NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHooL oF ELECTRICAL AND COMPUTER ENGINEERING

g?

DivisION OF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

v,

o
Na L
/§ &
OPOMHOEVS
=
nVpPPopos

DDoS Detection using Trust-Aware Federated

Learning for Heterogeneous Collaborators

DipLOMA THESIS

of

VASILIS PETRAKOPOULOS

Supervisor: Symeon Papavassiliou
Professor, NTUA

Athens, July 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DivisioN oF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

DDoS Detection using Trust-Aware Federated

Learning for Heterogeneous Collaborators

DipLOMA THESIS
of

VASILIS PETRAKOPOULOS

Supervisor: Symeon Papavassiliou
Professor, NTUA

Approved by the examination committee on 2nd September 2022.

(Signature) (Signature) (Signature)

Symeon Papavassiliou Efstathios Sykas Giorgos Stamou
Professor, NTUA Professor, NTUA Professor, NTUA

Athens, July 2022

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DivisioN oF COMMUNICATION, ELECTRONIC AND INFORMATION ENGINEERING

NETWORK MANAGEMENT AND OPTIMAL DESIGN LABORATORY

(Signature)

Vasilis Petrakopoulos

Graduate Electrical &
Computer Engineer N.T.U.A.

Copyright (C) Vasilis Petrakopoulos, 2022.

All rights reserved.

This work is copyright and may not be reproduced, stored nor distributed in whole or in part for
commercial purposes. Permission is hereby granted to reproduce, store and distribute this work
for non-profit, educational and research purposes, provided that this work and its corresponding

publications are acknowledged. Enquiries regarding use for profit should be directed to the author.

The views and conclusions contained in this document are those of the author and should not
be interpreted as representing the official policies, either expressed or implied, of the National

Technical University of Athens.

MepiAnyn

Ot Katavepnuéveg Embéosig Apvnong Iapoxng Yrnpeowwv (DDoS) amoteAdouv peidov poBAnpa
ot OUYXPOVI) ETOXT] TOU 81ad1KTU0U, KAOKOG OTOXEVOUV 0TV MAPAAUCT] UTNPECIOV KAl 0TV eEAVIAD-
0N TV OPRV ITOU AUTEG XPNOI0II00UV, KaBlothviag TI§ AripooiEAaoteg Ao T0Ug VOULIOUG X P 0TES
toug. H katarnodépnon tov ermbéoemv autov eival pia mpokAnon, v oroia yia va §ernepdoouv ot op-
yaviopol aocpaleiag ouyva xpetddetal va ouvepyaotouv Kat mbaveg va poipactouv ta Sedopéva mou
61abétouv, yia v eknaidsuon poviédev pe peyautepn akpiBela avixveuong. Evioutolg, n ouvepya-
ota autn) Sev propel eUKOAA va KATAOTEl EPIKTA KAT® Ao 11§ apadooiakeg ouvOnKeg ekmnaibeuong pe
Katavepnpévn Mnyavikny Mabnor (Distributed Machine Learning), 6rou ta §gbopéva eknaideuong
ektiBeviatl oe évav Keviplko Slakopiotr], AOy® TOU TEPACTIOU OYKOU TRV HeSOEVEOV aUT®V, TOU EUITO-
PLKOU AVIAY®VIOPOU KAl T®V AUOTPOV IIPOTOKOAA®V 1810TKOTNTAg KAl aopdletag. TIpokeiévou va
AVTIPETOITIOTOUV Ol TTAPATIAV® SUOKOAlEG, 08 AUV 1] SIMAGIATIKY] TIPOTEIVOULLE, O TIPAOTO ertirnedo,
éva mep1B8adAov ouvepyatikng eknaidsvong rmou Paocidetat otn ouyxpovn péBodo g Opoonoviiakng
Mda6nong (Federated Learning).

Katd v exknaidsvon pe Federated Learning, ta pova dedopéva mou aviadddococoviat eivat ta
TOrmKA Povieda mou ekmnatdsvovial oe KOs ouvepyalopevn oviotnTa KAl ArnooteAAovial o€ €vav Ke-
VIPIKO O10KOMIOT] Yld va oupyn@lotouv oe €va VEo YeVIKO poviedo. Ta dedopéva exmnaidsuong
MIAPAPEVOUV MTPOOTATEUPEVA OTIS TOITIKEG OUOKEUEG KAOOAT) Sidpkela g eknaidbevong. Qotdco, pe
) Sadikaocia aut) poxkurttouy dUo {nupata. ApYikd, arnatteital oe apadoolaKES aAPXITEKTOVIKEG
Federated Learning ot ouvepyalopeveg ovidtnteg va KataAn{ouv opodeva oe KO apXltEKTOVIKY
HOVTEAOU, TIPAYHA TTIOU PIOPEl va pnv eivatl eUKoAo egattiag apevog g ETEPOYEVELAS TV Sebopévav
TOUG KAl apeTEPOU TV ekAotote Hiabéomv mopwv Kabe ovidtntag. To Sevtepo eivatl to evoexopievo
KAIo1a aro tig ouveyadopeveg oviotnteg va diabetel edattopatikda dedopéva, pe anotédeopa va otéA-
vel Sragopetikd (arokAivovia) poviéda o oXEOT e TG UTTOAOTES KAl va EMNPeAdetal apvnuikd 1 0An
dadikaoia.

Z10X0g, Aowudv, g apovoag SumAopatikng, oe Sevtepo erminedo, ival n aviipetdIon v dUo
npoavadepBéviev Nunpdtev. Ta 1o Adyo autd avartuoostal pia rielpapatky didtadn Federated
Learning katdAAnAn ywa etepoyevn) poviéda, 6ndadr) poviéda 161ev veupovikov Siktumv, addd pe
S1apopeTIKOUG ap1BI0UG VEUPGOVOV, KAl EPMAOUTIONEVE] HE Evav TTApAyoviad eprotoouvng (trust) pe
OKOIIO TN PEIDOT) TG EMMPPOIS T®V CUVEPYATROV ITOU OTEAVOUV armoxkAivovia povieda. Mag eviiapépet
va doupe av propoupe pdypatt va Xpnotponotrjooupe 1o Federated Learning avuipetomnidoviag ta

{nupata avtd.

Aégerg KAebua

Katavepnpéveg Embeoeig Apvnong [Mapoyxng Yrinpeoiov, Avixveuon Aiktuakov Emmbéoewnv, Opo-
orntovdiakr) Mabnorn, Etepoyevr) Moviéda, Opoomnovdiaky Madnon pe Iapdyovia Eprmiotootvng

Abstract

Distributed Denial of Service (DDoS) attacks constitute a major problem in the modern era
of the internet, as they aim to paralyze services and exhaust the resources they use, making
them inaccessible to their legitimate users. Mitigation of these attacks is a challenge that security
agencies often need to work together to overcome and possibly share their data to train models
with greater detection accuracy. Nevertheless, this collaboration can not easily be achieved under
traditional Distributed Machine Learning training conditions, where training data is stored on a
central server, due to the vast amount of such data, commercial competition and strict privacy
and security protocols. In order to address the above difficulties, in this thesis we propose, at first
level, a collaborative learning environment based on the modern method of Federated Learning.

During training via Federated Learning, the only data exchanged is the local models that are
trained in each collaborating entity and sent to a central server to be aggregated into a new global
model. Training data remains protected on local devices throughout the procedure. However,
this process raises two issues. Firstly, traditional Federated Learning architectures require the
collaborating entities to unanimously arrive at a common model architecture, which may not be
easy due to the heterogeneity of their data on the one hand and the resources available to each
entity on the other. The second one is the possibility that some of the collaborating entities have
defective data, as a result of which they send different (divergent) models in relation to the others
and the whole process is negatively affected.

So, the aim of the present thesis, at a second level, is to address the two aforementioned issues.
For this purpose we develop an experimental Federated Learning set-up suitable for heterogeneous
models, i.e. models of the same neural network, but with different numbers of neurons, and
enriched with a trust factor in order to diminish the influence of collaborators sending divergent
models. We are interested to see if we can actually use Federated Learning while addressing these

issues.

Keywords

DDosS Attacks, Network Attacks Detection, Federated Learning, Heterogeneous Models, Trust-

Aware Federated Learning

Euyxaploticg

®a 1Beda Katapyxdg va eUXaplotro® tov Kabnyntt K. Xupeov IanaBaocideiou yia v emiBAeyn
autig g dumlepatkng epyaciag. Euyxapioted tov opotipo kabnynt k. Baoidsio MaykAapn 1mou
HOU TPOTELVE TV €PYAOia AUTI] KAl PoU £86®0e TV eUKalpia va v eKMoviom oto gpyaotrplo NET-
MODE (Network Management & Optimal Design Laboratory) tmg oxoAng HMMY tou EMII. Erong,
euxaplot® aitepa Tov vrnioyneo didaxtwpa Mapivo AnpoAidvy yia v kabodnynor tou Kkat v
eSA1PETIKY] ouvepyaoia mou eixape kabBoAn) Sidpkela mg dumdopatkng avt)g. Tédog, Sa rbsda
va €UxXaplotom Yovelg, ouyyeveig kat @idoug yla v nbikn oupnapdotaon kat forfsia mou pou
MPOoEPePAV OAa aAuUTd Ta Xpovia Kat ouvéBadav ot Snpoupyia euxdplot@v avapvrosov rmou da ta
Xapaxtnpidouv.

BaoiAng IMetpakorouldog

ABnva, IovAilog 2022

11

Contents

HNepiAnyn

Abstract
Evuxapioticg
List of Figures
List of Tables

1 Extetapévn EAAnviky IepidAnyn
1.1 Ewayewyn
1.2 @ewpnuko YnioBabpo
1.3 Zxeuxkég Epyaoteg
1.4 Meb6oboroyia
1.5 Tlepdpata kat YAomoinon . . .
1.6 Zupnepdopatd . . oL

2 Introduction
2.1 Motivation
2.2 Thesis Contribution
2.3 Thesis Outline

3 Theoretical Background

3.1 Internet and Autonomous Systems Fundamentals

3.2 DDoS Attacks
3.3 Federated Learning
3.3.1 Federated Learning Cycle

3.3.2 Federated Learning Without Central Server

3.3.3 Federated Averaging . .

3.3.4 Federated Learning vs Distributed Machine Learning

3.3.5 Other Aggregation Algorithms

3.3.6 Security and Privacy Issues Lo o L oo

4 Related Work

4.1 Federated Learning and DDoS Attack Detection

4.2 Heterogeneous Federated Learni
4.3 Federated Learning and Trust

5 Methodology

NE . o o e e e e

5.1 Heterogeneous Federated Learning

5.2 Trust-Aware Federated Learning

11

15

17

19
19
20
21
21
23
26

27
27
28
28

29
29
30
30
31
31
32
32
34
34

37
37
39
39

41
41
42

13

CONTENTS

5.2.1 Limitations e e e e e e

6 Experiments and Implementation

6.1 Used Data .

6.2 Methodology of Experiments L0 e

6.3 Technical Details of Implementation

6.4 Preprocessing
6.5 Results . . .

6.5.1 Clients On Their Own vs Federated Learning

6.5.1.1
6.5.1.2
6.5.1.3
6.5.1.4

7Clients e
14 Clients e e
21 Clients e e e e e e e
Random Distribution of Attacks

6.5.2 Trust Effect e e

6.5.2.1
6.5.2.2
6.5.2.3

7Clients e e e e e e e e e e
ld clients e e e e

21 clients e e e e e e

6.5.3 Feature Selection Benefit. o

7 Conclusions
7.1 Summary . .
7.2 Future Work

Bibliography

14

45
45
45
47
47
48
48
48
50
51
51
53
53
53
54
54

57
57
58

59

List of Figures

1.1
1.2
1.3
1.4
1.5

1.6

1.7

1.8

3.1
3.2

4.1
4.2

4.3

4.4

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

6.9

6.10

6.11
6.12

ITepiBaAdov Federated Learning. Ilnyny: [1] o oo oo oo oo 20
MLP poviéda 8U0 ouvepyat®dV IPog CUPWPINMIOPO. .« « v v v v v v v o e e e e e e e e u 22
ZUpYPN@oPEVO POVIEAD TOV HOVIEAGV 1 KA1 2. o o v vt e e e e 22
Enidoon 7 ouvepyatov kat FL poviédou otnv kaAoBouAn Kkivnon. 24

Mcéon eniboorn 7 ouvepyatov kat FL poviédou otnv kakoBoulAn Kivnor), e§aipoviag tv
Bl eTOE0T). o e e e e e e e e e e e e e e e e e e 24
Mcéon emniboorn 7 ouvepyatov kat FL poviédou otnv kaAoBoulrn kivnon oe 20 extedéoelg
HE TUXaida S1avopn €TOE0EMV. .+« v v v v v v v e e e e e e e e e e e e e e e 25

Meéon emniboon 7 ouvepyatdv kat FL poviédou otnv kakoBouAn kivnorn (pécog 0pog

ermbéoewv e§alpwviag Vv 5n) oe 20 extedéoelg pe wuxaia davour) erubéoewv. 25
DA Xoplg KAl P APAYOVIa EPITIOTOOUVIG V1A 7 OUVEPYATES. . .« « « « o « « « o o o . . 26
Attacks on Different ASs of the Internet. Source: [2] 29
Federated Learning Setting. Source: [1] 32
Collaborative DDoS Detection & Mitigation Architecture. Source: [3] 38
Training time cost of MT-DNN-FL (proposed network) and DNN (ordinary networks).

