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ITepiindm

Ot Eé&nynoeic e Avuinopddetypo topéyouy artohoyio tiow and tnv andpaon evog LovTEAOU Vo XAVEL Lot Blapope-
] TpofBhedn, mpoteivovtag Tic adharyés mou mpénel vo yivouv. ‘Otav to ev Aéyw povtého eivor tadivounthc
padpou-xouTIoY xou 1 elcodog amotehelton amd exdveg, yio var oamavtniel e ta ovTOTNTA TEENEL VoL TPOTOTOL)-
Vel pe eldyioto tpomo hote va tofivoundel Slapopetind, amouteltan vo Bpedel N mo mopduola elxdVoL TOL oviXeL
oe AN xotnyopla. Evag onuoacioloyxd mholotog tedmog yio Ty eniteudn autol, divotoag tawtodyeova Bdon
oTLC AAANAETIOPAOELS YETOED TWV ANMEOVILOUEVKDY AVTIXEWEVWY, Vol 1 oOYXELOT TV AVToTOLY WV YEAUPNUETLY
OUNVIEC TWV EXOVWY, BNAUDY| YRUPNUETWY TOU TERLYEAPOUY TA AVTIXELUEVA OE Lol OXNVT] XAl TG aUTd oyetilov-
Tou petod Toug. To mpdBinua tne Ouoldtnrag Feopnudrov ¥ tne Avtiotolylone Ieagpnudtwy pe Avexuxdtnta
oe LpdApota Exel aVTETWTOTEL XUTA TN BIEEXELN TWV YPOVOVY YENOWOTOLOVTAS HETEIXES Onwe 1 Andotaon
Ene€epyaociac Ipopruatoc (AEL) 1 uedbdouc dnwe ov Huphveg Tedgov.

e auty ) SwteBr), mpoteivoupe TN Yprion twv npdopota axpdlwy povtéhwy Badde udinong mou Asttoupyoly
eWldxd ot dedopéva Sounuéva oe Ypdpous, nou ovoudlovta Neupwvind Aixtua Fpdpwy (NATY). Iapoucidlouue
éva mhatolo NAT' mou houBdver Lebyn yeapnudtony we elcodo xol EVOWUATOVEL XGVE YENOS OE Vol YWPO TOU
avtiotoly (et mapdpolo ypopriuata o xovtd Ye Bdon TN UETE ToU yenoldonoleltal xotd TNy exnaideuon we
ofuo enonteiog. Exnoudedovye autd to poviéro ot éva uixpd utocivoro (EUYOY YRAPWY YENOLLOTOWIVTAS TNV
AET w¢ etixéta xou e€dYOUVUE EVOWUATOOELS YEAP®Y TOU UTopoly var sLYXEdo0Y HeETAE) TOUG XENOLLOTOLOVTAS
ATAEC PETPMES OTIWE 1) OUOLOTNTA cUVNLTOVOU. Enouévwe, tapdyovton TolvounoelS TOROUOLWY YRUPTUATWY YLot
%&0e Selypa Tou cuvolou Bedopévey ol Unopel Vo Tpoodloplotel 1 xaAlUtepn aviioToiylon. Kotd tn didpxelo
TOU TELRAUATIONOV, elpacTte oe H€am Vo YeNoUOTOoOUUE TOAES SlapopeTinés mopoilayés ouvehtndv NAL
%ol VoL BYGAOUPIE GNUOVTING CUUTEREOUATO OYETXG UE TNV OTOTENEGUATIXOTNTO X0 TNV EXPEACTIXOTNTA TOUG.
Ta povtéha NATD cuyxpivovior téc0o petald toug 600 xou ye pedodouc mupriva Yedpwy o aglohoyolvTol
TOCOTIX, YENOWOTOLOVTIS Evay TEOCEYYLOTIXG ahyoprduo AET we Baouer aifdeia, xat tolotixd e nopatiipnon
avtiotowy emdvewy. To poviéha pac eivon oe 9éon vo EEMEPAOOUY TS TEONYOUUEVWS YENOULOTIOLOVUEVES
uedédoug TuEHva Xt OTIC BUO MEPIITOOELS XAl VO TPy OUY EVOWUATMOOELS TOU Efvol WQENMUES Yo TN dnutovpyla
eENYNOEWV UE OVTLTOPABELY A Kol BUVNTIXA EPUPUOCIIES GE TOANS dhhor TROBAYLoTAL.

A€&eig-xhedid —  Nevpwvind Alxtuva I'edgpwy, Avtistolyion Iedgwy ue Avoyn Addoug, Ouoidtnta Ipoprn-
pdtov, Avéxtnon Ieagruoatoc, 'edgpol Exnvic, EEnyroeic ue Avtinapdderypa

vii






Abstract

Counterfactual explanations provide reasoning in the form of changes needed to be made in order for a model
to make a different decision. When the model in question is a black-box classifier and the input consists of
images, to answer how an instance should be modified in a minimal way so as to be classified differently, one
is required to find the most similar image in the other category. A semantically meaningful way to do that,
while simultaneously attending to the interactions between depicted objects, is by comparing the images’
corresponding scene graphs, i.e. graphs which describe object instances in a scene and how they relate to
each other. The problem of Graph Similarity or Error-tolerant Graph Matching has been tackled throughout
the years by measures like Graph Edit Distance (GED) or methods like Graph Kernels.

In this thesis, we propose using the recently thriving deep learning models which specifically operate on graph
structured data, called Graph Neural Networks (GNN). We present a GNN framework which takes graph
pairs as input and embeds each counterpart in a space which maps more similar graphs closer based on the
metric used during training as a supervision signal. We train this model on a small subset of graph pairs
using GED as their label and extract graph embeddings which can be compared to one another using simple
metrics like cosine similarity. Therefore, rankings of similar graphs are produced for each instance in the
dataset and the best match can be determined. During experimentation, we are able to utilize several different
convolutional GNN variants and draw important conclusions about their effectiveness and expressivity. The
GNN models are compared to each other and to graph kernel methods and evaluated both quantitatively,
using an approximate GED algorithm as the ground truth, as well as qualitatively by observing corresponding
images. Our models are able to outperform the previously used kernel methods in both cases and produce
embeddings which are beneficial for creating counterfactual explanations and potentially applicable to many
other tasks.

Keywords — Graph Neural Networks, Error-tolerant Graph Matching, Graph Similarity, Graph Retrieval,
Scene Graphs, Counterfactual Explanations
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Chapter 1

Extetoapevn Ilepiindn oto EAAN VX



Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd urdéBadpo

To tehevtaio ypodvia, 1 1EGOBOC GTNY LTOAOYLGTIXH oYL xou TNV amoVhxeuon xadde xal oToug alyoprliuoug
Bardide udinone €youv odnyhoel o pio evIuTwotaxt| dieloduon eQopuoydY TEXVNTAC VONUoolvng oty o
peewn Cwnf twv avidponwy. H aviavéuevn mapéufoocr twv ELQUOY CLUCTNUATWY GTOV TEOTO YE TOV ONolo OL
Svipwrol xatavah@dvouy péoo xou puyaywyla, dnwovpyoly téxv, ayopdlouv mpotdvta ¥ axdun xou AouPd-
vouv vyetovouxt] tepldoldm dnuovpeyel TV avamdpeuxtn avdyxn SOUNoNG OYECEWY EUTIOTOCUVNG UE AUTE TA
epyareia. ‘Etol, n nopoyn e€nyrfoewy oyetind ye to yiotl 1o cuoThdaTo TEYVNTAC VONUoolvng Tokpvouy Tig
ATOPIOEL; TOUG EXEL YIVEL EEOUPETIXG ONUOVTLXY.

O topéag tou Explainable Al otoyebel va nopéyel mAnpogpopleg yior tor govtéha «podpou xoutiol» tne Mnyoavixic
Mdrdnone xan va e€nyroel tov Adyo mlow and Tic evépyelég toug. Mia and Tig mo evOlaPECOUTES TEYVIXEG TTOU
yenowonololvtal Yot vty TNy epyacio elvon ol e€nyRoeic Ue avTLMUPAdELY o TTOU TEEYOLY TANEOPORiES TYETIXY
HE TO TG Ta dedouéva elo6dou Vo uropoloay va elyay ahhdEeL TEOXEWEVOL €val HOVTENO Vo AEBeL BlapopeTixég
anogdoelc.  Autéc ot ahhay€c oLV emdldxeTAL Vo elvon ENdytoTeS xou umopolv va Borndfoouv okl otov
EVIOTUOUO TROTHOEMV.

H emxpatotoo uédodog yio ToV Tpocdloploud TS OUOLOTNTOS YRUPNUATWY, Tou amoTehel Brua oTny d6UncT Twv
egnyNoewy, elvan péow Tuphvewy Yeaphuatog. Me auth Ty epyacta, do cuyxpivoupe t6c0 tpoceyyioelg Tupva
600 xau xhaowxole ahydprdpoue tou xadopillovv v Andotacr Enelepyooioc I'pdpwv (Graph Edit Distance
- GED) pe vevpwwixéc npooeyyioeic. To enixevipo eivon n xprion tewv Nevpovixdv Awxtdwy Ipdgpwy (NAT -
GNN) yio v ohoxhMipwon autic g epyaoiog.

Avty| n Bt mapéyel pia Sle€odxt| e€epelivnon Twv Topodhaydv Nevpwmvixedy Awtiny Ypdpuwy xou Tovilet xou
ouyxelvel TNV ex@pacTixy) Toug d0voun oe dedopéva Ypapnudtwy. Troypouuilel T yenorn poviéawy GNN otnv
gpyooia TN owoldTNTAC YEAPWY, 1 ontola €xel w¢ el TO TAEICTOV AVTWETOTIOTEL YENOLLOTOLOVTAS 1] VEUPWVIXES
uedédoug. Emmnhéov, npoonotolue va mapovoidooupe tov ouvduaoud GNN ue dedouéva Ypdpwy oxnvic ahid
oyt pe oxomd TN dnwovpeyia Toug, 1 omolo elvon N mo Bladedopévn epyacia otn oyetixn PiBhoypapla. Télog,
péow tne dladixaciog ebpeoNE TV IO GUOLWY YEdPwY, elpacte ot Véor va e€aydyouue evowuatooels. Autég o
0LCLUCTIXES avamopaoTdoels elvon oe F€om vo cUNAABOUY TN ONUACIOAOYIXY) OUOLOTNTA TWY dEBOPEVWV ELGOBOU
e Bdon v andotao enelepyasiog YpopuaTog, otny omola €xouy extoudeutel. Ol EVOWUATMOOELS UTOpoLY 0T
GUVEYELN VO XPNOLLOTIONTOVUY ¢ AVATOPACTACELS YRUPNUATWY Yiot GAAES epyaoies.

1.1.1 Tpdpol Xxnvig

H Soun evéc yedgou eotidlel oTic oy€oelc YeTaE) OVIOTATWY, XAMoTMOVTUC TNV €Tol €va XUTdAANAO péco
avomapdoTaong dedouévwy o moAAd medla. Xe auth T dlatel3) 1 dour| Tou Ypapruatog Yo yenoidonoiniel
Yior Vo ovamapao THoEL T oxXnV Tou ametxovileton oe pio emxdva. Autdg o Timog YpapuaTog, YVWoTog wg
Yedpog oxnvic, elvon o dour) BEBOUEVKDY TOU TEQLYPAPEL TOL CTLYILOTUTOL AVTIXEWEVKDY O WAl OXNVY Xl TG
owtd To avtixelyeva oyetilovtan uetad toug. Elvan éva ioyupd epyodelo mou avantiydnxe yio mpddtn @opd yia
va fondnoel oTov TouLa TNS OTTIXNG XATAVONONE XAk GUANOYLOUOD UPNAGTEPOL ETUTEDOL, XM AVTLTEOCKOTEVEL
TN oNAclohoY (ol ULog OHNVIG HE ATEPLOPLOTO XL AETTOUERY| TEOTO.

And wo o eV drodm, éva ypdenuo oxnvic elvon éva xateuduvopevo yedgpnua oto omofo ol xouPol elvon
avTixelyeva oe gla oxnvt, 6nee «dvitpwnoc» 1 «tpamélly, xau ol axpéc elvon oL oyéoelc HETAED TOUC TOU GUYVAL
TepLypdpouy Véoelc 1) evépyeleg. Eva Tumixd mapddelyuo eVOC YRUQAUATOC OXNVAC Xl TNE AVTIOTOLY NG EXOVAS
Tou galvovton 6to Lyfua 1.1.1.




1.1. Oewpnuxd vndBadeo
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Figure 1.1.1: T'pdgoc Exnvic tou Visual Genome [44]

To yeapAuata GXNVAC UTOEOUY VoL EQUEUOGTOUY OE [lal TOLLA(O EPYACLY OpaoNg Xl XEWEVOU oy oyetilovto
ME TNV xatavonoT oxnvic, dnhadr T dadixacio aviyveuone xo ovouaciog Twy avIXEWEVWY, TOV WBLOTHTWY
Toug Xt TEpLYpaph Twv oyéoedy touc [12]. H mo onpavuxd Beloxeton oto nedio tne ‘Opaone vnohoyiot xou
nepthauBdvel T dnplovpyio Tou (Blou TOU YEUPHUATOS GXNVAC YENOWOTOLOVTIS ELXOVESC Xol AVTIGTEOMA.

1.1.2 Nevpwvixd Aixtua I'pdpwyv

Acedouévou 6Tl 1 Sour) Tou Yedpou avadleTal QuUOLxd Tovtod YOpw Wog, ePELEEYNXAY VELPLVIXE dixTud TOU
hertoupyolv amevdeloug oe dedopévo awtol Tou Tinou. Ta ypapruata elvon un euxheldeta dedouéva xaL ETOUEVWLG
o GNN pnopotv vo opadonotndody otny eupltepn xatnyopla tne ewpetpnic Mddnone [9]. To Neupwvixd
Axtuo Tpdgpov (GNN) eivon yvwotd yio tny exppactind| Toug 1oy 0 xou tpdogota xepdlovy Snpotxdtnta Adyw
TwV AUEAVOUEVODY SUVITOTATWY TOUC OE BLAPOpES EPUPUOYES OTWC T CUCTAUOTA CUCTACEWY XL TO HOPLIXO
dax LS amotinmua [108].

Toa GNN Snpoveyninxay yiat ol nepiocotepol oupPBatixol akyderduol Machine v Deep Learning elvon eidixd
XOTUOXEVAGUEVOL YLOL VO XUAUTITOUY GUYXEXPLUEVO TUTO SEBOUEVWY, OTWS EXOVES ) Xeluevo, oyt duwe Ypdpouc.
O1 neplocdTepeg AVATUPACTICELS BESOUEVKY UTOPOUY Vo YEVIXELDYOUY GE Yedpoug, oANd To avtideTo dev Loy letL.
Y yevi nepintwon, ta ypaghpota elva To ToAOTAOXA, ExovTag Evay un otodepd aptdud U TaELVOUNUEVKY
xOuPwyv péoa o yertoviég YeTofANTol ueyédoug, xon EMOUEVKC T UTEEYOVTA UOVTERX BEV Umopolv va To
¥eplotoly. Emmiéov, ol nepiocdtepol xowvol ahyopriuol unodétouy tnv avedoptnola otiyuotinwny. Autd dev
Loy leL 6tay extelolvTol epyaciec ot eninedo xoufou 6mou éva ypdpnua etvar 1 elcodog Tou VEupwVIXOU BixThou
xon Tor oTiypiotuna efvon ol x6pfol tou. Téhog, ta xhaoixd Xuvehixtixo Nevpwvixd Alxtua Aettoupyolyv oe
EOVES 1) YeEVIXOTEpa xavovixd mhéypato. H éMewhn eviomdtnrag pe tnv mopoadootoxt] évvola oto dedouéva
yYedpwy, to avdaipeto péyedog xou 1 opetoBAnTéTNTA ToLg OF PeTadéoelg xahoTtoly BOoXOAN TNV eXTEAEST) TNG
Xxovovixc GUVEAETG.

To Nevpwvind Aixtua Tedgov urnopoly v tadivoundoldy pe Sidpopouc tpdmouc: o) avdhoya Ye to eninedo tou
Yedpou oto onoio Aeltoupyolv ot emnédou x6uBov, axuhc 1 Ypopou, B) avdAoYo HE TNV aPYLTEXTOVIXY TOU
ox0hoLVYOVY G GUVENXTING, ETOVONOUBOVOUESD, UTOXWILXOTIOLNTES X0 YWEOYXPOVIXA XOL Y) OVAAOYO UE TOV
TedéTO exmafdeuong oe emPBAendueva, un emBAenoueva xou pepuds emPBiendueva. Ilapaxdtw Vo avordoouue Tig
TEELG EXBOYES CUVEAX TGV SXTUWY ToL Vo Ypnotwonoioly GTO TELRUUTING UEROG.

To Graph Convolutional Network (GCN) napouctdlet tny éa e ypHone Woc TPOCEYYIONS TPMTNG
t¢énc tou ChebNet mpoxewévou vo UeTpLlaoTel 1) UTEpTRPOGUPUOYY. DTNV mpaypatxoTnTa, unovéter K = 1 xou
Amaz = 2. Ly Ba xatebduvon to povtého emPBdiiel tov neploplopd 0 = 0y = —01. Metd v emBohr) autdv
TWV TEPLORLOPAY, N Aettovpyio cuVEMENG elvan:

zxggo=0(I, + D FAD %)z (1.1.1)
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Agob Bamotddnxe eumelpind ot o bpoc I, + D~ TAD™ 2 TpoxoAel apriunTixy aotdiel, Xpnmponomﬁnxs
€va téyvoopa enavakavovikoroinons. O époc D~ 2AD™z = A avuxortootédnxe ané D2 AD™2 = A émou
A=1,+Axou Dy = > Ajj. Ol T TopamEve PopolV VoL TEptypapoly e auth T ouutayY efiowon:

H=Xxqgo = f(AXO) (1.1.2)

omou to f elvon Wit cuVdpTNoT evepyomolnong xau emitpénovTo Tohhamhéc elcodol xou €odol Aoyw TN Yeriong
TUVAXWY.

To GCN elvar por e8] TeEpINTWoT QUCUATIXAC TEOCEYYLONG ool umopel vo exAnglel xou wg ywexh. Xtnv
Topoxdte elowaor, unopolpe va dolue mie Yo yivel 1 cuYXEVTPWOY TANEOPOELOY EVTOS TNE YELTOVdG. Xe
authY TNV Tepintwon o Blog o xouBog Yewpeltan enlong we yeltovdg tou eautod Tou, evég Bruatog.

> Ayuzy) YueV (1.1.3)

u€N (u)Uv

Auto 1o poviého ypenowonoieitar TOAD GUYVE WE UEEOC TO GUVIETOV PYLITEXTOVIXWY OTN hoyoteyviot Adyw
TNG AMAOTNTOG XOU TN XAANE TELPAUATIXHG TOU anddoaong.

To Graph Attention Network (GAT) [83] viodetel tnv B¢ tng npocoyfc mou npoteiveton and to [82]
TEOXEWEVOU VoL ATOPACIOEL TTOLOL WEAY) TNE YELTOVLAC EVOC xOUBOU €Y0UV TLO CNUAVTIXES TANPOPOoplee. XTdY0C TOU
elvan vo pdder To oyetind Bden peTal YEITOVIXGDY XOUBWY Xl ETOPEVKS SLOPEREL OO TIEOTYOVUEVES TIPOCEYYIoELS
onwg 10 GCN xou to GraphSAGE enewdn) ny évvoia tng yertovidg dev elvan npoxadoplouévn 1 TovopoLoTuT.

H ouvextur Aettovpyla oplletar wg:

B = o( Z B ) p (k=1 (1.1.4)
u€N (u)Uv

omou ta Bdern mpocoync yia xdde x6uPo v unopody va oploToly we:

o®) = softmax(LeakyReLU (a¥ [W® h{k — 1)|Ww B pk=1)1)) (1.1.5)
H petafinty a avtinpocnnedel €va 60VORO TapauéTpwy e duvatdTnTa expdinong. H avanopdotaon twy xpupy
ETUTEDWV 0Py IXOTIOLE(TAL UE T YAUpaXTNEIGTING Xdle xOuBou xat 1 cuvdptnon softmax SiacpoAilel 6tL to Bdpen
e npocoync adpollovton oe €val.

O rnopandve unyavioude ovoudleta self-attention, adhd to GAT yenowwonolel emnhéov multi-head attention
yior vor otodepomolioeL T puddnom xon vor xdvel To povtélo o exgpactixd. Ou axpBelc eliodoeig Bploxovro
oto [83].

To GAT elvar anoterecpatind agol and to Levyn xoufou-yeltovo PnopolV va LTOAOYLETOUYV TAUTOYEOVOL.
Emniéov, to yeyédn e yettovide tou elvar abidpopa xal unopel vo egoppootel eDXOAA OE ETOYWYIXE Yordnotoxd
TeoBAY oA,

To Graph Isomorphism Network (GIN) [101] eivou 1 mpdtn yweixh tpocéyyion mou avtipetonilel Ty
aBuUVAUi TTEONYOUUEVRY YWEXMOY HOVTEAWY VO XAvouv BLdxplon UETOED SLOPORETIXGY SoUwY YRdpwy ue Bdon
TIC EVOLUOTOOELS Tou mopdyovtat. [ va yiver autd, to GIN ypnowonotel o amhy teyvixn, npocdétovtag Lo
TapdueTeo Bépouc Yio Tov xevtewd x6uPo e cuvéhEne. H Aetoupyia opiletor mapaxdtw 6mou €F) eivor to
Bdpoc.

W) = MLP((1 4 ¢™)a=1 4+ Y~ wlF=h) (1.1.6)
u€N (u)

To GIN amodewcvieton 6Tt etvan e&loou LoyLEo PE To TEoT toopop@lopol yYeapruatoc Weisfeiler-Lehman, dniadn
TOEAYEL BLOUPOPETIXES EVOWHATMOELS XOUPwV OTOY Ao OAOUUICTE UE W LoOHoppixd yeapruata. Autd xodotd
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1.1. Oewpnuxd vndBadeo

Explanation Dataset ERanEes -
{laptop, computer.n.01, Classifior~F
person, mamal.n.01,
J 1aptop, computern i, — -+ [_Computer Room ]
\ | -}
1
\ Tbox {
\ {laptop, computer.n.01,
{apiop, person, | catSmammaln0t [ Soo o o aln0d,
bed} person € mammal.n.01 : e S
laptop € computer.n.01 DEE SRR
teddy bear ¢ plaything Ctoy | -
| \
{cat, teddy bear, ."I - {cat, mamal.n.01,
oy Zali s ocy boar,paying, | (1 -+ Wetoinarians Offce
- ™ oy, ..
// \\\
// \\
—~ ~C |
e EY
{bed, teddy bear} {bed, furniture.n.01,
teddy bear, toy, ...} Target Image
Local Counterfactual
Explanations
Target Label . Conceptual Edit
e — cat
Inputs Outputs

Figure 1.1.2: Moo e Evvolohoyinic Eneepyaoioc yio EEnyfoeic ye Avunopdderyua [22].

auTd TO LOVTEND EENUPETIXG LoYUE oL EMOPEVS TO TLO EXPEACTIXG UeTadl Twv Taparhaydy. To GIN yenot-
porotel to Perceptron molhomhodv emnédwv (MLP) xau tn cuvdptnon adpolopatoc we cvoowpeuth. Ta xdide
eninedo, oL evowpatioel xoufwyv adpoilovton xaw To anotélecpo cuvevavetal. ‘Etol, 1 exgpacuxdtnta tou
teleoT] Tou adpoioyatog cUVBLALETUL PE TN UVAUT TWY TEONYOUUEVWY ETUVIAAPEDY YPNOLLOTOUIVTIG GUVEV-
waon. Ioapdho autd, Ya meénel vo Exouue xatd vou 6Tl 1 ewentn] Loyt Tov GIN dev eugpavileton ndvta oty
TEAEN.

1.1.3 E&nyrocic pe AvTinopddelypo

O e&nyfioeic pe avunapdderypo (counterfactual explanations) otov topéa tne Eneénynowotnroc otny Teyvnts
Nonpootvr (explainable AI) otoyebouy va ddcouv wia e€fynom yio to "Tu Yo npénel var ahNEEeL Tpoxeévou
To wovtého vo AdfBel pla dlapopetny| amdgpacn". Emnouéveg, umopolv ouclaotixd va e€nyroouv npofBiédeic
HEUOVOUEVGY TIEPLTTMOEWY, OTOU oL ATiEC TOU TPOPBAETOUEVOL ANOTEAECUATOC EVOL GUYXEXQPLUEVES THIES Y opOX-
PO TV avThg NG Teplntwong. Eivow avtidetinée xou emhextinée, mou onuaivel 61t Peloxouy T ehdyloteg
ahhaYEC OTOV YWeo TwV YapaxTnewoTixwy. Tautdypova, elvar edxola xatovontég and Toug oavlp®Tous XoL
ouvidwe TPOCPEPOUY TOAMITAES SLopopeTixés amavTAoELS Yior TNV (Bia tepintwon mou Ty e€nyoly e&loou xald.

