S
Pz
&

s\ KON
/%"
NPOMHOEVS
A Si==e|
N VP POPOS

t,

EONIKO METYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOION MHXANIKON KAI MHXANIKON YTTIIOAOTIZTON

TOMEAY. TEXNOAOI'TAY. ITIAHPO®OPIKHY. KAI TIIOAOT'TXTON
EPrasTHPIO MIKPOTHOAOITETON KAI WHIIAKON Y YSTHMATON

Collaborative Filtering Based DNN Partitioning and
Offloading on Heterogeneous Edge Computing
Systems

Mehetn xou vhomoinon

AIITAQMATIKH EPI'AYIA

TOL

Avdpea Kooud KaxoAben

EnBAenwyv: Anuftpioc Sodvienc
Koadnyntic E.M.IL

Adhva, OxtoBperoc 2022

Edvixé Metoofio Ilohuteyvelo

Yyon Hhextpohdywv Mryovixddv xan Mnyoavixodv Troloylotdv
Touéac Teyvoroyiac ITAnpogopinric xou YTohoyiotedy
Epyaotipio Mixpobnohoylotdv xan Uneloxay Suotnudtwy

Collaborative Filtering Based DNN Partitioning and
Offloading on Heterogeneous Edge Computing
Systems

Mehétn xou vhomoino

AIITAQMATIKH EPT'AYIA

ToLv

Avopea Koopd Kaxoilen

EnmBAenwyv: Anuftpioc Sodvienc
Koadnyntic E.M.IL

Evxeldnxe and tnv teiueln e€etaotnn emtpony| v 317 Oxtwfelov, 2022.

Anurtetoc Xobvtene Moavaydtne Toovdxos Ywthptoc Z0dng
Kadnyntie E.M.IL Kadnyntic E.M.IL Enixovpoc Kadnyntic X.IL.A

Adhva, OxtoBperoc 2022

KAKOAYPHE ANAPEAY KOXMAX
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mryovixog Trohoyiotwv E.M.IL

Copyright (©) — All rights reserved Avdpéac Koopdc Kaxohbene, 2022.
Me emipOhagn TovToC SIXUOUATOS.

Arnayopebeton 1 avtiypagn, amodfxeuon xou davouy) Tne mopoloas epyaoiag, €€ OhoXAAEoL B TUAUATOS
QUTAS, YLl EUTopd oxomd. Emtpéneton 1 ovatdnworn, anodfixeuoy xou diovour| Yol oxond pn xep-
B0OXOTUXNO, EXTAUDBEVTIXNG 1} EPEUVNTIXNG PUOME, UTO TNV TEoLTOVEST) Vol AvVaPERETAL 1) TINYY) TROEAEUOTS
xon va Slatnpeiton to mapoy prvupa. Epwthuata mou agopolv) yerion tne spyaciog yia xepdooxonixd
oxond meEmel vor aneViVoVTaL TEOS TOV GUYYEPEA.

Or andelc xou To CUUTERACHUATI TTOL TEPLEYOVTOL OE AUTO TO EYYRUPO EXPEAloUY TOV CUYYpPAPEX Xou BEV
TeENEL va epunveutel 6Tl avTinpoownebouy Ti¢ enlonue Yol Tou Edvixob Metodfiou Ilohuteyvelou.

oty oikoyévela Uov

ITepiindm

To Badid Nevpwvixd Aixtua (DNNs) Siodpapatilouv évav auvZovéueva onuavtixdé pbho oe moAAEC
oUYypoveS epapuoyéc mou eviomilovian ot mopupéc tou dixthou. Ilopd to yeyovée 6ttt DNNs
elvon 18Lodtepal amoTeEAECHATIXG Yiot Tot TEOBAAHATO TOLU XohobVTOL Vo AUCOUY, UTOPEl v elvor LTOAOYLO-
T amaTNTIXG, CLYVE o€ omoryopeLTXd Badud dtav ol meploplopol tépwy enelepyaciog xat evépyelag
Angdolv unddv. Me oxond vo Eenepactolv auTd Tar eunddia, 1 WEa Tou partitioning xou touv offloading
uépoug Twv DNNs éyel mpotadel wg pla mbovh Aoon. Iapd to yeyovég 6TL umdpyouceg mpooeyyioelg
TV o€ aUTO To TEOPBANUA £XOLY TPOTElVEL Gy TuaTa BloyElpnong TOpwWY, 1) Loy Ued Suvoux QUCT TOU €V
Aoyw mepBdhhovtog cuyvd ayvoeltol, T600 and dnodrn novahopopploc Twv woviéhwy DNN 660 xo and
dmodm etepoyévelag Tou UTOBOOXWVTOS VAIoWxoU. Ye auth v Awmhouotixr Epyaocia, napovoidlovye
éva mhaioto vyl DNN partitioning xaw offloading oe custiuoata edge computing. To mhaicio mov mpotel-
vouue, yenowornotel évav unyoavioud Collaborative Filtering Poaciopévo oe yvdorn mou cuyxevtpwvetal
xatd T Oidpxeio tpoyevéstepol profiling, mpoxewwévou vo npofel oe yYpriyopeg xau axplfelc exTyuhoElc Yia
v enidoon (amd dmodn ypdvou EXTENEOTC) XKoL TNV EVEPYELUXT] XOTAVIAWOT TNG EXTEAEONC OTEWUATWY
Nevpowvixedv Axtdov tdve and éva mouhouoppo chvolo etepoyevody edge cuotnudtwy. Méow Tng
OLYXEVTPWONEC WTAS TNG TANpogoplac xou TNV Yehon evog é€unvou alyopiduou partitioning, n Aomn
o moapdyel éva ovoho Pareto Béltiotwy oynudtwy partitioning, avtodidoovtac auEnuévo ypbévo eneé-
epyacioug yio YeElwuévn xatavdAnaon evépyelag xal to avtiotpogo. AZwohoyolue tnv Adom pog yio éva
oUVOhO eVpEnc Bladedouévwy apyttextovixdv DNN ue oxond va anodel€oupe 0Tl 1 Tpocéyylon pog UT-
gptepel Evavtl abyypovwy pedodoloyidy, tetuyaivovioag xatd péoo 6po emtdyuvon e tdEne twv 9.58
popy xou uéypet 88.73% uelwon oty xotavdhwon evépyelag, Tpoo@épovias Tautdypova, VPN axplBeia
OTLC EXTWAOELS YPOVOU UTONOYLOPOU ot eVEpYELaS, Teplopilovtag To opdipa tpdlBAedne uéypt ta eninedo
Tou 3.19% xan 0.18% avtictoiya, AeltovpydvTog TapdAAnia Le Evoy eEAappl xou Suvoxd Tpdmo.

AgZeic KAewdd — Cloud, Edge Computing, Awyeipion Ildpwv, Nevpwvixd Atxtua, Offloading,
Partitioning, Collaborative Filtering

vii

Abstract

Deep Neural Networks (DNNs) are an increasingly important part of many contemporary applications
that reside at the edge of the Network. While DNNs are particularly effective at their respective
tasks, they can be computationally intensive, often prohibitively so, when the resource and energy
constraints of the edge computing environment are taken into account. In order to overcome these
obstacles, the idea of partitioning and offloading part of the DNN computations to more powerful
servers is often being proposed as a possible solution. While previous approaches have suggested
resource management schemes to address this issue, the high dynamicity present in such environments
is usually overlooked, both in regards to the variability of the DNN models and to the heterogeneous
nature of the underlying hardware. In this thesis, we present a framework for DNN partitioning and
offloading for edge computing systems. Our DNN partitioning and offloading framework utilizes a
Collaborative Filtering mechanism based on knowledge gathered previously during profiling, in order
to make quick and accurate estimates for the performance (latency) and energy consumption of the
Neural Network layers over a diverse set of heterogeneous edge devices. Via the aggregation of this
information and the utilization of an intelligent partitioning algorithm, our framework generates a set of
Pareto optimal Neural Network splittings that trade-off between latency and energy consumption. Our
framework is evaluated by using a variety of prominent DNN architectures to show that our approach
outperforms current state-of-the-art methodologies by achieving a 9.58x speedup on average and up
to 88.73% less energy consumption, simultaneously offering high estimation accuracy by limiting the
prediction error down to 3.19% when it comes to latency and 0.18% when energy is concerned, while
being lightweight and performing in a dynamic manner.

Keywords — Cloud, Edge Computing, Resource Management, Neural Networks, Offloading, Col-
laborative Filtering, Partitioning

ix

Euyaplotieg

Apywd, o Hdeha va evyaplotiow tov xadnynt) x. Anuftelo Xolvien yia v xadodiynon xo Tig
guxonpleg Tou Uou TpocEpepe Tar TeEAsUTala Ypdvia. Oa fideha eTlong VAL EUYVEICTACK TOUS LUTOPHPLOUS
diddxtopec Anuoc¥évn Macolpo xa Eygoavounh Katoapaydaxn yio v unoctiplln xaw tv fordelo Toug
xod®g xou Tor uméhoina Y€ tou Microlab mou pou e xahwodpicay oty mopéa Tou gpyacthneiou. Eu-
Yoplo o entong toug pihoug wou ot Ale€avdpolmohn xou Adrva Yl Ty unouovy| Tou Belyvouy xal TNV
CLUTAEAC TACT] TOUG Ohal AUTA Tal Ypovia. Télog, To Mo YeydAo ELYAUPLOT® TNYAVEL GTOUG YOVELS UoU
Ytuhavd xon Moapiva mou elvar mévto Simha pou dha awtd tar yedvia.

KoxohOpne Avdpéac Koopde
OxtBplog 2022

xi

Contents

Hepiindn vii

Abstract ix

Evyopioticg xi

Contents xiii

Figure List XV

Table List xvi

Extetoapuevn EAAnvixy Ilepiindn 1

1 Exztetopévn EAAnvixy Ilepiindn 1

1.1 Ewooywyh . . o o e 1

1.2 Zyetof BiBhoypagplon. . . o Lo 3

1.3 Partitioning xar Offloading Nevpwvixdyv Awtiwy oe Edge Yvothuota 4

1.3.1 Optopde HpoPAuotog oo 4

1.3.2 IIpotewduevn Thomolnom o oo oo oo 4

1.3.3 Offline T80 5

1.3.4 DNNoprofiler e 5

1.3.5 Network Profiler 5

1.3.6 Online Xtd0t0 o L e 6

1.3.7 Predictor e 6

1.3.8 Offloader e 6

14 AZOROYMON « . . . 7

141 Ilewpopomue AGTan - . o v oo 7

142 ATOTENEOUOTA . . o v o v o 7

1.5 Yuunepdoparta xou MeAhovtind) BoUREWd 11

2 Introduction 13

2.1 Contributions L 14

2.2 Thesis Structure L e e 15

3 Related Work 17
4 Background on DNN architectures and layers, Network protocols, Network profil-

ing and Collaborative Filtering 21

4.1 Neural Network Layers e 21

4.1.1 Convolutional Layers 21

4.1.2 Normalization Layers e 22

4.1.3 Activation Layers 22

xiii

Contents

4.1.4 Pooling Layers e 23
4.1.5 Fully Connected Layers e 23

4.2 Neural Network Architectures 24
4.2.1 AlexNet e 24

4.2.2 VGG . . . e e 25
4.2.3 ResNet o e 26
4.2.4 MobileNetV2 oL e 27
4.2.5 Comments on Residual Architectures 27

4.3 Collaborative Filtering e 28
4.3.1 Brief Description 28
4.3.2 Algorithms 28
4.3.3 Matrix Factorization Collaborative Filtering for Predicting Latency and Energy . 30

4.4 Network Communication Protocols 31
4.4.1 ZeroMQ Networking Library o 31
4.4.2 FTP Protocol e 32

4.5 Network Profiling e 33
5 DNN Partitioning and Offloading 35
5.1 Problem Description 35
5.2 Proposed Methodology for DNN partitioning/offloading 35
5.2.1 Offline Phase 36
5.2.2 Online Phase 38

5.3 Collaborative Filtering Mechanism 38
5.3.1 Offloader e e e 39

5.4 Lifetime of an Inference Request Lo 40
54.1 layerLib oL 40

54.2 mnLib . ..o 41
5.4.3 offloadingServicesClient L 41
5.4.4 offloadingManager 41
5.4.5 offloadingServicesServer L 41

6 Experimental Evaluation 43
6.1 NVIDIA Jetson Family of devices 43
6.1.1 Device Specifications L 43

6.2 Experimental Setup 45
6.2.1 Hardware Infrastructure Lo 45
6.2.2 Technical Implementation Lo o 45
6.2.3 Examined DNN models 46
6.2.4 Reference Baselines. e 46

6.3 Evaluation e e e 46
6.3.1 Performance and Energy Evaluation 46
6.3.2 Prediction Accuracyo 48
6.3.3 DNN Offload Analysis 49

7 Conclusion and Future Work 51
7.1 Conclusion e 51
7.2 Future Work e 51
Bibliography 53

Xiv

Figure List

1.3.1
1.4.1

1.4.2

1.4.3

1.4.4

2.0.1

4.2.1
4.2.2
4.2.3
4.24
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.5.1

5.2.1
5.3.1
5.3.2

6.1.1
6.3.1

6.3.2

6.3.3

6.3.4

Béhuota oyfAuate DNN partitioning ¢ 7npoc a) Sapopetinoldc oTdy0oUC
BehtioTonoinomng, B) ETEPOYEVELS TWY GUOXEUMY. « .« « v« v v v v oo e e
Fevixd oyfua tng MOomg mOU MEOTELVOLUE. o o oo oo
Y0xpLom evépyelag XaL amod00NG TNG TEOTEWVOUEVNS UAOTOMOTG EVAVTIOL OE GAAES TEOO-
eyyioeg yia CPU xow GPU ocuoxeuée, yia éva éva cOvoro dagopetinedyy DNNs.
Root Mean Square Error(RMSE) of execution time and energy consumption over al-
ternative Collaborative Filtering fill percentages.
Axpifeo tpoBhedmng evépyelog xou ypodvou extéreong Yo dlapopetixd wovtéhoa DNN xou
edge CUOXEUEC. .« v v v v v it s e e e e e

ITocooté offloading yio Sudpopd DNNs mdves and éva etepoyevéc ohvolro edge cuaxeUGDY.

DNN optimal partitioning schemes w.r.t. a) different optimization goals and b) device
heterogeneity. L L

Alexnet Architecture deployed on two GPUs, from the original paper [26]
AlexNet Latency and Energy per layer, grouped by device
VGG Network Configuration Table, as proposed in the original paper [24]
VGG Architecture, figure by Davi Frossard
VGG11 Latency and Energy per layer, grouped by device
Different Configurations of ResNet architectures, from the original paper [25]
ResNet18 Latency and Energy per layer, grouped by device
MobileNetV2 Latency and Energy per layer, grouped by device
Example of a Residual Block oo
Network performance and energy metrics per device

Overview of Online and Offline RoaD RuNNer Architecture.
Decomposition of R matrix into P X Q
Offloading Request and Response

Devices from the NVIDIA Jetson family
Performance and Energy Comparison of RoaD-RuNNer framework against other ap-
proaches for CPU and GPU nodes for alternative DNN workloads.
Root Mean Square Error(RMSE) of execution time and energy consumption over al-
ternative Collaborative Filtering fill percentages.
Execution Latency and Energy Consumption Prediction Accuracy for alternative DNN
workloads and Edge nodes.
DNN percentage offloading over heterogeneous Edge nodes for latency and energy op-
timization objectives. L L e

XV

10

49

Figure List

Xvi

Table List

1.1 Teyvid yopoxtnetotixd TV eEeTalOUEVLY CUOXEUDY

6.1 Technical characteristics of heterogeneous Edge nodes and Cloud Server [35]

6.2 Configurations by Power Mode table for all devices, highlighted entries are the ones

utilized during the experiment [36]

xvii

Table List

xviii

Chapter 1

Extetopevn EAAnvixn Tlepiindm

1.1 Ewayowyn

To teheutaior ypdvio oL EQUPpUOYES TOU Yenoulonotoly tponyuéves teyvnéc Mnyoavixic Médnone (ML)
TPOXEWEVOL VoL EEAYOUY GUUTERAOHATA OO PEYEAOUG GYX0UG Bedouévwy Yvwpellouv ueydin dvinor, ue
ot THY Tdom var avoéveTtal povo va augndel oto péhhov. Xe autd to mhaiclo, to Badid Nevpwvixd Aix-
tua (DNNSs) €youv viodetniel eupéwe oe pla peydhn mowhia topéwv tou eviomilovton and Ty autdvoun
odhynom [1], wéxer Tic Protatpéc eqapuoyéc [2] o toug Intelligent Personal Assistants (IPAs) [3],
xuplwe ydple TNV LPNAY axplBeta TpoBAédewy Tou mapéyouv.

Tétoleg mepuntdoElC eQapuoyYdv uropolv va Beedolv cuyva o edge computing dixtuo UTOAOYIGTWY,
%0VTd oty Tonotesia TUPUYWYNHS TWV SEBOUEVWY, UE OXOTO VoL TOEEYOUV BEATIOUEVY AOQARELL XaL VoL
HELOOOUY TOV Yp6Vo pETopopdc Ttov dedouévev ot efunnpetntéc tou Cloud [4]. ‘Onwe avopépdnxe
vopltepa, Tapd To Yeyovog 6Tt ta Badid Nevpwvind Abxtva napéyouv udhnir axpeifela, cuyvé cuvodelov-
Tot a6 UPNAES amouthoelc o€ UTOAOYLoTIXT Loyl xat UEyedoc UVAPNG, SUOXOREVOVTAC €TOL TIC BUVATOTNTES
eupelog VIOYETNONC TOU OE CUGTAUATA TEQLORICUEVKY BUVATOTATWY, OTWS AUTH TOU CUVAVTOVTOL GUYVE
oe nepPdrhovton edge computing [5]. Emnpoodétnc, 1o Pddoc (xou xatd cuvénela 1 uTohoylo 1xy) TohuU-
Thox6TNnTa) TV Nevpwvixdv Axtiwy cUVEXOS dUEAVETIL PE TEPLOTOTERH CTRMOUNATA VO EVOWHUATOVOVTOL
OTIC OPYITEXTOVIXES TV HOVTEAWY [6], xohoTtdvTtae to TpdPinua mou avopépdnxe vopitepa axdua mo
évtovo.

Mio cuvAdng toxTxn vl TV avTWPETOTOTN TS aOENoNS TV AMUTHCE®Y GE UTOAOYLOTIX00E THEOUS
elvon 1 expdeTwon twv aviiotolywy dicpyaoudy ot egunneetntéc uPNAdY emdbdoewy tou Cloud. Tnv
TeEYovoa oTIYRY O6Tay 1 extéheoy) inference ota Bixtua edge yiveton umoloyioTixd adlvaty, Ta avtio-
Totyo dedopéva petagépovtal Yo eneéepyacio o Loyupols cépPep Tou yivovton Sloéoiuol Yéow UnnEE-
oy Cloud (6nwe Amazon Elastic Inference 1| Azure Machine Learning). Qotéc0, T0 x0pL0 yetovéxtnua
QUTAC NG TEOCEYYIoNG Elval OTL ToPdYEL TEPAOTIO 6YXO0 BEBOUEVLV, 1| UETOPORE TV OTolwY Uéow TOU
B0 emupépet ueydha x6oTn xarduotéenong xou evépyeloc. Evtelvovtag Ttoug ¥idn undpyovtes teofAnuo-
Tiopove, To offloading peydiou dyxou artnudtwv unopel vo @épet o€ xopecud Tov pudud enelepyaoiog Tou
Cloud, xahotdvtae 1o aviumopo vo UToo TNeilet Tie DapNOS AUEAVOPEVES AMAUTATELS Yot UTOAOYLO TX00C
nopoug [7]. AaufBdvovtag autd UGy xou PE TOV GXOT6 Val INUIOUPYHOOUV TLo AmodOTIXd UTOAOYIO TIXS
ovoThuate, ol oyediactéc LAxol (m.y., Nvidia, Xilinx) ewodyouv wavéc xou e€etdineupévec cuoxevéc
yioo To edge mepBdAlouy Tou cuyvd evowpatwvouy xhacoxéc CPU pall pe emtoyuviég vAxol xou e&-
ewixevpévoug emtoyLVTEC Nevpwvixddy Auxtdny o éva ohoxhnpwpévo SoC. Kot evdd autég ol cuoxeuég
unopel va lvon IXavéS var TapEYouv TNV amoealTNTY UTOAOYIG TLXY BUvoun Yia ToV UToAoyiopd twv DNNs,
OL ETUTOYLVTEC TIOU EVOWUATWVOUY elvor eEatpeTixd evepyoBdpol xou dpo axatdAANAOL YLol EQUOUOYES TTOU
€Y 0LV TEPLOPLOUOVES EVEPYELS (TT.Y. CUOXEVESC TOU AELTOLPYOUY PE UTotapleS).

