o
’

OMHOEVS .
:|

[l
nVP$POPOs

NV

“rl?

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

From Circuits to SoC Processors:
Arithmetic Approximation Techniques
& Embedded Computing Methodologies
for DSP Acceleration

Ph.D. Dissertation
Vasileios K. Leon

Athens
October 2022

From Circuits to System-on-Chip Processors:
Arithmetic Approximation Techniques

& Embedded Computing Methodologies

for Digital Signal Processing Acceleration

Vasileios Leon

Examination Committee

Prof. Kiamal Pekmestzi (Supervisor), National Technical University of Athens
Prof. Dimitrios Soudris, National Technical University of Athens

Associate Prof. Georgios Goumas, National Technical University of Athens
Prof. Dionysios Reisis, National and Kapodistrian University of Athens

Prof. Apostolos Dollas, Technical University of Crete

Prof. Dimitris Gizopoulos, National and Kapodistrian University of Athens
Prof. Antonis Paschalis, National and Kapodistrian University of Athens

Submitted to National Technical University of Athens in partial fulfillment of the re-
quirements for the degree of Doctor of Engineering (PhD in Engineering) in Computer
Science.

National Technical University of Athens

School of Electrical & Computer Engineering
Division of Computer Science

Microprocessors and Digital Systems Laboratory

>

VP $OPOS

W%

From Circuits to SoC Processors:
Arithmetic Approximation Techniques
& Embedded Computing Methodologies
for DSP Acceleration

Ph.D. Dissertation
of

Vasileios Leon

Supervising Committee: Kiamal Pekmestzi
Dimitrios Soudris
Georgios Goumas

Approved by the Examination Committee on October 10, 2022.

7(':&“’\/"5 _C

R s T S -
Dimitrios Soudris
Professor NTUA

Kiamal Pekmestzi
Professor NTUA

Georgios Goumas
Assoc. Professor NTUA

Dionysios Reisis
Professor NKUA

Dimitris Gizopoulos
Professor NKUA

Apostolos Dollas
Professor TUC

Antonis Paschalis
Professor NKUA

The current Ph.D. Dissertation was partially supported by research activities of the Euro-
pean Space Agency (ESA).

The content of the Ph.D. Dissertation does not reflect the official opinion of National Techni-
cal University of Athens. All the reported information and views lie entirely with the author.

Content that is reused from publications that the author has (co-)authored, namely ex-
cerpts, figures, and tables, is under copyright with the respective paper publishers (IEEE,
ACM, IET, Elsevier). These publications are explicitly stated in the abstract of each chap-
ter.

Content that is reused from third-party publications appears with the appropriate copyright
note. Reuse of any such content by any interested party requires the publishers’ prior
consent, according to the applicable copyright policies.

Content that has not been published before is copyrighted jointly as follows:

© 2022. All rights reserved.
Vasileios Leon, National Technical University of Athens

Vasileios K. Leon
PhD, Electrical & Computer Engineering, National Technical University of Athens
Diploma, Computer Engineering & Informatics, University of Patras

H nopodoa Awaxtopixty Atatel3r vntootelydnxe pepixtdc and epeuvnTinés dpaotneltdTnTeg
1nc European Space Agency (ESA).

O andeic xou tor cupnepdopata Tou TepEyovTon ot auth 0 Awaxtopinf) Aot expedlouv
TOV CUYYPAUPER Xou DV TIRENEL VoL epunveLdel 6Tl avTinpoowrebouy Ti¢ enionues Yéoeig tou E-
Yvixov Metobdflou ITohuteyvelou.

Anayopeletar n aviiypapt], anovfixeuorn xou davour tne mapoloac epyaciog, €€ ohoxArpou
N TURUOTOg VTS, Yo Epntopxd oxond. Emtpénetan n avatdnwor, arodixcuon xo dovoun
yiot oxond Pn xeEBOOXOTUXG, EXTAUDEVTIXAC N epeuvnTIXAC QOoNG, UTS Ty Tpobrddeon va a-
vapEpeTal 1 TNYN TEoEAeuone xau var dlatneeitan to mopdy urvuue. EpwtAuata mou agopolv
™ xenon e epyaciog i xepdooxomxd oxond meénel var aneLVOVTOL TEOG TOV GUYYE-
péa.

© 2022. Me empihadn mavtdg SXoU)dUAToq.
Baoiheiog Aéwv, EOvixd Metodfio ITohuteyveio (E.M.IL.)

Baoikeroc K. Aéwv
Awdntop Hiextpohdyog Mnyavinde & Mnyavixde Trohoyiotodv E.M.IL
Awmhwportotyos Mnyavixde H/T & IInpogoputc Ilavemotnuiov Iotpdv

Ytoug yoveig uov

Abstract

The recent end of Dennard’s Scaling and the declining Moore’s Law have signified
a new era for the computing systems. Power efficiency has now become a criti-
cal factor for both cloud and edge computing. Concurrently, the rapid growth of
compute-intensive applications from the Digital Signal Processing (DSP) and Arti-
ficial Intelligence (AI) domains challenges the resources of computing systems. As
a result, the computing industry is forced to find alternative design approaches and
computing platforms to sustain increased power efficiency, while providing sufficient
performance. Among the examined solutions, Approrimate Computing, Hardware
Acceleration, and Heterogeneous Computing have gained great momentum. Ap-
proximate Computing is a novel design paradigm that exploits the inherent error
resilience of DSP/AI applications to deliver gains in power, area, and/or perfor-
mance by reducing the quality of the results. Hardware Acceleration refers to the
execution of demanding computational tasks on specialized hardware, such as the
Application-Specific Integrated Circuits (ASICs) and the Field-Programmable Gate
Arrays (FPGAs), rather than general-purpose processors. Finally, Heterogeneous
Computing refers to versatile processing architectures, such as the Vision Processing
Units (VPUs), which integrate more than one type of processor and various memory
technologies.

In this Dissertation, we introduce design solutions and methodologies, built on top
of the preceding computing paradigms, for the development of energy-efficient DSP
and AT accelerators. In particular, we adopt the promising paradigm of Approximate
Computing and apply new approximation techniques in the design of arithmetic cir-
cuits. Based on our methodology, these arithmetic approximation techniques are
then combined with hardware design techniques to implement approximate ASIC-
and FPGA-based DSP and Al accelerators. Moreover, we propose methodologies for
the efficient mapping of DSP /AT kernels on distinctive embedded devices, such as the
new space-grade FPGAs and the heterogenecous VPUs. On the one hand, we cope
with the decreased flexibility of the space-grade technology and the technical chal-
lenges that arise in new FPGA tools and devices. On the other hand, we unlock the
full potential of heterogeneity by surpassing the increased hardware complexity and
exploiting all the diverse processors and memories.

In more detail, the proposed arithmetic approximation techniques involve bit-level
optimizations, inexact operand encodings, and skipping of computations, while they
are applied in both fixed- and floating-point arithmetic. To increase the design space
and extract the most efficient solutions, we also conduct an extensive exploration on

xiii

Abstract

combinations among the approximation techniques. Furthermore, we propose a low-
overhead scheme for seamlessly adjusting the approximation degree of our circuits
at runtime. In comparison with state-of-the-art designs, the proposed arithmetic
circuits feature a very large approximation space, i.e., a wide range of approxima-
tion configurations, which enable to maximize the resource gains for a given error
constraint. Our techniques induce a mean relative error of up to ~2%, i.e., typical
error values for approximate circuits. The most prominent approximate circuits of
the Dissertation form a high-resolution Pareto front in a comparative evaluation in-
volving state-of-the-art designs of the literature, and they deliver up to 63% better
energy consumption. Finally, our runtime-configurable circuits exhibit a small area
overhead of ~3% compared to the accurate design, and they provide ~1.5x less en-
ergy gains than their respective design-time counterparts with fixed approximation.
Nevertheless, they can dynamically change the approximation degree, namely, the
accuracy of the calculations, while they still attain remarkable energy gains versus
the accurate circuit and state-of-the-art approximate circuits. At the accelerator
level, we develop a plethora of approximate kernels for 1D /2D signal processing and
Convolutional Neural Networks (CNNs). The experimental results show that we
achieve small relative errors for classic DSP calculations and 0%—5% accuracy loss
in CNNs for various arithmetic formats, while providing up to 70% area and energy
savings.

Regarding the DSP acceleration on new space-grade FPGAs, we apply our method-
ology to efficiently map computer vision algorithms onto the radiation-hardened
NanoXplore’s FPGAs. In the end, we achieve balanced resource utilization, which
is comparable to that of well-established FPGA vendors. Moreover, the throughput
is sufficient (e.g., up to 10 FPS for feature detection on MPixel images), consider-
ing the performance requirements of vision-based space applications. In terms of
Heterogeneous Computing, we accelerate custom DSP kernels, a sophisticated com-
puter vision pipeline, and a demanding CNN with ResNet-50 backbone on Intel’s
Myriad VPUs. The proposed methodology and embedded design techniques pro-
vide speedups up to 20x for classic DSP on Myriad 2, while the power lies around
1W. The CNN is accelerated on Myriad X with 2W, achieving ~8.5x and ~1.7x
better performance-per-Watt than the ARM CPU and the Jetson Nano GPU, re-
spectively.

Keywords: Approximate Computing, Approximation Techniques, Arithmetic Cir-
cuits, Computer Arithmetic, Hardware Design, Hardware Accelerators, ASIC, FPGA,
VPU, SoC, Heterogeneous Computing, Embedded Systems, Space-Grade, Digital Sig-
nal Processing, Computer Vision, Convolutional Neural Networks.

Xiv

MepiAndm

To npdopouto téhog tng Khudxnwong tou Dennard xou 1 ¢divouca mopela tou Néuou
tou Moore €youv oNUATOBOTACEL Lol VEOL ETOYY| Ylot To UToAoYloTxd cuothuota. H
XATOVIAWOT) oy Uog anotehel TAéoV €vay xplowo toedyovta, TG00 Yid TO UTOAOYLO TLXO
VEQOC 600 %o Yldl UTOAOYIOROUS 0Ty dxpn Tou dixthou. Tavtédypova, 1 toyela avdmtu-
& amoUTHTIXDY EQOpROYMY atd Toug Topelc e Ungondic Enelepyacioac Yuatoc (DSP)
xau e Teyvntric Nonpootvne (AI) Snuioupyel npoxhioeic 6toug tdpous Twv utoloyL-
oGOV cuoTUdTeY. Q¢ anotéheoya, N Blounyavio Twv uTohoYlo Ty LoUetel evaAlo-
xTég Ped6d0uc oYedlUoNE HUXAWUATOV XAl CUCTAUATOY, OOTE VoL BIATNEHOEL YOUNAY
XATOVEAWOT] Loy 00G, TUPEYOVTOS OUMC Xou ETaEXT ToyUTNTo. Avdyesa otic MGES Tov
egetdlovtan, o Ipooeyyotikés Tnodopyiopuds expetahheteton Ty eYYEVA avlexTixdTnTa
oe o@dhpoto twv DSP /AT eqopuoydv kote va tpocgépet x€pdn o Tdpous YELVOVTAG
Ny oot Twv anotekeoudtwy. H Emtdyuvvon TAikol avogépetar oty extéreon
OTOLTNTIXOY UTOAOYLO TIXWY EQYAUOLOV O EEEBEVUEVO UAXO, 6Twe tor Ohoxhnpwuéva
Kuaapata Eduic Egopuoyfic (ASICs) xou o Luotoyiec Entéma HMpoypoupotiloue-
vov ITuhév (FPGAs). Téhoc, o Etepoyerric TmoAopyiouds ovapépetor o€ EVEMATES
apyLtextovixég enegepyaciog pe molhanholg TOnoug enedepyao T ol WVAUNG, OTwe oL
Movédec Encéepyaoioc ‘Opaorne (VPUS).

Yty napodoo Awaten, ewodyoupe oyedlaotixée Aoelg xan pedodoroyies Bactouéveg
ot mpoavapep¥évta tpdTuna oyedlaong, HE oTOYO TNV avdmTuln evepyeloxd anodo-
TIXOV ETTAYUVTOV UA00. Eyxetxd ye tov Hpooeyyiotind YTrnoloyioud, epapudlovue
VEEC TEYVIXEC TPOCEYYLONG o1 oyedlaon aptdunuxdy xuxhoudtwy. Ou teyvixéc autég
ouvdudlovton pe Bdon tn yedodoloylo woc pe xAaooéc Teyvixéc oyedlaong, Wote va
vhonojooupe tpoceyyloTixove DSP xou Al emitayuvtéc oe ASIC xow FPGA. Emniéov,
npoteivoupe pedodoloyiee yio Ty anotedespotin anotinworn DSP/AT nuphvey nédve
o€ IOLOPOPYPES EVOWUATWOUEVESC GUOXEVES, OTw¢ To véa FPGAS Sao tnuixot Baduol xou
ol etepoyevelc VPUs. ‘Ocov agopd 1o FPGAs, avtipetonilouvye Tic Te)vinéS Tpoxhioelc
TIOU TEOXVTITOLY XATA TN XeNoT VEWY epyahelwy, eved yia Ti¢ VP Us, Eexhetddvoupe dheg
TG QUVATOTNTES TNG ETEPOYEVELS, EETMEPVOVTAC TNV AUENUEVY TOMUTAOXATNTA LAXOU Xou
o€lomoldvtac GAOUG TOUS BLapopeTIX0oVE ThEOUC.

Ou mpotewvbueveg teyvixée aprduntixic mpooéyyione nepthaufSdvouy Beltio tonotioelc
oe eninedo duadixol Pnelou, un axpPeic xwdixomooelc TEAEGTOY, xou Tapdheldn v-
TONOYIOUY, VO e@appolovon oe aptduntxy) T6co otaldepric 660 xaL XVNTHC UTOdLa-
otolc. Tt va awénlel o ywpoc oyedlaone xou va eEGYOUUE TIC TO OMOTENECUATIXES

Greek Abstract

Nooelg, mpayuotonololye eniong plar exTeEVY e€epedivnor Tdvw GTouC GUVBVAGHOUE TWV
eyvxdy. Emmiéov, npotelvoupe éva oyrua younhic emBdouvone yla Ty anpéoxo-
ntn eVdior Tou Baduol TEOCEYYLONG TWV XUXAWUATWY XATE TO YPOVO EXTEAEON. Y€
oUYXELOT| UE OMUAVTIXG xUxhGpaTa TNe BiBAtoypapiog, ol tpotelvoueveg AUoelg dlardétouy
TOND PEYUADTERO YWPO TPOCEYYLONS (EUPUTEPO PEOUA TPOCEYYICEWY), ETTEENOVTAC TN
HEYIOTOTONOT TV XEPBWY OE TOEOUE Ylo Evay dedouévo meploplopd odiuatog. Ot
TEYVIXES YIS TPOXOAOUY €val HEGO OYETMS opdhua €0 xau ~2%, dnhadr TuTxés TuéS
OPIAYATOC TPOCEYYLOTIXWY XUXAwUdTwy. Ta mo e€éyovta npoceyyIoTid XUXADUOTY
e Awatpifric oynuatilouv éva obvopo Pareto udnivic avdiuong otn ouyxpitixn oflo-
AoynoT pe onuavtixée epyaocies ne Bihoypogiog, npoopépovtas ewe xar 63% xakUtepn
xaTovdAwor evépyetag. TéAog, Tar XUXAGUATA TOU UTopolY Vo puTIcoUY BuvaUIXd TNV
TROGEYYION, Exouv aLENUévn emdveia xatd ~3% oe alyxplon pe To oxpiBéc xUXAwU,
xon Topéyouy ~1.5x Arydtepa x€pdr evépyetag and To avtioToyo xuxhopato ye otadepy
npocéyylon. ‘Ouwe, €yxouv T duvatdtnta va ohhdlouy v axp(Bela 1wV UTOAOYICUWY,
eved e€oxohoudolv vo Tpocpépouy a&loonueltTa evepyelaxd x€pdT) EVavTL TOL oxXELB300g
HUUADOUATOC %ol XUXAOUATWY NG Pihoypaplogc. e eminedo emtayuvTy, avantdcCou-
pe wot TAnddpa and mpooeyyloTiXolE TUPHVES Yio enelepyacio oNUATWY/EXOVELY KoL
Suvehixtind Nevpwvind Aixtua (CNNs). Me Bdon tnv mepapatind avdivom, o opdh-
potar ebvon wxpd oe xhaoxols DSP unoloyiopolc xou 1 amdAeto oaxplBeloc xupalveton
we 5% oo veupwvind dixtua, evéd emtuyydveton ém¢ xou 70% eZoixovéunon empdvelog
%o eVEPYELAC.

Yyewnd ye ta véa FPGAs Swoo tnuixot Baduov, egopudlovye) pedodoroyio pog yia
TNV OMOTEAECUOTIXNY OTELXOVIOT ahYoplduwy uToloyloTxhc dpoone ota aviexTixd-oe-
axtwvofBohio FPGAs tng NanoXplore. ¥1o téhog, EMTUYYAVOUUE LoOPROTNUEVY Yeio
nopwy, 1 omola elvon cuyxplown pe ot Twv xadiepwuévey tpoundeutdy FPGAs. E-
umhéov, 1 Tyt ebvon enapxic (.., éoc xou 10 FPS yio tnv aviyveuor yopoxtrn-
piotixwv o MPixel exdvec), hopfdvovtoc unddn Tic amouthoels anédoone twy dla-
OTNUXWV EQUPUOYDY. XYeTxd Ue tov Etepoyevy) Troloyiopo, emtaydvouue DSP
Tupveg, wia axolouvdio ohyoplduwy vtoloyloTixhc dpaone, xar éva amoutnTtixd CNN
otic Myriad VPUs tn¢ Intel. Ot npotewvéueveg uedodohoyleg xat TEYVIXES EVOWUINT-
uévne oyedlaone mopéyouv emitdyuvon éwe xou 20X oe xhaowwolc DSP unohoylopo-
O¢ ot Myriad 2 pe xatavédhwon woyboc 1W. To CNN emtoaydveton ot Myriad X
ue 2W, npoogépovtag ~8.5X xou ~1.7x xohbtepr anddoon-avd-Watt and tov enelep-
yao T yevixol-oxonod ARM xau tov eneepyaoth ypagpuxdy Jetson Nano, avtiotol-

Yo

AgZegc Khewdid: [lpooeyyiotxde Troroyiopog, Teyvinég Ilpocéyyiong, Aprdunted
Kuxiopata, Apidunuxy Troloyiotdv, Xyedioon TAwol, Entayuvtéc TAwol, Etepo-
vevrc Trohoyiopde, Evowpatwuéva Yuothuata, Teyvohoyia Ao thuatog, Wnpuan E-

7

ne€epyaoio YXiuatoc, Troloyiotxr| Opoor), Buvehintind Nevpwvixnd Aixtua.

xXvi

Contents

Abstract xiii
Greek Abstract XV
List of Figures XXi
List of Tables XXV
List of Abbreviations XXix
1. Introduction 1
1.1. The Landscape of Embedded Systems 1
1.2. The Evolution of Integrated Circuits 2
1.3. Approximate Computing L. 4
1.4. Hardware Acceleration 6
1.5. Heterogeneous Computing 8
1.6. Scope and Contribution of Dissertation. 10
1.7. Structure of Dissertation 12
1.8. Overview of Technologies, Tools and Devices 15

2. The Approximate Computing Paradigm 17
2.1. Imtroduction 18
2.2. The Terminology of Approximate Computing 18
2.3. Classification of Software Approximation Techniques 20
2.3.1. Selective Task Skipping 21

2.3.2. Approximate Memoization 24

2.3.3. Relaxed Synchronization 25

2.3.4. Precision Scaling L oL 27

2.3.5. Data Sampling 28

2.3.6. Approximate Programming Languages 30

2.4. Classification of Hardware Approximation Techniques 32
2.4.1. Circuit Functional Approximation 34

2.4.2. Voltage Over-Scaling 40

24.3. Over-Clocking 42

xXvii

Contents

. Arithmetic Approximation Techniques for Circuit Design

3. Arithmetic Optimization: Double-LSB Encoding

3.1. Imtroduction
3.2. The Double Least Significant Bit Format
3.3. Design of DLSB Multiplication Circuits
3.3.1. Straightforward DLSB Design
3.3.2. Sophisticated DLSB Design
3.4. Evaluation. e
3.4.1. Theoretical Analysis,
3.4.2. Experimental Results,
3.4.3. Case Study: DLSB for Large-Size Multiplication
3.5. Conclusion

4. Arithmetic Approximation: Hybrid High-Radix Encoding

4.1. Imtroduction e

4.2. Design of Approximate High-Radix Encodings and Multipliers

4.2.1. Approximate Operand Encoding
4.2.2. RAD: Approximate High-Radix Multiplier
4.3. Evaluation
4.3.1. Theoretical Analysis
4.3.2. Error Analysis L
4.3.3. Experimental Results, ..
4.4. Conclusion e

5. Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

5.1. Introduction
5.2. Design of Runtime-Configurable Approximate Multipliers
5.2.1. AxFXU: Approximate Fixed-Point Multiplier
5.2.2. AxFPU: Approximate Floating-Point Multiplier
5.2.3. Dynamic Configuration of the Approximation Degree
5.3. Evaluation.o
5.3.1. Error Analysis
5.3.2. Experimental Results
5.4. Conclusion

6. Cooperative Approximation: Combination of Arithmetic Encodings

6.1. Introduction
6.2. Classification of Arithmetic Approximation Techniques
6.3. Design of Multipliers with Cooperative Approximation

6.3.1. The Pool of Arithmetic Approximation Techniques

45

47
48
50
o1
ol
52
56
56
98
99
61

63
64
66
66
69
71
72
74
(0]
81

83
84
86
87
88
92
94
94
100
110

xviii

Contents

6.3.2. Combining Arithmetic Approximation Techniques
6.3.3. Overview of Cooperative Approximation Techniques . . .
6.4. Evaluation. L oo
6.4.1. Error Analysis
6.4.2. State-of-the-Art Comparison: Pareto Efficiency Analysis
6.5. Conclusion

Approximate DSP & Al Hardware Accelerators

7.1. Introduction
7.2. Design Methodology
7.3. Design and Evaluation of Applications with RAD
7.3.1. Approximate DSP Accelerators
7.3.2. Approximate CNN Accelerators
7.4. Design and Evaluation of Applications with AxXFXU/AxFPU . .
7.4.1. Approximate DSP Accelerators
7.4.2. Approximate CNN Accelerators
7.4.3. Approximate Clustering and Linear Algebra
7.5. Design and Evaluation of Applications with ROUP
7.5.1. Fine-Grained Approximate CNN Accelerators
7.6. Conclusion

Design Methodologies for Embedded Computing

DSP Acceleration with New Space-Grade FPGA Devices & Tools

8.1. Introduction
8.2. Background
8.2.1. The Landscape of Space-Grade FPGAs
8.2.2. The NanoXplore Space-Grade FPGAs and Tools
8.3. Design & Assessment Methodology
8.3.1. Synthesis of the Design
8.3.2. Placement & Routing of the Design
8.3.3. Bitstream Generation and Hardware Execution
8.4. Porting of Computer Vision Kernels on the NG-Large FPGA . .
8.4.1. CV Kernels for Feature Detection and Depth Extraction
8.4.2. Implementation Details and Issues
85. Evaluation.o o
8.5.1. Experimental Setup
8.5.2. Design Space Exploration on Market’s FPGA Vendors . .
8.5.3. Experimental Results
8.5.4. Comparative FPGA Evaluation

Xix

Contents

8.6. Demonstration of the Computer Vision Kernels
8.6.1. Development of CPU-FPGA Communication
8.6.2. Real-Time Processing and Visualization

8.7. Conclusion e

DSP & Al Acceleration on Heterogeneous Multi-Core SoCs
9.1. Introduction
9.2. Background Lo
9.2.1. The Landscape of Embedded Devices
9.2.2. The Intel VPUsand Tools
9.3. Design Methodology oL
9.4. Implementation of DSP & AI Applications on the Myriad 2 VPU . . .
9.4.1. Development of Custom DSP and CNN Kernels
9.5. Porting of Computer Vision Pipeline on the Myriad 2 VPU
9.5.1. The CV Algorithm for Satellite Pose Tracking
9.5.2. Partitioning and Scheduling
9.5.3. Development of Utility Software
9.5.4. Parallelization and Low-Level Optimization
9.6. Inference of Deep Neural Network on the Myriad X VPU
9.6.1. Deployment of DNN for Satellite Pose Estimation
9.7. Evaluation Lo
9.7.1. Experimental Results of Custom DSP and CNN Kernels
9.7.2. Experimental Results of CV Pipeline
9.7.3. Experimental Results of DNN Kernel
9.8. Conclusion

10. Conclusion

10.1. Summary of Main Contributions
10.2. Future Worko

Greek Extended Abstract

Greek Glossary

Bibliography

Publications

Curriculum Vitae

195
196
198
198
200
203
206
206
207
208
209
211
211
214
214
216
217
220
226
227

229
229
231

233

289

295

333

337

XX

List of Figures

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.1.
2.2.

3.1.
3.2,
3.3.
3.4.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

5.1.

5.2.

Introduction

Number of Connected IoT Devices from 2015 to 2025. 2
50 Years Trends in Microprocessors 3
Architecture of the Eyeriss ASIC and the Xilinx Zyng-7000 SoC FPGA 8
Evolution of Heterogeneous Computing Architectures 9
The Structure of the Ph.D. Dissertation 13
The Goal of the Ph.D. Dissertation 13

The Approximate Computing Paradigm

Classification of State-of-the-Art Software Approximation Techniques. 20
Classification of State-of-the-Art Hardware Approximation Techniques 32

Arithmetic Optimization: Double-LSB Encoding

DLSB Addition and Subtraction 51
Circuits of the DLSB Multipliers 55
Partial Product Matrices of the Conventional and DLSB Multipliers . 56
Resource Gains of the DLSB Multiplier 61

Arithmetic Approximation: Hybrid High-Radix Encoding

Architecture of the Approximate High-Radix Multiplier 70
Partial Product Generators of the Approximate High-Radix Multipliers 71
Partial Product Matrices of the Approximate High-Radix Multipliers . 72

Error Distribution of the Approximate High-Radix Multipliers 76
Comparative Pareto Analysis for Approximate Multipliers 79
Area and Energy Gains of the Approximate High-Radix Multipliers. . 79

Energy and Delay Gains of the Approximate High-Radix Multipliers
for Scaled Bit-width o 80

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Partial Product Matrix of the Approximate Perforation-&-Rounding
Multiplier 88
Architecture of the Approximate Perforation-&-Rounding Floating-
Point Multiplier 92

xxi

List of Figures

5.3.

5.4.

5.5.

5.6.

5.7.

5.8.

9.9.

5.10.

Dynamic Approximation Configuration in the Approximate Perforation-

&-Rounding Multiplier oL 94
Error Variation of the Approximate Perforation-&-Rounding Fixed-
Point Multiplier L 96
Error Variation of the Approximate Perforation-&-Rounding Half-Precision
Floating-Point Multiplier 99
Error Variation of the Approximate Perforation-&-Rounding Single-
Precision Floating-Point Multiplier 100
Comparative Pareto Analysis for the Approximate Fixed-Point Multi-
pliers L 104
Pareto Analysis for the Approximate Perforation-&-Rounding Half-
Precision Floating-Point Multipliers 106
Pareto Analysis for the Approximate Perforation-&-Rounding Single-
Precision Floating-Point Multipliers 106
Area and Energy Gains of the Approximate Perforation-&-Rounding

Floating-Point Multipliers 107

6. Cooperative Approximation: Combination of Arithmetic Encodings

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.

Motivation Plot for Cooperative Arithmetic Approximation 115
Partial Product Matrices of Arithmetic Approximation Techniques . . 119
Partial Product Matrices of Cooperative Approximation Techniques . 123
Error Variation of Cooperative Approximation Techniques 124
Pareto Analysis for Dissertation’s Approximate Arithmetic Circuits . . 127
Comparison of Dissertation’s Most Efficient Approximate Circuits with

State-of-the-Art Designs oL 128

7. Approximate DSP & Al Hardware Accelerators

7.1.

7.2.
7.3.
7.4.
7.5.
7.6.
7.7.

7.8.
7.9.

7.10.
7.11.

Design Methodology for Approximate DSP and Al Hardware Acceler-

ators . . . e 135
Hardware Architecture of 2D Convolution 138
Hardware Architecture of QAM Demodulation 138
I/O Images of Approximate Sobel Edge Detector 141
Hardware Architecture of Filter in Convolutional Layers 143
Hardware Architecture of Winograd Convolution 145
Experimental Results of Approximate AxFXU-Based DSP Applica-

tions on TSMC 65-nm Standard-Cell 148
I/0 Images of Approximate Gaussian Blurring 149

Accuracy Variation of Approximate AxFPU-Based K-Means Cluster-

ing and LU Decomposition 152
The MAx-DNN Framework for Fine-Grained CNN Approximation . . 154
Fine-Grained Non-Uniform CNN Approximation Approaches 155

xxii

List of Figures

7.12. Scaling of ResNet-8 Accuracy for Different Approximate Convolutional
Layers o 157
7.13. Pareto Analysis for the Approximate MAx-DNN-Based ResNet-8 CNNs 157

. DSP Acceleration with New Space-Grade FPGA Devices & Tools
8.1. Fabric Architecture of NanoXplore’s Space-Grade NG-Large FPGA . . 170
8.2. Methodology for the Synthesis of DSP Kernels on the New EU Space-

Grade FPGAs 174
8.3. Methodology for the Placement & Routing of DSP Kernels on the New

EU Space-Grade FPGAs 176
8.4. Methodology for the Bitstream Generation and Hardware Execution

of DSP Kernels on the New EU Space-Grade FPGAs 177
8.5. Exploration on the Synthesis of Computer Vision Kernels with Mar-

ket’s FPGA Tools 181
8.6. Latency Improvement in Computer Vision Kernels by NG-Large . . . 189
8.7. Hardware/Software Architecture for the Execution of Computer Vision

Kernels on NG-Large 190
8.8. Arbiters for Handling the I/O Data of Computer Vision Kernels on

NG-Large o e 191

8.9. Visualization of the Execution of Computer Vision Kernels on NG-Large193

. DSP & Al Acceleration on Heterogeneous Multi-Core SoCs

9.1. Fabric Architecture of Intel’s Myriad 2 VPU 202
9.2. Fabric Architecture of Intel’s Myriad X VPU 202
9.3. Deployment of Deep Neural Networks on Myriad X via OpenVINO . . 204
9.4. High-Level Parallelization of Image Processing Workload in Myriad 2 . 207

9.5. The 5-Stage Computer Vision Pipeline for Satellite Pose Tracking . . . 209
9.6. Partitioning, Scheduling and Memory Transactions of the Computer

Vision Pipeline in Myriad 2 o000 210
9.7. Custom Utility Mechanisms for Development Support in Myriad 2 . . 212
9.8. The UrsoNet DNN for Satellite Pose Estimation 215
9.9. Mapping of the UrsoNet DNN in Myriad X 216
9.10. FPGA-VPU Architecture for Accelerating DSPs/CNNs on Myriad 2 . 217
9.11. Experimental Results of Averaging Binning on Myriad 2 218
9.12. FPGA—VPU Architecture for Accelerating the Computer Vision Pipeline

on Myriad 2 221
9.13.1/0 Data of the Computer Vision Pipeline’s Functions Accelerated on

Myriad 2 e 221

9.14. Incremental Acceleration of the Computer Vision Functions on Myriad 2222
9.15. Alignment Error of Envisat’s Pose Computed by Myriad 2 225

xxiii

List of Figures

XXiv

List of Tables

1. Introduction
1.1. Overview of Dissertation’s Tools and Devices 15

2. The Approximate Computing Paradigm

2.1. Basic Terminology of Approximate Computing 19
2.2. Classification of Software Approximation Techniques 21
2.3. Classification of Hardware Approximation Techniques 33

3. Arithmetic Optimization: Double-LSB Encoding

3.1. Modified Booth Encoding 52
3.2. Components of the Conventional and DLSB Multipliers 58
3.3. Unit Gate Overhead of the DLSB Multipliers 58
3.4. Synthesis Results of the DLSB Multipliers on TSMC 45-nm Standard-

Cell . . . e 59

4. Arithmetic Approximation: Hybrid High-Radix Encoding

4.1. Accurate Radix-4 Encoding L. 68
4.2. Approximate High-Radix-2¥ Encoding 68
4.3. Partial Products Generated by the Radix Encodings 70
4.4. Unit Gates per Component of the Approximate High-Radix Multipliers 73
4.5. Unit Gates of the Approximate High-Radix Multipliers 73
4.6. Experimental Results of Approximate Multipliers on TSMC 65-nm
Standard-Cell 78

5. Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

5.1. IEEE Floating-Point Formats and Data Types 90
5.2. Error Metrics for Approximate Floating-Point Multipliers 98
5.3. Experimental Results of Approximate Fixed-Point Multipliers on TSMC
65-nm Standard-Cell oL 102
5.4. Experimental Results of Approximate Floating-Point Multipliers on
TSMC 65-nm Standard-Cell 109
5.5. Comparison of the Design-Time and Runtime Approximate Floating-
Point Multipliers 110

XXV

List of Tables

6. Cooperative Approximation: Combination of Arithmetic Encodings

6.1.
6.2.

Combinations of Arithmetic Approximation Techniques 119
Overview of Dissertation’s Approximate Arithmetic Circuits 125

7. Approximate DSP & Al Hardware Accelerators

7.1.

7.2.

7.3.

7.4.

7.5.

7.6.

7.7.

7.8.

Overview of Dissertation’s Approximate DSP & Al Hardware Acceler-

ators e 136
Experimental Results of Approximate RAD-Based DSP Applications
on TSMC 65-nm Standard-Cell 140
Experimental Results of Approximate RAD-Based 64-QAM Demodu-
lation on Zynq ZCU106 FPGA 141
Experimental Results of Approximate RAD-Based Ship-Detection CNN
on Zyng-7020 FPGA 146
Experimental Results of Approximate AxFPU-Based Gaussian Blur-
ring on TSMC 65-nm Standard-Cell 148
Experimental Results of Approximate AxXFPU-Based CNNs on TSMC
65-nm Standard-Cell 151
Experimental Results of Approximate ROUP-Based ResNet-8 CNNs
on TSMC 45-nm Standard-Cell 158
Summarized Results of Dissertation’s Approximate DSP & AI Hard-
ware Accelerators L. 159

8. DSP Acceleration with New Space-Grade FPGA Devices & Tools

8.1.
8.2.
8.3.
8.4.

8.5.
8.6.

8.7.

Overview of Market’s Space-Grade FPGAs 168
Configuration of Computer Vision Kernel’s Algorithmic Parameters . 183
Synthesis’ Resource Utilization of Computer Vision Kernels on NG-
Large FPGA 183
Implementation’s Resource Utilization of Computer Vision Kernels on
NG-Large FPGA 184

Performance and Power of Computer Vision Kernels on NG-Large FPGA186
Results from the Configuration of the Computer Vision Kernels on
NG-Large FPGA 186
Comparison of NanoXplore’s FPGAs for the Implementation of Com-
puter Vision Kernels 189

9. DSP & Al Acceleration on Heterogeneous Multi-Core SoCs

9.1.
9.2.

9.3.

Overview of Market’s Embedded Devices. 199
Configuration of the UrsoNet DNN for Deployment on Myriad X VPU

(NCS2) © oo 215
Overview of Dissertation’s DSP & AI VPU Accelerators 217

XxXVi

List of Tables

9.4.

9.5.
9.6.

9.7.

Experimental Results of Custom DSP & CNN Kernels on Myriad 2
VPU. . e 220
Experimental Results of the Computer Vision Pipeline on Myriad 2 VPU224
Data Volume Reduction in the Implementation of the Computer Vision
Pipeline in Myriad 2 VPU oo 225
Experimental Results of the UrsoNet DNN on Embedded Devices . . . 228

XXVii

List of Tables

xxviii

List of Abbreviations

Al
ALU
ANN
ASIC
BER
BRAVE
CER
CFA
CIF
CKG
CMB
CMX
CNN
CORDIC
COTS
CPU
CUDA
Ccv

CYy
DDR
DFF
DLSB
DMA
DNN
DRAM
DSE
DSP
ECR
EDAC
EO

Artificial Intelligence

Arithmetic Logic Unit

Artificial Neural Network
Application-Specific Integrated Circuit
Bit Error Rate

Big Re-programmable Array for Versatile Environments

Correct Edge Ratio

Circuit Functional Approximation
Camera Interface

Clock Generator

Conventional Modified Booth
Connection Matrix

Convolutional Neural Network
Coordinate Rotation Digital Computer
Commercial-Off-The-Shelf
Central Processing Unit

Compute Unified Device Architecture
Computer Vision

Carry Unit

Double Data Rate

Delay Flip-Flop

Double Least Significant Bit
Direct Memory Access

Deep Neural Network

Dynamic Random Access Memory
Design Space Exploration

Digital Signal Processing
Erroneous Classification Ratio
Error Detection And Correction
Earth Observation

XXix

List of Abbreviations

ESA
FE
FIFO
FIR
FPGA
FPS
FPU
GPU
HDL
IoT
LCD
LEO
LLR
LNS
LOCE
LSB
LUT
MB
MDK
ML
MPDS
MRED
MSB
NalN
NCE
NCS
ocC
ORIE
PDF
PE
PLL
PON
PP
PRED
PSNR
PUN

European Space Agency
Functional Element

First-In First-Out

Finite Impulse Response
Field-Programmable Gate Array
Frames Per Second
Floating-Point Unit

Graphics Processing Unit
Hardware Description Language
Internet of Things

Liquid Crystal Display

Low Earth Orbit
Log-Likelihood-Ratio
Logarithmic Number System
Location Error

Least Significant Bit

Look-Up Table

Modified Booth

Myriad Development Kit
Machine Learning

Mega Pixel Disparities per Second
Mean Relative Error Distance
Most Significant Bit
Not-a-Number

Neural Computer Engine
Neural Computer Stick
Over-Clocking

Orientation Error

Probability Density Function
Processing Element
Phase-Locked Loop

Possibility of Overflow-Normal
Partial Product

Possibility of Relative Error Distance

Peak Signal-to-Noise Ratio
Possibility of Underflow-Normal

XXX

List of Abbreviations

QAM

RAMB
RED
RF
RH
RNS
ROM
RT
RTL
SHAVE
SIMD
SIPP
SNR
SoC
SoM
SRAM
STA
SSIM
SWaP
TDP
TMR
TOPS
TPU
UART
VBN
VLIW
VOS
VPU
WFG

Quadrature Amplitude Modulation
Quality of Service

Random Access Memory Block
Relative Error Distance

Register File

Radiation Hardened

Residue Number System

Read-Only Memory

Radiation Tolerant

Register-Transfer Level

Streaming Hybrid Architecture Vector Engine
Single Instruction Multiple Data
Streaming Image Processing Pipeline
Signal-to-Noise Ratio
System-on-Chip

System-on-Module

Static Random Access Memory
Static Timing Analysis

Structural Similarity Index

Size, Weight and Power

Thermal Design Power

Triple Modular Redundancy

Tera Operations Per Second

Tensor Processing Unit

Universal Asynchronous Receiver-Transmitter
Vision-Based Navigation

Very Long Instruction Word

Voltage Over-Scaling

Vision Processing Unit

Waveform Generator

XXXi

List of Abbreviations

xxxii

Chapter 1

Introduction

1.1. The Landscape of Embedded Systems

The rapid technological advancements in processing, communication, storage, and
sensing have transformed the landscape of embedded systems. With the emergence
of Internet of Things (IoT) [1], there is a huge increment in the amount of data that
are generated, which imposes technical challenges in the typical resource-constrained
devices. On the other hand, the transmission of all these data to cloud infrastructures
and data centers for processing creates communication bottlenecks, does not guaran-
tee real-time response, while it is often avoided due to safety and privacy issues. Due
to the ever-growing number of IoT connections, which is expected to be 27 billion in
2025 (as shown in Figure 1.1), the original cloud-centric system is already stressed to
meet the runtime requirements. As a result, there is a tendency to process the data
at the edge of the network, namely, upon they are generated. This new computing
paradigm is established by the name Edge Computing [2] and has gained significant
momentum over the last years.

Concurrently, the massive growth of demanding applications and powerful algorithms
from domains such as Digital Signal Processing (DSP), Computer Vision (CV), Artifi-
cial Intelligence (AI), and Machine Learning (ML), marks a new era for the computing
systems at the edge. Conventional embedded processors, such as Central Processing
Units (CPUs) and microcontrollers, do not have the computational power to handle
these compute-intensive workloads, and thus, they are unable to meet the perfor-
mance requirements [3-5]. Another limitation is the restricted memory capacity at
the edge, which slows down the processing, especially in applications with a large
amount of I/O data.

It is evident that the proliferation of data along with the emergence of applications
with increased complexity requires alternative design solutions to sustain sufficient
performance at the edge. For this reason, the embedded systems have evolved over
the years and constitute multi-purpose systems that sense, act, and communicate

Introduction

Active loT Connections (Bn) Connectivity CAGR 21-25
30
LEwNA @D
25 H 5G loT [159%)
Other [20%
2! S Y -
Wired IoT @D
151 LPWA 34%
M 2G/3G/AG @D
104 WLAN (24%3
5 M WPAN (229
1 Compound Annual

@ = Growth Rate

0 (CAGR)
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

Figure 1.1: Number of connected IoT devices from 2015 to 2025. Source: IoT Analytics, https:
//iot-analytics.com/number-connected-iot-devices/.

with their environment. In earlier years, the embedded systems consisted of simple
microcontrollers and memories. In contrast, contemporary embedded systems are
build on complex System-on-Modules (SoMs) and System-on-Chips (SoCs), i.e., they
are placed in single boards and single chips, respectively. These systems integrate
CPUs, novel specialized processors, memory blocks, high-bandwidth peripherals, and
communication interfaces. Nevertheless, besides space limitations, there is a vital
factor that does not allow to seamlessly increase the computation resources, e.g.,
by adding more devices and/or processing units: the power consumption. Typical
embedded systems consume some Watts [6], while ultra-low-power embedded systems
(e.g., wearable) have a power budget of a few milliWatts [7]. Consequently, there
is a trade-off between performance and power: from the one side, the applications
demand speed and real-time response, while from the other side, there are tight power
constrains at the edge.

1.2. The Evolution of Integrated Circuits

The integrated circuits constitute the cornerstone of computing systems, as they in-
herently impact their performance, power consumption, and area utilization. Figure
1.2 illustrates the trends for the microprocessors over the last 50 years. Historically,
the semiconductor technology was driven for more than 40 years by two fundamental
principles: Moore’s Law [8] and Dennard’s Law [9]. According to Gordon Moore [8],
the number of transistors in a dense integrated circuit doubles approximately every
two years. As shown in Figure 1.2, the transistor scaling is linear until today, even

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/

1.2. The Evolution of Integrated Clircuits

T T T T ‘ -
; ; ; ; ; i
107 [L4 RS Trangistors
D) AN SR SN SR Vv S 7 (thousands)
: : : i A:A
105 | RVl o .', Single-Thread
3 : “‘:A ¢=q_"° " |Performance ,
P IS S N L {(SpecINT x10%)
o L L “‘ fﬂ Frequency (MHz)
N 1 '..'.Hu“' s fe
; A o gl v Typical Power
7Y I R A el FITRI ™ "f'* ""“2 (Watts)
K s e AR L AR 3%
1 ‘ m " LTV Yy M 0:00 ¥7|Number of
100 I T A e :3 e o Logical Cores
L a v v YWY vv : . *
0 3 : ‘ bouadll ‘
10 —rs Y e i
i i i i i
1970 1980 1990 2000 2010 2020

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Figure 1.2: 50-year trends in microprocessors. Source: Karl Rupp, https://github.com/karlrupp/
microprocessor-trend-data.

though several researchers forecast that Moore’s Law will end soon [10]. Moore’s Law
is often quoted together with the prediction of David House (executive of Intel), who
then said that the overall computing performance would double approximately every
18 months. On the other hand, Dennard’s Law, which expired in the mid-2000s, is
the force behind Moore’s Law. According to Robert Dennard [9], the power den-
sity (power per silicon area) remains stable as the transistors get smaller, so that
the power use stays in proportion with the area, i.e., both voltage and current scale
(downward) with the length. Practically, for a given area size, the power consump-
tion of the chip remained the same in each transition to a new generation of process
technology (technological node). Therefore, each new process technology doubled
the number of transistors in a chip without increasing the power consumption. The
combination of the two laws allowed to scale the supply voltage and the threshold
voltage, resulting in lower power per transistor, and thus, almost stable power den-
sity.

Nevertheless, the scaling law of Dennard did not consider the impact of the transistor
sub-threshold leakage on the total chip power [11]. More specifically, in techno-
logical nodes of some nanometers, the decrease of the threshold voltage results in
an exponential increase of the leakage power. This did not happen in 1970s, be-
cause the sub-threshold leakage was small and had negligible impact on the total
chip power. As a result, the threshold voltage can no longer be reduced, and thus,
the scaling of the supply voltage stopped (further scaling could affect the perfor-
mance).

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

Introduction

In summary, even though the number of transistors integrated per area is increasing,
the supply voltage is not scaled accordingly, and thus, the power density is increased.
The failure of Dennard’s scaling in conjunction with other factors such as the cooling
technology and the natural limits of silicon has led us to the “Dark Silicon” era [12-14].
In this era, the entire circuitry of an integrated circuit cannot be powered-on at the
nominal operating voltage for a given Thermal Design Power (TDP) constraint. All
the things considered, the power efficiency and management is nowadays a critical
issue for computing systems, either they are placed at the edge (embedded systems) or
on the cloud (data centers). Therefore, the industry of computing systems is forced to
find new design approaches and computing platforms, which will improve the power
efficiency while providing the desired performance.

Towards power-efficient, real-time, and high-yielding computing systems, Approxi-
mate Computing [15-19], Hardware Acceleration [3,4,20-22], and Heteroge-
neous Computing [23-27] have attracted much interest from the research commu-
nity. The Approximate Computing paradigm exploits the error resilience of appli-
cations from the DSP/AI domains to reduce the quality of the results and deliver
in exchange gains in power, area, and/or performance. Hardware Acceleration refers
to the process of offloading compute-intensive tasks onto specialized hardware, such
as the Application-Specific Integrated Circuits (ASICs) and the Field-Programmable
Gate Arrays (FPGAs), rather than executing them on general-purpose CPUs. Finally,
Heterogeneous Computing refers to systems integrating more than one type of proces-
sor, such as the Graphics Processing Units (GPUs) and the Vision Processing Units
(VPUs). These design approaches are inherently linked and overlapping each other:
(i) practically, heterogeneous hardware architectures (i.e., GPUs and VPUs) belong
in the wider range of hardware accelerators, and (ii) approximations can be applied
in implementations of all the hardware accelerators.

1.3. Approximate Computing

Approximate computations have been applied since the 1960s. For example, in one of
the first works of the field, Mitchell proposed the logarithmic-based multiplication/-
division [28]). Nevertheless, the first systematic efforts to define the Approximate
Computing paradigm started in the late 2000s. Since then, various terms have been
used to describe the process of generating approximate architectures, programs, and
circuits. Approximate Computing is synonymous or overlaps with them. The most
well-known terms of the literature are listed as follows:

o Chakradhar et al. [29] define “Best-Effort Computing” as “the approach of de-
signing software/hardware computing systems with reduced workload, improved

1.3. Approximate Computing

parallelization and/or approzimate components towards enhanced efficiency and
scalability”.

o Carbin et al. [30] introduce the term “Relaxed Programming” to express “the
transformation of programs with approximation methods and relaxed semantics
to enable greater flexibility in their execution”.

o Chippa et al. [31] use the term “Scalable Effort Design” for “the systematic
approach that embodies the notion of scalable effort into the design process at
different levels of abstraction, involving mechanisms to vary the computational
effort and control knobs to achieve the best possible trade-off between energy
efficiency and quality of results”.

According to Mittal [16], “Approzimate Computing exploits the gap between the ac-
curacy required by the applications/users and that provided by the computing system
to achieve diverse optimizations”. Han and Orshansky [15] distinguish Approximate
Computing from Probabilistic/Stochastic Computing, stating that “it does not in-
volve assumptions on the stochastic nature of the underlying processes implementing
the system and employs deterministic designs for producing inaccurate results”. An-
other interesting point of view is expressed by Sampson [32], who claims that Ap-
proximate Computing is based on “the idea that we are hindering the efficiency of the
computer systems by demanding too much accuracy from them”. In this Dissertation,
we attribute the following definition:

o Approximate Computing: A progressive paradigm shift for the development of sys-
tems, circuits € programs, build on top of the error-resilient nature of application
domains, and based on disciplined methods to intentionally induce errors that will
provide valuable resource gains in exchange for tunable accuracy loss.

The world of computing systems is full of workloads with intrinsic error tolerance [29].
These workloads are significant pillars of domains such as DSP (e.g, signal/im-
age/video/audio processing), AI/ML (e.g., artificial neural networks, clustering), and
Data Analytics (e.g., web search, data mining). Approximate Computing exploits this
error resilience across the entire computing stack, i.e., at both software and hardware
levels. The factors that allow Approximate Computing to decrease the quality of the
results in exchange for resource gains, originate from [29]:

o the user’s intention to accept results of lower quality.
e the limited human perception, e.g., in multimedia applications.

o the lack of perfect/golden results for validation, e.g., in data mining applica-
tions.

o the lack of a unique answer /solution, e.g., in machine learning applications.

Introduction

o the application’s self-healing property, i.e., the inherent capability to absorb/-
compensate errors.

o the application’s inherent approximate nature, e.g., in probabilistic calculations,
iterative algorithms, and learning systems.

o the application’s analog/noisy real-world input data, e.g., in multimedia/signal
processing.

There are several challenges in the design of approximate systems. First of all, the
accuracy is still of the utmost importance. Namely, even though errors are tolerated,
the accuracy needs to be retained within the acceptable limits of the application. This
requires the analysis of the application with realistic datasets and the development of
accurate models that emulate the approximations. Moreover, modern approximate
systems need to adapt their accuracy at runtime depending on the application’s/user’s
constraints. Hence, the approximation methods should enable runtime approxima-
tion tuning instead of providing a single static approximation configuration. Another
challenge in Approximate Computing is the development of systems with cross-layer
approximation, i.e., the synergistic application of approximation techniques from dif-
ferent layers of the computing stack. This approach has shown promising results,
however, sophisticated methodologies for the automatic configuration of the approx-
imations in all system’s modules are still missing.

In this Dissertation, regarding “Approximate Computing”, we report an extensive
literature review of the state-of-the-art software and hardware approximation tech-
niques and then, we focus on hardware-level Approximate Computing. In particular,
we propose new approximation techniques for the design of power-efficient arithmetic
circuits, and employ them along with other design techniques to develop approximate
hardware accelerators from the DSP and Al domains.

1.4. Hardware Acceleration

The conventional CPU-based computing platforms do not provide sufficient perfor-
mance for compute-intensive DSP/AI workloads [3,4,20-22]. As already discussed,
the computing industry employs novel processors based on ASICs, FPGAs, GPUs,
and VPUs to cope with the increased demands of modern DSP/AI workloads. The
execution of high-complexity computing tasks on customized hardware, such as the
preceding specialized processors, is widely known as Hardware Acceleration. In terms
of development, Hardware Acceleration requires more programming effort and time
than the respective development on general-purpose CPU-based processors. Never-
theless, the performance results are very impressive, providing speedups of orders of
magnitude. We note that besides the aforementioned accelerators, the market offers

1.4. Hardware Acceleration

additional hardware platforms, such Google’s Tensor Processing Unit (TPU) [33],
which is an Al accelerator. Below, we introduce in brief the most common hardware
accelerators:

o ASIC: an integrated circuit that is customized for a specific application/func-
tion. It cannot be reprogrammed or modified after its production. ASICs are
used for the efficient implementation of DSP/AI functions and general-purpose
tasks of computing systems.

e« FPGA: an integrated circuit that is manufactured with configurable logic blocks
and programmable interconnects. It can be reprogrammed numerous times
after its production. FPGAs are mainly used for accelerating heavy DSP/AI
functions, as well as for interfacing and prototyping purposes.

e GPU: a processor integrating multiple specialized small cores. GPUs are used
for accelerating graphics rendering, calculations involving massive amount of
data, scientific calculations, and CV/AI workloads.

e VPU: a processor integrating vector cores, image processing filters and Al en-
gines. VPUs excel in imaging/vision tasks and are used for accelerating DSP/AI
workloads.

In the remainder of this Dissertation, we report a plethora of related works and
discussions involving the aforementioned hardware accelerators. Indicatively, in Fig-
ure 1.3, we depict the well-known Eyeriss ASIC for Convolutional Neural Networks
(CNNs) [34] and Xilinx’s Zyng-7000 SoC FPGA [35]. Eyeriss is designed for accel-
erating CNNs with many layers and varying shapes, and it is based on a spatial
array of 168 Processing Elements (PEs) and a global on-chip buffer. The data move-
ment is optimized by exploiting data reuse and inter-PE communication, while data
gating and compression are used to reduce the power consumption. On the other
hand, the Zynq SoC FPGAs have been established in the market as state-of-the-art
devices for Hardware Acceleration. These devices offer the software programma-
bility of an ARM-based processing system (2 ARM Cortex-A9, on-chip memory,
caches, memory controllers, and peripherals) and the hardware programmability of
a traditional FPGA (programmable resources for logic functions, arithmetic oper-
ations, registers, and memories). All these components are integrated in a single
chip to provide a fully scalable SoC platform for high-performance DSP/AT process-
ing.

In this Dissertation, regarding “Hardware Acceleration”, we implement approximate
arithmetic circuits using standard-cell libraries for ASIC. Our arithmetic circuits are
also integrated in hardware DSP/AI functions, which are accelerated on standard-
cell ASIC and Xilinx’s FPGAs. Moreover, we implement demanding CV kernels on

Introduction

Link Clock Core Clock = Configuration Bits

Configuration PE]%AXF]:IOy Processing

Element

(PE)

28 Spad
B Control

e
Global

1T]
On-Chi
Accelerafor

(2)
[Memory][Peripheral } AXI

Controllers Interfaces Ports
[Ccll_ghe][Cache][DDR] [DMA]
s

ARM ARM AXI
Cortex-A9Q Cortex-A9 Ports RAMBs

Processing System (PS)

Serial
Transceivers

I/Os

(b)

Figure 1.3: High-level architecture of (a) the Eyeriss ASIC [34] and (b) the Xilinx Zyng-7000 SoC
FPGA [35].

the new European space-grade FPGAs. Finally, we accelerate custom DSP kernels, a
sophisticated CV pipeline, and CNNs on Intel’s VPUs.

1.5. Heterogeneous Computing

The increased diversity of modern DSP/AI workloads in I/O, computational, and
memory requirements has marginalized the use of homogeneous CPU-based com-
puting platforms. To cope with all these requirements and provide efficient design
solutions, the computing industry has turned to Heterogeneous Computing architec-
tures [23-27]. These architectures integrate more than one type of processor and
potentially different memory technologies. In particular, contemporary heteroge-
neous architectures offer both general-purpose processors and specialized accelera-
tion cores/engines. In terms of storage, the heterogeneity usually offers global mem-
ory, caches and scratchpad (working) memory. Figure 1.4 shows the evolution of
heterogeneous architectures according to Shalf [10]. Computing architectures with
two similar CPUs or a multi-core CPU (Figure 1.4a) are now considered homo-

1.5. Heterogeneous Computing

CPU CPU
GPU
cPu cPU Memory / Memory
Interface DSP CPU CPU Interface
Buses
Buses
(a) (b)
Z N'| CMOS CMOS
ACCO ACC1
MRAM L1 Cache
cpu || cpu g 3
<={ MRAM J RAM |
ki3 £

GPU :

/ Buses VIO [MRAM i (LI Cache
o AcClAcCIlACe Interface T
AcC|[ACC][AacC CNFET CPU
ACC|[ACC][ACC N ILACC

(c) (d)

Figure 1.4: Evolution of heterogeneous computing architectures [10]: (a) homogeneous CPU (past),
(b) CPU + GPU/DSP (present), (c) CPU + GPU/DSP + accelerators (present), and (d) extreme
heterogeneity in processors and memories (future).

geneous systems. Currently, there are two prevailing kinds of computing architec-
ture:

i) the heterogeneous architecture of Figure 1.4b, which combines the general-
he h h f Fi 1.4b, which bi h 1
purpose CPU with a GPU/DSP accelerator [25].

(ii) the very heterogeneous architecture of Figure 1.4c, which additionally includes
small accelerators (e.g., the VPU SoCs [36]).

The heterogeneity is expected to increase in the future (Figure 1.4d), integrating accel-
erators and memories of different technologies. The very heterogeneous architecture
of Figure 1.4c is met in Intel’s Myriad VPUs [36], which constitute embedded SoCs
for Edge Computing. These VPUs have recently emerged as an attractive solution
for accelerating imaging applications with only 1-2W. Compared to the CPU-GPU
architectures, the VPU SoCs are more heterogeneous, as they offer general-purpose
CPUs, vector cores, hardware filters for image processing, and a dedicated Al accel-
erator in the case of Myriad X.

Heterogeneous Computing imposes several challenges. From the developer side, the
programming model involves parallel computing and mapping to specialized hard-

Introduction

ware, and thus, it is more complex than the respective one of conventional comput-
ing. The workloads need to be efficiently distributed and parallelized among the cores
and accelerators to deliver improved performance and power efficiency. Towards this
direction, the developer has to make decisions regarding the application’s decomposi-
tion into parallel computing tasks, the selection of the most suitable processor for each
task, and the identification of the parts that offer limited parallelization opportunities
or do not require acceleration. In the case of the Myriad VPUs, there are more tech-
nical challenges, given that these SoCs are mainly build for power efficiency rather
than high performance. Therefore, the developer needs to exploit every piece of the
VPU heterogeneity to provide sufficient performance.

In this Dissertation, regarding “Heterogeneous Computing”, we develop methodolo-
gies for the efficient mapping and scheduling of DSP/CV kernels and CNNs on the
Myriad VPUs. We introduce several high- and low-level implementation techniques
and evaluate the suitability of the VPUs as edge processors.

1.6. Scope and Contribution of Dissertation

The scope of the Dissertation is the design of arithmetic circuits and DSP & Al
accelerators. In this context, we propose design solutions and methodologies for im-
proving the efficiency of the implementations on ASIC/FPGA and multi-core SoCs.
At circuit level, we adopt the promising design paradigm of Approximate Comput-

ing and propose new arithmetic approximation techniques, which are then used to
design various approximate hardware accelerators on ASIC/FPGA technology. At
platform level, we aim to unlock the full potential of new embedded devices, such
as the space-grade FPGAs and the multi-core VPUs, by surpassing the bottlenecks
of the tools and exploiting the heterogeneity of the SoCs, respectively, to accelerate
high-performance DSP /AT workloads.

The main differentiation of the Dissertation compared to prior art is summarized
as follows:

e At design technique level, we propose approximation methods that provide a

larger approximation space, i.e., multiple approximation configurations, en-
abling to maximize the resource gains under a specified error constraint.

e At circuit level, we propose energy-efficient approximate circuits that can seam-
lessly adjust their approximation configuration at runtime.

o At hardware accelerator level, we perform an extensive design space exploration

on approximation techniques, arithmetic formats, algorithms, and hardware
design techniques to generate approximate ASIC/FPGA-based accelerators.

10

1.6. Scope and Contribution of Dissertation

At computing platform level, we systematically examine the capabilities of the
programming tools and exploit the underlying hardware architectures to accel-
erate high-performance DSP /AT workloads.

The contribution of the Dissertation is summarized as follows:

(i)

(iv)

(vii)

(viii)

In Chapter 2, we report a comprehensive up-to-date literature survey for Ap-
proximate Computing, where we report the basic terminology, and then, classify
and analyze the state-of-the-art software and hardware approximation tech-
niques.

In Chapter 3, we highlight the significance of the underlying arithmetic in cir-
cuits, and show that novel numerical formats and sophisticated bit-level opti-
mizations can provide valuable resource gains in hardware.

In Chapter 4, we address the circuit overheads of the classic high-radix encodings
and propose a new approximate hybrid high-radix encoding, which is parametric
in terms of approximation degree. This encoding is used to design the RAD
family of approximate multipliers.

In Chapter 5, we introduce a low-overhead dynamic configuration scheme for
adjusting the approximation degree of multipliers at runtime. This technique
is applied in fixed- and floating-point arithmetic, generating the DyFXU and
DyFPU families of runtime-configurable approximate multipliers.

In Chapter 6, we highlight the efficiency of integrating more than one approxi-
mation technique in the design of approximate circuits. In this context, we com-
bine various state-of-the-art techniques and provide a very large design space
for approximate multiplication. This extensive exploration results in the ROUP
family of approximate multipliers, which form the state-of-the-art Pareto-front.

In Chapter 7, we introduce a methodology for designing approximate DSP/AI
hardware accelerators. Based on this methodology, we fuse approximation tech-
niques with various arithmetic formats, DSP/AI algorithms, and hardware de-
sign techniques, to generate energy-efficient hardware accelerators for 1D /2D
signal processing and neural networks.

In Chapter 8, we introduce a methodology for efficiently mapping and accelerat-
ing high-performance DSP algorithms on the new Furopean space-grade FPG As.
Based on this methodology, we apply our tool-level exploration to surpass issues
that arise because the FPGA vendor is new and the space-grade FPGAs exhibit
decreased flexibility compared to the commercial ones.

In Chapter 9, we introduce a methodology for partitioning, scheduling and
optimizing demanding DSP and Al workloads on the heterogeneous multi-core

11

Introduction

VPUs. Based on this methodology, we exploit the full potential of the VPU SoCs
to provide sufficient DSP and Al acceleration with limited power consumption.

1.7. Structure of Dissertation

The remainder of the Dissertation is organized as follows. Chapter 2 introduces the
Approximate Computing paradigm, reviewing the terminology and state-of-the-art
software & hardware approximation techniques. Chapters 3-9 report the main work
of the Dissertation. Finally, Chapter 10 concludes the Dissertation by summarizing
the contributions and discussing future extensions. The structure of the main work
is presented in Figure 1.5 and is divided in two parts:

Part 1: “Arithmetic Approximation Techniques for Circuit Design”
Part Il: “Design Methodologies for Embedded Computing”

Part I includes Chapters 3-7 and focuses on arithmetic approximation techniques and
the design of approximate DSP/AI hardware accelerators. Part II includes Chapters
8-9 and focuses on new embedded computing platforms (space-grade FPGAs and
multi-core VPU SoCs) and the efficient acceleration of DSP/AI kernels. Both parts
have a common goal: the development of energy-efficient DSP/AI accelerators.
Part I reaches this goal from a lower design abstraction layer, while Part II reaches
it from higher design abstraction layers. Figure 1.6 depicts how we achieve this
goal and what issues we have to surpass: (i) by using arithmetic approximations,
while we have to care about the errors and application’s accuracy, (ii) via extensive
and systematic tooling on the new space-grade FPGAs, where we have to surpass the
limitations/issues of newly released tools/devices, (iii) by exploiting the heterogeneity
of low-power multi-core VPUs, where we have to cope with resource-constrained edge
devices and the increased complexity of the SoCs. Next, we discuss the content of
each chapter included in Part I and Part II.

