NATIONAL TECHNICAL UNIVERSITY OF
ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

DI1VISION OF INDUSTRIAL ELECTRIC DEVICES AND DECISION
SYSTEMS

Model-driven adaptation of Function-
as-a-Service applications

PhD THESIS

Andreas Ant. Tsagkaropoulos

Athens, April 2022

>

SCANE),

L,

) -,:S;i
£

NATIONAL TECHNICAL UNIVERSITY OF ATHENS

AR
% < - H | 2| SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
. y‘g, DIVISION OF INDUSTRIAL ELECTRIC DEVICES AND DECISION
O s 3 [SYSTEMS

Model-driven adaptation of Function-as-a-
Service applications
(Avampocappoyn Function-as-a-Service
EQUPUOYOV Paciopévn 6€ HovTELD)

PhD THESIS

Andreas Ant. Tsagkaropoulos

Advisory Committee: Gregoris Mentzas, Professor NTUA (supervisor)
loannis Psarras, Professor NTUA

Dimitrios Askounis, Professor NTUA

Approved by the seven-member examination committee on the ™ of April 2022.

Gregoris Mentzas loannis Psarras Dimitris Askounis
Professor NTUA Professor NTUA Professor NTUA
Dimitris Apostolou loannis Verginadis Christos Papatheodorou
Professor Assistant Professor Professor
AUEB NKUA

University of Piraeus

Dimitrios Tsoumakos
Associate Professor
NTUA

Athens, April 2022

Andreas Ant. Tsagkaropoulos / Avopéag Avr.

Toaykapomoviog
Doctor of Engineering N.T.U.A. / Awddxtmp Mnyavicog E.M.IL.

Copyright © Avdpéag Avt. Toaykapomoviog, 2022
Me gmpoioén movtog dwonmpartog. All rights reserved.

Amayopevetal 1 avIrypaer], amobKeLGT Kot SLOVOUT| TG TOPOVCAS EPYACIAS, €&
OAOKAN POV 1] TUNHOTOG OWTNG, Y10 EUTOPIKO okomd. Emtpéneton | avotdnwon,
amoONKeLOT Kot O10VOLT Y10 GKOTO L1 KEPOOGKOMIKO, EKTOLOEVTIKNG 1)
EPELVNTIKNG PVONG, LILO TNV TPOLHTOHEST VO AVAPEPETAL 1) TNYT TPOEAELOTG KO VL
dwtnpeitan to Tapodv pqvopa. Epotmuota mov agopodv) xpron g epyosiog yio
KEPOOGKOTIKO GKOTO TPEMEL VO, ameLBVVOVTOL TPOS TOV GLYYPAPED.

Ot amdyeLg KO T0L GLUTEPAGLLATO TTOV TEPLEXOVTIUL GE AVTO TO £YYPUPO EKPPALOVV
TOV GUYYPAPEN KOt OEV TPETEL VoL EpUNVELOEL OTL AVTITPOGMOTEVOVV TIG EMICNUES
0éoeig Tov EBvikov MetodBiov TToAvteyveiov.

It is forbidden to copy, store and distribute this work, in whole or in part, for
commercial purposes. Reproduction, storage and distribution are permitted for non-
profit, educational or research purposes, provided that the source is referenced and
the message is retained. Questions concerning the use of work for profit should be
addressed to the writer.

The views and conclusions contained in this document express the author and
should not be interpreted as representing the official positions of the National
Technical University of Athens.

Abstract

This doctoral dissertation is situated in the research field of FaaS processing, cloud
topology adaptation and administration. It consists of an approach suggesting the
definition of a cloud and edge processing topology using the TOSCA standard. Also,
the presented approach includes a novel way of updating the processing topology
based on the criteria set by the DevOps.

Concerning the description of the applications, research on the most important works
from the state of the art was carried out, focusing on contemporary generic application
description languages. Also, the expressivity of these application description
languages is briefly presented, and a comparison of the modelling extensions and
approach suggested in this work was made against one of the most important and
ubiquitous description languages (Terraform).

Related to the adaptation of applications, research on the available adaptation methods
was performed, and a new rule-based methodology suggesting the use of ‘Severity’ of
the situation of a topology is described. Severity values are obtained by factoring in
all of the dynamic metric values involved in a violated rule, and based on these a
relevant adaptation action is suggested. The exploitation of Severity values using
different algorithms (techniques) allows different ways of countering workloads.

In the context of the aforementioned research four software systems were created, of
which two are open-sourced. The first is related to the creation of application
topology descriptions, leveraging the new TOSCA extensions. The remaining are
related to analysis of Severity techniques and the creation of adaptation actions based
on Severity techniques, although in two of them additional techniques which are
widely used in the industry were also implemented. One of these systems is a
simulator.

Severity was proven to allow the definition of techniques leading to improved results,
as these were determined by a chosen utility function. The experiments which were
carried both in the level of simulations but also in a realistic testbed, indicate the need
to make appropriate decisions on the technique which should be used based on the
workload which is served. The successful use of Severity in the context of OpenFaas,
a well-known and realistic FaaS platform, to perform the adaptation indicates the
feasibility of the approach.

Keywords: FaaS applications, Cloud computing, Edge computing, application
models, application adaptation, TOSCA, Severity, OpenFaaS

Mepianym

H d1axtopikn dtotpipn tomobeteiton oty mEPLOyN TG TPOSAPUOYNG Kot dlayeiptong
VTOAOYIGTIKMV TOTOAOYIMV VEQPOLG, TNG EWOIKNG Katnyopiag epappoydv FaaS.
[Ipoteiver pia pebodoroyia pe v omoia pumopet va yivel o opiopdg g Totoroyiog pe
Baon to TOSCA standard copmepidapfdavovtag Kot TO6Povs 6To GKPo Tov SIKTHOV.
Eniong, n pebodoroyio copmeptlhapfaverl pio KOVoTOUO TPOGEYYIOT Y1 T SUVOLLIKY|
avavemon g eneepyaoTikng tomoroyiag Bdoetl kpirnpimv wov BETEL 0 dloyelPloTig
™G EQUPHOYNG.

ZyeTIKd Pe To KaBopiopd TG mEPLYPAPNG TOV EPAPUOYDOV, £YIvE BIBAIOYPAPIKT
EMIGKOTN O TOV GNUOVTIKOTEP®VY TPOTAGE®Y OV £YovV Tpotabel, ko Pacilovtal o
OVYYPOVES YEVIKES YADOOESG TEPLYPAPNS EQUPLOYDV. Eiong cuvoyictnke n
EKQPOOTIKOTNTO TNG KAOE YADGGOC TEPLYPAPTG OE GYECT LLE TNV AVOAVOLEVT TEPLOYN
Kol Tpory Lotomo|Onke cOyKplon He pio oo TG OUAVTIKOTEPES KO TTLO EVPEMG
YPNOLoTO0VEVES YADGGEG Teptypapns (Terraform).

Q¢ mpog 10 {TNHOL TNG AVATPOCUPHOYNS TV EPOPLOYDV, TPOYLATOTOWONKE Epevva
TOV VLAPYOVIOV TPOTMOV OVOTPOCUPLOYNS, Kol TpotdOnke pio véa peBodoroyia wov
Baciletan og kKavoveg kot a&lohoyel) ‘ZoPapotnta’ piag Kotdotaong (Severity)
TPOKELEVOL VO TPOTEIVEL AVTIOTO(EG EVEPYELEG AVATPOGOPUOYNG. O TIHES TNG
‘ZoPapdtnTog’ TPOKLTTOVY AUUPAVOVTOC VITOYLY OAES TIC SUVOAUIKES TILES TOV
peTpk@v mov oyetifovron pe tov exdotote Kavova. H a&lomoinon tov Tipdv g
coPapdTTag LE SOPOPETIKES TEYVIKESG EMTPEMEL SLAPOPETIKOVS TPOTOVS
OVTILETMMIGNG TV VITOAOYIGTIKMYV POPTIMV.

[Moucumvovtag T Topamdve EpEuva, ONUIOVPYNONKAY TEGGEP OVTOTEAN
VTOAOYIGTIKG GUGTHLOTO EK TOV OTOI®MV Ta. 000 amoTELOHV AOYIGUIKO 0VOIKTOV
K®owa. To Tpdto amd awtd oyeTileTon pe TV ONUIOLPYIL TEPTYPAPDV TOTOLOYIOG
EPAPLOYADV, EVOOUATOVOVTOG TG VEES EMEKTAGELS Yia T YAdooa TOSCA. Ta
VEOAOUTA TP APOPOVV TNV TPAYLUATOTOINGT OVOTPOGAPUOYTG TOTOAOYIDV
a&lomoldvtog teyViIkég mov Paciloviol TpdTicTa TNV £vvolo TG ZoPapoTnTag, VO
o€ 000 amd Ta GLOTHHATO LTOGTNPiYONKAY Kot dALOL aAyOp1BLLOL Ol omoiot
YPNOLUOTOIOVVTOL EVPEWMS OTN Tapaywyn onuepa. Eva and ta mapandve cuetiuota
EMTPENEL TN SEEAYOYT TPOGOUOUDGEDV.

H véa pebodoroyia avampocappoyng deiytnke 0Tt EMTPENEL TOV OPICUO TEYVIKAOV TOV
001 YOUV G€ KOADTEPO OMOTEAEGLLOTO GE OPKETES MEPUTTOCELS POPTIOV HEGO ATTO
OVTIKEWLEVIKT] cuvaptnon. Ta mepdpata mTov Tpaypatorodnkay ce eninedo
TPOCOUOIDGEMV OAAGL Kol TPOLYLOTIKTG TOTOAOYIOG OMOKOADTTOVY TV OVALYKN
EMAOYTG SLPOPETIKMV TEXVIKAOV AVOAOYO LLE TO VTTOAOYIOTIKO Poptio. H meipapatikn
epappoy”n g Lebodoroyiag avamposapLOYNG TOV £YIVE AELOTOIMVTOS L0 ONUOPIAY|,
wpaypoatikn mhatedpuo (OpenFaas) katadekviel T0 EPIKTO NG TPOGEYYIONG.

Aé&€erg khewond: Epappoyéc FaaS, Yrohoyiotikd vEpog, YTOAOYIGTIKY] GAKpOv,
LOVTEAL EQapLOY®V, avarposappoyn tonoroyiag, TOSCA, ZoPapdtrta, OpenFaaS

Acknowledgements

This doctoral dissertation marks the completion of an exciting and thoroughly illuminating
period, during which I greatly profited from the postgraduate program of the School of
Electrical and Computer Engineering of the National Technical University of Athens.

Had it not been for the interest, guidance and encouragement of Professor Gregoris Mentzas,
this work would have not been completed. The opportunities he presented to me, his trust and
his willingness to help in the completion of this work were extraordinary, and I am thankful for
his encouragement. Moreover, | am thankful to Assistant Professor loannis Verginadis, for his
continuous help, deep understanding, and encouragement to advance scientifically. I should also
not omit to mention Professor Dimitris Apostolou for his valuable comments, his
encouragement and his constructive feedback in order to advance and improve this work.

I would also like to thank the other two members of the three-member advisory committee,
Professor loannis Psarras and Professor Dimitris Askounis, as well as Professor Christos
Papatheodorou and Professor Dimitrios Tsoumakos for the honor they have done to me to
participate in the seven-member committee for the dissertation.

I would like also to thank all the members of IMU and especially Fotis Paraskevopoulos and
Nikos Papageorgiou with whom I have collaborated in research projects and publications. Our
cooperation was very important to define and refine aspects of this work.

However, if it had not been for the constant support and guidance of my parents Antonios
Tsagkaropoulos and Panagiota Chatzigiannaki, as well as my brothers Efstratios-Evangelos
Tsagkaropoulos and Spyridon Tsagkaropoulos, this dissertation would not have been
completed. To my family therefore goes a whole-hearted thank you, and a deep wish that I can
stand up to their sacrifices.

Finally, and most importantly I would like to thank God for the extremely favorable
circumstances in which my work was carried out, and His — visible to the writer — help in
carrying out this work.

Table of Contents

2 0 1] 5 o Lo 6
TTEPUATIUIT) ceuereencurneesseesssseessase e ssase s s ssase e asn s snase e nase e eE s sn A e SR AR SRR E e RR R R AR e nR e nR e e AR e nnaes 7
ACKNOWIEAZEMENLS ... 8
L 1017 1 o 12
1. Extetapévn EAAnviki) tepidnym - Extended Greek Abstract........ccoveecreecsnnsenenas 13
1.1, ZYETIKN EQPYOOLO LE TN SLATPLP ceurrrrererrresresssssessesssssesssssssssssssssssssssssesssssssssssssssssssnssssssssssssssanens 16
1.2. Hmpoogyylon g StatpBg yia v avampooappoyn FaaS e@appoywy......... 18
1.3. Emektaoeig otn TOSCA vl v vtootplen FaaS eQaproOy®V ... 20
1.4. Emextaoelg ot TOSCA ywx N BeAtiotomoinon FaaS e@apuOY®V .vreeeeveereesreeneens 22
1.5. Elactikéomnta epapuoywv FaaS ypnowomowwvtag tnv évvola g Zoapotntag..23
1.6. ExTiunom texvikwv avampooaproyns o€ GUVONKES TTPAYUATIKOU POPTIOU wuuveerenees 26
1.7, ZUUTIED GO AT O rerreresresssessessssssessssssssssssssssessssssessssssssssssssssesssesssssssssssanses 27
P2 0 11 0 T L1 Ut () o 29
3. BacCKBround......issssssssssssssssssss s s 35
3.1. Model-driven engineering for cloud applications.........uemenemnenrnesese s 35
T = R 1 0] 0] 1 (0% Un (o) 4 PP 36
3.3. Motivating Scenario: Fog Surveillance AppliCationcourneereereeneeneesesnessessessessessesseenes 37
4. State of the art analysis ... ————————————_——_—_ 41
4.1. Model-driven cloud application deployment.........cumenrenenenenssnnsesesesse s 41
4.2. Model-driven Fog application deploymentconenenmenenerssnssssessessssssssessssssesseses 46
4.3. Cloud application EIQSTICITYc.ccerererreererrerresressessessessessessessessessessessessesssssessessesssssesssssessessessessesees 46

4.3.1. Rule-based and Control-theoretic adaptation approaches ... 47

4.3.2. Search-based optimization adaptation approaches...........mnennenensenennns 52
5. Suggested approach for the definition and adaptation of FaaS applications......56
5.1. Application CONCEPLION ... sssssssesssssssessssssssssens 57
5.2, Application Definition ... sssens 58
5.3. Application Goal Definition ... ssssssssesssssssenns 61
5.4. Processing and Deployment of REQUIFE€MENTSc.couueereereerernerseesnerneessesessesssssessesssessesseens 63
5.5. TOSCA FaaS Application Definition Algorithm........onnnenencsereseseseseseeseseesessees 64
5.6. Creation of updated type-1evVel TOSCA ... sesssssesssees 65
6. Improvements to TOSCA to model FaaS applications........c.cocuurnmrmnmsmsmsmsmsssssssssssasanns 66

7.

8.

9.

6.1. Fragment and Processing Host DeCOUPIING.......ccorrrerenenerneenennesnesee e sessessessessesseenes 68

6.2. TOSCA Specification of Fragment NOAESccvuemrnerernsennesnesnsessessessesssssessessessssssssssessssans 71
6.3. Description of Instance-Level TOSCA ... 74
6.4. Faa$ Paradigm architectural elements definitions........coorenenseenn: 76
Optimization and Application Constraints in FaaS applicationsc.cusersesessnsens 80
7.1. Coarse-Grained Application CONSITAINTS ..o ssessssssessssssesses 80
7.2. Fine-Grained Constraints and Optimization Criteria........ s 81
7.3. Constraints and Optimization Handling ... 85
Faa$ application elasticity with Severity-based elasticity rules..........ccccuusursnsessnsens 87
8.1. ElaStiCIty RUIES. ..ot sssssssnsns 87
8.2, SItUALION SEVETILY .. bbb 88
8.3. Severity Zone CalCulation ... ssssssssssssssssssans 91
8.4. Cloud adaptation tEChNIQUES.....ccirireciner s sessens 94
8.4.1. Simple thresShold ... s 96
8.4.2. Maximum attribute cONtrol loOP ... 97
8.4.3. ADSOlIULE SEVETILY VALUEovvieeerercrrieiss s ssssss s 97
8.4.4. Normalized absolUte SEVETILY ... ssssssssssssssses 98
8.4.5. Normalized absolute severity cOntrol 100p ... 98
8.4.6. SIMPIE SEVETILY ZONES ..oueuerieirriresiiseesres e 99
8.4.7. RelatiVe SEVEIILY ZOMNES. ... sssssss s sssssss s ssssssssssssssssssesassses 100
8.4.8. SEVETILY VAlUE ..ot 101
8.4.9. Normalized SEVETItY VALUE ..o sesssssesssssssssssssssssesas 101
8.5. TIIUSETAtiVE SCENATIO curirueeierersersieeessesess s bbb 102
8.5.1. Situation DeteCtiON... o ses s 103
8.5.2. Using Severity zones - based teChNiqUES.......c.ccocnirernrrcrnencnerenereseseeseeseesensees 103
8.6. Prototype implementations. ... eeeeeseeeeeeeeesesseeesssessssessssssssessessssssssssssssssees 106
287221 L1 1 00 110
9.1. Comparative Assessment of the TOSCA modelling eXtensions.......ccueomeeneereererssennes 110
9.2. Simulation-based Evaluation of Severity teChNiQUESc.coocreeneereeneereeneererneereeseereeseeneens 117
9.2.1. Benchmark & error metric ChOiCe......cocureneereeneereineresereseesese e 117
0.2.2. EVAlUAtiON TESUILS ..ottt sttt sssssnsnns 121
9.3. Cloud Adaptation EValUationeeessesssssssesssssssssessssssssssssssssssssessesssssss 131

10

155 78 IR U (0 Yo 6 Uod 0) o 1P 131

9.3.2. Experiment DeSIGN ... sssssssesses 133
0.3.3. Gradual WOTKIOAd ...ttt sssssssssnsans 139
9.3.4. Fluctuating WorkIoad ... 140
0.3.5. SQUATe WOTKIOAd ...t ssssssssssssssssssssssssnes 143
0.3.6. EXtra WorkIOad ... ssssnas 144
0.3.7. LiN€ar WOTKIOAd ..ottt sss s ssss ettt sssssnsans 144
9.3.8. Abrupt Square WOrKIOad ... 145
9.3.9. Improving the performance of Simple Severity Zonesmenrereeseenns 147
9.3.10. Remarks on the evaluation using realistic workloadsc.ccouerernereeneencereneenas 148
R D T3 o) o 149
10.1. MoOdelling DiSCUSSION.....ciiueurireesrirseessessssses s asss s ssaens 149
10.2. Adaptation DiSCUSSIONciererinmeresesssressssssesssssssess s ssnens 152
11, CONCIUSIONS ... ———————————————————————— 155
B2 2 (=) =) 1 Lo 156
APPENDIX A - Full Type-level TOSCA templatecccoummmnmnmnmsmsmsmsmsssssssssssssssssssssssssseens 162
APPENDIX B - Full Terraform templatec.cconmmmmmmmmsmmmmmsmmsmssmsmsssmsssmsssssssssssssssssssssssnns 172

11

Glossary

Term
Amazon CDK
AMI
API
AWS
BYON
CDN
CPU
DevOps
DNS
DSL
FaaS
/O

IDE

1P
OASIS

OCCI
PM
REST
SME
TOSCA

Ul
UML
USD
VM
YAML

Explanation

Amazon Cloud Development Kit
Amazon Machine Image

Application Programming Interface
Amazon Web Services

Bring Your Own Node

Content Delivery Network

Central Processing Unit
Development and Operations

Domain Name Service
Domain-Specific Language
Function-as-a-Service

Input/Output

Integrated Development Environment
Internet Protocol

Organization for the Advancement of Structured
Information Standards

Open Cloud Computing Interface
Physical Machine

Representational State Transfer
Small to Mid-sized Enterprise
Topology and Orchestration Specification for
Cloud Applications

User Interface

Unified Modelling Language

United States Dollars

Virtual Machine

YAML Ain't Markup Language

12

https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/

1. Extetapévny EAAnvikn) epiAnym - Extended Greek Abstract

H vmoloyiotikny vépouvg amotedel mAov €va avamdOOMOGTO TUNUO TNG EMOTAUNG TOV
VTOAOYIOT®V, OAAG Kot NG KaOnuepwomrog, Oyt UOVO TOV HEYOAVTEPMOV ETYEPNOEDV
TEYVOLOYiOG, OAAG KOl TV HIKPOTEP®V. Q6TOGO, 1 YPNON TOV TOPMOV TOL TAPEXOVTUL OO TO
LAPOPO VTOAOYIGTIKA VEQT €K UEPOVE HOG ETOLPEING YO TNV EYKATACTOCT LG EQOPUOYNG
VEQPOUG eykvpovel tov Kivouvo tov kiewopatog meldt. To yeyovdg avtd ogeileton otnv
TOAVTAOKOTNTO TV TEYVOAOYLDV, KOl GTNV EALELYT] KOWVA OTOSEKTMV Kol EVPEWS VIOBETNUEVOV
npotomev. H ecaymyn véov vrodsrypdtov epoappoydv onmg to Function-as-a-Service mov
TPOCOEPEL AKOUT TO AEMTOUEPEIS SVVATOTNTES AVTOMTOKPIGNG GTO VITOAOYIGTIKO (POPTIO HLOG
epapuroyng emreivel to vapyov tpoPinua. EmmAéov, n yprion amopakpuGUEVOV GLGKELVMV
0TO GKPO TOL HIKTVOV Kot TOPMV atd AAAOVG TPOUNOEVTES LINPECIDOV, 0OMNYEL GTNV AVAYKY TNG
vrooTpiEng dvvatomtov Pertictomoinons. Ilpokeyévony va dievkoldvovpe T Onpovpyio
epappoydv Function-as-a-Service ot omoiec Oa pmopodv vo SLYEPIGTOVV TO TOPATAVED
{nmpata, tpoteivoupe v enéktact g TOSCA. Xoppwva pe v gpyocio tov Bergmayr et
al. [1], n TOSCA amoteAel pio and T1g 0eomOLoV0EG YADGGES LOVTEAOTOINGNG EPAPLOYDV,
KLPIOG YPNCULOTOUDVTAG TO VIOAOYIGTIKO VEPOG. YTapyovv apketég [2—4] vAOTOMGELS OV
Bacilovtatl 6t gpnon g YA®GGaS, ol onoieg vrootnpilovral pe TakTikég avafaduicerc.

Av Kot dNUOPIANG, ®wotdco 1M evopynotpwon (orchestration) gpappoydv pe tn ypHon g
TOSCA vrdkertonr 6€ 0pkeTONS TEPLOPIGUOVS TOL ATOTPETOVY TNV ANELOELNG EVOOUATMON TNG
o€ éva VPP TEPPAAAOV OTOTEAOVUEVO OO GLGKELEG GTO GIKPO TOL OIKTVLOV KO TOPOVG GTO
vroAoYloTikOd vépog. Ilpmtov, 1 TOSCA dev €xel Kamolov €yyevi pUnyovicpud o Omoiog vo
EMTPEMEL TNV 1YVNAATINOT TOV EYKATAOTACE®Y TNG EPOPUOYNG KOTE TO YPOVO EKTEAEOTG
Aappavovtag vmoyw T Omoleg amopdoelg ovompocoppoyns [S]. Avt 1 onupovTikn
TAPAUETPOG €xel emTpéyel oe Avoelg 0nwg v Terraform (https://www.terraform.io) kot to
Ansible (https://www.ansible.com) va oavadvBobv Kot v 0TOGTAGOVV 1KOVO TOGOCTO NG
ayopds. Ag0dTEpOV, YPNOLLOTOIOVTIOS KAmow amd Tig vAomomoelg [2—4] elvar avaykaio va

0pLETOVV EK TMV TPOTEP®V O TAPAUETPOL TNG EPAPLOYNGS, Ol TAPOYOL VEPOLG TOV TPOKELTOL VO

13

https://www.terraform.io/
https://www.ansible.com/

YPNOUOTONOOVV OTMG KOl TO YOPOKTNPIOTIKE TV EIKOVIKOV UNYOVOV Tov amottovvtal. H
avayKn vo Tpocdloplotel avtn 1N TAnpogopia meplopilel T SVVOUIKOTNTA GE EYKOTACTAGELS
(EQOPUOYDV) TOV YPNCUOTOLOVY OVTEG TIG TAATPOPUES, 1| OTTOloL SVVAUIKOTNTO Eival 0GTOGO
éva avamOoTOoTO GTOEID TV TTEPPUAALOVI®MV TOV YPNGLUOTOOVV GUOKEVEG GTO GKPO TOL
dwktoov (edge) M pktovg mopovg (fog — mOPoLE 1060 GTO GKPO TOL SIKTVLOL OGO KOl GTO
VTOAOYIOTIKO VEQOG). Ev Téhet, akdun Kot 0tav yivel pe pun avtopaTo TPOTO OVOTPOGOPLOYN
™G €QOPUOYNG, M Ogv pmopohv va vmootnprybodv duvatdtreg Peltictomoinong.
AmodekvheTon AoV SLGKOAIL TNG CLVTHPNOTNG EVOG LOVTELOL LOG PEAAIGTIKNG EPAPLOYNG,
pe dvvapukn emeepyactikny tomoioyio, n omoia THAVOV VO KALLOKMOVETOL LE U1 OVOLUEVOLLEVO
tpomo. Ta dvo mpofAnuata mov mpoaavaeépdnkav eivar opatd kot otn Terraform kot oto
Ansible, kot petatoniCouv tig €vBiveg TV duyeplotdv tv epapuoymv (DevOps) ce o
npoonddeia va dlatnpnoovy v eXpvOuN Aettovpyia pog tomoloyiog vEpovg 1 omoio EVvToVToLS
TPEMEL VO, EMAVGEL OAANAOGVYKPOVOUEVES OMOLTHGELS OMMG TO YOUNAO KOOTOG HE KOAY|
nwoldtnta vanpeciag. [epartépw, Eva axdun TpdPAnua wov ennpedlet kot v TOSCA aAld Kot
T1g teyvoroyieg Terraform, Ansible gival 1 advvapio povredomoinong piktav (fog) spapuoymv
N epapuoyadv ‘dvev eEumnpetnt’ (serverless).

And v gunepio mov cLVAAEXONKE Katd TV epyacio yw ™ mAateopua PrEstoCloud [6],
e€dyetan n B€om 011 o€ duvapukd TepPaiiovta OT®S AVTA TOV TPOUVUPEPON KAV, Elval AUEST N
avlykn g eAdEpLVONG TOV POCIKOV KoONKOVIOV oL enouiletor O OyEPIOTNS TOV
EPAPLOYADV, UETAPEPOVTAG TO GE KOTAAANAO LIOGTNPIKTIKO Aoyiopkd. To Aoyiopkd ovtd
ypeldleTon vo vroonpiEel To OaYWPICUO TOV TOPOV UETAED TOL YPOVOL GYEdIOONG KOl TOL
xpOévov ektéleonc. Me 10 TPOMO OLTO O JWYEPIOTNS NG €eapuoyng Oo umopel va
HLOVTELOTOMGEL TIG OMOLTNOELS E€YKOTACTOONG TNG EQOPUOYNG O OGO VLYNAOTEPO EMIMEDO
apaipeong eivarl ePikto, ywpic va givor avoykaio va AneOovv cLYKEKPUYLEVES ATOPAGELS GYETIKA
HE TNV apylK €YKOTACTOON OAAG Kol TN UETEMELTO PEATIOTONOINGT 1| OVOTPOGOAPUOYY TMV
epappoydv. o v emitevén g avanTuéng AVTOL TOL AOYIGUIKOV TPOTEIVOVTOL OPEVOC
enektdoelg ot YAwoca TOSCA — mov amotelel Tn KovoviKn TPEYOLGO EMAOYN YO TN

LLOVTEAOTOINGN £QOAPLOYDV VEPOVS — KOl OEVTEPOV TPOTEIVETOL £VOL TEPAUATIKO AOYIGUIKO TOV

14

umopel va ypnoponomoet tig enektaoels g TOSCA. H epyacia avt eotidlel o€ eQapuroyEg
FaaS — epopuoyég vépovg mov 0ev YPNOUYOTOOVLV EUTOPIKEG TTAaTQOpueg FaaS oA,
AmEVOVTIOG, VAOTOL00UV OAY TNV AOPAiTN T AEITOVPYIKOTNTO TTOV TOVS XPEIALETOL.
SOUTANPOVOVTOS TN TOPATAVE TPOSTAdEL, 6TV daTpiPn avt TapovstdleTot 1 Evvola g
‘ZoPapodtroc’, n omoio 00NYel 6€ KAOAOTEPEG EMOOCELS Y10 APKETEG TEPUTTOCELS VITOAOYIOTIKMDY
eoptiov. O BewpnTikdc opopndc g “ZofapdTTag’ GLVOIEVETOL Ad TPOTOTLTO AOYIGHUIKO
mov tov ypnowomotel. H ypnon aiyopiBuwv avompocapuoyng pe Pdon ™ Zofaponta
emutpénel v e€okpifwon g atiog Kot ToV omoTEAEGHOTOC KAOE TPATAGNG AVATPOGUPIOYNG
™G EPAPUOYNG.

Yvvolikd, N epyacio emlntel va oamavtnoel 6T £E1G EPELVNTIKA EPOTNLLOTOL

e [loweg onpacioroyikéc Pertvoelg mpénet va yivovv otnv TOSCA mpoxegpévou va
Voo TNPilel LIKTEG EYKATOCTAGELS EQAPLOYADV;

e Ilowo peBodoroyia mpémetl va axorovOnbel tpokepévou va povtedorombovv
EYKOTACTAGELS EPAPLOYDY TOL DAOTOLOVV KATO0 VITOOELYLLOL OTTOKEVTPMUEVTG
extéleongc;

e Tlog pmopovv vo evoopat®wBovv o1 LOVIEAOTOINCT TAEVPEG CYETIKEG LE TN
BeAticTomoinon;

o [ldg ovykpiveton peBodoroyia pog yio v eAactikdTnTo pe AAAEG pebodoroyieg mov
TAPEXOVY OLVATOTNTEG EAACTIKOTNTOG OTIS EPAPLOYEGS;

e [ldg ovykpiveton n emidoon teyvikadv mov Bacilovior 6t “LoPapdtnta’ pe dAheg
TPOGEYYIGEIS TOL YPNOUOTOIOVVTOL UG EUTOPIKA GUGTHLATO, GTNV IKAVOTOiNoT TV

LETPIKOV TOLOTNTOS VANPEGIOG;

[Tpokepévou va amoavinbovy o TopaTave EPMTHUATO, TAPOLGLALETAL APEVOS 1 EMEKTACT TNG
YAML TOSCA [7], agetépov Oe avaddetor mn avortvybeica mpoodyywon vy v
OVOTPOGAPUOYT TNG EPAPHOYIG.

Ymv evomta 1.1 mapovstalovtol TEPIANTTIKA EPEVVNTIKEG EPYACIEG CYETIKES LLE TO OVTIKEILEVO
mg owrpPneg. Ztig evomteg 1.2 - 1.4 mepypdeovtol TEPIANATIKA 1 TPOGEYYIoT TOV

avartoyOnke ko ot enektdoelg g TOSCA. Zmmv evomta 1.5 meprypdagetor n évvoln g

15

YoBapdtrog ko oty evotnto 1.6 to Pacikd mopicpato TV TEWPIUATOV TOL £YVOV CE
TPOYLOTIKY] ETEEEPYOUCTIKY] TOTOAOYIO TPOKEIUEVOD VO, AVTIIUETOTIGTOVV UETAPAAAOUEV POopTia
HE TNV OVOTPOGOPUOYN TNG TOmMoAOYiag. Xtnv evotnta 1.7 meprypdeovtor To KOplo

CLUTEPACUOTO KOl KOTAKAEIETOL 1) EAANVIKT TTEPIANYN TNG EpYaGiag.

1.1.ZyeTikn epyacia pe tn StatpLP)
H yAowcoa TOSCA [7] eivon éva mpdtumo g OASIS ko Bacileton 6TOV 0p1oUd EQUPLOYDV

VEPOULG OO LEGOL TTPOTVT®V 1| GYedlV. YTAPYouV apKeTEG VAOTOMGELS (evOoekTikd ot [2—4]),
av kot Kopio amd avtéc oev vrootnpileton emionpo. Ot AETTOPEPEIEG TOV TOPEXOVIOL GTO
o£010 TOL OMUOLPYOVVTOL HEGE OO KATO Amd TIG TOPATAVE® VAOTOMGELS Oivouy TNV TANpN
EIKOVA LLOG EPOPUOYNG, OGTAGO duoYEPAIVOLY TN KoTavonom g doung te. ['a 1o Adyo avtd
npoteivetol 1 dnuovpyia Vo povtéAwv TOSCA, evoc mepIGGOTEPO APNPTULEVOL TOV EMITPETEL
napepPacelg Pedtiotonoinong, Kot VoG TEPIGGOTEPO GLYKEKPLUEVOL — IOV TPOEPYETAL OO TO
TPMOTO Kol €ivorl og BE0M v KOSIKOTOET TEYVIKEG AETTOUEPELES Y10L TNV EQPOAPLOVY.

Kot drheg mpoceyyloels £xouv avamtuydet v tnv vrootpiEn g xpnong FaaS ot TOSCA,
omwg ot [8] war [9]. Qotdéco n dSwtpPn avt) eotdler oe emektdoeg g TOSCA mov
angvdivovial 6e 00eg eQapproyEg opilovran e amevbeiag ¥p1on TOV VTOAOYIGTIKMV VITOSOUMV
Kot Oyt oe eKelveg mov ypnoonoovv Tpodmapyovces mAaTeOppes Function-as-a-Service.
Eniong, and ™ dwrpPn mpoPAémetan n ypnon UIKTOV TOPOV - Y10 TO GLVOLOGUO QLTMOV TMOV
napayoviav dev Exel Anedel tpovolo. H CAMEL [10,11] eivon emiong pia eEghypévn yAdooo
TeEPLYPOPNS epappoymv oto cloud, motdc0 meprypdpet 11 pappoyég FaaS and m mievpd tov
KATOVOA®TY (Oxl TOL OYedOT OM®G VLTOVOEITAL TOPATAV®) KoL OEV EYEL OLGLUCTIKY
VTOGTHPIEN Y VIOAOYIGTIKY GKpov (edge computing). Eumopikég mpooceyyioelg 6mwg tng
Terraform, Tov Pulumi 1| kot o epyadeia Tov ot 8101 ot Tapoyol Tpospépovv (Amazon CDK,
Azure Resource Manager templates, Cloudformation AWS templates, Google Cloud
Deployment Manager templates) koBiotoOv TOAD GUYKEKPIUEVES TIG AEMTOUEPELES NG

TomoAoYiog TG €QOPUOYNG, dVoKOAEDOVTOG 1) TNV Yevikevon tng 11)) PeitioTonoinocn tng.

16

Emniéov, ta epyarela tTwv mapdy®v YPNOILOTOI0OVVTOL Y0 TOV OPIGUO VINPECIOV HOVO GTO
TOPOYO TOL TO TPOGPEPEL.

SOUTANPOVOVTOS TV Topomdve ekova, a&ilel va emonuoviet 0Tt ta TeEdevTaio Ypovia Exovv
avakowmbel dapopa cvotiuata FaaS ta omola vmoomnpilovv vmoroyiotikny dkpov. Ta
GLGTHLOTO OVTA TOPEXOVY TN SLVATOTNTO EMITEVENG KOADTEPOV EMOOCEMV Y10 TIG EPOUPLOYEG
mov em{nTovV YOUNAOVG YPOVOVLS OmOKPIoNG, N UEYOADTEPT WIOTIKOTNTO 1 YOUNAOTEPT
EVEPYELOKT] KATOVOAMON GE EPUPUOYEG TOV TO OTOLTOVV. AVIITPOCHOTEVTIKG GUGTILOTO TOV
eldovg etvar to Amazon GreenGrass [12] kot to Azure [oT Edge [13].

Amd Tig gpeuvNTIKEG TPOGTADEIEG TTOV £XOVV YiveL G6TO YMDPO, a&ilel va avapepBei n TpoondOela
tov van Lingen et al. [14] ot omoiot eméktewvav ™ yAwoca YANG [15] mpokeévov va
vrootpilel pktoHg KOpPoLg (Kot vo Tovg ¥pNoLonolel T060 6To GKPO TOL HIKTHOL OGO Kol
010 vépoq). H epyacia avtn emkevipaveral otig enektacelg g TOSCA 1 omoio amotelel éva
IMUoeég mpdtumo mov vrootnpiletal and opKeETd epyaieios ALTOUATOTOINGNG, EMOUEVAOS M
EMOVOYPNOILOTOINGT TOVS (1] £0T®, TOPAALAYDV TOVG) B elvar dvuvar).

270 TAQIGIO OTNG TNG £PYOCIOG TOPEXETAL £VOL GVOTNUO TOV €lval 6g BEom va dnpovpyncet
apnpnuéva poviéda TOSCA pe Baon 1ig mpodiaypapés mov 0€tel 0 OlayEPoTg NG
EQUPLLOYNG VEQOLG.

