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Hepidnym

H ewcovikn) pvrpn eivon puoe kplon vmoAoyloTikn apaipecn mov éxel avté€el ot
doxipacio Tov xpovov.  AlevkoADveL TOV TPOYPAPUATIOUO SNHLOLPYDOVTOS TNV
YevdaicOnomn OtTL 1 QuoLKN PVHHN elvol TEPACTLA, YPOUHULKT Kol LOLWTLKH ové
diepyaoia, emrpénel v mpdécPoon oe ovokeveg E/E oto xdpo g pvipng ko
Bonb& otnv evéhiktn droyeipion mopwv. Qotdoo, avutég oL BepeAiddelg oot TEG
dev mapéyovtar dwpedv. H ewkoviky pvAun mpodmobéter otL To AgitovpyLKd
Yoomnpa (AX) dnpovpyel ko Swoxelplleton TV TNV AQAIPEST) TNG PUGLKNAG
RVHHNG Tov avary vopilel kaBe diepyacio, Tov Aeyopevo etkovikd xopo dievbivoewy,
KO(L TOV QVTLOTOLYEL GE TPAYHATIKOVG PLOLKOVG TOpovg. H eucovikr pviun emiong
emParder 0t kGBe Aertovpyia mpodcPacng ot pvipn (tov ene€epynctr]) mepvieL
amd éva Pripo petdppaong. Kavévag amd toug mapamdve pnyovicpovg dev eivat
@ONvog Ko, Yo TV akpifela, To KOGTOG TOVG GLVEXNDG LLEAVETAL.

Yrépyouvv TécoEpLg TAGELG TTOL GTPECAPOLY TNV AIOS00T) TNG ELKOVIKNG HVIHNG
onfuepa, (i) n petewpikr) Gvodog TV OOUTHOEWV XWPNTIKOTNTAG PVunG, (ii) 1
CELOHLKT) HETATOTLOT TV XPNOTOV GTI XPTOT) TOL LITOAOYLETLKOD VEpoug (cloud),
(iif) n Toyeio eEEMEN TwV cvokeLOV amobrikevong pe dpovg amddoong ko (iv)
N LEAVOPEVT) ETEPOYEVELX TWV GLOKELMOV LIOAOYLGHOV Kol aobrikevong oTa
ovothpata peyodwv dedopévov. O 8o mpateg avefalovv onpovtikd Tov iy
anddoong g Sadikaciog peTtdppacng elkovik®dv dlevBivoewy oe PUOLKES Kol
oL 000 emoOpeveg HOG TPOTPETOVV VO EXVACKEPTOVE TN ONHOCLOAOYLOL KOl TNV
vAormoinon Twv dtemaP®v g etkoviknig pvipng. H mtapoivca dwatpiPr) cupPdriet
Kot tpog Tig dvo katevbivoels.

H exBetikr) ad€non tov 0ykov Twv ToyKOGHIwV SedOHEVOV KOL 1] AVTIGTOLXT
aOENGCT TOV ATOLTHCE®V HVAHNG TOV €QUPUOY®V, odnynoav tnv xupiopyn
vAomoinon TG ewovikng HVApENG —tn oeldomoinon- oto Aeyopevo Teiyog
Metagppoong (Address Translation Wall) [53] mepimov por Sexaetior mpv. Ztnv
nopovoa SatpLPr] deiyvouvpe OTL TP TO YEYOVOG OTL TO LAKO HETAPPAOTC OVeL
eneepyaoTr) TPLATAXGOLACTIKE OO TOTE, T.Y. HE TNV EVOOUATWOT) HEYOADTEPWV
KPLPQOV pvnuev ovalnitnong petdppaocng (TLBs) n pe tnv koddtepn vootrpién
TOV PeYGAwV oeAidwV, oL epappoyég peyaing évtaong dedopévwv (big data) propet

akopo va £0devovy £w¢g kol To 30% TOL XPOVOU EKTENEGTIC TOUG OTT HETAPPOOT)
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dievBivoewv — ek 6tav extedovtal oe elkovikd mepipairovra. T tnv
OVTIHETOTLON TNG KOKAG OoLTHG KAPAK®wOoNG omddoong tng oeAildomoinong,
N mopovoa SaTplPr] TPOTEIVEL GLVEPYLOTIKOVG HNYXAVIOHOUG AOYLOHLKOD KOl
LALKOD 7oL SMpLovPYOLV Kol ekpeTaAAebovTaL TNV VIOPEN YPOUHULKOTNTOG OTLG
OVTLOTOLYIOELS EKOVIKOV GeAdwv o€ @QuOoLKEC.  XTO AOYLOHLKO, TTPOTELVOLE
mv Xelibomoinon pe emiyvoon yearvieons (CA  paging), o véa TEXVIKT
Swoxeiplong pviung mov PeATidveL TOV YELPLOTH CPOAPATOV ceAidog Tov AX
pe vrodeielg yio tnv déopevon KatdAANAwv ceAldwv yio tn dnpovpyia peydiwv
OLVEYOUEVOV OVTLOTOLYICEWY ELKOVIK®OV dlevBlivoewv oe PLOoLkéG ava diepyooiat.
H celdomoinon CA epappodleton 1060 0 QUOLKEG OGO KO O€ ELKOVIKES PUNYOVEG
KoL Statnpel TIG EVEALKTEG TEXVIKESG Sayelplong Pvnung evog ovyypovov A, m.x.
™ oeAddomoinomn kot anaitnon kot v avitypoen kotd v eyypoer (CoW), evd
amopetyel ke eldoug ek Twv mpotépwv déopevon pviung. YAomowjoope Tnv
oeMdomoinom CA oto AY Linux kot tn StaBétovpe G AOYLopkd avolkTod KOSIKA.
370 LALKO, yio TV 0ELoTTOlNoT) TG TOPAYOHEVNG YPOUULKOTITOG OTLG OUTELKOVIOELG,
npoteivovpe v kepdookomikr petdppoon devbdvoewv pe Pdon tn peTatdmIoN
(SpOT). To SpOT eivout pioe HIKPO-OPXLTEKTOVIKT] ETEKTAGT] TTOL EKPETAAAEVETAL TNV
UTTOKELHEVT) YPOHHLKOTNTA OTLG OVTIOTOLYICELS Yo var TpoPAEYel TN HeTa@pact
devBivoewv oe mepintwon actoyiog otnv tepopyia TV KpLe®v pvnuov TLB.
To SpOT pmopei va epappootel queca ko pe dapdvela 1660 o€ LOLKE 660
Kol o ewcovikd mepipadrovta — emeldr] Aettovpyel €€ olokAfpov oe emimedo
HIKpOOPYLTEKTOVIKAG. Xe cuvdvacpo e tn oeddomoinon CA, to SpOT peldvel to
KOOTOG HETAPYPAONG OO ~16,5% G& ~0,9% KOTX HEGO OPO YLAL EPUPUOYES HEYOAWY
dedopéviv o eKTEAOVVTOL GE ELKOVIKEG UNYOVES, OVTOAAAGOVTHG TIG LOYLPEG
eyyunoelg acpaielog (security) pe evav athd apyLtekToviKd oyedloopo.

H ewcovikr) pvipn, ekTOg ad TPOoYPaPHATIOTIKT APALPEST) YL TT) YUGLKT) PV,
elvan emiong o onpovtikn diemagn ywa tnv mpdcPacn oTIG GLOKEVEG eL0OSOVL-
e€6dov (E/E). O avtiotolyicelg apyeiwv eMTPETOLY OTIG EPUPUOYES VA EXOUV
npocPact oe povipo dedopéva PHEGH avVOPOPOV aTN PVHUT. Q6TOC0, OL GUGKEVEG
aroffkevong vynAfig amddoong éxovv e€eAyBel onpovtikd v TeAevtoio
dexaetior Ko 0TI PéPEG PG TPOoaPéPouy XPOVOLG atdKpLlong povoyreLlovg 1
QKOO KO HLKPOTEPOVG TOV SeLTEPOAETTOV, £KBETOVTOG TO AOYLOULKO GUGTHHATOG
E/E tov AY wg amayopevtikd axpifo. Xn mopovca diatpiPr], peAetdpe Tnv
TEPITTWOOT GLOKELOV PN TTNTIKAG pvhpung (PMem) ko tng Semapric apyeiov
apeong mpodoPaong (DAX). Me to PMem ko to DAX, 1) ewkovikr} pvrpn propei va
amelkovicel puotkég dtevBvvoelg otobrikevong povipwy dedopévwv artevbeiog oto

XOPO TOL XPHOTH, EMLTPETOVTHG TN TPOCPacT) o€ HOVIHA SeSOpHEVOL HEGK EVTOADV
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load/store tov eme€epyaoctr). Qotdco, ot PEAETN HOG SLATLOTOVOLHE OTL OL
AELTOLPYLEG TNG ELKOVIKNG HVHUNG GUXVA HELOVOLY TNV omtddoot Tng Qpeong
TPOCPAGNG, ATOTUYXAVOVTOG VO TTPOCPEPOLY ALLTO TTOL HITOPEL VO TTPOCPEPEL TO
vTToKeipevo LALKO.  Xtn mapovoa StotplPry avoidovpe OAeg TIG TNYES KOGTOUG
oTH XPNOT TNG HVAHNG WG SLemapric apyelwv ko HeAeTape oG ennpedloval o
doutavpol PYOVIGHOL TNG ELKOVIKNG HVHNG atd véeg Texvoloyieg amobrikevong
N ko eov okOpo yivovtor oamopyouwpévol.  Me Paon v avaAivon pog,
TPOTELVOUE PLa VEQ SLETTOPT] Yot YPNYOPT] KoL KAHAK®OGLY dpect) npocPact oe
povipa dedopéva (DaxVM). To DaxVM eivor pio Stemapr] ametkoviong apyeiowv
TOONKEVUEVWV OE UN-TITNTIKEG UVIHESG, TTOL XOXAXp®VEL TN onpactoioyio POSIX,
KOl DAOTIOLELTOL e EMAVACYESLAOHO TV AELTOVPYLOV TNG ELKOVIKNG HVIHNG KOl
[E €TMEKTACT TWV CLOTNHATWV apyelwv yioo PMem - pe Oheg Tig aAhayég
v kabodnyovvtar omtd ta Povadik& XOPAKTNPLOTIKE TNG apecng mpodcPoong
(dax). To DaxVM vmootnpiletr (i) ypryopeg Aeltovpyieg avTioTOIXLONG HVAKNG
(O(1)) péow povVIpWV TVEKWV GEASWV EVOWPATOHEVOY oTa HETadESOPEVOL TOV
ovoTHHATOG apyeiwv, (i) T voxelkn axdpwon twv TLB, (iii) v kApokooyn
(oe ToAAOUG TTUPNVEG) SLaryelpLaT) TOU eLKOVLKOD X®MPOUL devBivoewy yio epripepeg
avtiotolyioelg, (iv) v e€dAeryn tov kdotoug duvartotntag Swyeipiong Tng
ovOeKTIKOTNTAG TV HOVIHWVY JeSOUEVOV OUTO TOV XDPO TOL TLUpHvVa OTav eivor
vevBuvog o xdpog xpriotn kol (V) Tov acOyxpovo HNdeVIGHO Twv HITAOK
aroffkevong amd to chotnpa apyeiwv. YAomowjoope to DaxVM oto AY Linux
Ko ot cvoThipata apyeiwv extd-DAX kor NOVA kot 1o StaBétoupe wg Aoyitopikd
avorytol k®dika. To afloloyolpe oe éva TPAYHOTIKO GOGTNH eEOTALGHEVO e
Intel Optane. T epappoyég TOAAATAGY VpdToV mov eneepydlovtal TOAAK
kpd apyela yioo pikpd diweotrpata, . Apache, to DaxVM PeAticddvver v
amddoot NG KANONG CLUCTAHHATOS mmap éwg Kot 4,9x. Avtiotpépel emiong v
Téot 7oL €VUVOEL TN XprjoT TG KANONG cuoTpatog read Yo TETOLES EQOPUOYEG,
Eemepvavtag TV éwg kat 1,5x. To DaxVM av€avel eniong ) Swabecipotnta tov
GUGTHHOTOG, TAPEXOVTAS YPHYOPOUS XPOVOUG eKkivong yia Bhaelg dedopévmv ko
Swaxtnpetl vPNAR amddoon aKkdpo Ko OTAV 0L GLCKEVEG AITODNKELGTG VITOYEPOLV
orto eEMTEPLKO KATAKEPUATIONO.

Svvoyilovtag, n tapovoa diatpiPr) emaveEetdlel T oxedioon kot Tnv vAoTOiNoT
TOU HIXOVIGHOV TNG ELKOVLKTG HVHNG GTO GTIHEPO KOLL TTPOTELVEL TEXVIKES GTO LALKO
KOL GTO AOYLGHLKO TIOU TNV EMEKTEIVOUV WOTE VO 1) KAHAKOVEL KAADTEPX HE TLG
OLVEXMOG VEAVOHEVEG XWPNTIKOTNTEG TNG KVPLAG HVAUNG HéCw eVOG aArtodOTLKOD
pnxoviopot petdppacng dievBbvecwv kor il) mpoopépel po ewdikr Semogry
OVTLOTOLYLONG OPXELWV TTOV PEPVEL TNV ALOSOCT] 6T OPLXL LLTOV TTOL UITOPEL Vo

TopéxeL TO LTTOKEIPEVO LALKO Yl Gpeot) tpdoPact oe povipa dedopéva.

AéEerg kAerdrd: ewkovikr pviun, Sloyelplor QUOLKAG HVAKNG, HI-TTTNTIKT LVhp,
CUGTHHATA aPXEl®V, AELTOVPYLKA GUOTHHATO, OPYLTEKTOVIKT) DTTOAOYLETMOV
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Abstract

Virtual memory is a crucial computing abstraction that has stood the test of time.
The level of indirection that it introduces, facilitates programming, i.e. creates the
illusion that physical memory is vast, linear and private per application or enables
the access of I/O devices in memory space, and assists agile resource management.
However these fundamental properties do not come for free. Virtual memory as-
sumes that the Operating System (OS) must maintain the abstraction of memory
that each process acknowledges, the virtual address space indirection, and map it to
actual physical resources. It also assumes that each CPU memory access operation
must go through a translation step. None of the above mechanisms is cheap and, if
anything, their costs are getting more and more profound.

There are four trends that stress the performance of virtual memory today, (i) the
meteoric rise in memory demands and capacities, (ii) the seismic shift of users from
enterprise data centers to the cloud, (iii) the rapid evolution of high-performance
storage devices and (iv) the increasing heterogeneity in both the compute and the
store landscape of data-center systems. The first two considerably raise the efhi-
ciency bar for address translation and the second two urge us to re-visit the legacy
virtual memory interfaces semantics and consecutively their design. This thesis con-
tributes in both directions.

