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Abstract

The global power sector is undergoing a radical transition in the way electricity is produced,
distributed and consumed. Firstly, the deregulation of the power sector with the
introduction of liberalized electricity markets has drastically changed the decision-making
framework in the planning and operational stages of the power systems. Furthermore, the
rapidly increasing penetration of unpredictable and variable renewable energy into the
generation mix due to environmental concerns has highly complicated the task of constantly
balancing production with consumption, and therefore has greatly increased the
Transmission System Operator’s (TSO) need for flexibility in the power system. Moreover,
the ever-increasing installation of “behind-the-meter” resources, along with the
electrification of industry, transportation, heating and cooling sectors have shifted the focus
of system operators towards the low and medium voltage networks. This evolving
decentralization of power systems brought by the advent of Distributed Energy Resources
(DERs) has introduced new technical and operational challenges for the Distribution System
Operators (DSOs) as well. Thus, the role of the DSOs should be evolved from network
operators to active system operators, in order to closely collaborate with TSOs and procure
the necessary flexibility that will allow them to ensure the smooth operation of their
networks. The aforementioned trends necessitate bottom-up investments in distributed
energy and flexibility resources, which are able to provide low-cost energy and network
services to both the DSOs and TSOs via various marketplaces. To this end, coordination
schemes between DSOs and TSOs should be established in order for the seamless
participation of DERs in local and system-wide electricity markets to be ensured.

In this context, the business model of an Energy Service Provider (ESP) emerges. ESPs are
private-based power system stakeholders and market actors that own portfolios of diverse
assets that seek to secure the sustainability of their investments through providing energy
and flexibility services to the system operators and the end-users. In this dissertation, we
envisage an ESP that operates as a retailer and also invests in a portfolio of diverse
distributed energy and flexibility resources. ESP offers energy and ancillary network services
to both the TSO and the DSO via its participation in the respective electricity markets and
the optimal management of its assets. Towards the financial sustainability of its
investments, we propose algorithmic tools that model the decision-making process of the
ESP in both investment and operational stages. More specifically, we first propose an ESP-
DSO-TSO coordination framework using bilevel modeling, within which network-aware and
market-aware investments are determined. Our proposed investment model produces
benefits for all the involved parties. Then, we examine the market strategy of an ESP in two
distinct use cases, i.e., regulated and deregulated operation of the distribution network. In
the second use case particularly, we introduce an innovative energy market architecture, in
which a distribution-level flexibility market is introduced, which: (1) provides DSOs with the
flexibility they need in order to maintain the secure operation of their networks at minimum
cost, and (2) creates new revenue streams for the distributed energy and flexibility units. In
both use cases, we have used bilevel programming in order to model the strategic
participation of the ESP in various electricity markets. Finally, in order to reduce the ESP’s
cost of energy required to meet the demand of its costumers/end-users, we propose an
innovative pricing mechanism that triggers changes in electricity consumer’s behavior
promoting energy efficiency.



Key-words: smart grids, electricity markets, distributed energy resources, bilevel
optimization, demand side management.

NepiAnyn

Tic teAeutaieg Sekoetieg, TMAYKOOUIWG €xel aAAAEeL PLW{IKA O TPOTMOC TIOU TAPOAYETAL,
SLaVEHETAL KOL KATAVOAWVETAL N NAEKTPLKA EVEPYELA. APXLIKA, N QIMOPPUOLILON TOU TOUEQ TNG
NAEKTPLKAG EVEPYELOG LE TNV ELOAYWYN QAVTAYWVIOTIKWY ayopwv £Xel alagel SpaoTika To
mAaiolo AnPng amodpdcewv, TO0O OTO OTASLO TOu OXedlaopoU, 000 KOl OE QUTO TNG
AELTOUPYLOG TWV CUCTNUATWY NAEKTPLKAC evEpyeLaG. EmumAéov, n auavouevn Sleioduon
Avavewolpwv Mnywv Evépyelag oto Helypa tng NAEKTPOMOPOAYWYNG EXEL TEPLMAEEEL
ONMOVTLKA TO €pY0 TNG OUVEXOUG €ELCOPPOMNCNG TNG TIOPAYWYNG HE TN {ATNON Kol WG €K
TOUTOU £€XEL AUENOEL ONUAVTLIKA TNV avaykn Twv Alaxelplotwyv tTwv Alktiwv Metadopdg
(AAM) yia eveliéia (flexibility). Akoua, n cuveXl{OUEVN €YKATAOTOON HOVASWY «Tiiow oo
tov petpntn» («behind-the-meter»), kaBwg kol o0 €ENAEKTPLOUOG TWV TOUEWV TNG
Biopnxaviag, twv petadopwv Kol TNG Bfpuavonc/Puéng, €Xouv UETATOMIOEL TO
SLayxelploTiko evlladEpov mpog Ta SikTua PEONG KAl XapUnAng tTdong. Autr n e€eAloodpevn
OTTOKEVTPOTOLNGN TWV CUCTNUATWY NAEKTPLKNG €VEPYELOG TIou dEpvel n eloodog Twv
Katavepnuévwy Mnywv Evépyelag €lLoAyel VEEG TEXVIKEC TPOKANOEL( KAl yld TOUC
Alaxelploteg Twv AKTOwV Alavopng (AAA). Zuvenwg, ot AAA Ba mpémel va avaldBouv évav
TIO €vePYO POAO QMO QUTOV TIOU KOTEXOUV ONUEPQ, O OMOolog Ba TOUG ETULTPEMEL va
ocuvepyalovtal oteva Pe tov AAM Kol va OTTOKTHooUV TNV amapaitntn svelifla wote va
e€aodpaiioouv TNV opaAn Kal eUpwWOoTn Asttoupyia Twv SIKTUWY Toug. Ot poavadepBeioeg
TAOELC TIOU ETMIKPATOUV OTOV OUYXPOVO TOHEN TNG NAEKTPLKAG EVEPYELOC, KaBlotouv
QIOPALTNTEG «AmO TA KATW TPOG Ta Mavw» («bottom-up») emev8UOELS O KOTAVEUNUEVEG
TINYEG evépyelag Kol euelliag, oL omoleg pmopolV va TPoodhEPouV XOUNAOU KOOTOUG
UTINPECLEG OTOUG SLAXELPLOTEG TwWV SIKTUWV PECW TNG CUMUETOXNG TOUG Ot Stadopeg
OYOPEC NAEKTPLKNG eVEPYELOG. Mo Tov OKOTO auto, Ba mpémel va oxedlaotolv mAaiola
ouvepyoolag Hetall Twv Slaxelplotwv twv Siktiwv (AAM-AAA) TpokeLlpévou  va
efaodpollotel n ONMPOCKOTTIN OUMMETOXN OTLC OYOPEC TWV KATAVEUNHUEVWY HOVASWY
evépyelag Kot euehtioag.

210 MAaiolo auTO, avadelkvUETOL TO POVTEAD TwV Mapdxwv Evepyslakwy Yrinpeowwv (MEY).
Ot NEY &ival CUPETEXOVTEG OTIC OYOPEC NAEKTPLKNG EVEPYELAG KAL KATOXOL XapTtodUAakiwy
mou mepAapBavouv  povadeg Sladopwv  TEXVOAOYLWVY, OL OfoiolL  EMSLWKOUV  va
Staodaliocovv Tn BlwolpotnTa Twv enevdUOEWV TOUC, TIAPEXOVTAC UTINPECLEG EVEPYELAC KOl
guehl€log oTou SLaXelPLloTEG TwV SIKTUWVY KAl OTOUC TEALKOUC KATOVAAWTEC. 3TNV mopouoa
StatpPBn, Bswpolpe MEY mou adevog kaAUmTouv T {ATNON TwV TEAATWY TOUG/TEAKWY
KOTAVOAWTWY, Kol odeTépou emevdUouv ot XAPTOPUAGKLO TIOLKIAWY KATAVEUNUEVWY
povadwv evépyelag kol evehi€iog. Evag NEY mpoodEpel eVEPYELA KOl ETILKOUPLKEG UTTNPEGCLEG
(ancillary services) toco otov AAM 600 Kal otov AAA péow TNG CUUUETOXNAG TOU OTLC
ovtiotolxeg ayopé¢ kot tng PEAtotng Sloxeiplong tou yaptodulakiou tou. Ma tnv
Slaodpalion TG OLKOVOULKAG BLwoLpoTNTAC TWV eMeVOUCEWV TOU, TIPOTEIVOUHE aAyoplOuLKa
gpyoheia mou povtehomowolv T Sadikaocia AqPng amoddoswv tou [MEY tOco oTO
£MevOUTIKO 000 KAl OTO AELTOUPYLKO OTASL0. M0 CUYKEKPLUEVA, TIPOTEIVOUUE £va TAOLCLO
ouvepyooiag petafd TMEY-AAA-AAM  xpnolpomowwvtag poviehomoinon  Sieminedou



TIPOYPAUUATIONOU, EVTOG TOou omoilou kaBopilovtal ol emevduoelg Aappavovtag umoPv tn
Aewtoupyla Twv SIKTUWV Kal To TEPLBAMOV TNG ayopas. TO TPOTELVOUEVO ETEVOUTIKO UG
HoVTEAD Snuoupyel odpEéAn yla OAa Ta EUMAEKOUEVA HEPN. 2TN OUVEXEL, €EETAJOUME TN
otpatnywkn tou MEY 6oov adopd tTn CUUUETOXN TOUC OTLG ayopeéC o SUO SLadOPETIKEG
TEPUTTWOELG: pUBUMLOPEVN Kal amoppubuiopévn  Asttoupyia tou  SLKTUOU  SLAVOUNC.
Elbikotepa otn OeUtepn TMEPIMTWON, TPOTEIVOULE ML KOLVOTOUO OPXLTEKTOVLKN OyOopag
EVEPYELOG, OTNV Oomola elodyetal pia ayopa gueAifiag oto eninedo Slavoung, n omoia: (1)
mapgxel otoug AAA tnv euehitia mou xpelalovtal MPOKELUEVOU va Slatnprioouv Thv acdaln
Aettoupyla Twv SIKTUWV TOUG PE TO EAAXLOTO KOOTOG, Kat (2) dnuLloupyel VEEC poég E00OwWV
YlO TNG KATAVEUNUEVEG HOVASEC evépyelag Kol euehiéiag. Kal otig SU0 TEPUMTWOELG,
XPNOLLOTIOL OAE poviéda  Sleminedou TIPOYPOAUUATLOUOU TUPOKELUEVOU va
MOVTEAOTIOL|OOUE TN OTPATNYLK CUUUETOXN Tou MEY ot S1Adopes ayopeéG NAEKTPLKNG
evépyelag. TEAOG, TPOKELEVOU va LelwBOel To KOoTog evépyelag Tou MEY mou amatteital yia
™mv KGAuYPn t™¢ IATNong Twv TMEAATWY TOU/TEAKWY KATOVOAWTWY, TPOTEIVOUUE Evav
KOLVOTOMO MNXOVIopO Sikaing TioAoynong, o omolog KvntpoSotel Toug TEALKOUG
KOTAVOAWTEG va aAAAEOUV KATAVOAWTLKY CUUTEPLPOPA KAl VA ULOBETAOOUV €VEPYELAKA
oS OTIKEG KATOVAAWTLKEG OUVHDELEG.

Négerg-KAewdud: €€umtva Siktua, ayopéC NAEKTPLKAG EVEPYELAG, KOATOVEUNMEVEG TINYEG
evépyelag, SLeminebo¢ MPoypPaAPUATIONOG, Staxeiplon Ttng {ntnong.
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Summary in Greek language

H E§EALEN Twv Zuotnuatwv HAektpIkng Evépyelag
Ot Kupiapyec Taoeig ota Zuyxpova EEunva HAektpika Aiktua

Kata to peyaAltepo pépog tou 20% atwva, o TORENC TNG NAEKTPLKNG eEVEPYELAC Bewpolvtav
duUoLkO povomwALlo. ATOKAELOTIKEG UTteLBUVEG yla TN Slaxeiplon Kal tov €AsyXo TNG
mapaywyng, tne UETadopdc Kot tnG SLavopung NAEKTPLKAG LOXUOG ATAV KOOETOMOLNUEVES
ETUXELPNOELG KOWNG WPEAELAC. AUTEG OL KPATIKA pUBULIOUEVEC ETILXELPAOELG TTapryayav LoxU
o€ BepKEC ] USPONAEKTPIKEC Hovadeg cuvdedepéveg oto diktuo uPnAng taonc (YT), péow
Tou omoiou TN petédepav otoug urootadbuolg YT/MT kat YT/XT, kot teAkd t Stévelpay
OTOUC, AVEAQOTLKOUC WG TPOC TNV TLUR, TEALKOUC KatavaAwTéG. OL TeAeuTaiol MARpwvay yla
TNV MOPEXOUEVN EVEPYELA LE BAoN Ui KPATLKA pUBULOPEVN TIU. QOTOo0, amd Tnv Sekaetia
Tou 1980, OUYKEKPLUEVEC TIOATIKEG amodAocelg, Hall HeE TG OAogva QauUEAVOUEVEG
TepPaAAOVTIKEG avnouxieg, TNV TPoPAemopevn aufnon tng maykoopag {ntnong oe
NAEKTPLKN EVEPYELAG Kol TIG paydaieg texvoloylkeg e€elielc ot Avavewolpeg Mnyég
Evépyelag (AME), ota Zuotnuata Anobrikeuong Evépyetag (ZAE), aAAd kat otig Texvoloyieg
MAnpodoplwv kat Emkowvwviwy (Information and Communication Technologies - ICT), €xouv
nupodotnoel tn petafaon npog ta EEumva Aiktua (Smart Grids) [1] péow ULoG OeLpag ano
EKTEVELG AAAQYEC OTOV TOMEQ TNG NAEKTPLKIG EVEPYELAG:

AnsAevBépwon twv Ayopwv: O TOPENC TNG NAEKTPLKAC LoxUog €xel efeAiyBel oe pia

OMOPUBULOUEVN KAl QVIAYWVLOTIKA Blopnxovia, omou oL SUVAUELG TNG ayopdc TAEov
KoBopilouv TNV TIUA TNG NAEKTPLKAC EVEPYELAG. ZKOTIOG OUTNG TG HETABaocng umnpée n
pelwon Tou KOOTOUCG TNG eVEPYELOC KOl TNG SlaodpdaAlong tng opaAng Asttoupylag Twv
SIKTOWV. H NAeKTpLK eVEPYELAG TTAEOV OVTIUETWILIETOL WG TTPOIOV Kal ayopamnmwAsital oe
OMOpUOULOUEVEG  XOVOPLKEGC ayopeG, OmMou  LOLWTLKEG  eTalpieg  emSlwKouv  va
peylotonotjoouv tv kepdodopia Ttoug. EMMTAEOV, QVTAYWVLOTIKEG ayopEC ETLKOUpLKWV
Ynnpeowv (EY — Ancillary Services - AS) €xouv dnuioupynBei, 6mou oL SLaXELPLOTEG TWV
CUCTNUATWY ayopdlouv TIG amaltoUpeveg uttnpeoieg evehiEiag (Flexibility Services) amod
Mapoxoug Ymnpeowwv Eflooppomnong (Balancing Service Providers), Tpokelpévou va
g€aodpaiioouv TNV aflomotn Asttoupyia Twv SIKTUWV TOUG. TEAOG, oL TEALKOL KOTOVAAWTEC
TAéov umopoUVv eAelBepa va eTAEEOUV TOV TTAPOXO TOUG OTNV AlaviKi ayopd, Ue Baon tnv
TLUA KOL TNV TIOLOTNTA TWV TIAPEXOUEVWY UTINPECLWV.

AnavOpakonoinon: Ot neptBarloviikol otoxolL mou £xouv Tebel and tn Slebvry kowoTnTA

OXETIKA HE TOV TEPLOPLOUO TNG UTtepBEéppavong tou mAavAtn [2] kat tn pelwon twv
EKTIOUNMWY aepiwv Tou Beppoknmiou [3], £xouv 06NYNOEL OTNV EMLTAXUVOUEVN aUénon tng
Slelobuonc twv AME oto evepyelako pelypa nAsktponapaywyng. Emiong, otig meploocdtepeg
XWPEC, TO PEYAAUTEPO HEPOC TV VEWV emtevdUoswy os AMNE adopd pHovadeg ouvdedepéveg
oto Oiktuo Stavopric («behind-the-meter»). Ta mapddsiypa, mnepimou 179 GW
KoTavepnuévwy pwtofoAtaikwy mapkwyv (PV) va €xouv eykataotabel maykoopiwg ano to
2017 éwg to 2020 [4].

Anokevtpomnoinon: To peydAo mocooto Slelobuong Katavepunpévwy povadwv AMNE, ald

KoL 0 €€NAeKkTPLOMOG Twv TOpEwV TNG Plopnyxaviag, twv petadopwyv Kal TNG
Bépuavonc/Puéng [5] odnyel otnv amokevipomnoinon twv Juotnudtwyv HAekTtpkng Evépyelag
(XHE). Ot Katavepnpévol Evepyelokoi Moépot (KEM — Distributed Energy Resources — DERs)



£€xouv TN SuvarotnTo va TTapAyouv N va amoBnkelouv NAEKTPLKN evépyela, OAAG Kal va
Sltaxelpifovtal TNV KOTOVAAWON TNG avaAoyo HE TNV  €KACTOTE Ttexvoloyia. Ot
KOTAVEUNHUEVEG Hovadeg AME, ZAE kai texvoloyieg Amokpiong tng Znitnong (Demand
Response — DR) umopouv va unootnpiéouv Tnv amavOpakomnoinon twv IHE, pyelwvovtag tnv
€€APTNOH TOUC OO TA OPUKTA KAUGLO. AKOUQ, UTTOPOUV VO TIAPEXOUV TIOAUTLLEG UTINPEGCLEG
OTOUG ALOXELPLOTEG TWV AlkTUWV Atavopn¢ (Distribution System Operators - DSOs) kal 6Toug
Aloxelplotég twv  Alktiwv  Metadopag (Transmission System Operators — TSOs)
SNULOLPYWVTAC KALVOTOMO ETILXELPNUATIKA LOVTEAQL.

Wndonoinon: Me otd)0 TNV EMLTAYUVON TNG ATOKEVTPOTOLNONG KaL TNV AN PN aflonoinon
Twv odpeAwv Tou mpoadEépouv ot DERs, ta IHE efeAicoovtal os kuPepvo-puotkda (cyber-
physical) cuotiuata. H avamrtuén ICT AUoswv, N eyKataotacn €EUTVWV HETPNTWVY (smart
meters) kaL o oxedlaopog Internet-of-Things (loT) umodopwv Ba 0dnyricouv otn BEATLOTN
XPNon Twv empEpous otolxelwv Twv Siktuwy, Ba ameleuBepwoouv TG SuvatotnTeG TwWV
KOTAVEUNUEVWY HovAdwY evépyelag Kal eueAlfiog kal Ba SleukoAUvouv T ouvepyacia
METAEY TWV EUMAEKOUEVWY GOPEWV OTOV TOHEA TNG NAEKTPLKNG LOXVOG.

Ot MpokAnoeic twv Zuotnuatwv HAektpikrc Evépyetac tng Néac Emoxnc

OL npoavadepBeloec ahAayeg BETouv VEEC TPOKANOELG YLA TOUG SLOXELPLOTEG Twy ZHE. Ta
TEPLOOOTEPA SIKTUA NAEKTPLKAG EVEPYELAG KATAOKEUAOTNKAV TPV omd SeKAETiEG yla
CUCTAMATA OTOU N LoXUG £pee TPOC Hia povo katelBuveon (oo TIG KEVIPLKEG TTAPAYWYLKES
MovASEC MPOG TOUG TEALKOUC KATAVOAWTECG), EVW N {ATNoN NTAV OUETAPANTN KoL AVEAQOTLKN
W¢ TPOG TLG TLMEC. OL KUPLEG avNOUXIEG yla TOUG SLOXELPLOTEG TWV CUOTNUATWY NTav T
evbexOpueva OPOAPATWY OTn Asltoupyia OPLOPEVWY OTOLXElWV Tou O&IKTUOU KOl N
e€aodpalilon emMopKoOUC LKAVOTNTAC MAPAYWYNC Kol METAPOPAC Yyl TNV LKAVOToinon Tou
doptiou alypnc. H poévn emiloyn yla TNV QVILLETWILON QUTWYV TWV {NTNUATWY ATOV oL
KootoBopeg emevéUoeLg o evioyuon tou Slktuou.

Itnv emoxn twv EEumvwv AKKTUWV, oL SLOXELPLOTEC TWV CUCTNUATWY HETAPOPAC Kol
Stavoung (TSO/DSO) £xouv eTMUTAEOV VO QVTLUETWIIOOUV TNV AMPOPAENTN KOl GUVEXWG
MeTaBANTA mapaywyn and povadeg AME, n omola TEPUTAEKEL TO £pyo TNG GUVEXOUG
gfloopplémnong tng mapaywyng Ue tn {ntnon. Emiong, kabwg o aptBuog Kal To cUVOALKO
péyebog twv povadwyv mou cuvdéovtal oto Siktuo Stavourg (DERs) cuvexwg auviavovtal,
dawopeva ocupdopnong Tou SIKTUOU Kol AmOKALONG Tn¢ tdong amd ta opla aodaleiog
yivovtat OAo kal ouxvotepa. EmutAéov, oL Slaxelplotég twv IHE Ba mpénel va
OVTLUETWIILOOUV Kal TNV auvfavouevn alyun Tou doptiou, aAAd Kal Ta anpofAemnta potifa
KOTavaAwong, Ta omoia TPoKUTITouV omd Ttov €ENAEKTPLOUO TNG OUVOALKNG EVEPYELAKNG
{ntnong. OL tpokARoELg autég aufavouv paydaia tnv avaykn yia svehiia (flexibility) [6]. H
aélomoinon tn¢ undpyxouaoag eueALEiag TOu CUOTANATOC EVavTL Twv Samavnpwy enevéloewv
yla tnv evioyuon tou Siktbou [7], aflomolwvtag MANPWE TIG SuvatdTNTEG TToU POodEPouY
Ta KuBepvo-puoikd TAéov IHE, pmopel va SnuLloupynosl Ta amapaitnta Kivntpa yla «amno
TO KATW TPOC Ta MAVW» («bottom-up») enevlUGCELC O KATAVEUNUEVEG LOVASEG EVEPYELQG
KoL gvehi€iag, oL omoieg £xouv TNV duvatotnta va KoAUPouv €va OnUAVTIKO HEPOC TWV
ovaykwv oe euveliéia, tooo oto eminedo tou SiktUou Slavoung 600 KoL 0 AUTO TOu
CUCTAMATOC HETOPOPAC.



Méxpl KoL Onuepa, oL KUPLOL QAyOpOOTEC UTNPECLWV eueALflog, HEOW TWV ayopwv
ETlkoupLKWwV YTINPECLWV 1 HECW SLUEPWY LAKPOXPOVIWV CUUBAcEwWY, gival ol TSOs pe Toug
DSOs va pnv €xouv auth tn duvatotnta. EmumAéov, n aAnAenidpaon petafy TSOs kat DSOs
gilval oxedov avumapktn, Pe tn dtadlkaoia ekkaBapLlong Twv ayopwv NAEKTPLKAG EVEPYELAG
va 1N AopBAvEL TOUG TEXVLKOUG TIEPLOPLOMOUG TWV SIKTUWV SLAVOUNG. ZUVETWG, N CUMUETOXNA
KOTOVEUNUEVWY HOVASWVY eVEPYELAG Kal eUeALElag oTIC ayopéG auTég duvatal vo B€oel os
kivbuvo tnv elpwotn Asttoupyia Twv SIKTUWV PEONG KAl XAUNAAG TAONG, 0dnNywvTtog o€
OLKOVOULKA KO TEXVIKA LN OMOSOTIKA QTTOTEAECUOTA TWV ayopwv. AUTO UTTAYOpEUEL: a) TN
UETATOMLION Tou poAou Tou DSO Tmpog €vav TILO EVEPYO SLOXELPLOTH) SLKTUOU SLAVOMNG
(active distribution network operator), kat B) Tnv avamntuén mAailciwv cuvepyaoiag pLeTagy
TSOs-DSOs (TSO-DSO coordination schemes) pe otoxo tn Héylwotn aflomoinon Twv
KOTAVEUNUEVWY HOVASWY KOL TNV EAOXLOTOMOLNON TWV AELTOUPYLIKWY KOOTWY TWV SIKTUWV
[8]. Na mapadelypa, ol Ayopég EueAi€iag (Flexibility Markets) oe tomko emninedo (Siktuo
Stavoung) urmopolv adevoc va Sltaopaiicouv otL ol DSOs Ba e€acdaiicouv tnv amapaitntn
guehfia ywa v avtipetwnon mbavwv opaAudtwy ota SiKTud Toug, Kal adeTépou va
SnULoupyrnoouv VEEG POEC €LOOSWV YL TOUG €ETEVOUTEC OE KATOVEUNHEVEG HOVASEC
evépyelag kat eveltéloc. Emumpoobetwy, o oxedlaouog mhalolwyv cuvepyaoiag TSO-DSO eivatl
anapaitntog, wote kat o TSO va pmopel va enwdeAnBel amd tn XapnAol KoOOTOUG
«TIPACLVN» EVEPYELA Kal EUEALELD TTOU TIOPEXETAL ATIO TOUG KATAVENUEVOUG TIOPOUC.

To Eniyetpnuatiko Movtédo evog lMNapdyou Evepyetakwy Yrtnpeotwv

JTo mAaiolo Twv amneAeuBepwHEVWY  ayopwyv  NAEKTPLKAG  EVEPYELAG KAl  TOU
omavOpaKOMOLNUEVOU, OTIOKEVIPWHEVOU  Kal YPndlomoinpévou Euduolg  Alktiou,
oVaSUETAL TO EMLXELPNHATIKO HOVTEAO eVOG Mapoxou Evepyelakwy Yninpeotwwy (MEY — Energy
Service Provider — ESP). Ztnv napovoa Statplpr Bewpoupe ot £vag MEY Asettoupyel adevog
w¢ Ndapoxoc HAektpikng Evépyelag (Retailer), €xel SnAadn meAdteg/TeAkOUC KOTOVAAWTECS
TWV OMOLWV TIPETEL VAl LKAVOTIOLNOEL TN {TNoN, Kol adeTEPOU KATEXEL Eval XAPTOPUAAKLO
KOTAVEUNUEVWY HoVASwVY Sladopwv TexvoroyLwy (LY. Lovadeg mapaywyng, amobnkeuong,
andkplong TnG {ntnong, kAm.). O MEY npoodépel unnpeoieg evépyelag kat eveli€iag tooo
otov TSO 600 kal otov DSO HEOw TNG CUUHETOXNG TOU OTLG AVTIOTOLYEG QYOPEC NAEKTPLKNG
evépyelag Kot Tng BEATiotng Slaxeiplong tou xaptopulakiou tou (PA. Elkova 1).
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Ewkova 1: ApXLTEKTOVLKY) ZUGTHLOTOG

Tov poAo tou ESP umopolUv va tov avaAdpouv Siadopeg ovidtnteg, onwe Dopeig
ZWPEeUTIKNAG Ekmpoowrnnong (DoZE — Aggregators), Napoyot Ynnpeowwv E§looppomnnong (NYE
— Balancing Service Providers — BSPs), Ataxelplotég Evepyntikwv Alktowv Atavopng (Active
Distribution Network Operators), Ekmpoowrol Evepyslakwv Kowotitwv (Energy Community
Controllers), kKA. Emiong, oxedidlouvpe oxnuota ouvepyaciog petafd TSO-DSO, ta omola
ETUTPENMOUV TNV OIPOCKOTITN OCUMMETOX TWV KOTOVEUNUEVWY HOVASWVY OTIC OYOPEC
evépyelag Kal evelL€iag, T6oo oto eninedo Tou CUCTAMATOG SLAVOUNG 000 KAl O QUTO TOU
OUCTAMATOC HEeTadOPAG. EmMopévwg, ol ESPs pmopouv: o) va ayopamnwAolv evépyela HECW
TWV XovEpLKWV ayopwv NAeKTpLKNG evépyelag (wholesale markets), B) va cuppetéxouv péow
NG OUCOWPEUONG TwWV Hovadwv euelilag oe ayopéc EMKouplkwv  YIINpeoLwv
npood£povTag umnpeoieg euellélag otoug SLOXELPLOTEG TwV SIKTUWY, Kal y) va mwAolv
EVEPYELA OTOUG TEAATEG TOUG (KATAVOAWTEG) HEOW TWV ATIEAEUDEPWHEVWY AyOPWV ALAVIKNAG
(retail markets). Na va StachaAiosl TNV oKoVopLKN BlwolpudtnTad Tou, £vag ESP Ba mpémel
va AdBel BEAtioTeg amodaoelg, TO00 OTO eMeVOUTIKO oTASL0, OGO KOl OTNV EMLXELPNOLAKN
daon (BA. Eikova 2).
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Ewova 2: NAaiowo AqPng Anopaocswv tou NEY

H Awadikaoia AnYnc Enevdutikwy Antoaocewv o€ Kataveunuévoug Evepyetakoug lNépouc

H ameAeuBépwon twv ayopwv NAEKTPIKAG evépyelag pall pe tn Slapkwg aufavopevn
Slelobuon twv AME oto pelypa nAekTpomapaywyng Exel mepmAEgel SLaitepa tn ARPn Twv
enevOUTIKWV amopdocswyv. OL emevOUTEG eival TAEoV ekTeBeLpévVol o TTOAU UYPNAOTEPOUG
KlvéUvoug, KaBwg £XouV va avILLETWIiooUV TNV afeBaldtnta mou oxeTiletal HETAly GAAWV
ME TOV aVIAyWVIOUO TNG ayopdg, Tn {NTnon, TNV mopaywyn ond tig povadeg AME Kal Tig
TILEC TWV Kaualpwy. Mpokelpévou va StaodalloTel n PLwoludTnTa TWV ENEVSVOEWY, TTPWTA
and OAa, o MEY Ba mpémel va emhé€el To PEATIOTO emMevOUTIKO pelypa to omoio Ba
Snuoupynoel éva kepdodopo xaptoduAdkio amd Siadopeg texvoloyieg DERs. MNa tov
OKOTIO QUTO, 0 MEY mpénel va AABeL UTIOYPLV TOU TLG TLHEC KOL TOV QVTAYWVLOUO TWV ayopwy
TIPOKELUEVOU VO EKTLUNOEL PE PeyoAUTepn akpifela ta miBoava kEpSn kol ev TEAEL TV
anddoon twv enevéuoewv tou (market-aware planning decisions). EmutAéov, oL emevéUoeLg
oe DERs Ba mpémel va yivovtal Aappavovtog urmoPLy Toug TEXVLKOUC TEPLOPLOUOUC TOU
SiktUou Slavoung, onwg toviletal oto [9], wote va StaodalloTel OTL Ol KALVOUPLEG LOVASEG
6ev Ba Béoouv oe kivduvo tnv aflomiotn Kal opaAn Aettoupyia Tou SikTtuou Stavopng. Q¢ ek
toUTou, n Slactaclohdynon (sizing) kot n xwpoBEtnon (siting) Twv povadwv mpémel va
£TAEYOUV € TETOLO TPOTIO WOTE va gival duvath n MARPNG alomoinon Tou SUVOLKOU TOUG
Kol va amodeuyBel n umepektipnon/unosktipnon tng anodoong tng emévduong (network-
aware planning decisions).

MoAAEG epeuVNTIKEG pEAETEC £xouV 0.oXOANBel pe emevbuoelg o DERs AapfBavovtag umoPv
TOUG TEPLOPLOHOUC TOU SLKTUOU Slavoprnc. OL OXETIKEG HEAETEG UMOPOUV VO XWPLOTOUV OF 2
KOTnyopieg pe Bacn To TMoOlA OVTOTNTA TPAYUOTOMOLEL TG emevdUoelg. Ou peAETeg Tou
gUMiNTOUV oTNV TpWTN Kotnyopia (r.yx. [10], [11], [12], [13], [14], [15], [16], [17] xou [18])
UTIOBETOUV OTL OL KATAVEUNUEVEG MOVASEG avriKouv Kal gAéyxovtal amo tov DSO. e auth
v nepintwon, n dtadikacia AYPNe Twv eMevOUTIKWY amodACEwY OVTEAOTIOLELTAL WG Eval
TIPOPAN A OTOXAOTIKAG BEATLOTOMOLNGNG HE OTOXO TOV TIPOCSLOPLOO TNG SLOOTACLOAOYNGNG
TWV VEwV povadwv, Ttnv xwpoBétnon toug (emevdutiky ¢daon) KoL  TOU
XPOVOTIPOYPaUOTIOMOU Toug (Aettoupyikn ¢aon) kdtw omd SladopeTiKEG CUVONKEG



Aettoupylag. H avilkelweviky ouvdptnon o€ autd ta mpoPAnpata BeAtiotomoinong
neplAapBAvel €va 1 MAPAMAVW KPLTAPLA, OTWGE: o) TO KOOTOG TG emévduong, B) TEXVIKA
KpLtipLa (m.x. eAaylotomnoinon BepuLkwy anmwAELWY, andkALoNG TAong, mepKonwy doptiwy,
KATL) 1 V) KpLIAPLA OXETIKA HE TIG ayopes (eAaylotomoinon KOotoug TpounBelag tng
EVEPYELAG amo TN XovOplkn ayopd) ot mepimtwon mou o DSO evepyel wg ovtotnta TNG
ayopdg. To oUVOAO TWV TEPLOPLOUWV TEPINAUPBAVEL TOUC TEXVIKOUG TEPLOPLOMOUG TOU
SkTUoU SLAVOUNG KOL TOUG AELTOUPYLKOUC EPLOPLOMOUG TwV povadwyv KEM, mpokelpévou va
StaodaAilotel n opaAn Asitoupyia tou Oiktuou. H Seltepn katnyopio meplhapPavel
£PEUVNTIKEG peA€Tec (.. [19], [20], [21], [22], [23], [24], [25], [26]) oL omoieg utoBETouV OTL
oL emevduoelg oe DERs mpayupatomolouvtal amd duwteg ESPs. Ou PeAETEG QUTEG
povtelomololv  mpofAnuata PBeAtiotonoinong moAlamAwv  otadiwv (multi-stage) n
noMarAwv erunédwv (multi-level) pe otoxo va mpoteivouv mAaiola cuvepyaoiag petaty
ESP-DSO, &vtog Twv omoiwv AApBAVOVTOL OLKOVOULIKA PBLwOoLUeG eMeVOUTIKEG amodpAOELS
AapBavovtag umoyv Toug EPLOPLOUOUE TwV SIKTUwV dlavounc. H kupla Stadopd pe tnv
Tpooéyylon mou uloBeteital otnv mapouca Slatplpry, €lval OtL oL PEAETEG AUTEC Oev
AapBavouv unoYv tnv npobeon tou TSO va aflomoliost tn Stabéoiun xapnAol KOCTOUG
EVEPYELA KaL EVEALELO TIOU TTAPEXETAL ATIO TLG KATAVEUNUEVEG Hovadeq. EE oowv yvwplloups,
Sev £xel povtelomnolnBel otn BLpAloypadia oxrpa IOuwTikwy enevéuoewv o DERs, péoa ot
éva mAaiolo ouvepyaociag DSO-TSO wote va Staodaliletal n ompooKomtTn mapoxh
UTINPECLWV eVEPYELAC KaL eVeALElag kal ota dU0 cuothpata (SLavoUng Kal LeTadopdg).

Zupuetoxn twv Mapoywv Evepyeiakwv Ymnnpeoiwwv oti¢ Ayopéc kat n Atadikaoia Aqgng
Anopdoswyv oto Emiyelpnotako 2tadto

EKTOC TwV emMevOUTIKWY amodacswy, o ESP Ba mpémel va emAEEEL TN BEATLOTN OTPATNYLKN
CUMUETOXNG OTLG QYOPEC KAl TAPAAANAQ, TOV XPOVOTPOYPOUUUATIONO TWV KOTAVEUNUEVWY
povadwv evépyelag kat sueAifiog. O ESP mpémel va Sloxelplotel To XapTtopuUAAKLO TOU UE
TETOLO TPOTO WOTE VA EYLOTOTIOLNOEL TNV KEpSodopia, Tou BEATLOTOMOLWVTAC TN CULUETOXN
TOU OTLC ameAeuOepWHUEVEG OYOPEG NAEKTPLKAG EVEPYELOG. AKOUA, OTWE Kal otn ¢Aacn Twv
eMevOUTIKWV amoddocewyv, €tol Kal otn ¢don Asttoupylag twv povadwv, Ba mpémel va
AndBolV unoYv oL meploplopot Tou Siktvou Stavoung (network-aware bidding strategy and
operation), wote va anodeuxOel To OMOLO KOOTOG (OLKOVOULKO ] KOWVWVIKO) TIOU TIPOKUTITEL
orod to evdexopevo eudaviong opoApdtwy oto Siktuo.

210 mapeABov, TOAAEG epPeUVNTIKEG PEAETEG €XOUV 0.oXOANBEel pe To MPOPAnUa anodaong
evOog ESP oxetlkd pe tnv KotaBeon mpoodopwv OTIC ayopeC Kal tnv Slaxeiplon Ttou
XaptopUAAKIOU TOU, TO OMOILO TEPLEXEL KATOVEUNUEVN Ttapaywyr, ZAE, eUEAKTA Kol pn
gsuéhkta doptia. MeAéteg onwce ol [27], [28], [29], [30] kat [31] mpoteivouv OTPOTNYLKES
CUUUETOXNG Ot Oladopec nAekTpIKNG evépyelog yla ESPs, oL omolot Siaxelpilovrot
xaptopuldakio ou mepthappfavouv DERs Stadopwv texvoloylwv. QoTtdoo, oL LEAETEG QUTEC
6ev AapBavouv umoPv Toug meploplopolc aodaieiog Twv Siktuwv Stavoung. Etol, os
TEPUTTWOELS TPOPANUATWY TAONC N} cupdopnong, Ba xpelaotolv SLopBWTIKEG EVEPYELEC, OL
omoiec wotooo Ba o6nynoouv og LPNASG XPNUATIKO 1 KOWVWVIKO KOoToC. Ot peléteg [32] Ka
[33] unéBeoav otL Etaipieg Atavoung (Distribution Companies - DisCos) evepyoUv w¢ ESPs
KOL aoXoAnOnkav He TN OUUUETOXA TOUG OTIC OYyopEC KoL TOo  mPOPAnua
XPOVOTIPOYPAUUOTIOMOU TwV Hovadwy, Staocdalilovtag mapdAnAa kot tTnv aflomiotn
Aettoupyia Tou Siktou Slavopung, e To AapBdvouv unmdYPLv Toug TEXVIKOUG TIEPLOPLOUOUC



tou Siktbou. OAeg oL mpoavadepBeioeg epyaoaieg, [27] — [33], Bewpnoav OTL oL amodAcELG
Twv ESPs 8ev pmopouv va EMNPEACOUV TLG TIHECG TwV ayopwv. H mapadoxn autr ovoudletal
gUPEwWG «price-taking» kat Aéue OtTL oL ESPs €xouv BewpnBel wg «price-takers». Qotdoo, n
tkavotnta Twv DERs va mapdyouv Kol va amoBnkelouv evépyela Kablotd toug ESPs wg
«price-makers». Eival wkavol dnAadn va emidpolv oTIC TIHEG TwV ayopwv, epapudlovtag
gflooppomnntik kepdookomia («apuritpdl»), evaldocooviag Ttoug POAOUC TOUC KOTA
SlaotAuaTa oMo TMOpOaywyol O£ KATAVOAWTEG Kol aviiotpoda. EmumAéov, ol mapomavw
EPEUVNTIKEG LEAETEC e€€TOIOAV ETTEVOUTELG TIEPLOPLOUEVEG OE €val LOVO UTIOSIKTUO SLAVOUNG.
Kata ouvénela, 6ev umapyet peAétn otn BiPAoypadio LOVTEAO GUUUETOXNG OTIC AYOPEC
NAEKTPLKAG eVEpyeLag evog ESP mou va eA€éyxel Kal va OUVTOVI(EL KATAVEUNMEVEG LOVASEG
VEWYpPAPLKA Slaokopriopévec oe SladopeTikd umodiktua SLavoung.

Mapaiinin Svuuetoxn twv Moapdywv Evepyetakwy Yninpeoiwv o€ MoAAanAég Ayopég

Mo va PeElwoel Ta eMevOUTIKA Tou ploka Kal yla va Stachadiosl ) Plwolpndtnta Twv
enevdUoewv Tou, o ESP Ba mpémnel va emidlwéel va €xel SLadopeg poEg eLcOdwv. Avaloya pe
™ ouvBeon tou XoptoduAakiou TOU, TIG UMNPECIEC TOU WUTMOPel va TAPEXEL OTOUG
SLOYELPLOTEG TWV SLKTUWV KaL TLG EUKOLPLEG KEPOSOUG TNG EKACTOTE ayopAg, o ESP Ba mpémel
va anodaocloel yla TIG ayopég (evépyelag Kal uell€iag) mou Ba CUMUETEXEL. 2T GUVEXELQ,
Ba TpémeL va OXeSLAOEL OTPATNYLIKEG OCUMMETOXNG OTLC OYOPEC QUTEG, oL omoieg Ba
LEYLOTOTOL 00UV Ta £0084 TOU amo TNV MAPAAANAN CUMUETOXN TOU O€ MAPATAvVW amd pia
QYOpPEG NAEKTPLKNG evEpyelag (Stacked Revenues).

H mpoodatn PiPAoypadia €xel aoxoAnbel pe 10 MPOPANUO TNG MPeyloTOMOINONG TNG
kepdodopiag evoc LoLwtn ESP mou mpoodEpel MOAATTAEG UTINPECLEG OTOUC SLAXELPLOTEG TWV
SiktOwv. O pelétec [34], [35], [36], [37], [38] kat [39] Bewpnoav ESPs pe povadeg evépyelag
Kol eveliélag ouvdedepéveg oe Siktua MT kal XT, oL onolol mapéXouv LoXU Kal EMIKOUPLKEG
UTNpeoieg Tooo otov TSO 600 Kal atov DSO. QoTtd00, oL pyacieg AUTEG UTTOBETOUY WG oL
TMapexOUeVeG Unnpeoie¢ twv ESPs mpog toug DSOs eivol €ite UTOXPEWTIKEG N
anolnuiwvovtal Baocesl plog avbBaipeta kaboplopévng amd toug DSOs Tung, xwplc va
e€etaletal o TPOMOC UTIOAOYLOMOU TNG.

Mnyaviouoi Atavikn¢ TipoAoynong

Jtnv emoxn twv Efumvwv Alktuwv, éva TOAU onpaviikO epyoAeio oto XEpla TWvV
Sloxelplotwy Twv SIKTUWV ylo Thv Staoddlion tng opalng Asttoupyiag twv IHE sival n
Awaxeipion tne Zntnong (Demand Side Management — DSM). To OKETTKO Tiow omd To
Demand Side Management eivol n KwntpodOtnon Twv TEALKWV XPNOTWV WOTE va
ULoBeTAOOULY evepyeLOKA OMOSOTIKEG oUVABELEG KATAVAAWGONG TNG NAEKTPLKNG evépyeLac. Ot
ESPs pmopouv va oxedLaoouv £EUTIVEG KOl ATIOTEAECHOTIKEG TIOALTIKEG TLLOAGYNONG Tou Ba
T(POKOAECOUV OAAQYEC OTNV CUUTEPLPOPA TWV TIEAATWV TOUG (KATOVAAWTEC), MTAPEXOVTAC
TOUG €AKUCTLKA OLKOVOULKA KivnTpa. Auto Ba obnynosl oe yapnAotepo KOOTN ayopag tne
EVEPYELAG yla Tov ESP kat, tautoxpova, Ba toug mapéxel smumpocBetn suelifia mouv Ba
ouénoel ta £€008A TOUG ATIO TNV TAPOXH EMLKOUPLKWY UTINPECLWV oToug TSOs/DSOs.