Ipoonotivtag vo Beedel évag Bidotuoc cuUPBacUdE AVIUEGH OTOV YPOVO EXTENECTC XOL TNV XATAVAAWOT)
evépyelog xatd tnv extéleon tou Inference otic mopupéc Tou BixTOOL, EAUYLICTOTOLOVTAS TAUVTOYEOVA

Chapter 1. Extetouévn ENinvuc Ilepiindn

TOL UELOVEXTAATA TNG UETOPOPAS SEBOPEVRY PEGL TOu BxTVOoU, uiot Abor Tou gpeuvdton elvol oUTYH TOu
partitioning xou Tou offloading Nevpwvixthyv Auxtowv.

O xbplog otoY0¢ TNC Topandve Uevddou elvon va mapoaydel éva "ondowo" tou Neupwvixold Auwtiou
€10l MOTE PEPOC TWV UTOAOYLOUMY VoL EXTEAECTEL TOTIXG €vol évar dhAO TUNA TOUC Vo expoptwiel 6To
Cloud. Qotéco 1 ebpeon tétowwy partitionings unopel vo elvan omoutnter) xodde e€optdton and plo
TELAOA TTUPUUETPWY OTWG:

o H opyttextovinf tou DNN (1., xpdvoc/evépyela yia Ty extéreoT), ypovoc petddoong xdde oTp-
HoLToC).

o H ¢lon tne egappoyic (nepioptopol ypdvou extéreonc/evépyetag, Onapén tpodeomy).

o To yopaxtnelotixd evépyelag xou encéepyaotnhic Loy log tou drdéaiuou hardware.

EmuBeBaicdvovtag ta napandve, to Lyfua 1.1.1a Seiyver tnv evépyeio xou tov ypdvo extéleong yio Oha
o mdavd onaoipata évoc ResNet101 DNN.

‘Onwe galvetan, Y€ow NS TEOTEWVOUEVNC UEVHBOU UTOPOVUE VoL UVUUEVOUUE CNUAVTIXA Y1 YOROTERY EX-
TENEON A0 PELWUEVY] XATAVIAWOY) EVEPYELNG OE OYEOT UE TNV TAewe tomx B tnv e&’ohoxhfipou Cloud
extéheorn. Emmiéov, to LyAua 1.1.1b delyvel nwe petaffdirovton ta onuela otor omola yiveton 1 tun-
patonoino Tou (Blou veupwvixol Sixtiou dtay arrdlouy ol edge cuoxeués. ‘Oha ta mapoamdve emiBeBoe-
vouv 6Tt To TPOBANUL TN ebpEONC TETOLWY OTUCHIATWY elvar TpaypaTxd éva BUoXoAo TEOBANUL

127 S 10.0
Best split
>
_ 107 o for TX1
; |.|=.l Best split
a 6 - o 5.0 - for AGX
c 2 %
w 4]
= 2.5
1 : il
T T T T 3 Oo . ||III||
2 3 4 5 6 7 0 5 101520253035
Execution Latency(s) Layer
(a) Evépyeio xan xpdvog exTéAEOTC VLo (b) Béhtiota oot partitioning yio
dlopopeTixd partitionings apyltextovixic evépyeta yio apyttextovixy) ResNet101 oe
ResNet101 SlapopeTinéc cLOXEVES

Figure 1.1.1: Béhtiota oyfuata DNN partitioning we npoc a) diagpopetixole otdyoue
Bektiotonoinong,) ETELOYEVELNL TV GUOXEUWMY.

YtoyelovTag 6TO Vo AVTIETWTIOOLY T TEOXAHOELS TOU avapeptnxay vwpeltepa, UTdEyYouoeS BouleLég
€youv emuyelprioet var ddoouv Ao oto TeéBinua touv DNN partitioning xou offloading [8]-[10]. Qotéoo,
apxetd and autd ta épya Bacilovtan o Jeyehwdelc unoléoelg oyetixd pe v @OoN Tou TEOBAAua-
T0g, OMWS 1) TROTERT, YVOOT Tou UAXOU Tdvw o6To omolo Va extélectel To inference 7 1 axpifric @ion
TV Yopoxtnelo Ty tou DNN, emitpénovtag pe autd tov tpdmo tny dnuiovpyla oynudtwy partition-
ing péow extetopévou profiling. Aedopévou tou yapaxthpo Tmou €youv ta edge computing cuc TAuoTa,
ME VEEC OUOXEVEC %OL EQPOPOYES Vo ElaépyovTol duvaixd 6To 8ixTuo, ol uno¥éoelc mou avapépunxay
vopitepa umopel var uny elvon e@apudoiuec. MahioTa, ovaBUOUEVES UEYLITEXTOVIXES TTOU GUVODEUOVTAL Ao
TpoNYUEVES TEXVES, OTwe skip-layer connections xau early exits, delyvouv 6Tl 1 duvaxh auth Qoon
xatd ndoo mdavotnto dev Yo oANEEeL.

Ye auth TNy epyaoia, ETXEVTPOVOUACTE ot BUo dlapopetnols Topelc. Apywd delyvouue nwg to Col-
laborative Filtering (CF) unopei vo yenowonomdel yia t npdBredn tne evEpYELRS Xou TOU YEOVOU EX-
TENEONC OTPWUATOV VEUPOVIXMY dXTVWY ot Wia cuctolyla etepoyevdy edge cuoxeudy. Avahutixdtepa,

1.2. Yyetu BBhoypapla

a) Avantiooovue évav ahyoprdpo CF nou Basiletan oe nopayovtonoinon mvéxwy a) Entaydvouue tov
oaly6prdpo pe yerion C++ xaw OpenMP y) Exnoudetoupe tov ahydpiduo oe dedouéva evépyelog xou latency
BLUPOPETIXMV GUOXELGDY amtd Vol UTOGUVOAO TwV oTpwudteny twv DNNs §) Aciyvouue 6T o alydpid-
poc awtde unopel vo mopdEel axplPeic mpoBiédelc Yo dyvwota (ebyn cuoxeunic-oTp®UATOS. Me deUTEPO
otddlo avantbooouue €va mAaioto mou mpoayuatonoel DNN partitioning xou offloading dnulouvpydvtag
évo. olvoho Pareto-optimal Aoewv, avdyeca oe ypoévo extéleonc xou evépyewa. T autd Tov Noyo a)
EMAEYOUPE €Vval GOVORO VELPWVIXDY dxTOWY and dodedopévec DNN apyttextovinéc B) Exteholpe pro-
filing evée tuyaiov unocuvorou otpwudtwy DNN yio evépyeta xou latency oe éva cluster NVIDIA edge
cuoxeudy ntou elvar egodiacpéves pe GPU, xodde xaw oe évay x86 eEunnpetnth y) Xenoworolodue tov
CF olydprdpo mou avagpépdnue vowpitepa yia Tnv npoBiedn oy evépyetag xau latency yia 6Ao tor Lebym
ouoxeuc-otpwpdTwy §) Yhomotolue évav ahydprduo tohumhoxdtntac O(N?) tou eZepeuvd dlapopeTixd.
partitionings €) Ae{yvouye mwe autd o partitionings cAAdlouv pe v peToBoAY| Slopbpwy TapoUETEWY
xou 0t) Tuyxplvoude) hoom pog Ye undpyouces Tpoceyyioels, avdueon toug xou éva framework pe to
6vopo Neurosurgeon [8], delyvovtag dtL propolue va éxouue x€pdn oe TayOTNTA EXTEAECTC XAl EVEPYELXL.

1.2 Xyetwxn BiBAoypapia

O Acoxopidne x.o [11] napouvotdlouy évo oUVOAO TEYVIXGY TpoXeWéVouy Vo Letwlel o ypdvog extéleong
twv Nevpovixav Axtinv oe edge cuoxevéc. H mpooéyyion mou npotdinxe cuvdudlel pedoddoug 6mwe
early exits, DNN partitioning xou offloading, énwe xau enlong v pelworn tng aprduntuic axplBeloc yio
ToL DEBOUEVOL TTOU UETAPEEOVTAL TEOOTIIMVTOC Vo YELWVEl TO x60TOC UETAPORAC UEow Tou dxtvou. H
Noor mou mpotdinxe pnopel va yetofdiel mowahotednwe Ty extéheon tou DNN, xdvovtag offloading
7 e€etdlovtog Bidpopa onueia early exit uéypt va Eemepaotel Eva cLYXEXPWEVLY XATOPAL BefondTtnToc.
H emdoy?h twv Swpdpwy uedddwv extéreone yivetan pe dedopéva profiling mou éyouv ocuyxevtpwiel
vopitepa, v haufBdvovtal eniong xou mdovég BLAXVUAVOELS GTNY XATAOTACT TOU SIXTUOU xod®dE Xl O
pbpToc epyooiog Tou eEunneetnty offloading.

O Kang x.a [8] npoteivouy éva mhaiolo to onoio Yo npaypatorotel partitioning xou offloading Nevpwvixdv
Awxtbwy peto€d tou edge xan tou cloud, extelddvtog Tomxd Yéypel €va otpwua i xou cuveyilovtag T
extéleon pe offloading. H npotetvouevn apyitextovixn unopel va nopdyet d0o oyfuate ofioading éva yia
BEATIOTO YPOVO eXTEAEOTE Xou €VaL Yid ENSYLOTOTOINON TNG XATAVIAWONG EVERYELXS, €V oL TpoBhédele
YO TOV XPOVO EXTEAEONS TV OTPWHUATWVY XadMdS Xol TN EVERYELUXNS TOUG Xatovdiwang yivovton pe
v Bordela teyvincdv Machine Learning. H Aborn unoloyiler eniong to goptio und to onolo Bploxeton
to Cloud, eiodyovtde to cav mupduetpo oto Machine Learning povtéia mou yenoionotovvton. Mia
unédeon mou yivetar efvon 6tL tor Bden twv Nevpwvixodv dixtdwy npoc offloading npobndeyouv oto Cloud
o dpa dev yperdletar v petapepdoly xatd T Sidpxelo tou offloading.

O ouyypageic tou DeepThings [5] ypnowonooty pio dagopetind; texvix partitioning oe oyéon ue
QUTEC TOL TpoLGLEoTNXOY Uéypl THpa. Avti vo ywploouy Ta GTEOUATE TOU VELPWVIXOD GE oUTE TTOU
EXTEAOUVTOL TOTUXE XOU QUTH TOU EXTEAOUVTOL OTOUUXPUOHEVA, EVOVOLY TOMAY CTEWUTA OE €vol EVLOLO
xoppdt eneepyaciog to onolo uetd ywpileton oe "mhaxidia" eneepyaoiog péow e ypron evog Fused
Tile Partitioning akyoplduou mou gpovtilel vo e€alelpel Tic e€upThoelc YeTOED YELTOVIXWY TAOUDIWY
elodyovtag pio pxer) emxdhudn petadd touc. Me autd tov Tpémo, to framework metuyaivel extoc and
EMTEYLVOT, UEON XU TNV ONOULTOVUEVY UVAUY, ETLTRENOVTAC TNV extéheot) Neupwvixdv Axtiwy oe
GUOXEVEC oL DeV Yol UTopoUoay Tal EXTEAEGOUV TEOTYOUUEVWG.

Yto MoDNN [4] ot cuyypagpeic elodyouy pio teyvixd spectral clustering npoxeiévou va opadonotioouy
Tor Un-undevixd Bdpn twv nthipne cuvdedeuévwy oTpwudtny ot Tuxvols (dense) mivaxes otouelwy, ot
onolo peTd umopolv v Sloveundodv oe éva 6UVOAO GUGKEUMY WMOTE Vo Tparypatonoindel o utohoyiopds
TV oTpuUdTwy. To cuvehixtixd otpduata popdlovton xat autd oo cluster Twv cuoxeuny, ywellovtag
ToL Xxotd whixog e peyahltephc Toug didotaone. Ilapduoles Wéeg yenoyonotovvtar xan oto [10] e to
Tpdypaupa Tou partitioning va avdyeton oe évo TpdBAnpa Axépanov T'pappixod Hpoypapuatiopot (ILP),
TEOGUETOVTNC GTOV Oplodd TOU TEOPBANUATOC TO ®OGTOC TOU ELOdYEL TO dixTuo yia xaduoTépnon xou
evépyeLa.

Y7o [12] ypnowomnootvron Sidgpopes véeg uédodol mpoxeuévou vo amoxohugiel xou vor ofotomdel 1 mop-

Chapter 1. Extetouévn ENinvuc Ilepiindn

ANl GTOL YROUIXE Xal GUVENXTIXG O TROHOTA TWV VEURGVIXADY BIXTO0VY. Avahutixdtepa, oL ouYYpapels
netpaportiCovtan e to partitioning twv xavoldy tne etoddou (channel splitting) xou e to partitioning
TWY TAVLOTOV EG6B0U xoTd Wixog Twy dlaotdoeny X xou Y (spatial splitting). Muot dhkn teyvinh| mou
gpeuvdrtol ebvon oty tou filter splitting otnv onola poipdlovton tor GIATEO TWY CUVEMXTIXGY CTPWHUATOY.
Me autéc g TEYVIXéS, oL ouyYpagelc oToyeboLY otV abgnon TN ToyvTNTaC Tou inference ot xon
oTNV UElwor TV anUTACEWY 6T0 GUGTNUA UVAUNG, LWOLOITEPA OE CUC THUATA TEQLOPLOUEVWY TIOPWY, OIS
elvaw too Raspberry Pi mou yenowonototvton xatd tnv adlohdynon e Abonge.

To mpéPinuo tou partitioning xou Tou offloading €yel uehetniel xou yue mpooeyyioec ol omoleg Eenep-
voOv To Gplat TN ETLGTAUNG TWY UTOAOYIGTOY. Xto [13] to mpdPinua tne avddeone diepyooinwy ot éva
cluster edge cuoxesuwv yovtelonoteitar ue Bdomn Ty owxovopxr Yewplo. Ilo cuyxexpiéva, ol cuoxeuég
Aopf3dvouv ovd Teptodd diac ThpaTa Eva T1ocd Xpnudtwy oavahoYo UE TG UTOAOYLO TIXES IXAVOTNTES TTOU
dlardéTouy excelveg, ol undloineg cUoxELEG 6To cluster xadde xou To gateway. Zo0eorTag auTtd Tal YENUOTA,
unopolv va A yopdaouy unoloyio ol Tépous oTo gateway péow ulag dnuonpacioc. H opdy Aettoupyia
Tou cuoThaTog awtol Pooiletan oe apyéc e owovophc dewplag Onwe T0 16oluYL0 TEOGPOEHS XKoL
{hmnone. Mia dAAn pédodoc 1 omolo Slamepvd to oteyoavd tou Computer Science eivar 1) elcaywyn e
Ocewplag Mavyviwy yia Ty povielonoinon tou npofhiuatoc, énwe yiveta oto [14]. Trd auth oxomd,
To TEOBANU TNE WovixAc avddeong Blepyaolidy o8 cUOXEVEG ADVETAL PE TNV Yenor Stackelberg games
Tpoxelévou va damo twiel av plo diepyaota uropel va expoptwiel, ue tnv cuoxeur| Tou Yo exTeAécEL TO
task va xodopileton péow plac dnuonpaciac Vickrey (8edtepnc tunc).

Téhog, n yenorn Collaborative Filtering npoxewévou va yivouv npofiédelc oe etepoyevy| tepBdihovta
éyer e€epeuvndel oto [15], dtav pio mopduota texvix epapubotnxe yior va Peedel o BélTiotog and éva
ocUvolo servers mpoxewévou va avotelel oe autév éva ouyxexplévo workload. Autd emtuyydveton
péow tou clvtopou profiling tng epapuoyic oe dVo Tuyola emheyUévoug EEUTNEETNTES XoU TERVIVTAS
Ta anotehéopata and tov aryoprduo CF, dnuoveydvioc étol npofBiédelc yia to obvolo Tou cluster
eEUTNEETNTWV.

1.3 Partitioning xow Offloading Nevpwvixodv Awxtdwyv oc
Edge Yvotruato

1.3.1 Opiopoc IlpoBApatog

‘Onwe @dvnxe oto Lynua 1.1.1a undpyouv nolkol tpémol yia va yivel To partitioning evéog Nevpwvixol
Auwxtiov. Amd autolg toug tedroug, uepol opilouv éva uétwno Pareto BéATioTwy Aboewv avdyeoa oe
oTéY0UC EVEpYELIC XU ETBOOTE, 0TO omolo xavévo oTolyelo dev umopel va Behtudoel Tov évay 6tdyo
ywplc va yelpotepetoel Tov dAho. Xe avtd To xe@dhono Yo mEpLypdPoLUE TIC TPOOTAVEIES oG Yol Vo
Vo oAOPOUPE xo Vol EEEREVVHCOUUE AUTO TO GUVORO AUGEWV.

1.3.2 IIpoztewvoéuevy YAonoinon

H vlonoinon nou mpoteivouye, avtipetwnilel to npdBAnua tou partitioning xou offloading Neupwvixdv
Awxtiny, téve and éva chvoro etepoyeviy CPU/GPU edge custnudtov. Kdde cuoxeuf gholevel éva
olUvolo Blepyoounv Yo inference to omolo xou mpgnel var extelectolv. O otdyoc mov Vétoupe elvan vo
Beedel To ohvoho twv Pareto-optimal Aboewv nou avagpépdnxay vopitepa ot Podud Aentouépelog o TpmUI-
T0¢ Neupovixol Awtdou, EXQPORTUVOVTIC UTOAOYLIO TIXE XOUHATIO TwY HOVTEAWY UE oxomd vo Beltieydel
7 GUVOMXE xatavoloxduevn evépyela fi/xou o ypdvos extéheons. Xto Lyfuo 1.3.1 mopovoidletar n
apyLTEXTOVIX NG Abong poc 1 omolo ywelletar o 800 otddla Tou Slotétouy and dbo unyoviopols To
xde éva. Apyixd undpyet éva offline otddlo mou anotehelton and tov DNN Profiler xou tov Network
Profiler, xau To onolo axohoudeiton and éva online otddio mou nepiéyel tov Predictor xou tov Offloader.
IMopoxdte, Yo avarboouye Tov axpl) Tedmo Aettovpylog Tng vAonolnone pac.

1.3. Partitioning xoau Offloading Nevpwvixdv Awxtiwy oe Edge Yuotiuata

Offline Phase Online Phase

Sparse Latency.
Matrix
o7 0]
o 021
o570

Final Latency
Matgix (LM)

b 409

Final Energy

Sparse Energy
i Matrix (EM)
i35 1

Matrix

c
1=
el
b=l

o
a

P 214
523/ 8

>
e
o
c
]
>
9
c
3
©
5

fc, 4096

o
£
@
=
i
o
2
i
o
a
)
©°
o

@ Data Accumulation

B 627

NN —>| Layer [E2conu 282l

N | @) Filtering & |IRReems et
i 9 [fc,4006 |

\DNN4 Z Sampling (p) =

@Layer execution & profiling

@ DNN Profiler

Nodey's
()

EoT i
o oo-—ofll: Offloader
os7--ofl]: i R s i 2
8 5 Inference
: Output
H Energy
‘—l’—* Local Execution
o oo ol :

Node,'s Network Latency : Latency & Energy @ f fc, 4096

Vector (NLV,) Aggregation
v Remote Execution

@ DNN Partitioning @

Exploration fc, 128

€M)

Nodey's
Energy Matrix Latency Matrix

@ Network
Profiling

) Network Profiler

Edge device

Figure 1.3.1: T'evixd oynfuo tng Aone mou npotelvouye.