The exponential growth of global data and the corresponding increase in the
memory demands of workloads led virtual memory’s dominant implementation -
paging— hit the Address Translation Wall [53] almost a decade ago. In this the-
sis we show that despite the fact that vendors tripled translation hardware budget
since then, e.g. by incorporating larger TLBs and MMU caches or better huge page
support, memory-intensive workloads can still spend up to 30% of their execution
time in address translation — especially when they run in virtualized environments.
To deal with paging’s poor performance scaling, this thesis proposes synergistic
software and hardware mechanisms that create and exploit linearity in mappings.
We propose Contiguity-Aware (CA) paging, a novel memory management technique
that enhances the Operating System’s page fault handler with hints to allocate tar-
get pages and create vast contiguous virtual-to-physical mappings per process. CA

paging is applicable to both native and nested paging and it maintains all lightweight



memory management techniques of a modern OS, i.e demand paging, Copy-On-
Write etc, while avoiding any memory reservation or pre-allocation. We implement
our proposal in stock Linux and make it publicly available. On the hardware side,
to harvest the generated contiguity, we propose Speculative Offset Address Trans-
lation (SpOT). SpOT is a micro-architecture engine that exploits the underlying lin-
earity in mappings to predict address translation on the TLB miss path. While
most state-of-the-art hardware proposals fail to support virtualization, due to the
architectural complexity of tracking and caching arbitrarily sized mappings in two-
dimensional execution, SpOT is directly and transparently applicable to both native
and virtualized environments — because it works entirely on the micro-architecture
level. Combined with CA paging, SpOT reduces the translation overheads of nested
paging from ~16.5% to ~0.9% on average for memory-intensive workloads, in a
design that trades architectural complexity with strong security guarantees.

Apart from a physical memory abstraction, virtual memory is also an important
interface towards IO devices; file mappings allow applications to access persistent
data via memory dereference. However, high-performance storage has evolved sig-
nificantly the past decade and nowadays devices offer single digit or even sub- mi-
crosecond latencies, exposing the kernel software IO stack as a prohibitively ex-
pensive data path. In this thesis, we study the case of persistent memory (PMem)
and the direct access file interface (DAX). With PMem and DAX, virtual memory
can map storage locations directly to user-space, enabling persistent data access via
CPU load/store instructions; forming the shortest existing path to storage. Yet in
our study we find that virtual memory operations often throttle direct access perfor-
mance, failing to deliver what the underlying hardware can provide. In this thesis
we break down all sources of overhead in using memory as a file interface. We
study how the expensive mechanisms of virtual memory are affected by the new
fast storage technology or if they even become obsolete. Based on our analysis, we
propose a new interface for fast and scalable direct access to persistent data. DaxVM
is a POSIX-relaxed file mapping interface for persistent memory, implemented by
redesigning virtual memory operations and extending PMem-aware file systems —
all changes driven by direct access unique characteristics. DaxVM supports (i) O(1)
memory mapping operations via persistent page tables integrated in file system’s
inode metadata, (ii) lazy invalidation of the TLBs, (iii) scalable address space man-
agement for ephemeral mappings, (iv) elimination of kernel-space durability man-
agement support when user-space is in charge and (v) asynchronous storage block

pre-zeroing by the file system to accelerate DAX append operations. We implement
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DaxVM in stock Linux and the ext4-DAX and NOVA file systems and make it pub-
licly available. We evaluate it on a real system equipped with Intel Optane. For
multi-threaded workloads that process multiple small files for short intervals, e.g.,
Apache, DaxVM improves standard mmap performance up to 4.9x. It also reverses
the trend that favors read for such setups, outperforming it by up to 1.5x. DaxVM
also increases system availability, providing fast boot times for PMem databases, and
sustains high throughput even when they run on fragmented file system images.
Overall, this thesis revisits today’s virtual memory design and proposes hardware
and software techniques that extend it to (i) scale better with the ever increasing
memory capacities, through efficient address translation, and (ii) form a dedicated
file mapping interface to push performance to the limits of what the underlying

hardware can provide for direct access to persistent data.

Keywords: virtual memory, memory management, address translation, persistent

memory, file systems, operating systems, computer architecture



Evyaplotiec

H mapotoa epyacia eivo to antd, TeAkd amoTéAEGHA TV ISAKTOPLKOV GTOLSOV POV TMV
tedevtaioy 5pomn etov oto Epyaotipro Yroloyiotikov Zvotnpdtov (CSLab) tng XyoArc Hhe-
KTpoAOY®wV Mnyovikedv kot Mnyoavikedv Yrohloyiotodv tov EBvikod Metodfiov ITodvteyveiov.
31NV ovoio OPUWG VoL TO ATTOTEAETHO LG TTOAD PeYOADTEPNG TTEPLOSOU 1) omtola EekLvaeL ad To
id10 axptpadg epyactriplo to 2014. OAOKANPOVOVTOG AVTO TO —TOGO GTHAVTLKO Yo pévo— TaEidt
B N0eda va emmyelpnow TN HEPLK KATOYPOUPT] TOU Kol KUPIWG VO EVYOPLOTHG® OAOVG TOVG
avBpdmoug Tov cuvavtnoa otnv mopeic Tov. O kaBévag e To StakpLtd Tov POAO e EVETTVEVODE,
pe otpiée ko teAlkd kaBoploe tnv mopeia TG epyaciog pov. Anpovpyndnkav étol toyvpotl
deapol kot oyéoelg {wng mov amoTe 0DV TEALKK TO GHOVTIKOTEPO EMITEVYHA Kol OAT) TNV OLGiaL.

Evyapiotdd Aowrov and ta fabn thg kapdidg pov:
¢ ..ToUG eMPAETOVTEG KA T HEAT] TNG EMLTPOTIG HOV

— Tewpyro T'koVua (emPAémovra kabnynti)

Tov yvipLoa 6T0 TEAOG TWV TPOTTUYLOKDV HOL 6TToud®V, To 2014, 6Tav epydotnka pall Tov
ot Simhwpatikn pov epyocia oto CSLab. Tov ypwotd Aoutdv, mpv amtd O, TNV TPAOTN
HOUL et} He TNV epevvnTik Sadikacior kol ToV TPOTO evOOLCLAGHO Yot TO KOLVODPYLO
oLTO yla pévar —T0Te— oOpItay. Mov €8eie epmioToovn KoL €KTOTE 1) LITOGTHPLEN TOL TTAVY
ovvexng oe Ao Taw emtimeda. Me TO TEPAG TV TPOTTUXLOKOV POV 6TTOLdGV, pe eveBdppuve
v akoAovBnow didakToplikég omovdég, Omwg Nbeda, koL ypaptnka wg YA 610 epyaotnplo
pog. Me mapotpuve otnv epufPorpn embopio koL emAoyr pov v Uy yuo peplicd xpovia
ot Zoundia KoL Vo EPYNOTO G EPELVNTLKO mpocwmnikd. To 2017, evioyvoe TNV amdQooT)

HOUL vt eToTPEP® Kot va Eekviiow T StaetpiPry pov. Ta tedevtaio 5pion xpovia Exet otabel

xii
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070 TTAQL pov o€ k&e pov epevvnTiKn TpooTabela Ko pov éxel yopioel amAdoyepn elevbepia,
Sivovtag pov peta€d AAAWV KoL TO YOPO va eEEPELVIICW EPEVVITIKA HOVOTTATLO TCL OOl Sev
NTOV AmapaiTnTa eVTOG TV GPECHV EPELVNTIKOV TOV evilapepdvtwv. IIépa Opwg amd v
ovvepyaoio ko ewifAeyn, elpar evyvopwv, yotl Bpédnie kovtd pov kot wg avBpwiog. Aev
pe mieoe moté, mpoomddnoe mavTo va e Katahdfel ko va e yvopicel, otdbnke movTto pe
duabeon gpovtidag anévavt oe ke dvokoria. Etol péoa ota ypdvia, éxel dnpovpyndet
€vog LoYLPOG SeOHOG — e OAT TNV WOLLTEPOTNTA Kou paryelor Tov £xel Tavta 1) oxéon ddokahov

Ko HofnTr)— 0 0oiog ed)OHAL VA KPATHGEL YLt TTOAD, TTOAD KOLPO otkOpAL.

— Baoileio Kapaxdora (ovv-emifAémovia),

HeTaSOLSaKTOPLKO EPEVVITI] OTO EPYOTTHPLO HOG KALTA TT) SLAPKELX TV SSAKTOPLKOV GTTOVSDV
pov xau kabnyntn ofjpepa oto EKIIA. O Baoiing eival otd Tovg 1o onpavtikods avlphroug
avTig TG mepLodov. Zvv-eméPAePe To SLOAKTOPLKO POV KXL GUVEPYXGTHKAHE TTOAD GTEVA XTTO
TN TTPOTY KLOAXG HEPQ, dOLAEDOVTOG GE Lot EPELVNTLKY kKateOBLVGT oL TTpoékve atd TN
dwkr) touv epevvntiky epmetpio. Kdbe epyacia, kdbe Prpo tov Sidaktopikod pov to kdvorye
poli ko ovtod elye dvo e€icov onpoavtikd amoteréoparta. Ilpdtov, xapn oto Baciin ko
v kaBodriynon tov épaba mhpo TOAAK ko atéktnoa deEloTnTeg TOGO TEXVIKEG OGO KOl
peBodoroyikég yio tr cwoth) Ste€aywyr TG EPELVAG — YVOGELS TTOAVTLUES TTOL Ot ple GuVTPOPED-
ouvv ywx mhvto. Aedtepov, xapn (ko) oto Baciin ,to didaktopid pov éyve pia poPepi
draokedaoTikn kat evBovolddng epmepia, kabdg pali Tov poipaotnka k&be otiypn tg. Ila-
vto pe OeTiKT] OTACT) ATEVOVTL OTA TPAYHATA, OKOPO KOL OTLG votodLég, pe évav mnyoaio
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CHAPTER 1

Extetopevn mepiAnym otnv eAAnviK yYAwooo

To oOyypova LITOAOYLOTIKE GUOTHHATA EEXPTAOVTAL ATTO TOV PNYAVIOHO TNG ELKOVIKNG HVIHNG
- apoaipeon mov éxeL amodelyBel KPIoLUN YL TNV EMLTUXLA TOV LITOAOYLOTOV KoL £XEL avTEEEL
ot dokipacio Tov xpdvov. Emitpémel oToug poypopuatioTég va ypaouv koddika Bewpdvtog
T Sabéoyn pviun Tavra exapk, TEPAOTIA YPOUUKT Kot IOLOTIKT Yot TNV e@oppoyn) Toug. Toug
ETLTPETIEL ETLOTG VO TPOTTTEAQUVOLY Tig 0UOKEVEG E/E 010 ycdpo pviuns, X prCLLOTOLOVTOG EVTOAEG
yAwooog pnyavrg (assembly) cov va dwafdlovv kar va ypdpovv ot pvipn (m.x. load/store).
AvTO amAoTOLEL TTEPALTEPW TOV TTPOYPAUHATIOHO Kot SUVNTLKG eTLTPETEL TNV eédtAerym Tov TUpH Ve
70V AetTovpyikov ovothuarog amd t otoifa Aoyiopukod E/E, pia texvikr mov xproylonoteiton yia
KoAOTepT amddoon.

Qotdo0, autr 1 eveliéio £xel KO0TOG. AeSOpPEVOUL OTL TO AOYLOHLKO XPTOLLOTIOLEL ELKOVIKEG
drevBvvoelg yia v mpdoPaocn ota Sibpopa eminmeda Tng tepapyiog amobrkevong dedopévwv
(xOpra pvipn, ocvokevég PCl-e, k.A1.), emikpatodv Tpelg mnyég kdcToug: (i) 1 dwxyeipion twv
XOPWV ELKOVIKGDV SlevBivaewmv Twv Slepyactdv evog cuaTHpatog, (i) n dnpovpyia ko 1 Sroyei-
PLOT] TWV QVTLOTOLYIGEWV TNG ELKOVIKNG HVARNG 6TO LALKO kot (iii) 1) petdgppact mov amonteiton
yto k&Be evtoAr) load/store Tov eme€epyaoctr). Ta dVo mpdta meplopilovy GNUAVTIKE TNV KALHAK®-
OLUOTNTO TNG ELKOVIKAG HVAHNG OTNV €TOYXT] TV TOAA®V muprvev [48, [72] evd mpwv amtd puo
dexoaetior oL vIToAoyLoTég XTOMNoav 6to Address Translation Wall [53] xat dev to Eemépacav
TOTE TANPWG.

OL o0yypoveg TaoELS 6T 0XeSLAOT) LTTOAOYLOTIK®OV GUGTNHATOV cuveyilovy va TTLECOLY TNV

atOd00T) TNG EWKOVIKAG HVIHNG, SOKIUALOVTAS KoL TOVG TPELG TTpoovapepOEVTeg HXOvVIGHOUG.
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H petewpikn adénon tov anaitioewv ce pvipn, n HallKr 6TPOPr) GTO LIOAOYLOTIKO VEPOG
(cloud computing), 1 aLEAVOPEVT ETEPOYEVELX GTIG GTOLREG LITOAOYLOTOV Kal aTobrKevoNG Ko
N KupLopxiot TWV TOAADOV TUPHVWV KoL TOL TUPAAANAOL TTPOYPOUHATIGHOD, EMPAAAOLY Vo
enoveEeToovpE TOGO TO AOYLOULKO GUGTHHATOG OGO KOl TO DALKO TOU HNYXAVLIGHOD TNG ELKOVIKNG
HVARNG, Lol e T GLVEPYELR TOUG,.

Y1n mopovoa StxtpiPr] eaTidlovpe 6TO KOGTOG HETAPPAOTG deLOOVOEWVY YIO EQAPHOYES e
peyaAn évtaon oe dedopéva Ko oTNV arrdS00T) TNG ELKOVIKNG HVIHNG YLt EQAPHOYEG e EvTOovn
dpactnpotnta E/E. e avtd to kepdhoio eEeTdlovpe apy k& Kol €V GLVTOHIX TOVG Paciiolg
HNXOVIGHOVG TNG ELKOVLKNG PLVIUNG, TT.X. TN oeAtdomoinor), étav autr) Aeltovpyel cav apaipeo
HVARNG GAAa koLl oo Stemtaupt] yior Tnv pdoPoon oe apyela. XTn cuvéxela, ToPoLLALOVHE T
Kivntpa pe ta omoia Stodé€ayie va eEETAGOUIE GUYKEKPLUEVOL GTHELC CULPOPTIONG TNG OTTOSOCTG
KOUL TNG KALOKWOHOTI TG TNG ELKOVLKTG LVIIHNG KO, TEAOG, TAPOLGLALOVLE TIG GUVELGPOPES TNG

TOPOVLGAG SXTPLPNG YL TNV AVTIHETOTLGT] TOVG.

1.1 Xeldomonpévn ELKOVIKN PV

H ewcovikr] pvipn eivar évag évrova ou-oedLcopévog Py avio oG (6To LALKO Kol 6TO AOYLOHLKO)
6mov i) o AX SroyelpileTon TOVG ELKOVIKOUG XMPOUG dlevbBhvoewy Twv SLlEpyooLdY KoL TOUG
avtiotolyilel oe puolkd péoa oumobrikevong (.. V), EVE ii) TPOCUPHOCHEVT) OPYLTEKTOVIKT)
vrtooThpLEn 6To VALKO emitayVOVeEL TO atapaitnTo Pripo petdppoaong drevbbvoewv kotd tnv
ektéleon kdbe evtoAng load/store tov emefepyactrn. Exktog apaipeon tng puoikng pviung, 1
ELKOVIKT) PVTUnN elvon emiong pio TOAOTIUN Semapr] yio TNV amobrjkevon HOVIH®OY Sedopévwv

(1.X. péow avtioToLyicEwV apyELWV).

