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Περίληψη

Οι Κατανεµηµένες Επιθέσεις ΄Αρνησης Παροχής Υπηρεσιών (DDoS) αποτελούν µείζον πρόβληµα

στη σύγχρονη εποχή τού διαδικτύου, καθώς στοχεύουν στην παράλυση υπηρεσιών και στην εξάντλη-

ση των πόρων που αυτές χρησιµοποιούν, καθιστώντας τις απροσπέλαστες από τους νόµιµους χρήστες

τους. Η καταπολέµηση των επιθέσεων αυτών είναι µια πρόκληση, την οποία για να ξεπεράσουν οι ορ-

γανισµοί ασφαλείας συχνά χρειάζεται να συνεργαστούν και πιθανώς να µοιραστούν τα δεδοµένα που

διαθέτουν, για την εκπαίδευση µοντέλων µε µεγαλύτερη ακρίβεια ανίχνευσης. Εντούτοις, η συνεργα-

σία αυτή δεν µπορεί εύκολα να καταστεί εφικτή κάτω από τις παραδοσιακές συνθήκες εκπαίδευσης µε

Κατανεµηµένη Μηχανική Μάθηση (Distributed Machine Learning), όπου τα δεδοµένα εκπαίδευσης

εκτίθενται σε έναν κεντρικό διακοµιστή, λόγω του τεράστιου όγκου των δεδοµένων αυτών, του εµπο-

ϱικού ανταγωνισµού και των αυστηρών πρωτοκόλλων ιδιωτικότητας και ασφάλειας. Προκειµένου να

αντιµετωπιστούν οι παραπάνω δυσκολίες, σε αυτήν τη διπλωµατική προτείνουµε, σε πρώτο επίπεδο,

ένα περιβάλλον συνεργατικής εκπαίδευσης που ϐασίζεται στη σύγχρονη µέθοδο τής Οµοσπονδιακής

Μάθησης (Federated Learning).

Κατά την εκπαίδευση µε Federated Learning, τα µόνα δεδοµένα που ανταλλάσσονται είναι τα

τοπικά µοντέλα που εκπαιδεύονται σε κάθε συνεργαζόµενη οντότητα και αποστέλλονται σε έναν κε-

ντρικό διακοµιστή για να συµψηφιστούν σε ένα νέο γενικό µοντέλο. Τα δεδοµένα εκπαίδευσης

παραµένουν προστατευµένα στις τοπικές συσκευές καθόλη τη διάρκεια της εκπαίδευσης. Ωστόσο, µε

τη διαδικασία αυτή προκύπτουν δύο Ϲητήµατα. Αρχικά, απαιτείται σε παραδοσιακές αρχιτεκτονικές

Federated Learning οι συνεργαζόµενες οντότητες να καταλήξουν οµόφωνα σε κοινή αρχιτεκτονική

µοντέλου, πράγµα που µπορεί να µην είναι εύκολο εξαιτίας αφενός της ετερογένειας των δεδοµένων

τους και αφετέρου των εκάστοτε διαθέσιµων πόρων κάθε οντότητας. Το δεύτερο είναι το ενδεχόµενο

κάποια από τις συνεγαζόµενες οντότητες να διαθέτει ελαττωµατικά δεδοµένα, µε αποτέλεσµα να στέλ-

νει διαφορετικά (αποκλίνοντα) µοντέλα σε σχέση µε τις υπόλοιπες και να επηρεάζεται αρνητικά η όλη

διαδικασία.

Στόχος, λοιπόν, της παρούσας διπλωµατικής, σε δεύτερο επίπεδο, είναι η αντιµετώπιση των δύο

προαναφερθέντων Ϲητηµάτων. Για το λόγο αυτό αναπτύσσεται µια πειραµατική διάταξη Federated

Learning κατάλληλη για ετερογενή µοντέλα, δηλαδή µοντέλα ίδιων νευρωνικών δικτύων, αλλά µε

διαφορετικούς αριθµούς νευρώνων, και εµπλουτισµένη µε έναν παράγοντα εµπιστοσύνης (trust) µε

σκοπό τη µείωση της επιρροής των συνεργατών που στέλνουν αποκλίνοντα µοντέλα. Μας ενδιαφέρει

να δούµε αν µπορούµε πράγµατι να χρησιµοποιήσουµε το Federated Learning αντιµετωπίζοντας τα

Ϲητήµατα αυτά.

Λέξεις Κλειδιά

Κατανεµηµένες Επιθέσεις ΄Αρνησης Παροχής Υπηρεσιών, Ανίχνευση ∆ικτυακών Επιθέσεων, Οµο-

σπονδιακή Μάθηση, Ετερογενή Μοντέλα, Οµοσπονδιακή Μάθηση µε Παράγοντα Εµπιστοσύνης
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Abstract

Distributed Denial of Service (DDoS) attacks constitute a major problem in the modern era

of the internet, as they aim to paralyze services and exhaust the resources they use, making

them inaccessible to their legitimate users. Mitigation of these attacks is a challenge that security

agencies often need to work together to overcome and possibly share their data to train models

with greater detection accuracy. Nevertheless, this collaboration can not easily be achieved under

traditional Distributed Machine Learning training conditions, where training data is stored on a

central server, due to the vast amount of such data, commercial competition and strict privacy

and security protocols. In order to address the above difficulties, in this thesis we propose, at first

level, a collaborative learning environment based on the modern method of Federated Learning.

During training via Federated Learning, the only data exchanged is the local models that are

trained in each collaborating entity and sent to a central server to be aggregated into a new global

model. Training data remains protected on local devices throughout the procedure. However,

this process raises two issues. Firstly, traditional Federated Learning architectures require the

collaborating entities to unanimously arrive at a common model architecture, which may not be

easy due to the heterogeneity of their data on the one hand and the resources available to each

entity on the other. The second one is the possibility that some of the collaborating entities have

defective data, as a result of which they send different (divergent) models in relation to the others

and the whole process is negatively affected.

So, the aim of the present thesis, at a second level, is to address the two aforementioned issues.

For this purpose we develop an experimental Federated Learning set-up suitable for heterogeneous

models, i.e. models of the same neural network, but with different numbers of neurons, and

enriched with a trust factor in order to diminish the influence of collaborators sending divergent

models. We are interested to see if we can actually use Federated Learning while addressing these

issues.

Keywords

DDoS Attacks, Network Attacks Detection, Federated Learning, Heterogeneous Models, Trust-

Aware Federated Learning
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Κεφάλαιο 1

Εκτεταµένη Ελληνική Περίληψη

1.1 Εισαγωγή

΄Οπως είναι γνωστό, το ∆ιαδίκτυο χωρίζεται σε δικτυακές περιοχές που αποκαλούµε Αυτόνοµα

Συστήµατα [7]. Κάποιες ϕορές, ένα τέτοιο σύστηµα, που συχνά µπορεί να αποτελεί έναν οργανισµό,

γίνεται ϑύµα δικτυακών επιθέσεων. Πιο συγκεκριµένα, οι Κατανεµηµένες Επιθέσεις ΄Αρνησης Πα-

ϱοχής Υπηρεσιών (DDoS) αποτελούν µείζον πρόβληµα, καθώς στοχεύουν στην παράλυση υπηρεσιών

και εξάντληση πόρων, καθιστώντας τις µη προσβάσιµες από τους νόµιµους χρήστες, κάτι που µπορεί

να έχει οικονοµικές επιπτώσεις στις επηρεαζόµενες οντότητες. Η ανίχνευση και αντιµετώπιση τέτοιων

επιθέσεων αποτελεί δύσκολο έργο για τους διαχειριστές δικτύων και τους σχεδιαστές συστηµάτων

ασφαλείας.

΄Ενας σύγχρονος τρόπος ανίχνευσης επιθέσεων είναι επιστρατεύοντας τη Μηχανική Μάθηση (Ma-

chine Learning) για τον διαχωρισµό τής δικτυακής κίνησης σε καλόβουλη και κακόβουλη. Εξαιτίας

της διαφορετικότητας της δικτυακής κίνησης από περιοχή σε περιοχή, µια πετυχηµένη ταξινόµηση

ϑα απαιτούσε τη συγκέντρωση όσο το δυνατόν περισσότερων δεδοµένων σε έναν κεντρικό διακοµι-

στή. Κάτι τέτοιο αφενός είναι ασύµφορο λόγω του τεράστιου όγκου τέτοιων δεδοµένων και αφετέρου

η δικτυακή κίνηση αναµφισβήτητα αποτελεί προσωπικό δεδοµένο, µε τα αυστηρά παγκόσµια πρω-

τόκολλα προστασίας των δεδοµένων και ιδιωτικότητας να καθιστούν τους οργανσιµούς απρόθυµους

να τα µοιραστούν. Η λύση στο πρόβληµα αυτό είναι µια τεχνική που ονοµάζεται Οµοσπονδιακή

Μάθηση (Federated Learning) που επιτρέπει την εκπαίδευση µοντέλων µε δεδοµένα τα οποία µένουν

αποκλειστικά στις οντότητες που συµµετέχουν.

Κατά την εκπαίδευση µε Federated Learning, τα µόνα δεδοµένα που ανταλλάσσονται είναι τα τοπι-

κά µοντέλα που εκπαιδεύονται σε κάθε συνεργαζόµενη οντότητα και αποστέλλονται σε έναν κεντρικό

διακοµιστή για να συµψηφιστούν σε ένα νέο γενικό µοντέλο. Ωστόσο, µε τη διαδικασία αυτή προ-

κύπτουν δύο νέα Ϲητήµατα. Το πρώτο είναι η απαίτηση οι συνεργαζόµενες οντότητες να καταλήξουν

οµόφωνα σε κοινή αρχιτεκτονική µοντέλου, πράγµα που µπορεί να µην είναι εύκολο εξαιτίας αφενός

της ετερογένειας των δεδοµένων τους και αφετέρου των εκάστοτε διαθέσιµων πόρων κάθε οντότητας.

Το δεύτερο είναι το ενδεχόµενο κάποια από τις συνεγαζόµενες οντότητες να στέλνει διαφορετικά (α-

ποκλίνοντα) µοντέλα σε σχέση µε τις υπόλοιπες, πιθανώς εξαιτίας των δεδοµένων που διαθέτει, µε

αποτέλεσµα να επηρεάζεται αρνητικά η όλη διαδικασία. Η επίλυση αυτών των Ϲητηµάτων ϑα διευ-

κολύνει την αποτελεσµατική χρήση τού Federated Learning, καθιστώντας το έναν από τους πλεόν

πιο υποσχόµενους τρόπους αντιµετώπισης (DDoS) επιθέσεων σε κλίµακα παγκοσµίου επιπέδου στο

∆ιαδίκτυο.

Εποµένως, η συνεισφορά µας στο πλαίσιο αυτής της διπλωµατικής είναι η υλοποίηση ενός περι-

ϐάλλοντος Federated Learning µε τα παρακάτω χαρακτηριστικά:

• ϑα επιτρέπει στις συνεργαζόµενες οντότητες να χρησιµοποιούν ετερογενή µεταξύ τους µοντέλα,

δηλαδή µοντέλα που δε ϑα έχουν κατ΄ ανάγκη ίδιους αριθµούς εισόδων και νευρώνων στο
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κρυµµένο επίπεδο· ϕυσικά, τα µοντέλα πρέπει να είναι ίδιου τύπου νευρωνικού δικτύου και µε

ίδιο αριθµό επιπέδων.

• ϑα είναι εµπλουτισµένο µε έναν παράγοντα εµπιστοσύνης (trust) που ϑα µειώνει κατάλληλα

κατά τον συµψηφισµό την επιρροή των συνεργατών των οποίων τα µοντέλα αποκλίνουν, ώστε να

προκύψει τελικά το καλύτερο δυνατό µοντέλο µε ϐάση τα χαρακτηριστικά των δεδοµένων της

πλειοψηφίας των συνεργατών.

Ο τελικός στόχος είναι µια διαδικασία επικερδής για κάθε συνεργαζόµενη οντότητα σε σύγκριση

µε το να δουλεύει µόνη της.

1.2 Θεωρητικό Υπόβαθρο

Μια Επίθεση ΄Αρνησης Παροχής Υπηρεσιών (DoS) είναι ένα είδος κυβερνοεπίθεσης στην οποία

ένας κακόβουλος χρήστης προσπαθεί να καταστήσει µια συσκευή µη διαθέσιµη προς χρήση. Οι

επιθέσεις αυτές λειτουργούν πληµµυρίζοντας το στοχευµένο µηχάνηµα µε αιτήµατα έως ότου κορεστεί

και είναι πλέον αδύνατη η επεξεργασία της ϕυσιολογικής κίνησης [8]. Μια Κατανεµηµένη Επίθεση

΄Αρνησης Παροχής Υπηρεσιών (DDoS) είναι ένας τύπος (DoS) επίθεσης που προέρχεται από πολλές

διαφορετικές πηγές, οι οποίες είναι διάφορες συσκευές τις οποίες ο επιτιθέµενος έχει µολύνει µε

κακόβουλο λογισµικό, ώστε να µπορεί να τις ελέγχει. Σύµφωνα µε στατιστικές [9] [10] [11], η εµφάνιση

τέτοιων επιθέσεων αυξάνεται και η ανάγκη για έγκαιρη ανίχνευσή τους γίνεται επιτακτική.