1.3.3 Offline Xtddto

To Offline otddio tnc extéheornc amoteréiton amd dVo unyaviogolc, tov DNN Profiler (@) xou tov
Network Profiler (@), ou onolot elvon urehduvol yla TV cLYXEVTEKON TwY dedopévey tou Yo dodolv
w¢ eloodog otoug runtime unyoavioyols tou Online otadiov apyodtepa. $U¢ eloodo oto Offline orddio
dlvouue €va olvoho dlagopetixdy DNN opyttextovixdv otoug x6ufouc tou edge computing duxtou.

1.3.4 DNN profiler

IMpoonoddvtog Vo EXUETAAEUTOVHE TNV EYYEVIEC XATAVEUNVEUT GUOT Tou edge computing UTOAOYLOTIXOV
HOVTENOU, TNV ETEPOYEVELN TWY CUOXEUMY X TWYV JPYLTEXTOVIXGY Neupwvixdy Awtiny, uhotololue éva
unyoviopd Collaborative Filtering [15], [16] ye oxond vo exmoudeloouvye 0 cOGTNUA YOS ETOL (OOTE VoL
TEOPBAENEL AMOBOTIXG. TNV EVERYELUXT] XATAVAAWON X0 TOV YPOVOo exTéleons xde oTpdpatoc Nevpwvixol
Awxtoou v xdde cuoxeur. Loy npdTto s o duTod TOV UNyoviond elodyouue éva cbotnua Pidtpapio-
pazos kar Aeryuatornpias (@) To onoto Yo emhé€el otpwuata and ta DNN nou divouye cav elcodo
v TEpoutépw enedepyaoia. AvahuTibtepa, Eva xEd TOCO0TO P GAWY TOV CTEWUATOY TLV VEUPWVIXOY
Yo emhey Vel Tuyola TpoxeWévoy var eEETAOTEL AVOAUTIXG YIa TOV YPOVO EXTENEONC XU TNV XATAVAAWOT
evépyelag. Me autd tov tpdmo e€aocporiletar otl 0 Guvolxdg yedvog tou profiling mou amoutelton dev
Yo extivoydel 6tav auéndel o aprudc twv otpwudtoy twv Nevpovixwv Awxtiony. To ntococtd autd p
AofdveTton PECL TELUUATIOUOV.

Yty ouvéyela, To oTpdpata Tou emAEYInxay Yo dotolv cav elcodog otov unyavioud Extéleons kat
Profiling Xtpwudtwy (@) Ye auth) v nepintwon, xdde éva and to emAeyUEva oTpMMaTa Yo EXTE-
Aeotolv tomixd otov edge xouPo. H extéheorn toug Yo petpnidel yia Tov Ypdvo xar v evépyelo Tou
anantdnxe péypt va ohoxnpwidel o utohoyiopdg Toug. And ta yeyedn mou Yeteinxoy SnuioupyolvToL
d0o mivaxec o Node’s Latency Matriz xou Node’s Energy Matriz ou omolol opydtepa Yo dodolv cav
eloodog otov unyovioud Predictor.

1.3.5 Network Profiler

Ou duvatdtnteg evog cuothpatoc edge computing cuoTAuaTog elvon dppnxTol CUVOEDEUEVES PE TNV
BUVITOTNTA TOL Vo AetToupYel Tdvw amd T UTdEYouceS dixTuaxéc utodoués. Emniéoy, évag unyoviopog
partitioning xou offloading 6mw¢ autdc mou mpotetvetan, Yo npénel var AopPBdver unddy To xécToC latency
xou EVERYELNG ToU eTUPBAAEL 1) UETOPORE BedOUEVKY YEow Tou BixThou. I'iat auTd ToV AdYO EVOLUATHOVOUUE
oe xdde vnoloyioTnd x6uPo k éva cbotnua Network Profiling (@) Yav eloodo autod Tou TUAUATOS
dlvoupe €va chvoro amd unviaTa SLPoRETIXODY UEYETOUY Tou xupalvovTal amd to péyedog twv KB uéyel

Chapter 1. Extetouévn ENinvuc Ilepiindn

xou To Yéyedog uepedv GB. H evépyeia xou o ypdvog Yetddoone tou xdie pnvOudTog xotayedpetal
t600 Yl Ty Sadacio ando ol doo xou yiow TNV AP tou. Oty ohoxinewidel auth 1 dadocio o
xdde xopPoc k umopel va yapaxtnelotel we Teog to dixtuo amd B0 Slaviopota, Evo SLEVUCUO EVERYELNS
xou évor ypévou evépyewc (Network Latency Vector ¥y NLVj xou Network Energy Vector #, NEV), av-
tiotowa). Ta mopaydpevor SvOoUATa YeNoLLOTOLO0VTAL Yiol VoL SNuLovey o0V TONUGVUIXES XOUTUAES
(4ou Bardpov) oL omole Yo unopolv va yenoworomdoly oto runtime (Online 0tddio) yior v extéheon
TpoPAéewyv oyeTnd ue to overhead mou elodyet To dixtuo.

1.3.6 Online X<dodto

‘Eva anodotxd framework diaryeipnone mépwy o mpénet va ebvon eovd vor Aafdvel amogdoels Ye duvoxd
TeéT0 070 run-time. It qUTO TOV AOYO, EVOWUATOVOUUE OTNV APYLTEXTOVIXY| Lo BVO Bacixd cuc THUOTA:
tov Predictor (@) o tov Offloader (@). To mpdo elvan uredBuvo v Ty TedBAedn ToU anUTOVUEVOU
YEOVOU ol EVERYELAG YLt TNV EXTEAETT xGUe GTPOUATOC, EVEH TO BelTepo elvar LTEGYUVO YLoL TNV CLYXEV-
Tpwo™ twv dedopévwy and to profiling tou dixtlou xou Twyv aroteheoudtwy tou Collaborative Filtering,
YENOUWLOTOLOVTOG TaL Ylot TNV eVpeST) Twv partitionings xow v extéleon tou offloading.

1.3.7 Predictor

O nivaixeg ypdvou extéheonc xou evépyetag ou Tapdyoviar and tov DNN Profiler (@) oe xéde x6ufo k
CUYXEVTPMVOVTOL 6TOV edge server xotd To o Tédlo (@) Autd ta dedopéva opyavdvovton oe 500 VEoug
aponole mivoxee, toug Sparse Latency Matriz xou Sparse Energy Matriz avtiotolyo. e autolc Toug
nivaxeg, xade ypopur) Tou Tivaxo avtioTolyel o plo edge cuoxeun eved xdde GTHAN TOL VOO OVTIC TOLYEL
oe éva eldog otpwpatog Nevpwvixod Awtdou. H dnuiovpyio autdv twy mivdxwmy nupodotel Ty extéleon
tou ahyopiduou Collaborative Filtering (@)7 o onolog Paciletor oTNV TOPAYOVTOTOMNOY TV 0PV
TUVAXWY GE €VOL YIVOUEVO UXPOTERWV TVAXWY, xdvovTag yenorn gradient descent. ‘Otav oloxhnpwiei o
ahyobpripoc, ol xevég VEoels TV apatdy Tvdxwy Yepllovton ye tic npoPAédels, dnutovpydvtag 800 véoug
nivaxee, tov Final Latency Matriz xou tov Final Energy Matriz. ‘Otov ohoxAnpndolv ol npoPAiédelc,
xd&de xouPog Tou cluster xoheiton var nopoAdBel Ta amoTEAEoUATO TTOU TOV 0PopoLY, Ta onola Yo yenol-
portomtoly xota Tl IpdPAepn Xpdvou extédeoans/Evépyeas (@) e avtideorn ye mpomnyolueves
Aooeig mou Pooifovtan ot extetauévo npoyevéotepo profiling, to framework nou mpoteivouue euelc elvan
ové vou avtamoxplveton oe duvaxd cevdpta. Néol xéufol mou evidooovtal oo cluster evowmyotdvovton
otouc nivaxeg tou Collaborative Filtering, eved véeg apyttextovixéc DNN unopolv va enwgeAntolv and
ToL 1j0N UTEEYOVTA G TEOUTA.

1.3.8 OfHoader

To tehevtaio xopudtt Tou Online Xtadiov elvon unedduvo yio TNV cUYHEVTPWOT TWV BEBOPEVWY TOU
duxtbou xou tou Collaborative Filtering, tnv mpayuoatonoinon tou partitioning xou tnv extéieon tou
offloading. Xe xdde x6ufo k ta Siavdopota tou npoxintouvy and to profiling touv dixtbov (NLVy, NEV})
xordede wan Thvoeg dedopévev tou Collaboative Filtering (LM, EM) cuyxevitpidvovion 6To onuelo (@),
TpoxeWEVOL Vo TpoxUPouy oL TeAxéS TeoPAédelc Yo xdde oTpdpa, cuunepthopfBavopévou Tou xGGTOUg
eneepyaoiog xau Yetddoone. Ltnv cuvéyeld, tepvipue oto clotnue Efepevvnons DNN Partitionings
(@), ME O%OTO va dnuLovpyroouue éva obvolo and Pareto-optimal Adoeig mou PBehtiotonololyv tny
evépyela xaL Tov Ypeovo tou inference. H eZétaon twv Swoupdpwy partitionings yivetow péow evég égunvou
ahyopidpov molumhoxdtnroc O(N?) o onoloc dlatpéyet dha tor mdavd partitionings evéc veupwvixoH
dutbou oe d0o onueia, petafBdhhovtag 800 deixteg ¢ xou j. And autd dnuiovpyeiton To Pareto Optimal
set twv Noewv, eve aflohoyolvton enilone ooy mdavéc AICELC Ol TEQITTOCELS TNG TAHEWS TOTUXAS 1
¢ mAfewe offloaded extéleong, ou omolec mapapévouy Pidolueg evalhoxTtinég av avixouy oto Pareto
optimal olvolo. Kdde partitioning (4, j) mouv aflohoyelton, avtiotolyel oe éva oyfue exTéAEON xaUTd TO
ornolo ta oTpwuata Tou Nevpwvixol and 0 €ng i exteloldvion TOMXd GTNY GUGKELY], To oTpdpata ¢ + 1
uéypl xou j yivovton offload otov edge server, pye tov €éheyyo TnC EXTEAEONC VoL EMLOTEEPEL TOTUXE TNV
GUOXELY] YIOL TNV EXTEREDT) TWV OTpwHdTwY j+1 uéypl xou to Téhog tou DNN. Ye avtiteorn ye undpyouvoeg
Tpooeyyloelg 6nwe auty Tou Tapouctdletal oo [§], 1 Aor ntov npoteivouye epelc uropel vo avtiyeTwioe

1.4. AZwohéynon

v Vnopgn e€apthoewy tomou shortcut mou epgaviCovtar ota Residual DNNs. Ye auth v nepintwon,
7 e€dpnon emhleton teptopllovtog TNV HEoo GE €Val ATOUXO UTAOX OO GTEMUATO, TA OTolol HTOEOVY VoL
yivouv offload cav eviaio maxéto, Aovovtog €tol T0 TEOBANUL TOU THPOLCLAGTHXE VwplTERL.

1.4 A&woAoynonm
1.4.1 ITeipapotixry Adtadn

It v a&tohbynom tou framework mou mpoteivaye, yenotponoloye éva alotnua etepoyevéy CPU/GPU
ocuoxevwy e NVIDIA, pe ta axpifr] yopoxtnetotuxd toug vo napouctdlovion otov Hivoxa 1.1. Xov
unydvnua offloading yenowonololue évav toyupd server opyLtextovixrc x86, o onolog Siodéton uio xdpta
yeapwov NVIDIA V100, dnwovpydvrog étol pio didtaln and cuoxevés mou elvon Slodedouévn oto edge
xat to cloud [17].

Table 1.1: Teyvixd yopaxtnelotind Twv eEeTalOUEVOY GUGKEVWY

Device CPU L2 L3 DRAM GPU
Jetson AGX 8xCarmel@2.2GHz ARMvS.2 64-bit 8MB 4MB 32GB 512xVolta@1.4GHz
Jetson NX 6xCarmel@1.4GHz ARMvS.2 64-bit 6MB 4MB 8GB 384 x Volta@1.1GHz
Jetson Nano 4xCortex-A57@Q1.4GHz ARMvS 64-bit 2MB - 4GB 128 x Maxwell@0.9GHz
Jetson TX1 4xCortex-A57@Q1.7GHz ARMvS8 64-bit 2.5MB - 4GB 256 x Maxwell@1.0GHz

H vlornolnon tou framework elvon ypaupévn oe yhdooa Python, evdy 6hec ol cuoxeuég emxolvwvouy
petadl Toug Yéow evog aouppdTou dixtbou toydtntoag 80 MB/s. T v anoctol unvupdtwy ehéyyou
yenowonoleltar t0 TpwtdxoAo ZeroMQ), eved 0 xlpuwg dyxog dedouévwy yetapépetan péow FTP. Me
oxomd Vo EETEPATOLUE TLC BLOPOPES TWY ETEPOYEVIV APYLTEXTOVIXMY TTOU YENOLLOTOLO0UE, 1 ADoT Uag elval
evowpatouévn péoa oe docker containers. H vlonoinon tou CF alyopiuou €yel emtoyuvidel apyixd ue
xehon C++ xau énerta pe OpenMP [18] mpoxewévou va mdoet vPniéc emdboeic. TENOG, oL apYLITEXTOVIXNES
VEUPOVIXADY BIXTOOY OTwe X oL VAomooelg twv atpwudtewv GPU ce CUDA éyouv Angdel and to
PyTorch [19].

H alohdynon yiveton yenolonoidvias évo 6OVORO EVEEMS SLOBEBOUEWY dpYITEXTOVIXWDY NEUPWVIXWY
Awxtiwy. Eetdlouvpe apyrtextovinéc énwe to AlexNet, VGG xou ResNets xodd¢ xow to dixtuo Mo-
bileNetV2, ko ex twv onolwy YeNoLLOTOUVTOL OE EQPUPUOYES VI VEUOTIC OVTIXELUEVLY XUl XAUTNYOPL-
ornolong exévwy ato tep3dAlov tou edge.

Ou aZlohoyfioouue Ty ADom mou mpotelvouue Yo Teelg Paoixée uetpxés: 1) Anddoon i) Katavdhwon
evépyelag xou iii) AxplBeio mpoPrédewv tng Collaborative Filtering pedédou yac. Avo Booixéc vhonoir-
oelg evavTioy Twy onolwy Ju cuyxprlolue elvan 1 TAHewe Tomxn xou 1 Thjpws offloaded ene€epyacio e
ovopata Offload None xan Offload All avtictorya. Emmiéov vhonololue xon ouyxpivépacte evavtiov evog
framework nou npaypoatonoel DNN partitioning o offloading pe to 6vopa Neurosurgeon [8]. Eneids
to Neurosurgeon Aettovpyel ye v vddeon ot ta Bdpn tewv Nevpnvixdv Amtiny €youy yetapepdel ex
Twv Tpotépwy oto Cloud, vhonololye xau wia ExBoon Tou oTNY OTold N ATOGTON TWV CTEWHUATWY YiveTal
oTo run-time, evéd VAomoloVue xau plo Tpomomoiuévn exdoyr| Tou dxol yag framework, oty omola to
offloading yivetou a priori, mpoxewévou 1 clyxpion ue to Neurosurgeon vo etvar Sixono.

1.4.2 Armoteléopata
Anédoomn xouw Katavdiwor evépyetag

Yoav mpoto nelpopa, aflohoyolue Ty Ao UdC XATd TOV TPOTO 7oL avapépdnxe TEoNYoUUEvnS. Ac-
Bouévou tou yeyovdtoc 6Tt o Neurosurgeon dev umopel va Aettovpyrioet pe tnv yerion Residual DNNs,
yenowonoloVye Yoo v adlordynon uévo tg apyrtextovixéc VGG xouw AlexNet xdti to onolo gofveton
oto Lyfpate 1.4.1a,1.4.1b yio CPU xoaw GPU avtiocToiyo. Xto Swaypdppota tou Xyfuatog 1.4.1, 1o
eninedo ywpiletaw oe 4 teTopTNUoELAL:

Chapter 1. Extetouévn ENinvuc Ilepiindn

Relative Speedup(log)

Relative Speedup(log)

‘Onwe gaivetan nopouotdloupe yio exteréoelc CPU:

dmom evépyelag.

WG TPOS EVERYELL.

oTNyY VAornoinon e TNy omola cuyxplveTo.

@® Road-RuNNer vs Offload None
© Road-RuNNer vs Offload All
© Road-RuNNer vs NS
O Road-RuNNer vs NS-nonOffloaded
102 O Road-RuNNer-preOffloaded vs NS
10! ©
1004 g oY
1071 T T
1071 10° 10! 102
Energy Gain(log)
(a) CPU-No Skip Layers
@® Road-RuNNer vs Offload None
102 ® Road-RuNNer vs Offload All
- °
10! Seg
1 (0]
| o o‘
| (0}
100 3
1071 T T
1071 100 10! 102

Energy Gain(log)
(c) CPU-Skip Layers

Relative Speedup(log)

Relative Speedup(log)

‘Eva mpdoivo tetaptnuopto 6to onolo 1 Ao pag xepdilel 1660 and drodrn anddoong 660 xou ond
Abo noptoxahl tetapTnudela ota ontola 1 Aon pac xepdilel elte pévo we mpog anddoor elte povo

Evo x6xxvo tetaptnudplo 6To onolo 1 AUoT pog elvon yeledtepn ot yior TLg 800 UETEIXES EvavTia

@® Road-RuNNer vs Offload None
© Road-RuNNer vs Offload All
© Road-RuNNer vs NS
O Road-RuNNer vs NS-nonOffloaded
1022 Road-RuNNer-preOffloaded vs NS
0° 4 o S
(8 (@)
] CpOQ) o
10! 3 oczgmo @ o
- 6% _ &%
@)
] e 8 © o
100 4 @} ° &
E (@)
] °
(6]
1071 T T
1071 100 101! 102
Energy Gain(log)
(b) GPU-No Skip Layers
® Road-RuNNer vs Offload None
102 ® Road-RuNNer vs Offload All
¥
.O
] 020
o gﬁ
100 3 O‘
] (&)
@
1071 :. T
1071 100 10! 102

Energy Gain(log)
(d) GPU-Skip Layers

Figure 1.4.1: Xixpion evépyelog xou anédoone Tng TEOTELVOUEVNEC UAOTIONONG EVAVTLO GE JAAES
npooeyyloeig yiao CPU xan GPU ocuoxeuée, yia éva éva cbvoro dragopetiney DNN.

o Méypt xau 45.41x emtdyuvon xou 95.84% %épdn evépyelag evivtia ot mhfipwe offloaded extéheon.

o Méypt xon 6.61x emtdyuvon xon 95.87% x€pdn evépyelag eVAVTIo 6 TAAPWC TOTUXH EXTENEOT).

o Kotd péoo bpo 4.97 popéc x€pdn tayvtnroac xou 81.85% Aiydtepn evépyela EVEVTIOHL GTNY TPOTOTOW}-
uévn éxdoon tou Neurosurgeon - NS-nonOffloaded.