Source: [4] e e e e e e e e 38
Global model parameters W, are distributed to m = 6 local clients with p = 3

computational complexity levels. Source: [5] 39
Effect of trust on resilience against attacks. Source: [6] 40
MLP models of two clients to be aggregated., 41
Aggregated model of models land 2., 42
MLP model with 2 input features. 46
Performance of 7 clients and FL model in benign traffic. 49

Average performance of 7 clients and FL model in attack traffic, excluding 5th attack. 49
Performance of 14 clients and FL model in benign traffic. 50
Average performance of 14 clients and FL model in attack traffic, excluding 5th attack. 50
Performance of 21 clients and FL model in benign traffic. 51
Average performance of 21 clients and FL model in attack traffic, excluding 5th attack. 51
Average performance of 7 clients and FL model in benign traffic in 20 runs with

random distribution of attacks. Lo Lo Lo Lo 52

Average performance of 7 clients and FL model in attack traffic (average of attacks

excluding the 5th one) in 20 runs with random distribution of attacks. 52
FL without and with trust factor for 7 clients. 53
FL without and with trust factor for 14 clients. 54
FL without and with trust factor for 21 clients. 54

15

List of Tables

1.1 'Og¢edog g dwadikaoiag feature selection.o,

6.1 Benefit of feature selection procedure

17

Kegalaio 1

Extetapévn EAAnvikn IepiAnyn

1.1 Ewaywyn

'Onwg eival yveoto, 1o Aladiktuo xopiletal oe S1KTUAKEG MEPLOXEG TOU ArokaAoupe Autdovopd
Zuotfpata [7]. Karoieg gpopég, éva 1€to1o0 ouotnua, Iou ouyvd propet va arotedetl évav opyaviopo,
yivetat dupa Siktuakov embéoswv. o ouykekpipéva, ot Kataveunpéveg Embéoetg Apvnong Ia-
poxng Yripeowov (DDoS) anotedouv peidov ripoBAnpa, Kabwg otoXeUouv oty IAapAAucn UINPECIOV
KAt §AVIANon mop®v, Kablot®viag TG | pooBActiieg and toug VORTII0US XPHOTEG, KATL ITOU PITOPEl
va £XEl OIKOVOIKEG ETUITIOOELS OTIG eMnpeadopieveg oviotnteg. H avixveuon kat aviipet®mor) ooV
ermbéoemv arotedel SUOKOAO £pyo yia ToUg Slaxelplotég SIKTUMV KAl TOUG OXE61A0TEG oUOTNPIATOV
aopaleiag.

"Evag ouyxpovog Tpormog avixveuong ermbeoewmv eivat emotpatevoviag) Mnyavikry Mabnorn (Ma-
chine Learning) ywa tov diaxewpiopd t)g S1Ktuakng Kivnong oe kaAoBouAn kat kak6BouAn. Efattiag
g ladopetkoOTag g SIKTUAKIG KIvIong aro MEPIOX) O MEPLOXT], Hla TETUXNIEVE Tagvopunor)
9a anattovoe) OUYKEVIP®ON G000 TO HUVATOV MEPLOOOTEP®V SedOPEVOV OE Evav KEVIPIKO Slakopt-
otr). Kat této10 agevog eivat acUpgopo A0Yy® TOU TEPACTIOU OYKOU TETOIROV HE60EVOV KAl APETEPOU
n Siktuakn kivnon avapgobrinta arnotedel MPooIko dedopévo, pe 1a auotnpd NAyKoopa npe-
10K0AAa mpootaciag Tewv dedopévav Katl 181eTkoNTag va Kabiotouv toug opyavoljioug anpodupoug
va ta poipactouv. H Avon oto mpoBAnpa autd sival pia teXViKn rmou ovopdadetat Opooroviiakry)
Mdabnor (Federated Learning) rou ermtpérnet v eknaidsuon poviédev pe 6edopéva ta onoia pévouv
ATTOKAEIOTIKA OTIG OVIOTNTEG ITOU OUPHETEXOUV.

Kata myv eknaibevon pe Federated Learning, ta pova 6edopéva riou aviadlddacoovtat etvat ta tortt-
KA poviéda rmou eknaidevovial oe KAOe ouvepyaldPevn) oviOTTa Kal ArTOCTEAAOVIAL OF £VAV KEVIPIKO
Slaxkopotr) ya va oupyn@lotouv o €va VEO YEVIKO poviedo. Qotooo, pe) dadikaoia avtr) mpo-
Krurttouv 6vo véa {nupata. To mp®to eival i anaitnorn ot cuvepyaldpeveg OVIOT|TES VA KATAANSOUV
opOP®OVA OE KOWVY| APXITEKTOVIKE] HOVIEAOU, ITPAYIA [TOU UITOPEl va PNy eival eUkodo egattiag apevog
NG £1EPOYEVELAS TV HedOPEVROV TOUG KAl APETEPOU TOV EKAOTOTE H1a0£01@V TTOP®V KAOE oviotntag.
To 8eUtepo eivat 10 evBeXOIEVO KATIOWA A0 TIG OUVEYALOIIEVEG OVIOTNTES va OTEAveL SrapopeTika (a-
roxkAivovta) poviéda oe oxéon pe g umodotreg, baveg edattiag tov dedopévev mou Srabétet, pe
arnotédeopa va ennpeddetal apvnuika n o0An dwadikaocia. H emiduon avtev tev {nnpdatov Sa dieu-
KOAUVEL Vv anotedeopatiky xpnon tou Federated Learning, kaBiot@viag to évav amo 1toug mAedv
IT10 UITOOYOHEVOUG TPOIOUG avipetoIiong (DDoS) embéoenv oe KATpaKaA IayKoopiou ermredou oto
Awabdiktuo.

Enopévag, 1 ouvelopopd pag oto mAaiolo autrg g SImAe®patikng eivat n uAomnoinon evog mept-

BaAloviog Federated Learning pe ta mapakat® XApAKIPIOTIKA :

® Ja ermrpernetl otig oUVEPYAOHEVEG OVIOTTES VA XPTOTHOIIOI0UV ETEPOYEVE] HETASYU TOUG POVIEAQ,

6nAadn poviéda rou 6e 9a €xouv Kat avaykn i6oug apiBpoug €006V Kal VEUPWV®V OTO

19

Kepadao 1. Extetapévn EAAnvikr) Iepidnyn

KPUPPEVO eminedo’ @UOKA, Ta POVIEAA MPETTEL va £ival 1610U TUTTOU VEUP®VIKOU H1KTUOU KAl e

1610 ap1Opo srurEdav.

e 9a eival epmdoutiopévo pe évav mapdyovia epriotoouvg (trust) mou Sa pewwvel katdAAnda
KAtd 10V OUPYPN(PLOP0 TV EITIPPOI TOV CUVEPYATROV TOV OTTOI®V Ta POVIEAA ATTOKAIVOUV, WOTE va
TMIPOKUYEL TEAIKA TO KaAUTtepo Suvato poviedo pe BAon ta XapaKiplotka 1oV dedopévav g

msoyneiag twv ouvepyatov.

O 1ed1kog 01006 eival pa Sradikaoia ermkepdng yla kabe ouvepyadopevy) oviotta 0 OUYKPLOT)

e 1o va 60UAelstl povn G.

1.2 Oswpntiro Ynobabpo

M EniBeon Apvnong IMapoyxng Yrnnpeowwv (DoS) eivar éva eidog kuBepvoemnibeong otnv omoia
évag KaxkoBoulog xprotng rmpoorafel va Kataotnoel pia ouokeur un Siabéoun mpog xpnon. Ot
EMOL0ELG AUTEG ASTTOUPYOUV MANUPIUPILOVIAG TO OTOXEUHEVO PNYXAVAHA 1€ ATPATA £0G OTOU KOPEOTel
Kat eivatl mAéov aduvartn 1 eneepyaocia tng @uolodoyikng Kivnong [8]. Mia Katavepnuévn Emifeon
‘Apvnong Ilapoxng Yrinpeowodv (DDoS) eivat évag tumog (DoS) emniBeong mou mpogpxetat ano rmoAAég
S1apopeTikEG TNyEG, Ol ortoieg eival §1APpopeg CUOKEUEG TIG OITOleg O eIMTIOEPEVOG €XEL OAUVEL HE
KAKOBOUAO AOY10111KO, OOTE va PIopet va Tig eAEyxel. Zupdava e otatiotikeg [9] [10] [11], n epddvion

€0V erBéoemv augdvetal Kat 1 avayKr yld £YKA1pr) aviXVveuor) TOUG YiVETal EIMITAKTIKY).

Model (M)
F(Rq, Rz, ... Ry
Aggregator (A)
Key Point:
Raw data from each party is pever
shared, it remains where it is stored.
Q
Ru

~
EEw —
-—

Party 1 (P,) Party 2 (P,) Party N (Py)

Figure 1.1. IIcpi6aiiov Federated Learning. IInyn: [1]

To Federated Learning nmpoo@£pet véeg IIPOOTTTIKEG OTOV OKOIO autd. ErmvorOnke and emotpo-
veg g Google to 2017 [12]. Turikd, ta Prpata oe éva arAo riepiBdAdov Federated Learning eivat

Ta akodouba:
e Brjpa 1: O Keviplkog H10KOM10THG APXIKOIIOEL £va YEVIKO POVIEAO.
e Brpa 2: O kevipikdg H1aKOO0THG OTEAVEL TO YEVIKO NOVIEAO 08 KAOE GUOKEUT] TTOU OUPHIETEXEL.
e Brnpa 3: Kabe ouokeun ekraiSevetl TOTIKA TO POVIEAO TTOU £€AaBe XPpNo1PomoimvIag Jovo Ta S1ka

g 6edopéva.

20

1.3 Zxeukég Epyaoieg

e Brjpa 4: Metd v exknaideuor), KAOBe CUOKEUT) OTEAVEL TO TOITIKO TG POVIEAO THO® OTOV KEVIPIKO

Siaxkopiory).

e Brpa 5: AQoU 0 KEVIPIKOG H1OKOPIOTNG CUYKEVIPWOEL OAd Ta TOINKA HOVIEAd, Ta oUupYn@idet
XP1NOIOIOIMTAG KATTIO0V aAyopiOpo cupyndiopou (mapadooiaka tov Federated Averaging) kat

TIPOKUITIEL £va VEO, EVIHEPOUEVO YEVIKO HOVIEAO.

e Brpa 6: O revipikog Srakopiotrig otédevt avd otig ermpuépoug CUOKEUEG TO OURYIPLOIEVO
YEVIKO POVTEAOD, OOTE va eKTAISEUTOUV TOTIKA Kat 1) Siadikaoia ertavaiapBavetatl péxpt KAmoov

nPoKaBop1o11€Vo ap1Bl1d emox®V 1] PEXPL TNV 1KAVOITOiNon KATO10U KPltnpiou.

'Eva anod 1a onpaviukotepa onpeia oty napandave diadikacia eivat o alyopibpog cupyn@iopou.
Ztov Federated Averaging [13] ta Bdpn 10U véou poviéAou uroAoyidovial @g o otabpiopévog PNECOg
0pOG TV AVIIOTOX®V BAp®V T®V TOIK®V POVIEA®V T@V OUCKEU®V ITOU ouppetexouv. H otabuon yive-

tat pe faon tov aplBpo v Se1ypdt®v Iou MEPIEXOUV Td OUVOAA 5e80PEVROV TRV ETIIIEPOUS CUCKEUMV.

1.3 Zxeurég Epyaoieg

®a avagépoupe ev ouviopia Hepkeég epyaoieg oxetikeég pe Federated Learning kat avixveuon
DDoS emBéoemv. Ot Zhao et al. [14] cuvduaocav to Federated Learning pe to transfer learning ¢xo-
vtag Vv 18€a 0Tl KATTO1EG OVIOTHTEG TIOU £X0UV e101KEUTEL va avayveopifouv 61apopeTikeg KaKOBoUAEG
EVEPYELEG PITOPOUV VA OUVEPYAOTOUV Y1d VA AVIXVEUOUV YEVIKOTEPA Avelladieg otn S1KTuaK: Kivnor).
Ot Tian et al. [15], mpotevav €éva «cAadpu» residual network yia aviyveuon ermbéoemv Kat Katn-
yoptloroinorn kivnong. Ot ouyypageig tou [4] vobétnoav pla kawvotopa mpooéyyion ouvdudaloviag
10 Federated Learning pe 1o multi-task learning xat métuxav pe pia povo eknaibeuon va KAvouv
aviyxveuon S1Kktuak®v avopadiov, avayvopilon VPN/Tor Kivnong Katl Katnyoplornoinon Kivnong, Kep-
61¢ovtag ouvoA1Kd og KOOTOG XPOVoU ekraideuong.

Ot Diao et al. [5], mpdtewvav éva véo ouotnia, To HeteroFL, yia va aviipiet®icouy ty 1epoyEveta
1OV oUVEPYA{OPEVAOV OVIOTI|TOV TTOU EVOEXONEVAOG va £XOUV S1aPOPETIKY] UTOAOY10TIKY) Kavotnta. H
KeVIPIKY 18€a elval 0Tl o1 ouvepydteg eival X@pilopévol oe opadeg avadloya pe 1ig duvatdtnieg toug
KAl Td POVIEAd aut®V PE TV UPNAOGTEPT UMOAOY1IOTIKI] 1KAVOTNTA TIEPLEXOUV 0Aa ta Baprn, eve KABe
enopevn) opdda mepiEXet €va urtoouvodo v Bapwv. Katd tov cupyngiopd, yia kabe Bdapog n tedikn
TJi1) TOU UToAoyidetal @G 0 PECOG 6POG 1OVO O0®V PIOVIEARV TO TIEPLEXOUV.

Ot Gholami et al. [6] Statiniwoav pa yevikeuorn tou Federated Averaging, tnv omoia ovéopaocav
Trusted Federated Averaging kat otnv omntoia €xoupe Paoiotet Kt epeig. Katd tov oupyndiopo, kabe
Bapog kaBe poviedou modAardaoiadetal pe Evav rapdayovia rou arotedet i «Babpoloyia eproto-
ouvng» KAaBe ouvepyatrn. H Babpoloyia autr) urnodoyiletatl pe BAon 1o roco StapEpet T0 PLOVIEAO £VOG
OouUVEPYATH amod Ta HOVIEAA OA®V TV Unoloinev. I'a 1 oUyKplon TV POVIEA®V Xprotjporteital

EuxkAeidela amootaon v Bapev toug.

1.4 Me6BodoAoyia

®a napouoctdoouiie) pebodoroyia yla ta erepoyevy] PoviEda pe €va mapdadetypa. Iinv elkova
1.2 ¢xoupe 600 MLP poviéda 2 eturédmv, 1a onoia £X0Uv Ao £va Koo Kl €va §1apopeTiko XapaKtn-
PLOTIKO £10060U, KaOwg KAt S1adPopeTikO aplOpPod veUupOVeV 0To Kpuppevo emiredo. To ocupyngiopévo
poviédo v poviedev 1 kat 2 gaivetat oty ewkova 1.3. To oUVOAO TRV XAPAKINPIOTIKOV £10080U
eival n Eveorn TV CUVOA®V TRV eMPEPOUS HoviEAwv. O aplBnog tov veupmvev o KAbe erminedo ivat

TOUAAX10TOV TO00G 000G O HEYAAUTEPOS aplOog VEUPOVAOV OTO AVTIOTOLXO EIMIESO TV OUVEPYAT®V.

