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ITepiindm
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Abstract

Semantic segmentation is one of the fundamental topics of computer vision. Specifically, it is the process
of assigning a category to each pixel in an image. There are a number of applications in a variety of fields,
such as Autonomous Driving, Robotics, and Medical Image Processing, where pixel-level labeling is critical.
Deep Convolutional Neural Networks (DCNNs) have lately demonstrated state-of-the-art performance in
high-level recognition tasks. As a result, such models may now be used in the above-mentioned cutting-edge
applications. Most of the related works concentrate on architectural changes to the used networks in order to
better combine global context aggregation with local detail preservation, and utilize a simple loss computed
on individual pixels. Designing more complex losses that account for the structure contained in semantic
labelings has gotten substantially less attention. The goal of this thesis is to investigate such priors for
semantic segmentation and to use them in the supervision of state-of-the-art networks to get results that
better reflect the regularity of genuine segmentations.

Based on knowledge about the high regularity of real scenes, we propose a method for improving class
predictions by learning to selectively exploit information from coplanar pixels. In particular, we introduce
a prior which claims that for each pixel, there is a seed pixel which shares the same prediction with the
former. As a result of this, we design a network with two heads. The first head generates pixel-level classes,
whereas the second generates a dense offset vector field that identifies seed pixel positions. Seed pixels’ class
predictions are then utilized to predict classes at each point. To account for possible deviations from precise
local planarity, the resultant prediction is adaptively fused with the initial prediction from the first head using
a learnt confidence map. The entire architecture is implemented on HRNetV2, a state-of-the-art model on
Cityscapes dataset. The offset vector-based HRNetV2 was trained on both Cityscapes and ACDC datasets.
We assess our method through extensive qualitative and quantitative experiments and ablation studies and
compare it with recent state-of-the-art methods demonstrating its superiority and advantages. To sum up,
we achieve better results than the initial model. Our source code can be found in our project website.

Keywords — Computer Vision, Semantic Segmentation, Deep Convolutional Neural Networks, Au-
tonomous Driving, HRNetV2, Seed Pixels
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Apywd ye v euxanpla Tng napovong Simhwpatixng pou, Yo Hiela va euyopiotiow Yepud tov xodnynti x. Ilétpo
Moporyxd, yior TNV eumoTooUVY] 1oL €Belle GTO TEOCWTO HOU oL YLOL TNV EUXALEIO TOU OV €8WOE TEOXEWLEVOU
VO EXTIOVACK TNV €V MOy epyoacio 6to epyaocthpd tou ot ouvepyaoia pe to Computer Vision Lab (CVL) tou
ETH. A&ilel va avapépe 6Tt péoa and 1 Sidaoxaiio TwV Tpontuytoxdy Tou hodnudtwy oto Edvixé Metadfio
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Extetapevn Iepiindn oto EAAN VX

Ynuactohoyixn Koatdtunon

ITepiypoapr) Tou IlpoBAjuatog

H Enpociohoyinh Katdtunon (Semantic Segmentation) etvar o npdfinue avddeone pog xhdong oe xdde pixel
plag exeovog. To medBinua autd avagpépeton GuY VA xon we Tuxvn TeoBied, dedopévou 6Tl 1 xAdon tpoAéneton
yia xdde pixel tng edvoc.

Oploupoc A .5: Ynpacioroyixr Katdtunon

H Enuacioroyu Kotdtunon anoutel v expddnon woc tuxvic omewdviong - ouvdetnong fo : I(u,v) —
S(u,v) 6mov

o [ elvar 1) exx6va €l06B0L Ue yweixég dlaotdoelc H X W

e S elvau 0 avtiotolyog mpoPienduevos ydptne e€6d0v, o omolog €xel Tic (Bieg DUOTACEC PE TNV

EX6VA EL06DOU

o (u,v) eivar oL cuvteTaypévee xdde pixel tne exdvoc

o 0 elvan mapduetpol g cuvdptnong f
Yy exdoyn tou mpoPMjuatoc autol pe eniPredm, évac cwotd (ground-truth) onuaciohoyd tun-
patormoinuévoe ydetne H etvon Slodtéoiuoc v dpa Tng exmaldevone yua xdide eixdva I. Xto ddotnua
autd, oL moapdueTeol 0 BedtiotomololvTal, €10l (OOTE 1) CUVAETNON fg Vo EAAYLOTOTOW|OEL T1) SLopopd
avapeoa otny meoPBAenduevny edva xou v ground-truth euxéva ndvw 1o chvolo dedouévwy mpog
exnaidevon T. Me ko Moyia, autd unopel va Swortunwiel ¢ e€ng:

i L(fo(I), H) (A1)
o (I,%):ET '

omouv L elvor gt ouvdptnon amwAel®dy mou "Tiwweel" Tic amoxhiceic yetall e mEOBAedne xan g
ground-truth ewxoévagc.

IToAkéc eappoyéc, OTWE N AVAAUGT) LATEXDY EXAVKY, 1] COUTOTIXY, 1) VAOTIO(NCT cLCTHUATKY TapaxohoLinoNg,
N auTtdvoun 0dYyNom xou dAAEC TOARES, amoutoLV onuaclohoyLx TAnpogopia ano Ti¢ BLdpopeS eixdVeS oe eninedo
pixel. Lyetxd pe tnv auvtévoun odhiynor, éva napdderypo gaivetar oto LyAua A 1. Xto oyfua auto Brémovue
€vol TOEABELY AL ULog ELXOVaG ELoddou A .la xat Tng avtioTolyNg oNUACLONOYIXA TUNHATOTOINUEVNE Exxovag A .1b.
Emuniéov, oto Xyfua A .1c qoiveton xau 1 avtiotolyrn ground-truth ewdva. Ou etxéteg xdde xhdong unopet
va elvan o dvlpwnog, to audll, o dpdpog, 1| onolodrinote dhho Paowd yotiBo mou Peloxetar oty exdva. O
ahydpriuoc autdg elvan and toug Alyoug mou yoc Bondody vo avallGouUE TO TEPLEYOUEVO EVOC TepBdihovTog
ue to omnolo elpacte eoixelwuévol. Loy anoTteAéoUa, 1) ONUACLONOYIXT XUTATUNOY XENOHLOTOLE(TAL EVREWS OTA
autdvoua oyfuat, GToL To MEPLEYOUEVO Tou Ylpw Tepdhhovtog elvar {wtinic onuaciog.

ITpoxAroeig

To mpéPinuo tne Enpactoroyrc Katdtunong elvan mAiéov and ta mo @réyovta epeuvntind Yéupoto. Av xou
Ol TPOCQUTES TEYVIXEG EYOUV TOPOUCLACEL TOAAG UTOGYOUEVL OTOTENEGHAT, ABUVITOUY VO EEMERACOLY TNV
avdpdmivn enidoon. O dvipwnog urnopel edxola vo Eeywploel to dldpopa avTxelueva, Topdlo Tou autd urnopel
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(b) Ground Truth Ewéva

(c) Anotéreopa

Syfua A L1: Topdderypo Tou ohy6plduou onuactohoyxic XOTATUNONG

vo Slapépouy e odele, xhipaxa, gutioud 1 ddtaln. Téhog, axduo xan av tor avTixeipeva elvon pepeds eudLdxpita,
oUTd Pmopoly vo toutotondolv.

Ipoxewévou vo Eemepdooupe auTOUATA AUTE Tal EUTOBLYL YE THY YPHOY UTOAOYLG TV, oL state-of-the-art pédodol
ONUACLOAOYIXAC xorTdTunone e€aptavton amo TexVixée Badidc uddnone mEoXeWEVou Vo XOTAVOCOUY TiG TOA-
NATAEG OVOTUPAC TAGELS TWV AVTIXEWEVOUY amo TiC Topeyoueves exdvee. Tlpoxeiévou va emteuydel 1 axpiBela
TV olYYEoVWY TRoCEYYIloewy, elvol anopaltntn 1 emonuelnwon Twv emdvwy ot eninedo pixel. Auvotuyde, ot
euXOveS aUTEC elvon TOMAES (POPEC TIEPLOPLOUEVES Yia DLapOpPES EQUPUOYES 1) amheg eV elvon Slodéotuec. Emmiéoy,
av yivel 1 exmaidevon Tou LOVTENOU Tdvw GE €Va TEMECUCHUEVO GUVORO EMCTUELWUEVGDY EIXOVLV, AUTO TO LOVTENO
AUPEVOC PEV UTOPEL amd TN WLal VoL TIOPEYEL LXAVOTIONTIXG. AMOTEAECUATO OE ELXOVES TIOU [otallOLUY UE QUTEC TOU
ocuvohou Bedouévev exnaldevone, ahha and TNV GAAN, xovelc Bev eyyudTtol TN yevixeuon Tou oe emmpddeteg
exovec. Auto to mpoflinua etvor Yvwotd we overfitting.

Bodid Nevpwvixd Alxtua

H Bordid pdrdnom elvon par teyvinr) mou yenowponoteitan yio vo ytioet cuotiuata Teyvnthic Nonpoolvne. Boaoileton
oty Wéa twv Teywntdv Nevpwvixdv Auxtiov (Artificial Neural Networks), ta onolo enegepydlovrton peydhoue
6Y%0UC BEBOPEVLY UECK TOALGELIUWY ETUTEDMY VEUROVWY YLlal TNV eXTEAEST GOVIETWY AVOADGEWY.

Badid Yuvehixtixd Nevpwvixd Aixtua

Trdpyet peydhn novahio Bahiv Zuvehitxdv Nevpovixav Awtiony (DCNNs). Autd ypnoylonolodvio eUpéne
oe ouoThAuaTo avoryveptone exévaeg xar Bivteo. To napadootaxd texvnTd veupwvixnd dixtua €youv eZehiyVel
oe Bahd cuvelTixnd dixtua, To omola YENOWOTOLOUY €Val TELODLAGTATO VEURWWIXS TEATUTO EUTVEUCUEVO amtd
Tov ontixd eyxéparo twv Lowv. Ta teleutaio ypnoyomololvTol o TEOBAAUATO VO VORLONG AVTIXEWUEVGY,
To€LVOUNOTNC EXOVWY, CNUACLONOYIXNAC XUTATUNONG, AANA XoU HERPES PopEg ot TpofAruata enclepyasiog Guolxrg
YAOOGCUC.

H 60vaun twv DCNNSs éyxetton ot Slotpwpdtonot toug. ‘Eva DCNN eneepydleton 1o x6%xvo, T0 Tpdoivo ol
TO UTAE XOVEAL JLAS EXOVOC TAUTOYEOVOL YPNOULOTIOLOVTAS €Val TELOBLAOTATO VELpWVIXS dixTuo. Xe olyxplon Ue
o xhaoowd feed forward veupwmvixd dixtua, aUTO PELDdVEL OTUOVTIXG TOV apLUd TWV VELRPOVKY TOU OTULTOUVTAL
Yo TNV AVEAUGT) Lo EXOVOC.

Ta DCNNs houfdvouv cav elcodo eXOVES xou TIC XENOLLOTOW0V YIdl VoL EXTOUOEVCOLY €val Tagvounty. Avti
Yot TOANATAACLIOUS TVEXWY, TO BIXTUO YeNoldomolel pior evohAoxTix poadnuotier] diaduxaocio, yveooTh ©¢
"ouvEMEN".

H opyttextovind evioc cuvehixtixol veupmvixol dixtiouv (CNN) yewxd aroteeiton ano 4 exninedo: éva cuve-
hxtind eninedo ( convolutional layer), éva eninedo cuoodpevone (pooling layer).eva eninedo evepyonoinong
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(activation layer) xou éva mAfpwe cuvdedepévo eninedo ( fully connected layer) [1]. Eva nopdderyya e op-
YiTEXTOVIXC AUTAC Qadveton oTo Uyrfua B .2 .

- CAR
- TRUCK
- VAN

O [0 -BicycLE

INPUT CONVOLUTION + POOLING ONVOLUTION + POOLING FLATTEN FULLY SOFTMAX
RELL RELU CONNECTEL

FEATURE LEARNING CLASSIFICATION

Syfua B .2: H apyitextovin) evéc CNN

Ocswpentixd YTroBadeo
Ewcaywyn otn Badid Mddnon

Suvehuxtind Nevpwvixd Aixtua (CNNs)

To Zuvehxuxd Nevpwwixd Aixtua (CNNs) yenowwonotolvta evpéwe otnyv ‘Opaor Troloyiotdyv. Kataoxeud-
Covton amd VeuphVES, TwV omolwyv 600 to Bden 600 xan To bias podaivovton e TopdPOO TEOTO UE AUTO TKV
XAACOUXWY VELEWVIXOY dxTOwY. Kdlde vevphvag déyetar oplogéveg eloddoug, exterel éva Yivouevo xdmouwy 6pwy
X0, TROUUEETING, ELOAYEL Uil U1 YeouuoTnTa oto anotéheoyo. Telxd, to dixtuo mepthayufBdvel o cuvdptnom
amwhetdv ( loss function) oto teheutaio (Thipwe cuvdedepévo) eninedo (r.y. SVM/Softmax) [2].

Ta CNNs Eenepvoly GAAEC ORYLTEXTOVIXES VELPWVIXOY BIXTUWY ot TpoPAfuata enelepyooiag edvac. Autd
oyeTileTon PE TNV XUTEIAANAY EXYETAAAELUOT] TV YWEXDY CUCYETICEWY OTIC EIXOVEC XU TO TAEOVEXTNUA TOU
dlopolpacol Twy Poupdv (weight sharing) xato ) Sidpxeio e exnaidevone.

Toa CNNs cuvidwg anotehobvton ano mohhd eninedo, xodéva amo ta onola €xel dapopetnd oxomod. Xopnhol
EMNEDOU YOPUXTNELOTIXG, OTWC YPOUOTA, OXUES XL TYARATO ALY VEVOVTAL Ao TO TEKTA enineda.

Ta enineda apyilouvv va yadaivouy clvieta yapuxtnelotind, xadoe o poviého eEehiooeton xou T0 TEAEUTHLO
eninedo napdyet Tig tpofAédeic. ‘Etot, to dixtuo €xel piat mo ohoxhnpwuévn avtikndn twy exdvwy Tov cuvdrou
dedopévey. LNy Topovoa evotnta, Yo aoyoindolue xupiwe pe Tig Aettovpyieg oplopévev eminédwy twv CNNs,
TIOL YPNOWOTOLOUVTOL XUPlE aTNY enegepyacio exovag.

Mo xhaooixy| apyltextovixy) evéc cuvehxtxol dixtiou cuvidwe anoteleltor omo cuvelxtixd eninedo, €va
eninedo cusompeuone ( pooling layer), éva eninedo evepyonoinone (activation layer) xou éva thipwe cuvdedepévo
eninedo (fully connected layer). Trv (Bl otiyur) ovufBaivouv Slepyooies, énwe to upsampling, n cuyybdvevon
(concatenation), to dropout xou 1 dtypouuixt| ToeeUBor 1 TopeUBol xovTvbTepoL YelTovaL.

Exrnaidcuon tou Nevpwvixod Awxtbou

Me Bdom tov oploud NG dpYITEXTOVIXHAC TOU VELPWVIXOL BLxTUOoU, Ta Bden TOu VELPwVXOL uodulvovTon Yéow
e dladixacioc exnaidevone. Auto yivetow peow eniBhedng yia Ty mAstodnela Twv epapuoydy Bodide uddnong,
OTWE Vol 1) AVIALOT LATEIXWY EXOVLY 1) 1) aUTOVOUT 0B YNOT). X AUTEC TIC EQaproYES Blvovtan oay elcodo 6To
cLOTNUO TOMG Delypata pe Ta avtioTorya labels mou wog evilagépouy. o mapdderyua, av wa 2D oxtvoypagplo
othdouc dodel cav eicodoc oto clotnua, Téte 1o label propel va efvon wa duadueh Tavounor (depwoto/uyiée
dropo). T xdde tétoio Leuydpr exdvac-label, N exdva elcépyeton 6o dixtuo, To onolo Ye TN oelpd Tou eEdyeL
ot tpoPBAedn mou Baoileton oToug UTOhoYIoUOUE TOU €xEL Xdvel ot xdle eninedo. XNy cuvéyela, yenouLonoteito
ot oLVEETNOY amwAeLdY L, 1 onolo uetpd n6c0 TapduoLa elvon 1 TedBhedn e v etixéta (label). Xtn cuvéyela,
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ool unohoyiotel To o@dhua Tou Yo Tpoxdel and auth T clyxplon, evac Pehtiotonomthc (optimizer) yenot-
pornotel wa pédodo mou xaheitow backpropagation, mpoxewévou vo tpomonoijoel to Bdpn tou dwthou. Me
TV ToV 16T, Yo pewiel To o@dhua TNy endUevn Qopd mou To Bixtuo Va Bel TNy Bl nepintwon. To Bden
TEETEL BAVLXE VoL €Y 0LV TPOCapUG TEL dTay To Bixtuo €xel exmoudeutel yio €va batch, to onolo elvon éva yxpoun
ano apxetéc exodvec. O mo ouvriopévoe tinog BeAtiotomomnty ebvar To Stochastic Gradient Descent. Extog
and autdv UTdpyouv xat dhhot Bedtiotomontés, 6mwe o Adam ¥ o RmsProp. H Swdwosio tne exnaidevone
enovahayufBdveton péypt 1 anwiewa (loss) oe éva batch ota Sedouéva mpog allohdynon va ehaytotonoimndel. Ltnv
TedEy, awtd umopel vor mdpel Aemtd Yoo wxpd Paocixd dataset xon pépec ¥ oxduo efdouddes yio peyahbtepa de-
dopéva. Autod e€aptdton, BéBona, xou omd ToUG LTOAOYLETLXOUS TOpoue Tou elvan dladéoidol otov yerot. To
overfitting umopel va ouufel 6tav eva CNN exnondedeton oe éva uixpd oGvoho BeBopévwy YLol UEYSRO YeoVind
dudotnuo.  Iapdha autd, auvtd pnopel vo Audel pe to vo eAéyEoupe v anddooy) ToU HOVTENOL OE dyvwoTa
dedopéva mou dev Exel Eovadel.

Evioyvor Acdopévwyv (Data Augmentation)

IToA\éc @opéc AOyw tng éMhewdne apxet®dv dedouévmv xotd tn Sadixaocia exmaidevong, yenolonoieitar wia
eVt Tov ovoudleton Evioyuorn Aedopévev (Data Augmentation). Méow autfc tne ddixasiog tponotodvio
oL D1 UTdEYOUoES EOVES UE BLAPOPOUC TEOTOUS, OTWE TEPLCTEOPY, olhayt Tou ueyédoug, tng avtideong
(contrast) ¥ tne éxdeone otov filo (exposure) x.a. Etol eumiovtileton to olvolo dedoyévmy xon anogpedyeto
10 overfitting.

Yuvdetnon AnwAieldv (Loss Function)
H ouvdptnon anwhewdv uroloyilel ) Slapopd petad tng owotic €€66ou Tou ahyopliiuou xou e mpofBiend-
pevne. Elvou pio yétdodoc yia var a€lohoyfoel nwe o akydprdpoc povielonotel ta dedoyéva. Mrogel vo ywpeto tel
oe 800 xatnyopiec. H mpdtn agopd npofifuota tadivounone xo 1 deitepr npofAfupota tohvdpdunone ( regres-
sion). Iopaxdte, Yo avagpepdoiue ovopaoTing ot uepd emuépous losses Twy xaTRYopLOY oUTEOV:
Tagvounon

e Cross-Entropy Loss

e Log-loss

e Exponential Loss

e Hinge Loss

e Kullback Leibler Divergence Loss

ITaAtvdpopmon
o Méoo Tetpoywvind Lgdhuo (MSE)
e Méoo Andhuto gdiua (MAE)

And ta napandve Yo ypewotel vo avahbooupe to Cross-Entropy Loss pioc xou Yo o ypnowponotficouye otnv
Tapoloa dimhwuater. Luyxexpwéva, o Loss autd yetpa TNy dlapopd avipeca o€ 800 CUVAPTAGELS XATOVOUNS
mavétntag. To cross-entropy tng xatavourc ¢ o€ oYEoT UE TNV xaTovopr| p Tdvew oc éva dedouévo alvoho
oplletan wg e&nie:

H(p,q) = —Ep[logq] (C.1)

6mou 1o B[] elvon ) avopevépevn Ty e Bdon v xatavoun p. o Staxprtée xotavopués p xou ¢ méve oto (Blo
obvoro X, n e€iowon C .1 cuvendyeton oti:

H(p,q) = - Y pl(x)logq(z) (C2)

zeX
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AZioNoynom tng Enidoong

‘Otav avakbouye Ty anddoor tou mpoBiiuatog g onuactohoyixic xatdtunong, xeewdletar vo AdBoupe v’
6dmy poc do xprthptas:

1. Tnv op¥otmTa (accuracy): petpd néoo emtuyfc elvar o pédodoc. Etn onuaclohoyn| xatdTuno
TRETEL, APEVOC, VoL EAeYYEl 1 amddoao Tng Tadvounong xdle pixel oe xdie xotnyopla ye Bdomn to avtioTorya
labels xau, agetépou, 1 anddooN TN TOTXOTNTOC, dNAXDYH TO %ATd TOCO CWOTA TEPIXAE(EL TO CWOTH OET
omo pixels o avtioToiyo aviixeiuevo. Mo and Tig To XOLVEC UETPIXES TTIOL YP1NOULOTIOLOUVTOL GTO TROBANU
aut6 eivon To Intersection over Union (IoU). Auth tn petpwr| xpnotponotolyue xou epelc otny dmhepatixy
T,

o Intersection over Union (IoU)

H petpu auth elvar 1 tour| oe eninedo pixel twv anoteheoudtwy mov Yo eEdyel TO LOVTENO PE TIC
ground truth euxéveg mpog Ty évworn toug. Metpd 1600 TNy opoldtnTa, 660 xou TNV ToutAopoppia
Tou GuVooL detypdtwy. Opileton we e€hc:

k
D j=1 M)

IoU = =
> =1 (i + mij + nyj)

i (C 3)

omou nj; elvon o cuvoludg aprude True Positives, n,; elvar o cuvolixde apripog False Positives
xoL nj; 0 cuvolwdg aptdude False Negatives yio tny xhdon j.

Enione, a&iler vo avagpépoupe 6TL ouyvd yenowwornoteitan o péoog dpog tou IoU (mloU):

k
_1 1 g
mIoU—anu /”,175] (C .4)

j=1

2. TNV UTOAOYLOTIXY TOAUTAOXOTYTA: AMMUTACELS OE TOYUTNTOL XOU UVIUT).

Ewcaywyn otn Ynpactoroyixr Katdtunon

Trdpyouv didgpopec pédodot yior vor avahboel xavelc xou vo xatahdBel plor exdva. Autéc Umopolv Vo YweloToly
ot Teelc xatnyoplec:

o Tagwvounorn Ewxodvev: Yuvidwg éxel va talivounoet éva Paoind avixeluevo oe o etxova.

o Aviyvevorn Avtixeipevwyv: Evtonilel ta ynpootivd aviixeiueva mou yog evdlagpépouy uéoa oe uiat
ewdva . Autd cuvendyetar TV elpeon evog xatdAiniou mhatoiou optodétnone (bounding box), to onolo
Yo xahOnteL oAOXANEo To aviixeyevo xat, TapdAAnAa, o To xotnyoplonotel. Ltny napolod SITAOUOTIXY
dev Yo aoyolndolye pe 1o TEOBANU aviyVELOTC OVTIXEWEVWY.

o Ynuactoroyixy) Katdatunon: Ltéyoc tng elvan 1 tadivounor yepovouévwy pixel oe xhdoelg xon o
%xdoploUOE TOU OYAUATOS TWY XAACEWY OTLC onoleg avixouv dha ta avtixelpeva. H xatdtunon cuvidwc
elvow ToAUTAOXT), AOYw TOu OTL ypewdletan va Taglvouriooude OAo To pixels oe po ewdvo, cuumeplAoy-
Bavouévou 1600 Tou background 6co xau tou foreground. To mAgovéxtnuo NG ¥EHONG TUNUATWY EvavTl
Twv Thatolev optodétnong etvon 6Tl 8o TuRuoTa Sev emixoldnTOVTION TOTE, aAAd Tor Thadolo oplo¥éTnong
Telvouy var Vo GAANAETUXOAOTITOVTAL YIOL THY VOTHEAOCTACT] TV (BlwV avTIXEWEVKY, EWBXd 6Tay €YOoUUE
oA\ TUXVE o TOBayEVAL 1) AXOVOVIG TOU OYAHATOG oVTIXEIUEVOL.

H xatdrunon 1 1 aviyveuon avtixedévey eivon ouyvd To apyixd oTddlo, oe €va eUQUEC GUCTNUA TTOU YENOLLOTIOLEL
™y opaon Y T Adn xplowey arno@doewy. o mopddelyua, TNy XATao%eLr) €VOC aUTOHVOPOU OYHUTOS, TO
clotnuo odYynone Yo culéyel TedTa putoypapiec Tou mepBdihovioc xou ot cuvéyelo Yo TEEneL var elvon
oe U€on Vo XATAVONoEL Yeriyopa T oxnvi) xou va tunuotonolel ¥ va avayvepilel melolc xon AN avTixel-
peva. H amoteheopatindmnto Tng TUNUATOTOMNONS auTdY TV exévwy xodopilet Tig emaxdhovlde amopdoelc Tou
QUTOVOUOU CUCTAUATOS, OIS 1) OBHYNON, 1 OTEOPY N 1 DlEVERYELXL EVOC EALYUOU YId TNV AMOQUYT| EUTOdiou.
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‘ANhec egapuoyéc xatdtpnone oty ‘Opoon Troloyotdv nephopfdvouy pounotey ([3]), avdhuon totpixdy
exdveyv ([1]) xou custhaTa Tapaxorovdnore.