1.4. AZwohéynon

Iopbpora xépdn napovatdlovtar yio o exteréoelc GPU, pe to x€pdn poc evdvtio otny Tpomonouévn
éxdoon tou Neurosurgeon va ¢tévouy Tic 35.74 popéc xou 88.73% vy latency xou evépyelo avtiotolya.
O Novog mou mopoucidloupe auTd Ta speedup £VTAVTIOL GTNY TEOTOTOUNUEVT €xboon elvar 6Tl 1) Buad
pog hoom mapéyel u€yer xou dvo partition points, eved to Neurosurgeon uéhe ula, avayxdlovtac to eite
vou otethel Ta peydha Bden mou Peloxoviar oto TéAOC xEMOLWY VELpWVIXWY dixTOwWY elte Vo cuveyloel
TOTUXS TNV EXTENECT] €YOVTOS WOTOCO PELWUEVY ambdooT. H tpomonoinuévn éxdoon tne dunide pac Abong
evévtio oo xhacowd Neurosurgeon xepdilet 54.09 gopéc and dmom latency xan 58.06 popéc and dnodn
EVERYELOC.

YuveyiCoupe v adlohdynon pe Residual apyrtextovinéc Nevpovixddv Atinv (tic onoleg to Neurosur-
geon dev vrnootnellel).

I CPU exteléoeic nopoatnpolue ot

o Aoufdvoupe péypet xou 13.92 @opéc xollteprn enidoon ue 46.07 qopéc Aydteprn xatovdiwon
EVEQYELUC, EVAVTLOL OTNV TOTUXT] EXTENEOT).

o Anaitolue péyper xou 45.01 popég Myotepo ypovo xau 24.05 gopéc Mydtepn evépyela o oyEoT UE
v thpwe offloaded extéheon.

T'a GPU exteréoeic:

o H Mon pag elvan 1.84 @opéc toryltepn pe 1.34x AydTepn XATAVIAWOT EVEQYELNG OE OYECT) UE TNV
Offload None npocéyyion.

o H Aoom pog elvan 112.98 gopéc tayltepn xou 16.59 qopéc Myodtepo evepyofdpa oe oyéon ue TNy
Offload All taxtinn.

AxpiBeia ITpoBAédewyv

H oanédoon tne vhomnoinone eaptdton dueco and v axpifBeia tpdfiedne tou unyaviouot Collabora-
tive Filtering. Apywxd, agohoyolpe v @don exnaidevong tou CF ahyopiuov. Onwg gofveton ota
Eyuato 1.4.2a xon 1.4.2b ov npoPiédec tou CF alyoplduou cuyxkivouv otig aknbivée tpée éxovtog
doetl wohe o 30% TV oTpwUdTwY e cUVoho extuideuonc. T autd tov Aoyo, Hétouue Tov pudud
devypotohniac tou DNN Profiler oe 0.3.

|[—=— RoaD-RuNNer —e— Neurosurgeon| [—e— RoaD-RuNNer = —e— Neurosurgeon|
900 2.4
800 | -emsmsmsmcocgenn g genanaaaas : 22
700 A %g]
600 - L 16
g 500 - @137
400 A 104
[-'4 .
% 300 - 08t
200 sex
100 o 0.2
0 T T T T T 0.0 T T T T T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Training set % Training set %
(a) RMSE Xpévou Extéleonc (b) RMSE Evépyeloc

Figure 1.4.2: Root Mean Square Error(RMSE) of execution time and energy consumption over
alternative Collaborative Filtering fill percentages.

Axololing, aflohoyolyue v cuvolxy| axpeifelo TEdBAedne Yot GAN TNV EXTEAEST) TOU VELPWVIXOV, OTKC
paiveton oto Lyuo 1.4.3.

Chapter 1. Extetapévn ENAnvuc Hepiindn

| mmm RoaD-RuNNer == Neurosurgeon |

X 100 100 100
§ 80 80 80
frr 60 60 60
S 40 40 40
S 20 20 20
T
9 0 0 0
-8
X = m © X = m O X X = 0 X X = 0
A d - V A = -
< = O =2 X < O 2 X <
° 335 3 °© 353 3 < S < 3
> > 3 > > >
Neural Network Neural Network Edge Node Edge Node
(a) Lpdhpa latency avé (b) Sdhua evépyewoe (c) Spdhua latency avd (d) Lepdhuo evépyetog
povtého DNN avéd povtého DNN edge cuoxeun avd edge cuoxeun

Figure 1.4.3: Axpifeio mpoPhedng evépyetag xou ypoévou extéheong yio dtapopetnd povtého DNN o
edge cuoxeuvéc.

Mopatnpolye 6T 1 vhomoinom pag TeTuyaivel xotd yéoo bpo 68.01% xou 63.8% Aiybdtepo opdhua yio
TOV YPOVo exTéAEoTC X TNV evépyeta avd Nevpwvixd avtiotoya, oc oyéon pe to Neurosurgeon (Eynh-
poata 1.4.3a xou 1.4.3b). Enione metuyaiver péypt xou 69.6% Mydtepo o@dhpa npdBredmne latency xou
34.9% Mybtepo o@dlua otnyv TedBiedn tne evépyetag avd edge ouoxeun (Eyruota 1.4.3¢ xou 1.4.3d).

Avdérvorn ITocootob Offloading

Mia tehetala avdhuorn mou ofilel vo yivel, €yel vo xdvel Ye to twg aAldlel To tocooté tou offloading
nou mpayUatonolel 1 Ao pog dtav yetofdihovton Sidpopes TapdueTpol Tou TEpBAAhovTog exTEAEST.
H avéhuorn auvth yiveton ota heatmaps tou Yyruatog 1.4.4.

alex - 0.00 0.00 100 alex 100

X mv2 —EEREE] X mv?2

'g res101 -40.57 &0 ‘g res101 80
2 resl52 -35.04 60 & resl52 60
g resl8 g resl8

— res34 _a0 = res34 - 40
C res50 8 res50

3 vggll 3 vggll

7] R 0 L

2 vggl3 20 2 vggl3 20

vggl6 -0 vgglé -0
AGX NX Nano TX1
Device
(a) Behtiotonoinom otdyou latency (b) Behtiotonoinon otdyou evépyelag

Figure 1.4.4: Ilocooté offloading yia 8idpopd DNNs ndve and éva etepoyevéc olvolo edge cUOXEVMY.

Ané 1o dedoyéva Tou oyfuatos umopoly vo Byouv dVo Baowxd cuunepdopata. Apyxd, TopaTnEOVUE
6Tl oL o Loy upEs ocuoxevéc 6mwe o AGX xau to NX mpotolv vo xpatoly PEYUAUTEPO XOUMATL TNG
enelepyooioc Tomxd oe oyéon pe e Aydtepo toyupéc Tou eivar ta Jetson Nano xon TX1 (58.7% xon
87.1% mnocooté offloading xotd péoso bpo aviiotoya). To Belvtepo cuumépacpa elvor GTL xpaTMOVTAC
ETEBANTY TNV cuoxeut| xou To Nevpwvixd AlxTuo TopaTnEolye UEYUADTEPX TOCOGTA EXPORPTWONE OTAV
BehtioTonololpe TNy evépyeLa oe oyéom Ue 6tay BerTioTonotolue Tov ypdvo extéheone (90.1% xou 74.45%
xatd yéoo 6po, avtiotoya). Autd cuufaivel xodde To Xpovixd xGGTOC TOL ELCAYEL TO J{XTUO Yl TNV
METAPOPA BEBOUEVWY Elval oLYVE aTOYORELTIXG GTaY TEENEL Vo eMTELYVOUY VO TNESTEPOL 6TdYOL latency.

10

1.5. Yvprepdoyota xon Melhovtuer) Souleld

1.5 Xvunepdopata xow MeAhovTixy SoLAsLL

Ye auth v dimhwpoatixy epyaoia tapovotdletar éva mhaioto to omolo mpayyatonolel DNN partition-
ing xau offloading oe etepoyevn edge computing cuothuata, tapdyovtag éva cOvoho Pareto Bértiotwy
partitionings avdueoa oe evépyela xou ypdvo extéreonc. H hbon nou npotelvoupe yenowponolel teyvixée
Collaborative Filtering npoxeiuévou va xpathoet younid tov anatoduevo ypovo profiling twv o tpemudtwy
Nevpwvixav Awtiwy, nepopilovtag Tautdypova ta oPIALTe TEOBAEPEWY Yiol YPOVO %ol EVERYELDL £6C
xat 3.19% xou 0.18% avtiotorya. e oyéomn pe vndpyouces npoceyyioele, 1 uhoroinon poc tetuyaivel pio
emtdyuvon e T8ENe Twv 9.58 @opdv xau 88.73% uelwon tne evépyetag xotd uéco bpo.

Yto yéhhov Yo urnopobooye vo ETEXTEIVOUUE TNV LTdEYOUCH BOUAELL Ye Toug oxdAoutous Tpdroug:
o Enéxtaon tou framework étol dote va hettovpyel xan o dhheg apyltextovinég 6mwg FPGA.
o Offloading petald yettovixdyv cuoxeuvmy oto cluster mépo and tov server.

o Alvopripwég Bedtiotonooelc mou Yo xpUfouv 10 x60TOC UETUPOEES UECW TOU BXTOOU OTKC
caching Bopodv xou pipelining.

o EZepetvnon twv Power Modes mou mapéyouv ol cuoxevéc xat duvoxt) evolhoryy) petoad toug.

11

Chapter 1. Extetouévn ENinvuc Ilepiindn

12

Chapter 2

Introduction

During the last few years applications that utilize sophisticated Machine Learning (ML) techniques

to make value out of complex data are experiencing rapid growth with that being only expected
to increase further in the future. In this regard, Deep Neural Networks or DNNs have seen widespread
use in a variety of domains ranging from driving [1], to biomedical and healthcare applications [2] and
even Intelligent Personal Assistants (IPAs) [3], mostly due to their high prediction accuracy.

Such categories of applications can often be found at the edge of computing networks, close to the
source of data, aiming to provide enhanced security and minimize the latency of transferring data
to cloud servers [4]. As mentioned previously in the abstract, while DNNs offer exceedingly accurate
results, they usually go hand in hand with high demands in computing power and memory size, limiting
their ability to be effectively deployed on resource-contrained edge computing devices [5]. Furthermore,
the depth (and therefore complexity) of Neural Networks only shows signs of increasing, with more
hierarchical layers being integrated in the learned representation [6], thus making the aforementioned
problem even more evident.

A commonplace approach to address increased computational demands is to offload the offending
tasks to high-end cloud servers. Currently, when inference at the edge becomes computationally
impossible, it is frequently offloaded to powerful servers hosted by cloud providers (e.g., Amazon
Elastic Inference, Azure Machine Learning). The major drawback of this approach however is that
it generates a vast amount of data being transmitted back and forth through the network, resulting
in high network overheads and increased energy consumption. What is more, the large volume of
computations being offloaded can saturate the throughput rate of the cloud, going as far as rendering
it incapable to meet the always-increasing demand for resources [7]. With the aim of creating more
efficient and energy proportional computing systems, hardware companies (e.g., Nvidia, Xilinx), can
be seen introducing more capable and specialized edge devices that frequently integrate CPUs with
on-board hardware accelerators and specialized units for DNN computations (e.g., Nvidia’s Tensor
cores) in a single System-on-Chip (SoC). And while such hardware may be capable of providing the
necessary performance to match contemporary Neural Networks, it still comes at the expense of energy,
with aforementioned accelerators and devices being extremely power hungry and often unsuitable for
performing tasks under energy or battery constraints.

Attempting to find a viable trade-off between latency and energy for inference at the edge while
simultaneously minimizing the bottleneck imposed by the transmission of data over the network, the
Partitioning and Offloading of DNNSs is being explored as a possible solution [8], [10].

The main goal of DNN partitioning is to generate a layer-level splitting of the Neural Network, through
which part of the computation is performed locally (on the edge device) and the rest is offloaded to
the cloud. However, discovering such a split can be demanding as it depends on a set of user-specified
parameters and the underlying characteristics of the application and hardware. More specifically, a

13

Chapter 2. Introduction

partitioning scheme must take into consideration:
e The deployed DNN architecture (e.g., latency /energy costs and data transmission time per layer)
e The nature of the application (e.g., latency or energy critical, possible deadlines)
e The performance and energy characteristics of the underlying hardware.

To further elaborate on this point, Fig. 2.0.1a demonstrates the latency and energy of all the possible
partitionings for a ResNet101 architecture.

As can be seen, through partitioning of the model we can expect notably faster execution and energy
savings when compared to fully local and fully offloaded execution. Moreover, the optimal partitioning
scheme for each objective (energy/latency) is different, proving the existence of a space of possibly
optimal splittings, a space that we intend to explore in this thesis. Fig. 2.0.1b also shows us that this
split can vary for different devices, demonstrating the dependence of optimal splits to the hardware
and showing that the problem of partitioning can be a complex one.

12 H

S 10.0 ———
> est spli
_ 101 o for TX1
=2 8 - [} 7.5 n
; u:., Best split
- _ - for AGX
o 6 g 5.0
: £y
w 4 - w
= 2.5
-
2 7 £
—T T 3 0.0 -
2 3 4 5 6 7 0 5 101520253035
Execution Latency(s) Layer
(a) ResNet101 energy and latency for (b) ResNet101 energy’s optimal
different partitioning schemes partitioning for different devices

Figure 2.0.1: DNN optimal partitioning schemes w.r.t. a) different optimization goals and b) device
heterogeneity.

Aiming to tackle the aforementioned challenges, several prior works have aimed to address the problem
of DNN partitioning and offloading [8]-[10]. However, many of these solutions make fundamental
assumptions about the problem, such as the having prior knowledge of the hardware or the deployed
DNN architecture, allowing generation of the offloading scheme from extensive profiling. Given the fact
that edge computing environments tend to be dynamic both in terms of devices joining the network
and of deployed applications, the previously mentioned assumptions may not be applicable. This high
dynamicity is a trend that is unlikely to change, especially with the introduction of emerging DNN
architectures [4] and with the implementation of advanced techniques such as skip-layer connections,
early exits and more.

2.1 Contributions

The contributions of this Thesis can be mainly located in two different areas. First we demonstrate
how Collaborative Filtering can be used to generate predictions for the latency and energy of Neural
Network layers in a cluster of heterogeneous edge devices. More specifically:

e We develop a Matrix Decomposition based Collaborative Filtering algorithm.

e We accelerate the algorithm through the use of C++ and OpenMP in order to attain fast training
times.

14

2.2. Thesis Structure

e We train the algorithm on energy and latency data aggregated from a subset of all the Neural
Network layers profiled on different devices.

e We show that the algorithm can accurately infer unknown values for layer and device combina-
tions that it has not been trained on.

Secondly, we develop a Deep Neural Network partitioning and offloading framework that generates a
set of Pareto optimal DNN splittings, trading-off between execution latency and energy. In order to
achieve this goal:

e We select a number Neural Networks from established DNN architectures.

e In a cluster comprised of NVIDIA GPU-equipped edge devices and a powerful x86 offloading
server, we profile a randomly selected subset of the layers from the previously mentioned Neural
Networks for energy and latency.

e We utilize the Collaborative Filtering algorithm to generate predictions for every device and layer
combination.

e We develop an O(N?) algorithm that explores different DNN partitioning points.

e We show how these points change for different Neural Networks, latency/energy objectives, device
configurations and image sizes.

e We compare our framework to different approaches such as Fully Local or Fully Offloaded execu-
tion and a state-of-the-art Deep Neural Network offloading Framework named Neurosurgeon [8],
showing that our method outperforms the Local-only and Fully offloaded approaches, and can
outperform Neurosurgeon given that i) Neurosurgeon has not pre-offloaded the weights to the
edge server or ii) that we also upload the weights to the server prior to execution.

2.2 Thesis Structure

This thesis is organised into 6 chapters. In the current section, we present an outline of the chapters
that follow.

In Chapter 3 we recount the current state of DNN offloading and partitioning. We analyze the various
approaches being explored in the field, their methodologies and their limitations.

Chapter 4 examines the theoretical background behind the concepts that underpin this thesis, which
include Deep Neural Networks as well as the layers that comprise them, Network protocols and Col-
laborative Filtering.

Chapter 5 contains the core methodology behind out framework. More specifically, this chapter de-
scribes in depth the Collaborative Filtering based profiling, the partitioning algorithm and the offload-
ing architecture that we propose.

In Chapter 6 we evaluate and compare our framework to other solutions and frameworks that perform
inference at the edge of the network.

Finally in Chapter 7 we summarize and report our results while also proposing future research tangents
stemming from this work.

15

Chapter 2. Introduction

16

Chapter 3

Related Work

| his chapter covers the state-of-the-art Deep Neural Network Offloading approaches and the results
that the yield.

There exists a plethora of works covering the topic of resource management on edge computing systems
for Deep Neural Networks. As mentioned previously in Chapter 2, DNN partitioning and offloading
solutions are becoming increasingly popular when it comes to deploying devices and inference appli-
cations to the edge of the network. Zhou et al. [20] present the various challenges that are entailed by
deploying DNN models on the edge, both in the present and in the future. Similarly, authors of [21]
outline the architectures, frameworks, and emerging technologies that are involved in the training/in-
ference of deep learning models at the network edge.

With the intention of providing Deep Neural Network management solutions, the authors of [9] in-
troduce a partitioning-based framework that divides the DNN into individual segments that are then
uploaded to an edge server. In a similar manner, authors of [22] partition a DNN model in a dynamic
manner, adapting to various changes in the computational resources and the state of the network.
In [10] a workload partitioning algorithm generates DNN partitioning schemes in real-time, while au-
thors of [12] create a local network of IoT devices that collaborate on reducing the latency of a subset
of NN layers, mainly convolutional ones. Finally, in [8], the authors demonstrate the efficacy of DNN
processing on the cloud, based on pre-offioading of layers. We will present the methodologies behind
the approaches mentioned here in more detail in the following paragraphs.

Laskaridis et al in SPINN [11] demonstrate a variety of techniques to improve inference latency in
edge devices. The approach put forward combines methods such as early exits, DNN partitioning
and offloading, as well as the reduction in arithmetic precision for offloaded data, aiming to decrease
network transfer latency. The framework is able to vary its execution strategy in many different ways,
such as offloading but continuing execution until the next early exit node (possibly cancelling the
offloading request if the confidence interval is satisfactory) or locally executing the DNNs through
many exit nodes until a specified confidence threshold is reached. The selection of the execution
methods is derived through a dynamic scheduling method that compiles its results from previously
(offline) profiling data, while also taking into account fluctuations imposed by the network state and
the server load. The feasible execution solutions are ranked legixographically with the user selecting
the order of the optimization objectives. Possible optimization objectives include latency, throughput,
server cost, device cost and accuracy.

Kang et al [8] propose a framework that splits DNN inference between the edge and the cloud, by
executing at the edge up to a layer ¢ and offloading the rest of the computations to the cloud. This
is achieved via an algorithm that selects the optimal partition point for either energy efficiency or
minimal inference latency based on linear or logarithmic regression performance and energy models for
the layers as well as a linear model for the network’s impact. The approach presented here also takes

17

Chapter 3. Related Work

into account the offloading server’s load levels by parameterizing it in the regression models mentioned
previously. One point that has to be mentioned is that the framework being proposed in [8] assumes
that the weights and parameters of the DNNs have been a priori offloaded to the cloud, thus only
requiring the transmission of intermediate results for further computations.

Authors of DeepThings [5] take a different approach compared to other frameworks. Rather than
partitioning a Convolutional DNN horizontally - that is partitioning between layers - they split the
network’s input and convolutional layers vertically in a grid, effectively parallelizing the workload in
a distributed cluster of edge devices. Dependencies between adjacent grid tiles are resolved through
the use of a Fused Tile Partitioning algorithm that fuses successive convolutional layers into a single
task that is then partitioned in a grid fashion. This approach also reduces the memory footprint,
therefore allowing inference to be performed on heavily resource constrained edge devices. After the
CNN is successfully partitioned through the method mentioned above, individual tiles are registered as
available for offloading at the gateway which acts as a broker, inter-mediating work stealing requests
from other devices in the cluster.