Figure 1.1. Περιβάλλον Federated Learning. Πηγή: [1]

Το Federated Learning προσφέρει νέες προοπτικές στον σκοπό αυτό. Επινοήθηκε από επιστήµο-

νες της Google το 2017 [12]. Τυπικά, τα ϐήµατα σε ένα απλό περιβάλλον Federated Learning είναι

τα ακόλουθα:

• Βήµα 1: Ο κεντρικός διακοµιστής αρχικοποιεί ένα γενικό µοντέλο.

• Βήµα 2: Ο κεντρικός διακοµιστής στέλνει το γενικό µοντέλο σε κάθε συσκευή που συµµετέχει.

• Βήµα 3: Κάθε συσκευή εκπαιδεύει τοπικά το µοντέλο που έλαβε χρησιµοποιώντας µόνο τα δικά

της δεδοµένα.
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• Βήµα 4: Μετά την εκπαίδευση, κάθε συσκευή στέλνει το τοπικό της µοντέλο πίσω στον κεντρικό

διακοµιστή.

• Βήµα 5: Αφού ο κεντρικός διακοµιστής συγκεντρώσει όλα τα τοπικά µοντέλα, τα συµψηφίζει

χρησιµοποιώτας κάποιον αλγόριθµο συµψηφισµού (παραδοσιακά τον Federated Averaging) και

προκύπτει ένα νέο, ενηµερωµένο γενικό µοντέλο.

• Βήµα 6: Ο κεντρικός διακοµιστής στέλενι ξανά στις επιµέρους συσκευές το συµψηφισµένο

γενικό µοντέλο, ώστε να εκπαιδευτούν τοπικά και η διαδικασία επαναλαµβάνεται µέχρι κάποιον

προκαθορισµένο αριθµό εποχών ή µέχρι την ικανοποίηση κάποιου κριτηρίου.

΄Ενα από τα σηµαντικότερα σηµεία στην παραπάνω διαδικασία είναι ο αλγόριθµος συµψηφισµού.

Στον Federated Averaging [13] τα ϐάρη τού νέου µοντέλου υπολογίζονται ως ο σταθµισµένος µέσος

όρος των αντίστοιχων ϐαρών των τοπικών µοντέλων των συσκευών που συµµετέχουν. Η στάθµιση γίνε-

ται µε ϐάση τον αριθµό των δειγµάτων που περιέχουν τα σύνολα δεδοµένων των επιµέρους συσκευών.

1.3 Σχετικές Εργασίες

Θα αναφέρουµε εν συντοµία µερικές εργασίες σχετικές µε Federated Learning και ανίχνευση

DDoS επιθέσεων. Οι Zhao et al. [14] συνδύασαν το Federated Learning µε το transfer learning έχο-

ντας την ιδέα ότι κάποιες οντότητες που έχουν ειδικευτεί να αναγνωρίζουν διαφορετικές κακόβουλες

ενέργειες µπορούν να συνεργαστούν για να ανιχνεύουν γενικότερα ανωµαλίες στη δικτυακή κίνηση.

Οι Tian et al. [15], πρότειναν ένα «ελαφρύ» residual network για ανίχνευση επιθέσεων και κατη-

γοριοποίηση κίνησης. Οι συγγραφείς τού [4] υιοθέτησαν µια καινοτόµα προσέγγιση συνδυάζοντας

το Federated Learning µε το multi-task learning και πέτυχαν µε µια µόνο εκπαίδευση να κάνουν

ανίχνευση δικτυακών ανωµαλιών, αναγνώριση VPN/Tor κίνησης και κατηγοριοποίηση κίνησης, κερ-

δίζοντας συνολικά σε κόστος χρόνου εκπαίδευσης.

Οι Diao et al. [5], πρότειναν ένα νέο σύστηµα, το HeteroFL, για να αντιµετωπίσουν την ετερογένεια

των συνεργαζόµενων οντοτήτων που ενδεχοµένως να έχουν διαφορετική υπολογιστική ικανότητα. Η

κεντρική ιδέα είναι ότι οι συνεργάτες είναι χωρισµένοι σε οµάδες ανάλογα µε τις δυνατότητές τους

και τα µοντέλα αυτών µε την υψηλότερη υπολογιστική ικανότητα περιέχουν όλα τα ϐάρη, ενώ κάθε

επόµενη οµάδα περιέχει ένα υποσύνολο των ϐαρών. Κατά τον συµψηφισµό, για κάθε ϐάρος η τελική

τιµή του υπολογίζεται ως ο µέσος όρος µόνο όσων µοντέλων το περιέχουν.

Οι Gholami et al. [6] διατύπωσαν µια γενίκευση του Federated Averaging, την οποία ονόµασαν

Trusted Federated Averaging και στην οποία έχουµε ϐασιστεί κι εµείς. Κατά τον συµψηφισµό, κάθε

ϐάρος κάθε µοντέλου πολλαπλασιάζεται µε έναν παράγοντα που αποτελεί τη «ϐαθµολογία εµπιστο-

σύνης» κάθε συνεργάτη. Η ϐαθµολογία αυτή υπολογίζεται µε ϐάση το πόσο διαφέρει το µοντέλο ενός

συνεργάτη από τα µοντέλα όλων των υπολοίπων. Για τη σύγκριση των µοντέλων χρησιµοπιείται η

Ευκλείδεια απόσταση των ϐαρών τους.

1.4 Μεθοδολογία

Θα παρουσιάσουµε τη µεθοδολογία για τα ετερογενή µοντέλα µε ένα παράδειγµα. Στην εικόνα

1.2 έχουµε δύο MLP µοντέλα 2 επιπέδων, τα οποία έχουν από ένα κοινό κι ένα διαφορετικό χαρακτη-

ϱιστικό εισόδου, καθώς και διαφορετικό αριθµό νευρώνων στο κρυµµένο επίπεδο. Το συµψηφισµένο

µοντέλο των µοντέλων 1 και 2 ϕαίνεται στην εικόνα 1.3. Το σύνολο των χαρακτηριστικών εισόδου

είναι η ένωση των συνόλων των επιµέρους µοντέλων. Ο αριθµός των νευρώνων σε κάθε επίπεδο είναι

τουλάχιστον τόσος όσος ο µεγαλύτερος αριθµός νευρώνων στο αντίστοιχο επίπεδο των συνεργατών.
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Κάθε ϐάρος w τού συµψηφισµένου µοντέλου υπολογίζεται ως εξής :

w =

 µέσος όρος των σχετικών ϐαρών των µοντέλων που περιέχουν το w
0 αν κανένα µοντέλο δεν περιέχει το w

(1.1)

Λέµε ότι δοθέντος ενός ϐάρους w, ένα µοντέλο περιέχει ένα αντίστοιχο ϐάρος w’ αν αυτό αφορά το

ίδιο χαρακτηριστικό εισόδου (αν είναι στο πρώτο επίπεδο) και τον ίδιο νευρώνα. Φυσικά, στην εικόνα

1.3 ο 6ος νευρώνας που έχει όλα τα ϐάρη µηδενικά µπορεί να παραληφθεί.

Figure 1.2. MLP µοντέλα δύο συνεργατών προς συµψηφισµό.

Η κεντρική ιδέα τής διαδικασίας είναι ότι οι συνεργάτες συνεισφέρουν µόνο στα ϐάρη που περι-

έχουν κι έτσι το γενικό µοντέλο µαθαίνει από κάθε συνεργάτη ό,τι αυτός µπορεί να του µάθει.

Figure 1.3. Συµψηφισµένο µοντέλο των µοντέλων 1 και 2.

Θα παρουσιάσουµε τώρα τη µεθοδολογία για τον παράγοντα εµπιστοσύνης. Χρειαζόµαστε µια

τιµή εµπιστοσύνης για τον κάθε συνεργάτη που ϑα πολλαπλασιάζει κατάλληλα τα ϐάρη του για να

µειώσει την επιρροή του κατά τη διαδικασία συµψηφισµού, αν το µοντέλο του αποκλίνει. Σε κάθε

γύρο k, πριν τον συµψηφισµό, ο κεντρικός διακοµιστής συγκρίνει όλα τα N τοπικά µοντέλα µεταξύ

τους, όπως δείχνει η εξίσωση 1.2. Αν δύο µοντέλα είναι ετερογενή, συγκρίνονται µόνο ϐάρη που

περιέχουν και τα δύο.
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sum
(k)
i =

∑
j∈N

∥w
(k)
j
−w

(k)
i ∥

2

2

|N |
(1.2)

Χρησιµοποιώντας την εξίσωση 1.3, αναθέτει τιµή 1 σε όσους συνεργάτες ϑεωρούνται «έµπιστοι»

και 0 σε όσους αποκλίνουν.

I
(k)
i =

 1 αν sum
(k)
i ≤ thi ×median({sum

(k)
j
}j∈N )

0 αλλιώς
(1.3)

Από τις εξισώσεις 1.4, 1.5 και 1.6 υπολογίζεται τελικά η τιµή εµπιστοσύνης κάθε συνεργάτη.

r
(k)
i = ρ1r

(k−1)
i + I

(k)
i (1.4)

s
(k)
i = ρ2s

(k−1)
i + 1 − I

(k)
i (1.5)

t
(k)
i =

r
(k)
i + 1

r
(k)
i + s

(k)
i + 2

(1.6)

Εξαιτίας της ετερογένειας των µοντέλων και προκειµένου να αντιµετωπιστεί η περίπτωση κάποιος

να έχει ένα ϐάρος µε «προβληµατική» τιµή που ελάχιστοι ή και κανένας άλλος δεν περιέχει, προ-

σθέτουµε έναν παράγοντα rareFactor που µειώνει την επιρροή των σπάνιων ϐαρών και έχει τιµές που

ϕαίνονται στην παρακάτω εξίσωση.

rareFactor(w) =


4 αν µόνο ένας συνεργάτης έχει το w

3 αν δύο συνεργάτες έχουν το w

2 αν τρεις συνεργάτες έχουν το w

1 αν τουλάχιστον τέσσερις συνεργάτες έχουν το w

(1.7)

Ο τελικός τύπος για τον συµψηφισµό ϕαίνεται στην εξίσωση 1.8, όπου Di είναι το µέγεθος της

ιδιωτικής ϐάσης δεδοµένων τού συνεργάτη i.

w
(k) =

∑
i∈N

Di t
(k)
i∑

i∈N Di t
(k)
i

w
(k)
i

rareFactor
(1.8)
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Από το σύνολο δεδοµένων για καλόβουλη κίνηση που χρησιµοποιήσαµε, επιλέξαµε 21 Αυτόνοµα

Συστήµατα ως προορισµούς πακέτων, ϕτιάχνοτας έτσι 21 συνεργάτες για το Federated Learning. Σε

κάθε έναν από αυτούς µοιράσαµε µια από τις 7 επιθέσεις που περιέχουν τα δεδοµένα κακόβουλης

κίνσης που χρησιµοποιήσαµε. Σηµειώνεται εδώ, ότι η επίθεση 5 µοιάζει περισσότερο µε καλόβουλη

κίνηση, δεν είναι πετυχηµένη και οδηγεί τον συνεργάτη που υποτίθεται ότι την αντιµετώπισε να τείνει

να στέλνει ελαφρώς αποκλίνοντα µοντέλα· εδώ είναι που χρειαζόµαστε τον παράγοντα εµπιστοσύνης.

΄Υστερα, για κάθε συνεργάτη ξεχωριστά εκτελέσαµε στο ιδιωτικό του σύνολο δεδοµένων µια διαδικασία

feature selection χρησιµοποιώντας random forest από όπου προέκυψαν και τα ετερογενή µοντέλα.

΄Ολα τα µοντέλα είναι MLP 2 επιπέδων µε n εισόδους και 2n + 1 νευρώνες στο κρυφό επίπεδο. Ως

κριτήριο επίδοσης χρησιµοποιούµε την ακρίβεια (accuracy) µε περισσότερο ϐάρος (55% έναντι 45%)

στο ποσοστό αληθώς αρνητικών δειγµάτων (true negative rate), δηλαδή στην ακρίβεια στην καλόβουλη

κίνηση.

Στο πρώτο πείραµα συγκρίνουµε τις επιδόσεις των συνεργατών όταν είναι ο καθένας µόνος του

σε σχέση µε το Federated Learning στο οποίο συνεργάζονται. Τα αποτελέσµατα όταν συµµετέχουν 7
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συνεργάτες ϕαίνονται στα παρακάτω διαγράµµατα.

Figure 1.4. Επίδοση 7 συνεργατών και FL µοντέλου στην καλόβουλη κίνηση.

Figure 1.5. Μέση επίδοση 7 συνεργατών και FL µοντέλου στην κακόβουλη κίνηση, εξαιρώντας την 5η

επίθεση.