21

Kepadao 1. Extetapévn EAAnvikr) Iepidnyn

KdaBe Bapog w toU cupyn@iopévou poviédou urtodoyidetal og e§ng:

UEOOG 0POC TOV OXETKOV BAp®dV TV UOVTEADU TTIOU TTEPLEXOUV TO W (L.1)
w= .
0 av kaveva puovtefo 6ev epie el 10 W
Aépe ot 600éviog evog BApoug W, £va POVIEAO MEPIEXEL €va aviiotolxo Bapog w’ av autd adopd To
1610 XapaKInP1otKo £10660U (av ival oto mP®To £mirnedo) Kat tov id10 veupova. Puoikd, oty €1KOVA

1.8 0 60g veupwvag 1ou £xetl 0Aa ta Papn pndevika prnopei va nmapaAngOet.

Input Hidden Output Input Hidden QOutput

etk

Model 1 Model 2

Figure 1.2. MLP povtéfla 6U0 ouvepyatmv mpog CUUYNPLOUO.

H kevipikn 16¢a g §adikaoiag eivat 6Tt 01 GUVEPYATEG OUVEIOPEPOUV POVO ota BApr IoU mept-

£€X0UV K1 £101 T0 YEVIKO poviédo pabaivel arno kabe ouvepydtn 0,Tt AUTog PITopet va Tou padet.

Feature 1

Feature 3

Figure 1.3. Zuuyngiouévo poviéilo tov povtéAov 1 kat 2.

®a napouciacoupe Twpa) pebodoAoyia yla tov mapdyovia eprotoouvng. Xpeladopaote pa
TN eRImotoouvng yia tov Kabe ouvepyatn rmou Sa nmoAdariaolddel katdAAnda ta Bdpn Tou yua va
HE1®OOEL TV EMPPOT) TOU Katd 1r dladikacia cupyn@iopoy, av 10 POVIEAO TOU ArokAivel. Xe KAOe
YUpO Ik, TPV TOV OUPYN OO0, 0 KEVIPIKOG Slakopot|g ouykpivel 0Aa ta N torikd poviéda petadu
toug, omnwg Seixvel 1 ediowon 1.2. Av 6Uo poviéda eival etepoyevr), ouykpivoviat povo Bapn rou

MEPLEXOUV Kal Ta duvo.

22

1.5 Tepdpata kat YAoroinon

Kk k
lw® — w2

(k) J
sum® = Z 2 = (1.2)
JEN |N|

Xpnowornowvtag v e§iowon 1.3, avabétel tipr) 1 o 0o0Ug ouvepydateg Sewpouvial «EPrmaoton

kat 0 og 600Ug ATroKAivouv.

[0 _ { 1 av sumlgk) < th; X median({sum?k) Jien)
=

J (1.3)
0 aMwwg

Ao ug eonoeig 1.4, 1.5 kat 1.6 urnodoyiletat 1eAikd) tipr) epruotoouvng Kabe ouvepydrr.

k k-1 k
i =i+ 1Y (1.4)
s = pzsﬁk_l) +1-1" (1.5)
(I)
(k) Ti +1
SOOI

Egattiag g £1epoyévelag oV HOVIEA®V KAl TIPOKEIPEVOU VA AVIIIETRITIOTEL 1] MIEPIMTIOOT] KATTO10G
va €xel éva Bapog pe «mpoBAnuatikiy T IOU €Ad)10Tol 1) Katl Kavévag dAdog dev mepiéxet, mpo-
oBetoupe évav napayovia rareFactor ou PEI®VEL TV EMTPPON TOV OTIAVIOV BAp®V Kat €XEL TIHEG ITOU

@atvovtal oty apakdate e§iowon.

av Povo €vag CUVePYATNG €XEL 1O W

av 830 oUVEPYATEG £XOUV TO W
rareFactor(w) = Pyates eX (1.7)

av TPEIS CUVEPYATEG £XOUV TO W

— N W b

av TOUAAX10TOV TEOOEPIS OUVEPYATEG £XOUV T0 W

O teAdikdg TUTIOG yla Tov oupywndopd @aivetat oy e§ioworn 1.8, omou D; eival to péyebog g

10wtk Baong debopévev Tou ocuvepyarn i.

(k) (i)
Z D;t; w;
s ¥ : (1.8)
N 2N Diti(k) rareFactor

1.5 IIeipapata kat YAomnoinon

A16 10 oUvodo 6ebopévav yia KaAoBoudrn Kivnor rou Xprnotponotrjoape, ermdégape 21 Autdvopa
Zuotfpata ©g IIPooPloPoUg MAKEIRV, @Tayvotag €10t 21 ouvepydteg yia to Federated Learning. Ze
KAOe évav amnd autoug polpdoalie pia aro Tig 7 ermbEoelg mou epteXouv ta 6edopéva KaroBouAng
Kilvong 1ou xprotponorjoape. Znpewpvetat ed®, ot 1) emibeon 5 Po1ddel replocdtepo e KaAOBoUAn
kivnor, dev eival metuyxnpévr Kat 0dnyetl Tov ouvepydatr) mou UIotifetal 0Tt TV AVIPEIWITIOE va TEIVEL
va otéAvel eEAadpwg anorAivovia povieda: 6o eival mou xpe1adopacte Tov MAPAyovid UIoTtoouvng.
Yotepa, yia kaBe ouvepydin Sexmplotd eKteAéoapie 0To 181OTIKO T0U 0UVoAo dedopévav pia Siadikaoia
feature selection xpnowornoidviag random forest amno oroU MPOEKUYAV KAl T ETEPOYEVI] PLOVIEAA.
'‘OAa ta povtéda eivat MLP 2 srunédnv pe n e100doug kat 2n + 1 veupwveg oto Kpugo ertinedo. Qg
Kplpto emidoong xprnotpomnolovpe v akpiBela (accuracy) pe neploootepo Papog (55% evavit 45%)
010 TT0000TO AANB®G apvnTK®V dertypatev (true negative rate), 6nAadn otnv axkpiBela otnv KaAoBouAn
Kivnorn.

Z10 TP®TIO Teipapa ouykpivoupe 11§ embO0elg TOV OUVEPYAT®V Otav gival o kabévag Povog Tou

oe oxéon pe 10 Federated Learning oto oroio ouvepydloviat. Ta amoteAéopata 6tav CUPHPETEXOUV 7

23

Kepadao 1. Extetapévn EAAnvikr) Iepidnyn

OUVEPYATEG @aivovial ota MApaKdt® Saypdppartd.

- True negative rate (benign traffic)

80 1

60

accuracy %

cientl dient2 cdient3 cdientd cdientS cdienté client? FL

Figure 1.4. Enidoon 7 ovvepyatwv kat FL poviéAou otnu kaioGouin kivnon.

True positive rate (booter attacks)

100

80 1

&0

accuracy %

cientl dient2 dient3 cdientd cdientS cdienté cient? FL

Figure 1.5. Mcon emniboon 7 ovvepyatav kat FL poviélov otnu kaxo6ouin kivnon, eapaoviag mv 5n
emideon.

To Federated Learning (FL) povtédo Semepva oe eniboor 0AOUG TOUG PEPOVAOPEVOUG OUVEPYATESG
otnv KaAoBouAn Kivnon kat eivat €§icou KaAd otnv KaAKOBOUAN e TOUG KAAUTEPOUG ATIO TOUG OUVEP-
yateg. ITapopola anotedéopata mipape Kat 0tav ektedéoapie 1o neipapa yua 14 xkat 21 ouvepydreg.
Zupnepaivoupe 0Tl UTIAPXEL OPEAOG Yla KATIOOV OUVEPYATH va OUPHEIEXeL ot dadikaoia kat va
uloBetnoet 1o FL poviédo.

Aoxpaoapie emniong va ektedécoupe 20 @opég To Tieipapa autod, aAdda kabe gopd pe tuxaio (Sragpo-
PETIKO) poipaocpa TV embEce®v 0ToUg ouvepydteg. Yotepa Irjpajle yla Tov Kabe ouvepydtn Kat yia

1o FL povtédo tov péoo o0po g enidoong arod auvtég tig 20 ektedéoelg. Ta anotedéopata gaivoviat

24

1.5 Tepdpata kat YAoroinon

ota Mapakdate Swaypdppartad.

Average true negative rate (benign traffic)

100

80 1

a0

accuracy %

dientl dient2 dient3 dientd dientS dienté cdient? FL

Figure 1.6. Méon emiboon 7 ovvepyarodv kat FL povtéov otnu kaio6ouin kivnon oe 20 ekteAéoeig
uUe tuyxaia Stavoun emOE0EU.

- Average true positive rate (attack traffic)

80 1

a0

accuracy %

dientl dient2 dient3 dientd dientS dienté cdient? FL

Figure 1.7. Méon emidoon 7 ovvepyarwv kat FL puoviéAou otnu kakobouin kivnon (Léoog 0pog emt-
Yéocwv efapamvtag v bn) oe 20 extefléoels pue tuyaia Stavour emEoEaU.

Z10 Sevtepo meipapa eetdloupie) Xprotpota T0U APAYOVIA EUITOTOCUVIG TIOU £X0UHE IIPO-
00¢oetl. Ta anotedéopata @aivoviatl oto MaPaAKAT® diaypappd, Orou 1o KEpdog eivat avapglobritnto.
210 tedeutaio nieipapa Seixvoupe ta opéAn amnod) Sradikaoia tou feature selection. Aev 1o exte-
Aéoayie amAd KAt POVO IIPOKEEVOU VA IIPOKUWPOUV Td EIEPOYEVE] POVIEAd, aAAd aviibeta mpoxeitat
yia pa dadikaoia erubupntr) Kat XpHotn yia ornotadfrote oviottd EKMASeUEL TOIKA KATIO0 110-
vitedo. To képdog yla Evav ouvepydtr mou anod ta 16 apXika XapaKiplotka e10080u, KataAryet oe 8

peta to feature selection @aivetat otov 1o KATE mmivaka. Tnpel@veTatl 0Tt §ev UIApXEL APATN PO

25

Kepadao 1. Extetapévn EAAnvikr) Iepidnyn

Trust effect on FedAvg

100 99 5
B Mon-trusted

s Trusted

100 |

80

60

accuracy %

true negative rate {benign) true positive rate (attacks)

Figure 1.8. FL yopic kai e Tapdyovta EUTIOTOOUUNG Yia 7 OUVEPYATEG.

Slagpopd otnv emiboor).

YrnoAoyiotikoi ITépot Xowpig Feature Selection | Me Feature Selection || Kép&og
Xpovog Exniaibevong 10 min 8.5 min 15%
Mvrjun RAM 510 MB 460 MB 10%
Xwpog Artodrikeuong oto Aioko 3.6 MB 2.2 MB 40%

Table 1.1. 'Ogeilog g daducaoiag feature selection.

[ep1oootepa anotedéopata KAl avtiotolxy avaiuor urndpXouv oto kepddaio Experiments and
Implementation.

1.6 Zupnepaocpata

Y& autv 1 SIMAGUATIKY €reKteivape Tov KAaokO aAyopiBpo tou Federated Learning, mpo-
Kepévou va rpooappdcoupe 1 Sadikaoia oto oUyXpovo PeaAlOTIKO OEVAPLO TG CUVEPYATIKIG a-
vixveuong DDoS emBéoemv aro opyaviopoug Kal YEVIKOTEPA MEPLOXEG TOU Alad1KTUOU 0 IAyKooHa
rAtpaka. Ta arnotedéopata pag deixvouv pia modAda vrnooyxopevn dtadikacia mou propet va vAormnot-
nBel kat va eunnpetr)oet 1oV OKOMo g otV npaypatkomta. Emiong, mpoteivoupe 11 mapardate

KateuBuvoelg 1pog tig oroieg 1 6oudeld pag da propouoce va enektabel oto pEAAOV:

® AlAQOPETIKY] IIPOCEYYIOT TOU IAPAyovia €UITIOTOOUVNG, WOTE T0 oUoTna va propet va dwatn-
prioet TV eridoot) TOU AmEvVavIl o€ OTTOI08HTTIOTE ATIOKATVOV P1OVIEAO, AKONT KAl 08 KAKOBOUAOUG

OUVEPYATEG.

o Enéxktaon g Sadikaoiag pie otdX0 va Aettoupyel Kat Xopig KAMO10V KEVIPIKO dtakoptotr). Ta
povtéda Sa aviarAdooovial areubeiag Petadu TV CUVEPYATHOV KAl 1 YVAOOT] [TOU £XEl AroKTn et

Sa Satnpeitat kabe popad.

e MeA&tn pnXaviopov ta§lvopnong mou PIopouv va avayvepicouv tautdxpova nodAarAég em-
9éoeig 1) va exteAéoouv Kt AAAn XpHotn avdduon S1KTUAKNG Kivnong PEo® NG TEXVIKAG ToU
multi-task learning.

26

Chapter 2

Introduction

2.1 Motivation

As it is widely known, the Internet is divided in areas, which are smaller or bigger networks.
It is not a secret that sometimes such an area, which usually is a distinct organization, may
constitute a target for network attacks. In particular, Distributed Denial of Service (DDoS) attacks
are a major problem, aiming to paralyze services and exhaust used resources making them in-
accessible to legitimate users. With botnets recruitment by attackers side and with utilization of
intelligent techniques, these attacks appear with continually increasing frequency and complexity.
Marginalization of services may lead to economic consequences of the affected entities. Detection
and mitigation of attacks constitutes a challenging task for network administrators and security
system designers.

Attack detection essentially comes to correctly distinguishing benign and attack network traffic.
As it is known, network traffic is made up of packets, which, on their turn, are nothing more than
series of numbers. A classification task of this kind nowadays, seems to be a typical Machine
Learning problem. Machine Learning has attracted interest of cyber security specialists in great
depth, and rightly so. Of course, every Machine Learning task requires data to train models,
which in this case is network traffic. However, due to diversity in both benign and attack traffic
among different areas of the Internet, a successful classification would require data from as many
parts or distinct organizations as possible.

Gathering of such data in order to feed a Machine Learning model is nothing but straightfor-
ward. The vast amount of network traffic data is not even the most significant difficulty. Network
traffic undoubtedly constitutes personal data. Global strict protocols for data protection and se-
curity as well as unwillingness of organizations to share their network traffic data, make the whole
process seem to be almost impossible. The solution to such a case, where data is preferable to
stay to their owners, is a Machine Learning technique named Federated Learning.

In Federated Learning, an algorithm is trained across multiple decentralized edge devices or
servers holding local data samples, without exchanging them. Each decentralized entity can be
seen, in our case, as an organization or an independent network or area and from now on will
be called collaborator or client of the Federated Learning process. So, each collaborator has a
local Machine Learning model, which trains on local data. Then, collaborators exchange their
trained models in order to calculate a new aggregated model. Collaborators take the new model
and the process is repeated. Usually, a central entity orchestrates the Federated Learning and is
responsible for gathering, aggregating and sending back models to collaborators.

