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Περίληψη

Η παρούσα διπλωματική εργασία καταπιάνεται με το φαινόμενο των ανταγωνιστικών παραδειγμάτων

(adversarial examples) που εμφανίστηκε πριν μερικά χρόνια στην βιβλιογραφία, και έκτοτε έχει αλ-
λάξει άρδην τον τρόπο που αντιλαμβανόμαστε τα Νευρωνικά Δίκτυα. Τα ανταγωνιστικά παραδείγ-

ματα, για παράδειγμα στο πρόβλημα της κατηγοριοποίησης εικόνων, συμπίπτουν με εικόνες οι οποίες

έχουν νοθευτεί με προσεκτικά σχεδιασμένες διαταραχές (perturbations), πολύ μικρές μεν για να
γίνουν αντιληπτές από έναν ανθρώπινο παρατηρητή, αρκετά επιδραστικές δε ώστε να κατευθύνουν

τα Νευρωνικά Δίκτυα να κατηγοριοποιούν τις εικόνες σε οποιαδήποτε (αυθαίρετη) κλάση, επηρεά-

ζοντας αρνητικά την απόδοση σε εισόδους που το ανθρώπινο μάτι μπορεί πολύ εύκολα να αναθέσει

την σωστή ετικέτα. Η ανάδειξη ενός τέτοιου φαινομένου ανησύχησε, και επομένως, κινητοποίησε

την επιστημονική κοινότητα να αναζητήσει τρόπους ωστέ να βελτιώσει την ευρωστία (robustness)
των Νευρωνικών Δικτύων, έναντι στην εν δυνάμει εμφάνιση τέτοιων παραδειγμάτων. Οι μέθοδοι

που αποσκοπούν στο να αμβλύνουν τις συνέπειες αυτού του φαινομένου ονομάζονται Ανταγωνιστικές

΄Αμυνες (Adversarial Defenses).
΄Επειτα από την πάροδο των χρόνων, έχει γίνει αντιληπτό πως η αξιολόγηση των προτεινόμενων

αμυνών πάσχει από ένα ιδιαίτερα σημαντικό ζήτημα: την υπερεκτίμηση ευρωστίας (Robustness Over-
estimation). Για να αποφανθούμε αν μια μέθοδος άμυνας μπορεί πραγματικά να αυξήσει την ευρ-
ωστία, πρέπει να λύσουμε ένα πρόβλημα βελτιστοποίησης το οποίο είναι ανέφικτο στον χώρο των

Νευρωνικών Δικτύων. Ωστόσο, καταφεύγουμε σε προσεγγιστικές λύσεις αυτού του προβλήματος

βελτιστοποίησης (όπως ακριβώς κάνουμε και όταν τα εκπαιδεύουμε, βλ. τον αλγόριθμο Gradient De-
scent). Η υπερεκτίμηση ευρωστίας αναφέρεται στην περίπτωση που ο αμυνόμενος δεν καταφέρνει να
λύσει (προσεγγιστικά) αυτό το πρόβλημα επαρκώς καλά, επομένως αποκτά μια ψευδή αίσθηση πως η

μέθοδος του προσφέρει ευρωστία, ενώ η πραγματικότητα διαφέρει.

΄Ενας από τους πιο δημοφιλής τρόπους για την προσεγγιστική λύση του προβλήματος που σχετίζε-

ται με την αξιολόγηση Νευρωνικών Δικτύων είναι ο αλγόριθμος Projected Gradient Descent (συν-
τομ. PGD). Μια από τις σχεδιαστικές επιλογές του αλγόριθμου PGD είναι αυτή της αντικειμενικής
συνάρτησης (objective function) που βελτιστοποιεί ο αλγόριθμος, για την οποία η σχετική βιβλι-
ογραφία έχει προτείνει μια πληθώρα από εναλλακτικές. Ωστόσο, έστω και μικρές διαφοροποιήσεις

στην μαθηματική έκφραση της συνάρτησης κόστους έχουν την δυνατότητα να επηρεάσουν σε μεγάλο

βαθμό την απόδοση του αλγορίθμου, λαμβάνοντας υπόψη την εξαιρετικά πολύπλοκη γεωμετρία στο

πεδίο βελτιστοποίησης (optimization landscape) σε τόσο μεγάλες διαστάσεις. Στην εργασία αυτή,
θέτουμε αυτήν την παρατήρηση (η οποία υποστηρίζεται εμπειρικά από προηγούμενα αποτελέσματα)

ως το κύριο κίνητρο της δουλειάς μας, και αναζητούμε τρόπους ανάμειξης διαφορετικών συναρτήσεων

κόστους ώστε να αποκομίσουμε καλύτερη επίδοση. Τα πειράματα μας επιδεικνύουν εμπειρικά ότι μια

αρκετά απλοϊκή μέθοδος, δηλαδή η αλλαγή συνάρτησης κόστους στα μέσα του επαναληπτικού αλγο-

ρίθμου PGD, βοηθά τον αλγόριθμο να φθάσει καλύτερες λύσεις, με συνέπεια, καθώς το εύρημά μας
γενικεύεται για 15 διαφορετικές μεθόδους άμυνας.

Λέξεις Κλειδιά: Βαθιά Νευρωνικά Δίκτυα, ΄Οραση Υπολογιστών, Κατηγοριοποίηση Εικόνων, Αν-

ταγωνιστικά Παραδείγματα/ Επιθέσεις και ΄Αμυνες, Υπερεκτίμηση Ευρωστίας, Projected Gradient
Descent
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Abstract

This Diploma Thesis delves into the phenomenon of Adversarial Examples, which appeared
some years ago in the literature and since then has radically changed our perception about Neural
Networks. Adversarial examples, in the task of Image Classification for instance, refer to images
that have been tampered with carefully designed perturbations, small enough to remain unde-
tected from a human observer, though exerting great influence to the final output, steering the
model towards predicting the image as belonging to any arbitrary class, whereas in the meantime,
humans can readily assign the correct label to the distorted image. The emergence of this peculiar
phenomenon concerned, and subsequently, motivated researchers to explore ways of enhancing the
robustness of Neural Networks, against the prospect of confronting such adversarial inputs. Ap-
proaches that attempt to mitigate the downsides of this behaviour are called Adversarial Defenses.

In the course of time, it has become evident that evaluating the robustness of proposed defenses
is plagued by a paramount issue: this of Robustness Overestimation. Deciding whether a method
can really improve robustness, requires the defender to solve an optimization problem which, in
the space of Neural Networks, is infeasible. Hence, we must resort to approximate solutions of this
problem (exactly akin to the training procedure of such networks, c.f. the Gradient Descent Algo-
rithm). Robustness Overestimation refers to the case where the defender fails to (approximately)
solve the problem sufficiently well, hence acquiring a false sense about the true effectiveness of his
method.

One of the most popular algorithms of obtaining approximate solutions for the optimization
problem that pertains to the evaluation of Neural Networks’ robustness is Projected Gradient
Descent (PGD). Among several designing choices, the objective function considered during the
iterative PGD process is quite influential, with the literature proposing various alternatives. How-
ever, even subtle changes in the mathematical expression of this objective may non-trivially affect
the obtained results, given the highly complex geometry of such high-dimensional optimization
landscapes. In this work, we set this observation (backed up by strong empircal evidence) as
the focal point of our research, seeking methods of combining different objectives, hoping to reap
benefits in the obtained performance. Our experiments empirically demonstrate that a rather sim-
plistic approach, i.e. switching loss functions during PGD, urges the algorithm to yield better final
solutions with pronounced constancy, since our findings generalize across 15 different adversarial
defenses.

Key Terms: Deep Neural Networks, Computer Vision, Image Classification, Adversarial Ex-
amples/ Attacks and Defenses, Robustness Overestimation, Projected Gradient Descent
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Chapter 1

Εκτεταμένη Ελληνική Περίληψη

1.1 Εισαγωγή

Η παρούσα διπλωματική εργασία ασχολείται με το φαινόμενο των ανταγωνιστικών παραδειγμάτων

(adversarial examples) στα Βαθιά Νευρωνικά Δίκτυα. Στην περίπτωση της κατηγοριοποίησης εικόνων,
τα ανταγωνιστικά παραδείγματα μπορούν να χαρακτηριστούν εν συντομία ως μικρές διαταραχές που

προστίθενται σε καθαρές εικόνες, οι οποίες αρχικά κατηγοριοποιούνται σωστά από το σύστημα, που

έχουν την δυνατότητα να αλλάξουν ριζικά την έξοδο του συστήματος. Για την ακρίβεια, οι διαταραχές

αυτές είναι τόσο μικρές που ένας ανθρώπινος παρατηρητής δεν μπορεί να αντιληφθεί την διαφορά

μεταξύ καθαρής και νοθευμένης εικόνας, όπως φαίνεται στην Εικόνα 1.1. Το φαινόμενο αυτό, στην

περιοχή των βαθιών νευρωνικών δικτύων, έγινε για πρώτη φορά αντιληπτό από τους Szegedy et al.
[Sze+14] το 2014.

"Panda" with 57.7% confidence

x

+ =

δ x′

Imperceptible Noise "Gibbon" with 93.3% confidence

Figure 1.1. Προσθέτοντας κατάλληλα επιλεγμένο θόρυβο στην αρχική εικόνα, μπορούμε να δημιουργή-
σουμε μια νέα είσοδο στην οποία το δίκτυο αποτυγχάνει να αναθέσει την σωστή ετικέτα. ΄Ενας άνθρωπος,

ωστόσο, μπορεί χωρίς δυσκολία να κατηγοριοποιήσει σωστά την νέα εικόνα.

΄Οπως είναι φυσικό, η ανακάλυψη αυτής της ιδιόμορφης συμπεριφοράς δημιούργησε αρκετή συζήτηση

στην επιστημονική κοινότητα. Τα νευρωνικά δίκτυα χρησιμοποιούνται σε πολλές εφαρμογές στις

οποίες η ασφάλεια είναι επιτακτική, π.χ. στην Αυτόνομη Οδήγηση όπου το να αποτύχει το σύστημα

να αναγνωρίσει επιτυχώς μια πινακίδα Stop, μπορεί να προκαλέσει ανεπανόρθωτες συνέπειες. Οι ερευν-
ητές, έκτοτε, προσπαθούν να εξηγήσουν τους παράγοντες που καθιστούν τόσο ασταθή τα Νευρωνικά

Δίκτυα και κυρίως, έχουν θέσει ως πρωταρχικό στόχο την εξάλειψη αυτής της αστάθειας, προσπα-

θώντας να δημιουργήσουν εύρωστα δίκτυα, ανεπηρέαστα σε τέτοια ανταγωνιστικά παραδείγματα. Οι

μέθοδοι που στοχεύουν να βελτιώσουν την ευρωστία των συστημάτων απέναντι σε τέτοιες εισόδους

ονομάζονται Ανταγωνιστικές ΄Αμυνες (Adversarial Defenses). Αποφεύγοντας για την ώρα να μπούμε
σε περαιτέρω λεπτομέρειες οι οποίες θα ήταν δυσνόητες σε κάποιον που δεν είναι οικείος με την

εν λόγω περιοχή, αναφέρουμε περιληπτικά πως η αξιολόγηση της αποτελεσματικότητας των αμυνών
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γίνεται μέσω της επιστράτευσης κάποιας ανταγωνιστικής επίθεσης (Adversarial Attacks), δηλαδή
ενός αλγορίθμου ο οποίος λαμβάνει μια εικόνα και επιστρέφει ένα ανταγωνιστικό παράδειγμα. Ο

αμυνόμενος, όταν διεξάγει αξιολόγηση της μεθόδου του, χρησιμοποιεί μια επίθεση για να παράξει αν-

ταγωνιστικά παραδείγματα τα οποία εν συνεχεία περνούν από το σύστημα και δίνουν μια εκτίμηση της

ευρωστίας της προτεινόμενης τεχνικής. Η δουλειά μας συνεισφέρει σε ένα ιδιαίτερα σημαντικό ζήτημα

που ελλοχεύει στην αξιολόγηση αμυνών: το ζήτημα της Υπερεκτίμησης Ευρωστίας (Robustness
Overestimation), όπου ο αμυνόμενος αποτυγχάνει να χρησιμοποιήσει την καταλληλότερη επίθεση,
επομένως η λανθασμένη αξιολόγηση τον παραπλανεί σχετικά με την πραγματική αποτελεσματικότητα

της μέθοδο του.

Σε αυτό το σημείο αναφέρουμε πως στην εν λόγω εργασία, μελετάμε το πρόβλημα των ανταγωνισ-

τικών παραδειγμάτων από την σκοπιά της κατηγοριοποίησης εικόνων. Ωστόσο, η παρουσία τέτοιων

εισόδων έχει εμφανιστεί σε οποιοδήποτε πρόβλημα το οποίο προσεγγίζεται μέσω των Νευρωνικών

Δικτύων: για παράδειγμα σε Αυτόματη Αναγνώριση Φωνής [CW18] ή σε εφαρμογές πού έχουν να
κάνουν με Φυσική Γλώσσα [Zha+20]. Επομένως, τα ανταγωνιστικά παραδείγματα δεν πρέπει να θεω-
ρούνται ως ένα ζήτημα αποκλειστικά συνδεδεμένο με την φύση των εικόνων, αλλά πιο σωστά ως ένα

ψεγάδι των Νευρωνικών Δικτύων, ανεξάρτητα από το πεδίο που προέρχονται τα δεδομένα.

1.2 Απαραίτητο Υπόβαθρο

1.2.1 Ορισμός του προβλήματος εύρεσης ανταγωνιστικών παραδειγμάτων

Στην προηγούμενη συζήτησή μας, αναφέραμε πως τα ανταγωνιστικά παραδείγματα πρέπει, σε

σχέση με τις αντίστοιχές καθαρές εικόνες, να μην έχουν καμία φαινομενική διαφορά (οπτικά) ως

προς έναν ανθρώπινο παρατηρητή. Μία τέτοια συνθήκη είναι δύσκολο να διατυπωθεί μαθηματικά,

δηλαδή ποιες διαταραχές θεωρούνται ανεπαίσθητες για το ανθρώπινο μάτι και ποιες όχι. Οι πρώτές

δουλειές στον χώρο θεώρησαν την ℓp−νόρμα ως μια καλή προσέγγιση οπτικής ομοιότητας μεταξύ
δυο εικόνων: Για μια είσοδο x θεωρούμε ότι τα ανταγωνιστικά παραδείγματα πρέπει αναγκαστικά να

βρίσκονται εντός μιας ορισμένης απόστασης, όπως αυτή ορίζεται από την ℓp−νόρμα. Εκφράζοντας
μαθηματικά αυτήν την συνθήκη, το σύνολο αναζήτησης επιθέσεων για την είσοδο x ορίζεται ως η

ℓp-μπάλα ακτίνας ϵ (μικρή σταθερά) γύρω από την εικόνα:

∆(x) = {x′ ∈ X : ∥x′ − x∥p ≤ ϵ} (1.1)

Φυσικά, μια τέτοια υπόθεση δεν είναι ούτε αναγκαία, αλλά ούτε και ικανή συνθήκη που εξασφαλίζει

την οπτική ομοιότητα: Δεν είναι αναγκαία γιατί μπορεί δύο φαινομενικά όμοιες εικόνες να έχουν

σχετικά μεγάλη απόσταση (βάσει της ℓp-νόρμας) και δεν είναι ικανή γιατί δύο εικόνες με σχετικά

μικρή ℓp-απόσταση μπορεί να έχουν ορατές διαφορές στο περιεχόμενο τους [WB09]. Παρόλα αυτά,
η ιστορία μας έχει δείξει πως οι αλγόριθμοι που δημιουργούν διαταραχές φραγμένης ℓp-νόρμας είναι

όντως μη αντιληπτές, ενώ το γεγονός πως δεν είναι αναγκαία σημαίνει πως ασχολούμαστε με ένα πιο

εύκολο πρόβλημα το οποίο θα μπορούσε να λυθεί πιο αποτελεσματικά, ωστόσο ακόμα και αυτό το

υποπρόβλημα κρύβει πολλές δυσκολίες. Επομένως, η μελέτη του προβλήματος μέσα από την σκοπιά

αυτών των υποθέσεων σαφώς και έχει αξία για την επιστημονική κοινότητα.

Υιοθετώντας αυτήν την υπόθεση για το εφικτό σύνολο αναζήτησης ανταγωνιστών, το πρόβλημα της

εύρεσης τέτοιων εισόδων για ένα μοντέλο fθ (όπου θ: οι παράμετροι του) μπορεί να εκφραστεί

ξεκάθαρα ως εξής:

x′ : f(x′) ̸= f(x) , s.t. x′ ∈ ∆(x) (1.2)
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1.2.2 Μια ταξινομία των Ανταγωνιστικών Επιθέσεων

Για να χειριστούμε το πρόβλημα εύρεσης ανταγωνιστών ως πρόβλημα βελτιστοποίησης, είναι πιο βολικό

να θέσουμε την παραπάνω διατύπωση ως την αναζήτηση της εισόδου x′
που ανήκει στο ∆(x), και

τέτοια ώστε να μεγιστοποιεί την συνάρτηση κόστους L(f(x′), y), π.χ. στην κατηγοριοποίηση εικόνας

μια κατάλληλη επιλογή είναι το cross-entropy, η οποία μετρά πόσο ικανά το σύστημα αναθέτει την
ετικέτα y στην είσοδο x′

:

x′ : max
x′

L(f(x′), y) , s.t. x′ ∈ ∆(x) (1.3)

Το παραπάνω πρόβλημα βελτιστοποίησης έχει την δυσκολία του ότι είναι μη κυρτό, καθώς η έξοδος του

νευρωνικού fθ(x) είναι μη κυρτή ως προς την είσοδο, ωστόσο μπορούμε να το λύσουμε προσεγγιστικά

αναζητώντας κάποιο τοπικό ακρότατο της αντικειμενικής συνάρτησης. ΄Οταν εκπαιδεύουμε νευρωνικά

δίκτυα, ένας τρόπος να λύσουμε τέτοια προβλήματα είναι μέσω του αλγορίθμου Gradient Descent.
Οι δύο διαφορές είναι πως, στην περίπτωση μας, θέλουμε να βελτιστοποιήσουμε την αντικειμενική

συνάρτηση ως προς την είσοδο x′
αντί των παραμέτρων θ του δικτύου και επίσης επιθυμούμε η τελική

λύση να βρίσκεται στο σύνολο ∆(x). Αυτό μπορεί εύκολα να επιτευχθεί μέσω του, κλασικού στην

κυρτή βελτιστοποίηση, αλγορίθμου Projected Gradient Descent (PGD), όπου κάθε βήμα ως προς
την κατεύθυνση που υποδεικνύει το gradient ακολουθείται από ένα βήμα προβολής στο σύνολο των
εφικτών λύσεων. Ο αλγόριθμος PGD μπορεί μαθηματικά να εκφραστεί μέσω της ακόλουθης εξίσωσης:

xt+1 = P∆(x)

(
xt + η · normp(∇xtL(fθ(xt), y))

)
(1.4)

όπου P∆(x)): ο τελεστής προβολής, που προβάλλει το όρισμά μέσα στην ℓp−μπάλα ακτίνας ϵ γύρω
από το x, normp: ένας τελεστής κανονικοποίησης, ο οποίος κανονικοποιεί το όρισμα του ώστε να έχει

μοναδιαία ℓp−νόρμα και α: το μέγεθος του βήματος. Αυτός ο αλγόριθμος είναι ένας από τους πιο
απλούς και θεμελιώδεις τρόπους που μπορεί να κανείς να χρησιμοποιήσει ώστε να βρει ανταγωνιστικά

παραδείγματα: οι Goodfellow et al. [Goo+15] έδειξαν πως μονάχα ένα βήμα του PGD δημιουργεί
εικόνες που μπορούν να παραπλανήσουν τα νευρωνικά με μεγάλη επιτυχία. Οι παραλλαγές του PGD
με πολλαπλά βήματα έχουν ακόμα ισχυρότερη επίδοση, όπως φάνηκε σε 2 ξεχωριστές ερευνητικές

δουλειές [Mad+18; Kur+17]. Βεβαίως, στην βιβλιογραφία έχουν συσταθεί αρκετοί άλλοι τρόποι
δημιουργίας ανταγωνιστικών παραδειγμάτων, αλλά σχεδόν όλοι μπορούν να ιδωθούν από την σκοπιά

του αλγόριθμου PGD.

Αξιολόγηση Επιθέσεων. Σε αυτό το σημείο είναι σημαντικό να αναφέρουμε πως μπορεί κανείς

να συγκρίνει την επίδοση των αλγορίθμων επίθεσης, δεδομένου του συστήματος f στο οποίο εφαρ-

μόζουμε αυτές τις επιθέσεις. Στις ℓp−φραγμένες επιθέσεις, όπου το ζητούμενο είναι η επίθεση να
αλλάζει την απόφαση του συστήματος και συγχρόνως η παραγόμενη εικόνα να κείτεται εντός της

ℓp-μπάλας ακτίνας ϵ γύρω από την καθαρή, η πιο συνηθισμένη μετρική είναι ο Δείκτης Επιτυχίας

Επίθεσης (Attack Success Rate, abbr. ASR) σε ένα σύνολο απο δεδομένα Dtest = (xi, yi)
N
i=1 που

το σύστημα δεν έχει δει κατά την εκπαίδευσή του. Αυτή η μετρική, για τον αλγόριθμο επιθέσεων A,

μπορεί να εκφραστεί ως:

ASRA =
1

N

N∑
i

1[f(A(xi)) ̸= yi]

1.2.2 Μια ταξινομία των Ανταγωνιστικών Επιθέσεων

Προτού προχωρήσουμε περαιτέρω στην παρουσίαση του απαραίτητου υπόβαθρου, είναι αναγκαίο

να αποσαφηνίσουμε το εξής: στην προηγούμενη συζήτηση μας, όπου αναφέραμε τον αλγόριθμο PGD,
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θεωρήσαμε ότι κάποιος που θέλει να επιτεθεί σε ένα σύστημα έχει πρόσβαση στα gradients του μον-
τέλου. Ωστόσο, η εικασία ότι τέτοιου είδους πληροφορία θα είναι πάντα διαθέσιμη σε πραγματικές

εφαρμογές δεν είναι εντελώς εύστοχη. Τα συστήματα του πραγματικού κόσμου διατηρούν κρυφές

τέτοιου είδες πληροφορίες, και η γνώση του επιτιθέμενου είναι αρκετά περιορισμένη. Επομένως, οι

ανταγωνιστικές επιθέσεις γενικά μπορούν να διχοτομηθούν σε δύο μεγάλες κατηγορίες: Τις επιθέσεις

πλήρους γνώσης (White-box Attacks) και τις επιθέσεις μαύρου κουτιού (Black-box Attacks). Στην
πρώτη κατηγορία, ο επιτιθέμενος γνωρίζει τα πάντα για το απειλούμενο σύστημα: τα βάρη του, το

σύνολο δεδομένων εκπαίδευσης κλπ. Η δεύτερη όμως, μελετά περιπτώσεις όπου ο επιτιθέμενος μπορεί

μόνο να εκμεταλλευθεί το σύστημα μέσω ερωτημάτων (queries), δίνοντας ως είσοδο μια εικόνα x και
λαμβάνοντας την έξοδο του δικτύου fθ(x).

Ποια όμως είναι τα κίνητρα να ερευνήσουμε κάθε μια από τις δύο περιπτώσεις ; Από άποψη πραγ-

ματικών εφαρμογών, η κατηγορία επιθέσεων τύπου black-box είναι πιο ρεαλιστική, αναδεικνύοντας
τους κινδυνεύουν που μπορεί να αντιμετωπίσει ένα μοντέλο που δίνει ανοικτή πρόσβαση σε ελάχιστη

πληροφορία. Ωστόσο, οι επιθέσεις white-box είναι πιο ενδιαφέρουσες για την μελέτη ευρωστίας:
Αν καταφέρουμε να δημιουργήσουμε κάποια άμυνα η οποία έχει αντοχή απέναντι σε τέτοιους ανταγ-

ωνιστές, τότε αναμένουμε πως η προσφερόμενη ευρωστία θα γενικεύεται και απέναντι σε επιθέσεις

που έχουν φτιαχτεί μέσω πολύ πιο φειδωλής γνώσης.

Στην παρούσα εργασία, εμείς θα ασχοληθούμε με τις επιθέσεις τύπου white-box, καθώς σκοπός μας
είναι να εντρυφήσουμε στην διαδικασία αξιολόγησης των ανταγωνιστικών αμυνών και στην ιδιαίτερα

προβληματική τους υπόσταση. Ωστόσο, ο αναγνώστης μπορεί στο Κεφάλαιο 3 να βρει μια εισαγωγή

στο πως κανείς μπορεί να προσεγγίσει την δημιουργία επιθέσεων όταν δεν γνωρίζει τα gradients (ως
προς την είσοδο) του συστήματος.

1.2.3 Ανταγωνιστικές ΄Αμυνες

Η ανακάλυψη του φαινομένου των ανταγωνιστικών παραδειγμάτων κέντρισε την προσοχή των ερε-

υνητών, οι οποίοι έκτοτε προσπαθούν πυρετωδώς να αμβλύνουν την ζημία που μπορούν να προκαλέ-

σουν τέτοιες επιθέσεις στα Νευρωνικά Δίκτυα. Ο απώτερος σκοπός, φυσικά, είναι η κατασκευή

εύρωστων μοντέλων, τα οποία δεν είναι τόσο ευαίσθητα σε μικρές διαταραχές των εισόδων τους. Σε

αυτό το κεφάλαιο, επιχειρούμε να κάνουμε μία σύντομη εισαγωγή στην περιοχή των Ανταγωνιστικών

Αμυνών, διευκρινίζοντας αρχικά τις διαφορές μεταξύ του να εκπαιδεύουμε μοντέλα, που απλά επιθυ-

μούμε να γενικεύουν καλά σε καινούρια δεδομένα, και του να εκπαιδεύουμε εύρωστα μοντέλα, που

επιπλέον πρέπει να είναι ομαλά απέναντι σε ℓp-φραγμένες διαταραχές.

Στην απλή περίπτωση, η εκπαίδευση των νευρωνικών δικτύων γίνεται μέσω της αναζήτησης των

παραμέτρων θ οι οποίες ελαχιστοποιούν του αναμενόμενο ρίσκο, πάνω στην κατανομή των δεδομένων:

θ∗ : min
θ

E(x,y)∼pdata

[
L(fθ(x), y;θ)

]
(1.5)

Ωστόσο, αυτός ο τρόπος εκπαίδευσης βρίσκει παραμέτρους που αντιστοιχούν σε άκρως ευάλωτα,

απέναντι σε ℓp-φραγμένες διαταραχές, συστήματα. ΄Ενας τρόπος να προσεγγίσουμε το πρόβλημα της

εκπαίδευσης νευρωνικών δικτύων που να είναι εύρωστα απέναντι σε τέτοιες επιθέσεις, είναι να μάθουμε

παραμέτρους οι οποίες μειώνουν το αναμενόμενο ρίσκο απέναντι σε ℓp-φραγμένες επιθέσεις, ως εξής:

θ∗ : min
θ

E(x,y)∼pdata

[
max

x′:∥x−x′∥p≤ϵ
L(fθ(x′), y;θ)

]
(1.6)

Η εν λόγω αντικειμενική συνάρτηση έχει το πλεονέκτημα του ότι έχει μια αρκετά διαισθητική βάση:

Αν επιθυμούμε να προσδώσουμε ℓp-φραγμένη ευρωστία στο δίκτυο, τότε το δίκτυο πρέπει να ΄μάθει΄
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Figure 1.2. Οπτικοποίηση των οριογραμμών απόφασης (decision boundaries). Η απλή ευθεία γραμμή δεν
είναι αρκετή για να εξασφαλίσει καλή απόδοση απέναντι σε ℓp-φραγμένες επιθέσεις.

αντιμετωπίζοντας τέτοιες επιθέσεις κατά την εκπαίδευσή του. Η παραπάνω τυποποίηση απαρτίζεται

από 2 επιμέρους προβλήματα: το εξωτερικό (ελαχιστοποίησης) και το εσωτερικό (μεγιστοποίησης).

Το εσωτερικό μπορεί να λυθεί προσεγγιστικά με οποιονδήποτε τρόπο βρίσκει ανταγωνιστικές επιθέ-

σεις, π.χ. όπως τον αλγόριθμο του PGD, ενώ το εξωτερικό μπορεί κατά τα γνωστά να λυθεί όπως
και όταν εκπαιδεύουμε νευρωνικά με τον καθιερωμένο τρόπο π.χ μέσω Stochastic Gradient Descent.
Πράγματι, οι Madry et al. [Mad+18] εκμεταλλευθήκαν την παραπάνω τυποποίηση για να δημιουργή-
σουν εύρωστα δίκτυα, λύνοντας το εσωτερικό πρόβλημα μεγιστοποίησης μέσω του PGD, θέτοντας
μικρό αριθμό βημάτων. Η τεχνική αυτή ονομάστηκε Ανταγωνιστική Εκπαίδευση (Adversarial Train-
ing) και αποτελεί, ως και σήμερα, έναν εκ των πιο καρποφόρων τρόπων για να βελτιωθεί η ευρωστία
των νευρωνικών.