Το Federated Learning (FL) µοντέλο ξεπερνά σε επίδοση όλους τους µεµονωµένους συνεργάτες

στην καλόβουλη κίνηση και είναι εξίσου καλό στην κακόβουλη µε τους καλύτερους από τους συνερ-

γάτες. Παρόµοια αποτελέσµατα πήραµε και όταν εκτελέσαµε το πείραµα για 14 και 21 συνεργάτες.

Συµπεραίνουµε ότι υπάρχει όφελος για κάποιον συνεργάτη να συµµετέχει στη διαδικασία και να

υιοθετήσει το FL µοντέλο.

∆οκιµάσαµε επίσης να εκτελέσουµε 20 ϕορές το πείραµα αυτό, αλλά κάθε ϕορά µε τυχαίο (διαφο-

ϱετικό) µοίρασµα των επιθέσεων στους συνεργάτες. ΄Υστερα πήραµε για τον κάθε συνεργάτη και για

το FL µοντέλο τον µέσο όρο της επίδοσης από αυτές τις 20 εκτελέσεις. Τα αποτελέσµατα ϕαίνονται
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στα παρακάτω διαγράµµατα.

Figure 1.6. Μέση επίδοση 7 συνεργατών και FL µοντέλου στην καλόβουλη κίνηση σε 20 εκτελέσεις

µε τυχαία διανοµή επιθέσεων.

Figure 1.7. Μέση επίδοση 7 συνεργατών και FL µοντέλου στην κακόβουλη κίνηση (µέσος όρος επι-

ϑέσεων εξαιρώντας την 5η) σε 20 εκτελέσεις µε τυχαία διανοµή επιθέσεων.

Στο δεύτερο πείραµα εξετάζουµε τη χρησιµότητα του παράγοντα εµπιστοσύνης που έχουµε προ-

σθέσει. Τα αποτελέσµατα ϕαίνονται στο παρακάτω διάγραµµα, όπου το κέρδος είναι αναµφισβήτητο.

Στο τελευταίο πείραµα δείχνουµε τα οφέλη από τη διαδικασία του feature selection. ∆εν το εκτε-

λέσαµε απλά και µόνο προκειµένου να προκύψουν τα ετερογενή µοντέλα, αλλά αντίθετα προκείται

για µια διαδικασία επιθυµητή και χρήσιµη για οποιαδήποτε οντότητα εκπαιδεύει τοπικά κάποιο µο-

ντέλο. Το κέρδος για έναν συνεργάτη που από τα 16 αρχικά χαρακτηριστικά εισόδου, καταλήγει σε 8

µετά το feature selection ϕαίνεται στον πιο κάτω πίνακα. Σηµειώνεται ότι δεν υπάρχει παρατηρήσιµη
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Figure 1.8. FL χωρίς και µε παράγοντα εµπιστοσύνης για 7 συνεργάτες.

διαφορά στην επίδοση.

Υπολογιστικοί Πόϱοι Χωϱίς Feature Selection Με Feature Selection Κέϱδος

Χϱόνος Εκπαίδευσης 10 min 8.5 min 15%

Μνήµη RAM 510 MB 460 MB 10%

Χώϱος Αποϑήκευσης στο ∆ίσκο 3.6 MB 2.2 MB 40%

Table 1.1. ΄Οφελος της διαδικασίας feature selection.

Περισσότερα αποτελέσµατα και αντίστοιχη ανάλυση υπάρχουν στο κεφάλαιο Experiments and

Implementation.

1.6 Συµπεράσµατα

Σε αυτήν τη διπλωµατική επεκτείναµε τον κλασικό αλγόριθµο του Federated Learning, προ-

κειµένου να προσαρµόσουµε τη διαδικασία στο σύγχρονο ϱεαλιστικό σενάριο της συνεργατικής α-

νίχνευσης DDoS επιθέσεων από οργανισµούς και γενικότερα περιοχές τού ∆ιαδικτύου σε παγκόσµια

κλίµακα. Τα αποτελέσµατα µας δείχνουν µια πολλά υποσχόµενη διαδικασία που µπορεί να υλοποι-

ηθεί και να εξυπηρετήσει τον σκοπό της στην πραγµατικότητα. Επίσης, προτείνουµε τις παρακάτω

κατευθύνσεις προς τις οποίες η δουλειά µας ϑα µπορούσε να επεκταθεί στο µέλλον :

• ∆ιαφορετική προσέγγιση του παράγοντα εµπιστοσύνης, ώστε το σύστηµα να µπορεί να διατη-

ϱήσει την επίδοσή του απέναντι σε οποιοδήποτε αποκλίνον µοντέλο, ακόµη και σε κακόβουλους

συνεργάτες.

• Επέκταση της διαδικασίας µε στόχο να λειτουργεί και χωρίς κάποιον κεντρικό διακοµιστή. Τα

µοντέλα ϑα ανταλλάσσονται απευθείας µεταξυ των συνεργατών και η γνώση που έχει αποκτηθεί

ϑα διατηρείται κάθε ϕορά.

• Μελέτη µηχανισµών ταξινόµησης που µπορούν να αναγνωρίσουν ταυτόχρονα πολλαπλές επι-

ϑέσεις ή να εκτελέσουν κι άλλη χρήσιµη ανάλυση δικτυακής κίνησης µέσω της τεχνικής τού

multi-task learning.
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Introduction

2.1 Motivation

As it is widely known, the Internet is divided in areas, which are smaller or bigger networks.

It is not a secret that sometimes such an area, which usually is a distinct organization, may

constitute a target for network attacks. In particular, Distributed Denial of Service (DDoS) attacks

are a major problem, aiming to paralyze services and exhaust used resources making them in-

accessible to legitimate users. With botnets recruitment by attackers side and with utilization of

intelligent techniques, these attacks appear with continually increasing frequency and complexity.

Marginalization of services may lead to economic consequences of the affected entities. Detection

and mitigation of attacks constitutes a challenging task for network administrators and security

system designers.

Attack detection essentially comes to correctly distinguishing benign and attack network traffic.

As it is known, network traffic is made up of packets, which, on their turn, are nothing more than

series of numbers. A classification task of this kind nowadays, seems to be a typical Machine

Learning problem. Machine Learning has attracted interest of cyber security specialists in great

depth, and rightly so. Of course, every Machine Learning task requires data to train models,

which in this case is network traffic. However, due to diversity in both benign and attack traffic

among different areas of the Internet, a successful classification would require data from as many

parts or distinct organizations as possible.

Gathering of such data in order to feed a Machine Learning model is nothing but straightfor-

ward. The vast amount of network traffic data is not even the most significant difficulty. Network

traffic undoubtedly constitutes personal data. Global strict protocols for data protection and se-

curity as well as unwillingness of organizations to share their network traffic data, make the whole

process seem to be almost impossible. The solution to such a case, where data is preferable to

stay to their owners, is a Machine Learning technique named Federated Learning.

In Federated Learning, an algorithm is trained across multiple decentralized edge devices or

servers holding local data samples, without exchanging them. Each decentralized entity can be

seen, in our case, as an organization or an independent network or area and from now on will

be called collaborator or client of the Federated Learning process. So, each collaborator has a

local Machine Learning model, which trains on local data. Then, collaborators exchange their

trained models in order to calculate a new aggregated model. Collaborators take the new model

and the process is repeated. Usually, a central entity orchestrates the Federated Learning and is

responsible for gathering, aggregating and sending back models to collaborators.

With the use of Federated Learning, two new problems arise. Firstly, multi-domain collabo-

rators need to agree on common model architectures. Such an agreement might not be easy to

reach, since each collaborator will choose the input features based on local data and available

resources. Secondly, there is the case of a collaborator sending back models different from others
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(i.e. with different values of weights), probably unintentionally due to different or faulty data,

thus negatively affecting the aggregated model and, consequently, the whole process. Solving

these problems will facilitate efficient use of Federated Learning making it one of, if not the, most

promising way of detecting DDoS attacks in global Internet scale.

2.2 Thesis Contribution

In contrast with most of the existing works using Federated Learning for attack detection,

which focus on designing a neural network for best possible traffic classification, in the context

of this thesis, we develop a Federated Learning mechanism for DDoS attack detection with the

following two novel characteristics that extend the existing traditional architecture:

• it will enable collaborators to use heterogeneous models, that is models which do not nec-

essarily have the same number of input and hidden layer neurons; of course, models need

to be of the same neural network type and have the same number of layers.

• it will be enriched with a trust factor to appropriately diminish influence during aggregation

of a collaborator whose model diverges from others. The result after aggregation should be

the best possible model based on the characteristics of data of the majority of collaborators.

The ultimate goal is a process beneficial for every collaborator in comparison to working alone.

2.3 Thesis Outline

Chapter 3: Theoretical Background, provides background knowledge to set the stage for the

subsequent chapters. We provide an overview on the Internet, DDoS attacks and Federated

Learning.

Chapter 4: Related Work, analyzes previous work on detecting attacks with Federated Learning

as well as using Federated Learning with heterogeneous clients or trust.

Chapter 5: Methodology, presents the developed algorithm and the methodologies used.

Chapter 6: Experiments and Implementation, describes used datasets, contains the experi-

ments carried out with technical details of the implementation and analyzes the results which

came of.

Chapter 7: Conclusions, formulates our conclusions, summarizes our findings and provides

an outlook into future work.
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Theoretical Background

3.1 Internet and Autonomous Systems Fundamentals

Nowadays, everyone can sense, more or less, what the Internet is. Formally, the Internet is the

global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP)

[16] to communicate between networks and devices. It is a network of networks that consists of

private, public, academic, business, and government networks of local to global scope, linked by

a broad array of electronic, wireless, and optical networking technologies [17].

Going a little deeper, the Internet is divided in areas called Autonomous Systems. An Au-

tonomous System (AS) is a collection of connected Internet Protocol routing prefixes -more simply,

a collection of IPs- under the control of one or more network operators on behalf of a single ad-

ministrative entity or domain, that presents a common and clearly defined routing policy to the

Internet [7]. Each AS is assigned an Autonomous System number. So, an Autonomous System

can be seen as an independent area of the Internet that receives and sends its characteristic

network traffic. In fact, often, an organization all by itself constitutes an Autonomous System, as

is the case of our institute, National Technical University of Athens, it being AS3323.

Figure 3.1. Attacks on Different ASs of the Internet. Source: [2]

As mentioned earlier, an Autonomous System may, at some point, be the target of a network

attack. When that happens, benign receiving network traffic of the particular AS is mixed with

malicious traffic of the specific attack. Of the various attacks that exist, in this thesis we are

interested in DDoS attacks.
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3.2 DDoS Attacks

A Denial of Service (DoS) attack is a type of cyber attack in which a malicious actor aims to

render a computer or other device unavailable to its intended users by interrupting the device’s

normal functioning. DoS attacks typically function by overwhelming or flooding a targeted ma-

chine with requests until normal traffic is unable to be processed, resulting in denial-of-service to

addition users. A DoS attack is characterized by using a single computer to launch the attack [8].

A Distributed Denial of Service (DDoS) attack is a type of DoS attack that comes from many

distributed sources. These attacks achieve effectiveness by utilizing multiple compromised com-

puter systems as sources of attack traffic. Exploited machines can include computers, routers,

mobile phones and other networked resources such as IoT devices [18], which have been infected

with malware, allowing them to be controlled remotely by an attacker. These individual devices

are referred to as bots (or zombies), and a group of bots is called a botnet. Once a botnet has

been established, the attacker is able to direct an attack by sending remote instructions to each

bot. When a victim’s server or network is targeted by the botnet, each bot sends requests to the

target’s IP address, potentially causing the server or network to become overwhelmed, resulting in

a denial-of-service to normal traffic. Because each bot is a legitimate internet device, separating

the attack traffic from normal traffic can be difficult [19]. It is in fact very common for attackers

to hide the real IP addresses of bots and use random instead (address spoofing), so that it is

impossible to locate attack sources.

These attacks often exploit operating system vulnerabilities and also some protocol features,

as in the case of SYN flood attacks in three-way handshake of the TCP protocol [20]. Some

other times, attacking devices pretend to be the victim of the attack and make requests to other

legitimate services, which in turn overwhelm the victim with their responses, as in the case of

DNS amplification attacks [21]. In [22] there is an extensive analysis and categorization of DDoS

attacks based on a variety of features.

According to statistics [9] [10] [11] the emergence of DDoS attacks increases both in frequency

and in volume and complexity. The need to design mechanisms for early detection and mitigation

of them in global scale becomes urgent. Federated Learning provides new prospects for designing

such systems.

3.3 Federated Learning

Algorithms based on Deep Learning methods need a vast amount of data to achieve desired

performance. Usually, required datasets are of large scale and distributed in many sources,

a fact that makes access to them from a central server inefficient and costly. So, in the age

of Big Data [23], there is the challenge of implementing a distributed Machine Learning system.

Furthermore, public awareness of the privacy of their personal data, has led legislators to introduce

new regulations, such as the GDPR [24], on privacy protection. Recently (2017), Google scientists

have proposed a new form of training that seems to respond to this problem, called Federated

Learning [12]. In their study [25] they apply Federated Learning techniques for optimization of

Google Gboard experience, related to word completion while typing. Each device locally trains

a Machine Learning model and sends its updates to a central server, which is responsible for

aggregating all local updates, creating an enhanced global model and sending it back to each

device.