1.1.1 Asgwtovpywkd SZvotnpa

Aloxeipion Tov Y®@Pov e1KOVIK®OV S1evBvoewv. Kabe Siepyacio éxel évav peydo ypappiko
XDPO eLKOVIKOV SlevBdvoewy oL oxnpatilel TNV a@aipeot Lvrpng mov ektibetal otov Tpoypo-
ppotiotr). Tov Swayelpiletor to AY oe peyédn ceAidog. Toa Swbéoa peyédn ocelidog eivar
ovykekpipéva (kPavtiopéva) kat eEapTOVTAL ad TNV apXLTEKTOVIKT], YL TNV X86 QpXLTEKTOVIKT]
propel va eivon 4KB (pucpég oelideg) 1 2MB/1GB (peyddeg oelidec). To AX decpedel evpn
ELKOVIK®OV S1evBiveewy atd avTtdv ToV XWOpo dtav oL diepyacieg {nNTodv va SeGUEDGOLY PUGIKT)
HVARN 1] va artokToovy TpooPact) oe apyela HECW ATTELKOVIGEWV HVIHNG.

Amnewcovicerg (avtisToryicetg) pvipng. To Aettovpykd cdotnpa avtiotoryilel/ameikovilel
Tig deopevpéveg ecovikég devBivoelg kabe diepyaciog oe éva péco amobrkevong, cuvnBwg
OTI PUGLKT) PV, Yia va emtttpéfel v mpdoPoon oe dedopéva amd To YOO XPHOTH HECW

avapop®v (memory references). H Siaxeipion tng guoikng pvrpng yivetou eniong oe peyéon
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oeAidag (4KB) oo to A ko 1o AetTovpytkd GOGTNHA avTIoTOLY I EL ELKOVIKEG GEAIdEG OE PUOIKA
nAaiowa ava Siepyacio. Me avtdv ToV TpOTO, OL SlEpycieg EXOVV HLX ATTOHOVWHEVT) KL TTPOCTO-
TEVHEVT] ATTELKOVLOT) TNG LVAING, 0AAG Ptopodv akdpo var potpdlovtot oeAideg petad Toug ().
aVTLOTOL-XIGELS o€ Kowvd Quolkd TAaiota). To Aettovpylkd cOoTnpa aobnievel Tig avtioToLyi-
oelg oeAdWV ELKOVIKTG Ge PUOLKY pvripn o pia eidikr) dopr) dedopévwv ava diepyacio, cuviifwg
éva 8¢vTpo, To omolo autotelel pépog Tov mepLarlovtog ektéleong kdOe diepyaoiog kot ovopdle-
ta mivakag oeridwv. Kabe katoaydpnon tov mivaka cedidwv (PTE) mepiéyxel pio petdppaon
antd elkovikn o€ puotkt] oeAida. Ot mivakeg oeAldwv eEapTOVTOL OUTO TNV APYLTEKTOVLIKT], OTTWG
Kot To peyéln oelidwv, kabng ypnopomotovvtor amevbeiog amd o vALK6 (HW) tng etkovikng
pvApng (Ba ovlnnBet apydtepa). To Aettovpylkd GOGTNHA, GTN KOLVT] TTEPITTWOT), dMpLovpyei
TIG AVTLOTOL-Y OELG/AITELKOVIOTG VWX ALK arvd oeAida — péow piag Stakomrg A (trap) yvwoTig

WG oPaApa oeAidag.

Awayxeipion QUokng HVARNG. Av KoL 86V CUVOEETOL ATTOKAELGTIKA HE TNV ELKOVIKY UVHN, 1)
Sroyelpion g uoLKTG PVARNG StatoTavp®dVeTL He TOAAEG AetTovpyieg TnG. XTnV KO mepimT-
on, ta meplocdtepa AY deopebouvv puoikn pvipn kat’ ataitnon —dnAady kotd tn Sidpretc
TOV 0QOAATOV oeAdag— ko o€ peyéln oedidag (1 aAAodg Thatoiov). Ta cpdApata ceAidag
upodo-TovvTal amd kpLeg (TPOTEG/ap)Lkés) TpocPfaoelg oe elkovikég oelideg (Stevbvvoelg)
oo v exdotote epappoyr. To péyeBog déopevong (m.x. péyebog oceridog) emnpedler tnv

antddoon petdppoong dievbbvoewv Tng etkovikng pviung (VALko) ko Ba culnnel apydtepo.

Amnewcovicerg apyeiov. H ewcovikn pvipn propet emiong va xpnoyonowmnBel wg Stemogn yuo
v npocPacn oe apyeio. H Eicodog/ E£odog péow ameikdviong otn pviipn (memory-mapped
I0) elva 1) teyviky mov avtiotoryilel elkovikég dievBivoelg oe ceAideg apyeiwy Ko emLTpénel
Vv mpocPoon apyeiwv péow avapopdg pvriung. To Aettovpytkd cvotnpa decpetel éva ebpog
eLKOVIKAOV dlevBivoewv yio k&Be amelkdvion apyeiov kat, yio péoa amobrikevong mwov vooTn pi-
Covv povo mpocPach oe emimedo PrAok, amobnkelel Ta apyeicr TPOCWPIVE OTH PUOLKY [VHT YLOL VoL
TOL AVTLOTOLYLOEL ETTELTOL GTO XWPO XP1joTh. Mia mpocwpivr} pvhpn oe entinedo AZ, dioyetpioipn
otd TO AOYLOMIKO GUOGTHHOTOS KoL YVWOTY g page cache, cvoyetiCel ta pAok amobrkevong
TV APYELOV Pe PUOLKA TAAICLO PVIHNG KOL, G EVOPXTIOTPWAOT) HE TO GOGTNH apXeiwV, Snptov-
pyet avtiypogpa peto€d Toug. MOAG ovTLypoupolV Tor SeSOHEVE TV OPYELWV 0TI PUOLKT] PVHUT,
oL decpevpéveg elkovikég oelideg avtiotolyifovtor ota avtioTolyo TAXICLX PUOLKHG HVAHNG
XPNOWOTOLOVTAG TOVG i8L0UG PNy aviopovg aeAdomoinong mov culnTrinkay otnv ponyospevn
nopaypago. Me to memory-mapped 10, ta apyeia avriypdpovrar amd thv cvokevy amobkevong

TN QUOLKY [VIUN VI VO TPOCTEAQTTOUV.

O xdpog etkovik®v dlevBivoewv elval £vag ey YEVAS KOLvOY priotog TOPOG HETAED TWV VIHATWV
piog Slepyooiog Ko, oG €K TOOTOV, KATAANYEL VoL Elval GTHELD EVTOVNG GUHPOPTOTG GTNV ETOXT

TOV TOAA®V TUPTIVOV. AVGTUXOG, TA TEPLOGOTEPK AELTOVPYLKR CUGTHHATA GELPLOTOLODV TLG
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Aertovpyieg ToL eLkovikod ywpov dtevbvveewv [59,60,70,71,140], eplopilovtag TNV KAHOK®OGIHLO-
NTo TG £LKOVIKTG pviiunG. To kdotog tng oeAdomoinong (m.x. kabvotépnon Adyw cPaipdTov
oeAidoag) eival emiong onpovtiko. Idaitepa yio epappoyég pe évrovn dpaotnpiotnta E/E ko
XPNION TNG TEXVLKNG OTTELKOVLOTG XPYELWV GTH) HVAHN, TO CPAAPATO GEALSOG HITOPOVY VXL HELOGOLY
OTHOVTIKA T oLVOALKT] amddoon [124,125,168,169,220]. Oha ta tapandve kd6oTn odynooav
oTNV QUPLEPATNOT TNG EPUPUOYNAG TNG ELKOVLKT] PVIHUNG G LETa@ng apyeiwv, oo Kot yio
EQPUPOYEG e peydAn évtaon 10 onwg Paoelg dedopévwv [B4], mapd tnv evkoAia xpriong Tne.

1.1.2 Ymootnpi{n 6NV ApYITEKTOVIKT YL TN HETAPPaCT dtevBivoewv

H ewovikr pvipn vrodniovel 6t k&Be Aettovpyio avapopds pvipng (load/store) aontei éva
Pripo petppaong yix va exteheotel. O emeEepyaotng peTappdlet Tnv etkovikr) dtevBuvorn kdde
evtoAng load/store oe guoikn diebBuvon yia va oteilel éva altnpo TPOSTEAXGTG TNG PUOLKNG
pvipng mov Ba avaktrioet Ta avtiotoryo dedopéva. Kabog 1 petdppaon Ppicketal oto kpicio
(b mAevpag atddooT Q) THHHA TPOOPAGTIG 0T VI, OL TTEPLEGOTEPEG OPXLTEKTOVLKES X PT|GLHO-
TOLOVV eLSIKEG KPLPEG PVIHES DALKOD avd muprjva eme€epyaott, yvwotég wg Translation Looka-
side Buffers (TLBs), yio va amoBnkeboouv Tig 7o poOcQATaL X PriCLLOTTOLNHEVEG HETOPPACELG
(eyypopég tou mivaka oedidwv) (PTE) kou va emitoydvouv ) Stadwkacio. Eqv ) petdppaomn mov
amouteital Ppioketon otnv tepapyio tov TLB (svotoyia), n avalntnon kootilel Aydtepo amd
10 kOkAovg [[117]. Xe mepinTOOT TOL 1) ATTOUTOVHEVT] HETAPpaAOT) Agimel (aoTOXIR), OL TIVAKES
oelidwv g dadikaciog mpémel va StaoyloTody yix va avaktnBel 1) petdppaot. O meploco-
tepot eme€epyaotéc onfjpepa xewpilovton T actoyieg TLB €€ olokAnpov oto LAWKS. e pa
aotoyio TLB, To vALkO evepyoTtoLel piot Py avy) KATAGTOGTG TOL OVOUALETOL TTEPLN YT THG TTiVOKX
oelidwv (page table walker) mov Siacyiler Tov mivaka oelidwv avd diepyacio kol poptovel
(aobnkevel) o avtiototyo PTE oto TLB. Ou Swacyicelg tov mivaka oelidwv eival akpilpé,
koBog prropet vo amontioouv moAAAAEG TpooPhoelg otV KOpLA PV KoL £TGL VO KOO TIGOUV
€W KaL ekaTovTadeg KOKAOUG. AvTo popel va Tpokaéoel onpovtikég emtPpadivoelg oe epappo-
Yég évtaong dedopévwv [47,56,130,171,172,176,177] ko étor n xwpntikdtnTo Tov TLB —yvwot
wg to gVvpog TLB- kou to k66T0G aotoyiag TLB eivar onpoavtikol maphyovreg amddoong oto
oVLYXPOVA GUGTHHATO.

Mia akOpar oNPaVTIKY) TNYT KOGTOLG eivan 1) SlaTrpnomn Tng CLVAPELAS TNG HETAPPACTG
dtevBivoewv. H datnpnon tng cuvagelog twv kpupov pvnpov TLB pe tig avtictolyicelg tov
elkovLKoL xhpov dtevBivoewv piag diepyaoiag (pe tov mivaka ceAidwv) eivon damavnpr. H
dwoxeipion tov TLB eivon pépog Twv AELTOVPYLOV TNG ELKOVLKTG HVIUNG KOl OVTLITPOGKOITEVTLKO
Topadetypo eival 1) ak0PwoT) AToBNKEVHEVWVY OVTLOTOLYIGEWY, TT.X. KT T1) SLAPKELX OULTTHATOV
anodéopevong pvnung. Oreyypagég TLB mov amofniebouy Tig TaAEg KaTo wPTOELS TOV TTLVOKoL

oeMdwv mpémel vo akvpwOoLV, Yo ac@aielx Kot opOoTNTA, KoL GTNV apYLTEKTOVIKT X86 auTod
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yivetau oto Aoyilopiko. To Aettovpytkd cvotnpa evepyomotel TG akvpwoelg TLB (shootdowns),
1oL petadidovtal péow Sakomdv petakld twv enetepyaoctov. O dlokomég avtég aeLpLomoLlody
OAEG TIG AELTOVPYLEG TNG ELKOVIKTIG HVAING KOl LITOPEL Vot KOO TIooLY £0G Kot XLAL&deg kOkAovg [34,
35, 141]. H ovvaeeior TLB eivar Aowtdv évor okOpor oNpavTikd eummodLlo KAPAKOGIHOTNTOG TG

OV-oXESLACHEVNG SLETOPNG TG ELKOVLKT] HVAHNG 0€ TTOAAOVG TTUPT|VEG.

1.2 Kivnrpo epyaociag

H vynAn entidoom on petdppact dtevbovoewv, 1 KAPAKOGILOTTO TOL XOPOL ELKOVIK®OV dtevBid-
voewv (oe TOAAOUG TTUPTIVEG) Kot 1) eALSOTTOLNGT) fe XOUNAO KOGTOG EiVOL GHOVTLKOL TTOPAYOVTEG
ylo TV arodOTIKOTITA TNG ELKOVIKNG HVAHNG. Xe QUTHV TNV evOTNTA GLLNTAfE OPLOPEVES VTTOAO-
YLIOTIKEG TROELG TTOV GTPEGAPOLV 1) GNHEPLVT] GXESIOGT) TOL PNYAVIGHOD TNG ELKOVIKTG HVIHNG
KO, K0T TN YVOUN HAG, OpUPLoPNTodV TNV KAPAKOGLHOTNTO TNG dlemapr)g T060 o€ TOAAOG

VPN VEG 00O KOL OE AVENUEVEG XWPTTLKOTNTEG outoBrjkevong.

1.2.1 Merewprkn adEnon tng {nnong pvung

H nayxéopio kokdogopio dedopévov avdveton pe oxedov exBetikd puBuod tnv tedevtaio dexo-
etiec. H texvntr vonpoovvn/pnyoviky pabnon (AI/ML) eivon 10 yopoktnplotikd mopadetypo
eQPUPIO-YOV pe avEavopevn {hitnon oe dedopéva — 10x etnoing [49,81]. AAa mapadeiypota
etvo ) avédvon peyddov dedopévwv (big data analytics) [43,82] ko 0 vITOAOYLOHOG KOVTA TN
pvApn (in-memory computing) [97,213]. O avtiktumog avtnig TG évtaong oe dedopéva yivetal
Wiaitepo oaoOntdg ot kévrpa dedopévwv (data centers).

