£

POMHOEVS .
A VP $oPpos

3

EBvikd MeTtodBlo MoAuteyveio
2X0Ar HAeKTPOASGYWV MNXAVIKWV KAl MNXavikwy YTIOAOYLOTWV
Touéag Texvohoyiag MAnpodoplkAC Kal YITOAOYLOTWY
Epyaotiplo MikpolmoAoylotwy Kat Wndlakwv Zuotnudtwy

Methodology of extraction of reliable energy
data on a basic block level
MeBodoAoyia eEaywync a&lomotwy
oedopEvwyv evepyelac o emtimedo basic block

AtmAwpaTtikf Epyaocia

TOou

MIMOYPA AHMHTPIOY >TAMATIOY

ETUBAETIWV: AnuATELOC Z0UVTPENG
KaBnyntrc E.M.N.

ABrva, dePfpoudplog 2023

EBvikd MetadBlo MoAuteyveio

>X0AA HAEKTPOASOYwWV MNXavikwy Kdl MnYavikwy YTTOAOYLOTwWY
Topéag Texvoloyiag MAnpodoptkAC Kal YITOAOYLOTWV
Epyaotrplo MikpolmoAoylotwy kat Wnolakwv Zuotnudtwy

Methodology of extraction of reliable energy data on
a basic block level

MeBodoAoyia eEaywync atldomiotwyv dedouEvwv
evépyelacg o€ emtimedo basic block

AtmAwpaTtik Epyaocia

TOou

MIMOYPA AHMHTPIOY ZTAMATIOY

ETUBAETILWOV: AnuATELOC Z00UVTPENG
Kadnyntric E.M.M.

EvkpiBnke amd tnv tpiueln eetaotikA emitpomr) tnv 21 ®eBpovapiov 2023.

(Ymoypadn) (Ymoypadn) (Ymoypaen)
AnuATpLog Solvtpne Navaywtng Toavakag SWTAPLOC ZUdNC
Kabnyntng E.M.M. KaBnyntrig E.M.IM MeTad1daKTOpIKOG epeuvnTNG E.M.M

ABrva, ®eBpoudplog 2023

EBvikd MetaodBo MoAuteyveio

>X0AA HAEKTPOASOYwWV MNXavikwy Kdl MnYavikwy YTTOAOYLOTwWY
Topéag Texvoloyiag MAnpodoptkAC Kal YITOAOYLOTWV
Epyaotrplo MikpolmoAoylotwy kat Wnolakwv Zuotnudtwy

(Yroypagri)

MmoUpag AnpATPLOC STAMATLOC
AtmAwpatol)xo¢ HAekTpoAdyog Mnyavikdc kat Mnxavikdg YoAoylotwy E.M.M.

Copyright © - All rights reserved MmouUpag AnpAtplog Stapdriog, 2023.
Me emipUAaln mavtdg SKalwpaTog.

AmrtayopeleTal n avtlypadn, arnobrikevon kat dtavopr tng mapoloag epyaaciag,
€€ OAOKANPOU 1 THAMATOC AUTAC, VLA EUTIOPIKO OKOTO. ETiTpémeTal n avato-
TIwaon, amoBrikeuon Kal dlavoun yla okoTtd Un KEPOOOKOTILKO, EKTIALOEUTIKAG 1
gPELVNTIKAC dpOoNG, uttd TNV TPoiTdBeon va avadEpetal n TNy TTPoEAeUONG
Kal va dtatnpeital to mapdv pAvupa. EpwtApata ou adopolv tTh XpAon tng
gepyaciac yia kepdooKoTILKO OKOTIO TIPETEL va ameuBivovTal TTPog TOV CUYYPa-

dca.

H evepyelakn katavaiwon sival pla avaduduevn avnouxia og ToAAoU¢ kKAAdoug Kat
Topeic TNG MANPOodOpPLKAG, yia AGYoug EVEPYELOKOU XPNUATIKOU KOOTOUG , ATIAYWYNAC
BepudtnTag , Sidpkelag {wng pmtapiag Kat TEPIBAAAOVTIKWVY AVNOUXLWV.

Mponyoupévwg, n KatavdAwon evépyelag oxeTi{dTav Kupiwg Pe To UALKO UTIO Xpron
, WoTdo0 TO AoylopLkd eival otnv Pdén kloov onuavTiko pe To VALKO TIdvw OTo oTtolo
ekteAeitat. O TeAKAC 0TOXOC AUTAC TNG SUMAWHATIKAC Epyaaciag sival va Bonbrosl Toug
TIPOYPAMHATIOTEG KAl YEVIKA TOUC ETILOTAPOVES TNG TTANPOPOPLKAG, va KaTtaAldBouv Kal
va okedptolv gvepyd yla Tnv vAomoinon “mpdaoivou Aoyloptkdu” otnv SOUAELA TOUG, HE
otdxo TNV pelwon NG KATavaAwaong eVEPYELAC TOU AOYLOULIKOU TOUG KAl TNV TIapaywyn
EVEPYELAKA ATIOSOTIKWYV TIPOIOVTWV.

Baaotkd TPOATIALTOUHEVO YLId TNV EVEPYELAKN ATIOSOTIKOTNTA €lval N EKTIUNON EVEP-
velag Ma va 1o emtOXoupe autd, Eekvaue Pe TNV Tapaywyr evog aflémiotou dataset
gvépyelag, To omoio otnv ouvéxela Ba amoteAéael Tnv Pdaon yia Tnv dnuloupyia evog
HovTéAou TPOPBAedPNG evEpYELAC.

To mpwTo BApA yla TNV tapaywyn evog dataset evépyelag ot emimedo basic block &i-
val n H€tpnaon tng evépyelag evog oAl peyaAlTepou KoPPaTiol Kwdika Kat o dlapotpa-
ou6c autol Tou ouvOAou ue dikalo TPOTo oe KABe basic block. lNa Toug okoTtoUC AUTAC
NG SUMAWPATIKAC gpyaciag, apxtkdg kwdikag C xpnaotyotoleital yia tTnv dnuoupyia
EKTEAECIMWY, TWV OTIOlWV N eVEPYELA HETPLETAL HECW PETPNTWV EVEPYELOC TNG TEXVO-
Aoyiag Intel RAPL, evw Tautdxpova amoBnkeleTal To (VoG EKTEAEDNG TOU EKTEAECLIHOU.
XpNOLUOTIOLWVTACG TIC UTIOAOYLOMEVEG TIHEC eVEPYELAC Kal XwpilovTtac To (xvog ot basic
blocks, xpnolpotmolodvtal otatioTikéG péBodol yia va dtapotlpaotel dikala n evepyeia
o€ 6Aa ta basic blocks.

To mtapayduevo dataset gival avtimpoowTeuTikd OxL HOvo yia C kwdika aAAd Kat yia
AAAEC YAWOOEC TIpoypappatiopoU. To teAlkd dataset amoteAeital amo 3828 povadikd
basic blocks, Ta omoia mpokOTTOUV Ao 24 dladopeTikd benchmarks TpoypappdTwy
C . To péoo oddApa yia Ao to dataset avépyetal oto 2.63%. Autd ta amoteAéoparta
glval ouykpiowa Pe To TLO JOVTEPVO AUTAV TNV OTLYHA 0TOo Xwpo ALEA [1], ye Tnv dIKA
pag SouAeld va eival kaL open source.

A€Eec KAsbLa

LLVM, LLVM pass, intel Perf, intel Rapl, execution trace, energy efficiency, energy dataset,
Basic Block, energy prediction, energy overhead

Page 1 of

Energy consumption is an emerging concern in multiple domains and fields of infor-
matics, due to the monetary energy cost, the heat dissipation, the battery life of devices
and environmental concerns.

Formerly, the energy consumption was mainly related to the used hardware, however,
the running software is in fact as important as hardware, since it controls the behaviour
of the hardware. The ultimate goal of this thesis is to help developers and practitioners
understand and actively think about green software design in their work, in order to
reduce the energy consumption of their software and deliver energy efficient products.

A prerequisite to energy efficiency though is energy estimation. To achieve this, we
start with producing a reliable dataset that will then be used to create a energy predicting
model.

The first step to producing an energy dataset on a basic block level is measuring
the energy of a larger isolated software process and then distributing the energy on
each basic block. For the purposes of this dissertation thesis C source code executables
will be used and the energy of the binaries will be measured, through Intel RAPL energy
counters, while the assembly execution traces are stored in parallel. Using the calculated
values and by splitting the code trace into energy blocks, using statistical methods the
energy will be distributed fairly to each basic block.

The produced dataset is actually very representative not only of C code but of any
High level programming language and is made of 3828 unique basic blocks which are
derived from 24 different benchmarks of C code. The average error for the totality of the
dataset is equal to 2.63%. These results are comparable with the state of the art, ALEA
[1], with the added benefit of being open source.

Keywords

LLVM, LLVM pass, intel Perf, intel Rapl, execution trace, energy efficiency, energy dataset,
Basic Block, energy prediction, energy overhead

Page 3 of

Oa nBeAa katapxniv va euxapLotiow Tov eTBAETTOVTA KaBNyNTr Hou KOPLo AnuiTeLo
>o0vTpnN yla TNV gUKaAlpia TIou Pou €6waoE va EKTIOVAOW TNV SUMAWHATIKA POU epyacia
0TO £pYyaocTtiplo MikpoUToAOYLOTWVY Kat WndLlaKwy ZUoTNHATWV.

Emtiong suxaplotw Wiaitepa tov umtoPidlo Addktopa XpAoTo AAUTIPAKO yild TV
kaBodnynor tou, Tov XpOvo Tou, TNV akoUPUOTn UTIOHOVI Kal TO MEPAKL TOUu. XwpPIic
auTov n StmAwpatikn auth epyacia dev Ba eixe katadp€pel va eTIITUXEL TO OKOTIO TNG Kat
eyw dev Ba eixa katapEpel va amoKTAowW TO TITUXIO HOoU.

Akdun, Ba ABeAa va euxapLoTAoW TOUG YOVEIG Jou yia Tnv kaBodAynon kat tnv nBKA
aAAQ Kal UALKA oUPTIAPAOTACH TIOU HOU TIPOoEdepav OAa auTd Ta Xpovid.

21 deBpouapiov 2023

Mmoupac AnuiATteLo¢ STaudrioc

Page 5 of

Contents

NepiAnyn

Abstract

EuxaploTieg
List of Figures
Ektetapévn MepiAnyn

1 Introduction

1.1 The need for energy efficient systems
1.2 Thesis Overview and Contribution
1.3 Problem Statement
1.4 Objective e
1.5 Organization,

2 Tools and Technologies

21 LLVM .. . e e e
2.1.1 WhatisLLVM?
212 LLVMIR e
213 Clang e
214 WhylLLVMandnotGCC?
215 LLVMPasses,

2.2 IntelRAPL. e
2.2.1 Running Average Power Limit
2.2.2 RAPLDomains

23 IntelPerf e
2.3.1 Whatis Intel Processor Trace?
2.3.2 How is Intel Perfrightforus?

2.4 System Specifications L.

3 First approach - unique basic block RAPL Reads

3.1 InitialIdea,
3.1.1 Problem statement
3.1.2 Solution.

........... 30

Page 7 of 75

Contents

3.2 Implementation 35
3.21 RAPLReads. i it e e 36
3.2.2 LLVMPass e e e e e e e e e e 36

3.3 Problems & Redirection of our solution 38
3.3.1 Ineffectiveness of RAPL read granularity 38
3.3.2 Cost of RAPL overshadowing cost of BasicBlock 41
3.3.3 Lostlibraryfunctions 44

4 Second approach - Static Binary lifting 47

41 InitialIdea e e e e 47
4.1.1 Problemstatement, 47
4.1.2 Solution e e e 48

4.2 Implementation e 48
4.2.1 Static compiling and Binary Lifting 48
422 LLVMPAsS . . . i e e e e e e e e e e e e 49
4.2.3 REVNG . . ot it e e e e e e e e e e e e e e 50
424 LLVM-mctoll 50
425 McSema. e e e e e e e e e e 50

4.3 Redirection of our solution, 51

5 Final approach - Runtime tracing 53

51 InitialIdea e e 53
5.1.1 Problemstatement 53
5.1.2 Solution. e 53

5.2 What is Execution tracing? - Intel Perf 53

5.3 LLVM Pass o i i e e e e e e e e e e e e e e e e 55

5.4 Statisticalanalysis e 55
541 CommandWeights., 55
5.4.2 RAPLReadenergyremoval 55
5.4.3 Unnecessarycoderemoval 56
5.4.4 Splitting of external functions 58

5.5 Edgecasesandproblems 58
5.5.1 Negativeenergy i e 58
5.5.2 Lostfinalenergy e 59

5.6 Overall Process i i i i e e e e e e e e 59

6 Results and Evaluation 63

6.1 Total dataset - Distribution of energies 63

6.2 EvaluationMethod 65

6.3 Results e e 67

6.4 Comparisonwithrelatedwork 70
6.4.1 ALEA: Fine-grain Energy Profiling with Basic Block Sampling. . . . 70
6.4.2 Tools based on direct power measurement 70

6.4.3 Tools that model energy consumption from activity vectors 70

Page 8 of 75

Contents

7 Conclusion and Future Work 71
7.1 Whatdid weaccomplish? 71
7.2 Current extensions - Energy Prediction 71

7.2.1 Memory energy prediction 72

7.2.2 Energy predicting neuralnetwork 72

7.3 Future Work - Energy Reduction 72
Bibliography 75

Page 9 of 75

List of Figures

1.1 Greenhouse gas emissions per sector.ICT is responsible for up to 4% of

thetotal. e 18
1.2 Moore Law compared to battery capacity increase 18
1.3 Distribution of energy consumption of ICT sector 19
1.4 Process for producing custom energy producing mechanism 20
1.5 Diagram of our objective , split into research questions 22
2.1 The LLVM project’s Architecture, 25
2.2 Example LLVM IR of a simple "Hello world!” program 26
2.3 Clang’s place in the LLVM architecture 27
2.4 Example of execution trace by the Intel Perf technology 31
3.1 Initial idea of measuring energy and finding basic blocks 33
3.2 Energy prediction through subtraction of 2 energy measurements 34
3.3 Strategy overview - RAPL read between basicblocks 35
3.4 Energy measurement with Intel RAPL visualized 37

