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[eptAngm

To teheutaior YpOVIA, Ol TETAEYUEVES AVITOQUC TUCELS ETLPAVELDY UEGEL VEUPWVIXGDY Olx-
TOWV TO OTOLA XWOKOTOLOLY TNV TEOCGHACUEVT] ATOC TACT) EYOLV YIVEL DNUOPLAELS XL €y ouV
ETUTUYEL ATOTEAEOHATA oY UG OF Bidpopa TeoBAAUATY (my. OVATOEAC TUCT) OY HUATOC, oLVOXO-
Taoxeur) oyfuatoc). Qotéoo, oe avtideon e Tic oUUPATIXES oVaTOPUOTAOELS, OIS To
Tohyyowvixd meshes, 1 enelepyaoia TV TETAEYUEVWY AVATOQUO TAGEWY BEV EUXOAY VoL XOl
Ol UTBPY0VOES EpYaoieg Tou TEooTadoly Vo AVTYWETWTICOUY auTd To TEOBANUa eivon €&-
UPETIXG TEPLOPLOMEVES. LTNY TopoLoa dlatpy3t|, TeoTelvouue Ty Ted TN YEVodo Yo amoTE-
Aot %ol SLodEAC TiXT ETEEERY UGN CUVAPTACEWY TROGNUACUEVTS ATTOC TUCT|C TTOU EXPEA-
Covial Y€K VEUPOVIX®DY BIXTUMY, emTeénovTag ehculepior and Tov yerotn. Eumveuouévor
amb TO AOYLOUIXO TELOOIoTATNG YAUTTIXAC Yioo meshes, yenowonotolue plo Yedpnon mou
Baotleton oe mvéra 1 onola etvan StoucnTinr xou umopel, 6to uéAloy, va yenoyloroiniel oe
Aoylouxod nelaxhc TéYVNne ot EMo THOVIXES qapuoyéc. o va meplopicoude Ty emppon
TV EMVUUNTOY TORAUULORPOOEMY TNE ETLPAVELNS, PLIUICOUUE TO BIXTUO YENCWOTOLOVTAS EVa
avtiypapd Tou Yo Vo SElYUATICOUUE TNV ETLPAVELNL TOU exPEAlOTAY TEONYOUUEVKS. Eiod-
YOUUE €Vol VEO TAXIGLO Yiol TNV EMECEQYOUOIOY ETLPOVELDY OE OTUA YAUTTIXNG UE OMOTEAEC-
HOTIXY| TEOCOPUOYT TV Bop®y Tou BixTOou, GE GUYOLAOUO UE Evay ahyOEIUO YL OUOoLS-
uoppn derypotohndla empoaveldv. AZiohoyolue ToOTXE o TOCOTWXE Tr UEVoBO Uog O
OLdpopaL BLUPOPETING. TELOOLAC TUTAL AVTIXEUEVAL o XATw omd TOAES OLoPOopeTIXEC enelep-
yaoteg. To avagepdueva amoteréopato ety vouy Eexdiopa 6Tt 1 uédod6¢ uag amodidet UPmAN
axpifela, 660V aopd TNV ETITELEN TV EMVUUNTOVY ETEEEQYACLOY, EVE TAUTOYEOVA DLATNEEL
TN YEWUETPIA EXTOC TWV TEPLOY GV aAANAETOpaong. O x@dixag elvon Slodéctuog 6Ty GuV-
odeuTt| loTOCEADY https://pettza.github.io/3DNS/.

AeZeig KAewdud — Avanapdotaon Emgdvelag, emheypévee Avarapactdoeig, Wngroxy
I, Aevypotodndio Emgdvelng, Aerypoatoindio ue Mopxofavég Ahuoideg, Nevpwvind
Abetua, Mrpyovi) Médnon


https://pettza.github.io/3DNS/




Abstract

In recent years, implicit surface representations through neural networks that encode
the signed distance have gained popularity and have achieved state-of-the-art results in
various tasks (e.g. shape representation, shape reconstruction, and learning shape priors).
However, in contrast to conventional shape representations such as polygon meshes, the
implicit representations cannot be easily edited and existing works that attempt to address
this problem are extremely limited. In the present thesis, we propose the first method for
efficient interactive editing of signed distance functions expressed through neural networks,
allowing free-form editing. Inspired by 3D sculpting software for meshes, we use a brush-
based framework that is intuitive and can, in the future, be used in digital art software and
scientific applications. In order to localize the desired surface deformations, we regulate
the network by using a copy of it to sample the previously expressed surface. We introduce
a novel framework for simulating sculpting-style surface edits with efficient adaptation of
network weights, in conjunction with an algorithm for uniform surface sampling. We
qualitatively and quantitatively evaluate our method on various different 3D objects and
under many different edits. The reported results clearly show that our method yields high
accuracy, in terms of achieving the desired edits, while at the same time preserving the
geometry outside the interaction areas. Code is provided on the accompanying project
website https://pettza.github.io/3DNS/.

Keywords — Surface Representation, Implicit Representations, Digital Sculpting, Sur-

face Sampling, Markov Chain Sampling, Neural Networks, Machine Learning
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Euyaplotieg

Korapydc Yo Hlero vo avagepicy otov xodnynth Ilétpo Mapayxd. O x. Moaporyxog
ATAV 0 SOAOHWY TWV LoINUATOY TOU HOU XEVTELONY TO EVOLAPEROV Xal UE EOTEEPIY TPOC TNV
epeuvruny) xatebuvor mou axoroudn. Eviote elyoue xou pepinég evolagpépouceg avtahhayeg
eV (V€M vo moTtede 6Tt auth 1 avtodday ) tay 6viwe opoBaia). ITépav auvtold unipée o
eMPAETWY TNG OIMAOUUTIXAS LOU ot VERG VoL TOV ELYAPLOTHCW TOL UE EPERE OE ETAPY| UE TOV
Ap. Avaotdolo Poloo, Tov omolo xan 0€hw va euyoaptotion oTr cuvéyeta. g cuvemBAET®Y
e Oimhwpatinic wou o Tdoog ye otrhpile xadohn tn Sidpxeld TS VonTixd oArd xou U,
xodd¢ o mopelye Tépoug dlywe Toug omotog dev Vo oy duvaTH| 1 ExTOVNON TNE EpYaTiag.
Tov euyaplote, Aowmdy, yia Tov apéploto evioustaoud tou, TV oLveyn xadodrynorn tou
XL TI TOAAEG xapmopopeg culnthoelg uag. Eide 1 ouvepyaoio pog va uny teheidoet €86.
Téhog, Toug euyaELOTE XAl Toug BVO Yl TNV Borjdelor xaL CUPPETOY T TOUC GTNY €XBOOT TNG
epyootac.

H xatdieon oauthig Tng SIMAOUATIXAS ONUAVEL TUREAANAL XoU TNV ATOQOITNTOT UoU antd TO
IToAuteyveto. Xe autd o onueio F€Aw va exPpdow TIC EUYUPLOTIEC XoL TNV oydmr Uou oo
dropa T omolor TP Eval aVATOOTAOTO XouudTL TNS CWNE MO XaL UE €xavay Tov dvipwro
mou efuar. Elvar pdhhov adivoato vo xatepépw Vo ex@pdon TNV onpacia Toug yiol MEVA EVTOS
oYWV YRouU®OY XEWEVOU ohhd emtuue ToUAdYLoTOV Vo Tar avaryvoplow. Euyoaototd tny
OWXOYEVELXL HOU Yol TNV aydmn Toug xou TN othplr Touc. Euyaploto, eniong, v xoméla
HOL xot Tou QLAoug Lo, Toudo0g xou @ottnTixoLs. Idadtepa, avapépw TOUG CUUPOLTNTES
uou oto «Ilopadoctaxd», ue touc onolouc UolACTAXOE UEEYACTEC OTIYUES: UTAQYEL €val
€06 UEPOC TNG xoEOLAC oL apiepwpévo ot autols. Téhog, Yo Yewpoloa maphdherpn va
unv ovagépw tov x. Atovioto «Xdxn» AAeCOmOULO- EXTIUGD QUTOV xaL TNV TioTr Tou ot

EUEVOL.

[Iétpoc «lletpoootécy Tldbag
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Chapter 1. EMnvod Hepidndn

1.1 Ewoayowyn

Amé Ta gTepd pLor teTahoUdag Tou TEdXELTAL Vo yenoylorotnlel oe par Touviar XtVoUREVGY
OYEBIV UEYPL xoU T PTEPS EVOC UEPOTAGVOU YLl EVOL UNYOVOLOYIXO GYEDLO, 1) oVEYXT) Yo
OVAMUPAGTACT] EMLPAVELDY OE UTOAOYLOTH eupavileton o pa TAndopa epopuoyey. Eivo
AoYIXO, AOLTOV, TWS OL TEOTOL AvVaTHEdoTaong Tou Eyouv emtvonidel avd To ypodvia elval
000 TOAMOATAES xou TOWXIAEG Elval xon Ol OYETIXEC eapuoYec. To moluywvixd meshes, ol
xounUAeg Bézier xan ol empdveleg unodlaipeong etvor uovo Uepixéc amd Tig EMAOYES, UE To
meshes vo anoterolv TV TAEov cUVHUT avamaEdoTAoT.

Y10 mhaioto TNg PNy avIXAG HEUIMoNg M otvEy X Yio oVOTORAO TAOT) ETLPAVELDY EUQavI(EToN
%xVplwE 6€ TPOBAAUNTA YEWUETEIXOV YAURUXTARN, OTWE 1) AVOXATUCKEVY TNS YEWUETELAS EVOC
avTixepévou dodeioac pepixrc mAnpogopiog tepl autol (Yl TupddetyUa gwToypaplec Tou 1
EVaL VEQOG aneiwv). To meshes €youv a&ronomiel eCopyhc xar o€ aUTHY TNV TERITTWOT), UE
TOUAUOTERES €QYAGIEC VA LOVTEAOTOLOVY TG VECELS TOV XOUPOY YENOHOTOWWVTOS AvaAUGT)
TEWTELOLGGOY GUVLCTKWOOY [, 11, 24].

[TopdTt Tor meshes amoTehoUV YENOHIES KO ATODOTIXES AVATUPAUC TACELS, OEV eVl XUTAHA-
ANAoL YLoL TNV HOVTEAOTIOIMOT) EMPAVELDY TWV OTolwY oL TormoAoyieg umopel vor SLapepouy
oVaETAE) TouG. ‘ANAEC avamapac TAOoELS £Y0ouY TpoTodel TPoXeWEVoL Vo LETEpaoTel 1) oLY-
AEXPWEVT, Buoxohion. AuTég TepthauBdvouy Tor Xovovixd TAEYUOTA, To OXTOOXE BEVOEN o
TIC TETMAEYMEVES AVOTUPACTACELS. AdYW TNG TASYUUTIXAS DOUNC TwV TE®MTY 600, Yl TNV
enelepyaocio Toug €youv yenoylomomdel cuveEATIXd dixTuN [19, 33, 70]. dpo tnv evel&la
TOUG, TA XOVOVIXE TAEYPOTOL BV UTtopolv Vo emTOyouY UIMAES avalboelg AOYw NG xuBXng
TOAUTTAOXOTNTAC OTN UVAUY TOU YEEWCOVTOL XL EVE TOL OXTAUOXE OEVOpa avTueTwTi oUV
oUTO TO CATNUAL, %ol UTA XAUTAAYOUY Vol €youv TNy yopaxtneto x| "odovinth" odn.

‘Ocov agopd Ti¢ TETAEYUEVES AVATHUPAC TACELS, UE TOV PO auTO EVVOEiTaL OTL 1) ETLpAvELX
avamnaploTaton we To 1wolEée ohvoro oto 0 pog TeLedido tatng cuvdptnong. O temheyuéveg
AVATUPAOC TAOELS £YOUV XL OUTEC HoXEd LoTORlOL OTOV YWEO TNG EMOTHUNG UTOAOYLOTWV.
‘Eyouv undplel mpoondieieg yprione Toug avd Toug xoupol. MTr unyovixy| uéinon autég
€y ouv xatd x6pov Pacto el oe oxtodxd dévtpa [13]. Tlapdhhnha, yia TV mopay oy OTTXGY
ep€ xou mpoypappotio T Ty vng (procedural art) [54], mohl cuyvd yenowonoobvTon ova-
AUTIXEG EXPRUOELS.

Hpbogata tpotddnxe and mopdhhniec epyooies [16, 47, 50] 1o mévtpepo VEUPWVIXGDY
OTOWY XU TEMAEYUEVOY AVOTUPACTACEWY. M QUTEC TIC €pyacieg ypnowonoleiton éva
VEUPOWIXO BixTUO WS 1) Tpoavagepdeioa TELOOWEOTAT CUVEETNOT. XTIC TEQIOOOTERPES Amd
TIC ETOXOROVVES EPYUGIEC TO VEUPOVIXG EXTUOEVETOL (OTE Vo TPooeYYIleL TNV cuvdpTno
TEOGNHAGHEVNS amdoTaong TG EmuunTAC empdvelas. Adyw tng eveMillug otny Totoloylag
X0 TNG OUOAOTNTAS TNG TELOOIAG TUTNEG CUVEETNONS, QUTH 1) TROCEYYLOT AVTWETWTILEL Ta TE-
CLOPLOHMOUG TIOU OVUPEQUUE TUPATIAVG X0t EYEL OONYYOEL OE EVIUTIWOLIXE X0l UTOCY OUEVX
amoteréopata. [op” Gho autd, undpyet EAAeu)n amd epyaheia enelepyaciog aUTMY TV Xxouv-

OTOUWY TETAEYUEVODY VEVPWVIXMY AVATIRUO TUCEWY TUEOUOLN UE oUTE Tou elvon dtadéotua
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1.2, MaVnuatied Osuéiia

Y10t TEOUTEOY OUCES AVUTUPAUO TUOELS XL 1) EQEUVAL AV GE QUTY EIVaL TEQLOPIOUEVT.

Yy mopoloa epyocio emLyelpoUUe Vo xoAUPOUUE aUTO To %EVO TpoTelvovTag wia uédodo
TOU EMTEETEL TNV %ATd BOUANCT %o OLadEac TN TOTXY| ENEEEPYUOiol TETAEYUEVWY VEUR-
OVIXOY CUVIPTACENY TPooNuacUévng andotaong. [lapdhinia, avartiocoupe éva oiyopLiuo
oetypoatorndioc Tne avamaplo ToUUEVNE emLpdvelas. MEGW TwV TEWQUUATOVY Hog ATOBELXVIOUUE
TNV UTEPOY T TN UEVOBOU Uag, OO0V apopd TNV AETTOPEREL TNG YEWMETElaG EvavTt avtio-
TV epYaAEiwY yior Totywvixd meshes, xadodg xon TV txavoTTA TOL ahyopiluou Uag va

OELYUOTOANTTEL TNV ETLPAVELX TLO OUOLOUOPPAL EVOVTL TEOTYOUUEVOV.

1.2 Moadnpotixd Osueiia

Ytov muprvar TG avamapdoTtaong WE TNV omola aoyololuacte Bploxeton 1 ourdptnon
mpoonuacuérng aréotaons. Xe authv Ty evotnTa Yo opicouue podnuotixd Tnv Evvola Tng
xou Vol TUPOUCLAGOUUE OPLOUEVES WOLOTNTES TTOU EVAL CNUUVTIXES YLOL TNV EVOWHATWOT| UE TA
veupwvixd (ylor amodetelc BA. xepdhato 3).

Eexwvdye opilovtog T elvon 1 cuvdptnon (anpdonunc) andotaone. Eotw éva obvoro A
tou R3. T xdde OTUElD TOU TELOBLAGTATOL YWEOU UTOPOUNE Vo OPlCOUNE TNV AmdoTACT
Tou and T0 GOVOAO WG TNV eAAYLOTN amdcTaoT and xdmoto Tou ctolyeto. Tumxd €youue

TOV 0ax6Aouo OPLGUO:

Opiopog 1.1: Xuvdetnon Andotaong (XA)

Eotw A C R3 xau z € R?. H ouvdptnon andotacng and 1o A elvou:

d(z, A) = inf{d(z,y)}

yeA

6mou To d evtég To infimum elvon 1 euxheldela andoTaoT HETAEY BVO OMUElWY.

ITpoxewevou Vo TPOY WEHOOUKE OTOV 0PLOUO TNE TEOCTUICUEVNG EXDOCTC TNG TOQUTAVE)

oLVAETNONG, YEEtdleTon axdpa Vo xa)oplooUUE TL EVVOUNE UE TOV 0RO ETLPAVELL.

Opiouwodg 1.2: Emgpdvela

Emgdvero etvor évo oupnoyéc, Tonohoyixd diodidotato xot opald utochvoro tou R?.

LUYHEXPWEVA, UG EVOLAPEPOLY Ol XAELOTEG ATAEG ETLPAVELES, ONAAdY aUTES TOL Ywpi-
Couv 10 PO ot 600 ywela, €X TV OTOlWY TO €va ElVaL QEAYUEVO XAl OVUPERETOL WS TO
€0wTEPIKG NS emipdvetac (ta onuela Tou Beloxovial evioe NG EMPAVELNS), Xou TO GARO, UN
PpoyUEVO, S TO e£wTepikd NG emipdvelas (ta onueior Tou Peioxovton exTdE TG ETLPEVELNC).
H avdhuon Yo prmopoloe va Eexiviioel amd T ECWTERIXG TNG EMLPAVELXS, ONAADT| Vewp®VTOS
OTL To avTXelpevo evdlagpépovtog etvar autd To cUvolo. O Aéyog elvan 6Tl TOMES Qopéc

Hoc evOlapépel 1 oyxoUeTpla evog avTixeluévou. 'EZaihou ta Quotxd avTixeipevo €youv
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Chapter 1. EMnvixr; Hepidngn

OYXO OXOUN XOL OV T LOVTIEAOTIOLOUUE YENOWOTOWWVTAS TNV ETUPAVELL TOUG. M€ AUTAV TNV
TeplnTwon 1 empdvela ebvar To GUVOPO ALUTON TOU GUVOROUL xal 1) amaiTnon Vo efvan XAELGTH
mpoxUmTel afiooTa. Adyw TOU TUEATAVW, TO ECWTERPIXO TNG EMLPAVELNS UVOPEQETAL XOL WS
TEPIKAEIONEVOS CYKOS.

H ouvdptnon mpoornuacuévng andéotaone oplletal Yo XAELOTEC EMPAVELES KOG EENC:

Optopog 1.3: Yuvdpetnon Ilpoonpacuévng Andotaocnc (XIIA)

‘Eotw S C R3, pla XAELOTY| ETUPAVELL XU T € R3 H OUVEETNOY TEOCTUACHEVNG

ambéotaong and Ty S elvow:

0,(z. ) d(z,S)  av 1o z elvar extéc g S
S x? =
—d(z,S) BpopeTind

Ye autd to onueio ebvar ebhoyo va avopwtniel xaveic vl v mpotwdton n NIIA
EVOVTL TNC YA, €QOCOV 1) TEOTN UTOPEL Vor 0pLOTEL Ylar Lo Teptoplopéva oOvoha. Agevoc,
OmeC Tpoavapépope TOMES QOpES Hoc EVOLUPEROLY (1 TPOXUTTEL YUOLXE) O OYXOG TWV V-
TIXEWEVODY. ATO TNV Ak eivon 1 NITA €yer xou éva mAcovéxtnua to onolo Vo yivel avepd

Aoty GUVTOUGLCG.

‘Eyovtog oploel TIg OYETIXEC EVVOLEC UTORPOUUE VO TPOY WEHICOUNE OTLC OLOTNTES.

Ocwenua 1.4

H XA xou n EITA pa empdvetog elvon Topaywy(lowes oyedoy mavtou.

H mopomdve widtnTa elvon onuovTixd SLoTt Tor VELpwVIxd efvor cuvey el xou Taporywyloeg
CUVUPTHCELS, EIVOL AVAUEVOUEVO VoL TpoceYY(Couv Ui Topaywyioyn ouvdetnon xahiTepo om’
ot plar un-raparywyioun.

o avouTind, yioo TV xhion Toug oy leL To ToEaxdTe Vepnua:

Ocwenpa 1.5

"Eotw éva onueto 2 € R® 670 onolo 1 BA A n ZITA etvon nopoywyloe, téte:

IVd(z, S)|| =1
xou

IVds(z, )| =1

Yuyxexpweéva, av y € S elvon to onueto tng emgpdvelag mou Beioxeton xoviUTEPH GTO




1.3. Yyetua) Aovieid

z, 1oybouv to e&N¢:
z—y
Ve 8) = 2y

AL

. T —
Vds(x,S) = sign(ds(z, S>)H:v——z!|

Ané to mopandve elvan gavepd 6TL 1) xhion wag LA o éva onueio €yer dievuvon Ty
eudela Tou TEPVAEL amd aUTS OTUEID XL TO XOVTIVOTERO TOL OTNY ETLPAVELN X0t xuTEVHUVO
popud oo auTé. T plor XMA 1oy et 1o (610 exTOC TNE EMPAVELAS, EVE EVTOC TNE ETLPAVELIS
1 xhlon €yel avtidetn xatebuvon and v avtiotoryn LA, Ed¢ anoxallTTETOL T0 TAEOVEX-
TNUO TS TPOoNUaoEVNS anboTaone. e aviideon ue ) XA, n MIIA etvon napaywylown
xou 6TaL oNela TNG EmpAvELag xou 1) xhiom oe autd elvon To (ddeTo BLdvuoua GTNV ETLPAVELX
Tou Oelyvel Tpog To eEmTEPNS TNC.

[Tépay autol, amd To mopandve Yedpenua meoximtel 6Tt n LA xou 1 XIIA anoteholyv

ANOOELG TNG axGAoLING HopPHC TNG EwOViXAS Blaopixr|g e€lowong:

f(x)=0,z€8S

1.1
IVf(@)]| =1 .

Av anatcoupe emniéov 1 hoor e e€lowong va eivar Taporywyioun Tdvew GTNV ETPAVELR

TOTE, X TwV 000, uévo 1 LIIA anotehel Ao,

1.3 Xyetwxr} Aovieid

Yy eloayoYh avapepdrfixaue o TETAEYUEVES VEUPWVIXES OVUTOQUCTAOELS. M€ AUTHY
™V evotnTa Yo e€nyooupe o avahuTixd Tn onuacia auTtol Tou 6pou xon Yo eEETAGOUNE
TIC ONUOVTIXOTERES OUMPBOAEC GE auTH TO TEdLO.

Q¢ memheypévn empdvela oto YadnuaTnd ovapépetar auTh TNg onolug Ta onueio dev
divovton dueca, ahhd uéow wiog e&iowong tnv onola txavonotolyv. Aniadr éva onucio

AVIXEL OTNY ETULPAVELDL OV XL UOVO av:
F(z)=0 (1.2)

H yprion nemheyuévmy avomapaotdoemy 0eV Vol XETL TEMTOPAVES GTNY YOEO TNG UMY -
Vg dédinong xan Ty yeagpuxwy. Takaodtepeg epyacieg [13] éxouv XETNOYLOTOLACEL 0XTAOLXS
0€VOpa YLoL TO YELLoUS Toug. [Tapdhhnia, UECE AVAAUTIXDY EXPRACEWY EYEL XATAGTEL BUVATH

1) TOEUY WY TERITAOXWY OTTIXDY EPE XL TEOYLUUHATIOTIXNG TEY VNG, OTWS LOPPOXAIOUATAL.
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Chapter 1. EMnvod Hepidndn

Autd mou ebvar xouvoToUo Elvol 1) CUYYWVEUCT) TETAEYUEVOY OVITUQOGC TUCEWY XAl VEUR-
ovxeyv. Ipdogata, utiplay TEELC TUPIAANAES EQYACIEC TOU TEWTOCTYTNONY OE AUTEC TG
VELPWVIXES TIETAEYUEVES avamapaotdoetc. Autéc Twv Park et al. [50], Chen and Zhang [16],
xou Mescheder et al. [17]. EE autdv oty tpwt 1 ouvdptnon F tne eiowone 1.2 eivor 1
CLVAPTNOT TPOCTUACUEVNC ATOCTACNC, EVK GTIC GAAeS 800 elvan 1) Belxtplo cuVdETNOY TOU
E0MWTEPLXOV TNG ETUPAVELNG. TNV TOEOUCH EQYUCIN EVOLUPEQOUATTE YLl TNV TEWTY TERITTWOT)
1 omolo €lvor X 1) WO BNUOPIATIC TEOGEYYLOT), OTOTE TOEAX T Vol TUPOUGLAGOUUE CUVOTTIXY
Vv epyaota Twv Park et al. xau otn cuvéyeia xdmoleg and TIC To ONUAVTIXEC CUUBOAEC ToU

axohovincay.