Ye auth) ) Simhopatixn epyoaoia, yenotponoteiton wa éyypwpn RGB exdvo (H X W x 3) cav eloodo oto yoviéro
X0l TO AMOTEREOUA E(VOL Lol ONUACIOAOYIXA TUNUATOTOINUEYY EXXOVA, YE xdde pixel Tng va mepiéyel wa eTéta
XAAONG, LTTO TNV pop®1 wog axépanog petoAntic. Autod gaivetar oto oyrfua C 3.

333333333333
3383338383883 837 8
333333113333
333331111333
33333311333
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3 111111
3 111111
1: Person 11111111
2: Purse 33311111111
3: Plants/Grass 33312211111
4: Sidewalk
; 33312211111
Input Semantic Labels

Zyua C .3: TTupdderypo Lnpootoroyinfic Katdtunone. And to [5]

Kérde wa amo tic mbavég xhdoeig €yel To dxd Tng xavdhl, to omofo mepléyel one - hot avamapactdoel TwY
euxet®v. Mo tétoia tedPBhedn unopel va petotponel o éva GNUACIOAOY XS TUNUATOTOMNPEVO YdE TN EPopUdlwV-
Tog omhd évar argmax xato Wixog tou (Blou pixel xdde xovohiod. Autéd aneixovileton oto oyfua C 4.
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Eyfue C .4: One-hot avarapdotaon twyv labels. Ané to [9]

Y10 oyfua C .5 Bhenoupe v npoBiedn va elvon TEve 0TV ElXOVoL ELGOBOU.

Yxetxn BiBAtoypapia
EZENEn tne Enpacioroyixnc Katdtunong

Eivaw o€loonuelowto 6Tl 1 onuoctoloyxr xatdunon eivor €va amo tor Yepeiiddn mpoBiiueta e Opaone Yn-
ohoyloT@Y. Amd v €heuon TwV PNnELXDY EXOVKY, oL EpELYNTEG UEAETOUY To Véua awtd. O alydprduot

6



Extetopévn Hepidndn ota ErAnvxd

0: Background/Unknown
1: Person

2: Purse

3: Plants/Grass

4

Sidewalk

5
C7
S
4
4
4
4

Eyfua C .5: Tedxd Anotéreopo. Ané to [7]

BeAtudvovTon Pe TNV Tdpodo Twv eTWy, eEehlocovtog and TNV amhf XaTtw@Alotolinom g eévag, mou ToEvouel
Ta pixel oe 800 ouyddee, ota Pordid veupwvxd dixTua, TOU EXTEAOVGAY TUNUATOTOMGOT) TOAUTADY XATHYOELOV
ME TOAD XUAY AMOTEAECUATAL

Inpactoroyixh Katdtunon Iewv tn Xeron Badiov Nevpovixodv Awxtioy

ITowv ™ yerion Twv Badudy Nevpovindv Auxtiwy yenowonotolvtay yebdodol 6nwg o Alyopriuog IIinuudpog,
7 Yvotadonoinon K-means, n Katoghonoinon tne Emévae (v to doywpeiopéd tou foreground anéd to back-
ground e exévog) , ta Conditional Random Fields (CRFs) x.o.

Ynuaoctoloyixy Katdtunon Metd tn Xerion Badiddv Nevpwvixov Auxtdioy

H evowpdrtwon tne Bohdeg udidnong otny ‘Opacr Trohoylotdy anotélese yeyovdg o todud, xodoe ta Nevpwvixd
Aixtua tétuyayv state-of-the-art emddoeic oe dha tar npofAfpata enelepyaoioc emdvag, oupnepthauBovouévou
xa TNg onpactohoyixrc xatdtunong. Tic Bldpopes apyLTEXTOVIXES TWV UOVTIEAWY QUTWV UTopoVUE Vo TI¢ ToEl-
vounooupe oTig e€ng xatnyopleg pe Bdorn to xuplopyo yapaxtneiotixd touc. Etotl éyouvpe Nevpwvixd mou:

¢ Baocilovtou o ITApwg Xuvdedeueva Alxtua

Sy xatnyopla avth avixouv to IIMpwe Zuvbedepéva Luvehtind Nevpwvind Aixtua (Fully Convolu-
tional Network). Autd ftav ond o mpdta povtéha mou éxavoy fine tuning oe ndn undpyovta povtéla
to€wvopnone émwe to VGG/Alex Net x.t.\ yio va ypnowonoimndoly yia to mpdBAnuo tou semantic seg-
mentation. Ouolaotixd agaipecoy and autd to povtéha ta tAipns cuvdedeuéva enineda (fully connected
layers) mou amoteholvtay and 1 x 1 cuveliZel xan efahav otn Véon toug 1 X 1 cuvelielc pe didotaom
xavohtoU 21 yia va tpoBAédouv oxop yia To Pascal Voc Dataset.

e Boaoilovtow o cuvelieig TOnou Dilation/Atrous
Sty xatnyoplor autr avixouv:
— 7o DilatedNet: cucowpelel tohuxApatwth ThAnpogopia yio Vo BeEATwoeL TNV TUNUATOTONOT).

— To povtélo 1N Deeplab: yenowwonowel v évvoia twv «Atrous Convolutions” yio vo Aboet
To mEéBANUa NG Welwong Ty avdiuong twy feature maps, mou nopoucidotnxe oto FCN xatd éva
TapayovTta 32 AoYw Twv cuveyduevey pooling xou strides . Xdprn oe owtd unopolue vo TpocopUo-
COULUE TO TEDIO GPAONS UE YOUNAS XOCTOC XoU AYOTERES TOPUUETEOUG.

e Axolou9oUv Top-down/Bottom-up npocéyyion
Yty xatnyoplor auTH avixouy To:

— DeconvNet: aroteheiton and éva convolution dixtuo xou éva deconvolution Sixtuo, To onoio slvou
xodpépTne Tou apyixoL. ' va yivel to unpooling, yenoiwwonowobvton to max pooling indices mou
anoUnxedovTal xatd TN BEEXELL TOU TEMTOU dixTLoU.
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— U-Net: petagéper toug feature maps and toug encoders otoug avtioTolyouc decoders xou Toug
eviVveL Ye Toug avtioTtolyoug feature maps twv decoders, ol omolol €youv unootel unepderyuatohndla.

— SegNet: nopdho nou poudlel pe to DeconvNet, €yel tuxpdtepo x66T0¢ 0nd LT, YTl 6TO HOVTEND
autd €youv Slaypapel Ta TANEKC cuVdEdEUéVa eTtineda, MoTe va €xel uPnhoTepng avdiuorne feature
maps.

e BaocifovTtot o TOAUXALUAX W T EVOWORATWOY TNG TANPOoPopiag

o -3 N g gy §3

strided

I g

Yty xotnyopla auth avixouy 800 Behtiwpéva arno tnv Deeplab:

— Deeplabv2: Xto poviélo autd yenoiwwomojinxe Xwpwr Hupouido and Atrous Convolutions,
dnhadn mopdhinies dilated ouveli€eic oe Blapopetinéc xhlpanes xou émerta autég Eyvay fuse.

— Deeplabv3: 1o povtého autéd yenowonoidnxe auth 1 Xopwr Hupouida eumiovtiopévr, duwe,
UE EMTAEOV YOPOXTNELOTIXG TNG EXOVAC Yia TiLo BEATIWUEVA OmOTEAEGUATAL.

Eniong, b avixel To:

— PSPNet: wa nupopldo tecodpwy eminédwyv and pooling nuprjvec.

— SwiftNet: yprion SwopolpaloUevwy avomopdc Tacemy TUpaUidas xaL xat cUVTNET ETEQOYEVARY Y opoX-
TNEWOTXOY TV oTiyur) g unepdetypatodndiag.  To povtého outd metuyaivel state-of-the-art
arotehéopata (82.82%)cto Adverse Conditions Dataset with Correspondences (ACDC).

— HRNet [6]: To povtéro autd Yo poc anacyolioel oty nopodoo dimhwpatixf. Xenotwonoteito
eVpEwe oE TEOPBAAUATA, OIS ONUUCLOAOYIXH XOTATUNGCY], OViYVELGT OVTIXEWEVGLY Xl TUEVOUNo
edvov. letuyalver ywplc xapio emmhéov npocdfinn dhhne dourc 81.6% ! mloU oto Cityscapes
[7]xon 54.0% mloU oto Pascal-Context[8] mou eivon xou ta state-of-the-art omotehéoporta v to
TEOPANUa TNe onuactohoyic xatdtunone. Me v npootiun e dopfic OCR [9] netuyaiver
84.5% xou 56.2% ot avtioToya olvola dedouévwy. Mnopel va Swtnerioer avanapaotdoeis LN
Ac avdhuong xad’ 6ho to uhxoc tou. To poviého anoteheiton apynd amo wio por UMY avdhuong
(high resolution stream) xou 0T GUVEYEL, TELY TNV TAPSAANAY OUVEEST TNG PE POEC TONUXALIXWTEY
avaAboewy, Tpoo tidetal oe auTH CUVEAEEL TTOL Yaunh@vouy Ty dpyix VYY) avdduor. To tehixd
dixtuo anoteheiton amo moAAd otddio ( 4 oto [6]). Lto teheutado, yiveton pior cuvévwon (fusion)
TOV BLPOPETIXWY avahboewy. BOa avaibooupe T dour; tou HRNet oe Bddoc. Apywd, divouue cav
eloodo oTo dixtuo W edva péow wa apyxic doprc (stem network), tou amoteheiton ano 2 3 x 3
ouveliZelc pe stride 2. Autéc petdvouy Ty apyuxi avéhuom oo 1 e apyixfc. ‘Etot, To x0plo odpa
70U BIXTUOU ETLOTEEPEL TNV TEMXY EXXbVaL e avdhuon pewwpévy oto & e opywc. H xOpia Sopn
tou HRNet gaiveton oto Xyfua D .6.

A A AT A
\/ Vi
’iHM“’!HH“MM“""

/]

—

EyAua D .6: Anewxdvion e Sourc tou HRNet. Ané to [0]

Anotehéiton ano ta e€hc uépn:
* ITopdAANAec cuverifelc o ToANantAEC xAlpaxeg

To povtého amoteheiton apyixd ano piot pofy uPnAy avdiuone (high resolution stream) xaw ot
CUVEYELN, TIELV TNV TORAAANAT GUVOEST] TNG HE POEC TOMUXAULIXWTOY avahloEwY, Tpootidetol o

TOtav to wovtélo exnoudelbetan pe Bdon To train set netuyoiver 80.4%, éve btay exnandeleton e Bdon to traintval set netuyoivel

81.6%
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ot AARETEAANAES GUVENEELS TOU YAUUNAGVOUV TNV oy xr) UPNAT avdhuoT. Yoy anoTéNEoUd, OL
aAVUAUGELS TV TUPSAANALY powY evde enduevou oTadiou xataoxeudlovTal OUCIIGTIXE and TG
AVOANOOELS TTEONYOUHEVLY GTABIWY LY EVa ETUTAEOV YOUNAOTERTC AVAALGTC.

* EnavolopPavoueva fusion oe mtoAhaniéc xhipoaxeg

O 0téd)0¢ T™NE CUYYADVEUONE TOV TOAATAGY avahboewy elval o dlauolpaoude tne Thnpogopiag
%ot PAX0G OAOV TOV OVOTAEIC TACEWY TV dlapdenv xAwdxwy. Auth 1 Swodixacio enavohay-
Béveton pepwéc popéc ( xde 4 residual units oto poviédo tou [0]). Oa avoldooupe éva
TOEABELY O CUY Y WVEVCTIS AVOTUPAC TACEWY 3 BLOPORETIXDY avOALCEWY. AuTé ameixoviletar oto
oyfua D 7. H eloodoc amoteleiton and 3 avamapactdoec RL,r = 1,2,3, énou to 1 elvar o
delxtne e xdde avdhuone, xar ol avtioTolyes avanapactdoelc e£6dou eivon RY,r = 1,2,3. H
oLVETNON UETAPEOSS farr(-) emAéyetan pe Pdon tov Belxtn e avdAvong g avampdoTaong
€L0600L T xou TNS avdAvomC TN avandpdotacne e€68ou r. ‘Eyouue tig e€ic nepintdoels:

- Avz=r16t for(R)=R

- Av z < r, t61€ 10 fir(R) xpnowomnowel (r — s) stride-2 3 x 3 ouveliZelc v var xdvet
urmoderyyatohndla otny avoarapdotaoy elo6dou R

- Av x> r, té1e 10 frr (R) ndvel unepderypatolndla otny avonapdotaon ewoédov R yenot-
pomolotvtog dtypauuxr) utepderyuatohndlo xou o 1 x 1 cuvEMEN Tpoxeévou Vo Tpocap-
poéoeL Tov opliUd TWY XAVAUALDY.

Kode avomapdotoon €€6bou xadoplleton ¢ 10 GUPOIOHA TWV UETUOYNUATIOUEVHDY  OVO-
TUEAC TACEWY TWV 3 e106dwv: R = fi,. R + for RS + fa, RS

channel
maps

strided
3 =3
ﬁil up samp.
11

Yyfuo D .7 AnewoviCovtag mde 1 Slodixacia cuyywveuone cuccwpelel TNy TAnpogopia and uPniég, uecoleg
xol Younhéc avahboels and ta dedud tpoc ta aplotepd. And o (0]

* Kegoal Avanapdotacng
O xeqodéc avanapdotaone ywellovtal oe 3 xatnyoples, 6mwe goiveton xou oto oyfue D .8 :

- HRNetV1: Yty nepintwon auth), pévo 1 oy e uPnhdtepnc avdivong etvon 1 €€odog
TOU CUOTAPATOS, EVE Ol UTONOLTES 3 oL €YUV YAUNAOTERT] AVIAUGT) 0Ly VOOUVTAL.

- HRNetV2: Eb ypnowonoieiton Siypoppixr) unepderypatorndlo dote ot younhés avoll-
oelg Vo amoxtoouy (Bl avdhuor pe Ty udnhotepn), ywelc dpwe vo emnpeactel o apLiudg
TV xovolwy tou. ‘Emeita, ol 4 autée avamopaoTdoelg, €yoviag mhéov Ty (Bl avdiuot),
ouyywvebovTal xat énetta e@apuoleton ot auTéC Wit 1 X 1 cuvéhgn.

- HRNetV2p: Yty nepintwon auty, TOAVETUNEDES AvaTOpUo TAGELS XATUGHEVALOVTAL X4iv-
wvTog unodetypatoindia oe didpopes xhipaxes tne e€66ou Tou HRNetV2

Yty nopovoa Simhouotey o yenowonoiooupe To HRNetV2.
e Booilovtow o Transformers

Y xatnyoplor auth avixel o:




Extetopévn Ieplindn ota EXAnvixd

AN
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(a) HRNetV1 (b) HRNetV2 (c) HRNetV2p

Yyfuo D .8: Kegoée Avamapdotaong

— Segmentation Transformer: Object-Contextual Representations (OCR): To povtého
autd apyixd padaivel Tic TEployES TwV avuxeévmy (object areas), onwe autéc unohoyilovton and
éva Badd veupwvind dixtuo (n.y HRNet [0]). ‘Eneita, unohoy(ler Tnv avomapdo oo TV TEPLOY OV
TGV GUYBLALOVTOC TLS UVATAPAC THOELS TwY pixel mou cuviétouv Tic teployés avtés. Télog, agpob
urohoyioel TNV oyéon petadd x&de pixel xou xdde nepoyfc avtixetpévou (object region), npociétel
oty avamapdoTaoy Tou pixel v avamapdotoon aviixewwévou(object-contextual representation),
mou efvan ovclaoTind éva BeBapnuévo odpoloua OAMY TV AVATUPIC TACEWY TWV TEPLOYWOY TOV dv-
TIXELUEVOV.

— Vision Transformer (ViT): To povtélo auté Ta&ivouel eiXOVES, YENOLOTOUOVTOS TOANS TUAUATOL
NS opy NG EXOVAC oL EYwVTag TapouoLla dour| e autr) tou Transformer.

Lawin Transformer: To povtélo autd, ypnowonoudvtog wa wédodo tpocoyfc mopadteou (win-
dow attention method), ouunepthoufBdver emtuyde ToAUXAUOXWTES avarapaotdoes otov ViT,
BeATidvovtog onuavTixd Ty enidoor tou.

Vision Transformer Adapter (ViT-Adapter): O ViT éyel groyéc endboeic ot mpofiiuata
TuxvAC TEdPBAedNg, xodidg BV €xEl TEONYOVUEVY] YVAOT TV EXOVWY, Ot avTiVeoT) UE TOUC TEOGPI-
Toug visual transformers mou mepAauPdvouy oTa LOVTEAX TOUC OYETXE UE TNV ORUCT, ETOYWYIXA
(inductive) biases. T v avtipetdnion autod tou tpoBhjuatog, npotddnxe o ViT-Adapter, o
omnolog, evonuathvovtag inductive biases péow evog emmhéov oyedlaouol, unopel va dlopdnoet Tig
aduvopleg tou ViT xou va emtiyel Bedtiwpéves emddoelc. To poviého autd netuyaivel state-of-the-
art anoteAéopota oto Cityscapes.

H neoztewvéuevn Médodog: Movtélo Baoiopévo o Ataviouato
Meratonione ( Offset Vector - Based Model)

Kevtpuxn I6éa

Ye autr) v evotnTa, Jo clodyoude wiol véa Tpoaéyyiom Yio TN BeATiwor TwV onpactohoYxedy TpoBAEdEnmy.
Baowlbpevol ot yvoon oyetnd Ye v VPnAol ETTEBOU XOVOVIXOTNTO TV TEOYUUTIXWY OXNVWY, TEoTelvouue
por véa uédodo yia ) BeAtioron Twv TeoBrendUeVeY XAICEOY UEGK TNG EXUAUNONE TNE emAexTC adlonolnong
TWY TANPOPOPLDY TKV TANEOYOPIdY omd Tor cuverineda pixels. Xuyxexpwéva, pe Bdon to [L0], ewodyouue éva
véo Afupa, mou urootneiler 6tL yio xdie pixel undpyet eva seed pixel mou éyel T Bl TEOBAeYN pe TO apyIxd.
Yoav anotéheoya, oyedidlovye €va dixtuo 800 xepahwy. Mia TapoUoLld TEOCEYYIOT TEAYHATOTOAUNXE XYoL Yidl
10 PO extipnone Pddouc oo [10].

H véo pédodoc egapudotnxe oo HRNetV2 [6]. Xpnowponotolye to x0plo odua and 1o HRNet (6nwe anexovile-
Tou 6T0 Lyhua 2 .12), odA& anogelyouue va tpoPrédoupe xateudelay xhdoec. Avtideta, To ypnowonoloue
cav €€0d0 yio Tov xodoplopd oyéoewv PeTal) yelTovixwy pixel. Luyxexpéva, 1 TedTN xe@ok Tou BixTOOL
€yel ooy €€000 4 avanapoo TACELS BlopopeTIX S avAAUGTC, OL OTO(EC GTY GUVEYELX EVOVOVTAL, OTIWS POIVETOL GTNY
Ewoéva 2 .14b. Eneita, auth) ) cuvduaopévn avanopdo taor uhnirc euxpivelac yenowponolelton ooy elcodoc 6to
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tehevtafo eninedo, To omolo éyel cav é€odo logits oe eninedo pixel. 'Eneita, autd to logits yetatpérovioa oe
x\doeg. H Poownr 0éa e yedddou pag, oflonotel to yeyovde 6ti duo pixels p xou g mou avixouy otny (Bla
Adom €youv Wavixd moagduoles avamapas tdoels logit. Av ta pixels avixouv otny Blo xAdor), av eopubdGoLUE
oTO P TNV TEOBAEdY TOL g Yl TNV EXTIOMUEYYN XhdoT, T6Te Yo 0dnyniolue oe Eyxupn medBiedn,.

AZonowolpe auth Ty Wiotnta padaivovtog va evtonilouue ta seed pixels mou avAxouv oty Bor xAdom ue
To pixel mou ehéyyeton, dTav AUTA LUTAEYOLY, OOTE Vo YENOUOTolOVUE emhexTixd Ta logits autdy Twv pixels
yioo ™ Pedtiwon e mpoBienduevne xhdome. Auth n Wéa Pooileton oty apyr mou mapousidletar oto [10],
oLV Ue Ty omola yio xdde pixel p mou oyetileton e éva 3D enlnedo, undpyel éva seed pixel q ot yettovid
Tou p mou oyetileta ye to (Blo enlnedo ye to p. BaowWléuevol oe auth Ty apyy, elvan enduevo OTL yia xdde
pixel, undpyel éva seed pixel mou polpdletan Ty Bia TEOBAedT pe To apyxd. ‘Onwe elvor hoyixd, Tpénet mpdTa
VoL 0pLGTOUV Ol TEPLOYES OTLC OToleg LoYVEL QUTH N dp)N. TN CUVEYELN, TPOXEWEVOU VA TEOGOLOPIaTOVY To
seed pixels oe autéc Tic TEplOYEC, mEENEL Vo TpofhéPoupe To Blavbopata petatémone o(p) = q — p Yy xdde
pixel p. Ilpoxewévou va Angdoly unddn mdavéc amoxhioelc and v axpldh Tomxy) opohoTNTa, 1) TEOBAE]N
TOU TEOXUTTEL GUY Y WVEVETOL TROCUPUOCTIXG Ue TNV apyxn TEOBAEd and TNV TEWTN XEQUAY YENOULOTOLWOVTIC
évay ydptn epmiotoolvne (confidence map), tov onolo padoivel To povtéro. Tav anotéhespa, oyedidlovye wa
deltepn xEQUAT 1) ontola ToEdyeEL Eval TUXVS TEDLO BLAVUCUATHV UETATOTLONG %o €val ¥dpTn epmioToovne. ‘Etot,
€youpe yia véa €xdoom tou HRNet V2 n onola Bascileton oe Siaviopata petatdémong. Aut n 16éa vhomolelton oe
oapopetind wépn tou HRNetV2, onwe galvetan oto Lyfue E 9. Yto Eyruo autd, mapatneolue to x0plo ooy
ToU dxTOOU PE TN SLoxhddwor va cupPaivel oto debtepo ( Eyhuo E 9a ), oto tpito ( Eyhua E .9b ) 4 oto
étotpo ( Lyrpa E 9c ) otddio tou Suxtbou avtiotoya. Eivon afioonueinwto L ot 800 xepakéc dev potpdlovran
To (Do Baipn.

To dixtud pog extpd xAdoelc, pe to cuvdudletr emhextxd mpofBiédeic amd xdde pixel xaw Tou avticTouyou
seed pixel. To npoPiendyeva daviopota puetatdmiong yenolponooly Tic TeoBAEPElc TS TEMTNS XEQPUAAS Xol
mopdyouy uio deltepn medPiedn otn Véon tou seed pixel. i cuvéyela, ol tpoPiédelc auTtéc and xdie xe-
QOAT} CLUYYWVEVOVTOL TPOCUPUOCTIXE XENOLLOTOLOVTOS ToV YT eumioTtoolvne. Mo emoxdénnon authc TN
apyrTEXTOVIXNC Qaiveton oTo Lynua E .10

Oa oflohoyrooupe T wEV0dS pag oe 2 datasets yia onuactohoyixy| xatdtunon ye enifiedn:
o Cityscapes [7]
e ACDC [11]

Seed Pixels

A¢ unoYécoupe dTL €youpe éva pixel p To onolo avixel oe €val TUARUA ULOG ONUACLOAOYIXE TUNUATOTOUNUEVNG
exovac. EE opliopol, xdlde dAho pixel tou turpatog awtol €xel tny Bl etixéta xhdone. ‘Etol, wbavixd,
TEOXEWEVOL VY THPOUPE OAES TIC ETIXETES XAAOTG OWOTY, TO dixTuo TEéneL va TPoPBAEYEL TN owoTH xAdoT ot éva
amo ta pixels, g. Auté to pixel unopel va epunveutel cav seed pixel mou neptypdpel To avtioTolyo TuAua-*AdoT.
Tehxd, aprivouue to dixtud pag va Beel autd to pixel xou v avtioTolyn nepioyy.

H 8éa auth Baoiletan oty opyr) Piecewise Planarity Prior ané to [10]. Op{Coupe to axdrouvdo Afuua

Afppo E .6

TN xdde pixel p mouv oyetiletan pe wia 2D onuacloloyixd tunuatonoinuévn exova, undpyet éva seed
pixel q ot yeitowid Tou p nou poipdletar Ty Bla TEdBAedT Y TO TRHOTO.