3.5 Organization of energy file and correspondence of energy to basic blocks 38
3.6 Consecutive RAPL reads between consecutive basic blocks executions

MEeasuUre SAMEe €NEIrgY . . v v v v v v it e e e e e e e e e e e e e e e 39
3.7 Example run of test program. 40
3.8 Splitting energy between basic blocks based on executiontime. 40
3.9 Splitting energy between basic blocks based on weight of assembly commands 42
3.10 Strategy of experiment to measure effect of extra RAPL read overhead . 42
3.11 Results of experiment to measure effect of extra RAPL read overhead . . 43
3.12 First way for measuring RAPL functioncost 43
3.13 Second way for measuring RAPL functioncost 44
3.14 C code for simple hello world program 44
3.15 Disassembled hello world binary - call to external function 45
4.1 Static vs Dynamic linking [2] 48
4.2 Second strategy - Binary lifting to include the binary functions 49
5.1 Library functions cannot be analyzed by LLVM 54
5.2 Illustration of how this LLVWM passworks 56
5.3 Real example of program after it has passed through our LLVM pass . . . 57
5.4 Tllustration of the removal of RAPL function code process 57

Page 11 of 75

List of Figures

5.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

Illustration of the function splitting (code and energy) process 58
Overall pipeline e 61
Number of basic blocks per benchmark - duplicates included 64
Energy distribution of the total dataset 64
Instructions number in a basic block - distribution of the total dataset . 65
Energy distribution for individual benchmarkspart1 65
Energy distribution for individual benchmarkspart2 66
Evaluation Process i e 67
Average error percentage foralldataset 68
Error percentage for each benchmark 68
Real vs predicted energy for each benchmark 69
Location of the RAPL register address we must change 72

Page 12 of 75

List of Tables

2.1
2.2
2.3

6.1

LLVM and GCC comparison i i i i i ittt e e e e e 28
RAPLDOMAINS st e e e e e e e e e e e e e e 29
Computer Specifications 32
Dataset Specifications e 63

Page 13 of 75

H dimAwpatik auth epyacia éAaBe xwpa amd tov OkTwppen tou 2021 péxpl Tov
deBpoudplo tou 2023. MpayuatoToliBnke 0TO XWPOU TOU Epyactnpiov MikpouTttoAo-
YIOTWV Katl PndLakwyv ouotnudtwy otnv MoAutexvelouToAn Zwypddou ota véa KThpLd
HAEKTPOAGY WV PNXAVIKWYVY KAl HNXOVIKWY UTIOAOYLOTWV.

Me utte0Buvo Kabnyntr Tov ANPATPELO Souvtpen Kal eMIBAETTwY Tov uTtoPro Add-
ktopa XprAoto Aaumpdko amodpacioTnke va mpaypatomolnbel n cuykekpipévn SimAw-
HaTIKA epyacia woTe va dleupuvBolv ta dpLa Tou XwPou €peuvag TIdvw oTnNV EVEPYELL
eKTEAEONC AoyLOPLKOU Kat va TtapaxBel éva epyaieio to omoilo Ba dwoesl tnv duvatod-
TNTA O€ PNXAVIKOUC UTIOAOYLOTWY va SNHLOUPYOUV TILO EVEPYELOKA ATIOTEAEGUATIKO AO-
YIOULKO.

MpotdBnkav kat dokipdotnkav 3 dtadopeTikoi p€Bodol yia Tnv apaywyn tou dataset
gvépyelag. TeAkd pévo n péBodog Tou xpnaolpomolovoe To execution trace Tou uTo e&é-
TAON TPOYPAPPATOC ATaV ETITUXAC. Baotkn yia omoladnmote mpoomdBela pag Atav n
Texvoloyia tng Intel, RAPL péow tNn¢ omoiag pmopolpe va dtaBdalovpe KAmoloug coun-
ters evépyelag. Me adaipeon TG TIPAC KATIOLOU TETOLOU PETPNTH O 2 SLaPOPETIKES
XPOVIKEG OTLYHEG UTIOPOUUE Va UTIOAOYI{OOUHE TNV EVEPYELA TIOU KAaTAavaAwBnke o€ autd
TO XPOVIKO dldoTnua. 2TnV epyacia autr XpnolJoTmotBnke o JETPNTAC Ttou uTtoAoyilel
gvépyela Tou emeepyaoTr. Emtiong e€looou onpavtikAi ATav n uTtoSour] ToU HETAYAWTL-
otA LLVM o otmoiog pag divel Tnv duvatdtnta va TpayhatomoloUue auvtépata alAayEg
OTO KWOLKA ag.

SuyKekplpéva n pwtn HEBodoCg Tou dokipdoape xpnoldomoinoes ta ¢piAtpa Tou
LLVM yia va tpocBéoel dlaBdopata evépyelag TpLv amod kabe basic block tou utd £&€€-
TAON TPOYPAMMATOC. STN oUVEXELA Pe adaipeon TS evépyelag Tipty amd eva basic block
amod ekeivn TpLv amd to emdpevo basic block utoAoyileTal n evépyela Tou apxLkol basic
block.

H peBodoloyia auth GpwG AVTIPHETWTILOE HEPLKA TtpoPAARUATA KATA TNV UAOTIOINCNA
TNG. ApXLKA N TIUA eVEpyeLag Tou peTpLETal amo Ta dtafdopata RAPL avvavewveTal Pe
T apyo puBuod amod otL ektedduvtal basic blocks. ‘Etol Bprikape €vav TpoOToO va HoL-
PACOUME TNV UTIOAOYLOMEVN €VEPYELA Yid £€va PMEYAAUTEPO XPOVIKO SldoTtnua os Kabe
basic block Ttou ekteAéotnke oe ekelvo To ddotnua. H texvikq auth Baciletal otoug
KOKAoug poAoyloU Ttou xpetalovtal oL evToAEG assembly amd Tig omoieg amoteAeital To
kaB¢e basic block yia va ekteAeotolv.

EmumAéov, 1o Slafaocpa evépyelag kooTilel kal To (1o kdmola evépyela n oTtoia Ttpé-
Tiel va adatpebel amd T peTPAOELC TTOU KAvapEe. EUTUXWC TO KAOTOC auTd TIAPAUEVEL
otaBepd kal pmopel va uttoAoylotel kal otnv cuvéxela va apaipebel. TEAog, oL cuvap-

Page 15 of

ExteTapévn MepiAndn

TAOELC TIOU avoikouv oTIC BLBALoBrkeg TTou cupmeptAapBdvovtal oto TPdypaupad Tou
e€etaloupe, dev AapBdvovtal utdPn kabwg ta pidtpa tou LLVM Aettoupyouv oe otd-
810 TPV auTEC TIPOOTEBOUV OTO €KTEAECIUO apXelo. AUTO €XEL WC ATIOTEAECUA MEYAAD
KOMMATL TOU OUVOALKOU KWOLKA KAl TNG EVEPYELAC TOU va Xavetal. To poBAnua autd
dev Ntav e0KoAo va avTigeTwToTel Kal €tal 06nynBrikaue otnv de0tepn péBodo Tou
UAOTIOLAOAE.

H deltepn péBodog Baoiletal oto lifting ekteAéoipwy og LLVM IR. AnAadn, TtepLué-
VAUE TIPWTA Va oupTiePLAN$B0UV oL cuvapTtioelg Twv BLBALOBNKWY 0To EKTEALDLUO, OTN
OUVEXELA JETATPETIAUE TO EKTEAEDIHO THiow o€ popdr oupPath pe ta piAtpa Tou LLVM
Kal emavalapBdvape tnv p€Bodo 1. H AoyLkr auTtAg TNG AVTIMETWTILONG €ival opBr aAAd
n texvoAoyia tou Binary lifting BpiokeTtal akdpa og apyikd otddlo Kal £€Tol Ta apxELa Ttou
TIpo£Kuav PETA atto To TEpacpa atmod 1o GpiATpo Tou LLVM Sev ATav AELTOUPYLKA.

H tpitn péBodocg pag, Baciotnke otnv amoBrikeuon Katl HEAETN TOU trace TOU EKTEAE-
olgou pe TNV texvoloyia Intel Perf, adol €xouv mpooteBei KARoelG evépyelag RAPL, Kat
OTNV OUVEXELA O SlapoLPacpoc TN evépyelag dikata avapeoa ota basic blocks tou Tpo-
ypappatog. AutA n péBodoc ATav €TITUXAC KAl 0dAynoe otnv Tapaywyn evog dataset
evépyelag 3828 povadikwv basic blocks amd ekavovtddeg xIAladeg apXIKEC HETPAOELC.

Ma va afloAoyriooupe tnv SoUAELd pag cuykpivape 1o aAnBivd evepyelakd KOOTOC
EKTAE0NC EVOC TIPOYPAUPATOC HETPNHEVO PE TNV TeXVoAoyia Intel Rapl, ye To aBpoloua
TWV EVEPYELWV TwV basic blocks amd ta omoia amoteAsital dTwWE AUTEG €XOUV UTIOAO-
ylotel oto dataset pag. To péoo opdApa ou TtpoékuPe ATav TTOAD evBApPPUVTIKG, OTO
2.64 %, oUYKPIOLUO PE TNV TILO KalvoTOua SoUAELd Tou UTtApPXEL oTov Xwpo [1]. Z& avti-
Beon, opwce, n 81k pac pebodoAoyia dev Baoiletal og TIBAVOTIKEG TIPOOEYYIOELC, EVW
glval kal open source. & oUKPLON Pe AAAEC TTAPOUOLEC EPYAOiEC TOo opdApa pag sivat
oadwC PYIKPOTEPO Kal To eTitedo adaipeong yia Ti¢ petprioets pag (basic blocks) oAl
TILO AETITOMEPEG.

'HéN n epyaoia autn emekteiveTal oto va TapaxBolv dataset evépyelac yia pviun
KAl KAPTEC YPAPLKWYV, EVW €KATILOEVETAL KAl £€VaA HOVTEAO INXAVIKAC HABnong mavw ota
dedopéva pag to omoio TpoPAEmeL evépyela ekTéAeong Aoylopikol og emimedo basic
block. MeAAovTikd, AAAEC epyaacieg pmtopolv va otnptxBoulv otn douAsia pag pe okomd
TNV Melwon TNS evEPYELAS TOU AOYLIOMIKOU PEOW XPAONC HNXAVIONWY HETACXNHATIOPOU
KWOLKA.

Page 16 of

Chapter 1

Introduction

1.1 The need for energy efficient systems

Modern times and lifestyle created numerous needs and usages, especially in the
digital sector. Among others, one could easily mention connected devices, wearables,
Internet of Things, smartphones, tablets, etc[3]. At the same time, many existing ser-
vices have migrated, at least partially and sometime even totally, their activities to the
Internet: online retailers, banking, advertising, video and music consumption and even
public services.

All these new activities have increased the overall environmental footprint of the
Information and Communication Technology (ICT) sector, which is estimated to be re-
sponsible for approximately up to 4% of the greenhouse gas (GHG) emissions worldwide
in 2022 with an alarming growth rate [4]. This is more than double to both the aviation
and the shipping industry , as well as more than half of the GHG emissions attributed
to commercial buildings [5]. This is an disturbing trend , especially when taking into
account the projected growth of the ICT sector, a trend that foreshadows a consequent
growth to the GHG emissions attributed to it. Moreover, heat extraction is a also large
issue for both portable and non-portable electronic systems. Finally, in recent time the
operating costs for large electronic systems, such as data warehouses, have become a
concern.

Recent years have witnessed a proliferation of low-power embedded devices [6] with
power ranges of few milliwatts (battery-powered) to microwatts (batteryless), and a
plethora of techniques have been produced that yield very successful results at design-
ing energy efficient embedded systmes[7].Furthermore efficient commercial CPUs have
become more and more available on the market [8], especially for mobile phones due
to their battery needs [9] and industry level powerful processors such as the AMD EPYC
series offer great power to energy ratios [10].

The capabilities and size of energy efficient systems continue to improve dramati-
cally; however, improvements in battery density and energy harvesting have failed to
mimic Moore’s law. The battery energy density is the slowest trend in mobile computing
and it does not scale exponentially .[11]

In more detail, the battery capacity has improved very slowly , with a factor of 2to 4

Page 17 of

Chapter 1. Introduction

Ne
|ron ang Stoe e

o

(7

-
6

@ yestock &

ﬁg %(gnu\fe (5.8%)

Agriculture,
Forestry &
Land Use
18.4%
Ch@micals
2.2%

Cemergt

o

in Agrxcu\tur €
Er\ergv& Fishing (17%)

=,
& i 5y
Oergy) agS Wl SN
Use in build! 00 7,
ofo) 0.
CO/77/7; !) %{;\,\,\)q : &
Crial s g3 rmernESIOA
:6%) Residentia
OurWorldinData.org - Research and data to make progress against the world’s largest problems.
Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Figure 1.1: Greenhouse gas emissions per sector.ICT is responsible for up to 4% of the
total.

7 1 I |] i I '

LS Algorithmic Complexity .~
(Shannon’s law)

I |
Processor performance
3 (:I\[Iooreis: Law)

L =l A B Y N N

Source: Ravi Subramanian— MorphiCs

Figure 1.2: Moore Law compared to battery capacity increase

Page 18 of 75

1.1 The need for energy efficient systems

over the last 30 years, while the computational demands have drastically increased over
the same time frame. There is also a fear that energy efficiency improvements of the last
years will not be sustained in the future, as the "low hanging fruits” have already been
harvested, and that the continued increase in computing power might not be offset in
the coming years. Thus, energy remains a formidable bottleneck for modern systems ,
especially embedded systems and mobile devices. For example, circuits of a smart lens
can be miniaturized enough to be implanted inside an eye however,its batteries are not
made small enough for such implantation [12].

10000

W Consummer devices use

m Fixed access wired use
Fixed access WIF use
Wireless networks access use

W Data center use

B Production
2010 2015 2020 2025 2030

Figure 1.3: Distribution of energy consumption of ICT sector

It has become evident that the ability of energy efficient hardware to satisfy the in-
creasing computational needs of the market while keeping the energy and power needs
stable or even decreasing them has turned into an uphill battle. Thus the focus of more
and more research has turned into the field of energy efficient software . Reducing soft-
ware energy consumption (SEC) is very important to enhance the energy efficiency of
the ICT sector and its CO2 impact. Numerous researches provided studies to reduce SEC
.[13, 14, 15]. These studies focused on multiple aspects of the assessment of software
energy, such as the accuracy and granularity of the measurements or the different ways
of reducing SEC [16], for example.

