7/
&S

o4

aveeop

l\ﬁw/
I ==

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Communication, Electronic and Information Engineering

Computational Methods for
Automatic Analog Integrated Circuit
Design

PhD Thesis

Konstantinos Touloupas

Supervisor

Paul Peter Sotiriadis, Professor, NTUA

Circuits & Systems Group
Athens, December 2022






7/
&S

o4

aveeop

hmw}
I ==

Edvixd Metoofio ITohuteyveio

2yxory Hhextpohoywv Mnyavixav & Mnyovixwy Trnohoylotodyv
Topéac Emxowvwwvinv, Hiextpovirc & Lvotnudtwy ITinpogopuxnic

Y roloyicTtixol Me9Joodot yia tnv
AvTtopotn Xyedilaomn Avaroyixwy

Muxponiexteovixwy Kuxhwudtwy

Awoxtopury Alotelf3n

TOV

Kwvotavtivou TouAoOtax

Enrénwy
[Tadrog IEtpoc Ywtneiddne, Kodnyntrc, EMII

Circuits & Systems Group
Adnva, AexéuPerog 2022






l\mzw
==
nvpPPopos

National Technical University of Athens

School of Electrical and Computer Engineering

Division of Communication, Electronic and Information Engineering

Computational Methods for
Automatic Analog Integrated Circuit
Design

PhD Thesis by

Konstantinos Touloupas

Advisory Committee:
Paul Peter Sotiriadis Nikolaos Maratos Ioanna Roussaki

Professor, NTUA  Professor Emeritus, NTUA Assistant Professor, NTUA

Approved by the seven-member examination committee on 14,/12/2022.

[}

I
i ,_f /f/’"(

Paul Peter Sotiriadis  Ioanna Roussaki ~ Athanasios D. Panagopoulos Dimitra I. Kaklamani
Professor Assistant Professor Professor Professor
NTUA NTUA NTUA NTUA

o/ )
\,—’:— ) (/\(‘ |- >

Nuno Calado Correia Lourengco Giorgos Stamou Stefanos Kollias
Researcher Professor Professor
Instituto de Telecomunicacoes NTUA NTUA



Kwvortavtivoc TouvAhoUrac

Awmhwpatovyoc Hiextpohdyog Mnyoavindg xou Mnyoavixodg Troroyiotodv E.M.II.

Copyright (©) Kwvotavtivoc Tovholrag, 2022
Me empOroln navtog duxanwpatoc. All rights reserved.

Anoryopeletan ) avTiypapt|, anoUhXELCT) xou SLtvoUT] TG TapoUcos EpYaciag,
€€ OhOXAAEOL 1) TUAUATOC AUTAC, YL EuTopixd oxond. Emteénetan n avatinwon,
anoYRxeLoT) xou BLaVOuUY| Yot GXOTO 11N} XEEOOOHOTUNO, EXTIUDEVTIXAC 1) EQELYNTIXG
pOoNg, LTS TNV TEOVUTOVEST] VoL AVAPERETAL 1) TTNYY| TEOEAELOTE XAl Vo dlatnpeeitan
T0 ooV Urvuua. EpwtAugata tou agopoly T yenon tne epyaciog yia xEpdooX0TUXO
ox0T6 MEENEL Vo aneLPOVOVTAL TEOS TO CUYYEUPEQ.

Ou anddeic xou o CLUTEPAOUATO TTOLU TEPLEYOVTOL OE AUTO TO EYYPUPO
expedlouv To ouyypapéa xaL dev TEENEL Vo epunvevdel 6Tl avTitpocwrebouy

Ti¢ emlonueg Véoeig tou Edvixod MetodBou Ioluteyvelou.



Abstract

For decades, the semiconductor and electronics industry have seen great progress,
fueled by the continuous scaling of transistor dimensions. Integrated circuits in the sub-
pm range have been extensively utilized in the electronics industry. Nowadays, with
Moore’s law coming to an end, transistors’ gates have reached unprecedented lengths.
The eventual power and speed gains, however, come with an increase in complexity
and in design considerations; random variations in the manufacturing process induce
variations in circuit device parameters and effectively lead to low-yield designs. Design
verification is constantly becoming more cumbersome for circuit design, especially in
the case of analog circuits.

Circuit designers have traditionally resorted to Electronic Design Automation (EDA)
tools for complex circuit design. Given sets of device compact models, named Process
Development Kits (PDKs), EDA tools can simulate complex circuits and can be used
for verification purposes. In the case of digital circuitry, established EDA tools provide
automation solutions for designers to avoid cumbersome, repetitive tasks and focus
on the core design. Analog and Radio-Frequency (RF) circuit design, however, has no
established means of automation.

This thesis presents methodologies for analog and RF circuit automatic sizing. From
a high-level perspective, the contributions of this work lie in two factors; 1) The pro-
posal of a family of black-box optimization algorithms, which take advantage of recent
machine learning developments to accelerate and improve the exploration of the cir-
cuit’s design space, and 2) the development of a framework for procedural simulation
execution and optimization definition, based on commercial circuit simulators. The pro-
posed framework exposes a user-friendly Application Process Interface (API) that can
be used by designers to execute ad-hoc optimization problems and guide the sizing of
their circuit.

The first thrust of this thesis is the study of automatic circuit sizing in the context of
black-box simulation-driven optimization. We apply and compare black-box optimiza-
tion algorithms for the nominal sizing of analog and RF circuits, compare their per-
formance and discuss their ability to provide feasible solutions within given evaluation
budgets or time-frames. Taking into account that most black-box algorithms operate
on continuous spaces, we define a new mutation and crossover operation for Evolution-
ary Algorithms (EAs) and apply it for circuit sizing. The aforementioned principles are
studied for both the case of Single-Objective (SO) optimization and Multi-Objective
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(MO) one, when design-space exploration and feasible performance space needs to be
found.

To reduce the cost of optimization in the sense of reducing the number of costly eval-
uations, we consider next the case of low budget optimization algorithms. In this setting,
a new SO Bayesian Optimization (BO) algorithm is introduced. The use of Gaussian
Processes (GPs) and a new, batched acquisition function relying on Thompson Sampling
(TS) reduces the effective time for each optimization run. Taken into account the fact
Gaussian Processes require O(n?) time for inference, kernel approximations are intro-
duced to the GPs by using inducing points. In addition to the above, a new framework
is proposed in which the GP models are restricted to model certain hypercubes of the
design space. This approach, which is motivated by the concept of trust-regions in the
EA literature, provides exquisite constraint-handling capabilities, is scalable in terms
of input parameter space and proves favorable against other BO approaches as well as
other EA algorithms.

To extend the concept of local-based BO in the case of multiple objectives, a new,
batched, Local Constrained Multi-Objective Bayesian Optimization (LoCoMOBO) ap-
proach is put forward. This MO optimization algorithm not only assists designers to size
circuit-blocks, but also to assess the attainable performance metrics of a given topology.
LoCoMOBO utilizes trust regions, and uses a Hypervolume-based acquisition function
to define future query points for evaluation. In addition, TS is replaced with Random
Fourier Features so as to ensure both that the design space is properly explored, in
high-dimensional spaces.

To efficiently traverse mixed-variable input-spaces, where some parameters are con-
tinuous while others are integer-valued or categorical ones, a deep learning scheme that
derives continuous representations of integrated devices is put forward. The core model
is a Variational Autoencoder (VAE), which uses label guidance to transform the devices’
input parameters to continuous-valued latent ones. The original device parameters are
substituted by the VAE’s latent variables in the optimization-based automatic sizing
formulation, which is solved using the proposed local-based BO with satisfactory re-
sults.

In the final chapter, the conclusions of the conducted research are drawn, guidelines

for future work are provided and potential impact on industry and society is discussed.

Index Terms Analog Integrated Circuits, automatic circuit sizing, black-box optimiza-
tion, Evolutionary Algorithms, Bayesian Optimization, Gaussian Processes, Thompson

Sampling, Random Fourier Features, Deep Learning, Variational Autoencoder.



IlepiAndn

[o Bexaetieg, N Prounyavic NUAYWYOY Xol NAEXTEOVIXGY €xEl ETUDEIEEL UEYAAN ovd-
TTugy, xuplwe AOYw NG adWdXOTNG cupEixvwong Twv BlacTdoewy Twv Teaviictop. Olo-
XANEOUEVO XUXADUOTA OE TEYVOLOYIEC XATW TOU EVOC ULXPOUETEOL €YOUV Yernotdonoiniel
EVPEWS O EUTIOPIXES NMAEXTEOVIXEC CUOXEVES. LTIC WERPES Wog, xodwe o vouog Tou Moore
TAnoldlel oto TéAog Tou, 1) SLdc Tao TwV TeavlioTop ExEl YTdotel ot TOD wxpd peyédT. To
XEQEOT) O EVEQYELOXT] AMODOGCT] XoU TUYUTNTA TOU TEOXVTTOLY, OUMGS, EMLPUALCCOLY BUCKO-
AMeg otnv oyedloon: oL un Wavixég cCLVUAXES XATE TNV BLUBXACTN XATACHEVHE TEOXANOUY
OLAXVUBAVOELS OTIC TUEOUETEOUS TWV TEAVCIoTOP TOU XUXAOUATOS Xl 0BNYOLV OUGLIGC TLXd
og xuxAopaTo younifg anddoong. H enaifteuon tne Aertovpyiog evog xuxhouatog yive-
TOL CUVEY WS TLO ETUTOVN YLl TOUG OYEBLAC TES, WLATEQX GTNY TEPIMTWOT TWV AVAAOYIXDV
ONOXANPWUEVODY HUXAWUATWY.

Ot oyedlao TEC XUNAWUATWY ToEABOCLIXA YENOULOTOL0Y EpYaAEld auTOUATOTONGNS 1)-
Aextpovixol oyedoouol (Electronic Design Automation - EDA) yio tnv oyedioon nepi-
TAOXWY XUXAWUATWY. Me dedouévo éva olvoro amd HOVTENA TwV BLUTAEEWY NUIAY WYY,
o onolar avapépovtar we Process Development Kits (PDKs), o gpyaleia autd propolv
VOl TPOGOUOLOVOUY TERITAOXA XUXAMUOTA X0t VoL Yenotporoindoly yia emahdeuor. Xtnv
TEEinTOoN TV PNPLIXOY OAOXANEOUEVLY XUXAOUATWY, xothepnuéva epyoheia oyediaong
EDA ypenowomowodvton and Toug GYEBIUOTES Yo VoL TNV EXTOVNOY| ETOVOAUUBOVOUEVLY
BlERYUOLDY, YEYOVOS oL Blacohilel TNV amodoTixy TNV epyacia TOUg ot TNV TOLOTNTA
TOU TEAXOU TEOLOVTOC. LTNV TEPIMTWOT TV AVUAOYIXWOY XUl TNAETUXOVWVLIXODY KUXAW-
HATWY, Opwe, TapouoLa epyahelo dev elvon dordéatyua.

H Soteif3n) auth napoucidlet uedodohoyieg yior TNV auTOUATY BlAo TACLOTOMOT) AVaAOYL-
XV XL TNAETUXOVWVIAXDY XUXAOUATOVY. Ao YeEVIXHC dnodng, 1 CUVEIGPOEA TNG BOUAELAS
mou apovactdletar evtonileton oe dVo onuela: 1) Tny npdtaon pog owxoyévelog ahyopld-
nwv Bedtiotonoinone wodpou xoutol (black box), ou onolol ypnowonowlyv tpdopates
TEYVIXES UMyoviXrc wddnong yio var EmToyUvouy xou va BehTidcouy TNy eEepelvnoT Tou
XWEOoU NIGEWY TV TEOBANUATOY BEATIOTOTOINONS XUXAOUATOY Xxou 2) TNV oavanTUEn EVOS
epYUAElOL YL TNV OLOIBXACTIXT] EXTEAECT] TPOCOUOLCEWY X0 TOV OPLOUO TEOBANUATWY
BeAtioTomoinong, Ye Yo EUTOPIXMY TpocouolwT®wy. To epyalelo mpoopépet ular @Lhixy
Tpoc Tov Yo dienapn dwdixaciog epapuoyic (API) mou urnopel va ypnowonowmdel and
TOUC OYEBLAOTES YL TNV EXTEAEOT) TROBANUdTwY BehTioTomoinong xan vo xododnyroeL TNy
OLIC TACLOTIOINGY) TV GTOLYEIWY TOU XUXADUATOS.

To mpcdto Yépog tng dateBric mepthauPBdvel TNV YEAETH TNC AUTOUATNS OLUC TACLOTOL-
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NONG HUXAWUATLV Ue YpNom BeATioToToinoy Hadeou XOUTIOU Xl EUTOPIXMY TEOCOUOLW-
T0v. Egopudélovue xan cuyxpivoupe ahydprduous podpou xouTiol yia TNV TUTXY, Ywelg
OLUXUUBAVOELS, OO TACLOTIOMNGCT) AVAAOYIXGV XAl THAETUXOWMVIOXDY XUXAOUATDV XAl GYO-
MACouUE TIC AmOBOCEL TOUC WS TPOS TNV €VPECT] EQPIXTAOV AUCEWYV PECA OE YEOVIXE 1|
unohoyLlo Txd Gpta. Aedouévou 6t 1 Thetodmepla Twv olyopldunmy poieou xouTio) EQupUo-
Cetou o cuveyelg ywpeoug avalhtnong, opllovpe xavolploug TEAECTES LT TAVEWOTG Kol
petdhhagne yior E&ehixtinoic Ahydprduoug xaL Toug Yenolonololue 61N SLoc TacloTolnoT)
xUXALUATRY. Ot tTekeotéc autol eéetdlovton 0o ota mAalola BeATioTonoinong evog 660

XL TOAATADY GTOY WY, OOV oY VOUV TEPLOPLOUOL YLoL TNV ATOBOCT] TWV XUXAWUATLY.

[Mo vae pewwdel to x60Tt0¢ e Pehtiotomoinong 6cov agopd Tov aptdud TV x0cTo-
Bopwv mpocouoldoewy, eEeTdlouue enione TNV xhdon Twv ahyoplduwy BeAticTonolnong
YounAic derypoatoAndloc Tou yweou avalAtnong. Xe auth TNV TEpinTwoT, €vag VEoS ah-
Yéprduoc Mrebliavic BeAtiotonoinone evdg otdyou npotetveton. H ypron I'vaouciaviv
BLAdLXOOLY XOUL HLoG VEOG ouvdpTNnoNne andoxtnong nou Poaoiletoan otnyv teyvinr) Thompson
Sampling yelvel anoTeAeoUATIXG TOV YeoVo exTéleanc Tne Bektiotonoinong. Aedouévou
6Tt ot I'raovolavée dradaoies éxouv O(n3) nohumhoxdtnto Yoo tedBAed, tepthauBdavou-
UE €VOL TPOCEYYIOTIXO TUPHVAL UE Ypriom onueiwy emippotc. Emnpdoldeta, npotelvouue ulo
xawvolpla uedodoroyilo oty onolo ol I'xaouoiavég dladixaoiec neploptlovtan evtog unep-
x0Bwv otov yhpeo avalhtnone. Autrh 1 mpocéyyion, mou avtAiel unveuor and TNV o
e meploy g eumiotocuvng otnyv BiBhoypapio v Eéehxtindv Alyoplduwy, napouoid-
Cel e€onpeTixr) BUVATOTNTA GTNY EVPECT] EPLXTAOV AUGEWY, XAWLUXWVETOL OE OYECT UE TNV
BLdoTaom TOU YWEoL avalATNONG XL ATOBEIXVUETOL TROTYMTEN OE OYEON UE GAAOUS OAYO-

erduoue Mnrebliavic Behtiotonoinong xodae xou dhhoug E&ehintinolg alyodprduouc.

[o Ty eméxtaon g Wéac e Tomxc Mnebliovrc BeAtiotonolnone o mpofiruota
TOAMATAOY GTOY WY, meotelvetan Wwlor véo, moedhhnAn, tomxn Mneblioavr Beltiotomnoin-
on Ioloamhov otoywv pe neptoplopols (Local Constrained Multi Objective Bayesian
Optimization - LoCoMOBO). O alydprduoc autde molamhedv otoywmy Bondd toug oye-
OLAC TEC OYL UOVO VO BLAC TAGLOTIOLAGOUY TA XUXAOUATE TOUG AUTOUAT, ARG XOL VO EXOUV
EXTIUAOELS YOl TLC EPIXTES ATODOCELS BLUPORMY XUXAOUATIXWY ToTtoAoylwy. O LoCoMOBO
YENOWOTOLEL TEQLOYES EUTLOTOCUVNG XOU Lol GUVAETNOY) AMOXTNONE OV YEYNOLLOTOLEl TUES
uTEEGYXOL Yo Vo oploel Ta emdpeva onueia Tou Ya yivouv mpocopolwor. Emniéoy, 1 duo-
owaoio Thompson Sampling yenowonotel Tuyaioa Xapaxtneiotind Pouvplé étol dote va
yivetan xohOtepn e€epelVNOT TOU YWOEOU ELGOBOU, aXOUT| XU OE TOMES DIUOTAOELS.

[o Ty anotekeoyotiny e€epebivnon ywewyv avalitnong pe uixtol tinou petafBAntéc,
OTOL OPIOUEVES ToEAUETEOL elval cuveyelc Ve dhAeg elvon axéponot apLdUol 1 XoUTNYOopIXES
uetaBAnTé, npotelveton piot ué€Yodog Borddc unyovixic Ueinong Tou TapEyEeL GUVEYELS ovo-

TAEAC TAGELS YLt Tot XUuxAwpatixd ototyeio. To xuplwg povtéro eivar Evag evarlacoduevog



XWOLXOTOMNTAC oL Ypnotwonolel xadodRyNon EMYPUPNC YLt Vo UETATEEPEL TIC TopoEé-
TEOoUg TV oTolyelwy ot cuveyeic yetofAntéc. O Aavddvouoeg uetoAntég Tou povtéhou,
mou elvan ouveyelg, avtixahoToly TIC UETABANTEC TWV CTOLYEIY GTOV OploUd TOU TEOo-
BAuatog Bertictonoinong. H enlhuor tou mpofAfuatoc e tov véo oploud yiveTon Ue TNV
npotevouevn Mrebliavy Behtiotonolnom xou emBelxvUeL LXAVOTOINTIXE ATOTEAECUATOL.
210 TEMXO XEPAAAMO, TO CUUTERAOUATA TNG €pELVOG oL BLe€y¥n BlUTUTWVOVTL, Xo-
tevdivoelc Yo yehhovTixée e€eMlelc Tne Bovkelde avagépovton xan oulnteitan 1 mdovy|

ETEEOT TNE BOVAELAS AUTAC GTNY Plounyovior xou TNV xovmvid.

A€€eig KAetdid Avahoyind 0AoXANEOUEVO XUXAOUNTA, AUTOUNTT BlIC TACLOTOMOT) XU-
xhoudtwy, BeAtiotononor uadeou xoutiol, Egehxtixol Akyodprduol, Mnebliovr Behti-
otonomon, I'raovciavéc Awbixasciec, Thompson Sampling, Bohd Mdinorn, Evorhaco-
uevog Kodixonomntig
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Extetopevn Ilepiindn

H rapodoa dlatefr) mpaypotedetar TNy dlatimwon tne dladixaciag dlauotactonolinong
ONOXANPEWUEVODY AVOROYIXWY X0 UPIOLUY VLY XUXAWUATWY »¢ TEOBANua BeATio Tonolnong
xado¢ xou TNV avanTuEn ohyoplduwy yio TNy autdpaty enthucy| Tou.

ONOXANEWUEVA XUXADUATA, 1) AAMMDS TOLT, Elvol UVORA Ao NAEXTEOVIXE GTOLyElo To
onolo xotaoxeLdlovTol 6e Eva X0, ENINEDO XOPUATL NULoYwYoU, cuvAlne Tupttiou. LTic
uépec pag, peydhot aprduol pixpooxomxtv MOSFET (tpavlictop nediou Spdone oewdiou
METEANOU-NIULOLY (Y (IV) EVOWUATOVOVTAL OE UXE3 TOLT, OONYMVTIS GE XUXADOMUATA TOU Efvol
Taéelc peyéoug pxpdtepa, TayOTER Xl AYOTERO oxpLBd amd oUTE TOU XUTUCXEVALOVTOL
and ToEadOCLONS BLAXELTE NAEXTEOVIXA EEUPTAUITA. 2Tl TAEOVEXTAUINTA TOUC GUYXAUTOAE-
yetan 1) duvotdTnTa Lolixhg Xt aglOTo TNG TUPAY WY NG, YEYOVOS Tou €xel dlacalioel TN
Taryelor LVLOYETNOT TUTOTOINUEVKY TOLT G TY VEOT TV OYEdY TOU YENOLLOTOLOUY Lo ELTd
teavliotop. Ta toun ypnowonowivian TAéov oyeddv oe 6Ao Tov NAExTEOVIXS e£oTAMOUO
xal €Y0UV QEREL ETAVAC TAUOT GTOV XOOUO TV NAEXTEOVIX®Y. Ol UTOAOYIGTES, To XvNTd TN-
APV X0 GANEC OLXLAXES CUOXEVES ATOTEAOUY TAEOV OVUTIOCTAC TOL UEQRT) TWV GUY Y POVWY
XOWWVLOV, X YIvovTow EQUXTE amd TO Uxpo HEYEVOC Xl TO YOUNAG KOG TOC NAEXTEOVIXV
CUCTNUATWY, OTWS Ol CUYYEOVOL ENEEERYAC TEC UTOAOYLIOTMY XAl Ol UIXQOEAEYXTES.

H evowyudtwon mohd peydhne xhipaxac (Very Large Scale Integration - VLSI), dnio-
ON) 1) XATAOXEUT) ONOXANOWUEVLY HUXAWUATWV UE EXATOVTADES YIAADES EWC OLOEXATOUULVELAL
TeavlicTop, elvon duvath yden oTig TEXVOROYIXES EEENEELC OTNV XATAOKEVT| OTOLYEIWY T)-
Ry wy v yetdhhou-o&ediov-tupttiou (MOS). And v xataoxeun Tou TEATOL TOLT TNV
dexoetio Tou 1960, 1 TaydTNTA XU To PEYedbc Toug BeATiwvovTal otadepd. O xOplog Adyog
Yior qUTO TO Qouvouevo efvan 1 cupplxvwon g eAdylotng dldotaong Twv TeaviicTop Tou
UTOPOUY VO XATACKEVACTOUY. Bumelpixd, ta otolyela Tou TEQIEYOVTOL GTO TOLT GUVEYMS
yivovtan mo uixed, yeyovog mou odnyel otov dithactaoud tou aptdpol Twy TeavllcTop Tou
repthopBdvel €va Town xde dietion. H mo muxv ohoxhrpwon teavlictop ota Tolm 0dnyel oc
TAEOVEXTHUATA OIS YoUNAT xaTorvdhwon xan uhmidteen ToydtnTa. ot Ty oryopd nuLorye-
YOV, OUWC, 1) CLEEIXVWOCT] TWY BLIC TACEWY EMEPERE CNUAVTIXT] OLXOVOULXT| AVATTUEN, AOY®
NG BUVATOTNTAS YL EVOWUATWDOT TOAGDY, BLAPORETIXMY Xl TOAITAOXMY AELTOURYLWDY G T
CUYYEOVA TOLT Xail TNS VOYETNONC TOUG amd TOARES BLAPORETIXES Blounyavies.

Trdpyouv 600 xVpLOL TOTOL NAEXTEOVIXMY XUXAWUATWY TOU UTOEOUY VoL OAOXANRwHOUY
O TOLT, ToL AVAAOYLXA o Ta Pnepraned xuxhoporta. To Prgloxd xuxAduota AettovpYolV oe
OHUOTA TTOLU €YOUV BLOXEITES TWES, xUPleS duadixéc. Avtideta, Tor avohoYXd XUXAGUOTO

AELTOLEYOUYV GE NAEXTEA ofjdorta e GUVEYELC TES. O pOAOG TWV AVIAOYIXDY XUXAWULTLY
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o T TOLT Elval 1) VAOTIONGT) BLETOP@Y e TO PNPLoxd xouudTL xan To e€wTepind TEPBAAAOY.
Avtidétwg, To Pngraxd xUXAOUATH VAOTIOLO0Y T TEPLOCOTERES AELTOURYIEC Xol XATOAOY-
Bdvouv YeYaADTERY ETLPAVELX OE GYEDT UE ToL avaAoYIXd. ‘Oume, Tor avahoyYLXd XUXADOUATA
elva 0 BUGKOAOTEQOC XA TILO ATALTNTIXOG TUPAYOVTOG XUTH TO OYEDIACUO ONOXATPWUEVLY
CUC TNUATWY, YEYOVOS ToU o@elheTton oty QoY Toug. Evdd tor dmpromd xuxhopata yenot-
HoToloLY ohpaTa Ue BVO OLaxEltés TIES xan efvon To avIeEXTIXd OE UN-LOoVIXS QaLvOuEVa,
1 oYEBOON AVAAOYIXDV XUXAWUATOY TEENEL var YiveTar Pe Bdom T QuoLxy| Tou BLETEL TNV

XAUTUOXEVY| TWV OAOUANPWUEVLYV XUUAWUATGY Xt omantel EOLXEC Oe&loTNTES.

H oyedlaon twv avahoyindv ohOXANEOUEVODY XUXAWUATWY EVAL AmonTnTIXY xou YioL €-
vay emthéov Aoyo. O ywpoc oyediaong, dNhadh T0 GUVORO TWV TV TWV UG TACEWY TWV
NAEXTEOVIXWY O TOLYElWY TOU TEQLAAUPBAVOUY Tal AVIAOYIXE XUXAGUATA XIS Xl O TEO-
TOC UE TOV oTolo auUTd BlacLVEdOVTL, Elval TEAXTIXG AMEPLOPLOTOC. LTNY TEALT, UTEEYOUV
TOAAEC TOTOAOY(EC AVOAOYIXOY XUXAWUATWY OV TEOCPEQOLY TUPOUOLES AELTOURYIES, Xou 1|
anOQUOY Yo TNV ETAOYT WO EVAVTL TV UTOAOITWY BeV elvon Tpo@avic, Xl e&ooTdton
and TNV QUOT NS EXAOCTOTE EQupUoYTS. EminAoy, 1 BlacTaclononoT Ty XUXAWUATIXGDY
oToyelwv amaitel TNV EMAOYY| TGV Ao €V GUVEYES EVPOC, EVE O YWEOG ENBOONS TWV
XUXAWOUATOY, ONAAOY| TO GOVOAO TWV TWOV TWV UETEIXOV TOU TEPLYPAPOLY TNV AELTOUE-
via TV xUXALPATWY, oYeTileTal dUecH amd TNV EMAOYY| TWV OLACTACEWY TWV CTOLYEIWY.
Hhextpuéc 1010TnTeS, ONMS Yo TOEAOELYU TWES TACEWY X0l PELUATWY, TUlOUY CNUOVTI-
%6 pONO G TNV ENBOOT TOU EXACTOTE XUXADUATOS, YEYOVOS TOU BEV apYVEL TEPLIMELAL YLl
NV voVétnon tepyixov Yedodwy oyedloong. Avtideta, cuutepLpopxd LOVTERA UTOPOUY
Vo yenolonondolyv 6Ny TeplmtTtmwan TwV Preloxey XUXAOUSTWY, AToXpOTTOVIIS Atd TOV
oYEBLCTY pouvoueva 1 hoyxéeg yaunhol emmédou. Ta mopandvey cuvnyopolv oTo Ye-
YovOg OTL 1) OYEBlUGT) AVOAOYIXDY OAOXANEWOUEVLY XUXAOUATWY anawtel colopd aprdud
EQYATO-WPMYV, TUPEOAO TOU 1) AELTOURYIN TOUC GTA OAOXANPWUEVA XUXADUATH EYEL TEQLOPL-

oTel oNuavTIXd.

Ot oyedLoTEC OAOUANPEWUEVLY XUXAWUATOV TOEUBOCLIXE YENOLOTOLO0Y EEELOLXEVUE-
va epyahelor hoylowxo0, ta onola fondoldv otny diayeiplon oyediwy e e€oupeTind pueydro
aptdud otowyeiwyv. Ta epyahelor autd avapépovion we epyoahela Hlsxtoovns Avtduarns
Yyediaonc (Electronic Design Automation - EDA) xou ewofydnoov oty Bloynyavio tnv
dexoetia Tou 1980. Ltig pépeg pog, ta epyoreio EDA nopéyouv otoug oyediaotéc dnpla-
AWV XUXAWUATWY TNV BUVATOTNTA VoL 0pILOUY XUXADUATA UE TEOTO AUPUUEETIXG, TOU TOUG
EMTEETEL Vo E0TIACOUY GTNY AELTOLRYIA TOU XUXADUATOS X0l GTOV TEPLOPLOUO ETOVOO-
Bavouevewy dladixaoley Ye dounuévo teomo. To anotéheoua authg TN duvatdTnTag elvon 1|
XATAXOELPT) AOENCT O TNV ATOBOTIXOTNTA TWV OYEDIC TV, XAl 1) CYEDUCT) ONOXATPWUEVGLV

PNELIXDY HUXAOUATWV UE DIOEXATOUUDPLO EVOWUATWUEVA CTOLYEldL.

LNV neplnTwon TV avahoYIXMY XUXAWUATOY, OUwe, Ta epyaielion EDA dev éyouv npo-
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opépel TopouoLleg duvatdtntes. H yeron apaipeTinhc AoyxAc Yot TNy oyedloon avahoyixmy
XUXAWUATOY BV elvon duvaty|, xodS TAPAYOVTES OTWE 1) PUOLXY oyedlooT, 1 ToTohoylo
xaL 1) dlao tactonoinon oAAnAemdpoly xou Tailouy pdAo o TNV AEtToupYid TWV XUXAWUATWY
towtoyeova. H yewpoxivitn oyedloaor, emopéviwe, anotelel Tov Yovoadixo TEOTOo Yia TNV
oyedlaon xar VAomonom avahoYX®Y AELTOLVEYLOV G UAXO, eved to EDA epyohela mpo-
OPEEOLY UOVO BUVATOTNTEG TEOCOUOIWONE Xl ERAAAUEVONS TWV XUXAWUATWY. AuTOC O
TEQLOPLOUOC EYEL WG ATOTEAEGUA 1) POT) OYEDIAONG AVUAOYIXWY OAOXANOWUEVWY HUXAOUS-
TWV VoL NV Unopel va avtanoxpiiel oe oLy yYpova, TOAOTAOXA GUC THULITA, TO OTOLOL ATULTOUY
TOAD YeOVOo xou emavolouBavoueves diadixacies yio vo uhomoindoiv. Aedouévou, hotndy,
TOU TEPLOPLOUEVOU AUTOUATIOUOU G TN OYEDIUGT] AVUAOYIXWY OAOXANEWUEVLY XUXAWUATWY,

AT TOUVTOL UETEAL Yial VoL OLEUXOAUVIEL 1) BOUAELS TGV OVOIAOYIXY TYEDLIC TOV.

Avuty) 1 epyaoio emxevpdveTal oTNY avanTuln Uedodwy xou ohyoplduwmy yio TNy eloo-
YOYY| QUTOUATIOUWY GTOV XAAOO TNG OYEDIUCTE AVAAOYIXWDY OANOXANEWUEVWY HUXAWUATWY.
ITio cuyxexpléva, UEAETOVTOL TEOTOL YLo TNV QUTOUITY BLIUC TACLOTOMNGT] TV CTOLYElWwY
Tou amaeTCOVY TO OAOXANPEWUEVA XUXAWDUATI, UECEL TOU OpLOUOU Tou TEOPBANUATOS OLo-
ctaconomone we nedlAnua Beitiotonoinone. Iapovoidlovton pédodor xou ahydprduol
Yo TNV QUTOMATOTOINOY WG OERdE amd BLadLXACIEC TOU AmACYOAOVY TOUG OYEDLUOTES,
onwe N BedTicTonomon tng anddoong, 1 eEEpELYNOT] TOU GYEBLACTIXOY X(PEOV, 1) AUTOUITY

ahhory | TEYVONOYIOG XUTAOXELTG xou 1) EToANUEVOT TNG AELTOLEYIOG TV XUXAWUATWY.

Opiwopmoc tou IlpoBAjuatoc Alactacionoinong

Ocwpolpe €va avahoYxo xOxAwuo Ye dedouévn tomoloyia, TeyvVohoyid xoTUOKHEUNG
xod¢C xou €val GUVONO TOPOUETPWY X = [T, T2, . . ., Ty] TOU AVTLOTOLYOVY GTIC YEWUETPIXES
dlac Tdoelc Twv oToyelwy Tou. Emmiéov, dewpolye we dedopéva tar 0pn TwV TOV TOU
EMTEETOVTOL VO AdBOUY Ol TUPdUETEOL TOU X, xou Tal cuPBoAiloupe g [SZ]Z]\;1 O ywpoc
avalitnone (1 oxedlaonc) S opiletoun we to utocivolo tou RY and to onolo unopel vo
TadpVeEl TIHES TO X XL LoYVEL S =51 X Sg X -+ X Sy.

o To dedopévo xxhwpa, Yewpolue eniong éva chvoro amd k petpd YV = {y:(x)}r
mou xoopiCouv TNV Aettoupyia xou TNV anddoor Tou xuxhouatog. I mopdderypa, otnv
Tepintowon evog evioyuTy youniol Yoplfou, autd Ya umopoloe va elvol 1 YEOUUXOTNTA, TO
%€p00¢ Uxpol oruatog, 1 Yopulixn anddoot), xht. H oyedlaor evog avoloyixod xuxhouo-
To¢ anoutel TNV eVpesT) VoS Ao cUUBBACUOD HETAE) UETEIXWY TTOU EIVOL OV TLXPOUOUEVA,
onhad”| 1 Betioon tou evog empépel TNV YELOTERELGT TOL dhAou. T'a auTtéd Tov AéYo, Ve-
weoLUE cav dedopévo Wwa AMota and mpodlorypapés, mou opllouy TEPLOPLOUOUS OTIC THES

TWVY PETEXOV Y, xado¢ xat emduuntols otdyoug Yo UEYLo ToTolnom 1) ehaylo tonolnon.