With the use of Federated Learning, two new problems arise. Firstly, multi-domain collabo-
rators need to agree on common model architectures. Such an agreement might not be easy to
reach, since each collaborator will choose the input features based on local data and available

resources. Secondly, there is the case of a collaborator sending back models different from others

27

Chapter 2. Introduction

(i.e. with different values of weights), probably unintentionally due to different or faulty data,
thus negatively affecting the aggregated model and, consequently, the whole process. Solving
these problems will facilitate efficient use of Federated Learning making it one of, if not the, most

promising way of detecting DDoS attacks in global Internet scale.

2.2 Thesis Contribution

In contrast with most of the existing works using Federated Learning for attack detection,
which focus on designing a neural network for best possible traffic classification, in the context
of this thesis, we develop a Federated Learning mechanism for DDoS attack detection with the

following two novel characteristics that extend the existing traditional architecture:

e it will enable collaborators to use heterogeneous models, that is models which do not nec-
essarily have the same number of input and hidden layer neurons; of course, models need

to be of the same neural network type and have the same number of layers.

e it will be enriched with a trust factor to appropriately diminish influence during aggregation
of a collaborator whose model diverges from others. The result after aggregation should be

the best possible model based on the characteristics of data of the majority of collaborators.

The ultimate goal is a process beneficial for every collaborator in comparison to working alone.

2.3 Thesis Outline

Chapter 3: Theoretical Background, provides background knowledge to set the stage for the
subsequent chapters. We provide an overview on the Internet, DDoS attacks and Federated
Learning.

Chapter 4: Related Work, analyzes previous work on detecting attacks with Federated Learning
as well as using Federated Learning with heterogeneous clients or trust.

Chapter 5: Methodology, presents the developed algorithm and the methodologies used.

Chapter 6: Experiments and Implementation, describes used datasets, contains the experi-
ments carried out with technical details of the implementation and analyzes the results which
came of.

Chapter 7: Conclusions, formulates our conclusions, summarizes our findings and provides

an outlook into future work.

28

Chapter 3

Theoretical Background

3.1 Internet and Autonomous Systems Fundamentals

Nowadays, everyone can sense, more or less, what the Internet is. Formally, the Internet is the
global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP)
[16] to communicate between networks and devices. It is a network of networks that consists of
private, public, academic, business, and government networks of local to global scope, linked by

a broad array of electronic, wireless, and optical networking technologies [17].

Going a little deeper, the Internet is divided in areas called Autonomous Systems. An Au-
tonomous System (AS) is a collection of connected Internet Protocol routing prefixes -more simply,
a collection of IPs- under the control of one or more network operators on behalf of a single ad-
ministrative entity or domain, that presents a common and clearly defined routing policy to the
Internet [7]. Each AS is assigned an Autonomous System number. So, an Autonomous System
can be seen as an independent area of the Internet that receives and sends its characteristic
network traffic. In fact, often, an organization all by itself constitutes an Autonomous System, as

is the case of our institute, National Technical University of Athens, it being AS3323.

o Attack 1
mgo D:oo F
O‘S AS6A496
a 0 [X-]
-)0
as65536 Qg
e
) C;(% ASES5538
=]
CC%—. C:-O!"-‘
o] P AS65537
D‘*&O e Attac

Figure 3.1. Attacks on Different ASs of the Internet. Source: [2]

As mentioned earlier, an Autonomous System may, at some point, be the target of a network
attack. When that happens, benign receiving network traffic of the particular AS is mixed with
malicious traffic of the specific attack. Of the various attacks that exist, in this thesis we are

interested in DDoS attacks.

29

Chapter 3. Theoretical Background

3.2 DDoS Attacks

A Denial of Service (DoS) attack is a type of cyber attack in which a malicious actor aims to
render a computer or other device unavailable to its intended users by interrupting the device’s
normal functioning. DoS attacks typically function by overwhelming or flooding a targeted ma-
chine with requests until normal traffic is unable to be processed, resulting in denial-of-service to
addition users. A DoS attack is characterized by using a single computer to launch the attack [8].

A Distributed Denial of Service (DDoS) attack is a type of DoS attack that comes from many
distributed sources. These attacks achieve effectiveness by utilizing multiple compromised com-
puter systems as sources of attack traffic. Exploited machines can include computers, routers,
mobile phones and other networked resources such as IoT devices [18], which have been infected
with malware, allowing them to be controlled remotely by an attacker. These individual devices
are referred to as bots (or zombies), and a group of bots is called a botnet. Once a botnet has
been established, the attacker is able to direct an attack by sending remote instructions to each
bot. When a victim’s server or network is targeted by the botnet, each bot sends requests to the
target’s IP address, potentially causing the server or network to become overwhelmed, resulting in
a denial-of-service to normal traffic. Because each bot is a legitimate internet device, separating
the attack traffic from normal traffic can be difficult [19]. It is in fact very common for attackers
to hide the real IP addresses of bots and use random instead (address spoofing), so that it is
impossible to locate attack sources.

These attacks often exploit operating system vulnerabilities and also some protocol features,
as in the case of SYN flood attacks in three-way handshake of the TCP protocol [20]. Some
other times, attacking devices pretend to be the victim of the attack and make requests to other
legitimate services, which in turn overwhelm the victim with their responses, as in the case of
DNS amplification attacks [21]. In [22] there is an extensive analysis and categorization of DDoS
attacks based on a variety of features.

According to statistics [9] [10] [11] the emergence of DDoS attacks increases both in frequency
and in volume and complexity. The need to design mechanisms for early detection and mitigation
of them in global scale becomes urgent. Federated Learning provides new prospects for designing

such systems.

3.3 Federated Learning

Algorithms based on Deep Learning methods need a vast amount of data to achieve desired
performance. Usually, required datasets are of large scale and distributed in many sources,
a fact that makes access to them from a central server inefficient and costly. So, in the age
of Big Data [23], there is the challenge of implementing a distributed Machine Learning system.
Furthermore, public awareness of the privacy of their personal data, has led legislators to introduce
new regulations, such as the GDPR [24], on privacy protection. Recently (2017), Google scientists
have proposed a new form of training that seems to respond to this problem, called Federated
Learning [12]. In their study [25] they apply Federated Learning techniques for optimization of
Google Gboard experience, related to word completion while typing. Each device locally trains
a Machine Learning model and sends its updates to a central server, which is responsible for
aggregating all local updates, creating an enhanced global model and sending it back to each
device.

Federated Learning is a new Machine Learning architecture, where many clients -or collaborators-
(e.g. mobile devices or entire organizations in our case) collaborate to train a model, often orches-

trated by a central server, keeping training data decentralized and protected. The goal is to ensure

30

3.3.1 Federated Learning Cycle

privacy of the data, as well as to minimize the communication cost of transfer of a large amount
of data as in traditional Machine Learning methods. This particular term was first used in 2016
by McMahan et al. [13]. Kairouz et al. [26], gave the following definition for Federated Learning:

"Federated Learning is a machine learning setting where multiple entities (clients) collaborate in
solving a machine learning problem, under the coordination of a central server or service provider.
Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates

intended for immediate aggregation are used to achieve the learning objective.”

3.3.1 Federated Learning Cycle

Typically, the steps of training in a simple Federated Learning setting are the following:
e Step 1: Central server initializes a general global model.

e Step 2: Central server sends global model to every participating device.

e Step 3: Each device trains locally the received model using only its own data.

e Step 4: After training, each device sends the local model that came up back to the central

Server.

e Step 5: When central server has gathered all local models, their aggregation process begins

(traditionally using Federated Averaging algorithm) and a new, updated model comes up.

e Step 6: Central server sends anew the aggregated model to every device in order to be trained

locally.

After the first round of Federated Learning training, steps 2 to 6 are repeated, until a pre-
determined number of rounds (epochs) is completed, or a performance criterion is reached (e.g.
accuracy).

As mentioned, above steps describe the cycle of a simplified Federated Learning scenario. In
a real application, depending on its nature, it is possible for the number of clients to become big
enough (millions of devices), to the point that communication and scalability issues arise. For this
reason, as described in the study of Kairouz et al. [26], at step 2, only a subset of participating
clients is selected for training per round. This selection can be made either randomly or based
on some criteria, such as computational capability and speed of each device, or its reputation
in relation to the contribution of its local model to the global one, in each round. Also, in a real
network, it is possible that significant delays in local training come up, due to errors or a temporary
increased load on a client. These clients are classified by the central server as strugglers and after

the expiration of a time frame, aggregation is executed, without their local models.

3.3.2 Federated Learning Without Central Server

Recently, the possibility of setting up a Federated Learning environment, without a central
entity of any kind, has been explored and referred to as decentralized (or serverless) Federated
Learning. In the decentralized Federated Learning setting, the nodes are able to coordinate them-
selves to obtain the global model. This setup prevents single point failures as the model updates
are exchanged only between interconnected nodes without the orchestration of the central server.
Nevertheless, the specific network topology may affect the performances of the learning process
[27]. In [28] and [29] two state-of-the-art methods for decentralized Federated Learning are de-

scribed.

31

Chapter 3. Theoretical Background

F(Ry, R, ..., R
Aggregator (A)
Key Point:
Raw data from each party is pever
shared, it remains where it is stored.

R

~
EEw =D“
-_—

Party N (Py)

Figure 3.2. Federated Learning Setting. Source: [1]

3.3.3 Federated Averaging

One of the most important points in the process of Federated Learning is the way in which local
models are aggregated into a new global model. The algorithm traditionally used for this purpose is
named Federated Averaging. Basically, this is about a very simple process, in which global model is
obtained by calculating the average of the respective weights of all local models. Hence the name
given to the algorithm. In general, selection of the appropriate algorithm for calculation of the
global model, plays a decisive role in every aspect of Federated Learning, affecting, either positively
or negatively, the rate of convergence, communication costs and, ultimately, the accuracy of the
final model. McMahan et al. [13], provide the following description of the algorithm in their work
as shown in Algorithm 2.1.

From the algorithm described, we notice that the training procedure starts with the central
server initializing the global model wy, where wy is the array of weights, i.e. the parameters that
represent the model, in training round t. Then, the global model is sent to clients. Subsequently,
a subset S; of clients, who will participate in each training round, is selected. This selection
concerns cases where the number of clients is large. When their number is manageable, this step
can be skipped and all clients can participate in each round. Once clients have completed training
of their local models, they send them back to the central server to be aggregated. The new global
model wyy is calculated as the weighted average of the parameters of the respective local models.
As weight factor for each local model, the ratio of samples ry of client k to the total number of

samples n of all clients is used.

3.3.4 Federated Learning vs Distributed Machine Learning

In this thesis we are interested in the advantages and disadvantages of Federated Learning in
comparison to the more traditional Distributed Machine Learning techniques. So, compared to
the conventional Distributed Machine Learning, when training a model in a Federated Learning
environment, sending data to a central server is avoided, as a result of which the network is not
burdened with a large data exchange process. Thus, training is not limited and is not delayed

due to possible bottlenecks of the network. The only data exchanged in each training round are

32

3.3.4 Federated Learning vs Distributed Machine Learning

ArcorrtiMm 3.1: FederatedAveraging. The K clients are indexed by k, B is the local minibatch size,
E is the number of local epochs and 7 is the learning rate.

procedure SERVEREXECUTES:
initialize wy
for each round t = 1,2,... do
m «— max(CxX K, 1)
S; < (random set of m clients)
for each client k € S; in parallel do
wk .« ClientUpdate(k, w;)

t+1

end for
K ne .k
Wiy Zk:l T Wi
end for

end procedure

procedure CLIENTUPDATE(K, w): // run on client k
B « (split Py into batches of B)
for each local epoch i from 1 to E do
for batch b € B do
w «— w — nVe(w; b)
end for
end for
return w to server
end procedure

the parameters of local models, in order to be aggregated on the central server. The philosophy
of Federated Learning encourages more and more organizations to participate in collaborative
procedures to enhance their models, without worrying about potential exposure of their data, as
it remains stored on local devices throughout the training. Therefore, due to greater willingness
of organizations concerned to contribute, training is conducted on a wider variety of data. In fact,
because of the cooperative nature of Federated Learning, more efficient use of network computing
resources is observed, since many devices contribute to the training with their computing power
at the same time.

On the other hand, there are some limiting factors that affect the performance of Federated
Learning. Generally, in Distributed Machine Learning, central server, in order to speed up the
process, divides the dataset into Independent and Identically Distributed (IID) parts of the same
length each, so that they are trained in a cluster. Contrariwise, in Federated Learning data
is already separated on local devices. Therefore, most of the times, the learning environment
is characterized by Non-IID data, which can also vary significantly in volume. For example,
suppose there are 10 organizations and each one of them has encountered a specific DDoS attack.
Because of the inherently different characteristics of each attack traffic, when these organizations
collaborate under a Federated Learning setting, the potentially divergent weights of local models
may make the convergence difficult. According to a series of studies [30], [31] that have focused
on this specific property of Federated Learning, it has been concluded that, as the heterogeneity
of data between devices participating in training increases, it is more likely that the accuracy of
the final global model deteriorates. This is to be expected, because the arising local models have
adjusted their weights to separate different types of data on each device, resulting in significantly
different parameters and, therefore, Federated Averaging algorithm converges slowly. However,
except in extreme cases of heterogeneity, in most applications, the reduction of accuracy does
not make the use of Federated Learning prohibitive. In fact, the benefits of greater involvement

in training process, and therefore the greater variety and volume of data, are likely to outweigh

33

Chapter 3. Theoretical Background

this limitation. Another key feature of a real Federated Learning application -and one that we are
interested about in this thesis- is the heterogeneity observed in the hardware. As it is reasonable,
in a network, each device, or in our case each collaborator’s available resources, have different
computing capabilities and workload each time, but they still have to agree on a common model

architecture.

3.3.5 Other Aggregation Algorithms

In an effort to minimize the negative impact of the issues analyzed above, Li et al. [32],
developed an improved model aggregation algorithm compared to traditional Federated Averaging,
FedProx. FedProx is a modification of Federated Averaging, in two aspects. Firstly, a parameter
y € [0, 1] is introduced, which expresses tolerance for less accurate local models. This parameter
is defined differently for each client in each training round and its purpose is to reduce the loss
of information due to strugglers. An increase in the value of the parameter implies an increased
tolerance, so a less accurate model, considering the client for which it was set. Essentially, the goal
is to combat the heterogeneity in hardware that characterizes Federated Learning architecture.
Therefore, instead of eliminating the models of strugglers from aggregation, a higher tolerance y
is chosen for them, in order to calculate a local model, albeit of a lower accuracy than they would
normally calculate, within the time limit set. As a result, the information we lack during the
aggregation is reduced. The second point at which FedProx differs, is the introduction of a penalty
constant u € [0, 1], so that during training local models, updates cause minor changes in the
weights, to prevent them from getting too far from the global model. This way, the global model
converges slowly, but when the data is highly heterogeneous, it achieves greater final accuracy,
as insertion of noise is avoided.

