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Iepiinyn

Ta televtaio ypdvia, 1 avdmTuén TOV €Qaproy®V oL ypnotporotovv Teyxvnty Nonpoovvn
(AI) onuewwver paydaio avénon. I'a va ikavomomBel n av&ovopevn CRtnom yio epapproyEg
unyovikng padnong (ML), o1 wépoyot vanpesimv Cloud tpocpépovv cuotiuota tapoyns ML
ovumepacudtov (inference) ¢ dwadiktvokég vanpeoieg (ML-as-a-Service), otig omoieg ot
TEAMKOL YPNOTEG LTOPOVV VOL VTTOPAALOVY CLTHLOTO Y10 VO ETOPEANB0VV amd EToueg Avoelg ML,
YOPIg Vo YPEIGLETOL VAL EYKOTAGTIGOVY AOYIGUIKO 1) VO TAPEYOLV TOLG O1KOVE TOVG O1OKOULOTEG.
Yovnbwg, ta autnuoata mwopoyns ML inference cuvodevovtor omd amoitioelg omddoong,
YVOOTEC Ko ¢ TEPLopiopol moldtnrag vanpeoiog (QoS), otdyotl (SLOS) 1 cvpemvieg (SLAS)
eMMESOL LANPEGinG, mov opilovianl amd TNV EKACTOTE EQPOPUOYN. ZUVETMG, Wo POcikn
TpOKANo”M Yoo Toug mapodxovg vanpecsidv Cloud eivor va gyyvnBolv té€toleg amouthoelg
LEYIOTOTOLMVTOG TAVTOYPOVO, TV ATOJOTIKOTITO TS YPNONG TOV TOP®V TWV VITOSOUMDY TOVG,
KOTOAYOVTOG GE LELOUEVO AELTOVPYIKO KOGTOG. 20TOGO, 1] IKOVOTTOINGT| TETOIWV AVTLPOTIKMV
o100V Bertiotomoinong kabictatal Wiaitepa dvoyepng Ady® 1) TG VYNANG TOIKIAOHOPPIag
TV dStbécipumv Acemv Tapoyns ML inference kau 1) g petafintoétnrog g anddoons Aoyw
™G U TPOPAEYILOTNTOG TOV ATUATOV TOV YpPNoTOV péca otn puépa. EmmAiéov, o1 mapoyot
vanpectdv Cloud cvyvad tomofetohv TIG PAPUOYEG GE KOVTIVOUG KOWVOXPTGTOVS (PLGLKOVG
OLOKOLOTEG Y10, VO LEYIGTOTOW|GOLV TN YPNON TOP®V TNG VITOOOUNG TOVS, KATL TOV, MGTAGO,
odnyel og voPaduion TG AmTO0oNS AOY® TOV EMATOCEMY TOPEUPOANG GTOVG TOPOLG,.

Ymv mapodoo epyacio, TPOTEIVOLUE €va TAAIGIO TPOYVMOGTIKNG YPOVOIPOLOAOYNONG Yo
unyovég ML inference pe eniyvoon tov mopepfoAdv Kot TV TOP®V, TO 0010 gival tkovo va
ypnowonotel arotelespatikd tovg tépovs s KME (CPU) yio v ikovomoinon meplopiciuav
QoS. To mAaicto pog Aapaver v’ OY™N TOV TPEYOVTO POPTO EPYAGIOG KOL TN YPTON TOPMOV TOV
Cloud 0&10mo1dvTog HETPNOELG GLGTLLATOG YOUNAOD EMTEOOL Y10 VO TPOPAEYEL T QLT LLALTOL
avd devteporento (QPS) mov Ba emtvyetl o unyovi ML inference, kabdg Kot yio vo emAEEEL
10 KOTAAANAO emimedo mopoaiiniopod yio v ektéheon. Ilapovoidlovue, emiong, o
TPOGEYYLoN YOPIG LOVTELOD Y10, TO TAAIG1O XPOVOIPOUOADYNONG, 1| OTTOi0 TAOTYEITAL GTOV YDPO
ocuupiBacpov petald dapopetikdv maporiay®v ML povtédwv yio o ML inference epyaoia,
€K UEPOVS TV TPOYPULUUATICTMOV, Y10, TNV EMITELEN TOL GTOHYOL NG EKAGTOTE EQPAPUOYNG LE
erdiotn ypron mopwv. Eveopatdvoope t Aon pog pe tov KoBepvrtn (Kubernetes), Evav
Ot TOVG O EVPEWMS YPNOYLOTOL0VHEVOVG EVOPYNOTP®TEG Cloud VTOAOYIGTIKOV GUGTNUATOV.
A&oloyovpe 10 mAoiclo YPovodpoUOAdYNOTG XPNoHoTolOVTaS £va. chvolo ML inference
unyavov and 1 covita MLPerf Inference Benchmark. Ta mepopotikd amoteAéopata
delyvouv 011 To TAaico pog Kéver pétpia ypron tov topwv CPU, avarioya pe 1o otdéyxo QoS
K0l TO pOPTO EPYNGING GTOVS TOPOLG, Y10 VO Tapafidoel Tovg meplopiopovg QoS, katd péco
6po, 1.8x/3.1X Ayotepo ovyvd, o oOYKplon pe TO ovotnuo mopoyns ML inference
péytomc/eddyiomg ypnong CPU  avtiotoyyo, xot pe petafAntommro  omddoong mov
OLYKEVTPMOVETOL KOADTEPA YOP® artd TO 6TdY0 QOS, o€ o mokiAia sevapimv TapepPoimv Kot
HE O1popeTIKOVS mePLopiopovs QoS. Emumhéov, 10 mlaicto yopic poviélo onuUE®VEL, KATA
péco 6po, 1.5x Myotepeg mapafiricelg otovg meploptopovg QoS kat 1.4x pikpoTep™m Ypnom e
CPU, o€ 60ykpion e T0 TAAIGIO YPOVOIPOLOAGYNONG LE GUYKEKPIUEVO LOVTEAO.

AgEerg khedud — Cloud, inference, ypovodpoporoynon, tapepforéc, dwayeipion mopwv, KME,

QoS, QPS, amddoon, mpoPieymn, Mnyavikyy Mdabnorn, talvdéunon ewkovog, aviyvevon
avtikeévov, KuBepvitng, MLPerf, iBench






Abstract

Over the last years, the growth of applications that utilize Artificial Intelligence (Al) is rapidly
increasing and is expected to grow further in the future. To satisfy this ever-increasing demand
for Machine Learning (ML) driven applications, Cloud providers offer inference serving
systems as online services (ML-as-a-Service), which end-users can query to take advantage of
"out-of-the-box" ML solutions without having to install software or provision their own
servers. Typically, ML inference serving requests are accompanied with performance
requirements, also known as Quality-of-Service (QoS) constraints, Service-Level-Objectives
(SLOs) or Service-Level Agreements (SLAs), which correspond to latency constraints set by
the respective application. To this end, a key challenge for Cloud providers is to guarantee such
requirements while also maximizing the resource efficiency of their infrastructures, thus
leading to reduced operational costs. However, satisfying such contradictory optimization
goals becomes really challenging due to i) the high diversity in terms of ML inference serving
solutions available and ii) the performance variability due to the unpredictability of user
requests during the day. On top of that, Cloud providers tend to co-locate applications in shared
physical servers to maximize the resource utilization of their infrastructure, which, however,
imposes performance degradation due to resource interference effects.

In this diploma thesis, we propose an interference and resource aware, predictive scheduling
framework for ML inference engines, that is capable of efficiently utilizing CPU resources to
satisfy QoS constraints. Our framework considers the effect of resource interference in the
Cloud by leveraging low-level system metrics to predict the Queries per Second (QPS) that an
inference engine will achieve, based on the current load and resource utilization, as well as to
select the appropriate parallelism level for deployment. We also introduce a model-less
approach to the scheduling framework, which navigates the trade-off space of diverse ML
model-variants for a specific inference task, on behalf of developers, to meet the application-
specific objective with minimum resource utilization. We integrate our solution with
Kubernetes, one of the most widely used cloud orchestration frameworks nowadays.

We evaluate our scheduling framework using a set of inference engines from the MLPerf
Inference Benchmark Suite. Experimental results show that our scheduling framework utilizes
a moderate amount of CPU resources, dependent on the target QoS and resource load, to violate
QoS constraints, on average, 1.8x less often, compared to the max CPU utilization inference
serving system, and 3.1x less often, compared to the min CPU utilization inference serving
system, and with a performance variability that is better concentrated around the target QoS,
for a variety of interference scenarios and different QoS constraints. Moreover, as the QoS
constraints change, the model-less scheduling framework retains a similar, on average, overall
performance and resource utilization, to the best performing, most efficient inference engine
each time, resulting, on average, in 1.5x less violations of the QoS constraints and 1.4x less
CPU utilization, compared to the model-specific scheduling framework.

Keywords — Cloud, inference, scheduling, interference-aware, resource management, CPU,
QoS, QPS, throughput, performance, predictive, Machine Learning, image classification,
object detection, model-less, Kubernetes, MLPerf, iBench

7






Evyaprotieg

Apyikd Ba MBeho va EKQpAo® TNV ELYVOUOCLVN HOV GToV emPAETOVTO Hov, KobNynT)
AnunTplo Zovvipn, Yo TV EUTIGTOCVVI] KOL TNV EVKOLPI0 TOL LoV E0MCE VO, EKTOVICM TN

SmAmuaTIKN) pov gpyacio oto Epyaostipio MikpobimoAioyiotodv ko Pneloakodv Zuotudtomv
(MicroLab) oto EMII.

Emiong, 6o 0ela vo guyoplotow tovg vroynelovg dddktopes Anpocsévny Macovpo kot
Ayyeho Depikoylov yio ) cvvepyacio Kot tnv Pondeid tovg kab’ OAn ™ SdpKel TG
dumlopotikng pov. H cvveyng tpipn pog kotd ™ didpketo tng SIMAOUATIKNG pe fondnoe va
OTTOKTNOW YPNYOPOTEPL YVAGELS GYETIKEG WE TO aVTIKEIUEVO oL €EETAGOE, Ol OMOiEg
TaVTOYPOVA EIVOL EQPAPUOGILES GE TOAAOVG TOUEIG TG oLYYXPOVNG TEXVOAOYIOG KOl T®V
ocvoTNUATOV VToAOYloTOV. [lapdAinio pe ewonyoyov oIV €PELVNTIKN TPOGEYYIOT KOt
epyacia.

EmumAéov, Ba 10eha vo e0)oplioTNom TOVG YOVELG LoV, TOV adEPPO LLOV KOl TOVS PIAOVG OV Y10
TNV oLVEYN VITOGTNPLEN TOVG GE O,TL KOl OV EMYELPOVSA KOTA TN dtbpkela g {onNg Kot TV
OTOVOMV OV, TPAYLO TOL LOL £3vE dVVAUN VO GUVEXIC® VO EMOIOK® TOVS GTOYOVS LOV.
Téhog, éva peyddo evyoploT® GTNV GUVTPOPS LOL, 1| OTOLOL LLE VTOUOVI LE OTNPIEE KOl LOV
CLUTOPOCTAONKE OTIC SVCKOAES OTIYIES.
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Exterapévn EAlnvikn Hepiinyn

1  Ewayoym

O ap1Budc tov epappoymv mov Paciloviar og inference and poviého Mnyavikng Mabnong
(ML) eivon om peydroc kor avopévetror vo ocvveyioelt va avédvetat. To Facebook, yua
Tapadetypa, eEumnpetel oekddec Tploekatoppdpla ontipate ML courepacudtov (inference)
mv nuépa. Avta to ortquata ML inference ocuvnbwg ekgoptmdvovtor oto Cloud. H
avéavopevn amoteleopotikotnTo TG Mnyovikng Mdadnong (ML) kain élevon TV VINPECIOV
Cloud éye1 @épet tayeia avantvén oto cvotiuato mapoyns ML inference wg dradiktvakég
vanpeoiec (MLaaS) 6mwg 10 Google Cloud Vertex Al 1 1o Amazon Elastic Inference, 6mov ot
napoyot vnpecidv Cloud Tpospépovv ta cuotiuata tapoync ML inference tovc.

Ievikd, évog koxhog CoMg ML éxet dvo S1akpitég PAcElS - eKTaidEVOT KOl GUUTEPUGLLOL
(inference). Xe o tomikn pon epyociag MLaaS, ov mpoypoupatiotés oyedtdlovv kat
ekmadevovy poviéha ML ektdc ovuvdeonc. H pdon exkmaidevong cvviBwg yopaktnpiletot amod
HEYAAO GOVOAL SEQOUEVMV, LOKPOXPOVIEG OVOLNTHGELS VITEPTOPAUETPMV, ATTOKAEIGTIKN YPNOT
TOPOV VAIKOL Ko Ywpig mpobecuieg ohokAnpwongs. Ta exmardevpéva Loviéda dnNUoctevovTaL
ot ovvéyelo oto Cloud yio v mapoyn dadiktvakdv vanpeswwv ML inference (pdon
inference), nov cuvnOmg exteAOVVTOL GE TOKETO (CONtainers), kot pwopovv va vrofAndovv o
OLTNOELS OO SIAPOPES EPAPLOYES TEAKOD YPNOTH DGTE VO KAVOLV TPOPAEWELS Yo dedopéveg
gloo6dovc. H mapoyn ML inference amottel amodotikd g mpog 10 KOGTOG GLOTHUATO TOV
TPOcPEPOLY TPOPAEYELS e Teplopiopovg kabvotépnong N axkpifeloc, evod yepilovron
ampOPAENTEG Kol EKPNKTIKES OPIEEIS UTUATOV.

Ta cvotuata tapoync ML inference avtpetonilovv po oelpd amd TPOKANCELS AOY® TOV o)
OLLPOPETIKMOV OTOUTNGE®MV UETAED TOV EQAPUOYDV, ) TOV SUPOPETIKOV TAPUALAYDV TOV
povtélmv yuo Vv 01 ML gpyacio Kot Y) T@V KOHovOUEV®VY TapERPOADY GTOVG TOPOVS TOL
ovotnuatog. Ot papUOYEG OTEAVOVY CUTNHOTO TOL SLPEPOLY MG TTPOS TNV AmOS0CT|, TNV
kaBvotépnon, 10 K0oT0g, TNV oKkpifeta. o mapdaderypa, yio otipoate oto 1010 povtélo
AVaYVOPIoNG OVTIKEWEV®V, £Va VTOVOO OYNUa, TO 0moio AapPdvel cuvexme dedopéva omd
ToAMEC kauepes, amortel ML inference oe mpaypatikd ypovo, evad o pUnyovn YPOUUNG
TOPAYOYNG TOL EKTEAEL EMBE®PN O™ VPN G 1| AViXVELOT ELVTTONATOV, omontel Kupiwg axpifeia
Kol peténerta ehayrotonoinon ¢ kabvotépnong. Emiong, ot dibpopeg mapoardayéc twv
LOVTEA®V dNULOVPYOLV €va x®po cLUPiPacpod petald g amddoons, g Kabvotépnong, g
xPAONG TG uvnung M g akpipetag. Emnpdcbeta, avédroyo 1o mAn0og TV £Qaproy®V OV
vrofdAlovv outiuato o o pnyavy ML inference, evdéyetar va vmapyet Ayotepn 1
HEYAADTEPT GLUPOPTOT GTOVG KOWVOYXPNGTOVG TOPOVG TmV dlakopot®v Cloud. EmimAéov, ot
ndpoyot vanpeciwv Cloud tetvouy va tomobetolv T1g EQapPIOYES GE KOVTIVOUS KOWVOYPNGTOVG
(QLOIKOVG SLOKOUGTEG Y10l VO LEYIGTOTOMGOLV T YPNoN TOP®V TG VTOJOUNG TOVG Kol VoL
LEWOOOVY TO AEITOLPYIKO TOVG KOGTOC, YEYOVOG mov pmopel va avénoel mepaitépm 1T
GLUPOPTOT] GTOLG KOWVOYPNGTOVS TOPOVC.

Q¢ anotéleopa, pali avtol o1 Tapdyovreg KaB1GTOVV SVGKOAO Y10 TOLG TAPAYOLS VINPECUDY
Cloud va gyyonBovv évav meplopiopd motdtnrag vanpeciog (Q0S) ot pia epappoyn yio kabe
aitnuoe ML inference, pe mapdAAnAn peylotomoinon g amodoTIKOTNTAS TG XPNONG TOV
TOP®V TOV VTOOOUMV TOVG. ATAEG TTPOCEYYICEIS YPOVOSIPOUOAGYNONG TOV OPOUOAOYOVV
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unyavéc ML inference oto Cloud va gktelectolv pe évav kabopiopévo aptbpd dabéotumv
TOp®V, YOPig vo AapBavovy v’ Oy ™ un TPoPAEYILOTNTA TOL TUTOL KOl TOV OYKOL TMV
QUTNUATOV TOV ¥PNOTOV KATO TN SIIPKED TNG NUEPAS KOl TOL POPTOL €pyaciag mov Oa
UTOPOVGOV VO SNUOVPYNGOVY GTOVG TOPOLG TNG LITodounG tov Cloud, evoéyetar va £xovv ¢
OTOTEAEC O, TTOPOYN VIEPPOAMKA TOAADY TOP®V GTNV EPAPLOYN, TO 0010 001 YEL 6€ AVENUEVO
AEITOVPYIKO KOOTOC M Tapoyn MyOTEP®V TOPWV amd Oca ¥PELALETAL 1| EPAPIOYN, KATL TOV
odnyel oe mepiocdtepeg mopafiioelg QoS tov epapuoymv. Emiong, n a&lomoinon g
TAn0dpog Toparliaydv Tov ML inference poviélov amaitel KoAn katovonon Tov TAuGiov
VTOGTNPIENG, TOV PBEATIGTOTOMTAOV YPUPNUATOV HOVIEA®Y KOl TOV OPYLITEKTOVIKAOV VAKOD
TOVG, KATL TO 0moio Teplopiletl TOV TEAKO aplOUd TOV LOVTEA®DY TTOL UTOPOLV VO, AELOTOGOVY
Ol TPOYPOUUOTIOTEG Yo TNV KOADTEPT, KOALYTN TOV Ol0QPOPETIKOV OToUTHoE®V KAOE

EQAPLOYTC.

I VoL aVTIHETOTIGOVUE TIG AVOSVOWEVES TPOKANGELG TNG Ypovodpopordynong ML inference,
o€ 0T TN SWA®pATIKY epyacia, oyedtdlovpe kot epapuolovpe €vo TAOIGLO TPOYVOGTIKNG
YPOVOIPOLOAGYNONG LE EXTYVMOT TV TAPEUBOADY Kot TV TOpmV, Yo unyavég ML inference,
10 omoio givor wavd va ypnolponolel anoteAespatikd tovg tdépovg e Kevipikng Movdodag
Ene&epyaciog (CPU) ya v wavoroinon mepopiopmv QoS. To mhaictd pog Aappdavel vr’
oyn v enidpaocn g mapepPforng otovg mépovg tov Cloud oa&omoldvog HETPNOELS
GLGTNUOTOG YOUNAOD E€MTEOOVL Yl TNV €KMOidELON Kol Tn ypnon &€vdg poviéov ML
Regression yio v TpoPreyn tov artnpdtov avd dgvuteporento (QPS) mov Oa emithyet pia
unyovry ML inference, pe Bdon tov tpéyovia @opto gpyaciog kat yprion nopwv. To mhaiclo
YPOVOSPOUOAOYNONG LOG GTOYELEL VA dpoporoynoet T unyovn ML inference va ekteleotel pe
éva eminedo mMOPOAANMOUOD OV €xEl ®C OMOTEAESHO oL omdd0on Tov TANPOL TOV
AmOITOVUEVO TTEPLOPIGHO QOS, evd KAVEL OGO TO SLVATOHV UIKPOTEPT XPNOT TOP®V Y10 TO
ovomnua. [Hapovcialovpe eniong éva mAaicto ypovodpopoAidynong ywpic povtélo 1o omoio
glodryet pua Stemapn xopic LovtéAo, OTOL Ol TPOYPOAUUATICTES YpelaleTorl va kKaBopicovv pHovo
mv epyacioc ML inference mov 8élovv va exteléoovv (Ta&vounomn €ovag, aviyvevon
QVTIKELEVOV) KoL TNV omrdS006T VYNAOL EMTESOV OV OmontovLV MG 61dY0 QoS . To mAaictlo
YPOVOSPOLOAGYNONG Y®PIC HOVTELD emAéyel TNV KoAvTtepn Mnyaviy ML Inference, and pa
opLada EYYEYPOUUEV®V, EKTTOLOEVUEVOV LovTEL®mY ML inference yia t cvykekpipévn epyacia,
LLE TO KATOAANAO £MIMESO TOPAAANAGLOD Y10 TNV OAOKANPMOOT) TNG EPYAGING LE TOV AYOTEPO
OTOLTNTIKO GE TOPOVG TPOTO, EVA GTOYEVEL VO IKOVOTOWGEL TOV TEPLOPIGUO QOS cvupmva Le
TO TPEYOV EMIMESO GLVONKOV TOPEUPOANG GTO GVGTN AL

Aglyvoope 611 10 TAAIG10 POVOOPOUOAIYNONG OGS KAVEL pia pétpia xpnon Tov ndépav CPU,
avéroya pe 1o otoxo QoS kot o0 POpTO £pyaciog GTOVS TOPOLS, Yo VO ToPOPLdcEL TOVG
neploptoponc QoS, katd péco dpo, 1.8X Aydtepo cuyvd, oe chYKPLON LE TO GOCTNUO TOPOYNG
ML inference péyiotng xpriong CPU ko 3.1x Aydtepo ovyvd, 6€ cOYKpIoN UE TO GOOTNUA
napoyns ML inference ehdyiotng ypnong CPU, kot pe petofAntdétmra amddoong mov
OLYKEVTPOVETOL KOAOTEPQ YOP® amtd TO 6TdY0 QOS, o€ a Totkidio cevapimv Tapepformv Kot
pe dapopeTikong meploptopovg QoS. EmumAiéov, kabmng aiidlovv ot meplropiopoi QoS, to
TAiG10 YPovodpOoROAGYNONG YWPiG HoVTEAD dtotnpel Tapopola, Katd HEGO OpO, GLVOAIKN
amdd0oN Kol YPNoT TOPWV, LE TV KOADTEPT GE amOO0CT] KOl O ATOO0TIKN GE YP1 o1 TOP®V
unyovr ML inference ka6 @opd, pe amotédeoua, Kot péco 6po, 1.5X Aydtepec mopaPlacelg
otovg meploptopovg QoS kot 1.4X pikpotepn ypnon g CPU, oe ovykpion pe 10 mAaictlo
YPOVOIPOLOAOYNONG LLE CLYKEKPIUEVO LOVTEAO.
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2  Ozopntikd YnoPadpo

2.1  KovPepvrng (Kubernetes) ko Evopynotpwon Containers

ITaxéto (Container): To container eivor pio Tomomomuévny UOVASO, AOYIGUIKOD 1 omoia
OLYKEVTPMVEL TOV KMOOTKO, OALA Kol OAEC TIC E0PTIOELS TOV £TG1 DGTE 1| EPAPLOYN VO LITOPET
va ektedeiton ypnyopa kot afdmioto o€ mowila mepPdAiovia vroroylotdv. Ta kévipa
OEQOUEVMV CLEPD XPTOLUOTOLOVY OTN T VEX TEXVOAOYI EIKOVIKOTOINOTG, KOOGS €€l TOAAL
TAEOVEKTNLATO GUYKPITIKG UE TIC EIKOVIKEG UnyaveS. Evoektikd avagépovpe Ty MK
dnpovpyia Kot avAmTuEN EQAPLOYADV, TN SLEVKOAVVOT EVOG YPNYOPOTEPOL KUKAOL OVATTLENG
TOV AOYIOUIKOV, T1 GUVETELN CYETIKA LLE TO TEPPAALOV AVATTUENG KO TV OTOUOVMOT) TOP®V.

Evopynotpwon: Xe peydheg cvoTotyieg VITOAOYIGTOV VITAPYEL 1| OVAYKT EVOPYNOTPMONG Kol
dwxelptong twv containers. H avaykn avt) koAdmtetor amd VAOTOMGES 0TS oT TOV
KvBepvnm, evog épyov avorytov Aoyicspkol mov Eekivnoe va avantioceTal Le TpTofovAio
™ Google. O KvPepvimg omotehel v Mo €upémg YPNGUYLOTOLOVUEVT VAOTOINGT.
Eexvovtag ond To VYNAOTEPO NSO APaipeoNC, 1| APYLTEKTOVIKY] TOV TTEPLAAUPAvEL Evay 1)
TEPLOCOTEPOVG KOUPOVG «apéviny (master), or omoiot €ivol T0 HLOAO TOV GLGTAUATOC,
AmoTEAOVV TO TESI0 EAEYYOV, TAPVOLV ATOPAGELS Kol OvVTIOPOVV GE O1dpopa YEYOVOTA TOL
Aappévovy yopa oe avtd. H ahin opdda kopPwv eivar ot erovopaldpevotl kOUPor «epydTec»
(workers), otovg omoiovg amootéAlovTol Kot kteEAovvVTOL OAEG Ol epyaciec-epapuoyés. "Evag
Koppog master mepiéyer: kube-apiserver, etcd, kube-scheduler, kube-controller-manager. And
™mv G, évag kouPog worker mepiéyet: kubelet, kube-proxy, container runtime.

Ot epappoyés, apov tomobetmbovv péca oe containers, tomobetovvion ce Pods to omoia
LIOpOVV VoL TEPIEXOLV Eva 1 TEPlocdTEPQ containers 1 kot povadeg amobrkevong (volumes).
O KvBepvng vrrootnpilet o mtAnBmpo vanpectdV Kot TapEYEL TOIKIAEG OLVOUTOTNTEG GTOVG
YPNOTES KOl TPOYPOUUOATIOTEG, ELVOMVTOS TNV OWTOUOTOTOINGT TNV OVOYKOI®V EPYOCUDV.
Apywd, mapéyet v dvvatotnta ypnong epyoacsiodv (Jobs). Mia epyacio dnpovpyel éva 1
neplocotepa Pods ko dtacpalilel 61t évag kKabopiopévog aptBpuog and avtd teppotileton e
emtvyio. Emiong, pog éivel tnv dvvatdtnta kabopiopol artnudtov (requests) Kot meplopiopdv
(limits) ot xpnon ¢ KeVIpIKNG povadag emelepyaciog N T™C KOPOG UVALNG OF EMITESO
container. Mia GAAN Topoyn €ivol O EVOOUATOUEVOS XPOVOIPOLOAOYNTAC epyactdv. O
tehevtaiog  PacilOpevoc oe  HETPIKEG LYNAOL  emMMESOVL, OQUPETIKEG OE  EMIMEDO
EIKOVIKOTIOINOMG, OTMG 1) (PO TOV ENEEEPYUGTAOV KOL VI UNG, TOIPVEL OTOPAGEIS GYETIKA e
v tomofénomn tov Pods. H dtadwkacia pe v omoia o1 amopdoeilg Aapupdvovtal mepthappdvet
dvo otdoa. Apykd, eEeTtalovtor GA0L 01 VTOYN POl KOUPOL GYETIKA e TN S1BEGLOTNTA TOVC,
™V KavOTNTA TOLG VO EEVTNPETNCOVY TNV EIGEPYOUEVT] EQAPLOYN. XTI GLVEXELL OGOl OO
avtovg kplBodv koatdAANnAol, Pabuoioyodvior pe TN ¥pNoN WG GEPAS amd GLVOPTNCELS
a&lohdynong.

2.2 MLPerf™ Inference Benchmark Zovita

Ot ooviteg MLPerf benchmark eivar 1o mpoétumo yia ™ pérpnon G 0mdd06NG €VOG
OLOTHHOTOG UNYaVIKNG pabnong. Kdébe covita eotialetl o€ d10popeTikovs TOHTOVE GUGTNUATOV
Kot eopTovg epyaciag. To MLPerf Inference benchmark suite givar pua covita mov a&loroyei
ovotuato ML inference, petpdvrac moco ypryopa enelepydlovtal £16030V¢ Kol Tapdyovv
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OTOTEAECLOTO PN OLLOTOIOVTAG/TPEYOVTAS VO EKTOOEVUEVO HOVIEAO O O TOIKIAMO
oevapiov ektéleonc. [apadeiypota epyocidv meptlapupdvovv Tn cOGTACN, TNV OTAVTHON
EPMTNOEMV, TNV OUIAD GE KEILEVO, TNV OVIYVELCT AVTIKEIUEVOV KOL TV OVOYVOPLOT) EIKOVOC.

