOTONE-SAT and it is a TotP-complete problem under parsimonious reductions. As a result,

#SAT is AP-interreducible with # CLUSTERED-MONOTONE-SAT.

This means that approximating the number of satisfying assignments of any CNNF formula
reduces to approximating the number of satisfying assignments of a formula for which navigation
between solutions is feasible and conversely. So, regarding the approximability of #SAT, it
suffices to either give an fpras for # CLUSTERED-MONOTONE-SAT, or to prove unconditional
inapproximability that holds for clustered-monotone formulas as well (and, in fact, that holds
even when an algorithm for finding or counting solutions of certain prefix, or for navigating
between solutions, is provided along with the input formula). Moreover, the already known
conditional hardness of #SAT extends to the case of #CLUSTERED-MONOTONE-SAT as well.

Both these problems do not admit an fpras unless RP = NP (see Theorem 3.1).

This is also relevant to the fact that approximate counting for self-reducible problems is
equivalent to uniform sampling from the set of solutions and sampling is usually accomplished by
Markov chains on the set of solutions, for which navigability is an essential property [92]. From
the study of random SAT certain phase transition phenomena have been discovered [0, , |
and rigorously proven |[I, 2]. Specifically when we consider typical random CNF formulas of
density a (where a = (#clauses)/(#variables)), as we increase the density, we observe the
following phenomena. First of all, the number of solutions gradually decreases. Secondly, there
is a critical value a; such that a random formula is satisfiable with high probability for a < a;
and unsatisfiable for a > a1 |10, , 2]. There is also another critical value ay such that for
a > ag the solution space of a typical formula shutters to a large number of clusters of fixed
variables [109, 1], so that (a) it is hard to find even one solution to the formula and (b) given

any cluster of solutions it is hard to find a different one.

Those results indicate which the hard instances of SAT are. It has also been proven that
this shuttering phenomenon is the reason of failure of the already known algorithms for SAT
(and #SAT) that are based on Markov chains, because this shuttering translates to ergodicity

breaking [1], since the state space of the corresponding Markov chains is not connected. TotP-
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completeness of #CLUSTERED-MONOTONE-SAT implies that #SAT remains hard even when

navigation among solutions is possible, i.e. when ergodicity holds.

Definition 2.12. 1. For a 3CNF formula ¢ and k € N we define f(]g : {0,1}* = N such
that ff;(a) = #(satisfying assignments of ¢ with prefir a) for a € {0,1}*.

2. A 3CNF formula ¢ with n variables is called k-clustered-monotone for some k < n, if for

every a,b € {0,1}* such that a <iree b, f(’;(a) = 0 implies ff;(b) =0.

Definition 2.13. #CLUSTERED-MONOTONE-SAT, abbreviated to #CMS.

Input: y = (¢, k, M), where ¢ is k-clustered monotone and M is the description of a function
such that M € FP and M (a, ¢) = f(l;(a)

Output: #CMS(y) := #(satisfying assingnments of ¢).

Theorem 2.10. #CMS is TotP-complete.

Proof. (a) TotP-hardness. We reduce #TMC to #CMS.

Let Cy be a Boolean circuit, non-increasing w.r.t. <;..., which has k input gates, one output

gate, and m more (inner) gates. We will map Cj to an input y of #CMS.

In the well known reduction of CIRCUIT-SAT to 3SAT that can be found at [16, p. 111],
a formula ¢ on n = k 4+ m + 1 variables is constructed, so that each variable corresponds to a

gate of C and
#(satisfying assignments for ¢) = #(satisfying assignments for C).

We can construct ¢ in such a way that its first k£ variables x1,...,x; correspond to the k input
gates of Cy. For every z;, i € k+1,...,n, we construct (at most four) clauses that force x; to

be set to the same value as the output of the corresponding gate of Cy on input (x1,...,zx).

We next describe an algorithm which given a formula ¢ constructed in the above way and
an assignment a € {0,1}* to the first k variables of ¢, decides whether there is any satisfying
assignment of ¢ with a as prefix. If such an assignment exists then it will be unique since each
one of the variables zpy1,...,2g1me1 Will have to be equal to the output of the corresponding

gate of C on input a. Thus this algorithm computes f(’; in polynomial time.

The algorithm essentially simulates the original circuit Cj. It begins knowing the assigned
values of x1, ...,z and it computes the values corresponding to the output and the inner gates
of C. While there are variables which have not been assigned a truth value yet, it loops through

them. If such a variable x; corresponds to a gate g; of Cy that its inputs correspond to variables
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that have already been assigned some value by the algorithm, then the output of g; is assigned
to x;. It is guaranteed by the construction of ¢ that such a variable x; always exists. Finally,
when values have been assigned to all variables, the algorithm outputs whether ¢ is satisfied
by that assignment. If an arbitrary formula ¢ that does not correspond to a circuit is given as
input to the algorithm, the algorithm will always terminate and output either FALSE or TRUE.

For an exact description see Algorithm 1.

Algorithm 1

procedure A((ay,...,ax),d) > ¢ has n variables
fori«+ 1, k do > The first k variables of ¢ correspond
T a; > to the input gates of Cj

end for
fori+ k+1,ndo > The rest of the variables correspond
x; < UNDEFINED > to the rest of the gates of Cy

end for
count + k > #(variables of ¢ we have computed so far)

while count < n do
prevcount <— count
for each i € {k+1,...,n} and each clause ¢ that occurs in ¢ do
if x; = UNDEFINED and (x; appears exactly once in ¢) and
(no variable set to UNDEFINED appears in ¢ except for x;) and
(the disjunction of literals of ¢ that do not contain z; is FALSE ) then
if ¢ contains the literal x; then
x; < TRUE
else
z; < FALSE
end if
count < count + 1
end if
end for

if count = prevcount then

return FALSE > ¢ has not been constructed by our reduction
end if
end while
return ¢(x1,...,x,)

end procedure

The running time of Algorithm 1 is polynomial in the size of the input. Let M be the
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description of a TM that implements this algorithm. We map Cj, to the input y = (¢, k, M) for
#CMS.

(b) TotP-membership: Let y = (¢, k, A) be an input to #CMS. We describe an NPTM
with #CMS(y) + 1 leaves, thus showing that the problem lies in TotP.

The description of the NPTM is as follows. If A(0¥,¢) = 0 then HALT, else choose non-
deterministically one of the following: 1. HALT, 2. EXPLORE(0F).

The nondeterministic process EXPLORE(a) for a € {0, 1}* is defined as follows:

1. Let S be the set of children of a with respect to <. For every b € S, simulate A(b, ¢).
Let S’ ={be S| A(b,¢) > 0}. Let p=|5’| € {0,1,2}.

2. Make a branching with A(a, ¢) + p branches. For each one of the first A(a, ¢) branches,
HALT. Each one of the rest corresponds to some b € S’. Run EXPLORE(b) for the

corresponding b. O

Since any TotP-complete problem under parsimonious reductions is also #P-complete un-
der AP reductions, we have the following corollary, with all its implications mentioned in the

beginning of this section.

Corollary 2.5. #SAT is AP-interreducible with #CLUSTERED-MONOTONE-SAT.

This can be generalized to the following. #SAT is AP-interreducible with the problem of
counting satisfying assignments of a CNF formula for which an algorithm that allows efficient
navigation between satisfying assignments exists. By efficient we mean that (a) it is easy to find
one solution and (b) the graph that connects two solutions whenever the navigation algorithm
can go from the one to the other in polynomial time, is strongly connected and of polynomial

width.

2.5 Discussion of results

First and foremost, determining the first TotP-complete problems under parsimonious reduc-
tions gave some representative problems of TotP, namely the problems #TREE-MONOTONE-
CIRCUIT-SAT, MAX-LOWER-SET-SIZE, SIZE-OF-SUBTREE, and # CLUSTERED-MONOTONE-

SAT.
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The TotP-complete problem SIZE-OF-SUBTREE can express a well-known computational
problem, first introduced by Knuth and studied for years by researchers as discussed in Sec-
tion 2.3. This result has two bright sides. First, the complexity of this well-studied problem
was refined. Second, a simple efficient randomized algorithm was obtained for all problems in
TotP. Last but not least, the reductions from several (not only counting) problems to SIZE-OF-
SUBTREE established exponential-time lower bounds results for this problem in Subsection 2.3.2.
One of there results states that under the randomized ETH, there is no subexponential ran-
domized algorithm that approximates SIZE-OF-SUBTREE within (1 4+ %)-multiplicative factor.
We can also infer the following weaker result from the previous statement: If there is no subex-
ponential randomized algorithm for SAT, then TotP & FPRAS, which is also weaker than the
result of Corollary 3.1 (shown later on, in Chapter 3): If NP # RP, then TotP Z FPRAS.

Also as discussed in Section 2.4, TotP-completeness of a special case of #SAT, namely
#CLUSTERED-MONOTONE-SAT, has as a result that #SAT =xp #CLUSTERED-MONOTONE-SAT.
Other special cases of #SAT, namely #2SAT and #MONSAT, are known to be AP-interreducible
with #SAT as well. But AP-interreducibility of #SAT to #CLUSTERED-MONOTONE-SAT has
its own value, since it implies that designing an fpras for the problem of counting the number
of satisfying assignments of an arbitrary CINF formula reduces to designing such an algorithm
for the same problem on a CNF formula for which navigation between solutions is feasible
and conversely. Thus, regarding the approximability of #SAT, it suffices to either give an
fpras for #CLUSTERED-MONOTONE-SAT or prove unconditional inapproximability that holds

for clustered-monotone formulas as well.

2.6 Notes

The first TotP-complete problems under parsimonious reductions were first presented in [27]
and in Eleni Bakali’s PhD thesis [22]. An extended version of these results was recently pub-

lished [13].

Most results of this chapter were presented in [22]. The results of Subsections 2.1.4 and 2.3.2
first appeared in [13]. Theorem 2.7, which states a stronger lower bound for SIZE-OF-SUBTREE

under #ETH (compared to Theorem 2.6(b)), was first proven here, in Subsection 2.3.2.

For algorithmic results on TotP-complete problems we refer the reader to [20] and [21],
where an additive approximation algorithm for TotP problems and Markov chains for sampling

among solutions to TotP-complete problems are given and discussed, respectively.
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Chapter 3

Relationship between TotP and the class of

approximable counting problems

The subject of this chapter is related to the following meta-question: If we can distinguish
efficiently between f(x) = 0 and f(x) # 0, can we also achieve an efficient approximation of
f(x)? And what about the converse: does an efficient approximation of a counting function

imply that we can decide efficiently whether the function is non-zero?

As discussed in Chapter 1, if the counting version of an NP-complete decision problem has
an fpras, then RP = NP [59]. In Proposition 1.2 was shown that a problem that admits an fpras,
has a decision version in BPP. Remarkably, most approximable problems have a decision version
in P and are also self-reducible, so they belong to TotP. Hence, a first worthwhile question to
answer is whether FPRAS C TotP holds. This is answered by Corollary 3.5. For the converse
inclusion TotP C FPRAS, we know that TotP contains problems that are inapproximable unless
RP = NP, such as #IS [57]. Corollary 3.1 states that TotP C FPRAS is in fact, equivalent to
RP = NP.

Most of this chapter’s results were shown in Eleni Bakali’s PhD thesis [22]. Our presentation
follows [24]. In the Discussion of results and Notes Sections of the current chapter—Sections 3.3

and 3.4, respectively—we refer the reader to the works where these results were first presented.

3.1 On #P versus FPRAS

We start with the relationship between #P and FPRAS, the class of approximable #P problems
(see Definition 1.6). A corollary of Stockmeyer’s Theorem (Theorem 1.3) is that RP = NP
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implies the existence of an fpras for every function in #P. Inversely, if any function in #P
has an fpras, then NP C BPP, which in turn implies that RP = NP. These observations are

summarized in the following theorem.

Theorem 3.1. #P C FPRAS if and only if RP = NP.

Proof. If #P C FPRAS, then NP C BPP by Proposition 1.2 and so SAT € BPP. Since SAT is self-
reducible, if it can be solved by a probabilistic Turing machine with bounded probability error,
then it can be solved by a probabilistic Turing machine with no false positives, by computing a

satisfying assignment |12, problem 11.5.18|.

Assume that RP = NP holds. By Theorem 1.3, for any function f € #P, there exists a
polynomial-time (in |z| and in 1/¢) algorithm which, using a 5 oracle, approximates f within
ratio (14 ¢). Since RP = NP is true, it holds that ¥5 = RPRP C BPP [157]. Finally it is not
hard to verify that the aforementioned deterministic polynomial-time algorithm with access to

a BPP oracle, can be replaced by an fpras, that simulates the oracle calls itself. O

Remark 3.1. Note that the second part of the proof of Theorem 3.1 can be obtained using the
Valiant—Vazirani bisection technique (Theorem 1.2) instead of Stockmeyer’s Theorem. Using
a similar proof, Dyer et al. showed that #IS is AP-interreducible to #SAT even when it is

restricted to graphs with mazimum degree 25 [50, Theorem 4.

3.2 On TotP versus FPRAS

First, note that TotP contains almost all counting problems known to have an fpras, such as
#DNF [98], #BIPERFMATCH [93], and #NFA [11]. However it also contains problems that are
inapproximable unless RP = NP. For example, #MONSAT |1 1] and #IS [59] belong to TotP. Of
course, it includes all problems that are AP-interreducible with #BIS, the problem of counting
independent sets in bipartite graphs, which we believe that they form an intermediate class with

respect to approximability, i.e. neither they have an fpras nor they are AP-interreducible with
#SAT [59].

So it comes natural that an analog of Theorem 3.1 holds for TotP as well. To state the

theorem, we first define an ancillary class, namely the class FPRAS'.

Definition 3.1. f € FPRAS' if f € FPRAS and there exists an fpras for f, as defined in

Definition 1.5, which also outputs f(x) = 0 with probability 1 in the case of f(x) = 0.
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Proposition 3.1. If f € FPRAS/, then Ly € RP.

Proof. By Proposition 1.2 there is a BPP algorithm for L;. By the definition of FPRAS' and
the fact that f € FPRAS', the BPP algorithm for L; can be modified so it has a zero error in

the case of ‘no’ instances. So Ly € RP. O

3.2.1 (Non)inclusion of TotP in FPRAS

The following result is, in part, a corollary of Theorem 3.1. It also states that if an fpras exists
for a TotP problem, then it can be modified so that, for every x € ¥*, such that f(z) = 0, it

outputs the correct value with probability 1.

Corollary 3.1. TotP C FPRAS if and only if TotP C FPRAS' if and only if RP = NP.

Proof. The proof of RP = NP = TotP C FPRAS is completely analogous to that of RP =
NP = #P C FPRAS (see Theorem 3.1).

If TotP C FPRAS, then #IS has an fpras, which implies that RP = NP [57].

Now we prove that TotP C FPRAS iff TotP C FPRAS'. Suppose that TotP C FPRAS and
let f € TotP. Then f € FPRAS. We can modify the fpras for f so that it outputs f/(;) = 0 with
probability 1 if f(z) = 0. We can do this since f(z) = 0 can be determined in polynomial time.

So, f € FPRAS'. The other direction is trivial, since FPRAS’ C FPRAS. O

Corollary 3.2. #P C FPRAS if and only if TotP C FPRAS.

Proof. By Proposition 3.1 and Corollary 3.1. O

3.2.2 Classes of counting problems the decision version of which is in RP

The classes introduced in this subsection, which contain counting problems the decision version
of which is in RP, were used in the study of the opposite inclusion, i.e. whether FPRAS is a
subset of TotP.

If for a problem in #P, the corresponding counting machine has an RP behavior, i.e. either
the majority of the paths are accepting or all paths are rejecting, then the decision version of
the problem is in RP. The first class considered below, namely #RP1, contains such problems.
However, this seems to be a quite restrictive requirement. Therefore, a second class, which is

called #RP, is defined next.
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Definition 3.2. Let M be an NPTM in normal form. We denote by pas the polynomial, such
that on any input © € ¥*, M makes pys(|x|) nondeterministic choices.
MR = {M | M is an NPTM in normal form and for all x € X* either accpyr(z) = 0 or

aCCM(x) > % . 2pM(|x|)}

Definition 3.3. #RPy = {f € #P | there ezists an M € MR such that for all x € ¥*,
f(z) = acen(x)}

Definition 3.4. #RP, = {f € #P | L; € RP}.

Note that #RP1, although restrictive, contains a counting version of one of the most rep-

resentative problems in RP, for which no deterministic efficient algorithms are known.

Consider the polynomial identity testing problem, denoted by PIT: Given a polynomial
p(x1, ..., z,) over some field F, decide whether p is not identically zero. ! This algebraic prob-
lem captures many interesting and natural computational problems, such as testing equality of
two bitstrings in a distributed setting and bipartite perfect matching. Determining the com-
putational complexity of polynomial identity testing is considered one of the most important
open problems in the mathematical field of Algebraic Computing Complexity. A probabilistic

solution to it is based on the following lemma.

Lemma 3.1 (Schwartz—Zippel Lemma). Let p(x1,...,x,) be a polynomial of degree d over a
field F. Assume that p is not identically zero. Let S C T be any finite set. Then, if we pick

Y1, - Yn independently and uniformly from S,

d

P v p) =0 < —.
T[p(yl’ » Y ) 0] = |S|

Assume that d < |F|. A well-known randomized polynomial time algorithm for PIT, picks
Y1, ..., Yn, uniformly and independently from F (if IF is infinite, from a suitably large finite subset
of F). If p(y1, ..., yn) # 0, the algorithm announces that p is not identically zero. In this case, the
algorithm never makes an error. Otherwise, if p(y1, ..., yn) = 0, the algorithm announces that p
is identically zero. In this case the Schwartz—Zippel lemma guarantees that the probability of
error is at most d/|F| < 1. So, PIT € RP. Interestingly, if PIT has a deterministic polynomial
time algorithm then we would obtain new circuit lower bounds for the class NEXP [95], which

would be a remarkable consequence in complexity theory.

In the literature, polynomial identity testing is the problem of deciding whether two polynomials are identical
or, equivalently, whether a polynomial is identically zero. Here we define PIT to be the equivalent problem of

deciding whether a polynomial is not identical zero.
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We define here a counting version of PIT. For a field F, we denote by F34; a set of 3d

elements of F, which can be chosen deterministically by a Turing machine.

Definition 3.5. #NONZEROSFORPIT.
Input: A polynomial p(x1,...,x,) of degree d over a field F, such that |F| > 3d.
Output: The number of points (yi,...,yn) € F%, for which p(yi,..,yn) # 0.

Another problem in #RP is the problem of counting the number of compositeness witnesses
as defined by the Miller-Rabin primality test, on input an integer n > 2: n is written as 2°-d+1,
where s,d € NT and d is odd. An integer 0 < a < n is called a witness for the compositeness of
n if (a) or (b) holds: (a) a® ! # 1 (mod n),

(b) a® ' =1 (mod n) is true and both the following congruence relations hold:

a?# 1 (mod n) and a®" ¢ # —1 (mod n), for all 0 < r < s.

Definition 3.6. #COMPOSITENESS WITNESSES.
Input: An integer n > 2.

Output: The number of integers a € Z}, that are witnesses for the compositeness of n.

A prime number has no such witnesses, whereas for a composite number n, at least half
of the integers in Z; are Miller-Rabin witnesses. Hence there exists an NPTM M € MR that
has as many accepting paths as the number of witnesses. Note that in this case the decision
problem is in P: given a natural number n, it can be decided whether it is a prime number in

deterministic polynomial time by the AKS algorithm |[3].

#RP5 contains natural counting problems as well. For example, two problems in #RP5 are
#EXACT MATCHINGS and #BLUE-RED MATCHINGS, which are counting versions of EXACT

MATCHING [125] and BLUE-RED MATCHING [120], respectively.

Definition 3.7. #EXACT MATCHINGS.
Input: A graph G = (V, E), a subset E' C E and an integer k.

Output: The number of perfect matchings of G that contain ezactly k edges in E’.

Definition 3.8. #BLUE-RED MATCHINGS.
Input: A graph G = (V, Ereq U Epjye) and two integers w and B.
Output: The number of matchings of size at least B with at most w edges in Eppe (blue edges)

and at most w edges in Fy,.q (red edges).

Both EXACT MATCHING and BLUE-RED MATCHING belong to RP (in fact in RNC) as

shown in [119, |, respectively; however, it has remained open so far whether they can be solved
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in deterministic polynomial time. Therefore, it is also open whether #EXACT MATCHINGS and

#BLUE-RED MATCHINGS belong to TotP.

Proposition 3.2. (a) #NONZEROSFORPIT and #COMPOSITENESS WITNESSES belong to #RP1.

(b) #EXACT MATCHINGS and #BLUE-RED MATCHINGS belong to #RPs.

3.2.3 Unconditional inclusions

P # RP # NP P=RP # NP
#P
0 #P #P ~_
4BPP 1 #BPP 1 #BPP
/N T T
#RPy FPRAS #RPy —FPRAS | #PE=#RP>-FPRAS
T >~ 1 I N/ 1 T > 1
#PE FPRAS’ #IPE FPRTAS/ TotP —|FPRTAS/
TCIIP #IlPl TotP — #RP; #RP,
N/ N /
FP FP FP

Figure 3.1: Unconditional in- Figure 3.2: Conditional inclusions. The following notation is used:

A — B denotes A C B, A 4 B denotes A € B, and A — B denotes
ACB.

clusions.

This subsection is about unconditional inclusions among the aforementioned classes. Sub-
section 3.2.4 explores possible inclusions under either the condition P # RP % NP or P = RP #
NP.

The results are summarized in Figures 3.1 and 3.2.

Theorem 3.2. (a) FP C #RP; C #RPy C #P.
(b) TotP C #PE C #RPs.

Proof. (a) Let f € FP. We will show that f € #RP; by constructing an NPTM M € MR
such that on input z, accys(x) = f(x). On input x € ¥*, M computes f(x) and then it
computes i € N such that f(z) € (2¢71,2!]. M makes i nondeterministic choices by, ba, ..., b;.
Each sequence b = (b1, ..., b;) € {0,1}% determines a path. In particular, 0 is the first path and
b= 1% is the 2i-th path. M returns yes on every path that is between the first and the f(z)-th

path. So accys = f(z) and since f(x) > 2-1, M € MR.

The other inclusions of both (a) and (b) are immediate from the definitions of the classes. [
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For the class #RP; we have a guarantee that the number of accepting paths is polynomial
with respect to the total number of paths. In fact, their ratio is bounded by a constant. In
these cases there is an fpras for approximating the number of accepting paths using the Monte
Carlo method. The following lemma is the heart of the Monte Carlo method.

Lemma 3.2 (Unbiased estimator). Let A C B be two finite sets and let p = %. Assume we

take m samples from B uniformly at random and let a be the number of them that belong to A.

a

Then p = = is an unbiased estimator of p and if m = poly(p~t,e72,1og(67 1)), then we have
that

Pri(l—e)p<p<(1+e)p|=1-04

Theorem 3.3. #RP; C FPRAS' C #RP,.

Proof. For the first inclusion, let f € #RP;. Then there exists an My € MR such that

for all z, accy,(z) = f(x). Let g(|z[) be the number of nondeterministic choices of My and

p = 2{:((‘?‘) For any ¢ > 0 and 0 < < 1, we can compute an estimate p of p, by choosing

m = poly(p~t,e71,1og(671)) paths uniformly at random. Then we compute ﬂ;) = p-2u(z]),
By Lemma 3.2 we have that

—

Pr[(1 - €)f(2) < f(z) < (L+)f(2)] 21— 6.

If f(x) # 0, then p > %, so m = poly(e~!,log(6~!)) and so we obtain an fpras for f. If f(x) =0

then f(z) =0, hence f € FPRAS'.
The second inclusion is a straightforward corollary of Proposition 3.1. O
Corollary 3.3. #RP; C FPRAS' C FPRAS C #BPP.

Theorems 3.2 and 3.3 together with Theorem 1.7 are summarized in Figure 3.1.

Corollary 3.4. #NONZEROSFORPIT and #COMPOSITENESSWITNESSES belong to FPRAS.

Proof. Tt is immediate from Proposition 3.2 and Theorem 3.3. OJ

3.2.4 Conditional inclusions (possible worlds) and consequences of

FPRAS C TotP

Further relationships between the aforementioned classes can be determined with respect to P
versus RP versus NP, so that two possible worlds inside #P emerge. All relationships proven

below are demonstrated in Figure 3.2.
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Corollary 3.5. If FPRAS C TotP then P = RP.