Γενικότερα, η ανταγωνιστική εκπαίδευση φιλοδοξεί να λύσει ένα αρκετά πολυπλοκότερο πρόβλημα,

όπως μπορεί να απεικονίσει παραστατικά η Εικόνα 1.2: Στα γραμμικά διαχωρίσιμα δεδομένα της

εικόνας, ένας κατηγοριοποιητής που είναι ευθεία γραμμή δεν αρκεί πλέον να λύσει το πρόβλημα εύρ-

ωστα. Αντίθετα, η νέα οριογραμμή απόφασης, σύμφωνα με το δεξί σχήμα, πρέπει να γίνει αρκετά πιο

σύνθετη ώστε τα ανταγωνιστικά παραδείγματα των δεδομένων εκπαίδευσης να κατηγοριοποιούνται

σωστά. Επομένως, η ευρωστία απαιτεί γενικά πιο πολύπλοκα μοντέλα, με μεγαλύτερη χωρητικότητα

(capacity), από τα μοντέλα που χρειαζόμαστε στην απλή κατηγοριοποίηση εικόνας.

1.2.4 Αξιολόγηση ℓp−φραγμένης Ευρωστίας Νευρωνικών Δικτύων

Η αξιολόγηση της πραγματικής ℓp-ευρωστίας ενός νευρωνικού δικτύου είναι μια διαδικασία άκρως

προβληματική. Γενικά, η ευρωστία ενός συστήματος, θεωρητικά, μπορεί να εκτιμηθεί μέσω της επό-

μενης εξίσωσης, απέναντι σε ένα σύνολο από δεδομένα Dtest = (xi, yi)
N
i=1 που το μοντέλο δεν έχει

δει κατά την εκπαίδευσή του:

RobAcc(f) =
1

N

N∑
i=1

min
x′
i:∥xi−x′

i∥p≤ϵ
1[f(x′

i) = yi] (1.7)

΄Οπως φαίνεται, η αξιολόγηση απαιτεί την λύση ενός προβλήματος βελτιστοποίησης μέσα στον χώρο

αναζήτησης των επιθέσεων (που είναι το συνεχές σύνολο της ℓp-μπάλας), το οποίο όμως δεν μπορεί

να λυθεί ακριβώς για παραμετρικά μοντέλα που αναπαρίστανται μέσω βαθιών νευρωνικών δικτύων. Ο

μόνος τρόπος να προσεγγίσει κάποιος το πρόβλημα είναι ο εξής: επιστρατεύοντας κάποιον αλγόριθμο

που δημιουργεί ℓp-φραγμένες επιθέσεις, το πρόβλημα ελαχιστοποίησης μπορεί να λυθεί προσεγγιστικά

μέσω της χρήσης των τοπικών ακροτάτων που επιστρέφει ο αλγόριθμος αυτός. Αφού επιτευχθεί αυτό,
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ο αμυνόμενος μπορεί να εκτιμήσει την ευρωστία του συστήματός του μόνο μέσω ενός άνω φράγματος,

το οποίο ελπίζει να μην απέχει πολύ από την πραγματική ευρωστία.

Η παραπάνω συζήτηση αναδεικνύει ένα ιδιαίτερα σημαντικό ζήτημα: η εκτίμηση της ευρωστίας ενός

νευρωνικού δικτύου μπορεί να γίνει μόνο προσεγγιστικά, και η ποιότητα της εκτίμησης που λαμβά-

νουμε είναι άρρηκτα συνδεδεμένη με την ισχύ του αλγορίθμου που χρησιμοποιούμε για να λύσουμε το

πρόβλημα βελτιστοποίησης. Αδύναμοι αλγόριθμοι είναι φυσικό πως θα προσφέρουν αδύναμες λύσεις,

επομένως τα άνω φράγματα που απορρέουν από χρήση τέτοιων αλγορίθμων είναι αρκετά χαλαρά και

ο αμυνόμενος παραπλανείται, έχοντας την ψευδαίσθηση πως η μέθοδος του προσδίδει ευρωστία στο

σύστημα. Η δυσκολία, φυσικά, έγκειται στο γεγονός πως η ισχύς ενός αλγορίθμου έχει συσχέτιση

με το ποιο σύστημα είναι υπό αξιολόγηση: Πράγματι, κάθε σύστημα έχει τις δικές του λύσεις σε αυτό

το πρόβλημα ελαχιστοποίησης, τα δικά του ανταγωνιστικά παραδείγματα. Δυστυχώς, δεν υπάρχει

κάποια καθολική επίθεση που να λύνει αυτό το πρόβλημα ελαχιστοποίησης το ίδιο καλά για όλα τα

συστήματα. Το ζήτημα αυτό, εν κατακλείδι, είναι γνωστό στην βιβλιογραφία ως υπερεκτίμηση

ευρωστίας (robustness overestimation) και όπως γίνεται αντιληπτό καθιστά ένα δριμύτατο εμπόδιο
στην έρευνα που σχετίζεται με τις ανταγωνιστικές άμυνες.

Το ζήτημα της υπερεκτίμησης ευρωστίας αποτέλεσε το επίκεντρο πολλών δουλειών [Ath+18;
Ues+18; Tra+20] στο οποίο οι αντίστοιχοι συγγραφείς κατάφεραν να παρακάμψουν ανταγωνιστικές
άμυνες, παρ΄ότι φαινομενικά οι άμυνες αυτές (στις αρχικές δημοσιεύσεις τους) ανέφεραν μεγάλα

ποσοστά ευρωστίας. Οι άμυνες που στοχοποιήθηκαν μέσα σε αυτές τις τρείς δουλειές ακολουθούσαν

ένα μοτίβο: Για να προσφέρουν ευρωστία στο σύστημα, χρησιμοποιούσαν κάποιο τρόπο ο οποίος εν

τέλει κατέστρεφε τα gradients ως προς την είσοδο, με αποτέλεσμα αλγόριθμοι που ακολουθούσαν τα
gradients, όπως π.χ. ο PGD, αποτύγχαναν οικτρά να βρουν ανταγωνιστικές επιθέσεις. Ενώ πολλές
άμυνες αποδείχθηκαν εκ των υστέρων ανούσιες, προσφέροντας μηδενική ευρωστία, η Ανταγωνιστική

΄Αμυνα έχει αντέξει στο πέρασμα του χρόνου, αποτελώντας έναν από τους βασικότερους (και ασφαλέσ-

τερους τρόπους) που έχει κανείς στην φαρέτρα του ώστε να βελτιώσει την ευρωστία του συστήματός

του.

Εμβαθύνοντας περαιτέρω στο θέμα αυτό, πρέπει να γίνει κατανοητό πως οποιαδήποτε επίθεση

επιστρέφει εκτιμήσεις που πάσχουν από αυτό το πρόβλημα (καθώς εμείς λαμβάνουμε μόνο άνω φράγ-

ματα της πραγματικής μετρικής): το ζητούμενο είναι να βρούμε αξιόπιστους αλγόριθμους επίθεσης,

που επιστρέφουν όσο πιο στενά άνω φράγματα γίνεται. Το πόσο αξιόπιστος είναι ένας αλγόριθμος για

μια άμυνα είναι κάτι που μπορεί να αξιολογηθεί μόνο από το πέρασμα του χρόνου: Αν πολλές προσπά-

θειες εύρεσης πιο δυνατών επιθέσεων αποτυγχάνουν, τότε σημαίνει ότι ο αλγόριθμος έχει βρει αρκετά

ικανοποιητικές εκτιμήσεις. Εδώ αξίζει να αναλύσουμε πιο διεξοδικά στις εκδοχές του προβλήματος της

υπερεκτίμησης ευρωστίας που μπορεί να παρατηρήσει κάποιος στην αξιολόγηση μιας ανταγωνιστικής

άμυνας. Πρώτον, υπάρχουν οι άμυνες που δεν είναι καθόλου εύρωστες και το μόνο που καταφέρνουν

είναι να έχουν ισχυρή απόδοση απέναντι στις επιθέσεις που βασίζονται στα gradients. Για αυτές τις
άμυνες, η βιβλιογραφία έχει προτείνει μια πληθώρα από τρόπους ανίχνευσης τους, π.χ. οι Athalye et
al. [Ath+18] συστήνουν πως τέτοιες άμυνες μπορούν να ανιχνευθούν αν ο αλγόριθμος επίθεσης δεν
καταφέρνει να βρει ανταγωνιστικά παραδείγματα ακόμα και αν μεγαλώσουμε ανεξέλεγκτα το φράγμα

αναζήτησης ϵ ή οι αλγόριθμοι black-box είναι πιο επιτυχείς από τους white-box. Οι εν λόγω άμυνες δεν
παρουσιάζουν κανένα ενδιαφέρον, αφού πλέον είναι εύκολα διαχωρίσιμες, επιστρατεύοντας αυτές τις

τεχνικές ανίχνευσης. Εμείς, στην εργασία αυτή, θα ασχοληθούμε με την δεύτερη κατηγορία αμυνών:

αυτές που προσφέρουν κάποιο βαθμό ευρωστίας, απλά βρίσκοντας ισχυρότερους αλγόριθμους επιθέ-

σεις μπορούμε να προσφέρουμε πιο στενά άνω φράγματα της ℓp−ευρωστίας τους και επομένως, έχουμε
την δυνατότητα να τις ταξινομήσουμε ορθότερα μεταξύ τους.
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1.3 Η συνεισφορά μας

RobustBench Evaluation. Το προηγούμενο σκέλος της παρουσίασης αναδεικνύει εμφατικά το
πόσο περίπλοκη διαδικασία είναι η αξιολόγηση της ℓp-ευρωστίας. Το σημαντικότερο βήμα προς την

συστηματοποιήση της διαδικασίας αυτής έγινε από την δουλειά των Croce et al. [Cro+21]. Στην
μελέτη αυτή, οι εν λόγω ερευνητές χτίζουν το RobustBench benchmark, όπου η αξιολόγηση των
αμυνών γίνεται μέσω της επίθεσης AutoAttack, που έχει προταθεί από τους Croce and Hein [CH20b].
Η επίθεση AutoAttack, είναι μια συλλογή από τρεις white-box και μια black-box επιμέρους επιθέ-
σεις. Σε πειράματα μεγάλης κλίμακας, αναδείχθηκε εμπειρικά πως αυτή η μέθοδος κατάφερνε συνεπώς

να επιστρέψει πιο αξιόπιστα φράγματα για μια τεράστια συλλογή μοντέλων. Αυτή η συνέπεια στην

ποιότητα της αξιολόγησης, ανεξαρτήτως του μοντέλου υπό αξιολόγηση, προσφέρθηκε ως ισχυρό εμ-

πειρικό διαπιστευτήριο για την ικανότητα της μεθόδου να βρίσκει πιο δυνατές ανταγωνιστικές επιθέ-

σεις, και επομένως να μπορεί να αξιοποιηθεί ως ασφαλέστερο εργαλείο αξιολόγησης της ℓp-ευρωστίας.

Είναι σημαντικό, ωστόσο, να αποσαφηνίσουμε πως παρά την γενικότερη αποδοχή της αξιολόγησης

μέσω της επίθεσης AutoAttack, είναι πιθανό η μέθοδος αυτή να αποτυγχάνει για ορισμένες άμυνες,
π.χ. γι αυτές που εκμεταλλεύονται κάποιο αθέμιτο μέσο για να κερδίσουν εικονική ευρωστία, όπως π.χ.

να χαλάσουν τα gradients που επιστρέφει το δίκτυο. Γι΄ αυτό ακριβώς τον λόγο, δεν πρέπει να θεω-
ρούμε το AutoAttack ως πανάκεια, που μπορεί να βρίσκει πάντα αρκετά στενά φράγματα, ανεξαρτήτως
μοντέλου, αλλά πιο πολύ ως μια αρκετά αξιόπιστη μέθοδο για να υποβάλλουμε την άμυνα μας από

έναν πρώτο γύρο αξιολόγησης.

Εν κατακλείδι, η τυπική διαδικασία για την αξιολόγηση μιας νέας προτεινόμενης ανταγωνιστικής

άμυνας πλέον περιλαμβάνει την υποβολή της άμυνας στο RobustBench benchmark. Οι ανταγωνιστικές
άμυνες ταξινομούνται ως προς τον βαθμό ανθεκτικότητας τους απέναντι στην επίθεση AutoAttack,
συνιστώντας έναν πίνακα βαθμολογίας στο επίσημο site.

1.3 Η συνεισφορά μας

Το επίκεντρο της μελέτης μας είναι ο αλγόριθμος Projected Gradient Descent (PGD) και η
αξιοποίηση αυτού για την δημιουργία ℓp-φραγμένων ανταγωνιστών. Ο αλγόριθμος PGD απαρτίζεται
από αρκετές σχεδιαστικές επιλογές οι οποίες δύνανται να επηρεάσουν σε μεγάλο βαθμό το τελικό

αποτέλεσμα, ως προς την ισχύ των ανταγωνιστικών παραδειγμάτων. Οι 4 κύριες σχεδιαστικές επιλογές

είναι:

• Το μέγεθος του βήματος η,

• Ο βελτιστοποιητής (optimizer),

• Η μέθοδος αρχικοποίησης του αλγορίθμου, δηλαδή από ποιο σημείο ξεκινά η αναζήτηση για την
εύρεση ανταγωνιστικού παραδείγματος, και

• Η συνάρτηση κόστους που βελτιστοποιεί ο αλγόριθμος, η οποία αντικαθιστά την πραγματική
μετρική που θέλουμε να ελαχιστοποιήσουμε, δηλ. την μη συνεχή μετρική 0-1, που παίρνει την

τιμή 0 όταν το τελικό αποτέλεσμα κατηγοριοποιείται με διαφορετική ετικέτα από αυτήν της

αρχικής εικόνας.

Το κύριο μέλημα μας είναι να κατανοήσουμε τον ρόλο της τέταρτης επιλογής, δηλαδή την επίδραση

που ασκεί η αντικαταστάτρια αντικειμενική συνάρτηση στην απόδοση του αλγόριθμου. ΄Ενα άκρως

σημαντικό εύρημα, στο οποίο στηρίζουμε την πειραματική μας δουλειά, είναι αυτό των Croce and
Hein [CH20b], όπου εξετάζουν την αποτελεσματικότητα 3 διαφορετικών συναρτήσεων κόστους, και
το συμπέρασμα που μπορεί να εξαχθεί είναι πως καμία από τις τρείς επιλογές δεν είναι εκ των προτέρων

ανώτερη από τις υπόλοιπες: Η επίδοση τους εξαρτάται από πολλούς παράγοντες, όπως το μοντέλο
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υπό εξέταση, το σύνολο δεδομένων εκπαίδευσης κλπ. Οι τρεις διαφορετικές συναρτήσεις που χρησι-

μοποιούν οι Croce and Hein είναι: η cross-entropy (CE), η Carlini-Wagner (CW, γνωστή και ως
margin) [CW17] και η Difference of Logits Ratio (DLR) που προτάθηκε από τους ίδιους [CH20b].
Οι συναρτήσεις αυτές δίνονται από τους παρακάτω τύπους:

CE(z, y) = − log p(y|x) = −zy + log

C∑
j=1

exp(zj)

CW(z, y) = −zy +max
j ̸=y

zj

DLR(z, y) = −zy +maxj ̸=y zj
zπ1 − zπ3

(1.8)

όπου zπ: είναι το διάνυσμα των logits του δικτύου (δηλ. η αναπαράσταση του τελευταίου στρώματος
στο δίκτυο), ταξινομημένη σε φθίνουσα σειρά.

Θέτοντας στο στόχαστρο μας αυτήν την αδυναμία μιας μοναδικής αντικαταστάτριας συνάρτησης να

προσεγγίσει επαρκώς καλά την 0-1 μετρική με καθολικό τρόπο, δηλαδή για όλα τα διαφορετικά μοντέλα,

η κινητήρια ιδέα της μελέτης μας είναι να συνδυάσουμε διαφορετικές αντικειμενικές συναρτήσεις στον

αλγόριθμο PGD. Κατά αυτόν τον τρόπο, η διαδικασία θα γίνει πιο ανθεκτική απέναντι σε τυχόν
επιβλαβείς παράγοντες, συνδεδεμένους με την γεωμετρία των επιμέρους συναρτήσεων, που μπορεί να

επιδράσουν αρνητικά στο τελικό αποτέλεσμα.

Ο συνδυασμός διαφορετικών συναρτήσεων κόστους μπορεί να πραγματοποιηθεί με μια πληθώρα

τρόπων, ωστόσο η δουλεία αυτής της διπλωματικής βασίζεται σε μια απλή ιδέα. Αντί να χρησι-

μοποιήσουμε μόνο μια συνάρτηση κόστους σε όλη την διάρκεια του PGD, χωρίζουμε τον αριθμό
των επαναλήψεων T σε K (ίσα ως προς την διάρκεια) στάδια. Σε κάθε στάδιο, ο αλγόριθμος PGD
βελτιστοποιεί και μια διαφορετική συνάρτηση κόστους, ξεκινώντας από το σημείο όπου τελείωσε το

προηγούμενο στάδιο. Η διαδικασία αυτή, μπορεί να εκφραστεί εξής για K στάδια:

L(x, y) =



L1(x, y), if t < T
K

L2(x, y), if T
K ≤ t < 2T

K

.

.

.

LK(x, y), if (K−1)T
K ≤ t < T

Στην δουλειά μας θα θεωρήσουμε τις περιπτώσεις όπου K = 2 ή K = 3, χρησιμοποιώντας ως

αντικειμενικές συναρτήσεις τις πιο κοινές επιλογές στην βιβλιογραφία, δηλαδή τις συναρτήσεις CE,
CW και DLR.
Από εδώ και στο εξής, η μέθοδος αλλαγής αντικειμενικής συνάρτησης θα συμβολίζεται ως εξής:

PGDL1&L2&...&LK
, επομένως αν ο αλγόριθμος χρησιμοποιεί μόνο το CE loss θα αναφέρεται ως

PGDCE, ενώ αν αλλάζουμε το loss απο CE σε CW θα αναφέρουμε την μέθοδο ως PGDCE&CW.

1.3.1 Πειραματικό Σκέλος

Προτού εμβαθύνουμε στο πειραματικό σκέλος, θα παρουσιάσουμε την συλλογή από μοντέλα στα

οποία ελέγξαμε την απόδοση των προτεινόμενων μεθόδων. Τα πειράματα μας διεξάγονται πάνω σε 15

μοντέλα τα οποία έχουν εκπαιδευτεί για να είναι εύρωστα απέναντι σε ℓ∞-φραγμένες επιθέσεις, όπου ο

επιτιθέμενος μπορεί να προσθέσει θόρυβο στην εικόνα με μέγιστη ℓ∞-νόρμα ίση με ϵ = 8/255. Τα μον-

τέλα που είναι προεκπαιδευμένα και εύκολα διαθέσιμα μέσω της βιβλιοθήκης RobustBench, προέρχον-
ται από τις εξής ερευνητικές δουλειές: [Eng+19; Car+19; Hen+19; Zha+19a; Zha+19b; Wu+20;
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Seh+22; AF20; Dai+22; Gow+21; Hua+21; Zha+21; RM21; Add+21; Seh+20]. Επειδή κάθε
μια από τις παραπάνω δημοσιεύσεις μπορεί να συνδέεται με πολλά διαφορετικά μοντέλα, π.χ. επειδή

ελέγχουν την εκάστοτε μέθοδο σε πολλές αρχιτεκτονικές ή σε διαφορετικά budget, στον παρακάτω
πίνακα παραθέτουμε ακριβώς τα μοντέλα που χρησιμοποιούμε, συμπεριλαμβάνοντας το αναγνωριστικό

τους (ModelID) από το οποίο συνοδεύονται στην βιβλιοθήκη RobustBench.

# Paper Model ID in RobustBench leaderboard Standard Acc. (%)

1 [Eng+19] Engstrom2019Robustness 87.03
2 [Car+19] Carmon2019Unlabeled 89.69
3 [Hen+19] Hendrycks2019Using 87.11
4 [Zha+19a] Zhang2019You 87.20
5 [Zha+19b] Zhang2019Theoretically 84.92
6 [Wu+20] Wu2020Adversarial 85.36
7 [Seh+22] Sehwag2021Proxy_R18 84.59
8 [AF20] Andriushchenko2020Understanding 79.84
9 [Dai+22] Dai2021Parameterizing 87.02
10 [Gow+21] Gowal2021Improving_28_10_ddpm_100m 87.50
11 [Hua+21] Huang2021Exploring_ema 91.23
12 [Zha+21] Zhang2020Geometry 89.36
13 [RM21] Rade2021Helper_R18_extra 89.02
14 [Add+21] Addepalli2021Towards_RN18 80.24
15 [Seh+20] Sehwag2020Hydra 88.98

Table 1.1. Αντιστοίχιση των ερευνητικών δουλειών με τα ModelID των μοντέλων που χρησιμοποιούμε.
Παραθέτουμε επίσης το ποσοστό επιτυχίας του κάθε μοντέλου στο καθαρό test-set του CIFAR-10.

Σε αυτό το σημείο κρίνουμε σκόπιμο να παρουσιάσουμε ένα συνθετικό παράδειγμα, έχοντας ως

στόχο να θεμελιώσουμε πιο διαισθητικά την μέθοδο μας και πως αυτή μπορεί να βελτιώσει τον κλασικό

αλγόριθμο PGD για την εύρεση ανταγωνιστικών παραδειγμάτων. Ας θεωρήσουμε ένα παράδειγμα 2
διαστάσεων που σκοπός είναι να διαχωριστούν τα δεδομένα σε 3 κλάσεις. Θεωρούμε ένα γραμμικό

μοντέλο κατηγοριοποίησης, το οποίο παίρνει εισόδους x = (x1, x2)
T
και δίνει ως έξοδο το διάνυσμα

των logits z = (z1, z2, z3)
T
, που δείχνουν πόσο πιθανό είναι η είσοδος να ανήκει στην καθεμιά

από τις 3 κλάσεις. Το γραμμικό μοντέλο υπολογίζει το διάνυσμα εξόδου μέσω ενός γραμμικού

μετασχηματισμού: z = Wx, όπου:

W =

 0.3 −0.3

1 −0.01

−0.25 0.75


Το σύστημα δέχεται ως είσοδο το σημείο x = (−0.45,−0.8), το οποίο προέρχεται από την κλάση

y1. Μέσω της γραμμικής σχέσης υπολογίζουμε πως z = (0.105,−0.442,−0.4875), επομένως το

σύστημα κατηγοριοποιεί σωστά το δεδομένο εφόσον z1 > max(z2, z3). Στόχος μας τώρα είναι να

δημιουργήσουμε μια διαταραχή, που να απέχει το πολύ κατά 0.4 όσον αφορά την ℓ2-νόρμα από την

είσοδο x, και να είναι τέτοια ώστε η νέα (διαταραγμένη) είσοδος που προκύπτει να αλλάζει την

απόφαση του γραμμικού ταξινομητή. Για να το πετύχουμε αυτό, εκτελούμε τον αλγόριθμο PGD,
χρησιμοποιώντας 50 επαναλήψεις με μέγεθος βήματος η = 2 ∗ 0.4 = 0.8. Αρχικά, θεωρούμε 2

περιπτώσεις: Στην πρώτη, εκτελούμε τον αλγόριθμο χρησιμοποιώντας την αντικειμενική συνάρτηση

CE, ενώ στην δεύτερη χρησιμοποιούμε την συνάρτηση CW. Για λόγους πληρότητας, σχεδιάζουμε την
μορφή των level sets αυτών τον 2 συναρτήσεων στο πάνω μέρος της Εικόνας 1.3.
Το κάτω αριστερά σχήμα της Εικόνας 1.3 δείχνει τα αποτελέσματα της εκτέλεσης του αλγόριθμου

PGD. ΄Οπως φαίνεται, ενώ η συνάρτηση CE καταφέρνει να βρει μια διαταραχή που αλλάζει την απόφαση
του classifier, η άλλη επιλογή αντικειμενικής συνάρτησης αποτυγχάνει καθώς τα gradients δείχνουν
συνεχώς ως προς μια κατεύθυνση, η οποία επιστρέφει ένα σημείο που εξακολουθεί να κατηγοριοποιείται
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σωστά. Αυτό είναι ένα απλό παράδειγμα του πως μπορεί να αποτύχει ο PGD όταν χρησιμοποίει μονάχα
μια συνάρτηση κατά την διάρκεια της βελτιστοποίησης.

΄Οταν όμως εκτελούμε τον αλγόριθμο PGD σύμφωνα με την μέθοδο εναλλαγής που προτείνουμε
(κάτω δεξιά σχήμα στην Εικόνα 1.3), η διαδικασία βρίσκει επιτυχώς μια διαταραχή που παραπλανεί το

σύστημα. Αυτό συμβαίνει παρόλο που για το πρώτο μισό των επαναλήψεων ο αλγόριθμος χρησιμοποιεί

το προβληματικό loss CW. Αυτό το παράδειγμα έρχεται να δείξει πιο απλουστευμένα πως η μέθοδος
που προτείνουμε είναι ένας τρόπος να καταστήσουμε τον αλγόριθμο PGD πιο ανθεκτικό απέναντι στις
υπερπαραμέτρους του, όπως είναι η αντικειμενική συνάρτηση που βελτιστοποιεί.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

CE(x, y) = −z1 + log
∑

j exp(zj)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

CW(x, y) = −z1 +max(z2, z3)

PGDCE

PGDCW

S(x) = {x′ : ||x− x′||2 = ϵ}

x(0) = x
x(1) = x(2) = ... = x(50)

x(1)

x(2)x(50)

Class 1

Class 2

Class 3

PGDCW&CE

S(x) = {x′ : ||x− x′||2 = ϵ}

x(0) = x

x(1) = x(2) = ... = x(25)
x(26)

x(50) Class 2

Class 1

Class 3

Figure 1.3. Επάνω σειρά: Τα level sets των συναρτήσεων CE και CW, θεωρώντας ως πραγματική κλάση
την y1. Κάτω σειρά: (Αριστερά) Η αλληλουχία σημείων που επιστρέφει το PGD, δείχνοντας την πορεία
της βελτιστοποίησης, για τις περιπτώσεις όπου εκτελούμε τον PGD με μονάχα ένα loss. Οι κόκκινοι κύκλοι
συμβολίζουν την εκτέλεση με CE, ενώ το κίτρινο τρίγωνο αναπαριστά την εκτέλεση με CW. (Δεξιά) Η πορεία
της βελτιστοποίησης του PGD όταν εναλλάσσουμε αντικειμενική συνάρτηση στα μέσα της διαδικασίας.