I'evixd, pnopolv va undpyouv ToAAd seed pixels yio To pixel p ¥ xavéva. Aedopévou 6TL To mapandve Afuyo
Loy VEL, TO TEOBANUN TNG ONUACLOAOYIXAC XATATUNONS Yia TO P Umopel va Audel pe To va xadopicouue to q. T
auT6 T A6YO, aprivoupe To dixTud pag va TteoBiédel ta Swaviouata yetatémone (offset vectos) o(p) = q — p.
‘Etot, oyedidloupe to BixTud Yag, €ToL HOTE Vo Topdyel pia dedtepn xepahn, 1 onola ntpoBiénet éva muxvé medio
droavuopdtwy petatonions o(u, v). e Ohec Tic dlopopeTinéc exddoelc Tou povtéhou, ot 800 xepuréc potpdlovran
€var xovd owua xat, 6tav cupgfalver 1 Slohddwor, axokovdolyv Blagopetixd povordtia. ‘Eneita, Beloxoupe tig
Tiée Twv logits otic Yéoeig twv seed pixels ypnoiwonowdvtag To Tedlo BLUVUOUATWY UETATOTLONG:

Cs(p) = Ci(p+ o(p)) (E.1)
11
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a) H duodhddwon cuyPaiver oto 2° otddio Tou HRNetV2

(

(b) H dwocddwon cuuPaiver otn péon tou HRNetV2

(c) H dioxhddwomn oupPaivel oto 4° otddio tou HRNetV2

Yyfuo E .9: HRNetV2 Baoloyévo ota Awviopoata Metotémiong

12
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Logits () 5,

S
Initial 4¢ 4
- ﬁ HRNetV2 Head —l

LT
F
| -
2 Offset Vector
- ﬁ Field Head
Offset Vectors (o)
- N
'. -

Yynua E .10: Emtoxémnon tng nAfjpoug wedoédou. H éxdoorn tou HRNetV2 nou Baciletan oc
dravdoparta petatémone ( By.E .9) , anotedeiton and 8o xeparéc. H npdtn xepahh egdyer logits (C') oe
eninedo pixel, eved n dedvtepn edyel eva Tuxvd Tedio davuopotdy petatémone (0) yio Tov xatoplopd Twy
Véoewv twv seed pixels pall pe éva ydptn eumiotoolvne (F). Lt ouvéyewa, ol tpoPAédelc twv seed pixels

xenotwonootvtan yia vo tpoBrédouy xhdoeic oe xdde pixel. H npdBredn mov npoxintel (Ss) ouyywveldeton
TPOCUPUOCTIXG, PE TNV iyt TedBhedn S; xpnoylonoudvtog Tov Ydptn eumiotocivne (F), Tpoxeiévou va
unohoylotel 1 tTelr| TpoPhedn Sy

Adaptive
Fusion

Coefficient
Resampling

Emeid) oL cuVTETAYUEVES TV BLaVUOUATOY UETATOTIONG BEV Elvol TEVTA UXEPAUES, XPNOULOTOLOVUE BLypoXT
napepPorry. Ta logits otic Héoeic twv seed pixels ypnowonotodvta yia vo utohoyloouv yia Sevteprn npdiedn
ONUACLONOYIXNC XATATUNONC:

Ss(U,'U) = h(CS(u,v)7u,v) — Ss(p) = Si(p+ O(p)) (E '2)

Y10 mapddetypd pag, h = softmazx.

Adyw tou 6Tl M mopandve TedBredn dev 0dnyel ndvTa 68 CWOTH ANOTEAECUA, 1) dEYIXT| ONUACLONOYIXE TEOS-
hedm S, unopel yepixéc popéc var mpotiudton TeplocdTepo amo Ty TedPAedn Ss mou PBacileton ota seed pixels.
TTpoxeévou vo avTHETWTICOVUE TETOIEC TEQITTWOELS, 1) Oe0TeEN XEPUAT TpoBAémel emmAéov €val YdETr EUTLO-
To0UvNg F'(u, v)e[0, 1], o onolog Selyvel tnv eumiotootvn mou Belyvel To LoVTENO GTO Vo TpoTWHoEL TNy TedBhedn
S evavtl g apyic Si. Xuvdudlovtag npocuppocTixd ta S; xal S, 0 XdETNG EYTETOCUYNG YeNoUonoLe(tol
yia vo unoloyioel Ty teAxt| npoBAied:

S¢(p) = (1 = F(p))Si(p) + F(p)Ss(p) (E .3)

Y10 povtého pog, xdvouue eniBiedn xadevdg ano ta Sy, s xou S;, npoonaddvrag vo BEATIGTOTOACOVUE TO
axohoudo loss:

Esemantic(p) = ‘C(Sfa H) + KJAC(Ssv H) + )‘E(Su H) (E 4)

6mou k and A elvan umepmopdueteor xow to H oupPolilel too Ground-Truth (GT) train ids xéde xhdone yia
x&de pixel. Me autdv tov tpém0, eviappivoupe

o TNy apyt| xepahy) tou HRNetV2 vo nopdyet pio oxpl3y) avamopdotaon xata uixog 6Awv twv pixel, axdua
xat 6oy €xouv LPNAY Ty epmioToclvng

o TNV XeQahr] Tou mpoPAénel ta daviopota petatdmiong vo pdilel uPniéc Twée eumioToolvng yio Ta pixel
yioe T omofor To Ao Loy Vel xaL YaunAY T epumiotoctvng yio o pixel yio to omolor To Aupo dev
oy Vet

AuTh n 1B€a, OUWS, EYEL EVa UELOVEXTNUO. LUYXEXPWEVD, TO HOVTENO dev xdvel eniBhedn dueca oto daviopoTa
petatomong. Ipdyuott, Yo ymopotoe amhd vo mpoBAémer undevind SlaviouaTo PETATOTIONG TOVTOU XoU UXOUL
xan €Tol vor divel €yxupec mpoPAiédelc Sy xou Sy mou elvon (oeg ye to S;. O apynée mpoPrédeig S, ouwg,
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oahhdlouvy opold YOpw omd To oNpacloloYxd clvopa AOYw TNG xavovixdtntac tne ouvdptnone fo, medyuo
TOL AmoPeLYETOL OTNY TEEEN. Mav anotéheoud, 1 TEOBAedn evdc un undevinol BlavioUATOE UETATOTLONS TOU
delyvel poxpld omo to dptar xdde TuuoToc dlvel pior wxpdtepn TN it T0 Lsemantic Yo To pixels exatépwiev
Tou oplou. Autd cupfalvel, eneldy] éva tétolo Bidvuopa petatomiong yenotponotel eva seed pixel yio to Sy to
omnolo elvar o Yaxpud and To oUVOPO XL LTOPEREL antd Uetwpévr avaxpifela Aoyw e€opdluvone. Autd ta un
uNndeVIXd Blavbopata yetatomiong petadidovtal, enlong, and To 6pla 0TA ECOTERIUE TUNUOTO TV TEPLOYWV UE
opahd tpnuata, Bondavtag To dixtuo oty TEOBAEP Un TETPUUEVWY PETUTOTICEWY AOYW TNG XOVOVIXOTNTOC
NG ameEoOvong Tou oy Nuatilel To BlavUoUUTIXG TEdlo TWV UETATOTICEWY.

Tehxd, mowv yivel n enavaderypotohndio towv logits, doxwwdlouye oe Yepixéc EXDOTELC TOU LOVTEAOU VO XALUOX -
coule ta Slavbopota etatomione Yepés gopéc. H 1déa mlow amo tn Behtiwon auty Pasileton oto 6TL o seed
pixels yéoa 6to (B0 TPRUa TEETEL VoL GUYXAIVOUY GTO %EVTEOo Tou Xxdle TuRuatog. Autéd Bondd otn cucowpeuon
e mAnpogoplog ano emnpéoieta pixel xaw Bedtidver Ty mpoBiedn g xhdong tou avticTolyou TtuApatog. H
XAUEHWOT) TV Blavuoudtwy Petatoniong dev BAdntel vy npofBiedn tne oyetnhc xhdong, dedopévou 6Tl oTa
pixels ywplc aglémota seed pixels anodidetan NON younAy Tuy| eumiotoclvng.

Loss EuniotoocUvneg (Confidence Loss)

To loss epniotocivne Boaoileto otny Wéa 6Tt dedopévou evic pixel, Ta tepBdAlovta pixel tou mpénel vor avixouv
oo o tphAue (xhdon). T xade pixel p, to loss epmotocivng opiletan we e€fc:

Li(p) = =Linp)=H(p)+orp)] 108 F(P) = Lir(p)£H (p)+o(p)] 108(1 = F(p)) (E .5)

Avut 1 180 Tpoéxue and To 6TL 1) EUMIGTOCVVY TEETEL Vo ExEL EYAAN Ty yia Ta pixel Twv omoiwvy to didvuoua
petatomong delyvel oe seed pixel mou avixel otny Blo xhdon. Ouolwg, 1 euniotoctvn TEEReL v el Uixpn T
yia T pixel Twv onolwyv to Bidvuoua yetatémiong delyvel oe seed pixel mou avixel oe SwopopeTix) xhdor. ‘Otay
To apyd pixel p xou to seed pixel q avixouv e BLaPOPETIXEC HAATELS, TOTE O TPHOTOC GPOG AMEVERYOTOLELTOL
xou evepyomoleltan o Bedtepog. Xe auth TNV nepintwor, Yehouue autd to seed pixel va €yel wxet| eumiotociv.
Avth 1 Béa avtavoxhdton omo to log(l — F), ywtl é6tav F -0 = (1-F) 17 = —log(l—F) —
0t = Ly = 07. Opolwg, étav F — 1 = L; — +oo. Aviiotoiyo ye v mpdtn nepintowon , 6tav ta
p xou q avixouv oty (Bl xhdom , T6Te 0 Beltepog bpog amevepyomoleltan. e auth) TNV mepintwor), Yélouue
T0 seed pixel vo éxel Ui epmiotoolvy. Otav F — 0 = log(F) - —oo = L; — 400. Opolwc, dtav
F—1= L;—0".

Yuvoilovtac, to cuvolnd loss elvou:

['final = Lsemantic + Ef (E 6)

Apyrtextovixy Tou AwxtOou
To npotewvéypevo dixtuo amotehelton and to e€hc uéen:

e KiUpio coupa mety tnv Staxhddwon: H dour tou ducthou pog mptv tny Stochddwon elvan (Bl pe
awth tou HRNet [0]

e Metd 17 SroxAddwon: To véo HRNetV2 anotehelton amo 800 xeqoréc, n xodepio ano ti¢ onoleg
e€dryel Sapopetind mpdypata. Kdbepio xepahy €xer v dia dour) pe to apyxé HRNetV2. H mpdn
xeat e€dyet logits (C) yia xdde pixel, eved 1 dedtepn e€dyet eva Tuxvd TEdIO SLVUCUETOY UETATOTIONG
(0) mou xadopilouv tig Véoeig Twv seed pixels pall pe éva ydptn epmiotooivne (F). ‘Eneita, ol cuvteheotée
v seed pixels yenowonototvtar yia va tpofAédouy Tic xAdoeig oe xdde Véorn. H npdBiedm mou npoxintel
(Ss) ouvdudletan TEOGUPUOOTIXG PE TNV oy ! TEOBAEYN (S;) YENOLOTOUDVTAC TOV YEpTN EYTLOTOCUYNG
TpoXeEWEVOL Vo utohoylotel 1 tel| TpofBiedn Sy.

o Apyixh Kegarr tov HRNetV2 : Onwe xou oto apywxdé HRNetV2 [0], to teheutaio eninedo tng
xe@oahfic e€6yer 19 xavéha (19 x H X W), dnhad) 1 yio xdde xhdon. Autéd yivetou, yiotl o1 xhdoeic 1660
oto Cityscapes 660 xat oto ACDC eivon 19.
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o Kegolf dravuopdtey petatoniong: To tekevtaio eninedo tne xepoudlfc authc €xel tpononolnvel
TPOXEWEVOL VoL e&dyel 3 xavdha (3 x H X W): 2 yio T Stovhopato petatodnone xou 1 yio tny eunotooivn.
Yo Swovboporta petatomiong egapudleton ot cuvéyeta éva eninedo Tanh, ye anotéleopa to Slavdouata
Théov vo avijxouv oto ddotnua [-1,1]. Ano v dAln, 0TO XavAAl NG EUTLOTOCUVNG EQapUOlETAL Lot
olypoetdy), ye anotéheopa oL Tiéc v avhxouy oto ddotnpa [0,1].

AnoteAEcpaTta xou 2uyxploelg

INo v a€lohdéynon tne uetddou Yag TEoyUATOTOCOUE EXTEVY] TOLOTLXA X0 TOCOTIXA TELPAUOTA Xl GLUYXPlOELS
HE dAAeS peddBoug, TOU XATABELXVOOUY TNV ATOTEAECUATIXOTNTO XOL TNV UTEROYT] TOU HOVTEAOUL LIS EVAVTL GAAWY
state of the art yovtéiwv.

YOvoha Acdopevwy

Ye auth) Ty evétnta Yo mapoustdcoue to cOVORa Bedouévwy Tou yenotonoljinxoay Yo TNV exnaldeuon xau
a€LOAOYNOT TV TELpopdTOY pog. Autd elvou:

e Cityscapes [7]

To Cityscapes eivow éva and Tol o avToy VLTINS GUVORA DEBOUEVWV ol YENOLLOTOLElTAL OE TEOPBAYUTA
onuactohoyhc xatdtunonc. IlepthouBdvel 30 xhdoelg and Tic omoleg uévo ol 19 Yo yenoywonolondoidv yia
a€lordynon. ‘Exel emonueiwyéveg 5000 eixdveg amo Tic omoleg ol 2.975 yenoiponolodvton Yo exnoldeuon,
ot 500 vy To validation xou ot 1.525 vy To testing.

e ACDC |[I1]

To ACDC eivon enfong éva anantnuxd cOvoho SeBOUEVLY, To omolo TEPLEYEL EiXOVES ToL €youv Angiel
oe avtifoec ouviixec (opiyAn, voyta, Beoxh xou xi6w). Kinpovopel touc oplopolc twv xAdoewy ano
1o Cityscapes xou, cuvene, anoteheltan ano 19 xAdoeic. Luyxexpyéva, anoteielton arno 1000 exdveg
oe ouvifxec oulying, 1006 exdveg tpafnyuéves voyta, 1000 oe cuvirxes Bpoxnc xou 1000 oe cuvinxeg
yroviov. Kdde oet ano autée tic 4 xatnyopieg ywpiletar oe 400 ewxdveg yio v exnaideuon, 100 yio to
validation xio 500 yia to testing, ue e€alpeon ot ) cuVIT N g vOyToag TepthauBdver 106 ewdveg Yo To
validation. "Apa, cuvolxd €yovpe 1600 emonuelwuévec exdvee yia TNy exmaldeuor), 406 emionuelwuéveg
ewoveg v to validation xow 2000 eixxdveg yia To testing.

Merpwxég Enidoong

H »Opta petpint| ye Ty onolo Yot UETEHOOLUE TNV ETUBOCT] TWV TELROPATWY Hog Elval 0 u€oog 6po¢ Tou Intersection
over Union (IoU) (mloU). Hopdhhnia, Yo napadéooupe xan dhhec 3 uetpixée oto test set. Autéc elvan ou: IoU
category (cat.), instance-level Intersection over Union (iloU) class xou iloU category (cat.).

YAonoinon

‘Ohec oL exdoyéc tou duxtbou pog anoteholvTal omo 0o xe@oréc. Avdhoya ye tny exdoyr] 1 BlaxAddwon
ouuPaivel o dtapopeTind onueio Tov dixtbou pac. H mpdtn xego topdyet 19 xavdha (Evo yio xdide xhdor), eved
7 8e0tepn 3 xavdhio (2 Yol TIC GUVTETAYUEVES TOV SLOVUOUATOY HETATOHTUONE %ot 1 Yiot TOV YdpT EUTLOTOOUVNG).
Ou 800 xeqaréc axoroudolv tn doury tou HRNetV2. Tédoo 1o apyixd woviého 600 xau To Yovtého uog elvou
apyxonotnuéve pe Pden mou mpoéxudhay amo TNV TpoexTaideuoy tou poviéhou poc oto Imagenet [6] . H
apyxomolnom auTh elvol GNUAVTIXY TPOXEWEVOL VOL ETLTUYOUUE OVTAYWVIOTIXE ATOTEAESUATA. 2E UEPIXA ETLTAEOV
TELPAUATO OV BOXLUACHUE, oXOAOUTOVUE Wid BLIPORETIXNY TPOCEYYLOT), TAYOVOVTAS, XordoAn TN SLdexelo NG
exntafBeUonC TOU HOVTEAOU Poc, TOGO TO XUplo oOUo GO ol TNV XEQUAR TOU apytxol dxtbou. Avdloya
ME TO TOLO GUVORO DEBOUEVWV YENOLLOTOLOVUE, TO TOYWUEVO UEPOS Tou duxTlou pog Yo apyixomoiniel ye to
avtiotouya Bden Tou apyixol wovtéhou, ToL elval TEOEXTAUOEUYEVO GTO avtloTolyo cbvoro dedouévwy. To
uovo uépog mou Vo exmandeutel elvon n E€tpo xe@ahy mou €yel apyixomoinlel ye ta Bdpn ano to Imagenet.
Emniéov, yenotwonoiotue Bertiotononty SGD pe learning rate 0.01, momentum 0.9 xou weight decay 0.0005.
Yo Swavbopoto Yetatémong €yl egoppoodel éva tanh eninedo, MoTe ol TWES TOUC Vo avixouy 6TO ST
[—1,1]. TTIopddhnha, eqapudloupe xou yiot mopdueteo T 1) omolo pudpiler To Tehxd URxog TV BlavuoudTwy.
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O¢Toupe cav default T to 7 (oo 0.5, Tn SlaxAddwor va cuuPaivel 6To 4° oTddLo o xavEva Bruc XAUIXWoNG
TWYV SLIVUOUATOY HETATOTLONG. LTOV YdeTn eumioToclvng epoappolovpe uio otydoledr). o tov utohoyioud tou
loss atoug 6poug Sy, Ss xou Sy epapudletan n ocuvdpetnon tou OHEM Cross Entropy. ISwiteern uvela npénet
va yivel oto oTL apyxd Boxwudooue va e€dyoupe xateudelay T tpofrédelc amo to povtéro xo Syt ta logits,
npdypa To onolo odfynoe oe MOAD yaunid anoteréopata. Ta Bden A xaw p tidevion (oo pe 0.5. To baseline
povtélo éyel exnoudeutel yioa 120K emovahfieic pe batch size (oo ye 12 oe 4 GPUS. Avtidétwe , to povtélo
o, exnaudedtnie oe 120K emavolfeic ye batch size (oo pe 8 oe 4 GPUs, enedr mpoéxudoav mpofriuota ye

™ VAU

ITolotixd anoteAéouata

Yta oyfuota F .11, F .12 xou F .13, F .14 delyvoupe opiopéva moloTixd anoteréopoto tne wedddou yog 6Tto
obvoro dedouévwyv Cityscapes xaw ACDC avtiotorya. Omnwg @aiveton, 1o yovtého pag dev meTuyolvel amhd
oAU WovomonTxd. anoteréopata xovtd ot GT edveg, oAAd eniong Beltichvel T apyixd omoTEAEGUATO TTOL
napryaye 1 opyxh xegaiy) Tou HRNetV2.

Yuyxexpévo, mopodéToude pepés TEOPBAEYPEIC TOU UOVTENOU UUC OE XAMOLES EMAEYUEVES EWXOVES OO TO
Cityscapes, 6w gaiveton ot oyfuoata F .11 xou F .12, Tlopoatnedvtag to mapdderyuo F .11, BAénoupe ano tnv
exova Tou S; 0Tl 1) TpoPhedn ou €xel yivel oo x6xxnvo mhaiclo elvor havdacuévn. Autd SoplhveTtal Yéow Tne
npéPredne ota seed pixels (Ss) xou xot’ enéxtoomn Aoyw YeYANITERNG EYTUOTOGUVNG OTO CUYXEXPWEVO XOUUATL
oty tTedt) tedPAedn Sy. Emniéov, oto napdderypa F .12, BAénouye 1 havidaouéves mpofiédeic tdéoo tou S;
(umhe, x6xxvo xau TEdovo Thaioo) 600 xan Tou S, (u6P mhaiolo) dopddvovtar Tehxd oty Tehxt| €€0d0 Sy.
Iop’ Ohat awtd, o&iler va avopépoupe 6TL, av xou 1 TeoBiedn tou S; mou mepixheletar omd TO TEACLYO TAWGLO
petdveton ato Sy, ebvon tehxd Addog, yioti n GT exdvo oto onuelo autd npofiénel telodpdplo xou Oyt dpduo.
Auto, duwg, opelleton oe aduvauio TOU dpyIXol HOVTEAOU, ULC X0t 0To TERBEAAOY NG apy N TEdBAedng dev
umdipyet ToVlevd 1) 6O TH XAJoT xou £TOL BeV unopel Vo TNV aLOTOLNOEL TO HOVTEAD Uag.

(c) Offset Vector

(g) Xdptne Eumiotocivng

Sy F.11: Tlowotixd Anoteréopata oto Cityscapes: Hpdto Iopddetypa

Avédoya anoteréopata mopatneolue xou otic emheypéves exodvee (Tyfpota F .13, F .14) ano 1o ACDC.
Yuyxexpyéva, onwe galveton oto Lyfua F .13, n Sy npdPiedn neplopilel To Tunua Tou £8APOUC Xl UEYURDVEL
opVd to Tuua Tou melodpopiou, meTuyaivovTag €tol xahiTERO TEMXO AMOTEAECUN oMb TNV oy X! TEOBAedn
Ss. Emnhéov, dev hauPdver unodv v hadepévn mpdPBredn mou éxel xdvel T0 S, OTWSE QAVETAL GTO XOXULVO
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(c) Offset Vector

(g) Xdptne Eymiotocivneg

Yyhuo F .12: Howouxd Anoteréopota oto Cityscapes: Aebtepo Hopdderypo

mAdiolo. Auté yivetar, eneldn oto ouyxexplévo onuelo To povtého Uog Selyvel YeyoADTERT EUMIOTOGUVY O
owoth tpoPhedn Tou S;. Lyetxnd pe tic Ewdvee tov Uyfuatoc F .14, nopatnpolue o aouvéyelo 6To Tuiua
Tou eddpoug oTo XOXUvo mAaioto g S; TEdPBAedne, 1 omolo e€ahelpeTan TeMxd ano v Sy.

Tevixd nopatneodue xahltepn ontixonolinoy twv dlvuoud twy yetatomong oto Cityscapes oe avtideon ye o
ACDC. 2o teheutoio nopatnpolue o€ TOAG onpelar txpéc Tiés Tev dtavuopdtwy (dompo ypmua). Auté elva
hoYxo, yiotl ota onuelo VT EYOUPE TEPLOPLOUEVT, 0PATOTNTA AOYW TWV avTIE0WY cUVTINXWY.
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&

(b) GT (c) Offset Vector

(g) Xdptne Eumiotocivng

Yyhua F .13: Iowtixd Anoteréopata oto ACDC: Ilpdto mopddelyya

- Lo
(b) GT (c) Offset Vector

(g) Xdptne Eymotocivneg

Syhua F .14: Tlowotixd Anoteréopota oto ACDC: Aegltepo mopddelyya
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ITewpdpata Tou Baseline Movtéhou

Apywd, exmoudetoope to apyixdé HRNetV2 povtého and tnv apyh xar ot 2 cbvora dedouévmv, Cityscapes
xow ACDC, TpOXEWHEVOU VoL AVOTOpdryOUUE Tal AoTENEGHOTO TTou elvan dnuooteupéva oto [6] xou [11] avtioTtouya.
Xernowonooope Tic default napauétpoug mou dpioav ol cuyypageic. To apyd yoviéro exmoudeltnxe o 4
GPUs xou 1 exnaideuon tou ohoxhnpmveton peta ono 80 kpeeg oto Cityscapes xou 35 dpec oto ACDC. 'Onwg
Brénoupe aro tov Ilivaxa 1, to anotehéoparta avarnapdyovton emtuywe oto Cityscapes. Yyetxd pye to ACDC,
T0 povtélo mou meptypdyetar oto [11] éyer apyonomlel e ta Bden mou éxouv mpoxidel and v exnaideuon
Tou povtéhou oto Cityscapes. Avtudétng, 1o poviého yoc Exel apyixomoindel, 6twe o oty neplntworn Tou
Cityscapes, ye Bdpn mou €youv npoxiel and tny exnaidevon Tou povtéhou oto Imagenet. YMta axdrovdu nelpd-
pato Yo YeNOULOTOCOUKE TNV TEAEUTOLA OPYIXOTIOMOY], TPOXEWEVOU VO TETUYOUUE AVTOYWVICTIXA ONOTEAED-
porto.

Model Backbone Dataset MeanIU
HRNetV2 [6] HRNetV2-W48 | Cityscapes [7] 80.4
HRNetV2 (Source Code) || HRNetV2-W48 | Cityscapes [7] 80.5
HRNetvV2 [0] HRNetV2-W4s | ACDC [11] 75.0
HRNetV2 (Source Code) || HRNetV2-W48 | ACDC [11] 70.5

IMivaxag 1: Anotehéopota avomapoywyic Tou poviéhou pac oto Test Set

YOyxpiom pe State of the Art poviéla
Cityscapes

Ta amoteréopata Tou wovtéhou pag oto Cityscapes gaivovton mapoxdtw. AZlel va avopépouye 6Tt tetuyaivouue
oE TopPOPOLo Ypdvo exmaidevone xohltepa anotehéopata and to apyixé HRNet, Eenepvivtoag mponyolueves
state-of-the-art apyttextovixéc xou otic 4 yetpixéc t600 oo val 660 xou 6To test set.

o Anoteléopata oto val set: O nivaxoc 2 cuyxptvel to yovtého pag pe to apyixdé HRNetV2 oto val
test Tou Cityscapes, w¢ mpog Tov apdud Twv Topopétpwy, TNV UToAOYLoTIXH TohutAoxdTnTa ot To mloU.
To povtého pag netuyaivel xoAbteer anddoor xo, cuyxexpidéva, 0.6 povédeg mdvw ano to HRNet V2.

Model Backbone #param. GFLOPs | mloU
HRNetV2 [6] || HRNetV2-W48  65.9M 174 81.8
Ours HRNetV2-W48 98.8M 234,7 82.4

Mivoxac 2: Anoteréopata oto Cityscapes val test (multi-scale xou flipping). Ta GFLOPs urohoyilovton pe
Bdom v emdva etcddou (1024 x 2048). Metprdvton pévo Tuvehuetind xon Ipoppind eninedo pbvo.

e Anoteléopata oto test set: O mivoxag 3 cuyxpliver ) uédodo pag pe mponyolueveg state-of-the-art
pedodoug oto Cityscapes test set. ‘Eyouv aiohoyniel 8o nepintdoeig: H mpdytn agpopd ta wovtého mou
€youv exmoudeutel udvo oto train set. H dedtepn agopd to povtéla mou €youv exmandeutel T6c0 6To train
600 xa oto val set. Kau ot 800 nepintddoelg to poviého pag netuyaivel xalltepr enidoor, nopdho mou
elvon exnoudevpévo wévo oTo train set. Tuyxexpéva, netuyoivouue xolitepn enidoor xatd 1.7% oo
mloU, 4% o7o iloU cla., 0.4 % o7o IoU cat. xou 1.7% oo iloU cat.