Proof. If FPRAS C TotP, then #RP; C TotP and then for all f € #RPy, Ly € P. Soif A € RP
via M € MR then #accyr € #RP1 and thus A = Lygee,, € P. Thus P = RP. O

Corollary 3.6. If #RP; = #RPy then RP = NP.

Proof. By Theorem 3.3, if #RP; = #RP3, then both are equal to FPRAS’. This would imply
that TotP C FPRAS' C FPRAS, since TotP C #RPs by Theorem 3.2(b). Therefore, RP = NP
by Corollary 3.1. O

Theorem 3.4. The inclusions depicted in Figure 3.2 hold under the corresponding assumptions

on top of each subfigure.

Proof. First note that intersections between any of the aforementioned classes are non-empty,

because FP is a subclass of all of them. For the rest of the inclusions, we have the following.

e In the case of P = RP # NP.

— By definitions, #P C #RPy < RP = NP. Therefore, RP # NP = #P & #RP,.

— By Theorem 1.7, the inclusions FP C TotP C #PE C #P are proper unless P = NP.
Therefore, P # NP = FP C TotP C #PE C #P.

— By Corollary 3.1, TotP C FPRAS = RP = NP. Therefore, RP # NP = TotP ¢
FPRAS.

— By Corollary 3.1, TotP C FPRAS’ = RP = NP. Therefore, RP # NP = TotP ¢
FPRAS'.

— By Corollary 3.1 and Theorem 3.3, #RPs C FPRAS = TotP C FPRAS = RP = NP.
Therefore, RP # NP = #RPy Z FPRAS.

— By Theorem 3.3 and Corollary 3.1, #RPs C FPRAS’ = TotP C FPRAS’' = RP = NP.
Therefore, RP # NP = #RPy ¢ FPRAS'.

— By Corollary 3.6, #RPs = #RP; = RP = NP. Therefore, RP # NP = #RPy ¢
#RP;.

— By Theorem 3.1, #P C FPRAS < RP = NP. Therefore, RP £ NP = #P Z FPRAS.

— By Theorem 1.7 and Corollary 3.1, #PE C FPRAS = TotP C FPRAS = RP = NP.
Therefore, RP # NP = #PE Z FPRAS.
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— By Theorem 3.3 and the previous result, #PE C #RP; = #PE C FPRAS = RP =
NP. Therefore, RP # NP = #PE ¢ #RP;.

— By Theorem 1.7 and Corollary 3.1, #PE C FPRAS' = TotP C FPRAS' = RP = NP.
Therefore, RP £ NP = #PE ¢ FPRAS'.

— By Corollary 3.1 and Theorem 3.3, TotP C #RP; = TotP C FPRAS = RP = NP.
Therefore, RP # NP = TotP ¢ #RP;.

e In the case of P # RP # NP.

In addition to all the above results we have also the following ones.

— By definitions, #RPy C #PE < P = RP. Therefore, P # RP = #RPy & #PE.

— As in the proof of Corollary 3.5 we can show that #RP; C #PE = P = RP holds.
Therefore, P # RP = #RP; € #PE.

— By Theorem 3.3 and the previous result, FPRAS C #PE = #RP; C #PE = P = RP.
Therefore, P # RP = FPRAS ¢ #PE.

— Similarly, FPRAS' C #PE = #RP; C #PE = P = RP. Therefore, P # RP =
FPRAS' ¢ #PE.

— Similarly, #RP; C TotP = P = RP. Therefore, P # RP = #RP;  TotP.

— By Theorem 1.7 and the previous result, #RP; C FP = #RP; C TotP = P = RP.
Therefore, P # RP = #RP; Z FP.

— By Corollary 3.5, FPRAS C TotP = P = RP. Therefore, P # RP = FPRAS ¢ TotP.

— Similarly, FPRAS’ C TotP = P = RP. Therefore, P # RP = FPRAS’ Z TotP. O

3.3 Discussion of results

One direction of #P C FPRAS iff RP = NP, namely #P C FPRAS = RP = NP, is well-known
among researchers in the area of counting complexity. The inverse direction, i.e. that RP = NP
implies #P C FPRAS, has a proof that is based on arguments similar to those used in the proof
of [59, Theorem 4] and it was first stated as a theorem in [22]. This result was also extended
to the class TotP in the same work. Thus it holds that TotP C FPRAS iff RP = NP (stated as
Corollary 3.1 here).

To prove that FPRAS C TotP implies P = RP, the fact that #RP; C FPRAS was used, i.e.

if the accepting paths are more than half of all paths, we can approximate them using the Monte
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Carlo method (or an unbiased estimator). Then, the inclusion #RP; C TotP would mean that

RP C P.

The class #RP; contains a counting version of the PIT (Polynomial Identity Testing)
problem, which we define here and we denote by #NONZEROSFORPIT. Given an n-variable
polynomial p over a field F, #NONZEROSFORPIT is the problem of counting the non-zeros of
p in a finite and sufficiently large subset of F™. As a result, # NONZEROSFORPIT has an fpras.
To the extent of our knowledge, this is the only counting problem that admits an fpras, and has

a decision version which is in RP, but it is not known whether it belongs to P.

Finally, the definition of #RP,, the class of all #P functions with a decision version in RP
turned our attention to two graph problems that are generalizations of counting matchings in
graphs. In Chapter 6 we examine the problem #EXACT MATCHINGS in restricted classes of
graphs with respect to its exact and approximate computation. This is the problem of counting
the number of perfect matchings with exactly k red edges in a graph with both black and red

edges.

3.4 Notes

The question about the relationship of TotP to FPRAS was first posed and studied in Eleni
Bakali’s PhD thesis [22], where most propositions and theorems of this chapter can be found.
Bakali also gave a more complete picture of the conditional relationships examined in Subsec-
tion 3.2.4, i.e. she considered four different possible worlds, the ones we explored here along with

two additional worlds that emerge under the assumptions P # RP = NP and P = RP = NP.

The class FPRAS’ and the problems #NONZEROSFORPIT, #CoOMPOSITENESS WITNESSES,
#EXACT MATCHINGS, and #BLUE-RED MATCHINGS were first defined and studied in [24].

Here we provided formal definitions of these four problems.
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paths

The relation of Toda’s celebrated theorem (Theorem 1.4) to the complexity classes ®P and PP
motivated our study of TotP-style variants of these classes, namely ®otP and Pyt P, respectively,

in this chapter.

In Toda’s Theorem [144], two facts were combined to prove that PH C P#P_ First, PH C
BPP®P where @P [126] is the class of languages, decidable by an NPTM, where the acceptance
condition is that the number of accepting computation paths is odd. Second, BPPEP C p#PlI,
In other words, BPP®P is at least as powerful as the polynomial hierarchy and it can be decided

in polynomial time with just one oracle call to a #P function.

The second part of the proof of Toda’s Theorem implies that BPP®P C PPP and therefore
PH C PPP [144]. PP [75] stands for ‘Probabilistic Polynomial-time’ and it is a gap-definable
class; it is defined based on the difference (or the gap) between accepting and rejecting paths of
an NPTM. A language L is in PP if there is an NPTM M such that x € L iff M (x) has more

accepting than rejecting paths. It is also as hard as #P in the sense that PPP = P#P [26].

Apart from the classes ®iotP and PyotP, we introduce here other complexity classes defined
by properties of TotP functions. We build upon the study of classes that have definitions based
on the number of accepting paths, or the gap of an NPTM [66]. For example, the complexity
class UP was introduced in [148]| along with unambiguous NPTMs, which means NPTMs that
have at most one accepting path. Over the years, many other classes of decision problems were

introduced by adding constraints to the acceptance condition of NP. We are going to focus
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on the following classes: UP [148], FewP [3], ®P [126],' ModyP [11],2 SPP [121],2> WPP [66],
C_P [136], and PP [136, 75]. The definitions of these classes are given in Table 4.1. Each of

them can be defined by properties of either #P or GapP functions.

Class Function fin: | If z € L: If x ¢ L:
uP 4P fla)=1 f(z)=0
f(x) < p(=]) for
FewP #P some polynomial p | f(z) =0
and f(z) >0
®P #P f(z) is odd f(x) is even
ModyP #P flx) # (mod k) | f(z) =0 (mod k)
SPP GapP f(z) = f(z)=0
f@) = o) for
WPP GapP some g € FP with | f(z) =0
0 ¢ range(g)
lt-def:
C_P GapP flx)=0 f@) # 0 |alt-de
f(z) > 0]
0 |alt-def:
PP GapP f(z)>0 flw) < 0 fali-de
fz) < 0]

Table 4.1: Definitions of the classes UP, FewP, ®P, ModkP, SPP, WPP, C_P, PP.

Remark 4.1. (a) Note that ModaP = ®P and ModyP for k > 2 is a generalization of ©P,

based on congruence mod integers other than two.

(b) The class ModyP was defined in [75] via the acceptance condition ‘cz € L iff f(z) # 0
(mod k)’ On the other hand, in [//] ModyP was defined via the alternative condition
‘v € Liff f(z) =0 (mod k)’ (under which the class of [75] would be coModyP ).

(c¢) For the alternative definition of C_P, note that given a function f € GapP, that satisfies the
first definition, we have that the function f? belongs to GapP as well, since GapP is closed
under multiplication and f? satisfies the alternative definition, i.e. x € L, if f2(z) = 0,
whereas x € L, if f2(z) > 0.

'The class P was defined independently under the name EP in [78].
2ModyP was also studied independently in [35] and [85].
3SPP was studied independently in [66].
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Known relationships among these classes are given below.

Proposition 4.1 ([131]). (a) UP C FewP C NP C coC_P C PP.
(b) FewP C SPP C WPP C C_P C PP.
(c) SPP C &P C ModyP.

In Subsections 4.1.1, 4.1.2, and 4.1.3, we introduce the classes GapioiP, UtotP, FewioiP,
BrotP, ModiotP, SPiotP, WPotP, CoiotP, PiotP by properties of TotP functions. Their defi-
nitions are summarized in Table 4.2. We examine the relationship between each of them and
its counterpart, defined by the same property of either a #P or a GapP function. Except for
UiotP and Few;otP which coincide with P, all the other tot-definable classes are equal to their
analogs definable by #P functions. Thus, for the classes &P, ModP, SPP, WPP, C_P, and
PP, we obtain a family of complete problems that are defined by TotP-complete problems under
parsimonious reductions (and not by #P-complete), or equivalently, by problems in P (and not

by NP-complete ones).

In Subsection 4.1.4 we give variants of the Valiant-Vazirani and Toda’s Theorems. In
Subsection 4.1.5, we present problems definable by a TotP function, that are complete for gap-
definable classes, building upon a relevant result by Curticapean [52]. Finally, we study the

complexity of the problem DIFFPERFMATCH—, in Subsection 4.1.6.

4.1 Tot-definable classes

Although we focus on defining tot-counterparts of the classes described in Table 4.1, counting
the total number of paths of an NPTM has already been used to define analogs of the classes
RP, BPP, and PP in [80], which have been denoted by Rpath, BPPpath, and PPpah, respectively.
For example, Rpath is the class of languages L such that there exists an NPTM M such that for
all x € ¥* it holds that « € L if accpr(z) > % -totalpyr(x) and © & L if rejpr(x) = totalp(x),
where totalps(z) denotes the total number of paths of M on x (not minus 1) and accys(z),
rejy(x) are the number of accepting and rejecting paths of M on x, respectively. Remarkably,
Rpath = NP and PPy, = PP [30]. The relationship of BPPpath to other classes, such as pNPllog]
the Arthur-Merlin class MA, and X5, has been studied in [30].
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4.1.1 The class Gapy,:P

For a Turing machine M, we define AM (z) = accpr(xz) — rejar(z), where acepr(x), rejy(x) are

the number of accepting and rejecting paths of M on x, respectively.

Definition 4.1. A function f : ¥* — N is in GapP iff there exists an NPTM M such that for
all inputs x, f(x) = AM(z).
FEquivalently, GapP = {AM : ¥* — N | M is an NPTM}.

GapP is the closure of #P under subtraction and its functions can take negative values.

Theorem 4.1. The following are equivalent:

1. f € GapP.

2. f is the difference of two #P functions.

3. f is the difference of a #P and an FP function.
4. f is the difference of an FP and a #P function.

In other words, GapP = #P — #P = #P — FP = FP — #P.

If we consider the difference of two TotP functions instead of #P ones, we can define a

variant of GapP as follows.

Definition 4.2. A function f belongs to the class GapotP iff it is the difference of two TotP

functions.

It turns out that the class GapyotP is exactly the class GapP.

Proposition 4.2. Gapy,:P = GapP.

Proof. GapiotP C GapP is straightforward, since TotP C #P. For GapP C GaptotP, note that for
any #P function f, there exist NPTMs M, M’ such that f(z) = accpr(z) = totpp (x) —totp(x),
where we obtain M’ by doubling the accepting paths of M. So for any g € GapP there exist
NPTMs N, N, M, M’ such that g(z) = acen(z) —acep () = (tot i (x) —toty (x)) — (tot pp(x) —
totyr(x)) = (totni(x) + totyr(x)) — (totn(z) + totpyp(x)) = totar, (x) — totar, (x), where My, Mo

can be constructed as described in Proposition 1.8. O

Corollary 4.1. GapytP = GapP = #P — #P = TotP — TotP = #P — FP = FP — #P =
FP — TotP = TotP — FP.
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Proof. To prove #P — FP = FP — #P = FP — TotP = TotP — FP, we show that FP — #P C
FP — TotP. This is essentially a proof for #P — FP C TotP — FP as well.

Let g € FP and f = accpyr € #P. Then, g(z)— f(z) = g(x)— (totpp (x) —totp (), where M’
is obtained from M by doubling its accepting paths (as in the proof of Proposition 4.2). W.l.o.g.
we assume that the computation tree of M is a perfect binary tree (or in other words, M is in
normal form), so we have that g(z) — (totyy () — toty(z)) = g(x) — (totpy (z) — (202D — 1)) =
g (x) — totyy (), where g’ € FP with ¢/(z) = g(z) + 2PU2) — 1 for any x. O

For a #P function aceyy, it holds that rejas(z) = 2°P(0#D) —aceps () is also a #P function. For
example, counting unsatisfying assignments for a CNF formula is in #P. On the contrary, for a
TotP function tot s, we do not know whether (2°(#) —1)—tot;(z) belongs to TotP. For example,
if counting unsatisfying assignments for a DNF formula ¢ is in TotP, then determining if there
is an unsatisfying assignment for ¢ is in P, which in turn means that determining whether the
CNF formula —¢ has a satisfying assignment is in P (note that in this case we have to consider
p(|¢|) = n, where n is the number of variables of the input formula ¢). On the other hand,

Corollary 4.1 implies that (2P(%)) — 1) — tot;(z) and in fact, every #P function is in GapioP.

4.1.2 The classes Ui:P, Few,tP, ®:0:P, and Mod;:P

The definitions of the classes UiotP, FewiotP, ®otP, and Mody,:P are analogous to those in
Table 4.1, but instead of #P or GapP functions, functions in either TotP or GapytP are used to

define them. They are summarized in Table 4.2.

The class UP appears in the well known Valiant-Vazirani Theorem which states that there
is a randomized reduction from an instance of SAT to a CNF formula which has at most one

satisfying assignment.

Theorem 4.2 (Valiant-Vazirani Theorem [151]). NP € RPYP.

Below, we explore the computational power of the tot-definable class UyotP.

Proposition 4.3. (a) P = UyP.
(b) UgotP C UP.
(¢) If UP C UgotP, then P = UP (and thus RP = NP).

Proof. (a) Let L € UtP. Then there exists an NPTM M such that x € L iff M has 2 paths,

whereas ¢ L iff M has 1 path. On any input, the polynomial time Turing machine M’
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Class Function fin: | If z € L: Ifx ¢ L:
UtotP TotP flx)=1 f(x)=0
f@) < pllel) for
FewiotP | TotP some polynomial p | f(z) =0
and f(x) >0
DrotP TotP f(z) is odd f(x) is even
ModyotP | TotP f(z) #0 (mod k) | f(x) =0 (mod k)
SPiotP GapiotP flx)=1 f(x)=0
@) = gla) for
WP, P GapiotP some g € FP with | f(z) =0

0 ¢ range(g)

f(z) # 0 [alt-def:
CototP GapiotP f(ﬂf) =0
f(z) >0
T 0 [alt-def:
PiotP GapiotP f(x) >0 fla) < 0 falt-de
f(z) <0

Table 4.2: Definitions of the classes UtotP, FewtotP, @BtotP, Modko: P, SPtotP, WPt P, C= it P, PtotP.

simulates either the unique path or the two paths of M deterministically and it either rejects
or accepts, respectively. This is a proof of (b) as well. Inversely, if L € P, then there is an
NPTM N, which, for any input z, simulates the corresponding deterministic computation and
generates one or two paths if the answer is ‘no’ or ‘yes’, respectively.

(c) By (a), if UP C UgotP, then UP C P and RP = NP by the Valiant-Vazirani Theorem. O
In fact, the classes Uio:P and Few:P coincide.
Proposition 4.4. (a) P = UitP = Fewo:P.

(b) If FewP C FewotP, then P = FewP.

Proof. Part (b) is immediate from (a). For (a), let L € FewotP. Consider the Turing machine
M which has either more than 1 but polynomially many paths if x € L or just 1 path if x & L.
Then an NPTM, let’s say M’, simulates deterministically all the paths of M and in the first case

M’ makes a branching forming two paths, while in the second case it halts. So, L € Uyo:P. [

Next we show that the classes $iotP and Mody:P coincide with &P and ModyP, respec-
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tively. As mentioned above, Toda showed that PH C BPP®F as an intermediate step for proving

PP can be decided in polynomial

his theorem. The proof was completed by proving that BP
time using an oracle call to #P. In fact, only the value of a #P function modulo 2™, for some
m, is needed. Since, PTP = P#P it also holds that PH C P It is natural to ask about the

power of classes that give information about either bits of TotP functions or the value of TotP

functions mod k.

Problems in @P can be decided with the information of the rightmost bit of a #P function.
The class @otP is the class of decision problems, for which the acceptance condition is that the
number of all computation paths of an NPTM is even (or the number of all computation paths

minus 1 is odd).

Proposition 4.5. ®ytP = ®P.

Proof. ®iotP C @®P: Consider a language L € ®otP and the NPTM M such that x € L iff
totpr(z) is odd. Consider an NPTM M’ that simulates M. Since, M’ can distinguish the
leftomost path of M, it rejects on this path and it accepts on every other path. Then, x € L iff

accpp (x) is odd.

®P C ®1otP: Let L € &P and M be the NPTM such that z € L iff accpr(z) is odd. Then,
we obtain M’ by doubling the rejecting paths of M and add one more path. It holds that x € L
iff totpr(z) is odd. O

We also give an alternative proof of Proposition 4.5. Let ©@PL-RTW-MON-3CNF be the
problem that on input a planar 3CNF formula where each variable appears positively and in
exactly two clauses, accepts iff the formula has an odd number of satisfying assignments. The
counting version of this problem, namely #PL-RTw-MON-3CNF| is in TotP; it is self-reducible
like every satisfiability problem and has a decision version in P, since every monotone formula

has at least one satisfying assignment.
Proposition 4.6 ([150]). @PL-RTw-MON-3CNF is GP-complete.

Corollary 4.2. ®itP = ®P.

Proof. Let L € @P. Then, it holds that x € L iff f(x) = 1 (mod 2) for some f € #P. By
Proposition 4.6, there is an h € FP, such that x € L iff #PL-Rrw-MON-3CNF (h(z)) = 1
(mod 2). So, define the TotP function g = #PL-RTw-MON-3CNFoh. Then z € L iff g(z) =1
(mod 2) and thus L € ®orP. O
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By generalizing the acceptance condition, we obtain Mody.:P classes for any k& € N, which

in fact, is the class ModP.

Proposition 4.7. Mody,:P = ModP.

Proof. The proof of Modyo:P € ModyP is very similar to the proof of ®iP C &P in Proposi-
tion 4.5.

For the inclusion ModP C Modyo:P, let L € ModiP and M be the NPTM such that
x € L iff acepr(x) = a (mod k), for some m € {1,....k — 1}. Then, M’ can be obtained from
M by generating k paths for every rejecting path and one more path (a dummy path). So,
#(paths of M’ on input ) — 1 = a (mod k). So, there is an NPTM M’, such that toty; (z) =

O

accyr(z) (mod k).

Remark 4.2. The above proof shows that, not only equivalence or non-equivalence modulo k is

preserved, but also the value of the #P function modulo k is preserved.

Conclusion 4.1. So, we can say that if we have information about the rightmost bit of a TotP
function is as powerful as having information about the rightmost bit of a #P function. Toda’s
Theorem would be true if we used Byt P instead of ®P. Moreover, it holds that BPP®P C pTotPll]
where it suffices to make an oracle call to a TotP function mod 2™, for some m. However, Uit P
1s defined by a constraint on a TotP function that yields only nondeterministic Turing machines
with polynomially many paths. This means that UyotP gives no more information than the class

P and as a result, it cannot replace the class UP in the Valiant-Vazirani Theorem.

4.1.3 The gap-definable classes SP..P, WP;P, C_;,;P, and PP

By Proposition 4.2 and the definitions of the classes SPotP, WPtP, C—(o:P, and PP, we have
that these classes are equal to SPP, WPP, C_P, and PP, respectively.

Corollary 4.3. (a) SPi,tP = SPP.
(b) WPotP = WPP.

(c) CoiorP = C=P.

(d) PiotP = PP.

The next corollary is an analog of Proposition 4.1. It is immediate from Proposition 4.1

and the propositions of Subsections 4.1.2, 4.1.3.
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Corollary 4.4. (a) P = UiotP = FewotP € NP C coC(otP C PiotP.
(b) FewotP C SPiotP € WPtP C CototP € PiotP.
(¢) SPtotP C @totP € Modyo: P-

4.1.4 Variants of the Valiant-Vazirani and Toda’s Theorems

Consider the following satisfiability problems.

DSAT = {¢ | #SAT(¢p) # 0 (mod 2)}

MoDySAT = {¢ | #SAT(¢) # 0 (mod k)}

Since #SAT is #P-complete under parsimonious reductions, @SAT and MOD;SAT are complete

for ®P and ModyP, repsectively.

For any #A € #P, we define two decision problems related to #A: ®A = {x € ¥* | f(x) #
0 (mod 2)} and MODiA = {z € ¥* | f(x) # 0 (mod k)}. Then completeness results for A

and MOD,A can be proven, provided that #A is TotP-complete under parsimonious reductions.

Proposition 4.8. Let #A be TotP-complete under parsimonious reductions. Then,
(a) DA is complete for P,
(b) MODA is complete for ModyP.

Proof. (a) It holds that #A € #P, thus, by definition @A € ®P. Since #A is TotP-complete
under parsimonious reductions, the problem @A is @otP-complete. By Proposition 4.5, it is

also @P-complete. The proof of (b) is completely analogous. O

The following problems are related to the TotP-complete function #TREE-MONOTONE-

CIRCUIT-SAT given in Definition 2.6.
®TMC = {C | C is non-increasing w.r.t. <gree and #TMC(C)#0 (mod 2)}

Mop;TMC = {C' | C is non-increasing w.r.t. <z and #TMC(C) #0 (mod k)}
By Proposition 4.8, these are complete for ®P and ModyP, respectively.

The next three corollaries are derived from the Valiant-Vazirani Theorem (Theorem 4.2),

Toda’s Theorem (Theorem 1.4), and the results of this section.

Corollary 4.5. (a) NP C RP®wtP,

(b) Sar € RPOTMC,
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Proof. (a) A consequence of the Valiant-Vazirani Theorem is that NP C RP®P. So, by Propo-

sition 4.5, we have that NP C RP®wtP

(b) Tt is immediate from (a) and the @P-completeness of @TMC. O

Corollary 4.6. (a) PH C BPPP,
(b) PH C BPP®TMC,

Proof. (a) It is immediate from Toda’s Theorem and Proposition 4.5.

(b) By Toda’s Theorem and the ®P-completeness of @ TMC, we have that PH C BPPETMC,
O

Remark 4.3. Note that Proposition 4.8 allows us to replace @TMC in Corollaries 4.5 and
4.6, by any other complete problem for ®P definable by a function that is TotP-complete under

parsimonious reductions.

Corollary 4.7. BPP®P C PTtPUl where an oracle call to the value of a TotP function modulo

2™ for some m € N, suffices.

Proof. In [114], Toda showed that BPP®P C P#PI where an oracle call to the value of a #P
function modulo 2™, for some m € N, is used. By the proof of Proposition 4.7, this oracle call

can be replaced by an oracle call to the value of a TotP function modulo 2. O
The following two corollaries are also true.