Chapter 3: This chapter acts as introductory to low-level logic optimizations, tar-
geting to highlight the significance of studying the arithmetic of circuits/accelerators.
For this purpose, it focuses on the Double Least Significant Bit (DLSB) numerical
format, in which the numbers have an extra least significant bit, and it proposes so-
phisticated low-level optimizations. These bit manipulations are also used in the next
chapters, and specifically in the design of approximate circuits. More explicitly, in this
chapter, we improve the DLSB multiplication, resulting in decreased overheads versus
the straightforward design approach. Moreover, as case study, we demonstrate how
the proposed optimized circuit can be used as building block in the implementation
of large-size multiplications.

12

1.7. Structure of Dissertation

Chapters 3-6

Chapter 7 |_ """"" !
. 1
Chapter 8 : < :> i
Chapter 9 Multi-Core SoC : SW !
© O& DSP/Al Accelerators | @ :
o 06"9 1 |

& .
© FPGA ! -
DSP Accelerators || O :
P | Kel-::\clels !
ASIC DSP/Al Accelerators N2,
DSP/Al Accelerators 1 ! i
1 DSP/AI ;

Approximate
Circuits

Figure 1.5: The structure of the Ph.D. Dissertation.

Multi-Core

DSP/Al

Power Efficiency

Acceleration 5oC co™m

Resource Saving

Space-Grade

Approximate FPGAs

Circuits
Figure 1.6: The goal of the Ph.D. Dissertation achieved through different design layers.

Chapter 4: This chapter proposes an approximate hybrid high-radix encoding for
generating the energy-efficient RAD multipliers. The proposed encoding scheme ap-
proximately encodes one of the operands, using the accurate radix-4 encoding for
its most significant part and an approximate high-radix encoding for its least signif-
icant part. The approximation is inserted by mapping all the high-radix values to a
set of values including only the 4 largest powers of two. The proposed RAD family
of approximate multipliers is configurable, and can be tuned to achieve the desired

13

Introduction

energy—accuracy trade-off.

Chapter 5: This chapter proposes runtime-configurable approximate multipliers for
fixed- and floating-point arithmetic. The approximation is inserted by two orthogo-
nal techniques, i.e., partial product perforation and partial product rounding, which
allow to integrate a low-overhead scheme for tuning the approximation at runtime.
The runtime circuit variants DyFXU and DyFPU deliver negligible overhead versus
their design-time counterparts (AxFXU and AxFPU). However, they still provide en-
ergy efficiency and benefit from their capability of selecting a different approximation
configuration (among numerous ones) at runtime.

Chapter 6: This chapter proposes the concept of cooperative approximation, namely,
the application of more than one arithmetic approximation technique in the design of a
circuit. The goal is twofold: (i) to create a very large approximation space that serves
various design scenarios and can handle different error constraints or power budgets,
and (ii) to identify the most efficient approximation solutions in terms of both accu-
racy and resources. Our extensive design space exploration results in 5 new families
of approximate multipliers, from which, ROUP is the most prominent, as it forms the
state-of-the-art Pareto front with increased resolution.

Chapter 7: This chapter introduces a methodology for the systematic development
of approximate DSP/AI hardware accelerators. The proposed methodology consists
of two stages, i.e., software-level exploration and hardware development. The main
feature of the methodology is the combination of approximation techniques with dif-
ferent arithmetic formats (e.g., fixed/floating-point, quantized integer), alternative
algorithms for the same application, and classic hardware design techniques. The goal
of this chapter is twofold: (i) to assess the Dissertation’s approximate designs in real-
world DSP/AT applications, and (ii) to evaluate the error resilience and quantify the
resource gains of approximate DSP/AI accelerators.

Chapter 8: This chapter proposes a design methodology for porting demanding DSP
algorithms on the new European space-grade FPGAs. The methodology is divided
with respect to the stages of the typical FPGA design flow. Our systematic design
approach aids us to surpass issues that arise when using new tools or porting designs
developed in other FPGA vendors, as well as confront the decreased flexibility and
lower performance of space-grade FPGAs compared to their commercial counterparts.
The evaluation is performed with hardware kernels for feature detection and stereo
vision, and it includes comparisons to other FPGAs.

Chapter 9: This chapter proposes a design methodology for the efficient mapping
and acceleration of compute-intensive algorithms on the heterogeneous multi-core
VPUs. The methodology aims to highlight the most efficient partitioning and schedul-
ing schemes in such complex and very heterogeneous SoCs. In this context, we intro-

14

1.8. Overview of Technologies, Tools and Devices

duce several high- and low-level implementation techniques. Given that the VPUs are
designed to provide low power consumption, our methodology and design choices al-
low us to deliver sufficient performance in custom DSP kernels and a sophisticated CV
pipeline. Moreover, we deploy a demanding CNN. The evaluation includes comparison
results with other state-of-the-art embedded devices.

Finally, even though all chapters are related to each other, they constitute standalone
structures of text. Namely, each chapter has its own abstract, introduction, list of
contributions, proposed techniques/designs/methodologies, experimental evaluation
and conclusion.

1.8. Overview of Technologies, Tools and Devices

In this section, we report all the industrial-strength programming/development tools,
devices/platforms and technologies that are used in the Dissertation. Table 1.1 sum-
marizes all the relevant details. In Chapters 3-6, all the circuits are synthesized on

Table 1.1: Overview of Dissertation’s tools and devices.

Tool Usage Reference
Synopsys Design Compiler standard-cell synthesis Chapters 3-7
Synopsys PrimeTime standard-cell power measurement Chapters 3-7
Siemens QuestaSim simulation (validation & power) Chapters 3-8
Xilinx Vivado FPGA implementation Chapters 7-8
Intel Quartus FPGA implementation Chapter 8
Microsemi Libero FPGA implementation Chapter 8
NanoXplore NXmap FPGA implementation Chapter 8
Intel MDK VPU implementation Chapter 9
Intel OpenVINO VPU implementation Chapter 9
Google TensorFlow CNN development Chapters 7,9
Device/Technology Reference
TSMC Standard Cells (65-nm, 45-nm) Chapters 3-7
Xilinx FPGAs (ZCU106, Zyng-7020) Chapter 7
Xilinx FPGA (Virtex-5QV) Chapter 8
Intel FPGA (Cyclone III) Chapter 8
Microsemi FPGA (RTG4) Chapter 8
NanoXplore FPGAs (NG-Medium, NG-Large) Chapter 8
Intel VPUs (Myriad 2, Myriad X, NCS2) Chapter 9
Nvidia GPU (Jetson Nano) Chapter 9

15

Introduction

TSMC standard-cell libraries (65-nm and 45-nm) with Synopsys’ Design Compiler
tool. All the simulations are performed with Siemens’ (Mentor Graphics) QuestaSim,
while for the power measurements, we use Synopsys’ PrimeTime. The same libraries
and tools are used for the synthesis of the ASIC-based accelerators in Chapter 7.
Moreover, this chapter includes implementation results for accelerators on Xilinx’s
ZCU106 and Zyng-7020 FPGAs, while the associated tool is Vivado. In Chapter
8, we report numerous results from the implementation of DSP kernels on various
FPGAs (Xilinx Virtex-5QV, Intel Cyclone III, and Microsemi RTG4). For these im-
plementations, we use the corresponding software tool of each FPGA vendor. Chapter
8 also includes results for NanoXplore’s new space-grade FPGAs (NG-Medium and
NG-Large), which are generated by the NXmap tool. Chapter 9 focuses on Intel’s
VPUs (Myriad 2 and Myriad X), and all the implementations are performed with the
associated tools, i.e., the MDK design suite for custom development and the Open-
VINO framework for the deployment of neural networks. This chapter also reports
results for Nvidia’s Jetson Nano GPU.

16

Chapter 2

The Approximate Computing Paradigm

The emergence of complex applications in domains applying multimedia processing
and machine learning tasks has transformed the computing paradigm in embedded
systems and data centers. These applications involve massive data and/or high com-
putational complexity. Consequently, there is an emerging need for computational
resources, which results in increasing more and more the power consumption of the
computing systems. In the past, the technology scaling has played significant role
towards surpassing these challenges, however, its declining efficiency pushes us to
examine new computing paradigms. Approximate Computing is such an alternative
paradigm, which trades-off accuracy loss and decreased quality of results for resource
gains (e.g., in power/energy, area, latency, throughput). This computing paradigm
is applied to error-resilient applications, such as those involving multimedia and ma-
chine learning, and it induces errors based on a disciplined approach to improve the
efficiency of the systems/circuits and deliver the desired resource gains. Approzima-
tion opportunities abound in every layer of the typical computing stack, i.e., from
transistors and circuits to compilers and programming languages. Therefore, there is
a great variety of approximation techniques at each design abstraction layer, which
study the errors and relax the accuracy from different perspective. In this chapter, we
review state-of-the-art research works in Approxzimate Computing from all the layers
of the computing stack. At first, we discuss the terminology of Approzimate Comput-
ing and then, we classify and analyze the state-of-the-art approzimation techniques
with respect to their application layer (software or hardware). Our tazonomy is fine-
grained, namely we study in-depth the approximation techniques of each layer and
classify them based on their design approach.

This chapter is based on our publication in [37].

17

The Approximate Computing Paradigm

2.1. Introduction

Approximate Computing covers the entire computing stack, i.e., approximation tech-
niques are applied at all design abstraction layers. Significant research has been con-
ducted in the field of software approximation techniques, which involve approximate
programming languages, approximate compilers, approximation frameworks, quality-
aware runtime systems, as well as approximations via precision scaling, task skipping
and memoization. On the other hand, the most common hardware techniques target
the modification of the circuits and hardware architectures, i.e., they generate a lossy
circuit/architecture from the nominal accurate one. There is also wide research on the
tunable scaling of the circuit’s voltage or frequency.

This chapter provides background in Approximate Computing. In particular, we in-
troduce the terminology of Approximate Computing based on our literature search,
and we report an extensive review of the state-of-the-art software and hardware
approximation techniques. Our literature review includes newer works and more
works compared to previous well-established surveys in Approximate Computing,
ie., from Mittal et al. (2016) [16], Xu et al. (2016) [17], and Shafique et al.
(2016) [18]. Furthermore, it differentiates from the survey of [19], as it focuses
on implementation details and analyzes the approximations of each reviewed tech-
nique.

The remainder of this chapter is organized as follows. Section 2.2 reports the terminol-
ogy. Section 2.3 classifies and analyzes the software approximation techniques, while
Section 2.4 classifies and analyzes the hardware approximation techniques.

2.2. The Terminology of Approximate Computing

Table 2.1 describes the most frequently used terms in Approximate Computing. The
term error is used to indicate that the output result is different from the accurate re-
sult (produced with conventional computing). Error is distinguished from fault, which
refers to an unexpected condition (e.g., stuck-at-logic in circuits, bit-flips in memories,
faults in operating systems) that causes the system to unintentionally output erro-
neous results. Another significant term is accuracy, which is defined as the distance
between the approximate and the (nominal) accurate result and is expressed with var-
ious error metrics (e.g., error rate, mean relative error, mean squared error, classifica-
tion accuracy). Accuracy is distinguished from precision, which expresses the differ-
entiation between nearby discrete values and does not refer to errors of Approximate
Computing but to quantization noise (inserted by the real-to-digital value mapping).

18

2.2. The Terminology of Approximate Computing

Table 2.1: Basic terminology of Approximate Computing.

Term

Description

FError-Resilient
Application

The application that tolerates errors and accepts results of lower
quality.

Quality of Service

The quality of the results in terms of errors and accuracy.

Error Constraints

The quality /accuracy requirements that the results should satisfy.

Error Threshold

The maximum error allowed in the results.

Golden Result

The result that is obtained from the accurate computations.

Acceptable Result

The result that satisfies the application’s error constraints.

Variable Accuracy

The capability of providing different levels of accuracy.

Non-Critical Task

The task/computation that can be safely approximated due to its
small impact on the quality of the output results.

Error Analysis

The study involving metrics, mathematics and simulations to ex-
amine the range, frequency, scaling, and propagation of errors.

Approximation The systematic and disciplined approach/method to insert com-
Technique putation errors in exchange for resource gains.
Approxzimation The strength of the approximation technique in terms of compu-
Degree tations approximated and errors induced.
Approximation An instance of the parameters/settings of the approximation tech-
Configuration nique.

rozen . The approximation degree is fixed and cannot be re-configured.
Approxzimation
Dynamz.c , The capability of adjusting the approximation degree at runtime
Approzimation . . -

. to satisfy the desired error constraints.

Tuning

Cross-Layer

The approximation that is applied at multiple design abstraction

Approximation layers (software, hardware, architecture).

Heterogeneous The approximation that concurrently applies multiple configura-
Approzimation tions of different degree within the same system.

Approzimation Space | The study involving error analysis and gain quantification to ex-
Ezxploration amine trade-offs and select the suitable approximations.
Approximation The systematic approach to locate the computations and regions
Localization that are offered for approximation.

Error Modeling

The process of emulating the errors of the approximations.

FError Prediction

The process of predicting errors before computing the final result.

FError Detection

The process of identifying an error occurrence.

Error Compensation

The process of modifying the erroneous result to reduce the error.

Error Correction

The process of correcting the erroneous result.

More specifically, in computer arithmetic, the more bits are used for the decimal num-
ber part, the higher the precision, i.e., there are more bits for the representation and

19

The Approximate Computing Paradigm

the numbers are closer to their real value. Moreover, in Approximate Computing, the
term Quality-of-Service (QoS) is used to describe the overall quality of the results (in
terms of accuracy and errors), considering the expected/accurate results as baseline
and the application’s quality constraints.

2.3. Classification of Software Approximation
Techniques

In this section, we classify and introduce approximation techniques that are applied
at software level, i.e., the higher level of the design abstraction hierarchy. The goal
of software Approximate Computing is to improve the execution time of the program
and/or the energy consumption of the system. The techniques of the literature, illus-
trated in Figure 2.1, can be categorized into six classes: (i) Selective Task Skipping,
(ii) Approzimate Memoization, (iii) Relaxed Synchronization, (iv) Precision Scaling,
(v) Data Sampling, and (vi) Approzimate Programming Languages. Typical tech-
niques include some of the following features: approximation libraries/frameworks,
compiler extensions, accuracy tuning tools, runtime systems, and language annota-
tions. Moreover, there are numerous techniques allowing the programmer to specify
QoS constraints, provide approximate code variants, and mark the program’s region-
s/tasks for approximation.

The remainder of this section reports representative state-of-the-art works for soft-
ware Approximate Computing. Besides classifying state-of-the-art techniques, we

Approx. Programming Languages

Approx. Memoization SOFTWARE Data Sampling
APPROXIMATION TECHNIQUES
{)
Relaxed Synchronization Precision Scaling

Selective Task Skipping

v v
Loop Computation Memory Access
Perforation Skipping Skipping

Figure 2.1: Classification of state-of-the-art software approximation techniques.

20

2.3. Classification of Software Approximation Techniques

Table 2.2: Classification of software approximation techniques.

SW Approximation Class References
Loop Perforation [40-48]
Computation Skipping [49-57]
Memory Access Skipping [68-63]
Approximate Memoization [64-73]
Relaxed Synchronization [74-81]
Precision Scaling [82-97]
Data Sampling [98-109]
Approximate Program. Languages [30,110-127]

discuss their approximations and how they are applied. Table 2.2 reports the refer-
ences of all the reviewed research works. We note that the literature also includes
entire approximation frameworks, such as ACCEPT [38] and OPPROX [39], which
integrate multiple of these state-of-the-art techniques. Their goal is to perform an
extensive exploration using differing approximation approaches, identify the best ap-
proximation opportunities, and hence, maximize the resource gains while satisfying
the application’s/user’s constraints.

2.3.1. Selective Task Skipping
Loop Perforation

The loop perforation technique skips some of the loop iterations in a software pro-
gram to provide performance/energy gains in exchange for QoS loss. Subsequently, we
present several relevant works [40-48] involving design space exploration on loop per-
foration with programming frameworks and profiling tools.

Starting with one of the first state-of-the-art works, the SpeedPress compiler [40]
supports a wide range of loop perforation types, i.e., modulo, truncation, and ran-
domized. It takes as input the original source code, a set of representative inputs,
as well as a programmer-defined QoS acceptability model, and it outputs a loop per-
forated binary. In the same context, Misailovic et al. [41] propose a QoS profiler to
identify computations that can be approximated via loop perforation. The proposed
profiling tool searches the space of loop perforation and generates results for mul-
tiple perforation configurations. In [42], the same authors propose a methodology
to exclude critical loops, i.e., whose skipping results in unacceptable QoS, and they
perform exhaustive and greedy design space explorations to find the Pareto-optimal
perforation configurations for a given QoS constraint.

21

The Approximate Computing Paradigm

In [43], the authors propose an architecture that employs a profiler to identify non-
critical loops towards their perforation. To protect code segments that can be affected
by the perforated loops, the architecture is equipped with HaRE, i.e., a hardware
resilience mechanism. Another interesting work is GraphTune [44], which is an input-
aware loop perforation scheme for graph algorithms. This approach analyzes the input
dependence of graphs to build a predictive model that finds near-optimal perforation
configurations for a given accuracy constraint. Li et al. [45] propose a compiling
& profiling system, called Sculptor, to improve the conventional loop perforation,
which skips a static subset of iterations. More specifically, Sculptor dynamically
skips a subset of the loop instructions (and not entire iterations) that do not affect
the output accuracy. More recently, the authors of [46] develop LEXACT, which
is a tool for identifying non-critical code segments and monitoring the QoS of the
program. LEXACT searches the loop perforation space, trying to find perforation
configurations that satisfy pre-defined metrics.

The loop perforation technique has also been used in approximation frameworks for
heterogeneous multi-core systems combining various approximation mechanisms. Tan
et al. [47] propose a task scheduling algorithm, which employs multiple approximate
versions of the tasks with loops perforated. Kanduri et al. [48] target applications
in which the main computations are continuously repeated, and they tune the loop
perforation at runtime.

Computation Skipping

This technique omits the execution of blocks of codes with respect to the acceptable
QoS loss, programmer-defined constraints, and/or runtime predictions regarding the
output accuracy [49-57]. Compared to loop perforation, these techniques do not
focus only on skipping loop iterations, but also skip higher-level computations/tasks
e.g., an entire convolution operation. Most of the state-of-the-art works perform
application-specific computation skipping.

Meng et al. [49] introduce a parallel template to develop approximate programs for
iterative-convergence recognition & mining algorithms. The proposed programming
template provides several strategies (implemented as libraries) for task dropping,
such as convergence-based computation pruning, computation grouping in stages,
and early termination of iterations. Another interesting work involving application-
specific computation skipping is presented in [50]. The authors of this work study the
error tolerance of the supervised semantic indexing algorithm to make approximation
decisions. Regarding their task dropping approach, they choose to omit the processing
of common words (e.g., “the”, “and”) after the initial iterations, as these computations
have negligible impact on accuracy.

22

2.3. Classification of Software Approximation Techniques

The authors of [51] propose two techniques to find computations with low impact on
the QoS of the Reduce-and-Rank computation pattern, targeting to approximate or
skip them completely. To identify these computations, the first technique uses inter-
mediate reduction results and ranks, while the second one is based on the spatial or
temporal correlation of the input data (e.g., adjacent image pixels or successive video
frames). Similar to the other state-of-the-art works, Vassiliadis et al. [52,53] propose
a programming environment that skips (or approximates) computations with respect
to programmer-defined QoS constraints. More specifically, the programmer expresses
the significance of the tasks using pragmas directives, optionally provides approximate
variants of tasks, and specifies the task percentage to be executed accurately. Based
on these constraints, the proposed system makes decisions at runtime regarding the
approximation/skipping of the less significant tasks.

Rinard [54] builds probabilistic distortion models based on linear regression to study
the impact of computation skipping on accuracy. The programmer partitions the
computations into tasks, which are then marked as “critical” or “skippable” through
random skip executions. The probabilistic models estimate the output distortion as
function of the skip rates of the skippable tasks. This approach is also applied in
parallel programs [55], where probabilistic distortion models are employed to tune
the early phase termination at barrier synchronization points, targeting to keep all
the parallel cores busy.

Significant research has also been conducted on skipping the computations of Convo-
lutional Neural Networks (CNNs). Lin et al. [56] introduce PredictiveNet to predict
the sparse outputs of the nonlinear layers and skip a large subset of convolutions at
runtime. The proposed technique, which does not require any modification in the
original CNN structure, examines the most-significant part of the convolution to pre-
dict if the nonlinear layer output is zero, and then it decides whether to skip the
remaining least-significant part computations or not. In the same context, Akhlaghi
et al. [57] propose SnaPEA, exploiting the convolution—activation algorithmic chain
in CNNs (activation inputs the convolution result and outputs zero if it is negative).
This technique early predicts negative convolution results, based on static re-ordering
of the weights and monitoring of the partial sums’ sign bit, in order to skip the rest
computations.

Memory Access Skipping

Another approach to improve the execution time and energy consumption at soft-
ware level is the memory access skipping. Such techniques [58-63] aim to avoid
high-latency memory operations, while as a result, they also reduce the number of
computations.

23

The Approximate Computing Paradigm

Miguel et al. [58] exploit the approximate data locality to skip the required memory
accesses due to L1 cache miss. In particular, they employ a load value approximator,
which learns value patterns using a global history buffer and an approximator table,
to estimate the memory data values. RFVP [59] uses value prediction instead of
memory accessing. When selected load operations miss in the cache memory, REVP
predicts the requested vales without checking for misprediction or recovering the val-
ues. As a result, timing overheads from pipeline flushes and re-executions are avoided.
Furthermore, a tunable rate of cache misses is dropped after the value prediction to
eliminate long memory stalls. The authors of [60] propose a framework that skips
costly last-level cache misses according to a programmer-defined error constraint and
an heuristic predicting skipped data.

To improve the performance of CUDA kernels on GPUs, Samadi et al. [61] propose
a runtime approximation framework, called SAGE, which focuses on optimizing the
memory operations among other functionalities. The approximations lie in skipping
selective atomic operations (used by kernels to write shared variables) to avoid con-
flicts leading to performance decrease. Furthermore, SAGE reduces the number of
memory accesses by packing the read-only input arrays, and thus, allowing to access
more data with fewer requests. Karakoy et al. [62] propose a slicing-based approach
to identify data (memory) accesses that can be skipped to deliver energy/performance
gains within an acceptable error bound. The proposed method applies backward and
forward code slicing to estimate the gains from skipping each output data. Moreover,
the ‘0’ value is used for each data access that is not performed. The ApproxANN
framework [63], apart from performing approximate computations, skips memory ac-
cesses on neural networks according to the neuron criticality. More specifically, a
theoretical analysis is adopted to study the impact of neurons on the output accu-
racy and characterize their criticality. The neuron approximation under a given QoS
constraint is tuned by an iterative algorithm, which applies the approximations and
updates the criticality of each neuron (it may change due to approximations in other
neurons).

2.3.2. Approximate Memoization

The memoization technique stores results of previous calculations or pre-computed
values in memory to use them instead of performing calculations. Namely, this mem-
ory functions as a look-up table, which maps a set of data identifiers to a set of
stored data. Subsequently, we focus on approximate memoization techniques [64—69)
relying on software frameworks, compilers and programmer’s decisions. Nevertheless,
we note that there are also approaches [70-73] requiring hardware modification to
support memoization.

24

2.3. Classification of Software Approximation Techniques

Chadhuri et al. [64] propose an approximate memoization for computations in loops.
Prior executing an expensive function within a loop, this technique checks a look-up
table to find if this computation was previously performed for similar input data. In
this case, the cached result is used, otherwise, the function is executed and the new
computation is stored in the look-up table. Paraprox [65] is a software framework
for identifying common patterns in data-parallel programs and applying tailored ap-
proximations. For the Map & Scatter/Gather patterns, Paraprox uses memoization
rather than performing computations. In particular, it fills a look-up table with pre-
computed data, which are obtained from the execution of the Map & Scatter/Gather
function for some representative inputs, and it performs runtime look-up table queries
instead of the conventional computations.

iACT [66] is another approximation framework that applies runtime memoization
among other functionalities. The programmer uses pragmas to declare the func-
tions for memoization and specify the error tolerance percentage. For each function
call-site, the framework creates a global table to store pairs of function arguments
and output results. In case the function arguments are already stored in the table
(within an error bound), the corresponding output results are returned. Otherwise,
the function is accurately executed and the new input—output pairs are stored in the
table. The ATM approach [67] performs runtime task memoization, relying on hash-
ing functions to store the task inputs and an adaptive algorithm to automatically
decide whether to use memoization or execute the task. The programmer needs to
use pragmas to specify the tasks that are suitable for memoization. The authors
of [68] introduce an approximate memoization mechanism for GPU fragment shading
operations, which reduces the precision of the input parameters and performs partial
matches. To identify approximate memoization opportunities, they characterize var-
ious fragment shader instructions in terms of memoization hits and output accuracy.
Moreover, runtime policies are proposed to tune the precision according to the errors
introduced.

Contrary to the aforementioned techniques, TAF-Memo [69] is an output-based func-
tion memoization technique, i.e., it memoizes function calls based on their output his-
tory. TAF-Memo checks for temporal locality by calculating the relative arithmetic
difference of two consecutive output values from the same function call-site. In case
this difference is below the acceptable error constraint, memoization is applied by re-
turning the last computed output for the following function calls.

2.3.3. Relaxed Synchronization

The execution of parallel applications on multi/many-core systems requires time-
consuming synchronization to either access shared data or satisfy data dependencies.

25

The Approximate Computing Paradigm

The literature includes various techniques [74-81] that relax the conventional syn-
chronization requirements guaranteeing error-free execution, to improve the perfor-
mance.

The authors of [74] propose the four-step RaC methodology to systematically re-
lax synchronization, while always satisfying a programmer-defined QoS constraint.
Initially, the programmer specifies the parallel code segments, and then applies the
RaC methodology. This methodology identifies criteria for quantifying the accept-
able QoS, selects the relaxation points, modifies the code to enable the execution of
both the original and relaxed versions, and selects the suitable relaxation degree (i.e.,
which instances to relax for each synchronization point). Misailovic et al. [75] pro-
pose the Dubstep system, which relaxes the synchronization of parallelized programs
based on a “find-transform-navigate” approach. Dubstep performs a profiling-based
analysis of the original program to find possible optimizations, inserts opportunistic
synchronization and barriers, and finally, performs an exploration including accuracy,
performance and safety analysis.

QuickStep [76] is a system for approximately parallelizing sequential programs with-
out preserving their semantics within statistical accuracy bounds. Among other
transformations, QuickStep replicates shared objects to eliminate the bottlenecks
of synchronized operations on them. HELIX-UP [77] is another parallelizing com-
piler that selectively relaxes strict adherence to program semantics to tackle runtime
performance bottlenecks, involving profiling and user interaction to tune QoS. The
compiler also offers a synchronization-relaxing knob to decrease the inter-core commu-
nication overhead by synchronizing sequential segments with prior iterations. More
recently, the authors of [78] introduce PANDORA, which is an approximate paralleliz-
ing framework based on symbolic regression machine learning and sampled outputs of
the original function. To avoid timing bottlenecks, such as data movement and syn-
chronization, and improve parallelism, PANDORA eliminates loop-carried dependen-
cies using fitness functions and constraints regarding error and performance. In [79],
the authors exploit the concept of approximate shared value locality to reduce syn-
chronization conflicts in programs using optimistic synchronization. The reduction of
conflicts on approximately local variables, detected for a given similarity constraint, is
achieved through an arbitration mechanism that imprecisely shares the values between
threads. The authors of [80] apply aggressive coarse-grained parallelism on recognition
& mining algorithms by relaxing or even ignoring data dependencies between different
iterations. As a result, the timing overheads are reduced in comparison with the con-
ventional parallel implementation, which also applies parallelization only within the
iteration (iterations are executed serially). Rinard [81] introduces synchronization-
free updates to shared data structures by eliminating the conventional use of mutual
exclusion and dropping array elements at the worst scenario. Moreover, the same
work applies relaxed barrier synchronization, allowing the threads to pass the barrier

26

2.3. Classification of Software Approximation Techniques

without stalling to wait for the other threads.

2.3.4. Precision Scaling

Precision scaling (tuning) refers to the discipline reduction of the accurate numer-
ical precision, resulting in improved calculation speed and/or memory bandwidth
[128]. The state-of-the-art software-level works [82-97] address several challenges,
such as the scaling degree, scaling automation, mixed precision, and dynamic scal-
ing.

Starting with works based on formal methods to reduce the precision and examine
the errors, the Gappa tool [82] automates the study of rounding errors in elemen-
tary functions and floating-point calculations using interval arithmetic. An extended
version of this tool is Gappa++ [83], which provides automated analysis of numer-
ical errors in a wide range of computations, i.e., fixed-point, floating-point, linear
and non-linear. This tool integrates several features, such as operation rewriting to
facilitate the isolation of rounding errors, and affine arithmetic to accurately bound
linear calculations with correlated errors. FPTuner [84] is a tool that performs for-
mal error analysis based on symbolic Taylor expansions and quadratically constrained
quadratic programming. It searches for precision allocations that satisfy constraints
such as the number of operators at a given precision and the number of type casts.
Rosa [85] is a source-to-source compiler that combines satisfiability modulo theories
with interval arithmetic to bound the round-off errors of the fixed- and floating-point
formats.

Several works employ heuristics and automated search to scale the precision of floating-
point programs. Precimonious [86] searches all the program variables in their order
of declaration using the delta-debugging algorithm, and it lowers their precision ac-
cording to an error constraint specified by the programmer. In the same context,
HiFPTuner [87] firstly groups dependent variables that may require the same preci-
sion, and then it performs a customized hierarchical search. Lam et al. [88] introduce
a framework that employs the breadth-first search algorithm to identify code regions
that can tolerate lower precision. Similar to this technique, CRAFT [89] performs
binary searches to initially determine the required program precision, and then trun-
cate the results of some of the floating-point instructions. Towards the detection of
large floating-point errors, the authors of [90] propose S3FP. This tool is based on
an heuristic-guided search to find the inputs causing the largest errors. The Blame
Analysis [91] combines concrete and shadow execution to generate a blame set for the
program instructions, which contains the minimum precision requirements under a
giver error constraint. This approach can be also used in cooperation with the previ-
ous search-based works, and specifically, as pre-processing to reduce the search space.

27

The Approximate Computing Paradigm

Schkufza et al. [129] treat the scaling of floating-point precision as a stochastic search
problem. In particular, they repeatedly apply random program transformations and
use a robust search to guarantee the maximum errors.

The concept of dynamic precision scaling, i.e., the precision tuning at runtime with
respect to the input data and error tolerance, has been studied in [92]. The dynamic
scaling framework of this work integrates an offline application profiler, a runtime
monitor to track workload changes, and an accuracy controller to adjust the precision
accordingly. ApproxMA [93] dynamically scales the precision of data memory accesses
in algorithms such as mixture model-based clustering. This framework integrates a
runtime precision controller, which generates custom bit-widths according to the QoS
constraints, and a memory access controller, which loads the scaled data from memory.
The custom bit-widths are generated by analyzing a subset of data and intermediate
results and calculating metrics regarding the error appearance and the number of
tolerable errors.

Mixed floating-point precision has also been studied in high-performance computing
workloads. ADAPT [94] uses algorithmic differentiation, i.e., a technique for nu-
merically evaluating the derivative of a function corresponding to the program, to
estimate the output error of high-performance computing workloads. It provides a
precision sensitivity profile to guide the development of mixed-precision programs.
In the same context, the authors of [95] propose an instruction-based search that
explores information about the dynamic program behaviour and the temporal local-
ity.

To enable mixed floating-point precision in GPUs, the authors of [96] propose the
GPUMixer tool, which relies on static analysis to find code regions where precision
scaling improves the performance. Next, GPUmixer performs a dynamic analysis
involving shadow computations to examine if the scaled program configurations sat-
isfy the accuracy constraints. In the same context, PreScaler [97] is an automatic
framework that generates precision-scaled OpenCL programs, considering both kernel
execution and data transfer. Initially, it employs a system inspector to collect infor-
mation about precision scaling on the target platform, and an application profiler to
identify memory objects with floating-point elements for potential scaling. This in-
formation is exploited by a decision maker, which finds the best scaling configuration
using decision tree search on a minimized space.

2.3.5. Data Sampling

Approximate Computing is also exploited in big data analysis, in an effort to reduce
the increased number of computations due to the large amount of data. The key
idea is to perform computations on a representative data sample instead of the entire

28

2.3. Classification of Software Approximation Techniques

dataset. In this context, data sampling methods [98-109] provide real-time processing
with error bounds in applications involving stream analytics, database search, and
model training.

EARL [98] is an extension of Hadoop (i.e., a software framework that provides dis-
tributed storage and big data processing on clusters), which delivers early results with
reliable error bounds. It applies statistics-based uniform sampling from distributed
files. Goiri et al. [99] propose the ApproxHadoop framework to generate approximate
MapReduce programs based on task dropping and multi-stage input sampling. They
also bound the errors using statistical theories. The programmer tunes the approxi-
mation by specifying either the ratio of task dropping and/or input sampling or the
desired error bound. Similarly, ApproxSpark [100] performs sampling at multiple ar-
bitrary points of long chains of transformations to facilitate the aggregation of huge
amounts of data. This framework models the clustering information of transforma-
tions as a data provenance tree, and then it computes the approximate aggregate val-
ues as well as error thresholds. Moreover, the sampling rates are dynamically selected
according to programmer-specified error thresholds.

Sampling methods have also been examined in stream analytics. StreamApprox [101]
is an approximate stream analytics system that supports both batched and pipelined
stream processing. It employs two sampling techniques, i.e., stratified and reservoir
sampling, to approximate the outputs with rigorous error bounds. IncApprox [102]
combines approximate and incremental computations to provide stream analytics
with bounded error. This system executes a stratified sampling algorithm that se-
lects data for which the results have been memoized from previous runs, and it ad-
justs the computations to produce an incrementally updated output. On the other
hand, PrivApprox [103] combines sampling and randomized response to provide both
approximate computations and privacy guarantee. This system integrates a query
execution interface that enables the systematic exploration of the trade-off between
accuracy and query budget. ApproxIoT [104] facilitates approximate stream analyt-
ics at the edge by combining stratified reservoir sampling and hierarchical process-
ing.

A variety of sampling methods have been employed in approximate query processing
systems for databases. BlinkDB [105] performs approximate distributed query pro-
cessing, supporting SQL-based aggregation queries with time and error constraints.
It creates stratified samples based on past queries and uses an heuristic-based pro-
filer to dynamically select the sample that meets the query’s constraints. Another
system applying approximate big-data queries is Quickr [106], which integrates oper-
ators sampling multiple join inputs into a query optimizer, and then it searches for an
appropriate sampled query plan. Sapprox [107] is a distribution-aware system that
employs the occurrences of sub-datasets to drive the online sampling. In particular,

29

The Approximate Computing Paradigm

the exponential number of sub-datasets is reduced to a linear one using a probabilistic
map, and then, cluster sampling with unequal probability theory is applied for sub-
dataset sampling. Sapprox also determines the optimal sampling unit size in relation
with approximation costs and accuracy.

Numerous works of the literature use data sampling to decrease the increased com-
putational cost of model training for machine learning applications. Zombie [108]
is a two-stage system that trains approximate models based on clustering and ac-
tive learning. The first stage applies offline indexing to organize the dataset into
index groups of similar elements. Subsequently, the stage of online querying uses
the index groups that are likely to output useful features to create the training sub-
set of data. BlinkML [109] approximately trains a model on a small sample, while
providing accuracy guarantees. The sample is obtained through uniform random
sampling, however, in case of very large datasets, a memory-efficient algorithm is
employed.

2.3.6. Approximate Programming Languages

The high-level approximation of software programs has been examined through ap-
proximate programming languages, i.e., language extensions that allow the program-
mer to systematically declare approximate code regions, variables, loops, and func-
tions, insert randomness in the program, and/or specify error constraints. The lit-
erature involves numerous works [30,110-127] that enable approximate procedural,
object-oriented, and probabilistic programming,.

Ansel et al. [110] introduce a set of PetaBricks language extensions that allow the pro-
grammer to write code of variable accuracy. These extensions expose the performance—
accuracy trade-off to the compiler, which automatically searches the algorithmic space
to tune the program according to the programmer’s accuracy constraints. Eon [111]
is a programming language that allows the programmer to annotate program flows
(paths) with different energy states. The Eon runtime system predicts the workload
and energy of the system, and then it adjusts the execution of flows according to the
programmer’s declarations and the energy constraints. In the same context, Baek and
Chilimbi [112] propose Green, which is a two-phase programming framework providing
language extensions to approximate expensive functions and loops. The programmer
uses pragma-like annotations to specify approximate variants of functions. In the
calibration phase, Green builds a model to quantify the QoS loss and the perfor-
mance/energy gains. This model is then used in the operational phase to generate an
approximate program satisfying the programmer’s QoS constraint. DECAF [113] is a
type-based approximate programming language that allows the programmer to spec-
ify the correctness probability for some of the program variables. The DECAF type

30

2.3. Classification of Software Approximation Techniques

system also integrates solver-aided type inference to automatically tune the type of
the rest variables, code specialization, and dynamic typing. Flikker [116] provides lan-
guage annotations to mark the program variables and partition the data into critical
and non-critical regions (the latter are stored in unreliable memories). Topaz [117]
is a task-based language that maps tasks onto approximate hardware and uses an
outlier detector to find and re-execute the computations producing unacceptable re-
sults.

In [30], the authors introduce language constructs for generating approximate pro-
grams and proof rules for verifying the acceptability properties. Rely [114] is an
imperative language that allows the programmer to introduce quantitative reliabil-
ity specifications for generating programs with data stored in approximate memory
and inexact arithmetic/logical operations. Chisel [115] automates the selection of
Rely’s approximations while satisfying the programmer-defined reliability and ac-
curacy constraints. To solve this optimization problem, Chisel employs an integer
programming solver. All these works include safety analysis and program verification
for sequential programs. In contrast, Parallely [126] is a programming language for
approximating parallel programs through canonical sequentialization, i.e., a verifica-
tion method that generates sequential programs capturing the semantics of parallel
programs.

Targeting approximations in Java programs, the authors of [118] propose EnerlJ, i.e.,
a language extension providing type qualifiers to specify data that can be approxi-
mately stored or computed. EnerJ guarantees isolation of the approximate compu-
tations. FlexJava [119] offers another set of language extensions to annotate approx-
imate programs. Using an approximation safety analysis, FlexJava automates the
approximation of data and operations while ensuring safety guarantees. ExpAX [120]
allows the programmer to explicitly specify error expectations for a subset of Java.
Based on an approximation safety analysis, it identifies operations that are candidate
for approximation, and then, an heuristic-based framework approximates those that
statistically satisfy the error expectations.

Significant research has also been conducted on probabilistic programming languages.
Church [121] is a probabilistic language that inserts randomness on a deterministic
function subset using stochastic functions. The Church semantics are defined in
terms of evaluation histories and conditional distributions on the latter. Similarly,
Venture [122] is another language that enables the specification of probabilistic models
and inference problems. The Anglican [123] language and runtime system provides
probabilistic evaluation model and functional representations, e.g., distributions and
sequences of random variables.

Uncertain<T> [124] is a language abstraction that manipulates data as probabil-
ity distributions. More specifically, random variables are declared as “uncertain”

31

The Approximate Computing Paradigm

and a Bayesian network for representing computations is build, where nodes cor-
respond to the variables and edges correspond to conditional variable dependen-
cies. The Uncertain<T> runtime system performs hypothesis tests and sampling
to evaluate the network. Similarly, Sampson et al. [125] use probabilistic assertions
on random variables. Their tool, called MayHap, performs probabilistic evaluation
by statically building a Bayesian representation network based on the input dis-
tribution and dynamically interpreting it via sampling. In the same context, Ax-
Prof [127] is a profiling-based framework for analyzing randomized approximate pro-
grams. The programmer specifies probabilistic predicates for the output, i.e., re-
garding the expectation of the output value and/or the probability that the output
satisfies a condition, and AxProf generates approximate programs based on statistical
tests.

2.4. Classification of Hardware Approximation
Techniques

In this section, we classify and introduce the hardware approximation techniques,
which are applied at the lower level of the design abstraction hierarchy. These tech-
niques aim to improve the area, power consumption, and performance of the circuits
i.e., the basic building blocks of accelerators, processors, and computing platforms.
The hardware approximation techniques can be categorized into three classes: (i)

HARDWARE

APPROXIMATION TECHNIQUES

Circuit Functional Approximation

v v
Approximate Approximate
Arithmetic Synthesis
Voltage Over-Scaling Over-Clocking

circuit
re-design

tight
synthesis

circuit
re-design

fine-grained
scaling

slack
re-distribution

error
modeling

error
prediction

error detection
& correction

Figure 2.2: Classification of state-of-the-art hardware approximation techniques.

2.4. Classification of Hardware Approximation Techniques

Table 2.3: Classification of hardware approximation techniques.

HW Approximation Class Technique/Approach

L. use of approximate full adder cells [130-133]
Adder Approximation
segmentation and carry prediction [134-141]

truncation and rounding [142-148]

i i i 149-1
Multiplier Approximation approximate radix encodings [149-153]
use of approximate compressors [154-158]
logarithmic approximation [159-162]
bit-width scaling [163,164]

Divider Approximation use of approximate adder/subtractor cells [165-168]

simplification of computations [169-173]

structural netlist transformation [174-178]
Approximate Synthesis B-oolean rewriting [179-182] o
high-level approximate description [183-187]
evolutionary synthesis [188-192]

slack re-distribution [193]

circuit re-design and architecture modification [194-196]

Voltage Over-Scali
ge Lver e fine-grained scaling [197-199]

error modeling [200-204]
tight synthesis [205]
circuit re-design and architecture modification [206-208]

Over-Clockin
& error detection & correction [209-211]

error prediction [212-215]

Clircuit Functional Approximation (CFA), (i) Voltage Over-Scaling (VOS), and (iii)
Over-Clocking (OC). In approximate hardware, we distinguish two types of errors:
the functional errors (produced by CFA) and the timing errors (produced by VOS
and OC). Figure 2.2 illustrates the hardware approximation techniques, including a
further taxonomy to sub-classes.

In the remainder of this section, we present state-of-the-art works, organized according
to the proposed classification. We also note that some works belong to more than
one sub-class, however, we opt to assign them to the sub-class of their prevalent
technique and highlight the relevant features. Table 2.3 summarizes the state-of-the-
art hardware approximation techniques.

33

The Approximate Computing Paradigm

2.4.1. Circuit Functional Approximation

Circuit functional approximation modifies the original accurate design by reducing
its circuit complexity at logic level. Typical CFA approaches include: (i) the modifi-
cation of the circuit’s truth table, (ii) the use of an approximate version of the initial
hardware algorithm, (iii) the use of small inexact components as building blocks, and
(iv) approximate circuit synthesis. The main target of CFA is the arithmetic cir-
cuits [216], as they constitute the key processing units of processors and accelerators,
and thus, they inherently affect the power efficiency and performance of the entire sys-
tem. Interestingly, the literature provides several open-source libraries of approximate
arithmetic circuits, such as ApproxAdderLib [138], EvoApprox8b [190] and SMAp-
proxLib [217]. In this literature review, we focus on approximate adders, multipliers,
and dividers. However, we note that numerous works design and evaluate other ap-
proximate arithmetic operations, such as circuits for multiply-accumulate [218,219],
square root [164], squaring [220], square-accumulate [221], and Coordinate Rotation
Digital Computer (CORDIC) [222]. Moreover, the literature includes automated
methods for generating approximate circuits, which are presented in the context of
approximate logic synthesis.

Approximate Adders

Significant research has been conducted on the design of approximate area- and power-
efficient adders. The approximation techniques for inexact adders involve: (i) use of
approximate full adder cells [130-133] and (ii) segmentation and carry prediction
[134-141]. In the following, we present representative state-of-the-art works with
approximate adders.

The IMPACT adders are based on inexact full adder cells, which are approximated at
the transistor level to deliver up to 45% area reduction [130]. Another transistor-level
cell approximation is proposed in [131], where the AXA 4-transistor XOR/XNOR-
based adders are implemented, delivering up to 31% gain in dynamic power con-
sumption. Moreover, in [132], approximate reverse carry-propagate full adders are
used to build the hybrid RCPA adders. Targeting higher level approximations, the
OLOCA adder splits the addition into accurate and approximate segments [133],
and for the latter, it employs OR gates for the most-significant bit additions and
outputs constant ‘1’ for the least-significant ones. To reduce the worst-case carry
propagation delay, Kim et al. [134] propose a carry prediction scheme leveraging
the less-significant input bits, which is 2.4x faster than the conventional ripple-
carry adder. Similarly, Hu et al. [135] introduce a carry speculating method to seg-
ment the carry chain in their design, which also performs error and sign correction.

34

2.4. Classification of Hardware Approximation Techniques

Compared to the accurate adder, the proposed design is 4.3x faster and saves 47%
power.

The quality constraint of applications may vary during runtime, thus, research efforts
have also focused on designing dynamically configurable adders, which can tune their
accuracy. In [136], the authors propose an accuracy-configurable adder, called ACA,
which consists of several sub-adders and an error detection & correction module. The
design controls the accuracy at runtime and can operate in accurate mode. Another
dynamically configurable adder, called GDA, is proposed in [137], where multiplexers
select the carry input either from the previous sub-adder or the carry prediction unit,
providing a more graceful degradation of the accuracy. In the same direction, the
GeAr adder employs multiple sub-adders of equal length to variable approximation
modes [138]. This architecture also supports accurate mode via a configurable error
correction unit.

More recently, Akbari et al. [139] introduce the RAP-CLA adder, which splits the
conventional carry look-ahead scheme into two segments, i.e., the approximate part
and the augmenting part, supporting approximate and accurate mode. When oper-
ating at the approximate mode, the augmenting part is power-gated to reduce power
consumption. Another carry-prediction-based approach supporting both modes is the
SARA design [140]. This adder uses carry ripple sub-adders, and the carry predic-
tion does not require a dedicated circuitry. Finally, the BSCA adder, which is based
on a block-based carry speculative approach [141], integrates an error recovery unit
and non-overlapped blocks consisting of a sub-adder, a carry prediction unit, and a
selection unit.

Approximate Multipliers

The multiplication circuits have attracted significant interest from the research com-
munity. The literature includes a plethora of inexact multipliers, which can be catego-
rized according to the prevailing approximation techniques: (i) truncation and round-
ing [142-148], (ii) approzimate radiz encodings [149-153], (iii) use of approximate com-
pressors [154-158], and (iv) logarithmic approrimation [159-162]. Subsequently, we
introduce the state-of-the-art works from each category.

Starting with the rounding and truncation techniques, the DRUM multiplier [142] dy-
namically reduces the input bit-width, based on the leading ‘1’ bits, to achieve 60%
power gain in exchange for mean relative error of 1.47%. Zendegani et al. [143] pro-
pose the RoBa multiplier, which rounds the operands to the nearest exponent-of-two
and performs a shift-based multiplication in segments. In [144], the PR approximate
multiplier perforates partial products and applies rounding to the remaining ones,
delivering up to 69% energy gains. The same approximation technique is integrated

35

The Approximate Computing Paradigm

in the mantissa multiplication of floating-point numbers to create the AFMU multi-
plier [145]. Vahdat et al. [146] propose the TOSAM multiplier, which truncates the
input operands according to their leading ‘1’ bit. To decrease the error, the trun-
cated values are rounded to the nearest odd number. In [147], different rounding,
perforation and encoding schemes are combined to extract the most energy-efficient
designs. Finally, Frustaci et al. [148] implement an alternative dynamic truncation
with correction, along with an efficient mapping for the remaining partial product
bits.

Next, we present multipliers generating their partial products based on approximate
radix encodings. Liu et al. [149] modify the Karnaugh map of the radix-4 encoding to
create approximate encoders for generating the least-significant partial product bits.
A similar approach is followed in [150], where approximate radix-4 partial product
generators are designed. Jiang et al. [151] use an approximate adder to generate the
+3x multiplicand term in the radix-8 multiplier. In [152], the authors propose a
hybrid low-radix encoding, which encodes the most-significant bits with the accurate
radix-4 encoding and the least-significant bits with the proposed approximate radix-8
encoding. Correspondingly, the hybrid high-radix encoding, i.e., accurate radix-4 and
approximate radix-2¥, is examined in [153].

Several works employ approximate compressors for the partial product accumulation.
Momeni et al. [154] modify the truth table of the accurate 4:2 compressor to create two
simplified designs and use them in the Dadda multiplier. The authors in [155] design
4:2 compressors, again for Dadda multipliers, which can switch between accurate
and approximate mode at runtime, providing 68% lower power consumption. In
[156], an approximate 4:2 compressor is implemented in FInFET based on a three-
input majority gate, and then it is used in the Dadda architecture along truncation.
Esposito et al. [157] introduce a new family of approximate compressors and assign
them to each column of the partial product matrix according to their allocation
algorithm. Another interesting work is the design of approximate compressors for
multipliers using the concept of stacking circuit [158].

Regarding the approximate logarithmic multipliers, Liu et al. [159] employ a truncated
binary-logarithm converter and inexact adders for the mantissa addition to design the
ALM family of multipliers. The logarithmic-based REALM multiplier [160] partitions
the power-of-two intervals of the input operands into segments, and determines an
error compensation factor for each one. The ILM multiplier [161] differentiates from
the conventional design, as it rounds the input operands to their nearest power-of-two
using a nearest ‘1’ bit detector. Pilipovic et al. [162] propose a two-stage trimming
logarithmic multiplier, which reduces at first the bit-width of the input operands, and
then the bit-width of the mantissas.

36

2.4. Classification of Hardware Approximation Techniques

Approximate Dividers

The division circuits have received less attention than the other arithmetic circuits
(adders and multipliers), even though they feature complex calculations. Never-
theless, the literature provides numerous works aiming to reduce the large criti-
cal paths of the conventional dividers. The approximation techniques for the di-
vision circuits can be categorized as follows: (i) bit-width scaling [163,164], (ii) use
of approzimate adder/subtractor cells [165-168], and (iii) simplification of computa-
tions [169-173].

The first class of approximation techniques uses exact dividers with reduced bit-width.
The approximate divider of [163] dynamically selects the most relevant bits from the
input operands and performs accurate division at lower bit-width, providing up to 70%
power gains in exchange for 3% average error. The design makes use of leading ‘1’ bit
detectors, priority encoders, multiplexers, subtractor and barrel shifter. Similarly, the
AAXD divider of [164] detects the leading ‘1’ bits and uses a pruning scheme to extract
the bits that will be given as input to the divider. Additionally, the design integrates
an error correction unit to form the final output.

Regarding the second class of approximation techniques, Chen et al. [165] perform
the subtraction of the non-restoring array divider with inexact subtractor circuits
employing pass transistor logic. For the proposed divider, called AXDnr, the authors
examine different schemes with regard to which subtractions of the division array
to approximate. Similarly, in the AXDr divider of [166], some of the subtractions
of the restoring array divider are performed with inexact subtractor circuits. The
use of inexact cells has also been examined in the high radix SRT divider [167].
In this divider, called HR-AXD, the inexact cell is a signed-digit adder, which is
employed based on different replacement schemes and along with cell truncation and
error compensation. More recently, Adams et al. [168] introduce two approximate
division architectures, called AXRD-M1 and AXRD-M2, which deliver up to 46%
area and 57% power gains, respectively, compared to the exact restoring divider.
The first design replaces some of the restoring divider cells with inexact ones of
simplified logic, while the second one involves the elimination of some rows of the
divider.

Targeting to perform the division with simplified computations, the SEERAD di-
vider [169] rounds the divisor to a specific form based on the leading ‘1’ bit position,
and thus, the division is transformed to shift-&-add multiplication. Similarly, Vahdat
et al. [170] propose the TruncApp divider, which replaces the division with the mul-
tiplication of the truncated dividend by the approximate inverse divisor. In the same
context, the CADE divider of [171] performs the floating-point division by subtracting
the input mantissas. To compensate a large error, which is estimated by analyzing the

37

The Approximate Computing Paradigm

most-significant input bits, a pre-computed value is retrieved from memory. In [172],
the proposed AXHD divider approximates the least-significant computations of the
division using a non-iterative logarithmic approach that is based on leading ‘1’ bit
detection and subtraction of the logarithmic mantissas. Finally, Saadat et al. [173]
propose approximate integer and floating-point dividers with near-zero error bias,
called INZeD and FaNZeD, respectively, by combining an error correction method
with the classical approximate logarithmic divider.

Approximate Synthesis

An automated approach to generate inexact circuits is the approximate logic syn-
thesis. This method provides increased approximation diversity, i.e., multiple ap-
proximate variants of circuits, without relying on the manual approximation inserted
by the designer, such as in the case of the aforementioned arithmetic approxima-
tions. Another benefit of approximate synthesis is that several techniques gener-
ate the approximate variant that leads to the maximum hardware gains for a given
approximation/error constraint. The state-of-the-art techniques can be categorized
as follows [223]: (i) structural netlist transformation [174-178], (ii) Boolean rewrit-
ing [179-182], (iii) high-level approxzimate description [183-187], and (iv) evolutionary
synthesis [188-192].

Several works of the literature employ a direct acyclic graph to represent the circuit
netlist, where each node corresponds to a gate. In this context, the GLP technique
[174] prunes nodes with an iterative greedy approach according to their impact on the
final output and their toggle activity. In contrast, the CC framework [175] performs
an exhaustive exploration of all possible node subsets that can be pruned without
surpassing the error constraint. Venkataramani et al. [176] propose SASIMI, which is
based on a greedy heuristic to find signal pairs assuming the same value and substitute
one with the other. This automatic synthesis framework guarantees that the user-
defined quality constraint is satisfied and generates accuracy configurable circuits. To
apply stochastic netlist transformation, the SCALS framework [177] maps an initial
gate-level network to the targeted technology (standard cell or FPGA), and then it
iteratively extracts sets of sub-netlists and inserts random approximations in them.
These sub-netlists are evaluated using statistical hypothesis testing. More recently,
Castro-Codinez et al. [178] propose the AXLS framework, which converts the Verilog
netlist to XML format and then applies typical transformation techniques, e.g., gate
pruning, according to an error threshold.

The second category includes techniques that apply approximations in a formal
Boolean representation of the circuit before it is synthesized. The SALSA approach
[179] encodes the error constraints into a quality logic function, which compares

38

2.4. Classification of Hardware Approximation Techniques

the outputs of the accurate and approximate circuits. Towards logic simplification,
SALSA computes the “observability don’t cares” for each output of the approximate
circuit, i.e., the set of input values for which the output is insensitive. In the same
direction, but for sequential circuits, Ranjan et al. [180] introduce ASLAN. This
framework generates several approximate variants of the combinational blocks, and
then it identifies the best approximations for the entire sequential circuit based on
a gradient-descent approach. Miao et al. [181] use a two-phase Boolean minimiza-
tion algorithm to address the problem of approximate synthesis. The first phase
solves the problem under a given constraint for the error magnitude, and the second
phase iteratively finds a solution that also satisfies the error frequency constraint.
In an iterative fashion, the BLASYS methodology [182] partitions the circuit into
smaller circuits, and for each one, it generates an approximate truth table based
on Boolean matrix factorization. The approximate sub-circuits are synthesized and
the trade-off between error and power/area efficiency for the entire circuit is evalu-
ated.

Regarding approximations introduced at the hardware description level, Yazdan-
bakhsh et al. [183] propose the Axilog language annotations, which provide syntax
and semantics for approximate design and reuse in Verilog. Axilog allows the designer
to partition the design into accurate and approximate segments. ABACUS [184] is
another interesting work, which parses the behavioral/RTL Verilog description of
the design to create its abstract syntax tree. Next, a set of diverse transforma-
tions is applied to the tree to create approximate variants, which are then written
in Verilog. An expanded version of ABACUS is introduced in [186], where sorting-
based evolutionary algorithms are employed for design space exploration. Moreover,
the new ABACUS version focuses on approximations in critical paths to facilitate
the reduction of the supply voltage. Lee et al. [185] generate approximate designs
in Verilog from C accurate descriptions. The proposed framework computes data
statistics and mobility information for the given design and employs an heuristic
solver for optimizing the energy—quality trade-off. Targeting to high-level synthesis,
the AxHLS approach [187] performs a design space exploration, based on analytical
models, to identify the best arithmetic approximations for a given error constraint.
Starting from a C description, AxHLS adopts scheduling and binding operations
to apply the approximations provided by the exploration and generate the Verilog
code.

The fourth class of techniques for automated synthesis of approximate circuits is
based on evolutionary algorithms, i.e., heuristic-based search algorithms that treat
circuit approximation as multi-objective optimization problem and generate a set of
solutions. In this context, Sekanina et al. [188] use Cartesian genetic programming
to minimize the error in adders considering the number of logic gates as constraint.
This approach is extended in [189], where approximate multipliers and median fil-

39

The Approximate Computing Paradigm

ters are evolved through randomly seeded Cartesian genetic programming. Based
on the same utilities, the authors of [190] propose the EvoApprox8b library of ap-
proximate adders and multipliers. This library is generated by examining various
trade-offs between accuracy and hardware efficiency, and it offers different approx-
imation variants and circuit architectures. In [191], a search-based technique for
evolutionary circuit synthesis for FPGAs is proposed. In particular, this approach
represents the circuit as a directed acyclic graph, and re-synthesizes approximate
configurations based on Cartesian genetic programming. Vasicek et al. [192] adjust
the approximation degree according to the significance of the inputs. To do so, they
adopt a weighted error metric to determine the significance of each input vector and
use Cartesian genetic programming to minimize the circuit’s area while satisfying a

threshold.

2.4.2. Voltage Over-Scaling

Voltage over-scaling reduces the circuit’s supply voltage below its nominal value,
while keeping the clock frequency constant. The circuit operation at a lower voltage
value produces timing errors due to the failure of the critical paths to meet the delay
constraints. Nevertheless, considering that power consumption depends on the voltage
value, VOS techniques are continuously examined in the literature. An exploration
and quantification of the benefits and overheads of VOS is presented in [224]. Research
involving VOS can be classified in the following categories: (i) slack re-distribution
[193], (ii) circuit re-design and architecture modification [194-196], (iii) fine-grained
scaling [197-199], and (iv) error modeling [200-204].

Kahng et al. [193] shift the timing slack of the frequently executed near-critical
paths through slack redistribution, and thus, they reduce the minimum voltage at
which the error rate remains acceptable. The proposed technique is based on post-
layout cell resizing to deliver the switching activity-aware slack redistribution. More
specifically, a heuristic finds the voltage satisfying the desired error rate, and then
it increases the transistor width of the cells to optimize the frequently executed
paths.

In [194], the authors optimize building blocks for more graceful degradation under
VOS, using two techniques, i.e., dynamic segmentation & error compensation and
delay budgeting of chained datapath. The first technique bit-slices the datapath
of the adder and employs a multi-cycle error correction circuitry that tracks the
carries. The second technique adds transparent latches between chained arithmetic
units to distribute the clock period. To facilitate VOS, Chen et al. [195] build their
designs on the residue number system, which provides shorter critical paths than
conventional arithmetic. They also employ the reduced precision redundancy scheme

40

2.4. Classification of Hardware Approximation Techniques

to eliminate the timing errors. Another interesting work is Thundervolt [196], which
provides error recovery in the Multiply-And-Accumulate (MAC) units of systolic Deep
Neural Network (DNN) accelerators. To detect timing errors, Thundervolt employs
Razor shadow flip-flops. In case an error occurs in a MAC, a multiplexer forwards
the previous MAC’s accurate partial sum (stored in the Razor flip-flop) to the next
MAC.

Targeting fine-grained VOS solutions, i.e., different voltages across the same circuit
architecture, Pandey et al. propose GreenTPU [197]. This design integrates a timing
error control unit in each MAC row of the systolic array, which stores input sequences
producing timing errors. As a result, when such an input sequence pattern is iden-
tified, the voltage of the MAC is scaled accordingly to prevent timing errors. In the
same context, the authors of [198] propose NN-APP. This framework analyzes the er-
ror propagation in neural networks to model the impact of VOS on accuracy. Based
on this analysis, as well as an error resilience study for the neurons, NN-APP uses
a voltage clustering method to assign the same voltage to neurons with similar error
resilience. Another fine-grained VOS approach is proposed in [199]. This framework
provides voltage heterogeneity by using a greedy algorithm to solve the optimiza-
tion problem of grouping and assigning the voltage of arithmetic units to different
islands.

The analysis of errors in circuits under VOS is considered a key factor, as it guides
the aggressiveness of voltage scaling towards the acceptable error margins. In [200],
an analytical method to study the errors in voltage over-scaled arithmetic circuits is
proposed. Similarly, the authors of [201] introduce a probabilistic approach to model
the errors of the critical paths. In the same category, we include works relying on
simulations to analyze the errors of VOS. Ragavan et al. [202] characterize arithmetic
circuits in terms of energy efficiency and errors using transistor-level SPICE simula-
tion for various voltages. Based on this characterization, they propose a statistical
model to simulate the behavior of arithmetic operations in VOS systems. Exploiting
the machine learning methods, Jiao et al. [203] propose LEVAX to model voltage over-
scaled functional units. This input-aware model is trained on data from gate-level
simulations to predict the timing error rate for each output bit. To provide accu-
rate VOS-aware gate-level simulation, Zervakis et al. propose VOSsim [204]. This
framework performs an offline characterization of the flip-flop for timing violations
and calculates the cell delays for the targeted voltage, enabling gate-level simulation
under VOS.

41

The Approximate Computing Paradigm

2.4.3. Over-Clocking

Over-clocking (or frequency over-scaling) configures the circuit/system at higher clock
frequencies than those that respect the critical paths. As a result, timing errors are
induced in exchange for increased performance. A trade-off analysis between accuracy
and performance when over-clocking FPGA-based designs is presented in [225]. In the
same work, the authors show that OC outperforms the traditional bit truncation for
the same error constraint. For our analysis, we consider that the state-of-the-art works
of the domain focus on the following directions: (i) tight synthesis [205], (ii) circuit
re-design and architecture modification [206-208], (iii) error detection & correction
[209-211], and (iv) error prediction [212-215].