Conceptual Edits as Counterfactual Explanations - Evvoioloyixr] Enciepyacia yvie EEny7-
oElg UE AVTITAPABELY O

H Souvketd awth| eunvéeton amd xou Beloxel egappoyn otnv tpocéyyion mou topouctdletal amd Toug Phavdptavodg
xaw hotnol [22]. Ot (Biot tpoteivouy éva Yewpntind TAAGLO Yio TOV UTONOYLOUS TWV EENYAOEWMY PE AVTLTAUPADELY oL
péow evvololoyixwyv eneepyactwy. ‘Evvoleg ovoudlouue T YEVIXEC OVAMUPAGTACELS TWYV OVTIXEWWEVGLY TOU
undipyouv ot dedouéva e1oddou xar cuvdéovtan pe tepopyx)) eEwtepinf Yvoon and to WordNet [58]. To
neplypoupa Tou napouctalouevou Tthaciov Teplypdpetar oto Lyuo 1.1.2.

Etvon eudidxplto 6Tt to wovtého padpou-xoutiol Tou Yenoulonoleltal oe auTthy TNV e@apuoyy| elvon évoc Tol-
vountg, o onolog xatnyoplomolel Tig exdveg amd To cUVoro dedopévwy COCO avdroya ye tov TOno duwyatiou
nou anewxovileton. 'Etot, anavtdton 1 epdytnon "Ti Yo énpene vo cdddEel dote xdm va tadivoundel we X ovti
v Tr.

Yuvolxd, o utoloylouds Twv counterfactuals cuvendyetou:
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Figure 1.1.3: Anéotaon Eneepyooiouc petald duo Tpdgpwv. [4]

To ehdytoto GED anoutel 3 Aettoupyles enelepyaocioc xat €dv dheg Htav e€loou otadutouéves N tih Tou Yo Htay 3.

o Elpeorn e andotaong etald AWV TeV TOpOVTOY EVVOLKDY XENOHLOTOLOVTIC To CUVTOUOTERH (LOVOTIATIOL
070 un xatevuvouevo Yedpnua tepapylog evvouwy - TBox - mou haufBdvetan ye Tov odydprduo tou Dijkstra.

e Trnoloyiopd tne anbdotaons enelepyaoiac twv ouvéhwy evvoudy (Concept Set Edit Distance) and to
€va. aUVOAO EVVOLWY GTO Ao yYpemotwomoudvTag Tov aiyoprduo tou Karp yioa tnv miven avtiotolylon
ehdylotou Bdpoug. Autd amoutel TV xataoxeur] evdg TAREOUC Siuepolc Ypapruatog and To 500 GUVORa.

o Ann tomxdv e€nyfoewy pe avTimapdderyua Beloxovtag To GUVTOUOTERO LOVOTIETI GTO HOY) XATUOXEVAO-
wévo yedpnua (yenowomouwdsvtog Zavd tov ohyberdpo tou Dijkstra).

)

H ouvelspopd pag oe auth Ty npocéyyion elvon Sithf: 1) yerion tne Soudc Yedpou mou Teptypdgel Tic oYETELS
METOEY TOV CUVOAWY EVVOLOV Xou ETOUEVLC Elvor o Thovola avomopdotooy xou ii) edpeon Twv mo SpoLwY
Ceuy v Betypdtov elo680L Xol ETOUEVDS WOVO UTOAOYLIOHOS TV TEOTOTOGEWY Yol auTd tar Levyn, T omola
Yewpolvton ehdylota. Puoixd, ta mo nopduota Levyrn hauBdvovtar pe yeron GNNs.

1.1.4 Oporotnta I'pdypwyv

H Opotnra I'pdpwy ¥ Avtiozoiyion Ipdgpwy oplleton wg 10 mpdBAnuo eVpecng opoloThTwY PeTall Ypopr-
pdtwyv, dnhad edpeong avtiotolylong s : G x G — R yio éva (ebyog Ypd@wy, YoeaxtTnelo TAS ToU TOG0 GUOLoL
N avopotol eivan. H Axpipris Avriotoiyion I'pdgwy eivan ovolactixd to npdPfinua touv Ioopopgiouot Ipdewy.
Qotéoo, 1 axpPric avtiotolyion dev elvan mdvtor duvatr. T mopddelyua, o yeophuata Yo unopodoay vo
€y ouv dlapopeTixols aptipolc xouBwy N axuody 1 vo Stadétouy yapoxtneotixd. Autd to mpdBinua opiletar we
Avaxpipnig 1) Avextixr) oe XpdApata Avniotoiyion Ipdpwy xou cuvendyetar thy €0pean tne xahitepne duvatic
avtioTolytong.

H Ardotaocrn EncEepyaciog I'edpwy A GED [74] elvar avoxpPric texvinh xou opileton mopoxdte. H
GED vou Ledyoug ypapnudtony Gy xou Ga ocupPohileton wc GED(G1, Ga), ol hertovpyieg encdepyaoiog elvan e;,
10 x60T0¢ TOUC elvan ¢(e;) xou P(G1, G2) umodnhdvel To 6OVORO Twv dladpopmy eTelepyaciog TOU YETATEETOUY
TO TEOTO YPAPNUA OE LooUop@xd Tou deltepou. O Aettoupyleg enelepyaocioc nepthopfdvouy Ty elcaywy,
Blorypoupr| xot AV TIXATAGTACY XOPUPEV XaL UMY X0t TO x60To¢ Toug xodopiletar and tov yerhot.

k

GED(Gy,G) = i ; 1.1.7
(G1,Go) (elweglelg(ch%)EC(e) (1.1.7)

H GED eivou évo unohoyiotixd oxe36 NP-d0oxoho npdBinuo. Axdun i n tpocéyyiot tou elvon etvan d0oxohn
pe amotéheoua va pmopel vo Yewpendel mwg avixel oty xatnyoplor tohumhoxotntog APX-hard. 'Eyouv un-
Gp€el moANEC TROoEYYIoTIXES AUGELS TOU ETULTUYYAVOUY xUPBEC ToluthoxoTnteg oty mhelodnpla Tous. Euelc
Yo yenotwonoooupe Pl Tohd Yvwo T tpocéyyion mou Bocileton ot diuept| avTiotolyion yYedpou péow Tou
oahybprduou exydenonc Volgenant-Jonker [18].

Ot ITuprveg T'pdipwy elvar GUVOETACELS TUPTIVOL TOU YENOLWOTOLOUVTAL O YRAUPNUOTA, Ol OTOIEC UETEOUY TNV
OUOOTNTA TOUG O TOALWYLUIXS Yeovo. Tlopéyouv Wa amoTEAEOUATINY, EXPEACTIXNG %ol EVPEWS EQPUOUOCULT
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1.2. Tlpotewvépevo Movtélo

Figure 1.1.4: Toapaderypatixny Anewdvion tou Kernel Trick [38]

evahhaxtin) Moo oto GED.

‘Evog detind oployévog muprivag oe éva un xevo olvoho X elvon plor ougpetewr) ouvdptnon K : X x X — R
dedopévou 6tL 1 1.1.8 toylel, 6mou x; € X, n € N xau ¢; elvon mparypatixol aprduol. Yuyvd yiveton didxplon
peToll Yetind optotiopévey (p.d.) Tuphvwy yio Toug onoloug toylel LbVo N LodTHTA Xt VETIXE TU-OPIOUEVKY
(p-s.d.) muphvwy yia Toug onoloug toylel To avtideto. e auth T dtpBr, Yo dicpeuvicoupe TévTe pedddoug
TLUETVOL YRAPWY, TEELC ON6 T OTOIEC UTOPOUY VAL YELELOTOUV YRUPHHUATO UE YOURUXTNRLOTING XOUBWY.

zn:i:cich(xi,xj) ZO (1.1.8)

i=1 j=1

1.2 TIlpozewvéuevo MovTéro

1.2.1 Xuvelcpopd
Ot ouvelogopéc autric e dimhwpatixnc epyooiagc elvo ToAamhéc xou urnopoly vo cuvodLoToly we e€hc:

o Xpnowonololue to mpofBinuo e Ouodtntag Fpdgwy yio va e€epeuviiooupe Lo Thnddpo mopohhoy v
Nevpwvixoy Axtiwv I'pdgwy xou ev obveyela va yenotlomoticouue pepixéc and Tig o xuplapyes o
BiBhoypapio yior TRV avtiwetodnion tou. Eoudloupe oe cuveltind povtéla, ta omola cuyxpivovrol
HETAED TOUC XU EMOUEVIIC, CUVAYETOL 1) EXPEUCTIXOTINTA X0l 1) ¥PNOWLOTNTA TOU Xodevoc.

e H yprion GNN vy v avuyetonion e Avuotoiytong Iepdgov elvon gl apxetd npdopotn mpoceyylom.
To peyahltepo pépoc e BBMoypapioc emxevtpdveTal oe un veupwvxée puedddoug. Avtideta, avth 7
epyooia mpotelvel TN yenon woviéhwv GNN, nou npdogpata Beloxovial 0To enixevipo Tne Tpocoyng, o)L
HOVO Yol TN GOYXELOT YRAPNUATWY OANS %ot Yot THY oy YT ONHAVTIXGY avamopactdoewy. H npocéyyion
poc Eemepvd Tic xhaooxée Pedddoue TOG0 ToLOTXE 60 ol TOGOTIXA.

o H clyxpion xou 1 opoidtnta Yedpwy oxnvig eivan wa véo epyacio. H BuiBAioyeapio yia ypdpoug oxnvic
ETMUXEVTPOVETUL XUplwe oTY dnlovpyid Yea@nudTwy, oTNy avdxtnor xelévou 1 oto VQA.

o To cUYXELTIXE OTOTEAECHATO TTIOU EEAYOVTOL YPNOWOTOLOUVTAL TEAXE VLol TNV TapaywYY eENYHOEWY UE
avTinopdderypa. Ané oo yvwpiloupe, dev undpyel Tponyoluevn BiBAloypapio Tou vor cuVBUELEL AUTES TIC
TTuYEC oTOoV Topéc Tou explainable Al

1.2.2 Movtého GNN

To GNN povtého nou mpoteivouue axoloudel To meplypopua tou napouctdleta oto oyfua 1.2.1. H elcodog
anoteheitar and Lelyn ypdpwy oxnvic ta onola ot cuvEyela uoBdilovTa ot enelepyaoia omd TAVOUOLOTUTA
povtéha evonudtwone GNN. Autd ta povtéha anotehholvtan and otolBoypéva eninedo prog mogodhayhc GNN
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L | @
GNN Graph
—> Embedding _’Emgc:jdde' |—b Global Pooling —» Embedding P
L model =N HEOONIOS (hg1)
. - S
Distance r
Computation GED
. » llhgy - heall 2
¢ . GNN Graph /
—>» Embedding > Nodg |—> Global Pooling —» Embedding
¢ Embeddings
model (hea)
]

~ Graph Embedding Extraction _#

Figure 1.2.1: Ilpotewvépevo GNN povtéro yia tnv Opootnta edguwy Xxmvrg.

o€ oUVBUNOUS UE GAAOUE TUTOUG TUTIXWY ETNEDWY OTwE Evepyomolnong, xavovixonoinong xou dropout. To
povtého GNN mopdyel evowpatdoelc oe eninedo x6uPou ol onoleg pe ) oepd Toug derypatiovton yio T
onuovpyio xaoAMXOY EVOWUATOCEWY YRAPNUATwY. 'ETol 0AoxAnp®dveTol T0 TEMOTO UEEOC TOU TROTELVOUEVOU
povtélou mou extelel TNV e€aywYY EVOWUATOOEWY GE EMNEdO Ypdpou. Autd Va YpnNolloTOGOUUE TENXE Yial
VoL eEAYGYOUUE TLC EVOWHATMOOELS YL OAAL TA YRAUPTUATO TOU GUVOLOL Bedopuévwy. To {eldyog TwV EVOWATHOOEWY
(ha1, ha2) yenowomnoteitar oty cUVEYELR VLot TOV UTOAOYLIOWS TG ambéoTtaons UETOED TeV BlovUoUETLY Xal XoTd
GUVETELX VLo TNV TEOPBAEdN WS TYWHAC TOL OVTITPOCWTEVEL TNV UTOAOYIOUEVY anbdoTacT enelepyaoiag Yedpou.

H Swduaoio exnaideuong tepthapBAavel Ty tpogodoacio evoc wixeol utocuvélou LEUYMY YRAPWY GTO HOVTENO,
TOV UTOAOYLOMO NS amoAElaC YETAED Tng UToAoYLoUEVNC andoTtaonc €600 xaL TNG TEOYUOTIXAC AndoTaoNG
eneepyaoiog yedpou xou TNy ex véou dLddooT TNg U€ow Tou dixthou. Auty 1 dladxacta dlaxdnTeTon UETY and
€va oploévo aptdpd enoymy, tou xadopilovtar and tov yeRotn. Metd tnv ohoxifpwon tne exnaidevone, 6ia
Ta ypaprdata tepvoly yepovwpéva péow e Evotnrac EZaywyhc Evowpatdoewy Iedgwy. O mopayodueves
EVOWUATOOELS UTOROUY VoL GLYXELWOUY YENOULOTOLOVTAS OUOLOTNTA CUVTULTOVOU.

To Movtého Evowpdtwong GNN eivou 1 xapdid tne vAonoinong. Xta Lyfuata 1.2.2 xon 1.2.3 ynopolye
vo. BoUue pLo o Aemtouept| TeoPBolf) Tou oyedlaopol tne tapoddoyic GCN/GAT [41, 83] xau tne mopodhayric
GIN avtiotoiya. Ko otic 800 nepintdioelg, unopel va UTdpyel Wior oelpd amd movopotdTuTa enimeda, ahhd ol
dlaotdoels eloddou xau e€680u toug nowihhouv. Ta enineda oto 8.2.2 anotehovvran and cuveliZeic GCN 1} GAT
nou axohoutolvtal amd TN cuvdptnon evepyonoinone ReLU. Ilpootétoupe enlong dropout, nou npocpégetl
duvatdénta "amevepyonoinong” veupdvwy pe mdavétnta p mou xadopileton and Tov YENOTN, TEOXEWEVOU Vol
anogeuyVel n vrepmpoooppoyf. H mogodhayh GAT anoutel mpdodetn npocoyy| otic daotdoelc optopol. Adyw
e xerone multi-head attention, ol Swotdoeig eloddou toloamhacidlovTa Ue Tov apliud TwY XEPUAGY ot xdie
otpiuo. H mapoddoyn GIN éyel mo nepimhoxn apyitextovixr. Suyxexpiéva, 1 ouvelEn tou GIN omoutel to
oxedlaopod evoc poviéhou MLP yio tny exnaidevon tne nopopéteou Bdpoug Tou xevtpeod x6ufou tne cuVEMENS.
‘Onwe gaiveton 0To OYHUL, ATOPACIOOUE Vo YENOLWOTOHoOUKE 800 BlaBoynd TAfewe cuvdedeuéva enineda oe
ouvduaoud ye Aettovpyleg evepyonoinone ReLU, to nptto and ta onola nepléyel enlone xavovixonolnoy noptidag
(batch normalization). Autéc ol emhoyéc Tav eynvevouéves and T dnpooicuon tov napousioce to GIN [101].
Ye auth) v epyaoia, otolBufav 5 TAVOUOLOTUTIOL CTEMUATI TOU TEQLEYOUV TOL TEOAVAPERUEVTA CUGTUTIXG, EVE)
eUElC EMAEYOUYE VO TELPAUATIGTOVUE PE TNV TOGOTNTA AUTEV.

Eivou agloonueinwto 6t oL evonuathoeic xOufny mou napdyovton and xdle atpmua tou poviélou Evowpdtwong
GNN ocuvevdvovto mptv detypatoangdolyv.  Auth elvon plo mtpoondielor Slatenone neplocodTepwy TANRO-
(QOPLOY IOV GLYXEVTEOUMMAY XaTd TN Bidpxeta Tng Sladixactiog xo xatd cUVETELN SNULOVEYINC TLO EXPEAUC TLXWV
EVOWPOTOOEWY Ypdpwy. Ko npaxtinf yenowonoteiton enione oto [101].

To Global Pooling nou ypnowonoteiton yio 1 SelyUotoAnNla TwV EVOWUATOOEDY X0pUPEOY Tou eEdyovTal
and Tig mopahhayéc GNN Sagéper avdhoya pe to poviéro. T 1o GCN/GAT npotwhdnxe to yéoo - average
pooling, eunvevopévo and to [79], eved v 1o GIN emhéCope vo adpolcoupe TS EVOWPUTOOELS XOUBwY 6Twe
Tpotddnxe amd TOug BNUIOLEYOUS TOU TEOXEWEVOU Vo aLENCOUPE TNV exppacTtixotnta. ‘Oleg ol mopomdve
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1.2. Ilpotewobuevo Movtého

GNN Embedding model/

Figure 1.2.2: Yyeduopdc govtéhov pe tic napahhayéc GCN/GAT.
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Figure 1.2.3: Xyediaoudc poviéhou pe tnv mapohhayr GIN.
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Table 1.1: Ytatiotxd I'edgpwvy

Méocog 6poc Min Max

ITuxvéTnTa 0.20 0.14 047
KoéuBot 7.25 6 15
Axuég 9.04 5 36
Anopovouévor KouBor 047 0 3

Aertoupyieg extelolvTal xahbTepa o€ TOETIBES YLot AOYOUS OMOTEAECUATIXOTNTOG.

H dwdixacio E§aywynic Evooudtwcewy I'edgouv axolovdeiton and tov unoloyloud tng andotaong
HETAED TWV SLVUOUATWY TEOXEWEVOL Vo Tiparyatortoindel naAvdpdunorn. H andotaon twv Siavuoudtony optleton
we M vopua Lo tne agoipeoric toug. Auth 1 pédodoc ypnowonomidnxe enione oto [5] nou ennpedlel dueca v
TPOGEYYLON poc, poll e Ty apyLtextovix xou to oTul exnaideuone nou npoteivovtaw oto [79]. H yperon
e anwieloe Méoou Tetpaywvinol Sgdhuatog pall pe oautiv T ueTpr andotaong odnyel oe yio Tey VXN
Tou ovopdletor Multi-Dimensional Scaling (MDS) nou yperowonoteiton yio pelwor diaotdoewy. Etot, o
anootdoelc diatneolvton Ye peyohltepn axpelfBeta.

H Swidixaocio exnaidevong ohoxinpwveton petd and npoxadopiouévo optdud emoywdv. H mhéov exmandevyévn
povédo E€aywyhc Evowpathoewy Ipdgou yenowwonoteiton yiot T0V UTOAOYIOUS TWV EVOWUITMOEDY YLt OAAL
To ypapruote. AuTéC Ol EVOWPATOOELS UTOpoUY o011 cUVEXELL Vo cuYXpliolv we xhaotxd Stovhouota yenot-
HOTIOLWVTOC TNV OUOLOTNTA CUVTULITOVOU.

To yovtého umopel vo exToudeUTEl UE OTOLOBATOTE PETEO OUOLOTNTOC YRAPAUATOS. 2E QUTHY TNV Tep(mTwon,
yenowonololue tnv GED nou Aopfdvel unédm 1600 1 dour) 600 xou TN onpactoloyla Twv (EUYMY YRoU@NUATWY.
Elvon enlong xohd oplopévn xou Be YeNOLLOTOLEITAL OE XETOLO GUYXEXPLEVO XAADO.

1.3 Ileipapotixd Mepocg

1.4 30voAlo Acdopévwv xau Metpixeg

To cOvolo BESOUEV®Y TOU Pag TOREYEL TOUG YRdpPoug oxnvig oe auTh 1 SwtelBr) etvan to Visual Genome
[44]. To Visual Genome eivon eni Tou napdvToc 10 PEYOAITEPO GUVONO DEDOUEVLV TEQLYPAPHOV EXOVWLV, V-
TIXEWEVOY, YOROXTNELO TNV, CYECEWY %ol (EUYHY AMAVTACEWY EQWTACEWY xou TepEy el v and 108K ewdveq.
‘Olec o mpoavagepieioec ovtoTATEC TOL PTOPOLY Vo xavovixomolnldoly €youv avTioTolylotel oe chvola Tou
WordNet.

Io authy Ty epappoyn, xenoylonotolue éva uTtocivoho 500 yedpwy omd Ta YLALEBES YEUPHUATO TOU oRYLXOU
ouvohou dedopévewy. To civoho Twv yeapnudtwy éywve cupPatd pe to WordNet [58].  agoupddviac dhoug
Toug x6pPBoug 1) TIC axpéc Ywelc Ta cUVola Tou Toug €xouv exywendel. Optopéva GYETIXA GTATIOTIXG oTOoLyE o
Beloxovton otov Iivoxa 1.1.

O yédodol mou Yo yenoonondody Yol TNV AVTWETOTLGT] TOU TEOBAUATOS TNG OUOLOTNTAS YEAPWY UTOVETOUY
™V UopEn YAUeaXTNRLoTIXGY xOUPwv Yo To Ypaghuata. H mnyh twv yapoxtneiotindy yio toug xépfoug tev
yeapnudtev fray eniong Véua meipopationol. Adyw Tou YEYOVOTOG OTL TOl ETIOMHUO YRUPHUATA OHXNVAC TOUL
Visual Genome 0ev nepthaufdvouy yopoxtneloTxd x6uBou 1 ouy, To yopaxtnelotxd emaéydnxe va elvan
TPOEXTIUDEVUEVES EVOLUOTOOELS. Ev Télel, Boxudotnxoy oL EVOWOUITOOELS TNG LEpap)iC OUCLIUCTIXWY TOU
WordNet yenowonowdvtoac path2vec [46] tou exnoaudedtnxay otnv opodtnta Wu-Palmer [98] npoxewévou va
pundolv Tic ecwtepxés Aettovpyieg tne Baowhc ahfielag xadde xou to YVwotd otov Touéa tne Encgepyacioc
Puowfic Mhdoooc GloVe Embeddings [67].

Acebdopévou 6Tl oL yédodol mou Vo SoxacToLY Topdyouy AMoteg xatdtalne 1 TEOTACELS YE TIC TLO TUPOUOLES
ELXOVEC YLoL EVay BEBOUEVO OTOYO, ATOPAGITTNXE VO YENOLUOTOINDOUY Ol TUEUXATE UETEIXES YLOL TN CUYXELOT] UE
T Baower aifdeta:

e Hit Percentage / ITocooctéd Emituyiog - Auth 1 petoxt| ovTinpoownelel 10 Y€0O TOC0GTO TV
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1.5. Tlepiypapn Iewpopdtwy

OOV TPOTAGEWY PETOED TwV xopuaiwy k amotekeopdtov yia xdde eixdva.

e Rank Biased Overlap (RBO) / MepoAnntixr Enuxdiudrn Katdtagne [87] - Anotehel pétpo
oUyxptone Tavounuévmy AMotdv tou uropel va ypnowtonomdel yio nuiteleic taivourioels, va YelptoTel
Ny anousio GUVEPELNS - UTIoEE N SLaPope TV aTolyElwY aTig Vo Badpohoyies xou va anodnhaoel ueyohiteen
onuacio oe vPnhoTepeg Paduideg, dvtag povotovo ue aviavduevo Badog agloAdynong.

e Normalized Discounted Cumulative Gain (NDCG) / Kavovixonowmuévo ITpoeZopin-
wévo Adpoioctixd Képdog [86] - Ilpdxeiton vy uétpo mou ofohoyel v mowdtnta e xatdrtodng.
Baduoroyel v o&la e obotaong evéc otoiyelou oe pio ouyxexpuévr Héon, otaduilovtac ta otolyela
vdnidTepne xatdtadng TEpLoGOTERO.

1.5 Ilepiypopn Ileipopdtwy
Boaowxey ANfOeia

INo va a€lohoyndoldy to anotedéopata TV YoVTEAwY mou Yo yenotponoindoly, meénet vo xodoplotel éva
TOCOTIXO UETEO X0 XATE CUVETEL Vo xotaoxevaoTel 1 Boaoin) odfdelo. e autiv v meplntwon, 1 Baoun
olfdeta Yewpeiton bt elvon évag mivaxos Twy anootdoewy enelepyacioc yetald xdde Ledyous ypopnudtwy oto
ocUvolo dedouévev. Autodc o mivaxas TopEYETOL YENOOTOLOVTOS (o TPocéyYlon Tou axpBolc Alydpriuou
EneEepyaociac Andotaong I'edpwv nou Pociletor otn depr| aviloTolyion Yea@nuatog Y€cw tou ahydprdpou
exywenone Volgenant-Jonker [37]. To xéotoc ewoaywync, Slaypaphc xor avTXatdo Taone xOuBey /oxuoy ut-
ohoy(leTtol ¢ 1 And6GTACT PETAED TWV AVTIXEWEVGY TOU AVTLTEOoKTEOOLY €vay xOufo 1) axyuy, 1 onolo oplleton
and TNV evvolohoyxt| toug andotact oto yedgnua WordNet Thox énwe mpoteiveton oto [22]. H ulomoinom
Tou alyo6prduou, Tov omoio Ya ovoudooupye BIP-GED, mapéyeton and ) BiBAodrxn Deep Graph Learning tng
python - DGL [84].

shirt

collar

=,

coat 3

\ ey, |

tie WEARING man

beard

i

Figure 1.5.1: Ewévec ye xowvolg ypdpoug oxnvrc.