Corollary 4.8. BPP®=F C pPuP,

Corollary 4.9. PH C PTetPll],

4.1.5 Complete problems for C_P, WPP, and PP definable by the TotP func-

tion #PERFMATCH

Given a #P function #A : ¥* — N, we define the following decision problems associated with
#A:

DIFFA_g

Input: (z,y) € ¥* x ¥*.

Output: Does #A(x) = #A(y) hold?
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DIirFrAsg
Input: (z,y) € * x ¥*.
Output: Does #A(z) > #A(y) hold?
The next problem, namely DIFFA_1, is a promise problem, i.e. the input to the problem

belongs to one of the following classes:
Iyps ={(2,y) | #A(x) = #A(y) + 1}
Ino ={(z,y) | #A(z) = #A(y)}

DIFFA_;
Input: (z,y) € Iygs U Ino.

Output: Does (x,y) € Iygs?

Proposition 4.9. For any function #A € #P, it holds that:

(a) DIFFA_y € C_P, DIFrA~( € PP, and DIFFA_; € SPP.

(b) If #A is #P-complete under parsimonious reductions, then DIFFA_g, DIFFA~(, and DIFFA_;

are complete for C_P, PP, and SPP, respectively.

(c) If #A is TotP-complete under parsimonious reductions, then DIFFA_y, DIFFA~g, and

DIirrA_; are complete for C_P, PP, and SPP, respectively.

Proof. We show the proposition for the problem DIFFA_g. The proof for the other problems is

completely analogous.

(a) We have that an instance (z,y) of DIFFA_( is a yes instance iff #A(z) = #A(y) iff
#A(x) —#A(y) = 0. The difference #A(x) — #A(y) is a GapP function, since it can be written
as #A (z,y) — #A” (x,y), where #A’(z,y) (resp. #A” (z,y)) is function #A on input x (resp.
y), which means that #A’, #A” € #P.

(b) A language L € C_P can be decided by the value of a function f € GapP: x € L iff
f(x) = 0. By definition, f(x) = g(x) — h(z) for some g,h € #P. Since #A is #P-complete
under parsimonious reductions, we have that g(z) = #A(t1(x)) and h(z) = #A(t2(x)), for
some t1,to € FP. So, xz € L iff g(z) — h(z) = 0 iff #A(t1(x)) — #A(t2(x)) = 0 iff (t1(x),t2(x))
is a yes instance for DIFFA _g.

(¢) By Corollary 4.3, a language L € C_P can also be decided by the difference of two

functions g, h € TotP: z € L iff g(x) — h(z) = 0. If #A is TotP-complete, z € L is decided by
#A(t1(x)) — #A(t2(x)) for some t1,t € FP. O
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For example, the problem DIFFSAT_g is complete for the class C_P. Note that this problem
was defined in [52], where it is called SAT—. We use a slightly different notation here, which we
believe is more suitable for defining other problems as well, that lie in the gap-definable classes

examined in this chapter.

The last problem we define is the promise problem DIFFA_,. In this case, there is a function
g € FP, 0 ¢ range(g), such that the input (z,y) € ¥* x X* belongs to one of the following two

classes:

Iyps = {(z,y) | #A(z) = #A(y) + 9(z,9)}

Ivo ={(z,y,9) | #A(x) = #A(y)}

DIrrA_,

Input: (x,y,9) € Iyeps U Ino.
Output: Does (x,y,9) € Iygs?

For example, the problem DIFFSAT—, takes as input two CNF formulas such that either
they have the same number of satisfying assignments or the first one has g(x) more satisfying
assignments than the second one. The problem is to decide which is the case. This is a general-
ization of the problem PROMISE-EXACT-NUMBER-SAT defined in [128]. Note that DIFFSAT_,

corresponds to a family of problems, one for each g € FP, 0 ¢ range(g).
Proposition 4.10. (a) DIFFA_, € WPP.
(b) Every problem in WPP is reducible to some DIFFA_,, where

(i) #A is #P-complete under parsimonious reductions.

(ii) #A is TotP-complete under parsimonious reductions.

Proof. The proof is analogous to the proof of Proposition 4.9. OJ

Remark 4.4. Compared to Proposition 4.9, Proposition 4.10 does not provide a concrete prob-
lem that is complete for the class WPP. For example, DIFFSAT_, is essentially a family of

problems, one for each g € FP, 0 & range(g).

Curticapean gave a first C_P-complete problem, defined by a function that is not #P-
complete, namely #PERFMATCH [52]. By Proposition 4.9(c), we obtain a family of complete
problems for the classes C_P, PP, and SPP defined by functions that are not #P-complete under

parsimonious reductions.
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Although the problem #PERFMATCH is not known to be either #P-complete or TotP-

complete under parsimonious reductions, DIFFPERFMATCH_( is C_P-complete [52].

Proposition 4.11 (|52]). DIFFPERFMATCH— is complete for C_P.

Proof. In [52] a reduction from DIFFSAT—q to DIFFPERFMATCH— is described. Given a pair

of 3CNF formulas (¢, ¢'), two unweighted graphs G, G’ can be constructed such that
HSAT(¢) — #SAT(¢) = 27T (#PERFMATCH(G) — #PERFMATCH(G))

where T' € N can be computed in polynomial time with respect to the input (¢, ¢’). O

We show the following proposition for the classes PP and WPP.

Proposition 4.12. (a) DIFFPERFMATCH~( is complete for PP.

(b) Every problem in WPP is reducible to DIFFPERFMATCH—, defined by a function g € FP,

0 & range(g).

Proof. (a) The reduction of [52] described briefly in the proof of Proposition 4.11, is also a

reduction from DIFFSAT~g to DIFFPERFMATCH~q.

(b) Given an input (¢,¢’) to DIFFSAT—,, which is defined by h € FP, 0 ¢ range(h), the
problem reduces to DIFFPERFMATCH—, on input (G,G’), where G, G’ are the graphs of (a)
and g(G,G") =27 - h(¢,¢'). Then, (¢,¢') € DIFFSAT_,, if

#SAT(¢) — #Sar(¢) = h(¢, ¢') iff
#PERFMATCH(G) — #PERFMATCH(G') = 27 - (#SAT() — #SAT(¢))
= 2" (4, ¢") = 9(G, @)
Also, (¢,¢') & DIFFSAT, if
#SAT(¢) — #SAT(¢)) = 0 iff

#PERFMATCH(G) — #PERFMATCH(G') = 2T - (#SAT(¢) — #SAT(¢')) = 0. O

So, any problem in the class C_P (PP, WPP) is definable by the TotP function #PERF-
MATCH. This is an alternative proof for C_i(P = C_P (PitP = PP and WP:P = WPP,

respectively).
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Corollary 4.10. (a) C_y, P = C_P.
(b) PtotP - PP
(c) WPtP = WPP.

Proof. (a) Let L € C_P. Then, it holds that x € L iff #SaAr(hy(z)) — #SAT(ha(z)) = 0 iff
#PERFMATCH(h3(z)) — #PERFMATCH(hy(z)) = 0, for some h; € FP, 1 < i < 4. So, define
the TotP functions f; = #PERFMATCH o hy and fo = #PERFMATCH o hy. Then f1, fo are
TotP functions and we have that x € L iff f1(z) — fa(z) = 0.

The proofs of (b) and (c) are completely analogous. O

4.1.6 An exponential lower bound result for the problem DIFFPERFMATCH_,

Regarding the class SPP we cannot prove a similar result for the problem DIFFPERFMATCH_;.

However, we can prove the following fact.

Proposition 4.13. The problem DIFFSAT_ is reducible to DIFFPERFMATCH—,.

Proof. Consider two 3CNF formulas (¢, ¢'), with n variables and m = O(n) clauses, such that
either #SAT(¢) — #SAT(¢') =1 or #SAT(¢p) — #SAT(¢') = 0 holds.

Then, using the polynomial-time reduction of [52] two graphs G, G’ can be constructed

such that
#PERFMATCH(G) — #PERFMATCH(G') = oV . (#SAT(¢) — #SAT(¢))

where |V| = max{|V(G)|,|V(G")|}} = O(n+m) and ¢ € (1,2) is a constant depending on ¢, ¢

and can be computed in polynomial time. Also, the graphs G and G’ have O(|V]) edges.

So, DIFFSAT—; on input (¢, ¢’) can be reduced to DIFFPERFMATCH—, on input (G,G’),

where g(G,G") = V1. O

Remark 4.5. Proposition 4.13 states that the smallest possible non-zero difference between
the number of satisfying assignments of two given 3CNF formulas can be translated to an
exponentially large difference between the number of perfect matchings of two graphs. In addition,

we can efficiently compute this number.

Curticapean proved that under ETH, the problem DIFFPERFMATCH—( has no 2°(™) time

algorithm on simple graphs with m edges |52, Theorem 7.6]. The satisfiability of a 3CNF
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formula ¢ is reducible to the difference #PERFMATCH on two different graphs, such that the
number of perfect matchings of the two graphs is equal iff ¢ is unsatisfiable. The reduction

follows the steps of the reductions that are used in the proof of Proposition 4.12.

Using the reduction of Proposition 4.13, we can prove the following corollary. We consider
the version of rETH, which asserts that probabilistic algorithms cannot decide if a given 3SCNF

formula with n variables and O(n) clauses is satisfiable in time exp(o(n)).

Corollary 4.11. Under rETH there is no randomized exp(o(m)) time algorithm for

DIFFPERFMATCH—, on simple graphs with m edges.

Proof. Given rETH we cannot decide whether a given 3USat formula ¢ with m clauses is
satisfiable using a randomized algorithm that runs in time exp(o(m)) [15]. By applying the
reduction described in [52, Lemma 7.3] we can construct two unweighted graphs G and G’ with

O(m) vertices and edges, such that

e if ¢ is unsatisfiable, then #PERFMATCH(G) — #PERFMATCH(G') =0

- )

e if ¢ is satisfiable, then #PERFMATCH(G) — #PERFMATCH(G') = (VI where |V| =
max{|V(G)|,|V(G')|} and ¢ € (1,2) can be computed in polynomial time.

So, 3USAT on ¢ can be reduced to DIFFPERFMATCH—, on input (G,G’), where g(G,G’) =

VI, Thus an exp(o(m)) time randomized algorithm for DIFFPERFMATCH—, would contradict

rETH. O

Remark 4.6. A different way to read Proposition 4.13 is the following. A positive result for
#PERFMATCH would imply a corresponding positive result for DIFFPERFMATCH—, and there-
fore, for DIFFSAT—_1. Of course, this positive result would be an exponential-time algorithm for

these problems!

For example, an fpras for #PERFMATCH would yield an algorithm that distinguishes be-

tween

#PERFMATCH(G)—#PERFMATCH(G') = ¢" and #PERFMATCH(G)—#PERFMATCH(G') = 0

with high probability in time O(2;), where

n = max{|V(G)|,[V(G')]} and m = max{|E(G)|,|E(G")[} = O(n).

So, in time O(d}), where di € (1,2).
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Because of the reduction of Proposition 4.13, the above algorithm is also an algorithm that
distinguishes between #SAT(¢p) — #SAT(¢') =1 and #SAT(¢) — #SAT(¢') = 0 with high prob-
ability in time O(dy), d2 € (1,2), where n is the number of variables in ¢,¢’. The same kind of

algorithm would then exist for all the problems in SPP. Among them

1. is the well-studied GRAPHISOMORPHISM [17], which is one of the NP problems that has

not been proven to be either NP-complete, or polynomial-time solvable so far [100, 19],

2. all the problems in UP, since UP C SPP (see Proposition 4.1).

4.2 Discussion of results

We conclude that knowing the least (resp. most) significant bit of a TotP function is as powerful
as knowing the least (resp. most) significant bit of a #P function. Also, the closure of TotP
under subtraction is the class GapP, i.e. it coincides with the closure of #P under subtraction.
This means that every gap-definable class is equivalent to a class defined by some property of

the gap of two TotP functions.

For the classes &P, ModiP, SPP, WPP, C_P, and PP we obtained a family of complete
problems that are defined by TotP-complete problems under parsimonious reductions (and not
by #P-complete), or equivalently, by problems in P (and not by NP-complete ones). This was
not surprising for ®P and C_P, since complete problems defined by TotP functions (not even
known to be TotP-complete) were already known (see Proposition 4.6 and Proposition 4.11,
respectively). Interestingly, for the class C_P this complete problem is defined by the function

#PERFMATCH. We determined analogous complete problems for WPP and PP.

Moreover, we showed that every SPP problem is decidable by the difference of #PERF-
MATCH on two graphs, which is promised to be either exponentially large or zero. The value of
the difference is exponentially large iff the instance of the SPP problem is a ‘yes’ instance. We
commented on the fact that an fpras for #2PERFMATCH would yield a randomized exponential-
time algorithm for every SPP problem (see Remark 4.6), such as GRAPHISOMORPHISM and

USAT.
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Chapter 5

Descriptive complexity of counting problems

the decision version of which is easy

In order to determine classes the problems of which admit efficient exact or approximate com-
putation, Arenas et al. [15] suggest to focus on classes that are contained in TotP and are robust
in the following sense: either they are closed under addition, multiplication, and subtraction
by one, or they have natural complete problems under parsimonious reductions. In general,
when we consider counting complexity classes, closure under addition and multiplication is de-
sirable, but also the three aforementioned closure properties allow us to manipulate witnesses of
the corresponding computational problems (add or remove witnesses). The latter requirement
guarantees that the class has a natural representative and the choice of parsimonious reductions

is due to the properties of these reductions we discuss in Chapter 2.

In the next paragraph we refer to some classes which are subclasses of TotP and either
satisfy the requirement of being robust or are contained in FPRAS. Most of them are defined in

the context of descriptive complexity.

#2, and #RX, are classes of counting problems that are reducible to #DNF under prod-
uct reductions [132], so problems that admit an fpras. The class XQSO(X2-Horn) has a natural
complete problem, namely #DI1SJHORNSAT, the problem of counting satisfying assignments for
disjunctions of Horn formulas [15]. The class XQSO(X1[FO]) is not known to have a natural
complete problem, but it is closed under addition, multiplication, and subtraction by one [15].
SpanL, which is the class of functions that count the number of different outputs of nonde-
terministic polynomial-time transducers, has a natural complete problem, namely #NFA, the

problem of counting the number of strings smaller than a string x that are accepted by a given
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NFA [9]. A quasi-polynomial randomized approximation scheme for #NFA was known for 25
years |96, 79], before an fpras was designed for the problem [14]. The latter result yields an fpras
for every problem in the class SpanL. It also makes SpanL the first and only class so far with a
Turing machine-based definition that is a subclass of FPRAS, but is not contained in FP (under

standard assumptions).

Already known relationships among the aforementioned classes and some other ones defined

in [132, 15] are depicted in Figure 5.1.

TotP FPRAS

N

¥ QSO(X»-Horn) spanL YQSO(X1[FO]) #RY,

1 )
FP YQSO(X1)

T 1

#ro —— #11

Figure 5.1: Inclusions and separations that have been shown in [132, , 15, 14] under no assumption. The

following notation is used: A — B denotes A C B and A — B denotes A C B.

5.1 Two robust subclasses of TotP: XQSO(X,-2SAT) and #/1,-1VAR

In this section, we complement previous work on robust subclasses of TotP. We introduce
two classes in the context of descriptive complexity, that have natural complete problems, the
decision versions of which are in the class P. Analogously to the classes #X; and XQSO(X2-Horn)
for which the problems #DNF and #DiSJHORNSAT are complete, repsectively, the classes
Y QSO(X,-2SAT) and #[M2-1VAR introduced here, have the complete problems # D1sJ2SAT and

#MONSAT, respectively.

We prove that several natural counting problems lie in these classes. Finally, we do not

expect these classes to be contained in FPRAS, since we prove that this would imply RP = NP.

5.1.1 The class XQSO(X,-2SAT)

First, we define the syntax and semantics of XQSO(X2-2SAT) formulas. To this end, we
will make use of the framework introduced by Arenas et al. [15] and described here in Subsec-

tion 1.4.2.
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We define a literal to be either of the form X () or =X ('), where X is a second-order
variable and 7' is a tuple of first-order variables. A 2SAT clause over o is a formula of the form
@1V @2 V @3, where each of the ¢;’s, 1 < ¢ < 3, can be either a literal or a first-order formula
over o. In addition, at least one of them is a first-order formula. The set of 39-2SAT formulas

over ¢ are defined as follows. .
¢ =32VY N\ C(7, V)
j=1
where 77, are sequences of first-order variables, k € N, and C; are 2SAT clauses for every
1<j<k.

The set of QSO (X2-2SAT) formulas over o is given by the following grammar.

a=¢ | s | (a+a) | Zx.a | EX.« (5.1)

where ¢ is a 39-2SAT formula, s € N, x is a first-order variable, and X is a second-order
variable. So the syntax of XQSO(X2-2SAT) formulas includes only the counting operators of
addition 4, Yz, XX, and in (5.1), ¢ is restricted to be a 32-2SAT formula.

Since XQSO(X2-2SAT) is a fragment of QSO formulas, the semantics of XQSO(X2-2SAT)

formulas can be obtained from Table 1.3 .

At this point, it is clear that for any 3QSO(X2-2SAT) formula «, a function [[o]] is
defined.

Below we show that the class #RHIM; defined in [59] is contained in the class XQSO(X2-2SAT)
defined presently.

Definition 5.1 ([59]). A function f is in the class #RHM1 if, on any input structure A, f can

be expressed in the form

FA) = (X, ) ARV (T, T, X))}

where ¥ is an unquantified CNF formula, in which each clause has at most one occurrence of

an unnegated variable from Y and at most one occurrence of a negated variable from Y

Proposition 5.1. #RHIM; € XQSO(X,-2SAT).

Proof. Alternatively, the function f on a structure A can be expressed in the form

F(A) = [BX. 5T Y767, T, X)])(A).

The Restricted-Horn formula ¢ is also a 2SAT formula. Therefore, f € XQSO(X2-2SAT). O
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Proposition 5.2. The following graph problems belong to XQSO(X2-2SAT).
1. #2CoL (counting 2 colorings of a graph).
2. #1IS (counting independent sets of any size in a graph).

Proof. 1. Consider an input graph represented as a finite ordered structure G = (V, E). Then,
#2CoL is defined by:

aacol = DX VY (E(z,y) — (X(2) V X (y)) A (X (2) V =X (y)))-
2. The problem #I18S is defined by:

ars = SXVaVy(E(z,y) — (=X (z) V =X (y))).

O

The class YQSO(X2-2SAT) contains problems that are tractable, such as #2CoL, which is
known to be computable in polynomial time [61]. It also contains the problem #IS, which is AP-
interreducible with #SAT [59]. Finally, all the problems in #RHTI;, such as #BIS, #1P1NSAT,
and #DOWNSETS [59], belong to XQSO(X2-2SAT) as well. The last three problems are complete
for #RHI; under approximation preserving reductions and are believed to be of intermediate

complexity: neither they admit an fpras nor they are as hard as #SAT.

We next show that a generalization of #2SAT, which we will call #DISJ2SAT, is complete

for ¥QSO(X2-2SAT) under parsimonious reductions.

Membership of #Di1sJ2SAT in YQSO(X,-2SAT)

In propositional logic, a 2SAT formula is a conjunction of clauses that each one contains at
most two literals. In this subsection we assume that clauses of 2SAT formulas consist of exactly

two literals, since we can rewrite any clause of the form [, where [ is a literal, as [ V [.

Definition 5.2. #DIsSJ2SAT.
Input: A formula ¢ which is a disjunction of 2SAT formulas.
Output: The number of satisfying assignments of ¢.

For example, the formula

((xl Vo) A (1 V xg)) \% (($2 V —x3) A ($3))
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is a disjunction of two 2SAT formulas, where ((1’1 V) A (—xy \/.’L’g)) is one of its two disjuncts,
(z1 V x2) is one of its four clauses, and —z1 is one of its seven literals. The clause (z3) can be

rewritten as (x3 V x3).

Theorem 5.1. #D1si2SAT € XQSO(X,-2SAT).

Proof. Consider the vocabulary o = {C},C3, Cg,C’i’,Dz}. This vocabulary can encode any
formula which is a disjunction of 2SAT formulas. More precisely, C1(c, z,y) iff clause ¢ is of
the form = V y, Ca(c,z,y) iff ¢ is =z V y, Cs(c, z,y) iff ¢ is 2V —y, Cy(c, z,y) iff ¢ is —z V —y,
and D(d, ¢) iff clause ¢ appears in the disjunct d.

Let ¢ be an input to #D1sJ2SAT encoded by an ordered structure A = (A, Cy, Cy, Cs, Cy, D),
where the universe A consists of elements representing variables, clauses, and disjuncts. Then,

it holds that the number of satisfying assignments of ¢ is equal to [[ET.¢(T)]](A), where
Y(T) == FdVeVavy((—=D(d, c) V =Ci(c,z,y) V T(z) V T(y))A
(=D(d, c) V ~Ca(c,z,y) V =T (x) VT (y))A
(=D(d,c) vV ~Cs(c,z,y) vV T(x) vV =T (y))A
(=D(d, ) V ~Cu(c,z,y) V =T(x) V =T(y))

Thus, #D1s12SAT is defined by ¥T.¢(T') which is a 3QSO(X2-2SAT) formula. O

Hardness of #Di1si2SAT

Suppose we have a formula o in ¥QSO(X2-2SAT) and an input structure A over a vocab-
ulary o. We describe a polynomial-time reduction that given « and A, it returns a propo-
sitional formula ¢,, which is a disjunction of 2SAT formulas and it holds that [[a]](A) =
#D1832SAT(¢q ). The reduction is a parsimonious reduction, i.e. it preserves the values of the

functions involved.

Theorem 5.2. #D1sJ2SAT is hard for YXQSO(X2-2SAT) under parsimonious reductions.

Proof. By Proposition 1.11, a can be written in 32-2SAT-SNF, that is, in the following form.

SeR, T APVE A\ R 7T 7)
i=1 j=1

where each YZ is a sequence of second-order variables and each C; is a 2SAT clause. Each term

of the sum can be replaced by Z?.E?.H?V? /”\ C;(YZ, Z, Y, Z)A /\ VU X (W) where X
j=1 X¢X,
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is the union of all ?z Now we have expressed « in the following form.

S eRe7IPvE A 6(R. 7T 7).
=1 j=1

The next step is to expand the first-order and sum quantifiers and replace their variables

with first-order constants from the universe A.

In this way, we obtain

=X X S VAN 4@
i=1 GecAl® TeAlTi=1ZecAl?l
Each first-order subformula of gi); has no free-variables and is either satisfied or not satisfied

by A, so we can replace it by T or L respectively. Also, after grouping the sums and the

conjunctions, we get
niy no

Z XV A X
j=1k=1
The formulas ¢;k(7) are conjunctions of clauses that consist of L, T, and at most two
literals of the form X;(@;) or =X;(@;) for some second-order variable X; and some tuple of
first-order constants 71. We can eliminate the clauses that contain a T and remove L from
the clauses that contain it. After this simplification, some combinations of variable-constants

may not appear in the remaining formula. For any such combination X (7), we add a clause

Vx5 = X(@)V-X(), since X(@) can have any truth value.

So, we have reformulated the above formula and we obtain

; \//\wj,

j=1k=1

ny M
After replacing every appearance of Xt(ﬁl) by a propositional variable zy, the part \/ /\ 1[);7 k(?)
j=1k=1
becomes a disjunction of 2SAT formulas. Finally, we introduce m’ new propositional variables

1, ...Ty and define

/
m’ np Ny

=V V Avjsne [\

i=1j=1k=1 I#i
The formula ¢, , is a disjunction of 2SAT formulas and the number of its satisfying as-
signments is equal to [[@]](A). Moreover, every transformation we described above, requires

polynomial time in the size of the input structure A. O
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It is known that #2SAT has no fpras unless RP = NP, since it is equivalent to counting all
independent sets in a graph [59]. Thus, problems hard for XQSO(X,-2SAT) under parsimonious

reductions, cannot admit an fpras unless RP = NP.

Proposition 5.3. XQSO(X2-2SAT) € FPRAS unless RP = NP.

Inclusion of XQSO(X»-2SAT) in TotP

Several problems in Y¥QSO(X-2SAT), like #1P1NSAT, #IS, #2C0L, and #2SAT are also in

TotP. We next prove that this is not a coincidence.

Theorem 5.3. XQSO(X,-2SAT) C TotP.