The first approach aims to reduce the timing errors of OC by optimizing the critical
paths of the design. In this context, the SlackHammer framework [205] synthesizes cir-
cuits with tight delay constraints to reduce the number of near-critical paths, and thus,
decrease the probability of timing errors when frequency is over-scaled. At first, Slack-
Hammer isolates the paths and identifies potential delay optimizations. Based on the
isolated path analysis, the framework performs an iterative synthesis with tighter con-
straints for the primary outputs with negative slack.

The second class of techniques modifies the conventional circuit architecture to fa-
cilitate frequency OC and increase the resilience to timing errors. The retiming
technique [206] re-defines the boundaries of combinational logic by moving the flip-
flops backward or forward between the stages. Based on this circuit optimization,
the synthesis is relaxed by ignoring the paths that are bottleneck to minimum period
retiming. Targeting different circuit architectures, Shi et al. [207] adopt an alternative
arithmetic, called online, and show that online-based circuits are more resilient to the
timing errors of OC than circuits with traditional arithmetic. The modification of the
initial neural network model to provide resilience in timing errors has also attracted
research interest. In this direction, Wang et al. [208] propose an iterative reclocking-
and-retraining framework for operating neural network circuits at higher frequencies
under a given accuracy constraint. The clock frequency is gradually increased and
the network’s weights are updated through back-propagation training until to find
the maximum frequency for which the timing errors are mitigated and the accuracy
constraint is satisfied.

Several works propose circuits for timing error detection & correction, enabling the
use of over-clocking. These techniques either improve the frequency value of the first
failure, i.e., the first timing error, or reduce the probability of timing errors. TIM-
BER [209] masks timing errors by borrowing time from successive pipeline stages.
According to this approach, the use of discrete time-borrowing flip-flops and continu-
ous time-borrowing latches slows down the appearance of timing errors with respect

42

2.4. Classification of Hardware Approximation Techniques

to the frequency scaling. Ragavan et al. [210] detect and correct timing errors by
employing a dynamic speculation window on the double-sampling scheme. This tech-
nique adds an extra register (called shadow and clocked by a second “delayed” clock)
at the end of the pipelined path to sample the output data at two different time
instances. The proposed approach also uses an online slack measurement to adap-
tively over-clock the design. The TEAI approach [211] is based on the locality of
the timing errors in software-level instructions, i.e., the tendency of specific instruc-
tions to produce timing errors. TEAI identifies these instructions at runtime, and
sends error alarms to hardware, which is equipped with error detection & correction
circuits.

There is also wide research on the prediction of the timing errors in advance, which
allows to over-scale the frequency according to the acceptable error margins. In [212],
the authors introduce an instruction-level error prediction system for pipelined micro-
processors, which stalls the pipeline when critical instructions are detected. Their
method is based on gate-level simulations to find the critical paths that are sensitized
during the program execution. Similarly, Constantin et al. [213] obtain the maximum
delays for each arithmetic instruction through gate-level simulations, and they dynam-
ically exploit timing margins to apply frequency over-scaling.

Besides instruction-level prediction models, there are numerous works that build mod-
els based on machine learning and simulations of functional units. A representative
work of this approach is WILD [214], which builds a workload-dependent prediction
model using logistic regression. In the same direction, SLoT [215] is a supervised
learning model that predicts timing errors based on the inputs and the clock fre-
quency. At first, SLoT performs gate-level simulation to extract timing class labels,
i.e., “timing error” or “no timing error”, for different inputs and frequencies. These
classes are then used, along with features extracted from random data pre-processing,
to train the error prediction model.

43

The Approximate Computing Paradigm

44

Part |I.

Arithmetic Approximation
Techniques for Circuit Design

Prologue

Dissertation’s Part I focuses on the arithmetic of circuits and accelera-
tors. At first, it proposes logic-level arithmetic approximation techniques,
and then, it presents the development of approximate hardware accel-
erators. Chapters 3—-7 examine different aspects of computer arithmetic
and approximate circuit design: alternative numerical formats in Chapter
3, hybrid radix encodings in Chapter 4, dynamic/runtime approximation
configuration in Chapter 5, cooperative approximation in Chapter 6, and
systematic design of approximate accelerators in Chapter 7.

Chapter 3 highlights the benefits of applying sophisticated bit-level opti-
mizations. Chapter 4 proposes a hybrid high-radix encoding that is used
to design the RAD family of approximate multipliers. Chapter 5 proposes
runtime-configurable approximate multipliers for fixed-point (DyFXU de-
sign family) and floating-point arithmetic (DyFPU design family). Chap-
ter 6 examines the combination of arithmetic approximation techniques,
resulting in the state-of-the-art ROUP family of approximate multipliers.
Finally, Chapter 7 integrates all the proposed approximate circuits in the
design of ASIC/FPGA accelerators for DSP and AT applications.

Acknowledgements: The author of the Ph.D. Dissertation would like
to thank Prof. Kiamal Pekmestzi for accepting him in the Ph.D. program,
as well as Prof. Dimitrios Soudris for his support throughout the years.

45

Chapter 3

Arithmetic Optimization:
Double-LSB Encoding

Computer arithmetic has received significant attention, as it inherently affects the
efficiency and performance of the hardware accelerators. In this context, movel nu-
merical formats are examined, targeting to provide increased resource gains compared
to the conventional binary formats in various application domains, e.q., in Digital
Signal Processing (DSP). In this chapter, we adopt the Double Least Significant Bit
(DLSB) format, where the numbers have an extra least significant bit, and we ap-
ply optimizations in the multiplication, i.e., one of the most resource-hungry DLSB
operations. The DLSB arithmetic delivers several benefits, such as the symmetric
representation range, the number negation performed only by bitwise inversion, the
improvement of the residue number circuits, and the improvement of the rounding
process in floating-point calculations. However, all these advantageous features come
with some penalties in the design of the arithmetic DLSB units. Towards reducing
the DLSB overheads in the multiplication, we propose an energy-efficient scheme for
multiplying 2 ’s-complement binary numbers, which is based on sophisticated bit-level
manipulations. The overhead of the proposed DLSB design is negligible compared to
the conventional design for ordinary 2’s-complement numbers, i.e., ~3 % area/energy
overhead on average for different multiplier sizes. Moreover, our design outperforms
the straightforward design approach by providing 4 x -5 X less resource overhead. Fi-
nally, as case study, we demonstrate how the DLSB multiplier can be effectively used
as building block for the implementation of larger multiplications, delivering 31 % area
and 43 % energy gains.

This chapter is based on our publication in [226].

47

Arithmetic Optimization: Double-LSB Encoding

3.1. Introduction

The integration of novel numerical representation formats in the design of circuits
appears as an effective solution for reducing the power/energy consumption, area
and delay [227]. In this context, several alternative arithmetic formats have been
proposed in the literature. The Residue Number System (RNS) [228] and the Loga-
rithmic Number System (LNS) [229] are typical examples of non-standard represen-
tation formats that aim to improve the hardware efficiency of the arithmetic units.
Another interesting format is the carry-save representation [230], which is mainly
used to build fast adders with multiple inputs and accumulation trees for multipli-
ers.

In this chapter, we focus on the novel Double Least Significant Bit (DLSB) arith-
metic representation, which is proposed by Parhami [231]. In particular, the DLSB
arithmetic adopts the conventional arithmetic and considers an additional Least Sig-
nificant Bit (LSB), i.e., an extra bit that has the same weight as the original LSB.
With this format, the number representation range becomes fully symmetric, i.e., for
2’s-complement arithmetic, it is [-2"7', 2"~!] instead of [—2"~!, 2"~ — 1]. Other
benefits of the DLSB arithmetic are the simpler number inversion, the simpler round-
ing process in floating-point calculations, and the increased efficiency in residue num-
ber operations.

The symmetry in the representation range allows to perform negation with only bit-

wise inversion, hence, the addition of 1’ (performed in the conventional 2’s-complement
arithmetic) is eliminated. The latter is an important feature, especially in algorithms

where the sign change is not followed by another addition [231]. Moreover, the symme-

try of DLSB guarantees that all the numbers can be complemented without resulting

in overflow.

In floating-point calculations, if the result has more bits than those supported by
the format, then the extra bits are discarded and the remaining ones are adjusted
with rounding. This process requires addition involving carry propagation, which is
a task that can add significant delay to the floating-point arithmetic units. In the
case of DLSB format, the rounding algorithm needs only to determine the value of the
extra LSB in the rounded result [231]. Specifically, instead of performing the required
addition of the regular rounding, the extra LSB of the result is set to ‘1’ for rounding
up, avoiding in this way the carry propagation.

The DLSB format has also been used in RNS operations to improve the design effi-
ciency. In this direction, the DLSB encoding of the 2™ + 1 residues is employed to
design the modulo 2™ + 1 adder [232] and multiplier [233]. The representation range
of the unsigned numbers is [0, 2"], and thus, the end-around carry is stored and

48

3.1. Introduction

there is no need for a post-increment operation. Furthermore, the authors of [234]
propose reverse converters for two 4-moduli sets that are based on DLSB encod-
ings. The derived results show that both the area and delay of the DLSB-based
converters are comparable to that of the converters using the conventional binary
encoding.

These advantageous features of the DLSB arithmetic come with some delay and area
overheads, considering the corresponding conventional circuits as baseline. In [231],
the delay and area theoretical penalties are reported for a variety of DLSB circuits
(e.g., adders, different types of multipliers, dividers), showing that complex arith-
metic units such as the multipliers exhibit the largest overheads. Furthermore, these
theoretical overheads have not been actually evaluated with industrial synthesis tool-
flows and technology libraries. In this chapter, motivated by the benefits of the DLSB
format, and targeting to eliminate the penalties that arise, we propose an improved
algorithm for the multiplication of two 2’s-complement DLSB numbers. We provide
both theoretical and robust experimental evaluations on industrial tools, showing
that sophisticated bit-level manipulations provide significant gains and decrease the
penalties.

We further motivate the applicability and effectiveness of the proposed DLSB tech-
nique by examining a realistic case study design scenario. In particular, we show that
large-size multiplications can be efficiently implemented using small DLSB multipliers
as building blocks. The multiplication of large operands is a key component in various
applications, e.g., cryptographic schemes and scientific calculations. To improve the
hardware efficiency, significant research has been conducted on the implementation
of large-size multiplications [235,236]. The mapping of large-size multiplications in
Field-Programmable Gate Arrays (FPGAs) is also examined in the literature [237].
In FPGAs, such multiplications are implemented by segmenting the input operands
based on the bit-width of the hardwired multipliers that are integrated in the DSP
blocks.

The contribution of this chapter is summarized as follows:

(i) We highlight the significance of computer arithmetic and show that novel nu-
merical formats can provide valuable gains in hardware.

(ii) We propose an improved algorithm for the multiplication of two 2’s-complement
DLSB numbers, which is strictly defined by a rigorous theoretical analysis in-
volving sophisticated bit-level manipulations.

(iii) We show that the proposed DLSB circuit outperforms its unoptimized coun-
terpart, and also, it can be effectively used as building block for improving the
implementation of large-size multiplications.

49

Arithmetic Optimization: Double-LSB Encoding

The remainder of this chapter is organized as follows. Section 3.2 introduces the
DLSB arithmetic format, Section 3.3 presents the proposed DLSB multiplier, and
Section 3.4 includes the theoretical and experimental evaluation. Finally, Section 3.5
draws the conclusions.

3.2. The Double Least Significant Bit Format

This section includes an introduction in the 2’s-complement DLSB format [231]. Let
X = (Tp_1%p—2---Xo)2s be a n-bit 2’s-complement number. X is converted to a
2’s-complement DLSB number by attaching an extra LSB (z¢4+) next to the original
LSB, as shown in Eq. (3.1).

Xt =X+ To4 = <$n—1xn—2 s J)o)g’s + o+ (31)

For the rest of the discussion, we assume that X is a n-bit 2’s-complement DLSB
number (the extra LSB is not calculated in the bit-width). Moreover, the following no-
tations are used: (...)5 denotes a 2’s-complement number, and (...), denotes an un-
signed number. Subsequently, we present some numerical examples.

Example 1. The DLSB number (0111)s:5 + 1 is the number 81 in the decimal
system, while (1010)gs + 0 is —6.

Example 2. The DLSB number (0111)95 + 1 = 819 is complemented by inverting
all its bits: <1000>2’S + 0 = —810.

The addition of two n-bit DLSB numbers is performed using a conventional n-bit
adder [231]. The extra LSB of one of the operands is given to the carry input of the
adder, while the extra LSB of the other is attached to the sum as its extra LSB. The
operation of the addition is illustrated in Figure 3.1. The subtraction is performed
in the same way, however, the subtrahend is firstly complemented, namely all its bits
(including the extra LSB) are logically inverted.

The multiplication of a DLSB number by a power of two, i.e., 2¢, is performed like in
the conventional arithmetic, i.e., via e left shifts. Regarding the multiplication of two
DLSB numbers, well-established architectures and algorithms can be employed with
some extra overheads, as discussed in [231]. This arithmetic operation is exhaustively
examined in the rest of the chapter.

50

3.3. Design of DLSB Multiplication Circuits

A l l 8
\ n-bit Adder /47 by,

\4
A+ B+ by, ap, € ag,

&—— A*4+ BT ——e

Figure 3.1: The addition of two n-bit DLSB numbers is performed using a conventional adder. The
subtraction is performed with the same architecture, but with the inverted bits of Bt.

3.3. Design of DLSB Multiplication Circuits

In this section, we design the DLSB multiplier in two flavours, i.e., based on the
straightforward approach and a more sophisticated improved approach. As baseline
multiplication algorithm, we adopt the Modified Booth (MB) method [227], which
facilitates low-level optimizations and also outperforms several well-established mul-
tiplication methods [226].

3.3.1. Straightforward DLSB Design

Let At = <an,1an,2 s CL0>2’S + ap+ and Bt = <bn,1bn,2 cee bo)gfs + bo+ be two n-bit
2’s-complement DLSB numbers. We form their product as shown in Eq. (3.2).

AT x BT = (<an,1an72 ceag)os + ao+) -Bt (3.2)

Following the Modified Booth multiplication algorithm, BT is encoded with its extra
LSB b4+ included in the least significant Modified Booth digit, i.e., b_1 = b instead
of b_; = 0 (conventional encoding), as shown in Eq. (3.3)—(3.4).

n—2 n/2—1
Bt = 2", 1+ > 2+ by = Y AIHME (3.3)
i=0 =0
where b;-VIB = —2bgj41 +boj +boj_1 = bé\/lB € {0, +1, :|:2} (3.4)

The Modified Booth digits bj—WB € {0, £1, +2} are functions of three consecutive bits
of BT (byj+1, baj, b2j—1), and they are formed according Table 3.1. Each digit is

51

Arithmetic Optimization: Double-LSB Encoding

Table 3.1: Modified Booth encoding.

Input MB Digit Output
b2j+1 bgj 62];1 b;WB Sj tu)oj one;
0 0 0 0 0 0 0
0 0 1 1 0 0 1
0 1 0 1 0 0 1
0 1 1 2 0 1 0
1 0 0 -2 1 1 0
1 0 1 -1 1 0 1
1 1 0 —1 1 0 1
1 1 1 0 1 0 0

represented by three 1-bit signals that define its sign (s;) and absolute value (twoj,
one;). Using these encoding signals, the Modified Booth digits are calculated by Eq.
(3.5).

b}'P = (=1)* - (2two; + one;), j=0,1,---n/2—1 (3.5)

Using Eq. (3.2) and (3.3), the multiplication of the DLSB numbers AT and B™ is
formed as shown in Eq. (3.6).

A+ X B+ = <an,1an,2 . ~-a0>2~s . B+ + ao4 - B+ =

n/2—1

= (Ap_1Gn_2--ag)os - Z 40P + agy - ((bp-1bp—2---bo)os +boy) (3.6)
=0

The implementation of the DLSB multiplier based on Eq. (3.6) requires a conven-
tional Modified Booth multiplier to calculate the first term of the final expression, as
well as considerable overhead to calculate the extra term ag4 - ((bn,lbn,g <o boYos +

o).

3.3.2. Sophisticated DLSB Design

To reduce the overhead derived by the calculation of the extra term in the straightfor-
ward approach, we consider an alternative representation for the operand A™. Firstly,
we examine how AT is formed with respect to the value of ag :

52

3.3. Design of DLSB Multiplication Circuits

e if agy = 0, we get:

A+ == <an—1an—2 e a0>2’s + 0= <an—1an—2 e a0>2’s (37)
e if ag; =1, and using the expression a; = —a; + 1 (a;: inverted a;), we get:
n—2
AT = {ap_1Gn_2-ag)ys +1=—2""ta, 1 + ZTCM +1=
i=0

n—2
= 2" a1 + 1)+ Y _2(—a;+1)+1=
=0

n—2 n—2
= —(—271_1(7],”,1 + 2n—1) — 22%711 + 221 +1=
=0 =0

n—2 n—2
= —(~2" a1 + Y 27a) -2V Y 24 1=
i=0 i=0
n—2
= —(—2”‘1%,1 + 221@1') = —<an,1(7ln,2 S @0>2’S (38)
i=0
Next, we encode AT using the expression a; = a; ® ap+. Namely, each bit of

A ={ap_1a,_2---ag)2s is driven to a XOR gate along with the extra LSB ag4 to form
A" ={al,_,al,_,---ap)es. Hence, AT is encoded as shown in Eq. (3.9).

n—2
At = (=1)%+ . (=2" "t |+ ZQ’@;) = (=1)%+ . A’ a,=a; ®aoy (3.9)
i=0

This encoding is equivalent to the initial representation of A", as verified by assigning
either 0 or 1 to ap+ in Eq. (3.9):

o for apy =0, AT is equal to the expression of Eq. (3.7).
o for agy =1, AT is equal to the expression of Eq. (3.8).

To perform the DLSB multiplication, we use Eq. (3.3) for B* and Eq. (3.9) for A™.
Their product is defined as shown in Eq. (3.10).

n/2—1 n/2—1
AT X B = (=1)%0r - AT Y 4pME = A Y (—1)or - 4TpME (3.10)
j=0 j=0

The next step is to integrate the term (—1)*+ in the calculation of b;-VIB, i.e., the
Modified Booth digits, which are calculated by Eq. (3.5). Considering that this term

53

Arithmetic Optimization: Double-LSB Encoding

affects the sign (depending on the value of agy), we drive s;, i.e., the sign of the
Modified Booth digits, to a XOR gate along with ag;. As a result, the absolute value
of the new Modified Booth digits, labeled as bJMBJr, is the same with that of I)]l‘/”g7
however, their sign depends on s; and aoy. In particular, the new expression for the
sign is given by Eq. (3.11).

s =55 ® aoy (3.11)

Based on the above analysis, Eq. (3.10) is transformed to Eq. (3.12), and the calcula-
tion of the new Modified Booth digits is performed as shown in Eq. (3.13).

n/2—1
+ + _ 7t j3 MB+
AT x BT =AY 47! (3.12)
7=0
where b;VIB"' = (=1)% (2two; + one;) (3.13)

The logic equations of the encoding signals s;, one;, and two; are derived from Table
3.1. The proposed encoding circuit is illustrated in Figure 3.2a. Compared to the
conventional Modified Booth encoder that is illustrated in Figure 3.2b, the proposed
encoder has an extra XOR-2 gate for calculating s;-, which includes the extra LSB of
AT,

For the calculation of the product defined in (3.12), the generation of n/2 partial prod-
ucts PP; is required, as shown in Eq. (3.14) and (3.15).

n/2—1 n/2—1
At xBY =AY 4Bt = Y 4ipp (3.14)
=0 i=0
n—1
where PPj=A'-bMPr =omp, + Y 2lp;; j=0,1,-n/2-1 (3.15)
=0

The generation of the i-th bit of the partial product PP; is illustrated at gate level
in Figure 3.2c. The circuit of the DLSB partial product generator is the same with
that employed in the conventional Modified Booth algorithm. To calculate the Most
Significant Bit (MSB) of each partial product, we consider a,, = a],_;, and thus,
an = an—1. Their LSB is calculated considering o’ ; = 0, and thus, a_; = ap4. In
comparison with the conventional Modified Booth multiplier, the generation of the

I g is used ins
. = 5;@ap4 is used instead

partial product bits is intact, except for the LSBs, where s

of Sj-

54

3.3. Design of DLSB Multiplication Circuits

bzf'l one; b
7 D21
by;
Wo; by,

b2j+l S;

i)) > j bojs1
ao+ S
(a)

Figure 3.2: Circuits used in the DLSB multiplication: (a) DLSB Modified Booth encoder (used in
the sophisticated approach), (b) conventional Modified Booth encoder (used in the straightforward
approach), (c) conventional partial product generator (a;: i-bit of A, a; = s; @ a;, used in both

(b) (©)

approaches).

The generated partial products are accumulated, properly weighted, using a Wallace
tree [238] along with the constant terms (’1’s) and the correction terms (c}). Finally,
the carry-save output of the Wallace tree is driven to a fast prefix adder [238] to form
the final result. Compared to the conventional Modified Booth multiplier, again the
only difference is the use of s; instead of s; in the calculation of the correction terms,
as shown in its logic function in Eq. (3.16).

¢y = s} - (onej + twoj) = (s; @ aoy) - (one; + twoy) (3.16)
Overall, the proposed DLSB multiplier incorporates the typical stages of the Modified
Booth multiplication circuit: (i) encoding, (ii) partial product generation, (iii) partial
product accumulation, and (iv) final addition. As shown, with careful design and bit-
level manipulations we reduce the circuit overheads of the straightforward approach:
the product ag, - BT of Eq. (3.6) is eliminated and the only overhead regards the en-
coding stage, where an extra signal (s}) is generated.

For comparison purposes, Figure 3.3 illustrates the partial product matrices of the
16-bit examined multipliers, i.e., the conventional Modified Booth multiplier (Figure
3.3a), the straightforward DLSB Modified Booth multiplier (Figure 3.3b), and the
sophisticated DLSB Modified Booth multiplier (Figure 3.3c). All the necessary bits
(partial product bits, constant terms, and correction terms) that are required for
the partial product accumulation are included. As shown, the straightforward DLSB
multiplier implements the conventional multiplier plus extra logic for the product
agy - BT. In contrast, the sophisticated design does not implement this logic, it has
the same depth of accumulation tree with the conventional multiplier, and its only
difference compared to the latter is the calculation of s;-. This signal is used instead
of s; for generating the LSB of the partial products (p},) and the correction terms

(c})-

55

Arithmetic Optimization: Double-LSB Encoding

1

716................
_100000000000000000 O

eeee O
1e
1000
100000000000000000 O
o
(a)
1
INEEEEEEEEEEEEEE
u 1
1900000000000 00000 10000000000000000.4
_100000000000000000 O 100000000000000004s
100000000000000000 O 10000000000000000.4
100000000000000000 O 100000000000000004 /
180000000000000000 O _100000000000000004 /
_190000000000000000 O _100000000000000004 |
100000000000000000 O _10000000000000000.4 /
100000000000000000 O 100000000000000004
o A
(b) ()

Figure 3.3: Partial product matrices of 16-bit multipliers: (a) conventional Modified Booth mul-
tiplier (ordinary 2’s-complement numbers), (b) straightforward DLSB Modified Booth multiplier of
Eq. (3.6), (c) sophisticated DLSB Modified Booth multiplier of Eq. (3.14).

Symbols: @: p;; o: c; m apq -b; A: p;O A: c;

3.4. Evaluation

In this section, firstly, we evaluate the DLSB multipliers, and then, we demonstrate
how they can be used to improve the hardware efficiency of large-size multiplications.
We conduct both theoretical and experimental analysis. We consider the following
notations for the examined multipliers:

o CMB: conventional Modified Booth multiplier for ordinary 2’s-complement num-
bers (Figure 3.3a).

e DLSBI1: straightforward Modified Booth multiplier for 2’s-complement DLSB
numbers (Figure 3.3b).

e DLSB2: sophisticated Modified Booth multiplier for 2’s-complement DLSB
numbers (Figure 3.3c).

3.4.1. Theoretical Analysis

As already discussed in the previous section, DLSB1 implements CMB and requires
additional logic (n + 1 AND-2 gates) for calculating the extra product, as well as

56

3.4. Evaluation

considerable overhead for accumulating it with the rest partial products. On the
other hand, DLSB2 implements CMB with a small overhead of n/2 XOR-2 gates for
calculating s; Namely, it uses the encoder of Figure 3.2a instead of that of Figure
3.2b. Subsequently, we evaluate the area complexity of the DLSB multipliers based on
the unit gate model used in [239]. According to this model, the primitive gates AND-2
and OR-2 are equal to 1 unit gate, the NOT gate counts as 0.5 unit gates, and the
XOR-2 gate is equal to 2 unit gates. Moreover, the area of a full adder and a half adder
is 7 and 3 unit gates, respectively. The gate equivalence of the main components used
in the partial product generation and accumulation of the multipliers is summarized
in Table 3.2. In the next paragraphs, we examine separately the stages of the partial
product generation and accumulation, and then we quantify the resources of the entire
multiplication architectures.

Regarding the partial product generation, the n-bit CMB multiplier generates n/2
(n+1)-bit partial products, Therefore, it requires n/2 MB encoders of Figure 3.2b, n/2
x (n 4 1) 1-bit partial product generators of Figure 3.2¢, and n/2 correction terms
generators (signals c;). Additionally, n/2 NOT gates are needed for inverting the
MSB of each partial product. DLSB1 requires the same resources, and also employs
n + 1 AND-2 and 1 NOT gates for calculating the product agy - BT. Compared
to CMB, DLSB2 uses only a different encoder, i.e., the DLSB encoder of Figure
3.2a.

Next, we analyze the resources needed for the partial product accumulation. CMB
and DLSB2 accumulate n/2 + 1 n-bit vectors, i.e., n/2 partial products and 1 vector
containing the constant and correction terms. This multi-operand addition is per-
formed in carry-save form [238], thus, (n/2—1) x n full adders are required in total. In
DLSB1, one more number must be added, and thus, n/2 x n full adders are required.
Finally, in all multipliers, the 2n-bit carry-save output of the Wallace tree is driven to
a fast adder [238], which consists of 2n half adders, nlog, 2n propagate group circuits
(each one is 3 unit gates), and 2n XOR-2 gates.

Based on our theoretical analysis about the resources of each design, Table 3.3 re-
ports the overhead in unit gates of the DLSB multipliers for different bit-widths, i.e.,
n = 8,16,32. This overhead is calculated by comparing the unit gates of the DLSB
multipliers with those of CMB. As expected, DLSB1, which is based on the straight-
forward design approach, exhibits larger overhead compared to DLSB2. On the other
hand, the overhead of DLSB2 is negligible, lying in the range 0.5%—-1.4%. The unit
gate model is a simplified model, but it gives a rough estimation about the circuit area.
In the next section, we provide experimental analysis based on industrial-strength syn-
thesis of the circuits, in which it is shown that theoretical outcomes and trends follow
in a fine manner the experimental results.

57

Arithmetic Optimization: Double-LSB Encoding

Table 3.2: Unit gates per component and components of the n-bit multipliers.

Component Unit Gates ‘ # in CMB # in DLSB1 # in DLSB2
MB Encoder 5.5 n/2 n/2 -
DLSB MB Encoder 7.5 - - n/2

MB PP Generator 5 n/2x(n+1) n/2x(n+1) n/2x((n+1)
AND PP Generator 1 - n+1 -

Corr. Term Generator 2 n/2 n/2 n/2

Full Adder 7 (n/2—-1)xn n/2xn (n/2—-1)xn
Half Adder 3 2n 2n 2n
Propagate Group 3 nlog, 2n nlog, 2n nlog, 2n
XOR-2 Gate 2 2n 2n 2n

Table 3.3: Unit gate overhead of the n-bit DLSB multipliers.

Multiplier n =8 n =16 n =32
DLSB1 11.8% 6.7% 3.7%
DLSB2 1.4% 0.8% 0.5%

3.4.2. Experimental Results

This section evaluates the multiplication circuits in terms of delay, area, and energy
consumption, using industrial-strength tools. All the multipliers are implemented in
Verilog and synthesized with the Synopsys Design Compiler and the TSMC 45-nm
standard-cell library. The simulations are performed with Mentor Graphics Ques-
taSim. Both synthesis and simulation are performed at 1V, i.e., the nominal supply
voltage. Moreover, the designs are configured to operate at their critical path delay,
i.e., at maximum frequency. The critical path delay and the area are reported by
Synopsys Design Compiler, while the power consumption is measured with Synopsys
PrimeTime. The energy consumption is also calculated by the product of delay and
power.

Table 3.4 presents the experimental results from the synthesis of the multipliers for
various sizes, i.e., n = 8, 16, 32. Furthermore, the energy and area overheads compared
to CMB are reported. In terms of critical paths, as expected, the DLSB multipli-
ers deliver almost the same delays with CMB. DLSB2 exhibits similar delay even
for the smallest bit-width, i.e., 0.38ns versus 0.37ns. This is justified by the fact
that the depth of DLSB2’s partial product tree has not increased. In comparison
with DLSB1, the sophisticated DLSB2 design achieves higher efficiency for all the
resources. On average, DLSB2 imposes small area and energy overheads (i.e., 3.1%
and 3.3%, respectively), while the corresponding overheads for DLSB1 are 11.9% and

58

3.4. Evaluation

Table 3.4: Synthesis results of the n-bit DLSB multipliers on TSMC 45-nm standard-cell.

Design Delay , Area . Energy .
(ns) (um?) (%) (LW-ns) (%)
° CMB 0.37 485 - 384 -
7 DLSB1 0.40 572 +18 480 +25
o DLSB2 0.38 510 +5.2 406 5.7
o CMB 0.51 1519 - 1186 -
Phs DLSB1 0.52 1701 +12 1344 +13.3
® DLSB2 0.51 1562 +2.8 1217 +2.6
> CMB 0.67 5189 - 4340 -
P DLSB1 0.67 5491 +5.8 4685 +7.9
© DLSB2 0.67 5256 +1.3 4412 +1.7

! Refers to % area/energy overhead (relative increase) in comparison with CMB.

15.4%. Regarding the bit-width scaling, the derived results show that as the multi-
plier’s size increases, the impact of the extra LSB is becoming smaller in both area
and energy. This observation is normal, as by increasing the bit-width, the rate of
the overheads induced by the DLSB increases slower than the rate of the area added
due to the bit-width scaling.

3.4.3. Case Study: DLSB for Large-Size Multiplication

In this section, we demonstrate how the sophisticated DLSB multiplier can be ef-
fectively used as building block for implementing multiplications with large input
operands. For the rest of the analysis, we consider 2’s-complement arithmetic and
small fixed-size multiplication circuits, i.e., there is the constraint of hardwired arith-
metic units with specific small bit-width, like in embedded devices [237].

We follow the well-established approach of decomposing the large bit-width operands
to smaller sizes [237]. The reduction of the operand bit-width to match the desired
bit-width (imposed by the constraint) is a recursive procedure. Nevertheless, to ease
the description and without loss of generality, we focus our analysis on the first
recursion, assuming that the bit-width constraint exposed by the available arithmetic
unit is satisfied. Next, we discuss how the large-size multiplications are partitioned
in the conventional arithmetic, and then, we present a more efficient DLSB-based
partition.

Conventional 2’s-Complement Arithmetic: Let A and B be two k-bit 2’s-
complement numbers to multiply. Without loss of generality, we consider k£ = 2n,

59

Arithmetic Optimization: Double-LSB Encoding

where n is an integer, and we split A and B in two n-bit words, as shown in Eq. (3.17).
The product A x B is formed as shown in Eq. (3.18).

A= <a2n—1a2n—2 te an>2’s A + <an—1an—2 e a0>u = As - 2n + Au

B = <b2n71b2n72 te bn>2"s -2m + <bn71bn72 te b0>u = Bs -2m + Bu (317)

AxB=(A;-2"4+A,) (Bs-2"+ B,) =
=A, By-2""+ (Ay B, + A, By)-2" + A, - B, (3.18)

The above product requires the execution of 4 multiplications: (i) 2’s-complement
x 2’s-complement (A - Bs), (ii) unsigned x unsigned (A, - B,), (iii) unsigned x
2’s-complement (A, - By), (iv) 2’s-complement x unsigned (4, - B,). We note that
the multiplications involving unsigned numbers must employ an extra bit for the
sign extension. As a result, to cover all the bit-width cases and calculate the 4
sub-products with the same module, the (n + 1)-bit CMB multiplier needs to be
used.

2’s-Complement DLSB Arithmetic: We propose an alternative operand parti-
tion that aims to create DLSB-like bit vectors. As shown in Eq. (3.19)-(3.20), we
divide the operands in two 2’s-complement segments, and attach the MSB of their
least significant part, i.e., ap_1 and b,_1, as an extra LSB in their most signifi-
cant part. Assuming an extra LSB equal to 0 for the least significant parts, the
k-bit operands are now formed as functions of two n-bit 2’s-complement DLSB num-
bers.

A= ((azn—1a2n—2 an)2s + an-1) - 2" + ({@n—1Gn—2 - ag)as +0) =
= A} 2"+ AS (3.19)

B = (<b2n—lb2n—2 e bn>2’s + bn—l) 2" + (<bn—1bn—2 o b0>2’s + 0) =
=B -2"+ Bf (3.20)

Considering the proposed DLSB-based partition, the 4 sub-products, derived by ap-
plying again the distributive property, can be calculated by the n-bit 2’s-complement
DLSB multiplier, which can effectively replace the (n+ 1)-bit CMB as building block.
To evaluate the efficiency of the proposed scheme, we compare the n-bit DLSB2
with the (n + 1)-bit CMB for various bit-widths. The experimental setup is the
same as described in the previous section. Figure 3.4 illustrates the energy and area
gains achieved by the proposed DLSB2 compared to CMB. In particular, DLSB2
provides significant gains, especially for small bit-width (i.e., 30.6% and 43.3% area

60

3.5. Conclusion

451 Bz Energy i
Area
X 30 - h
@}
15 - h
0 \

1
n=8 n=16 n=32

Figure 3.4: Energy and area gains provided by n-bit DLSB2 compared to (n+1)-bit CMB (targeting
the use of DLSB2 instead of CMB as building block in large-size multiplications).

and energy gains, respectively, for n = 8). The inefficiency of CMB is justified
by the extra bit in the multiplier’s bit-width, which results in the generation of
one more partial product and the addition of an extra bit in each partial prod-
uct.

3.5. Conclusion

The goal of this chapter was to highlight the benefits of using novel numerical formats
and applying low-level arithmetic optimizations and sophisticated bit-level manipu-
lations. In particular, we adopted the DLSB arithmetic, which assumes an extra
LSB in the number representation and provides advantageous features, such as the
representation symmetry and the simplification of rounding in floating-point opera-
tions. Targeting to decrease the overheads induced by the extra LSBs, we introduced
a new and effective algorithm for multiplying two 2’s-complement DLSB numbers.
Through an alternative representation, we optimized the Modified Booth multiplica-
tion scheme to decrease the overheads of the straightforward DLSB multiplication.
According to our experimental evaluation for different multiplication bit-widths, our
DLSB design provides average overheads of ~3% in area and energy. In contrast, the
DLSB design that does not adopt our sophisticated low-level optimizations, suffers
from average overheads of ~12% and ~15% in area and energy, respectively. Finally,
we demonstrated how the proposed DLSB multiplier can be efficiently used as build-
ing block in large-size multiplications, replacing the conventional multiplier. In this
case, both the area and energy consumption are significantly improved, consider-
ing that the DLSB multiplier outperforms the conventional design that is needed to
implement the sub-products, by up to 30.6% and 43.3% in area and energy, respec-
tively.

61

Arithmetic Optimization: Double-LSB Encoding

62

Chapter 4

Arithmetic Approximation:
Hybrid High-Radix Encoding

Approximate Computing forms a design alternative that exploits the intrinsic error
resilience of various applications and produces energy-efficient circuits with small ac-
curacy loss. In this chapter, we examine the impact of applying low-level optimiza-
tions and disciplined approximations in the design of arithmetic circuits. Towards
this direction, we propose an approximate hybrid high-radix encoding for generating
the energy-efficient RAD multipliers. The proposed encoding scheme approximately
encodes one of the operands, using the accurate radiz-4 encoding for its most signif-
icant part and an approzximate higher radix encoding for its least significant part. In
the high-radiz encoding, the approximations are applied by mapping all the high-radix
values to a set of values that includes only the 4 largest powers of two. The pro-
posed hybrid encoding is configurable and can be tuned to achieve the desired energy—
accuracy trade-off. Another important feature of the proposed design is that the error
induced by the approximations is bounded by a Gaussian distribution with near-zero
average. In addition, the mean relative error of the multiplication depends only on the
approximately encoded operand, and thus, the calculation of the corresponding error
metrics is accelerated, eliminating the need for exhaustive hardware simulations. In
terms of resources, the proposed multipliers deliver up to 56 % energy and 55 % area
gains compared to the accurate radix-4 multiplier, when operating at the same fre-
quency. Moreover, our designs outperform state-of-the-art multipliers by up to 40%
in energy consumption for similar error values. Finally, we examine the scalability
of our technique, showing that as the multiplier’s size increases, our designs achieve
larger gains in energy consumption and critical path delay, i.e., up to 64 % and 22 %,
respectively, while the error remains constant.

This chapter is based on our publication in [153].

63

Arithmetic Approximation: Hybrid High-Radix Encoding

4.1. Introduction

In modern embedded systems and data centers, power efficiency and performance
are critical design concerns. Considering that various application domains exhibit
an intrinsic error resilience (e.g., digital signal processing, data analytics, and data
mining [29,240]), Approximate Computing [16,17,19] appears as an effective solu-
tion to provide remarkable power gains and/or speed improvements. In Approximate
Computing, error is viewed as a commodity that can be traded for significant gains in
resources (e.g., area, power, energy, latency, or throughput) [241], and thus, it com-
poses a promising design paradigm to generate power-efficient systems and circuits. In
particular, Approximate Computing exploits the innate error tolerance of the applica-
tions and deliberately relaxes the correctness of some computations to decrease their
power consumption and/or accelerate their execution.

To take advantage of the benefits provided by Approximate Computing, massive re-
search has been conducted in the field of approximate hardware and circuits. In this
field, automated synthesis techniques [242] and hardware description language anno-
tations [183] have been proposed to facilitate the design of approximate hardware.
Significant research has also been reported in approximate processors that employ
quality programmable vectors [243], neural networks [244] and approximate custom
instructions [245]. Circuit-level approximations involve voltage over-scaling [202,224]
and over-clocking [213,225] techniques. Voltage over-scaling lowers the supply voltage
of the circuit below the nominal value, and thus, the power consumption is decreased
in exchange for erroneous outputs due to the critical paths’ failure to meet the timing
constraints [224]. Over-clocking inserts timing violations, reducing expensive tim-
ing guard-bands and providing performance improvement [225]. Another approach
is to apply logic-level approximations, i.e., modify the truth table, employ inexact
components, or prune nodes of the circuit.

The main target of logic-level Approximate Computing is the arithmetic circuits [216],
which are key computation units in general-purpose processors and custom hardware
accelerators. Extensive research is reported in approximate adders [130,246—249],
which provide significant gains in critical path delays and power consumption. On the
other hand, research activities on the approximate multipliers [142,143,149,151,154,
250-256] are less comprehensive compared to the respective on approximate adders.
In the multiplication circuit, approximations can be applied in the partial product
generation [149, 151, 255] and the partial product accumulation [154, 250,251, 253].
Both types of approximation are synergistic and can be applied in collaboration to
achieve higher power reduction [149,151]. Although significant research regards the
partial product accumulation, approximation techniques in the partial product gen-
eration have received less attention. Another limitation of the existing approximate

64

4.1. Introduction

multipliers is that the majority of them (e.g., [154,250,252,256]) does not examine
signed multiplication.

In this chapter, motivated by the resource gains provided by arithmetic circuits, we
present a novel hybrid high-radiz encoding for approximate multipliers. Our technique
addresses some of the issues of prior designs, such as the signed multiplication and the
reduction of the critical paths, and it also provides better results than state-of-the-
art works. The proposed encoding is hybrid, i.e., it splits the number and encodes it
with two different schemes (accurate and approximate). More specifically, the Most
Significant Bits (MSBs) are encoded using the accurate radix-4 encoding, whereas
the k Least Significant Bits (LSBs) are encoded using the approximate high-radix-2*
(where k > 4). To simplify the increased complexity induced by the conventional
high-radix encodings, we alter their truth tables and generate their approximate vari-
ants. Using this approximate hybrid encoding, the number of the partial products is
decreased, and simpler tree architectures are used for the partial product accumula-
tion.

The contribution of this chapter is summarized as follows:

(i) We highlight the efficiency of applying disciplined low-level approximations,
which deliver valuable resource gains while keeping the accuracy in acceptable
levels.

(ii) We address the circuit overheads of the classic high-radix encodings, e.g., radix-
64, radix-256, radix-1024, which constitute them inefficient for use in multipli-
cation circuits.

(iii) We propose a new hybrid encoding for approximate partial product generation,
which is parametric in terms of approximation degree and can be combined with
other techniques, e.g., with approximate partial product accumulation.

(iv) We show that the proposed technique outperforms related state-of-the-art ap-
proximation techniques, providing remarkable area and energy gains for com-
parable error values.

The remainder of this chapter is organized as follows. Section 4.2 introduces the
proposed approximate hybrid high-radix encoding and its application in the design of
approximate radix-based multipliers. Section 4.3 performs the evaluation of the pro-
posed design, including theoretical resource analysis, error analysis, and comparative
experimental results. Finally, Section 4.4 draws the conclusions.

65

Arithmetic Approximation: Hybrid High-Radix Encoding

4.2. Design of Approximate High-Radix Encodings and
Multipliers

Conventional high-radix operand encodings reduce the total number of partial prod-
ucts in multipliers, and thus, the partial product accumulation is performed with
simpler adder tree architectures. However, the high-radix encoders, as well as the
high-radix-based partial product generators, are characterized by increased logic com-
plexity, negating thus the benefits of the partial product reduction. Therefore, the
prevailing radix encoding for multiplication circuits is radix-4, outperforming its high-
radix counterparts.

In this section, we propose an approximate hybrid encoding, which applies simul-
taneously the conventional (accurate) radix-4 encoding and a new (approximate)
high-radix-2* encoding. In more detail, we present the functionality of the hybrid
encoding, we introduce the proposed approximations that simplify the complexity of
the conventional high-radix encoding, and finally, we design inexact multipliers based
on the proposed approximate encoding.

4.2.1. Approximate Operand Encoding

Let B be a n-bit 2’s-complement number and k£ be an even number belonging in the
interval [4, n — 2], i.e., k=2m:m € Z and 2 < m < (n—2)/2. B is divided into two
segments with respect to k: the most significant part containing its n — k + 1 MSBs
and the least significant part containing its k& LSBs (there is a shared bit between
the two segments). The n — k + 1 MSBs are encoded with the radix-4 encoding,
while the k& LSBs are encoded with the radix-2¥ encoding, as shown in Eq. (4.1)-
(4.3).

n—2 n/2—1

B = (bnibpz-bodos = 2" by + D 20, = Y Ayl gyl (4
i=0 j=Fk/2

Yt = —2bgji1 + by + by =yt € {0,£1,£2} (4.2)

gl = ok ly 4Ry o by = B2 e {0, £1,. .., £(2F 1), —2F 1) (4.3)

Eq. (4.2) refers to the radix-4 encoded digits, while Eq. (4.3) refers to the radix-
2% encoded digit. In more detail, the radix-4 encoding creates (n — k)/2 digits yf"l

€ {0, £1, £2}, while the radix-2¥ encoding creates the digit yé?zk e {0, £1, £2,

66

4.2. Design of Approximate High-Radix Encodings and Multipliers

+3, ..., £(2F71 — 1), —2F"1} TIn total, B is encoded with (n — k)/2 + 1 dig-
its.

The encoding circuit for the above accurate hybrid encoding features increased logic
due to the large number of yémk values and the values that are not power of two.
Therefore, we propose an alternative approximate variant of the high-radix encoding,
while we keep the low-complexity radix-4 encoding of the MSBs to avoid huge errors.
To approximate y§2k, we map all the values that are not power of two, as well as
the k — 4 smallest powers of two, to their nearest of the 4 largest powers of two or 0.
In this way, the approximate digit gjé%zk takes values from a smaller set that includes
only 4 absolute values plus 0. In addition, the sum of these values is 0, like in the
set of values of y]R‘L. We choose to keep only the 4 largest powers of two, so that
the approximate radix-2* encoder requires about double the logic of the (n — k)/2
accurate radix-4 encoders.

Table 4.1 presents the accurate radix-4 encoding. The signal sign; indicates the
sign of yf‘*, i.e., it is activated when the digit is negative. The signals x1; and
x2; regard the magnitude of y]R‘L, i.e., they are activated when its magnitude is 1
and 2, respectively. The logic functions of these signals are provided in Eq. (4.4)—
(4.6).

sign; = bajy1 (4.4)
X1; = baj—1 @ by (4.5)
x2j = (bajr1 @ bay) - (baj_1 © baj) (4.6)

Table 4.2 presents the approximate radix-2* encoding. The first two columns show
the proposed mapping to create the approximate set of values (yémk — Q(Ifzk). For
example, if the value of yémk, as originally calculated by Eq. (4.3), belongs in
[2F=5, 2F=4 4 2F=5) it is mapped to 2¥~%. Similar to the radix-4 encoding, the
encoding signals are activated to indicate the value of %%2"'. The logic functions of
the approximate radix-2¥ encoding signals are provided in Eq. (4.7)-(4.11). We note
that for k = 4, we consider an extra bit b_; = 0.

sign = b1 (4.7)

x2k—1 = (Bk—2 bi—3 - br_g+byp_o-b_3- br—a) - (bk—a @ br—5) (4.8)
X283 = by bp_g - (bk—z - bp—a - bp—s + bp—3 - bp—s) +

+ g1 b2 - (br—3 - br—a - br_5 +bp_3 - bp_4) (4.9)

x2K=2 =y _o - bp_3- (br—1 + br—a) + b2 b3 (Bk—l +Bk_4) (4.10)

X2F 1 = by - bz - bp—3 + bp—1 - bp—2 - b3 (4.11)

67

Arithmetic Approximation: Hybrid High-Radix Encoding

Table 4.1: Accurate radix-4 encoding.

Operand Bits R4 Digit Encoding Signals
b2j+1 bgj bgjfl yJRA‘ signj ><2]' ><1j

0 0 0 0 0 0 0

0 0 1 1 0 0 1

0 1 0 1 0 0 1

0 1 1 2 0 1 0

1 0 0 -2 1 1 0

1 0 1 -1 1 0 1

1 1 0 -1 1 0 1

1 1 1 0 1 0 0

Table 4.2: Approximate high-radix-2* encoding.
Accurate Digit Approx. Digit Encoding Signals
yd2t g2t sign X271 x2h=2 yok=3 ok—4

[0, 2°77) 0 0 0 0 0 0
[2k—57 2k—4 +2k—5) 2k—4 O 0 O 0 1
[2F71 4 2F—5 k=3 4 ok—1) ok—3 0 0 0 1 0
[2F73 4 ok—4 oh=2 4 ok=3) 2k—2 0 0 1 0 0
[2F72 4 2K73 2k T 2kt 0 1 0 0 0
[—2F1 —gk=2 _ ok=3) —ok-1 1 1 0 0 0
[—2F72 — k=3 _gk=3 _ gk—d) —ok—2 1 0 1 0 0
[—2F73 — k=4 _gk—1 _ gk=5) —ok=3 1 0 0 1 0
[—2F—% —ok=5 _ok=%) —ok—4 1 0 0 0 1
[—2"75, 0) 0 1 0 0 0 0

Overall, starting from the accurate hybrid encoding of Eq. (4.1)-(4.3), we approxi-
mate the high-radix encoding of the LSBs through the mapping of Table 4.2, and thus,
B is approximately encoded to B as shown in Eq. (4.12)—(4.14).

n/2—1
B= Y 4yl gl (4.12)

j=k/2
where yI* € {0, +1, +2} (4.13)
and §E2° € {0, £2F~4, £2k—3 pok-2 yok-1) (4.14)

Next, we present some examples to show how the proposed hybrid encoding is ap-

68

4.2. Design of Approximate High-Radix Encodings and Multipliers

plied. We consider n = 16, i.e., 16-bit numbers and k£ = 6,10, i.e., the LSBs are
encoded with radix-64 and radix-1024, respectively. In the hybrid radix-64 encod-
ing, the bits of B are grouped as shown in Eq. (4.15). Regarding the approx-
imation of the radix-64 encoding, the 4 largest powers of two are +4, +8, +16
and +32. Thus, we map all the rest values of the original digit y*** to their
nearest value from the set {0, +4, £8, £16, +32} according to Table 4.2 (for
k=6).

R64

ye yi vo

—— — ——
b15b14b13b12b11b10b9bgbrbebsbab3babiby (4.15)
—— ———

R4 R4 R4
Y7 Ys Y3

In the hybrid radix-1024 encoding, the bits of B are grouped as shown in Eq. (4.16).
Similarly, the values of the digit yZ*'92* are mapped to {0, +64, +128, £256, +512}
according to Table 4.2 (for k = 10).

yé%él y§1024
—
b15b14b13b12b11b10b9bgbrbebsbab3bab1bg (4.16)
R4 R4
Yz Ys

For the implementation of the hybrid high-radix encoding, the designer needs only to
use the logic functions of Eq. (4.4)—(4.6) to generate the (n — k)/2 accurate radix-4
encoders, as well as the logic functions of Eq. (4.7)—(4.11) to generate the single
approximate radix-2¥ encoder. We note that an important feature of this encoding is
that the logic resources of the approximate radix-2* encoder are fixed and independent
of k.

4.2.2. RAD: Approximate High-Radix Multiplier

In this section, we present how the proposed hybrid encoding can be used to design
approximate high-radix multipliers. We consider the notation RAD2* for the multi-
plier that implements the hybrid high-radix-2* encoding. Let A - B be the accurate
multiplication of two n-bit 2’s-complement numbers. We encode the multiplicand B
with the proposed approximate high-radix encoding and perform the approximate
multiplication A - B.

The approximate architecture of the RAD2F multiplier is illustrated in Figure 4.1.
It consists of three stages: operand encoding, partial product generation and partial
product accumulation. In the first stage, B is encoded as discussed in the previous
section. The second stage inputs A and the encoding signals of B, and it generates
(n — k)/2 accurate partial products based on the radix-4 encoding (digits yJR4) and

69

Arithmetic Approximation: Hybrid High-Radix Encoding

High-Radix Encoding PP Generation PP Accumulation

A

X 2K—4 —

— En‘coding Partial

[Logic Func. of x2* | Signals | 4
B Togic Func. of x2*2
| Logic Func. of x2! |

| sign |

| Logic Func. of x1; |

| Logic Func. of x2; |

| sign; |

1 Approximate
Least-Significant PP
(n-x)/2 Accurate
Most-Significant PPs

:)DEI} P,

Figure 4.1: The architecture of the RAD2* multiplier that is based on the approximate hybrid
high-radix encoding.

Adder Tree

00000000000000000000000

0000000000000 0000
Q0000000000000 000

Q0000000000000 000

Table 4.3: Partial products generated by the radix encodings (k = 6,8, 10).

Encoding Partial Products
Radix-4 0, A, £2A4

Radix-64 0, £4A, +£8A, £16A, +32A
Radix-256 0, £16A, £32A, +64A, £128A
Radix-1024 0, 644, £128A, £2564, +5124

1 approximate partial product based on the radix-2* encoding (digit gjézzk). The
approximate partial product practically substitutes the k/2 least significant partial
products of the accurate radix-4 multiplier. Namely, we achieve a reduction of k/2—1
partial products, as the accurate radix-4 multiplier generates n/2 partial products,
while the proposed one generates (n — k)/2 + 1. Table 4.3 summarizes the partial
products that can be generated by the accurate radix-4 encoding and the approxi-
mate radix-2* encodings (k = 6,8, 10). All the possible partial products express the
multiplication of A with the encoded digits of B, which take the values discussed
in the previous section. In the last stage, the partial products are accumulated to
form the final approximate product. We note that the accumulation stage is orthog-
onal to the approximate encoding and partial product generation. Therefore, the
designer can choose any method for the accumulation, either accurate or approxi-
mate.

The circuit of the i-bit partial product generator based on radix-4 encoding is the
one discussed in Chapter 3 and illustrated in Figure 3.2c. It inputs the signals sign,,
x1;, x2; and the bits of A, and it calculates the partial product bits. In Figure 4.2,
we illustrate the i-bit partial product generators based on the approximate radix-64,

70

4.3. Evaluation

PPpi

PDi PDi

(b)

Figure 4.2: Approximate i-bit partial product generators based on the high-radix encodings: (a)
radix-64 (k = 6), (b) radix-256 (k = 8), (c) radix-1024 (k = 10).
Notations: a;: i-bit of A, a; = s; @ a;

radix-256, and radix-1024 encodings. As shown, similar to the encoders, the area of
the partial product generator for 1 bit is fixed and independent of the encoding (i.e.,
the value of k).

Figure 4.3 illustrates the partial product matrices of the 16-bit approximate multi-
pliers for k = 6,8,10. The matrices also include constant and corrections terms, as
those discussed in Section 3.3. As shown, each increment of the k parameter omits an
accurate radix-4 partial product, which is encoded in the larger approximate radix-2*
partial product. The bit-width of each accurate partial product is n + 1, i.e., there
are n generated partial product bits (black circles) plus the inverted MSB of the par-
tial product (gray circle). Correspondingly, the bit-width of the approximate partial
product is n + k — 1.

4.3. Evaluation

In this section, we evaluate our approximate high-radix multipliers. Firstly, we report
a theoretical analysis on the resources of our approximate designs, then we examine

71

Arithmetic Approximation: Hybrid High-Radix Encoding

1
lIESSEESEEEEEEEEEEEEEEEE

10000 [
100000000000000000 O
100000000000000000 O

(@]
(@)
1 1
IEEEEEEEEEEEEEEEEEEEEEER]S EEEEEEEEEEEEEEEEEEEEEEERN
1900000000000000000 O 100000000000000000]
100000000000000000 O 100000000000000000 O
100000000000000000 O 100000000000000000 O
100000000000000000 O O
(@]
(b) ()

Figure 4.3: Partial product matrices of the 16-bit approximate multipliers using the accurate radix-4
and an approximate high-radix-2* encoding: (a) radix-64 (k = 6), (b) radix-256 (k = 8), (c) radix-
1024 (k = 10).

Symbols: e: partial product bits from radix-4 m: partial product bits from radix-2* e, m: inverted
partial product MSBs O, O: correction terms

the error introduced by the approximations, and finally, we attach experimental re-
sults including comparisons with state-of-the-art multipliers.

4.3.1. Theoretical Analysis

The advantage of the RAD2® multipliers is their decreased logic compared to the
accurate radix-4 multiplier (labeled as ACCR4), which results in faster operation
and area/power gains. RAD2* generates a larger least significant partial product,
however, this product substitutes k/2 radix-4 partial products, and also, the corre-
sponding circuits for its generation do not impose significant overheads. To provide a
theoretical evaluation, we employ the unit gate model used in [239]: the AND-2/OR-2
gate is equal to 1 unit gate, the NOT gate is equal to 0.5 unit gate, the XOR-2 gate
counts as 2 unit gates, and the unit gates of the full adder and half adder are 7 and 3,
respectively. Based on this model, Table 4.4 reports the unit gates of each component
used in the RAD2* multipliers.

For the partial product generation, ACCR4 uses n/2 radix-4 encoders and (n/2) x n
radix-4 partial product generators to produce the n/2 n-bit partial products. Cor-
respondingly, RAD2* employs (n — k)/2 radix-4 encoders, 1 radix-2¥ encoder, ((n —
k)/2) x n radix-4 partial product generators, and n + k — 2 radix-2* partial product
generators. For the partial product accumulation, we choose the Wallace tree and
a final fast adder, like in the design of Chapter 3. ACCR4 accumulates n/2 + 1

72

4.3. Evaluation

Table 4.4: Unit gates per component of RAD-2F multipliers.

Component ‘ Reference ‘ Unit Gates
Radix-4 Encoder Eq. (4.4)—(4.6) 5.5
Radix-2*F Encoder Eq. (4.7)-(4.11) 41.5
Radix-4 PP Generator Fig. 3.2¢ 5
Radix-2* PP Generator Fig. 4.2 9

Table 4.5: Unit gates of 16-bit RAD2* multipliers (k = 6,8, 10).

Multiplier Stage ACCR4 RAD64 RAD256 RAD1024
Radix-4 Encoding 44 25 20 15
Radix-2* Encoding - 41.5 41.5 41.5
Radix-4 PP Generation 640 400 320 240
Radix-2F PP Generation - 180 198 216
PP Accumulation 784 560 448 336
Final Addition 400 400 400 400
Total Unit Gates 1868 1606.5 1427.5 1248.5
Reduction - 14% 24% 33%

operands, i.e., n/2 partial products and 1 operand with the correction and con-
stant terms, while RAD2* accumulates (n — k)/2 + 2 operands. Considering the
logic required for the multi-operand accumulation of n-bit numbers in carry-save
form [238], as well as our analysis in Section 3.4, ACCR4 requires 7n(n — 2)/2 unit
gates, while RAD2* requires 7n(n — k)/2 unit gates. Finally, regarding the final 2n-
bit fast addition, which is performed in both ACCR4 and RAD2F, it requires 2n half
adders, nlog, 2n propagate group circuits (each one is 3 unit gates), and 2n XOR-2
gates.

Based on the above analysis, Table 4.5 includes the per-stage and total number of
unit gates for ACCR4 and RAD2" (k = 6,8,10). As shown, even though the entire
encoding component of the RAD2* multipliers has ~1.5x more unit gates than the
encoder of ACCR, their partial product generation and accumulation requires less
resources than that of ACCR. More specifically, the RAD2" partial product generation
and accumulation are up to 29% and 57% better, respectively. In total, the logic
reduction achieved by RAD2* is up to 33%. We note that the unit gate model is a
simplified model (e.g., it does not take into account the interconnections complexity),
and it only gives a rough estimation for the area reduction. The exact resource gains
are presented in Section 4.3.3.

73

Arithmetic Approximation: Hybrid High-Radix Encoding

4.3.2. Error Analysis

The quality of the results calculated by approximate circuits is of utmost impor-
tance, thus, the analysis of the errors induced by the approximations constitutes a
separate object of study. In this context, we evaluate the accuracy of the RAD2F
multipliers based on the execution of their software models emulating the logic-level
approximations. Because our approximations can be emulated at software level, we
can provide fast and accurate error analysis. This is an important feature of our
approximate designs, eliminating the need for time-consuming hardware simulations
to obtain the approximate results. In our analysis, we employ error metrics that are
widely used in the field of Approximate Computing [149,151,257]. These metrics aim
to evaluate the significance and the frequency of the errors in approximate arithmetic
circuits.

To evaluate the mean error of our designs, we calculate the Mean Relative Error
Distance (MRED), which is the average of the Relative Error Distance (RED) values
for a set of inputs. RED refers to the arithmetic difference between the accurate and
the approximate result, divided by the accurate result. In our case, let A - B be the
accurate multiplication and A- B be the approximate multiplication (calculated by the
RAD2* multipliers). B is accurately encoded as in Eq. (4.1) and B is approximately
encoded as in Eq. (4.12). Considering these encodings, the RED of the multiplication
is calculated by Eq. (4.17).

A-B—A-B| |B-B R2t _ gR2t
RED 15 = A B - 1B] - =l _REDs ()
> Wt
j=k/2

Hence, the RED of the RAD2* multipliers depends only on B, i.e., RED o = REDp.
Let p4 and pp be the Probability Density Functions (PDFs) of A and B, respectively.
In this case, MRED is calculated by Eq. (4.18).

MRED = Z pa(A) -pp(B)-REDAp = ZPA ZPB -REDjp =
VA,B VA

k < pok
o~ i

*ZPB -REDp = ZPB e 2

Z Pyt +
j=k/2

(4.18)

74

4.3. Evaluation

Therefore, the MRED of the RAD2* multipliers for a set of input pairs {4, B} can
be calculated using only the values of B and their PDF values (e.g., for uniform input
distribution: pg(B) = 1/2").

The possibility of RED > M% (PRED),) is another widely used error metric [149,
151]. More specifically, this metric is defined as shown in Eq. (4.19).

#A - BlRED 45> M%
A B

PRED,; = p(REDAp > M%) = (4.19)

In our error analysis, we consider 16-bit multiplication. In Figure 4.4a, we illustrate
the PDFs of RED for the RAD64 multiplier. RAD256 and RAD1024 deliver a similar
curve, proving that the probability of having small RED is high. In Figures 4.4b—4.4d,
we plot the RED distribution for RAD2" (k = 6,8,10) with respect to the encoded
operand B. As shown, the error follows a Gaussian distribution with bounds for
maximum error, i.e., the error is large only for a small near-zero interval. For the
rest values of B (either positive or negative), RED € [0%, 1%]. In particular, RAD64
exhibits RED larger than 10% only if B € [—100,100]. The respective intervals for
RAD256 and RAD1024 are [—400,400] and [—1500, 1500]. These intervals represent
a very small fraction of all the possible values of B for 16-bit arithmetic. As a
result, PREDq is 0.001%, 0.004%, and 0.02% for RADG64, RAD256, and RAD1024,
respectively.

Overall, the proposed 16-bit RAD2* multipliers introduce small errors for the ma-
jority of the multiplications. Even RAD1024, which applies the most aggressive
approximations, features a MRED of 0.93%, while its PRED, and PRED; are
6.74% and 0.02%, respectively. We note that the accuracy loss of approximate
designs should be examined along with the respective gains in resources. Thus,
our analysis in the next section examines the trade-off between accuracy and re-
sources.

An advantage of the RAD2* multipliers compared to other state-of-the-art designs is
that their error, as shown in Eq. (4.17), depends only on the operand that is encoded
(B). This feature enables the fast calculation of the RED-based error metrics. In case
RED was a function of both A and B, its calculation would require to use a larger
input dataset (to cover different pair combinations) and also execute the approximate
multiplication.

4.3.3. Experimental Results

This section includes the evaluation of the RAD2* multipliers in terms of resources
(delay, area, power and energy). It also examines the accuracy of the approximate

75

Arithmetic Approximation: Hybrid High-Radix Encoding

0.4 100
03 80
R 60
802 5
2 40
0.1 20
0 .AAA vy A m W W\ VIWVAVAN
0 2 4 6 8 10 —200 =100 0 100 200
RED% B
(a) (b)
100 100
80 ‘ 80
N N
5 60 5 60
= 40 =2 40
20 M f 20
0 0
-1000 =500 0 500 1000 -3000 -1500 O 1500 3000
B B

(c) (d)

Figure 4.4: (a) Probability density function of RED for RAD64. The RED distribution with
respect to the values of B for (b) RAD64, (c) RAD256, and (c) RAD1024.

designs in parallel with the provided resource gains. The evaluation consists of two
stages, i.e., the comparison of RAD2* with state-of-the-art approximate multipliers
and the exploration of RAD2"’s bit-width scaling.

