EOviko Metoofio [Tohvteyveio
>xoAn Hiektpoddywv Mnyoavikdv

Kot Mnyavikadyv YmoAoylotov

Topéag Texvohoyiag, ITAnpogopiknig &
YmoAoylotov

Anpovpyia XuoTNpatog XuoTdcewv pe Nevpwvikd
Aiktoa I'papwv

AIIIAQMATIKH EPTAXIA

IQANNHY AGANAXYIOY

EmpArénov: Teopylog Ztdpov
Kabnyntng E.M.IL

ABnva, Maprtiog 2023

EOviko Metoofio [Tohvteyveio
>xoAn Hiektpoddywv Mnyoavikdv

Kot Mnyavikadyv YmoAoylotov

Topéag Texvohoyiag, ITAnpogopiknig &
YmoAoylotov

Anprovpyio 2uoTnpotog 2uoTdce®V pe Nevpwvika
Atktva I'papwv

AIITAQMATIKH EPTAYIA

IQRANNHY. AGANAXYIOY

Emiprénwv: Tedpylog Xtapov
KaOnyntg E.M.IL

EykpiOnie oo tnv tppeln e€etaotikn emitponn tnv 13n Maptiov 2023.

Tedpylog Etdyov ABavéaoiog BouAddnpog Stépavog KoAhog
Kabnyntrg E.M.IL Emnikovpog Kabnyntig E.M.IL Kabnyntrg E.M.IL

ABnva, Maprtiog 2023

lo&vvng ABavaociov

Authwpatovyog HAektpoddyog Mnyoavikog kot Mnyoavikog Yrnoroytotov E.MUIL

Copyright © Iwdavvng ABavaciov, 2023.
Me empOAa€n mavtog Sikoudpartog. All rights reserved.

Amayopevetal 1 avtiypogr, arodfkevon kot divopn tng moapovoog epyaciog, €€ oAokAnpov 1
THAHATOG VTG, Yo eutoptkd okomd. Emitpémetal n avatdnwor, amobrikevon kot dtoxvopr) yio
OKOTO U1 KeEPOOOKOTLKO, EKTTALOEVTLKNG 1] EPEVLVNTIKNG PVGTG, LTTO TNV TPoTOOEGT) Var avaupépeTa
1 tnyn Tpoéhevong kot va dwatnpeiton To Topdv pvopa. Epwtripata mov apopoiv tn xprion TG
epyooiag ylia kepdookomikd oKomd mpémel v atevBOVOVTOL TTPOG TOV GLYYPAPEQL.

Ot amdelg Ko Tor GUUTTEPAGHATA TTOL TEPLEXOVTOL GE QLUTO TO £YYPOPO eKPPELOLY TOV GLYYPOAPEQ

Ko dev mpémel va epunvevbel 0TI avtimpoowtebovy Tig enionpeg Béoelg Tov EOvikod Metodfiov
IoAvteyveiov.

ITepiAnyn

310 avyypovo dwadiktvo, 1 apbovia dedopévwv propel vo aofel apdpntn yia tovg xpnoteg. o
v PeAtiovon g epmepiag xprioth, oL eEATOpLKEVHEVEG TPOTAOELS YivovToL OAO KOL TTLO GTHOVTL-
kéc. Epmvevopévn amd v av€avopevn tdon tov mpoceyyicewv mov Pacilovtol e ypapovg 6T
OUGTHHOTA GUGTACEMY, OUTH 1) SITAMHATIKY epyacio Siepevvd TIG SLUVATOTNTEG TWV VELPWVIKGOV
SiktOwv ypapwv (GNN) yia tnv avamtu€n evog cuotnpatog mtpotdcewy touvidv. H mpocéyyior
pog mepthopPéver v avtipetdTion tov TpoPAipatog wg v diadikacio Tpofieymg Bapoug Twv
OKHOV O Evar OLEPEG YPAPTIHA, OUTOTEAOVHEVO OUTO YPYOTEG KL TOLViEG WG KOPPOUG, KoL TIG avTi-
otoulxeg Pabporoynoelg wg akpéc. IIpoypatomolodpe TNV épevvd pag o€ €V GXETLKA VEO GOVOAO Oe-
dopévav, ovopalopevo The Movies Dataset, To omoio dev éxelL xpnoyomoinBel evpéwg ce Snpocied-
OELG YLt GUGTHHATA 6VETACEWY. To ahvoro dedopévwv avtd mepiéxel fabporoynoelg amd Tpoypa-
TIKOUG XprjoTeg o€ Tavieg, kabdg kot moAvapiBpa petadedopévo oXeTIK e TO meplexOpevo Kabe
tauwviag, Ta ool éxouvv e€ayBei amd moikileg Sraditvakég mnyéc. Movtelomolotpe to cvvoAo de-
dopEVOV WG Ypao Kot To amobnkedovpe ot éva cboTnpa Stayeiplong Phoewv dedopévwv ypaewy.
T v a€lomoinon Tov moAvdpBpwy petadedopévev mov oyetilovTal He To mepLeXOpEVO TNG kKGbe
TALVIOG, TA KWOLKOTTOLOUHE WG EPPUTEVHATH KOPPwV YpropomotdvTag motkileg texvikés. To vho-
TOLNUEVO HOVTEAD oLOTAGEWVY Aapfdvel wg eilcodo Tov Sipepr] ypdpo ko mpoPAémel Tig okpiPeig
TWES TV véwv Pabporoyrioewv. Metd amd v Sie€oywyr mOAAATADY TELPOPATOV KoL TOV GU-
VTOVIGHO T®V TOAVAPLOP®Y LITEPTOPAPETPWY, 1] ADOT) Hag TTETUXALVEL ETLOOCELS GUYKPLVOUEVEG e
Aboelg Tedevtaiag Texvoloyiag, mov Pacilovtal oe ypdypoug, 6To avtictolyo cOvoro dedopévwv
MovieLens. Agiyvoupe 6Tt Xpnotpomodvtag katdAAniovg alyopifpouvg yio tnv dnpovpyia Twv
ELPUTEVHATWV KOHP®V TOL VTLITPOCKITELOLY TO TePLeOpeVo NG kdbe Taviag, propovpe va Pei-
TIOGOLHE TNV akpifeta Twv TpofAéPewv oe OAEG TIG APXLTEKTOVIKEG VEUPOVLKOV JIKTOWV YPAPWV
mov depeuviOnkav oe avthv v SwatpiPr]. EmmAéov tng avetépw épevvag, avamtTOGGOUHE Kot
pioe TA p1 SradikTvakn e@appoyT, TOL aoTeeiTal Ao TOALAPLOES LI PECieg OTNV TAELPE TOV
droxoopnTr, xar ad pio Stemopr] xpriotn. H mAatpdppa divel otoug xproteg Tnv Suvatotnto vo
e€epeuvoly kot va PaBporoyolv Tawvieg, CUPPAAAOVTOG GTNV ETEKTOCT) TOL GUVOAOL dedopévaV e
véoug xpnoteg kot a€loloyrioelg. EmutAéov, 1) evormoinorn Tov HoVTEAOL GLOTACEWMY pe T LITOAOLTT
OUGTOTLKA HEPT) TNG TAATPOPUAG, TPOGPEPEL piat eloaywyT) oTo medio Twv MLOps, eved tawwtdypova
eTLTPETEL TNV QOKLIT) TOV GUOTHHATOC CUOTACEWV O€ TTPAYHOTIKEG GUVOTKES.

AéEerg kAerdri

Ipapot, Nevpwvikd Aiktva I'pdgwv, Baoeig Aedopévov Tpapwv, Zvotipata Zvotdoewv, Touvieg,
IIpoPredn Papoug axpng, Epputedpoata kOpPwv

Abstract

In today’s web, the abundance of available data can be overwhelming for users. To enhance the
user experience, personalized recommendations are becoming increasingly important. Inspired by
the growing trend of graph-based approaches in recommendation systems, this thesis investigates
the potential of Graph Neural Networks (GNNs) for developing a movie recommendation system.
Our approach involves treating the problem as the link weight prediction task on a bipartite graph,
consisting of users and movies as nodes, and the corresponding ratings as edges. We experimented
with a relatively new dataset, named The Movies Dataset, that contains real-world ratings from users
to movies as well as numerous metadata regarding each movie’s content, which were scrapped from
multiple web resources. We model the dataset as a graph and store it in a graph database manage-
ment system. To utilize the numerous metadata related to each movie’s content, we encode them
as node embeddings using various techniques. The implemented recommendation model receives
as input the bipartite graph and predicts the exact ratings values. After conducting multiple experi-
ments and tuning the numerous hyperparameters, our solution achieved an RMSE value compared
to state-of-the-art graph-based solutions on the corresponding MovieLens dataset. We demonstrate
that by utilizing appropriate algorithms to generate node embeddings that represent the content
of each movie, we can improve the accuracy of the predictions in all of the GNN architectures ex-
plored in this thesis. In addition to the above research, we develop a complete web application,
consisting of multiple REST APIs and a user interface. The platform enables users to explore and
rate movies, contributing to the expansion of the dataset with new users and ratings. Additionally,
the integration of the recommendation model with the other components of the platform, offers a
glimpse into the field of MLOps, while concurrently enabling the testing of the recommender system
in real-world conditions.

Key words

Graphs, Graph Neural Networks, Graph Databases, Recommender Systems, Movies, Link Weight
Prediction, Node Embeddings

Evyapiotieg

Oa 1nBeha va evyaplotion tov emPAémovTo kabnyntr pov, k. ZT&HOL Yl TNV TOAVTIHN K-
Bodnynomn tov, kat TNV evkalpia Vo EPELVIOW EVO TOGO eVOLXPEPOV BEPAL KATA TNV EKTTOVNOT) TNG
Suthwpatikig pov epyosiog. O fbela va evyapiotion tov didaktopikd @ortnth Oppéo Mevr
Moo Tpopyahdxr, yio TNV ToAVTIN KoL ouvexn kabodnynon kot LITosTHPLEN Tov, KABMOG Ko yio
0 TA00G TV SMHLOLPYLKOV KOl CTOYEVHEVWV LOEMV KL OKEYEWV TTOL HOLPAOTNKE Pall HOL 6T
mAaiolo eKTTOVIONG THG TNG EPpYOTiog.

Oa Beda emiong va evyapLoTHoW TOLG Yovelg pov, Awpa kot Nidpyo, kot tnv adepen} pov Od-
Aewat, yloo TNV asteploplatn otrplén Toug katd tny dtdpkela Twv 6ovdnv pov. Télog, dev Oa prov-
POLCX VoL UV EVYXAPLOTIOW TOVG GUHPOLTNTEG LoV, AvTpéa kal Tov Odvo, yio To TA00g Twv 1dedv
IOV HOLPAGTNKOY ML OV, KOl TIG GTLYHES TTOV HOLPACTHKOE KATA TNV SLdpKeLd TV GITOLdOV
HOG.

Iwavvng ABavaciov,

Abnva, 13 Maprtiov 2023

Contents

IIepiAngm« . o e e
Abstract L
EuoxoploTieg
Contents e
Listof Tables e
Listof Figures
1. Extetopévn mepidnypnotae EAAnvika00 oo
Extetapévn mepinyn ot EAANvikG oo

1.1 BewpnTikd LIWOPAOPO L
1.1.1 Baowég évvoleg I'pdpov . . . o o o oo

1.1.2 O ahyopiBpog Weisfeiler-Lehman

1.1.3 Mnyavikr) MaOnon oe Tpdpovg o o oo oo

1.1.4 TIpOPAeyn BAPOUG OKHAG .« o v v v v v v e e e e e

1.1.5 Nevpovik& Aiktva I'pdpwv oo

1.1.6 ZUOTAHOTO TTPOTAOCEWDV « « o o v v e e v et e e e e e e e e e e e e e e

1.1.7 Nevpowvikd Aiktoa Ipo@ov Kot SUCTAUATA TPOTACEDV o o v . . .

1.1.8 Yrmapyovoeg peréteg PacLlOPEVEG OTOVG YPAPOUG . « « v v v v v o o v v v

1.2 YAOTOINGT) TOU GUOTHHATOS TTPOTAOCEDY « « o v v o v e e e e et et e e e e e e
1.2.1 ZOVOAO A€BOHEVOV . . o o L L

1.2.2 Baomn Aedopévov Tpdpwv o .o

123 TOHOVTEAD . . o o v vt e e e

1.24 AEL0AOYNOT) TOL GUGTHHATOG TPOTACEWY + + v o v v o v v e e e e e e

1.3 YAOmoinom TNG MAXTPOPHOG « « v v v v v e e e e e e e e e e e e e
1.3.1 Tevik@ oTOL el KALKIVIITPO « « « v v v v vt e e e e e e e e e e e e

1.3.2 JUOTOTIKO ZTOUXELOL « « v v v v v e e e e e e e e e e e e e e e

1.3.3 EvOOPAT®GT TOL HOVTEAOL OTNV TAATPOPHOL « « v v o v o o e e e e e e

14 TIELPAHOTO « . o o o o o e e e e e e e e e e
141 ABWOAOYNOT] - o o o o o e

1.4.2 YREPTOPAHETPOL . o v o v v vttt et e e e

143 METPO AVOPOPAS - . v v v v e e e e e e e e e e

144 Ilepartépw Hepapata otnv Zoykpion Movtédwv oL ..

1.5 IIpoPAémovtag Tig KPLTIKEG EVOG CUYKEKPLUEVOU XPNOTN « v v v v v o e v e v e o
1.5.1 IIpoowmomotnpéveg TPOPAEPELS . . . o o v v v v e

1.5.2 IIpocappoyn ce ahAory€G GUUTEPLPOPAG EVOG XPTOTN « v v v v v v v v v . .

1.5.3 Koatavonon mo oOVOETOV GUUTTEPLPOPOV . .« o v v v v e e e

11

15

17

21
21
21
21
22
22
25
25
27
28
28
29
29
29
30
31
32
32
32
33
34
34
34
35
36
37
37
37
38

11

2. Introduction 39

12

Introduction 39
2.1 Recommender Systems 39
2.2 Existing Approaches L 39
23 OurContribution 39
24 Thesisoutline 40
Theoretical Background L L oL 41
Theoretical Background L 41
3.1 Graphs 41
3.1.1 Maindefinitions L 41
3.1.2 Mathematical Representation of Graphs 43
3.1.3 Complex Graphs 44
3.1.4 The Weisfeiler-Lehman algorithm on Isomorphism 45
3.2 Machine Learningongraphs Lo 47
3.21 Motivation. 47
322 Challenges. 48
3.23 Tasks Taxonomy 49
3.2.4 Traditional Approaches L . 51
3.25 NodeEmbeddings 57
3.3 The Link Weight Prediction Task 64
3.3.1 Problem Definition L 64
332 Motivation. 64
3.3.3 Traditional Approaches 65
3.3.4 Deep Learning Approaches 66
3.4 Graph Neural Networks 66
3.4.1 Motivation. 67
342 Challenges. 67
343 Keyconcepts 67
344 Taxononomy 70
3.5 Some Graph Convolutional Neural Networks 71
3.5.1 GraphSAGE 71
352 Kk-GNNs 72
353 GAT . . 73
354 GIN . .. e e 74
3.6 Recommender Systems 75
3.6.1 Basicconcepts. 75
362 MainChallenges L 76
3.63 Taxonomy e 77
3.6.4 Traditional Approaches for Collaborative Filtering 77
3.6.5 Traditional Approaches for content-based recommendations 79
3.6.6 Hybrid Traditional Approaches 79
3.6.7 Evaluation Metrics 80
3.7 Graph Neural Networks and Recommender Systems 81
3.7.1 Recommendations as Link Prediction 81
3.7.2 Graph Neural Networks for Link Prediction 81
3.73 Advantages 83
3.8 Graph-based Related Work 83

4. Implementation of the Recommender 85

Implementation of the Recommender 85
41 TheDataset. e 85
411 Movielens 85

41.2 TheMoviesDataset 86

42 Graphdatabase 87
4.2.1 GraphDatabases 87

422 NEOA] . oot 88

4.2.3 The dataset modeled asagraph 88

4.2.4 Technical background of the graph database initialization 90

4.2.5 Small version of the dataset (100K ratings) 91

4.2.6 Encoding the moviecontent 93

4.2.7 Node embeddings with Neo4j Graph Data Science Library 93

43 Themodel 97
43.1 Pytorch Geometric 98

432 Architecture 99

433 GNNEncoder e 99

434 EdgeDecoder 101

44 Evaluation of the Recommender System 101
5. Implementation of the Platform, 103
Implementation of the Platform 0 ., 103
51 Motivation L 103
52 Relatedwork L 103
5.3 Architecture - Components 103
53.1 GraphDatabase 104

532 RESTAPIs. e 105

533 Frontend 106

5.4 Integrating the model into the platform 106
5.4.1 Motivation behind deploying the model in a dedicated APT. 106

54.2 Functionalities 107

543 Challenges. 107

5.5 Platformusage 108
6. Experiments 115
Experiments L e 115
6.1 Evaluation 115
6.2 Hyperparameters e 115
6.3 Baseline 116
6.3.1 A simple GraphSAGE baseline, 116

6.4 Further Experiments on Tuning the Hyperparameters 117
6.4.1 Initial GNN architectures comparison 118

6.4.2 Numberoflayers 118

6.4.3 Number of hidden channels 120

6.4.4 Node embeddingsusage 122

6.4.5 Final comparison L L L 123

6.5 Predicting the ratings for a specificuser Lo oL 124
7. Conclusion 129
Conclusion 129
7.1 General Conclusion L e 129
7.2 Futurework 130

Bibliography

14

List of Tables

3.1
3.2

3.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

Degree, Clustering Coeflicient, Graphlet Degree Vector Analogy
Decoder mapping and loss function in Laplacian-Eigenmaps and Inner-product ap-
proaches of the encoder-decoder framework
Classification of a recommendation result for a specific item and a specific user

RMSE baselines on the 100K datasets. The RMSE values on the MovieLens dataset
are reported in the publication of Hekmatfar et al. (2022) and are run under the same
experimental setup. It is important to note that our SAGE baseline cannot be directly
compared to the other methods, due to the different experimental setup.
The layers combination with the lowest validation RMSE for each GNN architecture
onthe 100K dataset
The layers combination with the lowest validation RMSE for each GNN architecture
on the 100K dataset, utilizing the FastRP node embeddings for the movies-content .
The layers and hidden channels combination with the lowest validation RMSE for
each GNN architecture on the 100K dataset, without utilizing node embeddings for
the movies-content L
The layers and hidden channels combination with the lowest validation RMSE for
each GNN architecture on the 100K dataset, utilizing FastRP node embeddings for
the movies-content
The layers, hidden channels, and node embeddings usage combination with the low-
est validation RMSE for each GNN architecture on the 100K dataset, after 200 train-
ingepochs
RMSE baselines and our final result on the 100K datasets. The RMSE values on the
MovieLens dataset are reported in the publication of Hekmatfar et al. (2022) and
are run under the same experimental setup. It is important to note that our best
SAGE model cannot be directly compared to the other methods, due to the different
experimental setup. L

125

15

List of Figures

3.1
3.2
3.3
34
3.5
3.6

3.7

3.8

3.9

3.10
3.11
3.12
3.13
3.14

3.15
3.16

3.17
3.18
3.19
3.20
3.21
3.22
3.23

3.24
3.25

3.26

3.27
3.28
3.29

Visual Representationof aGraph L 0oL 41
Visual Comparison of a Directed and an Undirected Graph 42
Two Isomorphic Graphs 43
Adjacency Matrix of a directed Grapho 0oL 43
Visual Representation of a Weighted Graph 44

Visual Representation of a Heterogeneous, Directed and Weighted Graph. Users
are nodes denoted with red color, movies are nodes denoted with purple color, and
ratings are modeled as directed and weighted edges, with the weight corresponding
to the exact value of the rating. This image corresponds to a subgraph of the graph

database instance that was utilized for our research, visualized with Neo4j (2021). . 45
Visual Representation of two non-isomorphic graphs that cannot be distinguished

bythe WLtest 46
Visual Comparison of Graph (ir)regularity in graphs, images, and text 47
Visual Representation of Natural Language Sentences asa Graph 48
Visual Representation of an Image as a Regular Graph 49
Visual Differentiation of Graph Tasks 50
Communities in Zachary’s Karate Club 50
Inability of node degree to fully capture the importance of node (A) on the graph . 52
An undirected graph colored based on the betweenness centrality of each vertex

from least (red) to greatest (blue). L 53
Some graphlets with3-5nodes L o o 54
Nodes A and E neighborhoods are not overlapping, but a link could be formed be-

tween these nodes in the future. L Lo Lo L 55
Graphs as Bag of Node Degrees 56
Projection of nodes into the embedding space 57
Communities and node embeddings in Zachary’s Karate Club Graph 58
Shallow encoding for the generation of node embeddings 58
BFS and DFS strategies 61
Outline of the FastR algorithm 62
Visual representation of a graph with unknown weights on some edges. The aim of

the link prediction task is to predict the weight on these edges. 64
Visual representation of the architecture of Model R 65

Visual representation of the architecture of Model S, with one input layer (red), two
hidden layers (green), and one output layer (blue) 66
The Message Passing Framework, used for neighbors’ aggregation. The embedding
of node A is generally generated by aggregating the embeddings of its neighbor
nodes. The message-passing process that is visualized here is a two-layer version,
extending this aggregation to also reach the nodes with a distance of 2 from node A. 68

Visual Comparison between 2D convolution on an image and Graph Convolution . 69
Visual Representation of a Recurrent GNN 71
Visual Representation of the sample and aggregate technique of SAGE 72

18

3.30

3.31

3.32
3.33
3.34

3.35

4.1
4.2
4.3
4.4
4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

Visual Representation of the Hierarchical Variant of k-GNNs. Multiple k-GNNs are
combined, with the extracted representations coming from different granularities. .
Visual Representation of the message-passing step on a Graph Attention Network.
The trainable attention coefficients a7, lead to the embedding of each node v being
aggregated with a different level of importance for the computation of the embed-
ding h_’;. The three colors illustrate that the attention is multi-headed (with three
attention heads).
Visualization of a Recommender System
Visualization of a traditional Recommender System approaches
Visualization of the user-item matrix used in a collaborative-filtering movie recom-
mender SYStEIM e
Visual Representation of the GNN training pipeline. The node embeddings produced
by the GNN, are used as input to the prediction head, which transforms them into
the predicted entity.

Example of a keywords JSON array
Example of a genres JSON array
Example of a cast JSON object
Example of a crew JSON object L
A subgraph with two specific movies (pink-colored nodes) and their genres (yellow-
colored nodes), visualized by Neo4j Desktop (Neo4j (2021))
A subgraph with the 1-hop neighborhood of a specific movie. Multiple types of
nodes (denoted by different colors) are easily fetched with a simple Cypher query.
Visualized by Neo4j Desktop (Neo4j (2021))o i
Number of ratings per movie distribution in the original version of the small 100K
dataset. Visualized with matplotlib.00 L.
Number of ratings per user distribution in the original version of the small 100K
dataset. Visualized with matplotlib
The rating values distribution in the original version of the small 100K dataset. Vi-
sualized with matplotlib. L
The induced graph containing only movies and keywords. For simplicity purposes,
a limit on the number of visualized nodes and edges was applied. Visualized with
Neodj (2021). o o
Movies embeddings on the Movie-Genre induced graph, generated by Node2Vec al-
gorithm. Visualized with matplotlib, after dimensionality reduction with the scikit-
learn library (Pedregosa et al. (2011)).
Movies embeddings on the Movie-Production Company induced graph, generated
by Node2Vec. Visualized with matplotlib, after dimensionality reduction with the
scikit-learn library (Pedregosa et al. (2011)).
Movies embeddings on the whole movies-content induced graph, generated by
Node2Vec algorithm. Visualized with matplotlib, after dimensionality reduction
with the scikit-learn library (Pedregosa et al. (2011)).
Movies embeddings on the Movie-Genre induced graph, generated by FastRP al-
gorithm. Visualized with matplotlib, after dimensionality reduction with the scikit-
learn library (Pedregosa et al. (2011)).
Movies embeddings on the Movie-Keyword induced graph, generated by FastRP.
Visualized with matplotlib, after dimensionality reduction with the scikit-learn li-
brary (Pedregosa et al. (2011)).
Movies embeddings on the whole movies-content induced graph, generated by Fas-
tRP algorithm. Visualized with matplotlib, after dimensionality reduction with the
scikit-learn library (Pedregosa et al. (2011))..

73

95

96

96

4.17

4.18

4.19

4.20

4.21

4.22

4.23

5.1

5.2

53

5.4

5.5
5.6

5.7

5.8

5.9

6.1

6.2

6.3

6.4

6.5

Movies embeddings on the Movie-Genre induced graph, generated by GraphSAGE.
Visualized with matplotlib, after dimensionality reduction with the scikit-learn li-
brary (Pedregosa etal. (2011)).
Movies embeddings on the movies-cast members graph, generated by GraphSAGE.
Visualized with matplotlib, after dimensionality reduction with the scikit-learn li-
brary (Pedregosa et al. (2011)).
Movies embeddings on the whole movies-content induced graph, generated by
GraphSAGE. Visualized with matplotlib, after dimensionality reduction with the
scikit-learn library (Pedregosa et al. (2011)).
The architecture of the model. GNN Encoder receives the bipartite graph of users and
movies as input and produces the embedding of each node. Edge Decoder receives
these embeddings, and generates the predicted ratings for each pair. Visualized with
terrastruct.com. oL
The message-passing process for a single node, in the case of a GNN with two layers.
With two GNN layers, node features with a maximum distance of two are aggre-
gated. Stanford (2021)
Visualization of a GNN with 3 layers, where skip connections are used as short-
cuts between the layers, to increase the impact of earlier layers on the final node
embeddings. Stanford (2021) L L
As the layers of the GNN increase, the receptive field of the yellow node tends to
capture the whole graph. We expect the embeddings of multiple nodes to converge
tothesame values.

The architecture of the platform, as a high-level component diagram. The platform
consists of the graph database, three REST APIs, and a separate front-end web ap-
plication. Visualized with app.terrastructcom.
The home screen of the web application
The detailed view of a specific genre. Here, users can see the latest and the top
movies related to the Action genre. Lo o Lo
The visualization of the "based on a novel” keyword’s neighborhood in the original

A choropleth map, colored by the number of movies produced in each country.

The profile page of a cast member. Here, users can see the latest and the top movies
related to the person, as long as the visualization of the person’s neighbor.
The page of a specific movie. The predicted rating of the authenticated user, as long
as the movie’s metadata are gathered here.
The neighborhood of the node that corresponds to a specific movie in the original

User is hovering over the "Ben-Hur” card. As a result, he/she gets immediate access
to the predicted rating for him on this movie, and the average rating of the movie. .

The training RMSE loss of the GraphSAGE baseline for each epoch. Visualized with
matplotlib.
The validation RMSE loss of the GraphSAGE baseline for each epoch. Visualized
withmatplotlib.
The training RMSE loss of the GraphSAGE, GraphConv, GAT, and GIN for each
epoch. Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, GraphConv, GAT, and GIN for each
training epoch. Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, with 2, 6, and 10 GNN layers, for each
epoch. Visualized with matplotlib. L.

98

98

104

111

111

117

20

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

The validation RMSE loss of the GraphSAGE, with multiple combinations of layers,
for each epoch. Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, with 2, 6, and 10 GNN layers, for each
epoch, using FastRP node embeddings. Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, with multiple combinations of layers,
for each epoch, using FastRP node embeddings. Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, with 2 GNN layers, 6 layers in the Edge
Decoder, and variable number of hidden channels, without using movie-content em-
beddings. Visualized with matplotlib.
The validation RMSE loss of GAT, with 2 GNN layers, 10 layers in the Edge Decoder,
and variable number of hidden channels, without using movie-content embeddings.
Visualized with matplotlib.
The validation RMSE loss of the GraphSAGE, with 2 GNN layers, 10 layers in the
Edge Decoder, and variable number of hidden channels, using movie-content em-
beddings. Visualized with matplotlib.
The validation RMSE loss of GAT, with 2 GNN layers, 10 layers in the Edge Decoder,
and variable number of hidden channels, with using movie-content embeddings.
Visualized with matplotlib. o
The validation RMSE loss of the GraphSAGE, with 2 GNN layers, 10 layers in the
Edge Decoder, and 16 hidden channels, using a variety of movie-content embed-
dings. Visualized with matplotlib.
The validation RMSE loss of GAT, with 2 GNN layers, 10 layers in the Edge Decoder,
and 128 hidden channels, using a variety of movie-content embeddings. Visualized
with matplotlib.
The effect of utilizing the movies-content node embeddings on the validation RMSE
loss for the four GNN architectures. Visualized with matplotlib.
The distribution of the ratings that user empathicRelish3 has submitted (first dia-
gram), as long as the distribution of the predicted ratings for the specific user.

The distribution of the ratings that user puzzledSalt7 has submitted (first diagram),
as long as the distribution of the predicted ratings for the specificuser.
The distribution of the ratings that a specific user has submitted (1st diagram), as
long as the distribution of the predicted ratings for the specificuser.
The distribution of the submitted ratings (1st diagram) after a change in his/her rat-
ing behavior, as long as the predicted ratings, after retraining the model.
The distribution of the ratings that a specific user has submitted (1st diagram), as
long as the distribution of the predicted ratings for the specificuser.
The distribution of the predicted ratings for genres Crime and Adventure. The rec-
ommender tends to understand the user’s preference towards the first genre.

121

122

123

123

Chapter 1

Extetapévn nepiinyn ota EAAnvikd

1.1 Bewpntikd voéfabdpo

2NV TopokaTe evotnTa Bo avopepBodv meptAnmTikd ot Pooiicég Evvoleg YOpw ad TOug Ypapoug
7oL elvol avaykaleg yuo Tnv evaoyoinon pe Baoeig Aedopévav Ipaepwv, 6mtwg n Neodj (2012), ko
ye v eppéboven otnv Mnyavik Mébnon méve ce ypdpoug, kabmg kot oL apyég mov oyetilovtal
HE Tt VELPWVLKA SLKTLX YPAPWVY, TO. GLOTHHOTA TPOTACEWV, KOL TOV GUVSVUGHO TOV AVOTEPW®

TEXVOLOYLOV.

1.1.1 Baowcég évvoleg I'paopwv

Definition 1.1.1 (Tpé&@og): Tpdgoc eivar éva {evyoc G = (V, E) and ovvoda, tétowa cdore E C |V |2
TN va: amopUyoupe onuaciodoyikés acdeeies, Oecwopotue 6t V N E = (). Ta oroyeio Tov ovvérov V
ovouddovrar Kopupés 1j kouPor tov ypdpov G, evd ta orotyei Tov ovvédov E ovoudlovrar akués tov

ypdgpouv. Diestel (2010)

Oravadutikol oplopol TV factk®dv evvoldv YOpw amd Toug ypapoug tapatifevtol 6to kepdAono
3.1.1. Mio oo T1g 1o Pooiicég Evvoleg eival 0 XopakTnpLopog TV YpAeov o¢ katevBuvopevov (1)
pn). Ze évav kotevBuvopevo ypago, ot dvo kopfor k&be axpig dwaxwpilovtal oTov apykd Kot
TeAKO KOpPo, kot Aépe OTL 1) akpr] €xeL katebBLVOT otd ToV ap)Lkd oToV TeALKO. Mia omtikomoinon
NG SLopopoTToinong AVTHS TwV YP&pwv paiveton StonaOnTikd otnyv etkdva 3.2. Ao kopueég ovopdlovTon
YELTOVIKEG KOPUPEG OTAV LILAPXEL i OK[IT) GTOV YPAPO TTOL VO TTPOCTILTEL GE QVTEG TIG KOPLPEC.
O BaBpog kopPou eivar o aplBpdg TV AKPGOY TOL TPOCSTITTOLY 68 AVTOV. QG ATOTTAOT| KOPUPWV
opileton To PAKOG TOU GUVTOHOTEPOL HOVOTTATLOD HE QPETNPLX TOV TTPADOTO KOPPO KO TEPHATIONO
Tov deTEPO, OOV HOVOTTXTL OVOPALOLHE piot akoAovOLL outd dradoyikég akpég kol kKOpPoug oTov
YPAPO, OOV OAEG OL KOPLPES EPPOVilovTal TO TTOAD i popd. Ao Ypapol ovopdlovTal LoOHOopPLKOL,
eav, dtatoBntikd, vtdpyel pia avtioToLyio HeTAED TV KOPLPOV TOVG, TTOL Va dtatnpel TV cLVSeTILOTNTA
oL ypagpov. Mio cuvrng pabnpotiky avarapdotact evog Ypagou elval o mivakog YeLTviooTg
Tov. O TPOTOG LITOAOYLGHOD TOV TVOKX YELTVIOGTG EVOG YPAPOL QaiveTal aTnV etkova 3.4.

SOUTAN pOHOTLKA pE TIG TTpoavapepBeioeg Paoiég évvoleg YOpw atd TOVG YP&Poug, 6NV Tapoloe
pelétn aklomomifnkav extevdg kou o obvBetol TomoL ypapnuatwy. H tpotn évvola amd avtég
elvaL 1 évvola ToV CTAOPLGPEVDY YPAPNHAT®V, 6Ta omoia évag aplBpog (Bapog) éxel avtiotorynOel
otnv k&Be axpr. To otabpiopéva ypapnpoato éxovv TANODOPA EYAPHOYDV GE GUOTHHATA TOV
TPOGOHOLOVOUV PEAALOTIKG SlkTUaL, He T PAPT) TV OKPOV VA AVTUTPOCKOITEVOLY TNV EVTAOCT) T} TO

KO0TOG TNG 0AANAemidpoong petafd Twv kOpPwv. Mia ontikomoinon evog otabpulopévou ypapipotog

21

Bpioketor otnv etkdva 3.5. Zvveyilovtag, pia mepalté pw Stkplon Tewv ypaeov yivetol pe Baon tnv
Kotnyoplomoinet 1j pn tov kopPwv tovg. Yd avtd to mpiopa, kamolol ypapol yopoktnpilovrol
amod éval cUVOAO ETIKET®V oL avartiBevtan otovg kKOpPovg Tovg. Ot ypapol, pe PaoT TIG eTIKETEG
autég draywpilovtan e OPOYEVELG Kol ETEPOYEVELS (3.6) Yp&povg. Omwg viodnAdvel kot To Gvopa
g k&Be xatnyopiag, ot kKOpPot evog opoyevois yphpov yoapaktnpilovrol amd évav TOTO ETIKETAG,
€V Ol OTOVG ETEPOYEVELS YpAPOULG, oL kOpPol yapaktnpilovial and meplocdtepa amtd éva eidn
eTIKETOV (3.6). Mia e1d1kr] TePInTWON €TEPOYEVT] YPAPOU, OTTOL OAEG OL OKHEG GUVOEOOLY KOHBOUG
dlopopeTikG eTIKETOG, eivat ol dipepeig ypgotr. O Sipepeic ypapoL, XPTOLHOTOLODVTOL CUYVE
YLOL TNV HOVTAETOLNGT) TNG TANPOPOpiag TTov oxeTileTan e évol GOOTNHX TPOTAGEWY, OTTOL 1) pic
Kot yopia kKOPPwv elvat oL XprioTEG TOL CLGTHHATOGC, 1) SEVTEPT) KATNYOPLn ELVOLL TOL OLVTLKELEVOL TTOV

aELOAOYOUVTL, KL OL OKPEG EKQPALOLY TNV OAANAETIOpaGT) HETAED XPIIOTOV KL CVTLKELHEVOV.

1.1.2 O aAyopiBpog Weisfeiler-Lehman

H évvola Tov 160pop@Lopol Twv yphepwv, mov mopatédnke mponyovpéveg, amoteAel pio évvola
otV omola otnpiletal e onpoavtikd Pabpo n epoppoyn pebodwv punyavikng pabnong ce ypapoug.

O aAyop1Bpog Weisfeiler-Lehman (Leman (2018)) eivou évog armodotiicog adyopibpog mov amookormel
070 va Ao EL TO TTPOPANUA TNG ATTOPACTG TYETLKA He TO arv OO Yphupol eivar loopop@uicoi 1} oxt. ITo
ovykekpipéva, akilel va koddeBet n SaioBnon icw amd pia cvykexpévr exdoyr) Tov alyopibpov,
tov 1-WL oA yop1Bpo. O aryopiBpog 1-WL, amotelei évav emavaAnmtiko alyoptbpo, mov otnpiletal
otnv texviki color refinement, dote v avabéoel éva ypopa (etikéta) oe k&Be kKOpPo tov yplpov,
KOLL VOL GLVOTTOPALG THGEL TOV YPAPO G EVOL LTLEPGVVOAO OTTO QUTEG TG ETIKETES. AV Tar SV LITEPGOVOA
OV AVTUTPOOWITELOLV SO YP&Poug KaTaAREouv va eivar StoupopeTikd, ToTE oL SO YpAPoL Giyouvpo
dev eivar toopop@ikoi. Ydpyxovv, wotdo0, KATOLOL 1) LGOHOPPLKOL YPApOL, TOUG 0T0ioug 0 adyopLOpog
1-WL 8ev katagpépvel va Sroywpioet. Eva yapoxpntiotikd topddetypo evog tétotov {ebyoug ypdopwy,
gaiveton otnv eikova 3.7. Ocov agopd v dradikacio ypwpatiopod tov k&be kOpPov, 1 Aoy
elva 0tL oe k&Be Pripa Tov adyopiBpov, To véo xpadpo Tov k&Be KOPPOUL TTPOKVITTEL ATTO TOV KATAKE PHATLOUO
TOU TPEXOVTOG XPORATOG TOL KOPPOU, KAL TOV TPEXOVTIWV XPWHATOV TWV YELTOVIKOV TOL KOHP®V.
Avtr)) Stadikaoia tng doknong emtppong atov k&be kKOpPo atd Tnv yettovid Tov, aLomoleiTol o

onpavtikd Pabpd amd ta Nevpwvikd Aiktva Ipdpwv, ta omoia Bo avalvBobv otnv cuvéyela TG

droTpLpris.

1.1.3 Mnyoavikn M&Onon oe I'papovg

Ynv evotnto owtr] Ba et orydryoupte To Bociko vofabpo yopw atd tnv e@appoyn pebBoddwv unyavikng
pabnomng ot ypagpoug.

1.1.3.1 Kivntpo

Oocov apopd to kivitpo Yopw amd tnv epfdbuvon oe avtdv ToV Topéw, 0 KUPLOG AOYOG eivor OTL
pio TANOOPA TPAYUATIK®V CUCTNUATOV Kol GLVOAWVY Sedopévev popodv va povtedomotnfovv
QLGLKE WG YpaoL. Me xapakTnplotikd Tapddetypa Tov Yp&po Tov omoio oxnpatilovv oL XpHoTeg

piog TAATQOPHAG KOWVOVIKAG SLKTOWONG, 1) epappoyT] peBddwv pnyoviknig padbnong mévw otovg

22

YPAPoUG propel va emipépel TANBDpa xpriopwv mpoPAéewy, Omwg TV TpoPAeYn VELV aKpOV,

oL Ba avTiTpocwmebovy véeg PLhieg oTo dikTvo.