In turn, Wang et al. [33], proposed a new algorithm which they claim achieves higher accuracy
after aggregation from both Federated Averaging and FedProx. This algorithm is called FedMa
(Federated Matching) and its implementation differs significantly from that of Federated Averag-
ing, showing increased computational complexity. However, as can be seen from experiments
performed in this study, the results are indeed impressive, since when comparing the three algo-
rithms on the same applications, there is an improvement of 2-4% in accuracy compared to the
already improved FedProx. In short, the central idea of FedMa, is to include during aggregation
of local models, the weights that contribute the most to the performance of the model. With this
approach, there is a significant reduction in the negative factor of data heterogeneity. Neverthe-
less, although FedMa is a promising technique, we ought to take into consideration its increasing
computational complexity, as well as its generally difficult implementation, compared to the two
previous algorithms analyzed.

Except of these popular alternatives, many other aggregating methods have come up recently,
with even more expected to appear in following years. Each one is targeted in a very specific point
of improvement. FedSGD [13], FedDist [34], FedPer [35], to name but a few.

3.3.6 Security and Privacy Issues

A key issue that Federated Learning has to address, is the protection of data privacy. As
already explained, this architecture is a big step towards this direction, as client data remains
stored on local devices throughout training, without the risk of exposure and interception. Recent
research, however, has shown that Federated Learning alone cannot guarantee absolute data
privacy. Wang et al. [36], in order to highlight its possible weaknesses, focused on the fact that
clients believe that the central server responsible for aggregating local models is reliable. So, in

their research they considered a scenario where the aggregating server does properly perform the

34

3.3.6 Security and Privacy Issues

procedure for which it is responsible, but at the same time, is curious to obtain information about
the nature of client’s data (honest-but-curious server). They developed a system, mGAN-AI, which
runs on the aggregating server and by studying the local model of a client and its contribution to
the performance of the global model, draws conclusions about the structure and nature of client’s
data. In fact, in some cases there is even the possibility of approximate reconstruction of some
samples of the dataset (reverse engineering). This attack is not perceived, as it does not cause any
time delay or reduction in performance.

It is therefore understood that with no unshakable evidence of reliability of the central server,
there is the risk, even with low probability, of exposing a client’s data. Also, when sending local
models, the possibility of interference of a malicious entity, who monitors the traffic and steals the
messages intended for the aggregating server, should be taken into account (gradient leakage).
To eliminate this possibility, a number of techniques have been proposed, such as Differential
Privacy, that can be combined with Federated Learning, so that an honest-but-curious server is
completely ignorant of clients’ data. Differential Privacy is a special form of encryption and is
applied, in our case, to achieve the goal known in the literature as secure aggregation. The idea
is based on introducing noise to the data, using special functions (e.g. Laplace noise), so that
knowing the output of a calculation, it is not possible to determine the input, which in this case is
the parameters of the local models [37]. Geyer et al. [38], studied the contribution of Differential
Privacy to Federated Learning and concluded that with a small trade-off against accuracy (1%),
potential threat of a malicious aggregating server is minimized.

Another threat that Federated Learning has to deal is the so-called data poisoning and model
poisoning attacks. These attacks are about intentionally changing the data (e.g. changing the
label of certain samples to belong to the wrong class) and modifying the parameters of a local
model to reduce its accuracy. The modifications are made very carefully and to a limited extent,
so that the anomalies that occur in relation to the genuine local models are not perceived. Such
actions are usually performed by malicious clients who participate in the collaborative scheme,
with the sole purpose of degrading the quality of training and the accuracy of the final global model.
Bhagoji et al. [39], studied various strategies for orchestrating such attacks and concluded that
even a malicious presence in a much larger set of clients, could result in a respectable reduction
of the accuracy of final model. In addition, they concluded that model poisoning attacks are more
effective and more difficult to detect. To combat them, systems have been proposed, such as Auror
[40], which detects altered local models and excludes them from aggregating. In fact, its creators
managed in their experiments, using Auror, to limit accuracy reduction to 3%, even when 30% of
clients are malicious. On the other hand, Chen et al. [41], in order to eliminate the presence of
malicious clients, developed a protocol for executing Federated Learning in a Trusted Execution
Environment. Each client is checked during aggregation for whether it implements the proposed
security protocol, through a special signature. For training of local model, each client is obliged by
the protocol to allocate an isolated memory area on his device, where the necessary calculations
are performed, without intervention of other programs. If this condition is met, the message to be
sent is sealed with the signature indicating the integrity and authenticity of the calculations.

The issue of poisoning attacks is indeed very close to one of the problems which interest us
in this thesis and that is to diminish the influence of clients who send divergent local models for
aggregation. We are more interested in the case that something like this happens unintentionally,
probably due to faulty or simply different data, since we do not expect an entire Autonomous
System or a well-known organization to be malicious. Gholami et al. [6], introduced a generaliza-
tion of Federated Averaging, named Trusted Federated Averaging, to tackle this problem. We will

extensively refer to their work later on.

35

Chapter 4

Related Work

Almost all works using Federated Learning (FL) for DDoS attack detection focus on finding a
-usually complex- neural network that will give the best possible traffic classification in terms of
a metric like accuracy. Our approach is different. We use simple MLP models and our goal is to
extend the conventional Federated Learning architecture in two ways. On the one hand, we want
to facilitate federated training of heterogeneous clients, i.e. clients that do not necessarily share
the exact same model architecture, although they have to use the same type of neural network
and number of layers. On the other hand, we want to add a trust factor in the aggregating process
to diminish the influence of clients whose model weights diverge, i.e. have different values than
the majority of clients. To the best of our knowledge, this is the first work that combines together
at least two of the following topics: attack detection using FL, heterogeneous FL, trust-aware FL

aggregation algorithm.

4.1 Federated Learning and DDoS Attack Detection

We will very briefly mention some of the works related to Federated Learning and DDoS attack
detection. Dimolianis [3], in his doctoral dissertation, among else, leverages the Federated Learn-
ing paradigm for collaborative and privacy-preserving DDoS detection. To mitigate attacks within
collaborating Autonomous Systems (ASs), he proposes efficient, scalable and programmable fire-
walls that can be instantiated on-demand upon request of the AS hosting the victim. His schema
consists of a detection and mitigation application mounted in all collaborating domains, as shown
in 4.1. The former detects malicious packet signatures, i.e. combinations of packet field values,
using Multilayer Perceptrons (MLPs); these are cooperatively trained without exposing private
data. The latter filters malicious packets using XDP-enabled firewalls deployed in the victim
AS; mitigation can also be activated on-demand within collaborating transit ASs. His approach
was evaluated both in terms of packet classification accuracy and packet processing performance
using both real and synthetic network traces.

Zhao et al. [14], combined FL with transfer learning. The idea is that some entity may
have specialized, for instance, in mitigation of DDoS attacks and some other in malware. So,
after the stage of FL, one can use transfer learning to improve performance in detecting network
anomalies in general. In [15], Tian et al. proposed a lightweight residual network (ResNet),
which except for detection, is also suitable for DDoS classification. As they claim, their network
is as efficient as an LSTM (Long Short-Term Memory), but lighter and faster. It is interesting
to compare their 9-layer light network with our only 2-layer MLPs that we have used. Li et al.
[42], created the federated learning empowered mitigation architecture (FLEAM) to advocate joint
defense, incurring a higher hacking expense and making attacker to give up. FLEAM combines FL
and fog computing to reduce mitigation time and improve detection accuracy, enabling defenders

to jointly combat botnets. Each edge node trains locally its data using GRU models and then

37

Chapter 4. Related Work

Attack
Sources

D08 Protection Framework

DDoS Protection Framework
—————
[} DDoS

DDoS DDoS
Detection Mitigation
App

cAS collaborating AS

vAS wictim AS
- Mloniboring Data
- |nierIntra-component Signaling
— | Yala Packets | Total Traffic)
— [enign Traffic
e Redirecicd Traffic

DDoS Protection Framework

Figure 4.1. Collaborative DDoS Detection & Mitigation Architecture. Source: [3]

uploads its parameters to cloud. In [4], writers adopted an innovating approach combining FL
with multi-task learning. This way, with only one training procedure, they manage to do network
anomaly detection, VPN/Tor traffic recognition and traffic classification, having total profit in

terms of training time cost, as shown in 4.2.

900

W DNN taskl

Time {Seconds)
& & £ 3
= = (=] =

=]
[=1
(=]

8OO | m DNN task2
B DM task3
o
MT-DMN-FL
00 I
o

Scenario A scenario B

Figure 4.2. Training time cost of MT-DNN-FL (proposed network) and DNN (ordinary networks).
Source: [4]

In [43], writers propose an architecture with programmable data plane switches. They show
that Binarized Neural Networks (BNNs) can be implemented as switch functions at the network
edge, classifying incoming packets at the line speed of the switches. To train BNNs in a scalable
manner, they adopt a Federated Learning approach that keeps the communication overheads

of training small even for scenarios involving many edge network domains. They next develop

38

4.2 Heterogeneous Federated Learning

a prototype using the P4 language and perform evaluations, with results demonstrating that a
multi-fold improvement in latency and communication overheads can be achieved compared to
state-of-the-art learning architectures. Finally, in [44] there is a comprehensive presentation of

various works related to Federated Learning and Intrusion Detection Systems.

4.2 Heterogeneous Federated Learning

Federated Learning for heterogeneous clients is a very recent idea. In fact, at the beginning of
our research, the only relevant known work is the one on which we have based our approach and
we are going to analyze. Diao et al. [5], proposed a new Federated Learning framework named Het-
eroFL to address heterogeneous clients equipped with different computation and communication
capabilities. Their solution can enable the training of heterogeneous local models with varying
computation complexities and still produce a single global inference model. As they claim, for
the first time, their computation and communication efficient method challenges the underlying
assumption of existing work that local models have to share the exact same architecture as the
global model. The main idea is that clients are divided in groups of different computational com-
plexity levels, depending on their capabilities. Models of group with the highest computational
complexity level contain all weights. Then, models of each group contain a subset of the weights

of the group with immediately higher complexity, as seen in 4.3.

Global model paramaters W,

Local model parameters Wf

Local model parameters 1}’

Local model parameters H"l.l

Figure 4.3. Global model parameters W, are distributed to m = 6 local clients with p = 3 computa-
tional complexity levels. Source: [5]

What happens during aggregation is that for each weight parameter, the final value is calcu-
lated as the average of only the models of clients which contain this weight. This way, each client
only contributes to weights its model contain according to its computational capability. In order
to test their methods, writers ran various experiments and concluded that "weak learners” (i.e.
clients with lower computational capability) can benefit when collaborating with "strong learners"

(i.e. clients with higher computational capability) without reducing the latter’s performance.

4.3 Federated Learning and Trust

Apart from what we mentioned earlier in Security and Privacy Issues, there are currently few
works relevant to Trust in Federated Learning. Cao et al. [45], focused on the fact that there is

no root trust between central server and clients. So, they proposed that the central server collects

39

Chapter 4. Related Work

a clean bootstrap dataset, in which trains its model, and when it receives updates from clients,
checks if any of them diverges from its model. Based on how much each local model differs from
the server’s, it assigns appropriate trust scores, which show how much will each client be taken
into account during aggregation. In [46], reinforcement learning techniques are used, so that the
central server trains a data value estimator of the clients’ gradients to determine the contribution
of each client. In [47], writers propose the building of the Accuracy Approximation Model, which
estimates a simulated test accuracy using inputs of sampled data size and extracts the clients’
data quality and data size to measure client contribution.

We adopt a different approach based on the work of Gholami et al. [6]. As we have stated
before, in the aforementioned paper, writers formulated a generalization of Federated Averaging,
which they called Trusted Federated Averaging (Trusted FedAvg). During aggregation, every weight
of each model is multiplied by a factor, which is the trust score assigned to the corresponding
client. This trust score is updated on each FL round and its value is a function of both its value
in previous rounds and of how much the model differs compared to the models of all other clients.
For comparison between models, the Euclidean distance of their weights is used. Writers also
provide a variation of their algorithm for decentralized (i.e. without a central entity) Federated
Learning. They claim that Trusted FedAvg makes FL effective against attacks as long as less than
50% of clients are malicious, as shown in 4.4. We will delve into the algorithm in next chapter,

when we analyze our methodologies.

——Normal

—-=-Under Attack

25}

T

i

i — — Under Attack with Trust
i

i

i

15

Validation Loss

0.5

Communication Rounds

Figure 4.4. Effect of trust on resilience against attacks. Source: [6]

40

Chapter 5

Methodology

5.1 Heterogeneous Federated Learning

We will present the way in which models that do not share the exact same architecture, are
aggregated in our work. To do so, we will start by demonstrating a simple example below. Suppose
the following two Multilayer Perceptron (MLP) models shown in 5.1. Models need to be of the same
neural network, but may have different input features and number of neurons in hidden layers.
In this example, both models are 2-layer MLPs, share a common input feature (Feature 1), each
one has an input feature that the other has not (Feature 2 and Feature 3 respectively) and have

a different number of neurons in the hidden layer (5 and 4 neurons respectively).

Input Hidden Output Input Hidden Output

,/"')// -
s
P
:

Model 1 Model 2

Figure 5.1. MLP models of two clients to be aggregated.

First of all, we explain the notation of the weights shown in 5.1. Each weight is named wxi,j,

where:
e x is either h for a hidden layer weight or o for an output layer weight.
e iis either 1 for model 1 or 2 for model 2.
e j is the number of weight of x layer.

So, for instance, wh1,3 is the 3rd weight of hidden layer of model 1, while wo2,4 is the 4th
weight of output layer of model 2. After that, given a weight w, we say that a model contains a
corresponding weight w’ to w, if w’ refers to the same feature, same layer and same number of
weight in layer as w. That said, for instance, given wh1,3, model 2 contains the corresponding
weight wh2,3, since both refer to Feature 1 and are the 3rd weight of the hidden layer of each

model. On the contrary, given wh1,7, model 2 does not contain a corresponding weight, since it

41

Chapter 5. Methodology

has no Feature 2 as input whatsoever. Likewise, given wo1l,5, model 2 again does not contain a
corresponding weight, since it has only 4 output layer weights.