The designs are implemented in Verilog, synthesized with Synopsys Design Compiler
and the TSMC 65-nm standard-cell library, and simulated with Mentor Graphics
QuestaSim. Both synthesis and simulation are performed at 1V, i.e., the nominal
supply voltage. The critical path delay and the area of the circuits are reported by
Synopsys Design Compiler, while the power consumption is measured with Synopsys
PrimeTime. Energy is defined as the product of power and delay. Moreover, we
define the gain of the approximate design as the relative resource reduction from the
accurate design.

Comparative State-of-the-Art Evaluation

For comparison, we implement the accurate radix-4 (ACCR4) and radix-8 (ACCRS)
multipliers, as well as relevant state-of-the-art approximate multipliers [142,149,151].

76

4.3. Evaluation

R8ABM1 and R8ABM2-15 [151] employ the radix-8 encoding and calculate the prod-
uct 3A with an adder operating approximately for the 8 LSBs. RSABM2-15 extends
the approximation by truncating the 15 LSBs of the partial products. R4ABM1-14,
R4ABM1-16, R4ABM2-14, and R4ABM2-16 [149] use the accurate radix-4 encoder
for producing the MSBs of the partial product matrix and an approximate radix-4 en-
coder for the 14/16 LSBs. The difference between R4AABM1 and R4ABM2 is that the
latter design performs more aggressive approximations. For the radix multipliers of
[151] and [149], the partial product accumulation is performed accurately with a Wal-
lace tree and a fast adder, like in RAD2¥. Finally, we implement DRUMG6 [142], which
selects a 6-bit segment, starting from the leading non-zero bit of the input operands,
and sets the LSB of the truncated values to ‘1.

Table 4.6 presents the results from the synthesis of the multipliers for 16-bit input
operands. The circuits are configured to operate at their critical path delay, i.e.,
at maximum frequency. We note that Table 4.6 also reports error metrics (MRED
and PRED;), which have been obtained by performing simulations over all the pos-
sible input combinations. At first, we notice the inefficiency of ACCRS8 compared to
ACCR4, which proves that the conventional accurate high-radix encodings impose
significant overheads. Next, we compare the accuracy and the hardware efficiency of
the examined multipliers.

RADG64 gives the best MRED among all the designs, as approximations are performed
only in the 6 LSBs of B. In addition, the approximated values have small absolute
distance from the accurate ones. In RAABM1-14, a very small error is introduced,
considering that only four entries of the radix-4 encoder’s K-Map are modified [149],
while RRABM1 has a small MRED because the approximate adder that calculates 3A
involves both accurate and approximate parts. However, the errors of RSABM1 are
of greater significance, namely there are large absolute distances from the accurate
results. In REBABM2-15, the error does not increase significantly, although the 15 LSBs
of the partial products are truncated. This is due to the correction ‘1’ added to the 17-
th bit that compensates the error generated by the truncated lower part [151]. Finally,
DRUMSG delivers the worst MRED among all the multipliers with 1.47%, although its
error distribution is bounded. Our RAD2* multipliers deliver MRED smaller than
1% as standalone circuits, meaning that they can be used in real-world applications
that tolerate mean errors of 5% or 10% [258].

DRUMBG has the worst critical path delay, as it initially calculates the absolute value
of the products [142], while our designs RAD64, RAD256, and RAD1024 are the
fastest circuits, with delays of 0.72ns, 0.69ns, and 0.65ns, respectively. Regarding
energy, REABMI1 delivers the worst consumption among all the multipliers, as it may
use an approximate adder to calculate 3A, but it contains a 7-bit precise adder to
avoid very large errors [151]. The energy is improved in R8ABM2-15 due to the

e

Arithmetic Approximation: Hybrid High-Radix Encoding

Table 4.6: Experimental results of the 16-bit approximate multipliers on TSMC 65-nm standard-
cell.

Delay Power Area Energy MRED PRED:

Design (ns) (W) (um?) (uWens) | (%) (%)
ACCR4 0.75 4998 4153 3749 — —
ACCRS 0.80 5343 4639 4274 — -
RAD64 0.72 4497 3489 3238 0.08 0.42
RAD256 0.69 3493 2769 2410 0.28 1.69
RAD1024 0.65 3422 2624 2224 0.93 6.74
RSABM1 [151] 0.77 5058 4210 3895 0.15 1.05
R8ABM2-15 [151} 0.74 3377 2926 2499 0.61 2.70
R4ABM1-14 [149} 0.74 4676 3958 3460 0.12 0.41
R4ABM1-16 [149] 0.73 4447 3725 3246 0.49 1.49
R4ABM2-14 [149} 0.73 4648 3732 3393 0.24 0.68
R4ABM2-16 [149} 0.72 4307 3467 3101 1.18 2.50
DRUMG6 [142] 1.07 2148 3993 2298 1.47 28.85

truncated partial product bits. However, as our multipliers feature small MRED, the
truncation technique can also be applied to them to provide even better resource gains.
The radix-4 multipliers of [149] exhibit similar results, with R4AABM2-16 delivering the
best area and energy gains from their design family. RAD1024 features the best energy
consumption, with DRUM6 being second. However, the latter delivers significantly
larger MRED than all the other multipliers. The same applies to its PRED, which is
increased (28.85%), while the other multipliers have PREDs smaller than 3% (apart
from RAD1024 that has PRED; equal to 6.74%).

Figure 4.5 illustrates the scatter plot of the examined multipliers for MRED and en-
ergy consumption. The purpose of this plot is to highlight the most prominent designs
when considering both error and energy consumption. As shown, the Pareto Front is
formed exclusively by RAD2* multipliers. Namely, RAD2* constitute the most effi-
cient approximate multiplier alternatives compared to all the examined state-of-the-
art approximate multipliers, as they exhibit the best energy—MRED trade-off. RAD64
attains the smallest MRED value and should be preferred when error is of high im-
portance, while RAD1024 delivers the highest energy reduction. Finally, RAD256 fea-
tures significant energy reduction for a very small error value.

Next, we evaluate the RAD2F multipliers by exploring the energy and area gains
compared to the accurate radix-4 multiplier. The main target of Approximate Com-
puting is to trade accuracy for energy gains, i.e., generate good enough results at
comparable performance and lower energy consumption. Thus, in this evaluation,
we leverage the delay slack between the RAD2* multipliers and the accurate one,

78

4.3. Evaluation

4150 RS8ABM1
2 37007 RaaBMI-14
; & R4ABM2-14

r *
Z 3250 O D64 RAABMI-16 RIABM2-16
>
20 2800
g R8ABM2-15
M 2350 RAD256 © DRUMS ,,
RAD1024 ©
1900 1 1 1 1 |
0 0.3 0.6 0.9 1.2 1.5
MRED%
Figure 4.5: Comparative Pareto analysis for the approximate multipliers considering MRED and
energy.
60 ‘
EEE Energy
S 1 Area
'§ 40 - Ny
3]
=
1> 20 [7
~
0

- T T
RAD256 RAD1024

Figure 4.6: Area and energy gains of RAD2* compared to the accurate radix-4 multiplier.

and targeting energy efficiency, we synthesize and simulate the RAD2* designs at
the critical path delay of ACCR4. Figure 4.6 reports the delivered gains of RAD2F
multipliers compared to ACCR4, when they operate at the same frequency. Remark-
able reduction in area and energy is attained by the RAD2* multipliers, and it is
shown that the gains become larger when using higher radix encoding, because less
partial products are generated. In these designs, the number of the partial products
is reduced from 8 to 6, 5 and 4, and thus, the area and the depth of the accumulation
tree is reduced by up to 50%. As expected, RAD1024 delivers the largest gains (56%
in energy consumption and 55% in area).

The presented analysis regards fixed-point arithmetic, but it can be also extended
for floating-point multiplication. In the latter case, the proposed RAD2F multipli-
ers can replace the fixed-point multiplication of the mantissas, which is executed in
floating-point multiplication. Considering that the error of RAD2F is very small, it
will affect only the mantissa’s accuracy, whereas the exponent value (calculated by
an accurate adder) will remain the same as in the accurate floating-point multipli-
cation. Therefore, similar error values are expected in RAD2-based floating-point
multiplication. In terms of energy gains, they depend on the floating-point repre-

79

Arithmetic Approximation: Hybrid High-Radix Encoding

70

60+ | —*— Delay
¥ 50 | —= Energy
g 24
2 401 g RAD2
é 30t RAD2
& 20¢ RAW

10r

0 1 1 1

24
Multiplier Bit—-Width

Figure 4.7: Energy and delay gains of RAD2F for scaled bit-width and MRED = 0.28% (error
constraint).

sentation. For higher floating-point precision, similar or even larger energy gains are
expected.

Evaluation of Bit-width Scaling

Finally, we examine the efficiency of RAD2* when increasing the multiplier’s bit-
width, i.e., to 24 and 32 bits. We consider ACCR4 as the baseline design and
an MRED of 0.28% as a quality constraint that should be satisfied. We select
0.28% as error constraint because it is the MRED of the 16-bit RAD256 multiplier,
which is the most efficient design when taking into account both the provided en-
ergy gains and the error values. Namely, as shown in Figure 4.5, RAD256 attains
a very efficient energy-error trade-off, i.e., significant error reduction for very small
error.

Figure 4.7 presents the scaling of the gains in delay and energy with respect to the
multiplier’s size. For the 16-bit arithmetic, we implement the high-radix-28 multiplier
(RAD256), while for 24-bit and 32-bit arithmetic, we implement the high-radix-216
and high-radix-22* multipliers, respectively, in order to deliver the same MRED of
0.28%. The reductions in energy consumption and delay scale up to 64% and 22%,
respectively, while the quality constraint is satisfied. Thus, the results show that
as the multiplier’s size increases, the proposed hybrid high-radix encoding achieves
larger gains in critical path delay and energy consumption for the same error. The
scaling behavior is theoretically confirmed, as the RAD2* designs of Figure 4.7 have
an MRED of 0.28%, while generating 37%, 58%, and 60% less partial products for 16,
24, and 32 bits, respectively. More specifically, each one generates 5 partial products
in total (1 approximate and 4 accurate). In contrast, ACCR4 generates 8, 12, and 16
partial products, respectively.

80

4.4. Conclusion

4.4. Conclusion

In this chapter, we introduced an approximate hybrid high-radix encoding for gen-
erating the partial products of a signed multiplier. The most significant bits of the
multiplicand are encoded with the accurate radix-4 encoding, while its k least signifi-
cant bits are encoded with an approximate high-radix-2* encoding. The parameter k
determines the approximate high-radix encoding, and thus the approximation degree,
and it can be tuned to provide the desired trade-off between accuracy and resources.
Our approximation approach maps all the high-radix values to a set including only
the 4 largest powers of two. Therefore, it surpasses the bottlenecks of the conventional
high-radix encodings, which provide partial product reduction, however, they suffer
from increased encoding logic. The error of the RAD2* multipliers follows a Gaus-
sian distribution with near-zero average. The mean relative error of our designs lies
in the range 0.08%-0.93%, and also, it depends only on the approximately encoded
operand, allowing the fast calculation of the error metrics and eliminating the need
for exhaustive circuit simulations. In terms of resource savings, our designs achieve
up to 56% energy and 55% area gains compared to the accurate radix-4 multiplier,
when operating at the same frequency. Compared to state-of-the-art approximate
multipliers, RAD2* constitute better approximate design alternative, as they form
the Pareto front in our analysis involving energy and error. Finally, our approxi-
mation technique is scalable, delivering larger resource gains as the multiplier’s size
increases, while keeping the error constant. More specifically, for 32-bit multiplica-
tion, the gains reach to 64% and 22% in energy and delay, respectively, while the
mean relative error is retained at 0.28%.

81

Arithmetic Approximation: Hybrid High-Radix Encoding

82

Chapter 5

Dynamic Approximation:
Runtime-Configurable Arithmetic Circuits

The challenging deployment of Digital Signal Processing (DSP) and Artificial In-
telligence (AI) algorithms pushes the community to examine alternative design ap-
proaches, such as Approrimate Computing. This novel design paradigm provides
valuable resource gains by exploiting the error tolerance of the DSP/AI applications.
Nevertheless, approximate designs with fixed approzimation configuration provide lim-
ited flexibility and cannot accommodate different workloads or tune the quality of the
results with respect to the given accuracy and energy constraints. As a result, there is
a growing need for approzimate circuits and systems that support multiple approxima-
tion configurations and can seamlessly change among them at runtime. In this context,
we design runtime-configurable approxzimate multipliers for integer/fixed-point and
floating-point arithmetic. We employ two orthogonal approximation techniques, i.e.,
partial product perforation and partial product rounding, to enlarge the approximation
space, and we provide a low-overhead configuration scheme for tuning the approxima-
tion at runtime. The evaluation is performed for both the design-time (static) and
runtime (dynamic) approzimate variants, and it involves an in-depth error analysis
and diverse experimental results. The error analysis shows that our designs feature
slow error scaling with multiple values, which allows them to satisfy various accuracy
constraints. According to the experimental results, the design-time variants outper-
form all the examined state-of-the-art multipliers, considering either error or resource
gains as target. The runtime variants provide negligible area overhead (e.g., 4 % and
2% for half and single floating-point precision, respectively) and smaller energy gains,
however, they still deliver remarkable gains versus the accurate multiplier and other
state-of-the-art design-time multipliers. In more detail, the fixed-point runtime vari-
ant consumes only up to 1.2Xx and 1.7Xx more energy than its design-time variant
for low-strength and more aggressive approximation, respectively. Correspondingly,
the floating-point runtime variant provides ~1.4x and ~1.6X less energy gains in
half and single precision, respectively.

This chapter is based on our publications in [144,145].

83

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

5.1. Introduction

The proliferation of compute-intensive workloads from domains such as Digital Signal
Processing (DSP) and Artificial Intelligence (AlI) is changing the landscape in both
cloud and embedded computing. The efficient deployment of DSP/AT applications
is a first-class concern due to their increased computational and memory demands,
as well as the resource constraints imposed by the computing systems (e.g., specific
energy budget or limited number of available processing units). For this reason,
the research community explores new design alternatives towards power-efficient and
high-performance computing.

One of the most attractive and well-established solutions is the emerging paradigm
of Approximate Computing [16,17,19], which exploits the inherent approximate na-
ture and error resilience of the DSP /AT applications [29,240]. This design approach
trades accuracy loss for resource gains, e.g., in power, area, or throughput. In par-
ticular, errors are inserted in the computations based on a systematic and disciplined
approach, which aims to provide resource gains while retaining the quality of the
results at acceptable levels. Approximation techniques are applied at all layers of
the computing pyramid, i.e., from algorithms to software and down to circuits and
transistors.

The increased diversity of the real-world error-resilient applications demands flexible
approximate designs that offer various approximation configurations. More explic-
itly, the approximate system/circuit/architecture needs to be capable of adjusting
the approximation degree in order to satisfy the end-to-end application-specific accu-
racy, while providing the desired performance within the constrained power envelope.
Even for the same application, different input distributions may require a new approx-
imation configuration to provide the acceptable quality of results (e.g., consider an
approximate video processor that inputs frames with different content). As a result,
there is a growing need for approximate designs that can: (i) provide multiple ap-
proximation configurations (namely different levels of accuracy), and (ii) dynamically
configure their approximation degree, either offline (e.g., before starting the execu-
tion of a new application) or at runtime, with respect to the given accuracy/power
constraints.

In this chapter, motivated by the demand for dynamic approximation configuration,
we target the arithmetic circuits and design approximate multipliers that can config-
ure their approzimation degree at runtime. Contrary to the RAD2F circuits of Chapter
3, which are configured at design-time to implement a fixed (frozen) approximation,
the designs of this chapter provide a larger approximation space and seamless dynamic
configuration. The proposed family of runtime-configurable approximate multipliers
can be integrated in processors and custom hardware accelerators that need to tune

84

5.1. Introduction

the approximation degree. We note that we neither examine which approximation
configuration should be selected nor we apply automatic approximation tuning. Our
goal is to implement circuits that can change approximation on an efficient way (with-
out significant area overhead and timing penalties).

Additionally, compared to Chapter 3 and Chapter 4, we examine floating-point arith-
metic, i.e., we design both runtime-configurable fixed- and floating-point multipli-
ers. Arithmetic computations impose a trade-off in range, precision, and hardware
resources. Range is the capability of representing small/large numbers, while pre-
cision is the differentiation between nearby values. Fixed-point arithmetic delivers
hardware-friendly designs, but it sacrifices range and offers limited precision. On the
other hand, floating-point arithmetic provides a larger range of values and higher
precision for the same word-length, but it suffers from increased hardware cost. Fur-
thermore, the floating-point format offers a simplified programming model, contrary
to fixed-point, which needs to compensate for the quantization noise. Below, we dis-
cuss the significance of the floating-point arithmetic and analyze what pushed us to
design floating-point multipliers.

Numerous compute-intensive algorithms use a wide range of values and require high
precision. Therefore, floating-point arithmetic is favored in applications from do-
mains such as DSP, computer graphics, scientific computing, and speech recognition,
which handle real numbers and produce results with unpredictable range. However,
the increased hardware cost of floating-point calculations results in using fixed-point
arithmetic or alternative data formats that are more hardware-efficient, but they do
not provide the benefits of floating-point. For this reason, there is also limited in-
tegration of Floating-Point Units (FPUs) in embedded devices, e.g., the commercial
Field-Programmable Gate Arrays (FPGAs) do not have hardwired FPU blocks [259).
The power inefficiency of FPUs is also proven by a recent study on Graphics Process-
ing Units (GPUs) [260]. This study revealed that the portion of the power consumed
for arithmetic operations in compute-intensive benchmarks reaches more than the
70% of the total power, with the FPU being the most power-hungry unit. Specifi-
cally for floating-point multiplication, it is widely used in operations such as convo-
lution, matrix multiplication, and Fourier transform, and thus, its efficiency inher-
ently affects the entire application. Recent studies on general OpenCL applications
from the AMD APP SDK showed that over 85% of the floating-point arithmetic in-
volved multiplication [261]. Although floating-point multipliers are more expensive
in power and area, they have received less research attention than their fixed-point
counterparts for disciplined approximations [142,143, 146,149, 150, 154, 155, 250, 253,
254,262].

Regarding the technical details of our work, we employ two orthogonal approximation
techniques, i.e., partial product perforation and partial product rounding. The first

85

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

technique perforates entire partial products, while the second technique rounds them
to a smaller bit-width. These two techniques are applied in collaboration to generate
a large approximation space, satisfying the requirement for multiple approximation
configurations and varying levels of accuracy. More specifically, at first, we discard
partial products starting from the least significant, and then, we apply rounding to
the remaining ones. Besides offering a large approximation space, we select these
two techniques because their configuration is associated with the input operands, and
thus, we can easily change it at runtime with negligible area overhead. This overhead
is 2n AND gates and two n-bit control signals (one per operand), where n is the
operand bit-width. The approximation configuration is determined by simply setting
the bits of the control signals to either ‘1’ or ‘0’.

The contribution of this chapter is summarized as follows:

(i) We highlight the significance of dynamic approximation configuration and inte-
grate this attractive feature in the design of approximate multipliers.

(ii) We extend our approximation techniques to floating-point arithmetic, which
imposes increased hardware cost compared to integer/fixed-point arithmetic.

(iii) We combine two orthogonal approximation techniques to generate a large ap-
proximation space, which can accommodate numerous accuracy constraints and
explore the accuracy—energy trade-off to provide the most efficient solution.

(iv) We introduce a low-overhead dynamic configuration scheme for adjusting the
approximation degree at runtime.

(v) We show that the proposed solution outperforms related state-of-the-art designs
in both fixed- and floating-point arithmetic, providing remarkable area and
energy gains for comparable error values and slow error scaling.

The remainder of this chapter is organized as follows. Section 5.2 introduces the
proposed approximation techniques and the design-time and runtime variants of our
approximate fixed- and floating-point multipliers. Section 5.3 includes the evalua-
tion of the proposed designs, including error analysis and comparative experimental
results. Finally, Section 5.4 draws the conclusions.

5.2. Design of Runtime-Configurable Approximate
Multipliers

To facilitate the dynamic configuration of the approximation degree, we target to
approximate partial product generation, i.e., the multiplication stage that is as-

86

5.2. Design of Runtime-Configurable Approximate Multipliers

sociated with the input operands. Moreover, to provide multiple approximation
configurations, we employ two orthogonal approximation techniques, namely, the
partial product perforation and the partial product rounding. The approximation
degree of each technique is tuned independently and can be easily tailored to sat-
isfy various design constraints, e.g., maximum error bound or specific power budget.
Regarding the multiplication scheme, we select the radix-4 encoding for generat-
ing the partial products, as it outperforms other well-established algorithms [226].
Firstly, we present our approximate design for integer/fixed-point arithmetic, which
is also the main approximate component of our floating-point unit. Subsequently,
we present the extension of our design to support dynamic approximation configura-
tion.

5.2.1. AxFXU: Approximate Fixed-Point Multiplier

Let A = (an—1an-2---ag)zsand B = (by_1b,_2 - - - by)2s be two n-bit 2’s-complement
numbers. The accurate radix-4 multiplication A x B is performed by generating and
accumulating n/2 partial products. The application of partial product perforation
omits the generation of P successive partial products, starting from the least signif-
icant ones. Afterwards, partial product rounding is applied to round the remaining
partial products to a smaller bit-width, i.e., it truncates their R — 1 Least Signif-
icant Bits (LSBs) and add their (R — 1)-th bit to the most significant part. We
name this family of approximate circuits as AXFXU|p r, which denotes approximate
fixed-point multiplication with P and R configuration of perforation and rounding,
respectively.

Using the accurate radix-4 encoding for B, as presented in Chapter 4, the approximate
multiplication in AxFXU is performed as shown in Eq. (5.1).

n/2—1 n/2—1
AxBlpr= Y 4PP;j= Y 4Ap-yf (5.1)
j=P j=P
where P €[0,n/2—-1), Re[0,n—1) (5.2)
yJR4 = 7262j+1 =+ bgj + bgj_l = yf4 S {0, :l:l, :|:2} (53)
AR = (an_1Gp_2---aR)2s + ap—1 (5.4)

Therefore, the final approximate product of AxXFXU is calculated by accumulating
the n/2 — P most significant rounded partial products PP;. The application of the
two approximation techniques is independent, as illustrated in Figure 5.1. As shown,

87

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Partial Product EEEEEEEEEEEEEEEER
EEEEESEEEEEEEEEEEN

0000000000000 .,L00

0000000000000, 000
0000000000000 L00 Partial Product
0000000000000, 000 Rounding

0000000000000, 00

0000000000000, 00

Perforation

Figure 5.1: Approximate partial product matrix that is generated using partial product perforation
(P = 2) and rounding (R = 4).

Symbols: m: perforated bits #: truncated bits 4: bits added to the remaining words for rounding
®: accurately generated (remaining) bits

the partial product matrix is reduced vertically by perforation and horizontally by
rounding.

The partial product generation technique removes P radix-4 encoders and P x n 1-bit
partial product generators from the accurate multiplier (see Section 4.2 of Chapter 4).
These components are required to implement the perforated partial product bits (red
rectangles in Figure 5.1). To improve the efficiency of rounding and avoid possible
penalties due to the addition of ag_; (blue rhombuses in Figure 5.1), we adopt our
bit-level manipulations for DLSB arithmetic (see Section 3.4 of Chapter 3), assuming
ag+ = ap—1. As a result, the remaining partial product bits are generated like in the
accurate multiplier, and only one XOR gate is added in the calculation of each correc-
tion term, i.e., sign; ® ar—1 is used instead of sign;.

5.2.2. AxFPU: Approximate Floating-Point Multiplier

Next, we introduce the family of our approximate floating-point multipliers, which are
named AXFPU|p g. This design makes use of AxFXU for multiplying the mantissas,
it employs the logic of the conventional floating-point multiplier for the rest opera-
tions (e.g., exponent addition), and also, it integrates some extra functionalities to
handle the approximations. Before introducing AxFPU, we make a brief introduction
in floating-point arithmetic and the representation of the floating-point data. This
information is required to understand the design of the floating-point multiplier, but
mainly, we include it as background to the error analysis of AxFPU.

The Floating-Point Arithmetic

Floating-point arithmetic performs a systematic approximate mapping of the real
arithmetic. More specifically, the floating-point format is an established encoding

88

5.2. Design of Runtime-Configurable Approximate Multipliers

for representing a finite subset of the continuum of real numbers. A floating-point
datum can be a finite non-zero number, a signed zero (£0), a signed infinity (+o00),
or a Not-a-Number (NaN).

In base (radix) b > 2, the finite non-zero numbers and the signed zero are represented
approximately with a fixed number of significant digits (called mantissa), and they are
scaled by raising the base to an integer (called exponent). In addition, they include
a sign that indicates if they are positive or negative. These three parameters are
defined in more detail as follows:

o the sign is ‘0’ (positive) or ‘1’ (negative).

o the exponent is any integer that belongs in the interval [emin,€maz], Where
C€min — 1-— €max-

o the mantissa is any number that belongs in the interval [0,b), and it is repre-
sented as (dg - dids . .. dy—1), where 0 < d; < b.

The smallest normal floating-point magnitude is b°min. All the non-zero floating-
point numbers with magnitude less than b*~i» are called subnormal, because they lie
between zero and the smallest normal magnitude.

The IEEE-754 standard [263] defines various encodings for the binary floating-point
format (b = 2). The most widely used binary formats are presented in the left side
of Table 5.1. The Most Significant Bit (MSB) of a floating-point datum is the sign
(S). The exponent is encoded using an offset, referred as exponent bias in the IEEE-
754 standard, which is equal to e;,,4,. Therefore, the biased exponent E is equal to
€ + emaz, Where e is the true exponent, and it is stored as a w-bit unsigned integer.
Regarding the mantissa, its leading bit (dy) is implicitly encoded with the biased
exponent. Thus, only m — 1 bits of mantissa are stored, i.e., M = (dids...dpn—1),
even though the total precision is m bits.

In case the biased exponent E belongs in the interval [1,2% — 2], the floating-point
datum represents the normal value of Eq. (5.5).

m—1
(_l)S . 2E—€mam . <1 + Z 2_idi> (55)
i=1

In case the biased exponent E is zero and the mantissa M is non-zero, the floating-
point datum is a subnormal value. Additionally, special numbers (0, +00, NaN) are
defined depending on the values of exponent and mantissa. All the possible floating-
point data types are summarized in the right side of Table 5.1.

89

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Table 5.1: The IEEE floating-point formats and data types [263].

Precision Case

Format Properties Datum Type

Half Single Double Exponent Mantissa

Total Bits 16 32 64 Normal € [1,2% — 2] don’t care
- Sign Bit 1 1 1 Subnormal =0 #0
- Exponent Bit (w) 5 8 11 +0 =0 =0
- Mantissa Bits (m —1) 10 23 52 NaN =2¥-1 #0
Exponent Bias (émax) 15 127 1023 +o00 =2 -1 =0

Design of Accurate Architecture
Before introducing AxFPU, we present the baseline accurate floating-point multipli-

cation architecture. Let Ay and By be two n-bit floating-point normal numbers. The
product Ay x By is calculated by Eq. (5.6).

m—1 m—1
Af X Bf = (_1)(SA+SB) .2(EA+EB—2€mam), <1 + Z 2_iai> . (1 + Z 2—zb2> (56)
i=1 =1

A=1.M4 B=1.Mg

The above multiplication is performed in the following basic steps: (i) calculation of
the result’s sign, (ii) addition of the exponents, (iii) multiplication of the mantissas,
(iv) normalization of the mantissa product, (v) update of the result’s exponent, (vi)
rounding of the mantissa product, and (vii) handling of special cases. Below, we
discuss the technical details of each step.

The sign of the result is calculated by the XOR of the input signs, i.e., Sg =S4 P Sp.
Regarding the result’s exponent, the input exponents (E4, Ep) are biased, thus, the
bias (€mas) is removed before their addition. Afterwards, the bias is added to the
result’s exponent, i.e., in total Er = Eg + Ep — €pqz. For the mantissa multipli-
cation, all the m mantissa bits are employed. The MSB of each mantissa string is
‘1’, as we assume normal floating-point numbers. Therefore, the multiplication of
1.M4 = (lajas . ..am—1) and 1.Mp = (1b1by...by—1) is performed. Due to multi-
plying normal floating-point numbers, the result can be in one of the following forms:
(a) 0Ol.zz ...z, (b) 10.zx ...z, or (c) 1l.zx...x. The next step is to normalize the
product in case it is in the form (b) or (c), so that there is only one leading ‘1’ be-
fore the radix point. To do so, the radix point is moved one place to the left and
the intermediate exponent Eg is increased by 1. Otherwise, the exponent and the
already-normalized mantissa remain intact. Finally, only the m — 1 MSBs that are

90

5.2. Design of Runtime-Configurable Approximate Multipliers

placed after the radix point can be stored in the mantissa field, thus, bit rounding is
applied.

Our architecture also handles special cases that may arise due to the exponent value.
Specifically, if the exponent is too small/large to be represented, then underflow /over-
flow occurs. To consider these special cases, an underflow/overflow detector is em-
ployed after the component that performs the exponent update in case of normal-
ization. This detector checks the value of the exponent and decides if the result is
normal number, underflow or overflow. If the exponent lies in the interval [1,2* — 2],
then the result is a normal number. In contrast, if the result is smaller than 1, it is
marked as underflow, while if it is bigger than 2 — 2, it is marked as overflow. We
note that if underflow occurs, the exponent is stored as 0 and the product Ay x By
is either a subnormal number or £0, depending on the value of the mantissa product
(see Table 5.1). Similarly, if overflow occurs, the exponent is stored as 2% —1 and the
product Ay x By is either NaN or +oo.

Design of Approximate Architecture

The most costly component of the floating-point unit is the mantissa multiplier [264],
as the rest of the circuits are comparators, small adders, and multiplexers. Thus, to
improve its efficiency, we use AxFXU to multiply the mantissas.

Considering the accurate floating-point multiplication of Eq. (5.6) and the approxi-
mate AxFXU multiplication of Eq. (5.1), the multiplication in AxXFPU|p g is calcu-
lated by Eq. (5.7).

m/2—1
Ay x Bflpr = (,1)(SA+SB) . 9(Bat+Ep—2€maz) , Ap - Z 4jy]34 (5.7)
j=P

AxBl|p.r

Figure 5.2 illustrates the block diagram of AxFPU. In comparison with the baseline
accurate design, an additional detection component is implemented, because due to
the approximations, the mantissa multiplication of very large operands may produce
a result in the form 00.zz...z. We remind that the result of a conventional floating-
point multiplication is always in the form 0l.zz ...z, 10.zz...x, or 1l.zz...x. In
AxFPU, this may happen due to discarding negative partial products. In such a case,
the absence of these products results in not decreasing the value of the final product
(as in the accurate multiplication), and thus, the floating-point result appears in the
aforementioned form. This case is handled as overflow, however, we note that ac-
cording to our experimental results, the possibility of having either the conventional
or this special overflow is around 0.35% on average for half and single floating-point

91

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

s, E, M, Sg Ep My
m A :
— | J/—[
J\
D N
. m-bit Approximate K~ P
w-bit Adder Multiplier K- R

T T om B I

(w+1)-bit Special Overflow
Subtractor Detection
J normalization
Exponent flag Mantissa
Update Normalization
Overflow/Underflow Mantissa
Detection Truncation
N N2
SR ER MR

Figure 5.2: The approximate floating-point multiplication architecture of AXFPU|p r. The config-
uration parameters P and R adjust the approximation degree of perforation and rounding, respec-
tively. The highlighted blocks are modified/added compared to the conventional accurate design.

precision. Another differentiation of AxFPU compared to the accurate design regards
the rounding process. Considering that the mantissa product is now approximate, its
rounding to the m — 1 MSBs, which is typically applied after normalization, offers
negligible accuracy gain. Therefore, we eliminate the rounding unit, i.e., the second
most power-consuming component of the floating-point multiplier [264], and we sim-
ply truncate the leftover LSBs. We note that this design choice is optional and the
designer can apply rounding instead of truncation.

5.2.3. Dynamic Configuration of the Approximation Degree

The AxFXU|pr and AXFPU|p i circuits apply static approximation, namely, the
approximation parameters P and R are configured at the design time and cannot
change after the implementation. In this section, we introduce their runtime vari-
ants (DyFXU and DyFPU), which can dynamically configure their approximations
degree, i.e., adjust the parameters P and R at runtime. These designs employ the
accurate radix-4 multiplier, thus, they also support operation in fully-accurate mode.
The two approximation techniques that are applied (partial product perforation and
partial product rounding) in conjunction with the selected radix-4 multiplication al-
gorithm facilitate the design of a low-overhead scheme for dynamic configuration
because:

92

5.2. Design of Runtime-Configurable Approximate Multipliers

(i) the 2P — 1 LSBs of B are used only for the generation of the P least significant
partial products.

(ii) the R —1 LSBs of A are used only for the generation of the R — 1 LSBs of each
partial product.

From the first ascertainment, we conclude that the truncation of the 2P — 1 LSBs
of B is equivalent to configuring perforation to P. From the second ascertainment,
we conclude that the truncation of the R — 1 LSBs of A, along with the addition
of ag_1 to the most significant part of A, is equivalent to configuring rounding to
R. Therefore, to dynamically configure the parameters P and R, we drive the i-th
bit of each operand to an AND gate along with an input signal s; (i = 1,2,...n).
The value of s; determines whether the i-th bit of the operand will be “virtually”
truncated (s; = 0) or not (s; = 1).

Figure 5.3 illustrates the dynamic configuration of the approximation degree to P = 2
and R = 4. The control signal s; is set to ‘0’ in the AND gates driven by:

(i) the 3 LSBs of B, and thus, the 2 least significant partial products are not
calculated (they are 0) — perforation is configured to P = 2.

(ii) the 3 LSBs of A, and thus, the 3 LSBs of each partial product are not calculated
(they are 0) — rounding is configured to R = 4.

In the rest AND gates, s; is set to ‘1’, and the corresponding partial products bits
are accurately generated.

It is obvious that the runtime variants do not provide area gains, as they implement
the entire n-bit multiplier plus 2n AND gates and 2n 1-bit input signals. However,
they still deliver significant energy gains while offering accurate operation mode and
multiple levels of accuracy, which can be configured at runtime. In terms of perfor-
mance, the critical paths are not reduced, and thus, the clock frequencies are set at
their nominal value, i.e., that of the accurate designs, to satisfy the accurate opera-
tion mode. To provide performance gains, the frequencies can be dynamically scaled
to satisfy the critical paths of the respective design-time multipliers, e.g., operate
DyFXU]|z 4 at the maximum frequency of AxXFXU]j 4.

The control signals that tune the approximation degree are directly exposed to the
system. Namely, they can be seamlessly set to 0/1 at runtime to increase/decrease the
approximation degree. The tuning can be performed by a high-level policy (e.g., in an
approximate custom processor/accelerator) that sets the control signals with respect
to pre-stored error values and an error constraint defined by the application/user. For
instance, the mean error for all the combinations of the approximation parameters P
and R can be calculated offline (e.g., for an application-specific input distribution or
for all the possible inputs), in order to be stored and accessed by the high-level policy.

93

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Perforation Con.figuration Rounding Configuration
0

@@W@a@ﬁﬁ@@ 0

O

00000000000000000, Accurate Multiplier

Figure 5.3: Dynamic configuration of the approximation degree by adjusting perforation and round-
ing via control signals. The “virtual” truncation of 3 LSBs in each operand sets the highlighted partial
product bits to 0, activating P = 2 (perforation configuration) and R = 4 (rounding configuration).

In this scenario, given an error constraint (that may change at runtime), the high-level
policy selects the most resource-efficient approximation configuration that satisfies it.
A similar approach is proposed in [265], where the authors use runtime-configurable
circuits in an approximate RISC-based processor.

5.3. Evaluation

In this section, we evaluate the design-time and runtime variants of our fixed-point
and floating-point multipliers. The evaluation begins with the error analysis, which
examines the accuracy of our designs, and continues with the experimental results
from the synthesis of the circuits, involving comparisons with state-of-the-art approx-
imate designs.

5.3.1. Error Analysis

In the design of approximate circuits, the error inserted in the computations is con-
sidered a critical issue, and thus, its impact on the final result is studied using either
circuit simulations or rigorous error expressions and models. To evaluate our approx-
imate designs in terms of accuracy, we execute the respective software models emu-
lating the logic-level approximations. Our analysis is based on the calculation of well-
established error metrics, as well as new error metrics that are tailored to the designs,
such as in the case of floating-point approximations.

94

5.3. Evaluation

Study of AxFXU Accuracy

Firstly, we study the error of AxFXU, namely, our approximate fixed-point multiplier.
We consider the error metrics used in the error analysis of Chapter 4. In brief, these
metrics are defined as follows:

e RED4p: the relative error distance between the approximate multiplication
and the accurate multiplication for a given operand pair A and B.

e MRED: the average of all relative error distances for a given set of operand
pairs.

e PREDsg: the possibility of having a relative error distance larger than 2%.

We note that the approximation space is large, i.e., there are numerous approxima-
tion configurations (combinations of the P and R parameters). Therefore, for each
examined configuration, we consider 200K different input pairs, which are uniformly
distributed over the multiplication bit-width. The uniform input distribution forms a
stressed scenario for AxFXU, because more narrow distributions would lead to biased
MRED values, which could be efficiently handled with a limited set of approximation
configurations. Nevertheless, we note that AxFXU tunes the approximation degree
with two independent parameters, and as a result, it provides the flexibility to handle
different input distributions.

Figure 5.4 presents how MRED is affected by the approximation configuration for
multiplication bit-width n = 16, 24, 32. As shown, the MRED values increase linearly
with the approximation degree, i.e., as more approximations are applied. Perfora-
tion introduces larger error than rounding, due to the significance of the bits that
are pruned (entire partial products versus partial product bits). Moreover, as the
bit-width increases, MRED is less affected by the approximations. Specifically for
n = 24,32, MRED is up to 0.02% and 0.00005%, respectively. This feature is an
advantage of our designs, because it provides the flexibility to perform more aggres-
sive approximations in large-sized multipliers, resulting in increased energy and area
gains. Correspondingly, as the multiplier’s size increases, a smaller error is introduced
to retain the same energy budget and area.

Regarding the significance of the errors, which is examined with the metric PREDg,
the large approximation space of AxFXU generates designs with varying PREDy val-
ues. Namely, there are designs with zero or near-zero PRED,, as well as designs
with PREDs of 5% or 10%, which, however, deliver remarkable resource gains. Con-
cluding, the set of approximations of AxFXU can support various design scenarios
involving different error and resource constraints.

95

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

(b) (©)

Figure 5.4: MRED variation of AxFXU with respect to the approximation configuration P (perfo-
ration) and R (rounding) for multiplication bit-width: (a) n = 16, (b) n = 24, and (c) n = 32.

Study of AxFPU Accuracy

Next, we study the error of AxXFPU, namely, our approximate floating-point multi-
plier. We consider the same error metrics with AxFXU, however, we also employ new
error metrics to evaluate the special cases of floating-point arithmetic.

Let A¢ x By be the accurate floating-point multiplication of Eq. (5.6) and Ay x By|p g
be the approximate floating-point multiplication of Eq. (5.7). The RED of AxFPU
is formed as shown in Eq. (5.8).

_|As By —Ay-Bslpr| |A-B—A-Blpg|
BEDas =105 = JA-B

=RED4z (5.8

96

5.3. Evaluation

Hence, the RED of AXxFPU is equal to the RED of the approximate mantissa mul-
tiplier (implemented with AxFXU), i.e., RED4,p, = REDap. It is important to
mention that this formula assumes that possible normalization in the accurate man-
tissa multiplication, which results in increasing the exponent, also appears in the
approximate multiplication. Additionally, we assume that AxFPU does not produce
erroneous need for normalization. Regarding MRED and PRED,, they are calculated
as defined in Chapter 4.

Considering that in floating-point multiplication overflow or underflow may occur,
RED is involved in the calculation of MRED and PREDs only in three cases, depend-
ing on the floating-point data type of the approximate and the respective accurate
product:

(i) if both products are normal numbers, where RED is calculated by Eq. (5.8).
(ii) if both products are overflow, where RED is considered 0.
(iii) if both products are underflow, where RED is considered 0.

To evaluate the possibility of having one of the rest combinations, e.g., normal accu-

rate product and underflow approximate product, two more error metrics are intro-
duced:

e PON: the possibility of overflow approximate product and normal accurate
product, or vice versa.

e PUN: the possibility of underflow approximate product and normal accurate
product, or vice versa.

We note that the appearance of unexpected floating-point data type in the approx-
imate result, which occurs due to the applied approximations, is not examined in
prior works of approximate floating-point multipliers. The PON and PUN metrics
are calculated by Eq. (5.9)-(5.10).

PON = p(Af % Bf|pr : overflow & Af x By :normal |
Af X Bf|pr :normal & Ay x By : overflow) (5.9)

PUN = p(Af x By|p g : underflow & Ay x By : normal |
Ay X Bf|lpr :normal & Ay x By : underflow) (5.10)

Table 5.2 summarizes all the possible accurate and approximate products and reports
which error metric is employed for each combination. According to the analysis
of our approximations as well as exhaustive simulations, there are two impossible

97

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Table 5.2: Error metrics for approximate floating-point multipliers.

Acc. Product Appr. Product Possible Error Metrics

normal normal v MRED, PRED2: w/ RED of Eq. (5.8)
normal underflow v PUN

normal overflow v PON

underflow normal v PUN

underflow underflow v MRED, PRED2: w/ RED=0

underflow overflow X -

overflow normal v PON

overflow underflow X -

overflow overflow v MRED, PRED,: w/ RED=0

combinations. Specifically, AXFPU cannot produce overflow/underflow in case the
accurate result is underflow/overflow.

For the accuracy evaluation, we use half and single floating-point precision, i.e., we
employ the 16-bit and 32-bit AxFPU multipliers, labeled as AxFPU16 and AxFPU32,
respectively. Similar to the error analysis of AxFXU, we consider a uniform distri-
bution over the normal floating-point numbers (to cover all the data range) and
employ 200K different input pairs. Again, narrower input distributions, e.g., only
small floating-point numbers, would lead to more biased error values, which could be
handled with a limited set of approximation configurations. Figure 5.5 and Figure 5.6
present the variation of the error metrics for AxFPU16 and AxFPU32, respectively.
To explore the error scalability, we combine different values for P and R, tailored to
the floating-point bit-width, i.e., for the single-precision AxXFPU32, we set larger P
and R values.

The derived results show that the range of MRED is 0.05%-3.33% for AxFPU16 (see
Figure 5.5a), and 0.01%-2.20% for AxFPU32 (see Figure 5.6a), which are typical
mean error values for approximate arithmetic units. By examining the impact of
rounding for fixed perforation values, we notice that the MRED of AxFPU16 grows
sharply when we set R = 6, i.e., when the bit-width of each partial product is halved.
Specifically, considering perforation values P < 3, there is an average ~4x increase
of MRED when moving from R = 4 to R = 6. This threshold is bigger for AxFPU32
(i.e., R = 20), considering that the mantissa bit-width is 23 rather than 10. Moreover,
as expected, the error is highly affected by perforation, which omits entire partial
products. For instance, the MRED of AxFPU16 explodes from 0.81% to 3.25%,
when discarding P = 4 rather than P = 3 partial products. Multipliers with large
bit-widths are favored by more aggressive perforation, and as a result, AxFPU32
delivers relatively small error, even though several partial products are perforated,

98

5.3. Evaluation

(c) (d)

Figure 5.5: Variation of error metrics for half-precision AxFPU with respect to the approximation
configuration P (perforation) and R (rounding): (a) MRED, (b) PRED>, (c) PON, (d) PUN.

e.g., for P = 10 the MRED is 1.63% and raises up to 2.20%, depending on the
rounding configuration.

Regarding the PRED, metric, presented in Figure 5.5b and Figure 5.6b, both multi-
pliers exhibit near-zero values for the smallest examined pairs of configurations, which,
however, offer remarkable resource savings. For example, the PREDy of AxFPU16 is
0.02% in exchange for P = 2 perforated partial products and R = 4 rounding value.
Similarly, the PREDy of AxFPU32 is 0.01% for P = 8 and R = 18, i.e., values that
deliver significant area reduction considering the number of the remaining partial
products and their bit-width. On the other hand, more aggressive approximations
produce larger PREDs values. We note that these values are decreased for input
distributions involving bigger floating-point numbers, which are less sensitive to the
applied approximations.

Finally, the PON values of our approximate designs lie below 0.43% and 0.26%
for AxFPU16 (see Figure 5.5¢) and AxFPU32 (see Figure 5.6¢), respectively. The

99

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

MRED (%)
PRED (%)

PON

(c) (d)

Figure 5.6: Variation of error metrics for single-precision AxFPU with respect to the approximation
configuration P (perforation) and R (rounding): (a) MRED, (b) PRED>, (c) PON, (d) PUN.

corresponding values for PUN are 0.1% (see Figure 5.5d) and 0.01% (see Figure
5.6d), namely, near-zero possibilities. Moreover, the low-strength approximation con-
figurations completely avoid erroneous type of result (unexpected overflow or un-
derflow) delivering zero PON and PUN values. Overall, only a negligible number
of inputs trigger such wrong results, which otherwise could render AxFPU ineffi-

cient.

5.3.2. Experimental Results

This section reports experimental results for our approximate fixed- and floating-point
multipliers. We employ relevant state-of-the-art designs for comparison, analyze the
trade-off between accuracy and resources, and also discuss the benefits of the design-
time and runtime variants.

100

5.3. Evaluation

All the designs are implemented in Verilog and synthesized with the Synopsys De-
sign Compiler tool and the TSMC 65-nm standard-cell library. The simulations for
the functional verification and the power measurements are performed with Mentor
Graphics QuestaSim. The nominal supply voltage (1V) is used in both synthesis
and simulation. The critical path delay and the area of the circuits are reported by
Synopsys Design Compiler, while the power consumption is measured with Synopsys
PrimeTime after performing gate-level simulation. We also evaluate the energy con-
sumption, which is defined as the product of power and delay. For our analysis, we
define the gain of the approximate design as the relative resource reduction from the
respective accurate design.

Comparative State-of-the-Art Evaluation of Fixed-Point Designs

We implement several configurations of our design-time (AxFXU|p) and runtime
(DyFXU|p r) multipliers, as well as the accurate radix-4 multiplier (ACCR4) and
the approximate multipliers of [142,143,149,151,153,255,266]. In total, our evalu-
ation is performed considering two design scenarios regarding the clock constraint,
and involves: (i) comparison among state-of-the-art designs, (ii) comparison between
our design-time and runtime designs, and (iii) Pareto analysis considering the error—
energy trade-off. Below, we explain the approximation techniques of the literature’s
designs, and then we present the experimental results.

The perforation of k partial products [255] is labeled as PERFk. We note that the
approximation configurations of PERFk are covered by our designs with P = k and
R =0, i.e., when applying only perforation and not rounding. RRABM1 [151] uses the
radix-8 encoding to generate the partial products, while calculating an approximate
3A product. RBABM1-15 [151] is the same design, but it also truncates 15 bits of the
partial products. The R4AABM1-k and R4ABM2-k multipliers [149] employ an ap-
proximate radix-4 encoding for generating the & LSBs of the partial product matrix.
R4ABM1-k applies less approximations than R4ABM2-k [149]. RAD2* [153], which
is our design presented in Chapter 4, generates the partial products based on the accu-
rate radix-4 encoding and an approximate high-radix-2* encoding. TMCk [266] trun-
cates the k LSBs of the partial product matrix and adds correction terms for reducing
the error. DRUMSG6 [142] selects a segment of 6 bits from the multiplication operands,
starting from the leading ‘1’ and sets the LSB of the truncated values to ‘1’. Finally,
RoBA [143] rounds the operands to the nearest exponent of two and performs the
multiplication in segments using the shift operation.

Table 5.3 presents the experimental results for all the multipliers in 16-bit arithmetic.
We note that the experiments are presented in two flavours with respect to the clock
frequency of the circuits:

101

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Table 5.3: Experimental results of 16-bit approximate fixed-point multipliers on TSMC 65-nm
standard-cell.

MIN-Delay ISO-Delay Accuracy
Design Delay | Area Energy | Area Energy | MRED PRED:

(ns) | (un?) (uWas) | (um®) (uWas) | (%) (%)
ACCR4 0.75 4153 3749 2925 1407 — —
AxFXUl1,2 0.73 3209 2793 2341 1116 0.06 0.32
AxFXU|2,4 0.69 2672 2274 1800 919 0.23 1.21
AxFXU|3.4 0.65 2320 1830 1529 816 0.53 3.01
AxFXUls,6 0.63 2017 1487 1264 741 0.78 4.81
AxFXU|4,4 0.60 1888 1453 1253 716 1.55 10.38
AxFXU|4,6 0.59 1513 1178 1025 642 1.76 12.17
DyFXUl|,2 0.75 4259 2880 3065 1278 0.06 0.32
DyFXU]2, 4 0.75 4259 2382 3065 1105 0.23 1.21
DyFXU|s.4 0.75 4259 2206 3065 1002 0.53 3.01
DyFXU|s6 0.75 4259 2148 3065 981 0.78 4.81
DyFXUl4,4 0.75 4259 2024 3065 896 1.55 10.38
DyFXU|4,6 0.75 4259 1953 3065 802 1.76 12.17
PERF1 [255] 0.75 3355 2880 2547 1202 0.03 0.17
PERF2 [255] 0.72 2927 2473 2214 1083 0.13 0.60
PERF3 [255] 0.66 2892 2342 1874 965 0.44 2.38
PERF4 [255] 0.65 2285 1859 1564 858 1.48 9.75
R8ABM1 [151] 0.77 4210 3895 2694 1268 0.15 1.05
R8ABMI1-15 [151] | 0.74 2926 2499 1686 890 0.61 2.70
R4ABM1-14 [149] | 0.74 3958 3460 2634 1257 0.12 0.41
R4ABMI1-16 [149] | 0.73 3725 3246 2577 1108 0.49 1.49
R4ABM2-14 [149] | 0.73 3732 3393 2609 1128 0.24 0.68
R4ABM2-16 [149] | 0.72 3467 3101 2547 1079 1.18 2.50
RADG64 [153] 0.72 3489 3238 2257 1057 0.08 0.42
RAD256 [153] 0.69 2769 2410 1911 926 0.28 1.69
RAD1024 [153] 0.65 2624 2224 1663 884 0.93 6.74
TMCS8 [266] 0.77 3823 3075 2685 1195 0.11 0.59
TMC15 [266] 0.71 2867 2242 1829 928 1.19 2.75
DRUMSG [142] 1.07 3993 2298 3167 1404 1.47 28.85
RoBA [143] 0.94 4040 2345 2999 1216 2.66 50.07

(i) MIN-Delay: the clock constraint of each circuit is set to its critical path delay
(high-performance mode).

(if) ISO-Delay: the clock constraint of all the circuits is set to the same relaxed

102

5.3. Evaluation

value (low-power mode).

The advantage of AxFXU is its large approximation space, which provides the flexi-
bility to target multiple error levels, while delivering remarkable resource gains. This
is justified by the experimental results showing that our approximation technique
delivers the best exploitation of the error imposed. Namely, for similar error values,
AxFXU outperforms the rest designs in terms of resources (delay, area, energy). In-
dicatively, we mention that AxFXU]|4 4 inserts an MRED of 1.55%, while PERF4 and
DRUMG6 have an MRED of 1.48% and 1.47%, respectively. However, in the MIN-
Delay scenario, AxFXU|y 4 delivers 17% area and 22% energy gains versus PERF4,
and 53% area and 37% energy gains versus DRUMG6. Similarly, in the ISO-Delay
scenario, the corresponding gains are 20% and 17% versus PERF4, and 60% and 49%
versus DRUM6. We notice that in the ISO-Delay scenario, the gains of AxFXUl, 4
versus DRUMG increase due to its large critical path delay (i.e., 1.07ns), which is
close to the relaxed clock constraint used.

The radix-4 [149] and radix-8 [151] multipliers exhibit small error values, however,
compared to AxFXU, they suffer from increased energy consumption and delay. More-
over, for every RAD2¥ multiplier [153], there is an AxFXU|p g circuit that outper-
forms it in energy consumption, while delivering a slightly smaller MRED. For in-
stance, in MIN-Delay, AxFXU|z 4 offers 6% better energy than RAD256, while it
attains smaller error (0.23% versus 0.28%). In general, the RAD2* family of mul-
tipliers features a limited set of approximation configurations, and thus, its error
scaling is abrupt, which does not allow to efficiently serve various error constraints.
Furthermore, AxFXU is more efficacious than the partial product perforation [255],
as the application of rounding delivers significant energy savings, whereas the error
slightly increases. Finally, DRUMG6 [142] and RoBA [143] deliver good energy savings,
however, they exhibit significant errors (considered large for standalone arithmetic cir-
cuits). In particular, their large MRED values (1.47% and 2.66%, respectively) are
also translated to large PREDy values (28.85% and 50.07%, respectively). More-
over, the critical paths of the DRUM6 and RoBA circuits are larger compared to
the encoding-based circuits, because they implement a different multiplication algo-
rithm.

Next, we evaluate the runtime-configurable variant. We remind that, contrary to
AxFXU, where each approximation configuration is implemented as a new circuit,
there is only one DyFXU circuit. This circuit implements ACCR4 plus some AND
gates to tune the approximation degree at runtime. Namely, DyFXU|p r denotes the
DyFXU circuit that is configured via the control signals to execute the multiplication
with perforation P and rounding R. The results for various DyFXU|p g that are
presented in Table 5.3, are reasonable. As expected, DyFXU delivers the same crit-
ical path delay and slightly increased area compared to ACCR4. Regarding energy

103

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

4150
4REABM1 o AxFXU
3700 |- DyFXU
R4ABM1-14 * Literature Designs
* 4 R4ABM2-14
| %« RAD64 -
- 3250 % NMCS *R4ABM1-1G *R4ABM2 16
= PERF1
= 2800 [
= ° R8ABM1-15
= PERF2°
% RAD256
> L * DRUM6 RoBA
&5 2350 00 %PERF?» * JTMCI5 *
& RAD1024
B 1900 - 8 PERF4*
(<]
1450 r ° o
o
1050 C | | | | | | | | o |
0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7
MRED%

Figure 5.7: Comparative Pareto analysis for approximate fixed-point multipliers considering MRED
and energy.

consumption, which has been measured when DyFXU is operating for its P and R
configuration, it is improved compared to ACCR4 due to the logic paths that are
not activated. Finally, it is interesting to compare DyFXU|p p with its design-time
counterpart, i.e., AXFXU|p . The energy consumption of DyFXU]|p is increased,
which is reasonable, considering the leakage power of the inactive circuit nodes and
the power consumed by the extra AND gates, as well as the control signals that are
given as input to the circuit. Indicatively, DyFXUl|; 5 consumes 1.03x and 1.2x more
energy than AxFXU|; 5, in the MIN-Delay and ISO-Delay scenarios, respectively.
When considering more aggressive approximations, DyFXU|4 ¢ consumes 1.7x and
1.3x more energy than AxFXU|, ¢, in the MIN-Delay and ISO-Delay scenarios, re-
spectively. Summarizing, in terms of area, DyFXU does not provide gains, however,
the overhead is negligible compared to ACCR4. In terms of energy, it provides gains
and outperforms several design-time multipliers of the literature, even though these
gains are reduced compared to AxXFXU. In any case, the negligible area overhead and
the reduced, but also significant, energy gains are achieved while supporting dynamic
configuration of the approximation.

A comprehensive comparison of all the examined designs is presented in Figure 5.7,
where we consider both the MIN-Delay energy and MRED in a scatter plot. We
note that this plot includes additional AxFXU and DyFXU designs. As shown,
the Pareto front is formed exclusively by different configurations of AxFXU, i.e.,
our design exhibits the best error—energy trade-off in this comparison involving sev-

104

5.3. Evaluation

eral state-of-the-art designs. AxFXU|s o provides significant energy reduction in ex-
change for a very small error. Similarly, AxFXU|z6, AxFXU]|34, and AxFXU]|3 ¢
deliver remarkable energy gains in exchange for MRED values up to 0.78%. Regard-
ing DyFXU, even though it has worse energy consumption than AxFXU, it retains,
in almost all cases, the Pareto front with regard to the rest approximate multipli-
ers.

Comparative State-of-the-Art Evaluation of Floating-Point Designs

The evaluation of our approximate floating-point designs, namely, AxFPU|p r and
DyFPU|p,r, is performed in the following stages: (i) Pareto analysis of the error—
resources trade-off, (ii) comparison to state-of-the-art approximate designs, and (iii)
efficiency analysis of the runtime variant.

As already discussed, the approximation space of our designs is defined by two in-
dependent approximation techniques, and thus, it is large. It is also obvious that it
increases as we move on to larger floating-point bit-widths. Therefore, at first, we
perform a Pareto analysis involving the resources (delay, area, energy) and MRED,
targeting to extract the best approximation configurations and also study the impact
of the two approximation techniques in floating-point arithmetic. Again, we consider
half- and single-precision floating-point multiplier, i.e., AxFPU16 and AxFPU32. Our
Pareto analysis considers approximation configurations that do not produce very large
errors. Furthermore, we stress the tool to perform synthesis at the critical path delay
of each design, and we also configure the clock period of the gate-level simulation to
be equal to the critical path delay.

The scatter plots for the Pareto analysis of AxFPU16 and AxFPU32 are presented
in Figure 5.8 and Figure 5.9, respectively. The range of AxFPU16’s delay is 0.75ns—
0.51ns, while the delay range for AxFPU32 is 0.9ns-0.54ns. Our exploration shows
that there is a wide range of area and energy values, along with typical MRED, which
constitutes AXFPU as a sustainable solution for scenarios with diverse area/energy
constraints. According to the results, rounding has remarkable impact on the accu-
racy for small perforation configurations, while for bigger P values, MRED almost
remains intact. For instance, the MRED of AxFPU16 is stable at ~3.3% for P = 4
and different values of R, however, as the rounding aggressiveness increases, sig-
nificant gains are achieved, e.g., 25% energy reduction for R = 6 versus R = 2.
Regarding perforation, the single increment of the P parameter, considering stable
rounding configuration, delivers 5%-12% and 3%—6% energy reduction on average for
AxFPU16 and AxFPU32, respectively. Furthermore, as expected, the slower scal-
ing of AxFPU32’s error due to its larger mantissa bit-width, allows more aggressive
approximations, and as a result, its delay, area and energy are similar to those of

105

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

0.77;
0.74%
_0.71pxx
£ 068 "x %
5 0.65¢ x x
T 0.62f x x
2 059} " *
0.56¢ %,
0.53t x
ps—— X
0 030609 12 1518212427 3 3336
MRED (%)
(a)
24007, 2750
2200P% % — 25500 % x
) X
4220001 x S 23507 x
x = 2150(
2 1800F xx N = X x
2 1600 % . o 1950p % x
r X
g x x &0 1750t % x
< 1400t x x 2 1550 x x
1200¢ » B 3sp *
x Py
1000—— o e e
0 030609 121518212427 3 3336 0 030609 121518212427 3 3336
MRED (%) MRED (%)
(b) (c)

Figure 5.8: Pareto analysis for the half-precision AxXFPU|p g considering: (a) Delay and MRED,
(b) Area and MRED, and (c) Energy and MRED.

0.92¢
0.88%
0.847%
W 0.8y
£ 0.76f x "
? 0.72F x %
= 0.68f ¥
A 0.64f x
0.6 %
0.56f N
osob
0 02040608 1 12141618 2 2224
MRED (%)
()
5300% 59004
4800k . 5450%
wy L
—~4300f g 000
5 4550%,
g 3800% < 4100
~ L X L
- 3300 x o 36501 "
Q 2800F * o0 3200f x %
[x X St x
< X o 2750F * *
2007, X 5 23000
x % & x i
1800+ x 1850t
1300 X , 1400 X ,
0 02040608 1 12141618 2 2224 0 02040608 1 12141618 2 2224
MRED (%) MRED (%)
(b) (c)

Figure 5.9: Pareto analysis for the single-precision AxXFPU|p gr considering: (a) Delay and MRED,
(b) Area and MRED, and (c) Energy and MRED.

106

5.3. Evaluation

00 ‘= Area MRED 3.33%

50 —
401 Energy 0.83%

30 r 0.21%
20 r
10+

Gain (%)

10 14 |34 3.6
AxFPU16|p

(a)

80 | |[EEE] Area MRED 1.66%

70 - |==Energy : 0.07%
%

Gain (%)
3

|4,12 |6,‘12 | |6,‘l4 |10,‘18 10,20
AxFPU32|p

(b)

Figure 5.10: Area and energy gains of AXFPU|p r compared to the accurate floating-point multi-
plier for (a) half precision and (b) single precision.

AxFPU16. Namely, our approximate half- and single-precision multipliers impose
comparable resource demands.

Following our Pareto analysis, we examine the total resource gains of the Pareto-front
AxFPU designs. In Figure 5.10, we present the area/energy gains of AXFPU in com-
parison with the accurate floating-point multiplier, as well as their MRED values. We
select designs with varying MRED values, i.e., from 0.05% to 3.33% for AxFPU16 and
from 0.01% to 2.20% for AxFPU32. The half-precision AxFPU family delivers area
gains in the range 7.3%-54.6% and energy gains in the range 3.6%-53.5%. The corre-
sponding ranges for the single-precision AxFPU family are 46.1%-83.4% and 37.2%—
82.4%. For both precisions, remarkable gains are achieved even for small MRED,
e.g., 31% and 59% energy reduction for AxFPU16 and AxFPU32, respectively, in
exchange for 0.83% and 0.07% error values. Moreover, in terms of performance, our
approximations decrease the critical paths, delivering up to 32.9% and 46% delay
gain in AxFPU16 and AxFPU32, respectively. According to the results, AxFPU32
provides increased gains compared to AxFPU16, even for smaller error values. This
is justified by its larger bit-width, which offers more room from approximations with-

107

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

out significantly affecting the accuracy of the calculations. We note that larger gains
can be achieved for both floating-point precisions by increasing the approximation
degree. However, more aggressive approximations should be accompanied by a care-
ful error analysis involving the calculation of the metrics presented in the previous
section.