Yg 0,11 agopd TV avampocsoppoyn g epapuoyng FaaS, mopatiBevior opiopéves amd Tig
ONUOVTIKOTEPEG KATO TN KPIoT TOL YPAPOVIOS TPOGEYYIGELS G TPOG TNV OVOTPOGOPLOYY
EPAPULOYADV YEVIKOTEPA GTO VEPOS, KOOMG 0 Topéas tov epapuoydv FaaS elvar vedtepog ko
My6TEPO depeLVNUEVOG.

Ot meprocOTEPEg TPOGEYYioELS Yia TNV avanpocappoyn epappoyov Cloud Bacilovion ite otov
Eleyyo OlapEésov kavovay, gite ot Osowpio eAéyyov, gite otn PeAtioTonoinon SapUEcon NG
avalrtnong [16]. Ot tpoceyyicelg mov Pacilovtal 6Tovg Kavoveg ivor ot amAoVGTEPES Kot TTO
dontkés. H anddoon tovg e€aptdtan amd v ikavoTnTo TOL SIXEPLOTN TNG EPUPLOYNG VO
opilet T1g kaTAAANAeG peTafANTEG TPOG TOpakoAOVONGN Kol TO. GOOTA Opla Acttovpyiag. Ot
npooeyyicelg mov Pocilovior ot OBswpion edéyyov (m.y [17-19]) yapoxtnpilovtor amd v

QUESOTNTO TNG ATOKPIONG KOl TO SVVAIGHO TOVG, MGTOGO XPEELOVTOL TPOGEKTIKO GYEOCUO

17

NG OvVATPOPOOHTNONG TPOKELLEVOL TO GUGTNLLA VA GLYKALIVEL Ypryopal Kol va Unv odnyeitat og
aotdBeo. Adpopeg mpooeyyicelg €xovv emiong ovamtvuyfel Poaciopéveg ot Bewpla TtV
OIKTV®OV avapovig, Omov 10 eoptio Kot M emeepyactikny TomoAoyio povteAomoleitanl €K TV
mpotépav. XNV gpyacio [20] oyordleton 1 axopyio oLtV TOV HOVTEA®V, 010TL OTav OAAGCEL
N €QOPUOYN 1 TO VTOAOYIGTIKO POPTIO, ¥PEGLETOL VO ETOVVTOLOYIGTOVV. AAAEG TPOGEYYIoELS
coumepthappdvovy toug aryopibpovg avalntnong g PEATIoTNS AVomg, ol 0moieg akoAovBovV
HeTalD GAL®V TEXVIKEG OLVOUIKOD TPOYPOUUUOTIGHOD, YEVETIKOV OAYOPIOU®V, €VIGYVTIKNG
néonong kot (aKEPOLOV) YPOLUIKOD TPOYPAUUOTIGHOV. O ¥pOVog OGTOGO OV OTULTOVY OUTEG
Ol TEYVIKEG TPOKEYEVOD VO EKTTALOEVLTOVV, 1/KOL VO EKTEAEGTOVV £lval Y10 OPIGUEVES EPAPLOYES
un omodektos. EmmAéov, av o tpomog Asrtovpyiog tovg Oev umopel va peTOQpootel of
1GOOVVOLLOVG KOVOVES (1] VO OVIGTOWIOTEL GE XPNOUEG SOTVRIOCELS oL Ba Tov €ENyouv), N
LETAPOPA TNG YVOONG G EVa VEO, TAPEUPEPES TPOPAN LA Elvar advvarT).

1.2.H tpooéyyion ¢ StatpBn¢ ywa tThv avanpocapuoyn FaaS
EQAPLOYWV

21t owtpPn awtr| akolovBeiton pia Tpocéyyion Pacicuévn e LOVTELD, KO TTLO GUYKEKPLUEVOL
omv yYAwcca TOSCA. H yevikn gicdva g mpoc€yyiong eoivetol otny Euwdva 1:

e ey -ER

Oplopoe Twv OpLopog
EMeLEPYATTIKIV TEPLOPLOJUDY
AMATHOEWY pstofl oToXsiwY

Avthnon Mevikwv
TAnpodopLwv

;
1
1
1
1
]
Avampooappoyag

OpLopdg OpLopOS KpLTnpiwy
unodsyparwy BeAuiotonoinong
enetepyaociog avd oToleio

]
i

. . . . L, , . ! 1
\ZOAANbN G sdappoync | \,_KeBopuopog tng ebappoyrig / _Oplopée otoxwv edapioyric / :]

Ewcova 1. T'evikn) TQooéyyLor yia ToV 0QLOHO KAL avaTQOOXQUOYT] epaopoywv FaaS

To mpdto Prpa agopd ™ COAANYT TG EPAPLOYNS Kot CUUTEPIAAUPAVEL TV AVTANGT YEVIKOV
TANPOPOPIDOV TOL TNV APOPovV. Xe avtd Kabopiletor n apyrtekTovikny TS ePaprdyns Kabwg

Kol ol €l6odol Kot o1 €000t TV ototyeiwv mov Ba ypnoporomBovv ce avty|. Qg ‘ctoryeio’

18

voegitar kdBe vTOAOYIOTIKO TPOYpappe wov umopel vo ektedectel avtoteAws. Emiong,
kaBopilovion Aemtouépelec oyetikd upe tovg mepiéktec Docker (containers) mov Oa
xpNooToBovv yia kdbe oToryeio TG EPAPLOYNC.

210 dgutepo Pruo kabopilovior ot emeepyOaoTIKEG AMOUTACELS TNG EQOPUOYNG KOl TO
vrodeiypato enefepyasiog mov mPOKeETor v ypnowomoinfodv oe oavty. Metald Tov
amoToe®V cuumePLaUPavovTol Kot ot EmBuUNTOl EMEEEPYACTES, 1] OTOUTOVUEVT] LVIUT], KOL O
aplBpdc TV otypotumev Tov otoyeiov. Ta vrodelypata emeEepyaciag pmopel va eivon
Eexyoplotd yio KaOe otoyeio kot emdéyovror peta&y FaaS 1 none — otn devtepn mepintmon
vroBétovpe 6T 0 aplBUOg TV cTotyeimv mposdiopiletor Katnyopnuatikd oty TOSCA kot dgv
aAralet. O tpomog e Tov 0moio divoviol Ot amoUTHGELS AVTEG GTO TPATLTO AOYIGHIKO OV £)EL
avantuydel Tpokeévov va vrootnpiet ta Prpata g TPOcEyyons HExPL T onovpyio g
I'evikng TOSCA, elvan gite pe 1 xpnon emonuavoewv o€ Java (annotations) gite pe m xpnon
evog mpotvmov UL

>10 1pito Puo kabopilovror ot mePlOPIGHOL KAl O 6TOYOL TOL aPopovV kabe cToLyEio NG
epapuoyns. Ot otdéyor avtol umopobv va mpocdoopilovy amothoElg cvvOTApPENG,
OTTOLLAKPLVONG, YPOVIKNG TPOTEPOUOTNTOAGS, GAAL KOl TO GYETIKO PAPOG TOL KAAOVLVTOL VO £XOVV
T0 KOGTOG, 1 ATOGTACT| OO TOVG YPNOTEG KL Ol TPOCMTIKES TPOTLUNGELS.

Me Baon 6ca mpodioypaenkay ota tpia mpdta Prpata, pio yevvnrpla I'evikng TOSCA (m.y,
[21]) Ba mpémer vo Oomuovpyel p yevikny mpodwypapr] TOSCA. Zmn ocvvéyewn, agov
eneEepyaotel ™ mpodwaypapr avtn €vog Peitictomomtng Ba pmopel vo mapayBel n Ewdum
TOSCA n omoia Oa copmepthapfavel emTAEOV AETTOUEPELES YO TN TPOYUOTIKY] EYKATACTOON
™G EQPOPUOYNG — KAT ELAYLOTO TOLG YPNOUOTOIOVUEVOVG TTAPAYOLS VINPESIAV, TN Tomofeciao
(po TOL JKTVOL 1 VEPOG) TNV LIOAOYIGTIKN (®V”N (Tov KABe TapOYOV) Kol TO €100C TMOV
EIKOVIKOV TOp®V Tov tpokettal va ypnoipomombodv. H Ewiwkry TOSCA 1 mwinpoeopieg mov
Bpiokovial 6e aVTAV ¥PNOYOTOOVVIOL OG €G0S0 OO TOV OVOUTPOGAPLOYEN TPOKELLEVOL VO,

napdel TAnpoopia pe TV omoia va dnpovpyeital 1o véo povtédo ['evikng TOSCA.

19

1.3.Emtextdosig ot TOSCA yux tTnv vtootnpién FaaS epappoywv
[Tpoxeévoo va 600etl n duvatdoTTa TG TEptypapng pktov (FaaS) epappoyov ot TOSCA,

xpeBLeTon apevog va TEPLYPUPEL 0 TPOTOG e TOV 0moio Ba YiveTon 0 JLY®PIGUOS TV TOP®V
0TO0 (KPO TOL OIKTVLOV KOl O6TO VEQOC (OAAG TowtOypova Bo givor duvatd va yivetal m
OVOTTPOGAPLLOYN TOVS G EVO GTOLXELO TNG EPAPLOYNC) KO APETEPOL VO TEPLYPOAPEL O TPOTOG [LE
TOV 0moio o avamopioTOTOL 1| OPYLITEKTOVIKY] U0G EQAPUOYNS oV O ypnolonolel ototyeio
FaaS.

Q¢ mpog T TPMOTN avAyK, LVITOSTNPILETOL KOTAPYNV 1] AVAYKT) VO ATOGLVOEETAL 1] TPOSLY PPN
TOV EKACTOTE GTOLEIOV TNG EQOUPUOYNG amd TV eneEepyactikn TonoAoyio. ['a to Adyo awtd
dwpovpe g dopég g TOSCA mov agopodv 1 mpodwaypapr TV ctoyeiov oe KOUPovg
eneEepyaociag (processing nodes), woOpPovg ortoyeimv(fragment nodes) wor kOpPovg
avtiotoiynong (mapping/deployment nodes). ‘Eva mapddetypa cuoy€Tions avt®dv tov KOUPmv

dtvetan otV Ewoéva 2.

imu_fragments_FaceDetector
+ype: prestocloud.nodes fragment.faas
properties
+id
+name
+ OCCUrrences
+ docker_edge
+ docker_cloud

+ optimization_variables
deployment_node_imu_fragments_FaceDetector +health check

is executed on

processing host type fragment type
1 1

+type: processing_node_imu_fragments_FaceDetector requirements
+ execute: deployment_node_imu_fragments_FaceDetector
+ proxy: deployment_node_LambdaProxy

processing_node_imu_fragments_FaceDetector_4
+derived_from: prestocloud.nodes.agent.faas

requirements
+ host (cloud VM requirements)
+ host (edge VM requirements)

Eucova 2. H oxéon petald koppwv otorxelwv (kitoLvo) e KOppous emeEegyaoiag (UmAE) Ko KOLBOUG

avtioTolxtong (&omo)

Or koppot otoyeiwv mepthapfavouy OAeC TIC AERTOUEPELES OV YPEALOVTOL YK TN GOOTY|
ektédeon evog ototyeiov. Ot kopPot emeEepyaciog divouv Tig TEXVIKEG TPOIAYPOUPES TTOV TPEMEL
VO 1IKOVOTOOUV ot TOpol (EKOVIKEG PNYOVEG OTO TOPASEYH) 7OV TPOKELTAL VoL
xpnoonomBodv gite 610 vEQog gite 6to dKpo TOL dtkTvoL. TEAOC, ot KOUPol avticToiyoNg

oLVOEOLV TOVG KOUPOoVG emeEepyaciag e Toug KOLPBoVg oTotyeimv.

20

> mepintoon Tov KOUPoV otoryeimy, 1 TAEIOVOTNTO TOV TESI®V TOL E1GAYOVTAL APOPOVV TN
wopoyn Aemtopepeldv yu to meplEktn Docker tov exdotote otoygiov. Kabmg pmopovv va
xpnopomomBovy dtopopetikés eikdveg Docker yio v ektédecn oe d10popETIKEG TOTODETIES,
OTMG EMIONC VO OPIGTOVV KOl OLOPOPETIKEG PeTAPANTEG TEPPAAAOVTOG, TapEyeTal 1 dSuvoTdTTA
o€ OO0V HOVTEAOTOlEL TO GUGTNUO VO TPOCAPUOCEL TN CUUTEPLPOPE TOV OVOAOYO LLE TOVG
nopovg kol TG duvatdtteg enefepyaciog mov avtol Exovv. Axourn, ot koéppor croryeimv
TEPEYOVV TIC TTPOSLIYPaPEG Yo T PertioTomoinon ot omoieg ypeldleTor va OTAGOVV GTO
BeAtiocTomom.

21 mepintoon tov KOpPov enegepyacioc, TapéyeTat n SLVATOTNTA VO OPIGTOVV SLOPOPETIKES
TPOJYPUPES Y10 TV EKTEAEST TNG EPAPLLOYNG GTO VEPOS, KL SLOPOPETIKES TPOIAYPOUPES V1oL
TNV EKTEAEGTN OTO AKPO TOL dkTVOV. Me aVTO TO TPOTO pPmopel va emtevyBel 6e oplopévec
TEPMTMOGEIS — Y10 TAPASELYHO OOV vIhpyeL N duvatdTnTo TapoarinAiog — po eElcoppomnon
TOV TOPOV TPOKEIUEVOL VO, VITAPYEL TOPOUOLN 0TdO0CT) GTO VEPOS Kol GTO (KPO TOV SIKTVLOV.
210 mopddetypo TG mapoAAnAiog mov d60NnKE TPONYOLUEVMS, OV L0 GUGKEVT GTO GKPO TOV
OKTOOL €Yl €va ao0eVESTEPO VITOAOYIOTIKG EMEEEPYOOTN OO IO EUKOVIKT UNXOVT], LTOPOVV
va amatn0ovv TEPIGGOTEPOL TUPTVEG OTAV 1) EKTEAECT] YIVETAL GTO GKPO TOL OIKTVLOV.
Avopopwkd pe To 0g0TEPO €PAOTNUA TOV TEONKE OTNV €160y®Y aVTOD TOVL KEPAAAIOV,
ypewletar va dobel o Tpdmog opiopov Tev epappoydv FaaS. Kabe spappoyn FaaS Bsmpodpe
ot amotereiton amd éva M meplocdTepa ototyeio FaaS, 1o kabéva ek twv omoimv €xel to 61kd
TOV oVTOVOUO TPOTo Agttovpyias. H mpdcPaon oe kdmolo otoryeio FaaS Bewpovpe o1t yivetan
péoa amd T ypNomn €vOG TUNUOTOG AOYIGHIKOL ©T0 omoio avagepdpoacte g Lambda-
ninpeCovoro (Lambda proxy) — and 1o dvoua tng vanpesiog FaaS tng Amazon kot tnv évvola
TOV TTANPEEOVGION GTOV TPOYUOTIKO KOGUO O 0oi0g avalapuPavel va dlekmepatmvel VTOOEGELS
0TO OVOLLO KOO0V TPITOVL.

H ovoyétion tov Lambda mAnpeEovoiov pe Kamowo ototyelo g epapproyng omekoviletol otnv

Ewova 3:

21

LambdaProxy

@fragment_name

+type: prestocloud.nodes.fragment

+type: prestocloud.nodes.fragment.faas

properties

+id

+ name

+ occurrences

+ docker_edge

+ docker_cloud

+ optimization_variables

+ health_check

requirements

+ execute: deployment_node_lLambdaProxy

properties

+id

+ name

+ occurrences

+ docker_edge

+ docker_cloud

+ optimization_variables

+ health_check

requirements

+ execute: deployment_node_@fragment_name
+ proxy: deployment_node_L ambdaProxy

1

fragment type is proxied by

1 1
FaaS fragment type |fragment type

is executed on

1

processing host type |Lambda Proxy type
1

deployment_node_LambdaProxy

+type: processing_node_LambdaProxy 0

prooessing_node_'LambdaProxy_o

+derived_from: prestocloud.nodes.proxy.faas

requirements
+ host (cloud VM requirements)

is executed on

processing host type
1

deployment_node_@fragment_name
+type: processing node @fragment_name

|

processing_node@fragment_name
+derived_from: prestocloud.nodes.agent.faas

requirements
+ host (cloud VM requirements)
+ host (edge VM requirements)

Ewcova 3. OLoxéoeic petalv ototyeiov FaaS kat Lambda-niAnge£ovoiov (Lambda proxy)

Onwg eaiveton ot mopandve ewova, €va ototyeio FaaS (tpla de€1d kovtid) cvoyetiletan pe
v amaitmon proxy pe tov Lambda-mAnpegodold tov. Avtd cvpPaiver pe tn dMimon g
amoitnong (requirement) proxy oto kOuPo otoreiov, mov 10 ocvoyetiler pe To KOUPO

avtiotoiyiong tov Lambda-minpegovaiov.

1.4.Entektdosig ot TOSCA yua) BeAtiotomnoinon FaaS epappoywv

‘Hon n vewotdpevn mpodwaypaen g yAdoococ TOSCA [7] emtpémer tov opiopod
petadedopévov oto oapyeio TOSCA. Ilpoteivetonw Aowrdv m eméktoon ovtig S Mon
VILAPYOVCAS SVVATOTNTAG TPOKEWEVOL Vo dtvetar M dvvatotnta vo Kabopilovior yeViKE
TPOJIYPAPES YLoL OAT TNV €QPAPUOYN — TIG PAGIKEG TPOTIUNGELS TNG EQPAPLOYNG (T} TEPLOPIOUOS
KOGTOVG), TOVS TAPOYOVG OV TPEMEL VO, YPNGLOTONO0VV 1 TPENEL VO ATOKAEIGTOVV KOl TOVG
OLKOVOULIKOVG TEPLOPICHOVG oL ypetdletar va. tnpnbovv. Ot yevikoi avtoi meplopiopol Oa
UTOPOLY Vo XPNOLUOTOMmBoUV amd 10 PBEATIGTOTOMT TPOKEWEVOD VO OTOPAGIGEL Y10, TOVG

TOPOLG KOl TNV EVOESELYUEVT] TOTOOEGTN EKTEAEGTC T®V GTOXEIWV.

22

[MapdAAnio pe TOVG YEVIKOLG TEPLOPICUOVS, GULOTHVETOL KOL O TPOCOIOPIOUOS EOIKDV
mePLOPIoU®V Yo kiBe ototyeio. Ot meplopiopol avtoi pmopodv va apopohv AmoLTHOELS Yo TV
ocuvomapEn otov 1010 TaPoYo (TOLAKYIGTOV) 0VO GTOLXEIMYV, OTOITAGELS YO TNV OTOUAKPLVOT)
HETOED TOVG (TOVAQYIoTOV) 0VO OTOYEI®Y Kol TNV EKTEAESN TOVG G GAAOVEC TOPOYOVS, KOl
ATOLTACELS XPOVIKNG TpotepatdtTnTog (mov OB puBuilovv ™ oepd évavong Tov oTotyeimv).
Emiong, umopodv vo optotodv Kot amontnoelg eEoipeons CLYKEKPIUEVOY GLOKELV®V (1] TOPOYV,
YEVIKOTEPQ) OO TNV EKTEAEGT, AOY® TNG TAAALOTEPTG LT IKOVOTOMTIKNG TOVS 0mdS00TG.
Emumiéov, 10 kaBe otoyeio umopei va opiler ko Papn otig €0kég TPOTUNGES Tov O
emnpealovv 1 TtomoBENon TOL - 610 KOGTOG, OTNV AmOCTOCT (T®V OVIOTHT®MV MOV
aAANAETOpoVV U éva otolyeio, amd To otoryeio avtd) KoL OTIC AveEAPTNTES TPOTIUNGELS (TTOV
UTOPOLV Vo EKPPAlovv TN TPOTiUMoN VoG TapdYOL VEPOLS EvavTl GAA®VY Y10, OTOLOVONTOTE
AOyo — my emewdn| Ppioketor kovtd otn mapoywyn tov dedopévov). Ta kpurinpla avtd eivar
EVOEIKTIKA, KOl LITOPovV Vo Tpoctedov Kot GALN 1) VO OVTIKOTOGTAO0VV.

O PeAtiotomomtg B pmopel vo Aappdver dha avtd o, Kprtipla vVIOYY Tov (geapudlovtag
TPMTO. TOVG TEPLOPICHOVG KO GTI GUVEYEWD ETIAEYOVTOG VO OMIOVPYNOEL L0 VITEPEXOVOH —

Evavtl TV AV Tlavav, BAcEL TOV EWOIKOV TPOTIUNGE®Y — TOTOAOYI).

1.5.EAactikOTNTA EQappoywv FaaS xpnoyLomolwvtag tThv £€vvola g
TopapotnTag

Onoc avaeépbnke mopamdved, 0 OvVOTPOCOHPUOYENS £ivarl €va ovOTOCTOGTO TUNUHO TNG
TPOGEYYIoNG Hog KaBMG mapdyel Tov apldud EKOVIKOV UNYOVOV 1 TEPIEKTOV TTOV TPEMEL VA
nwpootefoiv 1 va apapeBodv yia kKabe otoryeio v v avaveouévn IN'eviky TOSCA. T va to
netvyel oavtd Paciletoar ot ypnom koavoévev giactikdmrag. Opilovpe TOLG KOVOVES
EAACTIKOTNTOG MG 00MYiEg TOL APEVOS OElYVOLV T EMTPENTA OPLOL KOVOVIKNG AELTOVPYiOG Yo
Lo €QOPUOYN, KOl OQETEPOL TEPIEXOVV TNV €VEPYELD OPLLOVTING EAOCTIKOTNTOG TOV &ivat
avaykaio Yo va KoAveOovv ot avaykeg TG EQpOPLOYNG, TPOGHETOVTAG 1) APALPOVTAG TOPOVG.

e avtifeon pe) ocvvnbéotepn OU®G ¥PNON TOV KOVOVOV EANCTIKOTNTOC, TPOTEIVOLUE TOV
amAd OploUO TOV Opiwv Aertovpylag Kot TV ovTOpHOT omd@oon Yo to péyehog ng

avampocappoyns (m omoio cvviotatal ot TPOGONKN 1N TNV OQOIPEST EMEEEPYOOTIKDOV

23

kOuPBov). H andeaon avt Aappavetor pe Bdon m ‘Zofapdtnta’ U0G KATAGTAUONG EKTOG TMV

opimv Aertovpyiag. Opilovpe T ZoPapdtnTa 6TNV Eicwon 1.

n
Sopapdtnta(V rapapiacnc) = 2 w; - (Kavovikomomuévo (v;))?
i=1

Eéiowon 1. Oplopdc g LoPagotntag
2 mopandve e&icmon vi elval ot TYES TOV EMUEPOVS LETPIKAOV (Kotavdimong CPU, pviung
KAT.) Tov drovocpartog Twdv V mov mapafidlel v emiBount) modmrto vInpeciog, Vo wi
etvat ta Bépn mov BEhovpe vo amoddGoLLE 68 KAOE PLETPIKN.
Opilovpe TIC KOVOVIKOTOUNUEVES TIWEG TOV Vi UE TIC TOPOKAT® €EI0MGELS (Yo KAVOVES

HEYOAVTEPOV-ATTO KO LUKPOTEPOV-OTTO ALVTIGTOLYOL)

amolvtn_tym(v; — t;)

K vo(v;) =
avovicomouuévo (v:) amoAvty_tym(péyroto(uetpikni;) — t;)

Eiowon 2. Kavovikomompévn tiun ot mepintwon kavova ‘peyaAvtegov-amnd’

amodvtn_tym(v; — t;)

K tvo(v;) =
avovikomourp£vo (v;) amdAvty_tym(t; — eAayloto(UeTpikn);))

Eiowon 3. Kavovikomompévrn Tiun ot mepimtwon Kavova ‘pkQdtegov-amd’

21 mepInT®OT YPNONG LETPIKAV TOV OEV EXOVV EYYEVMOG TEPLOPIGUO OTIS TIHEG KATOL0V (1 Ko
TOV 0V0) AKPAOV AEITOVPYING — OTTWG YL TAPASELYLO O YPOVOG ATOKPIONG OEV EYEL Aved OpdrypLo
— mpoteivetal gite n ypnom Tov 90 gkaTosTHOpioL TOV TW®V, EITE M ¥PNON TOL TOHTOL TOL
Chebyshev ywo to mpocdopiopd tov THdV Tov PBpickovion péca oe Eva emBountd mocooTto,
elte 0 amevbeing TPOoIOPIGUOG oG TIUNG KAT® 1 dve TG omoiag OAeg ot TiHég BewpovvTat
‘eMdioteg’ M ‘UéyloTeg’, avTicToLya.

Me Bdaon ™ Twn g ocofapdtntag, HmopohV vo dNUovpynBodv Sldpopeg TEXVIKES
AVOTPOGOPLOYNG Ot omoieg Oa mpocsBétouv €va otabepd N petafintd mAnbog mopwv. Mio amd
TIG TEXVIKEG TTOV TETLYOV TOL KAADTEPO, ATMOTEAECUOTO OT TELPOLOTIKN TOLG ETOANBELOT ivon 1)
AIIZ (amhf - pe meproyés coPfapodtntag) N omoia y®Pilel TO SAVLGUATIKO YMDPO GTOV OTOi0

evtaccoovtal ol mOavEG TYES GE €va TPOCAPUOGIHO aplBpd TEPOYDV. XTN TEPITTOGY TOVL

24

Kavovo «Av 1 katavoroon CPU>70% kot n katavdiwon pviung >70% t0te mpocheoe

ene&epyaoTiKoHS TOPOVS», YPNOILOTOIOVVTOL Ol TEPLOYES TOV PAIVOVTAL GTNV Ewdva 4.

Ewcova 4. [Tegoxéc LoPagdtntas (e TOELS TTEQLOXES Kot DVO UETOLKEG)

> pébodo avamposapuoyng AIIE 6oeg kataotdoelg Ppiokovral eviog e Covng 1 odnyodv
ot mpooOnkm 1 agaipeorn evog emeEepyactikod KOUPov, 6cec Ppiokovrar otn Lovn 2 Vo
KOupov ko 6cec PBpiokovrar ot {dvn 3 tprdv kopPov. H avristoyio {ovng pe apBuod
KOuPwv etvar Tpocappociun av avtd eivar embounto.

210 mloiclo G mEWPAUATIKNG emaAnBevong e ZoPapdtnTag, cuykpidnke 1 amdO0oN NG
TEYVIKNG OLTNAG HE OVO GAAOVG €VPEMG YVOOTOVS oAyopiBuovg, T HeTOPOAY| TV
enelepyaoTik@v KOUPwv pe mpoohnkn 1N aeaipeon evog otabepov apBuov (uébodsog MK - 4
kOouPotr mpootifevrav/agaipovviav) Kot TN HETABOA TV eNeEePYAoTIKOV KOUP®V pHE TN

TeYviKn p€yotg petpikng (MM), eumvevopévn and tov aiyopiud HPA tov Kubernetes. O

véog apBpdg kKopuPwv divetal otnv Efiowon 4.

UEYLOTN _UETPLKN
OpLO_UEYLOTIG_UETPLKNG

NéoKoufor = TpéyovregcKoufot -

E&iowon 4. Néoc agtOpdc kOpPwv oVp@wva pe T TeXVIkT) MéyLotng HeTouxr)g

25

H péyiot petpikn opiletor g n LETPIKN €Kkelvn OV amOKAIVEL TEPIOCOTEPO OO OAEC OO TO
Oplo Aettovpyiog TG, Kol To OPLo HEYIGTNG HETPIKNG EIVOL TO OPLO AEITOVPYING TOL EXEL OPIOTEL
Y10l VT TN UETPIKT).
1.6.EKTiunon TEXVIK®WV QVATIPOGAPLOYTIG O GUVONKEC TPAYUATIKOV
@opTtiov

Mo v ektipmon 1OV TEYVIKOV OVOTPOCOPUOYAS O OLVONKEG TPAYUATIKOD (QOPTIOV
onuovpyndnke eykataotaon g tAateopuog Faas OpenFaas e Kubernetes, oe vtoloylotikn
vrodoun amd 3 EKOVIKEG UNYOVEG LOIPAGUEVOL EMEEEPYACTN YOUUNADV Tpodiaypapdv (1vepu,
1GB ram), 1 ewcovikn unyavy] Lopacévov eneEepyactn YnA®v tpodiaypoe®v (4vepu, 8GB
RAM) — avtéc ot 4 ewovikég pnyovég tomoBetOnkav oto onuodcsto cloud DigitalOcean
DOpaykpodpne — kot 1 gikovikn unyovn pécmv tpodtaypoaedv (1vepu, 4GB RAM). e avtoig
TOVG TOPOLS OMNUIOVPYOHVTAV TEPLEKTEG He Opto ypnong 0.2vepu ko 120Mib RAM, mov o
KkaBévag Pacikd exktehovoe KAGEIS TPOG UL GLUVAPTNOT VTOAOYIGHOD TPAOTOV aplOpdv (1
omoia mapdAinia déopeve Kot pvnun). Otr KANGELS TPOG TOVG TEPIEKTES YIvOVTaV [LE YPTON TOL
Aoywopkov Locust, eved ypnoyomomnkav €51 koumdreg eoptiov. [a v dnpovpyio ko
OTOOECLEVOT] TOV TEPLEKTOV Ypnoomomdnkav 000 Kavoveg Agttovpyiog - 0 TPATOC
npoéPiene ™ ypnom péxpt 10% tov emelepyaoct (amd 10 20% mov Nrov dwbécyo oe KO
meptektn) kot pEypt 10 otquoto To OELTEPOAENTO, KOl O OEVTEPOG TMPOEPAETE TN YpNom
TOVAGOTOV 5% TOVL EMEEEPYOOTN KOl TOLAAYIGTOV €VOG OUTHUATOG TO OELTEPOLEMTO. XM
nepintwon wov wapofraldTav 0 TPMTOG KOVOVOS 1| TOTOAOYIO ETEKTEVOTOV LE TN ONpovpyia
VE®V TEPLEKTAV, EVAD OTN TEPIMT®ON 7ov TapoPlalotay o deVTEPOG KOVOVOS 1) TOTOAOYid
GLGTEALITAV LIE TN KATAPYNOT TEPLEKTMV.

Kotd) mepapatikny a&oloynon eéetdomray n AIIE (SSZ), n MM (MACL) kot 1 MK (ST).
Mo v a&oroynon tov pebddwv ypnoomotdnke cuvaptnon ypnotndTTog, n onoio opiletal
pe Béomn to aBpoicua ToV APl TOV ETTVYNUEVOV AUTHUATOV, TOV ATOTUYNUEVOV UTHUATOV,
T0 PEGO YPOVO ATOKPIGNG TOL GLGTNUATOC, TOV APOUd TOV EMTALOV TEPIEKTO-OEVTEPOAET TV,

TO GUVOAIKO aplOUd TEPIEKTO-O0EVTEPOLENTMY KOl TO GLVOMKO aplBud avampocapuoydv. H

26

GLVAPTNOT YPNOLOTNTAG EO0VE KATA TPMTO AOYO PApog oV amddoon Kot Katd 0evHTEPO AOYO
TNV YOUNAN XPTION TEPIEKTMV.

Onwg eaivetor amd 1N teAevtaio otHAN otovg mivakeg Table 19 - Table 34, n teyvikn AIIX
(SSZ otovg mivakeg) mopdyet v Yével amoteAéouaTo TOL 0ol elval KOADTEPO OO TIG GAAES
neBddovg Tov eEeTdoTnKOV.

Yuvolkd n teyxvikn AIIX emtpémetl yioo TV €MAEYHEV] GUVAPTNON YPNOWOTNTOS KOAVTEPT
amOd00. LTI TEPUTTACELS OV OV £XEL TN KOAVTEPT] Amdd00T), AT unopel va Pertiondel gite
pe v aAdayn tov ypovikob opilovta tov omoio ypnotpomotet n péBodog, eite pe v odiayn
TV opiov yprons. Ovcuuotikn PBeltioon g pebodov AIIE mapoatmpnOnke 611 umopeil va
emtevyBel pe v mpooapuroy tov PBapdv e Zvykekpipéva, BEToVTag GTov OpcHd NG
YoBapomtag Papoc ico pe 1 oto kpurpo TV atnudtov avd dgvteporento kot 0 ot
KATOVAA®ON TOV €meepyaoTn Kol TNG UVAUNG, EMTVYXAVETOL onUovTIKh PBeAtioon kot oTig

eMOO0eElg yopic va emPapvvetal dSLGAVALOYO 1) KATAVAA®MGY COUE®VO PE TNV emAeybeica

GLVAPTNOT XPNCOTNTOC.

1.7.Zvunepaopata

XTI TPONYOVUEVEG EVOTNTEG TAPOLCLAGTNKE TEPIANTTIKG 1 TPOTEWOUEVT] TPOCEYYIOT Y1 TN
TEPLYPOPN KOL TNV AVATPOCUPLOYN ENEEEPYAOTIKOV TomoAoyiwv FaaS pe t ypnon poviélov.
H ypnon g yAwccag TOSCA emttpénel o1 mpocéyyion mov avartoydnke va a&lomolel v
EPEVVNTIKY] EPYOCIO TOV TPUYHATOMOIEITOL GTN 7O ONUOPIAEG TPOTLTO YO TN TEPLYPAPN
epappoydv Cloud. Qotdc0, 1 Tpocéyyion dev meplopileTar ot TEPLYPAPN HOVO TOPOV GTO
Cloud, aAAd mpoteivel mapdAAnio Kot T TEPLYPOUPT] GUCKELAOV GTO GKPO TOL OIKTHOV, KOt TN
TEPLYPOPY| TOV TOPAUETP®V PEATICTONOINGONG TOV AVTIGTOLYOVV ot KAOe gpapuoyn. Emmieodv,
napovotaletar Kot 1 évvold NG ZoPopdtnrTag, MOL EMEKTEIVEL TOLG OmMAOVG KOVOVEG
TPOKEUEVOD VO AapPaveTol vTOYIY 1 TANPOPOPIN OO TIG SIAPOPES UETPIKES OLVOTPOGAPLOYNG

ov mepapPdvovtal oe éva kovova. Teyvikéc mov Bacilovror ot coPfapdtnta O6mwe n AlIX

27

BeATIOVOLV TNV GLVAPTNON XPNCILATNTOC TOV YPNCLOTOMONKE KOl LITOPOVV Vo EM®PEANH0VV
KOl om0 TPOKTIKEG UNYOVIKNG nabnong. Me 1nv vAomoinon mpoOTLI®V GLGTNUATOV (TNG
yvevnplog evikng TOSCA ko tov Avompocoppoyén) OAAG Kol Tn Tpodloypoen TmV

AELITOLPYIOV TOV GAL®Y GLGTNUATOV, KATASEIKVOETAL O PEAAICUOG TG TPOCEYYIOTG.

28

2. Introduction

Cloud computing has become a widely valued commodity with constantly increasing popularity
among large and small to mid-sized enterprises (SMEs), as well as public organizations.
According to the report by Gartner, it is estimated that the value of public cloud spending will
increase about 22%, surpassing $480 billion in 2022 [22]. Furthermore, the infrastructure-as-a-
service segment of cloud computing is forecasted to experience the highest growth.

As more applications make use of the cloud and more cloud providers appear, “vendor lock-in”
becomes an increasingly important issue. The lack of common standards and the heterogeneity
of cloud provider solutions put at risk the portability of data and applications, as moving to a
technology supported by a different provider may be associated with high costs [23]. The need
for a common and interoperable standard is further augmented due to the appearance of new
trends and paradigms, such as Functions-as-a-Service (FaaS). The Functions-as-a-Service (or
“serverless”) paradigm involves the use of computing resources in a fine-grained manner, while
also reducing the maintenance overhead which is typically associated with cloud applications.
A serverless computing platform is defined in [24] as “a platform that hides server usage from
developers and runs code on-demand, automatically scaled and billed only for the time the code
is running”. Serverless computing has given rise to numerous function-as-a-service (FaaS)
platforms, some of which have been successfully coupled with deployments on edge resources,
e.g., OpenWhisk [25] and OpenWhisk Lean [26]. To correctly fulfill the promises which it
brings however, serverless requires proper modelling and deployment capabilities.

Based on the review by Bergmayr et al. [1], one of the most prominent modelling languages for
handling principally cloud deployments is TOSCA (Topology and Orchestration Specification
for Cloud Applications) [7], which is an Organization for the Advancement of Structured
Information Standards (OASIS) standard that sets the tone for all other cloud modelling
languages that try to be compatible with it. There are numerous [2—4] implementations based on

this standard that have been regularly maintained.

29

https://www.oasis-open.org/committees/tosca/
https://www.oasis-open.org/committees/tosca/

Notwithstanding the efforts towards its adoption, TOSCA orchestration is impeded by several
limitations preventing its direct usage within a hybrid cloud and edge environment. Firstly,
TOSCA lacks a native mechanism to track run time deployments and factor-in any
reconfiguration decisions [5]. For example, TOSCA’s most prominent implementations
Alien4Cloud [2], Cloudify [3], and OpenTOSCA [4] focus on the design of the application
topology—the modification of the initial template requires the manual intervention of
Development and Operations (DevOps) or else risks a discrepancy between the model and the
real deployment. Especially due to this first issue, the adoption of TOSCA to address the needs
of cloud application deployments in production has been met by solutions such as HashiCorp’s
Terraform' and Red Hat’s Ansible’. Secondly, a TOSCA template created based on the
approaches in [2-4] is required to explicitly define the properties of the application and
configure the usage of different cloud providers, along with the characteristics of the VMs that
are needed. The need to specify this information limits the dynamicity in deployments using
these platforms, which is a prerequisite in edge and fog environments. Finally, even when the
application is manually reconfigured, optimization cannot be supported [1]. Thus, it becomes
difficult to maintain a model of a real-world application featuring a dynamic topology, which
may not scale predictably. These last two issues are also evident in the Terraform and Ansible
solutions. These open-source platforms use declarative and pre-defined run time configuration
languages to state the desired final state of the cloud application deployment. As a consequence,
this channels the responsibilities of DevOps engineers towards maintaining a cloud application
topology that must address contradicting requirements, such as low cost and high quality of
service. Therefore, such solutions may be popular at the moment since they provide a
straightforward way of deploying applications in several cloud vendors, however they still lack
real and automatic cross-cloud optimization capabilities. Additionally, their ability to cope with
new paradigms, such as edge computing and other distributed execution approaches, may rely

on tedious procedures that will result in bespoke solutions that may endanger their portability.