JT0 TMAQLOL0 TwV ATEASUBEPWHEVWV ALOVIKWY OyopwV NAEKTPLOUOU, EVOG HUNXOAVIOUOG
TLLOAOYNONG TIPETIEL VAL ETUTUYXAVEL €vav amodoTko cUUBLBaoUS peTafl Twv akoAoubBwv
embupuntwyv Wlotitwy: (1) Eunuepla twv katavalwtwyv, (2) evepyelakd kootog, kot (3)
‘dikatn’ katavour Tou KOotoug evépyelag. H mpwtn dotnta kabopilel tnv mpobupuia twv
TEAIKWV XPNOTWV VA CUUHETACXOUV ot £va DSM mpodypappa. O otdoxo¢ Ttwv DSM
TIPOYPAUUATWY TIOU Tipoteivovtal ot peAéteg [40], [41], [42] kau [43] elvat n
UEYLOTOTIONGN TNG EUNUEPLOG TWV CUUHUETEXOVTIWV OTO Tpoypappa. H dgltepn dotnta
ekppalel TNV KOWOTNTA TOU UNXOVIOUOU VO KLVNTPOOOTEL TOUC KATAVOAWTEG Vol
uloBetrioouv evepyelakd amoSoTIKA HOTiRa KATAVAAWGONG Kot TEALKA VOl EKTANPWOOUV TOV
otoxo mou B€tel o ESP (peiwon evepyelokol KOotoug). OL epeuvnTIKEG epyaocieg [44], [45],
[46], [47] xou [48] emwvonoav DSM aAyoplOpoug TIPOKELUEVOU VOl EAQXLOTOMOLOOUV TO
EVEPYELAKO KOOTOG. TEAOC, N Tpltn WbloTNTa avadEpetal oto mOoo Sikala KATAVEUETAL N
€€0LKOVOUNON TOUG KOOTOUC EVEPYELOG METALY TwWV TEAKwY Xpnotwv. OL peléteg [49], [50]
kot [51] emAéyouv TN PeAtiwon NG ‘Akatocuvng Tou DSM  mpoypdppatog. H
anodotikotnTa (eAayLotomnoinon kootoug) otn peAétn [49] Buolaletal yla va emteuxbouv
vdnAotepa emnineda ‘Alkatooclvng’, evw otn [50] peAetdtal n aviotabuion Metaty
ghaylotonoinong Kootoug Kal ‘Alkatoolvng, ayvowviag wotdoo TNV eunuepia Twv
xpnotwv. O oupPLBaocpdg petafld twv TPLwV TpoavadepBéviwy OLOTATWY Oev €XeL
peAetnBel otn BLpAloypadia.

Movtelonoinon thg AMPng Anodpacswv evog ESP
MovteAomnoinon Ateninebou lNpoypauuatiouov

O Ateninedog Mpoypappatiopog (AN — Bilevel Programming — BP) avad£petal otov KAASo
™¢ Mabnpuartikig BeAtiotomnoinong mou aoyoAeital pe mpoBAnpata Le Ltepapytkn doun [52].
H évvola tou Aleminebou MNpoypappatiopol mpoépxetal amd 1o medio tng Oswplog
Matyviwv kat cuotnBnke and tov Heinrich Freiherr von Stackelberg [53], pe toug Bracken kait
McGill va mapoualdlouv TNV MpwTn Mabnuatiky povielomoinon [54]. Eva mpoBAnua Al
neplhappavel Svo emineda APng amoddacswv: évav Hyétn (Leader) kol £€vav N
neplocotepoug AkoAouBouc (Followers) (BA. Ewkova 3).

Onw¢ anetkoviletol otnv Elkéva 3, o Hyétng oto MNavw-Eninedo (Upper-Level) BeAtiotomnolel
TNV QVTIKELUEVIKA TOU cuvdptnon, Aappavovtog umov £éva cUVOAO TIEPLOPLOUWY, TO OTIOLo
eV pEpel amoteleital anod tig PéAtioteg amoddoslc tou AkOAouBou oto Katw-Emimedo
(Lower-Level). OL anoddoelg tou Hyétn emnpealouv tnv ediktr neploxn (feasible region) kot
TNV QVILKELWMEVIK) ouvaptnon Tou TipoPfAruatog BeAtiotomoinong tou Kdatw-Emumédou.
Enewta, n avtidpoon tou AkdAouBou (BEAtiotn Alon tou mpoPAnuatog oto Katw-Emninedo)
£XEL ONUAVTIKO avTiktumo otn BéAtiotn amddaon tou HyEtn. Ev téhel, éva mpoBAnua AN
glval To mpoPAnua Beitiotonoinong Tou Hy£tn, SLATUMWUEVO XPNOLUOTIOLWVTOC ToV ypddo
Tou cuvohou Twv AVcewV Tou TipoBARpatog BeAtiotonoinong tou AkoAouBou.

O Awemtinedoc MpoypappaTIOPOg elvol TOAU ONUOVTLKOG ot poviehomoinon ARdng
onodpAcswv oTLg aneAeuBepWHEVEG OYOPEC NAEKTPLKNG eVEPYELAG, KOOWE MapEXEL LOVTEAQ
KoL gpyoaAeior yla tnv Kotovonon Tng AELTOUPYLOC QUTWV TwV ayopwv Kot th ARyn
onodpAcewv ek PHEPOUC SLaddpwv SNUOCLWV 1 OLWTIKWY OVTOTATWVY. Mo CUYKEKPLUEVA, O
Al pog eMTPENEL:



e Na xelpl{opaote apeoa mpwtevouoes (primal) kat Sukég (dual) petaBAntéc.

e No amoTUMWVOUUE avtippomo cupdEpovta SladopETIKWY OVTOTATWY, KABwC auta
OVTLKOTOTITPLIOVTOL OTLG QVTLKELMEVIKEG oUVAPTNOELS oto MdAvw- kot oto Kdtw-
Eninedo.

e Na povtehonoloUpe enMevOUTIKA HovTEA KAELoTOU Bpdyou (closed-loop) péow tng
amoolvOeong Twv amopACEWY OXETIKA HE TO EMEVOUTIKO QMO TO ETILXELPNOLAKO
otadlo.

e Na oxedialovpe mAaiola cuvepyaoiag PHeTofl TwV SLAXELPLOTWY TWV GUOTNUATWY
(DSO-TSO).

e No HOVTEAOTIOLOUWE TNV OTPATNYLKI) CUUTEPLPOPA CUUUETEXOVTWVY OTLC OYOPEG, TWV
omoiwv ol anodAceLg eMNPeAlouV TA ANOTEAECHATA TWV aAyopwV (price-makers).

e Na Sie€ayoupe avaAuon wooppormiag (equilibrium analysis) Twv ayopwv NAEKTPLKNG
EVEPYELAG ME OALYOTIWALOKA XOLPOKTNPLOTIKA.

Upper-Level Problem

f min  F(x,y) \

X,y

s.t G(x,y) <0

x €X

y € P(x)

&

Lower-Level Problem

F &

P(x) = argminyey f(xy)

st glx,y) =0

e o

Ewova 3: H tepapyikr) Sopr evog mpoBAfpatog Al

Ta teAevtalo xpovia, n AN éxel xpnoiwpomolnBel ektevwg otn PipAoypadia yia tnv
povtehonoinon 6Sladikaocwwv ANPng amddacng TOoo o0To €eMeVOUTIKO 000 KAl OTO
ETIYELPNOLAKO OTASLO TOU AMOoPUBULOUEVOU TOPEQ TNG NAEKTPLKAC LoV oG, MeAéTeg OmwC oL
[55], [56], [57] kat [58] xpnotpomoincav povtéha Al yio anodAocell OXETIKA HE TOV
oxebLo.opo Twv THE amod toug SLoxelpLloTéG TwV SIKTUWV. 2To MPoBAnua BeAtiotomnoinong tou
MNavw-Emunédou, o TSO umoloyilet Tic BEATLOTEG EMeVOUOELS O XWPNTLKOTNTO TWV YPOUUUWY
N oe YAE gloyloTomolwvtog ta KOoTn emévduong Kal Asttoupyiag tou Siktlou, e TO
TpoPANpa oto Katw-Eminedo va avtiotowel otn Stadikooia ekkabdplong tng Xxov_OpLKAG



ayopag evépyelag. Mia GAAn katnyopia pedetwv e€étaoe 1&lwteg ESPs mou emiSlwkouv va
enevéuoouv oe cupPatikn moapaywyn ([59], [60], [61], [62]), povadeg ANE ([63], [64], [65])
koL povadeg IAE ([[66], [67], [68], [69]]) ue otdxo Tn HeyloTomoinon tng amodoong Tng
enévduong toug (Mavw-Emninedo), AapBavovtag mapdAAnAa untdYPLv Tov TPOTIO HE TOV OTolo
oL EMEeVOUTIKEC TouC anodaoelg emnpealouv Ta anoteAéopata TnG Stadikaoiog ekkabaplong
NG ayopdg evépyelag (Katw-Eminedo). EmutA£ov, moAlol epguvntég €xouv aoyoAnBei pe tov
oXe6LA0UO TNG OTPATNYLKAG CUMUETOXNG EVOC ESP o€ pia ) meploodtepeg ayopEG NAEKTPLKNG
evépyelag. OL gpeuvnTEG aUTOL €XYOUV TIPOTEIVEL OTPATNYLKEG CUMUETOXNC OE QYOPEC YLO
napaywyou¢ ([70], [71], [72], [73], [74], [75], [76], [77], [78]), WSloktriteg ZAE ([79], [80], [81],
[82], [83], [84]), mapoxoug nAektplkng evépyetag ([85], [86]) kal elkovikoUg TAELOSOTEC
(virtual/convergence bidders) ([87]) TTOu CUMHETEXOUV OTNV ayopd EVEPYELAC ] KAL OF
QYOPEG ETMLKOUPLKWY UTINPECLWV.

levikd, ta mpoPAnuata PBeAtiotomoinong AN eival efalpeTikd Un Kuptad (non-convex)
npofAnpata. H ouvnBéotepn mMpoogyylon €MIAUCNG TOUCG €lval N METOTPOTH TOUG OF
TipoPANpaTa evog eTméSou. MNa Tov okomod auTtov, To PoBAnua BeAtiotonoinong tou Katw-
Emunédou avrtkabiotatal amd tig (UMO OpLOPEVEC TTAPASOXEG) OvVaAyKOLEG KOl LKAVEG
ouvOnkeg UMapéng PEATOTWY onpelwv, Tig ouvOnkeg Karush-Kuhn-Tucker (KKT). Me tov
TPOMO aUToV, £va MPOBANUa Al petatpénetal oe Madnuatiko MpdPAnua e Meploplopoug
looppormiag (Mathematical Program with Equilibrium Constraints — MPEC), to omolo eival
éva mpopAnua Miktou Mn Mpappikol Aképatou Mpoypappatiopol (Mixed Integer Non
Linear Programming — MINLP). Itn ouvEéXela, XPNOLLOTIOLWVTOG OUYKEKPLUEVEG TEXVLKEG
ypoppwkomnoinong, to MINLP mpoPAnpa LETATPETETAL TEAKA O €va TPOPANUa MiKTou
Mpapuikol Aképatou Mpoypappatiopot (Mixed Integer Linear Programming — MILP), to
omolo pmopel va emluBel xpnolpomnowwvtag nén umapxovreg ailyopibuouc. Qotodoo, e TN
HEBO0SO auTr, LEYAANG KALOKAG OTOXOOTLKA TtpoBANpata Al evEEXOUEVWG VAL LNV UITOPOUY
va AuBouv péca os €va amodeKTO XPoVIKO Staotnua. Mpokelévou va HelwBel n tayutnta
eniAuong twv TMPOPANUATWY AUTWY Kal va evioxuBel n duvatdtnta KAUAKWONG TOUG
(scalability), £€xouv mpotaBel aAyoplOUOL TTOU HELWVOUV TNV TTOAUTIAOKOTNTO TWV HOVIEAWV
AlN, 6Mw¢ oL TeEXVLKEC amooclvBeaonc ([88]).

Atayeipion tne Zntnong kat Oswplia Matyviwv

H Oeswpia Noawyviwv Bewpeital éva PBaokd epyadeio avaluong otov oxedlacuod DSM
TIPOYPAUUATWY, ETLTPEMOVTOG 0TOUC ESPs va BeATLOTOMOLOUV KOl VA TPOCAPUOIOUV TLG
TIOALTLKEC TLLOAOYNONG OTNV KOTACTAON TWV SIKTUWV KoL TWV aYopwV NAEKTPLKAC EVEPYELAG.
H Oswpia Mawviwv eivat évo avoAuTikO Kol €VWOLOAOYLKO TIAQICOLO TIOU MEAETA TLC
oTpOTNYLKEG aAAnAemdpacelg petafld opBoloylkwv TPaKTOpwv (agents) kol pmopstl va
Xwplotel og U0 KUpLoug KAASouC: a) Tuvepyatiky Oswpia Matyviwv Kat B) Mn Zuvepyatikn
Oswpia Nawyviwv. H Juvepyatiki Oswpia Malyviwv UMOBETEL OTL OL IPAKTOPES UMOPOUV Vol
OUVEPYOOTOUV Kal va 6pdoouv amod Kool wg pia ovtotnTta, wote va auéfoouv Ta odEAn
Toug. AvtiBeta, n Mn Xuvepyatikiy Oswpla Malyviwv Umopel va xpnotponotndel yla va
oavaAuBolv ol Sladikacieg APNe oTpatnyKwy amodAcewy aveEdpTNTwWy MPAKTOpWY, oL
omoloL €Xouv eV PEPEL 1 TTANPWCE AVTIKPOUOUEVA CUUPEPOVTA OO0V 0POPA TO ATOTEAECHA
tou NMatyviou mou emnpedletal and T§ anoddocelg touc. OuclaoTtikd, ta Mn JUVEPYOTIKA
Maiyvia amotunwvouv pio katavepnuévn Stadikooio ANPng amodpacswv moOU EMITPEMEL
otov KGBe TpAKTopa, XWPLG KOMia eMLIKOWVWVIO PE TOUG UTIOAOLTIOUG, VO LEYLOTOMOLEL Tal



TIPOOWTILKA TOU O(dEAN, TA omoio €€aPTWVTOL KOL ATMO TG EVEPYELEG TWV UTIOAOLTWV
npaktopwv. Eva Mn Zuvepyatikod Naiyvio opiletal amno:

e Toouvolo twv Maiktwv: N
e Toa oUvola twv Stpatnyikwyv KABe Maiktn i: (S;)ien
e Ta olvola Twv QEeAetwv twv Maktwv: (U;) ey

Ze éva T€Tolo Mn Zuvepyatiko Maiyvio, kKAOe Maiktng i eTUAEYEL pila ZTpatnyikn s; € S; Ue
OTOXO VOl LEYLOTOTIOLROEL TWV Q@EAeLd Tou u; (S;, S_;), n omola dev e§aptdral pévo amo tnv
Sk Tou emmdoyn s;, AAAA KoL atd TO GUVOAO TWV ZTPATNYLKWY TIOU ETUAEYOUV OL UTIOAOUTTOL
Maikte¢ N\{i}, to omoio cupPoAiletal wg s_;. O otoX0G TNG MU Zuvepyatkrg Oswpiag
Mawyviwv elval va mapéxel pebddoug kat alyopiBupoug Katd@AAnAoug yla tnv €miAuon
TETolWV TPOoPANUATwWY PeATioTonoinong, TNV avAAUoh TWV AMOTEAECUATWY TOUG KAl OTnV
TeAn TV eVpeon tng looppomiag Nash (Nash Equilibrium). H lcoppomia Nash yapaktnpilet
pila katdotaon Tou Matyviou Katd tnv omola kavévag Maiktne i dev punopel va BeATIwoEeL ThV
Qeéletd tou u; al\alovtog HOVOUEPWS TNV STpatnyik tou s;, 6eSopévou OTL oL
ZTPUTNYLKEG TWV UTIOAOLTWV [Matktwy S_; elval otabepeg.

Mn Zuvepyatikd Naiyvia €xouv npotabel ektevwg otn BLBAloypadia ([89]) mpokeilpévou va
oxedlaotouv Tmpoypdppata DSM Bacel TLUAG, OMOU O KaTavoAwTth¢ Bewpsital wg évag
0pBoAOYIKOG [TaiKTNG TIOU aTOKOMIlEL Q@EAslar amO TOV TPOTMO TIOU KOTOVOAWVEL TNV
NAEKTPLKN evEpyeLa (ZTpatnyikn). Q¢ €k TOUTOU, O KATAVOAWTAG ETUAEYEL VA CUYKEKPLUEVO
potifo KATAVAAWONG TPOKELPMEVOU VO HEYLOTOTIOLNOEL TNV Q@EéAetd Tou, pe PBaon Eva
OUYKEKPLUEVO OLKOVOULKO KIivnTpo (TLUN) TOU TIOPEXETOL QnO Tov OXeSLOOTH TOou
TipoypAappatog DSM.

Zuvelodopa kot Aopn TnG AlatpiBnig

2tn StatplPfn autr), aocxohoupaote pe to mAaiolo ANYPng anoddcswy evog ESP, otdxog Tou
omoilou eival va SlachaAlosl TNV OLKOVOULKN PBlwoLlUotnTa Twv €eMevOUCEWV TOU OF
KOTOVEUNUEVOUG TIOPOUC evépyelag Kol eueliéiag. Mo ouyKeKplUéva, Tpoteivoupe
oAyoplOuLKa epyaleia mou povtelomolouv Tig Técoeplg Stadikaoieg AnPng anoddacewv mou
amnewkovilovral otnv Ewkova 2.

ApxLKA, yla va KaAUPoupe to Kevo otn oxetikn BiBAoypadia mou culntrnbnke mopondavw,
XPNOLUOTIOLOUHE HOVTEAQ Al TPOKELUEVOU VO OPIOOUUE £va OXNUO CUVTOVIOUOU WUETALY
DSO-TSO. 2e auto To MAaiolo, mpoteivoupe éva emevoUTIKO povtého os DERs, to omoio: (a)
gyyuartat tTnv anodoon twv enevdloswv tou ESP, (B) Aappdvel umoPv Tov avtikTumo Twy
KOLVOUPLWV HOVASWVY OTLG TLUEG TNG ayopdg kot (y) Staodalilel Tnv opoAn Asttoupyia Tou
SiktUou Stavopne. MNa va Abcoupe To MPOPANUA auTtd ATOTEAECUOTIKA Kol Pe SuvatotnTa
KAlpakwong, Tpoteivoupe évav  alyoplBuo EpdwAsupévng AmoolUvBeong (Nested
Decomposition) mou Pooiletal otig texvikég Lagrangian Relaxation kat Bender’s
Decomposition. Ito Keddhaio 2 meplypddovial Ta OvVoLXTA €PEUVNTIKA {NTAUATO OTO
OUYKEKPLUEVO £PELVNTIKO Tedio, TAPOUGCLATETOL OVAAUTIKA TO TIPOTELWVOUEVO HOVTEAD All,
nieplypadetat o alyoplOpog emiluong Kot 0§LOAOYELTAL TO CUVIOTWHEVO £MeVEUTLKO mAaiato.

Y10 Keddhato 3 tng Slatplprng HeEAETATAL N OTPOTNYLKA CUUUETOX TNV XOVOpPLKA ayopd
evépyelag evog ESP mou SlaBétel éva XoptodpuAdklo amod SLadopeTikig TeXVoAoyiag



KOTOVEUNUEVEC LOVASEC eVEPYELAC KL EVEALELOG EYKATEOTNUEVEC O SLADOPEC YEWYPADLKEG
TepLoXEC. 2to KedbdAalo autd, UTIOBETOUHE Lo KOBETOMOLNUEVN OpyAvwon Tou SLKTUoU
Slavoung, pe pio Etalpia Atavoung (DisCo) va €xeL TOV QUECO €AEYXO TWV HovASwv,
EKTIPOCWTTWVTOG TLG OTN XOVOPLKI ayopd eVEPYELAG. Z€ avTiBEDN HE TG MPOOPATEG OYETLKEG
EPEUVNTIKEC HEAETEC Tou umtoBétouv OTL ol DisCos Aettoupyouv wg “price-takers”, otnv
Statplpn autr) Bewpoupe OtTL n edapuoyn €ELOOPPOTINTIKAG KEPSOOKOTILAG UITOPEL va £)EL
OVTIKTUTIO OTLG TLHEC TN AyOopAG. JUVETTWG, SLOHOPpPWVOUHE €va MpOBAnua BeAtiotonoinong
AN mpokelpévou va urmoAoyiloupe tn BEATLOTN OTPATNYIKI) CUMUETOXNG OTNV ayopad yLa pia
“price-maker” DisCo mou Asttoupyel w¢ ESP. To mpoPAnpa AN UETOTPEMETOL O €val
npopAnua MILP xpnotpomnotwvtog tnv MPEC péBodo mou meplypddtnke mponyoupévwe. Ta
QTMOTEAECUATA TWV TIPOCOMOLWOEWY KaTtadelkvuouv OtL pia DisCo pmopel va pelwoel
ONUOVTIKA TO EVEPYELAKO KOOTOG Aeltoupylag Tou OSIKTUOU OSLOVOUNAG OCUMETEXOVTOG
OTPATNYLKA OTNV OyopA KoL TMWG TA ONMOTEAECUATO TNG AyOopPds emnpedlovtol amo Tig
EVEPYELEG TNG.

Ito 4° Kedalawo tng Siatplpric Bewpolpe amopubuiopévn Asttoupyia tou SiktUou
SLavoung, He Tov poAo tou DSO va neplopiletal otnv e€aoddalion tng eUpuBUNng Asttoupylag
Tou SLkTtUoU. MPOTEIVOUE Hia KALVOTOUA APXLTEKTOVLKI) OYOPWY EVEPYELAG, LE TNV ELOAYWYN
plag Ayopadg Eueliélog oto eminedo tou Ailktuou Awavoung (Distribution-Level Flexibility
Market), péow tng omoiag o DSO efacdaAilel Tnv amapaitntn gueliéia yla tv amoduyn
npoBANUATWY cupdopnong kat Taong. OL aANAeTUSPACELS UETALU TWV Oayopwv oOTa
enineda NG HeTadopds Kal TNG SLavoung meplypddovtal pnta. e aviiBeon e TNV OXETIKN
BBAoypadia, n Stadikacio ekkabBdaplong tng ayopds DLFM TOGOTIKOTOLEL pNTA TNV OVAYKN
yla guelifia ava koppou tou SIKTUOU SlavOoUnG Kal UTOAOYIeL TIC BEATLOTEC OPLAKEG
KOMPBLKEG TLWEG otn Stavoun (Distribution Locational Marginal Prices — DLMPs), oL omoieg
OVTLKOTOTTPL{ouV He akpifela To KOOTOG TNG gueAiflag. e autd To meplBfallov, évag ESP
TIou €xeL otn SLABeon Tou éva XaPTOPUAGKLO aTtd KATAVEUNUEVEG HovAdeg ZAE, mpoodEpel
UTINPEOLEC evépyelag Kal eveALfiag Tooo otov DSO 600 kal otov TSO, LECW TNG CUHUUETOXNG
TOU OTLS avtioTtolxeg ayopec. Movtehomnoleital n Stadikacia AnPng anddaong tov ESP doov
adopd tn BEATIOTN MAPAANAN CUUMETOXN TOU OTLC OYOPEC AUTEC. MNa Tov OKOTo auTo,
npoteivetal éva povtého AN yia to mpoBAnua tnG PEATLOTNG GUMUETOXNG Tou ESP otig
OlYOPEC KOlL TOU aVTIOTOLXOU XPOVOTIPOYPAUUATIOHOU TwV povadwy ZAE. Ma va Abcoupe to
MOVTEAO QUTO ATOSOTIKA Kal Pe SuvaToTNTA KALULAKWONG, TO LETACXNUOTI{OUE TIPWTA OF
£€va MINLP mpopAnua xpnotpomnotwvtag tnv MPEC pébodo kat ev ouvexeio epapuoloupe
pLo KOvoTtopo emavaAnmkn Stadikaoia.

Y10 5° Kedalato tng SatplPAg emionpalvetal n amoucia amo tv BipAoypadia evog
UNXOVLOUOU ALAVLKAG TLLOAOGYNONG TNG EVEPYELAC TIOU va AAUPBAVEL TOUTOXPOVA UTIOYLY TLG
TPELG LBLOTNTEC TIOU TepLypAdovTal TTapamdvw. NMopouctdloupe £vVay KOLVOTOUO UNXOVIOUO
£€ATOULKEUPEVNG TLLOAOYNONG TNG EVEPYELAG, TIOU Tov ovopaloupe Behavioral Real Time
Pricing (B-RTP) umoBétovtag otpatnylkoug (“price-maker”) tehikolg xpnotec. To
T(POTELVOUEVO «Sikalo» mpoypappa DSM KivnTpoSotel TOUG CUUUETEXOVTEG VA ULOBETHGOUV
EVEPYELAKA amodOTIKA TpOTUTa  Katavalwong. Ewodyoupe emiong £vav  unxoviopd
TIOPAETPOTIOLN OGN G TNC TIPOTELVOUEVNG TTOALTLKA G TLLOAOYNONC, O omoliog emitpénel otov ESP
va pooapuolel Suvaptkd to UPog g Kivntpodotnong. Me tov Tpomo autdv, o ESP pmopetl
va eTUAEEEL TOV TTLO EAKUOTLKO CUUBLROOUO HETOEY TOU evEPYELAKOU KOOTOUG, TNC EVNUEPLOC
TWV OUMUETEXOVIWV KOL TNC «AlKalooUVNG» TOU MUNXaviopou. Juykplvovtag Tov
TIPOTEWVOUEVO PNXavVIOpO (B-RTP) pe pia £€kdoon tou EUPEWC XPNOLUOTONUEVOU ATt TNV



BBALoypadia RTP pnxaviopou, anodelkvUoupe OtL 0 B-RTP pnxaviopog unepexetl tou RTP
OvTaC TLo «SLKALOC» KOl LELWVOVTAC TO EVEPYELAKO KOOTOG, XWPLg va Bualaletal n eunuepia
TWV TEALKWV XPNOTWV.

210 6° kat teAeutaio Kedalalo cuvoilovral ol cuveladpopeg tng SlatplPprg, avalvovtal Ta
TILO ONMOVTIKA EPEUVNTLKA EUPMUATA KL TIPOTEIVOVTOL TILBAVEC KATEUOUVOELC VIO TTEPALTEPW
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1. Chapter 1: Introduction

1.1. Evolution of Power Systems

1.1.1. Global Trends in Modern Smart Electricity Grids

For most of the 20™ century, the electricity sector was considered a monopoly. Vertically
integrated public utilities were responsible for the supervision, management and control of
the three basic components of the electric power industry; generation, transmission and
distribution. Utilities generated power in bulk thermal or hydro units connected to high
voltage lines, transmitted it to the load centers and finally distributed it to the price-inelastic
end-users, who paid a regulated tariff. However, since 1980s, political issues, environmental
concerns, the projected growth in global electric demand along with the rapid
advancements in Renewable Generation (RG), Energy Storage (ES) and Information and
Communication Technologies (ICT) have triggered the ongoing transition to Smart Grids [1]
through massive changes in the electric power sector:

Liberalization: The electric power industry has been evolving into a deregulated and
competitive industry, where market forces drive the electricity price with a view to reducing
the energy and network security cost through the introduction of competitive electricity
markets. Electricity is treated as a commodity and traded on wholesale deregulated markets,
where private companies seek to maximize their payoff. Furthermore, competitive Ancillary
Services (AS) markets have been introduced, where System Operators (SOs) buy the needed
flexibility from profit-based Balancing Service Providers (BSPs), in order to secure the reliable
operation of their networks. Finally, competitive Retail markets have arisen, where the end-
users can choose their supplier based on the retail price and the quality of the provided
services.

Decarbonization: Environmental goals set by the international community concerning the

containment of global warming [2] and the reduction of greenhouse gas emissions [3], have
headed towards increasing the penetration of Renewable Energy Sources (RES) into the
electricity generation mix. Also, in most countries the major part of new investments in RES
takes place in the distribution network (‘behind-the-meter’ resources), with approximately
179GW of distributed photovoltaic (PV) units having been installed globally from 2017 to
2020 [4].

Decentralization: The high distributed RES penetration and the growing electrification of the

industry, transportation, and heating and cooling sectors [5] leads to an increased
decentralization of energy resources. Distributed Energy Resources (DERs) can produce or
store electrical energy and manage the electricity consumption based on the technology.
Distributed renewable energy capacity, ES units and Demand Responsive (DR) load (e.g., EVs,
Heat Pumps, etc.) can support decarbonization reducing the system’s dependency on fossil
fuels, provide valuable services to the Distribution System Operators (DSOs) and the
Transmission System Operators (TSOs), and create innovative business models.

Digitalization: In order to boost the decentralization trend and unleash the potential of
DERs, the power system evolves into a cyber-physical system. The development of ICT
solutions, smart metering and loT infrastructure will enhance the utilization of the physical



network assets, unfold the full potential of distributed energy and flexibility resources and
facilitate the collaboration among the power sector stakeholders.

1.1.2. Challenges in the New Era of Power Systems

The aforementioned trends raise new challenges for the System Operators. Most electricity
grids are decades old and built for outdated power systems, where power flowed in only
one direction (from centralized generators to end-users), demand was unvarying and price-
inelastic. The main concerns for system operators were the occurrence of failures in network
assets and the provision of sufficient production and transmission capacity to satisfy the
peak load. The only option considered to tackle these issues was the costly network
reinforcements.

In the Smart Grid era, DSOs and TSOs have to cope with the unpredictable and variable RES
generation, which greatly complicates the task of balancing production with demand at all
times. Also, the advent of DERs introduces bi-directional power flows, which eventually
result in more frequent occurrence of network congestion and voltage limit violations.
Furthermore, the SOs have to deal with network contingencies resulting from increasing
peak load and the unpredictable demand patterns that the further electrification of demand
will bring up. These challenges radically increase the need for flexibility [6]. Using the power
system’s flexibility instead of costly network investments [7], taking full advantage of the
capabilities of the cyber-physical system (digitalization trend), can create the necessary
financial motivation towards bottom-up investments in DERs, which can provide the
necessary flexibility to both the distribution and the transmission level.

In today’s power sector, the TSOs are the main actors that are able to procure flexibility
services via AS markets or long-term contracts. Moreover, the interaction between the TSO
and the DSO is negligible and the clearing process of the electricity markets does not take
into account the distribution network limitations. Consequently, the participation of the
DERs in these markets may rise violations of the distribution network constraints and lead in
inefficient (economically and technically) market outcomes. The latter dictates: a) a shift of
the DSO’s role towards a more active distribution network operator, and b) the
development of market or non-market coordination schemes between the TSOs and the
DSOs in order to maximize the utilization of the DERs and minimize the networks’ operating
costs [8]. For example, local Flexibility Markets are a solution concept that can ensure that
the DSO will obtain the necessary flexibility to deal with potential network contingencies and
on the other hand can create new revenue streams for the DERs. Additionally, TSO-DSO
coordination frameworks are necessary so that the TSO can also benefit from the distributed
low-cost clean energy and flexibility provided by the DERs.

1.1.3. The ESP Business Model - System Architecture

In the context of liberalized electricity markets and the decarbonized, decentralized and
digitalized Smart Grid, the business model of an Energy Service Provider (ESP) emerges. In
this dissertation, we consider that an ESP operates as a Retailer, i.e. it has customers/end-
users whose demand must satisfy, but it also owns a portfolio of diverse distributed energy
and flexibility resources (e.g. generating units, energy storage assets, demand responsive
loads, etc.), and offers energy and flexibility services to both the TSO and the DSO via its
participation in the respective electricity markets and the optimal management of its
portfolio (see Figure 1).
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Figure 1: System Architecture

Various power system entities can act as an ESP, e.g., an Energy Community Controller, an
Aggregator, an Active Distribution Network Operator, a Balancing Service Provider, etc. We
also formulate TSO-DSO coordination schemes, which enable the participation of the DERs in
distribution-level and transmission-level energy and flexibility markets. Thus, ESPs can: a)
trade energy through wholesale electricity markets, b) participate through the aggregation
of their flexibility assets in AS markets by offering flexibility services to the system operators
(DSOs/TSOs), and c) sell energy to their price-responsive customers (end-users) through
liberalized retail markets. In order to be financially sustainable, an ESP has to make optimal
decisions in the planning and the operational stage (Figure 2).
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Figure 2: ESP’s Decision-Making Framework

1.1.3.1. DERs Investment Decision Making Process

The liberalization of the electricity markets along with the ever-increasing penetration of RES
in the generation mix has highly complicated the task of investment decision making.
Investors are now exposed to much higher risks, since they have to deal with the uncertainty
pertaining to the market competition, demand, renewable generation and fuel prices among
others. In order to ensure the sustainability of the investments, first of all, the ESP has to
choose the optimal asset allocation, so that a profitable portfolio of various DERs to be built.
To this end, the ESP has to take into account the market price signals and the market
competition in order to more accurately estimate the potential revenues and ultimately the
return on its investments (market-aware planning decisions). On top of that, the DER
investment decisions need also to take into account the distribution network limitations as is
emphasized in [9], in order to be guaranteed that the newly installed DERs will not
compromise the reliable and smooth operation of the distribution network. Therefore, the
size and the location (sizing/siting) of the DERs have to be carefully selected, in order for the
newly installed assets not to be under-utilized for network security reasons and for the ESP
to avoid any over- or under-investment contexts (network-aware planning decisions).

Numerous research works have dealt with the network-aware investment problem of DERs.
The relative studies can be divided into two categories based on the ownership of the DERs.
Works that fall into the first category (e.g. [10], [11], [12], [13], [14], [15], [16], [17] and [18])
assume that the DERs are owned and operated by the DSO. In this case, the DERs
investment decision making process is modeled as a stochastic optimization problem with
the objective of determining a set of investment (size, location) and scheduling variables
under various operating conditions. The objective function includes a single or multiple
objectives, which can incorporate: a) investment costs, b) technical criteria (e.g., minimizing
thermal losses, voltage deviation, load curtailments, etc.), or c) economic (market) criteria
(profit maximization) in case the DSO acts as a market entity (DisCo). The constraint set
includes the distribution network constraints and DERs operating constraints, in order for
the network’s feasible operation to be ensured. The second strand of research (e.g. [19],
[20], [21], [22], [23], [24], [25], [26]) considers that the DERs are owned by private for-profit
ESPs. These studies formulate multi-stage or multi-level optimization problems in order to
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model ESP-DSO coordination frameworks, within which the financial sustainable and
distribution network-aware investment decisions are taken. The main difference with our
approach is that the existing works do not take into account the TSO’s objective to optimally
exploit the available distributed low-cost energy and flexibility. To the best of our
knowledge, there is no modeling framework for merchant investments in DERs that unlocks
the TSO-DSO coordination in order to enhance the utilization of DERs for providing energy
and flexibility services in both systems.

1.1.3.2. ESP’s Market Participation and DERs’ Operation Decision Making Process

Apart from the investment decisions, the ESP has to optimally choose its market
participation strategy and DERs’ scheduling decisions. The ESP has to orchestrate its
portfolio in order to maximize its profitability by optimizing its participation in the liberalized
electricity markets. Moreover, as in the investment stage, so in the operating phase of the
DERs, the distribution network constraints should be considered (network-aware bidding
strategy and operation), in order to avoid any societal and monetary costs incurred from a
potential network contingency and for the ESP’s profitability not to be hampered.

There is a great deal of studies dealing with the bidding and scheduling problem of a Virtual
Power Plant (VPP) that acts as an ESP and controls distributed generators, Energy Storage
Systems (ESSs), flexible and non-flexible demand. Works in [27], [28], [29], [30] and [31]
devise bidding strategies for Virtual Power Plants (VPPs) that own and control various
technologies of DERs in different electricity markets. However, these works do not take into
account the distribution network limitations. Thus, in case of voltage or congestion issues,
corrective actions will be needed, leading in very high monetary or societal costs. Studies
[32] and [33] assumed Distribution Companies (DisCos) acting as ESPs and studied their
market participation and DER scheduling problem, while ensuring the reliable operation of
the distribution network since they take into consideration technical network constraints. All
the aforementioned works, [27] - [33], considered price-taker ESPs, i.e., ESPs that with their
actions cannot affect the market prices. However, the ability of DERs to produce and store
energy renders the ESPs price makers, i.e., able to affect the market prices by performing
temporal arbitrage and changing their roles from producers to consumers and vice versa. In
addition, the above research studies considered just one distribution network connected to
a single transmission network bus. Hence, there is no bidding model in the literature that
considers the coordination of DERs geographically dispersed and connected to different
distribution networks.

1.1.3.3. Multiple Markets Participation and Stacked Revenues Optimization

In order to reduce its risks and eventually guarantee the sustainability of its investments, the
ESP should have various revenue streams. Depending on the resources in its portfolio, the
network services that they can provide and the profit opportunities of each market, the ESP
should decide on the energy and flexibility markets that it should participate. Then, bidding
strategies have to be devised that will maximize ESP’s revenues from its parallel
participation in multiple electricity market (Stacked Revenues).

Recent literature has dealt with the problem of optimizing a multi-service portfolio of DERs
owned by a private entity (ESP). Authors in [34], [35], [36], [37], [38] and [39] considered
ESPs controlling energy and flexibility assets connected to a distribution network that
provide energy and ancillary services to both the DSO and the TSO. Nevertheless, these



works assumed that the distribution grid services are compulsory, or that they are
compensated based on a price arbitrarily set by the DSO, without examining how this price is
calculated.

1.1.3.4. Retail Pricing Mechanism

In the Smart Grid era, the concept of Demand Side Management (DSM) has been
introduced. The rationale behind DSM is to motivate electricity consumers to adjust their
consumption so as to reduce the system’s energy cost. The ESPs can design smart and
effective retail pricing schemes that will trigger behavioral changes to their customers,
providing them with attractive monetary incentives. This will result in lower wholesale
electricity costs for the ESPs, and at the same time, provide them with additional flexibility
that will boost their revenues from the provision of flexibility to the SOs.

In the context of liberalized retail electricity markets, a pricing mechanism has to achieve an
attractive trade-off between the following requirements: (i) consumers’ welfare, (ii) energy
cost and (iii) fairness in cost allocation. The first requirement determines the willingness of
the end users to participate in a DSM program. The objective of the DSM mechanisms
proposed in studies [40], [41], [42] and [43] was the maximization of users’ welfare. The
second requirement expresses the capability of a pricing scheme to motivate energy
consumers to adopt energy efficient consumption patterns, and ultimately fulfill the
objective that the ESP sets. Studies in [44], [45], [46] [47] and [48] devised DSM algorithms in
order to minimize the energy costs without sacrificing consumers’ comfort. Lastly, the third
requirement refers to how fairly the energy cost savings are allocated among the end-users.
Works in [49], [50] and [51] opt for enhancing the system’s fairness. In [49] the efficiency
(cost minimization) is sacrificed in order to achieve higher levels of fairness, while in [50] the
trade-off between cost minimization and fairness is studied, however disregarding users’
welfare. The trade-off between all the three above-mentioned requirements has not been
studied in the literature.

1.2. Modeling ESP’s Decision Making

1.2.1. Bilevel Modeling

Bilevel Programming (BP) refers to the area of optimization dealing with problems that have
a hierarchical structure [52]. This concept originated from the field of economic Game
Theory and was introduced by Heinrich Freiherr von Stackelberg in [53], with Bracken and
McGill in [54] introducing the first mathematical model. A bilevel problem involves two
decision-making levels: a Leader and one or multiple Followers (see Figure 3).

As depicted in Figure 3, the so-called Leader in the Upper-Level optimizes its objective
function subject to a set of constraints, which is in part composed by the optimal decisions
of the Follower (Lower-Level). The Leader’s decisions influence the feasible set and the
objective function of the Lower-Level problem. In turn, the reaction of the Follower has a
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Figure 3: Hierarchical structure of a Bilevel Problem

significant impact on the Leader’s feasibility set and its payoff. Ultimately, the bilevel
optimization problem is the Leader’s optimization problem, mathematically formulated
using the graph of the solution set of the Follower’s optimization problem.

Bilevel Programming is very important in modeling decision making in various liberalized
electricity markets, since it provides models and tools towards understanding the
functioning of these markets and identifying decisions for public or private power sector
actors. More specifically, BP allows for the:

e Direct manipulation of both primal (physical) and dual (price) variables.

e Capturing the opposing interests of different parties, as they are embodied by
different objective functions in the upper- and the lower-level.

e Modeling of closed-loop investment models through the uncoupling of investment
and operation decisions.

e Unlocking the coordination between System Operators (DSO and TSO)

e Modeling of the strategic behavior of market participants, whose decisions affect
the outcome of other agents.

e Equilibrium analysis of electricity markets with oligopolistic characteristics.

In recent years, BP has been extensively used in the literature to aid decision making in the
planning and operational stages of the liberalized power sector. Research studies in [55],
[56], [57] and [58] have used BP in order to model network planning decisions on behalf of
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System Operators. In the upper-level problem, TSO or DSO optimizes its investments in
transmission capacity or energy storage by minimizing the network operation and
investment costs, while the lower-level problem represents the electricity market clearing
process. Another strand of research considered merchant ESPs that seek to invest in
conventional generation ( [59], [60], [61], [62]), RES units ( [63], [64], [65]) or energy storage
capacity ( [66], [67], [68], [69]) with the objective of maximizing their market profitability
(upper-level problem), while taking into account how their investment decisions affect the
results of the market clearing process (lower-level problem). Additionally, numerous works
have dealt with the bidding problem of an ESP that strategically participates in one or more
electricity markets. These works have devised market strategies for generators ( [70], [71]
[72], (73], [74], [75], [76], [77], [78]), storage owners ( [79], [80], [81], [82], [83], [84]),
demand aggregators ( [85], [86]) and convergence bidders ( [87]) that participate in different
energy or ancillary services markets.

In general, bilevel optimization problems are highly non-convex problems. The more
common approach to solve them is by converting them into single-level problems. To this
end, the lower-level problem is replaced by its (under certain assumptions) necessary and
sufficient optimality conditions, the Karush-Kuhn-Tucker (KKT) conditions. In this way, the
bilevel problem is converted into a Mathematical Program with Equilibrium Constraints
(MPEC), which is Mixed Integer Non-linear Problem (MINLP). Using specific linearization
techniques, the MINLP is finally transformed into a Mixed Integer Linear Problem (MILP) that
can be solved using off-the-shelf solvers. However, large-scale problems, such as stochastic
bilevel problems, can possibly not be solved in a reasonable amount of time. In order for
these problems to be efficiently solved in a scalable fashion, algorithms that reduce the
complexity of the BP models, like decomposition techniques ( [88]), have been introduced.