MoDNN which is described in [4], introduces a spectral clustering technique to group together non-
zero weights of Fully Connected layers and perform sparsification on the weight matrix, thus allowing
the framework to use efficient General Matrix multiplication for these clusters and less efficient - but
with reduced data transmission cost - Sparce Matrix Multiplication for elements residing outside the
clusters. The resulting dense clusters are then distributed across the worker nodes. Convolutional
Layers are also partitioned along their greatest dimension with the resulting partitions being offloaded
to other devices in the cluster. A similar method is explored in [10] where the partitioning problem is
formulated as an Integer Linear Programming (ILP) with the network time and energy being added
to the ILP formulation.

In [12] various new methods towards exposing and exploiting parallelism in convolutional and fully
connected layers are explored. More specifically the authors experiment with distributing the channels
(channel splitting), splitting the input tensor in the X and Y axis (spatial splitting) similarly to what
was shown in [5] and filter splitting where both the convolutional filters and their corresponding input
channels are distributed depth-wise. Fully connected layers are also distributed via input or output
splitting, that is distributing the inputs and partially calculating the generated outputs or distributing
the outputs and copying the input to all devices in the cluster. Through this approach, the authors
aim to achieve speedups and to limit the usage of swap space in heavily resource constrained devices
such as the Raspberry Pis used in the experimental evaluation of the framework.

The concept of partitioning and offloading workloads at the edge of the network has also been stud-
ied from the perspective of other sciences. More specifically, authors of [13] explore a market-based
approach for the distribution of tasks in a cluster of edge devices. In greater detail, each edge device
periodically receives an a specific amount of Money depending on its computational capabilities, the
capabilities of the gateway and the number of connected devices in the cluster, with the efficacy of
the system being based on standard economic concepts such as pricing and demand. The devices are
then able to offload tasks to the edge server by Buying computational capacity through an auction.
A device may choose to offload a workload that cannot be executed locally or can be executed with
smaller latency at the server. Should a device be outbidded by the competition, it defers the execu-
tion/offloading for later. Game-theory can also be applied as a resource management strategy at the
edge, as shown in [14]. In this context, the problem of optimally allocating tasks to gateways is solved
through the use of an auctioning mechanism where initially the offloading or not of a task is decided
through a Stackelberg competition game. Should the task be eligible for offloading, a Vickrey (second
price) auction takes place, where gateways bid their estimated values for the task, with the winner of
the auction receiving the task.

Straying from the topic of DNN partitioning, it must be mentioned that the inspiration behind using
Collaborative Filtering as a method for generating estimates for performance and energy stems from
[15] where Delimitrou et al. utilized Collaborative Filtering techniques, in order to find the most
suitable server to execute a particular workload. This was achieved by profiling the application briefly
in two randomly selected servers and then feeding the results to the CF algorithm, thus allowing

18

predictions for their fitness to be made for the entirety of the server cluster, demonstrating that
exhaustive profiling can be substituted with minimal profiling and Machine Learning without loss of
accuracy.

Despite the fact that resource management, partitioning and offloading of DNNs has been heavily
studied by the research community, to the best of our knowledge, no study has leveraged Collabo-
rative Filtering techniques to create an efficient and decentralized resource management solution for
NN offloading that decides at the granularity of a single layer and targets heterogeneous CPU/GPU
architectures.

19

Chapter 3. Related Work

20

Chapter 4

Background on DNN architectures and
layers, Network protocols, Network
profiling and Collaborative Filtering

T his chapter describes in depth the types of Deep Neural Networks that are currently being
utilized for inference at the edge and the different layer types that they contain. It also outlines
Collaborative Filtering and how it can be used outside the field that it originates from to generate
predictions for large amounts of data while only being trained on a fraction of the given dataset. We
also present some of the Network protocols that will later be utilized by our framework as well as their
performance and energy characteristics.

4.1 Neural Network Layers

In this section we analyze some of the most famous types of Neural Network Layers.

4.1.1 Convolutional Layers

Convolutional Layers perform a convolution with a kernel K over a given input Tensor 7. More
specifically, a layer of this type:

e Receives an input tensor of dimensions: N X Cy, X Hiyp X Wous
e Applies a convolution with the kernel K of dimensions Cy¢ X L X Kg X Kj.
e Returns an output tensor of dimensions N X Coyur X Hour X Wous

The relationship between H,,;, W, the dimensions of the input and of the convolution kernel K is
the following, assuming the parameters Padding, Stride, Dilation and Groups are also specified

H;, + 2 x Paddingy — Dilationg x (Ko —1) —1

Hou = N 1
=1 Strideg +1]
Win + 2 X Padding; — Dilation; x (K1 —1) —1
Wout = - 1
=1 Stride, +1
=Y
Groups

21

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and
Collaborative Filtering

The main function of the Convolutional Layers is to extract features from an image such as edges and
corners. These features can then be passed on to deeper layers where they are combined to understand
details in the image.

4.1.2 Normalization Layers
Batch Normalization

Batch Normalization [23] is the process of normalizing the input before a layer by centering the dis-
tribution of values in the tensor to zero and their variance to one. This modification allows Neural
Networks to train faster by minimizing oscillations® in the weights and allowing the learning rate to
be increased accordingly. This is achieved through the element-wise application of the function:

T—T
BatchNorm(z) = ————,
o(x) +e€
where € is an arbitrarily small value to ensure that the denominator is always larger than zero. Batch
Normalization was first presented in [23] as a method to increase accuracy and decrease training times,
and then integrated into existing and new NN architectures such as VGG [24] and ResNet [25].

4.1.3 Activation Layers

Activation layers are functions that are applied after Neurons in Neural Networks, returning a tensor
of the same dimension as their input. The role of Activation Layers is to prevent the Neural Network
from having a Linear behaviour, which is undesired, as linear behaviour can easily be achieved by
a simple Linear layer. For this reason they are also called non-linearities. There are many popular
activation functions with the most popular being the following.

ReLU

ReLU or Rectified Linear Unit is an activation function that applies the following function to every
element of the input tensor.

ReLU(z) = {O’ z2<0

z, x>0
As can be inferred, the ReLLU function sets all negative elements of the input to zero and leaves the rest
unchanged. This forms one of the main advantages of ReLLU, as it is computationally inexpensive. At
the same time, the fact that there are no upper limits to the return value of ReLLU solves the problem of
saturation.? [26]. There also exists a variant of ReLU named ReL U6 that defines a maximum activation
value of 6, with it being popularized in the MobileNet Neural Network architecture [27].

Softmax

Softmax is an activation layer defined by the following function, when given an input tensor x:

T4

€

Zj exi

As can be seen, by summing all the Softmax activations in a tensor, the result would be 1. This is
because Softmax is frequently used to generate the probability distributions in the final layer of Neural
Networks, which of course must sum to 1. A similar type of activation is Softmin, which is defined as:

Softmax(z;) =

IFluctuations in the parameters of neural networks, due to loss rapidly shifting the weights in increasing and decreasing
directions.
2Neural Network nodes frequently returning values close to an asymptote.

22

4.1. Neural Network Layers

e

Zj e~ %

Softmin once again has the property of summing to 1 for all the elements in a given tensor.

Softmin(x;) =

4.1.4 Pooling Layers

The role of pooling layers in a Neural Network is to decrease the number of parameters deeper in the
Neural Network by reducing the dimensionality of their input. Pooling layers downsample the feature
maps given to them as inputs, allowing some degree of invariability if features are relocated to a nearby
section of the input. Some of the frequently used pooling layers are the following.

Maximum Pooling

Maximum Pooling creates a grid over the different channels of the input feature map, with each grid
square being of dimensions equal to the kernel size of the Maximum Pooling layer, returning the
maximum value in each grid square. More specifically, assuming a tensor X of dimensions N x C X
H;,, x W;, and a kernel of dimensions kH x kW, Maximum Pooling returns an output tensor of
dimensions N x C' X Hyyuy X Woyt, where:

H;, + 2 x Paddingy — Dilationg x (Ko —1) —1

Hou = 1 !

r=1 Strideg 1
Win + 2 X Padding, — Dilationy x (K; —1) —1

Wour = | Stridey 1

The output of every channel is given by the function:

MaxzPool(i, j, h, w) = MaZm=0,1,... kH—1MATn=01,... kw—1X [¢]|[J][strideg X h + m][stride; x w + n]

Average Pooling

Average Pooling behaves similarly to Maximum Pooling in terms of input and output dimensions, but
instead of returning the maximum element in every grid it returns an average of all the elements in
the grid. This input output relationship is described by the function:

kH—1kW—1
AvgPool(i, j, h,w) = m Z Z X[i][4][stridey x h + m][stride; x w + n]

m=0 n=0

4.1.5 Fully Connected Layers

Fully Connected or Linear layers are the first type of layers to be used in artificial Neural Networks,
multiplying all the outputs of the previous layer with weights and adding biases. The input - output
relationship of a Linear layer can be described as

y=ux-AT +b,
where x is the input tensor, matrix A contains the weights of the Linear layer and matrix b the biases.

Linear layers display high computational complexity due to the matrix multiplication operation and
occupy significant memory resources in order to store all the weights. As linear layers create outputs
based on the entirety of the input, they are frequently used in the last layers of Neural Networks,
where final predictions are made.

23

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and

Collaborative Filtering
%ﬂ

128

2048 2048 \dense

27

13 \ 13

dense dense|

3 77713};:.:

27 ENID
LIWN---\ 1000

all O\ 192 192 128 Max
228\[ll¢trige Max 128 Max pooling
of 4 pooling pooling

204¢ 2048

Figure 4.2.1: Alexnet Architecture deployed on two GPUs, from the original paper [26]

4.2 Neural Network Architectures

Deep Neural Networks form the backbone of many inference tasks in today’s day and age, with Con-
volutional Neural Networks gaining particural traction after the introduction of AlexNet [26]. As the
never-ending quest towards higher accuracy and lower inference time continues, novel Neural Network
Architectures emerged with VGG [24] and ResNet [28] being standouts. At the same time, as infer-
ence tasks grew more common in the resource-constrained mobile and edge environment, the need to
decrease the computational requirements became increasingly more apparent, with MobileNets [27]
becoming a popular choice for such scenarios.

In this section we will analyze the architectures of the Neural Networks mentioned above and their
unique characteristics. Furthermore we will present the characteristics of their layers along with their
computational and energy requirements.

4.2.1 AlexNet

AlexNet, first presented in 2012 was the first mainstream Deep Convolutional Neural Network to
win the ImageNet Large Scale Visual Recognition Challenge (LSVRC). While the idea of using Con-
volutional Neural Networks for Image Recognition had been presented much earlier [29], it was the
utilization of GPU training that made such Deep Networks viable and ultimately enabled this break-
through. The architecture and logic behind AlexNet is the following.

Architecture

In the general sense, AlexNet is a Convolutional Neural Network consisting of 8 Convolutional Layers
and and 3 Fully Connected layers. Each Convolutional layer 3 is followed by a ReLU non-linearity.
Also MaxPooling layers are placed between the first and second, second and third and between the
fifth and sixth layers. The Fully Connected layers are located after the Convolutional ones, of which
the first two are also followed by a ReLU layer, while the third and final one is followed by a SoftMax
function that produces the probabilities for each possible class.

As can be seen in Fig. 4.2.2, the Computational and Energy requirements are high for the Convolutional
and Linear layers, with the highest energy and latency being found in the first Linear layer. Size-wise,
the largest layers are the Linear ones at around 100MB. This somewhat large size plays an important
role in our offloading decisions as sending hundreds of MBs can be inefficient both for energy and
latency. On the contrary, the Convolutional layers with their reduced size and comparable latency to
the Linear ones can be more fitting candidates for offloaded execution, offering similar computational
intensity without needing to transmit large amounts of data.

3in the inference configuration where Dropout layers are bypassed.

24

4.2. Neural Network Architectures

(MmN AGX BN NX BB TX1 =50 nanof

101 -

Latency [ms]

(MmN AGX EEE NX W TX1 nanol

Energy [J]

= [#59 AGX mmm NX EEE TX1 EEE nanof
s 1102
el
g 100
n
= 1072
0
>
3
c « S c « S c « c « E « S 8 = £ « £ <« £
O % O ¢ O 8 S T g =
© © © >
= = s <
[
2
=
Q
©
T
<
Layer
Figure 4.2.2: AlexNet Latency and Energy per layer, grouped by device

VGG, first presented in 2014 defines a set of Neural Network Architectures where the number of
layers containing weights, that is Convolutional and Fully Connected layers varies from 11 to 13,16
and 19.The different configurations of VGG can be summarized as follows: VGG is comprised of 5
blocks of convolutional layers, and 3 Fully connected layers. The layers that reside in these blocks are
configured based on the selected VGG architecture, as shown in the table of Figure 4.2.3.

Each Convolutional layer is followed by a ReLU non-linearity, with each block of layers passing its
results through a Maximum Pooling function #. The Fully Connected layers are applied after the
convolutional blocks with each one of them having 4096, 4096 and 1000 output features respectively
(for the classification into 1000 classes). Finally, the classifier probabilities are calculated via the

application of a SoftMax function at the output of the final Fully Connected layer. The architecture
of VGG11 can be seen in Fig. 4.2.4 .

In Fig. 4.2.5 it can be seen that most of the time and energy in VGGI11 is spent while calculating
the middle Convolutional layers - the ones that are contained inside the blocks - and the final Linear
layers, with the latter ones having large layer sizes, as was the case with AlexNet. In the same fashion
as previously, the algorithm that we describe later on takes these parameters into account and usually
avoids sending these large layers, as to not incur the high Network penalties. Similar behaviour is also

demonstrated by the other members of the VGG family of networks, with partitioning being performed
in a comparable manner.

41t is also common in some non-standard implementations to include Batch Normalization between each convolution
and ReLU, as Batch Normalization was discovered after VGG was initially released

25

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and
Collaborative Filtering

ConvNet Configuration

A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224 x 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Figure 4.2.3: VGG Network Configuration Table, as proposed in the original paper [24]

4.2.3 ResNet

Architecture

ResNet, winner of the LSVRC competition in 2015, popularised the concept of Residual Neural Net-
works by introducing skip-connection in layer blocks, effectively applying functions of the form F'(z)+x
on a given block of layers F' with an input tensor z. The resulting Neural Networks perform accurately
on image classification and segmentation tasks, while demonstrating reduced computational complex-
ity compared to the previously mentioned VGG. At the time of its inception, ResNet was 8x deeper
than VGG, standing at 152 weighted (Convolutional and Fully connected) layers deep in its most
complex configuration, with other possible configurations featuring 18,34,50 and 101 weighted layers
respectively.

The profiling results for ResNet18 (shown in Fig 4.2.7) display a different behaviour to that shown
by AlexNet and VGG. Here, the vast majority of the computational burden is located in the ResNet
Basic Blocks with the configurations of these blocks, being displayed in Fig. 4.2.6. As opposed to the
architectures seen before, the layer weights are comparatively small, making offloading viable even for
the Linear layer at the end of the network. As will later be seen in the evaluation of our framework in
Fig. 6.3.4, ResNets exhibit some of the highest offloaded execution percentages from the architectures
that we examined. This behaviour is shared across the board for all ResNet architectures including
the ResNet18 one that is shown in the figure.

26

4.2. Neural Network Architectures

22224 =3 24 x 22 6d

28w 28 % 512 TxTx512
e L 1x1x4096 1% 11000

r:I] convolution+ReL!
] max pooling
fully connected4HRel.l

| softmax

Figure 4.2.4: VGG Architecture, figure by Davi Frossard

4.2.4 MobileNetV2

As mentioned previously the demand to perform inference at the edge of the network gave rise to
architectures with reduced computational complexity, with one of the proposed architectures being
described in the MobileNets paper [27]. The proposed Neural Networks are tuned through two hy-
perparameters, o which reduces the computational effort at every layer level and p which defines the
resolution of the input images, thus allowing the deployment of inference applications on environ-
ments with varying computational capabilities and latency requirements. The proposed architecture
is a Residual Neural Network, implementing a class of layers known as Inverted Residual, that reduce
computational complexity as compared to the typical Residual blocks found in other architectures.

Similarly to ResNet, most of the latency and energy consumption is aggregated in the Residual Blocks
of the MobileNet architecture. Layer sizes are particularly small as seen in Fig. 4.2.8 being usually
under the size of a MB and reaching sizes of up to a few MBs. This makes offloading particularly
effective and contributes to the very high offloading percentages seen in 6.3.4, well over 99% for all
cases.

4.2.5 Comments on Residual Architectures

As far as offloading and partitioning is concerned, Residual Architectures pose an interesting challenge
due to the possibility of having more than one layer inputs, introducing dependencies that must be
resolved when offloading to another device.

This can be seen in Figure 4.2.9 as the input X is required for offloading from Layer 2 and onwards due
to the existence of the 4+ operator. A sophisticated approach to this issue would be to create a Directed
Acyclic Graph modelling the dependencies between different Neural Network operations, which can
then be used to dynamically detect the dependencies and transferring the required data accordingly.
Such an approach was utilized by the SPINN framework [11] that was mentioned earlier. Another
approach, which is the one that we utilize, is to limit the granularity of the partitioning, essentially
maintaining the illusion of having only one input and one output per layer. Essentially, residual blocks
can be marked as indivisible, with their entire payload of layers being offloaded together, hiding in this
way the aforementioned dependencies.

27

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and
Collaborative Filtering

(MmN AGX BN NX BB TX1 =50 nanof

"~
E
el
10!
>
v
c
o 10!
e
]
-
(MmN AGX EEE NX W TX1 nanol
—
=2 107!
>
2
q,lO_3
c
w
= [#59 AGX mmm NX mmm TX1 WSS nanof
2 10
]
No10
0
= 102
o
>
3
$35338%33%8383333833%83¢8858235833%8
2 & 82 a 3 ¢ x ta g e ia 3 cata g8 RBecaaoceaoc
o a O a O <] & O <] & O o e o 4 - [
o x O x O] x O O x O © X O (=) [a)
© © © © []
= = = = = 3
2
5
Q
©
kel
<
Layer

Figure 4.2.5: VGGI11 Latency and Energy per layer, grouped by device

4.3 Collaborative Filtering

In this section we will discuss the motivation behind the development of Collaborative Filtering meth-
ods and their advantages compared to other methods.

4.3.1 Brief Description

Most machine learning methods make decisions based on a set of features from the input. Collaborative
Filtering changes this by not examining features, but rather extracting information about a set of users
and items. As a result, Collaborative Filtering can be a powerful tool in recommender systems, being
the go-to algorithm for the Netflix Prize ® due to its ability to make item recommendations to users
given only a set of ratings from other users. The ability of Collaborative Filtering to provide accurate
recommendations was famously used for assigning workloads to servers by Delimitrou and Kozyrakis

in PARAGON [15], thus proving its efficacy in the domain of Resource Management for Computing
applications.

4.3.2 Algorithms

Collaborative Filtering encompasses three main types of algorithms:

e Memory-based approaches: Predictions are generated by finding similarities between users or
data and proposing the best-suited items.

51,000,100 $ prize for the best algorithm predicting user ratings for films, without information about the users or
films.

28

4.3. Collaborative Filtering

layer name | output size 18-layer [34-layer 50-layer | 100-layer | 152-layer
conv 112112 T=7, 64, stride 2
323 max pool, stnde 2
. 121, 64 11, 64 11, 64
23 56 56 1 i
romv-R " [:”;'2]xz [i“:'gj 3 1x3, 64 | x3 Tl 64 |3 1x3,64 | x3
- R | 1x1,256 | | 1x1.256 | | 1x1.256 |
- ; ; [11,128 [11,128 [11,128
conv3_x 2E =28 ;K: :;: %2 [;x; :i: =4 I3 128 | =4 Fa3 128 | =4 Fx3 128 | =8
e e | 1x1,512 | | 1x1.512 | | 1x1.512 |
. 1 1 [1=1,256 [1x1,256 [1x1,256
ol ol
convd_x 14=14 ;K: ;g: %2 [;x;;;: L] Ix3, 256 | =6 3x3, 256 | =23 33,256 | =36
s s | 1x1, 1024 | | 1x1, 1024 | | 1x1,1024 |
- : : [1=1,512 [1x1,512 1x1,512
convs._x 77 ;z:;;; =2 [;i;;i; %3 33,512 | =3 33,512 | =3 33,512 | %3
’ ' L 11,2048 | | 11,2048 | 11,2048 |
1=1 average pool, 100-d fc, softmax
FLOPs Lax10 [3ex10" [3Ex10°] 76107 | 11.3:x10°

Figure 4.2.6: Different Configurations of ResNet architectures, from the original paper [25]

e Model-based approaches: Known ratings are used to train a model and then predict unknown
ratings.

e Hybrid approaches: Combinations between the Memory-based and Model-based methods.