1.1.3.2 IlpokAnoeig

Onwg eival avopevopevo, 1 pxovikr pabnomn otouvg yphpoug epooavilet kot éva cofopd mAbog
TPOKACEWV.

H mo onpavtikn tpdkAnon eival n aduvopio Tewv mopadootakdv pefddwv pnyoviknig padnong
VO EPOPROCTOVV ATTOTEAECUATLKY VTOVGLES G Yphpoug. Ot mapadooiakéc péBodot Babibg punyovikic
padnong, 6mwg £xovv epappocdel oe Topelg OTTWG 1) emeepyaoio PLOLKNG YA®GOAG Ko 1) OpaoT)
LTTOAOYLOTAOV, ATOUTOVV WG €l6080 6TO GVOTNHA Pl povTeAOTOLNOT TNG L6000V pE TNV HOPPT|
Stovvopdrtov. H avamaphotaocn evog ypapou pe avtdv tov Tpdmo dev eivar kabolov mpogavrg,
Aoyw tng éAAerymng kavovikotnTag oty poper tov. H dpeon avamopdotoct evodg ypopov pe
Tov mivoko yeltvioong Tov eppaviler advvaypieg. XTnv mepinTwon apodv ypapwy, o0 Tivakag
yerrvioong katadapPavel oNHOVTIKE PEYOXADTEPO XDPO OITO TOV OUTALLTOVHEVO, QLEAVOVTAS TNV
moAvTtAokoTNTA TOL cvaThpartog. Tavtdypova, o idlog ypdpog propel v exppaocTtel e TOAAOVG
dloupopeTikovg mivakeg yertvioong, av wponynel pio avoadiitaln twv kOpPwv tov. Ttnv mepintwor),
EMOPEVWG, TTOL Xprotpomownbel o mivakag yertvionong evog Ypdpov wg elocodog oe éva povtédo
pnxovikng pabnong, o mpémel va eEac@aiiotel 6TL vTO TO povTéAo Ba mapdyet T dio EE0do
(tpoPAeyn) aveEapthiteg avadiatdtewy.

Mia e€icov onpavtikn dioupopomoinon tng Hnxovikng pdbnong otouvg ypaypous, o€ oXECT) He TNV
TopadocLoky) PN avikr pabnomn oe GAlovg topels eivar ot arAnAeaptroelg peta&d Twv detypdtwv
NG ekmaidevong ko aELoAoynong evog povtéhov. Ia mopdderypa, 6Tay éva povtélo ekmatdedetol
OTOV TOPEN TNG OPACTIC LTTOAOYLO TGV, K&be eucovar, dnAadn kdbe ovtoTnTA, TOL GLVOAOL dedopévrv,
elval aveEqpTnTn o Vv enopev. XTnV TEPINT®OT WOTOGO TOL TPAYHATOTOLOVHE pict TPOPAeYT
OV APOPE 6TOVG KOUPOUG EVOG YPAPOU, 0L OVTOTNTES TOL cLVOAOVL dedopévwy, eppavilovy aAAneEapTrioelc,
ooV popel va ouvdéovtal pe akpég. Autég ol alinAie€aptroelg xprlovv eWdLKTG AVTIHETOTLIONG
KOT& TNV ekTéAeoT) SLA@opwv epyocLdv otny ekmaidevon kol otnv a&loAdynor evog povtélov,
6T WG KATE TOV SLarY WPLORO TOL GLVOAOL SeSOPEVWV, KoL KT TNV eKTTOidEVOT) e XPTIOT) TNG TEXVIKNG

mini-batching.

1.1.3.3 Ta&wopnon

Ot epappoyég pnyavikng pebnong otovg ypapoug Hiopovv va katryopromotnfoiv pia tAnbopo
kprmpiov. H mpwtedovoa ta€vounor toug propel va yivel pe f&on tnv ovtotnTa pe Tnv ool
oyetilovtar ou TpoPAéPelg tovg. Omwg @aiveton otnv eikdva 3.11, pe fhon avtd TO KPLTHPLO
HITOPOVV VAL XWPLETOVV & EPAPHOYEG EMLTESOV YPAPOV, LITOYPAPOV, KOHPOV, KAl AKPNG. Mepikég
XOLPOAK T PLOTLKEG LTTOEPOPHOYES KGBe KaTnyoplag eivon 1) kKot yoplomoinon ypaewv, 1 tpoPAeym
ETIKETMOV Yl TOUG KOpPoug, ko 1) TpdPAeyn véwv akpdv otov ypapo avtictoya. Tovtdypova,
OpOLWG pe TNV TapadooLokT] pHxoviky padnaor, ol epoppoyég propoltv va StaywploTovy, pe oo
T0 6OVOAO SedOpEVWV TTOV XPTOLLOTTOLODY Kot ToV TOTTO TNG TTpoOPAeyng, oe emPAenopeveg, nui-

emPBAeTOPEVEG, KL UN-EMLPAETOPEVEG EPOPUOYEG.

23

1.1.3.4 Tapadoocrakég Texvikég

O tapadooiokég TeXVIKEG YOPw atd TV Pnyavikn pabnorn oe ypdypovg otnpilovral otnyv eEarywyn
*xerpomointng” mAnpogopiag yio k&Oe kopPo, kot oty alomoinot g HEcw KAITTOLoL TaPadOCLaKOD
povtéhov pnyovikig padnong. H mAnpogopio mov B e€aryBel yia xébe kopPo, eivar cuvnbuwg
KOITOLX KAQLOLKT] HETPLKT) TTOL GLVOEETAL e TNV Bewpiot YpapnpuaToV, OTTee 0 BaBpog fj 1 keviplkdTnTo
evog kOpPov. TtV cuvéxela XPrOLHOTIOLELTAL YLt TNV GOYKPLOT) TV OVTOTHT®V KaL TNV eEoywyn
ovpmepoopdtowv. To kOpLO HELOVEKTNHA TV TOPAdOCLAKOV TEXVIKOV elval OTL 1) €TLAOYT] TNG
mAnpogopiag mov Bo e€ayOel moikilel oTIC SLbpopeg eQPAPHOYES, e TOTEAEGHA OL TEXVIKEG VO
UMV HTTOPOVV VX YEVIKEDOUV G SLXPOPETIKEG EPAPUOYEG.

ET1G e@oppoyEG eMLTESOL KOPPOL, XPNGLHOTOLOVVTAL HETPLKEG OTTWG 0 PaBHOG kot T Sidpopa
€idn kevrpikotnTog KOpPwv. OL avoduTikég eELOMOELS LTTOAOYLGHOD LTV TOV HETPLKOV divovTol
070 KeQAA0o 3.2.4.1. 2TIG EQPHOYEG EMIMESOV AKUNG, GLVNOILETAL 1) XPT)OT) HETPLKDV TTOL EKPPALOLY
Vv ovoxétion peta€d dvo kopPwv, wote va e€ayBovdv ocupmepdopata yopw ortd Tnv Drop&n akpng
HeToED TV KOPPwV aLTOV. MLo KATIYOPLOTIOLNGT) TWV HETPLKWDV LTOV ELVaL € £KELVES TTOL e0TLA 0LV
OTNV ATOGTACT) TOV KOUPWV, GTNV ETLKAAVYT) TNG TOMLKNG YELTOVLAS TV KOPPwV, Ko aTnv emtkdAvyn
NG OALKTG YELTOVLAG TV KOPPwV. Mio 1tio ektevi £kBecT) TV TTLO YVWOGTOV HETPLKDV TTOL X PT)OLILOTTOLODVTOL
yt avtdv Tov okomd mapatifeton oto kepdAaro 3.2.4.2. Ocov agopd Tig e@appoyég entnédov
YPAP®V KXL VTLOYPAP®V, XPNCLHOTOLEITAL EVTOVX 1) TEXVIKT TwV cuvapTioewv muprva (kernel
functions), ylx tnv ostotedecpatiky ovykplon peto€d dvo yphowv. Tavtdypova, emkpatel pio
akOpo TEXVLIKT), Yoot otnv diebviy BifAloypagia wg bag-of-nodes,) omoia wpodyel Tnv eEorywyn
€VOG GLVOAOL XOPOKTNPLOTIKGOV Yia k&Be kOPPO TOL ypAPOU, KOL TNV OVTIHETOTLET TOV YPAPOU
G TO GOVOAO TV XXPAKTNPLOTIKGOV auTdV. To ke@aAoto 3.2.4.2 epfodivel mepattépw o€ AUTEG TIG
pebddovg.

Mia evpéwg Sradedopévn évvola yOpw artd tnv pnxovikn pabnon otouvg ypdpoug eivor iy évvola
TV EPPLTEVPATOV KOPPwV (node embeddings). H Siadikacio mapoywyng eHOUTEVPHATOV KOPPOV
propel va 1dw0el wg 1 Stadikacion avTioToiXLoNG TV KOUPWV EVOG YPAPOL GE EVOV XD PO EPPUTEVHATOV,
OTTOL 1] YEWHETPLKT] GLOYETLOT) HETOED SO EPPUTEVHATOV AVTUTPOCWITEVEL TNV GLGYXETLOT) TV KOUPwV
otov apyLkd ypago. Ta epputedpata kKOPPwv eival epmvevopéva amd Tov Topéa g emeEepyaoiog
puokng yAwooog (Natural Language Processing).

Mio yevikr) TpocEyyLon Lo TNV TapoyyT RQUTELHATOV KOPPwV eival To cVGTNHA KWILKOTOLTH -
QTTOKWOLKOTTOLNTT], OTTOV TOL EPLPUTEVHATX OAWDV TV KOPPWV TOL YPAPOL TAPAYOVTOL GE EVALV VALK
ELPUTEVPATWV, KL GTNV CUVEXELX 1) VALK TTOT] TOUG OAOKAN POVETOL HEGW TNG EMLAOYTG TNG AVTIGTOLYXTG
ot)Ang tov mivaka. Ot péfodol Tapaywyng Tewv epeuTevpaToV Bacilovtal oe pio TolKLALL TEXVIKGOV,

HE TTILO YVWOTEG TIG TEXVIKEG TAPAYOVTOTNOLNOT|G NIVAK®V, TUXXIWV TEPLNATOV KoL TUXALOV
npofordv. Tt TexVIKEG TUX LWV TTEPUTAT®Y, 1) dlaioBnor elval OTL TporypatomoLeital évol GOVOAO
and Tuyaieg dooXioel TOL YPAPOU, TOL EXOLY WOTOCO TOPAUETPOTOLGLUN GUHTTEPLPOPE (PA.
3.2.5.5), xaL 1 adGTAOT PETHED TV ePPLTEVHATOV dVO KOpPPwv e€aptator amd to TANBog TwV
TEPLITATWV 6TOVG 0Toiovg eppavilovto kot ot dvo kopfor. Ooov apopd v pébodo Twv Tuyainy
npoPoridv, 1) SraicOnom elvar 6TL Tapdyeto pio xoapunAdtepng Stdo Taong avamapioTacT Tov Ypayou,
W TNG KATAOKELNG TUXALWVY TTPOPOADV TOL avaapLloToY TG LOLOTNTEG TV KOpPwv. Mia 1o
EKTEVIG OVAALGT) TV TT10 SLadedopévmv peBOSwV YL TNV TapaywyT) ELPUTEVHATWV KOPPwV, KOG

Ko 70 aAyoplOpLkd/podnpoatikd vopabpod tovg, divetar oto kepdhaio 3.2.5.

24

1.1.4 TIpoPAeyn Papovg akpung

To mtpoPAnpa tng mpoPAeyng Pdpovg akpng e Evav ypago, aviKkel TPOPAVAOS GTNV KATnyopio
TV TPoPANpaTOV emuédov akpng. O okomdg Tov eival, dedopévou evog yphwov G koL evog
vtooLvorov E twv akpdv tov, va avamtuyBel éva povtélo mov va pitopel va tpoPAéyer to Popog
k&Be axpng e € E. To kivitpo yOpw amd avtd to TpoPAnpa, eival 0Tl 68 TPAyHATIKE GLGTHHATA,
1 enlyvwon g évtaong tng aAAnAenidpoong petad 0o kOpPwv divel teprocotepn TANpOPOpia
amd TV enlyvwon g Dapéng 1 1 TNG aKpPNG ALTHS. XApoKTNPLOTIKA, G€ Pict EQaPHOYT] KOLVOVIKHG
diktdwong, 1 emiyvwon 6tL 8o xproteg éxovy avtarAdtel 500 pnvoporto, propel vo gpavel oo Lo
XPHO YN otd TNV TANPOPOPi OTL OL XPHOTEG ALTOL £X0VV ATADG avTaAAGEEL KdToLa pnvipaTa.
Mio tAnBopa texvikodV avtipetoniong, ov Pacilovtal 1660 oe mopadoctokés, 660 KoL o€
L0 GOYYPOVEG TEXVIKEG, OTIWG 1) Pabid punyovikr) péOnon ko ta veupwvikd SiKTuo Ypapwv, éXouv
avarrtuyBel yopw amd v cvykekpévn epoappoyr. Ooov agopd Tig texvikég Pabidg pébnorng,
Eexwpiler to Model R (Hou and Holder (2017)) ko 1 pete&€MET tov, Model S (Hou and Holder (2018)),
7oL Stoywpllel TO OTADLO TNG TOPAYWOYHS TV EHPLTEVHATOV KOPPWV amd TNV TpopodOTNGT) TOUG
OTO KOTAAANAC CTPOUATR VEVPOVLKOV SIKTOWV, e 6KoTTO TNV TpodPAeym Tov Pépoug Tng ekdoToTe

QKNG

1.1.5 Nevpowvika Aiktva F'papwv
1.1.5.1 Kivnrpo ko ITpokAnoeig

Onwg mpoovapépbnke ota TPONyoOHEVE KEPAAALA, OL TOPASOCLAKES TEXVIKES HIYXOVIKTIG paBnong
yia evkAeidia dedopéva Sev pTopovv va ePaprocTOvV GpEG GTOVG Yphpous. Tnv idia otiypr, ot
ToPadOCLaKEG TEXVIKES X AVIKAG LABNoNG Thvw e Ypapoug, eppavilovy GTHaVTIKOVG TTEPLOPLGHOUG,
omwg N aduvapia yevikevong oe véa dedopéva (kKOpPPoug 1} Ypapoug), Ko o€ dLoepopeTLkon THITOL
mpofAnpata. Toa Nevpovikd Aiktva Tphewv €xouv wg KIVNTPO Vo AVTIHETOTICOVY QUTEG TIG
advvopieg, ko va Bedtidcovy Ta atoteAéopota Twv peBOSwv unyavikig pabnong teve e ypapoug.
Oocov apopd oTIg KOPLEG TPOKANGELG TTOL £XOVV VAL AVTHETOTIOOVV, QUTEG ExOLV avagepbel 6To

Ke@aAowo 1.1.3.2.

1.1.5.2 Boowkég évvoleg

Abo amd TG Mo Pooikég Evvoleg oL oXeTIlOVTAL [E TNV LAOTOINGT KL TNV CUUTEPLPOPE TOV
VELPWVIKOV SIKTOWV YP&PWV, elval 1) apeTaPANTN cLPTEPLPOPA TOUG OTIC HETABETELS TNG E16OJ0V
(permutation invariance), xai 1 AOyLKr} TOU TEPAOPUATOG HNVULATOV (message passing) petafd
TWV KOPPWV TOL YpaPov.

H SiaioBnon micw amd v avaykn ylo apeTdBANTN CUUTEPLPOPR TOV VEVPOVLKOV SIKTO®V
YPOPwv oTIg petabéoelg tng elcddov, eitvan 6TL pe eicodo Tov 8o ypdapo, Bo mtpémel va aplryeTon
1 1 €é€0doc, aveEdptnTor ad Ty oelpd pe v omola divovtal wg eilcodog ot kopPot Tov yphpov.

H texvikr) Tov mepaopatog pNVUpaTov peTald TV KOPPwV TOL YPAPOUL elval, GOPP®VA HE TOVG
Gilmer et al. (2017), pio yevikevomn Tng AELTOUPYLKOTNTAG TTOAADY VELPWVIK®OV SIKTOWV YPAPWV, Kol
otnpiletat otV 1déa OTL TO epPLTEVPX KABE KOPPov pémel va mapdyeton pe Baor Ta ePPUTEDHAT
TV KOPPwV KoL TNV SOUT) TNG TOTLKNG TOV YELTOVLAC, OTTWG paiveTar otnv elkdva 3.26. Mia ektevéoTepn

avaAvaor tng texvikig avtrg Pploketor oto kepdhato 3.4.3.1. Zvvomntikd, o€ kabe mépacpa k mpog

25

T epmnpog (forward pass) Tov ahyopifpov, kéde kopPog voloyilel To véo tov eppiTevpa hEt!

oVppwva pe tnv oxéorn Hamilton (2020):

miyly = AGGREGATE® ({nP), vueN (v)}) (1.1)

) m®) (1.2)

E+1 _ (k)
it = UPDATE® (WP, mig)

Onwg gaivetar otig e€lodaoelg 1.1 n cvvaptnon AGGREGATION, 1 ool avodapPéver tnv
OUGOWUATMOCT] TOV EPPUTEVHATOV TV KOUP®V TTOL AVIKOLY GTNV YELTOVLA TOL TpéYovTa KOUPov,
Ao avel to pn Satetarypévo ovoAo ov ta epiéxeL. 'ETot, 1) TeXVIKT) TOL TEPAOUATOG HIVOHAT®V,
Tnpet TNV pn petoPAntotnra tng e£6dov oTig petabécelg g elcddov.

)

Metd and K Prpota tov adyopibpov, éxouvv mapoyBel ta epputedpata héK yia kéBe koppo
v. 210 onpeio avtd, propel va epappocbel to Prpa g avayvwong (readout) tov ypdgov, Gote
va tapaoyBel éva oAkod ep@iTeELRA Yir OAOKANpO TOV Yphwo. H dadikacia avtry povredomoreiton
pobnpotikd wg eEng:

§ = R({h{"|veG}) (13)

AEileL va onpelwBei 0t oL ovvaptriceic AGGREGATE, UPDATE, kou R eivou Stapopormorrioipeg
oLVAPTNGELS IOV poBaivovTal ad To HOVTENO, KL ETOHEVMG G TNV TPAEN PtopolV va avTikatactabodv

atd OAOKAT PO VELPWVLIKG SlKTULCL.

1.1.5.3 Koatnyoplomoinon pe f&on tnv ApXLTELTOVIKN

Me Pdéomn TNV apxLTEKTOVIKT] TOVG, oUHPwva pe tovg Wu et al. (2021) kou Zhou et al. (2022), ta

VELPWVIKA SlKTLA YPAPwVY Ptopolv va StoxwploTodV oTLG eENG KaTnyopieg:
e Avatpogodotovpeva (Recurrent) Nevpwvikd Aiktva I'paewv (RecGNNs)
e Yuvelktuked (Convolutional) Nevpwvikd Aiktoa Fpaewv (ConvGNNs)
e Avtopator Kodwwomowntég Ipagpwv (GAEs)

o Xwpoxpovukd (Spatial-Temporal) Nevpwvika Aiktva I'pagwv (STGNNs)

1.1.5.4 XvuveMkTik& vevpwvikd diktva ypaewv

H napotoa dwxtpiPry eotialer otnv Bewpntiky peAétn kot melpopatiky) oEloAdynon Tecodpwv
OUYKEKPLUEVOV TOTTOV VELPWVLKOV SIKTOWV YPAP®WV, TTOL LITALYOVTAL GTNV KATNYOPLX TWV CUVEALKTIK®OV
apxrrektovik®v. Ol ta vevpwvikd diktva mov ypnopootOnkay, akolovboov Tnv Siaditkacio

TOU TTEPAOUATOG UNVUULET®V. OL dloupopég TOUG eVvTOmi{ovTaL KUPLWG GTNV LAOTOLNGT) TV GUVAPTICEWY
AGGREGATE «xat UPDATE tng neprypageicog Sadikaciog.

To mtp®TO €180¢ GUVEALKTIKOD VELPWVIKOD SIKTVOL Ypdpov tov epevvriBnke eivar o GraphSAGE
(Hamilton et al. (2017a)). H WSioutepdtnta Tov povtéAov avtod oe oxéon pe TV POoikr) TEXVLKT TOU
TEPACUATOG HNVUHATWV elval 0TL oTo Prjpa aggregate dev AapPdvovtal vtdymv 6ot oL yeitoveg
oL KOpPov, arrd éva otabepd ot péyeBog detypa tovg. H texvikr) avtr eEopaddvel Tov xpovo mov
amouteital yia TNy extéleot) Tov Prjparog ot k&Be batch, otnv mepintwon xprong g TexviKig

mini-batching. H diaicOnon micw and v diadikacia ontikomoteital otnyv eikdva 3.29.

26

Jtnv ovvéyewr, pehetriOnke to eidog k-GNN (Morris et al. (2018)). H dwatepdtnta arvtod
tou tOmov GNN, eivon 6TL Ypropomotel pio akoAovdior amd TOAAR vevpwvkd SikTva YpaYwy k-
GNNs, 10 xabéva amd ta ool e6TIdlel oTOV Ypapo o€ évav Soupopetikd Pabpod Aemtopépelag
k. AwucOntikd, to k-GNN mpaypotomolotv tnv Stadikacio Tov TEPAGHATOS HNVUHATOV PeTAED
LIOYpPaPwV peyéBoug k, Kol OxL HETOED HePOVOUEVOV KOPPWVY (EKTOG TG TTPOPAVODS TEPITTMOOTNG
k = 1). Qg amdppoia, cuvdudlovy avamopacTdoels SLPOPETIKOD EMLITESOV TOL YPAPOU, KoL
Kota@épvouy va eEarydyouvv oOvBeteg TAnopopieg yia Tnv dopr) tov. Mio onttikomoino tng dadikaciog
aLTAG paivetal otnv etkova 3.30.

‘Eva emimpdo0eto €idog veupwvik®v SIkTO®V Ypdewv mov peletrOnke eivar to Graph Atten-
tion Networks (GAT) (Velickovi¢ et al. (2017)). AwouoOntikd, 1 TpoTomopio LT®OV TV SIKTOOV
LTV elval 6TL epappdlovy Tov pnyaviopd g tpocoxng (attention), dote va Adfovv vtdynv to
epLTEVPX KGBE KOpPov-yeiTova pe Stapopetikn PapitnTa katd Ty extéAeon tng ouvaptnong AG-
GREGATE. T\ Tov K070 otuTo, KOTA TNV EKTAiELOT) TOU SIKTVOV, EKTOULSEDOVTAL KOL OL LV TLGTOLYOL
OUVTEAEGTEG TPOGOYNG, OL OTTOLOL GUVTOVILOUV TOV HIXAVIONO.

To tedevtaio €idog vevpwVIKOV dKTOWVY Yphpwv mov alomotibnke ftav to Graph Isomor-
phism Network (GIN) (Xu et al. (2018)). To Bewpnrikd vTéPadpo Tov vevpwViKoD aVTOL SLKTVOV
Baoiletar otov alyopiBpo 1-WL, xar emiyelpel, pe tnv xprior ouvaptioemy EVa-mpog-Eva 6TO
Briproe AGGREGATE, va avTioToLy1joel 6OVOAQ ELPUTEVHATWV TTOL TPOEPYOVTOL OO SLAPOPETLKEG
YELTOVLEG, o€ SLAPOPETLKA ToparyOpeva eppuTedpata. Baoileton oto Bewpnpo kaBoAikrg Tpocéyyiong
(Universal Approximation Theorem, Hornik (1991)), xou xprotpomotel 0OAOKANpa TOAVOTPOHATIKE
perceptrons oto 6tddio0 AGGREGATE, dote va puunbet éva-npog-éva ovvaptrioels. Mia eAappag

EKTEVEOTEPT) AVAALOT) YLa TNV AgLTovpyia Tov propel va Ppedei oto kepdiowo 3.5.4.

1.1.6 XvoTNUATX TPOTACEDV

Eva obotnpa mpotdoewv éxel wg otdéxo va mpoPAiéfel tnv akloddynon 1 v mpotipnon evdg
Xproth pog éva avtikeipevo. To GUGTHRATA TPOTAGEWY X PTOLILOTOLOVVTOL EVPEMG GTO dLadiKTULO,
HE XOPAKTNPLOTIKO TTopadetypa £va GOGTNHA TPOTACEWY TouvLV, 0nwg to Netflix. H dixbéoiun
TANPOQPOPLa Y £va COGTNIA TTPOTACE®Y, UITOPEL Vo aupop& XAANAETLOPATELS PETAED YPNOTOV
KO AVTIKELLEVQVY, STIHOYPAPLKG GTOLYELD YLt TOV XPHOTY), AAAA Kot TANPOPOPLES OYETIKES e TOL
avTikeipeva. Meplkég oo TIg TPOKANGELG TTOU KAAOUVTOL VO AVTIHETWITIGOVY TX GUGTHHOTO TPOTACEWV
eivar n apoat @Oon TV CAANAETSPACEWY PETAED XPNOTAOV KOL AVTIKEWHEVWV, 1) TAPAYWOYN
TPOTACEWV YL VEOUG XPNOTEG, N} 1 EVTOEN VEWV AVTIKEWPUEV®OV GTH TPOTELVOUEVO AVTLKELHEVAL,
KOG KO 1) AVTATOKPLOT) GTA LOLOHO PP EVILUPEPOVTA OPLOHEVOV YPTOTWOV TOL GUCTHHATOG.

Me Béon tov tOmo tng mAnpogopiag mov aflomolel Eva cVOTNHA TPOTACEWY, 1) dtadikacio
propel va drokplei oe Tovepyatiko Prhtpapiopa (Collaborative Filtering), 6mov a&lomoreiton
TO LOTOPLKO TV AAANAETOpAoe®V PETAED TOV XPIOTOV KOL TOV AVILKEWHEVOV YLOL TNV TOPOYOYT
véwv potdoewv, PrAtpapiopa pe féon to neprexopevo (Content-based Filtering) 6mov aromoreitan
1 TANPOPOPL TOL OYETLLETAL JLE TO TTEPLEXOUEVO TWV AVTLKELEVOV YLOL TNV TIAPAYWYT] VEWV TTPOTACEWY,
ko oe YPprdikég MeBodoug, dmov suvdualovton teyvikég Twv §00 mponyotpevey katnyoptdv. H
KOLTIYOPLOTIOLNGT) QUTT] PaiveTon Kol 6To didy papper Tng etkovog 3.33. Kabe pia péBodog mapovoialet
TTAEOVEKTIHOTOL KOLL LELOVEKTHHOTO GE GXEoT) e TIG LitoAouteg. [mapddetypa, To GLATPAPLOHOL e

Béom To mepiexopevo ouyva mapovotdlel poPAfipata kApdkwong (scalability), aAdd Aettovpyei

27

https://www.netflix.com/

KOAOTEPO OE TEPLTTAOCELS VEWV YPNOTOV. AVTIOTOLYX, TO GLVEPYATIKO QLATPAPLOHA WITOpEl var
AeLtovpynoel Ywpig TNV amaitnon Omapéng TAoOoL0G TANPOPOPLAS YLt T CLVTLKELPEVE, KOl VX
opéxel TolkMa oTig poPfAéPels yix k&Be xproTn, aAld cuxvh votepel e€autiog TV apaLdV
OAANAETIOPACEDV PETOED TWV YPNOTOV KOL TWV OVTIKELLEVWV.

Oocov apopd tnv aLoAdYN o eVOG GUGTHHATOG TPOTACEWY, EpPavileTan pio TANOOPA KAACIKGV,
oA ko o Wiaitepwv petpikdv. H mpofAeym evdg cvoTipatog Tpotdoemy, Lopel vo mopiyet
eite pio aepiPny Pabporoyio mov B avabécel o xprioTng oTo avtikeipevo (regression), eite pio T
aAnBeiag mov v ek@palel TNV apéokel 1) U Tov avtikeévou amd tov xpriotn (classification).
Avaroya pe 10 £180g Twv TpoPfAéPewy, To chotnpa propel v alodoynBei pe Tig Tapadooiakég
ovTioTOLYEG HETPLKEG TNG UNYAVIKNG HAON oG, €lTe e HETPLKEG TTPOCAVATOALOUEVEG GTX GUCTHHATX
npothoewv, 6wg o Kavovikomownpévo IlpoeEopAnpévo ABporoticd Képdog (Normalized Discounted

Cumulative Gain), n mowkthio (diversity) ko 1 kowvotopio (novelty) Twv tpoPAéyewv.

1.1.7 Nevpovikd Aiktoa Ipoewv kol Zvotipata tpotdcewy

H vlomoinom evOg CUGTARATOG TPOTATEMV, PTopel vor LOWOEL, HETR OTTO GLYKEKPLLEVT) HOVTEAOTTOIN G
TOUL TPOPHHATOG, WG TO TPOPANHa TNG TTPOPAePNg akpmv (link prediction) oe évav ypapo.

To dedopéva propovv va potedomoinBodv wg évag Suepng ypa@og, 6oL oL XProTES KoL TOL
QVTIKELLEVO TOV GLOTNHATOG elvar oL o TOmoL KOpPwv. O adAnAemidpdoelg yevikoTepo pHeToEd
XPNOTOV KOl AVTIKELEVOV HITOPODV VO ATOTEAECOLY TIG LKPEG TOV YPAPOU. XTIV TEPITTWOOT] TOV
xTilovpe évar oot oL va TpoPAémel Tnv Pabpoloyic mov Ba voPaiel Evag xproTng o Eva
avTikeipevo, 1 okpun Oa ptopel va eivar ota®piopévn (weighted), ko n tpoPfAeym mov kakeiton va
EMLTEAEGEL TO CVOTNHA VA apop& TO PAPOG TNG AKUNG.

Enopévemg, n pé00d0g TV veupwvik®dV SIKTOWV YPAP®V HITOopEel Vo eQoPIOGTEL YLO TNV LAOTTOLNGN
€VOG GUGTHHATOG TTPOTACEWY HEGW TNG EMLALONG TOL TPoPANpatog TpoPAeyng axpung. Zoppwva
pe Tovg Zhang (2022), o1 péBodot yopw amd tnv mpoPAedn tov B&poug akpdv pe XPrioT) VELPWVIKGOV
SIKTOWV Yp&PwV, KaTnyoplomolobvTat o€ TeXVIKES fact{Opeves aToug kKOpPoug (node-based), ko oe
vroypdpoug (subgraph-based) tov ypapov. 1o mAaicio tng mopodoag STAWMUATIKNG, X PT)CLLOTOLOVNE
pioe yevikevpévn apyirektoviki, n omoia Pacileton ot GAEs (Ng et al. (2019)), ko Siorywpilel
AR PWG TNV Stadkacior TG ToPoywyYHG ELPUTEVHATWY KOPPwV ortd TN Sadikaoio TG atokwALKOmToinoTg
ToUG 670 PAdpog (Weight) Tng avticToyng akpng. Yo autd To TPiopa, XPTCLLOTOLOVIE TNV APYLTEKTOVLKT
oL oxfpatog 3.35, 61mov o cotnua “prediction head” AopPdver wg eicodo epputedpata KOPPwV,

Ko e€dryel To Papog NG akprig mov avioTolyel oe k&Be Lebyog XprioTH-aVTIKEHEVOU.

1.1.8 Yna&pyovoeg pedéteg Paoi{OpEVEG GTOVG YPAPOUG

EmutpooBétog tng peAéTng mou TpoyOTOTOU|COE G TG OPYLTEKTOVIKEG VEUPOVLIKMOV SLKTOMV YPAP®V
g evotnrog 1.1.5.4, peretroaye kot éva TAR00g Texvik®dV oL omoieg Pacilovtal oe yphpoug kot
metvyaivouy state-of-the-art emidocelg oto cvoro dedopévwv MovieLens (Grouplens).

AkileL va onpetdooupie 6TL oty vtdpyovoa PLRALoypapic, 1) avAITTUEN VOGS GUOTHHATOG CLOTAGEWY,
1 omola TNV mapovo SITAWHATIKY aVTIHETOTI eTon WG To TPOPANpa TG mtpodPAeyng Papouvg
QKPNG, AVTIHETOTICETO GLUY VA KoL G TO TTPOPANHO TNG GUPTANPWONG TOL ivaka (matrix comple-

tion) ov amoteleital amd TIg AAANAETOPACELS TWV XPNOTAOV HE TO OVTIKELLEVQL.

28

Yné avtd to mpiopa, ot Berg et al. (2017), xpnotpomotodv Toe GLVEAMKTLKG VELPWVLIKA SiKTLOL
YPAPWV KO TEXVIKEG GUUTTAT PWOTG TILVAKWV, OO TE VO TTOPAEOLY SO TLVOKEG TTOL TLEPLEXOLY AVATIXPAOTAGCELG
YLOt TOUG XPHOTEG KOLL TIG TOUVIEG. STV GUVEXELA X PT)CLLOTOLOVV TNV TPEEN TOL ECWTEPLKOD YLVOUEVOL
petaf TV avaTopAcTACEWY, OOTE VA TapdEouy Tig avtictolyeg tpoPAenopeveg fabpoloynoelg
amd ke xpriotn ywe k&Be tawvia. O Zhang and Chen (2019) emexteivouv tnv TexvikT ouTh,
XPNOLOTOLOVTOG TEXVLKEG TTOLPOLYOVTOTIOLN GG TILVAKWY TTOL AELTLOPYO UV ETAYWYLKA, SNAdT) HItopodv
VO TTOPAEOLY AVATAPACTAGELS YL VEOUG XPNOTES KoL VEX avTLKeipeva, Thve ota omoia dev Exel
ekmoudevtel o dikTvo. Mio TEpALTEPW EMEKTAOT TWV SMHOCLEVCEWV AUTOV, ATOTEAEL TO €pYO
twv Hekmatfar et al. (2022), to omoio a€lomolei tov pnyoviopd g mtpocoxng (attention) katd tnv

GULAAOYT] TV EPPUTEVUATOV TV KOPPOV YELTOVOV.

1.2 YAomoinomn Tou GUCTHHATOG TPOTACEWV

Ykomog tng dratpLPric, Tav 1 LAOTOINGCT EVOG GLGTHHATOG TPOTAGEWV Touviwy. H vAomoinon avt
paypotorolfnke HovteAooldvTag To cVVoAo dedopévwv The Movies Dataset (Banik (2017)) wg
ypogo otny Pacn dedopévav yphowv Neodj (2012), kot dELOTOLOVTAG TO GUVEALKTLIKY VELPWVIKA

diktva ypapwv yioe tnv TpoPAeYT TV HEAAOVTIKOV KELOAOYNOEDY TOV TALVLOV.

1.2.1 Xbvolo Aedopévav

To ovvoro dedopévwv mov xpnoyomotdnke yio TNV eKToidevoT TOL HOVTEAOV, ALK KaL YL TNV
ovpmtAf pwaor tng Paong dedopévwv fitav to The Movies Dataset (Banik (2017)). To obvolo dedopévwv
LT, aumotelel pio peTeEEALEN TV LPEWS YVWOOTOV cLVOAWV dedopévwv MovieLens (Grouplens),
Ko epthapPhvel éva oOVoro atd Tavieg, oELOAOYTOELS TWV TOVIOV otd XPNOTEG, KoBOG Kot
évae TAOVG LA PETA-TIAN pOPOPi OXETIKA [TO TEPLeXOpevo TG K&Be Touviag. AEilel va onpelndel
ot to The Movies Dataset mapéyel 0o ekdocelg, mov yapaktnpilovrat amd dwagopetikd TAOog
Kotoyeypoppévov a€loloyroewnv (100 xiAddeg a€loloynoelg otnv cOVTOpT €kS0GT] TOL GUVOAOL
dedopévav, ko 25 ekatoppvpia aflodoynoelg oty A pn €kdooT) TOv). Eta TELPApAT TNG SUTAWUATIKNG
avthg, a€lomolOnke n ovvToun ékdocT TOL GLVOAOL deSOpEVLV.

[TepvovTog Ge L0 TEXVIKES AETTTOHEPELES, TO GVVOAO dedopévmv oL Xprotpomotinke ototeAeiton
amnd éva cOVoAo apyelwvy, 61ov To kabéva Tapéxel Stoupopetikod eidovg TANpoPopic yia TO TeEALKO
ovotnpa. Ta mapdderypa, LITGPYOLY APYELD APLEPWHEVL GTNV HETO-TANPOPOPIX TWV TOLVIDV,
apxELa TOL aPOPOLV TIG AELOAOYNCELG TWV TOUVLOV, KaB®OS kot fondntikd yioe Tnv cuvévewon twv
avetépw. IleplocdTepeg TEXVIKEG AETTOUEPELEG YO TO TEPLEXOHEVO TOL GLVOAOL dedopévwv, Ba

avopepBolv oto kepdiaio 1.2.2.

1.2.2 Baon Aedopévov I'paewv
1.2.2.1 Kivntpo

TNo v amoBrjkevot Tov cuvorov dedopévwv emhéxOnke 1 texyvoloyia Twv Picewv dedopévwv
YPapwv. OLBacelg dedopévav ypapwv diagpépouv amd Tig Tapadociakés oxeotokés faoelg dedopévwy,
WG TTPOG TO OTL AVATAPLETOVV TNV TATPOPOPLE OTO EGWTEPLKO TOVG LTTO TNV HOPYPT] KOUPWV KoL

akp@v. Opilovv OAEG TIG TPWTOPYLKEG AELTOVPYLIEG TOVG KOL TOUG KAVOVEG OKEPALOTNTAG TOVG UTTO

29

10 Tpiopa TV yphywv. Etol, vreptepodv évavtt tov mapadooiakdv Phoewv dedopévov otnv
TaxOTNTO SLEKTEPALWOTG TOV AELTOVPYLOV TTOV ETLKEVIPMOVOVTOL OTI CUGXETIOELG HETAED TV
OVTOTNHT®WYV, Ol OTOIEG VOl TTOAPOHOLAGTOVV JIE TTEPLITATOVG GE VOV YPAPO.

It mepintwon plog TAATQOpHG eEpelVNONG KoL GOGTAOTG TOUVLOV, eivat cOVNBeg va {nteiton
AN pOPOpia TTOL EMKEVTPOVETOL OTIG OAANAeEapTroelg peTad TV OVTOTHTWV (Y TOLVIOV KoL
nBomoLdv), oL omoieg AVaKTOVTOL TTLOo ATOdOTIKK PEcw piag Pdong dedopévwv yphpwv. Tavtdypova,

1 povtelomolnot Tov cuvorov dedopévwv oe pla Paon dedopévwv ypapwv 6mwg eivar 1 Neodj
(2012), pag emétpede va a€Lomoinooupie pio otkihio adyopiBpwy wov TpocPépet, MOTE Vo eEAyyOU|LE
XPNOLN TANpo@opio atd TOV YPAPO, KaL vo TV atELoTToL|GOVE WG eLTPOcHeTn l60d0 TOL GLOTHHATOG

TPOTACEWV.