The main purpose of our thesis is to help developers to produce software that con-
sumes less energy. We believe that promoting GSD (Green Software Design) and SEC
considerations should go through an important educational phase, to ensure that the
community in general and developers, in particular, are well motivated and aware of the
stakes of GSD and their prominent role in reducing SEC and building less consuming
software. This is easier said than done, as there is not enough knowledge on how to
build "green” software that can carry developers’ choices for every use case. Small en-
hancements and insights in this topic are still very welcome to constitute a broad and
robust set of knowledge that can be used to reduce SEC.

Page 19 of 75

Chapter 1. Introduction

1.2 Thesis Overview and Contribution

Rather than trying to create hardware with ideal energy proportionality, the thesis of
this work is that we can try to approach the energy reduction problem from a software
perspective.

The first step towards more energy efficient software production is an understand-
ing of the energy consumption by the software and a mechanism to predict the energy
footprint of the code in question. Our work is summarized as the production of a reliable
energy dataset on a basic block level, so that a high level of granularity will be achieved,
but this title belies the importance and functionality of this project. To be more precise
our contribution is not solely a dataset for a specific computer architecture and CPU but
rather an energy dataset production mechanism that uses well established and sup-
ported open source tools that can be used to create a new dataset for any Intel based
computer architecture (the most popular architecture with over 70% of the market share
on commercial CPUs). In that way any developer can use our mechanism to produce a
reliable energy dataset for his own computer architecture, without any monetary cost
and without the need for a high level of knowledge and skills on the field, not to mention
the speed of the whole process.

Our dataset and any other dataset produced using our methodology can then be
used as a reference for developers in their effort to minimize the energy of their soft-
ware. Additionally a complimentary work on this thesis will provide a machine learning
model architecture with a high degree of accuracy that can be trained on the dataset our
methodology produces. So with a simple process as shown on figue any developer
can create an energy predicting mechanism, custom to his specific computer architec-
ture, which can then serve as the basis for a number of energy reducing techniques such
as code transformations, or simply be used as an analysis tool.

Download and setup
of needed tools

.| Cloning of our thesis

github repository

Training of the mode
on the energy

/ Output : energy predicting

——»{ mechanism

on a basic block

dataset eve
Y
¥
Cloning of the
Prerequisite: Intel architecture Pmd“[é'ot” ?I_E”EFQ'-*" » ”‘a'lhénel l?tifﬂéﬂﬂ
baszed system alasel model github
repository

Figure 1.4: Process for producing custom energy producing mechanism

Our reasoning for choosing this specific subject, was the lack of energy predicting
mechanisms, and in particular open source and customisable ones. We hope that with
this work we provide the ability and the incentive on more developers to produce custom
software for their systems with energy efficiency at heart, so that they can benefit from
heat and monetary savings, particular during the current energy crisis, while our planet
can also benefit from reduced GHG emissions, in particular CO,.

Page 20 of

1.3 Problem Statement

1.3 Problem Statement

The problem of digital energy consumption is critical. Numerous research results
and estimations highlighted the urgent situation that needs to be truly considered. In
fact, future ICT infrastructures will increase their energy consumption , even though the
cost per computation is projected to decrease. This can be attributed to the increase
number of operations per time that future computers will be able to perform. After all,
ICT technology will continue to evolve and provide faster, more accurate and overall
better machines. But unfortunately , not more energy efficient, not unless our priorities
as far as the desired characteristics of computers evolve towards energy efficiency.

Similarly to hardware, software energy consumption plays a crucial role in the global
energy consumption of ICT devices. It is however a very complex problem to identify the
hotspots of software and reduce its energy consumption. SEC is mostly considered as a
young topic. Although more and more research is directed towards this topic, the current
situation is still not mature enough to provide concrete solutions for multiple use cases,
and guide developers to reduce the energy consumption of the produced software.

Ultimately, the real problem is that software energy consumption is not taken seri-
ously enough by developers and is considered of secondary importance compared to
software performance. But this cannot continue to be the case. For things to change,
SEC should have similar importance and significance to software performance. What is
the reason, though that the priorities of the scientific community and market alike have
been established this way? One major reason is that seeking fast software and reduc-
ing the execution/response time was always requested, as the results were immediately
perceived. On the other hand, the energy resource was not considered to be as criti-
cal as execution time for quite a while. Now that the myth of infinite resources is not
really arguable, and even with renewable energy sources, developers should put more
attention to the energy efficiency of what they are producing.

One major problem next to the lack of knowledge is the bad communication and pop-
ularization of the acquired knowledge. In fact, many studies’ results are not intended for
developers. This implies that no mature open source tool is made available to developers
to assist them in reducing or even analysing the energy consumption of their software
as it is the case for performance . In this thesis, we try to tackle some of the previous
problems, by providing the developers the tool to analyze their software’s energy and in
this way put them in the position to be more mindful of its energy consumption.

1.4 Objective

Our main goal is to help developers to reduce the energy consumption of the de-
veloped software. To approach this, we constitute a set of sub-objectives that will drive
our thesis. Firstly we need to understand what would be the appropriate granularity for
energy measurements to be performed. Then we need to find the most fitting tools to
create an energy measurement pipeline or more accurately a custom energy dataset

Page 21 of

Chapter 1. Introduction

production pipeline. In what way can we distribute the energy measured reliably and

accurately at the granularity level we previously chose. Concretely, we want to answer

the following research questions:

1. What software objects should we correspond to energy (Functions, Basic blocks,
high level language commands, assembly commands etc)?

2. What tools should we use and how to connect them together so that we can reach
our objective and make it easy for others to replicate our work?

3. Once energy is measured at some level, how to distribute it fairly to the level we
chose at question 1?

(83

What granularity to
choose?

What software tools
to use?

| How to interconnect

T

"1 our software tools?

Q3

A

r

How to distribute fairly

from our selected energy tools at the granularity

the energy measured

we decided on?

/7 Energy O\
/measurements at the\
\ desired abstraction /

N level S

A

h

T

a2

Figure 1.5: Diagram of our objective , split into research questions

1.5 Organization

The thesis is organized into X chapters, each focusing on a different aspect of the
research performed.

* Chapter

introduces the tools that have been chosen, answers why they are ideal

for our project, how they will be utilised and offers a guide on how to use them.

* Chapter

focuses on the first approach we implemented which was based on mak-

ing consecutive RAPL measurements between basic block executions.

* Chapter

explains our second approach that involved binary lifting of statically

linked executables, to alleviate some of the problems that our first approach intro-
duced.

Page 22 of

1.5 Organization

* Chapter 5 contains our final and successful implementation that focused on exe-
cution tracing and maintained the working parts of our first approach , then used
statistical methods to correspond basic blocks to energy.

* Chapter 6 summarizes our results, evaluates them and compares them with similar
works.

* Chapter 7 focuses on the continuation of this work, that is already currently under
way and proposes further expansions of this thesis.

Page 23 of

Chapter 2

Tools and Technologies

2.1 LLVM

2.1.1 Whatis LLVM?

LLVM is a set of compiler and toolchain technologies that can be used to develop
a front end for any programming language and a back end for any instruction set ar-
chitecture. LLVM is designed around a language-independent intermediate representa-
tion (IR) that serves as a portable, high-level assembly language that can be optimized with
a variety of transformations over multiple passes.[17]

LLVM is written in C++ and is designed for compile-time, link-time, run-time, and
"idle-time” optimizations. Originally implemented for C and C++, the language-agnostic
design of LLVM has since spawned a wide variety of front ends: languages with compilers
that use LLVM (or which do not directly use LLVM but can generate compiled programs as
LLVMIR) include: ActionScript, Ada, C#,Common Lisp, PicoLisp, Crystal, CUDA, D, Delphi,
Dylan, Forth, Fortran, Free Basic, Free Pascal, Graphical G, Halide, Haskell, Java byte-
code, Julia, Kotlin, Lua, Objective-C, OpenCL, PostgreSQL's SQL and PLpgSQL, Ruby, Rust,
Scala, Swift, XC, Xojo and Zig.

LLVM

R LLVM compiler

other Frontend Compiler

Figure 2.1: The LLVM project’s Architecture

The name LLVM was originally an initialism for Low Level Virtual Machine. However,
the LLVM project evolved into an umbrella project that has little relationship to what most
current developers think of as a virtual machine , and since 2011 LLVM is "officially no
longer an acronym” , but a brand that applies to the LLVM umbrella project.The project

Page 25 of 75

Chapter 2. Tools and Technologies

encompasses the LLVM intermediate representation (IR), the LLVM debugger, the LLVM
implementation of the C++ Standard Library .

LLVM can provide the middle layers of a complete compiler system, taking intermediate
representation (IR) code from a compiler and emitting an optimized IR. This new IR can
then be converted and linked into machine-dependent assembly language code for a
target platform. LLVM can accept the IR from the GNU Compiler Collection (GCC) toolchain,
allowing it to be used with a wide array of existing compiler front-ends written for that
project. LLVM can also generate relocatable machine code at compile-time or link-time
or even binary machine code at run-time.

LLVM supports a language-independent instruction set and type system. Each in-
struction is in static single assignment form (SSA), meaning that each variable (called
a typed register) is assigned once and then frozen. This helps simplify the analysis
of dependencies among variables. LLVM allows code to be compiled statically, as it is
under the traditional GCC system, or left for late-compiling from the IR to machine
code via just-in-time compilation (JIT), similar to Java. The type system consists of basic
types such as integer or floating-point numbers and five derived types: pointers, arrays,
vectors, structures, and functions. A type construct in a concrete language can be rep-
resented by combining these basic types in LLVM. For example, a class in C++ can be
represented by a mix of structures, functions and arrays of function pointers.

2.1.2 LLVMIR

The core of LLVM is the intermediate representation (IR), a low-level programming
language similar to assembly. IR is a strongly typed reduced instruction set computer (RISC)
instruction set which abstracts away most details of the target. For example, the calling
convention is abstracted through call and ret instructions with explicit arguments. Also,
instead of a fixed set of registers, IR uses an infinite set of temporaries of the form %0,
%1, etc. LLVM supports three equivalent forms of IR: a human-readable assembly format
an in-memory format suitable for frontends, and a dense bitcode format for serializing

The many different conventions used and features provided by different targets mean
that LLVM cannot truly produce a target-independent IR and re-target it without break-
ing some established rules.

@.str = internal constant [14 x i8] c"hello, world\eA\@e"
declare i32 @printf(ptr, ...)

define i32 @main(i32 %argc, ptr %argv) nounwind {

entry:
%tmpl = getelementptr [14 x i8], ptr @.str, i32 @, i32 ©
%tmp2 = call i32 (ptr, ...) @printf(ptr %tmpl) nounwind
ret i32 @

}

Figure 2.2: Example LLVM IR of a simple "Hello world!” program

Page 26 of

2.1.3 Clang

2.1.3 Clang

The compiler frontend we chose was Clang, which operates in tandem with the LLVM compiler
back end and has been a subproject of LLVM 2.6 and later. As with LLVM, it is free and
open-source software under the Apache License 2.0 software license.[18]

LLVM
;{Canonicalization passes]

Clang

[Loop optimization passes]

SOUrce.c | Preprocessor

J""‘,,|’t loopnests.jsoﬁ

#pragma ... L A
for (int i=...)] ! (Parser) #pra

v &
[Semantic Analyze r]

#pragma

IR Generation

- - W

| Target backend |~——’

Figure 2.3: Clang'’s place in the LLVM architecture

[Lat—s Mid-End passes]

Clang is a compiler front end for the C, C++, Objective-C, and Objective-C++ programming
languages, as well as the OpenMP, OpenCL, RenderScript, CUDA and HIP frameworks. It
acts as a drop-in replacement for the GNU Compiler Collection (GCC), supporting most
of its compilation flags and unofficial language extensions. It includes a static analyzer,
and several code analysis tools.[15].

The Clang Compiler has been designed to work just like any other Compiler. Clang
works in three different stages. The first stage is the front end that is used for parsing
source code. It checks the code for errors and builds a language-specific Abstract Syntax
Tree (AST) to work as its input code. The second stage is the optimizer that is used for
optimizing the AST that was generated by the frontend. The third and final stage is the
back end. This is responsible for generating the final code to be executed by the machine
which can depend on the target.

2.1.4 Why LLVM and not GCC?

LLVM and the GNU Compiler Collection (GCC) are both compilers. The difference is
that GCC supports a number of programming languages while LLVM isn’t a compiler for
any given language. LLVM is a framework to generate object code from any kind of source
code. While LLVM and GCC both support a wide variety of languages and libraries, they
are licensed and developed differently. LLVM libraries are licensed more liberally and
GCC has more restrictions for its reuse.

When it comes to performance differences, GCC has been considered superior in the
past. But clang is gaining ground. The most important reason that we chose clang and
LLVM though, was that they provided as with the ability to use “passes” to automatically

Page 27 of

Chapter 2. Tools and Technologies

change the code we wanted to measure after the IR had been produced, to strategically
add energy measurements.

License
Code modularity
Supported platforms

Supported language
standards

Generated Code

Characteristics

Language independent
type system

Build tool

Parser

Linker

Debugger

GNU GPL
Monolithic
*inx, Windows (MinGW)

C++20 in experimental stage, C++1/

fully complaint

Efficient with a lot of compiler options
to play around with

No

Make based

Previously Bison LR. Now recursive
descent.

LD
GDB

Apache 2.0
Modular
*inx, Natively in Windows

C++1/ support available. C++20

underway

Efficient due to the SSA form used by
LLVM backend

Yes (One of the design goal for
LLVM)

CMake

Hand-written recursive descent

fe}
LLDB

Table 2.1: LLVM and GCC comparison

2.1.5 LLVM Passes

The LLVM Pass Framework is an important part of the LLVM system, because LLVM
passes are where most of the interesting parts of the compiler exist. Passes perform the
transformations and optimizations that make up the compiler, they build the analysis
results that are used by these transformations, and they are, above all, a structuring
technique for compiler code. They can be used to mutate the IR code (for example add
instructions) or compute properties about it (such as number of functions).[19]

All LLVM passes are subclasses of the Pass class, which implement functionality by
overriding virtual methods inherited from Pass. Depending on how your pass works, you
should inherit from the ModulePass , CallGraphSCCPass, FunctionPass , or LoopPass,or
RegionPass classes, which gives the system more information about what your pass
does, and how it can be combined with other passes. One of the main features of the
LLVM Pass Framework is that it schedules passes to run in an efficient way based on the
constraints that your pass meets (which are indicated by which class they derive from).