O mivaxag 4 cuyxpivel avolutixd Ty Tpocéyylon pog pe auth Tou apywol HRNetV2 ava xhdorn. ‘Onwe
unopoluE va dolpe, 1 wEdodog pog TETUYOLVEL XAADTERA ATOTEAECUOTA OTNV TAELOVOTNTA TOV XAJCEWY.
To povtého yoc pordolvel plor avomapdoTaoT) TV Blapopwy AVTIXEWWEVWY, 1) omola UTopel var 0QeA oL TNV
oAx1| andd0GT TOU BXTVOoL.

To nototxd anoteréoyata oto Cityscapes unootnpilovy autd o evpruarta, 6mwe oiveton oto Lyfua F
.15. Lo ouyxexpléva, and ta aploTepd TEog Ta 8e€Ld, elxovilovTal 1) etdva eledbou, 1) €€0B0C TOL aPYIXOD
HRNet xou 1 é€080¢ tou yovtélou yoc. ‘Ocov agopd Ty medTn Yeouur, ToHeatneolUE 4Tl TO UOVTERO
pog mpoonotel vo ueyedivel owoTd To Turue Tou Telodpouiou, OTKC PAaiVETOL GTO XOXXIVO TAALGLO. TN
deltepn OELPd, TO HOVTENO HOC ETUNXOVEL CWOTE TNV TOUTEAA, TNV XOAOVAL xou To TeCodpbuto (x6xxivo,
npdotvo, unhé mhaioto avtiotolya). Avotyde, étwe gaivetar and 1o xiTpvo TAAcL0, To apyxd LoVTENO
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Model H Backbone \ mloU iloU cla. IoU cat. iloU cat.
Model trained on the train set
PSPNet [12] D-ResNet-101 | 78.4 56.7 90.6 78.6
PSANet [13] D-ResNet-101 78.6 - - -
PAN [14] D-ResNet-101 | 78.6 - - -
AFF [17] D-ResNet-101 | 79.1 - - -
HRNetV2 [6] HRNetV2-W48 | 80.4 59.2 91.5 80.8
Ours HRNetV2-W48 | 81.8 61.6 91.9 82.2
Model trained on the train +val set
GridNet [10] - 695 441 87.9 711
LRR-4x [17] - 69.7 480 88.2 4.7
DeepLab [18] D-ResNet-101 | 704 42.6 86.4 67.7
LC [19] - 71.1 - - -
Piecewise [20] VGG-16 71.6 51.7 87.3 74.1
FRRN [21] - 71.8 45.5 88.9 75.1
RefineNet [22] ResNet-101 73.6 47.2 87.9 70.6
PEARL[23] D-ResNet-101 75.4 51.6 89.2 75.1
DSSPN [21] D-ResNet-101 | 76.6 56.2 89.6 77.8
LKM [25] ResNet-152 76.9 - - -
SAC [26] D-ResNet-101 78.1 - - -
DepthSeg [27] D-ResNet-101 | 78.2 - - -
ResNet38 [28] WResNet-38 78.4 59.1 90.9 78.1
BiSeNet [29] ResNet-101 78.9 - - -
DFN [30] ResNet-101 79.3 - - -
PSANet [13] D-ResNet-101 | 80.1 - - -
PADNet [31] D-ResNet-101 | 80.3 58.8 90.8 78.5
DenseASPP [12] WResNet-161 | 80.6 59.1 90.9 78.1
DANet [32] D-ResNet-101 | 81.5 - - -
HRNetV2 [6] HRNetV2-W48 | 81.6 61.8 92.1 82.2
Ours (only on train set) || HRNetV2-W48 | 81.8 61.6 91.9 82.2

IMivaxac 3: Anoteréopota oto Cityscapes test set. To anoteléopata pog eivon avidtepa dooyu apopd Tic 4
uetpwée aglohoynone.D-ResNet-101 = Dilated-ResNet-101. Xuyxplvoupe 1 uédodo yoc ye mponyodueveg
SOTA pedbdoue, 6mwe oto [0]

g g g e

=3 o @ - = B 2 e ~ =] 3 B

o g = = g @ 2 = 151 o . & s} R < " h= 3 S

& E] 2 = 3 = g0 s & = = E : g 9
Method 2 'D‘/\ B ; & =% Ey & g & = 2 E g = 2 g g 8 mloU
HRNetV2 [6] | 98.73 8749 93.65 5648 61.57 71.57 7876 81.81 93.99 7411 95.68 87.95 73.72 9635 69.94 8252 76.93 70.88 78.02 80.4
Ours 98.74 8741 93.79 61.65 64.00 71.35 78.98 81.65 94.00 73.42 95.81 87.99 74.36 96.42 74.76 87.70 82.83 71.77 77.86 81.8

IMivoxac 4: Ava xhdon anoteréopota oto Cityscapes test set

TeoAEnEL xahUTERA TO OY NI TWV YERLOY TOU avIpMTOU. JUYXEXQUIEVA, O AVDEIC XA Td UL EQnUERLDOL Yol
70 Yovtého pog Aadepéva ta€ivopel ta pixel tng egnuepidoc otny xhdom tou avdphmou. 2cTMo0, GUVOlXY,
10 povtého pog €xel mo axplPn meoBiedy. Lyetixd ye v teito set edvwv, 1o povtého pog eEalélpel
70 T6OL ToL TOBNAATY %ol BleupLVeEL To TURHa Tou auaElol Tou PBeloxetar 6to Tpooxhvio. Etot, netuyaivel
éva xohOtepo amotéleopo. Tehixd, oto teheutaio set exdvwv, T0 HOVTENO Uog SlopBvel pepixéc Addog
npofAédeic mou €xouv yivel and To opyxbd povtélo, cuunepthaufdvovtas TV YElwon ToL TUAUNTOS TOU
opodlot ( BAéme umhé mhaiolo) xou Tou TWARNTOS TOL YdeTn (xdxxvo mhaioio). Tuvodilovtag, omo ta
TEANAVE Patvetol 6Tl To LoVTENO Wog Eemepvd TNy ambdoon tou apyixold HRNet.
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Yyfua F .15 TTotoTixd anotelécpata EMIAEYREVWY Tapadelyudtwy oto Cityscapes. Ano ta
aploTepd mpog to Sedid: ewxdva elobddou, apyixd HRNet xan dixd pog povtého
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ACDC

Ta anotehéopota Tou wovtérou pag oto ACDC gatvovton napaxdte. AElel va avopépouye OTL xou o€ AUT6 TO
dataset metuyalvouue oe TapoUole Wpeg exnaidevang xahltepa anoteréopata and to apyixé HRNet, Eenepvcdv-
Tac nponyoLueves state-of-the-art apyitextovinég. Xta axdrovda melpdyuota, cav apyixd LOVTENO YENOLLOTOLE-
Tolt AU TO oL OPYLXOTOLUNXE UE T Bpr Tou Tpoéxuay amo TN extaldeuct) Tou apyxol povtélou oto Imagenet.

o Anoteléopata oto val set: O mivaxoc b ouyxptvel to povtého pag pe to apyixdé HRNetV2 oto val
test Tou ACDC, w¢ mpoc tov apdud twv nopauéteny, Ty utohoylotix toluthoxdtnta xot to mloU. To
povtého pac metuyatvel xaAUTERT anddoo) xat, cuyxexpiuéva, 0.41 yovddeg mdvw ano to HRNetV2.

Model Backbone #param. GFLOPs | mloU
HRNetV2 || HRNetV2-W48  65.9M 172.9 75.50
Ours HRNetV2-W48  98.8M 233.1 75.91

IMivaxac 5: Anoteléopata oto ACDC val test (multi-scale xou flipping). Tao GFLOPs unohoyilovtou pe Bdon
v ewdva etoédou (1080 x 1920). Metpidvton pévo Tuvelwtind xaw Tpoupind enineda uovo.

o Anoteléopata oto test set: O nivaxac 6 cuyxpivel ™ uédodo pog ue mponyolueveg state-of-the-
art pedédouc oto ACDC test set xon cuyxexpéva oe dhec tic ouviixec (All Condition), xadog etvou
EXTIUOEVPEVO OE OAEC TIC CUVDXES xou O)L Uovo ot ula. ‘Onwg mapatneolue, To WOVTEAO YOG TETUYALVEL
xohOtepn enlBoomn and g dhheg ued6dous. Buyxexpiuéva, teTuyaivouue xohitepn enidoon xatd 2.5% oto

mloU.
Model mloU
RefineNet [22] 65.3
DeepLabv2 [18] 55.3
DeepLabv3+ [33] || 70.0
HRNetV2 [0] 70.5
Ours 73

IMivaxag 6: Anoteréopota oto ACDC test set. Ta amoteréopota pac elvon avdtepa 66ov agopd to mloU.
Tuyxpivoupe ) uédodo pac pe nponyolueves SOTA pedddouc, dnwe oto [11]

O mivaxoc 7 ouyxplvel avodutxd v mpocéyylon Uog Ue dAleg opyttexTtovixés avd xAdom. ‘Omwg
unopolue va dovue, 1 wédodog pag TeTuyaivel XaADTERR ATOTEAECUATO OE OAEC TIC XALCELS. LUYXEXQWIEVQ,
TUPUTNEOVUE To e€ng:

— 370 YO, o dpbuog xar To elodpdulo €youv younAy Ty, mou umopel va anodolel oe aduvapio
Tou apytxol povTélou va Eeywploel Tic Buo xAdoelc Aoyw Toapdpolas eppdvions. Ilap’ dha awtd, To
povtélo poc Bedtiover onpovtind xatd 1.8 % tny enldoon ot xhdomn tou nelodpouiov.

— Elvou o 80oxolo yia to povtého va Eeyweloel Tic xAdoelg xorta 1 Sidpxela Tng VoY Tag, TOU ToL av-
Tixelgeva ebvor ouVATKC oxoTelVd Y xaxde puTiopéva. Tétola xAdoel efvat yio TopddeLyUa To XTHELA,
ToL BEVTEA, TOUMENES o 0 ovpaveg. AuTth 1 cuumeplpopd Tapatneelton enione xou ot davdouata
HETATOTLOTG, XAVWOC €Y00UV UIXEES TWES 0TV 1) 0paTOTNTA ElVal TEPLOPLOUEVT).

— e ouvinixeg oplyAng, 1 enldooT) ToL LOVTENOL GE XAJOELS TTOU TEPLEYOLY CUVATILC Pixed avTuxelueva,
onwe Gvipwnog, avaPdtng xou modiiato, elvon yoaunir. Autd yivetan, Adyw Tou GUYBLAGHOD TNg
pelwong e avtideong xaw TN younAng avdiuong ot mopadelyUaTo dUTOY TOV XAJowWY, ToU elvol
HOXEUE oIto TNV XAUEQRL.

To mowotixd anoteréopata oto ACDC unootpilovy autd to eupfuata, 6mwe Qaivetaw oto oyfpo F
.16.I1io cuyxexpuéva, amd to aploTtepd tpog ta 0edLd, eovilovtan 1 edva ela6d0ov, 1) ¢€080¢ ToL apy X0l
HRNet xa 1 €€0do¢ tou poviéhou pag. ‘Ocov agopd tnv mewtn yeopur, BAénouge 6Tl T0 HOVTENO
poc peyediver To TUAUe Tou modnidtou, dlopVivovtac xdnota Addoc pixels ( BAéne xb6xxvo TAololo).
Avctuyg, otwe BAénouye amd To xitpivo mAalolo, To opyixd poviého meTuyalvel xahOTepn TEOBAEDT,
ool oTn oLYXEXEWEVY TeptoyT] ewxovileTtan Eva audll. Nyetixd ye Tt Seltepn oelpd, TopaTnEolue 4Tl TO
povtého poc mpoonadel vo peyohdoel opdde T ¥Ador tou nelodpopiou, TG00 GTO AEXALVO GGO XA OTO
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¥ . g g P = 2

< = £ F g s s, & 2 &

Mothod iz 2 (% o: 2 2 B ¥ F & & % 3 B 2 & § £ .w
RefineNet [_’2] 92.5 71.2 86.2 39 44.0 53.2 688 66.0 85.1 59.3 949 652 385 85.8 53.8 59.7 76.2 47.5 54.5 65.3
DeepLabv2 []k] 88.0 62.3 80.8 37.0 35.1 33.9 49.8 49.5 80.1 50.7  92.5 51.1 26.5 79.9 49.0 41.1 722 26.5 44.2 55.3

DeepLabv3+ [:i:ﬁ] 93.4 748 89.2 53.0 49.0 58.7 71.1 67.4 87.8 62.7 95.9 69.7 36.0 88.1 67.7 71.8 85.1 48.0 59.8 70

HRNetV2 [(i] 95.3 80.3 90.5 52.0 53.1 65.1 78.2 74.2 89.2 68.4 96.7 70.6 36.1 88.2 55.9 54.3 88.0 43.8 58.9 70.5
Ours 95.8 82.1 91.3 55.8 54.6 67.6 80.5 77.3 89.7 69.5 96.8 73.4 39.1 89.5 61.9 65 89.4 47.2 60.6 73

ITivoxag 7: Ava xhdon anoteréopota 6to ACDC test set

TPdoLVo TAXLCLO, X0 UELOVEL TO TUAUN TOL eBdpoug, Tou €yl tpofAeiel Aodeuéva and To apyind Hovtéro.
Eyetnd pe 1o Tpito cUVORO EXEVKY, 1) TPOCEYYION Hac HedveL oplie T teployn Tou telodpopiou (BAéne
%x6¥xvo mAaiolo), xadode oty apyixh etxéva Bev undpyet Tétowa teploy . Télog, 660V apopd To TeEleuTaio
OUVOAO EXOVKY, TO dE)iX0 HOVTENO Tadtvopel hadeuéva Ty Tvaxido Tou oTLTo 6TNY XAEoT TwV Tvaxidwy
0B xuxhogoplac (Bréne xdxxvo mhaioo). Avtdétwe, to yoviého pag dtopddvel oyt uévo autd to
ArBog, oAAG xou iot acLVEYELR Tou mapatneeiton oTo xitpivo mhaioto. Xuvodilovtag, To poviého yog
Eemepvd Ty eniBoon Tou apyixoU.

Yyfua F .16: TTotoTixd amoteléopata eEMAEYREVLY Tapadelywdtwy cto ACDC. Arno ta
aplotepd mpog Ta Bedid: exdva elo6dou, apyixdé HRNet xow dixd pog poviého

YUUTERAOUATA

Yuvodilovtag, YEOW OVIAUTIXGDY TOLOTIXWY XOl TOCOTIXOV CUYXEICEWY XaTapépope vo delfouue Ta eppavn
TAcovexTHUoTa TG pedddou uog évavtt mponyoluevey state-of-the-art uedédwyv oto task avté. Ou mivaxeg
7 o 4 delyvouv Oyl udvo OTL TO HOVTENO YOG ETUTUYYAVEL XOADTEPY GUVOAXTY emiBooT], ohAd xou xohiTepa
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ATOTEAEGUATOL oVl XAJOT) OTNV TAELOVOTNTA TV XAAOEWY OE TopdpoLlo Ypovo exmafdeuvong. ‘Onwe avoapépoue
Topomdve, 1 wedodog pag wotpdletar TAnpogopio amo Véoelg Twv seed pixels xou BeAtiidvel Ti¢ TpoPAenoueveg
AIOELS, Aol Oyl wévo meTuyaivel xavoronTxd arotekéopota xovtd otic GT edvee, odAd xou Pehtudvel Tig
npofAédelc mou mpodpyovtal amo Tto apyixd uovtélo tou HRNetV2. Xuyxexpuéva, talvopel yepnd hddog
npofAemdueva pixels otic ocwotég xhdoelg. ‘Etot, e€olelpel aocuvéyeieg xou BEATIOVEL TO oyfjua xoddS xan T
Hop®PY| TWV AVTIOTOLY WY TUNUATWY, OONYDOVTAS OF TLO PEUALCTIXG ATOTEAECUATAL.

2UVELCQYORES Kol UEANOVIXES TEOEXTACELS

YN napoloa BIMAGUTIXY), UEAETAUE TO TROBANUO TNE ONUACLONOYIXNE XATATUNOTNG, €O and To Geuehlcddn Veé-
pato e ‘Opaone Troroyotodv. H avayvopeion evéc avixeipévou péoa oe wa RGB ewdva cuvendyeton to
xJOPIOUO UERIXAY YURAXTNELO TIXWY TIOL apopoly TO Ypdpa xou TNy Len. E@é 6w 1 ahhayr yeduatog, Aoyw
NG ATOPROPNOTNS TOU PWTOC, 1) TUPOHUOPPMGT) TV PAUXMY XAl OL YPWHUATIXEC AARAYES UTopolV Vo ahAEEoUY TNV
EUPAVIOT] TWV OVTIXEWEVKY XAl VO ETNEACOUY o€ PeYdAo Bardpd tny avtiindn 160 tou Yot 660 xo Twv oA-
yopliuwy avayvoplong. ‘'Olo xou mo abvieteg pédodot npoonodolv va BEATLOO0UY T ETBOCELS TOV LOVTEAWV.
Iopéro mou 1 Teyvnth Nonuooivr €yel va dlavioel HeYdho SpoUo oxOua, TEOXEWEVOU Vo avamTUEEL LoVTéAA
ouyxpelonua ue Tov dvitpwno oe auTd Tol TEOBAAUATA, UepXol EPELYNTEC CUVEY NS avaXIAUTTOVY state-of-the-art
povtéha, aveBdalovtog to eninedo 6ho xou mo Ynhd. O meplocdtepec oyetnée epyaoiec ETXEVTPMOVOVTAL OE
OAAAYES OTNY AEYLTEXTOVIXTH] GTA YPTOULOTOLOVUEVA BIXTUA TEOXEWEVOU VA GUVBUAGOUY XUAUTEQD TO TEQLEYO-
MEVO OAGXATIONG TNG EXOVAS DLATNEWVTAUC TAPdAANANL TN AETTOUERELN OE TOTUXO ETUTEDO X0 YENOLLOTOLOVTOS EVaL
loss umohoyilbuevo oe pegovouéva pixels. O oyediaopdc mo cbvietwy losses, mouv hayBdvouv unddn ) dour
TIOU TEQLEYETOL OTIC ONUACLOAOYIXEC ETXETES, efvan avTixeluevo yeyding npocoyrc. Ilpoxewévou va moapdéouue
anotehéoporta o omolo avTxaTtoTTEi{ouy XONITERO TNV XAVOVIXOTNTA TWV YVACUIV AVATIPUO TAOEMY, UENETOUE
TEONYOUUEVES €QEUVEC OTO XAADO TNG ONUACIONOYIXAC XATATUNONEG %ot TEOTEVOUUE Wlal VEX TPOCEYYLON GTO

TEOBATUAL.

IMponyoupévwe, avahbooue TAHEwS TNV TEoTeEVOUEYN uédodo. Baolduevol o yvmon oyetxd pye tny uPnihol
EMTEDOU XAVOVIXOTNTA TWV TEAYUATIXDV OXNVAY, TEoTe(vouue pa véa uédodo yio 0 Bedtinon twv tpoBiens-
HEVWY XAAoEWY, UE€ow TN exudinone tne emhextixic a€lomolinone Twv TANEOPOELOY and To GUVETINEdH pixels.
Yuyxexpyéva, Pooldpacte oty 1ded 6Tl yioo xdde pixel undpyel éva seed pixel, To omolo aveixel oy Bl
¥Adon pe to mponyoluevo. Xov anotéleopd, oyedidlouue éva vevpwvixd dixtuo e dVo xeparéc. H mpdtn
xe@Qohy] Topdyel T mpoPAenduevec xhdoelc yio xdde pixel, eved 1 debtepn mapdyel éva muxvd medlo davuo-
ptev petatémone (offset vectors) mov npoodiopilet tic Véoeig twv seed pixels. O npofAédelc Twv seed pixels
YEMNoUoToloUVTaL 0T GUVEYELX Yiot Vo TeoPBAéPouv v xAdon oe xde pixel. Ilpoxewévou va Angdoldy unddn
mdavég anoxhioelg and v oxeBn Tomx opahoTNTA, N TEOXVOTTOUGY TEOBAEPY CUYYWVEVETOL TEOGUPUOC TIX
HE TNV apy ) TEORAed amd TV TEMTN XeQUN| YenolomoudvTas évay xdetn euniotooivng (confidence map),
Tov onolo podaivel to povtého. H cuvohuxn apyttextoviny| €xetl vhomoindel oto poviého HRNetV2, éva state-of-
the-art yovtého oto cUvoro dedouévwv Cityscapes. H unepoyr| tng uetddou pog Evavtl dhAAwv Teonyoluevmy
SOTA pedédwv anodelydnxe péow avolutixic ToTxAc xou TocoTxhc Telpauatixic allohdynone t16co 6To
Cityscapes 600 xa 6to ACDC cOvolo dedopévwv. Ko ta 800 chvola dedopévwyv elvon npoxintixd. To mpdto
YenouloToleltal eVEEWE 68 TEOBAAUITA GNUAGIONOYIXNE XATATUNONG Xl TO BEUTEPO TEPLEYEL EXOVES TTOU €YOLVY
et oe avtifoec ouvixec (opiyhn, voyTa, Bpoyh xou YLowL).

H pédodoc poc Bertudvel oe peydro Badud tic mpoBrédeic tou apytxol Loviéhov, agol Oyt uévo metuyalivel
XUAOTEQO GUVORLXE AmOTEAECUATA OANS ol XUAUTEQA AMOTEAEGUATA oV XAACT) OTNV TAELOVOTATA TV XAACEWY
o€ TopoUolo Yedévo exnaideuong. Ouolootind, padaivel W avamapdcTaoT Twy BaPopmY oAVTIXEWEVLY, 1) onola
umopel va ogeRoEL TNV oAxY) amodoon Tou dixthou. ‘Etol, oyl poévo metuyolvel ixavomomnTind anoteAécuaT
xovtd ot GT ewdveg, odhd xan Bertidver Tic npoAédeic mou mpoépyovtal ano To apyixd poviého tou HR-
NetV2. Yuyxexpwéva, tagivouel pepixd Addoc mpoPhenduevo pixels otig owotéc xhdoec. 'Etol, e€aheipel
ACUVEYELES XU BEATIOVEL TO OY U xaddC XU TN LopPT TV avTioTOLY WY TUNUATWY, 00NYOVTIC OF O EEXA-
loTxd amotehéopota. AuTtH elvor gLt TOAD GNUAVTIXY GUVELSQOPE, TIOU avolyel VEOUS DEOPOUS YLol TTROlY LOTLXEG
xaOMUEPLVES EQOPUOYES, OTWS 1) EQPUPUOYT TNS WEuC auTh o cuoThuata Autovoung O8¥ynong ¥ otnv Lateuxn.

Téhog, Tapdro emTOYUIE TOAY UTOOY OUEVA ATOTEAECUATA OE Wit ToAla and cUvola Bedopévev, e€axorouiolv
VoL UTHEYOUV TEPLOPLOUOL, TTOL UTOPOUV Vo 0dNYHoOUY GE PEANOVTIXESC TPOoEXTAcELS TNe pevddou. Ilopoxdte
AVUUPEPOVUE CUVOTTLXG PEELXOUC O AUTOUC:
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e Egapuoy? tne wedodou pag otoug Visual Transformers. Xty napodoo ypovixh otyuyy,
oL ohoxaivovpylol Visual Transformers netuyoivouv state-of-the-art amoteréopota oto task tng omnuo-
olohoyifc xotdtunone. Xe enduevo otddio, Yo epopudooupe Tt pédodo pac otov ViT-Adapter [34],
avouévwvTae véo state-of-the-art anotehéopata yio To task avtd.

e Juvduvaoposg TNng KeBodou pag UE IAAEG TEYVIXEG. Oo UTOPOUCUUE VO UEAETHCOUUE TOV
ouvduaoud TNE HEYEBOU Hag OE GANES TEYIXEC ONUACLOAXTC XATATUNOTC Xan instance segmentation oe Wi
Tanddpa and cOvola dedouévwv. Ta mapddetypa, umopel va epoappoctel oto cuvduaoud tou HRNet pe
7o Object-Contextual Representations (OCR) [9].

e MéOodog Baociopneévn oto ultimate erosion. ‘Onwc eldope oTig ONTUXOTOACEC TV BLAVUOUATGDY
METATOTLONG, LEEE BtarvopaTal amoTUY Y AvoLuY va SelEouy 6TO XEVTRO TOL AVTIGTOLYOU AVTLXELUEVOU. 2oty
OTOTEAEGUA, 1) XATAVOUH TOUC OTO CLUYXEXPWEVO TUAU dev elvon xavovixr. Ilpoxewévou vo avtiuetw-
nloouye ot TO MEOPBANUN, Vo UTOPOUCUUE VO YPNOLLOTOGOLUE TNV cuVdptnon tng ultimate erosion.
Yuyxexpuéva, yéoo and outh TV ouvdpetnon, Yo uropoboaue va Peodue o xdde GT exdva to xév-
100 %qe *AGONC O PETE VoL YPTOUOTOCOUUE AUTO TO GOVOAO GUVTEQUYUEV®DY XATOL TN SLEEXELD TNG
exmaidevone tou poviélou. ‘Etol, Yo avayxdoouye ta SLovOGUATO HETATOTUONG EVOC CGUYXEXPLUEVOL TUN-
patog va delyvouv oto xévtpo Tou, odnyhvtog mdavév €tol oe xahitepec TEoPAEYELS.
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Chapter 1. Introduction

1 Semantic Segmentation

1.1 Definition and Applications

Semantic segmentation is a problem of assigning a class label to each pixel. The task is also commonly
referred as dense prediction, since the label is predicted for every pixel in the picture. It can be formulated
as:

Definition 1 .1: Semantic Segmentation

Semantic Segmentation requires learning a dense mapping fy : I(u,v) — S(u,v) where

e [ is the input image with spatial dimensions H x W

e S is the corresponding output prediction map of the same resolution

e (u,v) are pixel coordinates in the image space

e O are the parameters of the mapping f
In the supervised version of the task, a ground-truth semantically segmented map H is available for
each image I at training time. During training, the parameters 6 are optimized such that the function
fo minimizes the difference between the predicted image and the ground-truth image over the training
set T. In other words, this can be formalized as

min Y L(fo(1), H) (1.1)
(I,H)eT

where £ is a loss function that penalizes deviations between the prediction and the ground truth.