1.2.2. Game-Theoretical Frameworks for Demand Side Management

Game Theory is considered as a key analytical tool in the design of Demand Side
Management programs, enabling ESPs to optimize their pricing strategies that adapt to the
state of the grid and the electricity markets. Game Theory is a formal analytical and
conceptual framework that studies the strategic interactions among independent rational
agents and can be divided into two main branches: a) Cooperative Game Theory and b)
Noncooperative Game Theory. In Cooperative Game Theory it is assumed that independent
decision makers can cooperate and act together as one entity so as to improve their position
in the game. On the contrary, Noncooperative Game Theory can be used to analyze the
strategic decision-making processes of a number of independent entities, i.e., players that
have partially or totally conflicting interest over the outcome of a decision process that is
affected by their actions. Essentially, noncooperative games can be seen as capturing a
distributed decision-making process that allows the players to optimize, without any
consideration or communication, objective functions coupled in the actions of the involved
players. A noncooperative game I is defined by:

e Asetof Players: N
e The sets of the Strategies of each Player i: (S;);en
e The sets of the Payoffs of the Players: (u;);en

In such a game, each Player i selects a Strategy s; €S; in order to maximize its
Payoffu;(s;, s_;), which depends not only on its own choice of s;, but also on the vector of
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Strategies chosen by the other Players in N\{i}, denoted bys_;. The objective of
Noncooperative Game Theory is to provide methods and algorithms suitable for solving such
optimization problems, analyzing their outcomes and eventually finding a Nash Equilibrium.
The Nash Equilibrium characterizes a state of the game in which no Player i can improve its
Payoff u; by changing unilaterally its Strategy s;, given that the Strategies of the other
Players s_; are fixed.

Game Theoretical frameworks have been extensively proposed in the literature ( [89]) in
order to design price-based DSM programs, where the electricity consumer is envisaged as a
rational agent (Player) that derives a particular utility (Payoff) from her/his electricity
consumption pattern (Strategy). Hence, the consumer chooses a specific consumption
pattern in order to maximize her/his Payoff, based on a specific monetary incentive (price)
provided by the designer of the DSM program.

1.3. Contributions and Structure of this Thesis

In this thesis, we deal with the decision-making framework of an ESP, whose objective is to
ensure the financial sustainability of its investments in distributed energy and flexibility
resources. More specifically, we devise algorithmic tools that model the four decision-
making processes illustrated in Figure 2.

First of all, in order to fill the research gap discussed in subsection 1.1.3.1, we use bilevel
modeling in order to define a coordination scheme between DSO-TSO. Within this context,
we propose a DER investment model which: (a) guarantees the return on investments of the
ESP, (b) takes into account the impact of the newly installed DERs on the market prices, and
(c) ensures the smooth operation of the distribution network. In order to efficiently solve it
in a scalable fashion, we propose a nested decomposition algorithm based on the Lagrangian
Relaxation and the Bender’s Decomposition technique. Chapter 2 discusses the open
research issues in this area, presents in detail the proposed bilevel investment model,
describes the solution algorithm and evaluates the proposed framework.

In Chapter 3, a bidding strategy of an ESP that owns a portfolio of diverse assets located at
various geographical areas is proposed. We assume that the operation of the distribution
network is regulated and a Distribution Company (DisCo) has control over the network
assets, representing them in the wholesale energy market. In contrast to the relative
research works that consider price-taker DisCos, we assume that performing spatio-
temporal arbitrage DisCo can have impact on the market prices. Therefore, we formulate a
bilevel problem in order to calculate the optimal bidding strategy of the DisCo. The bilevel
problem is converted into a solvable single-level MILP using the MPEC method. The
simulation results demonstrate how a DisCo can significantly reduce its energy costs acting
strategically, and how the market dispatch and prices are affected by its actions.

In Chapter 4 we consider a deregulated distribution network environment, where the DSO’s
only responsibility is the secure operation of its network. We propose a novel energy market
architecture, where the ESPs participate autonomously in transmission-level markets. In
order to avoid any distribution network contingencies, a Distribution-Level Flexibility Market
(DLFM) is introduced, via which the DSO purchases the needed flexibility from the ESPs. The
interactions between transmission-level and distribution-level markets are explicitly
described. In opposition to the relative literature, the DLFM clearing process explicitly

guantifies the need for flexibility per distribution network node and calculates the
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Distribution Locational Marginal Prices (DLMPs), which accurately reflect the flexibility costs.
In this context, we deal with the bidding and scheduling problem of an ESP owning a
portfolio of distributed battery storage units, that provides energy and flexibility services to
the System Operators, participating in both transmission-level (Day-Ahead Energy, Reserve
and Balancing Market) and distribution-level (DLFM) markets. To this end, we formulate a
bilevel model for the bidding and scheduling problem of the ESP. In order to solve our bilevel
model in a scalable fashion, we first transform it into a single-level MINLP using the MPEC
method, and consequently we apply a novel iterative process.

In Chapter 5 the absence of a retail pricing mechanism that simultaneously considers the
three requirements described in 1.1.3.4 is highlighted. We present a novel personalized
energy pricing scheme, referred to as Behavioral Real-Time Pricing (B-RTP) assuming
strategic end-users. The proposed DSM strategy incentivizes price-responsive end-users
towards energy efficient patterns of consumption, by achieving high level of fairness. We
also introduce a mechanism that parameterizes the proposed pricing scheme, enabling the
ESP to dynamically adjust the degree of incentives. In this way, the ESP can select the more
attractive trade-off among energy cost, users’ welfare and fairness. Comparing B-RTP with a
version of an existing RTP scheme that is widely adopted in the literature, we demonstrate
that B-RTP outperforms RTP in terms of energy cost reduction, without sacrificing users’
welfare and enhancing fairness.

Finally, Chapter 6 concludes the dissertation. We analyze the most important research
findings and discuss about potential directions to further extend our work. Moreover, we
consider the various stakeholders for whom our work can provide useful tools.
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2. Chapter 2: Financially Sustainable Network-Aware DER

Investments

In this Chapter a financially sustainable network-aware and market-aware DER investment
decision-making framework is proposed for an ESP (Figure 4). As DER penetration levels and
distributed flexibility investments are continuously growing, various power system
stakeholders need to coordinate their decisions towards optimal DER siting and sizing. First,
ESPs want to secure their long-term profits and avoid economically unsustainable DER
investments. Second, DSOs need to ensure the reliable operation of their networks in an
economically efficient way. Third, TSOs want to optimally exploit the available “clean” DERs
in close collaboration with the downstream DSOs. In this thesis, we propose a novel ESP-
DSO-TSO coordination scheme to co-optimize distributed renewable energy and storage
planning at the distribution network level, while modeling the coordinated TSO-DSO
operations. We formulate a bi-level program, the upper-level of which minimizes the DSO’s
costs, ensuring a minimum rate of return on ESP’s investments, while the lower-level models
the transmission network-constrained wholesale market. A nested decomposition technique
is used to achieve computational tractability. Simulation results showcase a trade-off
analysis between sustainable DER investments and system cost minimization and prove that
an ESP-DSO-TSO interaction can benefit all involved actors to a certain extent. Finally, the
computational efficiency of the proposed solution algorithm is demonstrated via numerical
results.

® Financially
sustainable DER
investments

® Network-aware &
market-aware
sizing/sitting

e Optimal portfolio
diversification

INVESMENT
DECISIONS

Figure 4: ESP's DER Investments Decision-Making

This Chapter’s structure is organized as follows: Section 2.1 is introductory and describes the
motivation behind our proposed investment model. Section 2.2 discusses related work and
underlines our contributions. Section 2.3 describes the proposed bi-level formulation of the
problem. Section 2.4 presents the solution method. Section 2.5 discusses potential model
extensions. Section 2.6 provides a detailed evaluation of the proposed solution. Finally,
Section 2.7 concludes Chapter 2 and discusses future work.
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Nomenclature

Sets Parameters
B; Set of nodes at DN i, indexed by ct Price offers/bids of DN assets
nk,j (€/MW)
H Set of timeslots in the scheduling | ¢€/W/P¥  Marginal operating cost of
horizon, indexed by t ES/Wind/PV units (€/MW)
L? Set of branches at DN { c9/d Price bids of
Generators/Demand
Aggregators (€/MW)
L! Set of TN lines C Capital costs (€/MW)
N Set of nodes at TN, indexed by i, j C Annualized capital costs (€/MW)
XU/L/MP  Set of optimization variables cinv  Investment budget (€)
Q Set of representative days, D Load of distribution network
indexed by w (MW)
in/p(n) Set of decedent/precedent nodes f_s Maximum apparent power of
connected to node n of the DN i DN branches (MVA)
) /W PV energy output/Wind
Superscripts intensity factor
e/p Superscript indicating the K Maximum capacity that can be
energy/power component of ES installed (MW)
es/w Superscripts indicating the I TSO-DSO connection point
/pv Storage/Wind/PV technology (substation) capacity (MW)
m/g/d Superscripts indicating the TN pg/d  Maximum power of
nodes with generation/demand (MW)
DNs/Generators/Demand
Aggregators
) Superscript indicating the r/x Resistance/Reactance of DN
algorithm’s iteration branches
. RU/RD Ramping up/down capabilities
Variables of Generators (MW/h)
dis/ch Scheduled ES discharge/charge T Last timeslot of the scheduling
power (MW) horizon
f”/q Active/reactive power flow in T Transmission network line
distribution network (MW/MVAr) capacity (MW)
g“’/l"’ Power output of wind/PV units v/v Lower/Upper bounds on square
(MW) voltage magnitude (kV?)
h Binary variable denoting the y Transmission line admittance
direction of power traded
between DSO-TSO
K Size variables B Minimum ES state of charge at
the end of the scheduling period
o/b Quantity offer/bid by the DN ymin Large negative constant
assets to the electricity market
(MW)
pT/l Power traded (sold/bought) o Parameters converting active
between DSO-TSO (MW) power into their reactive power
— tan(arccos(power factor))
p!l/d Electricity market dispatch of €1/€;  Convergence tolerance for the
Generators/Demand Aggregators inner/outer decomposition
(MW) procedures
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SOE State-of-Energy of ES (MWh) nd/e Discharging/Charging efficiency
of ES
|4 Square voltage magnitude in nbv PV efficiency
distribution network (kV?)
w Binary variable denoting the K,p,v,T Algorithm iteration counters
operating mode of ES
z/& Auxiliary variables in outer Ty Weight of representative day w
decomposition
Yo/l  Auxiliary variables in inner p Energy/Power ratio of ES
decomposition
(7] Transmission network’s voltage o Large constant
phase angle
A Locational Marginal Price (€/MW) X Desired rate of return on DERs
investment
() Dual variables of the lower-level
problem

2.1. Co-optimization of Distributed Renewable Energy and Storage
Investment Decisions in a TSO-DSO Coordination Framework

Regulatory authorities from the world's most developed economies have undertaken clean
energy transition initiatives and respective legislative efforts, towards actively incentivizing
investments in distributed energy (e.g. photovoltaics, wind turbines, etc.), and flexibility (e.g.
battery, storage, etc.) installations at the distribution network (DN) level ( [90], [91], [92]).
For example, US FERC [90] emphasizes the need for coordinated DER planning via the
collaboration of three main actors, namely: the ISO/RTO (i.e., transmission level), the
distribution utility, and the DER aggregator. In EU legislation [91], the DSO’s main role is
unbundled from profit-based ESPs, i.e., distributed energy and flexibility owners. In other
words, ESPs are the main responsible market actors for DER investments, while DSOs are
mainly responsible for operating the DN in a reliable, secure and economically efficient
manner. As a result, ESPs and DSOs should closely collaborate towards DN-aware DER
investments, while DSOs should closely collaborate with TSOs in order to facilitate seamless
DER market participation. Complementarily, work in [92] also focuses on investment-friendly
and system-friendly renewable energy deployments implying the need for achieving a
balance between these two contradictory objectives.

In this thesis, we deal with the problem of co-optimizing distributed renewable energy and
storage investments (i.e., optimal sizing and siting of distributed PV, wind and storage
assets), while modeling also the operational stage of the distribution and transmission
networks. We formulate a bi-level model, in which the payoff of all DN users is optimized, to
incentivize DERs profitability and maximum exploitation of distributed energy and flexibility
services in both DN and TN levels. The central contribution lies in the modelling of an
integral ESP-DSO-TSO coordination scheme, which jointly addresses the current real-life
business challenges of these three actors. More specifically, the main problem of actual ESPs
is not having access to detailed DN topology data, which leads them to inadequate, sub-
optimal and/or financially unsustainable DER and flexibility investments. On the other hand,
the DSOs cannot provide access to sensitive network topology data to profit-based ESPs and
would strongly prefer to have full control of the DN-level investment planning process.
However, regulated investments would dis-incentivize merchant DER investments and would
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be in contradiction with previously mentioned regulatory directives that press the DSOs
towards providing the appropriate transparent, non-discriminatory and market-based
procedures for procuring novel energy and flexibility services from profit-based ESPs [91].
Finally, today’s TSO problem is that it cannot optimally exploit the available DN-level energy
and flexibility due to lack of an efficient TSO-DSO coordination framework and because
profit-based DER investments are DN-unaware.

2.2. Related Work

Three main research threads can be identified in the related literature. The first thread deals
with ESP-TSO coordination schemes for optimal RES and/or storage sizing and siting at the
transmission network (TN) level. The work in [65] proposes a Bender’s decomposition
algorithm to solve a bi-level problem, in which the upper-level problem represents the wind
investment and operation decisions of an ESP at TN level, and the lower-level problems
describe the wholesale market clearing under different wind and load conditions. Authors in
[56], [66], [68], [69] [93], [94] and [95], and propose various bi-level models for optimal
storage planning at the TN level together with novel decomposition techniques to deal with
the computational complexity. Works [56], [68], [94] and [95], and guarantee the ESP’s
profits ensuring a desirable Return-on-Investment (Rol) considering the storage asset’s
market participation with respect to the asset’s expected lifetime. In [69] and [95], the risk
management problem of the TN-level storage investment is also investigated, trying to
achieve an acceptable trade-off between maximum (average) expected profits and minimum
guaranteed profits for the ESP’s investment portfolio. Authors in [96] co-optimize the ESP’s
RES and storage planning decisions at TN-level via its participation in day-ahead, intra-day
energy and reserve markets. While the studies mentioned in this paragraph model assets
connected to the transmission network, in this thesis we focus on investments in DN-level
assets. Under this consideration, it is critical to model the DN topology constraints [9] in
order to guarantee DN reliability and security and ultimately avoid miscalculations of the
DN-level energy and flexibility value [97].

The second related research thread deals with TSO-DSO coordination schemes. The TSO-DSO
coordination has been previously studied in the literature. Studies in [98] and [99] analyze
the advantages and drawbacks of several TSO-DSO coordination schemes with respect to
business interest prioritization of each actor, while works [100] and [101] propose
decomposition algorithms for the coordinated economic dispatch of both TN- and DN-level
systems that can capture the heterogeneous technical characteristics of both systems.
Integrated investment models in a TSO-DSO coordination framework have been proposed in
[58], [102] and [103]. Work in [102] proposes an integrated approach for transmission and
distribution system expansion planning, where both RES and network assets are planned. In
[103], a bi-level model is proposed to coordinate the decisions of Distribution Companies
(DisCos) for distribution expansion problem (i.e., upper-level) and TN-level market clearing
decisions (i.e., lower-level). Authors in [58] proposed a modeling framework for the
coordinated storage investment under a unified TSO-DSO collaboration scheme. However,
works in [58], [102] and [103] do not consider the latest regulations (e.g. [91]) dictating the
unbundling of profit-based ESPs and non-profit DSOs. In contrast to these works, our study
emphasizes the need to quantify the impact of privately-owned DER investment decisions on
the Transmission and Distribution (T&D) systems’ operating costs by aspiring to find an
optimal equilibrium point that satisfies all three involved actors. Also, unlike [58], we
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consider a co-optimized planning model of both distributed energy and flexibility (i.e.,
storage) assets.

Finally, the third research thread is related with ESP-DSO coordination schemes. The main
difference with our approach is that related works [19], [20], [21], [22], [23], [24], [25] and
[26] do not take into account the TSQO’s objective to optimally exploit the available
distributed energy and flexibility. Thus, a rather myopic DER planning is realized, that does
not consider the impact of the newly installed low-cost energy and flexibility units on the
transmission-level market prices. The work in [19] deals with a two-stage stochastic
problem, in which initially the DSO minimizes its DN reinforcement costs and in the second
stage the ESP’s planning and scheduling problem takes place. Study [20] co-optimizes the
ESP’s and DSOQ’s investment decisions showing that the ESP’s flexibility significantly defers
costly network upgrades. Authors in [21] achieve an optimal trade-off between the mobile
storage profits during normal system operations and their ability to enhance DN resilience in
emergency situations. Research work in [22] formulates an optimization problem in a way
that includes both the ESP’s profits and the DN constraints that guarantee power quality.
Studies [23] and [24] propose bi-level models to achieve the collaborative optimization
between planning and operation of DN-level storage assets. Furthermore, the bi-level model
proposed by [25] considers a local energy market clearing at the lower-level, while the
upper-level problem makes the DN-level investment decisions to minimize the DSQ’s costs
by guaranteeing a minimum Rol for the ESP like works [56], [68], [94] and [95], and do.
Finally, authors in [26] try to find an optimal equilibrium between three market actors,
namely a DisCo that tries to maximize profit from DN assets’ investment (i.e. upper-level), a
DGENCO that tries to maximize profit from DER investment (i.e. middle-level) and an
independent DSO that tries to minimize system’s operating costs (i.e. lower-level). Our work
is inspired by this trade-off analysis and aims at finding a “win-win-win” equilibrium among
the ESP, the DSO and TSO. Once more, the main difference with models in [19], [20], [21],
[22], [23], [24], [25] and [26] is that our proposed planning strategy involves the TSO, which
is critical towards exploiting low-cost distributed energy and flexibility assets at TN-level.

The contributions of this thesis can be summarized as follows:

1. Instead of modeling investments on behalf of a vertical utility actor (e.g. DisCo) as in
[58], [102] and [103] we follow the recent regulatory framework updates, which
dictate the complete unbundling of market roles for DER investment planning
between a profit-based ESP and a system operator. Thus, we conduct a trade-off
analysis between sustainable DER investments (i.e., investment-friendly planning)
and system cost minimization (i.e., system-friendly planning) by demonstrating that
ESP-DSO-TSO interaction can achieve T&D operating costs’ reduction and sufficient
levels of profitability for the ESP.

2. We co-optimize network-aware and market-aware distributed energy (RES) and
flexibility (storage) investments in multiple DNs within a TSO-DSO coordination
scheme. To the best of our knowledge, this is the first work that models private DER
and storage investments by taking into account both the DSO’s (i.e., network-
aware) and TSO’s (i.e., market-aware) objectives.

3. Incontrast to [19], [20], [21], [22], [23], [24], [25] and [26], we capture the impact of
the newly installed DERs on the transmission-level energy market prices, by
formulating a stochastic bi-level investment model. This is particularly relevant in
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order for the ESP to avoid over-investment contexts that may take place in local DN
areas, as demonstrated in subsection 2.6.4.

4. The bi-level model is efficiently solved in a scalable fashion using a nested
decomposition technique. We compare the computational performance of the
proposed method to a non-decomposed MILP approach and demonstrate the
algorithm's accuracy and scalability.

2.3. System Model & Problem Formulation

Upper-Level Problem
(DSO)

DSO Objective: \
Maximize Expected Distribution-Level Social Welfare

Constraints:
- DER's Investment Options
- ESP's Budget Constraint
ESP Objective Lo - ESP's Minimum Rol

- Distribution Network Constraints
- DERSs' Operating Contsraints

Determine:
- DERSs Investment Decisions (Sizing/Siting)
- Network & DERs Operation Decisions

Lower-Level Problem
(TSO)

TSO Objective:
[ Maximize Transmission-Level Social Welfare

Constraints:
- Transmission Network Constraints
- Generators' Constraints
- Demand Aggregators' Constraints |
- Limits on Power Traded between TSO-DSO

Determine:

-Electricity Market Dispatch

| -Electricity Market Prices |
N e N

Figure 5: The proposed bi-level approach for private investments in DERs

We model the interaction between a DSO, a TSO and a private ESP that seeks to invest in
distributed wind and PV generation units as well as in Energy Storage (ES) units in multiple
DNs dispersed in various geographical areas (TN nodes) and make profit by participating in
the TN-level electricity market. The DSO decides on the DER investments with respect to its
network limitations and ensuring that its decisions are financially sustainable for the ESP. To
this end, we propose a stochastic bi-level model in order to formulate the ESP-DSO-TSO
coordination, which is depicted in Figure 5. Bilevel modeling allows us to:

e Capture the distinct objectives of all the involved parties,

e Take into account both the DN and TN constraints,

e Decouple the investment and market decisions,

e Explicitly take into account the impact of the investments on the market prices.

The objective of the upper-level problem is to decide the new investments so as to minimize

the total expected costs of the DNs’ stakeholders (or else maximize expected DN-level Social

Welfare), i.e., achieving a balance between the ESP's profits from the new investments and
16



the electricity cost of consumers already connected to each DN. The former consists of the
ESP's expected revenues stemming from the optimal DA market participation minus the
operational costs and investment costs. The objective of the ESP is to guarantee the
economic viability of its investments. Therefore, a minimum rate of return on the
investments is imposed on the upper-level problem, in order for the profitability of ESP to be
preserved. Additionally, the operation of the DERs and the overall distribution grid is
modeled in this level. The upper-level problem decides on the distribution network
operation and the energy trade with the upstream grid. Note that the relevant optimal
operational decisions are contingent on the investment decisions as well as the DN
constraints, including power flow and voltage limits. The trading decisions are input
parameters for the lower-level problem.

The lower-level problem represents the TN-constrained day-ahead electricity market
clearing process, with the TSO’s objective being the social welfare maximization. Thus, the
objectives of all involved actors (DSO-TSO-ESP) are taken into account. The market clearing
results (dispatches and prices) are used in the upper-level problem for the calculation of the
expected market revenues of all DN users. In order to model the uncertainty associated with
the overall system’s load, the DN’s demand and the wind/solar production, we produce a
plausible number of scenarios by using data of diverse representative historical days. As it is
customary in static investment analysis (e.g. [56], [65], [66], [68], [93], [94]), the investment
study is performed for a single target year, while the operational decisions are optimized for
each representative day individually.

2.3.1. Upper-level Problem: Siting and Sizing of DERs

The upper-level problem minimizes the total expected DN cost (or, equivalently, maximize
expected DN Social Welfare) over all representative days, i.e., the annualized DER
investment cots (C™) and the DN assets’ expected operating cost. The latter includes the
expected cost of electricity traded with the upstream grid (X ,cq C2V) and the expected DER

operating costs (X ,eq CP¢")

. oper A
min Z (C£N +C, ) + W

wWEQN

(2.a.1)

where the annualized investment cost, the cost of electricity traded in the electricity market,
and the DERs’ operating costs in each representative day (weighted by the relative
importance m,, of the day they represent), are calculated as follows:

CON =1y - Bienm Leen (Aitw ) (pilta) - piTtw)) (2.2.2)

oper ,
pr =Ty - ZiENm (ZtEH (ZneBies c® - (dlsinta) + Chintw) + ZneBlw c” - gly;/ltw +

ZnEBipv cP? . glpniw)) (263)

C™ = Yienm (ZnEBfS(Ce Ky + CP KD + Znepw CV - Kl + Loep? ey Kiiv) (2.2.4)

n

The set of DNs in which DERs can be installed is denoted by N™. The overall DN assets' cost
from the electricity traded in the day-ahead electricity market in representative day w is
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defined in Eq. (2.a.2), where the nodal prices at the transmission buses connected to the
root nodes of the DNs (4;;,,) and the wholesale market decisions on the power injected from
the DSO to the TSO (piTtw) and vice versa (piltw) are endogenously obtained from the lower-
level problem. The DERs' operating costs in representative day w are presented in (2.a.3)
and the annualized investment cost is computed in (2.a.4), where parameters C¢,CP,C%
and CP? are the annualized costs in net present value approach [97]:

- r-(1+n0A
T A+DA-1

where T is the annual discount rate and A is the unit's lifetime. In general, not all DN buses
are available for installation of DERs, e.g., due to land availability. The sets of DN's buses that
are eligible for the installation of wind/PV generation and ES units are B},B}" and Bf*
respectively (B, BY, B* € B;, Vi € N™). The investment decisions (Kj», K}, K&, K},) are
constrained by limits on the capacity per technology to be installed, the available investment

budget (C™) and by the ESP’s desired minimum rate on return () on its investments:

0 <Ky < KY, Vi € N™,n € BY (2.a.5)
0<K” < K, Vi€ N™,n € BP (2.2.6)
0 <K& < K&, Vi € N™,n € BfS (2.a.7)
0<KP < KP, Vi € N™,n € BfS (2.2.8)
p-Kh =Kg, Vi € N™,n € Bf* (2.a.9)
ciw < ciw (2.2.10)
Yoea (PH™ —CPT) = x - €™ (2.2.11)

Constraints (2.a.5) — (2.a.8) limit the available capacity of wind, PV, ES energy and ES power
capacity at each eligible DN area (node) respectively due to several restrictions, such as land
availability. Constraint (2.a.9) enforces the Energy-to-Power ratio of the ES units. For the
sake of simplicity, the investment variables are considered continuous. Equation (2.a.10)
enforces that the total investment cost, which is computed in (2.a.12), cannot exceed the
total ESP’s investment budget. Constraint (2.a.11) enforces that the ESP’s expected annual
financial benefit gained from the investment is sufficient to provide a certain desired rate of
return y. Eq. (2.a.13) expresses the ESP’s market profit in representative day w.

€ = Tiewm (Enepes (C° - Kby + CP - KD) + Znegy C - it + Tppepre CP - KB ) (2.2.12)

n

PT(f,nv = Mg * Nien™ LteH </1ita) ) (ZneBlw Iintw + z:nEBZm’ giz;lvtw + z:nEBies(disintw B
Chinta)))> (2.a.13)

Moreover, the DERs’ scheduling decisions for each representative day are limited based on
the investment decisions and their individual technical characteristics:
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0 < 9imtw < Wite - Kiy,, ViEN™neB' teH weEN (2.a.14)

0<gl¥ <nP” Iy K, VieN"neB’ teHwe (2.a.15)
0 < diSintw Chintw < K, ViE N, n€Bf,teH we€EN (2.a.16)
diSintw < P Wintw» ViEN™neBP teH weEN (2.2.17)
Chinte <P (1 — Wintw), ViEN™n€eB? teEH weEN (2.2.18)
Wintew € 10,1}, ViEN™n€eBP teH w€eEN (2.a.19)

diSinrw

SOEinte = SOEinow — Z$=1( nd Chinre - T’C), VieEN™neB,teH weEN

(2.a.20)
0 < SOEinte < K, ViEN™n€eBP teH weEN (2.a.21)
SOEinte = B - SOEin0w, VieEN™n€eB weN (2.a.22)

Constraints (2.a.14) and (2.a.15) limit the wind and solar generation to the wind and solar
power availability. Wind power availability is calculated based on a wind intensity factor
(Wite) [65], while the PV maximum output in a representative day is calculated based on the
PV energy output factor (I;;,,) and the efficiency of the PV panels output (nP?) [104]. Note
that in our model, renewable energy spillage is allowed. Constraints (2.a.16) — (2.a.19)
impose the bounds on the charge/discharge schedules of the ES units, with binary variable
Winte indicating the operating mode of the ES units, being equal to 1 in the discharge mode
and 0 in the charge mode. Equation (2.a.20) describes the State-of-Energy of the ES units,
which is limited in (2.a.21). Also, constraints (2.a.22) declares that the ES units’ State-of-
Energy at the end of the scheduling horizon must be at least equal to a portion () of their
initial State-of-Energy at the beginning of the day.

The DN operation is described in Egs. (2.a.23) — (2.a.28). We use the linearized DistFlow
equations [105] to model the DN:

Z fiz(’nk)tw = Z fizgjn)tw - Dintw + gmtw + giI;:?tw + disintw - Chintwr
ke (n) keQk,(n)

ViEN™neB;,teH weQ (2.a.23)

_ d
Z fic(lnk)tw - Z i(gjn)tw - Sin ‘Dintew + 5;:1 : gl!{‘r/ltw + Siz;zv ’ gzpnvtw'
keQl (n) keal(n)

ViEN™neB;,teH weQ (2.a.24)
Vintw = ijtw — 2 (Ti(jn) . fiz()jn)ta) + xi(jn) 'fi%jn)tw)' Vi € Nm,n € Bi,t € H,O) en

(2.a.25)

2 2 2
( l?gnk)tw) + (fl.‘gnk)tw) < (fifnk)) , VYieEN™ (nk)€L?,teH weEN (2.2.26)
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Vin < Vinto < Vins ViEN™n€B;,tEH we€N (2.a.27)

l T ,
ZkEQ.fi(nO) fizZnOk)tw = Pitw ~ Pitw’ Vie Nm’ tEH weE (2328)

Equations (2.a.23) — (2.a.25) are the branch flow equations, where f(nk)tw and f(nk)tw

denote the active and reactive power flow respectively in branch nk of DN i, connecting
nodes n € B; and k € B; at timeslot t and representative day w. Constraint (2.3.26) sets the

apparent power capacity of the lines (f(nk)) and constraint (2.a.27) sets the lower and
upper bounds of the square voltage magnitude (V;y,, V). Constraint (2.a.26) is a quadratic

inequality constraint, which is linearized via a polygonal inner approximation as in [106].
Finally, equation (2.a.28) represents the active power balance in the root of the DN (ny), i.e.,
the connection point to the transmission grid.

Constraints (2.a.29) — (2.a.31) limit the offered/bid quantity (0jts,/bite,) to the wholesale
market by the DN assets with respect to the capacity of the substations connecting the
transmission and distribution networks. Note that the DN assets’ market participation could
take place through an aggregating entity, e.g., a load serving entity, a demand-response
aggregator, a DisCo, etc. Binary variable h;¢,, (2.2.31) ensures that the DNs can either supply
or draw power from the main grid for a specific timeslot in each representative day.

0 < 0itey < hitey * Do VieEN™teH weN (2.a.29)
0<bijty, < (1 —hity) Do VieEN™teH weN (2.a.30)
hito, € {0,1}, VieEN™teH weN (2.a.31)

Finally, the set of decision variables of the upper-level problem (XY) includes the set of

investment variables X = {Kfn, Kf;l, K, va} and the set of scenario-dependent operation

. U —
phase variables Xo,a) = {gintw' gintw' Oitwr bitws Nitwr AiSintewr Chintws Wintwr SOEintw,

fiz(,nk)tw' fi(gnk)tw'Vintw}' ie. XU ={xY ux{, vo}

2.3.2. Lower-level Problem: Day-ahead Electricity Market Clearing Process

: ) g d d T T ! !
{T?(ILDZ <Z Cit *Pitw — Z Cit * Ditw T Z (¢l Dlew — cie- pitw))

teH \ieN9d iend ieNm
(2.b.1)

Subject to

—p  + Dy — Pl + Pt + ZjziVij - (Bitw — Ojtw) = 0; (itw), VIiEN,t € H (2.b.2)

0<py,< P’ (Pite ¢7), VieNIteH (2.b3)
RD; < pjl, = Pie—yw < RUs (pr¢, ), VieNI,t>1 (2.b.4)
RD; < pj, —pl < RU; (¢4, ¢9™), VieNd,t=1 (2.b.5)
0<pt, < PL; (P $do), ViENLEtEH (2b.6)
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T T .
0 <Pl < Oitws (¢h ., ¢h,), VieN™teH (2b.7)

l l .
0 < Py < bitws (¢F "), VieN™teH (2b.8)

Ty <ij (Oitw = 0jtw) < Tojp (Dlippew Phppew)r VAN ELTi<jt€H (2b9)

},Vweﬂ

where X5 = {pﬁw,pi‘itw,p;w,pfw,Gitw}. In the lower-level problem (2.b), the TSO clears the
wholesale day-ahead electricity market for each representative day w, by minimizing the
social cost (or else maximizing the TN Social Welfare), given the DN assets' supply price
offers (ciTt) and demand price bids (cilt), price offers from generators (cigt) and price bids from
demand aggregators (c{‘g). The transmission network is modeled using the DC power flow
model. Equation (2.b.2) expresses the nodal power balance, while constraints (2.b.3) and
(2.b.6) set the active power capacities of conventional generators and demand aggregators
respectively. Constraints (2.b.4) - (2.b.5) express the ramping capabilities of the conventional
generators and equations (2.b.7) - (2.b.8) limit the power traded between the TN and the
DNs. Constraint (2.b.9) binds the active power flow in the transmission lines. The dual
variables pertaining to each constraint are specified following a semicolon. Finally, note that
the voltage angle of the reference bus is set to zero.

2.4. Solution Method

The formulated stochastic bi-level program can be solved through converting it into a
Mathematical Program with Equilibrium Constraints (MPEC) and eventually into a MILP, as in
[56], [58], [64] and [67]. We denote the optimal value of this single-level mixed integer linear
problem as Wp. The computational complexity of this method increases dramatically with
the number of representative days. In order to circumvent intractability, we decompose the
bi-level problem in representative days w. Note that the ESP's minimum profit constraint
(2.a.11) and the investment variables (K%,Kf;",l(fn and ng) prevent the decoupling of the
problem per representative day. Thus, we apply a nested decomposition algorithm, which
renders the problem computationally tractable. The outer decomposition algorithm deals
with the complicating constraint (2.a.11), while the inner decomposition procedure deals

with the complicating variables (K}, K7, K, and K?)).

2.4.1. Outer Decomposition: Relaxing the ESP’s Minimum Profit Constraint

Initially, we deal with the complicating constraint (2.a.11) using the Lagrangian Relaxation
(LR) technique [107]. We relax constraint (2.a.11) by removing it from the set of constraints
inserting a penalty for violations. Let £ be a non-negative scalar and consider the following
problem:

‘Pp(f) — XrLr,B?L Z (Ca[)w + C(zper) + C’inv + f ) (Z (_Prai)nv + C(z;per ) +x- Cim’>

wWEN wWEN

(2.c.1)

Subject to
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(2.a.5) - (2.a.10), (2.a.14) - (2.2.31), (2.b.1) - (2.b.9) (2.c.2)

where X! = {X5 Vw}. In other words, partial duality over constraint (2.a.11) has been
carried out, with & being the corresponding Lagrangian multiplier. The above problem (2.c) is
a relaxed version of problem (2.a) - (2.b). We convert the above bi-level problem into a MILP
using the MPEC method as explained in APPENDIX A. It can be easily seen that the relaxed
problem (2.c) provides a lower bound for the initial (non-relaxed) problem, i.e., ¥ (§) <
Wy, since Ypea(—Pri™ + CPT) + x - €™ < 0 and & = 0. Function W (&) is the dual
function of problem (2.a)-(2.b). Our goal is to find the optimal value of ¢ that will result in
the best bound W, (¢*) of Wp, solving the optimization problem: m?x{‘PD (&)|¢ € R},

which is the Lagrangian dual problem of the original problem.
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Figure 6: Value of dual function ¥ for different values of ¢ and various numbers of representative days ||

Towards this objective, we use the LR decomposition algorithm. This is an iterative
procedure, in each iteration of which the relaxed problem (2.c) is converted into a MILP (cf.
APPENDIX A) and solved for a specific value of . Given the optimal solution and the
respective values of g = (Zweg(—Prj,”” + Cf,per) +x- (7””’), we update the value of &
using the Cutting Plane (CP) method [88]. This updating method reconstructs the dual
function Wy (&), which is a concave piecewise linear function as it is demonstrated in Figure
6, using cutting planes. More specifically, in outer-loop iteration k, the value of ¢ is updated
via solving the following linear program:

max z
Z,
(2.d.1)
Subject to
z< Yp(EP)+0@ . (6-8W);, p=1,..,k (2.d.2)
§=0 (2.d.3)

Constraints (2.d.2) represent hyperplanes in the variable & space. Problem (2.d) is a relaxed

version of the Lagrangian dual problem, which approaches the actual Lagrangian dual

problem as the number of iterations increases. The optimal solution of problem (2.d)
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provides an upper bound of the optimal objective function value of the Lagrangian dual
problem W, (¢*), since the piecewise linear reconstruction of W, (&) overestimates the
actual function [88], i.e. z() > W, (&%) > W, (E™). The right inequality follows from the
fact that the optimal objective function value of the aforementioned Lagrangian dual
maximization problem is always greater than or equal to any other feasible solution
provided by the solution of problem (2.c). The algorithm terminates when the per unit gap is
Z(")—‘}’D({("))

below a threshold, that is ¥ 6

< €.

Under convexity assumptions, the best bound W, (") is equal to the optimal value of Wp
(Strong Duality Theorem). In general, however, it falls short. The difference between W, (£*)
and W; is the duality gap. In our model, the LR provides a high quality bound on Wp. We
confirm this claim by simulation on a test system (see Figure 7). Note that the maximum
duality gap (difference between Wp and W, (¢*)) is 0.11% (in case |Q| = 1), while the
average per unit gap is 0.03%.
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Figure 7: Ratio between optimal values of ¥, () and ¥ for different numbers of representative days ||

2.4.2. Inner Decomposition: Bender’s Decomposition Technique

We now deal with the investment decision variables, namely K%,Kﬁf, K¢, and Ki’;l that
prevent the solution of the problem (2.c) by blocks (one for each representative day). We
apply a Bender's Decomposition (BD) technique that has been proposed in [61]. In general,
the BD algorithm does not provide convergence guarantees for non-convex problems.
Nevertheless, studies on the optimal investments in the power systems using stochastic bi-
level modeling ( [61], [65], [66], [68]) have shown that the objective function of the original
(non-decomposed) problem convexifies with respect to the investment (complicating)
variables as the number of scenarios and their diversity increases. The bi-level problem (2.c)
is decomposed into a Master Problem (MP) and a number of subproblems, one per
representative day. At first, the linear and continuous MP is solved and provides updated
investment decisions. In BD algorithm's iteration v, the MP resulting from decomposing the
original problem (2.c) follows:

i (V) — . . Ainv )
min 6™ =(1+5-x)-C +Zyw
wEQ
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(2.e.1)

Subject to
(2.a.5) - (2.a.10) (2.e.2)
y(f)”) > ymin, Yw € (2.e.3)

v’ 2 65+ Siewn (Zneay by - (K = K@)+ T s - (K5

pv,(7) e,(t) e,(v) e,(t) p.(7) p.(v) p.(7)
Kin ) + ZTlEB{as (luinw ’ (Kin — Ky ) * Hine (Kin — K, )))

VweQTt=0,.,v—1 (2.e.4)

where XMP = {K;Vl'(”),xgl”'(”),xg(“),Ki’;;(“),y(f,")}. In (2.e.1), ¥ is a scalar representing the
optimal value of the subproblem in representative day w, in BD algorithm's iteration v.
Constraint (2.e.3) imposes a lower bound on y(f,”) to accelerate convergence. Constraints
(2.e.4) are the Bender's cuts, where uy, ub s, and ul  are sensitivities obtained from
the subproblems' solution. Parameters including superscripts (7) are obtained from the
previous iterations. The solution of the MP updates the values of the DERs' sizes and
location. The MP is a relaxed version of the original problem (2.c) and the objective function
(2.e.1) approximates from below the objective function of the original problem (G <
Y, (€)). Then, for each representative day w, a subproblem is formulated:

min G, =(1+&)-CP® + CBN — & - prjw

x§ ,uxk

(2.£.1)
Subject to
(2..14) - (2.3.31), (2.b.1) - (2.b.9) (2..2)
K = Kiy; (W) Vi€ N™n€BY (2.£.3)
K = KP’; (), Vi € N™,n € B (2.f.4)
K& = K (UErw), Vi € N™n € BE (2.£.5)
KP = KP; (#h0)s Vi € N™,n € B (2.£.6)

Note that in the above problem, all variables pertain to each algorithm's iteration v, but for
notational clarity, such a superscript is omitted. The objective in the above problem (G,,) is
to minimize the operating costs of the DNs assets in representative day w plus the part of
the dualized ESP profit constraint that contains only daily operation variables. Equations
(2.f.3) - (2.f.6) fix the wind production, solar production, ES energy rating and ES power
rating respectively, to the values computed in the MP. Consequently, the bi-level
subproblems (2.f) are converted into MILPs with the MPEC method (SP1), as described in
APPENDIX B. Since the solution of the MILPs does not provide accurate dual variables to
build the Bender's cuts, we reformulate the subproblems into equivalent linear continuous
problems, using the Mathematical Programming with Primal and Dual Constraints (MPPDC)
formulation of the bi-level subproblems (SP2), as explained in APPENDIX C. Solving SP2
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pv

provides G,, and dual variables i, ub. , 1., and ub. . The value of G™ to be used in the

convergence check is:

M =Y. cq g{f}v) + Yoy (ZneBiW cw . I’Ziz,(v) + Znesf” Crv. I?iz:lv,(v) + ZnEBies (C~e

e, (v) | Fp . pp.(w)

R+ cv - RE®)) (2.8.1)
Each subproblem is a further restricted version of the original problem (2.c). Hence, its
optimal objective function value is an upper bound to the optimal value of the objective

function of the original problem (G™ > W,(§)). The procedure continues
until (G — G™)/G® < ¢,. The details of the overall algorithm are described in Table 1.

Table 1: Nested Decomposition Algorithm

1. K< 1, f(") =0, E(") = —o00, P = oo

2:  while (T — @) /pl)) > ¢ do

3: Ke—k+1

4: vel W = +oo,Q(”) = —o0

5: while (G® — 6™)/G™ > ¢, do

6: vev+1

7: Solve problem (2.e).

8: Obtain K™, RP"®) ge® gP0) o)

9: forallw € Qdo

10: Convert problem (2.f) into MILP using the MPEC method (i.e., formulate
SP1).

11: Solve SP1.

12: Obtain optimal set of variables Xg”é)v),XZ‘(v).

13: Convert problem (2.f) into LP using the MPPDC method (i.e., formulate
SP2).

14: Solve SP2.

15: Obtain Ge”, e s K+ K By -

16: end for

17: Calculate G™ using (2.g.1).

18: Add Bender’s Cuts to the MP (Problem (2.e)).

19: end while

20: LIJD(E(K)) = G(”),E(’C) = lPD(f(K))

21: o0 =y (_Prai)nv,(VJ n C(gper,(v)) +y - G (@)

22: Add cutting hyperplanes to problem (2.d).