O 60YYpOovoG PNYOVIGHOG TNG ELKOVIKTG PVARNG TéleTon vo vtoaTnpifet emTux MG TNV ekOeTi-
K1) aOENOT) TV OTTOTUTTWHATOV PHVAHNG TwV e@appoyodv (memory footprints) kot yivetou o idlog
onpeio cuppdpnong g arddoong Tov cvoTipatog. To TpwTapytkd TPOPANHa eivor 1) TepLopt-
opévn kaAvyr ov TpooPépel 1) kpuen pvrun dievbivoewv TLB; T vPNA& TocOo TR AGTOY LG
NG omolag eppavioTniay g eptodlo LIOAOYLOTIKNG emidoong Ly ammd mepimou pix dekaetior.
H epapyio TLB aumotuyydvel va KadOYeL Ta evepyd GOVOAX EPYOCLAS TOV EQOPHOYDOV HEYAAWY
dedopévav, ek 6tav éxovv akavoviota potifa tpocPaong, .. enefepyacio ypapwv. To
TPOPANpa emionpdvOnke otd Tov akadnpaikd koopo [47,[130,176,177] ko ovoyvopioTnke oo
™ Bropnyovia pe Toug tpopnbevtég emeEepyactddv v avEdvouy tnv epPédeta (kdhvym — reach)
twv TLBs éxtote. Tnv tedevtaio dekaetion vtapyel otabepry adEnon péow pLog SUTANG Tpoce-
yylong: i) peyarttepa TLBs (je 0poug xwpnTikOTnTOg) Kot ii) kKahOTept) vIToa T pLén yio peyaheg
oeAideg (2MB ko 1GB). Qotdo0 1) KdALYn x©Opov dtevbBivoewv Tng T&éng twv TBs, idtov peyéBouvg

SAS pe TIg oVYXpOVEG XWPNTIKOTNTES TNG LVAUNG, eivar duvatr] pOVO OTAV YPNOLHOTOLODVTAL
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100% oelideg peyéBoug 1 GB otoug mio mpocpatovg eneepyactég (m.x. IceLake Intel). Avagpopeti-
K&, 1 k&Aovyn mov mpoopépouvv ta TLB eivou tng td€ng twv GBs. Avotuyog, ot oeAideg 1 GB
dev voonpilovron avtopata (transparently) omd kavéva AelTovpyLKO COGTNHA KL HLLOL TETOLOL
vro-oTHpIEN Sev givan oA, Omwe ovlnteitan tepartépw oty Evornra b.4. Emuéov, auti 1
avEnpévn vroothptén twv TLBs oto vAko eivat akpiPr) 6oov aopd v oy — ta TLB propoidv
vo kotavalooovy 15-20% tng evépyetag tou chip [53,131].

Extog amo tnv av€nomn g epPéreiag tov TLB, ow mpopnBevtég eme€epyoctmdv éxouv emevdivoet
KoL 6g £vor HOAAOV TTEPITTAOKO HIXOVIGHO GTO LALKO Yl TOV TtepLloplopd tng kabuotépnong otnv
ekTéNeo o€ mepintwon actoyiag oto TLB. O xpueég pvpeg MMU oatoBnkedouy tor avidTepo
entineda oL Mivako GEAMSWV Yl vor PELOoOLY TOV aplBpd twv mpocPhoewy 6T HVAEN TOL
QTOLTOVVTOL KOTA T StapKela piog SayxLlong Tov mivaka oe mepintwon aotoyiog oto TLB.
EmuAéov, oL mepunatntég oeridwv (oto LAKO — page table walkers) éxovv moAAatAd& vijpaTo
yio va eEumnpetovv meplocoTepeg amd pia aotoyieg TLB tavtdypova (.. to Skylake tng Intel
éxeL 2-way walkers).

Qotdco, oe avth T SatpiPry Seiyvovpe OTL epappoyég pe peydAn évtaot dedopévav kot
aKkovovioTn mtpocPaot oTh PV OToV eKTEAODVTOL EYYEVOG Oe £vav cUYXpovo emelepyaoTth
KoL XP1oLLoTToLlovy peydheg oelideg mov vtootnpilovron pe dixgpdvela (qvtopata —2MB), eEako-
AovBolv va vpiotavton éng kot 30% emiBapbvoelg 6to XpOvo eKTEAEGTIG TOVG AOYW TNG HETA-

@poorng dievbBovoewv.

1.2.1.1 Eméktoon pvipng péow tou StobAov/mpwrtokoiiov CXL

Qg ambvtnon otnv ekBetikn av€non tov dykov dedopévwv, 1) flopnxavio vitoAoylotdVv PpiokeTol
OTO KOTOPAL HLOG OAAXYT|G GTNV APYLTEKTOVLKT] TWV LITOAOYLOTIK®OV ovoTnudtwv. Ta kévrpa
dedopévov petakivodvton otd évo HovTéLo OTTOL K&Be SLAKOPLOTHG EXEL TN SLKT) TOU ATTOKAELGTIKT]
HVAHN, o€ EVa HOVTELO TTOL LTLAPYOLV KOLVOX PNOTES GLOTAdES TOPwV Pvriung. Eve n 1dea tétotwv
QUTOKEVTPOUEVWV SLPOLPALOHEVWV VIOV KoL TV OVTIOTOLY WV KABOAK®OV Stemapmv HeTo&d
TV povadwv enetepyaciog vapyel €00 kol TOAAG xpovia, | Tpocpartn paliky viobétnon Tov
StovAov Compute Express Link (CXL [85]) —wg cuvopoig StobAov yio emeEepyacTég, Pvipeg Kot
emLTayLVTEG— Bewpeiton KaTaAbTNG Yo va yiver auth 1 déa porypatikdtn o [[148,156]. Me Toug
ocbvvtopa Sabécipovg emeEepyaotég kot cvokevég DDR cupfatoig pe to CXL, elcepyopacte
o€ P véo emoy] TOAATA®V “emunédwv” pvnpng, 0mov to k&Be enimedo Oa €xel Siopopetikd
XOPOKTNPLOTIKA Ge YPOVOUG atdKPLONG Kol 6e e0POg LOVNG, aAA& oL TBAVEG CUYKEVTPWOTIKEG
xopnTkoTnTeg Ba eivon tng TaEng twv peta-bytes [?]. H mpdofoaon otn pvipun CXL e€okolovbei
val YLVETOL PHECK TNG XPALPESTG TNG ELKOVIKNG HVAUNG [187], pe TNV armokevTpwpévn pvnpn mbo-
votata va ektifetan 6To Aettovpylkd cVotnpa wg kOpPog NUMA ywpig CPU, miélovtag meparté-

Pw TIG OTTOLTNCELG EPPENELAG TOV KPLPDOV PVNHOV petdppaong TLB.
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1.2.1.2 Xeldomoinon 5 emwédwv

‘Evag GAlog meploplopdg mov avadeixdnke amtd tnv adénon twv xwpnTIKoTHTOV PVARNG, givat
otL 11 oeMdomoinon 4 emmédwv x86 dev pmopel v kaAOYeL eplocdtepa amd 64 TB puoikig
pvipng [11]. H Intel ywo va ovtipetoniosl to mpoPAnpa ntpocébece éva emmAéov eninedo oto
dévtpo tov mivaka celidwv [22,77] mov emrpémel Tnv kdALYT éwg ko 4 PiB guoikod xdpov
SrevBovoewv. H apyrrextovikn vtootpién yix tn oeldonoinon 5 emumédwv éxel elooyBel 6Tov
npocpato eneepyaotr Ice Lake tng Intel, ko o Linux to vrootnpilel emiong. H mpocObkn
Tov emimAéov emimédou ot celdomoinon tpocbétel kO66TOG TN dLdoyLon Tov Tivaka ceAidwv
oe mepinTworn aotoyiog otnv tepapyio TLB, kabog anatteiton tpdchetn mpdoPact otn pviun.

Onwg ovlnthpe oty endpevn evotnta, avth 1 enmPépovon peyefbvetar otny elkovikn ekTéAeoT).

Mopd TNV oENPEVN CLPXLTEKTOVIKT] LITOGTHPLEN TNG CEALSOTMOUEVNG ELKOVIKTG HVIUNG
OV LTTAPXEL GTOVG GUyxpovovg emeEepyaotég, 1 epPéreton TLB eEocolovbel vo eivon
TEPLOPLOPEVT) KOL QUTOTUYXAVEL VO KAHOKWOGEL HE TIG GLVEXADG OLEAVOUEVEG OITTALTHOELG
pviung. H osmokevipopévn pviun propel vo odnyrjoeL 6€ GUOTHUATA HE XWPNTLKOTNTESG
PVAENG TG Tééng Twv petabyte, otpecapovtag mepattépw g amontroelg epPéietog TLB
Ko TpooBétovrag eminedo ceAdomoinong katL mov kabloTd eyyevag mo damavnpd Tov

ONHEPLVO UNXOVIGHO peTdppacng dtevBovoewy.

1.2.2 Kvupropyxia tng elkcovikoroinong

H ewcovikomoinon eivar pio modt 1déa [[105] mov avaPince and to Disco [61] oto téAn g
Sexoaetiog Tov 90 kol e€ehiyOnke onpepa wg N kOpLa TEXVIKT avémTuEng voAoyiopody. H
elkovikomoinon rpocétel éva emumAéov eminedo apaipeong petofd TV AELTOVPYIKOV ZUGTNHA-
TV (OS) Kot Tov LALKOD, YVwoTo kot wg Virtual Machine Monitor — 7t.x. KVM [138]. H etkoviko-
moinor emTpénel KaAOTEPT SLOYELPLOT) KOl OTTOPOVKOOT] TWV LITOAOYLOTIKGOV TOpwv. Eidikd pe
™ popen Ewkovikov Mnyavav (VM), emitpémel Ty Kot amaitnon KUTOVOUN KL ETOHEVGG
KOAOTEPT) GUVOALKT] XP1IOT] TOL LALKOD £VOG SLAKOHULG T, KUPLAPXMOVTOG £TOL GTLG LITOJOPEG TOV
VITOAOYL-GTLKOD VEPOUG,.

H ewovikomoinon vAkod —CPU, IO, pvrun — wotdoo, ouvifwg éxel k6otog. Idwxitepa 1)
ELKOVLKOTIOINGT) TOL TTOPOL TNG HVNHNG éxel amodetyBel mOAD kooTOPOpa pe Opovg emidoong
kot dvokoAn va emtayvvOel [30, 101,102,193, 198]. Avtd mov PAémer 1 elkoviky pnxovy g
QLOLKT] PVIEN elvon por agaipeot) kot avtiotolyileton aveEdptnta oto LALKO (Puoiky Hvhpn
Tov dtokopaTh) 61ov Ppiokovron Tpaypatikd T Sedopéva. Emopévmg, amatteitot éva emimAéov
eninedo PeTdYpoong yio kébe VIO TPOCTEAAGTG LVIING TWV EQAPHOYDV TTOL EKTEAODVTAL
péoo 6to VM. Me texvikn elkovikomoinong vroponbolpevn amd to vAkd (nested paging), 1

etkovikr devBuvon (gVA) k&Be evtolig @optwong/amobrikevong CPU petagpdleton mpodTa
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otn guoikr dievBvven tng etkovikng pnyavig (gPA) kou otn cuvéxela otn guoikn dtevBuvon
Tov Staxkopotr) (hPA) 61mov ammoBnkevovton ta Sedopéva (Evornta b.9). Kartd tn Sikpreia puog
aoctoyiog TLB, 1 Siodidotatn Hetd@pact) ekTeAeiTOL GTO LVALKO pe ELPOAEVHEV SLAOXLOT TWV
TVAKOV oeAldog Tng ewkovikig pnyovig kot tov daxopioth (hypervisor). Avtr n eppdAevon
koBotd TIg actoyieg TLB mold akpiPéc kabdg o aptBpoc twv mpooPhoewv otn pvrpn moAia-
nAooLdleton pe To entinedo oeAdOTOLNGTG, .. ITALTOVVTOL EWG KoL 24 TTPOGPACELS GTN VAN
KOTQ TNV eKTENECT) OE ELKOVLKY) UNYOVT], €V HOVO 4 o€ QUOLKT ekTéAeoT) 0T e€eTAlOUNE TN
oeldomoinon 4 emmédwv.

Yy tapovoa SatpLPry StaioTdvoupe OTL, Tapd TNV OAN XPYLTEKTOVLKY LTTOOTHPLEN —TL.X.
TIG kpLPEG pvripeg MMU — 1) elkOVIKOTTOLNGT) TG PVIHNG HITOPEL var eLpEpeL 2 PpopEG TTLo ok pLP
Sradikacio petdppaocng dievbBivoewv oe GUYKPLOT) e TNV EKTEAEGT) G€ PLOLKO PNY AV GE EVOLY

ovyyxpovo enelepyaath.

H ocuveyilopevn HETATOTION TWV XPNOTOV GTO LTOAOYLOTIKO vEpog [B1], m). pHéow
TOL VEPXOHEVO HOVTEAOL avAITTLENG voAoylop®v Serverless [27, 189], xaBiotovv Tnv
QUTOTEAECHATIKT] €LKOVIKOTTOINGT] TOL TOPOL TNG HVIUNG évav oXedlaoTikd 6TOX0 LYNATG
nmpotepondtnTag. H petdgppaocn dievbBbvoewv oe tétowx Siodidotata meplfariovra

emiPoapoveton pe avEnpévo KOGTOG TOL PITOPEl Vo PLELdTEL TNV addooT).

1.2.3 H oOyxpovn epapyia cvokevmv amodnkevong kot n dpeon tpocfoon

(direct access) g povipa dedopéva

Ou ovokevég E/E éxovv eeliyBel onpavtikd tnv tedevtaia dekaeTion kKot HITOpovv Vo Tpocpé-
pouv povoymeLovg xpovoug amdkpiong ps (m.x. SSD yaunAng kabuvotépnong [[132,218]) 1) oopn
XopnAoTepoug (.. pn-mrnTikr pvipn [119]), petotonifovtag mAnpwg Toug kavoveg oxedtaciot
QITOTEAECUATIKNG LITOGTHPLENG AOYLOHIKOD GUOTHUATOS 0€ KEVTPA SeSOUEVWV YLOL EPOPUOYEGS
E/E. H tpéyovca otoifa Aeltovpytkod GUOTHHATOG EXEL TPOCAPUOOTEL e peydho Babpd yio va
avTipeteilel kabvoteprioelg tng téEng Twv ms (.. E/E povadog oxAnpot dickov) ko moAloi
amd TOLG HXOVIGHOUG oL Xproipornotel (.. context-switch) éyouv Eapvikd orjpepa k6GTOG
OUYKPIOWO pe TIG VEeg ovokevég xapnAng kabvotépnong [4€]. Avth n avavrtiotoryio €xel
evtomioTel TOAAEG popég atn PipAoypagio (mm.x. [#6,175]) ko ToAvapiBpeg epyacieg deiyvovv
oG 1 emidoorn dev emnpedletal mTAéov povo 1) kuplopya amd tnv amrddoct LALKOD, KaBdOg oL
StokopLoTég UV E00eDOLY PEYAAO HEPOG TOL YPOVOL TOUG GTNV EKTEAETT] KOOLKO AELTOVPYLKOD
ovothpatog [64,[146]. To Aertovpyikd cOOTNHO éyLve EQPVIKG TO GTUELD CUPPOPTIOTG KoL TO
AOYLOHLKO TOU GUGTHHATOC TPETEL VO ETOVOOXESIOTEL (dOTE Var Aettovpyel ot KAipoka Tov
deLTEPOAETTTOL 1] VOVOOELTEPOAETTTOL YLl VO LTTOOTNPiEeL e emLTUYIO TIG AELTOVPYiEG KOL TNV

amddoomn pmopel va tpocPépel To LIokeipevo LALKO [236]. Avtr n Swatpifry eoTidlel otV
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ELKOVLKT) HVIHN ©G TN STt TOL AELTOUPYLKOD GUGTHHATOG HE TIG UN-TITNTIKEG HVIHES WG
ovokevég amobnikevong, éva pdAAov povadikd pn tnTikd emimedo mov cuvdvalel e€aipeTikd
XOHNAO xpovo amokplong pe dievBuveodotnon ot eminedo byte.