Ipoxewévou va avanapacthicouy v emgdvela, ot Park et al. ypnowonowoly éva feed-
forward vevpwvixd 1o omolo maipver w¢ eloodo TNV ywewxr cuvteTayuévr xan Tpoceyyilel
v XIIA ¢ emgdveioc. To mpoBinua yovtelomoteiton w¢ meofinua toiwvdpounons. Ta
dedouéva elvan vl mesh g empdvelag o yior TNy extaldeust) yenotponotolvton Uy Tou
amotehovvTon amd éva onueto T xou TNV meoypat TWr s The XMA vy auto. To onueio
T TopdyovTan e Serypatolndla mévey oto mesh, xovtd oto mesh xo evtdg evog mapoAn-

Aeminedo mou mepiéyel To mesh. H ouvdptnon xoctoug etvan 1 eng:
L(y,s) = |clamp(y, ) — clamp(s, 9)] (1.3)

omou y eivon €£0Bo¢ Tou VEUP®VIXOUL Yo TNV elcodo x, xou § elvon plo otordepd. O Ao-
Yog mou yernowonoteitar To clamp eivon MoTE TO VEupVIXS Vo TpoceyYilEl TNV cuVdETNoN
®xoh0OTEP ®OVTA TNV empdvela. Extdg Tou vo avamaplotd Eval oy AU, TO VEUPOVIXO UTOpEL
VoL OEYETOL EVAL DLUYUOUOTIXG XWOXO ¢ El00D0 TEEAY TNG YWEXNG CUVTETAYUEVNS XL VOl

AVOTORIG TY ETOL Uat OAOXANET HAAOT) OYNUATWY.

Metenetta epyaoleg TEOTEVAY OLUPOPETIXEG CUVOPTACELS X0 UOYLTEXTOVIXES TPOXEIE-
vou Vo TETUYoLY xohUTepa anoteréouata. ‘Ooov apopd Tic GUVAPTAOELS XOGTOUS, BLAPOPES
epyaoieg €youv mpoc¥éael bpoug Tou PTopoLY va alloTotocouy TAnpopopio Yo Tor xddeTa
SavOopato e em@dvetog [3, 4. Ta xddeta Svdopata touv "npofiénel” 1o veupwvixd
etvow 1) xhiom Tou 6nwe mpoeinape. Idioitepn mpdodo Egepe 1 epyasio twv Gropp et al. [31]
oTnv ool avTl vor JOVIEAOTIOAGOLY TO TEOPBANUN WE TUAVOEOUNGCT), VEWEOLY, GTO TVELUN
Twv Sirignano and Spiliopoulos [63], 61t T0 veupwvixd Aover pla Slopopixt| e€icwor, ouy-
UEXPWEVDL T1) Lop®T| TNE dlagopixic e€lowong mou detloape otny e€lowon 1.1. H cuvdptnon
x60ToUC amoteheitan amd B0 Bacwols dpouc. O mpdTog wiel To VEUPWVIXG Vo T8EEL TNV
TWr) undév oo onueior Tor omola avixoLY OTNV ETLPAVELX Xt O BEVTEQOS WUEL TO VELPWVIXG

var €yel wovadtata xAlon TovToo.

O Sitzmann et al. [6] ypnotponolody Ty napomdvew cUVEETNOT XOGTOUS XL TNV ENEX-
tetvouv mpoc¥éTovTag axoua Evay 6po ue Tov onolo anogedyeta 1) dnutoveYia avemtiounTwy
emavelwy o€ oruela mou dev Ya Empeme va umdpyouy, To omoio cupfalver BLOTL uE TNV
TOEUTAVG CUVEETNOT OEV TEOGOIOPI(ETOL 1) TWUT TOU TEETEL VoL TEPEL TO VEUPWVIXO TEQOLY

am6 to onueta g empdvelas. O dpog autdg Asttoupyel "Tipwenvtag" uxeée Tée Tng
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1.4. MéJodoc

CUVHETNONG TOU VEUPWVIXOU GE OTUElRl TOU BEV AVAXOUV GTNV ETLQPAVELN. TNV ToEOVOA
epyaoion YeNOUWOTOWUUE AUTAY TNV EMEXTACT XU 1) TEAXT) HOPYT] TNG CLVAETNOTS KOG TOUG

elvon 1 axdhovdn:

L(6) = Ls(0) + Lo(0) + Les(6) (1.4)

Ls(6) = Eps {0 [fo(@)] + dag (Vafola).ms)} (15)

Lea(0) = M B |V fo()]] — 1]} (1.6)

Les(0) = M E {emolfo@h (1.7)
a-b

9(a:0) =1 = e (18)

omou Ta Ap, Ao, Az and Ay ebvon pudpiotinég otadepée, S elvon ) emipdivela, pg elvon o
XUTUVOUT) T8V OTNY ETULQPAVELY, ¢ EIVOL 1) OUOLOUORPY) XAUTAVOUY| EVTIOC EVOC TOUQOAANAETLTE-
dou Tou TEPEYEL TNV empdvela O elvon To Bidvuoua Ue Ta Bdpn Tou veupwvixoy, fy ebvar
CLVEPETNOT) TOU VEUPMVIXOU, g Vol 1) OUOLOTNTO GUVNULTOVOL, N, elvon To xddeTo BLdvuoua
oTo T xou & ebvon évag yeydhog Yetindg aprdudg. O 6pog g edicwong 1.5 nepthoufdver To
6po ToL WiEl TN CLVAETNOT TOU VEUPEVIXOU Vo UNBeVI{eTon 6T onueia TNS EMLPAVELAS XIS
xou évay Gpa yior Tar xddeta Slaviouota. O 6pog tng e€lowong 1.6 wiel v xAion va €yet
povadlodo HETEO xon Y auTO amoxahe(ton xou eovixog dpog, Téhog, o dpog tng e€iowon 1.7
elvor autog Tou meprypddaue TedeuTaio.

E&icou evbiagépoucec BOUAEIES £x0uY aoyoANUEL UE TNV ORYLTEXTOVIXT TOU VELPWVIXOU
ductvou. To SIREN [64] yenowonowdvtac nuitova avti twv cuvidwy ReLUs €6eile Yetind
ATOTEAECUOTA OE DLdPopa TEOBAAUATOL. 2TA TELRUUUT YOS YPNOULOTOLO0UE TETOL BiXTLAL.

O cipytTeXToVIXEC TTIOL EYOUV XUTAPEPEL VOL ATOBMOOUY UEYAAITERT AETTOUERELN OTOL O}
ortor Tou povtehomololy ebvon UBpée |14, 19, 67]. Me autd evvoolue 6Tt yenoylototoly
Hat yopelxr| dour| 0edoUEVKY Tou amoUnxedel extondeolua Bdern To onola yenowonotodvTaL

©¢ €l0000L GE XATOLO VEUPWVIXO.

1.4 Médoooc

O otdyo¢ pag og authv TNV epyaocio elvon va mpotetvoupe o Yédodo yla Ty enelep-
Yoola TNG EMLPAVELNG TTIOU EXPEACETAL OO LA VEURWVIXT] CUVEOTNOT TEOCTUACUEVNS ATOC-
toone. H épeuva mou undpyet mévew oe autd eivan neploptopévn (21, 34, 18] xou ot teyvixée
OUCLIC TIXG ETUTEETOLY TNV OLABEAC TiXY| EEEQEUVNOT EVOC YMEOU CYNUATLY Tou pordolveTtal
xoTd TNV exnoddeuct) ywelc TN duvatoTnTo oA YT Tépay auTol. Avt’ autol, eUelg emiu-
HOUUE VO XATAC THOOUUE BUVITY| TNV XATE TO 0OXOUY 0AAXYY| TNG YEWUETELOG TNG EMLPAVELNS.
Eunveduacte, howndy, and ta 3D sculpting Aoyiouxd mou umdpyouv yia meshes to onola
Yenoteonotoly epyaheior Tou Aéyovtal TVEAN TROXEEVOL VO OAAGEOLY TOTUXE TNV ETLPAVEL
YOpw amd Eva ornuelo Tou EMAEYETOL amd TO YEV o).

Avagepduacte o autd To onueio wg onpieio aAAnAenidpaons, TNy TEpLOY T TOU OAAALEL
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Chapter 1. EMnvod Hepidndn

YOpw and To onuelo wg mepoynN aAAnAemiopaong xou otV dadxacta YEVIXA G aAAnAeTi-
dpaon. To xuplbtepo TEOBANUA TOU GUYVAVTUE Elvol TO TS Vol ETBHAAOUNE TNV TOTUXOTNTAL.
[t var ahhd€oupe TNV EMLPAVELL TOU ovamaploToTon TEETEL Var AAAGEOUUE TIC TUPUUETEOUC
TOU VEUPOWIXOU, oA, €V YEVEL, ot oAhoryY| ot mopopéteous emneedlel Ty €€000 Tng
CLVAETNONG TOU VELPMVIXOU GE €VaL U1 PEAYUEVO Ywelo Tou ywpeou elcddou. Emouévng, av
EXTIOUOEVCOUUE UPEADE TO BIXTUO YENOWOTOLWVTOG OelyUaTo LOVO amd TNy TERLOY Y| AAANAET-
dpaong N empdvela Yo nopapoppeniel xou oto undrond tng. llpoxewevou va EAUTTOCOUUE
UTO TO TUPATAEUPO OMOTENECUA TEOTEVOUUE CUVOLIOUS BELYUdTLY Tou Beloxovial exTog
N meploy g ahAnhenidpaone xat expedlouy TNV UTEEYOoUCH YEWUETEI Xou SELYUATOVY omd
Vv emduunT aArory ) olugpeva ue o vého. To mpota Tor amoxoholue defyuata empdreiag

xa Tor OV TEPNL Oetypata aAAnAeniopaons.

1.4.1 Aciypota Enupdveiag

Ao undpyouoeg dovketéc |5, 18] éyouv Tpoteivel Tapduotoug ahyopiduouc yio T ety
Tohndlor Tou 1olPolc GUVOROL Uia VEVPWVIXAC CUVEETNONG. ZEXVAVE OElYUUTOANTTWOVTAC
omUelor OUOLOUORPU HATAVEUTNUEVA EVTOS EVOG TUPAAANAETULTEDOL TOU TERLEYEL TO GOVOAO XAl

éneita To TeofBdhouy oty empdvela pe emavoripelg yevixeuuévou Newton-Raphson:

— o — flz Vf@ﬂ)
e = SO o

[ pio mporypotery XITA 1o f(2,,) €lvon 1 oamdotoon Tou &, and 10 XOVILVOTERO oTUEio
oTNV empdveLa xou 1) xhion tne f ebvan 1 xarebuvor avtidetn and autd, ondTe pla emavdindn
elvan apxetr. Ot vevpwvixée XITA duwg elvan mpooeyyioel, cuveTa ypeetdlovTon TapATdveY,

OAAG Oyt TOAAEC. LTV TRA&T YENOHLOTOLOVUE 7.

Axohouvdolue ouyxexppéva Ty epyaoia Twv Chibane et al. [18] otnv omola o apyxde
aprduog BeLYHdTOVY Elvar UixpdTepog amd Tov Tehxd. ‘Eyovitac Beet xdmota debypoto méve
OTNV EMLPAVELN UE TOV TUPATAVE TEOTO, ENEXTEVOUY TO GUVORO AUTO DNULOULYMVTOS XOLV-
00pYLL UTO TA UTERYOVTAL. DUYXEXQUIEVO DA YoV Tuyaio onueta amd autd T0 oUVoro, Tu

uetotoniouv Ue yxaouotavd H6puBo xar To LavampoBdhouy GTNV ETLPAVELD.

YNy epyaocio Hog YeNOYLOTOLGOUUE TOUEOUOLY BLUBIXAUGTO UE TNV TOEAUTEVE TEOXEWEVOU
var Topd€oue Tar OlypaTo TG EMONEVNS emavdANndng g exnaideuons. ‘Eotw 6TL éyoupe
€va oOvoho BelyUdTey emipdvelas. Tote ta yetatoniCovye EQATTOUEVIXG OTNY ETLPAVELDL Ko
o EovampoBdioupe. TTo avehutixd, petotoniCouue xde onueio opotbuoppa otov dioxo (1
oxtiva Tou elvon atardept| yiot Gha ToL GNUELR) TOL EQETTETOL TNG ETUPEVELNS OE AUTO TO OTuE(o.
Awe&dryoupe meduaTo ToU amodeEvOoLY OTL aUTOE 0 TEOTOC detyUaToANlag 0dnyel oe To
OUOLOUOQRPES XUTAVOUES ATO TOV UPENT) TOOTO TOU VoL XATAGKEUALOVUE TO GUVORO BELYUTWY

anod TV apyn o xde enavdindm exnaidevong.
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1.4. MéJodoc

1.4.2 Thiwélax

Mia a6 Tic dnuogriéotepeg uedddoug Yo xotaoxeun xou enelepyacio 3D poviéhwy elvou
n 3D yhuntwr. H ovopaoia mpogpyeton amd tnv opoldtnTa HE TNV YAUTTIXH TNA0Y, 60U O
YAOTTNG yenowonotel Sidpopa epyoleio TEoxeEVOL Vo TpocETEL/aponpéoel UAIXO Xau Vol
dwoel oy Aua oty empdvela. To epyahetio otny dmeroned yAumtied elvon Toe mivéha. apoxdte
ToEOVGLACOUUE TOV OXO UAS POPUUMOUO Ylol Tl TUVEAQ XO TOV TEOTO TOU EMNEEGLOUV TNV

ETUPAVELL OTNV TEQLOY T} AAANAETDPAOTC.

ITpbtuna xouw Owcoyéveieg ITivérwy

OplZovpe w¢ mpdtuto mvélou pior C1 (H opohdtepr) Blodldotatn cUVEETNOY OPLOPEVN
TéVe GTOV LoVadLolo 6ioxo PE xEVTEO TNV oYY TV a&OVeY, 1) omolo €Yel UEYLOTN THY TO
1 xou undeviletoar oto govadiaio xOxho (16avixd xo ot mopdywyol e to Bo). Eotw o

br(x) elvon éva tpodTUTO TVEROL, THTE OL TapaTdve WLOTNTES cuvolilovtar we egnc:

br: {x e R?||z]| <1} = R (1.10)
max{br(z)} =1 (1.11)
|z]| = 1 = br(x) = 0 (A Vabr(z) = 0) (1.12)

MmropoUye, thpa, vo oploouue uio ouxoyévela B, s TOQUUETPOTOMNUEYY UE TNV axTiva 7

xou TN EVTaon § W
B, s(z) = sbr (f) ,reR", s€R (1.13)
T

H oxctiva emnpedler to uéyedog tng meptoy e aAANAETBRaOTG, EVEK 1 EVTaoT EAEYYEL TO
noco Yo ahhoiwel 1 empdvela. ‘Onwg Yo yivel gavepd, ulo Jeted| Twwr yia Ty évtoon
onuovpyel e€oyxmuata, eve ula opvnTx Ty dnuoveyet Badovinuata.

Tol TEWAUATE YOG YENOWOTOUUE To axohovlo mpdTuTto TvERoL, To omolo elvon cuu-

HETEIXO 0 TEOC TNV apY Y| TV aEOVWLYV:

br(x) = P(1 — []) (1.14)
P(r) = 62° — 152" + 102° (1.15)

1.4.3 Apdon ILwvélwy

[o var yenotonolioouue €va TvELO Téve o€ €val oruelo TG emPAvelas VewPOLUE OTL
1 oLVAETNOT Tou oplleTal GTO EQPANTONEVO ETUNEDO OE aUTO To oNueio pe Tov d&ova z va
Towtileton pe To xddeTo ddvuoua. XpenoyoTouwvTog To Yempnua TETAEYHEVNE CUVARTNONS
[11] UTOPOUUE VoL EXPEAGOUNE TNV EMLPAVeELd, 1) omolo elvor To looléc alvoro Twhc 0 tne

CLVEETNONG TOU VELEWVIXOU, KOG TO YEUPO Wlag BIoOLEc TUTNG CUVHRETNONG OPLOUEVNG TAVL

9



Chapter 1. EMnvod Hepidndn

oto (oo eninedo. H ahhowwuévn empdvelo diveton and to yedpo Tou adpoiouatoc tTne me-
TAEYHEVNC CUVAETNONG Xo TNG cLVAETNONE Tvéhou. Emouévng 1 dpdor tou mvélou ot éva
onuelo Tng empdvelag ebvan 1 HETATOTLOY| TOL xuTd TNV XATEdHUVOT TO XEIVETOU BLAVICUUTOS

Tou onuelov aAANAeTBpaoNG andoTAo (o1 UE TNV THY| TOU TUWVEAOL GTO dEYIXO.

1.4.4 Actypoato AAANAERIOpoONS

‘Eyovtag meptypdder To g dpa Evar TVEAD TEVW GTNV ETUPAVELYL, TEOYWEGUE CTO TG
ToEdyouPE To Setypoto ahAnAeTidpaonc. Apyxd TotodeTolue onueio OUOLOUOPY GTOV EQUT-
ToUEVO dloxo oTo onuelo aAAnAenidpaong ue axtiva fom pe Ty axtiva tou Tvélou. Ereita
TeoPdAoupe Tor onueio QUTA TV TNV EMPAVELR xou Tol UETATOTHLOUUE OTLG Teptypdiope
TeONYOUREVLS. MmopoUue va yenoloTot\coUUE To VeWEnuo TETAEYUEVNS CUVAETNONG Yo

Vo UTOAOY{GOUUE Xon Tar aANOLUEVYL xddeTar SlaviouaTa entlong.

1.4.5 Xuvovacuog Asityudtwy Envpdveiag xaw AAANAERTISpaong

‘Onwe avagépoaue oTny apy | TS EVOTNTOG, 1 LEV0B0E ToU TpoTEVOUNE AetTovpYEel GUVOUS-
Covtag Selyporta amd TNV ETPAVELN TOU EXPEACETOL UG TO VEURMVIXO TELY TNV OAANAETUSR0OT
xou delypota and Ty emduunth addayr. ' To oxomd autd, agol dnutovpyrcoupe Ta dely-
MOLTL ETLPAVELOS, APALEOVNE amd To UVOAO auTd Tou BeloxovTal eviog axtivag (ong ue authv
Tou TVEAOU amd To onueio alinienidpaong. ‘Eotw 6Tt N elvon o apyndg aprdude Seryudtwy
xou M o apriuog 6cwv aponpédnxay.

To emduevo mou ypeetdletar vo tpocdlopicouye etvan 0 apriudg TeV SeryUdTeY aAAnAeTi-
opaone. H e€looppdnnon petald twy 800 delyudtowy dev yivetar pntd pe Bder, ondte 1 oyéon
HETAE) autol Tou aptduol xar Tou oprduold deryudtomy emdvetas mou anéuevay (N — M)
matlel autd To péAo. TTohd Aiya detypoto oAANAETIBpoomG Oev Vot efvan apxeTd yLor vor ahAAGEEL
omwe Véhouye 1) emupdveta. TToAAd, amd tnv GAAT, Umopel vor 001 yHioouY GE VIOV TaRUUOE-
QKON EXTOC TNG TEPOY NS AAANAETBpaoNE AOYw €ANTONC EXTPOCWTNONG TWY OELYUATWY
empdvelas. Extdg autol, Vélouue o aprdudg Twv Setypdtonv ahhnhentidpaong vo elvon avdho-
Yog tou eufadol tng neptoyric alnienidpaong. Tlupdti dev unopolue va utoloyicouue autd
T0 eUPadOV avahuTXd, AOYW TNG OYETXNAC OUOLOUORGING TNG XUTAVOUNC TOU THUEAYEL O OA-
Yopriuoc derypotohniog pac, o Adyoc M /N to npoceyyilet mdavotixd. Luvenme, Untopolue
VoL YENOWOTIONGOUUE TO M Y1 VO XALIAXWOOCOUUE TOV 0ptdud TOV BELYHdToY aAAnAenidpaong.
Emuniéov, toAanAactdlouue xat Ue Evay TopdyovTol (sm)\éyoupe 10 10) HoTay va & HOOLUE

NV onuacio Toug GTNY CLVEETNOY XOGTOUS EPHGOV aUTY ELTOVOVTAL YIa TNV UAAXYY.

1.5 Ileipaupato

[oe Ty motoTixr) xan TocoTXY) a€loAOYNoT TNG TEOTEWVOUEVNS UEVOBOU xod®dE Xl TOU

alyoplduou Serypatorndlog Siedyouue plo oeled TELRUUATWY, CUUTERLAUUBAVOUEVNS LG
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1.5. Ilewpcuata

(a) Bunny (b) Frog (c) Bust

(d) Pumpkin (e) Sphere (f) Torus

Eyfua 1.1: To obvoro oynudtemv mou GUAECHUE Yior ToL TERAUOTS HoC.

(a) Dining chair (b) Chair (¢) Armchair

4dd46b9657c0e998b4d5420f7c27d2df 02e76cb4f1039c482eb499cc8fbed c5d880efc887f6f4f9111ef49c078dbe

(d) Sofa (e) Vase

beff6c5cb4127aal15e0ae65e074d3eel 13375f8fce3142e6597d391ab6fccl

Yyfua 1.2: Taemmiéov oyruata anéd o ShapeNet ta omola ypnotuonotolue yio T oUYxpLom
ue v eneepyacia mesh. Kdtw and ) Aeldvta xde ewdvag gaiveton to ShapeNet ID
Tou avTioTOLY 0L HOVTEAOU OE TAdYLaL YRAUUATAL.
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Chapter 1. EMnvod Hepidndn

obyxplone pe enefepyaoia mesh. ot v ulomoinon pag yenoyonototue to PyTorch [51].

[Mot autd Tar metpdpota CUAEEaUE Vo GUVOAD OYNUATWY. LUYXEXPUEVA Y OTOULOTOLOUUE
téooepa meshes, 1o Standord Bunny [72] xou tplo and to TurboSquid [71], xodede xar 800
oy AT Tou TEpLYpdpovToL avohuTixd, Wla opalpa xou €va Tépo. Ta moapamdve @atvovtal
oto oyfua 1.1. T ) olbyxplon ye tnv enelepyaotia mesh emexteivoupe auth T cUALOYN
ue pepxd povtéra omd to ShapeNet [15] ta omolo gaivovtar oto oyfjua 1.2,

H opyitextoviny| mou yenowomotolue eivor SIREN pe 2 xpugd eninedo ue 128 vevpwveg
T0 xadéva. Emmhéov egopudoouue xavovixonoionon Bapdv [00] oe xdle eninedo. I
x&e oy fua exmoudeloude éva ey weloTod VEupwVIxd. TENOC, YENOILOTOIOVUUE TNY ATOCTION

Chamfer yio ti¢ aprduntinég ouyxploeic.