1.2.2.2 Movtelomnoinon tov cuvolov dedopévwv wg ypago - IlpoeneEepyacia

Ocov agopd v Sradikaocia poviedonoinong tov The Movies Dataset wg ypdgo, emAé€ayie
VO VOTTOPOOTHGOUVHE pe Eexwplotd TOTO KOPUPwV TIg Tawvieg, Ta €ldn TOV TaVIOV, TG AEEL-
KAEWOL& TOVG, T PHEAT-OLVEPYELD TOUG, TIG XWPES, ETALPELES KOL YADTGEG TUPAYWYTG TOVG, KBS
KO(L TOUG XPTOTEG TOL oLGTHHATOG. IIpopavag, otnv Paon amobnkedTnKay oL avtioTolyol TOTTOL
KDV Yo Vo SNADGOLV TIG CUGYETICELS HETAED TV AVOTEP® OVTOTAHTWV, OTTWG YLOL TAPAOELY O
TO YeYovog OTL pio Tavio vayetol oe éva ouykekpipévo eidog. H Alota tov tinev kopPwv kot
OUCYETIOEWV TTOL YPNOLpoToLONKaY avaldeTal 6To KePdAono 4.2.3. AvaQopikd e TNV TEXVLIKN
vAomoinon g dwadikaciog avtng, xpnotpomowfnke n yAwcoa mpoypoppaticpov Python, ko 1
BipALoOrxn Py2neo (2020) yi o StdPacpa ko tnv eme€epyocio v apxeinv Tov cuvorov dedopévwv,
ko amobrikevor Tovg oty Péomn dedopévwv Vo TNV KATAAANAY HOPYT).

Stnv ovvéyela, aflomouiOnie n PipAiodrin GDS (2022), n) onola wopéxel Eva 6OVOAO ArtodOTIKOV
LAOTIONGEWV EVPEWS SLadepé vy alyopiBpwy pnyovikng Hadnong oe ypdpoug. Yo tnv katdAAnAY
enekepyacio tov mnyaiov kOSika, cuvTovioTnke pia SodLtkacio TOPAY®YNS ELPUTEVUATOV KOPPwV
YLOL TLG TOLLVIEG TOU YPAPOU, DOTE VO KWOLKOTTOLELTOL KATAAANAQ 1) peTa-TTAN pogopia Tov oxeTileTal
HE TO TePLEXOREVO TOVG G6TOV Yphpo (eidn, AéEeig-herdid, kAT). Ta epputedpata avtd topdyOnkoy
pe Tpelg Sropopetikovg alyopibpovg, mov akoAovBolv SiopopetTiég TeEXVIKEG, KOL GTNV GUVEXELX
aodnkedTNKOY WG TANPOPOpieg Yo TNV KABe Tavia, Bote va alomotnBoidv wg eilc0dog 6To veLPWVLKO
dikTvo ypaywv mov Ba mpaypatomotel Tig TpoPAréPelg. A&omoriBnrav ot alyopiBpor Node2vec
(Grover and Leskovec (2016)), FastRP (Chen et al. (2019)), kow to vevpwvikd diktvo GraphSAGE
(Hamilton et al. (2017a)). Zta Swoypbppota 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18, 4.19 éxovv
omttikoroinOei pe tnv PLpAtodrxn scikit-learn (Pedregosa et al. (2011)), petd oo peiwon SrtouotatikdTNTAG,,

XOLPOK T PLOTLKEG TEPUTTMOGELS TWV EPPUTELPATWV TTOL TTaprXOnoav.

1.2.3 To povtéro

To k0pLo PEPOG TOL GLOTHHATOG TPOTATEWY, dNANST] TO VELPWVLKO diKTLO YPAPWwV, LAOTOL)ONKE
oty yAdooo mpoypoppaticpot Python, pe tnv ypron g PpAiodrkng Pytroch Geometric (Fey
and Lenssen (2019)). H BipAoOrkn ovtr), xprotpomoeital yioe tnv ovamttuén HovTEAwY o€ pr) eVKAELSLI
dedopéva, 6mwg oL ypagol. Ipocpépel amodotikég vAoTooeLg arrd £va GNUOVTLIKO aplBpd VELPWVLIKGOV

SKTOWV YPAPWV, CAAX KoL TTOLPOHETPOTTOLOLUES VAOTTOLGELS HELOVWHEVWY CTPWHATMV TOUG.

30

Ooov agopd tnv apyLtekToviKh TOL 0koAoLONOnKe yow TV vAOTOINCT TV POVTEAWY GTNV
nopovoa datpLPr), xpnotpomnolnfnioy 00 LITO-poVTEAX, TOL avEAXPay avTicTOLY X TNV KOALKOTOLN o
TNG TANPOPOPLAG TOL YPAPOL GE ELPUTEVUATO KOHPMV, KOL TNV OTTOKWILKOTTOINGT) AUTMOV TWV ELPUTEVHATOV
oe mpoPAéPelc TV Papodv TV avtioTowVv akpov. H apyLTeKTOVIKT QUTI] OTTIKOTOLELITAL GTO
Swypoppa 4.20, 6mov drokpivetar emontikd o porog tov kwdikomonty (GNNEncoder) xat tov

anokwdwconowmnrr (EdgeDecoder).

1.23.1 O kwdwkomointig

O xwdwomontig (GNNEncoder) eivon éva Ba@b vevpwviko Siktvo ypdewv, mov déxeton wg
elcodo Tov dipepn ypaPo amoTeAOVPEVO OTTO TALVIEG, XPT)OTEG, KOl AELOAOYTOELG, KOl TOXPAYEL (G
¢€000 o gpuTELPATA KOPUPWOV TOL AVTIETOLYOVV € K&Be Touvia ko xprjotn. T Tnv vAomoinon
TOU KWSLKOTTOLNTY) HeEAETHONKAV T CUVEAIKTIKA VEVPWVIKE dikTVa Ypdpwv GraphSAGE (3.5.1),
k-GNN (3.11), GAT (3.5.3), kot GIN (3.5.4). Ontwg Ot aovodvbei otnv cuvéyela, pio tAnOdpa veprapopétpwy
oLVTOVIGTNKE KOTR TNV Ste€aymyn TV TELpapdToy. Mia omtd oauTég TIG LITEPTAPAPETPOUG, 1) OTTOL
oxetiletou pe Tnv dopr} Tov kwdikomontr, eivon to BdBog tov diktvov. AtcOntikd, pe Tnv xprion
€VOG OTPOHATOG, 0 K&be kOpPog vitoloyilel To véo Tou eppiTELHX AopPfdvovTag LITOYNV ToL HOVO
T EPPLTEVHOTA TOV GHECWV YELTOVWV Tov. Opoiwg, pe xprion d00 oTpwpdT®wVy, Aapfdavel vToyny
TOU KOl T ELPUTEVHATA TOV YELTOVWV TWV AUECWV YEWVOTWV TOUL, KoK. To oOvoAo twv KOpPwv
autdV, Tov pudpileton amd to Pdbog Tov vevpwVKOL dikTOOVL, ovopdleTon dekTikd medio Kbe
kopPov. Emopévwg, 0nwg ontikomoteital otny eikova 4.23,) addyiotn adénon tov faboug, propei
VO OO YT|OEL GE GTHAVTLKES ELKOAVPELS TV SEKTIKOV eSOV TWV KOPPWVY TOV YPAPOU, He ATOTEAEGHOL
TNV GUYKALGT) TOV ELPUTEVPATWV TTOL TOPAYOVTaL. AUTH 1) GOYKALGT] ELVALL PV TLKT] YLOL TNV TTOLOTN T
TOV HOVTEAOV, Kol v TIpeTTileTan eiTe pe mepLloplopd Tov Pdbovg Tov Suktoov, eite pe xprion eldikdv
TEYVIKOV TTOV TTOPOLOLALOVTOL OVOALTLKA 6TO Ke@dAowo 4.3.3.1. H emionpn ayyAikr opoAoyia Tov

povopévou divetal amd Tov 6po oversmoothing.

1.2.3.2 O amoxmwdikomontng

O amokwdikomontrg eivou éva amhd moAvatpwpatiko feed-forward vevpwvikod diktvo, mov déxetoarn
g elcodo tnv €€0do tov Kwdikomolntr), SNAadT Ta TOUPAYOHEV EPPUTEDHATA YLOL TIG TOLVIES KOL
TOUG XPNOTEG, Kol Topayel G €000 Tig TTpoPAéyelg yia T Pépn OAwV TV akpodv, dNAadr Tig

oELOAOYNCELG HETOED XPNOTOV KOL TULVLAOV.

1.2.4 A&0Aoynon Tov CUCTHUATOG TTPOTACEWYV

TNo vo o actotobv oL KaTdAANAEG HeTPLKES Yia TNV atELOAOYTOT) TOV GUOTHHATOC, PeheTrONKe 1)
vtdpyovoa épevva YOpw otd To cOvoro dedopévwv MovieLens (Grouplens), Adoyw tng opotdTnTdg
TOU pe TO GUVOAO deSOPEVWOV TTOV XPNGLHOTOLONKE GTA TTELPAPATAL, KAL TG TTOVOHOLOTUTNG PUCTG
TV mtpofréYiewv mov cuvnbifovton ota 0o cvvoda dedopévwv. Omwg mapatnpribnke ortd pio
An0dpa dnpootedoewv (Han et al. (2021), Rashed et al. (2019), Wu et al. (2021), Darban and Valipour
(2022)), n TpoPAeymn fapoug axprig oto MovieLens avtipetoniletar wg éva tpofAnpa taAvdpounong,
KL ETOPEVMG OL Lo eVPEwg Sradedopéveg petpikég yioe TNV akloAdynon twv ADce®V Tov eivat oL

HETPLKEG TTOV X PTOLUOTOLOVVTOL TTOPASOC LK OTNV PN AVLKT) H&Bnomn ot mpoPAnpata authg Tng

31

kotnyoplag. Ot petpikég mov emitedyOnkay ot avwtépw dnpocievoelg Ba yprnopomonfodv wg
Eva apyLKO HETPO aVOPOPAG Yo T TELpApATd pog. Tovtoyxpova, 6mwg o avaivbel ko oTtnv
evotnta mov Bo aplepwbel ota melpapata wov diekfxOnoav otnv mapovoa dwatpiPr), wg péTpo
aVoPopPAg yio TNV aELoAOYNOT) TwV HOVTEAWV TTOL avamtiocovtal, Ha xproipomondel éva apytikod
amhoikd povtéAo GraphSAGE, to omolo dev B xproLLOTOLEL TNV HETA-TTANPOPOPLXL TTOL TAPEYETOLL
YLOL TIG TOULVIEG, MOTE VA SUTLGTOOOVHE TLO CUGTNHATIKA TNV eMLOPUCT] TNG HETO-TTANPOPOPLOG
CUVAPTNOEL TNG APXLTEKTOVIKTG KAL TWV LIEPTAPOAPETPWY TOLV GUGTHHATOG GTNV TOLOTNTA TWV

npoPAréPewv, vid TG idleg cUVOTKEG EKTENECTIC TV TELPAPATOV.

1.3 YAomoinomn tng TAXTPOpHOG

Eva onpovtikd pépog tng mpoondderag mov kataPAndnke otnv mapodoa dintpiPr], apiepddnke

oTNV VAOTOINOT) PG OAOKATPWHEVNC TAATPOPHOG eEePebVONG KL GVOTOOT|G TALVLOV.

1.3.1 Tevik& otoryeia kot kivnTpo

AvoamttoEayie €L kOpLo aveEAPTNTO GLGTATIKG GTOLXELD, T OTTOLC GUYXPOVIGTIKOY (DGTE VO AELTOVPYODV
oLVSLAGTLKA KoL TAPEXOLY piot OAOKANpwHEVT KaL ampdoKkomTn epmelpion xprjotn. Avo Pocikd
CUCTATIK® GTOLYELD TNG TAATPOPHAG ElVaL TO VELP®VIKO SIKTVO YPAPWV TOL TPAYHATOTOLEL TLG
npoPAéVelg, ko 1 Péon dedopévarv ypaewv n ool eivor vtevBvvon yio TNV amobnkevon Twv
dedopévav. AvamtoyOnkay Tpelg akopa aveEdptnTeg vINPEcieg otV TAEVPA ToUL server (back-
end), ko pia vnpecia otV TAELVPA TOL client, yio TNV TPOGPACT] OTIG AELTOVPYLKOTNTEG TWV
QVWTEPK VTN PECLOV HEGW EVOG TEPLNYNTH oTOL. H apyLTEKTOVIKT] TOL GUCTHHATOG O TLKOTOLEITOL
oto dudypappa 5.1. H vdomoinon tng mAat@oppog epmvebotnke otd tnv lotoceiido MovieLens, 1
omola amotedel pio LoTOoEA IS0 GOGTAGNG TALVLGOVY, TTOV £XeL ovotTuy el ard epeLVNTEG GTO TTAVETLOTH|LLO
tng Minnesota, kot Bpicketal oe Aettovpyia awd To 1997. Xkomdg TG TAATQOPHOG elvot var SlevKkoADVEL
TOV TEMKO XpNoTn Vo eEepeLVIOEL APOTKOTTTO TNV LITOKELEVT SOJLT) TOL YPAPOU, AVAKOAVTTTOVTOG
véeg Touvieg ko €181 Tovidv, aAAd KoL vo Tou Ttopéy el ToLloTLkéG TPoPAEPeLg oL omoleg elvat GOpPWVEG

M€ TIG TPOTLUNCELS TOV.

1.3.2 XuoTaTiKa LTolyEla

H yevikdtepn 8éa otnv omoia facioTnke opyLTEKTOVIKY) TOV CUGTHHATOC, Eival 1) Ao VEVEN
aveEAPTNTOV AELTOVPYLOV G SLXPOPETIKEG LN Peieg (services) mov avamtvosovTal akoAovdOvTog
TG apyég Twv REST mpoypoppatioTikdv Stemapdv, pe okomd tnv k&Avyn {ntnudtov enidoong,
AVOYKOV KAMPAK®ONG, Kol {NTNHATOV AGQAAELNG GTNV avamTUoCOpeV TAXT@Oppa. ITio avadvuTikd,

Ol TPELG VTN peTieg oL vAOTOONKAY 0TV TAEVPA TOV server eival oL e€Ng:

e Movies API: AvalopPavel Tov xelplopd Tov peTa-Oedopévwy Twv Tavidv. YAomoOnke e
v PrAfrodrkn Node]S (Foundation (2009)), xproLHOTOLOVTRG WG YADCTX TPOYPOUHATIGHOD
v Typescript (Corporation (2012)).

e Users APL: Avodopfavel Tov XeLpLOPO TV XPNOTOV, TV 0ELOAOYNCEWY, KoL TNV avbevTikomoino
TV Xpnotev. YhomouiOnke pe tnv BiAProbrikn NodeJS (Foundation (2009)), xproLomotdvtoag
g yAwooa poypoppatiopot tnv Typescript (Corporation (2012)).

32

https://movielens.org/

e Model API: Avohapfdvel Tnv evBuAdkwor) Tov povtéAov mov mpaypatorolel Tig poPAEYelg
oe pla vnpectia oL eEwTePLKEDEL TIG MITALTOVHEVEG AELTOVPYLKOTNTEG TOL. YAomouiOnke pe
v PAProdrkn Flask (Team (2010)), xproyomoldVTOG WG YADCOO TPOYPOHPPATIONOD TNV
Python.

H diemapn ypriotn avamtdxdnke wg aveaptntn vanpecio Aoapfdavel tnv amattodpevn TAnpopopia

amd TNV TAELPA TOL server, KoL Tapéxel oTOV XpNoTn pia erhikr Stemagn yi tnv alomoinot)
mg. YAomouOnke pe tnv PipAiobrikn React]S (Facebook (2013)), xpnolHOmTOLOVTOG ©OG YADOOEG
npoypappatiopod v Javascript (Eich (1995)) kou Typescript (Corporation (2012)).

1.3.3 Evoopat®won Tov HovTEAoL 6TNV TAXTPOpHQ

H evowpdtoon Tov AELTOUPYLOV TOL HOVTEAOL GTNV GUVOALKT TAATOOPLA, KAL 1] EVOPUOVIOT) TNG
Aettovpyiog Tov cvoThpatog eivo éva cuvBeto edio, To omolo propei vo amoteAécel aveEdpTnTo
medlo €pevvag. XNV mapodo SITAWUATIKT, Ol OXETLKEG OXEIAOTIKEG amoPaoelg AN@Onkay e

YVOROVA TNV Ao OAAELXL KAL TNV SUVATOTN TR KAPAKOGTG TV AELTOUPYLOV TOL povtédov. To povtédo

Tomt00eTNONKe € XWPLOTH VINPEGIAL, DGTE VO HTTOPOVV VoL TOL avaTeDOVV TEPLGGOTEPOL VTTOAOYLGTIKOL

TOPOL aTTO TLG LITOAOUTES LINPECLEG YIa TNV TaXELD SLEKTTEPALWOOT) TV GOVOETWV AELTOLPYLOV TOV.
Tnv St oTLypn emdéxOnke yix AOYoug o PAAELAG VO XTTAYOPEVTEL 1) GHEST) ETLKOLVOVIO HETAED
TOL HOVTEAOUL Ko TOL client pépoug Tng TAateoppag, dote o k&b xprioTng va unv éxel TpodoPfoot
povo oo dedopéva Tov apopovV Tovg vItdAoLTovg Xpriotes. H mpdoPoact) otig akpég mov mpoPArémel
TO HOVTEAO Yl TOv k&Be xprotn, yivovton péow tov Users API, to omoio diobéter pnxaviopod
avBevtikomoinong tov xpnotov. IMapddinia apepoddnke onpovtikd pépog g diadikaciog

avatTLEng Tov AOYLGHIKOD, OoTE va dto@aiioTel 1) arodoTiky) Aettovpyia Tov avtictoryov APL

ITio cvykekpipéva, Sraoparicope Tnv dSrabeopotnta tov Model APL katé tnv Sudpkera Stekmepainong

OUTTOULTITIK®OV AELTOVPYLAOV, OTWG 1) ETAVEKTTALOELOT) TOL HOVTEAOV, PHEG® TNG XPTIONG TLOAAATTADV
XOPLOTOV VINUATOV ekTéAeong Twv depyaoidv. Tavtdypova, avamtdtope pio pébodo, wote va
TPOCTEPAGOUHE TNV adLVaior TOL HOVTEAOL HOG VAL XELPLOTEL YPAPOUG E TTEPLEGOTEPOVG XPTIOTEG
atd ToV apxLKO Ypapo oTov omoio éxel ekmadevtel. YAomotoope tnv Suvopikn tpocOnkn otnAodv
OTOV VAKO Bap®dV TOL TPOTOL GTPWOHATOS TOL VEVPWOVLKOD SLKTVOV YPAP®V TOU HOVTEAOL HAG,

KaT& TNV TPocOnkn evog VEOU XPNOTN GTO GUOTNHHA, MCTE VX UITOpel Vo mpaypatomoleital o

QVTIOTOLYOG TOAAATTAACLAG OGS TILVAK®OV 6TO E6WTEPLKO TOL povtédov. Ooov apopd tnv apyikomoinon

TOV VEOV OTNA®V, AITOQACGICaE, e YVOVOHR TNV duvatdTNTo AYNG OVCLUGTIKGOV TPoPAéPewy
yla TOUG VEOUG XPTIOTEG XWPLG TNV AVAYKT) ETAVEKTTOUOEVGTG TOV HOVTEAOUL, VOL X PT|CLULOTTOL|GOVE
TIG HEOEG TIHEG TV avTioTowV Papdv TV vdpyxovtwv xpnotev. Koatd avtdév tov tpodmo, ol
véoL XproTeg, KANpovopolLv T Bdpn Tov HEGOL XPNOTNH TOU GUGTAHATOS MOG, kol AapPdvouvv

TIG avtioTolyeg mpoPAéyelg, pe Pdon tig Pabporoynoelg mov éxovv vtoPdel, xwpig TNV avaykn

emovekmaidevong tov povtélov. Katapépayie, kat avTdV TOV TPOTO VX TPOGEYYIGOUHE TNV EMAYW YLK

(inductive) Aertovpyict TOV VEVPWVIKDOV SIKTOWV YPAPWV.

1.3.3.1 Awenogn Xpriotn

H Siemtagpr] xpriotn oxedidotnie e YVOROVR TV arpdo Koty eEepebvion TG TANPOPOpLag Kol TV

ypriyopn ntpocPaocm otig tpoPAéyelg Ttov povréAov. I Tov okomd avtd, VAOTOLRBNKOY GUVOTTIKEG

33

oyelg yia k@be ovtotnTa, TOL EMTPETOLY TNV GecT) TPOoPacT) 0TI GUVOEOEVES EYYPAPES TNG
Béong dedopévwv. YAomonOnkow omTikomotjoelg Tov Ypa@ou pe tnv akptPr) poper) ov éxel arodnkevtel
oty Péon dedopévwv, kol Aettovpyieg avalntnong touviev pe féomn Tov Titho Toug i Tig ouvdedpeveg
ovToTNTEG, OTTWG T €10N KoL oL Aé€elg-kAedidx Tovg. Xtig ewkdveg 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, ko 5.8

paiveton éva detypa tng TANO®pag OYewv mov TapéxeL 1) TAATPOPHO LITO AVTO TO TPLoUA.

1.4 Ileipopota

1.4.1 Ag&wAoynon

H x0pro petpikr] mov xpnotpomotiBnke yio tnv a&loAdynor tev pofAéPewy mov TpaylaTorolody
Ta povTéda Tov avarttOEaye, Tav n petpikn Root Mean Square Error, mov aotedel kAaokd pétpo
a&lohoynong yia mpoPfAnpata ypoppikng maivdpounong. H petpikr avtr) xpnoilomoteitor o€
éva e0PoOg TPoLTTAPYOLVGWV dNpOCLEDGEWY oL oxetilovtal pe To cVvolo dedopéveov MovieLens

Grouplens.

1.4.2 Ymepropapetpol

To peyodOTepo pépog tng metpopatikng dadikaciog wov akoAovdnOnke, apiepddnke otnv edpecn
KOTAAANAGOV TGOV Y TNV TANOOPA TV VITEPTOPAPETPOV TOL SLETOLY TO GUOTNUA LG, OOTE VO
7eTOYOUE 0G0 TO dLVATOV TOLOTIKOTEPEG TTPOPAEYELS YLt TOUG X PT|OTES TNG TAATPOpHaS. Emontikd,

OL UTTEPTIOPAHPETPOL TOV GUOTHHATOG PITopoVV va opadoronfoldv oTig e€ng KaTnyopieg:

1. Apxitextovicr tov Nevpwvikod Awktvov I'pdpwv H apytrektovikn Tov Nevpwvikod Atktoov
Tp&pwv TOL XPT|CLLOTOLEITOL OTOV KWILKOTTOLN T TOL HovTEAOU, arotelel évav kaBoploTikd
Tophyovta yio TG moporyopeveg mpoPréPers. H apyitektovikr] awtr] katBopilet Tig cvvaptrioetg
IOV TPAYHATOTTOLODV TNV XBPOLOT) TOV EPPUTEVHATOV KOPPOV TV YelTOvwv kdbe koppou,
Kot TNV dadikacio Tov mEpAopaTog unvopdtwv (Message Passing Framework). Kata
avtov Tov TpdTO, popel va kabopicel oe onpovtikd Pabpd, 6mwg Ba pavel otnv cuvéyela
OTOL TTELPAPOTA TTOV EKTEAECOULE, TLG ETTLOOGELG TOV eKAGTOTE HOVTELOVL. OL Ap)LTEKTOVIKES TTOV
XPNOLHOTOLCOLE EPELG ELVALL OL TEGTEPLG APYLTEKTOVLKEG TTOL £XOLV arvaAvBel oTo KePAAALO
1.1.5.4, dniadn) o apyrrektovikég GraphSAGE, GAT, k-GNN, ko GIN.

2. AAyop1Bpog yia Tnv Topaymyn HPUTEVHATOV KOpPwV Ze éva TAN00G TELPaPUATOY TNG
TOPOVCAG LEAETNC, XPT|OLLOTOLOVLE £VAl GUVOLO EPPUTEVHATOV KOPPwV TO 01010 Kwdikomolel
TNV HETATTAN pOPOpPLa TV TAVLOV, Ko SideTon g eilcodog oto Nevpwvikd Alktvo I'pdpwv vod
TNV HOPYPT] XOPOKTIPLOTIKGOV TOV TAVIOV-KOPPwv. Eivat avopevopevo o adydpiBpog mov éxel
xpnotononBel yor TNV TOpaAywYr TOV ELPUTEVHATOV VTV, Vo ENNPEREL G OHAVTLIKO
BaBpod v mowdtnTd TOLg, KO TOV PaBpd oTOV 0TTOL0 KATAPEPVOLV VO KWOLKOTTOLOOUV TNV
Sopr) ov voPdokel GTOV ap)Lkd YPaPo. Yd avtd TO TPIoH TELPAPATILOPNAGTE HE TPELG
Srpopetikovg adyopiBpovg, oL omoiol diapépouvv otnv TeEX ViKY pe TNV omolo eEdyouv T
ELPULTEDPATA, DOTE VO SIUTLOTOGOVHE TTOL0G ahyOpLOpog odnyel oe kaAVTepeg emdOcELg 6TO
Topov cvoTnpe. O odydplOpoL Tov Y proLHOTOLOVE £X0UV KaToypa@el oTo ke@dhato 1.2.2.2,
ko eivon ot Node2Vec (Grover and Leskovec (2016)), FastRP (Chen et al. (2019)), kabog kot to
vevpwviko diktvo ypaypwv GraphSAGE (Hamilton et al. (2017a)).

34

3. Ymoypa@og yia TNV Topaymyn ERQuTteVpaT®v kopPwv Mia enutpocsdetn cuvicT®oo o
koBopilel TNV TOLOTNTA TOV TAPAYOHEVOV ELPUTEVHATOV KOUP®V Yot TNV peTotAnpogpopic
TOV TOLVLOV ELVOL 0 AVTIGTOLY0G LITOYPAPOG TTOL Ypnoipormoteital. T mapadetypo, epappolovrog
Ké&mrolov atd Tovg mpoavopepBévteg alyopiBpouvg otov diepr) LITOYPAPO TOL aoTeAEiTAL
povo oo tavieg ko Aé€elg-kAetdid, Popoipe va topaEOLe o KaBe Tovio éva eppUTELHO
7o omolo kwdikomolel Tig Aé€elg-kAedid tng. Ymd avtd TO MPIoHA, KATHYOPLOTOLOVHE TX
TELPOPATA LG WG TTPOG TNV ETLAOYT] TOV VTTOYPAPOL TOPAYWOYNG TV ELPUTEVHATOV KOPUPwV

0€ TPELG KOPLEG TIEPUTTMOCELG:

e Agev xpnoLpomolodpe ePRPLTEDRATA KOPPWV TOL Vo oXeTICOVTOL HE TO TEPLEXOUEVO TWV

TOLVLOV Yl Koo Torvia

o T k&Be tavia, Tapdyouvpe Evo GUVOLO EPPUTEVUATOV KOPPwV, K&Be Eva amd Ta omola
KOOLKOTOLEL TIG GLOYETIGELG TNG pE pio ard TIg LITOAOLTTEG OVTOTNTEGS, £X0oVTaG TTaporyOel
otov avtictolyo diepr) vroypdpo. T mapdderypa, yioo k&Be tawvio mapdyovpe Evo
ELPVTELPA TTOL VO KWILKOTTOLEL Tox £LON) TNG, £Vl EPPVTEVHA TTOV VO KOOLKOTTOEL TIG AEEELG

KAewdia NG, KAT.

o T kaBe Tauvio, Topdryovpe éva ep@OTEVHA KOPP®V, TTOL KWSLKOTTOLEL OAOKAT PO TO TTEPLEXOUEVO
g éxovtag mopoy el e OLOKANPO TOV LITOYPRPO TV TALVLOV KL TV GUGXETLLOPEVOV

OVTOTHTWV TOVG (EKTOG TWV YPNOTOV)

4. Aopn tov povtéAov Eva onpoavtikd cOVOAO LITEPTTOPAHETPWV TOV HOVTEAOV, QUTOTENEL TIG
KAQGLKES LTTEPTOPOAPETPOLG TTOL dokLpalovtat mapadociakd otnv Babid pnyavikr pédnon.
XopokTNpLoTIKG TAPASELYHATO VITEPTTOPAPETPWY TTOL LITAYOVTAL G LTHV TNV KATNyopio
elvort To TA00G TV OTPOHATWY TOL KWALKOTOLNTT, TO TAN00G TWV GTPORAT®Y TOL ATTOKWILKOTTOLNTT),

Kot 0 oplORoG TV Kpupdv KOPPwv oe k&be aTpdpOL.

1.43 Métpo avagpopag

Tt var oY NUATIGOVE VO HETPO OVOUPOPAG YLXL TIG ETLOOGELG TWV TELPOUATOV TTOL TPUYHATOTTOL] G OLE,
kwnbnkope oe dvo akoveg. Apevog peletrioope TIG emLOO0ELS VTAPXOVGWV HEAETOV OV £XOLV
ylver oe avtiotolya ocbvola SeSopEVWVY, KoL apeTéPou Kataypaope tnv emnidoon piog apyikng
atAoikNG £€k800NG TNG APXLTEKTOVIKHG TTOL X prjotpomolovpe. Ocov apop& Tig LIThpyoLoES PHEAETES,
dedopévou 611 to The Movies Dataset (Banik (2017)) eivou éva oxeTiké kouvovpyLo 6Ovoro dedopévav
mov amaltel evpeio TpoemeEepyasio yia va aflomonBel 6TV avamTuEn CLOTNHATWVY CLETACEWY,
dev PBprikople kdola emicnn pHeAETN OV v TO aopd, 6To TPOPANUa tng mpoPAreyng Papoug
oakpnie. T avtdv tov Adyo, ectidoope o peréteg mov éxovv mpaypartonolnBei oo ido mpoPANpa
oto oVvvolo dedopévwv MovieLens (Grouplens), To omoio GAAwote amoteAei TOV KOPRO TOL GLVOAOV
dedopévov pag. Tavtdyxpova, exteAéoajie KATOLO APXLKE TELPAPATA GE pia 0TAOIKT] ékSOGT) TNG
QPXLTEKTOVIKTG HaAG, XPNOLHomotdvTog To povtélo GraphSAGE wg 1o vevpwvikd Siktio ypaewv
HoG, Ywpig va aflomolovpe ep@uTedpaTa KOPPwV oL Vo oxeTlovTaL e HETAOESOPEV TV TOLVLODV,
Ko e kéuroleg apyLkég avBoipeTeg THES YL TLG TOPASOGLOKEG VITEPTIOPAPETPOVS TG OLPYLTEKTOVLKTG.
H mopeia Tov avticTolyov melpApaTog onTikomoLeital ota Sty poppata 6.1, kot 6.2.

Mio cuvoAikr] elkOva TV emSOGE®Y TOL TapaTHPHONKaY e LIT&PYOLCES HEAETEG, KOL TNG

emido0TG TOL APYLKOV oG TTELPAUATOC, BpiokeTan oToV mivaka 6.1.

35

1.44 Ilepontépow Iepapora otnv oykpion Movtédwv

Qg emopevo Pripa, petd otd Tov KoBOPLOPO TV PETPOV AVAPOPAS YL TLG EMLOOCELS TWV HOVTEAWV
HOG, TTPOXWPTICOHE G€ SLAdOX LK TELPAUXTO Pe GKOTTO TNV €0PECT] KATAAANAWY TIHLOV VIO TLG LITEPTUPOPETPOVG

TOL HOVTEAOU.

1.44.1 Apxwkn ZoOykpion Apxirektovik®v GNN

To TpdTO TEIPAPA TOV TPAYHLATOTOLCAYLE ATOTKOTEL G pio ap)LKT) GUYKPLOT) TV eMEOTEWVY TOL
TeTUYLVEL KABE piot ATTO TIG TEGGEPLS APYLTEKTOVIKEG VEVPOVIKOV JIKTOWV YPAPWV HE TIG OTTOLEG
aoyoAnOnkope 6TNV TApoLo SITAWUKTLKT.

Emléyovtog kdmoleg opyLiég TUHES VLo TLG TTAPASOGLAKES VITEPTLAPOPETPOVG TOV TTPOPAHATOC,
KoL Xwpig vor aEloTolovpe EPPUTEDHATA KOPP®VY TTOL Vo OYETILOVTAL [E TNV HETATANPOPOPIN TOV
TaVIeV, ekmaldedoope amd éva povtélo yia ke pia Pacikn apyitektovikn. Ta amotedéopata
éyouv ontikomoinBei ota Srayphpoata 6.3, kot 6.4. Ex tpodTng 6Yewg, paivetal OTL oL apyLTEKTOVIKEG
GraphSAGE kot GAT amodidovv kadbtepa, eve pog tpoPAnpoatilel n Wiaitepo aotadng exmaidevon
g apylrektovikng GIN.

1.4.4.2 ApOpog Xtpopdtov otov Koducomowntn

3TNV cUVEXELR, TELPOUATIOTIKOE HE TOV oPLOPO TOV CTPWUATOV GTO VELPWVLKO SIKTLO YPaP®V
TOU KWALKOTTOTT), £XOVTOG LTOYNV TO TPOPAN A ToL oversmoothing wov epryphpeTan oty evotnTa
1.2.3.1.

Ipoypatomolioope XWPLoTA TELpApoTa e kbe OPYLTEKTOVIKT VELPOVIKGOV SLKTOWV YPAQwV,
dtoywpllovtog T TOY POVA TIG TTEPLTTOCELS XELOTTOLNGTG TV ELPUTEVHATOV KOPPwV oL oyeTilovTal
JLE TNV HETOTTAN POPOPIN TwV TOUVLOV, 1) pn a€lomoinong toug. Ipdypatt, 6mwg eival avopevopevo,
TopaTnPovpe OTL eite alOmOLOVTOS T EPPUTEDHATH KOPPwY oL oyeTilovtal pe v Swabéoiun
peTamAN poPopio yiot TIg Tovieg, eite 6L, 0 PEALOTOG aplOPOC CTPWHAT®VY YLO TO VEVPWVLKO SIKTLO
yYPoewv givor pkpoc. To amotedéopata aivovtor avadvtikd ota dieypdppata 6.5, 6.6, 6.7, kot
6.8, xabmg ko oTovg Tivakeg 6.2, kai 6.3. Oocov apopd tnv TapdAAnAn cOykpLon HeTaED TGOV
QPXLTEKTOVIKMDV TOU VELPWVIKOU SIKTOOL Yp&apwv, Tapatnpovpe OtL ot apyltektovikéc GraphSAGE,
GAT, ko GIN apovodlovv apketd mapopoleg emtdooelg, pe tnv apytrektovikr) k-GNN (GraphConv)

Vo LOTEPEL ONHAVTIKA.

1.4.43 Ap1Opog Nevpovov ota Zrpopata tov Nevpovik®v Atktdov

Qg emdpevo Pripa, TepopATIOHAOTE e TOV OPLOHO TOV VELPOVOV GTU CTPOHATH TWV VELPOVLKOV
SikTOWV, o€ Kdbe v atd To povTéda TOL EeXWploapEe GTNV TTPONYOVHEVT) EVOTTTCL.

[k&Be apyLtekTOVIKT] VELPWVLKOD SLKTVOU, Kot ToV BEATLOTO £0C TOPA GLUVOILAGHO TNG HE TOV
aplOpd TV oTPOHATOV Kot TNV o€LloToinet 1) fi TOV ELPUTEVHATOV KOPPOV, TELPUUATIOTHKOLE
pe o TAR00g TV vevpdvwY oTo kdbe oTpdp e€epevvidvTag TG oTo evpog [16, 128]. T k&Be
TEPIMTWOT KATAANYOUE € EVOy SLoupopeTlicd apLBpd vevpdvev wg PEATION emLAOYT, He To ATOTEAEGHATA

va ouvoPilovtat 6Tovg Tivakeg 6.4, 6.5 kat ota Stoyplppata 6.9, 6.10, 6.11, ko 6.12.

36

1.44.4 Atwonoinon Epputevparov Kopfov yia tny MetamAnpogopia tov Tawviov

AxoroVBwg, mpoxwprioope oe TANOOPA TELPAPATOV VIO VO KOTAANEOVLLE GE VO GULITTEPUGHO GYETIKO
pe TNV emidpact NG XPHONG TWV EHPULTEVUATOV KOPPwV TOL KWOLKOTOLOOV TNV HETATANpOPOpin
TWV TALVLOV, GTNV TEALKT] TIS00T TV HOVTEAWV HOG.

[Tov ok0md avTo, Eextviioape otd TV PEATIOTN Ewg TOpa £kdoot) k&be povtélov, Lo TNV
npovdBeon aflomoinong TV ELPUTEVHATOV, KO TELPAPATLOTHKOE OTNV SLadIKacia Toapaywyng
TV epputevpatey. Efepevviioape toug Tpelg dapopetikotg alyopibpovg mapaywyng Node2Vec,
FastRP, kot GraphSAGE, evd mopdAinio Sokipdocope TANOGPO GUVOLAGHOV TV VITOYPAPHV TOV
xpnoipomotovvtal otnv dradikacio. H mopeia tov mepapdtov yia tig apyitektovikég GraphSAGE
kot GAT omtikomoteiton ota Sroypdpporta 6.13, ko 6.14. Ot emiddoelg Twv PEATIOTOV GLVSVAGUOY
yia k&Be povtélo cuvoyilovtal oTov Tivaka 6.6.

AEiler va tovicovpe 6Tt o povtédo GraphSAGE gaiveton v metvyaivel Tnv xapunAotepn amdAeto
amd Tig vdAouteg apyLtekToviKéS. 'Eva onpavtikd cupmépacpa e€dyetot, emiong, amd tnv ypopiky
nophotact 6.15, 6oL cLYKpiveToL Yio KGDe APYLTEKTOVLKT) 1] ATTOAELR GTNV TEPLTTWOT) U1 OELOTOINGNG
TWV EPPUTELUATOV KOPPwV, koL 1 amoAelo oty epintwon alomoinong tng. [apatnpolpe 6TL oe

OMEG TIG ALPXLTEKTOVIKES, KATAPEPAPE VO PEATIOCOVE TLG EMLOOCELS TV HOVTEAWV.

1.5 IIpoPAémoviog Tig KPLTIKEG EVOG CUYKEKPIPEVOU XPNOTN

2 TO TELPAPATOL TG TTPONYOUHEVNG EVOTNTAG, PLORicOpE TIG TIHEG TV TOLKIAWY LITEPTAPAPETPOV
TWV TELPOPATOV Kol alodoyrjoaypie To apoyopeva povtéda pe Paor tnv petpikry Root Mean Square
Error oto ocbvolo dedopévwv.