! https://www.terraform.io

2 https://www.ansible.com

30

Especially when considering the available TOSCA specification [7], it is known that it is very
extensible but also quite generic and lacking explicit modelling artefacts for fog applications or
serverless approaches. Thus, any custom solutions that are developed pose a barrier to wider
adoption of a reference TOSCA-based methodology to handle basic concepts in these fields.The
existence of a reference TOSCA-based methodology on the other hand, can not only contribute
towards provider-agnostic orchestration, but also fill gaps in the management of application
assets in FaaS environments.

Closely related — and an indicative measure of its importance — to service modelling, is the
problem of optimal service elasticity. Service elasticity harnesses the capability of an
application to use multiple instances to respond to increasing traffic. The cloud, modelled as an
infinite source of resources, is the ideal grounding to build service elasticity on. The optimal
balance between low cost and high performance shapes the optimal elasticity problem. A wide
range of methods — from simple rules to machine learning and control theory — have been
developed, aiming to provide timely application adaptations at low cost. The prominence of
software architecture paradigms which emphasize on scalability and adaptivity, culminating to
the Functions as a Service (FaaS) paradigm coupled by the surge in popularity of cloud
applications, have created a pressing need to properly cope with workload fluctuations and
efficiently handle workload fluctuations.

The mechanisms supporting cloud elasticity which are available today, can be broadly divided
in three categories: i) manual decision making; ii) automatic adaptations; and 1iii) hybrid
solutions. To the best of the author’s knowledge, most of the developed mechanisms either
require some input from the DevOps in the form of event-condition-action rules — and do little
more than applying them — or rely on complex solutions inspired from the fields of control-
theory, queuing-theory and machine-learning [27]. The knowledge acquired from machine-
learning — based algorithms is not easily transferable to other domains (the transfer learning
problem [28]) and they inherently lack transparency in the way the decision-making takes place,
a fact that may hinder their adoption in production systems at this stage. Mechanisms requiring

manual input are the most popular solution among the available providers. While simplistic in

31

some cases, this last category of systems guarantees a stable and predictable adaptation action in
highly dynamic environments.

Based on the experience accumulated from work for the PrEstoCloud framework [6], it is
argued that in such dynamic environments there is an urgent need to shift some of the core
responsibilities of DevOps to an appropriate middleware. This middleware shall automatically
support the separation of resources between the design time and run time and will provide
appropriate error-free maintenance of dynamic topologies. Therefore, the DevOps should be
able to model the deployment requirements as generically as possible, without having to make
concrete decisions on the initial deployment, optimization, and reconfiguration of cross-clouds
and fog computing applications. This is needed in modern organizations that need to make sure
they optimally use their resources. To achieve this, first elaborated extensions to TOSCA —
which is the current cloud modelling standard — are provided, and secondly a theoretical
description of a middleware that can exploit the extended TOSCA is presented. The focus of
this work is on ‘custom’ FaaS applications — cloud applications which do not use commercial
FaaS services but rather implement all relevant functionality (albeit possibly using existing
software primitives - e.g a load-balancer). This allows the definition of custom scaling policies,
and the creation of optimizers which can determine the appropriate placement of application
components. It has been decided to propose extensions to TOSCA, since they can be made a
part of this standard, which then can be used to extend in a bespoke manner any other solution
that is used now or in the future for cloud applications in production (e.g., Terraform, Ansible).
Additionally, continuous cloud modelling support (through the use of standards and TOSCA
specifically) has been argued before [1] as desirable for aligning existing and potential cloud
modelling languages, and therefore achieving interoperability.

Complementing the modelling effort, in this work ‘Severity’ is presented, a novel algorithmic
approach aiding the adaptation of cloud applications. Based on the input of the DevOps,
situations are detected, Severity is calculated and adaptations are proposed, leading to better
application performance for a range of workloads. The theoretical definition of Severity is

complemented by a prototype software system, which uses it to characterize the current load

32

and produce the necessary adaptation actions. Unlike other similar approaches, the triggering of
adaptation actions, as well as the adaptation actions themselves are provided in an easily
understandable form and it is possible to log precisely the cause and the effect of each
adaptation recommendation of the application. This part of the work focuses on the usage of
horizontal scaling adaptation.

As such this work intends to answer the following research questions:

o What semantic enhancements should be made to TOSCA to describe and enact FaaS

deployments, which can make use of cloud and edge resources?

o How can optimization aspects regarding the deployment be included in the modelling
artefacts?
o How does the suggested elasticity methodology compare to other methodologies

enabling application elasticity?
o How does Severity compare to well-known elasticity approaches in commercial
products, in terms of satisfaction of QoS attributes?
To address the above research questions, a modelling approach for the definition of applications
using TOSCA is firstly proposed. It is argued that TOSCA should support generic use-case
patterns and deployments using serverless and other distributed execution paradigms by
providing a set of relevant generic constructs. To this end, a series of custom approaches is
proposed, addressing deployments in hybrid clouds (i.e., combined use of private and public
cloud resources), multi-clouds (i.e., combined use of public cloud resources from different
vendors), edge-based applications, and FaaS-based applications, extending the base YAML
Ain't Markup Language (YAML) TOSCA specification [7]. To allow the optimization of the
topology, it is suggested that two versions of the TOSCA model should be used—initially an
abstract version focusing on the structure of the topology and subsequently a more concrete
version, which would include more specific details of the actual deployment.
Having made the modelling extensions to TOSCA, an analysis of the suggested adaptation

methodology is presented. Then, Severity is presented along with some adaptation techniques

33

which have been derived from it. Finally, simulation and experimental results are presented and
discussed.

The remainder of this work is structured as follows. Section 3, provides a background for some
of the core scientific concepts which are used in this work, as well as a FaaS application
scenario which aims to improve its understanding. In Section 4, an analysis of works from the
state of the art is provided. Section 5 presents a model-driven approach to guide the definition
of the TOSCA semantic enhancements and artefacts to address the research questions which
were raised. In Section 6, the extensions to TOSCA are detailed, in order to support FaaS
applications. Section 7 includes details on the new TOSCA structures, which support
optimization factors and placement constraints. Section 8 includes an evaluation of the
modelling suggested in Section 4 (modelling — deployment), by means of a comparison with
one of the most prominent commercial offerings. Section 8 presents the concept of Severity, its
relationship to elasticity rules, indicative algorithms and their implementations. Section 9
includes an evaluation of the suggested approach, from the perspective of simulations and also
based on a series of experiments on realistic FaaS infrastructure. Finally, in Section 10 a

discussion of the results of this work is presented, while Section 11 concludes this work.

34

3. Background

3.1.Model-driven engineering for cloud applications

Applications which can utilize the benefits of cloud computing are typically complex, having
interdependencies among their subcomponents and precise processing requirements which
should be met. Unsurprisingly, application-specific architectural constraints pose a barrier to the
refactoring of some applications, which renders the use of cloud computing resources difficult.
Even if they can be appropriately refactored however, it is still very difficult to use the features
offered by cloud computing (e.g. elasticity) using only the help of high-level programming
languages. In an effort to handle language/platform complexity, and to express application
domain concepts effectively, model-driven engineering technologies have been suggested [29].
Bringing model-driven engineering techniques to the cloud through the use of various
templating systems has been providing considerable help to cloud application developers. Using
current modelling tools, it is possible to specify many characteristics of the cloud processing
topology and the application itself, while also the use of parameters allows a clear distinction
between the business logic of application components and their configuration. Most
importantly, modelling has allowed to raise the abstraction level, to use graphical tools to model
the cloud infrastructure, and even validate the cloud application [30,31]. Further, the advantages
brought by a modelling proposal are not confined to the aspect of the cloud application (e.g
specification) which is modelled. Instead, when complementary, it can be combined with the
other modelling proposals (e.g targeting the deployment process) to yield a unified model-
driven approach. This was suggested in [31], where the authors used two cloud standards
(TOSCA and OCCI - Open Cloud Computing Interface) to drive the deployment of cloud
applications.

Notwithstanding, the use of models can be associated with extraneous development effort, when
the features provided by the model-driven approach are more sophisticated than the features
used by the cloud applications. Modelling can be helpful, but it should not intimidate
developers to use it; Unfortunately, the effort to include ‘everything’ in a model, can prove an

obstacle for its adoption.

35

3.2. FaaS applications

The popularity of decoupled software installations, and microservice based applications is
undeniable. Technologies such as virtual machines, and containers, have certainly contributed
to the success of this schema, allowing for fast and easy application deployments. However, the
need for a large number of specialized, independent components often increases the burden of
maintenance and fine-tuning of the system. The scaling of platform components, their
compliance with security demands, as well as the monitoring for correct health and availability
are necessary in many cloud application deployment scenarios. Function-as-a-Service (FaaS)’
(or ‘Serverless’) is an architecture (model) for cloud-based software that focuses on
executing arbitrary functions without much server- and resource-management burden put on
the cloud developer or customer[32]. FaaS aims to alleviate the aforementioned issues by
decoupling functionality from maintenance and allowing software developers to concentrate
their effort on specifying the application functionality. Serverless computing is being
increasingly adopted by industry and studied by academics [33]. It is supported by numerous
open-source and commercial platforms (such as OpenFaaS, OpenWhisk, Amazon Web Services
(AWS) Lambda, Microsoft functions etc). Each of these platforms provides a framework which
allows multiple application functionality units (‘functions’) to be executed and scaled.

These application units should be functionally independent (i.e it should be possible to execute
them independently) but they can be coupled with one another to create chains and use a
common backend for persistence. The FaaS developer can write functions by providing snippets
of code using one of the supported platform languages (commonly Javascript, Python, Java etc.)
— some platforms even support the execution of arbitrary functions packaged in a container.
FaaS implementations are not flawless (in [34] the authors mention among other shortcomings
the limited execution time offered, the use of slow storage, the i/o bottlenecks and the lack of
support for specialized hardware). Moreover, there are concrete examples in which serverless
infrastructure is outperformed by conventional, VM-based infrastructure [34]. However, the

design efficiency which can be achieved with FaaS for particular application types, the potential

36

cost savings for particular workloads and the speed of development [33] are significant assets
for system architects — and this work aims to support their use.

The execution environment of FaaS functions is different for each FaaS application. Since FaaS
applications are used both in cases where latency is important and in cases where no latency
requirements are set, the appropriate choice to host FaaS processors can be either cloud, “fog”
or even “edge” resources. The use of FaaS in these resources is possible either through
accessing provider-specific application programming interfaces (APIs) which allow using the
FaaS infrastructure of a provider (or vendor), or instead using appropriate FaaS platforms
installed on VMs/PMs to emulate analogous functionality. Unsurprisingly, the execution of
functions on a Cloud environment may incur a latency penalty which is unacceptable, while it
can also be associated with privacy concerns (private Cloud environments are an exception). In
these cases, it is advisable to use edge resources which possess adequate compute resources to
perform the processing which is needed. Therefore, to take advantage of the computational
capacity which is offered by edge devices — generally offering inferior elasticity support and

performance compared to cloud resources — a need for efficient FaaS modelling is evident.

3.3.Motivating Scenario: Fog Surveillance Application

In this section, a motivating scenario is presented in order to assist the reader in better
understanding this work. Below, an application deployment is described based on the need of a
surveillance company to deploy a number of processing components both in the edge and the
cloud. For this scenario, it is assumed that the testbench used includes a number of Raspberry P1
devices equipped with cameras and connected to the Internet, some ARM-based servers situated
near the edge, and some VM assets in public or private clouds, conforming to the budget
allocation. The processing components — or ‘fragments’ — which are considered in the scenario

are described in Table 1.

37

Table 1. Fog surveillance application fragments

Fragment Name Description

The fragment is responsible for the transmission of video from the edge to the

VideoStreamer
host of the VideoTranscoder fragment
VideoTranscoder The fragment is responsible for changing the format of a video
FaceDetector The fragment is responsible for face detection in a captured video scene
AudioCaptor The fragment is responsible for continuously capturing audio
The fragment is responsible of detecting any captured percussion sounds, and
PercussionDetection
triggering the FaceDetector component
The fragment hosts various necessary assets to perform the detection of suspects
MultimediaManager

and present alerts to a user of the platform

Hereafter, the term ‘processing component’ will be used interchangeably with the term
‘fragment’, as it is considered that the ‘whole’ of an application consists of one or more
fragments. Throughout this work, fragments are assumed to be containerized, using the de-facto
standard of containerization, Docker.

For all fragments which can be executed on edge resources, priority is given to the deployment
on suitable edge hosts. However, if a fragment cannot be executed on edge resources (or none
are available) then deployment criteria are used to govern its deployment on one or more cloud
providers. For the VideoStreamer, and MultimediaManager fragments, the primary objective
which should govern the cloud deployment is the reduction of latency. The secondary objective
preferred is the usage of the AWS cloud provider, and finally the reduction of cost is considered
an additional business goal. For the FaceDetector fragment the first priority is the usage of the
AWS provider, as a stringent agreement has been reached with the particular provider on the
handling of sensitive data.

Since the VideoTranscoder, FaceDetector and PercussionDetector fragments are assumed to
perform stateless operations, all of them can be attached to a common FaaS Proxy which will
balance and redirect incoming requests appropriately.

The operating system for all fragments is defined to be Ubuntu Linux. In addition, the Google

Cloud Compute provider is required to be excluded. Moreover, the budget available for cloud

38

deployments is set equal to 1000€, and the time-frame for which it will be available is set to 1
month (720 hours). Fine-grained optimization criteria (explained in detail in Section 7.2) have
been set for the VideoStreamer, FaceDetector, and MultimediaManager fragments, according to
the requirements of the fragments described. The overall optimization objective is the reduction
of the cost, through the reduction of fragment instances scheduled for execution on the cloud.
To illustrate the data flow dependencies, a deployment graph was created in a prototype UI -
corresponding to a deployment using the above fragments. The application graph is shown in
Figure 1. The arrows indicate (from right to left), that the MultimediaManager fragment
depends on data from the VideoTranscoder, FaceDetector and PercussionDetector fragments,
which in turn depend on data from the VideoStreamer, VideoTranscoder and AudioCaptor
fragments, respectively. The scenario and the respective application graph, were created as part
of work [35].

The requirements for each fragment are listed in Table 2:

PercussionDetector_cloud1285

PercussionDetector_edge1276 MultimediaManager_cloud1294

AudingptOr:édgeﬂ 261, -

el Wb @y O -
- FaceDetector_edge1303 0
4 |
@
y |
/
/
. -
yo g
d
s
S _—] el
i / _— | o
Vld;;ﬂ’rg_nscedter_edgm22‘9&}: . -

'-..7/ €0

VidigStféamer_edgm 197 ‘,-" rocessed=yt o _clou
—

—n
O

VigeoTranscoder_cloud1248

Figure 1. The deployment graph for the illustrative example

39

Table 2. Fragment Processing Requirements and Constraints

Hosting
Optimization
Requirements Acceptable Precedence
Processing Collocation dependencies Criteria (Cost- Elasticity
Fragment Name (CPU cores - Hosting Dependencies
Architectures /Anti-Affinity requirements Distance- Mechanism
RAM GB'’s - Free Resource
Friendliness)
Disk GB’s)
VideoTranscoder - 2-8-{aws:5, gce:0,
VideoStreamer 1-1-4 Edge arm64, armel, armhf None
(collocation) azure:1}
arm64, armel, VideoStreamer FaaS (Lambda)
VideoTranscoder 2-4-4 Edge /Cloud VideoStreamer (collocation) 1-1-(1, implied)
armhf, x86_64, i386 Proxy
Edge/ armo64, armel, VideoTranscoder 1-1-{aws:5, gce:0, FaaS (Lambda)
FaceDetector 1-1-4
Cloud armhf, x86_64, i386 azure:1} Proxy
PercussionDetector -
AudioCaptor 1-1-4 Edge arm64, armel, armhf 1-1-(1,implied) None
(collocation)
Edge/Cloud AudioCaptor FaaS (Lambda)
PercussionDetector 1-1-4 armé64, armel, armhf AudioCaptor (collocation) 1-1-(1,implied)
Proxy
FaceDetector,
2-8-{aws:5, gce:0,
MultimediaManager 2-4-128 Cloud x86_64, 1386 - VideoTranscoder, None

PercussionDetector

azure:1}

4. State of the art analysis

4.1.Model-driven cloud application deployment

The OASIS TOSCA standard [7] is based on the definition of a cloud application
through the usage of templates or blueprints. There are several implementations
(although none are officially endorsed), some of which support more features and are
more actively maintained than others. Indicative examples include Alien4Cloud (also
used by the Apache Brooklyn project) [2], Cloudify [3], and OpenTOSCA [4]. All of
these implementations allow the definition of new node types, the generation of
TOSCA deployment templates, and the orchestration of the deployment. They are
designed for single deployments of a cloud application and do not incorporate any
optimization capabilities. Moreover, the high level of detail in these TOSCA
templates provides a complete view of the application, however imposes difficulties
in terms of the comprehension of its overall structure. Conversely, the description of
the model of an application is difficult in these platforms, without first describing a
complete proof-of-concept.

Starting from the above observation, this work proposes a clear distinction between an
initial, modelling-oriented (and more abstract), “type-level” flavor and a final,
“instance-level” flavor of TOSCA. The blueprints that are generated by the type-level
TOSCA generator which has been developed [21] are vendor-neutral and can be
deployed on any (combination of) cloud(s) and edge resources. In doing so,
consistency is maintained with the intent-based design, which is endorsed by TOSCA.
Using TOSCA, the power of expression of policy-based approaches (i.e approaches
focusing on the constraints and rules that application parameters should conform to)
can be combined with the modelling power of steady-state approaches (i.e approaches

which specify the service state that an infrastructure should maintain) [36]. In this

41

work the maintenance of relationships between components is emphasized by
defining appropriate TOSCA relationships and capabilities.

In [8], Wurster et al. proposed an extension of OpenTOSCA to describe FaaS-based
applications. In addition to purely FaaS-focused applications, their work is also valid
for mixed architectures consisting of FaaS-based and VM-based solutions. Their
modelling scheme is specifically applied on an AWS-Lambda-based application. The
proposed approach in this work can be used alongside such modelling, as it does not
focus on the support of provider-specific components or services.

In [37], Yussupov et al. discuss a methodology to translate serverless function
orchestrations from BPMN to multiple vendor-specific TOSCA models. Their work is
illustrated using three different FaaS providers, on a non-trivial FaaS application.
However, since translation is automatically done from BPMN to concrete TOSCA
types, using the facilities offered by each provider, room for optimization is limited.
RADON [9] is another approach that is based on TOSCA. RADON extensively uses
TOSCA inheritance to define abstract and derived concrete, deployable entities.
Overall, RADON is considered closer to the concept of instance-level TOSCA (see
Section 6.3), as it contains detailed information related to deployment parameters of
particular cloud application types and serverless functions. Similar to this work, the
modelling specification of RADON allows the definition of a custom FaaS
architecture. VM deployment is mentioned in the RADON reference technologies
[38], however no reference was found for edge deployment. Without edge
deployment support, the low cost and high data processing locality offered by edge
nodes is impossible to exploit (at least automatically). Moreover, the appropriateness
of particular edge nodes for particular fragments cannot be modelled.

CAMEL [10,11] is described as a domain-specific language (DSL), which enables
dynamic and cross-cloud deployments. The authors support that while TOSCA and
CAMEL are similar, the latter can also be used not only during design, but also at run

time because it can specify the instances to be used. CAMEL relies on multiple

42

specialized DSLs, each focusing on a particular aspect. It emphasizes the creation of
UML-based metamodels, enriched with additional domain semantics. The models that
are created are always synchronized with the actual topology that is deployed at the
time. Both direct (manual) and programmatic access to these models is allowed,
enabling self-adaptive cross-cloud applications. Furthermore, CAMEL has already
been extended to support the specification of commercial FaaS services [5]. While
CAMEL provides some advanced features and can already manage cross-cloud
deployment and adaptivity, there are significant aspects requiring improvement. First,
no language features specifically target edge devices (for example to account for the
volatility of the devices or the migration of components from the cloud to the edge).
Thus, the topology can only partially be optimized to consider the benefits of fog
computing. Also, FaaS services are modelled from the perspective of a FaaS
framework consumer (i.e., user of already-existing commercial offerings such as
AWS Lambda), rather than a FaaS framework designer (i.e., creator of any FaaS
service).

Another significant modelling effort is OCCI, which according to [39] is a protocol
and API for all kinds of management tasks. It is also stated that the main focus of
OCCl is to create a remote management API for [aaS model-based services allowing
for the development of interoperable tools for common tasks, including deployment,
autonomic scaling, and monitoring. In [40], the authors support the idea that the focus
of OCCI is to provide a standardized API and that it does not define concepts to
handle reusability, composability, and scalability. Conversely, TOSCA offers means
to express reusability, composability, and scalability. These advantages grant TOSCA
a superiority in its modelling capabilities over OCCI. Moreover, TOSCA can be used
alongside OCCI [31,40] to achieve full-standard-based deployments [31].

Terraform is a popular declarative language oriented towards cloud deployments, also
supporting FaaS services, backed by open-source implementation. Different plugins

exist to instantiate nodes on different cloud providers and interact with external

43

services providing content delivery network (CDN) and domain name service (DNS)
facilities using a unified syntax. All of these features grant versatility and robustness
to Terraform. Pulumi® is another open-source framework similar to Terraform, which
provides the additional advantage of using programming languages to express cloud
topologies rather than requiring the use of a specific cloud application language.
Similar to Terraform, it is also capable of handling FaaS deployments. However,
when considering model-driven deployments, Terraform and Pulumi present certain
disadvantages compared to TOSCA. These disadvantages originate from the fact that
while resources are properly declared, there are no language features offered that can
be used to generalize the relationships among application components. Thus, no
means are offered to (i) extract generic, reusable blueprints and (ii) optimize the
deployment of components, taking into account any other dependent components.
Additionally, the computing resources and their roles are very specific and detailed,
which while providing a concrete view of the state of the deployment, also obstructs
the higher-level understanding of the model of the cloud application. The use of edge
devices is possible, but it requires manual configuration of the details of the topology,
as illustrated in Section 8. TOSCA, on the other hand, excels in its capability for
modelling and abstraction of an application, while also being capable of specifying
concrete actions that should be considered when instantiating a topology (through its
workflows feature). In this work, the modelling capabilities of TOSCA are enhanced,
as a set of new constructs is introduced to assist the representation of hybrid clouds,
multi-clouds, edge, VM, and FaaS-based applications.

In addition, proprietary software systems such as Amazon Cloud Development Kit
(Amazon CDK) have been developed, providing capabilities traditionally offered by
Cloud DSLs. Using Amazon CDK, a DevOps can model the application directly from
the integrated development environment (IDE) used and specify the requirements of

the application using a preferred programming language (TypeScript, JavaScript,

3 https://www.pulumi.com

44

Python, Java, and C#/.Net are currently available). Although such an offering allows
deep integration with the existing Amazon constructs and offers a good abstraction
over the Amazon services that are used, it is nevertheless difficult to introduce it
without the prior expertise of the DevOps with the specific technology products
offered by Amazon. Furthermore, services can only be developed in connection with
the AWS cloud computing provider, threatening vendor lock-in.

The vendor lock-in problem also emerges when considering other DSL-based
solutions, such as Azure Resource Manager, and CloudFormation AWS templates. In
some cases such as Openstack Heat templates and Google Cloud Deployment
Manager templates, support for FaaS is obscure if not absent. Moreover, all of the
templates cited above contain too many technical details that are associated with the
solution offered by a particular provider. On the other hand, this work aims to
simplify the model of the application, providing two views: a model view before the
deployment of the application featuring the least amount of technical details and an
instance view after the instantiation of the topology (type-level and instance-level
TOSCA, respectively).

Waurster et al. [41] reviewed prominent deployment automation approaches to derive
the essential deployment metamodel. The metamodel refers to a technology-
independent baseline, containing the core parts of deployment automation
technologies such as Chef, Puppet, Ansible, Kubernetes, and OpenStack Heat. The
authors state in their work that the generated metamodel uses only a subset of the
entities described in TOSCA. Approaches similar to the metamodel can further be
used to introduce or map other technologies to the terminology of TOSCA, and vice
versa.

In an effort to reduce the processing latency incurred by using a FaaS framework, the
creation of edge-based FaaS systems has been announced in the past few years.
Applications that use processing nodes at the edge of the network can attain

considerably better performance for applications that are either response-time-

45

sensitive or privacy-oriented or that aim to minimize energy consumption [42].
Representative FaaS systems include Amazon GreenGrass [12] and Azure IoT Edge

[13].

4.2.Model-driven Fog application deployment

The study by van Lingen et al. [14] extended the YANG language [15] with support
for fog nodes. A similar approach using TOSCA is also followed in this work, as
TOSCA is directly aimed at cloud deployments and is already an OASIS standard.
Noghabi et al. [43] worked on Steel, a high-level abstraction for the development and
deployment of edge—cloud applications. Their work emphasizes the ability to migrate
services from the cloud to the edge, and the ability to optimize the placement of
services while respecting constraints. Mortazavi et al. [44] proposed CloudPath, a
multitier computing framework, in which the location and REST path of a FaaS
system running on fog resources were configured using web.xml Java deployment
descriptors. The semantic enhancements of the TOSCA standard — which are
introduced in this work — can also support the definition of placement constraints,
while the definition of conflicting optimization criteria is also allowed. Since there are
plenty of deployment automation tools built on top of it, extending TOSCA would
make sense from the perspective of reusability, as the implied extensions to the

TOSCA-based deployment tools should be manageable.

4.3.Cloud application Elasticity

Decision-making approaches for cloud autoscaling systems are based in general either
on rule-based control, or Control Theory and Search-based optimization [16]. In the
following subsections this work is positioned in relation to other works from these

fields. It is assumed that a single virtualization layer is used, and that no

46

synchronization issues as those investigated in [45] appear. Moreover, unlike some
works which consider resource contention between cloud components (e.g [46]), the
adaptation approach proposed in this work through Severity, is targeted on generic
contexts, on which resource contention may not necessarily appear and resource

contention is not considered.

4.3.1. Rule-based and Control-theoretic adaptation approaches

The rule-based adaptation approach is one of the simplest and more intuitive
approaches which can be followed to scale a cloud application. Rule-based
adaptations rely on the expertise of a DevOps to define the variables which should be
monitored, and the thresholds which should be respected (a priori knowledge). The
rules should be carefully tuned in order to include all variables which can influence
the deployment. While some adaptation systems only use some adaptation attributes
for input (as indicated in [16]) such as CPU or the response time, the system which is
proposed in this work can work with any number and type of measurable attributes.
Control theoretic approaches (e.g [17—19]) are based on traditional control theory but
are occasionally enhanced with extensions. They are characterized by their
dynamicity and low latency. However, the configuration of the control loop should be
performed by an expert in order to prevent waiting for the system to stabilize after
multiple iterations. Rule-based approaches hold an advantage over pure control-
theoretic approaches on simplicity and clarity, and thus domain experts can more
easily transfer their knowledge to the systems.

Gandhi et al. [27] describe a technique based on Kalman filtering, which estimates the
parameters of a queuing model representing the application. The estimated values are
used to create scaling directives, providing auto-scaling capabilities to the platform.
When an abrupt change in its time-series representation is detected, a scaling event is
transmitted. The authors evaluated the performance of their algorithm and found it

superior to threshold-based rules working with static percentages, adding or removing

47

one VM instance when the threshold (upper or lower respectively) has been violated.
Using the suggested approach, scaling actions can be more varying and detailed in
their response, than simply adding or removing a single VM instance. Besides
response time, any number of attributes to feed the suggested Severity-based
techniques. Lorido-Botran et al [20] comment on queuing theory models used to
horizontally scale an application, that they suffer from being tightly bound to the
workload, the application and usually the processing infrastructure for which they
have been created. As a result, they need to be recalculated when these change.
Arkian et al. [47] propose Gesscale, a control-theory inspired autoscaling approach,
based on the measurement of the maximum sustainable throughput. The estimation of
the results of a scaling action using in Gesscale is based on the existence of a
performance model. When the performance is better than expected, multiple
processing instances can be removed, while when it is worse, a single processing
instance is added. They use a single composite metric (maximum sustainable
throughput - MST) to guide their autoscaling model. MST is calculated based on the
maximum network delay between nodes, the throughput of a single node, and the
parallelization inefficiency. Using their methodology, they demonstrate superior
performance compared to algorithms which are latency-unaware, and/or use only the
cpu consumption as an indication of the intensity of the workload. In practice this
approach still uses one strictly defined (albeit composite) metric to guide scaling.
Instead, Severity combines any number of arbitrary metrics to obtain better results
rather than using individual metric values to scale. Moreover, the Severity scaling
algorithms which are defined, allow more than one instances to be added as necessary
which reduces the number of reconfigurations.

In [48] the approaches of Amazon and Google concerning scaling are described,
Target Tracking and Step Scaling, and Multiple Zones and Horizontal-Pod
Autoscaling (Kubernetes) respectively. These tools can be divided into two

algorithmic categories, the first containing Multiple Zones and Step scaling, and the

48

second containing the Kubernetes Horizontal-Pod Autoscaling and Target Tracking.
In the first category of tools (which is also encountered in other major providers, such
as Microsoft Azure [49] and Oracle Cloud Infrastructure [50]), the DevOps should
either enter a number of rules that scale out/in the application by a predefined number
of instances (or a percentage of the active instances). Unfortunately, while this
approach is simple, it requires considerable input from the DevOps. Tools belonging
in the second category are more sophisticated, requiring the creation of a control-loop
that will perform scaling automatically to attain a specific threshold value. Amazon
Target Tracking supports only one metric in the Control Loop (but it can be
composite, and multiple parallel scaling directives may exist) and the Kubernetes
horizontal pod auto-scaler (HPA) can also support multiple metrics.

In the same work [48], a custom approach to scaling using the ‘dynamic-multi level’
(DM) method is outlined, combining predictive elements with a control loop to direct
the scaling of the platform. Using a variety of workloads and benchmarking metrics,
an evaluation against a real system was carried out, and their approach was found to
be better than approaches which are used by leading cloud vendors in many scenarios.
However, only one threshold value was used for all algorithms, and a default VM
instantiation delay of 30 seconds was assumed. The adaptation techniques proposed in
this work were evaluated in a realistic setting using two cooldown intervals, and in
simulations using four VM spawn delay intervals, as well as six combinations of
thresholds (in simulations) to detect variation in their performance. Additionally, the
workload patterns which are used in simulations are more radically changing
compared to those provided in [48] (in terms of the rate of change of the absolute
values of the workload), stress-testing the performance of all techniques.

In [51], an extension to the Kubernetes HPA algorithm is discussed, evaluating the
use of a constant absorbing small fluctuations of the workload. In cases where scaling
is performed using multiple metrics, it is supported by this work that one or more of

the performance criteria of the application can be improved, when all of the available

49

values of the monitoring metrics are used (rather than only the maximum value or
only one metric value as is the case in Kubernetes HPA and Amazon TTS,
respectively). Severity also allows creating hybrid algorithms — for example a control
loop activated by rule thresholds as illustrated in section 8.4.5.

Another interesting approach is followed by Lorido-Botran et al. [52], who
thoroughly describe the idea of modifying the thresholds which are employed in rule-
based systems to obtain a better response. They support that when no service-level
objective violations are detected within a time frame, the scale-in and scale-out rule
thresholds should converge to higher and lower values respectively to improve the
responsiveness of the system when high workload is encountered. The evaluation of
their algorithm is performed using a single, highly variable workload trace, and two
benchmarking criteria (service-level objective violation and cost). Approaches similar
to those introduced in [48,51,52] are viewed as complementary to the use of Severity
and can be combined to possibly provide an enhanced yet more complex system.
Vaquero et al [53], Galante et al. [54]and Copil et al. [55,56] have proposed rule-
based frameworks, which either rely on user input to calibrate the adaptation actions
by manually setting the scaling action as in [53,54] or always using the same
adaptation event (e.g add one VM instance) to keep the desired monitoring attributes
to acceptable levels as in [56]. Using these frameworks, the user should manually
detail all the situations for which adaptation will be required. However, this process is
error-prone and nevertheless requires the constant attention of the DevOps. In the case
of Ferretti et al. [57], the ability to implement scaling decisions adding or removing
more than one instances is supported, however no information is provided on whether
the number of instances (de)allocated can change at runtime without the intervention
of the DevOps. Severity-based adaptation techniques aim to waive the requirement
from a user to frequently change the response of the system, as the user needs only to
specify basic thresholds with a generic action once. Then, the violation of these

thresholds can be measured and an adaptation action automatically be derived.

50

In [58], Trihinas et al enhance the basic adaptation support offered by the previous
rule-based systems, by offering AdaFrame, a library to support resource-based
elasticity controllers. AdaFrame improves the results of rule-based systems by
adapting a cooling-down period between successive adaptations, through the analysis
of the statistical properties of a monitoring metric stream, e.g., CPU utilization. Thus,
scaling out and scaling in actions are less likely to occur on sudden bursts, and occur
faster in the case of increased ‘regular’ workload. This approach is complementary to
the one suggested in this work, as it improves the triggering of the autoscaling loop.
Dutreilh et al. [59] have explored both threshold-based rules and Q-learning,
concluding that Q-learning is superior, given enough training. Two of the techniques
which are examined in Sections 8.4.6 and 8.4.7 are simplifications of Q-learning, with
the absence of feedback. Unlike Q-learning though, the suggested Severity-based
techniques benefit from being usable without extensive training or requiring the
definition of a complex reward function. Besides, a mechanism is described to
ascertain the Severity of a situation, similar to the reward function employed in Q-
learning, which can be used as input for a multitude of algorithms, one of which can
also be Q-learning.

Ali-Eldin et al. discuss in works [60,61] elasticity controllers based on a generic
model of queuing theory, the G/G/N queue. In work [61] they consider workloads
which can be queued and then be appropriately serviced by tuning the number of VMs
according to the requests which should be serviced. Their approach allows a service to
remain operational even under heavy load, by limiting the queued requests. The
availability of a buffer to queue requests is not present in their previous work [60].
The principle behind the scaling of the application in their approach is similar to the
algorithms which are proposed. Moreover, since Severity provides a means to
scalarize a set of metric values one should be able to use a single-metric based
controller - such as the one which is proposed in their work — with the value of

Severity as its input. While Severity focuses on the ability to extract more information

51

from rules involving multiple metrics, this does not preclude the use of the advanced
techniques presented in these works (e.g different combinations of reactive and/or
proactive scaling-up and scaling-down).

In [62] the authors propose Chameleon, a hybrid, proactive autoscaling mechanism,
evaluating its performance using realistic workloads and works suggested in the state
of the art. CPU utilization and request rate are mainly used to estimate the workload
of an application and guide autoscaling. Chameleon combines forecasting methods
and realtime monitoring to enable proactive and reactive scaling decisions. It uses
thresholds for both reactive and proactive scaling decisions, however the service
demand estimation component also uses Kalman filter, regression and optimization
estimators (among others) to estimate the time required for a request. Chameleon is
extensively evaluated against other approaches suggested in the autoscaling literature
and found to outperform them by a large margin. Severity enables the use of more
metrics if necessary, including custom metrics. As such, it is argued that it can enrich
approaches such as Chameleon to consider additional context factors (metrics) for

their autoscaling algorithms.

4.3.2. Search-based optimization adaptation approaches

Search-based optimization approaches comprise another main category of decision-
making approaches used by Self-aware and Self-adaptive Cloud Application Systems
(SSCAS) [16]. Using the classification of Chen et al. [16], search-based techniques
include dynamic programming, genetic algorithms, reinforcement learning and integer
linear programming among others. By definition, all of these techniques are based on
traversing the search space of solutions using a specific algorithm, attempting to
optimize one or more criteria. However, the exponential number of solutions which
should be explored when considering a number of attributes and actions which can be
optimized results in training or execution times (or compute power requirements)

which can be unacceptable. Also, while these techniques require less work from the

52

side of the domain expert — as a lot of information is learnt at runtime — they need
more time to converge. Heuristics help with the aforementioned problems, yet unless
the actions learnt can be translated to a set of rules/statements, no knowledge can be
transferred in a case of a different instance of the problem.

The work of Ramirez et al. [63] describes an autoscaling mechanism which considers
two virtualization layers (VMs and containers) to deliver the required quality of
service. Quality of service is calculated based on the number of requests which can be
serviced. Five different techniques to determine the number of VMs and containers
for a workload are evaluated, three of which traverse the configuration space (number
and type of containers in VMs) to find an appropriate solution (the others use
heuristics). They demonstrate that appropriately handling scaling using two
virtualization layers results in reduced cost. The techniques described below can be
used in parallel with such approaches although the focus of this work is on
applications which exploit a single virtualization layer (or use the assumption of one
container instance in one virtual/physical machine). Moreover, multiple metrics are
allowed to influence the decision of scaling.