Federated Learning is a new Machine Learning architecture, where many clients -or collaborators-

(e.g. mobile devices or entire organizations in our case) collaborate to train a model, often orches-

trated by a central server, keeping training data decentralized and protected. The goal is to ensure
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privacy of the data, as well as to minimize the communication cost of transfer of a large amount

of data as in traditional Machine Learning methods. This particular term was first used in 2016

by McMahan et al. [13]. Kairouz et al. [26], gave the following definition for Federated Learning:

"Federated Learning is a machine learning setting where multiple entities (clients) collaborate in

solving a machine learning problem, under the coordination of a central server or service provider.

Each client’s raw data is stored locally and not exchanged or transferred; instead, focused updates

intended for immediate aggregation are used to achieve the learning objective."

3.3.1 Federated Learning Cycle

Typically, the steps of training in a simple Federated Learning setting are the following:

• Step 1: Central server initializes a general global model.

• Step 2: Central server sends global model to every participating device.

• Step 3: Each device trains locally the received model using only its own data.

• Step 4: After training, each device sends the local model that came up back to the central

server.

• Step 5: When central server has gathered all local models, their aggregation process begins

(traditionally using Federated Averaging algorithm) and a new, updated model comes up.

• Step 6: Central server sends anew the aggregated model to every device in order to be trained

locally.

After the first round of Federated Learning training, steps 2 to 6 are repeated, until a pre-

determined number of rounds (epochs) is completed, or a performance criterion is reached (e.g.

accuracy).

As mentioned, above steps describe the cycle of a simplified Federated Learning scenario. In

a real application, depending on its nature, it is possible for the number of clients to become big

enough (millions of devices), to the point that communication and scalability issues arise. For this

reason, as described in the study of Kairouz et al. [26], at step 2, only a subset of participating

clients is selected for training per round. This selection can be made either randomly or based

on some criteria, such as computational capability and speed of each device, or its reputation

in relation to the contribution of its local model to the global one, in each round. Also, in a real

network, it is possible that significant delays in local training come up, due to errors or a temporary

increased load on a client. These clients are classified by the central server as strugglers and after

the expiration of a time frame, aggregation is executed, without their local models.

3.3.2 Federated Learning Without Central Server

Recently, the possibility of setting up a Federated Learning environment, without a central

entity of any kind, has been explored and referred to as decentralized (or serverless) Federated

Learning. In the decentralized Federated Learning setting, the nodes are able to coordinate them-

selves to obtain the global model. This setup prevents single point failures as the model updates

are exchanged only between interconnected nodes without the orchestration of the central server.

Nevertheless, the specific network topology may affect the performances of the learning process

[27]. In [28] and [29] two state-of-the-art methods for decentralized Federated Learning are de-

scribed.
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Figure 3.2. Federated Learning Setting. Source: [1]

3.3.3 Federated Averaging

One of the most important points in the process of Federated Learning is the way in which local

models are aggregated into a new global model. The algorithm traditionally used for this purpose is

named Federated Averaging. Basically, this is about a very simple process, in which global model is

obtained by calculating the average of the respective weights of all local models. Hence the name

given to the algorithm. In general, selection of the appropriate algorithm for calculation of the

global model, plays a decisive role in every aspect of Federated Learning, affecting, either positively

or negatively, the rate of convergence, communication costs and, ultimately, the accuracy of the

final model. McMahan et al. [13], provide the following description of the algorithm in their work

as shown in Algorithm 2.1.

From the algorithm described, we notice that the training procedure starts with the central

server initializing the global model w0, where wt is the array of weights, i.e. the parameters that

represent the model, in training round t. Then, the global model is sent to clients. Subsequently,

a subset St of clients, who will participate in each training round, is selected. This selection

concerns cases where the number of clients is large. When their number is manageable, this step

can be skipped and all clients can participate in each round. Once clients have completed training

of their local models, they send them back to the central server to be aggregated. The new global

model wt+1 is calculated as the weighted average of the parameters of the respective local models.

As weight factor for each local model, the ratio of samples nk of client k to the total number of

samples n of all clients is used.

3.3.4 Federated Learning vs Distributed Machine Learning

In this thesis we are interested in the advantages and disadvantages of Federated Learning in

comparison to the more traditional Distributed Machine Learning techniques. So, compared to

the conventional Distributed Machine Learning, when training a model in a Federated Learning

environment, sending data to a central server is avoided, as a result of which the network is not

burdened with a large data exchange process. Thus, training is not limited and is not delayed

due to possible bottlenecks of the network. The only data exchanged in each training round are
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Algorithm 3.1: FederatedAveraging. The K clients are indexed by k, B is the local minibatch size,

E is the number of local epochs and η is the learning rate.

procedure ServerExecutes:

initialize w0

for each round t = 1,2,... do

m ← max(C × K, 1)
St ← (random set of m clients)
for each client k ∈ St in parallel do

w
k

t+1
← ClientUpdate(k, wt)

end for

wt+1 ←
∑

K

k=1

nk

n
w

k

t+1

end for

end procedure

procedure ClientUpdate(k, w): // run on client k

B ← (split Pk into batches of B)
for each local epoch i from 1 to E do

for batch b ∈ B do

w ← w − η∇ℓ(w; b)
end for

end for

return w to server

end procedure

the parameters of local models, in order to be aggregated on the central server. The philosophy

of Federated Learning encourages more and more organizations to participate in collaborative

procedures to enhance their models, without worrying about potential exposure of their data, as

it remains stored on local devices throughout the training. Therefore, due to greater willingness

of organizations concerned to contribute, training is conducted on a wider variety of data. In fact,

because of the cooperative nature of Federated Learning, more efficient use of network computing

resources is observed, since many devices contribute to the training with their computing power

at the same time.

On the other hand, there are some limiting factors that affect the performance of Federated

Learning. Generally, in Distributed Machine Learning, central server, in order to speed up the

process, divides the dataset into Independent and Identically Distributed (IID) parts of the same

length each, so that they are trained in a cluster. Contrariwise, in Federated Learning data

is already separated on local devices. Therefore, most of the times, the learning environment

is characterized by Non-IID data, which can also vary significantly in volume. For example,

suppose there are 10 organizations and each one of them has encountered a specific DDoS attack.

Because of the inherently different characteristics of each attack traffic, when these organizations

collaborate under a Federated Learning setting, the potentially divergent weights of local models

may make the convergence difficult. According to a series of studies [30], [31] that have focused

on this specific property of Federated Learning, it has been concluded that, as the heterogeneity

of data between devices participating in training increases, it is more likely that the accuracy of

the final global model deteriorates. This is to be expected, because the arising local models have

adjusted their weights to separate different types of data on each device, resulting in significantly

different parameters and, therefore, Federated Averaging algorithm converges slowly. However,

except in extreme cases of heterogeneity, in most applications, the reduction of accuracy does

not make the use of Federated Learning prohibitive. In fact, the benefits of greater involvement

in training process, and therefore the greater variety and volume of data, are likely to outweigh
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this limitation. Another key feature of a real Federated Learning application -and one that we are

interested about in this thesis- is the heterogeneity observed in the hardware. As it is reasonable,

in a network, each device, or in our case each collaborator’s available resources, have different

computing capabilities and workload each time, but they still have to agree on a common model

architecture.

3.3.5 Other Aggregation Algorithms

In an effort to minimize the negative impact of the issues analyzed above, Li et al. [32],

developed an improved model aggregation algorithm compared to traditional Federated Averaging,

FedProx. FedProx is a modification of Federated Averaging, in two aspects. Firstly, a parameter

γ ∈ [0, 1] is introduced, which expresses tolerance for less accurate local models. This parameter

is defined differently for each client in each training round and its purpose is to reduce the loss

of information due to strugglers. An increase in the value of the parameter implies an increased

tolerance, so a less accurate model, considering the client for which it was set. Essentially, the goal

is to combat the heterogeneity in hardware that characterizes Federated Learning architecture.

Therefore, instead of eliminating the models of strugglers from aggregation, a higher tolerance γ

is chosen for them, in order to calculate a local model, albeit of a lower accuracy than they would

normally calculate, within the time limit set. As a result, the information we lack during the

aggregation is reduced. The second point at which FedProx differs, is the introduction of a penalty

constant µ ∈ [0, 1], so that during training local models, updates cause minor changes in the

weights, to prevent them from getting too far from the global model. This way, the global model

converges slowly, but when the data is highly heterogeneous, it achieves greater final accuracy,

as insertion of noise is avoided.

In turn, Wang et al. [33], proposed a new algorithm which they claim achieves higher accuracy

after aggregation from both Federated Averaging and FedProx. This algorithm is called FedMa

(Federated Matching) and its implementation differs significantly from that of Federated Averag-

ing, showing increased computational complexity. However, as can be seen from experiments

performed in this study, the results are indeed impressive, since when comparing the three algo-

rithms on the same applications, there is an improvement of 2-4% in accuracy compared to the

already improved FedProx. In short, the central idea of FedMa, is to include during aggregation

of local models, the weights that contribute the most to the performance of the model. With this

approach, there is a significant reduction in the negative factor of data heterogeneity. Neverthe-

less, although FedMa is a promising technique, we ought to take into consideration its increasing

computational complexity, as well as its generally difficult implementation, compared to the two

previous algorithms analyzed.

Except of these popular alternatives, many other aggregating methods have come up recently,

with even more expected to appear in following years. Each one is targeted in a very specific point

of improvement. FedSGD [13], FedDist [34], FedPer [35], to name but a few.

3.3.6 Security and Privacy Issues

A key issue that Federated Learning has to address, is the protection of data privacy. As

already explained, this architecture is a big step towards this direction, as client data remains

stored on local devices throughout training, without the risk of exposure and interception. Recent

research, however, has shown that Federated Learning alone cannot guarantee absolute data

privacy. Wang et al. [36], in order to highlight its possible weaknesses, focused on the fact that

clients believe that the central server responsible for aggregating local models is reliable. So, in

their research they considered a scenario where the aggregating server does properly perform the
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procedure for which it is responsible, but at the same time, is curious to obtain information about

the nature of client’s data (honest-but-curious server). They developed a system, mGAN-AI, which

runs on the aggregating server and by studying the local model of a client and its contribution to

the performance of the global model, draws conclusions about the structure and nature of client’s

data. In fact, in some cases there is even the possibility of approximate reconstruction of some

samples of the dataset (reverse engineering). This attack is not perceived, as it does not cause any

time delay or reduction in performance.

It is therefore understood that with no unshakable evidence of reliability of the central server,

there is the risk, even with low probability, of exposing a client’s data. Also, when sending local

models, the possibility of interference of a malicious entity, who monitors the traffic and steals the

messages intended for the aggregating server, should be taken into account (gradient leakage).

To eliminate this possibility, a number of techniques have been proposed, such as Differential

Privacy, that can be combined with Federated Learning, so that an honest-but-curious server is

completely ignorant of clients’ data. Differential Privacy is a special form of encryption and is

applied, in our case, to achieve the goal known in the literature as secure aggregation. The idea

is based on introducing noise to the data, using special functions (e.g. Laplace noise), so that

knowing the output of a calculation, it is not possible to determine the input, which in this case is

the parameters of the local models [37]. Geyer et al. [38], studied the contribution of Differential

Privacy to Federated Learning and concluded that with a small trade-off against accuracy (1%),

potential threat of a malicious aggregating server is minimized.

Another threat that Federated Learning has to deal is the so-called data poisoning and model

poisoning attacks. These attacks are about intentionally changing the data (e.g. changing the

label of certain samples to belong to the wrong class) and modifying the parameters of a local

model to reduce its accuracy. The modifications are made very carefully and to a limited extent,

so that the anomalies that occur in relation to the genuine local models are not perceived. Such

actions are usually performed by malicious clients who participate in the collaborative scheme,

with the sole purpose of degrading the quality of training and the accuracy of the final global model.

Bhagoji et al. [39], studied various strategies for orchestrating such attacks and concluded that

even a malicious presence in a much larger set of clients, could result in a respectable reduction

of the accuracy of final model. In addition, they concluded that model poisoning attacks are more

effective and more difficult to detect. To combat them, systems have been proposed, such as Auror

[40], which detects altered local models and excludes them from aggregating. In fact, its creators

managed in their experiments, using Auror, to limit accuracy reduction to 3%, even when 30% of

clients are malicious. On the other hand, Chen et al. [41], in order to eliminate the presence of

malicious clients, developed a protocol for executing Federated Learning in a Trusted Execution

Environment. Each client is checked during aggregation for whether it implements the proposed

security protocol, through a special signature. For training of local model, each client is obliged by

the protocol to allocate an isolated memory area on his device, where the necessary calculations

are performed, without intervention of other programs. If this condition is met, the message to be

sent is sealed with the signature indicating the integrity and authenticity of the calculations.