Me Ta nopandve dedouEva, UTOPOVUE VoL OPICOVUE TN BLIC TACLOTONGT] TOU XUXAWOUATOS
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w¢ éva TpdfBinua BeAtioTomoinong:

min F(x), x€S
st g;(x) <0, j=1,....,L

(1)

Avddoya ye tic mpodlaypagéc, 1 ouvdptnon F(x) umopel vo elvar Baduwth B Stovuopo-
T, Onhady| var tepthaufdvel éva ) xou meplocdTepa YeTEd and to Y. Ou | cuvaptioelg
gj(x) UAOTOLOVY TOUS TIEPLOPLOUOVE TTOU ETBEANOUY OL TEOBIYPAPES OTAL HETPIXE TOU Y 0¢
aviootnteg. H enfhuorn tou mpofBAfuatog autod odnyel o éva BEATIOTO BLldvuouo Topoe-
TEWVY X, TOU UTOBNAMVEL TIG OLUC TACELS TWV O TOLYEIWY TOU XUXAMUATOS TOU IXAVOTIOLOUY

BéEATIoTA TIC TEOBLOY PapEC.

Avtopatn Awactacionoinomn ne Xenon Ilpocopoiwong

[ v eniluon tou npofiiuatoc (1), 80o mapdyoviee nailovv xadopiotxd pého. O
TewTog elvon 0 alydprluog ye tov omolo Yo mpooeyyioTel To BEATIOTO, €V O Be\TEROS
elvon 0 TpéTOC UE Tov omolo ol cuvapthoelc F(x), [gi(x)]\_;, xou cuvende ta petpd Y,
urohoyilovTo.

H dwdwacios utohoyiopol TV UETEIXMY TOU XUXAOUATOC Unopel va Yivel pe 0o %0-
ELOUC TEOTOUG, PE TN YXPNON EEL0MOEWY XAEIGTOL TUTOU ¥ TNV YENON TEOCOUOWTGY. Ou
XUXAOUATIXES EELOWOELS ATATOUV OVEAUGY] TOU XUXADUATOS UE TO YE€pL, CUVUTIOAOYIOUO
(POUVOUEVKV OIS TOPACLTIXE UEYAAVTERMY TAEEWY Xall CNUAVTIXT TROOTIGUELL OO TOV O)E-
oo . Emnpdoleta, 0TIC MEPINTOOES XUXAWUATWY e OEBacTd apidud amd UETELXd, OL
e€loWoELS XaToAyouv va elvon ducenilutec.

Avtidétwg, pe TN xenon TEOCOUOLWTMY Yo TOV UTOAOYICHUO TWY XUXAOUATIXDY UETEL-
XV UETPXDY UTOPOVPE Var €xoule 1) ueydhn axpifeia, n onola e€optdton and tar povtéra
TWY NULAYOYOY TOU YENOYLOTOLOVVTAL XATA TNV TROCOUOwT) ot O)L omd Tov (Blo Tov oye-
OtoTh o, 2) éval o eVYENoTO TEPYBEANOY AUTOUATNG Ao TACLOTOINONS OV BEV amaTEl
ONUAVTIXES ELOODOUG AMd TOUC OYEDOTES. LTNY gpyaoio auth avantiydnxe Aoylouixd
Tou LAOTOLEL Blemapn| ue Tov epnopxd mpoooponty) Cadence Spectre xou elvar unedfuvo
YL TNV QUTOUATY EXXIVIOT] TEOCOUOLICEWY, TNV VALY VKO Xat ENEEEQYAOIN TWV ATOTENE-
OUATWY TOU TEOCOUOLWTY), TNV AVUVEWCT] TWV TUPAUUETEWY TWV XUXAOUATOV Tely amd xdde
TPOGOUOIWGT), TOV 0ploUd AVORICEWY oL Yol EQUPUOCTOUV ATO TOV TEOCOUOLWTY G TO XU-
xhouo xodog xan TNy napahAnhoroinoy| Toug. H yovadiny| elcodog mou amantelton and auty
TNV TEOCEYYLON Elval TUPUUETEOTONUEVA OYNUATIXE TOU xuxAnuatoc (testbenches), xo-
V¢ xan 1 MoTa Ye T Teodlaypa@éc Yio To xOxAwpa. Me auth tnv mpocéyyion uodpou
XOUTIOV, O OYEBIUOTAC UTOREL Vo ECTIIOEL O TNV EMVUUNTY ATOBOCY]) TOU XUXADUATOS, O

veldptnta and tnv tonoloyia X Ti¢ e€loWaoEl; Tou To dETouy, xadng autég AauBdvovTol
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eUUECWS UTOYN UEGL TOL GYNUATIXOV XAl TOU TPOCOUOLWTY.

Alactaocionoinon pe Xenon EZehuxtixowv AAyopiduwy

O »hddog Twv E€ehutincdv Ahyoplduwy pipeiton Quoxés apyéc xan QavouevaL yiol Vo
TETOYEL Yol Lop®n] AUTOPATIONOV XaTd TNV eTALCY, TEOBANUATWY OTwS 1 BeATioTonoln-
orn. O E€ehixtixol Ahyoprduot avtholv éunvevon and tny Yewpla e€€MEng tou Aapfivou
xS xou amd TNV YEVETIXY, Xt Yewpoly dVo Baoixéc unodéoeic. Ipwtov, undpyel éva
Tep3dANOY Tou pnopel Vo UTOGTNEIEEL CUYXEXELWEVO apLIUO amd OVTOTNTES, Xl OEVTEQOV
xdde ovtéTNnTa oTOYEVEL O TNV avamapaywYh TNG. O ovtdTnTeS €y0uv e WELOTA YoUpPAUXTT-
pLoTXd, Tor omotal xoopllouv TNV XavOTNTA TOUS VoL Tpocopu6lovTol 6To TERBAANOY Xou Vol
avamopdyovton. H duvatdtnTo auT) TOCOTIXOTOLETOL amtd TO HETEIXO TNE XATUAANAOTNTOG.
YUVETEL TWV Tapamdve efvon 6TL oL ovToTnTeS avtarywvilovTon yiar var avormopay ol xon vor
emloouy, xodc 0 cUVORXOE TANYUCUOS Toug elvon teploplouévoc. Katd tny avamopayw-
Y1), TO YOQUXTNELO TIXA TV ATOYOVKY TEOXVUTTOUY AT GUVOUNOUO TWV YOVEWV-OVTOTATWY
X 0ploPEVwY Tuyalny mapailayoyv. H e€ehixtiny diadixasia mou axohoudolyv ol ahyoerd-
pot awtol, Aoy, Bacileton 1600 GTOV AVTAYWVIOHO HETAED TWV OVIOTHTWY OGO X0 G TNV
TOLUALSL TWV Y AEAXTNELO TIXWY TIOL TEOXVTTOUY XUTE TNV AVATOEAYWY N, ETOL MO TE VO XAUTo-
AEouv o€ ovToTNTES TTou TtpocapUolovTon Xoh0TEPH 0 TO TERBAAAOY o lvol BLUPORETINES

petagl Toue.

Trdpyel peydin nowaiia and EEehxtixoie alydprduoug mou axolovdolv tnv mopa-
mave pevdodoroyia otnv BiBhoypagia. ‘Evog dywpeiopnde mou yog elvon yeriollog oTto
mhaiolo TN SateBric auThg elvon e Bdon to TEoBAAUATY TOU ETAUOLY. TNV TERINTWOT)
OTOL oL TEODdLAYPUPES Yol Eval xUxhwua elval o€ Lop@T| ETTELENS EVOS LoVadIxo) G TdYoU,
Yl TopddeLyUa eYLoTomoinon Tou ebpoug Lmvng evog eVioUTY, To TedBinuo ovoudleTtol
Movadxol Xtéyou xou n cuvdptnon F(x) omy eliowon (1) elvar Boduwth. Avtiveta,
OTNY TEPITTWOT TOU OL TEOBLAYPAUPES YL EVOL XOXAWU ATATOVY TNV EVPECT TNG XAAUTE-
enc ouuPBactinic Aong Yetall 800 1 TeploaoTEpWY GTOYWY, OTWS VLol TURABELY U TO
xépdoc yaunhol ofuatoc xou to evpoc Lhvne evdc evioyuth, n F(x) elvor dlavuopotixd
CUVEETNOT. LUVETWS, TO BEATIOTO EVOEYETAUL VAL UMV EVOL HOVAOIXO oL 1] XUTUAANAOTATO
TWY OVIOTHTWY Tou alyoplduou oplletal Ye TpdTo WoTe Vo Aofdvel unddr to T6co xohd
ouuPPBoaoud PeTadd TwV 800 UETELXWY TEOCPEROLY, XAVOC Xl TOCO BLaPOPETIXA lvol and
Tov unohoino mAnduoud. To mpoPfiruata autd avagépovtar ¢ IIoAhamthwy Mtoywy xou
yenotpomoovton 6Tor TAalolo TG SLatEBNC Yol TV e€EpEVYNOT TOU GYEBACTIXO) YWOEOU

TOV XUXAWUATOV.

[t Ty emituy i ExBoom e dao Taotonoinong wéow tou oplouol (1), etvar onpoavtind o

OYEDIUOTAC VO CUUTERLAGBEL Uit OELRd amd TEELOPLOUOUE TTov, OTaY TANEOUVTAL, EEAGHUN(-
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Couv v opan Aettoupyia Tou xuxhouatog. Ou E&ehixtixol Alydprduot, dune, Teénel vo
TPOCOPUOGTOUY GTO VEO TROBANUa Yo Vo dloyetplleton Toug meploplopols awtols. ‘Otav
UTIAEYOLY TEQLOPIOUOL, O GTOYO0S TOU ohyoplduou yiveton BITAGC: Vo odnyroel TNy avalr-
oY, ONAAdY TIC OVTOTNTES, OE Uid TEPLOYY) TOU YEou avalTnone OTou oL TERLOPLOUOL
ovorolovTon xou exel va Beetl Tic BérTiotec AVoelc. o autév Tov Adyo, oty epyacia
auth, ot E&ehuctixol Alydprduol tponomolodvton ko te 1 emPBiworn ¥ un pog oviotnTog Vo
xadopileton and éva GUGTNUO TEOTUACEWY, To ontolo Aofdvel UTOYT TOCGO TNV HATUAAT-

AOTNTAL TNE Ade ovToTNTAC OG0 %o Tov Bordud mopafiaong TEPLOPLOUMY TNS.

Yta mhadota tng Slatelfnic, oyedialovtar 8o Tahavtntéc LC ot teyvohoylo xataoxevhic
TSMC 90nm xon ol emuuntég npodlarypapéc Toug optlovion pe TeoTo Tou e€acpallleTal 1
emduunTh cuyvoTNTa TaAdVTwons. [ Ty Biepedivnon twv Blagopdy yetadd twv 800 Tono-
AoYLdv, e€etdlovTal oL YWeol anddoons Toug, 6cov agopd To cuUPiBaoud petall YopLBou
pdong xan xotavdAwong toyvoc. Xenowonowwvtog E&ehntinols Alydprduous, @tdvouue
07O CLUUTEQUOUA OTL 1) plot ToToAOY ot UTEREYEL TNG GAATS, OCOV aPOopd TOV EASYLOTO EPIXTO

YopuPo Qdong Yia TUPOUOLES XATAVOAWOELS Lo VOG.

[o v mepoutépw Beitiwon tng anddoong twv E&ehuxtindyv Alyoplduwy, 6cov agpopd
Ti¢ Moelg mou amodidouv o tpofirjuata IToAharnAdy Ntdywv e teploplopole, tpotelvou-
ue wa mopodhayry tou E€ehixtivov Alyoplduou NSGA-II, wote va Soyelpileton ydpoug
avallATNONG UE UXTEC CUVEYEIC-OLaXELTES UETABANTES 6Ty UTdpy oLV Teploptopol. O unyo-
VIoPOC €mAOYTC OVIOTHTWY Tou ETBLOVOLY TEOTOTOLE(ToL, (OO TE Vo hauBdvel unddn tny
XATAAANAOTNTA AUGEWY TIou BEV IxavoToloVY Toug meploplouols. H dayelpion tou yeou
avaltnone pe Wxtég uetoBAntég yivetow ye v LoUéTnon evoc GUC TAUAUTOS ToEOAAA-
YhS, O6mou ot doxpttég petoBAntéc adhalouv TWéS axohoudwvTog o xatavouy Poisson.
O mnpotewoduevog alyodpriuog epapuoleton oe évay eVioyuty yaunhol Yoplfou xou évayv
TEAEOTIXO EVIOYUTY, Yl TNV €EEpelVNON Tou Ywpeou anddoong toug. Kau otic dlo mepl-
TTOOELS XATAUPEPVOUUE VAL TEPOVUE XOADTEPOUS GUUPBBUCUOUS UETAEY TWV OVTIXPOUOUEVLY

HETEXMY TOV XUXAOUATWV.

Awxctaotonoinon we Xerjon AAyoptduwy Xauniod Kéctoug
H autépatn diactactonoinorn ToAITAOXOY XUXAOUATOY, HE XWeoLS avalNTNoNe TOANDY
OLIO TACEWY XAl AUCTNEOVS TEPLOPIOHOLS WS TEodlaypapéc, elvon éva BUoXOoAo TEOBANU
mou anoutel, 0TV meplnTwon Twv Efehxtinddv Alyoplduwy, TOAAEC TEOGOUOLOCELS YLo
NV o&lohOYNON TV TANIUCUGY TOV OVIOTATWY. DTNV TEdLY], 1 TROCOUOIWCT) XUXAWUL-
TV evOEYETAUL Vo efvon pLot x0oToBopa Ypovixd dadixactio, xadwe uia TpocouoiwoT Uropel
vou yeetdleTal MEES Yo VoL ohoxAnewiel, Yeyovog mou xohotd Tic TAduouaxés uedodoug,
onwe toug E&ehixtinolc Alydprduoug, un npoxtixole. I Toug Adyoug autols, wlo véa



17

TEOGEYYLON O TNV AUTOUATY LG TACLOTIONGT) AVAAOYIXWY TEOBANUATWY UE Yo ahyopld-
LWV Yauninie detypoatolndiog tou yweou avalhtnone npoteiveton. H npocéyyion Bacileton
otnv Mrebliavy extiunon xan avagépeton we Mnebliov Behtiotonoinon,.

H Mneblioavn Behtiotonoinon ebvan puo pédodog Bertiotonoinone anodotixrg detyyoto-
Andioag Tou ywpou avaltnong, Tou oToyelEl XUplw O LTOAOYIC TLXA oXEY3A TEOBAY T
Xy Tumer] wopgh TNng, 6mou dev hauBdvovtal undPn TECLORLOUOL, TNE TUEEYOVTAL TUEATY-
PHoELC amd ot cuvdeTNon f o auTh dnuoupyel éva Yeryopo oTny a&lohdYNon HOVTERO.
Ta onuela Tou yopou avalATnong Yo TEOGOUOIWST), 1) AAALDS ONUELN EPOTALATOS, EMLAE-
yovtou oelptaxd o xdde enovédndn. H Mrebliav Behtiotonoinon anotekeltan and 8o
Boowd ouotatxd: 1) éva mdovotind poviélo mou npooeyyilel Ty dyvmoTn cuvdptnon
[ wou 2) uio ouvdptnon amdxeone a 1 S — R, mou opllel éva uétpo Yo TV xaToAANAO-
o xde onpelov oo yweo avalAtnong, ve Bdon to mdavotixd yoviého. LuvAdwe, To
povtého autod etvon wa I'vaovoiovr) Aadixacio, mou exmadedetal xou YpnoyLonoleltol e
xade emaveAndn.

[o va tpocappéooupe tnv Mnebliovr) Behtiotonoinon ota mpofBifuata Beitiotonol-
NOMNS TOU TEOXVOTTOLY XAUTA TNV AUTOUATY] BLIC TACLOTOIMNGCT] AVOAOYIXDYV XUXAOUATLY, TEO-

telvoupe Wa oelpd and TEOTOTOWOELS O TN Baoixy| TNG Lop®N:

1. Ot I'raovotovég Alodixacieg ¥pnotdonolody CUVIRTHCELS TUPHVAL Yo VoL 0plcouY i
ouV3ETNON TLXVOTNTAS TWHAVOTNTAC GTO YWEO TWV CUVAPTACEWY. Ol cuvapTHoELS
TUEHVY, OUWS, YenoorotoLy TV Euxdeldela andotaoy puetald twv onuelony mopo-
TNEHOEWY YLa VO 0plCOUV PE TNV GELRE TOUG TNV CUVBLAXVPAVOT UETOEY TWOV NG
&y Vo NG cLVEETNONE ToL YovTEAOTOWUY. O oNUAVTIXOS TEPLOPLOUOS TIOU TEOXVTTEL
elvar 1 ancdAieia TAnpogoplac oe Ywpoug ue TOAAES dlacTdoelg, 6mou 1 Euxdeldeia
amoc oot dev mapéyel Wialtepa Ypnowes TAnpogopiec. ot tnv e€opdiuvon Tou gou-
VOUEVOU auTO, TEOoTElVETOL Wial TOTUXY TEOCEYYLoT 0To TEOBAnua tne BeATtioTomol-
nong, 6rou 1 Mneblioav BeAtiotonoinon Aettouvpyel xou poviehonolel TNy dyvwo T

OLVEETNOY) OE MEPLPERELES EUTIGTOTUVNG, avTl 6TO GUVOAO TOU Y PO avalHTNONG.

2. H oepiaxny @Oon tou tumxol ahyoplduou dev elvar amodotixy| and Tty oxdiouvidn
oxomid: Xe xdie emavdindy, évo yovodixd onuelo epwTAUATOC ETAEYETOL, TEOCO-
UOLWVETAL X0 YENOWOTOLELTOL Yol TNV avavéwan Twv I'xaouciavedy poviéhwy. Eno-
HEVMCS, TO UTOAOYLOTIXO XOCTOG NG EXTOUDEVONS TWV UOVTEAWY oG EMBAUPUVEL Yidl
ulot povadixr TapateNnoT), Ve eTioNE BEV YPNOLLOTOLOUVTOL GTO ETAXEO Ol BLJECLUOL
TOPOL OV ETUTEETOLY TNV TUPAAANAOTOMOT TOAGY TpocoUoLcEwY. T'a autd Tov
A6Y0, opilouue o vEo cUVAETNOY ATOXELONG, 1) OTIOl)L ETUTEETEL TNV EMLAOYY| TOANGDY
ONUELWY EPWTARATOS O XAVE ETAVAANY, Ue AmOTEAETUA VoL EYOUUE G TN diddeon wog

TEPLOCOTERT TANPOGOpia GTO (B0 YPoVIXd Tapdiupo.
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3. H tumxr Mrebliav BeAtiotonoinon Sev Aapfdver unddn neploplopole xotd tny eni-
Auon Tpofinudtwy. T va tpocappoctel otov oplopd tne oyéong (1), enextelvouye
TNV TEOTEWVOUEVY, CUVAETNOT AMOXTIONG GTE VAL CUYUTIOAOYLLEL TNV TdavoTNTA To

onuelo avalATNoNS VoL IXAVOTIOLOVY TOUS TEPLOPLOHOVC.

4. T va meplopioouye 1o x66T0¢ exmaldevong Twv I'aovoiavdv Aladxasolov, 6Tay Ta
onuelo epwTAUaTog eivar ToAG o€ aptiud, Yenothonololue o HEYodo and yopax T
ptoTixd onueta, ta omola avtixahotodv uéln and To apyxd cOVOLO BEBOUEVMLY OV

Yo €MpETE OLUPOPETIXA VoL Yenotdononvet.

5. Ilpoteivoupe v yenon Tuyalwy Xopoxtneiotixwy Pouple, kote va Beltidoovue
v enldOoT TG CLVEETNONG AMOXTIONS OF MEOBANUATA UEYSIAWY OLUC TACEWY, OVTI-
oo TwvTog TNy dwodxacto derypatorndlag and I'xaovoiavés dlodixaoies pe pio véa,

omou ytilovton avohUTIXEC CUVOPTNOELS W¢ BelyuoTa.

6. Ilpoteivouue noporharyéc Mneblioavic BeAtiotonoinong mou pnopolv vo Aocouv mpo-

Bruato Movadixot xou ITohamheyv Xtodywy.

O nopandvey pédodol e@apudlovTal Ylol TNV AUTOUATY OLHo TACIOTOINOT Wol CELRAS o-
VOAOYIXOY XUXAOUATOV, TOU TEQLAAUPBAVOLY TEAECTIXOUC EVIOYUTEC TOAAGDY G TADBIWY Xo
evioyutég younhol YoplfBou. Ta mpofifuata diactactonoinong hauPdvouy vddn Ty e-
T{BOOY TOU EXACTOTE XUXAWUATOS TOOO Ot TUTUXES CUVUTNXES, 0G0 xou 08 CUVINXES UE
dlaxuudvoelg tdong, Yeppoxpactiog xou xataoxevic. H yenon tne Mrebliovrc pedddou yio
TNV OlUC TACLOTOMNOT] ETULPEPEL XAAVTEPA ATOTEAECUATA OE Oy€om WE Ula oelpd ALY Ue-
V60wV o Pertiotonolnon xo TNV eEEEEVYNOT TOL YWEOL ETUBOCTS, VLot ToEOUOLO aELdUo

T(POGOUOUICEWY.

Expddnon Avanapactdoewy KuxAopatixwy Xtouyesiny

[o Ty €0pwo Ty wovtehomolnom dlaxpettey yhewy avalitnong uéow I'raouolovdv duo-
OAOLOY, TEOTElVETOL Lot UEYODOE AVATURAC TAONS XUXAWUATIXWDY GTOLYEIWY UE GUVEYE(G
uetaBAnTé, ye xerjon Botide Mdidnone. O yewpetpleg otolyelnv Onme o ohoxhnemuévo
Tnvio TUPAUETEOTOOUVTUL TOCO PE CUVEYELS, 60O XL UE BLUXELITEC UETUBANTES, YEYOVOS
mou xohoTd adLVITY TNV Yoviehomolnon Tou ywpeou avalhtnone and I'xaouciavée dla-
owaoleg ue TuTXES ouvapThoelc Tuprva. ot Tov Adyo autd, mpotelvouue TNy expdinon
AVATOPAC TACEWY TOU AoBavouv cuveyels TWES, Ue yenon BEdoUEVWY and TEOCOUOlKWoT).
Me v avTixatdo oo Ty apyIx®y TEdiwY 0ploUoy, Tou AVTIOTOLYOUV GE GTOLyElo UE
uxtég ouveyelc-dlaxpitég uetaBAntée, and Tig ouveyelc avanapaotdoelg Toug, xahoTolue

T0 TEOPBANUA BEATICTOTOMONS CUVEYES.
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H pédoddc pag nepthopBdver éva YeveTxd woviého havdavouomy YeToANTGY, To onolo
avtiotouyel onuela and évav yhpeo Z cTov apyixd yweo avalAtnong tou TtpolAfuatog, S.
[Mo va e€aogaiicovye 6TL 0 havddvwy yweog Z eivon dounuévog pe teomo mou Vo e€u-
mneetel Ty BeAtioTomoinon, tepthopBdveton Eval emmAéoy povtéro xododrynone to onolo
EXTAUOEVETOL TUPAAANAL UE TO YEVETIXO povTéro. To poviého xadodrynong exnoaudeveTon
woTe va avtiotolyel onuela and TOV Z O TPAYUATIXES OLUOTACES TWY CTOLYElWY Tou
povtehonotovvton. Ol avamapao TICELS TWV XUXAWUATIXGY CTOLYEIWY QTIdyvVovTaL UE TPO-
To T€T0L0 OO TE Vo e€aoPahileTon OTL AELTOLPYIXE TUPOUOLES YEWUETRIES Elvon xOVTd GTOV
Z. Autd emtuyydveton Ye TN yeNor OeSOUEVWV TROCOUOIWONE ToU avTixaTonTeilouy TIC
EMOOCELC TOU EXACTOTE GTOLYElOV, WS ELIGOBOLE TOU YEVETIXOU UwovTéhou. Katd tny BeAti-
otononon, o akyoprduog avalntd TWWES oTov AavIAVmY Y0OEo, oL 0TolEC TEPVOLY amd TO
0lxTUO xJOOHYNONG YL VoL UETATEATOUY OE TEAYUATIXES YEWUETPlEG Xan Emertar AoSdvel
YR 1) TEOGOUOIWOT).

o v enadfdevon tne mpotevdpevne pedodou éywvay ta e&fc mewpdpata: 1) Mo-
VTEAOTIOMNON ONOXANEWUEVLY OTELROELBMY TINVIWY XU 2) LOVTENOTOMOT ONOXANPWUEVKY
HETAAMOY TuXVeTOV. Ko tar 800 ototyelor mepthaufBdvouy dloxplteég UETHBANTES XaTd TOV
opLoU6 NG YewueTplog Toug. Mia oelpd and xuxAopata ywvay BehtioTonolnoT e xerion
TWVY OVOTIPUC TACEWY TWV TROUVAPEQUEVTWY CTOLYEIWY, UE ATOTEAECUNTO TOU UTOBNA®-
vouv TNV axelf3n] povielonolnon xou Ty Bedtiwon tng anodoong twv Mrebhlioaveyy uedodwy

oe TAfeng ouveyelc ywpoug avalAtnong.
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Chapter 1

Introduction

Since the fabrication of the first integrated circuit in the 1960s [1], the semiconduc-
tor industry has seen tremendous advances and has effectively altered the way people
interact and behave in their everyday lives. By providing the ability to integrate logic
circuits in small pieces of semiconductors, it became the enabling factor for modern
computing systems which dominate our world.

The driving force for the semiconductor’s advancements has been the continuous
miniaturization of integrated circuits; device sizes are constantly being reduced, effec-
tively leading to faster, less power-hungry and more compact Integrated Circuits (ICs).
Besides these rather obvious benefits, device miniaturization has been the key factor for
the flourishing of the semiconductor market. While moving to newer, smaller devices for
manufacturing requires more sophisticated manufacturing processes that in turn raise
the cost for IC development, the ability to embed multiple logic functions in the same
chip area not only evens out the cost but produces further financial gains. Besides this
‘more functionality for the same price’ [2] benefit, miniaturizing devices in chips has
lead to more reliable systems, by reducing the number of solder points and dispensing
with many discrete devices.

There are two types of circuitry embedded in an IC design nowadays; analog circuits
and digital ones. Digital circuits operate on discrete-valued signals, which are most of
the times binary. In this case, voltage signals can be interpreted as having one of two
distinct values, a logic low ‘0’ and a logic high ‘1’. To distinguish between these two
values, all nodes should converge to a voltage value that belongs in the range of logic low
or logic high. On the other hand, analog circuitry operates on continuous valued signals.
Analog circuits’ role in ICs is mainly to implement an interface between the digital
domain and the external ‘real-world’, as well as to perform signal processing tasks.
With technologies such as Complementary Metal-Oxide Semiconductor (CMOS) and
BiCMOS |[3], which enable the implementation of both digital and analog functionalities
on the same chip, modern ICs often combine analog and digital operations. The idea
behind the combination of both domains in the same IC stems from the need to further
miniaturize electronics systems, as described previously.

To further leverage the capabilities of CMOS technologies, the semiconductor indus-

try has seen a trend to integrate complete systems in a single chip. These Systems-on-



38 Introduction

a-Chip (SoCs) include of course analog, digital and even radio-frequency (RF) circuit
blocks and have been in the forefront of the modern electronics market for more than a
decade. In this context, digital circuitry has replaced analog blocks in operations such
as signal processing, in order to reduce the non-ideal effects rising from the operation
of transistors in the continuous regime. However, analog circuit will always be indis-
pensable to perform some typical functions such as sensor interfaces, voltage references,
analog-to-digital converters, etc.

Manufacturing these integrated circuits is tedious undertaking and requires well
studied, established procedures. These are often referred to as technology or process
nodes and are characterized by the minimum size of a device that can be manufactured
using them. Typically, the smallest length of a unipolar transistor is used for this pur-
pose. Transistor miniaturization does involve arbitrary scaling factors. Rather, newer
technology nodes are scaled by a factor of 1/4/2 in comparison to their predecessors.
This transistor shrinking has been approximately predicted by Gordon Moore, whose
famous heuristic stated the number of devices in ICs would double every two years [1].
In fact, by observing the actual shrinking history of the semiconductor industry, shown
in Fig. 1.1, Moore’s Law seems to be an accurate prediction about the state of the

semiconductor manufacturing process.

Feature Size
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Figure 1.1: Historic evolution of the smallest manufacturing node [2].

1.1 Motivation

The economic and social impact of the device miniaturization described by Moore’s

Law is undeniable. Individuals harness the benefits of a interconnected world, with
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computational devices being the enabling factor, and semiconductor investors claim
considerable financial gains. However, the design of ICs in miniaturized technologies is

becoming increasingly difficult, with designer’s productivity constantly diminishing.

Miniaturization, however, has had more impact on the work of analog designers,
compared to digital ones. In practice, although digital circuitry dominates the area of
modern SoCs, analog blocks tend to be the design bottleneck, both in terms of time
and budget. The fundamental reason behind this issue is the nature of the circuits
themselves; digital circuitry that operates on signals with two levels and large tolerance
levels are more robust to higher-order effects [5], compared to analog designs that must
take into account the physics of each fabrication process and which requires expert
handcraft skills.

Besides the aforementioned fundamental difference, analog design proves more cum-
bersome than digital since its design space is virtually infinite. In fact, there is a large
variety of analog circuit topologies that may have the same functionalities and the choice
of which one to design is a complex decision that depends on the exact application. In ad-
dition, the sizing of individual devices involves selecting values from a continuous range
and the resulting performance metrics, which are closely correlated to the device sizes,
are much more complicated both to reason with and to determine a beneficial comprise
among. For instance, typical Operational Amplifiers have up to ten continuous-valued
specification metrics [2]|, whereas digital standard cells have only two, timing and power.
A further factor that makes analog design harder is hierarchy. Digital logic has estab-
lished means of abstraction, meaning that low-level logic can be accurately represented
by behavioral models, which is not the case of analog circuits. In fact, low-level prop-
erties such as voltages, currents and impedances must all be taken into account when
designing an relatively large analog system. These depend highly on the manufactur-
ing process that will be eventually used, thus preventing the reuse of existing designs
in new technology nodes. Therefore, analog circuit technology node retargeting may

require considerable man-hours, even though the core functionality remains the same.

Layout-induced effects, such as parasitics, are more prominent to newer technology
nodes and must be taken into account when designing analog circuits. In addition,
designing using newer technology nodes requires the evaluation of each design’s yield,
which is affected by process, temperature and voltage variations. In the case of large
systems that implement both analog and digital functionalities, the analog design is even
more difficult since it must take into account system-level interactions, like crosstalk
effects. All these render the analog design an iterative procedure, where the steps of
topology selections, sizing, layout design and verification take place in turns. In contrast,

digital design has effectively become an ‘one-pass’ procedure, where once the logic is
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implemented using a register-transfer level (RTL) representation and some design scripts
are configured, the whole design can be implemented automatically. This means that a

different variation of the design can occur by only providing an updated RTL description.

The automation of digital design is achieved by leveraging dedicated software tools.
These FElectronic Design Automation (EDA) tools were introduced in the 1980s to help
designers cope with the exponential growth of device density and relieve them from
the manual design. Nowadays, EDA tools provide digital designers the ability to define
logic circuits in high-level abstraction using High-Level Synthesis (HLS) and to focus
on the actual design by performing repetitive tasks in a structured, formalized manner.
By doing so, the productivity of designers, measured in devices per IC and man-years
for design has increased exponentially over the decades. In fact, recent chips that hold
tens of billions of transistors [2, 6] would not be possible without the use of custom
EDA-based design flows.

The case for analog EDA software, however, is not the same. As stated before, an
analog circuit’s performance is affected by a number of interleaved factors, ranging from
manufacturing process properties, to topology selection and physical design. This com-
plex interaction between different levels of abstraction in analog design does not favour
formalized automation procedures. Manual analog design, therefore, has traditionally
been the only choice to implement analog functionalities. Designers make use of stan-
dalone tools like circuit simulators, layout and verification tools as well as some software
design suites that combine some basic functionalities. However, this kind of design flow
fails to meet the requirements for modern, complex systems, since it does not allow nei-
ther for first-time-right designs nor for meeting time-to-market-constraints in general. A
graphical illustration of this analog design gap is shown in Fig. 1.2, where the black line
denotes the increase in transistor density in analog blocks over the years and the blue
line depicts the designer’s productivity, as defined previously. In fact, analog design has
become the bottleneck in system design; even though analog blocks take up only 20%

of the total area of a modern SoC [7], they require more effort and iterations to design.
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Figure 1.2: Graphical illustration of the analog design gap [2].