1.5.1 A&ioloynorn ANyoprdpou Acsitypatoindiog

OENOUUE VoL UEAETACOUKE TNV XATovour| ToU ToRdYEL 0 aAyopLiuog Beryuatorndiog pog.
ot autd T0 o%0md Bropeptloupe TNV EMIPAVELN GE TEPLOYES o TEOGEYYILOUUE TNV U€om TiuN
N¢ ouvdpTtnong tuxvotntag mavotnTag ot xadepla amd aUTEG. LUYEXPWEVA, EXTENOUUE
N (= 100) enavarfderc Tou ahyoplduou, pe N (= 10000) deiyuortor 1 xodepio, xon yior xde
nepoy) D uetpdue tov cuvolxd apudud Tov detyudtwy cp eviog tne. H extyrtela tng

HEOTG THNAS TN oLVdETNOTG TuXVOTNTAS TAVOTNTG O Uiot TEPLOY T Elvon, AoLTov:

CD
pdf = N M A, (1.16)

6mou Ap To eyPadov g empdvetag. Emeldr| 1 empdvela xou xaTd GUVETEL OL TEQLOYES
T0U Slaeptopoy Bev EpLYEdpovTaL avahuTIXG. yenouonotolue avt’ autol évo mesh (e to
Telywvd Tou W TIC mptoxég) mou xataoxeudletar péow Marching Cubes [13]. Oewpolye
ot éva onpeto avixel 6To Tplywvo oTo onolo PeloxeTon o xovTd.

Axohouvdolue Tty (Bior Sradixacion xan Yoo TNy TepinTwon 6mou o xdde emavdindn To
obvoho Seryudtov xatooxeudletan €€ apyfc. To anotedéopata qoivovtar ot oyfuoTa
1.3 xou 1.4 avtlotolya, OTOU 1) EXTWOUEVT TWH TNG cLVAETNOTNG TUXVOTNTAS TWAVOTN TG
OTTIXOTIOLELTOL UE TAL YPOUTA TWV TELYWVOY. XTo Oy AuaTo auTd Topodétouus eniong xat
LOTOYEAUUAUTA TGV EXTYMUEVWY THIWY, OTA OTOlA UE DLUXEXOUUEVT) XOXXLVT] YEAUUUT| polveTol
1 TWH TNG TEYUATXrS opoldpoppng xotavourc. Ilapatneodue 6TL yior Tov akyderdud uag
TO YEWUOTA lvol TLO OUOLOUOPGI X0t OTL TA LOTOYQPUUUATA VAL XEVTPUOLOMEVY YURW OO

TNV TWH TS OUOLOUORPNG XATAVOUTC.

1.5.2 Ilapdueteor ITvvérou

Yta oyfuata 1.5 xou 1.6 mapoucidloupe T 6pdor Tou mivéhou 6To (Blo onucio emipdvela
ulog ogalpag yiar SLPoRETIXES THES TN axTivag xou Tng eviaons. L To mpoTo oyfua

YenoteonotoVue VeTixég TWES NG EVTAONE, OTOTE TO TUVEAO ONULOLEYEL EOYXMUATA, EVED

12



1.5. Iewduata

°4g 0 O

Yyfuo 1.3: To anoteléopata Tng extiunong ouvdptnong TtuxvotnTag miavoTnTug Yol TOV
alyopriuo detypatoindiog poc.
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Chapter 1. EMnvixr; Hepidngn

42

10
08
0.6
0.4
0.2
0.0

Yyfuo 1.4: To anoteréopata g extiunomng cuvdptnong TuxvoeTnTag TUavOTNTIS Yo TV
TEQIMTWOT 6oV To GUVOLO BELYUATOY opyixoTolElTon ot Xdie emavdhnn.

agH B
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1.5. Iewduata

Brush Radius

0.05 0.10 0.15 0.20 0.25
0.03
&
2
&
S 1 0.05
z
=
M
0.07

Yyfuo 1.5: To anotéleopa Tng 0pdomg TOU TVEAOL GTO (B0 ONUELD UE DLUPOPETIXES TUIES YLl
Vv axtiva xan Ty évtaon. Ou ée Tic évtaong elvar Yetinég xou €10l To TvERO dnutovpYel
eCoyx@uaTL.

Brush Radius
0.05 0.10 0.15 0.20 0.25

-0.03

-0.05

Brush Intensity

-0.07

Yyfuo 1.6: 'Oneg xaw oto oyfua 1.5, adAd pe apvnTnég TWES yia TNV €VIoT), OTOTE TO
mvélo dnutovpyel BodoulduoTa.
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Chapter 1. EMnvod Hepidndn

Mean Chamfer Distance x10° (J)
Shape Over whole surface Inside interaction area
Ours | Naive | Simple Mesh | Ours | Naive | Simple Mesh

Bunny 9.407 | 14.106 11.127 5.527 | 12.919 17.707
Frog 8.172 | 12.865 8.756 4.750 | 9.805 17.051
Bust 7.279 | 11.486 7.901 3.818 | 8.779 14.926
Pumpkin 8.774 | 13.558 11.489 4.315 | 5.910 20.693
Sphere 7.209 | 12.550 7.399 3.555 6.117 12.982
Torus 7.142 | 13.516 7.415 3.574 | 5.980 13.402
Dining chair || 7.256 | 20.545 8.260 8.843 | 11.288 10.703
Chair 8.498 | 30.620 8.650 8.741 | 19.072 15.344
Armchair 14.152 | 19.433 14.311 5.085 | 10.942 23.654
Sofa 11.160 | 18.268 11.899 4.477 | 8.623 23.940
Vase 9.063 | 15.565 10.345 10.477 | 15.713 16.725
Average 8.919 | 16.592 9.778 5.742 | 10.468 17.012

Hivoxag 1.1: Ldyxpton tng uedodou pog pe xou yoplc delyuata emgdvetog (Ours xan Naive,
avtioTorya) xou enelepyooio evog mesh (6od0ivopou peyédoug Ye To VEUPWVIXO.

YLt TO OEVUTERPO APVNTIXES, OTOTE To TVEAO drovpyel Badovinuota. Ko ota Vo oyrfuta

1 axtiva Topopével otoept| oty xdle yoouun xou 1 EvtacT oty xdde oTHAY.

1.5.3 X0yxeion pe Encgepyacio Mesh

H o dnuoguiric avarapdotaon yio 3D yAurtixd etvan to meshes. Enopéveg plo obyxe-
1oN Ue auTd elvan avaryxafor Yoo TV a&lohdynon Tne mpoTevouevng uedodou. Ilap’ dha
QUTA 1) dUECT) TOCOTIXY GUYXELON UE EuTopixd Tpoypduuata enelepyaciog mesh dev etvan
OLVATH, BLOTL Ta TLVEAX OE AUTE AELTOLEYOUV BLPOPETIXE Omd TNV OLxr Uag poviEoTolno.
ThomotoUe, cuvenng, ula emelepyaota mesh 1 omola pueiton Tov TpOTO TOL Gpat TO TLVEAO
oTn vevpwwvixt) XITA.

Kotd v xataoxeur tov deryudtwy aAAnienidpaong tpofdilouue oruela Tou EQunTo-
uevou dioxou mdvew oTtny empdvelo. o o mesh ypewdleton vor axorovdroouue Ty avtidet
otadwacior epdGov oL xoufBol Tou, Toug omoioug VEAOUNUE Vo UETOXIVACOUNE TROXEWEVOL VL
aAGEouue TNV emipdvel, Bploxovta €€ apync Tave 0TV emipdvela TV omola opllel, ahhd
Oev yvwplooupe TNV Ty TNg cuvdpTNoNg mvelou Yo awtolg. T xde xéuPo evtog tng
Teploy i aAANAenidpaonc oxohovdolue v oxtiva Tou Cexvdel and autdv Ye xatebuvorn
10 avtioToryo xdldeto didvuoua xar Beloxouue TNV TOUY| TNG UE TOV EPAUTTOUEVO BiGXO GTO
onuelo ahhnhenidpaong. XenolomoloUue aUTAY TNV TOUR Yia Vol UTOAOYIGOUNE TNy TYY| Tou
mvélou xou yetatoniouue Tov x6ufo avahdywe.

[Tépay Tou Mapamdvw, Bev elvon Eexddupo TS oL HU0 AUTEC AVATUPACTACELS UTOPOUY VO
ouyxeLolY ouTWS 1) dAALS. EmAEYouue Voo cUYXEIVOUUE TNV YEWUETEIXT| EXPRACTIXOTNTY
Toug Bovévtog evog otalepol Tpolmohoylopol uviunc. XenowonotoUue évo mesh vdmiric

avdAuong wg to ground truth xou éva younhvic avdhuong we avagoped. Ta téoocpa meshes
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1.5. Iewduata

Eyfuor 1.7: TTopodelypotor ToAAmAGY aAANAETORICEWDY

Tou oyfuatog 1.1 €youv apxeti| avdiuon yia vo yenowonommdoly wg to ground truth. To
oyfuata Tou ShapeNet, oyl duwg, ondTe yior auTd, xomS xaL YL T oaipa xaL Tov T6po0,
xotaoxeudlovye to ground truth péow Marching Cubes [13]. Axohouvddvtac to NGLoD
[67] yenowomoloUue TETEAYWVIXG ATOBEXATIOUO TROXEWEVOU VO XUTOUOXEUGCOUUE TO mesh

avopopdc, WOTE To UEyedog Tou va elvon Tepimou (oo Ye auTd TOou VEUPWVIXOU.

‘Eyovtoag xataoxevdoet to ground truth mesh xou to mesh avagopde, extelolue tig
(dteg 10 aveldipTtnTeg OAANAETOPAOELS OE QUTA, XoME XL OTO VEUPMVIXO, YOTOULOTOLOVTUS
NV U€V0DO pag oAAG xon TNV A@éAT TEOGEYYLOT OTOU YENOUOTOLUVTAUL UOVO BelypaTa
arnhenidpoong. To mvéro €yel axtiva 0.08 xou évtaom 0.06 yio xde arinienidpaor. o
v aprduntixd oUyxpeton unoroyiloude v péon Chamfer andotoon (ue 10000 Seiyporto)
petah Tou ground truth mesh xau 1V uToAoinwy, uTtohoylouévr oe OAN TNV ETPAVELY,
xodode enione wévo péoa otny meployn arinienidpaonc. Ta amoteréopata cuvolilovton

otov mivaxa 1.1, 6mou gaivetar 6Tl 1) UEV0BOS Uag TPOCPEREL XUADTEQN ATOTEAECUNTAL.

1.5.4 TIlapadeiypoto IToAAanAdY AANANAERTIOpdoEwY

Y10 oyfua 1.7 gafvovton To amoTEAEOUATH TOMAGY GAANAETLOPAOCEWY O Tla oy AUTA.

XenowomAinxoy SdPopeS TIES YId TS TUPUUETEOUS TOUS TLVEAOU.

17



Chapter 1. EMnvod Hepidndn

1.6 KaoataxAsiox

Y1y mopoloo epyacio TapOUCLIcGUUE TNV TEeMTN, at’ 6co Yvwpiloupe, uédodo ylo Ot
adpac Ty enelepyacio vevpwvixwy MITA, xadog xar éva ahydprduo opotduoppne Oeryua-
Tohndlag Toug. Actlope U€ow TERUUATWY Ta OPENT TOLU TEOCPEREL EVOVTL TwV TAEOV OLUDE-
dopévwy teyvixwy. EAnilouye 6Ti ye auTtodv TOV TpdTO 1) YeHom Toug Yo dladolel teplocdTERO
O EUTOPXES AAAGL XAl ETLOTNUOVIXES EQuOUOYES. TTdpoyouv 1N EpYAClEC POUTOTIXNS OL
omoleg yeNoWoToloLY TEToLEC avamapac Tdoelc. BéBoa, mpoxeyévou va utdpéet 1 utodétnon
QUTWY TV XAVOTOUWY TEYVIXWY YpeldleTon TEplocoTERN €peuva. TTdpyel Yeydho tepriwpto
Behtiwong xan melpauoTiogol. NEOTEQES UPYITEXTOVIXES OL OTOIEC YENOULOTOOUY YOEIXES
OOMES UTIOPOUY VOL OVUTIORUC THOOUY TEPLOCOTERES AETTOUERELES XL EEVAL EVOEY OUEVOS XUTUAAT
Motepeg.  Emlong n povrelomoinom twv mvewyv unopel vo emextadel emitpénoviag mohu-
mhoxotepn enelepyacio. H elepedvnon autodv Twv povonatiov eivan o poévo dpduog meog Tnv

eupeio viodétnon Twv XITA.
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Chapter 2

Introduction

Formless protoplasm able to mock and reflect all forms and organs and
processes—uiscous agglutinations of bubbling cells—rubbery fifteen-foot
spheroids infinitely plastic and ductile—slaves of suggestion, builders of
cities—more and more sullen, more and more intelligent, more and more
amphibious, more and more imitative— Great God! What madness made

even those blasphemous Old Ones willing to use and to carve such things?

H. P. Lovecraft, At the Mountains of Madness

The wings of a butterfly, the petals of a flower, a human visage, and the antlers of a
deer, as well as, the chassis of car, a mechanical gear, and the walls of a building are but
a meagre set of examples of natural and human-made objects that occupy the interest
of people working on a wide range of fields. An artist might want to create a butterfly
which is going to fly across a scene in an animated film. Depictions of plants are useful to
botanologists and have been included since ever in related books. A mechanical engineer,
on the other hand, will want to design the chassis of a car and test its aerodynamic
properties, and an architect will want to design a building. The question, then, is how to
represent these objects, since, the purpose is not to procure the object itself, or, even if
it is, its design will undergo various iterations?

In the days of yore, before the digital era and the incorporation of computers to the
workflow of virtually any task, the answer to the above question would be pen and paper
and/or physical construction (usually in smaller scale). Indeed, even today, this keeps
being the answer sometimes. Maquettes, for example, are used to test aircraft designs.
However, computers have provided more sophisticated approaches and capabilities that
were, simply, impossible by traditional means. Computer animation, computer games,
computer aided design (CAD), architectural visualization, etc., are improved constantly
and influencing each other producing along the way ever more impressive results. In these
digital environments, the objects of interest are, in the vast majority, represented by their
surface, and it is the problem of surface representation for computers that lies at the core

of the present thesis.
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Chapter 2. Introduction

Figure 2.1: The terrain in the rendering above is described through its signed distance
function. Taken from [54].

As already discussed, surface representation is a problem encountered in many and
diverse applications. It is only natural, therefore, that the representations devised over
the years are as many and diverse as the applications, each with their respective pros and
cons. Bézier patches, B-splines and octrees are only some of the choices with the most
ubiquitous being meshes.

Relatively recently, given the ever rising popularity of artificial neural networks, a new
class of surface representations has been proposed. In this approach, the surface, which is
frequently required to be closed, is represented implicitly as the level set of the function
of a neural network with one output. Several papers have presented very interesting and
promising results using such representations. In most of these works, the network tries to
learn either the signed distance function or the occupancy function. The signed distance
function measures, for every point, its distance to the surface, negating it if the point
lies inside the volume the surface encloses. Accordingly, the occupancy function takes the
value 0 outside the surface and the value 1 inside the surface (or vice versa), which can
be thought as thresholding the signed distance function. In this thesis we focus on the
former. Besides representing the surface of one shape, these networks can also represent
an entire class of shapes by taking a class code along with the spatial coordinates as input.

Representing a surface using its SDF is not a new idea. Prior works have used octrees
that hold the SDF’s value at the positions of their nodes. Also, shader artists, who
use GPU shader programs to create art, have used analytic SDF expressions to render
complex scenes (see figures 2.1 and 2.2). Coupling SDFs with neural networks, however,
has proved more versatile.

Nonetheless, being able to represent a shape, usually, does not constitute a full solution

to the problem. Even a representation able to represent the most minute details efficiently

20



'
% e .6 B oo
852 %s 8o% Sehlevely Fabelh
858 g20 9% 0% oq S50 L
%, Xc) aen B
& B G580
£ (%] @g@@ FoY g@%

Figure 2.2: A fractal set rendered using its signed distance function.

would be totally useless for a specific application if it would not provide the features that
the application requires. The different features or properties that a representation offers
relative to others is exactly why different representations are suitable for different tasks.
Most notably, it should be possible to render the represented surface, in order to examine
it visually. Since we are dealing with 3D shapes, inspecting them visually is crucial to
just about any application. Another feature that is also required by most applications is
the ability to edit or create the represented surface manually with interactive software.
The type of editing can be quite different, though. For some tasks, for example precise
editing of the individual mesh vertices is more appropriate, while for others, tools that
specify the end-effect, treating the representation opaquely and disregarding the internals
details, are more useful. It is the latter manner of editing that concerns us in this thesis.

Despite the success of neural SDFs, their editability has not been particularly studied.
There exist some works that allow the user to control a number of parameters in order to
change the shape. However, the outcome belongs in a learned space of shapes. Essentially,
these works allow interactive exploration of this space, without the possibility of modifying
the shape beyond its confines. For example, if the network has been trained to represent
airplanes it will not be possible change the shape into a car. Providing methods that
allow ad hoc editing of neural SDFs are critical in making these representations more
widespread and in this thesis we attempt to do just that. Specifically, we implement
editing capabilities for neural SDFs inspired from 3D sculpting. This way of editing
uses tools called brushes to deform the surface locally. Due to its nature, it is directed
mainly towards artistic applications. We partly aim at making neural SDFs a viable
representation for these applications. This does not preclude the possibility of the use of

our method in scientific applications as well. After all, neural SDFs have found use in
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Chapter 2. Introduction

robotics already and our proposed method can provide local corrections. Summarily, our

contributions are:

e A self-contained analysis of the basic properties of distance functions.

e An algorithm for quasi-uniform sampling of a surface represented with a neural
SDF.

e Mathematical analysis and experimental examination of the distribution produced

by the algorithm.
e A method for editing locally the surface of a neural SDF based on 3D sculpting.

e A quantitative comparison with the corresponding mesh editing.

These results have also been compiled into a paper [73]. The rest of this thesis is organized

as follows:

e In Chapter 3, we present some mathematical foundation along with a brief discussion

of neural networks.

e In Chapter 4, we review prior work on surface representation, focusing on research

on neural SDFs.
e In Chapter 5, we describe our proposed method in detail.

e In Chapter 6, we perform experiments to evaluate our method quantitatively and

qualitatively.
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Chapter 3. Preliminaries

In this chapter, we aim to provide the theoretical background that is required for the
comprehension of the following chapters. We will focus on machine learning and some
mathematical ideas, definitions, and procedures pertinent to our work. More specifically,
in Section 3.1 we discuss distance functions and their properties, afterwards, in Section 3.2,
we deal with sampling algorithms, and, finally, we summarily present machine learning
with a focus on neural networks, in Section 3.3. We try to keep our discussion self-
contained. This is a difficult task when handling such diverse topics, however, so we
assume a basic knowledge of linear algebra, vector calculus and probability theory and

we provide relevant citations when necessary to fill in the gaps.

3.1 Distance Functions

We begin by defining a notion that is central to this work and permeates almost
every aspect. The notion of a distance function to a surface. Firstly, we shall start quite

abstractly with metric spaces in general and, then, move on to a more concrete setting.

Definition 3.1: Metric Space

A metric space (M, d) is a set M along with a binary real function d : M x M — R

which has the following properties:

(i) d(z,y) = d(y,z),Vo,y € M

(ii) d(z,y) =0<= =y, Vr,y e M (Symmetry)
(iii) d(z,y) +d(y, z) > d(z,2),Vz,y,z € M (Triangle inequality)

A function d satisfying these properties is called a metric.

Let (M, d) be a metric space, then Vz,y € M, then:

d(z,y) >0

Proof.

OJ



3.1. Distance Functions

Lemma 3.3: Continuity of the Metric

Let x;,y; € R3, i € N be two sequences converging to x;, y;, respectively, then:

lim d(z;, y;) = d(x, yi)

that is, the metric is a continuous function on M x M

Proof. Let € > 0. There exists j € N such that d(x;,2;) < 5 and d(y;, ) < 5,Vi > j

d(xs,y;) < d(wg, 20) + d(x, yi) + d(yi, vi)
< - + d(x, y) + -

2 2
<d(zi,y) +¢
Hence, d(z;, yi) — d(x, 1) < e
By reasoning, symmetrically for d(x;,y;), we get d(zy,y;) — d(z;,y;) < & O

A metric space is a general concept that can model any set where a distance between
its elements can be defined. Examples of metric spaces are Euclidean spaces and L,
function spaces.

Next, we define the distance of a point (that is an element of the space) to a subset A

of the space.

Definition 3.4: Distance to a subset

Let (M, d) be a metric space, z € M and A C M, then we define the distance of of

z to A as follows:
z. A) = inf
d(z, A) yleM{d(z;,y)}

Remark (1). Note that we use d to represent both the distance between points and that
between a point and a set. Since the arguments differ, the specific distance should be

clear from the context without any ambiguity arising.
Remark (2). It is clear from Lemma 3.2 that d(z, A) > 0.

Remark (3). If A is closed then the min can be used in place of inf.

Let (M, d) be a metric space, then Vo € M, A C M, with A closed:

dlz,A)=0<=2€ A
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Proof.

(i) d(z,A)=0=x€ A

d(x,A)=0

Jye A:d(x,y) =0
r=y

reA

(i) re A=d(z,A) =0

reA

d(z,A) < d(z,z) =0
d(z,A)=0

]

For a closed set A, the minimum distance can be obtained with more than one point
of A, that is, the points of A that are closest to a point x might contain more than one
point. It is useful to characterize the elements of the space by the cardinality of the set

of closest surface points. More specifically, we have the following definitions:

Definition 3.6

Let (M, d) be a metric space, x € M and A C M, with A closed. The set of points

of A closest to z is defined as follows:

Clx,A) ={y € Ald(z,y) =d(z,A)} = argmin{d(z,y)}

yeA

Remark. |C(z, A)| > 1

Definition 3.7: Regular and Singular points

Let (M, d) be a metric space and A C M, closed. A point x € M shall be called:
e regular, if |C(z, A)| =1

e singular, otherwise.

Having set the general basis of our tools we will move on to our space of interest which
is R endowed with the Euclidean metric. Henceforth, when we use d for the distance
between points we shall take it to mean the Euclidean metric unless explicitly mentioned

otherwise.



3.1. Distance Functions

In this space we shall define our objects of interest, that is surfaces, as follows (for a

discussion of dimension refer to [25, 20]):

Definition 3.8: Surface

A surface is a compact 2-dimensional subset of R?

The above is a very gen-

eral definition that seeks to en-
compass any set that intuitively

would be characterized as sur- | .
face. We state it thusly to
comply with the existing bibli-

ography, however, we need to (a) Open surface (b) Non-connected surface
limit our attention by adding Figure 3.1: Examples of open and non-connected sur-
two further restrictions: closed- faces

ness (not to be confused with topological closedness) and connectedness. A closed surface
is one that separates the space into two regions, one of which is bounded, whose interface
is the surface. We call the bounded region the interior of the surface and the other one
exterior, accordingly. A connected surface is one for which there exists a path from every
point on it to every other, and the path is on the surface as well. For example, a hemi-
sphere, see figure 3.1a, is an open surface, while a sphere is closed. Also, if we were to
consider two spheres as one surface, as in figure 3.1b, this would be a non-connected one.
Henceforth, when we use the term surface we will take it to mean closed and connected

unless explicitly stated otherwise.