H pn-mton ke pvrjpn eivon o véo texvooyio povipng amodnkevong [[119,186] mov cuvdéetan
e toug eme€epyaoTég pEc® ToL SavAov pvrung 1§ tov cuvdéopov CXL [85], opoia pe T DRAM,
KoL eTOpévg eivar apeca TpocPaoipun pécw Twv evtolov load/store Tov eneEepyaotr. H teyvoro-
yia cuvduadet povadikd tn pn mrnTikdTnTa Kot T dvvatdtnta StevbBuvveroddtnong oe enimedo
byte pe xpdvoug amdkplong Kor e0pog {dvng mo kovtd oe avtd g DRAM mapd oe dAdeg
oLOKEVEG HOVIUNG atobrjkevong. Auto apfAvvel tn Stdkpion TOAAGY SekaeTiov petalld apyng
OAAG povipng aoBrkevong kat ypriyopng oaAld mrntikig pviung. H vymArn andédoon E/E -
OTNV KAPOKO TV VOVOSELTEPOAETTWV- KAVEL TIG TPOGPAoELS 6TH cuokevn] atobrjkevog TOAD
@ONVO-Tepeg amd TIG kAoELG oLOTHRHATOG TOL AX Kot 1) pelwoT TOL KOOTOLG EKTEAEGTIG TOV
kOdka Tov AY avadvetal oe woxvpn oxedwxoTiky araitnon [[15,67,68,74,90,125,142,149,162,
211,216,219,220,221,222,230]. H etkovikn) pvrpn €xet mpotoyoviotikd péoro oe avtd to medio,
kaBag emTpénel TNV dueon mpocPach otov xwpo amobrkevons. H ameikdvion ot pvrun tov
apxeiwv PMem (pécw KANGE®V GLOTHHATOG MMap) HITOPEL VoL AVTIOTOLYICEL ELKOVIKEG CEAISEG
artd o YWpo devBivoewv TV diepyacidv amevbeiag oe puotkég dlevBivoelg TG PN-TTNTIKAG
HVARNG, Tapakdumroviag e odokArpov orowadtmore mpoowpivi amobijkevon oty DRAM (r.x. page
cache) (Section [L.1.1) ko ovoraoTiKé aTTELKOVILOVTAC TO X(OPO ATTOBKeVETC HOVIHOVY SeSOpEVLY
amevBeiog 6To xdpo xpriotn. Avtd Snpovpyel To mpwTo povordrtt mpdoPacns oe cvokevy amobij-
KEVONG e PNSEVIKES avTiypapés (Xwpis mpoowpivd avtiypapa twv povipwv dedopévwv oty DRAM)
KoBOG oL epappoyég éxouvv qpeon mpdcPact oe povipo dedopéva HEGK TOPATOUTTOV GTI) HVAKN
(evroAég load/store tov emeEepyaotn).

Juvendg, n apeon mpoécPaocn oty pun-mrnTiky pvhpn (persistent memory -PMem) péow
g mmap() eivar o «tédela diemapn» yio v PMem, xaBdg mopéyel oTIg ePoppoyEg T
ovvtopotepn dvvartr tpdoPoon ota amobnkevpéva povipa dedopéva [222]. Qotdoo, T0 KOGTOG
(o€ emidoon) TV AeLToLPYLOV/TNG SLETAPNG TNG ELKOVIKAG HVIIUNG HITOPEL GLYVE VAL HELWTEL TN)
ouvolikt] outddoor [124,[125,149,220] piog epoppoyng. o miaicwo g mapovoag diatpiPrg
petpricape T péorn kabuotépnomn avayveoong apyeiov 256 KB ypnoipomoiodvtag eite Tnv kAnon
ovotiparog mmap() eite T kAfjorn cvotparog read(). H read avtiypdoet eyyevog ta Sedopéva
apyelwv oo T HOVIIN PV ot pia W TIKT Tpocwpivr) pvipn ot DRAM yia ) pocPaon
o€ OLTA, eV 1] mmap mopéxel TNV dpeon npocPoact oto dedopéva (0mwg avopépdnke mhpo
movw). [apatnpolpe 6TL 1 dpeot npdoPaoct amodidel onpovtikd xelpodTepa oo T read mapd
T0 TAeovEKTNHO TNG PNdevikhg ovTrypa@ric. To ~30% tov cuvoALkoD xpodvou (§va vijpa) EodedeTon
OTNV EKTEAEGT) TOL KMOOLKA TOL AELTOVPYLKOD GLUGTHHOTOG 1OV 1) Sraryelpiletal TNV avtioToiyion
TV etkovik®Ov dtevBivoewv tng diepyaoiog (mmap), ii) CUPTTANPOVEL TOVG TTivakeg GeAdwWV TNG

(cpdhpata oelidag) kot iii) Tovg kataoTpéPel eved axvpevel to. TLB ( munmap). Avtd to kd6oTtog
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ekTéAeong mupnva avavetal oe ~60% OTav TOAAATAL vipaTo ene€epydlovton ToAAG apyeia
TaLTOYPOVEL, AOYW GUPPOPNOTG OTA KAEWDOHATO TNG ELKOVIKTG pvipnG [[70,71,72,140,141]. Avtéd
Ta evprpaTo eNLPEPALOVOLY TPOTYOUUEVES HEAETES TTOL LITOYPOUpIlOUVY T1 GeAdOTOoiNoN WG
onpavtikd topdyovra amddoong yio tnyv dpeor npdoPaocn ot PMem (m.y. [[124,149,220]).

Ol eMUTTOGCELS TNG ELKOVIKNG HVIHNG OTNV ETLS00T TOV EPAPHOYDV OTAV Y prjoLpomoLeital
wg demtapn) apyeiwv oto Linux eival yvootég omd to 2000 [205] ko Topopévouy eVILITOOLOKAE
1d1eg yia mhvew amd eikoot xpovia. QoTdo0, e TIG GLCKEVEG ATTODTKEVOTG TTOV ETLTPETOLY POVO
drevBuvorodotnon oe enimedo prAok (m.x. SSD) ta dedopéva apyelwv mpémel va avTLypapovTol
VITOYPEWTLKA OITO T GLOKELTY TOBNKEVONG TNV TTNTIKT] UV TPV QUITELKOVIGTOVV (page
cache, Section [L.1.1). Eivou 1 av&deién twv cvokevdy pe Xapnhole xpodvoue amdkpiong Kot
n Svvarotnra dueong mpooPacns (Ywpis TINTIKA avriypapa) o€ povipe SeSouéva TOL TULGTEDOVE

OTL HoG TPOTPETOLY Vo Voo KEPTOVE orjpepa T oxedioon Tng demopng avThG.

O onpepvég ovokevég E/E pmopodv v Tpoc@épouvy pikpovg xpovovg amokplong (otnv
TGEN Tov devTEPOAETTTOL KO ALyOTEPO) KOETOVTOG TO AOYLOHIKO CUGTHHATOG WG TO GTHELD
ovppopnong. H amddoon tng ewcoviknig pvrpng, n omola Aettovpyel wg Siemagr) mTpog ta
opyela, elvor kplown yio v dueon mpocfaon ce povipo dedopéva, T.X. O€ GUOKEVEG MN)
nTNTIKAG pvipng. O onpepvog oxedlacpog etodyel LYNAES KaBLOTEPHOELS Kol KALUOKOVEL
eAOYLOTA 0€ TTOAAOVG TTUPTVEG, ATTOTLYXAVOVTOG VO ALTTOSDGEL LUTO TTOL PWITOPEL VAL TTPOCPEPEL

TO LTTOKEIHEVO LALKO.

1.2.4 Mix ko1vr] S1eETaPT] O EVAV T EWMG AVOTTUGGOHEVO KL ETEPOYEVT] UTTOAO-

Y1oTIKO X&pTN

H ewkovikn pvipn oxedidotnke o€ pia tepiodo mov To GUOTHHATH VUG HToY oe peydho Pabpod
opoLoyevr), pe éva povo emtimedo TOTMKNAG VARG KOL Lo TOTLKT) cLokeLt] autoBrikevong pe Siev-
Buveodotnon oe eminmedo prAok. Thpepa, oAOKAN PN 1) oToifo atodrkevong épxeTal wg Ltepopyic
Ko k&Be eminmedo €xel MOLKIAX XAPAKTPLOTIKE OGOV OLPOPA TOV XPOVO QILOKPLONG, TO €0POG
{ovng xal v mpocPoon (.. o€ mpocwpvy pvhun 1 Gueon). Emiong, moAloamAiég povadeg
enekepyaciog kat ol TomLKég TOVG Pvipeg ouvdéovton pe ouvageta. H elkovikn pvipn mpémel va
oupPadilel pe QLT TNV THXEWG AVATTTUGGOHEVT) APYLTEKTOVIKT] CUGTHHATOG WG KOLVT] SLemagr)
yla oxedov 0Aa ta ototxeio. AvTd avadelkvieL TEPALTEP® TLG QUITAULTIGELG YLOL ATTOSOTLKT] HETA-
ppacn Siev-0bveewv, mov sulnThdnke oty Evornra [1.2.1, xabbg n petdgpacn mpémet va éxel
epPérera moAl peyolvtepn atd to péyebog tng tomkng pviung. Emiong, kAovilel tig Paoikéc
vroBéoelg g molondg oxedioong tng diemang Tng ewkovikig pvipng. H onpacioloyio tng
dlemapng tng etkoviknig pvipng -m.x. POSIX- mopopével e peydro Bobpo avémapn pe ta xpovia

KO(L OHLOLOYEVNG YLt OAOVLG TOVG TOTTOVG AVTLOTOLYIGEWV/ATTELKOVITEWY PVIUNG, arveEdpTNTO OTTO



1.3. Oplopdg ToL £pevVNTIKOD TPOPATIHATOG 11

10 péco amobnkevong. Iliotebovpe 6TL o€ avTh TNV adpavela AavB&vouv/eAhoyeDOLY CUAVTLKEG
duvartotnteg Peltiwong anoddoong.

O avTikTLTTOG TNG ONHACLOAOYING TWV SLETAPDOV GTNV KALHOKOGIHOTHTO Kot TV amrddoon
TOL AOYLGHIKOD OUGTHHATOG eivon éva emtionpo pedetnpévo Bépa amd tovg Clements et.al. [72].
Ooov apopd oTNV ELKOVLKT PVAHT], SLAPOPEG EPELVITIKES EPYATIES TPOTEIVOLY PLLKEG AAAYéG
o1n dwayeipion Tov xdpov devBiveewv [59,72,91] 1) twv TLBs [72,141] yix tn PeAtiwon tng
aTOS0GTG KOl GUY VA XOAAXPOVOLY TIG ATTOLTHOELS TNG onpactoAoyiog POSIX otn Stadikacio. e
avtn TN SatpLPr] -KaL Ge GLVEXELA TNG TTPOTYOULUEVNG DTTOEVOTNTAG— EGTLALOVIE GTNV ELKOVLKT
LN wg Semtopt) dueons tpocPacns oe povipa dedopéva amobnkevpéva oe CLOKEVES pe SuVTO-
tnto dtevbuverodotnong oe emimedo byte (.. pn wTnTIKéG Pvrpeg). Aeiyvoupe (OTTmG Ko Todatd-
TEPEG EPYOLOILES) OTL 1] KALHOKWOOLLOTNTO TG GpecT S TPOSPaong oe TOAAOVG TUPHVEG LITOPEPEL
oo TN TavTdYpovn auteAeLBEPwOT TOPWV KATA TNV aitnon tov xpriotn (T.X. KoTAoTPoPH
OVTLOTOLYI-CEWV/OITEIKOVICEWV KATA T1) SLAPKELX TV KANCEWV CUTHHATOG Munmap) Ko oo T
Snpovpyio avTioTOLYI-CEWV/QUTELKOVICEWV G€ TOAAATTAGGLO TOL peyéBoug oeAidag (coatpaTa
oelidacg). H mpotn mpoépyxeton amd pia toxvpr) ko yeviky ostaditnon tov mpdtumov POSIX
eve 1 devtepn aopd otnv vAomoinon tov AY Linux. AvopOTIOHXGTE OV KoL TOG AVUTEG OL
TPodLoy popéc/amalti-oelg eEakoAovBody va eival oxeTLKEG OTAV OL ELKOVLKEG OlevBOVOELS OV TL-
otolyovvtal astevbeiog oTov XHdpo armodrkevong, évav moAd mo mheovalwv/apbovo mdpo oe
oxéon e Tn QUOLKTH HVARN O 0moiog avakTdTon KoAag apyd. Evo dAdo mapdderypo diepod-
nong elvar, X peLalOpaoTe AKOHA VoY KOLVO XWOpo SlevBiveemV Yo avTIoTOLY o ELG/ATELKOVITELG
owPOU KoL POVIH®Y dedopévmv 6T X proLoTTOLoVpE SLemtoupt] dpeong TpocPaong yio to devtepay;
H enave&étaon, n enéktaon N n cAdoyrn SLEToQOV Yoo TNV ATOTEAEGHATIKN TPOSPACT) G pn-
TN TLIKEG PVIHES elval e kKaBlepopévn otpatnytkn, cAld 1 vtdpyovoa PipAoypopia eEetdlel
kupiwg ta APIs xou tn oxediaon twv cvotnuatwv apyeiov (mx. [211], [220]) ko oxL NG
ELKOVIKAG HVIUNG.

Ot tepapyieg LVAENG TOAAGOY TOYLTHTWV KOL OL GLGKEVES aurobrikevong vVYNANG enidoong
petaaAlovv ypriyopa T Xprior TNG ELKOVIKNG HVAHNG WG KOLVNG SLemapr)g o€ TOAAA péoa
e SLoupopeTLkd XOPaKTNPLOTIKA (7T.X. TTNTIKOTNTA, 0tddoot K.AT.). Avtd emiPdddel véeg

TPOKATGELG GTO OYESLAGHO TWV HIYOVIGHOV KOL TOV KOVOVOVY TNG SLETAPNG TNG ELKOVLKNG

HVIHNG OHPLEPNTOVTAG TNV TOPLVI] TOVG HOPPT).

1.3 Opiopog Tov gpevvnTIKoD TPOoPAnpatog

Avth 1 dwtpiPny eotidlel otn Pertiwon Tng arddoong TG ELKOVIKAG LVHHNG 600V apopd i) T
petappaot devBivoewy kot ii) Tnv Gpeon npdoPact oe cvokevég amobrkevong pe duvatdTnT

drevBuvolodotnong oe emimedo byte (m.x. pn-mrnTikn pvipn). o va Siapoppidcouvpe ko vo
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a£LOAOYT|COVHE TIG EPEVVITIKEG HOG TTPOTACELG G TEPLBAAAOVTA AVTLTPOCOITEVTLKA TWV TTPOYHOL-
TIK®OV GUOTNHATWV, DAOTOLOVHE TO HEYAADTEPO PHEPOG TNG EPYATLOG HOG X PTCLHLOTTOLOVTG TPOL-
YHoTucég ovokevég kot To AY Linux. T Tig emekTdoelg LALKOD TOL TPOTELVOULE, X PTICUYLOTOLOVLE
povtéAa ar6doong yio vo TpofAEYOUHE TOV VTIKTUITO TOUG.