2.2.1 MLPerf Inference Benchmarks ywo Epyacieg Ta&ivopnong Ewkovov ka
Aviyvevong AvTIKEIPEVOV

H o6paon vmoroyiotov eivar éva medio teyvnmig vonuoovvng (Al) mov emrpémer oe
VTOAOYIOTEG KOU GUOTHUATO VO oVTAODV ONUOVTIKEG TANPOoQopieg omd ynElokég KOVEG,
Bivteo kot dAheg OMTIKEG EIGPOEC — KOl VO TPOPivOLV GE EVEPYELEG 1] VO KAVOLV GUGTAGELS
ne Baomn avtég Tig TANPOoPopies. Xe avTo T0 TEdI0, V0 CNUOVTIKEG EPYUGIES Yo TNV a&l0AdYNoN
™m¢ amddoong evog cvotiuatog ML inference, ypnoonoidvtog ™ covito MLPerf Inference
benchmark, givat n ta&vounon eikovmv Kot 1 aviyveuon avIIKELEVOV.

[Mapakdtom Topovoidletar n vAomoinon avapopdg yio to. MLPerf Inference benchmarks. Kabe
benchmark opileton amd éva mpomadsvpévo poviéro, éva miaiclo vrooPENg Kot Eva
GUVOLO OEOOUEVMV.

Area Task model framework accuracy dataset precision

Vision Image resnet50-v1.5 tensorflow  76.456%  imagenet2012 fp32
Classification validation

Vision Image resnet50-v1.5 onnx 76.456% imagenet2012 fp32
Classification validation

Vision Image mobilenet-v1 tensorflow  71.676%  imagenet2012 fp32
Classification validation

Vision Image mobilenet-v1 tensorflow = 70.694% imagenet2012 int8
Classification quantized validation

Vision Image mobilenet-v1 tflite 71.676% imagenet2012 fp32
Classification validation

Vision Image mobilenet-v1 onnx 71.676% imagenet2012 fp32
Classification validation

Vision Object ssd-mobilenet tensorflov mAP 0.23  coco resized to fp32
Detection 300x300 300x300

Vision Object ssd-mobilenet tensorflow mAP coco resized to int8
Detection 300x300 quantized 0.23594 300x300

finetuned

Vision Object ssd-mobilenet tensorflow mAP coco resized to int8

Detection 300x300 0.234 300x300
symmetrically
quantized finetuned

Vision Object ssd-mobilenet onnx mAP 0.23  coco resized to fp32

Detection 300x300 300x300
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[Mivaxag 2.1: Yroompldueva povtéha e covitag MLPerf Inference Benchmark Suite yia
ML gpyaoieg Ta&vOunong EIKOVOV Kot 0viyvVELGNG OVTIKEILEV®V

To MLPerf éyel opicel técoepa dapopetikd inference ceviplo mov ppodvior Tov eOpTo
gpyaciog OlQOPETIKOV  epapuoymdv: eviaia  pon  (SingleStream), moldamiéc poég
(MultiStream), diakopiotg (Server), extog ouvdeong (Offline). Xta cevapia eviaiog pong kot
TOAOTAGV po®dv mov Bo aocyoAnbovue, to KAGbe inference aitmuo otéAvetar oy
0AOKANP®OEL TO TPpOoNyoUEVO, pe 1 delypo/aitnua 1 8 detypato/aitnua avtictoryo.

2.3 iBench: ITocotikomoinon mapepfordv yio epaployEg o€ KEVTPQ
dedopUEVOV

Ot mapepPorés peta&d epapuoydv eival &vag amd Toug KHPLOLG AOYOLS oL avaykdlovy Ta
ovyypova kévrpa dedopévav (DCS) va Asrtovpyolv pe younin xpron g vrodouns tovs. To
iBench workload suite givat o covita popTov epyaciog mov Bondd 6tV T0GOTIKOTOINGT TG
TlEONC 7OV OOKOLV JLOPOPETIKEG EQPAPUOYES GE OLAPOPOVG KOWVOYPNGTOVS TOPOVG, Kot
mapopoing ¢ mieong mov pumopovv vo, avexfodv oe aTOVG TOVG TOPOLS, LE OMOTEAEGILA
ONUOVTIKEG PeATidoelc amddoong n/kar amodotikdétntog ot epappoyés. To iBench
amoteAeital amd €vo GOVOAO TMPOCEKTIKA KoTaokevaouséveoy benchmarks mov mpokoalodv
napePPoréc puOulopevns, avEavoprevng £VIaons g KovdypNnoToug TOPOLS OTWS O TVPTVESG
™m¢ KME (CPU), 1 epapyio e kpveng uvniung (L2 cache, L3 cache), to gvpog Ldvng
(memory bandwidth) kot n yopntikéTnTa vnqung (Memory capacity). Kade pdprtog epyaciog
tov iBench (mmyn mopeppordv (Sol)) ackel mieon o€ €évav GUYKEKPYEVO KOWVOXPNGTO TOPO
kot ot iBench mnyéc mapepfolmv £€xovv oyedwotel €Tol ®GTE VO PNV LEIAPYEL
OAANAOGLYKAAVYT GTNV EMIOPOCT] TOVG GTOVG TOPOVS TOV GLGTYLUTOG.

2.4  Mnyaviki Mabnon (ML)

H punyoavikn pabnon (ML) givon éva medio €pguvag, mov avikeL 6Ty teXVNTY vonuocuvn (Al),
APIEPMUEVO GTNV KOTAVOM O™ KO TN dnpiovpyio neBddmv mov «pabaivovvy, oniadn pébodot
ov a&lomolovy dedopéva yia T Peitioon g anddoons o Kamolo chvoro epyacidv. Ot
alyoppol unyovikng padnong omuovpyovv éva povtého mov Pacileton o detypota
OEJOUEVMV, YVOOTA O dEDOUEVO EKTTOIOELONG, TPOKEUEVOL VO, Kvouy akpiPeilg mpoPréyelg
Y10l TOL ATOTEAEGLLATOL 1) VO TAPOVY ATOPAGELS XWPIG VL £YOVV TPOYPAUUATICTEL pNTE Y100 VOL TO
Kévouv. YTapyovv TpELg TPOCEYYIoELS UNYaviKng pabnong:

Enontevopevn pabnon: Ot adkydpiBuol emontevdpevns padnong onpovpyodv Eva podnpotikd
HOVTELO €VOG GUVOAOL OEOOUEVOV EKTTOUOEVONG OV TEPLEYXEL EIGOO0VG Kol TG EMOLUNTEG
eE60ovg T0VG (ovopdleTon emiong EMONMTIKO ONUO), LE OTOXO TNV KUAONOM €VOC YEVIKOV
Kavova, LG GLVAPTNONG, TOL OVTICTOKEL dlavOGHATO (E16000VC) o€ eTIKETESG (££000VG), LUE
Baon mapadetypato Levymdv €16000V-££000V. AVTH 1| GLVEAPTION TOV TPOKVTTEL UTOPEL 0N
GULVEYELD VO, YPNCLULOTOMOEL Y10 TNV AVTIGTOIYIOT VE®V TOPASELYUATOV. ZE QLTI T KATnyopio
avikovv N tavounon (classification) kot o regression.

Mn enontevopevn pdbnomn: O adyopiBpol pabnong yopic enipreyn Aappdavovv éva chvoro
OEJOUEVMV OV TTEPIEYEL LOVO E10OO0VG, TOL SNUOivEL OTL OV dlvovTal ETIKETEC, APNVOVTAC
ToVG YWpig emiPAeym va evtomilovv kowvd onueio oto dedopéva Kot vo avTidpovv pe Bdon v
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TOPOVGIN 1] TNV OTOVGi0 TETOIWV KOWV®V 6TolyelmV o€ kdBe vEo koppdtt dedopévav. H pddnon
Yopig emifreyn umopel va givar Evag otoy0g amd LOVog ToL (avaKaALYN KpLEOV LOTIRoV ota
dedopéva) N €va HEGO Yo TNV eMITEVEN €VOG OKOTOV (EKIAONON XOPOUKTPLOTIKMV).

Evioyvtiky pédOnon: H evioyvtikr] pabnon aoyoAeitor pe 10 mTOC €vo TPOYPOLIO UE
CLYKEKPIUEVO GTOYO TPEMEL VO TEPINYEITAL GTOV JVVAIKO YDPO TPOPANUATOV, ®OTE PEGH
aVOTPOPOSOTNONG VO LLEYIGTOTOIGEL TNV OVTALOLPN TOL.

2.4.1 Movtého Regression otny Myyovikny Madnon

11 oToToTIKN povielomoinon, m Regression avdivorn elvar éva chHVOAO GTOTIGTIKGV
OLOOIKOGLOVY Y10 TNV EKTIUNOT TV oY€cewv HETaED pog e€aptnuévng pnetafAntig (cvyva
OTOKOAOVIEVT] LETAPANTY «OTOTELEGO» N KOTOKPLON» 1| «ETIKETAY GTI YADOCOH UNYOVIKNG
pébnong) kor pio 1 mepocotepeg aveEdptnreg petafAntéc (- ovyvd  amoxaiodvton
«IPOYVOOTIKOL  TTOPAyovTesy, «OUUUETAPANTEG),  «emeEnynuotikés  HeToPANTESDy 1)
«OPOKTNPIOTIKGY). XTOV TOHED TNG UNYOvikng pabnong, to Regression eivor pio
EMOTTELOUEVT] TEYVIKY] HAOnong mov Ponbd otnv edpeon g cvoy€tiong UHeta&d TV
petafAntav kot pag dtvet ) duvatdmra va TpoPAEYOLLLE TN GLVEXN, oPOUNTIKY LETAPANTY|
€&0dov e Paon ) pia 1 tepiocdtepeg aveEaptntes LeTaANTEG £16600V. Mepikol adyopBpot
Regression avaivong givat ot €€NG:

I'papukoi: Linear Regression, Ridge regression, Lasso Regression, Bayesian Linear
Regression, Stochastic Gradient Descent (SGD), Support Vector Regression (SVR)

Mn ypappukoi: K-nearest Neighbors Regression, Gaussian process regression (GPR), Decision
Tree Regression, Random Forest Regression, Multi-layer Perceptron regression, XGBoost
Regression.

3  Xoapoktnpiouoc towv MLPerf Inference Benchmarks

3.1 TIlepoapartikod Tepparrov

To cvotua mov dnpovpyndnke yio tov yapaktnpiopd tov MLPerf Inference Benchmarks
Kot TNV HETENELTA ASI0AGYNOT TOL YPOVOSPOLLOAOYNTH LOG LE TNV XPNON QVTAV, amapTileTon
and dVO EIKOVIKEG UNYaVEG, Ol 0TToieg 0moTeAoVV To cOumAeypa (cluster) mhvm 6to omoio Exel
ot fei o KuPepvryme (Kubernetes). O évog koufog Aettovpyei wg kbplog kopPpog (master) pe
4 moprvec KME (CPU) ko 8 GB «bdpiag pvnqung, kot o dAlog og kopupog «epydtne» (worker)
ue 8 muprveg KME (CPU) ko 16 GB kbOptog pvaung.

Virtual Machines

VM-name Cores RAM (GB)
master 4 8
worker 8 16

[Tivakag 3.1: XoapakTnpioTikd EIKOVIKOV UNYavOv

Ta MLPerf Inference Benchmarks, xafdc xor ta iBench benchmarks tpéyovv g Pods,
ereyyopeva omd Jobs, 6To GOUTAEYA LLOG.

20



3.2 Zevapo Eviaiac Pong

3.2.1 Mge HopepPoréc

qps (queries per second)

onnxruntime-resnet50 Hf-resnet50 onnxruntime-mobilenet f-mobilenet fflite-mobilenet

25 24 25

memGCap

memBw

ibench
&

Hf-ssdmobilenet-default 1f-

memGCap 39 34 34

memBw 38 37 | 32 35

ibench
&

23 23 23 |18 40 40 40 39 37 37 37 3 37 3B/ 4

39 38 33 [EFEEKE] 35 36 34 | 29 EREEEE]

61 23
cpu | B2 62 68 45 .
10 20 40 80 160 10 20 40 80 160 1.0 20 40 80 160 1.0 20 40 80 160 10 20 40 80 160
njobs njobs njobs njobs njobs

Yynuo 3.1: Métpnon QPS (Syyxpopa tetpdywva) tov MLPerf Inference benchmarks yia
drapopeg mnyéc mapepuPordv «iBenchy ce dropopetikég evidoelg (Njobs).

[Ipadtov, PAEmovpe OTL Yevikd, 660 meplocoTepa «iBenchy mélovv éva kowvdypnoto mdpo,
oradn 6co mo €vtova mEleTar o TOPOG, TOG0 To TOAD pelwveral o QPS tov povtédov.
Qot1660, 61N KpLeN uvnun L2, pe €og kot 16 tavtodypoveg anyég mapepfoing "iBench" va v
miECovvy, dev vapyel onUavtiky enidpacn oto QPS mov metvyaivouv ta poviéda. Avtd
ONUOIVEL OTL TOL LOVTEAQ HOG UTOPOVV Vo avTéEovV vITepPoiikn Tieon otV KpveNR uvnqun L2
TPV apyIicEL VoL LEWOVETAL 1] AOO0GT TOVG. AgvTEPOV, PAETOVILE OTL VD OAaL TOL LLOVTEAX £lvart
EMPPENN o€ pelwon g anddoong kKabmg av&dvetar N Teon TN YOPNTIKOTNTA TG UVAUNG,
avtd dev toyvel yu to povtéro tf-resnet50. Tpitov, mapatnpovue ot to tflite-mobilenet
Katapépvel va datnprost o QPS tov vymAdtepa amd ta dAlo poviéda 6tav avéavovtol ot
mYES TOPEUPOANG GTOVG KOWOYPNOTOVG TOPOLS, KOOMG TOPATNPOVUE TN YAUNAOTEPN
TOGOCTLOH0 TTMGT ATOS0CNG GE GUYKPLOT LE To AAAa povtéda. [a mapdostypa, Yoo avénon
nieong oy yopnTikoéTTo TG Pvnung omd 1 oe 16 mnyég mapepPfoing, to QPS tov tflite-
mobilenet néptel 6t0 6o, evd To QPS Tov mobilenet pe TAaicto vrootHpENg ONNX mépTel
010 éva €Bdopo.

3.22 Xopic Hopepporic

21



gps (queries per second)

gps (gueries per second)

model

Yynua 3.2: Métpnon amddoons (QPS) twv MLPerf Inference benchmarks cto oevapio
eviaiag ponc. Ta mpdta €€ benchmarks extelolv o epyacio taivounong eKOvVoV, Vo Ta
TerevTOiO TECOEPO EKTEAOVV AL EPYOGTO OVIXVELONG AVTIKEILEVOV.

[Mopatmpodpe 0Tt Yo v gpyacio TaEvOUNGNG EKOVEOV, EMTLYXAVOLUE TNV KOAVTEPN
amodoon pe to mobilenet pe mlaicio vrootpiEng tensorflow ota 93 QPS, pe devtepo
KoAdTepo to onnxruntime-resnet50 pe Swapopd 13% kot v xewpdtepn amddoon pe to tf-
resnet50. Avtifeta, oty gpyacia aviyvevong avtikelwévoyv, To benchmark pe v vymidtepn
amodoon givar To tf-ssd-mobilenet-default, ota 40 QPS, pe dapopd pikpdtepn tov 6% and o
vorowa ssd-mobilenet pe tensorflow, pe to onnxruntime-ssd-mobilenet vo metvyaiver to
pkpotepo QPS.

3.2.3 Mze [gpropiopovg otnv Xpiien KME (CPU)

Qps vs. Accuracy
100 model

g ® onnxruntime-mobilenet
° ®  onnxruntime-resnets0
o t-mobilenet
e t-mobilenet-quant
80 x o ff-resnet50
e fflite-mobilenet
® limit
5 3 . «  1000m
5 L4 e 2000m
60
g 8 ® 3000m
5 ‘ ® @ 4000m
> @ 5000m
o @ 6000m
20 . L4 @ 7o0om
b [ ] @ none
I ’ . 100m
e 200m
. : x ® 300m
2 3 H ® 400m
s ° ® 500m
* a @ 600m
° . @® 700m
: : @ eoom
0 @ 00m

cpu limit
71 72 73 74 75 78

accuracy (%)

Eyua 3.3: QPS évavtt Akpifelog tov MLPerf Inference benchmarks mov ektelovv po
gpyaocio tagvounong wovac, pe diapopa emforroueva opla otny ypnon KME (CPU).
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Metpape 1o emtvyyovouevo QPS kabe povtélov MLPerf Inference, evd mapepmodilovpe pe
ereyyOUEVO TPOTO TV add06T ToVG BéTovTag Teplopiopovg ot yprion KME (CPU). And to
ToPATave oYU, sival oagég 0Tt evd To povtédo tf-mobilenet tetvyaivel to vynAdtepo QPS,
70 povtélo onnxruntime-resnets0 éyer peyoldtepo mocootd axkpifelag, pe Alyo younidtepn
anddoon. Emiong, mapatnpovue o6tt ta poviédo pe miaicto vrootpiéng tensorflow
emrvyydvouv QPS kovtd oto péyioto yia pikpotg meplopiopovg otnv CPU, evod to vtodlouta
povtéla Kévouv peydio dApata oty omdooon e Kae Pelmon 6Tovg TEPLOPIGIOVE.

3.3  Zevapro [ToAamiomv Poov

3.3.1 Onnxruntime whaicwo — yopic TapepPoréc

Yvykpivovpe 10 QPS mov mtuyydvouy ta povtéAda pe onnxruntime TAaiclo vVIOSTHPIENS Yo
évav  ouvOLOoUO  SPOPETIK®OV TV NG petapintig OMP_NUM THREADS (mov
napéyxetol omd tnv Tpodtaypoeny OpenMP API yio mapdAinio Tpoypoppatiopod, Kot opilet tov
aplud TOV VIHATOV ava «ottypdtomo» uag unyavine ML inference) kot g emloyng --
threads (mapéyeton and T covita MLPerf Inference benchmark, kot amoterei tov apBud tov
«oTrypotdnovy piag unyovig ML inference).

gps (queries per second)

onnxruntime-mobilenet onnxruntime-resnet50 onnxruntime-ssdmobilenet
8 274 WrEEw 22
4 . 627 60 525 529 268 267 271 263

;565 545 548 535 338 331 33 314

233 231 217 22

il 456 436 418 38 19 183 164 164 179 186 17 159
1 2 4 8 1 2 4 8 1 2 4 8
threads threads threads

Yynua 3.4: Métpnon QPS (éyypoua tetpdymva) twv MLPerf Inference benchmarks pe to
TAOLG10 VTOGTNPIENG onnxruntime, 1o 16.PoPOVG GLVIVAGLOVS TNG HETAPANTNG
OMP _NUM_THREADS kot tg emthoyng --threads.

Ao 10 oyfqua, BAETovpE TV 1d100 GLUTEPIPOPA KOL GTO TPIOL LOVTEAQ [LOG, VO ETLTVYYAVOLV
ONAadN KAAVTEP GLUVOMKT AOd0CN GE TWEG omp 2 M TEPLOCOTEPES, aveApTnTaL OId TOV
apud tov threads. IMopatmpovpe emiong 0Tl 1 KAAHTEPN ATOSOGT EMTLYYAVETOL OTAV 1)
petaPAnty omp givor oto 4 kot o threads oto 1 1 to 2 1 6TV £yovpe T petafAnt omp 6To
8 ko ta threads oto 1.

3.3.2  Onnxruntime wlaicwo — pe wopepPoréc
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Kpatovtag otabepn pio petapintn (gite ™ perapinty OMP _NUM THREADS eite v
emloyn --threads) ocvykpivovpe mog aArdlet o QPS ywo tyég 1, 2, 4 kot 8 g GAANg
petafintng, oe KaOe kowdypnoto mdpo Vo micon and 1 emg 16 myég mapeppfoing iBench.

onnxruntime-mobilenet

oomp constant threads constant
70 70

gps (queries per second)
gps (queries per second)

type
B threads = 1
I threads = 2 10
I threads = 4
Il threads = 8

cpu 13 memBw memCap cpu 13 memBw memCap
ibench ibench

Yynua 3.5: Métpnon QPS tewv MLPerf Inference benchmarks pe to nlaicio vrootmpiéng
onnxruntime, ywo. S1GQopes TNyEC mapepuPolmv «iBench» og dapopetikég evidoelc. Xto
aplotepd oynua, N petafinty OMP_NUM THREADS dwtnpeitor otabepn, eved oto deéi
oynua n emioyn --threads eivan otabepn|. Evdeiktikd eaiveton 1 and ta 3 benchmarks.

Apyika, eotialovpe oto oyfua 0mov dratnpovpe otabepn tn petafAntn nepPdAiovtog omp
(OMP_NUM_THREADS). [Tapatnpovpe 61t Taipvovpe ctabepd onpavtikd vynidtepo QPS
ywo Vv emdoyn --threads oty Ty 1 (urke mhaicto) amd 6,11 pe VYNAOTEPES TYES. ZTO G
omov kpataue otabepn Ty emhoyn --threads, BAémovpe v KoAvtepn anddoon o€ tiuég Omp
2 (xitpwvo) ko 4 (mpdovo), evd evilapépov gival To yeyovog 0Tt eaiveTon v €Qovv
YEPOTEPN OmOd00T 6 TN omp 8 (KOKKIVO TAAIG10).

3.3.3 Tensorflow whaicro — yopic mapepforéc

Metpdpe to QPS (outparta avé deuTePOLENTO) TOL EMTVYYAVOLV T poVTEA [ tensorflow
TAOiG10 VTOGTNPIENG Yo dpopeg TIEG ™mg EMAOYTG
INTRA_OP PARALLELISM THREADS nov moapéyetat amd tnv mhateopua Tensorflow ko
opilel Tov aplBud T@V VNUATOV TOV YPNOYLOTOOVVTOL GE [0 LEROVOUEVN TTPAEN (dmwg
TOAAOTAQGLOGLOG TTIVAKOL KO AVAY®YEG) Y10l TOUPUAANAMGUO.
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gps (queries per second)

<]
o

]
o

@
=]

]
1]

model
—— ftf-resnet50
t-mobilenet
— f{f-mobilenet-quant
—— f{f-ssdmobilenet-default
— f{f-ssdmobilenet-quantfinetuned
—— tf-ssdmobilenet-symmetrquantfinetuned

gps (queries per second)
3 B8

g

B

2 4 6 8
if_intra

Yynuo 3.6: Métpnon QPS towv MLPerf Inference benchmarks pe to mhaicto vrootipiéng
tensorflow, ywa d1dpopec Tipéc e emhoyng INTRA OP PARALLELISM THREADS
(tf_intra). To tpio pdTa benchmarks, oto vwdpvnpo pe ta ypodpata oto de&1d, EKTEAOHV Lo
gpyacia tagvounong ewovey, evo to Tpio TEAEVTAio EKTEAOVV Lo Epyacio aviyvevong
OVTIKELLEV@V.

Evkola cvpumepaivovpe and 1o oynpa 0t 660 av&dveton n TN tf intra, t6c0 KakdtepT gival
N anddoon tov povtélmv. Tnv peyodvtepn kiion avénong yio o LOoVIEAQ OV EKTEAOVV Lua
gpyacia Ta&vounong ewovav, v £xet to tf-mobilenet (kitpvn ypappr)), To onoio emrvyydvel
Kot ta vymiotepa QPS kdbe otiyun, pe devtepo koAvtepo to tf-mobilenet-quant. T to
LOVTEAQ IOV EKTEAOVV il €pyacion aviyveLONG AVTIKEWEVOV, TO HOVTEAD UE TNV KOADTEPT
anddoon eivor to tf-ssdmobilenet-default (koxkwvn ypouun), pe pikpn dSopopd omd To
VIOAOITTAL.

3.3.4 Tensorflow mhaico — pe mapepPorsg

INo k60e poviého MLPerf Inference kot kéBe kovdypnoto ndpo e migon and 1 edg 16 myég
napepPoing iBench, petpdpe v amdd00m TOV HOVIEA®V Y10, SIAPOPES TIUES TNG EMAOYNG
INTRA OP PARALLELISM THREADS. To oyfua mov tpokvntet eivat to akdAovho.
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tf-mobilenet-quant
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w40
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20

cpu 13 memBw memCap
ibench

Yyqua 3.7: Métpnon QPS tov MLPerf Inference benchmarks pe to mhaicto vrootpiéng
tensorflow, ywa d1bpopeg mnyéc mapepformv «iBench» og dapopetikés evidoeic. Evdsiktikd
eatveton 1 amd ta 6 benchmarks.

Eexwvovtog, BAEmovpe pia Tapdpota ovodtkn téom oty anddoon o€ dha too MLPerf Inference
Benchmarks pe 10 mlaicto vrootpigéng tensorflow, kabmg av&dvetor n Tyun tov tf intra, pe
TG VyNAOTEPeS TIES QPS va mapatnpodvtar yevika yio Tipég tf intra 5 kot dve, 6mov n
dlgpecn T TG AmOd00NG TOPAUEVEL o€ TOPOUol0 vVyNnAd onueio. Emiong mapatnpodpe
HIKPOTEPT HETAPANTOTNTA GTNV ATOS0GN, KOOMG 1 £vTaoT TG TapeRPOANG TOKIAAEL, yio OAES
T myéc mapepPorng ko tf intra 1. IMapopota pkpodtepn petaPAntotnto oty amddoon
EYOVLLE E TNV TEST] OTNV YOPNTIKOTNTA THG LVANG Y10 OAES TIC TipéG Tov tfintra, o ohykpion
LLE TIG TEGELG OO TIC VITOAOITES TNYEC TOPEUPOANG.

4 XpovoopouUorOYNTNC

4.1 Extoc Xovoeons: Exmaidevon twv Regression Moviéhwv Mryavikng
Mdabnong

I va tpocdopicovpe moto MLPerf Inference benchmark, kot pe mowa poOuion mapapétpmy,
elvar kotdAAnio va exteheotel kdBe @opd, otpeedpacte ot Ponbel €vog GuvOAOL
Regression povtédmv Mnyavikiic Mabnong (ML) mov, katdAAnia ekroidevpéva, o propovv
va TpoPAréyovv v mbavh amddoon tov benchmarks vro tig cuvbnkeg mapepPoing mov
VILAPYOLV TN CTLYUN TOL GTEAVOVTOL Y10l EKTEAEDT).
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| Step 1: Random Scenario Execution Step 2: Training Dataset Formation | Step 3: ML model selection
i

Target Inference
Engine

%5

Zyua 4.1: Adypappa ypovodpoporoyntn ektog cuvoeong g (1) extédeong oevapiov
ekmaidevong, (2) Tov oyMUATICHOD GLVOLOL dedoEVMV ekaidevong, (3) g ekmaidevong
Kot a&loAdynong tov povtéhmv ML Regression, (4) g emtloyng kot BEATIoTOmOINGNG £VOG
ML povtélov, ywo kdBe MLPerf Inference benchmark

H exnaidevon tov Regression povtéhmv Mnyavikig Mdabnong €ywve ek tov Tpotépmv,
oLAAEYOVTAG €VOL GOVOLO OO SLAPOPES LETPNOELS GLOTHUATOG (OYETIKES LLE TOVG TUPNVES TG
KME, v kpuen pviun kot tnv KOplo. Lviun) o€ SPOPETIKE GeEVAPLO TAPEUPOADY Kot
uetpdvtog v amodoon twv MLPerf Inference benchmarks. Xe kabe oevipio moapeufoing,
tpéxovpe éva Toyaio apBud and iBench myéc mapepPoing mov méfovv Eva Tuyaio TOpo Tov
OLGTHATOG TO KaBEva, yio OAN TN dtdpKeLd TOL cevapiov. 'Emeito GUAAEYOVE TIG LETPNOELS
oLOTAATOG Yo 20 SEVTEPOAETTA KOl KPOTAUE TOV HECO OPO TOVG, KOl TPEXOVUE EVO TUYOAIO
benchmark pe toyaio eninedo maporliniicpov (mov kabopiletor amod Ti¢ TIHES, TOL KLUavOVTOoL
and 1 edg 8, tov OMP_NUM_THREADS ot --threads yiwa to. benchmarks pe onnxruntime
mlaiclo vrootpiEng, kot tov INTRA_OP_PARALLELISM_THREADS yw to benchmarks
ue tensorflow miaicio vrootpiEng) o€ cevaplo TOALUTAGY podv yio 60 devtepdrenta. Ot
LETPNOELS TOL GLGTNLOTOG, 1) TN TOL EMUTEIOL TAPUAANAMGHOD Kot To QPS mov metvyaivel to
benchmark oe avtéc Tig cLvONKee amOTEAODV IO YPOUU] TOV GUVOAOL SESOUEVMOV TNG
exmaidgvoNG.