Proof. Since TotP is exactly the closure under parsimonious reductions of self-reducible functions
in #PE [123], it suffices to show that the XQSO(X2-2SAT )-complete problem #DISJ2SAT is such

a function.

First of all, the decision version D1SJ2SAT of #DISJ2SAT belongs to P. Thus #DISJ2SAT €
#PE. Secondly, every counting function associated with the problem of counting satisfying
assignments of a propositional formula is self-reducible. So #DISJ2SAT has this property as
well. Therefore, any 3QSO(X2-2SAT) formula « defines a function [[a]] that belongs to
TotP. O

Corollary 5.1. #RHIM; C TotP.

Proof. Immediate from Proposition 5.1 and Theorem 5.3. O

5.1.2 The class #[1,-1VAR
To define the second class #[1,-1VAR, we will use the framework presented in [132] and described
in Subsection 1.4.1.

We say that a counting problem #B belongs to the class #[1>-1VAR if for any ordered

structure A over a vocabulary o, which is an input to #B, it holds that

#B(A) = |[{(X): AEVYIZY(Y, Z, X))}

The formula ¢ (3, Z, X) is of the form ¢(3/, Z)AX (Z), where ¢ is a first-order formula over o

and X is a positive appearance of a second-order variable. We call the formula 1) a variable, since
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it contains only one second-order variable. Moreover, we allow counting only the assignments

to the second-order variable X under which the structure A satisfies V737¢(7, 7, X).

Proposition 5.4. The following graph problems belong to #I2-1VAR.

1. #VC (counting vertex covers of any size in a graph).
2. #1S (counting independent of any size in a graph).
3. #DS (counting dominating sets of any size in a graph).
4. #EC (counting edge covers of any size in a graph).
Proof. 1. An input graph G to #VC can be encoded as a finite structure G using the vocab-

ulary o = {V!, EndPoint?}. The universe is the set of vertices and edges. V (u) iff vertex

u is a vertex and EndPoint(e,u) iff vertex u is an endpoint of edge e. Then,
#VC(G) = {(VC) | G = YTy ((V(x) V EndPoint(z,y)) AV (y) AVC(y))}.

So, #VC € #[1,-1VAR.

2. An input graph G to #IS is encoded as a finite structure G exactly as in the case of #VC.
Then,

#18(G) = [{(NIS) | G = VaTy((V(x) V EndPoint(x,y)) AV (y) ANIS(y))}

where N1S(y) indicates that vertex y is not in the independent set. #IS is expressed in
the exact same way as # VC, since the number of vertex covers in a graph is equal to the

number of independent sets. Hence, #I1S € #[1>-1VAR.

3. An input graph G to #DS can be encoded as a finite structure G over the vocabulary

o = {E?}, where the universe is the set of vertices and E is the edge relation. Then,
#DS(G) = {(DS) | G |= Va3y((z =y Vv E(x,)) A DS(y)) }]-

4. An input graph G to #EC can be encoded as a finite structure G as in the case of #DS.
Then,
#EC(9) = {(EC) | G | VaTy(E(z,y) A EC(z,y))}].
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Completeness of #MONSAT for #I[1,-1VAR

Definition 5.3. #MONSAT.
Input: A formula ¢ in CNF, in which all variables appear positive.
Output: The number of satisfying assignments of ¢.

Theorem 5.4. #MONSAT € #I[1,-1VAR.

Proof. Consider the vocabulary o = {Var!,C?} with Var(z) to indicate that z is a variable
and the binary relation C(c,x) to indicate that the variable z appears in the clause c. Given
a o-structure A = (A, Var,C) that encodes a formula ¢, which is an input to #MONSAT, it
holds that #MONSAT(¢)=|{(T) : A = VcIz((Var(c)VC(c,z)) AVar(z)) AT(z))}|. Therefore,
#MONSAT € #I1,-1VAR. O

Theorem 5.5. #MONSAT is hard for #[I1>-1VAR under product reductions.

Proof. We show that there is a polynomial-time product reduction from any #B € #[1,-1VAR
to #MONSAT. This means that there are polynomial-time computable functions g and A, such

that for every strucrure A that is an input to #B we have #B(A) = #MONSAT(g(A)) - h(A).

Suppose we have a problem #B € #[1,-1VAR and a structure A over o. Then, there exists
a formula v of the form (Y, Z,X) = ¢(¥,Z) A X(Z) such that #B(A) = |{(X) : A |=
VYIZY(Y. 7 X)),

The formula V?H?@b(?, Z, X)) can be written in the form

ANV #(@.5)Ax(D).

TeAT FealZl

By substituting first-order subformulas by T or L and simplifying, we obtain x,, =

niy ne2

— —
/\ \/ X(b4y), where each b;; is a tuple of first-order constants. To define xy ,, we have
i=1j=1
simplified the subformulas containing 1 and T. As a result, there may be some combinations of
the second-order variable X and first-order constants that do not appear in xy ,. Let n(.A) be the

%
number of these combinations. The last transformation consists of replacing every X ( b ; ;) with
ny ne

a propositional variable z;;, so we get the output of the function g, which is g(A) := /\ \/ T j.
i=1j=1
This formula has no negated variables, so it can be an input to #MONSAT. Finally, since the

missing n(.A) variables can have any truth value, we have #B(A) = #MONSAT(g(A))-2". O
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#MONSAT does not admit an fpras if a variable can appear in 6 clauses unless RP = NP.
In the case of monotone CNF formulas where each variable appears at most 5 times, the

problem has an fptas [114]. So, we have the following result.

Proposition 5.5. #[1>-1VAR € FPRAS unless RP = NP.

Inclusion of #T[1,-1VAR in TotP

Theorem 5.6. #[1,-1VAR C TotP.

Proof. ##MONSAT € TotP, since it has an easy decision version; a monotone CNF formula has
always a satisfying assignment, the one in which every variable is set to true. Also, TotP is closed
under product reductions by Proposition 1.10. Thus, every counting problem in #[1,-1VAR
belongs to TotP. O

The following corollary can be obtained using standard reductions between counting prob-
lems. However, it is interesting that any problem in #I[1>-1VAR inherits positive results for

#MONSAT, since product reductions preserve the existence of fptas and fpras [132].

Corollary 5.2. (a) #VC, #1IS, and #EC admit a fully polynomial-time deterministic scheme

(frtas) in graphs with mazximum degree 5.

(b) #DS admits an fptas in graphs with mazimum degree 4.

Proof. Consider #VC. If each vertex has degree at most 5, then after the reduction to #MON-
SAT, we come up with a formula which is equivalent to a monotone formula in which every
variable appears in at most 5 clauses. But #MONSAT restricted to such inputs, admits an

fptas [114] and product reductions preserve the existence of fptas (or fpras) [132].

Similar arguments hold for #IS, #DS, and #EC as well. O

Remark 5.1. Corollary 5.2 is not surprising. We could obtain the same result via immediate
reductions from #VC, #IS, #DS, and #EC to 4MONSAT. In addition the following algo-
rithms are known for the aforementioned problems: (a) #EC admits an fptas [115], (b) #1S in
graphs with maximum degree 5 has an fptas [155], (c) the problem of counting dominating sets

in reqular graphs admits an fptas when the mazimum degree of the graph is <5 or > 199 [37].

The introduction of #M2-1VAR can yield similar results for any problem that lies in this

class.
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Although completeness of #MONSAT for #[1>-1VAR under product reductions, is the first
completeness result for #MONSAT under reductions stronger than Turing, we would like to
prove #MONSAT complete for a class under reductions for which the class is downwards closed.
This is a question raised by Hemaspaandra et al. [$1]. Regarding the closure under parsimonious

and product reductions of #MONSAT and #[1,-1VAR, we can say the following.

Proposition 5.6. (a) Closurecy (#MONSAT) C Closurecp (#MONSAT).

rs

(b) Closurecp (#0M2-1VAR) C Closurecp (#MONSAT) C Closurecy (TotP). The first inclusion
is strict unless the class #TM>-1VAR is closed under product reductions. The second one is

strict unless #MONSAT is complete for TotP under product reductions.

Relationships among TotP, FPRAS, and the classes defined here are depicted in Figure 5.2.

#PE — #P

™

TotP — FPRAS

/L

Y QSO(¥,-25AT) #M,-1VAR

1
#RHIM;

Figure 5.2: Inclusions and separations in the case of P = RP % NP. The following notation is used: A — B

denotes A C B, A4 B denotes A € B, and A — B denotes A C B.

5.2 A logical characterization of TotP

The logical characterization of #P is based on writing a 3QSO(FO) formula that is essentially
a sum over all accepting paths. In the case of TotP we start from the logic XQSO(3SO) which
allows us to express the existence of a branching. Once we find a branching we want to add 1
and continue recursively. Since the Turing machine is of polynomial time, the recursion suffices

to be of polynomial depth.

So, at first, we describe a logic, namely R¥Qszg0, which is more expressive than QSO (FO).
It is ¥QSO(3S0) equipped with recursion. In this logic, we can express every TotP problem

based on the fact that it is self-reducible. We are going to give an example for #DNF.
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Formally, in Subsection 5.2.1, we define logics equipped with a polynomially-bounded par-
tial fixed point operator over functions f : (P(A*))! — N, which means that a function f takes

I sets in P(A¥) as arguments (in other words, [ relations of arity k).

5.2.1 Functions over relations and recursion in QSO

First, we add the infinite set SOFS of second-order function symbols f to XQSO(3S0O). Each
symbol has an associated arity, denoted by arity(f). The set of SOx-FXQSO(3SO0) formulas

over a vocabulary o is defined by the following grammar:
a=¢ | s | f(X1,..X)) | (a+a) | (a¢-a) | EX.« (5.2)

where f € SOFS, arity(f) = [, and Xj,..., X; is a sequence of second-order variables with
arity(X;) = k for every 1 < i <[. Subscript k designates that for all i € {1,...,1}, X is of arity

k. As we already explained, ¢ is restricted to be an existential second-order formula.

Given a structure A over o, F' is a function assignment for A, if for every f € SOFS with

arity(f) = [,
F(f): (P(AM)Y = N

Given first- and second-order assignments v and V' for A, respectively, it holds that:

[[f(Xh ~-'7Xl)]](A7U>V> F) = F(f)(V(Xl)a s V(Xl))

The domain of the function symbols we introduce here, consists of sets of k-tuples of the
universe. That’s why we call them second-order function symbols. Function symbols defined

in [15], representing functions h : A" — N, can be seen as first-order function symbols.

In the same way, given a logic L, we obtain SOx-FL by adding the function symbols in
SOFS into the syntax.

We define now the logic RSO,-3QSO(3S0), where RSOy stands for second-order re-
cursion. The set of RSO-XQSO(3SO) formulas over o includes ¥QSO(3ISO) formulas and
the formula [pbfp, a](?), where X = (X1, ..., X)) is a sequence of [ distinct second-order vari-
ables and a(?, f) is an SO-FXQSO(3SO) formula with only one function symbol f with
arity(f) = I. The free variables of [pbfp, a](?) are Xi,...,X; (and f is not considered to be

free).

Finally, RSO-XQSO0O(3S0) = |J, RSOx-XQSO(3S0O). RSO stands for second-order

recursion, QSO represents that addition quantifiers over second-order variables are used, and
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(3SO) represents that ¢ in (5.2) is an existential second-order formula. In sequel we denote the

logic RSO-£QS0(ISO) by R¥Qss0.

Define SOF}, to be the set of all functions h : (P(A¥))! — N. Let A be a structure over
o and [pbfp, a](?) with arity(f) = [. To define the semantics of [pbfp; a}(}), we interpret
a(?,f) as an operator T, on SOFy. For every h € SOFy, and (S, ..., S;) € (P(A¥))!, it holds
that:
Ta()(S) = [[a(X, (A V. F)

where V' is a second-order assignment for A such that V(X;) = S;, i € {1,...,1}, and F is a
function assignment for A such that F'(f) = h.

Our first attempt would be to use the Tarksi-Knaster Theorem to prove that a least fixed
point exists for an order-preserving 7,. In this direction, we define the partial order <y on
SOF}, as follows: For two functions f,g with arity(f) = arity(g) = [, it holds that f <; g if
f (?) < g(?) for every 5. However, the requirement of (SOF}, <) being a complete lattice,
is not satisfied. A second idea would be to consider the support of a function and define h to
be a fixed point of Ty, if supp(Tn(h)) = supp(h) [15]. But there are cases in which the support

of the operator reaches a least fixed point, but the function we are interested in, still increases.

We resolve this problem by defining the partial fixed point of an operator T, along the
lines of [112]. Let us consider the sequence of functions {h;}ien, hi @ (P(AF))! — N, where
ho(?) = 0 for every S e (P(A¥))! and let h; 1 be defined as T,(h;) for every i € N. Then,
there are two possibilities: either there exists some n € N such that hn+1(?) = hn(g) for every
K € (P(AF))!, and thus we say that hj = h,, for every j > n, or there is no such n. If the first

case holds, then n < olAI" So, it would be reasonable to define pfp(T,,) as follows:

fn if fn:fn-i-l’

fo  if fu # fayq for all n < 204

pfp(TOc) =

Here we slightly change this definition. Let m be the maximum arity of a second-order variable
bounded by a quantitative quantifier, i.e. ¥ or II, in . Then, we define the p-bounded (partial)
fixed point of an operator T, to be the following.

In if f,, = fn4+1 for some n < |A|™

pbfp(T,) =
fiapm i fo # fasr for alln <A™

A .Chalki Thesis 94



Chapter 5 Descriptive complexity of counting problems with easy decision version

We define the semantics of [pbfp a](?) to be the p-bounded fixed point of T,. More precisely,

an7 if f,, = fni1 for some n < |A|™,
[ty o)) vy = ) " A% )

fl(V(?)) otherwise, where [ = |A|™.
We give an example of a TotP problem that belongs to RXQsso.

Example 5.1. The problem #DNF is in RSO1-£XQSO(3S0). Let o = {V!, D!, Pos?,

Neg?} be the vocabulary of a DNF formula and Ay = (A = {v1,va, ..., vy, d1, ...,
dn},V,D,Pos, Neg) be a structure over o, encoding an input ¢. The universe contains n
variables and n' disjuncts, relations V(v) and D(d) indicate that v, d are a variable and a
disjunct repsectively, whereas Pos(d,v) (resp. Neg(d,v)) means that variable v appears positive

(resp. megative) in disjunct d.

#DNF is defined as the p-bounded fized point of formula dnf(True, False, f) given below.

dnf(True, False, f) :=3T sat(T') A EndOfRecursion+
ST.EF. (1 (Th) Afu(Fy)) - f(Th, Fr)+
YTo.XFy. (to(To) A fo(Fo)) - f(To, Fo)
Now we give details for each subformula of dnf(True, False, f). The idea behind this formula is
that we start with empty relations True and False and at each recursive step, we fix a variable

v; to be either true or false. When all variables are set to either true or false, the recursion

ends.

1. EndOfRecursion := Vou(V (v) — True(v)V False(v)). Formula EndOfRecursion is true when

we have assigned a truth value to every variable.

2. sat(T) := 3dvu(D(d) A (Pos(d,v) = T'(v)) A (Neg(d,v) — =T (v)) A (T'rue(v) — T(v)) A
(False(v) — —T(v))). Formula sat(T) states that there is a satisfying assignment for the
formula ¢, when we have fixed some variables to either true or false. The fixed truth values

are given by the relations True and False.

3. The minimum variable that has not been assigned a truth value yet can be defined by the
formula min(vpin) := EId(Pos(d, Umin) V Neg(d, vmm)) A (ﬂTrue(vmm) A ﬂFalse(vmm)) A
Vo ((—True(v) A —False(v)) = v = Umin).

4. Formula t1(T1) says that there exists a variable that appears in formula ¢ and has not been

assigned a truth value yet and sets the value of the minimum such variable to true. So,
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t1(Th) = Fvmin (min(vmm) A T1 (Vmin) N Vu(u # Umin — (T1(u) < True(u)))). In other
words, t1(T1) defines the relation Ty that agrees with relation True on the values of all
variables, except one; Th is also true for the minimum variable assigned neither to true

nor to false at the current step of recursion.

5. Formula f1(F1) defines relation F to be exactly the relation False. So, f1(F1) = Yv(Fi(v) <>
False(v)).

6. Similarly, to(Ty) defines Ty such that it is the relation True, whereas fo(Fy) defines Fy to
be the extension of False that also holds for the minimum variable not assigned to either

true or false yet.

Then, [[[pbfp;dnf|(True, Fasle)]](Ay, V) gives the number of satisfying assignments of
¢, where V is a second-order assignment for Ay such that V(True) = () and V(False) = 0.
Note that after n steps all variables are set to true or false and the recursion requires n + 1
steps until fo, f1,... stabilizes. The maximum arity of a second-order variable bounded by the
quantifier ¥ is m = 1 and the size of the universe is n+n'. So, #DNF(Ay) = fnt1(0,0), where
n+1<|A™=n+n.

5.2.2 A logic for expressing TotP functions

Let N be an NPTM that has a binary computation tree and uses time n® — 1 for inputs of size
n. We assume that N is the quintuple N = {Q, %, 4, qr,qr}, where Q = {qo, ..., q4—1} is the set
of states of size |Q| = d, ¥ = {0, 1} the alphabet, ¢; = qo is the initial state, and gr = gq—1 is
the final state. Let also k¥ = max{c, [logd|}. Here we assume that the tape of machine N is of
length n* and that once the machine accepts or rejects, it clears its tape, it moves its cursor all
the way to the left, and enters a unique final state gp. The transition relation § maps a pair in
Q x (X U{.}) to at most two triples in Q x (X U{_}) x {Stay, Left, Right}. If 6 maps a pair
to only one triple, then we say that only choice 0 is possible. An input x of size n is encoded

by a structure A, = ({0,1,...,n — 1}, B), where B represents the positions where z is 1.

We are going to describe the formula tot(7, E, P,Q, f) such that the interpretation of
[pbfp ¥ tot](T, E, P, Q) gives the number of branchings of N, which is sufficient by Remark 1.4.
Second-order variables T' (contents of the tape), E (end of zeros and ones on the tape), P

(position of the cursor), @ (state of the machine), each of arity k, will encode a configuration

of NPTM N.
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To construct tot we need the following subformulas.

DetComp(So, ..., Sm, t« ) which expresses the existence of a deterministic
computation on an input, encoded by the k-ary relations T, E, P, () until

. —
time t,.

NonDetChoice(Sp, ..., Sm, t« ) which expresses that ¢, is the first time step

a nondeterministic choice is made during the computation.

— .
Ai(So, ..., S, T;, By, P, Qi ti ) which defines the contents of the tape,
the position of the cursor, and the state of NV at time t_: + 1 if nondermi-

nistic choice i was made at time t,,where ¢ € {0,1}.

Formula DetComp(Sp, ..., Sm, z) is the formula given in the proof of Fagin’s Theorem [35]

with a few modifications.

DetComp(Sp, ...,Sm,t_:) :=input(Sp, ..., Sm) A transition(Sp, ...,Sm,t_*>)/\
nonfinal(S, ..., Sm, z) A deterministic(S, ..., S, t_*>)

where S;, 0 < ¢ < m, are 2k-ary relations such that SZ(?,?) encodes that cell & contains
the symbol i at time ? Symbol ¢ is one of 0, 1, - when the cursor is not on cell ?, or a
combination (¢,0) € @ x {0,1, .}, when the cursor is on cell &. Recall that the input structure
has n elements ordered by a total order <, so we can use k-tuples of these n elements, to encode
n* cells (or time steps) and define the lexicographic order on them, which again we denote by

<. We are going to use the expressions 5 < 7, T < 7, T+ 1, 5+ 1, Smaz, Smin Which are

—

all definable in first-order logic. Also, when we write s{, we mean the i-th smallest cell with

respect to <. We use similar notation for time steps.

As for the second-order variables T, E, P, Q, T(5}) is true iff cell 5] has the symbol 1, E(s;)
denotes that all cells greater than s; have the symbol ., P(?Z) indicates that the cursor is on
cell 57, and Q(?f) means that N is in state ¢;. When we write E(?;) (resp. P(?Z), Q(EZ)), it
is a shorthand for E(3]) AVU (U # 5 — —E(W)) (vesp. P(5;) AVU (U # 5; — -P()),
QG AU (T # 5] — ~Q(T))).

From now on, we denote the quadruple (T, E, P,Q) by 8 and the sequence (S, ..., Sp)
by ? Note that we need both sequences 8 and ? Relations 8 encode a configuration,
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let’s say ¢, which is the starting point of a deterministic computation. Then, ? encode the
deterministic computation of IV starting at ¢. When the first nondeterministic choice is made,
the configuration of the machine after this choice is copied again into 8 and the recursive

computation continues.

Formulas input, transition, nonfinal, and deterministic are defined below. Given a configura-
tion of NV, formula input is used to force sequence ? = (S0, ..., Sm) to encode this configuration
at time 6> The configuration is not necessarily the initial configuration of NV and it corresponds
to some state ¢;, i € {0,...,d — 1}, some contents of the tape, and a position of the cursor.
These information will be passed to ? and the time will be set to ﬁ So, for each state ¢;
we will need a different subformula state;, 0 < 7 < d — 1, which has free second-order variables

§i = (80551552, 500,405 S(1,01) S(Log0))-

state;(S)) = V& (E(?) VU (U <F = (-T(Z) N -P(q) — So(, 0) )A
T(W)AN=-P(W) — S1(U, O ))/\

T(W)ANP(T) — s(l,qi)(ﬁ, 0))A
7> > ﬁp(ﬁ) — S_(2,0)A

(
(
(=T(Z) AP(A) — S(o,4)(, O ))
(
(
(P(T) = S_a(@,0))))

Furthermore, for every tuple (7,?), we want exactly one S;, 0 < [ < m, to be true. For
example, if for some @ we have that T'(7 )AP(7) is true, this should imply that S, (7 0)A

/\ —|Sj(7, 6)) is also true. So, we add similar conjunctions to every subformula above, such
j?é(]wqi) — N
that whenever SZ(V, 0) holds, no other Sj, j # [, holds for the tuple (7, 0).

Now, we can define formula input as follows.

input(?) = /\ V7(7 =5 AQ(T )) — state; ?Z
0<i<d—1
Formula transition describes all the deterministic transitions that can be made by N until

. —
time step t«.

transition(?7 t_:) =YV
AN Su(F =L E)ASH(F, E)ASH (T +1,T) = iy (3, + 1A
(il,ig,ig)—)d(i4)

A Si(F —LT)ASL(F. T)AS,(F+1,7) = -5,
iy
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where (i1, i2,43) =% (i4) means that the configuration corresponding to s — 1,5 and & + 1
containing i1,72, and i3, respectively, is mapped deterministically to the configuration that
cell § contains i4. In other words, the conjunction is over all possible transitions that are
deterministic. Trivial transitions for cell contents that do not change and a conjunction which
states that for every tuple (?, ?) with 7 > t—: no Sj is true are also included in the formula

transition.

Formula nonfinal guarantees that the computation has not reached its final state before
. —
time ¢, .

nonfinal(?, E:) = V?(?

<t = 25 gm)(

Formula deterministic states that the computation from time 6> until time t_*> — 1 is deter-
ministic. Equivalently, at all time steps before ﬁ, only choice 0 can be made by N, since there
is no possibility of a branching. Let 71, ...,7, € @x{0,1, _} be exactly the symbol combinations
that lead to a nondeterministic choice. Then deterministic can be written as follows:

deterministic( S, 7) =VIVF (T <t = N\ =S(3.7)).

YE{Y1,- 7}
Formula NonDetChoice( S, t, ) expresses that ¢, is a time step at which a nondeterministic

choice is made by N.