Despite the fact that analog design is cumbersome, it is also crucial for next-generation
computing systems. Based on the 2020 International Roadmap for devices and systems
[5], the More-than-Moore initiative aims to develop techniques for the increased inte-
gration of even more non-digital functionalities into the future SoCs. By incorporating
sensory blocks, power management and RF communications on the chips, analog 1C
design will become even more important in the foreseeable future. In addition, two re-
cent trends in computing require substantial effort in analog circuitry: the low-power
Internet-of-Things (IoT) applications, requiring power-gated designs, sensor interfaces
and subthreshold operation and the Compute-in-Memory (CIM) one [3]. CIM targets
Artificial-Intelligence applications by implementing dot product and other non-linear
functionalities by analog circuitry to reduce power-costs and increase area efficiency.
CIM falls under the umbrella of the Analog-Al trend in unconventional computing de-

sign.

Given the aforementioned productivity gap in analog circuit design, and taking into
account that analog circuits will be in greater demand in the near future, it is reasonable
to conclude that steps must be taken to facilitate the job of analog designers. A step
towards this can be the development of new, dedicated EDA tools that assist in analog
design by providing insights on circuits and automating parts of the overall design

procedure.
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1.2 Thesis Contributions
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Figure 1.3: A sample analog IC design flow. This work focuses on device sizing selection.

An illustrative example of a typical analog IC design flow in shown in Fig. 1.3. It
is shown that there are multiple steps and conditions that a design needs to fulfill in
order to proceed to tape-out. In this thesis, we try to facilitate the whole procedure
by attacking the problem of device sizing selection, which is highlighted in Fig. 1.3.
This problem involves determining the sizes of each individual device for a particular
topology, given a set of predefined performance metrics constraints. In particular, there

are a number of research questions that we address:

e With circuits that have completely different applications, topologies and perfor-
mance specifications, is there a universal manner in which their device sizes can

be inferred in an structured, (semi)-automatic manner?

e Can we develop principled methods for exploring the competing trade-offs of dif-

ferent topologies and reason about their attainable performance?
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e With the recent developments in computational intelligence and Machine Learn-
ing (ML), is there a way to develop algorithms that render the aforementioned

procedures accurate and fast enough for the designer’s to use them?

This thesis addresses the above questions and the challenges for automated EDA-

powered design in general by a series of works:

e Study, application and expansion of black-box simulation based approaches, in-
cluding Evolutionary Computation (EC) ones, for sizing both analog and RF
circuits in the block level. We compare EC algorithms against each other and
develop custom operators to enhance mixed-variable black-box optimization, as

many analog-design problems can be cast as such.

e Development of ML-based Single-Objective optimization algorithms, requiring few
evaluations to reach feasible, optimal solutions. By utilizing the framework of
Bayesian Optimization (BO), one can optimize expensive-to-evaluate black-box
functions. We develop SO BO variants that are scalable with the input variable
space’s dimensionality and exploit kernel approximations to decrease the com-
plexity that BO entails when many query points are sampled. This combination

of attributes is a novel approach to BO.

e Development of new Multi-Objective, low-budget optimization algorithms, for de-
sign space exploration and trade-off reasoning. By using a local-based scheme
and a new activation function that works with multiple objectives, a new, multi-
objective Bayesian Optimization variant is proposed. We also present an approach
to having multiple query points at the same time, by building analytic approx-
imations to Gaussian Process samples. A deep analysis of the proposed method
suggests that it finds wider pareto fronts and more feasible solutions compared to
other state-of-the-art black box algorithms.

e Incorporation of Process, Voltage and Temperature variations in the context of
automatic sizing, for robustness. We propose an optimization formulation with
which circuits under test can be optimized under PVT constraints. The proposed

approach successfully yields robust circuits under tight constraints.

e Using Deep-Learning Techniques for device surrogate modeling and mixed-variable
sizing. We present a Deep-Learning scheme in which data driven representations
of devices can be derived. These latent representations are continuous valued ones
and allow us to define optimization problems whose input space is the union of

device sizes and latent vectors, thereby allowing for BO in mixed-variable spaces.
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e The development of a user-friendly API for procedural optimization and simulation
execution. We developed an API to allow for procedural simulation, optimization,
design space exploration, device modeling and circuit process retargeting in pure
Python. All of the described approaches can be reproduced using this framework

and an off-the-shelf simulator.

1.3 Thesis Outline

The thesis is organized as follows. First, Chapter 2 provides a thorough literature
overview of the analog sizing problem, provides description on different strategies for the
automation of circuit design and comments on the advantages and disadvantages of the
state-of-the-art. Chapter 3 presents the formulation of the analog circuit sizing problem
as a simulation-based and black-box optimization one. Using this formulation, and by
establishing the background of the EC-based black box optimization algorithms, this
chapter proceeds to illustrate the use of simulation-based optimization on two LC-VCO
topologies, and comments on the resulting design spaces that were found. Furthermore,
Chapter 3 illustrates two proposed methods for enhancing the performance of the EC-
based algorithms, in cases where constraints apply and mixed-variable search spaces
exist.

Chapter 4, on the other hand, illustrates the use of low-budget optimization algo-
rithms to tackle the large runtimes of circuit simulations. The reader is reminded of
the basic mathematical background of Gaussian Processes and introduced to Bayesian
Optimization. In addition, a new methodology to scale Bayesian Optimization to large
variable spaces is discussed, through the use of trust-regions, which restrict the mod-
eling of the loss landscape in certain parts only. The methodology is illustrated on
two real-world circuits, and provides better runtime and results compared to other SO
alternatives.

Chapter 5 extends the work of the previous one to MOPs. A new Multi-Objective
Bayesian Optimization is introduced, which uses trust-regions to scale to large variable
spaces. In addition, the use of RFF and the hypervolume metric are discussed in the
context of the proposed algorithm’s acquisition function. A thorough comparison of the
algorithm’s performance against baseline algorithms and EC-based ones, in real-world
circuits, considering both nominal and PVT variations.

Chapter 6 describes a novel, Deep-Learning approach to extend BO to mixed-variable
spaces, in the context of analog circuit sizing. The proposed approach consists of us-
ing Deep Generative models to capture the functional behavior of devices that are

parametrized by both discrete and continuous variables. The methodology is demon-
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strated on two device models, in a popular PDK, and example automatic sizings that

incorporate this procedure are also given.
Finally, Chapter 7 concludes the thesis with a general summary of its contributions

and a presentation of open problems, paving the way for future work.
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Chapter 2
Related Work

The last decades, many attempts to tackle the automation of analog and RF circuit
sizing and process migration have been proposed in the literature. These approaches vary
in terms of both algorithmic aspects and formulation of the sizing problem. Commercial
EDA vendors have also proposed tools offering optimization-based sizing functionalities
[9, 10], but fail to deliver automation and acceptable results. Based on their properties,
the approaches for automatic device sizing can be categorized into two groups, namely
knowledge-based ones and optimization-basez ones. The following sections discuss both

groups of studies and compare their pros and cons.

2.1 Knowledge-Based Approaches

The defining property of knowledge-based approaches is their attempt to incorporate
some sort of information about the circuit and existing expert methodologies to size
circuits into procedural sizing frameworks. The prior information can be either analytic
equations that relate device sizes to the circuit’s performance metrics, heuristic rules for
sizing selection in steps, or device interaction modeling using the circuit’s netlist graph.
Some of the first approaches for analog circuit sizing include [11, 12|, which require user
intervention to define a design plan, i.e. a breakdown of the overall sizing procedure into
smaller and simpler tasks. Once these rules are decided, the procedure can be applied
to provide both a topology and an initial rough-cut sizing. These procedures expect as
inputs both design specifications and fabrication process information. Although they
are intuitive and easy-to-grasp for the designers, these approaches are limited by their
dependence on predefined building-block libraries that guide the design procedure, and
may not include sub-blocks of interest for a specific design.

A particularly popular approach has been the use of graph structures to encode
topological constraints in the sizing procedure. In [13, 14] graph structures are used
to perform symbolic analysis on circuit topologies. Given small-signal models of the
devices used, analytical expressions that relate circuit performances and device sizes are
computed, accounting for terms that cancel-out. These approaches for symbolic analysis

are later used to automatically derive cancellation-free analytic equations to optimally
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size analog circuits in works such as [15, 16].

Another perspective in graph-based circuit sizing is given in [17, 18, 19, 20, 21], where
device dependency graphs are generated from netlists and user-input and encode the
sizing procedure to be executed. However, the most interesting aspect of these works is
the formulation of the design process as an operating point driven one. This practically
means that a search engine, whether it is an optimization algorithm or heuristic rules,
operates on the space of circuits’ electrical parameters such as voltages and currents
and not on device sizes. The inverse mapping from these variables to actual geometric
sizes is done by using biasing operators, multivariate functions built for every compact
model utilized in the schematic under test.

The operating point formulation of analog sizing is more intuitive, since designers
often reason about circuit’s performance with respect to voltages and currents. In [22],
it is suggested that this approach could lead to significant sizing performance gains,
since it results in significant reduction of the search space. More recent works such as
[23, 24] include operating point driven constrained optimization procedures, by incorpo-
rating the small-signal properties of transconductance-to-current ratio, i.e. gm/I; and
the Inversion Coefficient one. Both of these properties indicate the level of inversion of
transistor devices in a process-independent manner.

The works of Murman and Jespers [25, 26] are based on the operating point driven
methodology and utilize the gm/I; property to guide analog block sizing. Their ap-
proach involves computing look-up tables of the compact models of a particular process
and using them in user-defined sizing procedures. The user writes procedures in high-
level programming languages to define analytical equations that describe the block’s
performance in terms of its electrical variables and/or the devices’ sizes. The unknown
variables are computed using the regression models and inverse mapping based on the
look-up tables. The aforementioned works have inspired a number of efforts to include
both look-up tables and the gm/I; metric in circuit sizing, such as [27, 28, 29, 30, 31,

3],

Although the previously described methods for analog circuit sizing may be user-

friendly and provide the designer with insights for the procedure, they have the following

disadvantages:

e They require analytical expressions for circuits’ performances. Some simple topolo-
gies may be easy to derive expressions for, but complex performance metrics such
as timing jitter, phase noise and third-order intercept point are not amenable to
closed form expressions. Besides, the use of newer process nodes results in high-
order effects that are not easy for designers to account for when writing down

equations.
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e The use of operating point driven methods does not take into account large signal
behavior of compact models. This seriously restricts their application in most of

the analog circuits considered nowadays.

e They require libraries of compact models and/or subcircuits, which need to be

updated when moving to newer process nodes.

2.2 Optimization-Based Approaches

The second category of automatic circuit sizing approaches is the optimization-based
one. These methods cast the sizing procedure as a minimization problem, where the de-
vices of the circuit under test are updated until the imposed specifications are met. They
are composed of two basic ingredients; an optimization algorithm and an evaluation en-
gine. As shown in Fig. 2.1, an iterative procedure that loops between the search process
for potentially promising solutions and their evaluation is the core of this approach.
Here, we distinguish between the ones that use simulators and the ones that use models

for evaluations.

Figure 2.1: An illustration of the optimization-based approach to analog circuit sizing.

2.2.1 Model-Based Sizing

The use of predictive models for circuit sizing involves two parameters that need
to be taken into account; the kind of the model itself and the way this model is used
to guide the optimization. The most popular approach involves statistical models that
relate the devices’ geometries to the circuits’ performance metrics. These models are

used as surrogates to an actual simulator and are evaluated to provide the optimizer
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with a feedback about its current best. These models are trained using simulation data

either prior the optimization or on the fly.

In the early 2000s, the seminal work of M. Hershenson [34]| proposed a geometric-
programming optimization scheme to derive component values for operational amplifiers.
The method required the use of analytic expressions for fitness and constraint functions
in the form of posynomials [34] and guarantees global optimal solution. Despite the
novelty of this work, a limiting factor for its wider adoption was the need for analytic
posynomial functions. Therefore, a number of works were proposed later [35, 36, 37,

| that suggest building posynomial-type models out of simulation data and following,

using geometric programming to derive optimal solutions.

More recently, the use of Artificial Neural Networks (ANNs) [39] for the surroga-
tization of circuits’ performance metrics has become the most popular approach. For
instance, [10] uses ANNs to approximate locally the performance space of a particular
circuit. This model is incorporated on a two-level optimization scheme where a Genetic
Algorithm (GA) is used to search globally for promising regions of the design space and
a local search scheme uses the ANN to find a local minimum of certain regions. In [41],
an ANN trained on basic analog sub-blocks using simulation data predicts device sizes,
given the required specifications. The work in [12] proposes to train ANNs during the
optimization procedure. These models are then used to replace the simulator for evalua-
tion, resulting in significant runtime gains. Besides ANNSs, several ML-based prediction
models are used in the context of optimization based sizing. These include Support-
Vector-Machines (SVMs) [13], sparse regression models [11]|, and kriging models [17],

which are essentially Gaussian Processes.

The aforementioned model-based techniques share a common goal; the replacement
of time-consuming simulator evaluation using a fast-to-evaluate surrogate model. There
are approaches which use predictive models, however, in tandem with simulations. For
instance, in [16], a classifier model is trained on the fly and incorporated within an
Evolutionary Algorithm (EA) to better determine which candidate solutions are more
promising and shall be simulated. Similarly, in [47], an ANN model is trained and
incorporated as the infill criterion of a Differential Evolution (DE) algorithm [18], in
order to improve the algorithm’s performance. The GASPAD method [19] uses kriging

models in a similar fashion as well.

The contribution of the model-based approaches is twofold; the replacement of time-
consuming simulators with fast surrogates and the incorporation of knowledge specific
to particular circuits in a representation that is later used to enhance the optimizer’s
search. However, there are considerable drawbacks as well. First, usually there is no

a-priori knowledge about the complexity of the underlying functions that are being
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approximated by the models. This practically leads to two cases; either the models are
over-parametrized, leading to overfitting the training simulation data [50], or they are
under-parametrized, which means that they will be unable to generalize to unseen inputs
[50]. In both cases the model’s predictions may be inaccurate and lead to negative effects
on the optimizer’s performance.

In addition, training and using models can be time-consuming sometimes. In the case
of Gaussian Process for instance, their cubic computational complexity [51] can induce
training times that may exceed the simulation time. One more interesting note about
model-based approaches is the following; the need for accurate models nessecitates an
abundance of data, which in turn require many simulations. This, however, is in contra-
diction with their advertised small-data nature. Training models involves optimization
procedures and simulation data, which otherwise would have been used for rough opti-
mization based approaches (see next subsection). There is essentially no guarantee that
these approaches provide any kind of shortcut towards the optimal solution, which is

backed by the no-free-lunch theorem [52].

2.2.2 Simulation-Based

This subsection discusses the works that address circuit sizing using simulation data.
This approach requires an interface to a commercial simulator, which assesses the per-
formance of potential solutions and returns a score to the optimization algorithm, essen-
tially forming a simulation-in-the-loop procedure. One of the first approaches to attack
analog circuit sizing with a simulator was [53], that allowed designers to tune the cir-
cuit’s parameters, provided an initial design. MAELSTROM |[54] proposed the use of a
simulator and a simulated-annealing algorithm to automatically size circuits, without
any requirement for initial sizes. The use of a stochastic optimizer is due to its robustness
on nonlinear, non convex cost functions, such as the ones in analog circuit sizing.

In the literature, the use of stochastic algorithms for optimization has been the most
popular choice, mainly due to the ease of implementation and their empirical effec-
tiveness. In this context approaches from the field of EC like |7, 55, 56, 57, 58] use a
population of initial, randomly selected potential solutions, which are referred to as indi-
viduals, and based on their assessment by the simulator proceed to create new solutions
in a stochastic manner, by using mutation, crossover and selection operations. Different
optimization algorithms are produced by the combination of different operators. For in-
stance, in [7], a GA algorithm is utilized employing heuristics in its mutation operation
and a step-size control policy that reduces the variance of the newer potential solutions
as the procedures evolves. In [55], the optimization procedure involves a competitive

co-evolutionary differential evolution and incorporates a feasibility rule to account for
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constraints, instead of using penalty functions.

Variation-aware sizing has also been addressed within simulation-based approaches.
FUZYE [58] uses a GA in parallel with a clustering technique to avoid running full
Monte Carlo (MC) simulations on all candidate solutions at each iteration. By running
a single MC simulation for the candidate solution at the center of each cluster and
computing membership degrees for all solutions and clusters, each solution is assigned
an approximate yield score. A homotopy type formulation of the sizing problem is pro-
posed in [57], where the evaluation procedure is decomposed into multiple steps; at the
lowest level, fast-to-evaluate metrics such as the ones that depend on DC simulations
are computed. The complexity of the evaluation is increased in later stages, where can-
didate solutions are cut-off as soon as they fail to meet a particular specification. At the
highest level, process, voltage and temperature variations are include in the simulation
testbench, thereby reducing the effective number of corner simulations for the initial

pool of candidate solutions.

Interesting attacks on optimal sizing of RF circuits have been proposed in [59, 60, 61,

|, where Multi-Objective and Many-Objective optimization procedures have been uti-
lized. In particular, [59] tackles the design space exploration of a class B/C Hybrid-Mode
Voltage Controlled Oscillator (VCO), accounting for process, voltage and temperature
variations. The Non-dominated Sorting Genetic Algorithm (NSGA-II) [63] is utilized to
find non-dominated solutions over a 108-dimensional performance space. The resulting
solutions can be visualized and the designers can reason about competing trade-offs
and select a device sizing that best fits their application. Similarly, [60, 61] attack the
automatic design space exploration of VCOs in a 65nm process, whereas [62] explores
the design space of CMOS Low Noise Amplifiers (LNAs) for 5G communications. By
employing this Many Objective approach, the designer is relieved from having to make
a comprimise between competing trade-offs a-priori, when defining the optimization

formulation.

The most important shortcoming of the discussed simulation-based approaches is
their computation burden. Since they employ population-based stochastic algorithms,
they typically require many evaluations to reach feasible and satisfying solutions. Taking
into account that some analyses for analog circuits may be time consuming themselves,
the overall computational overhead is often unbearable. In addition, an obvious limita-
tion of these approaches is the fact that the knowledge accumulated in the process of

the optimization, which could be used to better guide the search process, is not used at
all.

To alleviate the aforementioned drawbacks of populations-based approaches, a new

trend in analog circuit sizing involves using low-budget optimization algorithms, i.e.
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algorithms that typically require fewer evaluations to reach feasible and optimal solu-
tions. Bayesian Optimization (BO) [64] is such an algorithm. It builds models of the
performance space using GPs but does not use them to approximate performance val-
ues. Instead, the GPs are used in an auxiliary optimization task, where the point of the
search space with the maximum utility in the search process is found. The utility metric
is defined by means of an acquisition function. The maximum utility point is chosen as
the next point for evaluation, and the whole procedure is an iterative one.

Recently, there have been applications of vanilla BO and some variants to analog
circuit and integrated system sizing [65, 66, 67, 68, 69]. In particular, WEIBO in [68]
uses an Expected Improvement (EI) [64] acquisition function, which is transformed so as
to account for constraints. By multiplying the EI acquisition function with the outputs
of a model that provides the probability of feasibility of each point in the search space,
this approach is shown to reach feasible solutions. In [66], a Multi-Objective BO variant
for design space exploration is proposed, where the Lower Confidence Bound (LCB) of
each objective are used to define an optimization problem, which is solved using NSGA-
II. Taking into the cubic complexity of GP training, [67] proposes a BO variant where
the GP’s kernel is a learnable neural network. This way, the complexity for GP training
is reduced to O(N).

The above BO approaches share one common drawback; they are sequential in na-
ture, which means that at each iteration they evaluate a single point. This leads to
excessive runtime, since it necessitates that each GP should be trained for every single
of the evaluations. Recent works [70, 69| address this issue by defining batched acquisi-
tions functions. For instance, the MACE algorithm [69] uses multiple vanilla acquisition
functions, such as EI and LCB, and defines a multi-objective auxiliary optimization
task, which results in a pareto set. The points in the pareto set are simulated in batch

mode, i.e. in parallel or using sweep analysis, before moving on to GP model training.

2.3 Other Approaches

Besides the methodologies discussed in the context of optimization-based sizing and
knowledge-based one, there is a number of works that are more exotic to be classified
in either one. For instance, in [71], an ANN is trained to repurpose previously acquired
data from optimized circuits to new ones, which may be designed in a different process,
or using different parameters such as loads, supplies, etc. The model, thus, is trained to
produce device sizing without user intervention or simulation executions.

A separate approach involves mining causal relationships from simulation data [72,

, 74, 75]. In these works, a framework of knowledge representation is built and it is
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parametrized by data in an effort to replicate cognitive human activities. These methods
use both the topology structure and simulation data derived from sensitivity analysis
to derive the performance trade-offs. They are both used to reason about the sequence

of individual device sizing, when traversing the solution space.
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Evolutionary Algorithm-based

o o
Sizing

In this chapter the automatic sizing and trade-off exploration of analog circuits is
discussed from the perspective of the population based EA approach. The formulation
of the sizing problem as an optimization one is given and the application of EAs on a
set of analog and RF circuits is discussed.

The structure of this chapter is as follows; first, an introduction to the basic concept
of Evolutionary Computation (EC), which encompasses EAs, is given, and the common
operations that take place within the frameworks of EAs are discussed. Following, a
Single-Objective (SO) formulation of the sizing problem is introduced, and it is used to
define and solve two different circuits. Last, a Multi-Objective (MO) formulation is also

introduced and solved using EAs, in order to provide performance trade-off information

of various circuits.

3.1 Evolutionary Computation Preliminaries

This section provides the motivation and the basic operations of EC. A brief histori-
cal background is given, some of EC’s more popular algorithms applied for optimization
are discussed and common variants are also presented.

The field of EC applies natural principles within the framework of Al to achieve
some sort of automated problem solving, such as optimization. Although its basic con-
cepts have been introduced back in the 1940s by Alan Turing [76], it gained much of
its popularity in the 1990s by its application to real-world problems, using contempo-
rary computing [77]. In the literature one may find various titles for nature-inspired
algorithms, like genetic algorithms (GAs), evolutionary algorithms (EAs), etc, which all
belong to the broader field of EC and follow its basic principles, which will be discussed
following.

EC draws inspiration from both Darwin’s theory of Evolution and genetics. From a
high-level perspective, two key assumptions are made; there is an environment which

may hold up to a certain number of entities, or individuals and every individual aims to
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reproduce. In addition, each individual has their own characteristics, called phenotypes,
that determine its ability to adapt to the environment and reproduce. Within the concept
of EC, this adaptation capability is quantified by the fitness of each individual. A natural
consequence is that individuals struggle for reproduction and survival, since their total
number, i.e. their population is limited. Individuals that are not well-adapted, i.e. their
phenotypes are not favourable, do not survive. This process is called survival of the
fittest.

Besides the competition between individuals for survival, the second driving force
of the evolutionary process is the variation of the phenotypes. This involves small,
random variations in the phenotypes of the individuals during the reproduction process.
Therefore, the evolutionary process relies on the survival of the fittest and the phenotypic
variations so as to yield individuals that adapt better to their environment, and at the

same time maintain diversity of phenotypes throughout their population.

In a low-level perspective, EC draws inspiration from genetics to mimic the process
of reproduction. The main principle that EC borrows from genetics is that an individ-
ual’s phenotype is completely described by another hidden set of characteristics, called
genotype. The genotype is a set of genes, which can take values from a prescribed range.
The ‘values’ of the genes constitute the individual’s genotype and consequently define
its phenotype, i.e. its chances of survival and reproduction. In reality, all of the genes
in a living organism are arranged in chromosomes, which in higher forms of life come in
pairs. The chromosomes of life forms that are reproduced in pairs are a combination of
paternal and maternal ones, a process which in the context of EC is referred as crossover.
In practice, this allows genetic information to pass to the offspring, affecting their phe-
notype and their chances of survival. However, the offspring differ from their parents

due to the mutation, i.e. random variations that take place during the reproduction.

EC-based optimization algorithms attempt to incorporate the previously discussed
mechanisms in a stochastic trial-and-error scheme, in order to approximate the solution
of optimization problems. Given an optimization problem to be solved in iterations,
a trial-and-error approach requires the creation of candidate solutions, which will be
evaluated to derive their goodness. A correspondance between this scheme and the
evolutionary process that EC tries to mimic holds and it is demonstrated in Table 3.1,

where components of each process are mapped to their duals.

To emulate the evolutionary process, EC-based algorithms must maintain a pop-
ulation of individuals, which both holds the candidate solutions of an optimization
problem and serves in the selection process. The competition of individuals to survive
the selection results in an increase in the fitness of the population, i.e. the quality of

the candidate solutions. A typical EC-based optimization algorithm involves an initial-
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Table 3.1: Evolution and Problem Solving Equivalence

Evolution Stochastic Problem Solving
Environment <— Problem
Individual <+— Candidate Solution
Fitness — Quality

ization step, where the first generation of individuals is created in random. The fitness
of these individuals is measured, for instance by evaluating a black-box function’s out-
put on their genotypes. Based on their fitnesses, pairs of individuals are selected to
reproduce. The offspring resulting from the reproduction are produced by two distinct
operations; the recombination, which involves the combination of the genotypes of the
parents, and the mutation which alters the genotype of the offspring. The pool of off-
spring candidate solutions are evaluated and they compete with the parents for survival
in the next generation. This iterative process is depicted in Fig. 3.1, and it terminates

when a predefined criterion is met.

Parent

k

Selection

Recombination

Mutation

Figure 3.1: A flowchart depicting the general operation of EC-based optimization algo-
rithms. Figure adapted from [70]

The factors that lead to the improvement of the fitness across generations ( itera-
tions) are the selection mechanism of the EC-based algorithm, as well as the variation
process ( recombination and mutation). Although one can alter the way these processes
work, they will always involve some kind of stochasticity. This renders the whole algo-
rithm a stochastic optimization approach. In the following subsections, we will discuss

the specific details of three EC-based algorithms used in this work, namely Genetic
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Algorithms, Differential Evolution and Covariance Matrix Adaptation.

3.1.1 Genetic Algorithms

The Genetic Algorithm (GA) is the most popular optimization algorithm within
the context of EC. It follows the exact same procedure as shown in Fig. 3.1, with its
mutation, crossover and selection operators being inspired from natural evolution. Given
a hyperparameter for the population count, M, and assuming that the search space is
R, the initialization procedure typically consists of sampling from a N-dimensional
Gaussian or a Uniform distribution in RY. The resulting vectors X = [x3,Xs, ..., X/
constitute the initial population. In this step, the most important aspect is the good
coverage of the whole search space. To achieve this, some modern techniques resort to
quasi-random sequences [78] that produce finer uniform partitions of the design space,

compared to other approaches.

As stated previously, environmental pressure is the main force for attaining better
solutions through the use of EAs, and it is realized with the selection mechanism. In the
context of GAs, there exist numerous selection mechanisms, however the most important
one is the roulette selection operator. This assigns a probability of survival to each
individual x;, according to its fitness score. All individual probabilities are weighted so
as to add up to one and then a random sampling takes place to determine the individuals
that survive the selection. By doing so, all of the individuals in the population have
a non-zero probability of surviving, thereby ensuring (implicitly) the diversity of the

features in the population.

Emulating the natural process of fertilization, where maternal and paternal chro-
mosomes are combined to produce the chromosome of the offspring, the GA defines
pairs of surviving individuals to mate. Considering a case where individuals x; and x;
are selected to mate, their chromosomes, i.e. the entries of the vectors, are swapped to
produce the new offspring vector. Although there are several variations to this process,
the single crossover point one is the most widespread. It involves sampling a random
integer ¢, from the range [1, N] and setting the entries of the offspring vector x,,.,, equal
to the first ¢, ones from x;, while the rest of them are set equal to the last M — ¢, ones

from x;. This process is illustrated in Fig. 3.2.
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Figure 3.2: A depiction of the single-point crossover operation in GAs.

The last operation within the GA is the mutation one; after the crossover, the entries
of the offspring vector are perturbed randomly to emulate the random fluctuations that
take place in the fertilization process. Typically, this process is implemented by adding
a multivariate vector sampled from an isotropic Gaussian distribution with given mean

vector and variances.

3.1.2 Differential Evolution

Differential Evolution (DE) [79] is another popular algorithm from the family of EC.
Although DE follows the same principles as most EC-based algorithms, having muta-
tion, recombination, crossover and selection operators, it does not mimic any natural
phenomenon. In practice, at a particular iteration of DE, each offspring individual is
produced by applying a crossover operation between a single parent individual and a
mutant vector. Mutant vectors are produced by a mutation operation, where a weighted
difference of a number of individuals is computed and added to a particular individual
vector of the population.

More formally, let us consider an optimization problem and let us assume that its
search space is RY. The initial population of M individuals are generated at random
and are denoted as X = [Xi]f\il, where each individual vector has N entries such that
X; = [0, Ti1,-..,Tin—1]. For each individual in the population, its associated mutant

vector v; = [v; 0,01, ...,V Ny—1] is created by following two steps:

e Select k individuals from the current population [di]le at random and compute

their pair-wise differences

e Add a scaled version of the differences to a base vecor dy,se.
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In the typical case where k£ = 2, the mutant vector is given by
Vv, = dbase + F- (dl - d2) s (31)

where F' is the scaling factor and it is a hyperparameter of the DE algorithm. The
selection of dp. is also a parameter of the whole procedure and there exist many
variants for the differential operation based on it. The most popular strategy, which is
followed in the experiments in this work and it is referred to as the DE/rand/1 variant,
involves selecting the base vector in random from the current population.

Following the creation of the mutant vectors, a recombination procedure takes place
where a trial vector v; = [v;0, Vi1, ..., V; y—1] s produced by crossing-over features from

the individual x; and its associated mutant vector v;, such that

v;; if rand(i, j) < CR (3.2)
'Ui,‘ = .
! x;; otherwise.

Function rand(i, j) yields samples from a unifrom distribution in the range [0, 1] and CR
is a scalar hyperparameter that controls the crossover probability. The resulting trial
vector v; is evaluated and competes with the individual x; based on their fitness values,

to determine which one survives the next generation.

3.1.3 Covariance Matrix Adaptation

A particular subset of EC-based algorithms targeting optimization problems is the
family of Evolutionary Strategies. They typically work in continuous valued search
spaces and use a sampling procedure to generate candidate solutions, i.e. offspring in the
EC framework. Starting from an initial population, the Evolutionary Strategies typically
select the fittest p individuals, which are used to sample the search space and produce
A offspring candidates, where p < A. The resulting A individuals are then compared to
determine the top p individuals to survive the generation and to be used eventually for
the generation of the next offspring. This sampling scheme is adopted by the Covariance
Matrix Adaptation (CMA) algorithm, which was first proposed in [30] and has become
the most popular approach for SO problems among the Evolutionary Strategies.

Considering a SO minimization problem with N variables and denoting its search
space as S, CMA works by sampling offspring from a parametrized multivariate Gaussian
distribution N (m;, C;) over S, where i is the index of the iteration. Therefore, at the
i-th iteration A individuals are sampled from the aforementioned distribution. These

individuals are then compared to find the fittest p, which are used in a weighted sample
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average form to derive the m;,; mean vector. This serves as a recombination operation,
where old individuals determine the features of the future offspring. At each iteration,
the covariance matrix of the Gaussian distribution is updated by accounting its previous
state, the evolution path, i.e. the path that the mean vector m has followed throughout
the iterations and the most fit offspring of the current one. In addition, the update
procedure of the CMA depends on the step size control variable o, which controls the
convergence rate of the covariance matrix. A thorough explanation of how the CMA

update works, as well as its mathematical foundations can be found in [31].

3.2 Single-Objective Sizing

In this section we will consider the case of circuit sizing using EC-based algorithms
by formulating it as a Single Objective (SO) optimization problem. Consider a given
topology, with the geometric variables of its devices (MOS devices, capacitors, etc) ar-
ranged in a (1,d) vector, x. In the SO case, only a single circuit performance metric is
accounted for optimization. We may view this metric as a black-box function f : R — R,
which we wish to minimize. In addition, to restrict the circuit in desired performance
regions, one may indirectly account for [ other performance metrics in the form con-
straints. These can also be viewed as black-box functions and here we use the notation
[9; (x)]._; to denote them. Last, the search for each and every geometric variable of the
circuit must be restricted within specified ranges, in order to account both for manu-
facturability and for the step of the layout. Taking all the above into consideration, the
mathematical formulation of the sizing problem as a SO optimization problem is defined
as:

min  f(x), x=[x1,Z9,...,24]
st. gj(x) <0, j=1,...,1 (3.3)
Li<z; <U;, 1=1,...,d

where L; and U; are the lower and upper bounds of the i-th variable in the design vector

x and the space S = [[%_,[L:, U;] is the search domain of the problem.

3.3 Multi-Objective Sizing

Let us now consider a more general formulation of the optimization problem for
analog circuit sizing. Considering once more that a subset of the studied performance

metrics must be restricted within pre-specified values, the optimization problem is a
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constrained one and can be defined as:

min  F(x), x=[z1,22,...,%4]
st. gi(x) <0, j=1,....1 . (3.4)

In comparison to the initial SO formulation in Eq. 3.3, this case substitutes the scalar-
output function f (x) with a vector of m > 1 scalar-output functions F'(x) = [f;(x)]",.
The simultaneous minimization of all function components of F' is the goal of Eq. 5.1,

and it is the way Multi-Objective Optimization problems (MOPs) are formulated.

Typically, in the case of MOPs, the function components of F' are conflicting, i.e.
the improvement in one component leads to the deterioration in another. Therefore,
minimizing F' results in multiple solutions that constitute a Pareto Set (PS). For a
point x* to be a pareto optimum, i.e. to belong in the PS, every variation of x* further
minimizing one of the m objective functions f;(x*) must also deteriorate another one.
We say that a feasible solution x; dominates another feasible solution X, if f;(x;) <
fi(x2) for i = 1,...,m and there exists m’ € [1,...,m] such that f,/(x1) < fo(x2).
Consequently, x; belongs to the PS if it is feasible and it is not pareto dominated by
any other x € S. We also use the term Pareto Front (PF) to denote the image of PS via
function F, ie., PF = {F(x)|x € PS}.