Me 10 6OvoAO OedOUEVOV EKTTOIOEVOTG TTOV TPOEKVYE, EKTOOEVSALE dtdpopa povtéa ML
Regression kot o aoloyncape pe faon tn Padporoyio S10GTOLPOVUEVTG ETKVPMONG TOV
TETUYOLVALY.

Algorithm  onnx-resnet50 tf-resnet50 onnx-mobilenet tf-mobilenet tf-mobilenet-

guant
Linear -1.3e+12 -5.4e+23 -4.8e+11 -1.2e+23 0.813
Ridge -6.1e+11 -1.6e+12 -1.6e+11 -2.9e+12 0.814
Lasso 0.679 0.745 0.801 0.783 0.797
Elastic Net 0.679 0.744 0.803 0.783 0.798
Bayesian -3e+9 -4.2e+10 -1.7e+11 -9.2e+11 0.812
Ridge
SGD -5.1e+43 -6.4e+43 -1.8e+43 -5.1e+42 -5.1e+42
SVR 0.253 0.201 0.295 0.232 0.202
k-NN 0.236 0.19 0.324 0.239 0.266
Gaussian -3 -1.9 -3.5 -2.1 -1.6
Process
Decision 0.632 0.921 0.835 0.93 0.92
Tree
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Random 0.825 0.955 0.909 0.962 0.959
Forest
MLP -3e+8 -4e+8 -1.2e+8 -3.6e+7 -5.6e+6
XGBoost 0.843 0.962 0.914 0.962 0.956
[Mivakag 4.1: BaBuoAioyia katd 10-mAn dtactowpoduevn Xtkipmor S10popeTikdv MovtéAwny
ML Regression yiwo v mtpofieyn tov QPS dwapdpwv MLPerf Inference benchmarks wov
EKTEAOVV 1oL Epyacio TaEvounong eKovag.

Algorithm onnx-ssd- tf-ssd- tf-ssd-mobilenet- tf-mobilenet-symmetr-
mobilenet  mobilenet  quant-finetuned quant-finetuned
Linear -1.7e+13 0.731 -1.1e+12 -6.4e+9
Ridge -8.9e+12 0.767 -6.7e+11 -8.4e+10
Lasso 0.838 0.792 0.763 0.769
Elastic Net 0.842 0.791 0.762 0.765
Bayesian Ridge  -1.3e+13 0.797 -6.6e+11 -6.7e+10
SGD -1.3e+45 -2e+43 -2.6e+43 -2e+43
SVR 0.332 0.132 0.139 0.772
k-NN 0.327 0.134 0.126 0.55
Gaussian -2.4 -2 -2.2 -2.1
Process
Decision Tree 0.878 0.927 0.926 0.929
Random Forest 0.942 0.963 0.954 0.955
MLP -1.4e+10 -1.3e+5 -8.4e+8 -2.3e+6
XGBoost 0.941 0.965 0.956 0.961

[MTivakag 4.2: BaBuoAioyio katd 10-mAn Staotowpodpevn eXtkpmor S10popeTikdv MovtéAwny
ML Regression yiw v mtpofieyn tov QPS dwapdpwv MLPerf Inference benchmarks wov
EKTEAOVV L0 EPYOGTIO CLVOYVMDPIGNG OVTIKEILEV®V.

2m ovvéyew emAéEope 1o mo axkpiPéc poviého Regression ML, pe v peyaddtepn
Babuoroyio ot TpoPAeyn tov QPS twv benchmarks, ywa yprion otov ypovodpoporoynty
pog. Agdopévov 6t 10 XGBoost metvyaivel v kaAvtepn Pobporoyia oto mEPLGGOTEPQ
benchmarks, kor to Random forest &emepva 10 XGBoost povo ce 2 and tig cuvolkd 9
npoPAdéyelc, kot povo Afyo, yw Adyovg amidtnrog, Oa ypnowomomjcovpe to XGBoost
aAyopiBuo Regression ML yioa v mpdPreyn tov QPS vy 6Aa too MLPerf Inference
benchmarks.

Télog, puvbuicope tic vrepmoapouétpovc tov XGBoost, ywo kabe benchmark, yw vo
BeAtioTomomcovE TEPAITEP® TNV aKPiPELd TOV.

MLPerf Inference XGBoost Regression XGBoost Regression
benchmarks parameters
onnxruntime-resnets0 0.843 0.877
tensorflow-resnet50 0.962 0.964
onnxruntime-mobilenet 0.914 0.924
tensorflow-mobilenet 0.962 0.97
tensorflow-mobilenet- 0.956 0.966
quantized
onnxruntime-ssd- 0.941 0.943
mobilenet
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tensorflow-ssd-mobilenet 0.965 0.971

tensorflow-ssd-mobilenet- 0.956 0.964
quantized-finetuned
tensorflow-ssd-mobilenet- 0.961 0.966
symmetrically-quantized-
finetuned

[Tivaxoag 4.3: XOykpion Pabporoyiog katd 10-mAn StocTowpodEVT ETIKVP®GT TOV
aAdyopiBpov XGBoost yio ML Regression mpwv kot petd t PeAtictomoinomn tov
VIEPTIOPAUETPOV

4.2 e Xovdeon: [Ipoyvmotikdc Xpovodpoporoyntig Inference Mnyovov pe
Enlyvoon tov [HapepPorov kot tov I[Hopwv

4.2.1 Avantoén v Xvykekpipévo Movtéio

O unyaviopdg ypovodpopordynong Inference pnyovov pe ocvykekplpuévo HOVTELO TOV
avantosope Aappdvel v’ dyn 1o TPEYOV EMIMEdO GLVONKAOV TOPEUPOANG GTO GVOTNLLA TPV
and v emioyn tov MLPerf Inference benchmark yw extéleon oto odumleypa o éva
oevaplo moAanmAdv podv. Emiong, otoyxevel va oteidel 1o benchmark pe o dtopopeoon
(eminedo TOPAAANAIGHOV) TOV TOV EMTPEMEL VO KAVEL OGO TO SLVATOV AyOTEPT YXPTOT TOP®V
TOV GUGTNLOTOG, EVA KATAPEPVEL VO IKOAVOTTIOUGEL EVAV QTOLTOVUEVO TEPLOPIoUO QoS.

Step 1: Server metrics collection | Step 2: QPS prediction

Continuous
.
Server
IMonitoring

Parallelism level
Rool

Pick next
parallelism level
from pool

Target Inference
Engine

&2 =>

Target Quality of
Service

@| =

#INTRA_OP_

............ PARALLELISM_THREADS
#0MP_NUM_THREADS

L 3M | R R ' #thraads
Average server

= Form Test (5

=

Dataset ™~

metrics prior to
Predict QPS

1
'
1
1
'
'
1
1
'
1
1
'
1
1
' deployment
1
1
'
1
1
'
1
1
'
1
1
'
1
1
'
1
1
1
'

Load Optimized

[Frcwae | QPS prediction
ML model

Min CPU
utilization
parallelism level
that satisfies the
QoS constraint

#5

Syua 4.2: e oahvoeot, S1AypapLiLo Y POVOSPOLLOAOYNTH Y10 CUYKEKPLUEVO LOVTELD, TNG
dradkooiog emAoyng emmédon Tapoliniopot pag inference unyovig, TpokeévoL va
wavomomBel évag QoS o1d)0g e EAAYLOTN XPNOT TOP®V.

| Step 3: Parallelism level selection

- Solr_t by‘CPU
— utilization

iListoF Predicted%

; QPS per ;
i parallelism level |

O xpovodpoLOAOYNTAG Y10 GUYKEKPYEVO HOVTELO Ttaipvel oG €ic0do to Ovopo tov MLPerf
Inference benchmark mov tpdkerton va extedécel eite pia tavounon Kovag eite pa epyocio
aviyvevong avtikeévov. Aapupdver emiong 1o embountd QPS mov otoyevel vo €xel og
KOTOTEPO OP1O Y10, TNV omddoon Tov benchmark.

Otav éva aitnuo ypovodpoLoAdYNoNG EPYETOL GTOV YPOVOOPOLOAOYNTH LAG, OVTOS GUAAEYEL
apEc®G £voL GUVOAO LETPNCEMY GLGTNUATOC, CYETIKA e T TpEYovTa emimeda ypnong g CPU
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KOl TNG LVAUNG OTO COUTAEYHA, KAOE devTePOAETTO, Yo Lot KaBOPIGUEVN XPOVIKT OldpKeELd,
Kol OtoTnpel T péom Tiun KAbe LETPIKNG KOTA TN SLAPKELN ALTNG TNG YPOVIKNG TEPLOd0L. TOTE,
eoptmVvel To amobdnkevuévo povtédo XGBoost Regression mov £yet ekmondevtei yioo to MLPerf
Inference benchmark mov npoxettar vo. dpoporoynoetl. Avéroyo. pe to mAaiclo vrooTHPIENG
(tensorflow 1 onnxruntime) mov Oa ypnowomomoetr 1o benchmark, opiler o T oTIC
avtiotoryeg petopintés (INTRA OP PARALLELISM THREADS yw 710 tensorflow
miaicto, OMP NUM THREADS «ot --threads emloyn yio to onnxruntime mAaiclo) tov
benchmark. O ypovodpoporoyntc {ntd omd to Regression povtédo va mpoPréyet o QPS mov
0o emtoyer To benchmark, edv exteleotel pe avtd 10 €minedo TOUPAAANAIGLOD, VIO TIG
ouvOnkeg mopeUPOAG OV VTOJEIKVOOVTOL OGN0 TIG WETPNOEL TOV GLOTHUOTOS 7OV
ocvAAéyovtat. Emavaiapfavel avtn m dadikasio yio OA0VS Toug THavoUg GUVOLAGHOVS TILDV
TV petafAntov tov benchmark (kéfe tipn kopaiverotl and 1 €mg 8), anobnkevovtog OAES TG
npoPréyerc QPS tov Regression povtélov (pion mpoPreyn QPS yu kdbe povadikn
dapdpemon tov benchmark, kdtom and To 1610 TPEYOVOO KATAGTAGT CLOTHLATOS), KAOMG Ko
TIG TWWES TOV UETAPANTOV TOL 0dNynoav o€ ovtyv TV TPoPAeymn, o évav mivaxko. O
YPOVOSPOUOAOYNTHG TTPOY®PA GTNV TAEIVOUNGT TOV TIVOKE KOTA TV TocHTNTA XPNOoNG TG
CPU mov €yxet kdOe xatoymdpnon, Le adEovca oelpd, Kot EMAEYEL TO EMIMESO TAPOUAANAIGLLOV,
pe to omoio Ba dpoporoynoet to benchmark, mov Ba odnynoet evoeyopévog oe éva QPS mov
Ba wovomotel tov meplopiopd QoS (une Paon v T tov mpoPienduevov QPS v kébe
eMinedo TapaAANAIGHOY GToV Tivaka) pe T HKkpotepn dvvarty ypnon g CPU.

4.2.2 TIpocéyyion Xopic Movtéio

2TV TPOCEYYIoN Y®PIC LOVTEAO GTOV UNYOAVIGLO ¥POVOdPOLLOAOGYNoNG TV inference punyavav,
€10AYOLE pia VEQ JETOQPY| Y®PIS LOVTELO, OOV Ot TPOYPAUUATIoTEG Kabopilovy puovo v
gpyacia mov BEhovy va ekteAécoVV (TOEVOUNGT EIKOVAG, OVIXVELOT] OVTIKEWEVOV) KOl TNV
amodoon LYNAOH emmédov mov omoutovv ®g 6tdxo QoS. O ypovodpopoAoyNTNS YWPIig
Hovtéro, Aomov, emhéyel v koAvtepn inference pnyovn, amd pa opddo eyyeypopupuévay,
ekmoudevpuévoy inference poviéAmv Yo GUYKEKPIUEVT €PYOCiQ, LE TO KOTAAANAO €minedo
TOUPUAANAIGLOD Y10 VoL OAOKANPADGEL VTN T OOVAELL LE TOV AYOTEPO AMOLTNTIKO GE TOPOLG
TPOTO, EVA CTOYEVEL VO IKOVOTOGEL TOV TEPLOPIopd QoS vrd TIg TpéYovceg cuvOnKeg
TAPEUPOLDY GTO GUGTN LA

O ypovodpoporoynme xopic povtéA0 Aaupdvel og €icodo 10 dvopa TG epyociog mov
npokertan va ektedéoovv to. MLPerf Inference benchmarks, n omoia eivor gite ta&vounon
ewovag gite aviyvevon avrikeévov. Aapupdavet eriong éva 6toyo QoS, wg KaTMTEPO HP1O Yo
Vv amodoomn Twv benchmarks.

Otav éva aitnuo ypovodpoLOAdYNONG EPYETOL GTOV YPOVOOPOUOAOYNTH YMOPIG LOVTEAD, OTMG
KAVEL apyIKd KoL O YPOVOOPOLOAOYNTNG YOl GUYKEKPIUEVO HOVTEAO, GLAAEYEL QUECMG £val
OUVOAO UETPNOEMV GLOTNUATOS, GYETIKA pe T TpEyovta enimeda ypnong g CPU kot ¢
UVAUNG OTO GOUTAEYUO, KAOE OeLTEPOLENTO, YO Lot KOOOPIGUEVN YPOVIKY OLAPKELD, KOt
dwtnpetl ) péomn T kébe PETPIKNG KOTd TN SdpKeELD VTG TNG YPOVIKNG Tteptodov. Enetra,
TAONYELTOL 6TO YDOPO TOV KoToywpnuévoy inference unyavov yo v nrovuevn epyaocia. Ta
k@b inference unyovn exel, mpoywpPA HE TOPOUOLO TPOTO LE TOV YPOVOOPOLOAOYNTH UE
OLYKEKPIULEVO LOVTEAD, £MG OTOV £)XELTO EMTESO TOPAAANAIGHLOD Kot TNV ovTioToym TpdfAieyn
QPS, «ka0e inference pnyovhg, mov TPOKELTAL VO IKAVOTOGEL TOV TEPLOPIoHO QoS pe v
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edyotn ypnon CPU, vnd tig tpé€yrovoeg ovvinkeg mopepfordv. Z1n ovvExEwd, O
YPOVOSPOLOAOYNTNG YwpPic poviélo amobnkevel OAeg tic tpumAéteg {inference pmyavn —
eMAEYHEVO  emimedo  mapoaiinMopod — mpoPAemopevo QPS oe ovtd 10 emimedo
TapaAnAopov} oe po AMota ko v taStvopet pe Bdon to mocooto ypnong e CPU mov
€xel kabe xataydpnon, pe avovoa cepd. Téhog, emAéyel va dpoporoynoel v inference
Unyovy, oTo €MNESO TAPUAANMGUOD HE TNV OmMoid GLVOVACTNKE GTNV TPMALTA, TOL O

emtiyel duvntikd éva QPS mov wavomnotel tov mepropiopd QoS pe ) pkpoTeEPN duvat xpnon
CPU.

5 A&oroynon

2.1 Ileprypaon Xevopiov

[Tpokeévou va a&lodoynoovpe Tov ypovodpouoroyner inference unyovov pe GuYKEKPIULEVO
HOVTEAO 1 YOPig HOVTEAO, OnuovpyNooue 3 SLOQOPETIKA GEVAPLL TOPEUPOADY Yol vV
00K GOVUE TECT KUUAVOUEVNG EVTAOTC GTOVS KOWVOYPNOTOVG TOPOVS TOV GLGTHHOTOS EVED
EKTEAOVLE TO TEWPAPATA LLOG.

Ye KGBe oevaplo mapepPoing, tpéxovpe éva véo chvoro and 0 edg 2 mnydv mopepPoAng
iBench xé0e 10 pe 30 devtepdrenta, kabévo amd to omoia ackel mieon og Evav Tuyoia
eMAEYUEVO KOWVOYPNGTO TOPO Yo £va. TVYaio ypovikd ddotnua (70s émg 220s). Me avtd Tov
TPOTO PTIAEANE 3 GEVAPLO TOPEUPOADV.

5.2  Ileprypaoen Iepopdrmv

e k00t melpapo, EeKvape évo oevaplo moperPoAng kat, mTapdAinia, extedovpe o MLPerf
Inference benchmarks, ypnowonoidvrag tov ypovodpoporoynty pog. Tov {ntape emiong M
anddoon ke benchmark va wavoroiei £vav cuykekpyévo meplopiopd QoS. Ta benchmarks
EKTEAOVVTOL GE GEVAPLO TOALUTAGDY podv, eropévag amokieiovpe to tflite-mobilenet and ta
TEPAUOTA pog, Kobmg dev Aettovpyel o€ avtod to oevapro. Kabe benchmark dpoporoyeitar 10
OLVEYXOUEVEC POPES ad TOV 1010 ypovodpoporoynt Ko extereiton Yoo 30 devtepoAiénta 6TO
ovumieypa ka0 popd. Kab' 6An 1 didpkela tov melpdpatoc, n éviacn e TopepPoAng 6to
ovumAeypa 0AAGCEL COLP®VO LE TO EMAEYUEVO GEVAPLO TTapeUPOANG. O ypovodpoprorloynTig
LG GLAAEYEL TIG LETPTOELS TOL GLGTNHOTOC Y10 S OEVTEPOAETTA, TPV OO TNV OPOUOAOYN O
0V emdpevov benchmark kébe opd.

Enavolappdvovpe kdOe meipapa yia 3 dapopetikovg meplopiopovg QoS kot pe ) xpnon 3
SLPOPETIKMV YPOVOOPOLLOAOYNTMV: TOV YPOVOIPOLOAOYNTH HOG LE EMTYVOOT TOPEUPOADY Kot
nopav, Evav ypovodpoporoynt erdytotg xprions CPU kat évay ypovodpopoloynty| Léylotng
yprong CPU. A&oroyovue emiong tovg ypovodpoporoyntés o€ 3 SopopeTikd cevdplo
TaPEUPOADY KOl GVYKPIVOLULE T OTTOTEAEGLATE TOVG.

210 WEPAUOTO UE TOV  YPOVOOPOUOAOYNTH Y®PIS HOVIEAO, £YOVUE TIG TAPOKATM
dwpoporomoelc. Tov (ntdpe vo ektedéoetl o epyoacio (taStvounon eikovag 1 oviyvevon
AVTIKEHEVDV), VD KAOe benchmark mov emAéyesl dpoporoyeitan 20 cuveOUEVEG POPEC OO
ToV 1010 ypovodpoporoynty Ko ektereitan yi 30 devteporénta 610 cOHUTAEYHO KAOE Popda.
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Enavaloppdvoope ka0e meipapa yio 3 d10popeTikong meptopiopons QoS, Kot cuykpivovue ta
OTOTEAEGLLATO. TOL YPOVOOPOLOAOYNTH YWOPIG HOVTIEAO KOl TOVL YPOVOOPOLOAOYNTH LE
OULYKEKPIUEVO LOVTEAO GE £VOL GEVAPLO TOPEUPOLDV.

5.3 Amoteléouata Xpovodpoporoyntn Inference Mnyovaov Me
Yvykekpévo Movtého & XOykpion Xpovodpoporloyntmv

5.3.1 MHopaprdcseig Tov Tepropiopov QoS
interference: 3

f-mobilenet t-mobilenet-quant
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QoS violations
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mmm interference-aware
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0

QoS violations

QoS constraint

Zyqua 5.1: Zoykpion apBpov topafiricenv QoS HeETaED TOV XPOVOOPOUOAOYNTN LE
entyvoon mapepformv, Tov ypovodpoporoynt péytotg xpnong CPU kot tov
xpovodpoporoynty| erdytotng xpnong CPU, ya 3 dtapopeticots mepropiopog QoS.
Evdewtikd eaivovton 3 amd ta 9 benchmarks, ce 1 and ta 3 ceviplo mapeporimv.

[Tapatnpodpe O6tTL 0 YPOVOSPOUOAOYNTAG WOG KATOPEPVEL Vo dtnpel Tov oplBud tov
nmopofracemv QoS onuavtikd pkpdTEPO amd O,TL 0 YPOVOOPOUOALOYNTNG EAAYLOTNG XPNONS
CPU og 6Aeg 11 TepmT®dOELS 6€ TEPLOPIGUO peaaiov 1 vynAlod QoS kot amodidel KaAdTEpQ N
foa pe tov ypovodpoporoyntn erdyiomg ypnons CPU oe Olec oxedOV TIC TEPMTOOCELS CE
younAd QoS mepropiopd. Emmiéov, metvyaivovpe agloonueioto kaAdtepn amddoon and tov
ypovoopoporoynty péywotng ypnong CPU, ota benchmarks pe miaicio vmootpiéng
onnxruntime. Avto coppdwvetl 510t 6€ aVTO TO TAAIG10 VITOGTHPIENG, T0. benchmarks £yovv Tnv
péytotn anddoon oe €va PETPLO EMMESO TOPAAANAIGHOD, VD £(OVV TTMOGCT OTOS00NG OE
VYNAO eminedo mopaArniiopov. Zta tensorflow mhaicio vrosTpPiENg, o ap1BudS TapaPrdcewy
QoS 10V ¥povodpoproAoynT Hog elvar TaPOUOLOG LLE OVTOV TOL YPOVOSPOLOAOYNTH UEYIGTNG
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ypnong CPU, av Kot 0 01KOG oG TO TETVYOIVEL YMPIG VO YPNOLUOTOIEL GUVEX(DS TOVG TOPOVG
TOV GUUTAEYLOTOG OT UEYIOTN XOPNTIKOTNTOL.

5.3.2 A&wnoinon népwv

interference: 3

tf-mobilenet tf-mobilenet-quant
80

‘ ‘ ‘ m ‘ ‘
40 0 91 28 45

QoS constraint QoS constraint
nxruntime-ssdmobilenet

oni
100 scheduler

mmm interference-aware
EEE max_cpu_usage

80 EEE min_cpu_usage

60

40

) I I

14 16 18

QoS constraint

g 8 3 B
average CPU utilization
& 8 3

average CPU utilization
2 B 8 &
s B 8

0

average CPU utilization

ymua 5.2: Zoykpion pécov mocostol ypnong CPU peta&d tov povodpoloAoynT He
entyvoon mapepPoimv, Tov ypovodpoporoyntn péyiomg xpnons CPU kot tov
xpovodpoporoynt erdytotng xpnong CPU, yia 3 dtapopeticods mepropiopovg QoS.
Evoewtikd gaivovton 3 amd ta 9 benchmarks, oe 1 and ta 3 cevapia mapeporov.

[Topatnpodpe 6TL 0 YPOVOSPOLOAOYNTAG OGS KATAPEPVEL VO EMITOYEL oL péom ypnon s CPU
KAmov avapeco omnv eAdylotn xpnon kor oty péyiom ypnon mm¢ CPU, avdioya tov
nepoptopd QoS kot 11 maperPorég oTovg TOPOLS TOV cvothuatos. [TAnclaler 1 Eemepvdet
Tov meploptopd QoS yio v mhelovotnTo TV dpoporoynoemv twv benchmarks, oe avtibson
pe tov xpovodpoporoynt ehdytotg xprions CPU, evd emiong to Kavel pe PkpoOTEPN YPNOM
CPU anod tov ypovodpoporoyntn péyiomg ypnong CPU.

5.3.3 Kotavoun arédoong
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Zyua 5.3: Zoykpion katavoung QPS peta&d tov tov xpovodpoporoynth HE ENLyvmon
mapeUPorav, Tov ypovodpoporoynt péytotng xpnons CPU kot tov ypovodpoporoyntn
eldiomnc xpnong CPU, yia 3 dtapopetikong meploptopoc QoS. Evdsiktikd @aivovton 2 amd
ta 9 benchmarks, o€ 3 cevépia mapepPoraov.

Amd to oynuata PAEmovpe OTL O YPOVOOPOUOAOYNTNG OGS KOTOPEPVEL VO EYEL LIKPOTEPN
petafAntdtnTo 6TV amddocN GE GYECT UE TOV ypovodpoporoyntn péyiotng ypnong CPU,
Wwitepa oe pkpd kot pecoio mepopiopd QoS. Emiong, o ypovodpoporoyntig pog
TaPOLGIALEL 10 KOTAVOUR amddoons e v vymidtepn mBavotnta ta QPS va Bpiokovrat
ndveo amd to otdro QoS, Yo dlovg tovg meplopiopovs QoS. ‘Etol katapépver vo Exet
TePLocOTEPEG £YYLNGELS TOL QOS G€ GYéom e Tov ypovodpoporoyntn erdytotng xpnong CPU,
0 0mo10¢ KATAPEPVEL VO, TETVLYEL AELOTIGTA TOV 6TOY0 QOS pHovo pe yaunio mepropiopd QoS,
eV M amddocn Tov dev umopel va gtacel To otdyo QoS edv eivat og pesaio Tiun 1 VYNAOTEPT.

54 Amnoteléouata Xpovodpouoroyntn Inference Mnyavov Xwpic Movtéro
& Zuykpion XpovoopoLoroyntmv

54.1 Epyoocia Ta&ivounong Ewévev
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task: image classification task: image classification
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Zynua 5.4: Toykpion (1) tov apBpod topapidcewmv QOS, (2) Tov LEGOL TOG0GTOD YPNONG
CPU, (3) ¢ katavounc QPS peta&d tov ypovodpoporoynt Le enlyvoon TopepPordy pe
GLYKEKPLUEVO LOVTEAO KOl TOV XPOVOOPOUOAOYNTN UE ENlYyVmoT TapeRBOAdY Xwpig LOVTEALD,
o¢ 3 drapopeTikos meproptoots QoS yia v ML epyacio ta&ivounong eikovev.

scheduler
W interference-aware: onmxruntime-resnets0
W interference-aware: tf-resnet50
W modelless-interference-aware
B interference-aware: onnxruntime-mobilenet
BN interference-aware: ti-mobilenot
B interference-aware: -mobilenet-quant

100

aps (queries per second)

EeKvmVTag TNV avdAvon pe v epyacio Tavounong eKOvev, 6g YaUnAo Kot pecaio otodyo
QoS, 0 xpovodpoporoyNTE Y®PIc LovTéLo ypnolonotlel kKupimg to benchmark onnxruntime-
mobilenet, to omoio dev mapofidler tov mePOPGHO. ZTOov LYNAG TEepopopd QoS,
ypnowomnotel to benchmark tf-mobilenet tig mepiocdTEpEC POPES, TO OTOI0 £XEL TV IKOVOTNTO
va wetvyaivel vymid QPS pe pkpn ypron CPU. Iopatmpodpe 1t KaTapépvel va Slotnproet
™m péon ypnon g CPU, oto eldyoto, oe OAovg tovg mepropicpovs QoS. Télog, o
YPOVOOPOUOAOYNTNG YWPIC HOVTEAO €xel TaplOuolo. PETAPANTOTNTA OTNV AmdO0CN HE TO
benchmark mov emiAéyel va ypnoiponolel teplocotepo o€ kabe mepintmon drapopetikod QoS.
"Etot katagépvel va kpatdet T diqpeon tiun tov QPS ndve and toug mepropiopo QoS.