2.2 Intel RAPL

2.2.1 Running Average Power Limit

Most modern processors, including Intel processors, provide Running Average Power
Limit (RAPL) interfaces for reporting the accumulated energy consumption of various

Page 28 of

2.2.2 RAPL Domains

power domains. RAPL provides a set of counters providing energy and power consump-
tion information. RAPL is not an analog power meter, but rather uses a software power
model. This software power model estimates energy usage by using hardware perfor-
mance counters and I/0 models. Based on research performed, they match actual power
measurements [20].

RAPL also provides a way to set power limits on processor packages and DRAM. This
will allow a monitoring and control program to dynamically limit max average power, to
match its expected power and cooling budget. In addition, power limits in a rack enable
power budgeting across the rack distribution. By dynamically monitoring the feedback
of power consumption, power limits can be reassigned based on use and workloads. Be-
cause multiple bursts of heavy workloads will eventually cause the ambient temperature
to rise, reducing the rate of heat transfer, one uniform power limit can’t be enforced.
RAPL provides a way to set short term and longer term averaging windows for power
limits. These window sizes and power limits can be adjusted dynamically. [21]

In our thesis RAPL will be used solely as an energy measuring tool and not to set
power limitations. The energy measurements we derive from the RAPL counters will be
the basis on which the energy dataset will be created.

2.2.2 RAPL Domains

In RAPL, platforms are divided into domains for fine grained reports and control. A
RAPL domain is a physically meaningful domain for power management. The specific
RAPL domains available in a platform vary across product segments. [22]

Each RAPL domain supports:

ENERGY_STATUS for power monitoring.

POWER_LIMIT and TIME_WINDOW for controlling power

PERF_STATUS for monitoring the performance impact of the power limit

RAPL_INFO contains information on measurement units, the minimum and maxi-
mum power supported by the domain

Package

PPO (Core Devices)

PP1 (Uncore Devices)

DRAM

Table 2.2: RAPL Domains

Page 29 of

Chapter 2. Tools and Technologies

In this thesis , we have worked with the PPO counters to create an energy dataset
of the energy that is being consumed by the CPU. With minor changes, a correspond-
ing dataset can be created for the remaining 3 domains and we plan to perform those
measurements in a future time, and thus create a four-part energy dataset , that could
enable developers to perform software energy reductions for specific hardware compo-
nents (CPU, RAM, GPU et.c)

2.3 Intel Perf

2.3.1 What is Intel Processor Trace?

Intel Processor Trace (Intel PT) [23] is an extension of Intel Architecture that collects
information about software execution such as control flow, execution modes and timings
and formats it into highly compressed binary packets. Technical details are documented
in the Intel 64 and IA-32 Architectures Software Developer Manuals, Chapter 36 Intel
Processor Trace[24].

Intel PT is first supported in Intel Core M and 5th generation Intel Core processors
that are based on the Intel micro-architecture code name Broadwell. [25]

Trace data is recorded and then it must be decoded which involves walking the ob-
ject code and matching the trace data packets. For example a TNT packet only tells
whether a conditional branch was taken or not taken, so to make use of that packet the
decoder must know precisely which instruction was being executed. Decoding is done
on-the-fly. The decoder outputs samples in the same format as samples output by perf
hardware events, for example as though the "instructions” or "branches” events had
been recorded. Presently 3 tools support this: perf script, perf report and perf inject.

The main distinguishing feature of Intel PT is that the decoder can determine the
exact flow of software execution. Intel PT can be used to understand why and how did
software get to a certain point, or behave a certain way. The software does not have to be
recompiled, so Intel PT works with debug or release builds, however the executed images
are needed - which makes use in JIT-compiled environments, or with self-modified code,
a challenge. Also symbols need to be provided to make sense of addresses.

A limitation of Intel PT is that it produces huge amounts of trace data (hundreds of
megabytes per second per core) which takes a long time to decode, for example two
or three orders of magnitude longer than it took to collect. Another limitation is the
performance impact of tracing, something that will vary depending on the use-case and
architecture.

2.3.2 How is Intel Perf right for us?

We will use the intel PT technology to get the trace of a binary that we want to mea-
sure .To undersatnd how to do that we must first understand the capabilities of the perf
record and perf scripts commands.

Perf record : this command runs a command and gathers a performance counter profile

Page 30 of

2.4 System Specifications

from it, into perf.data - without displaying anything. This file can then be inspected later
on, using perf report or script.

Perf script : This command reads the input file and displays the trace recorded. After
installing the xed tool , we can dump all instructions in a long trace. That can be fairly
slow, but it is the best way to get a complete and detailed trace of the executed binary.

add %rsi, %rax

add %rdx, S%Srax
movzxb (%5rcx), %Sedx
test %$dl, %dl

jnz 0x7f0elc3ef118
mov %rax, %rsi

movzx %dl, %edx

add $0x1, %$rcx

cshl SBx5, Srsi

add %rsi, %rax

add %rdx, %Srax
movzxb ($rcx), %edx
test %$dl, %dl

jnz 0x7f0elc3efll8

Figure 2.4: Example of execution trace by the Intel Perf technology

2.4 System Specifications

For this specific project the computer and specifically the CPU specification are of
paramount importance, since those characteristics are a determining factor on the en-
ergy consumed. Thus the energy dataset that will be produced in this work will be ac-
curate for computers and CPUs with identical or at least similar specifications. At the
following table we will present important specifications concerning the specific com-
puter we used. In that way, any interested developer that wants to use the dataset to
measure the energy of his software can compare the specification of his machine to the
one we used and if they are similar enough he can safely use the dataset we produced.
Of course the more different his system and hardware are the least accurate the predic-
tions will be. For maximum accuracy it is recommended that any interested developer
utilizes our open-source tool to create an energy dataset, custom for their computer.

The most important thing that one must take into account is that we use an Intel i7
6th Gen processor so systems equipped with i7 or even i3 or i5 processors particularly
of the 6th generation are going to be the suitable for prediction with our dataset.

In general one must keep in mind that if the system whose software energy they want
to predict does not include an Intel based CPU they will be unable to produce their own
custom dataset since, the RAPL technology required is restricted solely to Intel based

Page 31 of

Chapter 2. Tools and Technologies

systems. The best solution for non intel systems is to use our provided dataset or pro-
duce a dataset for a system similar to theirs but with an Intel CPU and use that taking
into account that the accuracy of their predictions will be reduced.

] Specifications of the computer utilized for this thesis

Operating System Linux Ubuntu 20.04.1

Core version 5.15.0-58 -generic

Architecture x8664

Processor Intel Core i7 - 6700

Processor frequency 3.4 GHz

Bridge Xeon E3-1200 v5/E3-1500 v5/6th Gen
Bus 100 Series/C230 3.0 xHCI Controller
Communication 100 Series/C230 3.0 MEI Controller 1
RAM 32GiB System memory

Table 2.3: Computer Specifications

Page 32 of

Chapter 3

Firstapproach - unique basic block RAPL Reads

3.1 Initial Idea

3.1.1 Problem statement

As we have discussed in the introduction chapter the purpose of this work is to es-
sentially map energy to basic Blocks of executed code. To do that we must first have a
way to measure energy that is being consumed and then have a way to find out which
basic block was executed while this energy was measured.

So in essence we perform a process like the one presented in the figure 3.1, where

we measure energies at certain times during the execution of a program and we get
information about the content (in assembly instructions) and the number of the basic
blocks in the executable. But the real problem as stated earlier is to correspond energy

to basic block.

Measure energy

A

Measure energy

Measure energy

A

Y

P ~
A binary is
executed

™~ e . r

The execution takes place

)

h 4

v

h 4

Store Executed
Basic Block

Store Executed
Basic Block

Store Executed
Basic Block

e
Execution

concludes
.,

Figure 3.1: Initial idea of measuring energy and finding basic blocks

Page 33 of 75

.\.

~

Chapter 3. First approach - unique basic block RAPL Reads

3.1.2 Solution

The solution that we propose is pretty simple and intuitive . The main concept is that
we perform an energy read before each basic block that is being executed . Then to mea-
sure the energy of that specific basic block, we get the energy of the measurement that
happened right before its execution (we call this energy_before) and the energy of the
measurement that happened right before the execution of the next basic block, meaning
right after the execution of the one we want to examine (we call this energy_after). The
simple subtraction of the energy_afterr - energy_before provides us with the energy
that was consumed by the execution of the basic clock we are examining.

energy_of BB = energy_after — energy_before

This process can be very easily understood by the diagram we are presenting later

as well. As we can see between the execution of each basic block, two RAPL mea-
surements take place. In that way the subtraction of the former from the latter gives us
the result we are looking for.

N

Measured
energy #1

¥

substract previous

energy from latter
energy

Y

]

substract previous
energy from latter
energy

Executed
Basic Block
#1

correspond

L

TN

q
ed

energy #2

Executed
Basic Block
#2

correspond

L

TN

q
ed

energy #3

[y
substract previous
energy from latter

Executed
Basic Block
#3

L

correspond
energy

N

Measured
energy #4

-

TN

substract previous
energy from latter
energy

A

energy #5

q
ed

correspond

!

Executed
Basic Block
#4

Figure 3.2: Energy prediction through subtraction of 2 energy measurements

Page 34 of

3.2 Implementation

3.2 Implementation

The implementation can be split into three parts:

* The measurement of the energy

* The splitting of the executable in basic blocks and the acquisition of the assembly

instructions that make them up

* The correspondence of each basic block to an energy measurement

Preprocessing

Uniguely name each

Split in EBs EE

h 4

h 4

Add RAPL read call

before BB

Add name of EB

inside RAPL read

-

Execution
Correspond energy
. RAPL Read is See name that is with basic block
—_— —_— ; —_—
Execufion staris performed printed (for example for
unique id =2)
fénerg:,r#z

é #2
é #1 find match

with id #2

Energy #1

A

‘Eégy #3

/

Figure 3.3: Strategy overview - RAPL read between basic blocks

Page 35 of

Chapter 3. First approach - unique basic block RAPL Reads

3.2.1 RAPL Reads

First lets consider what an energy measurement actually means. As we discussed
earlier, the Intel RAPL technology updates an 32-bit register with an energy value at a
very low frequency (around a thousand updates each second - one every 1 ms). The
value that is stored at this register corresponds to energy units. Those energy units for
Skylake generation processors, as is the one we are using correspond to 61 pJ, but for
the purposes of this thesis we will simply refer to them as energy units.

So to put it simply, when we talk about performing an energy measurement or other-
wise referred to as a RAPL read, we are simply reading the specific register (in this case
the register that measures the CPU energy) and getting the last updated value.

This value alone is useless to us. It is nothing more that a number that corresponds
to the energy the CPU has consumed since it started counting. But since we have no
idea when it started measuring energy we cannot use this value to make any meaningful
deduction. This changes, though when a second RAPL read is performed and the energy
of the register is read again. Now having 2 energy values at 2 different points in time we
can calculate the energy that was consumed from the point the first was measured to
the point the second was measured through a substraction. This will be the basis, of the
energy measurements we perform in this thesis, the subtraction between the values of
an energy register.

3.2.2 LLVM Pass

We will use the LLVM compiler’s ability to create Passes that transform and analyse
code. In more detail, we want to realise the 3 aspects of the implementations. We saw
how an energy measurement can be performed but how can we get the basic blocks and
their contents and how can we correspond the Basic Blocks with energy measured. Here
is when LLVM passes will be very useful.

Firstly we will create an LLVM analysis pass. This passes purpose will be to split the
program into Basic Blocks and will correspond to each basic block a unique identifier
so that it is possible for us later to identify the specific Basic Block. Thankfully the LLVM
libraries have already built in functions that help make this task possible.

Considering that each function in a program has a unique name we chose the unique
identifier of a basic block to be the function name in which it resides plus a number
corresponding to the order in which it appears into the function. For exaple the second
basic block of the function hello will be named hello_2.

Secondly we must tackle the problem of inserting an energy measurement before
each basic block. LLVM passes come to the rescue once again. The LLVM compiler pro-
vides us with the ability to create new instructions and insert them at specific parts of
the code. So we will firstly write a function (in the high level language we are using) that
performs the act of a RAPL read and then using LLVM we will create an instruction which
is a call instruction to the function we just created. We will insert this instruction then

Page 36 of

3.2.2 LLVM Pass

Time t1 Time t2
Energy Register E;rgy Register
Value =Y
Value = X
Read Reqgister at time Read Reqgister at fime
1 12
/ \
e nergy consumned fmm""u

— %
| tto2=¥X |

\‘\\. .J/,

Figure 3.4: Energy measurement with Intel RAPL visualized

before the start of everu basic block. In that way before the execution of each basic
block the function that measures energy (let’s refer to it as Rapl_read function) will
be called and an energy measurement will be performed. The energy measured will be
stored at a file of our choice.

So now every time the executable is run a file with a list of RAPL read energy values
will be created. We also have a file with the basic blocks, their IDs and their contents in
the form of assembly instructions. But at this point we have no way of corresponding an
energy value to a basic block.

To do that we will modify the LLVM pass and the RAPL_read function. Specifically we
will give as an argument to the RAPL_read function the id of the basic block before which
it is inserted. And the RAPL_read function will be modified to print the name of the Basic
block before which it is inserted to the energy value file after it prints the energy. Now
we have an energy file with energy values and basic block IDs alternatively. The energy
consumed by the execution of a basic block is the energy that appears after its ID minus
the energy that appears before its ID.

Page 37 of

Chapter 3. First approach - unique basic block RAPL Reads

Energy File
Energy X
. , | Eneray for basic |
E=:
Basic Block ID #1 |:]|> l-. block #1 =Y-X .-l
Energy ¥
_ _ | Energy for basic |
7
Basic Block ID #2 |:I> l-. block 2 =Z-Y .-l
Energy £

Figure 3.5: Organization of energy file and correspondence of energy to basic blocks

3.3 Problems & Redirection of our solution

Although, at first glance the strategy we outlined earlier seems like a viable, simple
solution that will allow us to create a complete and reliable energy dataset a closer
examination shows that it presents a number of issues that require us to find different
approaches to certain parts of our implementation that do not work as expected.