Σαν πρώτο βήμα της πειραματικής ανάλυσης, εξετάζουμε την απολεσματικότητα της προτεινόμενης

μεθόδου εναλλαγής αντικειμενικής συνάρτησης κατά την διάρκεια του PGD, σε σχέση με τις τυπικές
εκδοχές του αλγορίθμου που χρησιμοποιούν μονάχα μια συνάρτηση. Τα αποτελέσματα φαίνονται

στον Πίνακα 1.2, όπου αναδεικνύεται εμφανώς το πλεονέκτημα της μεθόδου μας. Συγκεκριμένα, όταν

συνδυάζουμε την συνάρτηση CE με την CW (στήλη PGDCE&CW) ή την DLR (στήλη PGDCE&DLR)

ή και τις 2 (στήλη PGDCE&CW&DLR), ο αλγόριθμος επιστρέφει εμφανώς καλύτερα αποτελέσματα από

τα αντίστοιχα των εκδοχών που βελτιστοποιούν το ίδιο loss σε όλη την διάρκεια του αλγόριθμου.
Επεκτείνουμε την σύγκριση της μεθόδους μας με τις πιο δημοφιλείς ℓ∞-φραγμένες επιθέσεις που

υπάρχουν στην βιβλιογραφία. Στο πρώτο πείραμα, συγκρίνουμε την καλύτερη επίθεση μας (όπου κατά

μέσο όρο είναι η PGDCE&CW&DLR) με τις white-box συνιστώσες της επίθεσης AutoAttack [CH20b],
δηλαδή τις επιμέρους επιθέσεις APGDCE,APGDDLR και την FAB [CH20a]. Σε αυτό το πείραμα,
επίσης, κρατάμε σταθερό το βήμα μεγέθους όταν εκτελούμε την μέθοδο μας, ενώ ο optimizer μένει

26



1.3.1 Πειραματικό Σκέλος

K=1 K=2 K=3

Model PGDCE PGDCW PGDDLR PGDCE&CW PGDCE&DLR PGDCW&DLR PGDCE&CW&DLR

[Eng+19] 52.24 52.59 53.55 50.29 50.22 52.63 50.27
[Car+19] 62.09 60.86 61.16 60.00 60.00 60.88 59.97
[Hen+19] 57.38 56.61 57.47 55.41 55.37 56.55 55.35

[Zha+19a] 46.28 47.44 47.97 45.33 45.32 47.42 45.32
[Zha+19b] † 55.47 54.21 54.39 53.45 53.43 54.23 53.41

[Wu+20] 59.05 56.93 57.02 56.47 56.44 56.94 56.42
[Seh+22] 58.68 57.22 57.89 56.06 56.05 57.21 56.06

[AF20] 47.14 46.62 47.62 44.56 44.53 46.62 44.50
[Dai+22] 63.98 63.23 63.83 61.80 61.76 63.23 61.77

[Gow+21] 65.79 65.20 65.76 63.86 63.85 65.20 63.84
[Hua+21] 64.95 64.15 64.64 63.09 63.03 64.12 63.06
[Zha+21] 66.67 60.40 60.59 59.78 59.69 60.37 59.69

[RM21] 61.48 58.51 58.56 57.77 57.74 58.51 57.74
[Add+21] 56.00 51.88 51.97 51.45 51.43 51.86 51.41
[Seh+20] 59.86 58.41 58.57 57.66 57.61 58.40 57.61

Table 1.2. Συγκρίνουμε τα αποτελέσματα του αλγορίθμου PGD όταν χρησιμοποιείται μονάχα ένα loss
(K = 1) σε σχέση με την μέθοδο εναλλαγής που προτείνουμε. (†) Αυτό το μοντέλο επιτίθεται με φράγμα
ϵ = 0.031.

και αυτός ίδιος με το αρχικό setting (δηλαδή το απλό gradient χωρίς momentum. Παραθέτουμε
τα αποτελέσματα αυτής της σύγκρισης στον Πίνακα 1.3, όπου φαίνεται ξεκάθαρα πως η επίθεση

PGDCE&CW&DLR δημιουργεί πιο δυνατά ανταγωνιστικά παραδείγματα, παρά το γεγονός πως την

εκτελούμε με default υπερπαραμέτρους. Αυτή η σύγκριση επιδεικνύει την προοπτική συμπερίληψης
της επίθεσής μας σε συλλογές επιθέσεων, όπως το AutoAttack, που συχνά χρησιμοποιούνται για την
αξιολόγηση της ευρωστίας νευρωνικών δικτύων.

Model APGDCE APGDDLR FAB PGDCE&CW&DLR ∆

[Eng+19] 51.72 52.67 50.67 50.27 -0.40
[Car+19] 61.74 60.67 60.88 59.97 -0.70
[Hen+19] 57.23 57.03 55.55 55.35 -0.20

[Zha+19a] 46.15 47.39 45.83 45.32 -0.51
[Zha+19b] † 55.28 53.52 53.92 53.41 -0.11

[Wu+20] 58.90 56.68 56.82 56.42 -0.26
[Seh+22] 58.38 57.37 56.27 56.06 -0.21

[AF20] 46.93 47.08 44.72 44.50 -0.22
[Dai+22] 63.93 63.44 62.27 61.77 -0.50

[Gow+21] 65.63 65.14 64.14 63.84 -0.30
[Hua+21] 64.55 64.14 64.45 63.06 -1.08
[Zha+21] 66.37 60.19 59.97 59.69 -0.28

[RM21] 61.40 58.41 58.42 57.74 -0.67
[Add+21] 55.80 51.56 51.93 51.41 -0.15
[Seh+20] 59.60 58.29 58.29 57.61 -0.68

Table 1.3. Σύγκριση της μεθόδου PGDCE&CW&DLR με τις white-box συνιστώσες της επίθεσης AutoAt-
tack. Η στήλη Δ δείχνει την διαφορά στην επίδοση μεταξύ της μεθόδου μας και της καλύτερης επίθεσης
από τις υπόλοιπες 3. (†) Αυτό το μοντέλο επιτίθεται με φράγμα ϵ = 0.031.

Στο δεύτερο πείραμα σύγκρισης της μεθόδου μας με δυνατά baselines της βιβλιογραφίας, επικεντρ-
ωνόμαστε σε 2 επιθέσεις, την επίθεση GAMA-PGD [Sri+20] και την επίθεσηMargin Decomposition
(MD) [Ma+20]. Επιλέγουμε αυτές τις 2 επιθέσεις διότι πετυχαίνουν state-of-the-art αποτελέσματα
στο υπολογιστικό budget των T = 100 επαναλήψεων. Για να εγγυηθούμε ότι αυτή η σύγκριση

γίνεται με πιο δίκαιους όρους, αλλάζουμε το βήμα μεγέθους στην μέθοδό μας ακριβώς όπως το κά-

νουν σε αυτές τις 2 επιθέσεις. Στον Πίνακα 1.4 παρουσιάζουμε την σύγκριση της επίθεσης μας

PGDCE&CW&DLR με αυτά τα 2 baselines. Τα αποτελέσματα δείχνουν πως η επίθεσή μας καταφέρνει
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να ξεπεράσει και τις 2 μεθόδους στην πλειοψηφία των μοντέλων. Συγκεκριμένα, είναι καλύτερη από

την μέθοδο GAMA-PGD σε 11 εκ των 15 μοντέλων, ενώ νικάει την επίθεση MD σε 13 από τα 15
δίκτυα. ΄Επειτα από την διεξαγωγή αυτών των 2 συγκρίσεων, γίνεται εμφανής η αποτελεσματικότητα

της εναλλαγής αντικειμενικών συναρτήσεων κατά την διαδικασία βελτιστοποίησης του PGD.

Model GAMA-PGD [Sri+20] PGDCE&CW&DLR ∆ MD Attack [Ma+20] PGDCE&CW&DLR ∆
(GAMA-PGD sch.) (MD sched.)

[Eng+19] 50.05 49.88 -0.17 50.34 49.87 -0.47
[Car+19] 59.84 59.78 -0.06 59.83 59.72 -0.11
[Hen+19] 55.22 55.26 +0.04 55.15 55.20 +0.05

[Zha+19a] 45.32 45.20 -0.12 45.49 45.17 -0.32
[Zha+19b]† 53.29 53.29 0 53.36 53.26 -0.10

[Wu+20] 56.30 56.30 0 56.28 56.26 -0.02
[Seh+22] 56.01 55.95 -0.06 55.92 55.89 -0.03

[AF20] 44.42 44.41 -0.01 44.57 44.44 -0.13
[Dai+22] 61.94 61.74 -0.20 61.99 61.72 -0.27

[Gow+21] 63.78 63.72 -0.06 63.94 63.73 -0.21
[Hua+21] 62.87 62.89 +0.02 62.93 62.86 -0.07
[Zha+21] 60.72 59.62 -1.10 59.73 59.58 -0.15

[RM21] 57.78 57.73 -0.05 57.74 57.72 -0.02
[Add+21] 51.43 51.26 -0.17 51.30 51.25 -0.05
[Seh+20] 57.49 57.43 -0.06 57.31 57.45 +0.14

Table 1.4. Σύγκριση της επίθεσής μας, PGDCE&CW&DLR με τα δυνατότερα baselines της βιβλιογραφίας,
δηλ. τις επιθέσεις GAMA-PGD και Margin Decomposition. Η στήλη Δ υποδηλώνει την διαφορά επίδοσης
μεταξύ της επίθεσής μας και του εκάστοτε baseline. (†) Αυτό το μοντέλο επιτίθεται με φράγμα ϵ = 0.031.

Εκτός των παραπάνω πειραμάτων, που έχουν σκοπό να κατατάξουν την επίθεση μας ανάμεσα

σε άλλες δυνατές επιθέσεις της βιβλιογραφίας, επεκτείνουμε την πειραματική μας ανάλυση ώστε να

καταλάβουμε σε μεγαλύτερο εύρος τους λόγους για τους οποίους η μέθοδός μας καταφέρνει να

πετύχει καλά αποτελέσματα. Συγκεκριμένα, διεξάγουμε το εξής ποιοτικό πείραμα: Σχεδιάζουμε την

ℓ2-απόσταση μεταξύ των διαδοχικών σημείων που επισκέπτεται ο PGD κατά την εκτέλεση του. Παρα-
θέτουμε αυτό το σχήμα για 4 περιπτώσεις αντικειμενικών συναρτήσεων: Την CE, την CW και τις 2

που προτείνουμε εμείς, δηλαδή την εναλλαγή συναρτήσεων, CE&CW και CE&CW&DLR. Το πείραμα
αυτό πραγματοποιείται για 4 διαφορετικούς classifiers, δίνοντας το οπτικό αποτέλεσμα που φαίνεται
στην Εικόνα 1.4. Από εκεί, αυτό που συμπεραίνουμε είναι ότι η εναλλαγή συναρτήσεων πιθανώς είναι

ωφέλιμη καθώς παρακινεί τον αλγόριθμο να ψάξει πιο εκτενώς τον χώρο, και να επισκεφτεί σημεία

που είναι πιο μακρινά μεταξύ τους.
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Figure 1.4. Σχεδίαση της ℓ2-απόστασης μεταξύ διαδοχικών σημείων που βρίσκει ο PGD. Κάθε σχήμα
αναπαριστά αυτήν την απόσταση συναρτήσει των επαναλήψεων του αλγόριθμου, για 4 διαφορετικούς classifiers
(Παραθέτουμε το ModelID κάθε classifier σαν τίτλο σε κάθε σχήμα.
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Chapter 2

Introduction

2.1 Motivation

The dawn of Deep Learning triggered a paradigm shift to the approaches deployed to solve some
of the most interesting and challenging technological tasks. Deep Neural Networks (DNNs) have
consolidated as the de facto standard to tackle problems originating from every possible knowledge
domain, including data of visual, linguistic or acoustic nature (among others). The universal
adoption of Deep Learning, of course, is justified by both their exceptional performance and the
fact that they are conceptually simple, constituting of few building blocks (neurons/connections,
gradient descent, backpropagation) which makes it easy for someone to manipulate them without
a great amount of effort.

Despite their numerous advantages, Deep Learning models operate in counter-intuitive ways
which prevents us from truly grasping their inner mechanisms sufficiently well and indicate impor-
tant blind spots that create a chasm between our understanding and their genuine functionality.
One rather worrisome phenomenon associated with them is the presence of adversarial examples,
discovered by Szegedy et al. [Sze+14]. In their seminal work, these researchers demonstrated that
a tiny amount of carefully designed noise, unintelligible to a human observer, can steer the system
towards classifying the image as belonging to a wrong class, whereas a human can effortlessly
assign the correct label to the image. The susceptibility of DNNs against such perturbations casts
doubt about their potential in performing more elaborate tasks that require reasoning.

An immediate corollary of this intriguing finding is that researchers steered their attention
towards the direction of increasing the resilience of systems against such examples. The general
term Adversarial Defense connotes systems that aspire to overcome the obstacle of adversarial
examples. Adversarial Attacks, on the other hand, is a term that refers to the algorithms that
produce such examples. Attacks and Defenses participate in an arms race, where one attempts to
enhance the robustness of its model against current attacks by exploiting them and subsequently,
novel attacks are devised in order to circumvent these defenses.

Recall that typical adversarial examples must have the property of being indistinguishable
with their unperturbed counterparts. Researchers modelled this property through the ℓp−bounded
threat model, where the attacker’s search space ∆(x) is reduced to the ℓp−ball around the clean
data point x of radius ϵ:

∆(x) = {x′ ∈ X : ∥x′ − x∥p ≤ ϵ}

Measuring the degree of ℓp-bounded robustness, for the classifier f , can be done through the
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calculation of robust accuracy, where D denotes a held-out test set:

RobAcc(f) =
1

|D|

|D|∑
i=1

min
x′
i:∥xi−x′

i∥p≤ϵ
1[f(x′

i) = yi]

The exact solution of this equation, however, is intractable for complex function classes as those
represented by Deep Neural Networks. One needs to resort in adversarial attacks to obtain local
minimizers of this expression, hopefully yielding tight enough upper bounds. The issue of robustness
overestimation [Ath+18; Ues+18; Tra+20] refers to the scenario where the defender chooses an
inappropriate algorithm to evaluate robustness, thus the reported robust accuracy is unreasonably
high and doesn’t faithfully reflects the genuine effectiveness of the proposed method. Ultimately,
it becomes evident that finding powerful adversarial attacks is of paramount importance, enabling
us to reliably estimate whether a defense algorithm is valuable.

Projected Gradient Descent (PGD) [Kur+17; Mad+18] is the most popular attack algorithm
to evaluate the ℓp-bounded robustness of deep networks against adversarial examples. In short,
PGD can be formulated as follows:

x(t+1) = P∆(x)

[
x(t) + η(t)δ(t)

]
(2.1)

where x(t): the iterate, η(t): step size, δ(t): update rule of t-th iteration and PS : the projection
operation, which maps the updated iterate into the feasible region S, which in our case is the
ℓp−ball of radius ϵ around x. For a more thorough analysis on the aforementioned expression,
we refer the reader to the study of Gowal et al. [Gow+19] which contains a highly illustrative
pseudoalgorithm.

2.2 Thesis Contribution

The performance of Projected Gradient Descent (PGD) [Kur+17; Mad+18], in the context of
adversarial examples’ generation, is influenced by 4 hyperparameters (assuming fixed computa-
tional budget): The step size, the initialization strategy, the optimizer, and the surrogate loss. In
our thesis, we aspire to gain further understanding on the impact of surrogate loss. Our work is
empirically underpinned by a remarkable observation whose significance has been neglected in pre-
vious related research. Croce and Hein [CH20b] illustrate that there is no option for the objective
function which is able of delivering equally good results, indiscriminately of which classifier is evalu-
ated. We build on this finding to propose the following view: Combining different objectives in the
same run of PGD could benefit optimization since it would "robustify" the method against poor
selection of surrogate loss. In our study, we experiment with three ways of aggregating different
objectives (in the form of ablation experiments) and the results indicate that a simple loss alter-
nation during PGD is highly performant. The importance of our proposed method’s performance
is primarily studied through three baseline experiments in 15 different ℓ∞-bounded CIFAR-10 ro-
bust models: First, alternating surrogate losses during PGD is significantly better than using a
single loss. Then, we compare our method with the three white-box components from AutoAttack
[CH20b], that is APGD with CE and DLR losses [CH20b] and FAB attack [CH20a], where we
observe that our attack is consistently better across the entirety of our model collection. Finally,
we find that our adversarial attack is better than two of the strongest attacks on the literature (for
the budget of our study, that is T = 100 iterations): GAMA-PGD [Sri+20] and Margin Decompo-
sition (MD) attack [Ma+20]. Additionally, we provide further qualitative analysis indicating that
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the alternation of objectives may be advantageous because it motivates PGD to extend its search
space, visiting more distant intermediate points during optimization.

2.3 Thesis Outline

The remaining content of this present dissertation has been divided into four chapters:

• In Chapter 3 we represent the most essential notions revolving the field of Machine Learning,
demarcating the minimum background that the reader should possess in order to comfortably
follow the concepts discussed in following chapters (experienced readers may skip this),

• In Chapter 4 we delve into Adversarial Machine Learning, which constitutes the broader
topic of this thesis, introducing the main work associated with Adversarial Attacks and
Defenses,

• In Chapter 5 we demonstrate the main contribution of this thesis. Essentially, we represent
an extensive experimental analysis which provides enough empirical evidence to verify the
effectiveness of our proposal of alternating surrogates,

• In Chapter 6 we summarize the implications of our findings and provide additional discussion
about several subsequent research steps which emerge from our work.
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Chapter 3

Machine Learning

3.1 Introduction

Machine Learning (ML) studies the development of systems which are endowed with the ability
to perform a wide variety of tasks through learning algorithms: Instead of the basic paradigm of
algorithms, where the computer program is performing a task through executing a sequence of basic
instructions, learning algorithms is a different term that is used to describe the process wherein the
system assimilates natural data and learns to operate, without the need for human intervention,
based on the experience it has gained through getting familiar with these data. In an effort to
prescribe a compact definition for ML, we find it expedient to quote Tom Mitchell’s definition
[Mit97]:

A computer program is said to learn from experience E with respect to some class of tasks T,
and performance measure P, if its performance at tasks in T, as measured by P, improves
with experience E.

The above definition makes it clear that there are many different flavours of ML: Based on the
nature of the task at hand, the performance measure and the type of data which we leverage to
make our system learn, a distinct subfield of ML emerges.

One of the most strong appeals of studying ML is the numerous applications, on a diverse array
of scientific fields, where it has given substantial solutions: In Computer Vision, ML algorithms
have enabled computers to recognize objects, classify them into different categories or even produce
novel instances of images that seem to be completely natural. In Speech Processing, ML has
successfully been used to transcribe speech in challenging auditory conditions, while in Natural
Language Processing (NLP), ML systems can learn to semantically parse huge quantities of text
or even translate text from one language to another. Those are only a grain of the innumerable
applications where ML has attained to induce unprecedented progress.

The vast majority of those intriguing practical applications were only successfully tackled with
the advent of Deep Learning (DL). Deep Learning is a new scientific field which experienced an
outburst around a decade ago, when advances in parallel computing made it possible to train
massive models, triggering an unprecedented surge of interest. DL studies the development of
models where their functionality has the Artificial Neural Network (ANN) (and its variants) as
its main building block which we will analyze it to a great extent. An insightful perspective of
DL models is that of representation learning: they ingest natural, high-dimensional data and they
learn to project them to a compact representation of significantly lower dimensions.
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3.2 Types of Learning Algorithms

In this section, we attempt to separate the different kinds of problems that one can come
across in Machine Learning. In general, ML could be divided into 3 major categories: Supervised,
Unsupervised and Reinforcement Learning. The discriminating factors are mainly associated with:
(a) the nature of data that the algorithms of each category exploit in order to learn about the
world and (b) their ultimate objective .

3.2.1 Supervised Learning

The ultimate paradigm of ML is that of Supervised Learning. The term "supervision" is
inextricably linked with the type of data that the learner has at its disposal. Supervised Learning
tackles problems where there is an input x ∈ X and output variable y ∈ Y, where X ,Y are the
spaces where the input and output to "live". Presumably, for any given task, there is a true
mapping ftr : X → Y that links every input to the respective output. The end goal of supervised
tasks is to learn that mapping, by approximating it through an estimator f : X → Y. The learning
procedure (also called training) is driven from the training set D = {(x1,y1), ..., (xN ,yN )}, which
essentially is an array of humanly labeled input-output pairs and resembles the notion of experience
which appears in the definition that we mentioned earlier.

3.2.2 Unsupervised Learning

On the other hand, Unsupervised Learning algorithms manipulate data that they are not
labeled; the observed inputs are simple vectors of some natural signal: D = {x1, ...,xN}. In
Supervised Learning, the goal is much more definite to articulate; one desires to estimate the true
function that maps the input to the corresponding output. Here, this type of learning encompasses
different kinds of purposes about what is the desired goal. A vague phrase that could partially
explain the aim of Unsupervised Learning algorithms is that they aspire to make sense of the
data. Just to satisfy the reader’s curiosity, this "umbrella" phrase includes applications such as
data clustering, identifying latent factors of variation in the inputs, or even building probabilistic
models that learn a probability density function for the data.

3.2.3 Reinforcement Learning

The third most essential instance of ML research is Reinforcement Learning (RL). The discipline
of RL is concerned with the construction of systems, which are often called agents, that interact
with their environment. Essentially, the agent learns a policy function that informs him about the
most favourable action that it can take, based on its current state. RL agents learn by receiving
data which associate each state,action pair with a reward, quantifying the appropriateness of its
move. RL has been explored in many exciting applications, with the most vivid one being this of
creating systems that have the ability to play Atari games in human-like performance.

3.3 Basic Concepts in Machine Learning

This section is devoted in shedding light to some of the most essential body of knowledge that
someone should possess when it comes to ML research. The discussion will be primarily seen, for
the sake of representational clarity, through the lens of Supervised Learning, which is the most
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3.3.1 Loss Function

basic example of ML applications, but that doesn’t mean that those concepts are only restricted
to this kind of problems.

3.3.1 Loss Function

The learning of an estimator f can be posed as an optimization problem, by introducing the
notion of the loss function. Assuming that the estimator is a parametric function f(x;θ) (where
θ: its parameters) and ŷ = f(x;θ) is the prediction of the actual output, then the loss function
(also called per-example loss) ℓ(y, ŷ;θ) is a metric that measures the ability of the predictor to
reliably estimate the true output y. The choice of an appropriate loss function depends on the
respective task and will be fully understood in the ensuing conversation, in the context of specific
instances of learning problems. Ideally, if we had access to the true data distribution pdata that
generates the data, learning the estimator f would amount to minimizing the expected risk, which
is the expected per-example loss over the true distribution. However, since in practical scenarios
we only have access to a finite number of samples from this distribution, learning the estimator f

is equivalent with optimizing the empirical risk, which is a Monte Carlo approximation of expected
risk:

L(x,y;θ) = L(θ) = E(x,y)∼pdata [ℓ(f(x;θ),y)] ≈
1

N

N∑
i=1

ℓ(f(xi;θ),yi)

Then the learning problem can be viewed as finding the parameters θ which minimize the
empirical risk:

θ̂ = arg min
θ

L(θ) = arg min
θ

1

N

N∑
i=1

ℓ(f(xi;θ), yi)

3.3.2 Generalization, Underfitting and Overfitting

The preceding paragraph clarified how it is possible to exploit the training set in order to learn
a reliable estimator. However, even if the training procedure yields parameters that achieve ade-
quately low empirical risk, the aspiration of ML algorithms is to develop models that perform well
on unseen inputs. Those unseen inputs are encompassed in a held-out set which is not present
during training, colloquially termed as the test set. The ability to perform well on those unprece-
dented instances is called generalization. Previously, we mentioned that the learning problem can
be deemed as optimizing the empirical risk; however, this is not the entire picture. Our goal is to
simultaneously achieve both low training and test error. Therefore, based on our desire to enhance
our model’s ability to perform well on the test set, we identify two particularly concerning scenarios,
where their emergence in practice indicates that we should improve our learning algorithm:

• The underfitting problem, where our model fails to achieve a sufficiently low train error.

• The overfitting problem, where our model’s parameters induce a large gap between train and
test error.

Both of these problems are tightly intertwined with the rather abstract notion of capacity.
The capacity of an ML model roughly represents the ability of the model to learn arbitrarily
complex functions. In practice, we can increase our model’s capacity by inflating the number of
parameters. The presence of underfitting implies that our model has too small capacity, whereas
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the manifestation of overfitting informs us that our model has an exaggerated ability to learn which
led it to perfectly memorize the training set. Regulating the amount of model capacity to reach
the sweet spot where the generalization gap minimizes is a nuisance in ML research. Figure 3.1
perfectly visualizes the underfitting-overfitting trade-off which is induced by altering the model
capacity.

Generalization Gap

E
rr

or

Model Capacity

Underfitting

Overfitting

Test Error
Training Error

Figure 3.1. The shade area indicates a "sweet" interval where the generalization gap is sufficiently low.
Increasing the capacity beyond that area means that we enter the overfitting regime, whereas lower capacity
means that our model suffers from the problem of underfitting.

3.3.3 Regularization

An efficient remedy to the problem of overfitting is regularization. As Goodfellow et al.
[Goo+16] put it: "Regularization is any modification we make to a learning algorithm that is
intended to reduce its generalization error but not its training error". An expedient way to per-
form modifications to the learning algorithm is through its training objective; instead of solely
optimizing the training error, the objective is augmented with an additional penalty term R(θ),
yielding the following minimization problem:

θ̂ = arg min
θ

L(θ) + λR(θ)

where λ adjust the strength of the regularization term. The most popular regularization function
choices arise from ℓp euclidean norms, i.e. R(θ) = ∥θ∥p. L1 regularization (or LASSO) produces
sparse solutions, whereas L2 regularization (or weight decay) restricts the parameters to have
small magnitude. From a Bayesian Learning perspective, these two regularization terms can be
considered as obtaining a Maximum a Posteriori (MAP) estimate for the parameter vector θ, where
we have imposed p(θ) to be distributed according to the Laplacian (in the L1 case) or the Gaussian
density (in the L2 case). In the context of Deep Learning, as we shall mention later on, there are
even more ploys which someone can leverage in order to perform regularization, such as Dropout
and Early Stopping.

3.4 Examples of Learning Algorithms

In this section, the reader will be succinctly introduced to some basic examples of ML, spanning
from the supervised to the unsupervised setting.
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3.4.1 Classification

It is practically infeasible to speak for Supervised Learning without discussing about Classifica-
tion. In this setting, our goal is the categorization of the inputs to some category; For example, we
may want to build a system that learns to classify images into the correct class among a predefined
set of classes, or a system that ingests text and decides whether this chunk of text expresses posi-
tive or negative thoughts. Essentially, in the classification context, the output space Y is identical
to a discrete set containing the K possible classes: Y = {1, ...,K}. Here, the loss function that we
are interested to minimize is the 0− 1 loss: ℓ0−1(y, ŷ) = 1[y = ŷ].

A nice way to become acquainted with classification is the paradigm of the binary case, where
the goal is to classify each input as positive (assuming y = 1) or negative (assuming y = 0).
Rosenblatt [Ros58] proposed a seminal idea to solve the binary classification, introducing the
notion of perceptron. The perceptron learns to classify each input x ∈ Rd by linearly combining
each element of the input vector with the parameters w and then applying a threshold function,
hence the classifier is formally expressed as:

f(x,w) = sgn(wTx+ b)

The expression inside the sign function characterizes a hyperplane with normal vector w with
a distance of b from the reference point. The vector w can be randomly initialized and then
iteratively refined based on the update rule: wt+1 = wt−ηt(ŷt−y)xi, where ηt is the learning rate
or the step size and (xt, yt) is the input-output pair presented at the algorithm in t−th timestep.
The limitation of this approach is that it can only provide adequate solutions for data that are
linearly separable, something that it is untrue for modern, high dimensional data like images or
speech signals.

3.4.2 Linear Regression

Regression is another exemplar of Supervised Learning. In this task, our goal is to transform
the input into a single number y ∈ R; for example, we may want to predict the projected GPA of
a master student (this is the output variable) based on its undergraduate GPA, TOEFL and GRE
scores. For regression, the most dominant option for the loss function is the ℓ2 loss: ℓ2(y, ŷ) =

(y− ŷ)2. The empirical risk when using the ℓ2 loss is called the Mean Square Error (MSE). Linear
Regression is a well-studied mathematical problem and it refers to the scenario where we assume
that the inputs can be linearly combined to predict the outputs: Consider that we dispose n

training inputs x ∈ Rd alongside their respective outputs y ∈ R. The inputs are stacked together
to the training data matrix X ∈ Rn×d, whereas the training outputs are stacked into the output
vector y ∈ Rn. In Linear Regression, our model is represented through the parameter vector
w ∈ Rd and the predicted output is calculated as y = wTx. The optimal parameters can be found
as the global minimum of the MSE objective:

w∗ = arg min
w

1

n

n∑
i=1

(y −wTx)2 = arg min
w

∥y −Xw∥22

The above optimization problem can be analytically solved to yield the following solution:

w∗ = (XTX)−1XTy
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The linear dependence on the input vector significantly restricts the capacity of the model. The
easiest way to bypass this unreasonable restriction is to project the data into a higher dimensional
space through a function ϕ : Rd → Rm, obtaining the transformed data matrix Φ ∈ Rn×m. In
this case, we treat the problem the same way as before, i.e. we consider that the outputs can be
expressed as: y = wTϕ(x), where w ∈ Rm acts linearly on the transformed input. Analytically, it
follows that even in this case, the optimal parameters are easily calculated as:

w∗ = (ΦTΦ)−1ΦTy

The increased capacity may inevitably induce the problem of overfitting. As we already discussed,
an effective countermeasure is to regularize our solution, for instance with the weight decay term.
In this case, the parameters can be found from the solution of the following problem:

w∗ = arg min
w

{ 1

n

n∑
i=1

(y −wTϕ(x))2 + λwTw
}
= arg min

w
{∥y −Φw∥22 + λwTw}

The analytical solution is still straightforward, without being greatly affected by the introduction
of the regularization term:

w∗ =
[
(ΦTΦ)−1ΦT + λI

]
y

y

x

× ×
×

×
×

×

×
×

×

Figure 3.2. The red line interpolates the data with a simple line y = ax + b, whereas the purple curve
fits the data through a quadratic polynomial. Increasing the model capacity (black curve) leads to a solution
that perfectly fits the data points but it is very unlikely to interpolate unseen data smoothly.