5.4.2 Epyoocia Aviyvevong AVTIKEINEVOV
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task: object detection task: object detection
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Zynua 5.5: Toykpron (1) Tov apBpod topapidcemv QoS, (2) Tov uEGoL ToG00TOD YPNONS
CPU, (3) ¢ katavounc QPS peta&d tov ypovodpoporoynt Le enlyvoon TopepPordy pe
GLYKEKPLUEVO LOVTEAO KOl TOV XPOVOOPOUOAOYNTN LE ENtyvmoT mapeBoAdY xwpig LOVTELO,
o€ 3 dapopeTikonc meptoptopoc QoS yia v ML epyacio aviyvevons avTikeluévoy.

Oocov apopd v gpyacia oviyvevons OVIIKEILEV®OV, 0 XPOVOIPOUOAOYNTNG Y®PIG LOoVTELD
ypnowomnotel w¢ emi to mheiotov to benchmark onnxruntime-ssdmobilenet og younAd
ePLoPo o QoS, e OMOTEAEG L0 TOPOLOLN TKOVOTIOUTIKT] ATOS00T| LE TOV YPOVOIPOLOAOYNTH
HE GLYKEKPIUEVO HOVTELO OV Ypnoltonolel poévo to onnxruntime-ssdmobilenet, mov TAnpoi
10 0100 QOS oyedov Kdbe opd. T'la tovg pecaiovg kot VYNAOLG mepLopicpovs QoS, o
YPOVOSPOLOAOYNTNG YWPic poviélo otpépetar oto benchmark tf-ssdmobilenet yio T1c
TEPLoGOTEPES Od TIG OPOHOLOYNOELS. Q¢ amoTédeca, £xel Tepimov Tig 101eg mapafracelc QoS,
KATA LECO OPO, LLE TOV YPOVOOPOUOAOYNTH LE GUYKEKPIUEVO HOVTEAO TTOL OPOLOAOYEL TO tf-
ssdmobilenet, ko amodidel onuavtikd kadbtepa amd Tov ypovodpoporoynt pe to benchmark
onnxruntime-ssdmobilenet ce ovtd ta QoS. Emiong, mapatnpodue 011 Kataépver vo
dwtnpnoet ) péon ypnon e CPU, oto eddyioto, oe 6Aovg toug meploptopovg QoS. Térog,
0 XPOVOSPOLOAOYNTNG Y®PIG HOVIELO £xEl TOPOUOLD HETAPANTOTNTO GTNV ATOO00T WE TO
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benchmark mov emiAéyel va ypnoiponolel teplocotepo o€ kGbe nepintmon drapopetikod QoS.
"Etot katagépvel va kpatdet T diqpeon tiun tov QPS ndve and toug meplopiopove QoS.

6 Xovoynm

Y& VTN TN OMAMUATIKNY EPYOCia, oYedAcUE VO TPOYVOOTIKO TAIGLO YPOVOOPOUOAOYNOTG
ue emiyvoon tov mopepPorodv kar moépwv, yio ML inference unyavég, mpokewévov vo
OVTOTOKPIVETOL 6TOVG TTEPLOPIGHOVG QOS TV gpappoymV, Kol TapdAinia va, givor 660 To
dVVATOV AyOTEPO QoI TIKO G€ TOPOVS GVoTHATOC. Enekteivapie eniong ) oyedioon pog oe
éva TAIG10 YPOVOSPOLOAGYNONG YMPIG LOVTEAD Y10 VO AVTILETOTIGOVIE TOV LEYAAO aplOuod
dwapopetikmdv  inference  unyavov.  A&oloynoape  T0  TPOTEWVOUEVO  TAGIGLO
YPOVOSPOLOAOYNONG HaG, YpNoIHoToldvTag £va obvolo inference unyoavov amd ™ covita
MLPerf Inference Benchmark oto cOommuo Kubernetes, ypnoipuonoidvrog dSopopetikd
oevapla TopeUPOL®V, TOL dNUIOVPYNONKAVY LE TN ¥PNoN TS GoviTag POpTOL epyaciog iBench.
Agi&ope Ot Yoo €vo GUVOAD OPOPETIKAV OTOUTOVUEVOV Teploptopdv QoS, to mhaicio
YPOVOSPOLOAOYNONG Lag TapaPldlet Tovg Teplopiopovg QoS, Katd péso 6po, AMydTtepo cuyvd,
pe pkpn petafintétro anddoons yop® omd 10 otoxo QoS kot pe pétpra xpnon tov CPU
TOp®V avaroya pe T0 QoS otdy0 Kot Tov POPTO £PYNGINg GTOVS TOPOLS, GE GUYKPLIOT] LE TO
ovomua mapoyng ML inference eldyiotng kot péyiotng ypnong CPU. Télog, deilape Ot 1
TPOCEYYIoN MO XOpig HovTElo PeAtimvel mepattépw tov péco apdpd mopoafidcemv Tmv
nepopopdv QoS kot ™ péon ypron e CPU tov mAaiciov ypovodpopordynong pog.
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Chapter 1
Introduction

The number of applications relying on inference from Machine Learning (ML) models is
already large and expected to keep growing. Facebook, for instance, serves tens-of-trillions of
inference queries per day [1]. These inference requests are usually being offloaded to the
Cloud. The increasing effectiveness of Machine Learning (ML) and the advent of Cloud
services is producing rapid growth of Machine Learning as a Service (MLaaS) platforms such
as IBM Watson, Google Cloud Vertex Al, Amazon ML and Elastic Inference, and Microsoft
Azure ML, where the Cloud providers offer their inference serving systems [2]. As an analysis,
from Google Trends, of 10 years of search interest trends in data science related topics shows
below, interest in “Machine Learning” has been slowly getting traction, when in 2017 it
surpassed the most popular trend at the time “Big Data”, and has been on a rapid rise ever since,
being nowadays the most popular search term by a large margin.

nterest over time Google Trends

@ prtificial intelligence  ® Data science Machine learning @ Big data ® Deep learning

II II = fie

I I 1 I I | I | I I

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Worldwide. 5/5/10 - 6/5/20. Web Search

Figure 1.1: Search interest in data science related topics in the period time 2010-2020.1

Tech companies are increasingly building large Machine-Learning-as-a-Service (MLaaS) on
the Cloud for model training and inference serving. Generally, an ML lifecycle has two distinct
phases — training and inference. In a typical MLaaS workflow, developers design and train ML
models offline; the training phase is usually characterized by large datasets, long-running
hyperparameter searches, dedicated hardware resource usage, and no completion deadlines.
The trained models are then published in the Cloud to provide online inference services
(inference phase), typically running in containers that can be queried by various end-user
applications to make predictions for given inputs [3]. Being user-facing, inference serving
requires cost-effective systems that render predictions with latency or accuracy constraints
while handling unpredictable and bursty request arrivals.

Inference serving systems face a number of challenges due to the following factors.

! https://towardsdatascience.com/has-interest-in-data-science-peaked-already-437648d7f408
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a) Diverse application requirements. Applications issue queries that differ in throughput,
latency, cost, accuracy, and even privacy requirements. For example, for queries to the
same object recognition model, an autonomous vehicle, which continuously receives
data from multiple cameras, requires inference in real time, while other applications,
such as a production line manufacturing machine, executing a texture inspection or
defect detection, may prefer accuracy over latency.

b) Diverse model-variants. Graph optimizers, such as TVM, TensorRT, and methods, such
as layer fusion or quantization, produce versions of the same inference model, model-
variants, that may differ in inference throughput, latency, memory footprint, and
accuracy.

c) Fluctuating resource interference. Depending on the time of day the applications query
an inference engine, there might be less or more congestion on the Cloud servers where
multiple applications concurrently utilize the shared Cloud resources. On top of that,
Cloud providers tend to co-locate applications in shared physical servers to maximize
the resource utilization of their infrastructure and reduce their operational cost, which
can further increase the congestion on the shared resources.

As a result, together these factors make it difficult for Cloud providers to guarantee an
application-specific SLA for each inference query, while also maximizing the resource
efficiency of their infrastructures. Simple scheduling approaches that deploy inference engines
in the Cloud with a set number of available resources, without considering the unpredictability
of the type and amount of user requests throughout the day and the resource load they could
create in the Cloud infrastructure, may result either in an over-provision of resources to the
application, leading to increased operational costs at the Cloud scale, or an under-provision of
resources to the application that leads to huge QoS violations of the applications. What is more,
existing inference serving systems require developers to identify the model-variant that can
meet diverse performance, accuracy, and cost requirements of applications. However,
generating and leveraging these variants requires a substantial understanding of the
frameworks, model graph optimizers, and characteristics of hardware architectures, thus
limiting the variants an application developer can leverage. As described above, one can use
the same object recognition model for several applications, but selecting the appropriate model
variant depends on the requirements of an application.

Overview

To address the emerging challenges of ML scheduling, in this thesis, we design and implement
an interference and resource aware, predictive scheduling framework, for ML inference
engines, that is capable of efficiently utilizing CPU resources to satisfy QoS constraints. Our
framework considers the effect of resource interference in the cloud by leveraging low-level
system metrics to train and utilize an ML Regression model to predict the Queries per Second
(QPS) that an inference engine will achieve, based on the current load and resource utilization.
Our scheduling framework aims to serve the inference engine with a parallelism level that
results in a performance that meets the required QoS constraint, while being as little resource
intensive to the system as possible. We also present a model-less scheduling framework which
introduces a model-less interface, where developers need to specify only the ML task that they
want to execute (image classification, object detection) and the high-level performance they
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require as a target QoS. The model-less scheduling framework selects the best Inference
Engine, from a task-specific pool of registered, trained Inference models, with the appropriate
parallelism level to accomplish the task in the least resource intensive way, while aiming to
satisfy the QoS constraint under the current level of interference conditions in the system.

We show that our scheduling framework utilizes a moderate amount of CPU resources,
dependent on the target QoS and resource load, to violate QoS constraints, on average, 1.8x
less often, compared to the max CPU utilization inference serving system, and 3.1x less often,
compared to the min CPU utilization inference serving system, and with a performance
variability that is better concentrated around the target QoS, for a variety of interference
scenarios and different QoS constraints. What is more, as the QoS constraints change, the
model-less scheduling framework retains a similar, on average, overall performance and
resource utilization, to the best performing, most efficient ML inference engine each time,
resulting, on average, in 1.5x less violations of the QoS constraints and 1.4x less CPU
utilization, compared to the model-specific scheduling framework.

The rest of the thesis is organized as follows. Chapter 2 presents related work, Chapter 3
describes the background of Kubernetes, the container orchestrator we used, the MLPerf
Inference benchmark suite and the iBench workload suite that were used for the evaluation of
our scheduling framework, and a summary of some ML Regression models. Chapter 4 presents
our experimental infrastructure, and the characterization of the MLPerf inference engines,
Chapter 5 proposes our design to efficiently utilize CPU resources for ML tasks, while
satisfying QoS constraints, and Chapter 6 presents experimental results. Chapter 7 concludes
the thesis.
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Chapter 2
Related Work

2.1 INFaaS: Automated Model-less Inference Serving

Despite existing work in machine learning inference serving, ease-of-use and cost efficiency
remain challenges at large scales. Developers must manually search through thousands of
model-variants — versions of already-trained models that differ in hardware, resource
footprints, latencies, costs, and accuracies — to meet the diverse application requirements. Since
requirements, query load, and applications themselves evolve over time, these decisions need
to be made dynamically for each inference query to avoid excessive costs through naive
autoscaling.

This paper [1] introduces INFaaS, an automated model-less system for distributed inference
serving, where developers simply specify the high-level performance, cost and accuracy
requirements for their applications without needing to specify a specific model-variant for each
query. INFaaS generates model-variants from already trained registered models, and efficiently
navigates the large trade-off space of model-variants on behalf of developers to meet
application-specific objectives:

(a) For each query, it selects a model, hardware architecture, and model optimizations. INFaaS
tracks the dynamic status of variants (e.g., overloaded or interfered) using a state machine, to
efficiently select the right variant for each query to meet the application requirements.

(b) It combines VM-level horizontal autoscaling with model-level autoscaling, where multiple,
different model variants are used to serve queries within each machine, so as to be able to
dynamically react to the changing application requirements and request patterns.

By leveraging diverse variants and sharing hardware resources across models, INFaaS achieves
1.3x higher throughput, violates latency objectives 1.6x less often, and saves up to 21.6x in
cost (8.5x on average) compared to state-of-the-art inference serving systems on AWS EC2.

2.2 Serving Heterogeneous Machine Learning Models on
Multi-GPU Servers with Spatio-Temporal Sharing

As machine learning (ML) techniques are applied to a widening range of applications, high
throughput ML inference serving has become critical for online services. Such ML inference
servers with multiple GPUs must address new challenges in the ML scheduler design. First,
they must provide a bounded latency for each inference query to support a consistent service-
level objective (SLO). Second, they must be able to serve multiple heterogeneous ML models
in a system, as cloud-based consolidation improves system utilization.

To address the two requirements of ML inference servers, this paper [4] proposes a new
inference scheduling framework for multi-model ML inference servers. The paper shows that
with SLO constraints, GPUs with growing parallelism are not fully utilized for ML inference
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tasks. To maximize the resource efficiency of GPUs, a key mechanism proposed in this paper
is to exploit hardware support for spatial partitioning of GPUs resources.

A) With spatio-temporal sharing, a new abstraction layer of GPU resources is created with
configurable GPU resources. The scheduler assigns requests to virtual GPUs, called
gpulets, with the most effective amount of resources.

B) The scheduler explores the three-dimensional search space with different batch sizes,
temporal sharing, and spatial sharing efficiently. To minimize the cost for cloud-based
inference servers, the scheduling framework for gpulets auto-scales the required
number of GPUs for a given workload.

C) To consider the potential interference overheads when two ML tasks are running
concurrently by spatially sharing a GPU, the scheduling decision is made with an
interference prediction model.

The authors’ prototype implementation of four GPUs proves that the proposed spatio-
temporal scheduling with gpulets enhances throughput by 61.7% on average compared to
the prior temporal scheduler that does not partition GPU resources, while satisfying SLOs.

2.3 Deep Learning Workload Scheduling in GPU

Datacenters: Taxonomy, Challenges and Vision

Deep learning (DL) shows its prosperity in a wide variety of fields. The development of a DL
model is a time-consuming and resource-intensive procedure. Hence, dedicated GPU
accelerators have been collectively constructed into a GPU datacenter. An efficient scheduler
design for such GPU datacenter is crucially important to reduce the operational cost, achieve
high performance for each individual workload, high resource utilization for the entire dataset,
high fairness among different users, and improve inference latency and accuracy. However,
traditional approaches designed for high-performance computing (HPC) or big data workloads
cannot support DL workloads to fully utilize the GPU resources. Recently, substantial
schedulers have been proposed to tailor for DL workloads in GPU datacenters, although most
of them are designed in an ad-hoc way for some specific objectives.

The authors perform an in-depth analysis about the characteristics of DL workloads and
identify the inherent challenges for designing a satisfactory scheduler to manage various DL
workloads and resources in GPU datacenters. This paper [5] also surveys existing research
efforts for both DL training and inference workloads. It primarily presents how existing
schedulers facilitate the respective workloads from the scheduling objectives and resource
consumption features. Finally, the authors conclude the limitations and implications from
existing designs, which can shed new light on several possible, promising, future research
directions of DL scheduler designs in GPU datacenters.

2.4 Morphling: Fast, Near-Optimal Auto-Configuration for
Cloud-Native Model Serving

Machine learning models are widely deployed in production cloud to provide online inference
services. Efficiently deploying inference services requires careful tuning of hardware and
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runtime configurations (e.g., GPU type, GPU memory, batch size), which can significantly
improve the model serving performance and reduce cost. However, existing autoconfiguration
approaches for general workloads, such as Bayesian optimization and white-box prediction,
are inefficient in navigating the high-dimensional configuration space of model serving,
incurring high sampling cost.

The authors of the paper [3] present Morphling, a fast, near-optimal auto-configuration
framework for cloud-native model serving. Morphling employs model-agnostic meta-learning
to navigate the large configuration space of an inference service. It trains a metamodel offline
to capture the general performance trend under varying inference configurations. Morphling
quickly adapts the metamodel to a new inference service by sampling a small number of
configurations and uses it to find the optimal one. Morphling is implemented as an easy-to-use,
auto-configuration service in Kubernetes, and its performance is evaluated with popular CV
and NLP models, as well as with the production inference services in Alibaba. Compared with
existing approaches, Morphling reduces the median search cost by 3x-22x, quickly converging
to the optimal configuration by sampling only 30 candidates in a large search space consisting
of 720 options.
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Chapter 3
Background

In this chapter, we provide background information on Kubernetes, a container orchestrator.
Furthermore, we present the MLPerf Inference Benchmark suite, as well as the iBench
workload suite that we will be using in our experiments. Finally, we introduce the basic
concepts of Machine Learning (ML), following them with an analysis of some Machine
Learning Regression algorithms.

3.1 Kubernetes, a Container Orchestrator

In this section, we analyze some of the basic concepts of Kubernetes, a container orchestration
system.

3.1.1 Docker containers and Orchestration

Virtualization technology increases efficiency in data centers by enabling servers to run
multiple operating systems and applications with different requirements and dependencies.
Server consolidation has been the focus of virtualization, requiring hardware abstraction to
create an environment that can run multiple operating systems. Applications run on virtual
machines abstracted away from the hardware. As shown in figure 3.1, Virtual Machines on the
left are created on the top of a hypervisor. In Virtual Machines, a complete Operating System
is installed. As a result, every VM acts like a guest host. On the other hand, containers,
presented on the right, include a container engine, which creates and manages containers. Note
that virtualization via containers is also known as containerization. As shown, containerization
technology runs multiple containers on a common underlying kernel, which are abstracted
away into logical partitions. Linux containers with the docker packaging format allow a user
to bundle application code with its runtime dependencies, and deploy in a container. A
frequently asked question is if someone should use Virtual Machines or containers for his
infrastructure setup.

In the following subsections, those two technologies are described in more detail.
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Figure 3.1: Virtual Machines and Containers?

Virtual Machines

Virtual Machines (VMs) provide a virtualized hardware environment where a guest OS can
run one or more applications. They enable users to create multiple OS instances over the same
machine using a hypervisor. Users have the flexibility to allocate CPU, Memory and Disk
resources into different VMs. This technology unbounds applications from the machine
installed OS. Virtualization has matured to include many resilient capabilities, such as live
migration, high availability, SDN, and storage integration which, to date, are not as mature
with containerization. Virtualization also provides a higher level of security by running the
workload inside a guest operating system that is completely isolated from the host operating
system.

Containers

A container is a standard unit of software that packages up code and all its dependencies, so
the application runs quickly and reliably from one computing environment to another. A
Docker [6] container image is a lightweight, standalone, executable package of software that
includes everything needed to run an application: code, runtime, system tools, system libraries
and settings. Container images become containers at runtime, and in the case of Docker
containers - images become containers when they run on Docker Engine. Available for both
Linux and Windows-based applications, containerized software will always run the same,
regardless of the infrastructure. Containers isolate software from its environment and ensure
that it works uniformly despite differences, for instance, between development and staging.
Containers technology is:

o Standard: Docker created the industry standard for containers, so they could be portable
anywhere.

2 https://www.bmc.com/blogs/containers-vs-virtual-machines/
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o Lightweight: Containers share the machine’s OS system kernel and therefore do not
require an OS per application, driving higher server efficiency and reducing server and
licensing costs. The overhead of booting, managing and maintaining a guest OS
environment is avoided. Their lightweight nature leads towards greater start-up speed.

o Agile application creation and deployment: Increased ease and efficiency of container
image creation and deployment with quick and easy rollbacks (due to image
immutability). In fact, it is the application packaging and deployment capability that is
revolutionizing DevOps by providing the capability for developers and operations to
work side by side, enabling continuous development, integration and deployment. At
the same time, environment consistency across development, testing and production is
provided, as it runs the same on a laptop as it does in the cloud.

o Resource isolation: Containers can be deployed with a fixed amount of resources
available. Such techniques control and prevent greedy resources usage.

Orchestration

The answer to the previous question about which virtualization technology is better to use is
that they should both be used. They are in fact complementary technologies. Containers support
VM-like separation of concerns but with far less overhead and far greater flexibility. As a
result, containers have reshaped the way people think about developing, deploying, and
maintaining software. In such a hybrid containerized architecture, the different services that
constitute an application are packaged into separate containers and deployed across a cluster
of virtual machines as illustrated in figure 3.2.
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Figure 3.2: Hybrid Containerized Architecture®

However, such an architecture highlights the need for container orchestration, a tool that
automates the deployment, management, scaling, networking, and availability of container-
based applications.

This is where Kubernetes [7] comes in. Large, distributed containerized applications can
become increasingly difficult to coordinate. By making containerized applications dramatically
easier to manage at scale, Kubernetes has become a key part of the container revolution. It is a
portable, extensible platform that facilitates both declarative configuration and automation. It
has a large, rapidly growing ecosystem. Kubernetes services, support, and tools are widely
available. Google open-sourced the Kubernetes project in 2014. Kubernetes builds upon a
decade and a half of experience that Google has with running production workloads at scale,
combined with best-of-breed ideas and practices from the community. In the following sections
we describe the different components of that container orchestrator.

3.1.2 Kubernetes Master Node(s) Components

Master components provide the cluster’s control plane. Master components make global
decisions about the cluster (for example, scheduling), and they detect and respond to cluster
events (for example, starting up a new pod when a replication controller’s replicas field is
unsatisfied). The basic Kubernetes master components are listed below.

o kube-apiserver: Component on the master that exposes the Kubernetes API. It is the
front-end for the Kubernetes control plane.

o etcd: Consistent and highly-available key value store used as Kubernetes’ backing store
for all cluster data.

o kube-scheduler: Component on the master that watches newly created pods that have
no node assigned, and selects a node for them to run on.

o kube-controller-manager: Component on the master that runs controllers. Logically,
each controller is a separate process, but to reduce complexity, they are all compiled
into a single binary and run in a single process.

3.1.3 Kubernetes Worker Node(s) Components
Node Components run on every node as agents maintaining running pods and providing the
Kubernetes runtime environment.

o kubelet: An agent that runs on each node in the cluster. It makes sure that containers
are running in a pod. The kubelet takes a set of PodSpecs that are provided through
various mechanisms and ensures that the containers described in those PodSpecs are
running and healthy.

3 https://insights.sei.cmu.edu/sei_blog/2017/09/virtualization-via-containers.html
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o kube-proxy: A network proxy that runs on each node in the cluster. It enables the
Kubernetes service abstraction by maintaining network rules on the host and
performing connection forwarding. Kube-proxy is responsible for request forwarding.
It allows TCP and UDP stream forwarding or round robin TCP and UDP forwarding
across a set of backend functions.

o Container Runtime: The container runtime (e.g., Docker) is the software that is
responsible for running containers.

Other Important Addons

o DNS: Cluster DNS is a DNS server, in addition to the other DNS server(s) in your
environment, which serves DNS records for Kubernetes services. Containers started by
Kubernetes automatically include this DNS server in their DNS searches.

3.1.4 Kubernetes Architecture

Kubernetes Master

808

Users
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Figure 3.3: Kubernetes Architecture®

Kubernetes’s architecture makes use of various concepts and abstractions. Some of these are
variations on existing, familiar notions, but others are specific to Kubernetes. As illustrated in
3.3 and described before, a Kubernetes cluster is comprised of Nodes. Those nodes are

4 https://en.wikipedia.org/wiki/Kubernetes
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separated into two groups, either Master or Worker nodes. Workloads are executed in Worker
Nodes.

Cluster

The highest-level Kubernetes abstraction, the cluster illustrated in figure 3.4, refers to the group
of machines running Kubernetes (itself a clustered application) and the containers managed by
it. A Kubernetes cluster must have a master, the brain of the system, the node that commands
and controls all the other Kubernetes machines in the cluster. A highly available Kubernetes
cluster replicates the master’s facilities across multiple machines. But only one master at a time
runs the job scheduler and controller-manager. The cluster can be set up locally or in the cloud.
Most Cloud providers provide a ready-to-use Kubernetes solution.

ArTYyel

oxe

Kubernetes Cluster

Figure 3.4: Cluster-Node abstraction level®

Nodes

Each cluster contains Kubernetes nodes. Nodes might be physical machines or VMs. Again,
the idea is abstraction: Whatever the application is running on, Kubernetes handles deployment
on that substrate. These Nodes can be either Master Nodes or Worker Nodes. A node with its
components is presented in figure 3.5.

5 https://kubernetes.io/fr/docs/tutorials/kubernetes-basics/create-cluster/cluster-intro/
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Figure 3.5: Node-Pod-Container abstraction levels®

Pods

Nodes run pods, the most basic Kubernetes objects that can be created or managed. Each pod
represents a single instance of an application or running process in Kubernetes, and consists of
one or more containers as shown in figure 3.5. Kubernetes starts, stops, and replicates all
containers in a pod as a group. Pods keep the user’s attention on the application, rather than on
the application, rather than on the containers themselves. Details about how Kubernetes needs
to be configured, from the state of pods on up, are kept in etcd (distributed key-value store).

Pods are created and destroyed on nodes as needed to conform to the desired state specified by
the user in the pod definition. Kubernetes provides an abstraction called a controller for dealing
with the logistics of how pods are spun up, rolled out, and spun down. Controllers come in a
few different flavors depending on the kind of application being managed. For instance, the
recently introduced ‘“StatefulSet” controller is used to deal with applications that need
persistent state. Another kind of controller, the deployment, is used to scale an app up or down,
update an app to a new version, or roll back an app to a known-good version if there is a
problem. Also, a deployment will try to reschedule any failed pods. Finally, a deployment tries
to provide a guarantee that the required number of pods are running on the cluster.

Deployments

As it is described in Kubernetes documentation, a desired state is described in a Deployment,
and the Deployment controller changes the actual state to the desired state at a controlled rate.
Deployments are defined to create new ReplicaSets, or to remove existing Deployments and

& https://kubernetes.io/docs/tutorials/kubernetes-basics/explore/explore-intro/
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adopt all their resources with new Deployments. This object offered the easily manageable
scalability, so as to increase or decrease accordingly the required stress levels, just by changing
the replicas of the pods created.

Jobs

A Job creates one or more Pods and ensures that a specified number of them successfully
terminate. As pods successfully complete, the Job tracks the successful completions. When a
specified number of successful completions is reached, the task (i.e., Job) is complete. Deleting
a Job will clean up the Pods it created.

A simple case is to create one Job object in order to reliably run one Pod to completion. The
Job object will start a new Pod if the first Pod fails or is deleted (for example due to a node
hardware failure or a node reboot). A Job can be used to run multiple Pods in parallel.

Volumes

File systems in the Kubernetes container provide ephemeral storage, by default. This means
that a restart of the pod will wipe out any data on such containers, and therefore, this form of
storage is quite limiting in anything but trivial applications. A Kubernetes Volume provides
persistent storage that exists for the lifetime of the pod itself. This storage can also be used as
shared disk space for containers within the pod. Volumes are mounted at specific mount points
within the container, which are defined by the pod configuration, and cannot mount onto other
volumes or link to other volumes. The same volume can be mounted at different points in the
file system tree by different containers.

Services

Kubernetes Pods are mortal. They are born and when they die, they are not resurrected. If you
use a Deployment to run your app, it can create and destroy Pods dynamically (e.g., when
scaling out or in). Each Pod gets its own IP address, however the set of Pods for a Deployment
running in one moment in time could be different from the set of Pods running that application
a moment later. This leads to the following problem: if a set of Pods (call them “backends”)
provides functionality to other Pods (call them “frontends”) inside your cluster, how do those
frontends find out and keep track of which IP address to connect to, so that the frontend can
use the backend part of the workload? A Service is an abstract way to expose an application
running on a set of Pods as a network service. Kubernetes gives pods their own IP addresses
and a single DNS name for a set of pods and can load-balance across them.

3.1.5 Kubernetes Resources
When the user specifies a Pod, he can optionally specify how much CPU and memory (RAM)
each container needs. When containers have resource requests specified, the scheduler can
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make better decisions about which nodes to place Pods on. And when Containers have their
limits specified, contention for resources on a node can be handled in a specified manner’.

Resource Types: CPU and memory are each a resource type. A resource type has a base unit.
CPU is specified in units of cores, and memory is specified in units of bytes. CPU and memory
are collectively referred to as compute resources, or just resources. Compute resources are
measurable quantities that can be requested, allocated, and consumed. They are distinct from
API resources. API resources, such as Pods and Services are objects that can be read and
modified through the Kubernetes API server.