Since a surface is a set, definition 3.4 for distance from a point to a set applies to it
as well. For surfaces (closed specifically), however, we can define a signed version of the

distance function as follows:

Definition 3.9: Signed Distance Function

Let S C R? be a surface and x € R3, then the distance from z to S is:

0.(z.9) d(z,S)  if x outside S
s\T, =
—d(z,S) otherwise

Remark. d(z,S) = |ds(z, S)|

We will be using the acronyms UDF (Unsigned Distance Function) and SDF (Signed
Distance Functions) for functions of definitions 3.4 and 3.9, respectively, and DF (distance
function) for the both of them.
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A 2D profile of the signed distance function to a
sphere is depicted in figure 3.2. Negative values of
the function are shown in shades of blue and positive

in shades of orange.

3.1.1 DF Properties

We are going to investigate a number of proper-
Figure 3.2: 2D profile of a sphere’s ties that DFs satisfy and will be useful further on
signed distance function. in this thesis. In summary, what we will show is
that DFs are differentiable almost everywhere with unit norm gradients that point away
from the closest surface point and towards it, where the SDF takes negative values. More
specifically the set of points where a DF is differentiable is a subset of the regular points.
However, proving these facts is quite involved, so we are going to need some theorems

and lemmas, before tackling them.

Theorem 3.10: SDFs are Lipschitz

The SDF of a surface S is a Lipschitz function with Lipschitz constant of 1, that
is, Vz,y € R3:

‘ds($75> - ds(ya S)| < d(ﬂ?,y)

Proof. We are going to split the proof in two cases:

(1) ds(z,S),ds(y, S) have the same sign
Then |d(z, S) — ds(y, S)| = |d(z, 5) — d(y, 5)|
Without loss of generality we assume that |d(z, S) — d(y, S)| = d(z, S) — d(y, S)
Let z € C(y, S), which means that d(y, z) = d(y, S), then by the triangle inequality:

d(z,z) < d(z,y) +d(y, z) = d(z,y) +d(y, S)
d(ZL’, Z) - d(?/a S) S d(I, y)

IN

But d(z,S) < d(z, 2)

(ii) ds(zx,S),ds(y,S) have different signs
Then |ds(z,S) — ds(y, S)| = d(x, S) + d(y, S)

Since the signed distances have different signs then one of x,y is inside the surface
and one outside of it. The line that passes them intersects the surface at some
point z € S. Since z lies between z and y, d(x,z) + d(z,y) = d(z,y). But, also,
d(z,S) <d(x,z) and d(y, S) < d(y, z) = d(z,y)
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Corollary 3.11

Let S be a surface and x € R? where the SDF is differentiable, then:

[Vds(z, S)|| <1

Proof. The norm of the gradient is equal to the directional derivative along the direction
of the gradient, that is:

Vd,(z, S)

Vd,(z,S)|| = V,ds(z,S), where v = ——————
Mt (@ 5) [Vd,(@. 9]

But, we have the following for the directional derivative:

ds(z + tv, S) — ds(x, S)

V,ds(z,S) =lim

t—0 t
— lim ds(z + tv, S) — ds(x, S)
=0 d(z + tv, )
<1 (by the Lipschitz property)

]

Remark. We will eventually prove that ||Vds(z,S)| is exactly equal to 1 almost every-

where. The above result provides a bound and will be used to that purpose.

The proof of the Lipschitz property for a UDF is essentially the first case of the proof
above and the corollary follows in the same way. By Rademacher’s Theorem [27], in
conjunction with the one we just proved, DFs are differentiable almost everywhere. We
now move a step further, in order to characterize the sets of points where an DF is or is
not differentiable.

We begin by proving the following interesting lemma and, then, some more consequen-

tial results:

Let S be a surface and z; € R3,i € N be a sequence converging to xz;, then there

exists an increasing sequence k; € N and a sequence yi, € C(xy,, S) converging to

(TS C(:vl, S)

Proof. By the axiom of choice, there exists a sequence y; € C(x;,S). This sequence is
bounded because S is a compact set.
Now, by the Bolzano-Weierstrass Theorem, y; has a convergent subsequence yy,. Let

y = limyg,. We need to prove that y; € C(z;,S). We will prove this by contradiction.

Assume that y; ¢ C(x;, S), then, d(x;,y) — d(x;,y.) = € > 0, with y. € C(x;,.S)
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By the convergence of z; and the continuity of the metric, there exists 7 € N such

that:
€ €
d(wy;, 1) < 3 and d(zy, 1) < d(zr;, Yx,) + 3
We, then, have:

d(xkﬂ yc) <d
d

(Thy, 21) + d(21, Ye)
(Thy, 1) + d(z, 1) — €

3 9
< §+d(xkj,ykj) +§ — €

= d(ﬂfk]-7ykj)

It follows that y, & C(wy,,S), which is a contradiction.
Therefore, y, € C(xy, S). O

Let S be a surface, z € R* and y € C(z, S), then y € C(z, S) for every z on the line

segment connecting z and y. Furthermore, if x is regular, then every point on the

line segment is regular as well.

Proof. Assume that y ¢ C(z,5), then there exists a w € C(z,5) such that d(z,5) =
d(z,w) < d(z,y)

It follows that y ¢ C(z,.S), which is a contradiction.

Now, assume that x is regular and that z is not. This entails that there exists a
w € C(z,95) such that d(z,5) = d(z,w) = d(z,y) and w # y. By the same reasoning as

above, we, once again, arrive at a contradiction. ]

Corollary 3.14

Let S be a surface, z € R® and y € C(z, S), and v = £=%. then:

ly—=|l

lim d(z +tv, S) — d(z, S)

t—0t t

=_1

Proof. By the above theorem, y € C(z + tv, S) and thus:
d(z,S) =d(z,y) and d(z + tv, S) = d(z + tv,y)
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3.1. Distance Functions

Hence:
1 d(x +tv,S) —d(x,S) ) d(z +tv,y) —d(z,y)
t—0+ t S0t t
. —t
= lim —
t—0t+ ¢
=—1

Corollary 3.15

Let S be a surface, x € R? and y € C(x, S) be a singular point of its UDF, then the
UDF is not differentiable at x.

Proof. Since x is a singular point there exist two distinct y, z € C(z,S). Even if x,y, z

are colinear y and z cannot lie on the same side of x, because one of them would be

z—x
2=zl

further then the other. So, we have two separate directions v, = ”;'j%z” and v, =

By applying the corollary above, we get:

lim d(z +tv,, S) — d(z, S) 1 and lim d(z+v,,S)—d(z,5S)

t—0t t t—0+ t

=1

As we have shown in corollary 3.11, -1 is the minimum value that this limit, which
is the directional derivative, can take. However, this cannot happen at two different
directions, and therefore, the UDF is not differentiable at z. O

Remark. Since, as discussed above, the UDF is differentiable almost everywhere, it follows

that the set of singular points has measure 0.

Finally, we are in position to prove the following result.

Theorem 3.16

Let S be a surface, x € R? where its UDF is differentiable and y be the only element
of C(x,S), then:

-y

Proof. Let v = ﬁ By corollary 3.14, V, d(z,S) = —1 and by corollary 3.11, this is
the minimum value the directional derivative can take. Therefore, the gradient has norm

equal to 1 and direction opposite to v. O]

It is straightforward to see that the analogous result for the SDF is:

r—y

Vd,(z,S) = sign(ds(z, S))m
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This means that the gradient of the SDF at a point x points away from the closest point
of , when z is outside the surface, and towards it when x is inside the surface.
The properties we have proved in this section also show that the UDF and the SDF

of a surface are solutions to the following form of eikonal equation:

flx)=0,z€S

3.1
V()] =1 .

If we further require that the solution to the equation is differentiable on S, then only the
SDF is a solution.

We conclude this section by making an interesting remark. Even though, throughout
this section we worked in R?, the definitions and proofs we have given are valid in any

Euclidean space and for sets that are more general than what we defined as a surface.

3.2 Sampling

In this section, we shift our focus to sampling. Sampling, in our context, refers to
the process of generating values, be they real numbers, points on some multidimensional
space or something more complex, usually with some restriction on the way they are

distributed. Sampling can be split in two big categories:

e Deterministic

e Random

Deterministic sampling techniques use predefined patterns to position the samples. For
example, taking uniformly spaced numbers on the real line. More elaborate techniques use
low discrepancy sequences, like Halton sequences. Examples of such sequences applied to
rendering can be found in [52]. Random sampling, on the other hand, uses stochasticity
to produce the samples according to some probability distribution.

In this section we are going to deal with random sampling and various algorithms
pertaining to that. More specifically, we will present some general techniques and then

apply them to sampling various shapes.

3.2.1 General Techniques
Rejection Sampling

A well known way of getting samples that lie inside of the unit disk centered at
the origin, is to sample two values x,y from a uniform distribution over [—1,1] until

V2?2 + y? < 1. Due to this process involving rejecting samples until a condition is met,
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the technique is called rejection sampling. A simple version of this technique that dis-
tributes samples uniformly inside a 2D shape bounded by [—1, 1]2, is given by the following
algorithm:

Algorithm 3.1: Simple Rejection Sampling
Data: S : 2D shape

1 do

2 x < sample from Unif ([—1,1])
3 y < sample from Unif([—1,1])
4 while (x,y) outside S

Rejection sampling can, however, be formulated more generally. So generally, in fact,
that it allows us to simulate any distribution if we are able to get samples from any other,
with only a few restrictions on the relation these two must have. There is a downside,
nevertheless, and that is that this sampling technique might be inefficient, because mul-
tiple samples might be rejected before one is accepted. This can be demonstrated easily,
if we extend the aforementioned algorithm for sampling the unit disk, to sample unit
hyperballs. As is well known, the ratio of the volume of the unit n-dimensional hyperball
to the volume of the box [—1,1]" goes to 0 as n goes to infinity. Hence, for larger n, more
samples will be rejected, on average, before accepting one. The general form of rejection

sampling is summarized in the following theorem:

Theorem 3.17: Rejection Sampling

Let {X;}{° be i.i.d. according to f(z) and {Y;}{° be i.i.d. uniformly over [0, 1]. Also,
let g(z) < M f(x) for some density g(z) and M > 0. If Z is equal to the first X,

for which Y; < ]\%)((X then Z ~ g

Proof. Firstly, we compute the acceptance probability:

IP’[Y;< } / / M”z) 7) dy dz
:/Q/Owdyf(x)dx

g9(z)

:/Q M)dm

M

N M
Let T be the index of the first X; that is accepted. Then, T follows a geometric
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distribution with expected value M.

We can, now, find the joint distribution of Z and T'. If E is a measurable set, then:
PZeEVT=t=P[ZecE|T=tP[T=t
=P[X, e E|T =t|P[T =t (Z = Xy)

:P[XtEE

9(Xy) :
YV, < ———|PT"=t] (X;ind dent of - XY
p < Mf(Xt)} [ ] (X, independent of prev )

_P[Y;<A§;’((;Q)\/XteE]

P[T =]

X¢)
P [Yt = Mgf(X)}

Ergo, Z and T are independent, and Z is distributed according to g(x) O]
Remark. The distribution f is referred to as the proposal distribution and ¢ as the target
distribution.

In the process of proving the correctness of rejection sampling, we have also proven

the following corollary:

Corollary 3.18

The number of samples required for rejection sampling follows a geometric distri-

bution with expected value M.

Intuitively, the above corollary tells us that, on average, we need to get M samples
before finding a usable one. Hence, it is beneficial to use the smallest M possible. What

we need, is:

g(a) g(x)
YA <1 E <M (3.2)

which implies M is an upper bound of %. Naturally, the optimal M is the least

—

upper bound:

9(x)
f(x)

Equation 3.2 indirectly implies, also, that f dominates g, that is, the support of f

Mopt = sup (33)

includes the support of g. This is quite understandable, since, the proposal distribution
must produce samples anywhere that is possible, according to the target distribution.

Now, we will rely on what was just discussed to show that the supremum of equation 3.3
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must be at least 1.

Theorem 3.19

Let f, g be two probability distributions, with f dominating g, then:

supM21

f(z)

Proof. Let D and E be the support of f and g, respectively, then, since £ C D:

/Ef(x)dxS/Df(a:)dx:/Eg(:c)dle

It S.upM = s < 1, then:

f(z)
g(z) < sf(z) < f(z),Vo € E
But, then:
/ g(x)dx < / f(z)dx
E E
which is a contradiction. O

At this point, it is quite reasonable to wonder how the general form of rejection
sampling, that we have proved in Theorem 3.17, relates to the algorithm we presented at
the beginning for uniformly sampling the unit disk centered at the origin. After all, no
uniform samples were used there, but rather a condition on the samples from the proposal
distribution. Let’s examine this case again through the prism of this theorem.

We sample points uniformly inside the square [—1, 1]2, so:

1 if —1<z,y<1 Loif /a2 +y2 <1
flz,y) = . and g(z,y) = _
0 otherwise 0 otherwise

By equation, 3.3 M,y = % and hence:

g(z,y) Loif a2 +y? <1

Mop f (z,y) 0 otherwise

It is clear, therefore, why, we do not need the uniform samples {Y;}° of Theorem
3.17. Samples outside the disk are accepted with probability 0, that is never, and samples
inside the disk are accepted with probability 1, which is always.

Despite rejection sampling’s generality, it is not usually used, because, most often,
there exist more efficient methods. Nevertheless, we will, later, use rejection sampling to

sample a torus.
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Inverse Transform Sampling

We are, now, going to present a method that allows us to sample from any 1-dimensional
distribution. This method works by taking a sample from a uniform distribution over [0, 1]
and transforming it using the inverse of the target cumulative distribution function. In
practice, for this method to be applied we have to be able to find a closed-form expression
expression for the inverse of the cdf, which in many cases is impossible. We present,

below, a proof of correctness:

Theorem 3.20: Inverse Transform Sampling

Le F be a cumulative distribution function and U be a random variable distributed
uniformly over [0,1], then the random variable F~'(U) is distributed according to
F, where F~(u) = inf{z | F(z) < u}.

Proof. We will show that the cumulative distribution function of F~*(U) is F'

P[F'(U)<z]=P[U < F(z)] = F(z)

]

Remark. Usually, the values 0 and 1 are excluded from the range of U. This is because
F71(0) = —oo and for many distributions F~!(1) = co. For continuous distributions,

excluding two values is negligible, so that does not change the theorem.

Example 3.21: Sampling from an exponential distribution

Let’s say we want to sample the exponential distribution f(z) = e~*. The CDF is:

F(m)z/_x f(t)dt = 1—e™ ifx>0

0 otherwise

And, hence, the inverse is:

F~u) = —log(1 — u)

Even though Theorem 3.20 applies to 1-dimensional distributions, we can use it to
sample from multidimensional ones, as well. Let’s assume we have a 2-dimensional pdf
fxy, then:

Ixy = Ivix[x (3.4)

Now, we can use inverse transform sampling to sample from X’s cdf Fx and then,
given the sampled x, we can sample Y from the conditional cdf Fy|x. The trick that was

just described can be naturally extended to sample higher dimensional distributions. For
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example a 3-dimensional pdf can be factored as follows:

Ixyviz = fzxyfyvix[x (3.5)

and be sampled by sampling first X, then Y, then Z. The order with which we sample
the variables can, of course, be switched to better fit our needs. For example, fx|y might
have a closed-form inverse while fy|x does not.

Whenever applicable, inverse transform sampling is, usually, preferred over other meth-
ods, because it requires exactly as many uniform random samples as the variables we want
to sample. Compare that with rejection sampling for which the number of random sam-
ples is not even deterministic. Yet, the need for a closed-form inverse prevents its usage

for sampling more complex distributions.

Markov Chain Sampling

The methods we have seen so far sample exactly from a specified distribution. Next,
we are going to present a method that approximates a distribution. This method uses a

Markov Chain, so first of all, we will begin by defining it.

Definition 3.22: Markov Chain

Let S be a measurble space. A Markov chain is a discrete-time S-valued stochastic

process X,, that satisfies the following property:

P [Xn = Tp | anl = Tn-1, anQ = Tn-2,-- ] =P [Xn =X | anl - xnfl]

Remark (1). S is referred to as the state space.

(
Remark (2). This property is called Markovian.

Remark (3). Informally, the Markovian property means that the next value in a sequence

depends only on the present one.

The most common cases for the state space is for it to be:
e Finite
e Continuous

We will first take a look at finite state spaces, because they are simpler. Then we will
extend our discussion to continuous state spaces which are naturally more pertinent to
our subject.

Let’s say that |S| = N. We can arrange the probabilities p;; = P [X,, = z; | X,,—1 = 2]
in a N x N matrix P. This matrix is called the transition matriz for obvious reasons. It is
also a stochastic matrix, specifically row-stochastic, because its elements are non-negative

and its rows sum up to 1. We can also represent a distribution over the state space as a
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row vector. If yu, is the probability vector at some time n, then it is easy to see that, by

the law of total probability:
fny1 = fin P (3.6)

This equation makes the name transition matrix even clearer. We can, also, find the
how the distribution changes after k steps by using the matrix P*. If a distribution 7
remains unchanged after being multiplied by P, then it is called a stationary distribution.

We have, thus, the following definition:

Definition 3.23: Stationary Distribution

If P is a transition matrix of a Markov chain, then a distribution = is called sta-
tionary if:

T=uP

Remark. The stationary distribution is, also, called steady state distribution.

From the above definition it follows that the stationary distribution is an eigenvector of
P with eigenvalue 1. Under some mild assumptions, it can be proven that the stationary
distribution is unique and that as we step along the chain, any initial distribution will

converge to the stationary. More formally:

Theorem 3.24

Let P be a n x n transition matrix for a Markov chain. If PZ; > 0,V1 <i,5 <nfor

some kN, then there exists a unique stationary distribution 7. Furthermore:

lim pP" = m, for all distributions u

n—o0

Proof. Refer to [29]. O

The above theorem is key to sampling distributions with Markov chains. There are
ways of constructing a Markov chain, whose stationary distribution is the desired one.
Then we can simulate the chain for enough steps in order to converge to the stationary
distribution. The Metropolis-Hastings [77] algorithm is the most famous example of such
a process.

We opted to present the main results on Markov chains for the finite case, because
the tools for analyzing a continuous state space are more complicated and unintuitive.
Having described them, however, we are now in position to undertake this labour. Since,
the state space is not finite anymore we cannot arrange the transition probabilities in a
matrix. The analogous concept is a transition kernel. We give the relevant definitions

below:
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Definition 3.25: Transition Kernel

Let S be a state space, then P is called a transition kernel if for every x € S, P(z,-)
is a probability measure and for every measurable set A, P(-, A) is a measurable

function.

Remark. We use P for both the transition matrix and the transition kernel, the meaning

should be deducible form the context.

Definition 3.26: Transition Kernel Density

Let S be a state space and P be a transition kernel, then p is called a transition

kernel density if for every z € S and every measurable set A C S it satisfies the

following:

P(z,A) = /Ap(:v,y) dy

Finding p,+1 by applying the kernel to a distribution x can, then, be done as follows:
() = [ Pl A)difa)
or (3.7)

fni1(y) = /S (@, y) pn () d

The first is also written g, 11 = p, P. A stationary distribution 7 in this case satisfies

the following property:
Tm=7nP or 7(y) :/p(x,y)ﬂ(x) dx (3.8)
s

Finally, we have the following theorem, which corresponds to theorem 3.24:

Theorem 3.27

Let S be a state space and P be a transition kernel. If there exist a distribution
u, k € N and e < p for which P*(x, A) > ep, for every x € S, then there exists a

unique stationary distribution 7. Furthermore:
lim ||pP" — || = 0 for all distributions ¢
n—oo

where || - || denotes total variation.

Proof. Refer to 23] O
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3.2.2 Sampling Primitive Shapes

The term primitive is widely used in graphics to refer to shapes that are used either as
starting points or basic components for something more complex. We will, now, discuss
methods for sampling such shapes. In particular, we will show how spheres, balls, disks
(which is a 2-dimensional ball), tori, triangles and meshes can be sampled uniformly. We
note that we include meshes, despite them not being characterized as primitives typically.
Also, the reason why we are interested in uniformity will become clearer in 5, for now, we
take it as a requirement.

Before starting, though, we will present some tools that will be needed. The shapes
we want to sample can be represented parametrically, that is as the image of a function
from a parameter space to the space where the shape resides. For example the following

are the parametric equations for the unit circle centered at the origin:

T = COs
v €[0,27) (3.9)

Yy =singp

When sampling a parametric representation, we may have the following clash. The
desired distribution is specified in the space of the function image, but the sampling takes
place in the parameter space. We will show how these two relate to each other and how
we can find the distribution in the parameter space given the distribution in the shape
space. Let us assume that ® : A — B is the mapping from the parameters to the shape.

We will examine three cases:
e ACR?and B = R?
e ACR3and B=R?
e ACR? and B=R3

In each case, we are going to show what the differential generalized volume element is
at a point b = ®(a) € B, with a € A. Having found that, we can transform a distribution

in B to a distribution in the parameter space via the following theorem:

Theorem 3.28: Distribution in Parameter Space

Let & : A — B and g(a)da be the differential generalized volume element at b =
®(a). If f(b) is a distribution in B, then f(®(a))g(a) is the distribution in the A.

Proof. Let D C B be a measurable set, then:

Pwem:/f@@
- [, fe@sas
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3.2. Sampling

We also have:
Pbe D]=Plac @ (D)]

Hence, f(®(a))g(a) is the distribution in A. O

Let us now see what g(a) is in each of the three cases. These results should be available
in any introductory book on vector calculus, e.g. [11]. In the first two cases, g(a) is the
absolute of the jacobian determinant of ®. In the third case, g(a) is the length of the

cross product of the partial derivatives with respect to the parameters. More formally:

e ACR?and B=R?
g(a) = g(u,v) = [det(J(®(u,v)))|

90, 0y (3.10)
— ou v

o®, 09,

ou v

e ACR?and B=R3

g(a) = g(u, v, w) = |det(J (@(u, v,w)))]

ou Ov Ow (3.11)
0%, 0%, 0P,
ou ov ow
9P, 0%, 02,
ou ov ow

e ACR?2and B=R3

0<I> E)(ID
8(I> 8<I> 0D, ¢, 00, 090,
" Ou ov’ Ov’ Ov

At last, we are ready to proceed to the meth-

g9(a) = g(u,v) =
(3.12)

ods for sampling the aforementioned shapes.

(Hyper)Spheres and (Hyper)Balls 0

Firstly, we will discuss sampling spheres v

and balls. Let us begin with a 3-dimensional ),

sphere. The unit 3-dimensional spheres cen-

tered at the origin can be expressed parametri- Figure 3.3: The relation between spher-
cally with spherical coordinates (see figure 3.3) ical and Cartesian coordinates
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by the following equations:

x =sinfcos

y=sinfsiny @ €[0,27),0¢€ [0,n] (3.13)
z = cosf
So the mapping P is:
D (p,0) = (sinf cos p, sin fsin p, cos ), (p,0) € [0,27) x [0, 7] (3.14)

The partial derivatives of ® are:

g_cb = (—sinfsin ¢, sin b cos @, 0)

¥ 1
0D . . 1)
0 = (cos 0 cos @, cos @ sin @, —sin 0)

Hence, by equation 3.12, the differential area element is:

0D 8<I>
H ” = ||(—sin @ sin ¢, sin f cos ¢, 0) x (cos cos go,cos@sincp,—sin@)H
= |||—sinfsiny sinfcosy 0

cosfcosp cosfsinp —sind

 |sinfcos @ 0 _|—sinfsing 0 |—sinfsingp sinfcosyp

cosfsingy —siné cosfcosyp —sinf cosflcosp cosfsinp

= || —sin? @ cos i — sin® fsin @ — (sin @ cos § sin? ¢ + sin 6 cos A cos® )2 H

= ||—sin® 6 cos & — sin® @ sin ¢f — sin § cos O3 H

= \/(sin2 0 cos )2 + (sin® 0 sin )2 + (sin 6 cos 6)?