The issue of poisoning attacks is indeed very close to one of the problems which interest us

in this thesis and that is to diminish the influence of clients who send divergent local models for

aggregation. We are more interested in the case that something like this happens unintentionally,

probably due to faulty or simply different data, since we do not expect an entire Autonomous

System or a well-known organization to be malicious. Gholami et al. [6], introduced a generaliza-

tion of Federated Averaging, named Trusted Federated Averaging, to tackle this problem. We will

extensively refer to their work later on.
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Chapter 4

Related Work

Almost all works using Federated Learning (FL) for DDoS attack detection focus on finding a

-usually complex- neural network that will give the best possible traffic classification in terms of

a metric like accuracy. Our approach is different. We use simple MLP models and our goal is to

extend the conventional Federated Learning architecture in two ways. On the one hand, we want

to facilitate federated training of heterogeneous clients, i.e. clients that do not necessarily share

the exact same model architecture, although they have to use the same type of neural network

and number of layers. On the other hand, we want to add a trust factor in the aggregating process

to diminish the influence of clients whose model weights diverge, i.e. have different values than

the majority of clients. To the best of our knowledge, this is the first work that combines together

at least two of the following topics: attack detection using FL, heterogeneous FL, trust-aware FL

aggregation algorithm.

4.1 Federated Learning and DDoS Attack Detection

We will very briefly mention some of the works related to Federated Learning and DDoS attack

detection. Dimolianis [3], in his doctoral dissertation, among else, leverages the Federated Learn-

ing paradigm for collaborative and privacy-preserving DDoS detection. To mitigate attacks within

collaborating Autonomous Systems (ASs), he proposes efficient, scalable and programmable fire-

walls that can be instantiated on-demand upon request of the AS hosting the victim. His schema

consists of a detection and mitigation application mounted in all collaborating domains, as shown

in 4.1. The former detects malicious packet signatures, i.e. combinations of packet field values,

using Multilayer Perceptrons (MLPs); these are cooperatively trained without exposing private

data. The latter filters malicious packets using XDP-enabled firewalls deployed in the victim

AS; mitigation can also be activated on-demand within collaborating transit ASs. His approach

was evaluated both in terms of packet classification accuracy and packet processing performance

using both real and synthetic network traces.

Zhao et al. [14], combined FL with transfer learning. The idea is that some entity may

have specialized, for instance, in mitigation of DDoS attacks and some other in malware. So,

after the stage of FL, one can use transfer learning to improve performance in detecting network

anomalies in general. In [15], Tian et al. proposed a lightweight residual network (ResNet),

which except for detection, is also suitable for DDoS classification. As they claim, their network

is as efficient as an LSTM (Long Short-Term Memory), but lighter and faster. It is interesting

to compare their 9-layer light network with our only 2-layer MLPs that we have used. Li et al.

[42], created the federated learning empowered mitigation architecture (FLEAM) to advocate joint

defense, incurring a higher hacking expense and making attacker to give up. FLEAM combines FL

and fog computing to reduce mitigation time and improve detection accuracy, enabling defenders

to jointly combat botnets. Each edge node trains locally its data using GRU models and then
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Figure 4.1. Collaborative DDoS Detection & Mitigation Architecture. Source: [3]

uploads its parameters to cloud. In [4], writers adopted an innovating approach combining FL

with multi-task learning. This way, with only one training procedure, they manage to do network

anomaly detection, VPN/Tor traffic recognition and traffic classification, having total profit in

terms of training time cost, as shown in 4.2.

Figure 4.2. Training time cost of MT-DNN-FL (proposed network) and DNN (ordinary networks).

Source: [4]

In [43], writers propose an architecture with programmable data plane switches. They show

that Binarized Neural Networks (BNNs) can be implemented as switch functions at the network

edge, classifying incoming packets at the line speed of the switches. To train BNNs in a scalable

manner, they adopt a Federated Learning approach that keeps the communication overheads

of training small even for scenarios involving many edge network domains. They next develop
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a prototype using the P4 language and perform evaluations, with results demonstrating that a

multi-fold improvement in latency and communication overheads can be achieved compared to

state-of-the-art learning architectures. Finally, in [44] there is a comprehensive presentation of

various works related to Federated Learning and Intrusion Detection Systems.

4.2 Heterogeneous Federated Learning

Federated Learning for heterogeneous clients is a very recent idea. In fact, at the beginning of

our research, the only relevant known work is the one on which we have based our approach and

we are going to analyze. Diao et al. [5], proposed a new Federated Learning framework named Het-

eroFL to address heterogeneous clients equipped with different computation and communication

capabilities. Their solution can enable the training of heterogeneous local models with varying

computation complexities and still produce a single global inference model. As they claim, for

the first time, their computation and communication efficient method challenges the underlying

assumption of existing work that local models have to share the exact same architecture as the

global model. The main idea is that clients are divided in groups of different computational com-

plexity levels, depending on their capabilities. Models of group with the highest computational

complexity level contain all weights. Then, models of each group contain a subset of the weights

of the group with immediately higher complexity, as seen in 4.3.

Figure 4.3. Global model parameters Wg are distributed to m = 6 local clients with p = 3 computa-

tional complexity levels. Source: [5]

What happens during aggregation is that for each weight parameter, the final value is calcu-

lated as the average of only the models of clients which contain this weight. This way, each client

only contributes to weights its model contain according to its computational capability. In order

to test their methods, writers ran various experiments and concluded that "weak learners" (i.e.

clients with lower computational capability) can benefit when collaborating with "strong learners"

(i.e. clients with higher computational capability) without reducing the latter’s performance.

4.3 Federated Learning and Trust

Apart from what we mentioned earlier in Security and Privacy Issues, there are currently few

works relevant to Trust in Federated Learning. Cao et al. [45], focused on the fact that there is

no root trust between central server and clients. So, they proposed that the central server collects
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a clean bootstrap dataset, in which trains its model, and when it receives updates from clients,

checks if any of them diverges from its model. Based on how much each local model differs from

the server’s, it assigns appropriate trust scores, which show how much will each client be taken

into account during aggregation. In [46], reinforcement learning techniques are used, so that the

central server trains a data value estimator of the clients’ gradients to determine the contribution

of each client. In [47], writers propose the building of the Accuracy Approximation Model, which

estimates a simulated test accuracy using inputs of sampled data size and extracts the clients’

data quality and data size to measure client contribution.

We adopt a different approach based on the work of Gholami et al. [6]. As we have stated

before, in the aforementioned paper, writers formulated a generalization of Federated Averaging,

which they called Trusted Federated Averaging (Trusted FedAvg). During aggregation, every weight

of each model is multiplied by a factor, which is the trust score assigned to the corresponding

client. This trust score is updated on each FL round and its value is a function of both its value

in previous rounds and of how much the model differs compared to the models of all other clients.

For comparison between models, the Euclidean distance of their weights is used. Writers also

provide a variation of their algorithm for decentralized (i.e. without a central entity) Federated

Learning. They claim that Trusted FedAvg makes FL effective against attacks as long as less than

50% of clients are malicious, as shown in 4.4. We will delve into the algorithm in next chapter,

when we analyze our methodologies.

Figure 4.4. Effect of trust on resilience against attacks. Source: [6]
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Methodology

5.1 Heterogeneous Federated Learning

We will present the way in which models that do not share the exact same architecture, are

aggregated in our work. To do so, we will start by demonstrating a simple example below. Suppose

the following two Multilayer Perceptron (MLP) models shown in 5.1. Models need to be of the same

neural network, but may have different input features and number of neurons in hidden layers.

In this example, both models are 2-layer MLPs, share a common input feature (Feature 1), each

one has an input feature that the other has not (Feature 2 and Feature 3 respectively) and have

a different number of neurons in the hidden layer (5 and 4 neurons respectively).

Figure 5.1. MLP models of two clients to be aggregated.

First of all, we explain the notation of the weights shown in 5.1. Each weight is named wxi,j,

where:

• x is either h for a hidden layer weight or o for an output layer weight.

• i is either 1 for model 1 or 2 for model 2.

• j is the number of weight of x layer.

So, for instance, wh1,3 is the 3rd weight of hidden layer of model 1, while wo2,4 is the 4th

weight of output layer of model 2. After that, given a weight w, we say that a model contains a

corresponding weight w’ to w, if w’ refers to the same feature, same layer and same number of

weight in layer as w. That said, for instance, given wh1,3, model 2 contains the corresponding

weight wh2,3, since both refer to Feature 1 and are the 3rd weight of the hidden layer of each

model. On the contrary, given wh1,7, model 2 does not contain a corresponding weight, since it
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has no Feature 2 as input whatsoever. Likewise, given wo1,5, model 2 again does not contain a

corresponding weight, since it has only 4 output layer weights.

The aggregated model of models 1 and 2 is shown in 5.2. As shown, the set of input features

of the aggregated model is the union of the sets of individual models. The number of neurons in

each layer is at least as large as the largest number among individual models. Each weight w of

the aggregated model is calculated as follows:

w =

 average of relevant weights of models which contain w
0 if no model contains w

(5.1)

Note that, of course, the 6th neuron in hidden layer with all weights set to zero can be omitted

and is only useful if another model with 6 hidden layer neurons is expected to take part in the

aggregation.

Figure 5.2. Aggregated model of models 1 and 2.

The key idea of this process is, on the one hand, that collaborators contribute only to weights

which their model contain and, on the other hand, that global model learns from each collaborator

exactly what this collaborator is able to teach it.

5.2 Trust-Aware Federated Learning

As we have already mentioned, our goal using trust is to diminish the influence of clients with

models whose weights diverge compared to the majority of clients during aggregation process. To

do so, we need some trust values to appropriately multiply weights of each client, so that divergent

models are assigned smaller such values. In order to calculate trust values, weights of models

are directly compared among clients. We present our Trusted FedAvg algorithm in Algorithm 4.1,

based on the work of Gholami et al. [6], which we have previously mentioned.

As usual, an FL round begins with clients updating their local models traditionally using

gradient descent. Then, the central server has to compute trust values for clients. For this

purpose, a sum is calculated for each client; the sum of squared 2-norms of the differences of

weights with other clients’ models, shown in equation 5.2, where N is the set of clients, exponent

(k) is the round and wi is the array of weights of client i. This way, we get a list of such sums.

For each client, its sum is compared with the median of the list of sums multiplied by a threshold

arbitrarily set with its value depending on how much forgiving we choose to be towards a specific
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divergent client. We have set this threshold to 1.5 in general. If the compared sum of a client is

less than the median multiplied by the threshold, we consider this client as trustful and set I to

1, while if it is greater, we consider that the client diverges from the majority and set I to 0, as

shown in equation 5.3.

sum
(k)
i =

∑
j∈N

∥w
(k)
j
−w

(k)
i ∥

2

2

|N |
(5.2)

I
(k)
i =

 1 if sum
(k)
i ≤ thi ×median({sum

(k)
j
}j∈N )

0 otherwise
(5.3)

Algorithm 5.1: Trusted FedAvg. N is the set of client, Di is the dataset size of client i, w
(k)
i is the

array of weights of client i in round k, t
(k)
i is the trust value of client i in round k.

Initialize w
(0)
i and t

(0)
i for each client i

for each round k = 1,2,... do

Each client i computes w
(k)
i from w

(k−1)
i using gradient descent and sends it to the server

Server updates trust values for each client i: t
(k)
i ← ComputeTrust(i, w

(k)
i , t

(k−1)
i )

Server aggregates local updates: w
(k) ←

∑
i∈N

Di t
(k)
i∑

i∈N Di t
(k)
i

w
(k)
i

rareFactor

Server transmits w
(k)

to all clients

end for

procedure ComputeTrust(i, w
(k)
i , t

(k−1)
i ):

// Server computes I
(k)
i from 5.3:

for each client i ∈ N do

sumi ← 0

for each client j ∈ N do

sumi ← sumi + norm
2(w(k)

j
−w

(k)
i )

end for

end for

if sumi ≤ thi ×median({sumi}) then

I
(k)
i ← 1

else

I
(k)
i ← 0

end if

// Server computes t
(k)
i from 5.6:

r
(k)
i ← ρ1r

(k−1)
i + I

(k)
i

s
(k)
i ← ρ2s

(k−1)
i + 1 − I

(k)
i

t
(k)
i ←

r
(k)
i +1

r
(k)
i +s

(k)
i +2

end procedure

After that, two parameters, r and s are calculated for each client as stated in [6]. These

parameters are a function of I, i.e. whether a client found to be divergent or not, and of their

values in the previous round. Of course, we want values of older rounds to be all the less

important, so we use the forgetting factors ρ1 and ρ2, as shown in equations 5.4 and 5.5. As far

as they are concerned, it must be true that 0 < ρ1 < ρ2 < 1; we have set ρ1 = 0.2 and ρ2 = 0.8

troughout our experiments. Using r and s parameters, the central server directly calculates the

trust value ti of each client i from equation 5.6.

r
(k)
i = ρ1r

(k−1)
i + I

(k)
i (5.4)

s
(k)
i = ρ2s

(k−1)
i + 1 − I

(k)
i (5.5)
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t
(k)
i =

r
(k)
i + 1

r
(k)
i + s

(k)
i + 2

(5.6)

Subsequently, before we are ready for the aggregation, we need to take into account the het-

erogeneity of models. We have already talked about aggregation process of heterogeneous models.