3.4.3 Clustering

Data clustering is maybe the most instructional way to introduce someone to Unsupervised
Learning. Here, the goal is to partition the input space into groups, where each group ideally
contains inputs that are semantically similar. The most simplistic approach to perform data
clustering is the K-Means algorithm: The clusters in this case are represented by K centroid points,
randomly initialized, which are then iteratively refined based on the inputs belonging to the cluster
in that specific timestep. This algorithm performs hard clustering, where it is presumed that each
data point can only be member of exactly one cluster. The Gaussian Mixture Model (GMM) fits
to the training data a mixture of Gaussian distributions. The optimal mixture parameters are
obtained through Maximum Likelihood Estimation and once they are calculated, a data point can
be stochastically assigned to each cluster through a probability that represents the likelihood of
that point belonging to a specific cluster.
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3.5 Deep Learning

Deep Learning has taken the world by storm in the last decade since the work of Krizhevsky et
al. [Kri+12], when they were the first to achieve the training of a large deep neural network that
led to state-of-the-art results in the ILSVRC2012 image classification competition. Since then,
Deep Learning holds the lion share of research in the ML community and it has been adopted to
tackle challenging problems with exceptional success. This section is dedicated to represent the
nuts and bolts of DL; from the underlying architectures to the training procedure that efficiently
fits massive amounts of data to DL models.

3.5.1 Deep Learning Basics through the Paradigm of MLP

Multi-Layer Perceptrons

In preceding sections, we discussed about the perceptron introduced by Rosenblatt [Ros58].
This algorithm produces an output by multiplying each element xi of the input vector x ∈ Rd

with the respective weight wi of the parameter vector w, then adding a bias b and applying a
threshold function. In the case where we want to produce an output vector y ∈ RC instead of a
single number (as it happened in the binary classification case), we can apply this linear operation
C times (where C: the number of outputs), with different weights for each output element. This
operation can be compactly expressed through the weight matrix W ∈ RC×d and the bias vector
b ∈ RC : y = Wx+ b. Visually, the above operation can be demonstrated as follows:

x0

x1

...

xd

y1

...

yC

input layer

output layer

Figure 3.3. A perceptron with many outputs. Figure was obtained from David Stutz’s blogpost

In the above structure, each unit (or node) is called neuron (a term loosely based on neuro-
science) because it receives input from many other units and produces its own activation value
which is the result of the linear operation. In Multi-Layered Perceptrons (MLPs), neurons are
grouped together in layers and those that belong in the same layer are unable to interact with each
other. For instance, notice the lack of connections between neurons in the input layer in Figure 3.3.
The simple structure of the above figure assumes that the inputs and outputs are immediately con-
nected. However, it is possible to introduce many hidden layers between the input and output
layers to increase the expressive capabilities of our models (c.f. Figure 3.4). Considering L hidden
layers, each layer can be represented by the vector of its hidden units y(i) ∈ Rm(i)

, i = 1, ..., L.
The activations of hidden units can be obtained as in the case of two layers, where the input is
received from the neurons of the preceding layer: y(i) = W(i)y(i−1) + b(i). The final output is
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differentiable w.r.t. to the parameter vector θ = {W(i),b(i)}Li=1 and it can be obtained through
the following expression:

y = W(L)(W(L−1)(...(W1x+ b(1))...) + b(L−1)) + b(L)
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...

xd

y
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y
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. . .
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input layer
1st hidden layer Lth hidden layer

output layer

Figure 3.4. The depiction of a multi-layer FFN. Figure was obtained from David Stutz’s blogpost

To sum it up, an MLP model ingest an input x ∈ Rd and produces the output y ∈ RC ,
based on its current parameters θ. The activations in each hidden layer can be calculated in a
parallel fashion through a matrix multiplication. Once they are obtained, these activations can be
propagated forward to obtain the respective activations of the next layer. This process is called
forward propagation.

Activation Function

An omnipresent notion associated with DL models is that of activation function. In MLPs,
the activations of a hidden layer are mapped through an affine transformation to the activations
of the next hidden layer’s units. In practice, it is common to apply some element-wise function
ϕ : R→ R to the results of such affine mappings. This transformation is colloquially termed as the
activation function. Therefore, with the introduction of the activation function, the units in hidden
layer are obtained as: y(i) = ϕ(W(i)y(i−1) + b(i)) (where ϕ: the element-wise application of ϕ).
Earlier works on the field mostly considered Sigmoid and Hyperbolic Tangent (Tanh) functions as
the most suitable candidates:

Sigmoid(x) =
1

1 + e−x

Tanh(x) =
ex − e−x

ex + e−x

However, in Deep Neural Networks those activation functions deteriorate the training performance
of the model. The most dominant choice is the Rectified Linear Unit (ReLU) function:

ReLU(x) = max(0, x)

42
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In the classification setting, we desire to transform the output layer (also called the logit vector)
into a probability vector, where each element represents the confidence that the model assigns to
each class for any given input. An easy way to obtain such a probability vector p = [p1, ..., pC ]

through the logits y = [y1, ..., yc] is through the Softmax function:

pi = Softmax(y)i =
exp(yi)∑C
j=1 exp(yj)

Gradient-Based Learning

The previous paragraph presented how a simple MLP model predicts the output through ma-
trix multiplications and applications of the activation function, from an algorithm called forward
propagation. Initially, there is no way of predict the optimal parameter vector; one has to ran-
domly initialize it. Of course, these random parameters will produce rather unsatisfying predictions
about the outputs. Gradient Descent provides a principled approach to iteratively update the
parameters in order to improve the model’s performance.

First, we shall invoke the notion of loss function from earlier sections: For example, in the
classification setting, one wants to obtain the parameters that minimizes the empirical risk. The 0-
1 loss is not suitable for gradient-based learning due to its non-differentiability hence we will resort
to some surrogate loss. The cross-entropy loss is the most widely used option for the surrogate loss
in classification literature:

CE(y, ŷ) = −
C∑
i=1

yi log ŷi

The introduction of this differentiable loss makes it possible to connect every parameter with a
single scalar (the loss value) that quantifies how well they perform at estimating the output. The
gradient ∇θL(x,y;θ) of this scalar with respect to the parameters θ, indicates the best direction
that we can move our parameter vector in order to minimize the loss function (this follows from
the first-order Taylor approximation of L). In the optimization literature, this is known as the
Gradient Descent algorithm:

θt = θt−1 + ηt∇θE(x,y)∼pdata [ℓ(x,y;θ)]

Recall that all we have at our disposal is a finite number of samples from the data distribution.
There are many different variants of Gradient Descent that we can exploit to minimize the empirical
risk, but in DL, the most prevalent is Stochastic Gradient Descent (SGD): Instead of approximating
the true gradient by averaging through the entire dataset, we’re sampling a subset B of the dataset
D, called batch, and the average is taken over this set:

θt = θt−1 + ηt∇θ
1

N

|B|∑
i=1

ℓ(f(xi;θ),yi)

SGD offers an affordable way to approximate the true gradient; using the entire dataset would be
prohibitively expensive both in terms of runtime and memory consumption. Inspecting the two
ends of the batch size spectrum, if |B| = 1 then the estimated gradient is extremely noisy but the
parameter updates are more frequent, whereas if |B| = N , each paramater update uses the true
gradient but it is considerably slower, sometimes without even providing significant performance
gains. In our above discussion, we presented the vanilla version of SGD where the update rule is
simply a scaled version of the gradient. Polyak [Pol64] proposed Momentum methods that were
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devised to accelerate learning, in settings where the optimization objective is characterized by high
curvature. The update rule is slightly modified with the introduction of the velocity vector u and
it can be formulated as:

ut = αut−1 − ηt∇θ
1

|B|

|B|∑
i=1

ℓ(f(xi;θ),yi)

θt = θt−1 + ut

where α: a hyperparameter that regulates how quickly the contribution of past gradients is decay-
ing. Another category of optimization strategies with increasing reputation is Adaptive Methods.
The essence of adaptive methods is that the learning rate associated to each weight is refined in
every iteration based on the history of its past gradients w.r.t that specific weight. Kingma and Ba
[KB15] introduced Adam, which unequivocally can be labeled as the most popular variant of such
optimizers. The conventional wisdom surrounding these different optimization strategies is that
adaptive methods converge significantly faster than SGD, but SGD yields better generalization
capabilities.

Backpropagation

By this point, it should be clear how Gradient Descent enables us to iteratively adjust the
parameters of a model in order to minimize the empirical risk. An important question that is
yet to be answered is how one can efficiently obtain the gradients of the loss w.r.t every network
parameter in the first place. This can be done through the Backpropagation algorithm (abbr. as
Backprop), proposed by Rumelhart et al. [Rum+86].

The functionality of Backprop hinges on the chain rule. Chain rule enables us to compute the
gradients of a compositional function of the form f(g(x)) where f : Rm → Rn,g : Rk → Rm,x ∈ Rk,
by multiplying the respective gradients (assume that x1 = g(x)):

∇xf(g(x)) = Jf (x1)Jg(x)

where: Jf ∈ Rn×m,Jg ∈ Rm×k the Jacobian matrices of f and g. In the MLP case, the output layer
is the result of composing multiple affine transformations followed by non-linearities. Denoting as
x(i) the i−th layer activations and f i the i−th layer transformation (note that for sake of clarity
we omit to include the parameters θi of each layer), it follows that:

y = x(L) = fL(fL−1(...(f1(x)))

Hence, the per-example loss l(y, ŷ) gradients can be computed w.r.t the activations of l-th layer-and
hence w.r.t to its parameters θ(l)- as follows:

∇x(l) l(y, ŷ) = ∇x(L) l(y, ŷ) · Jx(L−1)(x(L)) · ... · Jx(l)(x(l+1))

This is the gist of Backpropagation. Essentially, its computational efficiency arises from the fact
that the first term in the RHS of the above expression is a vector (since the per-loss example
is a scalar) therefore we are sequentially performing vector-matrix products. The matrix-matrix
products would’ve added a significant computational burden, had we applied the chain rule from
first to last layer.
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Other Components in Deep Learning Models

Normalization Layers. Stacking multiple layers culminates into models of massive depth that
are hard to train due to problems such vanishing or exploding gradients. An effective solution, that
increases the resilience of DL models against such problems is the addition Batch Normalization
(BN) layers [IS15]. BN layers standarize the statistics of hidden units, yielding activations with
zero mean and unit variance. The term batch stems from the fact that the hidden layer statistics
are computed in each batch of training data. The standardization is also followed by an affine
transformation of learnable scale and shift element-wise vectors.

Addressing Overfitting. Deep Neural Networks are egregiously overparameterized, meaning
that their number of parameters (and the model capacity) is more than enough to learn the
training data. This could inevitably lead to the overfitting problem. Data Augmentation is a
technique to reduce the effect of this issue, by adding new training data (so the mismatch between
training data and learnable parameters is reduced). This can be artificially achieved by injecting
transformations of the existing data into the train set. Another trick that aids the prevention of
overfitting is Dropout [Sri+14]. Dropout essentially refers to the procedure where during training,
each unit (and all the connections associated with it) is stochastically disabled with a probability
p. Intuitively, dropout semantically coincides with the training of an ensemble of exponentially
many models. Another popular strategy to ameliorate overfitting is Early Stopping, where instead
of returning the parameters of the model in the end of the training procedure, the model’s final
parameters are set to those that yielded the smallest training-validation error gap.

3.5.2 Architectures of Deep Learning models

Convolutional Neural Networks

Convolutional Neural Networks [Fuk79; Lec89] (abbr. as CNNs) are networks designed to
efficiently proccess data with a grid-like structure, such as images. Their functionality hinges on
the convolution operation, which in the case of 2D-signals like images can be formulated as follows:

I ′[i, j] = (I ∗W )[i, j] =
∑
m

∑
n

I[m,n]W [i−m, j − n]

=
∑
m

∑
n

I[i−m, j − n]W [m,n]

This is exactly how convolutional layers compute the activations of the next layer. Instead of
applying affine transformations, those layers convolve their input with a weight matrix, also called
kernel, to produce the output, also called feature map. Images are 3D tensors since, other than
height and width, they also have a third dimension associated with their number of color channels.
Hence, the input I ∈ RH×W×C in convolutional layers is convolved channel-wise with a kernel
W ∈ RB1×B2×C and then the results is added across all those channel-wise convolutions. The
output spatial dimensions depend on whether the input is padded or how much the kernel shifts
in every convolution operation (also called stride). Usually, in a convolutional layer, the input
is convolved with many different kernels to produce an output with many channels. There are
certain properties of CNNs that render them greatly appealing: (1) They have sparse interactions,
i.e. each output node interacts only with a local neighbourhood of the input, (2) Their parameter
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sharing, referring to the property where the same weight kernel is used across the whole image;
this property has as an immediate corollary that CNNs are equivariant to translation.

input image
or input feature map output feature maps

Figure 3.5. Illustration of a single convolutional layer. Figure adapted from David Stutz’s blogpost

CNNs also include another type of layer that transform its input feature maps based on their
local neighborhood, called pooling layers. For example, a max-pooling layer outputs the maximum
activation unit among the square neighborhood of its input, whereas the average-pooling layer
calculates the average of the activations in such square-shaped vicinities. Pooling layers confer
translation invariance to CNNs, which is particularly beneficial in many applications. A typical
CNN is comprised of alternating convolutional and pooling layers, yielding an output that has the
spatial structure of a 3D-tensor. In Image Classification, for instance, it is common to apply a
global average pooling to this output, then flatten the result of this operation into a simple 1D
vector and passing this holistic image embedding to an MLP in order to obtain a label prediction.

Recurrent Neural Networks

Recurrent Neural Networks (also called RNNs) is another specialized kind of architectrues,
specifically designed to handle sequential data, much like CNNs are invented to perform com-
putations in grid-like data. The computational process in RNNs can be easily summarized by
Figure 3.6. The hidden layer in RNNs is comprised of neurons that are called the hidden state.
The hidden state at t−th timestep is a vector h(t) that has accumulated information from all pre-
vious timesteps and it can be combined with the input x(t) to produce the updated version of the
hidden state for the next time step. This procedure can be formalized as: h(t) = f(x(t),h(t−1);θ).
Similar to MLPs, this function f may be the application of a non-linearity of top of an affine
transformation. The dashed arrows above the hidden layer’s units depict the prospect of adding
multiple layers in our network, such as an output layer which receives the current hidden vector
to infer the output of that specific timestep. The forward propagation in RNNs, for a sequence
of length τ , is an inherently sequential procedure hence it has computational cost of O(τ). The
gradients in such networks are computed through an algorithm called Back-Propagation through
Time (BPTT).

This is the most basic form of RNNs and is hardly used to solve any applications that require
sequential computing. In recent years, RNNs have evolved into many different variants and we
succinctly mention the most significant ones:

• Bi-directional RNNs [SP97], which process information in both directions. In the vanilla
RNN, the input is treated as having a causal structure, where it is implied that the hidden
state can carry information only from previous timesteps. However, in some applications,
it may be expedient to exploit information in the reverse direction. Bi-directional RNNs
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h(t−1) h(t) h(t+1)

x(t−1) x(t) x(t+1)

Hidden Layer

Input Layer

Figure 3.6. An illustration of the vanilla RNN

achieve this by manipulating the input both from left to right (with a hidden state
−→
h (i)) and

from right to left (with a hidden state
←−
h (i)), combining those "dual" hidden states in each

timestep to produce their output.

• Long-Short Term Memory (LSTM) models, introduced by Hochreiter and Schmidhuber
[HS97]. The key module of such models is the LSTM cell. Each cell is characterized by
its cell state vector c(t) and its three gate vectors f (t), i(t),o(t) (forget, input, output gate re-
spectively). The forget gate regulates the amount of the previous cell state that is preserved
in the new one, the input gate controls how the new input information will affect the cell
state, whereas the output state updates the regular hidden state with the information that
is carried into the cell state.

Transformers

Transformer, proposed by Vaswani et al. [Vas+17] is another type of architecture that has
gained a lot of reputation recently. The input to the the transformer is a sequence of tokens
x = (x1, ...,xn), where xi ∈ Rd. The transformer processes those tokens in a way that allows them
to exchange information, through the self-attention operation, to produce the output embeddings
z = (z1, ..., zn), zi ∈ Rd. In its most simplest form, the transformer projects the input tokens
into three sequences of vectors Q,K,V standing for Queries,Keys and Values respectively. Then,
the similarity between each query-key pair in the sequence is measured through the scaled dot-
product module. Those similarities are stacked into the attention matrix, which is then multiplied
with the values’ sequence V to yield the sequence of output tokens. This procedure can be readily
understood by inspecting the visualization in Figure 3.7. However, in reality, this attention module
is repeated many times, yielding the Multi-Head Attention structure, where each head is performing
this type of attention operation. Then, the output sequences of all heads are concatenated and
passed through an additional dense layer to project the output in the space of dimensionality that
matches the input.

Typically, Transformer architectures are consisted of two parts: the Encoder and the Decoder.
The encoder is responsible for mapping the input into a meaningful representation, where the
interactions between different parts of the input have been properly encoded into the output se-
quence of tokens. A typical encoder consists of multiple Multi-Head Attention modules followed
by Normalization and Feed-Forward layers. The decoder module is quite similar to the decoder
(structure-wise) and learns how to decode the attended input representation to produce the desired
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Figure 3.7. An illustration of Transformer architecture, with only one attention head.

output. A deeper understading and description of the inner workings of the Transformer archi-
tecture transcends the intended scope of this thesis. We should mention, however, that this novel
architecture has been widely adopted in NLP with exceptional success, see e.g the BERT model
[Dev+19] and later it also demonstrated similar performance with CNNs to Computer Vision tasks,
see e.g the Vision Transformer (ViT) [Dos+20].

3.6 Deep Generative Models

Generative Modelling is a chapter of monumental importance in ML community. Our previous
discussion was primarily focused on the classification paradigm, where the networks designed to
solve that specific task can be considered as attempting to model the conditional distribution
p(y|x). However, Artificial Intelligence (AI) and the quest of building machines that can perform
reliable decision making can’t be content with that information alone. Deep Generative Models
(DGMs) are studied in order to broaden the general capabilities of Machine Learning. If we had to
sum it up in a few words, we’d say that such models aspire to find a way of representing the data
probability distribution p(x). Some instances of DGMs aim to achieve this directly whereas others
approach this problem implicitly, by offering the opportunity to perform other useful operations,
such as drawing samples from p(x).

In this section, our goal is to introduce the most representative instances of DGMs, namely:
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) which only im-
plicitly model the data distribution and Normalizing Flows (NFs) which explicitly learn to approxi-
mately represent this distribution. All those instances of DGMs have one major shared component:
they all are latent variable models, i.e. their operation hinges on the premise that there is a (lower)
dimensional latent space that compactly captures hidden factors in data and those data are gen-
erated as follows:

z ∼ p(z)

x ∼ pθ(x|z)
(3.1)
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3.6.1 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [Goo+14] are comprised of two major components,
the generator G and the discriminator D, which compete each other in the following sense: The
generator learns to map random noise z ∼ p(z) (where z ∈ Rk) to the data space G(z,θg) ∈ Rd.
The discriminator learns to discern between fake and real images, yielding as output a single
scalar D(x,θd) which denotes the probability of x being an image from the real data distribution
pdata. Both of these components are represented through Deep Neural Networks e.g. MLPs in
their simplest form. The training of GANs amounts to a two-player minimax game that can be
formulated as:

min
G

min
D

V (G,D) = min
G

min
D

Ex∼pdata(x)[logD(x)] + Ez∼p(z)[log(1−D(G(z)))]

Thus, the discriminator simultaneously maximizes the log probability of real and generator data
being identified as real and fake respectively, whereas the generator minimizes the latter objective.
At the end of training, we can discard the discriminator and sample new data from the generator
as: z ∼ p(z) : xnew = G(z).

zi ∼

Generator
G

Discriminator
D

z ∈ Rk G(z) ∈ Rd

D(G(z)) ∈ [0, 1]

Figure 3.8. A high-level demonstration of typical GAN architecture.

GANs can produce samples with incredible visual plausibility, however the standard training
procedure is rather delicate and unstable. Besides that, standard GANs also suffer from the prob-
lem of mode collapse, where generators draw samples from only a tiny proportion of modes in the
distribution, hence the synthesized samples are lacking diversity. An important step towards pro-
viding effective solutions against such problems was prescribed by the introduction of Wasserstein
GANs (WGANs) by Arjovsky et al. [Arj+17], which establish a slightly different training objective
and WGAN-GP [Gul+17], an improved variant that improves training stability by penalizing the
input gradients’ norm of the critic/discriminator.

3.6.2 Variational Autoencoders (VAEs)

Variational Autoencoders (VAEs) [KW14] is a probabilistc version of determnistic autoen-
coders. This class of models fits to the mathematical framework of Variational Inference, where
one tries to approximate a given distribution through a family of parameterized distributions.
When adopting the generative process of Equation 3.1, calculating the true density pθ(x) and
the true posterior pθ(z|x) is intractable since: pθ(x) =

∫
θ
pθ(z|x)pθ(z)dθ. VAEs resort to ap-

proximating the true posterior through qϕ(z|x) (called approximate posterior). Overall, they are
constituted of two parts:

• The decoder, which models the distribution pθ(x|z). For binary data, this distribution is
modelled as a Bernoulli distribution of unknown parameters. The decoder maps an input
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latent code to the probability vector of this Bernoulli distribution

• The encoder (or recognition network), that models the distribution qϕ(z|x). For example,
we can assume that qϕ(z|x) is a Gaussian distribution, thus the encoder receives as input
the data point x and outputs the distribution’s statistics, i.e. mean and variance vectors
µϕ(x), σϕ(x).

The training of VAEs is done through the maximizaiton of Evidence Lower Bound (ELBO),
which lower bounds the data likelihood:

log pθ(x) ≥ ELBO(θ,ϕ;x) = Eqϕ(z|x)

[
− log qϕ(z|x) + log pθ(x, z)

]
= −KL(qϕ(z|x)||pθ(z)) + Eqϕ(z|x)

[
log pθ(x|z)

] (3.2)

where the prior pθ(z) is usually set to the normal distribution N (0, I). The KL divergence term can
be analytically computed for normal distributions, whereas the second term can be approximated
through Monte Carlo sampling and quantifies our desire of having high log-likelihood for latent
codes drawn from the approximate posterior. Notably, the gradients w.r.t encoder’s parameters ϕ
of the latter expression in Equation 3.2 exhibit extremely high variance, with Kingma and Welling
[KW14] proposing the repameterization trick to reduce it. This trick considers the latent vector
as the result of a deterministic mapping, exploiting a property associated with Gaussian random
variables, i.e.:

ϵ ∼ N (0, I) : z = µϕ(x) + ϵ⊙ σϕ(x)⇒ z ∼ N (µϕ(x), σϕ(x)I)

µϕ(x) ∈ Rk

σϕ(x) ∈ Rk

z ∈ Rk

z ∼ qϕ(z|x)

Encoder Decoder

Sampling from qϕ(z|x)

ϵ ∼

×
+

Figure 3.9. A high level illustration of a typical VAE architecture. The dashed rectangle depicts the
procedure of performing the reparameterization trick.

3.6.3 Normalizing Flows (NFs)

Normalizing flows (NFs) [TT13] provide a general way of constructing flexible probability dis-
tributions over continuous random variables. NFs express real data x ∈ X , X ⊆ Rd as a trans-
formation f : Z → X of a real vector z ∈ Z that is distributed according to pZ(z). If we restrict
this transformation to be invertible (with inverse g = f−1, g : X → Z) and differentiable (a.k.a.
diffeormorphisms), then the change-of-variables formula enables us to calculate p(x):

pX(x) = pZ(g(x)) · | detJx(g(x))| (3.3)

where Jx(g(x)) is the Jacobian d× d matrix of all partial derivatives of g. Essentially, NFs model
such transformations through neural networks. Typically, those transformations can be designed
as the composition of many individual diffeormophisms gi: g = gK ◦ gK−1 ◦ ... ◦ g1, where gi
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transforms zi into zi−1, assuming x = zK , z = z0. In this case, the Jacobian of g can be calculated
as the product of the individual Jacobians, hence the change-of-variables formula can be expressed
as follows (simultaneously, we apply the log operator):

log p(x) = log p(g(x)) +

K∑
i=1

log
∣∣∣detJzi

(gi(zi−1))
∣∣∣ (3.4)

NFs essentially refers to the scenario where this diffeomorphism g is constructed through Deep
Neural Networks. The training procedure maximizes the log-likelihood expression of Equation 3.4.
The most essential part when building NFs is to carefully design those transformations in order
to obtain tractable Jacobian determinant terms; For an arbitrary d × d matrix, calculating the
determinant has a time cost of O(d3). However, such a computational cost is prohibitively large
for high-dim data and thus it should be decreased to linear complexity O(d).

In the literature of NFs, there has been proposed a plethora of different ways to efficiently
construct such mappings and this class of DGMs has been used to provide novel solutions for
many applications across many different modalities i.e. images, speech, text. For a comprehensive
review, we highly recommend the perusal of [Pap+21]. However, we shall point our direction
towards three works: NICE [Din+15], RealNVP [Din+17] and Glow [KD18]. The former two
papers are considered as a predecessor of the latter, which constitutes one of the most popular
works in this field; hence, they make a strong candidate for an introduction on NFs.

Generally, NFs have some enticing properties that GANs and VAEs do not possess: (1) They
can perform exact inference, exactly mapping the input x to a single latent code z (VAEs only
perform approximate inference, whereas GANs can only be inverted through Gradient Descent)
and (2) They can serve as density estimators, providing the capability to exactly calculate p(x)

(VAEs can only compute a lower bound of this quantity).

Affine Coupling Layers. Affine Coupling Layers were initially proposed in Dinh et al. [Din+15]
to create expressive diffeomorphisms through neural networks with tractable Jacobian terms. Cou-
pling layers works as follows: The input x ∈ Rd is split into two components, x1 ∈ Rd1 ,x2 ∈ Rd−d1

(usually d1 = d/2). Then, the first component remains intact z1 = x1, whereas in the second
component we apply an affine transformation mapping : z2 = exp(s(x1)) ⊙ x2 + t(x1), where
s(x1), t(x1) ∈ Rd−d1 have been generated through a NN with parameters θ. This type of layer
models an invertible mapping since:

z1 = x1

z2 = exp(s(x1))⊙ x2 + t(x1)

}
⇒

x1 = z1

x2 =
(
z2 − t(x1)

)
exp(−s(x2))

The Jacobian of this mapping has an lower triangular form:

J =
∂z

∂x
=

[
Id1

0d−d1

∂z2

∂x1
diag(exp(s(x1)))

]
(3.5)

Hence, the log-determinant of this Jacobian amounts to the sum:
∑d−d1

j=1 s(x1)j . Figure 3.10
visualizes the inner workings of a coupling layer.

Permutation Layers. Since the coupling layer leaves a part of its input unchanged, it is neces-
sary to apply some permutation transformation in order to modify the unchanged part. This can
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exp(s(x1)) ⊙ x2 + t(x1)

z ∈ Rd

NN with
params θ Concat

Figure 3.10. A high level illustration of a standard affine coupling layer.

be done through a binary mask b, hence the coupling layer transformation is compactly written
as:

z = b⊙ x+ (1− b)⊙ (x⊙ (exp(s(b⊙ x)) + t(b⊙ x))

Dinh et al. [Din+17] proposed two masking strategies: (1) a checkerboard masking scheme, which
alternates the 0s and 1s after each coupling layer and (2) a channel-wise masking, which masks
out half of the channel dimensions.

A typical processing block in RealNVP is comprised of three coupling layers with alternating
checkerboard masks, then they perform a squeezing operation, and finally apply three more cou-
pling layers with alternating channel-wise masking. The squeezing operation trades spatial size for
channel dimensionality.

Multi-Scale Architectures. Instead of propagating the vector x ∈ Rd through all the coupling
layers, Dinh et al. [Din+17] suggest that it would be expedient to employ a multiscale strategy:
first, the vector x is passed through a block of transformations and half of the z dimensions are
factored out, without applying further processing. Then, the remaining dimensions are passed
again through such a block, with another chunk of z being factored out and so forth and so on.
This provides a major benefit memory-wise, since the smaller vector can be processed for many
more layers than the full-dimension vector.