= \/ sin? § cos? ¢ + sin? fsin? ¢ + sin” f cos? 0
= \/S.in4 0 + sin? 0 cos? 0

\/ 20(sin® 0 + cos? 0)
V'sin? 0

inf

I
m.

(3.16)
The uniform distribution on the sphere is equal to the inverse of its area which is 47
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3.2. Sampling

and therefore, by theorem 3.28 the distribution in parameter space is:

10 =" = () (5°) (3.17)

The above indicates that ¢, are independent and can be sampled separately. In

particular, ¢ is uniform over [0,27) and thus a simple scaling of a random variable over
[0,1) suffices. For 6, we can use inverse transform sampling (theorem 3.20). The cdf of 6

1s:

“sint 1 -
F(z) = / sint g, _ 1= cosw (3.18)
.2 2
And its inverse:
F; ! (x) = arccos(1 — 2z) (3.19)

We now move to a 2-dimensional ball, which is a disk. A
unit disk centered at the origin is expressed parametrically

with polar coordinates, which are shown in figure 3.4, as

follows:
T = reoesy © € [0,27) Figure 3.4: The relation
=rsing, r € [0, 1] between polar and Carte-
(3.20) . di
or sian coordinates

O(r, ) = (rcose,rsing), (r,¢) € [0,1] x [0, 27)

For the differential area element we use equation 3.10:

00, 00,
[det(J(@(r, )| = || 55, o4,
or e

cos —rsine (3.21)

siny  rcose

= rcos2g0 —|—rsin2g0|

=r

Similarly to the sphere, the uniform distribution on a disk is equal to the inverse of

its area, which 7, and the distribution in the parameter space, again by theorem 3.28, is:

Frp) == = 20 (57 (522

™

Again, the two parameters are independent, ¢ is uniform over [0,27) and r can be
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sampled with inverse transform sampling. The latter’s cdf is:

F.(z) = /Ow 2t dt = (3.23)

And its inverse:

Fo(z) =V (3.24)

Next, we have the 3-dimensional ball which can be parametrized with spherical coor-

dinates (see figure 3.3 as follows:

x =rsinfcosp
y=rsinfsinp 7 €[0,1], ¢ €0,27),0 <€ [0,7]
z=rcosb (3.25)

or

O (r,p,0) = (rsinf cos g, rsinfsinp,rcosh), (r,p,0) € [0,1] x [0,27) x [0, 7]

For the differential volume element we use equation 3.11:

0%, 0%y 0%y

8(21: 864()’0 8(?}?
|det(J(®(u,v,w))| = ||+ T2 T
0%, 00. 0%
or (o)) 00

sinfcosy —rsinfsingp rcosfcosy
= |[sinfsiny rsinfcosp rcosfsing

cos 0 —rsinf

—rsinfsing rcosfcosp sinfcosp —rsinfsinp

= |cosf — rsin

rsinfcosy rcosfsinp sinfsing rsinfcosp

= |~ cos @(r*sin @ cos § sin® ¢ + r* sin 6 cos O cos® )
—rsin O(r sin” § cos® p + rsin® fsin® @) ‘

= ‘—TQ sin 6 cos? § — r? sin® 9‘

= ‘—7“2 sin 0(cos® 0 + sin® ) ‘

= r2ginf

(3.26)

The uniform distribution over a 3-dimensional ball is equal to the inverse of its volume,

which is 4¢

5, and therefore, the distribution in the parameter space is:

o) = 20— ) (1) (20) (3:27)
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The parameters are, once again, independent, with ¢, again, being uniform over [0, 27)

and inverse transform sampling being applicable for the others. Specifically, their cdfs are:

F.(z) = / 3r?dt = a°
0

r 1 —cosz (3.28)
Fy(x) = / 3r¢dt= ———
0 2
And their inverses:
F Y x)= Vx
Hz) =V (3.29)

F; ! (z) = arccos(1 — 27)

Besides the methods developed up to this point, there are others that do not use
parametric equations. We are going to describe now two such techniques that are very
elegant, one for sampling uniformly an n-dimensional sphere (note that this is a set of
R"!) and one for sampling an n-dimensional ball.

The first method is very intuitive. We first sample from a vector isotropic n + 1-
dimensional normal distribution and then normalize it. The correctness of the method is

due to symmetry. The following theorem what we just described:

Theorem 3.29

Let X ~ N(0,01,41), then ”ﬁ—” is distributed uniformly on the unit n-dimensional

sphere centered at the origin.

The method for the n-dimensional ball is less intuitive. We can sample an n + 2-

dimensional isotropic normal distribution and simply drop the last two coordinates:

Theorem 3.30

Let X = (21,%2,...,Tpt1,Tni2) be a random variable distributed uniformly on
the n + 1-dimensional unit sphere centered at the origin, then (z1,xs,...,2,) is

distributed uniformly on the unit n-dimensional ball centered at the origin.

Proof. Refer to [71]. O

Later, in section 5.2, we will use the method above to sample 2-dimensional disks in
R3, which are perpendicular to some given vector. We note that in the theorem above,
instead of dropping the last two coordinates, we can remove any other two independent
components. Hence, we drop the last coordinate and then remove the component along
the vector to which we want the disk to be perpendicular. Another way to do that would
be to sample a 2-dimensional disk in R?, using the method discussed earlier in this section
and then use a 3 x 2 matrix to transform it to R3. In theory, this could be faster, because

samples from a uniform distribution are cheaper than those of a normal one. However, in
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Figure 3.5: On the left, a torus with its center C' and major and minor radii, R and r,
respectively. On the right, the physical meaning of the parameters ¢, 8 of equation 3.30

a pure PyTorch [51] implementation, we found the method with the dropped coordinates
to be faster, instead.
For a comprehensive collection of methods for sampling n-dimensional spheres and

balls we refer the reader to [50].

Tori

A torus can be described by its major and minor radii. Its major radius R is the
distance from the center of the tube to the center of the torus, while the minor radius r is
the radius of the tube. These quantities are depicted in figure 3.5. We will now describe
a method for sampling a torus. We will assume that the circle of radius R at the center
of the tube lies on the zy plane and that the torus is centered at the origin. The case
where the circle lies on the yz or the xz planes is similar. We will utilize a parametric

representation here as well, which is given below:

r = (R+rcosf)cosp

y=(R+rcosf)sing ©,0¢€]0,27)

z =rsinf (3.30)
or

D(,0) = (R + 1 cosb) cos p, (R + rcosf) sin g, rsinf), (p,0) € [0,21)°

The partial derivatives of ® are:

od

P (—(R+rcosf)sinp, (R+ rcosf)cosp,0)

ag (3.31)
0 (—rsinf cos ¢, —rsinfsin @, r cos 0)
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Ergo, by equation 3.12, the differential area element is:

0P 8(13
H H = ||(=(R 4+ rcosf)siny, (R+rcosf)cosp,0) x (—rsinb cos ¢, —rsin@singp,rcos@)”
z U z
=|[|-(R+rcosf)sinp (R+rcosfh)cose 0
—7rsinf cos ¢ —rsin#sin ¢ rcos 6

|(R4+rcosf)cosp 0 |=(R+rcosf)sing 0
&

—7rsinfsin ¢ r cos 6 —7rsin 6 cos ¢ rcos 6

|=(R+rcosf)sing (R+rcosb)cosp

—rsinf cos ¢ —rsinfsin g
= [|[(R + rcosf)rcosf cos oz + (R + rcos)r cos f sin ¢y

+ ((R+ rcosf)rsinfsin®p + (R + rcosf)rsinf cos® o) 2

(R4 rcosf)rcosfcos ot + (R + 1 cos@)rcosfsin oy + (R + rcos 0)rsin 92”

= \/R+TCOSQ )22 cos? 0 cos? ¢ + (R + 1 cos 0)2r2 cos? fsin® ¢ + (R + r cos 0)2r2sin® §

:\/R+T0089 r2C0529+(R+Tcos¢9)2r231n29
= /(R +rcosf)?r
r(R+ rcosf)

(3.32)

The area of the torus is 472r R, and so as we did for the cases above, the distribution

in the parameter space is:

f(@?e) =

r(R+rcos) R+rcost (QW) (R—{—TCOSQ) (3.33)

Am2r R 412 R 2R

The parameters are independent and ¢ is uniform over [0, 27). In contrast to what we
have seen so far, however, 6 cannot be sampled with inverse transform sampling, because
its cdf has no closed-form inverse. Nevertheless, we can use rejections sampling (see
theorem 3.17), with a uniform proposal distribution. The optimal M is given by equation

3.3:
R+rcosf
o R+rcos@ R+
Moy = sup —228— = 0 =

2

(3.34)

Triangles and Meshes

The final shapes we are going to examine are triangles and triangular meshes. For
triangles we follow PBRT [52]. Let A, B and C be the vertices of a triangle. A point p on
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the triangle can be given as a combination of the vectors AB and AC. More specifically:

p=®(u,v) =uAB +vAB, ue[0,1],v e [0,1 — 1 (3.35)

The situation is depicted in figure 3.6. The par-

tial derivatives of ® are:

P ac% ) (3.36)
v % = A

By equation 3.12 the differential area element is

equal to the norm of the cross product of the partial

Figure 3.6: How the uv coordinates derivative, which in this case are the vectors along

map to the triangle
P & the sides of the triangles, and so, is equal to twice

the area of the triangle A:

0P " 0P
ou ov

i

We, thus, have the distribution in the parameter space:

_ H[B X AbH — 24 (3.37)

flu,v) =2 (3.38)

Even though this is a constant, the variables are not independent because the support
of the distribution is not a rectangle. Using conditionality, we can write the distribution

as follows:

flu,0) = fvw(v;u) fu(u) (3.39)

We, then, have:

folu) = /OH F(u, ) dvo = /Ol_umv — 21— )

) = flu,v) 1
Pt =) =1

(3.40)

We can sample both u and v, in that order, using inverse transform sampling. Their

cdfs are:

Fulz) = /O Firw)) du = /0w2<1 ) dv = 2u — 1

- : . (3.41)
B T = cu) dv = dv =
viv(@; ) /0 Tviu(v;u) dv /0 T =14
And their inverses:
Fil(r)=1—-V1-x (3.42)

F‘;‘lU(x; u) = (1 — u)
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In order to sample a triangular mesh, we can simply choose one of each triangles with
probability proportional to its area and, then, use the method above to sample a point

inside that triangle.

3.3 Machine Learning

In this section we will give a brief overview of machine learning, with a focus on neural
networks. The term machine learning encompasses a wide range of algorithms and related
methods and theory that aim to solve a problem by "teaching" a computer how to do it.
In contrast to other techniques, where expert knowledge is employed to craft specialized
algorithms that target a problem, machine learning follows a data-driven approach. This
means that data are used to change the behaviour of the algorithm to better adapt to the

target task. This process of changing the algorithm’s behaviour is called training.

Example 3.31

Let’s say that at fish farming facility two species of fish are being bred. When fish
are collected, we want to have a system automatically determine to which species a
fish belongs to based on measurements given by optical sensors and weight sensors.
One way to do that would be to bring an ichthyologist or marine biologist in order to
develop a rule based system. Another route would be to collect this measurements
along with the species that they correspond to and feed them to a machine learning

algorithm.

Matchine learning algorthms usually comprise the following basic components:

e Model The model is what transforms the input of the problem to the output. It is,
typically, expressed as a parametric function fy(x), where z is the input and 6 are
the parameters. The parameters can range from something as simple as the weights
of a matrix to something as complex as the syntax tree for an algebraic expression.

It is through the alteration of # that the algorithm is able to learn.

e Optimization Procedure This is the manner by which the parameters of the
model adapt to the problem at hand. The choice of optimization procedure is
highly influenced by the model. Some methods set requirements for the model. For
example, gradient-descent requires the model to be differentiable with respect to the
parameters. Other methods are developed in tandem with the model and suited to
it. This is the case for support vector machines. Also, memory of time constraint
affect the choice. A Newton-Raphson method might be very memory heavy for
models that have many parameters due to it computing the Hessian matrix. Most

optimization procedures work by minimizing some cost function that models the
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objective of the problem. The cost function itself might comprise subobjectives

which need to be weighted.

e Dataset At the heart of a data-driven approach are, of course, the data. In fact,
they may be considered its most important component since they are in some sense
part of the problem. A dataset is precisely what the word’s etymology implies, a
set of data. What those data are exactly depends on many things. Some datasets
are created with a specific task in mind, while others include as many pertinent
information as possible so that they can be purposed for a variety of problems. In
either case, most datasets are created by collecting data from the real world using
sensors extended with extra measurements on those data or other metadata. Ac-
cordingly, a dataset might include images and/or sounds along with titles, creators,
etc. The available datasets for a specific problem constrain the choice of model and,
consequently, of optimization procedure. A small dataset is not suited for complex
models and vice versa. Finally, the quality of a dataset, by which we mean its
coverage of the data relevant to the problem, the level of noise, etc. ; is a primary
deciding factor for the efficacy of any algorithm that uses it. For example, we should
not expect an algorithm that uses a dataset which includes images of dogs of only

one breed to be very successful in generating realistic images of dogs of other breeds.

Machine learning algorithms are typically categorized based on the way the dataset is

structured and how it is used by the optimization procedure. These catagories are:

Supervised Learning

In supervised learning the dataset is required to comprise pairs. These pairs are
samples, perhaps affected by noise, from a mapping and the aim is to learn this mapping.
Let’s assume that the dataset is composed of tuples (z,y), z € X,y € Y, where X is
some input space and Y is some output space. If Y is discrete we refer to the task as
classification, in which case y is called label and the dataset is said to be annotated,
otherwise we refer to it as regression, as in statistics. A point in the input spaces is
commonly called features or feature vector, because in many tasks it is a collection of
physical features of an object. In example 3.31, the solution we describe would be to
use a supervised learning algorithm and the task itself is a classification task, since the
output space comprise the two species of fish. Also, the features in this case would be the
dimensions and weight given by the sensors. An example of a regression task would be
to model power generation of solar panels given various environmental factors. The input
space X, might be more complex then merely a multidimensional vector space. It might
be a space of sequences of variable length. Text is an example of such a space. In these
cases, the sequences are either embedded in a euclidean space, in order to use models fit

for those, or processed by models that are able to handle sequences directly like Recurrent
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Neural Networks (RNN) [59] and Long-Short Term Memory (LSTM) [36]. This last note

also is not specific to supervised learning.

Unsupervised Learning

Unsupervised learning is usually used for tasks other than classification and regression
and it is not as easy to define it directly, because it encompasses a larger variety of
tasks. One classic example of unsupervised learning is the K-means algorithm. In general,
clustering is an unsupervised learning problem. The datasets for unsupervised learning
do not need to be annotated. The purpose is for the algorithm to "discover" patterns and
relations in the data unprompted. Besides clustering, other unsupervised learning tasks

are dimensionality reduction, image and text generation, language modeling, etc.

Reinforcement Learning

Reinforcement Learning differs greatly from the aforementioned categories, both in
philosophy and in practice. The tasks that reinforcement learning is concerned with
are those where an agent takes actions in an environment. The aim is to find a way
of choosing actions based on the agent’s state. This is called a policy. Accordingly,
the datasets used for these tasks differ as well. In earnest, in a reinforcement learning
context the term dataset is rarely used. However, we could say that the dataset is the
environment and the allowable actions and states, instead of samples from some space.
Learning proceeds by allowing the agent to act freely in the environment and getting
"rewarded" or "punished" depending on its behaviour. This evaluation, then, guides the
change in policy. Reinforcement learning is naturally applicable to games, that is teaching
a computer to play a game, robotics, where the agent is a robot that needs to learn how
to perform a specific task, etc.

The separation that we presented thus far is not absolute in practice. Hybrid ap-
proaches exist. For example, in a classification task only part of the data might be an-
notated and hence techniques from supervised and unsupervised learning are combined.
Also, an algorithm in reinforcement learning might be enhanced by labeled data.

Having set the basis of machine learning, we will now discuss neural networks.

3.3.1 Neural Networks

Neural Networks, or Artificial Neural Networks, as they are often called to distinguish
them from their biological counterparts are parametric models that that arose in the 1940s,
but became prominent mainly after 2010, when computers became able to handle them
efficiently. The are named, thusly, because they are, indeed, inspired by the biology of the
brain. In analogy to biological neural networks, artificial ones comprise neurons which

connect to each other. An artificial neuron takes a number of input values, multiplies each
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with a weight and adds the results together along with a constant, that is called the bias.
This sum is then passed through a (non-linear) function giving the neuron’s output (see
figure 3.7). The non-linear function is commonly refered to as the activation function.
The manner with which neurons are connected to form a network is called the network’s
architecture. The weights and biases of the neurons composing a neural network are the
parameters of the model. For a comprehensive survey of the history of neural networks

refer to Schmidhuber’s report [61].

The Perceptron Algorithm

The first modern neural network is considered to
be Rosenblatt’s perceptron. A perceptron is a single
neuron whose activation function is a Heavyside step
function H (which equals 0 for input < 0 and 1 for
inut > 0), that is used as a binary classifier. The
term perceptron, however, is used to refer to the al-
gorithm for training this particular model as well (see
algorithm 3.2). If we consider the inputs and weights

as vectors x and w, respectively, then the function of

the perceptron can be expressed as follows:

Figure 3.7: A schematic depiction

of an artificial neuron. z;,w;, 1 < H(w-x+b) (3.43)
t < n are the inputs and the
weights, respectively, b is the bias The perceptron is, hence, a linear classifier be-

and o is the activation function cause is separates the space in two regions with a

hyperplane. If the given dataset is linearly separable, that is, if the points belonging
to the two classes can be separated by a hyperplane then, the perceptron is able to sepa-
rate it perfectly and the algorithm converges in a finite number of steps. If the dataset is
not linearly separated, however, no guarantee is given about some error metric. Below, we
give the perceptron training algorithm in pseudocode. It is based on Hebbian learning and

works by adding or subtracting to the weight vector the inputs that were misclassified.

Algorithm 3.2: Perceptron Algorithm
Data: D : Dataset
w : Weights
b : Bias

1 foreach (z;,y;) € D do
2 Ui H(w -z +0b)

3 | ww+ (y— )
4 b(—b—i-(yi—ﬁi)

5 end
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The XOR Problem

As we mentioned above, a single neuron acts as a

linear classifier. However more complex problems can- ° X
not be solved by linear models. Imagine four points at
the corners of a square with opposite corners belonging
to the same class. The situation is shown in figure 3.8 9 .

where the two points of one class are depicted as disks

and the two points of the other as crosses. It can be in-

tuitively seen that in this case the dataset is not linearly
separable. Nevertheless, a multilayer perceptron which Figure 3.8: A dataset demon-

we are going to examine next is apt for the task. strating the XOR problem

Multilayer Perceptrons

In order to create more complex models we are going to have to use more neurons. Let
us assume that we feed the same inputs to multiple neurons (all with the same activation
function). We have, thusly, created a layer. The number of neurons used is called the
layer’s width. If we arrange the weights of the neurons in a matrix W and the biases in a
vector b we can see that a layer is an affine transformation composed with the activation

function, which we assume that is applied element-wise, i.e.:
o(Wz +b) (3.44)

A single layer, however, is nothing more than multiple independent linear models. The
true power neural networks becomes apparent when we take the outputs of one layer and
feed them to another. By stacking multiple layers we have created a multilayer perceptron
(MLP), which is shown in figure 3.9. Then number of layers is called the depth of the

Input Layer Hidden Layer 1 Hidden Layer 2 QOutput Layer

ST
NE%V

A

Figure 3.9: Graphical representation of a Multilayer Perceptron. Neurons are represented
as circles
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network. We usually refer to the inputs to the network as the input layer, even though
these are not neurons, the last layer as the output layer and the ones between as hidden
layers. Theoretically, the activation function of each layer might be different, but in
practice the same activation function is used, except, perhaps, for the output layer, which
might not have a different one or none at all (which we can think as having the identity
function as activation). Usual choices for activation functions are the rectified linear unit
(ReLU), the logistic function, which is synonymous to sigmoid in this context, and the
hyperbolic tangent. The latter two differ only by a scale and translation. The graphs of
these functions are shown in figure 3.10. Initially, the sigmoid was the preferred activation
function. However, as the networks got deeper the problem of vanishing gradients, which
we will explain later in the section, became prominent. ReLUs alleviate this issue and
have become omnipresent in neural networks. Sigmoids are still oftentimes used as the
activation function of the output layer, especially for classification tasks because they are

bounded.

(a) ReLU (b) Sigmoid (c) Tanh
Figure 3.10: Plots of common activation function

Based on the above discussion, we now give a more formal definition of the MLP

function inductively:

Definition 3.32: MLP

Let W7 be a ng X n; matrix, b; an n;-dimensional vector and o; : R — R, then the

following is an MLP with depth 1, ng inputs and n; outputs:
MLPl(I') = 0'1(W1.’,C + bl)

If MLP 4 1 is an MLP with depth d—1, ng inputs and ny_; outputs, Wy is a ng_1 Xng
matrix, by an ng-dimensional vector and o4 : R — R, then the following is an MLP

with depth d, ny inputs and ng outputs:

MLPd(Z') = O'd(WdMLPd_l(.T) + bd)

Remark. It would be more correct to parametrize the MLP with the matrices and the
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biases of each layer as well:
MLP g qwy.qb:)

We choose to omit them for the sake of simplicity.

Other types of Layers and Networks

The type of layer we have described thus far is oftentimes called a fully-connected or
dense layer, in order to differentiate it from other arrangements of neurons. Going back
when we decided to feed all the inputs to all the neurons, we could have chosen to do
something else instead.

For example we could have each neuron get only part of the input. A convolutional
layer, does essentially that with the addition that the neurons share the weights amongst
them. If we imagine that the inputs are arranged in a rectangular grid, then the neurons
are arranged in a grid as well and get as input only a region around their position. This
grid arrangement is very natural for images, for example, where convolutional neural
networks (CNNs) excel.

Another alteration we could apply to our initial design is to feed the outputs of a layer
as inputs to itself. This way we get recurrent neural networks (RNNs). RNNs are able
to handle sequences of arbitrary length and are, accordingly, used in natural language
processing. If no recurrent connections exist, the network is called feedforwrd. MLPs are,

hence, synonymous to feedforward fully connected networks.

Training

Many more architectures have been conceived in the field. Some of them general,
while others specifically crafted to address a particular task. No matter the architecture
used, however, the training of a neural networks almost always uses an algorithm based
on gradient descent. This is the optimization procedure we mentioned at the beginning of

the section. In order to apply gradient descent to a model we need two things:

e Objective Function Gradient descent, as an optimization procedure, works by
minimizing a scalar functional that measures the performance of the model. This
functional is also called loss or cost function, in the context of neural networks. We
use the term functional, even though it not that common in the bibliography, to
emphasize that, mathematically, it is a function that takes as input another function,
the one expressed by the network in this case. Nevertheless, this functional depends
on the network’s parameters whose number is finite, which is why the term functional
is uncommon. The exact form of the loss function depends on the problem. For

example, in a regression problem, it can be the mean squared error (MSE):

1

MSE(0) = 15

Z (fo(x:) — v:)? (3.45)

(zi,y:)€D
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where 6 is a vector with the parameters of the network (parameter vector), fy is the
network function, and D is the dataset. The loss function can get quite complex by

including various subobjectives.

e Differentiability Gradient descent requires that the objective function is differ-
entiable (almost everywhere) with respect to the parameters. Consequently, the
network function needs to be differentiable as well, which leads to the differentiabil-
ity of the activation functions of the neurons. Typically this is not an issue for the
activation functions, but for the loss function, sometimes it is a consideration that

must be taken into account for the design.