NonDetChoice(?, t_*>) =3% \/ Sv(?> t_:)
76{’717"'771)}
Formula Ai(ﬁ,a, t_:), i € {0,1}, defines relations a = (T;, E;, P;, Q;), which encode the
configuration of N at time step z + 1, if nondeterministic choice ¢ was made at z

%
55, t« ) represents that

For example, if nondeterministic choice 1 was made at ¢, and S’(qus)(
this choice was made while N was in state g5, the cursor was on cell ?3, and 5_3> contained the

symbol 0, then the following formula encodes the transition that is made.
— — s =
(S5t (36, ) A oo A S(0.5) (35, 82) A oo A iy (Smams £2)) —

(Q1(53) A Ex(5i3) A Pi(533) A /\ Ti(¥))
¢ contains 1
at time ¢ty +1

where s_lg is the greatest cell containing either 0 or 1, s_lg € {8_5, 53, 5_4>} is the position of the

cursor, and ¢;, is the state of N at time step ¢. + 1. The first line represents the contents of
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the tape at t,. We define formula ’yjAl(?, a , t+) to be a conjunction of such formulas so that
it describes the transition from any configuration of the machine where Svj(?, t—:) holds for

some ¢, to the configuration determined by choice ¢. The latter configuration is encoded by

T;, E;, P;, Q;. So, for i € {0,1}:

— . —
Ai(ﬁa av t*) = /\ ’YJA2<§7 aa t*)
Je{1,....p}
Finally, let branching(?,t_:) = DetComp(?,t_z) A NonDetChoice(?,t_*)). Formula tot is

defined as follows.

tot(a,f) :zEI?EIt_*> branching(?, t_*>)+
2Co. (35 3%, (branching(S, 2) A Ao(S, Co, 1)) - £
EC_>'1. (EI?Elt_*) (branching(?, t_*>) A Al(?, (71, t—:)) - f(

We have that
toty (x) = [[[pbfp; tot] (C)]](Aq. Vi)

where V7 is a second-order assignment for A4, such that V;(T') = Ty, Vi(E) = Ey, Vi(P) = Py,
Vi(Q) = Qr, and T7, Er, Vi, Q1 are relations which represent the initial configuration of N. We

describe how this is possible by giving an F'O formula that defines 17, E7, V7, Q7.

Let B be the relation that encodes the input structure as a binary string of length n. We
assume that the cursor is on the first cell when N starts its computation and the input ends
at the (n — 1)-th cell. Let inputrulej, 0 < i < 2™ — 1, be formulas that describe how relation B

defines relation 7. For example, inputruleg(T') = Yz—B(z) — V& ~T(¥). Then,

1ﬂ[ = HTIHEIHPIHQ[ (QI(S_S) A E[(Sn_l) A P](S—U>) AN /\ inputrulei(TI))
0<i<2n—1

Note that tot is an RSOy-3XQSO(3SO) formula. The operator Tior reaches a fixed point
in polynomially many steps; since the machine N runs for n¢— 1 steps, the formula nonfinal will
become false after at most n®—1 recursive steps. So, fne(17, E1, Pr,Q1) = fne—1(T7, E1, Pr, Q7).
The maximum arity of a second-order variable bounded by the quantifier 3 is k¥ > ¢. So the

interpretation of [pbfp, tot](a) returns the correct value, which is the number of branchings of
N.
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A formula for counting the number of computation paths of N.

We can also write a formula, such that its interpretation is equal to the total number of paths

of N. Let FinalState be the formula
input(?) A transition(ﬁ, t_:) A deterministic(?, t_:) A final(?, t_:)

which is true if the machine reaches a final state at t, after a deterministic computation starting

%
from O.
totpaths(a, f) = H?Ht_: FinaIState(?, t_*>)+
%
Co))+

EC_>’1. [EI?EIE: (branching(?, t_*>) A Al(?, 5{, t_*>)) f(a)]

Z‘C_>’0. (EI?EIt_*) (branching(?, t_:) A Ao(?, C—>’o, t_:)) f(

In this case it holds that

[ [pbfp totpaths](ﬁ) ](Az, Vi) = #(paths of N on input x) = toty(z) + 1.

5.2.3 A logic that captures TotP

Actually, we do not need the expressive power of RXQ3g0 to write formula tot. First, notice
that all second-order formulas in tot can be reduced to propositional formulas the satisfiability
of which belongs to P. In more detail, they are reducible to disjunctions of Horn formulas.

Second, the formula

3?315_,3 branching(?, t_*>)

appears as a subformula in every summand that the function symbol f appears. Thus, we can

write tot in the form

tot(X, f) =3X 37 ¢o(X, T)+
NY 3X 37 (00(X, ) A n(X, V) - F(V)+
SY 3XT7 (60(X, 7) A 6a(X, V) - (V)
Finally, formula Ag (resp. Ar) defines unique relations Ty, Eo, Po, and Qg (esp. T, Er,P1, and

Q1). Although the operators X7y, X FEy, X Py, and Q) require the evaluation of the succeeding

formula
Hgat—z (branChing(§7 t—*>) A A0(§7T07E07 Fo, QU? t—*>)) : f(T()v Ey, Fo, QO)

for every possible assignment for Tg, Ey, Py, Qq, the formula will be evaluated to zero for all
assignments but one. For the unique assignment defined by Ap, the formula will be evaluated

to some natural number.
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In what follows, first we give some formal definitions based on the observations we just

made. Then, we define a subclass of RZQ350 and show that it captures the class TotP.

Definition 5.4. We say that ¢ is an SOE (SO-Easy) formula if ¢ is an existential second-
order formula ¢ = 3?1/}(7), where

° 7 = (X1,..., Xg), k € N, is a sequence of second-order variables and

° 1/1(}) is a Xo-Horn formula, which means that v is of the form
$(X) =37 VT (X, 7. 7)

where each x; is an unquantified first-order formula in CNF form, in which each clause
may contain negative occurrences and at most one positive occurence of a relation Xj,

1<j<k.

For an SOE formula, E stands for easy, since its satisfiability is reducible to the satisfiability
of a propositional formula, which can be solved in deterministic polynomial time. In fact, there

is a product reduction between the counting versions of these problems.

Let #DI1sJHORNSAT denote the problem of counting satisfying assignments of a disjuction

of propositional Horn formulas.

Proposition 5.7. Given a structure A and an SOE formula ¢ = 3)4(}1/)(?), the problem of
computing |{<?> A= w(?)}] can be reduced to #DISTHORNSAT under product reductions.

Proof. Formula

¢(Y) = Jdzy...32, \/ Yy1..VYm Xi(?(},mlj...,xn,yl,...,ym)

1<i<t

can be written as \/ \/ /\ Xz‘(?; w,u). Each clause in any x; is a disjunction of some
weA™ 1<i<t uec A™
(positive or negative) X; and atomic formulas. The latter are either true or false in A. If an

atomic formula is not satisfied in A, then it is removed from its clause, whereas if it is satisfied

in A, its clause is removed from the formula.

By the previous transformations, we obtained a formula which is a disjunction of CNF
formulas, each clause of which has some literals of the form =X ](Tl)) and at most one literal of

the form X;(7]), where 1 < j < k and 7] € A2T(X5),

The last transformation consists of replacing every X ](fl)) by a propositional variable z;;.

Let g(A) = \V AV 2 be the resulting formula. Now there may be some combinations of the
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second-order variables X and tuples of elements of A, that do not appear in g(.A). Let n(.A) be

the number of these combinations. Then,
(XY : A= (X))} = #DISTHORNSAT(g(A)) - 2.
O

Definition 5.5. An SO formula ¢(R) with free second-order variable R of arity k, defines R

uniquely if the following condition holds.

For any structure A, if A = ¢(R/S) and A= ¢(R/S"), then (5.4
5.4
for every (x1,...,x) € A* it holds that S(x1, .y mr) iff S’ (21, ..., h).

Remark 5.2. Consider an SOE formula ¢(R) that defines a relation R uniquely and let A
be a structure. Then by reducing ¢ to a disjunction of Horn formulas, we can find the unique

relation S such that A= ¢(R/S).

Definition 5.6. We say that a formula o is a XQSO(SOE) formula over a vocabulary o if it

1s given by the following grammar

a=¢ | s | (a+a) | (a-a) | EXP(X)oa(X) (5.5)
where ¢ is restricted to be an SOE formula, ¥(X) is an SOE formula that defines X uniquely
and o € {A,-}.

The set of RSOy-XQSO(SOE) formulas over o is the set of XQSO(SOE) formulas
together with formula [pbfp B](?), where 3 is of the following form:

37 é0(2)+

SY.3Z (60(Z) A (Z2,7)) - f(¥) +

+
SY.3Z (60(Z) A 6n(Z2, 7)) - £(T)

where X = (X1, Xn), ¥ = (Y,..., ), with arity(X;) = arity(Y;) = k, k € N, for every

G €L, un}, Z = (21, s Zon) with arity(Z:) = ki, i € {1,....m}, and 32 (60(Z)A6i( 2, 7)),

i € {1,...,r), defines relations ¥ uniquely.

Definition 5.7. We say that f € RSO -XQSO(SOE) if there exists an RSOk-XQSO(SOE)
formula o such that [[a]](A) = f(A), for every finite ordered structure A over o.

Analogously to REQ3sp, we denote the union of RSO-XQSO(SOE), for every k € N, by
REXQsoE-
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Definition 5.8. REQsor = U RSO,-~ZQSO(SOE).
k

Now we prove the main theorems of this work.

Theorem 5.7. Every function in TotP belongs to RXQsoE.

Proof. We prove that formula tot is a formula in REQsoE.

e Formula EI?EIE) bra nching(?, t_:) can be written in the equivalent following form.

35 3% branch(S, %) := 3531, 357

V

YE{1s T}

input A transition A nonfinal A

5. 10).

deterministic A S, (s{, ts

This formula is an SOE formula, since the first-order formula

EEEAY/
Ye{V1,--7p}

is a Yo-Horn formula.

5.1)

input A transition A nonfinal A deterministic A S, (51, t.

e Formula A;, i € {0,1}, can be easily written as an equivalent ¥2-Horn formula. For

example, subformula

— — =
(S5 (58, ) A oo A S(0.g5) (85, 82) A oo A iy (S £4)) —

(Q1(53) A Ex(5i3) A Pi(533) A

can be replaced by

¢ contains 1

at time t.+1

A

¢ contains 1
at time t.+1

A NS,
A NS,
Ao A Sy

T1(¥))

Recall that in fact we have Ei(5;) A Ni i, —E1(5}) instead of F1(5;,), which also gives

the right form here. The same holds for relations P; and Q.

e Formula Ei?EIt_*> (branching(?,t_:) A A;(?,a,t_ﬁ)), i € {0,1}, satisfies condition (5.4)

for relations T;, E;, P;, Q;.

Note that, given a structure A, there are unique relations

S1, ..., Sm, such that encode the computation of the machine N on input A. Furthermore,

formula A; gives unique relations 7T;, E;, P;, Q); which depend on 57, ...

» Sm.-
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e It is immediate from the previous facts that tot is of form (5.6) with only two summands.

O

It remains to prove that every function in RXQsog is a TotP function.

Theorem 5.8. Every function in RXQsop belongs to TotP.

Proof. We need to prove that for any formula o € R¥Qgog there is an NPTM M, with a
second-order assignment V' stored in memory, such that for every input structure A, [[a]](A, V) =

totyr, (A). Equivalently,
#(paths of M, on input A) = [[a]](A,V) + 1.

We prove this by induction on the structure of a.

o If « = ¢, then ¢ is an SOE formula, so it can be verified whether (A, V) E ¢ in deter-
ministic polynomial time. If (A, V) | ¢ is true, then M, generates two paths and halts.

Otherwise, it just halts.
o If « = s, then M, generates s + 1 paths and halts.

o If either & = a1 + a9, or @ = g - g, then by induction hypothesis, there are M,,,
i = 1,2, such that #(paths of M, on input A) = [[a;]](A, V) +1. There are also NPTMs
M, such that #(paths of M/ on input A) = [[o;]](A, V) as described in the proof of

(67

Proposition 1.8.

— If @« = aq + ag, then M, simulates M/, , and M, &2 nondeterministically and generates

an additional (dummy) computation path.

— If @« = a1 - ay, then M, simulates M/, and M/, sequentially and generates an

additional (dummy) computation path.
So, in both cases, #(paths of M, on input A) = [[a]](A, V) + 1.

o fa=%YB(Y)=3Y9(Y)o3(Y), then M, can determine the unique relation Y, which
is defined by 1), in deterministic polynomial time and then evaluate 3’ in polynomial time,

by induction hypothesis.

o If a = [pbfp; B](?), then 8 has form (5.6) and M, can evaluate [[@]](A, V) as follows.
It starts a recursive computation on input S where ? = (Xy,...,X,) are replaced by

V(X1),...,V(X,). First, it checks whether A = EI?(;SO(?) is true.
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1. fAE 37¢0(7) is false, then M, halts.

2. Otherwise, for every summand determines the unique relations 7% which are defined
by 37(¢0(7) A qbz(?, ?)) For every ?Z, it checks whether f(?z) is not zero. This
can be done by checking A = 37gb0(7), where Y are replaced by ?1 For every ?z
with f (2) # 0, M, generates a different path. On each of the generating paths, the
computation continues recursively on input 5(X1/Y5,, ..., Xn/Yi,, ).

3. If M, is at the first step of the recursion and there is at least a sequence 2 such that
f (?l) # 0, then it also generates a dummy path, in which it does nothing but halts.

By definition of the p-bounded fixed point of the operator T}, if the chain { f; } jen stabilizes
for some j < |A|, where k is the arity of each X, it means that after k recursive steps, M,
evaluates formulas to zero on every path and halts. In the case of the chain not reaching
a fixed point, then M, stops the recursion after |A|* steps. In both cases, the number of

paths of M, is equal to [[[pbfp; B](?) J(A, V) + 1. O

Corollary 5.3. TotP = RXQsoe over finite ordered structures.

5.2.4 An alternative way to define RXQsor and capture TotP

Although the logic just defined captures TotP, it seems that natural TotP problems cannot be
expressed using this language in an easy and natural way. That’s why we provide an alternative

(and very similar) definition of R¥Qgog, that will help us to express #DNF.

Definition 5.9. We say that a formula o is a XQSO(SOE) formula over a vocabulary o if it

s given by the following grammar
a=¢ | s | (a+a) | (a-a) | EXP(X)oa(X) (5.7)
where ¢ is restricted to be an SOE formula, ¥(X) is an SOE formula that defines X uniquely
and o € {A,-}.
The set of RSOy-XQSO(SOE) formulas over o is the set of XQSO(SOE) formulas
together with formula s + [pbfpf ﬁ](?), where s € N and (8 is of the following form.:
37 (601(Z) A doal(Z)) +
SY.3Z (601(Z) A 61(Z,7)) - F(V )+ (5.8)
SY.37 (00(Z) N 62(Z, 7)) - £(Y)
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where ? = (X1,....Xn), 7 = (Y1,...,Y,), with arity(X;) = arity(Y;) = k, k € N, for every
J€{ln}, Z = (Zu, ., Zon) with arity(Z:) = ks, i € {1,...m}, 3Z (dos(Z) A (2, 7)),
i € {1,2}, defines relations 7 uniquely.

Definition 5.10. We say that f € RSOx-XQSO(SOE) if there exists an RSOx-XQSO(SOE)
formula o such that [[o]|(A) = f(A), for every finite ordered structure A over o.

Definition 5.11. RZQsoe = | JRSO,-XQSO(SOE)
k

In the following example, given a DNF formula ¢, a binary tree is constructed such that

the number of satisfying assignments of ¢ is equal to

e the number of its paths,
e or equivalently, the number of its branchings minus 1.

Example 5.2. Let ¢ be an input DNF formula and x1,...,z, be an enumeration list of its
variables. Consider an NPTM M that makes the following recursive computation on input ¢.
M determines in deterministic polynomial time whether there is a satisfying assignment for ¢.
If the answer is no or the enumeration list is empty, it halts. Otherwise, M picks the first
variable appearing in the list, namely x1, and checks whether there is a satisfying assignment
for ¢, i.e. ¢ with x1 assigned to false, and whether there is one for ¢1, which is obtained from

¢ by making 1 true. M removes x1 from the list and then

o if the answer is yes for both cases, M chooses nondeterministically to make x1 either false

or true and proceeds recursively with ¢g and ¢1, respectively.

e if the answer is yes for only one case, M deterministically proceeds recursively with the

corresponding formula, i.e. either ¢g or ¢1.

Since M removes at least one variable from the list at each step, the depth of the recursion is

polynomial in the size of ¢.

The computation of M on input a DNF formula with three variables is depicted in Fig-
ure 5.5.

Example 5.3. The problem #DNF belongs to REQsog since it holds that #DNF(¢) = [[1 +
[pbfp s dnfa](True, Fasle) ||(Ag, V), where dnfa is given below.
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(x1 ANx3) V (mz2 A x3)

(—|$2 A\ xg) x3 V (—LTQ A I‘g)
| s AN
X = false X9 = false x5 = true
I Ve N
T3 xr3V T3 T3
| | |
X3 = true xg3 = true x3 = true
| | |
stop stop stop

Figure 5.3: NPTM M for which it holds that tota(z) = #DNF(¢), where x is a binary encoding of ¢ =
(.%‘1 A\ J23) Vv (—L%‘Q A 333).
dnfa(T'rue, False, f) :=
AT Fmin (Min(Vymin) A T (Vmin) A sat(T)) A (3T Fmin (Min(Vmin) A =T (Vmin) A sat(T))+
ST1.SF. ((EITEIvmm(min(vmm) AT (Vmin) Asat(T)) Aty (T1) Afr(F)) - (T4, F1)>+
STy S Fo. ((EITEIUmm(min(vmm) AT (Vmin) A 5at(T)) Ato(To) A fo(Fp)) - £(To, Fg)).
The second-order assignment V' and subformulas appearing in dnfy are defined in Example 5.1.

Note that [ [pbfp; dnfa](True, Fasle)||(Ay, V) is equal to the number of branchings that

exist in an NPTM constructed as in Example 5.2.

Theorem 5.9. FEvery function in TotP belongs to RZQsoE.

Proof. The proof is the same as the proof of Theorem 5.7 where only the last case has changed.
Formula tot is of form s + [pbfp ﬁ}(?), where s = 0 and S is of form (5.8) with H?Qbol(?) =
EI?(bOQ(?) to be the formula EI?EIQ branching(?, t_*>) O

Theorem 5.10. Fvery function in REQsog belongs to TotP.

Proof. We need to prove that for any formula o € R¥XQgog there is an NPTM M, with a
second-order assignment V' stored in memory, such that for every input structure A, [[o]](A, V) =

totar, (A). Equivalently,
#(paths of M, on input A) = [[o]](A, V) + 1.
We prove this by induction on the structure of a.
o If o« = ¢, then ¢ is an SOE formula, so it can be verified whether (A, V) |= ¢ in deter-

ministic polynomial time. If (A, V) | ¢ is true, then M, generates two paths and halts.

Otherwise, it just halts.
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e If @ = s, then M, generates s + 1 paths and halts.

o If either a = a1 + a9, or @ = a1 - a9, then by induction hypothesis, there are M,,,
i = 1,2, such that #(paths of M,, on input A) = [[a;]](A,V)+1. There are also NPTMs
M/

(€7

such that #(paths of M/, on input A) = [[as]](A, V) as described in the proof of

Proposition 1.8.
— If @ = a1 + ag, then M, simulates M/, and M/, nondeterministically and generates
an additional (dummy) computation path.
— If @« = a1 - ay, then M, simulates M/, and M/, sequentially and generates an
additional (dummy) computation path.

So, in both cases, #(paths of M, on input A) = [[o]](A, V) + 1.

o If a=XY.B(Y)=%Y.9(Y)of'(Y), then M, can determine the unique relation Y which
is defined by % in deterministic polynomial time and then evaluate 5’ in polynomial time

by inductive hypothesis.

e If a = s+ [pbfp; ﬂ}(?), then 8 has form (5.8). M, evaluates [[«]](A,V) as follows. It
generates s + 1 different paths. On each of the first s paths, it halts. On the last path,

it starts a recursive computation on input 8 where Y = (Xy,...,X,) are replaced by
V(X1), ... V(X,). First, it checks whether either A = 3Z¢o,(Z) or A = 3Z¢0y(Z)
holds.

1. If both do not hold, then it halts.

2. If both hold, M, generates two different paths, one for each ¢p,. On the path
that corresponds to ¢g;, @ € {1,2}, it determines the unique relations ?z which are
defined by 37(@1)07;(7) A QSZ(?, 7)) and it proceeds recursively on input 8 where 7
are replaced by ?Z

3. If exactly one of them holds, w.l.o.g let’s assume that only A = 37@501(?) is true,
then M, determines the unique relations ?{ which are defined by 37 ((]501(7) A
¢1(7, 7)) and it proceeds recursively on input 5 where Y are replaced by ?1

By definition of the p-bounded fixed point of the operator Tj, if the chain {f;};en sta-
bilizes for some j < |A[¥, where k is the arity of each X;, it means that after k re-
cursive steps, M, evaluates formulas to zero on every path and halts. In the case

of the chain not reaching a fixed point, then M, stops the recursion after |A[* steps.
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In both cases, the number of binary branchings of M, on the last of its initial s + 1
paths is equal to [[[pbfpy ,8](?)]](./4, V). The number of all paths of M, is equal to
s+ [ by BI(X) A V) + 1, 0

5.3 Discussion of results

Building upon previous work, we gave logical characterizations of two subclasses of TotP, namely
Y QSO(X,-2SAT) and #[M,-1VAR, that have natural complete problems. Both these classes are
not subclasses of FPRAS unless RP = NP, since their complete problems #DIsJ2SAT and
#MONSAT, respectively, are AP-interreducible with #SAT. Regarding the latter, which is
complete for #[l1>-1VAR under product reductions, we provided Proposition 5.6, which is about
the closure of #2MONSAT, #I1>-1VAR, and TotP under product reductions and their relationship.

Most significantly, we answered an open question in the area of descriptive complexity of
counting classes, about the logical characterization of TotP: RXQsoe = TotP over finite ordered

structures.

For an arbitrary TotP problem and its related binary NPTM M, computing the number
of branchings of M can be expressed in the logic R¥XQsor. Conversely, given a formula «
in R¥XQgoE, there is an NPTM such that the number of its paths (minus one) is the value
of the interpretation of . We achieved our goal by starting with a very rich logic, namely

¥QSO(3S0), and implementing the following steps.

1. We expressed the existence of a branching in the computation of an NPTM. This requires
an existential second-order formula which is SOE (SOEasy), i.e. it can be determined

whether it is satisfied in the input structure in polynomial time.

2. We added recursion to our logic, so we can add 1 whenever we find a branching and
continue recursively. Since the Turing machine is of polynomial length, we need recursion
of polynomial depth. Therefore, we introduced a polynomially bounded fixed point (p-
bounded fixed point).

3. We ensured that any sum over a second-order variable has to be evaluated on a single
interpretation of the second-order variable. Also this interpretation can also be determined

efficiently.

The recursion and fixed point introduced in this work could give logical characterizations
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of superclasses of #P, or even #P. They can also be restricted; for example, specific operators,
such as the path operator, using free second-order variables could be defined and added to the
syntax of some logic (as Arenas et al. suggested [15]). We believe that this is an interesting and

meaningful line of future work.

In Section 5.2.4, we provided an equivalent, slightly different logic, that captures TotP and

allows us to express TotP-problems in a more natural and easy way.

5.4 Notes

The two classes XQSO(X2-2SAT) and #I1>-1VAR studied in Section 5.1 were first defined in [24].
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Chapter 6

Counting matchings in graphs with edge colors

In this chapter our aim is to examine counting problems the decision version of which is in RP.
We are interested in the following two problems defined in Chapter 3. In specific, we would like

to conclude whether these problems have an fpras or are hard to approximate.

#EXACT MATCHINGS (Definition 3.7 restated).
Input: A graph G = (V, E), a subset E' C E, and an integer k.

Output: The number of perfect matchings of G' that contain exactly k edges in E’.

#BLUE-RED MATCHINGS (Definition 3.8 restated).
Input: A graph G = (V, Eyeq U Epjye) and two integers w and B.
Output: The number of matchings of size at least B with at most w edges in Ejpe (blue edges)

and at most w edges in E,..q (red edges).

The corresponding decision versions EXACT MATCHING [125] and BLUE-RED MATCH-
ING |120] are known to belong to the class RNC [119, 120] and it is not known whether they can

be solved in deterministic polynomial time.

#BLUE-RED MATCHINGS is at least as hard as #EXACT MATCHINGS, which, in turn, is at
least as hard as #PERFMATCH. To start with, we are going to examine #EXACT MATCHINGS
since it seems to be ‘easier’ than #BLUE-RED MATCHINGS. In general graphs, it is a long-
standing open question whether # PERFMATCH, a special case of #EXACT MATCHINGS, has
an fpras. So, it is reasonable that we focus on restricted classes of graphs, such as planar,

K3 3-free, Kx-free, and bipartite graphs.

Next section discusses related work on problems of counting matchings.
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6.1 Related work on counting matchings

The problem #PERFMATCH of counting perfect matchings in a general graph appeared along
with the definition of the complexity class #P [119] and was among the first problems to be
proven #P-complete under Turing reductions. In fact, its special case #BIPERFMATCH, which
is equivalent to the problem of computing the permanent of an (n x n) matrix with entries in

{0,1}, is #P-complete under Turing reductions [119].