I vo miotonowdel 1 towdtnta tov BIP-GED w¢ uétpo opoldTnTag Xou ETOUEVKS 1) ETLAOYT HOC VA TO XeNol-
ponoljooupe we Paowxr) arfdeta, Tapéyouue pepxés vodelrypatiée emodves. H pédodoc auty ebvar oe 9€on va
npoadlopioel 6TL 1 andotaoy enelepyasciaug V0 LooLopPOY Yedpwy elvar oty mpaypatedétnta 0 1.5.1. And
t0 oyfua 1.5.3 xataraBoivoupe twe to BIP-GED bivel mpotepoudtntal 1600 TN SOUXT] OROLOTNTO 6C0 Xal OTH|
onpactohoyio Hote vo topdyel aflOTO T ATOTERECUTA Yot TNV ELOAOYNOT TOU HOVTEROU HOG. SLUYXEXPULEVD, |
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

sheep tile
sheep tile
sheep %

\f\\m

sheep tile

sheep

tile

Figure 1.5.2: Iopddelypo avOpolmy eiXOvmy.

EUPOOT) OTY) ONUACIONOY (O TWV AVTIXEWEVWV Xl TV OXECEWY AMOBEXYUETAL XL amd TNV exdva 1.5.2, dmou evdd
oL 800 ypdepot eivon Souixd xovtd, Toug amodidetan peydho GED oxop piog xou tor ameixovi{oueva avTixelueva
elvon TOAD paxptd oty epapyia WordNet.

Medodol ITupHva I'pdgpwy

Aedouévou Tou 6Tl 1) empatoVoo LEYOBOC YLol TOV TEOGOLORIGHO TNG OPOLOTNTAS YRAPWY elva HEoe TUpTvVKY, ot
ax6hovdol Tupriveg BOXUACTNXAY GTO UTOGUVOAO TWV YRAPwY Yog yenotponoidvtag tn Bihodnixm tng python
GraKeL [77]: nupfivee pe dedouéva mou éyouv etixéte 6mwe o nuphvae Weisfeiler-Lehman (WL) xou o nuprivac
Pyramid Match (PM) xadée o mupfivee yia ypdpoug Ye yapoxtnplotixd nwe to Propagation Attribute (PA),
1o Subgraph Matching (SM) xat to GraphHopper (GH).

Sto Uyfjuarto 1.5.5, 1.5.6 éyoupe mapdoyel pepnd mapadelyato x0puPaiwy 5 amoTEAEOUITWY TOU TaEdYOoVTAL
anéd tic mévte pedddouc muphva, oe olyxplon ue v ohfdela. ‘Olec ou édodol ayvoolv tnv 1déa tng ov-
TohOYWAC opolotnTog Tou mapéyetar and to WordNet xou mpotelvouv mapopoia amoteréopota.  Ou pédodol
TOU YENOWOTOLOVY YaeaxTNELoTixd avtl yia eTixétec Sev golvetal Vo a€lOTOOUY TIG LEPUPYIXES EVOWUATMOELS
path2vec anoteAeopatind. Xuyxexpéva, and to oyfua 1.5.6 galveton 6Tt éva o olvieto yedgnua odnyel oe
ATEOCOONNTA ATOTEAECUATO XA MO TOTOE(TOL OTTIXA 1) XaAY) enidooy tou muprivae PM xan 1 xon enldoon tou
GH, énwg Yo gavel xou TocoTd.
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1.5. Tlepiypapn Iewpopdtwy

Figure 1.5.3: Kopugaia 4 anoteAéopata yio yio edvo atoyo Yenoylonowwvtac 1o BIP-GED
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Chapter 1. Extetapévn Ieplindn oto EXAnvixd
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Figure 1.5.4: Ewxoéva dvtpa oe cavida Tou ogp@ xou avtiotolyog Yedpos oxnvig.

Movtéha ue GNN

To mhaioto mou mepLypdpetar oto 1.2.2 xwdixomoiinxe oc Python yenowwomowdvtag t BiBhotxn exuddnong
oe ypdpoue Pytorch Geometric [21]. H Boowr| apyrtextovixs| tou aneixovileton oto oyfua 1.2.1 xodepddnxe
%o oL ETLAOYES Yio XA oToLyelo aNOTENECAUY UTERPTAUPUUETPOVG.

Ta nelpdpato tpayuoatonotdnxoay Eeywetotd yio xodeuio and tig tpelc mtaparlAoyeg nou eletdoaue - GON,
GAT xar GIN. ¥e xdde extéleon uTApy oV OPIOUEVES XOLVES UTEPTUPAUETEOL TPOS TEOCOLOPLOUS, OTWSE O oe-
WHoOG TV ENOY®Y, To wEvedog noptidag, N mdavotnta dropout xol ot StacTACELS Ko O
aelOUOG TV CLUVEAMXTIXOY OTEUdTwY. ‘Ola to povtéla Behtiototoidnxay yenowonowdviac Adam
xan amwielor MSE npoxewévou va emteuydel Ilohudido tatn Khpdnwon. 'Etol, mewpopotiotixoue enlong e
TG ToPOPETEOUS Tou BeATiotomonTy, dnAady Tov puBUS wddnong xu v anocLvdeor Bdpoug. M
onpovTiX emAoYn yio o wovtéda Rtay enione o oelddg TEoTmoVNTIX®Y {EVYAPLOY TOU ENPETE Vo
yenowonomdel yo Ty npocoppoy touc. Ot tipée Tou yernowonotfioaue datnednxay austned xdtw and 10%
TOU GUVOAOU BEBOUEVLY, OYL HOVO YLo var Slatnen oy uixpdTtepol Ypdvol extaldeuang, ahAd xou YLo VoL amodeLy-
Vel n wovotnto twv povtédwv GNN v dnuioupyolv évay xahd YOeo EVOWUATOONG YETOHLOTOWVTIS HOVO EVal
Hxed UTOGUVONO TV YRAPWY GHNVIG.

H emhoyn TV dpyxdy YoAeaxTnelo TixdyV Yo Toug xoufous yeoaghuatoc anoteAel enlong uépog e Ot
auOEPWONE Tou wovtéhou. ‘Onwe avapépUinxe TEONYOUUEVKCS, TEWRUUATIO THXOUE UE EVOOUATMOEL CUVOAWY TOU
npogpyovtan and to WordNet yenowonouwdvtog path2vec xoddde xou evowpatdoeic GloVe nou nopdyovton pe
Bdon v éa Tne ouv-ep@dvione AEewv oe Sudpopous TOToLE cwudtwy. Télog, oplouéves and Tic mopahhayég
TIOV YPNOLLOTOLOUVTAL €YOUV UTEPTAPOUETEOUE EWBES Yiot TNV apyltextovix Toug. [o va elpocte mo oxpeiPBeic,
ol mapahhayéc GAT nou yenoiponololy mpocoy” TOAATAOY XEQPUAGY AmalToLY TNV emA0YY Tou dpliuol Twv
XEQPANDY, eved ol maporhayéc GIN npoo@épouv tny emhoyy va elvon exmtoudedolun N Oyt 1 TAPIUETEOG
Bdeoug e.

1.5.1 AmoteAéopata
ZOYxELoN TAEAAAXY WDV

Ipdtov, avopépouye amoteAéopaTo Xou cLYXELITXES Tapatneroelc petald woviéhwv GNN ue Bdon tic nopoh-
AYES %ol TLC UTERPTUPUUETEOUC oL Ypnoulonotobvtan. Amd autd To onpeio xou petd, Yo avopepduacTe oto
TpoTeEWVOPEVO HovTéro we GNN-COMP énou to GNN unopel va elvor onoladhrote and Tig TEELS TopahAXYES -
GCN, GAT 7 GIN.

14



1.5. Tlepiypapn Iewpopdtwy

Figure 1.5.5: Kopugaia 5 anoteAéopata edvog UE XOTEBL TEOBATWY YENOWOTOUIVTC TURTVES YEAPWY.

H Baow akfdeia xuxhdveton ye xoxxivo optoydvio. Ol npoPiédeic twv uedodwy nuphva axorovdolv tn oeipd WL-,
PM-, PA-, SM-, GH-kernel ané ndvw npoc ta xdtw.
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Figure 1.5.6: Kopugaio 5 anoteAéopota eixovog Ue dvTpa o€ cavida TOU OERQ YPNOLOTOWVTAG TURTIVES
YodPpwy.

H Baowh ahidetar xuxhdvetar ge x6xxivo opdoywvio. Ot ntporédelc twv peddduv tuphva axolouvdolv ) oetpd WL-,
PM-, PA-, SM-, GH-kernel oné ndvw npoc tar xdtw.

16
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Figure 1.5.7: Kopugaio-10 anoteréopata nococtol emtuyiag olu@wva Ue dLipopes TapaléTooug.

H mpotn nopathenon mou €yve frav 6Tt o apldude twv emnédwv GNN éyel dueco avtixtuno otnv anddoon
TOU UOVTEAOU. TNV TEUYUATIXOTNTA, Ol DLUPOPETIXEC TUPOANAYES EUPAVIOAY BLOPOPETIXEC CUUTEQRLPORES OE
oyéon pe authy Ty vrepnapduetpo. To oyhue 1.5.7a napéyel anotedéouato tou nocootol emtuyioc (HIT-P)
TV x0puaiwv-10 ewdvewy yia xdde napahiayr yio oprdud emnédwv 1 éng 3, Sedopévou 6Tl dheg ol dAheg
unepnopdueteol elvar otodepéc. Elvon edxola avtihnntéd 6t ta oviéha GON-COMP Sev euvoolv tn atolBoln.
Ou napahhayéc GAT-COMP yevixd mopouciocay TopduoLs CUUTERLPORd, YE eE0lpeaT] TO HOVTELD 2 emnédwY TOu
omnolou ta amoteréopara ancixoviCovton oTo ypdenua. Xe avtideon pe ta 800 dhha povtéha, ol naparhayéc GIN-
COMP powvotay va topouctdlouy aunuévo nocooto emtuyiog 6tay o dpldudc Tewv emmedny EYLve UeYa)TEROC,
XYTL TOU CUUPWVEL UE TNV TEAXTLXY) TOU XENOWOTOLOUGE %ol 1) BNUOCIEUsT) TOL Lo YAYE QUTY| TNV TUEUAAAYT.

‘Ocov agopd dhkes uneprapopétpous, OTwe enoyés 1 aprdud tpomovnTxdy Leuyoptdy, 1 alénonf Toug odrynoe
oe xahltepa anoteléopata. ‘Eva mopdpoto edpnua toydel yia Ty adinon tev SlaoTdcEwY ToU GTPOUATOC.
Qot600, T0 dropout qoiveton 6Tl dev ypeetalotay. Autd ocuuPoivel emedr) Ta poviéha GNN-COMP Sev eivou
ETUPPETY| OE UTERPTROGUPUOYY), AOYW TOU Uixpol OYX0oU TwV mapadelyudtony exnaideuons. H obyxplion petald twv
evowpoathoeny path2vec xa GloVe we yapoxtnplotixa v x6uBwv tov Yedewy atoturwveto otov Ilivaxa
1.2. T'iveton cagéc 6T ta wovtéha GNN euvoolv tov deltepo TOno embeddings. T dheg T mopodharyée xau
TIC YeTpWEC, ol evowpatnoele GloVe odnyolv e xalltepn anddoor - xdtt mou dev elvan Sroucdntixd.

Téhog, 660V aopd TNy €epEUYNOT UTEPTUROPETEWY TTIOU AVTLOTOLYOVY Hovadixd ot xdde Lovtélo, TapéyeTol To
oo 1.5.7b. Xe autd to oyfua anewoviletar 1 anddooy twv yoviédwv GAT-COMP nou €youv exnawdeutel
ue 5000 Lebyn oe oyéon pe ToV optdud TV XEQUADY TOU YENOWOTOLOUVTAL ol Tov unyaviowd tpocoyrc. Aegv
amotehel ExmAngn To yeyovog 6Tl 1 alinom Twv xe@ahdy odnyel ot Bedtiwuévn andédoon. ‘Ocov agopd v
TopdPeTEo Bdpouc € Twv Lovtélwy GIN-COMP, mopaddiwe, odnyel ot yewpdtepa anoteréopota 6tav optleton
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Table 1.2: X0yxpion nococtol emtuylag uetoll ypapnudtwy ye evowyoatwoelc Path2vec xoau GloVe ye ta
xopugpata-10 anoteréoyota poviéhwvy GNN-COMP

WU-P Path2vec GloVe

HIT-P mRBO | HIT-P mRBO
GCN-COMP 0.212 0.1594 0.2412 0.1719
GAT-COMP 0.1936  0.1364 0.2088  0.1463
GIN-COMP 0.1518  0.0826 0.173 0.093

Table 1.3: Yuvohuxd aroteréopota xopupaiwy 10, 5 xar 2 TpolAdenv Yo Tic TOCOTIXES UETPIXEG.

Top-10 Top-5 Top-2

HIT-P mRBO NDCG | HIT-P mRBO NDCG | HIT-P mRBO NDCG
WL-KERNEL 0.1982  0.1574 0.5299 0.1656  0.1266 0.4984 0.101 0.0905 0.4614
PM-KERNEL 0.2032 0.1752 0.5299 0.1796  0.1547 0.4984 0.134 0.129 0.4614
PA-KERNEL 0.1646  0.1241 0.5272 0.124 0.0964 0.4958 0.077 0.0735 0.4591
SM-KERNEL 0.1806  0.1409 0.5272 0.1412  0.1144 0.4958 0.093 0.0845 0.459
GH-KERNEL 0.0714  0.0492 0.9999* | 0.0484  0.0363 0.9999* | 0.03 0.027 0.9999*
GCN-COMP 0.3142 0.2441 1.0 0.2476 0.1988 1.0 0.171* 0.1515 1.0
GAT-COMP 0.3046* 0.2367* 1.0 0.2324* 0.1935* 1.0 0.177 0.1555* 1.0
GIN-COMP 0.2704  0.2216 1.0 0.2228  0.1899 1.0 0.165 0.1595 1.0

Ta xalOtepa anoteléopata o€ xdde GTHAN Exouv €vtovn Yeapn xat To SETEPA XANVTERO ONUELDVOVTOL UE *.

oe exnaudedouuT), xdtl mou elvon wo dueor) avtigaon Ye Ti¢ mpocsdoxieg yag.

Aopfdvovtag unddm oha tar tpoavapepVévta dedopéva, elvon mpogavéc 6t to GIN éxel tn yewpdtepn anddoon
HETAED TV Topod Aoy Y GTay TapéyeTal uixpotepog aplduds Leuyopldy exnaidevone. To GCN xaw to GAT and
Y AN mAcLpd, mapdyouv apxeTd mopduola anotehéopota. Ilapd Tov titAo Tou w¢ éva and ta o LoYLEd
povtéia, to GIN dev xuplapyel Evavtt TwV amAoDGTERMY LOVTEAWY 6C0V 0popd Tic UeTEIXéC Tou e€etdlovTal.

1.5.2 3uvoluxn andédoom

H cuvohux anddoon twv poviéhwv GNN-COMP Beloxeto otov Ilivaxo 1.3, A&oloyhoaue tar yovtéha ye
Bdon to mocootd emtuyiag, 1o péoo RBO o 1o NDCG twv xopugaiewv 10, 5 xan 2 npotdoewmv twv Mo
napopolwy Levydy yedpny. To (Bl anotedéopata avagépovion €86 yio dheg Tic uedddoug mupriva yior e0X0AN
oUyxpton. To anoteréopoata GNN-COMP mou mapéyovton elvar Ta xaAUTERY ETUTELYUATA o xdde mepinTwon
ME DLAPOPETIXES DLUOPPWOELS Yiot xdie Topodhory ).

Apywd, elvan mpogavég 6T uetafl Ttwv pedddny TUEHVO YRUPHUATOS, O TUENVAS AvTIoTolylong TuEaidag
Eemepvdel oyedov xdde popd Toug dAloug. Qotéoo, ol Baduoroyiec NDCG mou npoxdntouy eivar oA yauniég
oe olyxplon Pe T dAhec pedddouc. Autd eivon o capic €vdellrn 6Tt Topdho Tou 1 oxeETUNOTATA TNS XATETUENC
elvon axplBric, ot Bardporoyieg mou mopdyovton dev avtxatonteilouv vy ahfdeio. Avtideta, n axpBadg avtidetn
ropotienon yivetar otny meplntwon Tou nuprvae GraphHopper. H xoxr tou andédoorn otic dhheg dUo petprioele,
oL oroleg €youv YeyoAlTERN onuacia Yl To TEOBANUA, ©OTHC0, ATOdEVIOUY OTL BV elvall XUTAAANAOG Yo QUT
To 8edopévoa.

Metagl tov pedddwy nou yenotwonoiovv GNN, to GIN-COMP eivar to hiydtepo wovd cuvolxd, TocoTxd.
Téoo 10 GAT— 600 xaw 1o GCN-COMP nopdyouv napdpola anoTteAéopata, Ue To xadéva vo elvon xohiTepo
oe dlapopeTinée tepintwoelc. I mapddelyua, to GCN Eenepvd 1o GAT t600 610 nocootd emtuylog 660 xou
oto yéco RBO vy ta xopugaio 5 xou 10 anoteréoporta, ahhd to GAT napdyel xohUtepes ton-2 npotdoeis. M
evllapépouoa napatrienon elvon 6Tt 6oo TAnotdlovue 6T Xopugaies GUGTACELS, TOCO TLO TUPOUOLES YivovTal oL
Badpohoylec twv GNN. Zuyxexpiuéva, 1 mapodioyn GIN xotagpépvel va gtdoet oxedov Tic dhheg 800 mopahhayég
oTNY %aTdToln TwV Tom-5 xou tehixd yiveton 1 xahltepn 6cov agopd 1o RBO Yyl Tic xaAtepes 2 ouotdoels.
IMopbého mou To GIN-COMP xotopépvel vo EeMEREOEL Tal AN LOVTENA OTLC XORUPALEG-2 GUCTACELS, 1) EXPEAUCTIXT
Tou d0voun dev Toviletan ot auTHY TNV epyacia 6mwe Yo tepyévope. ‘Onwe avapépetar ouyvd ot Bihloypapia,
N Jewpnuxr tou wavétnTa dev avtxatonteileton TévTa TNV TEEEN.
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1.5. Tlepiypapn Iewpopdtwy

Suyxpivovtac tig pedodoue muphva yedpny xo GNN, xatodfiyoupe oto €€ eVOLAPEPOV GUUTERUCUO UG TOV
Mivaxa 1.2. Axdun xou pe 2000 Lebyn exnoldevong, ta onofo anoteholy pévo to 1,6 % tou cuvéiou twyv Leuydy,
0 GAT xou to GCN uneptepolv tng xahbtepng puedddou nuprva 6oov agopd to top-10 HIT-P. Eivaw mpogavég
ot ta povtéda GNN xou 1 expoaoctixdntd Toug elvar éva toyued epyarelo oyoldtntac. oTt600, unopolue
enione va Tapatneiooupe OTL 1 xatdtaln dev elvon amapaitnTa Wovix?] 6Ty To UTocOvoho Ttwv Leuydy elvol
1600 Pxpod, dedopévey Twv Paduoroyidy mRBO.

Etvan acgaréc va molue 6t ot pédodor GNN Eenepvolv otatdepd autéc Tou muprva xal UTopolY Vo ETLTUYOUV
onuavtixée Bertioetc. T vo elpaote mo axpBelc, vrdpyer 11% adénorn tou nocootol emtuyiog oTic TOT-
10 npotdoeic petadd Tou xahlTEPOL Tuptva Yedpwy xat e pedddou GNN xa 7% avénon tou mRBO. To
GCN-COMP mapéyel 6y udvo axpiPBéotepec npofrédei, ahhd xou xohbtepn oyetnh xotdtolr. ‘Eyel éva copéc
TAEOVEXTNUA OE cUYXELOT UE TIC dAAeC mapadhayéc e e€alpean o xopupala-2 anotehéopota. AvopploBrnra,
ol Bodtuohoyieg mou emtuyydvovion pe Tic uetddoug GNN oe autiv v nepintwon elvon tohd mapduoles, Tou
onpalvel 6Tl oL emdooEL; Toug elvon oyeddY loeg. oTé00, Bedouévne Tne onuaciog TS TeEMxAC aviyveuone Tou
mo napduooy (top-1) Lebyous ypagnudtwy, axdun xou 1 napoixet| Bertiwon mou emtuyydveton and Tic dVo
SMhec mapahharyéc unopel var anodetyVel onpovtixd. Ltny meaypotxdtnta, 1 napohay’ GIN emtuyydver 2%
XOAOTERT TP60B0 PeTall Twv poviéhwy GNN yio v edpeon Tou (Blou mo mapduotou yedpou ue to BIP-GED,
ue Baduoroyia 0,154.

Eivou a€ioonueinto 6t dheg ot pédodor GNN éyouv téheto oxop NDCG, Eenepvidvtag OAeg Tic pedodoug muprva.
Avapéveton 1 ok} Toug anddoor) oe aUTH TN YETEIXT, XM auTd Tor HoVTERA elvon eXTTOUSEVPEVAL VoL LoV TOL
Ti¢ Badporoyieg opotdtnroc e Baoiic ahidetag xon €Tol var SnUoupyoly Lo TOAD TUEOUOLO XOTAVOUT).

1.5.3 ITototixd amoteAéopaTa

Télog, Ya e€eTdooupe OPLOUEVA OTTIXE ATOTEAECUATA TWV XUTATAEEWY TIOU TapdyovTal and To Tplal XahUTep
povtéha GNN. 3to oyfpa 1.5.8 unopoiv va Beetolv ol xopugaiec-b npoBrédelc yio Tig YVWwotés emdves aTtdyoug
ToL XoTadlo) TWV TEORATWY xou Tou avipdnou Tou xdvel aepy. Yrdpyel Yo oNUavTLXY dlapopd oTIE CUOTATELS
Tou mapdyovtol and Ti¢ ueddoug muprva Yedpwy. Ta xopugala anoteAéopata eV xUPLAEYOVVTUL Und EXOVES UE
10 (Blo avtixeipevo. H epapyia ¥ n onuacioloyia nou yenowwonoleiton yia tnv xataoxeur tne Bacuenc ahrdelog
avtxatonte(leta enlong ota anoteréopota and 1o GNN. o napddetypa, oto oyrue 1.5.8a cuviot®vTal edveg
HE TapoUoLaL Yapruata, ohhd BlapopeTind 0N {dwy. Me napduolo TpéTo, oto Lyfua 1.5.8b gaivovtar dvipwrol
og dhhoug TOnoug cavidwy, T.y. ot oxéitunopvt f ot cAAnhenidpoom pe dAlo adinuxd efomhiopud. Autd ta
ATOTEAEGUATO AVTITPOCKTEVOLY HE axp(fBelo TNV moAuThoxoTnTa TNg onuaciohoyiog mlow and avtixelueva, evd
TowTOYPOVA Aopfdvouy unédm TNy Tornoloyid TOU YEaPHULTOC.

‘Onwe éxer HON TovoTel and T TOCOTIXE anoTeAéopata, ot Toévopfoee Tou mopdyovton pe pedddouc GNN
ouupwvoly Ue T Bao akfleld o peyohitepo Padud amd TG CUCTACELS TWY TUEHVKY YRAPwY. Auth 7
Topathenon aviixatonteileton xou oto moloTixd anoteréopata. Eminhiéoyv, axdun xou ol cuotdoeic tou dev eudu-
yooppiCovton ye ta anotehéopota tou GED gatvetan va €youv dlanodntind vonua yio v avipodnvny avtiindn.
INo topddetypa, oL edveg EVOC X0PITOLOU Xl EVOC ayoplol TOU XEVOUV GERY, Ol OTO(EC CUYXATIAEYOVTOL OTIC
xopupalec-2 exdveg mou mpofiénovtar and o GNN oto Lyrua 1.5.8b, elvan mpdypatt oA xovtd otny emdva
otoyo. Mepwée Qopée, otny mpaypotxdtnta, Ta anmoteréopata tou GNN telvouv va elvan mo €yxuvpa and to
amote éopata g ohfvelag. Xto oyfua 1.5.9, 1o BIG-GED mnpotelvel exoveg oxopoy ol LBATVWY palov
WS TIC TO TUPOUOLES UE TNV EXOVA 6TOY0 eVOC aryoplol mou Bouptoilel ta dévtia Tou, eved to GIN-COMP
TROTElVEL EIXOVEC PE 000VTOBoVPToES O VEROYITES Yot Wxed Toudld. Eivon avaupioPrtnta tpogavéc 6Tl To TeAeL-
tafor anoteréopata eivon mo hoywd. O ahyodprdpog enelepyosiog andoTaons YEAPoU ayVoel TG EXOVES TGV
080vTéBoupTowY EMEWDT oL YpdpoL oxnvic Toug efvar muxvol xal TeplmAoxoL, £V TEPLEYOUY TORD CUYXEXPUIEVES
EUXETES, OTWG Tplyeg 1) undheuua odovtdxpepas. ‘Evog ahyopripog enelepyaoioc Bploxel euxoldtepo vau ov-
TioTolyloel ypaphuota Ue To TapdpoLe Bou) oe oyéon Ue EVVOlEC o auTAY TNV Tep(nTwaon, xdTL Tou elvon un
dlonoInTd yia Tov dvipwno. Autd to mapddelyua etvon évac delxtne tng ixavotntag twv GNN va xotoypdgouv
OUOLOTNTES TOGO OTN oNuactohoyiot 600 xaL oty TomoAoyia xou Wialtepa TNy xavotnta Tou GIN v xotavoel
xoJOMXEC EVVOLEC.