Many applications, such as medical image analysis, robotics, surveillance,autonomous driving, and many
more, require semantic information from images at the pixel level. As far as the autonomous driving is
concerned, an example is shown in Figure 1 .1. It illustrates an example image (Fig. 1 .1a )and a semantic
segmentation result (Fig. 1 .1c ). The objective is illustrated by the ground truth image (Fig. 1 .1b). The
class labels may be a person, a car, or a road, or any other basic pattern found in the image. It is one of
a few algorithms that help us to analyze the context of an environment we are familiar with. As a result,
semantic segmentation is commonly employed in autonomous cars, where the context of the environment is
critical.

(b) Ground Truth

(c) Result

Figure 1 .1: Example of a semantic image segmentation algorithm

Challenges

Semantic Segmentation is one of the hottest topics in research. While modern techniques have shown promis-
ing improvements, they still fall short of human-level performance. Humans can recognize objects with little
effort, even when they vary in views, scale, lighting, or they are translated or rotated. Even when objects
are partially obscured from vision, they may be identified.
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In order to automatically overtake these obstacles using computers, state-of-the-art semantic segmentation
methods depend on machine learning techniques to understand the multiple representations of things from
provided images. However, actual approaches have their own set of flaws as well. In order to attain the
precision of state-of-the-art approaches, pixel-level annotated images are necessary. Unfortunately, these
images are many times restricted for many applications or simply unavailable.

Furthermore, if we learn the object representation from a finite collection of labeled images, the model may
obtain satisfactory results on samples that seem similar to those in the training set, but the algorithm’s
ability to generalize to additional images is not guaranteed. This problem is also known as overfitting.

1.2 Deep Neural Networks

Deep learning is a machine learning technique used to build Artificial Intelligence (AI) systems. It is based
on the concept of Artificial Neural Networks (ANNs) , which are meant to process large amounts of data
through numerous layers of neurons to perform complicated analysis.

Deep Convolutional Neural Networks (DCNNs)

There is a wide variety of Deep Neural Networks (DNNs). DCNNs are the most prevalent form of image and
video pattern recognition system. Traditional artificial neural networks have been developed into DCNNs,
which use a three-dimensional neural pattern inspired by animal visual brain.

DCNNS5 are mostly used for object recognition, image classification, and semantic segmentation, but they are
also sometimes utilized for natural language processing.

The strength of DCNNs lies in their layering. A DCNN processes the Red, Green, and Blue parts of an image
simultaneously using a three-dimensional neural network. When compared to standard feed forward neural
networks, this significantly reduces the number of artificial neurons required to analyze an image.

DCNNSs receive images as an input and use them to train a classifier. Instead of matrix multiplication, the
network uses a particular mathematical process known as "convolution."

A convolutional network’s architecture, generally, consists of four layers: convolutional, pooling, activation
and fully connected one [1]. An example of this architecture is shown in Figure 1 .2 .

~

- CAR
- TRUCK
- VAN

O [ -BicycLE

INPUT CONVOLUTION + POOLING CONVOLUTION + POOLING FLATTEN FULLY SOFTMAX
RELU RELU CONNECTED

FEATURE LEARNING CLASSIFICATION

Figure 1 .2: An example of a CNN architecture

2  Outline

This thesis is devided in 5 chapters. The following is an overview of the contents of each chapter:

e In chapter 1, we gave an introduction to semantic image segmentation and discussed issues that may
arise. In addition, it was given a brief introduction to deep learning .
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Chapter 1. Introduction

e In chapter 2, we present a review of the background relevant to deep learning and the task of semantic
segmentation.

e In chapter 3, we analyze related work on this task and address current state-of-the-art approaches.

e In chapter 4, we propose a new method for improving semantic segmentation predictions and introduce
the offset vector - based HRNet model .

e In chapter 5, we discuss the experimental setup i.e., datasets, evaluation metrics and implementation
details and report our models results.

e In chapter 6 we summarize our findings and give an outlook for possible future research.
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Chapter 2. Theoretical Background

1 Introduction to Deep Learning

1.1 Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) are widely used in computer vision. They are made up of neurons
with learnable weights and biases, similar to ordinary Neural Networks. Each neuron takes some inputs,
performs a dot product, and optionally adds a non-linearity to the result. From raw image pixels on one end
to class scores on the other, the whole network still represents a single differentiable score function. Lastly,
they still contain a loss function on the last (fully-connected) layer (e.g. SVM/Softmax) [2].

CNNs outperform other neural network architectures on image processing tasks. This is related to their in-
trinsic use of spatial correlations in images and the advantages of weight sharing in terms of training efficiency.
CNNs5 usually consist of numerous layers, each with its own set of capabilities. Low-level characteristics such
as colors, edges, and forms are detected by the first layers. The layers begin to learn complicated character-
istics, as the model progresses, and the final layer produces predictions. As a consequence, the network has
a more comprehensive grasp of the images in the dataset. This section, which is primarily based on the work
of [35], briefly discusses the functioning of several layers of CNNs that are common to image processing.

A convolutional network’s architecture usually consists of convolution, pooling, activation and fully connected
layers. At the same time, processes such as upsampling, concatenation,dropout, nearest neighbour or bilinear
interpolation occur. An example of a CNN architecture is illustrated in Fig. 1 .1

Dropout-0.1
Fully-connected

layer 4 Dropout-0.1

Convolutional . -~ @ Fully-connected
Max-pooling A ¥ @ R
32 4  layerl layer 1 Batch-Normalization
) / Y __layer2 Convolutional Max-pooling | *
]4 / / layer3 layer3," | 7| |2
7 5 .
32
mn A \ . N
' / A A 70 105 Batch-Normalizati SRR
> ) / 70 0 Max-Solin atch-Normalization Nl [l
””” 35 35 Convolutional 1 P 5 g layer 3 I /
1 33 Batch-Normalization layer 2 ayer @
Input layer layer 1 140 layer 5
Batch-Normalization
layer 4
Input layer Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Output layer
Figure 1 .1: An example of a CNN architecture. From [30]
Convolution

Images are represented by matrices containing pixel information. RGB color coding is the most widely used
representation. As a result, an image has the dimensions (h X w X d), where h denotes the height, w the width,
and d the color channel depth. Convolutional layers are important layers in CNNs because they generate
feature maps from input images or lower level feature maps. These layers consist of a kernel or a filter K
with x rows, y columns, and a depth d that is smaller than the input image’s height and breadth. Its content
is based upon the operations to be performed. For example, in Fig. 1 .2 an example of a kernel for applying
Gaussian blur in order to smoothen the image before processing is shown, Sharpen image so as to enhance
the depth of edges and edge detection. This kernel with the size (K, x K, x d) acts on the image’s receptive
field (K, x Ky).

After that, the kernel moves across the picture, creating a feature map. Fig. 1 .3 depicts an illustration
of this procedure. In this example, the input image is 3 X 4 and the convolution kernel size is 2 x 2. If
we overlap the convolution kernel on top of the input picture, we can compute the product between the
integers at the same place in the kernel and the input by adding these products together. For instance,
if we overlap the kernel with the input’s top left region, the convolution result at that spatial loaction is:
1x14+1x441x24+1x5=12. Then we shift the kernel down one pixel and the upcoming convolution
result is 1 x4 +1x7+1x5+1x 8 =24. We keep moving the kernel down until it hits the input matrix’s
bottom border. The kernel is then returned to the top and moved to its right by one element (pixel).

32
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Original Gaussian Blur Shampen Edge Detection
0 0 0 1 1 2 1 0 -1 0 -1 -1 -1
0 1 0 16 2 4 2 -1 5 -1 -1 8 -1
0O 0 0 1 2 1 0 -1 0 -1 -1 -1

Figure 1 .2: Kernel types

The convolution operation is defined identically for order 3 tensors. Assume the I-th layer’s input is an order
3 tensor of size H' x W' x D'. A convolution kernel is also a size H x W x D! tensor. When we overlay the
kernel on top of the input tensor at (0, 0, 0), we calculate the products of matching elements in all the D'
channels and sum the HW D! products to produce the convolution result at this spatial location. To finish
the convolution, we shift the kernel from top to bottom and from left to right.

1 1
1 1
(a) A 2 x 2 kernel (b) The convolution input and output

Figure 1 .3: Illustration of the convolution operation

In general, if the input is H' x W' x D! and the kernel size is H x W x D! x D, the convolution result is
(H' — H+1) x (W! =W +1) x D in size, where D denotes the number of kernels used. However, sometimes
we need the input and output images to have the same height and width, and a simple padding trick can be
used. For every channel of the input, if we pad ( i.e., insert) L%J rows above the first row and L%J TOWS
below the last row, and pad L%J columns to the left of the first column and L%J columns to the right
of the last column of the input, the convolution output will be H' x W' x D in size, i.e., having the same
spatial extend as the input.

Another key notion in convolution is stride. Fig. 1 .3 depicts the kernel being convolved with the input at
every possible spatial point, which corresponds to the stride s = 1. If s > 1, however, every kernel movement
skips s — 1 pixels. This means that the convolution is performed once every s pixels both horizontally and
vertically [37].

To sum up, if the input is H' x W' x D!, the kernel size is H x W x D' x D, and let’s denote the stride with S
and the amount of zero padding with P then the convolution result is (Z=H+2E 4 1) x (W=W£2P | 1) 5 )
in size, where D denotes the number of kernels used.
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Chapter 2. Theoretical Background

Pooling

Pooling layers are used to reduce the dimensions of the feature maps. Thus, it reduces the number of
parameters to learn and the amount of computation performed in the network. Another essential reason to
use pooling layers is to avoid overfitting the training data. The most commonly used pooling methods are
max pooling and average pooling as shown in Figure 1 .4 . The greatest input value or the average of all
the values within the kernel is used to create the downsampled output, which results in a smaller output.
The processed data is simplified by combining the convolutional and pooling layers, without losing crucial
characteristics that are required to describe the picture [38].

max pooling

112

average pooling

79

Figure 1 .4: Types of pooling. From [38]

Downsampling - Upsampling

The process of downsampling 2D images is used to lower the resolution of an input image. This is very
useful for compressing image files while retaining as much information as possible. Upsampling is the inverse
of downsampling, and it involves producing an output image with a greater resolution than the input. In
reality, the goal is to produce a high-confidence image that is free of undesirable artifacts and retains a high
level of detail. The transpose convolution and unpooling processes, which perform the opposite procedure
of convolution and pooling, are two extensively used approaches [35]. The input image is smaller than the
output image in transpose convolution. This is due to input dilation and padding to expand the matrix
size, resulting in a convolution output that is larger than the original input. Transpose convolutional layers
transfer one single activation to a field of multiple activations. An example of a 3x3 transpose convolution
is depicted in Fig. 1 .5.

Even though pooling cannot be reversed, the location of the pooling layer’s maximum values is recorded in
switch variables [10], which the unpooling process uses to place its matrix values at the appropriate positions,
as shown in Figure 1 .6. Since it is an expanded version of the input map, the output of such an unpooling
layer is sparse.
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. . Sum where
3 x 3 transpose convolution, stride 2 pad 1 / output overlaps
> Filter moves 2 pixels in

Input gives the output for every one

weight for pixel in the input

filter
Stride gives ratio between
movement in output and
input

Input: 2 x 2 OQutput: 4 x 4

Figure 1 .5: Example of a 3x3 transpose convolution. From [39]

switch
variables Q o \ngétac rt:les

pooled

— map nput
S unpooled
map

Pooling Unpooling

Figure 1 .6: Example of a 2x2 unpooling operation. From [40]
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Chapter 2. Theoretical Background

Batch Normalization

Batch Normalization (BN) is a method that speeds up and stabilizes the training of DNN. It involves nor-
malizing activation vectors from hidden layers using the current batch’s first and second statistical moments
(mean and variance). The nonlinear function is applied before (or after) this normalizing step. At each
hidden layer, Batch Normalization transforms the signal as follow :

1 ,
_1 (@) 1.1
p= EZ Z (1.1)

o = L3020 - pp? (1.2)

n [
i Z'—p
Zr(zo)rm:27 (1 3)
g° — €
2 =% Zm + B (1 4)

Using 1 .1 and 1 .2, the BN layer calculates the mean p and variance o2 of the activation values across the
batch. The activation vector Z* is then normalized using 1 .3. As a result, the output of each neuron follows
a standard normal distribution across the batch.

Finally, it computes the output Z of the layer using a linear transformation with two trainable parameters;
~vand S (1 .4). By modifying those two parameters, the model may find the best distribution for each of the
hidden layers.

In general:
e v allows to adjust the standard deviation
e (3 allows to adjust the bias, shifting the curve on the right or on the left side
e ¢ is a constant used for numerical stability

The network calculates the mean and standard deviation for the current batch after each iteration. Then
it trains 7 and B through gradient descent, using an Exponential Moving Average (EMA) to give more
importance to the latest iterations [11]. An illustration of batch normalization is depicted below in Fig. 1.7

Figure 1 .7: Batch Normalization. From [41]
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1. Introduction to Deep Learning

Dropout

Dropout is by far the most used regularization approach for deep neural networks. Even the most advanced
models, which have a 95% accuracy rate, gain 2% accuracy by adding dropout, which is a significant improve-
ment at that level. It is a basic technique for preventing overfitting. During training, a neuron is momentarily
"dropped" or inhibited with probability p at each iteration. This signifies that, at this iteration, all of this
neuron’s inputs and outputs will be disabled. At each training step, the dropped-out neurons are resampled
with probability p, so a dropped-out neuron at one step might become active at the next. The dropout-rate
hyperparameter p is commonly a number around 0.5, which corresponds to 50 percent of the neurons being
dropped out. In Fig. 1 .8 a visualization of dropout is depicted.

X
AKX

No Dropout With Dropout

Figure 1 .8: Dropout Visualization

Dropout is only applicable to input and hidden layer nodes, not output nodes. The edges in and out of the
nodes that have been dropped out are deactivated. During each training phase, the nodes that were dropped
out vary. We also don’t use dropout during testing after the network has been trained, but we only use it
during training [12].

Nearest Neighbour Interpolation (INNT)

A relatively simple interpolation method is the Nearest Neighbour Interpolation . In general, interpolation
aims to estimate the value of z at a new point x using a specified sample of data (21, 22,..., z,) at locations
(z1, x2,..., x,). The NNI algorithm seeks to find i such that |x; — x| is minimized, then the estimate of z is
Zi-.

A Thiessen polygon [43], sometimes called a Voronoi polygon, is formed by the collection of points that are
closest to the value of x;. Delauny triangulation [14] is the process used to calculate these polygons. A area
made up of all points that are closer to z; than any other x, corresponds to this specific polygon.

Bilinear Interpolation

Bilinear interpolation is an extension of the one dimensional Linear Interpolation in two dimensions. It is
performed using linear interpolation first in one direction, and then again in the other direction. In particular,
the procedure computes values assigned to one new pixel as a lineal combination of the four closest pixels in
the original image. Although each step’s sampled values and position are linear, the interpolation as a whole
is quadratic in the sample location [45].

Regarding the mathematical formulation of this procedure, suppose that we want to compute the value of
the unknown function f at the point (x, y), as the Fig.1 .9 depicts. Let’s assume that we know value of f
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Chapter 2. Theoretical Background

at the four points Q11 = (z1,91), Q12 = (x1,¥2), Q21 = (x2,y1), and Qa2 = (x2,y2). Initially, we do linear
interpolation in the x-direction. This yields

Flan) = P F @)+ (@) (1.5)
Flay) = 2 F(@u2) (@) (1.6)

The next step consists of interpolation in the y-direction to obtain the desired result:

Y2 — Y Yy—un

f(xay) = — f(xayl) + — f(zva)
Y2 — Y1 Y2 — U1
Y=Yy T2 r — T Yy—y1r , T2 — T r — I
= 7y1(x2 7x1f(Q11)+ xz—xlf(Q21))+7y2—y1(x2—x1f<Q12)+ - 7$1f(Q22))

_ 1 71— f(Qu) f(Qi2)] [v2—y
= a0 =) 1 {f@m) f(ng)] [y—yl] (1.7)

The same result will be achieved if the interpolation is done first along the y direction and then along the x
direction [46].

yolodQ2 GRe $9

T LR S

vl fQ_l_l _______ L — +_Q€1_
X1 X X2

Figure 1 .9: The four red dots depict the data points and the green dot is the point at which we want to
interpolate. From [46].

The solution can also be written as a weighted mean of the f(Q):

f(z,y) = win f(Q11) + wia f(Q12) + w21 f(Q21) + waz f(Q22) (1.8)

where the weights sum to 1 and satisfy the transposed linear system

1 1 1 1 w11 1
T € €2 Z2 w12 _ z (1 _9)
Y1 Y2 Y Y2 w21 Y

T1Y1 T1Y2 T2Y1 T2Y2| [W22 ry
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1. Introduction to Deep Learning

yielding the result

w11 Tays —y2 —wx2 1 1

wiz | _ 1 —Tay1 Y1 T2 —1| | @ (1.10)
W21 (vg —21)(y2 — 1) | —21Y2 W2 ;. -1 Y '
W T1y1  —y1 —x1 1 xy

which simplifies to

- (902 wl;(y2 Y1

T (w2—21)(y2—vy1)

(z2—z)(y2—y)
(z2—z)(y—y1)

Ey2 Y1
(z—z1)(y2—y
(z—z1)(y—y1)
(z2—21)(y2—y1)

in agreement outcome of repeated linear interpolation.

Activation Functions

)
)
)
)
)

)
- (902 wl;(y2 Y1
)

(1.11)

Activation functions are non-linear functions applied to the output of a transformation layer (convolution,
batch normalization, etc.). Sinve this is an element-by-element action, every pixel from the preceding layer
will be exposed to it. The network then moves on to another layer, such as a new convolutional layer or a
pooling layer. There are a variety of activation functions for neural networks, however, only the most basic

ones are discussed:

1. Rectified Linear Unit (ReLU)

A typical activation function for machine learning applications is ReLLU. Although ReL.U is non-linear, it
stays close to being linear and retains many of the useful properties for optimization and generalization
of linear models [35]. The only difference between a ReLU and a linear unit is that a ReLU’s output is
0 for the first half of its area and discontinuous at the point x = 0. ReLU is applied element-wise to
the input and is defined as:

1 ifx>0

ReLU(z) = { 0 ifz<0 (1.12)

. Scaled Exponential Linear Unit (SELU)

One of the novel activation functions is the Scaled Exponential Linear Unit. SELU is self-normalized,
which means that the output always has a mean of 0 and a standard deviation of 1. When compared to
external normalizing methods like batch normalization, this leads to fast convergence. The main idea
is that each layer keeps the mean and variance from the preceding layer, allowing very robust learning
and training multilayer networks.

Moreover, the gradients may be used to modify the variance. In order to enhance variance, the activation
function requires an area with a gradient greater than 1. The parameter A in Equation 1 .13, which
is the reason for the S(caled) in SELU, accomplishes this. When A\ is greater than 1, the gradient is
greater than 1, and the activation function might cause the variance to grow. As a result, problems
like vanishing and exploding gradient problems are difficult to solve with a SELU since the gradient is
never close to 0 . SELU is defined as:

ifzx>0

iz <0 (1.13)

SELU(z) = /\{
aexp” —a

This function has two predetermined values called o ~ 1.6732 and A ~ 1.0507.

3. Softmax
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The final outputs are normalized in the range [0,1] using the Softmax activation function, which rep-
resents the probability distribution of a random variable with n possible values [35]. This function is
used to generate class probabilities in the final layer of a neural network and is defined as:

exp(z)

Soft = —
oftmax(x) Zﬁ;o (@)

(1.14)

1.2 Training the Neural Network

Following the definition of a network’s architecture, the model’s individual weights are learned through a
training process. This is done in a supervised way for the majority of deep learning applications, such as
medical analysis or autonomous driving, where multiple samples of input data are supplied with corresponding
labels that are of interest. A 2D chest X-ray, for example, might be used as input data, and the label could be
a binary diseased /non-diseased categorization. For each image-label pair, the image is sent into the network,
which then generates a prediction based on the calculations produced by each layer. Then, using a loss
function L that measures how similar they are, this prediction is compared to the label supplied. With this
error measurement, an optimizer uses a method called backpropagation to modify the weights throughout the
network, reducing the error the next time the network sees this case. The weights should ideally be adjusted
when the network has been trained for a batch, which is a group of multiple samples. Stochastic Gradient
Descent [35] is the most basic type of optimizer. Except for that, there are numerous others, such as Adam,
RmsProp, and so on, making it yet another design decision before training [35]. This training procedure is
repeated until the loss on a batch of validation data is minimized. In practice, this might take minutes for
tiny basic datasets and days or weeks for bigger data, depending on the computational resources available
to the user. Overfitting can occur when a CNN is trained on a small dataset for a long time, however this
problem can be addressed by regularly testing against unknown validation data.

Data Augmentation

Due to the lack of many examples to train on, overfitting occurs, resulting in a model with poor generalization
performance. Obtaining new training data is difficult in most machine learning applications, particularly in
image classification tasks. Data augmentation is a technique for generating extra training data from the data
we already have. It "enriches" or "enlarges" the training data by producing new instances from existing ones
through random manipulation. We may artificially increase the size of the training set in this way, preventing
overfitting. As a result, data augmentation may be thought of as a regularization strategy.

Data augmentation is done dynamically during training time. Realistic pictures are required, and the modifi-
cations must be learnable. Rotation, shifting, resizing, exposure modification, contrast alteration, and other
manipulations are common. This way we may produce a large number of new samples from a single training
example. Furthermore, data augmentation is performed exclusively on the training data [42].

1 .3 Loss Function

The loss function calculates the difference between the algorithm’s actual output and the predicted output.
It’s a method to evaluate how the algorithm models the data. It may be divided into two categories. The
first is for classification (discrete values, 0,1,2,...), while the second is for regression (continuous values).

Classification
e Cross-entropy Loss

The cross-entropy as the Log Loss function (not the same but they measure the same thing) computes
the difference between two probability distribution functions [17]. The cross-entropy of the distribution
q relative to a distribution p over a given set is defined as follows:

H(p,q) = —Ep[logq] (1.15)
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where E,[-] is the expected value operator with respect to the distribution p. For discrete probability
distributions p and q with the same support X, equation 1 .15 implies that:

H(p,q) == p(x)logq() (1.16)

reX
There are different types of Cross Entropy [48]. Some of them are the following:
— Binary Cross-Entropy:
Lpor(y,9) = —(ylog(g) + (1 — y)log(1 - 9)) (1.17)

where y is the real value and g is the predicted value by the prediction model.

— Weighted Binary Cross-Entropy:

Lw-pce(y, §) = —(B+ylog(y) + (1 — y)log(1 — 7)) (1.18)

where 8 value can be used to tune false negatives and false[19]. It is widely used in case of skewed
data [50].

— Balanced Cross-Entropy:

Lpor(y,9) = —(B+ylog(g) + (1 = B)(1 —y)log(1 — 9)) (1.19)

Y

o - In this apart from just positive

In terms of image processing, 8 is usually defined as 1 —
example [51] , we also weight also the negative examples.

— Ohem Cross-Entropy (OHEM):

Some object identification datasets include a disproportionately large number of simple instances
and few challenging ones.Training may be more effective and efficient if these challenging instances
are automatically chosen. The bootstrapping method known as OHEM, or Online Hard Example
Mining, adapts SGD to sample from examples in a non-uniform manner based on the current loss
of each example under consideration [52].

e Log-loss

The Log-loss is the Binary cross-entropy up to a factor @. For negative values, this loss function

grows linearly. Logistic regression is a popular algorithm that uses the Log-loss.
e Exponential Loss

The exponential loss is convex and rises exponentially for negative values. As a result, it is more
sensitive to outliers. The AdaBoost algorithm uses this loss. In the context of additive modeling, the
main appeal of exponential loss is its computing efficiency. AdaBoost’s additive expansion estimates
onehalf of the log-odds of P(Y = 1|z). This justifies using its sign as the classification rule [53].

The population minimizer is:

1

P =1l) = e —27@)

(1 .20)

e Hinge Loss

The Hinge loss function was created to fix the SVM algorithm’s hyperplane in classification tasks. The
purpose is to make different penalties at the point where the hyperplane is not precisely predicted or
is too closed[54]. It’s mathematical formula is the following:

Hinge = max(0,1 —y * f(x)) (1.21)
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e Kullback Leibler Divergence Loss

The Kullback—Leibler divergence, Dy L(p||q), is a measure of how one probability distribution q is
different from a second, reference probability distribution p. For discrete probability distributions p
and q defined on the same probability space, X, the KL divergence from q to p is defined [55] to be:

p(z
Dgr(pllg) = ZP ) log( (1’5) (1.22)
zeX
Regression
e Mean Square Error (MSE) — L2

The Mean Squared Error is perhaps the simplest and most common loss function. It takes the difference
between our model’s predictions and the ground truth, squares it, and averages it out across the whole
dataset[56]. It’s mathematically defined as follows:

1 o
MSE = N Z(yz - 9i) (1.23)

i=1
e Mean Absolute Error (MAE) - L1

The Mean Absolute Error differs just slightly from the MSE in terms of definition. It takes the difference
between our model’s predictions and the ground truth, multiplies it by the absolute value, and averages
it across the whole dataset[56]. It’s mathematically defined as follows:

N
1 .
MSE:NZM‘—%\ (1 -24)

1 .4 Performance Evaluation
When analyzing the performance of semantic segmentation, there are two main criteria to consider:
1. accuracy: the success of a method

2. computation complexity: the speed and memory requirements

Accuracy

Measuring segmentation performance might be difficult, due to the fact that there are two different parameters
to track. The first is classification, which simply entails determining pixel-wise class labels. The second is
localization, which entails calculating the correct set of pixels that enclose the object. Some of the most
common principal measures used in evaluating semantic-segmentation performance are the following:

e ROC-AUC

Receiver-Operator Characteristic curve (ROC) summarizes the trade-off between true positive rate and
false-positive rate for different probability thresholds in a predictive model. On the other hand, Area
Under the Curve (AUC) is appropriate when observations are balanced between classes and is beneficial
in evaluating binary classification issues. However, due to the fact that most semantic segmentation
sets [57, 58| are unbalanced between the classes, this metric is no longer used .

e Pixel Accuracy (PA)

Pixel accuracy determines the ratio of correctly categorized pixels to the total number of pixels.It is
mathematically formulated as :

k

> e M
k
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where n;; is the total number of True Positives for class j and t; is the total number of pixels labelled
as class j.