In an arbitrary finite subset P = {xi}i]il of S, multiple levels of pareto dominance
(subsets of P) may be defined. The first level is the subset of P including all vectors
that are non-dominated by any other vector in P, and only those. The first level is
an approximation of PS of the MOP. The second level is defined by removing the first
level (approximate PS) from P, and, keeping the non-dominated solutions from this set.
The process is repeated until all samples in P are assigned to a dominance level. In the
context of analog circuit sizing, a PF provides designers with a model of the conflicting

relationships of circuit performance aspects, aiding the device sizing.

3.4 Constraint Handling

In the context of EC-based algorithms, the selection and recombination operators
do not offer any functionality to handle constrained optimization problems. In this case,
the goal of the optimizer must be twofold; to drive the search to the parameter space
region where the constraints are satisfied (feasible region), and then perform an elitist

approach to find the optimal solutions. For completeness, let us define the degree of
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constraint violation of each individual as
L

Gx) = 3 maz [0, g5(x)]. (35)
j=1

A straightforward modification of the EC-algorithms to account for constraints is to
introduce penalty terms, which will be added to fitness function values of each individ-
ual. Typically, these terms are derived as weighted averages of the degree of constraint
violation of each constraint function, i.e. a weighted version of the term in Eq. 3.5. The
selection of the weights, however, is left to end-user and may lead to biasing towards
some constraint satisfaction on top of the others.

A preference based scheme (feasibility rule) provides unbiased operation and has

recently gained attention [19]. It compares pairs of individuals as follows:
1. Feasible candidate solutions are preferred than infeasible ones,
2. Amongst feasible solutions, the ones with better fitness function are preferred and,

3. Amongst infeasible solutions, the ones with the least degree of constraint violation

are preferred.

3.5 Application in Design Space Exploration

In this section, an application of the popular Multi-Objective variant of GA, named
Non-dominated Sorting Genetic Algorithm (NSGA-II) [63] is demonstrated for the de-
sign space exploration of two LC-VCO topologies. The use of the automatic, optimization-
based approach for the assessment of the attainable performance ranges of the two
topologies provides an easy way to compare them quantitatively, without the use of
empirical data or closed-form equations.

The motivation for selecting VCO topologies for design space exploration stems from
their difficulty to design; in practice, VCO design includes finding a compromise between
many competing specifications. Besides Phase Noise and power consumption, metrics
such as tuning range and voltage swing must be carefully considered. In addition, as
the supply voltages grow smaller, optimal LC-tank design to achieve a high quality
factor Qienk is becoming difficult to accomplish. In particular, the use of integrated coils
that provide with relatively low Q.. brings about the degradation of Phase Noise or
increased power consumption [32].

For example, in cases where low power consumption is the most important specifi-

cation for a particular application, transistors are biased with relatively small currents.
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However, this strategy can increase the parasitic elements of MOS devices, thereby de-
grading the circuit’s Phase Noise performance. On the other hand, in cases where low
Phase noise is the most important design aspect, one should look to achieve high output
voltage swings. This, however, results in higher power consumption. Therefore, finding a
balance between the specifications of a LC-VCO topology would require extensive design
space exploration, which can be achieved through the proposed black-box optimization

approach.

In the following, we discuss briefly the two topologies considered and present the

optimization formulation and results.

3.5.1 LC-VCO topologies

In this application we address the automatic sizing of two different LC-VCO topolo-
gies. These are a nMOS cross-coupled and a complementary nMOS-pMOS cross-coupled
LC-VCO and are shown in Figures 3.3 and 3.4 respectively. Both topologies consist of
two sub-circuits; an LC tank that determines the oscillation frequency wy and an active
sub-circuit that provides the necessary negative conductivity to compensate for the LC
tank losses. In the circuit of Fig. 3.3, the nMOS pair is responsible for the negative
conductivity, whereas in the one shown in Fig. 3.4, the complementary nMOS-pMOS

pair compensate for the tank losses.

Denoting as Cygnir and g, the capacitance and conductivity of the VCO tank,
respectively, two fundamental equations describe the VCO operation. It is noted that
the varactor’s capacitance, the parasitic capacitances of the active elements and the

capacitive load are included in Cy,,,. The frequency of oscillation wy is given by [83]

1
Vv Ltank Ctank

and describes the frequency of the output differential signal at nodes V,up, Voutn. To

(3.6)

Wo =

achieve oscillation, it must hold [33]

Bactive Z Q- Zrank> (37)

where a € [1.5,3] is a safety margin factor securing the start-up condition. The term
active TEPTESENtS the conductivity of the active sub-circuit. In the case of the nMOS-only

LC-VCO, it holds g,.ive = &mn/2, Whereas in the case of the complementary one g, ...
is equal to g,,,,/2+g,,,/2. Similarly, the conductance of the LC-tank, giank, is computed
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using the inductor and varactor conductances and it is given by

gL + Guar + gd;’n, nMOS

9 + Goar + 222 4 %0 nNMOS-pMOS |

Btank =

An important characteristic for the VCO is its output signal’s spectral purity near
the frequency wy. Phase Noise is a measure for this quantity. By defining a frequency

shift Aw around wy, one can determine the Phase Noise through [34]

1 . Lfank (w0)4

L{Aw} = 10log A%, 7

2KpT (gL + Goar + 7 - 9d0>] (3.8)

where g4 is the transconductance of drain when V;; = 0, K is the Boltzmann constant,
T the temperature at Kelvin and ~ is the excess noise factor.

Both of the topologies are complemented using a notch filter [35] to enhance their
Phase Noise performance. The objective is to reduce the noise components stemming
from the tail current, by cutting-off their second harmonic. In both circuits, L ;i and
C'iier are connected in parallel at the drain of the current source and they are tuned to
resonate at 2wy. In addition, a capacitor Cr is added in parallel with the current source
to short high frequency noise components [35].

This modification was implemented in both circuits with a small difference in nMOS
VCO, where top biasing is used to lower the common mode voltage at the output node
to Vpp/2 and improve the varactor’s tuning range. In addition, another pair of L e,
Ctier was added to the sources of the nMOS transistors. This is because it provides
with high impedance at the source of the cross-coupled transistors and restricts them

from loading the tank when in triode region [36].

3.5.2 LC-VCO Optimization

In this section we present the optimization procedure for both LC-VCO topologies,
with the desired wy equal to 27 - 5GHz. . We consider the general case where the Phase
Noise and power consumption of the VCOs are equally important and compare them by
comparing their attainable performances, derived using multi-objective optimization.
Based on the formulation of Eq. 5.1, F' is a vector of 2 conflicting functions F(x) =
[f1(x), fa(x)], that correspond to the Phase Noise and power dissipation of the circuit.

To account for the output signal oscillation frequency of the VCOs, we use a single
constraint function that must fulfill g;(x) < 0 and corresponds to the deviation of the
output signal’s frequency from the desired wy. In particular, g1(X) = |wo — Wose.output| — €

where € > 0 is a relaxation term that depends on the desired wy and wosc, outpur T€PrEsents
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Figure 3.3: nMOS cross-coupled LC-VCO

Figure 3.4: Complementary nMOS-pMOS cross-coupled LC-VCO
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Table 3.2: VCOs variable ranges

Design Variable Units  Range

Wmos um 12, 80]
Lunmos nm  [100,200]
j mA [1,10]
Wit um (2, 80]
Ligil nm (100, 200]
Cr pF 0.5, 6]
Critter pF 0.15,1]
Lyijer Inner Radius  um [1, 80]
Lignie Inner Radius  um [10, 60]
Lyijter Num of turns — 1, 5]
Ligne Num of turns — 1,5]
Cyrer Num of fingers — 2, 32]
Cyar Num of groups — 1,5]

the actual output signal frequency of the parametrized VCO schematic.

All of the aforementioned circuit performance metrics are calculated by an in-house
software tool and the commercial simulator Cadence Spectre, which processes the out-
puts of periodic steady state and DC analyses, in batch mode. This is very important
in our case, since the employed NSGA-II is a population-based approach, i.e. it requires
many simulations per iteration to converge to optimal solutions.

Both circuit topologies are designed using a general-purpose flavour TSMC 90nm
PDK. For each one of them, a single testbench is used to acquire Phase Noise, oscillation
frequency and power dissipation outputs. The allowable ranges for the design variables,

which are identical for both topologies, are given for reproduction purposes in Table 5.3.

The hyperparameters of the optimization algorithm are given below: The population
count is 100 and the algorithm terminates when 150 generations are completed. Since
we deal with both integer-valued and continuous variables, the mutation scheme of the
algorithm works as follows; a polynomial mutation is used first to change the value of
the variables by a non-integer value. Then, the integer valued variables are rounded to
the closest integer-value. On an 8 core machine, the optimization took approximately

1.5 hours to complete for each circuit. The resulting PFs are shown in Fig. 3.5.

As expected, higher power consumption provides better Phase Noise performance for

both circuits. By comparing the PFs, it is seen that the complementary cross-coupled
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Figure 3.5: Acquired Pareto Fronts for both LC-VCO topologies, with f,,. = 5GHz

topology achieves better Phase Noise and power consumption trade-off for relatively
low biasing currents. When higher current consumption is acceptable, the nMOS-only
topology is preferable. In fact, nMOS-only topologies provide with larger output voltage
swings compared to the complementary ones, leading to better Phase Noise performance,
when enough current is available [387]. Using Fig. 3.5, we are able to determine 5mA as

the minimum current threshold for using nMOS-only topology.

The above experiment is repeated once more, for the case of wy = 27 - 2.4GHz. The
NSGA-II hyperparameters are the same as before, and the allowable parameter ranges
remain as given in Table 5.3. The optimization took 1.5 hours to complete and the

resulting PFs are given in Fig. 3.6.

In this case, the difference between the two topologies is more evident, with the
complementary one being even more preferable. Qualitatively, this can be explained
as follows; in lower oscillation frequencies, the inductance and capacitance of the tank
for a given biasing current need to increase. This requires higher negative impedance
from the active sub-circuit to achieve oscillation, which is more easily attainable from
the complementary topology. Quantitatively, using the optimization results from Fig.
3.6, the complementary topology is preferred for current consumption below 9mA. It is
worth noting that the above results hold for the PDK used in this study, and the actual
PFs may differ from one technological node to another.
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Figure 3.6: Acquired Pareto Fronts for both LC-VCO topologies, with f,,. = 2.4GHz

3.6 Proposed Multi-Objective Variant

In this section a modification of the NSGA-II algorithm is proposed to address the
mixed parameter space of circuits and to provide a framework that produces competitive
results when constraints apply. To address the constraint handling part, we note that
the main approach, which is motivated by the feasibility rule [19], does not make use
of the infeasible space fitness function information. Here we employ a selection scheme
within NSGA-II to mitigate this shortcoming. Our approach can handle integer as well as
continuous search spaces, exploit infeasible fitness function information and optimize for
multiple objectives. In the following subsections, we discuss the proposed modification

in detail and provide example circuit optimization experiments to showcase their merit.

3.6.1 Handling Integer Parameters

The trivial approach to addressing mixed parameter spaces in the mutation op-
erations of EC algorithms is to treat discrete parameters as continuous-valued ones.
Following mutation, the parameters that need to be discrete are transformed back to
the nearest integer value. Though simple, this approach is flawed; in the case that a
particular discrete variable is restricted to small ranges at a particular stage of the opti-
mization, it remains unchanged for the remainder of the procedure and therefore hinders

exploration[38]. To address this problem, we adopted a quantization scheme: vector x
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is divided into a continuous and an integer part,

Xe = [x607:[;cl7 .- ]

, (3.9)

X = [Ii07xi17 . ]

where z.; and x;; are the j-th continuous and integer parameters respectively. For the
vector containing continuous variables, the bounded polynomial mutation is applied as
in [63], while for the integer variables, a Poisson distribution P(\) is assumed. New
values for z;; are sampled from P()), where X is equal to z;;. This process retains the
stochasticity of the original mutation operation. For instance, in Fig. 3.7, the probability
mass function of the poisson distribution for two different values of A is plotted, show-
casing the possible transitions in the value of a variable under the proposed scheme.
While the greater mass of probability is centered at the proximity of A, the chances of
mutating towards a different variable are considerable. This suggests that the problem

of stagnation is, in theory, alleviated.

A=4 A =2
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Figure 3.7: The probability mass function of two sample Poisson distributions with A = 2
and A\ = 4.

3.6.2 Constraint Handling

The feasibility rule scheme is the most popular approach for constraint handling in
black-box optimization algorithms and it is incorporated in the EC-algorithm’s selec-

tion process to drive the population to feasible regions. A limitation of this approach,
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however, is that by favouring constraint satisfaction more than fitness function mini-
mization, it leads to convergence to feasible, but not optimum parameter regions|33].
In practice, this problem is exacerbated in situations where the feasibility regions are
disjoint, or the optimum solutions lie close to the feasibility boundary.

Since trade-offs are the essence of circuit sizing, optimal solutions may lie close to
the infeasible spaces in analog design spaces. Therefore, driven by [39], we introduce a
mechanism to the NSGA-II algorithm that executes in parallel with the feasibility rule
and makes use of infeasible fitness functions. In particular, at each iteration (generation),
the offspring are sorted according to their fitness using the non-dominated ranking
algorithm. Those candidate vectors that do not survive to the next generation and are
on the first pareto level, are stored in an archive. Then, the individuals in the archive and
the surviving population are sorted by their degree of constraint violation. The next step
is to select k vectors with the minimum (maximum) constraint violation in the archive
(population), a total of 2k vectors. These are sorted once more using the non-dominating
procedure, accounting only for their fitness functions. The £ best individuals are placed
on the population and the rest are discarded. As a rule of thumb, we choose k to be
equal to 1/20 of the total population.

To showcase the usefulness of the proposed scheme, an example is illustrated in
Fig.3.8, where a 2D Rastrigin function is limited to be feasible only in the regions inside

the curves, i.e.

2
min f(x) = Z z? — 10cos(2mz;) + 10,

i=1
subject to:  3(zy +7)* + 235 < 0.3
(z1 4+ 8)* + (22 — 3)* < 2.

(3.10)

In this case, a single-objective GA is used to find the minimum of this constrained
problem. Two cases are considered; one using the feasibility rule and another using the
proposed selection scheme. The one using the feasibility rule concentrates its search in
the large feasible region, whereas the GA incorporating the constraint-handling method
described above, for single-objective this time, manages to reach both feasible regions,

finding the true global minimum of the problem.

3.6.3 Example Applications

In this subsection we compare the proposed MO optimizer in two design-exploration
tasks that deal with an amplifier and a Low Noise Amplifier (LNA) circuit. Similar to

the previous section, we use an in-house tool for result parsing, simulation and testbench
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Figure 3.8: Top row: Optimization run for a multimodal constrained function, using the
feasibility rule. Bottom row: Optimization run using the constrained handling method
proposed. Initial candidate vectors are identical.

parameter update and execute simulations in Cadence Spectre in batch mode.

Nested-Current-Mirror amplifier

Here we demonstrate our sizing strategy on the single stage Nested-Current-Mirror
amplifier (NCM) [90], shown in Fig. 3.9. This topology aims to address display appli-
cations, where large capacitive loads need to be handled. The NCM is a single stage
amplifier topology that uses the load capacitance for compensation and promises to
enhance DC gain, bandwidth and Slew Rate performances compared to standard single
stage topologies. The ratios of the current mirrors employed in this topology are key
parameters for sizing. These are integer numbers and are addressed accordingly within
our proposed approach.

For this experiment, we seek to determine the mirror ratios (K1-K6), the unit tran-
sistors dimensions and voltage V;,. Three types of unit transistors are considered, one for
nmos devices, one for pmos devices and one for Mb !. A TSMC 90nm process is used to
design the amplifier.

For comparison, we follow the original implementation of the topology with 15nF

load capacitor, Vpp = 1.2V and set the design constraints equal to the ones stated in [90)].

!The transistors sizes are defined by parameters K1-K6 and the unit transistors, i.e. M2 width is
(K2+K3) times the unit pmos width.
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Figure 3.9: Nested Current Mirror amplifier proposed in [90]. Half-circuit instance names
are shown, since the circuit is symmetric.

Table 3.3: NCM Specifications

Performance Desicription Specification
PM Phase Margin > 90°
GM Gain Margin > 60dB
Ao DC Gain > 72dB
Niok Noise @ 10kHz <1000V /VHz
SRaug Slew Rate (average rise and fall) maximize
Pdc Total power dissipation minimize

For trade-off exploration, we optimize for high slew rate and low power consumption.
The specifications (objectives and constraints) are given in Table 3.3, while the variable

ranges are given in Table 3.4.

Fig. 3.10 shows the pareto fronts resulting from two NSGA-II optimization runs, one
using the feasibility rule and the other using the new constraint handling method. Both
experiments use the same set of hyperparameters, with population size and maximum
generations set to 200 and 300 respectively, and the mixed-integer mutation scheme
proposed. The plot suggests that we are able to size the circuit with better slew rate and
power trade-off compared to the original implementation. Also, the proposed constraint
handling is able to provide slightly better and denser pareto fronts. The patches in the
pareto front of the feasibility rule can be explained as follows: Traversing an infeasible
part of the design space to reach non-dominated solutions is easier for the proposed

algorithm.

The performance of the two methods is assessed quantitatively using the Hyper-



74 FEA-based Sizing

Table 3.4: NCM Variable Ranges

Design Variable Description Constraint
Wi MOS Width [1 — 30Jum
L; MOS Gate Length [0.2 — 1Jum
K; Mirror Parameters [1—5]
Vi Biasing Voltage  [0.7 — 1.1]V

volume indicator (HV) [91]. This indicator provides a measure of the region which is
dominated by each pareto front and bounded by a reference point, therefore higher HV
values are better. Using the same reference point for both pareto fronts, the HV value
for the proposed method is 28.5 - 10* whereas for the feasibility rule 18.34 - 10%.

The optimization took approximately 20 minutes. Table 3.5 provides the sizes for
an example solution marked on the pareto front, with 1.2uW power dissipation and the

same slew rate as the original implementation (250 V'/s).

40 Pareto Front

—e— Feasibility Rule

35 —e— Proposed Method

30

Original
Implementation

<¢——— Example
0 2000 4000 6000 8000 10000
Slew Rate [V/s]

Figure 3.10: Pareto fronts for the NSGA-II algorithm with the proposed constraint
handling method, and the typical NSGA-II with feasibility rule.

3.6.4 Inductorless Wideband LNA

An inductorless, wideband LNA, shown in Fig. 3.11[92], is sized in this example.
This topology adopts active shunt feedback to achieve wideband operation.

We use the same TSMC 90nm process, with 1.2V supply voltage for both the main
and the feedback amplifier. The capacitive load is H0fF and the buffer is considered
lossless. In the same manner as in [92], transistor lengths are set to the lowest acceptable
value by the process, i.e. 100nm. The design specifications are set equal to the ones shown

in the original implementation, with the exception of higher bandwidth, and they are
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Table 3.5: NCM Example Solution

Variable Size

meOS,anS 1u

meos,nmos 1u

K1 2
K2 2
K3 1
K4 )
1
)

Kb
K6
Vi 0.98V

out

Buffer
Ce

T
L

Figure 3.11: Inductorless, wideband low noise amplifier proposed in [92].

Table 3.6: Wideband LNA Specifications

Performance Desicription Specification
S Input Matching (entire bandwidth) < —-10dB
11P3 Third-order intercept point @ 2GHz > 8dBm
A, Voltage Gain > 18dB
BW —3dB Bandwidth > 3GHz
NF Noise Figure @ 2GHz minimize

Pdc Total power dissipation minimize
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Table 3.7: Wideband LNA Variable Ranges

Design Variable Description Constraint
W; MOS Width [1 — 100Jum
Rp Feedback Resistor  [1 — 10K]$2
Ry Self-Biasing Resistor [1 — 20] K2
Ry Biasing Resistor [1—20]K
C Coupling capacitors  [0.5 — 10]pF

VBIAS M3 biasing [03 — OS]V
18 Pareto Front
—e— Proposed Method
16 —e— Feasibility Rule
14
§.12
E10
§ 8 Example
6
4
2
100 125 150 175 200 225 250 275 3.00

NF [dB]

Figure 3.12: Pareto fronts for the wideband LNA experiment.

shown in Table 6.4. In addition, the variables considered in the optimization and their

allowable ranges are given in Table 3.7.

The optimization goal is to determine the trade-oftf between power consumption and
Noise Figure. The population count is set to 150 and the maximum generations to
200. The resulting pareto fronts using the NSGA-II with feasibility rule and with the

proposed constraint handling method are shown in Fig. 3.12.

The plot suggests that the proposed method finds wider pareto fronts than the
feasibility rule. The HV value for the feasibility rule is 26.28 and for the proposed method
100.62, indicating that the proposed method provides more uniform and widespread

solutions. Both experiments took approximately 25 minutes.

Repeating the above experiment 5 times, we calculate the Figure-of-Merit (FoM) for
wideband LNAs[92]. The mean FoM for the pareto front of the proposed methodology is
41.2dB, while for the one resulting from feasibility rule and NSGA-II is 39.6dB. We note
that the achieved FoM is increased with comparison to the original implementation. The

sizes of an example design marked on the pareto front are shown in Table 3.8.
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Table 3.8: Wideband LNA Example Solution

Variable Size
Wi, 12x1.05u
Wi, 90x1u
Wy 10x1.05u
Wiy 3x1.2u

Ry 15.6K¢2
Ry 9K
Ry 340 Q2
Cu 10pF
Cea 5pF
Ces 900fF

Viras 0.55V

3.7 Summary & Concluding Remarks

An analysis of the EC-based concepts for black-box optimization, along with the def-
inition of the sizing procedure and the design exploration one as optimization problems,
was given in this chapter. The use of EC-based algorithms for exploring the attain-
able performance of real-world circuits was also demonstrated, by using two LC-VCO
as examples. In addition, to enhance the performance of EC-based algorithms for op-
timization, a variation of the commonly used mutation operation was proposed that
uses a Poisson distribution to alter the chromosomes of the algorithm’s individuals.
This methodology, in combination with an introduced selection mechanism that han-
dles constraints and takes into account the fitness of individuals that are not feasible, was
applied on an operational amplifier targeting display applications and an inductorless

wideband LNA, demonstrating better trade-off exploration capabilities.
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Chapter 4

. o o o
Sample-Efficient Single-Objective

o o
Sizing

Automatic sizing of complex circuits with high-dimensional variable spaces and tight
constraints requires many evaluations to yield satisfactory results, in the case of EC-
based approaches. In reality, circuit simulation may take from some seconds to even
hours to complete, which renders the simulation-based optimization using population
algorithms impractical. A useful EDA tool should offer designers the opportunity to size
and explore the performance space of a circuit in as much less time as possible. Draw-
ing motivation from the above, a sample-efficient black-box optimization approach for
SO circuit sizing is proposed in this chapter. It relies on the concept of Bayesian Opti-
mization (BO), and takes advantage of local Gaussian Process (GP) models to enhance

both BO’s scalability and optimization results. To better highlight the advantages of

the proposed method, background information on GPs and BO are also provided.

4.1 Background

4.1.1 Gaussian Processes

Within the context of supervised learning, the construction of models that approxi-
mate unknown, black-box functions from measurement data holds a special place. The
choice of model represents our assumptions about the function to be approximated and
the goal is to determine its parameters such that the prediction performance is opti-
mized. Often, given a set of data, the nature of the selected model poses a restriction
to its prediction capabilities. For instance, in the case of Neural Networks, the choice of
architecture determines partly the resulting performance, even after the optimization of
its internal parameters. This family of models, that are adapted to the data by deter-
mining a set of predefined in number parameters, are referred to as parametric models.
Another family of models that can be used for the same task are the non-parametric
ones. In this case, the structure of the function to be modeled is not assumed to be
within the capacity of a family of functions with a finite set of parameters. Instead,

the non-parametric models assume parameters that are flexible in number and grow
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as the amount of input data grows. Intuitively, one may view the infinite-dimensional

parameter vector of a non-parametric model as a function.

Gaussian Processes (GPs) [51] belong to the family of non-parametric models. They
build a distribution over the function space and perform Bayesian inference to approx-
imate the unknown black-box function. In fact, GPs are a highly studied topic in the
literature with applications in diverse fields of study. Their popularity stems from the
fact that 1) they rely on very few hyperparameters to approximate the given dataset,
which are determined in a systematic manner, 2) they yield uncertainty estimates about
their predictions and 3) they use closed-form expressions for all operations required to

perform inference.

Let us now discuss the GP models in mathematical terms. Consider a dataset D
comprised of n d-dimensional parameter vectors X = {x;}? ; and a corresponding 1-
dimensional observation value set y = {y;},, derived by measuring an unknown black-
box function f : R? — R. In the general case, we assume that the observations are

corrupted by an uncorrelated additive noise source such that it holds
yi:f(xz-)+6,-, 1=1,...,n, (4.1)

where ¢; is the noise component in the i-th measurement and function f is the true

process that must be modelled.

In the black-box setting, we say that f in Eq. 4.1 is modeled by a GP f such that

yi:f(xi)+e,~, 1=1,...,n. (4.2)

Here, the random noise is considered to follow a zero mean Gaussian distribution such

that €; ~ N (0,02), where o, is the standard deviation.

The values of f at any point x* € R are 1D random variables that follow Gaussian
distributions. In practice, the distribution f (X*) serves as an uncertainty estimate for
the GP model’s prediction. The aforementioned property leads to the conclusion that
a GP can be considered as a stochastic process with infinitely many random variables,
which together form a probability distribution over the unknown function. For every
positive integer n, any (n x 1) vector £ = [f (x;)]%,, which is comprised out of a subset

of these random variables, follows a Multivariate Gaussian distribution, i.e.

f:[f(xl),...,f(xn)]TNN(;J,,K). (4.3)

Here, vector g is the GP mean, defined by a mean function m : RY — R, and K

is the covariance matrix, constructed by a kernel function %k : R? x R? — R, such that
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K;; = k(x;,%;). Considering two distinct points x; and x;, the covariance between values
f(xl) and f(xj) is given by

k(x;,x;) = Cov[f(xi), f(xj)] (4.4)

and the mean of the random variable f (Xl) is given by

m(x) = E[f (x)]. (4.5)

Functions m(x) and k(x,x’ ) define uniquely the GP model and constitute design
choices. The mean function imposes a bias to the GP’s predictions and it can be used to
describe our prior beliefs about the unknown black-box function. Often, in cases when
no prior information about f is available, the mean function is set to a constant . In
these cases, the expressive capabilities of the GP model are determined solely by the
kernel function k. The kernel function is a measure of similarity between the GP outputs
of any two input points and determines the behavior of the output model, such as for

instance periodicity, smoothness, etc.

Kernel functions are constructed such that the resulting covariance matrix K is
positive semi-definite, for any modeling problem. In practice, the most widespread kernel
functions are stationary, which means that their values k;(x, x/ ) depend only on the
difference of the input points, 7 = x — x’. The fact that sample correlations depend on
the square of 7 in many kernel functions enforces closeby points to have similar outputs.
While this property may seem intuitive, it also leads to a critical limitation of the GP
models; the Euclidean distance between different points in the variable space becomes
virtually uninformative in high-dimensional spaces [93], rendering them susceptible to

the curse of dimensionality.

Popular kernel functions include the squared exponential and Matérn kernel families

[51]. The former is given by

1
[l —x/lI2], (4.6)

kse(x,X') = o”exp [_ﬁ

where the hyperparameters o2 and \ are called the variance and the lengthscale of the
process. A property of the squared exponential kernel is that it produces infinitely dif-
ferentiable functions. In fact, this kernel is the standard for GP regression tasks, mainly

due to its simplicity. The the Matérn kernel family, on the other hand, is expressed by

Ematern (X, X') = 02%< 2yr>uKl,< 2W‘>, (4.7)
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Squared Exponential Matern 5/2 Matern 3/2

(o) (®) (v')
Figure 4.1: Sampled functions from different GP priors.

where 7 is given by

d (7 — 2},)? i
r= (Z kA—gk> : (4.8)

k=1
Here, the parameters )\, are the lengthscales of the kernel and correspond to the degree
of variation of the GP with respect to the dimensions of the input point, and functions
K, and I' are the modified Bessel function and the gamma function respectively. The
important parameter is v, which takes only positive values. For v — oo, the kernel in
Eq. 4.7 is identical to the squared exponential kernel. To relax the smoothness property
of the squared exponential kernel, one may choose smaller values for v, with the 5/2
being the most popular. The Matérn 5/2 provides with twice differentiable functions

and its equation, derived from 4.7 is given by

ky—s/2(x, x') = o? (1 +v5r + 27“2) e~ Vo, (4.9)

Fig. 4.1 depicts sampled functions from three distinct GP models, each one having
zero mean function and Squared Exponential, Matérn 5/2 and Matérn 3/2 kernels. It is
obvious that the Matérn kernels provide less smooth functions, and that the v parameter

controls the smoothness.

Having established the kernel and mean functions of the GP model, one must adapt
the model to the observed dataset D. This involves learning the kernel’s hyperparame-
ters, i.e. lengthscales, variance, which are grouped into a vector 8. To do so, one needs
to maximize the marginal likelihood of the observations in D, i.e. determine the values

of the hyperparameters such that the observations y become likely, under the GP.

Arranging the noise-corrupted measurements in vector y, and taking into account
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the additive Gaussian noise in Eq. 4.2, this vector follows a Gaussian distribution with
mean and covariance
y ~N(p, K +0°1). (4.10)

The marginal likelihood is therefore given by
pe(y) = (2n) " K + 0211\*%e*%(y*")T(KJr”Z)_l(y*“). (4.11)

The learning process for a GP consists of maximizing Eq. 4.11. Typically, this opti-
mization problem is formulated as a minimization one, where the negative log-marginal

likelihood is minimized:

1 1
L(6) = 3y Kty + Slog(|K +0”I]) + glog(Qﬂ). (4.12)
This expression is used to learn parameters @, using off-the-shelf optimizers such as the
Limited-memory BFGS [94]. More recently, stochastic gradient descent algorithms have
been utilized along with backpropagation to learn GP kernel hyperparameters in a more
efficient way [95]. To do so, they need to compute the derivatives of the log-marginal

likelihood with respect to each hyperparameter 6;, which are given by

da9; 2

dL 1 dK 1 dK
= -Tr | K! — yI'K 1K1y, 4.1
( d@i) 2 g, Y (4.13)

After adapting the GP model to the data, one can make predictions about a point x*
that does not belong in D. This is achieved by utilizing the GP’s predictive distribution.
In order to define this distribution, let us first consider the joint distribution of f(x*)

and y, which is a Gaussian one

K 21 k
IR AN PO V4 N I B I , (4.14)
f(xr) 7 k” k(x*, x*)
where kT is a (1 x n) vector with values k(x;,x*) for i = 1,...,n and K is the n x n

kernel matrix. By using the conditional properties of the Gaussian distribution [96], one

can obtain the predictive distribution p(f(x*)) of the GP model as a Gaussian one with

mean and variance given by

X)) =p+ k(K + 0"y — p)
(x*) = k(x,x) — k" (K + o?I) 'k

!

. (4.15)

g

N =,

ly

The predictive distribution expresses the GP model’s predictions after having been
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adapted to the dataset D. By using the Gaussian distribution defined in Eq. 4.15, one
can produce 1D distributions which serve as predictions, for pointwise inputs x. Fig. 4.2
demonstrates an example GP regression on a sinewave function, where the GP’s pre-
dictive distribution is utilized to demonstrate the pointwise 1D Gaussian distributions
in the range [0, 1.6]. The mean of each pointwise distribution is shown in dark blue, the

confidence bounds u 4+ o, y + 20, 4 30 in light blue and the actual sinewave in red.

Example GP Regression
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Figure 4.2: A depiction of GP regression to a set of sinewave measurements. The mea-
surements are shown as black stars, the actual sinewave is shown in red and the GP
mean and confidence bounds are shown in blue.

It is important to note that, although the predictive distribution in Eq. 4.15 is given
for the pointwise input x*, one can define and use a multivariate predictive distribution

as well. Considering a set of £ > 1 unseen points X, ..., Xy, the predictive distribution
p <[f(X1), N f(xk))]> has a covariance matrix

Cov(x*,x") = k(x*,x") — kx o (K + 0°I) ""kx v, (4.16)

where the (1 x n) vector kg . = [k(x;, x*)]\;,

as in Eq. 4.15. Sampling from this joint predictive distribution results in a k-dimensional

while the mean vector remains the same

output vector f and it is typically done by sampling a vector ¢ from a k-dimensional

unit-variance, isotropic and zero mean Gaussian distribution and then computing
where Ky 18 the mean vector of the joint predictive distribution and A the matrix
square root of its covariance matrix K = [Cov(x;, xj)]szl, such that K = AAT,
Despite the fact that GPs offer good approximation capabilities and yield uncertainty
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estimates about their predictions, an important limitation is their computational per-
formance. In practice, the derivation of the predictive distribution in Eq. 4.15 requires
the inversion of the n x n matrix K + ¢2I. This is done using Cholesky decomposition,
which requires O (n?) time. Typically, the inverse of this matrix is stored in the memory
and the prediction requires matrix-vector products, which require O (n?) time each. At
test time, the predictive mean and variance require O (n) and O (n?) time respectively,
which in the case of multiple (k > 1) points becomes O (k - n?). The sampling procedure
in Eq. 4.17 also requires a Cholesky decomposition of the covariance matrix of the joint

predictive distribution, which has O (k%) time complexity.