Definition 6.1. #BIPERFMATCH.
Input: A bipartite graph G = (UUV, E).

Output: The number of perfect matchings of G.

Definition 6.2. PERMANENT.
Input: An (n x n) matriz A with entries a;; € {0,1}.

Output: The permanemt of matrix A, that is
perm(A) = Z Hai,a(i)'

Given a bipartite graph G = (U U V, E), the biadjacency matrix A = (a;;) of G is the
1, if(i,j) e E
|U| x |V| matrix such that a;; = . If |U| = |V, then A is a square matrix and
0, otherwise

perm(A) = #BIPERFMATCH(G).

Chien [18] reduced the problem of counting perfect matchings in general graphs to com-

puting the determinant of random matrices. This determinant-based algorithm generalizes the

Godsil-Gutman estimator [70] and has an exponential running time in the worst case. Fiirer
and Kasiviswanathan |72] proposed a simpler randomized algorithm together with some of its
variants.

An fpras for the problem # BIPERFMATCH was presented by Jerrum, Sinclair, and Vigoda [93]
using a Markov chain Monte Carlo (MCMC) approach. This algorithm is also an fpras for com-
puting the permanent of an arbitrary matrix with non-negative entries. However, this Markov

chain is not rapidly mixing in general graphs [139].

In planar graphs—which are also the graphs that exclude K5 and K33 as minors—counting
perfect matchings can be solved in deterministic polynomial time by the FKT algorithm [100,
|. This problem is even in NC [152]. Membership in NC is also true for the same problem

defined on K3 3-free graphs [152|. Counting perfect matchings in Kj-free graphs is in TC [141].
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Counting problem Complexity Exact algorithm
#PERFMATCH in planar graphs FP FKT and NC algorithm
#PERFMATCH in K3 3-free graphs FP NC algorithm
#PERFMATCH in Ks-free graphs FP TC algorithm
#PERFMATCH in Kg-free graphs #P-complete —

Table 6.1: The complexity of #PERFMATCH in some minor-free graphs.

However, it was shown in |55] that counting perfect matchings in Kg-free graphs is #P-complete.
The complexity of the four aforementioned problems is summarized in Table 6.1. Thilikos and
Wiederrecht recently proved in [143] a sharp complexity dichotomy for the problem of counting
perfect matchings in minor-closed graph classes. They provided a polynomial-time decidable
criterion to classify the problem on any graph G which excludes a finite set F of graphs as

minors, as either polynomial-time computable or #P-complete.

On the contrary, the problem #ALLMATCHINGS of counting the matchings of all sizes
is #P-hard under Turing reductions even when restricted on planar graphs [90]. Jerrum and

Sinclair have given an fpras for this problem defined on general graphs [92].

Counting matchings of size k in planar graphs is #P-complete under Turing reductions [90].
Counting matchings of size k in bipartite graphs has an fpras [70], since there is an easy reduction
from counting k-matchings to counting perfect matchings. This reduction works for general and
bipartite graphs, but not for planar graphs. Recently Anari et al. proved that counting k-
matchings in planar graphs admits an fpras [6]. They also gave an fpras for two versions of
weighted counting (for all weights) in planar graphs: (i) counting weighted matchings of size k
and (ii) counting weighted matchings of any size. The problem of counting weighted matchings

is defined below.

Definition 6.3. #WEIGHTED MATCHINGS.
Input: A graph G = (V, E) and a function w : E — R.
Output: Compute the sum
#WEIGHTED MATCHINGS(G) = Z H w(e)
MeM(G) eeM

where M(G) is the set of matchings of G.

Remark 6.1. This problem can be defined such that we count weighted k-matchings or weighted
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perfect matchings by just considering M(G) to be the set of k-matchings or perfect matchings,

respectively.

Results for the aforementioned variants of counting matchings defined on either general,

bipartite or planar graphs are gathered in Table 6.2.

Counting problem Complexity Approximation algorithm
#PERFMATCH #P-complete a ras achieving (1 4 &)-approximation
with O(e2 - 37/2) trials
#PERFMATCH #P-complete fpras
in bipartite graphs
ALLMATCHINGS #P-complete fpras
# P P
#ALLMATCHINGS 4P-complete fpras
in bipartite graphs
#ALLMATCHINGS P-complete fpras
p p
in planar graphs
#k-MATCHINGS #P-complete -
#k-MATCHINGS P-complete fpras
p p
in bipartite graphs
#k-MATCHINGS P-complete fpras
p p
in planar graphs

Table 6.2: The complexity of counting perfect matchings, all matchings, and k-matchings in general, bipartite,

and planar graphs.

Parameterized complexity

Counting k-matchings on unweighted graphs without multiple edges or self-loops is #W[1]-
hard [51]. The best known algorithms for counting k-matchings exhibit time bounds of the type
f(k)n®®) - Among them is the algorithm of [156] with a runtime of O (2k+°(%) (,;}2)) Arvind and
Raman [18| gave a randomized algorithm with running time EOHF) O - approximation ratio
1/ k() and error probability 2 for approximately counting the number of matchings of

size k in a graph with n vertices.

In [68], it was conjectured that counting k-matchings in bipartite graphs is #W/[1]-hard in
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the parameter k. The conjecture was proved by Curticapean [51]. He also proved that counting
k-matchings in planar graphs is #W/[1]-hard [53]. For some bipartite graphs (with f(k) vertices
in one partition, for some function f) the problem of counting k& matchings is fixed-parameter

tractable [156].

Parameterized complexity of the problem #k-MATCHINGS is also included in Table 6.4.

6.2 The problems EXACT MATCHING and BLUE-RED MATCHING

The problem EXACT MATCHING is defined on a graph G = (V, E) that has a set E' C E of red

edges. We are going to call the edges in E'\ E’ black.

Definition 6.4 (|125]). EXACT MATCHING.
Input: A graph G = (V, E), a set of red edges E' C E, and a positive integer k.

Output: Determine whether G contains a perfect matching involving exactly k edges in E'.

Let G = (V, Epjye U Ereq) be a graph in which each edge is colored either blue or red; Epjye
is the set of blue edges and E,.4 the set of red edges. A matching M in G is called w-blue-red
matching if M N Eppe < w and M N E,.q < w, that is, if it contains at most w edges of each

color.

Definition 6.5 ([120]). (a) Optimization version: BLUE-RED MATCHING.
Input: A graph G = (V, Epue U Ereq) and a positive integer w.

Output: Find a w-blue-red matching of mazximum cardinality.

(b) Decision version: BLUE-RED MATCHING(D).
Input: A graph G = (V, Epue U Ereq), a positive integer w, and a bound B.

Output: Determine whether G contains a w-blue-red matching of cardinality at least B.

The problem BLUE-RED MATCHING y.r, that is a generalization of BLUE-RED MATCH-
ING in multigraphs, can be reduced to BRM in simple graphs with red, blue, and uncol-
ored (white) edges. We specify a third set of initially uncolored edges as follows. Let G =
(V, Epjue U Ereq U Eynite) be a graph in which Eyye, Fred, and Eypize are sets of blue, red, and
white edges, respectively. A matching M in G is called w-blue-red-white matching if there exists

a partition {Eyp, Ewr} of Eypite such that M N (Eyye U Eyp) < w and M N (Ereq U Eyyr) < w.

Definition 6.6. (a) Optimization version: BLUE-RED MATCHING yyiqy-

Input: A graph G = (V, Epye U Ereq U Eypite) and a positive integer w.
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Output: Find a w-blue-red-white matching of mazimum cardinality.

(b) Decision version: BLUE-RED MATCHING (D).
Input: A graph G = (V, Epye U Ereq U Eypite), a positive integer w, and a bound B.

Output: Determine whether G contains a w-blue-red-white matching of cardinality at least B.

The problem BLUE-RED MATCHING (D) is at least as hard as EXACT MATCHING, which in

turn, is a generalization of PERFECT MATCHING. This fact is shown in the following proposition.

Proposition 6.1 ([120]). PERFECT MATCHING <. EXACT MATCHING
<! BLUE-RED MATCHING (D), where <!, denotes the log-space many-one reduction between

languages.

Proof. PERFECT MATCHING <! EXACT MATCHING: Given a graph G' = (V, E) we construct
G’ by adding two vertices and one red edge between them. Then, there is a perfect matching
in G iff there is an exact matching with k& = 1 red edge in G.

EXACT MATCHING <! BLUE-RED MATCHING(D): Consider a graph G = (V, E), a set of
red edges £’ C E, and a positive integer k. If |V] is an odd number or k > ‘QL‘, then G does

not contain a perfect matching involving exactly k edges in E’. In that case we construct a ‘no’

instance of BRM(D) (for example, any instance with 2w < B).

Otherwise, let w = max{k, |2ﬂ —k} and r = w—min{k, |2ﬂ —k}. Graph G* is obtained from
G by adding 2r new vertices uq, ..., Uy, v1, ..., v, and r edges {u1,v1}, ..., {u, v, }. The additional
edges are colored blue if & > ‘%' — k, otherwise they are colored red. Furthermore, edges in
E\ E’ are colored blue and edges in E’ remain red in G*. Let B = 2w. The above construction

requires logarithmic space. It is not hard to check that G contains a perfect matching involving

exactly k edges in E’ if and only if G* contains a w-blue-red matching of cardinality B. Ul

We define here two variants of BLUE-RED MATCHING, namely the problems EXAcT BRM

and ExacT-EQuAaL BRM.

Definition 6.7. (o) ExacT BRM.
Input: A graph G = (V, Epye U Ereq U Eynite) and a pair of positive integers (k1, kz).
Output: Determine whether G contains a perfect matching involving exactly ki edges in Epjye

and exactly ko edges in E,eq.

(b) We define EXACT-EQUAL BRM to be the special case of the problem ExacT BRM, when
k1 = ko.
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We prove below that these problems are harder than BLUE-RED MATCHING.

Proposition 6.2. BLUE-RED MATCHING(D) g!} Exact BRM gln ExacT-EQuAaL BRM,
where <% and <! denote the poly-time Turing reduction and the log-space reduction between

languages, respectively.

Proof. BLUE-RED MATCHING (D) <}, ExacT BRM: Notice that there are no white edges in
the initial instance of BLUE-RED MATCHING(D), but the resulting instance of ExacT BRM

can have white edges.
If B > 2w, we construct a ‘no’ instance of ExacT BRM.

Let w < B < 2w. Given an input (G = (V, Epeq U Epye), w, B) to BLUE-RED MATCH-
ING(D), we construct 2w — B + 1 instances of the EXxAcT BRM problem, namely the graphs

G, 0 <m < 2w — B, where
<Gm = (Vlv Ered ) Eblue ) Ewhite)» (klma k?m»

Let V = {v1, ..., v, } be the set of vertices in G. We add n new vertices uy, ..., u,. We add white
edges {u;,u;} for every i # j. We also add white edges {v;, u;} for every ¢ € {1,...,n}. In other
words, we connect every vertex in V' with a vertex in a clique of size n. In the m-th instance,
we set the positive integers to be ki,, = w —m, ko,,, = B —w+m, i.e. we construct an instance
for every possible combination of red and blue edges that add up to B. Note that if G' contains
a w-blue-red matching of cardinality > B, then GG contains a w-blue-red matching of cardinality

exactly B.

It is not hard to see that there exists a w-blue-red matching of cardinality B in G if and
only if there exists a perfect matching with exactly ki, blue edges and exactly ko, red edges

in at least one of the graphs G,,.

If B < w, then we construct B + 1 instances of EXACT BRM in the same way and we set

ki, = B —m and ks,, = m in the m-th instance, where 0 < m < B.

Exact BRM <! Exact-EQUAL BRM: Let (G = (V, Ereq U Epjue U Ewnite), (k1, k2)) be
an instance of ExacT BRM. Without loss of generality, assume that ko > ki. We construct
an instance (G' = (V', Ecq U Ey;, . U Eyhite), k2) of EXACT-EQUAL BRM by adding 2(k2 — k1)

VETrtiCes Ui, .., Ugy—fys ULy -oey Vky —ko and the ko — k1 blue edges {u;, v;}. O

Corollary 6.1. PERFECT MATCHING <! EXAcCT MATCHING <! BLUE-RED MATCHING(D)

<% Exact BRM <! Exact-EQUAL BRM.
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Decision problem Complexity
PERFECT MATCHING P and RNC
PLANAR EXACT MATCHING NC
BIPARTITE EXACT MATCHING P
Exact MATCHING RNC
BLUE-RED MATCHING 11 (D) RNC

Table 6.3: The complexity of the problem PERFECT MATCHING and some of its variants discussed here.

The following theorem gives the already known complexity of decision problems discussed in
this section. In Theorem 6.2, we show that EXACT MATCHING is in P, by reducing it to a max-
flow problem. This fact will be significant when we study its counting version, i.e. #BIEXACT

MATCHINGS. We gather all these results in Table 6.3.

Theorem 6.1. (a) ([62]). PERFECT MATCHING is in P.

(b) ([99]). PERFECT MATCHING is in RNC.

(c) ([12]). PLANAR PERFECT MATCHING is in NC.
(d) ([119]). EXacT MATCHING is in RNC.
(e) ([120]). BLUE-RED MATCHING (D) is in RNC.

In the proof of Theorem 6.2 we are using a generalization of the MAX FLOW problem,
namely MAX FLow WITH LOWER BOUNDS. In this modified problem, the input consists of a
directed graph G' = (V, E), nodes s, t, and two functions [,u : E — R and we seek a flow f with
maximum value such that [(e) < f(e) < u(e) at every edge e. There is a folklore polynomial-
time reduction from MAX FLOW WITH LOWER BOUNDS to MAX FLOW and so the following

proposition holds.
Proposition 6.3 ([63]). MaX FLow wiTH LOWER BOUNDS is in P.

Theorem 6.2. BIPARTITE EXACT MATCHING s in P.

Proof. We are going to describe a reduction from BIPARTITE EXACT MATCHING to MAX FLow
WITH LOWER BOUNDS. Given an instance G = (U U V, E), Ereq, k), |U| = |V| = n, of
BIPARTITE EXACT MATCHING, we construct a directed graph G’ = (V’, E’) which consists of
all vertices of G together with two source vertices s, sy and a sink vertex t. G’ contains the

directed edges (s1,s2), (s2,u), for every u € U, (u,v) for every edge (u,v) € E, and (v,t)
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for every v € V. The lower and upper bounds are set as follows, where w,eq = 2(n — k) and

W= Wpeqg — 1 =2(n—k)—1.

e For e = (s1, 52) we set u(e) = l(e) = kwyeq + (n — k)w.

For every e = (u,v) which is a red edge in G, we set u(e) = [(€) = Wyeq.

For every e = (u,v) which is not a red edge in G, we set u(e) = l(e) = w.

e For every e = (sa,u) or e = (v,t), we set [(e) = w and u(e) = Wyeq-

An example of a resulting graph G’ is shown in Figure 6.1. We prove that there is an exact
matching with k red edges in G iff there is a flow of value kw;..q + (n — k)w in graph G’. If there
is an exact matching with &k red edges and (n — k) black edges in G, then it is easy to see that
there is a flow of value kw,eq + (n — k)w in graph G’. For the inverse direction, we show that

for any flow of value kw,¢q + (n — k)w, the following facts hold.

1. At most n edges that have their endpoints in U and V' can carry a non-negative flow. The
flow that leaves from a vertex u € U is routed on exactly one edge. Since the amount of
flow that reaches vertex wu is either w or wy.q and the lower and upper bounds of edges
(u,v), uw € U, v € V, are tight, this flow can be routed on either exactly one red or exactly

one black edge.

2. A flow of value kw;eq + (n — k)w has to use exactly k red edges and (n — k) black edges

that have their endpoints in U and V.

(a) A flow of value kwyeq + (n — k)w needs at least k red edges. Suppose that k' red
edges are used, with &’ < k, then the rest of the flow must be rooted on black edges,
which can carry a flow of value w < wy.¢q each. So, more than (n — k') black edges

will be needed, which contradicts 1.

(b) At most k red edges can be used in the solution. Suppose that instead of using k red
edges and n — k black edges, we replace 2 < m < n — k black edges with | < m red

edges. We can say that | =m — i for some ¢ € {1,...,m — 1}. Then

mw = [Wyeq <

wred_@

w1
2n—k)  m o
20n—k)—1 m—i

m=1i-2(n—k).
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f=kwrea + (n — k)w
o

Figure 6.1: The resulting instance of MaX FLow wiTH LOWER BouUNDs. When we write f = c on an edge e,
for some ¢ € R, we mean that [(e) = u(e) = c. For example, if e € Ercq, then [(e) = u(e) = wyeq. The red color

of edge (u1,v1) denotes that edge (u1,v1) € Ereq in graph G.

Contradiction, since m <n — k. O

6.2.1 Optimization version of EXACT MATCHING in bipartite graphs

Our motivation to study the optimization version of EXACT MATCHING in bipartite graphs is the
following. There are randomized algorithms [29, 33| which approximate the value of a counting
function by using oracle calls to the corresponding optimization problem. This method produces
a very crude estimate, but gives some general information about the value of the function for
large n. For example, it allows to determine whether it is exponentially large in n. In the case of

a polynomial-time optimization problem, these randomized algorithms run in polynomial time.

Definition 6.8. MINIMUM WEIGHT PERFECT MATCHING IN BIPARTITE GRAPHS.
Input: A bipartite graph G = (U UV, E) and a weight function w : E — R U {oo}.

Output: Find a perfect matching M minimizing w(M) = Z w(e).
ecM

The following is an Integer Linear Programming (ILP) formulation for the minimum weight

perfect matching in a bipartite graph.

minimize E w(U, V) + Ty
(uv)

subject to Z Tyy = 1 for allu e U
veV

wazlforallvev
uelU

Tup € {0,1} for all u € U,v € V.

The Linear Programming (LP) relaxation of the problem is as follows:
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minimize Z W (U, V) -+ Toy

(u,v)

subject to Z Ty = 1 forall u e U
veV
Y ay=1forallveV
uelU

Tyy > 0 forallue U,veV.

In the above LP instance, the constraint matrix of the polytope is totally unimodular, i.e.
every square submatrix has determinant 0, +1 or -1. As a result, any extreme point of the
polytope defined by these constraints is integral. So there is a polynomial-time algorithm for

finding minimum weight perfect matching in a bipartite graph.

For the EXACT MATCHING problem, the optimization version is defined as follows.

Definition 6.9. MINIMUM WEIGHT EXACT MATCHING IN BIPARTITE GRAPHS.
Input: A bipartite graph G = (UUV, E), a subset E' C E, an integer k, and a weight function
w:E— RU{oco}.

Output: Find an exact matching M minimizing w(M) = Z w(e).
eeM

This problem is described by the following ILP.

minimize Z w(U, V) + Ty + Z w(U, V) * Yo

(u,v)EE\E' (u,v)EE’

subject to Z(:cuv +yw) =1forallu e U

veV
Z(xw + Yu) =1 forallv eV
uelU
D yw=k
(u,v)EE!

Ty, Yuw € {0,1} for all u € Ujv € V.

The LP relaxation is given by the same constraints but instead of the variables being
in {0,1}, we have 'y, yup > 0. In this case, the constraint matrix is not in general totally

unimodular. This is a corollary of the following propositions that can be found in [135].

Proposition 6.4. Let M be a {0,+1} matriz with at most three non-zero entries in each column.
Then M is totally unimodular if and only if each submatriz of M with at most two non-zero

entries in each column is totally unimodular.
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Proposition 6.5. Let M be a {0,£1} matriz with exactly two non-zero entries in each column.
Then M s totally unimodular if and only if the rows of M can be split into two classes such
that for each column: if the two non-zeros in the column have the same sign then they are in

different classes and if they have opposite sign then they are both in one and the same class.

Note that every instance of the above ILP has at most three non-zero entries. Also, one
can easily construct an instance, such that the constraint matrix has a submatrix for which the

condition of Proposition 6.5 does not hold.

We have not concluded whether the optimization version of #EXACT MATCHINGS in bi-
partite graphs is either in P or NP-hard. However, our attempt to prove that it is in P by using

the ILP formulation of the problem has failed.

6.3 The problem #EXACT MATCHINGS

6.3.1 #EXACT MATCHINGS in general graphs

The reductions of Proposition 6.1 between the decision problems PERFECT MATCHING, EX-
ACT MATCHING, and BLUE-RED MATCHING(D), are parsimonious reductions between their

counting versions.

Proposition 6.6. #PERFMATCH <D, #EXACT MATCHINGS <D.s #BLUE-RED MATCHINGS.

Using polynomial interpolation, we show next that #EXACT MATCHINGS is reducible to
#PERFMATCH in graphs with edge weights. Reductions that use polynomial interpolation are
Turing reductions. Another example of such a reduction is the one from #PERFMATCH to

#MATCHINGS given by Valiant [119].

Proposition 6.7. #EXACT MATCHINGS g% #WEIGHTED PERFMATCH.

Proof. Let (G = (V,E),E', k) be an input to the problem #EXACT MATCHINGS. Define the
polynomiall.et where my, is the number of exact matchings with k red edges. We can evaluate
P(z) at n/2 4+ 1 points using an oracle for #WEIGHTED PERFMATCH as follows. For every
integer 1 < p < n/24+1, we construct a graph G, = (V, E), which is G with the weight function
w, : E — N, that assigns weight p to every (red) edge in E’ and 1 to every (black) edge in
E\E’. Then, we have that # WEIGHTED PERFMATCH(G,) = P(p). So, we make n/2+1 oracle

calls, one for each graph G,, 1 < p < n/2+ 1. Using polynomial interpolation, we can recover
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the coefficients of polynomial P(z). In particular, my is the output of the problem #EXACT

MATCHINGS on input (G = (V, E), E' k). O

Parameterized complexity

Let p#CLIQUES be the problem of counting cliques of size k in a graph G, parameterized by
k. Define the class #WJ[1] as the set of parameterized counting problems #A with #A §;1;)t
p#CLIQUES. Here, #A §;l];t #B means that #A admits an fpt-algorithm that solves instances
(z, k) of #A with oracle access to #B, under the restriction that all oracle queries (y, k') satisfy
the condition &’ < g(k) for some computable g : N — N. The following theorem gives evidence

that #W][1] # FPT, where FPT is the class of fixed-parameter tractable problems.

Theorem 6.3 ([63]). Under #ETH, it holds that #W[1] # FPT.

For more details we refer the reader to [05].

The problem ##k-MATCHINGS parameterized by k has been proven to be #W[1]-complete [51].
Below, we show a reduction from #k-MATCHINGS to #EXACT MATCHINGS that implies #W[1]-
hardness for #EXACT MATCHINGS parameterized by k. The results discussed in this chapter

with respect to parameterized complexity are shown in Table 6.4.

Proposition 6.8. #k-MATCHINGS <p, #EXACT MATCHINGS.

Proof. Let (G1 = (Vi,E1),k), |[Vi] = n, be an instance of #k-MATCHINGS. We construct
Gy = (Va,Ey) and E) as follows. First, we add n new vertices v1,...,v, to G; and the
black edges (v;,v;) for every 4,5 € {1,...,n} (a black n-clique). For every vertex w; € Vi,
i€ {1,...,n}, we add the black edge (u;,v;). The set E) of red edges in Gy consists of all the
edges in Fj.

(2k)!
2F !

Every k-matching in G1 can be extended to exact matchings in Go. Let M be a
k-matching in G;. The k edges in M are k red edges in G2. An exact matching M’ in Go
that extends M contains also an edge (u;,v;) for every matched vertex v; € V3 not matched by

M. These extra edges are (n — 2k) in total. For the rest 2k vertices in the clique that are still

(2k)!
2F k!

unmatched, there are different ways that can be matched (the number of perfect matchings
in a complete graph with 2k vertices). M’ contains the edges of one of these possible matchings
among the 2k vertices. Moreover, every exact matching with k red edges in G2 is obtained

uniquely by a k-matching in Gj.

So #k-MATCHINGS(G1) = #EXACT MATCHINGS(G?) - f;k’“)', O
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Corollary 6.2. #EXACT MATCHINGS is #W[1]-hard.

Proof. By Proposition 6.8 and #W/1]-hardness of #k-MATCHINGS [51], we have that #EXACT

MATCHINGS is also #W][1]-hard. O
. Parameterized Exact Approximation
Counting problem
Complexity algorithm algorithm
#k-MATCHINGS #W][1]-complete O(2k+o(k) (k72)) fptras
#PLANAR-k-MATCHINGS #WI[1]-complete — —

#BIPARTITE-k-MATCHINGS #W][1]-complete — —

#BIPARTITE-k-MATCHINGS
with f(k) vertices — fpt 7

in one partition

#EXACT MATCHINGS #WI/1]-hard — —

Table 6.4: The parameterized complexity of the problems #k-MATCHINGS and #EXACT MATCHINGS.