Mean pixel accuracy (mPA), is a version of PA which computes the ratio of correct pixels on a per-class
basis. Its mathematical formula is the following:

k
1 J
mPA = %Z:T (1.26)

IoU

ToU is the ratio of the intersection of the pixel-wise classification results with the ground truth to their
union in semantics segmentation. It is a metric for comparing sample sets’ similarity and diversity. It
is formulated as:

k
M
ToU = . ijl 37

> j—1(nji +n4j +njj)

i (1.27)

where n;; is the total number of True Positives, n;; is the total number of False Positives and n;; is
the total number of False Negatives for class j.

Two widely used extended versions of IoU are:

— mloU : is the class-averaged loU:

k
1 njj
IoU = — — it 1.28
mlo kgﬂ+ i (1.28)

Nij + Njj

— Frequency-weighted IoU (FwloU): weighs each class importance depending on appearance fre-
quency by using ¢; as in Eq. 1 .25. It is formulated as:

FwloU = JiFE g (1.29)
Z] = 1k j Jz; ]njz+nz] +n]j

In general, IoU computes the ratio of true positives to the sum of false positives, false negatives and
true positives. In comparison with PA, IoU is more informative beacuse it takes into account the false
positives, whereas PA does not. Unfortunately, IoU only counts the number of pixels that have been
correctly labeled, not the accuracy of the segmentation boundaries. Lastly, IoU and its variants are
the most commonly used accuracy evaluation metrics in the most popular semantic segmentation tasks

[55]-

Precision-Recall Curve (PRC)-based metrics

Presicion is the ratio of true positives over a summation of true positives and false positives. Recall is
the ratio of true positives over a summation of true positives and false negatives. Precision and Recall
are the two axes of the PRC used to depict the trade-off between precision and recall, under a varying
threshold for the task of binary classification. Their mathematical formula for a given class j is:

Precision = ——=——, i 1.30

o +an j# (1.30)

Recall = —49 4 (1.31)
nji + Ny

Some of the main PRC-based metrics are the following:
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1. F-score: the harmonic mean of the precision and recall for a given threshold. It is formulated as:

Precision x Recall

Freore = 2 X (1.32)

Precision + Recall

2. PRC-AUC: the area under the PRC.

Computational Complexity

Two main criteria are used to evaluate the computation cost: how fast the algorithm completes and how
much computational memory is required.

e Execution time: This is the total processing time, beginning with the introduction of a single picture
to the system/algorithm and ending with the pixel-wise semantic segmentation results. This metric’s
performance is highly dependent on the hardware used. As a result, any execution time metric for an
algorithm should be accompanied with a detailed description of the hardware employed.

e Memory Usage: Memory use is especially critical when using semantic segmentation in low-performance
devices like cellphones and digital cameras, or when the system’s requirements are extremely restrictive.
Military systems or security-critical systems, such as self-driving automobiles, are prime examples.
During the execution of a complex algorithm such as semantic segmentation, the amount of memory
used may change dramatically. As a result, peak memory consumption, which is essentially the amount
of memory required for the complete segmentation procedure for a single picture, is a commonly used
metric for this purpose.

2 Introduction to Semantic Segmentation

There are various methods to understand or interpret the meaning of an image, and they can be divided into
three categories:

e Image-level classification: has no localisation and usually just has one main object to categorize in
an image.

e Object detection: locates foreground objects of interest inside a picture. This entails finding a
bounding box for the entire item and categorizing it at the same time. Object detection is outside the
scope of this thesis since it does not address regressing bounding boxes.

e Semantic segmentation: has more fine-grained localization, with the purpose of classifying individual
pixels and defining the shape of all object classes. Segmentation can also be complicated by the need
to categorize all pixels in an image, including foreground and background. The advantage of employing
pixel-wise segments over bounding boxes is that two segments never overlap, but bounding boxes tend
to overlap to represent the same items in the case of several densely packed or irregularly shaped objects.

Segmentation or detection is frequently the initial stage, in an intelligent system that employs vision to make
critical decisions. For example, in the construction of an autonomous driving automobile, the driving system
would first collect photos of the environment and must then be able to understand the scene quickly and
segment or recognize pedestrians and other objects. The effectiveness of the segmentation of these images
determines the autonomous system’s subsequent decisions, such as driving, turning, or conducting a safety
maneuver. Other applications of segmentation in computer vision include robotics [3], medical image analysis
[4] and surveillance systems.

In this thesis, an RGB color image (H x W x 3) is used as input, and the result is a segmentation map with
each pixel containing a class label expressed as an integer (H x W x 1) as shown in Fig. 2 .1.

Each of the potential classes has its own output channel, which contains one-hot representations of the class
labels. A prediction may be compressed into a segmentation map by obtaining the argmax of each depth-wise
pixel vector, as depicted in Fig. 2 .2.

When the prediction is overlayed onto the observation, a mask lighting the parts of an image belonging to a
given class is generated [5] as illustrated in Fig 2 .3.
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1  Evolution of Semantic Segmentation

One of the most fundamental issues in computer vision is semantic segmentation. Since the advent of digital
images, researchers have been studying this subject. The algorithms have been improving over the years,
progressing from simple image thresholding, that classified pixels into two groups, to deep neural networks,
that performed multi-class segmentation with excellent results.

1.1 Semantic Segmentation Before Deep Neural Networks

Semantic segmentation is the technique of segmenting image with understanding of image in pixel level. In
other terms, it is the study and categorization of each pixel into many classes. Before DNNs, Watershed
method, Image thresholding, K-means clustering, Conditional Random Fields, and more algorithms have
been developed to address this difficult issue.

Image Thresholding

Image thresholding is the most basic and perhaps the oldest technique for image segmentation.This method is
a technique of splitting an image into two (or more) groups of pixels, namely foreground and background. In
order to obtain a thresholded image, the original one is typically transformed to grayscale (as shown in Fig.
1 .1a) and then the thresholding technique is applied (as shown in Fig. 1 .1b). This approach is also known
as Binarization, as the image is transformed to a binary format. In more detail, a pixel’s intensity value
is transformed to 1 (white) if it is less than the threshold value. These pixels are known as object points.
On the other hand, if a pixel’s value is larger than the threshold value, the pixel is set to 0 (black). These
pixels are called background points. The threshold value can be either set by the designer of the method or
automatically.

In 1979, Nobuyuki Otsu [59] devised an algorithm known as Otsu’s technique, which has since become the
most often used method for determining the threshold automatically. The threshold is set by reducing
intra-class intensity variance, or, to put it another way, maximizing intra-class variation. The technique
exhaustively searches for a threshold that minimizes intra-class variance, which is defined as the weighted
sum of the two classes’ variances:

05(t) = wo(t)op (t) + wi(t)oi(t) (1.1)

where wy and w; are the probabilities of two classes separated by the threshold ¢ , and o2 and 0% are variances
of these two classes [60]. The desired threshold T corresponds to the minimum intra-class variance:

T= mtin(ai(t)) (1.2)

Conditional Random Field (CRF)

Random field approaches are a popular way of modeling spatial regularities in images. Their application
range from low-level noise reduction to high-level object or category detection and semi-automatic object
segmentation. The focus of early research was on generative modeling with Markov Random Fields. CRF
models have grown in popularity as a result of their ability to predict segmentation (labeling) immediately
from an observed image. Visual scene interpretation, which tries to divide images into their component
semantic-level areas and give appropriate class labels to each zone, uses CRFs as a useful tool for a range
of data segmentation and labeling tasks. It is vital to capture both the image’s global context and local
information for proper classification [60, 62].

1.2 Semantic Segmentation Using Deep Neural Networks

Deep learning approaches have been a major breakthrough in the field of computer vision, despite numerous
standard image processing techniques. Neural networks set state-of-the-art in all image processing tasks
including semantic segmentation. One of the very early deep convolutional neural networks used for semantic
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Figure 1 .1: Example of thresholding using Otsu’s method. From [(1]

segmentation is FCN. A variety of more advanced FCN-based approaches have been proposed to address this

issue, including SegNet [63], DeconvNet [10] ,U-Net [64], and DeepLab [65, 66]. Afterwards, encoder-decoder
architecture became one of the most successful deep learning semantic segmentation architectures [67]. A
pre-trained classification network, such as VGG [68] or ResNet [69], is commonly used as the encoder. The

decoder is responsible for semantically projecting the encoder’s discriminative features onto the pixel space
in order to get a dense classification of each pixel in the input image.

The previous state-of-the-art approaches used a high-resolution recovery procedure to raise the resolution
of the representation from a low-resolution representation produced by a classification or classification-like
network as shown in Figure 1 .2. J. Wang in [6] proposed HRNet, a novel architecture which is able to
maintain high-resolution representations through the whole process. HRNet starts from a high-resolution
convolution stream, gradually add high-to-low resolution convolution streams one by one, and connect the
multi-resolution streams in parallel, as shown in Fig. 2 .12.

=)

Figure 1 .2: The structure of recovering high resolution from low resolution. (a) A low-resolution
representation learning subnetwork (such as VGGNet [68], ResNet [69]), which is formed by connecting
high-to-low convolutions in series. (b) A high-resolution representation recovering subnetwork, which is
formed by connecting low-to-high convolutions in series. Representative examples include SegNet [63],

DeconvNet [10], U-Net [64], encoder-decoder [67]. From [0]
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2  Some popular state-of-the-art semantic segmentation models

In this section, we’ll go through the architectural details of some state-of-the-art CNN-based semantic seg-
mentation models. The models are divided into categories based on the most important attribute. We
briefly examined the advantages and disadvantages of each model category at the end of each categorization
discussion.

2 .1 Based on Fully Convolutional Network
Fully Convolutional Network (FCN)

Fully Convolutional Network for Semantic Segmentation [70] was the first model that re-architects and fine-
tunes classification networks to direct dense prediction of semantic segmentation. Three deep convolutional
neural networks were taken into consideration. AlexNet [71], VGGNet [68] and GoogleNet[72](all three

pre-trained on ILSVRC [73] data) were used as base models. Long et al. transferred these models from
classifiers to dense FCN by removing fully connected layers with 1x1 convolutional layers and append a 1 x
1 convolution with channel dimension 21 to predict scores for each of the 20 PASCAL VOC [74] classes and
background class.

For each of the networks, fine-tuning from classification to segmentation resulted in realistic predictions.
The authors have experienced among FCN-AlexNet, FCN-VGG16 and FCN-GoogLeNet, FCN-VGG16. The
segmentation equipped VGG16 (FCN-VGG16) appeared to be state-of-the-art at 52.6 mean IoU performance
on the PASCAL VOC 2011 test set. Training on extra data even raised the performance to 59.4 mean IoU.

While fully convolutional classifiers may be fine-tuned to segmentation with even high scores on standard
metrics, their output is too coarse. The 32 pixel stride at final prediction layer restricts the scale of the
detail in the output. In order to address this issue, the authors used bilinear interpolation to upsample the
coarse output 32x to make it pixel dense. However, fine-grained segmentation required more than just an
upsampling. As a result, they have used skip connection to combine the last prediction layer with VGG16’s
feature-rich lower layers. Different combinations including FCN-16s and FCN-8s and FCN-32s as depicted in
Figure 2 .1 were used. Among them, FCN-8s improves the final performance of the net to 62.7% mean IoU
on the VOC2011 test set and 62.2% on the VOC2012 test set, [74] setting the state-of-the-art.Lastly, FCN-16s
gave the best result on both NYUDv2 [75] & SIFT Flow [70] datasets.

The base model VGG16, bipolar interpolation technique for up-sampling the final feature map, skip connec-
tion for combining low layer and high layer features in the final layer for fine-grained semantic segmentation
are all major changes in FCN that helped the model achieve state-of-the-art results.

FCN has used only local information for semantic segmentation. However, only local information makes
semantic segmentation quite ambiguous as it looses global semantic context of the image. In order to reduce
ambiguity, contextual information from the whole image is very helpful [77].

2 .2 Based on Dilation/Atrous convolution
DilatedNet

Traditional CNN, which is used for classification tasks, loses resolution in its way and it is hence unsuitable
for dense prediction. Yu and Koltun proposed dilated convolution or DilatedNet 78] , a modified version of
traditional CNN that systematically accumulates multi-scale contextual information for enhanced segmenta-
tion without sacrificing resolution. Unlike traditional pyramidal CNN, DilatedNet is a rectangular prism of
convolutional layers. Without any loss of any spatial infromation, it can enable the exponential expansion of
receptive fields as shown in figure 2 .2

Deeplab

Deep Convolutional Neural Networks [79] have been proven to be useful for semantic segmentation when
deployed in a fully convolutional manner .Chen et al. in [30] has brought together methods from DCNN and
probabilistic graphical model. The repetive use of max-pooling and striding at consecutive layers of these
networks, diminishes the spatial resolution of the resultant feature maps by a factor of 32 in each direction
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(a) ()

Figure 2 .2: (a)l-DilatedNet with receptive field 3 x 3, (b) 2-DilatedNet with receptive field 7 x 7 and
(c)4-DilatedNet with receptive field 15 x 15. From [78]

in modern DCNNs [71]. In order to deal with this problem, they employed ’atrous’ algorithm for efficient
dense CNN computation. Atrous convolution is a strong tool for explicitly adjusting the filter’s field-of-view
as well as controlling the resolution of feature responses generated by DCNNs. To handle the problem of
segmenting objects at multiple scales, designed modules, that use atrous convolution in cascade or in parallel
to capture multi-scale context, used multiple atrous rates [$0]. An example of atrous convolution with kernel
size 3 x 3 and different rates is depicted in Fig 2 .3

Conv Conv Conv
kernel: 3x3 kernel: 3x3 kernel: 3x3

rate: 1 rate: 6 rate: 24
rate = 24
~salil—

_ rate = 6 )
rate = 1 <
-

HH -

|
Feature map Feature map Feature map

Figure 2 .3: Atrous convolution with kernel size 3 x 3 and different rates. Standard convolution
corresponds to atrous convolution with rate = 1. Employing large value of atrous rate enlarges the model’s
field-of-view, enabling object encoding at multiple scales. From [30]

The main advantage of a dilation-based model is that it preserves the image’s spatial resolution, allow-
ing for dense prediction. However, dilation convolution separates pixels from their global context, making
misclassification more possible to occur.

2 .3 Based on Top-down/Bottom-up approach

DeconvNet

H. Noh et al. [81] proposed a novel semantic segmentation algorithm by learning a deconvolution network.
DeconvNet has a convolutional and deconvolutional network, as shown in Fig 2 .4. The convolution network
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is a feature extractor that converts the input image to multidimensional feature representation. Apart from
the final classification layer, it is topologically identical to the first 13 convolution layers and two fully linked
layers of VGG16 [68]. As far as the deconvolutional network is concerned, it is a shape generator that gen-
erates object segmentation from the convolution network’s feature. It contains multiple series of unpooling,
deconvolution, and rectification layers, and is a mirrored counterpart of the convolution network. Deconvo-
lution networks, in contrast to convolution networks, which lower the size of activations by feed-forwarding,
augment them through a mix of unpooling and deconvolution operations. Following a similar idea proposed
in [82, 83], unpooling is done using max-pooling indices which are stored in the convolutional network during
the convolution process. To densify enlarged but sparse un-pooled feature maps, convolution like operation
is done using multiple learned filters by linking single input activation with multiple outputs. Unlike FCN,
the authors used their network to predict pixel-by-pixel item suggestions taken from the input image.The
results of all suggestions were then pooled and sent back to the original image space for segmentation of the
whole image. This technique handles multi-scale objects in fine detail while simultaneously reducing training
complexity and memory usage. The network’s final output is a probability map with the same size as the
input image, showing the likelihood of each pixel belonging to one of the predefined classes.

224x224 224x224

Deconvolution network
56x56

Unpooling
\\Enpooling
\\\\Linpeoling
~~Unpooling
~

Figure 2 .4: Overall DeconvNet architecture. From [%1]

One of the main drawbacks of DeconvNet is that it has large parameterization, needs more computational
resources and is harder to train end-to-end, primarily due to the use of fully connected layers

U-Net

U-Net [34] is a U-shaped semantic segmentation network which contains a contracting and expanded path as
shown in Fig 2 .5. Two concecutive 3 x 3 convolutions are followed by ReLU nonlinearity and max-pooling
utilizing a 2 x 2 window with stride 2 at each step of the contracting path. Feature information is enhanced
while spatial information is diminished during contraction. On the contrary, every step of the expanding
path consists of up-sampling of feature map followed by a 2 x 2 up-convolution. This decreases the size of
the feature map by a factor of two. The cropped feature map from the contracting path is then concatenated
with the reduced feature map.Then ReLU nonlinearity is added after two consecutive 3 x 3 convolution
operations.

SegNet

SegNet [85] consists of an encoder network and a decoder network, followed by a pixelwise classification
layer, as shown in Fig 2 .6. The encoder network has 13 convolutional layers, which correspond to the first 13
convolutional layers of the VGG16 object classification network [68]. At the deepest encoder output, authors
reject the completely linked layers in favor of preserving higher resolution feature maps. This led to a decrease
of the amount of parameters from 134M to 14.7M. In order to produce a set of feature maps, each encoder
in the encoder network executes convolution with a filter bank. After that, batch normalization and an
element-wise ReLu are applied. Batch normalization is used in order to reduce internal covariate shift. After
max-pooling with a 2 x 2 window and stride 2 (non-overlapping window) is conducted, the resulting output
is then sub-sampled by a factor of two. Sub-sampling produces a large input image context (spatial window)
for each pixel in the feature map. While more layers of max-pooling and sub-sampling can offer greater
translation invariance for robust classification, the feature maps’ spatial resolution suffers and there is lossy
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image representation with blurred boundaries. As a result, before performing sub-sampling, it is important
to capture and store boundary information in the encoder feature maps. Regarding the decoder network,
since each encoder layer has a corresponding decoder layer, the decoder network consists of 13 layers. To
retain the same output image resolution as the input image, SegNet up-samples the resultant high-resolution
sparse feature map in its decoder, using the stored max-pooling indices from the corresponding encoder
feature map. The output of the final decoder is sent into a multi-class soft-max classifier, which generates
class probabilities for each pixel separately.

Convolutional Encoder-Decoder

Output

Pooling Indices

RGB Image I conv + Batch Normalisation + RelLU Segmentation
I Pooling I Upsampling Softmax

Figure 2 .6: SegNet architecture. From [35]

It is worth mentioning that DeconvNet [31] and U-Net [384] are two other models that have a similar archi-
tecture to SegNet, but with notable changes. DeconvNet has a big computational cost in comparison with
SegNet. U-Net does not reuse pooling indices but instead transfers the entire feature map to the correspond-
ing decoders and concatenates them to upsampled (via deconvolution) decoder feature maps. Unlike the
Visual Geometry Group (VGG) net design, in U-Net there are no convd and max-pool five blocks. SegNet,
on the other hand, makes use of all of the VGG net’s pre-trained convolutional layer weights as pre-trained
weights.

Densely Connected Convolutional Network (DenseNet)

DenseNets [36, 87] have demonstrated outstanding performance on image classification tasks. The main
idea behind DenseNets is that if each layer is directly linked to every other layer in a feed-forward way,
the network will be more accurate and easier to train. DenseNets are made up of dense blocks and pooling
layers, with each dense block consisting of an iterative concatenation of previously created feature maps.
Moreover, a transition down is introduced to reduce the spatial dimensionality of the feature maps. In this
transformation, a 1x1 convolution, which conserves the number of feature maps, is followed by a 2 x 2
pooling operation. This architecture can be viewed as a development of Residual Neural Networks (ResNets)
[88], which performs iterative summing of previously generated feature maps. However, this minor change
has some intresting implications:

e parameter efficiency
e implicit deep supervision
e feature reuse

DenseNets are an excellent choice for semantic segmentation since they inherently induce skip connections
and multi-scale supervision.

FC-DenseNet

S. Jégou et al. [39] extended DenseNets to deal with the problem of semantic segmentation. They replaced
the convolution technique with a dense block and upsampling operation, known as transition up. Transition
up modules consist of a transposed convolution that upsamples the previous feature maps. The input of a
new dense block is formed by concatenating the upsampled feature maps with the ones arriving from the skip
connection. Skip connections are shown as yellow circles in Fig 2 .7 . The linear expansion in the number of
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features would be excessively memory intensive, especially for the full resolution features in the pre-softmax
layer, because the upsampling approach increases the feature maps spatial resolution.

In order to overcome this limitation, the input and output of a dense block are not concatenated. As a
result, the transposed convolution is only applied to the feature maps produced by the final dense block,
rather than all feature maps concatenated thus far. The last dense block at the same resolution summarizes
the information included in all preceding dense blocks. Due to the pooling layers, some information from
earlier dense blocks is lost in the transition down.However, this information is available in the network’s
downsampling path and may be passed via skip connections. As a result, all of the available feature maps
at a given resolution are used to compute the dense blocks of the upsampling path. The architecture of

FC-DenseNet is shown in Fig 2 .7
> C
c

[ Dense Block B Convolution
[ Transition Down B Tronsition Up
---» Skip Connection Concatenation

Figure 2 .7: FC-DenseNet architecture. From [39]

Without using any additional post-processing modules or pretraining, FC-DenseNet achieved state-of-the-art
performance on urban scene benchmark datasets like CamVid and Gatech. Furthermore, thanks to clever
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model development, the proposed technique has many less parameters than the already reported best entry
for these datasets.

2 .4 Based on receptive field enlargement and multi-scale context incorporation
DeepLabv2

DeepLabv2 [18] was suggested by the authors of DeepLab, who upgraded their network utilizing ASPP to
capture multiscale objects and context . In this proposed technique we have parallel dilated convolutions
with different rates applied in the input feature map, which are then fused together. ASPP helps to account
for varying object sizes in the picture since objects of the same class might have varied sizes in the image.
Object identification [90], [91], instance-level segmentation , visual question answering [92], and optical flow
[93] are all examples of problems where the atrous convolution approach has been used. Both ResNet [69]
and VGG Network [68] were used as base network in this architecture.

DeepLabv3

DeepLabv3 [30] is a semantic segmentation architecture that has numerous improvements over DeepLabv2.
Modules that apply atrous convolution in cascade or in parallel to capture multi-scale context by adopting
several atrous rates are meant to solve the challenge of segmenting objects at multiple scales. In addition,
DeepLabv2’s ASPP module was enhanced with image-level features that encode global context and improve
efficiency. The authors modify the ASPP module by applying global average pooling to the model’s final
feature map, feeding the image-level features to a 1 x 1 convolution with 256 filters (with batch normalization),
and then bilinearly upsampling the feature to the appropriate spatial dimension. The architecture of ASPP
is depicted in Fig 2 .8 .

(a) Atrous Spatial
Pyramid Pooling
L] 1x1 Conv

Convl rate=2 3x3 Conv Concat
+ rate=6 +
_.Pooll Blockl Block2 Block3 Blockd "7 axaconv | 1x1 Conv
> > > — e rate=12 —_—
o
- 3x3 Conv
output 8 B O a

lmage stri?ie 4 8 16 16 i rate=18 16

(b) Image Pooling

O

Figure 2 .8: Parallel modules with ASPP, augmented with image-level features. From [30]

PSPNet

PSPNet [12] is a semantic segmentation model that employs a pyramid parsing module to exploit global
context information through different-region based context aggregation. The combination of local and global
cues improves the final prediction’s accuracy. PSPNet extracts the feature map from an input image using a
pretrained CNN with the dilated network technique. The input image size determines the final feature map
size. The authors utilize the pyramid pooling module to aggregate context information on top of the map.
The pooling kernels cover the entire, half of, and tiny sections of the image using the 4-level pyramid. They
are fused as the global prior. Then, in the last part, there is a combination of the previous with the original
feature map. After that, a convolution layer is used to create the final prediction map. The architecture of
PSPNet is illustrated in Fig 2 .9.

Gated-Shape CNN (GSCNN)

Takikawa et al. proposed GSCNN [91], a 2-stream CNN i.e. one stream is normal CNN (regular stream)
while the other is a shape stream, which explicitly processes shape information in a separate stream. The
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Figure 2 .9: Overview of proposed PSPNet. From [12]

architecture of this model is shown in Fig 2 .10. Regular stream maybe any feedforward fully convolutional
network like ResNet [69] or VGG Network [68] based segmentation network. The Shape Stream takes image
gradients as well as output of the first convolutional layer of the Regular Stream as input and outputs
semantic boundaries. The network architecture is composed of a few residual blocks interleaved with Gated
Convolutional Layers (GCLs). This GCL guarantees that the shape stream only processes boundary-relevant
information. GT boundary edges (from GT segmentation masks) are used to supervise the shape stream
using binary cross entropy loss on output boundaries. As far as the Fusion Module is concerned, it takes
as input the dense feature representation from Regular Stream and fuses it with boundary map from Shape
Stream in a way that multi-scale contextual information is preserved.

Regular Stream
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Figure 2 .10: Overview of proposed PSPNet. From [12]
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Shape Stream

SwiftNet

Orsi¢ et. al. proposed SwiftNet [95], a brand-new method of semantic segmentation built on shared pyramidal
representation and the fusion of several characteristics along the upsampling process. Due to the potent
regularization effects induced by feature sharing throughout the resolution pyramid, the proposed pyramidal
fusion strategy is particularly successful for dense inference in pictures with high scale variance. Interpretation
of the decision process suggests that their approach succeeds by acting as a huge ensemble of relatively simple
models, as well as due to large receptive range and strong gradient flow towards early layers.The architecture
of this model is depicted in Fig. 2 .11. This model achieves state-of-the-art results (82.82%) on ACDC
dataset.