The same thing applies here during the calculation of sum of each client. So, obviously, between

two clients only the norm of relevant weights is taken, that is weights that both clients contain in

their models. However, during this procedure another problem arises. Some clients may contain

weights that too few, or even no other client contains. If there is a harmful value in such a weight,

that is a value that negatively affects performance, the client responsible for this probably will

not get an appropriately small trust value due to lack of other clients with which the harmful

weight would be compared. Another possibility if one of few clients containing a specific feature

has a harmful value, is the increase of sum of these few other clients, tending to make them seem

divergent.

Accepting that there is no perfect solution, especially for the last case, as a partial solution, we

introduce a rareFactor, which is an array with the same dimensions as the global model’s weight

array and its value at each position indicates how many clients contain the respective weight. So,

a weight that too few clients contain, is assigned a greater rareFactor value, which diminishes the

influence of the weight during aggregation. We have set the rareFactor for each weight w of the

gloabl model as shown in the following equation. We note here that this introduction of rareFactor

may seem arbitrary, but the fact that a feature is not chosen by most of the clients after feature

selection, probably indicates that it is not important in classifying traffic correctly anyway.

rareFactor(w) =


4 if only one client contains w

3 if two clients contain w

2 if three clients contain w

1 if at least four clients contain w

(5.7)

Finally, the aggregation is as shown in equation 5.8, where Di is the private dataset size of

client i. Note, of course, that each client only contributes to weights it contains. So, each term of

the following sum is added to the appropriate part of array w
(k)

of global model’s weights .

w
(k) =

∑
i∈N

Di t
(k)
i∑

i∈N Di t
(k)
i

w
(k)
i

rareFactor
(5.8)

5.2.1 Limitations

We have to mention, although it is easy to conclude, that our trust-aware method does not

constitute panacea to cover every possible harmful value of a weight a client may have. The

method is based on using simple factors to appropriately multiply weights. The range of the

values of these factors is fixed and limited. There is always the possibility of a harmful weight of

big enough value that factors cannot handle. This is also to say that our method cannot mitigate

attacks by a potentially malicious client; though for such an attack to be effective against our

work, it might be difficult for the perpetrator to go unnoticed either.
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Experiments and Implementation

6.1 Used Data

Οur task in general is to train models to correctly classify network traffic as benign and attack.

We do so using supervised learning, thus fixed datasets are needed. We used benign traffic from

the WIDE backbone [48], an operational testbed network for WIDE Project [49], which carries out

research activities through the use of actual network. More information about the data repository

exists in [50] and [51]. More specifically, we have used DNS responses from a 10G transit link

between WIDE and DIX-IE (an experimental Internet Exchange), henceforth WIDE-G [51], and an

1G transit link between WIDE and an upstream provider, henceforth WIDE-F [51].

For attack traffic, we have used 7 different DNS Booter attacks from [52]. Booters [53] are

DDoS services on the Internet that anyone can hire and are still used today by malicious users.

A thorough analysis on WIDE-G, WIDE-F and the seven Booter datasets also exists in the work of

Dimolianis et al. [54].

As is clear, our experiments concern the DNS protocol (Domain Name System [55]), respon-

sible for helping Internet users and network devices discover websites using human-readable

hostnames, instead of numeric IP addresses. The DNS protocol is one of the most popular ones

used by attackers because they can easily exploit vulnerabilities in its servers to turn initially small

queries into much larger payloads, which are used to bring down the victim’s servers. DNS ampli-

fication is a type of reflection attack which manipulates publicly-accessible domain name systems,

making them flood a target with large quantities of UDP [56] packets. Reflection is achieved by

eliciting a response from a DNS resolvers to a spoofed IP address. Using various amplification

techniques, perpetrators can “inflate” the size of these UDP packets, making the attack so potent

as to bring down even the most robust Internet infrastructure. During a DNS amplification at-

tack, the perpetrator sends out a DNS query with a forged IP address (the victim’s) to an open DNS

resolver, prompting it to reply back to that address with a DNS response. With numerous fake

queries being sent out, and with several DNS resolvers replying back simultaneously, the victim’s

network can easily be overwhelmed by the sheer number of DNS responses.

6.2 Methodology of Experiments

So, our datasets contain DNS packets, or more precisely, some features of DNS packets’

headers. One of these features is the destination AS (Autonomous System) of a packet. To simulate

an FL setting, we need distinct clients. We consider every distinct destination AS number that

appears in our datasets as a potential client for our experiments. We say "potential", only because

our datasets contain hundreds of different AS numbers, while we carried out experiments for 7,

14 and 21 clients. This choice we made is actually realistic, because in a real case scenario what a
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client -which may well be an AS- would want, would be to classify its receiving traffic -i.e. packets

destined to its AS- as benign or malicious.

As mentioned before, our attack traffic dataset contains 7 different attacks. Every time we

suppose that each client has been the target of one of these attacks, so that all attacks are

distributed to clients. This way, each client has a private dataset consisting of its receiving benign

traffic and the attack that it supposedly encountered, which could actually have encountered in a

real case scenario.

Now it is a good point to mention that the 7 attacks have different characteristics among each

other. For example, 5 of them use type A DNS queries, while the other 2 use type ANY (or type

*) [57]. One of these attacks, the 5th one, mostly resembles benign traffic rather than attack one

and was found to be ineffective due to not using enough bandwidth. As a result, the client which

supposedly encountered this attack, will probably not learn to classify traffic as well as others and,

consequently, its model’s weights might slightly diverge from other models in a negative way. This

is where the trust factor comes into play to diminish the influence of that specific client during

aggregation.

In order to have heterogeneous models for our clients, we have each client run a feature

selection procedure, using random forest, on its private dataset. After that, clients end up with

inherently different feature sets, both in terms of number of features and of what these features

are. Of course, feature selection procedure is not something we abusively ran to facilitate our

simulation, but rather a very common and desired procedure in Machine Learning that would

accelerate local training of clients and would reduce computational resources, especially in our

case, where we deal with vast amount of network traffic data. As is obvious, since clients have

different data from each other, heterogeneous models is a problem that would almost certainly

emerge in a real case scenario.

Then, each client builds its own local MLP (MultiLayer Perceptron) model according to its

private datasets. All MLP models are of 2 layers, with n inputs (where n in the number of chosen

features for each client), 2n + 1 neurons in the hidden layer (according to the study of Siaterlis et

al. [58]) followed be ReLu activation function and 1 output followed by Sigmoid activation function.

An example of such a model with 2 features as inputs is shown in 6.1.

Figure 6.1. MLP model with 2 input features.

Our goal, in general, is to compare the performance of clients when they are on their own

versus when participating in a heterogeneous Federated Learning setting. More specifically, we

conducted the following experiments for the following goals:
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• we distributed the 7 attacks to 7, 14 and 21 clients and, firstly, ran classic Machine Learning

for each client and then ran our trusted heterogeneous FL for all clients; the goal is to show

how collaborative FL process benefits clients compared to each working alone. We ran this

experiment 10 times and took the average accuracy of each client and FL model. We also

repeated the same experiment 20 times for 7 clients with random distribution of Booter

attacks each time; the goal here is to compare the average of each client with the average of

FL in these 20 runs.

• we ran heterogeneous Federated Learning again, this time without the trust factor, to demon-

strate its positive effect.

• we ran Machine Learning for a client both with and without feature selection process to

show how it benefits local training procedure, and thus total FL procedure, in terms of time

and computational resources, without compromising performance.

6.3 Technical Details of Implementation

The experimental setup we developed for Federated Learning consists of 21 virtual clients (not

all of them used in every experiment) and a central aggregating server, all running on the same

machine. The central server is also responsible for testing global model after every epoch. The

criterion used to choose the best model among epochs is the sum of accuracy in both attack

and benign traffic (sum of true positive and true negative rates), but with greater weight given

to accuracy in benign traffic (about 55% compared to 45% for attack traffic). This is because it

is more harmful to classify a benign packet as malicious, since it will lead to not answering to

a legitimate user, rather than classifying a malicious packet as benign, which will probably not

be enough to bring down the service. Calculating the aforementioned accuracy for benign traffic

is straightforward using a corresponding general test set. However, for attack traffic we have a

test set for each Booter attack and thus we need to take the average of accuracies in these attack

traffic test sets, excluding the 5th attack, which mostly resembles benign traffic and, as expected,

confuses results.

The aggregation algorithm is previously described in chapter Methodology. After the prepro-

cessing of original datasets, data is split and sent to each client. It is noted here that in a real FL

application the data is already stored on local devices. For FL training the following parameters

were used:

• batch size set to 128.

• test batch size set to 1000.

• learning rate set to 0.01 in the first epoch and decreased to 0.001 later on, but properly

adjusted for some clients if needed.

• number of epochs set to 7 or 10 depending on the experiment.

Code is written in Python (version 3.6). PySyft framework (version 0.2.9) is used to simulate

virtual clients and to automate sending of models. Code can be found in thesis’ github repository

https://github.com/vpet98/federatedDDoS.

6.4 Preprocessing

For preprocessing of the original datasets we did the following steps briefly mentioned:
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• Deleted columns that do not exist in all datasets.

• Dropped samples with missing values.

• Added target column; 0 for benign and 1 for attack traffic.

• Transformed categorical features to numerical.

• Made a general benign traffic test set.

• Split benign traffic data to 21 clients using destination AS.

• Distributed attack traffic to clients, so that each Booter attack is given to 3 clients.

• Made a test set for each Booter attack.

• Performed feature selection technique using random forest for each client separately. The

16 features that existed before this step were reduced to between 7 and 11 depending on the

client.

• Building of appropriate test sets.

• Normalization of datasets.

More thorough analysis on proprocessing can be found in the corresponding notebooks in

thesis’ github repository https://github.com/vpet98/federatedDDoS.

6.5 Results

We present in diagrams and analyze the results of all the experiments we conducted.

6.5.1 Clients On Their Own vs Federated Learning

In this experiment we distributed the 7 attacks to 7, 14 and 21 clients and, firstly, ran classic

Machine Learning for each client and then ran our trusted heterogeneous FL for all clients; the

goal is to show how collaborative FL process benefits clients compared to each working alone. We

ran this experiment 10 times and took the average accuracy of each client and FL model.

For each case of number of clients that participate, i.e. 7, 14 or 21 clients, we have two

diagrams. In the first one, we compare the performance of clients each on its own against the

performance of the FL model in benign traffic (true negative rate). In the second one, we do the

same for attack traffic (true positive rate) taking the average performance in all distinct Booter

attacks, excluding the 5th attack, which mostly resembles benign traffic, as we have mentioned

earlier. The corresponding diagrams are shown and analyzed below.

6.5.1.1 7 Clients

In 6.2 and 6.3 we see the diagrams when 7 clients participate in the procedure. In benign

traffic, FL model outperforms all clients, closely followed by some. In attack traffic, FL model

performs about as well as the best of clients. Of course, what matters is looking at both diagrams

together to notice that there is no client that performs as well as the FL model in both benign and

attack traffic. Using the same criterion as choosing the best model among epochs, normalized as

shown in equation 6.1, where TNR stands for true negative rate and TPR for true positive rate,

among all clients, client 2 has the minimum gain of 0.7% adopting the FL model, while client 5

has the maximum gain of 15%.
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criterion =
1.2 × TNR + TPR

2.2
(6.1)

Figure 6.2. Performance of 7 clients and FL model in benign traffic.

Figure 6.3. Average performance of 7 clients and FL model in attack traffic, excluding 5th attack.

It could be argued that the best performing client, client 2, slightly differs from the FL model,

meaning it has no actual benefit from the whole procedure. This is expected to happen for some

clients in such procedure and it means that their private data are more representative of the

union of data of all clients compared to others. More specifically, in our case it could mean that

the attack which client 2 supposedly encountered, or also its receiving benign traffic, has more

common characteristics with all other attacks that other clients encountered, or also with the

benign traffic of our initial datasets. However, no client can know in advance how good are its
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data compared to other clients and the point is that in the worst case scenario for a client, the

process will just not be of much benefit. Even in this case, the benefit is undeniable for most of

the clients and it will probably be for all of them if we take into account that network traffic data

is constantly updated and the Federated Learning process is to be repeated every so often among

collaborating clients.

6.5.1.2 14 Clients

In 6.4 and 6.5 we see the diagrams when 14 clients participate in the procedure. Again, there

are some clients close, or maybe even slightly better than the FL model, but there is still clear

motivation for some entity to be a member of the whole procedure. Using equation 6.1 as before,

among all clients, clients 2 and 9 have the minimum gain (actually loss) of -0.23% adopting the

FL model, while client 12 has the maximum gain of 21.4%.

Figure 6.4. Performance of 14 clients and FL model in benign traffic.

Figure 6.5. Average performance of 14 clients and FL model in attack traffic, excluding 5th attack.
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6.5.1.3 21 Clients

In 6.6 and 6.7 we see the diagrams when 21 clients participate in the procedure. We make

the same observations as before. Using equation 6.1 as before, among all clients, client 9 has the

minimum gain (actually loss) of -0.82% adopting the FL model, while client 12 has the maximum

gain of 14.4%.

Furthermore, we can comment the scalability of our work. Going from 7 clients to 14 and then

to 21, we notice similar patterns in the diagrams, something that promises efficiency in a real case

scenario with probably more than a hundred collaborators.