Y¢YnAo6 koéotog petdppaong drtevBbvoewv. H amddoor/enidoon Tov pnxavicpod HeTagpoong
ELKOVIK®OV d1evBOVoemV ammoTUYXAVEL VO KALOKOOEL PE T HETEWPLKT] bENCT) TV ATTAUTCEWY
o€ Pvipn, Kupiwg Aoyw tng meproplopévng epPéretag tng tepapyiog TLB. Toco 1 PifAtoypopio
600 Kot 1 Topovoa diatpifry deixvouv OtTL 1 dikoLloN TOV MVAK®Y GeAMOwV TV Slepyactodv
(katé v actoyio oto TLB) propet akdpo va aoteAéoel kuplopyo k6oTog ekTéAeons. Avtd
peyeBbvetoun oe elkovikd meplaAlovta AOYw TNG ePPwAELPEVNG GEALDOTTOINGNG KOl TToPd TNV
av€npévn voothplen e LALKO PETAPPACTIG 0TOVS TPOGPaTOLG emefepyootés (my. [A7,101,
130,171,179, [194,199]).

O mpwrtog otd)X0¢ TG NG drtpLPrig eivor vor edoyloTomoLjoeL To KOGTOG HETAPPAOTG
ylot TNV eKTéAEcT) TOGO 0€ PUOLKG OGO KL GE ELKOVLKA HIXAVIHATeL, SOVAEDOVTOG GTO OPLO/TONN
TV emédwv LALKOD Kot Aoytoptkot (OS) Tng elKOVIKTG PVIHNG. ZTOXEVOVHE o€ évay (emovar)-
oxedaopod mov: i) Tpooépel oxedov pndevikd k66TOG pethppaocng Sievfivoewv, ii) KAak®vel
L€ TIG OLVEY MG AVEAVOUEVES XWPTTIKOTNTES HVIUNG, iii) Stotnpel Tnv evéAuctr Siayelplon UOLKNG
HVAKNG Kot iv) elvon Stopavrg oTLG eQappoYEG.
eproprotikn} dStemaen yia dpeon pocPoon oe povipa dedopévo. H pn-mntikr] pviun
(Persistent Memory - PMem) eivau pioe povadikr texvoloyio amroBn-kevong wov cuvdvadet e€atpe-
TIKG YopnAovg Xpovoug amokplong, devbuvoodotnon oe enimedo byte ko diacvdeon pe To
Siowro pvrpung-emeEepyaotr. H amewkdvion apyeiov PMem péow tng etkovikig pvipng propet
Vo TOpEYEL dueon mpooPach oe povipa dedopéva pécw evtorwv load/store tov emetepyaoth,
oxnpatilovtag To cuvtopdtepo drabéoipo povomdrtt pog T cvokevy amobrkevong. Qotdoo,
TOG0 TTPONYOUpEVES epyaaieg 660 kot avth) 1) StatpiPr, detyvouv OTL oL Aettovpyieg/ pnyovicpotl
TG ELKOVIKTG HVNHNG EL0QyoLV LYNAEG KBLOTEPTOELG KL SEV KALHAKOVOLV ETLTUXWG G TOAA-
00g muprveg, meplopilovtag tnv atddoon tng dpeong npdoPaong (.. [[124,125,149,220]).

O debtepog 6TOX0G AUTHG TNG STAWMHATIKNG EpYACiog elval 1) HEAETT) TNG ELKOVLKAG HVIHNG
g SlemaPng apxelwv KoL 0 EVTOTIONOG OAWV TV TNY®V emdpuvong/kdotoug enidoong oTov
Tpéyovta oxedlaopd. Me fhon Ta evpripata, 6TOYEDOVHE VO ETOVOCYESLAGOVHE T SLemapr] TNG
ELKOVIKNG PVAUNG — pali pe Tn onpactoloyia g — yw dueon npdcPaot oe povipo dedopéva,
OTOXEDOVTOG VXL TTANOLXCOVHE CUTO TTOV PITOPEL VX TTPOGPEPEL TO VITOKEHEVO LALKO OGOV apopd

v enidoon.

1.4 Epevvntikég tpotdoelg

H napotoa dratpiPr) kével Tig axdAovbeg cuvelspopéc:
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+ T va petwoovpe to k06TOG petappacng devdvveewv, mpoteivovpe Tn oelidomoinon pe
emiyvwon yeirviaons (Contiguity-Aware paging) xou tn kepdookomiky petappaot Sievdvvaewv
e Paon t petaromon (Speculative Offset Address Translation — SpOT), puo cv-cxedLaGHEVN
LAOTTOLNGT) TNG ELKOVLKTG HVIHNG TTOVL KPOPEL TO KOGTOG HETAPPAGTG He LITODETIKT] eKTEAEDT)

otov enefepyootr). H texvikn eivor epappooiun t66o oe PUOLKE OGO KOL GE ELKOVIKA

UNXOVAHXTO.

« Tix va fertiodcovpe tnv emidoot Kol TNV KAUAKWOIHOTNTA TNG QUECHS TPOCPAoHS CE
povipa dedopéva, mpoteivoupe pLa véa diemopr] tov ovopdlovpe DaxVM. To DaxVM ameikovi-
Ceropyela amoBnkevpéva oe PN-mTnTIKEG LVITHES XOAAXPOVOVTAG TIG ATTXLTHOELG TOV TTPOTVTOV
POSIX xou emavooyedidlovtag pnyaviopong TnNg ELKOVIKNAG PVIHNG YLO VO HELOGEL G-

VTIK& TO KOGTOG EKTEAEGTIG TOU AOYLOHLKOD GUGTHHOTOG,

311 ouvéyela cLTNTAE TA TTLO GNHAVTLKA oTpela kK&Be cuveEloPOPAC.

1.4.1 AmOTEAEGPATIKT] ELKOVIKOTTOLNGT) TNG UVI|ING HEG® GUVEXOHEVOV OLVTIGTOL-

xioewv/anscovicemwv

IToAAég epevvnTikég epyacieq [47, 101, 130,172, 177, 227] expetalledovtal Tn YELTVIOGT OTIG
astelkovicelg pvipng, dniadn ceAldeg mov avtioToryillovTal GUVEXOUEVH GTOV ELKOVIKO KL TO
QLG LKO X®OPO dtevBivaewY avd Siepyaoia, yio va emitoyOvouy Tn petdppaoct dievfdvoewv. QoTo-
00 ocuviBwg dev vootnpilovy TNV eVEALKTN dLorXelpLlon TG QLOLKAG HVARNG; aVTLOETWG Yio
vo dnpovpyrioovy tnv embopntr yertviaorn topaPiilovv OepeAiddelg apyxEég TOL AELTOVPYLKOD
ovoth-patog. Emiong, oL meplocOTepeg TPOTELVOUEVES ETTEKTAGELS DALKOD QPOPODY GE PUOLKA
pnxovipota kot dev vroatnpifovv etkovikomoinot. o tnv enidvon avtdv TV TpoPfAnpdtwy
oe ot ) datpiPr] mpoteivovpe i) tn cgeliboroinon pe eniyvwon yewrrviaong (Contiguity-Aware
Paging — CA) o710 eminedo tov AoylopkoD Kkal ii) v kepdookomikl] petdppaocn Sievfvvaewy pie
Paon t perarémon (Speculative Offset Address Translation — SpOT) oto eninedo TOL LALKOD.

H oceAdomoinon CA emekteivel ) oeldomoinon kot astaitnor, tnv mTiylo Texvikr] Stoyei-
PLOTG TNG PUGLKNG HVAING TOV GOYXPOVKOV AELTOUPYIKOV ZUCTNHATOV. ANULOVPYEL CUVEXOHEVEG
OVTLOTOLYIOELG VWY EALKA KO XWPLG Lo VPES EYYUNOELS, SETHEDOVTAG GTOYEVHEVEG PUOLKES GEALDEG
Katd To opdipata oedidog. ‘Etol Siatnpei OAeg Tig Pacikég texvikég Swaxeiplong TG UOLKNG
HVAUNG evog AS, 6mtwg 1 oeddomoino, n SEoHELGT) KOT oUTALLTNOT), 1) AVTLY POUPT] KATA TNV £YYPOL-
on k.o H texvikn éwvon eyyevog ovpfortr pe tnv eppoievpévn oeidomoinor (etkovikomoinomn)
Ko e@appoleton aveEaptnta omtd o AS NG eLKOVIKNG pnyovng kot To A Tov QuoLKol pPnyo-
vipotog (Stakoptoth) yia T dnpovpyio cuvexOpeVWV avTioTolyicewy ot kbt SikoTaon. Awxtn-
pel eAdylota petadeSopEVO oV AVTLOTOLYLOT) YL TOV EVTOTILOHO GTOXEVHEVMOV PUGLKOV GEALDWV

yloo déopevotn katd tn Slapkeld TOV CPOApATOV ceAidag. Awotnpel emiong éva x&ptn TV
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Srabécipwy eAevBepwv PTAOK PVIUNG TOL GLGTHHATOG Kol ePoPHOleL TOALTIKEG TOTOOETNONG
YLOL TNV OV TL-HETMOTILOT) TOL eEWTEPLKOD KATOUKEPUATIGHOV, AN Xwpig déopevon 1 ek TwV TPOTE-
POV EKXDPNON QULOLKNG HVARNG. Ymootnpilel amelkovioelg cwpol Kot apyeiwv, epapproyEég
TOANQITTADY VIHATWV Kot TRLTOX POV eKTEAECT) TOAA®V e@appoy®dv. Eyxovpe vlomouioel tnv
texvikr} CA paging oo Linux kou tnv éyovpe Sidécer Snpodoiof.

To SpOT eival pio PLKpO-opYLTEKTOVIKT eTEKTAGT) TTOL TPOPAETEL TN peTdppacT (Puotkn
dtevBuvon) oe mepintwon actoyiog oto TLB. Tpogodotel tnv mpdPAedn otov eme€epyaotr| yix
vo ouveyioel pe vToDeTikn eKTEAEGT) EVTOADV VG 1) SIAOYLON TWV TVAKWV GeAdWV ylow TNV
€VPECT] TNG VTETEPULVIOTIKTNG HETAPPONG KoL TNV entadfifevon tng mpoPAreyng ovveyiler va
ovpPaivel oo Tapacknvio. H Bacikr) mapatipnon eivol 0T Ltopovple vor eKPHETOAAEVTOVHE TNV
LTTOKELPEVT) YeLTViaOT) OTLIG atelkovioelg, Tov dnpovpyeiton amd o CA paging, yio va TpoPAe-
Poupe TIG peToppioelg. Aelyvoupe OTL 1) VIETEPULVIOTLKT] KOTAYPAPT] TWV OPidV GUVEXOHEVOV
avtioTolyicewv avbaipetov peyéBoug yio TNy amobrikevor toug oe KpLeég pvripeg (tmov TLB)
elvouL apLTEKTOVLK G TTE PLITAOKT) G ELKOVLKOTIOLNPEVA TEPLPAANOVTAL, ETTEKTELVOVTOG TNV TTPOTACT)
yioe guotkd pnyovipotoa RMM [130]). Oswpolpe 6TL avth] 1) TOALTAOKOTN T £iva 0 AGYOG Yo
TOV 07010 oL TEPLoaOTEPEG TPOoTAoELS 6T PLpAloypapia Sev vitootnpilovv TNV elKOVIKOTTOINGT).
Avrtibeta, o mpotevopevog oxediaopodg SpOT tng mapodoog SatpiPrig emtuyydvel LYNALY otd-
doomn Ko YOUNAT) apPXLTEKTOVIKT] TTOAVTTAOKOTI TR CTOUHATOVTIONG WOTOCO VO TOPEXEL LOYVPEG
EYYUNOELS GPAAOVG EKTENEGTC.

H ceMdomoinon CA eivou pioe SW texvikr} mov pmopet va vtootnpiket omoradrimorte pébodo
HW mov expetaddedetol Tn YPOpHUIKOTN TA GTLG ATELKOVIGELS YIX VOL ETILTOLXOVEL TIG HETAPPATELS.
Y& ouvdvaopo pe To SpOT oxnpartifouv pio fedtioTomoineT dpeco epappdoiun oe omolxdnmoTe
teyxvik) HW mov otnpileton otnv mpoowpiviy arobikevuon tpdcpatwy HETOPPAGEWY GE KPUPES
pvnpeg (m.x. TLB). A&loloyolpe Tov cuvdvacpod toug pe tn kAaoikn celdomoinon (TLB) ko
EXOVTOG EVEPYOTTOLNUEVT TN dtorpovi] LITOOTNPLEN TV peydAwv oeridwv oto AX. To ov-oxedia-
OHEVO TTPOTELVOHEVO GYTIHO HELOVEL TO YEVIKO KOGTOG HETAPPOOTG Ot <1% KaTd pPéGO 6po yio

EPOAPHOYES He EvTooT) OeOHEVOV TTOV eKTEAODVTOL HEGA GE ELKOVIKES HITXOVEG.

1.4.2 ZXrtpecdpoviog Ta Opla TNG HVNHNG ©g demTang yia tnv tpocfacn os
apxeio

Ye avtn 1 SatpiPr) pedetdye T Steman} TNG EWKOVIKNG HVAUNG Yia apeon tpodoPaon (Direct
Access — DAX) [4] o povipo Sedopéva. Evtomiloupe OAeg TIg mnyég KOGTOVG TNG ELKOVIKTG
HVAENG ov emPopdvouy TNy extédeon) epappoydv pe évtoon E/E ko tpoteivovpe to DaxVM,
po véa demapr) yio v TpdoPaom oe apyeia amodnkevpéva oe pn mntikég pvnpec. To DaxVM

(Q£PVEL T1 GLVOALKT] ATTOS0GT] KOVTA G€ QUTO OV PITOPEL VOL TTPOGPEPEL 1) GLGKELT) outoBrikevoaNG.