The minimization of the loss function proceeds in an iterative fashion. Let us assume

that L is the loss function and 6; is the parameter vector at the i-th iteration, then:

where r is a positive real number that regulates the "speed" of the "descent", called,
accordingly, learning rate. The gradient with respect to the parameters for feedforward
networks can be computed with an algorithm called backpropagation [58]. This algorithms
works by firstly computing the gradient at the last layer and proceeding to the previous
ones using the chain rule [11]. When sigmoid activations are used, a deep architecture
can exhibit a problem called vanishing gradients. Due to the sigmoid’s derivative taking
small values, the gradients at the first layers, where these derivatives get accumulated in
products, get very small, and further, due to the limited precision of float point numbers
in computers, are zeroed. This problem can be addressed by using ReLUs instead, as we
mentioned above.

Modern programming frameworks, like PyTorch [51] and Tensorflow [16], allow the
user to build arbitrary networks by simply specifying how the input and the layers are
connected to each other. The gradient can then be computed based on the operations
that took place without any other "help" from the user. This process is called automatic
differentiation. It works by constructing a graph of the operations and traversing it

backwards similarly to backpropagation.

Metrics

Even though the loss function measures the performance of the network and guides the
training process, usually, other functions are used to assess the final models. Such func-
tions are called metrics. The reason for this discrepancy is that computing the derivative
of these metrics is either not possible or intractable, and, consequently cannot be used as
loss functions. Since minimizing (or maximizing) those metrics is the ultimate goal, loss

functions are designed to be in as close correspondence to them as possible.
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Hyperparameters

We note here that the widths of layers, the depth of the network, aspects of the
architecture in general, as well as, numerical or other choices that concern the optimization
algorithm and the dataset, like the specific algorithms used, the learning rate, etc., are
called hyperparameters. This is so, because, they are not optimized during training, like
the standard parameters. In order to determine favorable hyperparameters, one has to
train multiple networks with different configurations. A dataset, called validation dataset,

separate to the training dataset is used to evaluate the performance of these configurations.

Expressive Power

The biological inspiration of neural networks does not, of course, provide any direct
evidence of their capabilities. What kind of functions can a neural network express? This
is a very important question. Imagine that training a neural network fails, meaning its
performance is subpar. What is the cause of this? Is it the quality of the dataset? Or does
the network fail due to an intrinsic inability to learn the task? One of the first results in
this area is due to Cybenko [20], who proved that an MLP with one hidden layer, whose
activation is sigmoid, and no activation in the output layer can approximate any function
on a compact set with arbitrary precision, given enough neurons in the hidden layer. Since
then, many other results of that type have been proven for various architectures.

We should be wary, though, that these results do not explain fully the success of
neural networks. They do not assure convergence of training for example, nor do they
provide values for the hyperparameters. Besides, similar results are available for other
models that have been surpassed by neural networks. The expressive properties of neural

networks remain an active area of research.

3.3.2 Neural SDFs

In this thesis, we combine the SDFs of section 3.1 with the neural networks we have just
described. We will train networks that approximate the SDFs of various surfaces, creating,
thus, a neural SDF. This can be considered a regression task. However, in contrast to
most machine learning settings, the aim here is to overfit the network. Our ultimate goal
is to propose a method for editing the underlining surface through the parameters of the
neural network. We present our method in chapter 5. In the next chapter, we examine

previous work on surface representations, particularly on neural SDFs.
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Chapter 4. Related Work

In this chapter, we review some of the choices for surface representation and their
usage in the context of machine learning. In section 4.1 we discuss various explicit repre-
sentations and present some characteristic works for each. Afterwards, in section 4.1, we

analyze implicit representations in depth, focusing on neural SDFs.

4.1 Explicit Representations

4.1.1 Point Cloud

A point cloud is just a set of points without any further structure. Usually point clouds
are the most readily available real world data because it is the type of data produced
by sensors, like LIDARs and depth cameras, that are used to scan real world objects.
Consequently many of the works discussed here use datasets of point clouds.

PointNet [53] uses point clouds as the input to a neural network in order to do object
classification and segmentation. In the case of classification the output of the network is a
single vector of probabilities for each label, while in for segmentation it is a similar vector
but for each point of the input. In both cases, the authors extract a global descriptor
and since point clouds are unordered this needs to be done in a permutation invariant
manner. To this purpose they use multilayer perceptrons (MLPs) to process the points
individually and produce feature vectors and afterwards apply a max pooling operation
over each feature dimension. The MLPs are shared across the points. This global descrip-
tor is then passed to another MLP. They prove that this approach leads to a universal
approximator. Another issue they address is invariance to rigid transformations of the
input. For example a simple rotation or translation should not affect neither classification
nor segmentation. They utilize networks that predict transformations to be applied to the
input or an intermediate feature space. These transformations also need to be predicted
in a permutation invariant manner and so the structure of the networks mimics the one
described above. The overall architecture can be seen in figure 4.1a. In figure 4.1b some

segmentation examples are shown.
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(a) The architecture of PointNet. (b) Segmentation examples from PointNet.

Figure 4.1: PointNet figures. Figures taken from [53]
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Achlioptas et al. [1] use variational autoencoders (VAEs), generative adversarial net-
works (GANs) and gaussian mixture models (GMMs) in order to generate point clouds.
The encoder part of the VAE as well as the discriminator of the GAN follow the archi-
tecture of PointNet 53] described above.

A important limitation of point clouds is that they do not define topology since they
are disconnected points and so they do not comprise a real surface. Because of that they
do not offer themselves to problems where nice visualisation is important. Also methods

that use point clouds many times to have incorporate a fixed size to their architecture.

4.1.2 Polygon Mesh

Mesh is the most versatile and popular representation in computer graphics. Graphics
cards have been optimized in order to render meshes making them one of the most, if
not the most, efficient representation. It is only natural that it was one of the first to be
used in machine learning and is still of research interest. A mesh in its simplest form is
defined by a set of points called vertices and a set of faces, in most cases triangular or
quadrilateral (referred to as triangle mesh and quad mesh, respectively).

A very popular application of meshes is for 3D morphable models (3DMMs) for faces.
In these models the dataset comprises meshes of faces that are said to be in dense corre-
spondence, which means that they all are isomorphic and that corresponding vertices are
positioned to the same facial features. Of course the datasets that are available most ofter
do not comply to the above specifications and a pre-processing of the meshes is required.
Afterwards, since the meshes are then in dense correspondence, they can be described
by their vertices’ displacements relative to a tamplate mesh, which can be a mesh whose
vertices’ positions are the mean positions of the corresponding vertices in the dataset. A
statistical analysis of these displacements that usually aims at dimensionality reduction
gives the 3DMM. This is the approach taken by Booth et al. [11] where they learn such
a model from 10,000 facial meshes.The pre-processing of the data is done by fitting a
template to each mesh via a method called non-rigid iterative closest point (NICP) [2].
The statistical analysis performed is principal component analysis (PCA) which leads to

the following linear model:

where X* are the displacements, X are the mean positions, k, is the number of prin-
cipal components, U; are the components and a; are the coefficients of those components.
In figure 4.2 examples of faces generated by this model are shown.

More recent works have used neural networks to produce meshes. Kulon et al. [11]
use images to predict hand poses, which are given by a mesh. To do that they employ
a feed forward neural network which comprises a ResNet-50, followed by a mesh convo-

lutional decoder. Mesh, and more generally, graph convolutions extend the convolution
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u I 1 = 2: 8 = 4: 5 I
Figure 4.2: Examples of faces generated from the 3DMM of [11]. Left, the mean face

is shown. The other columns correspond to one of the first five principal components’
coefficients changing while the rest remain 0. Figure taken from [I1].

operator to graphs. The decoder in the paper discussed here works by applying a kernel
to the neighbourhood of each vertex. A comprehensive overview of the different ways of
extending the convolution operator to graphs is provided by Bronstein et al. [12].

There is an extensive literature that uses meshes in machine learning and in conjunc-
tion with neural techniques. We refer to the surveys by Egger et al. [24] and Zollhofer
et al. [70] for thorough exploration of the techinques and applications for faces.

Even though meshes are versatile and very efficient to render, they have their own
weaknesses. In most works, including the ones we discussed above, a certain template is
used which has a fixed topology which cannot be altered, so meshes are not convenient
when the objects being modeled are expected to differ in that manner. Its resolution is

another aspect of the mesh that cannot be easily modified by most methods.

4.1.3 Voxel Grid and Octree

A voxel is analogous to a pixel but for 3D. Like

@ mﬁ}\ pixel it is a portmanteau derived from the words
1 F{/{f {f [ j]‘:\\x\ volume element (pixel comes from picture element).
@ //ﬂ]‘\\ ”J‘H\ A voxel grid is nothing more than a subdivision of
@ O/,// / uj c:lﬁ\i.’i;fii\_. ‘,___ e \\“ e S cube into smaller cubes. In theory the grid could
be rectilinear but mostly cubes are used because

Figure 4.3: Visualisations of an oc- of their symmetries. An octree (figure 4.3), as the
tree as subdivisions of a cube (left) name suggests, is a tree data structure whose nodes
and as a tree (right). Figure taken have exactly eight children, or zero if they are leafs,
from Wikipedia of course. The eight children correspond to the sub-
division of a cube by a factor of 2. The nodes of octrees are commonly reffered to as voxels
as well. We group these two representations together because they are highly related. An
octree can be viewed as an adaptive spatial subdivision leading to a sparse representation,

while a voxel grid is the corresponding dense representation. However, octrees differ in
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Encoder 3D Convolutional LSTM Decoder

Figure 4.4: The two architectures for 3D-R2N2. Figure taken from [19]

that they are hierarchical structures and can leverage the levels of this hierarchy to store
information at each one.

Unlike the rest of surface representations discussed in this chapter and although these
two have inherent 3D characteristics, they need not define a 3D shape. The voxels could
hold various types of information such as the values of a function sampled at the their
centers, or feature vectors. The latter is what Takikawa et al. [(7] do for example. In this
section we are going to deal with voxel grids and octrees that hold occupancy information,
that is whether a shape intersects a given voxel.

The natural way to incorporate voxel grids in neural networks is to use convolutional
layers which have shown great success in image processing. After all images are just pixel
grids. Choy et al. [19] use both kinds of convolutions networks in order to achieve object
reconstruction from images. Specifically, the authors encode images using a 2D convo-
lutional network and decode them into occupancy voxel grids using a 3D convolutional
network (called deconvolutional because it uses upscaling layers). Between the two they
place a recurrent network. This allows them to combine single and multi view reconstruc-
tion with a single network. The recurrent network is either a long short term memory
(LSTM) network or a gated recurent unit (GRU). In both cases the basic structure of
the network is altered by using 3D convolutions which imposes a structural regularisa-
tion. The resulting network is dubbed 3D-R2N2 from 3D recurrent reconstruction neural
network. In figure 4.4 the two architectures proposed are shown.

Because the computational and memory requirements when storing all the voxels in a
grid scales cubically with the resolution of the grid (assuming we subdivide all 3 dimension
by the same number), it is difficult to achieve high resolutions. When used to represent
surfaces, however, the majority of the voxels are expected to be empty since a surface is a
2D object and the occupied voxels should scale squarely with resolution. To address this
issue researchers have tried using octrees instead which store only the occupied voxels for
each subdivision layer. Even when a volume is to be modeled, an octree is more efficient
because it can use the larger voxels of coarser levels to cover the interior of the volume.
The new challenge, then, is how to generalize convolutions to work with octrees. Both
Tatarchenko et al. [70] and Héne et al. [33] attempt to do just that.
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In [70] the authors use an efficient memory repre-

sentation for octrees, sometimes referred to as linear
E octrees. The occupied voxels in each level of a tree
are stored in a hash map with keys that are given

by their Morton codes. Morton code, also known as

Z-order !, is a way to map multidimensional integer

r | [ZzrzEpzrz
%% o227~ coordinates to an one dimensional one (figure 4.5).
e Ti;f;%?i;*f; 7z
2L 2L

They construct a network whose layers output oc-

ﬁ/7 ﬁ _/ / // / tree levels. These layers hold features for each voxel

which are used by another layer to predict the prob-

Figure 4.5: Z-order curve. Figure abilities of whether the voxel is empty, occupied or
taken from Wikipedia mixed, meaning that it need to be subdivided fur-

ther. They propose two types of layers. The first
one is an up-convolutional layer. It uses a voxel’s and optionally its neighbors’ features
(this depends on the size of the filter) to produce the features of its children. The second
one uses either the predicted label for each voxel to decide which should get propagated
to be processed by the next layers. Besides the ones predicted as mixed, their neighbors
might need to be propagated as well since they might be needed by the convolutional
layer. Finally they use a softmax loss for each level of the octree.

Instead of an octree as it has been described so far, the authors of [33] use a structure
they dub voxel block octree. This is an octree whose nodes instead of features for the
respective voxel hold a voxel grid (or block) contained in the former. Since these voxel
blocks are dense, standard convolutional networks can be used to process them. For every
voxel three probabilities are computed. Contrary to [70] these indicate whether a voxel is
inside or outside the volume or whether the boundary intersects it. A node’s children are
constructed if the maximum of this last probability over the node’s voxel grid exceeds a
certain threshold.

The above representations while surpassing the limitations of meshes by having flexible
topology and adaptive resolution, have the disadvantage of not creating smooth surfaces.
Due to the fact that they are a collection of axis aligned cubes they create jagged bound-
aries and cannot approximate the surface’s normal vectors, which can have a very negative

effect when the lighting is important in rendering.

4.2 Implicit Representations

The term implicit refers to something that is not given directly. In the context of

geometry, an implicit surface comprises points which satisfy an equation:

F(z)=0 (4.1)

https://en.wikipedia.org/wiki/Z-order_curve
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Octree Octree Octree
level 1 level 2 level 3

323 643 1283

Figure 4.6: Example of a reconstruction by OGN. Figure taken from [70].

For example the equation 22 + y?> — 1 = 0 is an implicit representation of a circle with
unit radius. Contrast this with x = cosf, y = sinf, § € [0,27), which is a parametric
representation of a unit circle. The use of implicit surfaces in computer graphics is as old
as meshes and octrees. However, meshes have proven much more efficient and so have
become ubiquitous. There have been, though, continual attempts to use implicitly defined

surface in computer graphics and machine learning.

In the shader art community analytic implicit representations have been used to render
from simple primitives to complex scenes and fractal objects. Inigo Quilez has been at the
forefront of these methods. Information and examples of these can be found at his site

[55] and on Shadertoy [62] which is a site made by Quilez to host user submitted shaders.

On the other hand, in the machine learning community earlier approaches have relied
upon radial basis functions (RBFs) [13] to represent the function F' of equation 4.1. More
recently, the concurrent works of Park et al. [50], Chen and Zhang [16], and Mescheder et
al. [17] sparked great interest for implicit representations. In these works, and the works
that ensued, the function F' of equation 4.1 is given by a neural network. More specifically,
in the first, the function that the network tries to learn is the signed distance function
that we defined in section 3.1. In the latter two, it is the occupancy function, that is one
that takes the value 0 inside the surface and 1 outside it. In both cases it is presupposed
that the surface that is being modeled is closed. Sometimes, in the bibliography, functions
that do not give a certain distance to the surface are also referred to as signed distance
functions and the above is called a metric signed distance function to distinguish it. Here,
we use the term signed distance function or SDF to refer to definition 3.9, unless explicitly

stated otherwise.

The occupancy function has been used in other works [17, 17| as well. We will, however,
focus on the distance representation, since it is where the bulk of research has focused as

well.
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Output We will now analyze the
Input OUtDUt Backprogate — .
] Code il | work of Park et al. [50] in

] o ] some depth as it pioneered these
] E ] ] i || implicit representations. The
— ] ] learning of the signed distance
[ ] Codes N

L L function to a surface is for-

(a) Encoder-decoder (b) Autodecoder mulated as a regression task.

The authors use human made

Figure 4.7: Visual comparison of encoder-decoder and

autodecoder architectures. Figure taken from [50] meshes from Shapenet [19] as
the target surfaces which they

normalize to a unit sphere and in order to form the dataset they sample points in space
with greater focus on the space closer to the mesh. The loss function they use is a clamped
L loss, that is:

L(y, s) = |clamp(y, §) — clamp(s, )| (4.2)

where y is the output of the neural network at some point z, s is the ground truth
signed distance at that point and ¢ is a positive constant. The clamping is done so that
is predicted more accurately near the surface. The clamped signed distance is also called
truncated signed distance function, this is not to be confused with the goal of the above
loss function since the output of the network is also clamped.

Besides training a network to model the SDF of a single surface, they also use networks
to model classes of shapes. Such a task can be achieved by using an encoder-decoder.
However, the authors propose an architecture, inspired from they dub autodecoder, which
they cite from [63]. In order to train an autodecoder architecture code vector is attached
to each shape in the dataset. These codes get concatenated to the coordinates that
are given as input to the network. During training these codes get optimized along the
network weights, while during inference the weights are held constant and it’s only the
codes that get optimized. A advantage of an autodecoder over an encoder-decoder one is
that, since the encoder part is not pertinent to the problem, there is no need to design
and train it. A visual comparison between the two can be seen in figure 4.7. Finally, the
architecture used in the paper is a feedforward network with skip connections and weight
normalization [60].

Subsequent works have experimented with the loss and the architecture of the network

used. We will review the different proposals starting with the form of the loss function.

4.2.1 Loss funtions
Sign agnostic loss

Computing ground truth signed distance values can be difficult, so the authors of [3]

propose a loss function in order to learn a signed representation with unsigned ground
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Figure 4.8: Examples of reconstructions by DeepSDF'. First row shows the reconstructions,
while the second the ground truth. Figure adapted from [50].

truth values. They propose the following function:
sal(z) = | [f(;0)| — d(, 5) (4.3)

This, however, has the side-effect of introducing some undesired minima. Both the
signed and unsigned distance functions, as well as their opposites constitute minima. The
unsigned distance or its opposite is unlikely to be obtained as they have discontinuous
derivatives. The opposite of the signed distance function is equally likely to be obtained.
To alleviate that problem the authors propose an initialization scheme that as the width
of the network goes to infinity, the output of the network converges to the signed distance

to the sphere.

Level set loss

Instead of sampling points using the target surface, the authors of [5] sample the level
sets of the network (we will discuss sampling of the level sets latter in this report) and
incorporate the level sets in the loss. In order to do so these points need to be expressed
as functions of the network parameters so that the derivative with respect to them can
be taken. The points are constrained to stay on the level sets as they change with the

parameters, which gives the following equation:

f(p(0);0) = c (4.4)

where f is the network function, p is a point on the c-level set and 6 is the parameter

vector. If we differentiate the equation above we get:
foVQp +Vof =0 (4.5)

This is reminiscent of what in physics is called material derivative. This underconstrains
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the gradient of the point, which is expected since the point can move in an infinity of direc-
tions and still stay on the level set. So, the authors use the Moore-Penrose pseudo-inverse
of V,f to solve for Vyp. Now, since gradient descent uses only first order derivatives, the
function that gives the point needs to match only this derivative and the proposed one is
this:

p(0) = p— (Vo )* (F(pi6) — ) (4.6)

Then the loss using the level sets is:

>/ 1. 5) = el )] W)
ceC le

where C'is the set of levels, [, is the c-level set, S is the target surface and dv(z) is the
normalized volume element of /.. Inside the the integral we can see that the sign agnostic
version of the per point loss is used. In practice the integrals in the loss are approximated
in practice by the sample mean. If we compare the loss above with the regression-type
loss, we will see that the difference between the two, besides that the sampled points will
generally have different distributions, is in the per point derivative with respect to the
parameters. More specifically, in the loss examined here an extra term is present in the

derivative and that is:

(Vpd(p. $)) (= (V)" (4.8)

This can be interpreted as a weight that encourages the parameters of the network to
focus more on points that reduce their distance by moving along the normal direction of

their level set.

Normal vector loss

Oftentimes besides the positions of points on a surface information about the orienta-
tion of the surface at those points is available in the form of normal vectors. This is the
case for directed point clouds and meshes with per-vertex normals. A cool feature of im-
plicit representations is that normals do not need to be represented separately, but rather
are equal to the gradient of the network function with respect to its input. Automatic
differentiation packages allow us to easily compute this and do so in a differentiable man-
ner, meaning that the result can be further be differentiated with respect to the network
parameters as needed for gradient descent algorithms. The loss used per point, then, can
be the euclidean distance between the gradient and the ground truth normal n,, this is
used in [31]:

Vo f(x;0) — nal| (4.9)
When using normals, however, we are more concerned with their direction than their
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magnitude. A loss more well adapted to that is one minus the cosine similarity:

a-b
1—
[all[/b]]

(4.10)

This is also called cosine distance and is used in [(4].
Two versions of this normal loss analogous to the sign agnostic loss proposed by |[/]

are:

min {||a — b||, ||a+ b||} and |sin Z(a,b)] (4.11)

Implicit geometric regularization

Sampling points around a surface and computing their (unsigned) distance can still be
computationally expensive. Therefore, researchers have tried to find ways to circumvent
that. [31] and [64], in the spirit of [63], formulate the learning of the SDF as a boundary
value problem. As we mentioned at the end of section 3.1, SDFs satisfy an equation called

eikonal equation (that is why the term discussed here is also referred to as the eikonal

term):
z) — 1
Vel (4.12)
flz)=0, z€S
The above hard constraints are turned to soft ones to form the loss function:
L(f) = AsBanpg (I (2)]) + AaBonn, ([ Vo fll — 1)) (4.13)

where [E denotes the expected value, Dg is a distribution whose support is the surface S,
Dq, is a distributions whose support includes the surface, typically the uniform distribution
in an axis aligned bounding box, and Ag, \qg are Lagrange multipliers. With this the
training of the network is semi-supervised, as it does not specify in any direct way the
values that the network should obtain on points that are not on the surface. As in the
case of sign agnostic learning careful initialization is required in order to avoid unwanted
minima. Using a normal loss term (not sign agnostic version though) can also lead to the

desired minimum since it specifies on what side of the surface the positive values of the
SDF should lie.

Empty space constraint

The above loss does not necessarily prevent the network to learn an SDF of a surface
that is the superset of the target one. This lead to the formation of artifacts, blobs where
there should be empty space. This is somewhat mitigated by the fact that such artifacts
create discontinuities in the gradient which increase the eikonal term. However, when
there are areas inside the bounding volume which are quite distant to the surface these

artifacts are quite likely to appear. To the purpose of eliminating these the following term
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is employed in [64]:
E,npg (e7*) (4.14)

where a > 1. This term conflicts obviously with the first term of 4.13, yet, since the
surface is expected to be a 2-dimensional set while (2 a 3-dimensional one the expected

value above is not affected by the surface.

4.2.2 Network architectures

Implicit features

In [17] and 18] the authors discretize the input point clouds, converting them to voxel
grids of some fixed resolution. These grids are then processed by a 3D convolutional
network producing multiresolution features which are, in turn, fed to an MLP. In the first
case the output is the occupancy, while in the latter, the unsigned distance. In figure 4.9,

an overview of the architecture of [17] can be seen.

Sinusoidal activations

Instead of ReLU or leaky ReLU, the authors of [(4] propose the use of sine as acti-
vation function, which yields impressive results across a variety of problems which can
be formulated as boundary value problems, one of them being surface representation via
its SDF, and the network they use for this is a simple MLP with sine activations for the
layers except the last one which is just linear, which they dub SIREN. They also provide
an initialization scheme for this network.