3.3.1 Ineffectiveness of RAPL read granularity

First of all, the whole ides of RAPL reads between basic block execution is based
on the idea of energy calculation through energy measurement subtraction that we ex-
plained in subsection . Yet, this idea requires that the frequency that the RAPL en-
ergy register is updated is higher than the frequency that basic blocks are executed. In
more detail, for our strategy to work from the time before the examined basic block is
executed, when we read the first energy value, to the time the after the examined basic
block is executed and we read the second energy value, the energy register must have
updated. Otherwise we will read the same value twice, and the subtraction of the two
energies will amount to 0, making the calculated execution energy of the basic block

Page 38 of

3.3.1 Ineffectiveness of RAPL read granularity

also 0.

Update RAPL Value #1 Update RAPL Value #2 Update RAPL Value #3

RAPL RAPL RAPL RAPL RAPL RAPL RAPL RAPL RAFL RAPL

RAPL
read #1 read #2 read #3 read #4 read #5 read #6 read #7 read #8 read #9 read #10 read #11

o o o o o o o o 1o o

Basic
Block #10

Basic
Block #9

Basic
Block #7

Basic
Elock #6

Basic
Block #5

Basic
Block #4

Basic
Block #3

Basic
Block #2

Basic
Block #1

Figure 3.6: Consecutive RAPL reads between consecutive basic blocks executions mea-
sure same energy

This presents a major problem since the frequency of Basic Blocks at modern CPUs
which have a frequency of GHz is much more than 1000 Hz as is the frequency of the
RAPL updates. Hence, between two RAPL register updates a number of basic blocks will
have been executed.

Thus it is evident that a mechanism to distribute energy of multiple basic blocks to
each basic block is necessary. A different approach would be to use a higher level of
granularity, meaning that we should not longer measure energy of basic blocks but that
of functions ,which are executed at a frequency more similar to that of the RAPL updates.
For reasons, we have stated at the Introduction chapter though we believe that the basic
block level is the ideal level for an energy dataset and it will be much more helpful for
developers. For this reason we decided to follow the first approach and find a strategy
to distribute larger sums of energy between multiple basic block executions.

An example run of a test program is presented at the figure where we can see
that RAPL updates occur after around 3 basic block executions.

The splitting of energies between multiple basic blocks will be based on the idea that
energy consumed is analogous to time of execution. For example a basic block that takes
X time more at the CPU to execute than another will consume X times more energy as
well. This assumption was based on [1] and is fair to be made for a limited number of
basic blocks and a short period of execution, not by example for the totality of a high level
program. As we can see the tool A.L.E.A that is able to measure basic block energy with
very encouraging results used as the basis of how much energy a basic block consumed
the time that was needed for it to be executed. Thus if we are able to measure the energy
for a number of basic blocks we can then split it fairly between them using as a weight
the time that each of them needed to execute.

As we can see on there is a number N of basic blocks for which we have a total
energy X that we must split between them. We know that each basic block i needed time

Page 39 of

Chapter 3. First approach - unique basic block RAPL Reads

Figure 3.7: Example run of test program.

t; to execute. So the sum

228952320435
hello_1
228952320435
hello_ 2
228952320435
hello_4
228952320435
hello_6
228952322571
hello_1
228952324891
hello_ 2
228952324891
main_3
228952324891
main_4
228952324891
hello_ 1

is the total time all these basic blocks needed to execute. Each basic block is hence

responsible for energy :

—>
Basic Block #1
Total energy
=X Basic Block #2
Basic Block #3
-

X*t,'
T

Time of

" Timeoi

{ execution =t2 \J:

Time of

{ execution =t2)

7 execution =t ":

Energy for Basic

—_—=

s

1

(Total time =t1)
3T

!

Block 1 =Xt1T

Energy for Basic
Block 2 =X*2/T

—

Energy for Basic
Block 3 =X*3T

Figure 3.8: Splitting energy between basic blocks based on execution time

Now the question arises : How are we going to calculate the execution time of each
basic block? And the answer is we can’t and we wont. What we will do is allocate total

Page 40 of

3.3.2 Cost of RAPL overshadowing cost of Basic Block

execution time to a series of machine instruction-level execution time data. As we can
see in[26], the execution time of a basic block is analogous to the sum of the execution
times of the commands they are made of. And using Intel’s measurements for the exe-
cution times of the x86 instruction set of the CPU generation we are using we can easily
calculate the sum of those times for all the basic block of the examined program [27]. To
be precise we won't be using execution times but execution CPU cycles but for simplicity
we will refer to it as execution time. To recapitulate, instead of using execution time of a
basic block we will use sum of execution times of this basic block’s instructions.

Soifis thereis a number N of basic blocks for which we have a total energy X we must
split between them. We know that each basic block i needed is made of M instructions
each with execution time w;; . So we will calculate the execution time of basic block i
that is made of M instructions as

M
ti= E Wiz
z=1

. Then the sum

is the total weight which is analogous to the time all these basic blocks needed to exe-
cute. Each basic block is hence responsible for energy :

X*t,'
T

3.3.2 Cost of RAPL overshadowing cost of Basic Block

A second problem we noticed early on was also the unaccounted RAPL cost of the
RAPL read function as well which could easily overshadow the cost of the basic block
execution. To be more precise the RAPL reading process is itself a ¢ function that must
be executed and it requires energy to do so. Actually it not even a very simple operation
since it requires opening files reading from them and writing to them which sums up to
a few dozen assembly instructions. On the other hand, the average size of a basic block
is 4 to 5 assembly instructions. As a result in order for us to measure the energy of Y
instructions (where Y is the size of the basic block , a number close to 5) we must addi-
tionally execute X more instructions and burn energy for them (where X is the number
of the assembly instructions in the RAPL read function, a number close to 100). This
will lead to the calculated energy to be larger than the actual one by a factor of around
20. This, of course is an unacceptable error and a solution must be found for the energy
cost of the RAPL energy measurements themselves to be removed.

This problem was first noticed when we first compared the energies of the execution
of an unchanged binary and the execution of a binary that had went through our LLVM
pass and RAPL measurements were added . The discrepancies were enormous and
the need for a solution is obvious

For the solution, we are lucky that the RAPL read functions remain the same through-

Page 41 of

Chapter 3. First approach - unique basic block RAPL Reads

command 1 ‘weight= w11
command 2-weight= w12
command 3 -weight= w13

Basic Block #1

—

Total energy
=X

command 1 -weight= w21
command 2:weight= w22
command 3 :weight= w23

Basic Block #2

— -

command 1 ‘weight= w31
command 2:weight= w32
command 3 -weight= w33

Basic Block #3

—

Time of

Total Weight
W1 =wil+w12+wi13

Total Weight

W2 = w21+w22+w2

Total Weight

W3 = wii+wi2+w3il

—®)
—(®
©

3

{)
® —execution t1= W1)
— M o
o _(Tmeo (Total ime =t)
:gxeculiu-n R=W2 |—* = +2+43=T :
— — kS .
— — 7
@ (Time of T
—, L,
:gxe{:uliu-n 3=W3)
- —

.

Energy for Basic
Block 1 =X*1UT

Energy for Basic
Block 2 =X*2/T

Energy for Basic
Block 3 =X*t3/T

Figure 3.9: Splitting energy between basic blocks based on weight of assembly commands

Calculate energy of
the unchanged
executable =
X2-X1=X

Measure energy X1 Run the executable

Measure energy X2 ——»

N

original
program

i

—
N,

P
i

[calculated

|

.

Pass the program
through the LLVM
pass

Measure energy Y1 Run the exacutabl

Measure enargy Y2

—

More RAPL read
occur

| energy=X |
\ /
~

Calculate energy of
the chnaged
executable =

Y2-Y1=Y

Comparison between
energies prouvs that

Y ==X

-~
N

[calculated

Vs
/£

EE— |

| energy=Y |
\ /
S

Figure 3.10: Strategy of experiment to measure effect of extra RAPL read overhead

out the program, so that subtraction can come to our rescue once more. After all, if we
are able to measure the energy cost of a RAPL read function we can simply subtract that
overhead from our real readings and find the actual energy measurements.

To measure the cost of a RAPL read function there are two possible ways:

Page 42 of 75

3.3.2 Cost of RAPL overshadowing cost of Basic Block

Energy of unmodified executable
128952338250 - 128952331122 = 7128

Energy of modified executable is

128952498597 - 128952339343 = 151254

Modified is 21.22 times more energy costly

RAPL measurments overhead 1s 144126

Figure 3.11: Results of experiment to measure effect of extra RAPL read overhead

* Measure the energy of a program that simply measures energy X times Then
the energy of one RAPL function is :

result
X

* Measure the energy of an unmodified program (unmodified_energy), the energy of
the same program if it passes through the LLVM pass (modified_energy), the num-
ber of times the RAPL functions is called during the program execution (RAPL_number)

. Then the cost of an individual RAPL function is:

modified_energy — unmodified_energy
RAPL_number

program with N
RAPL functions

Execute program > Measure energy X2 || Calaculated cost |

——» Measure energy X1 = (X2 -X1)/N

¥

executed
recursively

Figure 3.12: First way for measuring RAPL function cost

Page 43 of

Chapter 3. First approach - unique basic block RAPL Reads

Calculate energy of
the unchanged [calculated |
—

—» Measure energy X1 Run the executable Measure energy X2 ———» executable - | energy=x _:'— P
X2-X1=X % / Fd Ay
— [RAPL cost =
original || (Y-X)IN
program ~_
Calculate energy of ’ ‘
> Pass the program .) the chnaged [calculated |
through the LLVM Measure energy Y1 Run the executable Messure energy Y2 ——— " n —— | T |
== Y2¥1=Y
Calculate number by
Wrapl Readsoccur [counting numberof — — — — - Energies file

energies in energy file

Figure 3.13: Second way for measuring RAPL function cost

3.3.3 Lostlibrary functions

The final problem we encounter after we implemented our solution and probably the
most important issue we faced was the fact that the LLVM pass can find only the basic
blocks inside the source code that are actually written by the developer, not the basic
blocks belonging to external functions that are dynamically or statically linked by the
compiler at a later stage.

This is a very serious issue since the bulk of the commands that are executed by a
program are not written by the developers but are part of the function that are invoked
by the programmer, which have already been implemented and are in the libraries the
developer includes in his program.

For example let us consider a very simple hello world program . The code we actually
write is presented at . Let’s see the assembly translation as well in .Itis obvious
that a call to a external function printf occurs. The code of this function is not inside this
file. It will either be dynamically linked at a runtime or statically at a latter stage in
the linking process. As a result the LLVM pass can neither include RAPL reads between
each basic block, which is an important issue but not insurmountable, nor know what
the contents of those functions are, which is the most serious issue. Without knowing
what instructions we are executing it is impossible to create an energy dataset since the
dataset must correspond code to energy and even if we calculate the energy we won'’t
know by which instructions it was caused.

#include <stdio.h>

int main() {
printf("Hello, World!");

return @;

Figure 3.14: C code for simple hello world program

Page 44 of

3.3.3 Lost library functions

©000000EPe401030 <printf
401030: ff 25 e2 2f 00 00 *gx2fe2 (%rip)
401036: 68 8 60 80 08 $oxe
40103b: €9 €0 ff ff ff 401020 <.plt>

2000000000401130 <main>:
401136: 55 %rbp
401131: 48 89 e5 %rsp,%rbp
401134: 83 ec $0x10,%rsp
401138: c7 45 fc @0 @0 @e $exe, -ex4(%rbp)
40113F: bf 40 00 @0 $ox402004,%rdi

401146: ee ee

401149: e mov $oxe,%al
40114b: e@ fe callq 401830 <printf
401150@: xor %ecx,%kecx
401152: 45 8 mov %eax, -0x8(%rbp)
401155: c8 mov %ecx ,%eax
401157: 83 c4 EL[$0x1e,%rsp
40115b: pop %rbp

40115c: c3 retq

40115d: (%rax)

Figure 3.15: Disassembled hello world binary - call to external function

This problem is not very simple to solve. It caused by far the biggest hurdle in the
success of this thesis. Two ideas were finally proposed to solve it :

* Binary lifting of a statically linked executable to LLVM IR
* Execution tracing using the Intel Perf tool

Both were implemented but only one was successful. They are both analysed thor-
oughly in Chapters 4 and

Page 45 of

Chapter 4

Second approach - Static Binary lifting

4.1 Initial Idea

4.1.1 Problem statement

In this chapter we introduce our initial effort to solve the problems that we faced
when trying to perform unique basic block energy measurements as discussed in Chap-
ter 3. The most prominent problem was that a large part of the executable’s code resided
out of our reach. In order to understand the problem better it would be wise to under-
stand what libraries are in coding.

A programming library is a collection of pre-written code that programmers can use
to optimize tasks. This collection of reusable code is usually targeted for specific com-
mon problems. A library usually includes a few different pre-coded components. De-
velopers use libraries to build apps, tools and websites more efficiently. Each library is
designed to provide a solution to a specific feature. Developers will often look up libraries
to help with a particular component they want to create quickly or are struggling with.
Then, they’ll choose the components they want to use all from that one library, so their
app is as cohesive as possible.

After all it would be very time and effort inefficient to recreate over and over again
functions and in general solutions that are needed very often. For example , when a
programmer wants to print something on the computer screen he can simple invoke
the printf function from the stdio.h library and use one line of code instead of taking a
couple of hours to program the whole process themselves. This black box approach is
used to hide complex and unnecessary information and work from the developer and let
them simply focus on their task.

In our case though this proves to be a problem. Since for efficiency, these libraries
and their functions are linked with the executable and are called dynamically at runtime
or statically before the binaries are produced [28]. But not the whole code is copied .
This functions are precompiled elsewhere at the computer memory and simple a call to
them is added. Thus it is extremely difficult to acquire access to their source code to see
what kind of assembly commands are executed and impossible to use an LLVM pass on
them to add energy reads.

Page 47 of

Chapter 4. Second approach - Static Binary lifting

Static Linking

otatic linking combines your work with
the library into one binary.

Sbatically

ke with _
foo.o * |ibc.a

Results in

a.0ut

The executable is statically linked
because a copy of the library is
physically part of the executable.