Next, we compare AxFPU with the approximate floating-point multipliers of [267]
and [268], as well as approximate floating-point multipliers that employ the designs
of [149] and [151] to calculate the mantissa product. CFPU [267] does not perform
the mantissa multiplication and uses directly one of the two input mantissas as out-
put. On the other hand, RMAC [268] replaces the mantissa multiplication with the
addition of the input mantissas. R4ABM [149] and R8ABM [151] are based on the
approximate radix-4 and radix-8 encoding, respectively, and they are also included in
the evaluation of our fixed-point design. For this comparison, we implement the best
approximation configuration. To make a fair comparison, we implement the approx-
imation of these designs in the mantissa multiplication of the accurate floating-point
multiplier described in Section 5.2 (the rest components remain intact). The syn-
thesis of AxFPU, CFPU [267], RMAC [268], R4ABM [149] and RSABM [151] is
performed using the same relaxed clock constraint, i.e., the critical path delay of the
accurate floating-point multiplier, targeting to study their effectiveness, but also their
sustainability under relaxed design margins.

In Table 5.4, we present the resource gains and the accuracy results of the examined
floating-point multipliers. We note that we select AxFPU configurations with error
values that are comparable to those of the other designs. In terms of accuracy, CFPU
[267] is the most inefficient design, as it delivers around 4x-6x larger MRED and
PREDs of 70%. It is important to mention that both PON and PUN, i.e., the metrics
examining unexpected output concerning overflow and underflow, is below 0.5% for all
the designs. In case of half precision, RMAC [268] has slightly better accuracy results
than AxFPU, however, our design provides increased energy gains. Regarding single
precision, AxFPU delivers better MRED and PRED; values than RMAC as well as
higher energy gains. Overall, the proposed AXFPU design provides larger energy
savings than RMAC [268] for similar errors, as well as better energy efficiency than
CFPU [267], while exhibiting significantly better accuracy. In terms of critical path
delay, CFPU [267] and RMAC [268] deliver larger gains, as they model the mantissa
multiplication with less complex operations. Finally, the gains of R4ABM [149] and
R8ABM [151] are considered small compared to the other designs. The advantage of
these designs is their small error values. Nevertheless, in case there is a constraint
of small error values, AxXFPU with less aggressive approximation can provide larger
resource gains. Indicatively, we mention that the MRED of AxFPU16]3¢ is 1.10%
and that of AXFPU32|1¢.15 is 1.66%.

108

5.3. Evaluation

Table 5.4: Experimental results of approximate half- and single-precision floating-point multipliers
on TSMC 65-nm standard-cell.

Design Delaly Arefl Enerlgy MRED PRED: PON PUN

(%) (%) (%) (%) (%) (%) (%)

AxFPU16|4,6 32.9 70.8 67.1 3.33 57.40 0.43 0.10

o CFPU [267] 44.7 71.6 64.6 12.96 70.68 0.46 0.11
/> RMAC [268] 422 711 632 3.16 4942 0.20 0
© R4ABM [149] 7.8 43.3 39.1 2.12 20.61 0.09 0.01
RS8ABM [151] 10.1 47.6 41.3 1.56 7.14 0 0
AxFPU32|10,20 46.0 89.9 87.4 2.20 44.86 0.26 0.01

9 CFPU [267] 53.9 86.5 79.7 12.80 70.63 0.05 0.02
//‘b RMAC [268] 50.6 83.9 78.3 2.92 49.73 0.02 0
» R4ABM [149] 9.1 53.3 50.7 1.44 16.32 0.02 0
R8ABM [151] 14.3 59.5 51.1 0.99 5.46 0 0

! Refers to % delay/area/energy gains (relative reduction) in comparison with the accurate design.

Finally, we assess the hardware efficiency of DyFPU, which is the runtime-configurable
variant of AXFPU. We remind that DyFPU|p r denotes the single DyFPU circuit that
is configured via the control signals to execute the multiplication with perforation P
and rounding R. In contrast, AXFPU|p r is configured at design-time, i.e., a new
circuit is implemented for each approximation configuration. Table 5.5 presents the
comparison of the two variants by examining the gains compared the accurate design.
Both DyFPU and AxFPU are synthesized and simulated under tight clock constraints,
i.e., their critical path delays. The outcomes from this comparison are similar to those
derived from the comparison of the fixed-point designs (AxFXU and DyFXU). More
specifically, as expected, DyFPU imposes an area increase of 4.3% and 2.1% for half
and single precision, respectively. Regarding energy consumption, DyFPU is worse
than its design-time counterpart, delivering ~1.4x and ~1.6x less gain for remarkable
approximation in half and single precision, respectively. However, it is still more
energy-efficient than the accurate design, providing energy gains up to 49.7%, while
also allowing to dynamically tune the approximation degree by seamlessly changing
the values of the P and R parameters.

In comparison with the runtime-configurable variants of the CFPU [267] and RMAC
[268] designs, DyFPU is not designed to automatically configure its operation to
either accurate or approximate mode based on the mantissa inputs or the approxi-
mate mantissa product. However, it prevails over these two methods in the following
factors: (i) it supports multiple approximation configurations instead of one fixed
configuration, (ii) it does not insert extra delays (e.g., to check the inputs/outputs
or even re-calculate the result using the accurate circuit), (iii) it exposes the tuning

109

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

Table 5.5: Comparison of the design-time and runtime approximate floating-point multipliers.

Design-Time Config. 4?(;51& E?;)§1gy Runtime Config. ?(;:)e? E?(;)I)‘lgy
o AXFPUL6] 0 7.3 3.6 o DyFPUL6[1,0 | —43 11
4> AxFPU16|5.4 380 305 ;> DyFPU16s4 | —4.3 225
A AXFPU16|4.6 54.6 535 ¢ DyFPU16|s6 | —4.3 37.2
> AxFPU32|,12 | 460 37.2 > DyFPU32[s12 | —2.1 23.1
Vi AXFPU32|6,14 64.9 59.8 V4 DyFPU32\6,14 —2.1 34.1
¢ AxFPU32|101s | 80.5 76.6 A DyFPU32|101s | —2.1 49.7

! Refers to % area/energy gains (relative reduction) in comparison with the accurate design.

logic (AND gates) to the system, allowing a high-level policy or framework to config-
ure the approximation degree with respect to the application’s energy and accuracy
constraints.

5.4. Conclusion

In this chapter, we examined an attractive aspect of Approximate Computing, i.e.,
the dynamic configuration of the approximation degree. This feature is extremely im-
portant for modern embedded systems and circuits, which need to adapt the accuracy
of the calculations at runtime, depending on the type of the application, the input
dataset of the application, and the given energy constraints. Towards this direction,
we targeted the runtime-configurable arithmetic circuits and designed energy-efficient
multipliers that can change approximation configuration at runtime. In particular, we
employed two orthogonal approximation techniques for calculating the partial prod-
ucts and generated a large approximation space that serves different scenarios in terms
of accuracy and energy budget. The technique of partial product perforation omits
the generation of least significant products, while partial product rounding efficiently
decreases the bit-width of the remaining ones. These two approximation techniques
facilitate dynamic configurability when combined with the radix-4 operand encoding,
as their application is associated with the input operand bits. Therefore, we added
negligible logic overhead in the input of the accurate design, i.e., 2n AND gates, where
n is the operand bit-width, and enabled dynamic configuration via input signals. We
designed both integer/fixed-point and floating-point circuits integrating our approx-
imation techniques and runtime functionalities. In terms of accuracy, we evaluated
our designs by performing an in-depth exploration involving diverse error metrics for
various approximation configurations, as well as new error metrics that are tailored to
floating-point arithmetic. The results show that the proposed solution exhibits dense

110

5.4. Conclusion

error scaling, i.e., it provides multiple configurations with mean error values across the
entire range that is considered acceptable (up to 2%). In terms of circuit resources,
our design-time variants outperform all the examined state-of-the-art multipliers in
both fixed- and floating-point arithmetic. For similar error values, the fixed-point
AxFXU designs deliver gains up to 60% and 49% in area and energy, respectively,
when operating at the same clock frequency. Similarly, the floating-point AxFPU de-
signs exhibit either better accuracy for the same resource gains or larger resource gains
for comparable error values. The respective runtime variants provide negligible area
overhead and smaller energy gains, however, they still deliver remarkable gains versus
the accurate multiplier and other state-of-the-art design-time multipliers, while allow-
ing to seamlessly change approximation configuration at the runtime. In fixed-point
arithmetic, DyFXU consumes only up to 1.2x and 1.7x more energy than AxFXU for
low-strength and more aggressive approximation, respectively. Similar behaviour is
observed in our floating-point designs, where DyFPU provides ~1.4x and ~1.6x less
energy gains in half and single precision, respectively.

111

Dynamic Approximation: Runtime-Configurable Arithmetic Circuits

112

Chapter 6

Cooperative Approximation:
Combination of Arithmetic Encodings

The rapid growth of error-resilient applications with different accuracy constraints
and computational demands creates the meed for approrimate circuits and systems
that can support multiple approximations. Towards this direction, the designers tend
to select approximation techniques that do not generate a single approximate design,
but they can provide various design variants with different approximation configura-
tion, and thus, different accuracy and resource gains. In this context, we combine
arithmetic approximation techniques to create a very large approximation space for
the design of multiplication circuits. Besides providing numerous approximation con-
figurations, we also target to identify the most-efficient design solution among the
well-established arithmetic approrimation techniques. Our pool of techniques consists
of high-radiz encoding, partial product perforation and partial product rounding. The
feasible combinations of these techniques generate 5 new design families of approxi-
mate multipliers. Our extensive design space exploration shows that the combination
of approximation techniques, called as “cooperative approrimation”, results in slow
error scaling with numerous configurations in the typical acceptable range 0%-2%.
This feature creates increased design flexibility, allowing to efficiently handle work-
loads and applications with different constraints. The experimental evaluation is based
on a comparative state-of-the-art Pareto analysis involving the Pareto-front designs
RAD and AzFXU, namely all the approrimate designs presented in the Dissertation,
as well as other designs of the literature. The results show that the Pareto front
is formed exclusively by designs with cooperative approximation. In particular, the
ROUP family of multipliers, which applies perforation and a new type of rounding,
constitutes the most energy-efficient design alternative, improving the Pareto front by
up to 1.5x-2x. Furthermore, the new Pareto front has increased resolution (i.e.,
more design configurations) due to the large approzimation space. Finally, in com-
parison with state-of-the-art designs, the ROUP family provides energy gains up to
63 % for the same error constraint.

This chapter is based on our publication in [147].

113

Cooperative Approximation: Combination of Arithmetic Encodings

6.1. Introduction

One of the goals of Approximate Computing is to provide design solutions that can
handle various accuracy and resource constraints. This feature is extremely impor-
tant, considering that the error-tolerant applications [29,240] impose non-identical de-
mands regarding the quality of results and exhibit different error propagation within
their calculations. Approximation techniques are applied at software, architecture and
hardware layers [16,17,19]. To expand the approximation space, the designers are
examining the simultaneous application of more than one approximation technique,
either from different or the same layer. Although vertical cross-layer approximation
techniques have recently emerged [18], the full potential of horizontal approximation,
i.e., within the same layer of design abstraction, still remains an open issue for further
exploration. In this chapter, we explore, for the first time, the efficiency of combining
arithmetic approximation techniques in the design of energy-efficient multiplication
circuits. We focus on combining approximation techniques at the arithmetic level, as
it inherently affects both the dynamic and static power consumption of the underlying
circuits. Moreover, the implementation delivered at this level can be straightforwardly
adopted in a vertical cross-layer design approach.

The work presented in this chapter is inspired from the promising results of the
AxFXU design (see Chapter 5), which combines two orthogonal approximation tech-
niques. The goal of AxFXU is twofold: (i) to provide multiple approximation con-
figurations and enrich the available accuracy options at runtime, and (ii) to apply
an approximation scheme that facilitates the integration of dynamic configuration
capabilities. In this chapter, we perform an extensive design space exploration on
combining arithmetic approximation techniques. Contrary to Chapter 5, the goal of
this chapter is the expansion of the approximation space with diverse sets of approx-
imation configurations and the in-depth exploration of the design space to identify
the most efficient solution. We use the term cooperative approximation to state that
two techniques are applied in the design of the approximate circuit. As a result of
our exploration on cooperative approximation, we propose 5 families of approximate
multipliers, which combine some of the techniques that have been already examined,
i.e., high-radix encoding, partial product perforation, and partial product round-
ing.

Figure 6.1 summarizes the motivation behind our work by demonstrating the bene-
fits of combining approximation techniques rather than using a single one. This plot
illustrates the scatter points of partial product perforation, partial product rounding,
and their combination. The red points label the single application of perforation and
rounding, while the blue points label the cooperative perforation & rounding. We
note that for the cooperative approach, we employ two perforation configurations

114

6.1. Introduction

— 30507 '
2 xrxr = Single: Perforation or Rounding 1
= 2750 L) o o Cooperative: Perforation & Rounding :
2 . » x' ! Error :
= r P r Bound:
2 o pX X 13% |
g- 21501 o o ! 1
x' !

= L 41% 1

1850 o 50% . X
% 0 © Energy Gain ™~ Energy Gain : b
O 1550r 1
S, ° (©) 1
20 1250+ o :
g o'!
<] 1
m 950 L L L L 1 |

0 0.3 0.6 0.9 1.2 1.5

Mean Error (%)

Figure 6.1: Motivation plot for cooperative arithmetic approximation.

and combine each one with five rounding configurations. As shown, the cooperative
approximation approach provides three advantages versus the single approximation
approach (either perforation or rounding): (i) it forms the Pareto front, thus, it is con-
sidered a better design solution, (ii) it provides increased Pareto front resolution due to
the larger design/approximation space, and (iii) it delivers a more energy-efficient cir-
cuit for a given error constraint, e.g., for mean error of 1.3%, it gains 50% and 41% in
energy versus perforation and rounding, respectively.

The contribution of this chapter is summarized as follows:

(i) We highlight the efficiency of integrating more than one approximation tech-
nique in the design of approximate circuits.

(ii) We propose 5 new families of approximate multipliers that feature a very large
design space with differing approximation configurations that can efficiently
handle diverse error constraints.

(iii) We reform the state-of-the-art energy/area—error Pareto front by improving it
and also increasing its resolution.

(iv) We provide a more energy-efficient design solution than state-of-the-art designs
for a given error constraint.

The remainder of this chapter is organized as follows. Section 6.2 classifies the arith-
metic approximation techniques and reports representative state-of-the-art works.
Section 6.3 introduces our approximation techniques and presents how they can be
combined in the design of multipliers with cooperative approximation. In Section
6.4, we assess the cooperative approximation techniques in terms of accuracy and cir-
cuit efficiency by reporting a comparative state-of-the-art Pareto evaluation, which

115

Cooperative Approximation: Combination of Arithmetic Encodings

includes the previous Pareto-front designs. Finally, Section 6.5 draws the conclu-
sions.

6.2. Classification of Arithmetic Approximation
Techniques

Arithmetic approximations in circuits have been extensively studied in the past,
as they deliver significant energy gains at the application/system level. Interest-
ingly, we focus on techniques that apply approximations based on the input operands
and the bit significance. i.e., they can be included in the wider range of encoding-
based techniques, and we attempt to categorize them into the following classes: (i)
pruning, (ii) radix encoding, (iii) rounding, and (iv) dynamic scaling. More specifi-
cally, we provide a closer look at each class by describing their basic approximation
concept and presenting representative state-of-the-art works for multiplication cir-
cuits.

Pruning: This class of techniques aims to reduce the logic by discarding either bits,
terms, or nodes of any arithmetic circuit. A well-established pruning technique for
approximate multipliers is the partial product perforation [255]. In this technique,
partial products are omitted, and thus, simpler partial product matrices are gener-
ated. One downside of this technique is that the error is exponentially increased
as more partial products are excluded. The literature also provides more general
pruning approaches. In [174], the authors propose a methodology and tool to au-
tomatically trade accuracy for area, power and delay gains. Their method applies
gate-level pruning to any combinational circuit, and it is quite effective especially on
arithmetic circuits that have a notion of bit significance. In the same context, prob-
abilistic pruning is proposed in [269], where a greedy approach is used to generate
approximate circuits.

Radix Encoding: The techniques that are based on radix encodings, approximately
encode the input operands to reduce the complexity of the calculations. Specifically
for multipliers, approximate radix encodings result in less partial product bits or even
reductions in the total number of partial products. Liu et al. [149] designed approxi-
mate radix-4 encoders by transforming the Karnaugh map of the accurate encoding.
Moving to radix-8 multipliers, Jiang et al. [151] employed an approximate adder for
producing the partial product £3A. In Chapter 4, we presented our approximate
high-radix encodings [153]. In particular, we issue the increased complexity of the
conventional accurate high-radix encodings by mapping all the radix values to their
nearest of the 4 largest powers of two. This approximation provides simpler operand

116

6.3. Design of Multipliers with Cooperative Approximation

encoders and partial product generators. In the same context, there are various radix-
based approximate multipliers in the literature, e.g., using radix-4 [270], radix-8 [152]
and radix-256 [271] encodings.

Rounding: Both truncation and rounding techniques have been examined in arith-
metic circuits. Truncation simply discards least significant bits to reduce the bit-
width. In contrast, rounding performs mapping to a smaller bit-width, while trying to
compensate for the error, e.g., by inserting correction terms. These techniques are ap-
plied to either the input operands, intermediate results or the final result. Several ap-
proximate multipliers are designed by applying rounding/truncation along with error
compensation techniques. A representative work is the truncated multiplier proposed
in [266], where the least significant bits of the partial products are vertically discarded
and a constant correction term is added to reduce the total error. In [272], the au-
thors propose an error compensation method for the radix-4 multiplier that outputs
products with the same bit-width as the input operands. Zhang et al. [273] design an
approximate multiplier by dividing the partial product matrix into two segments: the
main segment, which is accurately accumulated, and the truncated segment, which is
further partitioned into two parts. The least significant part of the truncated segment
is calculated through a probabilistic approach. In Chapter 5, we introduced partial
product rounding, which rounds the partial products to a smaller bit-width based on
low-level optimizations [144]. As we showed, the rounding of the partial products is
equivalent to rounding one of the input operands.

Dynamic Scaling: In this class, the approximation degree is determined with respect
to the input operands. In [254], the authors statically capture and multiply bit seg-
ments, either starting from the most significant bit or ending at the least significant
bit. A limitation of this technique is the difficulty in scaling to higher bit-widths,
and thus, its benefits are reduced as the input bit-width grows. Based on the varying

bit significance, Hashemi et al. [142] proposed a more fine-grained input segmenta-
tion, using leading one detector circuits to locate the most significant ‘1’ in each
operand. However, this dynamic segmentation implies extra circuits for the signed
multiplications, increasing the total circuit area.

6.3. Design of Multipliers with Cooperative
Approximation

In this section, we present the proposed combinations of arithmetic approximation
techniques. Firstly, we make a brief introduction in the examined techniques, target-
ing to explore the feasibility of all the possible combinations, and then, we discuss
the technical details of each combination.

117

Cooperative Approximation: Combination of Arithmetic Encodings

6.3.1. The Pool of Arithmetic Approximation Techniques

We consider the three techniques used in Chapter 4 and Chapter 5, i.e., high-radix
encoding, partial product perforation, and partial product rounding. As baseline, we
consider the accurate radix-4 multiplier for the n-bit operands A and B. The partial
product matrix of the 16-bit radix-4 multiplier is illustrated in Figure 6.2a.

High-Radix Encoding: This technique is configured with the parameter k, which is an
even number belonging in the interval [4, n—2]. The multiplicand B is approximately
encoded with respect to k: the n—k+1 Most Significant Bits (MSBs) are encoded with
the accurate radix-4 encoding, while the k Least Significant Bits (LSBs) are encoded
with the approximate high-radix-2* encoding. This hybrid encoding is then used to
generate (n—k)/2 accurate and 1 approximate partial product. Figure 6.2b illustrates
the partial product matrix of the 16-bit multiplier that is based on high-radix encoding
with & = 6. The least significant partial product (black triangles) is approximately

generated from the radix-64 encoding, substituting the three least significant partial
products of the accurate design (see Figure 6.2a).

Partial Product Perforation: This technique is configured with the parameter P,
which is an integer number belonging in the interval [0, n/2 — 1). It is applied
by not generating the P least significant partial products. In practice, this technique
is equivalent to encoding B to Bp = (by_1bp_2---bap_1). Figure 6.2¢ illustrates

the partial product matrix of the 16-bit multiplier that is based on partial product
perforation with P = 2. As shown, the matrix has two less partial products than the
accurate design (see Figure 6.2a).

Partial Product Rounding: This technique is configured with the parameter R, which
is an integer number belonging in the interval [0, n—1). It is applied by rounding the
partial products to their R-th bit. In practice, rounding is equivalent to reducing the
bit-width of A, e.g., the rounding technique of Chapter 5 is equivalent to encoding
A to Agp = (ap—1an—2---ar) + ar—1. We note that in this chapter, we consider
additional methods for rounding, which reduce the partial products to a tailored bit-
width based on their significance. In contrast, the rounding of Chapter 5 rounds all

the partial products to the same bit-width. We call this variant “asymmetric” round-
ing and use the label “symmetric” for the one presented in Chapter 5. Figure 6.2d
illustrates the partial product matrix of the 16-bit multiplier that is based on asym-
metric rounding. As shown, the four least significant partial products are rounded to
a different bit-width. The red squares denote the correction terms that are added for
error compensation.

The next step is to explore all the possible combinations of our approximation tech-
niques. Table 6.1 summarizes the combinations when considering one encoding per

118

6.3. Design of Multipliers with Cooperative Approximation

1
1AAAAAAAAAAAAAAAAAAAAAL

100000000000000000 O 100000000000000000 A
100000000000000000 O 100000000000000000 O
100000000000000000 O 100000000000000000 O
100000000000000000 O 10000 0000000 O
100000000000000000 O 10000000 e00000 O
0 o

(a) (b)

1 100000

100000000000000000 1000000000000 0n
100000000000000000 O 1000000000000000N
100000000000000000 O 100000000000000000
100000000000000000 O 100000000000000000 O
100000000000000000 O 100000000000000000 O
100000000000000000 O 100000000000000000 O
o) o)

(c) (d)

Figure 6.2: Partial product matrices of 16-bit multipliers based on: (a) accurate radix-4 encoding
(baseline), (b) high-radix encoding, (c) partial product perforation, (d) partial product rounding.

Table 6.1: Combinations of arithmetic approximation techniques.

1st Operand 2nd Operand Feasibility ‘ Combination Label
high-radix high-radix v DRAD
high-radix perforation v equivalent to perforation
high-radix rounding v RADR
rounding rounding X
rounding perforation v ROUP
perforation perforation X
Extra Combinations Feasibility Combination Label
high-radix & high-radix + perforation v DRADP
high-radix & rounding + perforation v equivalent to ROUP
rounding & perforation + perforation v equivalent to ROUP

operand. As shown, there are two combinations, i.e., rounding & rounding and perfo-
ration & perforation, which are not feasible. The combination high-radix & perfora-
tion is equivalent to single perforation, as the high-radix approximate partial product
is perforated, and thus, it can be safely excluded for further examination. Addi-
tionally, we examine the application of perforation to all the feasible combinations
(bottom part of the table). The only extra meaningful combination is perforation
with the double high-radix encoding, as the rest ones are equivalent to rounding &
perforation.

119

Cooperative Approximation: Combination of Arithmetic Encodings

6.3.2. Combining Arithmetic Approximation Techniques

Next, we analyze the selected combinations of arithmetic approximations. More de-
tails about the high-radix encoding and the perforation/rounding are provided in
Chapter 4 and Chapter 5, respectively.

DRAD: High-Radix & High-Radix

Let m and k be the configuration parameters for encoding A and B, respectively.
The two operands are transformed using the high-radix-2™ and high-radix-2* encod-
ings as shown in Eq. (6.1)-(6.6). We note that B is encoded exactly as shown in
Chapter 4, i.e., with the hybrid radix-4-radix-2* encoding, while for A, we divide it
into two words and encode only the least significant with radix-2"*. To create the
high-radix digit in A, we add and subtract the term 2™ 'a,, ; in its representa-

tion.
n—2
A= _2n—lan71 + Z 21ai = A1 + .’K(I)%Qm (61)
=0
n—2
where Ay =-2""la,_14+ Y 2a;+2" am (6.2)
i=m—1
x(]):i2m _ _27n—1am71 + 2m_2am72 +-4ag (63)
n—2 .
B=-2"""b, 1+ Y 2'b; =By +yi” (6.4)
1=0
n/2—1
where Bj = Z 4]yJR47 yf‘l = —2b2j+1 + bgj + bgjfl (65)
j=k/2
y(})w’C = —Qk_lbk,1 + 2k_2bk,2 + -4 b (6.6)

Following the approximation approach of the high-radix encoding, we approximate the
high-radix digits of A and B, i.e., we use 252" € {0, £2m~4 42m=3 4om=2 4om-1}
and %22’“ € {0, +2F4 42F3 42k=2 42F-11 regpectively. Based on these
operand encodings, the multiplication of DRAD| ., is calculated by Eq. (6.7).

DRAD|ym = A1 - By + By - 252" + A- i (6.7)

120

6.3. Design of Multipliers with Cooperative Approximation

DRADP: High-Radix & High-Radix + Perforation

When combining the double high-radix encoding with perforation, we create the
DRADP|; ., multiplier, which perforates the least significant partial product, as
shown in Eq. (6.8).

DRADP|,,, = A, - By + By - 28" (6.8)

RADR: High-Radix & Rounding

For this combination, we consider the approximate high-radix encoding of B, i.e.,
B+ ﬁ§2k7 while A is implicitly encoded via the rounding of the partial products. To
apply asymmetric rounding, we truncate the R least significant columns of the partial
product sub-matrix that is generated by A - B;. As a result, the multiplication of
RADR| g is calculated by Eq. (6.9).

RADR|.p= A Bi|p+ A- §5" (6.9)

To compensate for the truncation error, we insert a correction term in the place of
the truncated MSB of each partial product. This term is different for each partial
product and it is affected by the radix-4 encoding, i.e., it is equal to one; + two;.
We remind that the signals one; and two; are activated if the j-th partial product
is equal to £1A4 or +2A, respectively (see the analysis of Chapter 4). To further
improve our rounding, we attach a constant ‘1’ in the position that the sub-matrix of
A - By is truncated.

ROUP: Rounding & Perforation

The symmetric rounding & perforation combination has been already examined in
Chapter 5, where AxFXU|p r is presented. Therefore, in this chapter, we combine
asymmetric rounding and perforation, and more specifically, we employ two different
variants of asymmetric rounding.

The first combination is labeled ROUP1|p r and uses the asymmetric rounding of
the RADR design. In particular, we perforate the P least significant products, and
then we apply rounding by truncating the R least significant columns of the partial
product matrix and inserting the correction terms. The multiplication of ROUP1 is
calculated by Eq. (6.10).

n/2—1 n/2—1
ROUPlpr= » 4/PP;| = > 474y (6.10)
j=P R j=P R

121

Cooperative Approximation: Combination of Arithmetic Encodings

The second combination is labeled ROUP2| p g and converts the rounding of AXFXU|p
to asymmetric. The multiplication of ROUP2 is performed by accumulating the non-
perforated, rounded partial products as shown in Eq. (6.11)—(6.12).

n/2—1 n/2—1

ROUP2|pr = > 4PP;= Y 471Ag -y (6.11)
j=P j=P

where Ag, = (an_10n_2- - aR;)2s +ar,—1 (6.12)

Compared to the respective expressions of AxFXU, which are given in Eq. (5.1)—(5.4),
the only difference is that there are j Ar words (one per partial product) instead of
one. The rest rounding optimizations are the same, resulting in integrating the ag; 1
bits with a XOR gate in the correction terms, i.e., (sign; ®ar;_1)- (one; +two;). We
note that the notation ROUP2|p g considers R = Rp, i.e., it shows the rounding con-
figuration of the first non-perforated partial product.

6.3.3. Overview of Cooperative Approximation Techniques

Figure 6.3 illustrates the 16-bit partial product matrix of each combination with spe-
cific configuration. As shown, depending on the combination, we achieve a different
structure compared to the accurate matrix of Figure 6.2a. Even though it is possible to
achieve comparable horizontal and vertical matrix reduction with all combinations, we
note that each combination: (i) requires different logic for implementing the operand
encoding and/or partial product generation, (i) imposes different overheads in the par-
tial product accumulation, which depends on the bit arrangement within the matrix
(e.g., for carry propagation penalties), and (iii) has different impact on the accuracy
of the results. For example, ROUP1|3 g (see Figure 6.3d) and ROUP2|3 19 (see Figure
6.3¢) may deliver similar matrices, however, as we show in the evaluation in the next
section, their results and total efficiency are different.

In the matrix of DRAD, the triangles denote the product A - Qéﬂk and the rectangles
denote the product B; -£§2m. The circles are the products from A; - B;. The
difference of DRADP is that it perforates the product A - g(??k. Regarding RADR,
the triangles denote the product A - @émk, while the circles are the products from
A - Bi|g. The red rectangles are the correction terms that are inserted for error
compensation. The circles in the ROUP1 matrix are the non-perforated, rounded
partial products. Like in RADR, the red rectangles are the rounding correction
terms. Finally, the matrix of ROUP2 is similar to that of ROUP1, however, in this
combination, the correction terms (gray rectangles) are different and the matrix is
not truncated vertically.

122

6.4. Evaluation

AAAAAAAAAAAAAAAAAAAAAAAL 1
|EEEEEEEEEEEEEEEN A iEEEEEEEEEEEEEEEN
1000000000 0 10000000080 0
1000000000 O 1000000000 O
1000000000 O 1000000000 O
1000000000 O 1000000000 O
o e}

(a) (b)

1
1AAAAAAAAAAAAAAAAAAAAA
1000000000N A
100000000000 H
10000000000000R
1000000000000000N
100000000000000000

715............... 100000000000000
100000000000000000 1000000000000000
o1

(d) (e)

Figure 6.3: Partial product matrices of 16-bit multipliers based on cooperative approximation:
(a) high-radix & high-radix (DRAD|s), (b) high-radix & high-radix + perforation (DRADP|s s),
() high-radix & asymmetric rounding v.1 (RADR|6g), (d) perforation & asymmetric rounding v.1
(ROUP1|38), and (e) perforation & asymmetric rounding v.2 (ROUP2|3 10).

6.4. Evaluation

In this section, we evaluate the application of cooperative approximation in multipli-
cation circuits. Like in Chapter 4 and Chapter 5, we begin with the error analysis
of each combination, and then we report comparative experimental results involv-
ing state-of-the-art works, as well as all the approximate designs proposed in the
Dissertation.

6.4.1. Error Analysis

For the error analysis, we rely again on the MRED metric (see the respective analysis
of Chapter 4 and Chapter 5 for more details). In brief, MRED is the average of the rel-
ative errors for a given set of operand pairs. All the proposed multipliers feature a very
large design space, as they are configured by two independent parameters. Therefore,

123

Cooperative Approximation: Combination of Arithmetic Encodings

MRED (%)

MRED (%)

(d) (e)

Figure 6.4: MRED variation of 16-bit multipliers based on cooperative approximation: (a)
high-radix & high-radix (DRAD|j,,), (b) high-radix & high-radix 4 perforation (DRADP|j),
(c) high-radix & asymmetric rounding (RADR|; r), (d) asymmetric rounding & perforation v.1
(ROUP1|p,Rr), and (e) asymmetric rounding & perforation v.2 (ROUP2|p Rr).

for each approximation configuration we calculate MRED for 200K pairs of operands
that are uniformly distributed over the 16-bit range.

Figure 6.4 presents the variation of MRED with respect to the approximation con-
figuration. Regarding DRAD, even though the error range is small, i.e., [0.15%,

124

6.4. Evaluation

1.65%], it grows rapidly creating blank error segments. However, the error scaling
provides increased density compared to the RAD design of Chapter 4, which has
only three configurations (k = 6,8,10) with MRED values 0.08%, 0.28% and 0.93%.
As expected, for the same configurations, DRADP exhibits larger error values than
DRAD, starting from 0.49%, while the rapid error scaling is again observed. The
advantage of RADR is that it smooths the rapid error scaling of RAD by adding
multiple error values between two consecutive RAD configurations, especially for the
small k£ values. The error range and scaling of ROUP1 and ROUP2 are similar to
those of the AxFXU design of Chapter 5. ROUP1 features dense error scaling from
0.04% (P = 1) to 2.47% (P = 4) with several intermediate values. The MRED values
of ROUP2 are similar, however, its maximum error is smaller (2.07%) compared to
that of ROUP1 (2.47%).

6.4.2. State-of-the-Art Comparison: Pareto Efficiency Analysis

This section includes the experimental evaluation of the cooperative approximation
techniques. To provide an overall resource—accuracy Pareto analysis and extract the
most efficient designs proposed in the Dissertation, we also employ the approximate
designs of Chapter 4 and Chapter 5. We remind that these designs have already
formed the Pareto fronts in comparative evaluations including several state-of-the-
art designs [142, 143,149,151, 255, 266]. Table 6.2 summarizes all our approximate
multipliers.

All the designs are implemented in Verilog for n = 16 multiplication bit-width. The
synthesis is performed with the Synopsys Design Compiler tool and the TSMC 65-
nm standard-cell library. The simulations for the functional verification and the
power measurements are performed with Mentor Graphics QuestaSim. The nominal
supply voltage (1V) is used in both synthesis and simulation. The critical path delay
and the area of the circuits are reported by Synopsys Design Compiler, while the

Table 6.2: Overview of Dissertation’s approximate arithmetic circuits.

Design ‘ Approximation Techniques Reference

RAD2* high-radix-2* Chapter 4 [153]
AxFXU|p r perforation P, symmetric rounding R Chapter 5 [144]
DRAD)| % high-radix-2™, high-radix-2* Chapter 6 [147]
DRADP)| .,k high-radix-2™, high-radix-2*, perforation P = 1 Chapter 6 [147]
RADR|,r high-radix-2*, asymmetric rounding R v.1 Chapter 6 [147]
ROUPI1|pr perforation P, asymmetric rounding R v.1 Chapter 6 [147]
ROUP2|p,r perforation P, asymmetric rounding R v.2 Chapter 6 [147]

125

Cooperative Approximation: Combination of Arithmetic Encodings

power consumption is measured with Synopsys PrimeTime after performing gate-level
simulation. We also evaluate the energy consumption, which is defined as the product
of power and delay. We note that, like in Chapter 5, we synthesize and simulate the
circuits under two different design scenarios:

(i) MIN-Delay: the clock constraint of each circuit is set to its critical path delay
(high-performance mode).

(if) ISO-Delay: the clock constraint of all the circuits is set to the same relaxed
value (low-power mode).

In Figure 6.5, we present the MRED-area and MRED—-energy scatter plots with all
Dissertation’s proposed designs. Regarding the cooperative high-radix multipliers,
i.e., DRAD, DRADP and RADR, they increase the resolution of the RAD front, and
even improve it with DRADP, which constitutes a better design in most cases. We
note that we present only the RAD multipliers for k& = 6,8, 10, because large error
values are produced for k > 12. This limitation of the single high-radix technique is
surpassed with the cooperative approximation techniques. Regarding the multipliers
implementing cooperative perforation & rounding, the asymmetric rounding tech-
niques of ROUP1 and ROUP2 outperform the symmetric rounding of AxFXU, and
thus, they constitute better design alternatives. We conclude that more fine-grained
bit-level optimizations, such as the tailored rounding per partial product of ROUP2,
provide better results than generic coarse-grained solutions, such as the global partial
product rounding of AxFXU. Additionally, for small error values, AxXFXU is not con-
sidered the most energy-efficient design, as several configurations of the cooperative
approximation techniques provide improved energy consumption. Nevertheless, as
shown in Chapter 5, the advantage of AxFXU is that it facilitates dynamic approx-
imation configuration, which would be more difficult in ROUP1/ROUP2 due to the
different rounding per partial product.

Overall, as shown in both design scenarios, the Pareto front is formed exclusively by
the ROUP2 multipliers. The ROUP2 design family provides the best exploitation
of the energy—error trade-off and further improves the state-of-the-art Pareto front
(previously held by RAD [153] and AxFXU [144]) by up to 1.5x—2x. Moreover, it is
important to mention that it increases the resolution of the front, namely, it expands
the already-large approximation space even more, providing a great variety of design
options.

As a final stage of evaluation, we compare the new Pareto front with other state-of-
the-art designs [142, 149,151, 266]. In particular, we evaluate the energy consump-
tion of the circuits for various MRED constraints in the range 0.15%-1.47%. Figure
6.6 reports the energy gains of the ROUP2 multipliers compared to RRABM [151],

126

6.4. Evaluation

3600
+ + RAD
3300% < AXFXU
«+ DRAD
30004 x ~ DRADP
2270010 % RADR
. +‘ + ROUP1
= 2400 . & : * o ROUP2
2100 ‘o ®® ¥ *
< * i x
1800 ° 9 = -
o *
1500+ ° g e x
[]
20053 06 09 12 15 18 21 24 27
MRED (%)
3350
(a) + + RAD
3050*ak <« AXEXU
+ DRAD
70K = DRADP
S 2450 e 4y RADR
3 -&x * > « ROUP1L
S2150r & e * e ROUP2
o0 . * *
g 1850 8 ¥ x
g -
& 1550 IR LI W -
L [] *
1250 ° o o o .
900703 06 09 12 15 18 21 24 27
2800 MRED (%)
!,. + RAD (b)
2500 < AXFXU
$,x + DRAD
220010 ¥ = DRADP
= & + RADR
£ 1900 &~ * + ROUP1
2 s & N e ROUP2
§ 1600+ ¥ * x
e ° .t [] » & »
< 1300} Pl n
L4 ®
1000} o A S
05093 06 09 12 15 18 21 24 27
MRED (%)
2450
(©) s + RAD
| « AxFXU
21501 . DRAD
= g = DRADP
S 18500 @ RADR
2 r LA * + ROUPI
T 1550 P e ROUP2
5 s, ¥ L+ Roue2 |
& ® 4 m *
g 1250+ °® @
*
m ® x |] ‘< dﬁ
L [J
950 . § ., o = .
° X
0093 06 09 12 15 18 21 24 27
MRED (%)
(d)

Figure 6.5: Pareto analysis for Dissertation’s approximate multipliers considering MRED and
area/energy under two design scenarios: (a), (b) MIN-Delay and (c), (d) ISO-Delay.

127

Cooperative Approximation: Combination of Arithmetic Encodings

70 -

60 L R8BABM
= R4ABM
5 50 - T™C
£ DRUM
< 40 L
O
> 30
20
0 20 r
=
Lﬂ 10 L

. (o] B . (o] - . (o] B . (o] . (o] . (o] K (o]
0.15% 0.61% 0.25% 1.21% 0.22% 1.19% 1.47%
MRED Constraint

Figure 6.6: Energy gains of Dissertation’s most efficient designs (ROUP2) versus state-of-the-art
multipliers (RSABM [151], R4ABM [149], TMC [266], DRUM [142]) for the same error constraint.

R4ABM [149], TMC [266], and DRUM [142]. We consider the relative energy reduc-
tion from the other design as the energy gain of ROUP2. The large approximation
space and dense error segments of ROUP2 provides increased flexibility, and thus,
we select configurations with MRED equal or slightly smaller than the MRED con-
straint. This is extremely important, because ROUP2 can maximize its gains for a
given error constraint. As expected, the derived results show that ROUP2 provides
significant gains ranging from 29% to 63%.

6.5. Conclusion

In this chapter, we examined the combination of arithmetic approximation techniques,
targeting to expand the approximation space and identify the most efficient design
solution in a comparative state-of-the-art Pareto evaluation. We defined the approx-
imation space by combining the approximate encodings presented in Chapter 4 and
Chapter 5 and as a result, we propose 5 new families of approximate multipliers. Each
design family integrates two approximation techniques that can be configured inde-
pendently, and thus, it provides numerous approximation configurations with different
accuracy, namely, dense error scaling in the range 0%—2%. The experimental eval-
uation, which is performed under two design scenarios (MIN-Delay and ISO-Delay),
reveals that the Pareto front is formed exclusively by designs applying cooperative
approximation techniques, and more specifically, by the ROUP2 family. The ROUP2
family applies partial product perforation and asymmetric partial product rounding,
and it improves the state-of-the-art Pareto front that was held by RAD [153] and
AxFXU [144] by up to 1.5x-2x. Moreover, besides forming an improved Pareto

128

6.5. Conclusion

front, the cooperative approximations increase its resolution with their large sets of
available configurations. Compared to other designs of the literature, the ROUP2
family can efficiently handle all the error bounds and provides energy gains up to
63% for the same error constraint.

129

Cooperative Approximation: Combination of Arithmetic Encodings

130

Chapter 7

Approximate DSP & Al Hardware Accelerators

The worldwide demand for faster applications with less power consumption challenges
the design of Digital Signal Processing (DSP) and Artificial Intelligence (AI) hard-
ware accelerators. As an alternative design strategy, there is a tendency to exploit the
error tolerance of DSP/AI workloads and produce approzimate accelerators, which,
however, improve the power efficiency and/or performance. Our work aims at the
design and evaluation of approrimate DSP and Al accelerators that integrate our
approximate circuits, i.e., RAD, AzFXU/AxFPU, and ROUP. To provide a great di-
versity in terms of DSP/AI workloads, we develop several 1D/2D signal processors
and Convolutional Neural Networks (CNNs). Both the development and evaluation
are directed by our design methodology, which includes design space exploration at both
software and hardware level. The design is not limited only to the use of our approxi-
mation techniques, but it also involves various arithmetic formats, different algorithms
and state-of-the-art parallelization techniques. The exploration of all these design pa-
rameters targets to provide the most efficient approximate variants of the targeted
DSP/AI hardware accelerator. Specifically for CNNs, besides fusing parallel design
techniques with arithmetic approzimations, we apply fine-grained approzimation with-
out retraining via our MAxz-DNN framework. Moreover, we examine networks that
are built on floating-point, fized-point, and quantized integer arithmetic. The evalua-
tion is performed with industrial-strength tools, i.e., Synopsys Design Compiler and
Xilinz Vivado. In terms of accuracy, our approrimate accelerators attain mean rela-
tive error up to 8% in applications based on multiply-accumulate operations, typical
quality of output image in image processing, and up to 5% accuracy loss in CNNs.
We note that the large design space offered by our approximation techniques can pro-
vide, if mecessary, near-zero accuracy loss. In terms of resource gains, depending on
the implementation, we deliver energy and area gains up to 70 %.

This chapter is based on our publications in [144,145,147,153,274—2717].

131

Approximate DSP & AI Hardware Accelerators

7.1. Introduction

In recent years, significant research has been conducted on the development and op-
timization of applications from the Digital Signal Processing (DSP) and Artificial
Intelligence (AI) domains. Such applications impose strict performance and energy
constraints, which constitute the selection of the computing platforms/devices for
their deployment a major open issue [3]. The powerful and compute-intensive DSP/AI
algorithms make the general-purpose Central Processing Units (CPUs) and the low-
end Graphics Processing Units (GPUs) unfit for satisfying the application constraints
[4,278]. As aresult, alternative computing platforms, such as the Field-Programmable
Gate Arrays (FPGAs) and the Application-Specific Integrated Circuits (ASICs), are
examined for accelerating DSP/AI workloads. Both solutions provide high par-
allelization capabilities and increased design flexibility. The FPGAs provide re-
configurability and attractive throughput-per-power ratio [3]. The ASICs offer high
computational efficiency along with low power consumption [279], while allowing more
custom implementations. In all cases, the design of optimized circuits for DSP/AI
workloads is a key goal for the research community.

AT brings forth various demanding workloads and algorithms, including the Convo-
lutional Neural Networks (CNNs), which are a class of Artificial Neural Networks
(ANNS) based on deep learning. CNNs are considered a state-of-the-art AT approach
to provide high accuracy in computer vision tasks such as object recognition [280]
and image classification [281]. FPGA-based accelerators [282-286] have started to
take their place as viable and promising solutions, thus, investing in their efficient
implementation forms an emerging highly valuable design paradigm. ASIC imple-
mentations also provide significant gains in the performance of CNNs [287-290], even
though they lack of re-configurability. On the other hand, classic DSP algorithms
are employed for the implementation of functions for image/video/signal process-
ing. In this context, various FPGA implementations are proposed in the literature,
e.g., for image processing [291-293] and telecommunication functions [294,295]. Cor-
respondingly, there is significant research on ASIC-based accelerators for computer
vision [296,297] and telecommunications [298,299].

One of the main advantages of FPGA/ASIC design is the ability to perform arbi-
trary bit-level manipulations, i.e., tune the bit-width of the datapath and optimize
the arithmetic optimizations. Namely, the designer can select the desired arithmetic
representation, including alternative formats [300,301] (also see Chapter 3), as well
as define n-bit words without restriction and use custom arithmetic operators. All
these operations are seamlessly applied on FPGA/ASIC technology, contrary to the
general-purpose GPU/CPU processors. The design paradigm of Approximate Com-
puting [16,17,19] exploits this flexibility of the FPGA/ASIC design and leverages

132

7.1. Introduction

the error tolerance of DSP/AI applications [29,240] to provide gains in resources
(power, energy, area) and/or performance. The approximation techniques that are
applied in DSP hardware accelerators involve the use of approximate arithmetic [302],
voltage over-scaling [224], and over-clocking [225]. Obviously, in FPGA/ASIC de-
sign, the optimization of the datapath’s bit-width is a typical task, non-related to
Approximate Computing, which may result in accuracy loss to provide hardware-
friendly designs (e.g., due to the use of fixed-point arithmetic or the truncation of
the results). On the other hand, the design of approximate Al accelerators involves
application-specific techniques: low-bit numerical formats [301], approximate arith-
metic operators [303], weight quantization [304], neuron connection pruning [305],
and voltage over-scaling [196].

In this chapter, we focus on approzimate DSP and Al accelerators that are developed
with Hardware Description Language (HDL) and can be deployed either on FPGA or
standard-cell ASIC technology. Our main approximation approach lies in using the
Dissertation’s approximate multipliers in DSP and AI hardware architectures. The
arithmetic components are key processing units in hardware accelerators, as they in-
herently affect the energy efficiency and the performance of the entire application.
Their impact becomes even greater, considering that modern accelerators implement
parallel architectures consisting of multiple processing units. The integration of our
approximate circuits in accelerators is based on a design methodology involving both
software- and hardware-level Design Space Exploration (DSE). Our goal is to as-
sess the Dissertation’s approximate designs in real-world DSP/AI applications, and
in reverse, explore the error resilience of the applications and quantify the resource
gains of approximate accelerators. Moreover, our approximation approach allows to
seamlessly decrease the resources or improve the throughput of any given DSP/CNN
without modifying the initial hardware architecture. Namely, we improve the effi-
ciency of DSP accelerators without tuning their underlying arithmetic (a typical task
of the hardware development flow), and specifically for CNNs, we provide approxi-
mate accelerators without re-training (a task that may be required in order to reduce
the accuracy loss caused by the approximations). The elimination of additional train-
ing/exploration is considered an advantage, as proprietary datasets/models may not
be available, and also, the training time time is usually increased due the emula-
tion of the hardware approximations and the use of custom approximate arithmetic
operators.

The contribution of this chapter is summarized as follows:

(i) We highlight the benefits of studying and optimizing the arithmetic of DSP and
AT hardware accelerators, while proving the inherent error resilience of their
workloads.

133

Approximate DSP & AI Hardware Accelerators

(ii) We propose a methodology for developing approximate DSP and AI hardware
accelerators, which is based on extensive design space exploration involving
arithmetic formats, approximation techniques, and algorithms.

(iii) We explore and quantify the resource gains and accuracy of DSP and Al hard-
ware accelerators with approximate arithmetic.

The remainder of this chapter is organized as follows. Section 7.2 introduces our
design methodology and summarizes all the approximate designs, applications and
accelerators presented in this chapter. Sections 7.3-7.5 evaluate our approximate
designs when used in DSP/AI accelerators. Finally, Section 7.6 draws the conclu-
sions.

7.2. Design Methodology

The proposed methodology for designing approximate DSP and Al accelerators is
illustrated in Figure 7.1. It consists of two stages: the exploration at the software
level and the development of the accelerator at the hardware level. We note that our
methodology follows the typical steps of hardware design. However, it includes ad-
ditional functionalities (i.e., the use of approximate arithmetic units), error analysis
(due to the approximations), and multi-level DSE (involving approximation tech-
niques/configurations, arithmetic formats, and algorithms). The multi-level DSE of
our design methodology is very important, because each combination of approxima-
tions, arithmetic formats, and algorithms has a different impact on the accuracy and
the hardware efficiency of the accelerator.

Before analyzing the steps of our methodology, we make the following clarifica-
tions:

o Approximate Design Library: it includes the software models and the hardware
descriptions of the approximate arithmetic units (e.g., RAD [153], AxFXU [144],
AXFPU [145], and ROUP [147]), along with their error analysis and experimen-
tal results.

o Arithmetic Pool: it includes various arithmetic formats, e.g., the conventional
fixed- and floating-point, block floating-point [306], Flexpoint [301], and quan-
tized fixed-point [307].

o Algorithmic Pool: it includes algorithms for the entire application (e.g., the
ResNet model [308] for CNN or the Log-Likelihood-Ratio (LLR) method [309]
for signal demodulation) and key operations (e.g., the Winograd method [310]

for convolution).

134

7.2. Design Methodology

DSP/AI .
Application Numerical
Formats
|
e Approximate
Development SW Librar
Software Algorithms
Analysis
Design
Log
Accuracy?
Approximate
Hardware HW Librar
Development
Hardware Hardware
Analysis Log
(opt. 2) (opt. M
oo A Accelerator?

Finish

multipliers, adders, i ResNet, Winograd, @ random, uniform,
complex operators LLR, biased, realistic

Figure 7.1: Design methodology for approximate DSP and AI hardware accelerators.

FxPoint, BIFIPoint,

FlexPoint, Quantiz.

o Dataset Pool: it includes various application-specific test datasets (e.g., ran-
dom, Gaussian/uniformly distributed, and realistic data) for evaluating the
quality of the results at software level.

Firstly, we develop the application in software using various arithmetic formats and
algorithms. Our software models are bit-accurate, which allows us to study the accu-
racy when using approximate arithmetic formats and/or approximate operators. To
obtain the groundtruth (accurate) results, we run simulations on the datasets. Af-
terwards, we start to integrate approximate arithmetic units and create approximate

135

Approximate DSP & AI Hardware Accelerators

model variants of the targeted accelerator. For each variant, we run simulations to ob-
tain the approximate results and evaluate its accuracy with application-specific met-
rics. Indicatively, we use metrics such as the Structural Similarity Index (SSIM) and
Peak Signal-to-Noise Ratio (PSNR) for image processing, the Bit Error Rate (BER)
for telecommunications, and the classification accuracy for CNNs. Furthermore, for
each variant, we report possible bottlenecks in hardware, e.g., regarding paralleliza-
tion or the implementation of complex operations. The next step is to examine which
approximate variants satisfy the constrained quality of results, and then select the
most efficient for implementation on FPGA/ASIC technology. In case the accuracy
constraints are not met, we design new approximate variants by combining different
arithmetic, algorithms, and approximate units.

When the software-level DSE is over, we continue with the typical HDL development.
We implement the selected approximate variants integrating our design choices for
arithmetic, algorithms, and approximation techniques. Finally, in the evaluation
phase we examine if the accelerator satisfies the constraints for performance and
resource utilization. In case the results are not the expected ones, we examine alter-
native design approaches (e.g., parallelization scheme) or even return to the initial
software-level DSE to create new approximate variants.

In the remainder of the chapter, we present experimental results from DSP/AI hard-
ware accelerators employing our approximate multipliers. More specifically, based on
our methodology, we design parallel architectures with approximate arithmetic for
1D/2D signal processing and CNNs. Each section is dedicated to one of our approxi-
mate designs, i.e., RAD [153] (presented in Chapter 4), AxFXU [144] & AxFPU [145]
(presented in Chapter 5), and ROUP [147] (presented in Chapter 6). Table 7.1 sum-
marizes the details for all the applications and accelerators that are presented in the

Table 7.1: Overview of Dissertation’s approximate DSP & Al hardware accelerators.

Design Domain Application Accelerator!
RAD Digital Signal Processing Sobel, FIR, MatMul ASIC
RAD Digital Signal Processing QAM Demodulation FPGA
RAD Artificial Neural Networks CNN (Ship Detection) FPGA
AxFXU Digital Signal Processing Sobel, FIR, MatMul ASIC
AxFPU Digital Signal Processing Gaussian Blurring ASIC
AxFPU | Artificial Neural Networks =~ CNNs (MNIST, CIFAR-10) ASIC
AxFPU Machine Learning K-Means Clustering -
AxFPU Linear Algebra LU Decomposition -
ROUP Artificial Neural Networks ResNet-8 (CIFAR-10) ASIC

! Implementation details: with HDL, for ASIC (standard-cell) or FPGA (programmable logic).

136

7.3. Design and Evaluation of Applications with RAD

following sections.

7.3. Design and Evaluation of Applications with RAD

In this section, we employ our approximate high-radix RAD multipliers [153] in real-
world applications. From the DSP domain, we implement the Sobel edge detector, a
Finite Impulse Response (FIR) filter, a matrix multiplication unit, and a Quadrature-
Amplitude-Modulation (QAM) demodulation filter. From the AI domain, we imple-
ment a custom CNN for ship detection on satellite images.

7.3.1. Approximate DSP Accelerators

A well-known filter for finding the object boundaries in an image is the discrete
Sobel operator [311]. The Sobel operator consists of two 3 x 3 kernels that are
applied linearly to the image to compute an approximation of the gradient of the
intensity function. The two convolutions compute the changes in brightness in the
horizontal and vertical orientation. For the hardware implementation of convolution,
we adopt the ordinary approach [312], which includes a serial-to-parallel converter
along with the structure of multipliers and adders, as illustrated in Figure 7.2 for
generic r X r kernel. The convolution engine inputs one pixel per clock cycle in
raster-scan order and forwards it to the serial-to-parallel converter that outputs r x r
pixels per cycle. The converter consists of » x r DFFs connected to r FIFOs in a
linear array topology. In practice, the r x r DFFs slide over the input image in
raster-scan order, while each FIFO temporarily stores a row of pixels. In a pipeline
fashion, the » x r pixels along with the r x r kernel weights are forwarded to 2
multipliers, and then, the multiplication results are added to produce the new pixel.
Similar architectures are designed for the FIR filter and the matrix multiplication
unit. Regarding FIR, we employ a 32-tap low-pass filter with cut-off frequency equal
to 20KHz and 16-bit coefficients, while for matrix multiplication we select 3 x 3
tiling.

Besides the aforementioned hardware architectures, we design circuits for QAM de-
modulation, i.e., a key digital function in the baseband processing chain (telecommu-
nications). We consider 64-QAM keying signals and their corresponding gray-coded
constellation map, where each constellation point is represented by a 6-bit vector. We
employ the approximate LLR method [309] for predicting the i-th bit of the received
symbol. This method avoids the expensive logarithmic and exponent calculations
of the exact LLR method by using only the nearest constellation points with i-th
bit equal to 0 and 1. The generic hardware architecture for M-QAM demodulation

137

Approximate DSP & AI Hardware Accelerators

Ip/CC [Serial-to-Parallel|(rsr)/CC| ree
Converter é.." 1/CC. @
Q
~
8 LIS
o g
(rxr) ﬁ E
ROM s | lcc
(a)
1
Ip/cq RAM FIFO DFF [DFF ... —) DFF
| e ‘_ s
L RAM FIFO DFF L—>—|—> . —) DFF
| e

v

1

(rxr) ptxels

«i

(b)

Figure 7.2: Hardware architecture of » X r convolution: (a) convolution engine and (b) serial-to-

parallel converter.

mbol
r

Sq. Distance ERUSSEEN +—> Min —> 8 ¢ £
1/CC 1cc [—> 5
1/ce — Min e
- -
[omi] &
1/cc 3 /AN Mi: =
. —7 n i=] =
Sq. Distance ————| § Lice yee | 8 1/C g
= —> Min &
. B e -
E LN LN LN
1
A

c. point M Mz
*po — Min H e
1/CC 1/CC 1/CC -g
—
— a

Sq. Distance —

LLR(b-1)

M2

Figure 7.3: Hardware architecture of M-QAM demodulation.

is presented in Figure 7.3. It processes in parallel the input symbol per constella-
tion point and performs on-the-fly computations (e.g., square distances, minimum,

subtractions).

138

7.3. Design and Evaluation of Applications with RAD

Experimental Evaluation

We implement the Sobel edge detector, the FIR filter, and the matrix multiplica-
tion in Verilog and synthesize them with Synopsys Design Compiler and the TSMC
65-nm standard-cell library, targeting to ASIC-based approximate DSP accelerators.
The resource gains and accuracy results of the accelerators with our RAD multi-
pliers [153] are reported in Table 7.2. The Table also includes results for the mul-
tipliers [142, 149, 151] that are employed in the evaluation of RAD in Chapter 4.
Regarding accuracy, for Sobel, we use the Correct Edge Ratio (CER), which mea-
sures the number of correct edges detected per total number of edges, while for the
other two accelerators, we use MRED (as defined in Chapter 4). For input data, we
use the Cameraman benchmark image for Sobel (illustrated in Figure 7.4 along with
the various output images) and 200K random generated inputs for the FIR filter and
the matrix multiplication.

Starting with the Sobel edge detector, the RAD multipliers achieve the highest ac-
curacy by detecting almost all the edges (more than 99.87% edges are correctly de-
tected). Moreover, they deliver remarkable resource gains, i.e., up to 54.8% in energy,
46.% in area, and 8.4% in critical path delay. DRUMS6 exhibits similar energy gain
(55.3%), however, it imposes a delay overhead of 7.8% and detects 1% less edges
compared to RAD1024. Furthermore, it is worth to note that although RSABM1
and RSABM2-15 feature small MRED values (see Chapter 4), they decrease the
quality of the results in Sobel, as they exhibit a CER of 58.90% and 54.41%, respec-
tively.

The RAD multipliers also outperform the other designs in the FIR filter. More
specifically, they achieve up to 34.1% energy gain in exchange for small a MRED
of 3.60%. Similar to Sobel, RRABM1 and R8ABM2-15 introduce large errors, i.e.,
MREDs of 13.51% and 33.98%, respectively. In this application, DRUMG6 achieves
significant energy reduction (21.4%) for considerable error (9.18%). However, these
values are worse than those of RAD1024, which provides 1.6x larger energy gains
and 2.6x smaller MRED.

Regarding the matrix multiplication, all the examined multipliers perform very well in
terms of accuracy. When considering similar error values, our RAD multipliers achieve
larger energy savings than the other designs. In particular, RAD1024 delivers 37.7%
energy reduction while exhibiting an MRED of 0.57%. R4AMBI1-14 and RAD64
feature the smallest MRED (0.07%), however, RADG64 delivers 1.4x larger energy
gains. Similarly, R4AAMB2-14 and RAD256 exhibit similar MRED, however, the
latter delivers 3.6 larger energy gains.

Finally, we implement the 64-QAM demodulation on the Zynq UltraScale+ ZCU106
FPGA using VHDL and the Xilinx Vivado tool. Based on our methodology, we em-

139

Approximate DSP & AI Hardware Accelerators

Table 7.2: Experimental results of approximate RAD-based DSP applications on TSMC 65-nm
standard-cell.

Design Delaly Enerlgy Arela CER
(%) (%) (%) (%)
RADG64 1.8 22 20.8 99.98
RAD256 6 37.3 33.9 99.96
RAD1024 8.4 54.8 46 99.87
RSABM1 [151] 1.1 1.3 1.6 58.90
> RSABM2-15 [151] 5.4 9.6 8.4 54.41
o R4ABM1-14 [149] 0.6 3.4 3.8 99.80
R4ABM1-16 [149] 0.6 6.9 4.7 99.36
R4ABM2-14 [149] 1.8 7 5 99.11
R4ABM2-16 [149] 3 7.1 5.1 98.27
DRUMG6 [142] 7.8 55.3 46.4 98.87

Design Delaiy Enerlgy Arefl MRED
(%) (%) (%) (%)
RADG64 3 6 9.8 0.41
RAD256 7.1 17 18.3 0.96
RAD1024 11.1 34.1 34.7 3.60
RSABM1 [151] 0 0.2 —0.1 13.51
> R8ABM2-15 [151] 6.1 5.3 9.2 33.98
<> R4ABMI1-14 [149] 0 1.5 2.2 5.28
R4ABMI1-16 [149] 1 3 3.1 23.38
R4ABM2-14 [149] 1 3.9 4.8 6.10
R4ABM2-16 [149] 3 4.1 5.5 30.43
DRUM6 [142)] —-32.3 21.4 21.6 9.18

. Dela; Ener Area MRED
Desien o @ | @
RADG64 6.2 7.8 14 0.07
RAD256 8 25.8 26.9 0.17
RAD1024 11.5 37.7 38.7 0.57
R8ABMI [151] 0 -1.7 0 0.10
é&\ R8ABM2-15 [151] 5.3 7.1 12.8 0.38
@fv" RAABMI-14 [149] 0.9 5.8 6.4 0.07
R4ABMI1-16 [149] 0.9 6.6 7.3 0.29
R4ABM2-14 [149] 3.5 7.1 7.7 0.15
R4ABM2-16 [149) 3.5 8.9 9.5 0.75
DRUMG6 [142] -30.1 32.8 34.9 1.60

! Refers to % resource gains (relative reduction) in comparison with the accurate design.

140

7.3. Design and Evaluation of Applications with RAD

Figure 7.4: 1/0 images of approximate Sobel edge detector: (a) input image and output image with
(b) accurate multiplier, (c) RAD64, (d) RAD256, (e) RAD1024, (f) RSRABM1 [151], (g) RSABM2-

15 [151], (h) R4ABM1-14 [149], (i) R4ABM1-16 [149], (j) R4ABM2-14 [149], (k) RAABM2-16 [149]
and (1) DRUM6 [142].

Table 7.3: Experimental results of approximate RAD-based 64-QAM demodulation on Zyng
7ZCU106 FPGA.

. LUT Clock Throughput 1

Design (%)* (MHz) (MSamples/s) BER
Accurate (F1. Point) 46 286 286 107t -107*
Accurate (Fx. Point) 24 312 312 107 —107*
RADG64 (Fx. Point) 16 321 321 107t - 107"

! Refers to % resource utilization of ZCU106 (230400 LUTs).
% Measured for SNR/symbol values 0-14dB.

ploy both 32-bit floating-point and 16-bit fixed-point arithmetic. As accuracy metric,
we use BER. Table 7.3 summarizes the results for the most efficient 64-QAM circuits.
Fixed-point provides similar BER values with the “golden” floating-point model, i.e.,
from 107! to 10~% for Signal-to-Noise Ratio (SNR) per transmitted symbol in the
range 0-14dB. RAD64 retains BER at the same orders of magnitude (the maximum

141

Approximate DSP & AI Hardware Accelerators

relative error is 1% compared to floating-point). In terms of resources, the design us-
ing RAD64 provides 65% LUT reduction and 1.12x speedup versus the floating-point
variant, and small but still important gains versus the fixed-point variant. Finally,
according to our design methodology, the algorithmic pool for QAM demodulation
includes other LLR methods, such as the exact and the piecewise LLR. However, our
software /hardware DSE highlights the approximate LLR method as the most efficient
one. For example, the approximate LLR method almost matches the BER scaling of
the exact method (for small SNR values, it is the same), while it provides significantly
smaller resource utilization, i.e., ~3x less LUTs.