The success of the sine activations can possibly be explained by the work of [35], as it
was used to explain the success of positional encoding and fourier features by [69]. Specif-
ically, the authors prove that using sinusoidal functions in the first layer of a networks

allows it to learn functions with higher frequency content.
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Figure 4.9: Overview of IF-net. Figure taken from [17]
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Meta learning

Meta learning refers to the process of learning how to learn. Usually in machine
learning the object is to train a single network that can be used for different tasks. Two
meta learning approaches has been used by [64] and [65] to learn SDFs. The former
employs hypernetworks while the latter the MAML (Model Agnostic Meta Learning)
algorithm. These works attempt to represent a class of shapes, as was done in [50] and
presented in the beginning of this section, by considering the SDF of each shape in the
class as a different task.

Hypernetworks [32] are networks that are used to produce the weights of another
network. The input to a hypernetowrk is a task, which is a particular shape in this
case, codified in some manner (with a feature vector for example) and the output is the
parameters to an SDF network.

MAML [28] is an algorithm that allows for a single network to be adapted to a task
after only a small number of gradient descent steps. This is also called few-shot learning.
The idea is to perform a small fixed number of gradient descent steps for each task in a
batch, beginning with the same parameters for each one, and, then, perform a step by

using the gradient of the sum of the per task losses with respect to the initial parameters.

Hybrid techniques

By hybrid we refer to techniques that use a combination of explicit and implicit rep-
resentations. Chabra et al. [11] use sparse voxels, Takikawa et al. [67] octrees, and Miiller
et al. [19] use a technique they name hash encoding. In the former two cases, the vertices
of the voxels hold learnable features. In order to calculate the SDF prediction at a point
inside a voxel the feature vectors are combined via trilinear interpolation and the result
is passed to an MLP. In [67] there can be mixing between the levels of the octree so that
a continuous level of detail can be achieved. By having features that locally describe the

surface, highly detailed results are possible.

4.2.3 Visualizing and sampling neural SDFs

Representing a surface more than often presumes being able to visualize it in some
way. After all, in most applications around computer graphics the visual is the ultimate
criterion and goal. Accordingly, in this section we are going to discuss such methods
pertaining to implicit representations.

Visualising 3D geometry, especially when done through the lens of a virtual cam-
era or when some lighting simulation is involved is referred to as rendering. Rendering
algorithms generally fall into two broad families: rasterization and ray tracing. Rasteri-
zation algorithms use a series of transformations to project objects onto the screen and

consequently work better with explicit representations. On the contrary, ray tracing al-
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Figure 4.10: Renderings by [18]. Left to right: input point cloud, point cloud sampled
with Newton-Raphson method, mesh reconstructed from samples point cloud with ball-
pivoting and rendering with sphere tracing. Figure adapted from [15].

gorithms, as the name implies, use rays that start from the camera and intersect them
with the scene geometry to produce the image. As these algorithms follow more closely
the underlining physics of image formation they can generate more photorealistic results
and incorporate effects that are due to light interactions with greater ease. Also, since the
only requirement for a representation to work with ray tracing is the ability to find the
intersection between the object and a ray they are are more versatile, although triangle
meshes are preferred in this case, as well, because there exist very efficient ray-triangle
intersection algorithms. All these advantages, however, come at the price of speed. Ray
tracing is, generally, much slower. Therefore, it is, mainly, used when photorealism is
desirable and time is not of the essence as is the case with animated films for example,
while real-time rendering is done with rasterization and GPUs have been heavily opti-
mized (and actually created) for this process. Even though this separation has been at
effect for most of computer graphics’ history, in recent years newer GPU models have
hardware that support ray tracing, heralding an new era for computer rendering.

Most of the works presented previously do not actually use the neural network directly
to render the zero-level set. Instead, they first convert it into a mesh or point cloud and
use that for rendering. In [3, 1, 5, 18, 50, 6, 65] the marching cubes algorithm [13] is used
to create a mesh. To do that the network function is sampled at a dense grid. Chibane
et al. [18] propose an algorithm to densely sample the zero-level set. Essentially the same
algorithm is independently developed by Atzmon et al. [5] and identified as a special case
of the generalized Newton-Raphson method [6]. Firstly, points are sampled in the space
around the surface, via a uniform distribution in its bounding box, for example. Then,
each point is moved iteratively according to the following equation:

V()
Tip1 = x; — f(x;) % f] (4.15)
Essentially the point is moved along the direction of steepest descent, a distance equal
to f(x). If f is exactly the SDF, then one iteration is enough for the point to end up
on the zero-level set, since the direction of steepest descent is the direction towards the
closest point of the zero-level set and f(z) is equal to the distance. The neural networks,
however, are not exact SDFs, but still the point can get very close to the surface with only

a few iterations. In [18| a small variation of what was described above is used. An initial
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set of points is constructed as presented, and from this set, only the ones with distance
below a certain threshold are retained. Afterwards, points from this set are sampled,
perturbed with gaussian noise and, then, reprojected on the surface the same way as the
initial ones. The set is augmented by the points that satisfy the threshold condition. This
process is continued until the desired number of points is reached. Having produced this
point cloud, it can be rendered as is or converted first to a mesh via classic algorithms
such as ball-pivoting [3]. The images in the middle of 4.10 show a sampled point cloud
and the mesh produced by ball-pivoting.

Another approach is to use ray tracing to render the zero-level set. As aforementioned,
ray tracing requires a method of finding the first intersection (if one exists) along the ray
with an object. In the case of primitives like triangles and spheres, there exist analytic
formulas to do that. In general, for implicit representations a root finding algorithm must

employed. More concretely, the equation whose roots we must find is the following:

F(p(t)) =0

p(t) = po +td (4.16)

where p(t) is the parametric ray equation and pg, d are the ray origin and direction
respectively

For distance functions (and Lipschitz functions in general), a variation of ray tracing
called sphere tracing proposed by [35] can be used to find the intersection. The idea
of sphere tracing is to progressively advance the ray until an intersection is found or a
termination condition is met. A ray is considered to intersect the surface if the value of
F(p(t)) becomes adequately small. The simplest termination condition is that a maximum
numbers of steps is taken. The step size in sphere tracing is equal to the value of F at
the current point. If F' is the distance function, then that is the largest step we can safely
take and not intersect the surface. A demonstration of the process is shown in figure 4.12

Sphere tracing is used by |14, 18, 42, 19, (7] to render neural implicit representations.
Liu et al. [12] do so in a differentiable manner so that they learn the implicit representa-
tion from images. In |11, 67| the authors use voxels and octrees respectively to accelerate
rendering and achieve higher detail. Sphere tracing requires the evaluation of the net-

work at multiple point along the ray, which is an expensive operation. With the above

Figure 4.11: Renderings made by using sphere tracing with neural SDFs. Figure taken
from [67].
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representations many of these computations can be avoided because because we firstly
find the intersected voxels and, then, use sphere tracing inside them. Takikawa et al. [67]
in particular, achieves real-time rendering. Figure 4.11 shows their renderings of various
models. Miiller et al. [19] with their technique, also achieve real-time rendering, aw well

as, real-time training.

4.2.4 Editability

Apart from the efficiency is-
sues of neural implicit represen-
tations, another issue which we
study in this report is the editabil-
ity of these representations. With

this term we mean the ability to

manipulate the surface in an in-

) ] ] ) ) teractive way. To our knowledge
Figure 4.12: 2D illustration of sphere tracing. Figure

taken from [1?] there are not many works which

attempt to do that.
Hao et al. [34] propose a two level representation in order to manipulate an object in
a semantic manner. One representation is a coarse one given by a collection of primitives
with analytic SDFs whose parameters (e.g. the center and radius of a sphere) are given
by a network which takes as input a shape code. The other one, more fine detailed, is a
network with an autodecoder architecture. The two representations are trained for a class
of objects in tandem. After training, one can manipulate the resulting shape by specifying

an edit to the primitives’ parameters and adjusting the shape code accordingly in a way

Figure 4.13: Examples of shape manipulation by [31]. The first and third rows show
the fine representations, while the others show the representations by the collection of
primitives. The blue spheres are the ones whose parameters are being edited, the radius
of a single sphere in the case of planes and the distance between the centers of two spheres
in the case of cars. Figure taken from [34].
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similar to the inference process of an autodecoder. Examples of semantic manipulations
possible by this system are shown in figure 4.13. This approach of searching in the shape
space is also used by Deng et al. [22], where instead of manipulating the parameters of
some primitives a sparse set of points is used.

Deng et al. [21] and Mu et al. [18] both deal with articulated objects, that is, objects
which have joints and are rigid, besides the deformation due those. For example, human
bodies are modeled as articulated objects. Deng et al. use an occupancy representation,
while Mu et al. an SDF. Both use the joint parameters, which are the angles between, as

inputs to a network.

4.3 Conclusion

Neural implicit representations have seen an explosive advancement in recent years.
They have surpassed other representations and the exploration of applications where
they can be useful is still at its beginning. Already there is interest of utilizing implicit
representations in robotics [39, 66]. A survey by Xie et al. [75] and its accompanying
project website preserve a large collection of works relating to implicit representations.
There are still a lot of open problems as, for instance, are the efficiency improvement
of these representations, their effectiveness in tasks for which other representations have
traditionally been used, their generalization capabilities and their editability. In this
thesis, we attempt to tackle the problem of editability, which has not been thoroughly

examined. In the next chapter we present our method.
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Chapter 5. Sampling and Editing Neural SDFs

Our aim in this thesis is to propose a method for editing the surface represented by
a neural SDF. As we saw in the previous chapter, even though there exist some works
that allow manipulating the surface, they are somewhat restricted. Hao et al. [34] allow
editing in a semantic manner and the editing of Deng et al. [22] follows a similar pattern,
while Deng et al. [21] and Mu et al. [18] handle only articulated objects. Instead, we want
to allow the user to deform the surface interactively in a free form manner. We draw
inspiration from 3D sculpting software, which use tools that are called brushes to deform
a surface in a localized region around a point, on the surface, specified by the user. In
this chapter, we present our proposed method.

We will refer to the selected point as the interaction point, to the area around it as
the interaction area and to the process in general as an interaction or edit. The main
problem we encounter is how to enforce locality. In order to change the surface expressed
by the network, its parameters must change though some sort of training. However, a
change to the parameters of a neural network is expected to affect its output for an
unbounded region of the input space. Consequently, naively using samples placed only
in the interaction area, will ostensibly distort the rest of the surface as well. We confirm
this experimentally in chapter 6. To ameliorate this adverse effect as much as possible we
propose to combine samples from the surface expressed by the network (before training)
outside the interaction area and from the desired edit. Below we will describe every part
of the process in detail. Firstly, we define the loss function we use, in section 5.1. Then,
in section 5.2, we deal with surface sampling. In section 5.3 we present our formulation

of sculpting brushes and, afterwards, in section 5.2, the way we sample the interaction.

5.1 Loss function

We base our loss function on the one used in SIREN [64]. Accordingly, the loss function

L is as follows:

L(#) = Ls(6) + Leir(0) + Les(6) (5.1)

Ls(6) = Eps (M |fo(@)] + dag (Vafola).ms)} (5.)

Lea(6) = M Ey{ ||V fo()] — 1]} (5.3)

Les(0) = M E {emlfo@h (5.4)
a-b

9(a:0) =1 = el (5:5)

where A, Ao, A3 and )4 are balancing weights, S is the target surface, pg is a distribu-
tion on the surface, ¢ is uniform distribution on a bounding box, 6 is the parameter vector,
fo is the network function, ¢ is the cosine distance, n, is the normal vector at x and «
a large positive number. It can be seen that the loss function comprises multiple terms.

These terms were discussed in section 4.2.1 of the previous chapter. More specifically, it
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follows implicit geometric regularization (cf equation 4.13), with the inclusion of a term
for the normals (second part of equation 5.2) and an empty space constraint (equation
5.4). Implicit geometric regularization is crucial to our method because it allows us to
train the model without computing ground truth distances, which would be difficult in
this case. Now, the only thing we need, in order to apply the loss above, is a point cloud
(with normals) of the target surface, that is used to approximate the expected value in

equation 5.2.

5.2 Surface Sampling

As we have seen in the previous chapter, two prior works [, 18] have proposed similar
algorithms that sample the O-level set of a neural network function. We gave an overview
of the algorithm in section 4.2.3. Here, we delve into more details, as our proposed
algorithm builds on top of that. As we previously explained, a key procedure in the
algorithm is the projection of points in space onto the 0-level set, i.e. the surface whose
SDF the network expresses, using a Newton-Raphson type iterations. We give pseudocode
for this in algorithm 5.1. Based on theorem 3.16 it follows that for a true SDF only one
iteration suffices, but since neural SDFs are approximations, more are required, though,

not many. In practice, we use 7 iterations.

Algorithm 5.1: Function that projects a points to the O-level set of an SDF

1 Function ProjectSamples(X;,, [, Niter):

Data: X;, : A set of samples to be projected
f: SDF
nier - Number of iterations
Result: The projected samples
2 Xout < @
3 foreach z;, € X,, do
4 Tout < Tin
5 for i = 0 to n., do
6 Lout — Lout — f(xout) ”§§Eizzg“
7 end
8 Xout < Xout U {xout}
9 end
10 return X,
11 end

In order to sample the 0-level set, the algorithm begins by uniformly sampling a bound-
ing box around the 0-level set and projecting these samples onto it. Afterwards, from the
projected samples, only those whose absolute value of the SDF is below a certain threshold
are kept. Besides using too few iterations, the main reason why some samples’ distances

do not meet this requirement is because, close to the boundary of the bounding box,
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the neural network does not approximate the SDF well enough, leading to samples that
started there needing many more iterations to converge to the surface or not converging
at all. Atzmon et al. [5], actually, do not reject samples because the ones that do not
converge do not pose that serious an issue. Here, we follow Chibane et al. [15], because
we do require the samples to lie as close to the surface as possible. In our version of the
algorithm we also reject samples that got moved outside the bounding box. This can
happen, also, due to poor approximation close to the boundary of the bounding box. Its
reasonable to question whether such a check is required, since, one might expect, samples
outside the bounding box to be rejected by the threshold condition. However, because
the network is not given samples outside the bounding box during training, it can take

values that are below the threshold and so this condition, by itself, is ineffective.

Algorithm 5.2: Function that creates new samples by perturbing others with
gaussian noise and reprojecting them
1 Function ExtendSamples(X;,, f, n, 0):
Data: X, : Inital set of samples
f : SDF
n : Number of samples
o : Gaussian noise’s standard deviation
Result: The new samples

Xsampled < Sample n elements with replacement from Xj,
Xperturbed < {l’ + 2z | HARS Xsampleda Zg N(07 0)}

Xout ¢ ProjectSamples (Xperturbed, f, PROJECTION _ITERS)
return X,

end

(=B, BN VU M

Due to rejection, the desired number of samples might not be reached. Even if no
sample gets rejected, it is beneficial to begin by sampling less than the desired number
of samples and, then, extend the initial set, because this leads to a better distribution.
Imagine using a true SDF, then a point in space would be projected to the point on
the surface closest to it (that is C(z,S), see definition 3.6). The space can, then, be
partitioned to sets each corresponding to a point on the surface, that is, for each point y
on the surface, the points which get projected to it belong to such a set (we can safely
ignore singular points, see remark of corollary 3.15). More formally, the set of the partition

P(1) corresponding to a point y on the surface S is:
Ply) = {z|C(x,5) = {y}} (5.6)

According to theorem 3.13, P(y) comprises line segments, so the distribution on the
surface that results from projecting points uniformly distributed inside the bounding box
is proportional to the length of the the segments of the sets P(y). Depending on the surface
there can be quite a disparity amongst these lengths. Also, the fact that a neural SDF
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is an approximation can worsen the situation. Instead of using only samples projected in
this manner, Chibane et al. extend the sample set by using the samples that got initially
accepted. This is done by sampling with replacement from the existing samples and
then perturbing these new samples with gaussian noise and reprojecting them onto the
surface. Pseudocode for this is given in algorithm 5.2. The resulting samples are again as
described above. This process is repeated until the desired number of surface samples is
reached. The whole algorithm is given in 5.3, where Nj.,.,, PROJECTION ITERS, T and
SIGMA are constants representing the samples to be taken per iteration, the iterations
for projection, the threshold and the gaussian’s standard deviation respectively, whose
values we set to 40000, 7, 0.009 and 0.04.

Algorithm 5.3: Functions that samples the surface expressed neural SDF
1 Function SampleSDF(f, BB, n):

Data: f : SDF
BB : A bounding box of the surface
n : Number of samples
o : Gaussian noise’s standard deviation
Result: The surface samples
2 Xiter < Sample uniformly Ny, points inside BB
3 Xiter < ProjectSamples (X, f, PROJECTION ITERS)
4 Xiter — {:c € Xiter | f(x) <T Az inside BB}
5 X Xiter
6 | while |X|<ndo
7 Xiter < ExtendSamples (Xyer, f, Nier, SIGMA)
8 Xiter — {x € Xiter | f(x) <T Az inside BB}
9 X — X U Xjer
10 end
11 return X
12 end

For our method surface samples need to be produced every training iteration. A
straightforward way to do that is to use the algorithm described thus far. However, this
approach has two major drawbacks. Firstly, it is time inefficient. Secondly, despite the
what was discussed above, the distribution of the resulting samples can, still, be quite
non-uniform. Inspired by the way the samples are extended by perturbing them, we
produce the sample set for the next training iteration using the existing set. To that
purpose we perturb and reproject every sample in the current set. Consequently, the
algorithm for producing the next sample set is similar to the ExtendSamples function
(algorithm 5.2), with the difference that the entire sample set is perturbed and projected
instead of sampled elements of it. The other difference is that in this case we perturb a
sample by adding to it a vector uniformly sampled from a disk tangent to the surface at
the sample’s location. To sample these vectors we use the technique described in section

3.2.2. The reason we opt for tangential perturbations, instead of gaussian noise is so
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Figure 5.1: Example of sculpting in Blender. Left: a model of a sphere. Right: the same
model after a stroke.

that we explore the surface as much as possible without moving too far from it. We
use the SIGMA constant for the radius of the disks, although schemes where the radius
is a function of some property, like the curvature, are potentially useful. If, after the
projection some points of the sample set, fail to meet the requirements mentioned above,
we use the ExtendSamples function with the set of accepted points as input to replace
them.

This way of sampling forms a Markov Chain (see section 3.2.1). Naturally, the sta-
tionary pdf distribution is of interest. It is relatively easy to see that the requirements of
theorem 3.27 are satisfied and, hence, the stationary distribution exists and has support
over the surface. It is hard to theoretically reason about the shape of the distribution.
However, we provide experimental results in Section 6.6, that demonstrate that our sam-
pling process produces more uniformly distributed samples than the naive way outlined
at the beginning of the previous paragraph. Uniformness is a desired property because
it guarantees that every region of the surface will be included equally during training.
Nevertheless, distributions which focus more on areas where the surface is more complex

might be more desirable and, so, a topic for further research.

5.3 Brushes

One of the most popular techniques for designing 3D models of natural looking objects
such as animals is 3D sculpting. It is named such because it is reminiscent of clay sculpting
(this is why the objects in 3D sculpting have been referred to as digital clay), whereas a
sculptor uses tools to remove/add material and shape the clay, in 3D sculpting the artist
uses digital tools called brushes to edit a surface in analogous manners. The edits are
usually done in strokes, which are series of interactions happening while holding down a
mouse button (or pen in the case of drawing tablets). An example of an edit made in
Blender [10] is shown in figure 5.1. Below we present our formulation of brushes and how

they affect the surface inside the interaction area.
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5.3.1 Brush Templates and Families

We define a brush template as a C' (or higher) 2D function defined over the unit disk
centered at the origin which reaches a maximum value of 1 and vanishes at the unit circle
(ideally its gradient and its higher derivatives vanish as well). Suppose br(x) is a brush

template, then the properties above are summarized as follows:

br: {x e R?| |z <1} = R (5.7)
max{br(z)} =1 (5.8)
2]l = 1= br(x) = 0 (A Vabr(x) = 0) (59)

We can, then, define a brush family B, ; parametrized over radius r and intensity s:
B,.(z) = sby (§> ,reRY,seR (5.10)
T

The radius r affects the size of the interaction area and the intensity s controls how much
the surface is deformed. As will become apparent a positive intensity creates a bump

(extrusion), while a negative intensity creates a dent (intrusion) on the surface.

5.3.2 Radially Symmetric Brushes

Oftentimes, the effect of the brush is radially symmetric around the interaction point.
This can be desirable because various useful deformations have this property, but, also, for
ease of application since, otherwise, we would also need to parametrise the brush family
with an angle of rotation as well. A radially symmetric brush template is a function of

the norm of z only and so can be expressed, using an 1D function f, as:

br = f(ll) (5.11)

In order for by to comply with equations 5.7-5.9, f must satisfy the following:

f:00,1] = R (5.12)
)} (5.13)
f)=0(Af"(1 ) =0) (5.14)

ma:z:{ (x

The above requirements are similar to the ones satisfied by smoothstep functions. We

are now going to explain how to use smoothstep functions to define brush templates.

5.3.3 Smoothstep Functions

In computer graphics, the need to transition smoothly from one real number to another

arises very frequently. For this purpose, various functions are used, which take the value 0
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for z < 0, the value 1 for x > 1, and go from 0 to 1 in the interval [0, 1] in an continuously
differentiable increasing manner, with vanishing derivatives at 0 and 1. In graphics, such a
function is usually called smoothstep. Refer to the Inigo Quilez’s site [55] for a presentation
of some smoothstep functions.

If f is a smoothstep function, then f(1 — x) satisfies the requirements stated above

and so a radially symmetric brush template ensues:
br(z) = f(1— ||l=]) (5.15)

Notice that, since smoothsteps are re-
quired to be increasing in [0,1], they are
more restricted than what equations 5.12-
5.14 dictate. Nevertheless, most commonly

the deformation is desired to be more pro-

nounced directly on top of the interac-
tion point and, consequently, this increas-

ing property (or decreasing, since we 1 — x
Figure 5.2: Profile of the radially symmetric
brush template created with the quintic poly-
nomial smoothstep function (equation 5.16).

as input to the smoothstep) is naturally
suitable. For our experiments we use a

quintic polynomial smoothstep function:
Ps(z) = 62° — 152" + 1027 (5.16)

The profile of the resultant brush template is shown in figure 5.2.

5.3.4 Other Brush Types

Besides non symmetric brushes, which, as aforementioned, would require an angle
parameter to fully take advantage of their functionality, another extension we can make
to our formulation is to allow for vector brushes. By that term we mean using a brush
template which is a vector function instead of a scalar one. Such a brush could allow to
twist the surface around the interaction point. This, and perhaps other, extension to the

brushes are interesting future directions.

5.3.5 Brush Application

In order to apply the brush at a point on the surface we consider it defined on the
tangent plane at that point, with the z axis aligned with the (outward pointing) normal.
Due to the implicit function theorem [11] we can express the surface, which is the 0-level
set of the network function, in a region of that point, as the graph of a 2D function over

the same plane. We can, thus, apply the brush by simply adding the brush function to
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the latter, which means that the points on the surface are moved along the interaction
point’s normal a distance equal to the brush’s value. If S(x) is this 2D function, then,

the function for the deformed surface S, is given by:
Sa(z) = S(x) + B,.s(x) (5.17)

It is now clear that we placed the requirement that the brush template and its deriva-
tives vanish at the unit circle in order to maintain the connectivity and smoothness of
the surface after the edit. It is also clear why positive intensity values create bumps and

negative ones create dents.

5.4 Interaction Sampling

Having defined brushes and how they act upon a surface, we now move on to describing
how to sample the interaction area in order to include these samples in the loss function
for the training.