Dynamic Linking

Dynamic linking creates a combined
wark at runtime.

Dienarically
ket with _
foo.o * |ibc.so
Fesults in

:
+

Library functions are mappned
into the process at runtime

The executable is dynamically linked
because it containg filenames that
enable the loader to find the program'’s
library references at runtime.

Figure 4.1: Static vs Dynamic linking [2]

As a result, we are unable to used the first approach as it was designed in chapter 3
and a way to force the external libraries and functions to come out of hiding and allow

us to analyze and transform them, must be found.

4.1.2 Solution

Our solution to those restrictions was to allow the binary to hide all the library func-
tions until it has to compile statically and include them in the binary. At that point, we
know for a fact that they are included in that file and all the code that we want to mea-
sure is residing in that binary without any calls to other part of our memory. But the
binary cannot pass through our LLVM pass. In order for a pass to be able to be applied
on a file that file must be in LLVM IR, so either an .ll or an .bc file. So we must transform

the binary into an LLVM IR type of file. Here is where binary lifting will be useful to us.

4.2 Implementation

4.2.1

Binary lifting is the process of raising machine instructions to higher-level interme-
diate representations (IR) such as LLVM bitcode. [29] It is in a way, reverse compiling.
Instead of taking higher level language and transforming it into an executable it involves

Static compiling and Binary Lifting

Page 48 of 75

4.2.2 LLVM pass

dees not contain library contains library
function code function code

statically
—> linked
executable

compilation and static

B linking using clang

continue like first
implementation

pass through LLVM recompile and relink

LLVM IR file ——> pass * Lsing clang

———» final binary ——

contains library

I —_—) i
function code contains library function

code and RAFL calls

Figure 4.2: Second strategy - Binary lifting to include the binary functions

working on an executable to transform it from assembly to a higher level representation.
In our case since we are working with LLVM and want LLVM passes to be able to be ap-
plied on our code, it would be very beneficial to us to transform the statically linked
binary to LLVM IR.

4.2.2 LLVM pass

The LLVM pass will work very similarly to the one described in chapter 4. The purpose
is to correspond energy to basic blocks. So a unique ID is created for each basic block
and a RAPL function is inserted before each basic block that includes a print of the
basic block’s unique ID. So after an execution of the final binary we will be left with 2
files. One that has all the basic blocks and their contents (in assembly commands) and
one that has energies and basic block id’s appearing in pairs. With the subtraction of 2
consecutive energy described in chapter 3 energies and the subtraction of the cost of
one RAPL read function which are explained in chapter 3 (section) we deride the
final energy cost of the basic block.

If multiple basic blocks end up corresponding to one total energy we will split them

Page 49 of

Chapter 4. Second approach - Static Binary lifting

using the method described on Chapter 3 section . So in essence, if we manage
to lift a statically linked binary and pass it through the LLVM pass then we follow the
methodology described n chapter 3, solving the problems of the Ineffectiveness of RAPL
read granularity and that of the extra RAPL read function overhead as described on
section

With only the problem of binary lifting remaining then , we will mention the binary
lifting tools we tried and tested. We experienced varying levels of success but unfor-
tunately although lifting was accomplished we were not able to pass the lifted IR file
through the LLVM pass and create a working executable. Nonetheless the validity of this
technique remains and if someone in the future is able to lift a binary and pass the result
from an LLVM pass they can use our tools and the method described earlier to create a
reliable energy dataset. Binary lifting is still at an early stage and maybe the technology
that exists at this moment is incompatible with LLVM passes as the resulted IR files are
very unstable. Maybe there is some tool that can accomplish this task but we were not
able to find it . We mention the tools we used and what we managed to accomplish with
each so that anyone that wishes to continue our work can use this as a reference.

4.2.3 Revng

Revng is a static binary translator. Given a input ELF binary for one of the supported
architectures (currently i386, x86-64, MIPS, ARM, AArch64 and s390x) it will analyze it
and emit an equivalent LLVM IR. To do so, revng employs the QEMU intermediate repre-
sentation (a series of TCG instructions) and then translates them to LLVM IR.

Using Revng we were able to lift binaries , although not consistently depending on
the functions included but we were unable to pass the lifted IR through our pass.

4.2.4 LLVM-mctoll

LLVM-mctoll is capable of raising X86-64 and Arm32 Linux/ELF libraries and exe-
cutables to LLVM IR. Raising Windows, OS X and C++ binaries needs to be added. At
this time X86-64 support is more mature than Arm32. Development and primary testing
is being done on Ubuntu 22.04. Testing is also done on Ubuntu 20.04. The tool is ex-
pected to build and run on Ubuntu 18.04, 16.04, Ubuntu 17.04, Ubuntu 17.10, Cent0S
7.5, Debian 10, Windows 10, and OS X to raise Linux/ELF binaries.

Using LLVM-mctoll we were able to lift binaries if we included the path of all the
libraries that the binary used and we were able to pass some of the lifted binaries from
our pass, but the resulting executable always failed with a segmentation fault.

4.2.5 McSema

McSema is an executable lifter. It translates (”lifts”) executable binaries from native
machine code to LLVM bitcode. LLVM bitcode is an intermediate representation form of
a program that was originally created for the retargetable LLVM compiler, but which is

Page 50 of

4.3 Redirection of our solution

also very useful for performing program analysis methods that would not be possible to
perform on an executable binary directly.

McSema enables analysts to find and retroactively harden binary programs against
security bugs, independently validate vendor source code, and generate application
tests with high code coverage. McSema isn't just for static analysis. The lifted LLVM bit-
code can also be fuzzed with libFuzzer, an LLVM-based instrumented fuzzer that would
otherwise require the target source code. The lifted bitcode can even be compiled back
into a runnable program! This is a procedure known as static binary rewriting, binary
translation, or binary recompilation. McSema supports lifting both Linux (ELF) and Win-
dows (PE) executables, and understands most x86 and amd64 instructions, including
integer, X87, MMX, SSE and AVX operations. AARCH64 (ARMv8) instruction support is
in active development.

Using McSema we were able to lift binaries consistently and we were able to pass
the lifted binaries from our pass. The resulting executable though always failed with a
segmentation fault.

4.3 Redirection of our solution

It has become evident that the issue of lost external functions still remains and that
binary lifting was not an approach capable to solve this problem. Thus we decided to
focus on a new approach that involves execution tracing which will be described in the
following chapter, chapter

Page 51 of

Chapter 5

Final approach - Runtime tracing

5.1 Initial Idea

5.1.1 Problem statement

Having tried the previous 2 approaches it has become evident that we have created
a working pipeline that measures the energy of the basic blocks of a program with one
major issue: it does not take account in any way of the functions from the libraries that we
have included. As we stated earlier this is unacceptable since the bulk of the programs
code and as a result energy consumption is attributed to those library functions, which
from now one we will refer as lost functions, since we "lose” the assembly instructions
that make them up. For a better understanding of this problem we can refer to the figure

We know that these library functions are added to the executable if we compile it
statically but that occurs during the linking stage which happens later than the stage
during which our code passes through the LLVM pass and the basic blocks are identified
and their contents are stored (in assembly instructions). So we tried to get the linked
executable back to a previous stage to pass it through the LLVM pass, through the pro-
cess of binary lifting to LLVM IR but our efforts were ultimately unsuccessful. Hence , it
is necessary for us to find a way to analyze the code after the linking has taken place.
This will be our final approach and it will be explained during this chapter.

5.1.2 Solution
5.2 What is Execution tracing? - Intel Perf

In software engineering, tracing involves a specialized use of logging to record in-
formation about a program’s execution. This information is typically used by program-
mers for debugging purposes, and additionally, depending on the type and detail of
information contained in a trace log, by experienced system administrators or technical-
support personnel and by software monitoring tools to diagnose common problems with
software.??. Tracing is a cross-cutting concern.

Page 53 of

Chapter 5. Final approach - Runtime tracing

LLVM

IDENTIFIABLE >

instruction 1

LLVM HAS NO

instruction 2 KNOWLEDGE OF THESE

instruction 3 < >
RAPL read call EXTERMAL MEMORY LOCATION

instruction 4 -

) . instruction F1

instructions

o instruction F2
instruction & s NO
INFORMATION

instruction F3
instruction 7 ON THESE

INSTRUCTIONS

instruction F4
RAPL read call

)) instruction F5
instruction &

) - instruction F&
call to library function

instruction F7
instruction 9 \ -«

RAPL read call RETURN BaCk

Figure 5.1: Library functions cannot be analyzed by LLVM

In our case, the information that we are interested in recording about the executable
is all the assembly commands that make it up and that ran during its execution in the
correct order. To achieve that we will be using the tool Intel perf that was described in
section

As a recap, Intel Processor Trace (Intel PT) [23] is an extension of Intel Architec-
ture that collects information about software execution such as control flow, execution
modes and timings and formats it into highly compressed binary packets. We will use
the intel PT technology to get the trace of a binary that we want to measure. To under-
stand how to do that we must first understand the capabilities of the perf record and
perf scripts commands:

* Perf record : this command runs a command and gathers a performance counter
profile from it, into perf.data - without displaying anything. This file can then be
inspected later on, using perf report or script.

 Perf script : This command reads the input file and displays the trace recorded.
After installing the xed tool , we can dump all instructions in a long trace. That can
be fairly slow, but it is the best way to get a complete and detailed trace of the
executed binary

Page 54 of

5.3 LLVM Pass

5.3 LLVM Pass

In this approach the LLVM pass is still very important to our work, but since the basic
block code identification, and their corresponding to the energy will be performed at a
later stage using Intel perf, those functionalities can now be removed from the LLVM
pass. Its sole focus now will be to insert 3 types of RAPL read function calls:

A RAPL call type A function before the start of every basic block of the program
(At this point we have access only to the basic block the developer has written not
the one of library function)

A RAPL call type B function before a call to a library function

A RAPL call type C function after a call to a library function

In essence, all of this functions are identical and perform the specific task of reading
the RAPL energy register and printing its contents to a file. The only difference between
them is that each one of them will have a different name type (A, B or C) so that we
know when we are reading the execution trace and we see a RAPL function call if the
code that follows is a basic block or code from a library function.

5.4 Statistical analysis

So we have reached a point that RAPL reads occur before every basic block of the
program and before and after every call to a library function. And we can get a hold of
the execution trace of the program through Intel Perf. The challenge now is to tackle
the problems we faced during our first approach and also find a way to correspond the
code we have stored to energy we have measured.

5.4.1 Command Weights

First of all the problem of RAPL read granularity we faced during the first approach
still gives us trouble. We will use the same solution we used there which is based on
the splitting of the multiple basic block energy between basic blocks using as a weight
the sum of the execution time of the assembly commands that make them up. For more
information on this technique and its validity refer to section

5.4.2 RAPL Read energy removal

Secondly the problem of the RAPL read function energy overhead that was first no-
ticed during our initial approach on chapter 3 will be solved with the exact same way
we explain there. For more information on this technique and its validity refer to section

Page 55 of

Chapter 5. Final approach - Runtime tracing

RAPL read A

Basic Block 1

RAFPL read A

Basic Block 2

RAFPL read A
Basic Block 1

Basic Block 3
Basic Block 2

RAPL read B
Basic Block 3

call to library function

call to library function

S RAPL read C
Basic Block 4 | g
. RAPL read A
Basic Block 5 Pass through the LLVM pass _~»
/,/ Basic Block 4
Basic Block 6 e
RAPL read A
call to library function
Basic Block 5
Basic Block 7
RAPL read A
Basic Block 6
RAPL read B
call to library function

RAPL read C

RAPL read A

Basic Block 7

Figure 5.2: Illustration of how this LLVM pass works

5.4.3 Unnecessary code removal

In this case, we have access to the assembly code (the execution trace0 that make
up our program after we have included the RAPL read functions in our program through
the LLVM pass. As a result when we get the execution code it will also include the code
for these RAPL read functions that is not important to us and must be removed, since
we only want to take into account the actual code of the program we are examining, not
anything extra we added.

This is rather simple to do: we will find the code for a RAPL function from an exami-
nation of our binary(we call these instructions CODE RAPL). then on our execution trace
every time a call to a RAPL function is performed the following instructions will be the

Page 56 of 75

5.4.3 Unnecessary code removal

491el@ <rapl_A>
$0x0, -exc(%rbp)
4@1fee <rapl_ B>
401c30 <do_nothing>
491ff@ <rapl_C>
$0x9,-0x4(%rbp)
$ex1,-ex8(%rbp)
491e10 <rapl_A>
$exa,-ox8(%rbp)
481deb <main+exbb>
401e10 <rapl_A>
$6x4,-ex4a(%rbp)
481d8d <main+ex5d>
401el1@ <rapl_ B>
401cee <hello>
491ff@ <rapl_C>

Figure 5.3: Real example of program after it has passed through our LLVM pass

RAPL read A
| Basic Block 1
RAPL read A
| Basic Block 2
RAFL read A
| Basic Block 3

RAPL read B

OUR

PROGRAM |ca|\ tolmrarvfunction‘ -
4| ‘x\\ RAPL read C

AFTER RAPLread C
GO'NG RAPL read A
THROUGH | easicBiocks
THE LLVM RAPL read A
PASS | Basic Block 5

RAPL read A
RAPL read B

RAPLread C

RAPL read A

Basic Block 6 Basic Block 6

EXECUTION
—TRACE~_

RAPL read A CLEAN

« TRACE——s

RAPL read A

‘ Basic Block 2

RAPL read A

‘ Basic Block 3

RAPL read B

library functicn

INTELPERF > SRR REMOVAL OF UNNECESSARY CODE >

‘ yd Basic Block 4 L -‘ e
e -
e //’

RAPL read A

‘ Basic Block 5

RAPL read A

ca Dl A
Basic Block 6
call to rapl B

library function

Cail 1o rap
call fo rapl A
Basic Block 7

RAPL read B

|cal\tolmrarvfunctmn‘ library function

RAPL read C

RAPL read A

Basic Block 7 Basic Block 7
NN

Figure 5.4: Illustration of the removal of RAPL function code process

same as CODE RAPL and we will delete them from the execution trace.