Invertible 1× 1 Convolution. In general, the Glow model [KD18] resembles vividly the Real-
NVP architecture, but they devise a new type of layer that lent further performance gains. Kingma
and Dhariwal [KD18] dispense with the permutation layers and instead propose to use 1× 1 con-
volutional layers. Convolving the h × w × c tensor h with a c × c matrix W has the following
log-determinant:

log
∣∣∣ det(∂conv2D(h,W)

∂h

)∣∣∣ = h · w · log |det(W)|

The cost of computing det(W) is O(c3), but the LU decomposition trick reduces it to O(c). They
model W as follows:

W = PL(U+ diag(s))

where P,U,L are a permutation matrix, a lower triangular matrix with ones on the diagonal
and an upper triangular matrix with zeros on the diagonal. The log-determinant is computed as:
log |det(W)| =

∑
j log |s|j . The permutation matrix remains fixed during training, whereas the

other three components are trained.
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Chapter 4

Adversarial Machine Learning

This chapter delves into the field of Adversarial Machine Learning, which essentially consists
the primary research topic of this present dissertation. Here, our goal is to thoroughly introduce the
core ideas of this field through providing the proper background, as well as to present a multitude of
research byproducts that helped the community to gain a deeper understanding for Deep Learning
models.

4.1 Introduction

Deep Learning based models have been established as the de facto standard to tackle a plethora
of tasks across many different domains. The universal adoption of such models was triggered by
the seminal work of Krizhevsky et al. [Kri+12], where they managed to exploit parallel-computing
hardware to train CNNs with extreme efficiency and obtain unprecedented results in the ILSVRC-
2012 competition. However, Szegedy et al. [Sze+14] demonstrated that DL-based image classifiers
are vulnerable to imperceptibly modified inputs, colloquially known as adversarial examples, that
have been maliciously generated in order to change the system’s decision making. This phenomenon
is fully comprehended through the examination of Figure 4.1, where adding a humanly undetectable
amount of noise to the clean image leads to a new image which is erroneously classified from the
system.

"Panda" with 57.7% confidence

x

+ =

δ x′

Imperceptible Noise "Gibbon" with 93.3% confidence

Figure 4.1. Adding impercetible noise dramatically alters the classifier’s decision.

This counter-intuitive property brings forth important questions that seek for answers. Such
models has been used in a variety of applications where reliable and secure decision-making should
be an imperative trait of their deployment, e.g. in Autonomous Driving failing to correctly detect
a stop sign could lead to pernicious consequences. It is needless to say that the discovery of this
intriguing phenomenon urged researchers to study it in a great extent, both for illuminating the
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reasons of its existence and for building credible systems that are robust to such discontinuities.
The procedure of producing such misleading examples is known as Adversarial Attacks, whereas
enhancing the stability of DL models against such inputs is referred as Adversarial Defenses.

At this point we should mention that adversarial attacks are ubiquitous in the DL literature
and have appeared in various domains such as images, audio signals or text documents. However,
we will study this phenomenon from the image classification perspective, where the attacks are
generated to deceive image classifiers.

4.2 Adversarial Attacks

This section initially dedicates its content to lay the proper mathematical ground for crafting
attacks and will help the reader to readily follow the presentation of ensuing related work. Be-
sides that, we attempt to separate algorithms for generating adversarial attacks based on different
discriminating factors and present the most accepted prescribed interpretations that explain their
existence.

4.2.1 Threat Models

The most important concept, prior to mathematically formulating the problem of finding ad-
versarial attacks, is the allowable set of perturbations, also called the threat model. Ideally, for a
clean input x ∈ X , where X : the image space [0, 1, ...255]d, a neat definition of the threat model
would be:

O(x) = {x′ ∈ X |x′,x are visually (to the human eye) identical}

The ultimate aspiration of studying robustness in the DL setting is to build models that behave
uniformly for every input x′ ∈ O(x). However, this formulation is impractical since there is no
principled approach to express such a human "oracle" mathematically. The most prevalent model,
which replaces the visual imperceptibility constraint with euclidean distances, is the ℓp-norm threat
model, where the permissible adversaries are confined within the ℓp-ball of radius ϵ around x:

∆(x) = {x′ ∈ X : ∥x′ − x∥p ≤ ϵ}

where ϵ: a small constant, expressing our desire of producing adversaries x′ ∈ ∆(x) that are
ostensibly identical to their clean versions. The ℓp-norm adversaries constitute the most studied
threat model across the literature, implicitly introduced by Goodfellow et al. [Goo+15]. Different
values of p suggest distinct types of constraints that we impose to the adversary: If p = ∞, we
restrict the perturbation’s maximum element to ϵ, whereas if p = 0 the adversary can only change
a small amount of pixels in the image. The most common choices for the value of p are p =∞ or
p = 2.

Despite its wide adoption, the ℓp-bounded threat model has been scrutinized since close prox-
imity in terms of ℓp-norm doesn’t necessarily translates to visual imperceptibility, nor it is required
for visually identical pairs of clean-perturbed inputs to have small ℓp distance [Sha+18]. However,
in practice, algorithms that craft ℓp-bounded attacks generate adversaries which cannot be visually
distinguished from their respective clean inputs. An important issue related to this threat model
is that classifiers that are trained to perform well against such adversaries are unable to generalize
their resilience against unseen (during training) threat models; other forms of distortions, such
as spatial transformations or image recolorings can degrade the model’s performance to trivial
percentages.
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Nevertheless, studying the ℓp−norm threat model, both from the attack and defense perspec-
tives, can be bolstered by two important arguments: (1) It is mathematically well-defined, which
facilitates the task of devising new defenses and (2) It can be considered as a subset of the original
robustness problem, where failing to adequately solve it would probably mean that we should not
have high expectations of achieving general robustness in the DL setting.

In the following discussion, we will frequently mention that some attack method leads to
stronger adversaries than another; The ranking between different methods for a given classifier
is quantified through the Attack Success Rate (ASR) on the test set: For a given adversarial at-
tack algorithm, ASR denotes the percentage of test set examples that were successfully perturbed
by the algorithm.

4.2.2 A taxonomy of Adversarial Attacks

Here, we will discern the methods that produce adversarial attacks based on different criteria,
associated with the amount of knowledge that the adversary has at its disposal and the requirements
that the crafted outputs should satisfy. This brief discussion is helpful since it introduces the most
basic terminology that everyone should come across when delving into this research field.

White-box vs Black-Box. Adversaries can be separated into White Box and Black Box, de-
pending on the available information. There are two extreme cases: The adversary has full access
to every aspect of the model e.g. both its architecture, weights and the training dataset. This
class of attacks is referred with the term "white box" and the most apparent way of harnessing
this information is to calculate the model’s gradients w.r.t the input in order to guide the genera-
tion process. At the other end of the knowledge spectrum lies the "black box" attacks, where the
adversary can only query the threatened model, obtaining the most probable class for the input
with its associated confidence or even the full logit vector. Black box attacks, in their own right,
are divided into different categories based on how they opt to approach the lack of knowledge (See
Section ).

Generally, for a given classifier, white-box adversaries should give rise to more powerful attacks
than black-box methods; if this general principle is not true, it indicates that the classifier most
likely impedes the gradient-based approaches e.g. because it contains a randomization module.
This behaviour, as we shall discuss later in depth, is the root of major controversy in the literature
of Adversarial ML and it constitutes the problem of gradient masking.

Targeted vs Untargeted. Recall that in the image classification setting, the attacker aims to
change the classifier’s predicted label for a given input. Adversarial attacks can be partitioned
based on whether we desire the system to classify the input as belonging to a certain class (target
class) or not. In the former case, the adversary generates targeted attacks, whereas in the latter
case the attacks are called untargeted. However, the transition between the targeted and untargeted
versions of an algorithm is trivial most of the times e.g. in white-box attacks, instead of following
the ascent directions to minimize the true label’s prediction, the generation can be posed as the
maximization of the target label’s confidence.

As in the case of white vs black box methods, the untargeted version of an adversary should
yield stronger attacks than its targeted variant (with randomly chosen target classes), for a given
classifier. Observing the opposite behaviour is probably an indicator that the model returns noisy
gradients hence the gradient-based methods are performing poorly.
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Beyond the ℓp−bounded threat model. The ℓp-norm constraint has been imposed in order to
preserve intact the visual content of the image, as perceived by a human observer. There are many
other ways to produce imperceptible perturbations without being limited to small euclidean mag-
nitude: Xiao et al. [Xia+18] produced adversarial perturbations through constructing adversarial
pixel displacements (optical flow); Engstorm et al. [Eng+19b] demonstrated that small rota-
tions and translations suffice to deceive image classifiers. Also, GAN-based approaches [Zha+18;
Son+18a] have managed to exploit the representational power of GAN generators to create out-
puts that are misclassified by the system, while a human judge can readily classify them to their
ground truth class. Another line of work [HP18; LF19] managed to construct adversarial exam-
ples by slightly recoloring the content of an image. All of these aforementioned methods have in
common that the generated perturbation has unbounded magnitude; Such approaches are dubbed
as unrestricted attacks.

4.2.3 White Box Attacks

Finding adversarial examples can be stated in various ways. Consider a classifier fθ : Rd → RC

(where θ: its parameters, which sometimes we may omit for clarity purposes) which maps the
inputs x ∈ [0, 1]d to the logit vector of C scores fθ(x) ∈ RC . A natural way to describe the
generation of an adversary x′ for the input x is:

min
r
∥r∥p s.t. argmax f(x+ r) ̸= y

x+ r ∈ [0, 1]d
(4.1)

The non-linear constraint is impractical when it comes to optimizing this expression. In the fol-
lowing part of this section, we will analyze the alternatives that were prescribed by researchers to
overcome this obstacle. In general, methods that are (loosely) based on this formulation generate
minimum norm perturbations. There is a distinct formulation, fostering the search of solutions (in-
side the ℓp-ball of radius ϵ around x′) which maximally decrease the ground truth label’s confidence
and can be stated as follows:

max
x′
L(fθ(x′), y) s.t. ∥x′ − x∥p ≤ ϵ

x′ ∈ [0, 1]d
(4.2)

where L: a smooth,differentiable loss function that quantifies the classifier’s ability to assign the
label y to input x′, e.g. cross-entropy for image classification, which acts like a surrogate alternative
of the discontinuous 0-1 loss.

L-BFGS. Szegedy et al. [Sze+14] in their pioneering work, considered the task of finding ad-
versaries through the lens of Equation 4.1. The non-linear constraint was replaced by a penalty
term using a loss function such as cross-entropy (in similar fashion with Equation 4.1). Then,
they sought for minimizers to the following objective through the L-BFGS numerical optimization
method:

min
r
∥r∥p − L(fθ(x+ r), y) s.t. x+ r ∈ [0, 1]d

Despite its novelty, a grave defect of this approach is the excessive computational overhead of
L-BFGS which is the main reason it has been deprecated.
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FGSM. A straightforward strategy of creating adversaries was introduced by Goodfellow et al.
[Goo+15]. If we consider Equation 4.2 without the constraints, then the gradient w.r.t the input x,
∇xL(fθ(x), y) indicates the optimal direction (based on first-order information) to move towards
in order to minimize L. Taking into account the desire of restricting the perturbation’s ℓ∞−norm,
they introduce a normalization step:

x′ = x+ ϵ · sgn(∇xL(fθ(x), y))

This method is called Fast Gradient Sign Method (FGSM). Notice that it can be extended
easily to the case of ℓ2-norm by rescaling the gradient to have unit magnitude:

x′ = x+ ϵ · ∇xL(fθ(x), y)
∥∇xL(fθ(x), y)∥2

In subsequent works, FGSM was evolved into R+FGSM [Tra+18] which added a random ini-
tialization step before applying the gradient-based displacement, BIM (Basic Iterative Method)
[Kur+17] which executed multiple smaller gradient steps and MI-FGSM (Momentum Iterative
FGSM) [Don+18] which proposed to integrate a momentum term into the iterative method.

PGD. The iterative (and more powerful) variant BIM, introduced by Kurakin et al. [Kur+17],
can alternatively framed through the classical convex optimization method of Projected Gradient
Descent (PGD). PGD is deployed when we aim to enforce Gradient Descent to find solutions that
are contained into a certain set. In the case of adversarial attacks, this set coincides with the
ℓp-ball of radius ϵ around the clean input x. Viewing the process of crafting adversaries through
the PGD perspective was first proposed by Madry et al. [Mad+18] and it is expressed as follows:

xt+1 = P∆(x)

(
xt + η · normp(∇xt

L(fθ(xt), y))
)

(4.3)

where η: the step size which is typically smaller than the radius ϵ, normp: a normalizing oper-
ator which adjusts the input gradient in order to have unit ℓp−norm and P∆(x)): the projection
operator which maps the updated iterate into the feasible solution set. Specifically, if we denote
as yt+1 prior to the projection step, then the projection proceeds as follows (for p = ∞, 2):

x

xt

yt+1

xt+1

ϵ

Figure 4.2. A 2D example of
how a single update works in the
PGD algorithm, in the ℓ2-norm
case.

p =∞


rt+1 = yt+1 − x

r′t+1,i = max(min(rt+1,i, ϵ),−ϵ)

xt+1 = x+ r′t+1

p = 2


rt+1 = yt+1 − x

r′t+1 = ϵ · rt+1

max{∥rt+1∥2,ϵ}

xt+1 = x+ r′t+1

Finally, the adversary is obtained either from selecting the last
iterate xT , where T : the number of iterations or alternatively, the
iterate that reached the lowest objective value (in an early-stopping
manner). Whenever it is computationally affordable, instead of
initializing the starting point as the clean example, a random perturbation (uniform or normal) is
added to x and the procedure is repeated multiple times from different initial points. It is worth
mentioning that PGD has prevailed as the most standard algorithm of generating adversaries, in
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the case of ℓ∞-bounded attacks. It forms the basis for even more elaborate techniques of attacking
image classifiers, and also, it can be exploited in order to increase the robustness of neural networks.

C&W. Carlini and Wagner [CW17] replaced the non-linear constraint of Equation 4.1 through
the introduction of a smooth loss function L(x, y) endowed with the following property: L(x, y) < 0

iff arg maxf(x + r) ̸= y, where r: the additive perturbation. They present multiple formulations

of objective functions with this exact property, but the experiments demonstrated the margin loss
(also called CW loss) as the best option:

LCW(f(x), y) = f(x)y −max
i ̸=y

f(x)y

Notice that if LCW(x, y) < 0 then fy(x) < maxi ̸=y fi(x) thus the network f misclassifies
the input x. An objective function with this type of property is exploited in the following way:
Equation 4.1 can be alternatively expressed through a Lagrangian relaxation:

min
r
∥r∥p + c · L(f(x+ r), y) s.t x+ r ∈ [0, 1]d (4.4)

The box constraint is completely dismissed through the change of variables formula, where x

and r are connected as: x + r = 1
2 (tanhw + 1d),w ∈ Rd. This modification allows to search for

adversaries by optimizing the following expression (for p = 2):

min
w

∥∥∥1
2
(tanhw + 1d)− x

∥∥∥2
2
+ c · L

(
f
(1
2
(tanhw + 1d)

)
, y
)

(4.5)

The constant c determines the importance of the term associated with misclassifiaction; greatly
increasing it will most surely result to adversaries but with larger ℓ2-distortion which may be visible.
Ideally, we’d like to set it to the smallest possible constant which successfully finds an adversary;
in practice, they perform grid search into an interval ranging from 0.01 to 100. Equation 4.5 is
best solved by the Adam optimizer.

We purposely omit to present how the C&W attack is extended to other ℓp−norms, since,
besides the increased complexity due to the non-differentiability of other ℓp-norms, that method
is mostly used for the p = 2 setting. In the p = ∞ case, the default attack choice is the PGD
algorithm.

JSMA. Papernot et al. [Pap+15] introduced Jacobian Saliency-Map Attack (JSMA) which is
a method of generating targeted attacks of bounded ℓ0-norm. The ℓ0-norm constraint essentially
limits the amount of pixels that can be changed, rather than their intensity. An essential part
of JSMA is the calculation of the Jacobian matrix: ∇xf(x) = [∂f(x)∂x1

, ..., ∂f(x)
∂xd

] ∈ RK×d, where
f(x) ∈ RK is the logit vector of input x ∈ Rd, which is done through forward propagation. Then,
the Jacobian information is used to construct a saliency map S(x), where S(x)i quantifies the
significance of increasing i-th pixel to the score of class t:

S(x)i =

0, ∂ft(x)
∂xi

< 0 or
∑

j ̸=t
∂fj(x)
∂xi

> 0(
∂ft(x)
∂xi

)∣∣∣∑j ̸=t
∂fj(x)
∂xi

∣∣∣, else

Hence, the i-th pixel is considered important based on both how much it contributes to the
increase of target class’ score and the cumulative decrease in the confidence of all remaining classes.
The most important pixel, according to the saliency map, is altered and the iterative algorithm
proceeds until the perturbed image is classified as belonging to class t.
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Other Attacks. Considering that we presented some of the most fundamental methods for gen-
erating adversarial attacks, we further extend our discussion in a more concise manner to introduce
some other works too. DeepFool [Moo+16], a geometrically-inspired method, approximates the
non-linear decision boundaries of DNNs through their first-order approximation and "sends" the
current adversary towards the nearest decision boundary linearization. Croce and Hein [CH20a]
proposed the Fast Adaptive Boundary (FAB) attack, which can be regarded as an evolution of
DeepFool that simultaneously seeks for adversaries that minimize the distance from the clean in-
put. The DDN method [Ron+19] is another instance of minimum-norm attacks, where the attacker
follows the gradient direction in each step with a perturbation budget ϵ. The bound ϵ is constantly
adjusted in order to find its minimum value that permits the finding of adversaries. Another line
of work is involved with lending performance gains to the PGD algorithm. Gowal et al. [Gow+19]
suggest that instead of investing a large number of iterations to PGD, the attacker should rather
perform fewer iterations with many restarts, wherein each restart the adversary targets a differ-
ent label (MultiTargeted Attack). Croce and Hein [CH20b] devise a novel optimizer, dubbed as
AutoPGD, which has the appeal of being parameter-free and hence is less vulnerable to low per-
formance due to poor hyperparameter tuning. Sriramanan et al. [Sri+20] find that the addition
of an MSE regularization term to the standard margin loss enhances the performance of PGD.

4.2.4 Black Box Attacks

We referred to black box attacks as the setting where the threat model has limited information
at its disposal. In our presentation, we will assume that the target network can be used as an oracle,
i.e. the attacker can query the model to obtain the associated logit vector (or for some cases just
the classifier’s decision). We also presume that the training dataset is available to the malicious
user; The real-world applicability of this conjecture can be criticized, since most of the deployed
ML models do not expose that type of information. There is research that tackles the problem of
adversarial attacks through a more realistic perspective. However, our aim is to superficially (and
succinctly) cover the most essential body of work for black box attacks, since our contribution (See
Section 5) is solely related to the white box scenario.

Transfer-Based Attacks. There is an intriguing feature associated with adversarial examples:
They demonstrate transferability [Sze+14; Goo+15; Pap+16], meaning that the attacks generated
for some network might be used to fool another one. This behaviour enables a simplistic yet pow-
erful approach, suggested by Papernot et al. [Pap+16], to produce adversaries without knowledge
of the network: (1) Design a source network S, (2) Create a synthetic dataset, where each input
x from the original training dataset is labeled according to the output of the target network T ,
(3) Train S in this exact dataset (knowledge distillation) and finally (4) Perform white-box attack
in the target network T and transfer those perturbations to the classifier S. Despite the effective-
ness of this method on networks that are trained in a standard way, its performance is inferior
against classifiers that have been trained to be robust (Section 4.3) and depends heavily on the
architectural similarity between the two classifiers.

Decision-Based Attacks. Here we will discuss about a class of gradient-free methods that
only requires the classifier’s predicted label (instead of the logit vector) to produce adversarial
examples. The most pronounced instance of this category is the Boundary Attack, proposed by
Brendel et al. [Bre+18]. This method is devised based on very simple geometric intuitions: Sample
a random image x0 from a noise distribution, which is classified differently from the clean image
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x and continually traverse across the decision boundary which separates the misclassified with the
correctly classified region, till the algorithm reaches a point which has minimal distance with x.

x0

x

η1

δ1

Misclassification
Region

Figure 4.3. The visualization of Bound-
ary Decision attack.

The traversal along the decision boundary can be ap-
proximated through a simple heuristic method comprised
of two steps: A random perturbation ηt+1 is sampled,
such that if added to the current adversary xt the ℓ2-
distance remains unaltered: ∥x − xt∥2 = ∥x − (xt +

ηt+1)∥2, and then a new perturbation δt+1 is generated
which can be regarded as a small nugde towards the di-
rection of x, i.e. δt+1 = ϵ·(x−xt+ηt+1). This algorithm
is vividly depicted in Figure 4.3. If the compound per-
turbation δt+1 + ηt+1 of (t + 1)-th timestep leads to an
image that is correctly classified then the algorithm dis-
misses it. Hence, this iterative procedures gets as near
as possible to the original image, remaining in the mis-
classified region. Notice that, overall, this method only
requires the classifier’s decision to determine whether the
perturbation is acceptable or not. Interestingly, this sim-
ple method achieved impressive results but it required

many iterations in order to sufficiently decrease the visual distortion w.r.t the clean input.

Score-Based Attacks. This category contains the instances of black box attacks that only
require to query the classifier, without having any information about the training dataset. The
main ranking criterion between such methods is the average query rate that they need to yield
adversaries. Basic white box methods cannot be applied when the classifier’s structure is unknown
since we are unable to obtain the input gradients. The most direct alternative to the issue of
deficient information is to estimate the input gradients. Chen et al. [Che+17] propose Zero-th
Order Optimization (ZOO), i.e. numerically estimate the gradients and Hessian’s diagonal elements
through the symmetric difference quotient formula:

ĝi =
∂f(x)

∂xi
≈ f(x+ hei)− f(x− hei)

2h

ĥi =
∂2f(x)

∂x2
i

≈ f(x+ hei)− 2f(x) + f(x− hei)

h2

where h: a small constant. Note that this approach only necessitates to query the target system
f , but performing such a calculation for the entire input space is prohibitive in terms of compute.
To bypass this restriction, they recommend to update only one coordinate per iteration, either by
simply using the approximate gradient or even integrating the Hessian information like Newton’s
algorithm.

Uesato et al. [Ues+18] extended the infamous method of SPSA [Spa92] to the framework
of black box attacks; Essentially, a random vector u ∼ p(u) is sampled from the Rademacher
distribution and the input gradients g = ∇xf(x) are approximated as follows:

ĝ(u) =
(
f(x+ hu)− f(x− hu)

)
⊙ 1

2h
u−1

where u−1: the element-wise inverse of vector u. It can be proven that: Eu∼p(u)[ĝ(u)] = ∇xf(x),
hence the gradient is estimated through the Monte Carlo approximation of the true expectation.
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Another distinctive member of this black-box subcategory is the SquareAttack [And+20]. The idea
behind this method is to generate random perturbations from a proposal distribution and move
towards the proposed direction only if the resulting image yields higher loss value. The nature
of such distribution is of paramount importance and they elaborately design it to produce noise
perturbations that are localized in square-shaped regions (whose their size is constantly decaying)
instead of being spread around on the image. The proposed perturbation is always drawn such that
it nugdes the adversarial iterate to the surface of the ℓp-ball around x, since it has been observed
that successful adversarial perturbations satisfy this condition.

4.2.5 What is the reason of their existence?

The phenomenon of adversarial examples has reasonably sparked a surge of interest to the
research community. The emergence of such phenomenon exposed significant holes in terms of our
understanding about the inner mechanisms of Deep Neural Networks. Therefore, it is no wonder
that a multitude of works invested substantial effort towards the assignment of illuminating the
factors underlying this counterintuitive property. In this section, we will skim through the evolution
of ideas related to such interpretations. Those works should not been necessarily regarded as
mutually exclusive theses, but preferably more like non-overlapping premises that provide partial
explanations.

Initially, Szegedy et al. [Sze+14] conducted an analysis on the Lipschitz constants of DNNs’
layers, since adversarial examples are the exact opposite of the Lipschitz property: small input
perturbations that lead to large output changes. However, they only provide upper bounds for the
individual layers which are insufficient to formally explain the presence of adversaries. Goodfellow
et al. [Goo+15] articulated the linearity hypothesis: adversarial examples, in linear classifiers, arise
because the additive perturbation, even if bounded, is capable of drastically altering the activation:
wTx′ = wTx +wTη given that the input space is sufficiently high dimensional as is the case for
natural images. They extend this explanation in the case of highly non-linear functions like that
represented by DNNs, by advocating that in some regions, it may be the case that they behave too
linearly.Another explanation [Son+18b; Sam+18] asserts that adversarial examples are essentially
data points which lie off the regular data manifold. Song et al. [Son+18b] also demonstrate this
empirically through estimating the density of adversarial attacks generated by common algorithms,
where they discover that adversaries are concentrated in areas of low probability density. However,
Stutz et al. [Stu+19] exhibit that it is also possible to find on-manifold adversaries. Arguably, the
most convincing explanation originates from the work of Ilyas et al. [Ily+19]. In their interesting
analysis, they propose to consider images as the union of two distinct sets of features/pixels: The
robust features coincide with salient areas on an image that are of massive importance for humans
to perform classification e.g. the eyes/ears/whiskers of a cat, and the non-robust features which
essentially are trifling for the human perception. DNN classifiers learn to pick up the latter group of
features during the standard training process because they are highly-predictive and more helpful
in terms of generalization. Then, the adversary can modify the non-robust pixel values to flip the
classifier’s decision but the human perception concerning the image remains intact. Despite the
fact that these ideas may induce skepticism at first, in their experimental section they carry out
some fairly intuitive experiments that solidly demonstrate how these non-robust features, on their
own, are capable to train classifiers with exceptional generalization ability.
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4.3 Adversarial Defenses

The presence of adversarial examples indicate that the decision-making of Deep Neural Net-
works is unstable and extremely vulnerable, even to additive perturbations of minuscule magnitude.
Over the years that succeeded the discovery of Szegedy et al. [Sze+14], researchers have been urged
to provide meaningful solutions to alleviate this problematic behaviour. In this section, we will
walk through the most fundamental approaches that can be found in the literature, which aim to
build DNNs of increased robustness against malicious perturbations.

We should elucidate some important points related to our subsequent presentation: Over the
years, there have been various methods of different "philosophy" that attempt to address the ro-
bustness problem: Someone can either alter the standard training process of the classifier, or purify
the input, in the sense that the defender adds a module which aspires to remove adversarial noise
from the image and then the classifier can confidently ingest it, or even construct an independent
model that is responsible to assess the prospect that the input has been tampered with from a
malevolent user, called the detector. Our presentation, generally, will have its content devoted to
the first group of approaches and specifically for the case of ℓp−bounded adversaries.

Evaluating Adversarial Defenses. Before we delve into the evolved methods that improve
robustness of image classifiers, it is necessary to clarify the evaluation process of such models.
Given a classifier fθ, where θ: its parameters, a proper metric which duly reflects the ability of fθ
to perform well against ℓp−bounded adversaries is the robust test error :

Rrob(f) = E(x,y)∼D

[
max

x′:∥x−x′∥p≤ϵ
1[fθ(x

′) ̸= y]
]

(4.6)

However, in practice, there two important notes to take into consideration: (1) The true expec-
tation is approximated through the MC approximation, since we’re typically in the finite-sample
regimen and (2) The inner maximization problem, which requires the finding of the worst-case
adversary inside an ℓp−ball, cannot be exactly solved for neural networks; hence, one must resort
to approximate solutions by some adversarial attack algorithm e.g. PGD for ℓ∞−bounded adver-
saries. Thus, we can only obtain an upper bound of the true robust error. Selecting the attack
algorithm is crucial and an inappropriate choice can deceptively give a false sense of the true ro-
bustness; this is the problem of robustness overestimation which we shall thoroughly analyze in
4.3.2.

4.3.1 Building Robust Neural Networks

Adversarial Training. Recall that, when training deep neural networks, our aim is to search
for the optimal parameters that yield the minimum expected risk:

θ∗ : min
θ

E(x,y)∼pdata

[
L(fθ(x), y;θ)

]
(4.7)

However, when confronted with the prospect of ℓp-bounded adversarial attacks, it is necessary
to adopt a distinct objective which will ultimately help to counteract the detrimental impact of such
examples. The most straightforward objective to enforce ℓp-bounded robustness can be formulated
as follows:

θ∗ : min
θ

E(x,y)∼pdata

[
max

x′:∥x−x′∥p≤ϵ
L(fθ(x′), y;θ)

]
(4.8)
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The above equation asserts that training robust classifiers should involve the minimization of loss
against the worst-case input that resides inside the ℓp−ball of radius ϵ around x (See how the
need of improving ℓp−robustness Figure 4.4 affects the optimal decision boundaries). Indeed,
such an approach was thoroughly explored in the seminal work of Madry et al. [Mad+18] and
was theoretically motivated by Danskin’s theorem [Dan66]. Equation 4.8 can be viewed as a
saddle point (min-max) problem, comprised of two subproblems: the inner maximization and the
outer minimization. The former is approximately solved through SGD, whereas the latter can be
practically approached via the PGD algorithm. Despite its non-concavity, the inner problem can be
solved adequately well in practice, even by first-order methods like PGD, according to the thorough
analysis in [Mad+18]. Overall, this defense method is widely known as Adversarial Training (AT)
and, alternatively, can be regarded as performing data augmentation in each batch, exploiting
the worst-case perturbed inputs as the data transformation technique. The preceding work of
Goodfellow et al. [Goo+15] also proposed to augment the training minibatches with adversarial
examples, but they harnessed the evidently weaker FGSM algorithm. Adversarial Training is a
powerful framework that has endured the test of time, since it is one of the most reliable options
that the defender has at its disposal to increase resilience against ℓp−adversaries.