7.3.2. Approximate CNN Accelerators

Following the evaluation in DSP applications, we employ RAD in CNNs. In particu-
lar, we develop a parallel CNN architecture for detecting ships on satellite images. Our
CNN model consists of 4 convolutional and 2 fully connected layers. In total, the con-
volutional layers have 144 filters (32+16+64+32) with 33K weights, while each filter
includes a ReLU activation function and 4-to-1 max pooling. The fully connected lay-
ers consist of 50 neurons (48+2) with 98K weights. The CNN is developed in Tensor-
Flow and trained with 16-bit floating-point arithmetic on 128 x128 RGB images [313],
providing a classification accuracy of 96.8%.

For our design, we consider the typical CNN: the network consists of convolutional lay-
ers, which include filters, which perform multiple convolutions. Namely:

e a convolutional layer inputs M image channels, processes them with NV filters,
and outputs N feature maps (one by each filter).

e each one of the N filters inputs M image channels, perform M convolutions
(one per channel), and outputs 1 feature map.

We apply parallelization at two distinct levels: (i) at network level, where we deploy
multiple parallel convolution engines per filter, and (ii) at convolution level, where we
parallelize the number of arithmetic operations per r x r convolution. The network-
level parallelization is supported by a parallel multi-bank memory organization [312],
which allows multiple channels to be accessed concurrently. On the other hand,
the convolution-level parallelization is implemented as in Sobel (see Section 7.3.1
and Figure 7.2). Regarding the arithmetic, we consider both the conventional fixed-
and floating-point formats, and we also adopt the block floating-point format [306].
Finally, for the implementation of the convolutional engine, besides the ordinary
approach used in Sobel, we employ the Winograd algorithm [310]. Next, we present
the details for each one of our design choices.

142

7.3. Design and Evaluation of Applications with RAD

Mem. | Kernel (1) :
(PING)| Filter j |
Ip/C Ip/cC i=12, .., N
lCh.l P~ Conv. Engine |2 T S e :l Ch. 1
|
|
|
|

Kernel (j,2)

Ip/C Ip/CC
ch. 2 F2= Conv. Engine [

$ |
|y LY Rery 2£C MaxPool—LqII /CR cn. j
T
Kernel (j,M) E

Ip/C . |Ip/C
Ch. M Conv. Engine
e ="

Figure 7.5: Hardware architecture of filter in M-input convolutional layers.

Network-Level Parallelization: The convolution layers are executed serially by reusing
E convolutional engines in parallel. Figure 7.5 shows a representative setup with a
fully parallelized filter processing all M input channels with £ = M engines. Each

engine computes a 2D convolution with a throughput of 1 pixel per clock cycle,
as shown in Figure 7.2. In a pipelined fashion, the FE output pixels per cycle are
accumulated in an adder tree along with the filter’s bias, and then, they are for-
warded through ReLU and MaxPool to the memory storing the output channels.
When E > M, we compute multiple filters in parallel. The data memories (left and
right in Figure 7.5) are designed with 1 bank per channel (being reused during CNN
steps) in a ping-pong setup to interchange between successive convolutional layers.
For each convolution engine, the corresponding kernel weights are stored in ROM
and are loaded according to the running filter. The architecture operates in burst
mode with a convolution’s cycle budget being almost equal to the size of the input
channel.

Block Floating-Point: In our floating-point convolution engine, instead of processing
each number as an individual exponent-mantissa pair, we group an entire block of
pixels by assuming a common exponent [306]. As a result, the main operations re-
duce to fixed-point arithmetic, i.e., simple mantissa multiplication/addition. At the

start/end of the block processing, we transform all data (pixels and weights) from/to
the standard floating-point format to/from block floating-point based on their max-
imum exponent. For the transformation to block floating-point (before starting the
processing), the mantissas of pixels and weights are shifted according to their max ex-
ponent, which is either detected or given as input. The transformed mantissas are for-
warded to the convolutional engine (see Figure 7.2). In parallel, the block’s common
exponents (for pixels and weights) are added and shifted to be included in the mantissa

143

Approximate DSP & AI Hardware Accelerators

accumulation that is performed in the convolutional engine. For the transformation
to floating-point (after finishing the processing), the new max exponent is detected
and is used to normalize the mantissas. We note that the internal multiplications can
be performed by accurate or approximate multipliers, and also, another convolution
engine can be used (e.g., the Winograd-based one).

Winograd Convolution: The Winograd 2D convolution algorithm [310] with an r x r
kernel computes an m x m output using (m + r — 1) x (m + r — 1) image tiles

with stride r — 1. It requires (m +r — 1) x (m + r — 1) multiplications to compute
the m x m output, while the ordinary convolution needs (m x m) - (r x r). The
{m = 2, r = 3} configuration is widely used, because it provides resource efficiency
and numerical stability. Compared to the ordinary convolution, this Winograd con-
figuration requires 2.25x less element-wise multiplications. In brief, it applies the
following steps [310]:

i) split the input image into 4 x 4 tiles d; with stride 2.

ii) transform the 3 x 3 kernel g into the 4 x 4 kernel G = AgAT, where Aisa 4 x 3
matrix with elements 0, —1/2, +1/2.

iii) transform the image tiles d; into 4 x 4 tiles D; = BTd,B, where B is a 4 x 4
matrix with elements 0, —1, +1.

iv) compute the intermediate outputs F; via the element-wise multiplication F; =
D; ®G.

v) transform the intermediate outputs F; into 2 x 2 matrices Y; = CT F;C, where
C is a 4 x 2 matrix with elements 0, —1, +1.

Figure 7.6 depicts the architecture of our Winograd convolution engine, which replaces
4 ordinary convolution engines. This design exploits the gap created by the afore-
mentioned stride-2 steps during continuous single-pixel raster-scan streaming, and it
employs one common core for processing 4 distinct channels via time multiplexing.
In the input, we use 4 serial-to-parallel converters to slide a distinct 4 x 4 window per
channel. Each 4 x 4 window is multiplexed towards the 3 common processing units to
perform the D;, F;, Y; calculations via pipelined multiplications/additions. At each
clock cycle, the corresponding kernel is selected from an initialized DFF array and
transformed to G. We use fixed input delays and a control unit to synchronize the 4
streams and achieve a constant output rate of 4 pixels per clock cycle. We note that
the arithmetic operations can be approximated either using the block floating-point
format or approximate arithmetic units.

Experimental Evaluation

We develop various CNN variants in parametric VHDL based on the DSE of our
methodology, and we use Xilinx Vivado to implement them on the Zyng-7020 FPGA.

144

7.3. Design and Evaluation of Applications with RAD

) (4x4)
1 4d (

PICC sop)19 /cC yeommmiLee

(Ch. 1) Input Transform | N £

Ip/CC sop |29 E ﬁ g
(Ch.2) = | /CC[RoM1 [ROMz2 Ny 8 |4p/C
Ip/CC 44)] & ROM3 | ROM 4 (4x4) 5, B

(Ch. 3) S2P 8 (3x3) /CC % g_.
Ip/CC 1/C(] DFF |/Ci Kernel [~ S |1/CC =

j2 — 44 A Tt 8

(Ch. 4) ay ranslorm

Figure 7.6: Hardware architecture of Winograd convolution processing 4 channels in parallel.

Towards exploiting every specialized resource of the FPGA, we implement the en-
tire network with a mixture of accurate and approximate convolution engines. The
key idea is, on one hand, to utilize the DSP blocks by doing ‘default’” multiplica-
tions, while on the other hand, to decrease the LUT utilization via approxima-
tions (e.g., when bound to revert to LUT usage due to lack of DSPs). The ‘de-
fault’:‘approximate’ engine ratio depends on the capacity of the FPGA. For Zynqg-
7020, we select the 16:16 ratio, i.e., 16 typical and 16 approximate engines, for a
total of 32x parallel engines (which also leads to the full utilization of the available
RAMBs). For the approximations, we employ our RAD multipliers [153], as well
as all the algorithms and arithmetic representations discussed in this section, i.e.,
conventional fixed- and floating-point, block floating-point, and Winograd convolu-
tion.

Table 7.4 reports representative results from our DSE. The accurate floating-point
CNN achieves a maximum parallelization of only 8x due to increased cost and con-
straints of Xilinx’s IP for floating-point calculations, which relies on DSPs. By apply-
ing the schemes derived by our methodology, we achieve 4x higher throughput with a
negligible accuracy loss of 0.1%. More specifically, the block floating-point format de-
livers 32x parallelization, whether with Winograd or not, delivering up to 730 Frames
Per Second (FPS). In terms of resource utilization, as expected, the increased paral-
lelization requires more RAMBs, however, the use of the RAD256 multiplier results
in not over-utilizing the LUT resources. Moreover, the use of the Winograd algorithm
instead of the ordinary convolution in the RAD-based block floating-point design re-
duces the DSP utilization by 41%, while maintaining almost the same throughput
and LUT utilization. For the accurate fixed-point CNN, the FPGA resources are
automatically balanced, to some extent, by Vivado. The gains provided by our ap-
proximate variants are summarized in the LUT resources (there is also a small increase
in throughput). In particular, the mixture of engines decreases the LUTs by 7% when
using only RAD256 and by 38% when also using Winograd. Again, the accuracy is
not affected by either the fixed-point arithmetic or our RAD256 multiplier, as there

145

Approximate DSP & AI Hardware Accelerators

Table 7.4: Experimental results of approximate RAD-based Ship-Detection CNN (128x128x3,
132K param.) on Zyng-7020 FPGA.

Design Paral. | LUT DSP RAMB Clock | Throughput
%) (%) (%) (MHz) (FPS)
Accurate (F1. Point) 8 37 91 78 125 182
RAD256 (BF1. Point) 32 65 100 95 125 730
RAD256 (Win. BFL. Point) | 8 x 4 69 59 95 124 724
Accurate (Fx. Point) 32 69 58 95 118 689
RAD256 (Fx. Point) 32 60 54 95 124 724
RAD256 (Win. Fx. Point) 8 x4 43 58 95 112 654

! Refers to % resource utilization of Zynqg-7020 (53200 LUTs, 220 DSPs, 140 RAMBs).
* The accuracy loss is 0.1%—0.2% among the designs.

is only loss up to 0.2%.

7.4. Design and Evaluation of Applications with
AxFXU/AxFPU

In this section, we evaluate our approximate AXFXU [144] and AxFPU [145] multi-
pliers in real-world applications. We remind that AxFXU is the fixed-point variant
and AxFPU is the floating-point variant, as well as that both variants combine the
perforation and rounding approximation techniques. To evaluate AxFXU, we em-
ploy again our hardware architectures for the Sobel edge detector, the FIR filter,
and matrix multiplication. Additionally, we implement a Gaussian blurring filter on
floating-point arithmetic to evaluate AxFPU. From the Al domain, we develop two
floating-point CNNs on the MNIST and CIFAR-10 datasets. Finally, we evaluate the
AxFPU design in two functions that employ floating-point numbers, i.e., the K-means
clustering and the LU decomposition.

7.4.1. Approximate DSP Accelerators

Starting with AxFXU, we employ again the fixed-point hardware architectures for
Sobel, FIR, and matrix multiplication. The Sobel edge detector uses two 3 x 3 convo-
lution kernels, the FIR filter is low-pass with cut-off frequency of 20KHz and 16-bit 32
coefficients, while for matrix multiplication we implement 3 x 3 tiling.

Regarding AXxFPU, we select the Gaussian blurring filter, which smooths the image to
remove details and noise. This convolution filter is widely used in image processing,

146

7.4. Design and Evaluation of Applications with AxFXU/AxFPU

e.g., before edge detection to reduce the levels of noise in the image. We implement
the 3 x 3 Gaussian blurring with our convolution engine illustrated in Figure 7.2. We
note that hardware filters such as Gaussian blurring, do not require floating-point
arithmetic to provide acceptable accuracy results. However, considering that the
optimization of the arithmetic/bit-width in DSP applications is not a negligible task,
and it is mainly performed by low-level hardware engineers, we evaluate the scenario
where the default floating-point arithmetic is selected. Moreover, considering that
our AxFPU multipliers can be integrated in an embedded processor, our evaluation
aims to prove their power efficiency in case the embedded developer does not use
integer coefficients for Gaussian blurring.

Experimental Evaluation

We develop the DSP kernels in Verilog and synthesize them with Synopsys Design
Compiler and the TSMC 65-nm standard-cell library, targeting to ASIC-based accel-
erators. Like in the evaluation of RAD, for Sobel we use the CER error metric, which
measures the number of correct edges detected per total number of edges, while we
use MRED for FIR and the matrix multiplication. For the Gaussian blurring, we use
two well-established image processing metrics, i.e., PSNR and SSIM. As benchmark
images, we use Cameraman for Sobel and both Cameraman and Lena for Gaussian
blurring. Moreover, the FIR and matrix multiplication kernels take 200K random
generated inputs.

For evaluating AxFXU, we employ three configurations with different approximation
degree (AxFXUlg 2, AxFXUl3 4, and AxFXU|,). Figure 7.7 shows the delivered re-
ductions in resources along with the application’s accuracy metric. Regarding Sobel,
as shown in 7.7a, CER is more than 98.5% in all configurations, like in the RAD-based
Sobel accelerators (see Table 7.2). However, the use of AxFXU provides increased
resource gains, i.e., up to 54% in area, 58% in energy, and 18% in delay. Especially
for delay, AxFXU provides 2.3x smaller critical path versus RAD. Similar behavior
is observed for the other two applications. The important outcome from this explo-
ration is that, again, the use of our approximate multipliers does not damage the
accuracy of the application. Only FIR outputs larger error, however, this is normal,
as every output depends on the previous ones, and the error is propagated to the next
calculations. Specifically, the MRED is 3.66%-6.65%, but it can be handled using
less aggressive approximation configurations.

Regarding the AxFPU-based Gaussian blurring, we employ Pareto-front configura-
tions with diverse approximation degree and error sensitivity. Our goal is to as-
sess the smoothing’s accuracy over different approximation levels. Table 7.5 reports
the resource gains and the accuracy metrics for the benchmark images. The results

147

Approximate DSP & AI Hardware Accelerators

AXFXU|2A2 AXFXU|376 AXFXUM,@
(2)
50 75
[JArea [TArea
40 - |[CTIEnergy " |[E="JEnergy
I Delay
[MRED
AXFXU|2,2 AXFXU|55 AXFXU|4{6 AXFXU|2,2 AXFXU‘jﬁ AXFXU|46
(b) (©)

Figure 7.7: Experimental results of approximate AxFXU-based DSP applications on TSMC 65-nm
standard-cell: resource gains and accuracy results of (a) Sobel, (b) FIR, and (c) MatMul.

Table 7.5: Experimental results of approximate AxFPU-based Gaussian Blurring on TSMC 65-nm

standard-cell.

Design Areia POW(ler PSNR? SSIM?2 PSNR? SSIM®
(%) (%) (dB) - (dB) -
AxFPU16]1,0 5.4 2.6 00 1 00 1
AxXFPU16|3,4 28.4 22.9 59.22 0.99 55.17 0.99
AXFPU16|46 41.9 40.3 50.86 0.98 48.20 0.87
AXFPU32|4,12 34.5 27.9 00 1 00 1
AxFPU32(6,14 48.7 44.8 00 1 00 1
AXFPU32|10.18 60.4 57.4 54.46 0.99 52.99 0.95

! Refers to % resource gains (relative reduction) in comparison with the accurate design.
2:3 Refers to Lena and Cameraman benchmark images, respectively.

show that the quality of the calculations is barely affected by the approximations,
which, at the same time, deliver significant resource gains in the convolution en-
gine. More specifically, the designs exhibit more than 50dB PSNR on average, i.e.,
acceptable PSNR values for lossy image processing, and near 1 SSIM values, while
the less approximation-aggressive designs produce the “golden” output. For instance,

148

7.4. Design and Evaluation of Applications with AxFXU/AxFPU

Figure 7.8: I/O images of approximate Gaussian blurring: (a),(f) input images, and output im-
age with (b),(g) accurate multiplier, (¢) AxFPU16|1,0, (d) AxFPU16|34, () AxFPU16|4,6, (h)
AXFPU32|4 12, (i) AXFPU32|6.14, (j) AXFPU32|10.1s.

AxFPU32, which has already proven to be less sensitive to approximations (see Chap-
ter 5), produces the “golden” output for both images, while delivering power gains up
to 45%. The gains reach 58% in exchange for a PSNR of 53.7dB and a SSIM of 0.97 on
average. Finally, Figure 7.8 presents a visual inspection of the images produced using
the approximate AXFPU multipliers, indicating a very small difference compared to
the image produced with accurate computations.

7.4.2. Approximate CNN Accelerators

Next, we assess the resource efficiency and accuracy of CNNs that replace the multi-
plications in their the convolutional layers with AXFPU multipliers. The first CNN,
which is trained and evaluated on the MNIST dataset [314], consists of one convolu-
tional layer with 12 filters, followed by another one with 24 filters. The second CNN,
which is trained and evaluated on the CIFAR-10 dataset [315], consists of two convo-
lutional layers with 32 filters and two convolutional layers with 64 filters. Both CNNs
use ReLU as activation function and rely on two fully-connected layers to generate
the 10-value output vectors. The CNN models are generated with TensorFlow in two
flavors, i.e., with 16- and 32-bit floating-point arithmetic, in order to evaluate our
half- and single-precision AxFPU multipliers. The training is performed on 80% of
the datasets, generating 32-bit floating-point weights and biases. The 16-bit floating-
point models are created by applying post-training quantization on the 32-bit models.
Finally, we remind that we do not aim to generate the most efficient CNN networks

149

Approximate DSP & AI Hardware Accelerators

(e.g., for the selected models/datasets, fixed-point or quantized integer arithmetic
may be sufficient). Our goal is to evaluate our approximations in floating-point CNN
workloads, provide hardware efficiency without structural modifications, and quantify
the actual resource gains.

Experimental Evaluation

To estimate the power consumption of the approximate CNN accelerators, we adopt
the model used in [303]. Namely, we calculate the power of each layer based on the
number of its multiplications and the power of the multiplication circuits, which is
experimentally measured. To estimate the total power consumption, we accumulate
the individual powers of all the layers. Moreover, we perform similar calculations to
estimate the area of the CNN accelerators. Targeting to standard-cell ASIC tech-
nology, the AxXFPU multipliers are implemented on the TSMC 65-nm library using
industrial-strength tools, i.e., Synopsys Design Compiler for synthesis and Synopsys
PrimeTime for measuring power.

Table 7.6 reports the results for the two CNNs using the AXFPU designs. In terms
of accuracy, the small configurations of AxXFPU do not affect at all the classifica-
tion results, especially for the MNIST dataset, while for CIFAR-10, the accuracy
loss starts growing faster. For more aggressive approximations, i.e., P =4, R = 6
in AxFPU16 and P = 11, R = 19 in AxFPU32, the accuracy loss for MNIST is
0%, while it is small for CIFAR-10 (in the range 1.3%-5.4%). This accuracy loss
is traded for significant gains in area, ranging in 33%-67.1% and 30.9%-63.4% for
16- and 32-bit floating-point, respectively, and similar gains in power (up to ~64%).
Finally, according to our exploration, more aggressive approximation configurations
are not recommended, as the accuracy loss explodes, while the extra gains are negli-
gible.

7.4.3. Approximate Clustering and Linear Algebra

In this section, we evaluate the use of AxFPU in Rodinia 3.1 benchmarks [316]. Tar-
geting to explore different application domains than the classic DSP/AI ones, we
employ two benchmarks from machine learning and linear algebra, i.e., domains that
require floating-point arithmetic and high precision, and we examine the accuracy
results when using AxFPU. The first benchmark is K-means clustering [317], which
is an unsupervised learning algorithm used extensively in the data mining domain to
classify unlabeled data into clusters. Moreover, we use AxFPU in the LU decomposi-
tion [318], which is a typical task of the numerical analysis and linear algebra domains.
For these two benchmarks, we do not provide hardware implementations and results.

150

7.4. Design and Evaluation of Applications with AxFXU/AxFPU

Table 7.6: Experimental results of approximate AxFPU-based CNNs on TSMC 65-nm standard-
cell.

2x ConvLayers on MNIST | 4x ConvLayers on CIFAR-10

Design Area Power Accuracy | Area Power Accuracy
(%) (%) (%) %) (%) (%)
AxFPU16]1,0 5.8 2.8 0 5.4 2.5 0
AxFPU16|3,4 30.3 24.3 0 28.4 22.1 0
AxFPU16|s,s 33.0 26.1 0 30.9 23.5 1.8
AxFPU16|4,6 43.7 42.8 0 40.9 38.8 2.5

AxFPU16|5.4 53.5 49.9 2.7 50.2 45.2 19.8

AxFPU32|4,12 36.8 29.8 0 34.5 26.9 0
AxFPU32|s,16 59.3 54.7 0 55.6 49.6 0
AxFPU32|10,18 64.4 61.2 0 60.4 55.5 1.3
AxFPU32|11,19 67.1 63.8 0 63.4 57.6 5.4
AxFPU32|12,4 69.6 65.5 5.5 65.1 61.2 12.5

! Refers to % resource gains (relative reduction) in comparison with the accurate design.
2 Refers to % accuracy loss.

Nevertheless, the accuracy evaluation is extremely important, considering that such
benchmarks are usually implemented in software and they can be executed in pro-
cessors integrating AXFPU in their floating-point units. For our experiments, we
develop a generic C/C++ function for AxXFPU that takes as input the approximation
configuration parameters. This function is called in the Rodinia programs instead of
the default accurate floating-point multiplication.

For K-means clustering, we consider the accurate 32-bit floating-point model as base-
line, and examine the Erroneous Classification Ratio (ECR), i.e., the number of wrong
classifications per the total number of classifications. As shown in Figure 7.9a, AxFPU
achieves the classification results of the “golden” model, even when applying approxi-
mations that deliver significant resource gains (e.g., AXFPU32|g 12 provides 68% area
gains versus the accurate multiplier). According to the derived results, for large per-
foration values, i.e., P > 8, the impact of rounding increases for R > 14, which results
in very high ECR. Nevertheless, the resource gains and the classification accuracy of
the “golden” model, which are provided by either AxFPU32|g 12 or AXFPU32|g 12,
establish AxFPU as an efficient solution for such floating-point calculations. For the
LU decomposition, we consider MRED as accuracy metric and the accurate 32-bit
floating-point model as baseline. Figure 7.9b presents the experimental results for a
large matrix size (2048 x 2048). Again, the proposed AXFPU achieves good accu-
racy results, as MRED is smaller than 0.1% for several configurations that deliver
significant hardware gains.

151

Approximate DSP & AI Hardware Accelerators

30
—~ 40
30
20
10

ECR (%

| |
8,14 B

|
18 9,12 |9,14 |10,12

|4,12 418 |6,12 |6,18 8,12
AxFPU32|p. g
(a)
<100
(@)
L
02: 10—2 [
| |

| | | | | | |
4,18 |6,12 |6,18 |8,12 |8,14 |9,12 |9,14 |10,10‘10,12
AXFPU32|p. i

412

(b)

Figure 7.9: Accuracy variation of approximate AxFPU-based (a) K-means clustering and (b) LU
decomposition.

7.5. Design and Evaluation of Applications with ROUP

In this section, we employ our state-of-the-art ROUP multipliers [153] in CNNs. In
particular, we examine the interplay of fine-grained error resilience of CNNs in collab-
oration with arithmetic approximation, targeting to achieve higher energy efficiency.
The large approximation space offered by the ROUP multipliers allows us to sys-
tematically explore their fine-grained distribution across the network according to
different approaches. For evaluating our approximations, we employ the ResNet-8
CNN on the CIFAR-10 dataset.

7.5.1. Fine-Grained Approximate CNN Accelerators

The approximate CNNs presented in Sections 7.3-7.4 execute all their multiplications
with the same approximate multiplier. Namely, each approximate CNN variant em-
ploys a single multiplier. In contrast, the current section examines the use of different
approximate multipliers within the same network. More explicitly, the approximate
multipliers are distributed across the network based on three approaches correspond-
ing to the abstraction levels of the CNN architecture (convolutional layers — filters —

152

7.5. Design and Evaluation of Applications with ROUP

convolution engines). Moreover, compared to our previous work on approximate CNN
kernels, which are built on 16/32-bit fixed- and floating-point arithmetic, we adopt
quantized network models (8-bit unsigned integer arithmetic).

To perform an extensive DSE regarding the distribution of approximate multipliers
within the CNN, we employ ALWANN [303], which is a state-of-the-art framework
for generating approximate CNN hardware accelerators without retraining. Towards
larger design/approximation space, we extend it with our approximation approaches
and the ROUP multiplication library. The proposed framework is called MAx-DNN
and assigns different ROUP multipliers either in each convolutional layer, filter, or
convolution engine (kernel). On the other hand, ALWANN inserts the same multi-
pliers in each convolutional layer (multipliers may differ among layers). In the next
paragraphs, we make a brief introduction to ALWANN, and then we introduce our
approximation approaches.

ALWANN [303]: The framework takes as input the trained (frozen) network model
in protobuf format, a library of approximate multipliers, and architecture constraints
for the hardware accelerator (e.g., pipelined or power-gated mode, number of approx-
imate units). It implements accurate addition and approximate multiplication, as
well as one approximation type per convolutional layer. Moreover, to improve the ac-
curacy without re-training, the network weights are tuned/updated according to the
multipliers’ properties. The approximate networks, labeled as AxNNs, are modified
versions of the initial model and satisfy the user constraints for the architecture of
the accelerator.

To enable the ALWANN functionalities, the TensorFlow framework is extended to
support approximate quantized layers. In particular, a new operator is created that
replaces the default QuantizedConv2D layers with AxConv2D layers. This operator al-
lows to specify which approximate multipliers to employ via the AxMult (str) param-
eter (a C/C++ model of the multipliers is necessary), and optionally, to use the weight
tuning feature via AxTune (bool). The frozen model is processed by the TensorFlow’s
tool for graph transform, which inserts the AxConv2D layers, and then, the Pareto-
optimal AxNNs are extracted by the NSGA-IT algorithm.

In our work, we use ALWANN’s infrastructure and introduce new approximation
approaches regarding the distribution of the approximate multiplications across the
network. The toolflow and architecture of MAx-DNN is illustrated in Figure 7.10.
Compared to ALWANN, we modify the AxConv2D TensorFlow operator to support
our approximation approaches at different CNN abstraction levels, i.e., layer, filter,
convolution engine, and we also employ the state-of-the-art ROUP library of ap-
proximate multipliers. Below, we discuss our approximation approaches, targeting to
explore the approximation space of the CNNs and identify the best approximation
opportunities within the network.

153

Approximate DSP & AI Hardware Accelerators

Network Build

Initial Network
Representation Constructor

(Uniform Structure) I

New Approx.
Approache

¢ Learning Final
AxNNs
Layer-Level
OUP Librar RTL Synthesis ALWANN Filter-Level
— =% TSMC Kernel-Level

AxConv2D
Extension

| HDL Models |)i
| C/Cs+ Models |
]

Figure 7.10: The toolflow and architecture of the MAx-DNN framework (extension of ALWANN
[303]) that applies fine-grained CNN approximation. Max-DNN distributes the state-of-the-art
ROUP multipliers across the network based on differing approximation approaches.

Layer-Level Approximate Multiplication: The first approach, illustrated in Figure
7.11a, aims to create approximate convolutional layers, in which all the multiplica-

tion operations are executed with the same approximate multiplier. This approach
is the straightforward one, where the approximations are distributed across the net-
work by assigning an approximate multiplier, either the same (uniform distribution)
or different (non-uniform distribution), to each convolutional layer. In MAx-DNN,
we create various layer-level approximate variants by using different ROUP configu-
rations among the convolutional layers.

Filter-Level Approximate Multiplication: Our second approximation approach, illus-

trated in Figure 7.11b, creates different approximate filters within each convolutional
layer of the CNN. Namely, we use different ROUP multipliers in each filter of the
layer, contrary to the first approach, where all the filters of a layer have the same
ROUP multiplier. MAx-DNN implements this approach by creating groups of filters
and assigning them ROUP multipliers.

Kernel-Level Approximate Multiplication: In the third approximation approach, we

proceed deeper in the CNN architecture and examine separately the multiplica-
tions of each convolution engine. As a result, the convolutions of each filter are
performed with different ROUP multipliers. Figure 7.11c illustrates the three pro-
posed flavors of this approach: the channel flavor, where all the multiplications
of the convolution kernel are performed with the same multiplier, and the row/-
column flavor, where different multipliers are employed for each kernel’s row/col-
umn.

154

7.5. Design and Evaluation of Applications with ROUP

Conv Layer 1

U

Conv Layer 2
Conv Layer 3

Conv Layer 4

[T

Conv Layer 5
Conv Layer 6
Conv Layer 7
(2)
—»| Filter 1 S 1| w2|w3
Q/”J 1 w4 |w5|w6

Filter 2

Filter 3

Filter 5

Q)
o)
3
<
Filter 4 | =
Q
<
o
=

Filter 6

il

Filter 7 w7 w& w9

(b) (©)

Figure 7.11: Fine-grained non-uniform CNN approximation of the MAx-DNN framework at (a)
layer level, (b) filter level, and (c) kernel level.

Experimental Evaluation

For evaluating the ROUP-based MAx-DNN framework, we employ the ResNet-8
CNN [308] and the open-source ALWANN framework [303]. ResNet-8 is trained with
quantization on the CIFAR-10 dataset [315], achieving 83% classification accuracy.
The energy consumption of the approximate CNN accelerators is estimated with the
model used in Section 7.4.2, which is also used in ALWANN. According to this model,
the energy consumption is estimated based on the energy of the multipliers. Targeting

155

Approximate DSP & AI Hardware Accelerators

to standard-cell ASIC technology, we implement the ROUP multipliers on the TSMC
45-nm library using industrial-strength tools, i.e., Synopsys Design Compiler for syn-
thesis and Synopsys PrimeTime for measuring power. Next, we calculate the energy
of each convolutional layer based on the number of multiplications and the energy of
the multiplication circuits. To estimate the energy of the entire CNN, we accumulate
the individual energies of the layers. Our evaluation is performed in the following
three stages: (i) study of CNN layer’s error resilience, (ii) exploration of the CNN’s
approximation space, and (iii) comparison to the original ALWANN approximation
framework and its approximate multipliers.

At first, we examine the error sensitivity of the convolutional layers, in an effort to
understand which layers are offered for approximations. For this experiment, we pick
three ROUP multipliers with different approximation strength, i.e., “low”, “medium”,
and “high”, labeled as ROUP;, ROUP,;, and ROUPy, respectively. Figure 7.12a
illustrates the accuracy scaling when using these multipliers only in the m-th convo-
lutional layer (m = 1,2,...7). Regardless of the approximation strength, it is shown
that approximating one of the first layers results in remarkable accuracy loss (m =0
shows the baseline model with 83% accuracy). This is more evident in the ROUPy
configurations, where significant computation errors are inserted. In this case, when
approximating one of the layers 4-7, the accuracy loss is decreased and stabilized
around 8%. Figure 7.12b, depicts the accuracy scaling when approximating the first
m layers. As expected, the accuracy loss is increased with respect to the number of
approximate layers, however, we again notice the error resilience of the last layers.
Specifically, the accuracy loss is slowing down when extending the approximation af-
ter the 4-th layer. Another important outcome from this exploration is the negligible
accuracy loss of the ROUP; and ROUP),; configurations, regardless of which and
how many layers are approximated. In exchange for such small accuracy loss, these
multipliers provide increased energy gains compared to their accurate design (around
10% and 20%, respectively).

Subsequently, we perform an extensive design space exploration on the proposed
approaches, involving various ROUP multipliers, to extract their most prominent
configurations in terms of accuracy and energy. For each approach, several multi-
plication replacements and combinations are examined. In Figure 7.13, we present
all the configurations that deliver at least 75% classification accuracy, i.e., up to 8%
accuracy loss compared to the baseline quantized model. As shown in the upper left
segment of the plot, multiple configurations deliver negligible accuracy loss compared
to the quantized model, which ranges from 0.02% to 1%, while improving the en-
ergy efficiency due to using the ROUP multipliers. Therefore, our approaches can
satisfy near-zero accuracy loss with more energy-efficient computing. Regarding the
efficiency of each approach, the Pareto front is formed almost exclusively from the
kernel- and filter-level configurations. For the same accuracy loss, these configura-

156

7.5. Design and Evaluation of Applications with ROUP

0.85 | ea Y 0.85
> T >
g 0.75 & 0.65
=] —e— ROUP, 3
3 065 o ROUP,/ S 045
055 + + + + + + R?U?H 025 + + + + + . + +
01234567 01234567
Approximate Layer Succes. Approximate Layers

(a) (b)

Figure 7.12: The scaling of ResNet-8 accuracy with respect to the layers approximated: (a) only
the m-th layer (e.g., only the 5th), and (b) the first m layers (e.g., layers 1 to 5). “Layer=0" denotes
the baseline quantized model.

1R%p, °

4.6 ++£¢ + +

4.4 Tadox, ™ ¥ . + +
—_ sH+
2 4.2+ &qéo awgQ o +Layer-Level
— 401 ame o, + x Filter-Level
b>6 + %o o + o K |_|- I
8 g . ernel-Leve
5 36 | o W 000 0x ;0 o

3.4 ¢ * % 890 ° Teo©

00 O O o
32 ¢ % s ;

0.17 018 019 020 021 022 023 0.24 0.25
Accuracy Loss

Figure 7.13: Pareto analysis for the approximate MAx-DNN-based ResNet-8 CNNs (with ROUP
multipliers) considering energy consumption and accuracy loss.

tions provide better energy than the straightforward layer-level approach, which has
to sacrifice a large amount of accuracy, i.e., more than 40%, to deliver this energy
efficiency.

Table 7.7 compares the Pareto-front configurations with ALWANN networks employ-
ing the EvoApprox8b multipliers [190]. The proposed designs deliver better accuracy,
as the average loss of the EvoApprox8b configurations is ~23%, while in terms of
energy, they provide 2x gains. This comparison highlights the advantage of studying
the approximations at a lower CNN abstraction level, i.e., filter or kernel. Namely,
the non-uniform fine-grained use of multipliers with different approximation degree

157

Approximate DSP & AI Hardware Accelerators

Table 7.7: Experimental results of approximate ROUP-based ResNet-8 CNNs on TSMC 45-nm
standard-cell.

Approximation Approach & Configuration Enerlgy Accur? 4
(%) (%)
FLAM-3clas._ 2 1 1 49 18
FLAM-3clas._2 2 1 52 20
062 KLAM-chan._1_0_1 46 17
A\ KLAM-chan. 2 0_2 53 21
{)% KLAM-chan. 1 1 2 50 19
g\?& KLAM-chan. 2 1 2 54 21
KLAM-row_2_1_1 50 19
KLAM-row 2 1 2 52 20
Qa_)\ Evo_mul8 2AC 23 20
&> Evo_mulSu_2HH 23 23
éé\x Evo mul8u NGR 32 23
R\ Evo_mul8u_ZFB 39 23
?’\) Evo mul8u_ 7C1 20 24

! Refers to % energy gain (relative reduction) in comparison with the accurate design.
2 Refers to total accuracy loss (the baseline quantized model already has 17% loss).

outperforms the straightforward approximation, which either selects the same ap-
proximate multiplier for the entire network or assigns an approximate multiplier per
layer. At the same time, the use of numerous approximate multipliers based on dif-
ferent approximation approaches significantly expands the design space. As a result,
there is increased design flexibility, which allows to efficiently handle various accuracy
constraints.

7.6. Conclusion

In this chapter, we developed various approximate DSP and AI ASIC/FPGA-based
accelerators that integrate the Dissertation’s approximate circuits. Our goal was
twofold: (i) to evaluate our approximate multipliers in real-world error-resilient ap-
plications, and (ii) to quantify the resource gains and examine the accuracy of ap-
proximate DSP and AI hardware accelerators. To facilitate the evaluation, as well as
examine various design scenarios and combinations, we proposed a software/hardware
design methodology, which is based on design space exploration involving arithmetic,
algorithms and approximation techniques/configurations. Based on our methodology,
we designed several approximate variants of accelerators for 1D /2D signal process-

158

7.6. Conclusion

Table 7.8: Summarized results of Dissertation’s approximate DSP & AI hardware accelerators.

Application Approximation Accelerator Gain Accuracy
Sobel Edge Detector | RAD, AxFXU 65-nm ASIC 58% energy CER > 98.5%
FIR Filter RAD, AxFXU 65-nm ASIC 34% energy MRED = 3.6%
Matrix Multiplication| RAD, AxFXU 65-nm ASIC 71% energy MRED = 0.9%
QAM Demodulation RAD ZCU106 FPGA 65% LUTs BER € [10",10]
ShipDetect CNN RAD Zynq-7020 FPGA 38% LUTs 0.2% loss
Gaussian Blurring AxFPU16 65-nm ASIC 40% power PSNR = 51dB
Gaussian Blurring AxFPU32 65-nm ASIC 57% power PSNR = 55dB
CNN/MNIST AxFPU16 65-nm ASIC 49% power 2.7% loss
CNN/MNIST AxFPU32 65-nm ASIC 66% power 5.5% loss
CNN/CIFAR-10 AxFPU16 65-nm ASIC 39% power 2.5% loss
CNN/CIFAR-10 AxFPU32 65-nm ASIC 58% power 5.4% loss
K-Means Clustering AxFPU32 - - ECR = 0%
LU Decomposition AxFPU32 - - MRED € [0.1,0.8]%
ResNet-8/CIFAR-10 ROUP 45-nm ASIC 54% energy 4% loss

ing and CNNs. Regarding the HDL development of the accelerators, we employed
various state-of-the-art parallelization techniques that were combined with our arith-
metic approximations. The most important experimental results are summarized
in Table 7.8. In terms of quality of results, the approximations attain small ac-
curacy loss, which is tunable due to the various approximation configurations that
are offered by our design families. More explicitly, we achieve typical values for the
quality metrics of image processing (convolutions) and small errors in applications
involving multiply-accumulate operations (signal filtering, matrix multiplication and
LU decomposition). Our approximations also provide promising accuracy results in
applications/algorithms from other domains, such as telecommunications (QAM de-
modulation) and machine learning (K-means algorithm). Moreover, our approximate
CNNs deliver small accuracy loss in various arithmetic formats (16-bit fixed-point,
32/16-bit floating-point, 8-bit quantized integer), which can be tuned even to pro-
vide the baseline accuracy. At the accelerator level, we achieve remarkable resource
gains on both ASIC and FPGA. Depending the application, we achieve power/en-
ergy gains in the range 30%-70% on ASIC technology, as well as valuable logic re-
duction, i.e., up to 65% in FPGA’s LUTs and up to 60%-70% in ASIC’s logic-cell

area.

159

Approximate DSP & AI Hardware Accelerators

160

Part Il.

Design Methodologies
for Embedded Computing

Prologue

Dissertation’s Part IT focuses on higher design abstraction layers and pro-
poses design methodologies for the efficient mapping and acceleration of
DSP and ATl algorithms on space-grade FPGAs and embedded heteroge-
neous VPUs. Chapter 8 regards the new European space-grade FPGAs,
which insert several bottlenecks towards efficient implementation, mainly
because the tool is new and the performance is lower than that of commer-
cial FPGAs. We show that the systematic development and exploration of
all the tool settings can provide sufficient acceleration of high-performance
DSP algorithms. Chapter 9 regards the multi-core VPUs, which are char-
acterized by increased SoC complexity and decreased performance due to
their limited power. We show that the systematic development along with
high- and low-level embedded design techniques can provide sufficient ac-
celeration of demanding DSP and Al algorithms.

The work presented in Part II was mainly performed in the context of
research activities of the European Space Agency (ESA). Namely, it is
product of groups of people that took part in the respective activities and
publications. The contribution of the Dissertation’s author is as follows.
For Chapter 8, he contributed to the methodology, FPGA benchmark-
ing, tool exploration, hardware/software development for FPGA execu-
tion, and experimental analysis/evaluation. For Chapter 9, he contributed
to the methodology, VPU development/coding, and experimental evalua-
tion/analysis.

Acknowledgements: The author of the Ph.D. Dissertation would like
to thank Prof. Dimitrios Soudris and Dr. George Lentaris, who are the
Scientific Officer and Project Manager & Chief of the ESA projects, re-
spectively.

161

Chapter 8

DSP Acceleration with New Space-Grade
FPGA Devices & Tools

The advent of space applications with increased computational requirements pushes the
space industry to consider specialized processors for high-performance on-board data
processing. The excellent performance-per-Watt ratio of modern Field-Programmable
Gate Arrays (FPGAs) establishes them as a promising device solution, which out-
performs the general-purpose Central Processing Units (CPUs). Especially for de-
manding Digital Signal Processing (DSP) algorithms, the FPGAs offer increased par-
allelization (to provide high processing throughput) and interfacing capabilities (to
handle various sensors and provide high 1/O rate). In a relatively limited market
of space-grade FPGAs, the new European FPGA family of NanoXplore offers such
novel radiation-hardened solutions. Nevertheless, the full exploitation of these new
space-grade FPGAs, considering also that they lack in performance compared to their
commercial counterparts, requires a systematic design approach. Towards the efficient
mapping and acceleration of high-performance DSP algorithms on new space-grade
FPGAs, this chapter devises and applies a methodology to thoroughly examine the
implementation. We focus on NG-Large, i.e., the largest 65nm radiation-hardened
SRAM FPGA of NanoXplore, and we accelerate demanding computer vision kernels
for feature detection and depth extraction. Our design approach comprises a number
of customized steps that perform erhaustive exploration of all the tool settings and gen-
erate a variety of results, which are directly compared to results from well-established
FPGA vendors. The experimental evaluation shows that NG-Large provides sufficient
performance, e.g., 5—10 FPS for feature detection on MPixel images, while the re-
source utilization is balanced and comparable to that of the other FPGA vendors.
This chapter is based on our publication in [319].

163

DSP Acceleration with New Space-Grade FPGA Devices & Tools

8.1. Introduction

In the last decade, the Field-Programmable Gate Arrays (FPGAs) have been es-
tablished as state-of-the-art devices in the semiconductor market. Their attractive
performance-per-Watt ratio marks a new era, in which they are not used only for pro-
totyping or interfacing, but also for accelerating demanding workloads [282-286,291,
294, 295]. Modern FPGAs still do not match the power consumption of Application-
Specific Integrated Circuits (ASICs) [279], however, their re-configurability and high-
performance constitute them as first-class devices for acceleration in data centers [20]
and embedded systems [3]. The throughput rate of FPGAs is significantly better
than that of the Central Processing Units (CPUs), while in terms of power con-
sumption, they outperform the Graphics Processing Units (GPUs) [3,4, 278, 320].
The FPGAs are used in various fields (such as telecommunications, robotics, space)
for accelerating Digital Signal Processing (DSP) functions [291-295, 321], e.g., for
image/video processing and signal filtering, and more recently, for deploying Arti-
ficial Intelligence (AI) [282-286], e.g., neural networks and machine learning algo-
rithms.

The space industry is one of the communities seeking for high-performance embed-
ded platforms to handle the increased computational demands and fast data transfers
of modern space applications. The enhanced performance of FPGAs facilitates on-
board/embedded computing in space, e.g., for Earth Observation (EO) and Vision-
Based Navigation (VBN) tasks, decreasing the need for downlink transmission of
sensor data to the ground stations. As a result, space-grade and Commercial-Off-
The-Shelf (COTS) FPGAs are constantly being evaluated [322-329] as on-board ac-
celerators and framing processors. When radiation, thermal and vibration resilience
are of utmost importance, space-grade FPGAs are used instead of their COTS coun-
terparts to achieve increased reliability. The literature also includes numerous works
with space avionics co-processing architectures that include FPGAs [330-332]. In
terms of algorithms, besides accelerating DSP, the FPGAs are used for implementing
data transcoding for instruments/sensors (e.g., via SpaceWire/SpaceFibre [333]) and
data compression [334,335].

The space-grade FPGAs are either Radiation Hardened (RH) or Radiation Tolerant
(RT). Their main difference is that RH FPGAs are radiation hardened by design,
i.e., they are fabricated on special technology to endure in radiation environments,
while RT FPGAs are fabricated to operate under lower radiation values (usually
along with fault-tolerant techniques to ensure reliable operation). Nevertheless, the
space-grade FPGAs come with some penalties. Besides their increased cost, they
are slower and offer decreased design flexibility (e.g., in terms of tool options, ven-
dor IPs) than their COTS counterparts [336,337]. In any case, they still outper-

164

8.1. Introduction

form RH CPUs such as the PowerPC-based RAD750 (12W@200MHz) [338] and the
LEON2-based AT697F (1W@100MHz) [339]. Currently, the market offers few space-
grade FPGAs, from which the most well-established are categorized per vendor as
follows:

o Xilinx [340]: Virtex-4QV (SRAM, 90nm), Virtex-5QV (SRAM, 65nm), RT Kintex
UltraScale (SRAM, 20nm).

o Microsemi [341]: RTSX-SU (anti-fuse, 250nm), RT ProASIC3 (flash, 130nm),
RTAX-S/SL (anti-fuse, 150nm). RTG4 (flash, 65nm), RT PolarFire (SONOS,
28nm).

o Atmel [342]: AT40K (SRAM, 350nm), ATF280 (SRAM, 180nm).

All the above FPGAs vary with respect to fabrication technology, capacity, perfor-
mance capabilities and radiation resilience. Very recently, there are new promising
additions in this limited pool of space-grade FPGAs. NanoXplore [343] provides the
first European RH high-density FPGAs [344, 345], also known as BRAVE, i.e., Big
Re-programmable Array for Versatile Environments. The BRAVE FPGAs have at-
tracted the interest of the space community and are expected to play a key role in

upcoming space missions, especially in Europe. This new space-grade FPGA fam-
ily includes low-end and high-end RH SRAM-based chips, i.e., NG-Medium (65nm),
NG-Large (65nm) and NG-Ultra (28nm), as well as software tools for end-to-end
development and seamless re-configuration. NG-Medium is the first FPGA of the
BRAVE series and was introduced in 2016 along with the initial tool versions. The
BRAVE FPGAs integrate all the traditional FPGA programmable logic resources,
i.e., Look-Up-Tables (LUTs), D Flip-Flops (DFFs), Carry Units (CYs), Digital Signal
Processors (DSPs), RAM Blocks (RAMBs), and Register Files (RFs). Additionally,
NG-Large and NG-Ultra integrate the single-core ARM Cortex-R5 and quad-core
ARM Cortex-R52 processors, respectively, with the latter implementing the DAHLIA
System-on-Chip (SoC). Furthermore, the BRAVE FPGAs include features that are
essential for on-board embedded computing in space, such as the SpaceWire interface
for fast I/O data transfers and memory scrubbing to ensure continuous error-free
functionality. The BRAVE FPGAs can be configured via multiple interfaces (JTAG,
SPI/flash, SpaceWire).

The efficient utilization of a new FPGA family such as BRAVE, as well as the full
exploitation of the associated software tools, require a systematic and disciplined ap-
proach. Moreover, the developer needs to surpass the bottlenecks and limitations of
new tools to provide sufficient resource utilization and/or performance for compute-
intensive DSP. The development becomes even more challenging due to the special
features of the space-grade FPGAs compared to the commercial ones (e.g., lower per-
formance). For these reasons, the European Space Agency (ESA) is supporting a set

165

DSP Acceleration with New Space-Grade FPGA Devices & Tools

of research activities', which involve hardware benchmarking on the BRAVE chip-
s/boards and testing of the BRAVE software tools. These activities aim to improve
the new space-grade devices and tools and evaluate the suitability of the BRAVE
solution as on-board data processor. In the context of these activities, we develop
a methodology to support the design on the BRAVE FPGAs and evaluate the de-
vices/tools compared to solutions provided by well-established FPGA vendors. We
note that even though our methodology is applied in space-grade FPGAs, it can be
adopted to aid the design on any FPGA platform or perform benchmarking/evalu-
ation among different FPGAs, either space-grade or COTS. Moreover, our goal is
not to design new parallel DSP architectures. In contrast, we employ DSP hard-
ware kernels mainly from the Computer Vision (CV) field, which were developed
in past ESA activities by Lentaris et al. [326-329]%, and we accelerate them on the
BRAVE technology. More explicitly, in a systematic manner, we deploy these high-
performance kernels on NanoXplore’s FPGAs and other FPGAs of the market with
similar architecture (mentioned as “3rd-party”), and we assess the software tools and
the underlying hardware.

The contribution of this chapter is summarized as follows:

(i) We highlight the bottlenecks that arise when immigrating to new FPGA tech-
nologies, as well as the significance of the systematic exploration of the tool
settings and device capabilities towards improved resource utilization and per-
formance.

(ii) We propose a methodology for the efficient deployment of high-performance
DSP kernels (developed on well-established technologies) on the programmable
logic of new FPGAs.

(iii) We propose a methodology for the assessment and testing of FPGA tools and
devices.

(iv) We evaluate NanoXplore’s new space-grade FPGAs as candidate on-board ac-
celerators for future space missions by testing all the relevant features and com-
paring them to well-established competitor devices.

The remainder of this chapter is organized as follows. Section 8.2 overviews the
market’s space-grade FPGAs and presents the new BRAVE devices and tools. Sec-
tion 8.3 introduces our design and assessment methodology. Section 8.4 presents the
CV kernels and reports issues and tool bugs that arose during their implementation
with the early tool versions. Section 8.5 conducts the experimental evaluation, which

IESA QUEENS1/QUEENS2/QUEENSS:
4000119331/17/NL/PS, 4000128041/19/NL/AR /va, 4000134874/21 /NL/AR /va
2Special thanks to Dr. G. Lentaris et al. from NTUA for providing the DSP hardware kernels.

166

8.2. Background

includes various FPGA results and comparisons. Section 8.6 demonstrates the exe-
cution of the CV kernels on the BRAVE hardware. Finally, Section 8.7 draws the
conclusions.

8.2. Background

8.2.1. The Landscape of Space-Grade FPGAs

Table 8.1 presents an overview of the most prominent space-grade FPGAs, including
the BRAVE ones. The Atmel FPGAs are omitted here due to their limited on-chip
resources. We note that Xilinx has recently announced a new space-grade FPGA,
named XQR Versal [346], which includes additional features such as ARM processors
and Al engines. The examined FPGAs can be categorized in three classes, with
each class including chips with similar resources but from different vendors, e.g.,
{Virtex-5QV, RTG4, NG-Large}. BRAVE is the only FPGA family that offers hard
embedded processors, facilitating hardware/software co-design. In terms of radiation
resilience, similar to Virtex-5QV, the advantage of BRAVE is their RH SRAM-based
chips. More specifically, they are fabricated with 12-transistor (12-T) configuration
memory cells outperforming the simple SRAM cells and competing with anti-fuse
and flash technologies. This is extremely important, considering that, for example,
Virtex-4QV would require full Triple Modular Redundancy (TMR) and configuration
memory scrubbing to achieve reliable operation.

Several of these FPGAs have been used in space missions [347-350]. More details
about their use in past, present and future missions can be found in our publication in
[319]. At research level, the space-grade FPGAs are being evaluated for the implemen-
tation of compute-intensive functions and novel space applications, while they are also
examined as part of co-processing architectures [330-332]. Next, we present some rep-
resentative research works involving space-grade FPGAs.

In [351], the CCSDS 1.2.3 standard for compressing hyperspectral images is imple-
mented on Virtex-4QV, achieving real-time compression for sensors such as AVIRIS
(680x512x224 image size), while utilizing 1/3 of the chip resources and consum-
ing limited power. Similarly, the Virtex-5QV and RTG4 FPGAs are used for the
implementation of the SHyLoC 2.0 CCSDS 121 and 123 lossless compression stan-
dards [334], providing up to 138 and 81 MSamples/s, respectively, for the AVIRIS sen-
sor. In [352], the authors implement a single-chip payload data processing unit on the
Virtex-5QV FPGA, which integrates both the instrument system supervisor and data
processing functions. The proposed architecture supports self-configuration manage-
ment and mitigation techniques to provide fault-tolerance. In [353], the new SCCC-X

167

DSP Acceleration with New Space-Grade FPGA Devices & Tools

Table 8.1: Overview of market’s space-grade FPGAs.

Vendor FPGA ‘ Rad. Resilience Technology TID / SEL'! Processor
Virtex-4QV Tolerant SRAM, 90nm 300 / 125 -
ﬂ;\\-&* Virtex-5QV Hard SRAM, 65nm 1000 / 125 -
RT Kintex US Tolerant SRAM, 20nm 100 / 80 -
& RTAX-S/SL Tolerant anti-fuse, 150nm 300 / 117 -
] g066 RTG4 Tolerant flash, 65nm 100 / 103 -
N RT PolarFire Tolerant SONOS, 28nm 100 / 80 -
\o@ NG-Medium Hard SRAM, 65nm 100 / 60 -

SFQ NG-Large Hard SRAM, 65nm 100 / 60 Cortex-R5
$‘b’0 NG-Ultra Hard SRAM, 28nm 50 / 60 Cortex-R52
Vendor FPGA ‘ Logic Cells Total RAM DSPs User I/Os SERDES?

Virtex-4QV 55—200K 4.1-99Mb 32-192 640-960 -
«1;\\@ Virtex-5QV 131K 12.3Mb 320 836 18@4.3CGbps
RT Kintex US 726K 38Mb 2.7K 620 32@12.5Gbps
& RTAX-S/SL 2-40K 0.05-0.5Mb 0-120 198-840 -
& RTG4 151K 5Mb 462 720 24@3.1Gbps
@& RT PolarFire 481K 33Mb 1.4K 584 24@10.3Gbps
\&% NG-Medium 34K 2.9Mb 112 566 -
0"}9 NG-Large 137K 10.1Mb 384 684 24@6.3Gbps
« NG-Ultra 536K 34Mb 1.3K 744 32@12.5Gbps
! Total ionizing dose in Krad (Si) and single-event latch-up immunity to linear energy transfer in
MeV-cm? /mg.

High-performance serialization/deserialization transceivers.

telemetry transmitter, which is an extension of the CCSDS 131.2-B-1 standard, is im-
plemented and evaluated on RT Kintex UltraScale and RTG4, delivering more than
450 MSym/s and 250 MSym/s, respectively. Very recently, radiation-tolerant FPGA-
based platforms for AI applications have gained momentum. In [354], the authors
propose a deep learning architecture for RT Kintex UltraScale, which is based on Xil-
inx’s deep learning processing unit and the TMR MicroBlaze subsystem. The authors
of [355] use the VectorBlox software development kit to deploy AI models on a matrix
processor implemented on the RT PolarFire FPGA.

The literature includes several works with the BRAVE FPGAs. In [356], the re-
configuration capabilities of NG-Medium via the SpaceWire interface are evaluated,
while in [325], benchmarking results for NG-Medium are reported, and re-configuration
scenarios with different algorithms are examined. Moreover, NG-Medium is used for
the implementation of dense stereo vision algorithms [329]. Regarding NG-Large, pre-

168

8.2. Background

liminary benchmarking results are provided in [357]. In [334], both NG-Medium and
NG-Large FPGAs are evaluated for hyperspectral image compression.

8.2.2. The NanoXplore Space-Grade FPGAs and Tools

The NG-Large FPGA

In this Dissertation, we focus on NanoXplore’s NG-Large FPGA, i.e., the second chip
of the BRAVE series, thus, we analyze its architectural details and most important
features. NG-Large is a radiation-hardened-by-design SRAM-based FPGA that is
manufactured on the 65nm STM C65-Space process technology [344]. Below, we ana-
lyze its fabric architecture, which is illustrated in Figure 8.1.

The NG-Large die features 7 rows of 48 Tiles, with a single Tile consisting of 384
4-input LUTs, 384 DFFs, 96 1-bit CYs, 24 X-LUTs, and 2 64x16-bit RFs. Each
Tile includes 384 Functional Elements (FEs), with a single FE integrating 1 LUT—
DFF pair and additional logic for CYs, X-LUTs and RFs. The CYs of NG-Large
combine 1 LUT with carry propagation logic to support up to 96-bit carry chain. To
allow the implementation of up to 16-input logic functions, 4 LUTs drive the inputs
of another LUT (called X-LUT) without routing through the interconnect network.
The RF of NG-Large is a synchronous dual-port SRAM with read-only and write-
only ports and optional output register. Furthermore, NG-Large features 4 rows
of 48 48-Kbit RAMBs and 4 rows of 96 DSPs. Each RAMB is a true dual-port
SRAM with optional output register and supports multiple memory configurations,
i.e., 48K x 1-bit, 24K x 2-bit, 12K x4-bit, 6K x8-bit, 4K x 12-bit and 2K x 24-bit, as well
as Error Detection and Correction (EDAC) configuration. A single DSP includes
a 19 x 24 multiplier, a 56-bit Arithmetic Logic Unit (ALU), an 18-bit pre-adder,
as well as pipeline registers. The DSPs operate either in signed or unsigned mode,
and can cascade up to 96 blocks. Finally, NG-Large includes 4 Clock Generators
(CKGs), one at each die corner. The CKG block includes 1 Phase-Locked Loop
(PLL) and 10 Waveform Generators (WFGs), i.e., frequency dividers. Moreover, it
has 4 High Speed Serial Links (HSSLs) of 6 lanes, providing up to 6.25 Gbps data
rate.

Overall, the total resources of NG-Large are summarized as: 137088 LUTs, 129024
DFFs, 32256 CYs, 384 DSPs, 192 RAMBs, 672 RFs, 4 PLLs. Compared to NG-
Medium, NG-Large is ~4x larger (NG-Medium has 34272 LUTs, 112 DSPs, 56
RAMBSs) [344]. Correspondingly, NG-Large is ~4x smaller than NG-Ultra.

169

DSP Acceleration with New Space-Grade FPGA Devices & Tools

[cka || HssL | Complex /O Banks |[HssL | cka |

48x Tile

48x RAMB
96x DSP

48x Tile

48x RAMB
96x DSP

48x Tile

48x RAMB
96x DSP

48x Tile

48x RAMB
96x DSP

| 48x Tile |

|E<G || HssL || Complex I/O Banks || HssL || cke|

|/O Banks

R5Core
[/O Banks

/O Banks || ConfigtF ||

Figure 8.1: The fabric architecture of NanoXplore’s space-grade NG-Large FPGA [343].

The NXmap Software Tool

NXmap is the design suite provided by NanoXplore to support all classical FPGA de-
velopment stages except for simulation, which is currently performed with 3rd-party
tools (ModelSim/QuestaSim). The tool supports both Verilog and VHDL hardware
description languages and includes functions for timing analysis and power estima-
tion. Tt is divided in two components: (i) the graphical interface, which allows the user
to compile existing projects, view the floorplan and inspect the implemented design,
(ii) the Python wrapper, which allows the user to build projects by compiling Python
scripts with the desired tool settings and functionalities.

The Python wrapper of NXmap supports the Python syntax and structures, and it
provides a plethora of NanoXplore routines/modules for each stage of the FPGA de-
velopment flow. These Python routines can be categorized as follows:

o Project-related: e.g., createProject, addFiles
o Tool-related: e.g., setOptions

170

8.2. Background

The

Mapping-related: e.g., createRegion, addRAMLocation
Stage-related: e.g., synthesize, generateBitstream
Board-related: e.g., addPads, addBanks
Timing-related: e.g., createClock, addFalsePath

NXmap routines take numerous arguments as input, providing a wide range

of functionalities. NXmap also offers routines for monitoring the design flow and

defining the verbosity of the reports. A Python code snippet demonstrating some
basic NXmap functionalities is attached in Code 8.1.

project creation

project = createProject(my_directory)
project.setVariantName (’NG-LARGE’)
project.setTopCellName (’top_module’)

project.addFiles ([’ top_module.vhd’, ’designl.vhd’, ’design2.vhd’])

general tool settings

project.setOptions ([’MappingEffort’: ’Medium’,
’RoutingEffort’: ’High’,
’DisableDSPRegisters’: ’Yes’,
’DefaultROMMapping’: ’LUT’,
’ManageUnconnectedOutputs’: ’Ground’])

custom mapping targets

project.addMappingDirective (’getModels (.*mult.*)’, ’MUL’, ’DSP’)
project.addMappingDirective (’getModels (add_9u_9u)’, ’ADD’, ’CY’)
custom mapping locations

project.addDSPLocation(’*mult_L267*’, ’CGB[1x8]:L7)
project.addRAMLocation (’*RAM_INSTO*’, °CGB[48x20]7)

clock constraint
project.createClock (’getClockNet (clk)’, ’clk’, 40000)

I/0 signals and pads pairing
project.addPad(’clk’, {’location’:’I0_B18D0O2P’,

’standard’:’LVCMOS’, ’drive’:’2mA’})

project save
project.save(’project.nym’)

synthesis
project.synthesize ()
project.save(’synthesis_netlist.vhd’)

place
project.place ()
project.save(’place_netlist.vhd’)

route
project.route ()

171

DSP Acceleration with New Space-Grade FPGA Devices & Tools

project.save(’route_netlist.vhd’)

reports
project.reportPorts ()
project.reportInstances ()

static timing analysis
analyzer = project.createAnalyzer ()
analyzer.launch ()

bitstream generation
project.generateBitstream(’bitstream.nxb’)

Code 8.1: Example of Python script for building an FPGA project in NanoXplore’s NXmap tool.

8.3. Design & Assessment Methodology

In this section, we introduce a methodology for deploying DSP kernels on BRAVE FP-
GAs, as well as for assessing the capabilities of the tools and chips. Our methodology
regards the three main stages of the typical FPGA design flow, i.e., synthesis, place
& route (implementation), and bitstream generation & configuration. Currently, the
methodology is executed manually by the developer, however, some segments, such
as the exploration of the tool settings via Python scripting, could be performed in an
automatic fashion. Moreover, this methodology is generic, namely it can be adopted
to test/evaluate other FPGAs or facilitate the development with new devices and
tools.

8.3.1. Synthesis of the Design

From the tool assessment perspective, our synthesis-related methodology aims to:

(i) Test the correct functionality of all the tool settings, attributes, and strategies
by examining if they apply the expected functionality and if the output results
of the post-synthesis simulation remain correct.