Kotd v €€éto0om TV OTTIX®Y ANOTEAEOUATWY, BV UTHPYEL GUECOC TPOTOEC Vo OMOPAUCLOTEL Tolal ToROANAYT
GNN eiye xolOtepn anddoon. Mo mapatienon etvan éti to GIN-COMP dev fjtay 1660 GUVETES GTNV TopOoYN
AOYUODV CUOTACEWY. LUYXEXPWEVA, UEPHES POopEC NTary eEaupeTind axplBéq, EVE dAAeC CUVLOTOVGE (POULVOUEVIXT
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Chapter 1. Extetopévn Iepihndn ota EAAnvid

(a) Kopugaio-5 anotehéopata yio exdva xonadiod tpoPdtmy.

(b) Kopugaia-5 anoteréopato yia exdva dvtpo o€ cavida cep@.

Figure 1.5.8: GNN-COMP »0pu@aio-5 omoTEAECUATI YIo EXOVESC GTOYOUG.

H Baowh ahidetar xuxhadvetar ye x6xxivo opdoywvio. Ot tpofrédelc twv pedddnv muprva axolovdoldv ) celpd
GCN-, GAT- xouw GIN-COMP and mévew npoc tor x4te.
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1.6. Xuvynepdoyata

water

/ o towel
faucet
taathby handle

BIP-GED

GIN-COMP

Figure 1.5.9: Ilopdderyua poviéhou GNN nou mapéyel xahltepa xopupaia-3 aroteréopato and v ahrdelo.

tuyaleg emdveg. lpénel va onueiwidel, wot660, 6Tl T0 TEAEUTULO PALVOUEVO HTAV GTIAVLO.

To teheutaio TEdYUa TOU TEENEL VoL €Y OUUE XAUTA YOU £lvort OTL AUTA TO TELOHUATO TEOY LA TOTIOLRUNM OV GE €var Uixpd
UToGUVOAO TV Yedpwy tou Visual Genome. Etol, oplopéveg eidveg xou ta avtiotolya ypaphpota dev eiyay
xahéc avtiotolyloeig. Ot alyoplduol Tou SoXUACTNXAY UTOPEGAY VUL ATTOBWGOUY LXOVOTOLNTIXA X0l O QUTHY TNV
neplntwon, TpoTelvovtag TIC To Tapouoleg oxnvéc. 2otdoo, évag dvipwrog dev da Yewpodoe anopaitnta TIc
oxnvéc mou anewxovilovton we mapdpotes. o mopdderyua, oty Ewdva 1.5.10 Brénoupe éva xopitol vor TpEL
wo itoa. Hoapd Tic titoeg xon Tar ToudLd TOL LTEEYOUY GTO UTOGUVOAD TWY YRAPTUATWY TOU YETNOULOTOLOUVTAL,
oL oxNVEC ToU GUVBLALoUY auTéS TIC 800 €Vvoleg elvon avimapXTeEG. TNV TEAYHATIXOTNTA, 1) TLO XOVTLVY EXOVA
elvan Ut EvOC TOLALOY ToL TEWEL PoyNTO and éva mdto. Abo ota Tela LovTéla amoTuyydvouy va Beouy auth
v exdva xou avt’ autol eoTidlouy ot pepovwuéveg Ttuyég tne. O mpofAédelg mou axoloudoly tnv xopupala
anoteAolvToL Xuplwg and Qayntd oe teaneélia 1 elvon ontixd doyeteg, axdun xo yia v GED.

1.6 Xvunepdopota

1.7 Xulrnon

Iewpapatiotinoue Ye Teelc dlapopeTixéc mapahhayéc cuvelxtixol GNN yio To TEOTEWVOUEVO HOVTEND UOC Xalt
OLYXPIVOPE TNV ATOTEAECUATIXOTNTA, TNV TOAUTAOXOTHTO X0l TNV EXPROC TIXOTNTA TOUG. Ao TOOUUE OTL OAES
TOUC, TOCOTIXE %o TOLOTIXG, EemEpvoly Tig uedddoug muprval Yea@ou GTo TEOBANUA NG OUOLOTATAS YRAPLY
X0 TPOGPEPOUY EVYENOTEC XOL OUCLAOTIXEC AVATUPAC TACELC Yo Dopée ypagphuatoc. Eumhouticopye Toug yed-
(QOUC PE YopUXTNELOTIXA xOUBou xal pe ExTANEY Blamo Tdooue 0Tl oL xAaoixés evowyatooelc GloVe ftav mo
WPENUES Yoo 6Aa Tar povtéha GNN-COMP mapd tor tepopyixd path2vec, mou exnoudedtnxav octo WordNet.
MetaZl tov napahhaydy, uropéooue va damotooupe 6Tt To GCN xaw to GAT elyoav ouyxplowes embboeic
OTLC YENOWOTOLOVUEVES UETPIXES, TO Tooootd emtuylog xou to péoo RBO, yia to xopugaia-10 xou xopupoia-5
anoteléopata. 261650, GOV APORE TU TLO TUPOUOLN YRUPHUATA, OAOL TETUY AV EEUEETIXG TOPOUOLN ATOTEAED-
wortar, e o GIN vo mopdryet to xohvtepo. Bty npaypotixétnta, 1o GON-COMP rétuye oyedov 11% avinom
oe oyéon pe tov nuphva Pyramid Match oe nocooté emtuyloc ota ton-10 anoteréoyata xou 1o GIN-COMP
éptooe oto 15,4 % oty mpdfBhedn e Bl axpPie edvac ye v npooéyyion GED nou anoteholoe v
Baowh arfdeta. Iopd tn @run tov GIN we éva and ta mo oyved GNN, urnopéoaue vo So0ue HéVo Evor xOpUdTL

21



Chapter 1. Extetapévn Ieplindn oto EXAnvixd

BIP-GED

GCN-COMP

GAT-COMP

GIN-COMP

girl ealing > pizza

Figure 1.5.10: ITopddelyyo avouolog eixévag HE TO UTOROLTO GOVORO BESOUEVLV.

and T avotntéc tou. Koatdpepe va cuAEBel To yevixd mAaicio e amoteheoyatind tedémo. Ilapdia autd,
OUVOAMXSE, OAEC OL TaPAANAYES TORT Yoy oy X3t Topomdve amd txavomountixd anotehéopota. Eivow afioonueiwto
61 to GCN 710 €xave otov pcd yedvo.

Ou to€wvouroeic Tou mopdyovto oe auth T dtatePn €yvay ue oxond va Bondoouy GTOV OTOTEAEGUATING XAl
TLO OUCLUGTIXO UTONOYLOUO TwV EENYNOEWY UE OVTLTUPABELYUA. LUYKEXQLIEVY, 1) Vi)Y VEUST] TOU TLO TUEOUOLOU
Cebyoug o edvoac goc divel Tnv euxotpio vo utohoyloouye wévo pia enelepyoaoia ¥y e€fynon, avtl yio dheg tig
mdavéc. €dc ex TOUTOU, 1) TEOTEWVOUEVY) TPOCEYYLOT), 1) OTOlN YENOWOTOLEL TOV avTioToLYO YEdpo oxnvAc Hlag
EXOVAC YO TNV AVAXTNOY TOU XAAUTEPOU LEVYOUCS, ELGAYEL PLol OMUAVTIX ETLTEYUVOY o auth Tn dwdixacia,
a€lonoldvtag mapdinia Ti¢ ThoVGLlEC TANEOPORiEC TTOU TOREYEL 1) BOUH TOU YEAUPAUAUTOS OYETIXA YE TIC O)é-
oelg Yeta€d Twv evvoldy mou aneixovilovtal. Emmiéov, o tehixdg ypRotng PEVEL YE EVa ETAYWYLXO UOVTENO,
nou onuaivel 6t to exnoudevpévo GNN-COMP umopel va oftonondel yio TNV TopoywYr] EVOWHATOCEWY Yo
XOUVOURLOUS YRAPOUS OXNVAS.

Suunepaopatind, propolpe va emBefoudoouye 6Tl 1) xprion twv GNN dyt uévo yio tov utohoyloud tng eyyuTy-
TUC YPUPAUOTOS, GANG Xot yiol T dnutovpyla ovamopoao Toewy Ypdpwy eivon eEoupetixd enwpeiic. Méoo and
TOL TELPAUATE UAS GUVESNTOTOWCUUE TNV ex@pactixy) duvaun twv GNN, 1 onpocio tng apyxonoinong twv
YOEAUXTNELO TIXGDY TOL XOUPBou xou 1 Sopopetixt] andxplor| Toug atov aptdud delyuatwy extaldevone. Huootov
oe ¥€om Vo GUVBUACOLPE TIC EVVOLES TWY YRAPWY oxNVAE Xt TV Nevpwvixdy Awxtiwy I'pdewy yio va tpotel-
voupe ot véa tpocéyyior Oupotdtntog I'edgwy e oxond tehxd vo Bondficovye otn dnwoveyia e&nyfoewy e
avtnopdderypo. Ou avamapaotdoel tov Aaufdvovtol unopolv va anodety9odv TOAUTIIES Xl Yol TOMAES dAAES
epyaoiec xatdvtr, xatevduvorn ty onolo ehniloupe va eunvedcOUYE.

1.8 Melrovrtixéec KatevIddvoeic

K\eivovtag aut ) Swatelf3n o Béhaue vo mpotelvoupe yepég xateudivoelg yia nepontépw Petiodon authg Tng
epyaoiug HoTe va eUnVEUCOUUE BlapopeTixég evilapépouceg npooeyyioelg. Ipdtov, Yo unopoloe va Siepeuvniel
1 xenon neptocdtepwy Tapolhaydv Nevpwvixwv Awxtiwy I'pdpwy, 6twg ntapodlayés tou aélotololv tAnpogopla
oTic axpéc. Me autév tov tpdmo, Yo aroxtidoly mhnpogoplec oyeTixd pe TOV TOTO TWV OYECEWY YETOED TWV
avTIXELHEVRY xou Yo Bntovpyndoly Thoucitdtepes evowpatdoels. Mo dhhn tpocéyyion o Bray vo Soxiactolv
Topohhayéc Omwe ot Graph Autoencoders mou eVOWUATOVOUY To YpapRUuoTa Ue Un eTBAETOUEVO TEOTO, 1 axoUl
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1.8. Meihovtixéc Kateudivoeic

xat topahhayég avto-emiBhedme we Bdom v avtiletind udinon xan va cuyxpldel 1 oamdBoGT| TOUG UE TIC TEYVIXEG
Tou yenowponotioope epelc. VooV apopd Toug YEEPOUS, 1) EMAOYT TWV UPYIXWY YAUEUXTNEIGTIXDY anodelyinxe
va elval xplowrn yla Ty anédoor TV HOVIEAWY, emouévewe Vo urnopolooy va yenoulonolndolv diapopetixée
lepapyéc evonuotwaoels. Emniéov, Go unopoloe va npaypatonoindel yio AETTOPEPHS OTATLOTIXY O OTTLXY
avdivon Twv LeLYdY Yedewy extaideucns Tpoxewévou vo dlamotwiel Tde Ypapruato Ue SLopopeTIXES WOLOTNTES
enneedlouv ta povtéha GNN. Téhog, 0 oyedlaopoc (og TEOCUAPUOOUEVNS ATMAELNS VLot olodTHTA Yot UTtopoloe
eniong vo Bondroel oty xavdTNTOL TOU LOVTEROL Va TIoRAYEL TO axEUBElC XAUTATHEELS OPOLOTNTAS.

Ot evowpat®oels Yeapnudtwy tou mapdyovta Yo uropodoay va yenotuomointoly yio SANeC eQoppoyés extdg
and TovV UTOAOYLOUS eENYHOEWY UE OVTITUEABELYUA. DUYXEXPWEVA, 1) WOEX TNC ouoldTnTag Yo unopoloe va
oploTel ex véou yia dAAeg epyaoieg. O ypdgol oxnvrc Yo unopoloay Vo cLUYBUACTOUY PE GAAES UetdBoUE YLot
Y anoTONWOoTN WOTATOY 6TWE TO YewUa, To uéyedog B T V€on TwV AVTIXEWEVWY OTNV EXOVA UE OXOTO TOV
EUTAOUTIONS TV EVOOUATHOOEWY. Emniéov, dedouévou 6Tl qUTH 1) TPOCEYYLOT ALY VEVEL TO TEQLIOCOTERA ToPO-
pota ypopnuato oe éva dedouévo olvolo dedopévmy, Ha unopoloe va yenowonowndel yia dAkeg epyaoiec Tonou
avéxtnone xou vo emextadel ylor Vo AELTOURYNOEL OE YPUPAUATA YVWOTNS 1 Yeaphuate eyyedpwny. Téhoc, Yo
unopoloe vo avantuy Vel wa uédodog AMOTEAECUATIXNC OUOBOTOINONG EVOWUATMOEWY Yo TNV e€0ywYN TANpO-
(POPLOY OYETIXG UE TLS EYYEVELS WBLOTNTEC TOU TOTOVETOUY QTS Tot BLaVOOUATY O XOVTE PETAEY TOUS GTO YDRO.
H 8¢a tng opadonoinorc toug ue ovolaotind teémo Yo 0dnyoloe enlong 6To XAABEU TWV YRUPWY Tou Vew-
poOUVTOL TPOUOLOL ElGdYoVTaS onuavTix emtdyuvor. Télog, auth n epyacia Yo unopovoe va eunvedoel Ty
e€epevnon Tou aviiotpopou mpolAfuatoc, Snhady Vo ATAVTACEL GTO EPOTNUO YIUTl SLUPOPETIXES ToROINAYES
GNN motebouv 6Tl oplouéva ypaphpata eivon TapouoLa.
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Chapter 2

Introduction

In recent years, advances in computing power and storage as well as deep learning algorithms have resulted
in an impressive infiltration of artificial intelligence applications in people’s every day lives. The increasing
interference of intelligent systems in the way people consume media and entertainment, create art, purchase
products or even receive healthcare creates the inevitable need to build trust with these tools. Thus, providing
explanations on why Al systems make their decisions has become utterly important.

The field of Explainable AI aims to provide insight on Machine Learning "black box" models and explain
the reason behind their actions. One of the more interesting techniques used for this task are counterfactual
explanations which provide feedback on how the input data could have been altered in order for a model to
make different decisions. Those changes are often sought to be minimal and can be of great assistance in
detecting biases.

In this thesis, we attempt to find the most similar and therefore least semantically distant instances in a
dataset of images as a step of building counterfactual explanations. We focus on comparing the scenes
portrayed in the images and not the counterfactual explanation itself. This work is directly inspired by [22],
in which instances are compared based on conceptual edits. Provided that the input images contain scenes and
are also available in scene-graph format, we compare them using their corresponding graph representation.
The extra information regarding the relations between present objects, naturally provided by the graph
structures, makes this approach semantically richer.

The prevailing method to determine graph similarity is through graph kernels. In this work, we will directly
compare kernel approaches and classic algorithms which determine the edit distance of graphs with neural
approaches. The focal point is the use of Graph Neural Networks (GNN) for accomplishing this task.

This thesis provides a thorough exploration of Graph Neural Network variants and highlights and compares
their expressive power on graph data. It underlines the use of GNN models in the task of graph similarity,
which has been mostly tackled using non-neural methods. Furthermore, we attempt to showcase the combi-
nation of GNNs with scene graph data for a task other than their generation, which is the most prevalent
in related literature. Finally, through the process of finding the most similar scene graphs, we are able to
extract embeddings. These meaningful representations are able to capture the semantic similarity of the
input data based on graph edit distance, which they are trained on. The embeddings can then be utilized as
graph representations for other downstream tasks.

The outline of this thesis is as follows:

o We will firstly provide all the background needed in basic Machine Learning algorithms and concepts
as well as scene graphs in order to be able to explain and justify the idea of Graph Neural Networks.
After doing so, we will provide a thorough description of GNN variants relevant to this work.

e We will give a more detailed definition of Counterfactual Explanations and related work, focusing on
the ideas presented in [22]. In a similar fashion, we will formally explain the task of graph similarity
and provide the theoretical background for methods already used to tackle it, such as Graph Kernels
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and Graph Edit Distance algorithms.

e Lastly, we will propose our GNN-based model for graph similarity and highlight the performance of
different variants used for its layers. We will compare these results with the more conventional methods
described in previous sections and draw conclusions based on their expressiveness and evaluation on
quantitative and qualitative results.
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Chapter 3

Machine Learning

The topic of machines with human-like capabilities such as thinking has been prevalent among engineers
for centuries. In more recent years, after the invention of computers, the field of Artificial Intelligence (AI)
has not only been established but also thriving. According to [27] Artificial Intelligence, or the development
of computer systems which tackle tasks normally requiring human intelligence, at first focused on solving
problems difficult for humans, but elementary for computers. However, it soon became apparent that the
opposite problem is also in need of attention, i.e. teaching machines to solve problems which for human
beings are intuitive due to their acquired experience.

Machine Learning (ML) is a branch of AI which employs empirical or historical data in order to make
predictions with statistical models. In a broader sense, as the name implies, it helps a machine learn through
statistics in order to build its experience level without needing to be explicitly programmed to do so [91].
These models perform a type of predictive analysis, processing data using different algorithms, extracting
patterns from raw data and finally generating outputs or predictions for a number of tasks.

Machine Learning tasks vary from relatively simple to more convoluted or subjective. For example, some
basic tasks involve classifying or grouping data in categories, while others include generating unique brand
new data, like images. The more intuitive the task the more challenging it tends to be for computers. The
difficulty of the task is also related to the type of input data, which can be images, text, speech, timeseries
or even graphs. According to the data representation, a task is grouped with other similar ones belonging
to the same field. The most popular ones are Computer Vision, Natural Language Processing, Speech
Recognition, Recommendation Systems and more recently Geometric Learning. The task itself is most of
the times strongly connected to the machine learning category, as explained in the next section.
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3.1 Learning Categories

Machine Learning algorithms can be categorized according to the experience the model is provided with
during training. The three broad types of machine learning algorithms are supervised, unsupervised and
reinforcement learning, while semi- and self- supervision can be considered variants of the above.

Supervised Learning

In this type of learning the input data, comprised of multiple features, is associated with a label or target.
Let the feature vector be x and the target be y, the model will learn to predict y from x using an array
of examples. In most cases, this is achieved by learning the distribution function p(y|z). Some of the most
prominent supervised learning tasks are considered to be classification, regression and forecasting.

Unsupervised Learning

Unsupervised learning algorithms do not take labels attached to feature vectors of the dataset into account.
Instead, they attempt to implicitly or explicitly learn the probability distribution of the entire dataset p(x)
and in turn give insight about the underlying structure of data. Popular tasks of this category include
clustering and dimensionality reduction.

Semi-supervised Learning

Semi-supervised learning can be considered a special type of supervised learning where most samples of the
dataset used for training are not associated with targets. The small amount of labeled data can be attributed
to either difficulty of acquiring said information or desire for better accuracy [95]. Common semi-supervised
learning tasks include link prediction in graphs or fraud detection.

Self-supervised Learning

Self-supervised learning is a learning category lying between supervised and unsupervised. It makes use of
unlabeled data and leverages supervision signals stemming from the structure of the data itself, by using
pseudolabels. This form of learning mostly consists of solving pre-text tasks, i.e. tasks specifically crafted to
help a model learn the inner-workings of a dataset, and using the rich information obtained by the originally
unlabeled data to later solve other downstream tasks [51], like the ones mentioned in previous sections.

Reinforcement Learning

In reinforcement learning the dataset is not fixed, but rather it receives feedback from changes in its envi-
ronment. This type of learning will not be considered in this thesis.

3.2 Training a Neural Network

Neural Networks are a subset of machine learning, whose operation resembles that of the human neural
system. In this section the general idea of the learning process of such a system will be described as well as
the potential challenges.

3.2.1 Basic Concepts

Firstly, we will explain the basic operation of a shallow neural network to provide background information
needed to understand similar architectures on graph structured data. The following concepts mostly adhere
to supervised learning tasks, but are broadly relevant for most approaches described later on in this thesis.
The majority of information below was sourced from [27].

In supervised learning, the model uses a fixed amount of N samples from the training dataset D =
{(z1,y1)s --s (Tn,yn)} and their corresponding labels to compute a function f : X — Y which maps the
input X to the output Y and its trainable parameters are often called weights. In order to evaluate f, a
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Figure 3.2.1: Shallow Neural Network of One Neuron - Perceptron [39]

function is established to determine the error of training, called loss function L. The goal during training is
the calculation of the weights of f in a way that ensures the minimization of the loss function .

The output of each neuron in a neural network is not solely determined by the computation of the weighted
sum of the inputs x;. On the contrary, a different function is employed called activation function to define
how to transform the weighted sum to an output. An activation function plays a critical role in the network’s
performance and therefore should be chosen carefully. It can be linear or non-linear and the most commonly
used examples can be seen below.

Linear a(x) = ax + 3 Sigmoid a(z) = Tanh a(z) = =

" - .f-'. /,__
" /
;,/
.t ———

Figure 3.2.2: Examples of activation functions.

RelU a(x) = max(0, x) LeakyRelLU a(x) = ' ELU a(z) =

ar < rgl:"'

e

Figure 3.2.3: ReLU activation function and variants.

The linear activation function exhibits a number of limitations, one of the most important being the fact
that it makes backpropagation, which will be explained later, impossible since its derivative is a constant. It
leaves the weighted sum of the input practically unchanged. In most cases, non-linear activation functions
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are used due to the fact that they ultimately allow the stacking of multiple layers (deep networks) and the
creation of more complex mappings. Sigmoid and tanh, although being popular non-linearities for certain
problems, face the problem of vanishing gradients [96], making training unstable.

The most widely adopted choice of activation function is ReLU and its variants. It overcomes the problems
of aforementioned functions and leads to more computationally efficient training. Some of its variants include
LeakyReLU and ELU which can be seen in Figure 3.2.3. ReLU also suffers from limitations, such as the
dying ReLU problem which causes the existence of non-active neurons [94]. This problem is combated by its
variants.

As mentioned previously, the loss function or cost function is used to determine how close the model’s
prediction is to the truth. It maps Y x Y to a non-negative real number, or L(y;, f(z;)) for the i, sample.
Neural models are trained repeatedly for a number of iterations, called epochs, until meeting an objective or
when the maximum amount of iterations has been reached. In general, the total loss of the model in each
epoch can be defined as a normalized average of the cost function for each piece of data on the training set.
In an optimal scenario, the parameters which minimize this function will be discovered.

The choice of cost function heavily depends on the task carried out. The most notable loss functions are
listed below but it is important to note that often custom loss functions are created to cater for more complex
tasks.

Mean Squared Error is one of the simplest cost functions and it is often used in regression tasks.

i (yi — fl@)?

n

MSE =

(3.2.1)

Mean Absolute Error or L1 loss is similar to MSE in the aspect that it ignores the direction of error [92].
This cost function is more robust to outliers.

i1 |yi — f(23))
n

MAE:Z

(3.2.2)

Cross Entropy Loss or Negative Log Likelihood is a loss function commonly used in classification tasks. It
focuses on penalizing predictions that are confident but incorrect and in the case of non-binary classification
in M classes can be defined as:

M
NLL == py, log(ps(a,).c) (3.2.3)

c=1

The next step after the establishment of the cost function is its minimization. In order to achieve optimization,
gradient-based methods are employed. The use of gradients is crucial for such problems since derivatives
can give us insight on how to scale small changes in the input so as to eventually reach the desirable output
[27]. More specifically, the objective function is minimized by iteratively computing the value of the loss
function for all training samples and in turn the gradients of the model’s parameters and finally updating
the parameters in the opposite direction of the gradient.

The most popular gradient method, which adopts the aforementioned process, is Gradient Descent. Its
definition can be found in Equation 3.2.4, where ¥ represents the model’s parameters and e corresponds to
the learning rate. The learning rate is a small positive constant which is chosen during training, often by
trying several values and keeping the best. Its choice can prove crucial to the model’s performance.

0 =0 — eVoL(6) (3.2.4)

There are many other gradient based optimizers often used in applications, most of which are extensions or
inspired by gradient descent. One of the most popular ones is Stochastic Gradient Descent (SGD) which
differs in the way that it computes gradients and updates parameters for each (z;, y;) pair in batches, instead
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of the whole dataset. This practice gives it a significant speed advantage. Other honorable mentions include
AdaGrad, RMSProp, AdaDelta and Adam.