6.3.2 #EXACT MATCHINGS in Kjs-free graphs

#EXACT MATCHINGS was shown to be in NC by Vazirani [152]. This result is based on the
fact that we can efficiently compute the number of perfect matchings in any graph that has an

efficiently computable pfaffian orientation.

We roughly describe how we can compute the number of perfect matchings in a graph that
has a pfaffian orientation, such as a planar or a K3 3-free graph. For a detailed proof, we refer
to |12, Chapter 4|. An orientation 8 of an undirected graph G is an assignment of a direction
to each of its edges. An orientation is pfaffian, if for any two perfect matchings M, M’ in G,
every cycle in M U M’ is oddly oriented, which means that when traversing the cycle, in either

direction, the number of co-oriented edges is odd. Given a pfaffian orientation, we define the
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1, it (i,5) € B(G)

skew adjacency matrix Ag(a) =(a;;:0<i,j<n—-1)of Gbya;; =1 -1, if (ji)e E(a) :

0, otherwise

Then, it holds that #PERFMATCH(G) = 1/det(As(G)).

Theorem 6.4 (|152]). #EXACT MATCHINGS in K33 graphs is in NC.

Proof. Let ?3 be a pfaffian orientation of a Kj3-free graph G = (V, E) with a set E’ of red

edges, which can be computed in NC [152]. We assign to every edge e € E the polynomial

z, ifeekF,
pe(T) =
1, otherwise.

We construct the matrix As(g) =(a;; : 0<4,5<n—1)of G by

tpe(z), i (i,5) € B(G)

aij = § —pe(x), if (j,i) € B(G) -
0, otherwise
n/2
Then 4/ det(Ag(a)) = Z mya”®, where my, is the number of perfect matchings containing k red
k=0

edges. So we compute the determinant of Ag using the parallel determinant algorithm of [39],

compute its square root by interpolation, and return the coefficient of z*. O

Since planar graphs are K3 3-free, we have the following corollary.

Corollary 6.3. #EXACT MATCHINGS in planar graphs is in NC.

6.3.3 #EXACT MATCHINGS in K;-free graphs

To compute the number of perfect matchings, the pfaffian orientation technique is not applicable
to Ks-free graphs, because some Ks-free graphs have no such orientation. The graph K333 is

such an example |1 16].

An algorithm for the problem #PERFMATCH in Kjs-free graphs, that uses dynamic pro-
gramming, was described in [111]. It is based on the decomposition of Kj-free graphs into 2-, 3-,
and 4-connected components studied by Wagner [154]. The components will be planar at some

point, except for one type of component, namely the Mobius ladder Mg, which has constant
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size. The algorithm of [111] reduces the problem of computing the number of perfect matchings
in K5-free graphs to the one for planar graphs. To solve the problem for an input Ks5-free graph,
the challenge was to combine the results for its planar components correctly. For details, we

refer to [111].

It is not hard to see that the aforementioned algorithm works even when the input is a
K5-free graph with edge weights and we want to solve #WEIGHTED PERFMATCH as defined in

Definition 6.3 (and Remark 6.1). This observation implies the following result.

Proposition 6.9. #EXAcT MATCHINGS in Ks-free graphs is in P.

Proof. As shown in Proposition 6.7, #EXACT MATCHINGS g% #WEIGHTED PERFMATCH. In
the reduction, the oracle calls are to #WEIGHTED PERFMATCH on graphs with edge weights
being natural numbers. Since #WEIGHTED PERFMATCH in Ks-free graphs has a polynomial-

time algorithm in such graphs, #EXACT MATCHINGS in K5-free graphs is in P. O

It is clear that if we restrict ourselves to a class of graphs that #WEIGHTED PERFMATCH is
polynomial-time computable, then #EXACT MATCHINGS is also polynomial-time computable.
So, if the dichotomy result of [143] can be extended to the weighted version of counting perfect

matchings, then it also holds for the problem #EXACT MATCHINGS.

6.3.4 F#EXACT MATCHINGS in bipartite graphs

#EXACT MATCHINGS in bipartite graphs seems to be non-trivial, since neither approximability
nor hardness of approximation can be proven easily. After the completion of this thesis, this

problem remains open with respect to approximability.

Below we mention some cases where #EXACT MATCHINGS in bipartite graphs has an fpras.

The proof for each of them requires just some simple observations.

At the end of the current subsection, we propose and give a high level description of an
approach that we believe is promising for showing that an fpras for #EXACT MATCHINGS in
bipartite graphs exists. This approach when applied on a counting (or sampling) problem, it
makes use of the generating polynomial of the problem. This fact justifies the subject of the
next section, that is Section 6.4, which deals with various polynomials generated by matching

problems.

First, note that if we restrict ourselves to bipartite graphs, #EXACT MATCHINGS is a
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problem in TotP.

Proposition 6.10. #EXACT MATCHINGS n bipartite graphs is in TotP.

Proof. By Proposition 6.2, the decision version of #EXACT MATCHINGS in bipartite graphs is

in P. It is not hard to see that the problem is also self-reducible. So, it belongs to TotP. 0

Case 1. The class of exact matchings is of polynomial size

By Proposition 1.4, if a TotP problem has polynomially many solutions, then there is a polynomial-

time algorithm that enumerates them.

Case 2. The class of exact matchings is dense

Let I = (G = (UUV,E),E k) be an instance of #EXACT MATCHINGS. Let My denote the

class of exact matchings with exactly k£ red edges and M denote the set of all perfect matchings

M

of GG. Suppose that ||/\/l|| < p(|1|), for some polynomial p. Then we can simply call the fpaus
k

for the problem of perfect matchings in bipartite graphs [93] and return its output if it contains

exactly k red edges. Repeating this p(|I]) times, we expect to find an exact matching with k

red edges.

Case 3. A few vertices in U are adjacent to red edges

Consider that we are given an instance (G = (U UV, E), E' k) of #EXACT MATCHINGS in
bipartite graphs, in which red edges (i.e. edges in E’) are adjacent to only k 4+ O(1) vertices in
U. We choose a set Sy of exactly k vertices in U and do the following. We are using a modified

biadjacency matrix A" = (aj;) of G so

1, if (i,j) € £ and i € S
Qi = or (i,j) € E and i & Sk

0, otherwise

Then perm(A’) gives the number of perfect matchings of G in which all the vertices in Sy
are covered by red edges. The sum of the number of such perfect matchings for all choices of
Sk gives the number of exact matchings with k red edges. Since there are (}H'i)(l)) = (’)(ko(l))

different choices of sets S, then by calling the fpras for computing each one of these (’)(l{:o(l))
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many permanents [93], we obtain an fpras for the number of exact matchings. Of course, the
above arguments hold also in the case that red edges are adjacent to only k 4+ O(1) vertices in

V. So we conclude to the following fact.

Proposition 6.11. There is an fpras for #EXACT MATCHINGS in any bipartite graph G =
(UUV,E) with a set E' C E of red edges, where the edges in E' are adjacent to only k + O(1)
vertices in U (or k+ O(1) vertices in V).

A promising approach

Here we are going to describe the technique presented in [6], which is used to sample efficiently
solutions of particular problems. The main idea is that there is a connection between efficient
sampling from a probability distribution and the zero-free region of the polynomial generated

by the distribution.

Because of the equivalence between approximate counting and approximate sampling for
self-reducible problems [94], this sampling technique yields fpras for the corresponding counting
problems. For example, as we have already mentioned in Section 6.1, it yields an fpras for

counting k-matchings in planar graphs.

Let u : ([Z]) — R>p be a density function on the family of subsets of size k£ out of a
ground set of n elements. Our goal is to approximately sample from the probability distribution
P,[S] ox pu(S) efficiently. To do so we are going to define the following Down-Up Random Walk

on subsets of size £ and subsets of size k, for some [ < k.

Down-Up Random Walk.

For a density p : ([Z]) — R>( and an integer ¢ < k, we define the k£ <+ ¢ down-up random walk

as the sequence of random sets Sy, S, . .. generated by the following algorithm:

fort=0,1,... do
Select T} uniformly at random from subsets of size ¢ of \S;. (step 1.)

Select Siy1 with probability o< u(Sty1) from supersets of size k of T;. (step 2.)

Note that each step of this random walk can be efficiently implemented as long as k — £ =
O(1) and we have oracle access to pu. This is because the number of supersets of T} is at most

n*~t = poly(n), so we can enumerate them in polynomial time.

Down-Up Random Walk is time-reversible, has u as its stationary distribution, and has

positive real eigenvalues [11]. Rapid mixing of the k <> [ down-up walk is established by
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showing that the generating polynomial of i is zero-free in a symmetric sector of the complex

plane centered around the real axis. The generating polynomial of yu is defined next.

Definition 6.10. Let u : ([Z]) — R>q be a density function. The multivariate polynomial g,
defined as follows:

g,u(zh e ,Zn) = ZM(S) HZZ
S

i€S
1s called the gemerating polynomial and encodes i in its coefficients.
Theorem 6.5. Let i : ([Z]) — Rx>q be a density function and g,, be the corresponding generating

polynomial. Suppose there is an open sector ' C C of aperture Q(1) centered around the positive

real axis in the complex plane, such that
Z2,.02n €0 = gu(21,...,2n) #0.

Then for an appropriate value £ = k — O(1), the k <> € has relazation time EOQ),

We will see in Definition 6.12 that a polynomial that has a zero-free region like the one
described in the above theorem, is called a-sector-stable, where « is the aperture of the open

sector I

The relaxation time is the inverse of spectral gap for a time-reversible Markov chain with
positive eigenvalues. If in addition, the starting point has not terribly small probability, the
mixing time can be polynomially bounded [I11]. So, by the following corollary, we have that

the k <> £ random walk has a polynomially bounded mixing time.

Corollary 6.4. [111] Let p : ([Z]) — Rx>q be a density function and g, be the corresponding
generating polynomial. Suppose there is an open sector I' C C of aperture (1) centered around

the positive real axis in the complex plane, such that

2,00 2n €1 = gulz1,...,20) #0.

Let also £ = k— O(1) be the value promised by Theorem 6.5. If the k <> ¢ down-up random walk

is started from Sy, then
1

tmiz(€) < O(kO(l) +log (6%[50]))

where tmiz(g) is the smallest time t such that Sy is e-close in total variation distance to the

distribution defined by p.

A .Chalki Thesis 131



Chapter 6 Counting matchings in graphs with edge colors

Corollary 6.4 establishes a connection between sector-stability and polynomially bounded
mixing time. For the interested reader, a-sector-stability implies that p is spectrally indepen-
dent, i.e. an associated pairwise influence matrix has a bounded largest eigenvalue for the dis-
tribution and all of its conditional distributions. Using the results of other recent works [11, 5],

rapid mixing time is obtained. For details, we refer to [6, 11, 5].

Application of the Down-Up Random Walk in our case

We give some general ideas of how this sampling technique could be used in the case of exact

matchings in bipartite graphs.

Let (G = (UUV,E),E' k) be an instance of #EXACT MATCHINGS in bipartite graphs
with |U| = |V| =n, |E| = m, and |E'| = r. Given S C U UV, we denote by G[S] (resp. G[S])
the subgraph of G induced by S (resp. the complement S of S). Given T C E’, we denote by

Vr the set of vertices in U UV covered by T

First idea: If the following hold then the Down-Up Random Walk can be used for sampling

uniformly at random an exact matching of G.

1. The generating polynomial g, is a-sector-stable for a constant o, where f : (%Z]) — R>o

is a density function defined on sets of vertices of size 2k such that

u(S) =#(perfect matchings in G[S] with edges in E')-

#(perfect matchings in G[S] with edges in E\ E').

2. If step 2 of the Down-Up Random Walk is implemented using an fpras for computing p
instead of a polynomial-time algorithm (or an oracle), then the same facts hold, i.e. the

Markov chain of the random walk has p as its stationary and has rapid mixing time.

If 1 and 2 are true, then we implement the k& < ¢ down-up random walk to efficiently
sample a set S of 2k vertices with probability P, oc u. Then we choose u.a.r. a perfect matching

in G[S] with edges in E’ and a perfect matching in G[S] with edges in E'\ E’. Combining these

two perfect matchings we obtain an exact matching with k red edges that has been chosen u.a.r.

Second idea: If the following hold then the Down-Up Random Walk can be used for sampling

uniformly at random an exact matching of G.

1. The generating polynomial g,, is a-sector-stable for a constant o, where p : ([Z]) — R>q is
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a density function defined on sets of red edges of size k£ such that

@ #(perfect matchings in G[Vp| with edges in £\ E’), if T is a matching
wmT) =

0, otherwise
2. If step 2 of the Down-Up Random Walk is implemented using an fpras for computing p

instead of a polynomial-time algorithm (or an oracle), then the same facts hold, i.e. the

Markov chain of the random walk has p as its stationary and has rapid mixing time.

If 1 and 2 are true, then we implement the k£ <> £ down-up random walk to efficiently sample

a set T' of k red edges with probability P, oc u. Then we choose u.a.r. a perfect matching in

G[Vr| with edges in E'\ E’. Combining T with the perfect matching G[Vr| we obtain an exact

matching with £ red edges that has been chosen u.a.r.

In the following section we define matching polynomials. Those that are multiaffine and
homogeneous, i.e. each of their terms contains the same number of variables, are generating
polynomials of some density p. The polynomials described in the first and second ideas above

are given in Subsections 6.4.4 and 6.4.5, respectively.

6.4 Matching polynomials

Let G = (V, E) be a weighted graph, i.e. a graph with edge weights. We are using v to denote

a vertex in V', e to denote an edge in E, and w, to denote the weight of the edge e.
We are going to consider univariate and multivariate polynomials over C that have real

coefficients. Some first useful notions are the following.

e A multivariate polynomial is multiaffine if each variable has degree at most one.

e A multivariate polynomial is homogeneous if all non-zero terms have the same degree.
In specific, a multivariate multiaffine polynomial is homogeneuous if each non-zero term

contains the same number of variables.

We are interested in the zero-free regions of these polynomials. Definition 6.12 essentially

gives characterizations of polynomials with respect to their zero-free regions.

Definition 6.11. We denote by

(a) H: the open upper half-plane of C.
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(b) D: the open unit disc, i.e. D ={z € C||z] < 1}.
(c) To: the open sector of aperture arm centered around the positive axis, i.e.

Iy :={exp(z+1iy) |z € R,y € (—an/2,ar/2)}.

Definition 6.12 (|38, 0]). (a) For an open subsetUd C C", we call a polynomialp € Clzy,. ..

U-stable if

(215 y2n) EU = p(21,...,2,) # 0.
(b) A polynomial p € Clz1,...,xy] is said to be stable if
(215---,2n) €EHY = p(21,...,20) #0.

Additionally, if p € Rlz1, ..., xy,], we say that p is real-stable.

A univariate polynomial is real-stable iff it is real rooted.

(c) A polynomial p € Clz1,...,xy,] is said to be Hurwitz-stable if

(21,...,2n) €T = p(z1,...,2n) # 0.

(d) A polynomial p € Clxy,...,xy] is said to be a-sector-stable if

(217"'azn) GFZ:>p(Zl7"'aZn)7£O'

Next we introduce the notion of same-phase stability.

) T

Definition 6.13 (|1 10]). A polynomial p € R[z1,...,x,] is said to be same-phase stable if one

of the following equivalent conditions is satisfied.

(i) For every 7 e R", the univariate restriction p(?x) is real-stable (and therefore real
rooted).
(i1) If arg(z1) = arg(z2) = ... = arg(z,), then p(z1,...,2,) = 0 implies z;, € Hy for some k.

6.4.1 The univariate matching polynomial

Let A = (ai;) be the n x n symmetric adjacency matrix of G, which means that the entry a;;

is equal to we, where e = (4, j). The univariate matching polynomial is defined as follows.
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Definition 6.14. We define the univariate matching polynomial by

13]
pa(z) = Z ha frm (A)z™
0

where

hafm(A) = > Qirgy Qi jim
{ila.jl}"“»{imhjm}

where the sum is taken over all unordered collections of m pairwise disjoint unordered pairs

{i1, g1}y ooy {im, Jm}. We agree that ho(A) = 1.

Note that the coefficient h,,(A) is the sum of all weighted matchings with m edges in a
complete weighted graph. In statistical physics p4(z) is the partition function of the monomer-
dimer model, where edges of the matching correspond to dimers and the vertices not covered by

the matching correspond to monomers (single atoms).

Theorem 6.6 ([32]). Let A be a nxn symmetric matriz with non-negative real entries. Then the
matching polynomial pa(x) is real-stable. More precisely, the roots of the matching polynomial

pa(x) are negative real.

Remark 6.2. [t also holds that the polynomial

13]
Pa(@) =Y hafu(A)zs "
0
is real-stable. Proofs of the above theorem and this remark can be found in [52, 37].

The above result is important because Barvinok’s technique [32, Section 2| can be applied
to the partition function of the monomer-dimer model. Barvinok related a zero-free region
of a univariate polynomial with its efficient evaluation. The polynomial is considered on the
complex plane, i.e. the variable z takes complex values. Barvinok states that if a polynomial
P(z) = 3%, cia® of degree n is zero-free in a strip containing [0,1] (on the complex plane),
then P(1) can be (1 & ¢)-approximated using co, ..., c; for some k = O(log 2). The basic idea

is to truncate the Taylor expansion of log P(z) at x = 0. Let g(z) := log P(z) and for k > 0,

z', where g(i) is the i-th derivative of g.

g®(0)
il

k
Ti(g)(x) ==
i=0

Then Barvinok states that if P(x) is zero-free in the disk of radius § > 1 centered at the origin,

then there exists a constant Cg such that for any 0 < e <1,

exp(Ti(9)(1))

P0) —1| <e¢g, for somek:Cﬁlogg
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So, when the polynomial is zero-free in the disk of radius 8 > 1, then we can approximately
evaluate P(1) using the first O(log 2) terms of the Taylor expansion of log P(x) at the origin. If
the polynomial is zero-free in a strip of [0, 1], then we can apply a transformation to transform

it into a polynomial that is zero-free in the disk of radius > 1.

This technique has been used to construct deterministic quasi-polynomial-time approxi-
mation algorithms for evaluating a number of graph partition functions (for general graphs).
Related work can be found in [30, 19, 34, 31|. Patel and Regts [127] gave a polynomial-time algo-
rithm for computing the first O(logn) coefficients of a large class of graph polynomials when the
graph has bounded degree. In particular, they obtained fptas for evaluating the independence
polynomial, the Tutte polynomial, and computing partition functions of spin and edge-coloring

models in the case of bounded degree graphs.

6.4.2 The multivariate (vertex) matching polynomial

Below we define the multivariate (vertex) matching polynomial.

Definition 6.15. Let G = (V, E) be a graph with edge weights we, e € E. We define the

multivariate (vertex) matching polynomial by

PV (T s oees Ty, ) Z weight (M H Ty

MeM veM

where M is the set of matchings, weight(M) = [[.cps we, and n = |V|.

Note that each term corresponds to a different matching and each variable z, of a term
corresponds to a vertex that belongs to this matching. The coefficient of the term is the weight
of the matching. Matchings that contain the same vertices contribute similar terms to the

multivariate matching polynomial.

Remark 6.3. Alternatively, we can define the multivariate matching polynomial to be the fol-

lowing.

Py (T s ey Tuy) Z weight (M H Ty-

MeM vg€M

The only difference here is that a term, corresponding to a matching M, contains a variable for

each vertex not covered by M.

Remark 6.4. Note that these polynomials are multiaffine, i.e. multivariate polynomials in which

each variable has degree at most one.
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Theorem 6.7 ([32, 19]). Let G = (V, E) be a graph with non-negative edge weights we, e € E.
The polynomials

PV (T s oees Ty, ) Z weight (M H Ty

MeM veM
and
Py (T s ooy T, ) Z weight (M H Ty
MeM vgM

are Hurwitz-stable, that is, if Re(z1) > 0,...,Re(zy,) > 0, then py (21, ..., 2n) # 0 (resp. pi, (21, ..., 2n) #

0). In other words, they are zero-free in the right half of the complex plane.

Remark 6.5. The stability of pv and p, is also true for the left half-plane (i.e. if Re(z;) <0,
for every 1 < i < n, then py(21,...,2p) # 0 and pi, (21, ..., 2n) # 0), but it does not hold for other

rotations of the right half-plane.

To encode k-matchings of a graph G, we use multivariate (multiaffine) homogeneous poly-
nomials, i.e. each term contains the same number of variables. Since the variables correspond
to vertices here, each term representing a k-matching M contains 2k variables corresponding to
the 2k vertices covered by M (alt. n — 2k variables, one for each vertex not covered by M). The
multivariate homogeneous matching polynomial is defined below. In fact, given a graph

G, there is a family of such polynomials for G, one for each 1 < k < n.

Definition 6.16. Let G = (V, E) be a graph with edge weights w., e € E. We define the

multivariate homogeneous matching polynomial by

pl\i‘/(xvl, ..-7xvn) = Z Welght(M) H Ty

M matching of size k veEM

where weight(M) =[], cp; we and n = |V].

Proposition 6.12 ([0]). Let G = (V, E) be a graph with non-negative edge weights w,, e € E.
For any k, the polynomial

pl\f/(xvl, ..qxvn) = Z Welght(M) H Ty

M matching of size k veM

18 %—sector—smble.

Corollary 6.5 ([0]). Let G = (V, E) be a graph with non-negative edge weights we, e € E. The

following polynomials are %—sector—stable.

k
PV (Toys s Ty,) = Z weight (M H Ty,

M matching of size k v M
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DY Ty oes T Ty, oy Thy, ) = Z weight(M) H Ty H .

M matching veM vEM

The former encodes k-matchings, whereas the latter is homogeneous in 2n variables and encodes

all matchings.

6.4.3 The multivariate edge matching polynomial

Analogously, the multivariate edge matching polynomial is defined as follows.

Definition 6.17. Let G = (V, E) be a graph with edge weights w., e € E. We define the
multivariate edge matching polynomial by
PE(Zeyy e vy Te,,) = Z weight (M) H Te
MeM ecM

where M is the set of matchings, weight(M) = [[.cps we, and m = |E|.

In [110], the authors proved that the polynomial just defined is same-phase stable.

Proposition 6.13 (|1 10]). Let G = (V, E) be a graph with non-negative edge weights we, e € E.

The polynomial pg(Tey, ..., Te,,) is same-phase stable.

Proof. Let G = (V,E) be a graph with non-negative edge weights w,,, e; € E, and let
(t1,...,tm) € RP. The univariate restriction pg(tiz,...,t,x) of the multivariate edge match-
ing polynomial for G, is the univariate matching polynomial for a graph G’ = (V, E) with edge
weights w, = we, - t;. Since the latter is real-stable, by Definition 6.13, pp(xe,, ..., Ze,,) 18

same-phase stable. O

Analogously to the multivariate homogeneous matching polynomial with variables corre-
sponding to vertices, we define here the multivariate homogeneous edge matching poly-
nomial. This polynomial encodes k-matchings, but each term contains exactly k variables,

since now variables represent edges (instead of vertices).

Definition 6.18. Let G = (V,E) be a graph with edge weights we, e € E. We define the

multivariate homogeneous edge matching polynomial by

P(@eys . T, ) = 3 weight(M) [] =

M matching of size k eeM

where weight(M) = [[.cp; we and m = |E|.
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As Proposition 6.12 states the multivariate homogeneous matching polynomial p@ is %—

sector-stable. We do not have an analogous result for p’fE. In fact, this would be a strong result.

The following proposition states the implications that a-sector-stability of p]]i; would have.

Proposition 6.14. If the polynomial p%(xel, .oy e, ) 1S a-sector-stable for a constant «, then

we have an fpras for counting k-matchings in general graphs.

Proof. We can efficiently sample a k-matching u.a.r. by applying the Markov chain of the Down-
Up Random Walk described in Subsection 6.3.4. In specific, the stationary distribution 7 o< p
is the uniform distribution on k-matchings. Also step 2 can be implemented efficiently; to select
Si+1 with probability oc p(Siy1) we look at all the k& — ¢ sets of edges (the number of which is
O(n*71)) and among them we keep the ones that will give us a matching (together with the ¢

edges in T;). We choose one of them u.a.r. O

However, the multivariate homogeneous edge matching polynomial is «(k)-sector-stable
with a(k) = i depending on k, i.e. the number of variables in each term. In fact, we prove
below that every multivariate homogeneous polynomial, where each term has degree k, is i—

sector-stable.