23: Solve problem (2.d). Obtain §9), z(9),

24: P = 5

25:  end while

26: Wy () = P

2.5. Remarks and Extensions

In this Section, a few remarks are discussed regarding some directions to extend our

investment model. In this Chapter, we have proposed an ESP-DSO-TSO coordination

framework in order to decide on the private network-aware and market-aware investments

in renewable energy and energy storage units. The proposed model can readily

accommodate more DER technologies for the ESP to invest in (e.g., CHP units, microturbines,
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etc.) without notable technical complications. Furthermore, although we have assumed a
single ESP that seeks to invest in new DERs, there might be multiple potential investors in
practice. In this case, our model should be slightly modified. Let E be the set of ESPs seeking
to invest in DERs. Then constraint (2.a.10) would be modified in order to capture the
different budget options of each investor:

civ <ci™, Vve€E

where

cimv = z Z(Ce-Kgin+cp-K§in)+ Z CY - Ky, + Z Crv - K5,

IEN™ \ neBfs neBy” nEBipv

: w pv e p
In the above expression, Kgi,, K, Kein and K,

denote the capacity of each DER
technology that is to be installed by ESP e € E, at node n of DN i. Additionally, since each
ESP would anticipate a different minimum rate of return on its investments, constraint
(2.a.11) would be modified as follows:

z (Primw — CP") = xo - Ci™°, Ve €E
where

inv _ w pv i
Prag? = Ty - Xienm Lten </1itw : (ZnEBlW Yeintw T Znesipv Yeintw + ZHEBfS(dlseintw -
Cheintw))>

oper _ es : w w
Cea) =Ty - ZiENm (ZtEH (ZnEBi"’S c - (dlseintw + Cheintw) + ZnEBlW € " Geintw T

pv
ZnEBipv cP? geintw))
Ci= Y D (C K+ CP KB+ Y KM+ Y CPU KR
iEN™ \ neBgs nepy neB”

Finally, regarding the solution algorithm, since there would be |E| complicating constraints
(2.a.11), with |E| denoting the cardinality of the set of ESPs E, the only modification would
concern the penalty variable &, which would be a vector & € R/,
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2.6. Performance Evaluation
Q)4

Figure 8: IEEE One-Area Reliability Test System

The proposed methodology is tested on the IEEE One Area Reliability Test System [108],
which is illustrated in Figure 8. The generation, load and line data can be found in [109]. We
consider that the DER investments can take place on two 33-bus distribution networks (see
[110] for network details) with their root nodes being connected to transmission buses 4 and
9. Detailed distribution network data can be found in [109]. Load and renewable energy
production profiles are based on realistic annual data from the European Network of
Transmission System Operators for Electricity (ENTSO-E) and the Hellenic Distribution
Network Operator (HEDNO) respectively [109], which are reduced to eight representative
days with 24-time intervals using the k-means clustering algorithm. The wind intensity and
PV energy output factors were selected from two different locations (distribution networks)
in Greece, while without loss of generality we assumed that the demand follows the same
pattern in both the transmission and distribution network. The weighted average of
demand, wind intensity and PV energy output scenarios are depicted in Figure 9. The eligible
distribution network nodes are presented in Table 2. We assume that the capital costs of
DERs are C% = 1300€/kW, CPV = 830€/kW, C¢ = 20€/kW and CP = 500€/kW, with their
marginal operating costs being ¢ = 3.5€/MW, cP¥ = 2.5€/MW and ¢% = 0.5€/MW. The
lifetimes of DERs are 15 years and the annual discount rate is 5% (A = 15, = 0.05).
Without loss of generality, we set the maximum capacity of DERs to K_lﬁ = ZOMW,W =
10MW andK—§l= 20MWh, for every eligible DN node. The energy-to-power ratio of
candidate storage units is set to p = 6h and the charging and discharging efficiencies
aren® = n% = 0.93. The initial state-of-charge of the storage units is assumed to be 50%,

while at the end of the day the state-of-charge should be at least 10% (5 = 0.1). The power
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factor of the candidate wind and PV generating units is assumed to be 0.95, while the
efficiency of the PV panels output is n?¥ = 0.95. The maximum power flow on the coupling
points between the transmission and distribution systems (substations) is set to p, =
46MW . The price bids and offers of the DNs assets are set to cl-lt = 450€/MW and cl-Tt =
0€/MW in order to ensure they can always be cleared in the day-ahead electricity market.

Finally, the total investment budget is set to Ci™¥ = 200 -10°€. The algorithm is
implemented in MATLAB and the MILP problems are solved using Gurobi 9.0.2. All
simulations were performed on a desktop computer with Intel Core i7 4.00GHz and 32GB
RAM.
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Figure 9: Expected values of load, wind intensity and PV energy output

Table 2: Eligible Nodes for DER Installation

Eligible DN Nodes
DN 1 (TN Bus #4) DN 2 (TN Bus #9)
Wind 11, 16, 18, 19, 21, 23 6, 25, 27,29, 31,32
PV 16, 22, 24, 26, 28, 30 1,2,7,17, 20, 25
Storage 5,8, 16,21, 22,28 1,2,8,15, 25,30

2.6.1. Sizing and Siting Decisions

This subsection describes the DER investment decisions with the rate of return that the ESP
anticipates to receive from the investment being y = 1.15. Figure 10 illustrates the DERs'
investment decisions per node of each DN.
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Figure 10: DERs sizing and siting decisions

One can see that higher DER capacity is installed in DN 2 than in DN 1. This is mainly
explained by two factors: first DN 2 is located in a location (TN node #9) with much higher
wind intensity (cf. Figure 9), and second, the available nodes for wind and PV units’
installation in DN 2 allow the ESP to install higher wind and solar capacity without violating
the distribution network constraints. In DN 1, only solar (28MW) and wind (10.75MW)
production units are installed, with the investment costs and the eligible nodes for solar
production making the PV technology more attractive investment for the ESP than the wind
production. Wind capacity is installed only at node #11, while PV units are installed at nodes
#22, 24, 26 and 30, where either the lines connected to these nodes have enough capacity
for the generated power to flow through them, or the local loads are sufficiently high in
order for the net load to flow through the adjacent lines without causing over- or under-
voltage issues. In DN 2, the wind intensity and the candidate DN nodes for wind capacity
installation makes the wind capacity the most profitable investment in this area. Thus, a
total of 44MW of wind capacity is installed together with 27MW of solar capacity and
75MWh/12.5MW ES units. Again, for reasons of high adjacent lines capacities and local
loads, 20MW of wind turbines are installed at nodes #6 and 25, and 4MW at node #31.
Moreover, two PV units of 10MW each are installed very close to the DN root (nodes #1 and
2), and two PV units of 3.5MW each at nodes #7 and 20. In order for high wind and solar
production at DN 2 to be efficiently exploited and the DN assets' payoff to be maximized,
storage capacity is chosen to be installed at all eligible nodes. In more detail, the maximum
possible ES capacity is installed at nodes #1 and 2 to support the PV units installed at these
nodes, and 7.2MWh/1.2MW ES units are installed at node #25 where 20MW of wind
capacity is also installed. Also, 20MWh/3.3MW, 6.40MWh/1.06MW and 1.35MWh/0.23MW
of storage capacity are installed at nodes #8, 15 and 30 to support the smooth operation of
the DN and the profitability of the DN users. The DER investment decisions, which cost
124.9- 10°€, benefit all the involved actors. The ESP achieves the anticipated rate of return
on its investments (15%), while the electricity cost for DN users declines compared to the
case without DER investments. The total annual DN users’ electricity cost is 19.81- 10°€
without DERs, which is reduced by 5.45% with the newly installed DERs. Finally, the TSO
benefits from the DER investments, since expensive TN-level electricity production is
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replaced in the generation mix by low-cost renewable energy units. More specifically, the TN
generation cost (428.07- 10°€ without DERs investments) declines by 4.29%.

2.6.2. Impact of the ESP’s Minimum Profit Constraint

As stated above (cf. Section 2.2), in contrast to [58], [102] and [103] we consider private
investments in DERs. In this subsection, we examine the impact that the choice of the rate of
return () has on the DER investments. To this end, we consider three different values of y
(1.15, 1.20 and 1.25) along with the case where the ESP's profit constraint (Eq. (2.a.11)) is
not included in our model (i.e., regulated investments). In Figure 11, the sizes of the DER
investments are compared for the different choices of y, while in Table 3 the ESP investment
costs and the T&D operating cost savings are presented.
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Figure 11: DERs investments for various values of y

Without constraint (2.a.11), the ESP installs a total of 84MW wind capacity, 58 MW solar
production and 165MWh/27.5MW ES capacity, which are almost evenly distributed between
the two DNs, with the ESP vyielding a 11% rate of return, the electricity cost of the DN
consumers declining by 6.79% comparing to the case where no DERs are installed, and the
transmission-level generation cost dropping by 5.87% (Table 3). Incorporating constraint
(2.a.11) and as the value of y rises, our investment model, in order for the ESP to achieve
the anticipated rate of return, decides lower DER capacity, which leads in lower generation
cost reduction and hence higher nodal LMPs. As a result, the energy cost reduction for the
DN consumers declines and the DERs' profit increase. This is evident in Table 3. Increasing y
even more (y = 1.20 and y = 1.25), itis in the interest of the ESP to install DERs only in DN
2 and not in DN 1, due to the increased wind intensity in this area and network
characteristics as previously explained (see subsection 2.6.1). Thus, for all values of y under
study the ESP installs 44MW of wind turbines in DN 2. In case y = 1.20, it also installs
20MW of solar capacity, which (in order to be profitable and network feasible) is followed by
investments in energy storage, as far as the latter are financially justified (48MWh/8MW).
When y = 1.25, the only option is wind technology so as to maximize the DN assets’ payoff
ensuring the ESP's desired rate of return on the investments.
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Table 3: Investment Cost, Operating Cost Savings of the T&D Systems, for Various Values of y

X - 1.15 1.20 1.25
Investment Cost
175.89 124.90 78.20 56.65
(10%¢€)

DN Users Cost

. 6.79 5.45 5.12 4.24
Savings (%)

TN Generation

5.87 4.29 2.83 2.15

Cost Savings (%)

2.6.3. Effect of Co-optimizing RES and Storage Investments

In this subsection we consider three investment scenarios:

e Scenario 1: Only investments in storage units.
e Scenario 2: Only investments in renewable energy.

e Scenario 3: The ESP co-optimizes renewable energy and storage investments.
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In Figure 12, the DER sizes are compared for the different investment scenarios in case of
not including the ESP profit constraint (Eq. (2.a.11)) and in case of y = 1.15. In the left bar
graph, where Eqg. (2.a.11) is not included, we can see that in Scenario 3, the ESP, being
entitled to invest in storage units, installs 6% higher wind capacity and 1.2% higher PV
capacity comparing to Scenario 2. This results in 12% higher annual profits for the ESP than
Scenario 2, slightly lower electricity cost for the local load and lower overall generation costs
(see Table 4). Also, the installed storage capacity in Scenario 3 exceeds storage investments
in Scenario 1 by 25%, since this enables larger RES capacity installation and ultimately higher
aggregate DN users market gain. In Table 4, one can see that investing solely in storage
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assets, not taking into consideration the ESP's return on investments, which is the case in
[58], the optimal investment decisions achieve a 4.42% energy cost reduction for end users.
However, the ESP does not cover its capital costs losing 0.4 million euros annually.

In case of y = 1.15 (right bar graph), in Scenario 1 the ESP does not invest in energy storage
at all, since the storage capital costs, the market prices, the eligible nodes for storage
investments and the distribution network limitations do not enable the ESP to make
adequate market profits so as to reach the desired rate of return on its investments. As it is
also evident in subsection 2.6.2, incorporating the ESP's profit constraint, investments in
storage increasingly decline with increasing y. Comparing investment scenarios 2 and 3
when y = 1.15, we can see in Figure 12 that co-optimizing RES and storage investments, the
ESP achieves 15% profit by installing 5.5% less renewable energy capacity comparing to the
case in which the ESP installs only renewable energy capacity. The ESP in Scenario 3 achieves
6% higher annual net profits comparing to Scenario 2, while co-optimizing RES and ES
investments, the generation cost reduction and the DN consumers energy cost reduction is
slightly larger than in the case where only RES units are considered.

Table 4: Investment Cost, Operating Cost Savings of the T&D Systems, and ESP Market Profits in Different
Investment Scenarios

X - 1.15
Scenario 1 2 3 1 2 3
Investment
6 12.74 151.48 175.89 0 118.10 124.90
Cost (10°€)
DN Users
Cost 4.42 6.66 6.79 0 5.40 5.45

Savings (%)

TN
Generation
Cost
Savings (%)

0.31 5.13 5.87 0 4.07 4.29

ESP
Annualized
Clear -0.40 2.06 2.31 0 2.07 2.19
Profits
(10%¢€)

2.6.4. Bi-level vs. Single-level Modeling

This subsection compares our bi-level model to a single-level investment model setting y =
1.25. In the latter case, only problem (2.a) is solved with market prices being input
parameters based on price forecasts. The price forecasts are produced solving problem (2.b)
for each representative day considering no DER investments. Hence, as in the investment
models in [19], [20], [21], [22], [23], [24], [25] and [26], the impact of the DER investments
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on energy market price is not taken into consideration, resulting in over-investments that
hamper the ESP's return on investment.

More specifically, solving the single-level model, 85MW of wind capacity, 7.5MW of PV
capacity and a total of 7MWh/1.16MW storage capacity are installed. These investments,
with a total investment cost of 118 - 10°€ are calculated based on the assumed market
prices and seemingly achieve the desired rate of return on DER investments. However, the
installed DERs lead in market price changes, which eventually produce lower market profits
for the ESP than the ones that had been calculated solving the single-level model. The T&D
operating cost reduction is higher in case of the single-level model (see Table 5), since larger
DER capacities achieve lower LMPs at the TSO-DSO coupling points, but on the other hand
the resulting rate of return is insufficient for the ESP.

Table 5: Investment Cost, Operating Cost Savings of the T&D Systems, and Rate of Return on ESP Investments
in Single-level and Bi-level Investment Models

Single-Level Model Bi-Level Model
Investment Cost
118.36 56.64
(106¢€)
DN Users
6.33 4.24
Cost Savings (%)
TN Generation
4.10 2.15
Cost Savings (%)
Rate of Return (%) 13 25

2.6.5. Computational Efficiency

We test the computational efficiency of our proposed nested decomposition algorithm using
the IEEE 118-bus system [111] and the IEEE 33-Node Distribution Test System. Towards this
goal, we compare our algorithm to the non-decomposed MILP (which results from
converting the bi-level problem (2.a)-(2.b) through an MPEC problem as in [56], [58] and
[64]) for various numbers of representative days (|€1|) in terms of solution time.

As we can see in Table 6, for a single DN, in case |Q| = 4, the non-decomposed MILP (ND-
MILP) achieves the optimal solution much faster than our proposed solution method, which
reaches a sub-optimal solution by 0.42%. However, the computational burden increases with
the number of representative days |{}|. Thus, the execution time for the non-decomposed
MILP upsurges for |Q] = 8, while for |Q] = 16 and |Q| = 24, the non-decomposed MILP
cannot find a feasible integer solution within the predefined time limit (48h or 172,800 sec).
On the other hand, our proposed nested decomposition algorithm reaches the optimal
solution in 4 or 5 outer decomposition iterations. The average number of inner
decomposition iterations reduces with [€}|, since as also stated in subsection 2.4.2 the
objective function of the problem convexifies with respect to the investment variables as |(|
increases. Since the functioning of outer and inner decomposition procedures improves with
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|| (as explained in Section 2.4), the optimality loss also declines with increasing number of
representative days. Conclusively, our proposed algorithm reaches an optimal solution
within a finite number of iterations, without sacrificing optimality, significantly reducing the
computational burden that results in intractability issues for the non-decomposed MILP.

Table 6: Computational Performance for a single DN

Solution 9] Exec. Time Opt. Opt.
K v
Method (sec) Result Loss (%)
4 - - 637 73517 -
8 - - 10079 76242 -
ND-MILP 16 - - 172800 - -
24 - - 172800 - -
4 4 55 11594 73826 0.42
8 5 38 15143 76287 0.06
Proposed
16 5 33 28375 74020 -
Method
24 5 29 43814 75605 -

Furthermore, we have tested the computational performance of our algorithm in case more
than one DNs are candidate for DER installation (N™ > 1). For this purpose, we considered
three 33-bus distribution networks connected to different buses of the IEEE 118-bus
transmission system. The results are shown in Table 7, where the well-functioning of our
algorithm as |Q| increases is evident. For 16 and 24 representative days, the ND-MILP was
terminated at 48h. In the first case, the ND-MILP could not reach the optimal solution
(producing a sub-optimal solution), while for [ = 24 it could not find a feasible solution.
Finally, it can be seen in Table 7 that the solution time of our proposed method could be
further improved by solving the subproblems in parallel.

Table 7: Computational Performance for multiple DNs

Exec. Par.
Solution || - Exec. Opt. Opt. Loss
Method K v Time Time Result (%)
(sec)
(sec)
4 - - 651 - 120116 -
8 - - 61021 - 121157 -
ND-MILP 16 - - 172800 - 123712 1.27
24 - - 172800 - - -
4 3 75 17221 6716 121488 1.14
Proposed 8 4 46 41124 11677 121747 0.48
Method 16 3 37 55588 13250 122160 -
24 3 29 71734 19400 123631 -
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2.7. Conclusions and Future Work

In this Chapter, we model the DER investment problem of a private ESP, which installs
distributed renewable energy and energy storage units in multiple DNs within a TSO-DSO
coordination scheme. The rate of return on the DER investment is ensured. A stochastic bi-
level investment model is formulated, which is efficiently solved using a nested
decomposition algorithm based on the concepts of Bender's decomposition and Lagrangian
relaxation. Our algorithm calculates the DER sizing and sitting decisions in a finite number of
iterations without sacrificing optimality. The proposed framework can be used by a regulator
or policy making entity to efficiently coordinate the business interests of ESP, DSO and TSO
to facilitate a quicker renewable energy transition. As a future work, we plan to study the
coordination of private DER investments and distribution network expansion in the
proposed ESP-DSO-TSO coordination framework, capturing the objectives of all involved
parties. Also, our study can be extended taking into account more revenue streams for the
DERs (e.g., ancillary services provision to both the TSO and the DSO) and including non-
convex characteristics of conventional generators in the electricity market clearing process.
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3. Chapter 3: Market Participation and Operation Decisions

In this Chapter, we turn our attention to the network-aware bidding and operation decision-
making problem of an ESP that owns a portfolio of diverse DERs (RES, Energy Storage
Systems, and Demand Side Management) and participates in the Day-Ahead Energy Market
(Figure 13).

e Optimal bidding
decisions

® Network-aware
operation

e HetFlex portfolio
orchestration

Figure 13: ESP's Market Participation and Operation Decision-Making

We assume a regulated operation of the distribution network, where a DisCo acts as an ESP
that directly controls the assets considering the distribution network’s constraints and
represents them in the market. We propose an algorithm that optimally schedules DERs in
order to devise a bidding strategy for a strategic ESP. We use bilevel modeling in order to
formulate the profit maximization problem of the ESP. The bilevel problem is finally
transformed into a tractable MILP. We show that: (i) ESP’s profits can be considerably
increased, by on average 20% compared to the price taker solution, (ii) the impact of DERs’
siting and sizing can be accurately quantified, (iii) even if the ESP accounts for a small portion
of market’s supply or demand capacity, significant profit benefits can be obtained, and (iv
the network-aware feature leads not only to higher profits, but also to the avoidance of vital
distribution network constraints’ violation.

The Chapter’s structure is as follows: Section 3.1 presents the requirements for a financially
sustainable operation of the DERs and highlights the contributions of this thesis. Section 3.2
discusses related work. Section 3.3 formulates ESP’s bidding and scheduling problem.
Section 3.4 presents and analyzes the solution method in detail. Section 3.5 provides a
detailed evaluation of the proposed solution, enhanced with useful comparisons. Finally,
Section 3.6 concludes Chapter 3 and discusses future work.

3.1. Strategic and Network-Aware Bidding Policy for Electric
Utilities through the Optimal Orchestration of a Virtual and
Heterogeneous Flexibility Assets’ Portfolio

High penetration of RES in the generation mix delivers clean and low-cost energy and can

lead to autonomous societies. On the other hand, in such a dynamic environment, the

current electricity grid architectures are facing severe efficiency and stability issues. This
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triggers the utilization of distributed energy and flexibility resources able to adapt
consumption to production and guarantee the efficiency and stability of Smart Grids.

These Heterogeneous Flexibility (HetFlex) assets (e.g. Energy Storage Systems, RES, DSM
schemes) can be categorized according to: (i) their type of operation, (ii) the impact that
their size and network location have on the Smart Grid planning process, (iii) the impact that
their scheduling decisions have on optimally responding to dynamically changing network
and market states, (iv) other business logic issues, which are related to ESP’s business
strategy (e.g., risk hedging, Return on Investment — Rol models, strategic business plans,
etc.). Hence, the optimal orchestration of HetFlex assets placed in a given geographical area
and belonging to a specific ESP’s portfolio is a prerequisite for ESP’s financial sustainability.

As analyzed in Chapter 1, traditional electric utilities are being transformed into ESPs that:
(a) trade energy in the wholesale market, (b) sell energy through retail markets, and (c)
further ensure their financial sustainability through the aggregation of HetFlex assets and
providing services to the System Operators. There are five key elements that ESPs have to
take into account in the operational stage.

The first is the large-scale use of ESSs, which have expanded rapidly during recent years and
are expected to increase at a higher rate in the future [112]. Consequently, ESPs have to
optimally schedule the ESS’ operation according to the energy markets’ state in order to
secure their profitability. The second relates to the aggregation of distributed flexible load
resources and their scheduling (DSM) towards the ESP’s optimal participation in the energy
market(s). Thus, ESPs have to design integrated schedulers and enable in this way the deep
interaction between ESS and DSM towards competitive design of business models. The third
fundamental challenge is to derive models and algorithms that provide optimal
orchestration of the HetFlex assets, while respecting the operational limits of a physical
distribution network. In particular, high RES penetration increases the challenges related to
the congestion and voltage control of the distribution grid. Thus, network-aware scheduling
models for an ESP are of high importance. The fourth critical issue for an ESP relates to the
management of RES units. An ESP must be able to optimize the use of its HetFlex assets so as
to optimize energy utilization from its own renewable generators. This would render the ESP
more independent and more competitive. Finally, the fifth key element regards the optimal
participation of the ESP in the liberalized energy markets. In this perspective, the ESP’s
decision process can be formulated through complementarity modeling [113] and more
specifically as a bilevel problem in which the upper-level problem represents the
maximization of ESP’s profits and the lower-level one represents the market clearing
process. Thus, an MPEC is generated that is ultimately transformed into a MILP. This model
constitutes the ESP a price maker that, in contrast to a price taker ESP, is able to anticipate
the electricity market’s reaction to its bidding decisions and affect the market prices.

In a nutshell, the major contribution of the current thesis is a holistic and sophisticated ESP’s
business model that simultaneously:

e Offers strategic ESPs the capability to optimally bid in an imperfect Day-Ahead
Energy Market taking into account the outer environment in terms of the decisions
of electricity market competitors. It is shown that even if an ESP represents only a
small portion of market’s total generation or consumption capacity, it can gain
significantly more profit by acting strategically.
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e Allows the adjustment and the respect of operational limits of a physical distribution
network, ensuring that they will not be violated at any time. In this way, the ESP
plans a distribution network-aware bidding strategy that saves it from high societal
and monetary costs.

e Orchestrates a virtual HetFlex portfolio that comprises distributed renewable
production, DSM and ESS units. The coordinated planning and scheduling of HetFlex
assets results in higher RES utilization and cost-effective network operation

To the best of our knowledge, this is the first work to model the decision-making process of
a strategic ESP that takes into account the aforementioned five key elements and
demonstrates this in detail through accurate comparisons.

3.2. Related Work

A number of works that have appeared in the literature use bi-level programming and
complementarity modeling to model decision making of strategic players in liberalized
energy markets. Works in [61], [72], [73], [74], [76], [114], [115] and deal with the strategic
operation of a Generator Company (GenCo) in electricity pool markets. More specifically,
authors in [73] formulate a bi-level model, in which a GenCo maximizes its profit in the
upper-level, while in the lower-level a Market Operator (MO) clears the market by solving an
Optimal Power Flow (OPF) problem. In [76], the profit maximization problem of a GenCo is
formulated as an MPEC, which in [74] is transformed into a MILP through binary expansion.
The binary expansion approach was presented in [72], which also modeled the uncertainty
in rival GenCos’ bids and system’s load. In [114], a non-interior point algorithm is used in
order to find the equilibrium in a Stackelberg Game between a GenCo and a MO, thus
clearing the market on top of an AC power system model. The authors in [115] modeled a bi-
level problem to study the strategic behavior of GenCos under two different pricing
mechanisms in electricity markets, namely uniform and price-as-bid pricing. Finally,
Kazempour and Conejo [61] formulated an MPEC in order to study the problem of a GenCo's
strategic investment. The authors used Benders Decomposition technique in order to tackle
scalability issues. Furthermore, [66], [79], [80], [81], [82], [83] and [116] examine the
strategic participation of a merchant ESS owner in an energy market. The authors in [79]
formulate the profit maximization problem of a strategic ESS owner participating in
wholesale day-ahead market as a Mathematical Program with Primal and Dual Constraints
(MPPDC). The study in [80] considers a price maker merchant ESS owner aiming to maximize
its profits through the coordination of the operation of geographically dispersed ESSs. The
authors in [83] propose a look-ahead technique to optimize ESS’s operator bidding strategy
in the wholesale DA energy market considering also the operation in the following day. The
work in [82] studies the impact on the profits of a price maker ESS owner when ramp-
up/down limits of generating units are considered in the market-clearing process. The
optimal sizing of a price maker energy storage facility is studied in [66]. A stochastic bi-level
problem is formulated and a Benders’ decomposition technique is implemented to make the
model tractable. In addition, the same authors in [81] formulated an MPEC in order to study
the parallel participation of an ESS owner in both energy and reserve markets. In [116], the
authors studied the problem of the optimal investment of a strategic ESS owner, taking into
account the transmission capacity expansion plans of the TSO. For the case of strategic load
serving entities (LSEs), [85] formulated an MPEC in order to investigate the strategic bidding
of an LSE in day-ahead markets, while [86] expanded the previous study to co-optimize LSE’s
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bidding strategy in both energy and reserve markets. Our work differs from the previous
research works by considered a progressive electric utility as a strategic market player. More
specifically, in this thesis we use complementarity modeling to model the decision of an ESP,
which controls a Virtual Power Plant (VPP) with multiple HetFlex assets, while it must
simultaneously satisfy the distribution network constraints.

There is a great deal of studies dealing with the scheduling and bidding problem of a price
taker ESP that is in control of a VPP. A VPP comprises distributed generators, ESSs, flexible
and inflexible loads. The work in [27] studied the problem of optimal bidding in day-ahead
and real-time market of an EV aggregator, while [28] dealt with the bidding problem of a
Microgrid aggregator in day-ahead market. The aggregator’s objective is the profit
maximization without sacrificing users’ thermal comfort. The problem studied in [29] is the
Real-Time scheduling of a Microgrid composed of an RG, an ESS and an aggregated load, in
order to minimize its electricity costs. The authors in [117] used robust optimization for the
bidding problem of a VPP (in both day-ahead and real-time market) in order to tackle the
challenges arising from uncertainties pertaining to: market prices, load variation and
renewable production. For the same problem, [30] and ([31] formulated hybrid
stochastic/robust optimization models. Works in [32] and [33] studied the optimal
scheduling and market participation problem of a VPP in day-ahead and real-time market,
while ensuring the reliable operation of distribution network incorporating into their models
technical network constraints. The aforementioned works, [27]- [33], considered price taker
ESPs in contrast with our work which studies the optimal bidding and scheduling problem of
a price maker ESP controlling a VPP with multiple HetFlex assets.

3.3. System Model & Problem Formulation

We consider a transmission grid, which is characterized by a set of buses V¢ and a set of
transmission lines L € V¢ x V¢. The transmission line between buses i and j is denoted
by ij,(i,j) € L. An ESP acts as an orchestrator/aggregator of HetFlex assets over multiple
geographically dispersed Distribution Networks (DNs). These DNs are connected to a set of
buses of the transmission grid, denoted by V¥ € V¢. For notational simplicity, a DN
connected in bus i of the transmission grid is also indexed with j. RGs, ESSs, flexible
(shiftable) and inflexible loads are located in each DN i € V¥ turning it into a VPP, which
can supply/draw power to/from the rest of the grid. More specifically, the DN connected to
bus i € VM is characterized by a set of nodes (DN buses) V;, a set of edges (DN branches)
B, €V, xV,,asetof ESSs S;, a set of renewable generators R;, a set of shiftable loads F;
and a set of inflexible loads I;. Throughout this Chapter we refer to the edges of the
transmission grid as lines and to those of a distribution network as branches, which are
denoted by nk ,(n, k) € B; ,i € VM. The ESP is responsible for controlling the ESSs and the
deferrable loads in order to strategically participate in the wholesale day-ahead market and
maximize its profits. In addition, the ESP has to ensure the reliable operation of DNs. The
goal of our work is to calculate the ESP’s optimal bidding strategy in day-ahead market and
the optimal schedule of the HetFlex assets, while simultaneously taking into account the
distribution network constraints.

3.3.1. Energy Storage Systems
As mentioned earlier, the ESP manages the ESSs’ charging/discharging schedules. At each DN
i € VM and timeslot t € H, each ESS s (physical or virtual through the aggregation of several

distributed battery systems) has to be charged or discharged. Charging (or discharging)
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power 1L, (or ldslst) is limited by the ESS’ maximum charging (or discharging) rate r;°/"™®*

(or rifisls Mmax respectively). Thus:
0<rfh < (1—xy5,) - rSPm™ vie VM,seS, tEH (3.1)
0= rdsli < Xist lesmax vie VM,seS;, teH (3.2)

In (3.1) and (3.2), x;5¢ is a binary variable indicating the operating status (charging or
discharging) of each DN’s ESS at t. Thus, x; s+ = 1 when ESS s located in DN / is discharged at
t, and x;5: = 0 when it is charged. We denote by H = {1, 2.., T} the scheduling horizon
considered. Additionally, the State of Charge SOC; s, of each ESS in DN i at any time interval
t cannot exceed a lower bound SOC[,’S”” and an upper bound SOC{s**:

SOC; 5t = SOC; 50— Xhoy(l - TS — b - rfl Vie VM s €S, t€H, (3.3)
SOCI™ < SOC; 5 < SOCR™ Vie VM s €S, t€H. (3.4)

In (3.3) and (3.4), the constants 7735 and nﬁs denote the discharge and charge efficiency
factors, respectively. In addition, we specify the final SoC of each ESS in order to take into
account next day’s operation:

SOCi,S,T = Wis- SOCi,S,O Vi € VM,S € Si . (35)
In (3.5), w; s = 0 is a design parameter (it is equal to 1 for a neutral ESS schedule).

3.3.2. Shiftable Loads

Shiftable Loads is the second type of HetFlex assets in the hands of the ESP. Each shiftable
load d € F;,i € VM, must fulfill a specific task within the scheduling horizon, meaning that
a certain amount of energy E{é must be consumed by load d in that period. Every shiftable
load has a desired time schedule [ai,d,ﬁi,d] C H, within which the operation must take
place. Outside this desired time interval, the power consumption of the shiftable loads is
zero, while inside, it has an upper limit on its consumption rate (pﬂmax) Thus, the

operating constraints of the shiftable load d in i are:

flmax .
O<p <p , ift € |a;q, Bi
e dt id l@1.0: Bia) vie VM,de F,teH (3.6)
Plac = 0, otherwise
Zflzldpldt = Eﬂ vie VM d e F;. (3.7)

3.3.3. Distribution Network

The decisions made by the ESP must satisfy the DN’s power flow constraints. In order to
model the distribution network, we use the widely used by the literature ( [32], [33], [105],
[118], [119], [120], [121]) linearized DistFlow equations, introduced in [105]. The use of
linearized DistFlow equations is justified by the fact that the power losses (nonlinear terms)
are in practice much smaller than the branch power flows, i.e., p;nx+ and q; i+ ( [105]).
Additionally, authors in [120] verified this assumption, by demonstrating that the linear
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equations lead to an insignificant difference in the results comparing to the nonlinear
equations. The linearized DistFlow equations are presented below:

Zkeﬂfi(n) Pink,t = Zjen;;(n) Pijnt — Pi},c :l,t - Pl”:lftl +piaet T = Tine
Vie VMneV,teH (3.8)
Zkeﬂ(ii(n) Tink,t = Zjeﬂi}(n) Qi jnt — Sllel 'piljrll,t - Sii,rrllﬂ pz”rllftl + Sir,g 'pir,;ql,t
Vie VMneV,teH (3.9)

Uine = Upje—2- (Ti,jn “Pijnt T Xijn * CIi,jn,t)

Vie VM neV;,jen,(n),teH (3.10)
U™ < Uy < UROX vie VM neV,teH (3.11)
P < Dinkr < PIREE Vi€ VM, (n,k) €B;,t €EH (3.12)
QPR < Ginee < QI Vi€ VM, (n,k) €B,t €H (3.13)

Equations (3.8) - (3.10) are the branch flow equations. Thus, p; nx+ and q; ni ¢ denote the
active and reactive power flowing in the branch nk connecting nodes n€V; andk €
V;. Furthermore, p[ﬁlt,p:ﬁfg and pfﬁt are the active powers of: flexible loads, inflexible loads

and RG in node n € V; at timeslot t, respectively. In addition, 6;,, 6,

and 6;;‘1 convert the
active power of the shiftable loads, inflexible loads and RGs at node n € V; into their
reactive power (§ = tan(cos™!(power factor)). Furthermore U, ¢ is the square of the
voltage magnitude, while 1; ;, and x; j,, are the resistance and the reactance, respectively, of
branch jn in DN i. Equation (3.11) imposes the lower (UZ'}}”) and the upper (U{7**) limit on

the square voltage amplitude of node n in DN i. Finally, (3.12) and (3.13) constraint up

(pl1ex, qa¥) and down (p[H, q7) the active and reactive power flows of branch nk in DN

i, respectively. The sets 2}(n) and Qri,(n) represent the decedent and precedent nodes,
respectively, connected to node n in any radial DN.

The root of each radial DN (n = 0), connected to the transmission grid, is the substation. In
substations (where the power is sold/purchased to/from the market), the active and
reactive power balance must hold:

Yok Pioke = —DPit vie VM, teH (3.14)
Yok Giokt = —Qie vie VM,teH (3.15)

In (3.14), pﬁ”t denotes the power that DN j supplies to the grid at timeslot t. A negative value
of p% indicates that DN i draws power from the grid. In (3.15) Q;. denotes the reactive
power that i exchanges with the grid at timeslot t.
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3.3.4. Quantity Offers/Bids
In this Chapter, we assume a nodal wholesale electricity market, in which ESP has to
optimally choose for each DN j and time instants t € H its energy offer/bids (0; ¢, b; ;). The

latter are limited by each DN'’s total power net capacity (parameters 0;;** and b;;**):
0<o0;; <hg o™ vie VM,te H (3.16)
0<by<(1-hy) bi™ vieVMteH (3.17)

In (3.16) and (3.17), h;, = 1 if DN i sells power in wholesale market at t and h;; = 0 if it
buys power.

Oz‘r;ax = ZnER plnt + ZnES, dls max Znel pir;[fi Vi e VM:t €EH (3-18)
h, L ,
Z‘r;ax = ZnER plnt + ZnESl T + ZneFl plfnmax + Znel pir;ftl Vie VMvt €H
(3.19)

Equations (3.18) and (3.19) express the maximum quantity offer (0;t**) and bid (b;;**) that
DN i can submit at time t, respectively. In (3.18) - (3.19) recall that R;, S;, I; and F; denote the
sets of nodes in which RG, ESS, inflexible load and flexible loads are located in DN i,
respectively.

Quantity offers/bids are also limited by the active power capacity of the coupling point
between the DN i and the transmission grid:

0it:bir < Yok Diok - (3.20)

Finally, the ESP decides on the price bid that DN i submits to the day-ahead market in
timeslot t, which is denoted by clMt

3.3.5. ESP’s Profit Maximization Problem
In order for the ESP to schedule its HetFlex assets in a network-aware and cost-effective
manner, its profit maximization problem is defined as:

M
rr)l(ax YteH LievM Aig Dit
U

Subject to (3.1) - (3.20)
(3.21)

In more detail, the objective of ESP is the maximization of its profits that result from its
participation in the nodal electricity pool market. When a DN located at bus i € VM
supplies power to the grid at time t, it sells this power in the pool market at price 4;;, which
is the nodal price at bus i. In contrast, when a DN i draws power from the grid, it buys that
power from the pool market at price 4;;. The set of decision variables of ESP’s problem

(3.21) isXy = {85, ml xise ,SOCise, Plass Poeer Gnier Uimer Qi 0ies b hie,
cit|(,s,t) € VM xS, x H, (i,d,t) € V™ xS; X H,(i,(n,k),t) € V™ X B; x
H,(i,n,t) € VM xV; x H,(i,t) € V™ x H}. Hence, the ESP, given the production of the
RGs and the inflexible loads that must run at any cost, decides on the quantity and price bids
to the wholesale market, along with the optimal schedule of the ESSs and the flexible loads
located at the DNs, in order to maximize its profits, while satisfying the DN constraints.
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3.3.6. Market Clearing Process

As analyzed earlier, a nodal transmission-constrained electricity pool market is considered.
Apart from the ESP, generators and demand aggregators participate in this market. We
adopt the ‘Central dispatch’ model (Article 2, Paragraph 18 in [122]) for the market clearing
process, in which the generators are obliged to declare their operating constraints (including
ramping constraints). The set of transmission grid buses in which generators are located is
denoted by G € V¢ and the set of buses that demand loads are located is denoted by DS
V¢, In optimization problem (3.21), dispatches and LMPs are calculated by the MO, which
clears the electricity market. MO maximizes the Social Welfare by taking into account: i) the
transmission grid constraints, ii) the participants’ quantity offers/bids, iii) generators’
ramping constraints and iv) price bids. In other words, the MO decides on the energy
dispatch schedules of the market participants (generators, demand aggregators and ESP) by
solving a DC-OPF problem:

I‘f}l(iLn ZtEH(ZiEG(Cft i) — Zien(cly - dig) + Zieym(clt - pit)) (3.22)
Subject to

—Gic+die— P+ X yij (Bie—0;c) =0 ;(A,) VieVE, V(G j)ELtEH (3.23)

g™ < gir < g ;@I @) VieGteH (3.24)
‘RD; < gix — Gie—1 <RU;; (0% 0f™ Vi € G, t>1 (3.25)
‘RD; < gix — Gio <RU; ;5 (0% 0™ Vi € G, t=1 (3.26)
dlin < d;, < d ;o (g, gdmax) VieD,t €H (3.27)
—by <pM <oy ;o (pmmin pmmaxy vy eyMteH (3.28)

T <yiy* (0, —0,) STFY; (oMol V@ )ELi<jteH  (3.29)

In other words, the objective of the MO is to minimize the social cost (objective function of
problem (3.22)), i.e., the cost of energy production minus the willingness of demand
aggregators to pay for that energy. We consider that the system’s demand is elastic and
each demand aggregator can submit a price/quantity bid indicating how much it is willing to
pay for a certain level of consumption. The decision variables of optimization problem (3.22)
are: i) the power supply g; ; of each generator i € G, ii) the power consumption d; ; of each
demand aggregator i € D, iii) the power supply/consumption p% of eachDN i € VM and
iv) the voltage phase angles 6;, at all buses i € V¢ at every timeslot t (X, = {g:¢|(i,t) €
G X H,d;|(i,t) € D x H,pt|(i,t) € VM x H,0,,|(i,t) € VS x H}). The price bids of
generators and demand aggregators at timeslot t are denoted by cft and c{?t , respectively.
Equation (3.23) expresses the power balance at each bus i of the power grid. The dual
variables of these constraints provide the LMPs. In (3.23), y;; is the admittance of
transmission line ij, (i,j) € L. Equation (3.24) concerns the generators’ minimum and
maximum capacity. Furthermore, equations (3.25) and (3.26) express the constraints on the
ramp up and down limits, denoted by RU; and RD;, respectively. Equation (3.27) refers to
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demand loads’ upper (d{;**) and lower bounds (dﬁin) while equation (3.29) constraints
power flow to the transmission lines’ ij capacity limits (7;}***). Additionally, constraint (3.28)
enforces MQ’s decision concerning the power that is traded with the DNs to be not higher
than the submitted offers/bids. The dual variables pertaining to each constraint of DC-OPF
are specified at each constraint (Eqgs. (3.23) - (3.29)) following a semicolon. Finally, it is
highlighted that the voltage phase angle of the reference bus is zero throughout the whole

scheduling period (6,7, = 0).

3.4. Solution Method

ESP does not simply act as a price taker, but is able to anticipate the electricity market’s
reaction to its decisions (quantity/price bids). In order to model this process, a Stackelberg
Game is formulated in which the ESP is the Leader and the electricity market is the Follower.
The problem is solved from the ESP’s point of view that acts strategically. Hence, an
Optimization Problem constrained by an Optimization Problem (OPcOP) is formulated, in
which the Upper-level Problem (Problem (3.21)) is constrained by the Lower-level Problem
(Problem (3.22)):

M
max Yey ZiEVG Aig - Dic

Constraints (3.1)—(3.20) )

Subject to (Optimization Problem (3.22)

In the above bi-level optimization problem, the constraining lower-level problem (3.22) is a
Linear Program and therefore, Slater’s condition holds [123]. Thus, DC-OPF problem’s
Karush-Kuhn-Tucker conditions are necessary and sufficient optimality conditions (satisfy
convexity and constraint qualification). Thus, solving the following nonlinear system of
equations is equivalent to solving Problem (3.22):

—gie + die — Pt + Zjeyij - (e —6e) =0 VieVvs (i,j)eLteH  (3.23)
Cgt _ Ai,t _ (pigmin,t + (pigmax,t _ (pigrd,t + (pigrd,t+1 + (pigru,t _ (pigru,t+1 =0
VieGt<T (3.30)
g gmin,t gmax,t grd,t grut _ . _

Cie = Ait — @; + ; -7 4@ =0 VieGt=T (3.31)

—cl + e — I+ ol =0 VieDteH (3.32)

cft — A — QI + QI = 0 VieVMteH (3.33)

YiciiperYij - (Aie = Aie) = ZjsiVij - (‘Pmin—fl’%ﬁax) +2j<iVji - (‘P}ﬁin—fp}ﬁax) =0

VieViteH (3.34)
0< ™" Lg; — g™ >0 VieGteH (3.35)
0< ¢/ 1—gi +97"* 20 ViEG,tEH (3.36)
0< ¢ *Lgic— gir1 +RD; >0 VieGteH (3.37)
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0< ¢/ “L=git+ git-1 +RU; 2 0 VieGteH (3.38)
0<o@iMnid,, —d" >0 VieD,teH (3.39)
0 < @1 —d;, +di™ >0 VieED,teH (3.40)
0< ™™ 1pM + by >0 vVievMteH (3.41)
0 <™ L—pli+0,=0 VieVM teH (3.42)
0< "Ly (6ic —6;0) + T 20 v(i,j))ELi<jteEH
(3.43)
0< @™ 1—y;;- (0;p — 0) + T =0 v(i,j)eLi<jteH
(3.44)

Equations (3.23), (3.30) — (3.44) are the KKT conditions of Problem (3.22). Equation (3.23)
represents the equality constraint of DC-OPF problem, while in Egs (3.30) - (3.34) the partial
derivatives of its Lagrangian function with respect to its primal variables are set to zero.

Equations (3.35) — (3.44) express the complementarity conditions. We use the perpendicular
x=20y=0

symbol (L) to indicate complementarity,i.e., 0 <x Ly >0 = { x-y=0

Replacing the constraining optimization problem (3.22) with its KKT conditions in our OPcOP
results in the following MPEC problem:

: M
o = E § Aie " Pit
XyUXUEL

teEH jeyM

Subject to Egs. (3.1) —(3.20), (3.23), (3.30) — (3.44)
(3.45)

Problem (3.45) is a single-level mixed integer non-linear optimization problem. The
nonlinearities are due to complementarity conditions (3.35) — (3.44) and its objective
function. The optimization variables of problem (3.45) are: i) the set of the primal variables
of upper-level problem (denoted by vector X;;) which has been defined in subsection 3.3.5,
ii) the set of the primal variables of the constraining lower-level problem (denoted by vector
X;) which has been defined in subsection 3.3.6 and iii) set of the dual variables (denoted by
vector 5;) of the lower-level problem, where Z, ={4;,, (pftmin, fgnax,

grd _gru _dmin , dmax mmin , mmax Imin lmax |r: M ]
(pi,t 'q)i,t 'q)i,t rq)i,t ) q)i,t ;(pi,t ) (pij,t '(pij,t |(l' t) S XH' ((l'])' t) €

L X H}. In order to tackle the nonlinearities that come from complementarity conditions we
use the Fortuny-Amat & McCarl linearization technique [124]. Complementarity constraints
of the type 0 < x L y > 0 can be replaced by the following set of linear constraints below.