Figure 4.4. Figure adapted from Madry et al. [Mad+18]. The simple decision boundary (middle
figure) isn’t enough to ensure that the system will not suffer from degraded performance versus ℓ∞−bounded
adversaries.

A considerable drawback related to AT is the significant computational overhead that is imposed
from the iterative PGD method. Subsequently, many variants have been developed with the end
goal of accelerating AT. Free AT [Sha+19] proposes to use FGSM adversaries repeatedly on the
same batch, without zeroing out the perturbations between the replays; that way, they manage
to emulate the PGD algorithm but with interleaved parameter updates between PGD iterations.
Despite the fact that Free AT is less time-consuming that standard AT, it is still rather slow
compared to standard training. Wong et al. [Won+20] introduce Fast Adversarial Training:
a method which exploits FGSM adversaries with random initializations and a number of other
training tricks e.g. cycling learning rate schedules, that manage to reduce the total number of
epochs. Fast AT matches the robust performance of the networks trained in Madry et al. [Mad+18],
while simultaneously restricting the overall training time to similar levels with standard training.
Rice et al. [Ric+20] observe that adversarially trained classifiers are plagued by the issue of robust
overfitting, where overfitting in the training robust error induces a detrimental effect to the test
robust error. Notably, this comes in stark contrast with the behaviour of overparameterized neural
networks in the standard setting, where models are able to simultaneously overfit the training set
and decrease test error. Following this remark, they identify early-stopping as the most effective
way to mitigate this problem, which is as at least as effective as numerous other tricks that had
been devised, prior to their work, in order to decrease robust test error.
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TRADES. Aside from AT, the work of Zhang et al. [Zha+19c] inaugurated another promising
"family" of defenses, called TRADES (TRadeoff-inspired Adversarial DEfense via Surrogate-loss
minimization). They demonstrate that the robust error of Equation 4.6 can be decomposed as the
sum of two constituent parts: The natural classification error, measuring the classifier’s standard
performance and the boundary error defined as:

Rbdy(f) = E(x,y)∼D1
[
x ∈ B(DB(f), ϵ) : f(x) = y

]
(4.9)

where DB(f) denotes the set of points x that the decision boundary of f is consisted of, and
B(DB(f), ϵ) denotes the ϵ-neighborhood around these points. After replacing the 0-1 loss in the
respective definitions with some surrogate loss L like cross-entropy, their theoretical analysis can
be practically realized through a new training objective:

min
θ

E
{
L(fθ(x), y) +

1

λ
max

x′:∥x′−x∥p≤ϵ
L(fθ(x), fθ(x′))

}
(4.10)

where λ: a regularization parameter. The first term of Equation 4.10 minimizes the standard
classification error, whereas the insight behind the second term has a smoothing effect since it
encourages the classifier to assign the same label both to x and the ℓp−ball around it. Essentially,
this implies, in the finite-sample regimen, that the decision boundary will be pushed away from
training set’s data points due to this term. The solution of this maximization problem can be
practically tackled by the PGD algorithm, akin to the AT framework.

More Data. Schmidt et al. [Sch+18] assert that robust generalization necessitates a greater
amount of data compared with the standard setting. In addition, the second term of Equation 4.10
doesn’t include any label information, since it only requires to generate the worst-case adversary
x′ for x based on the pseudo-label fθ(x) . Based on these observations, many subsequent works
managed to attain substantial robustness gains by utilizing unlabeled data [Ala+19; Car+19;
Zha+19a].

Certified Defenses. The entirety of our previous discussion revolved around instances of a
particular subset of defenses called Empirical Defenses. There is a "supplementary" subset to the
empirical methods, dubbed as Certified Defenses. In the methods contained to the latter category,
the defender provides provable robustness, in the sense that for a given data pair (x, y), the
developed method answers exactly whether for this data point exists an ℓp−bounded perturbation
that causes misclassification. We clarify beforehand that, despite the enticing property of proving
robustness, certified methods are unable to match the performance of empirical defenses. Though
this thesis’ contribution is inextricably linked with the problem of robustness overestimation, which
is only present on Empirical Defenses, we will briefly represent, for the sake of completeness, the
most promising (and, conceptually, the most accessible) line of research in certified defenses, that
is Randomized Smoothing [Coh+19].

Randomized Smoothing characterizes a smoothing transformation of a classifier F : X → P(Y),
where P(Y): the set of probability distributions over Y = 1, ..., C (C: number of classes). This
transformation amounts to convolving F with a Gaussian pdf h(x) = N (x; 0, σ2I), resulting to the
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smooth classifier G:

G(x) = (F ∗ h)(x) =
∫
t∈X

F (x− t)h(t)dt (h: symmetric w.r.t t)

=

∫
t∈X

F (x+ t)h(t)dt (h: gaussian pdf)

= Et∼N (0,σ2I)[F (x+ t)]

In practice, the exact calculation of the above expression is infeasible and hence, we resort to MC
approximations. The construction of the smooth version of F induces some nice properties that
enable us to guarantee about the decision-making of G around a given point x. Consider that for
x, a, b are the two most probable classes (in that order) according to the smooth classifier G, and
pa, pb their associated confidences assigned by G. It can be deduced that the smooth classifier G

assigns the same label to every point x′ inside the ℓ2-ball of radius K = σ
2

(
Φ−1(pa)− Φ−1(pb)

)
:

∀x′ : ∥x− x′∥2 ≤
σ

2

(
Φ−1(pa)− Φ−1(pb)

)
⇒ arg max G(x′) = a

Notice that this property can be regarded as an equivalent of local Lipschitzness, where the inferred
(from G) class of x remains invariant inside an ℓ2−ball of radius that is dependant on the point
x and how confidently can G classify it. Finally, the exact robustness of classifier G against
ℓ2−adversaries of maximum perturbation ϵ is equivalent to the fraction of test data points where
the above constant K is at least ϵ.

A significant subtlety that needs to be understood is that in general, during training, the de-
fender manipulates the base classifier F with the end goal of improving robustness for its smoothed
counterpart G. If G isn’t sufficiently competent at classification (i.e. pa and pb has small differ-
ences) then the yielded robustness certificates will hold for trivially low radii. Hence, the defender’s
main aspiration should be that the smoothed classifier performs well versus clean inputs. For ex-
ample, standard training of F won’t cut it; Cohen et al. [Coh+19] suggest that training F against
Gaussian perturbed inputs yields good results. Though that is a reasonable heuristic to foster
adequate performance for G, Salman et al. [Sal+19] argue that Gaussian data augmentation isn’t
quite the same with training in a way such that G yields low objective value. Instead, they rec-
ommend an alternative which explicitly aims at improving the performance of G, by using MC
approximations to estimate the output of G (and, correspondingly, the plug-in estimator during
backward propagation).

4.3.2 The problem of Robustness Overestimation

Previously, we mentioned that evaluating ℓp−robustness of image classifiers amounts to the
computation of the robust test error, as it can be seen in Equation 4.6. Alternatively, robustness
is also quantified with the robust accuracy metric, which essentially is the 0-1 equivalent of robust
test error:

RobAcc(f) =
1

|D|

|D|∑
i=1

min
x′
i:∥xi−x′

i∥p≤ϵ
1[f(x′

i) = yi] (4.11)

The exact computation of such expressions is infeasible, in the context of Deep Learning. In prac-
tice, one obtains local minimizers that are found by first-order approximate attack algorithms such
as PGD. However, there is an evident danger lurking: An inappropriate selection of the attack
algorithm may lead to unduly high robust accuracy which doesn’t properly reflect the true degree
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of ℓp−robustness. This problematic behaviour is widely known as the issue of robustness overesti-
mation and it is the main cause of major setbacks in the discipline of Adversarial Defenses. The
primary factor that induces iterative gradient-based attacks to break down is relatively obvious: the
defended network operates in some way that impedes gradient descent, a phenomenon called gra-
dient masking. Robustness overestimation has been the epicentre of two works [Ath+18; Ues+18],
where they managed to completely circumvent i.e. drop the robust accuracy to ≈ 0%, multiple
adversarial defenses that had been published in the most prestigious ML venues, despite that the
authors of the respective publications had reported great robustness results. These defenses, al-
most invariably, contained some stochastic or non-differentiable module hence the gradient-based
attacks were doomed to fail.

Athalye et al. [Ath+18] managed to evade these defenses by improving gradient-based attacks
through the deployment of some novel ploys such as the Backward Pass Differentiable Approxi-
mation (BPDA) method, where some not-usefully differentiable module of the threatened network
is used only for forward propagation and during backprop is replaced by some differentiable ap-
proximation and Expectation over Transformation (EOT), particularly useful against stochastic
networks, where the excessive amount of noise in the gradient signal is counteracted by feeding
the input multiple times, and averaging the gradient. Uesato et al. [Ues+18] broke down de-
fenses through black-box attacks, generated by the SPSA method, which we analyzed in 4.2.4.
Besides their contribution on the side of breaking defenses, Athalye et al. [Ath+18] also discov-
ered numerous indicators whose presence foreshadows that the defending model may suffer from
gradient masking. In a similar vein, Tramer et al. [Tra+20] managed to evade another collection
of ℓp−bounded defenses, by the construction of suitable adaptive attacks, that is, attacks which
are specifically designed to fool a certain network by "reverse engineering" on its apparent weak-
nesses. Amazingly, this work demonstrated that defenders succumbed to the pitfall of robustness
overestimation, even though the problem had been already brought to light by Athalye et al.
[Ath+18]. All in all, these works increased the amount of skepticism associated with assertions
about ℓp−bounded robustness and overall heightened the vigilance of researchers.

We can derive two significant observations from the above discussion: First, an appropriate
and careful selection of the attack algorithm is vital, because, otherwise, the defender may be led
astray and make false claims about the performance gains of his/her method. Second, it becomes
evident that evaluating ℓp−bounded robustness is a troublesome procedure, seemingly far from
being standardized as other Computer Vision benchmarks.

RobustBench. In an effort to standardize the assessment of ℓp−bounded robustness, Croce et al.
[Cro+21] established the RobustBench benchmark, which performs the evaluation of ℓp−defenses
using the AutoAttack [CH20b] method. This attack algorithm is the ensemble of four adver-
sarial attacks: AutoPGD (with two different losses), introduced in [CH20b], which constitutes a
parameter-free optimizer to counteract the negative impact of poor hyperparameter tuning, black-
box SquareAttack [And+20] and FAB attack [CH20a]. The presence of the black-box component
ensures that the ensemble contains enough diversity, in order to expose the models to dangers of
different rationale. The establishment of AutoAttack as the default choice to evaluate robustness
clearly stems from their impressive results: In the experimental analysis of [CH20b], they manage to
drop the originally reported accuracies of over 50 works on ℓp−bounded adversarial defenses. The
drop rate on some defenses is modest e.g. 0.5-1%, whereas for a small amount of cases, AutoAttack
attains to completely circumvent the respective defense. Therefore, the selection of AutoAttack
seems a reasonable and reliable option to evaluate adversarial defenses, at least on a primary
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stage. Then, one is also encouraged to build adaptive attacks, akin to [Tra+20], particularly if
there are signs that indicate gradient obfuscation. However, the submission of adversarial defenses
to the RobustBench leaderbord is accompanied with a boolean flag which gives information about
whether AutoAttack is unreliable or not.

The library of RobustBench also contains a huge collection of pre-trained robust models which
are accessible with a minimal amount of effort. The very existence of such a collection offers the
opportunity to researchers that do not possess enough compute to use off-the-shelf robust models
either for evaluating the effectiveness of new adversarial attacks or for other downstream tasks. The
author of this present dissertation expresses his gratitude to the team that maintains the project
of RobustBench, since the pre-trained models allowed the thesis’ experimental contribution to be
considerably less computationally intensive.

4.3.3 Intriguing Properties of Robust Neural Networks

Increasing the resilience against perturbed inputs of small magnitude has been the primary
goal of works in the literature of Adversarial Defenses. However, methods that increase robustness,
especially the Adversarial Training framework, have sparked numerous unsolicited properties which
are of great interest by their own right.

Generalization. It has been repeatedly observed in many works that Adversarial Training has
a detrimental effect on the accuracy of clean inputs, establishing a trade-off between generaliza-
tion and robustness. Tsipras et al. [Tsi+19] build on these empirical observations and create a
synthetic data distribution where it is impossible to simultaneously achieve high standard and
robust accuracies, leading them to the conclusion that there might be an inherent tension between
these two goals. Stutz et al. [Stu+19] ascribe the observed tension to the distribution shift during
Adversarial Training; essentially, during AT, the classifier is minimizing the loss function against
adversaries that leave the data manifold and its performance is compromised when confronted
with regular data. Based on that, they propose an algorithm to generate approximate on-manifold
adversaries and exploiting them during AT doesn’t harm generalization. Another prescribed in-
terpretation about this trade-off stems from the work of Xie et al. [Xie+20], where they attribute
this phenomenon to Batch Normalization (BN) layers. BN layers rely on the assumption that the
inputs are drawn from the same data distribution. Adversarial Training, however, coerces the BN
layers to learn statistics (mean and std) of a shifted distribution, hence when these statistics are
used for clean data during inference, the network’s performance is negatively affected because of
this distribution misalignment.

Interpretability. Initially, Tsipras et al. [Tsi+19] discovered that adversarially trained models
produce image gradients that align with "human perception", since they are resembling low-level
image features like edges (c.f. Figure 4.5). This enticing feature also appears in models that are
adversarially trained for small perturbation budgets ϵ [Agg+20]. Additionally, it was shown that
the "human-aligned" gradients property also holds for certifiable robust classifiers [Kau+19], and
thus it should not be exclusively attributed to the adversarial training framework. Later, Engstrom
et al. [Eng+19a] demonstrated that the representations learned by robust models are invertible,
meaning that for an ℓp-bounded adversarially trained model, given the representation vector R(x)

of the penultimate layer, we can approximately recover the original image x (see Figure 4.6) through
simple gradient descent on the MSE loss between the represenations of the true input x and the
optimized image x′. An interesting implication of these findings is that maximizing the prediction
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confidence of image x for some class yt amounts to visually introducing salient characteristics of
this particular target class (c.f. Figure 4.7). Motivated by this, Santurkar et al. [San+19] solved
popular vision tasks such as Image Synthesis, Impainting, Image-to-Image translation and Super
Resolution just by harnessing a single robust classifier.

Figure 4.5. The input gradients of standard models (2nd row) are noisy signals, whereas the input
gradients of adversarially trained models resemble low-level features of the images. Figure adapted from
[Tsi+19].

Figure 4.6. The left-most picture represents the image x for which the penultimate layer’s feature map
R(x) is known. In the right, the top row shows the random seed from where the gradient descent (GD) is
initialized. Inverting the representation via GD on robust models produces an image x′ which resembles
the true input x (middle row), whereas in standard-trained networks the output is visually more similar to
the random seed (bottom row). Figure adapted from [Eng+19a].

Figure 4.7. Maximizing class scores of a robustly trained classifier. For each original image, we visualize
the result of performing targeted projected gradient descent (PGD) toward different classes. The resulting
images actually resemble samples of the target class. Figure adapted from [San+19].

Transfer Learning. An additional unexpected benefit of robust classifiers is their superiority
on Transfer Learning related applications [Sal+20; Utr+20]. In specific, those works studied the
performance of robust models as feature extractors for downstream tasks: Interestingly, despite the
inability of robust models to perform on par with their standard trained counterparts in terms of
clean accuracy [Tsi+19], using them as feature extractors led to better performance on downstream
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tasks. This result added more stable grounding in the assertion that robust models learn more
meaningful representations.

Invariance to biases. The adversarial learning goal can be viewed as a form of data aug-
mentation, wherein the network learns to be invariant against worst-case additive perturbations.
Recently, Geirhos et al. [Gei+19] demonstrated that standard training results to classifiers that
are texture-biased and ignore shape information which is deemed (from human subjects) more
important than texture when it comes to object classification. Zhang and Zu [ZZ19] displayed that
standard trained CNNs are more texture-biased than adversarially trained CNNs.

4.3.4 Other forms of Robustness in Deep Learning

Despite the emergent agitation that accompanied the discovery of adversarial examples, research
community is considerably skeptic about the real-world implications of worst-case adversaries. A
viewpoint of heightened popularity asserts that adversarial examples aren’t much of a nuisance in
practical scenarios, since, so far, there isn’t a tangible case where a machine learning model was
damaged by worst-case adversaries. Nevertheless, studying the phenomenon of adversarial attacks
is interesting because they showcase serious functional blind-spots whom their study impels us
to deepen our understanding of Deep Neural Networks. In the following text, we will visit other
instances of instability associated with the decision making of such models.

The concerns surrounding the incompatibility of adversarial attacks with practical implications
has steered the attention of researchers to study other forms of robustness. Common Corruptions,
introduced by Hendrycks et al. [HD19], is a popular computer vision benchmark that, instead,
evaluates the behaviour of models against a wide variety of perturbations such as noise, blurrings,
tricky weather conditions etc., which are deemed as a much more realistic threat to occur in the
real-world. Importantly, an inherent difference between the evaluation versus common corruptions
and adversarial examples is that the assessment against common corruptions is carried out in a held-
out test-set (CIFAR10-C,ImageNet-C etc.) which is fixed, regardless of which classifier is assessed,
hence there is no risk of overestimating robustness. Also, there is a plethora of works which
studies the relationship of adversarial robustness with the benchmark of Common Corruptions,
and the effectiveness of methods from the former category to the latter setting. Interestingly,
improvements of robustness against ℓp−bounded worst-case adversaries doesn’t necessarily induce
increased stability versus common corruptions. Similarly, Hendrycks et al. [Hen+21] created a
pair of another challenging computer vision benchmarks, namely ImageNet-A and ImageNet-O,
where the performance of machine learning models is degraded in a great extent.

Of course, another line of research work that pertains to the field of neural networks’ robustness
is that of Geirhos et al. [Gei+19], where the authors discovered that CNNs are biased towards
texture whereas human decision making is predicated more on shape information. This study
demonstrates the lack of CNNs’ robustness when they are confronted with images of conflicting
texture and shape cues.
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Chapter 5

Alternating Objectives Generates Stronger PGD-Based

Adversarial Attacks

5.1 Abstract

Designing powerful adversarial attacks is of paramount importance for the evaluation of ℓp-
bounded adversarial defenses. Projected Gradient Descent (PGD) is one of the most effective and
conceptually simple algorithms to generate such adversaries. The search space of PGD is dictated
by the steepest ascent directions of an objective. Despite the plethora of objective function choices,
there is no universally superior option and robustness overestimation may arise from ill-suited
objective selection. Driven by this observation, we postulate that the combination of different
objectives through a simple loss alternating scheme renders PGD more robust towards design
choices. We experimentally verify this assertion on a synthetic-data example and by evaluating our
proposed method across 15 different ℓ∞-robust CIFAR-10 models. The performance improvement
is consistent, when compared to the single loss counterparts. Additionally, our strongest adversarial
attack outperforms all of the white-box components of AutoAttack (AA) ensemble [CH20b], as
well as the most powerful attacks existing on the literature, achieving state-of-the-art results in
the computational budget of our study (T = 100, no restarts).

5.2 Introduction

The advent of Deep Learning (DL) caused a paradigm shift and revolutionized the way that
various interesting applications are approached. Such a wide adoption, however, demands from
the research community to comprehend the scenarios where Deep Neural Networks (DNNs) mal-
function. This necessity becomes even more imperative when considering the abundance of safety-
critical applications that do not leave room for complacency, e.g., autonomous driving. Unfortu-
nately, DNNs have significant failure modes and behave counterintuitively. A prominent instance
of this behaviour is illustrated by Szegedy et al. [Sze+14], where they showcase that DNN-based
image classifiers are vulnerable against adversarial examples. These examples arise from applying
humanly imperceptible perturbations to clean images, which are capable of degrading the model’s
predictive performance. This finding triggered research interest on two fronts: Adversarial At-
tacks, which are algorithms to generate such malicious examples and Adversarial Defenses, which
are methods of increasing the robustness of neural networks. Adversarial robustness is primarily
studied through the ℓp-bounded threat model, where the perturbation’s ℓp-norm is bounded by a
small constant.
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The robustness of Adversarial Defenses, on a given dataset, is estimated by the rate of test
set’s adversarial examples that the defense can properly classify. Of course, the estimated rate
(also called robust accuracy) depends on the strength of the attacking algorithm that will be used
for evaluation. Employing weak attacks to evaluate robustness creates a false sense of security, an
issue widely known as robustness overestimation [Ath+18; Ues+18; Tra+20].

Arguably, Projected Gradient Descent (PGD) is the most popular adversarial attack used
to evaluate ℓp−bounded robustness. PGD operates by iteratively following the steepest ascent
directions of an objective function, often called the surrogate. PGD has raised in many guises in
the adversarial attack literature: Goodfellow et al. [Goo+15] propose to attack networks through
the Fast Gradient Sign Method (FGSM), which takes a single normalized step, i.e., applying the
sign function in the case of ℓ∞-norm, towards the steepest ascent direction. Kurakin et al. [Kur+17]
demonstrate that the multi-step variants of FGSM are capable of producing significantly stronger
attacks. Dong et al. [Don+18] suggest a modification of the iterative FGSM that integrates a
momentum term. Madry et al. [Mad+18] link the iterative FGSM with the classical optimization
algorithm of PGD.

Despite that PGD combines both simplicity (in terms of implementation) and strength, it
has been shown that its performance can be hindered by ill-suited selection of hyperparameters,
e.g., fixed step size [CH20b]. Another hyperparameter of consideration is the surrogate loss, for
which literature has converged into 3 options: Cross-Entropy (CE) [Goo+15; Mad+18], Margin
(a.k.a. CW) loss [CW17] and the Difference of Logits Ratio (DLR) loss [CH20b], with the appealing
property of scale-invariance. However, empirical evidence (e.g., as in Figures 9-11 of [CH20b]) shows
that there is no universally superior objective and its effectiveness depends on the architecture,
weights, training dataset etc. On top of this, certain choices may be improper in special problematic
cases: 1) CE yields zero gradients for inputs where the classifier assigns the entire probability mass
to the ground truth class [CW17; CH20b], 2) both CE and CW are not scale-invariant hence logit
rescalings may induce gradient masking [CH20b] and 3) Ma et al. [Ma+20] assert that objectives
which involve multiple logit terms, i.e., all three of CE,CW and DLR, may suffer from the problem
of gradient imbalance where logits have quite disparate magnitudes and one term alone steers the
optimization trajectory towards non-optimal solutions.

In this work, PGD is studied from the perspective of surrogate loss. In order to alleviate
potentially weak PGD performance arising from poor surrogate selection, we propose to combine
different objectives in the same run of PGD. Hopefully, this combination will render PGD less
dependent to the surrogate hyperparameter. We identify that a simple alternation of objectives
during PGD is sufficient to induce significant boost on the PGD performance over the single loss
variants. Further qualitative analysis implies that the switching between different objectives helps
the algorithm to expand its search space, visiting more distant intermediate points during its
execution.
In this paper, we make the following key contributions:

• We propose to combine multiple objectives during PGD through alternating between them
during optimization, in order to alleviate potential flaws of each objective. Our proposed
strategy outperforms, in 15 out of 15 tested ℓ∞−bounded robust models, both the single-
loss variants as well as the three white-box components of AutoAttack [CH20b]: APGDCE,
APGDDLR and FAB attack [CH20a]. Furthermore, in most cases our attack achieves higher
Attack Success Rate (ASR) than the strongest baselines (for T = 100, R = 1) in the literature:
GAMA-PGD [Sri+20] and MD attack [Ma+20].

• We present extensive experimentation and analysis regarding the proposed alternation scheme,

72



5.3 Background

including: 1) A synthetic example which highlights how PGD with a single loss can fail, 2)
Qualitative analysis indicating that switching losses promotes search diversity and 3) Ab-
lation experiments which demonstrate that this loss combination strategy is more effective
than two other combining methods.

The remainder of this paper is organized as follows: Section 5.3 provides the necessary background,
covering basic aspects of the worst-case ℓp−bounded adversarial robustness, Section 5.4 briefly
discusses research work related to PGD-based attacks, since PGD is the main topic of our study.
In Section 5.6 we conduct numerous experiments to verify the effectiveness of our proposed method,
whereas in Section 5.7 we discuss how our study differs from previous related work.

5.3 Background

5.3.1 Notation

Image-label pairs are denoted as (x, y) ∈ X × Y where X ⊆ RD,Y ⊆ Z. The classifier’s
logit representation will be denoted as z(x) ∈ RC (or simply z), where C: the total number of
classes. Applying a softmax layer to the logit vector produces the probability vector p(y|x). The
classification decision will be denoted as f(x), hence f(x) = arg max

i∈[C]

z(x)i, where [C] = {1, ..., C}.

The surrogate loss L(z(x), y) (which will also be referred as L(x, y), for brevity’s sake), e.g., cross-
entropy, measures the model’s ability to assign the label y to example x.

5.3.2 Threat Model

The constraint of visual imperceptibility is approximated through the bounded ℓp−norm con-
dition. The generation of adversarial attacks should obey this restriction, returning an output that
lies within the ℓp−ball of radius ϵ around the clean input x. Hence, the feasible search space of
adversaries for the image x can be expressed as:

∆(x) = {x′ : ∥x− x′∥p ≤ ϵ}

Despite that the ℓp−bounded threat model is only a crude approximation of true visual similarity,
solving the problem of ℓp−bounded robustness can be viewed as an important stepping stone
towards confronting more realistic scenarios.

5.3.3 A taxonomy of ℓp−bounded adversarial attacks

Next we present a basic categorization of adversarial attacks based on their capabilities during
generation and their end goal.

Adversary’s Knowledge. Based on the amount of information that the adversary has at its
disposal, attacks can be divided into two major categories: white-box and black-box. In the former,
the attacker has access to every aspect of the model: its architecture, weights and training data.
This allows the adversary to obtain the network’s gradients w.r.t. the input which is particularly
useful when creating attacks. In the latter category, however, the adversary can only use the model
as an oracle, feeding an input point and getting access to the output vector, or sometimes just to
the output class.

73



Chapter 5. Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks

Despite that typical real-world scenarios are more similar to the black-box setting, white-box
attacks constitute a much more stronger threat model. Therefore, the evaluation of adversarial
defenses is typically performed based on white-box attacks.

Low Confidence vs Low Distortion. Attacks are also divided into minimum-confidence and
minimum-norm. In the former, the attack algorithm is based on the following formulation, for the
input-label pair (x, y):

δ : max
δ
L0/1(f(x+ δ), y) s.t. x+ δ ∈ ∆(x)

where L0/1(f(x), y) = 1[f(x) ̸= y] is the 0-1 loss, which due to its discontinuity is replaced by
some surrogate loss L such as cross-entropy. These attacks aim to reduce the ground truth label’s
confidence as much as possible by spending the entire attack budget ϵ, hence they typically lie on
the boundary surface of the feasible set ∆. The most prominent examples of minimum-confidence
adversarial attacks is the Fast Gradient Sign Method (FGSM) [Goo+15], the Iterative-FGSM
[Kur+17] and Projected Gradient Descent (PGD) [Mad+18].

Minimum-norm attacks aspire to find the smallest possible perturbation that leads to misclas-
sification:

δ : min
δ
∥δ∥p s.t. f(x+ δ) ̸= y

where y: the ground-truth label of x. Such attacks usually find adversaries that are within smaller
ℓp-distance from the clean input x than the perturbation bound ϵ. Popular examples of this cat-
egory are: Carlini-Wagner (CW) attack [CW17], DDN attack [Ron+19], Fast Minimum Norm
(FMN) [Pin+21] and Fast Adaptive Boundary (FAB) attack [CH20a] among others.

Untargeted vs Targeted. Another criterion of dividing adversarial attacks is whether the
adversary desires to force a specific label to the attack. In targeted attacks, the attack is considered
successful if the corresponding adversarial example is classified into a certain target class. In
untargeted attacks, the goal is simply to produce an example which is incorrectly classified, with
no constraint on its new label. Usually, the transition between the two categories is as simple
as slightly modifying the objective function, i.e., from descending the target label’s confidence to
ascending the ground-truth label’s confidence.