Proposition 6.15. Let p* € Rlxy,...,x,] be a multivariate homogeneous polynomial, where

each term has degree k. Then p* is i—sector—smble.

Proof. The proof is based on the following facts. The product of two complex numbers z; and
z9 is a complex number w that has absolute value |w| = |z1] - |22] and argument (i.e. the angle
between the positive real axis and the line joining the origin and w, represented as a point in
the complex plane) arg(w) = arg(z1) + arg(z2). If arg(z;) € (=g, g5) for every i € {1,...,n},
then the product of k 2;’s is a complex number w with arg(w) € (=%, 5). This means that w

belongs to the right half-plane. The sum of such complex numbers cannot be zero. O

6.4.4 The multivariate homogeneous red-black polynomial

Now we define a polynomial that encodes exact matchings using variables that correspond to
vertices. We call this polynomial the multivariate homogeneous red-black polynomial.
Intuitively, a term gives information about the number of ‘red perfect matchings’ that cover
2k specific vertices times the number of ‘black perfect matchings’ that cover the rest 2n — 2k

vertices.
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Let G = (UUV,E), |[U| = |V| = n, be an unweighted bipartite graph and E' C E. Let
S ={u,...,up,v1,...,u5} be a set of 2k vertices such that uy,...,ur € U and vy, ..., € V. We

define the following two weights for S.

e Wied(S) is defined to be the number of perfect matchings that exist in G[S] (i.e. the

induced subgraph of G by S) consisting only of red edges (i.e. edges in E’).

o Whiack(S) is defined to be the number of perfect matchings in G[S] consisting only of black
edges (i.e. edges in £\ E'), where S = (UUV)\ S.

Definition 6.19. Let G = (UUV,E), |U| = |V| = n, be an unweighted bipartite graph and

E' C E. We define the multivariate homogeneous red-black polynomial by

pl;b(xula---7$un7$v17---uxvn) - Z Wred(S)'Wblack(g) . H:rv'
SCUUV veS
|SAV [=[SNU |=k
Remark 6.6. Alternatively, let R be the biadjacency matriz of Greq = (U UV, E') and B be
the biadjacency matriz of Gyaer, = (UUV,E\ E'). For a set S C U UV, we denote by Rg

(resp. Bg) the submatriz of R (resp. B) which contains only rows and columns that correspond

to vertices in S. Then,

PE Ty s Ty Ty o+ o ) = Z perm(Rg) - perm(Byg) H L.

SCUuUV vES
|SNV|=|SNU|=k

Note that a term of this polynomial consists of the product of 2k variables corresponding to
2k wvertices, times a coefficient that is equal to the number of exact matchings of G, in which

these 2k vertices are covered by red edges.

We can obtain the homogeneous red-black polynomial by applying an operator on the ho-
mogeneous (vertex) matching polynomial defined in Subsection 6.4.2. Let (G = (UUV, E), E' k)
be an instance of #EXACT MATCHINGS where GG is an unweighted bipartite graph. Consider

the polynomials

k
ered<xu17"'7xun7xvla"'7[131171): E Wred(S)Hxv
SCUUV vES
SNV |=|SNU|=k

k J—
D'V btack (Tuts - - s Tuns Togs - oy Ty ) = Z Whlack (S) H Ty

SCUuv veS
|SAV|=[SNU|=k
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Note that the former is the matching polynomial pl‘i defined on the graph G,..q = (UUV, E'),
whereas the latter is polynomial p’l‘cf defined on Gyiaer = (U UV, E'\ E’). Then the polynomial
PR Ty Ty Ty e T, ) = Z perm(Rg) - perm(Byg) H Ty

SCUuV ves
|SAV [=|SNU | =k

is called the Schur product (or the Hadamard-Schur product) of pf, . and pll\g/black [37].

Recall that D = {z € C | |2|] < 1} is the open unit disc. In [30] it was shown that

D"-stability is preserved under the Schur product.

Theorem 6.8 ([30]). Suppose that for each S C {1,2,...,n}, complex number ag and bg are
given. Suppose that
Z aSsz#O and Z bSsz;éO
Sc{l2,.n} j€S Sc{12,.n} j€S
whenever |z;| < 1 for all j with 1 < j <n. Then also
Z agsbg H 2 #0
Sc{1,2,...,n} JjES

whenever |zj| < 1 for all j with 1 < j < n.

So the following corollary holds for polynomial pfb.

Corollary 6.6. If both multivariate homogeneous matching polynomials p"“/(xl,...,xn) and
p’]f/(xl, ..., y) defined on an unweighted bipartite graph are D™-stable, then the multivariate
homogeneous red-black polynomial pffb(xl, ..., Ty) defined on an unweighted bipartite graph with

both black and red edges, is D™-stable.

Proof. Tt is immediate from Theorem 6.8 and the fact that p'ﬁb(acl, ..., Tp) is the Schur product

k
ofp]f/(xl,...,xn) and p'y(x1,...,2p). ]

Remark 6.7. The assumption of Corollary 6.6 is very strong. ]fpl‘f/(ajl, .oy Ty) 18 D"-stable,
then p'% (1, ... @) = 21 -+ - Ty, ph(xt, . apt) is D" -stable, where D = {z € C | |2| > 1}.
This is true because if x € D, then x # 0 and x=' € D. The converse fact is also true, that is, if
p’l{}(fnl, <.y xy) is D"-stable, then pf-(z1,. .., ) is D" -stable. So, the assumption implies that
both multivariate homogeneous matching polynomials pl‘gf (x1,...,2yn) and p’lf/(m, ..., Tp) are not

only D"-stable, but also D" -stable.
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6.4.5 The multivariate homogeneous exact matching polynomial

In this section, we define a polynomial that encodes exact matchings using variables correspond-
ing to edges, namely the multivariate homogeneous exact matching polynomial. Since
we want to focus on solving the #EXACT MATCHINGS problem on unweighted bipartite graphs,

we define this polynomial for such graphs.

Let G = (UUV,E), |V| = |U| = n, be an unweighted bipartite graph and E' C E. Let

also Mffed be the set of k-matchings of G containing only red edges.

Let A = (ai;) be the n x n biadjacency matrix of G such that,

1 if (ui,v5) € E,
Qi5 =
0 otherwise

Let

e A denote the (n — 1) X (n — 1) matrix obtained from A by crossing out the i-th row

and the j-th column and

o A|® denote matrix A where every aij, (ui,v;) € E' is set to 0.

Let My, be a set of pairs {i1,j1}, ..., {ik, i} such that iy # io # ... # ig, J1 # Jo # ... # Jk
and (i1,71), .-, (ix, j) € E'. We define the weight of M, as follows

W(M},) = perm(4 @)

il:jl):'-'7(ik)jk
where perm(A) =3 o [[iL; 4i o), for any square matrix A.

Note that edges (i1,71), ..., (ix, jr) form a matching in Mfed. The weight of this matching
is the number of perfect matchings with only black edges in the remaining subgraph of G. In
©), where A

other words, it is the permanent of A, ;) )](0) is the biadjacency

..... (i) | 11,51 i

matrix of G after deleting all the vertices of My and deleting all red edges of G.

Definition 6.20. Let G = (UUV, E), |V| = |U| = n, be an unweighted bipartite graph, E' C E,
and Mfed be the set of k-matchings of G containing only edges in E'. We define the multivariate

homogeneous exact matching polynomial by

p];m(xela"'vxem) = Z W (M) - H Te-

MkeM’jed e€EMj,
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6.4.6 Examples of expressing the matching polynomials using the permanent

The rationale behind this subsection is the following. The permanent of the biadjacency matrix
of a bipartite graph gives the number of perfect matchings of the graph. We examine here
how coefficients of the aforementioned polynomials, other useful quantities, or maybe an entire
polynomial can be expressed using the permanent of appropriate matrices. To start with, we
simplify the form of the polynomials as much as possible, so the following examples are for
unweighted bipartite graphs.
Example 6.1 (Multivariate homogeneous matching polynomial).

2124 0 2126
Consider the matriz Ay = | z924 2925 2926| that corresponds to the following graph Gi.

2324 2325 0

1 4
2 5
3 6

Note that:

1. The sum of permanents of k x k submatrices of Ay gives the multivariate homogeneous

matching polynomial p’f/(zl, ...y 26). So, it is %—sector-stable by Proposition 6.12.

2. perm(A;) is of the form C - z1 - - - zg, where C € N is the number of perfect matchings of
G1. So perm(A) =0 if and only z; =0 for some 1 <1i < 6.

Example 6.2 (Multivariate non-homogeneous red-black polynomial).

2124 1 0
Consider the matriz Ao = | 1 2925 2926| that corresponds to the following graph Gs.
Z3%24 1 1
1 4
2 5
3 6

Note that perm(As) is the multivariate non-homogeneous red-black polynomial, i.e. the sum

of the homogeneous red-black polynomials pffb(zl, ey 26), for every 0 < k < n. A term of this
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polynomial is the product of some variables times a coefficient that is equal to the number of exact
matchings in which only the vertices corresponding to the variables (of the term) are covered by

red edges.

Example 6.3 (Multivariate homogeneous red-black polynomial in 2n variables).
z1z4 2125 0
(a) Consider the matriz As = 2h2y 2075 2926 that corresponds to graph Go of Example 6.2.

z324 2525 2hzg

Note that:

1. perm(As) gives the following homogeneous polynomial in 12 = 2x(the number of vertices of G2)
variables.
(21, oy 26,21, ey 26) = Z Wied(S) - Whiack (S) - H 2y - H 2
SCULV veS @S
1SAV|=|SNU]|

where Wieq(S) and Wieq(S) are defined in Subsection 6.4.4.

2. If polynomial g is «-sector-stable, then by [0, Proposition 54/, if we set all zl, to 1, we

obtain an «-sector-stable polynomial. In specific, this is the non-homogeneous red-black

polynomial.
z1z4 0 0 0 =2zt 0

(b) Consider the matrices A3y = | 0 2925 292¢| ond Azg = 220 0 that
z3z4 0 0 0 252L 252

correspond to graph Gs.

Fiz a k. Let A1g be a k X k submatriz of A3y, where S denotes the set of rows and columns
in A1g. Then we denote by Asg the matriz that we obtain from Asy by keeping the rows and
columns in S (i.e. by deleting all rows and columns in S ). Consider the polynomial that is the
sum of products Ayg - Agg for all possible S. This polynomial is g(z1, ..., 26, 21, ...25) restricted
to terms with 2k variables among z1, ..., zg and 12 — 2k variables among 21, ..., z5. So, it encodes

exact matchings with k red edges and it is a generalization ofpfb (i.e. if we set all 2, ...,z to
1, we get pf‘fb).

Example 6.4 (Multivariate homogeneous red-black polynomial).

2124 0 0 010
Consider the matrices R = 0 2925 2926| and B= |1 0 0| that correspond to the same
2324 0 0 01 1

graph G given below.
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1 4
2 5)
3 6

Fiz a k. Consider a term to be the permanent of a k X k submatrix Rg of R times the

permanent of the matriv Bg. The sum of such terms for all possible S gives the multivariate

homogeneous red-black polynomial.

Example 6.5 (Multivariate non-homogeneous exact matching polynomial).

Consider the matrices Ay

et 1 O et 0 O 01 0
1 e5 egl, B = |0 e5 eg| and B = |1 0 0| that
er 1 1 (&rd 0 0 01 1

correspond to the same graph Go given below.

Note that:

1 4
2 5
3 6

1. perm(Ay) is the multivariate non-homogeneous exact matching polynomial, i.e. the sum

of the multivariate homogeneous exact matching polynomials plgm(zl, ..., 26), for every

0 <k <n. A term corresponds to eract matchings containing the red edges appearing as

variables in the term. The coefficient of the term is the number of black perfect matchings

(perfect matchings containing only black edges) in the remaining subgraph.

2. Fiz a'k. Let a term be the permanent of a k x k submatriz Ry of R’ times the permanent of

the matriz B/g. The polynomial that is the sum of all these terms, gives the homogeneous

exact matching polynomial p&_ (21, ..., 2).

Example 6.6 (Univariate matching polynomial).

This example is about bipartite graphs that the diagonal of their biadjacency matriz has only zero

0
1
1

entries. Let A5 =

1
0
1

0
1
0

1
0
1

be the biadjacency matriz of a bipartite graph Gs = (UUV, E),
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|U| = |V| = n, that has only black edges. Then
perm(xl + As) = Z z*
M matching of size n—k
which is a univariate polynomial encoding all matchings of Gs. So, it is real stable [52, Chapter
5].
Example 6.7 (Univariate exact matching polynomial).

z 1
Let Ag = represent the graph G4 which is shown below.
1 =z

Then perm(Ag) = 2% + 1 is the univariate evact matching polynomial, i.e. the polynomial
obtained from the multivariate non-homogeneous exact matching polynomial by replacing all
variables by x. In general, the permanent of the biadjacency matriz with entries equal to x and
1 for red and black edges, respectively, may be sector stable, but it is not real stable (since i is a

root of 22 +1).

6.4.7 Facts and remarks about the matching polynomials defined here

Remark 6.8. Let A be a matrix with non-negative entries and zero diagonal entries. Then
the permanental polynomial perm(zl + A) of A is a real-stable polynomial. This is based on

Example 6.6.

Remark 6.9. Let A = (a;;) be the biadjacency matriz of the unweighted bipartite graph G =
(U UV, E) which also has a set of red edges E' C E, such that
L, if(i,j) e E\E
aij =z, if (i,j) € £
0, otherwise

Then perm(A) is the univariate exact matching polynomial

Pem(z) = > Cpp-alPOM

M perfect
matching
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where |E' N M| is the number of red edges in M and the coefficient Cyy is the number of black
perfect matchings in the subgraph induced by the vertices not covered by the red edges of M.

This polynomial is not real-stable. This is based on Example 6.7.

In Example 6.5 we expressed the multivariate non-homogeneous exact matching polynomial
(i.e. the sum of the multivariate homogeneous exact matching polynomials p’gm, 0<k<n)as
the permanent of a relevant matrix (denoted by A4 in Example 6.5), which contains a variable
ei, 1 <1 < E’, for every red edge, 1 for each black edge, and 0 otherwise. Below we prove
that this polynomial has a zero-free region, which is a circle around the point (0, 1), under some
conditions on the sum of the rows and columns of this relevant matrix. The proof is based on

the following theorem.

Theorem 6.9. (|32, Theorem 5.5.3]). Let A = (a;j) be a n X n array of n? complex numbers,

such that

a-n a-n
Z \l—aij\ST and Z ‘l—aij‘ST

1<i<n 1<j<n

for every 1 < j <mn, and 1 <1i < n, respectively, where
a =~ 0.2784645428

1s the positive solution of the equation

Then perm(A) # 0.

Corollary 6.7. Let G = (UUV,E), [U| = |V| =n, E' C E, be a bipartite graph, that has
r = |E'| red edges, b = |E \ E'| black edges, and ¢ = n® — (r + b) pairs of vertices that are not
connected by an edge. Let also eq, ..., e, be an enumeration of edges in E'.

Consider the biadjacency matriz A = (aij) of G such that

€, Zf (Z7j> =€
aij =1, if (i,j) € E\ E
0, otherwise

Let D, be the mazimum degree of a vertex with respect to red edges (i.e. the mazimum number
of red edges adjacent to some vertex) and D, be the maximum number of non-neighbors of a
vertex in G. If all eg, 1 < £ < r, belong to the closed disc of center (1,0) and radius %ﬁDC,

then perm(A) # 0, where o = 0.2784645428. The polynomial perm(A) is called the multivariate
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non-homogeneous exact matching polynomial of G.
In other words, the multivariate non-homogeneous exact matching polynomial of G is C"-stable,

where C C C is the circle with center (1,0) and radius %{‘DC.

Proof. By Theorem 6.9, if the sum of |1 — a;j| in every row and every column is < %%, then

perm(A) # 0.

But the sum of a row (or a column) depends on the number of zeros (no edge) and the

number of e;’s (red edge) in the row. So, the sum of any row (or column) is upper bounded by
D,

Z |1 — es| + D., which should be:

i=1

D,
Z’l—eeHDcS% =
=1

D

- —4D
Z|1—eg\ < % where an > 4D..
i=1

It suffices to have

an — 4c
‘1—€g|§74 for every ep, 1 < £ <r —
r

an — 4D,

(1-— Re(eg))2 + Ilrn(eg)2 <( 1D

)2 for every ep, 1 <4 <r

an —4D
If all e; belong to the closed disc of centre (1,0) and radius Tc, then the multivariate
T
non-homogeneous exact matching polynomial is not zero.

For the inequality an > 4D,., we have that

4—«

an>4D, <= an>4(n—d) <= d—a)n <4d <= d > n

where d is the minimum degree of a vertex. O

For the sake of completeness, below we include three more propositions that have already

been stated earlier in this section.

Proposition 6.16 (Proposition 6.14 restated). If the polynomial p& (e, ..., xe,,) is a-sector-

stable for a constant «, then we have an fpras for counting k-matchings in general graphs.

Proposition 6.17 (Proposition 6.15 restated). Let p* € R[xy,. .., x,] be a multivariate homo-

geneous polynomial, where each term has degree k. Then pF is ﬁ—sector—stable.
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Proposition 6.18 (Corollary 6.6 restated). If both multivariate homogeneous matching polyno-
maals pl‘“/(xl, ey Ty) and p’l{} (z1,...,zy) defined on an unweighted bipartite graph are D™-stable,
then the multivariate homogeneous red-black polynomialpffb(xh ..., Ty) defined on an unweighted

bipartite graph with both black and red edges, is D™ -stable.

6.5 Discussion of results

In this chapter our goal was to examine #EXACT MATCHINGS, the problem of counting perfect
matchings with k edges in graphs with both black and red edges, with respect to its exact and

approximate complexity.

The decision version of the problem, namely EXACT MATCHING is known to be in RNC [119].
We prove here that EXACT MATCHING restricted to bipartite graphs can be reduced to a max-

flow problem and so it is in P.

#EXACT MATCHINGS was known to be computable in polynomial time in K3 3-free graphs.
We prove here that #EXACT MATCHINGS is reducible to #WEIGHTED PERFMATCH using
polynomial interpolation, so the polynomial-time algorithm for # PERFMATCH in K5-free graphs

applies to #EXACT MATCHINGS in Kj5-free graphs as well.

In the case of #EXACT MATCHINGS in bipartite graphs we are left with several open
questions. We include below most of them and we add another one in Chapter 7. For details,

the reader can see Subsections 6.2.1 and 6.3.4.

1. In Subsection 6.2.1 we analyzed our motivation to determine whether the optimization ver-
sion of #KXACT MATCHINGS in bipartite graphs is in P. A polynomial-time computable
optimization version would yield a randomized algorithm described in [29], which distin-
guishes between #EXACT MATCHINGS(G) being polynomially or exponentially large. We
have not concluded whether the optimization version of #EXACT MATCHINGS in bipartite
graphs is either in P or NP-hard. However, our attempt to prove that it is in P by using
the ILP formulation of the problem failed. Moreover, it is worth-noting that a modifica-
tion of the algorithm in [29], based on the RNC algorithm for the decision version, and
not on a polynomial-time algorithm for the optimization version, may work for #EXACT
MATCHINGS. This is because the RNC algorithm for the decision version, can be extended
to output the minimum exact matching, where the m edges of the graph are randomly

assigned weights in {1,...,2m}.
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2. Can we design an fpaus for exact matchings in bipartite graphs? More precisely, can we

do one of the following?

(a) Can we modify the MCMC for sampling uniformly at random perfect matchings in

bipartite graphs so it works for exact matchings with exactly k£ red edges?

(b) Can we prove a-sector-stability either for the multivariate homogeneous red-black
polynomial or for the multivariate homogeneous exact matching polynomial and then

apply the technique of [6] (as was described in Subsection 6.3.4)?

3. Can we prove that #EXACT MATCHINGS in bipartite graphs is AP-interreducible with a
problem that is not expected to be approximable, such as #BIS, or even # PERFMATCH,
which has an open approximability status? In fact, it would suffice to prove that it is
at least as hard as one of these problems, so we would focus on the question we pose in

question 1 and not on designing an fpras for the problem.

Regarding the question 2(b), we have stated some first facts and remarks about matching
polynomials in Section 6.4. However, at the time this thesis is completed, we are far from

proving a-sector-stability for the polynomials we mention in question 2(b).

Regarding the parameterized complexity of #EXACT MATCHINGS, we proved a hardness
result. By reducing #k-MATCHINGS to #EXACT MATCHINGS, we concluded that the latter is

#W[1]-hard.
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Chapter 7

Conclusion

To conclude, we state below some open questions that can set the ground for future work.

1. We have presented some TotP-complete problems under parsimonious reductions. How-

ever, these problems are not among the well-known problems in TotP, for example #IS,

PERMANENT, etc. If any problem that admits an fpras, like PERMANENT, is TotP-complete

under parsimonious reductions, then RP = NP. If #PERFMATCH was proven to be TotP-

complete, then its approximability status would be resolved, since its TotP-hardness would

imply that it has no fpras unless RP = NP. In Chapter 5 we referred to an open question in

relation to #MONSAT; which class is #MONSAT complete for, with respect to reductions

under which the class is closed? Can it be that it is complete for TotP under parsimonious

reductions?

2. The syntax of the logic R¥XQgsog, which captures TotP over finite ordered structures, is

such that only one p-bounded fixed point appears. If we allow nested p-bounded fixed

points, will we obtain a logic that still captures TotP? Such questions arise quite naturally

when we deal with logics with fixed points. For example, first-order logic with nested

least fixed points has been proven to be the same as first-order logic with one least fixed

point [112].

3. Classes defined in the context of descriptive complexity are not closed under parsimo-

nious or product reductions in general. For example, every problem that is reducible to

#MONSAT under product reductions, does not necessarily belong to the class #[l1,-1VAR

defined in Chapter 5. The introduction of reductions defined in some logic (e.g. first-order

reductions) between counting problems, under which the aforementioned classes would
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be closed, could refine the classification of these problems in the context of descriptive
complexity. Such reductions have been defined and widely used between decision prob-

lems [38].

4. We would like to give logical characterizations of classes defined in Chapter 4 and examine
whether using them, we can obtain alternative proofs of well-known results, such as Toda’s
Theorem, closure properties of classes, etc. Note that, for example, the logical character-

ization of NL has given an alternative proof of the closure of NL under complement |112].

5. The most significant question that this thesis has not succeeded to answer is whether
#EXACT MATCHINGS in bipartite graphs has an fpras. Can we prove a-sector-stability
either for the multivariate homogeneous red-black polynomial or for the multivariate ho-
mogeneous exact matching polynomial and then apply the technique of [6] (as was de-
scribed in Subsection 6.3.4 of Chapter 6)7 If not, can we show hardness of approximation
for the problem? In the latter case, can we prove that the optimization version of the
problem is polynomial-time computable and obtain a randomized algorithm for #ExXAcCT

MATCHINGS in bipartite graphs along the lines of [29]?

6. Regarding the exact computation of #EXACT MATCHINGS, can the dichotomy result
of [113] be extended to the problem of counting perfect matchings in weighted graphs?
If the answer is yes, then the same dichotomy theorem holds for the problem #ExXAcCT

MATCHINGS on minor-closed graph classes.
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Appendix A

Glossary - I'hwoodelo

VLY WYT] YLVOUEVOU

amAr) TEOTAOT

U TOAUVAYWYULOS

e0pwoTN XAdOT

K3 3-ehetlepog ypdgpog
K5-eheiepog ypdpog
XAEWOTO and %31 GOVORO
AEXTIXO

AOYWO HOXNAOUL

HovTelo

Metpnuxr undieon exdetinol ypdvou
HOVOTTL AmOBOY NS

IMavotiny unddeon exdetinol ypdvou

oTodepd omnueio

oLLELXTLIXT) XOVOVIXT] LOPYPY

CLVAETNOT SLoEPLOMNS

CLVAETNON UETENONE TOU PEYEDOUS BLUO THUATOS
Todplooua

Trddeon exdetinol ypdvou

PEWBWAY] VoYY

puUOIXO TEOPBAN U
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product reduction

clause

self-reducible

robust class

K3 3-free graph

Ks-free graph

lower set

literal

boolean circuit

oracle

#Exponential-time hypothesis (#ETH)
accepting path

randomized exponential-time hypothesis
(rETH)

fixed point

conjunctive normal form (CNF)
partition function

interval size function

matching

Exponential-time hypothesis (ETH)
parsimonious reduction

natural problem
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