Memory-based Collaborative Filtering

The Memory based approach can further be broken down into to main subcategories, user-based
where similarities between users guide the recommendation and item-based where the recommen-
dations are driven by the similarities between items. In essence, the user-based method generates a
vector containing the known values for items, while the item-based methods create vectors containing
values from all the users that have seen the item. Similarities between vectors can the be found given
some vector distance metric. Famous such metrics as mentioned in [30] are:

A.B
1A]l-[1 B
> i (rai—7a) (1pi—7%)
Vi (Tai—7a)2-3 (rhi—75)2

e Conditional Probability-based similarity

e Vector Cosine Similarity:

e Pearson Correlation:

In the user-based approach, the k unseen items are recommended as the top unseen items from the
k most similar users. In the item similarity approach, after finding the similarities between items,
recommendations are made to the users based on the items that are most similar to the ones that have
already been seen by them.

The main advantages of the Memory-based methods is that it is an intuitive approach - similar users
usually like similar items and similar items might interest the same user - and their ease of development,
due to the fact that the only thing that is needed is a distance metric. However, this simplicity can be a
weakness when the data is too sparse as is usually the case with the algorithms providing low accuracy
recommendations. It also fails to satisfy our use case, which is predicting ratings (or energy/latency
values in our case).

Model-based Collaborative Filtering

As mentioned previously, in the Model based approach, the known ratings-values are used to train a
model that can the be used to provide recommendations. Such models include Bayesian Belief Net-
works, Clustering and methods based on Matrix Factorization namely Singular Value Decomposition

29

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and
Collaborative Filtering

(MmN AGX BN NX BB TX1 =50 nanof

"~
0
E -
>
g
o 10—1 -
e
[}
-l
(MmN AGX EEE NX W TX1 nanol
- -1
= 10
>
2 1073
(]
c
w
p—
1]
=
T
) 10°
N
(]
w 1072
9
>
[}
-1 o kel o] kel ~ ~ ~ ~ ~ ~ ~ X~ ° c =
~ ~ i} o~ [%) [} S} [} [} [} [} [} [Q ©
> £] 5 o o o o o o o o ° = 2
c < < o m m m m oM om)) S © =
S] a 9 9 Q 9 O O 9 9 a [-
o =4 X 7} 7}]]] 7] 7] 7] <
< © © © © © © © © © >
9 = 2} o o o o o o =] <
B 1 I | | | | | | g
m S
Q
©
o
<<
Layer

Figure 4.2.7: ResNet18 Latency and Energy per layer, grouped by device

(SVD) and its variants, with the latter being used in Paragon. The main attribute of Model Based
Collaborative Filtering is that instead of predicting items, it predicts ratings of items, that can then
be used to generate recommendations. The advantage of such methods is that they deal with the
main drawback of Memory based approaches, as they can provide accurate recommendations even in
sparse datasets, also allowing for more configurability. They do however lack the intuitive sense of
Memory based methods, relying on hidden features/embeddings (low dimensionality interpretations of
our original high-dimensional input data).

4.3.3 Matrix Factorization Collaborative Filtering for Predicting Latency
and Energy

As seen in subsection 4.3.2, model based Collaborative Filtering methods can be used to predict
user ratings for different items. We can use this ability to predict values other than ratings if the
problem can be formulated as a user-item relationship. In our approach, we would like to predict
the latency and energy consumption of Neural Network layers on different devices. Different devices
have different computational capabilities and as such they have different energy consumption, and
performance, in the same manner that different users have different preferences. Similarly, different
Neural Network layers have different computational requirements (i.e., high memory requirements,
computational performance requirements etc.) that impact their performance on different devices,
behaving like items in the Collaborative Filtering model of thought.

Having established the user-item relationship between devices and layers, the only parameter missing
before selecting and training a model is the rating. This of course, is any value that we have partial

30

4.4. Network Communication Protocols

Latency [ms]

—
=
>
o
=
]
]
w
@
@ [F55 AGX mmm NX mmm TX1 nanol
= 100
o 10
XN
v 1072
-
>
L] cC T ® ® ®W ®W ® ® ® ® ®W ®wW ®wW ®w ® ® ® ® & “ c = =
T ® ® ® ® ® ® ® ©®© ® ©®© ® ®©® ® ®© © ©
-1 e 5 53 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 & o ¢ 3 8%
® 2 T T ©® ® ® T T TV ©® T T T T T T T [9 ¥ o c
>mmmmmmmmmmmmmmmmm>8903
Z ¢ ¢ ¢ ¢ ¢ © @9 ¢ ©O ¢ O @ O O O Y Y 3 =
0 £ & & £ £ £ & & £ £ £ £ £ £ £ £ &£ Qg 2D o
< T ® B T BV T TV T T TV T T T T T T g Z
c ¢ 2 @ ¢ ¢ @ ¢ @ @ ¢ @ @ © @ @ o @ c F
E £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ 9
s ¢ ¢ ¢ ¢ ¢ ¢ © O O O © © ¢ ¢ O O O & 3=
zZ > > > > > > > > > > > > > =2 > > > =z B
T £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ T ®©
§§58§8§55§85885885855§58¢5¢¢§
e e e e e e e e e e T
O m m ® ®M MM M MM @mM @O ®m® ®M @ @M @M @@ @ @@ O
g = = = £ £ £ £ = = = = = = = = = = §
e 2
o o
= =
Layer

Figure 4.2.8: MobileNetV2 Latency and Energy per layer, grouped by device

knowledge of and that we would like to predict. Thus we train two different CF models, the one having
the latency of a layer as the rating parameter and the other having the energy of the layer. We select as
our algorithm a simple Gradient Descent based Matrix Factorization, a Model based approach. There
are two main reasons behind this approach. Firstly, as shown in [15], Matrix Factorization approaches
can achieve high accuracy in very sparse datasets (as low as 1% of the Rating Matrix being filled).
Secondly, they can be programmed to achieve high computational performance and low latency [15],
something that is critical for the online part of our algorithm.

4.4 Network Communication Protocols

This section gives an overview of the two protocols that are utilized by our framework in order com-
municate and transfer data between the edge devices and server. These protocols are ZeroM(Q and
FTP respectively.

4.4.1 ZeroMQ Networking Library

ZeroMQ is a lighweight messaging library supporting different protocols and communication patterns
that can be interfaced with through most famous programming languages such as C/C++, Java,
Python, Haskell and others. In its core, ZeroMQ presents a socket-based API through which the
different communication patterns are supported. These patterns or models each introduce their own
socket types that can be used to implement the needed communication schemes.

31

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and
Collaborative Filtering

Figure 4.2.9: Example of a Residual Block

Request - Reply model

In the synchronous Request - Reply model, a REQ (request) socket operated by the client connects to
a REP (reply) socket which is listened to by a server, with the server then responding to the client’s
request. The same mode of communication can be established in an asynchronous manner, meaning
that there is no need for a preset communication pattern (both the client and server can send messages
to each other at any time without restrictions). In this context the client-side socket is named DEALER
and the server-side ROUTER.

Publish - Subscribe model

The Publish - Subscribe model establishes a network in which a set of Subscriber devices listen to
and receive messages from a set of Publisher devices. The subscriber socket can be of type SUB or
XSUB, with the difference between the two being that SUB listens to all messages sent by a publisher
(PUB) socket, whereas XSUB sends subscription messages to XPUB sockets in order to subscribe to
them. The Publish - Subscribe paradigm is useful in many-to-one situations where a single device
must transmit the same message to many other devices.

Pipeline model

The Pipeline model is characterized by two socket types, PUSH, being a send-only socket and PULL
being a receive-only one. This mode of communication is practical in applications dealing with the
distribution of tasks in a cluster of worker nodes, with the PUSH sockets transmitting data to anony-
mous worker nodes in a Round Robin manner to ensure fairness. The anonymity of the worker nodes
also allows new nodes to join, thus ensuring the scalability of the cluster at runtime.

Exclusive Pair model

The Exclusive Pair communication pattern is a special type of socket with the name PAIR, facilitating
the communication between devices with a common architecture. As a result, it is typically used for
communication between threads in a single application and frequently utilizes the inproc transport
protocol.

4.4.2 FTP Protocol

The File Transfer Protocol (FTP), described in RFC 959 [31], is an Internet Protocol outlining the
transfer of files between computers and a server. More specifically, a computer acts as an FTP server
where files can be uploaded and retrieved from by users connecting to it (also known as clients). This
connection can be either authenticated, though unsecure due to the passwords being transmitted in

32

4.5. Network Profiling

plaintext ¢, or anonymous, meaning that any user can login. FTP establishes a set of commands that
can be used to connect, upload and retrieve data to and from the server, as well as performing many
more complex functions. Some of the basic FTP commands are described here.

FTP open

open connects the current FTP session to a server with the command open <addr><port>, where
addr is the address of the server that we wish to connect to and port is the port on said server. The
port parameter can be left unspecified, in which case it is assumed to be the well-known port 21.
After typing the open command the user will be asked for identification, logging in with password
authentication, or as an anonymous user by typing anonymous.

FTP quit

quit finishes an FTP session, by simply typing the command to the FTP terminal.

FTP stor

The FTP stor command uploads a file from the local machine to the server by typing stor
<filename>. The file is then uploaded to the current working directory on the server, which can
be changed by the cwd command.

FTP retr

In a manner similar to the stor command, FTP retr retrieves a given file from the current working
directory on the server with the syntax retr <filename >.

FTP ascii and binary

FTP supports transfering files with different encodings with the most common being ASCII for text
files and Binary which transfers each byte in a file. These encoding modes can be selected by using the
ascii and binary commands respectively. Other modes are also supported but are not widely used
(i-e., support for machines that have byte sizes different than 8 bits).

4.5 Network Profiling

In order to make accurate partitioning and offloading decisions we need to make accurate predictions
about the necessary time to send and receive data through the network. As will be later described, we
have created a Network profiling mechanism, which is accompanied by a Network latency and energy
prediction mechanism that makes the actual predictions for the cost of transmitting data over the
network. We present the data points accumulated by the profiling tool that can be used to gauge the
latency and energy for transmitting data over FTP. The datapoints from Fig. 4.5.1 will later be used
to generate the models for the prediction mechanism.

As can be seen from the figure mentioned previously, the profiled devices display similar behaviour in
general. First of all, there is minimal latency and energy for transmitting and receiving data less than
a MB in size. In fact, the time to perform such transmissions is so trivial that our profiling for energy
returned 0 Joules, even after averaging for many runs 7. An interesting phenomenon occurs for the
TX1 and Nano devices - both boards display increased energy consumption for the same volume of
data sent when compared to the others (AGX and NX)- . This is due to the fact that these devices
are equipped with a relatively small 4GB of RAM & as opposed to 32GB for the AGX and 8GB for
the NX. As a result when sending and receiving large sizes of data, swap space must be used to hold

6This can be addressed by using SFTP or other secure File Transfer Protocols if security is an issue.

7If the duration of an event is small, measuring energy for it can be difficult as the energy tool can only work accurately
at a frequency lower than 10 Hz

8Detailed specifications for the devices can be found in 6.1

33

Chapter 4. Background on DNN architectures and layers, Network protocols, Network profiling and

Collaborative Filtering

— AGX

—— nano — AGX —— nano
— NX TX1 — NX TX1
101 4
% 4
(]
L
0
qc_) 10—1 4
©
— <\
107! 10! 103 1071 10! 103
Send Size [MB] Recv Size [MB]
—— AGX —— nano —— AGX —— nano
— NX TX1 — NX TX1
30 A
= 40 -
§ 20 A
(0] 20 4
S 10 A
O L T T T 0 L T T T
1071 10! 103 107! 10! 103

Send Size [MB]

Recv Size [MB]

Figure 4.5.1: Network performance and energy metrics per device

temporarily some of the other pages in memory. The small onboard memory can also be a problem
when trying to transmit very large segments of data, e.g. attempting to send 4GB of data on these
devices causes an out of memory error. This is evident in Fig. 4.5.1, as the last two datapoints are
missing for the TX1 and Nano devices in all of the plots.

34

Chapter 5

DNN Partitioning and Offloading

T his chapter details our efforts toward developing a framework that generates a set of Pareto
optimal Deep Neural Network partitionings, trading-off between latency and energy. This is
accomplished with minimal profiling through the use of Collaborative Filtering and the implementation
of an O(N?) Design Space Exploration algorithm that takes into account the estimated energy and
latency of DNN layers and the network.

5.1 Problem Description

As shown previously in 2.0.1a, there exist many different ways to partition a Neural Network in order
to achieve a specific performance-energy target. Of these many ways, some designate a Pareto Frontier
where a one of these two targets cannot be further improved without sacrificing the other. We aim to
discover and explore this set of solutions.

5.2 Proposed Methodology for DNN partitioning/offloading

In order to make Pareto Optimal partitioning and offloading decisions we need to gather metrics for
the following parameters:

1. The processing time and energy for the computation of different DNN layers on the edge.
2. The latency and energy cost of transmitting data over the network.
3. The performance of inference calculations on the offloading machine.

Of the steps mentioned above, aggregating information about the energy of layers on a machine is the
step that requires the most time. As such, we limit the number of layers profiled to a small percentage
of the total layers, opting instead to use Machine Learning techniques, namely Collaborative Filtering,
to infer the rest of the results. Steps 2 and 3 are trivial as far as profiling time is concerned and do
not require the implementation of such solutions.

Once the required data are aggregated, they are fed into an algorithm that explores the different layer
partitioning options. This algorithm explores all available partitioning options where DNN layers are
first executed locally up to a layer ¢, calculation of layers i + 1 to j is offloaded to the edge server
and finally layers j + 1 are calculated once again locally. The resulting configurations are analyzed for
Pareto optimality in relation to energy and latency. Fully local and fully offloaded execution remain
as options if they are part of the generated Pareto set.

This approach effectively splits our framework into two segments. One that runs offline and an online
part. The offline part is responsible for the profiling of the layers and the network, while the online

35

Chapter 5. DNN Partitioning and Offloading

Offline Phase Online Phase

----------------------------- Sparse Latency
Matrix

F07 -0

Final Latency
Matgix (LM)
17 2
3121
215718

o
i 3x3, conv, 64 |} |
! L 2 [
i[5 conv, 128] ! !
! L]
e
 [oconvzm] | !

' i Lo
! [' '
' [,+| ' '
' fc, 4096 [fc, 128 ' '
' ' v '

H
relu H relu |
'

______ T L——

NN —> Layer me

NN Filtering & | [aaas2a8
i 9

IDNN; (12} B e, 4096

4459

Final Energy
Matrix (EM)
i35 1

=3 |: -

>
=
&4
B
LS
5|
9
c Y
9 o
]
&

o
£
@
=
i
o
2
i
o
a
)
©°
o

~oao

~

@ Offloader
Inference
o Output
Energy
‘—l’—) Local Execution

Node, s Network Latency | - Latency & Energy @ Pmavss
Vector (NLV,) Aggregation

@Layer execution & profiling

@ DNN Profiler

i~ e

Network Remote Execution

) Network Profiler

N v

Nodey's Network Energy : DNN Partitioning @
5 :

: @ Exploration fc, 128

Edge device

Figure 5.2.1: Overview of Online and Offline RoaD RuNNer Architecture.

is responsible for initially gathering, executing the Collaborative Filter and scattering the generated
data. Afterwards, it generates the Pareto optimal set and executes the DNN partitioning/offloading
based on schemes from the Pareto set and specified energy/latency targets.

5.2.1 Offline Phase

The Offline Phase is comprised of two distinct submechanisms: (i) the DNN Profiler (@) and (ii) the
Network Profiler (@), that are responsible for generating the necessary data and information to be
inputed to the Online part of our framework. As input to the Offline Phase, we provide the possible
DNN architectures. This is done for every node in our edge computing network.

DNN Profiler

Taking advantage of the inherently distributed nature of our edge computing cluster, and utilizing
the heterogeneity of devices and DNN models to our advantage, we design a Collaborative Filtering
based mechanism [15], [16], that enables our framework to accurately predict the per layer execution
latency and energy of DNN layers on every device. The first stage of this process of offline decision
making, incorporates a Layer Filtering and Sampling (@) component, that filters and samples the
layers of the alternative DNN models that are given as input to our framework . In greater detail, we
randomly select a small percentage p of the input layers in each model for in-depth profiling on the
edge device. By selecting only a small percentage we can make sure that the profiling times do not
become prohibitively large when the number of layers and DNNs increases. The selection percentage
p is derived from experimentation.

Following this stage, the selected layers the are fed as input to the Layer Ezecution & Profiling (@)
step.

In order to gather accurate data about the energy consumption of each profiled layer we utilize the
tegrastats utility [32] that provides information about power consumption, CPU and GPU temper-
atures, memory utilization and clock frequencies of different components across the device (Example
log given in Listing 5.1) . We set the tegrastats refresh rate to 100ms as values smaller that that
cause noticeable interference and degradation of the generated results. Due to the relatively short
duration that many layers take for their computation (i.e ReLU, BatchNorm etc.) we repeatedly run
each layer until a set time limit has been exceeded. We set this limit to 300ms so that there exist at

1We define as power consumption the dynamic power consumption, that is Power — Power;g4je, where Power;q. is
measured with the device idling with the GPU turned off

36

5.2. Proposed Methodology for DNN partitioning/offloading

least 3 tegrastats log entries per profiled layer. At the same time, we measure the total time it took
to profile the layers as well as the number of runs that were performed during the profiling. From the
data gathered we can:

1. Measure the average time taken to calculate a layer by dividing the total duration with the
number of runs performed.

2. Calculate the energy consumption of the layer by integrating the reported power from tegrastats
with the total time and dividing by the number of runs.
RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)
CPU [1%@1907 ,0%@1907 ,0%@1907 ,0%@1907 ,0ff ,0ff] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510

APE 150 MTS fg 0% bg 0% A0@41C GPU@41C PMIC@50C AUX@41.5C CPU@43C thermal@41.8C
VDD_IN 2772/2772 VDD_CPU_GPU_CV 285/285 VDD_SOC 1059/1059

RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)

CPU [0%@1907 ,0%@1907 ,0%@1907 ,0%@1907 ,0ff ,off] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510
APE 150 MTS fg 0% bg 0% A0@41C GPU@41C PMIC@50C AUX@41.5C CPU@42.5C thermal@41.8C
VDD_IN 2772/2772 VDD_CPU_GPU_CV 285/285 VDD_SOC 1059/1059

RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)

CPU [17,@1906,0%@1907 ,0%@1907 ,0%@1907 ,off ,off] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510
APE 150 MTS fg 0% bg 0% A0@41C GPU@41C PMIC@50C AUX@41.5C CPU@42.5C thermal@41.8C
VDD_IN 2812/2785 VDD_CPU_GPU_CV 326/298 VDD_SOC 1059/1059

RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)

CPU [2%@1907,1%@1907 ,2%@1907 ,1%@1907 ,off ,off] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510
APE 150 MTS fg 0% bg 0% A0@41C GPU@41C PMIC@50C AUX@41.5C CPU@43C thermal@41.8C
VDD_IN 2935/2822 VDD_CPU_GPU_CV 448/336 VDD_SOC 1059/1059

RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)

CPU [3%@1907 ,0%@1907 ,0%@1907 ,0%@1907 ,0ff ,0ff] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510
APE 150 MTS fg 0% bg 0% A0@41C GPU@41C PMIC@50C AUX@41.5C CPU@43C thermal@41.65C
VDD_IN 2853/2828 VDD_CPU_GPU_CV 366/342 VDD_SOC 1059/1059

RAM 703/7773MB (1fb 1398x4MB) SWAP 0/3887MB (cached OMB)
CPU [1%@1907 ,0%@1907 ,0%@1907 ,0%@1907 ,0ff ,off] EMC_FREQ 0%@1600 GR3D_FREQ 0%@510
APE 150 MTS fg 0% bg 0% A0Q41C GPUQ@41C PMIC@50C AUXQ41.5C CPUQ@43C thermal@41l.65C
VDD_IN 2812/2826 VDD_CPU_GPU_CV 326/339 VDD_SOC 1059/1059

Listing 5.1: Tegrastats Log Example for Jetson NX

The set of sampled layers are profiled locally on each node, based on the process analyzed above. The
resulting profiling information for an edge node k is the Node’s Latency Matrix (LM}) and Node'’s
Energy Matrix (EFMj). Both of these matrices are forwarded to the Predictor mechanism that is
described in detail in the Online part of our approach (Section 5.2.2), where they will be further
processed.