Zhu et al. [64] presented a queuing-network-based approach to optimize the allocation
of AWS Lambda resources, based on the requirements stated in a TOSCA model.
Using their approach, a layered queuing network firstly predicts the performance of a
FaaS-based application, and then the optimal configuration (appropriate memory
reservation and concurrency) is found using genetic algorithms. In this work, the use
of additional metrics through Severity is proposed and a generalized approach which
can work over a multicloud infrastructure is offered.

In [65] the authors compare two functionality modes of the Kubernetes Cluster
Autoscaler. The Kubernetes Cluster Autoscaler is a component responsible to allocate
new processing nodes to host Kubernetes pods when this is necessary. The first
functionality involves using nodes from a single node pool (identical nodes - CA)

while in the second multiple node pools are used (allowing differently-sized nodes to

53

be spawned — CA-NAP). They conclude using standard autoscaling metrics that CA-
NAP is overall superior to the CA, although no significant cost benefits are observed.
In the evaluation of this work, nodes with a similar processing capacity are
considered. However, Severity-based techniques can be generalized to use processing
nodes offering a fraction of the performance of a normative processing node.

GKE Autopilot [66] offers an advanced autoscaling approach, capable of vertical and
horizontal autoscaling. The main emphasis of this work is on vertical scaling, setting
the appropriate resource limits for each processing node. Autopilot can set these
limits, even if no user input is provided. Autopilot manages to greatly reduce slack
(unused resources) using either statistical or machine learning techniques. However,
the configuration of statistical recommendations is tuned for long running services,
which might not be optimal. Besides, its machine learning recommender has the
advantage that it can output easily explainable recommendations on the resource
limits of a processing node. The part related to horizontal scaling resembles the
algorithm which is used by the Kubernetes Horizontal Pod Autoscaler.

AWS [67] offers another autoscaling approach which is based on predicted data about
the application. It tries to attain a target utilization level, based on monitoring metrics
(it does not however currently support custom metrics). It uses machine learning
models trained in Amazon, based on billions of data points. These machine learning
models are not known though to be publicly available. Notwithstanding, it is difficult
to train ML models of a comparable size without access to the data, algorithms and
processing infrastructure used by Amazon. The approach suggested in this work is
independent from the use of a particular algorithm. Nevertheless, the Simple Severity
Zones algorithm which is most thoroughly explored, does not need any training, the
adaptations created by it can be easily traced to the original monitoring observations
and can it can be used in addition to the presence of a forecasting mechanism (e.g
using predicted metrics in the definition of rules). Severity-based techniques extract

added value from domain expert knowledge while retaining the simplicity of

54

threshold rules. A thoroughly documented, open and modular approach is introduced
which - thanks to the scalarization realized through Severity - can use ideas present in
any existing horizontal scaling adaptation technique using metrics (as Severity itself

can be considered a metric).

55

5. Suggested approach for the definition and adaptation of FaaS

applications

In accordance with most efforts analyzed in Section 4.1, a model-driven engineering
approach is followed, because it offers portability and reusability, which are important
considerations for all cloud applications. Specifically, an extension of the TOSCA
modelling standard is proposed adopting two views of the topology—type-level and
instance-level TOSCA. Each of these is used to create a document reflecting the
initial abstract view and the processed deployment view of the topology, respectively.
The decoupling of the information contained in type-level TOSCA and instance-level
TOSCA is meant to aid modelling and allow for the optimization of applications
across the cloud computing continuum. These models are not bound to a specific
provider, and given a TOSCA orchestrator can be used at any time.

Type-level TOSCA encapsulates the user’s requirements, preferences, and business
goals and provides a high-level overview of the topology to be deployed. This model
can subsequently be optimized, finalized with provider-specific characteristics (e.g.,
network parameters), and deployed. During this process, a final “instance-level”
model of the application can be created. External monitoring mechanisms, e.g.,
Prometheus®, can be used to create an updated “type-level” deployment, which will
trigger a reconfiguration of the platform. This workflow is in line with the challenges
and research directions for cloud adaptations that were described in work [68].

The definition of a fog application (e.g., similar to the one depicted in Figure 1) can

be seen in the steps presented in Figure 2.

4 https://prometheus.io

56

- Type-level
TOSCA
Definition of Definition of

constraints
between
fragments

processing
requirements

General
information
retrieval

Definition of
optimization
criteria per
fragment

Definition of
application
paradigm(s)

Application Conception, Application Definition _Application Goal Definition /

Figure 2. Overview of the suggested approach. Although the optimization of the type-level TOSCA
template and the generation of the instance-level TOSCA are essential constituents of the suggested

approach, an implementation is not provided for an optimizer or an instance-level TOSCA generator.

To facilitate the use of the modelling extensions, a tool [21] is provided to aid
application definition and application goal definition as a proof-of-concept for the
approach discussed in this work. The tool was developed as part of the PrEstoCloud
framework [6], and is able to parse the input requirements, optimization criteria, and
constraints, generating type-level TOSCA as its output. In the following subsections,

more details are provided for each of the steps illustrated in Figure 2.

5.1.Application Conception
In the application conception stage, the base for the proposed modelling approach is
established, as the DevOps structures the fragments that will comprise the application.
Firstly, the architecture of the application is determined, as well as its input(s) and
output(s) and the components that will be used in it. Following, the DevOps examines
the fragments used in the application to determine how is the FaaS application
paradigm used in it, and the number of instances necessary for the processing of each
fragment. In addition, generic information related to the fragments themselves (e.g., a
known functional configuration, as well as the interfaces that are provided and the

interfaces that are needed) should be collected. Then, the DevOps should determine

57

Adaptation
Manager

for each fragment the Docker image and Docker registry that should be used, the
respective environmental variables and their port mappings, and the proxy which
should be used (see Section 6 for details). All of these attributes should later be
mapped to the respective TOSCA constructs.

Finally, global constraints and preferences can be provided by the DevOps, specifying
the providers that are preferred or should be excluded and the budget constraints that

should be respected for this application.

5.2.Application Definition

During this step, the DevOps should enter more precise information describing the
processing context of each of the fragments, as well as any application paradigm that
is followed by the fragment. The information provided for the processing instances
and the processing resources for each fragment are critical, as all further deployments
and optimization steps will be primarily based on these factors. The DevOps is

required to provide data for the fragment attributes, which are described in Table 3.

Table 3. Fragment attributes that should be defined by the DevOps.

Fragment Processing Attribute Description

The minimum and maximum numbers of CPU cores
Number of cores
needed to process the particular fragment

Processor architecture The architecture of the CPU processor

The minimum and maximum amounts of main memory
Memory requirements
required by a fragment

The minimum and maximum amounts of disk space
Disk capacity requirements
required by a fragment

The input or output sensors required for the processing
Sensors required
of this fragment

The operating system and version that should be used
Operating system
for the processing of this fragment

58

The minimum and maximum numbers of instances of a
Number of instances
particular fragment

The eligible locations for the processing of a particular
Execution zone
fragment (cloud, edge)

The elasticity mechanism that is required for a fragment
implementing a particular paradigm (can be Faa$S or
Elasticity mechanism —paradigm none, although a mechanism to additionally handle load-
balanced and JPPF applications has been suggested in
work [35])

The approach described in this work is agnostic to the medium used to define these
properties (as well as those mentioned in Section 5.3). However, tool [21] supports
both the usage of an external prototype Ul, as well as code-level annotations coupled
with a policy file. In the first case, informative application graphs similar to the one
illustrated in Figure 1 can be retrieved and the input is provided to the component
through graphical forms in a machine-readable json format. In the second case,
annotations can capture details concerning the deployment requirements of each
fragment, while the policy file contains global constraints and preferences that guide
the deployment of the topology. The handling and specification of annotations is an
integral part of the TOSCA generator, allowing the software to be used without
depending on an external component. The main advantage of using an annotation-
driven deployment lies in the potential to combine annotations with code
introspection techniques to influence the behavior of the application. In [56],
information present in annotations was used to govern the addition of new workers
and removal of existing workers or to modify their behavior.

An annotation is expected firstly to include information on the memory, CPU, and
storage load that the particular application fragment will use, which is translated into a
range of values using information from the policy file. The translation is performed
using configurable static mappings (e.g., for CPU or memory, VERY LOW = 1

core/1Gb of ram, LOW = 2 cores/2Gb of ram, MEDIUM = 4 cores/4Gb of ram,

59

HIGH = 8 cores/8Gb of ram and VERY HIGH = 16 cores/16Gb of ram). Each
annotation on the workload of a particular resource reflects the least amount of
resources required to carry out the processing needed by the particular fragment.
Then, information on the possible processing zone should be provided—whether the
fragment is onloadable (i.e., can be deployed on edge devices), offloadable (i.e., can
be deployed on cloud VMs), or both. Afterward, information on the Docker
configuration (here using the edge docker registry and edge docker image fields) of
the component should be provided. Additionally, the application paradigm followed
by the particular fragment can be specified using the elasticity mechanism
annotation. It should be noted that each of the fragments can follow a different
paradigm and multiple paradigms may co-exist in the same application.

The annotations scheme suggested also allows one to provide the minimum and
maximum numbers of instances that should be provided for a fragment. While one
may argue that it is difficult to enforce a particular number of instances on a volatile
edge topology, this capability is included as it is a business requirement that is very
common and that provides to the DevOps the capability to precisely define the
requirements of the topology. Further, it is assumed that the information that is input
by the DevOps in a type-level TOSCA template is not static but subject to (automatic)
updates based on the state of the processing topology, as illustrated in work [68].
Listing 1 contains an example annotation for a Java class representing the percussion
detector fragment (it can either be a placeholder or its actual implementation), which
is defined in the illustrative scenario. In the case of an annotation-driven deployment,
one annotation needs to exist over each fragment that can be autonomously executed.
As mentioned before, the developed tool can also accept input from a prototype user

interface.

60

@PrestoFragmentation(

memoryLoad = PrestoFragmentation.MemoryLoad.LOW,
cpuLoad = PrestoFragmentation.CPULoad.VERY_LOW,
storageLoad = PrestoFragmentation.StorageLoad.LOW,
onloadable = true,

offloadable = true,

edge_docker_registry = “prestocloud.test.eu”,
edge_docker_image = “percussion_detector:latest”,
elasticity_mechanism = faas,

min_instances =1,

max_instances = 5,

dependencyOn = {“imu_fragments.AudioCaptor”},
precededBy = {“imu_fragments.AudioCaptor”},
optimization_cost_weight=1,
optimization_distance_weight =1,
optimization_providerFriendliness_weights = {“aws”, “1”,

7

“ Vi 1 ”
7

gee”,
Ilazurelll Illll

public class PercussionDetector {

}

Listing 1. Annotations example for the PercussionDetector fragment of the illustrative scenario.

Listing 1 also contains (for completeness) certain annotations that are not mapped to
the requirements, which should be set for each fragment at this stage—these are

discussed in Section 5.3.

5.3.Application Goal Definition
During this step—with the architecture of the application determined and the
application components fully described—the DevOps can finally specify the
application goals in terms of the optimization criteria that should be used for the
deployment of the fragments, as well as any constraints that should be applied. The

available fragment optimization criteria and constraints appear in Table 4.

61

Table 4. Fragment goals (optimization criteria and constraints) available to be defined by the DevOps.

Application Goal Type Definition Level
Precedence Constraint Defined for groups of two or more fragments
Collocation Constraint Defined for groups of two or more fragments
Anti-Affinity Constraint Defined for groups of two or more fragments
Distance Optimization criterion Defined for each fragment
Cost Optimization criterion Defined for each fragment
Friendliness Optimization criterion Defined for each fragment

If no constraints are chosen, the application deployment will be guided only by the
automatic device exclusion constraint(s) (see Section 7.2), the optimization criteria
specified for each fragment (where these exist), and the overall business goal that has
been set for the application (e.g., the minimization of cost). If no optimization criteria
are specified for one or more fragments, the application deployment will be
performed based on the overall business goal, fulfilling any placement or precedence
constraints. Naturally, the set of constraints and optimization values, which will be
adopted for the fragments of the application, can lead to completely different
deployments.

Using the example of the illustrative scenario, based on Table 2 it can be determined
that a collocation constraint is required between the VideoStreamer and
VideoTranscoder fragments and the PercussionDetector and AudioCaptor fragments.
Moreover, the prevalent optimization criterion that will govern the processing zone
(cloud or edge) and processing location (provider data center or edge device) of the
VideoStreamer instances will be “distance” (for more details see Section 7.2). For
annotation-driven deployments (as in Listing 1), the precedence constraints are
indicated using the precededBy annotation, while the collocation constraints are
indicated using the dependsOn annotation. Individual optimization criteria are
indicated using the optimization cost weight, optimization distance weight, and

optimization_providerFriendliness_weights annotations, respectively.

62

As soon as the requirements of the application have been provided, the initial type-
level TOSCA model should be created. This procedure is undertaken by a TOSCA
generator (e.g., [21]) which receives the input gathered at the first stage of the
processing and converts it to TOSCA format, producing a type-level model of the
topology. This process was completed for the application described in Section 3.3 and
the type-level TOSCA model corresponding to it was created using a prototypical,
open-source TOSCA generator (the full type-level document is included in Appendix
A). This model file should then be sent to a TOSCA orchestrator—for example by
uploading to a repository node, which will enable file artefacts to be communicated

and stored.

5.4.Processing and Deployment of Requirements

During this step, the application requirements and structure that have been defined in
the previous steps are received in the form of a type-level TOSCA template.

Then, a dedicated optimizer component (e.g., developed using Choco Solver [69] or
BtrPlace [70]) is required to parse the received type-level TOSCA and solve the
constraint programming problem associated with the optimization goals and
placement constraints in it. The output of this process should include as a minimum
the zone of the processing instances (cloud or edge), the provider(s) to be used, the
optimal number of instances (per zone or even overall), and their flavor in a machine-
readable format (e.g., json). Then, the network details can be specified and the Docker
environmental variables can be updated. Finally, the instance-level TOSCA file
reflecting the deployment can be generated. It is considered that the optimization
process and instance-level TOSCA generation process should be triggered
automatically once a new type-level TOSCA document is published to provide a fully

automated deployment process.

63

5.5.TOSCA FaaS Application Definition Algorithm

To aid the comprehension of the proposed approach, the algorithmic steps that should
be performed by a DevOps prior to the automatic generation of the TOSCA template

are provided in Listing 2.

Input

F:Fragments
FPA:Fragment processing attributes//Defined in Table 3
FG:Fragment goals//Defined in Table 4

Algorithm
//Application Concept Definition

AC « determine_coarse_grained_application _constraints

F < determine_application _fragments

for fragment in F
fragment.determine_application_paradigm
fragment.determine_interfaces
fragment.determine_environmental_variables
fragment.determine_docker_properties

fragment.determine_necessary_number_of_processing_instances

//Application Definition
for fragment in F
for processing_attribute in FPA

fragment.assign_value(processing_attribute, DevOps_value)

//Application Goal Definition
for fragment in F
for fragment_goal in FG

fragment.assign_value(fragment_goal DevOps_value)

type_level TOSCA_document «— TOSCAgenerator(AC,F)
return type_level TOSCA_document

Listing 2. Algorithmic steps necessary for the definition of a fog application in type-level TOSCA.

64

5.6.Creation of updated type-level TOSCA

In the previous sections, the initial deployment flow is described illustrating the steps
which should be taken to create a type-level TOSCA document. However, the model-
driven nature of the approach allows it to be generalized to potentially handle any
required adaptations. Indeed, when during the operation of the FaaS application it is
determined that its deployment should be updated (e.g. that the container replicas of a
function should be increased), it should be possible using the result of the processing
of an adaptation manager (e.g. add two container instances) to update the model.
Thus, depending on the intelligence of the adaptation manager, a lot of manual (and
therefore error-prone) changes can be saved, and the burden of the DevOps which is
related to the maintenance of the application can be decreased.

In the next sections, answers will be provided to each of the research questions set in
the introduction of this work. First, a description of the type-level TOSCA semantic
enhancements to allow the use of both cloud and edge resources will be performed.
Then, details will be provided on the specific changes introduced to support FaaS
applications. Following, the support provided for placement constraints and
optimization criteria will be presented. Also, the methodology which can be followed
to handle adaptations of the platform, leading to the generation of the new type-level
TOSCA, is described, leading to the final sections which discuss these adaptations

and the contribution of this work.

65

6. Improvements to TOSCA to model FaaS applications

The official TOSCA specification [7] provides sample configurations of processing
nodes and cloud application topologies, however no reference is made to fog
topologies, which commonly need processing nodes both on the edge and the cloud.
While a fog topology could be implemented using TOSCA or any other DSL, an
important issue that would not be solved would be the ability to use a different
configuration for a fragment depending on its processing zone (cloud or edge), while
still qualifying as the “same” fragment type for scaling purposes. A second challenge
encountered when creating a service template is to accurately describe the model of
the service while still allowing for its optimization.

To resolve the first issue and be able to seamlessly describe cloud-only, edge-only,
and fog applications a modelling schema is introduced, decoupling the software from
the hardware it is installed on but still maintaining their relationship. The second
challenge is mainly tackled by the separation of concerns between type-level and
instance-level TOSCA approaches.

Although the extensions of TOSCA involve numerous aspects of the deployment, the
proposed changes to the language are non-intrusive and can be used within the
original language features. This means that the core logic of TOSCA templates is not
modified and that the model maintains the traditional structure of a TOSCA

application. A summary of these changes 1is presented in Table 5.

66

Table 5. Overview of the extensions to core TOSCA concepts.

TOSCA Feature Extended Summary of Changes (Indicative) Extension(s) Related Section(s)
Introduction of new fields relating to optimization
Metadata TimePeriod, CostThreshold Section 7.1
support
New node types are introduced to denote particular
Node_types processing characteristics that are desired on a prestocloud.nodes.agent.faas Section 6.4
processing node
New node templates are presented to allow Docker
Node_templates support, optimization support, as well as the expression prestocloud.nodes.fragment.faas Section 6.1
of edge-related attributes and coordination paradigms
New policies are added to indicate the manner in which prestocloud.placement.Gather,
Policies Section 7.2
application deployment should be managed prestocloud.placement.Spread
A new TOSCA relationship indicates the relationship of
Relationships prestocloud.relationships.executedBy.faas Section 6.4
the processing between components
A new TOSCA capability indicates the special
Capabilities prestocloud.capabilities.proxying.faas Section 6.4

processing capabilities offered by some devices

67

An important consideration related to the implemented improvements is the small
learning curve of the type-level TOSCA model, which allows a DevOps to quickly

become familiar with and inspect the structure of a cloud application.

6.1.Fragment and Processing Host Decoupling

A crucial aspect of the approach described in this work is the introduction of
optimization capabilities to the TOSCA template. Unfortunately, as most of the
existing approaches follow an analytical approach by specifying the topology in detail
(i.e., specifying the provider to be used at the time of model formulation and the exact
VM details), there is little room left for optimization. However, using the approach
suggested as part of this work, the optimizer determines the exact processing zone and
processing location. Furthermore, the number of fragment instances can be easily
changed from components external to those involved in the TOSCA generation
process (e.g., an adaptation Manager —see Figure 2) without adding unnecessary
complexity to the type-level model.

These advantages are only possible if a clear distinction between the software
components of the application from the hardware that they are installed on is made
using distinct TOSCA structures. Each application, therefore, consists of fragment
nodes (reflecting the software components), which are each related to a processing
node (reflecting the hosting hardware). Fragment nodes contain a description of a
fragment, which will run independently within the context of the application, while
the hardware and operating-system level requirements that are imposed by each
fragment are modelled on so-called “processing nodes”. Each processing node defines
a relevant TOSCA node type and each “fragment node” corresponds to an instance of
a TOSCA node template. While processing nodes are generic (and could possibly
each be used by many fragments), fragment nodes are tightly coupled to the fragment

that they describe—hence the naming of the nodes. Fragment nodes are mapped to

68

processing nodes, using “mapping nodes” (minimal TOSCA node templates). The
definitions of both processing and fragment nodes are based on the hosting
requirements expressed either through the annotations mechanism or the UL
Processing, fragment, and mapping nodes themselves are each defined in a new
TOSCA node type, respectively. An example of the relationships between processing,

fragment, and mapping nodes is illustrated in Figure 3.

imu_fragments_FaceDetector

+ype: prestocloud.nodes fragment.faas

properties

+id

+name

+ occurrences
+ docker_edge
+ docker_cloud

+ optimization_variables
deployment_node_imu_fragments_FaceDetector + health check

is executed on

processing host type fragment type
1 1

+type: processing_node_imu_fragments_FaceDetector requirements
+ execute: deployment_node_imu_fragments_FaceDetector
+ proxy: deployment_node_LambdaProxy

processing_node_imu_fragments_FaceDetector_4
+derived_from: prestocloud.nodes.agent.faas

requirements
+ host (cloud VM requirements)
+ host (edge VM requirements)

Figure 3. The relationships between fragment, processing, and mapping nodes.

An excerpt from the type-level TOSCA showing the sections related to the connection
of application fragments (according to the motivating scenario of Section 3.3) with

their respective processing nodes is shown in Listing 3.

deployment_node_imu_fragments_FaceDetector:
type: processing_node_imu_fragments_FaceDetector_4

imu_fragments_FaceDetector:
type: prestocloud.nodes.fragment.faas
requirements:
- execute: deployment_node_imu_fragments_FaceDetector
- proxy: deployment_node_LambdaProxy

Listing 3. The connection of fragments with processing nodes.

69

In the example in Listing 3, the “deployment node imu fragments FaceDetector” is
the mapping node, while the “imu_fragments FaceDetector” is the fragment node.
The “proxy” field of the fragment node indicates the mapping node that will host the
Lambda Proxy of the topology (this node is not part of Listing 3—see Section 6.4 for
more details). When the TOSCA blueprint is parsed, the TOSCA orchestrator will
deploy a Lambda Proxy, which will enable the deployment of the FaceDetector
fragment as a serverless function.

The processing node defining the type of mapping node
(processing node imu_fragments FaceDetector 4) that will be used to deploy the

above fragment (imu_fragments FaceDetector) is specified in Listing 4.

processing node_imu_fragments_FaceDetector_4:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: { in_range: [1, 2] }
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [x86_64, i386] }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- resource:
properties:
- type: { equal: cloud }
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:

70

-num_cpus: { in_range: [1, 2] }
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }

Listing 4. The description of a processing node.

As can be noted in Listing 4, the processing node definition allows for different
requirements for the cloud and the edge version of a fragment. This facility can be
used to adjust the processing requirements on edge devices, to account for the
disparity in performance between them and cloud instances.

Furthermore, in the case of fragments that should be only executed on edge devices, a
further constraint can be specified to ensure that candidate devices possess the
necessary sensors to acquire input. To represent this constraint, a sensors property was
introduced in the extended TOSCA compute node specification, which includes a list
of all required sensors. Any device that does not possess one or more of these sensors
is not eligible to host the particular fragment.

An example of the sensors property used to limit (using the TOSCA nodefilter
structure) possible hosts to those possessing a microphone and camera is shown in

Listing 5.

- Sensors:
properties:
- microphone: { equal: “/dev/snd/mic0” }
- camera: { equal: “/dev/video/camera0” }

Listing 5. Example of the “sensors” property.

6.2.TOSCA Specification of Fragment Nodes

Fragments are the central elements in the extended TOSCA document, as they contain

the actual business logic that will be carried out by the cloud application. Fragments

71

can represent software components that run on the edge, on the cloud, or both—using
the same or a different set of properties. The connection of fragments with processing
nodes and with their processing requirements is achieved using a new TOSCA
relationship.

The definition of a fragment node begins with a declaration of the type to which it
belongs. Immediately afterward follows the property segment, which begins with
generic information on the id and the name of the fragment. This information is
followed by the scalable and occurrences fields, which indicate if the fragment is
scalable and the number of instances that are needed for it to operate, respectively.
The specification of the number of occurrences at the fragment level drastically
reduces the size of type-level TOSCA files (the alternative would be to copy large,
identical specification blocks) and aids their comprehensibility. It is considered a
necessary step to allow the DevOps to define the number of instances available to a
fragment as a starting point to deploy the topology.

The major share of the fragment specification belongs to the definition of Docker
properties, either for edge or cloud versions of the fragment, or both. These properties
include the Docker image, the registry, the environmental variables, the specification
of port forwarding within Docker, and a custom Docker command line that can be
executed by the fragment (if needed). The ability to specify different properties on the
cloud and edge versions of a fragment provides the means for applications to adapt
their execution according to the resources of the host (generally inferior in an edge
device compared to a cloud VM). This is exemplified in Listing 6, where lower
precision is used for the edge version of FaceDetection and for more iterations in
order to diminish the probability of an edge device becoming overloaded (it is
presumed here that the face detection algorithm can either iterate more times using a
coarse model to detect faces in the image or fewer times by running calculations with
higher precision). On the other hand, the cloud version can operate at full

effectiveness, requiring a much lower number of iterations to verify the result.

72

Further, it is important to mention that environmental variables may be dynamic,
using the get property function available to TOSCA. Thus, IP addresses that are
unknown at the time of the deployment of the fragment may be denoted by a variable,
which is later replaced in instance-level TOSCA by an appropriate IP address.
Following the specification of Docker properties, the optimization variables section
contains the weights for the cost and distance criteria, while the friendliness criterion
accepts a list of providers and the weight that is assigned to each of them. The
optimization criteria for each fragment of the motivating scenario are specified in
Table 2. For example, the DevOps has set for the VideoStreamer fragment a weight
value of 8 for distance, a weight value of 2 for cost, a weight value of 1 for the
friendliness of the “Azure” provider, and a weight value of 5 for the friendliness of
the “AWS” provider (meaning that providers favoring low latency should be favored,
then the AWS provider, then providers offering low cost, and then any provider—
higher weights imply a higher preference for this criterion). This segment is
concluded by the definition of a custom health check command line and an integer
interval between two successive health check commands.

The last elements in the specification of a fragment are the mapping node that will
execute the particular fragment and the Lambda proxy which is related to the
particular fragment (if it is a FaaS fragment - for more details see Section 6).

Listing 6 provides the full specifications for an application fragment.

imu_fragments_FaceDetector:
type: prestocloud.nodes.fragment.faas
properties:
id: 3
name: imu_fragments.FaceDetector
scalable: true
occurrences: 1
docker_edge:
image: “face_detector_edge:latest”
registry: “local.prestocloud.test.eu”
variables: { “PRECISION”: “50”, “ITERATIONS”: “10” }
docker_cloud:
image: “face_detector_cloud:latest”

73

registry: “prestocloud.test.eu”

variables: { “PRECISION”: “100”, “ITERATIONS”: “2” }
optimization_variables:

cost: 1

distance: 1

friendliness: { “aws”: “5”, “gce”: “0”, “azure”: “1” }
health_check:

interval: 1

cmd: “curl health.prestocloud.test.eu FaceDetector”

requirements:

- execute: deployment_node_imu_fragments_FaceDetector
- proxy: deployment_node_LambdaProxy

Listing 6. Full application fragment specifications for the FaceDetector fragment.

6.3.Description of Instance-Level TOSCA
Although this work emphasizes the modelling capabilities offered by the introduction

of type-level TOSCA, instance-level TOSCA is also a major asset for the
reconfiguration of the application topology. As the instance-level document contains
the processing zone selected for each fragment, this information can be consumed by
components external to the generation of TOSCA templates to understand the mixture
of fragment instances that were deployed on edge devices and cloud VMs and to
improve the quality of the updated blueprint (e.g., by adding one more instance for a
component that is chiefly deployed on edge devices, which typically have lower
processing power).

The creation of the instance-level TOSCA document should be automatically
triggered each time a new type-level document is produced. This involves as a first
step the extraction of the information contained in the type-level TOSCA document
by the optimizer. The cost constraints and the related time interval included in type-
level TOSCA are evaluated to create an average cost that is admissible for the
topology. Then, the collocation and precedence constraints are evaluated, as well as
the optimization preferences provided in each fragment, to determine the final
deployment of the application (for more details on the optimization process see

Section 7.3). It is clear that the policies segment contained in type-level TOSCA is not

74

necessary in instance-level TOSCA, as the constraints included there are taken into
account during the allocation of resources. If the optimizer can produce a valid
configuration satisfying the constraints of the topology described in the type-level
document, this configuration should be sent to the instance-level TOSCA generator,
which should produce the final instance-level TOSCA document.

The average cost of the suggested deployment is evaluated against the maximum
admissible cost threshold of the DevOps. If it is lower, it is admitted and the
deployment can be implemented. The processing resources, networking configuration
details, as well as the cost of the VM or edge device used are then added for each
fragment to new “node_type” definitions of the processing nodes that will host them.
The TOSCA type of each processing node is different to represent different edge
devices and cloud providers. Thus, provider-specific information can be abstracted in
the definition of certain normative TOSCA “provider types”.

Besides, the instance-level TOSCA template shares with the type-level TOSCA
template the definitions of fragments, as well as the relationships between fragment
nodes and mapping nodes.

An example description of a processing node in instance-level TOSCA is described in

Listing 7.

processing node_fragments_FaceDetector_1:
type: prestocloud.nodes.compute.cloud.amazon
properties:
type: cloud
network:
network_id: s-gbdpncis
network_name: subnetl
addresses:
-192.168.1.1
capabilities:
resource:
properties:
type: cloud
cloud:
cloud_name: amazon_publicl
cloud_type: amazon

75

cloud_region: us-east-1
host:
properties:
num_cpus: 2
mem_size: 4.0 GB
disk_size: 50 GB
price: 0.120000

Listing 7. Processing node specifications for instance-level TOSCA.

In instance-level processing nodes, the information described in the form of
constraints in type-level TOSCA should be concretized into specific details. The
number of CPUs, the memory, and the disk size are all fixed values; the cloud
provider and the cloud region are also chosen. These fixed values come from the
solving process of the optimizer (see Figure 2), which considers the available hosting
candidates with respect to the pre-defined optimization goals, as detailed in Section 7.

Moreover, networking information is available for the particular instance.

6.4.FaaS Paradigm architectural elements definitions

The new node types proposed for TOSCA both allow the representation of FaaS and
other distributed software paradigms, in which there is a coordinator of execution that
handles a number of workers. It is assumed that these distributed software paradigms
are followed by one or more of the application components. Although here the
definition of FaaS node types is proposed — so that they can also be exploited by other
TOSCA applications — the definition of suitable node types for other distributed
execution paradigms is feasible as illustrated in [35].

FaaS-based applications are assumed to consist of a set of application fragments that
are independent of other application components and have a self-contained execution
flow. Fragments are assumed to be hosted inside Docker containers, which are in turn
hosted inside VMs. Access to fragments is allowed through REST calls, which are
managed by a publicly-facing load-balancer component. If more than one fragment

type are managed by the load-balancer, the component is referred to as a Lambda

76

Proxy, since it serves as a proxy for AWS-Lambda-like, serverless functions. Unlike
some serverless platforms, which limit the processing time and the languages that can
be used to develop functions, the proposed approach supports all fragment types that
can be dockerized, running for any desired amount of time.

Fragments following the FaaS paradigm use the custom
prestocloud.nodes.fragment.faas fragment type. The “proxy” field of the fragment
type accepts the name of the Lambda Proxy mapping node that will manage requests
to this fragment. FaaS fragments are installed on FaaS agents (workers), which are
modelled using the prestocloud.nodes.agent.faas type. FaaS agents satisfy by
definition the prestocloud.relationships.executedBy.faas relationship required by FaaS
fragments. FaaS Lambda Proxies are modelled with the prestocloud.nodes.proxy.faas
type and possess the prestocloud.capabilities.proxying.faas capability, which allows
them to coordinate worker agents hosting a FaaS fragment. The relationships between
FaaS fragments, their executing processing nodes, and the Lambda Proxy can be seen

in Figure 4.

77

LambdaProxy

@fragment_name

+type: prestocloud.nodes.fragment

+type: prestocloud.nodes.fragment.faas

properties

+id

+ name

+ occurrences

+ docker_edge

+ docker_cloud

+ optimization_variables
+ health_check
requirements

+ execute: deployment_node_lLambdaProxy

properties

+id

+ name

+ ocecurrences

+ docker_edge

+ docker_cloud

+ optimization_variables

+ health_check

requirements

+ execute: deployment_node_@fragment_name
+ proxy: deployment_node_LambdaProxy

1
fragment type

is executed on

processing host type
1

is proxied by

1 1
Faa$S fragment type |fragmenttype

Lambda Proxy type
1

deployment_node_LambdaProxy

+type: processing_node_LambdaProxy 0

pmcassing_mde_.Lambdamey_{]

+derived_from: prestocloud.nodes.proxy.faas

requirements
+ host (cloud VM requirements)

Figure 4. The relationships between the fragment, processing, and mapping nodes of the Lambda Proxy

and the proxied FaaS fragments

As mentioned before, additional software paradigms can be defined using this
approach. Moreover, more than one of these software paradigms can co-exist in the
same FaaS application and each may function independently from the others. As long
as each of these software paradigms will have a coordinator node, which will handle

many agents, the relationships between coordinator, processing, and fragment nodes

is executed on

processing host type
1

deployment_node_@fragment_name
+type: processing _node @fragment_name

processing_node@fragment_name
+derived_from: prestocloud.nodes.agent.faas

requirements
+ host (cloud VM requirements)
+ host (edge VM requirements)

within an application topology are depicted in Figure 5.

78

Application

' Agent nod

Connects to

Connects to

Connects to

[——

Figure 5. The structure of the topology template segment in a coordinator-driven, type-level TOSCA
blueprint. Multiple agent nodes may be connected to one coordinator node and there can be an arbitrary

number of coordinator nodes.

79

7. Optimization and Application Constraints in Faa$

applications

The TOSCA extensions that are introduced include support for the optimization of the
deployment of fragments. Type-level TOSCA processing nodes specify ranges of
satisfactory values for most of their attributes (e.g., cpu cores, available ram and disk
space). This permits a reasonable number of alternative providers to be researched for
the availability of similar VMs (in resources), while ensuring a minimum performance
standard. The final selection of provider resources and edge devices should obey the
coarse-grained and fine-grained constraints set for the application, as well as any

placement policies set for one or more fragments.

7.1.Coarse-Grained Application Constraints
The vanilla TOSCA language specification [7] already permits the definition of a
metadata segment inside the TOSCA file. In this work, this native construct will be
used to hold extended constraints and preferences of the application. Its key-value
body contains: the data relevant to the business goals pursued by the application; the
providers that are preferred or excluded; and the budget constraints that should be
respected. These constraints can be used by the optimization engine to select the most
appropriate flavor and locations for the processing nodes.
An example of the usage of metadata fields to denote some of the constraints outlined

above is presented in Listing 8:

metadata:
template_name: IMU generated types definition
template_author: IMU
template_version: 1.0.0-SNAPSHOT
CostThreshold: 1000
TimePeriod: 720
ProviderName_0: OpenStack_local

80

ProviderRequired_0: false
ProviderExcluded_0: true
MetricToMinimize: Cost

Listing 8. Example of metadata fields used for application-level constraints.

In the above example, aside from some generic informative fields concerning the
particular template version, the name, and the author, definitions exist for the business
goals, provider, and budget requirements related to the application as a whole. The
budget available is set to 1000 monetary units (e.g., euros), which should be used over
a time period of 720 h. The “OpenStack local” provider is set to be excluded, and the

primary objective to be minimized is set to “cost”.

7.2.Fine-Grained Constraints and Optimization Criteria

As mentioned in Section 6.2, in each fragment definition, a number of optimization
criteria are identified, namely the cost, distance, and friendliness. The cost
optimization criterion reflects the monetary cost of choosing a particular hosting VM
for a time period. The distance optimization criterion reflects the distance of the host
of the fragment from the centroid of a user group related this fragment, e.g. the edge
devices contacting it. The friendliness criterion reflects a preference towards a
particular cloud provider (for any reason, e.g., data locality). While these criteria are
modelled in a specific construct, more optimization criteria can of course be defined
to supplement or replace the above. An example of the specification of optimization
criteria appears in Listing 6.

Additionally, these application constraints can be coupled with a set of tools that
enables the DevOps to guide the deployment of fragments by considering their
relationships. It is suggested to implement these using a set of proper placement
optimization policies. In the context of TOSCA, three different optimization policies
are introduced: collocation policies, anti-affinity policies, and precedence policies.

The formal definitions of these policies appear in Listing 9.

81

Input
xi:Cloud providers

fi:Fragments

di:Devices

Provider: f — x Function mapping from fragments to providers

Hosting: d —f Function mapping from hosting (edge) devices to fragments

DeploymentTime: f — R* Function mapping from fragments to the positive real numbers

Policy definitions

Collocated (fi, fj) — Provider(fi) = Provider (fj)

Collocated(fi f fx,...,fr1,fn) = Collocated(f,fj) and Collocated(f,fx) and
Collocated(fi, fn)

and Collocated(f;f) and...and Collocated(f;fr) and ... and Collocated(fn-1,fn)

Antiaffinity(f; fj) —Provider(fi) # Provider(f;)

Antiaffinity (fififx... fr1,fn) = Antiaffinity(fifj) and Antiaffinity(fif) and ...

Antiaffinity(f,fn) and Antiaffinity(fifx) and ... and Antiaffinity(f,f.) and
Antiaffinity(fn1,fn)

Precedence(fi f)) — DeploymentTime(fi) < DeploymentTime(f;)
Precedence(fifj...,fr) — DeploymentTime(fij < DeploymentTime(fj)) <
DeploymentTime(fn)

and

and

and

Excluded(fi,(di,dz,...,dn)) — not Hosting(dyfi) and not Hosting(dzfi) and ... and not

Hosting(dn,fi)

Listing 9. Formal definitions of optimization policies.