HRNet

HRNet [0] is a general-purpose convolutional neural network that can be used to perform tasks such as
semantic segmentation, object detection, and image classification. It can keep high-resolution representations
throughout the whole process. Many of the more recent works on semantic segmentation use HRNet as the
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Figure 2 .11: Overview of proposed SwiftNet. The proposed multi-scale architecture has shared encoders
and pyramidal fusion. From [95]
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backbone by exploiting contextual models, such as self-attention and its extensions. Starting with a high-
resolution convolution stream, we add high-to-low resolution convolution streams one by one before connecting
the multi-resolution streams in parallel. The resultant network has numerous (4 in [6]) phases, the last of
which comprises streams that match to resolutions. The authors perform several multi-resolution fusions by
repeatedly sharing data across parallel streams.

We will analyze the HRNet architecture in more detail. Initially, we feed the image through a stem, which

consists of two stride 2 3 x 3 convolutions that reduce the resolution to T and then the main body, which

1
returns the same resolution (1) representation .The main body of HRNet is illustrated in Fig. 2 .12.

3
channel con., \llt |/‘ |/‘ |/‘ |I‘\e:\$|/‘ |/‘ |/‘ |I‘ Ilf\%s'v
)z -z 9P
\ 22?136(1 /" upsample ‘\ o .'u/,A\\-

Figure 2 .12: Tllustrating the HRNet architecture. From [6]

It consists of the following components:
e Parallel multi-resolution convolutions

Regarding to parallel multi-resolution convolutions, we start with a high-resolution convolution stream,
then add high-to-low resolution streams one by one, forming additional stages, and finally connecting
the multi-resolution streams in parallel. As a result, the resolutions for parallel streams of a later stage
are made up of the preceding stage’s resolutions plus an extra lower one.

e Repeated multi-resolution fusions

The fusion module’s goal is to share information amongst multi-resolution representations. It is re-
peated several times (e.g., every 4 residual units). We will analyze an example of fusing 3-resolution
representations, as depicted in Fig. 2 .13. The input consists of three representations: R!,r = 1,2,3,
with r is the resolution index, and the associated output representations are R2,r = 1,2,3. The trans-
form function f,,(-) is chosen in accordance with the input resolution index x and the output resolution
index r. We have the following cases:

—Ifz=r fur(R)=R
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— Ifz <7, fur(R) uses (r — s) stride-2 3 x 3 convolutions to downsample the input representation R

— If > r, fur(R) upsamples the input representation R using bilinear upsampling and a 1 x 1
convolution to align the number of channels.

Each output representation is defined as the sum of the transformed representations of the three inputs:
R;z = ferzl + f27‘R12 + f3rR§

channel
maps
strided
3 =3
ﬁil up samp.
11

Figure 2 .13: Hlustrating how the fusion module aggregates the information for high, medium and low
resolutions from left to right, respectively. From [0]

¢ Representation head
As far as the representation head is concerned, there are three kinds illustrated in Fig. 2 .14:

— HRNetV1. Only the high-resolution stream is represented in the output, whereas the other three
low representations are ignored.

— HRNetV2. A bilinear upsampling to rescale the low-resolution representations to high resolution
without affecting the number of channels is used. Then, there is a concatenation of the four
representations before mixing them with a 1 x 1 convolution.

— HRNetV2p. Multi-level representations are constructed by downsampling the high-resolution
representation output from HRNetV2 to multiple levels.

For the task of semantic segmentation, HRNetV2 is used.

T e S e

(a) HRNetV1 (b) HRNetV2 (c) HRNetV2p

Figure 2 .14: Representation heads

2 .5 Based on Transformers

Segmentation Transformer: Object-Contextual Representations (OCR) for Semantic Segmen-
tation

Motivated by the fact that the label of a pixel is the category of the object to which the pixel belongs, Yuan
et. al. in [9] provide an effective method for characterizing a pixel by utilizing the representation of the
appropriate object class. This method is known as OCR. Under the guidance of the segmentation of the
ground truth, they first learn object areas computed from a deep network such as HRNet [6] . Second, they
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calculate the representation of the object region by combining the representations of the pixels that make
up the object region. Then, after computing the relationship between each pixel and each object region,
they add the object-contextual representation, which is a weighted aggregate of all the representations of the
object regions, to each pixel’s representation. The illustration of the OCR pipeline is shown in 2 .15

Pixel Representations Pixel-Region Relation

I @
| Object Contextual Representations
—— —— 00—

Soft Object Regions Object Region Representations

Backbone :
i Loss |

Figure 2 .15: Illustrating the pipeline of OCR. From [9]

Rephrasing the OCR pipeline shown in Fig. 2 .15 using the Transformer encoder-decoder architecture, we
have the following architecture in Fig. 2 .16. This architecture is known as Segmentation Transformer.

Vision Transformer (ViT)

Dosovitskiy et. al. proposed ViT [96], a model for classifying images using patches of the picture, having
a Transformer-like design. A sequence of vectors is created by dividing a picture into fixed-size patches,
linearly embedding each one, adding position embeddings, and then feeding the assembled vectors to a
conventional Transformer encoder. The traditional method of performing classification involves including an
extra learnable "classification token" in the sequence. An illustration of ViT is shown below in Fig. 2 .17

Lawin Transformer

Yan et. al. introduced Lawin Transformer [97]. In particular, by using a window attention method, they
successfully include multi-scale representations into the semantic segmentation ViT, substantially enhancing
its effectiveness and performance. In order to do this, they provide big window attention, which enables the
local window to query a wider region of the context window with a negligible processing overhead. Moreover,
they enable the big window attention to catch the contextual information at various sizes, by controlling the
ratio of the context area to the query area. Additionally, spatial pyramid pooling is used in conjunction with
large window attention. Likewise, this resulted in a novel decoder for semantic segmentation called large
window attention spatial pyramid pooling (LawinASPP).Fig. 2 .18 depicts the difference between ASPP
and LawinASPP. Atrous convolution in ASPP collects representations at several scales using various dilation
rates. In contrast, LawinASPP substitutes the suggested big window attention for atrous convolution. The
query area is represented by the red window. The context region is represented by the yellow, orange, and
purple windows, which have various spatial sizes.

The final ViT, the Lawin Transformer, consists of a LawinASPP as the decoder and an effective hierachical
vision transformer (HVT) as the encoder. The image is pass into the encoder part, which is usually a MiT
(encoder of SegFormer [98]). The LawinASPP-based decoder part is then fed with the features from the
last three stages. Finally, the first-stage feature of the encoder enhances the output feature using low-level
data. The term "MLP" stands for multi-layer perceptron, ’‘CAT’ stands for combining the features. The
word "Lawin" stands for wide-window focus, "R" stands for the context patch size to query patch size ratio.
It achieves new state-of-the-art performance on Cityscapes (84.4 % mlIoU), ADE20K [99] (56.2% mIoU) and
COCO-Stuff datasets. Its architecture is shown below in Fig. 2 .19.

Vision Transformer Adapter (ViT-Adapter)

ViT performs poorly on dense prediction problems because it lacks prior knowledge of the images, in contrast
to recent visual transformers that include vision-specific inductive biases into their models. To address this
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Figure 2 .18: Illustrating the ViT architecture. From [96].
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problem, Chen et. al. suggest a Vision Transformer Adapter (ViT-Adapter) [34], which, by incorporating
inductive biases via an extra design, may correct the shortcomings of ViT and attain performance equivalent
to vision-specific models. Their framework’s main component is a simple transformer that can be pre-trained
using multimodal data. A modality-specific adapter is used to transfer the data and previous knowledge
of the tasks into the model during fine-tuning on downstream tasks, making the model appropriate for
these activities. ViT-Adapter is evaluated on a variety of downstream tasks, such as semantic segmentation,
instance segmentation, and object detection. Regarding the task of semantic segmentation, it achieves new
state-of-the-art results on Cityscapes (85.2% mloU) and on ADE20K val (60.5 % mIoU)

- , (a) Vision Transformer (ViT) (
@ Position Embedding i Det
@ Element-wise Add Patch
. Block 1 Block 2 Block N
Embedding | Y [ Y l | N l | XY
Seg

9 i .
Yi ® Prigrpl?/fé)acliule Injector 1 Extractor 1 Injector 2 Extractor 2|--»Injector N Extractor N

(b) ViT-Adapter e .

Tsig-l
vad
Flatten & Concat
i 7 i
(00000+-000}—
(c) Spatial Prior Module (d) Spatial Feature Injector i (e) Multi-Scale Feature Extractor i

Figure 2 .20: Overall architecture of ViT-Adapter. (a) The ViT, whose encoder layers are divided into N
equal blocks for feature interaction; (b) ViT-Adapter, which contains three key components; (c) The spatial
prior module, which is used to model local spatial contexts from the input image; (d) The spatial feature
injector for incorporating image prior into the ViT; (e) The multi-scale feature extractor for reconstructing
fine-grained multi-scale features from the single-scale features of ViT. From [34].

2 .6 Comparison

To give a clear view on the performance of each model, Table 3.1 depicts the comparison results of several
state-of-the-art semantic segmentation models on various datasets. The models are presented in chronological
order. The performance metric is mloU. We can observe that ViT-Adapter achieves state-of-the-art results
on both Cityscapes and ADE20K dataset. In this thesis, we are going to use HRNetV2 for the implementation
of our method.

I'When model is learned on the train set it achieves 80.4%, whereas when it is learned on the train-+val set it achieves 81.6%
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Model Year Dataset mloU
FON-VGG16 [70] 2014 Pascal VOC 2012 [100] 62.2%
DeepLab 2014 Pascal VOC 2012 [100] 71.6%
DeconvNet [40] 2015 Pascal VOC 2012 [100] 72.5%
ISBI cell tracking challenge 2015

PhC-U373 92%

U-Net [2] 2015 DIC-HeLa 77.5%
DilatedNet [78] 2016 Pascal VOC 2012 [100] 73.9%
CamVid road scene segmentation [I01] 60.1%
SegNet [35] 2016 | SUN RGB-D indoor scene segmentation [102] | 31.84%
PASCAL VOC 2012 [100] 85.4%

PSPNet [12] 2017 Cityscapes [7] 80.2%
CamVid road scene segmentation [101] 66.9%

FC-DenseNet103 [39] 2017 Gatech [103] 79.4%
GSCNN [91] 2019 Cityscapes [7] 82.8%
Cityscapes [7] 81.6%!

PASCAL-Context [3] 54.0%
HRNetV?2 [0] 2020 ACDC [11] 75.0 %
Cityscapes [7] 84.5%

HRNetV2+OCR+ [9] | 2020 PASCAL-Context [] 56.2%
Cityscapes [7] 84.4%

Lawin Transformer [97] | 2022 ADE20K [99] 56.2%
Cityscapes [1] 85.2%

ViT-Adapter [34] 2022 ADE20K [99] 60.5%
SwiftNet [07)] 2022 ACDC[1] 82.82%

Table 3.1: Comparation results of different semantic segmentation models in terms of mIoU.
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Chapter 4. The Proposed Method: Offset Vector - Based Model

1 Main Idea

In this section, we will introduce a new approach for improving semantic predictions. Based on knowledge
about the high regularity of real scenes, we propose a method for improving class predictions by learning to
selectively exploit information from coplanar pixels. In particular, based on the piece planarity prior from
[10], we introduce a Lemma which claims that for each pixel, there is a seed pixel which shares the same
prediction with the former. As a result, we design a network with two heads. A similar approach was used
for the task of depth estimation on [10]

The new method is applied to HRNetV2 [6]. We employ the main body from HRNet (as depicted in Fig. 2
.12), but we avoid explicitly predicting classes. Instead, we use it as a suitable output for defining interactions
between pixels based on planarity priors. In particular, the first head of the network outputs four-resolution
representations, which are then concatenated as shown in Fig 2 .14b. Then this combined high-resolution
representation is used as input to the last layer, which outputs pixel-level logits. Afterwards, these logits are
converted to classes. Predicting logits is driven by the fact that two pixels p and q in the same class have
ideally similar logit representations. If the pixels belong to the same class, applying the plane coefficient
representation of q for estimating class at the point of p results in a valid prediction.

We leverage this property by learning to identify seed pixels which belong to the same class as the inspected
pixel, whenever they exist, in order to selectively use the logits of these pixels for improving the predicted
class. This idea is motivated by a piecewise planarity prior [10], which claims that for every pixel p with an
associated 3D plane, there exists a seed pixel q in the neighborhood of p which is also associated with the
same plane as p. Based on this prior, it is straightforward that for each pixel, there is a seed pixel which
shares the same prediction with the former. In order to predict classes with this scheme, we need to find the
regions where the prior is valid. Furthermore, in order to point out the seed pixels in these regions, we must
predict the offset vector o(p) = q — p for each pixel p. To account for possible deviations from precise local
planarity, the resultant prediction is adaptively fused with the initial prediction from the first head using a
learnt confidence map. As a result, we design a second head that generates a dense offset vector field and a
confidence map. Thus, we have an offset vector-based HRNetV2. This idea will be implemented in different
parts of HRNetV2 as shown in Fig. 1 .1. We see the main body of the network in Fig. 1 .1 , where the
branch occurs in the second (Fig. 1 .1a), in the third(Fig. 1 .1b) or in the fourth (Fig. 1 .1c) stage of the
network respectively. It is notable that the two heads don’t share their weights.

Our network estimates classes by selectively combining predictions from each pixel and its corresponding
seed pixel. The predicted offsets are utilized to resample the predictions from the first head and generate a
second class prediction at seed location. The class predictions from the two heads are then fused adaptively
using the confidence map as fusion weights. Finally, it is worth mentioning that, by supervising the fused
class prediction, supervision on the offsets and confidence map is applied implicitly. An overview of this
architecture is depicted in Fig. 1 .2

We will evaluate our method on 2 datasets for supervised semantic segmentation :
e Cityscapes [7]

e ACDC [11]

2  Seed Pixel Identification

Let us assume we have one pixel p which belongs to segment of a semantically segmented image. By definition,
every other pixel on this segment has the same class value. Thus, ideally, in order to get all of the class values
accurate, the network only has to predict the class at one of these pixels, q. This pixel can be interpreted
as the seed pixel that describes the segment-class. Finally, we let the network find this seed pixel and the
corresponding region.

This idea is based on Piecewise Planarity Prior from [10]. We define the following Lemma:
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Figure 1 .1: Offset vector-based HRNetV2
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Figure 1 .2: An overview of our full method. Offset vector-based HRNetV2, whose architecture is
shown in Fig. 1 .1, consists of two output heads. The first head outputs pixel-level Logits (C), while the
second head outputs a dense offset vector field (o) identifying positions of seed pixels along with a
confidence map (F). Then, the coeflicients of seed pixels are used to predict classes at each position. The
resulting prediction (Ss) is adaptively fused with the initial prediction (.S;) using the confidence map F' to
compute the final prediction Sy

Adaptive
Fusion

Lemma 2 .1

For every pixel p with an associated 2D segmantically segmented image, there exists a seed pixel q
in the neighborhood of p which shares the same prediction with the former.

In general, there may be numerous seed pixels for p or none at all. Given that the Lemma holds, semantic
segmentation task for p can be solved by identifying q. For this reason, we let our network predict the offset
vector o(p) = q — p. Thus, we design our model so that it features a second, offset head and let this offset
head predict a dense offset vector field o(u, v). In all of the model versions, the two heads of the network
share a common main body and then they follow different paths. We resample the initial logits C;, being
predicted by the first head, using the estimated offset vector field via:

Cs(p) = Ci(p+o(p)) (2.1)

To manage fractional offsets, bilinear interpolation is used. The resampled logits are then used to compute
a second semantic segmentation prediction:

Ss(u,v) = h(Cs(u,v),u,v) = Ss(p) = Si(p+ o(p)) (2.2)
based on the seed locations. In our experiment, h = softmax.

Due to the fact that the prior is not always correct, the initial semantic prediction S; may be preferred to
the seed-based prediction S;. To account for such cases, the second head additionally predicts a confidence
map F(u,v)el0, 1], which represents the model’s confidence in adopting the predicted seed pixels for semantic
segmentation via S;. By adaptively merging S; and S, the confidence map is used to compute the final
prediction:

Sp(p) = (1= F(p))Si(p) + F(p)Ss(p) (2.3)
We apply supervision to each of Sy, S,, and S; in our model, by optimizing the following loss:
Lsemantic(p) = L(Sy, H) + kL(Ss, H) + A\L(S;, H) (2 4)

with k and A being hyperparameters and H denotes the GT train ids of each class for each pixel. In this way,
we encourage the Initial HRNetV2 head to output an accurate representation across all pixels, even when
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they have a high confidence value, and the offset vector head to learn high confidence values for pixels for
which the Lemma 2 holds and low confidence values for pixels for which the Lemma 2 does not.

This formulation, however, comes with a drawback. The model is not supervised directly on the offsets. In
fact, it could just predict zero offsets everywhere and yet give valid S; and S predictions that are equal to S;.
Since the initial predictions S; are erroneously smoothed around semantic boundaries due to the regularity of
the mapping fy in the case of neural networks, this undesirable behavior is avoided in practice. As a result,
predicting a non-zero offset that points away from the boundary provides a lower value for Lgemantic for pixels
on either side of the boundary. This happens due to the fact that such an offset utilizes a seed pixel for S,
that is further away from the border and suffers from reduced inaccuracy due to smoothing. These non-zero
offsets are also transmitted from the boundaries to the inner sections of areas with smooth segments, helping

the network in predicting non-trivial offsets due to the regularity of the mapping that forms the offset vector
field.

Lastly, before resampling the logit maps, we cascade the offset vectors numerous times. The idea for this
cascaded refinement is based on the fact that seed pixels within the same segment should converge to the
segment’s center, which aids in the accumulation of information from additional pixels in predicting the
segment’s class. Cascading the offsets does not harm the related class prediction since pixels without a
trustworthy seed pixel are already assigned a low confidence value.

3 Confidence Loss

Our confidence loss is based on the concept that given a pixel coordinate, its surrounding pixels should be
in the same segment. For each pixel p, we define the confidence loss as follows:

L) = =L np)=H(p)+o(p)] 108 F(P) = Lin(p)£H (p)+o(p) 108(1 — F(p)) (3.1)

This idea is motivated by the fact that confidence should have large value ,for those pixels whose offset
vector points to seed pixels with the same class. Similarly, confidence should have small value ,for those
pixels whose offset vector points to seed pixels with different class. When the initial pixel p and the seed
pixel q belong to different classes, then the first term is deactivated and the second one is activated. In this
case, we want this seed pixel to have low confidence. This idea is reflected by log(l — F'), because when
F—-0= (1-F)—1 = —log(l1-F)—=0" = L; — 0". Similarly, when F -1 = L; — +oc.
Accordingly to the first case, when p and q belong to the same class, then the second term deactivates. In
this case, we want this seed pixel to have high confidence. When F' — 0 = log(F) — —oc0 = L; — +o0.
Similarly, when ¥ —1 = Ly — 0.

To sum up, the complete loss is:

['final = £semantic + Ef (3 2)

4  Network Architecture

The proposed network consists of the following components:

e Main Body before the branching: Our networks structure before the two-way branching is identical
to the HRNet [0]

e After branching: Offset Vector- based HRNetV2 consists of two output heads. Each head of our
network follows the same structure with HRNetV2. The first head outputs pixel-level logits (C), while
the second head outputs a dense offset vector field (o) identifying positions of seed pixels along with a
confidence map (F). Then, the coefficients of seed pixels are used to predict classes at each position.
The resulting prediction (S;) is adaptively fused with the initial prediction (S;) using the confidence
map to compute the final prediction Sy.
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e Initial HRNetV2 Head : As in HRNetV2 [(], the last layer of the first head output 19-channels
(19 x H x W), e.g one for each class. This is due to the fact that both Cityscapes and ACDC have 19
classes.

e Offset Vector field Head: The final layer of this head has been modified to output three channels
(3 x H x W), two for the offset vector field and one for the confidence. Tanh layers restrict the offset
vector field, which means that offset vector values belong to [-1,1]. A sigmoid layer is applied to the
confidence map.
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Chapter 5. Experimental Results

1 Dataset

In this section, we present the datasets used to evaluate our offset vector-based model. The main datasets
used for training and testing are the following :

e Cityscapes [7]
e ACDC [11]

1.1 Cityscapes

The Cityscapes dataset [7] is a challenging dataset, tasked for urban scene understanding. It includes seman-
tic, instance-wise, and dense pixel annotations for 30 classes divided into eight groups (flat surfaces, humans,
vehicles, constructions, objects, nature, sky, and void). From these 30 classes only 19 classes are used for
parsing evaluation. Around 5000 high quality pixel-level finely annotated images and 20000 coarsely anno-
tated images make up the collection. During multiple months, daytimes, and ideal weather circumstances,
data was collected in 50 cities. The finely annotated 5000 images are divided into 2.975, 500, 1.525 images
for training, validation and testing respectively. It was initially shot as video, therefore the frames were
hand-picked to include a high number of dynamic elements, a changing set arrangement, and a changing
background.

1.2 Adverse Conditions Dataset with Correspondences (ACDC)

The ACDC dataset [11] is a demanding dataset, used for training and testing semantic segmentation methods
on adverse visual conditions. It consists of a big collection of 4006 images divided evenly between four fre-
quent unfavorable conditions: fog, dark, rain, and snow. A high-quality fine pixel-level semantic annotation,
a corresponding image of the same scene obtained under normal conditions, and a binary mask that dis-
tinguishes between intra-image regions of clear and ambiguous semantic information are included with each
adverse-condition image. As a result, ACDC can do both basic semantic segmentation and uncertainty-aware
semantic segmentation. It directly inherits the class definitions from Cityscapes. It consists of 19 semantic
classes, coinciding exactly with the evaluation classes of the Cityscapes dataset. Detailed annotation per
class statistics are presented in Fig 1 .1. Classes outside of this set of objects are represented by a fall-back
label, and they are not utilized in training or testing . ACDC is manually split into four sets corresponding
to the examined conditions: 1000 foggy, 1006 nighttime, 1000 rainy and 1000 snowy images. Fach set of
each adverse condition is split into 400 training, 100 validation and 500 test images, except the nighttime set
with 106 validation images. This results in a total of 1600 training and 406 validation images with public
annotations and 2000 test images with annotations withheld for benchmarking purposes [11]. There are two
final annotation outputs are twofold:

e the final semantic annotation

e a binary invalid mask, which enables the new task of uncertainty-aware semantic segmentation
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flat construction nature vehicle sky object human

Figure 1 .1: Number of finely annotated pixels per class in ACDC. From [11]
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2  Evaluation Metrics

The mean of class-wise intersection over union (mloU) is adopted as the evaluation metric. In addition to the
mean of class-wise intersection over union (mloU), we report other three scores on the test set: IoU category
(cat.), iloU class (cla.) and iloU category (cat.)

3 Implementation Details

All versions of our network consist of two heads. The first head outputs 19 channels, one for each class.
The second head outputs three channels: one for each coordinate of the offset vectors and one for confidence.
These two heads follow the structure of HRNetV2. Both our Offset Vector - Based HRNetV2 and the Baseline
HRNetV2 are initialized with pre-trained ImageNet [71] weights. This initialization is important to achieve
competitive results as in [6]. In some extra experiments, we follow another approach by freezing, during the
whole training process, both main body’s and initial head’s weights. Depending on which dataset we use,
the freezed part of our model is initialized with the corresponding Baseline’s final pre-trained weights. The
only part that will be trained is the second head, which is initialized with pre-trained ImageNet weights. As
indicated in Table 5.1, in Table 5.2, as well as in Table 5.3 our current design has four phases (excluding the
conventional stem and head). Modularized blocks are repeated 1, 1, 4, and 3 times for each of the four levels
of the Initial Head, accordingly. On the other hand, extra heads’ modularized blocks are repeated 1,3 and 2
times for each of the last three levels of the Offset Vector Head, since memory problems occured. The extra
head imitates the structure of the corresponding stages. For the first, second, third, and fourth phase, the
modularized block has 1 (2, 3, and 4) branches. Each branch has a varied resolution and is made up of one
multi-resolution fusion unit and four residual units. To be clear, Figure 2 .13 might be used to understand
the fusion unit (after each modulized block), which is not shown in the tables. Each cell in the table has
three parts:

e the residual unit ([])
e the repetition times of the residual units (second number)
e the repetition times of the modualized blocks (final number)

The main body’s architecture of the 1% Version Offset Vector Based HRNet is depicted below in Fig. 5.1:
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Version 1
Heads | Resolution Stage 1 Stage 2 Stage 3 Stage 4
1x1, 64,
3x3, C, 3x3, C, 3x3, C,
4 x 3x3,64,| x4x1 x4 x 1 x4 x 4 x4 x 3
3x3, C 3x3, C 3x3, C
1x1, 256
3% 3, 20, 33, 20, (33, 20,
8x x4 x 1 x4 x 4 x4 x 3
3% 3, 20 3% 3, 2C 3% 3, 2C
[3 %3, 4] (33, 40,
16x x4 x 4 x4 x 3
- 3 x 3, 4C 3 x 3, 4C
g - - - -
2 3 x 3, 8C,
g 32 x4 x 3
= 3 x 3, 8C
jasi L J
3x3, C, 3x3, C, 3x3, C,
4x x4 x 1 x4 x 3 x4 x 2
3x3,C 3x3,C 3x3, C
3% 3, 20, [3 %3, 20 [3 %3, 20,
8x x4 x 1 x4 x 3 x4 X 2
3x3,2C 3x3,2C 3x3,2C
3 - _ - -
o 3 x 3, 4C, 3% 3, 4C,
o] 16 x x4 x 3 x4 x 2
ke 3% 3, 4C 3% 3, 4C
: - - - :
g 3 x 3, 8C,
2 32X x4 x 2
& 3x3, 8C
O L |

Table 5.1: The architecture of the 1% Version Offset Vector Based HRNet (main body).
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The main body’s architecture of the 2% Version Offset Vector Based HRNet is depicted below in Fig. 5.2 :

Version 1
Heads | Resolution Stage 1 Stage 2 Stage 3 Stage 4
1x1, 64,
3x3,C, 3x3,C, 3x3,C,
4 x 3x 3,64, x4x1 x4 x 1 x4 x 4 X4 x 3
3x3,C 3x3,C 3x3,C
1x1, 256
3% 3, 2C, 3% 3, 2C, [3x3, 20,
8% x4 x 1 x4 x 4 x4 x 3
3x3, 2C 3x3, 2C 3x3,2C
3% 3, 4C, [3x3, 40,
16x x4 x 4 x4 x 3
- 3x3,4C 3x 3, 4C
. - -
EN 3 x 3, 8C,
§ 32x x4 x 3
I 3x3, 8C
e} L i
3x3, C 3x3, C,
4x x4 x 3 X4 x 2
3x3, C 3x3,C
3% 3, 2C, [3x3, 20,
8% x4 x 3 X4 x 2
3x3,2C 3x3,2C
= 3% 3, 4C, 3 x 3, 4C,
o] 16 % x4 x 3 x4 x 2
& 3x3,4C 3x 3, 4C
P L |
2 - _
= 3 x 3, 8C,
= 32x x4 x 2
& 3x3, 8C
e L |

Table 5.2: The architecture of the 2"¢ Version Offset Vector Based HRNet (main body).