(ii) Evaluate the quality of results for different tool configurations by comparing
the resource utilization of the respective synthesis netlists.

(iii) Evaluate the capability of the tool’s synthesizer to efficiently map the input
design on the FPGA blocks by examining the resource utilization compared to
the expected (theoretical) one.

(iv) Rate the resource utilization via systematic comparisons to 3rd-party devices/-
tools that are already established in the market.

172

8.3. Design & Assessment Methodology

From the efficient DSP deployment perspective, given a kernel developed in Hardware
Description Language (HDL), our methodology aims to:

(i) Quantify the expected resource utilization of the kernel based on well-established
state-of-the-art 3rd-party devices/tools.

(ii) Extract the tool configurations that result in the most efficient synthesis netlists.

(iii) Resolve the issues that arise from the tool’s “immaturity” (recently released
tool) or because the kernel was initially developed in other vendor’s technology.

The part of our methodology targeting to synthesis is illustrated in Figure 8.2. It
is divided into three main phases: the parametric configuration of the DSP kernels,
the tool-level exploration, and the HDL-level exploration. Initially, we adapt the
algorithmic parameters of the DSP kernel with respect to the features of the targeted
BRAVE FPGA (e.g., resources, architecture of FPGA blocks), and we run syntheses
on 3rd-party tools. To be more specific, we configure parameters such as the size of the
input image, the size of the convolution masks, the data bit-width, the accuracy of the
calculations, and the parallelization factor. For example, the bigger BRAVE devices
can handle larger input images and/or increased parallelization. The next two phases
aim to generate an efficient error-free synthesis netlist.

In the phase of the tool-level exploration, we perform a preliminary synthesis with
the default tool settings to retrieve the “default” reports and detect potential issues.
This step is also considered as test for the synthesizer’s capability to automatically
balance the resource utilization and generate an error-free netlist. Next, we explore
all the available synthesis-related settings and assess their capability to produce a
synthesis netlist according to the developer’s choices and preferences. Indicatively,
we test tool settings regarding the mapping effort of the synthesizer, the mapping
target of the arithmetic/memory components, the DSP utilization ratio, the register
duplication, and the style of the finite-state machine encodings. The settings are
applied in both standalone and combinatorial fashion. In case of error or unexpected
tool behaviour, we report the issue (to be resolved, if possible, via an alternative
tool configuration or HDL coding). The resource utilization of the most prominent
synthesis netlists is compared with that of the 3rd-party tools. In case spikes are
observed, we apply different tool settings or we move on to the next phase of our
methodology.

In the phase of the HDL-level exploration, we recursively decompose the kernel to
smaller building blocks and test them individually. This step is very important in
our methodology, as it provides an in-depth investigation of various optimization is-
sues and/or errors, which, otherwise, would be very difficult to be detected in the
entire kernel. This low-level exploration uses standard template-based coding and

173

DSP Acceleration with New Space-Grade FPGA Devices & Tools

DSP HW
Kernel

[Kernel Parametric || ™ .
Configuration) \ .
! ™

3rd Party Synthesis

Resource I
Utilization

Requirements?

no
Tool-Level yes ‘
Exploration I !
NXmap Synthesis Deselines i
- (default settings) Utilization|H i
Synthesis ilization [} i
. T 1
Settings v i
. Tool N
NXmap Synthesis lssues LH AN
(tailored settings) S
Tool Exploration - o\\cﬁ\f’/ /: .“
yes (opt. 1) c;'{t\‘_, -~ ,’/ '
yes(opt.2) ~_ _— T > . i
& g8
o g8
[3“’ Party Comporison} & c"? S
NN
yes (opt. 1)

Kernel Netlist
Simulation

HDL-Le\{el —{Kernel Decomposition]
Exploration T
—)[HDL Tuning
!
NXmap Synthesis

I}
Block Netlist

Simulation

no @ Place & Route

yes

Tool/HDL-Level
Exploration

Figure 8.2: Methodology for the synthesis of DSP kernels on the new BRAVE FPGAs.

174

8.3. Design & Assessment Methodology

attributes/directives to express memories, finite-state machines, and arithmetic com-
ponents, as well as vendor-specific HDL templates (i.e., from NanoXplore in the
present case). In this phase, for every new or modified building block, we perform
synthesis and functional verification via post-synthesis simulation. If we identify a
type of HDL coding that generates improved results or resolves one of the arisen is-
sues, we adopt it and return to the tool-level exploration to examine the entire kernel
(also in comparison with the 3rd-party tools).

In case neither tool-level nor HDL-level exploration can provide a solution in issues
such as critical tool error, resource over-utilization, and unsuccessful verification, our
methodology includes feedback loops (red dashed lines in Figure 8.2). The developer
can use them to return to the first phase to re-customize the algorithmic parame-
ters, and then perform the tool-level and HDL-level exploration with a new kernel
configuration.

8.3.2. Placement & Routing of the Design

A similar methodology is developed for the place & route (implementation) stage.
This methodology, illustrated in Figure 8.3, inputs the error-free synthesis netlist of
the DSP kernel and performs a performance-wise tool exploration, targeting to pro-
vide the best possible clock frequency. Like in synthesis, we perform a preliminary run
with the default settings, and then start the exploration with tailored tool configura-
tions. In our exploration, we employ all the settings related to the implementation,
i.e., placement/routing and physical constraints.

In this phase, at first, we perform location-specific placements by specifying mapping
regions on the FPGA floorplan, either at fine-grained (LUTs, DFFs) or coarse-grained
(Tiles/FEs, DSPs, RAMBS) level. In parallel, we examine the efficiency of the more
general placement settings, e.g., the placement effort. Regarding the routing con-
straints, we stress the implementation towards performance and increased routing
congestion. Namely, we employ all the available timing constraints (e.g., clock con-
straint, timing driven option, options for setting false path or max delay) and rout-
ing settings (e.g., router effort, router mode). We note that we combine these tim-
ing/routing settings with different placement constraints. For every combination of
settings, our performance-wise tool exploration examines the Static Timing Analysis
(STA) reports to identify the most efficacious tool settings.

Our methodology involves systematic comparisons with the 3rd-party tools and func-
tional and timing verification via post-place and post-route netlist simulations, as well
as floorplan inspection for verification purposes. Moreover, we include feedback loops
(red dashed lines in Figure 8.3) to return to synthesis if this stage cannot provide solu-
tion to issues such as critical tool error or unsuccessful verification. As synthesis and

175

DSP Acceleration with New Space-Grade FPGA Devices & Tools

Synthesis

I
Performance-Wise i
———] II
Exploration NXmap P&R Resources |
(default settings) Clock |H '
I —

Tool A

NXmap P&R lssues LH ',/ A

(tailored settings) —

—” 1
jon &———_Tool Error? > __.----"~ a\C' Il

Tool Exploration e /o

II 0

III §

S

H / KO i
Clock Evaluation S & .
AR (] |
AN :
,,’ . OC R i
R !
P :
Next Setting? >>------"" \3§ |
3 o
no 5&
&5
i 0.0 i
[3rd Party COmpamsonJ $&

IS

SN

= m g Kernel Netlist

1
1
1
1
]
1
1
1
1
{
Timing Simulation | !
]
1
1
1
1
1
I
1
1

Performance-Wise no Y,
Exploration

Bitstream
Generation

Figure 8.3: Methodology for placing & routing DSP kernels on the new BRAVE FPGAs.

place & route are tightly coupled, i.e., different synthesis netlists may lead to different
place & route results, we can also return to synthesis and generate a new netlist in
case of issues with performance or resource utilization.

8.3.3. Bitstream Generation and Hardware Execution

The final step of our methodology is to examine the bitstream generation, the FPGA
configuration/programming, and the actual hardware execution. For these purposes,

176

8.3. Design & Assessment Methodology

P&R
Netlist
J —
Bitstream ~ NXmap :
Settings Bitstream Generation Size |||
l L
- X Tool
Tool-Level Bitstream Size lssues -
Evaluation Evaluation L

l

'_I:
Program. BRAVE)
Ttertres Configuration Speed |||

| —
- - Tool
Configuration Speed lssues -
Evaluation
FPGA-Level BRAVE

Evaluation Hordwore Execution

Groundtruth Hordwcre Execution
Results Evaluation
Synthesis / no
Place & Route

yes

Hardware I
Issues

Finish

Figure 8.4: Methodology for the bitstream generation and hardware execution of DSP kernels on
the new BRAVE FPGAs.

we employ the methodology illustrated in Figure 8.4. More specifically, for different
relevant tool settings, we examine the correct functionality of the bitstream, the
bitstream size, and the programming speeds via the available configuration interfaces
(e.g., JTAG, SpaceWire, EPROM). The examination of the bitstream size and the
programming speed is essential, considering that an application may require multiple
bitstreams, e.g., a space mission storing on-board different bitstreams/algorithms
and interchanging between them. Regarding the chip configuration, we also examine
the correct functionality of the FPGA after multiple successive re-configurations, as
in real-world scenarios (like in space missions), it may be required to reprogram
the FPGA several times, even in a very short period of time. Finally, we perform
hardware executions to verify the correct implementation of the DSP kernels on such

177

DSP Acceleration with New Space-Grade FPGA Devices & Tools

new chips like the BRAVE FPGAs. The validation of the results is performed by
comparing the FPGA outputs with ground-truth data obtained from behavioral or
post-place-&-route netlist simulations.

8.4. Porting of Computer Vision Kernels on the
NG-Large FPGA

8.4.1. CV Kernels for Feature Detection and Depth Extraction

Based on our methodology, we accelerate CV hardware kernels from past ESA activi-
ties [326-329] on the space-grade NG-Large FPGA. In particular, we employ HDL ker-
nels for feature extraction (image edges and corners), i.e., Canny Edge Detector [326]
and Harris Corner Detector [327], as well as stereo matching (depth extraction in 3D
scene reconstruction), i.e., GAD-Disparity [328] and Spacesweep [329]. These kernels
impose increased requirements in calculations and memory resources, stressing the
new tools and devices towards efficient and high-performance deployment. Their de-
velopment was performed in parametric VHDL code, and thus, at compile time, we
can change various parameters, e.g., the input image size, the datapath bit-width, or
certain parallelization factors, as required by our methodology (see Figure 8.2). Next,
we present in brief one kernel from each CV class:

o Harris Corner Detector [327]: The kernel inputs a grayscale image and outputs a
set of “corners”, i.e., the coordinates of the most salient features depicted in the
image. The image is divided in horizontal stripes, which are processed succes-
sively in the FPGA by resource reusing. Functionally, in a loop over all pixels,

the kernel employs Gaussian-smoothed products of image derivatives to define an
auto-correlation matrix, whose eigenvalues capture the principal intensity changes
in the examined point’s neighborhood. Corners are detected on pixels whose “cor-
nerness” is sufficiently high and exceeds that of its neighboring pixels in a 3 x 3
region (via non-maximum suppression). All these operations are implemented via
a succession of deep, fine-grained, pixel-based pipelines connecting memories that
store intermediate results.

o GAD-Disparity [328]: The kernel inputs a pair of stereo images and outputs a
two-dimensional disparity map, which can be transformed to depth map via simple
calculations involving the focal length and baseline of the camera. The images are
divided in horizontal stripes, which are processed in the FPGA by resource reusing.
In an iterative fashion, by implementing an outer loop over all examined disparities

and an inner loop over all pixels, the kernel matches all 7 x 7 image blocks between
images by minimizing a Gauss-aggregated sum of absolute differences. The on-chip

178

8.4. Porting of Computer Vision Kernels on the NG-Large FPGA

memory is mostly used to store the pixels and their corresponding intermediate
aggregated values that are continuously compared/updated. On the other hand,
the on-chip logic is mostly used to calculate the Gauss-aggregated values.

8.4.2. Implementation Details and Issues

The initial porting of the CV kernels on NG-Large generated many tool issues and
unoptimized results. More specifically, functional errors appeared due to the HDL
description of the kernels, which was based on other FPGA technologies. Moreover,
the tool reported unbalanced or increased resource utilization and low clock frequency
due to its “immaturity” (newly released tool). Next, we report some representative
issues that appeared during the implementation. However, we note that most of them
have been resolved either by newer tool versions or via custom tool configuration and
alternative HDL coding.

One of our first issues was with the HDL description of the dual-port memory banks.
The memory core of NG-Large’s RAMB and RF is not read-first, thus, we had to add
registers to pipeline the write data/address, and also perform the write operation on
the falling edge of the clock. This issue was not reported by the tool, however, after
investigation based on our methodology, we managed to isolate the corresponding
components and detect the memory problem via post-synthesis simulation. Another
incidence occurred regarding the recognition of the ROM memories. The tool always
mapped our ROM arrays (declared as constant in VHDL) onto the LUTs, even when
specifying a different mapping target, i.e., RAMB/RF. Therefore, we used the VHDL
signal in the description of our ROMs. This issue was not functional, however, it
did not allow us to deliver the desired resource optimizations, while it was difficult to
detect. Moreover, we note that the tool could not implement very large multiplications
onto the DSPs via cascading, thus, in certain cases, we had to modify the HDL
code and split the multipliers into smaller ones (or alternatively map them onto
CYs).

Regarding the mapping of the CV kernels on the underlying hardware, we observed
several ineflicient tool choices. Indicatively, we mention that the tool did not employ
the internal registers of the DSPs and RAMBs and used the DFFs of the FEs (e.g.,
to implement the registers before a multiplication or after the memory output). In
addition, the tool did not use all the available memory configurations to efficiently map
our RAM components onto the RAMBs, resulting in large fragmentation. Finally, we
note that the tool did not exploit the CY at all (e.g., for additions), resulting in DSP
over-utilization and decreased performance.

Nevertheless, we note again that all the functional issues have been resolved and the
CV kernels are successfully implemented, while in terms of mapping efficiency, the

179

DSP Acceleration with New Space-Grade FPGA Devices & Tools

tool is continuously improving. In any case, we report indicative issues that arose
during the implementation to highlight the difficulty of using new tools for FPGA
design, as well as to indicate the significance of accompanying the development with
a methodology.

8.5. Evaluation

8.5.1. Experimental Setup

The experimental evaluation is conducted at two levels: (i) at tool level, where we eval-
uate the NXmap settings and examine the resource utilization of the CV kernels, and
(ii) at hardware level, where we evaluate the chip’s maximum frequency, the through-
put of the CV kernels, and the configuration speeds/sizes of the bitstreams. Overall,
we report various experimental results for the acceleration of the CV kernels on NG-
Large, and we also directly compare them to the results obtained by well-established
FPGA tools and devices (mentioned as “3rd-party”).

From NanoXplore, besides NG-Large, which is our targeted FPGA device, we also
employ its predecessor NG-Medium for comparison purposes. Regarding the 3rd-
party FPGAs, we employ Xilinx Virtex-5QV XQR5VFEFX130 and Microsemi RTG4
RT4G150 (see Table 8.1), but we also use Cyclone III EP3CLS150 of Intel [358]. Even
though the latter is not a space-grade chip, it provides similar characteristics with NG-
Large (i.e., 65nm SRAM-based, 150K LUT4s, 150K DFFs, 666 9-Kbit RAMBSs, 320
DSPs) and Intel is considered a well-established vendor in the FPGA market. In terms
of tools, we use NanoXplore NXmap v3.5.0.4 and the 3rd-party development suites
(Xilinx Vivado, Intel Quartus, Microsemi Libero).

The functional kernel verification is performed via post-synthesis simulations, post-
place-&-route simulations, and actual hardware execution on realistic datasets. We
use images depicting rocky Martian terrains or satellites for Harris and Canny, and
synthetic stereo images depicting a rover’s view on Martian terrain for GAD-Disparity
and Spacesweep. As discussed in our methodology, we compare the outputs with the
groundtruth results of the behavioral simulations.

8.5.2. Design Space Exploration on Market’s FPGA Vendors

Before porting the CV kernels on NG-Large, we perform a design space exploration on
3rd-party tools/devices, as indicated by our methodology (see Figure 8.2). The goal is
to determine the most suitable kernel configuration according to NG-Large’s capacity,
but also, to extract baseline results for evaluation purposes.

180

8.5. Evaluation

10° ¢

=== NG-Large
. —e— Virtex-5QV
§° —e— Cyclone I
~ —eo— RTG4
<
il
o
_|
o
a
<
=
<
o
cl 2 3 4 5 cb
Kernel Configurations
(2)
=== NG-Large
10° | | —— Virtex-5QV
% —e— Cyclone Il
Ke) —o— RTG4
=
S 104 |
O
1
@ 0.8
5
X 06
= |
2 04
o
0.2 1

cl 2 3 4 5 c6
Kernel Configurations

(©)

DSP

RAM (Kbits)

DSP

RAM (Kbits)

=== NG-Large
—e— Virtex-5QV
—e— Cyclone Il
—e— RTG4

384 +

c‘l cé cé c;l 55 cé
Kernel Configurations

(b)

=== NG-Large
—o— Virtex-5QV
—e— Cyclone Il
—o— RTG4

cl 2 c3

c4 5 cb

Kernel Configurations

(d)

Figure 8.5: Design space exploration on FPGA vendors: synthesis results for (a) Canny Edge
Detector [326], (b) Harris Corner Detector [327], (c) GAD-Disparity [328], (d) Spacesweep [329].

Figure 8.5 illustrates the resource utilization from the synthesis of 6 different kernel
configurations with the 3rd-party tools. These diverse configurations impose different

181

DSP Acceleration with New Space-Grade FPGA Devices & Tools

constraints in calculations, datapath and input sizes, in an effort to stress the tools in
both logic and memory. We note that Virtex-5QV has 6-input LUT while the other
FPGASs have 4-input LUTs. To make a fair comparison, we rely on our experiments
and statistically use LUT4 = 1.5xLUT6 for Virtex-5QV. Moreover, as each FPGA
has different RAMB size, we present the total RAM in Kbits. As explained, even
though our goal is not to compare the 3rd-party tools, we perform similar scaling in
all FPGA vendors. This is quite evident in the scaling of the RAM resources of all CV
kernels. The LUT and DSP utilization are tightly coupled, and they also depend on
the strategy of each vendor regarding the mapping of the arithmetic/logic operations.
Nevertheless, we observe some spikes, e.g., in the LUT utilization of Cyclone III for
Canny (Figure 8.5a) and Harris (Figure 8.5b), and the RAM of RTGA for Canny
(Figure 8.5a) and Disparity (Figure 8.5¢).

Following our 3rd-party exploration, we configure the CV kernels as shown in Table 8.2
to port them on NG-Large. For example, Harris inputs a 1024 x 1024 8-bit image, par-
titioned in 1024 x 32 pixel stripes (image divided into 32 such blocks), performs convo-
lutions with 7x7 14-bit masks, and outputs 32-bit corners.

8.5.3. Experimental Results
Evaluation of NXmap Tool

In this section, we evaluate the implementation of the CV kernels on NG-Large and
present results from our exploration in the NXmap synthesis and place & route stages.
We remind that for the default runs we do not modify any tool settings, while for the
tailored runs we apply custom tool settings. Moreover, we note that our tailored tool
configurations were more important in earlier versions of NXmap, which provided un-
optimized results (see Section 8.4.2). In the examined tool version, the default results
have been greatly improved compared to previous versions.

The upper/lower part of Table 8.3 presents the NG-Large utilization of synthesis with
the default/tailored NXmap settings. Towards more balanced resource utilization, as
indicated by our methodology (see Figure 8.2), we share the arithmetic operations
between DSPs and CYs using the corresponding NXmap routines. For example, the
majority of Harris multiplications are mapped onto CYs instead of DSPs in the default
synthesis. As a result, in the tailored synthesis, we achieve a balanced utilization i.e.,
from 43% CY and 8% DSP to 23% CY and 22% DSP. For Disparity, the default
settings deliver the same resources with our custom settings that balance the DSP
and CY utilization. For Spacesweep, the tool maps by default the small memories onto
RFs, thus, it is capable of making decisions with respect to the memory size. However,

182

8.5. Evaluation

Table 8.2: Final configuration of computer vision kernel’s algorithmic parameters.

Data Mask
Kernel Img Size Img Partition I/O Bits Size Bits
Canny Edge Detector [326] 1024 x 1024 - 8/4 3x3 8x3
Harris Corner Detector [327] 1024 x 1024 1024 x 32 8/32 TxT7 8x14
GAD-Disparity Stereo Vision [328] 1024 x 1024 1024 x 32 8/10 TxT 8x7
Spacesweep Stereo Vision [329] 1024 x 1024 1024 x 16 8/32 13x13 8x8

Table 8.3: Synthesis’ resource utilization of computer vision kernels on NG-Large FPGA.

Default Tool Settings®

Kernel

LUT DFF cYy DSP RF RAMB

Canny 1845 (2%) 2348 (2%) 1167 (4%) 2 (1%) 0 (0%) 177 (93%)

Harris 6210 (5%) 16398 (13%) 13794 (43%) 27 (8%) 0 (0%) 69 (36%)

Disparity 1000 (1%) 3628 (3%) 4548 (15%) 4 (2%) 0 (0%) 85 (45%)

Spacesweep 5500 (5%) 10222 (8%) 6277 (20%) 50 (14%) 8 (2%) 74 (39%)
Tailored Tool Settings?

Kernel LUT DFF cYy DSP RF RAMB
Canny 1845 (2%) 2299 (2%) 1086 (4%) 4 (2%) 0 (0%) 177 (93%)
Harris 6110 (5%) 15304 (12%) 7112 (23%) 81 (22%) 0 (0%) 69 (36%)
Disparity 1000 (1%) 3628 (3%) 4548 (15%) 4 (2%) 0 (0%) 85 (45%)

Spacesweep 5499 (5%) 10222 (8%) 6277 (20%) 50 (14%) 0 (0%) 79 (42%)

* %: utilization of NG-Large (137K LUTs, 129K DFFs, 32K CYs, 384 DSPs, 672 RFs, 192 RAMBs).
! Previous NXmap tool versions did not utilize CYs by default, and we had to share the arithmetic

operations between DSPs and CYs to balance the utilization for our tailored synthesis.

2 Tailored tool settings selected towards the best possible clock frequency (see Table 8.4).

we force the tool to use RAMBSs even for these small memories, because according to
our experiments, it results in better clock frequency.

Before proceeding to place & route, we examine how our mapping choices affect the
clock frequency. Canny and Harris achieve better clock frequency when using the
DSP for their multiplications. Therefore, as in Harris, we map the few multipliers of
Canny onto the DSPs. On the other hand, Disparity and Spacesweep achieve better
timing when the default mapping is used, as the custom mapping decreases the clock
frequency by 5%. As a result, we do not adopt the custom mapping in these kernels
and tune only the settings of place & route.

Next, we proceed with the place & route stage, where we apply our performance-

183

DSP Acceleration with New Space-Grade FPGA Devices & Tools

Table 8.4: Implementation’s resource utilization of computer vision kernels on NG-Large FPGA.

Default Tool Settings

Kernel LUT DFF cYy DSP RAMB MHz
Canny 1844 (2%) 2412 (2%) 1167 (4%) 2 (1%) 177 (93%) 35
Harris 6205 (5%) 16516 (13%) 13794 (43%) 27 (8%) 69 (36%) 31
Disparity 994 (1%) 3664 (3%) 4548 (15%) 4 (2%) 85 (45%) 47

Spacesweep 5493 (5%) 10280 (8%) 6277 (20%) 50 (14%) 74 (39%) 51

Tailored Tool Settings

Kernel LUT DFF cY DSP RAMB MHz
Canny 1843 (2%) 2349 (2%) 1086 (4%) 4 (2%) 177 (93%) 38
Harris 6105 (5%) 15413 (13%) 7112 (23%) 81 (22%) 69 (36%) 40
Disparity 998 (1%) 3672 (3%) 4548 (15%) 4 (2%) 85 (45%) 50

Spacesweep 5458 (5%) 10276 (8%) 6277 (20%) 50 (14%) 79 (42%) 52
" %: utilization of NG-Large (137K LUTs, 129K DFFs, 32K CYs, 384 DSPs, 192 RAMBS).

wise tool exploration (see Figure 8.3). The upper/lower part of Table 8.4 presents
the NG-Large utilization of place & route with the default/tailored NXmap settings.
Firstly, we observe that the memory and arithmetic resources, i.e., RFs/RAMBs and
CYs/DSPs, remain equal to those reported by synthesis. Moreover, the variations in
resources for tuning the place & route settings (DensityEffort, CongestionEffort,
PolishingEffort, RoutingEffort, BypassingEffort) are negligible for all the ker-
nels, i.e., £10 LUTs. In terms of performance, all the kernels achieve better clock
frequency by modifying some of the default settings. We combine different options
for the aforementioned tool settings and report those that provide the maximum fre-
quency according to NXmap’s STA. For Canny, the PolishingEffort setting is set
to “high” rather than “medium”, providing an increase of 2.7MHz. For Harris, the
PolishingEffort setting is set to “low” rather than “medium”, giving an increase
of 9.5MHz. For Disparity, the PolishingEffort setting is set to “low” rather than
“medium” and the DensityEffort to “medium” rather than “low”, delivering an in-
crease of 2.6MHz. For Spacesweep, the CongestionEffort setting is set to “medium”
rather than “high”, delivering an increase of 0.7MHz. These gains in the clock fre-
quency may be considered limited, but as we show in the next section, they are still
important towards improving the throughput of the CV kernels. Moreover, we note
again that our tool exploration provided significant gains in the initial tool versions,
i.e., up to 3x frequency improvement.

Overall, with respect to the reported resource utilization, we conclude that the
NXmap tool maps the CV kernels as expected. Considering that these kernels im-

184

8.5. Evaluation

pose diverse memory requirements, the tool correctly employs several of the available
RAMB configurations, e.g., 24K x2 and 12K x4. As a result, reasonable RAMB uti-
lization is derived for 1024-pixel-wide images, ranging from 36% (Harris) to 93%
(Canny). Canny utilizes almost all the on-chip RAM resources, as it receives the
entire image and operates in burst mode, contrary to the other kernels that input
image stripes. Regarding the arithmetic and logic components of the kernels, NXmap
successfully recognizes, reports, and maps all the arithmetic operators, finite-state
machines, and logic functions.

Evaluation of NG-Large’s Performance, Power and Configuration

Table 8.5 reports the performance results for the kernels (clock frequency, latency for
one input frame and throughput). The throughput metric excludes I/O and refers
only to processing, i.e., the single execution of the kernel. For the feature detection
kernels, we measure the Frames Per Second (FPS), while for the depth extraction
kernels, we employ the MPixel Disparities per Second (MPDS), which is a metric
combining both resolution and performance. The results show that NG-Large pro-
vides sufficient performance for 1-MPixel image, taking into account the requirements
of the corresponding VBN space applications. The time required for a complete re-
construction using Disparity and Spacesweep could improve the conventional depth
extraction of Mars rovers by 1 order of magnitude (in terms of resolution and speed).
We note that in the tested configuration, Spacesweep examines 3x more depth levels
than Disparity (300 versus 100), and thus, it provides much higher accuracy. Fur-
thermore, given that most VBN pipelines require 1-10 FPS, we conclude that the
throughput of Canny and Harris, which is 5.3 FPS and 10 FPS, respectively, leaves
enough room for the complementary components of an algorithmic chain to finish on
time. Regarding the power consumption of NG-Large, we report a detailed analysis
in [319]. In brief, the static power (when the FPGA is not programmed) is 2W, while
the dynamic power varies, as it depends on the resource utilization (e.g., it is ~200mW
when utilizing 10K FEs or 200 DSPs, and ~40mW when utilizing 150 RAMBs). Based
on our power measurements and analysis in [319], we report a power estimation in
Table 8.5, which, however, regards only the resource utilization and does not take
into account the I/Os, interconnections, and switching activity. When considering
these parameters, the power consumption of NG-Large lies around the typical FPGA
values for such high-performance DSP workloads.

In Table 8.6, we report the bitstream size of each kernel and the time required for
NG-Large to be programmed via JTAG operating at 8MHz. According to the results,
the configuration time of NG-Large is almost proportional to the bitstream size. In
particular, the JTAG interface programs the chip with a rate of 452 KB/s for Canny,
389 KB/s for Harris, 381 KB/s for Disparity and 399 KB/s for Spacesweep. The

185

DSP Acceleration with New Space-Grade FPGA Devices & Tools

Table 8.5: Performance and power of computer vision kernels on NG-Large FPGA.

Kernel Clock Latency Throughput’ Power?
(MHz) (s/frame) (FPS) | (MPDS) (W)
Canny 38 0.10 10 2.3
Harris 40 0.19 5.3 2.5
Disparity 50 6.7 18 2.3
Spacesweep 52 10.8 29 2.4

1 Excluding I/O: FPS for Harris and Canny, MPDS for Disparity and Spacesweep.
2 Estimation based on the static FPGA power and the dynamic resource power (without
taking into account the I/Os, interconnections and switching activity).

Table 8.6: Results from the configuration of the computer vision kernels on NG-Large FPGA.

Bitstream Size Configuration Time' Configuration Rate
Kernel
(KB) (s) (KB/s)
Canny 2669 5.9 452
Harris 1751 4.5 389
Disparity 1563 4.1 381
Spacesweep 1719 4.3 399

L FPGA configured via JTAG using Intel Core i7-4500UQ@1.80GHzx4, 8GB RAM.

bitstream of Canny is around 1MB larger than that of the other kernels, which is due
to its 93% RAMB utilization, and thus, it requires more time to be configured. The
configuration times can be greatly improved by using the SpaceWire interface, which
can operate up to 400 Mbps. Furthermore, we observe that the size of the NG-Large
bitstream is not fixed, like in other 3rd-party FPGAs, where the bitstream size is
pre-determined regardless of the design size and complexity. This is an advantage of
NG-Large, considering that in space missions various bitstreams are stored on-board.
These bitstreams implement either different kernels (in case of algorithmic pipelines)
or multiple variants of the same kernel (e.g., performance-wise and accuracy-wise vari-
ants). In this context, our work in [325] discusses adaptive scenarios in space applica-
tions that require multiple bitstreams to be configured. The same work also evaluates
the reconfiguration capabilities of NanoXplore’s NG-Medium based on the expected
reconfiguration rates of the space applications.

8.5.4. Comparative FPGA Evaluation

In this section, we compare the implementations of the CV algorithms on NG-Large
with those on other FPGAs (Virtex-5QV, Cyclone III, RTG4, NG-Medium). Our goal

186

8.5. Evaluation

is to evaluate the BRAVE tools and devices by comparing them to well-established
and more mature solutions in the space domain that exist in the market for much
longer. Moreover, we compare NG-Large with NG-Medium in order to evaluate the
evolution of the space-grade BRAVE FPGAs.

Comparison to 3rd-Party FPGAs

For Canny, NXmap provides LUT utilization that is comparable to that of the 3rd-
party tools, i.e., LUTs are increased by only 6%. However, we note that if we also
consider the route-thru LUTs that are consumed due to CY utilization, the LUTs are
increased by 48%. The DFF resources are increased by almost 50% in NG-Large.
This huge increment is due to not utilizing the internal registers of RAMBs (given
that the RAMB utilization is 93% and our memories include registers). In terms
of DSPs, NXmap utilizes the same resources with the 3rd-party tools, while it is
more efficient in the utilization of the memory resources (considering the RAMB size
difference between devices). Overall, we consider the Canny resources as reasonable,
taking into account that it almost fills up all the RAMBSs, and thus, the tool is stressed
to provide efficient mapping for the rest resources. For Harris, NXmap provides a
good LUT utilization, i.e., 3.2x less LUT versus the average 3rd-party value. When
considering the pass-thru LUTs for the CY utilization, the total number of LUTs
increases, but it is still comparable with the 3rd-party value. Moreover, the LUT
utilization should be examined along with the number of employed DSPs, for which
NXmap utilizes 1.5x less. Regarding the memory resources, NXmap delivers 56%
less RAMBSs, while the total RAMB Kbits consumed are less than the average 3rd-
party value. Similar results are observed for the other two CV kernels. For Disparity,
NXmap provides promising LUT utilization, as it employs a small number, even when
considering the CY resources. Regarding RAM resources, NXmap is below the 3rd-
party value in both blocks and Kbits. For Spacesweep, NXmap provides small LUT
utilization, which is better by 52% compared to the other tools, and almost the same
when considering the CYs. The DFF utilization is also better by 5%, while the DSP
and RAMB utilization is excellent, as NXmap outperforms the average 3rd-party
values by 20% and 30%, respectively.

Comparison to the NG-Medium FPGA

Next, we compare NG-Large against its predecessor, i.e., NG-Medium, to evaluate
the progress of BRAVE devices and examine if NG-Large provides significant ad-
vantage due to being 4x bigger in resources. We implement the same kernels on
NG-Medium, initially configured as shown in Table 8.2, and we apply the final tai-
lored tool settings that provided the best frequency on NG-Large. We note that we

187

DSP Acceleration with New Space-Grade FPGA Devices & Tools

do not change the algorithm of the kernels, namely, the same HDL sources are im-
plemented in both devices. Only in case of resource over-utilization or unexpected
tool issue in NG-Medium, we modify either the kernel parameters (e.g., use smaller
input image) or the tool settings (e.g., apply different mapping). Table 8.7 reports
the resource utilization in both BRAVE FPGAs. As expected, the memory resources
of NG-Medium force us to modify the parameters in all kernels. More specifically,
in Harris and Disparity, we decrease the height of the input image stripe by 4x and
2%, respectively, while in Canny and Spacesweep, we decrease the size of the entire
image by 4x (from 1024 x 1024 to 512 x 512). The derived results show that, even
though the designs of NG-Large regard inputs with larger size, its resource utiliza-
tion percentage is significantly better, leaving room for implementing complementary
HDL components, increasing the parallelization, or serving even bigger input im-
ages.

In Figure 8.6, we report the latency improvement in NG-Large compared to NG-
Medium. Harris in NG-Large is better by 4.6, as the clock frequency is increased
by ~4x, and NG-Medium has to process 4x more (smaller though) image stripes.
Canny achieves better clock frequency and execution time in NG-Medium, but for
the 1/4 of NG-Large’s input image. To serve an 1024x1024 image, it will have to
process each 1/4 of the image, send the partitioned edge map back to the CPU,
and at the end, bring all the partitioned edge maps back to the FPGA. These ex-
tra steps will add an overhead of ~60ms in the good scenario, i.e., when using the
SpaceWire interface at 100 Mbps for data transmission. Thus, the total performance
improvement in NG-Large is 1.4x. Regarding Disparity, both devices achieve al-
most the same clock frequency, i.e., around 50MHz, however, NG-Medium has to
process 2x more (smaller though) image stripes. This differentiation in the parti-
tion of the input image is translated to 1.2x performance improvement in NG-Large.
For Spacesweep, considering that NG-Medium has to process smaller input image to
avoid resource over-utilization, and also with a clock frequency decreased by 1.7x,
NG-Large delivers around 1.7x better performance. In any case, we note again that
we implement the same algorithms on both devices, and the performance in NG-
Large can be greatly improved by exploiting its bigger capacity and increasing the
parallelization, e.g., implement parallel arithmetic operators or process stripes in par-
allel.

Concluding, in comparison with the 3rd-party FPGAs, NG-Large exhibits compara-
ble, or even better in several cases, resource utilization (depending on the kernel and
the FPGA block). Considering that NXmap is a newly released tool and that we
have seen continuous improvement in every new tool version, the results are expected
to improve in the future. Compared to NG-Medium, NG-Large provides increased
flexibility due to its bigger capacity, while the former is stressed (or is unable) to
implement CV kernels for typical image sizes, e.g., 1 MPixel. NG-Large delivers bet-

188

8.6. Demonstration of the Computer Vision Kernels

Table 8.7: Comparison of NanoXplore’s FPGAs for the implementation of computer vision kernels.

Kernel'! FPGA ‘ NG-Med. vs. NG-Lar.? ‘LUT DFF CY DSP RAMB MHz

o NG-Large 4x smaller input image 2% 2% 4% 1% 93% 38

o .
NG-Medium (0.25MP vs. 1MP) % 8% 13% 5% 90% 50
o NG-Large 4x smaller img. partition 5% 13% 23% 22% 36% 40

<

oo NG-Medium (1K x8 vs. 1Kx32) 19% 38% 73%100% 63% 11
@{\&‘3 NG-Large 2x smaller img. partition 1% 3% 15% 2% 45% 50
O NG-Medium (IKx16 vs. 1Kx32) 4% 10% 18% 41% 86% 52
«® NG-Large 4x smaller input image 5% 8% 20% 14% 42% 52
o NG-Medium (0.25MP vs. 1MP) 22% 32% 8% 45% 95% 30

! The same algorithms are implemented in both FPGAs (no HDL modification).
2 NG-Large is 4x bigger than NG-Medium in resources.

O N = O

77

Improvement (x)

Canny Harris Disparity Spacesweep

Figure 8.6: Latency improvement in computer vision kernels by NG-Large compared to NG-Medium
for the same algorithm (no HDL modification, e.g., for increased parallelization).

ter performance that can be further improved by exploiting its resources to increase
the parallelization. Furthermore, NG-Large leaves a significant amount of resources
that can be used for implementing other complementary HDL components in the case
of algorithmic pipelines, as shown in the system-level evaluation of our publication
in [319].

8.6. Demonstration of the Computer Vision Kernels

To evaluate and demonstrate the actual hardware execution of the CV kernels on
NG-Large, we develop a hardware/software architecture that is based on the se-
rial UART communication. Our goal is to transmit and receive I/O data to/from
NG-Large and validate the results, and not to provide the optimal I/O and system
throughput (which can be achieved via the high-performance SpaceWire interface).
For this purpose, we develop software in our host-PC for I/O data handling and
demonstration, as well as hardware in NG-Large for I/O data handling and kernel
control.

189

DSP Acceleration with New Space-Grade FPGA Devices & Tools

—[SW Tx]—)[HW Rx]—>[Input Arbiter J—
{ Demonstration SW] CV Kernel
—[SW Rx]4———[HW Tx H Output Arbiter }—

Host-PC NG-Large FPGA

Figure 8.7: Hardware/Software UART-based architecture for the execution of the computer vision
kernels on NG-Large (testing and demonstration).

8.6.1. Development of CPU-FPGA Communication

To establish a communication for data transfers between the host-PC and NG-Large,
we adopt the infrastructure of Figure 8.7. In the host-PC side, we develop C functions
using the GCC compiler, which are tailored to the data sizes and bit-widths of each
kernel. In brief, the host-PC functions perform the following operations:

e open the USB port for the serial communication.

o specify the settings for the communication, e.g., baud rate, timeouts, blocking
or non-blocking mode.

o read the input data (stored in the host-PC) and send them to NG-Large by
applying the appropriate bit manipulations and writing the USB port.

« receive the output data from the NG-Large execution by reading the USB port.

e write the output data to files for comparison with the groundtruth data and
demonstration.

In the FPGA side, we implement a hardware architecture for receiving/transmitting
data from/to the host-PC, as well as for applying the required data encoding/decod-
ing and controlling the kernel’s I/Os. The development is performed in pure VHDL,
and the architecture is parametric in terms of baud rate and global clock frequency.
The UART modules are implemented based on the protocol specifications: the Rx/Tx
component serially receives/transmits the data, while the tick generator synchronizes
the UART logic with respect to the baud rate. The arbiters for controlling the kernel
I/0s, i.e., the glue logic between UART and the kernel, are based on the kernel’s
architecture (e.g., processing in image stripes or in burst mode) and I/O signals.

190

8.6. Demonstration of the Computer Vision Kernels

Store
Histogram

Histogram
Stored

Histogram

Finished

Edgemap

Corners
Finished

Store
Corners
Ready
Feed Send
Kernel #Corners

Figure 8.8: Input and output arbiter for handling the I/O data of (a) Canny and (b) Harris. The
corresponding arbiters for Disparity and Spacesweep are similar to those of Harris.

#Corners

In general, the input arbiter collects the data from the Rx component, packs them
accordingly, and feeds the kernel when it is ready to start the processing. Correspond-
ingly, the output arbiter retrieves the kernel’s outputs, decouples them to packets,
and forwards them to the Tx component when the latter is ready to transmit them
to the host-PC.

Figure 8.8 illustrates the main finite-state machines of Canny’s and Harris’ arbiters.
The arbiters of Disparity and Spacesweep are similar to those of Harris. At first,
Canny receives the two thresholds required for the hysteresis thresholding task, and
then it receives the entire image. The input arbiter remains in the “Idle” state until
the flag signal for valid data reception is activated for the first time by the Rx com-
ponent, which means that the first threshold is successfully received. This threshold
is stored in a register and the arbiter moves to the state “Store Inputs”. It remains
there until the second threshold and all the image pixels are received and stored in
register and memory bank, respectively. Next, in the state “Check Kernel”, the ar-
biter examines if Canny is ready to receive the input data. When that happens, the
controller moves to the “Feed Kernel” state, where it sends the thresholds and pixels
to Canny and activates all the signals required for starting the processing of a new

191

DSP Acceleration with New Space-Grade FPGA Devices & Tools

image. Upon finishing this process, it returns to the “Idle” state, waiting for the next
image. Correspondingly, the output arbiter remains in the “Idle” state until Canny
activates its output signals indicating that both the histogram and the edge map have
been calculated. When that happens, the arbiter starts to store the histogram and
edgemap in memory banks, before sending them to the Tx component. This data
storing is required, as the Tx component is not always ready to transmit the outputs
to the host-PC. Therefore, the output memory banks are read when Tx is ready for
transmission. When all the outputs are sent to Tx, the arbiter returns to its “Idle”
state to wait for the next Canny outputs. In the same context, we design the arbiters
of Harris, which, however, transfer and process the image in stripes. Moreover, before
starting the processing of a new image, we feed Harris with a new threshold, which
is updated in the software based on the previous frame’s corners. Another differ-
ence is that Harris produces 32-bit output data, while the UART communication is
designed for 8-bit data. Therefore, we transmit the outputs of Harris in bytes, and
perform the required bit manipulations in the software receiving the data from the
FPGA.

8.6.2. Real-Time Processing and Visualization

We assume the real-world scenario of space missions, where NG-Large is equipped
on-board. The camera captures random images during the traversal of the rover, and
NG-Large detects features on them using Canny and Harris, i.e., edges and corners,
respectively. These features are useful in VBN pipelines for pose tracking [326], rover
localization [327], and other space applications. On the other hand, Disparity and
Spacesweep are used to extract the depth of the scene when the camera captures
stereo images (e.g., every 20cm) [328,329].

For demonstration purposes, we visualize the output results of the CV kernels. For
the feature detection kernels (Canny and Harris), we use both real-time camera input
and stored images, and we plot the edges and corners on them. For the depth extrac-
tion kernels (Disparity and Spacesweep), we use 20 synthetic stereo images depicting
the Martian terrain and visualize the data in 2D and 3D. Figure 8.9 illustrates output
images from the execution of the kernels on NG-Large. Our demonstration video is
also available online®. As explained in the previous section, we aim only to demon-
strate the correct hardware execution and not evaluate the system throughput. The
serial UART communication does not provide increased I/O rate, and thus, the total
system throughput is low. Considering the processing throughput of the CV kernels
(see Table 8.5), the use of the high-performance SpaceWire interface (e.g., at 100
Mbps) would provide sufficient system throughput.

3Demo available on YouTube: https://youtu.be/q8NKV4rpcY4.

192

https://youtu.be/q8NKV4rpcY4

8.7. Conclusion

(b)

Figure 8.9: Visualization of results from the execution of computer vision kernels on NG-Large:
(a) Harris Corner Detector [327] and (b) GAD-Disparity [328].

8.7. Conclusion

In this chapter, we examined the acceleration capabilities of the new European space-
grade BRAVE FPGAs. In particular, we employed high-performance CV kernels that
were developed in other FPGA devices/tools, and we systematically ported them on
NanoXplore’s NG-Large FPGA. Towards exploiting all the available software tools
settings, as well as for surpassing the issues and inefficient results of such new de-
vices/tools, we proposed a three-stage development & assessment methodology. The
methodology regards the typical stages of the FPGA design flow, i.e., synthesis, place
& route (implementation), and bitstream generation & hardware execution, and it
can be used for testing and development on new FPGAs. In our work, we used it to
efficiently port the high-performance CV kernels on NG-Large and evaluate this new
space-grade chip as on-board processor for space missions. Our experimental evalu-
ation examined the resource utilization, performance, power consumption, bitstream
size, and configuration time, which are all taken into account in space mission scenar-
ios. It also included comparisons with well-established FPGA devices/tools. Besides
measuring the flexibility and efficiency of the new NXmap tool, which is continuously

193

DSP Acceleration with New Space-Grade FPGA Devices & Tools

evolving and improving, we showed that NG-Large could achieve feature extraction
with a throughput of up to 10 FPS and depth extraction with a latency of around
10s. Overall, NG-Large could implement high-performance and complicated algo-
rithms with sufficient hardware metrics, i.e., resource utilization, throughput, and
power consumption, which were all shown to be competitive/comparable with the
3rd-party FPGA designs.

194

Chapter 9

DSP & Al Acceleration on Heterogeneous
Multi-Core SoCs

The increased computational demands of modern applications from domains such as
Artificial Intelligence (AI) and Digital Signal Processing (DSP) challenges their de-
ployment at the edge. At the same time, embedded systems are presented with tight
energy constraints, which limit their processing capabilities compared to the high-
performance computers of the cloud. Heterogeneous System-on-Chip (SoC) processors
emerge as an attractive hardware solution, however, they still require sophisticated
development to provide efficient implementations. In this chapter, we exploit the het-
erogeneity of the multi-core Vision Processing Units (VPUs), which are low-power
SoCs with increased diversity in processors and memories, to accelerate demanding
DSP and Al algorithms. Towards the efficient utilization of such heterogeneous and
complex SoCs, we employ a design methodology and various high- and low-level tech-
niques. Our implementations include custom DSP kernels, as well as a Computer
Vision (CV) pipeline and a demanding Deep Neural Network (DNN), which both per-
form pose estimation in space. The individual kernels are accelerated by 10x—-20 X
on the Myriad 2 VPU, while for the C'V pipeline, we provide a speedup of 8.5x—12x.
The throughput of this pipeline for MPixel frames is up to 5 FPS, while the power
consumption lies between 0.8 W and 1.1 W. The deployment of the DNN on Myriad X
for resampled MPixel frames provides a throughput of 2.7 FPS and a mazimum power
consumption of 2W. Moreover, we directly compare the VPUs to other embedded de-
vices. According to our analysis, the Myriad VPUs exhibit significantly better power
efficiency, i.e., 5x versus the Jetson Nano GPU and 4 x wversus the Zynqg FPGA.
When examining the performance-per- Watt ratio of the devices, the VPUs provide
comparable results, and in some cases, even better: e.g., for the C'V pipeline, Myriad
2 trades a 3% loss in speed for a 4 X gain in mean power consumption.

This chapter is based on our publications in [859—-362].

195

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

0.1. Introduction

The last decade is characterized by a rapid growth of powerful Artificial Intelli-
gence (AI) and complex Digital Signal Processing (DSP) algorithms. This algo-
rithmic evolution along with the large increment in sensor data have significantly
affected computing systems at the edge. The worldwide demand for speed chal-
lenges the integration of AI/DSP functionalities in novel applications, especially at
the power-constrained embedded systems. Heterogeneous System-on-Chip (SoC) pro-
cessors emerge as a promising solution [25], offering increased programming flexibility
and diversity in terms of processors and storage. Besides the well-established SoCs
integrating Central Processing Units (CPUs) and Graphics Processing Units (GPUs),
a novel class of heterogeneous SoCs has recently appeared, namely the Vision Pro-
cessing Unit (VPU) [36,363]. Compared to the CPU-GPU SoCs, the VPUs provide
better power efficiency. For example, Nvidia’s Jetson Nano GPU consumes 10W /5W,
while Intel’s Myriad VPUs consume 1W-2W. Compared to the Field-Programmable
Gate Arrays (FPGAs), the VPUs offer improved programmability, smaller develop-
ment time/effort, and lower power consumption. Moreover, the VPUs can handle
classic DSP workloads, contrary to Al-specific processors, such as Google’s Tensor
Processing Units (TPUs). In general, the VPUs integrate a variety of processors,
e.g., general-purpose cores, hardware filters, vector cores, and neural network accel-
erators. The VPU SoCs excel in low-power imaging applications, covering domains
such as robotics, automotive, and space.

Intel manufactures the Myriad VPUs [364], i.e., Myriad 2 (28nm) and Myriad X
(16nm), which are prominent and well-established processors for embedded DSP &
AT applications. By offering numerous heterogeneous processing cores, these VPUs
enable the efficient parallelization of demanding algorithms. A single VPU chip inte-
grates multiple hardware I/O peripherals, a variety of hardcoded low-power imaging
filters, general-purpose processors, acceleration vector cores, and Al acceleration en-
gine(s). A similar heterogeneity is provided in storage, for which the VPU SoCs
offer a memory hierarchy consisting of DRAM, scratchpad, and cache memories.
It is evident that the full utilization and exploitation of such complex heteroge-
neous SoCs requires a meticulous and systematic development approach. Further-
more, considering that these SoCs are build towards more “low-power” than “high-
performance”; the need for efficient mapping and deployment becomes even more
crucial.

As explained in Chapter 8, space is one of the communities searching for alternative
processing platforms to comply with the tight constraints of on-board processing.
Besides the FPGAs, the enhanced performance of modern low-power edge devices
can efficiently serve tasks of Earth Observation (EO) and Vision-Based Navigation

196

9.1. Introduction

(VBN). The heterogeneity of platforms such as the VPUs, allows for improved adapt-
ability to various mission scenarios and seamless in-flight re-programmability. To
further improve the performance and Size, Weight and Power (SWaP), as well as addi-
tional costs (e.g., development effort), the space industry is studying mixed-criticality
architectures [365-368], i.e., the integration of both space-grade and Commercial-Off-
The-Shelf (COTS) components. The use of COTS components in Low Earth Orbit
(LEO) missions and CubeSats relies on the partial shielding provided by Earth’s
magnetosphere and/or the short mission lifetime, which limit the damage or un-
availability of electronics due to radiation. In this context, FPGAs [322-324, 326],
GPUs [330, 331,369-371] and VPUs [372-376] are evaluated as accelerators, while
they are also subjected to radiation tests, such as the Myriad 2 VPU [377]. A second
challenge for the space industry is the wider adoption of AI, which is currently limited
to offline/ground data processing and not on-board processing, mostly due to insuf-
ficient computational power and increased memory footprint, as well as qualification
issues when deployed in orbit [377].

The promising features of Myriad VPUs has attracted the interest of the European
Space Agency (ESA), which is thoroughly involved in the safari of COTS embed-
ded devices. Towards the use of VPUs in space, ESA is supporting research ac-
tivities! that evaluate the overall performance of the Myriad SoCs, including their
integration in high-performance compute boards and mixed-criticality architectures
for space avionics. These activities aim to assess the suitability of the VPUs as
COTS parts of the on-board computer, mainly for low-power DSP/AI acceleration.
In the context of these activities, we propose a methodology to support the devel-
opment on the Myriad VPUs and accelerate demanding DSP /AT workloads. Our
goal is to surpass the bottlenecks of the resource-constrained embedded computing,
unlock the full potential of VPU’s heterogeneity, and thus, efficiently deploy com-
plex algorithms. Our application domain is space, however, both our methodology
and development techniques are generic, i.e., they can be used as design paradigm
to provide DSP/AT acceleration on the heterogeneous multi-core VPUs. Regarding
development, we apply various high-level parallelization and partitioning techniques,
while at lower level, we optimize the memories and the acceleration cores. In terms of
algorithms, at first, we implement custom DSP and AT kernels on Myriad 2, targeting
to demonstrate the VPU’s capabilities and evaluate embedded design techniques for
parallelization and optimization. Afterwards, we accelerate a sophisticated 5-stage
Computer Vision (CV) pipeline (developed by Lourakis and Zabulis [378]?) on Myriad
2. Finally, we accelerate a compute-intensive Deep Neural Network (DNN) [379] (that
was not developed for embedded systems) on the AI acceleration engine of Myriad

IESA LEOTOME: 4000126083/18/NL/FE
ESA HPCB: 4000126129/18/NL/AF
2Special thanks to Dr. M. Lourakis & Dr. X. Zabulis from FORTH for providing the initial CV SW.

197

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

X.

The contribution of this chapter is summarized as follows:

(i) We highlight the great diversity of heterogeneous SoCs in terms of processors
and storage, as well as the significance of the meticulous exploitation of the
heterogeneity towards improved performance.

(ii) We propose a methodology for the optimized mapping and acceleration of de-
manding DSP and AI algorithms on heterogeneous multi-core VPUs, while we
demonstrate several high- and low-level implementation techniques for embed-
ded systems.

(iii) We report comparative experimental results for embedded CPUs, VPUs, GPUs
and FPGAs, and we discuss the trade-offs of each processor.

(iv) We test and evaluate Intel’s Myriad VPUs as candidate on-board COTS accel-
erators for future space missions.

The remainder of this chapter is organized as follows. Section 9.2 overviews the
market’s embedded platforms and presents the Myriad VPUs. Section 9.3 introduces
our design methodology. Sections 9.4-9.6 discuss the implementation details of the
DSP and AI algorithms. Section 9.7 reports various experimental results. Finally,
Section 9.8 draws the conclusions.

9.2. Background

9.2.1. The Landscape of Embedded Devices

Table 9.1 summarizes well-established embedded devices of the market, including the
Myriad VPUs. We report platforms with power consumption lying within the same or-
der of magnitude (e.g., there are other Nvidia Jetson devices consuming more power).
As shown, Intel’s VPUs integrate LEON general-purpose processors along with the
RTEMS real-time operating system. On the other hand, Nvidia’s GPUs and Google’s
TPUs feature ARM processors and are equipped with Linux-based operating systems.
In terms of accelerators, the VPUs have more heterogeneity than the other devices,
offering multiple Streaming Hybrid Architecture Vector Engine (SHAVE) cores and
hardware filters, while Myriad X also integrates a neural engine. The GPUs are based
on the Compute Unified Device Architecture (CUDA) cores for acceleration, whereas
the key processing unit of TPUs is a systolic array with multipliers and accumulators.
The AI performance of these devices varies and shows that the TPUs are the win-
ners, however, these metrics are theoretical and should also be examined along the

198

9.2. Background

Table 9.1: Overview of market’s embedded devices.

Vendor Device CPU Accelerators
& Myriad 2 LEON4 (x2) 12-Core SHAVE, HW Filters
W Myriad X LEON4 (x2) 16-Core SHAVE, Al Engine, HW Filters
P Jetson Nano Cortex-Ab7 128-Core Maxwell GPU
%4\ Jetson TX2 Cortex-Ab57, Denver 2 256-Core Pascal GPU
0@?» Coral Mini Cortex-A35 64x64-Array' Edge TPU
&° Coral Cortex-A53, Cortex-M4F 64x64-Array’ Edge TPU
Vendor Device OS Max Clock Al Performance® Power?
& Myriad 2 RTEMS 600MHz 100 GFLOPS (fp16) W
w Myriad X RTEMS 700MHz 1 TFLOPS (fp16) 2W
& Jetson Nano | Linux4Tegra 922MHz 472 GFLOPS (fpl6) 10W / 5W
< Jetson TX2 Linux4Tegra 1122MHz 1.3 TFLOPS (fpl6) 15W / 7.5W
0@‘2‘» Coral Mini | Mendel Linux 500MHz 4 TOPS (int8) 5W
& Coral Mendel Linux 500MHz 4 TOPS (int8) 5W

! Estimation based on Al performance and testing (the array dimensions have not been revealed).
2 Reported officially by the vendors.
3 . .

According to our in-house measurements.

AT accuracy and the actual power consumption. Moreover, a disadvantage of TPUs
is that they are Al-specific accelerators, and thus, they do not provide acceleration
cores for classic DSP and CV workloads. Regarding power, the VPUs are the most
efficient solution, as they consume up to 2W. The TPU chip consumes 0.5W per Tera
Operation Per Second (TOPS), however, the power of the entire system is ~5W. Es-
pecially for AI, the VPUs and the GPUs support various development frameworks,
e.g., TensorFlow and PyTorch, while the TPUs rely only on TensorFlow Lite. Finally,
both the VPUs and TPUs are produced as USB accelerators that can be hosted on
PC or single-board computer (e.g., Raspberry Pi).

These devices are used for accelerating compute-intensive DSP and AI workloads at
the edge. Because of their increased programming complexity and performance issues
compared to their desktop and data center counterparts, they have received significant
research attention. More specifically, the literature includes several methodologies and
techniques for the development on these devices and provides a plethora of bench-
marking/evaluation results. There are also relevant works that propose new frame-
works/libraries and co-processing embedded architectures. As our application domain
is space, we report related work on the aforementioned devices.

The Myriad VPUs are systematically evaluated by the space community. Furano et al.
[377] report results from the radiation tests on Myriad 2, involving various functional

199

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

tests and characterization of all SoC’s memories. Their results show that Myriad 2
remains fully functional after being exposed to a total ionizing dose of 49 krad(Si).
Agarwal et al. [374] use Myriad 2 to implement a star identification neural network.
Their experimental evaluation shows that Myriad 2 provides sufficient performance,
while it consumes around 1W and retains 99% accuracy. Myriad 2 is also integrated in
custom boards and co-processing architectures. This VPU is equipped on-board in the
®-Sat-1 CubeSat mission of ESA as DNN demonstrator for EO [372]. Furthermore,
it is integrated in Ubotica’s CogniSat platform [375], which is an AT inference and CV
engine that exposes Myriad 2 to the payload developer. In the same context, Myriad 2
is the main accelerator of the HPCB platform [373], which is a payload data processor
board provided by Gobham Gaisler. Interestingly, the HPCB includes three Myriad
2 SoCs to provide fault tolerance and increased performance. For the successor of
Myriad 2, i.e., Myriad X, the authors of [376] report results from the deployment
of neural networks classifiers. The networks are trained on Mars imagery from the
Reconnaissance Orbiter and Curiosity rover, and the average inference time is 16-
20ms, while the power consumption lies around 1.9W.

Regarding the use of embedded GPUs in the space domain, Kosmidis et al. [369] ex-
amine their applicability from both the software and hardware perspectives. In partic-
ular, they analyze the algorithms and workloads of space applications to identify their
suitability for GPUs, and they also perform benchmarking on GPUs. In [370], the au-
thors evaluate two graphics-based computing methodologies (OpenGL 2.0 and Brook
Auto) for safety-critical systems. Their main benchmark is an application modeling
a VBN scenario where the aircraft performs rendez-vouz with an object. Moreover,
the literature includes various FPGA-GPU co-processing architectures. The hybrid
FPGA-GPU architecture of [330] employs Nvidia’s TX2/TX2i GPU as main acceler-
ator. The heterogeneous architecture of [331] integrates the AMD SoC (CPU-GPU)
for acceleration, and optionally, a VPU for AI deployment. The authors of [371] use
Nvidia’s Jetson Nano GPU to accelerate neural networks for object detection along
with image compression techniques. Finally, the edge TPUs are used in several terres-
trial applications [380, 381], however, they are still not adopted in the space domain
(ESA is working towards this direction [382]%). Very recently, a CubeSat-sized co-
processor with three TPUs was introduced [383], supporting various operation modes
(high-performance, fault-tolerant, low-power).

9.2.2. The Intel VPUs and Tools

The Myriad family of VPUs offers heterogeneous multi-core SoCs for mobile/embed-
ded applications. Besides the space domain, the Myriad VP Us are used for implement-

SESA CAIRS21: 4000135491/21/NL/GLC/ov

200

9.2. Background

ing DNNs [384-387], machine learning algorithms (e.g., SVM classifiers [388]), and
CV functions (e.g., stereo vision [389]). The fabric architectures of Myriad 2 and Myr-
iad X are illustrated in Figure 9.1 and Figure 9.2, respectively. Next, we discuss the
SoC details and present the associated software tools.

The Myriad SoCs integrate multiple I/O peripherals and different types of proces-
sors. All these components are connected to a multi-ported high-bandwidth shared
memory hierarchy. Regarding general-purpose CPUs, the SoCs include two LEON4
processors that implement the 32-bit RISC SPARCvS8 architecture. The first pro-
cessor is called LEON OS (LOS) and primarily handles the external communication,
i.e., it controls peripherals such as UART, SPI, ETH, and USB3. Moreover, LOS
runs the RTEMS real-time operating system. The second core is called LEON RT
(LRT) and manages the media devices such as camera sensors and HDMI, while
it also controls all the imaging interfaces (MIPI, LCD, CIF). The key processing
units are the SHAVE cores, which are controlled at high level by the LEON proces-
sors. These cores are 128-bit Very-Long-Instruction-Word (VLIW) processors that
are suitable for executing the bulk of compute-intensive tasks, offering not only core
parallelization, but also room for low-level custom optimization. Each SHAVE sup-
ports Single-Instruction-Multiple-Data (SIMD) instructions on various data types,
i.e., 16/32-bit floating-point and 8/16/32-bit integer. The Myriad VPUs are also
equipped with hardware imaging accelerators, which are called Streaming Image Pro-
cessing Pipeline (SIPP) filters. These specialized accelerators are configurable up to a
certain degree and provide low-power implementation for numerous image processing
kernels.

Regarding memory hierarchy, the VPUs provide on-chip DDR DRAM (global mem-
ory), which is accessed by the processors through a single DDR controller. Further-
more, the SoCs have a small SRAM memory, called Connection Matrix (CMX), which
is primarily used by the acceleration cores as scratchpad memory. Each SHAVE core
has preferential ports into a 128KB slice of the CMX memory, whereas the remaining
storage can be exploited for other purposes. For the communication between DDR
and CMX, the hardcoded DMA engine is used, providing high-bandwidth data trans-
fers in either direction. The processors come along with their cache memories. More
specifically, each LEON processor has both L2 and L1 caches, while the SHAVESs
share a common L2 and have a dedicated L1.

The fabrication process of Myriad 2 is 28nm HPC+/HPC/HPM. This VPU offers
12 SHAVESs and its clock frequency can be configured up to 600MHz. In terms of
memories, it has on-chip a 512MB DDR and a 2MB CMX. LOS has 64KB L1 and
256KB L2 caches, whereas LRT has 8KB L1 and 32KB L2 caches. SHAVESs share a
common 256KB L2 cache, in addition to a 3K L1 per core (1KB for data and 2KB for
instructions). The fabrication process of Myriad X is 16nm FFC. This next-generation

201

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

g g

MIPI I/O Interfaces

(x12 Lanes) (SPI, 12C USB3, UART, CIF, LCD, ETH, ...)

DDR Memory
(512MB)

! |

|

(Debayering, Denoising, Sharpening, ...)