0<x<M-u
0<ysM-(1-uw

Constant M is large enough and u is an auxiliary binary variable. In our model, care is
exercised to select a proper constant M to avoid numerical ill-conditioning. Therefore, Egs.
(3.35) — (3.44) are replaced by the following set of linear constraints:

45



gmin

0<gie—g"" <M-uf, VieG,teH (3.46)
0< gog"“” <M-(1- g"””) Vi€EG,tEH (3.47)
0<—gie+ 9" <M-ul™™ ViEG,t€EH (3.48)
0< /" <M-(1-ul™™) VieG,teEH (3.49)
0<gic—Gir1 +RD; <M -ull® VieGteH (3.50)
0< i <M -(1-uff? ViEeG,tEH (3.51)
0<—git+git-1 +RU; <M -ul[" VieGteH (3.52)
0<of*<M-(1-ul" VieG,teEH (3.53)
0<dj—di" <M -u;’f;"i” VieD,teH (3.54)
0< @M <M-(1—uffm" VieD,teH (3.55)
0<—dje+di** <M u;ﬁ"ax VieD,teH (3.56)
0< "™ < M- (1—ulm™ VieD,teH (3.57)
0<plt+by<M -u{f;min vieVM,teH (3.58)
0<@mn<M-(1—umn vieVM teH (3.59)
0<-—pit+0; <M-uli"™ VieVM,teH (3.60)
0 < QMax < M - (1 —ufmex vieVM,teH (3.61)
0<Bj-(6;r —0) + T < M-uT" v(i,)ELi<jteH (3.62)
0< " <M-(1—ui" v(i,j)€Li<jteH (3.63)
0<—yij-(0ie—0j¢) + T <M -uli®™ V(@ j)eLi<jteH (3.64)
0< @™ <M-(1—u’™ V(i,j)ELi<jtEH (3.65)

As far as the objective function nonlinearities are concerned, we use an ad hoc linearization
technique. First, we multiply Eq. (3.33) by p%:
cit Dt = e - it — @I -l + 0T pli =0 vieVMteH (3.66)
In (3.66), the terms are re-arranged as follows:
i Pl =—clt vt + oI - plt — @I - plt vieV",teH (3.67)

In addition, from complementarity conditions (3.41) and (3.42), we have

mmin mmin b

Pic 'pl —Pic

mmax mmax

ic and @;¢ 'P = Qi *O0jt.
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Hence, the objective function of MPEC problem (3.45) is replaced by the expression

_ZtEHZlEVM(Clt plt) ZtEHZlEVM((pmmln blt) ZtEHZLEVM((pmmax Oi,t)-

Now, we make use of the Strong Duality Theorem for Problem (3.22), according to which the
value of the primal objective function at the global optimal point is equal to the value of the
dual objective function:

ZteH(ZiEG(Cft 'gi,t) - EieD(Cgt “dye) + ZieVM(Ci,Ni p{wt)) =

—{ YieG ZteH(€0gmm m) + Yiec ZteH(Qﬂgmax ax) + 2icc ZteH((P‘grd RD') +
Yieo Deen(@fy " - RU;) — Yiep een(@ff™™ - dIt™) + Tiep Leen(@f* - d7i™) +
DievM ZteH(§0mmm lt) + Xieym ZteH(§0m o Oi,t) + Zi<j,(i,j)eL ZtEH( ij . (pl:;ntln) +

Zi<j,(i,j)ELZtEH( irjn X §0i§n,tax)}
(3.68)

By re-arranging the terms in Eq. (3.68), we obtain:

—ZteHZlevM(czt Pzt) Dten ZLEVM((pL e blt) Dten ZzeVM((Pmmax Oi,t) =
ZtEHZiEG(Cit 'git) - ZtEHZiED(cit Lt) Yiec ZtEH((pgmm i m) +
YieG ZteH((Pgmax ax) +ZLEGZteH((Pgrd RD) + Yiec ZteH((Pgru RUi) -
Yiep Leen(@im - d?}:m) + Yiep Leen(@dM® - di™) +Zi<j,(i,j)eLZteH(Ti1}lax
<P3ntl ) + Zi<j,(i,j)EL ZtEH(Tij <leax)
(3.69)

Problem (3.45) is finally formulated as:

I CADEDWACTAED WY CH D

teEH ieG teEH ieD i€EG teEH

D D (ol ar) 4 ) Y (ol kD) + ) ) (ol RU)

i€EG teEH i€EG teH i€EG teEH

ZZ((p;imm d:rém) +ZZ(¢dmax dmax

i€D teH i€eD teH

n Z Z(Tmax pimin) 4 Z Z(Tmax pimax)

i<j,(i,j)EL teH i<j,(i,j)EL teH

Subject to Egs. (3.1) - (3.20), (3.23), (3.30) — (3.34), (3.46) — (3.65)
(3.70)

We observe that the objective function of problem (3.70) is a sum of linear terms. Therefore,
we have reformulated the initial OPcOP into a tractable Mixed Integer Linear Problem
(MILP), which can be solved using a commercial MILP solver. The control variables of

problem (3.70) are those of (3.45), with the addition of the set of auxiliary binary variables u

gmm gmax gru _ grd _dmin , dmax , mmin , mmax ,,lmin
of Egs. (3.46) - (3.65), Zp = {u;, ,u;, it o Uie ULt DU S Uge U U

x|, t) € VM X H, (ij,t) €L x H}.
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3.5. Performance Evaluation

In order to demonstrate the performance of the proposed methodology, we consider two
case studies: 1) a 6-bus illustrative example, in which ESP controls a single DN and 2) the
IEEE one-area reliability test system, in which ESP practices spatiotemporal arbitrage
controlling multiple DNs distributed among the transmission grid. In both cases, we consider
a 15-node radial distribution network [125] as shown in Figure 14. The line parameters are
shown in Table A of Appendix D. The base power and voltage are 30 MVA and 11kV,
respectively. A time horizon of T=24h is considered. Finally, the large constant M is chosen
to be 2000 throughout the simulations.
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Figure 14: A 15-Node Radial Distribution Network

3.5.1. Case Study A: A 6-Bus Illustrative Example

This case study is considered in order for the numerical results to be tracked. In Figure 15, a
6-bus test system [82] is presented, which is used to analyze the ESP’s strategic bidding and
scheduling of HetFlex assets. Transmission lines, conventional generators and load data are
taken from [82] and are presented in Appendix D (Tables B, C and D). Bus 1 is considered to
be the reference bus.

R

R e 6

Figure 15: A 6-Bus Test System

A DN (namely, the one given in Figure 14) is located at bus 5. We assume that three solar
PVs are located at nodes 2, 5 and 13 of DN and 3 wind turbines at nodes 8, 10 and 11.
Renewable production data are derived from [126] and the power factors of every RG is set
to 0.95. Additionally, inflexible loads are located at nodes 1, 2, 3, 4, 6, 7, 10, 11 and 12 and
their consumption curves are based on load data from [125]. Figure 16 presents the total
renewable energy production (ZnER5 p;,gnlt) and inflexible load consumption curves

(Ener, PE/1) as a function of time,
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Figure 16: Renewable energy production and inflexible load consumption daily curves

Furthermore, we assume that 4 ESSs of energy capacity 0.1667pu are located at nodes 5, 8,
10 and 13 of the DN. Their charge/discharge rate is 0.0833pu, their initial SoC is 0.0833pu
and we set parametersws = 1, Vs € S5 (cf. Appendix D, Table E). Also, without loss of
generality, we assume lossless ESSs (ngrs,ngfl). Finally, we consider 6 shiftable loads
located at nodes 4, 9, 10, 11, 13 and 14, which can consume from time as 4 = 8h to time
Bsa= 18h,Vd € Fs. Their total energy consumption and their maximum power
consumption per timeslot is 0.02667pu, while their power factor is 0.9 (cf. Appendix D, Table
F). In order to demonstrate the advantages of the proposed system, three cases are
presented:

Case 1: ESP controlling a DN with renewable production, energy storage and flexible loads
participates in day-ahead market as a price taker, considering DN physical constraints

Case 2: ESP acts as a price maker but without considering the DN constraints (Egs. (3.8) —
(3.15))

Case 3: ESP acts as a price maker considering DN constraints and implementing the
proposed methodology.

Case 1: In this case, ESP is a non-strategic player in a perfect competition market. Thus, in
order to calculate market equilibrium, a single-level optimization problem is solved (DC-
OPF), in which MO maximizes social welfare. ESP makes a profit of 747.50€ from its
participation in Day-Ahead electricity market as a price taker. Schedules of ESSs and shiftable
loads are presented below (Figure 17 and Table 8).
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Figure 17: ESSs power dispatch schedules in Case 1 as a percentage of their maximum charge/discharge rates —
Negative values indicate charging mode

Table 8: Power dispatch schedule of shiftable loads in Case 1 as a percentage of their total energy consumption

t 8 9 10 11 12 13 14 15 16 17 18
Node
4 0 0 0 0.384 0 0.616 0 0 0 0 0
9 0 0 0 0 0 1.000 0 0 0 0 0
10 0 0 0 0 0 1.000 0 0 0 0 0
11 0 0 0 0 0 1.000 0 0 0 0 0
13 0 0 0 0 0 1.000 0 0 0 0 0
14 0 0 0 0 0 1.000 0 0 0 0 0

Market results regarding LMPs at bus 5 and DN dispatch are presented in Figure 18 (for
more details on market results of case study A see Appendix D, Table G). We can conclude
from Figure 17 and Table 8, that ESSs and shiftable loads are utilized to maximize social
welfare, i.e., maximizing total utility of load demand with the minimum production cost,
while satisfying operational constraints. For instance, at time interval t=1, ESSs provide
enough power, not only to satisfy DN’s net load, but also to supply power to the grid in
order for the System’s Marginal Cost (SMC) to decline (SMC = 20€/MWh). If DN did not
supply power to the grid, generators G1, G2 and G3 would satisfy the total demand load of
the system, resulting in an SMC of 50€/MWh (i.e., price bid of G3). Furthermore, at time
interval t=6, the ESSs in Nodes 5, 8 and 13 are charged in order for the DN to draw more
power than is needed to satisfy its net load. This occurs because of the ramp down rates of
generators G1 and G2, which cannot lower their production fast enough to match the total
demand in that interval. The distribution network’s power drawing creates more demand in
order to absorb the excess production and prevent negative LMPs’ occurrence. Another
example of the utilization of DN’s controllable assets towards social welfare maximization is
the ESSs operation in timeslot t=17. In that time interval, the ESSs in nodes 5, 10 and 13 are
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discharged. Thus, DN supplies power to the grid reducing the generation cost by curtailing
production power from G4 and decreasing the consumption curtailment (due to congestion
in transmission line 4) of load in node 4. Flexible loads in this situation are mainly used to
avoid voltage limit violations. Therefore, most of flexible load is chosen to operate in t=13
(only the 38.4% of shiftable load at node 4 consumes at a different timeslot, i.e., t=11), in
which DN supplies power to the grid that mainly comes from the DN’s net production
(renewable production minus inflexible load).
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Figure 18: Market Results - LMPs at Bus 5 and Power Dispatch of DN in Case 1

Case 2: In this case, ESP strategically bids in day-ahead electricity market, but does not take
into account distribution network constraints. Thus, ESP solves an MPEC problem in which
Equations (3.8) — (3.15) are not included in the set of constraints of the upper-level problem.
ESP schedules ESSs and shiftable loads with the objective to supply more power to the grid
in times when LMPs are higher and draw power when LMPs are lower. In this way, voltage
issues arise in areas that lie in the distribution grid’s edges, at which RGs (nodes 10, 11 and
13) and loads (nodes 10, 11, 12, 13 and 14) are located. More specifically, voltage limit
violations occur at node 10 during intervals t=11, 17 and 24, at node 11 during t=13, at node
12 during t=12, 13 and at nodes 13 and 14 during t=10, 11, 12 and 13. Moreover, active
power flow limits are violated at several branches and timeslots. In order to maximize its
profits from the participation in day-ahead market, ESP decides to fully utilize DN’s net
production to supply power to the grid in times when LMPs are rising. This, however, results
in power flows in the distribution network higher than the branches’ capacity allows (see
Appendix D, Tables H and | for more details).

This case yields an apparent profit of 1700.3€ for the ESP. However, due to voltage and
congestion issues, the ESP will have to perform corrective actions in real time market, with
either very high monetary or societal (renewable energy curtailment/reduction in
consumption of inflexible loads) costs. Thus, Case 2 ultimately leads to more expensive or,
even worse, technically infeasible schedules of ESSs and shiftable loads.

Case 3: In this case, ESP implements the proposed methodology. Market outcomes in this
case are presented in Figure 19 (cf. Appendix D, Table J), while ESSs’ and shiftable loads’
schedules are presented in Figure 20 and Table 9, respectively. ESP earns 897.33€, which
outperforms price taker solution (Case 1) by 20%.
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Figure 19: Market Results — LMPs at Bus 5 and Power Dispatch of DN in Case 3
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Figure 20: The ESSs power schedules (Case 3) as a percentage of their charge/discharge rates — Negative values
indicate charging mode

Table 9: Power dispatch schedule of shiftable loads in Case 3 as a percentage (%) of their total energy capacity

t 8 9 10 11 12 13 14 15 16 17 18
Node
4 0 0 0 0 0 0 1.000 0 0 0 0
9 0 0 0 0 0 0 1.000 0 0 0 0
10 0 0 0 0 0 0 1.000 0 0 0 0
11 0 0 0 0 0 1.000 0 0 0 0 0
13 0 0 0 0 0 1.000 0 0 0 0 0
14 0 0 0 0.036 0 0.157 | 0.807 0 0 0 0

Studying Figure 18 and Figure 19, we note that, comparing to Case 1, the proposed
methodology results in different LMPs at bus 5 in timeslots 1, 5, 7, 14 and 16. In particular,
at t=1 ESP supplies IMW at 50 €/MWh, discharging ESSs at nodes 5, 8 and 13. The total
demand load is covered from G1, G2 and the DN, making DN the marginal supplier. At t=5,
ESP purchases 4 MW at 12€/MWh, which is the lowest price bid that it can submit (cheapest
generator’s offer) in order to buy the necessary power amount to satisfy DN’s inflexible
loads and charge ESSs at nodes 5 and 10. Then, at t=7, ESP buys 2MW making a price bid at
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36 €/MWh. LMP at bus 5 is determined by the cost of generating an extra MW by G3 (50

€/MWh) minus the value of dual variable concerning generator’s G3 lower bounds ((pf}”"" =

14 €/MWh). If ESP demanded more than 2MW, then G3 would be the marginal generator
with gof‘;nin being 0 (according to complementarity condition (3.35)). In that case, LMP at
bus 5 would be higher (50 €/MWh). Later, at t=14, ESP takes advantage of the generator’s
G3 ramp up limitation, and it purchases 2.22 MW at 30€/MWh in order to: a) complete the
task of shiftable loads at nodes 4, 9, 10 and 14, and b) charge ESSs at nodes 5, 8 and 10.
ESP’s price bid sets LMP at bus 5 at 30€/MWHh, since the cost of generating an extra 1 MW is
50€ (price bid of G3) minus 20€, which is the value of dual variable concerning ramp up
constraint of G3 at t=15 (in case G3 generates 24.22MW at t=14, ramp up constraint of G3
will not be binding). At t=16, ESP takes advantage of the congested line 4 to make more
profit by offering 0.25MW at 157.2368 €/MWh. ESS at node 10 supplies power 0.53 MW in
order for ESP to satisfy DN’s net demand (0.28MW) and sell 0.25MW in the market.

In general, we see that DN does not simply inject power to the grid at timeslots in which
LMPs are higher due to congestion (i.e.,t € [16,21]) or at timeslots during which its
renewable production surpasses its load demand (i.e.,t € [12,15]). This is due to
distribution network physical constraints (voltage and power flow limits). For example, in
t=13 we have the higher net production (5.4128 MW). At that time, ESP decides to run its
shiftable loads at nodes 11, 13 and 14 in order to prevent nodal voltage amplitude rising
above its upper limit (i.e., 1.05pu). In contrast, at t=14 and t=15 the excess production
(4.6847 and 2.5669 MW, respectively) is used to charge ESSs and run shiftable loads. This
happens in order to: a) keep voltage amplitude within the safe operation area (i.e., 0.95 —
1.05pu), and b) ensure that ESSs will be fully charged in order for the DN to sell power in the
market at t=16 and t=17, when the price will be much higher.

3.5.1.1. Impact of HetFlex Assets’ Siting

RGs’ Location: In addition to the simulation setup used previously, we investigate one more
scenario of DN setup: we consider the same RGs as before but located at different nodes of
the DN. More specifically, wind turbines are located at nodes 3, 6 and 7, while solar PVs at
nodes 2, 5 and 14. With this setup, if the ESP acts as price taker (Case 1), it enjoys a profit of
1162.7€. On the other hand, if the ESP acts as a price maker (Case 3) it earns 1413.1€, which
is 21.54% higher than in Case 1. Higher profits are justified by the fact that in cases with high
renewable production deep in the radial distribution network, ESSs are not fully utilized to
maximize profits from energy temporal arbitrage, but they are partially operated to prevent
network constraint violation. Hence, the siting of RGs can have a significant impact on ESP’s
profits.

ESSs’ Location: In order to study the impact of ESSs’ location on ESP’s profits, we assume
that 4 ESSs (with the same technical characteristics with those that we used before) are
located at nodes 2, 8, 9 and 14. ESP’s profits are 1140.6€ in Case 1 and 1393.1€ in Case 3
(i.e., 22.13% higher if ESP implements the proposed methodology, and 55.25% higher than
the former DN setup). Furthermore, if we locate ESSs at nodes 4, 5, 6 and 10 then there will
be no control on power injections from RGs in nodes 11 and 13 resulting in nodal voltage
rising higher than 1.05pu, in which case problem (3.70) becomes infeasible. Thus, given the
locations of RGs, ESSs, siting must be exercised carefully towards: a) the feasible operation
of the DN, and b) the maximum possible profit from temporal arbitrage.
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Shiftable Loads’ Location: The relocation of shiftable loads from nodes 4, 9 and 10 to nodes
2,5 and 12, respectively, will lead to profits of 766.44€ for a price taker ESP and 918.31€ for
a price maker (i.e., 19.81% increase). We see that by relocating the shiftable loads, ESP
increases its income by only 2.3%. However, if loads at nodes 11, 13 and 14 are moved and
relocated elsewhere, then the problem becomes infeasible due to the upper bounds on the
nodal voltage magnitude.

3.5.1.2. Impact of HetFlex Assets’ Sizing

We now study the impact of the aggregate size of renewable generation, storage capacity
and flexible loads on the results obtained. Initially, we consider a DN with the same storage
capacity as in the former DN setup (4 ESS units at nodes 5, 8, 10 and 13), with a varying
number of RG units and flexible loads (Figure 21). Figure 21 depicts the ESP’s financial
balance (positive when ESP earns money from its participation in Day-Ahead Market (DAM)
and negative when it experiences a trade deficit) in various cases regarding the number of
RG units and shiftable loads. First, we observe, as expected, that the ESP’s financial balance
from the wholesale market participation increases with the number of RG units. Moreover,
the proposed methodology (blue bars) always yields more profit for the ESP than the price-
taker solution (red bars) by a percentage varying from 2.59% (2 RG units and 6 shiftable
loads) up to 94.10% (4 RG units and 6 flexible loads). Particularly, in some cases (4 RG units
with 4 or 6 shiftable loads), Case 3 yields a positive balance, while Case 1 results in negative
balance for the ESP. In case that 6 RG units and 2 shiftable loads are located in the DN, then
the problem is infeasible due to voltage violation for this specific ESS allocation.

@ 1000 6 Shiftable Loads 1000 4 Shiftable Loads 100D 2 Shiftable Loads
8 o 0 .
T
= -1000 -1000 -1000
2 I Case 3
2 oot 2000 I Case |
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Figure 21: ESP’s financial balance in Day-Ahead Market for different numbers of RG units and shiftable loads
for a given number of ESS units

In addition, we consider another scenario where RES generation remains untouched (3 solar
PVs at nodes 2, 5, 13 and 3 wind turbines at nodes 8, 10 and 11), while the number of ESS
changes from 2 to 6 and shiftable loads can be 2, 4 or 6 (each one of both ESS units and
shiftable loads have the same characteristic as in the former setup). As shown in Figure 22,
increasing the number of ESS units results in larger profit for ESP in both Case 1 and 3.
However, a price maker ESP earns more profit than a price taker ESP by 2.57-20.04%. In case
of 2 shiftable loads, nodal voltage violation occurs and the problem becomes infeasible.
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Figure 22: ESP’s financial balance in Day-Ahead Market for different numbers of ESS units and shiftable loads

for a given number of RG units

Finally, we study how the size of RES and storage capacity affects the financial balance of the
ESP when 6 flexible loads are located in the DN. In Figure 23, we see ESP’s profits increase
with the number of RG units. In case of 2 RG units, 6 ESS units are needed for Case 3 to yield
a positive financial balance (in this case price taker solution still results in negative balance

for ESP).
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Figure 23: ESP’s financial balance in Day-Ahead Market for different numbers of ESS units RG units for a given
number of shiftable loads

3.5.2. Case Study B: The IEEE One-Area Reliability Test System

In this case study, we study an ESP coordinating geographically dispersed DNs in order to
maximize its profits through employing spatio-temporal arbitrage. For this purpose, the IEEE
One-Area Reliability Test System [127] is used, which is presented in Figure 24. Transmission
lines, conventional generators and load data are taken from [128], while price bids of
generators from [82] (cf. Appendix D, Tables K, L, and M). The price bids of demand
aggregators are the same as in Case Study A. Bus 13 is considered to be the system’s slack

bus.
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Initially, it is assumed that ESP controls the HetFlex assets of 3 different DNs (namely DN1,
DN2 and DN3), which are located at buses 14, 15 and 23. The technical characteristics of the
DN branches are the same as in the previous case study (Appendix D, Table A), while DNs’
assets data are presented in Appendix D, Tables N, O and Figure A. The resulting LMPs at
buses 14, 15 and 23 and the dispatches of DNs and are presented in Figure 25 and Figure 26
below.
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Figure 26: Power dispatch schedules of DN1, DN2 and DN3 in Cases 1 and 3

56



Figure 25 and Figure 26 present the impact of the strategic bidding and HetFlex assets’
scheduling of the ESP on LMPs and DNs’ dispatch respectively. Strategic participation in day-
ahead market decreases LMP at buses and timeslots in which DNs absorb power from the
grid (e.g., Bus 15 at t=8, 15, 16). On the other hand, ESP increases its profits through
strategic price bidding at buses and timeslots that DNs supply power to the grid (e.g., Bus 23
att =17, 18, 19, 20). Additionally, in Figure 26, we can notice ESP exercising spatio-temporal
arbitrage. For example, at t=1, DNs 1 and 2 buy power, while DN 3 sells power at day-ahead
market. At t=4, DNs 1 and 3 draw power, while DN 2 supplies power to the grid. ESP also
exercises arbitrage at timeslots 9, 10, 12, 13, 15, 20 and 22. ESP makes 456.64€ in Case 1 and
589.81€ in Case 3. Thus, ESP gains 29.16% more profit than Case 1 through the proposed
methodology. Therefore, we conclude that, even if ESP possesses a very small portion of
market’s total generation (in each timeslot each DN can supply/draw to/from the grid 7MW
of power, resulting in ESP possessing <1% of the total market generation and demand
capacity) or consumption capacity, it can achieve significantly more profit if it acts as a price
maker rather than a price taker.

3.6. Conclusions and Future Work

In this Chapter, we considered an ESP that controls a virtual and heterogeneous flexibility
assets’ portfolio (i.e., set of VPPs) throughout the transmission grid, and participates in an
imperfect wholesale electricity market. The portfolio consists of HetFlex assets, namely:
demand loads that must be satisfied by all means, distributed RES generation, energy
storage capacity and shiftable loads. Complementarity modeling is proposed to derive both
the optimal schedule of HetFlex assets and strategic market decisions for ESP. In the
proposed model, the distribution network constraints are taken into account in order for the
ESP’s quantity and price market bids to be reliable. Thus, an MPEC is formulated, which is
transformed into an equivalent MILP. We have shown that the proposed methodology
results in significantly larger profit for the ESP, even if it possesses a small portion of
market’s production or consumption capacity. Moreover, we discuss the impact on the
results of RGs, flexible loads and ESSs location and size. Finally, we show that if distribution
network constraints are not considered, this results in infeasible and costly schedules. As our
model is rather deterministic, we plan to perform in the future on the impact of
uncertainties in various model parameters (e.g., RES production, generators’ and demand
aggregators’ bids). Also, we will work on the bidding problem of an ESP, which participates in
both energy and reserve markets. Finally, our work can be extended in order to study the
case in which there are more than one strategic ESPs competing in an electricity market.
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4. Chapter 4: Stacked Revenues Optimization
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Figure 27: ESP's Stacking Revenues Decision-Making

In this Chapter, the ESP’s problem of stacking revenues is studied (Figure 27). As stated in
Chapter 1, DERs can provide the necessary flexibility to: (a) maintain a stable frequency and
a secure energy supply in an overall system perspective, and (b) maintain bus voltages and
secure transfer capacities in their local networks. In this context, ESPs facilitate the
management of the transmission and the distribution network, while at the same time they
increase their profitability by stacking revenues. This thesis proposes a bilevel model for an
ESP owning distributed Battery Storage Units and participating in: (i) wholesale energy,
reserve and balancing markets, and (ii) a novel distribution-level Flexibility Market. The case
study results demonstrate that the developed model achieves super-additive gains. Finally, a
sensitivity analysis is conducted to study the impact of several externalities on the ESP’s
decisions.

This Chapter's structure is organized as follows: Section 4.1 is introductory and analyzes the
power system’s need for flexibility and cooperation between System Operators. Section 4.2
discusses the research gaps and states the contribution points of this thesis. Section 4.3
describes the proposed market architecture and the bilevel structure of the problem under
discussion. Section 4.4 presents the solution method. Section 4.5 provides a detailed
evaluation of the proposed solution. Finally, Section 4.6 concludes the Chapter and discusses
future work.
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Nomenclature

XUL/RM/FM

Q4(n)
/Qp(n)

njk

nk

P/Q

up/dn

Sets Variables
Sets of optimization variables ﬁ Indicates quantity offers
of the upper- and lower-level
problems
Set of timeslots in the [[1/[] Indicates minimum/maximum
scheduling horizon T bounds
Set of BSUs dis/ch Scheduled BSU’s
discharge/charge power
sold/bought in the wholesale
energy market
Set of generators participating T Reserve capacity commitment
in the reserve market
Set of nodes of the distribution p/q  Flexibility market active/reactive
network power dispatch
Set of branches of the pBSU  BSUs’ overall active/reactive
distribution network /q%5U  power schedule
Set of competing ESPs h Binary variable indicating the
operating mode of BSUs
Set of decedent/precedent E State of energy of BSUs
nodes connected to node n of
the distribution network
Set of scenarios concerning the c Price bid of the ESP
balancing market prices
Subscripts and Superscripts f Power flow in the distribution
network
Subscript indicating the U Square voltage magnitude
timeslot
Subscript indicating the A Market prices
resources
Subscript indicating the nodes ¢,y  Dual variables of the reserve and
flexibility markets clearing
processes
Subscript indicating the
network lines connecting nodes Parameters
nandk
Subscript indicating the T Last timeslot of the scheduling
balancing market price horizon
scenarios
Superscript for the BSUs S Apparent power rating of
converter of BSU
Superscript for the generators n¢/n% Charge/Discharge efficiency
in the reserve market
Superscript for the competitors ¢ Price bids of the competitors
in the flexibility market
Superscript for the R System’s reserve capacity
active/reactive power in the requirements
distribution network
Superscript for the d/g  Scheduled demand/generation in
upward/downward services the distribution network
Superscript for the 5%/89 Parameters converting active

e/b

energy/balancing market

power into their reactive power —
tan(arccos(power factor))
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v Iteration counter of the r/x  Resistance/Reactance of branches
proposed algorithm
¢w Probability of scenario w
€ Convergence tolerance of the
proposed algorithm

4.1. Stacked Revenues Maximization of Distributed Battery Storage

Units via Emerging Flexibility Markets

The ongoing decarbonization and decentralization of the electric power landscape delivers
clean, sustainable and low-cost energy as well as autonomous societies [129]. On the other
hand, the rapid proliferation of distributed, variable and unpredictable generation can result
in various challenges for the network operators, such as line and transformer congestion,
voltage limit violations, and eventually dramatically increase the demand for flexibility [130].
Using the power system's flexibility instead of costly network investments can create
financial opportunities for the end users facilitating the integration of RES. Thus, DERs can
provide the necessary flexibility services at both the distribution and the transmission level,
as long as an economically efficient market environment is designed to motivate the
investments in such technologies [131].

In today's power sector, the procurement of flexibility is characterized by a monopsony,
since the TSO is the main buyer of such services. In addition, the interaction between the
TSO and the DSOs is insufficient and the clearing process of the wholesale energy markets
does not take into account the distribution grid operation. Consequently, the participation
of distributed generators (DGs) and other DERs in such markets can lead to violations of the
physical constraints that the Distribution Network (DN) imposes and, consequently,
inefficient (technically and economically) market results. The latter dictates the need for a
shift of the DSO's role towards a more active network operator, which will be able to
purchase flexibility services from the local DERs.

The aforementioned issues can be addressed by the development of Distribution-Level
Flexibility Markets (DLFMs). In a DLFM, ESPs declare their flexibility capacity and cost to a
neutral Flexibility Market Operator (FMO), which in turn clears the DLFM by minimizing the
cost of acquiring the flexibility needed to ensure the participation of the DERs in the
wholesale markets without jeopardizing the operation of the distribution grid.

In this market environment, an ESP owning Battery Storage Units (BSUs) can increase its
profitability and consequently the return on its investments by providing energy and
ancillary services at both the transmission and the distribution level. BSUs with smart AC/DC
converters can provide valuable grid services to the TSOs and DSOs [132], such as peak
shaving, energy (wholesale energy and regulation) and power (frequency containment)
balancing, alleviation of grid contingencies (voltage and congestion issues), black-start
services, etc. In this chapter we consider an ESP that owns a set of distributed BSUs and
provides services to both the system-wide grid (TSO) and the local distribution network
(DSO).

4.2. Related Work

There is a great deal of studies that have dealt with the problem of optimizing the multi-
service portfolio of merchant-owned BSUs. Works in [133] and [134] studied the optimal
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bidding of a BSU in the day-ahead and real-time energy-only markets, while [135] and [136]
dealt with energy storage devices participating in energy and frequency regulation markets.
Authors in [137] and [138] studied the problem of optimal bidding and operating strategies
for a storage owner participating in the energy and performance-based regulation markets.
Similarly, [139] and [140] considered storage units participating in the day-ahead energy and
reserve, as well as the real-time energy and regulation markets. While the aforementioned
works considered storage units that cannot affect the market prices and acting only as price
takers, works in [68] and [81] used bilevel programming to model the revenue maximization
problem of a merchant storage owner acting as a price maker in transmission-level energy
and reserve markets. All these works differ from our study as they optimize the participation
of storage units in only transmission-level energy and ancillary services' markets.

Another strand of research considered distributed BSUs that provide services to both the
transmission and distribution systems. Authors in [34] consider a storage owner
simultaneously participating in three markets: energy, TSO ancillary services and DSO
(congestion) market. The authors proposed a portfolio theory-based approach to decide the
optimal storage capacity allocated to each market in order to maximize the benefits at
minimum risk. The DSO services’ remuneration is based on the congestion cost savings and
is calculated based on a congestion cost index. Work in [35] formulated a Mixed-Integer
Linear Program (MILP) to model the profit maximization problem of a storage that provides
system—wide (energy arbitrage and system balancing) and local network services (peak
demand shaving to alleviate the distribution network congestion). The DSO services’
remuneration is assumed to be equal to the opportunity cost of a storage plant associated
with the DSO's services, i.e., its revenue increase from the energy and balancing markets
when no storage capacity is allocated to provide the DSO services. Work in [36] maximized
the aggregated profits of an energy storage providing energy, reserve and frequency
regulation services to the transmission system and congestion management to the
distribution grid. The distribution grid services are considered compulsory and are not
remunerated. A model predictive control approach was employed in [37] to dynamically
allocate storage power and energy capacities to either a local or a grid service with the
objective of maximizing the profit of an energy storage aggregator. The energy storage
profits result from energy price arbitrage and primary frequency control minus the costs of
load curtailment reduction and transformer overheating. In [38], a generic formulation of
the scheduling problem of a multi-service energy storage owner was designed. Based on this
generic framework, the authors decide on the portion of energy and power to be allocated
for dispatching the operation of a medium-voltage feeder and providing primary frequency
control services. Moreover, the authors in [39] proposed a joint optimization framework for
energy storage units to reduce energy bills of commercial consumers (peak shaving) and
seek profit through the provision of frequency regulation services. Unlike these works, we
consider a distribution-level marketplace, which determines the magnitude of the local grid
services and their compensation through solving an Optimal Power Flow (OPF) problem.

Lastly, the bilevel interdependencies between two markets result in bilinear terms in the
objective function which cannot be solved using the standard linearization techniques (big-
M [124] and exact linearization methods [113]). Works in [81] and [87] use the binary
expansion method [72] to deal with this source of non-linearity. However, this approach
increases complexity by adding new binary variables. In contrast to [81] and [87], in this
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thesis we adopt a novel iterative approach that avoids the extra computational burden of
the binary expansion method.

In light of the recent smart grid architectural progress in the development of distribution-
level flexibility markets [141], this work co-optimizes the transmission and distribution grid
services provided by an ESP owning distributed BSUs as in [34] - [39], using bilevel
programming as in [68] and [81]. By considering market scales, we assume that the ESP is
acting as a price maker in the Reserve Market (RM) and the DLFM, while it cannot affect the
market prices in the wholesale energy and balancing markets. Thus, the contribution of this
thesis lies in the following:

e |t proposes a novel energy market architecture, in which a DLFM is introduced in the
timeframe between the day-ahead energy and the balancing markets. An innovative
DLFM clearing process is proposed, which enables the DSO to buy the needed
flexibility to tackle the possible contingencies resulting from the wholesale energy
market dispatch decision, calculating the optimal flexibility dispatch and
compensation.

e A new bidding strategy is proposed for an ESP that stacks revenues based on four
products: 1) wholesale energy arbitrage, 2) reserve capacity and 3) balancing energy
for the TSO and 4) local constraint support for the DSO. Bilevel modeling is used to
model the strategic participation of a BSUs' owner in both the TSO and DSO markets.

e A novel iterative process is proposed to deal with non-linearities due to the ESP's
participation in two interdependent markets.

To the best of our knowledge, this is the first work that uses bilevel programming to model
the decision process of a strategic ESP owning distributed BSUs and providing services both
system-wide and to the local network operator.
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4.3. System Model & Problem Formulation
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Figure 28: Proposed Reactive Distribution-Level Flexibility Market (R-DLFM) architecture

This thesis presents a market architecture in which a DLFM follows in an optimal way the
decisions made by the DN-unaware day-ahead energy and reserve markets (intra-day
timeframe), without changing the existing TSO wholesale market structure being thus
compatible with the existing regulatory framework (Figure 28). This Reactive DLFM (R-DLFM)
architecture enables: a) the DERs to participate in the TSO wholesale markets without
jeopardizing the smooth operation of their underlying network, and b) the DSO to buy the
needed flexibility to remove contingencies resulting from the wholesale energy market
dispatch process.

In a first step, as shown in Figure 28, the Market Operator (MO) runs the Transmission
Network (TN)-level day-ahead energy market after the TN-level Energy Service Providers
(ESPs), such as generating companies, demand aggregators, retailers, etc., and the DN-level
ESPs having submitted their energy offers/bids. Subsequently, the TSO operates the day-
ahead reserve market given the MOQ's dispatch schedules (DAM dispatch) and the reserve
capacity offers from the RM participants. This practice is common in most European markets
(e.g. Nord Pool, EPEX, OMEL, GME, MIBEL), where the energy and reserve markets are
sequentially cleared ( [142], [143]). The role of the RM is to provide to the TSO the required
upward/downward reserve capacity to keep its system balanced in the real-time (balancing)
stage.

In the third step, the distribution-level ESPs submit their flexibility offers (active and reactive
up/down flexibility) to the FMO, which in turn clears the local DLFM, taking into
consideration the DAM results, the particularities and the constraints of the DN (provided by
the DSO), thus performing the DN-aware market clearing. The role of the DLFM is to ensure
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that the DN operates within its safety limits, i.e., to remove local congestion, local balancing
and voltage control issues that might occur due to the DN-unaware DAM clearing process.
Thus, the FMO clears the DLFM by running an OPF problem, which takes as input: i) the
MOQ’s decisions pertaining to the local DERs that participate in the DAM, ii) the
active/reactive up/down flexibility offers submitted by the ESPs and iii) the DN constraints
provided by the DSO. In case the TN-level DAM has not produced dispatches that violate the
DN constraints, the DLFM results in zero flexibility procurement and, of course, zero DLFM
prices. Otherwise, the DLFM produces non-zero active/reactive and upward/downward
flexibility dispatches and the corresponding flexibility prices per DN node at which the ESPs
will be paid for their services. Therefore, the DLFM clearing process will re-adjust the DAM
position of the DERs located in the specific DN. Thus, these DERs will have to balance their
portfolio in the TSO's balancing market (sell/buy power), in order to respect their
commitment to the MO (DAM dispatches). For more details regarding the market
architecture, we kindly refer an interested reader to [144], [145].

In the context of the proposed R-DLFM architecture, we propose a bidding strategy of a
profit-seeking ESP that owns a set of BSUs located at various nodes of a radial DN and
participates in the TN-level energy, reserve and balancing markets, as well as in the DLFM.
We assume that the ESP cannot affect the DAM and BM prices (acts as a price taker), while
its total BSUs’ capacity is able to influence the RM and the DLFM prices. The objective of the
ESP is to maximize its stacked revenues by optimizing its bidding strategy in the four
aforementioned markets. The ESP submits: 1) self-scheduling bids in the DAM and BM, 2)
price-quantity pairs for upward and downward reserve capacity in the RM, and 3) price-
quantity pairs for four products in the DLFM, i.e., i) upward active power (MW - €/MW), ii)
downward active power (MW - €/MW), iii) upward reactive power (MVAr - €/MVAr), and iv)
downward reactive power (MVAr - €/MVAr). Uncertainties pertaining to market competition
and local grid consumption/production power are not considered. We perform a
deterministic analysis, allowing us to focus on studying the interactions between the
individual markets, and how the ESP can manage its BSU portfolio to increase its profitability
by participating in the four markets in a co-optimized manner. A stochastic optimization
technique can be transparently implemented in the proposed model to tackle the
aforementioned uncertainties. In this case, however, an extensive computational burden
would be added, so mathematical approaches such as decomposition techniques or robust
optimization could offer interesting studies and promising solutions.
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Figure 29: The proposed bilevel model

A bilevel model (Figure 29) is proposed to formulate the ESP’s problem of determining the
optimal bidding strategy and the charging/discharging schedule of the BSUs. In the upper-
level the ESP decides on the BSUs’ operating schedule and its bidding strategy, while taking
as input the day-ahead energy prices and balancing market forecast prices and anticipating
the impact of its decisions on the reserve and flexibility markets. The ESP’s decisions include
the energy traded in the day-ahead energy market, the price and quantity bids to the RM
and DLFM and the power bought/sold in the BM. In the lower-level, for given ESP’s
decisions, the TSO and the FMO clear the RM and the DLFM, respectively. In the RM and the
DLFM clearing processes the bids of the other market participants are treated as
parameters. Also, the decisions of the DAM concerning the distribution-level demand and
production are also treated as input parameters in the DLFM clearing process.

4.3.1. Upper-level Problem: Profit Maximization
The upper-level problem maximizes the ESP’s profits in various markets by selecting the
optimal bidding/offering schedule and is formulated below.

. e . T _qup | SUP _ qdn _,.SdAn _ 9P (. Sup _ _sdn) _ 4Q
min Z(Z <At (chie —disi) = 4 Tt Ag" T Ait (pi,t pi,t) A

teEH \ieS

(a5 —aif") - Z S0 Mo 077 = pf,’f")))

wEN

(4.a.1)
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Subject to

0<dis;; <h;-S, VieS,teH (4.2.2)
0<chy;<(1—hy)-S, VieS,teH (4.a.3)
h;t €{0,1}, VieS teH (4.a.4)
0< 13" <8, + (chye —dis;y), VieSteH (4.2.5)
0< 5™ <8, — (chie —dis;y), VieS teH (4.2.6)
0< pft”” S, + (chit dis;; — f;‘p), VieS,teH (4.a.7)
0= pzstdn <S + (diSit chie — lstdn)’ VieS,teH (4.a.8)
dis;, f+pzt i
Eit=Ejt 1 ————+n{- (chlt + plt ) VieS,teH (4.a.9)
Ei+13%" nf < E, VieSteH (4.a.10)
Ts’,:up ]
Eir— ’1'7? > Ej, VieS teH (4.a.11)
Ei,T > Ei,O' Vies (4312)
piel = dis;; — chye + P - pftd", VieS,teH (4.a.13)
qi’ = q;," - qftd”, VieS,teH (4.a.14)
) + (¢5Y)" < 5, VieSteH (4.a.15)
0< ¢, q5 <35, VieS,teH (4.a.16)
ci'tp'up, ci'tp'd", cib:'tQ'up, cisl'tQ'dn >0, VieS teH (4.a.17)

Objective function of the upper-level problem (4.a.1) maximizes the ESP's overall profits. The
first line is associated with the DAM and RM profits of the ESP. Energy price is taken as an

input (A7), while the upward/downward RM prices (/'lup A%") and the reserved quantities

(rvP, Sdn) are obtained endogenously from the Lower-Level Problem 1 (cf. subsection

4.3.2). The second line in (4.a.1) is associated with the DLFM profit due to the provision of
active and reactive power flexibility (hereinafter referred to as P-flexibility and Q-flexibility)
to the DSO. The DLFM nodal active and reactive locational marginal prices (hereinafter
referred to as PLMPs and QLMPs respectively) and the upward/downward P-flexibility and
Q-flexibility dispatches are calculated endogenously in the clearing process of the DLFM (cf.
subsection 4.3.3). Finally, since we consider that the DLFM follows the wholesale energy
market, the active power DLFM dispatch concerning the ESP's BSUs will urge the ESP to
readjust its energy market position by trading power in the Balancing Market. Thus, the last
line in (4.a.1) represents the ESP's cost/profit from buying/selling in the BM the additional
discharged/charged power (equal to the downward/upward P-flexibility provided in the
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DLFM by the BSUs). We assume that energy is traded in the BM at a single price (/Iff’,w) asin
[71]. In contrast to the wholesale energy market prices (A7) which can be predicted with high
accuracy [146], the BM prices are highly volatile and thus considered stochastic in this thesis.
We tackle this uncertainty via a finite number of scenarios. Note that we consider a risk-
neutral ESP that maximizes its expected profits. In order to explicitly address risk
management and control the trade-off between profits and risk, one could use the
Conditional Value at Risk (CVaR) in the objective function as a risk measure, see e.g., [84].

Constraints (4.a.2) and (4.a.3) state that the battery discharged/charged power is
constrained by the battery converter's apparent power rating (S;). Binary variable hi.
indicates the operating mode of the BSUs, equal to 1 in the discharge mode and O in the
charge mode (4.a.4). Constraint (4.a.5) states that the upward reserve capacity provision is
constrained by the scheduled discharge/charge power traded in the energy market and the
AC/DC converter's apparent power rating. The downward reserve capacity provision is

constrained by the power traded in the energy market and the BSUs' power rating (4.a.6).