Even though the computation of an analytical expression for gradients is simple, its numerical evaluation is
quite expensive. For this reason the algorithm of back-propagation was proposed [73]. In this approach
the chain rule needed to be applied for gradients is computed in a specific order of operations that is highly
efficient, making use of computational graphs and storing already computed values.

The process of computing outputs and adjusting weights through back-propagation is often repeated for
several epochs until the loss function converges or another threshold is met. The neural network’s performance
can then be evaluated using a variety of metrics and data which was not encountered during training.

3.2.2 Generalization and Overfitting

A machine learning algorithm must be able to succeed easily on previously unseen data, different from those
it was trained with. The ability of a model to perform well on new inputs drawn from the same distribution
as the one used to create it is called generalization. To achieve good generalization an algorithm must result
in both low train and test error, where train error is defined as the loss during training and test error is the
loss obtained from newly observed data, after the training process.

The lack of generalization of a model is often attributed to underfitting or overfitting. Underfitting is caused
by high train error, meaning the model has not sufficiently learnt the data distribution whereas overfitting is
the product of a large gap between train and test error, given the train error is low. The latter exposes the
fact that the model has learnt the data too well, including existing noise, thus having a negative impact on
its performance.

It is apparent that the training of a neural network is not just a simple optimization problem, but rather the
pursuit of a good trade-off between test and train error. The most prominent technique to handle overfitting is
regularization. The concept of regularization is based on Occam’s razor, the notion that the simplest solution
must be chosen or in this case the smallest in way of parameters. This idea is implemented by adding an
extra term AR(6) in the loss function which penalizes larger more complex models, while favoring low values
of loss. The hyperparameter A of the term is chosen during training in order to favor the model’s performance
and R is the regularization function which is often a norm of the weights. The two most prevalent regularizers
are L1 and Lo norm. In the equations below W represents the weight matrix of the model.

Ly Regularization or Lasso Regularization tends to favor sparse solutions, i.e. solutions containing many zero
values, by penalizing both uniformly low and high parameter values.

R, (W) =Y |Wi;l (3.2.5)

4,J
Lo Regularization or Ridge Regularization punishes high values heavily. It is often referred to as weight decay.
Rp,(W) = Z WiQ,j (3.2.6)

(2%}

Finally, another way of achieving generalization is by using dropout. With this technique, a number of layer
outputs are randomly ignored in order to ensure that the model does not rely on specific neurons. By doing
s0, noise is added to the training process which in turn makes the neural network more robust.

3.3 Deep Learning

With the knowledge of all the basic steps of training a shallow neural network, some principal models will
be explained in this section. All of them are examples of Deep Learning algorithms, i.e. neural networks
in which multiple layers of neurons are used in order to extract progressively higher level features from the
input data. Even though the complexity of said algorithms is increased, the general idea remains the same.
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Output layer

Hidden layer

Input layer

Figure 3.3.1: Multi-layer Perceptron with one hidden layer of 5 units. [105]

3.3.1 Multi-Layer Perceptron (MLP)

The concept of the Multi-Layer Perceptron was introduced as a way of overcoming the limitations of linear
models. Specifically, linear models imply monotonicity, i.e. that any change in features always causes change
in the same direction for the model’s output - decrease or increase [105]. This generic assumption is not
true for the majority of problems to be solved. In order to tackle this obstacle, the stacking of multiple fully
connected layers was proposed.

The MLP, often referred to as a Feed Forward Neural Network (FFNN), is an artificial neural network in which
the connections between nodes do not form a cycle [89]. The information is only processed in one direction
from the nodes of the input layer, through the hidden nodes to the output layer nodes. As explained in
previous sections, each node computes the weighted sum of inputs and produces an ouput using an activation
function, which in this case needs to be non-linear. Otherwise, since the sum of two linear functions is also
linear the existence of layers would be unnecessary.

The simplest MLP contains only one hidden layer and is called a single-layer perceptron. An example can be
seen in Figure 3.3.1. The input layer comprises of the input vectors left unchanged, each of which are passed
to all the neurons in the hidden layer. The hidden layer processes the inputs it is given and extracts features
from them. If multiple layers exist, the closer the hidden layer is to the output the higher-level the features
it extracts. The output layer computes the output of the model by using the processed data passed from the
previous layer.

There is no limitation to the number of layers or number of units in each layer. This is a matter of experi-
mentation during the training process.

3.3.2 Convolutional Neural Networks (CNN)

Multi-layer Perceptrons are useful for dealing with tabular data, i.e. data in the form of rows and columns
which consist of a number of samples and their corresponding figures. However, if the input data consists of
high-dimensional data such as images, an appropriate MLP would have to be enormous in size with millions
of parameters. Considering this and the fact that visual data exhibits interactions between features due to
the locality of pixels, a new type of neural network was introduced, the Convolutional Neural Network (CNN)
[47].

CNNs are rooted in the idea of using a new type of layer which performs convolutions. A convolutional
layer contains a set of trainable filters. These filters are convolved or in practice cross-correlated with input
from the previous layer producing what is called a feature or activation map. They are generally small in
size, leading to lower numbers of parameters, since they make the assumptions of translation invariance and
locality, which are true for images. The process of cross-correlation consists of simply computing the dot
product between filters and the input across both dimensions and subsequently producing a 2-dimensional
activation map of that filter. The network is able to learn filters corresponding to different features in specific
positions of the input. The local focus of the CNN also aids in the problem of overfitting.

32



3.4. Embedding

. convalutior oolin dense
convolution ' P 9

pooling

B
@
7
4

| -

| G@14x14
S2 feature map

120 - F5 full
Tea-For
oo

28x28 image 6@28x28

C1 feature map C3 feature map 54 feature map

Figure 3.3.2: Typical CNN architecture - LeNet. [105]

In a typical CNN the convolutional layers are followed by pooling layers. The act of pooling serves the purpose
of both alleviating the local sensitivity of convolutional layers and spatially downsampling representations
[105]. Pooling filters are non trainable and perform the deterministic operation of aggregating elements
present in a fixed-size window of the feature maps they receive. The types of aggregation most commonly
used are the computation of maximum or average, resulting in the so-called max and mean pooling filters
respectively.

In Figure 3.3.2 we can see the architecture of the first and simplest CNN. Nowadays, the CNNs used in
applications are much deeper, meaning they consist of tens of alternating convolutional and pooling layers,
followed by fully connected -or dense- ones. The dense layers contribute in learning combinations of the
features extracted and serve as a classification head.

3.4 Embedding

A term which we will refer to a lot in this dissertation is Embeddings. An embedding is a relatively low-
dimensional space used for the translation of higher-dimensional vectors. The goal of embeddings is to bring
semantically similar objects closer together in the embedding space, by effectively capturing the semantics of
the input. The dimensionality reduction offered by this method makes machine learning easier if the original
input comprises of sparse high-dimensional vectors [17].

Embeddings are most commonly used in the field of natural language processing (NLP), serving as word
or sentence representations. They generally are real-valued vectors representing the semantic meaning of
words in such a way that maps words with similar meaning closer together in the vector space [97]. The
generation of embeddings is possible through an array of methods such as dimensionality reduction on the
word co-occurrence matrix, probabilistic models or even neural networks. The most popular approaches
include Word2vec [57], GloVe [67], BERT [69] and Principal Component Analysis (PCA).
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Figure 3.4.1: Visualization of Embedding using PCA. [36]
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In the sections below we will explain some of the most notable embedding methods:

Principal Component Analysis

PCA is a standard mathematical technique used for dimensionality reduction. It focuses on finding dimensions
of the input data which are highly correlated and therefore can be represented as one. PCA is defined as
an orthogonal linear transformation which maps data to a new coordinate space. The dimensions of this
space are computed as the eigenvectors corresponding to the greatest eigenvalues of the covariance features
matrix. These vectors are chosen to be orthogonal, meaning the features are independent, and result in the
least amount of error for approximating the data.

PCA captures linear correlations and therefore if the dataset has underlying non-linearities this approach
will fail. Although simple in conception, if not performed appropriately it can lead to information loss [93].

Autoencoder

The Autoencoder is a dimensionality reduction method using neural networks. It succeeds in overcoming
PCA’s limitations since it basically is a non-linear generalization of it. Specifically, if it were to be linear it
would produce any orthogonal basis in a non-deterministic way.

\De(/
AN
58565

Bottleneck

RKRLL

Encoder Decoder

Figure 3.4.2: Autoencoder Architecture.

The autoencoder is a bottleneck architecture whose framework is composed by an Encoder and a Decoder.
The first component transforms the high-dimensional input into a latent low-dimensional code, whereas the
second reconstructs the input data using this code [33]. Both components are neural networks which are
iteratively optimized using a custom loss function, called reconstruction loss, which computes the distance
between the input and reconstructed data by the decoder.

The encoder and decoder can be stacks of different types of layers, even convolutional if the input is an
image. There are various different models adopting the autoencoder architecture such as the undercomplete,
sparse, contrastive and variational autoencoder. These models primarily differ on the construction of the
loss function. For example, in the Variational Autoencoder there is a regularization term aiming to tackle
overfitting. This feature combined with the encoding of the input as a distribution - and not points - makes
this particular variant well-suited not only for the embedding of existing data but also for the generation of
new ones.
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This architecture provides a trainable way of embedding data. Its most important feature is the idea of the
bottleneck, which only lets vital semantic information go through and eventually be reconstructed. Control
of the bottleneck layer by size reduction helps to alleviate overfitting. The choice of depth and dimensions is
also crucial.

Trained Embeddings as Part of a Larger Model

Another way of producing embeddings is implicitly while training a neural network for another task. A way
to achieve this is by adding a special type of layer, defined by the library used to train, with dimension d in
order to create a d-dimensional embedding. Alternatively, the embeddings could be extracted by any other
given layer deemed fit for capturing data semantics.

This approach provides specific embeddings which capture semantic similarity of the input data determined
by the training task. In many applications, like the one presented in this thesis, this is a desirable trait.
However, in most cases the training of the larger model is more computationally expensive than the training
of embeddings separately [17].
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Chapter 4

Graphs

4.1 Graph Theory Basics

A graph, denoted G, is a non-linear data structure comprising of a set of objects called nodes or vertices
which can be connected to one another, forming an ordered pair called an edge. In other words:

GV, E) ={(u,v) : u,v € V,(u,v) € E} (4.1.1)

where V is the set of vertices and E is the set of edges with |V| = N, |E| = M. In literature, the term "graph"
is often used as a synonym for a simple graph, i.e. a graph without any self-loops (edges connecting a vertex
to itself) and no more than one edge connecting any pair of vertices.

A visual representation of a graph can be seen in Figure 4.1.1a. However, graphs can also be described using
an adjacency matrix A, a square array of dimensions N x N whose non-zero elements indicate the existence
of a link between vertices. In some cases links between nodes can be assigned weights, which hold a relevant
meaning to what the graph represents. Thus, the weight value for the corresponding edge would be present
for each node pair in the adjacency matrix.

(a) Visual Representation (b) Adjacency Matrix

Figure 4.1.1: Representation of undirected graph.

A graph may additionally have node and/or edge attributes. In this case, each node (edge) is characterized
by a feature vector of dimension D, resulting in a node (edge) feature matrix X of dimension N x D (X€ of
dimension M x D).

Graphs are categorized according to the direction of connections present between nodes. More specifically,
an edge between nodes u, v is called undirected if both ordered pairs (u,v) and (v,u) belong in the set of
edges if v and v are connected whereas is called directed if only one of them is present. Therefore, a graph
is said to be undirected when all its edges are undirected and directed (or digraph) if at least one of them is
not. A property of an undirected graph is the symmetry of its adjacency matrix.

The neighborhood N(u) of an entity u in a graph is defined as the set of nodes adjacent to it. A path is a
sequence of vertices u1,ug, ..., U such that u; and w;4+1 are neighbors for all 1 <4 < n — 1. An undirected
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Figure 4.1.2: Graph reprentation examples

graph is connected if every pair of nodes are connected through a path. In the case of digraphs, there are two
distinct versions of connectedness, weak and strong. A directed graph is weakly connected if for every pair
of vertices u and v there exists a path either from u to v or from v to u. In contrast, a strongly connected
digraph should contain paths leading both ways.

A distinct feature of graphs that sets them apart from other types of data is the fact that they are generally
non-euclidean. Non planar graphs cannot be mapped on a two-dimensional, non-curved space because they
cannot be drawn on the plane so that links intersect only at their endpoints. This attribute which stems
from the dependency of objects in graphs creates limitations in many established data processing models and
results in the need for new ones.

4.2 Scene Graphs

The graph data structure focuses on the relations between entities, thus making it a suitable means of
data representation in many fields. For example, in computer science graphs are used to represent flow of
computation within programs, in recommendation systems to rank results such as the web pages presented
by search engines or content in social media. Furthermore, graphs can be utilized by the social sciences to
represent interactions between people (social network), in research to reflect relations between papers through
citation networks or even in chemistry to represent the structure of molecules.

In this dissertation, the graph structure will be used to represent the scene depicted in an image. This graph
type, known as a scene graph, is a data structure which describes the object instances in a scene and how
these objects relate to each other. It is a powerful tool first developed to aid in the field of higher level visual
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understanding and reasoning, since it represents the semantics of a scene in an unrestricted and detailed
manner.

From a more technical perspective a scene graph is a directed graph in which nodes are objects in a scene,
like 'man’ or ’table’, and edges are the relations between them often describing positions or actions. A typical
example of a scene graph and its corresponding image can be seen in Figure 4.2.1.

Some notable observations made from this figure are the following. There exists another type of vertex
representing attributes, descriptive words for the present entities - adjectives in the majority. These nodes
are not part of the well known and commonly used structure of the triplet <subject, relation, object> used
in literature and can be ignored if irrelevant to the task the graph is being used for. It is also discernible
that relations do in fact have a direction, from subject to object, and sometimes are depicted as vertices
themselves. This practice is mostly a visual aid.

man

\
( taking H picture )

Figure 4.2.1: A Visual Genome Scene Graph [44]

Scene graphs are applicable in a variety of visual and textual tasks which relate to scene understanding, i.e.
the process of detecting and naming objects, recounting their attributes and describing their relations [12].
The most prominent one lies in the field of computer vision and involves the generation of the scene graph
itself using images and vice versa. There is a great amount of literature focusing on the task of Scene Graph
Generation using both traditional and neural approaches. Especially in the case of generating an image,
the inverse process, the use of a graph instead of plain text provides additional details concerning object
relations which sentences cannot capture. Moreover, another task in which scene graphs are proven useful
is Visual Question Answering. In this case, the target image and the semantics of the scene depicted are
more effectively understood due to the fact that it is not viewed as a set of pixels, but as a set of correlated
entities. Additional applications of the scene graph include image and video captioning, image reasoning and
description and image or text retrieval, proving its value even in the field of Natural Language Processing.
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Chapter 5

Graph Neural Networks (GININ)

It has been established from the previous section that the graph structure naturally emerges all around us.
For this reason, neural networks operating directly on graph data were invented. Graphs are non-euclidean

data and thus GNNs can be grouped in the broader category of Geometric Learning [9].

Graph Neural Networks (GNN) are known for their expressive power and recently have been gaining popu-
larity due to their growing capabilities in various applications like recommendation systems and molecular
fingerprinting. GNN applications range from chemistry and physics to traffic networks. These models can
extract features from knowledge graphs and perform several graph mining tasks. They are widely used
in computer vision for visual reasoning and semantic segmentation, in NLP for relation extraction or text

classification and in combinatorial optimization to solve graph-related problems [108].

In the following sections we will review their unique features that make them so influential, explain how they

are used and offer a review of the most important GNN variants.

Contents

5.1 Unique Characteristics . . . . . . . . . . o i i ittt i it i i e e
5.1.1 Motivation . . . . . . .. e
5.1.2 Permutation Invariance . . . . . . . .. .. Lo Lo
5.1.3 Weisfeiler-Lehman Test . . . . . . . .. .. . o

5.2 TaXONOImY . . v v v v v v v v b v b v et e e e e e e e e e e e e e e e e e e e e e e e e
5.2.1 Task Type. . . . . . o o
5.2.2  Architecture . . . . . ..
5.2.3 Training Type . . . . . . . . . e

5.3 GNN Models . . . . 0 0 i i e e e e e e e e e e e e e e e e e e e e
5.3.1 Original Graph Neural Network . . . . . . . ... ... ... ... ... .....
5.3.2 Variants . . . . . . ... e

5.3.3 General Frameworks . . . . . . . . . .

41



Chapter 5. Graph Neural Networks (GNN)

5.1 Unique Characteristics

5.1.1 Motivation

The first question to be answered is why GNNs were created, even though there is already a substantial
amount of neural network architectures. Most other data representations can be generalized to graphs but
the opposite in not true. Most conventional Machine or Deep Learning algorithms are specifically crafted to
cater to a certain type of data, such as images or text. Images can be perceived as fixed-size grid graphs
and text or even speech can be thought of as line graphs. But in the general case, graphs are more complex,
having a non-fixed number of unordered nodes within neighborhoods of variable size, and therefore existing
models cannot handle them.

Another reason why machine learning is more complex on graphs is that most common algorithms assume
instance independence. This is not true when performing node-level tasks where one graph is the input of the
neural network and the instances are its nodes. Vertices are obviously related to one another with directed
or undirected links.

The main motivation behind GNNs are Convolutional Neural Networks. Classic CNNs operate on images,
or more broadly regular grids. As explained previously, they take advantage of the spatial locality of pixels
which are nodes on the grid by sliding rectangular kernels with a small receptive field over the image to
produce feature maps. The lack of locality in the traditional sense in graph data, their arbitrary size and
invariance make regular convolution difficult to perform.

5.1.2 Permutation Invariance

Graphs are represented with adjacency matrices, a format that is permutation invariant. A Graph Neural
Network is a transformation on nodes, edges or global-context that should preserve the graph symmetries -
or permutation invariances - through the process of optimization.

More formally, for a graph with n number of nodes, their features can be represented by the feature matrix
X = [21,...,w,)T where z; are the feature vectors of each node. As explained the order of the nodes should
not be important. However, by using this representation an ordering is unavoidably enforced. In order to
overcome this problem the network should learn a function which is not affected by this ordering and therefore
preserves permutation invariance.

A permutation invariant function f can be defined as:
F(PX) = F(X) (5.11)

where X is any input matrix - in this case the feature matrix of a graph - and P is a permutation matrix.
Permutation matrices contain exactly one non-zero element in each row and column and intuitively they
scramble the rows of X resulting in different orderings.

A more thorough examination of the above function leads to the conclusion that operators like f are very
limited. Basically such functions belong to a two-dimensional vector space containing summing the diagonal
and summing the off diagonal of X. For example, a graph network consisting of only invariant layers would
not even be able to discriminate between two graphs with the same number of nodes and edges, because it
observes nodes as sets and not individually [56].

For all the above, in practice we want to combine invariant functions with equivariant functions which reflect
the permutation of the node features in the output. Equivariant operators can be defined as:

f(PX)=Pf(X) (5.1.2)
It is notable that a permutation in the node ordering could also be reflected on the adjacency matrix A of

the graph. In this case the permutation will be enforced as PAP” and result in f(X, A) for invariance and
Pf(X,A) for equivariance.
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Figure 5.1.1: Permutation in the adjacency matrix.

Left: Original Graph, Right: Graph obtained by permutation PAPT

In practice graph neural networks often work on neighborhoods and not isolated nodes. For this reason, if we
consider only the immediate 1-hop neighbors as the neighborhood N; of ¢, the neighborhood feature matrix
Xn, would be a set of the neighbors’ collective features. Each N; would be processed separately using a
local function g and finally the output would be a stack of the intermediate local results. To achieve f to be
permutation equivariant, g should be invariant.

5.1.3 Weisfeiler-Lehman Test

The Weisfeiler-Lehman (WL) Graph Isomorphism Test [88] is used for the discrimination of non-isomorphic
graphs. Specifically, it is able to distinguish between graphs that are not isomorphic, but cannot exactly
provide proof that two graphs are in fact isomorphic. This capability gives significant insight on the graph’s
structure and aids in graph comparison.

In terms of graph theory, two graphs G and H are called isomorphic when an isomorphism exists between
them. An isomorphism of graphs is a bijection between the vertex sets of G and H

F1V(G) = V(H) (5.1.3)

such that any two vertices u and v of G are adjacent in G if and only if f(u) and f(v) are adjacent in H [90].

Figure 5.1.2: Two isomorphic graphs [90]

The principal idea of the Weisfeiler-Lehman test is to replace the label of each vertex with a multiset label
consisting of the original and the sorted set of labels belonging to members of the neighborhood. This process
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of relabeling is repeated for a given number of times simultaneously for all the graphs. If the outcome is
graphs with different node labels, one can safely say that the input graphs were not isomorphic.

The problem that the WL test tackles is very challenging with a computational complexity in the class NP-
intermediate. However, the WL test provides its answer in polynomial time. This test is also relevant to
GNNss since it closely resembles the general idea of the GNN learning process of message passing. In fact,
it was proven that a Graph Neural Network can at best be as good as the WL test at solving the graph
isomorphism problem [101]. Thus, GNNs and the WL test are often compared based on their expressivity.

5.2 Taxonomy

Developments in the field of Geometric Learning in recent years have resulted in the creation of an abundance
of different GNN models. Each one specializes in a certain task or offers a specific optimization. In order to
explain the many GNN variants in the next section, we will explain on which bases they can be categorized:

5.2.1 Task Type

GNN variants tackle an array of graph analytics tasks each of which may focus on different attributes of the
graph structure.

e Node-Level tasks require models which predict some property for each node in a graph, like its
identity or role. With a broader perspective, node-level models build node representations. Analogous
tasks would be image segmentation in computer vision or parts-of-speech prediction in NLP. In the
supervised case, the most common tasks include node regression and node classification.

e Edge-Level tasks, in a similar fashion, call for models to predict the property or presence of edges.
Subsequently, these tasks include edge classification and link prediction. An example of edge-level
inference is scene understanding, trying to predict the existence and/or label of relation between objects
in a scene.

e Graph-Level tasks entail the prediction of a single property for the whole graph or more vaguely
attempt to extract graph representations. In order to do so, the model utilized is combined with pooling
or readout operations. Graph pooling is a form of down-sampling which creates coarser graphs, whereas
Readout instantly collapses node representations into a singular global graph representation. These
tasks include graph classification or regression. The topic of this dissertation is also a graph-level task,
which specifically employs information stemming from graph pairs to extract graph representations.

5.2.2 Architecture

Another way of categorizing Graph NNs is by prioritizing the type of framework or architecture they are
using. This is the taxonomy [99] suggests and it is the following:

e Convolutional graph neural networks (ConvGNNs) inspired by classic CNNs are based on using
the convolution operation, as defined for graph data. A basic outline of the function of the majority of
these variants is: they define a node’s neighborhood, aggregate information between neighboring nodes
and finally generate each node’s representation. Just like CNNs in standard Deep Learning, multiple
graph convolutional layers are stacked in order to extract high-level node features the closer we get
to the ouput. ConvGNNs are some of the most important building blocks for more advanced models.
ConvGNNs can further be labelled as spatial or spectral. The distinction lies on whether the model
makes use of spatial graph convolutions - spatial - or treats graphs as signals in the frequency domain
- spectral.

¢ Recurrent graph neural networks (RecGNNs) make use of the idea of using information from
previous units as influence for the current one, just like in classic Machine Learning. Specifically, they
assume a node constantly trades information within its neighboorhood until a stable equilibrium is
reached. This idea of message passing is one of the first in the field of GNNs and has been the basis
for most other models, especially spatial-based convolutional ones.
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e Graph autoencoders (GAEs) are based on the same premise as the Autoencoder explained in
previous sections, i.e. are unsupervised learning frameworks which encode graphs/nodes into a low-
dimensional space and attempt to reconstruct them. GAEs are mostly used on tasks like: network
embedding - creating node representations through adjacency matrix reconstruction - and graph gen-
eration in a step by step manner.

e Spatial-temporal graph neural networks (STGNNs) are architectures which work on spatial-
temporal graphs, i.e. graphs that change in structure overtime. To do so, they consider both spatial
dependency as well as temporal dependency, often combining main ideas from convolutional and recur-
rent graph nets. They have recently become more significant due to their involvement in applications
like traffic forecasting.

5.2.3 Training Type

Last but least, it is common to separate GNN variants according to what kind of signals they are trained
with. This is is not a strict grouping since some models can be applied to multiple of the categories below.

e Semi-supervised learning tasks on graphs primarily work on graphs which are partially labeled,
meaning only some nodes have a target class. The task in this case is node classification, which is
achieved in a more robust way. Link prediction can also be carried out in a semi-supervised manner,
in a similar fashion.

e Supervised learning tasks are based on the fact that the data is labeled. So they comprise of
classification and regression tasks in node, edge or graph level.

e Unsupervised learning tasks are characterized by a lack of labels for the graph attributes. Some
examples of tasks are node clustering and graph embedding. For the latter instance, the embedding
can be learned in a purely unsupervised way using an end-to-end encoder-decoder based framework or
by contrastive learning using negative samples. There also exist a lot of Graph Self-Supervised learning
applications, which are mostly encoder-decoder based [51], and can be loosely grouped in this category.