The collocation policies which are introduced as part of this work indicate that a

fragment should be collocated with other fragments (using the same cloud provider),

unlike the collocation policies that are briefly mentioned in the TOSCA

specifications, which imply the use of the same compute node. This allows low-

latency communication and results in improved compatibility and communication

between processing nodes. However, the optimization component cannot consider the

option of using different cloud providers for the fragments to lower the total costs. In

82

the motivating example, a collocation policy is needed for the VideoStreamer and
VideoTranscoder fragments (Table 2).

Anti-affinity policies specify that a fragment should not be collocated with other
fragments. This results in the placement of this fragment and all target fragments in
different cloud providers (and is, thus, different from the anti-collocation policies
briefly mentioned in the TOSCA specifications). Using this policy can enhance the
security of a critical information system that is communicating with a potentially
vulnerable component (as it is easier to isolate systems in case of a breach) or can
ensure that processing can be decoupled, location-wise. However, this also means that
the optimization component cannot request instances from the same provider for the
fragments, and as a result some of the lower-cost options might be lost. In the
motivating example (Table 2), an anti-affinity policy is needed for the AudioCaptor
and PercussionDetector to ensure that (violent percussion) detection happens reliably
and quickly (i.e., away from edge nodes on which AudioCaptor fragments are hosted).
Precedence policies describe that fragments should be instantiated and deployed in the
order that is mentioned. An advantage of precedence policies is that all required
interfaces—indicating data needed from a data flow for each component—are
automatically satisfied by the time they are instantiated. Precedence policies
guarantee the satisfaction of interfaces, however increased deployment time is
required in return, as Docker containers should be spawned sequentially.

Device exclusion policies ensure that fragments are optimally scheduled for
processing at the edge. They enhance the response of the system by marking a certain
set of devices as unsuitable for deployment—therefore being excluded from the
scheduling of instances of a particular fragment. The suitability of a device for a
fragment depends on historical data processing results and the availability status,
which can be detected and analyzed using machine learning techniques (for more
details see [71]). The details of such a component are not detailed here, since this is

considered out of the scope of this article.

83

The placement policies are modelled at the level of TOSCA using the fragment nodes.
They offer a significant benefit over the usage of native TOSCA relationships, in that
they permit the easy visualization of the most important constraints associated with
the deployed application. In addition, the implementation of their enforcement is more
straightforward compared to the resolution of TOSCA relationships between
fragments.

An example of the four deployment policies based on the motivating example is

included in Listing 10.

Topology_template:
policies:
- collocation_policy_group_0:
type: prestocloud.placement.Gather
targets: [imu_fragments_VideoStreamer, imu_fragments_VideoTranscoder]

- anti_affinity_policy_group_0:
type: prestocloud.placement.Spread
targets: [imu_fragments_PercussionDetector, imu_fragments_AudioCaptor]

- precedence_policy_group_0:
type: prestocloud.placement.Precedence
targets: [
imu_fragments_VideoStreamer,imu_fragments_VideoTranscoder,imu_fragments_FaceDetect
or,imu_fragments_MultimediaManager,imu_fragments_AudioCaptor,imu_fragments_Percus
sionDetector]

- exclude_fragment_from_devices_0:
type: prestocloud.placement.Ban
properties:
excluded_devices:

- “a6f2:d8bd:bf45a:de2a:d1e8:5£58:c256:0492”,
- “c2c1:def1:2c38:¢83b:6b0d:b7bd:a0d2:95¢2”,
- “b3ef:58d8:39d0:86ce:81d2:6€93:5f7d:23cd”,
- “b28e:9£32:2076:3599:39¢3:6¢c5:794a:5140”

targets: [imu_fragments_VideoStreamer]

Listing 10. Full example of the available deployment policies.

84

7.3.Constraints and Optimization Handling

The enforcement of the optimization policies presented in this work is delegated to
the optimization engine that consumes the type-level TOSCA. Additionally, in order
to provide a clearer understanding of the effects of each optimization policy, the
necessary steps to be performed by any optimizer implementation process are
described.

It is considered that the optimizer first retrieves the available cloud provider VM
types and edge devices that can be used for the deployment. Then, any device
exclusion policies are applied and the excluded edge devices are removed from the
candidate hosts. If there are not any contradictory policies (e.g., an anti-affinity policy
and a collocation policy set for the same set of fragments, or cyclic precedence
policies), a list of valid configurations that satisfy all collocation and anti-affinity
policies is proposed; otherwise, the list of valid configurations is set as empty. In the
creation of valid configurations, precedence is given to the assignment of fragment
instances to edge processing hosts satisfying the requirements of a fragment. If the list
of valid configurations is not empty, the configurations are sorted according to the
optimization criteria that have been defined, and the best configuration that satisfies
the global constraints should be chosen to be translated to instance-level TOSCA.
Otherwise, if no configuration is found to satisfy the constraints and deploy all
fragment instances, the deployment fails and the DevOps should resubmit a new type-
level template. Finally, at deployment time, the containers of different fragments
should be started according to the priority, which is set in one or more precedence
policies.

The process described above appears in pseudocode in Listing 11. No optimization of
the data structures and algorithmic logic is performed, as the intention is to provide an

easy-to-follow overview of the proposed process.

85

Input

X:Cloud providers
F:Fragments
D:Candidate Edge Devices

CLP:collocation policies
AAP:anti-affinity policies
PRP:precedence policies

DEP:device exclusion policies

Algorithm

for fragment in F
for collocation-policy in fragment_CLP

for anti-affinity policy in fragment AAP

if collocation-policy contradicts anti-affinity-policy then return

FAILED_DEPLOYMENT

for precedence-policy in fragment_PRP

for other-precedence-policy in fragment_PRP

if precedence-policy = contradicts other-precedence-policy = then return

FAILED_DEPLOYMENT

for fragment in F
for device in fragment_DEP

D « D-{device}//remove the device from the eligible hosts

Configurations « find_eligible_configurations (F,D,X)

Configurations « apply_coarse_grained_application_constraints (Configurations)

if Configurations is not Empty
maximum_utility « -eo
best_configuration <— None
for configuration in Configurations
configuration.utility <— calculate_utility_from_optimization_criteria (configuration)
if configuration.utility > maximum_utility then
maximum_utility < configuration.utility
best_configuration < configuration
return best_configuration
else return FAILED_DEPLOYMENT

Listing 11. Optimization process pseudocode.

86

8. FaaS application elasticity with Severity-based elasticity rules

8.1.Elasticity Rules

In this work, elasticity rules are defined as directives which indicate firstly the QoS
limits of normal operation of an application, and secondly the horizontal elasticity
action which should be taken to accommodate the needs of the application when these
limits are trespassed — scaling in or scaling out. The QoS limits can be specified in
terms of any measurable metric, including custom metrics. Rules are assumed to be
entered by a DevOps who possesses significant experience and knowledge on the
application which is deployed and monitored. Contrary to static rules which specify
one concrete set of conditions, and one concrete set of actions, the proposed elasticity
rules require less input for their definition. The DevOps should specify the QoS
conditions which trigger the rule, but in the action part of the rule, only the scaling
direction is required and not the number of instances which should be added/removed.
This allows a flexible response action, which may be decided using a variety of
techniques as demonstrated in Section 8.4. With elasticity rules, the triggering
conditions of a rule and the adaptation — the concrete actions — are separated
conceptually; the suggested approach assumes that a DevOps is primarily interested in
defining the criteria indicating that the application functions correctly, rather than the
exact adaptation action which will be followed.

The format of an elasticity rule can be found in Listing 12.

For component_id = component_id
if (attribute_1) s attribute_1 value and (attribute_2)
S attribute_2 value and ...and (attribute_n)
S attribute_n value
within Timewindow
= Timewindowand Cooldownperiod has passed from previous adaptation
then Scale_out / Scale_in

Listing 12. Elasticity rule format.

87

https://en.wikipedia.org/wiki/%E2%89%B6
https://en.wikipedia.org/wiki/%E2%89%B6
https://en.wikipedia.org/wiki/%E2%89%B6

Any number of QoS attributes connected with the “AND” logical operator can be
entered. While “OR” logical operators are not allowed to be used alongside “AND”
logical operators, multiple elasticity rules can be enforced in parallel. Additionally,
non-bounded attributes, e.g., response time, are supported, provided that a threshold is
set by the DevOps. Furthermore, the DevOps defines the time-window over which
this rule is calculated (e.g., 10 minutes), and the cooldown period which should elapse
between two triggerings of the rule.

An instantiated example of an elasticity rule appears in Listing 13:

For component_id = VideoTranscoder

if AverageCPU_ yster > 70% and AverageRAM .yster > 70%

within Timewindow = 10 minutes

and 30 minutes have passed from previous adaptations then Scale_out

Listing 13. Elasticity Rule example.

When the thresholds set by the DevOps for the monitoring attributes expressed in an
elasticity rule are violated, a violating situation is detected, and an elasticity rule is

triggered. Onwards, a violating situation shall be referred to simply as a ‘situation’.

8.2.Situation Severity

Once a situation is detected, the adaptation manager should be invoked, to determine
the adaptation action which should be taken. To assist this decision (horizontal scaling
in this work), the ‘Severity’ of the situation is assessed. Severity quantifies the rough
magnitude of the violation of the thresholds of the attributes used in the elasticity rule.
The values of all violating attributes are used, and weights are assigned to each of
them to indicate their relative importance. Higher values of Severity indicate that
more pronounced changes to the application should be made (i.e., more
VMs/containers hosting a function should be added/removed).

The Severity of any detected situation Vyiolating = (V1,V2,...,Vn) 1S determined as shown

in Equation 1.

88

n
Severity(Vyioiating) = Z w; - (Normalized(v;))?
i1

Equation 1. Calculation of the Severity of a situation.

In Equation 1, v; are the individual, threshold violating QoS attribute values
comprising the particular situation, w; are their respective weights and n is the number
of attributes included in the triggered elasticity rule. For each of the vi values it is
assumed that v; € [0,1].

While the definition of Severity allows for the usage of different weights for each of
the attributes being evaluated, in the remainder of this work it is assumed for
simplicity that all weights are equal to 1. Following the definition of Severity
(Equation 1), the maximum Severity value for a situation is observed when all
attributes have reached their maximum normalized values, i.e., 1 and is equal to Vn.
Having chosen the weight values for each attribute, the calculation of Severity relies
on obtaining the normalized values for each of the attributes. For each attribute v; -
threshold t; pair in the rule, the normalization formula in Equation 2 is used in cases of
attributes that need to be greater than their threshold and Equation 3 is used in case of
attributes that need to be less than their threshold.

abs(v; — t;)
abs(maximum (attribute;) — t;)

Normalized(v;) =

Equation 2. Variable normalization in the greater-than case.

abs(v; — t;)
abs(t; — minimum (attribute;))

Normalized(v;) =

Equation 3. Variable normalization in the less-than case.

89

Equations 2 and 3 are applicable in the case of attributes which are bounded. In the
case of unbounded attributes — for example response time, the denominator of
Equation 2 and Equation 3 is unknown, and therefore the normalized value is not
computable. In such cases, the unknown or unavailable bounds of the attribute can be
estimated using past observations. For the estimation of the bounds Chebyshev’s
equation [72] can be used, or a custom percentile value (e.g 90" percentile) or a
‘sufficiently’ high or low value under or over which all values will also be considered
to be minimum or maximum respectively. As the last two estimation modes are
straightforward, the first estimation mode is elaborated on below.

To estimate bounds using Chebyshev’s equation it is assumed that each attribute
follows an arbitrary distribution and that the attribute — random variable is integrable,
has a finite expected value y, a finite non-zero variance 6 and a standard deviation .
It is considered that determining that 96% of the samples of the attribute are within an
upper and a lower bound, provides an adequate estimation of the maximum and the
minimum value respectively. In this case, only 4% of the samples will be outside
these boundaries. Substituting this probability value in the left handside of [72], and
solving for k it is determined that k=5. The conclusion is then that the contrapositive
argument, i.e., that all samples of a distribution will be contained inside the
boundaries with a probability of 96%, is true as long as the samples are within 5
standard deviations of its mean value.

To illustrate, using the example of response time — which does not have an upper
bound — let it be assumed that current observations for this attribute indicate an
expected value p = 200msec, with a standard deviation of 30msec. Then, the
probability of measuring a response time X, being retarded more than 5 - 30msec =
150msec from the expected value (200msec) is less than 4%. The upper bound of the
distribution can then be estimated to be 200+150=350msec with 96% probability.

The expected value and the standard deviation of the distribution is calculated as the

arithmetic mean over a window of the last z samples of the distribution — a number

90

which can be configurable. The greater the value of z, the more the arithmetic mean
will approach the expected value of the distribution (provided that the distribution is
unchanged). The smaller the value of z, the more susceptible are the bounds to
changes in the distribution of unbounded variables. ‘Upper’ and ‘lower’ bounds are

updated dynamically using a sliding event window.

8.3.Severity Zone Calculation

Although Severity provides an assessment of the Severity of a situation, a means is
needed to group situations by their Severity. Considering that a detected situation with
p attributes is represented as a point in p-dimensional space by Vviolating, Situations
having similar Severity values form circular annuli, spherical shells or hyper-spherical
shells (depending on whether p = 2, p = 3, or p = 4 respectively). These regions are
called ‘Severity zones’ and are used by the Simple severity zones and Relative
severity zones techniques presented below.

The rationale behind both of these techniques is that similar Situations in terms of
Severity should result in same adaptation actions. For this reason, ‘Severity zones’ are
introduced. The real number interval [0, v/n] reflecting all possible Severity values for
a given set of metrics is divided into m equal sub-intervals. Each such sub-interval is a
Severity zone (Table 6).

Table 6. Severity zones bounds.

Severity Zone Sub-interval lower bound Sub-interval upper bound
1 0 Vn
m
2 vn 2\n
m m
3 2Vn 3vn
m m
m (m—1)Vn Vn
m

Zones containing situations with Severity values with numbers closer to 0 will result
in milder adaptation actions, while Severity zones closer to v/n (the maximum value
of Severity) will result in more instances being added to/removed from the
application. Choosing higher values for m indicates that finer-grained adaptation
actions are required. On the other hand, choosing lower values for m increases the
amount of historical data available for each adaptation action (if Severity values are
logged), which might be beneficial if zone adaptation is considered.

Adaptation decisions are made under the assumption that the Severity value
calculated from a random situation can belong to each zone with equal probability —
in order not to bias the triggering of a particular adaptation decision — and thus obtain
results which are relevant to the situations included in the particular Severity zone. To
satisfy this requirement, it is needed to define all Severity zones to have equal area (or
volume, or hypervolume, in the case of 3 and more attributes-dimensions).
Furthermore, it is required that equal Severity values should trigger the same
adaptation actions. In the case of two attributes, finding an analytical expression to
determine the splitting of a square area zone to three equal zones, also satisfying the
requirement for equal Severity values, is a difficult but nevertheless achievable task.
However, as the number of dimensions increases to three or more, the problem
becomes greatly exaggerated. This means that a solution based on an alternative

mathematical principle should be found.

92

Average

0

Average

Figure 6. The situation space of the example Elasticity rule of Listing 13, split into 3 equal Severity

Zones.

Such a solution is possible, if a solution based on a random simulation is considered.
For this purpose, the normalized monitoring attribute values for situations having k
normalized attributes are simulated, by retrieving random points s; from the Cartesian
product of possible normalized values of each of the k attributes. Since normalization
converts the values of attributes to percentages, it is required that s; €
[0,1]x[0,1]x...x[0,1]. Each point s; reflects the values of the monitoring attributes of a
possible detected situation. The choice of each s; is uniformly random, so it can be
assumed that the number of points which should belong to each of the Severity zones
will be equal, if their volume (i.e., event space) is equal. Thus, a number of p random
points is chosen and sorted. Then, supposing that there exist m zones (areas) which
should be determined, the ratio z = |p/m| is determined, where z is the number of
points per area. Finally, the maximum Severity values for the first m-1 zones are
calculated (the last Severity zone always has the value of v/n as already stated above)

by calculating the Severity value of the (i-z)th element, where 1 <i <m— 1.

93

When these values are known, the Severity zone of a detected situation can be
determined by comparing the Severity value calculated to the Severity values of each
Severity zone.

The complex calculations outlined above, are based on a simple Markov Chain Monte
Carlo simulation which is a well-established technique in the field of engineering.
Although the calculation of complex integrals which is needed in this — and in more
complex cases — is difficult to perform in an analytic fashion, the Markov Chain
Monte Carlo simulation provides a satisfactory approximation which can readily be

used.

8.4.Cloud adaptation techniques

In this Section different techniques based on Severity are presented, each of which
guide application adaptation in a different manner. Further and in order to highlight
the novelty of this approach, adaptation techniques based on the commercial offerings
of major cloud vendors are also presented. The latter are used as a baseline in Section
9.2 and Section 9.3 to aid evaluating the usefulness of Severity. Sections 8.4.1 and
8.4.2 describe two techniques which are based on commercial offerings discussed in
the state-of-the-art analysis (Section 4). In Sections 8.4.3 through 8.4.9 seven
Severity-based techniques are defined, which can each govern the scaling of an
application. Each of these techniques serves adaptation using a different way to spawn
and deallocate instances. The efficiency of each design based on simulations is
portrayed in Section 9.2, and for some of these techniques in a realistic setting, in
Section 9.3.

While designing any technique using the Severity value, one should be prepared to
balance the detail of the response between small load fluctuations and the need to
handle sudden workload peaks or troughs, which theoretically can be several times
bigger/smaller than the current workload. Here, seven basic flavours are discerned:

Absolute severity value, Normalized absolute severity value, Normalized absolute

94

severity control loop, Simple severity zones, Relative severity zones, Severity value
and Normalized severity value. In the equations presented below, it is assumed that
the absolute Severity value is as, Severity value of a situation is s, the Severity zone
of the situation is sz, the Severity value of the threshold is ts and that the maximum
Severity value possible is ms. The current number of instances of an application is
assumed to be ci and the new number of instances after the adaptation is assumed to
be ni.

With the exception of the Maximum attribute control loop technique, the adaptation
instances which are determined by each technique in an adaptation action, are
rounded to the nearest integer. The Maximum attribute control loop technique uses as
an exception the ceiling value of the calculated number of adaptation instances.

Table 7 summarizes the design traits of the methods to be discussed in the next
subsections. Each method is characterized by its origin (whether it attempts to
simulate related commercial offerings) and its dynamic behaviour. If a method uses
more than one metric value present in an SLO rule, to establish the suggested new
number of instances, a positive indication appears in the third column. Similarly, if it
can spawn or deallocate a non-predefined number of instances, a positive indication
appears in the third column. Finally, the fourth column provides a measure of the
relative number of instances the method is expected to change in a scaling event.
Methods exhibiting similar characteristics use input data (the threshold, the metric
values) in a different manner, so they are proposed as possible alternatives which can

be more effective under different circumstances.

95

Table 7. Characteristics of adaptation techniques.

Technique

Simple threshold

Maximum attribute
control loop
Absolute severity
value
Normalized
absolute severity
Normalized
absolute severity
control loop
Simple severity
zones
Relative severity
zones
Severity value
Normalized severity

value

Inspired from Uses individual

commercial values from
offerings multiple metrics
v X
v Partly
X v
X v
X v
X v
X v
X v
X v

Dynamic
resource
(de)allocation

X

Aggressive
(de)allocation of

instances

Very Low
(Simulations), Low

(Realistic tests)

Medium — also depends
on the thresholds set

Very High

Medium

Low — also depends on

the thresholds set

Custom (In tests, was
configured as Low)
Custom (In tests, was
configured as Low)
High

Low

Techniques which feature higher dynamicity than others can potentially respond quite

well to sudden workload changes; however, they might also respond too aggressively

when a small workload change occurs, and thus be unstable. Still, techniques which

have lower dynamicity, might not be efficient in handling workload spikes, but can be

more stable when small adaptations are needed.

8.4.1. Simple threshold

The Simple threshold technique is inspired by the offerings of major cloud providers,

and the THRES technique described in [48]. It adds or removes one instance for as

96

long as the thresholds of a rule are violated. The new number of instances after an
adaptation is ni = citk (the plus sign is for a scale out rule and the minus sign for a
scale-in rule). The value of k was chosen to be 1 in the case of simulations and 4 in
the case of the realistic evaluation. Using lower k values, the aim of this technique is
to allow fine-grained adaptations (in this case it cannot efficiently handle sudden
workload changes) while using higher k values this technique tries to respond quickly

to workload fluctuations.

8.4.2. Maximum attribute control loop

The Maximum attribute control loop technique is inspired by the offering of the
Kubernetes HPA. The technique adds or removes processing instances, trying to keep
a number of monitoring attributes close to their thresholds and choosing the greatest
adaptation, i.e., the maximum number of instances which should be added/removed.
Its dynamicity renders it is suitable for both small and greater workload changes. The
attribute which triggers the greatest adaptation 1is referred to as the
‘maximum_attribute’ and its threshold as ‘maximum_attribute threshold’. The new

number of instances after a scale-out or a scale-in adaptation appears in Equation 4.

maximum attribute

ni = ci- - ;
maximum attribute threshold

Equation 4. New instances determined for a scale out rule using the Maximum attribute control

technique.

8.4.3. Absolute severity value

The Absolute severity value technique uses the absolute Severity value from a
situation, which is calculated by assuming that ti=0 in Equation 2 and Equation 3. In

techniques using the absolute Severity value, the values of the thresholds of each

97

metric are only used to trigger the rule, but do not affect the new number of instances.
The new number of instances after an adaptation using this technique is ni = ci(1+as)

As the maximum possible value of Severity increases linearly with the number of
attributes which are involved in a situation, this technique is oriented to handle sudden
spikes which are caused by a precise combination of multiple metrics. However, in
the case of smaller workload fluctuations it can introduce unnecessarily large

reconfigurations. As mentioned above, as reflects the absolute Severity value.

8.4.4. Normalized absolute severity

The Normalized absolute severity value technique tries to stabilize the instances of the
application using the normalized absolute Severity value — which is obtained by
dividing the absolute Severity value with the maximum possible Severity value. This
technique allows a reaction which is proportional to the actual metric values (and does
not use the threshold values except for its triggering). The new number of instances

after an adaptation using this technique is shown in Equation 5.

ni = ci (11%)

Equation 5. New instances determined for a scale out (plus sign) and a scale in (minus sign) rule using

the Normalized absolute severity technique.

As an example, if the absolute Severity of a scale in rule was calculated to be 1.2, the
maximum Severity for this rule is 2 and the current number of instances is 10, from
Equation 5 the new number of instances will be 4, meaning that 6 of the instances will

be deactivated.

8.4.5. Normalized absolute severity control loop

98

The Normalized absolute severity control loop technique tries to stabilize the
normalized absolute Severity value around the Severity value of the threshold. To
avoid continuous adaptations, an upper threshold and a lower threshold are used,
separated by a customizable margin inside which no adaptation is triggered. This
technique can be seen as a generalization of the Maximum Attribute Control Loop
technique of Section 8.4.2 to use Severity (also not using only the maximum value).
Depending on the thresholds set the technique can be very conservative (and stable)
or quite liberal in its recommendations. The new number of instances after an

adaptation using this technique is shown in Equation 6:

ni = ciici~(ﬁ—1)

Equation 6. New instances determined for a scale out (plus sign) or a scale in (minus sign) rule using

the Normalized absolute severity control loop technique.

where the #s value corresponds to either the upper or the lower threshold for a scale
out and a scale in rule, respectively.

As an example, if the absolute Severity of a scale in rule was calculated to be 0.9, the
upper threshold Severity for this rule is 0.6 and the current number of instances is 10,
from Equation 6 the new number of instances will be 5, meaning that 5 instances will

be deactivated.

8.4.6. Simple severity zones

The Simple severity zones technique uses the concept of Severity zones to find the
number of instances which should be added to the infrastructure which is currently
used. The flavour of the technique which was tested during the experiments used 3
Severity zones, which resulted in 1, 2 or 3 instances being added or removed from the

current infrastructure as appropriate. It can be viewed as a generalization of the

99

Simple threshold technique of Section 8.4.1 (being more aggressive when k<3, k
being the instances modified using Simple Threshold), using Severity. As the number
of instances it can spawn or deallocate are constant, this method is ideal for situations
in which the platform is stable and the workload is only gradually modified. The new

number of instances after an adaptation using this technique is shown in Equation 7:

ni = ci + sz

Equation 7. New instances determined for a scale out (plus sign) or a scale in (minus sign) rule using

the Simple severity zones technique.

As an example, if the processing infrastructure currently has 4 instances and the
Severity zone of a situation triggered by a scale out rule was found to be 2, from

Equation 7 the new number of instances will be 4+2=6.

8.4.7. Relative severity zones

The Relative severity zones technique uses the concept of Severity zones to add (or
remove) a percentage of the current number of instances to the processing
infrastructure. Hence it is more dynamic (in general) than the Simple severity zones
technique described in Section 8.4.6. Higher values of the k constant indicate more
pronounced adaptations. It is recommended that k -max(sz) <1, otherwise in
extreme scale-in adaptations all available instances will be deactivated (if no other
specific handling of this issue occurs). The flavour of the technique which was tested
in simulations used 3 Severity zones, and k=0.1. The updated number of instances

based on this technique is shown in Equation 8:

ni = ci(1+ k-sz)

Equation 8. New instances determined for a scale out (plus sign) or a scale in (minus sign) rule using

the Relative severity zones technique.

100

To illustrate, let it be assumed that a scale out rule has been triggered and the resulting
situation is in the second Severity zone while k=0.25. Then, if the current number of
instances is 4, two instances will be removed bringing the total number of instances to

2.

8.4.8. Severity value

The Severity value technique uses the value of the Severity which is calculated using
the value of each metric threshold as ti in Equation 2 and Equation 3. It is suitable
both for small and large workload changes. In the case though that the thresholds are
not tuned to the workload, it can be unstable and introduce a large number of
reconfigurations. The updated number of instances based on this technique is shown

in Equation 9:

ni =ci(lxs)

Equation 9. New instances determined for a scale out (plus sign) or scale in rule using the Severity

value technique.

For example, if a scale in rule has been triggered and its Severity is 0.5 while the
current number of instances is 4, two instances will be removed bringing the total

number of instances to 2.

8.4.9. Normalized severity value

The Normalized severity value technique uses the value of Severity calculated as in
the case of the Severity value technique, divided by the maximum Severity possible to
obtain a normalized (and smaller overall) result. This technique can be used to obtain
more conservative adaptation results when the thresholds are not known to be tuned to
the workloads, and also on workloads of smaller variability. The new number of
instances after the application of this technique appears in Equation 10, for scale out

and scale in rules respectively.

101

s
I = ci (1+—
ni ci(1+ s)

Equation 10. New instances determined for a scale out (plus sign) or scale in (minus sign) rule using the

Severity value technique.

To illustrate, if the Severity value of a scale out rule was found to be 1.0, the
maximum Severity value is 2.0 and the current number of instances is 10, the new

number of instances will be 15, meaning that 5 new instances will be added.

8.5.1llustrative scenario

In this section, a walkthrough of the situation detection process is provided, from the
monitoring data published by instances comprising the cloud application to the
adaptation which is decided. The focus is on the calculation of the Severity value, and
how this can be translated to an adaptation using the Simple severity zones technique.

Assuming that the elasticity rule illustrated in Listing 13 (repeated here for

convenience) is used to process incoming events:

For fragid = VideoTranscoder

if AverageCPU_ jyster > 70% and AverageRAM .iyster > 70%

within Timewindow = 10 minutes

and 30 minutes have passed from previous adaptations then Scale_out

Listing 14. Elasticity Rule example

The above rule states that if the average CPU and memory usage on all devices
hosting the component ‘VideoTranscoder’, surpasses 70% in a time window of 10
minutes, a new scale out adaptation action decision should be issued — provided that

no previous adaptation event has occurred in the last 30 minutes (cooldown period).

102

8.5.1. Situation Detection

It is considered that at a certain time point, a new observation is detected, indicating
that over the last 10 minutes, the average values for CPU and RAM were 92% and
71% respectively. Moreover, no adaptation event has occurred in the last 30 minutes.
As the average CPU and RAM values are trespassing both thresholds which have
been set to 70%, the rule will be triggered, and a situation will be detected. To

calculate the Severity of the situation, the detected values should be normalized:

Normalized(CPU,) = “25O2 =70 _ 223,
ormanze V= abs(100 —70) _ 30 27

abs(71—-70) 1

= —~3.39
abs(100—70) _ 30 3%

Normalized(RAM,) =

In some of the techniques which were presented in Section 8.4, the absolute Severity
value is used. Had such a technique been considered, the detected attribute values
would not be normalized, and the original metric values would be used instead.

Once the final metric values to be used are known, the Severity of the situation can be

calculated:

Severity(CPU,RAM) = \/1 -0.7332 +1-0.0332 = 0.806

Listing 15. The calculated Severity of the situation.

8.5.2. Using Severity zones - based techniques

To accurately find the Severity zone for a detected situation, the number of Severity
zones be used is needed to be known, as well as the number of attributes which are
monitored in each situation. To satisfy the first need, throughout this work it is
assumed that three Severity zones will be used. To satisfy the second need, it can be
seen from the active rule (Listing 14), that there are two attributes which are

monitored (AverageCPUcluster and AverageRAMcluster). Following the random

103

point generation and sorting, the Severity zones are determined to have the upper
bounds indicated in Table 8.

Table 8. Upper bounds for three Severity zones with two attributes.

Severity zone Calculated upper bound
1 0.651
2 0.921
3 1.414

As already stated, the upper bound of each rule refers to the deviation from the
threshold values, which when normalized are equal to zero. The highest upper bound
of Severity zone 3 reflects the situation which has monitoring attribute values with the
maximum deviation from the thresholds set by the DevOps observed when all
monitoring attributes reach their maximum value, and is equal to v/n — in this case V2.
The Severity of the situation calculated in Table 8 is greater than the first upper
bound, and as a result the situation is marked as Severity zone 2. This can be
visualized in the following illustration, depicting the Severity classification of all
points which indicate a detected situation. The reported average CPU consumption is
indicated in the vertical axis, while the reported average RAM consumption is
indicated in the horizontal axis. Following the upper bound calculation method

presented above, the three Severity zones are depicted in Figure 7.

104

Attribute 1 IR ..
LN BN

b - .'.::?'-‘::" :’..‘...".‘: A
R A LD AP TS L
::-.. i T :' .'\.'ﬂ'."---:-

= AEuRE B o
— .t
.

G
94

a2

a2

a0

Detected Situation
Attribute 2

Figure 7. Severity zones in the case of two metrics and three zones.

As expected, the situation initially observed (average CPU = 92%, average RAM =
71%) is located inside the second Severity zone.

In the case of a more complex rule with three attributes and four Severity zones,
situations would appear as points in a three-dimensional space, and three spherical
shells would be needed to mark the boundaries of the zones. In Figure 8, red points
indicate possible situations, and the three shells indicate the limits of each Severity
zone. Situations which are ‘outside’ all shells belong to zone 4, while situations which

are ‘inside’ all shells belong to zone 1.

105

Atiribute 1 (e.g CPU)

80.0

Figure 8. Severity zones in the case of three metrics and four zones.

8.6. Prototype implementations

In the process of validating the usefulness of Severity, three prototype software
implementations using it, have emerged. First, a realistic application adaptation
manager — offering the functionality of the Situation Detection Mechanism (SDM),
using the Simple severity zones technique — was implemented. Then, a simulator was
created allowing the evaluation of the performance of Severity-based techniques
under ‘ideal’ monitoring and evaluation conditions. Finally, a lightweight adaptation
manager was created in order to evaluate the performance of the Simple severity
zones technique against other options. Evaluation results reported in Section 9 are
based on the use of the second and third (simulator, and lightweight) adaptation
manager implementations.

Below, details are provided for the first implementation — the ‘Situation Detection
Mechanism’ (SDM), which proves the feasibility of the suggested adaptation

approach. The source code of this software is publicly available in Gitlab [73]. An

106

overview of the subcomponents involved in the process of the situation detection and
the subsequent platform adaptation is provided in Figure 9 (which was created as part

of work [74]):

Edge Devices

Microservices,
Network Devices, ...}

3 Cloud Infrastructure _
e (D

Event Streams (over

QP and MQTT protocols)
4

12

Situations

Scalabilty | fjlaelzbi"tv . (Ej\"s?r‘:s (ISON - Situations Adaptations
rules (JSON (1SON format) format) 11 E(JSON \ (JSON

. - . ormat format
ormat) format) Events Situations)

Resources
Adaptation

Siddhi Uava Java
RabbitMQ, j Objects) RabbitMQ
Source publisher &
Extension & JSON Mapper
JSON Mapper

Recommender
Calculator

Execution
Controller

Rule siddhi Rules siddhi Severity Situation

interpreter EE"_E_C“tim Zone Detection
nvironment Calculatlon M echanlsnw

Figure 9. Architecture of prototype situation detection implementation. The numbers in the figure
indicate a conceptual flow of information.

The Situation Detection Mechanism is assumed to be part of a platform which
manages the adaptation of a cloud application by issuing appropriate scaling
directives. Therefore, the subcomponents illustrated in Figure 9 are not part of the
cloud application, but instead form the internal architecture of the SDM. The
architecture of the Situation Detection Mechanism is structured around the usage of a
common message bus, in this case the RabbitMQ> broker. This allows not only the
decoupling of subcomponents, but also an abstraction layer over the monitoring data
which is sent by monitored devices. The mechanism which is used to retrieve
monitoring data from the application is agnostic to the Situation Detection

Mechanism. The SDM can handle the monitoring of a processing infrastructure

3 https://www.rabbitmq.com/

107

https://www.rabbitmq.com/

composed of any kind of processing machines (VMs, Physical Machines PMs,
Containers, Network and edge devices), and receiving any number of processing
attributes values, with the proper configuration by the DevOps. Information on the
situations which are detected by the SDM is sent through the message bus to an
external component, the Resources Adaptation Recommender (RARecom), which
issues the actual scaling directives.

The input from the DevOps which triggers the monitoring cycle are the elasticity
Rules which are created using an appropriate user interface (UI). This user interface
allows the DevOps to select the monitoring metric(s) which should be monitored for a
particular component of the deployed cloud application, and the threshold(s) which
need to be set. Once an elasticity rule is received by the SDM, it subscribes to the
RabbitMQ broker which is directly connected with the infrastructure instances. Then,
it can start consuming monitoring events which are related to the metrics of the rule.
The flow of monitoring events appears over the message bus in the uppermost part of
the figure.

The Rule Interpreter module undertakes the conversion of elasticity rules to queries
understandable by the Siddhi streaming input processor [75]. These queries use
monitoring data to detect a new situation. To translate an elasticity rule, the
monitoring metrics which are specified in it are first determined. Then the source
(Siddhi stream) for these values is determined, and a suitable Siddhi query is
programmatically constructed to retrieve the values. In Listing 13 above, an example
elasticity rule which can be used to govern the scaling of an application outwards is
described. The representation of the generated Siddhi query for this rule can be seen
in Listing 16. It is assumed that cpu perc, mem perc, fragid and res inst are
monitoring attributes contained in a Siddhi monitoring stream named ‘serverStream’
(fragid is the component id and res_inst is a unique identifier of the monitored

resource).

108

define stream scalability_rule_stream (avg_cpu_perc double, avg_mem_perc double, fragid string,
res_inst string);

from serverStream#window.timeBatch(600 sec) [fragid == 'lcc5Fragment']

select avg(cpu_perc) as avg_cpu_perc, avg(mem_perc) as avg_mem_perc, fragid, res_inst
having avg_cpu_perc> 70 and avg _mem_perc > 70

insert into scalability_rule_stream;

Listing 16. Siddhi query created for example elasticity rule.

The check for a possible previous adaptation which could have happened within the
cooldown period is implemented by Java code which is external to Siddhi. Using
Siddhi, the SDM can detect when the monitoring attribute thresholds set in a rule are
surpassed in which case the elasticity rule is violated, and a situation is detected. Once
a situation has been detected it is associated with a Severity zone by the Severity Zone
Calculation module which performs the calculations which are required.
Subsequently, the detected situation and information related with its Severity is
published to the broker using an appropriate situation event for further processing by
the RARecom which will consume it. The RARecom can then process these events to
determine the number of instances that will be needed for the scaling adaptation
(according to the flavour of the Severity zones technique which is desired, or even

perform a new and independent assessment of the situation using another technique).

109

9. Evaluation

9.1.Comparative Assessment of the TOSCA modelling extensions

In order to evaluate the modelling extensions of the suggested approach, a comparison
is conducted between the extended TOSCA and one of the most prominent
commercial solutions, Terraform. Terraform was chosen as the most representative of
the other approaches in terms of features that are offered. Following this, a definition
of the example application presented in Section 3.3 is provided using both
approaches; Then, the advantages of each are highlighted. It is considered that the
application deployment should try to respect the optimization criteria specified in
Table 2.

The first question that should be answered concerns the choice of the cloud provider
that should be used. To create the Terraform template, it is assumed that the DevOps
of the application invests a thorough amount of time balancing the pros and cons of
deployment on a particular cloud provider, while also factoring in the requirements of
a particular fragment in order to choose the VMs that have the lowest price for a
satisfying deployment. This process is difficult, error-prone, and time-consuming. On
the other hand, the approach proposed in this work depends on an initial investment of
time to create a component able to solve a constraint programming problem.
Subsequently, the optimizer component will be able to automatically evaluate the
available cloud offerings and provide the most appropriate processing location for
each fragment instance.