STV TpéYovoa eVOTNTA, LTTO TNV GKEYT] TNG GUHUETOXNG TWV HOVTEAWV TTOL XTIOTNKAY GE pio
TAQTPOPHO CUGTACEWY TALVLOV, ETLAEYOUHE TO KaAvTepo povtélo GraphSAGE tng mponyolpevng
evoTnTOg, Ko Tpofaivovpe o k&mola o TpoakTikG metpdpata. Ilo cvykekpipéva, Topatnpovpe
TIG TPOPAEPELG TOV HOVTEAOL YLt EVOLY GUYKEKPLUEVO XPT|OTI, CUYKPIVOVTAG TEG E TNV €WG TOPX

OGUUTTEPLPOPAE TOL YPHOTH GTNV TAATPOPHOL.

1.5.1 IIpoowmomoinpéveg tpofAéperg

370 TAIGLO TNG OLKOYEVELNG TWV TTLO TPOAKTIKOV TELPARATWOV, EEKIVAE EAEYXOVTAG KATE TOGO OL
TPOPAEYELG TOL TPAYHATOTOLEL TO PHOVTENO EIVOL TTPOCWITOTOLNHEVEG GTIV GUHTTEPLPOPA TOL KABe
xpnot.

Emléyovpe 800 xprioTeg e SLoupopeTikt] GUUTEPLPOPA, 1) OTTOLO EKPPATETOL WG TTPOG TNV KAUTOVOLT
TOV THOV TV Pabporoytdv mov éxouvv dnpociedoel éwg Topa. Xt daypappata 6.16 kot 6.17
TOPATNPOVHE OTL TPAYHATL, OL KATAVOHEG TV TTPOoPAemopevwy Pabpoloyidv yia ke xprotn eivon

0€ QVTLOTOLYLA HE TNV £0G TOPO GUHTTEPLPOPA TOU.

1.5.2 TIIpoocappoyn oe aAAQAYEG CURTEPLPOPAG EVOG XPNOTN

Eva facikd otoryeio To 0710i0 KAAOOHAGTE VO ELGAYOVHE OTO GUOTNHO CVOTAGEWY TTOL VAOTTOLOVHE,

elvarn mopoyn TpoPAéPewv mov cuvadouy pe T Tpéyxovoa Babpoloyikr) cupTEpLPOPR EVOG XPHOTH.

37

ITio cuYKeEKPLEVD, GTO GUYKEKPLUEVO Trelpoplal, eVTOTLLOLHE EVOy XPHOTN TNG TAATPOPHAS O
ormoiog vofarAel cuvex®g LYMAEG Pabpoloyieg, TS PailveTal GTNV KATAVOUT] TOU SLaty pAHHOTOG
6.18. Omwg elvor avopevopevo, 1) Katavopr] Twv TpoPAenopevov Pabpoloyidv yL autdv tov xpriotn
Kwveltor oe VYMAEG TipéG. MovTtehomoloOpe piot tAAotyT) GUUTTEPLPOPAS TOV XPNOTH, HEGK TNG LTTOPOANG
XOUUNAGV POHOAOYLOV 0TO TOV GULYKEKPLUEVO XPTOTN OTNV TAATPOPHO, ETCL OOTE 1) KATAVOUN
Twv Pabporoyldv tov va aAldel 0Twg paivetol 6To StAypoppa 6.19, HeTATOTLLOPEVT) CTHOVTLKK
pog XopunAotepeg Tiéc. Emavekmondebovpe to povtédo yio éva aplOpd emoyxmv PKpOTEPO NG
OPYLKNG EKTTALOEVLOTG TTOV X PELACTNKE, KL TAPATNPOVHE 6TO dtypappe 6.19 6TL oL TpoPAemopeveg
BaBpoloyieg yia Tov ovykekpipévo xpriotn éxovv petakivnBel mpog xaunAdtepeg Tyég, Hdote va
Bplokovtol og avTIoTOLYiX JLE TV GUVOALKY GUHTTEPLPOPX TOL XPHOTT).

H dvvatdtnta avtr] Tov povtéAov propei v aoteAéoel kKaBopLoTikd TapAyovTa Yo TV EVXAPLOTNOT)
TV HAKPOYPOVLOVY XPIOTAOV TNG TAXATOOPHOS, 0epol Bt AapPvouy cuveX (OGS TPOTACELS GUVTOVIGHEVES

M€ TNV CUUTEPLPOPE TOVG,.

1.5.3 Koaravonon mio c0vleTwv cupnepipopmv

ST €WG TOPA TELPAPATA, 1) KOTAVOUT TV Babpoloyldv evag xprotn Pplokdtayv eni To TAeicTov
OUYKEVTPWHEVT & EVOL CLYKEKPLUEVO KO OYETLKA TEPLOPLOPEVO £0POC THH®V. Eva onpavtid meipopio
yla TV o€ LoAOYGT) TOL HOVTEAOD HOG, ELVOL TTOG QUTO AV TATTOKPLVETOL G€ TTLO0 GOVOETEG GUUTTEPLPOPEG
XPNoTOV, 61ov oL Pabpoioyieg TOvg ekTElVOVTOL GE PHEYOADTEPO EVPOG TLUMOV.

3TO GLYKEKPLUEVO TIELPOLN, TTPOGOUOLOVOULE TNV CUHITEPLPOPE £VOG X PTIOTH), 0 0TT0i0G TapaBéTel
BaBpoloyieg oe éva peyddo £0pog TPV, PABHOAOYOVTOG KaL TIC TALVIEG TTOV TOU OPEGOLY KAl
ekelveg mov dev Tov apéoovv. Emdéyovpe tuyaia évav xprioTr TOL CUGTHHATOS KoL PIHOVHOGTE
TNV apéokeld Tov oe Touvieg Tov eidovg EykAnpua ko Tnv Suoapéokeld TOL AITEVAVTL G€ TALVIEG TOV
etdovg Iepiréteia. Tia va To meTO)YOULE QL TO, BoBpoloyolpie pe oxeticd YopnAn Tipr (oto evpog [0.5,
2]) touvieg tov eidovg Iepuréteia, won pe vYMAL Tyun (oto ebpog [3, 4.5]) Tavieg tov eidovg EykAnua.
Kat’ avtdév tov tpodmo, oxnporileton n katovopr] tov diaypdppatog 6.20. Iopatnpodpe O6tL 1O
povtéo mpooeyyilel Tnv mo cOvOetn katavopr avth pe pikpotepn akpifeia amd Ot Tpocéyyile
TIG TTLO OTAOLKEG KATAVOUEG TWV TTPONYOUHEVODVY TELpapdTev. Q0TOGO, TapaTnpove pior Thom
vou oynpatiotovy dvo cvotadeg Pabporoyiodv. H o onpavtiky moapatrprnor 6To GUYKEKPLHEVO
Telpoplor YIVETOL OTTTIKOTTOLOVTAG XWPLOTA TIG TpoPAemopeveg Babpoloyieg Tov apopolv Tov XprioTn
yuoe k&Oe éva otd T dvo €idn Taviddv. Omwg aiveTon o AUTHVY TNV OTTIKOTOINOT) 6TO SLdypoppo
6.21, to cvoTnpa Teivel v TpoPAéPer OTL oL meplocdTepeg Tawvieg Tov eidovg EykAnua mpémet
vo PaBporoynBolv pe peyodOtepn T amd OtL ot touvieg Tov eidovg Iepireteir, deitxvovTag va
npoceyyilel avtv TNV 10 oOVOeTN Kartavopr] BaBpoAoyLdY Yo TOV GUYKEKPLLEVO XPTOTT).

Q0T000, LITOPODLE VUL TTALPALTIPT)COLE TNV HIKPOTEPT) ok pifeta Tov apovadlouvv oL tpoPAéYelg
TOU pHOVTEAOV, GE GXEOT) He To TpOonYoUpeva Tetpdpata. IIpofAnpatilopevol amd to yeyovog auto,
TPOYHOATOTTOLOVHE VOV QELYHATOANTITLKO EAEYXO OTNV KOTOvOpn TwV Pabpoloyiodv mov epgpavilovy
oL Xp1joTEG TOL GLVOAOL SedOPEVWY, KL TAPATPOVIE OTL 1) TAELOYN@Oio TV XPNOTOV eppoavilel
7110 TAOTKT] oUpTTEPLPOpd. Emopévag, Aapfdvovtog vmoyny kot To oyeTIK TePLOpLopéEVO péyeBog
TOU GULVOAOU JeSOUEVWV TTOV XPT|CLLOTTOLCAYLE, CUUTEPAIVOUE OTL TO CUGTNHA TPOTACEWV deV
avtoamokpiveton e€icov kKaAd o€ o GOVOETEG GUUTEPLPOPEG XPNOTOV, AOY® TNG TEPLOPLOHEVNG

ekmaidevong Tov ot Tétola TapadeiypoTa.

38

Chapter 2

Introduction

2.1 Recommender Systems

The field of recommendation systems has gained significant attention in recent years. The increasing
amount of available content on the web has increased the need for personalized recommendations.
Due to the increasing availability of large-scale rating data, there is a growing interest in developing
graph-based recommendation systems. By modeling the relationships between items and users as

a graph, we can utilize graph-based methods to leverage the graph’s rich structural information.

2.2 Existing Approaches

The development of recommender systems that perform personalized and useful recommendations
for each user has been an area of research for multiple years. The existing approaches are in general
divided into collaborative filtering, content-based filtering, and hybrid approaches. In collabora-
tive filtering approaches, the recommendations are based on past interactions between users and
items, without leveraging metadata about the items. In contrast, content-based approaches rely on
utilizing the metadata on each item’s content. Finally, hybrid approaches combine both previous
methods. Our contribution, which will be reported in the following section, can be categorized as
a hybrid approach. In the following chapters, and more specifically in chapter 3, we will report the
most important aspects of existing graph-based approaches for implementing recommender systems
based on the MovieLens 100K dataset (Grouplens).

2.3 Our Contribution

In this thesis, we focus on the problem of movie recommendation. We develop an end-to-end movie
recommendations platform, leveraging the data structure of graphs in every part of the process. In
order to mimic a real-world application, we choose a relatively new dataset, The Movies Dataset
(Banik (2017)) which combines a real-world historical record of users and movies interaction, and
is enriched with a variety of movie metadata. We model the certain dataset as a graph, in the graph
database system Neo4j (Neo4j (2012)), and execute multiple graph algorithms to generate node em-
beddings and gain insights into the complex relationships between the movies, based on their meta-
data graph structure. Subsequently, we leverage these embeddings, enriching the bipartite graph of
users and movies as node features, and feed the new graph into graph neural networks. Utilizing an

architecture with two main modules, a GNN Encoder, and an Edge Decoder, we predict the weights

39

of the edges between users and movies on the bipartite graph. Equivalently, we predict the rating
that a user would submit for a certain movie. Leveraging these predicted ratings, we can recom-
mend new movies to a user, based on his/her past interactions and on the movies’ metadata. We
perform multiple experiments, developing and exploring a variety of GNN architectures, using the
Pytorch Geometric framework (Fey and Lenssen (2019)) and tuning the system’s hyperparameters.
We show that after tuning the hyperparameters related to the node embeddings generation, we can
achieve predictions with lower losses in all the model architectures, compared to not using these
embeddings at all. The source code that was developed for the purpose of this thesis can be found

in the corresponding GitHub repository, at https://github.com/John- Atha/diploma.

2.4 Thesis outline

The outline of this thesis is the following:

e To provide a comprehensive understanding of our study, we begin with a thorough introduc-
tion to the fundamental concepts of graph theory, and machine learning on graphs. Subse-
quently, we explore the link weight prediction task and its relationship with recommender
systems. At the same time, we delve deeper into the topic, analyzing the theoretical back-

ground of graph neural networks as a promising solution for these problems.

e As a next step, we cover the process of implementing the recommendation process that
powers our platform, beginning from modeling the dataset as a graph in our graph database

and finishing with the architecture and the technical details of our machine learning model.

e Followingly, we dive into some technical aspects of the main components of the platform,
exploring their respective roles, as long as the process of integrating the recommendations

model into the system.

e As a natural next step, we present the most important parts of our experimental process.
We showcase the experiments performed to tune the model’s hyperparameters, and some
practical experiments on the model’s predictions, trying to identify the strengths and the

weaknesses a potential user would experience with our platform.

40

https://github.com/John-Atha/diploma

Chapter 3

Theoretical Background

3.1 Graphs

This section will cover the basic concepts around Graphs. These concepts are utilized to represent
a real-world dataset as a Graph, and store it in a Graph Database Management System, such as
Neo4j (2012). Moreover, the majority of these concepts are necessary to understand and extend
the traditional techniques around Machine Learning on Graphs (3.2.3.2), and the implementation of
Graph Neural Networks(3.4).

3.1.1 Main definitions

Definition 3.1.1 (Graph): A graph is a pair G = (V, E) of sets such that E C |V |2; thus, the elements

of E are 2-element subsets of V. To avoid notational ambiguities, we shall always assume tacitly that

V' N E = (. The elements of V are the vertices (or nodes, or points) of the graph G, the elements of E are
its edges (or lines). Diestel (2010)

The usual way to visualize a Graph, is by drawing a dot for its vertices, and a line for its edges,

with each line connecting the corresponding dots. A visual representation of a Graph can be seen

Figure 3.1: Visual Representation of a Graph
SoftwareHelpingTest

in figure 3.1.

Definition 3.1.2 (Directed Graph): A directed graph (or digraph) is a pair (VE) of disjoint sets (of
vertices and edges) together with two maps init : E—V and ter : E—V assigning to every edge e

an initial vertex init(e) and a terminal vertex ter(e). The edge e is said to be directed from init(e) to

41

ter(e). Note that a directed graph may have several edges between the same two vertices x,y. Such
edges are called multiple edges; if they have the same direction (say from x to y), they are parallel. If
init(e) = ter(e), the edge e is called a loop. Diestel (2010)

The usual way to visualize a Directed Graph, is by drawing an arrow (instead of a simple line) for the
edges, indicating the direction. The different visualizations of a Directed and an Undirected Graph

can be seen in figure 3.2.

Directed Graphs

& 0

Undirected Graphs

R IO e

Figure 3.2: Visual Comparison of a Directed and an Undirected Graph
Christuniversity

Definition 3.1.3 (Subgraph and Supergraph): Let G = (V, E) and G’ = (V', E’) be two graphs. If
V C V' and E C E’, then G’ is a subgraph of G (and G a supergraph of G’), written as G' C G.
Less formally, we say that G contains G’. Diestel (2010)

Definition 3.1.4 (Graph Isomorphism): Let G = (V, E) and G' = (V', E’) be two graphs. A map
¢ : V>V is a homomorphism from G to G’ if it preserves the adjacency of vertices, that is, if
{6(x), d(y)}eE" whenever {x,y}eE. Then, in particular, for every vertex z' in the image of ¢ its
inverse image ¢~ (') is an independent set of vertices in G. If ¢ is bijective and its inverse ' is also a
homomorphism (so that xvye E<=¢(x)¢(y)eE'Vx, yeV), we call ¢ an isomorphism, say that G and
G’ are isomorphic, and write G ~G’. Diestel (2010)

An example of two isomorphic graphs can be seen in figure 3.3.

Definition 3.1.5 (Incident Vertices): A vertex v is incident with an edge e if v € e; then e is an edge
at v. The two vertices incident with an edge are its endvertices or ends, and an edge joins its ends. An

edge x, y is usually written as xy (or yx). Diestel (2010)

Definition 3.1.6 (Adjacent or Neighbour Vertices and Edges): Two vertices x, y of G are adjacent,
or neighbours, if x, y is an edge of G. Two edges e # f are adjacent if they have an end in common.
Diestel (2010)

Definition 3.1.7 (Vertices distance): The distance dg(x,y) in G of two vertices x, y is the length of
a shortest x—y path in G; if no such path exists, we set d(x,y) := oo. Diestel (2010)

42

Figure 3.3: Two Isomorphic Graphs
Wikipedia (a) Wikipedia (b)

Definition 3.1.8 (Node degree): The degree (or valency) dz(v) = d(v) of a vertex v is the number
|E(v)| of edges at v. A vertex of degree 0 is isolated. Diestel (2010)

Definition 3.1.9 (Vertex i Neighbourhood): Let G = (V, E) be a (non-empty) graph. The set of
neighbours of a vertex v in G is denoted by N (v), or briefly by N(lv), and is called the neighbour-
hood of the vertex. The set of the vertices with distance at most i from the vertex v, is called the ith

neighourhood of the vertex and is denoted by N(iv).

Definition 3.1.10 (Walk, Path): A walk (of length k) in a graph G is a non-empty alternating sequence
vpegU1€]...€5-1Vg Of vertices and edges in G such that e; = v;, vi41 for alli < k. If vy = vy, the walk
is closed. If the vertices in a walk are all distinct, it defines an obvious path in G. Diestel (2010)

3.1.2 Mathematical Representation of Graphs

A well-known mathematical representation of a finite Graph G is its Adjacency Matrix A. For a
finite Graph with N nodes, the Adjacency matrix is a square N x N matrix. An example of the

Adjacency Matrix of a Graph is seen in figure 3.4. The value of the element A; is calculated based

1 (s,j) €E

on the formula:

0 otherwise

In the case of an undirected graph, the Adjacency Matrix is symmetric.

= o= o
coHO R
=R =
oco+HOoO
[B e B

Figure 3.4: Adjacency Matrix of a directed Graph
Yepke

43

3.1.3 Complex Graphs
3.1.3.1 Weighted Graphs

Definition 3.1.11 (Weighted Graph): Let G = (V, E) be a graph. With each edge e of G let there be
associated a real number w(e), called its weight. Then G, together with these weights on its edges, is

called a weighted graph. Bondy and Murty (1976)

In recent decades, there is increasingly challenging care to study weighted networks. As stated
by Boccaletti et al. (2006), this is motivated by the fact that in most real cases, a complex topology
is often associated with a large heterogeneity in the capacity and intensity of the connections.

In weighted Graphs, the Adjacency Matrix is slightly modified, and computed by the following

formula:

0 otherwise

4is :{ w(i.j) (i.j) € E

Figure 3.5: Visual Representation of a Weighted Graph
Milad

3.1.3.2 Labeled Graphs

A Labeled Graph is a type of Graph, whose vertices are assigned to "labels”, i.e. an element from
a set of symbols. Taking into account these labels, the nodes of the Graph can be grouped into

categories.

3.1.3.3 Homogeneous and Heterogeneous Graphs

When modeling real-world data in a Graph, it is common case that we want to distinguish the nodes

and the edges, by grouping them into categories.

Definition 3.1.12 (Heterogeneous Graphs): In heterogeneous graphs, nodes are imbued with types,
meaning that we can partition the set of nodes into disjoint sets V- = V1, U Vo U...UV}, where V;NV; =
,¥i # j. Edges in heterogeneous graphs generally satisfy constraints according to the node types,

most commonly the constraint that certain edges only connect nodes of certain types. Hamilton (2020)

Graphs that are not Heterogeneous, are called Homogeneous. A common example of a Homo-
geneous real-world Graph would be a social media Graph, consisting of nodes that represent users,

and edges that represent friendships between the users.

44

A common example of a Heterogeneous real-world Graph is a Graph with users and movies as
nodes, and ratings as edges between a user and a movie. An example Graph of this type can be seen

in figure 3.6.

3.1.3.4 Bipartite Graphs

Definition 3.1.13 (Bipartite Graph): Letr < 2 be an integer. A graph G = (V, E) is called r-partite
if V admits a partition into r classes such that every edge has its ends in different classes: vertices in
the same partition class must not be adjacent. Instead of 2-partite’ one usually says bipartite. Diestel
(2010)

Bipartite Graphs are commonly used to represent the data for a recommender system, as shown in

figure 3.6, with users belonging to the one set, and the content to be recommended belonging to the

other set.

Figure 3.6: Visual Representation of a Heterogeneous, Directed and Weighted Graph. Users are
nodes denoted with red color, movies are nodes denoted with purple color, and ratings
are modeled as directed and weighted edges, with the weight corresponding to the exact
value of the rating. This image corresponds to a subgraph of the graph database instance
that was utilized for our research, visualized with Neo4;j (2021).

3.1.4 The Weisfeiler-Lehman algorithm on Isomorphism

As stated in the definition 3.1.1, two graphs are considered isomorphic if there is a mapping between
the graph’s nodes, such that the adjacencies are the same. The graph isomorphism task aims to
decide whether two graphs are isomorphic, and is a computationally expensive task. The Weisfeiler-
Lehman algorithm (Leman (2018)) is a graph-isomorphism test. To test the isomorphism of two

graphs, the algorithm produces a canonical form for each one of them. If the canonical forms are

45

not equivalent, then the graphs are certainly non-isomorphic. However, it is important to note that
two non-isomorphic graphs can have two equivalent canonical forms, and therefore the algorithm
can fail two distinguish these graphs. An example of such an edge case can be seen in figure 3.7.
The algorithm has multiple variants, such as the 1-WL, the k-WL, and the k-FWL. The 1-WL variant
is the most classic variant of the algorithm and is based on the color refinement method. As per
Sato (2020), for a more strict mathematical representation of the algorithm, the following elements
are defined:

The input of the algorithm is a pair of graphs G = (V, E, X) and H = (U, F\Y).

The output of the algorithm is to decide the existence of a bijection f : V— > U such that
Xy = Yy VoeV and {u, v}eE iff { f(u), f(v)}eF.

(I <

Figure 3.7: Visual Representation of two non-isomorphic graphs that cannot be distinguished by
the WL test
Bronstein

3.1.4.1 The 1-WL algorithm

The most standard WL test variant is based on the color refinement method. That is, it is based on the
iterative recoloring of the Graph’s nodes, starting with identical colors on all nodes. An overview

of the algorithm’s steps is described in Hamilton (2020):

1. Given two graphs G'1 and G2, we assign an initial label l(c?i) (v) to each node in each graph.
In most graphs, this label is simply the node degree, i.e., (%) (v) = d,YveV, but if we have
discrete features (i.e., one-hot-features x,) associated with the nodes, then we can use these

features to define the initial labels.

2. Next, we iteratively assign a new label to each node in each graph by hashing the multi-set of

the current labels within the node’s neighborhood, as well as the node’s current label:

I6)(v) = HASH(G (), {1, (u)VueN (0)}))

i

where the double braces are used to denote a multi-set and the HASH function maps each

unique multi-set to a unique new label.

3. We repeat Step 2 until the labels for all nodes in both graphs converge, i.e., until we reach an
iteration K where lgj)(v) = l(fo_l)(v),Vvevj,j =1,2.

4. Finally, we construct multi-sets
La, = {{L{) (v), VveV;,i =0,... K —1}}

46

summarizing all the node labels in each graph, and we declare G1 and G2 to be isomorphic if

and only if the multi-sets for both graphs are identical, i.e., if and only if Lg, = Lg,.

3.2 Machine Learning on graphs

This section covers the basic concepts around Machine Learning on Graphs. At first, the motivation
behind performing Machine Learning Tasks on Graphs is analyzed. Next, the main challenges of
these types of Tasks are covered. Lastly, we dive into more technical ideas, such as the Taxonomy

of these Tasks, and the concept of node embeddings.

e

Networks Images

Figure 3.8: Visual Comparison of Graph (ir)regularity in graphs, images, and text
Stanford (2021)

3.2.1 Motivation

Many real-world systems and interactions can be naturally represented as Graphs. Graphs exist in
multiple scenarios around us, and therefore the ability to extract meaningful information from them
can seem really useful. The scale and the complexity of graphs and other non-Euclidean, geometric
data handled by software systems make their management a natural target for machine learning
techniques. As stated by Bronstein et al. (2017), Geometric Deep Learning is an umbrella term
for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean
domains such as graphs and manifolds. Some examples of large-scale real-world applications of

Geometric Deep Learning are the following:

e By analyzing the structure of a social network Graph, the engineers of a Social Media Plat-
form can produce interesting insights, and apply Machine Learning Techniques to identify

communities or recommend new friends to users based on their Graph neighborhood.

o The engineers of a Movies Platform can utilize the Graph structure of the available data (such
as users, movies, genres, ratings, actors, etc.) and make useful recommendations to users

about new movies.

e Graphs directly work for the representation of molecules, having a variety of applications in

the fields of chemistry and materials science.

Apart from these obvious Graph structures around us, the concepts of Graph Theory can be also
applied to other types of data, such as text and images, making Graphs relative to Machine Learning
Domains such as Natural Language Processing and Computer Vision. A visualization relative to

representing Natural Language sentences as a Graph can be seen in figure 3.9.

47

the

the |
t
E -
stadium the L

kbj fiet b
the ot The the of
ldet }Je(ep

ball' (‘was) . player _ object out
W{\auxpass% \%bj %obg prep

~ ki ™
klcked) \EECEQE/

Figure 3.9: Visual Representation of Natural Language Sentences as a Graph
Rokenes (2012)

3.2.2 Challenges

Deep Neural Networks have been extremely successful on data with an underlying Euclidean or grid-
like structure, such as images or text. However, these Euclidean data have significant differences
from the general-case natural Graph.

First, the main difference between the two types of data is the regularity of their structure,
as can be seen in figure 3.8. Euclidean data, such as images, have a certain structure and can be
modeled as regular Graphs, meaning that all nodes have an equal degree. Images can be visualized
as fixed-size grid structures, as can be seen in figure 3.10. Whereas, in general, a Graph does not
necessarily have a fixed number of nodes, and is not necessarily regular, meaning that each node
can have a different-sized neighborhood.

As stated by Sanchez-Lengeling et al. (2021), another decision that needs to be made for perform-
ing Machine Learning Tasks on Graphs, is how Graphs will be represented in order to be compatible
with neural networks. These complex data structures have up to four types of information that a
Machine Learning model could utilize to make predictions; nodes, edges, global context, and connec-
tivity. Nodes, edges and global context can be stored in matrices, that can be processed by the Deep
Neural Networks that specialize in Euclidean data. In contrast, representing the connectivity of a
Graph in an efficient way is much more complicated. A straightforward way to represent a Graph’s
connectivity would be to use the Adjacency Matrix of the Graph. But, this technique involves the
risk of using a sparse Adjacency Matrix and therefore is not optimal in terms of memory usage.
An additional danger of using Adjacency Matrices to encode the Graph connectivity as input to a
Neural Network is that they are not permutation invariant. In other words, there may be multiple
Adjacency Matrices that encode the same Graph connectivity, but do not produce the same output
as input to the same Neural Network.

Secondly, traditional deep learning has a core assumption that the instances within a dataset are
independent of each other. But, this is not the case in Graphs. When performing Machine Learning

Tasks on the nodes of a Graph, each node depends on its neighborhood. Therefore, assuming this

48

Figure 3.10: Visual Representation of an Image as a Regular Graph

independence can lead to multiple problems, such as information leakage between the train and
the test set during the training of a Deep Learning Model on a Graph. It also complicates well-
known techniques during the training of a model, such as mini-batch training, where the split of

the mini-batches must be done based on the neighborhood structure of each node.

3.2.3 Tasks Taxonomy

Considering the complexity of the information that a Graph encodes, it is natural that more than
one general type of prediction task on Graphs exists. We can differentiate these tasks by taking into

account the entity that they aim to predict, and by considering the usage of labeled/unlabeled data.

3.2.3.1 Graph, Node, and Edge Level Tasks

As seen in figure 3.11, a way to differentiate these tasks is based on the entity that they aim to
predict. In this section, the basic principles of these types of tasks will be covered, and some popular
examples will be provided for each category.

The first type of Machine Learning tasks on Graphs are the graph-level tasks. As stated by
Sanchez-Lengeling et al. (2021), in these tasks the goal is to predict a property for the entire graph.
Graph classification, regression, and matching tasks, which require graph-level representation to
be modeled, belong to the category of graph-level tasks. For example, the aim of Graph classification
is to predict a value representing the whole Graph and use this information to assign the Graph to a
certain class. Graph-level tasks can be seen as analogous to image classification in Computer Vision,
or sentiment analysis in Natural Language Processing, where the goal is to extract information
for the entire entity (image/sentence) provided. A popular example of a graph-level task is Drug

Discovery, where atoms are represented as nodes and chemical bonds between them as edges. The

49

NODE LEVEL

-= EGDE LEVEL

= SUBGRAPH LEVEL

= GRAPH LEVEL

Figure 3.11: Visual Differentiation of Graph Tasks
Waikhom and Patgiri (2021)

Figure 3.12: Communities in Zachary’s Karate Club
Silva and Zhao (2012)

graph-level tasks can also be of subgraph level. An example of a subgraph-level task, is traffic

prediction, by considering road network as a graph.

Node-level tasks are mainly concerned with predicting the identity or role of each node within
the graph. As per Zhou et al. (2018), node-level tasks include node classification, node regression,
and node clustering. Node classification tries to categorize nodes into several classes, and node
regression predicts a continuous value for each node. Node clustering aims to partition the nodes
into several disjoint groups, where similar nodes should be in the same group. A classic example of
a node-level task is Zachary’s karate club Zachary (1977). Zachary’s karate club is a social network
of a US university karate club in the 1970s. The network captures 34 members of the karate club,
representing the interactions of the members outside of the club as links. The network is used
for the community detection task, where the goal is to assign a label to each node, indicating the

community to which the node belongs.

50

The goal of edge-level tasks is to predict information about the edges of a Graph. Such tasks
include link prediction, edge classification. The aim of the link prediction task is to predict, given
a pair of nodes of the Graph, whether an edge between these two nodes exists. A more advanced
version of link prediction is the link weight prediction task, which is applied to weighted graphs,
and aims in predicting not just the existence of a link between a pair of nodes, but also in predicting
the weight of that link. In many cases, this prediction is far more informative than the simple link
prediction. For example, as stated by Hou and Holder (2017), when describing the connection of two
users in a social network, the description "Alice texts Bob 128 times per day” is more informative
than ”Alice likes Bob”. Link weight prediction can also seem useful in recommender systems in

general, as for example in the Movie recommender system of figure 3.6.

3.2.3.2 Supervised, Semi-supervised, and Unsupervised Tasks

In traditional Machine Learning Applications, learning can be categorized into supervised, semi-
supervised, and unsupervised. In supervised learning, labeled datasets are used, meaning that
there is prior knowledge of what the model predictions should be. In contrast, in unsupervised
learning, datasets are unlabeled, and the task is to understand the structure of the provided data
points. Semi-supervised learning is another categorization of learning, that combines the previous
categories. In semi-supervised learning, there exists a small amount of labeled data and a large
amount of unlabeled data. Some common subcategories of supervised learning are classification
and regression tasks, whereas a common subcategory of unsupervised task is clustering.
However, this categorization is neither so informative nor so straightforward in Machine Learn-
ing Tasks on Graphs. An example of supervised learning on Graphs is a node-classification task,
where all nodes are already assigned to labels. An example of unsupervised learning on Graphs is

the community detection problem.

3.2.4 Traditional Approaches

Before the analysis of Modern Deep Learning on Graphs, it is necessary to introduce the tradi-
tional approaches that were used to implement Machine Learning Tasks on Graphs. The techniques
that will be covered in this section, will introduce some key concepts for understanding modern
approaches.

The traditional pipeline used for Machine Learning on Graphs was to extract some hand-crafted
features from the Graphs and use these features as input to a traditional machine learning classi-
fier. These features could focus either on the whole Graph or on certain parts, such as nodes or
edges. A disadvantage of this approach is that hand-crafted features are usually task-specific, and

are therefore not able to generalize across different types of prediction tasks.

3.2.4.1 Node-Level Features

This section will cover the most common node-level features that were used in traditional Machine
Learning on Graphs. The purpose of their usage is to capture the structure and the position of the
nodes in the network.

Node degree is the most straightforward node feature to examine. Counting the number of

incident edges to the node is one of the most informative node features when performing Machine

51

Learning Tasks on a Graph. In cases of directed graphs, there is a differentiation between the in-
degree and the out-degree of a node. The in-degree of a node is equal to the number of the incident
edges, with direction towards the nodes, whereas the out-degree of a node is the number of the

incident to the node edges, with direction away from the node.

Node centrality is an additional group of node features that have been widely used in traditional
node-level tasks. These features aim to quantify the importance of a particular node within a net-
work. Node degree is not a sufficient metric for capturing this importance, as can be seen in figure
3.13. In this example Graph, node A has a small degree but has a crucial role in the connectivity of

the network. There is a variety of centrality metrics, that aim to capture this kind of importance.

 RAT
2 s’ ®
o0t 2/

L]
.
-
e ®

..‘6....

Figure 3.13: Inability of node degree to fully capture the importance of node (A) on the graph
Golbeck (2013)

Eigenvector centrality is a node centrality measure, that calculates a node’s importance for the
network, considering the importance of its neighbors. For example, as stated by Golbeck (2013), a
node with 300 relatively unpopular friends on Facebook would have lower eigenvector centrality

than some with 300 very popular friends. The eigenvector centrality of node v, denoted by e,, is

evzi Z €u

ueN (v)

computed by the recursive formula:

Closeness centrality indicates how close a node is to all the other nodes in the network (Golbeck
(2013)). Lower values of closeness centrality, express that the node’s average distance to all the other
nodes is lower, and therefore the node is more influential to the network. This calculation can be

represented as:

1
Zu;ﬂ) shortest path length between u and v

Cy —

52

Betweenness centrality measures how important a node is to the shortest paths through the
network (Golbeck (2013)). As it can be seen in figure 3.16, the more the shortest paths between
all pairs of nodes that contain the node, the greater the betweenness centrality of this node. The

betweenness centrality of node v is denoted by c,, and is computed by the formula:

Z #(shortest paths between s and t that contain v)
Cy =

#(shortest paths between v and t)

Figure 3.14: An undirected graph colored based on the betweenness centrality of each vertex from
least (red) to greatest (blue).
Rocchini

Clustering coefficient measures the proportion of closed triangles in a node’s local neighbor-
hood (Hamilton (2020)). It measures how tightly clustered a node’s neighborhood is. It is computed

by the formula:
#(edges among neighboring nodes)

o= #(node pairs among neighboring nodes)

The general concept behind clustering coefficient can be generalized to counting other types of
pre-specified subgraphs (called graphlets), instead of closed triangles, in the local neighborhood of
the node.

As far as embedding nodes is concerned, graphlets are small, induced, rooted, connected, and
not isomorphic to each other subgraphs. Some graphlets with 3-5 nodes are visualized in figure
3.15. By counting the occurrences of each graphlet in the local neighborhood of a node, a new node
embedding, called Graphlet Degree Vector, can be generated. An analogy between Node Degree,
Clustering Coefficient, and Graphlet Degree Vector can be found in table 3.1.

The concept of representing whole graphs, based on the graphlets that they contain, will be

covered in subsection 3.2.4.2.

53

Table 3.1: Degree, Clustering Coefficient, Graphlet Degree Vector Analogy

Metric of node u Target counted in neighborhood of node u
Degree nodes
Clustering Coeflicient closed triangles
Graphlet Degree Vector (GDV) graphlets
3-node graphlets 4-node graphlets

1 2 3 4 5 6 7 8
5-node graphlets

At TR vEy

9 13

CRTEET T

Figure 3.15: Some graphlets with 3-5 nodes
Przulj et al. (2004)

3.2.4.2 Link-Level Features

The previously defined features are useful for multiple classification tasks, but they do not quantify
the relationships between nodes. Link-level features aim to achieve this quantification and use this
information to predict the existence or features of edges. They can be categorized into the distance-
based features, those that aim to capture the Local Neighborhood Overlap, and those that aim to
capture the Global Neighborhood Overlap.

Shortest-path length between two nodes is the most straightforward distance-based feature,
that can be used to predict the link-existence between a pair of nodes. In other words, the closer
two nodes are placed in the graph, the more possible that a link between these two nodes exists.
However, this feature has the disadvantage that it does not capture the overlap of the node’s neigh-

borhoods.

Counting the Common Neighbors is the simplest way to measure the Local Neighborhood

Overlap between a pair of nodes. This metric can be formalized by the formula (Hamilton (2020)):
Su,v] = [N(u) N N(v)]

Jaccard’s coefficient is an extension to the technique of just counting the common neighbors
of two nodes, that aims to quantify the Local Neighborhood Overlap between two nodes. Its aim
is to normalize any biases in the result because of the node’s degrees, by dividing the number of

common neighbors by the size of the union of the node’s neighborhoods. It is computed by the

54

formula (Hamilton (2020)):

SJaccard [u> U] =

In addition to these types of measures, that just quantify the Local Neighborhood Overlap, there
are measures that aim to take into account the importance of the common neighbors. For example,
the Adamic-Adar index takes into account the degree of each one of the common neighbors. It
considers more important the common neighbors with low degrees. The intuition behind this is that
the low-degree common neighbors are more informative about the relationship between the target
nodes than the high-degree common neighbors. To achieve that, it uses the inverse logarithm of the

neighbor’s degrees, and is computed based on the formula (Hamilton (2020)):

1
SAA [UL U2] = Z log d
veN (ul)NN (u2) & tu

All these measures of Local Neighborhood Overlap have a common disadvantage. They only
consider the local neighborhood of the graph, and as a result, they do not correlate a pair of nodes
without common neighbors. In a real-world network, it is possible that two nodes, without any
common neighbors, belong to the same community, and therefore a link can be formed between
them.

Figure 3.16: Nodes A and F neighborhoods are not overlapping, but a link could be formed between
these nodes in the future.
Stanford (2021)

This limitation can be resolved by Global Neighborhood Overlap metrics, that take into account
the entire graph. Katz index belongs to the category of Global Neighborhood Overlap metrics. The
Katz index between a pair of nodes is computed by counting the walks of all lengths between these

nodes. It is computed by the formula (Hamilton (2020)):

o0

SKatz [uv U] = Z 51141 [u, U]

=1

where the index i denotes the length of the path between nodes w and v, and b is a discount factor,

that regulates the influence of larger paths on the final result.

55

3.2.4.3 Graph-Level Features

Graph-Level features are essential in graph-level tasks, such as Graph Classification. These features
aim to extract global information and characterize the structure of the whole graph.

Kernel functions are generally used in various Machine Learning Tasks. A brief introduction to
kernel methods can be found at Nikolentzos et al. (2021).

Definition 3.2.1 (Kernel function): Nikolentzos et al. (2021) Given a non-empty set X, we say that a
function k : X x X — R is a kernel if there exists a Hilbert space H and some map ¢ : X — H that
satisfies:

k(z,2") = (p(x), p(2')) gV, 2’ e X

Kernel functions can be also used for graphs. In this case, they are called graph kernels. A graph
kernel is a kernel function that computes the similarity of two graphs via their inner product.

Multiple graph kernels are based on counting the occurrences of defined substructures in the
graph. A widely used technique to generate graph kernel functions is by aggregating node-level
features. The most straightforward concept that falls under this category is known as Bag of nodes.
For example, a graph kernel can be generated if the graph is seen as a bag of node degrees, or as
bag of node centralities. A visualization of this approach can be seen in figure 3.17. An important
weakness of this approach is that the result is produced entirely by node-level features, and therefore

some information that can be extracted only by the global structure of the graph will be ignored.