Additionally, the (upward/downward) flexibility provision to the DSO is constrained by the
BSUs' apparent power rating and the energy and reserve schedules ((4.a.7), (4.a.8)). The
dynamic equation of BSUs' state of charge is presented in Eq. (4.a.9), while constraints
(4.2.10) and (4.a.11) define the BSUs' capability of upward/downward reserve capacity
provisioning. Constraint (4.a.12) defines that at the end of the scheduling horizon, the BSUs'
state of charge should be at least equal to their initial value. Each BSU is also controlled to
inject/absorb reactive power. The overall active/reactive power schedules of the BSUs are
presented in Egs. (4.a.13) and (4.a.14), and should be calculated such that the apparent
power at each timeslot does not exceed the apparent power rating (4.a.15). Finally, the Q-
flexibility quantity bids of the BSUs are constrained in (4.a.16), while nonnegativity on the
flexibility market price bids is imposed in constraint (4.a.17). The set of optimization

i H UL _ . sup _sdn _sup _ sdn
variables of the problem (4.a.1) - (4.a.17) is X“* = {dlSi,t'Chi,t'TL,t Tl P oPir

“sup _s,dn sup _sdn _SsPup _sPdn _sQup _sQdn
Qe o qe hieEieciy oGy oG oGy Gy Gy

Constraint (4.a.15) is linearized via a polygonal inner approximation, which we derived,
described by the following set of linear constraints:

Aim- pfgw + Bim - qffu < cos [%] S, VieS,teHme]/l1L] (4.2.18)

where L is the number of the sides of the polygon and

[(—1+i-m)~n] [(—1+i~m)~n]

A;m = cos ,Bim = sin

The case with L = 12 is illustrated in Figure 30.
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Figure 30: Piecewise linear approximation of a circular region with a regular polygon of 12 sides.

4.3.2. Lower-level Problem 1: Clearing of the Reserve Market

The Lower-Level Problem 1 represents the clearing process of the reserve market, which we
assume is cleared independently from the energy market. The reserve market clearing
process is formulated below.

gup gup ~g an gdn sup | s,up sdn  _.sdn
min Z(Z(c +e )+ D (e e )

teEH \ieG i€eS

(4.b.1)
Subject to
Yie 1y P + iesti T = RS (&P) VvteH (4.b.2)
Yiec iy " + Ties ™ = RET (29")  vieH (4.5.3)
0 <719 < 19", (g2, paP™)  vieGteH (4.b.4)
0<r2 < r?t‘ﬁ (pgmmm, @28mmex) Vi€ G teH (4.b.5)
0 <1 < 15 (permin psupmaxy  vieS,teH (4.b.6)
0= < 5™, (pignmin psdnmax)  yie St € H (4.b.7)

Objective function (4.b.1) minimizes the reserve capacity procurement cost based on the
market participants' reserve prices and capacity offers. The upward/downward reserve
requirements are enforced in constraints (4.b.2) and (4.b.3), respectively. The dual variables
of constraints (4.b.2) and (4.b.3) set the reserve up and down prices. The up and down
reserve provision of the generators and the BSUs are limited in (4.b.4)-(4.b.7), based on their
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respecting offers. In this thesis, we assume that the rest of the RM participants form a
competitive fringe and thus their price and quantity offers are treated as input parameters
to our model. The dual variables pertaining to each constraint of the Lower-Level Problem 1
are specified at each constraint (4.b.2) - (4.b.7) following a semicolon. The set of the primal
— { gup g.dn _sup s,dn}_

7t o

variables of Lower-Level Problem 1 is XM = it Tt

4.3.3. Lower-level Problem 2: Clearing of the Flexibility Market

The proposed DLFM is a network-constrained auction-based market that is cleared solving
Lower-Level Problem 2. The ESPs, either operating their own flexibility assets or acting as
flexibility aggregators, submit aggregated flexibility bids, i.e. how much they can deviate

from  their DAM  position, (PS:= {ps up,pftdn, qlstup,ql tdn Vi€ S,t € H},PT :=

Tup _rdn _TUp _r,dn,  (.SPu s,P,dn _s,Qu 5,Q,dn
oo i a " q " Vi € B, t € HY) and cost (C* == {c;, ™, ¢y, ¢, ¢

Vi €S,t € H},CT = {crpup,cf‘f‘ﬁn, cf’ta‘ﬂp, o QN v ¢ E,t€H}) to the FMO. The
FMO'’s objective is to ensure the necessary active and reactive flexibility at a minimum cost
in order to address the possible contingencies (congestion and voltage issues). In other
words, in case the DAM results violate the DN constraints, then the FMO will calculate the
least-cost required flexibility dispatch, and the selected DERs will have to re-adjust their
DAM position based on the DLFM results, in order for the DSO to secure a secure operation
of its DN. The DLFM clearing process is formulated below.

. T ~—T
minC* - PS+C"
XFM

(4.c.2)
Subject to
0<Ps<Ps; WS, 9% (4.c.2)
0< P <P @Y7 (4.c.3)
Zkeﬂd(n) fnk t — Zkeﬂp(n) f]n t dn,t + In,t Chn ¢t dlsn ¢+ Pn, tp + pr - prsl ltin -
pre™; (A50) vn€N,t €H (4.c.4)
Zkeﬂd(n) ank,t = Zkeﬂp(n) f,?lt - dnt + Snt Init + qn tp + qr WP — qfl ltin -
q;?n, (/'l 0 VvneN,t e H (4.c.5)

Une =Upe =2 (G floe +xm - frae); (A%) VneN,jeQ,(m),teH (4.c.6)

Vy < Upy < Vi (vi.¥%;) vnenNteH (4.c.7)
fbe < fer < i ( YrL Z,ft) V(n,k) € B,t € H (4.c.8)

W) v(nk)€B,teH 4.c.9
fnk—fkt—f nkt' nkt n, ) ( .C. )
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Objective function of the Lower-Level Problem 2 (4.c.1) minimizes the flexibility
procurement cost. Constraints (4.c.2) and (4.c.3) bound the DLFM dispatch of the ESP (P¥ :=

sup _sdn _sup _s,dn,

o, piy Hq;; »qir SVIES,t€H}) and its competitors (PS =

rup rdn _rup _r.dn,

{pi; pit 4qip »49i; Vi€ F,tE€H}) based on their flexibility supply offers. As in the
RM, the competing ESPs' bids are treated as parameters; we assume that they form a
competitive fringe (price takers). In order to model the DN, we use the linearized DistFlow
model (4.c.4)-(4.c.9) first introduced in [105]. Equations (4.c.4)-(4.c.6) are the branch flow
equations. In (4.c.4) and (4.c.5) the local production (g, ;) and demand (d,, ;) are decided in
the DAM, which precedes the DLFM clearing process, and thus are treated as parameters.
The lower/upper limits of the square voltage magnitude (U, ), active power flows (frfkt)
and reactive power flows (f k,¢) @re presented in constraints (4.c.7)-(4.c.9). Potential DERs'
DAM positions (i.e., parameters d, ¢, gn ¢, Chyn ¢, dis, ¢) that require power flows violating
constraints (4.c.7) - (4.c.9) will dictate the demand for flexibility. The dual variables
pertaining to each constraint of the Lower-Level Problem 2 are specified at each constraint
(4.c.2)-(4.c.9) following a semicolon. The PLMPs and QLMPs, at which the ESPs will be
compensated for their P/Q-flexibility services, arise from the dual variables of constraints
(4.c.4) and (4.c.5). These prices, taking into account the type (over/under-voltage issue or
thermal line congestion), the magnitude and the location of the contingency, optimally
reflect the demand for P-flexibility (PLMPs) or Q-flexibility (QLMPs). Furthermore, dual
variables ln £ ATQM are free variables; positive DLFM prices indicate the need for supplying
power to the grid, while negative DLFM prices imply the need for absorbing power by the
ESPs. As long as the DAM dispatch does not violate any constraints of the DN, then naturally
PS,P" =0 and Aﬁ't,lg't =0,vn € N,t € H. Finally, our proposed DLFM as an LP-based

market satisfies the economic properties of efficiency, cost recovery and revenue adequacy
[147].

4.4. Solution Method

The formulated non-linear bilevel problem can be recast into a Mathematical Program with
Equilibrium Constraints (MPEC). To this end, we replace problems (4.b) and (4.c) with their
respective Karush-Kuhn-Tucker (KKT) conditions. Note that these problems are continuous
and linear, and therefore their KKT conditions are necessary and sufficient optimality
conditions [123]. The resulting single-level problem contains non-linear complementarity
slackness conditions, which can be linearized using the Big-M approach, as in Chapter 3. In
addition, in order to tackle the non-linearities in the objective function (4.a.1), we use the
Strong Duality Theorem and the optimality conditions of the two lower-level problems and
some algebraic operations (see Chapter 3). The resulting objective function of our single-
level problem is:

Ztey(Zies(lf'(Chit dlSlt))-l_ZLEG(Cgup gup+~gdn gdn) RYP . 24P — Rn .
/1? +ZLEG( gupmax_ gup+¢gdnmax_ gdn)+cr PT+I/’\T'W—ZneN(ﬁ'¢_ﬁt—
T ¥Re) — Zansoes (foe - Whhe = Fe - L+ £ - Wil = 18 0L ) + Znenlgne

P = dne Ahy +disp Ay —Chye b + 687, gue A2, — 88, dpe - A2,) +

S et Ko — T Sies b A BEP — pfi’”)) (4.d.1)

N
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The above expression still contains bilinear terms (dis, - AL, andchy - A% ). This non-
linearity comes from the interdependency between the DAM and the DLFM, and more
specifically from constraints (4.c.4) and (4.c.5) that link decision variables from the two
markets. Authors in [81] and [87] use the binary expansion technique in order to tackle the
non-linearities originated from the interdependencies between two markets. In this Chapter,
we use an iterative process to deal with these non-linearities, which achieves much higher
computational efficiency as will be discussed in 4.5.4. The steps of this procedure are:

1. Replace nonlinear terms disy ¢ - A , andchy,; - AL . with linear terms dis, ;- A% ;

and chy,; - AL ., where Af ; is a constant. This constitutes our model linear and the
resulting optimization problem is a MILP.

2. Initialize the iteration counter v = 1 and set )lﬁ:’t’ =0.

3. Solve the MILP and calculate the optimal values Aﬁ:’t’ and the optimal objective

function value ¢v. Set /’lfl:'t’ = /’lfl:'t’ and update iteration counter v = v + 1 and

4. Ifp¥ — p” 1 <€, with € being a small real number, then stop the process.
Otherwise, go to 3.

4.5. Performance Evaluation

This section studies the performance of our proposed model using a modified IEEE 33-Bus
test distribution system. The algorithm is implemented in MATLAB and in each iteration the
MILP problem is solved using Gurobi 9.0.2. All simulations were performed on a personal
computer with Intel Core i7 4.00GHz and 32 GB RAM.

4.5.1. Input Data

——

Figure 31: IEEE 33-node distribution system

The single-line diagram of the IEEE 33-Bus test system [105] is illustrated in Figure 31. The
total installed DG nominal capacity is 39 MW and the total base load is 18.575 MW and 11.5
MVAr. Detailed network, load and generation data of this modified system can be found in
[148]. We considered two 2.5 MW x 1.6h BSUs, located at buses 24 and 30 in the
distribution network (see Figure 31). Their discharging/charging efficiencies are set to nfl =
n{ = 0.93, while the initial state of energy of the BSUs is assumed to be 87.5%. Thirteen
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competing ESPs are assumed to provide flexibility services to the DSO through their
participation in the DLFM. These ESPs control assets that are located at buses 13, 14, 16, 17,
18, 22, 24, 25, 29, 30, 31, 32 and 33 and their active and reactive power bidding prices are
set to 15 €/MWh and 3 €/MVAr, similar to [149]. Data from Mavir, the Hungarian TSO [150],
and the HUPX, the Hungarian Power Exchange [151], were used for the Day-Ahead Energy,
Reserve and Balancing Markets with Monday, April 1 2019 as a reference date. Regarding
the Reserve Market, data from the Frequency Containment Reserve market clearing process
were used. Balancing Market price scenarios were formed from historical data for all
Mondays of 2019 of the Mavir's Balancing Energy Market. Since the Mavir's data contains
15-minute separate up and down regulating prices, for our purposes they were transformed
into hour basis and single price form using weighted average with a quantity as a weight. On
the other hand, scenario weights were assigned using least distance scenario reduction
technique [152] (probability of a scenario is added to the first next closest scenario, while
the original scenario is removed) until only 12 scenarios remained. An interested reader can
find a complete set of input data in [148]. Finally, a daily (24-h) time horizon is considered.

4.5.2. Case Study Results
To evaluate the proposed model, we examine and compare the following four cases:

1. Case 1: The ESP provides (energy and regulation) services to only the TSO through
its participation in the DAM and RM.

2. Case 2: The ESP delivers flexibility services to the DSO through its participation in
the DLFM. For its upward/downward P-flexibility provided to the DSO, the ESP will
be paid/pay at the BM price.

3. Case 3: The ESP participates in all 4 markets (DAM, RM, DLFM, and BM) in a
sequential manner. More specifically, the ESP initially optimizes its BSUs portfolio
in order to maximize its profits from a certain market, without taking into
consideration the markets that follow.

4. Case 4: The ESP participates in all 4 markets taking full advantage of the proposed
model.

Table 10: The ESP’s Scheduling and Bidding Decisions, and Market Prices in Case 1

Hour dis,/ch, riP psdn P, c5an Af AP, agn

(Mw) (MW) (e/MmwW) (€/MW) (€e/Mw)
1 2.86 2.15,4.38 12.73,12.73 36.09 12.73,12.73
2 - 3.65,4.38 12.73,12.73 34.69 12.73,12.73
3 - 3.65,4.38 12.73,12.73 35.08 12.73,12.73
4 -0.27 3.89,4.10 12.73,12.73 34.57 12.73,12.73
5 -1.28 5,2.82 12.73,12.73 34.75 12.73,12.73
6 - 5,2.82 12.73,12.73 39.9 12.73,12.73
7 - 5,2.82 12.73,12.73 49.8 12.73,12.73
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8 1.55 3.45,4.61 12.73,12.73 57.75 12.73,12.73
9 0.33 3.12,5 12.73,12.73 58.6 12.73,12.73
10 - 3.12,5 12.73,12.73 52.2 12.73,12.73
11 - 3.12,5 12.73,12.73 48.81 12.73,12.73
12 - 3.12,5 12.73,12.73 45.66 12.73,12.73
13 - 3.12,5 12.73,12.73 45.46 12.73,12.73
14 - 3.12,5 12.73,12.73 42.57 12.73,12.73
15 - 3.12,5 12.73,12.73 41.92 12.73,12.73
16 - 3.12,5 12.73,12.73 41.39 12.73,12.73
17 -2.18 5,2.82 12.73,12.73 42.05 12.73,12.73
18 - 5,2.82 12.73,12.73 46.02 12.73,12.73
19 - 5,2.82 12.73,12.73 47.07 12.73,12.73
20 1.88 3.12,5 12.73,12.73 62.41 12.73,12.73
21 - 3.12,5 12.73,12.73 64.3 12.73,12.73
22 -0.96 3.95,4.04 12.73,12.73 48.12 12.73,12.73
23 -0.10 4.03,3.94 12.73,12.73 42.5 12.73,12.73
24 -2.86 6.51,1.08 12.09, 12.73 37.5 12.09, 12.73

*A negative/positive value corresponds to the BSUs’ charging/discharging mode
O T . _ sup __ s,up s, dn __ s, dn
dis; = Yiesdisi.chy = Yieschie, 7y = Yies e Tt = Yies Tit

In Case 1, the ESP makes profits from providing energy and frequency regulation services to
the TSO through its participation in the day-ahead energy and the reserve market,
respectively. Table 10 illustrates the scheduling and bidding decisions of the ESP, along with
the DAM and RM prices. In this case, the ESP's main target is to guarantee that the BSUs will
have the maximum capacity available to offer in the RM, since this market brings the highest
profits. Hence, the ESP trades energy in the DAM mainly to gain more profit opportunities
but also to pre-charge energy for the RM. For example, the ESP sells total power of 2.86 MW
int = 1, when the energy price is higher as compared to the following hours. Also, this
enables the ESP to offer higher downward regulation reserve capacity. The ESP seldom
performs energy arbitrage between the low-cost hours (e.g.,t = 4 and t = 5) and high-cost
hours (e.g., t = 8 and t = 9). In discharge hours, the ESP offers higher downward reserve
capacity, while the BSUs' charging process enables it to offer higher upward reserve
capacity. However, in most hours the ESP keeps its BSUs idle. The ESP's main objective is to
offer high combined reserve capacity at all times (note that the upward and downward
reserve prices are equal with the exception of t = 24), while in parallel take advantage of
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the most significant energy price fluctuations over time in the DAM. As shown in Figure 32,
the ESP gains 26.25€ from its participation in the DAM, and 2417.9€ from providing ancillary
services to the TSO, resulting in a total profit of 2444.2€.
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Figure 32: Financial balance per market for all four case studies

In Case 2, the ESP provides flexibility (upward or downward, P- or Q-flexibility services) to
the DSO. For the BSUs' active power activations decided in the DLFM, the ESP will also have
to pay/be paid in the BM. The purpose of the existence and operation of a DLFM is to ensure
a direct participation of the DERs in the wholesale (TSO) markets without putting at risk the
distribution network operation. The energy market produces a dispatch that violates several
distribution network constraints at multiple hours. The FMO runs the DLFM in order for the
DSO to purchase flexibility services to stabilize its network. The DLFM clearing process
results are presented in Table 11. In this specific case study, taking into consideration the
production of the DGs and the local demand decided in the DAM, the distribution network
faces mostly the over-voltage and under-voltage issues, and thus, the DSO mostly requires
Q-flexibility services. Hence, we see in Table 11 that the BSU at node 24 draws reactive
power during most of the day, when the negative QLMPs indicate the need for absorbing
reactive power, while the BSU at node 30 offers reactive power in all hours (positive
QLMPs). The ESP chooses only a few hours during the day to offer upward or downward P-
flexibility services and using only the BSU at node 24. More specifically, the BSU at node 24
draws active power at hours t = 11 and t = 15, when the absolute value of the negative
PLMP is high and, in parallel, the BM expected price is relatively low. On the other hand, the
ESP chooses to discharge power at hourst = 7,t = 8 and t = 22 with zero PLMP, since the
BM prices are high enough. Overall, the ESP gains a total of 674.04€ (571.81€ from the DLFM
and 102.23€ from the BM).

74



Table 11: The DLFM Clearing Results in Case 2

Hour | PO /PRI | PRE/RT | anTIa" | 4T /a" | Mo 2o A0 430, PR
(MW) (MW) (MVAr) (MVAr) (€e/mMw) (€/MVAr) prverid
1 0 0 -2.81 1.70 -10.27, 2.98 -6.97,3 18.59
2 0 0 -2.31 1.57 -10.27, 2.98 -6.97,3 21.96
3 0 0 -2.50 1.37 -10.27, 2.98 -6.97,3 24.10
4 0 0 -2.50 1.19 -10.27, 2.98 -6.97,3 25.52
5 0 0 -2.50 1.28 -10.27, 2.98 -6.97,3 28.33
6 0 0 -1.93 1.96 -10.27, 2.98 -6.97,3 33.14
7 0.70 0 -2.21 0.39 0,11.43 -0.05, 8.47 61.73
8 0.69 0 -2.22 1.33 0,12.46 -0.25, 8.87 25.98
9 0 0 -2.40 1.98 -9.59,13.74 | -6.88,10.34 21.63
10 0 0 -2.50 1.47 -9.59,13.74 | -6.88,10.34 38.24
11 -1.63 0 -1.83 0.89 -9.54, 15 -6.87,11.24 12.76
12 0 0 -1.91 2.5 -15, 3.55 -10.61, 3 29.81
13 0 0 -2.5 2.5 -15,3.01 -10.40, 3 39.82
14 0 0 -2.34 2.5 -15,3.01 -10.40, 3 41.31
15 -0.52 0 -2.29 2.5 -9.94,3.44 -6.93,3 18.71
16 0 0 -2.5 2.5 -9.97,3.41 -6.93,3 41.56
17 0 0 -2.5 1.12 -9.59,13.74 | -6.88,10.34 36.79
18 0 0 -0.91 2.45 -9.64, 12.02 -6.89, 9.12 24.53
19 0 0 1.65 2.19 1.83, 15 0.93,10.54 21.85
20 0 0 2.28 2.5 1.52,12.55 0.78, 8.83 32.62
21 0 0 0.88 2.5 1.51,12.53 0.77,8.82 36.68
22 1.87 0 -1.52 2.5 0.26,12.04 0, 8.69 83.26
23 -0.73 0 -2.2 1.75 0, 8.55 0,6.41 54.68
24 -0.89 0 0 2.5 -10.27, 2.98 -6.97,3 50.47

*A negative/positive value corresponds to downward/upward flexibility services
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In Case 3, the ESP initially decides on its energy trading in the DAM ignoring the next steps
(participation in RM, DLFM and BM). Then, given the BSUs' power schedule, the ESP offers
reserve capacity in the RM without considering its strategy in the subsequent markets.
Finally, the ESP offers its remaining power capacity to the DSO in DLFM, disregarding the
forecast BM prices, at which the ESP eventually will pay/be paid its DLFM active power
dispatch. Table 12 illustrates the final BSUs' active/reactive power schedules and reserve
capacity commitments. At first, the ESP performs energy arbitrage to maximize its profit
from the DAM and results in 217.67€. This, however, hampers the BSUs' ability to offer
regulation services through the RM. Comparing the RM prices in Table 10 and Table 12, we
see that not co-optimizing the bidding strategies for energy and reserve leads to a reduction
in the upward reserve prices during hours t = 4 and t = 16 and in the downward reserve
prices during hours t = 9 and t = 21 by 5%. The lowered prices, along with the diminished
available capacity to offer to the RM, reduce to a RM profit for the ESP of 1699.7€, which is
30% lower than the profit that the ESP gains in the RM in Case 1. On the other hand, the
ESP's previous scheduling and bidding decisions leave the BSUs with neither the upward nor
the downward active power capacity to offer to the DSO. Thus, the BSUs provide only Q-
flexibility in the DLFM, which is constrained by the maximum apparent power of the
converter (Constraint 4.a.15). Studying the DLFM QLMPs in Cases 2 and 3 (Table 11 and
Table 12), we notice that the ESP, through its bidding policy, manages to increase by
absolute value the DLFM prices at nodes 24 and 30 in most hours. However, the inability to
provide P-flexibility services leaves the ESP earning 498€, which is 13% lower than the ESP's
profits from DLFM in Case 2. Ultimately, the myopic behavior of the ESP, which participates
in each market disregarding the profit opportunities that follow, results in its total profit of
2415.7€, which is 1.17% lower than in Case 1, even if the ESP participates in all four markets.

Table 12: The BSUs’ Power and Reserve Schedules in Case 3

1 ) f f ,d s ,d ; ,d § ,d
dis/ |y vt | py P o3t | 0o o5 |4y ayt | a5t ast | AT AR | A5y Ak, /134,u/130'0,t
Hour
(MW) | (Mw) (MW) (MW) (MVAr) (MVAr) | (€/MW) | (€/MW) | (€/MVAr)
12.73, -10.27,
1 5,1.08 0 0 -1.99 2.06 -6.97,3
12.73 2.98
12.73, -10.27,
2 5,1.08 0 0 -2.11 1.93 -6.97,3
12.73 2.98
12.73, -10.27,
3 5,1.08 0 0 -2.37 1.71 -6.97,3
12.73 2.98
12.09, -10.27,
4 | -1.08 | 6.080 0 0 -1.77 2.28 -6.97,3
12.73 2.98
12.73, -10.27,
5 5,0 0 0 -2.49 1.63 -6.97,3
12.73 2.98
12.73, -10.27,
6 5,0 0 0 -1.74 2.32 -6.97,3
12.73 2.98
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12.73, | -10.27,
7 0 5,0 -0.98 2.50 -6.97,3
12.73 2.98
12.73, | -10.01,
8 | 244 | 2.56,2.82 -1.99 1.99 -6.94, 3
12.73 3.36
12.73, -9.92,
9 5 0,8.6 0 0 -6.93,3
12.09 3.25
12.73, -6.87,
10 0 0,5 -2.5 1.81 -9.54, 15
12.73 11.24
12.73, -6.82,
11 0 0,5 -2.5 1.14 -9.17, 15
12.73 10.85
12.73,
12 0 0,5 -1.75 2.5 -15,3.54 | -10.62,3
12.73
12.73,
13 0 0,5 2.4 2.5 -15,3.54 | -10.62,3
12.73
12.73,
14 0 0,5 -2.12 2.5 -15,3.54 | -10.62,3
12.73
12.73, -6.83,
15 | -3.60 | 3.12,1.40 -1.69 1.69 -9.26, 15
12.73 10.94
12.09, -6.87,
16 | -5 7.44,0 0 0 -9.54, 15
12.73 11.24
12.73, -6.87,
17 0 5,0 -2.5 1.50 -9.54, 15
12.73 11.24
12.73, -6.82,
18 0 5,0 -0.72 2.37 -9.17,15
12.73 10.85
12.73, 0.93,
19 0 5,0 1.88 2.50 1.83,15
12.73 10.54
12.73, 1.55,
20 | 2.44 | 2.56,2.82 0.61 1.99 0.79, 8.83
12.73 12.57
12.73, -6.89,
21 5 0,8.6 0 0 -9.65, 12
12.09 9.11
12.73, 1.02,
22 0 0,5 1.40 2.5 0.52, 8.67
12.73 12.07
12.73,
23 | -2.53 | 2.19,2.47 1.98 1.98 0.61,15 | 0.31,11
12.73
24 | 5 6.51,0 0 0 1273, | 061,15 | 031,11
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12.73

*A negative/positive value corresponds to the BSUs’ charging/discharging mode or

downward/upward flexibility services

*% J: _ . _ sup __ s,up s,dn __ s,dn
dis; = Dies dis;;.chy = Yies chit,1; = Yies e Tt = Yies Tit

Implementation of our proposed bidding strategy, which co-optimizes the stacked revenues
of the ESP coming from all four markets under study (Case 4), produces the results
presented in Table 13.

Table 13: The BSUs’ Power and Reserve Schedules in Case 4

ps,up ps,up qs,up qs,up
z sup _sup d d 1,t 2t 1,t 2t up ,d P P Q Q
disye / Tt ' Toe ri,tn' r;,tn s,dn s,dn s,dn s,dn A A" A24,0 430, 124.“ '130,t
Hour | chyy, disy/ /Pie | /P2 | /A4y /a7
chy; (MW (Mw) (Mw) (€/MW) | (€/MW) | (€/MVAr
2¢ (MW) (MW) | (MW) | (MVAr) | (MVAr) ( )
12.73, -6.99,
1 25,25 0,0 1.61,25 -1.81 | -0.93 -2.22 1.82 -10.36, 0
12.73 0.86
12.73, -10.27,
2 25,0 0,1.56 211,25 -2.4 0 -2.46 1.57 -6.97,3
12.73 2.98
12.73, -10.27,
3 2,50 0, 1.56 2.22,2.5 -2.78 0 -2.16 1.38 -6.97,3
12.73 2.98
12.73, -10.27,
4 2.5,-0.46 0, 1.96 2.25,2.04 | -2.75 0 -2.40 1.84 -6.97,3
12.73 2.98
12.73, -10.27,
5 0.85, -0.67 1.65,2.54 | 2.39,1.37 | -0.96 0 -2.45 2.22 -6.97,3
12.73 2.98
12.73, -10.27,
6 0.7,-0.29 1.80,2.79 | 2.22,1.07 | -0.98 0 -1.49 2.38 -6.97,3
12.73 2.98
12.73, -10.27,
7 1.77,0 0.03, 1.27 4.27,2.5 0 1.23 -1.77 1.03 -6.97,3
12.09 2.98
12.73, -9.68, -6.89,
8 2,50 0, 1.56 2.14,2.5 -2.86 0 -0.66 1.47
12.73 11.99 9.12
12.73, -9.59, -6.88,
9 2,50 0, 1.56 1.51,25 -3.49 0 -0.95 2.02
12.73 13.74 10.34
12.73, -9.59, -6.88,
10 2.5,-0.21 0,1.74 2.71,2.29 | -2.29 0 -2.41 1.76
12.73 13.74 10.34
12.73, -6.83,
11 2.5,-0.88 0,25 0,141 -5 0 0 2.14 -9.26, 15
12.73 10.94
12 2.5,0.71 0,1.79 2.77,2.23 | -2.23 0 -2.39 2.21 12.73 -15,3.14 -10.50, 3
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12.73
12.73,
13 2.5,0.16 0,1.63 | 2.52,2.41 | -2.48 0 249 | 2.43 o3 | 15301 | -1040,3
12.73,
14 1.94,0 0.56,1.63 | 2.59,2.41 | -1.85 0 -2.46 2.5 o3 | 15301 | -1040,3
12.73, -9.94,
15 2.5,0 0,1.63 | 0.73,2.41 | -4.27 0 -1.77 2.5 -6.93,3
12.73 3.44
12.73, -9.97,
16 0.86, 0 1.64,1.56 | 2.41,2.5 | -0.86 | 0.07 | -2.5 2.47 -6.93, 3
12.73 3.41
12.73, -6.87,
17 | 0.60,-0.80 | 1.90,2.25 | 2.11,1.7 -1 0 234 | 217 -9.54, 15
12.73 11.24
12.73, -6.87,
18 2.5,-0.14 0,2.37 | 1.86,1.56 | -3.14 0 0 2.16 -9.54, 15
12.73 11.24
12.73, 0.93,
19 | -0.45,-0.16 | 2.5,2.5 | 1.41,1.41 0 0 2.31 2.43 1.83, 15
12.73 10.54
12.73, 1.52,
20 0,0 25,25 | 1.41,1.41 0 0 2.28 2.5 0.78, 8.83
12.73 12.55
12.09, 0.66,
21 | -0.34,-0.39 | 2.8,2.84 | 1.07,1.02 0 0 2.36 2.34 1.30, 15
12.73 10.75
12.73, 0.26,
22 -2.5,-25 | 0.61,1.73 0,0 435 | 327 | -1.58 | 1.69 0, 8.69
12.73 12.04
12.73,
23 2.3,-2.5 2.6,2.34 0.2,0 0 1.55 | 0.48 2.11 o3 | 06015 | 031,11
12.09, | -10.03, -6.94,
24 | -0.76,-2.5 | 3.26,3.26 | 0.54,0 0 1.24 | -0.07 | 1.98
12.73 11.02 8.76

*A negative/positive value corresponds to the BSUs’ charging/discharging mode or
downward/upward flexibility services

In this Case, the ESP attempts to take advantage of all business opportunities. Figure 32
indicates that in Case 4 the ESP achieves DAM profits far higher (974.09€) than in Cases 1 or
3. Note that the DAM dispatch (dis; ., ch; ) does not determine the BSUs' state-of-charge
alone, but it is only one of the two components of the final charging/discharging schedule
(the other one is the DLFM active power dispatch, see Eqs (4.a.9), (4.a.13)). Thus, the ESP
can perform arbitrage between the DAM and the DLFM (discharge in DAM and charge in
DLFM and vice versa), in contrast with Cases 1, 2 and 3 where the ESP does not have this
opportunity. Therefore, the ESP chooses to trade energy in the DAM much more frequently
than in the previous Cases. The ESP's decision on the charging/discharging DAM schedule of
the two BSUs does not consider only the DAM prices but also the profit opportunities in the
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RM, the nodal DLFM prices (and therefore the location of each BSU in the distribution
network) and the expected BM prices. More specifically, the ESP, expecting the PLMPs at
node 24 to be negative (DSO's signal that it needs downward P-flexibility in this area) during
most of the day (t = 1-18, 24), uses the BSU at this node at maximum discharge power (2.5
MW) in hours t = 1-4, 8-13, 15 and 18. In this way, the ESP creates profit opportunities in
the RM by maximizing its available downward reserve capacity (defined at the right-hand
side of constraint 4.a.6). However, in order for the ESP to be able to sell energy and
downward regulation in the DAM and the RM respectively, the ESP has to provide
downward P-flexibility to the DSO, even if it means that the ESP will have to pay for it, since
the expected BM prices are higher in absolute value than the DSQ's reward per unit (Aﬁt).
Hence, the ESP commits the maximum downward reserve capacity to the RM that the state-
of-charge constraints of the BSU allow (constraint 4.a.10) and the rest of the available
downward power capacity is sold in the DLFM (see Figure 33, Figure 34).
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Figure 33: BSUs’ available and offered to the RM reserve capacity

In hours 5-7, 14, 16 and 17 the BSU at node 24 is decided to discharge power, but not at its
full capacity. This produces available upward reserve capacity (defined at the right-hand side
of constraint 4.a.5) and enables the ESP to also provide upward reserve capacity in the RM.
This capacity is entirely sold in the RM, except in hour when state-of-charge constraints do
not allow it (see Figure 33). In hours 20-23 the PLMPs are positive, indicating that the DSO
requires upward P-flexibility. However, constraint 4.a.12 dictates the BSU at node 24 to
charge power in order to restore the state-of-charge at the end of the day. Nevertheless, in
hour 22 the BM price is expected to reach its peak (83.26€), and thus the ESP provides the
DSO with 4.35 MW of upward P-flexibility, even if the DLFM price is quite low at this time.
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Figure 34: BSUs’ available and offered to the DLFM active power capacity

At node 30, i.e., the location of the second ESP's BSU, the DSO requires only upward P- and
Q-flexibility services throughout the day (except for the first hour, when /150,1 = 0). In order
for a BSU to be able to provide upward P-flexibility services, it should buy power in DAM.
Thus, the main criterion for the ESP to decide whether the BSU will sell active power in the
DLFM is the comparison between the energy price (at which the ESP will have to pay the
charging power) and the sum of the PLMP at node 30 and the expected BM price (at which
the ESP will be paid for the upward P-flexibility service). Therefore, the BSU at node 30
provides upward P-flexibility services to the DSO in hours 7, 16, 22, 23 and 24, when this is
financially advantageous (see Figure 35). During the rest of the day, we see in Table 13 that
the BSU chooses to trade power in the DAM, with the objective to have the highest possible
available upward and downward reserve capacity. Hence, as shown in Figure 33, the BSU
offers upward reserve capacity throughout the day and downward reserve capacity from the
beginning of the day until hour 21. In the last 3 hours the high profit opportunities in DLFM
and BM leads the ESP to leave no space for downward reserve capability.
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Finally, throughout the day, the ESP makes profit by also providing voltage support services
to the DSO, by absorbing (in hours when the QLMP is negative, Agt <= 0) or supplying (in

hours when the QLMP is positive, lgt > 0) reactive power to the grid. The capability of the
BSUs to trade reactive power depends on their active power schedule and the apparent
power rating of the converters (constraint 4.a.15). For example, in hours 12, 13 and 14,
when the absolute values of the QLMPs at node 24 are the highest throughout the day, the
aggregate active power schedule of the BSU located at this node is close to zero. Therefore,
the BSU can absorb reactive power at a rate very close to the maximum and increase its
profits. On the contrary, in hour 11 the aggregate active power dispatch of the same BSU
leaves no room for reactive power services, since it reaches the maximum apparent power
potential of the BSU. At node 30, the BSU supplies reactive power the local grid at all times,
as the positive QLMPs dictate.

Overall, Figure 32 indicates that the RM profits in Case 4 are lower than in Case 1, but higher
than in Case 3. In Case 1 the ESP, co-optimizing the energy and reserve services to the TSO,
tries to maximize its storage capacity that is available to be offered to the TSO for regulation
purposes, using the energy market. In Case 4 though, the ESP chooses not to offer its entire
available capacity in the RM, since the DLFM and the BM, which chronologically follow,
provide additional revenue streams. Even so, being much more active in the DAM comparing
to Case 3, the ESP has higher reserve potential in Case 4 and thus derives 14.7% higher RM
revenues (1950.6€). The ESP's decisions bring it profits of 1101.7€ from the DLFM, which
surpass by far the ESP's profits from the local grid services in Cases 2 and 3 (higher by
92.67% and 121.22%, respectively). However, the BSUs' P-flexibility services provision to the
DSO, which modify the agreed energy schedule in the DAM, lead the ESP to pay in the BM
210.94€, in contrast with the Case 2, in which the ESP earns 102.23€ and Case 3, in which
the ESP does not participate in the BM. In Table 14, the aggregate ESP's profits in all four
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Cases are presented. Our proposed strategy achieves a total gain of 3815.5€, which is super-
linear, i.e., the revenues from jointly optimizing the BSUs' services to both the TSO and the
DSO is larger than the sum of performing the individual applications (Case 1 and Case 2). In
fact, the ESP earns 22.36% higher revenues in Case 4, than in Cases 1 and 2 combined.
Moreover, our model (Case 4) accomplishes 57.95% higher revenues than the 'myopic'
strategy of Case 3.

Table 14: Total Profits of ESP

Casel Case 2 Case3 Case 4

ESP’s Profits (€) 2444.2 674.04 2415.7 3815.5

4.5.3. Sensitivity Analysis

This subsection studies sensitivity of the proposed decision-making procedure and the
profitability of the ESP to some externalities, such as the location of the BSUs and the
competing ESPs' offers.

4.5.3.1. Impact of the Location of BSUs

In this subsection, we demonstrate how the locations of the BSUs (i.e., the nodes in the DN)
affect the profitability of the ESP. For this purpose, we consider three potential scenarios for
the BSUs locations, namely: i) nodes 2 and 3, ii) nodes 25 and 32 and iii) nodes 24 and 30 (cf.
4.5.2). The ESP's individual market revenues for each location scenario are illustrated in
Figure 36. In the first scenario, the BSUs are located close to the root of the distribution grid,
where the demand for flexibility, and correspondingly the DLFM prices, are low. In this case,
the ESP exploits the DSQO's request for downward P-flexibility, so as to perform market
arbitrage and sell energy in the DAM. Thus, we observe that the DAM profits in this scenario
are higher than in any other market. The second highest source of revenues for the ESP is
the RM, while in the DLFM the ESP is paid only for its Q-flexibility services at a quite low
price. In the BM, the ESP pays for its downward P-flexibility services. In the second scenario,
the BSUs are placed at nodes 25 and 32, where the DSO's need for flexibility is rather high,
rendering the DLFM much more profitable for the ESP than in other two scenarios. The BSU
at node 25, since the DG3 production (see Figure 31) mainly requires the provision of
downward P-flexibility, is eligible to sell energy in the DAM during most of the day. On the
other hand, the under-voltage issues at node 32 force the DSO to demand upward Q- and P-
flexibility services, which leads this BSU to strategically lose money in the DAM in order to
offer remunerative flexibility services to the DSO. Overall, the total revenues for the ESP are
higher for location 2 (4120€), followed by location 3 (3815.5€) and location 1 (3358.2€)
profits.
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Figure 36: Breakdown of the ESP’s market revenues for each BSU location

4.5.3.2. Impact of Competing ESPs’ Price Offers

In subsection 4.5.2 we assumed that price offers of the competing ESPs are 15 €/MW for P-
flexibility and 3 €/MVAr for Q-flexibility services, as in [149]. Now we study the effect the
magnitude of these offers has on the results that our bidding strategy produces. To this end,
we examine three scenarios of the price offers presented in Table 15. The DLFM prices in
each scenario are illustrated in Figure 37, while the individual market ESP's revenues for
each scenario are presented in Figure 38. The DLFM profits increase when increasing the
competing ESP's offers since the DLFM prices rise. On the other hand, while the DAM profits
in Scenario 2 are higher than in Scenario 1, they plummet in Scenario 3. This is explained by
the fact that in Scenario 3 the high DLFM prices prompt the ESP to provide upward P-
flexibility services to the DSO at node 30. To do that, the BSU at this node has to charge
higher amounts of power in the DAM and ultimately downscale the DAM revenues.
Additionally, in Scenario 3 the ESP, in contrast with Scenarios 1 and 2, makes a small profit in
the BM, since the increase of the DLFM prices (and their comparison to the DAM prices)
makes it profitable for the ESP to provide upward P-flexibility services, which are
compensated in both the DLFM and the BM. Conclusively, the ESP in Scenarios 2 and 3 gains
30.67% and 66.57% higher profits than in Scenario 1 (i.e., 4985.8€ and 6355.5€ as compared
to 3815.5€).
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Table 15: Scenarios of Competing ESPs’ Price Offers
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Figure 38: ESP’s individual market revenues in each price offer scenario

4.5.4. Computational Efficiency

We evaluate the computational performance of our proposed iterative procedure using 3
case studies: a) the 15-bus radial distribution network from [125], b) the IEEE 33-bus radial
distribution system, and c) the 69-bus radial distribution system. The number of iterations
and the solution times are presented in Table 16. Our algorithm terminates in 3 or 4
iterations, with each iteration requiring on average 96.3, 452.5 and 958.8 seconds,
respectively, in each case study.

The binary expansion method is used as a benchmark to evaluate our solution method. In
the binary expansion case, the remaining bilinear terms in (4.d.1) are linearized using binary
approximations of variables dis, ; and ch, ;, combined with additional linear constraints. In
the 15-bus distribution network case study, the solver was manually stopped at 10,000 sec,
achieving a sub-optimal solution (5% less profits than the proposed method), while the
solver is terminated at 20,000 sec in the 33-bus network case study resulting in 6% less
profits than our method. Finally, in the 69-bus distribution network the binary expansion
method was terminated at 40,000 sec, resulting in 12% less profit than our proposed
procedure.

Table 16: Computational Speed Comparison

Proposed Solution Method Binary Expansion Method
15-Bus 33-Bus 69-Bus 15-Bus 33-Bus 69-Bus
Iterations 3 4 4 - - -
Time (sec) 289 1810 3834 10000* 20000* 40000*
Profits (€) 4081.6 3815.5 2452.5 3889.8 3602.9 2159.3

* The solver reached a predefined time limit
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4.6. Conclusions and Future Work

In this Chapter, we considered a novel market architecture that introduces a distribution
level flexibility market operating in the intra-day timeframe, between the day-ahead energy
and the near-real-time balancing markets. In this context, we formulated a bilevel model for
an ESP owning distributed BSUs to optimally calculate its market strategy. The bilevel
problem is recast into an MPEC through a KKT-based method. An exact linearization
approach, the Big-M method and an iterative process are implemented to tackle
nonlinearities. Performance evaluation results demonstrate that our model achieves super-
additive gains: the ESP obtains significantly higher profits through the joint optimization of
both the TSO and the DSO services than the sum of the individual profits from devoting the
BSUs to one of the two applications. Finally, a sensitivity analysis was conducted to
showcase the impact of some externalities on the results. The proposed model can be of use
to flexibility providers in the modern electricity market structure that accommodated
distribution-level flexibility market. Such market is expected in the democratized and DG-
rich power systems. Furthermore, our work can provide useful insights to policy makers,
regulators and market operators regarding the operation of the DLFM and the TSO-DSO
interaction. As a future work, we find it worthwhile to take into account uncertainties in
renewable generation, load and market competition, and study the impact of the associated
risks on the ESP's profitability. Also, our future research will be focused on the balancing
stage, including the activation of reserves.
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5. Chapter 5: Retail Pricing Scheme

® Fair pricing
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Figure 39: ESP's Retail Pricing Scheme Choice

In this Chapter, we examine a novel pricing mechanism that can be applied by the ESP to its
customers/end-users in order to reduce its energy costs (Figure 39). An ESP can considerably
lower the cost of energy they purchase from the wholesale market and create new revenues
streams, while offering consumers lower electricity bills and digital services via online
software platforms. Price-based DSM techniques can trigger the desired behavioral changes
and generate novel services and business models for the ESP’s participation in flexibility
markets. The energy pricing schemes proposed so far, do not strongly motivate consumers
to modify their electricity consumption habits, as they are unfair and thus unable to
effectively trigger behavioral changes and offer flexibility services. Based on this
observation, we develop a Behavioral Real Time Pricing (B-RTP) scheme, which offers an
easily adjustable level of financial incentives to consumers, by fairly rewarding the desirable
behavioral electricity consumption changes. Performance evaluation results demonstrate
that the proposed billing scheme affects the consumers’ behavior much more efficiently
than the traditional Real Time Pricing (RTP) mechanism, outperforming the latter in all
widely adopted metrics. Our billing mechanism is able to simultaneously: i)significantly
reduce energy cost compared with Real Time Pricing (10%-30%), ii) slightly increase
consumers’ welfare (2%-4%) and iii)ensure the fair allocation of financial benefits among the
consumers. All these result in significantly increased competitiveness of our billing
mechanism in the flexibility markets.