The creation of the topology template of the fog application will now be considered,
firstly using Terraform. A major disadvantage of Terraform — and the majority of the
approaches listed in Table 9 — is that the mixture of edge and cloud devices should be
known beforehand and be static in order to accurately describe the topology.
However, the assumption of a static topology is very difficult to make, as it requires

considerable expertise on the offerings of cloud providers, while more importantly the

110

available edge resources are opportunistic. On the other hand, if the topology is not
static (and a tool similar to Kubernetes is used to abstract this), then there is a risk the
instances will be deployed on a possibly suboptimal location (in the case that the
cluster consists of both edge devices and cloud VMs, a component may be assigned to
a VM when an edge device could support it). Furthermore, in the case that two
processing clusters are used, one for edge devices and one for cloud VMs, it is
possible that the topology will not be deployable at all (for example, if a component is
set to be deployed on the edge cluster but there are insufficient resources in it).

For the purposes of this comparison, an assumption can be made (without loss of
generality) that aside from the public cloud resources, the application can also use
Raspberry Pi devices to host application fragments.

Based on these requirements, a simplified topology template (omitting most of the
network-related details), which can be created using Terraform, appears in Appendix
B. Listing 17 contains excerpts from this template, which will aid the comparison

with the suggested approach.

provider “aws” {
profile = “default”
region = “us-east-1”

}

Network configuration ...

resource “aws_instance” “FaceDetector” {
ami = “ami-2757f631”
instance_type = “t2.micro”
key_name = “${aws_key_pair.auth.id}”
vpc_security_group_ids = [“${aws_security_group.default.id}”]
subnet_id = “${aws_subnet.default.id}”
depends_on = [aws_instance.VideoTranscoder]

}

Other cloud components...

resource “aws_instance” “MultimediaManager” {
ami = “ami-2757f611”
instance_type = “t3a.medium “
key_name = “${aws_key_pair.auth.id}”

”

vpc_security_group_ids = [“${aws_security_group.default.id}”]

111

subnet_id = “${aws_subnet.default.id}”
depends_on =
[aws_instance.FaceDetector,aws_instance.VideoTranscoder,docker_container.percussion_det
ector]
}
Configure the Docker providers
provider “docker” {
host = “tcp://192.168.1.2:2375/”
}
provider “docker” {
alias = “worker_2”
host = “tcp://192.168.1.3:2375/"
}
provider “docker” {
alias = “worker_3"
host = “tcp://192.168.1.4:2375/”
}

Create a container

s

resource “docker_container” “video_streamer” {
image = docker_image.vs_image.latest
name = “vs_cont”

}

resource “docker_container

7o

audio_captor” {
provider = docker.worker_2

image = docker_image.ac_image. latest

name = “ac_cont”

}

resource “docker_container

s

percussion_detector” {
provider = docker.worker_3

image = docker_image.pd_image.latest

name = “pd_cont”

depends_on = [docker_container.audio_captor]

}

resource “docker_image

a

vs_image” {
name = “video_streamer:latest”

}

resource “docker_image

s

ac_image” {
provider = docker.worker_2
name = “audio_captor:latest”

}

resource “docker_image

s

pd_image” {
provider = docker.worker_3

name = “percussion_detector:latest”

}

112

Listing 17. Sample deployment using a Terraform template.

Similar to what is proposed in this work, this template can be used for repeated
deployments of the application relieving the DevOps from the need to manually
provision new processing nodes and instantiate software on them. Additionally,
Terraform (and other similar approaches) provides a mature, industry-backed,
domain-specific language—unlike the suggestion of this work, which is based on a
well-recognized standard but is a research effort. Furthermore, Terraform allows the
use of variables, which is not exploited in the approach proposed in this work. As a
result, components that are used in one use-case can also be used in a similar but
different setting by changing only a few values (for example by changing a variable
holding the deployment region for a resource or changing a variable holding the
Amazon Machine Image (AMI) that will be used by some resources).

However, the explicit nature of Terraform templates also means that they are not
easily adaptable. It is also difficult to define relationships between components, which
is a native characteristic of TOSCA. As a result, the detailed Terraform templates
need to be cautiously inspected by a DevOps to reveal any possible relationships
between components (if the DevOps was not involved in creating these templates). In
Terraform, expressing software architecture paradigms in a provider-independent
manner is a rather difficult task, as the only relevant tool that can be used is the
“depends_on” statement. In contrast, building on the ability of TOSCA to create
relationships and capabilities, the approach suggested in this work renders a template
that is much simpler and easier to understand (see Appendix A). This is especially
relevant in the case of function-as-a-service applications, as one can readily
understand the architecture of an application.

Continuing this evaluation, a scenario is considered during which the topology should
be adapted due to increased load and that two more processing nodes are required for
the VideoTranscoder fragment. This leads to a need for a template update to depict

the two new nodes that should be added to the topology. However, where should these

113

nodes be physically instantiated? Even if the unrealistic assumption that the DevOps
can know the most appropriate cloud site (e.g., in terms of cost and performance) is
made, choosing a cloud-based VM may be a suboptimal solution if one or more edge
devices could handle the processing of a fragment. Thus, the DevOps should be
additionally burdened with the knowledge of all edge devices that are available for
processing if any degree of optimization is sought. Clearly, while this approach is
inefficient with a small number of devices, it is totally inapplicable when a large
number of edge devices are used. The same argument applies to the knowledge of all
VM instance types offered by the cloud vendors. Even considering using automated
helper services (e.g., a script calculating a DevOps-defined utility value over all
nodes, also providing the best edge candidate nodes), the final confirmation of the
DevOps will be needed for any reconfiguration of the platform, which is impractical if
large-scale applications are considered. Moreover, in the case of small-scale
applications, there will always be a “man-in-the-loop”, devoting non-negligible
amounts of time and effort to implementing topology adaptation actions. For a
Devops, the handling of collocation and anti-affinity constraints is tedious in a
processing topology with a large number of fragments, but it is almost impossible
when the optimization of costs is also sought. The approach suggested in this work
however, paves the way for the usage of multi-objective scheduling based on
approaches similar to those in [76—78], which can handle multiple conflicting
optimization criteria that should be implemented by the optimizer component.

The current state-of-the-art in cloud application deployment is summarized in Table 9,
listing the most prominent approaches. The first column contains the names of each
approach, while the second column contains the type, which can be a programming
framework, a DSL, or an API. The third and fourth columns discuss the availability of
an abstract and an instance model view, which allow an overview of the application
and a more precise view of the topology, respectively. The TOSCA-based approach

which is described in this work is the only one aside from the CAMEL-based

114

approach providing a type-level model and instance-level model. Unlike CAMEL,
however, it also supports the modelling of execution on edge devices in a direct
manner. The fifth column discusses the ability of the approach to deploy a topology
utilizing multiple clouds. The sixth column indicates whether certain steps have been
taken by approaches to support the modelling topologies using both the cloud and
edge. In this context, if a documented methodology to handle edge devices as part of
the native language, API, or programming facilities (alongside cloud VMs) is natively
offered by an approach, it is considered to fully support cloud and edge deployments.
On the other hand, approaches that allow cloud deployment and permit deployment
on edge devices (although with manual modelling steps or limited optimization
opportunities) are considered to offer partial support for cloud and edge deployments.
The seventh column indicates whether the approach has the semantic enhancements
required to represent cloud-only, edge-only, and hybrid edge—cloud fragments in a
unified way. The eighth column indicates the ability to support the definition of
optimization criteria. The ninth column indicates whether there is support for the
representation of serverless functions. While the support of commercially available
function-as-a-service platforms (already offered by some of the existing approaches)
could be considered a reasonable further step for this work, its main focus is to allow
the automated creation and update of appropriate modelling constructs for custom

FaaS applications.

115

Table 9. Notable cloud application deployment approaches

AbstractInstance Multi-Cloud

Cloud and Edge Semantic Optimization FaaS
Name Type Model Model Topology Comments
Modelling Enhancements Readiness Support
View View Support
AWS
Cloudify DSL (TOSCA-Based) No Yes Yes Partial No No -
Lambda
Partial edge deployment support could be
Alien4Cloud DSL (TOSCA-Based) No Yes No Partial No No No implemented using the concept of “bring your own
node” (BYON) for hosting applications
OpenTOSCA DSL (TOSCA-Based No Yes Yes Partial No No Yes Faa$ support can be implemented as in [8]
Multi-DSL language built for multi-clouds
CAMEL DSL Yes Yes Yes Partial No Yes Yes deployment and recently extended for FaaS
support
Only few providers are actively backed by an
OocCcl API No No No Partial No No No
OCCI implementation
Provider-specific Provider- Provider- Provider- e.g., OpenStack Heat, Azure Resource Manager,
DSL No Yes No No
languages/ tools Dependent Dependent Dependent etc.
Partial edge deployment support could be
Terraform DSL No Yes Yes Partial No No Yes
manually implemented using a Docker provider
Programming- Partial edge deployment support could be
Pulumi No Yes Yes Partial No No Yes
language-based manually implemented using a Docker provider
This approach DSL Yes Yes Yes Full Yes Yes Yes Modelling of a custom Faa$S architecture is possible

116

9.2.Simulation-based Evaluation of Severity techniques

In order to evaluate the performance of adaptation techniques using Severity, a series of
experiments was made, varying both regarding the input of the DevOps (i.e., the
elasticity rules), and the characteristics of the incoming workload. This Section focuses

on the experiments which were carried out using a prototype workload simulator.

9.2.1. Benchmark & error metric choice

The rule approaches which have been adopted by some of the main commercial Cloud
vendors are based on the use of one or more static rules, which should be created by the
DevOps [48]. Using a Severity-based approach, the DevOps can opt to setup a single rule
for scale out, and a single rule for scaling in (per metric combination). Then, this rule can
be used as an input for a multitude of techniques based on the concept of Severity. In this
section the techniques which were discussed in Section 8.4 are evaluated through
simulations, along with the common approaches which are found in commercial rule-
based systems — using either Simple threshold (ST), or the Maximum attribute control
loop (MACL). Only one rule is used for scaling up and one rule for scaling down (using 2
attributes in the case of 2-metric workloads, 3 attributes in the case of 3-metric workloads
and 4 attributes in the case of 4-metric workloads). Specifically, the threshold pairs which

were tested appear in Table 10:

Table 10. The upper and lower thresholds of the elasticity rules which were used in Simulations.

ID Scale Out Rule Threshold (greater than operator) Scale In Rule Threshold (less than operator)
Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4 | Attribute 1 | Attribute 2 | Attribute 3 | Attribute 4
1 70 70 70 70 30 30 30 30
2 65 65 65 65 55 55 55 55
3 80 80 80 80 70 70 70 70
4 80 80 80 80 55 55 55 55
5 90 90 90 90 80 80 80 80
6 90 90 90 90 10 10 10 10

117

The maximum number of attribute values which were examined simultaneously was 4,
although the concept of Severity can handle an arbitrary number of metrics. Also, the
upper threshold for both attributes was chosen to be the same for both attributes, for
reasons of simplicity. At this point it is assumed that the nature of the workload is only
roughly known to the DevOps — which in turn does not allow the fine-tuning of the rules
and permits only a simple selection of the thresholds. Attributes 1 to 4 may reflect any
metric (e.g., CPU, RAM, Disk usage, Network bandwidth utilization etc.). The starting
point for these experiments is the definition of elasticity rules by the DevOps. These rules
dictate the scaling in or scaling out of the platform — also referred to as an adaptation
action — to accommodate the load which is induced by the cloud application. Then each
pair of rules in Table 10 was applied to handle the workloads presented in Figure 10,
Figure 11, Figure 12 and Figure 13, reconfiguring the application and collecting metrics
on its performance. The time window of the rules was set equal to one-fifth of the VM
spawn duration with a minimum duration of 3 seconds (i.e., 3, 3, 6 and 12 seconds for the
0, 15, 30 and 60 second spawn intervals which were tested). A cooldown period of 10
seconds was required between successive adaptations for all rules.

Optimally, it would be more preferable to use the available resources to their maximum
capacity, while also serving the traffic appropriately and having maximum stability.
However, to attain this ideal goal, it is required to be able to accurately know the current
and future demand of the service so, unavoidably some deviation (error) will exist in at
least one of the above-mentioned goals. Thus, the thresholds of the rules should be
created by a field expert considered able to balance the risk of service unavailability, with
the number of resources which are overprovisioned and application stability. To evaluate
the proposed techniques based on Severity, various benchmarking metrics have been

considered, and are described in Table 11.

118

Table 11. Description of the benchmarking metrics used for the evaluation of Severity-based techniques.

Benchmarking metric Description

Availability The percentage of time for which the workload pattern for a particular metric was
not more the processing capacity of the infrastructure. No distinctions are made for
the cases that the processing capacity was exceeded by a small or large margin — in

both cases the service is considered unavailable for the purpose of these
experiments. Moreover, it was considered that the lack of availability of the service
at a particular instance of time does not influence the ability of the service to handle

the workload correctly as soon as it receives the resources which are required.

Overprovisioning The product of the extraneous VM instances which were used (compared to the

optimal) with the percentage of simulation time for which they were spawned.

Rigidness The time percentage of a simulation, for which the application was working either
above or even below the rule thresholds set. For example, if a rule on a metric states
that a scale out action should happen when the value of the metric surpasses 70%,
while a scale in action should happen when the value of the metric drops below
30%, the system is considered to be exhibiting ‘rigidness” when the value of the

metric is greater than 70% or lower than 30%.

Number of scaling The total number of scaling adaptations (associated with an addition or removal of
adaptations a number of VMs) which were performed by the platform. The first deployment is

also counted in this number.

Other approaches have also been using similar metrics in their experiments. For example
[48] and [52] examined the number of containers and VMs respectively (which can be
related to cost) and the response time for different techniques, while [79] examined cost
and execution time (which can be converted to a question between cost and availability).
In a thorough review of cloud elasticity [80], the authors mention eagerness, sensitivity
and plasticity (related to the ‘rigidness’ metric), quality of service (indirectly related to
the ‘availability” metric), cost, oscillatory behaviour/thrashing (related to the
‘adaptations’ metric) and precision (related to the ‘overprovisioning’ metric) as principal
aspects of service elasticity which should be considered in an elastic system.

In these experiments, four workload types were used, each including two, three or four
workload patterns, one for each of the metrics. A separate pattern per processing metric

was used in all four workloads (the green line reflects values of the first metric, while the

119

red line reflects values of the second metric, the blue line the values of the third metric
and the yellow line the fourth metric). In experiments using two metrics the red and green
lines were used, in experiments using three metrics the red, green and blue lines were
used, and in experiments with four metrics all four lines were used. Unlike other
approaches (e.g., [48]) workload values are normalized against the processing capacity of
a single VM, which is assumed to be 100% per processing metric resource. The x-axis of
all workload types represents the time in seconds which has elapsed since the start of the

experiment.

4-metric workloads

20004

6000 1750 A

5000 4 1500 A

1250 A
4000 +

1000 4
3000
750

2000 1 I 500]

< =NV

250 4

Processing resource percentage needed (%)
Processing resource percentage needed (%)

100 200 300 400 500 600 100 200 300 400 500 800
Time (sec) Time (sec)

Figure 10. Periodically increasing workload, with spikes. Figure 11. Linearly increasing workload. Due to

overlapping of the values, only the yellow line is visible.

800
3000

I

——

600 1
2000 A 11

400 -
1000 - I\

| oAU \W"

100 200 300 400 500 600

200 1

Processing resource percentage needed (%)
Y
] —_—
Processing resource percentage needed (%)

. . . T T T T
ime (sec) 100 200 300 400 500 600
Time (sec)

Figure 12. Periodically increasing workload, with fluctuations. Figure 13. Polarized workload.

120

It can be readily observed that the four workload types have values which surpass 100%
for each of the attributes which are involved. These values are interpreted as a need for
more resources which would require additional VMs. Specifically, a value pair of (1%,
200%) in workloads having two attributes means that at least two VMs are needed for the
handling of this workload type even though the first attribute only consumes 1% of the
resources. In this work, all VMs are considered to have the same processing capacity, i.e.
to belong to the same VM type. Moreover, the processing capacity of a VM does not
correspond to the processing capacity which is offered by a particular VM flavour of a

cloud vendor.

9.2.2. Evaluation results

In this section, the results of applying each proposed technique in different representative
workloads are discussed, with respect to the benchmarking metrics discussed in Section
9.2.1. The results were gathered by means of a Python simulator which was developed
specifically for the needs of this work. The simulator produced an output file containing
the simulated timestamp — a constant time interval was added between successive
timestamps, and information on the current real load on the application, the optimal
number of instances which could handle the workload, and whether the workload is over
the operational thresholds set by the DevOps. Both the code as well as all of the workload
traces which were used are available upon request.

In Table 12, the minimum and maximum value for each combination of benchmarking
metric, VM spawn delay and 4-metric workload, are presented regarding the Maximum
attribute control loop and Severity value techniques. The Simple severity zones and
Severity value techniques exhibited the best performance overall in the four criteria
which were defined. Data for the Maximum attribute control loop technique was also
included as it had better performance than the Simple threshold technique. Therefore, it
represents the best of the two techniques which are inspired from commercial offerings
and are considered in this work.

Ranges were calculated from the output of the simulations which used the rule pairs
which are included in Table 10. The complete dataset with the exact performance of all

techniques on every rule pair, every spawn delay and every workload examined is

121

available as part of this work [81]. All values in Table 12 reflect percentages, except for
the number of scaling adaptations which is an integer. Positive values in availability
reflect the percentage of the time that the platform could satisfy the load with the existing
resources. Positive values of rigidness indicate the percentage of the time that the metric
values of the platform were outside the acceptable range set by the greater-than and less-
than thresholds. Positive values in overprovisioning indicate a percentage of superfluous
VMs which were commissioned by a technique to handle the load, compared to the
number of VMs which would exactly match the workload, utilizing their resources up to
100%. As discussed above this is an unrealistic case, as the DevOps needs to set
thresholds below 100%, but it is nevertheless the optimal case concerning
overprovisioning. Negative values in overprovisioning portray a usage of a smaller

number of VMs than the optimal, which by definition impacts availability.

Table 12. Techniques comparison matrix (4 metric workloads).

Overprovisioning Availability Rigidness # of Adaptations
Technique | Workload | 0- | 15- | 30- | 60- | 0- | 15- | 30- | 60- | O- | 15- | 30- | 60- | O- | 15- | 30- | 60-
delay |delay|delay|delay|delay|delay|delay|delay|delay|delay|delay|delay|delay|delay|delay|delay
Periodically
increasing | -46.2 |-50.5(-43.4|-61.2|19.0 [25.0 | 232 | 20.0 | 39 | 179|333 (242 | 16 | 16 | 27 | 15
with spikes | -9.1 | 159 |31.8 | 93 | 471|518 | 526|412 503|753 755|682 | 63 | 48 | 46 | 38
Linearly 10.1 | 09 | 225|198 |61.2 | 466|472 |416| 02 | 134 | 134|153 | 23 | 11 11
% increasing | 49.9 | 42.5 [128.1| 92.8 |100.0 98.9 | 95.9 | 86.7 | 82.1 | 90.5| 923 | 93.1 | 118 | 65 | 52 | 46
__E» Periodically
E increasing
with -94 |-243|-364(-30.5|30.3 | 287 |253|284| 02 | 56 |104|154 | 8 8 12
fluctuations | 28.6 |45.0 | 57.7 | 14.7 | 73.0 | 723 | 66.1 | 57.4 [22.7 | 50.5 | 65.7 | 712 | 43 | 43 | 42 | 31
-61.9 [-75.8|-79.2|-482|30.6 | 125|125 | 28.1 [294 | 54.1 | 63.5 [33.1 | 32 | 32 | 38 | 27
Polarized
-57.8 |-74.0|-72.9|-23.5|32.9 | 125 | 125 | 464 | 363 | 57.5 | 743 | 529 | 33 | 34 | 40 | 39
g ® §< Periodically
g ..§ :8 increasing | -73.6 |-754(-72.0|-65.3| 92 | 92 | 83 | 99 | 335|399 |347 (368 | 31 | 30 | 27 | 25
§ % g with spikes | -34.9 [-42.9|-36.3 |-18.3|33.0 | 204 | 24.4 | 24.6 | 65.0 | 755 | 742 | 70.0 | 47 | 48 | 46 | 43

122

Linearly 10.1 | 81 | 8.8 [-16.3(100.0| 96.6 | 61.7 | 46.0 | 0.2 | 222|277 |30.1| 23 | 23 | 21 21
increasing | 50.5 | 48.3 | 43.5 | 66.0 |100.0| 99.1 | 959 | 87.7 | 12.1 | 40.0 | 89.8 | 91.5 | 31 | 31 | 52 | 45

Periodically

increasing
with -11.6 |-13.2|-35.7 |-38.7 347 | 32.7 | 148 | 23.1 | 3.1 | 123|153 | 246 | 12 | 13 | 12 | 20
fluctuations | 31.0 | 26.3 | 26.2 | 40.6 | 73.1 | 66.5 | 63.2 | 60.3 | 10.5 | 24.1 | 40.8 | 55.0 | 25 | 23 | 32 | 30
-79.7 |-79.7 |-79.2 | -82.2 | 125 | 125 | 125 | 125 | 349 | 54.1 | 635 [30.1 | 32 | 32 | 38 | 31

Polarized
-70.8 |-76.5|-77.4|-448 | 125 | 125 | 125|294 | 36.7 | 575|743 | 513 | 33 | 34 | 40 | 51

For brevity, for the cases of 2 metric and 3 metric workloads we provide a quick

summary of the results and two indicative figures. Similar to Table 12, the minimum and

maximum values for each of the benchmarking metrics are provided — the top edge of

each bar reflects the maximum value and the lower edge the minimum value. Percentage

values are used for the measurement of the benchmarking metrics with the exception of

the number of scaling adaptations metric which is an integer. Figure 14 illustrates an

example case comparing the performance of the SV algorithm with the MACL algorithm,
in a 3-metric workload setting. Similarly, Figure 15 illustrates a comparison of the

performance of the SSZ algorithm vs the MACL algorithm in an example case using a 2-

metric workload.

123

204 166 604 581
& 0 — 50 1
g #
& =
5 —20 Z
2 =
E =40 425 e 314
3 502 07 26.9
-6
20 4
-75.2 15.5
severity maximum attribute control loop severity maximum attribute control loop
01 153 75.5 01 45
70 4 45 4
5]
— =
& 60 A S 40 A
B B
. 7 35 1
b= 32
p=y 30 30
&£ 40 399 “
25 1
3]] 4
20 4
204 175 16
severity maximum attribute control loop severity maximum attribute control loop

Figure 14. An example case (3 metrics workload, 15 seconds delay and ‘Periodically increasing with spikes’

workload) in which the severity technique outperforms the maximum attribute control loop technique.

Figure 14 illustrates an extreme case in which the severity technique completely
outperforms the maximum attribute control loop technique. It is reminded that the range
of observed values for each attribute of each technique is the result of experimenting with
multiple scale-in and scale-out threshold pairs. The severity technique both allows a
wider range of choices and can also obtain the best values in each of the four measured
criteria. The prioritization of these criteria should be performed by the DevOps, who can
then choose the most appropriate scaling technique among the suggested techniques. In
this particular example, using the severity technique one may choose whether to avoid the
underprovisioning of the service to obtain higher availability, lower rigidness and a lower
number of adaptations. Such a choice is not available when using the maximum attribute

control loop technique.

124

30 - 29.0

7.1 706
01 177]
10 4 Z
0 307
457
g8 45
40.5

Overprovisioning (%)
Availability (%)
& & a3 =&

—10 1 -11.4
simple severity zones maximum attribute control loop simple severity zones maximum attribute control loop

26 1 26 -

24.8 a1 5

o 21 Pk}
22 - § 5.

20 50 |

18 -

16 5 |

H e 12.3 1w ¥ 13

T T
simple severity zones maximum attribute control loop simple severity zones maximum attribute control loop

Rigidness {%)
of Adaptations

Figure 15. An example case (2 metrics workload, 15 seconds delay and ‘Periodically increasing with
fluctuations” workload) in which the maximum attribute control loop technique outperforms the simple

severity zones technique.

Figure 15 illustrates a case typical of the relative performance of the simple severity
zones and maximum attribute control loop techniques in 2 metric workloads. In this case
the maximum attribute control loop technique slightly outperforms the simple severity
zones technique. However, based on the experimental data the simple severity zones
technique can offer better availability and smaller overprovisioning, provided that a much
greater number of reconfigurations and increased amount of rigidness can be tolerated by

the application.

Table 12 as well as the data collected during the experiments with 2 metric and 3 metric
workloads illustrate numerous cases in which Severity-based techniques obtain better

results than other techniques which are currently used by cloud vendors. To further

125

illustrate a comparison between the different techniques, a use-case which emphasizes
availability (av), low overprovisioning (op), low rigidness (rg), and a low number of
scaling adaptations in turn (ad) was assumed. The coefficients pertaining to each of the
evaluation criteria appearing in the utility function of the particular use-case were chosen
in order to assign more weight to high availability and low overprovisioning than low
rigidness and a low number of scaling adaptations. The utility function using the
benchmarking metrics, as well as their weights appear in bold in Equation 11. Apart from
the weights, the constant terms of the utility function are chosen to normalize the values

of the evaluation criteria. Higher utility values indicate a more preferable performance.

1—-op
2

_3*av+2*(

)+1*(1—rg)+1*(1—(ad—5)*0.00877)
U =

7

Equation 11. Example Utility Function.

Table 13, Table 14 and Table 15 illustrate the performance of each technique against
each of the four workloads which were used, in the experiments conducted using 2, 3 and
4 metrics respectively. Each cell contains four values which from top to bottom reflect
Utility values with a varying delay of 0,15,30 and 60 seconds, respectively. The
following abbreviations are used: Absolute severity value (ASV); Maximum attribute
control loop (MACL); Normalized absolute severity (NAS); Normalized absolute
severity control loop (NASCL); Normalized severity value (NSV), Severity value (SV),
Simple severity zones (SSZ), Relative severity zones (RSZ); and Simple threshold (ST).
Underlined values indicate an (approximate) tie between algorithms, while bold values

indicate the superiority of an algorithm.

126

Table 13. The performance of each technique using 2-dimensional workloads and a variable spawn delay.

Workload ASV MACL NAS NASCL NSV SV RSZ S§SZ ST
Linearly 0.78 0.82 0.78 0.82 0.80 0.82 0.82 0.82 0.82
increasing 0.66 0.77 0.74 0.77 0.76 0.78 0.77 0.78 0.77
0.42 0.74 0.55 0.74 0.69 0.69 0.74 0.75 0.74

0.64 0.66 0.69 0.68 0.68 0.67 0.65 0.68 0.68

Periodically 0.65 0.63 0.64 0.67 0.72 0.72 0.72 0.72 0.63
increasing 0.59 0.59 0.56 0.60 0.62 0.61 0.61 0.65 0.60
with spikes 0.52 0.61 0.51 0.61 0.56 0.49 0.61 0.64 0.61
0.57 0.61 0.59 0.61 0.60 0.58 0.62 0.63 0.60

Periodically 0.70 0.69 0.69 0.69 0.69 0.71 0.69 0.67 0.59
increasing 0.63 0.66 0.67 0.65 0.69 0.69 0.67 0.65 0.56
with 0.54 0.65 0.67 0.63 0.60 0.67 0.63 0.66 0.56
fluctuations 0.63 0.59 0.64 0.57 0.62 0.65 0.57 0.65 0.53
Polarized 0.65 0.60 0.58 0.60 0.56 0.65 0.54 0.57 0.54
0.57 0.57 0.57 0.57 0.57 0.57 0.53 0.48 0.53

0.56 0.55 0.55 0.55 0.54 0.55 0.54 0.53 0.54

0.60 0.62 0.63 0.62 0.64 0.61 0.62 0.61 0.62

Table 14. The performance of each technique using 3-dimensional workloads, and a variable spawn delay.

Workload ASV ~ MACL NAS NASCL NSV SV RSZ SSZ ST
Linearly 0.78 0.82 0.78 0.82 0.80 0.82 0.82 0.82 0.82
increasing 0.66 0.77 0.74 0.77 0.76 0.78 0.77 0.78 0.77
0.42 0.74 0.55 0.74 0.69 0.69 0.74 0.75 0.74

0.64 0.66 0.69 0.68 0.68 0.67 0.65 0.68 0.68

Periodically 0.63 0.53 0.61 0.55 0.62 0.66 0.54 0.53 0.49
increasing with 0.55 0.47 0.55 0.49 0.60 0.61 0.52 0.54 0.48
spikes 0.50 0.48 0.51 0.47 0.59 0.57 0.50 0.59 0.47

0.55 0.49 0.59 0.50 0.60 0.57 0.54 0.58 0.50

Periodically 0.69 0.68 0.68 0.68 0.67 0.70 0.68 0.66 0.57
increasing with 0.62 0.65 0.66 0.64 0.68 0.67 0.66 0.64 0.54
fluctuations 0.53 0.63 0.65 0.62 0.59 0.65 0.62 0.64 0.53
0.62 0.58 0.62 0.56 0.61 0.63 0.56 0.63 0.51

Polarized 0.59 0.53 0.52 0.53 0.49 0.59 0.48 0.51 0.48
0.50 0.51 0.50 0.51 0.50 0.50 0.47 0.45 0.47

0.50 0.49 0.48 0.49 0.48 0.48 0.48 0.53 0.48

0.57 0.56 0.60 0.56 0.59 0.58 0.55 0.56 0.55

127

Table 15. The performance of each technique using 4-dimensional workloads, and a variable spawn delay.

Workload ASV MACL NAS NASCL NSV SV RSZ SSZ ST
name

Linearly 0.78 0.82 0.78 0.82 0.80 0.82 0.82 0.82 0.82

increasing 0.66 0.77 0.74 0.77 0.76 0.78 0.77 0.78 0.77

0.42 0.74 0.55 0.74 0.69 0.69 0.74 0.75 0.74

0.64 0.66 0.69 0.68 0.68 0.67 0.65 0.68 0.68

Periodically 0.59 0.50 0.57 0.51 0.58 0.62 0.51 0.50 0.45

increasing with 0.52 0.45 0.52 0.46 0.58 0.59 0.50 0.52 0.45

spikes 0.47 0.46 0.48 0.44 0.56 0.54 0.47 0.57 0.45

0.53 0.47 0.56 0.48 0.57 0.54 0.51 0.55 0.47

Periodically 0.69 0.68 0.68 0.68 0.67 0.70 0.68 0.66 0.56

increasing with 0.62 0.65 0.66 0.64 0.67 0.67 0.66 0.64 0.53

fluctuations 0.53 0.63 0.65 0.62 0.59 0.65 0.61 0.64 0.53

0.62 0.57 0.61 0.56 0.60 0.62 0.56 0.63 0.50

Polarized 0.57 0.51 0.50 0.51 0.47 0.57 0.45 0.49 0.45

0.48 0.48 0.48 0.48 0.48 0.48 0.44 0.44 0.44

0.47 0.46 0.46 0.46 0.45 0.46 0.45 0.50 0.45

0.58 0.52 0.55 0.53 0.60 0.58 0.51 0.56 0.51

From the data which is presented in Table 13, Table 14 and Table 15, it can be observed
that Severity-based techniques obtain the best results in the majority of the test-cases,
whether 2,3 or 4 dimensions are used. The number of metrics used does not significantly
influence the utility values which are obtained, although when fewer metrics are used the
utility values are in general slightly increased. Also, the increase in the delay to spawn or
deallocate instances in general results in lower utility function values for the same
technique.

Further, it is apparent that some techniques are more suitable for particular cloud
application settings, while others are consistently outperformed. The Simple threshold
technique does not perform well under any workload, indicating that either a different
number of instances should be added/removed in challenging workloads, or it should not
be used. The Maximum attribute control loop technique is a better contender, but it is not
so effective when the spawn delay is increased to 60 seconds. This can be attributed to its
control-loop character which tries to stabilize the values of the metrics around a desired
threshold. However as most workloads change rapidly and its decisions are enforced with
a delay, the stabilization is obsolete — resulting in either overprovisioning, or
underprovisioning and loss of availability. This characteristic is shared with the

Normalized absolute severity control loop method. On the contrary, the Simple severity

128

zones technique consistently attains the best results when the spawn delay is 30 and 60
seconds and is excellent in handling linear-like workloads. Moreover, the Severity value
technique attains excellent results when the delay is zero (and in 10 of the 12 cases when
the delay is 15), has consistently the best performance in the ‘periodically increasing with
fluctuations’ workload, and is the technique which attains the best value more often.

Table 16 contains the average improvement of the utility function from the usage of

Severity-based techniques.

Table 16. Improvement of utility function values from Severity-based techniques.

2-metric workloads 3-metric 4-metric workloads
workloads

Maximum improvement over best 4.09% 7.86% 8.54%

commercial technique evaluated

Best single-technique improvement over 1.26% 5.88% 6.53%

best single commercial technique evaluated

Best Severity-based technique Simple severity Severity value | Severity value
zones

To determine the values of Table 16 it is needed to determine the best Severity-based and
commercially inspired techniques. The sole criterion which is used to find the best
technique is the higher utility function value it attains using the most favourable
thresholds (for it).

For the first row of Table 16 the improvement of the best Severity-based adaptation
technique against the best commercially inspired adaptation technique is calculated per
workload and VM spawn delay (16 combinations). The average of this improvement is
used to determine the values of this row. To fill the values of the second row, the
Severity-based technique which has the highest average utility value across all workloads
and VM spawn delays (for the particular workloads) is determined. Then the average
improvement when using the best Severity-based technique against the best of the
commercially inspired techniques is calculated. The third row contains the best of the
Severity-based techniques, in terms of the highest average utility value, calculated over
the best choice of thresholds for each technique in each experiment setting (i.e., workload

and spawn delay).

129

It is important to note that in all cases the highest values of the utility function are

produced using Severity-based techniques. In the three experiment sets (with 2, 3 and 4

metrics), a total of 48 combinations of workloads and VM spawn delays were evaluated.

The Maximum attribute control loop technique was only thrice able to equal this exact

maximum value — which besides was attained by the Normalized absolute severity

control loop technique. In Table 13, Table 14 and Table 15 above this appears to happen

more often due to rounding.

From the evaluation of the scaling methods based on simulations, the following

directions on the use of the approach can be established:

Using data from additional metrics (even partially, as the Maximum Attribute
Control Loop algorithm does) in general leads to better estimations. Therefore,
the research on algorithms which use data from multiple metrics — all related to
the need for scaling — is encouraged.

Some “non-functional” criteria when choosing a particular algorithm are its
adaptability, its extensibility and its explainability. Severity as a concept lends
itself to many extensions; in addition, the algorithms which are based on it are
both adaptable and explainable.

Algorithms which have a very high or very low spawn/deallocation behaviour, are
not recommended for rapidly changing workloads, when threshold-based rules are
to be used.

By consulting the full results of the simulations, it can be observed that even for
single evaluation metrics (e.g., Overprovisioning) Severity-based techniques
attain the best (in this case the lowest) value in the greater majority of test cases,
independent of the number of metrics used, or the workload or the spawn delay.
Moreover, in many of the cases that commercial-based scaling techniques (Simple
threshold, Maximum attribute control loop) attain the best value, this value is also

produced by a Severity-based technique.

130

9.3.Cloud Adaptation Evaluation

9.3.1. Introduction

In order to acquire a realistic view of the capabilities which are offered using Severity, a
series of experiments was also made on real cloud infrastructure, using a real FaaS
platform to complement the software-based simulations,. Specifically, the Digital Ocean
public cloud provider (Frankfurt region) and Okeanos was used to create a 5-node
Kubernetes cluster, hosting one of the most popular Faas distribution, OpenFaas.
%0OpenFaas was chosen as it offered a modular architecture which was relatively easy to
modify, and also allowed custom scaling policies to be enforced.

Concerning the structure of the cluster, three of the five nodes were ‘small” VMs,
utilizing 1 shared vCPU and 1 GB of RAM, one ‘big” VM used 4 shared vCPUs and 8GB
of RAM, and the Okeanos VM used 1 vCPU and 4GB of RAM (shared with other
applications). The latter two machines were used to deploy all of the components which
were required for the operation of the Kubernetes cluster (itself created using K3s’) as
they had more processing capacity which however was not identical. Moreover, they
hosted all components which were required for the operation of OpenFaas, except for
application containers which were installed on the small droplets.

In order for the experiments to be run, some configuration changes were needed. Firstly,
the AlertManager component of Openfaas was scaled down to O replicas, as it interfered
with custom scaling. Then, the metrics-collector component was reconfigured to collect
metrics every 15 seconds. In addition to the components which were used by OpenFaas a
custom Docker registry was created, to include the definitions of any functions which
were needed during experimentation. Moreover, Linkerd® was installed to handle the
enforcement and allow inspection of the parallelization of function calls.

During the course of experiments, a number of ‘instances’ of a Python function were
created to support a processing load. These instances were Kubernetes pods, which
included a linkerd agent container and the main processing container. The main

processing container was constrained to use only 20% of the CPU and and 120Mib of

% https://openfaas.com/
7 https://k3s.io/
8 https://linkerd.io/

131

RAM. Therefore, each worker could host approximately up to 15 instances
(3workers*100%(capacity per worker)/20%(capacity per instance)) working at full
capacity (considering the processing requirements of system services and the Linkerd
agents negligible). In practice, the workloads could be supported with even 8 workers.
Using more workers — tests were made purposedly using 30 workers — resulted in the
processing topology becoming more unstable, however it was possible to service all
workloads, with a very low number of failures and a very low response time.