Degl: e Deg2:e Deg3:

¢(I\]) = count([\I')
¢(IND)

Figure 3.17: Graphs as Bag of Node Degrees
Stanford (2021)

[;, 5, 1]

I

count(NI) =10, 2, 2]

Another concept that has been widely used in traditional machine learning approaches on graphs,
and has already been reported in section 3.2.4.1, is the concept of Graphlets. An important differ-
ence between using graphlets for node-level and for graph-level tasks is that, for graph-level tasks,
we consider that graphlets are not rooted, and are not necessarily connected. Following the bag of
nodes approach, we can define another graph kernel, known as graphlet kernel, by counting how
many times each graphlet is contained in a graph. That way, the graph can be represented as bag of
graphlets. However, this approach has severe scalability limitations, as counting graphlets of size
k for a graph of size n by enumeration takes O(n*).

To define a more efficient graph kernel, the color refinement variant of the Weisfeiler-Lehman

isomorphism test (3.1.3.4) has been used. This kernel, known as Weisfeiler-Lehman Kernel, is based

56

on the concept that after K steps of the algorithm, the label of node v, denoted by [(k) (v), summa-
rizes the structure of its K™ neighborhood. Therefore, after K steps of the color refinement method,
each node is assigned to a label describing its neighborhood, and as a result, each graph can be
represented as a bag of labels. Then, the WL kernel is computed by the inner product of the label

count vectors.

3.2.5 Node Embeddings

This subsection is an overview of the basic concepts around node embeddings, and a high-level

report of the main approaches and techniques that have been developed for their calculation.

ENC(u) g b
o Zo)
/ \\u encode nodes A
o AN
\ / B ammn S
ENC(v)
original network embedding space

Figure 3.18: Projection of nodes into the embedding space
Stanford (2021)

3.2.5.1 Main concepts

Node embeddings are low-dimensional, real-valued vectors, that summarize the position of the node
in the Graph and capture the structure of the node’s local neighborhood. The aim of the projection
of figure 3.20 is to find an embedding space, where the geometric relations of the embeddings z,
and z,, correspond to the relations of their nodes u and v in the original graph.

Embeddings have been used in various domains of machine learning in general, such as in Nat-
ural Language Processing. In this domain, a word embedding is a representation of a word as a
low-dimensional vector, that captures the meaning of a word, in such a way that words with similar
meanings are expected to have embeddings with a “small” distance in the embeddings space. As
a result, the mapping of the words to an embedding space can be used as an intermediate step in
multiple NLP tasks.

In the same way, nodes of a Graph that are in a similar position, or belong to the same neigh-
borhood, are expected to have similar node embeddings. This type of information can be utilized
in various tasks, such as in Link Prediction, or Community Detection. A visualization of the rela-
tionship between detected communities and computed node embeddings in Zachary’s Karate Club

dataset can be seen in figure 3.19.

57

° | ee
0.6 ° oy
o o -~ . -
| 0.8 ® el
e n ® e
™ 1 e [] @ El o -
° o 10} L. ®
L]
L L) o 12/ 0g ™
[] ®
- ® ® 1.4
=
® e ™ -16
L ™ ®a
18}

10 0.5 0.0 0.5 1.0 L5 2.0 2.5

Figure 3.19: Communities and node embeddings in Zachary’s Karate Club Graph
Perozzi et al. (2014)

3.2.5.2 The Encoder-Decoder Framework

A well-known approach used for node embeddings is the Encoder-Decoder framework. As per
Hamilton et al. (2017b), the framework consists of two basic mapping functions, an encoder and a
decoder.

The encoder is responsible for the mapping of the graph nodes to low-dimensional embeddings.

Formally, the encoder has the signature (Hamilton (2020)):

ENC:V — R?

Encoders are commonly based on the shallow embedding approach. In this approach, the en-
coder is just an embedding lookup in the embedding matrix, that contains a column for the embed-

ding vector of each node of the graph. In this case, we can define the decoder mapping as:
ENC(u) = Z[u], where Z is the embedding matrix

There have been developed multiple methods for generating the embedding matrix. Some of them,
such as the ones used in Node2Vec (3.2.5.5) and Fast Random Projection (3.2.5.6), will be seen in the

following chapters.

embedding vector for a

embedding specific node
matrix 0
\ o
“ - _ o
< . Dimension/size
1 = 9 "~ of embeddings
9
0.
i

one column per node

Figure 3.20: Shallow encoding for the generation of node embeddings
Stanford (2021)

58

The decoder is responsible for the reverse mapping, i.e. obtaining structural information about
the graph by the embeddings. In general, multiple decoders are possible, but the usual practice is
a decoder that maps a pair of node embeddings (pairwise decoder) to a real value that represents
the similarity of these nodes in the original graph. The signature of the decoder is the following
(Hamilton (2020)):

DEC: R* x R* —» R*

The output of a pairwise decoder is a reconstruction of the similarity between a pair of nodes.
In order to evaluate the quality of the encoder and the decoder mappings, there must be a function
that maps a pair of nodes to a real-valued similarity measure. This pairwise similarity function is
denoted by sg(v;, v;), and is a user-defined, graph-based similarity measure between nodes, defined

over the graph G Hamilton et al. (2017b). It has the following signature:
sg:VxV - R

The evaluation of the decoder and encoder mappings is based on a loss function that defines the
comparison between the pairwise decoder output and the pairwise similarity function output for
the same pair of nodes and their embeddings. The goal is to build the encoder and decoder functions
in a way that this loss is minimized, and therefore the following relationship stands Hamilton et al.
(2017Db):

DEC(ENC(vi,vj)) = DEC (%, 2j) = sq(vi, v)

The shallow embedding approaches are mainly based on matrix factorization techniques, and

on random walks. The following subsections present an overview of these two methods.

3.2.5.3 Factorization-Based Approaches

The methods in this section are referred to as matrix-factorization techniques because they define

the loss function based on the form:
L~ 272 -S|

where S is the pairwise similarities matrix, and Z is the node embeddings matrix.
They can be divided into two sub-categories, the Laplacian eigenmaps techniques, and the In-
ner product methods. Table 3.2 shows the general formulas for the decoder mapping and the loss

function in these techniques.

Table 3.2: Decoder mapping and loss function in Laplacian-Eigenmaps and Inner-product ap-
proaches of the encoder-decoder framework

DEC(z;, zj) Loss function
|2 — 23 > (viy)en DEC(zi, 2j) - sa(vi, vg)
7] 2j > (usup)en 1DEC (21, 2j) — s (i, u))|[3

59

3.2.5.4 Random Walks

In recent years, there has been a shift towards using stochastic methods to capture a node’s local
neighborhood. Following this direction, a method that has been widely used to map nodes to an
embedding space is the method of random walks.

Given a graph and a starting point, we select a neighbor of it at random and move to this neigh-
bor; then we select a neighbor of this point at random and move to it, etc. This (random) sequence
of points selected this way is a random walk on the graph. Lovasz (1996)

More formally, as per Grover and Leskovec (2016), the iy, node of a random walk of fixed length

1, given a source node ¢y = u is generated by the distribution:

Tz (v,x) €E

0 otherwise

P(c; = x|ci-1 =v) = {

where 7, is the unnormalized transition probability between nodes v and z, and Z is the normal-
izing constant.

The main concept of encoding nodes using random walks is that a pair of nodes should have
similar embeddings if these nodes tend to co-occur on short-length random walks over the graph.
The concept of using random walks to project nodes to the embedding space is beneficial in terms
of scalability. Methods that utilize random walks are especially useful when one can either only
partially observe the graph or the graph is too large to measure in its entirety Goyal and Ferrara
(2018).

A widely-used example of a real-world algorithm that utilizes the concept of random walks, is

the node2vec algorithm.

3.2.5.5 Node2vec

Node2vec Grover and Leskovec (2016) is a semi-supervised algorithm for scalable feature learning
in networks. Intuitively, node2vec performs some biased random walks and returns feature repre-
sentations that maximize the likelihood of preserving network neighborhoods in a d-dimensional
feature space. For the purpose of this thesis, this subsection will focus on the search strategy of
node2vec. A detailed description of the algorithm and information about its time and memory com-
plexity can be found in the original paper (Grover and Leskovec (2016)).

The goal of a search strategy is, given a source node u, to sample its neighborhood Ng(u).
Two classic, but extreme in terms of search behavior, strategies are the Breadth First Search and
the Depth First Search algorithms. Intuitively, the Breadth First Search algorithm focuses on the
local neighborhood of the source node, exploring at first the immediate neighbors of each node. In
contrast, the Depth First Search algorithm focuses on exploring nodes as far as possible from the
root node along each branch, before backtracking. Figure 3.21 displays a visualization of the nodes
that each algorithm has visited, starting from node u, and after making three steps.

In general, prediction tasks on nodes usually capture two types of similarities: homophily and
structural equivalence. According to the homophily hypothesis, nodes that are highly connected,
are similar to each other, and should therefore have close embeddings. According to the structural

equivalence hypothesis, nodes that have a similar role in the structure of the network, are alike

60

Figure 3.21: BFS and DFS strategies
Grover and Leskovec (2016)

to each other and, regardless of their connectivity, should have close embeddings. In real-world
networks, node similarity is a mixture of these two criteria.

One could say that the BFS algorithm focuses on identifying the structural equivalence of two
nodes, after focusing on the structure of their local neighborhood. In contrast, the DFS algorithm
focuses on identifying the homophily of two nodes, after exploring the node’s connections.

Node2vec uses two tunable parameters, the return parameter p and the in-out parameter ¢, that
give control over the behavior of the biased walks, and therefore over the search space. By tuning
these parameters, the algorithm can achieve a mixture of homophily and structural similarity to
generate expressive node embeddings.

In short, node2vec defines a 2" order random walk, where the transition probability ,, is
computed as follows Grover and Leskovec (2016): Considering the latest traverse to be from node ¢

to node v, the transition probabilities 7, for each neighbor = of node v are: 7y, = yq(t, T) - Wyg,

where:
% dt:L’ = 0
apg(t,z) =¢ 1 dip =1
% diz = 2

and dy, denotes the shortest path between nodes ¢t and .

As can be inferred by this formula:

e The return parameter p controls the probability of revisiting the previous node in the random
walk. When p has a low value, this probability is large, and it is therefore expected that the

walk stays in the local neighborhood of node v.

e The In-out parameter q controls the inward or outward direction of the walks. If q<1, the
probability of visiting nodes with d,, = 2 is large, and therefore the walk tends to visit nodes

that are further from node ¢, reminding of the DFS algorithm.

3.2.5.6 Fast Random Projection (FastRP)

FastRP (Chen et al. (2019)) is a scalable and performant algorithm for learning distributed node

representations in a graph. According to the original paper, FastRP is over 4000 times faster than

61

state-of-the-art methods such as node2vec (Grover and Leskovec (2016)) and DeepWalk (Perozzi

et al. (2014)), and it also achieves comparable performance on various tasks.

The FastRP algorithm perceives the generation of network embedding as a process of two main
components. The first component is the construction of a node similarity matrix, and the second
one is the dimensionionality reduction on this matrix to produce the node embeddings. The outline
of the algorithm, as it can be found in the original paper, is presented in figure 3.22. The following
sections contain the basic mathematical background and the intuition behind these processes, as

they are presented in the original paper.

Algorithm 1 FastRP(A)

Input:
graph transition matrix A, embedding dimensionality d, maxi-
mum power k, normalization strength f, weights a1, a2, . ..,

Output: matrix of node representations N € Rrexd

1: Produce R € R"™ according to Eq. 6
\F
22 Ny < A-L-RwhereL;; = (4)

Zm

3. fori=2tondo

4: Nf «— A- Nf_..l

5. end for

6: N = a1Nq +...+0:ka
7: return N

Figure 3.22: Outline of the FastR algorithm
Chen et al. (2019)

Dimension Reduction in FastRP

As far as the dimension reduction is concerned, the FastRP algorithm utilizes the very sparse
random projection algorithm (Li et al. (2006)), which is an extension of the random projection

(Vempala) and sparse random projection (Achlioptas (2003)) algorithms.

In short, Random projection is a method to reduce the dimensionality of a set of points, while
preserving the pairwise distances between them. The general concept is that, in order to reduce a

n x m feature matrix M to a n x d matrix N, where d << m, we need the matrix multiplication:
N=M- R

where R is random projection matrix, with all of its entries to be independent and identically dis-
tributed with zero mean value. In general, the random projection methods mainly differ in the way

that they compute the R matrix. These differences are summarized in the following paragraphs.

62

In Gaussian Random Projection, the entries of R are sampled i.i.d from a Gaussian distribution:
R;; ~ N(0, é) R is a dense m x d matrix, and therefore the time complexity of Gaussian random
projection is O(n - m - d).

An improvement to the Gaussian random projection is sparse random projection. In this method,

entries of R are sampled i.i.d from:

Vs with probability5-
Rij=4 0 with probabilityl — % (3.1)
—y/s with probability -

with s = 3. Asaresult, 1 — % = % of the R entries are zero, and this triples up the speed of the
process.

Very sparse random projection is an extension to the sparse random projection method, that
proposes the usage of s = v/D for the computation of the matrix R in the equation 3.1, in order
to generate node embeddings of dimension D. This achieves v/D times speedup over the Gaussian
random projection.

In the FastRP algorithm, very sparse random projection with D = m is used. As the only com-
putation needed for dimensionality reduction is matrix multiplication, accelerators such as GPUs
are utilized better, and parallelization is achieved. In addition, because of the associative property
of matrix multiplication, the computation of the random projection N = A* - R of the node similar-
ity matrix A*, becomes even more efficient. As reported in the original paper, the time complexity
for the random projection of each power of the matrix A is O(m - k - d).

Node similarity matrix construction in FastRP

There are two main points about the existing methods, that are worth mentioning. Firstly, it is
important to keep the high-order proximity in the input graph, which is usually achieved by the
powers of the transition matrix (A¥). Secondly, existing methods usually skip the element-wise
normalization on the similarity matrix, before the dimension reduction, for scalability reasons.

But, in the original FastRP publication, it is shown that for a particular entry Afj of the node

similarity matrix, we have that

dA
Al — ﬁ when k — 0o (3.2)

In addition, the majority of the real-world graphs are scale-free, and the degree of the scale-free
networks follows a heavy-tailed power-law distribution. So, it follows that the entries in A* have a
heavy-tailed distribution, which causes problems with dimensionality reduction methods. For this
purpose, the FastRP algorithm uses a scaled version of the Tukey transformation (Tukey (1957)) to
normalize the similarity matrix in an effective way. Each feature y is transformed into y* where
A controls the normalization strength. In the original publication, it is proved that, because of the
equation 3.2, the normalized version of the node similarity matrix is computed as (Afj))‘ Therefore,

the time complexity for the computation of the similarity matrix is O((n - d)/s) = O(n - V/d).

Iteration weights

In the algorithm presented in figure 3.22, one can notice the weights a1, ag, ..., ag, also referred
to as iteration weights in bibliography. Intuitively, they are used to tune the impact of each node on

the embeddings of the other nodes, based on their distance on the graph.

63

3.3 The Link Weight Prediction Task

The link weight prediction task is classified as an edge-level task of machine learning on graphs, as
it has already been reported in 3.2.3. A visualization of the link prediction task can be seen in figure
3.23. Multiple approaches have been developed for this task, starting from some traditional machine
learning techniques, later moving onto deep learning approaches, and finally utilizing Graph Neural
Networks. In this chapter, the first two categories of approaches will be covered. The utilization of

Graph Neural Networks for link weight prediction will be covered in section 3.7.

Figure 3.23: Visual representation of a graph with unknown weights on some edges. The aim of the
link prediction task is to predict the weight on these edges.
Hou and Holder (2017)

3.3.1 Problem Definition

In Hou and Holder (2017), the link weight prediction problem is defined as follows, for a weighted
directed graph:

Definition 3.3.1 (Link Weight Prediction): Given a weighted directed graph with the node set V and
link subset I, the aim of the link prediction task is to build a model that can predict the weight w =

f(z,y), for any link (x,y)eE.

3.3.2 Motivation

The main motivation behind the link weight prediction problem is that in a real-world system, hav-
ing some kind of knowledge on the interaction between two nodes, can be far more informative
than just knowing that the interaction exists. For example, in a movie recommender system, where
the ratings of users on movies are modeled as links of a graph, knowing the exact rating is more

useful than just knowing that a user has rated, liked, or seen a movie.

64

3.3.3 Traditional Approaches

Multiple approaches to the link weight prediction task were developed before the usage of deep
learning. An overview of these methods is reported in Hou and Holder (2017). Some of them, such
as the node similarity model, depend on the link-level features of a graph (3.2.4.2) and other more
complex methods, such as Stochastic Block Model (Holland et al. (1983)), only use link existence

information.

In the node similarity model, the weight w;, of alink (z, y) between nodes x and y is considered
to be proportional to the similarity s;, of these nodes and is computed by the linear regression
model:

Wey =k - Szy (3.3)

where k is the regression coefficient. The similarity s, is based on the common neighbors of these

nodes, and is calculated by the formula:

Sey= Y. F (3.4)

zeN (z)NN (y)

where F'is an index factor that can have multiple forms and is calculated with respect to the common

neighbors of the nodes or other metrics such as Adamic-Adar (3.2.4.2) and Resource Allocation.

link weight
output layer linear regression (f(z) = ki)
hidden layer rectifier (f(x) = max(0, 1))
hidden layer rectifier (f(x) = max(0, x))
—/ \
input layer node vectoré node vector
mapping layer [node dictionary (node ID: node veclcr}] [node dictionary (node ID: node vector)
node 1D node 1D

Figure 3.24: Visual representation of the architecture of Model R
Hou and Holder (2017)

65

3.3.4 Deep Learning Approaches

Deep learning has outperformed traditional machine learning approaches in multiple domains, such
as Computer Vision and Natural Language Processing. As a result, in addition to the traditional
approaches which were reported in the previous section, multiple deep-learning approaches were
developed for the link weight prediction task.

One of the first deep learning approaches for link weight prediction was Model R (Hou and
Holder (2017)). This model is a fully connected deep neural network and uses a supervised approach
to predict link weights. As it can be seen in figure 3.24, the model maps each node to a node vector,
and then applies multiple hidden layers of rectified linear units, and a linear regression on its output
layer to generate the predicted link weight.

A following approach to the same task is Model S, proposed in Hou and Holder (2018). The
key concept for the development of Model S was to decouple the process of Model R into two sub-
processes, the generation of the node embeddings, and the following link weight prediction. The
main benefit of this decoupling is that any node embedding technique can be used as an input to
the model (such as node2vec 3.2.5.5), making it also compatible with any techniques that might be
developed in the future. As stated in the original paper, Model S is a generalization of Model R, or
vice-versa, Model R is a special case of Model S when the pair of node embeddings is produced by

itself. A visualization of Model S can be seen in figure 3.25.

output = link weight

T

fully connected layer

i

fully connected layer

I

fully connected layer

S =

direct activation layer direct activation layer
input = (source node’s embedding, destination node’s embedding)

Figure 3.25: Visual representation of the architecture of Model S, with one input layer (red), two
hidden layers (green), and one output layer (blue)
Hou and Holder (2018)

3.4 Graph Neural Networks

This section will present the basic concepts around Graph Neural Networks, also referred to as
GNNs, starting with the motivation behind their recent growth. Subsequently, some more technical

details about their functionality will be covered, as long as the most common architectural patterns

66

for developing a GNN. Closing this section, we will present some interesting insights and challenges

that occur when training and testing a Graph Neural Network in a real-world task.

3.4.1 Motivation

In the previous sections, there was made an extensive coverage of the need to perform Machine
Learning Tasks on Graphs, and multiple traditional approaches in this direction were reported. The
main concepts that have been traditionally used for Graph Learning Representation are node em-
beddings, which used a shallow embedding approach to produce node representations. But, most of
these embedding techniques, introduced some serious limitations. For example, they do not incor-
porate node features and capture only the structural information of the network. In addition, they
are transductive, meaning that they cannot generate embeddings for nodes that have not been seen
during the training phase.

For these reasons, Graph Neural Networks were developed. As per Hamilton (2020), the GNN
formalism is a general framework for defining deep neural networks on graph data. GNNs are able to
encode structural information of the node inside the network, and simultaneously take into account

any existing node features.

3.4.2 Challenges

In general, the challenges around deep learning on graphs have already been covered in chapter
3.2.1. In summary, the main challenge is to define a new deep learning architecture, that extends
existing widely-spread architectures of Deep Learning, such as Convolutional Neural Networks
for Computer Vision and Recurrent Neural Networks for Natural Language Processing, and that

can perform machine learning tasks on non-euclidean data.

3.4.3 Key concepts

This subsection will cover in a high-level the key concepts around the functionality of GNNs.

3.4.3.1 Permutation Invariance and Equivariance

The most straightforward way to handle a graph with a deep learning model would be to use as
input to the model its adjacency matrix. The issue with this approach is that changing the order
of the nodes in the adjacency matrix obviously produces a different adjacency matrix for the same
graph. As aresult, the output of the model for a graph would be dependent on the order of the nodes
in the adjacency matrix, and the transformation would not be permutation invariant. Ideally, the
model should learn a representation of the node features, that is permutation invariant, meaning
that it should be independent of the order of the nodes.

A formal definition of the permutation invariance and permutation equivariance is provided in
Meltzer et al. (2019).

Definition 3.4.1 (Permutation Invariance): Let P, be the set of all valid permutation matrices of or-

der n, then a function f is invariant to:
o row permutation iff f(X) = f(PrX),VXeR"™, PreP,

67

e column permutation iff f(X) = f(XPL),VX€ER™ " P.eP,

Definition 3.4.2 (Permutation Equivariance): Let P, be the set of all valid permutation matrices of

order n, then a function f is equivariant to:
o row permutation iff Pr f(X) = f(PrX),VXeR"™ PreP,

e column permutation iff f(X)PL = f(XPL),VXeR™ " P.eP,

T

Intuitively, as far as graphs are concerned, a permutation invariant function is a function that is
independent of the order of the rows/columns in the adjacency matrix, and e permutation equivari-
ant function is a function that its output is permuted in a consistent way when the adjacency matrix

is permuted.

TARGET NODE Q .“‘

|'

H|
|
|
‘

INPUT GRAPH)

Figure 3.26: The Message Passing Framework, used for neighbors’ aggregation. The embedding of
node A is generally generated by aggregating the embeddings of its neighbor nodes.
The message-passing process that is visualized here is a two-layer version, extending
this aggregation to also reach the nodes with a distance of 2 from node A.
Stanford (2021)

3.4.3.2 The Message Passing Framework

As stated by Gilmer et al. (2017), this framework is an abstraction of some common points in the
most promising existing models for graph-structured data. The key idea behind this framework is
that the embedding of each node should be generated based on the embeddings and the structure
of its local neighborhood. In this section, we present a high-level approach to the framework’s
functionality. In Gilmer et al. (2017), a more formal mathematical formulation can be found.

For simplicity, the basic concepts of the framework will be presented on undirected graphs,
denoted by G, with node features denoted by x,, and edge features denoted by e,,,.

The forward pass of the training has two phases, the message-passing phase, and the readout
phase. As it can be seen in figure 3.26, each node’s A embedding is affected by the embeddings
of its neighborhood (denoted by /N 4). The message-passing phase runs for 7" time steps. At each
time step, each node v has a hidden state vector h,,. During the time step ¢, the hidden state h of

each node v is updated based on the messages m/! that the node receives from its neighborhood.

68

The messages are aggregated by an AGGREGATE function, and then an UPDATE function is ap-
plied to this aggregated vector, producing the hidden state h’*!. The message-passing phase can be
mathematically formulated as follows, as stated by Hamilton (2020):

miyly = AGGREGATE® ({h), YueN (v)}) (3.5)
Wil —UPDATE® (AP, mg';gvp (3.6)

Note that in equation 3.5 the aggregation function takes as input a set of the neighbors’ hidden
states, and therefore GNNs following the message-passing framework are permutation equivariant
by design. After running K steps of the message-passing phase, we can use the hidden state hE,K)

of each node v as the node’s embedding.

In the readout phase, there is computed a feature ¢ for the whole graph. This feature vector is

extracted via a readout function R, according to the formulation:
§ = R({hP|veG}) (37)

The functions AGGREGATE, UPDATE, and R are learned differentiable functions. That means
that, for example, a whole neural network can be used to perform the aggregation. Various GNN

types, that utilize these functions in different ways, will be covered in the following sections.

An important property of the message-passing framework is that it requires that all the nodes
v have some initial hidden state hz(jo). The hidden state of the nodes can be initialized either with
structural properties, such as the degree or the centrality of each node, or, in real-world networks,
with information related to the entities that the nodes represent, about the nodes, as for example

demographic information about a user in a social media network.

In the classic approach, the embedding aggregation takes place over the immediate neighbors of
each node. An interesting note is that then, the node’s v hidden state hq(Jk), ateach step k, is generated
based on the embeddings of the k' neighborhood of the node. This behavior of aggregating the

local neighborhood features is similar to the convolutional kernels used in Convolutional Neural

Networks for Computer Vision.

Figure 3.27: Visual Comparison between 2D convolution on an image and Graph Convolution
Wu et al. (2021)

69

3.4.4 Taxononomy

This section will focus on the Taxonomy of the GNNs, as it presented by Wu et al. (2021) and Zhou
et al. (2022). This taxonomy is based on multiple criteria, such as architecture, training type, and

task type.

3.4.4.1 Architecture

e Recurrent Graph Neural Networks (RecGNNs)

RecGNNs (Huang and Carley (2019)) generalize classic RNNs in order to process graph-structured
data and learn node representations. They introduced the idea of message-passing, which
was later on inherited by Graph Convolutional Neural Networks. They assume a constant
message-passing process between a node and its neighbors until a stable equilibrium is reached.
A commonly used variant of Recurrent Graph Neural Networks is GraphLSTM (Liang et al.
(2016)), which generalizes the vanilla LSTM that is being used for sequential data, to perform
on graph data. A high-level visualization of the RecGNNs functionality can be seen in figure
3.28.

e Convolutional graph neural networks (ConvGNNs)

ConvGNNs (Kipf and Welling (2016a)) generalize classic CNNs (O’Shea and Nash (2015)) to
process graph data, instead of images. Following the concept of convolution kernels in CNNs,
ConvGNNs generate each node’s embedding by aggregating the embeddings of this node’s
neighbors. This process can be seen in figure 3.27. As will be seen in the following chapters,

ConvGNNs can be further distinguished into spatial and spectral.

e Graph autoencoders (GAEs)
GAEs (Ng et al. (2019)) are unsupervised learning frameworks that encode graphs or nodes
into a latent vector space and then reconstruct them from the encoded data.

e Spatial-temporal graph neural networks (STGNNs)

are GNN architectures that operate on graphs that evolve over time, also known as spatial-
temporal graphs. These types of GNNS consider spatial and temporal dependency at the same

time, exploring tasks that have been increasingly popular in a variety of applications.

3.4.4.2 Task

Another way to categorize Graph Neural Networks is by the task type that they aim to solve. This
taxonomy of machine learning tasks on graphs has already been analyzed in section 3.2.3.

3.4.4.3 Training

Graph Neural Networks can also be categorized based on the training frameworks used. That is,
GNNs can be categorized into those that perform supervised, unsupervised and semi-supervised
tasks. The differentiation between these types of tasks, as long as some examples, have already

been reported in section 3.2.3.1.

70

Output @

Aggregate

L

Aggregate

Input

Figure 3.28: Visual Representation of a Recurrent GNN
Huang and Carley (2019)

3.5 Some Graph Convolutional Neural Networks

In this section, we will cover the theoretical background behind the Graph Convolutional Neural

Networks that were used in our experiments.

3.5.1 GraphSAGE

GraphSAGE (Hamilton et al. (2017a)) stands for SAmple and aggreGatE and is a general frame-
work for inductive node embedding. Traditional methods for generating node embeddings, usually
depend on matrix factorization, and therefore cannot generalize to unseen nodes. GraphSAGE is
inductive, meaning that it can generalize to unseen nodes, and even to unseen graphs. As it is re-
ported in the original paper, the key concept behind GraphSAGE is that instead of training a separate
embedding vector for each node, it trains a set of aggregator functions that learn to aggregate informa-
tion about a node’s local neighborhood. A visualization of the forward pass of GraphSAGE can be
seen in figure 3.29.

The detailed algorithm of GraphSAGE can be found in the original paper. In this section, a high-
level overview of the algorithm will be provided. The forward pass of the algorithm follows the
message-passing concept of the general Message Passing Framework (3.4.3.1). GraphSAGE performs

K iterations, and in each iteration, it executes the equations 3.5 and 3.6 as follows:

My = AGGREGATE® ({h{F=1), YueN (v)}) (38)
W = o(WE - CONCAT(WE, m®)) (3:9)

The AGGREGATE function can be any function, as long as it operates over an unordered set
of vectors. It can be any function that ideally is symmetric and trainable. Some candidate func-
tions presented in the original paper are a mean operator, a max pooling operator, and even a more

complex aggregator based on the LSTM architecture. The weight matrices W* Vkel, ..., K of the

71

UPDATE step are trainable parameters. Thus, this step is feeding the concatenated vectors through
a fully connected layer with a non-linear activation function o.

An interesting concept around the GraphSAGE framework is its relation to the Weisfeiler-
Lehman Isomorphism test (3.1.3.4). As it is shown in the original paper, a variant of GraphSAGE
is an instance of the WL test, known as "naive vertex refinement”. This similarity between Graph-
SAGE and the WL test, gives the theoretical background for the algorithm, to represent effectively

the structure of each node’s local neighborhood.

i3

@
1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

Figure 3.29: Visual Representation of the sample and aggregate technique of SAGE
Hamilton et al. (2017a)

3.5.2 k-GNNs

k-GNNs (Morris et al. (2018)) are neural network architectures based on the k-dimensional WL
algorithm. The intuition on this category of GNNss is that they perform the message-passing process
between subgraph structures, instead of nodes.

As stated in the original paper, k-GNNs are generalizations of 1-GNNs, which is the most basic
GNN model. The general concept of 1-GNNs, has already been covered in the Message Passing

Framework section 3.4.3.1 of this thesis. In short, their functionality is formulated by the equations:

O =o(fE D) - W+ 37 D) W) (3.10)
weN (v)

where Wl(t) and WQ(t) are parametrized matrices, and o denotes a component-wise non-linear func-
tion. The generalization of the equation 3.10, where the aggregation of the neighborhood features
and their merge with the current hidden state of the node can be performed by any differentiable,
permutation invariant function, is equivalent to the process formulated by the equations 3.5 and 3.6
of the Message Passing Framework (3.4.3.1).

The mathematical formulation of k-GNNs is based on computing feature vectors for k-element
subsets [V (G)]* over the set V(G) of the graph’s vertices. In each layer of a k-GNN, the equation

3.10, that computes the new feature vector of the subset s is modified as follows:

)=o) w+ Y 1w W) (3.11)

ueNL,(s)NNg(s)

where Ny (s) denotes the local neighborhood of s, and N¢g(s) denotes the global neighborhood of

S.

72

A key feature of k-GNNss is the existence of an Hierarchical Variant, that combines layers with
different values of k, and therefore combines different representations of different granularities.
This concept is visualized in figure 3.30. A detailed formulation of this variant can be found in the

original paper.

1-GN N

@7

e
Z-GNN

A-GNN

1 Pl [

— Lenruing higher-order graph properties

Figure 3.30: Visual Representation of the Hierarchical Variant of k-GNNs. Multiple k-GNNs are
combined, with the extracted representations coming from different granularities.
Hamilton et al. (2017a)

3.53 GAT

GAT (Velickovi¢ et al. (2017)) stands for Graph Attention Network and is an extension to the graph
convolutional neural networks that have been reported in the previous sections. Graph Atten-
tion Networks utilize the concept of attention mechanisms, which have been widely used in many
sequence-based tasks of machine learning. The general intuition is that they extend the AGGRE-
GATE method of the message-passing framework, combining it with attention mechanisms so that
the messages coming from each neighbor have different importance on the newly produced embed-
ding. This is opposed to other GNNs, such as GraphSAGE, that assign the same importance to all
the nodes of the same neighborhood.

More formally, a single layer of a graph attention network takes as input a set of node fea-
tures h = {hz, h_é, s h?v}, hj;ERF and transforms them to a set of output node features b’ =
{ h_;l, _’;, e h?\,}, fZeR . At first, a linear transformation, which is parametrized by a weight ma-
trix W, is applied to the input features. Then, the attention takes place on each node, via a shared
attention mechanism c, that maps features pairs into attention coefficients ¢;;. The attention coef-
ficients are defined for pairs of nodes, and intuitively compute the importance of node’s j features,
for the computation of the features of node 7. An illustration of this process can be seen in figure

3.31. Mathematically, attention coefficients are defined as
eij = a(Whi, Wh;) (3.12)

In practice, as the original paper states, these attention coefficients are computed only for the
pairs of nodes that are neighbors in the graph. An interesting extension, which is covered in the
original paper, is the usage of multi-headed attention. The intuition is that multiple independent
attention transformations ay, are trained, and the features produced by each transformation are

aggregated, with concatenation in hidden layers and mean pooling in the final layer, to produce

73

expressive feature vectors. An analytical mathematical formulation of this multi-headed attention

is out of the scope of this section and can be found in the original paper.

concat/avg
B e e e

Figure 3.31: Visual Representation of the message-passing step on a Graph Attention Network. The
trainable attention coefficients a7, lead to the embedding of each node v being aggre-

gated with a different level of importance for the computation of the embedding /). The
three colors illustrate that the attention is multi-headed (with three attention heads).
Velickovi¢ et al. (2017)

3.54 GIN

GIN (Xu et al. (2018)) stands for Graph Isomorphism Network and is a GNN variant with a deep
theoretical background. The general concept of the original paper is that the expressivity of graph
neural networks is highly dependent on the aggregation function that is used in the message-passing
step. As one can understand by the term Graph Isomorphism Network, GINs are significantly
affected by the concept of graph isomorphism. More specifically, the studies around GINs have
focused on the Weisfeiler-Lehman test on graph isomorphism.

The power of the WL test in distinguishing non-isomorphic graphs is due to the injective nature
of the neighborhood’s embeddings aggregation at each iteration step. Injective functions are known
for mapping distinct elements to distinct values. In the context of GNNs, the embeddings on a node’s
neighborhood can be seen as a multiset and the aggregation scheme as a function that takes as
input that multiset. Therefore, an injective aggregation function should be suitable for mapping
different node neighborhoods to different node embeddings.

The key concept of the original paper is that GNNs are at most as powerful as the WL test in
distinguishing different graph neighbors. It is proved that GNNs with injective aggregation and
readout functions are as expressive as the WL test.

Next, this concept is combined with the Universal Approximation Theorem (Hornik (1991),
which intuitively states that standard multilayer feedforward networks with as few as a single hidden
layer and arbitrary bounded and nonconstant activation function can approximate any continuous

function within a specific range. This theorem leads to the idea that the aggregation and the read-

74

out functions of a GNN can be multi-layer perceptrons, that can learn and approximate injective
functions.
In the original paper, is it proven that these ideas can be formalized, to generate the node’s v

next hidden state at step k£ with the equation:

P = MLP®((1+®) a0 4 3 alk-D) (3.13)
ueN (v)

where € is a trainable parameter or a fixed scalar.
In summary, as stated in the original paper, these concepts lead to the conclusion that GIN is a

provably maximally powerful GNN under the neighborhood aggregation framework.

3.6 Recommender Systems

This section will cover the basic theoretical background of recommender systems, such as their
taxonomy and the most common ideas of the traditional approaches around them. Subsequently,
the evaluation metrics of recommender systems, as long as the most significant challenges that
they are facing till now will be reported. Last but not least, this section will be a transitional stage
before the experimental study of this thesis, as it will connect the task of content recommendation

to Graph Neural Networks.

3.6.1 Basic concepts

Definition 3.6.1 (Recommender System): A recommender system or a recommendation system is a
subclass of information filtering system that seeks to predict the rating or preference that a user

would give to an item. Raghuwanshi and Pateriya (2019)

The studies around Recommender Systems have increased significantly over the last decades. In
the real world, applications of recommender systems are all around us, from product recommenda-
tions at Amazon.com to movie recommendations on Netflix.com.

Recommender systems emerged as an independent area of research during the mid-1990s. The
typical description of the problem is to predict ratings that users would give to unseen items. This
recommendation process can be formalized as follows (Adomavicius and Tuzhilin (2005)):

Let

o (be the set of all users
e S be the set of all items that can be recommended

e u: C xS — R a utility function that measures the usefulness of each item for each user,

where R is a totally ordered set

Then, the goal of a recommendation system is to find, for each user v/, the items s’'eS that

maximize the value of the utility function u(c, s). This goal can be formulated as:
VeeC, sl = argmazgesu(c, s) (3.14)

75

Predicted
Preferences

)
Recommender
System
-

User Preference
or Taste

Figure 3.32: Visualization of a Recommender System
Raghuwanshi and Pateriya (2019)

In real-world scenarios, this utility function usually exists as a rating submitted by the user to a
certain item. There are real-world cases when these kinds of ratings are not available, and the utility
function is defined based on other metrics, such as the type of interaction that took place between
the user and the item.

Except for the user-item interactions, there is also additional information that a real-world
recommender system can utilize. Usually, each user has a set of features, called the user’s profile.
At the same time, the items being recommended, are also characterized by a set of item features. For
example, in a real-world movie recommender, users’ profiles can include data such as the users’ age
or gender, and each movie has features such as the title, the release year, its genres, etc. All these
types of information, along with the history of user-items interactions can be utilized to achieve
successful recommendations for each user. Several approaches exist for deciding between using the
items’ features or the user-item interactions. The approach to this dilemma, along with other design

choices, lead to multiple types of recommender systems.

3.6.2 Main Challenges

A multitude of challenges exists when developing a recommender system. In this section, we will
refer to some of the most important ones.

Multiple real-world recommender systems suffer from the challenge of data sparsity. This chal-
lenge occurs when there are large item sets, and therefore there are few rating values for each item.
This sparsity can lead to poor predictions and is relevant to the cold-start problem. This problem
occurs both for new users and new items in a system. Intuitively, when a new user is registered into
the system, there is no information about the user’s tastes, and therefore recommending content to
this user is more complex. In the same way, when a recommender system follows a collaborative-
filtering approach, new items cannot be suggested to users, until at least one user has submitted a
rating for them. A usual approach to solving the cold-start problem is making new users submit a
specific number of ratings so that the system can gain some knowledge of their preferences.

Another challenge that can occur in real-world recommender systems, is recommending con-

tent to users with special tastes. These users are referred to as gray/black sheep. In other words,

76

the existence of users whose taste is not consistent with any other user in the system, makes the
recommendation process extremely complex. A more detailed analysis of this problem, as long as

some proposed solutions can be found in Alabdulrahman and Viktor (2021).

3.6.3 Taxonomy

As per Raghuwanshi and Pateriya (2019), the multitude of recommender systems can be categorized,
according to the information that they utilize to generate their predictions, in the following groups,

that are also visualized in figure 3.33:

e Collaborative Filtering (CF)

In these types of recommenders, the history of user-item interactions is being used.

e Content-based recommending

In contrast, content-based recommenders, focus on user profiles and items features, ignoring

any history of user-items interactions

e Hybrid approaches

These approaches combine collaborative and content-based methods, utilizing both items’

features and interactions history.