Each Container of a Pod can specify one or more of the following:

o spec.containers[].resources.limits.cpu
o spec.containers[].resources.limits.memory
o spec.containers[].resources.requests.cpu

o Spec.containers[].resources.requests.memory

Although requests and limits can only be specified on individual Containers, it is convenient
to talk about Pod resource requests and limits. A Pod resource request/limit for a particular
resource type is the sum of the resource requests/limits of that type for each Container in the
Pod.

Meaning of CPU and Memory: Limits and requests in CPU resources are measured in cpu
units. One CPU in Kubernetes is equivalent to 1 vCPU or 1 Hyperthread on a bare-metal Intel
processor. Also, fractional requests are allowed. For example, a request of 0.5 cpu (or 500m
which can be read as five hundred millicpu), allocates half of a CPU. CPU is always requested
as an absolute quantity, never as a relative quantity; 0.5 is the same amount of CPU on a single-
core, dual-core, or a 48-core machine. Regarding the Memory’s requests and limits, they are
measured in bytes. Someone can express memory as a plain integer, or as a fixed-point integer.
Also, the user can use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki.

These requests and limits are passed to the container runtime, when the kubelet starts a
container of a Pod. When using Docker, the —cpu-shares and —memory flags are used
accordingly.

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each
node has a maximum capacity for each of the resource types: the amount of CPU and memory
it can provide for Pods. The scheduler ensures that, for each resource type, the sum of the
resource requests of the scheduled containers is less than the capacity of the node. Note that
although actual memory or CPU resource usage on nodes is very low, the scheduler still refuses
to place a Pod on a node if the capacity check fails. This protects against a resource shortage
on a node when resource usage later increases, for example, during a daily peak in request rate.

" https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/
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3.1.6 Kubernetes Scheduling

The Kubernetes Scheduler is a core component of Kubernetes: After a user or a controller
creates a Pod, the Kubernetes Scheduler, monitoring the Object Store for unassigned Pods, will
assign the Pod to a Node. Then, the kubelet, monitoring the Object Store for assigned Pods,
will execute the Pod.

For each unscheduled Pod, the Kubernetes scheduler tries to find a node across the cluster
according to a set of rules. There are two steps before a destination node of a Pod is chosen.
The first step is filtering all the nodes (Node Filtering) and the second is ranking the remaining
nodes (Node Prioritizing) to find a best fit for the Pod. In the Node Filtering phase, the
scheduler determines the set of feasible placements, which is the set of nodes that meet a set of
given constraints. All filter functions, also called predicates, must yield true for the Node to
host the Pod. In the Node Prioritizing phase, with only the feasible Nodes remaining,
Kubernetes scheduler using a set of predefined rating functions, determines the viability of
each Node. The Pod will be scheduled in the one with the highest viability.

Kubernetes scheduler uses this technique for two reasons. Firstly, it needs to make sure that no
pod will be scheduled in a Node that is unable to handle it, taking into account its Quality of
Service (QoS), which can be declared with a few configurations in the yaml file that creates
the pod. Secondly, that way it will run the second part of the algorithm (prioritization functions)
across a much less set of nodes, which will consume less system resources and less time.

In the following image we can see the steps of the scheduling algorithm.
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Figure 3.6: Node filtering and ranking?®

3.2 MLPerf™ Inference Benchmark Suite

The MLPerf benchmark suites are the industry-standard for measuring machine learning
system performance. Each benchmark suite is focused on different types of systems and
workloads. Driven by more than 30 organizations as well as more than 200 ML engineers and
practitioners, MLPerf prescribes a set of rules and best practices to ensure comparability across
systems with wildly differing architectures.

8 https://medium.com/@dominik.tornow/the-kubernetes-scheduler-cd429abac02f
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Machine-learning (ML) hardware and software system demand is burgeoning. Driven by ML
applications, the number of different ML inference systems has exploded. Over 100
organizations are building ML inference chips, and the systems that incorporate existing
models span at least three orders of magnitude in power consumption and five orders of
magnitude in performance; they range from embedded devices to data-center solutions. Fueling
the hardware are a dozen or more software frameworks and libraries. The myriad combinations
of ML hardware and ML software make assessing ML-system performance in an architecture-
neutral, representative, and reproducible manner challenging. There is a clear need for industry-
wide standard ML benchmarking and evaluation criteria. MLPerf Inference answers that call

[8].

MLPerf Inference is a benchmark suite that evaluates ML inference systems (datacenter and
edge), by measuring how fast they process inputs and produce results using/running a trained
model in a variety of deployment scenarios. Examples tasks include recommendation, question
answering, speech-to-text, object detection, and image recognition.

MLPerf is a part of the MLCommons™ Association. MLCommons is an open engineering
consortium that promotes the acceleration of machine learning innovation. It provides
benchmarks and metrics, datasets and models, and best practices.®

3.2.1 MLPerf Inference Benchmarks for Image Classification and Object

Detection Tasks

Computer vision is a field of artificial intelligence (Al) that enables computers and systems to
derive meaningful information from digital images, videos and other visual inputs — and take
actions or make recommendations based on that information.*°

In this field, two important tasks to evaluate the performance of a ML inference system, using
the MLPerf Inference benchmark suite, are image classification and object detection [9].

This is the reference implementation for the MLPerf Inference benchmarks. Each MLPerf
Inference benchmark is defined by a pre-trained model, a backend framework and a dataset.

Area Task model framework accuracy dataset precision
Vision Image resnet50-v1.5 tensorflow  76.456% imagenet2012 fp32
Classification validation
Vision Image resnet50-v1.5 onnx 76.456% imagenet2012 fp32
Classification validation
Vision Image mobilenet-v1 tensorflow  71.676%  imagenet2012 fp32
Classification validation

9 https://infohub.delltechnologies.com/p/introduction-to-mlperf-tm-inference-v1-0-performance-with-dell-emc-

servers/

10 https://www.ibm.com/topics/computer-vision
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Vision Image mobilenet-v1 tensorflow =~ 70.694%  imagenet2012 int8
Classification quantized validation

Vision Image mobilenet-v1 tflite 71.676% imagenet2012 fp32
Classification validation

Vision Image mobilenet-v1 onnx 71.676% imagenet2012 fp32
Classification validation

Vision Object ssd-mobilenet tensorflow  mAP 0.23  coco resized to fp32
Detection 300x300 300x300

Vision Object ssd-mobilenet tensorflow mAP coco resized to int8
Detection 300x300 quantized 0.23594 300x300

finetuned

Vision Object ssd-mobilenet tensorflow mAP coco resized to int8

Detection 300x300 0.234 300x300
symmetrically
quantized finetuned

Vision Object ssd-mobilenet onnx mMAP 0.23  coco resized to fp32

Detection 300x300 300x300

Table 3.1: Supported Models of the MLPerf Inference Benchmark suite for Image
Classification and Object Detection Tasks™!

The key component of the MLPerf Inference Benchmarks is the Load Generator [10]. The
LoadGen is a reusable module that efficiently and fairly measures the performance of inference
systems. It generates traffic for scenarios as formulated by a diverse set of experts in the
MLCommons working group. The scenarios emulate the workloads seen in mobile devices,
autonomous vehicles, robotics, and cloud-based setups. Although the LoadGen is not model or
dataset aware, its strength is in its reusability with logic that is.?

In the MLPerf inference evaluation framework, the LoadGen load generator sends inference
queries to the system under test (SUT). The SUT uses a backend (for example, ONNX
Runtime, TensorFlow, TFLite or PyTorch) to perform inferencing and returns the results to
LoadGen.

The following is a diagram of how the LoadGen can be integrated into an inference system,
resembling how the used MLPerf reference models are implemented.

11 https://github.com/mlcommons/inference/tree/master/vision/classification_and_detection
12 https://github.com/mlicommons/inference/tree/master/loadgen
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Figure 3.7: LoadGen Integration in MLPerf Inference Benchmarks®

As shown in the diagram, the Benchmark knows the model, dataset, and preprocessing (1). The
Benchmark hands dataset sample IDs to LoadGen (2). LoadGen starts generating inference
queries of sample IDs (3). These queries are translated by the Benchmark to backend requests
to perform inferencing (4). The result is post processed and forwarded to LoadGen (5). Finally,
LoadGen outputs logs for analysis (6).

In order to enable representative testing of a wide variety of inference platforms and use cases,
MLPerf has defined four different inference scenarios as described in the table below. The
main differences between these scenarios are based on the particular pattern in which the
standard load generator generates and sends inference requests to the SUT, as well as the
performance metric that is used:*

Scenario Query Duration = Samples/query @ Latency Talil Performance
Generation Constraint = Latency Metric
Single LoadGen 600 1 None 90% 90%-ile early-
stream sends next  seconds stopping
query as latency
soon as estimate
SUT
completes
the
previous
query
Server LoadGen 600 1 Benchmark 99% Maximum
sends new | seconds specific Poisson
queries to throughput
the SUT parameter
according supported
to a Poisson
distribution

13 https://github.com/mlcommons/inference/tree/master/loadgen
14 https://github.com/mlcommons/inference_policies/blob/master/inference_rules.adoc#scenarios
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Offline LoadGen 1query = At least 24,576 None N/A Measured
sends all and 600 throughput
samplesto  seconds
the SUT at
startina
single
query

Multistream Loadgen 600 8 None 99% 99%-ile early-
sends next = seconds stopping
query, as latency
soon as estimate
SUT
completes
the
previous

query
Table 3.2: Scenario table

An early stopping criterion allows for runs with a relatively small number of processed queries
to be valid, with the penalty that the effective computed percentile will be slightly higher. This
penalty counteracts the increased variance inherent to runs with few queries, where there is a
higher probability that a particular run will, by chance, report a lower latency than the system
should reliably support.

The MLPerf Inference benchmark suite also offers some additional options during testing.
Among others, the --backend option defines which backend (currently supported are:
tensorflow,  onnxruntime,  pytorch and tflite) to use, the --scenario
{SingleStream,MultiStream,Server,Offline} option defines which scenario to run, the --time
option (in seconds) limits the time the benchmark runs, and the --threads option sets the number
of worker threads to use during the run (default: the number of processors in the system).

3.3 iBench: Quantifying interference for datacenter

applications

Interference between co-scheduled applications is one of the major reasons that causes modern
datacenters (DCs) to operate at low utilization. DC operators traditionally side-step interference
either by disallowing colocation altogether and providing isolated server instances, or by
requiring the users to express resource reservations, which are often exaggerated to counter-
balance the unpredictability in the quality of allocated resources. Understanding, reducing and
managing interference can significantly impact the manner in which these large-scale systems
operate.

This is where iBench comes in, a workload suite that helps quantify the pressure different
applications put in various shared resources, and similarly the pressure they can tolerate in
these resources, resulting in significant performance and/or efficiency improvements in
applications. iBench consists of a set of carefully-crafted benchmarks that induce interference
of tunable increasing intensity in shared resources in a multi-core chip that span the CPU cores,
cache hierarchy, memory bandwidth and capacity, storage and networking subsystems [11].
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The goal of iBench is to identify the shared resources an application creates contention to, and
similarly the type and amount of contention the application is sensitive to. For this purpose, all
iBench workloads (sources of interference (Sols)) have tunable intensity that progressively
puts more pressure on a specific shared resource until the behavior of the application changes
(i.e., performance degrades). Sols are designed such that their impact to the corresponding
resource increases almost linearly with the intensity of the benchmark. Finally, the impact of
the different iBench workloads is not overlapping, e.g., the memory bandwidth Sol does not
cause significant contention in memory capacity and vice versa.

3.4 Machine Learning (ML)

Machine learning (ML) is a field of inquiry devoted to understanding and building methods
that “learn”, that is, methods that leverage data to improve performance on some set of tasks
[12]. It is seen, essentially, as a subfield of artificial intelligence (Al). The term “machine
learning” was coined in 1959 by Arthur Samuel, an IBM employee and pioneer in the field of
computer gaming and artificial intelligence [13]. Also, the synonym “self-teaching computers”
was used in this time period [14].

Machine learning algorithms build a model based on sample data, known as training data, in
order to make accurate outcome predictions or decisions without being explicitly programmed
to do so [15]. Machine learning algorithms are used in a wide variety of applications, such as
in medicine, finance and trading, email filtering, speech recognition, and computer vision,
where it is difficult or unfeasible to develop conventional algorithms to perform the needed
tasks [16].

Machine learning approaches are traditionally divided into three broad categories, which
correspond to machine learning paradigms, depending on the nature of the "signal” or
"feedback" available to the learning system:

n
>0

Machine Learning
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(predict next value) (identify clusters) mistakes
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Figure 3.8: The 3 Types of Machine Learning®®

Supervised learning: Supervised learning algorithms build a mathematical model of a set of
training data that contains example inputs and their desired outputs (also called the supervisory
signal). In these labelled examples, each data point contains features (covariates) and an
associated label. The goal of supervised learning algorithms is learning a general rule, a
function, that maps feature vectors (inputs) to labels (outputs), based on example input-output
pairs [17]. This inferred function can then be used for mapping new examples. An optimal
scenario will allow for the algorithm to correctly determine the class labels for unseen instances
that were not a part of the training data.

Types of supervised-learning algorithms include active learning, classification and regression.
Classification algorithms are used when the outputs are restricted to a limited set of values, and
regression algorithms are used when the outputs may have any numerical value within a range.
As an example, for a classification algorithm that filters emails, the input would be an incoming
email, and the output would be the name of the folder in which to file the email.

Unsupervised learning: Unsupervised learning algorithms take a set of data that contains only
inputs, meaning no labels are given to the learning algorithm, leaving it on its own to find
structure in its input, like grouping or clustering of data points. The algorithms, therefore, act
on the data without prior training. Instead of responding to feedback, unsupervised learning
algorithms identify commonalities in the data and react based on the presence or absence of
such commonalities in each new piece of data. Unsupervised learning can be a goal in itself
(discovering hidden patterns in data) or a means towards an end (feature learning).

Reinforcement learning: Reinforcement learning is an area of machine learning concerned
with how software agents ought to take actions in an environment so as to maximize some
notion of cumulative reward. A computer program interacts with a dynamic environment in
which it must perform a certain goal (such as driving a vehicle or playing a game against an
opponent). As it navigates its problem space, the program is provided feedback that is
analogous to rewards, which it tries to maximize [18].

3.4.1 Regression Models in Machine Learning

In statistical modeling, regression analysis is a set of statistical processes for estimating the
relationships between a dependent variable (often called the 'outcome’ or 'response’ variable,
or a 'label’ in machine learning parlance) and one or more independent variables (often called
‘predictors’, ‘covariates', 'explanatory variables' or 'features'). In the field of machine learning,
regression is a supervised learning technique which helps in finding the correlation between
variables and enables us to predict the continuous, numeric output variable(s) based on the one
or more independent variables. It is mainly used for prediction, forecasting, time series
modeling, and determining the causal-effect relationship between variables.

15 https://hethelinnovation.com/in-a-nutshell/machine-learning-in-a-nutshell/
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There are various types of regression analysis which are used in data science and machine
learning. Each type has its own importance on different scenarios, but at the core, all the
regression methods analyze the effect of the independent variables on dependent variables.®

Linear Regression

Linear regression is one of the most basic types of regression in machine learning. The linear
regression model consists of a predictor input variable (X-axis) and a dependent output variable
(Y-axis) related linearly to each other. If there is only one input variable (x), then such linear
regression is called simple linear regression. In case the data involves more than one
independent variable, then such linear regression is called multiple linear regression.

The relationship between variables in the linear regression model can be explained using the
image below.
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Figure 3.9: lllustration of linear regression on a data set.’

Regression models involve the following components:

e The unknown parameters, often denoted as a scalar or vector £, with S, being the
intercept term.

e The independent variables, which are observed in data and are often denoted as a
vector X; (where i denotes a row of data).

e The dependent variable, which are observed in data and often denoted using the scalar
Y;.

e The error terms, which are not directly observed in data and are often denoted using
the scalar ¢;.

16 https://www.javatpoint.com/regression-analysis-in-machine-learning
1 https://en.wikipedia.org/wiki/Regression_analysis#Linear_regression
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. n . . . -
Given a data set {yi, Xi1) vy xip}i_lof n statistical units, a linear regression model assumes that

the relationship between the dependent variable y and the p-vector of regressors x is linear.
This relationship is modeled through a disturbance term or error variable € — an unobserved
random variable that adds "noise™ to the linear relationship between the dependent variable and
regressors. Thus, the model takes the form

yi= Pot+ Pixp+ -+ Ppxip+ &= x B+ & i=1,..,n
where T denotes the transpose, so that x! g is the inner product between vectors x; and .
Often these n equations are stacked together and written in matrix notation as
y=Xp+e¢

Fitting a linear model to a given data set usually requires estimating the regression coefficients
B such that the error term € = y — X is minimized. It is common to use the sum of squared
errors as a measure of € for minimization.

Ridge regression

Ridge regression is a method of estimating the coefficients of multiple-regression models in
scenarios where the independent variables are highly correlated [19]. Ridge regression was
developed as a possible solution to the imprecision of least square estimators when linear
regression models have some multicollinear (highly correlated) independent variables—by
creating a ridge regression estimator (RR). This provides a more precise ridge parameters
estimate, as its variance and mean square estimator are often smaller than the least square
estimators previously derived.

Linear regression is the standard algorithm for regression that assumes a linear relationship
between input variables and the target variable. An extension to linear regression invokes
adding penalties to the loss function during training that encourages simpler models that have
smaller coefficient values. These extensions are referred to as regularized linear regression or
penalized linear regression.

In particular, Ridge Regression is a popular type of regularized linear regression that includes
an L2 penalty, a small amount of bias added to the model. This has the effect of shrinking the
coefficients for those input variables that do not contribute much to the prediction task.'®

In Linear Regression with a single input variable, the relationship that connects the input
variables to the target variable is a line, and with higher dimensions, this relationship can be
thought of as a hyperplane. The coefficients of the model are found via an optimization process
that seeks to minimize the sum squared error between the predictions (y) and the expected
target values (y).

n
loss = ) (i = 91’
i=0

18 https://machinelearningmastery.com/ridge-regression-with-python/
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A problem with linear regression is that estimated coefficients of the model can become large,
making the model sensitive to inputs and possibly unstable. This is particularly true for
problems with few observations (samples) or less samples (n) than input predictors (p) or
variables (so-called p >> n problems).

One approach to address the stability of regression models is to change the loss function to
include additional costs for a model that has large coefficients. One popular penalty is to
penalize a model based on the sum of the squared coefficient values (8). This is called an L2
penalty.

p
L2_penalty = 2,8]-2
=0

An L2 penalty minimizes the size of all coefficients, although it prevents any coefficients from
being removed from the model by not allowing their value to become zero. This penalty can
be added to the cost function for linear regression and is referred to as Tikhonov regularization
(after the author), L2 regularization or Ridge Regression more generally.

A hyperparameter called “lambda” is used, that controls the weighting of the penalty to the loss
function. A default value of 1.0 will fully weight the penalty; a value of 0 excludes the penalty.
Very small values of lambda, such as 1e-3 or smaller are common.

Ridge_loss = loss + A x L2_penalty

Lasso Regression

Lasso (least absolute shrinkage and selection operator) Regression is a popular type of
regularized linear regression that includes an L1 regularization penalty to the loss function of
linear regression during training. This has the effect of shrinking the coefficients for those input
variables that do not contribute much to the prediction task. This penalty allows some
coefficient values to go to the value of zero, allowing input variables/features to be effectively
removed from the model, providing a type of automatic feature selection.®

Similarly to Ridge Regression, Lasso improves on the stability of linear regression by changing
the loss function to include additional costs for a model that has large coefficients. However,
this time, the L1 penalty is used. L1 is a popular penalty that penalizes a model based on the
sum of the absolute coefficient values (8). An L1 penalty minimizes the size of all coefficients
and even allows some coefficients to be minimized to the value zero, which removes the
predictor from the model.

p
L1 penalty = Zlﬂjl
=0

]

19 https://machinelearningmastery.com/lasso-regression-with-python/
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A consequence of penalizing the absolute values is that some parameters are actually set to 0
for some value of lambda. Thus, the lasso yields models that simultaneously use regularization
to improve the model and to conduct feature selection.

Lasso_loss = loss + A * L1_penalty

Lasso Regression is also known as L1 regularization.

Elastic Net Regression

Elastic net is a popular type of regularized linear regression that linearly combines two popular
penalties, specifically the L1 and L2 penalty functions of the lasso and ridge methods
accordingly.?°

An L2 penalty minimizes the size of all coefficients, although it prevents any coefficients from
being removed from the model, whereas n L1 penalty minimizes the size of all coefficients and
allows some coefficients to be minimized to the value zero, effectively removing input features
from the model.

Elastic net is a penalized linear regression model that includes both the L1 and L2 penalties
during training. A hyperparameter “alpha” is provided to assign how much weight is given to
each of the L1 and L2 penalties. Alpha is a value between 0 and 1 and is used to weight the
contribution of the L1 penalty and one minus the alpha value is used to weight the L2 penalty.

Elastic_Net_penalty = a * L1_penalty + (1 — a) * L2_penalty

The parameter alpha determines the mix of the penalties, and is often pre-chosen on qualitative
grounds. For example, an alpha of 0.5 would provide a 50 percent contribution of each penalty
to the loss function. An alpha value of 0 gives all weight to the L2 penalty and a value of 1
gives all weight to the L1 penalty.

The benefit is that elastic net allows a balance of both penalties, which can result in better
performance than a model with either one or the other penalty on some problems.

Elastic_Net_loss = loss + A * Elastic_Net_penalty

Bayesian Linear Regression

Bayesian linear regression is a type of conditional modeling in which the mean of one variable
is described by a linear combination of other variables, with the goal of obtaining the posterior
probability of the regression coefficients (as well as other parameters describing the
distribution of the regressand) and ultimately allowing the out-of-sample prediction of the
regressand (often labelled y) conditional on observed values of the regressors (usually X). The
simplest and most widely used version of this model is the normal linear model, in which y
given X is distributed Gaussian. In this model, and under a particular choice of prior
probabilities for the parameters—so-called conjugate priors—the posterior can be found

20 https://machinelearningmastery.com/elastic-net-regression-in-python/
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analytically. With more arbitrarily chosen priors, the posteriors generally have to be
approximated.?

Bayesian Regression can be very useful when we have insufficient data in the dataset or the
data is poorly distributed. The output of a Bayesian Regression model is obtained from a
probability distribution, as compared to regular regression techniques where the output is just
obtained from a single value of each attribute. The output, ‘y’ is generated from a normal
distribution (where mean and variance are normalized). The aim of Bayesian Linear Regression
is not to find the model parameters, but rather to find the “posterior” distribution for the model
parameters. Not just the output y, but the model parameters are also assumed to come from a
distribution. The expression for Posterior is?? :

Posterior = (Likelihood * Prior)/Normalization
where

Posterior: the probability of an event to occur; say, H, given that another event; say, E has
already occurred. i.e., P(H | E).

Prior: the probability an event H has occurred prior to another event. i.e., P(H)
Likelihood: a likelihood function in which some parameter variable is marginalized.

Looking at the formula above, we can see that, in contrast to Ordinary Least Square (OLS), we
have a posterior distribution for the model parameters which is proportional to the likelihood
of the data multiplied by the prior probability of the parameters. As the number of data points
increase, the value of likelihood will increase and will become much larger than the prior value.
In the case of an infinite number of data points, the values for the parameters converge to the
values obtained from OLS. So, we begin our regression process with an initial estimate (the
prior value). As we start to cover more data points, our model becomes less wrong. As a result,
a large amount of training data is needed to make the model accurate.

Bayesian Regression is particularly well-suited for on-line, stream-based learning (data is
received in real-time), as compared to batch-based learning, where we have the entire dataset
on our hands before we start training the model. This is because Bayesian Regression doesn’t
need to store data. However, despite Bayesian linear regression (BLR) being a powerful tool
to analyze regression problems, it has some shortcomings. Primarily, the outcome of BLR is
highly dependent on our assumptions about data. This means if we make wrong assumptions
about data distribution, the generated regression model will go wrong. Another shortcoming of
this model is that it assumes constant noise over global data range, which may not reflect the
actual noise levels for large datasets, where each region has a different level of noise. A third
disadvantage of this method appears when data is not normally distributed. In this case, a
sophisticated Bayesian analysis needs to be done to discover the data and the prior distributions
with their proper initial settings.?3

The Bayesian approach can be used with any Regression technique like Linear Regression,
Ridge Regression, Lasso Regression, etc.

2 https://en.wikipedia.org/wiki/Bayesian_linear_regression
22 https:/iwww.geeksforgeeks.org/implementation-of-bayesian-regression/
2 https://www.data-automaton.com/2021/03/03/bayesian-linear-regression/
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Stochastic Gradient Descent (SGD)

Stochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an
objective function with suitable smoothness properties (e.g., differentiable or
subdifferentiable). It can be regarded as a stochastic approximation of gradient descent
optimization, since it replaces the actual gradient (calculated from the entire data set) by an
estimate thereof (calculated from a randomly selected subset of the data). Especially in high-
dimensional optimization problems this reduces the very high computational burden, achieving
faster iterations in trade for a lower convergence rate [20].

Stochastic Gradient Descent (SGD) is a simple yet very efficient approach to fitting linear
classifiers and regressors under convex loss functions such as (linear) Support Vector Machines
and Logistic Regression. Even though SGD has been around in the machine learning
community for a long time, it has received a considerable amount of attention just recently in
the context of large-scale learning.?*

SGD has been successfully applied to large-scale and sparse machine learning problems often
encountered in text classification and natural language processing. Given that the data is sparse,
the classifiers in this module easily scale to problems with more than 1075 training examples
and more than 10”75 features.

Strictly speaking, SGD is merely an optimization technique and does not correspond to a
specific family of machine learning models. It is only a way to train a model.

The advantages of Stochastic Gradient Descent are efficiency and ease of implementation (lots
of opportunities for code tuning). The disadvantages of Stochastic Gradient Descent include
that SGD requires a number of hyperparameters such as the regularization parameter and the
number of iterations, and also that SGD is sensitive to feature scaling.

Support Vector Regression (SVR)

Support-vector machines (SVMs, also support-vector networks [21]) are supervised learning
models with associated learning algorithms that analyze data for classification analysis,
regression analysis and outliers detection. The version of SVM for regression is called support
vector regression (SVR) [22]. The model produced by SVR depends only on a subset of the
training data, because the cost function for building the model ignores any training data close
to the model prediction.

In general SVM, the hyperplane is a separation line between two classes, but in SVR, it is a
line which helps to predict the continuous variables and cover most of the datapoints. Boundary
lines are the two lines apart from the hyperplane, which create a margin for the datapoints.
Lastly, the support vectors are the datapoints which are nearest to the hyperplane and opposite
class in SVM.

In SVR, we always try to determine a hyperplane with a maximum margin, so that maximum
number of datapoints are covered in that margin. The main goal of SVR is to consider the

24 https://scikit-learn.org/stable/modules/sgd.html#
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maximum datapoints within the boundary lines and the hyperplane (best-fit line) must contain
a maximum number of datapoints.

A

> X

Figure 3.10: The blue line is called hyperplane, and the other two lines are known as
boundary lines.?®

Training the SVR means solving:
Minimize - [lwl|? subject to |y; — (w,x;) — b| <

where x; is a training sample with target value y;, and w is the (not necessarily normalized)
normal vector to the hyperplane. The inner product plus intercept (w, x;) + b is the prediction
for that sample, and ¢ is a free parameter that serves as a threshold: all predictions have to be
within an € range of the true predictions. Slack variables are usually added into the above to
allow for errors and to allow approximation in the case the above problem is infeasible.

SVR (rbf kernel) with Different Epsilons
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Figure 3.11: Support-vector regression (prediction) with different thresholds €. As
increases, the prediction becomes less sensitive to errors.?

2 https://www.javatpoint.com/regression-analysis-in-machine-learning
2 https://en.wikipedia.org/wiki/Support_vector_machine#Regression
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K-nearest Neighbors Regression

In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning
method, used for classification and regression [23]. In both cases, the input consists of the k
closest training examples in a data set. In k-NN regression, the output is the property value for
the object. This value is the average of the values of k nearest neighbors.