4.1.2 Bayesian Optimization

Bayesian Optimization (BO) [64] is a sample efficient method to solve global op-
timization problems, particularly aiming expensive-to-evaluate cost functions. In the
unconstrained regime, a real valued, unknown function f is provided, and BO learns
a fast to evaluate surrogate model from past evaluations. It selects next query points
for evaluation sequentially, by balancing exploration and exploitation to find the global

optimum.

Algorithm 1: BO Algorithm

Input : Initial samples N;,;, number of iterations 7},4., variable space S
Output: Global minimum Xpeg
Create randomly a set X of N;,;; initial samples from S
Evaluate X to acquire observations y
fori=1,...,T . do
Adjust GP models using Eq. 4.12
X* ¢ argmax, g « (X,y)
Evaluate x* to acquire y*
Update archive X <~ X U {x*}, y <+ y U {y*}

Find xpes from X, y

The BO framework consists of two main components; the probabilistic surrogate
model that aims to approximate f and an acquisition function a : S — R that provides
a score of utility for evaluating a candidate query point, based on the probabilistic
model. In most approaches, the surrogate model is a GP, which is trained and used for
predictive point evaluations as discussed in the previous subsection.

BO works in iterations and its pseudocode is given in Algorithm 1. Starting from an
initial set of evaluations, BO incrementally builds a GP model based on historic data,
and selects a new query point, as the one that optimizes the acquisition function. This is

an auxiliary optimization problem, but since the acquisition function is fast to evaluate,
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off-the-shelf optimization methods such as CMA-ES [64] can be used. After the selection
of the query point x*, the black-box function is evaluated to acquire the corresponding
measurement value y*. The data pair {x*,y*} is appended to the historic data and BO
proceeds with training the models once again.

Acquisition functions take as inputs the trained GP model and produce estimates
about the goodness of each point in the search space. To do so, they rely on the predictive
distributions of Eq. 4.15 and Eq. 4.16 and implement a procedure to translate these
distributions to a scalar-valued measure. Typically, they are designed such that their
optimization yields the best candidate point for evaluation, at a particular BO iteration.
Since in the context of black-box optimization there is no universally accepted ‘best’
way to explore the search space, there exist several acquisition functions and their choice
is left to the engineer. Despite their different approaches, they all try to balance the
exploration (i.e. evaluation of points in regions with large variance) and the exploitation
(i.e. the evaluation of points closeby to the current best) trade-off. In the case of GPs,
the acquisition functions are formulated in terms of the predictive distribution, requiring
no further evaluations of the black-box function to be optimized. This renders their
evaluation, and consequently their optimization, fast, in comparison the unknown black-
box function. In the following we discuss the most popular acquisition functions for

unconstrained BO.

e Lower Confidence Bound (LCB): The LCB acquisition function defines the
goodness of each point in the search space as a lower bound provided by the
pointwise predictive distribution of the GP model. It favours points that have low
predictive means and high predictive variances. Mathematically, it is formulated

as:
x* = argmax {,uﬂy(x) — Y2, aﬂy(x)} : (4.18)
x€S

where 8 is a (positive) hyperparameter and functions fif (x), o, (x) are the

predictive means and variances of the GP model, as given in Eq. 4.15.

e Probability of Improvement (PI): PI defines the goodness of each point as
the probability of that point delivering better objective function value compared
to a given threshold &, which is typically the current best solution. In the case of
GP models, this probability can be expressed analytically and the resulting query

point is given by

x* = argmax p (f(x) > f) = argmax P (M> , (4.19)

x€S x€S Uf|y<x)
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where ¢ (x) is the Gaussian Cumulative Distribution Function (CDF).

e Expected Improvement (EI): This acquisition function measures the expected
improvement upon a predefined threshold &, which each point in the search space

may provide. To do so, it relies on the improvement function

I (x) = max {o, Flx) — 5} . (4.20)

In the case of GPs, the resulting query point from the EI acquisition function is

the one that maximizes the expectation of I (x):

x* = argmax {E [I(x)]}

x€S

= argmax {Z(X) - ®(2(x)) + Uf|y<x) ' qb(z(x))} ’

x€ES

(4.21)

where ®(-) is the Gaussian CDF, ¢(-) is the Gaussian PDF and z(x) is equal to

e Predictive Entropy Search (PES): The PES acquisition function seeks to max-
imize the information gain with respect to the global optimizer of the black-box
function, x,. Considering x, as a random variable, PES approximately minimizes

its entropy after a new observation {x,y}. The resulting query point must satisfy

x* = argma {H [p(x.|y)] — By [H ey U]} (4.22)

Xe€
Function H[p = — [ p(x)logp(x)dx is the differential entropy. There is no ana-
lytical expression for this acquisition function. To use it, [97] rewrites it using the

Mutual Information and generates samples for p(x,|y) by sampling from the joint
predictive distribution of the GP models over a finite set of points and computing

their maximizer, in a monte-carlo fashion.

e Thompson Sampling (TS): TS is a randomized selection strategy addressing
the exploration-exploitation tradeoff by drawing random samples from the poste-
rior distribution of the GP models and selecting a query vector by optimizing on
these samples. T'S draws samples from the joint predictive distribution of the GP
models over a large number of input points, to provide with a vector of values
from each sample function. Intuitively, TS draws a function from the GP model

and optimizes it to provide a single query point. However, there is no way to yield



88 Sample-Efficient Single-Objective Sizing

exact, analytical expressions for the samples of GP models. Therefore, TS usually
samples the values of the functions at a predefined, finite-length vector of input
points, and determines the query point by finding the best value among them.

This operation can be expressed as

x* = argmaxf(x)
xes (4.23)
wheref ~ f.

An example optimization of an 1D Ackley test function using BO and the LCB
acquisition function is given in 4.3. Starting from an initial sampling of n = 3 points,
which are shown as black stars, the optimization of the acquisition function yields points
that minimize the lower confidence bound. At each iteration, the location of the query
point is marked with a pink vertical line. The true function is shown in black. After

having evaluated n = 12 points in total, BO has approximated the optimum very well.

4.1.3 BO & Constraint Handling

Thus far we have discussed the concept of BO and the acquisition functions from the
scope of SO unconstrained problems. Although vanilla BO targets such problems, there
are cases where black-box constraints exist within the formulation of the optimization
problem, such as in the case of analog circuit sizing, and there exist BO variants that

address them. In this subsection we discuss methodologies for constrained SO BO.

e Penalty methods: Penalty methods constitute the simplest approach to handle
constrained optimization problems. Typically, a constraint violation measure is
computed for each constraint function and a weighted average is added to the
objective function values. Therefore, the exact same unconstrained BO algorithm
can be used, and the constraint satisfaction is accounted implicitly by favouring
objective function values that are less than others. In some cases, the objective
function values for unconstrained query points are set to infinity, so as to diminish

the chances of selecting unconstrained solutions in the future.
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Figure 4.3: Example BO execution using the LCB acquisition function on an 1D Ackley
function.
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e Expected Improvement with Constraints (EIC): In this case, a modification
of the EI acquisition function is used. The same concept with the improvement
over a predefined value £ applies, but this time it is weighted by the probability of
feasibility of each point. To estimate this probability, one must use separate GP
models that are trained on the constraint function data. If we denote as [¢;(x)]\_,
the GP models that approximate each constraint function, then the query point

at each iteration is given by

!

x* = argmax { <z(x) CB(2(x)) + 07y (x) - ¢(z(x))> v = 0)} L (4.24)
x€ i=1

A similar approach would be to use a single GP model to approach the whole

constraint violation of each point, i.e. the sum of individual constraint violations.

e Predictive Entropy Search with Constraints (PESC): Similar to the PES
acquisition function, PESC uses the notion of entropy and aims to maximize the
information gain about the location of the global maximizer, x,. To account for
constraints, the expectation function in Eq. 4.22 is taken over the whole vector y,
which results by concatenating the values of all functions (constraints and objec-
tive). Again, PESC does not come in close form, and its maximization requires a

series of computationally unstable operations [93].

4.2 Proposed Approach

In this section, the proposed approach for local BO based analog circuit sizing is

presented, along with implementation details for computational efficiency.

4.2.1 Local Bayesian Optimization

Local based approaches for global optimization are extensively studied in the context
of EAs. A surrogate within a restricted (trust) region is trained and used to suggest
query points. A similar approach is proposed in [78]|, where a sequential model building
optimization algorithm uses GP models inside a trust region to model the objective
function, and defines an acquisition function to select future query points. This BO
variant alleviates the problem of heterogeneity of objective functions, since query points
are selected based on only the local dynamics of the problem at hand.

To achieve global optimization using local-based GP models, however, multiple trust

regions are employed in parallel. In the case of k trust regions, k£ x (1 + 1) GP models
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(a single objective and [ constraints) must be maintained and trained throughout the
procedure. Starting from an initial sampling of the design space using Latin Hypercube
Sampling, each trust region is assigned a number of observations to build and initial set
of GP models. While they are allowed to overlap, they maintain separate historic data
archives used for training their respective GP models.

Each trust region is a hyper-rectangle and its center is chosen to be the maximum
utility point in their respective historic data archive, meaning either minimum objective
function value or constraint violation, if no feasible solution is yet to be found. The
centre, as well as the length of each trust region are updated in each iteration. In
particular, the length of each hyper-rectangle is denoted by £ and is updated according
to the trust region progress. To quantify this progress, we borrow an approach from
EAs [99]. Given p; as the current centre of the i-th hyper-rectangle and ¢; pest as the best
query point probed in it in a particular iteration, quantities

Iopt — -]i(pz) - ‘f:\(qivbeb"t> , Ilnf — CA‘/(pZ) - CAV(Qi,best) (4.25)

F(i) = (i pest) CV(pi) = CV (g pest)

define the optimization progress, where ( ~ ) denotes values predicted using GP models
and C'V is the constraint violation function. Parameters, ¢;, ¢, and the boundary values
for L, L4 and L,,;, control its adaptation, with 0 < ¢; < 1 < ¢y. The indicator for the
1-th trust region is given by

( [opt for Dis Qi best feasible

Is  for p;, qivest infeasible
7, = T P ibest . (4.26)
c1 for p; feasible, g; e infeasible

(c2  for p; infeasible, g pes; feasible

At the end of each iteration, £; is updated by following rule:

max(cl X LZ‘, me) for Iz <
L; = {min(cy X Li, Lnae) for Z; > ¢y -

L; otherwise

The algorithm operates in a transformed variable space, where the upper and lower
bounds for each variable lie within the unit cube, therefore it holds L,,.. < 2 and
Loin > 0.

To select the next query points for evaluation, a modified Thomson Sampling [64]

acquisition function is employed. Consider the case when a single trust region is used.
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Figure 4.4: A GP’s pointwise predictions on a test function (mean and 95% confidence
bounds shown), along with 3 samples from a joint predictive distribution. Past queries
are shown as black dots, while next queries are marked in red circles.

Thomson sampling uses a Sobol sequence [78] to select r candidate query points {x;}I_,
residing in the trust region. For each one of the [ + 1 GP models employed, a sam-
ple is taken from their respective joint posterior distributions. This results in vectors
[f(x,-), g1(x3),. .., gl(xi))] used to compute [f(xl), CAV(XZ-)} for every x; produced by the
Sobol sequence. The x; of maximum utility is chosen using the feasibility rule.

In the case of more than one trust regions, the sampling procedure is repeated
for each one of them, and the maximum utility point is selected from the pool of all
candidate query points and all trust regions.

The above procedure extends naturally to batched query point selection; from the
joint GP posterior on all candidate points, one can have multiple samples. Sequentially,
the aforementioned selection scheme picks the maximum utility point, corresponding to
a single posterior sample, and makes sure not to pick the same candidate point again.
A demonstration (no constraints apply) is given in Fig. 4.4, where 3 samples are drawn
from the GP posterior, and the next batch of query points are given as the minimum of
each sample.

4.2.2 Scaling Up Gaussian Processes

In practice, GP training and prediction become intractable for large data sets [100].
This has motivated the research for approximate GP inference. Perhaps the most widespread
approach includes the inducing point methods [51, , |, which employ a set of

m < n inputs Z = {zi,...,%,} to form a Nystrom approximation [102]| of the covari-
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ance matrix,
K~ KNystrom == sznglex7 (427)

where K,, = K! is a (n x m) covariance matrix between training and inducing points,

evaluated using the exact kernel k. By adding a diagonal correction term,
K = KNystrom + Aa

where Ay = k(xi,X;) — kop, K. 'k, the approximate covariance matrix is ensured to
be full rank [103]. Using this approximation, GP inference time complexity is reduced
to O(nm?). A comprehensive review of inducing point methods is provided in [100].

The selection of inducing points determines the predictive performance of the ap-
proximate GP. A naive approach would be to select a subset of the training samples to
construct the covariance matrix either in random, or by means of an expensive combi-
natorial optimization [51]. A more elegant approach regards the inducing point locations
as additional (m x d) GP hyperparameters, and provides solutions during the gradient
based likelihood optimization of Eq. (4.12). We use the latter approach and modify it
to fit the local-based BO scheme better.

In the context of local-based BO, trust region sizes and locations alter during the
optimization, resulting in GP models trained with archived samples that do not reside in
the current trust region. The reader is reminded that the acquisition function is restricted
to select query points strictly within the trust regions. Thus, one should select inducing
point locations that provide higher predictive accuracies within the trust regions. It has
been noted that GPs with sparse kernels provide good accuracy in regions where the
inducing points are densely concentrated [101]. We therefore restrict the inducing points
to lie within each trust region.

Using the Adam [95] optimizer for gradient based optimization, we empirically found
that the optimized locations of inducing points depend on two factors; the initial loca-
tions used and the optimizer’s learning rate. We therefore impose the starting locations
to be within or in proximity of the trust regions, and select their learning rate to be an
order of magnitude less than that of the kernel function hyperparameters. Algorithm 2
explains the initial location selection for the inducing points.

While approximate kernels provide a remedy to the sample budget bottleneck of GPs,
further performance gains can be achieved in terms of matrix computations. Inference
and training for GPs require the evaluation of terms K~ 'y, log|K| and Tr (K 42—2) in
expressions (4.15), (4.12) and (4.13). The straightforward approach for this is Cholesky

decomposition, which scales cubically with sample size [51]. The Blackbox Matrix-
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Algorithm 2: Inducing Point Initial Location Selection

Input: £; (trust region length), X (trust region archive), p; (trust region center), m
(inducing point count)

Output: [oc (inducing point locations)

A < X € Hyper-rectangle(L;,p;) // Subset of training vectors lying inside
the TR hyper-rectangle;

if len(A) > m then

| loc - KMeans(A, m clusters) // m centroids;

else

‘ loc + argi_]qaianpz‘—XH // m training vectors closest to p;;

end
Return loc

Table 4.1: GP Training and sampling runtimes for Rosenbrock Function

Exact GP SGP (m=200) SGP (m=100)

Operation CPU GPU CPU GPU CPU GPU
Training (s) 18.54 5.26 10.53 5.08 7.9 4.79
Sampling (s) 2729 033 23.06 0.257  17.07 0.23

Sampling (LOVE)(s) 1.59 0.17 041  0.153 034  0.158

Matrix multiplication method [95] is a recently proposed alternative that reduces the
asymptotic complexity of GP inference to O(n?). This is a modified conjugate gradient
algorithm that allows for GPU acceleration. The software package GPytorch implements
this method and it is used in our implementation. Moreover, to scale GP sampling, which
is required in the acquisition function of the proposed BO, we use the LanczOs Variance
Estimates (LOVE) [104] method.

The gains of the aforementioned practices are demonstrated empirically using a toy
experiment; one exact and 2 sparse GP models approximate a 20D Rosenbrock function.
For a training dataset of 3000 samples, and 5000 candidate points to jointly sample from,
the times required for training and sampling are given in Table 4.1. For all GP models,
100 gradient descent iterations were used. Both LOVE and GPU acceleration provide a

combined speedup of x8 for exact GPs and x6 for approximate ones.

4.3 Circuit Design Applications

To test the performance of the proposed approach on large-scale problems, we per-
form experiments on two circuits, each one having more than 20 parameters. For com-
parison, we use the DE algorithm with the feasibility rule for constrained optimization

[105], and the BO variant WEIBO [68] proposed for automated analog design. For each
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experiment, a set of trial and error attempts were made to find the most suitable hyper-
parameters for DE. All algorithms are implemented in Python, and all GP regression
models were set using GPytorch, using the same set of kernel and mean functions. For
the proposed method, the number of inducing points is m = 150. The optimization
runs are repeated 5 times to account for random effects. An in-house tool was used
to automate simulations and result processing from Cadence Spectre. All circuits were
implemented using a TSMC 90nm PDK, on a 8 core machine with a Quadro P5000
GPU.

4.3.1 Three-Stage Amplifier

A Three-Stage Amplifier shown in Fig. 4.5 [106] is sized in this example. This cir-
cuit was originally implemented in a .35um process, offering good driveability for large
capacitive loads.

For this circuit, the search variables include transistor widths, the lengths for the
devices in each stage of the amplifier and for the biasing transistors, resistors Ry, Rs, R.,
capacitors C,, and C, and two biasing currents, based on the original sizing flow [100].
Note that symmetry restrictions are taken into account, resulting in a 23-dimensional

optimization problem. We use a 2V power supply and a 15nF capacitive load.

VDD

M M
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Figure 4.5: Three stage amplifier proposed in [106].

To make fair comparisons, each algorithm is restricted to search within the same
variable space, which consists of the minimum and maximum ranges for device sizes
imposed by the PDK, while resistors are restricted to be less than 200k(2, capacitors
less than 2pF and biasing currents less than 15uA. For specifications, we use the ones

provided in the original implementation in the case of 15nF load capacitor, which are
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Table 4.2: Three Stage Amplifier Specifications

Performance Description Specification
Load C}, (nF) Capacitive Load 15
PM (°) Phase Margin > 52.3
DC Gain (dB) Voltage Gain > 100
GM (dB) Gain Margin > 18.1
Average SR (V/us)  Average Slew Rate > (.22
UGF (MHz) Unity Gain Frequency > 0.95
Py (uW) Total Power @ 2V Vg, minimize

shown in Table 4.2. The sizing goal is to minimize the total power dissipation, P,;.. DE
population and generations are 100, the maximum number of evaluations for the other
two approaches is 1500 and the initial sampling size is 100.

To examine the effect of the trust-region count, two separate experiments were ex-
ecuted with a single and three trust regions, all of which have a batch size of 15. The
sizing results are shown in Table 5.2, where the best solution refers to lowest Py. ac-
quired with constraints met (averages and standard deviations shown). The proposed
method consistently outperforms WEIBO and DE in terms of acquired solutions, with
DE finding feasible solutions only 3 out of 5 times. Using 3 trust regions provides slightly
better results, with an overhead on runtime, as training and sampling may occur for
multiple GP models in certain iterations.

Special notice must be given on the runtimes; circuit evaluations are done in paral-
lel, using 8 instances of the simulator each one running batched simulations. For this
example, which includes two separate testbenches (small signal analysis, slew rate mea-
surement), the averaged runtimes over 5 evaluations for a batch of 100, 15 and a single
simulation are 16.3sec, 3.8sec and 1.3sec respectively. Therefore, batched parallel eval-
uation, provides significant runtime gains compared to sequential evaluations, which is
the main reason for WEIBO to be so slow. Besides this, GPU acceleration provides an
overall speedup of x2.8 for the proposed method (over total runtime), and achieves a
x40 overall speedup compared to WEIBO.

4.3.2 High Linearity LNA

An LNA shown in Fig. 4.6 [107] is sized in this example. This circuit uses a com-
plementary transconductance input stage and a set of auxiliary devices to achieve good
linearity. Power supply is set to 1.2V. Following an initial manual design, the specifi-
cations for this circuit are based on the original implementation, with the exception of

the working frequency, which is 2.4GHz instead of 1GHz, and they are given in Table
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Table 4.3: Optimization Results for the Three Stage Amplifier

Method Best Solution Time Success
DE 131.63 £3.94 uyW  27.7 + 0.2min 3/5
WEIBO 114.98 £ 0.96 W  350.3 + 1.94min 5/5
TR-1 11242 £ 0.7 uW  24.33 £ 0.31 min 5/5
TR-3 112.50 £ 0.95 uW  27.25 4+ 0.24 min 5/5

TR-1 (GPU) 111.76 +£1.19 gW  8.71 £ 0.39 min 5/5
TR-3 (GPU) 110.54 +1.33 uW  9.43 £ 0.41 min 5/5

4.4. Maximization of the third-order intercept point (IIP3) is the optimization goal.
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Figure 4.6: High Linearity LNA proposed in [107].

Design variables include device widths, capacitances, inductances, resistances and
bias voltages. Two separate variables correspond to pmos and nmos device lengths.
This amounts to a total of 33 design variables. Their ranges are the maximum and
minimum allowed by the PDK for device geometries, while the others are set by an
initial rough design.

The batch size of the proposed approach is 15 and its simulation budget is 2000,
same with WEIBO. Both methods sample initially a batch of 100 candidate vectors. The
population and generations count for DE are 100 and 200, respectively. The experimental
results are shown in Table 4.5. In this demanding problem, the proposed approach clearly
outperforms the other methods in terms of feasible ITP3 outcomes. While WEIBO is
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Table 4.4: High Linearity LNA Specifications

Performance Description Specification
S11 (dB) Input Matching @ 2.4GHz < —10
Sao (dB) Output Return Loss @ 2.4GHz < -10
Gain (dB) Voltage Gain @ 2.4GHz > 15
NF (dB) Noise Figure <1
Pj. (mW) Power dissipation < 50
ITP3 (dBm) Third-order intercept point maximize

Table 4.5: Optimization Results for the High Linearity LNA

Method Best Solution Time Success
DE 3.12 dBm 58min 1/5
WEIBO 10.87 £ 1.63 dBm 623 + 4.2min 5/5
TR-1 19.81 £0.97 dBm 37+ 1.3 min 5/5
TR-3 21.41 +0.44 dBm 41 £1.9 min 5/5

TR-1(GPU) 19.06 +0.69 dBm 14.78 £ 0.9 min 5/5
TR-3(GPU) 22.34+0.553 dBm 15.97 + 1.1 min 5/5

able to find feasible solutions all times, it provides close to 10dBm less IIP3 compared to
the proposed approach, within the same sample budget. This highlights the performance
advantage of the proposed method in high-dimensional problems, especially against DE

which finds feasible solutions only once.

In terms of runtime, execution and results processing for a batch of 100, 15 and a
single simulation take 17.2, 4.9 and 1.4 seconds respectively. Therefore, batched parallel
simulation favours both the proposed approach and DE against WEIBO again. GPU
acceleration provides remarkable optimization speedup once more; compared to the cpu
implementation, it is x2.6 faster and provides a total runtime speedup of x42 compared

to WEIBO, for the same number of simulations.

In this experiment, employing multiple trust regions leads to better results. This
can be explained as follows. Multiple trust regions traverse the variable space finding
multiple paths into feasible sub-regions. By exploring different parts of the feasible
variable space, the search for global optimum becomes more efficient. This however,
comes with a cost in runtime, since more GP models need to be trained and sampled

to provide query points.
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4.4 Summary & Concluding Remarks

In this chapter, an efficient, low-budget, SO black-box optimization algorithm based
on BO was presented. To address the case where analog circuits are parametrized by
relatively large variable spaces, and their simulation is time-consuming, the proposed
algorithm uses GP models to model the loss landscape and guide the optimization more
efficiently, compared to population-based algorithms. The scalability of the proposed
approach is due to the employed trust-region scheme, where the GP models are restricted
in hyper-rectangles that do not span the entire variable space. In addition, the selection
of candidate points for evaluation is based on a new acquisition function, which is able
to provide multiple suggestions at each iteration. The proposed algorithm is used in
combination with the in-house optimization tool that interfaces Cadence Spectre and
applied on two real world circuits, in nominal conditions. In comparison with the DE
population-based algorithm, and the BO-based WEIBO, which was proposed to handle
circuit sizing problems in the constrained regime, the proposed method proves favourable
both in terms of runtime (x42 runtime gain compared to WEIBO for the same number

of simulations) and in terms of final performance and statistical robustness.
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Chapter 5

Sample Efficient Design Space

Exploration

As analog and RF circuit design reduces to exploration of competing specifications,
an efficient automated sizing framework should be able to determine optimal trade-offs
while satisfying constraints. This trade-off exploration [33]| process provides insights for
the selection of device sizes and can be addressed by defining and solving multi-objective
optimization problems (MOPs). However, methods that address constrained MOPs in a
sample-efficient manner have not been thoroughly studied in the context of analog ICs.
Although approaches for sample-efficient sizing of analog circuits have been proposed in
the literature, they fail to include constraints in their formulations, do not handle the
curse of dimensionality in any way or do not allow for parallelizable simulations [108].

Motivated by the above, a new multi-objective BO algorithm that handles con-
straints, LoCoMOBO, is proposed in this chapter, to address the analog and RF IC
sizing problem in a sample-efficient manner. Similar to the strategy proposed in the
SO setting, LoCoMOBO utilizes a local based approach that maintains separate GP
models in promising sub-regions of the search space, therefore enhancing BO efficiency.
This boosts the predictive capabilities of GP models in small regions of the search
space and reduces extensive exploration. In contrast to classical BO and other variants,
LoCoMOBO is able to provide multiple query points, therefore it enables the use of
parallel simulations to speed up the optimization process. A modified Thompson Sam-
pling [109] acquisition function is used, that ranks query points based on their constraint
violation degree and their contributing Hypervolume [!10]. In addition, instead of sam-
pling from predefined quantizations of the search space, analytic samples are created
and used within the proposed acquisition function. The theory for their derivation and
the advantages that their use entails are also discussed. To address the challenge of
computational complexity regarding training times for GP models, GPU acceleration
and a batch method to simultaneously train multiple GP models is also used within
LoCoMOBO.

LoCoMOBO is the first low-budget MO algorithm that accounts for the curse of
dimensionality, by using trust regions. Experimental results using benchmark functions
and three real-world circuits suggest that LoCoMOBO provides better trade-off infor-
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mation and reduces the total runtime of the optimization compared to state-of-the-art
approaches.

The chapter is organized as follows: First, the local based approach for MOPs is
discussed from a high-level perspective. The procedure for creating analytic samples from
GP posteriors is discussed next. Having established the above, the acquisition function
of the proposed algorithm is analyzed and it tested on benchmarks functions. Finally,
the algorithm is applied to three different analog circuits, considering two-objectives

and three-objectives formulations with constraints, as well as PVT variations.

5.1 BO Local Based Approach

Before proceeding, the reader is reminded about the MOP formulation, for notational

purposes. Here, analog and RF circuit sizing is cast as a MOP:

min  F(x), x=[r1,%2,...,24
st gi(x) <0, j=1,....,1 (5.1)

where F' is vector of m scalar-valued functions, d is the number of the variables, S =
1%, [Ls:, Uy is the variable space, [ the number of constraint functions.

Expanding BO to multiple objectives and constrained high-dimensional problems are
two critical challenges for an efficient low-budget MOP optimizer. In high-dimensional
search spaces, GP models result in high predictive uncertainties, thereby encouraging
exploration on top of exploitation of promising subregions of the design space [75]. In ad-
dition, query point selection is not straightforward in the multi-objective setting, since
it must take into account pareto dominance and diversity. To address the aforemen-
tioned issues, we need to resort to new model-based approaches that exploit better the
promising regions and define corresponding acquisition functions.

The family of local-based optimization algorithms is an approach towards this di-
rection. Their purpose is to search locally for an improvement, starting from an initial
estimate x. of the point of global optimum (or in this case a PS). Typically in such
cases, an approximation F of the ob jective function F' is used to determine future query
points according to

x* = argmin F'(x), ||x — x.|| < R. (5.2)

Here x. is the current best solution and R is a trust radius, restricting the next query
point to be near the current best. If the expensive evaluation of F'(x*) leads to a better

solution, the current best is updated. In our case, F relates indirectly to the actual prob-
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lem defined in Eq. 5.1, since it provides a metric upon the multi-objective optimization
progress (see subsection 5.1.2).

Based on the aforementioned general scheme for local-based optimization, an SO BO
was proposed in Chapter 4, where query point selection is restricted within a hypercube
centered at x., with its edge denoted by L. GP models are trained using a dataset
(archive) consisting of past objective function evaluations. By setting the maximum
utility point in the archive as x., this approach restricts excessive exploration of the
search space. This trust region approach is adapted here for multi-objective BO. By
using Npgr > 1 trust regions in parallel, each one with their separate center and past
archive, multiple paths towards the optimal sub-regions of the variable space are followed
and global search is enhanced. This is particularly helpful in the case of multi-modal
functions.

To extend the trust region approach to the constrained multi-objective case, one
should define a measure for the utility of the evaluated points. This is imperative in
order to select the trust region center x., but it is not straightforward, since typically
multiple pareto optimal solutions exist. Starting from the requirement for well spread
pareto optimal solutions in the objective space, the trust region center is selected as
follows. In each iteration, every trust region has a local PF and PS, namely PF; and
PS;, that are determined among the samples from their respective archive D; that reside
in the trust region’s hypercube. The global archive D = J, [D;] is used to determine
the global PF and PS. The selection of the i-th trust region center is done based on the

following rule:

1. if no feasible samples exist in D;, x.; is the sample in D; with the minimum

constraint-violation.

2. if feasible samples exist in D; and A = PS; N PS # (), x.; is the the maximum

crowding distance sample in A

3. if feasible samples exist in D; and A = PS; N PS = 0, x,.; is the sample from PS;
being in the topmost global dominance level and having the maximum crowding
distance.

The crowding distance metric [63] quantifies the diversity of each solution in the objec-
tive space. It is used to compare solutions that are on the same dominance level. Since
the crowding distance of the samples that lie on the edges of the PF is infinite, we use
the maximum finite values to determine the trust region centers.

The optimizer operates on normalized search space S,, = [0, 1]d, and query points are

transformed back to the original search space prior to evaluation. This facilitates GP
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training and helps define trust region lengths £; in the normalized space, irrespective of
the variable domain boundaries. For the ¢-th trust region, its hyperrectangle occupies a
space S® = {x|x1; < x < xp,;} with x;,; = max(0,x.; — £;) and xy; = min(1, x.; + L;).

Each space s is updated according to the rate with which the optimizer finds new
maximum utility points x.;. In particular, a simple method is used that counts the
successes and failures of the optimizer to find better solutions. After a user-specified
number of successes (failures) for the i-th trust region, £; is increased (decreased) by a

user-specified factor p > 1, i.e.

p-L; for consecutive successes

1/p- L; for consecutive failures

Therefore, in cases where the surrogate model’s predictions lead to improvements
upon the optimization goal, the trust region edge increases, otherwise it shrinks to re-
strict the search closer to the current best point. For the rest of this work, p is considered

constant and equal to 1.2 to allow for smooth transition between trust-region sizes.
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Figure 5.1: A demonstration of the local based approach for minimizing F(x) =
[f1(x), f2(x))] in a 2D space.
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Fig. 5.1 shows an example of the local based approach, using two trust regions and a
function F(x) : R?2 — R2, over a bounded space [—2,2]*. In this example no constraints
apply. After an initial sampling of the variable space, the samples (shown as dots) are
clustered to 2 trust regions, using k-Means clustering, with the black ones corresponding
to the upper trust region. In each trust region (shown in red dotted boxes) in subfigures
(a) and (b), a new solution (marked as a diamond) is selected and evaluated. The trust
region centers are chosen so as to facilitate the diversification of the global PF solutions,
shown in the objective space plot in (c). Once the query points are evaluated, the trust
regions move to new locations shown in light-red dotted boxes. Subfigure (c) also shows
the true PF, the empirical-approximate PF and the local PFs of each trust region. The
location of the true PS is shown in light grey, the next query points as diamonds and

the updated trust regions locations are shown as light-red boxes, in (a) and (b).

5.1.1 Sampling Functions from GP posteriors

In Chapter Chapter 4, an introduction to the theory of GPs was given, describing
them as distributions over functions. This description of GPs, which is referred to as
function space view [51], provides intuition regarding the shape of the unknown function
to be approximated from a probabilistic perspective. However, there exists an alternative
approach to describing GPs, which is referred to as weight space view [51] and it is based
on Bayesian linear regression [96]. In this subsection, the weight space view of GPs is
discussed and used to explain how analytic functions can be sampled from GP posteriors.
These sampled functions are utilized within the proposed LoCoMOBO framework.

Initially, assume a linear model f with a set n observations {X,y}, where y =
T

[, ... yn] and X = [xq,...,%,]T, with x € R?% The observations are corrupted by

additive noise such that:
f(x) = x'w, y= f(x) + e (5.4)

Here, the additive noise is drawn independently from a Gaussian distribution, i.e. € ~
N(0,02). The likelihood of the observations, i.e. the probability density function of the
observations given the parameters w, assuming that the observations are independent,

is given by

p(y1X, w) = ] J(uilxi, w) (5.5)
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In addition, assume that the weights w follow a zero-mean Gaussian prior distribution,

with covariance matrix X,,.