Figure 6.6. Performance of 21 clients and FL model in benign traffic.

Figure 6.7. Average performance of 21 clients and FL model in attack traffic, excluding 5th attack.

6.5.1.4 Random Distribution of Attacks

As we mentioned earlier, we also ran trusted heterogeneous FL 20 times for 7 clients with

random distribution of Booter attacks each time; the goal is to compare the average of each client

with the average of FL in these 20 runs.

In 6.8 and 6.9 we see the results for benign and attack traffic respectively. The 5th Booter

attack is again excluded when calculating performance in attack traffic. Firstly, this experiment

shows that as all attacks have been shared equally by all clients and still there is divergence in
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performance among them, it can be inferred that characteristics of private benign traffic also differ

from client to client.

In benign traffic, FL model performs clearly better in average than any other average of client,

while it equals the top performing clients in attack traffic. Using equation 6.1 as before, among

all clients, client 6 has the minimum gain of 3.8% adopting the FL model, while client 5 has the

maximum gain of 10.2%. This experiment highlights even more the benefit of a client joining the

procedure, since it demonstrates that FL model performs better in average case data, something

which a client needs to suppose it owns before it takes part.

Figure 6.8. Average performance of 7 clients and FL model in benign traffic in 20 runs with random

distribution of attacks.

Figure 6.9. Average performance of 7 clients and FL model in attack traffic (average of attacks

excluding the 5th one) in 20 runs with random distribution of attacks.
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6.5.2 Trust Effect

In this experiment we ran heterogeneous Federated Learning again, this time without the trust

factor, to demonstrate its positive effect. The 5th Booter attack mostly resembles benign traffic

and thus clients that encountered it have not learnt well enough to classify traffic correctly. As a

result, their models’ weights tend to diverge from others. So, these are our "mistrustful" clients.

To emphasize the results of this experiment, we have used appropriate coefficients for these clients

during aggregation to increase their influence. It is important to note here that these coefficients

do not make the experiment unrealistic, because it simply equals to these clients having bigger

private datasets, as can be inferred from equation 5.8 we analyzed in chapter Methodology.

For each case of number of clients that participate, i.e. 7, 14 or 21 clients, we have one diagram

the first two columns of which compare FL with and without trust in attack traffic and the other

two columns do the same for benign traffic.

6.5.2.1 7 Clients

In 6.10 we see the diagram when 7 clients participate in the procedure. The weights of client

that supposedly encountered the 5th attack are multiplied by 2 during aggregation, like if it had a

dataset double the size of others or like if there were two clients that encountered only this specific

attack.

As we mentioned earlier, the criterion we use to choose the best performance among epochs is

the sum of accuracy in benign and attack traffic. So, it only matters to look at both columns, i.e.

attack and benign, at the same time. Doing so in the corresponding diagram, the benefit of trust

factor is unquestionable. More to the significant divergence in the sum of accuracies, we have

also stated earlier that correctly classifying benign traffic is more important than attack traffic.

More precisely, using equation 6.1 as before, we calculate that trust factor is responsible for 8.5%

increase in performance.

Figure 6.10. FL without and with trust factor for 7 clients.

6.5.2.2 14 clients

In 6.11 we see the diagram when 14 clients participate in the procedure. The weights of

one of the two clients that supposedly encountered the 5th attack are multiplied by 4 during
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aggregation. We make the same observations as before. More precisely, using equation 6.1 as

before, we calculate that trust factor is responsible for 7.6% increase in performance.

Figure 6.11. FL without and with trust factor for 14 clients.

6.5.2.3 21 clients

In 6.12 we see the diagram when 21 clients participate in the procedure. The weights of all the

three clients that supposedly encountered the 5th attack are multiplied by 2 during aggregation.

Using equation 6.1 as before, we calculate that trust factor is responsible for 8.5% increase in

performance. In addition to making the same comments as before, we conclude the scalability of

our work concerning trust-aware Federated Learning.

Figure 6.12. FL without and with trust factor for 21 clients.

6.5.3 Feature Selection Benefit

As we mentioned earlier, in this experiment we ran Machine Learning for a client both with and

without feature selection process to show how it benefits local training procedure, and thus total
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FL procedure, in terms of time and computational resources, without compromising performance.

In 10 epochs of training for a client with 8 features after feature selection process compared to

16 features initially, the results are shown in table 6.1. The client gained:

• 15% less training time.

• 10% less RAM memory usage.

• 40% less required disk space for private dataset storage.

Resource Without Feature Selection With Feature Selection Gain

Training Time 10 min 8.5 min 15%

RAM 510 MB 460 MB 10%

Disk Storage Space 3.6 MB 2.2 MB 40%

Table 6.1. Benefit of feature selection procedure.

In both cases, i.e. with and without feature selection, CPU usage was at 100% and there is

no observable difference in performance. The experiment shows indisputable benefit of feature

selection procedure even in our small scale simulation, in terms of data, let alone in Big Data

scale, as network traffic data of an organization are of. The benefit of feature selection might be

more locally targeted for each client, but it is obvious that by accelerating local training time of

clients, the whole FL process is also accelerated. Finally, the experiment also proves that we did

not just employed this technique to facilitate our simulations, but we rather managed to combine

a process desired by every client with Federated Learning.
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Chapter 7

Conclusions

7.1 Summary

In this diploma thesis, we used Federated Learning (FL) for collaborative detection of Dis-

tributed Denial of Service (DDoS) attacks. As a novelty, we extended the basic scheme of FL to

enable training with heterogeneous models, which do not share the exact same network architec-

ture. In addition, based on existing work, we enriched the classic Federated Averaging aggregation

algorithm with a trust factor and combined it together with our heterogeneous FL.

At first, we delved into required theoretical background knowledge, mainly about Federated

Learning. Then, we briefly presented existing related works on DDoS detection using FL. Based

on some of these works, we developed our trust-aware heterogeneous FL algorithm. Our method

promises to relieve the procedure from two important obstacles. The first one being the need of

multi-domain collaborators to agree all together on some common model architecture, which will

probably not represent the private data or computational resources needs of some of them. The

second one, is the possibility of one of the collaborators sending back to the central entity models

that negatively affect performance of the global model; this may always happen due to "bad" or

"faulty" data of some collaborator and is not easy either to detect or mitigate.

We solved the first problem by aggregating only matching weights among heterogeneous col-

laborators’ models. For the second problem, we added a factor to appropriately multiply weights

during aggregation, in order to diminish the influence of individually collaborators sending "diver-

gent" models compared to the majority. We then effectively combined our two solutions to form a

single aggregation method.

For the experiments we conducted we used real network traffic data; benign traffic from the

WIDE project and as attack traffic seven different Booters utilizing DNS protocol. We built 21

virtual clients and split data to them, so that each represents an Autonomous System (AS), which

has supposedly encountered one of the attacks. After that, we ran a feature selection procedure

employing random forest for each of our clients separately on its private dataset, from which

heterogeneous models emerged.

We segregated our experiments in three categories: comparing performance of clients on their

own vs collaborative FL, examine trust effect when there are clients who send divergent models

and showing the unquestionable -and already known- benefit of feature selection procedure, which

can now be combined with Federated Learning due to our heterogeneous method.

From the results, we conclude that our method can be effective and scalable in a real case

scenario as it benefits clients in total. There always may exist some clients that will not gain much

in a specific FL procedure, however, some other clients may increase their performance even up

to 20%, as we saw earlier in our experiments. Finally, we deduce that trust plays a significant

role in cases where some clients send divergent models, as it can increase the performance in up

to 8.5%.
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7.2 Future Work

Through the end of this thesis, we propose the following directions to which the system we

developed could to be improved and extended in the future:

• Different approach of trust factor in order to make the mechanism capable to maintain its

performance against any divergent model sent, even by malicious clients.

• Extend the process to work without the need of a central entity, that is decentralized Fed-

erated Learning. In that case, model is sent directly from client to client keeping what is

has already learnt each time. Αuthenticity of local models and reliability of such a learn-

ing environment could ideally be ensured by employing blockchain [59] technology, another

state-of-the-art topic in Federated Learning with recent works like [60] and [61].

• Consider classification mechanisms that can jointly recognize various attack vectors or can

perform other useful network traffic analysis via multi-task learning techniques as in [4].

58



Bibliography

[1] Introduction to IBM Federated Learning: A Collaborative Approach to Train ML Models

on Private Data. https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-

collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839. Access date: 2022-

05-05.

[2] What is an autonomous system? | What are ASNs? https://www.cloudflare.com/learning/

network-layer/what-is-an-autonomous-system/. Access date: 2022-05-06.

[3] M. Dimolianis. Intelligent Services for Detection and Mitigation of Distributed Denial-of-Service

Attacks in Programmable Network Environments. Doctoral Dissertation, NTUA, 2022. http:

//artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312.

[4] Y. Zhao, J. Chen, D. Wu, J. Teng and S. Yu. Multi-Task Network Anomaly Detection using

Federated Learning. In Proceedings of the Tenth International Symposium on Information and

Communication Technology, 2019. https://dl.acm.org/doi/abs/10.1145/3368926.3369705.

[5] E. Diao, J. Ding and V. Tarokh. HeteroFL: Computation and Communication Efficient Federated

Learning for Heterogeneous Clients. In Proceedings of the International Conference on Learning

Representations (ICLR), 2021. https://arxiv.org/abs/2010.01264.

[6] A. Gholami, N. Torkzaban and J. S. Baras. On the Importance of Trust in Next-Generation

Networked CPS Systems: An AI Perspective. arXiv, 2021. https://arxiv.org/abs/2104.07853.

[7] Autonomous system (Internet). https://en.wikipedia.org/wiki/Autonomous_system_(Internet).

Access date: 2022-05-06.

[8] What is a denial-of-service attack? https://www.cloudflare.com/learning/ddos/glossary/

denial-of-service/. Access date: 2022-05-03.

[9] DDoS Attack Trends for Q1 2022. https://radar.cloudflare.com/notebooks/ddos-2022-q1. Ac-

cess date: 2022-05-03.

[10] DDoS attacks in Q1 2022. https://securelist.com/ddos-attacks-in-q1-2022/106358/. Access

date: 2022-05-03.

[11] GLOBAL DDOS SUMMARY - APRIL 2022. https://horizon.netscout.com/?atlas=summary. Access

date: 2022-05-03.

[12] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh and D. Bacon. Federated

Learning: Strategies for Improving Communication Efficiency. arXiv, 2017. https://arxiv.org/

abs/1610.05492.

[13] H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. Agüera y Arcas. Communication-

Efficient Learning of Deep Networks from Decentralized Data. In Proceedings of the 20 th

International Conference on Artificial Intelligence and Statistics, 2016. https://arxiv.org/abs/

1602.05629.

59

https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839
https://towardsdatascience.com/introduction-to-ibm-federated-learning-a-collaborative-approach-to-train-ml-models-on-private-data-2b4221c3839
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/
https://www.cloudflare.com/learning/network-layer/what-is-an-autonomous-system/
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312
http://artemis.cslab.ece.ntua.gr:8080/jspui/handle/123456789/18312
https://dl.acm.org/doi/abs/10.1145/3368926.3369705
https://arxiv.org/abs/2010.01264
https://arxiv.org/abs/2104.07853
https://en.wikipedia.org/wiki/Autonomous_system_(Internet)
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://www.cloudflare.com/learning/ddos/glossary/denial-of-service/
https://radar.cloudflare.com/notebooks/ddos-2022-q1
https://securelist.com/ddos-attacks-in-q1-2022/106358/
https://horizon.netscout.com/?atlas=summary
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629


BIBLIOGRAPHY

[14] Y. Zhao, J. Chen, Q. Guo, J. Teng and D. Wu. Network Anomaly Detection Using Federated

Learning and Transfer Learning. In Proceedings of the International Conference on Security and

Privacy in Digital Economy (SPDE), 2020. https://link.springer.com/chapter/10.1007/978-981-

15-9129-7_16.

[15] Q. Tian, C. Guang, C. Wenchao and W. Si. A Lightweight Residual Networks Framework

for DDoS Attack Classification Based on Federated Learning. In Proceedings of the IEEE

Conference on Computer Communications Workshops (INFOCOM WKSHPS), 2021. https://

ieeexplore.ieee.org/document/9484622.

[16] Internet protocol suite. https://en.wikipedia.org/wiki/Internet_protocol_suite. Access date:

2022-05-06.

[17] Internet. https://en.wikipedia.org/wiki/Internet. Access date: 2022-05-06.

[18] What is the Internet of Things (IoT)? https://www.ibm.com/blogs/internet-of-things/what-is-

the-iot/. Access date: 2022-05-03.

[19] What is a DDoS attack? https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-

attack/. Access date: 2022-05-03.

[20] What is a SYN flood attack? https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-

attack/. Access date: 2022-05-03.

[21] What is a DNS amplification attack? https://www.cloudflare.com/en-gb/learning/ddos/dns-

amplification-ddos-attack/. Access date: 2022-05-03.