5.3 GNN Models

In this section we will describe some of the most important Graph Neural Network architectures. Starting
from the framework which introduced the concept of GNNs, we will expand to the many GNN variants and
finally to general GNN frameworks. The most emphasis will be placed on models which will be used later on
in our proposal.

5.3.1 Original Graph Neural Network

The original Graph Neural Network was presented by Scarselli et al. [75]. It falls under the category of
RecGNNs and is an extension of prior recurrent models in order for them to work on graphs. It is based on
the use of information diffusion within the graph in a recurrent manner until eventually a stable equilibrium
is achieved.

Using notation from [108], the original model tries to learn a state embedding h, € R¢ for every node v which
includes not only its own information but also the neighborhood’s N,. It is defined as:

hv - f(xva xco[v]a th 3 xNv) (531)
where x, represents the features of node v, ., are the features of its corresponding edges while hy, and
xn, refer to the set of neighbors of v and represent their collective states and features respectively.

The function f is called local transition function and it is a parametric function common for all nodes
which performs the state update by utilizing the neighborhood’s information. In practice the neighborhood’s
information is summed in order to preserve invariance [99].

The state embedding can be used to produce an output related to the task. The output o, is defined as:
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0y = g(hy, ) (5.3.2)

where g is the local output function and it describes how the output will be produced. The term function is
used loosely and can even refer to an FFNN.

A compact representation of the above equations after stacking them for all nodes of the graph can be seen
in Equation 5.3.3. H, O, X, X are the matrices corresponding to states, outputs, features and neighborhood
features after the stacking, while G are the global versions of f, g which are also constructed by the
combination of the local functions for each node.

H=F(H,X)
0 = G(H, Xn) (5.3.3)

The state in each iteration of this recurrent model is computed using Banach’s theorem [40], since H is the
fixed point of the above equation. In order to find a unique solution, F' must be a contraction map. H is
randomly initialized and if the criterion for F' is met, then the convergence is exponentially fast regardless of
the initial value. After the fixed point is found, the last step node hidden states are forwarded to a readout
layer extracting a global representation. The state update is defined as:

H'™' = F(H', X) (5.3.4)
In the case of supervised learning, the loss function looks like this:

n

> (ti—0:)? (5.3.5)

i=1

As common in neural network applications, the cost function may include a penalty term to control other
properties of the model. The optimization is gradient-based and determines the weights of the parametric
functions f, g.

Overall, the learning algorithm iteratively updates the states using 5.3.3 until convergence to the fixed point.
Then, gradients are computed and the weights are updated accordingly.

The original GNN presented crucial ideas which are utilized by many of the approaches which will be explained
later and so is some of the terminology. However, it has some important limitations:

e The requirement of f being a contraction map limits the model’s abilities.

e GNN is computationally expensive due to the iterative updates towards the fixed point.

It is unsuitable for node-level tasks because of the fixed point requirement. The representation obtained
is smooth and therefore not informative for each node.

There is no representation of edge features.

5.3.2 Variants

In this section we will present some of the most important GNN variants presented in order to alleviate the
aforementioned challenges or cater to unique cases. We will group them according to their architecture, as
proposed in Section 5.2.2. STGNNs and RecGNNs will not be further elaborated on since they are out of
the scope of this thesis.
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Spectral-based ConvGNNs

As mentioned before, spectral ConvGNNs treat the graph as a signal and therefore are strictly mathematical
approaches. They make use of the Laplacian matrix L of the graph, which captures its key properties, and
use the Fourier transform to project the graph to the orthonormal space defined by the eigenvectors obtianed
after factorizing the Laplacian. The formal definition of the Laplacian matrix can be seen below, where D is
the degree matrix and A the adjacency matrix of the graph.

L=D3AD" 3> (5.3.6)

All spectral convolutional approaches for GNNs use the graph convolution defined in 5.3.7, but they differ
in the choice of the filter gg. In this equation z is the input signal to be convolved, U is the matrix of
eigenvectors ordered by eigenvalues resulting from the factorization of the normalized Laplacian matrix of
the input graph and gy is the convolution filter, for which gy = diag(U7T g) is true.

zxa g9 =UgoUTx (5.3.7)

Spectral Convolutional Neural Network (Spectral CNN) [10] assumes that the filter is a diagonal
matrix with learnable parameters. However, this initial approach suffers from computational inefficiency,
dependence on the input graph’s structure and non-spatial locality.

Chebyshev Spectral CNN (ChebNet) [14] approximates gg by Chebyshev polynomials of the diagonal
matrix of eigenvalues A (L = UAUT). The convolution can be defined as:

K
T *Gg go — Z eka(i)l‘ (538)

where L = 2L [ Amaz — In With A4, being the largest eigenvalue of L and I, the identity matrix of dimension
n. Ty (x) represents the Chebysev polynomial for the k-th order and in the above equation it can be proven
by induction that:

Tw(L) = UTi(A)UT (5.3.9)

Tk (x) can be computed as:

Ti(x) = 20Tp—1(x) — Tp—2(x) with To(z) =1 and Ti(z) ==z (5.3.10)

This model improves on the spatial locality problem of Spectral CNN. Specifically, the filters defined by
ChebNet are K-localized, since the operation is a K*"-order polynomial of the Laplacian, allowing this model
to obtain local features regardless of the graph size.

Graph Convolutional Network (GCN) presents the idea of using a first order approximation of ChebNet
in order to alleviate overfitting. In fact, it assumes K = 1 and \,,4,, = 2. In the same direction, the model
enforces the constraint § = 0y = —6;. After imposing these restraints on Equation 5.3.9 and taking into
consideration 5.3.10, the convolution operation is:

zxG go=0(I, + D"2AD %)z (5.3.11)
After empirically ﬁndmg that the term I,, + D"2 AD™ 2 causes numerlcal instability, a renormalization trick

was used. The term D=2 AD~% = A was replaced with D~z 3 AD~% = A where A = I,+Aand D;; = Z Am
All of the above can be described by this compact equation:

H =X g gy = f(AXO) (5.3.12)

where f is an activation function and multiple inputs and ouputs are allowed due to the matrix form.

47



Chapter 5. Graph Neural Networks (GNN)

Figure 5.3.1: Comparison of 2D and Graph Convolution [99]
Left: 2D Convolution in CNNs, Right: Graph Convolution

The GCN is a special case of a spectral approach since it can also be perceived as a spatial one. In the
equation below, we can see how the aggregation of information within the neighborhood would be performed.
In this case the node itself is also regarded as its 1-hop neighbor.

hy=fOT( > Ayury) YueV (5.3.13)

uw€N (u)UJv

This model is very frequently used as a part of more complex architectures in literature due to its simplicity
and good experimental performance.

Spatial-based ConvGNNs

Spatial approaches define the graph convolution operation taking into account the spatial locality of nodes,
i.e. the neighborhood, making them adjacent to conventional CNNs. However, they are also heavily inspired
by the RecGNN pioneering ideas. Specifically, spatial ConvGNNs convolve the central and neighboring nodes’
features, as seen in Figure 5.3.1, to obtain the updated representation which ultimately leads to information
propagation along the edges of the graph.

Diffusion Convolutional Neural Networks (DCNN) [3] conceive the convolution as a diffusion process
and define the diffusion convolution function as:

H® = fw® o pEx) (5.3.14)

where f is an activation function and P = D' A and is called the probability transition matriz. During the
information distribution each node exchanges information with one of its neighbors with a certain transition
probability provided by P. After an amount of iterations an equilibrium is reached and the diffusion is over.
The update rule of the original GNN is not used here, instead each hidden representation H*) is computed
independently and all of them are concatenated to obtain the final one.

GraphSAGE [31] learns a function that generates embeddings by sampling and aggregating features from
a node’s local neighborhood. This framework introduces the idea of sampling the node’s neighborhood in
order to obtain a fixed number of neighbors in each iteration. The convolution process can be summarized
in:

W = (W) (1, (D, Y € S D) (5:3.15

where fj is an aggregation function, o is the sigmoid function and Sy (,) is a random sample of the neigh-
borhood of v. We assume that h, is initialized with the node’s original features. The choice of aggregation
function is important since it should be permutation invariant, such as a mean, sum or max function.
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GraphSAGE is practically an extension of the GCN to inductive unsupervised learning. It is proposed that it
should be trained using an unsupervised graph-based loss, but can also be trained in a supervised manner if
needed. The model provides low-dimensional embeddings for downstream tasks which reflect local and global
characteristics of the graph. It focuses on attributed graphs - with features - but can also work without node
attributes by using handcrafted structural information. GraphSAGE does not train the embeddings, but the
aggregator function with which inference is performed.

This approach is more efficient for unseen data than older transductive approaches and it is also invariant to
orthogonal transformations. With adjustments it is an instance of the Weisfeiler-Lehman test.

Graph Attention Network (GAT) [83] adopts the idea of attention proposed by [82] in order to decide
which members of a node’s neighborhood have more important information. It aims to learn the relative
weights between adjacent nodes and therefore differs from previous approaches like GCN and GraphSAGE
because the concept of the neighborhood is not pre-defined or identical.

The convolutional operation is defined as:

P S CTX ) (5.3.16)
uweN (u)Jv

where the attention weights for each node v can be defined as:

o®) = softmax(LeakyReLU (a¥ [W® h{k — 1)[|Ww B pk=1)1)) (5.3.17)
The variable a represents a set of learnable parameters. The hidden representation is initialized with the
features of each node and the softmax function ensures that attention weights sum to one.

The mechanism above is called self-attention, but GAT additionally uses multi-head attention in order to
stabilize learning and make the model more expressive. The exact equations can be found in [83].

GAT is efficient since the node-neighbor pairs can be computed simultaneously. Moreover, it is indifferent to
neighborhood sizes and can be applied to inductive learning problems easily.

Graph Isomorphism Network (GIN) [101] is the first spatial approach that addresses the inability of
previous spatial models to discriminate between different graph structures based on the embeddings produced.
In order to do that, GIN uses a simple technique, adding a learnable weight parameter for the central node
of the convolution. The operation is defined below where ¢*) is the weight.

h(vk) = MLP((1 +E(k))h1()k—1) + Z hgf—l)) (5.3.18)
u€eN (u)

GIN is proved to be as powerful as the WL graph isomorphism test, i.e. produces different node embeddings
when dealing with non-isomorphic graphs This makes this model maximally powerful and therefore the most
expressive among the variants. The most discriminative GNN should use an injective multiset function in
order to distinguish rooted subtree structures. For this reason, GIN uses the Multi-Layer Perceptron and the
sum function as the aggregator. For each layer, node embeddings are summed and the result is concatenated.
Thus, the expressiveness of the sum operator is combined with the memory of previous iterations by using
concatenation. All things considered, one should keep in mind that the theoretical power of the GIN does
not always translate in practice

GAEs

In this section we will present the most popular graph autoencoder architectures presented in the same paper
[42].

Graph AutoEncoder (GAE) improves on previous autoencoder-based techniques by leveraging the in-
formation provided by node features. It uses two GCN layers to capture node structural and node feature
information at the same time as seen in the equation for the encoder below.
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Z =enc(X, A) = Geonv(ReLU (Geonv(A, X;01)); O3) (5.3.19)

where Z is the graph’s embedding matrix.

The decoder aims to utilize the embeddings in order to reconstruct the graph adjacency matrix. The model
is trained with a CrossEntropy loss between the real adjacency matrix A and the reconstructed adjacency
matrix A. Its equation is visible below, where z, refers to the embedding of node v.

Avy = dec(zy, 20) = 0(2] 2u) (5.3.20)

Variational Graph AutoEncoder (VGAE) is the variational version of the previous model which learns
the data distribution. It mainly attempts to alleviate overfitting, but additionally gives the opportunity for
the model to be used for generative tasks.

Aside from employing distributions, the main difference from GAE is the use of the Kullback-Leibler diver-
gence function which measures the distance between two distributions as a regularizer, in a similar fashion
to the conventional VAE.

Special GNN variants

All of the variants above are made for static homogeneous graphs with node features. But graphs in real life
are not always that simplified. For this reason, dedicated efforts have been made to create GNN variants for
complex graphs. These efforts can significantly contribute to the adoption of GNNs in a broader range of
applications [53].

Heterogeneous graphs are commonly used to represent the relations between papers or authors. For this
reason, many GNN approaches, such as the GAT-filter, have been modified to accommodate them. This
is possible with the use of meta-paths [35] which capture various relations between nodes with different
semantics. The original graph is split into a set of homogeneous graphs which are dealt with separately. In
a similar manner, if a graph is bipartite the graph convolution operation is split into two components, one
for each set of nodes.

Multi-dimensional graphs are graphs containing different types of edges.In this case, it is necessary to consider
both within and across-dimension interactions, i.e. relations between nodes which are of the same type as
well as are not. Towards this direction, [54] was presented. Moreover, the type of graph containing two types
of relations denoted as positive and negative is called signed and is a common representation used in social
network theory. For those types of graphs we cannot treat the positive and negative subgraphs independently
because they interact. Works like [15] leverage the balance theory to model these interactions.

Hypergraphs, also often representing author and paper networks, are graphs containing hyperedges, i.e. edges
connecting any number of nodes. These structures can be transformed into simple graphs by pairwise relation
extraction, as proposed by [19, 102].

Finally, graphs can also have temporal characteristics meaning they can evolve overtime. Dynamic graphs
are graphs with many real world applications and require learning multiple models for different snapshots in
time. An interesting recent dynamic or STGNN model is [66].

5.3.3 General Frameworks

The existence of such an abundance of GNN variants led to the creation of various general frameworks which
group them together. This way, we can study them more efficiently and draw significant conclusions. In

this section, we will coarsely describe some of the most important ones belonging to the category of spatial
ConvGNNs.

Mixture model network (MoNet) [60] is a framework combining several non-euclidean models, such as
CNNs for manifolds and GNNs. A new pseudo-coordinate system is created, with its origin being each point
on a manifold or each vertex on a graph. The neighboring points/nodes are defined accordingingly. GCN
can be formulated as an instance of this framework.
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Message Passing Neural Network (MPNN) [24] is probably the most well-known family of GNNs. This
framework uses two phases: the message passing phase and the readout phase for graph-level tasks.

In the first phase, information is aggregated to each node’s neighbors by using a message function My which
is essentially the graph convolution. Then, an update function Uy is used to update the hidden state. This
is a K-step process defined by the equation below.

W) = U (R*D, N My(RFY, 25,)) (5.3.21)
ueN(v)

The readout phase is optional depending on whether node or graph-level inference is required. In the second
. (K) . . .
case, the representation h; ’ is passed to a readout function in order to create a graph representation.

he = R(WP|u € Q) (5.3.22)

where R is the readout function.

MPNN can describe a variety of different spatial convolutional GNNs which generally adopt this message
passing process. This is done by defining the functions My, U, and R in appropriate ways. One of the
networks belonging to this group is GCN and also several other models used on molecular structures which
have not been mentioned.

It is notable that GIN has been proven to be more powerful than all MPNN-based methods at least in theory.

Non-Local Neural Network (NLNN) [85] uses a non-local operation to compute the hidden state at a
position as a weighted sum of features at all possible positions in space, time or spacetime. Consequently,
the NLNN essentially groups all “self-attention” methods, including GAT.

Graph Network (GN) [7] is an even more general framework which groups models according to the type
of task they fulfill, i.e. node-level, edge-level and graph-level. It generalizes other frameworks, including the
aforementioned ones.

This framework is based on the use of a computational unit called GN block. This block defines three update
and three aggregation functions, each referring to a different level. By choosing these functions, a significant
array of models or other frameworks can be defined.
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Chapter 6

Counterfactual Explanations

The field of AI interpretability has been gaining increasing attention due to the growing realization that in
order to confidently be able to count on the impressive outputs provided by intelligent systems, appropriate
explanations are needed [2]. Al applications are taking over almost every aspect of everyday life and it is
significant to assure that these models and the respective input datasets are not biased. Al Explainability is
crucial not only for detecting biases, but also for increasing social acceptance, establishing safety measures for
applications like self-driving cars and finally for the enhancement of the machine learning systems themselves
using the information learnt [59].

In this thesis, we will focus on a specific explainability technique called Counterfactual Explanations. In the
following sections we will define this type of Al explanations and describe the way they relate to our proposed
model.
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6.1 Definitions

A general definition for a counterfactual explanation - or simply a counterfactual - is that it describes the
causation of a situation by assuming “If X had not happened, Y would not have occurred”. Its name derives
from the need to imagine a counterfeit reality which contradicts our perception [59].

In terms of Al explainability, the counterfactual aims to provide an explanation for "What would need
to change in order for the model to make a different decision". Therefore, they essentially can explain
predictions of individual instances, where the causes of the predicted outcome are particular feature values
of this instance.

Counterfactuals are contrastive and selective, meaning they find minimal changes in the feature space. Thus,
they are human-friendly. However, there are usually multiple different counterfactual explanations for the
same instance which explain it equally well. This creates contradictions which can be overcome simply by
providing all possible truths and letting the end user decide on establishing a criterion to choose the best
one.

There are both model-agnostic and model-specific counterfactual explanation methods. Model-agnostic ap-
proaches have a chief advantage over solely using interpretable models, which is their flexibility. They can be
tested on several different machine learning models and evaluated on the explainability of an array of tasks.
The method which we will be focusing on is also model-agnostic.

A good counterfactual explanation should first and foremost be able to produce the predefined prediction. It
should provide a minimal explanation, i.e. the closest one in terms of features as determined by some distance
metric. Moreover, its features should have possible values. All three of these criteria are met by [22]. Finally,
in some cases it is desirable for a CE method to provide multiple explanations for the decision-subject to
choose.

6.2 Conceptual Edits

In this section, we will elaborate on the counterfactual explanation method which inspired this work. Essen-
tially, our goal is to produce embeddings of the input graphs which capture the graph similarity in terms of
edit distance in order to facilitate the counterfactual application in this paper.

Filandrianos et al. [22] propose a theoretical framework for the computation of counterfactual explanations
through conceptual edits. In this context, concepts are the general representations of objects present in the
input data and are linked with external knowledge, in the form of concept hierarchies. The outline of the
presented framework is described in Figure 6.2.1

It is discernible that the black-box model used in this application is a classifier, which categorizes images
from the COCO dataset depending on what type of room they are set in. Thus, the counterfactual answers
the question "What would have to change for something to be classified as X instead of Y". For better
comprehension of what is depicted in the figure, we will further explain some of the terminology used.

An FEzxplanation Dataset is a set of ordered pairs comprising of samples of the input data to the black-
box classifier and the subset of concepts associated with each instance. More formally, if the classifier is
F : D —[0,1]° where D is the domain to be explained, ¢ the number of classes and C'N is set of all atomic
concepts, we can define the explanation dataset as:

(2,C;), z;, €D and C; CCN (6.2.1)

A Thox is a set of terminological axioms described as A C B, where A, B C C'N, as they are defined in the
WordNet [58] noun hierarchy. The Thox can also be represented using a directed graph G(V, E) in which
each node represents a different atomic concept or the universal concept T and the edges have a direction
from A to B. This property is also true for transitive inclusions.

A Conceptual Edit is one of the following three types of change which transforms a set of concepts A:

e Replacement of concept A € A with concept B ¢ A
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Figure 6.2.1: Conceptual Edits as Counterfactual Explanations framework [22].

o Insertion of concept B ¢ A
e Deletion of concept A € A

Edits are defined as €,—,, where z,y € CN and y is the concept replacing x. In the case of insertion, = will
become the universal concept T and as for deletion y will become T. For example, in the figure, eT_,cqt
means the insertion of a cat in the image. The cost of concept set edits can be derived from the smallest
path between the two concepts in the Thox graph.

Finally, Local Counterfactual Explanations constitute the set of conceptual edits that transform sets of con-
cepts to other sets of concepts classified in a different class in a minimal way, i.e. with the smallest cost.
A stricter definition involves constructing a graph G(V,E) where V = D and E contains edges of weight
1/0(a,b) for every pair of a,b € D. The denominator is called significance of transformation and its defini-
tion can be seen in Equation 6.2.2. Paths between between elements of class ¢; to any other element of class
co are counterfactual explanations, but our goal is to find optimal explanations and therefore shortest paths.

|F(wa) = Flay)]

o(a,b) = Dr(Co.Cy)

(6.2.2)

where a = (z4,C,),b = (xp,Cy) and Dr is the distance of the concepts.

The paper also proposes a way to compute Generalized Counterfactual Ezplanations, i.e. computation of
counterfactuals for a subset of instances that satisfy a specific query and the importance of each concept.
The importance is a number that signifies how often an object is deleted or inserted in order to lead to a
transformation belonging to a specific class.

Overall, The computation of counterfactual explanations entails:

e Finding the concept distance between all present concepts using shortest paths on the undirected TBox
graph obtained with Dijkstra’s algorithm.

e Computing Concept Set Edit Distance from one set of concepts to the other using Karp’s algorithm
for minimum weight full matching. This requires constructing a complete bipartite graph from the two
sets.
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Chapter 6. Counterfactual Explanations

e Obtaining local counterfactual explanations by finding shortest paths on the already constructed graph
(using Dijkstra’s algorithm again).

)

Our contribution to this approach is dual: i) using graph data which contain relations between the sets of
concepts and are therefore a richer representation and ii) finding the most similar input instance pairs and
therefore only computing the edits for these pairs, which are considered minimal. Of course, the most similar
pairs are obtained using GNNs.

6.3 Related Work

After examining the concepts of Conceptual Edits as Counterfactual Explanations, we are going to present
other relevant work based on counterfactuals, use of knowledge bases and the utilization of GNNs in such
approaches.

Firstly, there are many works focused on counterfactual explanations in recent literature. An approach by
Goyal et al. [28] introduces the idea of detecting the regions of the image requiring change by leveraging the
low-order features extracted by the deep neural network used. Moreover, the minimum-edit method is also
used, but the edits in this case are pixel-level and depend on the information provided by the "black-box"
model. Poyiadzi et al. [70] propose Feasible and Actionable Counterfactual Explanations, meaning they
enforce restraints such as following the data distribution and guaranteeing feasibility and actionability of
explanations provided. The idea of providing a minimal set of changes is also proposed in [26] with the
difference of it operating on numeric data dependent on the classifier’s input feature space. In the method
presented by [107], the use of external knowledge as aid to a text-to-image generative adversarial network
is highlighted. This recent survey [13] provides further detailed descriptions of models and categorizes them
based on their properties.

Next, we will present some relevant work involving counterfactuals with external knowledge from knowledge
graphs, which provide symbolic knowledge in a way that facilitates both machines and humans. Silva et al.
[78], for example, uses WordNet in the task of task entailment with great results while simultaneously ex-
plaining predictions. Other approaches like [16, 50] focus on mimicking a black-box classifier’s behaviour with
semantic query answering over external knowledge in order to provide explanations. Finally, in approaches
like [1] the knowledge from task-specific ontological bases is used for error explanation. A more thorough
look on the use of knowledge graphs in interpretable Al is provided by [81].

Finally, the intersection of counterfactual explanations and Graph Neural Networks mostly contains works
which attempt to interpret GNNs and not the other way around. For instance, Lucic et al. [52] proposes
counterfactual explanation of any GNN model by perturbating the adjacency matrix of input graphs edge-
by-edge until a change of prediction. Similarly, Bajaj et al. [6] suggests finding a subset of edges which
upon deletion changes the model’s prediction. This set needs to be small and robust to noise caused by
perturbations. One of the only works which utilizes GNNs in order to ultimately provide explanations
is Holzinger et al. [34] which proposes the construction of counterfactual graphs for explainability and
causability in Al medical applications. These graphs are multi-modal and are created using GNNs.
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Chapter 7
Graph Similarity

Graph Similarity or Graph Matching is the problem of finding a similarity between graphs, i.e. finding a
mapping s : G X G — R for a pair of graphs, characteristic of how similar or dissimilar they are.

The matching of graphs is categorized according to the plausible accuracy which can be achieved. FEzact
Graph Matching is essentially the problem of Graph Isomorphism explained in Section 5.1.3. In this context,
the goal would be to recognize isomorphic graphs, given that the appropriate conditions are met, which
are maximally similar. However, exact matching is not always possible. For example, the subject graphs
could have different numbers of nodes or edges or just be attributed. This problem is defined as Inexact or
Error-tolerant Graph Matching and it entails finding the best possible match.

The process of inexact graph matching is fundamentally an optimization problem which can be tackled using
many different algorithms. For instance, Graph Edit Distance is an appropriate similarity measure based
on counting operations that are necessary to transform one graph to the other and selecting the minimum
one. This method along with the polynomial alternative of Graph Kernels will be explored in this thesis
and compared to the idea of using GNNs to map each graph to a feature vector and use distance metrics on
vectors to obtain similarities. In the sections below we will elaborate on the aforementioned methods.
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Chapter 7. Graph Similarity

Figure 7.1.1: Graph Edit Distance Between Two Graphs. [4]

Minimum GED requires 3 edit operations and if they were all equally weighted its value would be 3.