The remaining of this Chapter is organized as follows: Section 5.1 is introductory and
presents the requirements that a price-based DSM strategy has to fulfill. In Section 5.2, we
discuss the related work and we highlight the contributions of this thesis. In Section 5.3, we
describe the proposed system model. In Section 5.4, we propose our innovative B-RTP
scheme. In Section 5.5, we evaluate our proposed billing mechanism through extensive
simulations, using the RTP scheme as a benchmark. Finally, in Section 5.6 we conclude and
discuss future work.
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5.1. A Novel Behavioral Real Time Pricing Scheme for the Active

Energy Consumers’ Participation in Emerging Flexibility Markets
The aging infrastructure of the traditional electricity grid, the projected growth in global
electric power demand [153], [154], the increasing environmental concerns and the
circumstances in global economy [155] have triggered an increasing interest in energy
efficiency [156]. Moreover, the ongoing power system decarbonization results in high levels
of uncertainty and variability in the energy production rate. DSM is recognized as a
promising tool able to improve energy efficiency and network stability. DSM techniques are
deployed in order to incentivize electricity consumers to modify their Energy Consumption
Curves (ECCs) in a more energy-efficient way, aiming to achieve a continuous and steady
balance between production and consumption. Furthermore, the liberalization of electricity
markets boost the importance of the trade-off between the quality of services (QoS) that an
ESP offers and its profitability margins with respect to the new revenue streams that it can
create. Therefore, the development of advanced DSM strategies, able to efficiently deliver
more competitive energy services, is of a great importance.

Electricity consumers that participate in DSM programs take actions that can be classified
into two categories: (i) load shedding, by either adopting energy efficiency policies or
following a more conservative consumption pattern, and (ii) load shifting, by operating
flexible appliances in off-peak hours. Both of the aforementioned strategies elevate the level
of discomfort for the consumers. Therefore, for most consumers, financial incentives are
crucial to the design of effective DSM programs.

Intelligent energy pricing schemes are automated DSM strategies, which try to incentivize
electricity consumers towards a consumption pattern that provides an attractive trade-off
between their desired ECC and the one that is cost-efficient for the power system [157]. As
analyzed in Section 5.2, recent research has focused on the development of pricing schemes
with the objective to efficiently schedule flexible loads. Historically, the energy pricing
models started with flat electricity tariffs. Under this scheme, consumers are charged with
an identical and time invariant price per energy unit and are not really motivated to
consume electricity in an efficient way. This leads to over-investments by the DSOs and/or
TSOs in order to meet the load demand and ensure grid stability [158]. The pricing scheme
of Inclining Block Rates (IBR) was a first attempt to interact with the electricity consumers’
behavior. In the IBR scheme, the price per unit increases with the total energy that the user
consumes, creating a barrier that prevents the over-use of energy and consequently a power
shortage and/or network failures. The next step was the Time-Of-Use (ToU) pricing method,
which motivates consumers to shift loads into low pricing hours; however, a priori set prices
do not reflect the real-time needs of the grid. Hence, it may result in congestion issues
during the low-price hours. Real — Time Pricing (RTP) schemes ( [40], [50], [159], [160], [161])
have been proposed as a way to directly connect the actual energy production, transmission
and distribution costs with the retail energy price. However, RTP schemes still suffer from
the ‘tragedy of the commons’ phenomenon [162], in which a consumer that changes her
ECC (behavioral change in energy consumption) generates a benefit for the entire system. In
the average case, only a small portion of this benefit is returned to her, while the major part
of it is shared among all the consumers. In this regard, RTP schemes are not fair and do not
efficiently incentivize behavioral changes. This issue is a major motivator for the design of
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our proposed Behavioral RTP (B-RTP) scheme towards efficiently engaging end users in DSM
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Figure 40: Proposed architecture and business model for the energy flexibility units trading

In Figure 40, the role and use of the proposed B-RTP scheme for facilitating the trading of
DSM units in flexibility markets is illustratively explained. In the assumed business model,
the ESP purchases energy from the wholesale electricity market at a time- and volume-
variant cost G in order to satisfy the demand of its customer portfolio (energy consumers).
The aggregated users’ flexibility (behavioral changes) can create a cost reduction AG.
Subsequently, ESP can trade its ability to control the demand (e.g. reduce energy cost) as a
commodity in various types of transmission- or distribution-level flexibility markets. This cost
reduction AG can be fully returned back as a reimbursement/discount to the end-users or a
fraction of AG can also be used to increase ESP’s profits. In this chapter, we assume the
former case.

The objective of the proposed B-RTP scheme is the reduction of the energy system’s cost
without deteriorating the users’ quality of experience (or else, aggregated users’ welfare).
Moreover, B-RTP has to fairly allocate the cost reduction benefits among the users that
create them, which is very important for the success of the proposed pricing scheme.
According to the extensive performance evaluation results presented in Section 5.5 for the
proposed personalized energy billing mechanism, B-RTP achieves an energy system’s cost
decrease between 10% and 30%, depending on the cost of energy in the wholesale market
and the various users’ flexibility levels. For the majority of the simulation scenarios, the
users’ quality of experience is not affected at all. Actually, in some cases, it is enhanced by a
factor of 2-4%. Of course, in extreme simulation scenarios, in which flexibility need is crucial
for the network’s operation, the quality of experience may be slightly deteriorated (but
again remain within acceptable levels) at the expense of much better financial benefits
returned back to the end users. Finally, B-RTP achieves a fair allocation of the financial
benefits to all end users according to the degree of each one’s participation in the total
energy system’s cost decrease. What's more interesting is that ESP can dynamically
configure the trade-off between the afore-mentioned Key Performance Indicators (KPIs) in
order to achieve its optimal participation in the flexibility markets (cf. parameter ‘y’).
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5.2. Related Work

In the context of liberalized electricity markets and progressive ESP business models in the
smart grid sector, a pricing scheme has to fulfill specific requirements (by achieving an
attractive trade-off) such as: i) the consumer’s satisfaction (or else user’s welfare), ii) the
stability/efficiency of the power grid (or else energy system’s cost), and iii) fairness (or else
ensure that each user receives a financial reward, which is exactly proportional to her
contribution in the energy system’s cost decrease).

The first requirement is widely known as user’s welfare and is determined as the satisfaction
(level of comfort) of a user at a given time instance as described by her ECC, minus the bill
she has to pay for it. The users’ welfare achieved by a DSM program determines the
willingness of a user to participate in the DSM program. In other words, it demonstrates
which program leads to more competitive services in an open energy market. In [40], [41],
[42] and [43] users’ welfare is considered as the system’s objective. In [40], a distributed
algorithm is proposed, where users shed their consumption attempting to maximize their
welfare as a response to price signals from the ESP. In [41] and [43], game-theoretic
approaches are used, in which users shift or shed their loads with the objective to maximize
their own welfare, while the ESP sets the real-time energy prices based on users’ decisions.
Authors in [42] consider users that can operate both shiftable and curtailable loads with the
same objective; however, prices are set a priori and the interaction between the ESP and the
end users is not considered. Our work’s novelty is that we examine user’s welfare together
with the decrease of energy system’s cost and fairness KPI.

The second requirement expresses the capability of a pricing model to incentivize energy
consumers to adopt ECCs that minimize the production and distribution cost of the energy
that they consume. In our case, this cost is the one that the ESP pays to the wholesale
market in order to purchase the required energy to satisfy the aggregated ECC (i.e. demand)
of its users. Therefore, this requirement is denoted as behavioral efficiency and it reflects
which pricing model is able to fulfill the objectives that energy producers, DSOs, TSOs and
BRPs set. In [44], [45], [46], [47] and [48] behavioral efficiency is evaluated in terms of
reduction of the total energy cost. In [45], an online Electric Vehicle (EV) charging scheduling
algorithm is proposed that minimizes total energy cost, while in [46] an optimization-based
algorithm is proposed for the operation of different classes of devices with the objective to
minimize the energy cost without sacrificing users’ comfort. Researchers in [47] consider
both energy cost and users’ welfare as their system’s objective, while Soliman et al in [48]
present a game-theoretic approach to analyze the interaction between end users and the
ESP in the presence of storage devices. The objective of the model is the minimization of
energy cost. In [163], users schedule their consumption in order to reduce the system’s
Peak-To-Average Ratio (PAR), which is linked to system’s energy cost. On the other hand,
users’ comfort is not taken into consideration. Again, our proposal goes one step further by
considering all three above-mentioned KPIs at the same time.

The third requirement is fairness. It refers to how fairly the system’s energy savings, which
result from the behavioral changes of the participating users, are allocated among them.
Baharlouei et al [50] propose a pricing model based on the principle that the users’ bills
should be analogous with their contribution to the system’s energy cost reduction. Finally,
the design of a pricing scheme should take into consideration the profitability of the ESP, if
the business model facilitates this option [159], [164]. However, these fairness-related works
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admit that they sacrifice energy system’s cost savings in order to achieve their objective,
which is a problem that our proposed scheme addresses, too.

In the majority of the aforementioned works, the sole objective is social welfare
maximization, which is defined as the users’ comfort minus the system’s cost (or user
welfare plus the ESP’s profits). In these pricing schemes, social welfare maximization
generally comes with budget revenue (profit) for the ESP, which is not the case of the
business model assumed in this thesis. This thesis considers cases, in which ESPs sell energy
with (close to) zero profit to retail markets, such as: i) liberalized markets with perfect
competition [165] as analyzed in [166], ii) energy cooperatives [167] or islanded energy
sharing communities [168], where energy prosumers share their energy in order to ensure
the energy autonomy of the community, and iii) ESPs that participate in a flexibility market
[169] and provide profitable flexibility services to DSOs, TSOs and BRPs. Furthermore, in
contrast with the majority of related work, we consider that users are not just price takers;
however, they act as price anticipators. That is, they can have an impact on their energy bills
exploiting their flexible appliances.

Studies that propose DSM algorithms with active user participation use a user model in
order to evaluate their algorithms’ performance. Many works ( [40], [159], [170], [171],
[172], [173], [174], [175], [176]) exploit the assumed user model in order to design model-
specific pricing schemes leveraging analytic solutions. However, the electricity consumer
model is still unclear for the research community because there are no public large-scale
data from field trials. A comprehensive critique of this approach is presented in [177], [178].
In this thesis, we propose a discriminative pricing scheme based on each user’s behavior,
which preserves efficiency in terms of social welfare, while at the same time achieves a
budget-balanced system (or profits close to zero), fairness and reduced system cost. The
proposed algorithm, however, is not tuned to any specific user model. Rather, it performs
equally well for any user model that fulfills some mild assumptions. These attributes make
the proposed B-RTP an advantageous scheme for all above-mentioned business cases.
Finally, it fits very well the latter case, where an ESP participates in a flexibility market, as it
is able to motivate its users (customers) to adjust their ECCs according to the needs of the
market while keeping them well-satisfied. To the best of our knowledge, there is no existing
work to have dealt with this type of emerging business model considering at the same time
the three above-mentioned KPls. Conclusively, the contribution points of this Chapter can be
summarized as follows:

e A novel non-profitable energy pricing scheme, referred to as Behavioral Real-Time
Pricing, which exploits as incentives its high levels of fairness to remarkably reduce
the aggregated energy cost, while simultaneously slightly increasing user’s welfare.
B-RTP quantifies the system cost reduction achieved by each end user’s load shifts
and curtailments and rewards her accordingly.

e A mechanism that parameterizes the proposed scheme, enabling it to dynamically
adjust the degree of incentives. Thus, it indirectly controls the aggregated energy
cost. This gives ESP the opportunity to dynamically select the best trade-off among
the aforementioned three requirements according to its dynamically changing
business needs.

e A holistic comparison between the proposed B-RTP and a non-profit version of an
existing RTP scheme that is widely adopted in the literature. We demonstrate that B-
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RTP scheme achieves a more attractive trade-off among the aforementioned
requirements by reducing the system’s cost, while preserving social welfare
efficiency and enhancing fairness.

5.3. System Model & Problem Formulation

We consider a smart community, which consists of a set of electricity users (denoted as N)
and an ESP. An electricity consumer can be a single smart home or a group of smart homes
acting as a single unit. Each user i € N is equipped with advanced Smart Meters that
monitor her appliances’ ECCs and an Energy Management System (EMS) that schedules her
energy consumption over the scheduling horizon, according to the preferences that she sets.
We do not consider price-taking consumers as in [42]; on the contrary, users interact with
the ESP in order to reach an agreement on the energy consumption schedules and energy
prices. A communication network lies on top of the electric grid, enabling the message
exchange between the users and a Price Controller (PC) installed at ESP’s premise. The PC
receives each user’s j aggregate consumption and sends back to the users’ EMSs their energy
bills. As we later analyze, our proposed architecture includes limited information disclosure
from the energy consumers and thus preserves their privacy by following the same data
exchange model as in [179].

In order for an ESP to evaluate each end user’s behavioral change, 2 use cases are
considered: i) Users’ “base” ECC is a priori known (before the behavioral changes that B-RTP
will incentivize) and ii) Users’ “base” ECC is unknown. By “base”, we mean the
natural/voluntary (unforced) consumption behavior of a user, in the absence of incentivized
time varying penalties or rewards. B-RTP applies to the first use case. Examples of this use
case are:

e Working environments in which operations that include power consumption are
scheduled and invariant from one day to another.

e Direct contract between ESPs and a large industrial client with standard ECCs.

e Aggregated consumption patterns of groups of users (which are accurate enough
because of statistical multiplexing).

The monetary gains from the total energy cost reduction AG may be fully given as discounts
to the end users, or other market stakeholders (e.g., ESPs) may acquire a certain fraction as
their profit. In addition, stakeholders that participate in flexibility markets ( [171]) obtain
additional revenues from these markets for their ability to control energy consumption/cost.
In this thesis, we consider the demanding subcase of a highly competitive environment (as in
[166]), where discounts are fully given to end users and revenues from flexibility markets are
close to zero; the relaxation of this assumption is left as future work.

Next, we present the user model and the energy generation cost model. Both models are
widely adopted in the literature. Their purpose is only to facilitate the evaluation of the
proposed B-RTP scheme through the comparison between B-RTP and RTP. Note that they do
not constitute a novelty aspect, but rather emphasize that the proposed B-RTP is utility-
agnostic and thus can be applicable in any type of user and cost modeling. Finally, without
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harm of generality, we consider a discrete-time model with a finite horizon that models the
scheduling period H. Each period is divided into T timeslots of equal duration.

5.3.1. Demand Side Model

Each user i € N owns a set D; of household devices, and each device d € D; consumes
energy xf‘d attime t € H. The total amount of energy that all devices in D; consume at time
t is denoted as xit. According to the literature ( [42], [159], [180]) a user’s devices can be
categorized into three categories with respect to their load flexibility: curtailable, shiftable
or non-adjustable.

5.3.1.1. Curtailable Loads

This category of loads includes appliances such as: heating, ventilation, and air conditioning
(HVAC) system, building lights with adjustable volume, etc. We denote by D.; € D; the set
of curtailable appliances of user i. For each deviced € D ;, each user i € N a priori declares

a desired consumption schedule x, ; = {%,t EH,de€ Dc,i} according to her preferences,

and a minimum consumption level xf,d ,t €EH,d € D; (see Eq. (5.1)). User’s satisfaction in

every time slot t depends on the amount of energy that a curtailable device actually
consumes, denoted as x{d, and on how close it is to the desired consumption J;Ei.
Therefore, user i attains a utility Uifd(xfd) in time interval t when her device d

consumes xit_d, which varies according to her lifestyle and preferences.

Xfg < xfg <xty (5.1)
In order to have a benchmark for the evaluation of B-RTP, we use the concept of utility
function, drawn from the fields of Microeconomics [181], which models the end users’
preferences regarding the operation of a device. In the case of curtailable devices, it is
reasonable to assume that the users’ utility function is increasing (the more a user
consumes, the more utility she perceives) and concave (the more a user consumes, the less
the incremental added utility is). This approach is also in line with the vast majority of the
literature (e.g. [40], [170], [182], [183]) where a quadratic form is usually considered for the
utility function, expressed as:

‘
wf,d-xf—%-(xf)z, if 0<xit<%

(a’f,d)z

2-a

Uf (xf, 0f) = (5.2)

t wfd
, if x; >7'

In Eq. (5.2), a and a)it are predetermined parameters, with a)f denoting the responsiveness
of user i to financial incentives (flexibility) at time interval t in terms of reduction of her
energy consumption, while parameter a expresses how the rate of change of user’s utility
changes as consumption changes. Another utility function that is used by the literature (

[43], [184]), exploits ;C:E in order to calculate the utility that user attains:

~\2

t _ ot ; t < of

ErEY —(x-—xl), if0<x; <x
Uf (xf) = l .
0, if xt >xt

(5.3)

In order to combine the advantages of the two aforementioned functions, we use a utility
function, which is mathematically expressed as:
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Umax,i,d ) lf xi,d > xlt,d

Ufa(xiq) =

Uélax‘i‘d denotes the maximum user satisfaction concerning appliance d, i.e., the one
achieved when she consumes her desired load. The proposed utility function of Eq. (5.4) is a
composition of the two aforementioned functions and is able to: i) capture the
heterogeneity in the flexibility among participating users, just as Eq. (5.2) does through
(wit‘d) and ii) explicitly correlate maximum user’s satisfaction with her desired consumption

xf‘d, as utility function of Eq. (5.3) is also able to do. In Eqg. (5.4), wﬁd is once again a
predetermined parameter that captures the flexibility of user i concerning appliance d in
time slot t. More specifically, the lower the value of parameter wf’d, the more tolerant user
will be towards a particular change in her desired energy schedule of device d. Figure 41
depicts user’s i utility at time slot t as a function of xit,d for a given Urtnax,i,a and different

values of wf ;.

wonon
w N =

E E E

U

Figure 41: User’s i utility in timeslot t as a function of her energy consumption for various flexibility levels

5.3.1.2. Shiftable Loads

This category of loads includes appliances that can shift their consumption according to
user’s preferences. Appliances such as: EVs, the dishwasher, the washing machine and the
clothes dryer can be considered available for consumption shift. We denote by Dy ; the set
of shiftable appliances of user i. For this type of appliances, energy consumer sets a desired

operating schedule xth,d,t € H,, where H, = [t%,tfd] is a time interval where t% is the
timeslot at which it is desirable for the device to start and tfd, is the timeslot at which d

normally finishes its task if it starts operation at t:‘f‘vd. Additionally, user i sets a deadline tf'd,
which is the latest time by which the task of device d should be completed. Thus, regardless
of the shifts that will take place, the total energy consumption of user’s i device d €
Dg; must reach a certain energy threshold E; ; by til,d, that is,

0<xfqg<Eq4, Vte[th,t,] (5.5)
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Z:idt’[f xit,d = Eiq, Vi €N,d € Dy; (5.6)
~—"id
Therefore, regarding user’s i shiftable loads, we can define a feasible scheduling set X; that
is,

1
tia

Xi = {x] Z X{q = Eiq, VdE€ Dy,

t=t%,
0<xfy<Eyq, ve e [t thy),
xfg=0, vteH\[tZ,tl,]} (5.7)

We assume that each user is fully satisfied when the operation of her device d € Dg; does
not deviate from her desired energy schedule X, 4 = {J;f;i,t € ﬁ;}, where H =[tZ, 1;5;] c

Hgand Hg = [t?;, til'd] C H. The degree (monetary value) of each user’s i dissatisfaction for
every unit of energy that a shiftable device d consumes in any other time slot (t € H\Hy)
depends on user’s individual lifestyle and preferences. In the literature, this particular
behavior of users is modeled by a disutility function ( [41], [159], [182], [185], [186], [187],
[188]). In this thesis, we assume that user’s dissatisfaction increases as her shiftable devices
consume more energy at later hours in Hg, which intuitively means that her waiting time
increases. Thus, we exploit the utility function used in [182], where user’s i dissatisfaction for
her/his device d is given by:

b
t-t
(8ia) v%-xig

DUigq = Yien, Erg

(5.8)
In Eq. (5.8), §;¢q = 1 is an adjustable control parameter. The higher the value of §;, the
higher the dissatisfaction of user j for a given change in her desired energy schedule of
device d will be. In other words, the lower the value of parameter §; 4, the more responsive
user i will be to price incentives. As we did in the case of curtailable loads, we once again
note that this utility function (Eqg. 5.8) is used only for evaluation purposes and the proposed
B-RTP is transparent to any utility function that fulfills the following properties:

i Non-decreasing functions. Users’ satisfaction increases with power consumption
level until the latter reaches a certain threshold (X):

Y>o (5.9)

ii.  The marginal utility (Eq. (5.10)) that users perceive is a non-increasing function:

ou
v
™ <0 (5.11)

In any other case, convex optimization may not be applicable to solve the user’s problem,
but rather some other heuristic algorithm (e.g., simulated annealing) may be required, which
is out of the scope of this thesis.
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5.3.1.3. Non-adjustable Loads

Each user i a priori declares which of her devices fall into this category. These loads have
predetermined consumption schedules and are not controllable by the EMS. We denote by
Dy ; the set of the devices that user j categorize as non-adjustable. Examples of this category

of appliances are: refrigerator, freezer, TV, etc. For non-adjustable loads, we should have:
x{y=xf, VieNteHdeDy, (5.12)

5.3.2. Energy Cost Model

In the literature [29], [40], [50], [159], [161], [164], [170], [189], in order for the pricing
models to be evaluated, an increasing convex function G(x) is often adopted to
(approximately) model the cost of energy that comes from conventional generation. Piece-
wise linear functions and quadratic functions are two examples of cost functions. In this
thesis, we use a quadratic energy cost function, the mathematical expression of which is
given by:

Gt=G6(ZX xf)=c-(ZTL 1xt) +b- (T x)+a (5.13)

where ¢ >0, b,a =0 are predetermined parameters that depend on the energy
generators characteristics. This cost function models either the cost of the ESP to purchase
the necessary energy units from the wholesale electricity market, or the actual cost of the
ESP to produce energy by operating its own generation units.

5.4. Proposed System

We consider electricity consumers (users) that participate in a DSM program (which is
modeled as a game). We suppose users are price anticipators, i.e., they are aware of the
billing mechanism and they consider the impact of their actions on their electricity bills.
Their objective is to maximize their payoff. User’s i payoff is defined as her individual
welfare, which equals to the total utility attained, when her schedulable appliances consume
a certain amount of energy (as analyzed in the previous section) minus her energy bill B;
given by Eq. (5.14). Thus, each user’s EMS calculates her energy consumption schedule by
solving problem (5.15), and then informs ESP about the updated consumption schedule x;.
ESP, in turn, sets the energy prices so as to achieve an attractive trade-off among the three
requirements that have been described in Section 5.2. Its primary goal is to motivate
consumers to change their ECCs through a fair billing scheme in order to reduce the total
energy cost without sacrificing efficiency in terms of social welfare. Social Welfare (SW) is
defined as the aggregate users’ comfort minus the total energy cost (Eq. (5.16)). Users and
ESP repeat the aforementioned steps until the process converges to the Nash Equilibrium
(NE).

W; = ZD“ S Ufg (xig) — ZDS[ (DULd ( Lds tfd' tf,d'xit,d)) — B; (5.14)
x; = argmax W; (5.15)
Subject to (5.1), (5.7), (5.12)
sw=3, (B0 STy ULy (xfa) — S DU, (65, P tha,xta) ) - TH G (5.16)
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In what follows, we start by presenting the RTP scheme and follow with the description of
our proposed B-RTP scheme. The RTP scheme will be used in Section 5.5 as a benchmark, in
order to evaluate the performance of B-RTP.

5.4.1. State-of-the-art Real-Time Pricing (RTP) Scheme

In the initial phase of the RTP ( [159], [161]) algorithm, ESP collects the desired schedule X;
of each user i from their EMSs, and calculates their nominal energy bills ELRTP, VieN. In
order to do so, ESP exploits Eq. (5.17) to calculate the price (average cost) per unit of energy
at each time interval t as

pt = 6B, %) )

5.17
Zl 1 l ( )

ESP, through the communication infrastructure, informs its customers about the energy bills,
calculated by

Birrp = Yhpt 'xit (5.18)

Eq. (5.17) corresponds to a non-profit version of RTP ( [159], [161]). In [159], it is proven that
social welfare is maximized when p! is set to the marginal cost of energy,
(i.e. dG(EN, xH)/d(EN, xb)). However, in this case, social welfare maximization comes
with budget revenue, which violates the budget-balance property of the assumed business
model (cf. Section 5.2). Thus, in order to evaluate B-RTP, we exploit a non-profit RTP version
according to Eq. (5.17). The algorithm of RTP scheme is summarized in Table 17, where k is
an index for the algorithm’s iterations.

Table 17: Algorithm for the Calculation of the Energy Bills and the Energy Consumption Schedules in RTP

1 nitialization: k = 1, x¥ = x¥, B¥prp = By prp

2 Repeat

3 k- k+1

4 Foreachuseri € N

5 Receive BﬁfRTP from ESP

6 Repeat

7 Update x¥

8 Bi-‘,RTP is updated through (5.17), (5.18)

9 Calculate W using (5.14)

10 Until Reach solution of (5.15) subject to (5.1), (5.7) and (5.12)
11 End for

12 Calculate divergence = max|x** — xt¥| VieN,teH
13 | Until divergence < desired accuracy

14 | End

5.4.2. Proposed Behavioral Real-Time Pricing (B-RTP) Scheme

B-RTP model is a hybrid billing mechanism that is able to take full advantage of users’
flexibility. This is achieved through a personalized billing policy, which rewards consumers’
behavioral change (i.e., ECC adjustment) in a fair manner. In more detail, consumers receive
a discount in their energy bill, which is equal or proportional to their contribution to the
total energy cost reduction. Users that do not change their ECCs do not receive similar

treatment and may even be penalized in cases of emergency situations, in which a
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significant energy cost reduction is demanded (e.g., network congestion, lack of energy in
islanded mode, etc.). In these cases, as our evaluation results will show, ESPs using B-RTP are
able to participate in various types of flexibility markets ( [169], [190]) without sacrificing
user’s welfare and fairness.

As in RTP algorithm, in the initialization phase of B-RTP users set their desired consumption
schedules %, (desired ECC). Based on those, ESP calculates B; zrp , Vi € N, using Egs. (5.17) -
(5.18), and communicates them to the users. Each user, in turn, having knowledge of the
method of her energy bill’s calculation, keeps updating her ECC until she reaches the
solution of (5.15). This process is repeated until its convergence to the final (actual) ECCs and
energy bills. As it is obvious from the above, the valuation of an ECC for a specific user i (e.g.,
the evaluation of RTP price from Eq. (5.17)) is not a standalone process. The bill of each user
i depends on the ECCs of the other users in set N, as Eq. (5.18) depicts for RTP. RTP scheme,
as well as other DSM algorithms (e.g. [50], [159], [170]), considers that users determine their
ECCs sequentially and subsequently, ESP determines the valuation of the ECCs until the
convergence of this iterative process. In more detail, in each and every iteration of the
aforementioned process, a user i is implicitly but adequately informed (through the billing
system) about the decisions (ECCs) of the users that acted before her and exploits this
information to update x.

In the case of B-RTP, as far as the shiftable loads are concerned, this sequential process
creates an advantage for the users who act first over those who act later. For example, two
equally flexible users with identical ECCs would be similarly responsive to a specific financial
incentive given by the ESP. However, if the one that acts first shifts a load from a peak-hour
to a low-cost time interval, the second user will not be able to do the same, as that would
lead to a reverse peak. Thus, the first user will get a discounted energy bill, while the second
user will not. Consequently, users’ order of action plays a major role in the final energy
schedules and energy bills. To overcome this problem, we exploit and enhance [191], in
which users act in parallel and therefore they decide their actions without knowing what the
others do in each iteration of the aforementioned process. Thus, in every iteration k of B-
RTP, all users, based on the same information on billing mechanism, calculate their energy
schedule by solving (5.15) simultaneously. This approach, may temporarily create reverse
peaks, since every user, in order to achieve a larger total cost reduction and receive a larger
discount in her energy bill, shifts her shiftable loads to low—cost hours. In order to overcome
this problem, in each iteration k, we impose a restriction in the changes that users are
allowed to make in their energy schedules. In more detail, the updates are done so that
shifts are done in an incremental way, satisfying,

tk t,k—1 t,k—1
|x{* = x 7 < 0% X (5.19)

where 6% < 1 is a parameter that sets the upper bound of the volume of shift that a user can
make in a certain step k of B-RTP. If there is a reduction in total energy cost after users’

0%+1 will remain the same as in iteration k. Otherwise, if the

decisions (i.e. no peak shifting),
reduction of the total cost of the system is negligible, i.e. G*¥*1 > G* x (1 — ¢) for some
small € > 0, B-RTP will continue in the next step with a smaller pk+1 = gk . ¢,where 0 < ¢
< 1in order to approach the equilibrium more accurately. The iterations continue until 8
gets sufficiently small (6 < 6,,i,) (i.e., users are allowed to change a negligible fraction of

their energy schedules).
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At step k of B-RTP, each user i alters her desired/initial energy schedule X, into xf‘, according
to her flexibility and the B-RTP’s billing. This leads to a total energy cost reduction

ser =i oz ) - o (T )| s

Jj#i

Through B-RTP, ESP rewards each user i for her contribution to total energy cost reduction,
by an energy bill discount

{5 o)
ABk _ JE JE A Ck

l |
z(z((z<>~)(z<>))>
j#i J#i

In Eq. (5.21), the numerator represents the energy cost reduction that user’s i behavioral
change generated in step k of B-RTP. Note that each user acts knowing only what the rest of

(5.21)

the users have done in the previous iteration k-1 of B-RTP and having no knowledge of their
actions in the current iteration. The denominator equals to the summation of every user’s
corresponding contribution and thus we have ZﬁilABik = AC¥. Therefore, the energy bill
discount that each user receives is a fraction of the total energy cost reduction, and equal to
her contribution.

In order to combine the volume-aware pricing that RTP proposes and the incentives that B-
RTP offers, we designed a hybrid billing mechanism which, in every iteration k, calculates the
B{fB_RTP of each user i according to

BllfB—RTP = Ei,RTP -y ABL'k -(1-y)- (Ei,RTP - B;fRTP) (5.22)

Here, B{fRTP denotes the energy bill of user j in step k of the algorithm in case that ESP
applies the RTP model (according to Table 17). By studying Eq. (5.22), we observe that for y =
0, B-RTP is reduced to the RTP model, while fory = 1, the total cost reduction that is
derived from the behavioral change of a user is converted into an equivalent reduction in
her energy bill. In case 0 <y < 1, a fraction y of the cost reduction derived from the
behavioral change of a user is converted into discount in her bill and the remaining fraction
1-y is allocated to all participating users according to RTP. In case that y > 1, B-RTP actually
penalizes the set of users who are more reluctant to deviate from their desired energy
schedule, in order to further favor the flexible users.

By replacing Egs. (5.18) and (5.21) into Eq. (5.22) for ZIB{c and BERTP , respectively, one can

easily prove that XV, B{fB_RTP = G(Z?’zle’k), which means that our scheme is budget-

balanced and does not generate surplus or deficit of money. B-RTP is summarized in Table
18. As proved in [191], the convergence time of the algorithm of B-RTP is approximately the
same for different number of consumers. Moreover, the impact of the number of flexible
appliances per user on convergence time is negligible. Finally, the convergence of the
following algorithm is shown in [191].
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Table 18: Algorithm for the Calculation of Energy Bills and the Energy Consumption Schedules in B-RTP

1  |Initialization: k = 0, x¥ = %, B¥;_prp = Bogrp, Vi€ N, 0 = 0°,0,1in,6 ¢
2 | While 6% > 6,,;, do
3 Calculate G*
4 k-k+1
5 Foreachuseri € N
6 Receive B
7 Repeat
8 Update x
9 B _prp is updated through (17), (18), (21) and (22)
10 Calculate Wikusing (14)
11 Until reach solution of (15) subject to (1), (7), (12), (19)
12 End for
13 Calculate G*+1
14 If GK*1 > Gk« (1 - ¢)
15 9k+1 — Bk % (
16 Else
17 9k+1 — Qk
18  End
5.5. Performance Evaluation

In this section, we evaluate our proposed B-RTP scheme using the state-of-the-art RTP

scheme as a benchmark. We consider a system consisting of N = 10 energy consumers, each

of whom operates two curtailable and four shiftable devices. The selection of the 6

categories of devices was done in order to include in the evaluation all possible types of

loads. More specifically, each energy consumer may conserve energy through the

curtailment of the operation of an A/C and a lighting system, and additionally shift the

operation of an oven, a washing machine, a spin dryer and the charging of an EV. Moreover,

every user characterizes some of her appliances as non-adjustable loads. In more detail:

Lights: We assume that each household is illuminated by 14 bulbs, which can be LED
(8W), CFL (14W) or incandescent bulbs (60W), and that users want the lights on
from 18:00 until 24:00. Thus, user’s i total desired lighting energy consumption is
randomly selected over the interval [0.672 — 5.040 kWh]. We assume that in every
time slot, equal energy amounts are consumed.

A/C: Each user operates an A/C system from 14:00 until 22:00. Single A/C units come
in different sizes and use from 500 to 1500 watts. User’s j total desired A/C energy
consumption is randomly selected over the interval [4.0-12.0 kWh]. As we did with
the lights, we assume that equal energy amounts are consumed in every time slot
Oven: We consider that users classify the oven as a shiftable device. Ovens use 1000
to 5000 watts and are assumed to require at most one hour to complete their task.
Therefore, user’s i total desired oven’s energy consumption is randomly selected
over the interval [1.0 — 5.0 kWh]. Users’ desired oven plug-in times vary from 17:00
to 19:00.

Washing Machine: It falls into the category of shiftable appliances. Washing
machines use 400 to 1300 watts and finish their task in less than an hour. User’s i
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total desired washing machine energy consumption is randomly selected over the
interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 09:00 to 12:00.

Spin Dryer: It is also accounted as a shiftable device. The energy use of a spin dryer
varies between 1800 and 5000 watts and it takes less than an hour for it to finish its
task. User’s i total desired energy consumption is randomly selected over the
interval [0.4-1.3 kWh]. Users’ desired plug-in times vary from 13:00 to 18:00.

EV: The battery capacity is randomly chosen over the interval [5.5-6 kWh] and the
maximum charging rate is 2 kW. Thus, the minimum time that an EV demands in
order to be charged is 3 hours. We assume that users desire their EV to start
charging somewhere between 00:00 and 05:00 or 18:00 and 21:00, and to finish
ideally in 3 hours.

Non-adjustable loads: We assume that users categorize as nonadjustable loads
devices, such as the refrigerator, the TV, the freezer, the Wi-Fi Router, etc., which
are meant to be ON whenever requested. Thus, users’ aggregate energy
consumption of critical loads is randomly chosen from [3.6-11.4 kWh] at each
timeslot.

Table 19: Electricity Consumption of Households’ Appliances

Appliance Power Type of fff:i Duration tfd Energy
(kw) device (h) ' (kwh)
- Non- 00:00 24 24:00 [3.6-
adjustable 11.4]
Lighting [0.008- | Curtailable 18:00 6 24:00 [1.2-
0.060] 5.0]
A/C [0.5-1.5] | Curtailable 14:00 8 22:00 [4.0-
12.0]
Oven [1.0-5.0] Shiftable [17:00- 1 [17:00- [1.0-
19:00] 19:00] 5.0]
Washing [0.4-1.3] Shiftable [10:00- 1 [10:00- [0.4-
Machine 13:00] 13:00] 1.3]
Spin Dryer | [1.8-5.0] Shiftable [14:00- 1 [14:00- [1.8-
19:00] 19:00] 5.0]
EV [0.0-2.0] Shiftable [00:00- 3 [03:00- [5.5-
05:00,18:00- 08:00,21:00- 6.0]
21:00] 24:00]

The above datasets are derived from [192], [193], [194] and are summarized in Table 19.
The aggregate desired ECC is presented in Figure 42. The scheduling horizon consists of T
= 24 time slots of hourly duration. For the step size, we set 8% = 0.95,¢ = 0.50, € =
0.001 and 6,,;,, = 0.01 throughout the simulations. Regarding the parameters of energy
cost function in Eqg. (5.13), b and a are usually set to 0, while the value of parameter ¢
varies from 10 to 0.05 in [29], [40], [50], [164] and [170]. In this thesis, parameters b
and a are also set 0, while ¢ is chosen to be 0.01, 0.02 or 0.03, which is the usual case in
the aforementioned works also. Moreover, in [182] parameter § of Eq. (5.8) is set to 1
implying perfectly flexible energy consumers. In this thesis, in order to evaluate B-RTP in
scenarios of various flexibility classes of end users § varies from 1 to 1.5. For the same
reason, we choose w of Eq. (5.4) to vary from 0.1 to 6.
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Figure 42: Aggregate daily users’ Energy Consumption Curve (ECC)

In order to demonstrate the performance of the B-RTP model for different classes of energy
consumers — ESP customers, we consider three use cases:

a) Low Flexibility: Energy consumers are reluctant to change their energy consumption
habits. Parameter §; ; for each user i € N and d € Dy ; is randomly selected over
[1.20-1.50], while parameter w; is randomly chosen over [3, 6]. Finally, in this use
case, we consider users that set relatively strict deadlines, i.e., they allow their EMSs

to schedule their shiftable loads not more than one to two hours after t?;.

b) Medium Flexibility: Energy consumers are more price-sensitive than in the ‘Low
Flexibility’ use case. Parameter §;, is randomly selected over [1.10, 1.20] Vi €
N,d € Dg;. Parameter w; is randomly chosen over [1.0, 3.0]. Users set their

deadlines two to four hours after their EE?;.

c) High Flexibility: In this use case, energy consumers are most willing to participate in
DSM programs, even for a relatively small repayment. Parameter §; 4 is randomly
selected over [1.00, 1.10] Vi € N,d € Dy ;. Parameter w; is randomly chosen over

[0.1, 0.5]. Users set their deadlines two to six hours after their tfd-

Without loss of generality, in all of the above cases, parameter U4, in the utility function
for curtailable loads is set to 0. Moreover, xﬁd issetto0Vi € N,d € D.;. In order to assess

the performance of B-RTP algorithm, the following Key Performance Indicators (KPIs) are
used:

e Energy Cost (G), as defined in Eqg. (5.13), which is the cost of ESP to acquire the
electricity needed to fulfill the requirements of its customers. This is an index of how
energy-efficient a pricing scheme is, that is, how successful it is in incentivizing
customers to adopt energy-efficient habits.

o Aggregate Users’ Welfare (AUW) is a KPI that expresses the competitiveness of an

ESP that adopts a billing strategy in an open electricity market:

N (yDei Dy T !
AUW = Yoy ( o1 Zi=1Uiq () — X421 Xi=1 DUy (tf,la' tow ti,d'xit,d) - Bi,RTP) (5.23)
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e Fairness (F;) is a KPI that indicates the fraction of user’s i contribution to system cost
reduction that she will be rewarded in terms of energy bill discount:

pR
F; = D—‘A,Vi EN, (5.24)
i
where,

B, rTp—Bi
DR = AR 7L__wieN 5.25
: 2?,=1(BI,RTP_BL') ( )

represents the discount that user i receives in her energy bill as a portion of the total
discount in all users’ bills, and

DI G<29’=1xit+;lz>_0(z?l=1 xlt)
A Jj#1

Di =
2?’=1<2I=1<G<Z9’=1xit"';lz>_G(ZIiv=1 xit ))
Jj#1

represents the discount achieved by user i, i.e., her contribution to system cost reduction, as

(5.26)

a fraction of the summation of all users’ corresponding contributions. This is calculated
employing the concept of Shapley value from cooperative Game Theory [49]. In this regard,
user’s impact in the reduction of system cost is measured through the comparison of the
total energy cost in: 1) the case in which user i performs the alterations in her ECC, 2) the
case in which user i follows her desired ECC. Values of F; close to 1 indicate a fairer
correlation between the behavioral change of user i and the reward that she gets for it.

The adaptability of the Hybrid B-RTP(y) scheme gives ESP the opportunity to select its own
strategy with respect to users’ reward, by adjusting properly the value of y. According to the
price elasticity of its customers and the DR services it has to provide to the various smart
grid market stakeholders, ESP will select a certain value of y in order to achieve an attractive
trade-off among the above KPls.

5.5.1. Low Flexibility Use Case

In the Low Flexibility case, ESP needs to provide its customers with more generous financial
incentives in order to motivate them towards more energy-efficient ECCs, as they are not so
price-sensitive. Figure 43 depicts the ratio between the energy cost G (across the whole time
horizon) with hybrid B-RTP and the energy cost G with RTP as a function of y. The graphs in
Figure 43, represent the cases of energy with low generation cots (¢ = 0.01), medium-cost
energy (c = 0.02) and high-cost energy (c = 0.03). We notice that even in the low flexibility
use case, B-RTP is able to bring a cost reduction of 10% in comparison with RTP (for y=2), in
case of low- and medium-cost energy (c=0.01, c=0.02) and 13% in case of high-cost energy (c
= 0.03). As cost of energy rises, it is reasonable for G to further decline, since the energy bills
are higher and thus customers are more willing to exploit their schedulable loads.
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Figure 43: Ratio between G with B-RTP(y>0) and G with RTP (y=0) as a function of y in Low Flexibility use case

These results are expected for y = 2, which could correspond to a case, for example, of an
imminent congestion event in a certain area. As it is inferred from Eq. (5.22), values of y
greater than 1 imply that ESP over-rewards the more flexible users for their DSM actions,
while it imposes a monetary penalty to the less flexible ones. Figure 44 presents the ratio
between AUW with B-RTP and AUW with RTP scheme as a function of y. According to it, the
aforementioned energy cost reduction does not come with any significant users’ welfare
decrease even in the low flexibility use case. In fact, ESP could select y to be up to 1.8 and
AUW would not be lower than that under RTP scheme. This is explained firstly by the fact
that a load shift or a load cut, which are the reasons of the decrease of a users’ comfort, are
higher compensated by the ESP, when ¥y > 1. Moreover, even the more flexible users in this
inelastic set of energy consumers manage a relatively small cost reduction AC. Thus, the
penalties in the energy bills of the less energy efficient users are too small compared to their
RTP bills to justify a large decrease in AUW. In other words, given that ESP’s customers are a
set of inelastic users, increasing y diminishes AUW by a slow rate. Hence, B-RTP (comparing
to RTP), manages to reduce energy costs by 9-12%, depending on conventional energy
generation cost level (c), without sacrificing at all the aggregate users’ welfare. ESP could
continue increasing y in order to further motivate users to shift or shed their loads and
therefore achieve even higher energy cost reduction. However, this would be done at the
expense of users’ welfare. Finally, we note in Figure 44 that AUW reaches its peak for y = 0.8
independently of the value of c. Apparently, in case of high-cost energy (c = 0.03), the gap
between AUW under B-RTP and AUW under RTP is larger, since the financial motivation for
the users is larger. This leads them to more energy efficient actions (load shifts and cuts) and
hence lower energy bills and finally higher AUW. In other words, the bill discounts are
greater than their marginal utility, which they sacrifice to get them.
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Figure 44: Ratio between AUW with B-RTP(y>0) and AUW with RTP(y=0) as a function of y in Low Flexibility
Case

In order to examine the impact of y on users’ welfare in more detail, we depict in Figure 45
the ratio between users’ welfare in case of y € [0,0.8, 1, 1.5] and in case of RTP for every
user i € N and ¢ = 0.02. Ten users are sorted based on their flexibility, with i=1 denoting the
more flexible user and i=10 the less flexible one!. Studying Figure 45, we observe that, as we
expected, W; of the less price inelastic users i increases with y. On the other hand, RTP is in
the best interest of price inelastic users, since not being willing to change their energy
consumption patterns, it provides them with financial benefits that others created. As in
Figure 44, in Table 20 we establish the preference of users for B-RTP(y=0,8) on average. Also,
we note that in B-RTP(y=1,5), even if price inelastic users are penalized in order for the
flexible users to receive a generous bonus for their behavioral change, users’ welfare is
marginally higher on average than in RTP in this low flexibility use case.