We need to produce samples
that lie on the deformed surface,
which means calculating their po-
sitions and normals. We begin
by placing uniform samples on
a disk tangent to the interaction
point whose radius is the same as
the brush’s. In order to utilize

equation 5.17 we need to compute

the value of the implicit function

S(x) at the coordinates of each
Figure 5.3: The brush application is demonstrated

above. S is the surface, ¢ is the interaction point, n
is the normal vector at z(, p is the tangent plane and
face. Theoretically, for the anal- B, s is the brush function whose graph over p is the
ysis above to be applicable this dark green curve. The lighter green region on S is the
projection of the tangent circle.

point. To that purpose we project

the sampled points on the sur-

should be a parallel projection
along the interaction normal, however, we use the same procedure that we use for the
surface sampling algorithm so that we do not affect the surface in a greater area then
intended. This way tangent disk gets "wrapped" around the interaction point. Having
found the corresponding surface points we simply add to them vector components along
the interaction normal with lengths equal to the values of the brush at the coordinates of
the tangent circle. This process is depicted in figure 5.3. Next, we compute the normals
after the edit.

Suppose that f is a 2D function defined over a 3D plane (its gradient V f then lies on
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Chapter 5. Sampling and Editing Neural SDFs

the plane), and n is the normal vector to that plane (analogous to the z axis), then the

following is an unnormalized vector, perpendicular to the graph of the function:
—-Vf+n (5.18)

Accordingly, what we need in order to compute the deformed normals is the gradient
of the 2D function whose graph is the deformed surface (Sy(z) of equation 5.17). As
we explained previously, this function is the sum of the brush function and the function
defined implicitly by the network. We can directly calculate the gradient of the brush
function, since it is given in a closed form. By the implicit function theorem the gradient

of the implicit function is given by:

(foe(ﬂf))n

(Vofa(®)), 19

In this case V denotes the 3D gradient, fp is the network function, || denotes the com-
ponent parallel to the tangent plane and L the component perpendicular to it. The full

expression for the normal is, thus:

~VS4+n  —VS—VB,.+n
(foe(x))” B 5.20
o), — VBratn (5.20)
VZfG ))”
H Tafo@n, — VBt ”H

5.5 Combining Surface and Interaction Samples

As we stated in the beginning of the chapter, our proposed method works by using
both samples from the surface expressed by the network before the interaction and samples
from the edited area. In the sections until now we described how to produce these samples.
Now we are going to discuss how we use them to construct the final sample set for the
training iteration.

Firstly, we need to remove those of the surface samples that lie inside the interaction
area, since they "contradict" the edit. We do this by simply removing those that lie inside
a sphere centered at the interaction point with radius equal to the brush’s. Let us assume,
that we initially produce N surface samples and that, of those, M are removed.

Secondly, we need to specify the number of interaction samples we take. For the
choice of this number we need to take into consideration balancing between the two
kinds of samples. Essentially, the numbers of samples will affect the distribution pg used
in the loss function (equation 5.2). Notice that, the balancing is not done explicitly
through the use of weights, but rather through the ratios of the two kinds of samples.

Too many interaction samples and the surface samples will not manage to regulate the
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edit, leading to greater distortion outside the interaction area. Too few and the edit will
not happen in the intended way. We would like the number of interaction samples to
increase with the interaction area. Although we cannot compute this area analytically,
due to our surface sampling algorithm producing relatively uniform samples, the ratio
M/N is probabilistically proportional to the area. Consequently, we can use M to scale
the number of interaction samples. Additionally, we multiply M by a factor (we choose
10 in practice) to get the number of samples, in order to increase their importance in the

loss function, since they are responsible for the surface deformation.

Figure 5.4: A scene from our interactive editor. The blue circle is the brush’s indicator.

5.6 Method Overview

In the preceding sections, we presented each aspect of our proposed method in detail.

Now, we give a brief overview of the whole process:

e The user specifies the interaction point on the surface along with the brush param-

eters.

e A copy of the network is made to be used for surface sampling, the sample set is ini-
tialized and some burnout iterations are run in order to approximate the stationary

distribution.

e For each training iteration:

— The surface is sampled (using the copy of the network at its initial unaltered
state).

— From these surface samples those that lie inside the interaction are discarded.
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Chapter 5. Sampling and Editing Neural SDFs

— The interaction, i.e. the desired deformation, is sampled. The number of sam-
ples to be produced is calculated according to the number of surface samples
discarded.

— The two sample sets are combined.

— The loss and its gradient with respect to the network parameters are are com-

puted (here the original network is used, not the copy).

— The weights are updated.

In the case of sequential edits we do not reinitialize the sample set for the surface
sampling before each edit. Instead, after each edit we copy the updated network again
and use that to project the samples. We run the burnout iterations in this case as well.
A scene from our interactive editor is shown in figure 5.4. The brush’s position and
radius is depicted with a blue circle. For a video showcasing the editor please refer to
https://pettza.github.io/3DNS/.
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Chapter 6. Experiments

In this chapter, we conduct a series of experiments in order to demonstrate the prop-
erties of our sampling algorithm and the capabilities of our method, as well as prove
its advantages over traditional mesh editing. For our experiments we assembled a small
dataset, which we present in Section 6.1 and for quantitative comparisons we use Chamfer
distance, which we define in Section 6.2. As we mentioned in the previous chapter, our
method is architecture-independent; for our purposes here, we employ the SIREN [(4]
architecture, which we discuss in section 6.3. The only alteration to the original design
is the addition of Weigh Normalization [60] at each layer. We perform an ablation study
of this in section 6.5. Afterward, in section 6.6 we evaluate our sampling algorithm and
compare with the naive approach of reinitializing the set of surface samples. Then, we
show the effect of a brush for various values of its parameters, in section 6.7. Later, in
section 6.8 we compare the editing capabilities of our method to those of traditional mesh
sculpting. Finally, in section 6.9, we use our method to do multiple edits on models and

showcase, thus, the artistic results that can be achieved.

6.1 Datasets

Sculpting is mostly used to create natural looking objects, like animals, human faces,
and plants. Most brushes are designed to deform the surface smoothly, or at least in
manners that treat the surface as having plasticity, since their purpose is to simulate
actions that are possible by their physical counterparts. If the object being modeled is

man-made or otherwise has hard edges and corners there exist more appropriate tools.

(d) Pumpkin (e) Sphere (f) Torus

Figure 6.1: The dataset of four selected meshes and two analytical shapes that we assem-
bled for our experiments.



6.1. Datasets

(a) Dining chair (b) Chair (c) Armchair

4dd46b9657c0e998b4d5420f7c27d2df 02e76cb4f1039c482eb499cc8fbed c5d880efc887f6f4f9111ef49c078dbe

(d) Sofa (e) Vase

beff6c5cb4127aal15e0ae65e074d3eel 13375f8fce3142e6597d391ab6fccl

Figure 6.2: The ShapeNet meshes used as additional shapes for the mesh editing compar-
ison. Beneath each caption the ShapeNet model ID of the corresponding shape is written
in italics.

Nevertheless, sculpting can also be used to add surface details, like dents and scratches,
to the latter objects.

Taking the above into consideration, we collected four meshes of natural objects to
experiment with. The first is the, ever popular for graphics, Stanford Bunny, which comes
from [72]. The other three we selected from TurboSquid [71]. They are meshes of a frog,
a bust, and a pumpkin. Besides modeling natural surfaces we chose them, we took into
account the vertex count and the fact that the surfaces are closed. The latter is required
in order for an SDF to be applicable, although small holes do not pose a problem an
get filled through training. As for the vertex count we need it to be adequate to express
the desired deformation of the surface, because we use these meshes for the mesh editing
comparison. We also use two shapes, a sphere and a torus, that are described analytically.
Specifically, we use a sphere with a radius of 0.6 and a torus with a major radius of 0.45
and a minor radius of 0.25. These six shapes are shown in figure 6.1.

For the mesh editing comparison experiment (section 6.8) we extend the above collec-
tion with five shapes from ShapeNet [15], in order to also include some shapes that have
widespread usage in the community. We note, however, ShapeNet consists of meshes of
man-made objects, which typically would not be created via 3D sculpting. These addi-
tional shapes are depicted in figure 6.2.

As a pre-processing step for the meshes, we normalize them by translating and scaling

them uniformly so that they lie inside [—(1 — b),1 — b]?, where b is a positive number.
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This parameter is used so that there is space around the models where we can edit them.
We set b to 0.15.

6.2 Performance Metric

For quantitative comparisons, we use the Chamfer distance, which is a common metric
used for geometric tasks. In particular, it has been employed in many works on Neural
SDFs [31, 50, 67]. Chamfer distance is used to indicate the similarity between two point

clouds and is defined as follows:

Definition 6.1: Chamfer Distance

If A, B are two point clouds, then their Chamfer distance is:

1

1
D(A,B) = — > mi — i
CD(A, B) IA] aeAEE%ld(a’b)+|B| bEB%é‘Ed<“’b)

Remark. If CD(A, B) = 0, then either A C B or B C A.

Despite Chamfer distance being defined for point clouds, it can be used to compare
surfaces, as well, by sampling the surfaces and comparing the resulting point clouds
instead. In this case, however, the result is not deterministic, due to the sampling. Other
than that, the number of samples used, also affects the result. The mean value of the
distance decreases when the number of samples increases, since the min inside the sum
is approximated more effectively. This is why when Chamfer distance is used the number
of samples used is also mentioned. Below, when we use Chamfer distance to compare
between two meshes or between a mesh and a neural SDF. We sample meshes uniformly

as described in section 3.2.2 and neural SDFs using our sampling algorithm.

6.3 Network Architecture

During the exposition of our method in the previous chapter we made no mention of
specific neural network architecture, because, since the method concerns the construction
of the set of training samples, it can be used with a variety of architectures. Nevertheless,
for experimenting we do require a concrete architecture, of course, and for this we choose
SIREN [64], which we extended with weight normalization [60].

6.3.1 SIREN

We presented this architecture in chapter 4. We give a reprise here for convenience’s
sake. SIREN is simply a multilayer perceptron that uses sines instead of the usual ReLLUs

as activation functions. Evidently, sines allow the network to more accurately represent
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finer details. The use of sines is related to Fourier features [7], for which the aforemen-
tioned property has been theoretically explained [69] using the NTK framework [35].
Despite its simplicity, it achieved impressive results at a multitude of tasks. Specifi-
cally, the authors experiment with audio, image, video, and surface representation, and
solving various differential equations. The authors also provide a weight initialization
scheme suited for sine activations. We choose this architecture for our experiments due

to its simplicity and effectiveness.

6.3.2 Weight Normalization

This is a general technique that aims to accelerate convergence during training [60].
The idea is to take better optimization steps during gradient descent by reparametrizing
the neural network. More specifically a neuron’s weights get represented by a direction
vector and a length parameter. This approximately whitens the gradients. Relative to
other techniques which follow more direct approaches toward this goal like KFAC [15]
and Batch Normalization [37], the latter of which is an inspiration for this technique,
Weight Normalization is computationally cheaper and more memory efficient. We apply
Weight Normalization to each layer of SIREN and show, in section 6.5, that it indeed has

a positive effect.

6.4 Training Details

For our implementation we use PyTorch [51]. We set the values of the hyperparameters
A1, A2, A3, and Mg to 1.5-10%, 5, 2.5, and 5 respectively, and a to 100. We train a SIREN
network with 2 hidden layers, width 128, and Weight Normalization (except in section
6.5) for each shape for 10° iterations using the Adam optimizer [10] with a learning rate
of 107, For each iteration we use 120000 points sampled on the the surface of the target
shape for the loss term of equation 5.2 and another 120000 points sampled uniformly inside
the bounding box [—1.15,1.15]® for the ones of equations 5.3 and 5.4. We use a bounding
box larger than [—1,1]® because it helps our sampling algorithm. We sample the meshes,

the sphere, and the torus uniformly using the techniques presented in section 3.2.2.

6.5 Weight Normalization ablation

Our first experiment is an ablation study that proves the improvements provided by
Weight Normalization. We train two networks for each of the six shapes of figure 6.1,
one with Weight Normalization and one without. The Chamfer distance between a point
cloud sampled from the ground truth models and one sampled from the trained network
by our sampling algorithm is given in Table 6.1. As can be seen, even though not by a

large margin, the models trained with weight normalization perform better in every case.
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Shape Chamfer Distance x 103 (|)
Without WN | With WN
Bunny 9.021 8.995
Frog 8.095 7.921
Bust 7.167 7.139
Pumpkin 8.646 8.506
Sphere 7.087 6.861
Torus 7.198 6.882
Average 7.869 7.717

Table 6.1: Chamfer distances computed with 100000 points for Weight Normalization
ablation.

6.6 Sampling Algorithm Evaluation

We want to study the uniformness of the stationary distribution of our sampling
algorithm. Since the support of this distribution is a complex 3D surface, instead of
a plane for example, the complexity is shared by the task as well. Our solution is to
estimate the probability density function (pdf) at multiple points over the surface. More
accurately, what we aim to estimate is the mean value of the pdf over separate regions of
the surface. If the regions are relatively small and the estimated mean values are close to
the pdf value of a true uniform distribution, which is the inverse of the surface area, then
the stationary distribution is, too, quite uniform.

Let’s consider that the surface is partitioned into mutually exclusive patches/regions.
The probability of a sample belonging in a patch can be approximated by taking multiple
samples with our algorithm and calculating the frequency of those that fall inside the
patch. In other words:

CD

P(x € D) = ~ (6.1)

where z is random point following the stationary distribution, D is a patch, cp is
the number of samples that fell in the patch, and N it the total number of samples.
Essentially, this is is an estimator of a Bernoulli random variable. When N goes to
infinity the frequency converges to the probability on the left hand side.

The above probability relates to the pdf through the following equation:

P(z € D) = / polx) da (6.2)
D
where p, is the stationary distribution. Therefore the mean value of the pdf can be

approximated as:
1 o ]P)(ZE € D) - CD

A—D/Dps(:z:)dx— e (6.3)

where Ap is the area of the patch D. If D shrinks to a limiting point with its area Ap

going to 0 than the mean value approaches the pdf value at that point. This, and what
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was mentioned above, is why we require small enough patches and an adequate number
samples to get a good estimation. However, if we consider the way our algorithm works
we can see that the patches need not be extremely small. A point results from its previous
with the addition of random tangent vector (and reprojection). We can see the resulting
distribution as a generalized convolution on the surface between the initial distribution
and the distribution of the tangent vector. This has a smoothing action on the the initial
distribution and, consequently, the stationary distribution changes gradually.

This approach, as described thus far, poses a problem. The patches cannot be rep-
resented exactly. We address this by adding another layer of approximation. We create
a proxy triangle mesh of the surface from the neural SDF using the Marching Cubes al-
gorithm [13] and use its triangles instead of the patches. The Marching Cube algorithm
works by discretizing the space using a regular grid and, so, the approximation will not
be particularly accurate in areas where the surface has high curvature. Then, we generate
samples with our algorithm for N iterations, with M samples per iteration (so N - M
total samples). In effect, we are simulating M Markov chains. For each triangle of the
mesh, we count the total number of samples ¢ that are closest to it. According to what
we discussed above, if A is the area of the triangle, then the estimated mean value of the

pdf over the triangle is:
c

N-M-A

We visualize the estimated pdf for the six shapes of figure 6.1 with the face colors in

pdf = (6.4)

figure 6.3. In the same figure, we show histograms of the pdf estimations, as well. The
value of the uniform pdf, which is equal to the inverse of the surface area, is shown in the
histograms with a dashed vertical red line. We can see that the histograms are centered
tightly around this value, indicating that the stationary distributions of our sampling
algorithm are quite uniform. For comparison, we give the corresponding results for the
naive sampling, i.e. reinitializing the sample set at each iteration, in figure 6.4. Here, we
notice the bright areas which are sampled more frequently than the rest of the surface, as

well as the longer tails of the histograms and the fact that they are off-centered.

6.7 Brush Parameters

We demonstrate how the brush parameters allow the user to control the edit in figures
6.5 and 6.6. Specifically, we use different radii and intensities on the same interaction
point on the sphere shape. The intensity values for the former figure are positive, and
for the latter negative, showcasing how both bump/extrusions and dents/intrusions are
possible. In each figure we use the same intensity across each row, whose value is shown on
the left, and the same radius across each column, whose value is shown on the top. We can
see that by adapting the number of interaction samples to the radius of the brush, as we

explained in section 5.4, the desired deformation is achieved for wide range of radii. More
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°4g 0 O

Figure 6.3: The results of estimating the probability density function of our proposed
sampling algorithm.
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Figure 6.4: The results of estimating the probability density function of the naive sampling
algorithm.
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Brush Radius
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Figure 6.5: The effect of a brush applied at the same interaction point on a sphere with
different values for the radius and intensity. The intensities are positive and so the brush

creates bumps/extrusions.
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Figure 6.6: The same setting as in figure 6.5, but with negative values for the intensity,
creating dents/intrusions.
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complex editing is possible through multiple interactions with varying brush parameters.

We show such examples later in section 6.9.

6.8 Mesh Editing Comparison

As we have mentioned again in this thesis, by far the most popular surface repre-
sentations for 3D modeling and sculpting are meshes. In order to evaluate our method,
consequently, we have to make some comparison with mesh-based sculpting. However, a
direct quantitative comparison with commercial 3D software is not possible because the
brushes used there work differently to ours. Accordingly, we implement a mesh editing in
a manner that mimics the action of a brush on a neural SDF.

When sampling the interaction in order to apply the brush on the surface expressed by
aneural SDF, we projected samples from the tangent disk onto the surface. Here, since the
vertices already lie on the surface represented by the mesh, we need to follow the inverse
procedure in order to compute their displacement along the interaction normal. The
vertices whose positions we need to edit are those that lie inside a sphere centered at the
interaction point with radius equal to the brush’s radius. For each of them, we promptly
find the intersection of the ray starting at the vertex with direction along its normal and
the plane tangent at the interaction point. The 2D position of that intersection point on
the tangent plane gives the value of the brush function corresponding to the vertex. The
deformed normals are computed similarly, as we have described.

Besides the above, it is not clear how such different approaches to surface represen-
tation can be compared, in the first place. We opt for a comparison of the expressive
capabilities of the two on a fixed memory budget. We use a high resolution mesh as
ground truth and a low resolution one as baseline. The four meshes of figure 6.1 are
detailed enough to be used as ground truth. The ShapeNet shapes (figure 6.2), however,
are not and, so, for them we construct the ground truth mesh form the network using
Marching Cubes [13]. We, also, do this for the sphere and the torus. Following NGLoD

[67], we construct the baseline mesh using quadratic decimation [30], which simplifies a

Figure 6.7: Example of an edit using different methods. From left to right, ground truth
mesh (ideal edit result), ours, naive and baseline (simplified) mesh.
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Mean Chamfer Distance x10° (J)
Shape Over whole surface Inside interaction area
Ours | Naive | Simple Mesh | Ours | Naive | Simple Mesh

Bunny 9.407 | 14.106 11.127 5.527 | 12.919 17.707
Frog 8.172 | 12.865 8.756 4.750 | 9.805 17.051
Bust 7.279 | 11.486 7.901 3.818 | 8.779 14.926
Pumpkin 8.774 | 13.558 11.489 4.315 | 5.910 20.693
Sphere 7.209 | 12.550 7.399 3.555 6.117 12.982
Torus 7.142 | 13.516 7.415 3.574 | 5.980 13.402
Dining chair || 7.256 | 20.545 8.260 8.843 | 11.288 10.703
Chair 8.498 | 30.620 8.650 8.741 | 19.072 15.344
Armchair 14.152 | 19.433 14.311 5.085 | 10.942 23.654
Sofa 11.160 | 18.268 11.899 4.477 | 8.623 23.940
Vase 9.063 | 15.565 10.345 10.477 | 15.713 16.725
Average 8.919 | 16.592 9.778 5.742 | 10.468 17.012

Table 6.2: Comparison of our editing method with and without model samples (Ours
and Naive, respectively) and direct mesh editing on a mesh with equivalent size (Simple
Mesh). Chamfer distances are computed with 100000 points. The mean for each shape is
taken over 10 independent edits.

mesh given a budget on its faces. We perform a binary search to find the least number of
faces such that the mesh’s memory footprint is greater or equal to the networks.

Having defined the ground truth and the baseline meshes the we perform the same ten
independent edits on them and the neural SDF. We edit the neural SDF using our method,
as well as the naive approach of using only interaction samples (i.e. no surface samples).
By independent edits we mean that each edit is done on the unedited representations. The
interaction point for each edit is randomly chosen on the surface. The brush parameters
are set to 0.08 for the radius and to 0.06 for the intensity for all of them, though. The
neural SDFs are edited using 100 iterations. We compute the mean Chamfer distance
(using 100000 samples) between the neural SDFs and the ground truth mesh, and between
the simplified mesh and the ground truth mesh, over the whole surface, as well as only
inside the interaction areas. The results are summarized in table 6.2, where it is shown
that our method outperforms the other approaches. We, also, provide a visual example

of a single edit in figure 6.7.

6.9 Multiple Edits Examples

In this section, we provide three examples of what can be achieved through multiple
applications of the brush at different points and with different values for the parameters,
showcasing in this way the artistic possibilities. These edits were done using our interactive
editor, which renders the neural SDF using Sphere Tracing [35], and allows the user to

choose the interaction point using the cursor. For a single edit the network is trained for
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Figure 6.8: Examples of shape editing capabilities offered by our method, acting directly
on the Neural SDF representation. First column: original shapes. Following columns:
results of multiple edits using various brush settings, visualizing intermediate stages of
the process. All edits and renderings are done on the implicit neural representation,
avoiding completely the use of triangular meshes. Images were taken from our interactive
editor, which uses Sphere Tracing [35] to render the zero-level set of the Neural SDFs.

100 iterations. The examples are depicted using renderings of intermediate stages of the

the editing process.
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Chapter 7
Going the Distance

That’s the place for us, Hazel. High, lonely hills, where the wind and the
sound carry and the ground’s as dry as straw in a barn. That’s where we

ought to be. That’s where we have to get to.

Richard Adams, Watership Down

In this thesis we ventured into unknown territory and hopefully have come out wiser.
More than that, we hope to have made a fruitful contribution to the exciting and up-
and-coming field of Neural SDFs. Our proposed method is the first, to our knowledge, to
implement sculpting-like capabilities for these representations. We commenced by stating
the problem of particular concern arising from the use of neural networks, which is the
locality of the modification to the surface. Unless explicitly handled during training, the
network will not preserve the shape outside the intended edit. Our method is tailored
around this challenge. With our experiments we showed that our solution of using samples
produced using a copy of the network in order to regulate its training produces superior
results relative to the corresponding techniques for meshes, at least as far as memory
efficiency is concerned. Even though, our experimental results were based on a single
neural network architecture, the generality of our method make it applicable to almost
any other architecture, without doubt for its performance, since the method concerns

itself with the construction of the training set rather than the network structure.

Along with the above, there’s our extension to existing sampling algorithms for Neural
SDFs. In essence, it is a Markov Chain sampling algorithm. Looking at it through this
mathematical prism, allows one to utilize the relevant theorems for analyzing it. Aside
from that, we also proved practically its advantage over the algorithms we based it on,

which is its ability to sample the surface much more uniformly.

It is our strong conviction that research on the editability of neural representations is
key towards their adoption in mainstream applications and finding their footing as equals
to the established representations. Particularly, our aspiration is for Neural SDFs to be

incorporated in 3D sculpting software as well as scientific environments. There already
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exist works on robotics that avail of them. To that purpose, of course, more effort is
required. In previous chapters we highlighted areas of interest that future work can focus

on. Specifically:

e A more thorough mathematical examination of the sampling algorithm properties

and how different strategies of perturbing the samples affect the distribution.
e Extending the brush formulation can provide tools for more complex editing

e Employment of more recent architectures. Hybrid architectures use spatial data

structures that might help with the problem of locality.

Improving the present arsenal of tools and widening this collection is the only way of

making the signed distance go the distance.
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