[22] J. Mirkovic and P. Reiher. A taxonomy of DDoS attack and DDoS defense mechanisms. ACM

SIGCOMM Computer Communication Review, 34(2):39–53, 2004. https://doi.org/10.1145/

997150.997156.

[23] Big data. https://en.wikipedia.org/wiki/Big_data. Access date: 2022-05-04.

[24] What is GDPR, the EU’s new data protection law? https://gdpr.eu/what-is-gdpr/. Access

date: 2022-05-04.

[25] T. Yang, G. Andrew, H. Eichner, H. Sun, W. Li, N. Kong, D. Ramage and F. Beaufays.

Applied Federated Learning: Improving Google Keyboard Query Suggestions. arXiv, 2018.

https://arxiv.org/abs/1812.02903.

[26] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis et al. Advances and Open Problems

in Federated Learning. arXiv, 2019. https://arxiv.org/abs/1912.04977.

[27] Decentralized federated learning. https://en.wikipedia.org/wiki/Federated_learning#

Decentralized_federated_learning. Access date: 2022-05-04.

[28] C. Che, X. Li, C. Chen, X. He and Z. Zheng. A Decentralized Federated Learning Framework

via Committee Mechanism with Convergence Guarantee. arXiv, 2021. https://arxiv.org/abs/

2108.00365.

[29] W. Liu, L. Chen and W. Zhang. Decentralized Federated Learning: Balancing Communication

and Computing Costs. arXiv, 2022. https://arxiv.org/abs/2107.12048.

[30] K. Hsieh, A. Phanishayee, O. Mutlu and P. B. Gibbons. The Non-IID Data Quagmire of Decen-

tralized Machine Learning. In Proceedings of the International Conference on Machine Learning

(ICML), 2020. https://arxiv.org/abs/1910.00189.

60

https://link.springer.com/chapter/10.1007/978-981-15-9129-7_16
https://link.springer.com/chapter/10.1007/978-981-15-9129-7_16
https://ieeexplore.ieee.org/document/9484622
https://ieeexplore.ieee.org/document/9484622
https://en.wikipedia.org/wiki/Internet_protocol_suite
https://en.wikipedia.org/wiki/Internet
https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/
https://www.ibm.com/blogs/internet-of-things/what-is-the-iot/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/what-is-a-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/syn-flood-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://doi.org/10.1145/997150.997156
https://doi.org/10.1145/997150.997156
https://en.wikipedia.org/wiki/Big_data
https://gdpr.eu/what-is-gdpr/
https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1912.04977
https://en.wikipedia.org/wiki/Federated_learning#Decentralized_federated_learning
https://en.wikipedia.org/wiki/Federated_learning#Decentralized_federated_learning
https://arxiv.org/abs/2108.00365
https://arxiv.org/abs/2108.00365
https://arxiv.org/abs/2107.12048
https://arxiv.org/abs/1910.00189


BIBLIOGRAPHY

[31] X. Li, K. Huang, W. Yang, S. Wang and Z. Zhang. On the Convergence of FedAvg on Non-

IID Data. In Proceedings of the International Conference on Learning Representations, 2020.

https://arxiv.org/abs/1907.02189.

[32] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar and V. Smith. Federated Optimization

in Heterogeneous Networks. In Proceedings of the 3rd MLSys Conference, 2019. https://arxiv.

org/abs/1812.06127.

[33] H. Wang, M. Yurochkin, Y. Sun, D. Papailiopoulos and Y. Khazaeni. Federated Learning

with Matched Averaging. In Proceedings of the 38th Annual IEEE International Conference on

Computer Communications (INFOCOM), 2019. https://arxiv.org/abs/2002.06440.

[34] S. Ek, F. Portet, P. Lalanda and G. Vega. A Federated Learning Aggregation Algorithm for

Pervasive Computing: Evaluation and Comparison. In Proceedings of the 9th IEEE International

Conference on Pervasive Computing and Communications (PerCom), 2021. https://arxiv.org/

abs/2110.10223.

[35] M. G. Arivazhagan, V. Aggarwal, A. K. Singh and S. Choudhary. Federated Learning with

Personalization Layers. arXiv, 2019. https://arxiv.org/abs/1912.00818.

[36] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang and H. Qi. Beyond Inferring Class Rep-

resentatives: User-Level Privacy Leakage From Federated Learning. In Proceedings of the

38th Annual IEEE International Conference on Computer Communications (INFOCOM), 2018.

https://arxiv.org/abs/1812.00535.

[37] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 53rd

Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2015. https:

//ieeexplore.ieee.org/document/7447103.

[38] R. C. Geyer, T. Klein and M. Nabi. Differentially Private Federated Learning: A Client Level

Perspective. In Proceedings of the NIPS 2017 Workshop: Machine Learning on the Phone and

other Consumer Devices, 2017. https://arxiv.org/abs/1712.07557.

[39] A. N. Bhagoji, S. Chakraborty, P. Mittal and S. Calo. Analyzing Federated Learning through

an Adversarial Lens. In Proceedings of the 36th International Conference on Machine Learning,

2018. https://arxiv.org/abs/1811.12470.

[40] S. Shen, S. Tople and P. Saxena. Auror: defending against poisoning attacks in collaborative

deep learning systems. In Proceedings of the 32nd Annual Conference on Computer Security

Applications, 2016. https://dl.acm.org/doi/10.1145/2991079.2991125.

[41] Y. Chen, F. Luo, T. Li, T. Xiang, Z. Liu and J. Li. A training-integrity privacy-preserving

federated learning scheme with trusted execution environment. Information Sciences, 522:69–

79, 2020. https://doi.org/10.1016/j.ins.2020.02.037.

[42] J. Li, L. Lyu, X. Liu, X. Zhang and X. Lyu. FLEAM: A Federated Learning Empowered Ar-

chitecture to Mitigate DDoS in Industrial IoT. IEEE Transactions on Industrial Informatics,

18(6):4059–4068, 2021. https://ieeexplore.ieee.org/document/9454328.

[43] Q. Qin, K. Poularakis, K. K. Leung and L. Tassiulas. Line-Speed and Scalable Intrusion

Detection at the Network Edge via Federated Learning. In Proceedings of the IFIP Networking

Conference, 2020. https://ieeexplore.ieee.org/abstract/document/9142704.

61

https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/1812.06127
https://arxiv.org/abs/2002.06440
https://arxiv.org/abs/2110.10223
https://arxiv.org/abs/2110.10223
https://arxiv.org/abs/1912.00818
https://arxiv.org/abs/1812.00535
https://ieeexplore.ieee.org/document/7447103
https://ieeexplore.ieee.org/document/7447103
https://arxiv.org/abs/1712.07557
https://arxiv.org/abs/1811.12470
https://dl.acm.org/doi/10.1145/2991079.2991125
https://doi.org/10.1016/j.ins.2020.02.037
https://ieeexplore.ieee.org/document/9454328
https://ieeexplore.ieee.org/abstract/document/9142704


BIBLIOGRAPHY

[44] S. Agrawal, S. Sarkar, O. Aouedi, G. Yenduri, K. Piamrat, S. Bhattacharya, P. K. R. Mad-

dikunta and T. R. Gadekallu. Federated Learning for Intrusion Detection System: Concepts,

Challenges and Future Directions. Journal of Network and Computer Applications (JNCA),

2021. https://arxiv.org/abs/2106.09527.

[45] X. Cao, M. Fang, J. Liu and N. Z. Gong. FLTrust: Byzantine-robust Federated Learning via

Trust Bootstrapping. In Proceedings of the Network and Distributed System Security Sympo-

sium (NDSS), 2021. https://arxiv.org/abs/2012.13995.

[46] J. Zhao, X. Zhu, J. Wang and J. Xiao. Efficient Client Contribution Evaluation for Horizontal

Federated Learning. In Proceedings of the International Conference on Acoustics, Speech, and

Signal Processing (ICASSP), 2021. https://arxiv.org/abs/2102.13314.

[47] S. K. Shyn, D. Kim and K. Kim. FedCCEA : A Practical Approach of Client Contribution

Evaluation for Federated Learning. arXiv, 2021. https://arxiv.org/abs/2106.02310.

[48] WIDE Backbone. http://two.wide.ad.jp/. Access date: 2022-05-24.

[49] WIDE Project. https://www.wide.ad.jp/. Access date: 2022-05-24.

[50] MAWI Working Group Traffic Archive. http://mawi.wide.ad.jp/mawi/. Access date: 2022-05-24.

[51] K. Cho, K. Mitsuya and A. Kato. Traffic Data Repository at the WIDE Project. In Proceedings

of the USENIX Annual Technical Conference, 2000. https://www.usenix.org/conference/2000-

usenix-annual-technical-conference/traffic-data-repository-wide-project.

[52] J. J. Santanna, R. van Rĳswĳk-Deĳ, R. Hofstede, A. Sperotto, M. Wierbosch, L. Z. Granville

and A. Pras. Booters — An analysis of DDoS-as-a-service attacks. In Proceedings of the

International Symposium on Integrated Network Management, 2015. https://ieeexplore.ieee.

org/document/7140298.

[53] Booters, Stressers And DDoSers. https://www.wallarm.com/what/booters-stressers-and-

ddosers. Access date: 2022-05-24.

[54] M. Dimolianis, A. Pavlidis and V. Maglaris. Signature-Based Traffic Classification and Miti-

gation for DDoS Attacks Using Programmable Network Data Planes. IEEE Access, 9:113061–

113076, 2021. https://ieeexplore.ieee.org/abstract/document/9511420.

[55] Domain Name System. https://en.wikipedia.org/wiki/Domain_Name_System. Access date: 2022-

05-24.

[56] User Datagram Protocol. https://en.wikipedia.org/wiki/User_Datagram_Protocol. Access date:

2022-05-24.

[57] List of DNS record types. https://en.wikipedia.org/wiki/List_of_DNS_record_types. Access

date: 2022-06-02.

[58] C. Siaterlis and B. Maglaris. Detecting DDoS attacks using a multilayer Perceptron classifier.

In Proceedings of the 9th IFIP/IEEE International Symposium on Integrated Network Man-

agement, 2004. https://www.researchgate.net/publication/235891315_Detecting_DDoS_attacks_

using_a_multilayer_Perceptron_classifier.

[59] Blockchai. https://en.wikipedia.org/wiki/Blockchain. Access date: 2022-06-10.

[60] Z. Wang and Q. Hu. Blockchain-based Federated Learning: A Comprehensive Survey. 2021.

https://arxiv.org/abs/2110.02182.

62

https://arxiv.org/abs/2106.09527
https://arxiv.org/abs/2012.13995
https://arxiv.org/abs/2102.13314
https://arxiv.org/abs/2106.02310
http://two.wide.ad.jp/
https://www.wide.ad.jp/
http://mawi.wide.ad.jp/mawi/
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://www.usenix.org/conference/2000-usenix-annual-technical-conference/traffic-data-repository-wide-project
https://ieeexplore.ieee.org/document/7140298
https://ieeexplore.ieee.org/document/7140298
https://www.wallarm.com/what/booters-stressers-and-ddosers
https://www.wallarm.com/what/booters-stressers-and-ddosers
https://ieeexplore.ieee.org/abstract/document/9511420
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/User_Datagram_Protocol
https://en.wikipedia.org/wiki/List_of_DNS_record_types
https://www.researchgate.net/publication/235891315_Detecting_DDoS_attacks_using_a_multilayer_Perceptron_classifier
https://www.researchgate.net/publication/235891315_Detecting_DDoS_attacks_using_a_multilayer_Perceptron_classifier
https://en.wikipedia.org/wiki/Blockchain
https://arxiv.org/abs/2110.02182


BIBLIOGRAPHY

[61] C. Ma, J. Li, M. Ding, L. Shi, T. Wang, Z. Han and H. V. Poor. When Federated Learning Meets

Blockchain: A New Distributed Learning Paradigm. 2020. https://arxiv.org/abs/2009.09338.

63

https://arxiv.org/abs/2009.09338

	Περίληψη
	Abstract
	Ευχαριστίες
	List of Figures
	List of Tables
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Σχετικές Εργασίες
	Μεθοδολογία
	Πειράματα και Υλοποίηση
	Συμπεράσματα

	Introduction
	Motivation
	Thesis Contribution
	Thesis Outline

	Theoretical Background
	Internet and Autonomous Systems Fundamentals
	DDoS Attacks
	Federated Learning
	Federated Learning Cycle
	Federated Learning Without Central Server
	Federated Averaging
	Federated Learning vs Distributed Machine Learning
	Other Aggregation Algorithms
	Security and Privacy Issues


	Related Work
	Federated Learning and DDoS Attack Detection
	Heterogeneous Federated Learning
	Federated Learning and Trust

	Methodology
	Heterogeneous Federated Learning
	Trust-Aware Federated Learning
	Limitations


	Experiments and Implementation
	Used Data
	Methodology of Experiments
	Technical Details of Implementation
	Preprocessing
	Results
	Clients On Their Own vs Federated Learning
	7 Clients
	14 Clients
	21 Clients
	Random Distribution of Attacks

	Trust Effect
	7 Clients
	14 clients
	21 clients

	Feature Selection Benefit


	Conclusions
	Summary
	Future Work

	Bibliography