The aggregated model of models 1 and 2 is shown in 5.2. As shown, the set of input features
of the aggregated model is the union of the sets of individual models. The number of neurons in
each layer is at least as large as the largest number among individual models. Each weight w of

the aggregated model is calculated as follows:

B { average of relevant weights of models which contain w (5.1)

0 if no model contains w

Note that, of course, the 6th neuron in hidden layer with all weights set to zero can be omitted
and is only useful if another model with 6 hidden layer neurons is expected to take part in the

aggregation.

Feature 1

> wh28
11,5

~.wt
-

Feature 3

Figure 5.2. Aggregated model of models 1 and 2.

The key idea of this process is, on the one hand, that collaborators contribute only to weights
which their model contain and, on the other hand, that global model learns from each collaborator

exactly what this collaborator is able to teach it.

5.2 Trust-Aware Federated Learning

As we have already mentioned, our goal using trust is to diminish the influence of clients with
models whose weights diverge compared to the majority of clients during aggregation process. To
do so, we need some trust values to appropriately multiply weights of each client, so that divergent
models are assigned smaller such values. In order to calculate trust values, weights of models
are directly compared among clients. We present our Trusted FedAvg algorithm in Algorithm 4.1,
based on the work of Gholami et al. [6], which we have previously mentioned.

As usual, an FL round begins with clients updating their local models traditionally using
gradient descent. Then, the central server has to compute trust values for clients. For this
purpose, a sum is calculated for each client; the sum of squared 2-norms of the differences of
weights with other clients’ models, shown in equation 5.2, where N is the set of clients, exponent
(k) is the round and w; is the array of weights of client i. This way, we get a list of such sums.
For each client, its sum is compared with the median of the list of sums multiplied by a threshold

arbitrarily set with its value depending on how much forgiving we choose to be towards a specific

42

5.2 Trust-Aware Federated Learning

divergent client. We have set this threshold to 1.5 in general. If the compared sum of a client is
less than the median multiplied by the threshold, we consider this client as trustful and set I to
1, while if it is greater, we consider that the client diverges from the majority and set I to O, as

shown in equation 5.3.

Ic I
- w3

||w;
sumlgk) = Z JT (5.2)
jeN

1 if sum® < th; X median sum™},
o { ® < th, ({sum™)en) 5.3

0 otherwise

ArcorrtiMm 5.1: Trusted FedAvg. N is the set of client, D; is the dataset size of client i, wgk) is the
array of weights of client i in round Ik, tl-(k) is the trust value of client i in round k.

Initialize wﬁ") and tl-(o) for each client i

for each round k = 1,2,... do
Each client i computes w(ik) from w(ik_l) using gradient descent and sends it to the server

Server updates trust values for each client i: ti(k) «— ComputeTrust(i, w(ik) , ti(k_l))

(f) ()
. (Ic) Dity w;
Server aggregates local updates: W' « Y.y S D rareFacor

Server transmits w® to all clients
end for
procedure CoMPUTETRUST({, wgk), ti(k_l)):
// Server computes ng) from 5.3:
for each client i € N do
sum; < 0
for each client j € N do
sumy < sumy; + normz(w;k) — wi)
end for
end for
if sum; < th; X median({sum;}) then
1«1
else
1
end if
// Server computes tfk) from 5.6:

O D

1
S g™V 41— 9

«—0

o) r
tg —
t ri(k) +s§k) +2

end procedure

After that, two parameters, r and s are calculated for each client as stated in [6]. These
parameters are a function of I, i.e. whether a client found to be divergent or not, and of their
values in the previous round. Of course, we want values of older rounds to be all the less
important, so we use the forgetting factors p; and ps, as shown in equations 5.4 and 5.5. As far
as they are concerned, it must be true that O < p; < ps < 1; we have set p; = 0.2 and p; = 0.8
troughout our experiments. Using r and s parameters, the central server directly calculates the

trust value t; of each client i from equation 5.6.

0 = ot 4 1 5.4

S = gyl 1 g 5.5

43

Chapter 5. Methodology

(o _ ri(k) +1
s ri(k) + s(ik) +2 56

Subsequently, before we are ready for the aggregation, we need to take into account the het-
erogeneity of models. We have already talked about aggregation process of heterogeneous models.
The same thing applies here during the calculation of sum of each client. So, obviously, between
two clients only the norm of relevant weights is taken, that is weights that both clients contain in
their models. However, during this procedure another problem arises. Some clients may contain
weights that too few, or even no other client contains. If there is a harmful value in such a weight,
that is a value that negatively affects performance, the client responsible for this probably will
not get an appropriately small trust value due to lack of other clients with which the harmful
weight would be compared. Another possibility if one of few clients containing a specific feature
has a harmful value, is the increase of sum of these few other clients, tending to make them seem
divergent.

Accepting that there is no perfect solution, especially for the last case, as a partial solution, we
introduce a rareFactor, which is an array with the same dimensions as the global model’s weight
array and its value at each position indicates how many clients contain the respective weight. So,
a weight that too few clients contain, is assigned a greater rareFactor value, which diminishes the
influence of the weight during aggregation. We have set the rareFactor for each weight w of the
gloabl model as shown in the following equation. We note here that this introduction of rareFactor
may seem arbitrary, but the fact that a feature is not chosen by most of the clients after feature

selection, probably indicates that it is not important in classifying traffic correctly anyway.

if only one client contains w

rareFactor(w) = (5.7)

4

3 if two clients contain w
2 if three clients contain w
1

if at least four clients contain w

Finally, the aggregation is as shown in equation 5.8, where D; is the private dataset size of
client i. Note, of course, that each client only contributes to weights it contains. So, each term of
the following sum is added to the appropriate part of array w® of global model’s weights .

(k) (k)
wh = 3 P W (5.8
() rareFactor '
ien 2ien Diti

5.2.1 Limitations

We have to mention, although it is easy to conclude, that our trust-aware method does not
constitute panacea to cover every possible harmful value of a weight a client may have. The
method is based on using simple factors to appropriately multiply weights. The range of the
values of these factors is fixed and limited. There is always the possibility of a harmful weight of
big enough value that factors cannot handle. This is also to say that our method cannot mitigate
attacks by a potentially malicious client; though for such an attack to be effective against our
work, it might be difficult for the perpetrator to go unnoticed either.

44

Chapter 6

Experiments and Implementation

6.1 Used Data

Our task in general is to train models to correctly classify network traffic as benign and attack.
We do so using supervised learning, thus fixed datasets are needed. We used benign traffic from
the WIDE backbone [48], an operational testbed network for WIDE Project [49], which carries out
research activities through the use of actual network. More information about the data repository
exists in [50] and [51]. More specifically, we have used DNS responses from a 10G transit link
between WIDE and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G [51], and an
1G transit link between WIDE and an upstream provider, henceforth WIDE-F [51].

For attack traffic, we have used 7 different DNS Booter attacks from [52]. Booters [53] are
DDoS services on the Internet that anyone can hire and are still used today by malicious users.
A thorough analysis on WIDE-G, WIDE-F and the seven Booter datasets also exists in the work of
Dimolianis et al. [54].

As is clear, our experiments concern the DNS protocol (Domain Name System [55]), respon-
sible for helping Internet users and network devices discover websites using human-readable
hostnames, instead of numeric IP addresses. The DNS protocol is one of the most popular ones
used by attackers because they can easily exploit vulnerabilities in its servers to turn initially small
queries into much larger payloads, which are used to bring down the victim’s servers. DNS ampli-
fication is a type of reflection attack which manipulates publicly-accessible domain name systems,
making them flood a target with large quantities of UDP [56] packets. Reflection is achieved by
eliciting a response from a DNS resolvers to a spoofed IP address. Using various amplification
techniques, perpetrators can “inflate” the size of these UDP packets, making the attack so potent
as to bring down even the most robust Internet infrastructure. During a DNS amplification at-
tack, the perpetrator sends out a DNS query with a forged IP address (the victim’s) to an open DNS
resolver, prompting it to reply back to that address with a DNS response. With numerous fake
queries being sent out, and with several DNS resolvers replying back simultaneously, the victim’s

network can easily be overwhelmed by the sheer number of DNS responses.

6.2 Methodology of Experiments

So, our datasets contain DNS packets, or more precisely, some features of DNS packets’
headers. One of these features is the destination AS (Autonomous System) of a packet. To simulate
an FL setting, we need distinct clients. We consider every distinct destination AS number that
appears in our datasets as a potential client for our experiments. We say "potential”, only because
our datasets contain hundreds of different AS numbers, while we carried out experiments for 7,

14 and 21 clients. This choice we made is actually realistic, because in a real case scenario what a

45

Chapter 6. Experiments and Implementation

client -which may well be an AS- would want, would be to classify its receiving traffic -i.e. packets
destined to its AS- as benign or malicious.

As mentioned before, our attack traffic dataset contains 7 different attacks. Every time we
suppose that each client has been the target of one of these attacks, so that all attacks are
distributed to clients. This way, each client has a private dataset consisting of its receiving benign
traffic and the attack that it supposedly encountered, which could actually have encountered in a
real case scenario.

Now it is a good point to mention that the 7 attacks have different characteristics among each
other. For example, 5 of them use type A DNS queries, while the other 2 use type ANY (or type
*) [57]. One of these attacks, the 5th one, mostly resembles benign traffic rather than attack one
and was found to be ineffective due to not using enough bandwidth. As a result, the client which
supposedly encountered this attack, will probably not learn to classify traffic as well as others and,
consequently, its model’s weights might slightly diverge from other models in a negative way. This
is where the trust factor comes into play to diminish the influence of that specific client during
aggregation.

In order to have heterogeneous models for our clients, we have each client run a feature
selection procedure, using random forest, on its private dataset. After that, clients end up with
inherently different feature sets, both in terms of number of features and of what these features
are. Of course, feature selection procedure is not something we abusively ran to facilitate our
simulation, but rather a very common and desired procedure in Machine Learning that would
accelerate local training of clients and would reduce computational resources, especially in our
case, where we deal with vast amount of network traffic data. As is obvious, since clients have
different data from each other, heterogeneous models is a problem that would almost certainly
emerge in a real case scenario.

Then, each client builds its own local MLP (MultiLayer Perceptron) model according to its
private datasets. All MLP models are of 2 layers, with n inputs (where n in the number of chosen
features for each client), 2n + 1 neurons in the hidden layer (according to the study of Siaterlis et
al. [58]) followed be ReLu activation function and 1 output followed by Sigmoid activation function.

An example of such a model with 2 features as inputs is shown in 6.1.

Inputs Hidden layer Output layer

0 benign traffic
or
1 attack traffic

Figure 6.1. MLP model with 2 input features.
Our goal, in general, is to compare the performance of clients when they are on their own

versus when participating in a heterogeneous Federated Learning setting. More specifically, we

conducted the following experiments for the following goals:

46

6.3 Technical Details of Implementation

e we distributed the 7 attacks to 7, 14 and 21 clients and, firstly, ran classic Machine Learning
for each client and then ran our trusted heterogeneous FL for all clients; the goal is to show
how collaborative FL process benefits clients compared to each working alone. We ran this
experiment 10 times and took the average accuracy of each client and FL model. We also
repeated the same experiment 20 times for 7 clients with random distribution of Booter
attacks each time; the goal here is to compare the average of each client with the average of
FL in these 20 runs.

e we ran heterogeneous Federated Learning again, this time without the trust factor, to demon-

strate its positive effect.

e we ran Machine Learning for a client both with and without feature selection process to
show how it benefits local training procedure, and thus total FL procedure, in terms of time

and computational resources, without compromising performance.

6.3 Technical Details of Implementation

The experimental setup we developed for Federated Learning consists of 21 virtual clients (not
all of them used in every experiment) and a central aggregating server, all running on the same
machine. The central server is also responsible for testing global model after every epoch. The
criterion used to choose the best model among epochs is the sum of accuracy in both attack
and benign traffic (sum of true positive and true negative rates), but with greater weight given
to accuracy in benign traffic (about 55% compared to 45% for attack traffic). This is because it
is more harmful to classify a benign packet as malicious, since it will lead to not answering to
a legitimate user, rather than classifying a malicious packet as benign, which will probably not
be enough to bring down the service. Calculating the aforementioned accuracy for benign traffic
is straightforward using a corresponding general test set. However, for attack traffic we have a
test set for each Booter attack and thus we need to take the average of accuracies in these attack
traffic test sets, excluding the 5th attack, which mostly resembles benign traffic and, as expected,
confuses results.

The aggregation algorithm is previously described in chapter Methodology. After the prepro-
cessing of original datasets, data is split and sent to each client. It is noted here that in a real FL
application the data is already stored on local devices. For FL training the following parameters

were used:
e batch size set to 128.
e test batch size set to 1000.

e learning rate set to 0.01 in the first epoch and decreased to 0.001 later on, but properly

adjusted for some clients if needed.

e number of epochs set to 7 or 10 depending on the experiment.

Code is written in Python (version 3.6). PySyft framework (version 0.2.9) is used to simulate
virtual clients and to automate sending of models. Code can be found in thesis’ github repository
https://github.com/vpet98/federatedDDoS.

6.4 Preprocessing

For preprocessing of the original datasets we did the following steps briefly mentioned:

47

https://github.com/vpet98/federatedDDoS

Chapter 6. Experiments and Implementation

e Deleted columns that do not exist in all datasets.

e Dropped samples with missing values.

e Added target column; O for benign and 1 for attack traffic.

e Transformed categorical features to numerical.

e Made a general benign traffic test set.

e Split benign traffic data to 21 clients using destination AS.

e Distributed attack traffic to clients, so that each Booter attack is given to 3 clients.
e Made a test set for each Booter attack.

e Performed feature selection technique using random forest for each client separately. The
16 features that existed before this step were reduced to between 7 and 11 depending on the
client.

e Building of appropriate test sets.

e Normalization of datasets.

More thorough analysis on proprocessing can be found in the corresponding notebooks in
thesis’ github repository https://github.com/vpet98/federatedDDoS.

6.5 Results

We present in diagrams and analyze the results of all the experiments we conducted.

6.5.1 Clients On Their Own vs Federated Learning

In this experiment we distributed the 7 attacks to 7, 14 and 21 clients and, firstly, ran classic
Machine Learning for each client and then ran our trusted heterogeneous FL for all clients; the
goal is to show how collaborative FL process benefits clients compared to each working alone. We
ran this experiment 10 times and took the average accuracy of each client and FL model.

For each case of number of clients that participate, i.e. 7, 14 or 21 clients, we have two
diagrams. In the first one, we compare the performance of clients each on its own against the
performance of the FL model in benign traffic (true negative rate). In the second one, we do the
same for attack traffic (true positive rate) taking the average performance in all distinct Booter
attacks, excluding the 5th attack, which mostly resembles benign traffic, as we have mentioned

earlier. The corresponding diagrams are shown and analyzed below.