Content-based |

| 1 I User-based
/ m | Memory-based ‘ /
) / e filtering

Recommender | Collaborative — Item-based

systems ' sl Model-based |

\ N filtering |

\\Hybrid filtering -

|

Figure 3.33: Visualization of a traditional Recommender System approaches
Belkacem (2021)

3.6.4 Traditional Approaches for Collaborative Filtering

In collaborative filtering, the recommender system aims to find patterns in the rating behavior of
different users, and utilize them to associate users with each other. As can be seen in figure 3.33,
collaborative filtering approaches can be usually divided into memory-based and model-based ap-
proaches. The input to a collaborative-filtering algorithm is usually a user-rating matrix, that stores

all the existing ratings. A visualization of the user-rating matrix can be seen in figure 3.34.

3.6.4.1 Memory-based Collaborative Filtering

Memory-based approaches for collaborative filtering are also referred to as neighborhood-based

approaches. As per Melville and Sindhwani (2017), the main concept behind these algorithms is

77

that the rating of each user w for each product p is a weighted combination of the ratings that the
other users v have submitted for the same product. The steps that these algorithms follow to predict

the rating of user u for a product p can be formalized as follows:

1. A weight w,, ., expressing the similarity between the past behavior of users « and v is gener-

ated for all users v.

2. The k users with the highest values of w,, ,, are selected. The set of these users is usually called

the neighborhood of user u.

3. A weighted combination of the ratings that the neighborhood has submitted for product p is

computed. This combination is the predicted rating of user u on product p.

The weights of step (1) can be computed based on numerous similarity metrics. A mathematical
analysis of the most common metrics such as Pearson correlation, and cosine similarity, and a for-
mulation of the computation of the weighted combination in step (3), can be found in Melville and
Sindhwani (2017).

A disadvantage of using this approach is that the computation of the weights w,, ,, that correlate
all the users pairs on the system is not scalable. As it can be easily understood, in large-scale real-
world recommender systems, millions of items and users exist, and computing the similarity for
all users is a computationally expensive process. For this reason, extensions, such as Item-based
collaborative filtering, were invented. In these approaches, similarities are computed between rated
items, and the predicted rating by a user u for a product p is computed as a weighted combination

of the ratings on similar items.

3.6.4.2 Model-based Collaborative Filtering

Conversely, the key concept of Model-based techniques is to use the existing ratings to learn a
model, that can predict future ratings. In contrast to neighborhood-based approaches, they rely on
the fact that the similarity between users and items is explained by some hidden lower-dimensional
representation in the data. Therefore, they do not need to load an entire dataset into the mem-
ory and perform the computations of memory-based techniques. An analysis of the most common

techniques used in model-based collaborative filtering can be found in Do et al. (2010).

3.6.4.3 Advantages and Disadvantages

An important asset of collaborative filtering techniques is that they do not require rich domain
knowledge about the items in order to perform recommendations. In addition, filtering based on
user similarities provides novelty in the new recommendations, as the user can be related to prod-
ucts that differ from his/her past interactions. A usual difficulty in developing real-world recom-
mender systems that are based on the collaborative-filtering technique is the sparsity of the provided
data, meaning that the existing ratings are little compared to the ratings that the recommender has

to predict.

78

John

Tom

D
2

)
)

Alice

NI

)
w
)

Figure 3.34: Visualization of the user-item matrix used in a collaborative-filtering movie recom-
mender system
Di Noia and Ostuni (2015)

3.6.5 Traditional Approaches for content-based recommendations

Content-based recommenders predict the new ratings of a user by comparing the user’s features and
his/her past interactions with items, to the items’ features. The main difference with the previous
technique is that content-based recommenders do not consider the interactions of other users.

A traditional mathematical formulation of this approach is to represent both each user as a vector
u, and each item as a vector i, and recommend items to users based on the cosine similarity of their

vectors.

3.6.5.1 Advantages and Disadvantages

A common advantage of content-based recommendations is that they offer personalization, as they
can capture the unique interests of each user, as long as other users are not considered during the
rating prediction. However, they cannot provide novelty in their recommendations, as they always
recommend items that are similar to already high-rated items. An additional disadvantage of theirs
is that they need the existence of rich item features, which are not always present in real-world

systems, in order to perform useful recommendations.

3.6.6 Hybrid Traditional Approaches

As reported in the previous sections, both collaborative filtering and content-based recommenda-
tions have their advantages and disadvantages. In order to combine the advantages of each ap-
proach, there have been developed multiple hybrid approaches. As per Adomavicius and Tuzhilin
(2005), the hybrid approaches can be divided into the following categories:

e Implement collaborative and content-based recommender systems separately and then com-

bine their predictions.
e Introduce content-based concepts into collaborative filtering methods.
e Introduce collaborative-filtering concepts into content-based methods.

e Develop a general model that utilizes both types of characteristics.

79

3.6.7 Evaluation Metrics

There are multiple metrics to evaluate a recommender system, based on the recommendation task
type, and other factors such as the provided dataset. In general, as per Raghuwanshi and Pateriya
(2019) evaluation metrics can be classified into prediction accuracy metrics and classification ac-

curacy metrics.

3.6.7.1 Traditional Prediction Accuracy metrics

Prediction accuracy metrics are used to evaluate the recommender on regression tasks, where the
goal is to predict the exact rating value. In this case, the most common metrics are Mean Absolute

Error and Root Mean Square Error.

Definition 3.6.2 (Mean Absolute Error): Mean absolute error is the average of the absolute difference
between the predictions and the actual values. Raghuwanshi and Pateriya (2019)

1> A
MAFE = N Zl Zl |Ti,j — ri,j| (3.15)
i=1 j=

Definition 3.6.3 (Root Mean Square Error): Root Mean Square Error is computed by the square root

of the average of the difference between predictions and actual values. Raghuwanshi and Pateriya (2019)

2 (3.16)

1 m n .
RMSE = ||+ 2121 rij — i
i=1 j=

3.6.7.2 Traditional Classification Accuracy metrics

Classification accuracy metrics are used to evaluate recommenders that perform some kind of clas-
sification, such as a binary classification of the items as recommended or not recommended. The
most common metrics of this category are Precision, Recall, and F-measure. These metrics are
calculated based on the True-Positives, True-Negatives, False-Positives, and False-Negatives of the

predictions, which are defined in table 3.3.

Table 3.3: Classification of a recommendation result for a specific item and a specific user

Recommended Not recommended
Used True-Positive (TP) | False-Negative (FN)
Not used | False-Positive (FP) | True-Negative (TN)

Definition 3.6.4 (Precision): Precision is a measure of exactness calculated by the fraction of relevant

items retrieved out of all items retrieved.

TP
P 1S = — 3.17
recision TP+ FP (3.17)

80

Definition 3.6.5 (Recall): Recall is a measure of completeness calculated by the fraction of relevant

items retrieved out of all relevant retrieved.

TP
Recall = m (318)

Definition 3.6.6 (F-measure): F-measure is the harmonic mean of precision and recall:

2 - (Precision - Recall)

F _measure =
- Precision + Recall

(3.19)

3.6.7.3 More sophisticated evaluation metrics

Some additional, more sophisticated metrics, that capture the effectiveness of recommender systems

are the following:
e Normalized Discounted Cumulative Gain (NDCG)

e Receiver Operating Characteristic (ROC) and Area Under the Curve, which are used for binary

classification tasks

e Diversity and novelty, which are additional important aspects for the evaluation of a recom-

mender system

These metrics were not utilized in our experiments, and therefore their detailed definitions are out

of scope for the current analysis.

3.7 Graph Neural Networks and Recommender Systems

This section will connect the concepts of recommender systems and link prediction with graph
neural networks. The main ideas presented in this section will be used in the implementation of our

recommender, which will be described in the next sections.

3.7.1 Recommendations as Link Prediction

It has already been reported that the implementation of a recommender system can be seen, under
a certain formalization of the problem, as a link (weight) prediction task. For example, in a movie
recommender system, the users and the movies can be represented as the nodes of a graph, where
an edge between a user and a movie represents a submitted rating. As a result, by performing link
weight prediction on such a graph, one can predict the weight of the graph’s edges, and therefore the
rating that a user will submit for a movie. This way, by sorting the predicted ratings in descending

order, the system can recommend new movies to users.

3.7.2 Graph Neural Networks for Link Prediction

There are multiple approaches for utilizing graph neural networks in the link prediction task. In
general, as per Zhang (2022), these approaches can be grouped into two categories, the node-based
methods, and the subgraph-based methods, depending on how the representation of the links takes

place. Node-based methods represent the edges as aggregations of the node embeddings, whereas

81

subgraph-based methods extract a local subgraph around each edge. This section focuses on the
basic concepts of node-based methods and introduces the GNN pipeline that will be used in the

experimental part of the thesis.

3.7.2.1 Node-based methods

Node-based methods represent edges by combining the embeddings of the corresponding nodes.
A well-known family of Graph Neural Networks, that belong to this category, are Graph AutoEn-
coders (GAEs), which have been reported in the chapter 3.4.4 of GNNs taxonomy. As an interesting
extension of GAEs, Kipf and Welling (2016b) introduce the variational version of Graph Autoen-
coders (VGAE). In the original paper, they demonstrate the model by using a Graph Convolutional
Network encoder, responsible for generating expressive node embeddings, and an inner product
decoder, that is used to represent the links of a graph, based on the corresponding node embed-
dings. The main idea of GAEs and VGAEs can be generalized into a General GNN pipeline, which

can be seen in figure 3.35.

3.7.2.2 A general GNN pipeline

The graph convolutional neural networks analyzed in section 3.5 utilize the Message Passing frame-
work to produce expressive node embeddings. In other words, the output of a GNN of this type is
a set of node embeddings. But, to perform various machine learning tasks on graphs, these embed-
dings require further processing to be transformed to the expected output. For example, in graph-
level tasks, these embeddings must be transformed to an output that corresponds to the entire graph,
and in edge-level tasks, they must be translated to a prediction about graph edges. A usual GNN
pipeline that implements this concept, begins with a GNN and concatenates a prediction head sys-
tem to it. The role of the prediction head is to transform the node embeddings produced by the
GNN, into task-specific predictions. The pipeline is visualized in figure 3.35. The pipeline is utilized
in multiple researches and publications, such as Berg et al. (2017), and Dziugaite and Roy (2015).

Input Graph Node
Graph Neural embeddings
Net\ivork BO Prediction .
R . W | —1 Predictions
: Dx ai _'.l] head
® Vi ; P
/ ® L P .
’ ks ."'"‘. 1 I [

Figure 3.35: Visual Representation of the GNN training pipeline. The node embeddings produced
by the GNN, are used as input to the prediction head, which transforms them into the
predicted entity:.

Stanford (2021)

82

3.7.2.3 Prediction heads for link weight prediction

The previous pipeline can be utilized to perform the link weight prediction task with graph neural
networks. The concept of decoupling the link prediction process into two main subprocesses, the
generation of node embeddings, and the prediction of the link corresponding to these nodes, is
similar to the main idea of Model S of section 3.3.4.

The prediction heads used in the link weight prediction task, operate on pairs of node embed-
dings and can perform various types of transformations to predict the weight of the incident edges.
Simpler methods, such as a dot product of the two node embeddings, or more complex ones, such as
concatenating the embeddings and feeding them to whole multi-layer perceptrons, can be applied

to generate the desired output.

3.7.3 Advantages

The main advantage of using Graph Neural Networks for the link weight prediction task is that the
system can utilize both the graph structure and the node features.

In a real-world graph, there may exist multiple node features, that can seem useful in captur-
ing the relationship between nodes. The message-passing process, which takes place inside graph
neural networks, expresses the connectivity of the graph, and captures effectively the underlying
structural role of the graph’s nodes. In addition, it utilizes the existing node features, passing them
effectively to each node’s local neighborhood. Therefore, recommender systems based on predict-
ing the edges of a graph with Graph Neural Networks, can be categorized as hybrid recommender
systems, combining the benefits of content-based and collaborative-filtering approaches.

At the same time, in contrast with various traditional techniques for link prediction, graph neural
networks can perform inductive learning, and under certain conditions, generalize to unseen nodes
or whole new graphs. This makes graph neural networks a promising approach on the area of

recommender systems.

3.8 Graph-based Related Work

In addition to the GNN architectures that are reported in section 3.5, this section reports some
publications that achieve state-of-the-art performance on the MovieLens Grouplens dataset, in the
context of recommender systems. The ideas introduced in these publications inspired the design
space in our experiments, and their achieved results were used as baselines, helping us gain some
intuition on the metrics our models should achieve.

It is important to note that in general, the link weight prediction task can be seen as the matrix
completion problem, under the concept of recommender systems. In matrix completion, the goal is
to predict missing values in a matrix by utilizing the observed values. In the context of recommender
systems, this matrix represents the user-item interactions, where each row corresponds to a user
and each column corresponds to an item. The goal is to predict the missing entries in the matrix to
recommend items to users, likewise predicting the weight of the user-item edges in the link weight
prediction task.

The publication "Graph Convolutional Matrix Completion” (GC-MC) by Berg et al. (2017), in-

corporates graph convolutional neural networks into the recommendation task, to learn expressive

83

node embeddings, that capture the underlying graph structure. Intuitively, a matrix completion
technique is utilized to generate a user matrix and an item matrix, that are initialized with the GCN
node embeddings. After these matrices are learnt, the predicted ratings for each user and movie
pair can be computed as the inner product of the corresponding rows of the matrices.

However, GC-MC is a transductive learning method, meaning that it learns and makes predic-
tions on the same set of nodes, not being able to generalize to unseen nodes without retraining.
For this purpose, publications such as "Inductive Matrix Completion Based on Graph Neural Net-
works” by Zhang and Chen (2019) exist, that build on the idea of GC-MC by incorporating graph
neural networks to learn node embeddings, but this time utilizing more advanced matrix factoriza-
tion techniques that allow inductive learning.

A widely used extension to these works, is the ”Attetion-Based Recommendation on Graphs”
paper by Hekmatfar et al. (2022), that introduces an attention-based model that leverages the power
of the attention mechanism to aggregate information from neighboring nodes in the graph. This
allows the model to capture more complex relationships between items and users, which can be

critical for making accurate recommendations.

84

Chapter 4

Implementation of the Recommender

The main part of the project was the development of a Recommender System on The Movies Dataset
(Banik (2017)) with the usage of Graph Neural Networks. The recommendation task is modelized as
a link weight prediction problem on the bipartite graph consisting of users and movies as nodes,

and ratings as weighted edges.

4.1 The Dataset

This section will be an introduction to The Movies Dataset (Banik (2017)), which is the main dataset

of the task, and MovieLens (Grouplens), on which the main dataset was based.

41.1 Movielens

The MovieLens dataset is a collection of movie ratings data made available by the GroupLens Re-
search lab at the University of Minnesota. The dataset includes ratings, movie information, and
demographic data on users, gathered from the MovieLens website. It is commonly used in research
on recommendation systems and has been used in a number of published papers. Over time, the
dataset has been expanded to include more and different types of data, such as movie genre infor-
mation.

The MovieLens dataset has been released in different versions with varying sizes over the years.
A detailed analysis of the history around these datasets can be found in Harper and Konstan (2015).

Some of the most commonly used versions are:

e MovieLens 100K: This is the original version of the dataset and includes 100,000 ratings given

by 943 users to 1,682 movies.

e MovieLens 1M: This version of the dataset includes 1 million ratings given by 6,040 users to

3,706 movies.

e MovieLens 10M: This version of the dataset includes 10 million ratings given by 69,878 users

to 10,677 movies.

e MovieLens 20M: This version of the dataset includes 20 million ratings given by 138,493 users

to 27,278 movies.

e MovieLens 25M: This is the most recent version of the dataset which includes 25 million rat-

ings, and 3 million tag applications, and applies to 58,000 movies, and 280,000 users.

85

https://movielens.org

4.1.2 The Movies Dataset

The dataset that we used for our experimental research on the recommender system was The Movies
Dataset (Banik (2017)). This dataset can be seen as an extension of the Full MovieLens dataset, as
it contains additional metadata for its movies. The data was scraped from various sources such as
IMDb and TMDB. It is mainly used for Recommender Systems and Natural Language Processing
(NLP) tasks. Both datasets can be used to develop a recommender system, but they have some
important differences.

Of course, the most important difference between the two datasets is the metadata that is con-
tained in The Movies Dataset. The MovieLens datasets are more ready-to-use for developing a rec-
ommender system, as they mainly focus on the submitted ratings, and do not require much prepro-
cessing. At the same time, The Movies Dataset provides an interesting case study, as the utilization
of the additional metadata on the recommending process requires more effort in the data preprocess-
ing part, and seems promising to help the recommender system learn more accurate representations
of the movies, and by providing additional context for the user-item interaction.

The metadata that was mainly utilized in the development of the recommender systems includes
the title, crew, cast, genres, spoken languages, production countries, and production companies of
each movie.

In the Kaggle page of The Movies Dataset, there are provided two versions of the dataset. The
full version provides 25M ratings between users and movies, and the small version provides 100K

ratings. The 100K version of the dataset was used in our experiments.

sade a8

"id": 931
: “"name": "Action"

"name": '"jealousy"

"id": 4290, Pydisy 807
"name": "toy" “name": "Crime"

Figure 4.1: Example of a keywords JSON array Figure 4.2: Example of a genres JSON array

More specifically, the dataset consists of the following csv files:

e credits.csv This file contains the three columns id, cast, and crew. Obviously, the first column
corresponds to the id of the movie, and the other two columns contain JSON arrays, where
each object is a cast member or a crew member of the movie. The typical form of an object

representing a cast and a crew member can be seen in figures 4.3 and 4.4.

e keywords.csv This file contains the two columns id and keywords. The keywords column
contains a list of JSON objects, where each object corresponds to a genre. The typical form of

a genres list can be seen in figure 4.2.

86

https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset

e movies_metadata.csv This CSV file contains multiple columns about the movies’ metadata.
Each row contains multiple pieces of information, such as the movie’s title, tagline, overview,
genres, production companies, production countries, and spoken languages. An interesting
property of this file is that the columns that correspond to the genres, production companies,
production countries, and spoken languages of each movie, are formatted as JSON arrays.

The format of a movie’s genres array can be seen in figure 4.2.

e ratings.csv and ratings_small.csv These files contain the rating records of the dataset. The
full version contains 25M ratings, and the small one contains 100K ratings. The CSV files

consist of the four columns userld, movield, rating, and timestamp.

e links.csv and links_small.csv These files have an auxiliary role and contain some mappings
with the keys of the movies, that are used to "join” the previously reported CSV files. They
map each movield that is used on the rating files, to their ids in the movies_metadata.csv and
the other files.

"credit_id":

"profile_path":

}’

Figure 4.3: Example of a cast JSON object Figure 4.4: Example of a crew JSON object

4.2 Graph database

This chapter will be the first chapter of this thesis that deals with more practical issues and tech-
nologies around the development of the recommender system. It begins with a short introduction to
graph databases in general, and to Neo4j, which is the graph database we used in our recommender
system. Then, the motivation behind modeling The Movies Dataset as a graph, and the process of
storing it in Neo4j (Neo4j (2012)) will be covered.

4.2.1 Graph Databases

As per Angles (2018), a graph database system is a system designed for handling graph-like data fol-
lowing the basic principles of database systems. Graph databases are gaining interest in applications
where the data are highly connected to each other in a complex way, such as social networks.

The fundamental abstraction behind all database systems is the database model. This model

defines three main components:
e A set of data structure types
e A set of query operators on the data

e A set of integrity rules

87

As far as the graph databases are concerned, the database model is called Graph Database Model.
All three components of a database model are defined in a graph-wised manner. Data structures
are modeled as graphs, query operators are defined as operations on graphs, and integrity rules are
defined over the graph structure. A formal definition of the property graph database model, which
is utilized by multiple graph database systems, such as Neo4j, is presented by Angles (2018).

4.2.2 Neo4j

Neo4j (Neo4j (2012)) is a graph database management system that allows managing a large amount
of data, powered by a native graph database. It is based on the property graph model, meaning that
data is represented as nodes and edges, rather than tables and rows.

Neo4j provides a powerful query language, called Cypher, that takes advantage of data con-
nections and allows traversing graph paths avoiding the complex joins of traditional relational
databases. In addition, there exists a multitude of built-in algorithms for graph analytics, that allow
extracting additional features from the graph. At the same time, there have been developed multiple
libraries, that enhance the utilization of Neo4j on machine learning and data science tasks, such as
the graph data science library (GDS (2022)). An extensive analysis of these algorithms and tools
will be made in the following chapters, during the description of the process of modeling our dataset
as a graph in Neo4j. Last but not least, Neo4j offers seamless integration with other libraries and
frameworks, such as Py2neo(Py2neo (2020), that allows the development of external components

and services, such as REST APIs, over the Neo4j graph database.

4.2.3 'The dataset modeled as a graph

The first design choice that had to be taken during the implementation of the recommender system,
was the way of modeling the dataset as a graph. The target was to design the database in such a
generic way, that its rich context can be utilized in various other tasks, except for just the link
weight prediction task of our recommender system.

The resulting graph should be optimized in the context of the space complexity, meaning that
repeated entities, such as genres and keywords, that can be related to multiple movies, should be
modeled as nodes. This formulation, is also time efficient, as the usual queries will be about finding
all the related entities to a specific movie, or finding all the movies related to a specific entity, such
as the genre Animation. Therefore, modeling these entities as separate nodes, instead of keeping
them as node attributes of each movie, will utilize the nature of graph databases to efficiently solve
these types of queries. The graph is heterogeneous, as there should be more than one type of nodes
and edges.

The following nodes types were created:

e Movie: Each node corresponds to a movie, with rich metadata features, such as the title,

tagline, description, and release date.

e Genre, Keyword, Production Company, Production Country, Language: The role of each
node can be easily inferred by the name of its label. All these nodes have only two node
attributes, that correspond to a primary key (such as an internal id for the keywords nodes,

or an iso_3166_1 for the production countries nodes) and a name.

88

Relationship types

Di

Figure 4.5: A subgraph with two specific movies (pink-colored nodes) and their genres (yellow-
colored nodes), visualized by Neo4j Desktop (Neo4j (2021))

e Person: Nodes of this label are used to represent the cast and crew members of each movie.
We avoid representing the same person with a separate node every time he/she participates
in a separate movie to gain some space and time efficiency. The information about the rela-
tionship between a movie and a user will be saved onto the corresponding edge, as we will

analyze in the proceeding of this section.

e User: Each node bearing this label corresponds to a user of the recommender system. In The
Movies Dataset, there are not provided any demographic or other user-related information.
In order to allow the database to be used by external APIs and services, we generated a ran-
dom and unique username and a simple password for each user, to make the user data more

realistic.

The design choices around the edges are equally important for the quality of the resulting graph.

The various nodes that were reported, are connected to each other via the following edges types:

e BELONGS_TO: This type of edge connects a movie to a genre. Obviously, a movie can belong
to multiple genres, and a genre can be related to multiple movies. A subgraph containing two

random movies and their genres is visualized in figure 4.5.

e HAS_KEYWORD: This type of edge is similar to the BELONGS_TO edges, but is used to

connect a Movie node to the corresponding Keyword nodes.

e PRODUCED_BY, PRODUCED_IN, SPEAKING: In the same context, these types of edges are
used to relate Movie nodes to their Production Company, Production Country, and Lan-

guage nodes.

e HAS_CAST: These edges are used to relate Movie nodes to the corresponding Person nodes,

that have participated as cast in the movie. An interesting part about these edges, is that they

89

% SR)

(HEAGRRG) vaee)

Figure 4.6: A subgraph with the 1-hop neighborhood of a specific movie. Multiple types of nodes
(denoted by different colors) are easily fetched with a simple Cypher query. Visualized
by Neo4j Desktop (Neo4j (2021))

are the first type of edges used till now in our graph, which bears some information on them.
More specifically, the HAS_CAST edge between a Movie and a Person, has the attributes
character and order. This formulation frees us from creating a new node for the same person,

each time that he/she participates in a different movie as a different character.

e HAS_CREW: In a similar way to the HAS_CAST edges, these edges relate Movie nodes to the
Person nodes, where the person has participated as a member of the crew in the movie. These
types of edges, bear information that defines the role of the person in the specific movie, with

the attributes department and job.

e RATES: Each edge of this type represents a rating submitted by a User node to a Movie node.
The RATES edges have the attributes datetime and rating. Our recommender system will aim

to perform link weight prediction, on the rating attribute of the RATES edges.

This design of the graph database allows performing simpler or more complex queries to retrieve
a wide range of insights about the graph structure and the connectivity of the entities. A simple,
but yet useful, query that indicates the effectiveness of the design is finding all the related entities
of a specific movie. The Cypher code, as long as the visualization of the resulting subgraph, can be

seen in figure 5.8.

4.2.4 Technical background of the graph database initialization

An important and challenging process for the development of the recommender system, was the

process of storing the original CSV files of the dataset in a Neo4j instance, following the principles

90

that were analyzed in the previous section. For this purpose, reusable Python scripts were developed,
that allowed building multiple Neo4j instances for the different-sized versions of the dataset, with
different graph properties.

The development Neo4j instances were created and managed with the Neo4j Desktop applica-
tion (Neo4j (2021)). As stated in the original website, Neo4j Desktop is a local development envi-
ronment for working with Neo4j and comes out-of-the-box with multiple extensions, such as the
Neo4j Browser, that enable executing and visualizing queries in the connected Neo4;j instances.

The process of parsing the dataset files, and storing them in the database, after the correspond-
ing preprocessing, was made with code in Python. More specifically, the python library Pandas
(McKinney et al. (2010)) was used to parse the CSV files into dataframes. Afterward, the proper
processing was performed on them with Python scripts, and the data about nodes and edges were
sent to the database via the Python library Py2neo (2020).

Py2neo is a client library for working with Neo4j from within Python applications. The main
library features that were used for the development of our recommender system, are the variety of
ways to execute queries towards the database, as long as features specifically designed for operating
with a large amount of data.

Py2neo provides multiple ways to connect and execute code in a Neo4j instance, from within a
Python application. For our development process, we executed both raw Cypher queries, sent from
Py2neo to Neo4j as raw python strings and queries utilizing the Py2neo matching module. Using
the matching module, the developer can execute multiple types of queries, without having to write
complex and error-prone Cypher syntax. At the same time, Py2neo offers high-level methods, to
store a large amount of data in a Neo4j instance in a time-efficient way. More specifically, the Py2neo
bulk operations API allows executing operations to the database in a bulk way, making them run
more effectively. This utility, along with the built-in functionality of Neo4;j to load large CSV files
by applying periodic commits, were heavily exploited to efficiently construct graphs with hundreds

of thousands of nodes.

4.2.5 Small version of the dataset (100K ratings)

Following the initialization of the graph, multiple queries were run to visualize some aggregated
metrics, and estimate the need for preprocessing the data before using them as input to the recom-
mender system. In this context, multiple visualizations regarding the density and the connectivity
of the graph were generated. The queries were executed from python notebooks, using Py2neo to
communicate with the Neo4j instance, and the results were visualized using the matplotlib Python
library.

Initially, these scripts were run to examine the graph built from the small version of the dataset,
where 100K ratings exist. We try to capture the density of the ratings in the graph, visualizing the
distributions of the ratings per user and per movie in figures 4.8 and 4.7.

At the same time, some aggregating queries are being run, to compute the average values of
these metrics. We count that there exist 9067 movie nodes, 672 user nodes, and 99802 rating edges
between them. The average number of ratings per movie is 11, and the average number of ratings
per user is 148.5. Considering the distribution of the ratings per movie, we observe that most of the

movies are related to a small number of ratings. We expect that this sparsity of the graph might

91

https://neo4j.com/docs/browser-manual/current/deployment-modes/neo4j-desktop/
https://py2neo.org/v4/matching.html
https://py2neo.org/2021.0/bulk/index.html
https://py2neo.org/2021.0/bulk/index.html

350 2500
300 4
2000
250
1500
200
130 1000
100
500 4
50 4
0 0

Figure 4.7: Number of ratings per movie distri- Figure 4.8: Number of ratings per user distri-

bution in the original version of the bution in the original version of the
small 100K dataset. Visualized with small 100K dataset. Visualized with
matplotlib. matplotlib

cause limitations to the learning ability of the recommender system. For this reason, as it will be
reported subsequently in this section, we consider that the large version of the dataset with 26M

ratings could be used to build a more dense version of the graph.

Another important factor that needs to be considered about the quality of the small version of
the produced graph, is the distribution of the rating values. This distribution is visualized in 4.9. As
can be seen, the ratings with values around 4 are exceeding the ratings with values less than 3, and

the dataset can be considered slightly imbalanced.

30000

25000 4

20000 4

15000 A

10000 ~

5000 A

Figure 4.9: The rating values distribution in the original version of the small 100K dataset. Visual-
ized with matplotlib.

To address this issue, as long as the sparsity issue, we utilize the reusable Python code that was

developed initially and build some additional database instances, that aim to resolve these restric-

92

tions of the original dataset. We left the exploration of the metrics our model achieves on these

custom datasets as future steps.

4.2.6 Encoding the movie content

An important design decision for the development of the recommender system was the way to utilize
the rich movie metadata of The Movies Dataset.

In contrast to the MovieLens dataset, which contains few metadata available for each movie
(such as the title, and its genres), The Movies Dataset contains rich movie features. When performing
machine learning tasks on MovieLens, one can easily encode the title and genres as vectors, by using
various NLP techniques for the first, and techniques such as one-hot encoding for the latter.

This approach can be partly applied to The Movies Dataset, too. As far as the title of each movie
is concerned, we used Sentence Transformers to encode it into a sentence embedding. The technical
details behind the functionality of Sentence Transformers are out of the scope of this thesis. An
extensive analysis of them can be found in Reimers and Gurevych (2019). The main issue with
The Movies Dataset, is that the one-hot vectors technique appears quite restrictive for encoding
information about related entities that appear in large numbers. As an example, both in MovieLens
and in The Movies Dataset, there exist only 20 genres. Therefore, encoding the genres of each
movie as a one-hot vector of dimension 20 is a straightforward solution. In contrast, when it comes
to encoding the cast or crew members of a movie, there exist around 150K Person nodes in the
small version of The Movies Dataset. Encoding the cast members of each movie as a one-hot vector
would lead to a large dimension in the movie’s features, and would not capture the underlying graph
structure of the dataset.

Bearing in mind these limitations, in the performed experiments we utilize well-known node
embedding algorithms, to express the correlation between the contents of the movies in an effective
way. These algorithms generate node embeddings of controlled dimensions and can capture the

underlying graph structure using techniques such as random walks and matrix factorization.

4.2.7 Node embeddings with Neo4j Graph Data Science Library

In order to encode the movies’ content with node embeddings, the Neo4j Graph Data Science Library
(GDS (2022)) was used, to generate node embeddings based on various techniques. In this section,
some technical details about this process will be covered, and a variety of the generated embeddings

will be visualized.

4.2.7.1 Neo4j Graph Data Science Library

Neo4j GDS (2022) is a library that extends the functionalities of a Neo4j instance, providing op-
timized implementations of common graph algorithms. These algorithms are exposed as simple
Cypher procedures and were used in the development of our recommender system to generate node
embeddings that encode information about the content of the movies. The integration of the Neo4;j
Graph Data Science with Neo4j is straightforward and made it possible to run a variety of algorithms

with ease and then store the produced embeddings as node attributes back to the database.

93

In advance of analyzing the specific algorithms that were used, it is important to report the
outline of the general process, independently of the algorithm choice. The generation of the em-
beddings takes place in a graph data model which is a projection of the Neo4j property graph data
model. The developer can specify the nodes, edges and attributes that the projected graph will con-
tain, and store the corresponding graph projection in an in-memory container of projected graphs,
called the Graph Catalog.

For the production of the movie content embeddings, it is important to ignore the User nodes
and the rating edges. Taking these entities into account can lead to information leakage during the
training of the model. For this reason, we restrict the node embeddings to be generated considering
only the nodes and edges that are related to the content of each movie. The main approaches to the

process can be categorized based on how the induced graph is constructed, and are the following:

e Node embeddings on "node pairs”: In this approach, we generate multiple separate node
embeddings for each movie, each time based on a different related entity. For example, we can
generate an embedding only about the genres of the movies, based on the induced graph that
contains only the Movie and Genre nodes. We repeat the same process, of generating induced
graphs with only two types of nodes at each time for the Keyword, Production Company,
Production Country, Country, and Person nodes. After generating the node embeddings and
writing them back to the graph database for each movie node, each movie is characterized by
a set of independent node embeddings, that are used as input features to the recommender
system. An example induced graph, containing only Movie and Keyword nodes can be seen

in figure 4.10.

e Node embeddings on the "whole content™: In this approach, we consider the induced graph
that contains information about the whole content of each movie. More specifically, the in-
duced graph contains all the Movie, Genre, Keyword, Production Company, Production
Country, Country, and Person nodes. After running the chosen algorithm, each movie node

bears one embedding that encodes the whole content of the movie.

4.2.7.2 Generated Node Embeddings

Neo4j Graph Data Science Library offers a variety of algorithms for the generation of node em-
beddings on projected graphs. We chose the algorithms in such a way as to cover the three main
implemented categories, which are random walks, random projections, and graph neural networks.
The Python scripts that implement the integration to the Neo4j GDS were written in a generic way
so that multiple types of embeddings can be generated with almost no modification of the original
code. The target of this process was to compare the expressiveness between the multiple types of
algorithms, tuning only the most common hyperparameters of theirs, without excessive focus on
the specialized hyperparameters of each algorithm.

The first chosen algorithm is node2vec. The main concepts of the theoretical background of this
algorithm are provided in section 3.2.5.5. In the experimental process of utilizing node2vec for node
embeddings, mainly the default hyperparameters provided by the corresponding GDS procedure

were used. The hyperparameter of the algorithm that was tuned to produce more expressive node

94

https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/node2vec/

bels
Relatienship types

Figure 4.10: The induced graph containing only movies and keywords. For simplicity purposes, a
limit on the number of visualized nodes and edges was applied. Visualized with Neo4j
(2021).

embeddings is the embeddings dimension, which was set to 256 for the node pairs embeddings,
and 512 for the node embeddings encoding the whole content for each movie. The visualizations of
node2vec embeddings that correspond to the Movie-Genres, Movie-Production Companies induced

graphs, and to the whole content graph, are visualized in figures 4.11, 4.12, and 4.13.

-30 -20 -10 L' 10 20 30 —40 -20 o 20 40

Figure 4.11: Movies embeddings on the
Movie-Genre induced graph,

Figure 4.12: Movies embeddings on the
Movie-Production Company

generated by Node2Vec al-
gorithm. Visualized with
matplotlib, after dimensionality
reduction with the scikit-learn
library (Pedregosa et al. (2011)).

induced graph, generated by
Node2Vec. Visualized with
matplotlib, after dimensionality
reduction with the scikit-learn
library (Pedregosa et al. (2011)).

An interesting outcome of these visualizations is that the Node2vec algorithm seems to be able
to detect communities in the case of the Movie-Production Company nodes graph, and in the case of
the graph containing the whole movie content, but seems to not be able to differentiate communities

in the case of the Movie-Genre induced graph, which in theory has a simpler structure. It is impor-

95

40
L ‘
i ¥ @
mr.
201 - - o
9
e . L
L ®o
04 < ‘-’* ¢ & '
. oy &£ @
4 ® @
9#; Py
/ ®
-20 s ® ® @
@ . =
‘b’ v
=40
-
T T T T T
—40 -20 o] 20 40

Figure 4.13: Movies embeddings on the whole movies-content induced graph, generated by
Node2Vec algorithm. Visualized with matplotlib, after dimensionality reduction with
the scikit-learn library (Pedregosa et al. (2011)).

tant to note that node embeddings produced by the Node2vec algorithm in multiple other induced
subgraphs, such as on the subgraph with movies and cast members, seem to fail in distinguishing
the movies.

Subsequently, the Fast Random Projection algorithm was utilized to generate the node embed-
dings. The basic theoretical background of this algorithm is covered in section 3.2.5.6. The hyper-
parameters of the algorithm that were tuned in our experiments are the embedding dimension and
the iteration weights. As stated in the official documentation of the algorithm, the iteration weights
tune the importance of nodes of each distance in the generation of the current node’s embeddings.
Some visualizations of the FastRP embeddings for the 165K version of the dataset, can be seen in
figures 4.14, 4.15, and 4.16.

. 300
40
- - 200
L
20 _r.-"u 100
- .. " ‘}J . .
&My o 0
0 " *%e Be e
od™ o - —100 1
* s i* s 9l .
= ® " 8, ® A 5 oe
& # a‘n“.
o I ~300
]
—-60 -40 —20 [ZID 40 —300 —200 -100 o 100 200 300
Figure 4.14: Movies embeddings on the Figure 4.15: Movies embeddings on the
Movie-Genre induced graph, Movie-Keyword induced

generated by FastRP algorithm.
Visualized with matplotlib,
after dimensionality reduction
with the scikit-learn library
(Pedregosa et al. (2011)).

96

graph, generated by FastRP.
Visualized with matplotlib,
after dimensionality reduction
with the scikit-learn library
(Pedregosa et al. (2011)).

https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/fastrp/

40 4

201

—-20 1

—4q -

—40 —20 0 20 40

Figure 4.16: Movies embeddings on the whole movies-content induced graph, generated by FastRP
algorithm. Visualized with matplotlib, after dimensionality reduction with the scikit-
learn library (Pedregosa et al. (2011)).

These visualizations indicate that the FastRP algorithm detects movie communities according to
their genres in an effective way, but does not operate at the same level on the Movie-Keyword and
on the whole movie content graph.

As a final approach to the challenge of encoding the content of each movie with node embed-
dings, we can leverage the Graph Neural Network GraphSAGE. Once again we focused on tuning
the most common hyperparameters, such as the embedding dimension. An important note is that
the GraphSAGE algorithm requires some initial node features for each node in the projected graph.
In our case, the target was to capture the structural relationship between nodes. As a result, pro-
viding input to the GraphSAGE model features such as the title of a movie or the name of a genre,
would not help. As reported in the official documentation of the module, in such cases, some topo-
logical features for each node, such as the node degree, can be provided as initial node features for
the generation of the node embeddings. After generating and writing back to the database the em-
beddings for each movie, we visualized them, to gain some intuition on their expressiveness. Some
examples of these visualizations can be seen in figures 4.17, 4.18, and 4.19.

It is important to note that the movie embeddings generated by the GraphSAGE algorithm, seem
to form clusters, that are separated in a clearer way than in the previous methods. We expect these
conclusions to be verified by the experiments that will be reported in the following parts of this

thesis.