A useful technique can be to assign weights to the contributions of the neighbors, so that the
nearer neighbors contribute more to the average than the more distant ones. For example, a
common weighting scheme consists in giving each neighbor a weight of 1/d, where d is the
distance to the neighbor. This scheme is a generalization of linear interpolation. The neighbors
are taken from a set of objects for which the object property value (for k-NN regression) is
known. This can be thought of as the training set for the algorithm, though no explicit training
step is required.

A peculiarity of the k-NN algorithm is that it is sensitive to the local structure of the data.

In k-NN regression, the k-NN algorithm 1s used for estimating continuous variables. One such
algorithm uses a weighted average of the k nearest neighbors, weighted by the inverse of their
distance. This algorithm works as follows?’:

1. Compute the Euclidean or Mahalanobis distance from the query example to the labeled
examples.

2. Order the labeled examples by increasing distance.

3. Find a heuristically optimal number k of nearest neighbors, based on the root-mean-
square error (RMSE). This is done using cross validation.

4. Calculate an inverse distance weighted average with the k-nearest multivariate
neighbors.

Gaussian process regression (GPR)

Gaussian process regression (GPR) is a nonparametric, Bayesian approach to regression.
Unlike many popular supervised machine learning algorithms that learn exact values for every
parameter in a function, the Bayesian approach infers a probability distribution over all possible
values. Let’s assume a linear function: y=wx+e. How the Bayesian approach works is by
specifying a prior distribution, p(w), on the parameter, w, and relocating probabilities based on
evidence (i.e., observed data) using Bayes’ Rule?®:

likelihood*prior

p(Y|X, w)p(w)
p(¥1X)

p(wly, X) = , posterior =

marginal likelihood

The updated distribution p(wly, X), called the posterior distribution, thus incorporates
information from both the prior distribution and the dataset. To get predictions at unseen points
of interest, x*, the predictive distribution can be calculated by weighting all possible
predictions by their calculated posterior distribution:

27 https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm#k-NN_regression
28 https://towardsdatascience.com/quick-start-to-gaussian-process-regression-36d838810319
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p(Flx*,y,X) = f p(F*1x*, w)p(wly. X)dw

w

Where we are calculating predictive distribution, f* is prediction label, x* is test observation.

The prior and likelihood is usually assumed to be Gaussian for the integration to be tractable.
Using that assumption and solving for the predictive distribution, we get a Gaussian
distribution, from which we can obtain a point prediction using its mean and an uncertainty
quantification using its variance.

Gaussian process regression is nonparametric (i.e., not limited by a functional form), so rather
than calculating the probability distribution of parameters of a specific function, GPR
calculates the probability distribution over all admissible functions that fit the data. However,
similar to the above, we typically specify a Gaussian process prior (on the function space),
calculate the posterior using the training data, and compute the predictive posterior distribution
on our points of interest.

Decision Tree Regression

Decision Tree is one of the most commonly used, practical approaches for supervised learning.
It can be used to solve both Regression and Classification tasks with the latter being put more
into practical application. Decision trees are among the most popular machine learning
algorithms given their intelligibility and simplicity.

It is a tree-structured classifier with three types of nodes. The Root Node is the initial node
which represents the entire sample and may get split further into further nodes. The Interior
Nodes represent the features of a dataset and the branches represent the decision rules. Finally,
the Leaf Nodes represent the outcome. This algorithm is especially useful for solving decision-
related problems.

Interior Interior
node node

Leaf node Leaf node

Interior Interior
node node

Leaf node J Leaf node Leaf node | Leaf node

Figure 3.12: Decision Tree Algorithm?®

2 https://towardsdatascience.com/machine-learning-basics-decision-tree-regression-1d73ea003fda
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With a particular data point, it is run completely through the entire tree by answering True/False
questions till it reaches the leaf node. The final prediction is the average value of the dependent
variable in that particular leaf node. Through multiple iterations, the Tree is able to predict a
proper value for the data point.

Decision trees have an advantage that they are easy to understand, lesser data cleaning is
required, non-linearity does not affect the model’s performance and the number of hyper-
parameters to be tuned is almost null. However, it may have an over-fitting problem, which
can be resolved using the Random Forest algorithm.

Random Forest Regression

Random forest is one of the most powerful supervised learning algorithms which is capable of
performing regression as well as classification tasks. Random Forest Regression is a supervised
learning algorithm that uses an ensemble learning method for regression. Ensemble learning
method is a technique that combines predictions from multiple machine learning algorithms to
make a more accurate prediction than a single model. More specifically, Random Forest
Regression combines multiple decision trees and predicts the final output based on the average
of each tree output. The combined decision trees are called base models, and it can be
represented more formally as:

gx) = folx) + 1)+ (x) + -

Random forest uses the Bootstrap Aggregating technique of ensemble learning, also called
bagging, in which aggregated decision tree runs in parallel and do not interact with each other.
With the help of Random Forest regression, we can prevent Overfitting in the model by creating
random subsets of the dataset.

Test Sample Input

Tree 1 Tree 2 { } Treen

Prediction 1 Prediction 2 {/ Prediction n

Average All Predictions

Random Forest
Prediction
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Figure 3.13: Random Forest Regression Algorithm3°

Multi-layer Perceptron regression

Artificial neural networks (ANNS), usually simply called neural networks (NNs) or neural
nets3!, are computing systems inspired by the biological neural networks that constitute animal
brains.

An ANN is based on a collection of connected units or nodes called artificial neurons, which
loosely model the neurons in a biological brain. Each connection, like the synapses in a
biological brain, can transmit a signal to other neurons. An artificial neuron receives signals
then processes them and can signal neurons connected to it. The "signal™ at a connection is a
real number, and the output of each neuron is computed by some non-linear function of the
sum of its inputs. The connections are called edges. Neurons and edges typically have a weight
that adjusts as learning proceeds. The weight increases or decreases the strength of the signal
at a connection. Neurons may have a threshold such that a signal is sent only if the aggregate
signal crosses that threshold.

Typically, neurons are aggregated into layers. Different layers may perform different
transformations on their inputs. Signals travel from the first layer (the input layer) to the last
layer (the output layer), possibly after traversing the layers multiple times.?

A multilayer perceptron (MLP) is a fully connected class of feedforward artificial neural
network (ANN) that has 3 or more layers of perceptrons. These layers are- a single input layer,
1 or more hidden layers, and a single output layer of perceptrons. Multilayer perceptrons are
sometimes colloquially referred to as "vanilla" neural networks, especially when they have a
single hidden layer [24]. The data flows in a single direction, that is forward, from the input
layers-> hidden layer(s) -> output layer.

Except for the input nodes, each node is a neuron that uses a nonlinear activation function.
MLP utilizes a supervised learning technique called backpropagation for training [25].
Backpropagation is a technique where the multi-layer perceptron receives feedback on the error
in its results and the MLP adjusts its weights accordingly to make more accurate predictions in
the future. Its multiple layers and non-linear activation distinguish MLP from a linear
perceptron. It can distinguish data that is not linearly separable. MLP is used in many machine
learning techniques like classification and regression. They have been shown to give highly
accurate results for classification problems in particular.

30 https://discuss.boardinfinity.com/t/what-is-decision-tree-regression/4963
31 https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
32 https://en.wikipedia.org/wiki/Artificial_neural_network
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XGBoost Regression

The XGBoost (eXtreme Gradient Boosting) algorithm is a highly optimized open-source
implementation of the gradient boosting decision trees algorithm, created by Tiangi Chen, now
with contributions from many developers. Shortly after its development and initial release,
XGBoost became the go-to method and often the key component in winning solutions for a
range of problems in machine learning competitions. Regression predictive modeling problems
involve predicting a numerical value such as a dollar amount or a height. XGBoost can be used
directly for regression predictive modeling.

Gradient boosting refers to a class of ensemble machine learning algorithms that can be used
for classification or regression predictive modeling problems. It is a supervised learning
algorithm, which attempts to accurately predict a target variable by combining the estimates of
a set of simpler, weaker models.

Ensembles are constructed from decision tree models. Trees are added one at a time to the
ensemble and fit to correct the prediction errors made by prior models. This is a type of
ensemble machine learning model referred to as boosting. Models are fit using any arbitrary
differentiable loss function and gradient descent optimization algorithm. This gives the
technique its name, “gradient boosting,” as the loss gradient is minimized as the model is fit,
much like a neural network.>*

When using gradient boosting for regression, the weak learners are regression trees, and each
regression tree maps an input data point to one of its leaves that contains a continuous score.
XGBoost minimizes a regularized (L1 and L2) objective function that combines a convex loss
function (based on the difference between the predicted and target outputs) and a penalty term
for model complexity (in other words, the regression tree functions). The training proceeds
iteratively, adding new trees that predict the residuals or errors of prior trees that are then
combined with previous trees to make the final prediction. It's called gradient boosting because
it uses a gradient descent algorithm to minimize the loss when adding new models.

Below is a brief illustration on how gradient tree boosting works.

33 https://www.geeksforgeeks.org/difference-between-multilayer-perceptron-and-linear-regression/
34 https://machinelearningmastery.com/xgboost-for-regression/
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Figure 3.15: Gradient Boosting algorithm illustration®

XGBoost is designed to be both computationally efficient (e.g., fast to execute) and highly
effective, perhaps more effective than other open-source implementations. The two main
reasons to use it are execution speed and model performance. XGBoost dominates structured
or tabular datasets on classification and regression predictive modeling problems. The evidence
is that it is the go-to algorithm for competition winners on the Kaggle competitive data science
platform.

3 https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost-HowltWorks.html
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Chapter 4
Characterization

In this chapter, we describe the cluster we have created for our experiments, and we examine
the behavior of the benchmarks from the MLPerf Inference Benchmark Suite by deploying
them to run in the cluster in a SingleStream or MultiStream scenario, with or without external
sources of interference.

4.1 Experimental Infrastructure

4.1.1 System Setup

For the experiments of our thesis, we have deployed 2 virtual machines (VMSs) on top of the
physical machines with different configurations, serving as the nodes of our cluster (1 master
node and 1 worker node). The master node has 4 processing cores and 8GB of RAM, while the
worker node has 8 processing cores and 16GB of RAM. We used KVVM as our hypervisor. To
simulate a cloud environment, all the referenced workloads running on the cluster have been
containerized, utilizing the Docker platform.

_ VirtalMachines

VM-name Cores RAM (GB)
master 4 8
worker 8 16

Table 4.1: Virtual Machines Characteristics

The combination of VMs with containers is currently the common way of deploying cloud
clusters at scale, since it establishes the perfect catalyst for reliability and robustness. On top
of the VMs, we have deployed Kubernetes as our container orchestrator, one of the most
popular and most used platforms nowadays.

4.1.2 MLPerf Inference Benchmarks for Image Classification and Object

Detection Tasks

From the Kubernetes perspective the workload consists of a set of Pods, controlled by Jobs that
start the previously described MLPerf Inference Benchmarks. We created a container image of
the MLPerf Inference benchmark suite that, given the appropriate parameters (model, backend,
scenario, time etc.), starts the different benchmarks. We will use the MLPerf Inference
benchmarks as the Inference Engines for our experiments and the design of our schedulers.
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4.1.3 iBench
In our thesis we use the following micro-benchmarks from the iBench suite®:

0 CPU 0 Memory Bandwidth stress
0 L2 cache 0 Memory Capacity stress
0 L3 cache

We deploy the iBench benchmarks as jobs in the Kubernetes cluster. The duration of each
iBench job is set at a constant value of 3600s in their deployment yaml file. This is to ensure
that the impact each iBench micro-benchmark has on a shared resource is increasing at a low
enough pace to practically consider each iBench job to create a small amount of interference
of constant intensity throughout our experiments. Consequently, we control the intensity of the
stress, the iBench Sols create at the shared resources of our cluster, by adjusting the number of
concurrent iBench workloads that are pressuring each resource accordingly.

4.2 SingleStream Benchmark Scenario

In this first series of experiments, we will be deploying the models from the MLPerf Inference
Benchmark suite, presented in chapter 3, as Kubernetes pods, using the SingleStream scenario.
We test the performance of the benchmarks with and without the presence of external sources
of interference, as well as with CPU limitations imposed on them by the Kubernetes system.

4.2.1 With interference

We start our experiments by deploying the models from the MLPerf Inference Benchmarks as
Kubernetes pods, using the SingleStream scenario. For each model running, we measure the
queries per second (QPS) it achieves, as a benchmark performance indicator, while varying the
intensity of a specific iBench micro-benchmark (pressuring a specific shared resource). The
intensity of the iBench interference is controlled accordingly by the number of “iBench” jobs
that are deployed as Kubernetes pods, concurrently with the running MLPerf model.

% https://github.com/stanford-mast/iBench
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We measure the achieved QPS of each MLPerf Inference model, at the presence of pressure on
a specific shared resource at each time (cpu, 12 cache, 13 cache, memory bandwidth and
memory capacity) induced by the iBench micro-benchmarks. For each resource in contention,
the amount of pressure it receives increases accordingly as the number of concurrent “iBench”
jobs increases from 1 to 16. The measured QPS is represented in a colored heatmap in the
above figure, where the darker color each square has, the more severe drop in the expected
QPS for the MLPerf Inference benchmark we detect. Similarly, the lighter the color of the
square, the higher QPS the model achieves under the stressful circumstances.

There are some interesting points we gather from the above figure as far as each MLPerf
Inference model’s behavior under pressure is concerned.

Firstly, we see that in general, the more “iBench” jobs we have for each shared resource,
meaning the more intensely pressured the resource is, the more the QPS of the model drops to
a lower value. However, for the contention of the L2 cache, it is shown that, with up to 8
concurrent “iBench” jobs pressuring it, there is no quantifiable effect on the achieved QPS of
all the models. Even at 16 “iBench” jobs, the drop in QPS is minuscule, leading us to the
conclusion that the L2 cache shared resource is of no particular significance to our MLPerf
Inference benchmarks, especially at lower intensities of contention. That means that our models
can withstand excessive amounts of pressure on the L2 cache before their performance begins
to decrease.

Secondly, we see that while all models are susceptible to performance degradation as the stress
on memory capacity, placed by the “iBench” jobs, increases, this is not true for the resnet50
model with tensorflow backend. In contrast to even the same model with the onnxruntime
backend, the tf-resnet50 model maintains the same QPS under any memory capacity stress, no
matter how intense. This could make tf-resnet50 a great model candidate, when performance
stability under restricted memory capacity is required.
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Thirdly, as far as measured performance goes, it is obvious from the figure that the mobilenet
model with the tensorflow backend manages to score higher in the image classification task
than any other model-backend combination, and it should be the model of choice for
environments with resources that are not being heavily pressured. Tf-mobilenet holds the
highest QPS scores, and the best performance output, under all different shared resources
contentions, with resource stress intensity up to 4 concurrent “iBench” jobs. For higher
resource stress intensities (8 or more concurrent “iBench” jobs), we observe that the mobilenet
model with the tflite backend appears to be the more resilient. Tflite-mobilenet seems to be the
best able to hold its QPS output higher than the other models during high shared resource
contention, as we notice the lowest benchmark performance percentage drop as “iBench” jobs
multiply. Furthermore, tflite-mobilenet manages to achieve high QPS values at even 16
concurrent “iBench” jobs, making it a fine choice at environments where sources of
interference are plentiful.

Another interesting observation from the figure is that, for the image classification task, the
resnet50 model performs better overall with the onnxruntime backend than with the tensorflow
backend. In contrast, mobilenet shows the best overall performance with the tensorflow
backend, a little worse performance with the tflite backend and the worst performance
comperatively with the onnxruntime backend.

Lastly, at the object detection task of the MLPerf Inference benchmarks, we easily conclude
that all the ssd-mobilenet models with the tensorflow backend achieve higher overall QPS,
with little variance between them, than the ssd-mobilent model does with the onnxruntime
backend.

4.2.2 Without interference

The last two observations can better be visualized by the following figure. In this experiment,
we deploy again the models from the MLPerf Inference Benchmarks as Kubernetes pods, using
the SingleStream scenario. However, here, we simplify our approach by not adding any source
of interference to our cluster and thus measuring each model’s best possible performance,
which is quantified by the highest score of queries per second (QPS) each model can achieve.
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Figure 4.2: Performance measurement (QPS) of the MLPerf Inference Benchmarks in
SingleStream scenario. The first six benchmarks are running an image classification task,
while the last four benchmarks are running an object detection task.

From this figure, we confirm our previous observations, having the mobilenet model
performing better with the tensorflow backend, while the resnet50 model scoring higher with
the onnxruntime backend in the image classification task. It is also clear that all the ssd-
mobilenet models achieve a higher QPS score with the tensorflow backend than with the
onnxruntime backend in the object detection task.

An interesting conclusion we can easily derive from this figure however, is that, in the image
classification task, the highest overall inference performance is attained by the tf-mobilenet at
around 93 QPS, with the second best, the onnxruntime-resnet50, scoring quite a bit lower at
around 80 QPS, a more than 13% reduction. On the other hand, in the object detection task, the
highest performer, the tf-ssd-mobilenet-default, scores at around 40 QPS, less than half the best
score in the image classification task. Despite that, the performance difference from the second
and third best, the other ssd-mobilenet models with the tensorflow backend, is not as big, being
less than 6%.
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4.2.3 CPU Limits

For our next experiment, we run only the MLPerf Inference benchmarks that perform an image
classification task, using the SingleStream scenario again. The models are deployed over the
Kubernetes platform as Pods. Once more, no sources of external interference are added to the
cluster. For each model running, we measure the queries per second (QPS) it achieves, as a
benchmark performance indicator, while imposing varying levels of cpu limititations on them.
The cpu limits are implemented as a resource limit for the benchmark containers. The kubelet
then enforces those limits so that the running container is not allowed to use more of that
resource than the set limit.>” We also compare the benchmarks’ inference accuracy, given by
table 3.1, as is illustrated in the figure below.
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Figure
4.3: QPS vs. Accuracy of the MLPerf Inference benchmarks (each benchmark presented with
its own color) that perform an image classification task, with various imposed CPU limits.

We measure the achieved QPS of each MLPerf Inference model, while hindering in a
controlled way their performance by placing cpu limitations varying from using small fractions
of the available cpu power to not limiting the cpu usage at all. The larger the colored dots on
the figure, the smaller the imposed limit, meaning the more available cpu the benchmark has
for its own. The x marks on the figure indicate that, for those measurements, there is no limit
on the cpu usage for the benchmarks.

It is also worth noting that, although all the models we tested make use of all the available cpu
cores, filling them at different amounts depending on the cpu limit percentage (1000m-7000m),
the mobilenet model with the tflite backend only utilizes one core. For this reason, the cpu
limits imposed to tflite-mobilenet are tailored to split only a single core into smaller fractions
(100m-900m), so we can measure the limitations’ effect in comparison to that on multiple cores
for the other models.

From the figure above, as far as the MLPerf Inference benchmarks’ accuracy is concerned, it
is clear that the resnet50 model sits further on the accuracy line, both with the onnxruntime and
tensorflow backend, making it the most accurate inference model between them. Similarly, the
least accurate model seems to be the quantized mobilenet with the tensorflow backend.

37 https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
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As far as the MLPerf Inference benchmarks’ performace goes, we see that the highest QPS
scores, when cpu limits become smaller, are achieved by the mobilenet model with the
tensorflow backend, albeit not the best model accurate-wise. The mobilenet model with the
onnxruntime or the tflite backend scores lower on the performance metric, while having the
same accuracy percentage. On the other hand, between the two most accurate benchmarks, the
resnetc0 model with the onnxruntime backend considerably outperforms its tensorflow
backend counterpart.

Another interesting observation from the figure is that the models with the onnxruntime or tflite
backend have a clear performance increase between the runs with the lowest cpu limitations
and with no limitations. In other words, even if a small fraction of the cpu is not available, their
QPS score drops. On the contrary, all the models with the tensorflow backend score close to
their maximum QPS value when cpu limitations become small, meaning they do not decrease
their performace when a small fraction of the cpu is unavailable.

4.3 MultiStream Benchmark Scenario

For the next series of experiments, we will be deploying the models from the MLPerf Inference
Benchmark suite, presented in chapter 3, as Kubernetes pods, using the MultiStream scenario.
We exclude the mobilenet model with the tflite backend, since it does not run on a MultiStream
benchmark scenario. For each model running, we will measure the queries per second (QPS) it
achieves, as a benchmark performance indicator, under different interference conditions and
adjustments of some environment variables.

4.3.1 Onnxruntime framework - without interference

In the first experiment, we deploy only the MLPerf Inference Benchmarks with the
onnxruntime backend. We compare the QPS score these models achieve for a combination of
different values of the OMP_NUM_THREADS variable (provided by the OpenMP API
specification for parallel programming) and the --threads option (provided by the MLPerf
Inference benchmark suite). The --threads option of the MLPerf Inference benchmark suite
defines the number of worker threads to use, while the OMP_NUM_THREADS environment
variable sets the number of threads to use for parallel regions®. In other words, the --threads
option instructs the number of concurrent "inference engine instances™ or “inference workers”
each MLPerf Inference Benchmark deploys, while the OMP_NUM_THREADS variable sets
the number of threads per concurrent "inference engine instance”. No source of external
interference is added to our cluster.

38 https://www.openmp.org/spec-html/5.0/openmpse50.html
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Figure 4.4: Heatmap: QPS measurement (colored squares) of the MLPerf Inference
Benchmarks with the onnxruntime backend, for various combinations of the
OMP_NUM_THREADS variable and the --threads option. The first two benchmarks are
running an image classification task, while the third benchmark is running an object detection
task, as designated by their different color palette.

We measure the QPS score of the MLPerf Inference Benchmarks with the onnxruntime
backend at each combination of omp (OMP_NUM_THREADS) and threads with values of 1,
2,4 and 8.

From the figure, we see a trend in all three of our models, that we achieve better overall
performance at omp values of 2 or more, regardless of the amount of threads. We also notice
that the best performance is attained when the omp variable is at 4 and threads at 1 or 2, or
when we have the omp variable at 8 and threads at 1.

More specifically, for the image classification task, we observe that the mobilenet model
manages to score higher than the resnet50 model in almost all the combinations, making it the
best performing model. The onnxruntime-mobilenet also appears to be the most stable one
performance-wise across the changing variables, since we notice a smaller QPS drop at an omp
value of 1, as opposed to the respective behavior of resnet50 at omp 1. On the other hand, the
resnet50 model achieves an outstanding score at omp 8 and threads 1, but its performance on
the other combinations of the variables drops significantly.

As far as the object detection task is concerned, we observe almost no variance of the QPS
values at the highest performance configurations of omp 4, or omp 8 and threads 1, unlike the
onnxruntime models tasked with image classification, whose QPS score on these
configurations varies more.

4.3.2 Onnxruntime framework - with interference
Next, we continue our testing of the MLPerf Inference Benchmarks with the onnxruntime
backend, only this time we are bringing external interference into the Kubernetes cluster,
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induced by the iBench micro-benchmarks. For this experiment, we are measuring the QPS each
model achieves while the cluster is being pressured at a specific shared resource at a time, as
well as the variance in the QPS attained value under the contention of these resources, at
various intensities, by the iBench jobs. Then, for each onnxruntime model, we compare the
QPS score and its variance under the contention of different resources, by keeping one
environment variable constant and changing the value of the other (the two variables we control
are: the OMP_NUM_THREADS variable and the --threads option). As a result, we generate
two subplots for each model, one for each variable being kept constant, to see the effect that
the other free-to-change variable has on the QPS and its variance, under interference.
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4.5: Boxplots: QPS measurement of the MLPerf Inference Benchmarks with the onnxruntime

backend, for various “iBench” sources of interference at different intensities. In each MLPerf

Inference Benchmark’s plot, there are two subplots, one for each constant environment

variable. On the left subplot, the OMP_NUM_THREADS variable is kept constant, while on
the right subplot the --threads option is constant. The achieved QPS at each iBench micro-
benchmark is measured for various values of the free-to-change variable at each subplot, as

designated by the different color (type) of the boxplots. The first two benchmarks are running
an image classification task, while the third benchmark is running an object detection task.

For each MLPerf Inference model, we deploy iBench jobs pressuring a specific shared resource
at a time (cpu, 13 cache, memory bandwidth and memory capacity) at different intensities, with
the number of concurrent “iBench” jobs pressuring the same resource varying from 1 to 16.
This creates a variability in the QPS measurement for each pressured resource, as observed in
the above figure (indicated by the width of the boxplot). Furthermore, by holding one variable
constant (either the OMP_NUM_THREADS variable or the --threads option) we compare how
the QPS and its variance changes for values of 1, 2, 4 and 8 of the other variable, at each
resource in contention.

From the above figure, we can derive some interesting points about the behavior of the three
MLPerf Inference models with the onnxruntime backend under resource pressure and different
variables combination.

To begin with, we focus on the subplots where we keep the omp (OMP_NUM_THREADS)
environment variable constant. We observe for all three of the MLPerf Inference models, that
we get consistently significantly higher QPS score for the --threads option at value 1 (blue box)
than we do with higher values. The performance we get for the values 2, 4 and 8 of the --threads
option is roughly similar, with the value of 2 having a small edge over the others, especially
for the models of the image classification task.

We also see in these subplots, that there is a large amount of variability in the performance of
the models, measured under different sources of interference at different intensities. The
highest performance variability is seen again for the --threads option at value 1 (blue box). It
is worth noting that for the higher values of --threads (higher than 1), this QPS variance is, to
a large extent, independent of the value of the --threads option. Between the different sources
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of interference though, when the shared resource under stress is the memory capacity of the
cluster, that performance variability seems to reduce comparatively for all the —threads values.

Bringing our attention to the subplots where we keep the --threads option constant, we see that
the performance variability at each resource in contention, differs considerably in comparison,
as the omp environment variable changes. In particular, we observe little variance in QPS when
the omp variable is at 1 (blue box) for all three of the MLPerf Inference models. Noticeably,
the performace variability increases when the omp variable has a value of 2, it increases even
more at omp value of 8 and we get the highest variability at omp value of 4 (green box). These
results suggest that our models are more robust performance-wise with an omp value of 1,
albeit not achieving the highest QPS score at that variable value.

For discerning the best omp variable value for the highest QPS score, we have to differentiate
between our MLPerf Inference models. For the resnet50 model with the onnxruntime backend,
it is clear that it performs remarkably better with an omp value of 4. Even though at that value
of the omp variable the model has the largest performance variability, the median QPS value
of the corresponding box (green) in the figure is a lot higher than the rest of the boxes with the
other omp values. It is also worth mentioning that the onnxruntime-resnet50 performs the worst
at the omp value of 1, although it has the most robust performance, with the least variability at
that omp value.

On the other hand, the mobilenet and ssd-mobilenet models with the onnxruntime backend
show the best performance at omp values of 2 and 4. When the omp variable is at 2 (yellow
box), we get a slightly higher median QPS value than what we have at omp value of 4, for most
of the pressured resources. However, at omp value of 4 (green box), due to the higher
performance variability, the QPS score can reach values higher than the ones achievable at omp
value of 2, for the lowest amounts of pressure on each shared resource. Interestingly, these two
models seem to perform the worst at an omp value of 8 (red box).

4.3.3 Tensorflow framework - without interference

In the following experiment, we deploy only the MLPerf Inference Benchmarks with the
tensorflow backend. We measure the QPS (queries per second) these models achieve for
various values of the INTRA_OP_PARALLELISM_THREADS option provided by the
Tensorflow platform. The execution of an individual operation (for some op types) can be
parallelized on a pool of intra_op_parallelism_threads, with a zero-value meaning the system
picks an appropriate value.®® In other words, the intra_op_parallelism_threads option, sets the
number of threads used within an individual operation (like matrix multiplication and
reductions) for parallelism®. The MLPerf Inference Benchmarks run operations that can utilize
parallel threads for speed ups. The effect that the intra_op_parallelism_threads option (referred
from now on as “tf intra” for short) has on the performance of the MLPerf Inference models
can be seen on the following figure. No source of external interference is added to our cluster
for this experiment.