Given the data {X,y}, the posterior distribution of the weights of the linear model

is computed using the Bayes’ rule

p(y| X, w)p(w)
piylX)

p(w|X,y) = (5.8)
where p(w) is the prior distribution of the weights and the denominator is the marginal
likelihood, which is computed by marginalizing away the weights from the likelihood,
i.e.

p(y1X) / p(y1 X, w)p(w)dw. (5.9)

Mathematical derivations [51] lead to the following relation for the posterior distribution

1
p(w|X,y) ~ N (;A_IX}’;A_1> , (5.10)
where A = U%X XT + DI ! In the Bayesian setting, the output of the linear model in
Eq. 5.4 is a predictive distribution. Based on the assumptions about Gaussianity, the

predictive distribution f(x*) for a query point x* is

p(f (%) %", X, y) = / p(f ()", w)p(w| X, y)dw (5.11)

=N (%X*TAlxy, x*TAlx*) : (5.12)

n

In order to increase the expressiveness of the linear model, one can project the d-
dimensional inputs to a m-dimensional space, with m > d, using a feature function

¢ : RY — R™, which is essentially a vector of basis functions

gb(X) = [gbl(x)’ ) gbm(x)]T?

where ¢; : R — R, for i = 1,...,m. By applying linear regression on the augmented
space, the model can capture complex response surfaces. In this case, the new model is
given by

f(x) = o(x)"w, (5.13)

and the number of weights is the same with the number of basis functions m. By substi-
tuting the inputs matrix X with the n x m matrix ® = ®(X), i.e. the concatenation of

the (1 x m) outputs of ¢(x) for all input vectors, as well as x* with ¢(x*), the predictive
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distribution of Eq. 5.12 becomes

p(f(x)x", X, y) ~ N(k(x")" (K + o30) 7y,

(5.14)
B = KT (K + 02T) (),

where K = ®73,®, k(x*) = ®X,6(x*) and k** = ¢(x*)T 3,0 (x*).

The interesting part of Eq. 5.14 is that the vector-valued basis function values are
used within inner products of the form k(x, x') = ¢(x)"%,4(x’) inside quantities K, k(x*)
and k**. Since Y, is positive definite, it has a square root and therefore one can define
P(x) = E}J/ng(x), which leads to k(x,x’) = ¥(x)y(x), i.e. function k is equivalent to a
dot product.

By replacing the inner products in Eq. 5.14 with function k, which is the kernel
function, it is possible to avoid computing the features (basis functions) explicitly and
focus on their inner product values. This approach is called the kernel trick [51]. A closer
look at Eq. 5.14 reveals that the predictive distribution of the kernelized linear model
is the same as the one of a zero mean GP. Thus, by using the kernel trick and selecting
an appropriate kernel function, one can turn the Bayesian linear model of Eq. 5.4 to a
GP one.

Having established the weight space view of GPs, and the fact that GP regression
can be viewed as a kernelized version of the Bayesian linear model, we proceed with the
sampling procedure. Let us consider a shift-invariant GP kernel k(x,x') = k(x — x').
Kernels such as the radial basis and the Matérn ones are shift-invariant. According to
Bochner’s theorem [111], a continuous function of the form k(x,x’) = k(x — x') = k(1)
is positive definite if and only if k(7) is the Fourier transform of a non-negative measure.
Thus, any positive-definite measure k(7) can be expressed as the inverse Fourier trans-
form of a probability distribution p(w). In practice, the spectral density s(w) of k(7))
must be properly scaled by a constant a to correspond to a probability distribution.

The kernel function can be written as the inverse Fourier transform
k(x,x') = / " ) g(w) dw
Rd
=« / " ) p () dw
Rd
= | ¢(xw)o(x; w)p(w)dw

Rd

— By, [0(xw)0(x;w)]

(5.15)

where ¢(x;w) = \/ae’ * . Since the normalized density function p is symmetric with
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x—x’

respect to the origin, the kernel function is real and eI =x) can be replaced by

cos [w” (x — x/)].

Motivated by the above, we consider a parametrized feature function ¢(x;w,b) =
2acos(w?x +b), with b ~ ¢, where ¢ = U([0, 27]) is the uniform distribution in [0, 27].
In this case it holds that

Epq [¢(X§w, b)m}
= 20K, [Eq [Cos(wa + b)cos(w’x’ + b)“

= o, [E, [cos(w” (x — X)) + cos(w” (x + x') + 2b)] ]

= aE, [cos(w” (x — X))]

(5.16)

and therefore, from (5.15), ¢(x;w,b) can be used to express the kernel function as
B(x,X) = By g 0% 00,0060, D)) (5.17)

To approximate the expectation in (5.17), M distinct feature functions are utilized
in a Monte Carlo fashion, by sampling M vectors [w;]}, according to the normalized
spectral density p and M scalars [b;]M, according to ¢. In the case of the employed Matérn
kernel, the spectral density p is a d-dimensional T-distribution, i.e., p(w) ~ T'(0,A,5/2),
where A is the diagonal matrix of the kernel’s lengthscales [51]. Let us consider a column

vector ¢, which is built by concatenating the aforementioned M feature functions, scaled

by VM, i.e.

\/LMMX, wy) %cos(wlTX +by)
L (%, w 22 cos(wix + b
o) = | VPR | | vigeoslwzxdb) (5.18)
1 . 2a T b
X W) Z7c0s(wy X + bar))

The inner product ¢(x)7¢(x’) results in the scalar (1/M) M, ¢(x;w;, bi)d(x'; wy, by),
which is a sample average approximation to the quantities in (5.17). Figure 5.2 pro-
vides an illustration of the above procedure, which is termed Random Fourier Features
(RFF)[97, 111]. A Mateérn 5/2 kernel is approximated with different numbers of samples
M, and functions k(1) = k(z — ') and k() = ¢(2)T¢(2’) are plotted, along with the

scaled components resulting from the inner product of the column vectors ¢.

The above provide a finite-dimensional approximation of the GP’s kernel function.

One can use this approximation to sample from a GP as

f(x) = p(x)'w, (5.19)
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where w is the weight vector of the kernelized linear model, as in Eq. 5.13. In case of

posterior sampling, w is sampled from the posterior distribution of Eq. 5.10, which is a

Gaussian distribution with mean and covariance matrix

pwp = (007 4+ 621) " dy
o2p = (0T +0%1) ' o2,

n

(5.20)

Note that in this case, the covariance matrix of prior distribution is considered to be
the unit matrix I.
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Figure 5.2: Matérn kernel approximation using RFF samples. The x axes depict the
quantity 7 =z — z.

In this subsection, the reader was reminded that GPs can be viewed as a Bayesian



110 Sample Efficient Design Space Exploration

linear model, where the linear operator is substituted with a set of basis functions. In
practice, since these appear only within inner products in the predictive distributions,
one can define a kernel function as the outcome of their inner product. Typically used
kernels correspond to infinitely-many basis functions. By using Bochner’s theorem, an
approximation of the kernel is derived analytically and it is used within the Bayesian
linear model to derive approximate and analytic samples from the GP posterior. A
reasonable question that may arise at this point is whether this approximate analytic
sampling procedure yields benefits for the proposed BO framework. This question is

addressed in the next subsection.

5.1.2  Acquisition Function

To address the constrained multiobjective selection, LoCoMOBO uses a composite
selection scheme where both feasibility criteria and the pareto optimality are taken into
account. The proposed acquisition function is based on Thompson Sampling (TS) [64].
Recent works highlight the suitability of TS acquisition functions for parallelizing BO
[109]. By drawing Ng > 1 samples from the GP posteriors, and finding a single maximum
utility point for each one of them, one can have multiple query points to evaluate in
parallel [109]. This is useful in cases where time-consuming function evaluations can be
run in parallel, such as in our case, since parallel function evaluations provide with more

information in the same time-frame.

Sampling functions from GP models, however, would require computing the joint
predictive distribution over infinitely many points, which is not possible. A common
practice is to find the maximizer of a discretization over the search domain [78], which
is the approach discussed in the previous chapter. Although this is a simple approach and
works in many cases, it is not suitable for high-dimensional problems, where exponen-
tially many discrete points need to be used to achieve a good coverage. To circumvent
this limitation, we sample GP models by building an analytic approximation to the

samples, using the RFF procedure discussed in the previous subsection.

Utilizing (5.20), multiple GP sample approximations (RFF samples) can be drawn
within TS. These are used to select query points in the constrained multi-objective

setting, where query points are restricted to lie in small regions in the variable space.

Unconstrained Problem: Assume for now that there are no constraints and a
single trust region is used, with the space occupied by its hypercube denoted by Sq(zl). For
each of the trained GP models that approximate the objective functions, one can draw a

sample using RFF. This results in a set of fast-to-evaluate functions F' = [fy(-) ..., fm(-)],
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which are used in a cheap auxiliary optimization problem,

min  F(x) = [fi(x)..., fn(x)], xecSWV. (5.21)

This problem is solved using NSGA-II [63]. The resulting PS points are query point

candidates and are denoted as X 4n4-

Selecting a query point in X4 requires a metric (measure) of the utility of the points
in X.unq- In our case, where multiple objectives apply, the Hypervolume Indicator (HV)
[110] is an appropriate measure. Following the definition in [110], for a point set P and
a reference vector r = [ry,...,7,] € R™ the HV of P is the m-dimensional Lebesgue

measure )\, of the region that is dominated by P and bounded by r, .i.e

HV (P, r) = An(| [P, 7). (5.22)

PEP

Moreover, HV is used to define the Hypervolume Improvement (HVI) measure of the

PF, used to evaluate new samples. Given a new set of points ), it is

HVI(P,Y,r) = HV(PUY,r) — HV(P, ). (5.23)

We select the single query point in X..,q as one with the largest HVI when added
to the current PF, i.e.
x* = argmax HVI(P, F(x), ). (5.24)

xeXcand

Note that the values of the sampled functions are used to evaluate HVI. Also, the
reference vector r is specified either using domain knowledge, or using past evaluations

in D, as

r = |max(fi(x)),... ,I)I(leagi(fm(x)) : (5.25)

xeD

The definition in Eq. 5.25 assumes a minimization problem as in Eq. 5.1. If the problem
is a maximization one, then max function should be replaced by min in Eq. 5.25. An

illustration of the HV concept is given in Fig. 5.3.

Constrained Problem: The above procedure extends to constrained problems. In
our approach, each constraint function is modeled separately by a GP model. Sampling
from all of the employed GP models using RFF results in an additional set of constraint

functions [g}()]ézl Now NSGA-II is equipped with the feasibility rule [112] to account
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Figure 5.3: Illustration of the Hypervolume and Hypervolume Improvement concepts.
Minimization is assumed here. The light-orange area is the dominated HV. Out of three
candidates, x3 provides the largest HVI.

for constraints and the cheap optimization problem is formulated as

min  F(x) = ~x...,mx
() = A0 ful0]l 526

st g;(x)<0, j=1,...,1, xe&SV
To select a single query point, we distinguish two cases: 1) If no feasible pareto
optimal solution is found, the set of the candidate points for evaluation, X 4,4, is formed
by the individuals of the final NSGA-II generation, and, the query point is selected

according to minimize the constraint violation, i.e.

x* = argmin CV(x). (5.27)

xXE€EXcand
This drives the optimization towards regions of the search space with low constraint
violation. Note that the notation CV is used to highlight the fact that the constraint
violation function is applied on the sampled function values. 2) If feasible pareto optimal
solutions exist, the query point is selected among them, based on their respective HVI

contributions.

Multiple query points can be selected by optimizing on multiple GP posterior sam-

ples. In this case, Ng batches of sampled objective and constraint functions [F@)]fg
L ,gl(’)]f\fl are used in Ng separate auxiliary optimization problems as in Eq.

5.26, resulting in Ng batches of candidate points [X c(i)nd]z’]\fr The main challenge is to

and [}

determine a set of Ng distinct candidate vectors, jointly resulting in maximum HVI.

This is a non-trivial task since computing the joint HVI scales exponentially with Ng

[110].
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Instead, we adopt an iterative greedy approach where no joint HVI calculation is
performed. Starting from the current PF HV, the candidate point with maximum HVI
contribution from the first batch of sampled functions is selected and added to the PF.
The next query point will be selected among the auxiliary optimization results of the
next batch of sampled functions using the augmented PF from the previous selection.
After Ng iterations, a total of Ng query points are selected for evaluation.

When Npr > 1 trust regions are employed, each one holds Ng batches of sampled
functions and auxiliary optimization results that reside in their separate hypercube.
Similarly to the above procedure, Ng query points are selected greedily from Ng aug-
(@) ]Ns

mented candidate pools [ X~ |.%, each one corresponding to one RFF sample. In this

cand
case, however, each X C(;)nd is the union of candidate points of all trust regions, based on
their ¢-th sample, i.e. X C(ifld holds the results from the first sample of all trust regions
and so on.

Algorithm 3 summarizes the selection scheme for the proposed LoCoMOBO algo-

rithm.
Algorithm 3: LoCoMOBO Acquisition Function
Input : ba‘gch size Ns; trust region count NTB; GP models [fl(i), R ,(,?]i]\fl’*,
[gil), .. ,gl(l)]i]\LTlR; data D, spaces {SS)}Z-]\LTIR, reference vector r

Output: query points x;, i =1,..., Ng
Compute PF P from D
x% « pvie{l,...,Ng}

cand
fori=1,...,Nrp do
for j=1,...,Ng do
Sample f, ~ f,@ using RFF Vr € {1,...,m}
Sample g, ~ gy(,i) using RFF Vr € {1,...,1}
Xecand < candidates from problem in (5.26) on S,

) (4)
Xcand — Xcand U Xcand

fori=1,...,Ng do
A fx e X[ ICV(x) = 0}
if A+# () then
x¥ + Maximum HVI(P, F(x),r) among A
P+ PUF(x})
else

CV(x)

* : )
L X; — argmlnxeXé;)nd

The proposed acquisition function, therefore, depends on the sampling of analytic
functions in order to utilize an off-the-shelf optimizer on them. In comparison to the

naive sampling of the variable space, this approach is intuitively better, since it sub-
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stitutes the discrete quantization of the search space with continuous functions, which
can provide queries everywhere in their domain. To highlight the advantage of the RFF
compared to the quantization procedure, we provide empirical evidence on a relatively
high-dimensional 30D MOP. We use the unconstrained zdt? MOP with two objectives,
and utilize the proposed acquisition function with 100, 300, 1000 and 2000 RFF features.
To include the quantization procedure as well, we consider the same selection strategy,
i.e. using the hypervolume and the trust regions, but instead of using the pareto set
resulting from the problem of Eq. 5.21, we use the same Sobol sampling procedure as
in the previous chapter, with 100, 300, 1000 and 2000 samples per query point. For
both cases, the initial sample count is 20, the total sample count 120 and Ng = 5. The
experiments are repeated 10 times to account for fluctuations.

Fig. 5.4 shows the results of the experiment, in terms of the resulting Hypervol-
ume. The reference point in this case is [0.99,5.9]. It is seen that the RFF experiments
yield better values for HV, compared to the ones using the quantization procedure.
In addition, Fig. 5.5 depicts all of the PFs resulting from this experiment. The ones
corresponding to quantization are clustered upwards, meaning that they provide worse
trade-off compared to the RFF ones, since this is a minimization problem. The empirical
results, therefore, align with the theoretical expectation that RFF sampling would be
beneficial for LoCoMOBO.

Hypervolume - Quantization Hypervolume - RFF
541

3.7

3.6 5.3
3.5

34 5.2
3.2 5.1

100 300 1000 2000 100 300 1000 2000
(o) Quantization Hypervolume Results (") RFF Hypervolume Results

Figure 5.4: Illustration of the mean and standard deviations of the resulting Hypervool-
ume metrics on the zdt1l experiment.

5.1.3 Implementation

Here we provide implementation instructions for LoCoMOBO and relevant com-
ments. The probabilistic nature of GP models is useful for fast convergence to optimal

solutions, but it comes at a high computational cost. In practice, GP inference and
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Figure 5.5: The PFs from the zdt1l experiment. The RFF results in better trade-offs.

training scale cubically with the number of samples used for training [51]|. Therefore,
as the optimization process progresses and more query points are evaluated, the time
spent on GP model training increases. Another important aspect concerns problems
with many objective and/or constraint functions; training separate GP models for each
one of them can be time-consuming and even surpass the time needed for expensive
exact function evaluation.

To this end, we leverage recent advances in GP inference by using Black-box Matrix-
Matrix multiplication (BBMM) [95]. This uses a highly parallelized routine for matrix-
matrix multiplications to perform all computations necessary for GP inference. GPyTorch
provides a framework for BMMM based GP training and was used for the development
of the GP models. By using tensorial representation for GP kernel matrices, GPyTorch
allows for the simultaneous training of multiple GP models with considerable speed
enhancements [95]. Furthermore, GPyTorch enables the use of GPUs for fast inference.

In our case, models associated with a single trust region are trained simultaneously.

5.1.4 Summary

The complete flow of LoCoMOBO is shown in Algorithm 4. The maximum number
of iterations is computed by the maximum number of evaluations and the batch size
Ng. It is worth mentioning that the GP models of a trust region are trained only when
new query points coming from the same trust region are selected and evaluated.

To demonstrate the benefits of LoCoMOBO, we consider a set of benchmark func-
tions for constrained MOPs with varying dimensions. OSY is a 6D problem having 2
objectives and 6 constraints, MW2 has 15 variables, 2 objectives and 1 constraint and
C2DTLZ2 has 12 variables, 3 objectives and one constraint. For performance evaluation
we use the HV metric of the resulting PF, with reference points [0, 100], [1.5,1.5] and
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Algorithm 4: LoCoMOBO Algorithm

Input : trust region count Npp; batch size Ng, initial samples Ny, maximum
iterations T}z, initial trust region lengths

Output: PF, PS
Evaluate objectives and constraints at Ny random points
Initialize D; Vi € {1,..., Npr} with all initial samples
k-Means clustering of initial samples and select x.; Vi € {1, Nrr} as the i-th centroid
fori=1,...,T. do
Select Ng query points using the acquisition function
Evaluate objectives and constraints at selected points
for j=1...,Npgp do

if j-th trust region evaluated query points then

Update D; and trust region center x. ;
L Train GP models of j-th trust region

Update £;

[1.1,1.1, 1.1] respectively.

To highlight the advantages of the local-based approach, we introduce two baseline
methods for comparison: 1) Baseline-1 uses the proposed acquisition function with a
single trust region that spans the entire variable space. This is a special case of the pro-
posed algorithm and can be considered as a constraint handling TSEMO [113] variant.
2) Baseline-2 uses a single trust region that also spans the entire variable space, and
selects query points based on the PF of LCB acquisition functions on each objective,
such as in [66]. To account for constraints, the pointwise values of each LCB function
are weighted by their probability of feasibility [658]. The most diverse candidate solutions
are selected as query points from the resulting PF. For the proposed approach, we in-
clude a single-trust-region (LoCoMOBO Npgr = 1) and a two-trust-region (LoCoMOBO
Nrg = 2) approach, both of which use local trust regions, unlike Baseline-1. The batch
size for the above methods is set to Ng = 5. WEIBO [68], MESMOC [114], NSGA-II
and NSGA-III [115] are also included for comparisons. For all BO-related methods the
initial samples were set to 2(d + 1) where d is the dimension of each problem, and the
maximum evaluations were set to 200 for OSY, 500 for C2DTLZ2 and 900 for the de-
manding MW2. Maximum evaluations for NSGA-IT and NSGA-III are set to 3 times
the aforementioned limits, and the number of reference directions is 24.

Table 5.1 shows the results of the experiments. LoCoMOBO outperforms the other
methods in the given evaluation budgets. For the case of OSY, it is evident that a sin-
gle trust region is enough to produce acceptable results. This can be verified by the
performance of global Baseline-1. For the other two functions, the two-trust-region Lo-

CoMOBO performs better than the single trust-region one, while the rest of the methods
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Table 5.1: HV Results (mean £ std) on Benchmark Functions

OSY MW2 C2DTLZ2
LoCoMOBO Nrgp=1 21339+ 345 1.344+0.11 0.49+0.02
LoCoMOBO Nrg=2 20956 £616 1.46+0.12 0.54 + 0.06
WEIBO 10343 +£ 1207 NA 0.283 £0.12
MESMOC 11394 £ 977 NA 0.184 +0.02
Baseline-1 21056 £522  0.924+0.09 0.46 £0.03
Baseline-2 20097 £609 0.81£0.12 0.43=£0.05
NSGA-II 11508 £ 3105 1.12+£0.22 0.39 £0.11
NSGA-III 12213 £1793 1.22+0.15 0.45+0.03
Table 5.2: Runtime Comparison (s)
OSY MW2 (C2DTLZ2
LoCoMOBO Nprp=1 57 531 184
GPU LoCoMOBO Npr=2 73 706 251
WEIBO 944 4671 1832
LoCoMOBO Nrr=1 65 1887 345
CPU LoCoMOBO Nrr=2 77 2217 393
WEIBO 1124 15933 3519

either fail to find feasible points or result in much worse PFs. This is demonstrated in
the case of MW2, where the feasible region occupies little portion of the design space,
showing that the proposed method can handle effectively constrained problems. Mul-
tiple trust-region approach proves to be effective in high-dimensional problems, where
pareto optimal solutions may lie away from each other or in disconnected regions.

To provide a quantitative measure of the speed gains of GPU acceleration, Table
5.2 shows the average runtimes of the above experiments for the batched proposed
LoCoMOBO and the sequential WEIBO. It is shown that a slight increase in runtime
is induced by including additional trust regions, which is expected as more GP models
need to be trained. As expected, the batched approach is faster than the sequential
WEIBO, since GP model training is done fewer times for the same sample budget. In
the 15-dimensional MW?2 problem, where the sample budget is larger compared to the
other experiments, the inclusion of GPU acceleration provides a speed-up of x3.5 in the
optimization procedure.

By optimizing the OSY function using different batch size Ng, we demonstrate the
effect of the batch size parameter on the LoCoMOBQ’s performance. Fig. 5.6 shows
the results of this experiment, highlighting that there is no profound difference in the
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performance of LoCoMOBO with respect to different batch sizes. In this case, we used

a single trust region.
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Figure 5.6: The evolution of HV attained by the proposed approach using different batch
sizes. The values in the y axis are normalized to the largest HV value attained.

5.1.5 MOP Example

Here, for completeness, the operation of the proposed LoCoMOBO algorithm is

illustrated on a simple, non-constrained MOP:

min  F(x), x=[ry,x9]

(5.28)
st.—2<2;,<2 i=12

where it holds that

filwy, o) = = - (V14 (z1 +22)2 + 1+ (21 — 29)2 + (21 — 1)) + d,
folwy, 20) = 3 (V14 (21 + 22)2 + /14 (21 — 22)2 — (21 — 2)) + d,

d=0.8 ¢ (@te)?

— DN =

A single trust region is considered, and the number of samples is set to Ng = 2. The
number of initial points is 5 and the number of maximum evaluations is 45. The initial
trust region length is 0.3, and the number of RFF features is 300.

Figures 5.7, 5.8, 5.9, 5.10 demonstrate the variable and the objective spaces of the
examined MOP, with additional information regarding the query points’ locations, trust
region edge size and center, candidate pareto fronts, candidate pareto sets, and the

approximation of the optimal pareto set and front that the algorithm determines in
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each step. Each row represents an optimization step (i.e. an iteration), with f(zq,x2)
being the leftmost plot, fo(x1,x2) the center one and the objective space being the
rightmost one. Each of the first two plots show the optimal pareto set as a dashed green
line, the locations of the points that constitute the current approximation of the optimal
pareto set as black dots, the trust region center as a yellow cross and the trust region as
a red-colored square. In addition, the locations of the candidate pareto sets that result
from optimizing Eq. 5.26, for one of the two RFF samples considered (Ng = 2), are
given as pink and brown dots. The locations of the query points, which are selected

from the aforementioned candidate pareto sets, are also given as cyan-colored dots.

The rightmost plot of each row depicts the optimal pareto front as a green dotted
line. Also, the candidate pareto fronts resulting from Eq. 5.26 for each RFF sample are
given as yellow and red dots. The current approximation of the optimal pareto front is
given with black color, and the candidate values of the selected query points are purple
squares. Finally, cyan-colored diamonds represent the actual, evaluated values of the

query points.

By examining the figures, one can make the following remarks: The actual values
of the black-box function deviate from the predictions of the GP model’s sample func-
tions. This is evident especially in the first five iterations of the procedure, however,
it is expected. GP models cannot produce exact approximations about the underlying
functions using few evaluations, and, in the context of LoCoMOBO, they are used to
suggest promising locations instead of to serve as surrogates. Another remark is about
the size of the trust region; since in this case the algorithm keeps on finding new solu-
tions to add to its approximate pareto front, the trust regions are enlarged to allow for
better exploration of the variable space. The initial location and size of the trust region
allow for finding query points that correspond to the lower-right part of the optimal
pareto front (Steps 1 in Fig. 5.7¢" and 2 in Fig. 5.73"). However, the size adjustment and
the relocation of the trust region enables the algorithm to find pareto optimal solutions

from the whole range of the pareto set, in less than 15 steps (Step 14 in Fig. 5.95").

The usefulness of the trust region approach in reducing excessive exploration can be
witnessed in the cases where the candidate pareto sets lie at the borders of the trust
region. For instance, in Step 13, shown in Fig. 5.9v’, candidate points from the brown-
colored sample are located far away from the trust region center, and at the border of
the trust region. Had there not been that limitation, a query point could have been
selected at the low-left part of the variable space, which is far away from the optimal

pareto set location.
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Figure 5.7: lllustration of the operation of LoCoMOBO for optimizing the MOP of Eq.
5.28.
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Figure 5.8: Illustration of the operation of LoCoMOBO for optimizing the MOP of Eq.
5.28.
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Figure 5.9: Illustration of the operation of LoCoMOBO for optimizing the MOP of Eq.

5.28.
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5.2 Circuit Design Applications

In this section, LoCoMOBO is applied to two real-world CMOS amplifiers selected
from the literature. To highlight the gains of LoCoMOBO, we consider two optimization
problem formulations for sizing each circuit, a two-objective and a three-objective one.
Both circuits are designed in Cadence Virtuoso and Spectre is used for simulation. A
TSMC 90nm PDK is used. All of the algorithms discussed are implemented in Python
and the experiments were executed on a Linux workstation using an 8 core CPU and a
P5000 GPU.

5.2.1 Three Stage Amplifier

A three stage amplifier [106] shown in Fig. 5.11 is sized in this subsection. It includes a
wideband current buffer and an active left-half-plane zero [106] to increase its driveability

to large capacitive loads, without sacrificing its bandwidth.

VDD

M M
e .

L Ml Cu Vou

M Ve M
v ?KMB [

Figure 5.11: Three stage amplifier proposed in [100].

The amplifier consists of 18 transistors, the halves of the current mirrors generating
voltages Vi1, Vipr (not shown in Fig. 5.11), three resistors and two capacitors. Based on
the circuit’s topology and taking into account symmetry constraints, a total of 23 inde-
pendent variables are used for sizing. These include 13 transistor widths, four transistor
lengths, two biasing currents and Ry, R,, C, and C);. Assuming no prior knowledge
of the optimal parameter values, the ranges of the transistors’ lengths and widths are
restricted to be less than 1.5um and 100um respectively, while their lower bounds are
equal to the minimum acceptable by the PDK. The allowable ranges for capacitors,
resistors and biasing currents are [0.5, 6]pF, [0.1,300]k$2 and [0.4, 6]uA respectively. To
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obtain the circuit’s performance metrics, two testbenches are used, one for transient

simulation and slew rate measurements, and the other for AC and DC analysis.

Two-objective formulation

For the two-objective case, we seek to determine the optimal trade-off between power
consumption and DC voltage gain. The remaining specifications, based on the original
implementation in [106] with capacitive load of C, = 15nF, constitute the optimization

constraints and are given in detail in Table 5.3.

Table 5.3: Specifications for Three Stage Amplifier - Two Objectives

Performance Metrics Specifications [100]
DCGain maximize
Py minimize
S Raug > 0.22V /s
UGF > 0.95MHz
PM > 52.3°
GM > 18dB
OL = 15nF
Vbp =2V

For LoCoMOBO, two cases with a single and two trust regions are considered. All
BO-related methods discussed in the previous section are applied for comparison. The
maximum number of simulations is 1300 and the initial sample count is 150. Two batch
sizes Ng = 5 and Ng = 10 are used for LoCoMOBO and the two baseline methods.
In this experiment, the population and generation count for NSGA-II is 50 and 80
respectively. All experiments are repeated 10 times to account for random fluctuations
and the results in terms of PF HV are given in Table 5.4.

We used the worst performance values from the PFs of all algorithms and runs to de-
termine the reference point, in a similar manner as in Eq. 5.25, and utilized total biasing
current instead of power consumption as indicator. This resulted in r = [81.9,321/Vpp]
= [81.9,160.5]. Except for MESMOC, WEIBO and NSGA-II, all algorithms take advan-
tage of batched simulation execution. The GP models of LoCoMOBO and the baseline
methods were trained using both GPU acceleration and batch GP training, and WEIBO
models were trained using only GPU acceleration.

In the case of Ng =5 and Nrg = 1, LoCoMOBO provides a runtime gain of x10.9
and x19.6 compared to WEIBO and MESMOC respectively. For Ng = 10, the afore-

mentioned speedup is by x23 and x42 respectively. The two-trust-region optimization
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Table 5.4: Three Stage Amplifier HV Results - Two Objectives

HV Runtime (min)

Mean Best Worst Mean
LoCoMOBO Npr=1 2147 2243 1928 60
No—5 LoCoMOBO Nrr=2 2165 2206 1958 70
Baseline-1 1481 1589 1385 61
Baseline-2 1597 1755 1298 59
LoCoMOBO Nrr=1 2014 2158 1984 28
N—10 LoCoMOBO Npip=2 2187 2284 1975 32
Baseline-1 1512 1754 1414 29
Baseline-2 1661 1994 1387 28
WEIBO 1262 1420 1136 654
MESMOC 926 1003 859 1171
NSGA-IT 1126 1285 921 241
NSGA-III 1325 1456 1207 259

takes x1.2 more time to complete compared to the single-trust-region case, due to the

training of additional GP models.

As shown in Table 5.4, in terms of dominated HV, it is evident that LoCoMOBO
finds better solutions within the simulation budget restrictions. The two-trust-region
approach provides on average the best PFs in the case of Ng = 10. LoCoMOBO con-
sistently surpasses the examined algorithms considering different batch sizes and trust-

region count.

During the experiments, we noticed that the main difficulty when sizing this topology
is that the optimum solutions lie close to the infeasible region. This is the reason why
the entropy-based MESMOC results in lesser HV than the rest of the methods, since it
found only a small amount of feasible solutions. An interesting note is that the batched
methods provide better results compared to the sequential ones. The PFs resulting from

a single run per algorithm are given for demonstration in Fig. 5.12.

To demonstrate in a qualitative manner the results of the experiments, we provide
a cover matrix [63] in Table 5.5. This is a matrix where its (i, j) entry represents the
portion of PF solutions from the j-th algorithm that are dominated by the PF solutions
of the i-th one, providing an additional metric for comparison between two different
PFs. We used the PFs from the Ng = 10 case to compute the cover matrix. It is seen
that the PFs from LoCoMOBO dominate most of the pareto solutions resulting from
the rest of the examined approaches. The results from the two-trust region optimization

dominate 44% of the ones from the single trust region optimization. Among the rest
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Table 5.5: Three Stage Amplifier Cover Matrix - Two Objectives

s ¢
(@] — —
S S.0 & ¢ ¢ o= E
=7 =9 == B : '
SLSEE 2 3 % 2 3
= =cH @Bz Z % &R
S= 82 2 & & Z =z
LoCoMOBO Nyg=1 - 0251 1 1 0041 1
LoCoMOBO Nyp=2 044 - 1 1 1 0081 1
WEIBO 0 0 - 0750 0 0320
MESMOC 0 0 0 - 0 0 0 0
Baseline-1 0 0 081075- 0 1 037
Baseline-2 0.23 0.17 0.63 0.75 0.78 - 1 0.63
NSGA-II 0 0 02050 0 - 0
NSGA-III 0 0 06705 0050 032-

of the methods, Baseline-2 provide better PFs qualitatively. It provides a dense set of
PF solutions, which explains the fact that its PF is not dominated by the any other
approach, but it does not yield diverse solutions like LoCoMOBO. For the single-trust-
region LoCoMOBO PF of Fig. 5.12, the average, maximum and minimum typical FOMg
[106] of the PF solutions are 105, 113, 99 (MHz-pF /uW). The same metrics for NSGA-II
are 96, 104 and 85.

300 4 —®— LoCoMOBO-1 —o— DBaseline-1
—o— [oCoMOBO-2 —e— DBaseline-2 | ¢o
—e— WEIBO —e— NSGA-II

250
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£
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Figure 5.12: Pareto Fronts for the Three Stage Amplifier. Bottom-right values result in
better DC Gain vs Pdc trade-off.

Three-objective formulation

We now proceed with the formulation of the three-objective optimization problem.
The design space remains the same, and the optimization goals and constraints are given
in Table 5.6. In this case, the simulation budget for BO methods is increased to 1600



128

Sample Efficient Design Space Exploration

Table 5.6: Specifications for Three Stage Amplifier - Three Objectives

Performance Metrics Specifications [100]
DCGain maximize

Py minimize
SRauvg maximize

UGF > 0.95MHz

PM > 52.3°

GM > 18dB

CL = 15nF

Vbp =2V

Table 5.7: Three Stage Amplifier HV Results - Three Objectives

HV Runtime (min)
Mean Best Worst Mean
LoCoMOBO Npr=1 7983 8104 7475 73
Ne—5 LoCoMOBO Nrr=2 8034 8164 7606 80
Baseline-1 5646 5H881 5354 73
Baseline-2 6046 6573 5319 71
LoCoMOBO Npr=1 7752 8127 7254 42
Ng—10 LoCoMOBO Nrgr=2 7821 8095 7485 45
Baseline-1 5366 5576 5256 41
Baseline-2 6458 6808 5985 41
WEIBO 4270 4786 3864 825
MESMOC 4897 5576 4668 1528
NSGA-II 2809 3315 2633 308
NSGA-III 4348 4779 3954 321

and the initial sample count 150. For NSGA-II, 50 individuals and 100 generations are

used. Again, all experiments were executed 10 times to account for random effects.