'https://github.com/cslab-ntua/contiguity-isca2020
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H &peon mpocPacmn oe cuokevn amobrkevong pe Suvatotnta Stevbuvorodotnong oe eninedo
byte mopadeinel tnv avéykn yioe omotadrimote pop@r atobrKeLGTG TPOCWPLVOV AVTLYPAPWY
twv apxeiwv ot DRAM (.. page cache). Qotdc0, evromilouvpe moAA& onpeio otn oxediaon
TNG ELKOVIKTG HVAUNG oL vtoBéTouv OTL Tar dedopéva elval Tavta TpocwpLlva amodnkevpéva
ot DRAM xou deiyvoupe oG autd ennpedlet tnv amddoom katd tnyv dpeon tpocPoacn (DAX)
oe povipa dedopéva. Ta mapddetypa, ol avtiotolyicelg/amelkovicelg dnpovpyodvTol TAVTH
Kot amaitnon (voxeAkd) yoe TNV e£0LKOVOUNGT] TOL GTAVIOU/TOADTIHOL TOPOL TNG PUOLKNG
pvApng ko too TLB akvpdvovtal ouyxpovicpéva OTov OL ATTELKOVIGELS KATAGTPEPOVTOL (TT.X.
munmap) ywoe v apeon amodéopevot g Quotkng pvipung. To DaxVM dwatnpel povipovg
wivakeg 6eAidwv avé apyeio kot Toug (outo)emouvamTeL 6ToVG XDPOLS Stevbivoewy Twv dLepyo-
oV katd Tic Asrtovpyiec m(un)map yux tnv e€dAelPn Tov KOGTOLG TNG GEALSOTOLNOTG KoL
v vrooth-piEn O(1 ) mmap [201] kAfjcewv ocvotipatoc. To DaxVM katoypdeel emiong
TIG aLTroelg ya tn didAvon omelkovicewy (e.g. munmap) Kol dKUPOVEL VOYEAMKE Kot o)1
oOyypova ta TLBs, evioY00OVTOG GHOVTIKA TNV KAPUXKOOCHOTNTR TG ELKOVIKNG HVIHNG o€
ToAAOUG TUpHveG. Mot dAAT Paoikr) Tapatripron elvot OTL oL amelkovioelg apyeiwv amobnievpé-
vwv ot PMem evdéxetor va "{rjoouv” yio Alyo o€ GOYKPLOT) HE TIG ATTELKOVIGELS GWPOD 1) OTTELKOVI-
OELG OPYELWV TTOV YPIOLHOTOLOVY TTPOCWPLVE AVTLYpapa oTr @uoikh pvipn. Evo evdeiktikd
mopadetypa elvar oL epappoyég ToAAaTA®Y vpdtov pe évtaon ot Aettovpyieg E/E oe picpd
opyelo —m.X. SLaKOMLOTEG LOTOD, SLKOULOTEG aAAnAoypapiog 1) StakoploTég apyeiwv— dmov
n npoécPaon ota apyeio eivor povadikr (to mepleyopevo Safaletor/yphpetal poe Gopd) ko
pe tnv apeon npdcPaon (DAX) amo@ebyovTal eVIEADS TA TPOCWPLVE VTLYPAPO TWV HOVLH®VY
dedopévwv ot DRAM. To DaxVM moapéyel évav Eexwplotod (amo)katavepntr elkovikodv Stevdo-
VOEWV YL TETOLEG EPT)UEPES ATELKOVIOELS TTOL KALHOKOVEL KAADTEPQL 6 TOAAOUG TTVpves. Emtioncg,
Ol QUTELKOVIGELG apyelwV Gpecng TPOGPAcTG EMLTPETOVY TOV EAEYXO TNG AVOEKTIKOTNTAG TWV
HOVLWV SedOPEVOV 0T TOV XD PO XPHoTH Kot vt Bewpeiton Kohn) TPOKTLKY TPOYPAUHATIGHOD
[220]. Twx tétoleg mepintdoelg, o DaxVM karapyei €& oloxArpov v aviyvevon/karaypapti
0V oeAidwv apyeiwv ov éyovv vmootel addayés aro to ywpo tov muprva. Télog, oe autr T
SrotpiPr) deiyvoupe O0TL 0 GOYYPOVOG UNdEVIGHOG TV PITAOK TToVL decpebovTal yia éva apyelo
elvon pia emPapuvon mov elohyetal od v dpeon npdcPoaocn (DAX) yia Adyouvg aopodeiog
Kol propel va emnpedioel v amddoot) Twv Aeltovpyledv enéktoong apyeiwv (append). Avt
QUTOV, TPOTELVOULE AT VYXPOVO HNOEVIGHO TOV HTAOK OTTOBRKEVLOTG 0T TAL GLGTHHATA APYELWV
ytoe PMem, axolovBodvrag avtiotoiyeg tpotaoelg yio trntikr pvijpn [179]. O oxediaopodg tov
DaxVM ektifetal wg pia véa diemapr], e HAcLOAOYi TTOV EMLTPETEL GTOVG TTPOYPAPHATIOTES
VOl EVEPYOTTOLODV/XITEVEPYOTTOLOVV TLG TEPLEGOTEPEG PEATIOTOTOLOELS TOU He PAOT) TIG OToULTH-

oelg artddooNG Kol CPAAELAG TNG EQPUPUOYTG.
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To DaxVM emaveEetdlel kot xoahapmvel TG avotn pég amattrioelg POSIX yix avtiotolyicels/
amewkovicelg DAX, akolovBdvtag yvwotods kovoves [72] yior tnv KAPOKOGOTNTR TV die-
mopodv. YAorowoaype To DaxVM oe Linux kot 0o cvatiporta apyeiov teAevtaiog texvoloyiag
kot Pedtiotomonpéva yioo PMem cvokevég — extd-DAX [216] kot NOVA [221] — kou to SroBé-
Tovpe ot popr avorytov kOGS fi. Tia epappoyég moANammAGdy VpdTov ov enekepydlovrat
TOANG pkpd apyeior yior pkpd Sraotipate, .. Apache, o DaxVM PeAtidyver tnv ammddoon
g Paocikrig vhomoinong g mmap oto Linux éwg kot 4,9x. AvticTtpégel emiong tnv thon
7oL guvoel TN xpron tng read yux tétoleg epappoyEc, Eemepvavtog TNV amddoon g Ewg Kol
1,5%. To DaxVM aw€avel emtiong tn StabecpdtnTol TOL GLGTHRATOG, TAPEXOVTAS YPHYOPOUG
xpovoug ekkivnong yio Paoelg dedopévwv Pedtiotomotnpéveg yio cvokevég PMem ko Siotnpel
NV VYA ortdS00T) TOUG AKOT KO OTOLY EKTEAOVVTOL € KOTOKEPHATIOPEVX GUOTHHOTAL OLPY ELOV.

To DaxVM, maporo mov éxeL oxediaotel yio cvokevég Intel Optane, oxetiletol pe ToAAOTAEG
teyvoloyieg ypryopng amobrkevong. Epoppodletar dpeca oe omoradrmote cvokeut] pe duvatod-
nta StevBuvolodotnong oe eninedo byte, pio Stbtakn mov vrootnpiletan ad To avadvopevo
Compute Express Link [85] — .x., n véa cvokevr] SSD tng Samsung e onpactoroyio pvipng [186].
EmuAéov, ow texvoloyieg pvrpng flash éxouvv peldoet tov xpodvo armdkpiong atd to xopo orob-
kevong oe dekddeg pkpodevtepdrenta [[175] ka1 yprjyopr edpeon Twv PtAok 61tov eivor otobn-
Kevpéva ta dedopéva twv apyeiwv [162] (ad o cbotnua apyeinv) éxel avadetyBel oe kpioyto
nopa-yovtag amddoong. O pdvipol ivakeg oeAldwv apyeiwv tov DaxVM propotv va alomoin-
BolVv yia avtdv T0 GKOTO.

Ot epripepeg OTTELKOVIOELG KOl OL AGVYYPOVEG OKVUPMOOELS TWV atelkovicewv Tov DaxVM
oxetifovral pe omoladnmote TPOGPAGT) GTH PVIHN HE EPTIHEPQ XAPAKTNPLOTLKA. ALTO B prropoo-
o€ va LoXVeL TOGO yla GecT) 1} Tpocwplvr) TPOGPact) oe atelkovioelg apyeiov pe TpocwpLva
avtiypaga otn pvipn (buffered access) 1} akopa ko yio astetkovicelg swpov. Ot pvrjpeg ToAA®V
TOYUTHTOV KAl 0L 6LOKEVEG aoBnkevong LYMANG arnddoong aAralovv ypriyopa T Xprion Tng
HVARNG ©G KOG TTAEOV dlemagrg o€ TOAMTAG péoa He Tolkilovg xpovoug amdkplong. Avtd
ETLPEPEL VEEC TTPOKANGELS Yo TT) SLaryelpLloT) TV xOpwv dievBivoewv, apgloPntovtag 6, Loy deL

oTHEPO.

*https://github.com/cslab-ntua/DaxVM-micro2022



CHAPTER 2

Introduction

Modern systems, from hyperscale servers to accelerators, depend on virtual memory. This ab-
straction has been proven crucial to the success of computing and has stood the test of time. It
allows programmers to develop code as if the available memory is always sufficient, vast, linear
and private to their application. It also allows them to access I/O devices in memory space, us-
ing assembly instructions as if they were reading and writing memory. This simplifies further
programming and potentially enables the elimination of the operating system kernel from the 10
path, a technique employed for better performance.

However, this flexibility does not come for free. Since software uses virtual addresses to
access the various tiers of store (main memory, PCI-e devices, etc), three sources of overhead
prevail: (i) the management of processes virtual address spaces, (ii) the set-up of memory map-
pings, and (iii) the translation step required for every load and store CPU instruction. The first
two significantly limit the scalability of virtual memory in the many-core era [#8, 72] while a
decade ago computing hit on the Address Translation Wall [53] and never fully overcame it.

Compute trends continue to stress the virtual memory design, testing all the three aforemen-
tioned mechanisms. The meteoric rise in memory demands, the shift to cloud computing, the
increasing heterogeneity in the compute and store stacks and the dominance of many-cores and
parallel programming as a way to extract performance, urge us to revisit the OS and hardware
layers of virtual memory, along with their synergy.

In this thesis we focus on the overheads of address translation for memory-intensive work-

loads and on the performance of virtual memory operations for IO intensive workloads. In this
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Figure 2.1: Virtual Memory Overview

chapter we first briefly review page-based virtual memory, both as a memory abstraction and
as an interface towards files. We then motivate the performance and scalability bottlenecks that

this thesis considers and finally introduce our contributions to address them.

2.1 Paged Virtual Memory

Virtual memory is a heavily co-designed mechanism where i) the OS manages processes virtual
address spaces and maps them to physical store mediums (e.g. memory) while ii) dedicated
architectural support accelerates the necessary address translation step on the execution of every
load and store CPU instruction. Figure P.1 gives an overview of the design when paging is used
to manage memory. In addition to being the user-space abstraction of physical memory, virtual

memory is also a valuable interface to storage (e.g. via file mappings).

2.1.1 Operating system

Virtual Address Space Management. Each process has a very large linear virtual address space
that forms the memory abstraction exposed to the programmer. It is managed by the OS in page
granularities with the page size being architecture dependent; for x86 it can be 4KB (small) or
2MB/1GB (huge). The OS allocates virtual address ranges from this space when processes request
to allocate physical memory or to access files via memory mapping.

Memory Mappings. The OS maps the allocated virtual addresses to a backing medium, com-
monly the physical memory, to enable user-space data access via dereference. Physical memory
is managed in page sizes as well (4KB) and the OS maps virtual pages to physical frames per
process. With this indirection, processes have an isolated and protected view of memory but can

still share pages (e.g. shared mappings). The OS stores the virtual-to-physical page mappings on
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a dedicated data structure, commonly a radix tree, which is part of each process context and is
named the page table. Each page table entry (PTE) holds a virtual-to-physical page translation.
Page tables are architecture dependent, similar to page sizes, as they are also directly used by the
HW layer of virtual memory (discussed later). The OS by default populates mappings per page,
setting-up the corresponding page table entry during a trap known as page-fault.

Physical Memory Management. Despite not exclusively linked to virtual memory, physical
memory management is intersected with virtual memory operations. By default, most operating
systems allocate physical memory in page granularities and on demand during page faults -
triggered by application cold accesses to address ranges. The allocation size (e.g. page size)

affects the address translation performance of virtual memory, discussed in a next paragraph.

oy
CPU  joad/store page cache
0ad/ - = enables file access via memory dereference. The OS al-

. locates a virtual address range for each file mapping

File Mappings. Virtual memory can also be used as
Virtual Memory
mmap()

an interface towards files. Memory-mapped IO is the

technique that maps virtual addresses to file pages and

File System and for storage mediums/interconnects that only sup-
port block-level access, it buffers files through physical
memory to map them to user-space (Figure 2.9). An ad-
Figure 2.2: Buffered File Mappings ditional OS layer (the page cache) associates file storage

blocks to physical memory frames and, in orchestration
with the file system, triggers copies between them. Once file data is copied to DRAM, the allo-
cated virtual pages are mapped to the corresponding physical memory frames using the same
paging mechanisms discussed in the previous paragraph. With buffered memory-mapped IO, the
files are copied from storage to physical memory to be accessed.

The virtual address space is an inherently shared resource (among threads) and thus heavily
contended in the many-core era. Unfortunately, most operating systems serialize address space
operations [59,60,70,71,140], limiting virtual memory scalability. Paging software overheads (e.g.
page fault latency) are also prevalent. Particularly for IO intensive workloads and file mappings,
page faults can throttle performance [[124,[125,1168,169,220]. All the above overheads have led
practitioners to question the applicability of the interface towards storage, even for I0-heavy

workloads like databases [84], despite its ease of use.

2.1.2 Architectural support for address translation

Virtual memory implies that every memory operation requires a physical translation to be exe-
cuted. The processor translates the virtual address of every load and store instruction to issue a

memory request that will fetch the corresponding data. As translation is on the memory access
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critical path, most architectures use dedicated hardware caches per core, known as Translation
Lookaside Buffers (TLBs), to store the most recently used translation entries (page table entries)
(PTEs) and accelerate the procedure. If the translation required is found in the TLB hierarchy
(hit) the look-up costs less than 10 cycles [[117]. In case the translation required is missing though,
the page tables of the process must be traversed to retrieve it. Most processors nowadays handle
TLB misses entirely in hardware. On a TLB miss, the hardware triggers a state machine called the
page table walker that walks the per-process page table and loads the corresponding PTE into
the TLB. Page table walks are expensive as they can involve multiple main memory accesses
and cost up to hundreds of cycles. This can induce significant slowdowns to memory intensive
applications [47,56,[130,171,172,176,177] and thus the TLB capacity ~known as the TLB reach-
and the TLB miss penalty are important performance factors.

Another important overhead source is address translation coherence. Keeping TLBs coherent
with address space mappings (a.k.a page table entries) can be really expensive. TLB maintenance
is part of virtual memory operations and a representative example is the tear down of mappings
(during unmap requests). TLB entries that store stale page table entries must get invalidated, for
security and correctness, and in x86 this is done in software. The OS triggers TLB invalidations
(shootdowns), delivered by inter-processor interrupts, that serialize all virtual memory opera-
tions and can cost up to thousands of cycles [34,35,[141]. TLB coherence is another notorious

scalability bottleneck of the virtual memory co-designed interface.

2.2 Motivation

High performance address translation, scalable virtual address spaces and low cost paging are
important for virtual memory efficiency. In this section we discuss some compute trends that
stress today’s virtual memory design and, in our opinion, question the interface’s scalability both

to many cores and to increased store capacities.

2.2.1 Meteoric rise in memory demand

Driven by a confluence of mega-trends, global data traffic is increasing at a nearly exponential
rate (Figure R.3d). Artificial intelligence/machine learning (AI/ML) is the marquee example of
advanced workloads with increasing demand for data, with skyrocketing data set growth rates
of 10x annually [49,81]. Other examples are big-data analytics [43,82] and in-memory comput-
ing [97,213]. The impact of all this growth is felt intensely in data centers. Figure shows
how cloud server memory capacity has been rapidly growing [163].

Virtual memory design is stressed to successfully support the staggering increase in memory

footprints, becoming itself a system performance bottleneck. The primary problem is limited TLB
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Figure 2.3: Meteoric rise in memory demands

reach that eexposed address translation as a bottleneck a decade ago. The TLB hierarchy fails to
cover the active working sets of big-data workloads, especially when they are irregular e.g. graph
processing. The problem was highlighted by academia [47,[130,[176,[177] and acknowledged by
industry with processor vendors increasing the chip area budgets on TLBs ever since. Figure .4
summarizes how the TLB reach of Intel processors has been evolving the past decade, with each
entry depicting the coverage achieved when the largest supported page size is used 100%. There
is a constant increase via a two-fold approach: i) larger TLBs and ii) better support for huge pages
(2MB and 1GB). However, TLB reach in the order of TBs, same to memory capacities, is possible
only when 1GB pages are used 100% in the latest processors. Otherwise TLB reach is measured
in the order of GBs. Unfortunately 1GB pages are not transparently supported by any operating
system, and such a support is not straight-forward as discussed further in Section p.7. Moreover,

this increase is expensive in terms of power, TLBs can consume 15-20% of chip energy [53,[131].