39

https://github.com/tensorflow/tensorflow/blob/26b4dfa65d360f2793ad75083¢c797d57f8661b93/tensorflow/core/
protobuf/config.proto#L165
40 https://www.tensorflow.org/api_docs/python/tf/config/threading/set_intra_op_parallelism_threads
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4.6: QPS measurement of the MLPerf Inference Benchmarks with the tensorflow backend,
for various values of the INTRA_OP_PARALLELISM_THREADS option (tf_intra). The
first three benchmarks, in the legend with the colours on the right, are running an image

classification task, while the last three benchmarks are running an object detection task.

We measure the QPS score of the MLPerf Inference Benchmarks with the tensorflow backend
at tf_intra values ranging from 1 to 8.

At first glance of the figure, we can readily conclude that the higher the tf intra value is,
meaning the greater the amount of parallel threads that are utilized by the MLPerf Inference
models is, the better the performance of the models is, in a rather linear way. So, at the tf_intra
values of 7 or 8 we get the highest QPS score for each model.

An interesting observation from the figure is that, even though all models start at a low QPS
score for tf_intra at 1, the rate at which their performance improves, with the increase of the
tf_intra option, differs considerably from model to model. Starting with the image classification
task, we notice that the tf-mobilenet model (orange line in the figure) has, by far, the steepest
angle of the performance increase, while also scoring the highest QPS at each tf_intra value.
Performing a little worse with a lower angle, but still standing significantly above the rest of
the competition, is the quantized tf-mobilenet model (green line), which also manages to
outperform the rest of the models (except the aforementioned tf-mobilenet) at each tf intra
value. The four remaining models have a rather similar, lower angle of performance increase.
Most noticeably, the tf-resnet50 model (blue line) presents the shallowest angle between them,
while scoring the lowest QPS across all models at each tf_intra value.

It is also worth noting that the three models on the tensorflow backend performing the image
classification task have largely different performance increase angles, whereas the three
tensorflow models performing the object detection task have very similar low angles. In fact,
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the default tf-ssd-mobilenet model (red line) has a small edge on performance at each tf_intra
value, as seen in the figure. The quantized, fine-tuned tf-ssd-mobilenet model and the
symmetrically quantized, fine-tuned tf-ssd-mobilenet model have almost the same performance
angle and QPS scores, and thus are indiscernible from one another in the figure (purple and
brown lines accordingly), since their lines intersect at each and every tf_intra value.

4.3.4 Tensorflow framework - with interference

The next experiment consists of deploying the MLPerf Inference Benchmarks with the
tensorflow backend, together with external sources of interference to measure the QPS they
achieve, as well as the performance variability the models have, as the intensity of the
interference varies. For each MLPerf Inference model and each shared resource in pressure,
we measure the performance of the models for wvarious values of the
INTRA_OP_PARALLELISM_THREADS option provided by the Tensorflow platform. The
resulting figure is the following.
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Figure 4.7: Boxplot: QPS measurement of the MLPerf Inference Benchmarks with the
tensorflow backend, for various “iBench” sources of interference at different intensities. The
achieved QPS at each iBench micro-benchmark is measured for various values of the
INTRA_OP_PARALLELISM_THREADS option (tf_intra), as designated by the different
color of the boxes. The first three benchmarks are running an image classification task, while
the last three benchmarks are running an object detection task.

For each MLPerf Inference model, we deploy iBench jobs pressuring a specific shared resource
at a time (cpu, I3 cache, memory bandwidth and memory capacity) at different intensities, with
the number of concurrent “iBench” jobs pressuring the same resource varying from 1 to 16.
This creates a variability in the QPS measurement for each pressured resource, as observed in
the above figure (indicated by the width of the boxplot). Furthermore, we compare how the
QPS and its variance changes for values ranging from 1 to 8 of the tf_intra option, at each
resource in contention.

Starting off, we see a similar upward trend in performance across all the MLPerf Inference
Benchmarks with the tensorflow backend, as the value of tf_intra increases. The median QPS
value appears to be the lowest at tf_intra 1 (blue box) for all the tensorflow models. Despite
that, at tf_intra 1 we notice the lowest performance variability (width of the box) on all of the
models, on each different source of interference of varying intensity, meaning that the models
are more robust in their performance at this configuration, although their QPS scores are
typically very low. The highest QPS scores are generally noticed for tf_intra values of 5 and
above. Due to the large amount of observed performance variability and the perceived small
difference between the median values of QPS achieved by the models at the highest tf_intra
values though, it is difficult to identify the exact tf intra value for each model’s highest
performance.

Another interesting observation from the above figure, that is true for all the tensorflow models,
is that there is high performance variability while there is pressure of varying intensity, either
in the cpu, the 13 cache or the memory bandwidth of the cluster. However, as the stress intensity
in the memory capacity shared resource fluctuates, the performance of the models remains
fairly robust with little diversion from the median value of the achieved QPS (except, maybe,
for the highest level of stress intensity on the shared resource, as shown by the outlier values
of QPS at the bottom of each box at the memory capacity section in the figure). It is also worth
mentioning that the greatest performance sturdiness, during the varying amounts of pressure
on the memory capacity of the system, is achieved by the resnet50 model with the tensorflow
backend. Indeed, looking at the figure, we see there is almost no discernable variance in the
QPS the tf-resnet50 model achieves at the memory capacity pressure setting.
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Chapter 5
Scheduler

In this chapter, we present the training of some Machine Learning Regression models, by
gathering a dataset of various system metrics. Furthermore, we explore what is the best ML
model to use for QPS predictions in our custom scheduler and tune its hyperparameters to
further improve its accuracy. Next, we analyze the algorithm that our custom, model-specific
Inference Engine scheduling mechanism uses to serve MLPerf Inference benchmarks to the
cluster. Finally, we introduce a model-less approach to the inference serving of our custom
scheduler.

5.1 Offline: Training of the Machine Learning Regression
Models

We want our proposed Inference Engine scheduling mechanism to be able to deploy the
appropriate MLPerf Inference benchmark as a Kubernetes pod, taking into consideration the
current usage level of various system resources, as well as the requests of the user.

In order to determine what MLPerf Inference benchmark, and with what configuration, is
suitable for deployment at each time, we turn to the help of a set of Machine Learning
Regression Models that, adequately trained, will be able to predict the potential performance
of the benchmarks under the interference conditions that exist at the deployment time.

The training of the Machine Learning Regression Models was done in advance, by collecting
a set of various system metrics at different interference scenarios and measuring the
corresponding performance of the MLPerf Inference benchmarks. With the resulting training
dataset, we trained and evaluated the ML Regression models and we picked the most accurate
one, in predicting the QPS scores of the benchmarks, to use in our custom scheduler. Finally,
we tuned its hyperparameters, for each benchmark, to optimize its accuracy further.

The following diagram follows the aforementioned steps of the offline training and ML model
selection for our custom scheduler.

| Step 1: Random Scenario Execution Step 2: Training Dataset Formation | Step 3: ML model selection

.

Target Inference ; ’.’ o
Engine ! Random ELTAEI S
P, ~ #threads |

1 e g arallelism
|
% |
]
I
1
|
i

Level

0
1 Optimized QPS
1 prediction model
'

Engine
IMonitoring

Figure 5.1: Offline Scheduler Diagram of the (1) training scenarios execution, (2) the training
dataset formation, (3) the training and evaluation of the ML Regression models on the
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dataset, (4) the ML model selection and optimization, for each MLPerf Inference benchmark
(Target Inference Engine)

Each training scenario consists of the deployment of a random number of “iBench” jobs over
Kubernetes, each pressuring one, randomly selected, specific shared resource of the cluster
(cpu, 12 cache, I3 cache, memory bandwidth or memory capacity) for the duration of the
scenario. The total number of deployed iBench jobs in a scenario ranges from 1 to 16. Their
total number, as well as the way these iBench jobs are partitioned into pressuring the 5
resources in contention, defines the interference conditions of the scenario. The intensity of the
pressure on each shared resource is determined accordingly by the subset of the total number
of concurrent iBench jobs that is set to put pressure on that resource. Consequently, the more
“iBench” jobs pressuring a resource of the cluster, the stronger interference the cluster
encounters on that resource.

After deploying the “iBench” jobs in each training scenario, we collect a set of various system
metrics, regarding the cpu and memory usage levels on the cluster, every second, for the
duration of 20 seconds, and we take the mean value of each metric over that period of time. As
a result, we get a clear image of the current state of our system each time, affected by our
deployed sources of interference, before we run our MLPerf Inference benchmark.

The system metrics we collect on our Kubernetes worker node derive from the “mpstat”” linux
command, the “free” linux command, as well as from queries to an InfluxDB time series
database that resides in a different server, monitoring and keeping various core and memory
usage metrics of our worker VM configuration. The “mpstat” command collects and displays
performance statistics for all logical processors in the system. The “free” command displays
the total amount of free space available along with the amount of memory used and swap
memory in the system, and also the buffers used by the kernel.

The following system metrics are collected from the worker node in each training scenario:

Queries core metrics memory metrics
mpstat (%) %usr  %sys  %idle
free (in KB) used free
influxDB cOres  clres c3res cb6res c7res exec ipc I2m I3m mem_read mem_ write

Table 5.1: Low-level system metrics collected from the worker node

The final step in our training scenario is the deployment of an MLPerf Inference benchmark,
in the current system state. Firstly, we randomly pick one of the MLPerf Inference models,
either for the image classification or the object detection task, presented in chapter 3. We
exclude from our choice the mobilenet model with the tflite backend, since it does not run on
a MultiStream benchmark scenario. If the selected model runs on an onnxruntime backend, we
assign random values, ranging from 1 to 8, to the OMP_NUM_THREADS variable and the --
threads option in the MLPerf deployment yaml file. In the same manner, if the selected model
runs on a tensorflow backend, we assign a random value, ranging from 1 to 8, to the
INTRA_OP_PARALLELISM_THREADS option in the MLPerf deployment yaml file. Then,
we deploy the MLPerf Inference benchmark over Kubernetes, running the selected model with
the selected values for the options mentioned above, in a MultiStream benchmark scenario for
a duration of 60 seconds.
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When the running of the MLPerf Inference benchmark completes, the QPS value of the
benchmark results is pushed to the Prometheus platform for Kubernetes monitoring, so as to
be available to be read by all the Kubernetes pods running in the cluster. To accomplish that,
we first installed the Prometheus Pushgateway service, a push acceptor, for ephemeral and
batch jobs, that will retain the pushed metric so it can be scraped later on.** Then, we appended
the snippet of code, shown below, to the run_local.sh file of the MLPerf Inference Benchmarks
suite for image classification and object detection tasks.

RESULT=$ (cat $OUTPUT DIR/results.json | jgq '. | \
{gps: ."TestScenario.MultiStream".gps} | .gps')
echo "some metric SRESULT" | curl --data-binary \

@- 10.100.7.187:9091/metrics/job/some job

Having the Prometheus Pushgateway service as a target to scrape the achieved QPS of the
benchmark, we create a csv file, where each row represents a single training scenario. Each
row contains the system metrics collected at the beginning of each training scenario, the
assigned values of the INTRA_OP_PARALLELISM_THREADS (for the tensorflow
backend), OMP_NUM_THREADS and --threads options (for the onnxruntime backend), the
name of the selected MLPerf Inference model, the backend used and the resulting QPS score
of the benchmark.

The csv file we obtain from these training scenarios represents the training dataset of our
Machine Learning Regression Models, where the dependent variables are the system metrics,
together with the INTRA_OP_PARALLELISM_THREADS, OMP_NUM_THREADS and --
threads options, and the independent variable is the QPS. We then separate our training dataset
into the independent (y) and dependent (X) variables, we isolate the rows regarding a single
MLPerf Inference benchmark every time and train a set of various Regression Models, each
with its default training parameters. Finally, we compare the accuracy of their prediction of
QPS using the score by cross-validation of the scikit-learn python library*?.

We use the 10-fold cross validation splitting strategy (cv=10) and the estimator’s default score
method is used each time. All scorer objects follow the convention that higher return values
are better than lower return values*. A negative score means that the model fitted the data
extremely badly. To evaluate the performance of an ML Regression estimator, the following
procedure is followed for each MLPerf Inference benchmark.

The training set is split into 10 smaller sets. Then, for each of the 10 “folds”, the ML Regression
model is trained using 9 of the folds as training data, and the resulting model is validated on
the remaining part of the data (i.e., it is used as a test set to compute a performance measure
such as accuracy). The performance measure reported by the 10-fold cross-validation is then
the average of the values computed in the loop.

The exploration of the accuracy scores of various ML Regression Models is presented in the
following tables:

4 https://sysdig.com/blog/kubernetes-monitoring-with-prometheus-alertmanager-grafana-pushgateway-part-2/
42 https://scikit-learn.org/stable/modules/cross_validation.html
43 https://scikit-learn.org/stable/modules/model_evaluation.html#scoring-parameter
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Algorithm

Linear
Ridge
Lasso
Elastic Net
Bayesian
Ridge
SGD
SVR
k-NN
Gaussian
Process
Decision
Tree
Random
Forest
MLP
XGBoost

onnx-resnets50

-1.3e+12
-6.1e+11
0.679
0.679
-3e+9

-5.1e+43
0.253
0.236

-3
0.632
0.825

-3e+8
0.843

tf-resnet50

-5.4e+23
-1.6e+12
0.745
0.744
-4.2e+10

-6.4e+43
0.201
0.19
-1.9
0.921
0.955

-4e+8
0.962

onnx-mobilenet

-4.8e+11
-1.6e+11
0.801
0.803
-1.7e+11

-1.8e+43
0.295
0.324

-35
0.835
0.909

-1.2e+8
0.914

tf-mobilenet tf-mobilenet-
guant
-1.2e+23 0.813
-2.9e+12 0.814
0.783 0.797
0.783 0.798
-9.2e+11 0.812
-5.1e+42 -5.1e+42
0.232 0.202
0.239 0.266
2.1 -1.6
0.93 0.92
0.962 0.959
-3.6e+7 -5.6e+6
0.962 0.956

Table 5.2: Score by 10-fold cross-validation of different ML Regression Models for the
prediction of the QPS of various MLPerf Inference benchmarks performing an image

classification task.

Algorithm onnx-ssd- tf-ssd- tf-ssd-mobilenet-  tf-mobilenet-symmetr-
mobilenet  mobilenet  quant-finetuned quant-finetuned
Linear -1.7e+13 0.731 -1.1e+12 -6.4e+9
Ridge -8.9e+12 0.767 -6.7e+11 -8.4e+10
Lasso 0.838 0.792 0.763 0.769
Elastic Net 0.842 0.791 0.762 0.765
Bayesian Ridge  -1.3e+13 0.797 -6.6e+11 -6.7e+10
SGD -1.3e+45 -2e+43 -2.6e+43 -2e+43
SVR 0.332 0.132 0.139 0.772
k-NN 0.327 0.134 0.126 0.55
Gaussian -2.4 -2 -2.2 -2.1
Process
Decision Tree 0.878 0.927 0.926 0.929
Random Forest 0.942 0.963 0.954 0.955
MLP -1.4e+10 -1.3e+5 -8.4e+8 -2.3e+6
XGBoost 0.941 0.965 0.956 0.961

Table 5.3: Score by 10-fold cross-validation of different ML Regression Models for the
prediction of the QPS of various MLPerf Inference benchmarks performing an object
detection task.
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As we can tell from the above tables, the most accurate ML Regression Models in the prediction
of the performance of the MLPerf Inference benchmarks are the Random Forest Regression
and the XGBoost regression. This is true for both the image classification task and the object
detection task. It is also apparent that the XGBoost Regression, in particular, has the best score
overall in almost all of the predictions. Since the Random Forest Regression outperforms the
XGBoost Regression in only 2 of the total 9 predictions, and only by little, for the sake of
simplicity, we are going to use the XGBoost Regressor for the prediction of QPS for all the
MLPerf Inference benchmarks.

In order to further increase the score by cross-validation we obtained from the XGBoost
Regressor at the default configuration, we perform a hyperparameter optimization process to
choose a set of hyperparameters for our regressor, tailored to the performance of each MLPerf
Inference benchmark it has to predict.

We perform a randomized search on the hyperparameters of the XGboost Regressor for each
MLPerf Inference benchmark, using the RandomizedSearchCV function of scikit-learn python
library**. We specify a range of different values for a set of various parameters that control the
learning process of the algorithm.

#For XGBRegressor:

param grid = {
'silent': [False],
'max_depth': [6, 10, 15, 201,
'learning rate': [0.001, 0.01, 0.1, 0.2,
'subsample': [0.5, 0.6, 0.7, 0.8, 0.9, 1.01,
'colsample bytree': [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
'colsample bylevel': [0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],
'min child weight': [0.5, 1.0, , 5.0, 7.0, 10.01,
'gamma': [0, 0.25, 0.5, 1.0],
'reg lambda': [0.1, 1.0, 5.0, 10.0, 50.0, 100.071,
'n estimators': [100, 200, 400, 800, 1600, 3200]}

A fixed number of parameter settings is then sampled from the specified distributions to be
tried out, given by the “n_iter” function argument, creating a tradeoff between runtime and
quality of the solution. In our hyperparameter tuning we use n_iter=100, so the model is fit 100
times for different combinations of the parameters from the specified distribution. We also use
a 5-fold cross-validation strategy (cv=5), and the scoring strategy, to evaluate the performance
of the 5-fold cross-validated model on each test set of the optimization process, is set to
“neg_mean_squared_error” for regression.

The resulting improvement on the accuracy score by the 10-fold cross-validation of the
XGBoost Regression algorithm for each MLPerf Inference benchmark is presented in the
following table.

MLPerf Inference XGBoost Regression XGBoost Regression

benchmarks (default parameters) (tuned parameters)
onnxruntime-resnet50 0.843 0.877
tensorflow-resnet50 0.962 0.964

4 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
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onnxruntime-mobilenet
tensorflow-mobilenet
tensorflow-mobilenet-
quantized
onnxruntime-ssd-
mobilenet
tensorflow-ssd-mobilenet
tensorflow-ssd-mobilenet-
quantized-finetuned
tensorflow-ssd-mobilenet-
symmetrically-quantized-
finetuned

0.914 0.924
0.962 0.97
0.956 0.966
0.941 0.943
0.965 0.971
0.956 0.964
0.961 0.966

Table 5.4: Score by 10-fold cross-validation comparison of the XGBoost Regression
algorithm prior and after hyperparameter optimization

The values of the parameters, which were selected by the RandomizedSearchCV function as
the best at each case for the XGBoost Regression algorithm, are the following:

MLPerf Inference
benchmarks

onnxruntime-resnet50

tensorflow-resnet50

onnxruntime-mobilenet

tensorflow-mobilenet

tensorflow-mobilenet-

guantized

onnxruntime-ssd-
mobilenet

tensorflow-ssd-mobilenet

Best parameters for XGBoost Regression

{'subsample’: 0.7, 'silent": False, 'reg_lambda': 100.0,
'n_estimators": 1600, 'min_child_weight": 1.0, 'max_depth':
10, 'learning_rate": 0.2, 'gamma’: 0.5, 'colsample_bytree": 0.8,
‘colsample_bylevel": 1.0}

{'subsample’: 0.8, 'silent": False, 'reg_lambda’: 50.0,
'n_estimators": 400, 'min_child_weight": 5.0, 'max_depth": 15,
'learning_rate": 0.1, 'gamma’: 0.5, 'colsample_bytree": 1.0,
‘colsample_bylevel": 0.7}

{'subsample’: 0.7, 'silent": False, 'reg_lambda': 5.0,
'n_estimators": 1600, 'min_child_weight": 0.5, 'max_depth": 6,
'learning_rate: 0.01, 'gamma’: 1.0, ‘colsample_bytree": 0.6,
‘colsample_bylevel": 0.9}

{'subsample’: 0.5, 'silent": False, 'reg_lambda’: 50.0,
'n_estimators": 3200, 'min_child_weight": 1.0, 'max_depth'":
20, 'learning_rate": 0.1, '‘gamma’: 0.5, ‘colsample_bytree": 1.0,
‘colsample_bylevel": 0.9}

{'subsample’: 0.8, 'silent": False, 'reg_lambda’: 50.0,
'n_estimators": 3200, 'min_child_weight": 5.0, 'max_depth'":
15, 'learning_rate": 0.01, '‘gamma’: 0.5, ‘colsample_bytree":
0.9, 'colsample_bylevel': 0.8}

{'subsample’: 0.5, ‘silent": False, 'reg_lambda’: 5.0,
'n_estimators': 800, 'min_child_weight": 10.0, 'max_depth":
20, 'learning_rate": 0.1, '‘gamma’: 0.5, ‘colsample_bytree": 0.8,
‘colsample_bylevel": 0.8}

{'subsample’: 1.0, 'silent": False, 'reg_lambda’: 50.0,
'n_estimators': 3200, 'min_child_weight': 5.0, 'max_depth': 6,
'learning_rate: 0.1, 'gamma’: 0.25, ‘colsample_bytree": 1.0,
‘colsample_bylevel': 0.9}
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tensorflow-ssd-
mobilenet-quantized-
finetuned

{'subsample’: 0.8, 'silent": False, 'reg_lambda': 5.0,
'n_estimators": 100, 'min_child_weight": 3.0, 'max_depth": 15,
'learning_rate": 0.1, 'gamma’: 0, ‘colsample_bytree": 1.0,
‘colsample_bylevel": 0.7}

{'subsample’: 0.9, 'silent": False, 'reg_lambda’: 10.0,
'n_estimators": 3200, 'min_child_weight": 1.0, ‘max_depth'":
10, 'learning_rate": 0.01, '‘gamma’: 0.5, ‘colsample_bytree":
1.0, ‘colsample_bylevel': 0.5}

Table 5.5: Best parameters for the XGBoost ML Regression algorithm for each MLPerf
Inference benchmark, after hyperparameter tuning

tensorflow-ssd-
mobilenet-symmetrically-
quantized-finetuned

To visualize the accuracy of the predictions of the optimized XGBoost Regression model for
each MLPerf Inference benchmark, we perform the following experiment. We split the training
dataset of each benchmark, by holding out a small part of the available data as a test set X_test,
y_test, and we train the corresponding ML model on the remaining training set. Then, we

evaluate the ML model on the test set by comparing its predictions y_pred (of the X_test) to
the y_test value, as shown in the figure below.

Optimized XGBoost Regression
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Figure 5.2: Scatter plot: Accuracy of predictions of the optimized XGBoost Regression
model for each MLPerf Inference benchmark. The red line has an angle of 45 degrees,
representing the desired output, where y_pred=y _test.
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As we see from the figure, the predictions of the optimized XGBoost Regression model for the
MLPerf Inference benchmarks fall around the 45-degree line, with small deviations from it,
meaning the ML model, with its newly-tuned parameters, is well-trained to tackle the tasks
ahead.

We save the resulting ML Regression model, to use it for the prediction of the QPS score of all
our MLPerf Inference benchmarks in our experiments.

5.2 Online: Interference and resource aware predictive

Inference engine scheduler

In this section, we analyze the algorithm that our custom, model-specific Inference Engine
scheduling mechanism uses, as well as the algorithm of our model-less Inference Engine
scheduler design.

5.2.1 Model-Specific Deployment

The custom, model-specific Inference Engine scheduling mechanism we developed is built to
take into account the current level of interference conditions in the system before deploying
the MLPerf Inference benchmark on a MultiStream scenario to run in the cluster. It also aims
to serve the benchmark with a configuration (parallelism level) that allows it to be as little
resource intensive to the system as possible while still managing to satisfy a required QoS
constraint.

The exact mechanism of our custom, model-specific scheduler is presented below. The steps
include: (a) The collection of system metrics for the current state of the cluster, (b) the QPS
prediction of the MLPerf inference benchmark (target inference engine) in that cluster state, by
the loaded optimized ML model, for each parallelism level, (c) the selection of the least CPU
intensive parallelism level that satisfies the QoS constraint, (d) and the final deployment of the
inference engine on the cluster, with the selected parallelism level.
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Figure 5.3: Online Custom, Model-Specific Scheduler Diagram of the parallelism level
selection process of a target inference engine, in order to satisfy a target QoS with minimum
resources utilization.

The custom, model-specific scheduler takes as input the name of the MLPerf Inference
benchmark that is going to perform either an image classification or an object detection task.
It also receives a desired QPS score that it aims to have as a lower bound for the performance
of the scheduled benchmark. This lower-bounded performance request would serve as a QoS
constraint in our scheduling mechanism.

When a scheduling request comes to our custom scheduler, it immediately collects a set of
various system metrics, regarding the current CPU and memory usage levels on the cluster,
every second, for a set duration of time, and it keeps the mean value of each metric over that
period of time. These metrics, about the current state of the Kubernetes cluster, derive from the
same queries that were used in the training of the ML Regression model, which our scheduler
is going to utilize.

After receiving the current system metrics, our scheduler loads the saved XGBoost Regression
model that has been trained for the MLPerf Inference benchmark that is to be scheduled. Then,
it executes the following procedure:

Depending on the backend (tensorflow or onnxruntime) the benchmark will use, it sets a value
to the corresponding variables (INTRA_OP_PARALLELISM_THREADS for the tensorflow
backend, OMP_NUM_THREADS and --threads option for the onnxruntime backend) of the
benchmark. The scheduler asks the Regression model to predict the QPS score the benchmark
would achieve, if it run with that parallelism level, under the interference conditions indicated
by the collected system metrics.

It repeats that procedure for all the possible value combinations of the suitable variables of the
benchmark (each value ranging from 1 to 8), storing all the QPS predictions of the Regression
model (one QPS prediction for each unique configuration of the benchmark, under the same
current system state), as well as the values of the benchmark variables that led to that prediction,
in an array.

After filling the array, it sorts it in two different ways. Firstly, it sorts it by the value of the
predicted QPS score, and saves the parallelism level of the benchmark that presumably
achieves the highest score in the current system state. The scheduler uses that configuration if
the QoS constraint is higher than the highest predicted QPS score, so that the benchmark will
run at the best performance possible.

If the QoS constraint is lower than, or equal to the highest predicted QPS score, the scheduler
proceeds in sorting the array by the amount of CPU utilization each entry has, in an ascending
order. Thereupon, it selects the parallelism level of the benchmark that will potentially result
in a QPS score that satisfies the QoS constraint (based on the value of the predicted QPS for
each parallelism level in the array) with the lowest possible CPU utilization.

The duration that a scheduled MLPerf Inference benchmark will run on the cluster for, as well
as the duration for which the custom scheduler will collect the metrics of the system, prior to
scheduling the benchmark, are both configurable.
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5.2.2 Model-less approach

In the model-less approach to our custom Inference Engine scheduling mechanism, we
introduce a new model-less interface, where developers need to specify only the task that they
want to execute (image classification, object detection) and the high-level performance they
require as a target QoS. The model-less scheduler, then, selects the best Inference Engine, from
a task-specific pool of registered, trained Inference models, with the appropriate parallelism
level to accomplish that job in the least resource intensive way, while aiming to satisfy the QoS
constraint under the current level of interference conditions in the system.

The steps our custom, model-less Inference Engine scheduler takes to deploy an inference
model in the Kubernetes cluster are the following: (a) The collection of system metrics for the
current state of the cluster, (b) the QPS prediction, for each parallelism level, of an inference
model, in that cluster state, by the corresponding loaded optimized ML model, (c) the selection
of the least CPU intensive parallelism level for that inference model, that satisfies the QoS
constraint, (d) the repetition of steps (b) and (c) for all the inference engines registered for the
requested task, (e) the selection of the {inference engine - parallelism level} pair that satisfies
the QoS constraint with the least CPU load, (f) and the final deployment of the selected
inference engine on the cluster, with the selected parallelism level.

The custom, model-less scheduler takes as input the name of the task, that the MLPerf Inference
benchmarks are going to perform, which is either image classification or object detection. It
also receives a target QoS, as a lower bound for the performance of the scheduled benchmark.

When a scheduling request comes to our model-less scheduler, similarly to the first step of the
model-specific scheduler, it immediately collects a set of various system metrics, regarding the
current CPU and memory usage levels on the cluster, every second, for a set duration of time,
and it keeps the mean value of each metric over that period of time.