The results in terms of final PF HV are given in Table 5.7, with r = [80.3,473,0.05]..
LoCoMOBO outperforms the other algorithms in this case as well. By using two trust

regions, we are able to get slightly better results. In this case LoCoMOBO performs

better when using a smaller batch size. Among the rest of the methods, Baseline-2
results in the best solutions. The fact that LoCoMOBO consistently outperforms the
global Baseline-1 highlights the advantage of the local-based approach. In terms of

runtime comparison, the proposed approach is x20 and x36 faster compared to the

sequential WEIBO and MESMOC, respectively, for Ng = 10.

The PFs resulting from the three objectives formulation (Ng = 10) are compared
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qualitatively in the cover matrix of Table 5.8.

Table 5.8: Three Stage Amplifier Cover Matrix - Three Objectives

2 ¢
S 2.9 2 11 5 8
2T R1L | 2 £ £ = <=
QEREE @ %2 % 8 &
S= S22 = a4 a =z =z

LoCoMOBO Npr=1 - 0.21 0.87 0.85 0.86 0.79 1 0.79

LoCoMOBO Npr=2 0.28 - 1 0.9 096 0.97 1 1

WEIBO 0.01 0 - 0.1 0.03 0.08 0 0.1

MESMOC 0.02 0.02 0.38 - 0.12 0.28 0.63 0.21

Baseline-1 0.02 0.01 0.66 0.54 - 0.1 0.84 0.52

Baseline-2 0.11 0.06 1 04 0.7 - 0.95 1

NSGA-II 0 0 0.02 0.02 0 0 - 0

NSGA-III 0 0 0.11 0.08 0.03 0 0.83 -

Here, it is seen that LoCoMOBO dominates most of the solutions of the other ap-
proaches, as expected from the HV results. In this problem, most of the algorithms
found feasible solutions from the initial samples, therefore the ratio of feasible to infea-
sible space is quite large. This explains the fact that some approaches performed better
in the three-objective case compared to the two-objective one. For demonstration pur-
poses, an example PF resulting from LoCoMOBO (Nyg = 2, Ng = 10) is shown in Fig.
5.13.

Three Stage Amplifier PF

B
20 %

Figure 5.13: A pareto front for the Three Stage Amplifier.
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5.2.2 Four Stage Amplifier

A Four-Stage Amplifier [116] shown in Fig. 5.14 is examined in this experiment.
It can drive large capacitive loads by employing an active zero sub-circuit, a slew-rate
enhancer sub-circuit and four gain stages. Similarly to the previous case, we consider

two optimization formulations, one with two and one with three objectives respectively.
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Figure 5.14: Four stage amplifier proposed in [116].

This circuit consists of the core amplifier shown in Fig. 5.14 and a biasing circuit
that is responsible for voltages Vi1, Vina, Vipr, Vipe [L10] and it is demonstrated in Fig.
5.15. In total, 35 transistors, 2 capacitors, a single resistor and a current source are
employed. We use two testbenches, one for the slew rate and one for AC and DC
analysis. The testbenches are parametrized by 43 parameters, including 20 transistor
widths, 19 transistor lengths, a bias current and C'z, C'y; and Rz. The variable ranges are
determined as follows. Transistor lengths and widths are again restricted to be less than
1.5pm and 100pum respectively with the lower bounds set to the minimum acceptable
values of the PDK. The biasing current range is [0.5, 10]zA and the ranges of the resistor

and the capacitors are the same as in the previous example.
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Figure 5.15: Biasing sub-circuit for the considered four stage amplifier.
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Table 5.9: Specifications for Four Stage Amplifier - Two Objectives

Performance Metrics Specifications [110]
DCGain maximize
Py minimize
S Raug > 0.14V /s
UGF > 1.18MHz
PM > 48.1°
GM > 8.26dB
Voo — 1.2V
CL = 12nF

Table 5.10: Four Stage Amplifier HV Results - Two Objectives

HV Runtime (min)
Mean Best Worst Mean
LoCoMOBO Npr=1 15204 15866 14788 67
Ns=5 LoCoMOBO Npgr=2 17299 17425 16897 81
Baseline-1 14019 14565 13843 65
Baseline-2 13462 14187 12892 64
LoCoMOBO Nrgr=1 15515 15725 15212 31
Ng—10 LoCoMOBO Npr=2 17416 17854 16680 44
Baseline-1 14418 14810 13982 30
Baseline-2 15014 15794 14424 32
WEIBO 11943 12384 11205 754
MESMOC 11702 11918 11399 1333
NSGA-II 10942 12075 9547 305
NSGA-III 11639 1285 921 312

Two-objective formulation

The objectives and constraints for the two-objective formulation are based on the
original implementation in the case of C;, = 12nF and they are given in Table 5.9. For
the BO-related methods, the total simulation budget is 1300, with 150 initial sampling
simulations. For NSGA-II, the population count is 60 and the number of generations
80.

In terms of HV, the optimization results are given in Table 5.10. These were com-
puted after 10 repetitions of each experiment, with the reference point r = [81,645]
determined using the worst PF values among all algorithms and executions. The gains
from the two-trust-region LoCoMOBO are more evident in this higher-dimensional case.
Among all methods, the two-trust-region LoCoMOBO with Ng = 10 delivers the best
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PF with a slight overhead in runtime (x1.4 slower) compared to the single-trust-region
LoCoMOBO.

In this problem, the single-trust-region LoCoMOBO is x24 and x43 faster than
the sequential WEIBO and MESMOC when using Ng = 10. Therefore, LoCoMOBO
provides better PFs within shorter time limits compared to the other algorithms. The
PFs resulting from the optimization procedures (Ng = 10) are shown in Fig. 5.16. LoCo-
MOBO Nrr = 1 has average, maximum and minimum FOMg 105, 166, 64 (MHz-pF /uW)
in its PF of Fig. 5.16. For comparison, NSGA-II provides with 85, 125 and 49.

—e— Baseline-2
700 1 —e— Baseline-1
—eo— WEIBO
MESMOC
5001 —*— LoCoMOBO-1
= —e— LoCoMOBO-2
2 400 1 —e— NSGA-II
| —®— NSGA-III

80 85 90 95 100 105 110
DC Gain [dB]

Figure 5.16: Pareto Fronts for the Four Stage Amplifier. Bottom-right values result in
better DC Gain vs Pdc trade-off.

We compare the results (Ng = 10) in terms of pareto dominance using the cover
matrix shown in Table 5.11. In this case, where the variable space is larger compared
to the previous example, the two-trust region LoCoMOBO dominates 88% of the PF
solutions from the single trust-region one. Both proposed approaches dominate large

portions of the PFs from the rest of the methods. Baseline-2 again proves favourable in
comparison to Baseline-1, WEIBO, MESMOC, NSGA-IT and NSGA-III.

Three-objective formulation

The variable space remains the same in the three-objective formulation and the
objectives and constraints are given in Table 5.12. Here, the total simulation budget for
the BO-related methods is increased to 1600, with 150 initial sampling simulations. The
NSGA-II population count and maximum generations are 60 and 100 respectively. The
results in terms of final PF HV are given in Table 5.13, with r = [75,497,0.027].
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Table 5.11: Four Stage Amplifier Cover Matrix - Two Objectives

2 A
S S.o0 3 ¢ % & E
S So = £ £ 2 2
SLSLE 2 03 3 2 3
= S % T »m
Sz S22 2 & & Z =
LoCoMOBO Npgp=1 - 0.12 0.95 1 0.56 043 1 0.68
LoCoMOBO Nrp=2 0.88 - 1 1 0.72 1 1 0.95
WEIBO 0 0 - 0.38 0.02 0O 0.53 0.05
MESMOC 0 0 0.55 - 0 0 0.38 0
Baseline-1 0.28 0 0.95 0.87 - 01 1 0.53
Baseline-2 006 0 0.7 088 054 - 097 0.43
NSCA-II 0 0 04 0250 005- 0
NSGA-III 0.16 0.05 0.65 0.75 0.17 0.08 0.63 -

Table 5.12: Specifications for Four Stage Amplifier - Three Objectives

Performance Metrics

Specifications [110]

DCGain

Pdc

S Ravg
UGF
PM
GM
Vbp

CrL

maximize
minimize
maximize
> 1.18MHz
> 48.1°

> 8.26dB
=1.2V

= 12nF

The proposed approach provides higher HV values compared to those of all the other

approaches. The two-trust-region LoCoMOBO again proves favorable compared to the

single-trust-region one, but with higher output variance. This is highlighted by the

fact that the single-trust-region LoCoMOBO provides the least-worst solution among

all algorithms. We noticed that all algorithms managed to find feasible solutions with

relative ease, which means that this problem is not highly constrained. This may explain
the fact that WEIBO and MESMOC provide better solutions compared to their two-

objective performances, but they do not manage to come close to the HV values attained

by LoCoMOBO. Selecting and evaluating Ng = 5 query points proves favourable in this

case. We argue that this is due to the multi-modal loss landscape of this problem:;

GP models need to be trained more often before providing sampled functions to the

acquisition function.
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Table 5.13: Four Stage Amplifier HV Results - Three Objectives

HV Runtime (min)

Mean Best Worst Mean
LoCoMOBO Npp=1 4721 4895 4588 79
N=5 LoCoMOBO Npr=2 4745 4954 4512 93
Baseline-1 3392 3604 3184 80
Baseline-2 3561 3813 3197 7
LoCoMOBO Nrgr=1 4321 4502 4150 47
Ns—10 LoCoMOBO Npgp=2 4707 4925 4571 63
Baseline-1 3276 3539 3095 49
Baseline-2 3762 3953 3413 47
WEIBO 3728 4026 3376 951
MESMOC 3621 3892 3450 1685
NSGA-II 2700 3106 2503 383
NSGA-III 3185 2912 3397 396

In terms of runtime, the single-trust-region LoCoMOBO with Ng = 5 provides an
overall speedup of x12 and x21 compared to WEIBO and MESMOC respectively.
These quantities become x20 and x35 when the batch size is Ng = 10. A qualitative
comparison of the resulting PFs from the tested methods (Ng = 10) is given in the cover

matrix of Table 5.14.

Table 5.14: Four Stage Amplifier Cover Matrix - Three Objectives

2 3

S S.o 3 ¢ % & E

S~ S = £ £ 2 I

3B e g = =

QEQRER @ z z ¥ %

Sz 8=z =2 =2 A A zZ oz
LoCoMOBO Npr=1 - 0.33 0.53 0.69 0.61 0.42 0.75 0.58
LoCoMOBO Npr=2 0.57 - 0.64 0.77 0.81 0.68 0.91 0.76
WEIBO 0.21 0.02 - 0.15 0.26 0.24 0.36 0.06
MESMOC 0.07 0.03 0.2 - 0.25 0.22 0.32 0.07
Baseline-1 0.1 0.07 0.25 0.6 - 0.1 0.53 0.28
Baseline-2 0.17 0.02 0.5 0.18 0.31 - 0.67 0.48
NSGA-IT 0.01 0 0.07 0.04 0.06 0.02 - 0
NSGA-III 0.08 0.05 0.17 0.24 0.13 0.11 0.25 -

The PFs of LoCoMOBO dominate a large portion of the PFs of the other algorithms.

In addition, the two-trust-region case seems to provide with wider PFs in comparison to
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the single-trust-region one. While it provides a relatively large PF HV difference, it does
not dominate a large portion of the single-trust-region PF. The HV difference, therefore,
can be attributed to more diverse PF. An example PF for this circuit (Nrg = 2, Ng = 10)

is given in Fig. 5.17.

Four Stage Amplifier PF

Figure 5.17: A pareto front for the Four Stage Amplifier.

5.2.3 Low Noise Amplifier

A Low Noise Amplifier is sized in this subsection. The circuit is shown in Fig. 5.18

and it is an inductively degenerated common-source cascode topology.

RF;,

VSS

Figure 5.18: Low Noise Amplifier examined in this subsection.

The LNA consists of three nMOS transistors (one current source), three inductors,

three capacitors and two resistors. All of the employed inductors are spiral ones and
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Table 5.15: Specifications for Low Noise Amplifier

Performance Metrics Testbenches Specifications

S51@2.4GHz nominal maximize

Py nominal minimize
S91@2.4GHz nominal > 20dB
511@2.4GHZ all S —8dB
S20@2.4GHz all < —8dB

11P3 all > —5dBm
NF @2.4GHz all < 2.5dB

capacitors Cy, Cy, C; are Metal-Oxide-Metal (MOM) ones. Devices Ry, Ry are p-
diffusion resistors, while Ry is fixed to 100€2. In total, there are 21 independent variables
and their ranges are as follows. Inductor widths are chosen between the available values
by the PDK (3pm,6pm,9um,15um), while the number of turns ranges between 0.5 and 5
with a step of 0.25 and the inner radius between 10m and 100um. Transistor length and
width ranges are [100,240jnm and [5,250] um. The total length of the resistors ranges
between 1pm and 30pm, while their width is fixed to 2pum. For the capacitors, the fingers
width is fixed to 140nm and the number of horizontal and vertical fingers range between
1 and 100.

This problem involves both continuous and integer-valued variables. To handle this
variable space, we adopt the methodology proposed in [117] and extend LoCoMOBO
to handle mixed-integer variables. To this end, prior to the evaluation of any sampled
function via RFF when solving Eq. 5.26, the input vector x is replaced by a transformed
vector T'(x), where T'(-) rounds the input entries that correspond to integer variables

to the closest integer.

In this experiment we consider optimizing for power dissipation and Gain (Ss;) with
2.4GHz operating frequency. To account for PVT variations, we consider 45 separate
testbenches, combining 5 different corner model-files ( typical, SS, SF, FS, FF), three
operating temperatures (-50, 27 and 125 Celsius) and three supply voltages (typical,
typicalx 1.1, typicalx0.9). The specifications for the LNA, which include optimization
objectives and constraints, are given in detail in Table 5.15. In summary, the constraints
are chosen to ensure that a 20dB Gain is achieved in typical conditions, while linearity,

input matching and noise performances at all corners meet the chosen thresholds.

In this example we compare the proposed LoCoMOBO approach using a single and
two trust regions against Baseline-1, NSGA-II and NSGA-II. The batch size for BO
approaches is Ng = 5. WEIBO and MESMOC were not proposed to handle problems

with mixed integer and discrete variables and Baseline-2 cannot be extended to do
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Table 5.16: Low Noise Amplifier HV results

HV Runtime (min)
Mean Best Worst Mean
LoCoMOBO Npgp=1 44.2 45.3 40.8 144
Ns=5 LoCoMOBO Nrr=2 45.1 46.2 43.6 152
Baseline-1 39.1 422 35.8 139
NSGA-II 229 272 18.1 1586
NSGA-III 27.1 354 21.8 1590

so, thus they are not included in this test-case. For LoCoMOBO and Baseline-1, the
initial samples are 150 and the maximum number of evaluations 1300. For NSGA-II
and NSGA-IIT 50 individuals and 80 generations were used, with 24 reference directions.
Experiments are repeated five times to account for random flunctuations and the results
in terms of HV are given in Table 5.16, where r=[20.06, 30], computed from the minimum

Gain and maximum DC current encountered from all of the algorithms.

It seen that LoCoMOBO outperforms the population-based NSGA-II and NSGA-III
in this example as well. The global Baseline-1 performs better than the population-based
algorithms but it does not reach the performance of the proposed approach using a single
or two trust regions. A cover matrix for this example is shown in Table 5.17. Here the
results from the HV-based comparison are validated, demonstrating the effectiveness of
the porposed aproach. For demonstration purposes, the resulting PFs from a single run
of each algorithm are shown in Fig. 5.19. For the case of LoCoMOBO with a single trust
region, the average, maximum and minimum LNA FOM [118] from the PF solutions
are 17485, 21060, 13069 W~!. For comparison, the same metrics for NSGA-II are 13884,
16233 and 9881.

Table 5.17: Low Noise Amplifier Cover Matrix

o O

M M o —_

o O g ==

— [a\] 1 1

% I 2o = < <

2i%s% 9 %

Sz 3= 8 z =z

LoCoMOBO Nrzp=1 - 0.1 0.69 1 1
Baseline-1 0.04 0.06 - 0.71 0.69
NSGA-II 0 0 0 - 0.16

NSGA-III 0 0 0 0.84 -
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354 —®— LoCoMOBO-1
—e— [LoCoMOBO-2
—o— Baseline-1
NSGA-IT
—o— NSGA-III

20.0 205 21.0 275 22.0 25 23.0

So1 [dB]

Figure 5.19: Pareto Fronts for the Low Noise Amplifier. Bottom-right values result in
better Sy; vs Pdc trade-off.

To highlight the effect of including PVT variations in the optimization procedure,
we proceed with a comparison between variation-aware and nominal optimization re-
sults. The above experiment is repeated once more, but this time accounting only for
nominal conditions, therefore we utilize a single testbench. The variable ranges as well
as the algorithmic hyperparameters remain the same and the optimization constraints
are changed accordingly.

351 —e— LoCoMOBO-1
—— LoCoMOBO-2
301 —o— Baseline-1
NSGA-IT
251 —e— NSGA-III

20.0 20.5 21.0 215 22.0 2.5 23.0 235

So1 [dB]

Figure 5.20: A comparison between the Pareto Fronts derived accounting for PVT vari-
ations and only for nominal conditions. Nominal sizing results are depicted using light
dotted lines and PVT-aware results using solid lines.

In Fig. 5.20, the PFs from the nominal optimization and the ones resulting from
the corner based one are superimposed. Two major conclusions can be drawn from
this figure: 1) LoCoMOBO outperforms the other algorithms considering both nominal
conditions and PVT variations and 2) the PFs from the variation-aware sizing provide

worse S91 versus Ppe trade-off, which is expected due to the additional constraints that
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ought to be satisfied. This in turn implies that the nominal PFs do not satisfy the

constraints of Table 5.15 in all corners.

5.3 Summary & Concluding Remarks

This chapter presented a novel BO approach for MOPs in high-dimensional search
spaces. The proposed LoCoMOBO framework makes use of the following tools:

e Local Trust Regions, that reduce the excessive exploration associated with high-
predictive uncertainties of GP models in high-dimensional spaces. The framework
for local BO permits the use of multiple trust regions in parallel, which are adapted
according to the rate in which better solutions are found. Continuous improve-

ments upon the objective result in the enlargement of the trust region.

e Random Fourier Features, which is a method to sample approximate but analytic
functions from the posterior distributions of GP models. The availability of ana-
lytic functions permits the use of auxiliary optimization algorithms and boosts of

the algorithm’s efficiency, in comparison to quantization techniques.

e A greedy, hypervolume-based acquisition function, which is based on TS and the
sampled RFF-functions to select multiple query points at each iteration. The se-
lection accounts for constraints and it is able to distinguish between candidate

solutions based on their pareto optimality.

The algorithm was extensively tested both using benchmark MOPs and real-world
circuit design space exploration applications. In comparison to population based ap-
proaches, LoCoMOBO is able to provide better empirical Pareto fronts with only a
fraction of the evaluations. In comparison with other BO approaches, LoCoMOBO is
able to deliver both runtime gains, mainly due to its parallel nature, and due to its abil-
ity to handle high dimensional and constrained MOPs. LoCoMOBO was also applied to
a variation-aware design exploration problem, where it outperformed other baselines in

a highly constrained MOP, where 45 testbenches were used per simulation.
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Chapter 6

Device Representation Learning

6.1 Motivation

In the previous chapters, we have seen the advantages that BO offers for analog cir-
cuit sizing and performance space exploration. BO’s core functionality revolves around
modeling the loss landscape using GPs [71] as surrogate models. GPs, however, oper-
ate only on continuous spaces [51] and subsequently hinder the application of BO in
problems that include discrete variables. In practice, many real-world circuits include
devices such as integrated inductors, whose geometry is parametrized by both discrete
and continuous variables. A partial remedy to this situation is allowing GPs to oper-
ate in a continuous space and round to the closest integer the values that are selected
as query points. This, however, may lead to systematic biasing towards some discrete
values on top of others. An alternative approach, where no brute-force rounding takes

place is much needed.

Recently, the topic of latent space optimization has emerged in the field of ML as a
promising approach to solving optimization problems that are hard to formulate, either
because of the large dimensionality of the search space or due to the representation of
the input one. This approach involves a latent variable generative model G : Z2 — X
that maps from vectors from a space Z to the actual search space of the optimization
X. By choosing Z to be of low dimensionality and continuous and using it as the search
space, one can map the initial optimization problem into a new, low-dimensional and

continuous one.

Latent space optimization has been proven very useful in the cases of complex in-
put spaces, such as graph-based ones or string-based ones. For instance, in 119, I,
continuous representations of molecules, which are represented in a string-based for-
mat called SMILES [119] are derived. The space on which the representations reside
is used as an auxiliary search space for optimization algorithms and chemical property
predictor models. In [121] a generative model is used to learn latent codes of simulated
robot trajectories stemming from various controllers, which are then used to define an
optimization objective targeting constrained controller design. Further works in latent

space optimization include [122, |.
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By using a generative model to map the mixed-variable geometry space of devices
into a continuous one, we define a space on which the GPs can operate efficiently,
rendering BO feasible. Here, the sample correlations given by the GP’s kernel function
and the GP’s mean function operate on the latent space Z, i.e. a GP is defined as
f(z) ~GP(m(z,k(z,2'))). In practice, since only a subset of the initial parameters will
accept discrete-values, we can exchange only these variables with latent codes.

Motivated by the above, in this chapter we present an approach for learning continu-
ous, data-driven representations of integrated devices. We use a Variational Autoencoder
[121] as the generative model for learning the representations and, to ensure that the
latent space is well structured, we embed a label-guiding supervised network that maps
latent codes to device geometric sizes. More precisely, instead of training the generative
network to map geometric sizes to latent codes, we embed domain-specific simulation
data to Z. The latent codes are used as inputs in a predictor neural net, which is trained
simultaneously with the generative model to predict device sizes. During optimization,
the search is conducted on the latent space, and the geometric features are acquired by

using a predictor model that maps latent codes to actual geometries.

6.2 Latent Space Optimization

6.2.1 Autoencoders

In the following, the concept of Variational Autoencoders (VAEs), the deep genera-
tive model which is used to create continuous-valued representations of device models,
is discussed. In order to better understand the concept of VAEs, first we will introduce
the simpler, non-generative model of Autoencoders (AEs).

An AE is a particular type of neural network that aims to reproduce its input in
its output [39]. Its usefulness stems from the fact that it has an internal layer h which
serves as a code or representation of the input vector x € RY. By being trained to learn
the identity function, an AE often results in useful representations for input data, which
may be used in downstream tasks. AEs consist of two separate neural network blocks,

namely:

e An Encoder h = fy(x), which is tasked to learn the representation h € R of

the input vector x, and,

e a Decoder r = g,(h), which maps the encoded representation of the Encoder h

back to the original space r € RY.

Both Encoder and Decoder networks are parametrized by variable sets @, ¢.
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AEs are trained in an unsupervised manner, i.e. they do not require the existence of
labels to map the inputs to. Since their goal is to minimize the distance between their
inputs and outputs, their objective function is the sum of squared differences between
the inputs x and the recostructions r. Given a dataset of k real-valued input vectors

xM . x® the loss is given by

Lar = 3000 fo oo (<), (6.1)

where parameter vectors ¢ and @ are learned simultaneously by minimizing £ 4p.

As already mentioned, the most important aspect of AEs is the useful representations
that are created by the encoder network. The most prominent approach to construct
useful representations is to enforce that their dimensionality is lower than the input’s
one, i.e. M < N. In this case, the AE is undercomplete [39] and it is forced to learn
salient and sparse features from the provided inputs [39]. In essence, using the loss
term in Eq. 6.1 and linear nets as decoders, an undercomplete Autoencoder learns the
same principal subspace with that of a Principal Component Analysis (PCA) [96]. The
incorporation of nonlinearities in the AE’s nets generalizes PCA and leads to a more

powerful, data-driven nonlinear dimensionality reduction approach[39].

6.2.2 Variational Autoencoders

VAEs are generative models, i.e. provided a dataset D = {x; € X}, they can pro-
duce synthetic samples that follow approximately the distribution of the inputs {x;}. ;.
Structurally, they can be thought of as a probabilistic extension of AEs, since they rely
on an encoder-decoder architecture. Before moving on to the implementation of the
VAE networks, we will discuss its foundations from a probabilistic viewpoint.

VAEs fall into the category of latent variable models [96]. These assume that, the
-potentially complex- distribution of D which we wish to approximate, can be better ex-
plained using some hidden or latent variables Z :[zi]ﬁvzl. By defining a joint distribution
over the observed variables in x and the unobserved latent variables z, one can acquire

the distribution of the observable ones pg (x) by marginalization:

po ) = [ po(x.2)dz 6.2)

Note that the distributions in the above expression stem from a flexible parametric model
pe, with parameters 0. Therefore, pg (x) can be expressed using simpler distributions as

components.
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The relation between the observable and the latent variables of the VAE framework
can be expressed using the notion of directed graphical models [96]. Directed graphical
models are acyclic graphs which express the dependencies of random variables using
nodes and links. The joint distribution of all the variables of directed graphical models

is given by
N

po (x1,....xn,) = [ [ po (x:|T(x:)) (6.3)

i=1
with T'(x;) being the parent variables, i.e. previous nodes of x;. Therefore, variables with
no parents have unconditional distributions whereas the rest of the random variables are
conditioned on their parents. The VAE latent variable model follows the same principle

by defining the joint distribution of the observable and latent variables as
po (X,2) = pg (X|2) pe (2) . (6.4)

Here, pg (z) is the prior distribution and controls the behavior of the latent variables.
The model’s likelihood pg (x|z) describes the mapping from latent variables to observable
ones. In addition, pg (z|x) is termed the posterior distribution of the model.

Given the above, the generational procedure of the VAE consists of two steps:
1. Sampling a latent variable vector z; from the prior distribution p(z), and,
2. using the likelihood pg (x|z = z;) to generate an observable vector.

The inference process of a latent variable model involves determining the latent variable
value given an input data point x, and it is formulated by the posterior distribution
pe (z|x).

Using maximum likelihood estimation to learn the above model, i.e. determine the
model’s parameters 6,,,, necessitates the maximization of the likelihood of each and

every data point in D, which is formulated as an optimization problem:

N
Oopt = arggnax Hpg (x;) . (6.5)

=1

This expression can be simplified by using the sum of the log probabilities. Typically,
Eq. 6.5 cannot be solved analytically and gradient based methods, such as Stochastic
Gradient Descent (SGD) [125] are used. This, however, requires the evaluation and dif-
ferentiation of the marginal likelihood pg (x) with respect to 8. In the case of simple
nonlinear likelihood functions pg (x|z), such as neural nets, the integral in Eq. 6.2 be-

comes intractable and it is not amenable to differentiation [126]. Instead of brute-force
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-t
N N
Figure 6.1: Directed graphical models for (a) the approximate posterior gs(z|x) and (b)

the probabilistic decoder p,(x|z). The coloured node indicates the observable random
variable and the nodes outside the box are model parameters.

optimization, one can resort to the Expectation-Maximization (EM) algorithm [96] to
find a maximum likelihood estimation of the model parameters. The EM algorithm as-
sumes an initial parameter vector 0;,; and proceeds by iterating over two steps; the
expectation one where the posterior py, ., (z|x) is evaluated and the maximization one
where an updated set of parameters 0,,,, is computed by maximizing the expectation
of the likelihood py,, , (z,%) over the previously computed posterior. Considering Bayes

rule [96], it holds that
Po (x,2)
pe (2[x) = : (6.6)
pe (%)
and given the fact that the joint distribution is easy to evaluate, the posterior pg (z|x)
is also intractable [126]. This effectively renders the EM algorithm useless for the case

of intractable functions as well.

To circumvent the intractability of the posterior pg (z|x), VAEs build a parametric
approximation ¢4 (z|x). This approximate posterior is also called encoder or recognition
model and its parameters ¢ are called variational parameters. The term variational
refers to the approximation of a distribution by optimizing a parametric model. In the
VAES’ case, ¢4 (2z|x) is parametrized by deep neural nets and the variational parameters
are the weights and the biases of the networks. Therefore, the generational and the
inference process of the VAE can be expressed by the graphical models shown in Fig.
6.1. The most prominent parametrization of the approximate posterior using a neural

network f : RY — R*>*M ig formulated as follows:

(1. log(0) = fi ().

Gy (2x) = N(z; w, diag(a)>_ (6.7)

To define a cost function for training the latent variable model, we proceed with
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analyzing the log-likelihood of the data as

logpa(x) = / 46 (z]) logps (x)dz

= IEﬂqqg,(z|x) 1ng9<x)]

i _pe (X7 Z)
= Eqy %) | 10g ”

) -
— Eyy o -log _Zf; (’;;))gz ((;’;‘)) ] (6.8)
= By (a0 _log _];Z (();]3_ Floe _?j; ((j:))”
= Eq, (ax) _log _];Z (();]3_ | + Bagtee) [log [?j‘; ((ZZ||:))] ]

The second term in the right hand side of the Eq. 6.8 is the Kullback-Leibler (KL)
divergence between the approximate and the true posterior. It is used as a measure
for the similarity between the aforementioned distributions and it is non-negative, with
values closer to zero indicating greater similarity. The first term in the right hand side
of Eq. 6.8 is called the evidence lower bound (ELBO) [126]. Since KL divergence is
non-negative, ELBO is always lower than the log-likelihood of the dataset and it serves
as a lower bound for logpg(x).

By solving for ELBO in Eq. 6.8, it is seen that its maximization induces both the
maximization of the log-likelihood logpg(x) (' and therefore maximization of the marginal
likelihood), as well as the minimization of the KL divergence between the approximate
and the true posterior. Therefore, maximizing ELBO with respect to both 8, ¢ results
both in greater reconstruction likelihood, i.e. greater generative capabilities, and in
learning a better approximation to the true posterior pg(z|x). Given that pg(x,z) =
pe(x|z)pe(z) and using the logarithm’s properties, the expression for ELBO in Eq. 6.8

can be written as:

Ly ap(@,0) = Eqyalx) [logpe(x\z)] —Dgkr (%(Z\X) | Pe(Z)>- (6.9)

Parameters 8 and ¢ are used to parametrize the posterior and likelihood functions.
These, in turn, are implemented using neural nets. As already mentioned, the approxi-

mate posterior gy (z|x) is implemented by an encoder net, which takes as inputs vectors
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Figure 6.2: An illustration of the VAE model, along with its constituent parts.

from D and provides their latent representation, whereas the likelihood pg(x|z) is imple-
mented via a decoder neural net, with parameters ¢. A depiction of the encoder-decoder
VAE architecture is given in Fig. 6.2. Since neural nets are deterministic models, the ap-
proximate posterior g,(z|x) is implemented as in Eq. 6.7, i.e. as a multivariate Gaussian
distribution with diagonal covariance matrix with learned mean and covariance func-
tions. Likelihood pg(x|z), on the other hand, is implemented as a parametrized Bernoulli
or diagonal-covariance Gaussian, based on whether the data in D are binary or real-
valued. The most popular choice for the prior is an isotropic, unit-variance multivariate
Gaussian distribution with zero mean, i.e. pg(z) = N(0,15,) . This prior results in an

analytic expression for the KL divergence term [124] in Eq. 6.9 as

Dkr (Q¢(Z|X) | pe(z)) = %i

i=1

p? + ot —log(o?) — 11, (6.10)

with p=[p;], and o=[0;]}, being the outputs of the encoder network.

6.2.3 Proposed Approach

Based on the concept of latent space optimization, we use a data-driven approach to
capture the data distribution of integrated devices’ geometry, and produce a continuous
representation out of it. Although the simpler AE model does produce a compressed
representation of the input dataset, VAEs are preferable for the following reason; the
loss function of AEs includes solely the reconstruction loss term, thereby allowing the
encoder to map input vectors in arbitrary positions in the latent space. This almost
always results in empty regions in the latent space, where input vectors’ latent codes

are clustered and the space between them is empty. In the case where a latent code that
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resides in these empty spaces is queried, by an optimization algorithm for instance, the
reconstruction may not be a valid one, i.e. it will not correspond to input data ranges,

etc.

On the other side, VAEs, with the additional KL divergence term in their loss func-
tion, are trained both to produce samples from the input distribution and to enforce
a constraint in the latent space; since the posterior distribution is enforced to resem-
ble a zero mean, unit variance isotropic gaussian one, most of the latent codes will be
placed in proximity to the origin. In this case, a logical choice for latent variable ranges
in an optimization setting is the hypercube [—3, 3] with M being the dimensionality
of the latent space. This translates to a 3-sigma interval, where 97.7% of all samples
from a unit variance gaussian distribution reside, i.e. it includes almost all latent codes

produced by the dataset.

In this setting, the structure of the VAE’s latent space is of utter importance. In
fact, the VAE must learn to map input vectors that yield similar outputs closeby to the
latent space, such that the optimization algorithm’s exploration is not deteriorated. In
the case of analog circuit sizing optimization problems, learning a VAE model directly
from input (device sizes) and output (performance metrics) data is not practical. This is
because the model will not be able to generalize to new, unseen topologies and processes.
Also, the process of learning such a model involves simulations that could otherwise be
used to optimize the circuit in the first place. In contrast, our approach to latent space
optimization involves learning multiple VAE models, each one for a particular PDK
model of an integrated device. Thus, devices that are parametrized by discrete vari-
ables can be represented by continuous valued ones, under a trained VAE model. These
continuous representations, then, can be used in the optimization setting, replacing the
original discrete variables, and rendering the problem continuous. An illustration of the

proposed procedure is shown in Fig. 6.3.