SIPP HW Accelerators 1[

|

L1 Cache | L2 Cache
CMX Memory | , N LEON4 OS (64KB) (256KB)
(2MB) N " L1 Cache | L2 Cache
1[LEON4 RT (8KB) (32KB)
VLIW SHAVE Cores L1 Cache | L2 Shared Cache
(x12) (8KB/core) (256KB) Main Bus
@ @ (128-bit)
Figure 9.1: The fabric architecture of Intel’s Myriad 2 VPU [364].
MIPI I/0O Interfaces DDR Memory
(x24 Lanes) (SPI, 12C USB3, UART, CIF, LCD, ETH, ...) (512MB)
SIPP HW Accelerators H][
(Debayering, Denoising, Sharpening, ...) H H
L1 Cache | L2 Cache
LEON4 OS
Neural Compute — CMX Memory s (64KB) (256KB)
Engine (2.5MB) LEONa RT | L1 Cache | L2 Cache
1[(64KB) | (256KB)
VLIW SHAVE Cores L1 Cache | L2 Shared Cache
(x16) (3KB/core) (256KB) Main Bus
@ @ (128-bit)

Figure 9.2: The fabric architecture of Intel’s Myriad X VPU [364].

VPU features a dedicated on-chip accelerator, called Neural Computer Engine (NCE),
for inferencing DNNs. Besides the Al accelerator, the main differences compared to
Myriad 2 are the addition of 4 more SHAVE cores, the increment of the CMX capacity
by 0.5MB, and the increment of the clock frequency to 7T00MHz. There are also more

MIPT lanes and slightly bigger caches for LEONS.

To implement custom CV and DNN applications on the Myriad VPUs, the developer

202

9.3. Design Methodology

uses the Myriad Development Kit (MDK). This programming suite integrates GCC
toolchain for the LEON processors and a C/C++ compiler with extensive intrinsic
support for SHAVEs, while offering numerous C/C++ libraries (e.g., for DMA trans-
actions, SHAVE initialization, I/O data handling, power measurement). Moreover,
MDK provides debugger, simulator, trace profiler, and libraries with CV kernels. In
essence, the Myriad VPUs are programmed via an LLVM-based vectorizing C/C++
compiler, allowing the generation of assembly code, which is on a par with hand-
optimized assembly. Towards improved assembly code, the developer can also write
Myriad-friendly C/C++ code, e.g., explicitly apply the vectorization to leverage the
automatic SIMD calculations.

To deploy DNN models of well-known frameworks (e.g., TensorFlow) on Myriad X,
the developer uses Intel’s OpenVINO toolkit [390]. Figure 9.3 shows the deployment
procedure via OpenVINO with respect to the targeted platform: (i) the USB accelera-
tor integrating Myriad X, which is called Neural Computer Stick 2 (NCS2) and (ii) the
Myriad X SoC. In the first case (Figure 9.3a), OpenVINO inputs the frozen graph of
the network and generates its intermediate representation with the model optimizer.
The intermediate representation consists of an XML file for the network topology
and a binary file for the weights and biases. These files are deployed on NCS2 using
the OpenVINO C/C++ or Python API. In the second case (Figure 9.3b), OpenVINO
converts the intermediate representation to a binary programming file, which is loaded
on NCE via the mvNCI API. The same API is also used to feed NCE with input data
and receive its outputs in the form of tensors.

9.3. Design Methodology

The efficient utilization of very heterogeneous SoCs, such as Myriad 2 and Myriad
X, requires a methodical design approach. To exploit the full potential of hetero-
geneity, the diverse algorithmic functions of the application should be mapped to the
most suitable processing units, while the development should be customized to the
underlying hardware. Towards this direction, we propose a design methodology for
efficiently partitioning, scheduling and mapping any DSP /AT application that consists
of multiple algorithmic functions.

We divide our methodology in two branches. The first branch regards the implemen-
tation of an algorithm from the DSP domain, e.g., the CV pipeline of [378]. The
second branch regards the deployment of an Al network, e.g., the DNN of [379]. The
methodology for the AI application refers only to the Myriad X SoC and the NCS2
USB, which include NCE; i.e., the hardcoded AI accelerator. In case the targeted
platform is Myriad 2 or more custom implementations are desired, the developer can
adopt the methodology for the DSP application.

203

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

Model Intermediate

Optimizer Representation

Input OpenVINO Output
Tensor API Tensor

Host-PC

NCS2

Myriad XNCS2 [B | o0

(2)
Frozen Model Intermediate
Graph Optimizer Representation

Myriad
Compiler

Network
Blob

Host-PC

Input MYNCI API Output
Tensor Tensor
Movidius Tensor Library

l_T_l

NCE SHAVEs

Myriad X SoC

(b)

Figure 9.3: Deployment of DNNs on Myriad X via OpenVINO on (a) Neural Computer Stick 2
and (b) Myriad X SoC.

Regarding the DSP application, we begin by developing all the algorithmic functions
or porting their pure C/C++ code (developed in other platforms) on the general-
purpose LEON CPU. Upon all the functions are successfully compiled and executed,
we profile and analyze them to derive the execution time, the requirements in memory,
I/O and arithmetic, and even the programming complexity. Based on this analysis,
and according to our design goal, e.g., more “low-power” or more “high-performance”,
we partition the entire algorithm on the SoC, i.e., we determine the mapping target
for each algorithmic function. Moreover, based on our analysis as well as the SoC’s
micro-architecture and the libraries/frameworks provided by the vendor, we develop
the utility software, e.g., for handling the I/Os, managing the memory allocation, and
parallelizing the tasks of each function. Afterwards, we begin the implementation of
each function at both high and low level. At high level, we apply the most efficient

204

9.3. Design Methodology

parallelization and mapping scheme to the SoC cores and organize our software in
terms of time and memory allocation. At low level, we accelerate each function by
rearranging its operations to facilitate pipelining and maximize the memory reuse,
we apply word-length optimization to further minimize buffering, and we perform
parallelization via vectorization and/or data decomposition techniques. The next step
is to integrate all the functions to the system and explore all coding parameters to fine-
tune the implementation for the given problem/dataset. In case the design constraints
are not satisfied, we use our feedback loop to return either to the initial partitioning
and scheduling of the entire algorithm or the high- and low-level implementation. All
these methodology steps are summarized as follows.

Methodology for DSP Application:

Development /Porting of the application/algorithm on the LEON core.
Profiling and analysis of each algorithmic function with realistic dataset.

Partitioning and scheduling of the entire algorithm on the Myriad SoC.

- L o=

Development of utility software for I/O handling, memory management, and
low-level optimizations.

High-level parallelization of each algorithmic function to the SHAVE cores.
Low-level implementation and optimization in the SHAVE cores.
System integration of each algorithmic function.

Testing and tuning with application-specific datasets.

e ® N o oo

Return to step 3 or 5 until the constraints are met and the system is optimized.

Regarding the AI application, we follow steps similar to those proposed by Open-
VINO [390]. The training and optimization of the network with the AI framework
(e.g., TensorFlow, PyTorch) are out of the Dissertation’s context. OpenVINO sup-
ports tuning and optimization on the network frozen graph via the model optimizer.
One of the provided methods is the fusing of the linear operations, e.g., the multipli-
cations and additions can be merged into a single multiply-add instance or fused to
convolutional and fully-connected layers. The tool also offers other methods, such as
grouped convolution fusing and network pruning. Moreover, if required, the devel-
oper can create custom operations in OpenCL. All these methodology steps for the Al
deployment on Myriad X are summarized as follows.

Methodology for AI Application:

1. Generation of the DNN model in the Al development framework.

2. Optimization and development of custom network operations in OpenVINO.
3. Creation of the network programming file in OpenVINO.
4

. Inference run on Myriad X and analysis of the results.

205

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

5. Return to step 1 or 2 until the constraints are met and the inference is optimized.

9.4. Implementation of DSP & Al Applications on the
Myriad 2 VPU

In this section, we present the implementation of three custom kernels on Myriad 2.
In particular, we develop in C/C++ an image binning kernel, floating-point convo-
lutions, and a Convolutional Neural Network (CNN)* for detecting ships on satellite
images [313]. This section acts as introductory in the VPU development and aims to
introduce the Myriad computing paradigm and the SoC’s functionalities, as well as
demonstrate our programming approach.

9.4.1. Development of Custom DSP and CNN Kernels

In image processing, binning is the procedure of extracting a single pixel from an
image region (cluster of pixels). This task, although results in loss of information,
reduces the amount of data to be transferred and processed (e.g., a 4-MPixel sensor
image is transformed to 1-MPixel). For our kernel, we adopt 2 x 2 Averaging Binning,
namely, we assume 2 X 2 regions with stride 2. The new pixels are calculated as the
mean values of the regions’ pixels. For our convolution kernels, we employ single-
precision floating-point masks of different sizes (3 x 3, 7 x 7, 13 x 13), targeting to
stress the VPU with this fundamental DSP operation.

In the implementation of Averaging Binning and Floating-Point Convolution, the
LEON processor initializes the SHAVESs cores and performs all the necessary high-
level tasks for the core parallelization. Our design choices are the same for both
kernels. The input and output images are stored in DDR (global memory), while we
perform DMA transactions to transfer image slices in the CMX (scratchpad/working
memory), which is accessed by the SHAVE acceleration cores. The high-level paral-
lelization procedure is illustrated in Figure 9.4. Regarding general implementation
details in SHAVESs, we do not use additional working buffers, i.e., the processing is
performed in-place (in the input buffer), and we enable the caches. For Averaging Bin-
ning, we employ 2048 x2048 8-bit input images, which are transformed to 1024 x1024
8-bit output images. We divide the input image into 36 stripes, i.e., 35 stripes of
size 2048 %58 and 1 smaller stripe of size 2038x18, and we assign 3 stripes to each
SHAVE to process them successively. For the Floating-Point Convolution, we con-
sider 1024x1024 8-bit input images and zero padding. Our design is parametric in

4Special thanks to E. Petrongonas for coding on the CNN and Myriad 2.

206

9.5. Porting of Computer Vision Pipeline on the Myriad 2 VPU

LEON Processors

Figure 9.4: High-level parallelization of image processing workload in the Myriad 2 VPU.

terms of the mask size, allowing to change masks at compile time. The masks are
stored in CMX to be accessed directly by SHAVEs. Regarding parallelization, we di-
vide the image into 24 stripes, i.e., 22 of size 1024x43 and 2 of size 1024 x39, and we
assign 2 stripes to each SHAVE. The SHAVE processing uses vectorized operations
as indicated by the generated assembly code.

Our CNN model is trained in TensorFlow with 128 x 128 x3 images and 32-bit floating-
point weights and biases. The accuracy is 96.8% for binary classification (ship de-
tected or not). The network consists of four convolutional layers and two fully-
connected layers, while the total number of weights is 131K. For our custom imple-
mentation in Myriad 2, the 32-bit floating-point weights and biases are converted to
16-bit floating-point using the corresponding routine of the MDK suite. The imple-
mentation is based on a custom parametric inference engine for 128 x 128 x 3 input
tensors, which is mapped onto SHAVEs and supports all the layers of our Ship Detec-
tion CNN. In our case, we develop the CNN accelerator for 1024 x 1024 x 3 16-bit input
images. Considering that the inference engine is built for smaller tensors, we employ a
function running on LEON that divides the input image into 64 128 x 128 x 3 patches.
Subsequently, it successively stores them in the engine’s input buffer and orders the
SHAVES to start the patch processing. In terms of memory utilization, we store the
images, weights, and working buffers in DDR.

9.5. Porting of Computer Vision Pipeline on the Myriad
2 VPU

Based on our design methodology, we accelerate on Myriad 2 a vision-based pose
tracking algorithm [378], which is representative of spacecraft proximity operations.
In particular, it inputs a sequence of high-definition images and continuously performs

207

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

rendering, feature detection, feature matching, and data fitting via robust regression.
The output is the 6D pose of the recorded satellite (Envisat) during a hypothetical
maneuver in an Active Debris Removal mission [326]. This sophisticated 5-stage CV
pipeline exhibits increased diversity in terms of computations and memory, thus, its
porting on a low-power SoC is challenging. Next, we present the functions of the CV
algorithm and discuss details about their implementation.

9.5.1. The CV Algorithm for Satellite Pose Tracking

The pose tracking algorithm of [378] assumes small motion between successive frames
and uses a model-based approach to estimate the object’s pose relative to the camera.
Frame after frame, it evolves an initial pose by continuously rendering a depth map
from the object’s mesh model, detecting edges on it, and then matching them to the
edges detected on the input image. These matches are used to refine the current
pose i.e., to perform data fitting via least median of squares regression followed by
iteratively reweighted least squares.

The key functions and dataflow of the algorithm are presented in Figure 9.5. The
algorithmic functions are summarized as follows: (i) edge detection on the input/in-
tensity image, (ii) depth map rendering, (iii) edge detection on the rendered/depth
image, (iv) perpendicular edge matching, and (v) pose refinement. Regarding I1/0,
the algorithm inputs 1024x1024 8-bit grayscale images and outputs a 6x1 floating-
point vector corresponding to the pose (z,y, z, pitch, roll, yaw). Moreover, it employs
the object’s mesh model (the Envisat satellite in our case), which consists of 20K
vertices and 35K triangles.

For Edge Detection, the algorithm uses the well-known method of Canny [391] for both
the intensity and depth images. This detector performs the following tasks: (i) Sobel
convolution to compute image gradients (magnitude and direction), (ii) non-maximum
suppression to remove spurious edges, (iii) hysteresis thresholding on the magnitudes
to identify strong edges and suppress the weak ones. The hysteresis thresholding
task initially retains all the mid-strength edges, but then it traces recursively their
spatial connections to keep only those related to strong edges. This procedure is
based on two thresholds, which are calculated based on the median in the histogram
of gradients.

For Depth Rendering, the algorithm uses a triangle 3D mesh model and the current
6D pose to generate an image, whose pixels encode the distance between the camera
and the nearest point on the model’s surface. The projection of the triangles on
the image is performed via rasterization, i.e., by projecting their vertices, then using
bounding box traversal to determine the pixels residing inside the projected triangles
and, finally, calculating the distance of the model’s triangles from each pixel. When

208

9.5. Porting of Computer Vision Pipeline on the Myriad 2 VPU

IMP 8b . intensity .
Ew? Edge Detection }W? Edge Matching
: 2

depth|edgemap

. MP 16b .
Depth Rendering }W Edge Detection

3 6DoF € . | 5K vectors
X Y,.Zpitch,rollyaw Pose Refinement [control points

Figure 9.5: The 5-stage computer vision pipeline for satellite pose tracking [378].

multiple triangles project on the same pixel, the algorithm retains the projection that
is closest to the camera.

Perpendicular Edge Matching finds the correspondences between intensity and depth
edges. For each edge of the depth map, it searches along the gradient direction in
the intensity map until an intensity edge is found or a maximum distance is cov-
ered. Finally, Pose Refinement utilizes the set of control points (matches plus spatial
information) to determine the change of 6D pose between the two edge maps rep-
resenting the previous and current frames. The change is determined in a robust
regression framework that mostly involves linear algebra operations, e.g., SVD and
QR decompositions. In an incremental fashion, the change is used to update the pose
estimation.

9.5.2. Partitioning and Scheduling

The most central design choice when partitioning a CV algorithm in Myriad 2 is
whether to accelerate each function in the SHAVE subsystem, execute it on LEON,
or assign it to a hardware filter. The main criteria to select the mapping targets are:
(a) performance and power constraints, (b) library dependencies, (c) parallelization
amenability, and (d) memory access patterns. Regarding criterion (a), the use of
SHAVESs provides better performance than the hardware filters, however, the latter
attain better power efficiency. Criterion (b) regards the software complexity. For
instance, it is preferable for the functions depending on software libraries (e.g., for
linear algebra) to run on the general-purpose LEON processor in case of decreased
support and availability in SHAVEs. Criterion (c) relates to the efficiency of the
parallelization. For example, it may be preferable to execute an inherently sequential
algorithm on LEON rather than parallelize it to SHAVEs. Finally, criterion (d) refers
to the selection and the configuration of the available memories according to the access
patterns (global or scratchpad, use of cache or not).

209

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

I
LRT + CIF 5 DDR - !
. Intensity [

ig?VEb E]gl\l\//ii CIF Reception: img(n+1) > Edge —{)
I Detection I
| I

Intensity I Depth I
img(n) >} Edge K Re?ﬁiff | _Edge 13 Mftig; K Ref;(:rient |
Detection [g Detection g 1

I
I

N Pose | ¢ wait Pose Refinement

Refinement } for img(n-1)

|

CIF — CIF

1nten51ty mesh depth depth e
ed del maj emap Semaps
@ gema mo p g @7
I /“["‘ S (/([JI/I\ /mm/\%ﬁ ﬁu/"(s <
handss —— — Memory Space
Time

Figure 9.6: Partitioning, scheduling and memory transactions of the computer vision pipeline in
Myriad 2.

The profiling and analysis of the CV pipeline based on our methodology and the above
criteria results in the partitioning and scheduling shown in Figure 9.6. First, we avoid
using the SoC’s hardware filters, because we target maximum performance gain. Sec-
ond, the profiling on LEON shows the very slow execution of the compute-intensive
functions, i.e., Edge Detection and Depth Rendering, thus, we identify all the paral-
lelization opportunities in their algorithmic nature and accelerate them on SHAVEs.
Even though the Edge Matching function does not include demanding computations
(it applies only image scanning and comparisons), we also map it onto SHAVEs. Oth-
erwise, LEON would have to scan a 1024 x1024 image, resulting in increased execution
time. We note that we sequentially assign each function to all 12 SHAVEs instead of
splitting them among the three functions. The latter would achieve questionable per-
formance gains at the cost of significantly increased development effort for handling
split memory and function synchronization. Regarding Pose Refinement, we assign
it to LEON due to its dependencies on the BLAS/LAPACK libraries. For high-level
scheduling, we follow the dependencies shown in Figure 9.5, while we maximize the
function-level parallelization between SHAVEs and LEON. More specifically, we start
detecting edges on a new input image even while LEON is still processing the pre-
vious frame to output its pose. When both are finished, we start the execution of
Depth Rendering for the current frame. Finally, we consider that Myriad 2 receives
the input frames from its Camera Interface (CIF). In our scheduling, the reception of
each new frame is performed in parallel to the main processing by the hardware CIF
peripheral of the SoC.

210

9.5. Porting of Computer Vision Pipeline on the Myriad 2 VPU

9.5.3. Development of Utility Software

The purpose of developing a utility software is to increase the productivity and en-
able sophisticated parallel programming over MDK, i.e., the VPU development tool,
which demands low-level coding when targeting custom implementations. For ex-
ample, extra development is required when multiple diverse functions must be as-
signed to SHAVEs for non-embarrassingly parallel execution. Our utility software
creates an abstraction layer for handling the I/O peripherals, memory management,
task scheduling, and inter-process communication. It includes a set of lightweight,
standalone, and transparent C/C++ libraries, which, like the other MDK compo-
nents, are included at compile-time and alleviate the coding/testing effort from the
main development. Without this software, the implementation of the 5-function CV
pipeline would not be efficient (or even feasible at all). Overall, our software modules
extend MDK by introducing new mechanisms, improving the performance of the ex-
isting ones, and providing automatic/transparent device configuration. More details
about our utility software for the Myriad VPUs can be found in our publications
in [359,363].

Figure 9.7 presents the basic mechanisms of our utility software. The first mech-
anism, shown in Figure 9.7a, provides inter-process communication using hardware
mutexes and a variable size buffer per SHAVE, which is placed in the shared CMX
memory slice. For data exchange, the SHAVESs read and write the buffers. The sec-
ond mechanism, shown in Figure 9.7b, pre-loads the code of each function in DDR
and allocates the requested CMX memory at runtime, i.e., during the execution of
the function, based on a pointer technique. The third mechanism, shown in Figure
9.7c, aims to reduce the idle core time that is caused by the static task assignment.
For embarrassingly parallel workloads, the developer creates a task pool by splitting
the workload into small (independent) tasks, which are inserted in a FIFO struct and
assigned to SHAVESs at runtime. Namely, the first task of the FIFO is assigned to the
first available SHAVE, and hence, each SHAVE is immediately assigned a new task
upon completing its previous one.

9.5.4. Parallelization and Low-Level Optimization

This section reports the implementation details on SHAVEs in two interdependent
stages: (i) core parallelization, (ii) low-level mapping and optimization within each
core. All the functions employ our memory allocation mechanism in order to use the
common scratchpad CMX memory. More specifically, before the execution of each
function, all the necessary working buffers are allocated, and correspondingly, after
the execution they are freed.

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

Data Exchange Buffers

UL [Buffer1[[]]
L | Buffer2 [[]] _
SHAVE i| yrite - SHAVE j

| HoI s 1T

[| |Bufer 12] | |
N\ _J

~
CMX Memory
(a)
CMX Managers CMX 0 O O
Tasks
Structure 1 3 Shice 1] O O
(stack pointer, current size) 1CE L
Offine Storing
FIFO
| Structure1l |- Slice 11 Dyramic Assignment | LEONET
| Structure12 |--Y Slice 12 SHAVE
C -
G SHAVES Control
DDR Memory
(b) (c)

Figure 9.7: Custom utility mechanisms for development support in Myriad 2: (a) inter-process
communication, (b) memory management, and (c¢) dynamic task assignment.

Canny Edge Detection

To provide improved workload balancing among the 12 SHAVESs, we split the input
image in half, divide each half-image into 12 slightly overlapping stripes, and assign
each one to a distinct SHAVE. In total, each SHAVE processes two 1024 x43-pixel
stripes from remote parts of the image, which have decreased correlation in terms of
content.

The initial porting of Canny Edge Detection utilized a large memory, e.g., at least 4
buffers for the images and the derivatives, as well as extra 32-bit integer buffers for
the histogram calculation and the execution of hysteresis thresholding. In our cus-
tom embedded implementation, we adopt in-place processing with reduced buffering
to best fit in the 2MB CMX memory. That is, we interleave the loops for calculating
the gradients and performing non-maximum suppression, such that with extensive
memory reuse, we rely only on the input image buffer and two small buffers of size
1024x3 to slide all 3x3 kernels. Furthermore, we calculate the histogram of each

212

9.5. Porting of Computer Vision Pipeline on the Myriad 2 VPU

stripe inside this convolution loop (while generating the gradients). Another low-
level knob regards the optimization of the buffers via word-length tuning and data
type adaptation to work with the smallest required data size. Besides CMX, this
customization exploits the capability of the VPU to process various data types (e.g.,
16-bit integers instead of 32-bit). Upon the loop completion, the image buffer stores
all local maxima and the hysteresis thresholding task is executed. This recursive pro-
cedure re-labels the weak edges neighboring any strong edge. The tracing continues
until all connecting paths are followed. In our implementation, each SHAVE executes
a local hysteresis in its own stripe and afterwards, it exchanges the strong edges of the
stripe borders with its neighboring SHAVESs using our inter-process communication
mechanism. After updating their border edges, SHAVESs execute another iteration of
hysteresis specifically for those pixels. The last (low-complexity) task is executed on
LEON and calculates the entire histogram of the gradients by accumulating the 24
stripe histograms (returned to DDR from CMX). This process also determines the
hysteresis thresholds for the next frame.

Depth Rendering

For this function, we divide the image into horizontal R-row stripes, which are as-
signed to distinct SHAVEs to be rendered almost independently from each other.
That is, we create a pool of B = 1024/R individual tasks, where B determines the
CMX memory resources per SHAVE and the DMA transactions (each rendered stripe
is sent to DDR). The full utilization of CMX requires B = 18 stripes, however, our ex-
ploration shows that B = 32 improves the execution. Namely, smaller stripes adapt
better to image content and distribute the workload more fairly to SHAVESs, even
though larger B increases the repetitions of model reading. To reduce the idle time
per core, we employ our mechanism for dynamic task assignment: each SHAVE is
assigned a new task (i.e., stripe to render) from the pool at runtime, immediately
upon finishing its previous stripe.

After exploration, we store the static Envisat’s mesh model in the DDR, global mem-
ory instead of CMX. The scratchpad is small and is preferred only for storing working
buffers. Each SHAVE gets direct access to the full model in DDR, and hence, multiple
cores read the same set of memory locations repetitively. However, due to their shared
L2 cache, we measure negligible time penalties with this approach (compared to stor-
ing the model in CMX). Regarding the low-level optimization in SHAVESs, we reduce
the number of buffers and customize the data types. In particular, we do not employ
the working buffers used in typical CPU implementations, and ultimately, we utilize
only the Z-buffer containing the rendered image stripe. Furthermore, we successfully
enable SIMD operations to accelerate amenable functions (almost half of total com-
putations), such as projection, bounding, and depth calculation. In detail, we arrange

213

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

the data using the Clang Intrinsic vectors, e.g., float4 for defining a vector for 4 float
numbers, and we call the corresponding MDK routines to calculate the dot/cross prod-
ucts (mvuDot, mvuCross) and find the min/max numbers (mvuMax, mvuMin). More-
over, we transform extra multiplications and additions to dot and cross products to
expand our parallel /vectorized operations.

Perpendicular Edge Matching

This function searches for matches between the intensity and depth edgemaps. We
divide the image into 12 independent stripes and assign each stripe to a distinct
SHAVE. After exploration, we opt to store both the depth and intensity edge maps
in DDR, while we enable the L1 (including data) and L2 caches of SHAVEs. Con-
sidering that Edge Matching relies on simple data comparisons (fast computations),
the processing time on SHAVEs cannot mask the overhead of transferring the edges
to CMX via the DMA engine. We store the output matches in the uncached CMX,
which is directly accessed by LEON (to start the execution of the next function, i.e.,
Pose Refinement), in order to avoid disturbing the caching mechanism fetching the
input edges. The race conditions to the shared output buffer are resolved by fine
grained locking using the SoC’s hardware mutexes.

9.6. Inference of Deep Neural Network on the Myriad
X VPU

In this section, we present the inference of a demanding DNN on Myriad X, and
more specifically, on the NCS2 USB accelerator via OpenVINO?®. In particular, we
accelerate a DNN of ResNet backbone, namely UrsoNet [379], which estimates the
satellite’s pose. To surpass the limited embedded computation power (compared to
high-performance computers and host machines) and comply with the real-time con-
straints, we deploy a mobile version of UrsoNet. Moreover, to improve the DNN infer-
ence, we decrease the image resolution, using various resampling algorithms. More de-
tails about the resampling can be found in our publication in [362].

9.6.1. Deployment of DNN for Satellite Pose Estimation

The architecture of the UrsoNet DNN [379] is illustrated in Figure 9.8. In comparison
with the original ResNet architecture, the global average pooling layer and the last

5Special thanks to P. Minaidis for coding on the DNN and NCS2.

214

9.6. Inference of Deep Neural Network on the Myriad X VPU

ResNet Backbone iiBottlenecki Location
Layer s E— '

4 Orientation
f 3:>|j= 0]

[—p

Y

Convolutional Layers Fully-Connected Layers

Figure 9.8: The UrsoNet DNN for satellite pose estimation [379].

Table 9.2: Configuration of the UrsoNet DNN for deployment on Myriad X VPU (NCS2).

Network Training

Parameter Value Parameter Value
Backbone ResNet-50 Pre-Trained Weights ImageNet
Bottleneck Width 32 Dataset “soyuz__hard”
Input Image 1024x1024x 3 Arithmetic fp32
Resampling Bilinear/Bicubic/Lanczos Epochs 100
Inference Image 512x512x3 Augmentation No
Ori./Loc. Resolution 16/16 Optimizer SGD

fully-connected layer are removed. In their place, the designers of UrsoNet insert a
bottleneck layer that consists of a 3x3 convolution with stride 2, as well as two fully-
connected layers for calculating the satellite’s location and orientation. To generate
a mobile network for deployment on Myriad X, we adopt the UrsoNet configuration
presented in Table 9.2. We use the dataset for the Soyuz spacecraft (“soyuz_hard”)
and follow the training process of [379], but we start from a pre-trained ImageNet
model, perform training for 100 epoques, and do not apply data augmentation. The
image resolution is decreased using different resampling algorithms. We consider an
1024x1024x3 input image, which is scaled to 512x512x3 for efficient deployment
and inference at the edge.

To generate the binary network file and deploy it on Myriad X (NCS2 accelerator),
we follow the OpenVINO toolflow discussed in Section 9.2.2. Figure 9.9 illustrates
the mapping of the basic network blocks of UrsoNet on Myriad X. Compared to
the original ResNet architecture, the batch normalization blocks are replaced by add
operations, which are accelerated on SHAVEs. Smaller operations, e.g., permutations
before the fully-connected layers, are also executed on SHAVEs. The convolutions and

215

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

input image
V |
| Conv2D | | Conv2D |

RelU

RelLU

| MaxPool | [ConvaD | MatMul
¥
Input Layer @ only in
Convolution only in FC
Blocks - for -
..................... :Orientation
| Conv2D || Conv2D | output
i Fully Connected Layer

Convolution Block /
Identity Block

NCE
D SHAVEs
[\ fused

Figure 9.9: Mapping of the UrsoNet DNN in Myriad X.

matrix multiplications are mapped onto NCE, while almost all the ReLLU activation
functions are optimized out by OpenVINO, i.e., fused with other operations during
the graph transformation stage.

0.7. Evaluation

This section conducts the evaluation of our development on the VPUs. Section 9.7.1
reports results from the implementation of the DSP and CNN kernels on Myriad 2
(presented in Section 9.4). Section 9.7.2 regards the implementation of the CV algo-
rithm for pose tracking on Myriad 2 (presented in Section 9.5). All these algorithms
are developed with the MDK tool. For their evaluation, we consider an FPGA-VPU
co-processing architecture, in which the FPGA sends/receives the I/O data to/from
the VPU. We also employ a host-PC for validating and demonstrating the results.
Finally, Section 9.7.3 evaluates the inference of the DNN for pose estimation (pre-

216

9.7. Evaluation

Table 9.3: Overview of Dissertation’s DSP & AI VPU accelerators.

Design Input Data Output Data VPU Reference
Averaging Binning 4-MPixel, 8b 1-MPixel, 8b Myriad 2 Sec. 9.4, 9.7.1
FIL. Point Convolution 1-MPixel, 8b 1-MPixel, 8 Myriad 2 Sec. 9.4, 9.7.1
ShipDetect CNN 1-MPixel x3, 16b 64x1, 32b Myriad 2 Sec. 9.4, 9.7.1
Canny Edge Detection 1-MPixel, 8/16b 1K-5K, 5b Myriad 2 Sec. 9.5, 9.7.2
Depth Rendering 6x1, 32b 1-MPixel, 16b Myriad 2 Sec. 9.5, 9.7.2
Edge Matching 1-MPixel x2, 8&16b 1K-5K, 8b Myriad 2 Sec. 9.5, 9.7.2
UrsoNet DNN 1-MPixelx 3, 8b 4099x1, 32b Myriad X Sec. 9.6, 9.7.3

FPGA

3
pR
> Jot? 3 a
/0 Q
Host-PC Myriad 2 VPU

Figure 9.10: FPGA-VPU co-processing architecture for the acceleration of DSP/CNN kernels on
Myriad 2.

sented in Section 9.6). For this experimentation, we use the OpenVINO tool and the
Myriad X NCS2 accelerator. Table 9.3 summarizes all the VPU implementations of
the Dissertation along with their I/O data.

9.7.1. Experimental Results of Custom DSP and CNN Kernels

Figure 9.10 illustrates our testing setup for the evaluation of the custom DSP and
CNN kernels. The host-PC is connected with an FPGA, which transmits/receives
the I/O data to/from Myriad 2. Myriad 2 receives the input data via CIF, as in our
CV pipeline (see Section 9.5.2) and sends the output to the FPGA via the Liquid
Crystal Display (LCD) interface®. More details about our FPGA-VPU architecture,
the components/functions of each device that enable the communication, and the I/O
transfers are reported in our publication in [360].

Acceleration of Kernels

Firstly, we assess the acceleration of our kernels using the general-purpose LEON
processor as baseline. For Averaging Binning, we achieve 14x speedup, which mainly

6Special thanks to Prof. D. Reisis et al. from NKUA for coding on the CIF/LCD interface.

217

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

200 5
@ 150 1 LEON
é —e— SHAVEs
g 100 |
c
g
S 50
0 ?\'*r; © €«
102 198 300 396 504 600
Clock (MHz)
(a)
900 + 450
LEON
< —e— SHAVEs
% 700 | > 300 |
~ < LEON
wn
5 | a —e— SHAVEs
% 500 L 150 1
o
0 0 Lp—e—a—a—o—
102 198 300 396 504 600 102 198 300 396 504 600
Clock (MHz) Clock (MHz)
(b) ()

Figure 9.11: Experimental results from the implementation of Averaging Binning on Myriad 2 with
respect to the clock frequency: (a) latency, (b) power consumption, and (c) FPS-per-Watt.

comes from the parallelization to 12 SHAVEs (LEON has to scan the entire 4-MPixel
image, resulting in significant delay). Depending on the size of the convolution mask,
we achieve up to 75x speedup for Floating-Point Convolution. Compared to Averag-
ing Binning, the speedup is larger, because the convolutions require more demanding
computations. Finally, the Ship Detection CNN is implemented only on SHAVES, i.e.,
where the custom inference engine is mapped, however, considering the performance
of convolutions, and given that LEON does not support 16-bit floating-point (thus,
it must execute the 32-bit model), the speedup is expected to be more than 2 orders
of magnitude.

Figure 9.11 illustrates the scaling of latency, power consumption, and performance-
per-Watt of Averaging Binning for different clock frequencies. Regarding latency, it is
almost linear to the clock frequency whether Averaging Binning is executed on LEON
or the 12 SHAVEs. The SHAVE implementation is ~13x faster than the respective
LEON implementation in all experiments. In terms of power, as expected, LEON

218

9.7. Evaluation

provides 1.1x-1.3x smaller consumption, however, SHAVESs still deliver low power,
i.e., up to 900mW. Moreover, the power consumption of the SHAVE implementation
increases faster than that of LEON. When considering both Frames Per Second (FPS)
and power, LEON attains negligible scaling, while the FPS-per-Watt of SHAVEs in-
crease almost linearly. Similar results are derived for the Floating-Point Convolution,
i.e., up to 900mW and 58 speedup.

System Evaluation

We also evaluate the system performance involving both I/O and processing based on
the FPGA-VPU co-processing architecture of Figure 9.10, where the data transfers
are performed via the CIF and LCD interfaces. In this analysis, the clock frequency
of CIF and LCD is configured at 50MHz, which guarantees error-free data transfers
according to our experiments presented in [360]. The evaluation regards two dis-
tinct scenarios concerning the execution order of the I/O handling and processing
tasks:

1) Unmasked I/O: assuming serial I/O-processing, the VPU receives the input frame
from the FPGA, performs the processing, and transmits the output data to the
FPGA.

2) Masked I/O: assuming pipelined I/O-processing and streaming input, the VPU
performs in parallel two processes: (i) buffering of output frame n — 1, CIF recep-
tion and buffering of input frame n + 1, LCD transmission of output frame n — 1,
and (ii) processing of frame n. In that case, the one LEON processor executes the
first process, i.e., the I/O handling, and the other takes over the second process,
i.e., it manages the processing performed by SHAVEs.

The performance results are presented in Table 9.4. Both I/O interfaces are operating
at 50MHz and as expected, they transmit an 1-MPixel image in ~21ms. In the
Unmasked I/O mode, the total throughput ranges between 9-20 FPS for kernels
with small processing time. To implement the Masked I/O mode, the I/O data
are buffered to an allocated DDR space for data integrity reasons (copying an 1-
MPixel image requires ~42ms). As a result, the latency of a single frame increases
considerably. Even so, the kernels featuring excessive processing time can benefit from
this masking technique and improve their throughput by 1.1x-1.3x. This effect is
shown in the Floating-Point Convolution with a 13 x 13 mask and the Ship Detection
CNN. In contrast, kernels with small processing time suffer a throughput decrease
when applying masking, and the developer must be cautious with respect to the
selected mode of operation. This is evident in Averaging Binning, which has only 3ms
computation latency and the buffering of its 4-MPixel input image adds considerable
timing overhead.

219

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

Table 9.4: Experimental results of custom DSP & CNN kernels on Myriad 2 VPU.

Function Latency' Sys-Unmasked I/0? Sys-Masked 1/03

Kernel CIF VPU LCD Latency Throughput Latency Throughput

(ms) (ms) (ms) (ms) (FPS) (ms) (FPS)
Avg Binning 85 3 21 109 9.1 906 3.2
3x3 Conv. 21 8 21 50 20 336 8
7x7 Conv. 21 29 21 71 14.1 336 8
13x13 Conv. 21 114 21 156 6.4 336 8
ShipDetect 63 658 ~0 721 14 1505 1.5

! Refers to the input reception via CIF, the processing on VPU, and the output transmission via LCD.

2 Regards serial I/O—processing — Throughput = 1/(CIF__Time + VPU_Time + LCD_ Time).

3 Regards pipelined I/O—processing — Throughput = 1/(max{VPU_Time, LCD_ Buffering_Time
+ CIF_Time + CIF_Buffering Time + LCD_ Time}).

Comparison to Embedded Devices

Finally, we compare our VPU accelerators with other embedded devices. For the
same CNN model, Myriad 2 provides ~2.5x less FPS-per-Watt than the Zyng-7020
FPGA [276], however, the latter utilizes almost all the chip resources and exhibits
4x larger power consumption. Compared to the Jetson Nano GPU [276], the VPU
delivers ~4x better FPS-per-Watt for the CNN. For Averaging Binning, we achieve
~3x better throughput than a typical Zynq FPGA implementation with one binning
pipeline in programmable logic (one input pixel per clock cycle), also due to the slower
DMA engines of Zyngq.

9.7.2. Experimental Results of CV Pipeline

Figure 9.12 illustrates our testing setup for the evaluation of the CV pipeline. In this
setup, we employ EGSE [392], which comprises an interface unit for the real-time
simulation of the high-bandwidth SpaceWire link (i.e., a spacecraft communication
network for data transmission). The host-PC configures EGSE, which feeds the input
data to the FPGA. The FPGA transmits the data to Myriad 2 via CIF operating at
5MHz. For validation and demonstration® purposes, we transfer the outputs of the
CV pipeline (6D poses) back to the host-PC. More details about the FPGA-VPU
architecture, the configuration of SpaceWire, and the I/O transfers are reported in
our publication in [359].

4Demo available on YouTube: https://youtu.be/9wDLmb56zsss.

220

https://youtu.be/9wDLm56zsss

9.7. Evaluation

frame
SpW EGSE SpaceWire> FPGA

rey "
frame || USB O| frame

UART
Host-PC ¢ M Myriad 2 VPU
6D pose

Figure 9.12: FPGA-VPU co-processing architecture for the acceleration of the computer vision
pipeline on Myriad 2.

(2) (d)

Figure 9.13: I/O data of main functions in the computer vision pipeline (30m—20m Envisat se-
quence): (a),(c) input, (b) output of Edge Detection, and (d) output of Depth Rendering.

We test our system with a synthetic dataset® that includes two sequences of 1000 im-
ages (1024x 1024 8-bit grayscale pixels) realistically simulating the motion of Envisat.
The nature of the data is similar to that of actual rendezvous images and suffices to
evaluate the system performance. In particular, the first frame sequence depicts a
satellite rotation out of plane at ~50m away from the camera, while the second one
depicts a satellite approach from 30m to 20m while tumbling. Figure 9.13 illustrates
frames from the 30m—20m dataset, together with outputs from the basic functions of
the CV pipeline.

Acceleration of Functions

At first, we evaluate the implementation of each function of the CV pipeline. In
particular, targeting to assess our development methodology and embedded imple-
mentation techniques, we gradually study the speedup factor. Figure 9.14 presents

5Spccial thanks to D. Gonzalez-Arjona et al. from GMV for providing the test dataset of Envisat.

221

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

xX12p
S10f
e
& 8r
Q.
(2=
£ 4t
(0]
20 T i i T
- Stepl Step2 Step3 Step 4
(a)
X 14 - X 21
o12f 2181
3 F12;
o = 97
3 T 6-
5 5 3
— Step 1l Step 2 Step3 Step 4 Step5 — Step 1 Step 2 Step 3
(b) ()

Figure 9.14: Incremental acceleration of the computer vision functions with respect to their major
implementation steps on Myriad 2: (a) Edge Detection®, (b) Depth Rendering?, and (c) Edge
Matching?.
L Step 1: SHAVE porting, Step 2: improved buffering and in-place computations, Step 3: loop merging,
Step 4: improved task partition.
2Step 1: SHAVE porting, Step 2: dynamic task assignment, Step 3: improved task partition, Step 4:
SIMD computations, Step 5: optimized cache configuration.
3 Step 1: SHAVE porting, Step 2: shared L2 and instructions at L1, Step 3: shared L2 per 2 cores and
instructions & data at L1.

how each major implementation step contributes in the speedup for the 30m—20m
Envisat dataset. Namely, the speedup of the last step is the final speedup achieved.
Below, we analyze the implementation steps and the speedup of the CV functions
accelerated on SHAVEs.

The parallelization of Edge Detection to 12 SHAVESs delivers only 4.9x speedup, re-
gardless of the pixel bit-width. The re-design of the function using improved buffering
and in-place computations almost doubles the speedup to 9x. By performing the
thresholding before hysteresis and by merging loops (histogram calculation during
thresholding), the speedup is increased to 9.5x. Dividing the image to 24 stripes
rather than 12 adds negligible overhead due to extra DMA transactions, however, it
improves the workload balancing among SHAVESs during the content-dependent hys-
teresis task and results in the final speedup of 10x.

The parallelization of Depth Rendering to 12 SHAVEs delivers only 2.3x speedup

222

9.7. Evaluation

when using static task assignment. We note that the performance of this function
varies among frames, as it is highly dependent on the image content. By employing
dynamic task assignment, the idle time per SHAVE core significantly reduces, and
thus, the speedup is increased to 4.8x. Moreover, the image partition into more
stripes results in more fine-grained workload balancing and provides an additional
speedup boost to 7.2x. Subsequently, the exploitation of the SIMD capabilities of
SHAVESs enlarges the speedup by 9x—12x. Finally, the read-only nature of the data
allows cache optimizations that decrease the execution time even further, to about
119ms—212ms. In total, depending on Envisat’s orientation in the image, the Depth
Rendering functions attains a speedup of 10x—-16x.

Out of all functions, the configuration of the memory hierarchy has the highest im-
pact on the performance of Edge Matching. Its parallelization to 12 SHAVESs pro-
vides a remarkable speedup of 6.5x, however, our cache configurations result in even
larger speedup. In particular, the employment of the shared L2 and L1 cache for
instructions increases it to 13.1x. By enabling a shared L2 cache of 16KB per
two SHAVEs and using the dedicated L1 also for data, the speedup increases to
20%.

System Evaluation

Table 9.5 reports the main experimental results from the implementation of the CV
pipeline in Myriad 2. It includes results from the profiling on LEON and the final
SHAVE implementation for the 30m—20m Envisat dataset. Similar results are derived
for the 50m Envisat dataset. Nevertheless, this dataset imposes slightly less compu-
tation demands (the workload is content-dependent), as the distance of the satellite
from the camera is larger, and thus, its size is smaller.

The execution times in Table 9.5 vary during the test sequence, because the algo-
rithmic workload is content-dependent, i.e., it is affected by the apparent size of
Envisat in the image. In addition, the efficiency of the task parallelization depends
on the orientation of Envisat due to the mapping of rendering areas to SHAVEs. We
note that the image reception via CIF operating at 5MHz requires ~210ms, however,
in our final implementation it is entirely masked by the processing of the previous
frame (see Figure 9.6). Hence, the system speedup increases to 8.5x—12x (Table
9.5 does not take into account the I/0s). Overall, the achieved throughput is 2.6
3.8 FPS for the 20m-30m sequence (325ms per frame on average), while for the
50m sequence, we achieve a throughput of 3.8-4.9 FPS (235ms per frame on aver-
age).

Regarding power consumption, the MDK routines report 0.7W-1W (see Table 9.5)
for the execution of each individual function on SHAVEs, with Depth Rendering be-

223

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

Table 9.5: Experimental results of the computer vision pipeline on Myriad 2 VPU.

LEON SHAVEs Gains
Function Latency Memory Latency Memory Power Accuracy Latency Memory
(ms) (MB) (ms) (MB) mW) (%) (x) (%)
1. Edge Det. 370-375 6.1 36-37 2.3 771 99 10 62.9
D. Edge Det. 375-380 7.1 39-40 3.8 771 99 10 47.3
Depth Rend. 1900—-2100 6.4 119-212 3.3 980 100 10-16 48.6
Edge Match. 100-120 3 56 3 810 100 20 0
Pose Refin. 100-130 6.3 100-130! 6.3 644 Fig. 9.15 1 0
Pipeline 2845-3105 - 263-3882 - 898 Fig. 9.15 8-11°

! Pose Refinement was not accelerated on SHAVES.

2 Intensity Edge Detection is not added in the total latency (masked by Pose Refinement).

3 Without I/O. With image reception via CIF (~210ms), the speedup increases to 8.5x—-12x (CIF is
masked).

ing the most power-hungry. In comparison with the porting on LEON, these values
are slightly increased by 1.2x-1.4x, as LEON consumes 600mW-700mW depend-
ing on the function. On average, when the entire CV pipeline operates, we get
0.9W. For the execution of the full system, i.e., when including the image recep-
tion via CIF, the power consumption lies between 0.8W and 1.1W. We note that
our board measurements via an external multimeter report a power consumption of

1.2W.

In terms of memory, the integration of the entire CV pipeline along with the CIF mod-
ule results in small utilization. The total memory (data and instructions) is around
20MB, i.e., smaller than the 10% of the available DDR resources. Furthermore, by
storing the instruction code in DDR, there are no timing penalties for the execution on
SHAVESs, and CMX is used only for data and internal structures. Additionally, due to
the applied optimizations, i.e., improved buffering and in-place processing, we achieve
significant memory gains: 55% on average for the two Edge Detection functions and
49% for Depth Rendering (see Table 9.5).

In terms of individual accuracy, the functions generate the same sets of results as the
initial software. A small exception is in Edge Detection, which misses 1% of the edges
when executing slightly fewer hysteresis recursions at the stripe borders (compile-time
configurable). We also note that for Pose Refinement, we port on LEON a relatively
old version of BLAS/LAPACK (v3.2.1, without guaranteed compatibility to the initial
software). Figure 9.15 shows the alignment error of Envisat’s pose, as it is defined in
[326]. The error versus Envisat’s distance is in the area of 1% and tracking is lost only
in few specific frames. In general, the behavior of pose tracking on Myriad 2 is similar
to that of the CPU and FPGA implementations [326].

224

9.7. Evaluation

40 40
§ 30 E 30
5 20 5 20
g g
m 10 m 10

0 0

0 20 40 60 80 100 0 20 40 60 80 100
Frame (#) Frame (#)

(2) (b)

Figure 9.15: Alignment error of Envisat’s pose computed by the computer vision pipeline in Myriad
2 at (a) 30m and (b) 50m camera distance.

Table 9.6: Data volume reduction in the implementation of the computer vision pipeline in Myriad
2.

VPU Input VPU Output
Data Type 1024 x1024 8-bit frames | Data Type 6x1 32-bit vectors
Data Volume 8MB per frame Data Volume 192b per vector
Reception Time ~210ms Processing Time ~325ms | ~235ms
Reception Rate ~38 Mbps Processing Rate ~590 bps | ~817 bps

Finally, in Table 9.6, we evaluate the efficacy of the proposed architecture as an edge
processor by examining the data volume reduction. Interestingly, we achieve the
very important goal of data reduction at the edge, which relieves several potential
bottlenecks concerning the storage, the network’s bandwidth and energy consumption,
as well as the I/O throughput. In particular, considering the input and output data,
i.e., 1024x1024 8-bit images and 6x1 32-bit vectors, respectively, as well as the

latency of the input reception and processing, we achieve a data reduction factor of
105 bps.

Comparison to Embedded Devices

Finally, we provide an overall evaluation of the Myriad 2 VPU, including comparisons
to other embedded devices. When comparing individually the implementation of the
functions to other ARM-based or GPU-based mobile devices, we verify the power
efficiency of Myriad 2. For Canny Edge Detection, we achieve 1 order of magnitude
faster execution than ARM Cortex-A9 (~326ms per MPixel image, single-threaded
at 667MHz) [326], and approximately 3x better performance-per-Watt than Nvidia’s
Jetson TK1 GPU (~12ms per MPixel image, 192 CUDA cores, but with 10W) [393].

225

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

For Depth Rendering, we achieve ~7x faster execution than ARM Cortex-A9 (~869ms
per 30m-distant-image, single-threaded at 667MHz) [326] and 5x—11x better power
consumption than high-end mobile GPUs (given their nominal values, see Table 9.1).
Regarding system performance, our efficient SoC utilization provides tenfold accel-
eration versus LEON4@Q600MHz. The achieved FPS approach 5 and can be further
improved via customization at algorithmic level, e.g., smaller rendering, which is gen-
erally considered as sufficient for VBN in space [3]. When comparing to Zyng-7000
implementing the same algorithm [326], the FPGA processes approximately 3x more
FPS than Myriad 2, in total. For specific functions, i.e., Edge Detection or Depth Ren-
dering, Zynq also achieves 6x—-14x faster execution.

Regarding the power consumption, the 0.8 W—1.1W of Myriad 2 is significantly lower
than that of other high-performance processors, with only few CPUs consuming ~1W
by operating at significantly lower clock frequency. Based on our methodology, we
exploit all the capabilities of the tools and SoC to deliver a very high performance-per-
Watt ratio in Myriad 2, which matches the notable FPGA results measured in [3,326]
for such tasks. Compared to Zynq [326], Myriad 2 achieves the same, or slightly
better, performance-per-Watt by trading approximately 3x speed for 4X mean power.
Additionally, it has a more stable consumption than the 2W-9W variation of the
FPGA, allowing for simpler electronics design.

Another advantage of Myriad 2 over the FPGA is that it utilizes less than 10% of
the available memory space, allowing to implement additional functions or alternative
algorithms for the current functions. In contrast, the same FPGA implementation
utilizes 28%—77% of the chip [326], thus, it would require dynamic reconfiguration to
change functionality. In terms of accuracy, the Myriad 2 processor can meet exactly
the same arithmetic requirements as an ordinary CPU during the entire algorithm
execution. This can be viewed as an advantage in cases where the original algorithm,
which is usually developed on CPU, must remain 100% intact with respect to its
intermediate and output values.

9.7.3. Experimental Results of DNN Kernel
Acceleration of UrsoNet

In this section, we report the results from the deployment of the UrsoNet DNN on
Myriad X. The latency of the pre-processing stage, which involves image resampling
to transform the 1024x1024x3 input image to 512x512x3, is 1ms—20ms, depending
on the algorithm. A single DNN inference (synchronous execution) on the 512x512x3
image requires around 373ms, which is 5x faster than inferencing on the initial image.
At the same time, the mean Location Error (LOCE) is 1.68m-1.89m and the mean

226

9.8. Conclusion

Orientation Error (ORIE) is 25.08°-27.89°, namely both remain in the range of the
original DNN without resampling, where LOCE is 1.78m and ORIE is 27.83°. In
all cases, as shown in [379], more fine-grained training, which is not the purpose
of our work, can provide better accuracy results for the same performance. We
remind that we apply different training settings (e.g., another pre-trained model, less
epochs) and architectural modifications (e.g., decreased resolution for location and
orientation, and smaller bottleneck layer). Overall, the pre-processing stage for image
resampling, which is parallelized to 16 SHAVESs, adds very small latency, however, it
facilitates the inference stage. As a result, the entire synchronous execution sustains
a throughput of ~2.7 FPS. The throughput is expected to increase for asynchronous
inferencing, while further speedup can be achieved by inferencing on smaller tensor,
e.g., 192x256x3. In this case, Myriad X delivers 15 FPS, whereas the accuracy loss
in not significant, as LOCE lies in the range 1.9m—2m.

Comparison to Embedded Devices

Following the analysis of the experimental results on Myriad X, we provide a compar-
ison to other embedded devices that are also considered for space avionics. Table 9.7
presents the results for inferencing on VPU, CPU, and GPU. For this experiment, we
use input images that are scaled to 512x640x3. The CPU is the ARM Cortex-A57
of Nvidia’s Jetson Nano board, while the GPU is the 128-core Maxwell of the same
board. For Jetson Nano, we consider its two power modes: the “low-power” at 5W
and the “high-performance” at 10W. To make a fair comparison, we consider the
NCS2 VPU hosted on a single-board computer (i.e., a Raspberry Pi 3), and thus,
the total power consumption for inferencing is 5W. In terms of latency, the 4-core
Cortex-A57 operating at 1.4GHz is relatively slow, thus, NCS2 delivers a 6 x speedup.
Compared to the GPU, NCS2 achieves a slight improvement of 1.3x, but with half
of the GPU’s power consumption. When considering both throughput and power,
NCS2 provides ~1.7x more FPS-per-Watt than GPU and ~8.5x more FPS-per-Watt
than CPU. Finally, we report comparison results for the original ResNet-50 network
(224%x224x3 image), which is the backbone of UrsoNet. For ResNet-50, the Jetson
Nano GPU provides increased throughput versus Pi 3 + NCS2, i.e., 1.3x-1.9x more
FPS, however, when also considering FPS-per-Watt, the VPU inference outperforms
the GPU by 1.1x-1.5x.

9.8. Conclusion

In this chapter, we accelerated various DSP and AI algorithms on the multi-core
Myriad VPUs. These SoCs are characterized by extremely low power consumption

227

DSP & AI Acceleration on Heterogeneous Multi-Core SoC's

Table 9.7: Experimental results of the UrsoNet DNN on embedded devices (512x640x3 input
tensor).

. Latency Throughput Power
Device (ms) (FPS) (W) FPS-per-Watt

Intel Myriad X VPU (NCS2 + Pi 3)! 588 1.7 5 0.34
2 4 1 .04

ARM Cortex-A57 CPU (Jetson Nano)? 830 0 0 0.0
7519 0.1 5 0.02

1 1. 1 1
Nvidia Maxwell GPU (Jetson Nano)? 76 3 0 0-13
958 1 5 0.2

! NCE & 16-core SHAVE @700MHz. NCS2 (2W) hosted on a Raspberry Pi 3 (3W).
2 10W mode: 4-core @1.4GHz. 5W mode: 2-core @918MHz.
3 10W mode: 128-core @921MHz. 5W mode: 128-core @614MHz.

(i.e., ~1W-2W) and increased heterogeneity in terms of processors and memories.
As shown in practice, the efficient utilization of such an heterogeneous SoC architec-
ture requires a design methodology involving algorithmic analysis, multi-level paral-
lelization, and extensive low-level optimization and tuning, especially when having to
deploy multiple diverse software kernels. Based on our methodology, at first, we im-
plemented custom kernels, i.e., averaging image binning, floating-point convolutions,
and a CNN for detecting ships on satellite images. Afterwards, we accelerated a so-
phisticated 5-stage CV pipeline for tracking the pose of the Envisat satellite, which
includes kernels such as Canny edge detection, depth rendering and perpendicular
edge matching. Moreover, we deployed the demanding UrsoNet DNN of ResNet-50
backbone for estimating the pose of the Soyuz spacecraft. For the implementations,
we successfully applied various high- and low-level techniques such as dynamic task
scheduling, SIMD operations, improved buffering, variable tuning, and optimized
memory configurations. Our experimental evaluation on Myriad 2 shows that for
individual kernels, we provided 10x—20x speedup compared to the general-purpose
LEON4 CPU. At system-level, the entire CV pipeline for pose tracking on MPixel im-
ages provided a speedup of 8.5x—12x, while sustaining a throughput of 2.6-4.9 FPS
with only 0.8W-1.1W. Regarding Myriad X, the inference of UrsoNet on resampled
MPixel images delivered a throughput of 2.7 FPS within the power envelope of 2W.
Finally, compared to other embedded devices, the Myriad VPUs provide significantly
better power efficiency, i.e., 5x versus the Jetson Nano GPU and 4x versus the Zynq
FPGA. In terms of performance, they are outperformed by the Zynq FPGA, however,
when considering the performance-per-Watt ratio, they provide the same or even bet-
ter results. Indicatively, for the CV pipeline, Myriad 2 trades a 3x loss in speed for
a 4X gain in mean power consumption.

228

Chapter 10

Conclusion

10.1. Summary of Main Contributions

The goal of the current Ph.D. Dissertation was to design and evaluate DSP and Al
accelerators that fulfill the requirements of modern computing systems. Towards
reaching this goal, we adopted various design approaches from different layers of the
computing stack. Starting from the bottom to the top design layer, our work involved
arithmetic circuits, hardware accelerators, FPGA implementations and implementa-
tions on embedded SoCs.

At circuit level, we exploited the promising design paradigm of Approximate Comput-
ing to propose new approximation techniques for energy-efficient multipliers, which
are key processing units in DSP /AT hardware accelerators. In this context, we exam-
ined several aspects of Approximate Computing, including low-level optimizations,
hybrid encodings, runtime configurability, and cooperative approximation. Our ap-
proximate multiplication circuits provide a very large approximation space and slow
error scaling in the typical acceptable error segment, while they outperform several
state-of-the-art designs. All the proposed circuits were efficiently integrated in bigger
DSP/AT hardware accelerators based on our design methodology.

Next, we provided acceleration and efficient mapping of DSP algorithms on the new
European space-grade FPGAs, which require special treatment due to several factors
(e.g., new tools, lower performance than commercial FPGAs). Our development was
accompanied by a design methodology targeting to highlight all the acceleration and
mapping opportunities, and also aid us to surpass issues that arose either by the
new tool or due to HDL porting on a different FPGA vendor. The final resource
utilization of high-performance algorithms for feature detection and stereo vision was
comparable to that of well-established FPGAs, while the performance was sufficient
for space applications.

Finally, we provided acceleration and efficient mapping of DSP/AI algorithms on
the multi-core VPUs. These SoCs are very heterogeneous in terms of processors

229

Conclusion

and memories, however, several challenges need to be addressed to deliver increased
acceleration. To offer very low power consumption, the VPUs have sacrificed com-
putational power, while the SoC’s complexity requires systematic study to efficiently
map and schedule compute-intensive algorithms. Therefore, we proposed a design

methodology and several high- and low-level implementation techniques to accelerate
classic DSP kernels, as well as a sophisticated CV pipeline and a DNN algorithm
(both for satellite pose estimation).

Overall, the key contributions of the Ph.D. Dissertation are summarized as fol-

lows:

Extensive and up-to-date survey in the field of Approximate Computing, which
reviews and classifies software and hardware approximation techniques (Chapter
2).

Low-level optimizations in the alternative DLSB numerical format (Chapter 3).

New arithmetic approximation techniques, which generate the RAD, AxFXU/
AxFPU and ROUP families of approximate multipliers (Chapters 4—6).

Improvement (3 times) of the state-of-the-art energy-error Pareto front of ap-
proximate multipliers (Chapters 4—6).

Seamless runtime configuration of the approximation in the DyFXU/DyFPU
approximate multipliers (Chapter 5).

The design approach of “cooperative approximation”, which combines various
orthogonal approximation techniques to provide a very large design (approxima-
tion) space (Chapter 6).

Methodology for the development of approximate DSP and AI hardware accel-
erators, either for ASIC or FPGA, which is based on extensive design space
exploration with differing approximations, algorithms, arithmetic formats, and
hardware design techniques (Chapter 7).

Experimental results for various approximate DSP and AI hardware accelerators,
including kernels for 1D /2D signal processing and CNNs (Chapter 7).

Methodology for the mapping and acceleration of high-performance DSP kernels
on the new space-grade BRAVE FPGAs and tools (Chapter 8).

Experimental results from the implementation of various DSP kernels (feature
detection and stereo vision) on space-grade FPGAs of the market (Chapter 8).

Methodology for the mapping and acceleration of high-performance DSP and Al
algorithms on the heterogeneous multi-core Myriad VPUs (Chapter 9).

230

10.2. Future Work

e High-level and low-level techniques for the partitioning, scheduling, and map-
ping of demanding algorithms on the heterogeneous multi-core Myriad VPUs
(Chapter 9).

o Experimental results from the implementation of various DSP and Al kernels
(convolution, image classification, pose tracking) on the heterogeneous multi-core
Myriad VPUs (Chapter 9).

e Evaluation of NanoXplore’s space-grade BRAVE FPGAs and Intel’s COTS Myr-
iad VPUs as candidate on-board processors for space missions (Chapters 8-9).

10.2. Future Work

Regarding the work of Part I, Approximate Computing is applied in all the layers
of the typical computing stack. As a result, research is conducted at the transistor
layer, circuits, hardware accelerators, micro-architecture, runtime systems, compilers,
and programming languages. In this Ph.D. Dissertation, the proposed approximation
techniques are applied at the logic level and the design of arithmetic circuits, which
are then integrated in hardware accelerators. However, to exploit the full potential of
Approximate Computing, our arithmetic approximation techniques can be combined
with approximations inserted in other layers, namely, apply cross-layer approxima-
tion. Other future extensions include the integration of our approximate circuits
in processors (e.g., in open-source GPUs or RISC-V CPUs), the system-level ap-
plication of our runtime approximation configuration (e.g., to provide tuning with
respect to the desired accuracy constraints), and the automatic selection of the best
approximation configurations for a given application (which is currently performed
manually).

Regarding the work of Part II, segments of our design methodologies can be per-
formed in an automatic fashion, e.g., the exploration of the tool settings in the FPGA
development. Our methodology about the programmable logic of the space-grade FP-
GAs can be extended to take into account the ARM processor of the SoCs, while an
open issue is the successful integration of high-performance I/0 links for data trans-
mission. Our work in the VPUs can be extended towards the synergistic application
of both classic CV and Al algorithms, in order to increase the system robustness, e.g.,
execute both the CV pipeline and the UrsoNet DNN for pose estimation/tracking.
Moreover, we are already developing similar methodologies and performing bench-
marking on other embedded platforms such as the TPUs. Finally, as our research
activities with the FPGAs and VPUs target on-board computing in space, we are
also working on equipping COTS devices (e.g., Zynq and Myriad) with fault-tolerant

231

Conclusion

mitigation techniques, in an effort to increase their reliability without affecting the
DSP/AI performance.

232

Extetopnévn Mepidndn

1. Ewocaywnrn

Ou paydaieg teyvoroywég egehielg oty alodnon, v enelepyacio xou Ty anodrixeu-
o1 SeBOPEVWV €YOUV UETOHOPPOOEL TO TOTHO TWV EVOOUUTWUEVLY cuoTNUdtwy. Me
v epgpdvion tou Awaduetiou twv Hpaypdtwy (IoT) [1], undpyet wo tepdotia adénom
oTOV 6YXO TWV BEBOUEVWY TIOL TapdyovTaL, 1) omtolol ETBAAAEL TEYVIXEC TPOXANCELS OTIC
TEPLOPLOPEVWV-TIOPWY cUoXEVES enelepya