! Flexibility is a function of parameters w and &, used in Egs. (5.4) and (5.8), respectively, and
also @,t?;, til'd (i.e., users’ desired ECC). Thus, sorting users based on their flexibility is not a
straightforward task and has been done approximately. This is why there is not continuity in the
variation of users’ welfare for a certain value of y. This is also observed in corresponding graphs for

the other use cases.
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Figure 45: Ratio between users’ welfare for various values of y and users’ welfare for y=0 (RTP) in Low
Flexibility use case

Table 20: Ratio Between Average Users’ Welfare for Different Values of y and Average Users’ Welfare for y=0
(RTP) in Low Flexibility Use Case

%4 0 (RTP) 0.8 1.0 1.5

UW (B — RTP(y)) /
UW(RTP) 1 1.0094 1.0085 1.0039

Figure 46 depicts the Cumulative Distribution Function (CDF) of F; for a different value of y.
Cost parameter c is set to 0.02. As analyzed above, F; is an index of how fairly the energy
cost reduction is allocated to users. The fairest way of distributing energy savings among the
users is represented by F; = 1. Figure 46 shows that B-RTP (y=1) is the fairest billing
mechanism. This was expected as it incentivizes users towards an energy-efficient behavior
so that they receive a generous discount in their bills. Under RTP (y = 0), inflexible users
benefit from the others’ actions and thus are not motivated to change their energy
consumption behavior, while demand responsive customers see their actions not being
sufficiently compensated. This discourages users to deviate from their desired ECC. For
gradually increasing y the distribution of users around F; = 1 gets narrower (i.e., fairer
billing) and for y=0.8 (which maximizes AUW), it is much closer to F; = 1. For values of y
greater than 1, the distribution of users around F; = 1 starts getting wider again as we can
see in case of y = 1.5. Still, the mean value of F; (Table 21) is closer to 1 than RTP, meaning
that B-RTP(y=1.5) is a fairer billing scheme than RTP on average. If ESP chooses to impose
the fairest possible pricing scheme, B-RTP will manage a cost reduction of 6-7.5% comparing
to RTP and a slightly higher AUW.
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Figure 46: CDF of F; among participating users under B-RTP for various values of y in Low Flexibility use case

Table 21: Mean Values of F; for Different Values of y in Low Flexibility Use Case

0 (RTP) 0,8 1 1,5

1.2131 1.0379 1 0.9097

<

5.5.2. Medium Flexibility Use Case

In the medium flexibility use case, the concept of Figure 47, Figure 48, Figure 49, Figure 50 is
similar to that of Figure 43, Figure 44, Figure 45, Figure 46, respectively, of the previous low
flexibility use case. In this use case, several of the ESP clients represent energy consumers
with DR capability. They are more price-sensitive than in the former case but still not eager
to change their energy behavior without a significant financial reimbursement. Thus, in
Figure 47, we observe that B-RTP achieves a larger energy cost reduction comparing to RTP
scheme. Similarly to the low flexibility use case, as y increases the cost reduction declines in
almost linear fashion. However, for y > 1.3, this happens at the expense of AUW (Figure
48), which declines as the less flexible users are penalized so that the more flexible ones
achieve a quite generous bonus. In this use case, users seem to be less tolerant to the
increase of y above 1. This is because users, being more price elastic comparing to the low
flexibility use case, create a larger cost reduction, which translates into stricter penalties for
the less DR-active users. Nevertheless, in case of ¢ = 0.02, B-RTP reduces energy cost by up
to 16% compared to RTP without sacrificing AUW (y = 1,3). In case of higher or lower cost
of energy, this cost reduction is larger (21%) or smaller (11%) respectively. Here, we observe
a larger gap between the 3 plots of Figure 47 when we compare them with those of Figure
43, since users are more price-responsive and higher energy costs lead them to even more
load shifts and cuts in order for them to benefit from B-RTP.
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Figure 48: Ratio between AUW with B-RTP(y>0) and G with RTP (y=0) as a function of y in Medium Flexibility
use case

In Figure 49 and Table 22, we can see that, as in the low flexibility use case, increasing y
benefits the more price elastic users, who take advantage of the billing mechanism and
receive a high discount in their energy bills. On the other hand, the rest of the users
experience a steeper downfall in their Welfare as y increases compared to the previous use
case. This can be interpreted, not only by the higher penalties these users have to pay, but
also by the fact that they are not totally price inelastic energy consumers as in the low
flexibility use case.
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Figure 49: Ratio between users’ welfare for various values of y and users’ welfare for y = 0 (RTP) in Medium
Flexibility use case

Table 22: Ratio between Average Users’ Welfare for Different Values of y and Average Users’ Welfare for y=0
(RTP) in Medium Flexibility Use Case

Y 0 (RTP) 0,6 1,0 1,5

UW (B — RTP(y)) /
UW(RTP) 1 1.0149 1.0117 0.9911

As in the low flexibility use case, we see in Figure 50 and Table 23 that B-RTP (y=1) is the
fairest billing mechanism, while RTP is the least fair among B-RTP schemes with
parameter 0 < y < 1. Even B-RTP (y=1.5) compensates in a fairer way more users than RTP
does. So, ESP can choose y=1 to efficiently incentivize its customers to alter their ECCs and
achieve a cost reduction of 6.5, 12.5 or 17% over RTP, depending on energy generation cost
parameter c. Alternatively, ESP could choose y=0.6 to maximize AUW in cases of medium-
cost and high-cost energy and achieve a 7.5 and 11% larger cost reduction than RTP,
respectively, in a fairer manner. In case of low-cost energy (c = 0.01), ESP in order to
maximize AUW should select y = 0.8 which results in a 5% cost reduction over RTP.
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Figure 50: CDF of F; among participating users under B-RTP for various values of y in Medium Flexibility use
case

Table 23: Mean Values of F; for Different Values of y in Medium Flexibility Use Case

0 (RTP) 0,6 1 1,5

1.1239 1.0341 1 0.9504

<

5.5.3. High Flexibility Use Case

In this subsection, we examine the case when ESP’s customers are a set of highly price-
sensitive users, who are eager to exploit their schedulable loads in order to gain discounts in
their energy bills. In this high flexibility use case, Figure 51, Figure 52, Figure 53, Figure 54
are once again similar to their corresponding Figure 43, Figure 44, Figure 45, Figure 46 of the
low flexibility use case. Thus, Figure 51 illustrates a downturn in energy cost comparing to
RTP scheme. However, increasing y diminishes AUW in much steeper fashion in comparison
to the two former use cases (Figure 52). This is because B-RTP (y>1) will penalize users who
are much more willing to provide flexibility services in order for them to get financially
rewarded and not users who are price-inelastic. This result is very interesting from the ESP’s
business perspective in case it participates in various types of flexibility markets, where DSM
units can be sold in really competitive prices (e.g., to solve an imminent congestion
problem). In the latter case, users would be more tolerant to a fine imposed to their energy
bills. This is illustrated in Figure 53 and Table 24 (¢ = 0.02), in which it is clear that the
welfare of less flexible users decreases for y=1.5. Conclusively, B-RTP reduces energy cost by
16 % over RTP when ¢ = 0.01, by 24% when ¢ = 0.02 and even by 27% when ¢ = 0.03, while
simultaneously managing to keep AUW above that of RTP. In case of B-RTP(y=0,5) which
maximizes AUW for ¢ = 0.02 or ¢ = 0.03, the energy cost reduction reaches 14% and 17%,
respectively. In case of low-cost energy (c = 0.01) AUW is maximized for y = 0.6 and the
equivalent cost reduction is 10.5% in comparison with RTP.
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Figure 52: Ratio between AUW with B-RTP(y>0) and AUW with RTP (y=0) as a function of y in High Flexibility
use case
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Figure 53: Ratio between users’ welfare for various values of y and users’ welfare for y=0 (RTP) in High
Flexibility use case

Table 24: Ratio Between Average Users’ Welfare for Different Values of y and Average Users’ Welfare for y=0
(RTP) in High Flexibility Use Case

%4 0 (RTP) 0,5 1,0 1,5

Uw(® - RTP(V))/_ 1 1.0236 1.0052 0.9432
UW (RTP)

In the CDF of F; (Figure 54), we re-establish that B-RTP(y=1) is the fairest billing mechanism,
while RTP the least fair one. By gradually increasing y and as it approaches 1, the distribution
of users gets narrower (fairer pricing), until y surpasses 1 and the users’ distribution starts
widening again. We also notice that even B-RTP with y=1.5 allocates the energy cost
reduction to the users in a fairer way than RTP (Table 25). In more detail, B-RTP with y=1.5
overcharges some users for their energy consumption, although it charges users more fairly
and thus it is a stronger motivator towards energy-efficient ECCs than RTP. This policy would
bring a large cost reduction (e.g., 30% for ¢ = 0.02) although it would decrease AUW (e.g., 6%
for ¢ = 0.02). This policy could be selected in the case of emergency situations (e.g.,
congestion issues in a specific network location, governmental policies to cope with energy
poverty issues, etc.), when energy cost is requested to severely decrease at any cost.
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Figure 54: CDF of F; among participating users under B-RTP for various values of y In High Flexibility use case

Table 25: Mean Values of F; for Different Values of y in High Flexibility Use Case

0 (RTP) 0.5 1 1.5

1.0873 1.0325 1 0.9819

=

In the 3 use cases examined above, we demonstrated that B-RTP offers a much more
attractive trade-off between widely accepted KPIs than the RTP scheme for all levels of
energy generation cost and all levels of the end users’ elasticity. Based on these results, we
consider B-RTP a very useful tool in the hands of an ESP, which can exploit it in order to
participate in several types of flexibility markets (i.e., balancing, congestion management,
voltage control, frequency control, N-1 adequacy) with efficient DSM services, while being
fair towards its customers and without sacrificing the level of eligibility of its services in an
open and competitive retail market. In emergency circumstances, where the stability of the
system is at risk and the energy cost is about to increase dramatically (e.g., congestion
market), an ESP making use of B-RTP, can carry through the task with a relatively smooth
reduction of users’ welfare.

5.6. Conclusions and Future Work

In this Chapter, we focused on modern energy pricing models and argued that they do not
fairly reward demand responsive users, who are more willing than others to adopt energy-
efficient habits. Thus, existing pricing models are not designed to trigger behavioral changes
as they do not provide energy consumers with attractive incentives in the form of fair
compensation. Motivated by this observation, we developed a hybrid billing mechanism,
namely Behavioral Real Time Pricing. B-RTP disposes an adjustable level of rewarding users
by offering them financial incentives to modify their ECCs. B-RTP can be a valuable tool in
the hands of an ESP in order for the latter to employ innovative business models and
respective revenue streams mainly by selling DSM units in various types of flexibility
markets. It aims at motivating its customers to exploit their shiftable and curtailable devices
in order to reduce the cost of conventional energy usage. Our evaluation uses a non-profit
version of RTP as a benchmark and we show that B-RTP manages to prompt energy
behavioral changes of users much more efficiently than RTP does. In this thesis we assume
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that the desired ECC is a priori known. In our future work, we will advance the model of B-
RTP in order to take into account use cases, where the desired ECC is unknown. Finally, we
plan to study the impact of the B-RTP in: islanded microgrids, energy communities and
innovative business models for ESPs towards the latter’s’ participation in the emerging
flexibility markets.
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6. Chapter 6: Conclusions, Lessons Learnt and Future Work

In this dissertation, we dealt with the efficient integration of distributed energy and
flexibility resources in the modern power system. We considered a market entity, namely
Energy Service Provider, which invests in a portfolio of DERs and provides valuable energy
and ancillary services to both the local network operator (DSO) and the entire system (TSO),
by participating in various electricity markets. Various power system entities can act as an
ESP, e.g., an Energy Community Controller, an Aggregator, an Active Distribution Network
Operator, a Balancing Service Provider, etc. We presented market and non-market schemes,
within which private bottom-up investments in DERs can be profitable and sustainable.

More specifically, we have modeled the DER investment problem of the ESP, which installs
distributed renewable energy and energy storage units at the distribution network within a
DSO-TSO coordination scheme, as a stochastic bilevel problem. The financial sustainability of
the investments is ensured imposing a minimum desired rate of return on the investments.
The bilevel model is efficiently solved using a nested decomposition algorithm. Our
simulations demonstrated that our proposed investment model can benefit all three
involved actors. Furthermore, the co-optimization of energy and flexibility resources can
attain higher gains for both the ESP and the System Operators. Finally, the ESP’s choice on
the minimum desired return on investments, can significantly affect the installed capacities
and eventually the payoffs of the System Operators.

Additionally, we have dealt with the problem of DERs’ participation in the various electricity
markets within two separate use cases:

a) The operation of the distribution network is regulated and a DisCo has control over
the network assets, representing them in the energy market as an Aggregator.

b) The operation of the distribution network is deregulated, with the ESPs participating
autonomously in transmission-level markets, while the DSO ensures the smooth
operation of its network by purchasing the necessary flexibility via a distribution-
level flexibility marketplace.

In use case (a), we have considered a strategic DisCo/ESP and we proposed a bilevel model
in order for the DisCo to: 1) derive the optimal bidding strategy, and 2) orchestrate its
flexibility assets in order to minimize its energy costs. Comparing our bilevel bidding model
to a single-level one (used to model a price-taker DisCo/ESP), we demonstrated that the
DisCo/ESP can significantly reduce its costs acting strategically, even if it possesses a small
portion of market’s production or consumption capacity. In addition, a sensitivity analysis
was conducted to showcase the impact of the assets’ size and location on the DisCo’s energy
costs. On the other hand, in use case (b), we proposed a novel energy market architecture
that introduces a distribution-level flexibility market. In this context, we formulated a bilevel
model for an ESP owning a portfolio of BSUs connected to the distribution network, in order
to optimally calculate its market strategy. We have proved via simulations that our model
achieves super-additive gains: the ESP obtains significantly higher profits through the joint
optimization of both the TSO and DSO services than the sum of the individual profits from
devoting the BSUs to one of the two applications.
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Lastly, we designed a personalized energy pricing mechanism for the end-users, which
rewards the flexible consumers when they adopt an energy-efficient behavior. Modern
pricing schemes do not fairly reward price-responsive consumers. Thus, existing pricing
schemes are not designed to trigger behavioral changes as they do not provide energy
consumers with attractive incentives in the form of fair compensation. Motivated by this
observation, we developed a billing mechanism, namely Behavioral Real Time Pricing, which
disposes an adjustable level of rewarding consumers by offering them financial incentives to
modify their consumption habits. Comparing our B-RTP mechanism to the widely used in the
literature Real Time Pricing scheme, we have showed that B-RTP achieves much higher
energy cost reduction, without deteriorating consumers’ welfare. This is achieved, since B-
RTP is much “fairer’ than RTP in terms of rewarding the flexibility offered by the end-users.

Our research can be used by: (i) regulators or policy making entities to efficiently coordinate
the business interests of ESP, DSO and TSO to facilitate a quicker renewable energy
transition, (ii) system operators, market operators and regulators in order to acquire
valuable insights regarding the setup and operation of distribution-level flexibility markets
and the TSO-DSO interaction, (iii) ESPs in the modern electricity market structure so as to
stack revenues, by providing various energy and flexibility services, and ensure the
sustainability of their investments, and (iv) market operators to perform market analysis and
tackle market power abuse phenomena.

Future research can use this study as an input in: (a) more complex investment models,
which would for example consider more revenue streams for the DERs, integrate more
sophisticated distribution network or DER models and non-convex characteristics in the
electricity market clearing process, (b) the coordination of DER investments and network
expansion planning, (c) market participation strategies that take into account different
market rules and the uncertainty in the operation of the network and market along with the
respective risks, (d) bidding and scheduling models that take into consideration the real-
time system operation, (e) algorithms that explore the market equilibrium when more than
one ESPs act strategically.
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Appendix

A. Transforming bi-level problem (2.c) into a MILP
Lower-level problem (2.b) is an LP and therefore, Slater’s condition holds. Thus, Karush-
Kuhn-Tucker (KKT) conditions are necessary and sufficient optimality conditions (satisfy
convexity and constraint qualification). The KKT conditions of problem (2.b) are presented
below:

—Pf{sw +pitw = Plrw + Pirw + Yj#iVij - (9itw - ejtw) =0, VieN,teH (h.1)

g9 grd grd gru gru _ ,
Citw — Aitw = ltw + ¢ltw — b, T ¢i(t+1)w + bite — ¢i(t+1)w =0, VieNIt<T

(h.2)
Cgfw ltw (pltw + ¢ztw =0, VieNI,t=T (h-3)
—cly + Aitw — P, + %, =0, VieENYteH (h.4)
Clew = Aitw = Phey + o7 =0, VieN™teH (h.5)
~Cleas F Aitw = Pl + ¢PL =0, VieN™teH (h.6)
l Y l 1
z Yij (Aitw - Ajtw) - Zin ’ (¢(ij)tw - ¢(ij)tw) + Zin ’ (d)(ij)tw - d)(ij)tw)
j=i,3,))eLT j>i j<i -
=0, ViEN,teH (h.7)
0< ¢ltw Lpl >0, VieNd,teH (h.8)
¢lta, pa .+ Pg >0, VieNI,teH (h.9)
0< It Lpd, — P o TRDI 20, ViENIteH (h.10)
0< iy, L =Dy +Pile—1yo TRU; 20, ViENItEH (h.11)
d d . d

0 < ity L Pitw =0, VieNSteH (h.12)
0< ¢, 1L —pl, +P4 >0, VieNLteH (h.13)
¢m L ply = VieN™t€eH (h.14)
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0< @ljyw L Vi (Bitw —0jtw) +Tij =0, V(i j)ELtEH (h.18)

0< Glijw L —Vij- (Bitw = jtw) + Ty =0, V(G j)ELtEH (h.19)

Equation (h.1) is the equality constraint of the Lower-Level problem, while Egs. (h.2) — (h.7)
are the stationarity conditions. Finally, (h.8) — (h.19) are the complementarity slackness
conditions. We use the perpendicular symbol (L) to indicate complementarity. Replacing the
constraining problem (2.b) with its KKT conditions results in the following MPEC problem:

min Z (CDN + Coper ) + Cmv + f (Z( Prg‘“ + Coper ) +x- Cmv)

xYuxy ,uxtve i
(i.1)
Subject to
(2.a.5) - (2.2.10), (2.a.14) — (2.a.31), (h.1) — (h.19) (i.2)

Problem (i) is a single-level MINLP. The nonlinearities due to the complementarity conditions
are linearized using the Big-M approach [124]. In order to tackle the nonlinearities in the
objective function concerning expression in (2.a.2), we first multiply Egs. (h.5) and (h.6) by

piTtw and piitw respectively:
T T T 1 .
Citw * Pitw ~ Aitw " Pitw ~ ¢Ltw Pitw + ¢Ltw pltw =0, ViEN™teEH

l l l ;
—Citw " Pitw + Aitw ‘Pitw — ¢Ltw pltw + ¢Ltw pltw =0, Vie Nm' teH

Then, using the complementarity conditions (h.14) — (h.17) and re-arranging terms, we have:

ZiENmZtEH (Aita) ' (piTta) - piita))) ZLENmZtEH( Citw pltw - Ltw pltw + ¢Ltw Oitw +
¢lt(l) ' lt(l))

Now, we make use of the Strong Duality Theorem for problem (2.b), which states:

) ) l l
ZtEH(ZiENg Cigt : Pigtw — 2ieNg Cﬁ : pldtw + ZieNm(Citw "Pitw ~ Citw 'pitw)) =
g d
- ZtEH (ZlENg ( itw Pig + ¢lgt7(;) : RDL + gz)u ) + ZLENd (d)Ltw Ltw) +

1 U — —
Yienm (¢£w it T Dl bitw) + Xi<j el (Tij “Plipew +Tij - d)é[j)tw))

Re-arranging the terms in the above expression, we obtain:

—

DiteH (ZiENm< Citw pltw - Ciltw 'piltw + ¢£w “Ojtw T ¢Ltw : Ltw)) = —Dten (Ziezvg (Cigt .
g g grd gru

Pitw + ¢lt(u i + ¢itw ) RDi + itw RUi) + ZiENd( Cit pltw + ¢Ltw Ltw) +

l EUl l
Di<j(i,)eL (Tij “Pljptw T Tij ¢(i,-)tw))

Hence, nonlinear expression (2.a.2) is replaced by its linear equivalent expression:
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g d
PT(}))N = TN ZtEH (ZiENg (Cigt ’ pigtw + ()bltw Pig + ¢)lgt2) “RD; + Lgt(i)u ' RUi) +

d d l T
ZiENd (_Cit ‘Pitw + d)gtw ’ ltw) + Zl<] @, J)EL( ij " ()b(ij)ta) + Tij : ¢€ij)tw))

Finally, in order to linearize the expression in (2.a.13), since we have considered a lossless
DN model, we use the active power balance equations of the DN (i.e. (2.a.23) and (2.a.28)):

v .
Ty - ZiEN"‘ZtEH <Aitw : (ZneBlW gly;']ltw ZnerV giz;ww + ZneBies(dlsintw - Chintw))) =Ty

Yienm Lten (Aitw : ((piTtw - piltw) + ZnEBi Dntw))

Then, the remaining nonlinear term A, - (pl-Ttw - pl-ltw) is linearized as previously
mentioned. Thus, we have transformed the bi-level problem (2.c) into a MILP.

B. Formulation of SP1
We transform the bi-level problem (2.f) into a MILP using the MPEC method. We replace the
lower-level problem (2.b) with its KKT conditions. Hence, problem (2.f) can be recast into the
following MINLP problem:

in G =(1+&-CP" +CBN —¢&.priw
XOw

(i-1)
Subject to
(2.a.14) - (2.a.31), (h.1) — (h.19), (2.f.3) — (2.f.6) (j.2)

The above MINLP is transformed into a MILP as explained in APPENDIX A, which can be
solved using off-the-shelf solvers. The optimal values

h;‘tw,x{‘ntw,@’;z ¢l’zz,¢£i‘ ¢£fj provided by the solution of problem (j) will be used in the

formulation of SP2 (cf. APPENDIX C).

C. Formulation of SP2
Now, we transform the bi-level problem (2.f) into an LP using the MPPDC method. We
replace the lower-level problem (2.b) with its primal constraints, its dual constraints and the
Strong Duality Theorem expression. Also, we relax the integrality conditions (2.a.19) and
(2.a.31), and we fix the values of h;¢,, and xj,¢, to their optimal values calculated in SP1.
Furthermore, bilinear terms in the Strong Duality Theorem expression are linearized

replacing dual variables ¢ltw’¢1tw with their respective optimal values calculated solving
SP1 (i.e., ¢£z,¢£i). Therefore, problem (2.f) is converted into the following NLP:
in G =148 -CT +CON —&-Prv
X5, UX
(k.1)
Subject to
(2.a.14) — (2.a.18), (2.a.20) — (2.a.30) (k.2)
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(2.b.2) = (2.b.9)

(k.3)

Bl Dl D B Db B Dy B, B Bt Dhipiar iy 2 O (k.4)
(h.2) - (h.7) (k.5)
ZtEH(ZlENg C; Pltw Yieng Cg : pﬁtw + ZieNm(CiTtw 'piTtw - Ciltw 'piltw)) =
— Dten (ZlENg ( itw PI + ¢{iz)d “RD; + igt;u RU; ) + Yiend (()bztw ltw) +
Dienm (¢iptz “Ojty + ¢ipttj : bitw) + i<jiieL (T_u : m + T_U : (Péuj)) (k.6)
(2.f.3) - (2.1.6) (k.7)
hitw = hite (k-8)
Xitw = Xintw (k.9)
bl = Pl (k.10)
¢ltw = oh (k.11)
¢ltw = ¢f§f§ (k.12)
oL, = ohs (k.13)

The above problem (k) is a continuous non-linear optimization problem. Non-linearities in
the objective function (k.1) are linearized as explained in APPENDIX B and eventually
problem (2.f) is converted into an LP.

D. Input Data and Results from Chapter 3

Table A: Technical characteristics of DN in Case Study A

Branch | From Node | To Node r X p™mex | pmin | gmex | gmin | ymaex ygmin
(#) (#) (#) (pu) (pu) (pu) | (pu) | (pu) | (pu) | (pu) (pu)
1 0 1 0.00315 | 0.075207 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
2 2 0,00033 | 0.001849 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
3 2 3 0,00667 | 0.030808 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
4 3 4 0,00579 | 0.014949 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
5 4 5 0,01414 | 0.036549 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
6 3 6 0,00800 | 0.036961 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
7 6 7 0,00900 | 0.041575 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
8 7 8 0,00700 | 0.032346 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
9 8 9 0,00367 | 0.016940 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
10 9 10 0,00900 | 0.041575 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
11 2 11 0,02750 | 0.127043 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
12 11 12 0,03150 | 0.081405 | 0.233 | -0.233 | 0.233 | -0.233 1,05 0,95
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13

12 13 0,03965 | 0.102984

0.233 | -0.233

0.233 | -0.233 1,05 0,95

14

13 14 0,01061 | 0.004153

0.233 | -0.233

0.233 | -0.233 1,05 0,95

Table B. Technical characteristics of the 6-Bus lllustrative Example (Case Study A)

Line From Bus To Bus Reactance Yij T;™
(#) (#) (#) (pu) (pu) (Mw)

1 1 2 0,17 5,882352941 150

2 1 4 0,258 3,875968992 150

3 2 3 0,037 27,02702703 150

4 2 4 0,197 5,076142132 33

5 3 6 0,018 55,55555556 150

6 4 5 0,037 27,02702703 150

7 5 6 0,14 7,142857143 150

Table C. Generating units’ data in Case Study A
Gen. Bus g gmn RU; RD; Jio c?
Unit # (MW) (MW) (MwW/h) (MW/h) (MW) | (€/MWh)
G1 1 100 0 5 5 100 12
G2 2 75 0 8 8 75 20
G3 6 50 0 10 10 0 50
G4 6 50 0 20 20 0 100
Table D. Demand loads’ data in Case Study A
dii™ (Mw) dii™ (Mw) cl,(€/Mwh)
t(h) | Loadinbus | Loadinbus | Loadinbus | Loadinbus | Loadinbus | Loadin
i=3 i=4 i=3 i=4 i=3 busi =4

1 88 88 0 0 450 450
2 82.5 82.5 0 0 450 450
3 79 79 0 0 450 450
4 77 77 0 0 450 450
5 77.5 77.5 0 0 450 450
6 79.5 79.5 0 0 450 450
7 86.5 86.5 0 0 450 450
8 88.5 88.5 0 0 450 450
9 88.5 88.5 0 0 450 450
10 90.5 90.5 0 0 450 450
11 94 94 0 0 450 450
12 95 95 0 0 450 450
13 97.5 97.5 0 0 450 450
14 98 98 0 0 450 450
15 98.5 98.5 0 0 450 450
16 109 109 0 0 450 450
17 124.5 124.5 0 0 450 450
18 126 126 0 0 450 450
19 122 122 0 0 450 450
20 118.5 118.5 0 0 450 450
21 110 110 0 0 450 450
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22 99.5 99.5 0 0 450 450
23 98 98 0 0 450 450
24 97.5 97.5 0 0 450 450
Table E. Data of ESSs in Case Study A
Node socmex Socmin rdis,max rch,max SOCO d c
(#) (pu) u) | (pu) | (pw | pw) | T "
5 0.166667 0 0.0833 0.0833 0.0833 1 1 1
8 0.166667 0 0.0833 0.0833 0.0833 1 1 1
10 0.166667 0 0.0833 0.0833 0.0833 1 1 1
13 0.166667 0 0.0833 0.0833 0.0833 1 1 1
Table F. Data of shiftable loads in Case Study A
Node pflmax Ef o 6 PE
(#) (pu) (pu)
4 0.026667 0.026667 8 18 0.9
9 0.026667 0.026667 8 18 0.9
10 0.026667 0.026667 8 18 0.9
11 0.026667 0.026667 8 18 0.9
13 0.026667 0.026667 8 18 0.9
14 0.026667 0.026667 8 18 0.9
Table G. Market results in Case 1 (power dispatch schedules and LMPs at bus 5) — Case Study A
dis it plil,lt Aig
t (h) (Mw) (Mw) (Mw) | (€/MWh)
i=3 i=4 G1 G2 G3 G4 i=5 i=5
1 88 88 100 71.94 0 0 4.06 20
2 82.5 82.5 100 72 0 0 -7 20
3 79 79 100 65 0 0 -7 20
4 77 77 100 61 0 0 -7 20
5 77.5 77.5 100 62 0 0 -7 20
6 79.5 79.5 99 67 0 0 -7 12
7 86.5 86.5 100 75 0 0 -2 48.9778
8 88.5 88.5 100 75 0.67 0 1.33 50
9 88.8 88.5 100 75 0 0 2 50
10 90.5 90.5 100 75 0.98 0 5.02 50
11 94 94 100 75 10.70 0 2.30 50
12 95 95 100 75 15.95 0 -0.95 50
13 97.5 97.5 100 75 16.67 0 3.33 50
14 98 98 100 75 25.05 0 -4.05 50
15 98.5 98.5 100 70.09 33.22 0 -6.30 20
16 109 109 100 74.54 43.22 0 0.25 86.3277
17 124.5 116.00 100 66.54 50 20 3.97 376.8362
18 126 115.81 100 58.54 50 32.89 0.38 376.8362
19 122 117.82 100 52.74 50 35.91 1.17 376.8362
20 118.5 113.16 100 60.74 50 22.05 -1.14 376.8362
21 110 110 100 68.74 48 4.15 -0.89 157.2368
22 99.5 99.5 100 68 38 0 -7 20
23 98 98 100 75 28 0 -7 30
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Table H. Satisfaction (v') or violation (X) of nodal voltage limits in DN for each time instant in Case 2 — Case

Study A
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11

v
v
v
v
v
v
v
v
v
v
v
v
X
v
v
v
v
v
v
v
v
v
v
v

10

v
v
v
v
v
v
v
v
v
v
X
v
v
v
v
v
X
v
v
v
v
v
v
X

v I Vv | IV | VIV I IV I IV | IV Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
v | I v | IV |V | IV |V | IV |V Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV | IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
vV IV | IV | IV | IV |V | IV |V | Y
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24

Table I. Satisfaction (v') or violation (X) of active power flow limits for each branch of DN for each time

instant in Case 2 — Case Study A
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7 v v | v | VIV |V | Vv |V |V |V v v v v
8 v v | v | VIV |V |V | X |V |V v v v v
v v | vV | V|V |V | X | X |V |V v v v v
10 v v | v | VIV |V | Vv |V |V |V v v v v
11 v v | v | VIV |V | X | X |V |V v v v v
12 v v | v | VI IV |V | Vv |V |V |V X v v v
13 v v | v | VI IV |V | Vv |V |V |V v v v v
14 v v | v | VI IV |V | Vv |V |V |V v v v v
15 X | X | X | vV |V |V |V |V |V |Y v v v v
16 v v | v | VI IV |V | Vv |V |V |V v v v v
17 X | X v | vV | V| X | X | X |V |Y v v v v
18 v v v | v | V|V | X | X |V |V v v v v
19 v v v | vV | vV | ¥V v v | v | vV v v v v
20 v v v | vV | vV | ¥V v v | v | vV v v v v
21 v v v | vV | vV | ¥V v v | v | vV v v v v
22 X | X | X | v |v |V v v | v | vV v v v v
23 v v | X | vV |V |V v v | v | vV v v v v
24 v v v | v | V| X | X | X |V |V v v v v
Table J. Market results in Case 3 (power dispatch schedules and LMPs at bus 5) — Case Study A
di; it pg,qt Ci,N: A
t (h) (Mw) (Mw) (MW) | (€/MWh) | (€/MWh)
i=3 i=4 G1 G2 G3 G4 i=5 i=5 i=5
1 88 88 100 75 0 0 1 50 50
2 82.5 82.5 100 71.94 0 0 -6.94 20 20
3 79 79 100 65 0 0 -7 20 20
4 77 77 100 61 0 0 -7 20 20
5 77.5 77.5 100 59 0 0 -4 12 12
6 79.5 79.5 99 67 0 0 -7 12 12
7 86.5 86.5 100 75 0 0 -2 36 36
8 88.5 88.5 100 75 0 0 2 50 50
9 88.8 88.5 100 75 0 0 2 50 50
10 90.5 90.5 100 75 1.65 0 4.35 50 50
11 94 94 100 75 11.65 0 1.35 50 50
12 95 95 100 75 12.35 0 2.65 50 50
13 97.5 97.5 100 75 21.15 0 -1.15 50 50
14 98 98 100 75 23.22 0 -2.22 30 30
15 98.5 98.5 100 70.09 | 33.22 0 -6.30 20 20
16 109 109 100 74.54 | 43.22 0 0.25 | 157.2368 | 157.2368
17 1245 | 116.02 | 100 66.54 50 20 3.99 | 376.8362 | 376.8362
18 126 109.97 | 100 58.54 50 34.43 -7 376.8362 | 376.8362
19 122 119.78 | 100 52.74 50 35.39 3.64 | 376.8362 | 376.8362
20 118.5 | 117.02 | 100 60.74 50 21.03 3.74 | 376.8362 | 376.8362
21 110 110 100 68.74 48 4.15 -0.89 | 157.2368 | 157.2368
22 99.5 99.5 100 68 38 0 -7 20 20
23 98 98 100 75 28 0 -7 30 30
24 97.5 97.5 100 75 21.89 0 -1.89 50 50
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Table K. Technical characteristics of the IEEE One-Area Reliability Test System (Case Study B)

Line From Bus To Bus Reactance Yij Max Line Flow

(#) (#) (#) (pu) (pu) (MW)

1 1 2 0,0146 68,49315068 175

2 1 3 0,2253 4,438526409 175

3 1 5 0,0907 11,02535832 350

4 2 4 0,1356 7,374631268 175

5 2 6 0,205 4,87804878 175

6 3 9 0,1271 7,867820614 175

7 3 24 0,084 11,9047619 400

8 4 9 0,111 9,009009009 175

9 5 10 0,094 10,63829787 350

10 6 10 0,0642 15,57632399 175

11 7 8 0,0652 15,33742331 350

12 8 9 0,1762 5,675368899 175

13 8 10 0,1762 5,675368899 175

14 9 11 0,084 11,9047619 400

15 9 12 0,084 11,9047619 400

16 10 11 0,084 11,9047619 400

17 10 12 0,084 11,9047619 400

18 11 13 0,0488 20,49180328 500

19 11 14 0,0426 23,4741784 500

20 12 13 0,0488 20,49180328 500

21 12 23 0,0985 10,15228426 500

22 13 23 0,0884 11,31221719 200

23 14 16 0,0594 16,83501684 250

24 15 16 0,0172 58,13953488 500

25 15 21 0,0249 40,16064257 400

26 15 24 0,0529 18,90359168 500

27 16 17 0,0263 38,02281369 500

28 16 19 0,0234 42,73504274 500

29 17 18 0,0143 69,93006993 500

30 17 22 0,1069 9,35453695 500

31 18 21 0,0132 75,75757576 1000

32 19 20 0,0203 49,26108374 1000

33 20 23 0,0112 89,28571429 1000

34 21 22 0,0692 14,45086705 500

Table L. Generating units’ data in Case Study B
Gen.Unit | Bus | gi"®* | gmin RU; RD; Jio ford
®# | (MW) | (mw) | (MW/h) (MW/h) (MW) | (€/Mwh)

G1 1 152 30,4 120 120 76 48,32
G2 2 152 30,4 120 120 76 48,32
G3 7 350 75 350 350 0 57,7
G4 13 591 206,85 240 240 0 78,93
G5 15 60 12 60 60 0 60,11
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G6 15 155 54,25 155 155 0 10,52
G7 16 155 54,25 155 155 124 10,52
G8 18 400 100 280 280 240 5,47
G9 21 400 100 280 280 240 5,47
G10 22 300 300 300 300 240 1
G11 23 310 108,5 180 180 248 10,52
G12 23 350 140 240 240 280 29,89
Table M. Demand loads’ data in Case Study B
d™me* (Mw)

t(h) i=1 |i=2 | i=3 | i=4 | i=5 | i=6 | i=7 | i=8 | i=9 | i=10 | i=13 | i=14 | i=15 | i=16 | i=18 | i=19 | i=20
1 67 | 60 | 112 | 46 | 44 | 85 78 | 107 | 108 | 121 | 165 | 121 | 197 62 208 | 114 80
2 63 | 57 |105| 43 | 42| 8 | 73 | 100 | 102 | 114 | 155 | 114 | 185 | 58 | 195 | 107 | 75
3 60 | 54 | 100 | 41 | 40| 76 | 70 | 95 | 97 | 108 | 148 | 108 | 177 | 56 | 186 | 102 | 72
4 59 | 53| 99 | 41|39 | 75 | 69 | 94 | 95 | 106 | 145 | 106 | 174 | 55 | 183 | 100 | 70
5 59 | 53| 99 | 41|39| 75| 69 | 94 | 95 | 106 | 145 | 106 | 174 | 55 | 183 | 100 | 70
6 60 | 54 | 100 | 41 | 40| 76 | 70 | 95 | 97 | 108 | 148 | 108 | 177 | 56 | 186 | 102 | 72
7 75 | 67 | 124 | 51 | 49 | 94 | 86 | 118 | 120 | 133 | 182 | 133 | 218 | 69 | 229 | 126 | 88
8 87 | 78 | 144 | 59 | 57 | 109 | 100 | 137 | 139 | 155 | 212 | 155 | 253 | 80 | 267 | 146 | 103
9 96 | 8 | 159 | 65 | 63 | 121 | 111 | 151 | 154 | 171 | 234 | 171 | 279 | 88 | 295 | 161 | 113
10 | 97 | 87 | 160 | 66 | 64 | 122 | 112 | 153 | 155 | 173 | 237 | 173 | 282 | 89 | 298 | 163 | 115
11 | 97 | 87 160 | 66 | 64 | 122 | 112 | 153 | 155 | 173 | 237 | 173 | 282 | 89 | 298 | 163 | 115
12 | 96 | 8 | 159 | 65 | 63 | 121 | 111 | 151 | 154 | 171 | 234 | 171 | 279 | 88 | 295 | 161 | 113
13 | 96 | 8 | 159 | 65 | 63 | 121 | 111 | 151 | 154 | 171 | 234 | 171 | 279 | 88 | 295 | 161 | 113
14 | 96 | 8 | 159 | 65 | 63 | 121 | 111 | 151 | 154 | 171 | 234 | 171 | 279 | 88 | 295 | 161 | 113
15 | 94 | 84 | 155 | 64 | 62 | 118 | 108 | 148 | 150 | 168 | 229 | 168 | 274 | 86 | 288 | 158 | 111
16 | 94 | 84 | 155 | 64 | 62 | 118 | 108 | 148 | 150 | 168 | 229 | 168 | 274 | 86 | 288 | 158 | 111
17 | 100 | 89 | 165 | 68 | 66 | 126 | 115 | 157 | 160 | 178 | 244 | 178 | 291 | 92 | 307 | 168 | 118
18 | 101 | 90 | 167 | 69 | 66 | 127 | 117 | 159 | 162 | 180 | 246 | 180 | 294 | 93 | 310 | 170 | 119
19 | 101 | 90 | 167 | 69 | 66 | 127 | 117 | 159 | 162 | 180 | 246 | 180 | 294 | 93 | 310 | 170 | 119
20 | 97 | 87 | 160 | 66 | 64 | 122 | 112 | 153 | 155 | 173 | 237 | 173 | 282 | 89 | 298 | 163 | 115
21 | 92 | 82 | 152 | 63 | 60 | 116 | 106 | 145 | 147 | 164 | 224 | 164 | 268 | 84 | 282 | 154 | 109
22 | 84 | 75139 | 57 | 55 | 106 | 97 | 132 | 134 | 150 | 205 | 150 | 244 | 77 | 257 | 141 | 99
23 | 74 | 66 | 122 | 50 | 48 | 93 | 85 | 116 | 118 | 132 | 180 | 132 | 215 | 68 | 226 | 124 | 87
24 | 63 | 57 | 105| 43 | 42 | 8 | 73 | 100 | 102 | 114 | 155 | 114 | 185 | 58 | 195 | 107 | 75

Table N. Data of DNs’ Shiftable loads in Case Study B
DN 1
Node pfl,max Efl o 8 PE
(#) (pu) (pu)
3 0.026667 0.026667 8 18 0.9
6 0.026667 0.026667 8 18 0.9
14 0.026667 0.026667 8 18 0.9
DN 2
Node pfl,max Eﬂ o 8 PE
(#) (pu) (pu)
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4 0.026667 0.026667 8 18 0.9
9 0.026667 0.026667 8 18 0.9
10 0.026667 0.026667 8 18 0.9
11 0.026667 0.026667 8 18 0.9
13 0.026667 0.026667 8 18 0.9
14 0.026667 0.026667 8 18 0.9
DN 3
Node pflmax Efl o 8 PE
(#) (pu) (pu)
8 0.026667 0.026667 8 18 0.9
9 0.026667 0.026667 8 18 0.9
10 0.026667 0.026667 8 18 0.9
Table O. Data of DNs’ ESSs in Case Study B
DN 1
Node socmex Socmin rdis,max rch,max SOCO d c
(#) (pu) w) | (pu) | (pw | pw | T T v
3 0.166667 0 0.0833 0.0833 0.0833 1 1 1
12 0.166667 0 0.0833 0.0833 0.0833 1 1 1
DN 2
Node socmex SO Cmin rdis,max rch,max SO CO d c
#) (pu) (w) | (pu) | (pw | pw | T T v
5 0.33333 0 0.1667 0.1667 0.1667 1 1 1
8 0.166667 0 0.0833 0.0833 0.0833 1 1 1
10 0.166667 0 0.0833 0.0833 0.0833 1 1 1
13 0.33333 0 0.1667 0.1667 0.1667 1 1 1
DN 3
Node socmex Socmin rdis,max rch,max SOCO d c
(# (pu) (u) | (pu) | (pw | pw | T T "
2 0.166667 0 0.0833 0.0833 0.0833 1 1 1
5 0.166667 0 0.0833 0.0833 0.0833 1 1 1
10 0.166667 0 0.0833 0.0833 0.0833 1 1 1
13 0.166667 0 0.0833 0.0833 0.0833 1 1 1
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Figure A: Renewable energy production and inflexible load consumption daily curves of DNs in Case Study B
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