Network Profiler

A common aspect of edge computing systems is their ability to operate utilizing the existing network
infrastructure. When offloading decisions must be made, as discussed previously both in Chapter 2
and the beginning of Section 5.2, it is vital to accurately estimate the overhead imposed by the
transmission of data over the network. As a result, we perform profiling of the Network for energy and
latency (both for the transmission and the reception of data) utilizing an extended Network Profiling
mechanism (@) Our mechanism profiles the transmission and reception of data ranging from a few
KB to a few GB in accordance to what was described in 4.5. The resulting datapoints of this profiling
can be seen in Fig. 4.5.1.

When the profiling step has been completed, we generate a set of two vectors. The The Network
Latency Vector (NLV}) contains datapoints correlating the size of a transmitted or received message
to the latency of the transmission, while the Network Energy Vector (NEV}) represents the energy
required for the transmission (or reception) of alternative message sizes. These two vectors are used

37

Chapter 5. DNN Partitioning and Offloading

to generate fourth-order polynomial curves for the associated data, with the polynomials later being
used during the Online Phase for estimation of the network’s overhead. Each device creates its own
set of Polynomial parameters, tailored to its unique network connection characteristics.

5.2.2 Online Phase

The high dynamicity of the edge computing environment creates the need for our framework to make
decisions in a run-time manner. Addressing this issue are the following two components that make up
the core of our methodology.

e Predictor (@): Responsible for dynamically predicting latency and energy per layer.

e Offloader (@): Responsible for network and Collaborative Filtering data aggregation, dynamic
DNN partitioning and offloading.

Predictor

The Node’s Latency Matrix (LM}) and Node’s Energy Matrix (EMj) that were produced during
execution of the DNN Profiler (@) for every node k are aggregated on the cloud server (@) The
transmission of the matrices is performed over FTP. By combining all of the LMjs into a single
matrix and all of the EMys into another one, we generate two new matrices that span the entirety of
our edge devices, Sparse Latency Matrixz and the Sparse Energy Matriz, respectively. As their name
would suggest, these matrices are sparse due to the fact that their fill percentage is regulated by the p
parameter, that was defined in the DNN Profiler. Each time the sparse matrices are generated, a run of
the Collaborative Filtering algorithm is performed (@), generating estimates for the unknown values
and creating the Final Latency Matriz(LM) and the Final Energy Matriz(EM), containing the energies
and latencies for all the DNN layers on all the edge devices. Once these matrices are generated, the
edge devices are notified by the server to retrieve their individual results, containing accurate estimates
for the latency and energy of the DNN layers for that specific edge device. Contrary to prior works,
which depend on extensive profiling of the DNN models [9], [11], our approach is adaptable to dynamic
scenarios. New nodes joining the network are integrated in the existing latency and energy matrices
and the sparse matrices are updated, triggering re-runs of the mechanism. Furthermore, new incoming
Neural Network models can benefit from layers already in the CF matrices.

5.3 Collaborative Filtering Mechanism

As shown in subsection 4.3.3, Collaborative Filtering can be used to infer unknown values in a sparse
user-item style Matrix. Originally the algorithm was implemented in Python with the help of NumPy,
achieving the required accuracy for our application. However, the comparatively long time required for
training (approximately 30 minutes) was unacceptable for its usage in the Online Mechanism shown
earlier. To counteract this issue, the critical path of the algorithm was rewritten in C++ at first and
then accelerated/parallelized with the usage of OpenMP [18] to take advantage of our multicore edge
server. These modifications reduced the training time to only 4 seconds, which is low enough to be
used in the Online scenario.

Our collaborative filtering is based on matrix decomposition, i.e. based on the factorization of each
matrix into a product of matrices. At first the sparse matrix R is filled with the known values, that is
the few layers that were profiled on a specific device. Element R; ; contains the value (energy or latency
depending on what we want to infer) of device 4 for layer type j. For the values that have not been
derived through profiling, the corresponding cells in the matrix are filled with zero. From the above, it
can be inferred that matrix R is of dimensions M x N, where M is total number of devices and N the
different types of layers encountered in the different Neural Networks that we have implemented. We
introduce two new matrices, P and) with dimensions M x K and K x N respectively, where K is the
number of features in our Collaborative Filter, derived through experimentation. Matrices P and @)

38

© 0 N O s W N+

o
= o

HoRR
W N

5.3. Collaborative Filtering Mechanism

Algorithm 1: DNN Partitioning Algorithm

Partition(network):
for layer in (0,...,N-1) do
/* predict local for layers 0 to layer */
11=predictLocal(0, layer)
for j in (layer+1,...,N-1) do
/* predict network,cloud for layers i+ 1 to j */
n=predictNetwork(layer+1, j)
c=predictCloud(layer+1, j)
/* predict network,cloud for layers j+1 to N —1*/
12=predictLocal(j+1, N-1)
totalPredictions=accumulatePredictions(11,n,c,12)

/* find Pareto Optimal */
paretoPoints = DesignSpaceExploration(totalPredictions)
return paretoPoints

are initially filled with random data. The expected value of an element can be derived by multiplying
the ¢ row of the P matrix with the j column of the () matrix.

Ry Rip -+ Rin Py P - P Qi Q12 - QN
Ry Ry -+ Ron Py Py - Py Qa1 Qa2 - Qon
Ryni Rme -+ Runw Pyt Py2 -+ Pux Qr1 Qr2 - QN

Figure 5.3.1: Decomposition of R matrix into P x @

Training of the Collaborative Filter relies on gradient descent. More specifically, training loss calculated
by comparing the estimated value and the actual value from the known element multiplied by a preset
training rate, updates the features in the P and @) matrices, so that a loss function is minimized, in
this case Mean Squared Error - (MSE). This process is repeated for a large number of times so that the
values are able to converge. Finally, all the the elements in the R matrix, including the once unknown
values can be inferred by multiplying the P and) matrices.

5.3.1 Offloader

The last component in the Online Phase aggrerates the network polynomials and CF data and based on
these, performs the actual partitioning and offloading of the DNNs. On each edge node k that wishes to
perform an inference, the polynomials as well as the corresponding rows of the LM and EM matrices
are gathered in order to generate energy and latency estimates for the different partitionings of a Deep
Neural Network. The DNN Partitioning FExploration (@) utilizes the above data by feeding them
into the DNN partitioning exploration algorithm that is illustrated in Algorithm 1. This algorithm
explores all the possible partitioning solutions and then keeps only the ones that correspond to the
Pareto Optimal set defined by the points that have the lowest energy and/or latency. Each pareto
point in this set is a different DNN splitting, with a subset of the layers executed on the edge device
(@) and the rest being offloaded to the cloud server (@) Our possible solutions are characterized
by a tuple of two indexes (7, j) that define the following offloading scheme.

e Layers 0 to 7 are executed on the edge device.
e Layers ¢ + 1 to j are executed on the cloud server.
e Layers from j + 1 and up to the end of the network are executed once again on the edge device.

Edge cases such as fully local and completely offloaded executions are also evaluated and remain valid
execution schemes if their performance/energy estimates are part of the Pareto set. A differentiation

39

Chapter 5. DNN Partitioning and Offloading

Offloading
Server
.. OFfloadEd SEGMENE [+ -+« e e e et gt
FTP STOR ZMQ send
layers and data ready Intermediate
intermediate notification Results 2
results
(Geoe) Lo
Device
.................... Local Segment 1 e Y Local Segment 2 R
Input Output

Figure 5.3.2: Offloading Request and Response

point of our framework compare to existing approaches [8] is the ability to offload when skip-layer
connections are present, a problem described and solved in subsection 4.2.5.

5.4 Lifetime of an Inference Request

In this section we will discuss the individual components that an allow our framework to facilitate
inference requests, elaborating on the steps that make up the calculation of layers, more specifically
stages @ and @ The individual components that comprise this pipeline are the following;:

e layerLib: A module containing the framework’s implementation of various Neural Network
layers.

e nnlib: A library that contains the definitions for various DNN architectures, written to support
our framework.

e offloadingServicesClient: The module responsible for ofloading part of the computation to
the edge server.

e offloadingManager: The orchestrator for the execution of an inference request, managing both
the local and remote parts of the execution.

All of the components mentioned previously reside in the edge device, however there exists one more
component. 0ffloadingServicesServer is responsible for the server-side computation of an inference
request. In the following segment we will describe the inner workings of the components mentioned
above as well as the interactions between them.

5.4.1 layerLib

layerLib serves as the interface between our framework and its basis, PyTorch. In essence, it re-
implements the definitions of Neural Network Layers by creating wrapper class around the PyTorch
layer. This wrapper class maintains full compatibility with PyTorch with one key difference: the
__call__ method is overloaded so that instead of computing the output of a layer it creates a copy
of it, registering it with the offloadingManager as will be seen later. It also serves the function
of managing the inter-layer dependencies found in Residual Neural Networks, a problem that was

40

5.4. Lifetime of an Inference Request

mentioned previously in 4.2.5. In this case, we create a new layerLib layer type that confines the
dependency within it. For example, the implementation of a Bottleneck sequence of layers from
ResNet registers a new class of layer, containing all the Conv, BatchNorm, Downsampling and addition
operations within the sequence. This new Bottleneck layer is considered atomic, meaning that it can
either be offloaded in its entirety, or not offloaded at all.

5.4.2 nnLib

The purpose of nnLib is to contain the definitions for the Neural Network Architectures that we have
selected. These definitions utilize the layer implementations from layerLib so that the Neural Network
can later be partitioned and offloaded to the edge server.

5.4.3 offloadingServicesClient

offloadingServicesClient provides the core functionality of the offloading mechanism. It achieves
this through the use of two different protocols, ZeroMQ and FTP. The offloading mechanism works by
first pickling the selected layers along with their input. It then establishes a connection with an FTP
server that listens on the offloading device. Before transmitting the data, offloadingServicesClient
sets up a ZeroMQ socket that listens for messages from the offloading server. The functionality provided
by this function will become apparent later. Once the ZMQ socket is initiated, data is transmitted over
FTP (FTP STOR command). The edge device now blocks, until a ZMQ message is received, notifying
the device that the offloaded data has been processed by the server and the results can be received via
the FTP RETR command. This approach allows us to avoid constantly polling the server for the state of
our data. The received results are finally unpickled and all active sockets are closed, with the output
provided by the offloading action being fed to the remaining layers of the Neural Network.

5.4.4 offloadingManager

All of the components mentioned previously provide different types of funtionality to our framework.
However, it is the job of offloadingManager to orchestrate the partitioning and distribution of data.
First, of all, the offloadingManager component contains a a list with all the layers from the Neural
Network. This is achieved through the overloading of the __call__ method as was mentioned in the
presentation of the layerLib component. Given this list and the partitioning points i,j from the
DNN Partitioning Exploration, it creates three different nn.Sequential class objects:

1. Local_1, containing all the layers up to i—1. This object receives the input image and is executed
locally on the embedded CPU or GPU depending on the selected configuration. The output of
this sequence of layers is the first intermediate result.

2. Offloaded, containing layers ¢ through j. This object along with the first intermediate result is
offloaded to the edge server with the help of the offloadingServicesClient module. Once its
results are retrieved, they form the second intermediate result.

3. Local_2, containing the rest of the layers, j 4+ 1 and up to the last layer of the Neural Network.
These are computed locally with their output forming the output of the Neural Network.

5.4.5 offloadingServicesServer

In contrast to the previous components, 0OffloadingServicesServer is located on the edge server,
launching the FTP server that data is sent to by the 0ffloadingServicesClient component. The
implementation is based on pyftpdlib by creating a custom on_receipt method that is called when-
ever a file is uploaded to the FTP server. More specifically, instead of behaving like a typical FTP
server storing the data over the network, the on_receipt method unpickles the received data, com-
puting output of the offloaded nn.Sequential class object from the given input. It then sends the
ZeroMQ message that notifies the edge device for completion of the computation, as was mentioned in

41

Chapter 5. DNN Partitioning and Offloading

OffloadingServicesClient. Once the data are retrieved, an overload on the on_file_sent method
deletes the temporary files.

42

Chapter 6

Experimental Evaluation

6.1 NVIDIA Jetson Family of devices

In this section we will present the NVIDIA Jetson family of edge devices, which are specialized for
providing inference solutions at the edge of the network. In accordance with the trend presented in 2,
these edge devices incorporate GPUs to accelerate Neural Network inference requests.

We set up all of our edge devices to run the same NVIDIA provided image, namely Jetson
Linux R32.7.1 [33]. Our framework was set up to run on the same PyTorch Docker image
(14t-pytorch:r32.7.1-pthl.10-py3) [34], which provided by the manufacturer.

6.1.1 Device Specifications

In order to be fair in our evaluation, we have selected devices with different computational capabilities,
ranging from powerful edge devices such as the Jetson AGX and Jetson NX, to less capable ones such
as the Jetson Nano and Jetson Tegra TX1 boards.

Jetson AGX

Jetson AGX is the top-of-the line edge device produced by NVIDIA, containing an 8-core ARM pro-
cessor, 32GB of RAM and a 512-core GPU Volta GPU with Tensor cores. It also contains hardware
accelerators for Computer Vision and Deep Learning applications, with the latter supporting fixed
point arithmetic. The device can be configured to run in a variety of Power Modes that adjust the
Clock frequencies and active cores in its various processing systems, in order to stay under a given
power target.

Jetson NX

Jetson NX contains a 6-core CPU and a 384-core Volta-GPU with Tensor cores, as well as 8GB of
RAM! In general Jetson NX offers increased performance compared to the Jetson TX1 and Jetson
Nano device, but reduced performance compared to the AGX. As was the case with the latter, Jetson
NX also includes specialized hardware for the acceleration of Deep Learning and Computer Vision
applications, as well as the selection of power modes, 5 different modes by default, that enforce power
constraints.

IThere also exists a 16GB model.

43

Chapter 6. Experimental Evaluation

(a) NVIDIA Jetson AGX (b) NVIDIA Jetson NX

(c) NVIDIA Tegra TX1 (d) NVIDIA Jetson Nano

Figure 6.1.1: Devices from the NVIDIA Jetson family

Jetson Nano

Jetson Nano is the smallest, least powerful device currently offered by NVIDIA. It features a Quad core
ARM processor, alongside a 128-core Maxwell GPU? and 4 GB of RAM 2 This device does not feature
the dedicated hardware accelerators mentioned on the previous devices, it does however support two
different power modes, setting the maximum power draw to 5 and 10W respectively.

Jetson TX1

The TX1 is a previous generation NVIDIA edge device with a quad core processor, a 256-core Maxwell
GPU and 4GB of RAM. Similarly to the Nano, the Jetson TX1 does not feature the hardware accelera-
tors offered on the newer, more powerful devices and it also does not support power mode configuration
that the rest of the presented devices offer.

2As opposed to the Volta GPU architecture of Jetson NX and AGX this does not support tensor cores.
3A 2 GB model also exists.

44

6.2. Experimental Setup

Table 6.1: Technical characteristics of heterogeneous Edge nodes and Cloud Server [35]

Device CPU L2 L3 DRAM GPU
Jetson AGX 8xCarmel@2.2GHz ARMvS8.2 64-bit 8MB 4MB 32GB 512x Volta@1.4GHz
Jetson NX 6x Carmel@1.4GHz ARMvS8.2 64-bit 6MB 4MB 8GB 384 x Volta@1.1GHz
Jetson Nano 4xCortex-A57@1.4GHz ARMvS 64-bit 2MB - 4GB 128 x Maxwell@0.9GHz

Jetson TX1 4xCortex-A57@1.7GHz ARMvS8 64-bit 2.5MB -

4GB 256 x Maxwell@1.0GHz

Table 6.2: Configurations by Power Mode table for all devices, highlighted entries are the ones

utilized during the experiment [36]

Device Mode ID CPU configuration GPU Freq Max Power
Jetson AGX 0 8 @ 2.265GHz 1377 MHz unlimited
Jetson AGX 1 2 @ 1.2GHz 520 MHz 10W
Jetson AGX 2 4 Q 1.2GHz 670 MHz 15W
Jetson AGX 3 8 @ 1.2GHz 900 MHz 30W
Jetson AGX 4 6 @ 1.45GHz 900 MHz 30W
Jetson AGX 5 4 @ 1.78GHz 900 MHz 30W
Jetson AGX 6 2 @ 2.1GHz 900 MHz 30W
Jetson AGX 7 4 @ 2.19GHz 670 MHz 15W
Jetson NX 0 2 @ 1.9GHz 1100 MHz 15W
Jetson NX 1 4 @ 1.4GHz 1100 MHz 15W
Jetson NX 2 6 @ 1.4GHz 1100 MHz 15W
Jetson NX 3 2 @ 1.5GHz 800 MHz 10W
Jetson NX 4 4 Q 1.2GHz 800 MHz 10W
Jetson NX 5 4 Q 1.9GHz 510 MHz 10W
Jetson NX 6 2 @ 1.9GHz 1100 MHz 20W
Jetson NX 7 4 @ 1.4GHz 1100 MHz 20W
Jetson N X 8 6 @ 1.4GHz 1100 MHz 20W
Jetson Nano 0 4 @ 1.48GHz 912 MHz 10W
Jetson Nano 1 2 @ 0.9Hz 640 MHz 5W
Jetson TX1 0 4 @ 1.73GHz 964 MHz unlimited

6.2 Experimental Setup

6.2.1 Hardware Infrastructure

In order to evaluate our framework we deploy a setup comprised of heterogeneous NVIDIA CPU/GPU
devices, as described in 6.1. The role of the offloading/cloud server is covered by a capable x86 server
featuring 2 x 20 — core Intel Xeon Gold 5281R. processors and an NVIDIA Volta-V100 GPU, forming
a setup typical in both edge and cloud scenarios [17].

6.2.2 Technical Implementation

Our framework is mainly written in the Python programming language. The device cluster is connected
internally and to the outside world via an 80MB /s wireless network. Control messages are sent via the
ZeroMQ protocol and FTP is the connection protocol responsible or the transmission of the actual data
and layers. As to overcome the differences in architectures, operating systems and Python package
versions, the framework is deployed in a dockerized container. The GPU acceleration for the NN layers
is developed in CUDA. Our Collaborating Filtering component also makes use of C++ and OpenMP for
acceleration of the critical path.

45

Chapter 6. Experimental Evaluation

6.2.3 Examined DNN models

During evaluation we test for a variery of established DNN architectures and their variants, i.e. AlexNet
(alex), MobileNetV2 (mv2), Resnet18 (res18), Resnet34 (res34), Resnet50 (res50), Resnet101 (res101),
Resnet152 (res152), VGG11, VGG13 and VGG16. These architectures see widespread use in object
detection and image classification tasks in edge computing scenarios [37], [38]. We also vary the input
sizes, evaluating for images with dimensions of 224 x 224, 512 x 512 and 768 x 768. The DNN models
are ported from PyTorch [19] and are integrated to our framework.