A reasonable question that may arise is what data are fed to the VAE, in order to
produce a latent space. Since our goal is to learn continuous representations of integrated
devices, and, provided that the VAE learns a manifold of the input data in such a
manner that ‘similar’ inputs are mapped to ’close-by’ latent codes, we should use data
that enable such similarity comparison to take place. An i.i.d. sampling of the structured
combinatorial design space of a device can be used define similarity via the Euclidean
distance, but this may not be useful in real-life cases, where a slight modification of
a device’s geometry yields completely different behavior. For this reason, we choose to
use simulation data, tailored to each specific device. We argue that by using current-
voltage characteristics or frequency responses, over some predefined ranges, functional

similarity between integrated devices can be implicitly captured by the VAE model.
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Figure 6.3: The proposed device representation learning scheme within a sizing problem,
where the latent variables are shown in red. a) The original variable space of the sizing
problem is changed into a transformed one, by mapping sets of variables that belong
to devices into continuous latent ones. b) During the optimization, a query from the
optimization algorithm is transformed back to the original variable space using the
predictor networks, prior to simulation.
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In the following section, for example, we use frequency response data to learn a latent

space representation for spiral inductors.

Since we choose to learn a representation of an integrated device using simulation
data, we must incorporate the geometric characteristics of the devices in the model as
well, otherwise there will be no way to embed them in an optimization procedure. To
this end, besides the unsupervised VAE model, our approach also uses a predictor model
g : Z — R, which maps latent codes to actual geometries. The predictor model is trained
simultaneously with the VAE and its parameters are learned so as to minimize the
deviation between the actual and predicted geometries. Therefore, one can use the latent
space in an optimization formulation and by passing latent code queries to the predictor,
they can have valid geometries to pass to the simulator. This operation is illustrated
graphically in Fig. 6.3. The inclusion of the predictor network has an additional effect
on the latent space structure; it enforces an ordering of the latent codes, such that they

have clear gradients with respect to geometrical characteristics.

The overall class of the proposed models for device representation learning are there-
fore, composed of a VAE part and a predictor network. The simultaneous training of
these parts requires the definition of a composite loss function, as well. By denoting the
VAE loss in Eq. 6.9 as Ly ag(¢, 0), and introducing the supervised loss of the predictor
as Lsup(p, A), where X are the parameters of the predictor network, the overall loss

function is their summation, i.e.

ﬁoverall == ﬁVAE(‘ﬁa 0) + Esup(Qba )‘> (611)

The supervised loss induces changes in the encoder network, and its actual formulation

depends on the device characteristics.

In real applications, only a subset of the circuit variables [z1, xo, ..., z4] are discrete,
or belong to the class of devices for which we learn continuous representations. This
results in the fact that a new search space will be used in the optimization, where both
original, continuous-valued geometric parameters and latent variables reside. Without
loss of generality, let us assume that only variable z; is discrete and that the rest of the
variables reside in a space S. Let us also assume that the latent variable has M = 1
dimension. Then, the new search space for the optimization is defined as D = S x [-3, 3],
where [—3, 3] is the space where the latent variable that substitutes x; resides. As the
optimizer queries points from D, these are processed prior to evaluation to determine
whether they are latent ones, associated with a particular model. In this case, the single
latent variable is identified and passed though the predictor model of the associated

composite model, which yields a valid geometry for the simulator.
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6.2.4 Applications on Integrated Devices

In this subsection we apply the continuous representation learning technique to in-
tegrated spiral inductors and rotative metal capacitors. We use a TSMC 90nm process
and the ’spiral std” model for 3-terminal octagonal, symmetric spiral inductors, while

the ’crtmom’ model is used for the metal capacitor.

Spiral Inductor

The geometry of the spiral octagonal inductor considered in this case is parametrized
by 3 variables, namely inner radius, inductor width and number of turns *. Based on the
PDK’s acceptable inputs, the inner radius variable is continuous in the range [15, 90]um,
whereas the inductor width one takes values from the set {3,6,9,15}um and the num-
ber of turns is a discrete variable with quarter-turn multiples, in the range [0.5,5.25].
Although this parametrization suits the case of the PDK-provided model, it is impor-
tant to state that the proposed concept applies to other inductors’ models or geometric
parametrizations.

In this case, we use frequency response data to train the proposed model. We consider
that functional similarity between different inductors can be inferred through 1D vectors
of inductance L(f) and quality factor Q(f), over a wide frequency range. To obtain these
data, we first define a grid on which we conduct parametric sp analyses, based on the
geometric variable ranges described previously. This results in 6000 inductor geometries,
which are simulated on a predefined set of 250 frequencies, in the range [0.1, 100]GHz.
The inductors are simulated in single-ended fashion and their frequency responses are

acquired by the impedance parameters as [127]

imag(ZH)
2m - f

imag(Zn)

L= real(Zyq)

, Q) = (6.12)

Therefore, both inductance and quality factor features for each geometry are 1D vectors
with 250 entries.

The overall employed architecture for the derivation of continuous inductor repre-
sentations is shown in Fig. 6.4. The VAE part of this model is implemented using 1D
convolutional filters, and the inputs to this model are tensors of size B x 2 x 250, where
B is the batch size. Both the encoder and the decoder have 3 convolutional layers with
kernel size 4, stride 2 and padding 1, while the filter size is shown in the Fig. 6.4, and
make use of the ReLU non-linearity. Two linear layers are used before and after the

projection to the latent space, which has M = 3 dimensions. It is important to state

IThe spacing between inductor turns is considered to be a fixed value.
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that the convolutional architecture is preferred, in order to take advantage of the spatial

correlations between the entries of the 1D vector inputs.
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Figure 6.4: A depiction of the proposed architecture. 1D vectors of inductors’ Quality
Factor and Inductance frequency behavior are inputs to the 1D convolutional filters of
the architecture. The filter sizes are shown as well. The predictor FCNN gets as input the
latent representation of the inductor’s frequency characteristics and yields its geometric
sizes.

The predictor part of the model is a Fully Connected Neural Network (FCNN) which
takes as inputs the sampled points from the approximate posterior distribution and maps
them to the actual geometric characteristics. The FCNN, shown in pink color in Fig.
6.4, has 3 layers in total, which are linear with 3, 50 and 25 neurons and uses ReLLU
activations. The 25 outputs of the predictor network are utilized as follows. For the
number of turns and the inductor width, we use a classification approach and define 20
and 4 distinct outputs, each one of them corresponding to a particular valid geometric
value. A single output from the FCNN corresponds to the inductor’s inner radius, since

it is a continuous-valued variable and its approximation is handled by regression.

In order to train the composite model, we need to define its supervised loss as in
Eq. 6.11. Let us denote as z;, with ¢ = 1,...,25 the outputs of the predictor net.
Outputs [7;]?°, correspond to the number of turns, outputs [7;]#4,, to the inductor’s
width and output Zs5 to the inner radius. For a particular geometry, let us also denote
as'y = [y1,. ., yzs] the ground truth results, where out of the first 20 items all of them
are zero, with the exception of the corresponding index of the ground truth number of
turns. The same applies for the next 4 items, and the last one is a continuous variable.
Therefore, ground truth vector y has always 22 zeros, two ones and a real-valued item.
The loss function that penalizes deviations from actual geometries is comprised out of

three individual losses, Ly, for the number of turns, Ly for the inductor’s width and
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Lig for the inner radius. These are computed via

20
eXp(%)
Lyor = — yi-log| —s5————|>
28 S o)
24 7
Liw=— y; - log )
z‘:22:1 254:21 exp(z;)

Ligp = ($25 - y25)2.

We use the squared euclidean loss for the inner radius, and a cross-entropy loss for the
two discrete variables. In the batched training, these losses are reduced to scalars by
taking their means over the batched inputs. The total supervised loss of the architecture
is given, therefore, by

Lep = Lnor + Liw + Lir. (6.14)

The loss for the VAE component of the model in Fig. 6.4 can be defined analytically,
since we enforce that both the prior p(z) and the posterior g,4(z|x) are Gaussian distri-
butions. The KL-divergence term of Eq. 6.9 is given in Eq. 6.10, while the first of Eq.
6.9 is the reconstruction loss which in our case is defined as the mean-squared distance

of the reconstruction x from the ground truth vectors x, i.e.

1 M

Lyap =|| x =x|| —52 pi + o7 —log(af) — 11. (6.15)

=1

The overall loss of the composite model which is used in the training procedure is derived
using equations 6.13, 6.14, 6.15 and 6.11.

The model was trained using the Adam optimizer for 1000 epochs and a 80%-20%
training-test split. After training, the test data were mapped to their latent representa-
tions and predictor’s accuracy for number of turns and width is 94% and 96% respec-
tively. For the inner radius, the MSE score is 0.11, where the values are normalized
in the [0,1] range. Fig. 6.5 depicts a reconstructed inductance curve, along with the
predicted geometry for a real spiral inductor using the proposed scheme. Besides the
original inductance curve its reconstruction by the model, the latent code and the pre-
dicted geometry produced by the model are also given in the plot. We can make a few
observations from Fig. 6.5: The reconstruction of input curves is sufficiently good, since
it captures the resonance frequencies. Also, the predicted geometry is close to the actual,
real world one. In addition, the latent code produced is well within the search boundaries

within the latent space, which will be later used in an optimization procedure.
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Example Reconstruction from VAE

— Input
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Predicted Geometry:{Inner Radius:36pm, NoT:5.25, Inductor Width:3pm}

% True Geometry:{Inner Radius:33pum, NoT:5.25, Inductor Width:3pm}
5 Latent Space Coordinates:[-1.8, -0.6, -1.09]
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Figure 6.5: A reconstruction of inductor’s inductance across the frequency range of interest.

To further investigate the results of the trained model, we procede to sample in-
ductance curves from its VAE part. This is done by sampling from the isotropic, unit
variance, zero mean gaussian distribution p(z) and passing the sample from the de-
coder network. The 500 descaled random samples from the model are shown in Fig. 6.6.
It is seen that the curves follow a particular trajectory, which resembles the resonant

characteristic of the actual inductor’s curves.

0 20 40 60 80 100
Frequency[GHz|

Figure 6.6: 500 samples of inductance curves sampled from the generative model.

To study the structure of the latent space, we consider the following experiment.
We use the porposed model to map every single inductor frequency response that was
acquired by simulations to the three-dimensional latent space. To visualize the latent
space, we depict three cross sections, using the planes x = 0, y = 0 and z = 0, assuming
z = [z,y,2]. At each cross section, every single point is overlayed with the values of
the corresponding inductor’s number of turns, inner radius and inductor width, in Fig.
6.7. By observing each plot, we reach the conclusion that there are clear boundaries

between different values for the number of turns and the inductor width, and there is
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a clear distinction between large and small inner radius in Fig. 6.7. In practice, this
behavior is highly desirable since it ensures that no abrupt jumps between closeby
latent codes take place, when searching locally in the latent space. This smoothness
in the latent space, therefore, ensures that the optimization algorithm can assume that
nearby vectors are related functionally, as is the case with BO and the GP models which

assign the correlation between different points based on their Euclidean distance.
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X
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=

w

[

(v") Number of Turns

Figure 6.7: Slices of the 3D latent space across the xy, yz and xz planes. The three
geometric variables for the spiral inductors are shown.
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Metal Capacitor

In this case, the proposed model is used to derive continuous representations for a
TSMC 90nm ’crtmom’ rotative metal capacitor. We consider a parametrization with
3 variables, namely fingers space, number of vertical and number of horizontal fingers.
The width of the fingers is considered fixed, since it contributes relatively little to the
frequency behavior of the device. The fingers spacing variable is continuous in the range

[140, 180]nm, whereas the rest of the variables take integer values in the range [6,200].

Similarly to the previous case of spiral inductors, we gather a dataset of 3000 fre-
quency responses in the range of [0.1,330]GHz. The data are obtained as Sj; responses
from a parametric sp analysis. Instead of following the convolutional approach as in the
spiral inductor case, in this case we consider a simpler approach is sufficient. We proceed
to select 30 frequencies in the aforementioned range and keep the real and imaginary
parts of the Si; responses only for them. The VAE model then consists of fully con-
nected encoder and decoder networks, with its input being the concatenated imaginary
and real part of each frequency response, i.e. a vector of 60 length. Both the encoder
and decoders have three layers with 200,400 and 600 neurons, with ReLLU activations.
The chosen latent space dimensionality is M = 3 and the predictor network is a three
layer FCNN with 50, 50 and three neurons and ReLLU activations.

To train the composite metal capacitor model, we define its supervised loss L, as
the summation of three individual losses, Lyr for horizontal fingers, Ly for vertical
fingers and L4 for finger spacing. All of them are mean squared losses, defined in a
similar way as L;g in Eq. 6.13, and the overall loss is the summation of all of them and
the VAE loss. The model is trained for 1000 epochs, using the Adam optimizer. After
training, the test data were mapped to their latent representations through the encoder
part of the trained VAE and the predictor’s mean squared error for all three outputs
was 0.13, with the labels being scaled to [0, 1].

6.3 Circuit Design Applications

In this section, the continuous representations of spiral inductors and metal capac-
itors are used to automatically size two LNA topologies. For both devices, we use the
composite models discussed in the previous section and the same TSMC 90nm process. It
is worth noting that for device models that are used more than once in a single topology,

the same models are utilized, but with different latent variables for optimization.
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6.3.1 Inductively Degenrated LNA
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Figure 6.8: The Inductively Degenrated LNA considered as a case study.

In this example we consider the LNA topology shown in Figure 6.8. It is an in-
ductively degenerated single-stage LNA, having three spiral inductors and two metal
capacitors, namely C, and Cy. The supply voltage is 1.2V and the operating frequency
is 2.4GHz.

This circuit is parametrized by its transistor lengths and widths, the metal resistors’
widths and lengths as well as the geometric parameters of the capacitors and inductors.
The parameters of the inductors in the latent space formulation are substituted with 9
latent variables in total, three for each device. Similarly, the parameters of the capacitors
amount to 6 latent variables in total. In total, there are 21 variables both in the latent
space formulation and in the original variable space. The ranges of the variables, both
in their original form and in the transformed-latent space form are given in Table 6.1.

As far as the optimization goals are concerned, we employ a single objective formula-
tion where we wish to minimize static power consumption Py, in the nominal operating
conditions, while enforcing /P3 > —5dBm, NF < 2.5dB, S;; < —8dB, S5 < —8dB
at the operating frequency at the following corners: ss, sf, fs, and ff and at the work-
ing temperatures of —50, 27 and 125 Celcius. In addition, for the nominal conditions
we enforce S9; > 21dB. This amounts to a total of 13 testbenches and 49 constraints
g (X)]ir

For comparison, we consider the following sizing methodologies:

e A SO BO algorithm, which makes use of the RFF features and the single objective

acquisition function as in Chapter 4, coupled with the latent space formulation,
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Table 6.1: LNA Variable Ranges

Variable Description Range
W Transistor Widths [1,120]pm
Ly Transistor Lengths [100, 240]nm
Lg Resistor Ry Length (0.1, 30] um
Lro Resistor Ry, Length [0.1, 30]pm
Wri Resistor Ry; Width [0.4, 10]pm
Wha Resistor Ry, Width [0.4, 10]pum
IWy, /L Inductor L,: Width/ (3, 15]um/ [—3, 3]
Latent
IWy, /Ly Inductor Lg: Width/ (3, 15]um/ [—3, 3]
Latent
IWy,/Lra Inductor L;: Width/ [3,15]um/ [—3, 3]
Latent
IRy, Lyp,» Inductor L,: Radius/ [15,90]pum/ [—3, 3]
Latent
IR, /Ly 2 Inductor Lg: Radius/ [15,90]pum/ [—3, 3]
Latent
IRL,/Lp Inductor L4: Radius/ [15,90]pum/ [—3, 3]
Latent
NTy, L3 Inductor L,: Turns/ [0.5,5.25]/ [—3, 3]
Latent
NTyr,/Lp.3 Inductor Lg: Turns/ [0.5,5.25]/ [—3, 3]
Latent
NT.,/Lp.3 Inductor Lg: Turns/ [0.5,5.25]/ [—3, 3]
Latent
VFg,/Lc,a Capacitor C,: Vertical [6,200]/ [—3, 3]
Fingers/ Latent
VFe,/Lcj Capacitor Cy: Vertical 6,200]/ [—3, 3]
Fingers/ Latent
HF¢,/Lec,» Capacitor C,: Horizontal [6,200]/ [—3, 3]
Fingers/ Latent
HF¢,/Le,s Capacitor Cy: Horizontal 6,200]/ [—3, 3]
Fingers/ Latent
fsc,/Le,s Capacitor C,: Fingers (140, 180]nm/ [—3, 3]
Spacing/ Latent
fsc,/Leoys Capacitor Cy: Fingers (140, 180jnm/ [—3, 3]

Spacing/ Latent




Circuit Design Applications 159

Table 6.2: LNA Sizing Results

Formulation Pgc- P4c- AvgmW]| Py~ Std[mW] Success
Best[mW]|
BO-Latent 9.5 11.7 1.7 10/10
BO-Relaxation 9.8 13.6 2.2 10/10
GA-Latent 11.9 14.3 2.5 8/10
GA 13.8 14.7 1.6 2/10

e The same BO algorithm with the relaxation procedure for integer/discrete vari-

ables, as in Chapter 5,

e A genetic algorithm operating on the transformed variable space, making use of
the proposed models of the previous section to transform individuals to the original

space,

e A genetic algorithm with mixed-variable operators operating on the original vari-

able space.

The hyperparameters of the aforementioned algorithms are chosen as follows: Both BO
algorithms have 1200 total evaluations, with Ng = 8 RFF samples per iteration and
150 initial samples. The genetic algorithms have 100 individuals per generation, and are
allowed to search for 50 generations.

To account for random fluctuations, we repeat all of the experiments for 10 times.
The results of the experiments, with respect to best attained feasible solution, average
best feasible solution, standard deviation of best attained feasible solution and success
rate are given in Table 6.2. It is seen that, in the provided simulation budget, both
BO formulations outperform the GA ones. The vanilla GA formulation, that works
on the original search space, finds feasible solutions two times only, whereas the GA
operating in the transformed space, i.e. having only continuous variables, finds feasible
solutions 8 out of ten times. In contrast, both BO formulations find feasible solutions in
all experiments.

The efficiency of the proposed approach is underlined by the power consumption
results. Among all formulations, the BO that operates in the transformed variable space
yields the best solution on average (11.7mW) and the best solutions out of all formu-
lations and executions (9.5mW). The BO with relaxation is able to find a single good
solution (9.8mW), but yields on average 13.6mW of power, which is close to the result
of the GA working on the transformed space. The fact that the mixed variable GA for-
mulation has the lowest standard deviation is due to the number of feasible outcomes;

only two executions result in feasible results that are taken into account in Table 6.2.
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A graphical illustration of the performance of all formulations in the sizing procedure
of the LNA is given in Figure 6.9, where the evolution of the Constraint Violation (CV)
metric is given, against the number of evaluations. Here, it is seen that the BO that works
in the transformed space requires roughly 600 evaluations to find feasible solutions. In
the case of the BO with the relaxation procedure, all executions find feasible solutions
at around 1100 evaluations. The mixed-variable GA’s CV seems to stagnate at 4000
evaluations, whereas the transformed space formulation of GA seems to improve its CV

even at the end of the experiment.

6.3.2 Wideband LNA

In this subsection, a wideband, noise cancelling LNA [128] shown in Figure 6.10 is
sized. This topology consists of Common-Gate and a Common-Source-Common-Gate
stage, along with a source follower output buffer. It works on a 1.8V supply and its

operating frequency range is [2, 5|GHz.
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Figure 6.10: The wideband, noise canceling LNA [125] considered in this subsection.

In a similar way as in the previous example, this circuit is parametrized by its
transistor widths and lengths, its metal resistors widths and lengths, and the geometric
sizes of the capacitors and inductors. All of the capacitors are rotative metal ones, and
the inductors are spiral octagonal ones, making the proposed models in the previous
section applicable. In addition, there are three biasing voltages, namely V1, Vi and V3
to be selected. Following the guidelines in the original implementation, all capacitors
are chosen to be identical and the transistors share the same gate length. In total,

there are 34 design variables, both in the original variable space and in the latent space
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Figure 6.9: The LNA’s CV for the discussed formulations. The blue are indicates the
confidence region of +std, while the purple lines are the curves of each repetition.
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formulation. The ranges of the variables, both latent ones and the original ones, are
given in Table 6.3. The variable space of the optimization will be denoted as S.

For automatic sizing, we consider again a single objective formulation. In order to
compare the results of the sizing formulations in a principled way, we consider the
following Figure of Merit (FoM) [92] for wideband LNAs and set its maximization as

our optimization goal:

(6.16)

FoM (x) = 20logy0 (Gmax (x) - I1 P34, (x) - BW (x)>

(Foin (x) = 1) - Py (x)

The term G4, indicates the maximum voltage gain of the LNA in V/V, I1P3,,,, is the
maximum input-referred third-order intercept point in mW, BW is the LNAs bandwidth
and F),;, is the minimum noise figure in the operating frequency range, in linear units. In
our formulation, we consider the bandwidth fixed to 3GHz. To ensure this, we consider

the following constraint function:

g(x) = fel[?,?])éHz [Sn(x, f)} +10, x€S (6.17)
with g(x) < 0 being the feasibility criterion. Here, function Sy;(x, f) is the Si; result of
the simulation, in dBs. This satisfaction of this constraint ensures that the results will
be matched to a 502 input port. Thus, the sizing of this particular LNA topology can
be formulated as

min FoM (x), x€S§

sit. g(x) <0 (6.18)

For comparison, we consider again the same 4 optimization algorithm cases as in the
previous subsection, with the hyperparameters of the algorithms remaining the same.
The experiments were executed 10 times to account for random fluctuations.

Table 6.4 depicts the sizing results using the different formulations, with respect to
the objective FoM. Among the considered cases and under the given optimization bud-
get, the proposed BO with the latent space representations of inductors and capacitors
yields in average a FoM of 63.9dBs, whereas the same BO with the relaxation of the
discrete variables yields 58dBs. In addition, the latent space formulation seems to be
reliable, since it yields less variance (5.5dB standard deviation) in comparison to the
relaxation approach (9.3dBs).

Regarding the GA sizing formulations, both the GA that operates in the latent space
and the vanilla GA succeed all of the times in finding feasible solutions. However, the
GA-Latent formulation is more successful with respect to its resulting FoM, which is
roughly 23dBs higher. Both GAs do not succeed in overpassing BO in the attained FoM
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Table 6.3: Wideband LNA Variable Ranges

Variable Description Range
Ly Transistor Lengths [100, 240]nm
Wi M; Width [1,120]pm
Ws M; Width [1,120]pm
W MsWidth [1,120]pm
Lra Resistor Ry; Length [0.1, 30]um
Lrapo Resistor Ry Length [0.1, 30]um
Lras Resistor Ry3 Length [0.1, 30]um
Lp Resistor R; Length [0.1, 30] um
Wrat Resistor Ry Width (0.4, 10]um
Wraz Resistor Rz Width [0.4,10]pm
WRdg Resistor Rdg Width [04, 10]um
Wr1 Resistor Ry Width [0.4, 10]pum
Vi Volatge Vi1 [0.2,0.5]pm
Via Volatge Vi [0.2,0.5]pm
Vis Volatge Vi3 0.2,0.5]um
IWp,1 /L, Inductor Ly;: Width/ [3,15]um/ [—3, 3]
Latent
IWp1/Lp, 1 Inductor Lg: Width/ (3, 15]um/ [—3, 3]
Latent
IWy 2/ Ly 0 Inductor Lge: Width/ (3, 15]um/ [—3, 3]
Latent
IWyp,3/ L1 Inductor Lg3: Width/ [3,15]um/ [—3, 3]
Latent
IRy, /L, 2 Inductor Ly;: Radius/ [15,90]pm/ [—3, 3]
Latent
IRy /Ly, 2 Inductor Lg: Radius/ [15,90]pum/ [—3, 3]
Latent
IR ,2/Lp,,2 Inductor Lgo: Radius/ [15,90]pum/ [—3, 3]
Latent
IR;,3/Lp .0 Inductor Lgz: Radius/ [15,90]pm/ [—3, 3]
Latent
NTp,1/Lp,2 Inductor L, : Turns/ [0.5,5.25]/ [—3, 3]
Latent
NTp1/Lp .2 Inductor Lg: Turns/ [0.5,5.25]/ [—3, 3]
Latent
NTp,5/Lp 0 Inductor Lgo: Turns/ [0.5,5.25]/ [—3, 3]
Latent
NTp,3/L 0 Inductor Lgz: Turns/ [0.5,5.25]/ [—3, 3]
Latent
VF/Lc Capacitors: Vertical [6,200]/ [—3, 3]
Fingers/ Latent
HF/Lco Capacitors: Horizontal [6,200]/ [—3, 3]

Fingers/ Latent
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Table 6.4: Wideband LNA Sizing Results

Formulation FoM - FoM - FoM - Success
Best|dB] Avg|dB| Std|dB]|
BO-Latent 71.1 63.9 5.5 10/10
BO 68.3 58.4 9.3 10/10
GA-Latent 65.9 58.2 8.5 10/10
GA 49.8 35.6 8.3 10/10

performance, both in averaged results and in terms of the best value acquired through
the 10 repetitions. The above highlight the fact that the utilized BO variant is able to
approximate the global optimum better, in comparison to the population based GA,
under the given simulation budgets.

The fact that both BO and GA formulations that work with the continuous repre-
sentations outperform their mixed-variable counterparts underlines the efficiency of our
approach. This improvement for the case of BO can be attributed to the fact that there
is no brute force rounding of the variables, enabling the GP models to assign correla-
tions to points in the variable space by using their Euclidean distance. In the case of
the GA, the results can be attributed to the fact that continuous-only operators work
better, and the fact that the latent space of the devices is created in such a way that
functionally similar devices are closeby, which assists in the exploration of the variable
space. In fact, a simple perturbation of a particular discrete variable may change to a
great extent the behavior of the device, such as the spiral inductor.

For a graphical comparison, Figure 6.11 demonstrates the evolution of the LNA’s
FoM metric for each of the 4 formulations considered, against the number of evaluations.
It is seen that the GAs require roughly 800 to 1500 evaluations for reaching a feasible
solution, which is seen as an abrupt deviation in the FoM metric in these plots. For the
BO cases, the first feasible solutions are found below 200 evaluations. On average, the
BO cases require much less evaluations to reach acceptable results, in comparison to the
population-based GAs. The BO operating in the transformed variable space has the
smallest variance in results, highlighted by the range of the blue region in the respective

figure.

6.4 Summary & Concluding Remarks

In this section we described a novel approach for representation learning of integrated
devices. By establishing a framework that combines i) generative models, ii) predictor

models that map from latent space to valid geometric representations and iit) function-
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Figure 6.11: The evolution of the LNA’s FoM during the automatic sizing, using the
four discussed formulations. The blue are indicates the confidence region of +std, while
the purple lines are the curves of each repetition.
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related simulation data per device, we are able to build a data-driven continuous repre-
sentation, which is associated with real-world devices, otherwise parametrized by vari-
ables both continuous and discrete. Thereby, we are able to transform the parametriza-
tion of a circuit that has these particular devices into a continuous-valued one, and
apply BO to automatically size it. A rigorous analysis of the components of the pro-
posed approach was presented, where both the generative capabilities and the latent
space structure of the model are discussed. To test the sanity of our approach, we con-
ducted a SO optimization on two LNAs, by substituting their spiral inductor and metal
capacitor variables with the ones of the trained model. The results proved that our

approach has merit.

The use-cases considered for continuous parametrization are the octagonal spiral in-
ductors and the rotative metal capacitors, whose models are provided by a TSMC PDK.
However, it should be underlined that one could possibly build such parametrization
models for any device it suits them. A natural extension of this approach is to include
more inductor models, more process technologies and even combine all these data into
a single model, with categorical variables to distinguish between different models, etc.
In addition, one could use Z-parameter data obtained via EM simulations, rather than
PDK inductor models. At the same time this work was being a developed, a process-
agnostic representation learning approach for MOS devices was presented in [129], where
a database of transistor IV curves is presented, and a statistical analysis is executed on
these data. Based on this work, the authors of [130] used VAE models to learn represen-
tations of MOS devices and use these representations for downstream ML tasks. These
works also highlight the potential of representation learning in the field of integrated

devices.

Device modeling and continuous parametrization can have implications in other re-
search areas as well. For instance, the problem of integrated inductor modeling has at-
tracted the attention of many researchers, with works focusing on design using surrogate-
assisted optimization [131, | or circuit sizing using pre-computed inductor pareto-
fronts [133]. These methods are purely supervised and must conduct a search prior to
producing an inductor model, i.e. they do not provide inverse maps from performance
space to actual geometries. Furthermore, the field of microwave design, which is relies
also on simulation-driven approaches for automatic design [134, , , | of struc-
tures like filters could potentially benefit from a representation learning technique, along
with an inverse model that maps to actual geometries. A common aspect of all the afore-
mentioned methods is the big computational costs for using optimization-based design;
EM simulations typically require much time to complete and, while methods have been

proposed to relieve this issue, such as multi-fidelity modeling, a model that learns to
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map specifications to geometries would be very helpful. Of course, the inverse mapping
can be done using the proposed combination of the VAE and the predictor network, or by
using some conditional generative models [138] that can generate geometries, provided
the specifications as input conditions. An example application of conditional generative

models in microwave design is proposed in [139].
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Chapter 7

Conclusions & Future Directions

7.1 Thesis Contributions

In this dissertation, novel approaches to the task of automatic analog circuit sizing
are proposed. Initially, the concept of optimization-based circuit sizing with simulations
is discussed, and its advantages over other related approaches are listed. The same
concept is illustrated by employing EAs for black-box optimization of real-world circuits,
with results indicating that optimization-based design can help designers reason about
the competing trade offs of circuit design. The concept of low-budget optimizers is
then explored in the thesis, where novel SO and MO optimizers are put forward and
tested on a large variety of integrated circuits, providing better results within given
simulation budgets. Lastly, a method to handle devices that are parametrized by mixed
type of variables is also discussed, by using a Deep-Learning technique. In summary,

the contributions of this work are given below:

e The definition of a systematic approach to simulation-based sizing of analog cir-
cuits, which does not make use of hand-equations or any other information other

than the circuit netlist.

e The use of low-budget, Bayesian Optimization approaches tailored to high-dimensional
problems. Both of the algorithms that target SO problems and MOPs make use
of the trust region concept, to relieve the optimization search from excessive ex-
ploration of the variable space. In addition, they both incorporate acquisition
functions that are parallelizable, i.e. they provide multiple query points per iter-

ation.

e The incorporation of RFF approximations to the low-budget optimization algo-
rithms. Analytic functions are sampled from the posterior distributions of the
BO GPs, and are shown to enhance the efficiency of the proposed algorithm in

comparison to simple Thompson Sampling.

e A framework for device modelling and representation learning, using continuous-

valued latent variables. This enables the use of BO in virtually any circuit topology
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considered, but also has many potential benefits due to the ability to map device

specifications to actual geometries, i.e. inverse mapping.

e The use of a programmable interface with commercial simulators, which enables
designers to define custom optimization tasks, execute parametric simulations for
validation or design exploration and make use of the proposed or other, custom-
made algorithms to size given topologies. It offers the ability to use the previously

discussed contributions of this work in an easy and systematic manner.

7.2 Future Work

The general goal of this thesis is the development of methods for enhancing the
productivity of analog designers. In this context, one may distinguish two separate

tracks for future research directions:

o (Clircuit Sizing: The task of automatic circuit sizing is handled in this work by the
use of black-box optimizers. Although effective, this concept fails to take advantage
of the information of the each provided topology, which is encoded in the circuit
netlist itself: the type of devices and the interconnections between them can be
coded into a graph structure, much like the Modified Nodal Analysis does in
circuit theory. An incorporation of that kind of information into the optimizer,
though the use of a learning technique, could potentially yield better results in
terms of simulation budget. This approach is based on the learning to optimize
concept [110], where an agent is learning to select query points from existing data.
Such a method could potentially generalize optimization results across different
topologies, reducing the computational overhead of simulations. A simple approach
to its implementation would include the use of learned acquisition functions, rather
than off-the-shelf ones.

e Analog EDA: Regarding the general task of enhancing designers’ productivity, one
research direction that has merit is the automation of the layout design for analog
and RF sized topologies. In practice, the combination of sizing and layout design
automation could result in push-button circuit design procedures. Although the
layout automation task is an active research topic, its tight corellation with device
sizing renders its use not so practical. A research direction that does have merit is
the incorporation of sizing and layout selection into a single task, with interrelated

factors being taken care of.

We should underline the fact that the methodologies proposed in this work can

be used outside of the Analog EDA ecosystem. For instance, engineering design using
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optimization based techniques is very popular with areas where intuitive design is al-
most impossible, like the design for microwave and antenna geometries. Low budget
MO optimizers such as LoCoMOBO could be used within these research areas as well.
In addition, the Device Representation Learning concept could potentially benefit the
engineering design teams rapidly prototype apparatus, based on pre-existing libraries of
past designs. This approach has the benefit to be used in some form of generative design
procedure, where, based on an archive of past relevant data, the user provides desired
specifications and obtains simulation-free suggestions. This method could be of great use
especially in cases where the design spaces are not defined in terms of continuous-valued

variables, but as a combination of categorical, integer or continuous variables.
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