5.3.4 Empirical Adversarial Defenses

Training ℓp−robust neural networks, i.e., networks that are resilient against ℓp-bounded adver-
sarial attacks, is a complicated problem since we aspire to simultaneously realize two goals. First,
the classifier is asked to perform well on unseen examples drawn from the same distribution as the
examples used during training. An additional requirement is to find networks that produce smooth
predictions, assigning the same label to all data residing inside the ℓp−ball of such examples. The
most standard way of increasing ℓp−bounded robustness is Adversarial Training (AT) [Goo+15;
Mad+18]; in AT, the defender aims to minimize the robust expected risk :

Rf
rob(θ) = E(x,y)∼D

[
max

δ:∥δ∥p≤ϵ
1[fθ(x+ δ) ̸= y]

]
(5.1)

The inner expression coincides with the task of finding the worst-case ℓp−bounded adversarial
example. Madry et al. [Mad+18] confront the problem through the first-order method of PGD.
An important barrier of this method is the additional computational overhead. The iterative PGD
process renders this method costly in terms of compute, hence a line of research aims to increase
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robustness using one-step adversaries [Sha+19; Won+20; Ric+20; AF20], in order to restrain
the overall training time to similar levels as with standard training. Another important work on
adversarial defenses is the TRADES framework, introduced by Zhang et al. [Zha+19c]. The robust
expected risk of Equation 5.1 can be decomposed as the sum of two individual terms. The first
term represents the classification error, where the optimization searches parameters that generalize
well. The other term, dubbed as boundary error, can be considered as exerting a regularizing effect,
where it imposes decision “smoothness" between inputs inside the same ℓp−ball.

Schmidt et al. [Sch+18] provide evidence that adversarially training classifiers may require an
increasing amount of data. Following this, many works [Car+19; Zha+19a; Ala+19] explore the
use of both pseudo-labeled additional data and elaborate data augmentation techniques.

Robustness Overestimation. Evaluating the true degree of ℓp-bounded robustness of empirical
methods is intractable, since one needs to calculate the average 0-1 risk on a held-out test set.
Typically, the defender deploys a strong attacking algorithm to obtain a lower bound on the true
risk. However, this trial-and-error technique can provide misleading results. Failing to select
a proper attacking algorithm creates an inaccurate sense of security [Ath+18; Ues+18; TB19].
Importantly, these works propose numerous indicators that demonstrate whether the evaluation
suffers from this issue and guidelines of how to properly evaluate a defense.
The introduction of RobustBench [Eng+19c], based on the AutoAttack ensemble (comprised of
three white-box [CH20b; CH20a] and one black-box [And+20] methods), contributed to a consensus
regarding the evaluation of ℓp−bounded robustness: A newly proposed defense is first “passed"
through an AutoAttack evaluation, and then the defender can also perform adaptive attacks [TB19],
based on potential model-specific weaknesses.
Despite the general adoption of AutoAttack as the standard way to perform first-order robustness
evaluations, the community is constantly exploring faster and more powerful attack ensembles
[Liu+22; Yu+21].

5.4 Related Work

Projected Gradient Descent (PGD) [Mad+18; Kur+17] is the most popular minimum-confidence
attack. PGD has been the de facto standard for producing ℓp−bounded adversarial attacks, espe-
cially in the case of p =∞. In short, PGD can be expressed as:

x(t+1) = P∆(x)

[
x(t) + η(t)δ(t)

]
(5.2)

where x(t): the iterate, η(t): step size, δ(t): update rule of t-th iteration and P∆: the projection op-
eration, which maps the updated iterate into the feasible region ∆, which in our case is the ℓp−ball
of radius ϵ around x. Typically, this procedure is repeated multiple times from different random
initializations. For a more comprehensive view of how PGD is used to generate adversarial attacks,
we refer to the work of Gowal et al. [Gow+19], where they present a “holistic" pseudoalgorithm.

In the following discussion we present how one can manipulate the basic building blocks of
PGD, namely the optimizer, step size, initialization strategy and surrogate loss, in order to im-
prove its adversarial generation stregnth.

Optimizer. The optimizer determines the form of the update rule δ(t). In its simplest version,
assuming the surrogate loss L(x, y), PGD follows the steepest direction of unit ℓp-norm, e.g., the

75



Chapter 5. Alternating Objectives Generates Stronger PGD-Based Adversarial Attacks

sign of ∇x(t)L(x(t), y) in the case of p =∞, or a simple norm-rescaling when p = 2. In the C&W
attack [CW17], the proposed objective is optimized through Adam [KB15]. The Adam optimizer
has also been leveraged in PGD-based works [Gow+19; Ues+18]. Dong et al. [Don+18] suggested
the incorporation of momentum [Pol64] in the PGD update rule. Subsequently, Croce and Hein
[CH20b] proposed the AutoPGD (APGD) variant, wherein the update term is augmented by mo-
mentum. Yamamura et al. [Yam+22] developed the Auto Conjugate Gradient (ACG) method,
which is an elaborate optimizer, adjusting the update rule based on accumulated gradient infor-
mation from previous steps. ACG is experimentally shown to outperform APGD for a sizable
collection of robust models.

Step Size. Another hyperparameter which affects the performance of PGD is the step size η(t).
In early works, its value is held constant during the entire optimization procedure, e.g., to α = ϵ/4

for ℓ∞-attacks in CIFAR-10. Croce and Hein [CH20b] conduct large-scale experiments regarding
the optimal fixed value, but one immediate corollary is that it greatly depends on the model. Gen-
erally, the common trend is to perform some kind of scheduling, where the step size is gradually
reduced over time: In [Gow+19], [Sri+20], the authors apply ten-fold drops at two intermediate
timesteps; Ma et al. [Ma+20] propose a cosine-annealing scheme, where the step size decays from
2ϵ to 0. In their recent work, Liu et al. [Liu+22] adopt a similar decaying strategy. Another
interesting way of manipulating this hyperparameter is as in the AutoPGD method [CH20b]; They
initially set it to a large value α = 2ϵ, in order to explore the search space sufficiently well. Then,
as the optimization proceeds and the iterate gets closer to some local optimum, the need of a more
localized search calls for smaller step sizes. Hence, it is halved in specific checkpoints, according
to the optimization progress, i.e., based on whether the objective function is reducing or not.

Initialization. Proper initialization plays also a crucial role in the final performance. Typically,
the initial point x(0) can be either set to the clean image x, or alternatively, random noise may be
added to the clean image: x(0) = x+ζ, where ζ is drawn from some noise distribution. The attack
is then repeated multiple times, initialized from different starting points. Tashiro et al. [Tas+20]
suggest that random initialization may lead to starting points with nearly identical output space
representations, hence the attack generates similar results even if executed for many restarts.
Output Diversified Initialization (ODI) [Tas+20] counteracts this by maximizing the similarity of
starting point’s logit vector with a random output direction, in the first few PGD iterations. Re-
cently, Liu et al. [Liu+22] introduced Adaptive AutoAttack (A3), the new state-of-the-art attack
ensemble. A3 uses an adaptive initialization strategy, where the starting points are generated by
ODI, but instead of following random output space direction, the vector is selected according to
prior knowledge of perturbations that led to misclassification.

Surrogate Loss. The maximization of 0-1 loss is intractable for complex function classes as those
represented by deep neural networks [Aro+97]. It is common to substitute it with a surrogate,
differentiable loss which is amenable to optimization methods. A natural candidate is the cross-
entropy (CE) objective, which coincides with the negative log-likelihood of the ground truth class.
In their seminal work, Carlini and Wagner [CW17] tested various formulations, obtaining the best
performance for the so called margin (or CW) loss. A shared defect in both of these objectives is
the lack of scale-invariance, which may be translated in deteriorated performance due to gradient
masking. Croce and Hein [CH20b] introduce the Difference of Logits Ration (DLR) loss, which
rescales the margin loss to acquire the property of scale-invariance. Most of the literature involves
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these three options, whose expressions are included below for completeness:

CE(x, y) = − log p(y|x) = −zy + log

C∑
j=1

exp(zj)

CW(x, y) = −zy +max
j ̸=y

zj

DLR(x, y) = −zy +maxj ̸=y zj
zπ1
− zπ3

(5.3)

where zπ: the logit vector sorted in descending order. Gowal et al. [Gow+19] propose the Multi-
Targeted PGD variant which divides the iteration budget into runs of equal size, where each run
optimizes the targeted margin loss, for a different target label per run. Their experiments indicate
that the MultiTargeted strategy exploits more judiciously the given computational budget. Sri-
ramanan et al. [Sri+20] augment the standard margin loss expression with a regularization term
which is set to the MSE between the logit vector of the adversary and its clean counterpart. The
weighting coefficient of MSE term is gradually decayed to zero. Ma et al. [Ma+20], in an effort to
ameliorate the issue of imbalanced gradients, optimize only one of the two margin loss terms for
the first half of iterations before switching to the typical expression which contains both terms. In
the next restart, they repeat the process by using the other term for the first stage of optimization.

5.5 Methodology

Our work is motivated by the observation that a single surrogate loss is unable to perform
equally well across different robust models. Croce and Hein [CH20b] provide strong empirical
evidence to back up this argument. Specifically, in their study they investigate the effectiveness of
three objectives: CE, CW and DLR. These three aforementioned objectives have expressions that
are distinguished by small differences, yet each option can profoundly influence the Attack Success
Rate (ASR) of PGD. Of course, this phenomenon is not surprising at all: the optimization space
coincides with the high-dimensional pixel space of natural images, hence even just a rescaling that
links the CW with DLR loss is capable of producing non-trivial discrepancies in the respective loss
landscapes. Above all, it is critical to bear in mind the surrogate loss as another hyperparame-
ter, akin to step-size or optimizer, which has the potential of causing some degree of robustness
overestimation on its own right.

The most straightforward mitigation for this behaviour is to aggregate many different formu-
lations in the same run of PGD. The aggregation of objectives may be instantiated in a variety of
ways. Our work is based on a simple idea for performing such an aggregation: Divide the PGD
process into multiple successive stages, where the surrogate loss changes in the beginning of every
stage, and the starting point of every stage coincides with the last step iterate of the previous one.
This procedure, when using K stages, can be formulated as:

L(x, y) =



L1(x, y), if t < T
K

L2(x, y), if T
K ≤ t < 2T

K

...

LK(x, y), if (K−1)T
K ≤ t < T
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In this paper, we will consider the cases where K = 2, 3, using for surrogates the most common
choices: CE, CW and DLR.

Notice how this alternation strategy can be viewed as a more complicated initialization: Each
PGD stage starts from the initial point x(0) = x + δ, where δ: the accumulated perturbation of
all previous stages. Of course, an immediate extension is to consider variable starting timesteps tk
for stage k, but in this work, we heuristically set equal time intervals between all stages. In the re-
maining discussion, our loss switching variant will be referred eas follows: PGDL1&L2&...&LK

, e.g.,
PGDCE for simple PGD with CE surrogate and PGDCE&CW for two-stage PGD with CE and CW.

5.6 Experiments

5.6.1 Toy Example.

We present a toy example which elucidates that using a single surrogate during PGD may
deteriorate performance. Assume a 2D problem of 3-way classification (classes: y1, y2, y3). Inputs
are x = (x1, x2)

T and the linear classifier is z = (z1, z2, z3)
T = Wx, with:

W =

 0.3 −0.3
1 −0.01

−0.25 0.75


Consider an input x = (−0.45,−0.8), belonging to the class y1. The linear model classifies it
correctly to its ground-truth class, since z1 > max(z2, z3). Suppose that our goal is to generate
a perturbation δ of bounded ℓ2-norm (say ϵ = 0.4). A straightforward way to achieve this is by
executing PGD, maximizing a surrogate loss, e.g., CE or CW. For the input x of class y1, these
losses are analytically calculated as:

CE(x, y) = −z1 + log
( 3∑
j=1

exp(zj)
)

CW(x, y) = −z1 +max(z2, z3)

Figure 5.1 illustrates the level sets of these two objectives. In the bottom left panel of Figure 5.1,
we visualize the optimization trajectories of PGD for different choices of surrogates. The learning
rate is held fixed to η = 2ϵ and PGD is executed for T = 50 iterations. The blue dashed circle
denotes the boundary of the feasible region, whereas the circle, triangle and cross-shaped points
show the intermediate points of PGD (x(1), ...,x(50)). Using the CE as surrogate (red circle points)
manages to successfully perturb the input x, but CW objective (yellow triangle points) fails because
the linear level sets produce gradients that gets the optimization jammed on a single point. The
bottom right panel, however, demonstrates that the loss alternation method (green cross points)
isn’t affected from the failure mode of CW and finds an adversary. Despite being restricted, this
synthetic toy example underpins the argument that using multiple surrogates in the same run of
PGD renders the overall procedure more “robust" in the objective selection: Even if some individual
choice is infertile for whatever reason, the other alternatives may be enough to find an adversary.
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Figure 5.1. Top row: The level sets of CE and CW losses (w.r.t class y = 1). Bottom row: (Left)
Intermediate PGD points, executed with a single surrogate, where red circles indicate PGD with CE and
the yellow triangle PGD with CW, (Right) Intermediate PGD points, but here the objective changes in the
middle point (T = T/2) of the procedure (green crosses). The blue dashed circle visualizes the boundary
surface, which in this case is a disk of radius ϵ = 0.4 centered at x, of the feasible PGD solutions.

5.6.2 Models and Dataset

We will conduct our experiments in a sizable collection of 15 ℓ∞-bounded robust models, trained
on the CIFAR-10 dataset for a maximum perturbation of ϵ = 8/255. The models are pre-trained
and readily obtained from the ModelZoo of RobustBench [Cro+21] library. Our collection’s robust
models originate from various recent works: [Eng+19c; Car+19; Hen+19; Zha+19b; Zha+19c;
Wu+20; Seh+22; AF20; Dai+22; Gow+21; Hua+21; Zha+21; RM21; Add+21; Seh+20]. The ar-
chitectures of these models are ResNets [He+16] and Wide ResNets (WRN) [ZK16]. In Table 5.1,
we exhibit our model collection: For each case (row), the classifier is matched with the respective
paper/work, architecture, ModelID from RobustBench ModelZoo and the accuracy that the classi-
fier attains on the clean CIFAR-10 test set. We also state that in the following discussion, we’ll refer
to the terms Attack Success Rate (ASR) and Robust Accuracy (equal to 1−ASR) interchangeably
to quantify the strength of each attack.

5.6.3 Experimental Analysis

Multi-Stage PGD versus Single-Loss

First, we compare the loss alternation strategy against the typical single loss variants of PGD.
In this preliminary experimental setting, the step size is held fixed to η(t) = ϵ/4 and the optimizer
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# Paper Model ID in RobustBench leaderboard Architecture Standard Acc. (%)

1 [Eng+19c] Engstrom2019Robustness ResNet-50 87.03
2 [Car+19] Carmon2019Unlabeled WideResNet-28-10 89.69
3 [Hen+19] Hendrycks2019Using WideResNet-28-10 87.11
4 [Zha+19b] Zhang2019You WideResNet-34-10 87.20
5 [Zha+19c] Zhang2019Theoretically WideResNet-34-10 84.92
6 [Wu+20] Wu2020Adversarial WideResNet-34-10 85.36
7 [Seh+22] Sehwag2021Proxy_R18 ResNet-18 84.59
8 [AF20] Andriushchenko2020Understanding PreActResNet-18 79.84
9 [Dai+22] Dai2021Parameterizing WideResNet-28-10 87.02
10 [Gow+21] Gowal2021Improving_28_10_ddpm_100m WideResNet-28-10 87.50
11 [Hua+21] Huang2021Exploring_ema WideResNet-34-R 91.23
12 [Zha+21] Zhang2020Geometry WideResNet-28-10 89.36
13 [RM21] Rade2021Helper_R18_extra PreActResNet-18 89.02
14 [Add+21] Addepalli2021Towards_RN18 ResNet-18 80.24
15 [Seh+20] Sehwag2020Hydra WideResNet-28-10 88.98

Table 5.1. Our model collection, consisting of 15 ℓ∞-bounded classifiers obtained from the ModelZoo of
RobustBench.

K=1 K=2 K=3

Model PGDCE PGDCW PGDDLR PGDCE&CW PGDCE&DLR PGDCW&DLR PGDCE&CW&DLR

[Eng+19c] 52.24 52.59 53.55 50.29 50.22 52.63 50.27
[Car+19] 62.09 60.86 61.16 60.00 60.00 60.88 59.97
[Hen+19] 57.38 56.61 57.47 55.41 55.37 56.55 55.35

[Zha+19b] 46.28 47.44 47.97 45.33 45.32 47.42 45.32
[Zha+19c] † 55.47 54.21 54.39 53.45 53.43 54.23 53.41

[Wu+20] 59.05 56.93 57.02 56.47 56.44 56.94 56.42
[Seh+22] 58.68 57.22 57.89 56.06 56.05 57.21 56.06

[AF20] 47.14 46.62 47.62 44.56 44.53 46.62 44.50
[Dai+22] 63.98 63.23 63.83 61.80 61.76 63.23 61.77

[Gow+21] 65.79 65.20 65.76 63.86 63.85 65.20 63.84
[Hua+21] 64.95 64.15 64.64 63.09 63.03 64.12 63.06
[Zha+21] 66.67 60.40 60.59 59.78 59.69 60.37 59.69

[RM21] 61.48 58.51 58.56 57.77 57.74 58.51 57.74
[Add+21] 56.00 51.88 51.97 51.45 51.43 51.86 51.41
[Seh+20] 59.86 58.41 58.57 57.66 57.61 58.40 57.61

Table 5.2. Comparing single-loss PGD with the multi-stage variant of PGD (with K = 2, 3). PGD starts
from the clean point (no added noise). The experiments are executed for T = 100 with no restarts. Each
entry reports the robust accuracy of each classifier for the given method. (†): Attacked with ϵ = 0.031.

is set to standard gradient with the sign operation. Our computational budget is T = 100 with no
restarts. Since no restarts are used, we choose to initiate PGD from the clean points (no initial
perturbation) in order to eliminate any source of randomness in the results. Table 5.2 presents the
robust accuracy obtained of PGD with different choices of surrogates, for every classifier in our
collection.

Overall, there are several noteworthy remarks: First, the single-loss columns (K = 1) demon-
strate that the surrogate loss can greatly affect the ASR of PGD, confirming the findings of
previous studies, as that of Croce and Hein [CH20b]. On average, margin loss is the most re-
liable option but there are cases where it performs worse than CE. There are instances where
CE lags behind the other two options by a large margin, e.g., as in the model from [Add+21]
(Addepalli2021Towards_RN18), where the gap is greater than 4%. This indicates that it is impos-
sible to select a priori the best possible objective for a given model. This observation consitutes
strong evidence that no surrogate loss is reliable enough on its own.

Next, the results highlight the advantage of using multiple losses: When combining CE with CW
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Model APGDCE APGDDLR FAB PGDCE&CW&DLR ∆

[Eng+19c] 51.72 52.67 50.67 50.27 -0.40
[Car+19] 61.74 60.67 60.88 59.97 -0.70
[Hen+19] 57.23 57.03 55.55 55.35 -0.20

[Zha+19b] 46.15 47.39 45.83 45.32 -0.51
[Zha+19c] † 55.28 53.52 53.92 53.41 -0.11

[Wu+20] 58.90 56.68 56.82 56.42 -0.26
[Seh+22] 58.38 57.37 56.27 56.06 -0.21

[AF20] 46.93 47.08 44.72 44.50 -0.22
[Dai+22] 63.93 63.44 62.27 61.77 -0.50

[Gow+21] 65.63 65.14 64.14 63.84 -0.30
[Hua+21] 64.55 64.14 64.45 63.06 -1.08
[Zha+21] 66.37 60.19 59.97 59.69 -0.28

[RM21] 61.40 58.41 58.42 57.74 -0.67
[Add+21] 55.80 51.56 51.93 51.41 -0.15
[Seh+20] 59.60 58.29 58.29 57.61 -0.68

Table 5.3. Comparing PGDCE&CW&DLR with the untargeted version of every single white-box component
from the AutoAttack ensemble. Each entry reports the robust accuracy of each classifier for the given
method. ∆ column report the robust accuracy gap between PGDCE&CW&DLR and the best among the
AutoAttack components. The experiments are executed for T = 100 with no restarts. (†): Attacked with
ϵ = 0.031.

or DLR (PGDCE&CW and PGDCE&DLR columns), or both (PGDCE&CW&DLR column) the attack
is always stronger (lower rob. acc.) than the respective single-loss PGD. On average, PGDCE&CW

and PGDCE&DLR decrease robust accuracy by 1.05% and 1.39% (absolute) respectively over their
corresponding single-loss variants. In the case of PGDCW&DLR, the obtained ASR is nearly identical
with PGDCW, implying that the alternation step in this case may be futile because of the similarity
between the expressions of CW and DLR losses.

Finally, it is illustrated that on average PGDCE&CW&DLR is better than PGDCE&CW and
PGDCE&DLR, yet the differences are small. In some cases, using the alternation scheme with two
stages is better than PGDCE&CW&DLR. This informs us that it is not always better to add another
stage/objective in the alternation process. In a fixed iteration budget, adding another loss reduces
the overall time allotted to each stage. We assume that this hurts performance because the reduced
number of iterations is not enough to reach the stagnating region of each loss.

Multi-Stage PGD versus AutoAttack Components

Next, we compare our best method (on average, that is PGDCE&CW&DLR) with every white-
box component from AutoAttack [CH20b], i.e., APGDCE, APGDDLR and FAB attack [CH20a].
In the original AutoAttack evaluation, the last two components are run for T = 100 iterations and
R = 9 restarts, using the targeted version of each attack. However, we adapt these attacks to our
computational budget, evaluating the performance of their untargeted versions for T = 100. In
our experiments, we execute the official code1 of AutoAttack for every single model. We clarify
that the official code does not provide a way to turn off random initialization when evaluating the
AA components, but the fluctuations are expected to be small enough.

As it is clearly illustrated in Table 5.3, our proposed method, PGDCE&CW&DLR consistently
outperforms the white-box components of AutoAttack. It becomes evident that the advantage of
using the loss switching strategy is significant, since in this setting we run our attack for fixed
step size equal to ϵ/4 and the simplest optimizer possible (sign operation with no momentum).

1https://github.com/fra31/auto-attack
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APGDCE and APGDDLR are both based in the evidently better APGD optimizer and step size is
decayed according to some schedule, yet they lag behind PGDCE&CW&DLR by a large margin. Par-
ticularly, PGDCE&CW&DLR achieves (on average) 0.418% lower robust accuracy than the strongest
component.

Multi-Stage PGD versus the strongest baselines

We extend the assessment of our method’s effectiveness by comparing our results with the
strongest ℓ∞-bounded attacks, for T = 100 and no restarts. We consider the two best baselines
found in literature (in our computational budget): GAMA-PGD [Sri+20] and MD attack [Ma+20].
Both of these methods suggest improving PGD through modifications on the surrogate loss and
step size schedule. In Subsection 5.7.1, we delve into the exact similarities between the examined
methods and our work.

We execute these attacks through the official codebases2 3. When comparing PGDCE&CW&DLR

with each baseline, we adapt the learning rate schedule according to each work (See Appendix
for details). The results of these comparisons are summarized in Table 5.4. In the parentheses of
PGDCE&CW&DLR columns, we display which learning rate schedule is used. These results indicate
the effectiveness of our attack, achieving state-of-the-art performance (in the T = 100, R = 1

budget), for the majority of evaluated models.
Specifically, PGDCE&CW&DLR outperforms GAMA-PGD [Sri+20] in 11 out of 15 ℓ∞-bounded

robust models, whereas in 2 models they achieve the exact same ASR. In the 2 networks that
PGDCE&CW&DLR returns higher robust accuracy, the differences are quite small, i.e., 0.02% and
0.04%. An extreme case is the model of [Zha+21], since GAMA-PGD lags behind our method for
1.10%. These observations indicate that, in general, PGDCE&CW&DLR suffers less from robustness
overestimation.

In the case of MD attack [Ma+20], our method achieves lower robust accuracy in 13 out of 15
tested models, with an average improvement of 0.15%. In two models [Hen+19; Seh+20], however,
the estimated robust accuracy is 0.05% and 0.14% higher than that of MD attack. Overall, this
comparison, similarly to the previous one, highlights that PGDCE&CW&DLR provides the most
reliable ℓ∞-bounded robustness evaluations.

5.6.4 Qualitative Analysis

Here, we conduct a qualitative analysis to better grasp the impact of changing surrogate losses
during optimization. Our experiments are inspired by the work of Yamamura et al. [Yam+22],
where they visualize the ℓ2-distance between successive PGD steps: ∥x(k+1) − x(k)∥2 in order
to empirically show that their proposed optimizer explores the input space more extensively. In
a similar vein, we replicate their method for PGDCE,PGDCW,PGDCE&CW,PGDCE&CW&DLR in
Figure 5.2, inspecting four different classifiers. To generate smoother curves, the y-axis quantity
is averaged on a batch of 100 examples.

Altogether, it appears that in the single loss variants, the search of PGD becomes quite localized
and after some time the successive steps are within small distances. In the cases where multiple
surrogates are used, the curve presents a sudden rise in the alternation timestep, indicating that
the objective alternation helps the algorithm to diversify its search.

2https://github.com/val-iisc/GAMA-GAT
3https://github.com/Jack-lx-jiang/MD_attacks
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Model GAMA-PGD [Sri+20] PGDCE&CW&DLR ∆ MD Attack [Ma+20] PGDCE&CW&DLR ∆
(GAMA-PGD sch.) (MD sched.)

[Eng+19c] 50.05 49.88 -0.17 50.34 49.87 -0.47
[Car+19] 59.84 59.78 -0.06 59.83 59.72 -0.11
[Hen+19] 55.22 55.26 +0.04 55.15 55.20 +0.05

[Zha+19b] 45.32 45.20 -0.12 45.49 45.17 -0.32
[Zha+19c]† 53.29 53.29 0 53.36 53.26 -0.10

[Wu+20] 56.30 56.30 0 56.28 56.26 -0.02
[Seh+22] 56.01 55.95 -0.06 55.92 55.89 -0.03

[AF20] 44.42 44.41 -0.01 44.57 44.44 -0.13
[Dai+22] 61.94 61.74 -0.20 61.99 61.72 -0.27

[Gow+21] 63.78 63.72 -0.06 63.94 63.73 -0.21
[Hua+21] 62.87 62.89 +0.02 62.93 62.86 -0.07
[Zha+21] 60.72 59.62 -1.10 59.73 59.58 -0.15

[RM21] 57.78 57.73 -0.05 57.74 57.72 -0.02
[Add+21] 51.43 51.26 -0.17 51.30 51.25 -0.05
[Seh+20] 57.49 57.43 -0.06 57.31 57.45 +0.14

Table 5.4. Comparing PGDCE&CW&DLR with the strongest attacks of our computational budget (T = 100
with no restarts). Each entry reports the robust accuracy of each classifier for the given method. ∆ columns
report the robust accuracy gap between the compared methods. (†): Attacked with ϵ = 0.031.
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Figure 5.2. Plotting the ℓ2-norm between successive PGD steps, for various surrogate losses. Each panel
represents this quantity over iterations, for a different classifier (ModelID is on top of each panel).

5.6.5 Ablation: Surrogate Loss Order in Multi-Stage PGD

A research question regarding the multi-stage variant of PGD is whether the objective ordering
affects the results. Specifically, we are interested in understanding whether any change occurs if we
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optimize the objectives with reverse ordering. To address this question, we execute the two-stage
PGD, with T = 100 and no restarts, for every possible pair (order matters) of CE, CW and DLR.

The results of Table 5.5 demonstrate that the order plays an essential role. Particularly, it
is clearly illustrated that it is better to start the optimization procedure with the CE loss, then
finishing off with CW or DLR. However, we observe that regardless of the objective ordering,
every multi-stage PGD variant which alternates between CE and one of CW, DLR (PGDCE&CW,
PGDCW&CE, PGDCE&DLR, PGDDLR&CE columns) performs better than single-loss PGD.

Model PGDCE&CW PGDCW&CE PGDCE&DLR PGDDLR&CE PGDCW&DLR PGDDLR&CW

[Eng+19c] 50.29 50.95 50.22 51.13 52.63 52.97
[Car+19] 60.00 60.27 60.00 60.39 60.88 60.94
[Hen+19] 55.41 55.62 55.37 55.72 56.55 56.84

[Zha+19b] 45.33 45.85 45.32 45.86 47.42 47.58
[Zha+19c] 53.45 53.76 53.43 53.86 54.23 54.31
[Wu+20] 56.47 56.68 56.44 56.72 56.94 56.98
[Seh+22] 56.06 56.42 56.05 56.52 57.21 57.49

[AF20] 44.56 44.94 44.53 45.03 46.62 46.77
[Dai+22] 61.80 62.18 61.76 62.33 63.23 63.42

[Gow+21] 63.86 64.80 63.85 64.30 65.20 65.31
[Hua+21] 63.09 63.52 63.03 63.64 64.12 64.34
[Zha+21] 59.78 60.16 59.69 60.31 60.37 60.51

[RM21] 57.77 58.17 57.74 58.18 58.51 58.54
[Add+21] 51.45 51.79 51.43 51.84 51.86 51.93
[Seh+20] 57.66 57.92 57.61 57.93 58.40 58.47

Table 5.5. Ablation Study. Exploring the importance of the surrogates’ order. The experiments are
executed for T = 100 with no restarts. Each entry reports the robust accuracy of each classifier for the
given method. (†): Attacked with ϵ = 0.031.