7.1 Graph Edit Distance

Graph Edit Distance (GED) is a measure of similarity (or rather dissimilarity) between pairs of graphs. It
can be considered a generalized version of other distances, such as string edit distance, tree edit distance
[106] or Hamming distance [32], if graphs with proper constraints are constructed.

The general formal definition of GED, based on the paper which introduced it [74], can be seen below. The
Graph edit Distance between the graph pair G; and Gz is denoted as GED(G1,G2), the edit operations
are e;, their costs are ¢(e;) and P(G1,G2) denotes the set of edit paths transforming the first graph to an
isomorphic of the second. Edit operations include insertion, deletion and substitution of vertices and edges.
The costs of edit operations are specific to the input graph format and therefore defined by the user.

k
GED(G1,Gs) = min(GhGQ) Z c(e;) (7.1.1)

(e1,...,ex)EP ‘
=1

Exact algorithms for computing GED typically aim to minimize the cost of the edit path from one graph
of the pair to the other. The methods used for this computation are either pathfinding search or shortest
paths and they often utilize the A* search algorithm. GED is a computationally expensive NP-hard problem.
Additionally, its approximation is also in a difficult class and thus GED can be placed in the APX-hard
complexity class. There have been many graph edit distance approximation approaches which achieve cubic
complexities in the majority. For instance, some of the most popular ones are Hungarian [45], Hausdorff [23]
and BP-Beam [63].

The GED algorithm used in this thesis is a well-known approximation based on bipartite graph matching
by means of the Volgenant-Jonker assignment algorithm [18]. Assignment algorithms lead to polynomial
time complexities because the process of assigning nodes can be solved as a Linear Sum Assignment Problem
(LSAP). LSAP requires the construction of a cost matrix whose elements are the assignment costs between two
sets. The goal is to find the permutation which minimizes the overall cost. Volgenant-Jonker (VJ) [37] is an
LSAP-based algorithm, popular for its efficiency. It achieves a complexity of O(n?), but in practice it is much
faster. Moreover, it is effective for both sparse and dense graphs, and it is insensitive to the cost value range.
VI is a three step process, consisting of preprocessing to obtain a partial solution, sparsification followed
by improvement through augmentation and finally determination of shortest paths. Thus, this algorithm is
also called shortest augmenting path. Augmentation comprises of the construction of the auxiliary network
graph and computation of minimal cost alternating paths between unassigned rows and columns which are
subsequently used to improve on the solution. The bipartite matching heuristic firstly focuses on the creation
of the cost matrix. In the case of GED, LSAP works on the two sets of vertices of the graphs and the cost
matrix is expanded to accommodate deletions and insertions. The node edit scores include edge edit costs
for adjacent nodes. Secondly, VJ is used to compute the node assignments. This way, while node operations
are explicitly computed, the edge operations are inferred. This results in a great speed-up, but is also the
reason for the suboptimality of the solution. However, this approach offers great results in practice.
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7.2. Graph Kernels

Figure 7.2.1: Tllustration of Kernel Trick [38]

7.2 Graph Kernels

Even though Graph Edit Distance algorithms effectively compute graph similarity, they are not computa-
tionally efficient. The problem of GED essentially includes subgraph isomorphism check as an intermediate
step which is NP-hard. Furthermore, choosing edit operation costs is a difficult task which requires mindful
attention.

Graph Kernels are kernel functions used on graphs, which measure the similarity of graphs in polynomial
time. They provide an eflicient, expressive and widely applicable alternative to GED.

A positive definite kernel on a non-empty set X is a symmetric function K : X x X — R if 7.2.1 holds, where
z; € X, n € N and ¢; are real numbers. A distinction is often made between positive-definite (p.d.) kernels
for which the equality only holds and positive semi-definite (p.s.d.) kernels for which the opposite is true.
Intuitively, p.d. kernels only have positive eigenvalues, while p.s.d can also have zero values. Kernel functions
are essentially similarity functions. .

iiCiCjK(iti,itj) Z 0 (721)

i=1 j=1

A common application of kernel functions is the "kernel trick". With the help of the kernel, data is mapped
to a feature space with higher dimensions where the inner product of all pairs can be computed fairly easily.
Thus, the coordinates of the data do not need explicit computation and the measurement of similarity in the
feature space is possible by computing the kernel in the input space:

k(z,2') =< ¢(x), p(z') > (7.2.2)

where ¢ : X — H and H is a Hilbert space.

Graph kernels can be defined as convolution kernels on pairs of graphs and are also represented by 7.2.2.
Similarly to GED algorithms, there is a connection to the graph isomorphism problem. Specifically, if ¢ is
injective in the equation above, the input graphs, namely G and G’ are isomorphic [38].

In this thesis, we will explore five graph kernel methods, three of which can handle graphs with node attributes.
We will elaborate on them below, starting with approaches on labeled graphs and continuing with attributed
graph methods.

Weisfeiler-Lehman Kernel

This kernel is based on the Weisfeiler-Lehman algorithm, explained in section 5.1.3. This framework was
introduced by [76] and it defines graphs as:

59



Chapter 7. Graph Similarity

{Go,G1,....Gr} ={(V, E,lo), (V. E,l), ..., (V. E, ln)} (7.2.3)

where Gy = G the graph with original labels, G; = r(Gy) the graph after the first iteration and relabelling.
The graphs are represented with triplets (V,E,l ) where [; is the set of labels and the WL algorithm is
repeated h times.

The WL kernel operates on top of an existing kernel, called the base kernel, and denoted as k. Then, the
Weifeiler-Lehman for h iterations is defined as seen below and proven to be p.s.d.

kD (G, G') = k(Go,Go') + k(G1,Gy') + ... + k(G Gr) (7.2.4)

Pyramid Match Kernel

The Pyramid Match (PM) graph kernel is the extended version for graph data of the well-known computer
vision algorithm with the same name [29, 65]. It operates by initially embedding each graph’s nodes in a
d-dimensional vector space using the absolute eigenvectors of the largest eigenvalues of the adjacency matrix.
The sets of graph vertices are compared through the mapping of the corresponding points in the d-dimensional
hypercube to multi-resolution histograms. The comparison is achieved with a weighted histogram intersection
function, as defined in Equation 7.2.5.

I(HS, HS) me HL (i), HL (4)) (7.2.5)

The process of comparing histograms and finding matches occurs in several levels, corresponding to different
regions of the feature space with increasing size. The algorithm counts new matches at each level, i.e. points
in the same region, and weights them according to the size of the level. The cells/regions double in size in
each iteration of the algorithm. In the equation above H., denotes the histogram of G while H} (i) denotes
the number of vertices of G in the i*" cell. The PM kernel is computed as:

L—-1
1
kpu(G,G') = I(HE HE) + > F([(Jarg,,Hg/) — I(H5, HEYY) (7.2.6)
=0

where there are L levels altogether.

The above equation holds true in the case of labeled graphs as well, but in order for a match to exist the two
points should also have the same label. Finally, the PM kernel is computed overall by summing the results
for each discrete label, as seen below.

kpa(G,G') = kpa(G,G) (7.2.7)

i=1
where there are ¢ distinct labels.

The kernel’s complexity is O(ndL) which comparable to other kernels is quite computationally expensive.

Propagation Attribute Kernel

The Propagation Attribute (PA) graph kernel [64] is based on information propagation between nodes,
similarly to some GNN variants. The nodes in this case have attributes which, if the graph is labeled, are
One-Hot-Vectors of the initial dictionary. The nodes are perceived as a probability distribution of size n x d
where n corresponds to the number of vertices and d to the dimension of attributes. Information diffusion is
enforced, as defined in 7.2.8.
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Py =TP, (7.2.8)

T is a transition matrix which is either user-defined or T'= D' A where D = diag(}_; Aij) and Py is the
original graph attributes.

The kernel in each iteration is computed as:

kpa(G,G)' =kpa(G,G) ™1 > > k( (7.2.9)

ueG{) veaql?

where ¢ is the iteration number and k(u,v) is found through binning. The technique used in called Locally
Sensitive Hashing (LSH) and helps preserve similar diffusion patterns in the same bins.

Subgraph Matching Kernel

The Subgraph Matching (SM) [43] kernel counts the number of matchings between subgraphs of bounded
size between two graphs, as suggested by Levi [48]. It can be applied to graphs that contain node labels,
edge labels, node attributes or edge attributes.

The common subgraph isomorphism kernel can be computed as described by 7.2.10 when the constraint
for the vertex and edge kernel functions kv, kg in 7.2.11 is satisfied. The equations below assume that an
isomorphism between G(V, E) and G'(V', E’) is a bijection ¢ : V — V' which preserves adjacencies and
labels. The function ¢ : V x V — V' x V' is the mapping of vertex pairs implicated by the bijection ¢ such

that ¢((Uau)) = (¢(’U)7¢(u))

ksu(G,G) = > A@) [[rvw. o) [] rele (e (7.2.10)

PEB(G,G’ ) ves e€SxS

where S = dom(¢) and S the subset of vertices belonging to a subgraph of G. B(G,G’) is the set of all
bijections between S, S’ and A is a weighting function.

1, if eeEANe €E Nl(e)=l(e) or e¢ ENe ¢ E,
0, otherwise

Hv(v,v')z{ Loif L) =10, HE(e,e’)z{

0, otherwise
(7.2.11)

There is also a more general subgraph matching kernel which builds a weighted product graph to allow a
more flexible scoring of bijections.

GraphHopper Kernel

The GraphHopper (GH) kernel [20] compares shortest paths between node pairs of the input graphs, while
considering both path lengths as well as which vertices were encountered while “hopping” along shortest
paths. It is practically equivalent to a weighted sum of node kernels.

More formally, it can be defined as:

ko (GG =YY ky(m7) (7.2.12)

weP n’'eP’

where 7,7’ are paths and P, P’ are families of shortest paths in G, G’ respectively. Namely, the path kernel
k, is defined as follows. The notation used below represents discrete paths as |7|. This definition essentially
shows that k, is a sum of node kernels £,, on vertices encountered while simultaneously hopping along paths
m and 7’ of equal discrete length.
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N S k() 7 (), if Ial = I,
hy(m,m) = { 0, ! otherwise (7:2.13)

7.3 Related Work

The task of graph similarity has been thoroughly explored throughout the years, primarily through the use of
non-neural algorithms. Among the first techniques to be proposed as a graph similarity metric was Graph Edit
Distance [74], which was explained in Section 7.1 and directly relates to this work because it will be used as
a point of reference in the evaluation process. Other early graph similarity metrics are Maximum Common
Subgraph [11] and Graph Isomorphism [8]. As established, these types of methods rely on the problem
of isomorphic graphs and therefore have NP-hard complexities. Approximate methods using heuristics are
proven effective in the acceleration of the process. These mostly comprise of GED approximations and include
both improvements on the A* search algorithm as well as node assignment methods. Examples were provided
in previous sections [45, 63, 23|, with the most relevant being the approach of using the bipartite matching
heuristic in combination with the Jonker-Volgenant assignment algorithm [37]. Despite the enhancement in
runtime, these methods are still best used for small graphs.

Methods based on graph theory compute similarity values but fail to produce representations of the graphs.
Some well-known approaches involve learning latent representations of the vertices of only one graph at a time.
These include node2vec [30], DeepWalk [68], LINE [80] and NetMf [71]. However, there is no straightforward
way to compare the node embeddings produced in this case, given the lack of permutation invariance. One
way to combat this setback is by embedding the graph as a whole, like graph2vec does [61]. Finally, an even
better idea is to transform similarity estimation to a task involving the mapping of graph pairs in a different
space and the use of these representations to finally produce the similarity score. One end-to-end method we
already explained is that of graph kernels, with an abundance of different techniques [103].

Finally, the most relevant methods are those involving Graph Neural Networks. GNNSs intrinsicly embed
graphs at the node level. Therefore, the plain use of GCN [41] or VGAE [42] would create permutation
invariant representations. This simple approach encourages learning on one graph at a time and therefore
does not compare graphs during the training process. Other methods suggest making the models supervised
and aim to improve graph classification accuracy, such as DiffPool [104], which is a pooling model made to
operate in unison with other GNN architectures, and CAPSGNN [100] which aims to create more meaningful
graph embeddings through the use of a capsule network. The closest approaches to the one presented in this
thesis are trained on graph pairs. SInGNN [4] proposes combining graph level embeddings with fine-grained
node information and the use of attention to focus on the most important nodes based on the similarity metric
which is chosen to train the model. Similarly to our proposed model it is trained in a supervised manner,
using a predefined similarity measure. Graph Matching Networks [49] also presents the idea of computing a
similarity score jointly on the pair through a cross-graph attention-based matching mechanism and compares
it to independently mapping each graph to a vector and obtaining a score afterwards. The learning process
is performed either pairwise with the notion of negative and positive pairs or triplet-wise by establishing
a relative similarity between the target graph and a negative and positive counterpart. UGraphEmb [5]
uses a siamese GNN to train graph pairs on a predefined GED measure and implicitly trains embeddings
in the process. Therefore, this is by far the closest approach to ours with the addition of Multi-Scale Node
Attention and a customized loss based on inter-graph proximity preservation. However, this paper focuses
on embedding extraction, rather than the task of similarity itself. Additional and more detailed information
can be found in Ma et al. [53].

An interesting observation to be made is that all the aforementioned approaches are run on graph datasets
representing proteins, citation networks etc. In other words, none of them operate on scene graphs. This
observation sets our work apart because it results in a better insight on the use of GNNs for similarity in
visual concepts. Besides, it was made apparent in section 4.2 that scene graph data has not been the center
of attention for graph similarity focused applications. In fact, papers combining the two concepts are quite
rare in literature, with the most relevant one to our work being [55], which proposes using GCN in a weak
supervision setting to produce scene graph embeddings. However, in this paper the supervision signal is
the similarity score of the image captions, meaning the model is not trained on graph but rather on textual
similarity.

62



Chapter 8

Proposal

In this section, we propose the Graph Neural Network model with which we will tackle the problem of Scene
Graph Similarity. The model is trained with a Graph Edit Distance supervision signal and the embeddings
extracted are used to compare input graphs, in order to produce counterfactual explanations.

We first highlight the main contributions of this thesis and then explain the proposed model in detail.

8.1 Contributions

The contributions of this dissertation are multiple and can be summarized as follows:

e We use the task of Graph Similarity to explore a plethora of Graph Neural Network variants and in
turn utilize some of the most predominant ones in literature to tackle this problem. The focus is put
on convolutional variants which have the ability to capture and represent both structure and semantics
through information propagation in the confines of a node’s neighborhood, thus taking advantage of
locality while preserving invariances. The variations of the model are compared and the expressiveness
and utility of each one is deduced.

e Using GNNs to address graph matching is a reasonably recent approach. Most of the literature focuses
on non-neural methods, such as approximation algorithms for graph distance or kernels to accelerate
the process. In contrast, this work proposes utilizing models from the newly thriving field of GNNs
not only to compare graphs but also to extract meaningful representations. Our approach outperforms
these methods both visually and quantitatively.

e Scene graph comparison and similarity in particular is a novel task. Previous work on scene graph data
mostly focuses on graph generation, text retrieval or VQA.

e The comparative results extracted are ultimately used to produce counterfactual explanations. To our
knowledge, there exists no previous literature combining these aspects to facilitate this Al interpretabil-
ity task.

8.2 Proposed Model

The GNN-based model we propose follows the outline presented in Figure 8.2.1. The input consists of scene
graph pairs which are then processed by identical GNN Embedding models. These models are stacked layers of
a GNN variant combined with other types of standard layers like activation, normalization and dropout. The
GNN model produces node-level embeddings which in turn are sampled to create global graph embeddings.
This concludes the first part of the proposed model which performs the Graph Embedding Extraction and is
the one we will ultimately use to extract the embeddings for all the graphs. The pair of graph embeddings
(hg1,hag2) is then used to compute the distance between the vectors and consequently predicting a value
which represents the computed Graph Edit Distance.
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Figure 8.2.1: Proposed GNN model for Scene Graph Similarity

The training process consists of feeding a small subset of graph pairs through the model, computing the loss
between the output distance and the real graph edit distance between the input graphs and back-propagating
it through the network. This process is stopped after a certain amount of epochs, determined by the user.
After training is over, all of the graphs are individually passed through the Graph Embedding Extraction
module. The produced embeddings can be utilized separately for other downstream tasks or, in this case,
compared using cosine similarity.

The GNN Embedding model is the heart of the implementation. In Figures 8.2.2 and 8.2.3 we can see a
more detailed view of the design of the GCN/GAT [41, 83]variant and the GIN variant respectively. In both
cases, there can be a variant amount of identical layers, but their input and output dimensions can vary. The
layers in 8.2.2 comprise of GCN or GAT convolutions which are followed by the ReLU activation function.
We also attach dropout, with a possibility of "turning off" neurons of p determined by the user, in order to
prevent overfitting. The GAT variant requires additional regard in the definition of dimensions. Because of
the employment of multi-head attention, input dimensions are multiplied by the number of heads in each layer.
The GIN variant has a more complicated architecture. Specifically, the GIN convolution requires designing
an MLP model to train the weight parameter of the central node of the convolution. As discernible in the
figure, we decided to use two consecutive fully connected layers combined with ReLLU activation functions, the
first of which also contains batch normalization. These choices were inspired by the paper which introduced
GIN [101]. In this paper, they stacked 5 identical layers containing the aforementioned components, whereas
we choose to experiment with their amount. Dropout is utilized once again.

It is notable that the node embeddings produced by each layer of the GNN embedding model are concatenated
before being pooled. This is an attempt to preserve more information gathered throughout the process and
consequently create more expressive graph embeddings. This is a common practice also used in Xu et al.
[101].

The Global Pooling used to sample the embeddings of vertices extracted by the GNN variants differ
according to the model. For GCN/GAT average pooling was preferred inspired by [79], while for GIN we
chose to sum node embeddings as proposed by its creators in order to increase expressivity. All the above
operations are better performed in batches for efficiency purposes.

The Graph Embedding Extraction process is followed by the computation of distance between them in
order to perform regression. The distance of vectors is defined as the Lo norm of their subtraction. This
method was also used in [5] which is a direct influence to our approach, along with the architecture and
training style proposed in [79]. Using Mean Squared Error loss along with this distance metric results in a
technique called Multidimensional scaling (MDS) which is employed in dimensionality reduction. Thus,
distances are more accurately preserved.

The training process is finished after a predetermined amount of epochs. The now trained Graph Embedding
Extraction component is subsequently used to compute embeddings for all graphs. These embeddings can
then be compared as classic vectors and we decided to use the cosine similarity.
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Figure 8.2.2: Design of GAT/GCN model variants.

GI

Linear

Batch Norm

RelLU

Linear

RelLU

Linear

Batch Norm

RelLU

GI

Linear

Batch Norm

RelLU

GNN Embedding model

Figure 8.2.3: Design of GIN model variant.
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The model can be trained with any Graph Similarity measure. In this proposal, we use Graph Edit Distance
which takes both structure and semantics of graph pairs into account. It is also well-defined and not domain
specific.
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Chapter 9

Experiments

In order to evaluate the proposed model and compare it to other baseline techniques for graph similarity we
carried out various experiments. In this section, some preliminary information will be presented about the
dataset and metrics to be utilized as well as the preparation of ground truth and production of results using

graph kernel approaches.

With the basics put in place, we will analyze how we experimented with the GNN-model and its variants and
finally present evaluation results. In addition to the quantitative results, we will present visual representations

of most similar images for a more intuitive understanding of the effectiveness of our approach.
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Chapter 9. Experiments

Table 9.1: Graph Statistics

Average Min Max

Density 0.20 0.14 0.47
Nodes 7.25 6 15
Edges 9.04 5 36
Isolated Nodes 0.47 0 3

9.1 Preliminaries

9.1.1 Dataset

Visual Genome

The dataset which provides us with the scene graphs used in this dissertation is Visual Genome [44]. Visual
Genome is currently the largest dataset of image descriptions, objects, attributes, relationships, and question
answer pairs, containing over 108K images. As mentioned, it does not solely comprise of scene graphs, but
rather holds seven main components relating to images: region descriptions, objects, attributes, relationships,
region graphs, scene graphs, and question answer pairs. All of the aforementioned entities which can be
canonicalized have been mapped to WordNet synsets.

For this application, it was deemed that only a subset of the thousands of graphs of the original dataset
would be used. The entirety of the graphs were made WordNet [58] compatible by removing all nodes or
edges without synsets assigned to them. After experimentation and analysis of the transformed data, 500
scene graphs were chosen. These graphs were picked because of the density of their edges and the decreased
number of isolated nodes combined with their fairly small size. Some relevant statistics can be found in Table
9.1.

Low number of neighbourless nodes signifies higher connectedness and therefore graphs richer in relations.
This is an important feature for this application because it aims to extend the simple notion of unrelated
concepts in a scene. Additionally, the smaller graphs make computation time more manageable since in
general the graph’s more expressive nature makes it more difficult to work with.

Graph Attributes

Both neural as well as some kernel methods which will be employed to tackle the problem of graph similarity
assume the existence of node attributes for the graphs. These are mostly used as initial features of the nodes
before the operation of each algorithm is performed and sometimes can be randomly chosen or set to be
one-hot-encoded vectors of labels. Due to the fact that we strive for a solution which captures semantic
similarity as well as structural, we opt for more expressive features.

The source of attributes for the nodes of the graphs was also a matter of experimentation. Due to the fact
that the official Visual Genome scene graphs do not include node or edge attributes, the features would have
to be hand-crafted or pretrained embeddings. With hopes of better performance and in order to avoid picking
the features ourselves, as commonly done in previous work, the latter option was chosen. More specifically,
embeddings of the synsets provided for each object were sought giving us the opportunity to focus on the
semantics of each object and not the structural meaning of each node (i.e. degree, clustering coefficient).
Embeddings of the WordNet noun hierarchy using path2vec [46] trained on Wu-Palmer similariity [98] were
tested in order to mimic the inner workings of the ground truth as well as the well-known in the field of
Natural Language Processing GloVe Embeddings [67]. The latter do not capture the similarity of objects in
fashion of the WordNet noun subtree, but provide a well-established baseline trained on the co-occurence of
words and therefore the concepts they represent.

9.1.2 Evaluation Metrics

The methods to be tested ultimately output ranked lists or recommendations of the most similar images for a
given target. Thus, the following metrics were used to compare the results with the ground truth established
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by the classic GED algorithm.

Hit Percentage

This metric represents the percentage of common recommendations among the top k results for each image.
When mentioning hit percentage throughout this essay we are referring to a mean hit percentage, an average
value for each target image. The hit percentage is the metric valued the most when assessing results because
agreement with the ground truth on the most similar images is of utmost importance for this task.

Rank Biased Overlap

Rank Biased Overlap (RBO) [87] is a measure for comparing ranked lists first introduced to evaluate search
engine results. Some of its characteristics are that it can be used for incomplete rankings, it handles non-
conjointness - existence of different elements in the two rankings, it assigns more importance to higher ranks
and is monotonic with increasing depth of evaluation. Furthermore, it is extended to be able to handle ties
as well as rankings of different lengths. Its definition for infinite lists is:

RBO(S,T,p) = (1—p) > p*" ' x Ay
d=1

where S and T are the two rankings, p is a parameter determining the steepness of weights, d is the depth
of the item in the list and Ay is the agreement at depth d, i.e. the overlap of the two lists at a given depth.
RBO ranges between 0 and 1.

In this dissertation it is used as an additional more expressive metric to the simple hit percentage in order
to ensure that the top k most similar images not only have common elements to the ground truth, but also
are ranked in a similar fashion, with a focus on the higher ranks.

Normalized Discounted Cumulative Gain

Normalized Discounted Cumulative Gain (NDCG) [86] is another measure for ranking quality. In a similar
manner as RBO it scores the value of the recommendation of an element in a specific position, weighting
higher ranked items more heavily. One crucial difference between the two metrics is that the ranked lists
used for NDCG consist of relevance scores, or in our case similarity scores of images,/graphs, and not indices.

Standard NDCG can be defined as the fraction of the Discounted Cumulative Gain (DCG) over an ideal
version of it. DCG can be defined as seen in the second equation below.

DCG aS"
NDCG(f,S,) = IDCg(S))

- rel;
DCG(f,S,) = g gt )

where f is a ranking function, S,, is a dataset of n elements and rel; is the relevance score of the i;h element
as determined by the function f. NDCG is called standard in this case because the discount function used
is the inverse logarithm decay. The IDCG is the maximum possible DCG for the given dataset obtained by
using another ranking function f’.

In our experiments f’ is the ground truth GED algorithm, S,, is the set of graphs and f is the method tested
at each step of the process. NDCG score will be used as a quality metric, in order to evaluate the quality of
the similarity scores in addition to the the aforementioned metrics which assess the rankings themselves.

9.1.3 Ground Truth

In order to evaluate the results of the models to be used, a quantitative measure needs to be established and
consequently the ground truth must be constructed. In this case the ground truth is considered to be a matrix
of the edit distances between each pair of graphs in the dataset. This matrix is produced by employing an
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approximation of the exact Graph Edit Distance Algorithm which is based on bipartite graph matching by
means of the Volgenant-Jonker assignment algorithm [37]. The costs of insertion, deletion and substitution
of nodes/edges are calculated as the distance between objects, representing a node or edge, which is defined
by their concept distance in the WordNet Thox graph as proposed in [22].