4.3 The model

This section will cover the technical background behind the development of the model that performs
the link weight prediction task for our recommender system. At first, a short reference to the Pytorch
Geometric library (Fey and Lenssen (2019)) is made, which is the Python library that was used to
implement, train and test the Graph Neural Networks of our experiments. Subsequently, we proceed

with the architecture of our model, the main types of Graph Neural Networks that were utilized,

97

https://neo4j.com/docs/graph-data-science/current/machine-learning/node-embeddings/graph-sage/

| - ™ —uw v [ey .
1 > o - . . » - ’
o . = L] - f ’
5 ’ agl : 0 e
= '] g -1 . y "’
-2 " . - " —30
. ¥ i & Y
-3 - X R P :_J.ﬁ - -
3 - ‘S_‘_:. =9
Figure 4.17: Movies embeddings on the Figure 4.18: Movies embeddings on the
Movie-Genre induced graph, movies-cast members graph,
generated by GraphSAGE. generated by GraphSAGE.
Visualized with matplotlib, Visualized with matplotlib,
after dimensionality reduction after dimensionality reduction
with the scikit-learn library with the scikit-learn library
(Pedregosa et al. (2011)). (Pedregosa et al. (2011)).
2.0 1 - g L s ®
' °
=2 ® ¥ 4 3 w:
| 4
10 ' » @S, &
A N . »
asq{ * - S ‘ @ ®
@ ? L] . &1.
0.0 ‘. * ™y . . 9
E] " - » *
-05]
> ’ p
; “ -« ©®
-1.0 °
- =o g
-154_ . : ; , : . ;
-2.0 =15 -1.0 —0.5 0.0 0.5 1.0 15

Figure 4.19: Movies embeddings on the whole movies-content induced graph, generated by Graph-
SAGE. Visualized with matplotlib, after dimensionality reduction with the scikit-learn
library (Pedregosa et al. (2011)).

and finally, we present an overview of the hyperparameters that were related to the model structure
and that were tuned during the experiments.

4.3.1 Pytorch Geometric

For the development of our recommender system, Pytorch Geometric (Fey and Lenssen (2019)) was
used to build the whole machine learning model. Pytorch Geometric is a Python library for deep
learning on irregularly structured data, such as graphs. It integrates seamlessly with Pytorch, and
therefore allows developers to easily utilize traditional tensor computation when performing ma-
chine learning tasks on graphs.

The library offers support for a variety of convolutional graph neural networks, such as Graph-
SAGE (3.5.1), GAT (3.5.3), and GIN (3.5.4). It provides fully-customizable implementations of the

98

message-passing layers used in these architectures, allowing developers to easily combine them
and perform multiple experiments. In addition, Pytorch Geometric provides seamless integration
with a variety of commonly-used datasets, that are used as benchmarks to evaluate machine learn-
ing models on multiple types of tasks. It helps developers download and use these datasets, by
specifying only the dataset’s name. One of these datasets, that are provided out-of-the-box with

Pytroch Geometric, is, for example, the small version of the MovieLens dataset.

4.3.2 Architecture

As far as the architecture of our model is concerned, the pipeline of section 3.7.2.2 was followed.
Our model consists of two main submodels: a Graph Neural Network (GNN) encoder, and an Edge
Decoder. The general pipeline is visualized in figure 3.35, but with the Edge Decoder being in the
position of the Prediction Head in our case.

Intuitively, the GNN Encoder receives as input the bipartite graph consisting only of Movie
and User nodes, and the rating edges between them. The graph containing information about the
movies’ content, such as their genres and keywords, is encoded as a feature of each movie, via the
node embeddings techniques that were described in sections 4.2.6 and 4.2.7. The GNN Encoder
learns representations for the movies and users. These node embeddings are then passed as input to
the Edge Decoder module. The Edge Decoder is a simple Multi-Layer Perceptron, that concatenates
the user and movie embeddings and predicts the weight of the corresponding edge, which is the

rating that we aim to predict. This pipeline is visualized in figure 4.20.

mbeddings

movie_id

Movies - Users Bipartite
Graph enriched with movie
content embeddings
o9

2]

embedding

GNN Encader Edge Decoder

User embeddings

user_id

embedding

Figure 4.20: The architecture of the model. GNN Encoder receives the bipartite graph of users and
movies as input and produces the embedding of each node. Edge Decoder receives
these embeddings, and generates the predicted ratings for each pair. Visualized with
terrastruct.com.

4.3.3 GNN Encoder

The GNN Encoder component is a simple Graph Neural Network, consisting of multiple layers. For
the purposes of this project, as will be reported in the experiments section, four types of Graph
Convolutional Neural Networks were used. These variants are GraphSAGE 3.5.1, GraphConv 3.11,
GAT 3.5.3, and GIN 3.5.4. The main hyperparameters that were tuned, and that are related to the

99

https://app.terrastruct.com/

GNN structure, are the number of the GNN layers, the number of hidden channels per layer, and the
existence of skip connections. The concept of skip connections will be explained in the following

section.

4.3.3.1 Stacking Multiple GNN Layers

The theoretical background of operating with a single GNN layer differs slightly for each GNN
variant and is described in section 3.5. When developing a Graph Neural Network, an important
design choice is the number of its layers. In general, when stacking K GNN layers, the features of
each node are computed based on the K-hop neighborhood of the node. For example, with a single
GNN layer, the embedding of each node is computed after aggregating the embeddings of the node’s
immediate neighbors. The set of neighbors that participate in this aggregation, form the receptive
field of the node.

GNN Layer

...

GNN Layer |: SK'P_
\L(connection

GNN Layer |:

Figure 4.21: The message-passing process for a Figure 4.22: Visualization of a GNN with 3 lay-

single node, in the case of a GNN ers, where skip connections are
with two layers. With two GNN used as shortcuts between the lay-
layers, node features with a max- ers, to increase the impact of ear-
imum distance of two are aggre- lier layers on the final node embed-
gated. Stanford (2021) dings. Stanford (2021)

Stacking multiple GNN layers can lead to the phenomenon of oversmoothing. Oversmoothing
refers to the situation where the representations of the graph nodes become indistinguishable, even
though the nodes might actually have different roles in the network. An extensive analysis of this
phenomenon can be found in Chen et al. (2020). The connection between oversmoothing and stack-
ing multiple layers of GNNZ, is that intuitively, in deep GNNS, the receptive fields of multiple nodes
tend to have high overlaps. Therefore, as the features of multiple nodes are computed based on the
same neighbors, these features tend to have the same values. As a result, the embeddings produced
for these nodes do not express their differences in the real network. A high-level intuition of this
phenomenon is visualized in figure 4.23.

A general approach to empowering deep graph convolutional neural networks can be found in Li
etal. (2019). A widely-used solution for tackling the oversmoothing problem is the technique of skip
connections. The usage of skip-connections, was one of the hyperparameters that were tuned in our
experiments, as will be seen in the experimental part of this report. Intuitively, skip connections,
increase the impact of the earlier layers on the final embeddings, by adding some shortcuts, as can

be seen in figure 4.22.

100

4.3.4 Edge Decoder

Edge Decoder is a simple multi-layer perceptron that receives the user and movie embeddings gen-
erated by the GNN Encoder. The hyperparameters that are related to the model structure are the
number of then hidden layers, as long as the number of hidden channels within each layer. The
output of the Edge Decoder is a vector with the predicted rating values for each one of the provided

pairs of node embeddings.

Receptive field for Receptive field for Receptive field for
1-layer GNN 2-layer GNN 3-layer GNN
o @ Node of interest Q ¢ Node of interest @ © Node of interest
| @ o @ Receptive field O o @ Receptive field * e ® Receptive field
I © other nodes © Other nodes \ " © Other nodes

Figure 4.23: Asthe layers of the GNN increase, the receptive field of the yellow node tends to capture
the whole graph. We expect the embeddings of multiple nodes to converge to the same
values.

Stanford (2021)

4.4 Evaluation of the Recommender System

Evaluating a recommender system can be based on a variety of metrics. Bearing in mind that the
link weight prediction task can be seen as a regression task, in our experiments, we focus on metrics
that are generally used for evaluation on regressions tasks.

Therefore, the metric that was used for the evaluation of the recommender systems that we built
was the Root Mean Square Error (RMSE). The definition of this metric is reported in section 3.6.7.1.
RMSE is the metric that is commonly used to evaluate predictions in the MovieLens dataset, as can
be read in numerous related papers (Han et al. (2021), Rashed et al. (2019), Zhang and Chen (2019),
Darban and Valipour (2022)) on the corresponding PapersWithCode leaderboard.

It is important to note that The Movies Dataset is a relatively new dataset, and there could not be
found many benchmarks available for its evaluation. For that reason, the most common benchmarks
on the MovieLens dataset are reported to gain intuition on the expected performance of our models.
The baseline for our experiments will be the performance of a simple Graph Neural Network, that
is chosen arbitrarily to be GraphSAGE, with a relatively small number of hidden layers, to avoid the
oversmoothing phenomenon, that is described in section 4.3.3.1. In the baseline experiment, we will
not utilize the various movie metadata that exists in the dataset. We will perform the predictions

utilizing only the user-movie interactions, and the title of each movie.

101

https://paperswithcode.com/sota/collaborative-filtering-on-movielens-100k

Chapter 5

Implementation of the Platform

5.1 Motivation

A significant proportion of the development effort was dedicated to constructing a fully operational
platform. The main motivation behind this decision was to experiment with the integration of
a machine-learning model that performs movie recommendations, in a real-world scenario. At the
same time, the usage of the platform can be seen as particularly favorable for expanding the database
with additional data. Deploying the whole web application, and making it available to multiple users,
can increase the available ratings, and even add demographic information about the users, leading
eventually to the formation of a new version of The Movies Dataset. This dataset, can afterward
become available to the developing community, and lead to a series of new experiments, assisting
the academic community in advancing the research in the field of recommender systems. Ultimately,
the research around implementing a set of scalable services, that handle the decades of thousands
of the available data in our system, collaborating with a graph database and an ML model, and
exposing a multitude of functionalities through a friendly user interface, can be considered as a

separate area of study.

5.2 Related work

The development of the platform was inspired by multiple platforms that exist on the web, where
users can create an account and receive personalized movie recommendations. The platform that
seems to be the most similar one to our implementation, is the MovieLens website. MovieLens is a
movie recommendation website that was developed by researchers at the University of Minnesota.
It has been operating since 1997, and after receiving multiple updates, it currently offers movie
and TV shows recommendations. The main feature of the MovieLens website, which inspired our
implementation, is that users get predictions on the exact rating they could submit for each movie

on the website.

5.3 Architecture - Components

The platform consists of multiple independent components, that are designed for serving distinct
purposes, in favor of scalability. Figure 5.1 shows a high-level visualization of the system architec-
ture. More specifically, except for the system’s database, which is a Neo4j (2012) instance, there

exist three APIs, following the RESTFul principles, and a front-end web application. The interac-

103

https://movielens.org/

tions between the components are performed as asynchronous calls, and the exchanged data follow
the JSON format. As one can observe in the corresponding diagram, not all the components interact
with each other. These design choices were made for security and scalability reasons. More details

will be reported in the section that corresponds to each component.

Front-end

Model API

Movies AP Users API ML Model

Figure 5.1: The architecture of the platform, as a high-level component diagram. The platform con-
sists of the graph database, three REST APIs, and a separate front-end web application.
Visualized with app.terrastruct.com.

5.3.1 Graph Database

An extensive approach to the technologies used for the development of the system’s database has
already been made in numerous sections of this thesis. In short, the database is a Neo4j (2012)
instance, meaning that it belongs to the category of graph databases. It stores the data natively as
nodes and edges, being able to perform effectively complex queries, utilizing the underlying graph
structure of the data. It is initialized with a preprocessed version of The Movies Dataset (Banik
(2017)), containing node embeddings for each node, generated by numerous graph algorithms, that
are provided out-of-the-box by GDS (2022). The graph database interacts only with the three APIs.
We forbid direct communication between the graph database and our front-end, to avoid storing the
database connection credentials in the front-end, as that would introduce a security vulnerability

to our system.

104

https://app.terrastruct.com/

5.3.2 REST APIs

The architecture of the REST APIs was the most important design choice as far as the structure of the
system’s components is concerned. The decision to partition the functionalities that the system’s
back-end will perform, into multiple APIs, is mainly based on scalability, performance, and security
concerns. For the development of the APIs, more than one programming languages and frameworks

were used. Each one will be reported in the corresponding section.

5.3.2.1 The Movies API

The purpose of the movies API is to serve general information about the movies and their content.
This service performs only read operations on the database. The main reason that it was developed
as a separate service is the lack of need for user authentication, as it does not expose any personal

information related to a specific user. It interacts only with the database, and the front-end.

As far as the tech stack of this service is concerned, it was developed in Node]S (Foundation
(2009)), with the usage of Typescript (Corporation (2012)) as the main programming language. Nu-
merous third-party libraries were utilized for a rapid and safe development process, but an extensive
listing of them is out of scope for the current report and can be found in the GitHub repository of

the project.

5.3.2.2 The Users API

The purpose of the users API is to handle the requests that require user authentication, such as the
manipulation of user accounts, and the ratings that are submitted by each user. In addition, users
API is responsible for the interaction with the model API, to get the predicted ratings for each
user. The reasons that led to this decision will be covered in section 5.4. This service was developed
in Node]S (Foundation (2009)), with the usage of Typescript (Corporation (2012)) as the main pro-
gramming language, likewise the movies API. In addition to the variety of third-party libraries that
were used there, this service utilizes libraries that specialize in handling user authentication and

authorization in a secure and developer-friendly way.

5.3.2.3 The model API

This service is responsible for encapsulating the machine learning model that performs the rec-
ommendations. The general concept is that an initial trained version of the model is saved in this
service. This saving process requires serialization and deserialization of the model in a file that can
be saved on the disk of the service’s machine. These utilities were provided by the Pytorch library
(Paszke et al. (2019)). The REST API was developed with Python, using the Flask web framework
(Team (2010)). The service exposes, through four simple endpoints, the basic functionalities of the
model. These functionalities will be analyzed in the section 5.4. It is important to note, that the
model API does not interact directly with the front-end. The reason that forced us to this design

choice will be covered in the section 5.4.

105

5.3.3 Front end

The purpose of developing a front-end module for the recommender system was to expose the mul-
titude of implemented functionalities in a user-friendly way, making them accessible from the web
in an easy-to-understand way. In addition, by making an interactive and easy-to-use web applica-
tion, we aim to attract multiple users, and gather enough ratings to be able to experiment with the
process of re-training the recommender system as the available data increase. For the development
of the front-end part of the platform, the Javascript library React]JS (Facebook (2013)) was utilized.
The main programming languages used for the development of this service were Javascript (Eich
(1995)) and Typescript (Corporation (2012)). A variety of third-party libraries were utilized, such as
Material-UI (Team (2020)), and React-Query (tannerlinsley (2020)).

5.4 Integrating the model into the platform

The integration of the machine learning model into the platform was one of the most important
aspects of the development process. An important design choice for our system was to deploy the
model in a dedicated REST API, named Model API In this section, we will cover the main reasons that
led us to this decision, the functionalities that the Model API exposes to the rest of the components,

as long as the main challenges we met in the development process.

5.4.1 Motivation behind deploying the model in a dedicated API
5.4.1.1 Computational Resources

The main reason for deploying the model as a separate service, is the additional needs of computing
power that it might need. Re-training the model in a production environment, could be performed
with extended computing resources, such as GPU, that are not necessary for the operation of the
rest back-end services. Therefore, deploying the model in a separate machine, allows the developers
to scale the resources allocated to it independently of the rest back-end. This flexibility helps the

system in terms of scalability and performance.

5.4.1.2 Technology Stack

In addition, it is important to note that the programming language for the development of the model
was Python. Decoupling the model functionalities in a separate REST API, allows us to use a vari-
ety of programming languages and frameworks to develop the rest of the back-end services. This
freedom enables the developer to choose any other technology stack he/she prefers, such as Node]JS
(Foundation (2009)) with Typescript (Corporation (2012)). The resulting system can be of higher
quality, as the technologies that fit better to each service can be utilized. At the same time, this de-
sign choice strengthens the maintainability of the system, as any specialized libraries and modules

related to machine learning, are totally separated from the rest of the back-end services.

5.4.1.3 User Authentication

An additional area of significance in the procedure, was the handling of user authentication and

authorization across the multiple services. The target was to keep all the code related to user au-

106

thentication in a single service for maintainability reasons, and at the same time decouple other
unrelated functionalities into separate services. In our system, the need for authentication is related
to two categories of functionalities. The first category is the CRUD (create-read-update-delete) op-
erations on the ratings and the user accounts, and the second category is the retrieval of the model
predictions for a single user. The first category of these functionalities is implemented in the users
API, as it is not related to the ML model. The retrieval of the model predictions of a specific user is
obviously implemented in the model API. But, the noteworthy part is that the predicted ratings for
a specific user should be accessed only by the same user. For this purpose, requests that originate
from the front-end and are targeted to the model API, at first pass through the users API, which
authenticates the user that performed the request, and forwards the request to the model API, acting

as an authentication middleware.

5.4.2 Functionalities

The functionalities that are exposed through the model API, they are the following:
e Re-train the model for N epochs
e Refresh the in-memory dataset of the model, by re-fetching it from the graph database
o Get the rating predictions of a specific user

e Recommend top N movies to a specific user

In a production environment, the first two operations will not be accessed by the users of the
platform. These will have only access to retrieving their predicted ratings and getting their person-

alized recommendations.

5.4.3 Challenges
5.4.3.1 Retraining Frequency

The coordination of the operations regarding the re-training of the model, and the re-fetching of the
dataset, are a whole separate area of study. The automation of their execution requires extensive
experiments. Multiple approaches can be found to re-training the model in the bibliography, such
as an automated re-train based on time intervals, a performance-based trigger, a trigger based on
data changes, and re-training on demand. The extensive experimentation on their effects on our

recommender system could be considered a potential avenue for further research.

5.4.3.2 Model API Availability

Another issue was that the functionalities of re-training the model and refreshing the in-memory
dataset, require an importantly larger amount of time, compared to other requests, such as predict-
ing ratings for a specific user. As a result, whenever such a request was made, the model API was
blocked and was unable to respond to other requests, as it was occupied with the execution of the
heavy task. To address this issue, and improve the responsiveness of our API, we developed a mech-
anism to execute these functionalities in separate threads, allowing the API to continue handling

other requests while the task is being executed in the background.

107

5.4.3.3 Handling new users

One additional challenge our system had to overcome, was how to handle new users, without having
to retrain the model.

In general, graph neural networks can be trained in an inductive way, meaning that they can
generalize to unseen nodes or even to whole unseen graphs. However, in our experimental setup,
the graph neural networks were trained in a transductive way. Transductive train-test split is a
popular technique in graph-based machine learning that involves using the entire graph for both
training and testing a model. It is mainly used on relatively small datasets, because of the limitation
that it requires the entire graph to be loaded into memory, and because inductive train-test split
requires excluding multiple edges from our dataset.

In our experiments, training and testing the model with the transductive technique made it
difficult to add new nodes to the graph. Intuitively, this arose due to the weight matrices of the
first GNN layer being dimensioned based on the size of the initial graph it was trained on. As a
result, when passing as input to the model a graph with additional nodes, the corresponding matrix
multiplication could not take place. For that reason, we implemented a custom solution, that we
could not find after a short research in the existing bibliography. More specifically, we dynamically
updated the weight matrix of the first GNN layer of our model, by adding a new column, each
time a new user was added to our system. That way, the matrix multiplication could be completed
successfully.

At first, a design decision had to be made, regarding the values that would fill the corresponding
vector in the weight matrix of the first GNN layer. Initially, it was considered to fill the vector
with zeros. However, that approach would not take into account any ratings the new user would
submit until the model was re-trained and the corresponding weights were updated. As a result,
it was decided to fill the new column that corresponds to the user, with the average value of the
corresponding weights for the existing users of the platform. That way, intuitively, the new user
would receive the predictions based on the average user of our platform. The key feature of our
approach is that the predictions for the new users can be generated without re-training the model.

This represents a step towards an inductive approach in our recommender system.

5.5 Platform usage

This section reports a short description of the user interaction with our platform. As stated before,
the purpose of the platform’s design is to allow users to navigate quickly and easily through numer-
ous movies, exploring the connections between the entities in the underlying graph structure. At
the same time, users can get a prediction for the rating that they will submit to each movie, as it is
generated by our ML model.

A user can explore the movies on the platform without creating an account. The home page of
the platform is captured in figure 5.2. Users can see a list of the latest movies, the top movies and
cast members, and the top genres and keywords.

The target of the system is to allow users to easily explore movies and their related entities and
at the same time show users the predicted ratings. By clicking on a specific genre, the user can see

the latest and the top related movies, as seen in figure 5.3.

108

f MovieOn

Dashboard Q

Latest Rele

vy

17 Top Genres

Just for you

1r Top Keywords

Top Movies

Latest Movies Top Movies

[

Genres

Craw
Countries AVRIET
L
Languages

o Graph visualization

Zoomlevel: [1 G @ ooy

Figure 5.3: The detailed view of a specific genre. Here, users can see the latest and the top movies
related to the Action genre.

Except for showing the top and latest movies related to an entity, such as the genre Action, users
can also observe a sample of the neighborhood of the corresponding node in the graph database.
This feature is visualized in figure 5.4, and aims to show the connectivity of the graph database to
more advanced users.

In cases where the entities’ relationships can be visualized in more advanced ways, the platform

utilizes more advanced diagrams. For example, as it can be seen in figure 5.5, the production coun-

109

Graph

Zoom level

Keywords
Craw
Count
Languages based on noval

Can

Figure 5.4: The visualization of the “based on a novel” keyword’s neighborhood in the original graph.

tries are visualized using a choropleth map, allowing the users to explore movies easily based on

this criterion.

Craw

Countries

Languages

Compa

Figure 5.5: A choropleth map, colored by the number of movies produced in each country.

The exploration of new movies, can be based on the participating cast. A separate profile page
is assigned to each cast/crew member, which shows the available metadata, and the related movies.

This profile page is captured in figure 5.6.

110

A MovieOn

Craw
Countrl

Languages

Top Movies

e

Graph visualization

Figure 5.6: The profile page of a cast member. Here, users can see the latest and the top movies
related to the person, as long as the visualization of the person’s neighbor.

While navigating over the variety of the aforementioned entities, users can be led easily to a
specific movie’s page, with an example visualized in figure ??. There, a detailed view of the movie’s
metadata is gathered. In addition to this information, authenticated users have access to the pre-

dicted rating for this movie by the ML model, as long as the option to submit their rating.

A MovieOn

Movies (: The Life and Deaths of Robert Durst

Ratings

e L1t oo
“0F RDDEAT 0UR

Languages ’ Keywords Production Companies

Bilumhaus: ustions
crima

Hit thia Greund Ranning Films

Language Production Countries

English of Ameria
publich

Figure 5.7: The page of a specific movie. The predicted rating of the authenticated user, as long as
the movie’s metadata are gathered here.

111

Last but not least, on the same page that refers to a specific movie, a visualization of the movie’s

neighborhood in the original graph takes place, as it can be seen in figure 5.8.

#A MovieOn
98 Dashboard Graph visualization

Zoom level: {3 G @ 100w
Movies

£ The Jimw The Life and Deathe of Robert Durst

Figure 5.8: The neighborhood of the node that corresponds to a specific movie in the original graph.

It is noteworthy, that the platform has been designed in a way to simplify the access of each user
to the predicted ratings of his. Therefore, users can easily see these ratings, by "hovering” over the
corresponding card of each movie. An example is visualized in figure 5.9, where the user is currently

“hovering” over the "Ben-Hur” movie card.

112

Movies

My Profile

Figure 5.9: User is hovering over the "Ben-Hur” card. As a result, he/she gets immediate access to
the predicted rating for him on this movie, and the average rating of the movie.

113

Chapter 6

Experiments

6.1 Evaluation

The aim of this thesis was to build a movie recommender system that can accurately predict the
ratings that users would give to movies. As reported in section 4.4, the metric used for the training
and the evaluation of the recommender is the Root Mean Squared Error (RMSE). This decision
was motivated by the nature of the problem, which is a regression task, and by the examination of

relevant prior research on the MovieLens (Grouplens) dataset.

6.2 Hyperparameters

One of the critical aspects of the experimental part of this thesis was the exploration of multiple hy-
perparameters, related to the architecture of the model, the generation of the node embeddings that
encode the movies’ content, and the version of the dataset. More specifically, the hyperparameters

of the experimental part were divided into the following four main categories:

1. Convolutional Graph Neural Network (GNN) architecture: The architecture of the Graph
Neural Network is a critical component of the system. It determines the exact computations
followed in the message-passing process, specifying the functions that perform the aggrega-
tion of the neighbors’ embeddings, and updating the current node’s embeddings at each step.
In our experiments, we explored four types of Convolutional Graph Neural Networks, includ-
ing the GraphSAGE network (3.5.1), K-GNNs (3.11), Graph Attention networks (GAT 3.5.3),
and Graph Isomorphism Networks (GIN 3.5.4).

2. Node Embedding Algorithm: Simultaneously, the predicted ratings can be highly affected
by the quality of the node embeddings that encode the movies’ content, prior to the usage of
the GNN. For this reason, we experimented with the algorithms that can be utilized for em-
bedding the movies. Three algorithms were used for generating node embeddings, including
FastRP (3.2.5.6), Node2Vec (3.2.5.5), and GraphSAGE (3.5.1). Some sample visualizations of

the generated node embeddings by these algorithms can be seen in the figures of section 4.2.7.

3. Movies Content Subgraph Selection: An additional important factor that affects the quality
of the node embeddings about the movies’ content, is the subgraph on which they were gen-
erated. The subgraph containing all the metadata on the content of the movies, consists of
multiple nodes; Genres, Keywords, Production Companies, Production Countries, Languages,

and People (Cast and Crew). To encode the content of a certain movie, we can utilize multiple

115

different subgraphs of this graph. For example, we can generate embeddings to encode only
the genres, relying on the bipartite graph of movies and genres, or embeddings that encode
the whole content of each movie, using the whole content subgraph. Taking this into consid-
eration, we generated and utilized node embeddings encoding the content of the movies in

the three following ways:

e Do not produce any node embeddings on the content of the movies. Utilize only the
movies’ titles and the ratings between users and movies. This methodology approaches

the nature of collaborative filtering techniques.

e Generate multiple node embeddings encoding the content of each movie, with each em-
bedding being generated on a different bipartite subgraph, that includes the different re-
lationships of the movie. In other words, for each movie, generate a genres-embedding
based on the movies-genres subgraph, a keywords-embedding based on the movies-

keywords subgraph, etc.

e Generate one node embedding for each movie, that encodes its whole content on the
graph. In this approach, we apply the node embedding algorithms on the whole sub-
graph.

4. Model Structure: The structure of the model relies on numerous hyperparameters. Many of
them, including the number of layers and the hidden channels of the GNN Encoder and the

Edge Decoder were explored.

6.3 Baseline

The baselines of the recommender system built in this thesis can be divided into two main categories.
The first category involves prior experiments conducted on the MovieLens 100K dataset, that have
already been reported in section 3.8. The second one involves a relatively simple version of the pro-
posed architecture. This simple version uses GraphSAGE (3.5.1) as its GNN, and will be referred to
as the "SAGE baseline”. By comparing the performance of our experiments to prior studies, we can
evaluate the effectiveness of the proposed models and estimate the quality of our implementation.
The SAGE Baseline serves as a useful reference for the more complex and optimized versions of the

recommender system that are developed later in this thesis.

6.3.1 A simple GraphSAGE baseline
6.3.1.1 The model

The SAGE baseline is a relatively straightforward implementation of the proposed architecture, aim-
ing to provide information on the basic functioning of the system, and to provide a starting point
for further optimization of the numerous hyperparameters we introduced in the previous section.
More specifically, the GNN Encoder of the SAGE baseline consists of 4 GraphSAGE layers and
16 hidden channels. The Edge Decoder is an MLP (Multi-Layer Perceptron) of 5 layers and 16 hidden
channels. As far as the selection of the Movies Content Subgraph is concerned, the baseline ex-
periment uses only the movie titles as metadata input, without incorporating any node embeddings

that encode the movie’s metadata subgraph.

116

6.3.1.2 Baseline Experiment

For the baseline experiment, we trained the described GraphSAGE model on an 80%-10%-10% split
of the dataset (train-validation-test sets) for 200 epochs. The RMSE values on the train and the

validation sets for each epoch of the training are visualized in figures 6.1 and 6.2 respectively.

— ('SAGE', 4,11, 0, 5, 16, 0.012, I'title”, ‘onginal_ttle), (1, 1), 10 (), 1 — ('SAGE', 4, (1,0, 5 16, 0,012, [*title’, anginal_tie), 41, 1, 10,

| A
\:' |"|
\ 'rll | |\J|'r.||."',‘}|'\)n\ A,
A TV A
ot -"‘*-h.-,__w\ . TV et ‘\lll'lllll"\'"blt\"'u,l"l'P-u_._‘,.m“

e T CE : A A

o 25 50 ™ 100 123 150 s 200 o 25 50 ™ 100 123 150 s 200

Figure 6.1: The training RMSE loss of the Graph- Figure 6.2: The validation RMSE loss of the
SAGE baseline for each epoch. Visu- GraphSAGE baseline for each epoch.
alized with matplotlib. Visualized with matplotlib.

The RMSE loss on the validation set reached a value of 0.97. This value, along with the RMSE

losses of the reported prior work, can be summarized in the table 6.1.

Table 6.1: RMSE baselines on the 100K datasets. The RMSE values on the MovieLens dataset are
reported in the publication of Hekmatfar et al. (2022) and are run under the same experi-
mental setup. It is important to note that our SAGE baseline cannot be directly compared
to the other methods, due to the different experimental setup.

Model Dataset (100K) RMSE

GARec (Hekmatfar et al. (2022)) MovieLens 0.880
GC-MC (Berg et al. (2017)) MovieLens 0.905
IGMC (Zhang and Chen (2019)) MovieLens 0.927
PinSAGE (Ying et al. (2018)) MovieLens 0.962
SAGE baseline The Movies Dataset | 0.968

6.4 Further Experiments on Tuning the Hyperparameters

Subsequently to defining the baselines, we begin the process of conducting multiple experiments,

in order to optimize the numerous hyperparameters of the task.

117

6.4.1 Initial GNN architectures comparison

The first experiment we performed, bearing mainly a diagnostic role, compares the predictions of
the model for the different Convolutional Graph Neural Network (GNN) architectures. Keeping
the same parameters as the baseline approach, we compare the four architectures, and the RMSE
values of figures 6.3 and 6.4 are produced for the training and the validation set respectively. We
observe that GraphSAGE and GIN achieve the lowest training losses, and that GraphSAGE achieves
the lowest RMSE values on the validation set for the most epochs. The validation RMSE of the Graph

Isomorphism Network is unstable during the epochs.

TR == | NI -
‘Ll ‘| = r ’ |q|| =
4 ‘ | ‘ N | f'\
| [. '
MM | M __ 'J\m (w | ||M
Il /N B |
i M L | |‘ ||. 'H
: S e 10 [T [T) |

o 25 50 ™ 100 123 150 s 200 o 25 50 ™ 100 123 150 s 200

Figure 6.3: The training RMSE loss of the Graph- Figure 6.4: The validation RMSE loss of the

SAGE, GraphConv, GAT, and GIN for GraphSAGE, GraphConv, GAT, and
each epoch. Visualized with mat- GIN for each training epoch. Visu-
plotlib. alized with matplotlib.

6.4.2 Number of layers

As a subsequent step in the experimental process, we conducted an exploration of the number of
layers for the GNN Encoder and for the Edge Decoder. As far as the layers of the GNN Encoder
are concerned, the existence of the oversmoothing problem that was analyzed in section 4.3.3.1,
makes us expect that the optimal number of layers for the GNN Encoder will be relatively small. We
perform multiple experiments for each GNN architecture separately, tuning the layers of the GNN
Encoder and the Edge Decoder.

In general, to perform these experiments, a grid-search approach was followed. The number of
layers for the GNN Encoder was varied between 2 and 6 in increment steps of 2, whereas the number
of layers for the Edge Decoder was varied between 2 and 10 with steps of 4. For each combination,

a separate instance was trained and evaluated by the RMSE loss on the same validation set.

118

6.4.2.1 Experiments without utilizing movie-content embeddings

In order to gain an intuition on the effection that the number of GNN layers has on the quality of the
predictions, we conduct the experiments of figures 6.5 and 6.6 on a GraphSAGE architecture. We
observe the existence of the oversmoothing phenomenon, as architectures with less hidden layers

on the GNNEncoder achieve lower RMSE values on the validation set.

= 2 GNM layers - 2 EdgeDecoder layars
2 GNN layers - 6 EdgeDecoder |layers
—— 2 GNN layers - 10 EdgeDel TS
4 GNM layars - 2 EdgeDec

& ONN layers

LS
| —— 2GAN layers
—— 10 GMN layers

—— 4 GNM Iayers - § EdgeDecader
— 4 GNN layers - 10 EdgeDecnnes
- & GNN layers - 2 EdgeDecoder
— G GNN layers - & EdgeDecader
6 GNN fayers - 10 EdgeDecoder layer

:_Irl " :
(| lI\ y | ,| \||l'|’lUr'l,"'ﬂ,—.,e.u__.___H_’__)

o 25 50 ™ 100 123 150 s 200 o 25 50 ™ 100 123 150 s 200

Figure 6.5: The validation RMSE loss of the Figure 6.6: The validation RMSE loss of the

GraphSAGE, with 2, 6, and 10 GNN GraphSAGE, with multiple combina-
layers, for each epoch. Visualized tions of layers, for each epoch. Visu-
with matplotlib. alized with matplotlib.

We conduct similar experiments for all the architectures of our experiments, with the produced
RMSE values summarized in table 6.2. It is important to note, that the RMSE values achieved on the
validation set after tuning the number of layers have already improved significantly, in comparison
to the GraphSAGE baseline model.

Table 6.2: The layers combination with the lowest validation RMSE for each GNN architecture on
the 100K dataset

Model GNN Encoder layers | Edge Decoder layers | Validation RMSE
SAGE 2 6 0.933
GAT 2 10 0.929
GraphConv 2 10 1.050
GIN 2 6 0.937

6.4.2.2 Experiments utilizing movie-content embeddings

Next, we ensure that the layers number affects the predictions in the same way, even when utilizing
the movie-content embeddings. For this purpose, we generate node embeddings for the movies,
using the FastRP algorithm 3.2.5.6 provided by GDS (2022), based on the whole movie-content sub-
graph.

119

Following the same configuration of the experiments, at first we conduct experiments on the
number of layers for the GraphSAGE network. The RMSE losses on the validation set are visualized
in figures 6.7 and 6.8. Based on the visualized experiments, and on the same experiments on the
other three GNN architectures, we observe that the same behaviour with the previous experiments

group is followed. The RMSE losses achieved on the validation set are summarized in table 6.3.

—— 2 GMIN |ayars
6 ONN layers
— 10 GHN layers

= 2 GNM layers - 2 EdgeDecoder layars
2 GNN layers - 6 EngeDecader |ayers
—— 2 GNN layers yers
4 GNM bayers -
—— 4 GNM layers - §
— 4 GNN layers ¥
- & GNN layers - 2 EdgeDecoder layer
—— @ GNM layers - § EdgeDecoder layers
6 GNMN layers - 10 Edgelecoder layers

|

I
| * ’

it
J| |] Ifr'flﬁ'r-,-"mw_ﬂ__ .
irl -'I-i.".. M_-_H""'-\ |
Vs 1

W, N ﬁ"-W !

o 25 50 ™ 100 123 150 s 200 o 25 50 ™ 100 123 150 s 200

Figure 6.7: The validation RMSE loss of the Figure 6.8: The validation RMSE loss of the

GraphSAGE, with 2, 6, and 10 GNN GraphSAGE, with multiple combina-
layers, for each epoch, using FastRP tions of layers, for each epoch, using
node embeddings. Visualized with FastRP node embeddings. Visualized
matplotlib. with matplotlib.

We conduct similar experiments for all the architectures of our experiments, with the produced

RMSE values summarized in table 6.3.

Table 6.3: The layers combination with the lowest validation RMSE for each GNN architecture on
the 100K dataset, utilizing the FastRP node embeddings for the movies-content

Model GNN Encoder layers | Edge Decoder layers | Validation RMSE
SAGE 2 10 0.920
GAT 2 10 0.941
GraphConv 2 10 0.972
GIN 2 6 0.933

6.4.3 Number of hidden channels

The next step of the experimental process was to try different numbers of hidden channels for the
GNN Encoder and the Edge Decoder, bearing in mind the ways that the movie-content embeddings
can be utilized. For the two edge cases of the embeddings utilization, we perform a search over
the possible hidden channels number, in the range of [16, 128]. For each GNN architecture, we use
the layers number that achieved the minimum RMSE loss on the validation set, during the previous

group of experiments.

120

6.4.3.1 Experiments without utilizing movie-content embeddings

We create a different instance for each one of the models in table 6.2, with a variable number of

hidden channels. The conducted experiments for GraphSAGE and GAT are visualized in figures 6.9

and 6.10 respectively.

— G4 higden channels
128 hidden channels

o\
| YJ\,H v‘u\"mm_,__h_/ﬂ m

— | \ '
TV, m}ﬁ"?ﬁw‘ G

—— G higden chann

128 hidden nnel

o 25

Figure 6.9

: The validation RMSE loss of the

50 ™ 100 123 150 s 200

GraphSAGE, with 2 GNN layers, 6
layers in the Edge Decoder, and
variable number of hidden channels,
without using movie-content embed-
dings. Visualized with matplotlib.

o

25

50 ™ 100 123 150 s 200

Figure 6.10: The validation RMSE loss of GAT,

with 2 GNN layers, 10 layers in the
Edge Decoder, and variable number
of hidden channels, without using
movie-content embeddings. Visual-
ized with matplotlib.

We conduct similar experiments for all the models of table 6.2. The best version of each model,

based on the validation RMSE, is summarized in table 6.4.

Table 6.4: The layers and hidden channels combination with the lowest validation RMSE for each
GNN architecture on the 100K dataset, without utilizing node embeddings for the movies-

content
Model GNN Encoder layers | Edge Decoder layers | Hidden Channels | Validation RMSE
SAGE 2 6 64 0.919
GAT 2 10 64 0.926
GraphConv 2 10 128 1.018
GIN 2 6 16 0.934

6.4.3.2 Experiments utilizing movie-content embeddings

We repeat the experiments of section 6.4.3.1, but now tuning the number of hidden channels on the
models of table 6.3. The experiments for GraphSAGE and GAT are visualized in figures ?? and ??.

The resulting RMSE losses on the validation set for each experiment, are gathered in table 6.5.

121

= 1B hidden channals
32 higden channels

— G4 hidden channels
128 hidden channals

I

|

= 1B higden channels
32 higden channels

— G4 higden channels
128 hidden channels

o

| m

l
¥

|

;WLV' PI r.

'l
A Whan, Y\ A
yu\“_f_\q::_\T__q_“J ¥ lll VW o

\\ L |.