6.2.4 Reference Baselines
The evaluation of our approach covers three key metrics.
1. Performance (Latency)
2. Energy Consumption
3. Prediction accuracy of our Collaborating Filtering approach.
We compare ourselves against different execution strategies such as:
e Offload None, which executes the Neural Network on the edge device only.
e Offload All, performing a full offloading of the DNN to the cloud server.
e Neurosurgeon(NS) [8], a state-of-the-art resource management algorithm for DNN offloading.

In addition, since Neurosurgeon pre-offloads the layers to the cloud and thus does not need to transmit
any layers (only intermediate results), we level the playing field by implementing a version of it that
offloads layers at the time of execution, named NS-nonOffloaded. We also implement a pre-offloaded
implementation of our framework that works similarly to Neurosurgeon, with the layers offloaded a
priori to the cloud.

6.3 Evaluation

6.3.1 Performance and Energy Evaluation

For our first comparison, we evaluate our framework for performance and energy consumption against
the approaches mentioned earlier in Section 6.2, illustrated in Fig. 6.3.1. We limit this comparison
to DNNs without skip-layer connections (taking ResNet and MobileNet out of the evaluation pool
for now), as Neurosurgeon is not designed to operate with Residual DNN architectures. Thus the
displayed data come from experiments on the VGG11,13,16 and AlexNet models only. In all of the
plots of Fig. 6.3.1, the X axis demonstrates energy gain (or loss) of our framework against the compared
approach and the Y axis similarly demonstrate the relative speedup (or slowdown). Fig. 6.3.1a displays
results for CPU execution only, while in Fig. 6.3.1b our devices were configured to perform inference
on the GPU. As can be seen, each plot can be divided into four distinct sectors:

e One green sector, where our framework wins the comparison in both speedup and energy

e Two orange ones, demonstrating that our framework performs faster but with higher energy
consumption, or slower at reduced energy expenditure against the compared approach.

e One red sector, where our framework performs worse both in terms of performance and energy.

For Fig. 6.3.1a (CPU execution) our framework outperforms the Offload All approach by providing
up to a 45.41x speedup and 95.84% energy reduction. Similarly, it outperforms the Offload None
approach with up to 6.61x performance increase and 95.87% energy savings. Similar results can be
seen for GPU execution (shown in Fig. 6.3.1b). When comparing ourselves to Neurosurgeon, more often
than not NS wins the comparison, placing our framework in the red quadrant, due to the fact that it
already has the DNN weights on the cloud, an insurmountable advantage, as we endure much larger

46

6.3. Evaluation

penalties for transmiting data over the network. Nevertheless, when compared to the online version
of Neurosurgeon (NS-nonOffloaded) our framework can provide a 4.97x mean speedup and a 81.85%
mean energy saving on the CPU, with the GPU evaluation giving up to 35.74x better performance
and 88.73% energy gain against NS-nonOffloaded. This is due to the fact that all NS approaches
define a single breakpoint, after which all execution is offloaded. That means that if an offloading
point is selected, NS-nonOffloaded must transmit all the layers beyond that point, which often entails
transmitting the large Linear Layers at the end of Neural Networks (seen many times in Section 4.2).
As a result, it often has to make a difficult choice between offloading with high network costs and
executing locally on relatively slow hardware. Our approach solves this issue by selecting two partition
points, allowing offloading to start and stop at any point in the network, thus providing us with the
ability to offload large parts of the computation while keeping cumbersome layers locally. Furthermore,
if we a priori offload the layers in our framework, we can expect up to 54.09x improvement in terms
of performance and up to 58.06x improvement in terms of energy when compared to Neurosurgeon.

Energy Gain(log)
(c) CPU-Skip Layers

@® Road-RuNNer vs Offload None ® Road-RuNNer vs Offload None
© Road-RuNNer vs Offload All © Road-RuNNer vs Offload All
© Road-RuNNer vs NS © Road-RuNNer vs NS
O Road-RuNNer vs NS-nonOffloaded O Road-RuNNer vs NS-nonOffloaded
~ 102L2 Road-RuNNer-preOffloaded vs NS | _ 10212 Road-RuNNer-preOffloaded vs NS
o)) o)) 3 (o)
o (=] (8 (0]
= =
o o] dJOQ) o)
3 1 o 3 1 (? (@]
- 10 < 10° 3 o?gm 0
o o] o 89
]] €]
Q. o o) 06
wn o & wv] 8o ©
(0] 100 .e’ﬁ. (0] 100 4 @b} d)
2 2] © %)
- -
L L
[} [} e
&£ 107!+ : : £ 10! . .
1071 100 10! 102 1071 100 10! 102
Energy Gain(log) Energy Gain(log)
(a) CPU-No Skip Layers (b) GPU-No Skip Layers
@® Road-RuNNer vs Offload None ® Road-RuNNer vs Offload None
~ 102 ® Road-RuNNer vs Offload All ~ 102 ® Road-RuNNer vs Offload All
o 3 o 5 e o
o 1 o
) ° = .O
o] o] e°0
o)
'g 101 E § 5} ' .g 101 4 gf
Q 1 o Q 1
Q e o J o
&] e &]
()
¢ 10° - ¢ 10° - ‘
]] .
-— -— @
[[F 4
&£ 107! T T &£ 107! —rrT T
1071 100 10! 102 1071 100 10! 102

Energy Gain(log)
(d) GPU-Skip Layers

Figure 6.3.1: Performance and Energy Comparison of RoaD-RuNNer framework against other

approaches for CPU and GPU nodes for alternative DNN workloads.

47

Chapter 6. Experimental Evaluation

Our framework, in contrast to Neurosurgeon can handle skip-layer connections in DNNs. As a result we
continue our evaluation by adding the previously excluded Resnet18, Resnet34, Resnet50, Resnet101,
Resnet152 and MobileNetV2 models to the benchmark suite. The new results are depicted in plots
Fig. 6.3.1c and Fig. 6.3.1d for CPU and GPU execution, respectively. When it comes to CPU execu-
tion, our framework can outperform the Offload None approach by offering up to 13.92x optimized
performance and 46.07x less energy consumption. Offload All is also outperformed, up to 45.41x
in terms of performance and 24.05x in terms of energy. Finally, evaluating our findings for GPU
executions reveals an 1.85x speedup (maximum) and 1.34x energy saving (maximum) compared to
Offload None and 112.98x faster execution on average, with 16.59x smaller energy consumption (also
on average) in comparison to Offload All.

6.3.2 Prediction Accuracy

The ability of our framework to perform is correlated to the accuracy of its prediction (Collaborative
Filtering) mechanism. The first step in its evaluation is a comparison of the Root Mean Square Error
(RMSE) of the learning phase in our approach, to the RMSE of Neurosurgeon’s prediction algorithm
(Linear and Log regression). As seen in Fig. 6.3.2, after only 30% of the input of the training set
being given, the latency and energy consumption error has converged. We can also see much better
performance when compared to Neurosurgeon, up to 6.45x and 8.48x less error, for execution latency
and energy, respectively. It must be mentioned that Neurosurgeon displays linear behavior, due to the
fact that it utilizes the entirety of the dataset during the training phase.

Fig. 6.3.3 compares the accuracy of our execution time and energy predictions for our approach and
Neurosurgeon. This is repeated for every examined DNN architecture and available edge device.
We outperform Neurosurgeon by having 68.01% less execution time prediction error and 63.8% less
energy prediction error per DNN on average (Fig. 6.3.3a, 6.3.3b), while also achieving up to 69.6%
less execution time prediction error and up to 34.9% less energy prediction error per edge device
(Fig. 6.3.3c, 6.3.3d). The Linear and Log regression prediction models of Neurosurgeon are unable to
capture complex non-linear behaviours in the system, in contrast to our CF algorithm, thus giving us
the advantage in terms of RMSE.

|[—— RoaD-RuNNer —e— Neurosurgeon| |[—— RoaD-RuNNer —e— Neurosurgeon|
900 2.4
800 | emmmmmncne g g - 22
700 —---mm - m o m o mmm o mmmmmomooooooooo 1.8 -
L w 1.6
R @ 147
400 A-mmm oo s 1.0 1
e 1.
S 11— 08
D 82]
100 q----m-mm- T e e o 0.2
0 T T T T T 0.0 T T T T T
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9
Training set % Training set %
(a) Execution Time RMSE (b) Energy Consumption RMSE

Figure 6.3.2: Root Mean Square Error(RMSE) of execution time and energy consumption over
alternative Collaborative Filtering fill percentages.

48

6.3. Evaluation

mmm RoaD-RuNNer === Neurosurgeon

X 100 100 100

§ 80 80 80

w60 60 60

§ 40 40 40

T 20 20 20

T

¢ 0 0 0

o
X = mMm © X = m © X X = O X X = 0o
VU = = UV = =
9 = O =2 X < O =2 X <
° 335 3 °© 353 3 < S < 3

> > 35 S S 5

Neural Network Neural Network Edge Node Edge Node

(a) Latency per DNN (b) Energy per DNN (c¢) Latency per Edge (d) Energy per Edge
model model Device Device

Figure 6.3.3: Execution Latency and Energy Consumption Prediction Accuracy for alternative DNN
workloads and Edge nodes.

6.3.3 DNN Offload Analysis

More can be said about the decisions made by our framework in order to achieve its execution latency
and energy optimization targets. Fig. 6.3.4 depicts the layer offloading percentage (the number of
offloaded layers per model and device), for each optimization target. In Fig. 6.3.4a, where the mini-
mization of latency is the goal, we see that the more capable devices such as the Jetson AGX and Jetson
NX offload less layers for remote execution, compared to the less powerful devices (Jetson Nano and
TX1). Similar behaviour can be seen when trying to optimize for energy consumption (Fig. 6.3.4Db).
In general, optimizing for energy leads to higher offloading percentages (90.1% on average) than opti-
mizing for latency (74.45% on average). We attribute this fact to the high latency penalties imposed
by the network, making large transmission of data and layers prohibitively expensive when trying to
reduce the latency.

alex - 0.00 0.00 100 alex 100
~ mv2 EEREE] ~ mv2
S res101 -40.57 80 5 res101 80
E resl52 -35.04 E resl52
9 resl8 60 9 resl8 60
4 2
— res34 ~ 40 — res34 - 40
® res50 ® res50
3 vggll 3 vggll
2 vggl3 -20 3 vggl3 - 20
vggl6 -0 vggl6 -0
AGX NX Nano TX1 AGX NX Nano TX1
Device Device
(a) Latency Objective (b) Energy Objective

Figure 6.3.4: DNN percentage offloading over heterogeneous Edge nodes for latency and energy
optimization objectives.

49

Chapter 6. Experimental Evaluation

50

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis presents a novel resource management framework for partitioning and offloading of Deep
Neural Networks over heterogeneous CPU/GPU edge architectures. Our framework utilizes Collabo-
rative Filtering techniques to estimate performance and energy requirements of individual DNN layers
over heterogeneous devices. By aggregating this information and passing it on to a partitioning algo-
rithm, it specifies a set of Pareto optimal DNN partitioning schemes that trade-off between inference
latency and energy consumption. Our approach outperforms existing state-of-the-art approaches by
providing 9.58x speedup on average and up to 88.73% less energy consumption, while offering high
prediction accuracy, limiting the prediction error down to 3.19% and 0.18% for latency and energy,
respectively.

7.2 Future Work

Various optimizations and variations on our work can be applied in the future. During the formulation
of our methodology and subsequent experimentation we discussed the following possibilities as future
tangents to our work. Through these we aim to further increase the performance of our framework
and expand it to more heterogeneous platforms.

e Optimizing and pipelining the communication stage of our algorithm so that communication and
computation overlap, at least partially.

e Dynamically switching between the available power modes in the edge devices in order to meet
inference deadlines or minimize energy.

e Implementing the more detailed graph solving approach for managing dependencies in Residual
Neural Networks.

e Caching of offloaded layers at the edge server so that previously executed layers will not need to
be re-transmitted.

e Offloading to neighbouring edge devices (as opposed to the current edge server only approach)
to increase throughput.

e Creating more dynamic partitioning and offloading algorithms that modify the offloading scheme
at inference time in order to meet deadlines.

e Expanding our framework to other architectures such as FPGAs to further exploit heterogeneity.

o1

Chapter 7. Conclusion and Future Work

52

Bibliography

2]
13l

4]

[5]

16]
7]
18]

19]

[10]

[11]

[12]

[13]

[14]

[15]

S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learning techniques
for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3, pp. 362-386, 2020.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep learning for healthcare: Review,
opportunities and challenges,” Briefings in bioinformatics, vol. 19, no. 6, pp. 1236-1246, 2018.
Y. Liang, D. O’Keeffe, and N. Sastry, “Paige: Towards a hybrid-edge design for privacy-preserving
intelligent personal assistants,” in Proceedings of the Third ACM International Workshop on Edge
Systems, Analytics and Networking, 2020, pp. 55—60.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “ A survey on mobile edge computing: The
communication perspective,” IEEE communications surveys & tutorials, vol. 19, no. 4, pp. 2322—
2358, 2017.

Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed adaptive deep learn-
ing inference on resource-constrained iot edge clusters,” IEEE Transactions on Computer-Aided
Design of Integrated Clircuits and Systems, vol. 37, no. 11, pp. 2348-2359, 2018.

V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural networks:
A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295-2329, 2017.

P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation
offloading,” IEEE communications surveys & tutorials, vol. 19, no. 3, pp. 1628-1656, 2017.

Y. Kang, J. Hauswald, C. Gao, et al., “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1, pp. 615—
629, 2017.

H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental offloading of neural net-
work computations from mobile devices to edge servers,” in Proceedings of the ACM Symposium
on Cloud Computing, 2018, pp. 401-411.

L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge: Cooperative dnn inference with
adaptive workload partitioning over heterogeneous edge devices,” IEEE/ACM Transactions on
Networking, vol. 29, no. 2, pp. 595-608, 2020.

S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane, “Spinn: Synergistic
progressive inference of neural networks over device and cloud,” in Proceedings of the 26th annual
international conference on mobile computing and networking, 2020, pp. 1-15.

R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward collaborative inferencing of deep neural
networks on internet-of-things devices,” IEEFE Internet of Things Journal, vol. 7, no. 6, pp. 4950—
4960, 2020.

M. Katsaragakis, D. Masouros, V. Tsoutsouras, et al., “Dmrm: Distributed market-based re-
source management of edge computing systems,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2019, pp. 1391-1396.

A. Karteris, M. Katsaragakis, D. Masouros, and D. Soudris, “Sgrm: Stackelberg game-based
resource management for edge computing systems,” in 2022 Design, Automation & Test in Furope
Conference & Ezhibition (DATE), IEEE, 2022, pp. 1203-1208.

C. Delimitrou and C. Kozyrakis, “Paragon: Qos-aware scheduling for heterogeneous datacenters,”
ACM SIGPLAN Notices, vol. 48, no. 4, pp. 77-88, 2013.

53

Bibliography

[16]

[17]
[18]

[19]

[20]

[21]

[22]

23]

[24]
[25]
[26]
[27]
28]

[29]

[30]

E.-I. Christoforidis, S. Xydis, and D. Soudris, “Cf-tune: Collaborative filtering auto-tuning for en-
ergy efficient many-core processors,” IEEE Computer Architecture Letters, vol. 17, no. 1, pp. 25—
28, 2017.

Edge computing: Gaining the digital edge, Accessed: 10-09-2022.

L. Dagum and R. Menon, “Openmp: An industry-standard api for shared-memory programming,”
IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46-55, Jan. 1998, 1ssN: 1070-9924. por: 10.1109/99.
660313. [Online|. Available:

A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, 2019.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last
mile of artificial intelligence with edge computing,” Proceedings of the IEEE, vol. 107, no. 8,
pp- 1738-1762, 2019.

Y. Chen, B. Zheng, Z. Zhang, Q. Wang, C. Shen, and Q. Zhang, “Deep learning on mobile and
embedded devices: State-of-the-art, challenges, and future directions,” ACM Computing Surveys
(CSUR), vol. 53, no. 4, pp. 1-37, 2020.

L. Zhou, H. Wen, R. Teodorescu, and D. H. Du, “Distributing deep neural networks with con-
tainerized partitions at the edge,” in 2nd USENIX Workshop on Hot Topics in Edge Computing
(HotEdge 19), 2019.

S. Toffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reduc-
ing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015. arXiv: 1502 .03167. [Online].
Available:

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recog-
nition,” arXiv preprint arXiv:1409.1556, 2014.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770-778.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional
neural networks,” Advances in neural information processing systems, vol. 25, 2012.

A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient convolutional neural networks for
mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” CoRR,
vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online|. Available:

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998. por: 10.1109/5.
726791.

X. Su and T. M. Khoshgoftaar, “A survey of collaborative filtering techniques,” Adv. in Artif.
Intell., vol. 2009, Jan. 2009, 1SSN: 1687-7470. DOL: 10.1155/2009/421425. [Ounline|. Available:
File Transfer Protocol, RFC 959, Oct. 1985. DOI: 10.17487/RFC0959. [Online]. Available:
Tegrastats: Memory and processor usage for tegra-based devices, Accessed: 17-10-2022.

Jetson linuzx, Accessed: 17-10-2022.

Nvidia docker images: Pytorch, Accessed: 17-10-2022.

Nvidia jetson edge devices, Accessed: 17-10-2022.

Nvidia jetson power modes, Accessed: 17-10-2022.

Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A survey of convolutional neural networks: Anal-
ysis, applications, and prospects,” IEEE transactions on neural networks and learning systems,
2021.

E. Arnold, O. Y. Al-Jarrah, M. Dianati, S. Fallah, D. Oxtoby, and A. Mouzakitis, “A survey
on 3d object detection methods for autonomous driving applications,” IEFE Transactions on
Intelligent Transportation Systems, vol. 20, no. 10, pp. 3782-3795, 2019.

54

https://doi.org/10.1109/99.660313
https://doi.org/10.1109/99.660313
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1512.03385
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1155/2009/421425
https://doi.org/10.17487/RFC0959

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Figure List
	Table List
	Εκτεταμένη Ελληνική Περίληψη
	Εκτεταμένη Ελληνική Περίληψη
	Εισαγωγή
	Σχετική Βιβλιογραφία
	Partitioning και Offloading Νευρωνικών Δικτύων σε Edge Συστήματα
	Ορισμός Προβλήματος
	Προτεινόμενη Υλοποίηση
	Offline Στάδιο
	DNN profiler
	Network Profiler
	Online Στάδιο
	Predictor
	Offloader

	Αξιολόγηση
	Πειραματική Διάταξη
	Αποτελέσματα

	Συμπεράσματα και Μελλοντική δουλειά

	Introduction
	Contributions
	Thesis Structure

	Related Work
	Background on DNN architectures and layers, Network protocols, Network profiling and Collaborative Filtering
	Neural Network Layers
	Convolutional Layers
	Normalization Layers
	Activation Layers
	Pooling Layers
	Fully Connected Layers

	Neural Network Architectures
	AlexNet
	VGG
	ResNet
	MobileNetV2
	Comments on Residual Architectures

	Collaborative Filtering
	Brief Description
	Algorithms
	Matrix Factorization Collaborative Filtering for Predicting Latency and Energy

	Network Communication Protocols
	ZeroMQ Networking Library
	FTP Protocol

	Network Profiling

	DNN Partitioning and Offloading
	Problem Description
	Proposed Methodology for DNN partitioning/offloading
	Offline Phase
	Online Phase

	Collaborative Filtering Mechanism
	Offloader

	Lifetime of an Inference Request
	layerLib
	nnLib
	offloadingServicesClient
	offloadingManager
	offloadingServicesServer

	Experimental Evaluation
	NVIDIA Jetson Family of devices
	Device Specifications

	Experimental Setup
	Hardware Infrastructure
	Technical Implementation
	Examined DNN models
	Reference Baselines

	Evaluation
	Performance and Energy Evaluation
	Prediction Accuracy
	DNN Offload Analysis

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