5.6.6 Ablation: Additional Techniques of Combining Surrogates

Another interesting research question is to explore whether there exist other ways of combining
surrogates. To settle this, we compare the alternation method with two additional combining
techniques. First, one can combine different surrogates through a convex combination, i.e., setting
the surrogate according to the following expression:

L(x, y) = γ · L1(x, y) + (1− γ) · L2(x, y)

Another way is to combine different surrogates in an ensemble-like manner, i.e., split the entire
iteration budget into K equally sized intervals, execute PGD using the k-th surrogate Lk, starting
from the clean point (not from where the previous stage ended), and then aggregate the output
decisions. This method is inspired by the MultiTargeted surrogate, introduced by Gowal et al.
[Gow+19]. For the CE and CW losses, we denote the latter combining strategy as PGDCE ∨
PGDCW, because the output decisions of each surrogate are aggregated through binary OR, i.e., the
input is deemed misclassified if at least one of PGDCE, PGDCW generate a successful perturbation.

We conduct an ablation study, using the CE and CW objectives, to explore the effectiveness of
these methods. The results are illustrated in Table 5.6, where we also report the robust accuracy
of PGDCE,PGDCW,PGDCE&CW for direct comparison (we also include the iteration budget on
the superscript to draw a distinction with the ensemble method). As expected, the robust accu-
racy of convex combination is susceptible to the choice of γ, with its performance depending on
whether the best-performing objective has a larger weight. The ensemble method, on the other
hand, consistently outperforms the single-loss PGD, and much like PGDCE&CW, is more “robust"
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Convex
Model PGD100

CE PGD100
CW PGD50

CE ∨ PGD50
CW γ = 0.25 γ = 0.75 PGDCE&CW

[Eng+19c] 52.24 52.59 50.75 51.59 52.30 50.29
[Car+19] 62.09 60.86 60.18 60.97 60.85 60.00
[Hen+19] 57.38 56.61 55.52 56.10 56.36 55.41

[Zha+19b] 46.28 47.44 45.56 46.37 47.19 45.33
[Zha+19c] † 55.47 54.21 53.68 54.34 54.18 53.45

[Wu+20] 59.05 56.93 56.66 57.46 57.00 56.47
[Seh+22] 58.68 57.22 56.37 57.22 57.10 56.06

[AF20] 47.14 46.62 44.81 45.78 46.17 44.56
[Dai+22] 63.98 63.23 62.17 62.89 63.15 61.80

[Gow+21] 65.79 65.20 64.20 64.72 65.00 63.86
[Hua+21] 64.95 64.15 63.35 64.01 64.09 63.09
[Zha+21] 66.67 60.40 60.14 63.88 60.86 59.78

[RM21] 61.48 58.51 58.14 59.14 58.49 57.77
[Add+21] 56.00 51.88 51.78 53.23 51.96 51.45
[Seh+20] 59.86 58.41 57.85 58.59 58.41 57.66

Table 5.6. Ablation Study. In the convex columns, γ (1− γ) corresponds to CE (CW). The experiments
are executed for T = 100 with no restarts. Each entry reports the robust accuracy of each classifier for the
given method. (†): Attacked with ϵ = 0.031.

against issues arising from individual use of objectives. However, the loss alternation strategy,
PGDCE&CW, performs better than the ensemble-like combination. We advocate that this occurs
because PGDCE&CW utilizes the progress made in previous stages to perform better initializa-
tion for the next stage. The ensemble-like method, however, discards the perturbation found by
previous objectives, and starts optimization all over again.

5.7 Discussion

5.7.1 Similarity with Previous Works

Next, we discuss previous works that also employ a loss alternating strategy. First, the most
similar work is that of Ma et al. [Ma+20], where they employ an identical alternation step to
evade the issue of imbalanced gradients. The first PGD stage optimize only one of the two logit
terms, whereas in the final stage, the typical margin loss is optimized. Notice a striking difference:
Our work involves the CE,CW and DLR losses, all containing more than one logit terms, hence
potentially suffering from gradient imbalance that should translate to reduced ASR. Our method
outperforms MD attack. Therefore, our study provides evidence that the success of MD attack
[Ma+20] is more likely the outcome of switching surrogates, rather than deterring the magnitudes
of logit terms’ gradients from becoming highly disparate.

The second method is GAMA-PGD, introduced by Sriramanan et al. [Sri+20]. The authors
propose to regularize the margin loss with a MSE term, weighted by a decaying coefficient. In
their implementation, the initial rate of weights between the MSE and CW losses is 50:1, hence
for the first few iterations the contribution of CW loss is negligible. The weight of MSE is linearly
decayed to 0 for T/4 iterations, and after that point the surrogate is set to the standard margin
loss. Essentially, their attack alternates the surrogate loss used by PGD as many times as the
duration of the interval during which MSE decays, i.e., T/4 out of T iterations. Their analysis
conveys the intuition that the improvement originates solely from the regularizing effect that MSE
exerts on the margin loss. Our work demonstrates that the benefits of GAMA-PGD may arise
from the loss alternation, still further experimentation is required.

Another method loosely connected with ours is the Composite Adversarial Attack (CAA)
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[Mao+21]. Mao et al. propose to generate adversaries by searching for the best composition
of individual base attacks. Our method can be seen as a more special study of CAA, since it
composes PGD attacks for two (or three) different objectives. Our work indicates much more
markedly the value of using multiple losses. The effectiveness of CAA appears more like the result
of a brute-force-like search.

Overall, our paper differs from the aforementioned works in that it manages to showcase the true
efficacy of the alternation step, stripped down from other redundant components. The experiments
provide direct evidence that using multiple objectives is sufficient to induce large performance gains.
Additionally, our work is an extension of these methods since we evaluate the combination of all
possible pairs of CE,CW and DLR losses, rather than using only CW with its individual terms
[Ma+20] or CW and MSE [Sri+20].

5.7.2 Future Work

There are several questions arising from the proposed work than require further investigation
and could be of value to the community. Notably, it is critical to address whether there is a trade-
off between the number of surrogates used and PGD performance, for a fixed number of iterations.
We assumed that adding more stages for fixed budget may hinder performance due to the decreased
duration allotted to each stage. However, our intuition is that adding more objectives shouldn’t
drop the Attack Success Rate (ASR), given that PGD spends a sufficient time in each stage. This
can be easily verified by increasing the computational budget, e.g., from T = 100 to T = 1000,
and observing that more surrogates leads to higher ASR.

Another interesting observation to explore is how the alternation step depends on the choice of
objectives and their respective formulations. Particularly, we observed that PGDCW&DLR performs
at a par (or even worse) than the respective single-loss variants, PGDCW and PGDDLR, which was
credited to the similarity of CW and DLR. This indicates that the loss alternation technique is an
improvement only if the expressions generate landscapes which are diverse enough. In this vein,
it would be valuable to encompass other expressions which deviate from the objective functions of
our study, i.e., CE, CW and DLR.

Since we experimentally demonstrate that our PGD variant is the strongest adversarial attack
in the computational budget of 100 iterations, another direct extension is to integrate our attack
into powerful ensembles. Specifically, in the case of AutoAttack [CH20b], PGDCE&CW&DLR is out-
performing every white-box component (Table 5.3), hence we assume that replacing e.g. APGDDLR

with PGDCE&CW&DLR would produce more reliable robustness evaluations.

5.8 Conclusion

In this work, we propose a method of alternating objectives for improving the strength of PGD-
based attacks. The proposed method performs better than single loss variants, as well as strong
baselines which are used for evaluating the ℓp−bounded robustness of neural networks: AutoPGD
[CH20b], FAB [CH20a], GAMA-PGD [Sri+20] and MD Attack [Ma+20]. Our experiments show
that alternating objectives is a very effective way of combining different objectives compared,
e.g., to convex combination and ensemble-like methods. It is also experimentally shown that
the proposed method offers significant robustness towards overcoming loss-specific weaknesses.
Furthermore, our qualitative analysis offers intuition on the reasons behind our method’s strength
that may be related to the algorithm’s search space diversification induced by the alternation
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step. Finally, we offer a new perspective on how the success of other state-of-the-art attacks, i.e.,
GAMA-PGD and MD Attack, can be ascribed to loss alternation.
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Appendix A

Implementation Details

For our experiments, we implement code on the PyTorch framework. The PGD implementation
is based on the TRADES [Zha+19c] repository4. All attacks are executed with a ℓ∞-norm bound
of ϵ = 8/255 and for T = 100 iterations, with no restarts. Our code returns the best intermediate
PGD point instead of the last. The robust models of our study are obtained from the ModelZoo of
RobustBench [Cro+21]. Our experiments are run in a NVIDIA GeForce GTX 1080 Ti GPU with
12GB VRAM.

Step Size Schedules

Here, we discuss the step size schedules used when comparing our method with the GAMA-
PGD [Sri+20] and MD Attack [Ma+20] baselines. In GAMA-PGD, the step size schedule incurs
tenfold drops at T = 60 and T = 85, starting from η(0) = 2ϵ.

In [Ma+20], step size is regulated according to a cosine-annealing scheme. In particular, the
step size in t− th iteration equals:

η(t) =

ϵ · (1 + cos( t−1
T ′ )π) , t < T ′

ϵ · (1 + cos( t−T ′

T−T ′π)) , T ′ ≤ t < T

where T = 100, T ′ = T/2. Therefore, step size is decayed from 2ϵ to 0 in each stage. We extend
this scheme to our three-stage variant as follows:

η(t) =


ϵ · (1 + cos( t−1

T/3 )π) , t < T/3

ϵ · (1 + cos( t−T/3
T/3 π)) , T/3 ≤ t < 2T/3

ϵ · (1 + cos( t−2T/3
T/3 π)) , 2T/3 ≤ t < T

Images of Adversarial Examples

In this appendix, we visualize adversaries, generated to fool the ResNet50 robust classifier
from [Eng+19c] (Engstrom2019Robustness) that our obtained through executing PGDCE&CW and
PGDCE&CW&DLR methods, alongside their clean counterparts. Obviously, there are no visible
differences between the clean and perturbed images.

4https://github.com/yaodongyu/TRADES
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Figure 5.3. From top to bottom: First 5 rows correspond to clean CIFAR-10 test images, next 5 rows
correspond to PGDCE&CW adversaries and last 5 correspond to adversaries generated by PGDCE&CW&DLR.
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Chapter 6

Conclusions

6.1 Discussion

In this thesis, we conducted a pedantic study on the influence that the surrogate loss exerts in
performance of Projected Gradient Descent. Previous studies, as this of Croce and Hein [CH20b],
alluded that the performance of each surrogate is dependant on multiple factors, namely the
architecture, model’s weights, training dataset etc. This observation is the crux of our experimental
work, where we postulate that by combining different objectives in the same run of PGD we will
manage to alleviate individual flaws of each surrogate, rendering the optimization procedure more
robust to the selection of surrogate loss. We underpin this assertion initially by considering a
synthetic toy example, where one of the two losses (in this case, the margin loss) is blatantly
weak due to the morphology of its level sets. In this example, we show how our combining method
successfully perturbs the clean input, despite having used the problematic loss function for the first
half of iterations. Next, to extend the credibility of our assertion in more realistic scenarios, we
compare our alternating method with the single loss variants of PGD, in a large array of ℓ∞−robust
models, where it is vividly demonstrated that our proposed alternating strategy (when involving
CE and at least one of CW and DLR) consistently outperforms PGD when using a single objective.
These findings consist a satisfactory sample of empirical evidence to justify our initial intuition.
In addition to that, we also conduct a qualitative experiment to better grasp the reasons behind
our method’s superior performance: In this setting, we visualize the ℓ2-distance between successive
PGD steps, both for the single-loss variants of PGD and for the alternation method. From the
obtained figures we derive the following conclusion: Alternating between different losses during
PGD is a tool to promote search diversity, expanding the reachable set of points/regions (this is
implied by the abrupt leaps of ℓ2−distance in the timesteps where the loss alternation occurs).
Finally, we compare our best method against multiple baselines: First, with every white-box
component from AutoAttack, i.e. APGDCE,APGDDLR and FAB, adapted to our computational
budget (T = 100, R = 1), where it is highlighted that the multi-stage PGD which alternates
objectives manages to reach lower robust accuracies for every single model. Next, our attack
is compared with the strongest adversarial attacks (for the budget T = 100, R = 1) found in the
literature: GAMA-PGD [Sri+20] and Margin Decomposition (MD) Attack [Ma+20]. Our proposed
attack attains to outperform both of these methods (for the majority of the examined networks),
achieving state-of-the-art results.
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6.2 Future Work

There are plenty of future research steps emerging from the findings of our work. In this
paragraph, we will attempt to present various ideas that someone can implement in order to
expand the scope of our study:

• An immediate extension is to apply these experiments in a larger scale, both in the number
of examined models and in the datasets used. Notably, Croce and Hein [Cro+21] use more
than 50 models, whereas Yamamura et al. [Yam+22] experiment on 64 models. Both of
these studies evaluate their proposed methods on three datasets: CIFAR-10, CIFAR-100 and
ImageNet. In this thesis, we chose not to conduct our study in such a large scale mainly due
to compute limitations. Extending our work can also be done through the study of different
threat models: We only explored the combination of different losses for the ℓ∞-bounded
threat model, but that can be done also for ℓ0,ℓ1 or ℓ2-bounded attacks.

• Also, our method can be exploited in ensemble-like attacks, like AutoAttack [CH20b] or
A3 [Liu+22]. Specifically, since our method was shown to outperform all of the white-box
components of AA, it would be safe to assume that replacing them with our attack (at
least the first, i.e. APGDCE,APGDDLR which are PGD-based) would lead to higher Attack
Success Rate (ASR), enabling more reliable robustness evaluations.

• Notice that our work involved the combination of three losses: CE, CW and DLR. A straight-
forward way to broaden the caliber of our work is to encompass numerous other expressions,
e.g. the Mean Square Error (MSE) or some objective from the ones proposed in the study
of Carlini and Wagner [CW17]. Dropping the budget restriction, it is interesting to explore
how the combination of many losses affects the ASR e.g. cascading 10 different objectives,
devoting 100 iterations to each one of them. This may push the limits of PGD even more in
terms of Attack Success Rate (ASR). As regarding additional objectives, another interesting
line of research is to explore the derivation of new formulations, which induce largely different
geometries than the landscapes of the typical losses used in our study. In that regard, it is
valuable to conduct additional qualitative experiments to understand when the combination
of two or more different objectives is advantageous or not, E.g. an immediate question aris-
ing from our results is why the combination of the CW and DLR losses didn’t provide gains
over their single-loss variants, which we attributed to the highly similar expressions of the
objectives but without verifying it in a more convincing way.

• Next, another way of improving PGD is to combine our loss alternation strategy with ad-
vances made on other hyperparameters/components of the algorithm, e.g. combine the sur-
rogate loss alternation with more elaborate optimizers (APGD [CH20b] or ACG [Yam+22])
and initialization techniques (e.g. ODI [Tas+20] or adaptive initialization from [Liu+22]).

• Finally, the ultimate question emerging from the work of this dissertation is whether the
conclusion about the advantage of switching objectives during PGD can be also generalized
in the adversarial attack generation process in other domains, for example in applications of
textual or acoustic data.
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Appendix: The log-likelihood attack

In a completely different note, we devote the content of this Appendix to present a couple of
other experiments that were conducted during the course of this thesis. This section is discussing
our ideas in a slightly informal manner, with the reason for this being that, overall, the final results
were inconclusive and hence we include them in case any acquainted reader find them interesting.

7.1 Introduction

Deep Neural Networks (DNNs), despite their exceptional performance on an abundance of
previously hard-to-solve tasks, have functional blindspots. The most prominent instance of such
problematic functionality is their sensitivity against adversarial examples. Adversarial examples
arise by adding carefully designed perturbations into images which are correctly classified by the
system, resulting to a new image which dramatically alters the output of the classifier. Interestingly,
these perturbations are visually so subtle that even humans can’t recognize them.

The research community primarily studies the problem of adversarial examples through the
lens of ℓp-bounded threat model. In this setting, the adversary can only change the input in a way
that the produced example has a small enough ℓp-distance from its clean counterpart. Despite
that there is a significant progress towards improving robustness against ℓp-bounded attacks, the
proposed defenses can provide some degree of robustness only against the adversarial threat model
that was used during training [SC18]. The issue of ℓp−bounded adversarial defenses being unable
to defend against other types of adversaries is omnipresent. Engstrom et al. [Eng+19a] fool
adversarially trained models by applying small spatial transformations to images. Other works fool
defended classifiers by recoloring the image [HP18; LF19] or applying spatial transformations like
pixel displacements [Xia+18]. These attacks violate the constraint of ℓp-bounded norm, but they
remain imperceptible to the human eye, implying that the ℓp−bounded threat model is extremely
flawed and restricted. We will refer to such attacks as Unrestricted Adversarial Attacks.

Song et al. [Son+18a] provide empirical evidence that typical adversarial attacks generate
examples which have low probability density. Based on this observation, we aspire to settle the
question of whether it is possible to generate adversaries only by minimizing the data log-likelihood,
which is an unsupervised objective and has no relation at all with the classification problem. The
minimization can be done through known adversarial attacks like PGD. In our work, we confront
this problem by exploiting Normalizing Flows (NFs) [TT13; Din+15; Din+17] as the density
estimator. Since NFs map data points from the input space to a latent code of equal dimensionality,
we explore the idea of log-likelihood minimization both in the pixel and the latent space. We assume
that the latter method, i.e. producing an ℓp-bounded adversarial perturbation in the latent space,
is meaningful since small tweaks on the latent code should retain visual similarity. In this case,
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the produced adversaries are unrestricted since mapping the adversarial latent perturbation to the
pixel space doesn’t bound the image ℓp−norm.

In general, we draw two conclusions from our study: First, log-likelihood minimization in
the pixel space leads to weak attacks, that are unable to harm ℓp−bounded adversarial defenses.
In the case of latent code optimization, the attack is capable of degrading performance of ℓp-
bounded defenses, which is expected because the perturbations are unrestricted in terms of ℓp-
norm. Performance degradation is monotonically related with the perturbation bound in the
latent space. Increasing this bound leads to adversaries which have visible differences with their
clean counterparts.

Notation. Our experiments involve NF-based models, hence we denote a NF model as gϕ : X →
Z, mapping data points from X to a latent space Z. Of course, in order to keep gϕ, the input
(also called pixel) space X and the latent space Z have the same dimensionality. Whenever we
refer to log-likelihood (in the NF-based models), we suppose it is calculated by the density function
pϕ : X → [0, 1] learned by the model (unfamiliar readers are referred to our introduction in NFs,
in Subsection 3.6.3). Also, we state that in this section, the bold lowercase z refers to latent codes,
instead of the logit vector of some classifier (this quantity is not of interest in this section).

7.2 Motivation

Song et al. [Son+18b] conduct the following experiment: Using a CIFAR-10 pretrained Pix-
elCNN [Oor+16] density estimator, they observe that adversarial attacks lie in regions of lower
probability density than their clean counterparts. This is also depicted in Figure 7.1, where they
visualize the histograms of bits per dimension (bpd) which is proportional to the negative log-
likelihood. This empirical finding motivates them to derive a new way of defending against adver-
saries, called purification. The reasoning behind this term is that their method receives an input
x at test time, possibly adversarial, and transforms it to a new input x′, which is within small
ℓp−distance and has higher log-likelihood. Hence, their method attempts to purify the image,
hopefully subtracting the adversarial noise through this procedure.

However, there are some important caveats related to this work: First, the purifcation defense
from [Son+18b] has been shown to be ineffective, since later works evaded it [Ath+18]. Since this
defense has been fooled, this informs us that it is possible to find adversarial examples that lie in
high density regions, as their clean counterparts. Indeed, Stutz et al. [Stu+19] demonstrate that
such adversaries are easy to find.

The finding of Song et al. [Son+18b] about the probability densities of adversarial attacks
motivates to explore the task of generating adversarial examples completely through the lens of
log-likelihood. Particularly, we put forth the following question as the driving force of our study:

"Can we generate adversarial examples simply through minimizing the probability density of the
input?"

More intuitively, we are interested in finding out whether a procedure which distracts the input
from the learned data distribution is able to create a new input which is hard to classify. Notice
that producing adversaries through this process doesn’t require knowledge about the classifier,
since the only requirement is the availability of some generative model, trained on the same data
on which the classifier is trained. Hence, such an adversarial attack belongs to the category of
black-box methods.

94



7.3 Methodology

Figure 7.1. Adversarial examples (on CIFAR-10) are concentrated in regions of higher bits-per-dimension
(thus lower log-likelihood) than clean inputs. Figure adapted by Song et al. [Son+18b].

7.3 Methodology

The most popular method of generating adversarial examples is Projected Gradient Descent
(PGD) [Mad+18; Kur+17], where one updates the current adversary by following the normalized
gradient direction and then projects the result into the ℓp−ball around the clean input x. Assuming
that we have access to an NF-based model, the input x is differentiably mapped through its
associated log-likelihood log p(x). Hence, minimizing log-likelihood while remaining inside the
ℓp−ball of radius ϵ around the clean input can be done through PGD.

However, NF-based models map the input x to a corresponding latent code z. The latent
code can also be differentiably mapped to the data log-likelihood, since the flow model learns an
invertible transformation between the two spaces. The existence of such a latent space gives rise
to the prospect of performing optimization on this exact space instead on the typical image space.
Such a possibility has been examined in various works, either using the latent space learned by
NFs [Yuk+21] or GANs [Son+18a; Zha+18].

A straightforward way to explore the latent space is to perform optimization on the latent
code, yielding an adversarial latent code z′ for a clean input x. Finally, decoding the latent code
z′ through the learned inverse NF transformation will result in the pixel space adversary x′. This
procedure mentioned above is tailored to generative models that have the capabality of performing
inference and decoding the latent code. Natural candidates to realize this prospect are VAEs
(though they only perform approximate inference) and Normalizing Flows. Bounding the distance
||z− z′||p on the latent space and decoding z′ doesn’t guarantee that this bound will still hold on
the image space. Hence, such an approach of exploiting the latent space to generate adversaries
should be classified in the Unrestricted Adversarial Attacks category. In this work, we will also
explore the capability of latent space PGD using the log-likelihood as objective. Yuksel et al.
[Yuk+21] perform exactly this, but only for optimizing the classification loss.

In Table 7.1, we represent abbreviations for the various methods of generating adversarial
examples. The first row, i.e. pixels-space PGD using the classification loss, is the most typical
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white-box attack, whereas the second row has been studied by Yuskel et al. [Yuk+21]. Our work
will evaluate the effectivness of two last rows, minimizing the data log-likelihood learned by a
NF-based model.

Abbr. of Method Update rule Comments
PGDx,CE,p x′

t+1 = Πp
x,ϵ

(
x′
t + α · norm

(
∇x′

t
L(x′

t, y)
))

White-Box, Common PGD

PGDz,CE,p z′t+1 = Πp
z,ϵ

(
z′t + α · norm

(
∇z′

t
L(g−1

ϕ (z′t), y)
))

Similar to this in [Yuk+21]

PGDx,NLL,p x′
t+1 = Πp

x,ϵ

(
x′
t − α · norm

(
∇x′

t
log p(x′

t)
))

Black-box

PGDz,NLL,p z′t+1 = Πp
z,ϵ

(
z′t − α · norm

(
∇z′

t
log p(g−1

ϕ (z′t))
))

Black Box

Table 7.1. Inventory of methods. CE (Cross-entropy) is the classification loss and NLL (Negative Log-
likelihood) is the density estimation function learned by Glow.

7.4 Experimental Work

7.4.1 Preliminary Experiment

Based on the previous discussions, our work aims to generate adversarial examples simply
through minimizing the log-likelihood of the data. As for the density estimator, we will utilize a
Normalizing Flow model, and specifically Glow [KD18]. The Glow model lends us flexibility, since
we can also produce adversaries by optimizing on the latent space, as discussed in the previous
paragraph.

First of all, we conduct an experiment to confirm that Glow has the same behaviour as Pix-
elCNN, when confronted with adversarial examples. In our code, we used the pre-trained Glow
model of this GitHub repository. This re-implementation of Glow has enough credibility since it
achieves 3.39 bits-per-dimension (bpd) on the CIFAR-10 test data, as compared with the 3.35 bpd
reported to the original paper. For this initial experiment, we generate adversaries against the
ResNet50 classifier which is standardly trained on CIFAR-10, available in the Robustness Library
[Eng+19c] repository. Next, we generate adversarial examples on the test data, using PGD (both
ℓ∞ and ℓ2 bounded) either for multiple steps or just for a single step (FGSM and FGM) [Goo+15].
Feeding these adversarial examples to the density estimator learned by Glow, we observe the same
pattern as in the work of Song et al. [Son+18b]: Adversaries reside in regions of low-likelihood, as
Figure 7.2 demonstrates. This experiment alludes that minimizing the density fucntion learned by
Glow may be helpful towards generating adversarial examples.

7.4.2 Evaluating the strength of our proposed attacks

Pixel-Space optimization. First, we evaluate the pixel-space PGD variant which minimizes the
data lol-likelihood. The adversaries are generated against the ℓp-adversarially trained ResNet50
from Robustness library [Eng+19c], which achieves 53.49% against ℓ∞−bounded adversaries (for
ϵ = 8/255). Surprisingly, the Attack Success Rate (ASR) of this method is 0%, meaning that
minimizing the log-likelihood is unable to find ℓp−bounded adversarial examples against this robust
classifier.

Latent-Space optimization. Here, our aspiration is to degrade the performance of ℓp−robust
classifiers through the black-box, unrestricted attack method PGDz,NLL,p. In general, this attack
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Figure 7.2. The density estimator learned by Glow assigns low-likelihood (high bpd) to adversarial
examples of ResNet50 classifier from the Robustness library.

algorithm can be considered similar to the work of [Eng+19b], where they manage to harm the
classification accuracy of robust models just by applying spatial transformation on images (hence
requiring no knowledge of the models’ weights). As for the constant ϵ which determines the radius
of ℓp−ball which restricts the search of adversarial latent codes z′, we are manually checking three
different values : {0.1, 0.15, 0.2}. In these experiements, we use the exact same robust classifier as
before, i.e. the ℓ∞-bounded adversarially trained ResNet50 from [Eng+19c]. In Figure Figure 7.3,
we demonstrate the visual outcome of generating adversaries through PGDz,NLL,p, for these three
different ϵ values, as well as for different choices of ℓp-norms, i.e. p =∞, 2.

Figure 7.3. Adversaries produced by PGDz,NLL,p for p = ∞ (Left) and p = 2 (Right). From top to
bottom, we demonstrate clean images (ϵ = 0) and perturbed images for ever-increasing ϵ (0.10, 0.15 and
0.2).

The visual results in the case of p =∞ are dissatisfying: small changes in the ϵ bound introduce
undesired artifacts in the image, largely deteriorating its visual quality. In the case of ℓ2-norm, the
visual fidelity of produced images is better, but overall the process seems extremely unstable. Next,
we evaluate the degree of performance drop that these adversaries induce to the robust classifier
under examination. Table 7.2 exhibits that even in the case of ϵ = 0.2, where the generated
attacks are too artificially-looking, this attack can’t drop the classifier’s performance (as in the
spatial attacks [Eng+19b]).
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Method Size of Perturbation ϵ Accuracy (%)

PGDx,CE 0 87.03
8/255 53.49

PGDz,NLL,∞
0.10 80.47
0.15 69.33
0.20 56.08

Table 7.2. (CIFAR-10) Test Set Accuracy

7.5 Conclusion

We attempt to generate attacks only by minimizing the log-likelihood of the image, as this is
estimated by Glow [KD18]. We considered to apply the PGD algorithm on the latent space, as small
deviations on the latent codes could preserve visual similarity w.r.t. original image, while endowing
greater capabilities on the adversary than in the case of bounded pixel-space perturbations (since
now the adversarial search space is not confined in terms of pixel space proximity). The generated
adversaries, even for small ϵ bounds, were not visually satisfying and besides that, they did not
manage to greatly affect the performance of the robust classifier. In retrospective, our conclusion is
that the assumption to generate adversaries without explicitly driving the process to minimize the
classifier’s confidence on the ground truth class was bold and practically, in the way we approached
the problem, this attempt was fruitless.
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