However, before proceeding to present and discuss the results of the experimentation it
should be noted that while in a simulation setting the appropriate modelling of
parallelism can be guaranteed, in a realistic processing setting this is not necessarily the
case. Thus, the first challenge is to perform a ‘sanity check’, verifying that parallel
processing is meaningful, and that a benefit can be observed from using parallel instances
(at all). To this end, an installation of OpenFaas was performed on Kubernetes, on an
independent dedicated processing node, with 6 CPUs and 12 processing threads (VCPUs)
to determine parallelism benefits of the architecture — ruling out any performance
inconsistencies owing to the use of shared vCPUs. In this evaluation, a very simple

processing function which created and returned a Python list was used.

Table 17. Response time per number of instances

Instances Average response time (sec) Instances Average response time (sec)
1 0.133 2 0.0735
1 0.1546 2 0.075
1 0.1555 3 0.0594
1 0.1515 3 0.0603
1 0.1498 3 0.0598
1 0.1475 4 0.0481
1 0.1375 4 0.0483
1 0.1375 4 0.0419
1 0.1371 4 0.043
1 0.1334 4 0.0435
1 0.1352 4 0.0429
1 0.1365 4 0.0414
1 0.1401 4 0.0423
1 0.1331 8 0.0226
2 0.0737 8 0.0231
2 0.0833 8 0.0232
2 0.0831 8 0.0227
2 0.0831 8 0.0232
2 0.0739 8 0.0234
2 0.0748 8 0.0206

132

A linear regression model was fitted on the data of Table 17, and the constant processing
time was estimated to be 9.9 msec, while the proportional processing time was estimated
to be 132.4 msec. The r-squared value of this model was 98.4%, which combined with
the inspection of Figure 16 indicates a good fit of the model to the data.
0.18
0.16
0.14
0.12
0.1
=g OhseErved
0.08 =g M Odel
0.06
0.04

0.02

0
1111111111111122222222333444444448688888

Figure 16. Performance improvements owing to function parallelism

The observed behaviour is consistent with Amdahl’s law [82] which determines the limit

to which any parallel program or process can benefit from horizontal scaling.

9.3.2. Experiment Design

The basic building block of the experiments, and the main processing consumer inside
the function container, was a Python function — named primecalc3 — which calculated
prime numbers up to a given limit (or 100 if no limit was given). Artificial memory usage
(unrelated to finding prime numbers) was also incorporated to simulate an intense CPU

and RAM workload. The code of the function appears in Listing 18.

133

def handle(req):
if (req is None or req==""):
req =100
memory_list=[]
count=0
primes=[]
for number in range(1,int(req)+1):
for i in range(2,number):
memory_list.append (i)
memory_list.append (i)
memory_list.append (i)
memory_list.append (i)
memory_list.append (i)
memory_list.append (i)
memory_list.append (i)
if number%;i==0:
count+=1
break
i+=1
if count==0:
primes.append(number)
count=0
number+=1
#print(primes)
return str(primes)

Listing 18. Openfaas handler code for the primecalc3 function

Each function could be served by one or more instances (pods), although when each
experiment started there was only one instance. A programmable number of identical
calls were performed based on appropriate configuration of the Locust load generator.
Then, each of the four examined scaling methods — Simple Threshold, Triple Threshold,
Simple Severity Zones and Maximum Attribute Control Loop was used to support a
number of requests under a particular cooldown constraint — during which it was not
possible to issue further adaptations.

The generator was configured through the use of appropriate Python files, detailing a
number of users which should be simulated, and the maximum throughput of each user.
When adequate processing capacity was available, the workload generator could issue the
maximum permissible amount of requests, while when less processing capacity was

available the number of requests which were made dropped.

134

Six processing workloads were used to evaluate the performance of the examined scaling
methods. The (theoretically) maximum permissible amount of requests for each of these

appears in Table 18.

Table 18. Processing workloads used to evaluate scaling methods

Gradual workload Linear workload
300 450
400
350
300
250

250
200
150 200 e Lin@Ar reqs
150
100
50 50
0

O WO] Voo D D PO A
PG D F PGP PP PGP

=== Gradual reqs
100

Maximum requests

Maximum requests

0
DL ak o @ P A D D AV W o DD Do
N AP t@@\pvv\gép@{e@@@

time (sec)
time (sec)

Fluctuating workload Abrupt square workload
300 350

fu——
250
250 ; S .
200
200
150

=== FluCluating reqs 150 === ADrupt square reqs

Maximum requests

100

i SZJ <LP A k

0
S QPR FE N O R PR L R I

& 2%y % P AR P RS0 g A B)
Oy DG 4b®.9”\§‘{9¢%$\9"§'§>,§5 b I v 1

Maximum requests

time (sec)
time (sec)

Square workload Extra workload
350 450
4
300 0o
350
250 « 300
2 w
7
é 200 %’.)_ 250
2 150 —t— SqUArE reqs z 20 == Extra reqs
£ £
5 2 150
% 100 E 100
50 50

0

CHEPLP R PP EP D P PO L ADL DD AOD
N = A o L R R L
CELPE RS EP PSP LLLPLELS WRY AN

time: (sec)
time (sec)

The scaling threshold is common to all scaling methods — to scale up it was required to
surpass (on average) 10 requests per second, 30Mb for RAM consumption and 10% (out
of 20% maximum) of CPU usage. To scale down, it was necessary to observe (on
average) less than 1 request per second, less than 60Mb of RAM usage and less than 5%
of CPU usage. The required monitoring metrics were retrieved i) by exposing the

cAdvisor native monitoring component of Kubernetes, tuned to provide monitoring

135

metrics every 15 seconds (the highest possible frequency) and ii) using the OpenFaas
gateway API. Apart from trespassing the thresholds, to perform a scaling action it was
also required that a cooldown delay had passed from the previous scaling action. The
cooldown delays which were used were 15 seconds (in order to take into account updated
monitoring data) and 30 seconds.

The Maximum Attribute Scaling Control Loop scaling technique was the same as defined
in Section 8.4.2, as was the Simple Severity Zones technique (defined in Section 8.4.6).
The Simple Threshold scaling technique was modified — inspired from the default scaling
action of Openfaas — to add or remove four processing instances instead of one (which
was used in simulations), allowing a more rapid (and expensive) reaction to workload
changes.

For each workload, algorithm, cooldown delay and scaling technique, 15 experiments
were carried out. The exception to this rule were the experiments conducted using the
Gradual workload using a cooldown delay of 15 seconds. In this case, 20 experiments
were requested. Experiments were carried out manually, and automatically through the
use of scipts. In the case of automatic executions, experiments were started in the
infrastructure based on a schedule. The local adaptation controller was running and
whenever a relatively large amount of time passed without adaptation (60 seconds) the
next experiment started to be logged. Additionally, a reasonable amount of time was
allowed between experiments to allow the processing topology to return to 1 processing
instance. Therefore the speed at which the topology achieved the required scale-in using a
particular adaptation technique was important during experiments.

The processing topology which was used during experiments appears in Figure 17 below.

136

Lightweight

Adaptation
Manager

Adaptation actions
Primecalc3
instance

| \

Primecalc3
instance

Locust Load Openfaas | "
producer(s) Gateway

Primecalc3
instance

Primecalc3
instance

Figure 17. Processing topology used in the evaluation using a realistic topology

The adaptation evaluation metrics which were obtained are closely related to the metrics
which were obtained from simulation data. The successful number of invocations was
calculated, as well as the unsuccessful number of invocations, the average response time,
the number of reconfigurations (adaptation decisions), the average number of function
instances (hosts) which were used, the number of ‘extra’ host-seconds (the number of
seconds in which more than one function instance were used, multiplied by the number of
function instances which were used at that time) and the total number of host-seconds.

The utility function which was created, appears in Equation 12:

U=2+sr+1xs(1—fr)+1*rt+1+(1—ehs)+1*x(1—ths)+1+ad

Equation 12. Utility function for the evaluation of adaptation methods on real infrastructure

In Equation 12, sr is the normalized number of successful requests, fr is the normalized
number of unsuccessful requests, rt is the normalized average response time per request,
ehs is the normalized number of extra host-seconds, ths is the normalized number of total

host-seconds and ad is the normalized number of adaptations (application

137

reconfigurations through horizontal elasticity). Similar to the utility function defined in
the case of simulated workload (see Section 9.2.2), the utility function of Equation 12
assigns a weight of 3 to metrics related to the availability of the application (2 to
successful requests plus one to unsuccessful requests), a weight of 1 to the rigidness-like
metric of response-time, a weight of 2 to metrics related to the overprovisioning of the
application (1 to total host-seconds and 1 to extra host-seconds) and a weight of 1 to the
number of adaptations.

The indicators of performance of an adaptation method were defined to be the number of
successful requests (desired to be high), the number of unsuccesful requests (desired to be
low) and the response time (desired to be low), while the indicators of resource
consumption and adaptation flexibility were extra host-seconds, total host-seconds and
the number of adaptations.

In the case of successful requests, normalization was made against the maximum
effective number of requests which was calculated by executing each workload with a
constant number of 15 available function instances. The values which were obtained for
the performance metrics in this way are indicated by the ‘BEST’ method. Expectedly,
reconfigurations and host-seconds were not meaningful to be measured for the ‘BEST’
method, as no adaptations were taking place.

Normalization was also performed for the average response time metric, and the number
of unsuccessful requests, although in the last case the best case was simplified to 0 failed
requests in calculations (as the number of failed requests was less than 2 in all
workloads). In these cases the metric was normalized as seen in Equation 13.

(metric_value — best_value)

normalized_metric = 1 —
(worst_value — best_value)

Equation 13. Normalization of utility function metrics

Regarding the resource consumption metrics, normalization was performed against the
best case — that is the use of 0 extra host-seconds and 0 total host-seconds, as well as the
use of 0 adaptations, also using Equation 13.

At the end of the normalization process, higher values close to 1 indicated better results,
while values close to 0 indicated worse results on the particular metric. Since utility

function values were based on normalized values, and these normalized values used only

138

the data available in each data table, it is not meaningful to compare the utility function

values across experiments. Moreover, utility function values were calculated also taking

into account the performance of the improved Simple Severity Zones method which is

discussed in Section 9.3.9.

The results which were obtained on each of the workloads are presented discussed in the

following sections.

9.3.3. Gradual workload

The performance of the four evaluated methods appears in Table 18 (using a 15 second

cooldown period) and Table 19 (using a 30 second cooldown period):

Table 19. Comparison of adaptation methods handling the Gradual workload using a 15-second cooldown

period
Average Extra .
Successful Unsuccessful Average Total Host- Adaptatio
response Host-
requests requests time hosts seconds seconds ns
MACL 27,280.20 536.55 394.80 1191 2,584.53 2,820.69 3.90
ST 27,403.10 271.55 299.70 9.76 2,371.53 2,641.09 6.80
SSzZ 27,272.40 89.25 449.30 6.15 1,387.13 1,656.46 9.45
BEST 27,446.13 1.87 163.33

UF Value

2.83
3.56
3.86

Table 20. Comparison of adaptation methods handling the Gradual workload using a 30-second cooldown

period
Successful
requests
ST 27,312.33
MACL 27,027.07
SSZ 27,303.60
BEST 27,446.13

Unsuccessful

325.07
1,582.00
186.20
1.87

Average
response

385.53
916.00
511.20
163.33

Average Extra Host- Total Host-

139

A .
hosts seconds seconds daptations
7.78 2,127.36 2,441.11 6.00

11.00 2,736.44 3,010.21 3.80

4.80 1,220.67 1,541.28 7.20

UF
Value

4.10
247
4.50

The Gradual workload was one of the easiest workloads for adaptation methods, as can
be understood by the performance levels which were high for all methods — although
noticeably less for the MACL method.

The Simple Severity Zones technique attains the best Utility value in both experiments,
as it offers considerably lower cost while keeping a high number of successful requests,

and a low number of unsuccessful requests.

9.3.4. Fluctuating workload

The performance of the four evaluated methods appears in Table 21 (using a 15 second

cooldown period) and Table 22 (using a 30 second cooldown period):

Table 21. Comparison of adaptation methods handling the Fluctuating workload using a 15-second
cooldown period

Average

Successful Unsuccessful Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 23,134.20 61.20 147.73 744 1,700.96 1,962.90 5.07 4.38
SSZ 22,711.60 74.73 341.33 6.03 1,380.14 1,654.56 8.47 3.53
MACL 22,194.00 382.73 338.87 9.73 2,219.12 2,474.86 4.53 2.40
BEST 23498.53 1.13 58

Table 22. Comparison of adaptation methods handling the Fluctuating workload using a 30-second

cooldown period

A
Successful Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 22,951.47 166.87 263.20 6.70 1,608.48 1,890.17 5.73 425
MACL 20,895.60 986.27 664.60 10.18 2,345.52 2,602.64 4.27 2.20
SSZ 21,972.87 142.67 530.13 4.65 1,125.39 1,433.67 6.80 3.99
BEST 23498.53 1.13 58

The Fluctuating workload was another case of a workload in which adaptation techniques
delivered a high number of successful requests close to the BEST value. Yet, response

time values were much higher than the values attained in the BEST case.

140

In the Fluctuating workload, the Simple Threshold technique attains the best Utility value
in both experiments, due to its exceptional performance. The SSZ technique also
performs quite well, yet it does not offer the performance attainted by ST.

Besides, the Simple Severity Zones technique is capable of benefiting from further
configuration, to obtain better performance (in this case the assumption of a DevOps who
only roughly knows workload details does not hold). Another test was made therefore
using the same workload, and a smaller scale-out threshold for the number of invocations
per second (5 instead of 10). The adaptation metrics which were captured for the

adaptation methods appear in the following Table 23 and Table 24:

Table 23. Comparison of adaptation methods using a low scale-out threshold handling the Fluctuating
workload, and a 15-second cooldown delay

A F Val
Successful ~ Unsuccessful verage Average Extra Host- Total Host- . UF Value
response Adaptations
requests requests . hosts seconds seconds
time
ST 23,073.87 375.67 223.27 8.72 2,018.40 2,279.42 6.27 3.23
MACL 21,500.93 1,267.87 396.67 11.38 2,624.52 2,878.56 4.27 1.69
SSZ 23,023.47 150.53 206.67 623 147318 1,755.09 8.73 3.56
BEST 36424.33 1.07 7147

Table 24. Comparison of adaptation methods using a low scale-out threshold handling the Fluctuating

workload, and a 30-second cooldown delay

Successful Unsuccessful Average Average Extra Host- Total Host- . UF value
response Adaptations
requests requests . hosts seconds seconds
time
ST 23,128.67 341.47 229.73 6.10 1,388.25 1,659.19 4.53 4.08
MACL 20,109.93 1,784.33 620.60 13.28 3,167.35 3,425.71 4.00 1.41
SSZ 22,846.53 170.67 283.13 4.57 1,079.70 1,382.41 5.73 4.03
BEST 36424.33 1.07 71.47

The best performance for all methods was generally observed when the cooldown period
was smaller. However, it should be noted that in the case of the Simple Threshold
technique, the observed values of the adaptation criteria were improved almost

everywhere when the cooldown period was increased. These values, appear to be

141

marginally more desirable than the values obtained by the Simple Severity Zones
technique, yet when the utility function is evaluated only against these two the SSZ
technique actually achieves a better score (2.86 vs 2.46).

Allowing a longer cooldown delay reduced the performance criteria for all techniques,
yet it allowed for a considerable decrease of the host-seconds. As a result, the UF values
obtained by these two methods using a 30-second cooldown delay, would be better if the
values could be directly compared.

Therefore, using a lower threshold can enable the Simple Severity Zones method to
benefit from its ability to divide the load into broad categories and attain similar if not

better utility values than those of the Simple Threshold technique.

On the other hand, using a higher threshold was not beneficial for any adaptation method.
When the threshold was changed to 15% cpu usage and 25 invocations per second for a
scale out (memory thresholds stayed the same) the data appearing in Table 25 and Table
26 was gathered:

Table 25. Comparison of adaptation methods using a high scale-out threshold handling the Fluctuating

workload, and a 15-second cooldown delay

Successful Unsuccessful Average Average [Extra Host- Total Host- .
) Adaptations
requests requests response time hosts seconds seconds
ST 22,954.47 162.20 246.47 5.96 1,266.72 1,521.06 4.27
MACL 21,780.67 361.47 585.00 6.04 1,295.71 1,553.17 5.00
SSZ 22,171.87 185.53 486.93 4.78 1,011.09 1,278.58 6.20
BEST 36424.33 1.07 7147

Table 26. Comparison of adaptation methods using a high scale-out threshold handling the Fluctuating

workload, and a 30-second cooldown delay

Successful Unsuccessful Average Average [Extra Host- Total Host-

requests requests response time hosts seconds seconds Adaptations
ST 22,940.60 193.27 251.40 5.33 1,156.60 1,424.06 4.00
MACL 20,919.93 294.27 667.40 4.04 842.05 1,119.25 4.47
SSZ 22,259.87 100.40 454.53 4.10 936.18 1,238.06 5.20
BEST 36424.33 1.07 7147

142

9.3.5. Square workload

The performance of the four evaluated methods appears in
Table 27 (using a 15 second cooldown period) and Table 28 (using a 30 second cooldown

period):

Table 27. Comparison of adaptation methods handling the Square workload using a 15-second cooldown

period

Successful Unsuccessful Average Average Extra Host- Total Host- . UF

response Adaptations

requests requests time hosts seconds seconds Value
SSZ 20,597.07 876.67 1,042.13 5.24 966.79 1,194.29 9.20 3.58
ST 19,748.87 1,253.73 1,154.27 6.72 1,325.13 1,555.15 8.80 3.03
MACL 14,574.47 2,850.67 1,775.33 10.88 2,042.78 2,250.78 6.73 1.31
BEST 29,132.80 0.20 52.20

Table 28. Comparison of adaptation methods handling the Square workload using a 30-second cooldown

period

Average

Successful Unsuccessful Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 21,647.53 813.47 1,035.73 5.28 1,117.44 1,377.39 587 242
SSZ 20,540.53 720.13 1,237.40 4.12 811.36 1,070.57 6.07 2.64
MACL 18,518.87 1,471.47 1,077.27 6.88 1,324.06 1,549.01 500 1.60
BEST 29,132.80 0.20 52.20

It can be observed that the Simple Severity Zones technique attains better utility function
values than other techniques, both in the case of 15 second cooldown delay and 30
second cooldown delay. In the case of the 15-second cooldown delay, it is remarkable
that it achieves both better performance and less resource consumption than alternative

methods.

143

9.3.6. Extra workload

The performance of the four evaluated methods appears in Table 29 (using a 15 second

cooldown period) and Table 30 (using a 30 second cooldown period):

Table 29. Comparison of adaptation methods handling the Extra workload using a 15-second cooldown

period
A
Successful Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 30,139.13 445.33 524.67 924 210556 2,361.29 7.33 3.70
SSzZ 29,970.53 456.80 475.73 6.74 1,489.60 1,749.21 920 3.99
MACL 25,521.93 2,030.87 791.07 1481 2,82550 3,030.43 487 2.03
BEST 34,462.27 0.20 76.80

Table 30. Comparison of adaptation methods handling the Extra workload using a 30-second cooldown

period
A
Successful Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 30,620.40 258.73 536.87 7.22 1,848.01 2,144.85 6.00 3.12
SSZ 29,261.80 258.00 603.27 505 1,200.28 1,496.52 6.67 3.30
MACL 31,651.67 433.27 340.87 13.16 2,672.33 2,892.38 313 294
BEST 34,462.27 0.20 76.80

As can be observed from the experimental data which was collected, the performance of
all methods was quite good, and much closer to the optimal values than what was
observed in other workloads. The Simple Severity Zones algorithm attained the highest
Utility function scores, sacrificing optimal performance to decrease the number of host-

seconds used by a large margin.

9.3.7. Linear workload

144

The performance of the four evaluated methods appears in Table 31 (using a 15 second

cooldown period) and Table 32 (using a 30 second cooldown period):

Table 31. Comparison of adaptation methods handling the Linear workload using a 15-second cooldown

period
A
Successful Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 48,992.87 257.00 247.20 10.00 2,989.58 3,321.82 8.00 3.49
SSZ 48,526.67 105.47 323.93 736 2,172.04 2,513.37 15.00 3.46
MACL 47,785.53 688.40 267.13 12.07 3,101.20 3,381.72 3.87 292
BEST 50,166.13 1.33 88.97

Table 32. Comparison of adaptation methods handling the Linear workload using a 30-second cooldown

period
A
Successful Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 49,182.80 436.73 234.73 8.69 3,060.06 3,457.60 787 291
SSZ 49,886.07 181.67 193.20 553 1,72390 2,104.41 9.80 4.11
MACL 48,972.00 860.60 182.07 12.15 3,367.44 3,669.66 3.00 3.05
BEST 50,166.13 1.33 88.97

In the case of the Linear workload, while the Simple Threshold was determined to offer a
slightly more desirable response when using a 15-second delay, the best performance
overall was observed when using a 30-second delay, and was achieved by the Simple
Severity Zones technique. Moreover, when pairwise comparing the two techniques,

Simple Severity Zones achieves higher utility function scores.

9.3.8. Abrupt Square workload

145

The performance of the four evaluated methods appears in Table 33 (using a 15 second

cooldown period) and Table 34 (using a 30 second cooldown period):

Table 33. Comparison of adaptation methods handling the Abrupt Square workload using a 15-second

cooldown period

A
Successful ~ Unsuccessful verage Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 22,448.27 1,692.20 1,573.27 5.94 1,395.61 1,676.63 9.73 281
MACL 14,297.40 2,971.47 2,544.07 8.55 1,990.99 2,255.41 8.60 1.08
SSZ 19,860.27 1,615.53 2,076.27 4.32 960.86 1,247.96 10.13 2.87
BEST 36424.33 1.07 71.47

Table 34. Comparison of adaptation methods handling the Abrupt Square workload using a 30-second

cooldown period

Successful Unsuccessful Average Average Extra Host- Total Host- . UF
response Adaptations
requests requests time hosts seconds seconds Value
ST 14,700.73 2,533.07 2,614.52 3.00 560.75 840.53 6.00 1.70
MACL 15,354.47 2,698.73 2,359.87 4.40 954.90 1,236.52 6.07 1.03
SSZ 16,171.80 2,315.20 2,366.09 2.62 461.54 746.51 6.07 213
BEST 36424.33 1.07 71.47

The abrupt workload illustrates the worst performance case for all of the examined
adaptation methods. Not only was the number of successful requests only slightly over
50% of the possible successful requests, but also the number of unsuccessful requests was
high, as was also the response time. Nevertheless, the Simple Severity Zones achieved
the best utility function values in both cooldown delays, although by a very small margin

in the case of the 15-second delay.

146

9.3.9. Improving the performance of Simple Severity Zones

In Equation 1, the definition of Severity allows the specification of weights on the criteria
which are involved in its calculation. Throughout this work, for simplicity it was assumed
that all weights were equal to each other, and equal to 1. However, this choice might not
be satisfactory in all cases. In general, the Severity-based approach can be enhanced with
machine learning in order to establish the best weights which should be assigned and
obtain a better response.

In the case of the experiments described in the previous subsections, better results could
be obtained for a Severity-based approach if the invocations per second metric was solely
used (equivalent to setting wi=0 for CPU and RAM and w=1 to invocations per second).

Relevant performance data for this flavor of the SSZ method appears in Table 35:

Table 35. Performance of an extreme, simplified yet improved instance of the Simple Severity Zones
method on the workloads described in previous sections.

Average

Successful Unsuccessful Average Extra Host- Total Host- .
requests requests r.esponse hosts seconds seconds Adaptations
time

Gradual 15 27,432.35 27.45 162.50 7.49 1,842.50 2,126.39 11.25
Gradual 30 27,395.53 21.27 191.67 5.89 1,562.66 1,881.90 7.53
Fluctuating 15 23,272.60 22.33 97.87 6.31 1,471.53 1,748.33 9.20
Fluctuating 30 23,283.67 25.33 114.07 5.44 1,407.56 1,723.96 7.33
Square 15 21,815.67 712.93 875.27 5.45 1,045.21 1,278.99 9.73
Square 30 22,371.20 526.87 968.80 4.35 862.64 1,119.88 6.20
Extra 15 32,083.00 140.80 370.47 7.47 1,711.72 1,975.91 10.73
Extra 30 31,620.33 115.87 401.00 5.86 1,548.00 1,865.26 8.00
Abrupt Square 15 27,626.73 945.80 892.67 5.63 1,357.43 1,649.62 12.20
Abrupt Square 30 20,177.07 1,624.33 1,773.67 3.09 614.92 906.00 6.67
Linear 15 49,965.07 64.07 156.60 8.79 2,789.52 3,147.40 17.07
Linear 30 50,191.00 79.40 104.27 7.18 2,638.99 3,065.76 11.33

To rely always on one metric to derive the scaling response is not recommended
however, as the mixture of requests is not always guaranteed to need the same processing
capacity. For example, if the number of requests is falling yet their difficulty (i.e cpu

consumption) is increasing, a scale out action might be necessary to retain an acceptable

147

response time. Therefore, cpu usage and possibly other performance metrics should also

be used in the formulation of rules.

9.3.10. Remarks on the evaluation using realistic workloads

Although the results of the realistic workloads did show significant differences from the
results of the simulations, all of the points of the discussion on simulations (with the
exception of the absolute superiority of Severity-based techniques) continue to hold. A
major difference between the two evaluation modes are the workloads. In the case of
simulations these were synthetic and quite independent from one another (except for the
trend which was positive in three of the four workloads). On the contrary, realistic
workloads were based on the variation of a single metric (invocations) which indirectly
influenced other metrics. A second important difference was the monitoring interval
which was quite high at 15 seconds compared to 1 second in simulations. A third
difference involves the smaller scale of the experiments, both workload-wise (the
processing requirements of the workload, and its duration were smaller) and variability-
wise (one rule threshold pair was mainly analyzed). Finally, while monitoring, scaling
and resource use were ideally handled in the simulator, in the case of the realistic
environment load distribution and processing they were not. Notwithstanding these
differences, the Simple Severity Zones technique demonstrated its value in a realistic
setting.

The second observation involves the use of multiple monitoring metrics. Comparing the
performance of the Maximum Attribute Control Loop, the Simple Threshold and Simple
Severity zones, SSZ generally attains better utility function scores. This implies that it is
actually more useful to use the values from multiple monitoring metrics to guide
adaptation and not only to trigger it. In the case of the SSZ flavor using only the
invocations per second metric, better performance was enabled using only a single
metric. However, 1) it is not always true that a higher number of requests necessitates a
larger amount of workers (as requests may have a varying difficulty) and i1) the
invocations per second metric was updated at a higher frequency compared to other
metrics, therefore allowing for more relevant scaling actions (as all requests had the same

computing difficulty).

148

10. Discussion

10.1. Modelling Discussion

If the approach which was introduced above is followed, a major advantage related to the
installation of a custom FaaS application is brought to the DevOps, as it will be possible
to generate provider-agnostic and standards-based models of the application, not only
making use both of cloud and edge devices, but also still being easy to review. The
prototype type-level TOSCA generator developed [21] can handle both Java annotations
and JSON input reflecting an application graph. Existing, widely-used approaches such
as Terraform can benefit from being used in conjunction with the proposed modelling
approach to deploy the concrete topology (e.g, extending the translation approach
proposed in [83]) yet when used independently expressivity and/or optimization
opportunities are missed.

The new language structures suggested in this work use the existing TOSCA syntax and
each one targets a specific enhanced behaviour. The extended TOSCA specification
enables the modelling of self-managed FaaS-based applications alongside more
traditional VM-based applications. Applications comprised of coordinator-driven and
more traditional architectures may coexist or can be completely separated. It is known
[84] that Cloud functions as a part of a FaaS deployment enjoy a much lower startup
times and offer more fine-grained cost execution options. These advantages render FaaS-
based deployments more preferable to conventional VM-based deployments in some use-
case scenarios. In other cases, though, the stability and predictability of VMs is preferred
over FaaS. The new language structures which are suggested enable (manual) gradual
migrations from VM-based deployments to FaaS-based deployments and vice-versa,
using the expressiveness of TOSCA.

In addition, the extensions in the TOSCA specification also target the correct modelling
of edge devices. Both fog and edge-only deployments are targeted, supporting mobility

from the edge to the cloud and inversely where this can be implemented. Naturally, fog

149

architectures can be combined in modelling with FaaS-based applications to describe
FaaS fog deployments.

Also, irrespectively of the topology which is actually deployed, support for placement
constraints was introduced, and optimization factors at the level of each software
component (fragment) or the whole of the topology. As part of the illustrative scenario,
example optimization factors were presented both at topology and at fragment-level,
permitting the runtime optimization of the topology as required.

An alternative modelling approach which is often pursued when designing language
extensions would be to create a series of new types which target particular applications.
While this brings modelling very close to the actual infrastructure and also provides
concrete artifacts which can be readily used, it also diminishes its genericity, decreases
the understandability of the model and eventually results in heavier models. Accordingly,
judicious creation of specialized but generic types very close to the orchestration software
is proposed. This work aims to align to the mentality of recent work on the Essential
Deployment Metamodel (EDMM) [85] (and TOSCA-Light [86] which introduces an
EDMM-compatible TOSCA subset), which aim to simplify modelling and allow the
convergence of modelling efforts. The emphasis is on simplicity, while still addressing
some important challenges. The exact manner in which this topology will be later
managed and revised is outside the scope of this work, however it has been demonstrated
above that type-level and instance-level TOSCA can cope with dynamic setups. A
suggestion for a hierarchical optimization scheme was made in Section 7.3, yet more
advanced optimization techniques can also be used.

Concerning the relationship of the TOSCA approach outlined in this work with existing
modelling solutions, in Section 9.1 this work was compared with one of the currently
most successful commercial solutions, Terraform. It was shown that Terraform is unable
to provide an abstract view of a processing topology, and is therefore unable to enforce
cross-cloud optimization policies, without significant manual intervention. Secondly, the
exact knowledge of the edge devices which are available, as well as the instance types
which are offered by each provider appears to be the only path to optimize cost while

retaining performance to an acceptable level for each application fragment. Moreover,

150

Terraform and other vendor-specific template-based approaches require the meticulous
configuration of all fine-grained networking parameters on behalf of the DevOps.

Instead, the approach proposed in this work isolates the specification of application
components from their deployment, can handle both small-scale and large-scale
applications, can provide for different optimization criteria and is based on the open
standard of TOSCA. Moreover, when coupled by a proper TOSCA interpreter and
topology reconfiguration tools as those described in [6] it provides a fully automated
approach to application deployment and reconfiguration in a mixed edge/cloud
infrastructure. Using type-level and instance-level TOSCA, the application description is
not bound to any cloud provider — which allows the application to be preserved for long-
term deployments.

In the case of larger topologies, it is expected that the type-level TOSCA templates can
become very lengthy. Even in this case, since the type and relative location of nodes
which are related to a particular fragment are known beforehand (processing, fragment
and mapping nodes), it is easy to understand the purpose of TOSCA elements in a custom
FaaS application. When more complex relationships are involved, additional software
paradigms should be defined to streamline the understanding of the application topology.
As part of this work, a prototype type-level TOSCA generator was provided, able to
create type-level TOSCA for an application topology. However, it was shown that other
components, such as the Optimizer and the instance-level TOSCA generator, along with a
TOSCA Orchestrator are needed, in order to allow the full exploitation of this approach.
A definite future research direction involves the development of components which can
create the required output, and further extend the capabilities of the TOSCA ecosystem.
Another interesting research direction involves the modelling and the optimization of
services — complete topologies of FaaS microservices— as entities in TOSCA, which will
be especially useful for organizations handling hundreds of microservices and tens of
services. In this case, software architects will be given the opportunity to select the
desired topology among a selection of topologies, choosing the tools and deployment
methods that are most relevant for each case.

Finally, applications which are defined using the suggested methodology in TOSCA can

easily profit from software components able to deploy and scale application topologies

151

based on monitoring data. Using the suggested approach — and provided all relevant
components are implemented — scaling in and out, up and down is very easy to model and
users can readily understand, even from a terminal window (template diff), the changes

which the platform has undergone.

10.2. Adaptation Discussion

Related to the adaptation of the FaaS application to cope with workload changes, a
Severity-based approach was presented in this work to improve the response of rule-
based system. Severity can minimize the input necessary for devising elasticity rules and
help the DevOps to guide the operation of a cloud application in a more effective manner.
Familiar concepts found in traditional rule-based systems, such as aggregations,
thresholds and cooldown intervals are still the basic building blocks. Therefore, it also
reaps the benefits associated with rule-based adaptivity, such as lower updating overhead,
relative genericity with respect to the workload managed and lower computational
complexity when compared to other approaches [68]. Moreover, it can automatically use
information from a multitude of monitoring attributes which can be provided in each
elasticity rule and not only from a limited, hard-coded selection between average CPU,
response time and number of requests.

In contrast to traditional rule-based approaches, the choice of the metrics which should be
monitored, and the appropriate threshold values, needs to be complemented by the choice
of an appropriate scaling technique. Depending on the nature of the workload, the
application goals and the time required to spawn new processing instances, the DevOps
should choose the technique which is the most appropriate. The data from the simulations
and the realistic experiments can help in this decision. Still, if this is not desirable, the
Simple Severity Zones technique can be a sufficiently good candidate for many
workloads.

The value of the proposed approach was demonstrated using a utility function which
prioritizes the correct provisioning and service availability while also favouring
application stability. The evaluation metrics generated by the Simple severity zones and
the Severity Value techniques as part of the simulations (and — for SSZ — in many cases

in the realistic experiments) yield a better result (higher utility function values) overall,

152

compared to any of the other commercially inspired techniques. Moreover, in
simulations, other Severity-based techniques also demonstrate at least equal and in
general better results (than the evaluated commercially inspired techniques) in the
isolated testcases which are not covered by the two best techniques. These advantages are
considered a direct contribution to the elasticity capabilities of any cloud application
facing challenging workloads.

The superiority of some techniques over others which is underlined above is attributed to
their design, and the choice of the utility function. For example, if a technique sacrifices
availability or performance to reduce overprovisioning it will have a reduced utility
function score if any of the presented utility functions is used. In turn, the performance of
each technique in each of the performance metrics is directly related to its decisions to
spawn or deallocate processing instances.

Notwithstanding, the definition of the Severity value can provide an aggregate view of
the current situation, for a number of metrics which violate a given elasticity rule. It also
decouples the detection of a situation, from the adaptation which will be triggered. This
enables the creation of hybrids which can exploit threshold-based rules as a first stage
before triggering another adaptation method, e.g., control loops or machine learning as
discussed in Section 9.3.9. When the number of n is relatively small (e.g., n<10), the
calculation of Severity, is very fast. The most important advantage of calculating the
Severity value, however, is that it provides a uniform way to measure the importance of a
situation, when multiple metrics are involved.

In Section 9.2 and 9.3 several techniques were evaluated, using a minimal input of the
threshold value and the direction of the scaling. Note that different options could have
been considered for some techniques. For example, a flavour of the Simple Threshold
technique adding or removing 3 instances could have been examined, or a flavour of the
Relative severity zones technique using k=0.2 rather than k=0.1. Hence, the tables which
are included in the relevant section serve not as an exhaustive comparison, but rather as
an indicator of the suitability of each technique for intense workloads.

Overall, the results appearing in Sections 9.2 and 9.3 are dependent on the datasets which
were used and on the design of the experiments, however an effort was made to consider

indicative cases by using multiple workloads, spawn delays and threshold pairs. Related

153

to the time units which were assumed to be used in simulations (as the code
implementation was property-driven and not time-driven), it is underlined that although
seconds were used for the purposes of comprehensibility, the results would have been
unchanged if the time unit used in the workloads and the formulation of rules was
changed to minutes, hours, or by any other proportionate factor. Consequently, even if a
workload was less intense but followed the same pattern the same results would still be
observed if the windows of the rules were also changed proportionately.

Experiments using a realistic platform suggest three main findings: Firstly, Severity is
useful in many cases off-the shelf and this is manifested also in quite challenging
workloads, while it is also tunable when better performance is needed. It should be
admitted however that this needs time and effort from the part of the domain expert, and
therefore could benefit from machine learning. Secondly, simplicity is preferable when
the nature of the workload changes dramatically and frequently (with respect to the
monitoring interval). Thirdly, allowing a platform to operate on monitoring data faster
(with a smaller cooldown period) is in general preferable to having a longer cooldown

period, which is better when the load is changing very frequently.

154

11. Conclusions

In the previous sections, the modelling extensions to support custom FaaS applications
were discussed, along with a novel approach which can guide the adaptation of their
processing topology. The modelling extensions allow the use of resources at the edge and
the cloud, and provide an understandable view of the processing topology while allowing
optimization to be carried out subsequently. Moreover, a novel approach to adapt these
custom FaaS applications was described, using a small amount of input from elasticity
rules. FaaS is one of the most influential technologies which have appeared in the context
of Cloud computing over the past few years. This proposal involves using a two-
flavoured TOSCA scheme which allows the DevOps to unlock the potential of optimized
hybrid cloud/edge deployments and easily configure the criteria governing the
deployment of components. The expression of constraints is built-in the topology
template, and complete configuration over each fragment of the topology is available.
Moreover, each node template and node type have the same structure and follow the
same conventions, therefore improving the understanding of the TOSCA document,
whether at the instance or the type-level. This work is backed by a software
implementation of the most important modelling stage, the type-level TOSCA generation,
and also an implementation of an adaptation manager based on a Severity technique. The
presented approach along with the appropriate fine-tuning of the open-source type-level
TOSCA generator and Adapter, coupled to proper orchestration and optimization
capabilities which need to be externally implemented (possibly interfacing with
successful commercial products) can offer model-driven adaptation for FaaS applications

in a fully functional platform.