6.5.1.1 7 Clients

In 6.2 and 6.3 we see the diagrams when 7 clients participate in the procedure. In benign
traffic, FL model outperforms all clients, closely followed by some. In attack traffic, FL model
performs about as well as the best of clients. Of course, what matters is looking at both diagrams
together to notice that there is no client that performs as well as the FL model in both benign and
attack traffic. Using the same criterion as choosing the best model among epochs, normalized as
shown in equation 6.1, where TNR stands for true negative rate and TPR for true positive rate,
among all clients, client 2 has the minimum gain of 0.7% adopting the FL model, while client 5

has the maximum gain of 15%.

48

https://github.com/vpet98/federatedDDoS

6.5.1 Clients On Their Own vs Federated Learning

1.2 X TNR + TPR
criterion = 59 (6.1)

True negative rate (benign traffic)

100

g0 1

B0

accuracy %

cdientl dient2 dient3 dientd dientS dienté cdient7? FL

Figure 6.2. Performance of 7 clients and FL model in benign traffic.

- True positive rate (booter attacks)

80 1

B0

accuracy %

cdientl client? cdient3 cdientd dients diente client? FL
Figure 6.3. Average performance of 7 clients and FL model in attack traffic, excluding 5th attaclk.

It could be argued that the best performing client, client 2, slightly differs from the FL model,
meaning it has no actual benefit from the whole procedure. This is expected to happen for some
clients in such procedure and it means that their private data are more representative of the
union of data of all clients compared to others. More specifically, in our case it could mean that
the attack which client 2 supposedly encountered, or also its receiving benign traffic, has more
common characteristics with all other attacks that other clients encountered, or also with the

benign traffic of our initial datasets. However, no client can know in advance how good are its

49

Chapter 6. Experiments and Implementation

data compared to other clients and the point is that in the worst case scenario for a client, the
process will just not be of much benefit. Even in this case, the benefit is undeniable for most of
the clients and it will probably be for all of them if we take into account that network traffic data
is constantly updated and the Federated Learning process is to be repeated every so often among
collaborating clients.

6.5.1.2 14 Clients

In 6.4 and 6.5 we see the diagrams when 14 clients participate in the procedure. Again, there
are some clients close, or maybe even slightly better than the FL model, but there is still clear
motivation for some entity to be a member of the whole procedure. Using equation 6.1 as before,
among all clients, clients 2 and 9 have the minimum gain (actually loss) of -0.23% adopting the

FL model, while client 12 has the maximum gain of 21.4%.

_ True negative rate (benign traffic)

SD 4

= 601
-
=
s
=1
o
o

m 40 4

20 |

ol

dientl dient2 dient3 dientd dient5 dienté dient?7 dient8 dientd dientl0 dientll dientl2 dientl3 dientld FL
Figure 6.4. Performance of 14 clients and FL model in benign traffic.
it True positive rate (booter attacks)

80 1

= 601
-
(=]
s
32
=

o 40

20

0_

dientl dient2 dient3 dientd dient5 dienté dient?7 dient8 dient9 dientl0 dientll dient12 dientl3 dientld FL

Figure 6.5. Average performance of 14 clients and FL model in attack traffic, excluding 5th attack.

50

6.5.1 Clients On Their Own vs Federated Learning

6.5.1.3 21 Clients

In 6.6 and 6.7 we see the diagrams when 21 clients participate in the procedure. We make
the same observations as before. Using equation 6.1 as before, among all clients, client 9 has the
minimum gain (actually loss) of -0.82% adopting the FL model, while client 12 has the maximum
gain of 14.4%.

Furthermore, we can comment the scalability of our work. Going from 7 clients to 14 and then
to 21, we notice similar patterns in the diagrams, something that promises efficiency in a real case

scenario with probably more than a hundred collaborators.

6 True negative rate (benign traffic)

80

(=1}
o

B
>
9
c
=1
g
© 40
20
0 dientl client2 dient3 clientd client5 dienté client? dientd dientd dientlOclientll clientl2clientl3dient14 dientl5 dientl6 cientl7 clientl8clientl9dient20client2l FL
Figure 6.6. Performance of 21 clients and FL model in benign traffic.
it True positive rate (booter attacks)
80
= 60
>
9
e
=1
S
© 40
20
0

dientl cient2 dient3 clientd client5 dient6 dient? dientS dient9 dientl0client11 client12 dient13dient14 dient15dient16 dientl7 dient18client19dient20cient21 FL

Figure 6.7. Average performance of 21 clients and FL model in attack traffic, excluding 5th attack.

6.5.1.4 Random Distribution of Attacks

As we mentioned earlier, we also ran trusted heterogeneous FL 20 times for 7 clients with
random distribution of Booter attacks each time; the goal is to compare the average of each client
with the average of FL in these 20 runs.

In 6.8 and 6.9 we see the results for benign and attack traffic respectively. The 5th Booter
attack is again excluded when calculating performance in attack traffic. Firstly, this experiment

shows that as all attacks have been shared equally by all clients and still there is divergence in

51

Chapter 6. Experiments and Implementation

performance among them, it can be inferred that characteristics of private benign traffic also differ
from client to client.

In benign traffic, FL model performs clearly better in average than any other average of client,
while it equals the top performing clients in attack traffic. Using equation 6.1 as before, among
all clients, client 6 has the minimum gain of 3.8% adopting the FL model, while client 5 has the
maximum gain of 10.2%. This experiment highlights even more the benefit of a client joining the
procedure, since it demonstrates that FL model performs better in average case data, something

which a client needs to suppose it owns before it takes part.

Average true negative rate (benign traffic)

100

g0 1

a0 4

accuracy %

clientl cdient2 dient3 dientd cdientS cdienté cdient? FL

Figure 6.8. Average performance of 7 clients and FL model in benign traffic in 20 runs with random
distribution of attacks.

- Average true positive rate (attack traffic)

80 1

&0

accuracy %

cdientl dient2 cdient3 cdientd cdientS cdienté client? FL

Figure 6.9. Average performance of 7 clients and FL model in attack traffic (average of attacks
excluding the 5th one) in 20 runs with random distribution of attacks.

52

6.5.2 Trust Effect

6.5.2 Trust Effect

In this experiment we ran heterogeneous Federated Learning again, this time without the trust
factor, to demonstrate its positive effect. The 5th Booter attack mostly resembles benign traffic
and thus clients that encountered it have not learnt well enough to classify traffic correctly. As a
result, their models’ weights tend to diverge from others. So, these are our "mistrustful” clients.
To emphasize the results of this experiment, we have used appropriate coefficients for these clients
during aggregation to increase their influence. It is important to note here that these coefficients
do not make the experiment unrealistic, because it simply equals to these clients having bigger
private datasets, as can be inferred from equation 5.8 we analyzed in chapter Methodology.

For each case of number of clients that participate, i.e. 7, 14 or 21 clients, we have one diagram
the first two columns of which compare FL with and without trust in attack traffic and the other

two columns do the same for benign traffic.

6.5.2.1 7 Clients

In 6.10 we see the diagram when 7 clients participate in the procedure. The weights of client
that supposedly encountered the 5th attack are multiplied by 2 during aggregation, like if it had a
dataset double the size of others or like if there were two clients that encountered only this specific
attack.

As we mentioned earlier, the criterion we use to choose the best performance among epochs is
the sum of accuracy in benign and attack traffic. So, it only matters to look at both columns, i.e.
attack and benign, at the same time. Doing so in the corresponding diagram, the benefit of trust
factor is unquestionable. More to the significant divergence in the sum of accuracies, we have
also stated earlier that correctly classifying benign traffic is more important than attack traffic.
More precisely, using equation 6.1 as before, we calculate that trust factor is responsible for 8.5%

increase in performance.

Trust effect on FedAvg

100 ;
B MNon-trusted i

B Trusted

100 A

80 1

60 1

accuracy %

true negative rate (benign) true positive rate (attacks)

Figure 6.10. FL without and with trust factor for 7 clients.

6.5.2.2 14 clients

In 6.11 we see the diagram when 14 clients participate in the procedure. The weights of

one of the two clients that supposedly encountered the 5th attack are multiplied by 4 during

53

Chapter 6. Experiments and Implementation

aggregation. We make the same observations as before. More precisely, using equation 6.1 as
before, we calculate that trust factor is responsible for 7.6% increase in performance.

Trust effect on FedAvg

100 ;
B Mon-trusted s

BN Trusted

80 1

60

accuracy %

true negative rate (benign) true positive rate (attacks)

Figure 6.11. FL without and with trust factor for 14 clients.

6.5.2.3 21 clients

In 6.12 we see the diagram when 21 clients participate in the procedure. The weights of all the
three clients that supposedly encountered the 5th attack are multiplied by 2 during aggregation.
Using equation 6.1 as before, we calculate that trust factor is responsible for 8.5% increase in
performance. In addition to making the same comments as before, we conclude the scalability of

our work concerning trust-aware Federated Learning.

Trust effect on FedAvg
100

100 4 B MNon-trusted

s Trusted

80

60

accuracy %

true negative rate {benign) true positive rate (attacks)

Figure 6.12. FL without and with trust factor for 21 clients.

6.5.3 Feature Selection Benefit

As we mentioned earlier, in this experiment we ran Machine Learning for a client both with and
without feature selection process to show how it benefits local training procedure, and thus total

54

6.5.3 Feature Selection Benefit

FL procedure, in terms of time and computational resources, without compromising performance.

In 10 epochs of training for a client with 8 features after feature selection process compared to

16 features initially, the results are shown in table 6.1. The client gained:

e 15% less training time.

e 10% less RAM memory usage.

e 40% less required disk space for private dataset storage.

Resource Without Feature Selection | With Feature Selection || Gain
Training Time 10 min 8.5 min 15%
RAM 510 MB 460 MB 10%

Disk Storage Space 3.6 MB 2.2 MB 40%

Table 6.1. Benefit of feature selection procedure.

In both cases, i.e. with and without feature selection, CPU usage was at 100% and there is

no observable difference in performance. The experiment shows indisputable benefit of feature

selection procedure even in our small scale simulation, in terms of data, let alone in Big Data

scale, as network traffic data of an organization are of. The benefit of feature selection might be
more locally targeted for each client, but it is obvious that by accelerating local training time of
clients, the whole FL process is also accelerated. Finally, the experiment also proves that we did

not just employed this technique to facilitate our simulations, but we rather managed to combine

a process desired by every client with Federated Learning.

55

Chapter 7

Conclusions

7.1 Summary

In this diploma thesis, we used Federated Learning (FL) for collaborative detection of Dis-
tributed Denial of Service (DDoS) attacks. As a novelty, we extended the basic scheme of FL to
enable training with heterogeneous models, which do not share the exact same network architec-
ture. In addition, based on existing work, we enriched the classic Federated Averaging aggregation
algorithm with a trust factor and combined it together with our heterogeneous FL.

At first, we delved into required theoretical background knowledge, mainly about Federated
Learning. Then, we briefly presented existing related works on DDoS detection using FL. Based
on some of these works, we developed our trust-aware heterogeneous FL algorithm. Our method
promises to relieve the procedure from two important obstacles. The first one being the need of
multi-domain collaborators to agree all together on some common model architecture, which will
probably not represent the private data or computational resources needs of some of them. The
second one, is the possibility of one of the collaborators sending back to the central entity models
that negatively affect performance of the global model; this may always happen due to "bad" or
"faulty" data of some collaborator and is not easy either to detect or mitigate.

We solved the first problem by aggregating only matching weights among heterogeneous col-
laborators’ models. For the second problem, we added a factor to appropriately multiply weights
during aggregation, in order to diminish the influence of individually collaborators sending "diver-
gent" models compared to the majority. We then effectively combined our two solutions to form a
single aggregation method.

For the experiments we conducted we used real network traffic data; benign traffic from the
WIDE project and as attack traffic seven different Booters utilizing DNS protocol. We built 21
virtual clients and split data to them, so that each represents an Autonomous System (AS), which
has supposedly encountered one of the attacks. After that, we ran a feature selection procedure
employing random forest for each of our clients separately on its private dataset, from which
heterogeneous models emerged.

We segregated our experiments in three categories: comparing performance of clients on their
own vs collaborative FL, examine trust effect when there are clients who send divergent models
and showing the unquestionable -and already known- benefit of feature selection procedure, which
can now be combined with Federated Learning due to our heterogeneous method.

From the results, we conclude that our method can be effective and scalable in a real case
scenario as it benefits clients in total. There always may exist some clients that will not gain much
in a specific FL procedure, however, some other clients may increase their performance even up
to 20%, as we saw earlier in our experiments. Finally, we deduce that trust plays a significant
role in cases where some clients send divergent models, as it can increase the performance in up
to 8.5%.

57

Chapter 7. Conclusions

7.2 Future Work

Through the end of this thesis, we propose the following directions to which the system we

developed could to be improved and extended in the future:

e Different approach of trust factor in order to make the mechanism capable to maintain its

performance against any divergent model sent, even by malicious clients.

e Extend the process to work without the need of a central entity, that is decentralized Fed-
erated Learning. In that case, model is sent directly from client to client keeping what is
has already learnt each time. Authenticity of local models and reliability of such a learn-
ing environment could ideally be ensured by employing blockchain [59] technology, another
state-of-the-art topic in Federated Learning with recent works like [60] and [61].

e Consider classification mechanisms that can jointly recognize various attack vectors or can

perform other useful network traffic analysis via multi-task learning techniques as in [4].

58

Bibliography

[1

(2]

[3]

[4]

[5]

(6l

[7

(8]

[9]

[10]

(11]

[12]

[13]

Introduction to IBM Federated Learning: A Collaborative Approach to Train ML Models
on Private Data. https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-
collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839. Access date: 2022-
05-05.

What is an autonomous system? | What are ASNs? https://www.cloudflare.com/learning/
network-layer/what-is-an-autonomous-system/. Access date: 2022-05-06.

M. Dimolianis. Intelligent Services for Detection and Mitigation of Distributed Denial-of-Service
Attacks in Programmable Network Environments. Doctoral Dissertation, NTUA, 2022. http:
//artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312.

Y. Zhao, J. Chen, D. Wu, J. Teng and S. Yu. Multi-Task Network Anomaly Detection using
Federated Learning. In Proceedings of the Tenth International Symposium on Information and
Communication Technology, 2019. https://dl.acm.org/doi/abs/10.1145/3368926.3369705.

E. Diao, J. Ding and V. Tarokh. HeteroFL: Computation and Communication Efficient Federated
Learning for Heterogeneous Clients. In Proceedings of the International Conference on Learning
Representations (ICLR), 2021. https://arxiv.org/abs/2010.01264.