We opted for using an approximation algorithm instead of the exact one due to prohibitive time it would
require. For the subset of 500 graphs, the GED algorithm has to be executed 124750 times and given the
NP-hard complexity of the exact algorithm, the approximate one was chosen. To be certain about the quality
of results from the GED approximation in practice, we compared the two algorithms in question on a smaller
but sizeable subset of pairs and were able to find that 1.5% of pairs had a difference of 20 and above, and
merely 16% had a difference of 5 and above. The above is true when the average GED is about 170.

The implementation of the bipartite graph matching edit distance algorithm, which we will call BIP-GED,
was provided by the python Deep Graph Learning library - DGL [84].
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Figure 9.1.1: Images with identical scene graphs.

Below we provide some exemplary images and discuss their similarity score based on the Graph Edit Distance
metric we established. In Figure 9.1.1, two different images with identical scene graphs are depicted. BIP-
GED truthfully determines that their edit distance is in fact 0, based on the graph which represents them.
Figure 9.1.3 shows the top-4 results for the top image highlighted with the red rectangle. In order to
understand this ranking we also provide the scene graph for each image. As we can see, even though the
top result contains another type of animal, the relations between objects are incredibly similar to the target.
Thus, this pair has one of the lowest GED scores in the dataset, which is 24. Recommendations 2 and 3,
with scores 48 and 55 respectively, contain the same subgraph structurally and furthermore five common
objects, i.e. the sheep. The cost of deletion of additional nodes and edges is what makes them less similar
than the top result. Finally, the image with a GED of 79 initially seems like an unfortunate matching, but
upon inspection of its scene graph it is obvious that its graph structure is almost identical to the target -
with the same edge labels, just different objects. Given that the objects are trees which are not very far from
animals, the GED is not too large. The last figure, 9.1.2, shows an image with a scene graph structurally
similar to the fourth result discussed previously. However, this pair receives a much larger score of 172 and
the image of a bathroom floor does not even appear in the top 10. This observation proves that the semantics
of objects and relations play an important role, i.e. a tile is much further in the WordNet hierarchy from a
sheep than a tree is.
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Figure 9.1.2: Example of dissimilar images.

The above observations prove the quality of BIP-GED as a similarity measure and therefore our choice to
use it as a ground truth. It is able to prioritize both structural similarity as well as semantics and produce
reliable results to evaluate our model with.

9.1.4 Graph Kernels

The experiments carried out included establishing baseline methods for solving the problem of graph com-
parison. As explained in section 7.2, the prevailing method to determine graph similarity is through graph
kernels. As a result the following kernels were tested on our subset of graphs using the python library GraKeL
[77]: kernels focused on labeled data such as the Weisfeiler-Lehman (WL) Kernel and Pyramid Match Kernel
(PM) as well as kernels which consider attributed graphs such as Propagation Attribute (PA), Subgraph
Matching (SM) and GraphHopper (GH).

The only kernel which can handle edge labels from the above is the Subgraph Matching kernel. In order to
achieve the full potential of this method we will provide edge labels to the graphs as part of the experiments,
if possible.

The operation of all kernels above has been described in the corresponding section. In a similar fashion
to the ground truth, graph kernels produce a matrix of similarities between each graph pair. However, it
is important to note that graph kernels provide similarity scores whereas GED is a dissimilarity measure.
Their inverse nature should be taken into consideration when comparing results and therefore some form of
normalization should be employed, such as max normalization.
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Figure 9.1.3: Top 4 results for a target image using BIP-GED
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surfboar
iy

Figure 9.1.4: Image of man on surfboard and its scene graph.

The kernel methods provide adequate results on the scene graph similarity task. Firstly, all but one - the
GraphHopper kernel - are able to detect isomorphic graphs which exist in the dataset and deem them as
each other’s most similar pair. Examining the similarity matrices produced by each kernel, it is apparent
that there are many zero values present. In other words, kernels believe that some graphs could never match.
The large amount of zero values and the low variance exhibited by the kernels lead to low NDCG scores.
As explained previously, NDCG is used in this case as a quality measure of the scores, and if low values are
demonstrated it means that despite the ability of the model to provide a satisfactory ranking, it does not
provide an accurate similarity distribution between images.

In Figures 9.1.5, 9.1.6 we have provided some examples of top-5 results produced by the five kernel methods,
compared to the ground truth. Starting from the image discussed in the previous section, it is rather obvious
that all kernel methods provide very similar results. A common factor is that all of the results contain
sheep. This observation is expected because the idea of the ontological similarity provided by WordNet is
not captured. On one hand WL- and PM-kernel purely operate using labels and on the other hand PA-, SM-
and GH-kernel seem to not be able to utilize the semantic information provided by the path2vec attributes
in order to match graphs containing node concepts similar to that of a sheep. In contrast, in the case of the
image of a man surfing, the graph kernel methods provide more diverse results. This is essentially because its
scene graph representation is much more complex. Figure 9.1.6 directly reflects that a more complex graph
leads to unexpected results, i.e. the image of trees in the distance or people preparing food. However, once
again images of surfboards dominate the recommendation lists.

The small sample of these two comparative figures points to the efficiency of the Pyramid Match kernel and
at the same time the inability of the GraphHopper kernel to provide results reflecting the ground truth or
even reality in some cases. This observation will also become clear by examining the final reports. Overall
results based on metrics and comparison with our proposed model are provided in section 9.3.

9.2 Model Experiments

For the evaluation of the proposed model, the framework described in 8.2 was coded using Python and the
graph learning library Pytorch Geometric [21]. The basic architecture depicted in Figure 8.2.1 was established
and the choices for each component were left as a hyperparameter.

Experiments were carried out separately for each one of the three variants we examined - GCN, GAT and
GIN. In each run there were some common hyperparameters to determine, such as the number of epochs, the
batch size, the probability of dropout and the dimensions and number of convolutional layers. The batch
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Figure 9.1.5: Graph Kernel top-5 results on image of herd of sheep.

The ground truth is highlighted red. Kernel predictions follow from top to bottom in the order of WL-, PM-, PA-,
SM-, GH-kernel.
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Figure 9.1.6: Graph Kernel top-5 results on image of man on surfboard.

The ground truth is highlighted red. Kernel predictions follow from top to bottom in the order of WL-, PM-, PA-,
SM-, GH-kernel.
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size was kept small, around 10 for most runs, sacrificing speed for model accuracy. The number of epochs
was set to values between 20, 50 and 70, while dropout was preferred at a low level. We experimented with
up to 4 layers, being more reserved for computationally heavier models, like GIN variants. Dimensions
were chosen between 256 and 2048. All models were optimized using Adam and an MSE loss in order to
achieve Multi-Dimensional Scaling. Thus, we also experimented with the parameters of the optimizer, i.e.
the learning rate and weight decay.

An important choice to make for the models was the number of training pairs to use in order to fit them.
The values we used were strictly kept below 10% of the dataset, not only so as to maintain smaller training
times but also to instill the ability of the GNN models to create a well-mapped scene graph embedding space
utilizing only a small subset of the graphs. The numbers we used in fact ranged between 2000 to 10000 pairs
- the latter only in the case of GCN which is otherwise the most lightweight variant. The subset of training
pairs was chosen randomly at the start of each run in order to ensure lack of bias for certain pair types.

Choosing the initial attributes for graph nodes is also a part of the model configuration. As mentioned
before, we experimented with synset embeddings stemming from WordNet using path2vec as well as GloVe
embeddings which are produced based on the idea of word co-occurence in several types of corpora. Even
though, the first embeddings are more adjacent to the idea of leveraging hierarchical similarity of concepts,
the latter ones are very well-trained and more established. Examining their effectiveness in combination with
these Graph NN models and the differences in the quality of rankings can lead to interesting observations.

Finally, some of the variants used have hyperparameters specific to their architecture. To be more precise,
GAT variants which use multi-headed attention require the choice of the number of heads, while GIN
variants offer the option of the weight parameter ¢ being trainable or not. Therefore, we experimented
with multiple head numbers and both trainable and non-trainable e.

After training, graph embeddings for all graphs of the dataset were produced and compared using cosine
similarity to create rankings. The ranked lists of most similar pair recommendations for each graph were
juxtaposed to the ground truth and evaluated using hit percentage and mean RBO. The quality of the
similarity scores and their distribution among top results were estimated with the aid of NDCG score. Finally,
similarity scores directly from the model were produced for specific target pairs, so as to be compared with
BIP — GED scores. These results along with several visual representations of the rankings can be found in
the next section.

9.3 Results

9.3.1 Variant Comparisons

Firstly, we report results and comparative observations between GNN models based on the variants and
hyperparameters used. From this point on, we will refer to the proposed model as GNN-COMP where GNN
can be any of the three variants - GCN, GAT or GIN.

The first observation made was that the number of GNN layers has a direct impact on the performance of
the model. In fact, the different variants exhibited different behaviors in relation to this hyperparameter.
Figure 9.3.1a provides top-10 hit percentage (HIT-P) results for each variant for layer numbers 1 to 3, given
that all the other hyperparameters are fixed. Specifically, all the models were trained with 2000 graph pairs
for 50 epochs. The reported values are the maximum ones achieved for this type of configuration. It is easily
discernible that GCN-COMP models do not favor stacking, but rather accomplish better results with a single
high-dimensional layer. GAT-COMP variants in general exhibited a similar behavior, with the exception of
the 2-layer model whose results are depicted in the graph, with dimensions [512, 512], which managed to
perform better. In contrast to the two other models, GIN-COMP variants seemed to exhibit increased
hit percentage when the number of layers became larger. This observation about the GIN variant is not
surprising, since the paper which presented it suggested the stacking of 5 layers to achieve desired results.
However, these models tend to become unusable due to their costly nature in terms of time. If a GNN model
surpasses the time it takes to find Graph Edit Distances between all pairs, then it is not sensible to prefer
it, unless the performance improvement on the metrics used is remarkable. In practice, the best performing
models only required one convolutional layer.
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Figure 9.3.1: Top-10 Hit Percentage Results regarding different hyperparameters.

Concerning other hyperparameters, such as epochs or number of training pairs, their increase led to better
results. Specifically, as expected, the more training pairs we provided, the more hits were observed compared
to the ground truth. However, after the mark of 5000 pairs the improvement started becoming less significant.
A similar finding holds true for the increase in layer dimensions; nonetheless dropout seemed to not be needed.
This is because GNN-COMP models are not prone to overfit, due to the small amount of training examples.

As for the comparison between path2vec and GloVe embeddings as graph attributes, it became clear that
GNN models favor the latter. Relevant top-10 hit percentage and mean RBO (mRBO) results for different
variants are provided in Table 9.2. The reports are once again from models with a configuration of 2000
training pairs and 50 epochs. For all variants and metrics, GloVe embeddings lead to better performance -
something counter-intuitive. To be more precise, path2vec embeddings adopt a similar hierarchical idea for
the mapping of node objects and are additionally linked to WordNet, just like the ground truth. The better
performance of the models using GloVe is most likely a result of the quality of these embeddings themselves.

Lastly, regarding the exploration of model specific hyperparameters, we have provided Figure 9.3.1b. In this
figure the performance of GAT-COMP models trained with 5000 pairs is depicted in relation to the number
of heads used by the multi-headed attention mechanism. It is no surprise that the increase of heads leads to
improved performance, given that this additional attention-based feature is added to increase expressivity.
However, a drop of hit percentage for a number of heads higher than 7 can be observed. As for the weight
parameter € of GIN-COMP models, surprisingly, it lead to inferior results when set to trainable, which is a
direct contradiction to our expectations.

Taking into account all the aforementioned data, it is obvious that GIN is performing the worst among
variants when a smaller amount of training pairs is provided. GCN and GAT on the other hand, produce
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Table 9.2: GNN-COMP Top-10 Hit Percentage Comparison between Graphs with Path2vec and GloVe
Embeddings

WU-P Path2vec GloVe

HIT-P mRBO | HIT-P mRBO
GCN-COMP 0.212 0.1594 0.2412 0.1719
GAT-COMP 0.1936  0.1364 0.2088  0.1463
GIN-COMP 0.1518  0.0826 0.173 0.093

Table 9.3: Top 10, 5 and 2 overall prediction results for all quantitative metrics.

Top-10 Top-5 Top-2

HIT-P mRBO NDCG | HIT-P mRBO NDCG | HIT-P mRBO NDCG

WL-KERNEL 0.1982  0.1574 0.5299 0.1656  0.1266 0.4984 0.101 0.0905 0.4614
PM-KERNEL 0.2032  0.1752 0.5299 0.1796  0.1547 0.4984 0.134 0.129 0.4614
PA-KERNEL 0.1646  0.1241 0.5272 0.124 0.0964 0.4958 0.077 0.0735 0.4591
SM-KERNEL 0.1806  0.1409 0.5272 0.1412  0.1144 0.4958 0.093 0.0845 0.459

GH-KERNEL 0.0714  0.0492 0.9999* | 0.0484  0.0363 0.9999* | 0.03 0.027 0.9999*
GCN-COMP 0.3142 0.2441 1.0 0.2476 0.1988 1.0 0.171* 0.1515 1.0
GAT-COMP 0.3046* 0.2367* 1.0 0.2324* 0.1935* 1.0 0.177 0.1555* 1.0
GIN-COMP 0.2704  0.2216 1.0 0.2228  0.1899 1.0 0.165 0.1595 1.0

Best results in each column are made bold and second best are annotated with x.

fairly similar results. Despite being titled as the one of the most powerful, GIN does not dominate over the
simpler models with regard to the metrics examined.

9.3.2 Overall Performance

The overall performance of the GNN-COMP models can be found in Table 9.3. We evaluated the models
on hit percentage, mean RBO and NDCG of the top 10, 5 and 2 recommendations of the most similar
graph pairs. The same results are reported here for all the graph kernel methods for easy comparison. The
GNN-COMP results provided are the best achieved in each case with different configurations for each variant.

At first, it is apparent that among the graph kernel methods the Pyramid Match Kernel outperforms the
others almost every time. However, the resulting NDCG scores are very low compared to the other methods.
This is a clear indication that even though the relativity of the ranking is accurate, the scores produced do not
reflect the ground truth. In contrast, the exact opposite observation is made in the case of the GraphHopper
kernel. Its poor performance in the other two metrics, which hold a bigger significance for the task, however,
prove it is not well-suited for this data.

Between the GNN-based methods, GIN-COMP is the least competent overall, quantitatively speaking. Both
GAT— and GCN-COMP produce similar results, with each being better in different cases. For example,
GCN outperforms GAT in both hit percentage and mean RBO for the top 5 and 10 results, but GAT
produces better top 2 recommendations. An interesting observation is that the closer we get to the top
recommendations, the more similar the scores of the GNNs become. Specifically, the GIN variant manages
to almost reach the other two variants in the top-5 rankings and finally even becomes the best performing
one in terms of RBO for the top-2 recommendations. Even though GIN-COMP manages to outperform the
other models on the top-2 recommendations, its expressive power is not highlighted in this task the way we
expected it to be. As often reported in literature, its theoretical capacity is not always reflected in practice.

Comparing graph kernel and GNN methods, an interesting deduction is already made by the inspection of
Table 9.2. Even with 2000 train pairs, which constitutes a mere 1.6% of the combined total of pairs, GAT
and GCN outperform the best graph kernel method in terms of top-10 HIT-P. It is obvious that GNN models
and their expressivity are a powerful tool for similarity. However, we can also notice that the ranking is not
necessarily ideal when the subset of training pairs is so small, given the mRBO scores.

It is safe to say that the GNN methods steadily outperform the kernel ones and are able to achieve major
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improvements. To be more precise, there is an 11% increase of hit percentage in the top-10 recommendations
between the best graph kernel and GNN method and a 7% increase of mRBO. GCN-COMP provides not
only more accurate predictions, but also a better relative ranking. It has a clear advantage compared to the
other variants with the exception of the top-2 results. Arguably, the scores achieved by the GNN methods
in this case are very similar, meaning their performances are close to equal. However, given the importance
of ultimately detecting the most similar (top-1) graph pair, even the slightest improvement maintained by
the two other variants can be proven significant. In fact, the GIN variant achieves a 2% advance among the
GNN models on the task of finding the same most similar graph as BIP-GED, with a score of 0.154.

It is notable that all GNN methods have a perfect NDCG score, surpassing all kernel methods. Their good
performance on this metric is expected since these models are trained to mimic the similarity scores of the
ground truth and thus create a very similar distribution.

Regarding the optimized models produced using GNN-COMP, they all consisted of one GNN layer of di-
mension 2048. The GIN and GAT variants were trained with 7000 pairs for 50 and 40 epochs respectively,
whereas the GCN variant was trained with 10000 pairs for 70 epochs. GAT-COMP used 7 attention heads
and the weight parameter of GIN-COMP was set to non-trainable. GCN-COMP, being the simplest of all
three, required almost half the training time. The other two models can achieve comparable results with less
pairs; nonetheless, they are much more computationally expensive. Therefore, in order not to excessively
surpass the time needed to build the ground truth, we do not complicate them even more.

9.3.3 Qualitative Results

Lastly, we will examine some visual results of the rankings produced by the three best GNN models, i.e. top-k
images and their scene graphs. In Figure 9.3.2 the top-5 predictions for the familiar target images of the herd
of sheep and the man surfing can be found. There is an important difference to the recommendations produced
by the graph kernel methods; top results are not dominated by images with the same object. The hierarchy
or semantics used to construct ground truth is also reflected in the results by the GNNs. For example, in
Figure 9.3.2a images with structurally similar graphs but other types of animals are recommended. In a
similar fashion, in Figure 9.3.2b people are seen on other types of boards, i.e. a skateboard, or interacting
with other sports equipment. These results accurately represent the complexity of semantics behind objects,
while at the same time considering the graph topology.

As already highlighted by the quantitative results, rankings produced by GNN methods agree with the ground
truth more consistently than recommendations by graph kernels. This observation is also reflected in the
qualitative results. Moreover, even recommendations which do not fall in line with GED results seem to
intuitively make sense to human perception. For instance, the images of a girl and a boy actively surfing,
which are among the top-2 images predicted by the GNNs in Figure 9.3.2b, are in essence exceedingly close
to the target image. Sometimes, in fact, GNN results tend to be more valid than ground truth ones. In
Figure 9.3.3, BIG-GED recommends pictures of boats and bodies of water as the most similar to the target
image of a boy brushing his teeth, whereas GIN-COMP suggests pictures of toothbrushes on sinks and little
boys. It is arguably obvious that the latter results are more sensible. The graph edit distance algorithm
disregards images of toothbrushes because their scene graphs are dense and complicated, containing very
specific annotations, such as bristles or toothpaste residue. An edit algorithm finds it easier to match graphs
with more similar structure than concepts in this case, which is counter-intuitive for humans. This example
is an indicator of the ability of GNNs to capture similarities in both semantics and topology and especially
GIN’s capacity to understand global concepts.

When examining visual results, there is no direct way to decide which GNN variant performed better. One
observation is that GIN-COMP was not as consistent in providing sensible recommendations. Specifically,
sometimes it was immensely accurate, while others it recommended seemingly random images. It must be
noted, however, that the latter phenomenon was scarce.

The last thing to bear in mind is that these experiments were carried out in a small subset of the Visual
Genome graphs. Thus, some images and their respective graphs did not have close matchings. The algo-
rithms tested were able to perform adequately in this case as well, recommending the most similar instances.
However, a human subject would not necessarily consider the scenes depicted as similar. For example, in
Figure 9.3.4 we see a girl eating a pizza. Despite pizzas and children existing in the subset of graphs used,
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(a) Top-5 results on image of herd of sheep.

(b) Top-5 results on image of man on surfboard.

Figure 9.3.2: GNN-COMP top-5 results on images.

The ground truth is highlighted red. GNN predictions follow from top to bottom in the order of GCN-; GAT- and
GIN-COMP.
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Figure 9.3.3: Example of GNN providing better top-3 results than ground truth.
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Figure 9.3.4: Example of dissimilar image to the rest of the dataset.
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scenes combining those two concepts do not. In fact, the closest image is that of a bird eating food out of
a plate. Two out of three models fail to find this image and instead focus on aspects of it. The predictions
following the top one mostly consist of food on tables or are visually unrelated, even for the ground truth.
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Conclusion

10.1 Discussion

In this work we explored the use of different methods for the task of Inexact Graph Matching in order to
retrieve most similar graph pairs from a given dataset and use them to create Counterfactual Explanations.
Graph Similarity is a task tackled by algorithms like Graph Edit Distance or methods like Graph Kernels.
However, GED is a computationally expensive NP-hard problem and even though graph kernels provide a
polynomial solution, they are purely inductive. Thus, we proposed the use of Graph Neural Networks in
order to produce meaningful graph embeddings trained on graph proximity measures, such as GED. We
presented a model - referred to as GNN-COMP which can utilize various GNN variants in order to embed a
graph in a space which captures similarities among graphs based on both structure and semantics and used
those embeddings to compare graphs in order to find the most similar pair for each one. A ground truth
was established using an approximate Graph Edit Distance algorithm based on bipartite graph matching,
enriched with hierarchical semantic information about graph objects obtained by utilizing WordNet. We
were able to compare all the aforementioned methods and draw important conclusions about their quality
and expressivity.

We experimented with three different convolutional GNN variants for our proposed model and compared
their effectiveness, complexity and expressiveness. We found that all of them quantitatively and qualitatively
outperform graph kernel methods on the task of graph similarity and offer intuitive and meaningful represen-
tations for graph structures. We enriched graphs with node attributes and were surprised to find that classic
GloVe embeddings were more beneficial to all GNN-COMP models than hierarchical path2vec ones, trained
on WordNet. Between the variants, we were able to find that GCN and GAT had comparable performance
on the recommendation metrics used, hit percentage and mean RBO, for top-10 and top-5 results. However,
regarding the most similar graphs they all achieved exceedingly similar scores, with GIN producing the ulti-
mate best. In fact, GCN-COMP achieved an almost 11% increase over the best performing graph kernel, the
Pyramid Match kernel, on hit percentage of top-10 results and GIN-COMP reached a 15.4% of predicting the
exact same most similar image as the ground truth graph edit distance approach. Despite GIN’s notoriety as
one of the most powerful GNNs, we were able to see only a sliver of its abilities. It managed to capture global
context when the other variants did not but, all in all, all of them produced more than adequate results. It
is notable that GCN did so in half the time.

The rankings produced in this thesis were made with the intention to aid in the efficient and more meaningful
computation of counterfactual explanations. Specifically, detecting an image’s most similar pair gives us the
opportunity to only compute one edit, or explanation, instead of finding the edit path with every other sample
of the dataset. Therefore, the proposed approach, which uses an image’s corresponding scene graph for the
retrieval of the best pair, introduces a significant speed-up in this process while leveraging the rich information
the graph structure provides about the relations between concepts depicted. Moreover, the end user is left
with an inductive model, meaning the trained GNN-COMP can be leveraged to produce embeddings for
unseen scene graphs.
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In conclusion, we can affirm that the use of GNNs to not only compute graph proximity, but also create graph
representations is highly beneficial. Through our experiments we realized the expressive power of GNNs, the
importance of their node feature initialization and their different response on training sample amount. We
were able to combine the concepts of scene graphs and graph neural networks to propose a novel approach
on graph similarity to aid the AI explainability task of counterfactual explanations. The representations
obtained can prove to be valuable for many other downstream tasks as well, direction which we hope to
inspire.

10.2 Future Work

In closing this thesis we would like to suggest a few directions to further improve on this work or inspire
different interesting approaches. Firstly, the use of more Graph Neural Network variants could be explored,
such as variants which leverage edge information. Doing so, will help capture information regarding the type
of relationships between objects and create richer embeddings. Another approach would be to try variants
like Graph Autoencoders which embed the graphs in an unsupervised manner, or even self-supervised variants
based on contrastive learning and compare their performance to the supervised ones we used. As for the
graphs themselves, the choice of initial attributes seemed to be crucial for the performance of models, so
different hierarchical embeddings could be utilized. Furthermore, a detailed statistical and visual analysis of
training graph pairs could be performed in order to find out how graphs with different properties influence
the GNN models. Finally, designing a custom fine-grained loss for similarity could also aid in the model’s
ability to produce more accurate similarity scores.

The graph embeddings produced could be used for other applications in addition to counterfactual explanation
computation. For instance, the idea of similarity could be re-imagined for other tasks. Scene graphs could
be combined with other modalities to capture properties like color, size or position of objects in the image
to enrich the embeddings. Moreover, since this approach detects most similar graphs in a given dataset,
it could be used for other retrieval type tasks and extended to operate on knowledge graphs or graphs of
documents. Finally, a method of effective clustering of embeddings could be developed in order to extract
information about the intrinsic properties that map these vectors closer together. The idea of grouping them
in a meaningful way would also lead in the pruning of graphs to be considered as similar and in turn introduce
significant speed-up. Finally, this work could invoke the exploration of the inverse problem, i.e. answering
the question why different GNN variants believe certain graphs are similar and inspire attempts for GNN
explainability.
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