After receiving the current system metrics, the model-less scheduler navigates the space of the
registered inference models for the requested task. Then, for each inference model there, it
proceeds in a similar manner to the model-specific scheduler, until it has the parallelism level,
and the corresponding QPS prediction, of each inference model, that would presumably satisfy
the QoS constraint in the least CPU intensive way, under the current interference conditions.

Subsequently, the model-less scheduler stores all the triples {inference engine — selected
parallelism level — predicted QPS in that parallelism level} in a list, one entry for each inference
engine that is registered for the requested task. It sorts the list by the amount of CPU utilization
each entry has, in ascending order. Finally, it selects to deploy the inference engine, at the
parallelism level it was paired with in the triple, that will potentially achieve a QPS score that
satisfies the QoS constraint (based on the value of the predicted QPS score, paired with the
inference engine in the triple) with the lowest possible CPU utilization.

In a similar way to the model-specific scheduler, the duration that a scheduled Inference Engine
will run on the cluster for, as well as the duration for which the model-less scheduler will collect
the metrics of the system, prior to scheduling the inference engine, are both configurable.
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Chapter 6
Evaluation

In this chapter, we use our experimental infrastructure to evaluate our custom model-specific
Inference Engine scheduling mechanism in a set of different interference scenarios. In addition,
we compare our proposed model-specific approach with the results of a scheduler serving the
MLPerf Inference benchmarks to run either with minimum or maximum resources utilization,
in the same interference scenarios. Finally, we evaluate and compare our model-specific
Inference Engine scheduler to our model-less approach of the inference serving, in one
interference scenario.

6.1 Scenarios Description

In order to evaluate our custom model-specific Inference Engine scheduler, as well as our
model-less Inference Engine scheduler, we generated 3 different interference scenarios to put
stress of varying intensity to the shared resources of the system while we executed our
experiments.

Each interference scenario consists of the deployment of a random number of “iBench” jobs
over Kubernetes, each pressuring one, randomly selected, specific shared resource of the
cluster (cpu, 12 cache, I3 cache, memory bandwidth or memory capacity). In the training
scenario used for the training of the ML Regression models, the total iBench jobs were
deployed at the beginning of the scenario, and they were present for the whole duration of the
scenario. In contrast to that, in the interference scenarios, there is a new set of 0 to 2 iBench
jobs being deployed after a random amount of time (10s to 30s) has passed from the previously
deployed set of iBench jobs. The iBench jobs in each set, put pressure on a randomly selected
shared resource, and the set lasts for a random amount of time (70s to 220s) before it is deleted.

This modification in the way the iBench jobs are being deployed, results in an interference
scenario that more closely mimics a real-world situation, where multiple different sources of
interference can be present, each lasting for a different amount of time, while new workloads
(Sols) begin pressuring the system, together with the current ones, and other Sols complete
their work and stop.

With the intention of having reproducible interference scenarios, so as to compare the behavior
of different Inference Engine schedulers in each one of them, we logged the order each set of
iBench jobs came, the shared resources the iBench jobs were putting stress on, as well as all
the time variables for each set of iBench jobs in a file.

Subsequently, we created 3 different interference scenarios for the cluster, which can easily be
replicated, and we used them to run our experiments upon.
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6.2 Experiments Description

6.2.1 Model-Specific Inference Engine Scheduler

For our first set of experiments, we use our custom, model-specific Inference Engine scheduler,
a scheduler that serves the MLPerf Inference benchmarks to run at maximum CPU utilization,
and a scheduler that serves them to run at minimum CPU utilization.

We measured the average amount of time required for the algorithm of the model-specific
Inference Engine scheduler to select the parallelism level, that meets the QoS constraint with
the least CPU utilization, of the next inference engine deployment.

Framework  Average Selection Time (S)
Tensorflow  1.08
Onnxruntime 1.24
Table 6.1: Average time required for the selection of the next configuration for deployment,
by the model-specific inference engine scheduler

The difference in the selection time of the algorithm between the two backend frameworks is
due to the larger QPS prediction array, the onnxruntime benchmarks have, as we control 2
variables for their parallelism level, instead of 1 for the tensorflow benchmarks.

The percentage of total CPU utilization (%usr + %sys)* that each combination of the
INTRA _OP_PARALLELISM_THREADS (tensorflow backend) or the
OMP_NUM_THREADS and --threads (onnxruntime backend) of the benchmark has, was
tested in the cluster with no external Sols, where a benchmark ran for a set amount of time,
during which we collected the core metrics of the system using the “mpstat” Linux command.
The resulting mapping of each parallelism level to a CPU utilization percentage was logged for
use by our custom schedulers.

Therefore, the following combinations of values for the benchmarks’ variables are used by the
min and max CPU usage schedulers.

Scheduler framework INTRA_OP_PARALLE OMP_NUM_T --threads
LISM_THREADS HREADS
min_cpu_usage tensorflow 1
onnxruntime 1 1
max_cpu_usage tensorflow 8
onnxruntime 8 1

Table 6.2: Combination of values for the MLPerf Inference Benchmarks’ variables, used by
the min and max CPU usage schedulers

An interesting observation from the mapping procedure we did, is that, when running in a
MultiStream scenario, the following combination of values for the benchmarks’ variables

* %usr: the percentage of CPU utilization that occurred while executing at the user level
(application). %sys: the percentage of CPU utilization that occurred while executing at the
system level (kernel). https://man7.org/linux/man-pages/manl/mpstat.1.html
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matches their default deployment, meaning their deployment without specifying a parallelism
level to them.

framework INTRA OP_PARALLELISM_  OMP_NUM_THRE --threads
THREADS ADS
tensorflow 8
onnxruntime 1 1

Table 6.3: Combination of values for the MLPerf Inference Benchmarks’ variables, that
match their default parallelism level

These results suggest that the max CPU usage scheduler will run the MLPerf Inference
benchmarks with the tensorflow backend at their default parallelism level, whereas the min
CPU usage scheduler will run the benchmarks with the onnxruntime backend at their default
parallelism level.

In each experiment, we start an interference scenario and, in parallel, we deploy the MLPerf
Inference Benchmarks, presented in chapter 3, as Kubernetes pods, by using our custom
scheduler. We also request the scheduler that the performance of each benchmark should
satisfy a specific QoS constraint. The benchmarks run in a MultiStream scenario, so we exclude
the tflite-mobilenet benchmark from our experiments, since it does not work in that scenario.
Each MLPerf Inference benchmark is deployed 10 consecutive times by the same scheduler
and it runs for a duration of 30 seconds in the cluster each time. Throughout the experiment,
the amount of interference in the cluster changes in accordance with the chosen interference
scenario. Our scheduler collects the metrics of the system for 5 seconds, prior to deploying the
next benchmark each time.

We repeat each experiment for 3 different QoS constraints, and with the use of 3 different
schedulers: our custom scheduler, the min CPU usage scheduler and the max CPU usage
scheduler. We also test the schedulers on 3 different interference scenarios and we compare
their results in section 6.3.

6.2.2 Model-less Inference Engine Scheduler
For the second set of experiments, we test our model-specific Inference Engine scheduler and
our model-less Inference Engine scheduler, using the inference engines from the MLPerf
Inference Benchmarks suite, presented in chapter 3, in a single interference scenario. Once
more, we exclude the tflite-mobilenet benchmark from our pool, as it does not work in a
MultiStream scenario that the benchmarks will run in.

We measured the average amount of time required for the algorithm of the model-less Inference
Engine scheduler to select a parallelism level, one for all the potential inference engines for the
next deployment, that meets the QoS constraint with the least CPU utilization, and then select
the least CPU intensive {inference engine — parallelism level} pair of them.

ML task Average Selection Time (s)
Image Classification 1.86
Object Detection 1.58
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Table 6.4: Average time required for the selection of the next inference engine, and its
configuration, for deployment, by the model-less inference engine scheduler

The difference in the selection time of the algorithm between the two ML tasks is due to the 5
inference engines for potential deployment that perform the image classification task, as
opposed to the 4 inference engines that perform the object detection task. Another contributor
reason is that there are 2 onnxruntime benchmarks in the pool of the image classification
inference engines, instead of the 1 onnxruntime benchmark in the pool of the object detection
inference engines. We recall that the onnxruntime benchmarks have a larger QPS prediction
array, as we control 2 variables for their parallelism level, instead of 1 for the tensorflow
benchmarks.

In each experiment, conducted to evaluate the model-less scheduler, we start the interference
scenario and, in parallel, we specify a task for the MLPerf Inference benchmarks to perform
(image classification or object detection). We also request the scheduler that the performance
of the deployed benchmark should satisfy a specific QoS constraint. The scheduler makes a
selection of what MLPerf Inference benchmark, from the task-specific pool, should run, and it
deploys it on the cluster as a Kubernetes pod. We ask the model-less scheduler to select a
benchmark 20 consecutive times, and each time the selected benchmark runs in the cluster for
a duration of 30 seconds. Throughout the experiment, the amount of interference in the cluster
changes in accordance with the chosen interference scenario. Our scheduler collects the metrics
of the system for 5 seconds, prior to navigating the space of the registered inference models for
the requested task, selecting and deploying the next benchmark each time.

As far as the experiments to evaluate the model-specific scheduler are concerned, they are
similar to the first set of experiments, with the following differences: there is a single
interference scenario, and our scheduler deploys each MLPerf Inference benchmark 20
consecutive times in the cluster, to run for a duration of 30 seconds each time.

We repeat each experiment for 3 different QoS constraints. The experiments on the model-less
design are conducted for 2 different tasks (image classification, object detection). We compare
the results of the two schedulers, in section 6.4.

6.3 Model-Specific Inference Engine Scheduler Results &
Scheduler Comparison

6.3.1 Violations of the QoS constraint

In the first set of figures, we examine the number of times a scheduler did not meet the desired
target QoS, but rather it scheduled an MLPerf Inference benchmark with a parallelism level
that scored a lower QPS than the QoS constraint. We compare the number of QoS violations
between our custom interference-aware scheduler, the min CPU usage scheduler and the max
CPU usage scheduler, with 3 different QoS constraints for each MLPerf Inference benchmark,
and at 3 different interference scenarios.
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Figure 6.1: Number of QoS violations comparison between the interference-aware scheduler,
the max CPU usage scheduler and the min CPU usage scheduler. There are 3 different QoS
constraints for each MLPerf Inference benchmark, and 3 different interference scenarios.

It is clear from the figures, that, typically, the lower the QoS constraint is, the better the results
are for each scheduler, meaning the number of QoS violations declines. However, we observe
that the min CPU usage scheduler cannot keep up with the middle and high QoS constraints,
essentially scoring below the QoS constraint for almost all 10 consecutive MLPerf Inference
benchmark deployments. This happens because the CPU usage restriction, the benchmarks
deployed by that scheduler have, does not allow them to perform very well and meet the higher
target QoS.

Our custom interference-aware scheduler appears to perform exceptionally at all 3 QoS
constraints on each MLPerf Inference benchmark, in all 3 interference scenarios. It manages to
keep the number of QoS violations significantly lower than the min CPU usage scheduler does
at all cases on a middle or high QoS constraint, and it performs better than or equal to the min
CPU usage scheduler at almost all cases on a low QoS constraint, where it sporadically appears
to scarcely surpass the number of QoS violations of the min CPU usage scheduler by 1.
Furthermore, our custom scheduler succeeds in performing remarkably better than the max
CPU usage scheduler does, on a benchmark with an onnxruntime backend. On the tensorflow
benchmarks, our custom scheduler’s number of QoS violations is quite similar to the max CPU
usage scheduler’s one, although our scheduler achieves that without utilizing the resources of
the cluster at max capacity all the time.
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As far as the min and max CPU usage schedulers are concerned, we notice some interesting
behaviors. First of all, for the benchmarks with the tensorflow backend, the max CPU usage
scheduler performs great, although at the cost of utilizing a large amount of the resources of
the cluster, even when that is not necessary to achieve the target QoS. Nonetheless, for the
benchmarks with the onnxruntime backend, the max CPU usage scheduler appears to perform
very poorly. When serving the onnxruntime-resnet50 benchmark, the QoS violations are low
for a low QoS constraint. However, the max CPU usage scheduler shows more violations as
the QoS constraint increases, and it performs the worst at the highest QoS constraint, matching
the deficient performance of the min CPU usage scheduler there. An even more unsatisfactory
behavior is seen for the onnxruntime-mobilenet and onnxruntime-ssdmobilenet benchmarks,
where, not only does the max CPU scheduler perform worse than the min CPU usage scheduler
at a low QoS constraint, its number of QoS violations at the low QoS constraint is almost as
high as it is at the higher QoS constraints, where the max CPU usage scheduler matches the
poor performance of the min CPU usage scheduler.

Despite the substantial number of QoS violations by the max CPU usage scheduler in the
onnxruntime benchmarks, our custom interference-aware scheduler seems to perform
outstandingly well when serving benchmarks with an onnxruntime backend. By looking at the
parallelism levels of the MLPerf Inference benchmarks that our custom scheduler chose at the
high QoS constraint, as opposed to the ones the max CPU usage scheduler uses, and checking
the mapping of these parallelism levels to the CPU utilization that we had logged, as described
in section 6.2, we came to the following conclusions:

When increasing the parallelism level of the benchmarks with the onnxruntime backend, both
the CPU utilization at the user level (application) and the CPU utilization at the system level
(kernel) increase in varying amounts, different for each inference engine, depending on the
combination of the values of the benchmarks’ variables. In general, the higher the value of the
CPU utilization at the user level is, the better the performance of the benchmarks.

The onnxruntime-resnet50 benchmark performs the best at a total CPU utilization of around
50%, whereas the onnxruntime-mobilenet and onnxruntime-ssdmobilenet benchmarks perform
the best at a total CPU utilization of around 30%, under interference. This is because the
external interference adds pressure to the CPU, essentially decreasing the available user level
time on the CPU for the benchmarks. When that fills up by either the benchmarks or the Sols,
any further increase in the total CPU utilization of the benchmark, imposed by the scheduler,
translates to an increase in the CPU utilization at the system level in the CPU, and a decrease
at the user level, which creates unnecessary stress to the CPU, and lowers the performance of
the inference engines, instead of improving it. This explains the resulting deficient performance
of the max CPU usage scheduler on the onnxruntime benchmarks, under interference
conditions.

It is worth noting that, when increasing the parallelism level for the benchmarks with the
tensorflow backend, the CPU utilization at the system level does not change. Consequently, as
the total CPU utilization percentage increases, the QPS scores of the benchmarks get better.
When the percentage of CPU utilization at the user level maxes out, either by the benchmarks
or the Sols, there is neither further increase nor decrease in the performance of the benchmarks
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for higher parallelism levels. This explains their resulting superior performance at a high total
CPU utilization, even under interference.

6.3.2 Resources Utilization

In the next set of figures, we examine what percentage of the resources of the cluster, the
deployed MLPerf Inference benchmarks were using, according to their chosen parallelism level
each time by the schedulers. More specifically, we compare the average CPU utilization
percentage of the 10 consecutive deployments of each MLPerf Inference benchmark on the
cluster, between our custom interference-aware scheduler, the min CPU usage scheduler and
the max CPU usage scheduler, with 3 different QoS constraints for each benchmark, and at 3
different interference scenarios.
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Figure 6.2: Average CPU utilization percentage comparison between the interference-aware
scheduler, the max CPU usage scheduler and the min CPU usage scheduler. There are 3
different QoS constraints for each MLPerf Inference benchmark, and 3 different interference
scenarios.

At a first glance at the figures, we see that our custom interference-aware scheduler manages
to achieve an average CPU utilization somewhere in between what the min CPU usage and
max CPU usage schedulers have. More specifically, our scheduler utilizes, on average, 2.4x
more CPU than the min CPU usage scheduler and 2.3x less CPU than the max CPU usage
scheduler. What that means is that, our custom scheduler is able to get close to or surpass the
QoS constraint for the majority of the benchmarks’ deployments, in contrast to the min CPU
usage scheduler, while also doing so at a lower CPU utilization than the max CPU usage
scheduler does.

In the benchmarks with the tensorflow backend, our custom scheduler utilizes significantly
lower CPU at a low QoS constraint than the max CPU usage scheduler does. The difference
becomes smaller the higher the QoS constraint gets, although our custom scheduler still
manages to use 15-35% less CPU than the max CPU usage scheduler does, at the highest QoS
constraint. As far as the benchmarks with the onnxruntime backend are concerned, our custom
scheduler utilizes far less CPU in order to meet the target QoS than the max CPU usage
scheduler does. More specifically, for the onnxruntime-resnet50 benchmark, our custom
scheduler uses half or less CPU than the max CPU usage scheduler does, while being capable
of presenting fewer QoS violations than both the min and max CPU usage schedulers do at
middle and high QoS constraints. As for the mobilenet and ssd-mobilenet benchmarks with the
onnxruntime backend, at an average of only about twice the CPU utilization of the min CPU
usage scheduler, our custom scheduler manages to have significantly fewer QoS violations than
both the min and max CPU usage schedulers have at middle and high QoS constraints.

6.3.3 Performance Distribution

In this set of figures, we examine the QPS score each MLPerf Inference benchmark achieved
in its 10 consecutive deployments served by each scheduler. We compare the performance
distribution over these 10 deployments, between our custom interference-aware scheduler, the
min CPU usage scheduler and the max CPU usage scheduler, with 3 different QoS constraints
for each MLPerf Inference benchmark, and at 3 different interference scenarios.
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Figure 6.3: QPS distribution comparison between the interference-aware scheduler, the max
CPU usage scheduler and the min CPU usage scheduler. There are 3 different QoS
constraints for each MLPerf Inference benchmark, and 3 different interference scenarios.

What is readily noticeable from the figures, is that for all the MLPerf Inference benchmarks in
all the interference scenarios, the median value of the performance distribution of our custom
interference-aware scheduler stays remarkably close to or, in most cases, above the QoS
constraint. In other words, our custom scheduler succeeds in meeting or surpassing the target
QoS in the vast majority of situations, where the interference intensity fluctuates, making it an
excellent choice for applications where an expected service quality is required.

Another interesting observation is that, in the cases of the benchmarks with the tensorflow
backend, at a low QoS constraint, both our custom scheduler and the max CPU usage scheduler
manage to stay above the QoS line. However, while our scheduler utilizes as much power from
the CPU as required to guarantee that it will meet the target QoS, the max CPU usage scheduler
overcompensates by utilizing all of the CPU and, thus, reaching far above the QoS constraint
with no reason. At a mid and high QoS constraint, the performance difference between these
two schedulers is lower, but still our custom scheduler manages to have a smaller interquartile
range than the max CPU usage scheduler does, meaning most of the QPS scores it achieves are
closer together, making it a more robust solution. It is also clear that the min CPU usage
scheduler cannot reach the target QoS at all if it is at a middle value or higher.

As far as the renset50 benchmark with the onnxruntime backend is concerned, at a low and
mid QoS constraint, our custom scheduler and the max CPU usage scheduler perform similarly
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well, hitting the target QoS most of the time, while the min CPU usage scheduler only manages
to do that at the low QoS value. At a high QoS constraint though, only our custom scheduler
manages to reach the required QoS, with the other two schedulers performing poorly.

In the onnxruntime-mobilenet and onnxruntime-ssdmobilenet benchmarks, our custom
scheduler presents a performance distribution with the highest probability of QPS scores
landing above the target QoS, for all QoS constraints. In contrast, the min CPU usage scheduler
only manages to reliably hit the QoS target at a low QoS constraint, and the higher the QoS
value gets, the worse its performance. As for the max CPU usage scheduler, both its median
value, as well as its interquartile value stay below the target QoS, at all QoS constraints.

6.4 Model-less Inference Engine Scheduler Results &
Scheduler Comparison

6.4.1 Violations of the QoS constraint

In the first set of figures, we examine the number of times a scheduler did not meet the desired
target QoS, but rather it scheduled an MLPerf Inference benchmark with a parallelism level
that scored a lower QPS than the QoS constraint. We compare the number of QoS violations
between our custom, model-less interference-aware scheduler (by specifying only what ML
task the inference engines should perform) and our custom, model-specific interference-aware
scheduler (that serves only a specific MLPerf Inference benchmark that performs that ML
task), at 3 different QoS constraints at each ML task, in a single interference scenario.
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Figure 6.4: Number of QoS violations comparison between the model-specific interference-
aware scheduler and the model-less interference-aware scheduler, at 3 different QoS
constraints for each ML task.

Beginning the analysis with the image classification task, we clearly see that the best
performers of all the MLPerf Inference benchmarks are the mobilenet with either an
onnxruntime or tensorflow backend, and the quantized mobilenet with the tensorflow backend.
The resnet50 benchmark, no matter the backend, violates all the QoS constraints at a higher
rate than the rest of the benchmarks do each time.

At a low target QoS, the model-less scheduler always uses the onnxruntime-mobilenet
benchmark, that never violates the constraint. A similar impressive performance is seen by all
of the aforementioned image classification best performers. When the QoS constraint is at an
intermediate value, our model-less scheduler uses the onnxruntime-mobilenet benchmark most
of the time, with a few changes to the tf-mobilenet. The model-less scheduler and the scheduler
with the onnxruntime-mobilenet show the least QoS violations.

At the high QoS constraint, the model-less scheduler uses the tf-mobilenet benchmark most of
the time, which has a higher QPS capability at a lower CPU utilization, and changes to the
onnxruntime-mobilenet for a some of the deployments. However, due to the varying intensity
of the interference conditions, the model-less scheduler relies on the QPS predictions of the
corresponding trained ML Regression model for each MLPerf Inference benchmark, in order
to choose the one with a high enough QPS prediction and the lowest CPU utilization. Because
the QPS predictions of the Regression model are not perfect and, especially as the interference
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intensity increases, their values can be remarkably close for the best performing benchmarks
and their parallelism levels, the inference engine substitutes, the model-less scheduler does,
could, sometimes, result in a choice with a lower real QPS score. Consequently, as is the case
in this interference scenario here, the model-less scheduler happens to violate the QoS
constraint slightly more often than all the three best performing benchmarks, although it still
performs well.

As far as the object detection task is concerned, our model-less scheduler mostly uses the
onnxruntime-ssdmobilenet benchmark on a low QoS constraint, resulting in a similar
satisfactory performance to the model-specific scheduler that only uses the onnxruntime-
ssdmobilenet, that meets the target QoS almost every time. We notice that the schedulers that
use the other MLPerf Inference benchmarks violate the low QoS constraint nearly twice as
often as the model-less scheduler does. Interestingly, for the mid and high QoS constraints, the
model-less scheduler turns to the tf-ssdmobilenet benchmark for most of the deployments. As
a result, it has around the same QoS violations, on average, with the model-specific scheduler
that serves the tf-ssdmobilenet, but it performs significantly better than the scheduler with the
onnxruntime-ssdmobilenet benchmark does. The schedulers that use the last two of these
MLPerf Inference benchmarks have a slightly worse performance than our model-less
scheduler in the high QoS constraint.

6.4.2 Resources Utilization

In the next set of figures, we examine what percentage of the resources of the cluster are offered
to the deployed MLPerf Inference benchmarks each time by the schedulers. More specifically,
we compare the average CPU utilization percentage of the 20 consecutive deployments of
inference engines on the cluster, between our custom model-specific interference-aware
scheduler, and our custom, model-less interference-aware scheduler, with 3 different QoS
constraints for each ML task, at a single interference scenario.
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Figure 6.5: Average CPU utilization percentage comparison between the model-specific
interference-aware scheduler, and the model-less interference-aware scheduler, at 3 different
QoS constraints for each ML task.

For the image classification task, the model-less interference-aware scheduler manages to keep
the average CPU utilization, at a minimum, across all QoS constraints, slightly lower than what
the onnxruntime-mobilenet benchmark of the model-specific scheduler achieves. We note that
the least CPU intensive benchmark, as served from the model-specific scheduler, is the
onnxruntime-mobilenet, with the tf-mobilenet and quantized tf-mobilenet falling behind. The
worst performer in all QoS constraints is, again, the resnet50 benchmark, with either of the
backends, which has the highest CPU utilization and, as we observed in the previous section,
the higher amount of QoS violations.

At the lowest QoS constraint, most of the benchmarks score a low CPU utilization value, as
they can reach that QPS with low resource usage. At the mid and high QoS constraints though,
the difference between the CPU utilization of the benchmarks grows bigger, with the model-
specific scheduler serving the onnxruntime-mobilenet benchmark, and the model-less
scheduler with the onnxruntime-mobilenet and tf-mobilenet substitutions throughout the
experiment, achieving the lowest violations of the target QoS.

As far as the object detection task of the MLPerf Inference benchmarks is concerned, the
model-less scheduler has, on average, the same CPU utilization, at all QoS constraints, as the
model-specific scheduler with the onnxruntime-ssdmobilenet benchmark, which is the least
resource intensive benchmark from this benchmark group. We should recall here that, despite
their similar CPU utilization, the model-less scheduler greatly outperforms the onnxruntime-
ssdmobilenet at the QoS violations at the mid and high QoS constraints, since it selects the tf-
ssdmobilenet then, most of the time.

We observe from the figure that, at the low value of the QoS constraint, the model-less
scheduler and the onnxruntime-ssdmobilenet use nearly half the CPU of the system as the rest
of the benchmarks do, while also scoring the fewest QoS violations. At the mid and high QoS
constraints, the model-less scheduler still performs better resource utilization-wise than the tf-
ssdmobilenet and its tensorflow variants, while having around the same QoS violations as them.

6.4.3 Performance Distribution
In this set of figures, we examine the QPS score each scheduler achieved in the 20 consecutive
inference engine deployments. We compare the performance distribution over these 20
deployments, between our custom, model-specific interference-aware scheduler and our
custom, model-less interference-aware scheduler, at 3 different QoS constraints for each ML
task, in a single interference scenario.
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Figure 6.6: QPS distribution comparison between the model-specific interference-aware
scheduler and the model-less interference-aware scheduler, at 3 different QoS constraints for
each ML task.

Beginning our observations from the image classification figure, the model-less scheduler
manages to contain its QPS scores relatively close to the low and mid QoS constraints, where
its performance distribution is quite similar to the onnxruntime-mobilenet at both these cases.
At these lower values of QoS, the other benchmarks present a wider QPS distribution. It is
obvious that, at all the QoS constraints, the resnet50 with tensorflow backend drifts its
interquartile range considerably low, resulting in an increased number of QoS violations. What
is more, the onnxruntime-resnet50, while not as bad, still has a distribution that leans into lower
levels than the QoS constraint.

At the highest QoS constraint, the model-less scheduler shows more performance variability
than either the onnxruntime-mobilenet, the tf-mobilenet or the quantized tf-mobilenet, due to
some unfruitful decisions on inference engine changes, which costs it a few QoS violations.
However, as we see from the figure, the interquartile range of its QPS distribution still remains
above the QoS constraint, resulting in a good overall performance. The onnxruntime-mobilenet
is the more robust performer overall, and especially at the high QoS constraint.

Shifting our observations to the object detection task, we see that the model-less scheduler has
a very concentrated QPS distribution at the low QoS constraint, similar to the model-specific
scheduler that serves the onnxruntime-ssdmobilenet benchmark, while the tensorflow ssd-
mobilenet variants have far more disperse QPS values. As the QoS constraint increases, the
model-less scheduler widens its performance distribution by changing almost exclusively to
the tf-ssdmobilenet benchmark, something that allows it to keep up with the QoS constraint, as
opposed to the onnxruntime-ssdmobilenet, which eventually completely misses the target QoS
at the high value.
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Chapter 7
Conclusion

In this thesis, we designed an interference and resource aware, predictive scheduling
framework, for ML inference engines, in order to meet application-specific QoS constraints,
while being as little resource-intensive to the system as possible. We also extended our design
to a model-less scheduling framework to deal with the large number of diverse inference
engines. We evaluated our proposed scheduling framework, by using a set of inference engines
from the MLPerf Inference Benchmark Suite on Kubernetes system, at different interference
scenarios, generated with the use of the iBench workload suite. We showed that for a set of
different required QoS constraints, our scheduling framework violates QoS constraints, on
average, less often, with a more robust performance around the target QoS, and with a moderate
amount of CPU resource utilization depending on the target QoS and resource load, compared
to the min and max CPU utilization inference serving system. Finally, we showed that our
model-less approach further improves the average number of violations of the QoS constraints,
and the average CPU utilization of our scheduling framework.
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