A. Gholami, N. Torkzaban and J. S. Baras. On the Importance of Trust in Next-Generation
Networked CPS Systems: An Al Perspective. arXiv, 2021. https://arxiv.org/abs/2104.07853.

Autonomous system (Internet). https://en.wikipedia.org/wiki/Autonomous_system_(Internet).
Access date: 2022-05-06.

What is a denial-of-service attack? https://www.cloudflare.com/learning/ddos/glossary/
denial-of-service/. Access date: 2022-05-03.

DDoS Attack Trends for Q1 2022. https://radar.cloudflare.com/notebooks/ddos-2022-ql. Ac-
cess date: 2022-05-03.

DDoS attacks in Q1 2022. https://securelist.com/ddos-attacks-in-ql-2022/106358/. Access
date: 2022-05-03.

GLOBAL DDOS SUMMARY - APRIL 2022. https://horizon.netscout.com/?atlas=summary. Access
date: 2022-05-03.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh and D. Bacon. Federated
Learning: Strategies for Improving Communication Efficiency. arXiv, 2017. https://arxiv.org/
abs/1610.05492.

H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. Agliera y Arcas. Communication-
Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20 th
International Conference on Artificial Intelligence and Statistics, 2016. https://arxiv.org/abs/
1602.05629.

59

https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839
https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312
https://dl.acm.org/doi/abs/10.1145/3368926.3369705
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2104.07853
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://radar.cloudflare.com/notebooks/ddos-2022-q1
https://securelist.com/ddos-attacks-in-q1-2022/106358/
https://horizon.netscout.com/?atlas=summary
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629

BIBLIOGRAPHY

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

60

Y. Zhao, J. Chen, Q. Guo, J. Teng and D. Wu. Network Anomaly Detection Using Federated
Learning and Transfer Learning. In Proceedings of the International Conference on Security and
Privacy in Digital Economy (SPDE), 2020. https://link.springer.com/chapter/10.1007/978-981-
15-9129-7_16.

Q. Tian, C. Guang, C. Wenchao and W. Si. A Lightweight Residual Networks Framework
Sor DDoS Attack Classification Based on Federated Learning. In Proceedings of the IEEE
Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2021. https://

ieeexplore.ieee.org/document/9484622.

Internet protocol suite. https://en.wikipedia.org/wiki/Internet_protocol_suite. Access date:
2022-05-06.

Internet. https://en.wikipedia.org/wiki/Internet. Access date: 2022-05-06.

What is the Internet of Things (IoT)? https://www.ibm.com/blogs/internet-of-things/what-is-
the-iot/. Access date: 2022-05-03.

What is a DDoS attack? https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-
attack/. Access date: 2022-05-03.

What is a SYN flood attack? https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-
attack/. Access date: 2022-05-03.

What is a DNS amplification attack? https://www.cloudflare.com/en-gb/learning/ddos/dns-
amplification-ddos-attack/. Access date: 2022-05-03.

J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM
SIGCOMM Computer Communication Review, 34(2):39-53, 2004. https://doi.org/10.1145/
997150.997156.

Big data. https://en.wikipedia.org/wiki/Big_data. Access date: 2022-05-04.

What is GDPR, the EU’s new data protection law? https://gdpr.eu/what-is-gdpr/. Access
date: 2022-05-04.

T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage and F. Beaufays.
Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv, 2018.
https://arxiv.org/abs/1812.02903.

P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis et al. Advances and Open Problems
in Federated Learning. arXiv, 2019. https://arxiv.org/abs/1912.04977.

Decentralized federated learning. https://en.wikipedia.org/wiki/Federated_learning#
Decentralized_federated_learning. Access date: 2022-05-04.

C. Che, X. Li, C. Chen, X. He and Z. Zheng. A Decentralized Federated Learning Framework
via Committee Mechanism with Convergence Guarantee. arXiv, 2021. https://arxiv.org/abs/
2108.00365.

W. Liu, L. Chen and W. Zhang. Decentralized Federated Learning: Balancing Communication
and Computing Costs. arXiv, 2022. https://arxiv.org/abs/2107.12048.

K. Hsieh, A. Phanishayee, O. Mutlu and P. B. Gibbons. The Non-IID Data Quagmire of Decen-
tralized Machine Learning. In Proceedings of the International Conference on Machine Learning
(ICML), 2020. https://arxiv.org/abs/1910.00189.

https://link.springer.com/chapter/10.1007/978-981-15-9129-7_16
https://link.springer.com/chapter/10.1007/978-981-15-9129-7_16
https://ieeexplore.ieee.org/document/9484622
https://ieeexplore.ieee.org/document/9484622
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet
https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/
https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://doi.org/10.1145/997150.997156
https://doi.org/10.1145/997150.997156
https://en.wikipedia.org/wiki/Big_data
https://gdpr.eu/what-is-gdpr/
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1912.04977
https://en.wikipedia.org/wiki/Federated_learning#Decentralized_federated_learning
https://en.wikipedia.org/wiki/Federated_learning#Decentralized_federated_learning
https://arxiv.org/abs/2108.00365
https://arxiv.org/abs/2108.00365
https://arxiv.org/abs/2107.12048
https://arxiv.org/abs/1910.00189

BIBLIOGRAPHY

[31]

[32]

[33]

(34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

X. Li, K. Huang, W. Yang, S. Wang and Z. Zhang. On the Convergence of FedAvg on Non-
IID Data. In Proceedings of the International Conference on Learning Representations, 2020.
https://arxiv.org/abs/1907.02189.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar and V. Smith. Federated Optimization
in Heterogeneous Networks. In Proceedings of the 3rd MLSys Conference, 2019. https://arxiv.
org/abs/1812.06127.

H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos and Y. Khazaeni. Federated Learning
with Matched Averaging. In Proceedings of the 38th Annual IEEE International Conference on
Computer Communications (INFOCOM), 2019. https://arxiv.org/abs/2002.06440.

S. Ek, F. Portet, P. Lalanda and G. Vega. A Federated Learning Aggregation Algorithm for
Pervasive Computing: Evaluation and Comparison. In Proceedings of the 9th IEEE International
Conference on Pervasive Computing and Communications (PerCom), 2021. https://arxiv.org/
abs/2110.10223.

M. G. Arivazhagan, V. Aggarwal, A. K. Singh and S. Choudhary. Federated Learning with
Personalization Layers. arXiv, 2019. https://arxiv.org/abs/1912.00818.

Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang and H. Qi. Beyond Inferring Class Rep-
resentatives: User-Level Privacy Leakage From Federated Learning. In Proceedings of the
38th Annual IEEE International Conference on Computer Communications (INFOCOM), 2018.
https://arxiv.org/abs/1812.00535.

R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 53rd
Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015. https:

//ieeexplore.ieee.org/document/7447103.

R. C. Geyer, T. Klein and M. Nabi. Differentially Private Federated Learning: A Client Level
Perspective. In Proceedings of the NIPS 2017 Workshop: Machine Learning on the Phone and
other Consumer Devices, 2017. https://arxiv.org/abs/1712.07557.

A. N. Bhagoji, S. Chakraborty, P. Mittal and S. Calo. Analyzing Federated Learning through
an Adversarial Lens. In Proceedings of the 36th International Conference on Machine Learning,
2018. https://arxiv.org/abs/1811.12470.

S. Shen, S. Tople and P. Saxena. Auror: defending against poisoning attacks in collaborative
deep learning systems. In Proceedings of the 32nd Annual Conference on Computer Security
Applications, 2016. https://dl.acm.org/doi/10.1145/2991079.2991125.

Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu and J. Li. A training-integrity privacy-preserving
federated learning scheme with trusted execution environment. Information Sciences, 522:69-
79, 2020. https://doi.org/10.1016/j.ins.2020.02.037.

J. Li, L. Lyu, X. Liu, X. Zhang and X. Lyu. FLEAM: A Federated Learning Empowered Ar-
chitecture to Mitigate DDoS in Industrial IoT. IEEE Transactions on Industrial Informatics,
18(6):4059-4068, 2021. https://ieeexplore.ieee.org/document/9454328.

Q. Qin, K. Poularakis, K. K. Leung and L. Tassiulas. Line-Speed and Scalable Intrusion
Detection at the Network Edge via Federated Learning. In Proceedings of the IFIP Networking
Conference, 2020. https://ieeexplore.ieee.org/abstract/document/9142704.

61

https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/2002.06440
https://arxiv.org/abs/2110.10223
https://arxiv.org/abs/2110.10223
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/1812.00535
https://ieeexplore.ieee.org/document/7447103
https://ieeexplore.ieee.org/document/7447103
https://arxiv.org/abs/1712.07557
https://arxiv.org/abs/1811.12470
https://dl.acm.org/doi/10.1145/2991079.2991125
https://doi.org/10.1016/j.ins.2020.02.037
https://ieeexplore.ieee.org/document/9454328
https://ieeexplore.ieee.org/abstract/document/9142704

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

(48]
[49]
(50]

[51]

[52]

[53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

62

S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, S. Bhattacharya, P. K. R. Mad-
dikunta and T. R. Gadekallu. Federated Learning for Intrusion Detection System: Concepts,
Challenges and Future Directions. Journal of Network and Computer Applications (JNCA),
2021. https://arxiv.org/abs/2106.09527.

X. Cao, M. Fang, J. Liu and N. Z. Gong. FLTrust: Byzantine-robust Federated Learning via
Trust Bootstrapping. In Proceedings of the Network and Distributed System Security Sympo-
sium (NDSS), 2021. https://arxiv.org/abs/2012.13995.

J. Zhao, X. Zhu, J. Wang and J. Xiao. Efficient Client Contribution Evaluation for Horizontal
Federated Learning. In Proceedings of the International Conference on Acoustics, Speech, and
Signal Processing (ICASSP), 2021. https://arxiv.org/abs/2102.13314.

S. K. Shyn, D. Kim and K. Kim. FedCCEA : A Practical Approach of Client Contribution
Evaluation for Federated Learning. arXiv, 2021. https://arxiv.org/abs/2106.02310.

WIDE Backbone. http://two.wide.ad.jp/. Access date: 2022-05-24.
WIDE Project. https://www.wide.ad.jp/. Access date: 2022-05-24.
MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/. Access date: 2022-05-24.

K. Cho, K. Mitsuya and A. Kato. Traffic Data Repository at the WIDE Project. In Proceedings
of the USENIX Annual Technical Conference, 2000. https://www.usenix.org/conference/2000-

usenix-annual-technical-conference/traffic-data-repository-wide-project.

J. J. Santanna, R. van Rijswijk-Deij, R. Hofstede, A. Sperotto, M. Wierbosch, L. Z. Granville
and A. Pras. Booters — An analysis of DDoS-as-a-service attacks. In Proceedings of the
International Symposium on Integrated Network Management, 2015. https://ieeexplore.ieee.
org/document/7140298.

Booters, Stressers And DDoSers. https://www.wallarm.com/what/booters-stressers-and-
ddosers. Access date: 2022-05-24.

M. Dimolianis, A. Pavlidis and V. Maglaris. Signature-Based Traffic Classification and Miti-
gation for DDoS Attacks Using Programmable Network Data Planes. IEEE Access, 9:113061-
113076, 2021. https://ieeexplore.ieee.org/abstract/document/9511420.

Domain Name System. https://en.wikipedia.org/wiki/Domain_Name_System. Access date: 2022-
05-24.

User Datagram Protocol. https://en.wikipedia.org/wiki/User_Datagram_Protocol. Access date:
2022-05-24.

List of DNS record types. https://en.wikipedia.org/wiki/List of_DNS_record_types. Access
date: 2022-06-02.

C. Siaterlis and B. Maglaris. Detecting DDoS attacks using a multilayer Perceptron classifier.
In Proceedings of the 9th IFIP/IEEE International Symposium on Integrated Network Man-
agement, 2004. https://www.researchgate.net/publication/235891315 Detecting_DDoS_attacks_

using_a_multilayer_Perceptron_classifier.
Blockchai. https://en.wikipedia.org/wiki/Blockchain. Access date: 2022-06-10.

Z. Wang and Q. Hu. Blockchain-based Federated Learning: A Comprehensive Survey. 2021.
https://arxiv.org/abs/2110.02182.

https://arxiv.org/abs/2106.09527
https://arxiv.org/abs/2012.13995
https://arxiv.org/abs/2102.13314
https://arxiv.org/abs/2106.02310
http://two.wide.ad.jp/
https://www.wide.ad.jp/
http://mawi.wide.ad.jp/mawi/
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://ieeexplore.ieee.org/document/7140298
https://ieeexplore.ieee.org/document/7140298
https://www.wallarm.com/what/booters-stressers-and-ddosers
https://www.wallarm.com/what/booters-stressers-and-ddosers
https://ieeexplore.ieee.org/abstract/document/9511420
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/List_of_DNS_record_types
https://www.researchgate.net/publication/235891315_Detecting_DDoS_attacks_using_a_multilayer_Perceptron_classifier
https://www.researchgate.net/publication/235891315_Detecting_DDoS_attacks_using_a_multilayer_Perceptron_classifier
https://en.wikipedia.org/wiki/Blockchain
https://arxiv.org/abs/2110.02182

BIBLIOGRAPHY

[61] C. Ma, J. Li, M. Ding, L. Shi, T. Wang, Z. Han and H. V. Poor. When Federated Learning Meets
Blockchain: A New Distributed Learning Paradigm. 2020. https://arxiv.org/abs/2009.09338.

63

https://arxiv.org/abs/2009.09338

	Περίληψη
	Abstract
	Ευχαριστίες
	List of Figures
	List of Tables
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Σχετικές Εργασίες
	Μεθοδολογία
	Πειράματα και Υλοποίηση
	Συμπεράσματα

	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Theoretical Background
	Internet and Autonomous Systems Fundamentals
	DDoS Attacks
	Federated Learning
	Federated Learning Cycle
	Federated Learning Without Central Server
	Federated Averaging
	Federated Learning vs Distributed Machine Learning
	Other Aggregation Algorithms
	Security and Privacy Issues

	Related Work
	Federated Learning and DDoS Attack Detection
	Heterogeneous Federated Learning
	Federated Learning and Trust

	Methodology
	Heterogeneous Federated Learning
	Trust-Aware Federated Learning
	Limitations

	Experiments and Implementation
	Used Data
	Methodology of Experiments
	Technical Details of Implementation
	Preprocessing
	Results
	Clients On Their Own vs Federated Learning
	7 Clients
	14 Clients
	21 Clients
	Random Distribution of Attacks

	Trust Effect
	7 Clients
	14 clients
	21 clients

	Feature Selection Benefit

	Conclusions
	Summary
	Future Work

	Bibliography