155

12.

10.

11.

12.

13.

14.

15.

References

Bergmayr, A.; Breitenbiicher, U.; Ferry, N.; Rossini, A.; Solberg, A.; Wimmer, M.; Kappel,
G.; Leymann, F. A Systematic Review of Cloud Modeling Languages. ACM Comput. Surv.
2018, 51, 1-38, doi:10.1145/3150227.

Alien4cloud/Alien4cloud Available online: https://github.com/alien4cloud/alien4cloud
(accessed on 12 February 2021).

Cloudify-Cosmo Available online: https://github.com/cloudify-cosmo (accessed on 12
February 2021).

Binz, T.; Breitenbiicher, U.; Haupt, F.; Kopp, O.; Leymann, F.; Nowak, A.; Wagner, S.
OpenTOSCA — A Runtime for TOSCA-Based Cloud Applications. In Proceedings of the
Service-Oriented Computing; Basu, S., Pautasso, C., Zhang, L., Fu, X., Eds.; Springer: Berlin,
Heidelberg, 2013; pp. 692-695.

Kritikos, K.; Skrzypek, P.; Moga, A.; Matei, O. Towards the Modelling of Hybrid Cloud
Applications. In Proceedings of the 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD); IEEE: Milan, Italy, July 2019; pp. 291-295.

Verginadis, Y.; Apostolou, D.; Taherizadeh, S.; Ledakis, I.; Mentzas, G.; Tsagkaropoulos, A.;
Papageorgiou, N.; Paraskevopoulos, F. PrEstoCloud: A Novel Framework for Data-
Intensive Multi-Cloud, Fog, and Edge Function-as-a-Service Applications. Information
Resources Management Journal 2021, 34, 66-85, d0i:10.4018/IRM]J.2021010104.

TOSCA Simple Profile in YAML Version 2.0 Available online: https://docs.oasis-
open.org/tosca/TOSCA/v2.0/TOSCA-v2.0.html (accessed on 19 July 2021).

Wourster, M.; Breitenbucher, U.; Kepes, K.; Leymann, F.; Yussupov, V. Modeling and
Automated Deployment of Serverless Applications Using TOSCA. In Proceedings of the
2018 IEEE 11th Conference on Service-Oriented Computing and Applications (SOCA);
IEEE: Paris, November 2018; pp. 73-80.

Casale, G.; Artac, M.; van den Heuvel, W.-J; van Hoorn, A.; Jakovits, P.; Leymann, F.; Long,
M.; Papanikolaou, V.; Presenza, D.; Russo, A.; et al. RADON: Rational Decomposition and
Orchestration for Serverless Computing. SICS Softw.-Inensiv. Cyber-Phys. Syst. 2020, 35, 77—
87, d0i:10.1007/s00450-019-00413-w.

Paasage Public Deliverables - D2.1.3 Camel Documentation Available online:
https://paasage.ercim.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
(accessed on 12 February 2021).

Achilleos, A.P.; Kritikos, K.; Rossini, A.; Kapitsaki, G.M.; Domaschka, J.; Orzechowski, M.;
Seybold, D.; Griesinger, F.; Nikolov, N.; Romero, D.; et al. The Cloud Application Modelling
and Execution Language. | Cloud Comp 2019, 8, 20, d0i:10.1186/s13677-019-0138-7.

AWS IoT Greengrass - Amazon Web Services Available online:
https://aws.amazon.com/greengrass/ (accessed on 22 July 2021).

IoT Edge | Microsoft Azure Available online: https://azure.microsoft.com/en-
us/services/iot-edge/ (accessed on 22 July 2021).

van Lingen, F.; Yannuzzi, M.; Jain, A.; Irons-Mclean, R.; Lluch, O.; Carrera, D.; Perez, J.L;
Gutierrez, A.; Montero, D.; Marti, J.; et al. The Unavoidable Convergence of NFV, 5G, and
Fog: A Model-Driven Approach to Bridge Cloud and Edge. IEEE Commun. Mag. 2017, 55,
28-35, doi:10.1109/MCOM.2017.1600907.

Bjorklund, M. The YANG 1.1 Data Modeling Language Available online: https://www.rfc-
editor.org/info/rfc7950 (accessed on 12 February 2021).

156

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Chen, T.; Bahsoon, R.; Yao, X. A Survey and Taxonomy of Self-Aware and Self-Adaptive
Cloud Autoscaling Systems. ACM Comput. Surv. 2019, 51, 1-40, doi:10.1145/3190507.

Lim, H.C.; Babu, S.; Chase,].S.; Parekh, S.S. Automated Control in Cloud Computing:
Challenges and Opportunities. In Proceedings of the Proceedings of the 1st workshop on
Automated control for datacenters and clouds; Association for Computing Machinery: New
York, NY, USA, June 19 2009; pp. 13-18.

Zhu, Q.; Agrawal, G. Resource Provisioning with Budget Constraints for Adaptive
Applications in Cloud Environments. IEEE Transactions on Services Computing 2012, 5, 497—
511, doi:10.1109/TSC.2011.61.

Ashraf, A.; Byholm, B.; Lehtinen, J.; Porres, I. Feedback Control Algorithms to Deploy and
Scale Multiple Web Applications per Virtual Machine. In Proceedings of the 2012 38th
Euromicro Conference on Software Engineering and Advanced Applications; September
2012; pp. 431-438.

Lorido-Botran, T.; Miguel-Alonso, J.; Lozano, J.A. A Review of Auto-Scaling Techniques for
Elastic Applications in Cloud Environments.] Grid Computing 2014, 12, 559-592,
doi:10.1007/s10723-014-9314-7.

Prototype TOSCA Generator (Application Fragmentation & Deployment Recommender)
Available online: https://gitlab.com/prestocloud-project/application-fragmentation-
deployment-recommender (accessed on 12 February 2021).

Gartner Says Four Trends Are Shaping the Future of Public Cloud Available online:
https://www.gartner.com/en/newsroom/press-releases/2021-08-02-gartner-says-four-trends-
are-shaping-the-future-of-public-cloud (accessed on 28 February 2022).

Opara-Martins, J.; Sahandji, R.; Tian, F. Critical Analysis of Vendor Lock-in and Its Impact
on Cloud Computing Migration: A Business Perspective. | Cloud Comp 2016, 5, 4,
doi:10.1186/s13677-016-0054-z.

Castro, P.; Ishakian, V.; Muthusamy, V.; Slominski, A. The Rise of Serverless Computing.
Commun. ACM 2019, 62, 44-54, d0i:10.1145/3368454.

Baldini, I.; Castro, P.; Cheng, P.; Fink, S.; Ishakian, V.; Mitchell, N.; Muthusamy, V.; Rabbah,
R.; Suter, P. Cloud-Native, Event-Based Programming for Mobile Applications. In
Proceedings of the Proceedings of the International Conference on Mobile Software
Engineering and Systems; Association for Computing Machinery: New York, NY, USA,
December 14 2016; pp. 287-288.

Kpavel/Incubator-Openwhisk Available online: https://github.com/kpavel/incubator-
openwhisk (accessed on 12 February 2021).

Gandhi, A.; Dube, P.; Karve, A.; Kochut, A.; Zhang, L. Adaptive, Model-Driven Autoscaling
for Cloud Applications.; 2014; pp. 57-64.

Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data
Engineering 2010, 22, 1345-1359, doi:10.1109/TKDE.2009.191.

Schmidt, D.C. Guest Editor’s Introduction: Model-Driven Engineering. Computer 2006, 39,
25-31, doi:10.1109/MC.2006.58.

Glaser, F. Domain Model Optimized Deployment and Execution of Cloud Applications
with TOSCA. In Proceedings of the System Analysis and Modeling. Technology-Specific
Aspects of Models; Grabowski, J., Herbold, S., Eds.; Springer International Publishing:
Cham, 2016; pp. 68-83.

Challita, S.; Korte, F.; Erbel, J.; Zalila, F.; Grabowski, J.; Merle, P. Model-Based Cloud
Resource Management with TOSCA and OCCI. Softw Syst Model 2021, doi:10.1007/s10270-
021-00869-y.

157

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

van Eyk, E.; losup, A.; Seif, S.; Thommes, M. The SPEC Cloud Group’s Research Vision on
FaaS and Serverless Architectures. In Proceedings of the Proceedings of the 2nd
International Workshop on Serverless Computing; Association for Computing Machinery:
New York, NY, USA, December 11 2017; pp. 1-4.

Eismann, S.; Scheuner, J.; van Eyk, E.; Schwinger, M.; Grohmann, J.; Herbst, N.; Abad, C.L,;
Iosup, A. Serverless Applications: Why, When, and How? IEEE Software 2021, 38, 32-39,
doi:10.1109/MS.2020.3023302.

Hellerstein,].M.; Faleiro, J.; Gonzalez, J.E.; Schleier-Smith, J.; Sreekanti, V.; Tumanov, A.;
Wu, C. Serverless Computing: One Step Forward, Two Steps Back. arXiv:1812.03651 [cs]
2018.

Tsagkaropoulos, A.; Verginadis, Y.; Compastié, M.; Apostolou, D.; Mentzas, G. Extending
TOSCA for Edge and Fog Deployment Support. Electronics 2021, 10, 737,
doi:10.3390/electronics10060737.

Tamburri, D.A.; Van den Heuvel, W.-].; Lauwers, C.; Lipton, P.; Palma, D.; Rutkowski, M.
TOSCA-Based Intent Modelling: Goal-Modelling for Infrastructure-as-Code. SICS Softw.-
Inensiv. Cyber-Phys. Syst. 2019, 34, 163-172, doi:10.1007/s00450-019-00404-x.

Yussupov, V.; Soldani, J.; Breitenbiicher, U.; Leymann, F. Standards-Based Modeling and
Deployment of Serverless Function Orchestrations Using BPMN and TOSCA. Software:
Practice and Experience n/a, doi:10.1002/spe.3073.

RADON Public Deliverables - D2.4 Architecture and Integration Plan II Available online:
https://radon-h2020.eu/wp-content/uploads/2020/07/D2.4- Architecture-and-integration-
plan-IL.pdf (accessed on 12 February 2021).

Nyrén, R.; Edmonds, A.; Papaspyrou, A.; Metsch, T.; Parak, B. Open Cloud Computing
Interface - Core Available online: https://redmine.ogf.org/attachments/242/core.pdf
(accessed on 12 February 2021).

Glaser, F.; Erbel, J.; Grabowski, . Model Driven Cloud Orchestration by Combining TOSCA
and OCCI: In Proceedings of the Proceedings of the 7th International Conference on Cloud
Computing and Services Science; SCITEPRESS - Science and Technology Publications:
Porto, Portugal, 2017; pp. 672-678.

Wourster, M.; Breitenbiicher, U.; Falkenthal, M.; Krieger, C.; Leymann, F.; Saatkamp, K;
Soldani, J. The Essential Deployment Metamodel: A Systematic Review of Deployment
Automation Technologies. SICS Softw.-Inensiv. Cyber-Phys. Syst. 2020, 35, 6375,
doi:10.1007/s00450-019-00412-x.

Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE
Internet Things]. 2016, 3, 637-646, doi:10.1109/J1I0T.2016.2579198.

Noghabi, S.A.; Kolb, J.; Bodik, P.; Cuervo, E. Steel: Simplified Development and
Deployment of Edge-Cloud Applications.; 2018.

Mortazavi, S.H.; Salehe, M.; Gomes, C.S.; Phillips, C.; de Lara, E. Cloudpath: A Multi-Tier
Cloud Computing Framework. In Proceedings of the Proceedings of the Second ACM/IEEE
Symposium on Edge Computing; Association for Computing Machinery: New York, NY,
USA, October 12 2017; pp. 1-13.

Podolskiy, V.; Jindal, A.; Gerndt, M. laaS Reactive Autoscaling Performance Challenges. In
Proceedings of the 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD); July 2018; pp. 954-957.

Podolskiy, V.; Mayo, M.; Koay, A.; Gerndt, M.; Patros, P. Maintaining SLOs of Cloud-
Native Applications Via Self-Adaptive Resource Sharing. In Proceedings of the 2019 IEEE
13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO); June
2019; pp. 72-81.

158

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Arkian, H.; Pierre, G.; Tordsson, J.; Elmroth, E. Model-Based Stream Processing Auto-
Scaling in Geo-Distributed Environments. In Proceedings of the 2021 International
Conference on Computer Communications and Networks (ICCCN); July 2021; pp. 1-10.
Taherizadeh, S.; Stankovski, V. Dynamic Multi-Level Auto-Scaling Rules for Containerized
Applications. The Computer Journal 2019, 62, 174-197, doi:10.1093/comjnl/bxy043.
Overview of Autoscale with Azure Virtual Machine Scale Sets - Azure Virtual Machine
Scale Sets Available online: https://docs.microsoft.com/en-us/azure/virtual-machine-scale-
sets/virtual-machine-scale-sets-autoscale-overview (accessed on 24 February 2022).

Oracle Cloud Infrastructure Documentation — Autoscaling Available online:
https://docs.oracle.com/en-us/iaas/Content/Compute/Tasks/autoscalinginstancepools.htm
(accessed on 24 February 2022).

Taherizadeh, S.; Grobelnik, M. Key Influencing Factors of the Kubernetes Auto-Scaler for
Computing-Intensive Microservice-Native Cloud-Based Applications. Advances in
Engineering Software 2020, 140, 102734, do0i:10.1016/j.advengsoft.2019.102734.
Lorido-Botran, T.; Miguel-Alonso, J.; Lozano, J. Comparison of Auto-Scaling Techniques for
Cloud Environments.; January 1 2013.

Vaquero, L.M.; Moran, D.; Galan, F.; Alcaraz-Calero,]. M. Towards Runtime
Reconfiguration of Application Control Policies in the Cloud. | Netw Syst Manage 2012, 20,
489-512, doi:10.1007/s10922-012-9251-3.

Galante, G.; Bona, L.C.E. Constructing Elastic Scientific Applications Using Elasticity
Primitives. In Computational Science and Its Applications — ICCSA 2013; Murgante, B., Misra,
S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O., Eds.;
Lecture Notes in Computer Science; Springer Berlin Heidelberg: Berlin, Heidelberg, 2013;
Vol. 7975, pp. 281-294 ISBN 978-3-642-39639-7.

Copil, G.; Moldovan, D.; Truong, H.-L.; Dustdar, S. Multi-Level Elasticity Control of Cloud
Services. In Proceedings of the Service-Oriented Computing; Basu, S., Pautasso, C., Zhang,
L., Fu, X,, Eds.; Springer: Berlin, Heidelberg, 2013; pp. 429-436.

Copil, G.; Moldovan, D.; Truong, H.-L.; Dustdar, S. RSYBL: A Framework for Specifying
and Controlling Cloud Services Elasticity. ACM Trans. Internet Technol. 2016, 16, 18:1-18:20,
doi:10.1145/2925990.

Ferretti, S.; Ghini, V.; Panzieri, F.; Pellegrini, M.; Turrini, E. QoS—-Aware Clouds. In
Proceedings of the 2010 IEEE 3rd International Conference on Cloud Computing; July 2010;
pp. 321-328.

Trihinas, D.; Georgiou, Z.; Pallis, G.; Dikaiakos, M.D. Improving Rule-Based Elasticity
Control by Adapting the Sensitivity of the Auto-Scaling Decision Timeframe. In
Proceedings of the Algorithmic Aspects of Cloud Computing; Alistarh, D., Delis, A., Pallis,
G., Eds.; Springer International Publishing: Cham, 2018; pp. 123-137.

Dutreilh, X.; Moreau, A.; Malenfant, J.; Rivierre, N.; Truck, I. From Data Center Resource
Allocation to Control Theory and Back. In Proceedings of the 2010 IEEE 3rd International
Conference on Cloud Computing; July 2010; pp. 410—417.

Ali-Eldin, A.; Tordsson, J.; ElImroth, E. An Adaptive Hybrid Elasticity Controller for Cloud
Infrastructures. In Proceedings of the 2012 IEEE Network Operations and Management
Symposium; April 2012; pp. 204-212.

Ali-Eldin, A.; Kihl, M.; Tordsson,].; Elmroth, E. Efficient Provisioning of Bursty Scientific
Workloads on the Cloud Using Adaptive Elasticity Control. In Proceedings of the
Proceedings of the 3rd workshop on Scientific Cloud Computing; Association for
Computing Machinery: New York, NY, USA, June 18 2012; pp. 31-40.

159

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

Bauer, A.; Herbst, N.; Spinner, S.; Ali-Eldin, A.; Kounev, S. Chameleon: A Hybrid, Proactive
Auto-Scaling Mechanism on a Level-Playing Field. IEEE Transactions on Parallel and
Distributed Systems 2019, 30, 800-813, doi:10.1109/TPDS.2018.2870389.

Ramirez, Y.M.; Podolskiy, V.; Gerndt, M. Capacity-Driven Scaling Schedules Derivation for
Coordinated Elasticity of Containers and Virtual Machines. In Proceedings of the 2019 IEEE
International Conference on Autonomic Computing (ICAC); June 2019; pp. 177-186.

Zhu, L.; Giotis, G.; Tountopoulos, V.; Casale, G. RDOF: Deployment Optimization for
Function as a Service. In Proceedings of the 2021 IEEE 14th International Conference on
Cloud Computing (CLOUD); September 2021; pp. 508-514.

Tamiru, M.A.; Tordsson, J.; Elmroth, E.; Pierre, G. An Experimental Evaluation of the
Kubernetes Cluster Autoscaler in the Cloud. In Proceedings of the 2020 IEEE International
Conference on Cloud Computing Technology and Science (CloudCom); December 2020; pp.
17-24.

Rzadca, K.; Findeisen, P.; Swiderski, J.; Zych, P.; Broniek, P.; Kusmierek, J.; Nowak, P.;
Strack, B.; Witusowski, P.; Hand, S.; et al. Autopilot: Workload Autoscaling at Google. In
Proceedings of the Proceedings of the Fifteenth European Conference on Computer
Systems; Association for Computing Machinery: New York, NY, USA, April 15 2020; pp. 1-
16.

Predictive Scaling for EC2, Powered by Machine Learning Available online:
https://aws.amazon.com/blogs/aws/new-predictive-scaling-for-ec2-powered-by-machine-
learning/ (accessed on 24 February 2022).

Tsagkaropoulos, A.; Papageorgiou, N.; Apostolou, D.; Verginadis, Y.; Mentzas, G.
Challenges and Research Directions in Big Data-Driven Cloud Adaptivity.; January 1 2018;
pp- 190-200.

Jussien, N.; Rochart, G.; Lorca, X. Choco: An Open Source Java Constraint Programming
Library. In Proceedings of the CPAIOR’08 Workshop on Open-Source Software for Integer
and Contraint Programming (OSSICP’08); Paris, France, France, 2008; pp. 1-10.

Hermenier, F.; Lawall, J.; Muller, G. BtrPlace: A Flexible Consolidation Manager for Highly
Available Applications. IEEE Trans. Dependable and Secure Comput. 2013, 10, 273-286,
doi:10.1109/TDSC.2013.5.

Papageorgiou, N.; Verginadis, Y.; Apostolou, D.; Mentzas, G. Fog Computing Context
Analytics. IEEE Instrumentation Measurement Magazine 2019, 22, 53-59,
doi:10.1109/MIM.2019.8917904.

Alsmeyer, G. Chebyshev’s Inequality. In International Encyclopedia of Statistical Science;
Lovric, M., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2011; pp. 239-240 ISBN 978-
3-642-04897-5.

Severity-Based Situation Detection Mechanism Available online:
https://gitlab.com/prestocloud-project/situation-detection-mechanism-v2 (accessed on 24
March 2022).

Tsagkaropoulos, A.; Verginadis, Y.; Papageorgiou, N.; Paraskevopoulos, F.; Apostolou, D;
Mentzas, G. Severity: A QoS-Aware Approach to Cloud Application Elasticity. | Cloud Comp
2021, 10, 45, doi:10.1186/s13677-021-00255-5.

Suhothayan, S.; Gajasinghe, K.; Loku Narangoda, I.; Chaturanga, S.; Perera, S.;
Nanayakkara, V. Siddhi: A Second Look at Complex Event Processing Architectures. In
Proceedings of the Proceedings of the 2011 ACM workshop on Gateway computing
environments; Association for Computing Machinery: New York, NY, USA, November 18
2011; pp. 43-50.

160

76.

77.

78.

79.

80.

81.

82.
83.

84.

85.

86.

Sun, Y.; Lin, F.; Xu, H. Multi-Objective Optimization of Resource Scheduling in Fog
Computing Using an Improved NSGA-IL. Wireless Pers Commun 2018, 102, 1369-1385,
doi:10.1007/s11277-017-5200-5.

Zhu, Z.; Zhang, G.; Li, M; Liu, X. Evolutionary Multi-Objective Workflow Scheduling in
Cloud. IEEE Transactions on Parallel and Distributed Systems 2016, 27, 1344-1357,
doi:10.1109/TPDS.2015.2446459.

Zhang, F; Cao, J.; Li, K.; Khan, S.U.; Hwang, K. Multi-Objective Scheduling of Many Tasks
in Cloud Platforms. Future Generation Computer Systems 2014, 37, 309-320,
doi:10.1016/j.future.2013.09.006.

Simic, V.; Stojanovic, B.; Ivanovic, M. Optimizing the Performance of Optimization in the
Cloud Environment-An Intelligent Auto-Scaling Approach. Future Generation Computer
Systems 2019, 101, 909-920, doi:10.1016/j.future.2019.07.042.

Barnawi, A.; Sakr, S.; Xiao, W.; Al-Barakati, A. The Views, Measurements and Challenges of
Elasticity in the Cloud: A Review. Computer Communications 2020, 154, 111-117,
doi:10.1016/j.comcom.2020.02.010.

Adaptation Technique Performance Using 2, 3 and 4-Metric Workloads Available online:
http://imu.ntua.gr/static/workloads/ (accessed on 26 February 2022).

Krishnaprasad, S. Uses and Abuses of Amdahl’s Law. J. Comput. Sci. Coll. 2001, 17, 288-293.
Wurster, M.; Breitenbiicher, U.; Harzenetter, L.; Leymann, F.; Soldani,]. TOSCA Lightning:
An Integrated Toolchain for Transforming TOSCA Light into Production-Ready
Deployment Technologies. In Proceedings of the Advanced Information Systems
Engineering; Herbaut, N., La Rosa, M., Eds.; Springer International Publishing: Cham, 2020;
pp. 138-146.

Jain, A.; Baarzi, A.F.; Alfares, N.; Kesidis, G.; Urgaonkar, B.; Kandemir, M. SplitServe:
Efficiently Splitting Complex Workloads Across FaaS and IaaS. In Proceedings of the
Proceedings of the ACM Symposium on Cloud Computing; ACM: Santa Cruz CA USA,
November 20 2019; pp. 487-487.

Wurster, M.; Breitenbiicher, U.; Brogi, A.; Falazi, G.; Harzenetter, L.; Leymann, F.; Soldani,
J.; Yussupov, V. The EDMM Modeling and Transformation System. In Proceedings of the
Service-Oriented Computing — ICSOC 2019 Workshops; Yangui, S., Bouguettaya, A., Xue,
X., Faci, N., Gaaloul, W., Yu, Q., Zhou, Z., Hernandez, N., Nakagawa, E.Y., Eds.; Springer
International Publishing: Cham, 2020; pp. 294-298.

Wurster, M.; Breitenbiicher, U.; Harzenetter, L.; Leymann, F.; Soldani, J.; Yussupov, V.
TOSCA Light: Bridging the Gap between the TOSCA Specification and Production-Ready
Deployment Technologies: In Proceedings of the Proceedings of the 10th International
Conference on Cloud Computing and Services Science; SCITEPRESS - Science and
Technology Publications: Prague, Czech Republic, 2020; pp. 216-226.

161

APPENDIX A - Full Type-level TOSCA template

tosca_definitions_version: tosca_prestocloud_mapping_1_2

metadata:
template_name: IMU generated types definition
template_author: IMU
template_version: 1.0.0-SNAPSHOT
CostThreshold: 1000
TimePeriod: 720
ProviderName_0: Google_Cloud_Compute
ProviderRequired_0: false
ProviderExcluded_0: true
MetricToMinimize: Cost

description: Types Description

imports:
- tosca-normative-types:1.2
- iccs-normative-types:1.1
- resource-descriptions:1.0
- placement-constraints:1.0

node_types:
#Processing node selection:
processing node_LambdaProxy_0:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.proxy.faas
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [2, 4]}
- mem_size: { in_range: [2048 MB, 4096 MB] }
- storage_size: { in_range: [10 GB, 50 GB | }
- 0s:
properties:
- architecture: { valid_values: [x86_64, i386] }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- resource:
properties:

162

- type: { equal: cloud }

processing node_imu_fragments_MultimediaManager_1:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
- num_cpus: {in_range: [2, 4] }
- mem_size: { in_range: [2048 MB, 4096 MB] }
- storage_size: { in_range: [128 GB, 1024 GB | }
- 0s:
properties:
- architecture: { valid_values: [x86_64, i386] }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- resource:
properties:
- type: { equal: cloud }

processing node_imu_fragments_VideoTranscoder_2:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [2, 4]}
- mem_size: { in_range: [2048 MB, 4096 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [x86_64, 1386 | }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- resource:
properties:

163

- type: { equal: cloud }
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: { in_range: [2, 4]}
- mem_size: { in_range: [2048 MB, 4096 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }

processing node_imu_fragments_AudioCaptor_3:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range:[1,2]}
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }
- Sensors:
properties:
- microphone: { equal: "/dev/snd/mic0" }

164

processing_node_imu_fragments_FaceDetector_4:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent.faas
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [1,2]}
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [x86_64, 1386] }
- type: { equal: linux }
- distribution: { equal: ubuntu }
- resource:
properties:
- type: { equal: cloud }
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [1,2]}
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }

processing node_imu_fragments_PercussionDetector_5:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent.faas
requirements:
- host:

165

capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [1,2]}
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }

processing_node_imu_fragments_VideoStreamer_6:
description: A TOSCA representation of a processing node
derived_from: prestocloud.nodes.agent.faas
requirements:
- host:
capability: tosca.capabilities.Container
node: prestocloud.nodes.compute
relationship: tosca.relationships.HostedOn
node_filter:
capabilities:
- host:
properties:
-num_cpus: {in_range: [1,2]}
- mem_size: { in_range: [1024 MB, 2048 MB] }
- storage_size: { in_range: [4 GB, 32 GB] }
- 0s:
properties:
- architecture: { valid_values: [arm64, armel, armhf] }
- type: { equal: linux }
- distribution: { equal: raspbian }
- resource:
properties:
- type: { equal: edge }
- Sensors:
properties:
- video_camera: { equal: "/dev/video/camera0" }

topology_template:

166

policies:
- collocation_policy_group_0:
type: prestocloud.placement.Gather
targets: [imu_fragments_VideoStreamer, imu_fragments_VideoTranscoder]

- collocation_policy_group_1:
type: prestocloud.placement.Gather
targets: [imu_fragments_PercussionDetector, imu_fragments_AudioCaptor]

- precedence_policy_group_0:
type: prestocloud.placement.Precedence
targets: [
imu_fragments_VideoStreamer,imu_fragments_VideoTranscoder,imu_fragments_FaceDetector,i
mu_fragments_MultimediaManager,imu_fragments_AudioCaptor,imu_fragments_PercussionDe
tector |

node_templates:
deployment_node_LambdaProxy:
type: processing_node_LambdaProxy_0

LambdaProxy:
type: prestocloud.nodes.fragment
properties:
id: 6
name: LambdaProxy
scalable: false
occurrences: 1
docker_cloud:
image: "traefik:latest"
registry: "hub.docker.com"
ports:

- target: 11111
published: 11111
protocol: TCP

- target: 11198
published: 11198
protocol: TCP

optimization_variables:
cost: 1
distance: 1
friendliness: { }
requirements:
- execute: deployment_node_LambdaProxy

deployment_node_imu_fragments_MultimediaManager:
type: processing_node_imu_fragments_MultimediaManager_1

imu_fragments_MultimediaManager:

167

type: prestocloud.nodes.fragment
properties:
id: 0
name: imu_fragments.MultimediaManager
scalable: false
occurrences: 1
docker_cloud:
image: "multimedia_manager:latest"
registry: "prestocloud.test.eu”
variables: { "VIDEO_TRANSCODER_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "FACE_DETECTOR_SERVICE":
"{ get_property: [deployment_node_LambdaProxy,hostnetwork,addresses,1] }",
"RUNNING_THREADS": "2" }
optimization_variables:
cost: 5
distance: 4
friendliness: { "aws™": "5", "gce": "0", "azure": "1" }
requirements:
- execute: deployment_node_imu_fragments_MultimediaManager

deployment_node_imu_fragments_VideoTranscoder:
type: processing_node_imu_fragments_VideoTranscoder_2

imu_fragments_VideoTranscoder:
type: prestocloud.nodes.fragment
properties:
id: 1
name: imu_fragments.VideoTranscoder
scalable: true
occurrences: 1
docker_edge:
image: "video_transcoder_edge:latest"
registry: "prestocloud.edge.test.eu”
ports:
- target: 10000
published: 10000
protocol: TCP_UDP
docker_cloud:
image: "video_transcoder_cloud:latest"
registry: "prestocloud.test.eu”
ports:
- target: 10000
published: 10000
protocol: TCP_UDP
optimization_variables:
cost: 2
distance: 8
friendliness: { "aws": "5", "gce": "0", "azure": "1" }

168

requirements:
- execute: deployment_node_imu_fragments_VideoTranscoder

deployment_node_imu_fragments_AudioCaptor:
type: processing_node_imu_fragments_AudioCaptor_3

imu_fragments_AudioCaptor:
type: prestocloud.nodes.fragment
properties:
id: 2
name: imu_fragments.AudioCaptor
scalable: false
occurrences: 1
docker_edge:
image: "audiocaptor:latest"
registry: "prestocloud.test.eu”
variables: { "SAMPLING_RATE": "22 kHZ" }
optimization_variables:
cost: 1
distance: 1
friendliness: { }
health_check:
interval: 1
cmd: "cat /proc/meminfo”
requirements:
- execute: deployment_node_imu_fragments_AudioCaptor

deployment_node_imu_fragments_FaceDetector:
type: processing_node_imu_fragments_FaceDetector_4

imu_fragments_FaceDetector:
type: prestocloud.nodes.fragment.faas
properties:
id: 3
name: imu_fragments.FaceDetector
scalable: true
occurrences: 1
docker_edge:
image: "face_detector_edge:latest"
registry: "local.prestocloud.test.eu”
variables: { "PRECISION": "50", "ITERATIONS": "10" }
docker_cloud:
image: "face_detector_cloud:latest"
registry: "prestocloud.test.eu”
variables: { "PRECISION": "100", "ITERATIONS": "2" }
optimization_variables:
cost: 1
distance: 1

169

friendliness: { "aws" "5", "gce": "0", "azure™: "1" }
health_check:
interval: 1
cmd: "curl health.prestocloud.test.eu FaceDetector"
requirements:
- execute: deployment_node_imu_fragments_FaceDetector
- proxy: deployment_node_LambdaProxy

deployment_node_imu_fragments_PercussionDetector:
type: processing_node_imu_fragments_PercussionDetector_5

imu_fragments_PercussionDetector:
type: prestocloud.nodes.fragment.faas
properties:
id: 4
name: imu_fragments.PercussionDetector
scalable: true
occurrences: 1
docker_edge:
image: "percussion_detector_edge:latest"
registry: "prestocloud.test.eu”
docker_cloud:
image: "percussion_detector_cloud:latest"
registry: "prestocloud.test.eu”
optimization_variables:
cost: 1
distance: 1
friendliness: { }
requirements:
- execute: deployment_node_imu_fragments_PercussionDetector
- proxy: deployment_node_LambdaProxy

deployment_node_imu_fragments_VideoStreamer:
type: processing_node_imu_fragments_VideoStreamer_6

imu_fragments_VideoStreamer:
type: prestocloud.nodes.fragment.faas
properties:
id: 5
name: imu_fragments.VideoStreamer
scalable: true
occurrences: 3
docker_edge:
image: "video_streamer:latest"
registry: "prestocloud.test.eu”
variables: { "VIDEO_TRANSCODER_SERVICE": "{ get_property:
[deployment_node_LambdaProxy,host,network,addresses,1] }", "VIDEO_RESOLUTION":
"HD1080p" }

170

optimization_variables:
cost: 1
distance: 1
friendliness: { }
requirements:
- execute: deployment_node_imu_fragments_VideoStreamer
- proxy: deployment_node_LambdaProxy

171

APPENDIX B - Full Terraform template

provider "aws" {
profile ="default"
region = "us-east-1"

}

Network configuration ...Create a VPC to launch instances into
resource "aws_vpc" "default" {

cidr_block ="10.0.0.0/16"
}

Create an internet gateway to grant to the subnet access to the outside world
resource "aws_internet_gateway" "default" {
vpc_id = "${aws_vpc.default.id}

"

}

Grant the VPC internet access on its main route table

"none

resource "aws_route" "internet_access" {

route_table_id ="${aws_vpc.default. main_route_table_id}"
destination_cidr_block ="0.0.0.0/0"
gateway_id ="${aws_internet_gateway.default.id}"

}

Create a subnet to launch instances into
resource "aws_subnet" "default” {
vpc_id ="${aws_vpc.default.id}"
cidr_block ="10.0.1.0/24"
map_public_ip_on_launch = true

}

resource "aws_security_group" "default" {
name = "terraform_example_lambda_proxy"
description = "Used in the terraform"
vpc_id ="${aws_vpc.default.id}"

ingress {
from_port =22
to_port =22

protocol ="tcp"
cidr_blocks =["0.0.0.0/0"]
}
}

A security group for the Lambda Proxy
resource "aws_security_group" "lambda_proxy" {
name = "terraform_example_lambda_proxy"

172

1

description = "Used in the terraform'’
vpc_id ="${aws_vpc.default.id}"

ingress {
from_port =22
to_port =22

protocol ="tcp"
cidr_blocks =["0.0.0.0/0"]
}

ingress {
from_port =11111
to_port =11111
protocol ="tcp"
cidr_blocks =["0.0.0.0/0"]
}

ingress {
from_port =11198
to_port =11198
protocol ="tcp"
cidr_blocks =["0.0.0.0/0"]
}
}

variable "key_name" {}
variable "public_key_path" {}

resource "aws_key_pair" "auth" {
key_name ="${var.key_name}"
public_key = "${file(var.public_key_path)}

"

}

resource "aws_instance" "FaceDetector" {
ami ="ami-2757f631"
instance_type = "t2.micro"
key_name = "${aws_key_pair.auth.id}
vpc_security_group_ids = ["${aws_security_group.default.id}"]
subnet_id = "${aws_subnet.default.id}"
depends_on = [aws_instance.VideoTranscoder]

"

resource "aws_instance" "VideoTranscoder" {
ami = "ami-2757f621"
instance_type = "c5.large "
key_name = "${aws_key_pair.auth.id}
vpc_security_group_ids = ["${aws_security_group.default.id}"]
subnet_id = "${aws_subnet.default.id}"

"

173

depends_on = [docker_container.video_streamer]

}

resource "aws_instance" "LambdaProxy" {
ami = "ami-2757{622"
instance_type = "cb.large "
key_name = "${aws_key_pair.auth.id}
vpc_security_group_ids = ["${aws_security_group.default.id}"]
subnet_id = "${aws_subnet.default.id}"
depends_on =
[docker_container.percussion_detector,aws_instance.FaceDetector,aws_instance.VideoTranscode
r]
}

"

resource "aws_instance" "MultimediaManager" {
ami ="ami-2757f611"
instance_type = "t3a.medium "
key_name = "${aws_key_pair.auth.id}
vpc_security_group_ids = ["${aws_security_group.default.id}"]
subnet_id = "${aws_subnet.default.id}"
depends_on =
[aws_instance.FaceDetector,aws_instance.VideoTranscoder,docker_container.percussion_detecto
1]
}

"

Configure the Docker providers
provider "docker” {

host = "tcp://192.168.1.2:2375/"
}

provider "docker" {

alias = "worker_2"

host = "tcp://192.168.1.3:2375/"
}

provider "docker" {

alias = "worker_3"

host = "tcp://192.168.1.4:2375/"
}

Create a container

resource "docker_container” "video_streamer” {
image = docker_image.vs_image.latest
name = "vs_cont"

}

resource "docker_container" "audio_captor" {
provider = docker.worker_2

174

image = docker_image.ac_image.latest
name = "ac_cont"

}

resource "docker_container" "percussion_detector"” {
provider = docker.worker_3
image = docker_image.pd_image.latest

name ="pd_cont"
depends_on = [docker_container.audio_captor]

"non

resource "docker_image" "vs_image" {

name = "video_streamer:latest"

}

resource "docker_image" "ac_image" {
provider = docker.worker_2
name = "audio_captor:latest”

}

"nn

resource "docker_image" "pd_image" {
provider = docker.worker_3

name = "percussion_detector:latest”

}

175