Page 57 of

Chapter 5. Final approach - Runtime tracing

5.4.4 Splitting of external functions

Another problem that arises is that while we want our dataset to be in a basic block
level, the lirbary functions have not been split into basic blocks and only one RAPL read
is performed at their start and one after they conclude. The splitting of the function
code into basic blocks is rather easy. We will traverse the code and every time we find
a conditional or unconditional branch or a call to another memory address we split the
code and a new basic block is created. Now for the energy we have the exact same
problem we faced when multiple basic blocks had one total energy. We will solve it with
the exact same way by splitting the energy to the newly created basic blocks of the
function using as a weight the sum of the execution time of the commands that each
basic block is made of. For more detail refer to section

Energy read =X
i sum of
Basic Block F1 =] Energy F1= (Y-X)"w1/W
i sum of
T BasicBlockF2 |~ 7 Energy F2= (Y-X)*w2/\W
- sum of
RAPLread B Basic Block F3 = \\ Energy F3= (Y-X)"w3/W
— r Ay
' Basic Book F4 |, ot g Energy Spliting> | Energy Fd= (¥Y-X) wa/W
Library function Split to Basic Blocks > _ e [Ereray SPng
L — Basic Block F5 weights=w5 S Energy F5= (Y-X)*w5/\W
- sum of
RAPLread C Basic Block F& weights=w6 Energy F6= (Y-X)"wG/\W
i sum of
v BasicBlockF7 |~ M7 7 Energy F7= (Y-X)"w7/W
Energy read =Y
- - ‘.r
\ ___ Total sum of weights = v
\w1 +HW2HW3+WA+WE=WEHWT)

=W -

Figure 5.5: Illustration of the function splitting (code and energy) process

5.5 Edge cases and problems

5.5.1 Negative energy

A problem we encountered when trying to remove the energy cost of the RAPL read
function , was that although on average the cost of a RAPL function is pretty consistent,
in some cases the cost of a RAPL read + the basic block executed was less than the
standard value of the RAPL read we have calculated meaning that the energy cost of
the basic block after the subtraction would have been calculated negative, which is not
possible. That happens become the RAPL technology is not perfect and although on
average it measures energy consistently some times it may over or under measure it .

To solve this problem , whenever we calculate negative energy we increase the gran-
ularity of our reads. In more detail instead of taking into account every RAPL read we
ignore a few. So in a case when X RAPL reads happen between X basic blocks and a neg-

Page 58 of

5.5.2 Lost final energy

ative energy is observed for one of them, then we ignore the X-2 internal RAPL reads,
taking into consideration only the first and the last RAPL read and split the energy be-
tween the X basic blocks using the technique we explained in section . The larger
the number X is the less likely we are to be affected by errors of the RAPL technology
but it is a trade off with accuracy since the splitting of energy between basic blocks
introduces some error to the whole process itself. So usually a relatively small num-
ber of basic blocks are bundled together when negative energy is observed. After all in
most cases when RAPL performs an underestimation the following energy updates are
overestimations so that the total energy remains accurate.

5.5.2 Lost final energy

Another small issue we observed was that we always lost the final basic block of the
program. This happens because RAPL reads were inserted before every Basic block and
the energy of a basic block is calculated from the subtraction of the energy of the RAPL
call before the next basic block and the energy measured by the RAPL call before itself.
But the last basic block does not have a basic block after it so it neither has a RAPL call
after it. To solve this we insert at the end of each program an empty function call that
does nothing and thus introduces no energy overhead so that a final RAPL call will be
inserted as well.

5.6 Overall Process

At this point we will summarize the whole process for our third and final approach
that we have described in this chapter:

* Firstly we measure the energy of the unmodified program we want to examine with
a RAPL read at the start and end of the program. We call this energy_unmodified.

* We pass our unmodified program through the LLVM pass.
* We execute the program using Intel perf so that the execution trace is stored.
* At this point the energy file and the execution trace have been created.

* From the first and last RAPL energy we estimate the cost of the modified program
which we call energy_modified.

* From the subtraction of energy unmodified from the energy modified we get the
energy cost of all the RAPL reads , and if we divide that value with the number of
RAPL reads we get the individual RAPL cost which we will call RAPL_cost.

energy_modified — energy_unmodified

RAPL_cost =
- numberofRAPLcalls

* We traverse the execution trace and remove unnecessary RAPL code and the en-
ergy file removing energy overhead RAPL_cost.

Page 59 of

Chapter 5. Final approach - Runtime tracing

» We correspond basic block or library functions to energy based on the order with
which they appeared. We can differentiate between basic blocks and library func-
tions based on the RAPL call type that preceded them.

» We split energy between basic blocks when we have the problem of RAPL read
granularity or that of negative energy.

* We split library functions to basic block and split their energy as well.
» We find average values of duplicate basic blocks.

This whole process was performed with a plethora of scripts as a part of a automatic
pipeline that does not need any human assistance. We originally created the main part
of the pipeline, meaning the most important scripts that did the bulk of the hard work
using python but due to the extremely large size of the execution trace, the analyzing
time was extremely long. For that reason we redid the computational heavy scripts in
C and the whole process now takes a mater of seconds. To sum up the programming
languages that were used were :

* C, for the most important scripts doing the bulk of the work.
* Python, for useful, complementary scripts that were not computationally heavy.

* Bash, for pipeline organization and automation.

C++ , for the LLVM pass.

We can additionally observe the whole process in the figure 5.6,presented below.

Page 60 of

5.6 Overall Process

original Execute with RAPL Calculate unmodified Unmeodified
; —_—> »
unmodified read at start and end energy energy
examined
prograrm
- — _RAPL read cost
" | |
Pass through the modified file ; — —
—b)
LLVM pass with RAPL | *| Executewitn Pert |
reads '
included |
|
|
|
| Modified
| energy
|
|
|
¥ h I
|
- I -
Execution Energy file L Calculate modified
Trace | energy
|
|
|
|
|
|
|
¥ ¥ '
|
Remove Rapl Remove RAPL |
function code overnead < |
v h 4
Execution Clean Energy
Trace file
¥ 'lv
Calculate energy of Break functions into
Basic blocks and »{Basic Blocks and split » Aggreagte duplicates
library functions energy

G

MNAL

>

Page 61 of 75

Chapter 6

Results and Evaluation

6.1 Total dataset - Distribution of energies

In this section we try to offer a general understanding of the dataset we have created.
The dataset is made up of 3828 unique basic blocks . The average number of instructions
in each basic block is 5.04 and the average energy value for a basic block is 0.6429 units
of energy(61.3 pJ).

] Specification of produced dataset

Number of unique basic || 3828
blocks
Average length of basic block || 5.04 instructions

Average energy of basic || 0.6429 units of energy
block (BB)
Percentage of BBs with en- || 0.16%
ergy > 10
Percentage of BBs with en- || 0.31%
ergy<10and>5
Percentage of BBs with en- || 2.12%
ergy <5and > 2
Percentage of BBs with en- || 5.24%
ergy < 2 and > 1
Percentage of BBs with en- || 10.81%
ergy <1and > 0.5
Percentage of BBs with en- || 79.85%
ergy<0.5and>0
Percentage of BBs with en- || 0.51%
ergy =0

Table 6.1: Dataset Specifications

In the figure we can see the number of basic blocks that each benchmark con-
tributes to the dataset. Keep in mind though that these numbers include duplicate basic
blocks that are executed more than one times. For that reason the number of basic
blocks will decrease significantly to a total of 3828. In particular the benchmark vari-
able_name_results is made from more than 100.000 execution basic blocks but it runs

Page 63 of

Chapter 6. Results and Evaluation

Number of basic blocks per benchmark program

200000 1

175000

150000 -

125000

100000

75000 1

50000

25000 -

0-

variable_name_results

find_biggest_results

find dyn_sum_results

ip results

ip_get_results
time results
print N _results
mndom results
declare results
|_ask2_a_results

bubblesort results

quicksort_results
polinominal_results
simple sort results
reverse number results

function_pointer_results
parrallel_ask2 b results

parralle

zombie_results

faa results

of_life_results

swap results

bin to dec results

game_

binary search results

Figure 6.1: Number of basic blocks per benchmark - duplicates included

on a large for loop that’s why the majority of them are duplicates.

160000 4

140000 4

120000 4

100000 4

80000 4

B0000 4

40000 4

20000

Basic blocks' energy distribution

04

Energy

Figure 6.2: Energy distribution of the total dataset

Page 64 of 75

oount file results

6.2 Evaluation Method

Number of basic block instructions histogram

300000
250000
200000
150000
100000
50000
o — T T T T
o 20 40 B0 80

Number of basic block instructions

Number of basic blocks

Figure 6.3: Instructions number in a basic block - distribution of the total dataset

Basic blocks' energy distributon fo program: bin_to_dec_results Basic blocks'energy distribution for program: dectar_results Basic blocks' energy distribution fo program: function_painter_results
1500 om0
o 100 500
00 1200 200
=00
o 100
w0 200
20
0 100
20
™ 1000
w0 20 20
o o o
o oz b o o 1B 1 1% 260 o oz ok om Do a1k 1s o ofs ok om a0 1B 1k 5
enery eneray energy
Basic blocks snergy distibution for program: binary_search results Basic blocks' anergy distribution for program: faa_esults Basic blocks'snergy distribution for program: game_of lfe_results
50
s 00
50 . 50
- 100
50 250
0
100
» w0
0
©
20
B
) il 1L ” |
S R N | [| | I 11 lu g | " | N _ul um -
W ok ok o o s ks 20 o oF ok o 10 i a0 1 200 o ok ok B o 1s 1k i i
enerny enerny eneray
Basic blocks' anergy distributon for program: bubblesort esuits Basic blocks'energy distibution for program: find_biggest_resuts Basic blocks' energy distributon forprograrm: ip._get results
so00
200 000
170 o0 0
500
000
200
250
2000
100
000 200
0
10000
00 100
50 000
B] | B ol j—-_ 0
o oz o 0% 1o am ik 1% wo o ok ok o 1k 1k s G0 o35 o o5 10 1z 1o s 280
enerny enerny eneray
Basic blocks'energy distibution for program: count_fe_results Basic blocks energy distributon fo prograr: find_dyn_sum_resuits Basic blocks'energy distibution for program: ip._results
00 12000
s
200 10000
50
s000
- w0
2000
w0 w0
. 15000
0
“ 20000
N . 200
= .
D A N T R T TR T T T [S T T L
E enery enerny

Figure 6.4: Energy distribution for individual benchmarks part 1

6.2 Evaluation Method

We have reached the stage that the dataset has been created and we are confident in

our methods and the results we have produced. Yet there must be a way to evaluate the
Page 65 of 75

Chapter 6. Results and Evaluation

Basic blocks' energy distribution for program: parrallel_ask?_a_results Basic blocks' energy distribution for program: quicksort_results Basic blocks' energy distribution for program: swap_results

00
3500
000
50
200
1500
1000
500
o n
D0 o3 ok ok 1o 1k
Eneray

Basic blocks' energy distribution for program: parrallel_ask?_b_results Basic blocks' energy distribution for program: random_results Basic blocks' energy distribution for program: time_results

- 8 &8 8 8 8 8
5oy ¢ ot ot

L1

D0 ooz oeso o 1o 1l 1 1%
Eneray

nnnnnnnnnn

Basic blocks' energy distribution for program: polinominal_results Basic blocks' energy distribution for program: reverse_number_results Basic blocks' energy distribution for program: variable_name results

oo 50000
1000
w50
000
1500 0
250 000
&0
1000
- w0 2000
00
20 10000
x0
0 = 0 0 i
D0 ooz os o w00 s 10 s 20 %0 ooz os o3 1o a3 10 s 200 %0 o0z 0% o5 w0 13 1k
Eneray

ssssssssss

Basic blocks' energy distribution for program: print_N_results Basic blocks' energy distribution for program: simple_sort_results Basic blocks' energy distribution for program: zombie_results

50 1400 100
1200

200 o
1000

1500 w0 &0

1000 w0 a0
a0

00 20
20

o o o

o0 ooz oso o 10 1 1% s 20 D0 ooz 050 o3 10 135 10 s 200 %0 ooz 0% o5 100 1 a0 s 2
Ereray

zzzzzzzzzz

Figure 6.5: Energy distribution for individual benchmarks part 2

accuracy of our measurements. Unfortunately there is no other method to get energy
measurements for the basic blocks and then compare them to our own measurements.
After all if there were such energy measurements available this whole work would have
been pointless since the energy dataset would already be in existence.

Thus it is evident that we must find an indirect method to evaluate the accuracy
of our methods. This method will be based on the total program execution energy. In
more detail lets say that for a program we have created its dataset with the mechanism
described in this thesis. Then we know the energy_i of each basic block i of the N total
basic blocks that make it up as well as the number of times times_i that each basic is
executed during the program. With two RAPL calls, one at the start one at the end of
the program we can get the energy cost of the total program and then by running the
program a few times (about 100) we can get a safe result about the average energy
cost of that program. Theoretically if our measurements are correct then the sum of the
energies of the basic blocks we have calculated multiplied by the times each basic block
has been executed must equal the average energy cost of the program:

N
average_energy_cost = » _t; energy;
i1

By calculating how different these 2 values are we can find the error of our dataset.

Page 66 of 75

6.3 Results

Re-run
100 times
and get
average

D

unmodified Execute with RAPL Average cost
program read at start and end of program

Split in basic blocks
and calculate number
of times each basic
block is executed

Calculate sum of
energies based on
energy dataset

A

Y

Y

Compare —}l' Final resuli '|

Energy
dataset

Figure 6.6: Evaluation Process

6.3 Results

The evaluation results will be presented for each benchmark we run and the total
average as well. As we can see on figure the average error is merely 2.63% which is
extremely encouraging for the accuracy of our measurements.

After all the energy of the basic blocks are not really relevant as a single value but
more as a total of a program, the sum of which will be the energy that will be consumed.
Indeed individual basic block values may not be extremely accurate each time a basic
block is executed since this energy is very volatile. But we do not really care about a
single execution that may be deviating from the norm. We care about the energy of basic
blocks that are executed a large number of times because these are the ones responsible
for the majority of the energy our software consumes. And we believe that the average
energy cost of these basic blocks after a large number of executions will approach the
value that we have calculated in our dataset with high accuracy.