7



Chapter 5. Experimental Results

The main body’s architecture of the 3"% Version Offset Vector Based HRNet is depicted below in Fig. 5.3 :

Version 1
Heads | Resolution Stage 1 Stage 2 Stage 3 Stage 4
1x1, 64,
3x3,C, 3x3,C, 3x3,C,
4 x 3x 3,64, x4x1 x4 x 1 x4 x 4 X4 x 3
3x3,C 3x3,C 3x3,C
1x1, 256
3% 3, 2C, 3% 3, 2C, [3x3, 20,
8% x4 x 1 x4 x 4 x4 x 3
3x3, 2C 3x3, 2C 3x3,2C
3% 3, 4C, [3x3, 40,
16x x4 x 4 x4 x 3
- 3x3,4C 3x 3, 4C
. - -
EN 3 x 3, 8C,
§ 32x x4 x 3
I 3x 3, 8C
e} L i
3x3, C,
4x X4 x 2
3x3,C
[3x3, 20,
8% x4 X 2
3x3,2C
= 3 x 3, 4C,
o] 16 % x4 X 2
[}
&= _3><3, 4C’_
g
2 - _
= 3 x 3, 8C,
= 32x x4 x 2
& 3 x 3, 8C
e L |

Table 5.3: The architecture of the 3¢ Version Offset Vector Based HRNet (main body).

78




4 . Qualitative Results

Following the same training protocol as in [6], the data are augmented by random cropping (from 1024 x
2048 to 512 x 1024 in Cityscapes and from 1080 x 1920 to 540 x 960 in ACDC), random scaling in the range
of [0.5, 2], and random horizontal flipping. We use the SGD optimizer with the base learning rate of 0.01,
the momentum of 0.9 and the weight decay of 0.0005. The number of epochs used for training is 484. For
lowering the learning rate, a poly learning rate policy with a power of 0.9 is applied. The offset vectors are
restricted via a tanh layer to have a maximum length of 7 in normalized image coordinates. We set 7 to 0.5
by default, branch on 4*" stage and zero steps of cascaded refinement to the offsets. The confidence map is
predicted through a sigmoid layer. For S;, Sy and Sy predictions, Ohem Cross Entropy Loss is used. It is
remarkable that, at first, the model computed the 5;, S,, Sy predictions directly but that led to low mloU
results. On the other hand, the final model with the best results outputted the S;, S, Sy logits. The loss
weights A and p are set to 0.5. In addition, the confidence based loss is applied using the final semantic
prediction Sy. All models are trained on the corresponding Dataset’s train set. The Baseline models are
trained for 120K iterations with the batch size of 12 on 4 GPUs and syncBN. On the other other hand, due
to memory size problems, the Offset Vector Based models are trained for 120K iterations with the batch size
of 8 on 4 GPUs and syncBN.

4  Qualitative Results

We provide qualitative results of our method for both Cityscapes (Fig. 4 .3, 4 .4 and 4 .5) and ACDC
(Fig. 4 .6, 4 .7 and 4 .8). As we can see, our model not only achieves highly satisfactory results close to
GT images, but also outperforms the S; predictions outputted by the initial HRNetV2 head. For the vector
field’s visualisation we used the color coding described in [104] and shown in 4 .1. The color coding of the
semantic classes matches Fig. 1 .1. Regarding the confidence map’s visualization we use the viridis color
maps described in [105] and shown in 4 .2.

Figure 4 .1: The optical flow field color-coding. Smaller vectors are lighter and color represents the
direction. From [104]

Figure 4 .2: Viridis color map. The higher the confidence is, the lighter the map is. From [105]

Specifically, we will analyze some predictions of our model in some selected RGB images of Cityscapes. At
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first, we can observe from the Example shown in 4 .3, that the final prediction Sy of our model is better than
the S;, as the pole enclosed by the red frame in the latter prediction should not exist. On the other hand, S,
prediction reduces this error with the help of seed pixels, and,in turn, Sy, by having higher confidence in the
specific S.s pixel-level prediction, outputs an image far closer to the GT. Another point worth considering,
is the Example depicted in 4 .4. As we can see from the red frame in the S; output, the predicted sidewalk
is wrong. On the contrary , S, and, as a result, Sy eliminates this error, by predicting that the pixels in
this enclosed region belong to the 'road’ class. Last but not least, in the last Cityscapes example (4 .5), the
sidewalk segment on the right side of the image (red frame) is smoother in Sy than in S;. Moreover, the
tree segment on the upper left side of the image (green frame) shown in S; image, has been correctly deleted
from the Sy prediction. By observing, also, the blue frame on the left, we can see from the GT image that
the car segment is larger that the segment shown in the S; one. S; tries to enlarge this segment, as we see
in the corresponding frame. On the other hand, in the S, we can see some false predicted dots that belong
to the tree segment, which do not exist in the S;. In turn, Sy shows higher confidence in the S; and outputs
the correct segment. Unfortunately, both S; and Sy fail to predict the correct segment in the middle of
the image (light green frame), with the former predicting a larger sidewalk segment and the latter trying to
eliminate this segment, enlarging erroneously the road segment. Our prediction can not output the correct
terrain segment, as the initial prediction S; does not predict anywhere this class.

As far as some selected RBG images of ACDC are concerned, we can also confirm our previous findings.
Particularly, regarding the Example shown in Fig. 4 .6, we observe that S; outputs some false predictions in
the red frame. On the contrary, Sy predicts correctly the building segment. Moreover, it correctly shrinks
the fence segment on the right side of the image. Similarly, in the Fig 4 .7, S¢ shrinks the terrain and enlarges
the sidewalk segment. Moreover, it does not take into account the false prediction made in the road segment
in the S5 prediction. Finally, the terrain segment wrapped by the red frame in Fig. 4 .8 lacks of continuity
in the S5, as it contains erroneously some sidewalk segments. This discontinuity is fixed by the predictions
in the seed pixels and, as a result, Sy outputs the correct segment.

Last but not least, comparing the offset vectors produced by the 2 datasets, the Cityscapes ones are far better
than the ACDC ones, due to the fact that the former contains more clear images than the latter. ACDC
targets semantic understanding of driving scenes in adverse visual conditions. Under these conditions, in the
corresponding regions where the visibility is limited, our models predict small offset vector values.
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Figure 4 .3: Qualitative results on Cityscapes: Example 1
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Figure 4 .4: Qualitative results on Cityscapes: Example 2
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(c) Offset Vector

(g) Confidence Map

Figure 4 .5: Qualitative results on Cityscapes: Example 3

(c) Offset Vector

(g) Confidence Map

Figure 4 .6: Qualitative results on ACDC: Example 1
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Figure 4 .7: Qualitative results on ACDC: Example 2

- Lo
(b) GT (c) Offset Vector

(g) Confidence Map

Figure 4 .8: Qualitative results on ACDC: Example 3
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5 Baseline Experiments

At first, we trained the original HRNetV2 model from scratch on both Cityscapes and ACDC dataset, in
order to reproduce the results submitted in [6] and in [11] correspondingly. We used the default parameters
specified by the authors. In particular, for our experiments we used as backbone the HRNetV2-W48 model,
where 48 means the width, as this model achieved the best performance. The HRNet-W48 is trained on 4
NVIDIA Titan X GPUs and it takes around 80 hours on Cityscapes and around 35 hours on ACDC. As we
can see from Table 5.4 the results reproduced successfully on Cityscapes validation and test set. Regarding
the ACDC Dataset, the model submitted in [ 1] was initialized with pre-trained Cityscapes weights. Instead,
our model was initialized with pre-trained Imagenet weights. In the following experiments we are going to
initialize our model with the latter initialization in order to achieve competitive results.

Model Backbone Dataset MeanlIU
HRNetV2 [6] HRNetV2-W48 | Cityscapes |[7] 80.4
HRNetV2 (Source Code) || HRNetV2-W48 | Cityscapes [7] 80.5
HRNetV2 [6] HRNetV2-W48 ACDC [11] 75.0
HRNetV2 (Source Code) || HRNetV2-W48 | ACDC [11] 70.5

Table 5.4: Test Set Reproduction Results

6 Comparison with State of the Art

6 .1 Cityscapes

The results on Cityscapes which is the major database, which focuses on semantic understanding of urban
street scenes, are shown below. We achieve better results on Cityscapes than the initial HRNet under similar
training time, outperforming prior state-of-the-art methods across all four standard metrics on both val and
test set .

e Results on the val set Table 5.5 compares our model with the initial HRNetV2 on the Cityscapes
val set in terms of parameter and computation complexity and mloU class. Our model achieves better
performane: 0.6 points over HRNetV2.

Model Backbone #param. GFLOPs | mloU
HRNetV2 [6] || HRNetV2-W48 65.9M 174 81.8
Ours HRNetV2-W48 98.8M 234,7 82.4

Table 5.5: Semantic segmentation results on Cityscapes val test (multi-scale and flipping). The GFLOPs is
calculated on the input size 1024 x 2048. They are calculated for Convolution and Linear Layers only.

e Results on the test set Table 5.6 compares our method with state-of-the-art methods on the
Cityscapes test set. All the results are with six scales and flipping. Two cases w/o using coarse
data are evaluated: One is about the model learned on the train set, and the other is about the model
learned on the train+val set. In both cases, our offset vector - based HRNetV2-W48 achieves the
superior performance, learned only on the train set. To become more specific, we achieve a superior
relative performance gain of 1.7% in mIoU, 4% in iloU cla., 0.4% in IoU cat. and 1.7% in iloU cat.

Table 5.7 analytically compares our approach with HRNetV2’s per class results. As we can see our
method achieves better results in the majority of classes. Our offset vector-based model learns an im-
plicit representation of different objects which can benefit the overall semantic segmentation estimation
capability of the network.

Qualitative results on Cityscapes support the above findings, as shown in Fig. 6 .1. To be more
specific, from left to right, we depict the input image, the initial HRNet’s output and our model’s
output. Regarding the first row, we can observe that our model tries to enlarge correctly the sidewalk
segment, as shown in the red segment. In the second row, our model broadens correctly the traffic
sign, the pole and the sidewalk segment (red, green, blue framework correspondingly). Unfortunately,
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6 . Comparison with State of the Art

Model H Backbone \ mloU iloU cla. IoU cat. iloU cat.
Model trained on the train set
PSPNet [12] D-ResNet-101 | 78.4 56.7 90.6 78.6
PSANet [13] D-ResNet-101 78.6 - - -
PAN [14] D-ResNet-101 | 78.6 - - -
AFF [17] D-ResNet-101 | 79.1 - - -
HRNetV2 [6] HRNetV2-W48 | 80.4 59.2 91.5 80.8
Ours HRNetV2-W48 | 81.8 61.6 91.9 82.2
Model trained on the train +val set
GridNet [10] - 695 441 87.9 711
LRR-4x [17] - 69.7 480 88.2 4.7
DeepLab [18] D-ResNet-101 | 704 42.6 86.4 67.7
LC [19] - 71.1 - - -
Piecewise [20] VGG-16 71.6 51.7 87.3 74.1
FRRN [21] - 71.8 45.5 88.9 75.1
RefineNet [22] ResNet-101 73.6 47.2 87.9 70.6
PEARL[23] D-ResNet-101 75.4 51.6 89.2 75.1
DSSPN [21] D-ResNet-101 | 76.6 56.2 89.6 77.8
LKM [25] ResNet-152 76.9 - - -
SAC [26] D-ResNet-101 78.1 - - -
DepthSeg [27] D-ResNet-101 | 78.2 - - -
ResNet38 [28] WResNet-38 78.4 59.1 90.9 78.1
BiSeNet [29] ResNet-101 78.9 - - -
DFN [30] ResNet-101 79.3 - - -
PSANet [13] D-ResNet-101 | 80.1 - - -
PADNet [31] D-ResNet-101 | 80.3 58.8 90.8 78.5
DenseASPP [12] WResNet-161 | 80.6 59.1 90.9 78.1
DANet [32] D-ResNet-101 | 81.5 - - -
HRNetV2 [6] HRNetV2-W48 | 81.6 61.8 92.1 82.2
Ours (only on train set) || HRNetV2-W48 | 81.8 61.6 91.9 82.2

Table 5.6: Semantic segmentation results on Cityscapes test set. Our results are superior in terms of the
four evaluation metrics.D-ResNet-101 = Dilated-ResNet-101. We compare our method against SOTA

methods as in [0]
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HRNetV2 [6] | 98.73 8749 93.65 5648 61.57 71.57 7876 81.81 93.99 7411 95.68 87.95 73.72 9635 69.94 8252 76.93 70.88 78.02 80.4
Ours 98.74 8741 93.79 61.65 64.00 71.35 78.98 81.65 94.00 73.42 95.81 87.99 74.36 96.42 74.76 87.70 82.83 71.77 77.86 81.8

Table 5.7: Per Class Results on Cityscapes test set

as we can see from the yellow framework, the initial model predicts better the shape of the man’s
hands. In particular, the man holds a newspaper and our model erroneously classifies these pixels into
the person class. However, in general, our model has a more accurate prediction. As far as the third
set of images is concerned, our model condenses the cyclist’s leg and enlarges the background car’s
segment, achieving a better final result. Last but not least, in the last set of images, our model corrects
some false predictions made by the initial model, including the reduction of both the car segment (blue
framework) and the fence segment (red framework). To sum up, our model surpasses the initial one’s

performance.
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Figure 6 .1: Qualitative results of selected examples on Cityscapes. From left to right: image,
initial HRNet and ours.




6 . Comparison with State of the Art

6.2 ACDC

The results on ACDC, which targets semantic understanding of driving scenes in adverse visual conditions,
are shown below. We also achieve far better results than the initial HRNet under similar training time,
outperforming prior state-of-the-art methods on both val and test set. In the following experiments, the
initial model is the one initialized with pre-trained Imagenet weights.

e Results on the val test

Table 5.8 compares our model with initial HRNet’s method on the ACDC val set in terms of parameter
and computation and mloU class. Our model achieves also in this dataset better performance 0.41
points over HRNetV2.

Model Backbone #param. GFLOPs | mloU
HRNetV2 || HRNetV2-W48  65.9M 172.9 75.50
Ours HRNetV2-W48  98.8M 233.1 75.91

Table 5.8: Semantic segmentation results on ACDC val set (multi-scale and flipping). The GFLOPs is
calculated on the input size 1080 x 1920. They are calculated for Convolution and Linear Layers only.

e Results on the test set

Table 5.9 compares our approach with state-of-the-art methods on the ACDC test set on All Conditions,
as it is trained on all and not on a single condition. As it is observed, our model outperforms the other
methods. To become more specific, we achieve a superior relative performance gain of 2.5% in mIoU.

Model mloU
RefineNet [22] 65.3
DeepLabv2 [1§] 55.3

DeepLabv3+ [33] || 70.0
HRNetV2 [0] 70.5
Ours 73

Table 5.9: Semantic segmentation results on ACDC test set. Our results are superior in terms of the mloU
metrics. We compare our method against SOTA methods as in [11]

Table 5.10 compares analytically our approach with other state of the art method’s per class results.
As we can see our method achieves also in this dataset better results in all classes, improving the initial
model. We observe the following:

— In snow, road and sidewalk performance is at its lowest, which can be attributed to misunder-
standing between the two classes as a result of their similar look. On the other hand, our approach
achieves a superior relative performance gain of 1.8 % mloU in the sidewalk segment.

— It is more difficult to separate classes at night that are often dark or poorly lit, such as buildings,
vegetation, traffic signs, and the sky. This behaviour is observed also in offset vector performance
as they have small values when the visibility is limited.

— On foggy days, performance on classes containing small-instance instances, such person, rider, and
bicycle, is at its lowest. This is likely because of the combined effect of contrast reduction and
poor resolution for examples of these classes that are far from the camera.

Qualitative results on ACDC support the above findings, as shown in Fig. 6 .2. To be more specific, from left
to right, we depict the input image, the initial HRNet’s output and our model’s output. Regarding the first
row, we notice that our model enlarges the bicycle segment, by correcting some false predicted pixels (red
framework). Unfortunately, as we can see in the yellow framework, the initial model achieves a more accurate
prediction. In particular, a car is depicted in the corresponding area and our model tries to eliminate it. In
the second row, we can underline that our model tries to enlarge correctly the sidewalk segments in both
red and green framework and reduces the erroneously terrain segment, predicted by the initial model. As
far as the third set of images is concerned, our offset vector - based model eliminates correctly the sidewalk
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RefineNet [_’2] 92.5 71.2 86.2 39 44.0 53.2 688 66.0 85.1 59.3 949 652 385 85.8 53.8 59.7 76.2 47.5 54.5 65.3
DeepLabv2 []k] 88.0 62.3 80.8 37.0 35.1 33.9 49.8 49.5 80.1 50.7  92.5 51.1 26.5 79.9 49.0 41.1 722 26.5 44.2 55.3

DeepLabv3+ [:i:ﬁ] 93.4 748 89.2 53.0 49.0 58.7 71.1 67.4 87.8 62.7 95.9 69.7 36.0 88.1 67.7 71.8 85.1 48.0 59.8 70

HRNetV2 [(i] 95.3 80.3 90.5 52.0 53.1 65.1 78.2 74.2 89.2 68.4 96.7 70.6 36.1 88.2 55.9 54.3 88.0 43.8 58.9 70.5
Ours 95.8 82.1 91.3 55.8 54.6 67.6 80.5 77.3 89.7 69.5 96.8 73.4 39.1 89.5 61.9 65 89.4 47.2 60.6 73

Table 5.10: Per Class Results on ACDC test set

area (red framework), as in the initial image there is no such area. Last but not least, regarding the last
set of materials, the initial model classifies incorrectly the sign of the house into the traffic sign class( red
framework). On the contrary, our model corrects not only this mistake, but also a discontinuity occurred in
the yellow framework. To sum up, our model surpasses the initial one’s performance.

Figure 6 .2: Qualitative results of selected examples on ACDC. From left to right: image, initial
HRNet and ours.
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7 Ablation Study

In order to experimentally confirm our design choices for the offset vector - based model, we performed an
ablation study, as shown in Table 5.11. We trained and evaluated 7 different variations on Cityscapes. The
performance of each model variation in relation to the ground truth images was calculated by means of the
mloU ( as defined above). Specifically, the following steps were taken in order to analyze our method;

1. At first, we initialzed both heads of the network with the pre-trained Imagenet weights and set the
offset vector length equal to 0.5.

2. Secondly, we freezed both main body’s and initial head’s weights. The freezed part of our model was
initialized with the corresponding Cityscapes final pre-trained weights. The only part trained was the
second head, which was initialized with pre-trained ImageNet weights. As shown in Table 5.11, although
the performance of our model is higher than the initial single head model’s one, it still remains lower
than the case were both heads are trained simultaneously.

3. Then, we deactivated the "Freeze" feature and changed the offset vector length logarithmically, setting
both the values 1 and 0.2. We observed that the more the length is the less mIoU achieves. This is due
the fact that larger offset vectors point to more distant objects that may affect erroneously the final
prediction.

4. Furthermore, we deactivated the OHEM Cross Entropy Loss and enabled the simple Cross Entropy
Loss. As expected, the performance of the model was lower. OHEM penalizes more high loss values
and leads to a better training of the model.

5. Lastly, our model casts the utility of cascaded refinement of offsets aside.

Fr THW OHW V OV Ref OHEM | mloU
I v 81.83
I I 3 05 v 82.4

v C I 3 05 v 82.01
I I 3 1 v 81.79
I I 3 02 v 82.80
I I 3 02 81.96
I I 3 02 2 v 81.92

Table 5.11: Ablation study of components of our method. "Fr" : Freezed main body’s and initial
head’s weights, "IHW": Initial Head Weights, "Ref": cascaded refinement of offsets, "OHW": Offset
Head Weights, "V": Version, "OV": Offset Vector, "OHEM": OHEM Cross Entropy, I: Imagenet,
C:Cityscapes , A: ACDC

8 Conclusions

In summary, we conducted a thorough qualitative and quantitative comparison to show the clear advantages
of our method over previous state-of-the-art methods in this field. Tables 5.6 and 5.9 verify the superiority of
our method.Moreover, Tables 5.7 and 5.10 show that our approach achieves not only better total results but
also better per class results in the majority of classes under similar training time. As we mentioned above,
our method shares information from seed locations and improves the predicted segments. Also, it learns an
implicit representation of different objects which can benefit the overall semantic segmentation estimation
capability of the network. Our qualitative results further demonstrate that we achieved a better performance.
In fact, not only our idea achieves highly satisfactory results close to GT images, but also outperforms the
predictions outputted by the initial HRNetV2’s head. In particular, it classifies some false predicted pixels
in the correct classes. Thus, it eliminates discontinuities ( see Fig. 4 .6) and improves the shape as well as
the form of the corresponding segments, leading to more realistic results.
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1 Conclusion

In this thesis, we address the problem of semantic segmentation, one of the fundamental topics of computer
vision. Recognizing an object within an RGB image means determining some of its distinctive color and
texture features. Effects like the color shift due to light absorption, the lens distortion, and chromatic
aberrations can alter objects’ appearance and mess with users’ perception and recognition algorithms. All
the more sophisticated methods contribute towards improved performances. While AT still has a long way
to go before it can develop models comparable to humans in these kinds of activities, several researchers
are consistently outperforming state-of-the-art findings, setting the bar even higher. Most of the related
works concentrate on architectural changes to the used networks in order to better combine global context
aggregation with local detail preservation, and utilize a simple loss computed on individual pixels. Designing
more complex losses that account for the structure contained in semantic labelings has gotten substantially
less attention. In order to provide efficient results that better reflect the regularity of genuine segmentations,
we investistage such priors for semantic segmentation (see Chapters 2 and 3) and propose a new approach to
the problem.

We thoroughly analyzed the proposed method in Chapter 4. Based on knowledge about the high regularity of
real scenes, we proposed a method for improving class predictions by learning to selectively exploit information
from coplanar pixels. The key idea is based on our prior which claims that for each pixel, there is a seed
pixel which shares the same prediction with the former. As a result of this, we design a network with two
heads. The first head generates pixel-level classes, whereas the second generates a dense offset vector field
that identifies seed pixel positions. Seed pixels’ class predictions are then utilized to predict classes at each
point. To account for possible deviations from precise local planarity, the resultant prediction is adaptively
fused with the initial prediction from the first head using a learnt confidence map. The entire architecture
is implemented on HRNetV2, a state-of-the-art model on Cityscapes dataset. The superior performance
of our offset vector - based model against previous SOTA methods was demonstrated both qualitatively
and quantitatively through extensive experimental evaluation on both Cityscapes and ACDC datasets (see
Chapter 5). Both datasets are challenging. The former is tasked for urban scene understanding, while the
latter is used for training and testing semantic segmentation methods on adverse visual conditions.

All in all, our method enhances by far the initial model’s output predictions, since it achieves not only better
total results but also better per class results in the majority of classes under similar training time. It learns
an implicit representation of different objects which benefits the overall semantic segmentation estimation
capability of the network. In fact, not only our idea achieves highly satisfactory results close to GT images,
but also outperforms the predictions outputted by the initial model’s head. In particular, it classifies some
false predicted pixels in the correct classes. Thus, it eliminates discontinuities and improves the shape as well
as the form of the corresponding segments, leading to more realistic results. This is a strong contribution
which opens new pathways for real world applications, such as Self-Driving Cars or Medical Imaging and
Diagnostics.

2  Future and Follow Up Works

Although we have shown promising results in various datasets, there are still limitations in our approach,
which may open new doors for future research. We briefly pinpoint some of them bellow.

1. Application of this method on Visual Transformers. At this point in time, newly designed Vision
Transformers achieve state-of-the-art results in the task of semantic segmentation . We will apply our
method on the ViT-Adapter [34], expecting new state-of-the-art results for this task.

2. Combination of our method with other techniques. We could study the combination of our
method with other techniques for semantic segmentation and instance segmentation on a plethora of
datasets. For example, it can be applied on the combination of the HRNet with the object-contextual
representation (OCR) scheme [9].

3. Ultimate erosion - based method. As we saw in the offset vector illustrations (see Fig. 4 .3 - 4 .8)
some vectors fail to point to the center of the corresponding segment. As a result their distribution on
the specific segment is not normal. In order to deal with this problem, we could use ultimate erosion.

92



2 . Future and Follow Up Works

In particular, through this function, we could find for each GT image each segment’s center and then
use this set of coordinates during the training process. Thus, we will force the offset vectors of a specific
object to point to his center, leading to better predictions.
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