A
Ml

\
- "\
g

w, TH
‘--%J»VM\ —

"
M

S ey,

o 25

Figure 6.11: The validation RMSE loss of the

50 ™ 100 123 150 s 200

GraphSAGE, with 2 GNN layers, 10
layers in the Edge Decoder, and
variable number of hidden chan-
nels, using movie-content embed-
dings. Visualized with matplotlib.

o

25

50 ™ 100 123 150 s 200

Figure 6.12: The validation RMSE loss of GAT,

with 2 GNN layers, 10 layers in the
Edge Decoder, and variable num-
ber of hidden channels, with using
movie-content embeddings. Visual-
ized with matplotlib.

Table 6.5: The layers and hidden channels combination with the lowest validation RMSE for each

GNN architecture on the 100K dataset, utilizing FastRP node embeddings for the movies-

content
Model GNN Encoder layers | Edge Decoder layers | Hidden Channels | Validation RMSE
SAGE 2 10 16 0.919
GAT 2 10 128 0.928
GraphConv 2 10 16 0.972
GIN 2 6 32 0.930

6.4.4 Node embeddings usage

As the next step of our experimental process, we conduct experiments on node embeddings usage.

More specifically, for each one of the models of table 6.4, we compare the RMSE losses on the vali-

dation set, if we provide different combinations and types of node embeddings. At first, we explore

FastRP, GraphSAGE, and Node2Vec embeddings on the movies-content, using either the whole con-

tent subgraph to generate them, or a separated bipartite graph for each related entity. The validation

loss on these experiments is visualized for GraphSAGE and for GAT on figures 6.13 and 6.14.

We conduct the same experiments on rest of the models of table 6.5, and we summarize the

experiment that achieved the lowest validation loss for each architecture, on table 6.6. We refer to

the node embeddings generated by the FastRP algorithm on the whole movies-content subgraph as

FastRP combined embeddings, and to the set of node embeddings generated by the FastRP algo-

rithm on the multiple bipartite subgraphs of the whole movies-content graph as FastRP separate

embeddings.

122

—— fastRP combined
fastRP separate

"3 | — factAp combined

— fmstRP separate
r

o

o 50 100 =0 200 250 300

Figure 6.13: The validation RMSE loss of the Figure 6.14: The validation RMSE loss of GAT,

GraphSAGE, with 2 GNN layers, 10
layers in the Edge Decoder, and 16
hidden channels, using a variety of
movie-content embeddings. Visual-
ized with matplotlib.

with 2 GNN layers, 10 layers in
the Edge Decoder, and 128 hid-
den channels, using a variety of
movie-content embeddings. Visual-
ized with matplotlib.

Table 6.6: The layers, hidden channels, and node embeddings usage combination with the lowest
validation RMSE for each GNN architecture on the 100K dataset, after 200 training epochs

Model GNN layers | Edge Decoder layers | Hidden Channels | Node embeddings | Val. RMSE
SAGE 2 10 16 FastRP separate 0.903
GAT 2 10 128 FastRP separate 0.922
GraphConv 2 10 16 FastRP combined 0.972
GIN 2 6 32 FastRP combined 0.923

We observe that every GNN architecture achieved lower validation loss with the utilization of

the movies-content node embeddings. The results can be summarized in figure 6.15.

6.4.5 Final comparison

The model that achieved the lowest RMSE value on the validation set consists of a two-layered
GNNEncoder, utilizing layers following the GraphSAGE architecture, and an EdgeDecoder with 10

layers. The movie-content is utilized with node embeddings produced by the FastRP algorithm,

and mulitple separate node embeddings are generated to encode the content of each movie. Our

model achieves a RMSE of 0.904 on the test set. Although this result cannot be directly compared

to the RMSE values that the previously reported graph-based state-of-the-art techniques achieve on

MovieLens 100K, due to the different experimental setup, we summarize the results, for intuitive

reasons, in table 6.7.

123

Node embeddings utilization
1.0 4 EEE No
! E Yes
0.8
0.6 4
L
%))
=
o
g
0.4
0.2 4
0.0 -

GAT
GIN

G}
&

=
E
o
¥}
=
[=%
o
o

GNNEncoder Architecture

Figure 6.15: The effect of utilizing the movies-content node embeddings on the validation RMSE
loss for the four GNN architectures. Visualized with matplotlib.

6.5 Predicting the ratings for a specific user

Subsequently to the process of tuning the multiple hyperparameters to achieve the wanted perfor-
mance on our task, we proceed to some more practical examples, to validate that the recommender
will conduct useful predictions for the platform’s users. For the following experiments, we utilized
the GraphSAGE model of table 6.6.

6.5.0.1 Differentiating users

The aim of the first experiment was to confirm that users whose submitted ratings follow different

distributions, will receive the corresponding predicted ratings. For this purpose, we picked the users

124

Table 6.7: RMSE baselines and our final result on the 100K datasets. The RMSE values on the Movie-
Lens dataset are reported in the publication of Hekmatfar et al. (2022) and are run under
the same experimental setup. It is important to note that our best SAGE model cannot be
directly compared to the other methods, due to the different experimental setup.

Model Dataset (100K) RMSE

GARec (Hekmatfar et al. (2022)) MovieLens 0.880
SAGE (under our hyperparameters) | The Movies Dataset | 0.904
GC-MC (Berg et al. (2017)) MovieLens 0.905
IGMC (Zhang and Chen (2019)) MovieLens 0.927
PinSAGE (Ying et al. (2018)) MovieLens 0.962

empathicRelish3 and puzzledSalt7 of the platform, and examined the distributions of their submitted
and predicted ratings. As seen in figure 6.16, the majority of the first user’s ratings tend to be in
the range [2, 3.5], and the predicted ratings are lying in the same area. In contrast, as seen in figure
6.17, the second user tends to submit high ratings constantly. As expected, the predicted ratings for
this user are greater than 4.0. The conclusion of this experiment is that indeed each user receives

personalized recommendations, according to his/her part interaction with the movies.

Submitted ratings distribution Submitted
20
15 100 4
- =
E 5
Z 10
8 3 50
54
0 i
0 1 2 3 4 5 0 1 2
Predicted ratings distribution Predicted
3000 -
2000
o 20001 o 1500 4
(= (=
= =
g & 1000
1000 -
500 A
0 ' 0 T T - -
i 1 2 3 4 5 i 1 2 3 4 5

Figure 6.16: The distribution of the ratings that Figure 6.17: The distribution of the ratings that

user empathicRelish3 has submitted user puzzledSalt7 has submitted
(first diagram), as long as the distri- (first diagram), as long as the dis-
bution of the predicted ratings for tribution of the predicted ratings for
the specific user. the specific user.

6.5.0.2 Adjusting to changes in user behavior over time

An additional practical aspect of the platform, given its nature, is the ability to adapt to changes
in user behavior over time. The current experiment demonstrates the model’s capacity to keep up
with evolving preferences of users, ensuring that the recommendations it provides remain relevant
and useful for the platform’s users.

More specifically, in the current experiment, we randomly chose a user that used to submit high
ratings. The initial distribution of the user’s ratings, as long as the distribution of the ratings our

model predicts, is visualized in figure 6.18. As expected, the model predicts high ratings for the

125

specific user. However, let’s suppose that the user suddenly decides to change his rating behavior,
and starts submitting multiple ratings with relatively low values, mainly in the range of [0.5, 2.5].
The distribution of the user’s submitted ratings has now adapted to the distribution of figure 6.19.
After conducting a re-training on the model, including the new data, we observe that the distribution

of the ratings for the specific user has started shifting towards lower values, adapting to his/her new

behavior.
Submitted Submitted
15 -
20 -
£ 101 g
2 2
g S 10
54
0 u - 0
0 1 2 3 4 5 0 4 5
Predicted Predicted
1500 1 =0
i i
£ 1000 - £ 2000
8 8
500 - 1000
0 . - - 0 "
D 1 2 3 4 5 D 1 2 3 4 5

Figure 6.18: The distribution of the ratings thata Figure 6.19: The distribution of the submitted

specific user has submitted (1st dia- ratings (1st diagram) after a change
gram), as long as the distribution of in his/her rating behavior, as long as
the predicted ratings for the specific the predicted ratings, after retrain-
user. ing the model.

6.5.0.3 Understanding more complex user tastes

In the experiments that have been performed in the previous sections, we can observe that the
ratings of each user are mainly lying in a single area of values. In the current experiment, we mimic
the behavior of user dearMagpie8 that submits ratings in a wide range, rating both the movies that
he/she likes, as long as the movie he/she dislikes.

More specifically, we programmatically mimic the behavior of a user that likes movies of genre
Crime by rating them in the range [3.0, 4.5], and dislikes the movies of the genre Adventure, by
rating them in the range [0.5, 2.0]. The distribution formed by the ratings of the certain user is more
complex than the previous ones, and we expect that the model would face difficulty in predicting
the correct ratings. The distributions of the total submitted and predicted ratings for dearMagpie8
are visualized in figure 6.20. The predictions tend to be separated into two clusters, and therefore
tend to follow the distribution of the submitted ratings. In figure 6.21, we visualize the predicted
ratings for the movies that belong to each one of the two genres. We observe that most of the Crime
movies are rated higher than the Adventure movies, and we conclude that the recommender tends
to identify that the user dearMpagpie8 prefers the first genre.

However, in general, this experiment shows that our model cannot predict the ratings of more
complex users, with the same efficiency that it can predict the ratings of simpler users. For this
reason, we conduct a sampling over multiple users of our dataset, and we observe that most of these

users tend to have a simple rating behavior. Therefore, bearing in mind the relatively small version

126

of our dataset, we can reach the conclusion that our model was not trained for a sufficient amount

of users with such complex rating behaviors, and as a result, it cannot predict their ratings in a

satisfying way.

Predicted ratings of user 'dearMagpled’ for genre 'Crime’

500

400

300

Count

Submitted ratings of user ‘dearMagpie8'

200

100

1 2 3 a

Predicted ratings of user ‘dearMagpie8’ for genre *Ads

500

o 1 2 3 4

w

Predicted ratings of user ‘dearMagpie&' o

3000 1

count

o

Figure 6.20: The distribution of the ratings thata Figure 6.21: The distribution of the predicted

specific user has submitted (1st dia- ratings for genres Crime and Ad-
gram), as long as the distribution of venture. The recommender tends to
the predicted ratings for the specific understand the user’s preference to-
user. wards the first genre.

127

Chapter 7

Conclusion

7.1 General Conclusion

In this work, we explored the usage of Graph Neural Networks to perform movie recommenda-
tions. We modeled the recommendation problem as the link weight prediction task on the bipartite

graph consisting of users and movies as nodes, and the corresponding ratings as weighted edges.

As far as the usage of Neo4j (Neo4j (2012)) as our graph database is concerned, we conclude
that this decision proved to be a critical factor in achieving the desired results. Neo4j enabled us to
store the dataset natively as a graph and perform a variety of graph algorithms on it, to uncover
various insights into the complex connectivity of the entities, with the Neo4j Graph Data Science
Library (GDS (2022)). This library allowed us to take advantage of the underlying graph structure,
and extract node embeddings, using a variety of implemented graph algorithms. The database
management process required experience in back-end development and strong scripting skills, but
the high-level API of Neo4j, as long as the existing libraries, such as Py2Neo (Py2neo (2020)), made
the database initialization process efficient and customizable. Therefore, it enabled us to transform
the initial CSV files of the dataset into the required infrastructure to support the development of a

machine learning model and a whole web app, with the minimum possible development overhead.

On the development of the recommender model, the framework Pytorch Geometric (Paszke
et al. (2019)) allowed us to easily bring to life a variety of GNN architectures, customize them, and
perform numerous experiments to identify the solution that performed better in our problem. We
implemented a widely used architecture that decouples the process of generating node embeddings
from predicting the corresponding link weights. Our best model, which utilized the GraphSAGE
(Hamilton et al. (2017a)) GNN architecture, reached an RMSE of 0.903 on the 100K version of the
The Movies Dataset (Banik (2017)), which is compared to the RMSE that multiple state-of-the-art

models achieve on the corresponding MovieLens (Grouplens) dataset.

The development of the web app was a crucial step in ensuring that our model could be tested
and used in a real-world scenario. Our focus on security and scalability made sure that the system
was designed to handle the demands of a production environment. The integration of the recom-
mendations model into the web app was a complex process that required expertise in both back-end
and front-end development. This process not only allowed us to test our model but also opened up
opportunities for expanding the dataset. Additionally, it served as a gentle introduction to the field

of MLOps, which is an important area of research in the field of machine learning.

129

7.2 Future work

As expected, the research around recommender systems, as long as the development of a whole

platform that encapsulates this functionality, are processes that cannot fit in a single diploma thesis.

There is a variety of future steps that could be performed in the research around utilizing GNNs

for the development of movie recommender systems. In our context, we plan to perform research

on the following fields:

e Dataset versions The experiments that were showcased were performed on the small version

of the The Movies Dataset (Banik (2017)), which consists of 100K ratings. We consider it an
interesting step to verify that the conclusions of our experiments will be similar on larger

versions of the dataset.

GNN Architectures In our experiments, the architectures GraphSAGE and GAT seemed to
outperform GIN and GraphConv on the achieved RMSE values. We plan to perform more
extensive experiments on more GNN architectures, to validate whether the are versions of

our model that can achieve even better results.

Node embedding algorithms In our experiments, we investigated the efficacy of three algo-
rithms to generate node embeddings on the metadata of the movies. As a future direction,
two avenues of exploration are worth considering. Firstly, an in-depth analysis could be con-
ducted on tuning the numerous hyperparameters of these algorithms. Secondly, it would
be interesting to explore alternative algorithms besides FastRP, Node2Vec, and GraphSAGE.
This way, we might empower our recommendation engine, by capturing the underlying graph

structure in a more expressive way.

Explainability In recent years, there has been a growing interest in understanding the deci-
sions made by machine learning models. We plan to explore the explainability of our GNN-
based recommendations model, in order to understand the reasons behind its predictions and

increase the trust our users show toward our recommendations.

Simultaneously, numerous actions can be performed, to result in a more robust and efficient

platform. More specifically, we consider the following steps would help in this direction:

130

e Deployment We consider the deployment of our platform as an important step to verify the

quality of our predictions and the system’s implementation. Making the platform publicly
available, will lead to an increase in active users, enriching the dataset with new ratings.
Therefore, a new extended version of the dataset could be created and made publicly available
as a contribution to the open-source community. Concurrently, the recommendations model

could be tested in a scenario closer to the real world.

Model re-training We plan to investigate the optimal frequency of re-training the recommen-
dations model, considering the trade-off between the cost of re-training, and the need to keep
the recommendations up-to-date with new users and changes in the behavior of our long-term

users

e Graph refresh Another important aspect to explore is the frequency of refreshing the in-
memory graph on the Model APL This will help ensure that the model’s predictions are up-

to-date with the latest changes in the user-movie interactions.

131

Bibliography

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671-687, 2003. ISSN 0022-0000. doi:
https://doi.org/10.1016/S0022-0000(03)00025-4. URL https://www.sciencedirect.com/science/
article/pii/S0022000003000254. Special Issue on PODS 2001.

G. Adomavicius and A. Tuzhilin. Toward the next generation of recommender systems: a survey of
the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineer-
ing, 17(6):734-749, 2005. doi: 10.1109/TKDE.2005.99.

Rabaa Alabdulrahman and Herna Viktor. Catering for unique tastes: Targeting grey-sheep users
recommender systems through one-class machine learning. Expert Systems with Applications,
166:114061, 2021. ISSN 0957-4174. doi: https://doi.org/10.1016/j.eswa.2020.114061. URL https:
//www.sciencedirect.com/science/article/pii/S0957417420308241.

Renzo Angles. The property graph database model. In Alberto Mendelzon Workshop on Foundations
of Data Management, 2018.

Rounak Banik. The movies dataset, 2017. URL https://www.kaggle.com/datasets/rounakbanik /

the-movies-dataset.

Sami Belkacem. Machine learning approaches to rank news feed updates on social media. PhD thesis,
04 2021.

Rianne van den Berg, Thomas N. Kipf, and Max Welling. Graph convolutional matrix completion,
2017. URL https://arxiv.org/abs/1706.02263.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang. Complex networks: Struc-
ture and dynamics. Physics Reports, 424(4):175-308, 2006. ISSN 0370-1573. doi: https://doi.
org/10.1016/j.physrep.2005.10.009. URL https://www.sciencedirect.com/science/article/pii/
S037015730500462X.

J. A. Bondy and U. S. R. Murty. Graph Theory with Applications. Elsevier, New York, 1976.
Michael Bronstein. Expressive power of graph neural networks and the weisfeiler-lehman test.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine, 34(4), 2017. doi:
10.1109/MSP.2017.2693418.

133

https://www.sciencedirect.com/science/article/pii/S0022000003000254
https://www.sciencedirect.com/science/article/pii/S0022000003000254
https://www.sciencedirect.com/science/article/pii/S0957417420308241
https://www.sciencedirect.com/science/article/pii/S0957417420308241
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://www.kaggle.com/datasets/rounakbanik/the-movies-dataset
https://arxiv.org/abs/1706.02263
https://www.sciencedirect.com/science/article/pii/S037015730500462X
https://www.sciencedirect.com/science/article/pii/S037015730500462X

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the topological view. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(04):3438-3445, Apr. 2020. doi: 10.1609/aaai.v34i04.5747.
URL https://ojs.aaai.org/index.php/AAAI/article/view/5747.

Haochen Chen, Syed Fahad Sultan, Yingtao Tian, Muhao Chen, and Steven Skiena. Fast and accurate
network embeddings via very sparse random projection, 2019. URL https: //arxiv.org/abs/1908.
11512.

Christuniversity. URL https://sites.google.com/a/cs.christuniversity.in/

discrete-mathematics-lectures/graphs/directed-and-undirected-graph.
Microsoft Corporation. TypeScript, 2012. URL https://www.typescriptlang.org/.

Zahra Zamanzadeh Darban and Mohammad Hadi Valipour. GHRS: Graph-based hybrid recommen-
dation system with application to movie recommendation. Expert Systems with Applications, 200:
116850, aug 2022. doi: 10.1016/j.eswa.2022.116850. URL https://doi.org/10.1016%2Fj.eswa.
2022.116850.

Tommaso Di Noia and Vito Ostuni. Recommender Systems and Linked Open Data, volume 9203, pages
88-113. 07 2015. ISBN 978-3-319-21767-3. doi: 10.1007/978-3-319-21768-0_4.

Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, Heidelberg;
New York, fourth edition, 2010. ISBN 9783642142789 3642142788 9783642142796 3642142796.

Minh-Phung Do, Dung Nguyen, and Loc Nguyen. Model-based approach for collaborative filtering.
08 2010.

Paula Goémez Duran, Alexandros Karatzoglou, Jordi Vitria, Xin Xin, and Ioannis Arapakis. Graph
convolutional embeddings for recommender systems, 2021. URL https://arxiv.org/abs/2103.
03587.

Gintare Karolina Dziugaite and Daniel M. Roy. Neural network matrix factorization, 2015. URL
https://arxiv.org/abs/1511.06443.

Brendan Eich. Javascript, 1995.
Facebook. React. https://reactjs.org/, 2013.

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric,

52019. URL https://github.com/pyg-team/pytorch_ geometric.
The Node.js Foundation. Node.js, 2009. URL https://nodejs.org.

Neo4j GDS. Neo4j graph data science library, 2022. URL https://neodj.com/docs/

graph-data-science/current/.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry, 2017. URL https://arxiv.org/abs/1704.01212.

134

https://ojs.aaai.org/index.php/AAAI/article/view/5747
https://arxiv.org/abs/1908.11512
https://arxiv.org/abs/1908.11512
https://sites.google.com/a/cs.christuniversity.in/discrete-mathematics-lectures/graphs/directed-and-undirected-graph
https://sites.google.com/a/cs.christuniversity.in/discrete-mathematics-lectures/graphs/directed-and-undirected-graph
https://www.typescriptlang.org/
https://doi.org/10.1016%2Fj.eswa.2022.116850
https://doi.org/10.1016%2Fj.eswa.2022.116850
https://arxiv.org/abs/2103.03587
https://arxiv.org/abs/2103.03587
https://arxiv.org/abs/1511.06443
https://reactjs.org/
https://github.com/pyg-team/pytorch_geometric
https://nodejs.org
https://neo4j.com/docs/graph-data-science/current/
https://neo4j.com/docs/graph-data-science/current/
https://arxiv.org/abs/1704.01212

Jennifer Golbeck. Chapter 3 - network structure and measures. In Jennifer Golbeck, editor, Analyzing
the Social Web, pages 25-44. Morgan Kaufmann, Boston, 2013. ISBN 978-0-12-405531-5. doi: https:
//doi.org/10.1016/B978-0-12-405531-5.00003-1. URL https://www.sciencedirect.com/science/
article/pii/B9780124055315000031.

Palash Goyal and Emilio Ferrara. Graph embedding techniques, applications, and performance: A
survey. Knowledge-Based Systems, 151:78-94, jul 2018. doi: 10.1016/j.knosys.2018.03.022. URL
https://doi.org/10.1016%2Fj.knosys.2018.03.022.

Grouplens. Movielens latest datasets. URL https://grouplens.org/datasets/movielens/.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks, 2016. URL
https://arxiv.org/abs/1607.00653.

William Hamilton. Graph representation learning. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 14:1-159, 09 2020. doi: 10.2200/S01045ED1V01Y202009AIMO046.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs, 2017a. URL https://arxiv.org/abs/1706.02216.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications, 2017b. URL https://arxiv.org/abs/1709.05584.

Soyeon Caren Han, Taejun Lim, Siqu Long, Bernd Burgstaller, and Josiah Poon. GLocal-k. In Proceed-
ings of the 30th ACM International Conference on Information & Knowledge Management. ACM,
oct 2021. doi: 10.1145/3459637.3482112. URL https://doi.org/lo. 1145%2F3459637.3482112.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm trans-

actions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Pi-
cus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernandez del
Rio, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, War-
ren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357-362, September 2020. doi: 10.1038/s41586-020-2649-2. URL
https://doi.org/10.1038 /s41586-020-2649-2.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Light-
gen: Simplifying and powering graph convolution network for recommendation, 2020. URL
https://arxiv.org/abs/2002.02126.

Taher Hekmatfar, Saman Haratizadeh, Parsa Razban, and Sama Goliaei. Attention-based recom-
mendation on graphs, 2022. URL https://arxiv.org/abs/2201.05499.

Paul W. Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmod-
els: First steps. Social Networks, 5(2):109-137, 1983. ISSN 0378-8733. doi: https://doi.
0rg/10.1016/0378-8733(83)90021-7. URL https://www.sciencedirect.com/science/article/pii/
0378873383900217.

135

https://www.sciencedirect.com/science/article/pii/B9780124055315000031
https://www.sciencedirect.com/science/article/pii/B9780124055315000031
https://doi.org/10.1016%2Fj.knosys.2018.03.022
https://grouplens.org/datasets/movielens/
https://arxiv.org/abs/1607.00653
https://arxiv.org/abs/1706.02216
https://arxiv.org/abs/1709.05584
https://doi.org/10.1145%2F3459637.3482112
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/2002.02126
https://arxiv.org/abs/2201.05499
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Networks,
4(2):251-257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)90009-T. URL
https://www.sciencedirect.com/science/article/pii/089360809190009T.

Yuchen Hou and Lawrence B. Holder. Deep learning approach to link weight prediction. In 2017 In-
ternational Joint Conference on Neural Networks (IJCNN), 2017. doi: 10.1109/JCNN.2017.7966076.

Yuchen Hou and Lawrence B. Holder. Link weight prediction with node embeddings, 2018. URL
https://openreview.net /forum?id=ryZ3KCy0W.

Binxuan Huang and Kathleen M. Carley. Residual or gate? towards deeper graph neural networks
for inductive graph representation learning, 2019. URL https://arxiv.org/abs/1904.08035.

Ningyuan Teresa Huang and Soledad Villar. A short tutorial on the weisfeiler-lehman test and its
variants. In ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, jun 2021. doi: 10.1109/icassp39728.2021.9413523. URL https://doi.
org/10.1109%2Ficassp39728.2021.9413523.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works, 2016a. URL https://arxiv.org/abs/1609.02907.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016b. URL https://arxiv.org/
abs/1611.07308.

Adrien Leman. The reduction of a graph to canonical form and the algebra which appears therein.
2018.

Guohao Li, Matthias Miiller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gens go as deep as
cnns?, 2019. URL https://arxiv.org/abs/1904.03751.

Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random projections. In Proceedings of
the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 06,
page 287-296, New York, NY, USA, 2006. Association for Computing Machinery. ISBN 1595933395.
doi: 10.1145/1150402.1150436. URL https://doi.org/10.1145/1150402.1150436.

Xiaodan Liang, Xiaohui Shen, Jiashi Feng, Liang Lin, and Shuicheng Yan. Semantic object parsing
with graph Istm, 2016. URL https://arxiv.org/abs/1603.07063.

L. Lovéasz. Random walks on graphs: A survey. In D. Miklés, V. T. Sés, and T. Szényi, editors,
Combinatorics, Paul Erdés is Eighty, volume 2, pages 353-398. Janos Bolyai Mathematical Society,
Budapest, 1996.

matplotlib. Matplotlib: Python plotting. https://matplotlib.org. [Online; accessed 2022].

Wes McKinney et al. Data structures for statistical computing in python. In Proceedings of the 9th
Python in Science Conference, volume 445, pages 51-56. Austin, TX, 2010.

Peter Meltzer, Marcelo Daniel Gutierrez Mallea, and Peter J. Bentley. Pinet: A permutation invariant
graph neural network for graph classification, 2019. URL https://arxiv.org/abs/1905.03046.

136

https://www.sciencedirect.com/science/article/pii/089360809190009T
https://openreview.net/forum?id=ryZ3KCy0W
https://arxiv.org/abs/1904.08035
https://doi.org/10.1109%2Ficassp39728.2021.9413523
https://doi.org/10.1109%2Ficassp39728.2021.9413523
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1611.07308
https://arxiv.org/abs/1904.03751
https://doi.org/10.1145/1150402.1150436
https://arxiv.org/abs/1603.07063
https://matplotlib.org
https://arxiv.org/abs/1905.03046

Prem Melville and Vikas Sindhwani. Recommender Systems, pages 1056-1066. Springer US, Boston,
MA, 2017. ISBN 978-1-4899-7687-1. doi: 10.1007/978-1-4899-7687-1_964. URL https://doi.org/
10.1007/978-1-4899-7687-1_ 964.

Mohseni Milad, Razavi. URL https://commons.wikimedia.org/w/index.php?curid=48581824.

Federico Monti, Michael M. Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks, 2017. URL https://arxiv.org/abs/1704.06803.

Federico Monti, Alberto Bressan, Alessio Bronzin, and Dario Malchiodi. Graph attention networks
for link prediction in recommender systems. In Proceedings of the 28th ACM International Confer-

ence on Information and Knowledge Management, pages 2397-2406. ACM, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks,
2018. URL https://arxiv.org/abs/1810.02244.

Neo4j. Neo4j - the world’s leading graph database, 2012. URL http://neo4j.org/.
Inc. Neodj. Neo4j desktop, 2021. URL https://neodj.com/download/.

Ignavier Ng, Shengyu Zhu, Zhitang Chen, and Zhuangyan Fang. A graph autoencoder approach to
causal structure learning, 2019. URL https://arxiv.org/abs/1911.07420.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943-1027, nov 2021. doi: 10.1613/jair.1.13225. URL https:
//doi.org/10.1613%2Fjair.1.13225.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015. URL https:
//arxiv.org/abs/1511.08458.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 32, pages 8024-8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, aug 2014. doi: 10.1145/
2623330.2623732. URL https://doi.org/10.1145%2F2623330.2623732.

137

https://doi.org/10.1007/978-1-4899-7687-1_964
https://doi.org/10.1007/978-1-4899-7687-1_964
https://commons.wikimedia.org/w/index.php?curid=48581824
https://arxiv.org/abs/1704.06803
https://arxiv.org/abs/1810.02244
http://neo4j.org/
https://neo4j.com/download/
https://arxiv.org/abs/1911.07420
https://doi.org/10.1613%2Fjair.1.13225
https://doi.org/10.1613%2Fjair.1.13225
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145%2F2623330.2623732

Natasa Przulj, Derek G. Corneil, and Igor Jurisica. Modeling interactome: scale-free or geometric?
Bioinformatics, 20 18:3508-15, 2004.

Py2neo. Py2neo, 2020. URL https://pypi.org/project /py2neo/.
Software Foundation Python. Python programming language. https://www.python.org/.

Sandeep K. Raghuwanshi and R. K. Pateriya. Recommendation systems: Techniques, challenges,
application, and evaluation. In Jagdish Chand Bansal, Kedar Nath Das, Atulya Nagar, Kusum
Deep, and Akshay Kumar Ojha, editors, Soft Computing for Problem Solving, Singapore, 2019.
Springer Singapore. ISBN 978-981-13-1595-4.

Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. Attribute-aware non-linear co-
embeddings of graph features. In Proceedings of the 13th ACM Conference on Recommender Systems,
RecSys '19, page 314-321, New York, NY, USA, 2019. Association for Computing Machinery. ISBN
9781450362436. doi: 10.1145/3298689.3346999. URL https://doi.org/10.1145/3298689.3346999.

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
networks, 2019. URL https://arxiv.org/abs/1908.10084.

Claudio Rocchini. By Claudio Rocchini - Own work, CC BY 2.5. URL https://commons.wikimedia.
org/w/index.php?curid=1988980.

Hakon Drolsum Rekenes. Graph-based natural language processing: Graph edit distance applied to

the task of detecting plagiarism. 2012.

Benjamin Sanchez-Lengeling, Emily Reif, Adam Pearce, and Alexander B. Wiltschko. A
gentle introduction to graph neural networks. Distill, 2021. doi: 10.23915/distill.00033.
https://distill.pub/2021/gnn-intro.

Anida Sarajli¢, Noél Malod-Dognin, Omer Yaveroglu, and Natasa Przulj. Graphlet-based character-
ization of directed networks. Scientific Reports, 6:35098, 10 2016. doi: 10.1038/srep35098.

Ryoma Sato. A survey on the expressive power of graph neural networks, 2020. URL https://arxiv.
org/abs/2003.04078.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet
collaborative filtering. arXiv preprint arXiv:1511.07939, 2015.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-lehman graph kernels. F Mach. Learn. Res., 12:2539-2561, 2011. URL
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12. html#ShervashidzeSLMB11.

Thiago C. Silva and Liang Zhao. Semi-supervised learning guided by the modularity measure in

complex networks. Neurocomputing, 78, 2012.
SoftwareHelpingTest. URL https://www.softwaretestinghelp.com/java-graph-tutorial /.

University Stanford. Stanford cs224w: Machine learning with graphs, 2021. URL http://web.
stanford.edu/class/cs224w/.

138

https://pypi.org/project/py2neo/
https://www.python.org/
https://doi.org/10.1145/3298689.3346999
https://arxiv.org/abs/1908.10084
https://commons.wikimedia.org/w/index.php?curid=1988980
https://commons.wikimedia.org/w/index.php?curid=1988980
https://arxiv.org/abs/2003.04078
https://arxiv.org/abs/2003.04078
http://dblp.uni-trier.de/db/journals/jmlr/jmlr12.html#ShervashidzeSLMB11
https://www.softwaretestinghelp.com/java-graph-tutorial/
http://web.stanford.edu/class/cs224w/
http://web.stanford.edu/class/cs224w/

tannerlinsley. React-query. https://github.com/tannerlinsley /react-query, 2020.
Material-UI Team. Material-ui. https://github.com/mui-org/material-ui, 2020.
Pallets Team. Flask. https://flask.palletsprojects.com, 2010.

John W. Tukey. On the Comparative Anatomy of Transformations. The Annals of Mathematical
Statistics, 28(3):602 — 632, 1957. doi: 10.1214/aoms/1177706875. URL https://doi.org/10.1214/
aoms,/1177706875.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks, 2017. URL https://arxiv.org/abs/1710.10903.

S.S. Vempala. The Random Projection Method. DIMACS Series. American Mathematical Soc. ISBN
9780821871072. URL https://books.google.gr/books?id=L5L2JOUEY4QC.

Lilapati Waikhom and Ripon Patgiri. Graph neural networks: Methods, applications, and opportu-
nities, 2021. URL https://arxiv.org/abs/2108.10733.

Xiang Wang, Yifei Chen, Huan Liu, Chuan Li, Xiaoyan Zhu, and Wenwu Ma. Neural graph collab-
orative filtering. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 974-983. ACM, 2019.

Wikipedia. a. URL https://commons.wikimedia.org/w/index.php?curid=1347423.
Wikipedia. b. URL https://commons.wikimedia.org/w/index.php?curid=1347424.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
comprehensive survey on graph neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 32(1):4-24, jan 2021. doi: 10.1109/tnnls.2020.2978386. URL https://doi.org/
10.1109%2Ftnnls.2020.2978386.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural net-
works?, 2018. URL https://arxiv.org/abs/1810.00826.

Wikipedia Yepke. URL http://nl.wikipedia.org/,CCBY-SA3.0,https://commons.wikimedia.
org/w/index.php?curid=18460150.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, jul
2018. doi: 10.1145/3219819.3219890. URL https://doi.org/10.1145%2F3219819.3219890.

Wayne W. Zachary. An Information Flow Model for Conflict and Fission in Small Groups. journal
of Anthropological Research, 33(4), 1977. doi: 10.1086/jar.33.4.3629752. URL https://doi.org/10.
1086/jar.33.4.3629752.

Muhan Zhang. Graph neural networks: Link prediction. In Lingfei Wu, Peng Cui, Jian Pei, and
Liang Zhao, editors, Graph Neural Networks: Foundations, Frontiers, and Applications, pages 195—
223. Springer Singapore, Singapore, 2022.

139

https://github.com/tannerlinsley/react-query
https://github.com/mui-org/material-ui
https://flask.palletsprojects.com
https://doi.org/10.1214/aoms/1177706875
https://doi.org/10.1214/aoms/1177706875
https://arxiv.org/abs/1710.10903
https://books.google.gr/books?id=L5L2J0UEY4QC
https://arxiv.org/abs/2108.10733
https://commons.wikimedia.org/w/index.php?curid=1347423
https://commons.wikimedia.org/w/index.php?curid=1347424
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://doi.org/10.1109%2Ftnnls.2020.2978386
https://arxiv.org/abs/1810.00826
http://nl.wikipedia.org/, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18460150
http://nl.wikipedia.org/, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18460150
https://doi.org/10.1145%2F3219819.3219890
https://doi.org/10.1086/jar.33.4.3629752
https://doi.org/10.1086/jar.33.4.3629752

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks, 2019.
URL https://arxiv.org/abs/1904.12058.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Graph neural
networks: A review of methods and applications, 2018. URL http://arxiv.org/abs/1812.08434.
cite arxiv:1812.08434.

Yu Zhou, Haixia Zheng, Xin Huang, Shufeng Hao, Dengao Li, and Jumin Zhao. Graph neural net-
works: Taxonomy, advances, and trends. ACM Transactions on Intelligent Systems and Technology,
13(1):1-54, jan 2022. doi: 10.1145/3495161. URL https://doi.org/10.1145%2F3495161.

140

https://arxiv.org/abs/1904.12058
http://arxiv.org/abs/1812.08434
https://doi.org/10.1145%2F3495161

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	List of Tables
	List of Figures
	Εκτεταμένη περίληψη στα Ελληνικά
	Εκτεταμένη περίληψη στα Ελληνικά
	Θεωρητικό υπόβαθρο
	Βασικές έννοιες Γράφων
	Ο αλγόριθμος Weisfeiler-Lehman
	Μηχανική Μάθηση σε Γράφους
	Πρόβλεψη βάρους ακμής
	Νευρωνικά Δίκτυα Γράφων
	Συστήματα προτάσεων
	Νευρωνικά Δίκτυα Γράφων και Συστήματα προτάσεων
	Υπάρχουσες μελέτες βασιζόμενες στους γράφους

	Υλοποίηση του συστήματος προτάσεων
	Σύνολο Δεδομένων
	Βάση Δεδομένων Γράφων
	Το μοντέλο
	Αξιολόγηση του συστήματος προτάσεων

	Υλοποίηση της πλατφόρμας
	Γενικά στοιχεία και κίνητρο
	Συστατικά Στοιχεία
	Ενσωμάτωση του μοντέλου στην πλατφόρμα

	Πειράματα
	Αξιολόγηση
	Υπερπαράμετροι
	Μέτρο αναφοράς
	Περαιτέρω Πειράματα στην Σύγκριση Μοντέλων

	Προβλέποντας τις κριτικές ενός συγκεκριμένου χρήστη
	Προσωποποιημένες προβλέψεις
	Προσαρμογή σε αλλαγές συμπεριφοράς ενός χρήστη
	Κατανόηση πιο σύνθετων συμπεριφορών

	Introduction
	Introduction
	Recommender Systems
	Existing Approaches
	Our Contribution
	Thesis outline

	Theoretical Background
	Theoretical Background
	Graphs
	Main definitions
	Mathematical Representation of Graphs
	Complex Graphs
	The Weisfeiler-Lehman algorithm on Isomorphism

	Machine Learning on graphs
	Motivation
	Challenges
	Tasks Taxonomy
	Traditional Approaches
	Node Embeddings

	The Link Weight Prediction Task
	Problem Definition
	Motivation
	Traditional Approaches
	Deep Learning Approaches

	Graph Neural Networks
	Motivation
	Challenges
	Key concepts
	Taxononomy

	Some Graph Convolutional Neural Networks
	GraphSAGE
	k-GNNs
	GAT
	GIN

	Recommender Systems
	Basic concepts
	Main Challenges
	Taxonomy
	Traditional Approaches for Collaborative Filtering
	Traditional Approaches for content-based recommendations
	Hybrid Traditional Approaches
	Evaluation Metrics

	Graph Neural Networks and Recommender Systems
	Recommendations as Link Prediction
	Graph Neural Networks for Link Prediction
	Advantages

	Graph-based Related Work

	Implementation of the Recommender
	Implementation of the Recommender
	The Dataset
	Movielens
	The Movies Dataset

	Graph database
	Graph Databases
	Neo4j
	The dataset modeled as a graph
	Technical background of the graph database initialization
	Small version of the dataset (100K ratings)
	Encoding the movie content
	Node embeddings with Neo4j Graph Data Science Library

	The model
	Pytorch Geometric
	Architecture
	GNN Encoder
	Edge Decoder

	Evaluation of the Recommender System

	Implementation of the Platform
	Implementation of the Platform
	Motivation
	Related work
	Architecture - Components
	Graph Database
	REST APIs
	Front end

	Integrating the model into the platform
	Motivation behind deploying the model in a dedicated API
	Functionalities
	Challenges

	Platform usage

	Experiments
	Experiments
	Evaluation
	Hyperparameters
	Baseline
	A simple GraphSAGE baseline

	Further Experiments on Tuning the Hyperparameters
	Initial GNN architectures comparison
	Number of layers
	Number of hidden channels
	Node embeddings usage
	Final comparison

	Predicting the ratings for a specific user

	Conclusion
	Conclusion
	General Conclusion
	Future work

	Bibliography