Page 67 of

Chapter 6. Results and Evaluation

Average difference percentage of Actual energy vs Predicted energy

Energy Percentage diff average

2.5 1

2.0 -

0.5

0.0 -

Energy Sum

Bl Percentage change

Figure 6.7: Average error percentage for all dataset

Percentage difference of predicted vs Actual

mmm Percentages

time
function_pointer
bin_to dec
zombhbie
simple_sort

binary_search

swap

count file

ask_z b

declare

parrallel

ip
find_biggest
polinominal
find_dyn_sum
faa

quicksort

Benchmarks

print_N

game_of _life
bubblesort
askZ a

ip_get

reverse number

parrallel

random

variable name

Figure 6.8: Error percentage for each benchmark

Page 68 of 75

6.3 Results

Actual energy sum vs Predicted energy sum

m Actual

mm Predicted

60000 A

50000 A

000 4
30000 A

§

wns AbBaaug

20000 1

3WeU 3)|qeuen
Jaquinu asiana
126 di

B 7yse |3||eued
Hos21qqng
3Jl|"Jo aweb

N Jud

Lwopuel
uosy2inb

ee}

wns uAp puy
|eulwouljod
153661q puy

di

aleap

q zyse |2|jeded
31y unoo

dems

Hos ajdwis
alquoz
J3p 01 uig
Jajuiod uonouny
awn

yaueas Aueuiq

Benchmarks

Figure 6.9: Real vs predicted energy for each benchmark

Page 69 of 75

Chapter 6. Results and Evaluation

6.4 Comparison with related work

6.4.1 ALEA: Fine-grain Energy Profiling with Basic Block Sampling

The most similar project to this thesis is [1], a tool to measure power and energy
consumption at the granularity of basic blocks, using a probabilistic approach. The work
accomplished similar granularity to ours and comparable results (1.5% to 3.4%). But
our tool is not following a probabilistic method but a deterministic approach since all the
basic blocks are measured not a sample of them. Additionally our tool is open source
and thus available for anyone interested to download and use it .

6.4.2 Tools based on direct power measurement

There has been a number of tools [30], [31], [32] that, based on direct power mea-
surement can accurately measure both component-level and system-wide energy con-
sumption, before and after the system’s power supply units. However, the time granu-
larity of the sensors fundamentally limits these tools and as a result the granularity of
the measurements is much lower. So code objects such as basic blocks or even function
cannot be measure, contrastingly to our work.

6.4.3 Tools that model energy consumption from activity vectors

Tools that model energy consumption from activity vectors can break the granularity
barrier of direct energy measurements but suffer from several other shortcomings. Their
accuracy is usually limited and highly dependent on architectural variations between
platforms and workload patterns[33],[34],[35], These tools have a very extensive time
consuming training and benchmarking process that must be repeated per platform and
yield errors of more than 4% at the majority of cases.

Page 70 of

Chapter 7

Conclusion and Future Work

7.1 What did we accomplish?

So we have reached this point where our energy dataset has been created and its
validity and accuracy have been ensured. But is this all we have accomplished? Just an
energy dataset that will give very good results but only for our computer or computers
that are similar to it? The answer is of course not. Our work is far greater than a single
dataset for a single computer. The real accomplishment of this work is not the production
of an energy dataset but the production of an energy dataset producing mechanism that
is completely open source and free to use.

Any developer can download our tool. Then they have to install the open source LLVM
infrastructure and the Intel PT tools that are needed for the execution trace (to do that
you need an Intel CPU).Then they can either use our benchmarks or make their own
custom benchmarks and execute the tool which will produce their own custom energy
dataset tailored to their computer’s energy consumption.

In this way, developers can be sure that their dataset is as accurate as possible and
in the case they notice any shortages of basic blocks types they can enrich the dataset
with their own benchmarks.

We hope that with this work we provide the ability and the incentive to more develop-
ers to produce custom software for their systems with energy efficiency at heart, so that
they can benefit from heat and monetary savings, in particular during the energy crisis
we are currently going through and additionally our planet can benefit from reduced
GHG emissions, in particular CO5.

7.2 Current extensions - Energy Prediction

There are already two projects underway that aim to expand this work :

* An alteration of this work to predict memory energy (or even GPU energy), not CPU
energy like this thesis.

* A predictive mechanism (neural network) that will be trained on this dataset and
provide energy predictions on a basic block level for any program without the need

Page 71 of

Chapter 7. Conclusion and Future Work

for execution.

7.2.1 Memory energy prediction

There really is not much to say about this alteration of the original thesis. Everything
works in the exact same way, with the only difference being that instead of the RAPL
read being performed at the energy register for the CPU they will be performed at the
energy register for memory. So the only change necessary is the location of the energy
register at the 3 RAPL read function we include to the program with the LLVM pass. The
same can be done for GPU energy.

FILE *fd = fopen("/sys/class/powercap/intel-rapl/intel-rapl:@/intel-rapl:@:@/energy_uj", "r"

Figure 7.1: Location of the RAPL register address we must change

7.2.2 Energy predicting neural network

Currently our fellow Electrical and Computer Engineer undergraduate student Theodoros
Siozos is concluding a continuation of this work at the Microprocessors and Digital Lab-
oratory of the National Technical University of Athens. He used our dataset to train mul-
tiple neural networks with custom and pre-made basic block embeddings which have
yielded very encouraging results. Using his mechanism any developer can insert one of
their compiled executables and he will get an energy prediction for every basic block
that make up their program. Those energy predictions can be the basis for code trans-
formations with energy reduction in mind, which is after all the main goal of our work.

7.3 Future Work - Energy Reduction

As we stated previously the goal is to decrease the energy cost of software. The first
step to do that though is to be able to measure the energy that the code consumes. With
our work and the predictive mechanism that Mr. Siozos has produced we have accom-
plished that. Now the next spet should be focused on the utilization of the tools that we
have provided so that software energy reduction mechanisms can be designed. A first
idea are energy transformation techniques with works like [36],[37] but the sky is the
limit since this field of research is just beginning to grow.

Page 72 of

BLBALoypadia

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Lev Mukhanov, Dimitrios S. Nikolopoulos kat Bronis R. De Supinski. ALEA: Fine-
Grain Energy Profiling with Basic Block Sampling. 2015 International Conference
on Parallel Architecture and Compilation (PACT), ogAibeg 87-98, 2015.

Juan David Tuta Botero. Differences between static and dynamic libraries.

Zakaria Qurnani. Software eco-design : investigating and reducing the energy con-
sumption of software. AldakTopikn Alatpipr, Université de Lille, 2021.

Charlotte Freitag, Mike Berners-Lee, Kelly Widdicks, Bran Knowles, Gordon S. Blair
kal Adrian Friday. The real climate and transformative impact of ICT: A critique of
estimates, trends, and regulations. Patterns, 2(9):100340, 2021.

Hannah Ritchie, Max Roser kal Pablo Rosado. CO. and Greenhouse Gas Emissions.
Our World in Data, 2020. https://ourworldindata.org/co2-and-greenhouse-gas-
emissions.

Mastooreh Salajegheh. Software Techniques to Reduce the Energy Consumption
of Low-Power Devices at the Limits of Digital Abstractions. AlbakToplKA AlatpLpn,
Open Access Dissertation, 2013.

MT. Schmitz, B.M. Al-Hashimi kat P. Eles. System-Level Design Techniques for
Energy-Efficient Embedded Systems. Springer US, 2006.

Jawad Haj-Yahya, Avi Mendelson, Yosi Ben-asher kat Anupam Chattopadhyay. En-
ergy Efficient High Performance Processors Recent Approaches for Designing Green
High Performance Computing. 2018.

Mahendra PratapSingh kat Manoj Kumar. Evolution of Processor Architecture in
Mobile Phones. International Journal of Computer Applications, 90, 2014.

Muhammad Zulhusni. AMD delivers the latest and world’s fastest processors to the
modern data center, 2022.

J.A. Paradiso kal T. Starner. Energy scavenging for mobile and wireless electronics.
IEEE Pervasive Computing, 4(1):18-27, 2005.

Thomas Benjamin, Daniel Bailey, Kevin Fu, Ari Juels kat Tom O'Hare. Vulnerabilities
in First-Generation RFID-Enabled Credit Cards. tépog 4886, oeAideg 2-14, 2007.

Giuseppe Procaccianti. Energy-Efficient Software. Adaktoplkr Awatplpn, 2015.

Page 73 of 75

BiBAoypadia

[14] José A Garcia-Berna, José L Fernandez-Aleman, Juan MCarrillo de Gea, Ambrosio
Toval, Javier Mancebo, Coral Calero kat Félix Garcia. Energy efficiency in software:
A case study on sustainability in Personal Health Records, 2021.

[15] Gustavo Pinto kal Fernando Castor. Energy Efficiency: A New Concern for Applica-
tion Software Developers. Commun. ACM, 60(12):68-75, 2017.

[16] Mastooreh Salajegheh. Software techniques to reduce the energy consumption
of low-power devices at the limits of digital abstractions. Adaktoplkr Alatpipn,
University of Massachusetts Amherst, 2013.

[17] the llvm compiler infrastructure project.
[18] Clang: A C language family frontend for LLVM.
[19] LLVM’s analysis and transform passes.

[20] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann kat Doron
Rajwan. Power-Management Architecture of the Intel Microarchitecture Code-
Named Sandy Bridge. IEEE Micro, 32(2):20-27, 2012.

[21] RAPL power API.

[22] Reading RAPL energy measurements from Linux.

[23] PERF tools support for Intel® Processor Trace.

[24] Intel® 64 and IA-32 architectures software developer manuals.
[25] Intel Perf linux man page.

[26] V. Tiwari, S. Malik, A. Wolfe kaL MT. C. Lee. Instruction level power analysis and
optimization of software. Proceedings of 9th International Conference on VLSI
Design, oe\idec 326-328, 1996.

[27] Agner Fog. Lists of instruction latencies, throughputs and micro-operation break-
downs for Intel, AMD, and VIA CPUs. Texviki avapopd pe apBud, Technical Uni-
versity of Denmark, 2022.

[28] Alfred V. Aho, Monica S. Lam, Ravi Sethi kat Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co.,
Inc., USA, 2006.

[29] Alessandro Di Federico, Mathias Payer kat Giovanni Agosta. Rev.Ng: A Unified
Binary Analysis Framework to Recover CFGs and Function Boundaries. Proceedings
of the 26th International Conference on Compiler Construction, CC 2017, ae)Aida
131-141, New York, NY, USA, 2017. Association for Computing Machinery.

[30] J. Flinn kat M. Satyanarayanan. PowerScope: a tool for profiling the energy usage
of mobile applications. Proceedings WMCSA’99. Second IEEE Workshop on Mobile
Computing Systems and Applications, ogAideg 2-10, 1999.

Page 74 of 75

BiBAloypadia

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Liwei Guo, Tiantu Xu, Mengwei Xu, Xuanzhe Liu kat Felix Xiaozhu Lin. Power Sand-
box: Power Awareness Redefined. Proceedings of the Thirteenth EuroSys Confer-
ence, EuroSys 18, New York, NY, USA, 2018. Association for Computing Machin-
ery.

Rong Ge, Xizhou Feng, Shuaiwen Song, Hung Ching Chang, Dong Li kat Kirk W.
Cameron. PowerPack: Energy Profiling and Analysis of High-Performance Sys-
tems and Applications. IEEE Transactions on Parallel and Distributed Systems,
21(5):658-671, 2010.

G. Contreras kal M. Martonosi. Power Prediction for Intel XScale Processors Using
Performance Monitoring Unit Events. 2005 International Symposium on Low Power
Electronics and Design, 2005.

C. Isci kalL M. Martonosi. Runtime Power Monitoring in High-End Processors:
Methodology and Empirical Data. 36th Annual IEEE/ACM International Symposium
on Microarchitecture, 2003.

F. Blagojevic D. S. Nikolopoulos B. R. de Supinski M. Curtis-Maury, A. Shah kat M.
Schulz. Prediction Models for Multi-dimensional Power-Performance Optimization
on Many Cores. 7th International Conference on Parallel Architectures and Com-
pilation Techniques, 2008.

Eui Young Chung, Luca Benini kat Giovanni De Micheli. Source Code Transformation
Based on Software Cost Analysis. Proceedings ofthe 14th International Symposium
on Systems Synthesis, ISSS '01, oeAida 153-158, New York, NY, USA, 2001.
Association for Computing Machinery.

Carlo Brandolese, William Fornaciari, Fabio Salice kat Donatella Sciuto. The Im-
pact of Source Code Transformations on Software Power and Energy Consumption.
Journal of Circuits, Systems, and Computers, 11:477-502, 2002.

Page 75 of 75

	Περίληψη
	Abstract
	Ευχαριστίες
	List of Figures
	Εκτεταμένη Περίληψη
	Introduction
	The need for energy efficient systems
	Thesis Overview and Contribution
	Problem Statement
	Objective
	Organization

	Tools and Technologies
	LLVM
	What is LLVM?
	LLVM IR
	Clang
	Why LLVM and not GCC?
	LLVM Passes

	Intel RAPL
	Running Average Power Limit
	RAPL Domains

	Intel Perf
	What is Intel Processor Trace?
	How is Intel Perf right for us?

	System Specifications

	First approach - unique basic block RAPL Reads
	Initial Idea
	Problem statement
	Solution

	Implementation
	RAPL Reads
	LLVM Pass

	Problems & Redirection of our solution
	Ineffectiveness of RAPL read granularity
	Cost of RAPL overshadowing cost of Basic Block
	Lost library functions

	Second approach - Static Binary lifting
	Initial Idea
	Problem statement
	Solution

	Implementation
	Static compiling and Binary Lifting
	LLVM pass
	Revng
	LLVM-mctoll
	McSema

	Redirection of our solution

	Final approach - Runtime tracing
	Initial Idea
	Problem statement
	Solution

	What is Execution tracing? - Intel Perf
	LLVM Pass
	Statistical analysis
	Command Weights
	RAPL Read energy removal
	Unnecessary code removal
	Splitting of external functions

	Edge cases and problems
	Negative energy
	Lost final energy

	Overall Process

	Results and Evaluation
	Total dataset - Distribution of energies
	Evaluation Method
	Results
	Comparison with related work
	ALEA: Fine-grain Energy Profiling with Basic Block Sampling
	 Tools based on direct power measurement
	Tools that model energy consumption from activity vectors

	Conclusion and Future Work
	What did we accomplish?
	Current extensions - Energy Prediction
	Memory energy prediction
	Energy predicting neural network

	Future Work - Energy Reduction

	Bibliography