Apart from increasing the TLB reach, processor vendors have invested in a rather complex

hardware design to control TLB miss latency penalties. MMU caches store the upper level of

Year |Processor|Pagin L1 .8 L2 STLB

sing 4KB 2MB AMB 1GB 4KB 2MB 1GB
2012 Ivy Bridge 2MB none none
2013 Haswell 2GB none
2014 Broadwell 64m8 none
2015 SkyLake 4-level 4GB
2016 KabyLake 256KB 3GB 16GB
2017 | Coffeelake
2018 |[Cannonlake 128MB
2019 IceLake 5-level 8GB 1TB (1GB) or 2GB (2MB)

Figure 2.4: Intel processors paging and TLB reach evolution
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page table radix trees to decrease the number of memory accesses required during a page table
walk. Moreover, multi-threaded hardware page table walkers service more than a single TLB

miss concurrently (e.g. Intel’s Skylake has a 2-way walker).

Still, in this thesis we show that irregular big-memory workloads, running natively on a
modern processor and using only transparently supported huge pages, still suffer up to 30%

overheads due to address translation.

2.2.1.1 Memory expansion via CXL

In response to the exponential growth in data, the industry is on the threshold of an architectural
shift. Data centers are moving from a model where each server has its own dedicated memory, to
a dis-aggregated model that employs pools of shared memory resources. While dis-aggregation
and universal interfaces across processing units have been around for many years, the industry’s
convergence on the Compute Express Link (CXL [85]), as a cache-coherent interconnect for pro-
cessors, memory and accelerators, is a critical enabler to make these concepts a reality [[148,156].
With the soon to be available CXL-compatible processors and DDR devices, we enter a new
era of multiple “tiers” of memory, each with different latency and bandwidth characteristics, but
with potential aggregated capacities of peta-bytes [[185]. CXL-memory is still accessed via virtual
memory [[187], most likely exposed to the operating system as a NUMA CPU-less node, stressing

further TLB reach requirements.

2.2.1.2 5-level paging

Another hard constraint reached, as memory capacities grow, is that x86 4-level paging cannot
address more than 64TB of physical memory [11]. Intel responded to the problem at hand by
adding an extra level on the page table radix tree [22,[77], and enable coverage of up to 4 PiB of
physical address space. 5-level paging architectural support has been introduced in the recent Ice
Lake processor (Figure B.3), and Linux supports it as well. Adding another level in paging adds
extra cost on the TLB miss path, as an extra memory access is required during page table walks.

As we discuss in the next section, this extra overhead is amplified in virtualized execution.

Despite the increased architectural support for paged virtual memory that exists in modern
processors, the TLB reach is still limited and fails to scale with the ever growing memory
demands. Memory dis-aggregation can lead to petabyte-scale memory systems, stressing fur-
ther TLB reach requirements, and adding paging levels to support the larger scale inherently

makes today’s address translation mechanism costlier.
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2.2.2 Virtualization dominance

Virtualization is an old idea [[105] revived by Disco [p1] in the late 90s and grown today to be
the main technique of computing deployment. It adds an extra layer of indirection between the
Operating Systems (OS) and the hardware, known also as the Virtual Machine Monitor - e.g.
KVM [138]. Virtualization enables better resource management and isolation. Especially in the
form of Virtual Machines (VMs), it allows on-demand hardware allocation and thus better server
utilization; ruling cloud computing infrastructures.

Virtualizing hardware —CPUs, 10, memory— however, commonly comes at a cost. Particu-
larly memory virtualization has proven to be very expensive and difficult to accelerate [30,101,
102,193, 198]. The guest machine’s view of physical memory is an abstraction itself and is in-
dependently mapped to the host server physical memory where data actually reside. Therefore
an extra level of translation is required for every memory operation of applications running in-
side the VM. With hardware-assisted virtualization, the guest virtual address (gVA) of each CPU
load/store instruction is first translated to the guest physical address (gPA) and then to the host
server’s physical address (hPA) where data is stored (Section .4). During a TLB miss, the two-
dimensional translation is performed in hardware with a nested walk of the guest and the host
OS page tables. This nesting makes TLB misses notoriously expensive as the number of memory
accesses is multiplied by the levels of paging, e.g. up to 24 memory accesses are required in
virtualized execution while only 4 in native when we consider 4-level paging.

We find that, despite all the architectural support —e.g. MMU caches— memory virtualization

results in a 2x penalty compared to native execution on a modern processor.

The ongoing seismic shift of business applications and databases moving from enterprise data
centers to the cloud [81], e.g. the uprising serverless paradigm [27,189], make efficient mem-
ory virtualization a high-priority design goal. Address translation in such two-dimensional

environments bears amplified costs that can throttle performance.

2.2.3 The evolving storage stack and direct access to persistent data

IO devices have significantly evolved the past decade and can offer single-digit pis access latencies
(e.g. low-latency SSDs [[132,218]), or even lower (e.g. persistent memory [[119]), shifting entirely
the design rules for efficient data-center IO system software support. The current OS stack has
been largely tailored to hide ms-scale latencies (e.g. hard-disk drive I0) and multiple of the
mechanisms it employs (e.g. context-switching) have overheads suddenly comparable to the
new low-latency devices [#4€]. This mismatch has been identified multiple times in literature (e.g.
[46,175]) and numerous works show how execution is no longer bound by hardware performance

as servers often spend much of their time executing operating system code (e.g. [64,146]). The OS
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Figure 2.5: Today’s multiple tiers of store [[132,[156,218]

has suddenly become the bottleneck and system software must be re-designed to operate at the
sub-microsecond or nanosecond scale to successfully deliver to user-space what the underlying
hardware can provide [236]. Figure P.5 gives an overview of a modern store stack. This thesis
focuses on virtual memory as the OS interface to persistent memory, a rather unique non-volatile
tier that combines ultra low latency with byte-addressability.

Persistent memory (PMem) is a new storage technology [119,186]
that is connected to the system via the memory bus or the CXL [85]
link, similar to DRAM, and therefore is accessible via CPU load and
store instructions. The technology uniquely combines non-volatility Virtl::f'ﬂ'\;';;;mv

and byte-addressability with latency and bandwidth closer to that of and

DRAM (Figure R.5). This blurs the decades-old distinction between "PFMHE?;Z’Z&;E"

CPU

2403s/pDO|

slow but persistent storage and fast but volatile memory. The high IO

PERSISTENT
performance —at the scale of nanoseconds— makes storage accesses MEMORY

much cheaper than OS invocations and reducing the OS overheads
becomes a strong requirement [15,67,68,74,00,125,142,149,162,211,
216,219,220,221,222,230]. Virtual memory has a leading role under
this scope as it enables direct access to storage. Memory mapping Iigure 2.6: Direct Access
PMem files (via mmap system calls) can map processes virtual pages directly to persistent mem-
ory physical locations, bypassing entirely any DRAM buffering (e.g. the page cache) (Section .1.1)
and essentially mapping storage directly to user-space (Figure .6). This forms the the first true
zero-copy access path to storage (no DRAM data copies) as applications access directly persistent
data via pointer dereference (load/store CPU instructions).

Consequently direct access mmap() is a “killer app” for PMem as it gives applications the
fastest possible access to stored data [222]. However virtual memory overheads can often throttle

performance [[124, 125, 149, 220]. Figure R.7 shows the average latency of reading 256KB files



2.2. Motivation 9

Latency of reading 256KB files (usec)

(%)
HR S S RN
£
el Gyt o Mmap  Munmap
Other
7 vmer RN
5 Other
. [Userspace [Copyban |
0 100 200 300 400 500

Figure 2.7: Average latency of accessing once 256KB files. The reported latency if for a single
file. Direct access performs worse than syscalls (e.g. read) despite avoiding data copies. This is
due to expensive virtual memory operations. We measure this on a machine with 384GB Intel
Optane and use bpftrace [[108] to track average latency.

(summing up their content in 8-byte word granularities) using either direct access file mappings
or the read system calls. Read inherently copies file data from persistent memory to a private
DRAM buffer to access them. We observe that direct access performs significantly worse than
read despite its zero-copy advantage. It spends ~30% of the total time (single thread) executing
OS code that i) sets up the mapping (mmap), ii) populates its page tables (page faults) and iii)
tears it down while invalidating TLBs (munmap). These kernel overheads grow to ~60% when
multiple threads process multiple files concurrently, due to severe contention on virtual memory
locks [70, 71,72, 140,[141]. These findings corroborate past studies that highlight paging as a
significant performance factor for PMem direct access (e.g. [124,149,220]).

“Playing games with the virtual memory mapping is very expensive in itself. It has a
number of quite real disadvantages (e.g. setup/teardown costs and page faulting) that
people tend to ignore because memory copying (e.g. read) is seen as something very slow”
—Linus Torvalds, 2000 [205]

The implications of virtual memory as a file interface in Linux are known since the year 2000,
as Linus Torvalds quote reflects, and have remain surprisingly the same for over twenty years.
However, with block-level access storage (e.g. SSDs) file data must still be copied from the device
to the volatile memory to be mapped (page cache, Section R.1.1)) It is the era of low latencies and

zero-copy direct access that we believe urge us to re-think the design of this legacy interface.

Today’s IO devices can offer micro and sub-microsecond latencies exposing the system soft-
ware stack as the bottleneck. Virtual memory performance, operating as an interface towards
files, is critical for storage supporting direct access, e.g. persistent memory. Today’s design in-
troduces high latencies and scales poorly to many cores, failing to deliver what the underlying

hardware can provide.
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2.2.4 A common interface in a rapidly growing heterogeneous world

“What fundamental opportunities for scalability are latent in interfaces, such as
system call APIs? Can they be identified considering interface specifications only?”
—Austin T. Clements [72]

Virtual memory was designed at a period that memory systems were largely homogeneous,
with a single local memory tier backed by a local storage device. Nowadays the entire store stack
comes as a hierarchy and each tier has varying characteristics in terms of latency, bandwidth and
access (e.g. buffered or direct). Also multiple processing units and their local memories are co-
herently inter-connected. Figure P.§ shows an example of the new heterogeneous compute and
store landscape. Virtual memory must pace with the rapidly expanding system architecture as a
common interface for all components. This stresses further the address translation requirements,
discussed in Section P.2.1] as translation must reach capacities way beyond the size of local mem-
ory. It also shakes the core assumptions of this legacy interface. Virtual memory semantics —e.g.
POSIX- have remained largely intact over the years and homogeneous for all types of memory
mappings, irrespective of the backing store medium. We believe that significant performance

potential is latent in this inertia.

The impact of interfaces semantics on system software scalability and performance is a for-
mally studied topic by Clements et.al. [72]. With respect to virtual memory, various works pro-
pose radical changes to address space [59,772,91] or TLB [72,[141] management to improve per-
formance and often relax POSIX requirements in the process. In this thesis —and in continuation

to the previous subsection— we focus on virtual memory semantics as a direct access interface
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to fast byte-addressable storage. Figure .7 shows how direct access scalability suffers from syn-
chronous resource release (e.g. destroying mappings synchronously to munmap requests) and
from populating mappings in multiples of the page size (faults). The first derives from a strong
POSIX requirement while the second is mostly specific to the Linux implementation. We won-
der if and how these (and other state-of-practice specifications) are still relevant when virtual
addresses map directly storage, a much more abundant resource than physical memory that is
reclaimed slowly. Another example question is do we still need a common address space or a
unified manager for heap and storage mappings in the presence of direct access? Re-thinking,
extending or altering interfaces for efficient PMem access is an established strategy but prior

work mostly considers file system APIs and designs (e.g. [211], [220]).

Memory tiering and fast storage rapidly change the usage of memory as a now common inter-
face to multiple mediums with varying characteristics (e.g. volatility, performance etc). This

imposes new challenges to the virtual memory design, questioning the state-of-practice.

2.3 Problem Statement

This thesis focuses on the improvement of virtual memory performance in terms of i) address
translation and ii) direct access to byte-addressable storage (e.g. persistent memory). To shape
and evaluate our approaches in system environments representative of real-world deployments,
we implement and perform most of our work on real hardware and stock Linux. For hardware

proposals we employ performance models of hardware and project improvements.

High Address Translation Overheads. Address translation performance fails to scale with
the meteoric rise in memory demands, primarily due to limited TLB reach. Prior work and this
thesis show that page walks can still dominate execution, especially in virtualized environments
due to nested paging, despite the increased budget for translation hardware in recent processors
(e.g. [A7,101,130,171,172,194,199]).

The first goal of this thesis is to minimize translation costs for both native and virtualized
execution working at the boundary/intersection of the hardware and software (OS) layers of
virtual memory. We aim at a (re)design that: i) offers near-zero address translation costs, ii)
scales with the ever-increasing memory capacities, iii) maintains flexible, lightweight physical

memory management and iv) is transparent to applications.

Limiting interface for direct access to persistent data. Persistent memory is a unique stor-
age technology that combines ultra low latency, byte-addressability and inter-connection with

the memory bus. Mapping PMem files with virtual memory can provide direct access to persistent
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data via CPU load and store instructions, forming the shortest available path to storage. How-
ever, prior works and this thesis show that virtual memory operations introduce high latencies
and scale poorly to many cores, limiting direct access performance (e.g. [[124,]125,149,220]).
The second goal of this thesis is to study virtual memory as a file interface and identify all the
sources of overhead in the current design. Based on the findings we aim to re-think and re-design
the virtual memory interface — along with its semantics — for direct access to persistent data,

targeting to come close to what the underlying hardware can provide in terms of performance.

2.4 Proposals

This thesis makes the following contributions:

+ To reduce address translation costs we propose Contiguity-Aware Paging and Speculative
Offset Address Translation, a virtual memory co-designed implementation that hides ad-
dress translation overheads under speculative execution. The technique is applicable to

both native and virtualized execution.

« To improve the performance and scalability of direct access to persistent memory we pro-
pose DaxVM. DaxVM is a novel POSIX-relaxed file mapping interface with a virtual mem-

ory re-design that significantly reduces system software overheads for PMem access.

Next we highlight the most important concepts of each contribution.

2.4.1 Efficient Memory Virtualization via Contiguous Mappings

A long line of research [47,[101, 130,172,177, 227] exploits contiguity in mappings, i.e. pages
contiguously mapped in the virtual and physical address spaces per process, to accelerate address
translation. However, prior work lacks lightweight memory management support to generate
the desired contiguity — it commonly breaks fundamental OS principles. Also, most proposed
hardware designs do not support virtualization. To solve these problems in this thesis we propose
i) Contiguity-Aware (CA) paging and ii) Speculative Offset Address Translation (SpOT).

CA paging extends demand paging, the default physical memory management technique of
modern Operating Systems. It creates lazily and at a best-effort basis contiguous mappings by
allocating target physical pages across page faults, preserving all core lightweight management
techniques such as paging, on demand allocation, Copy-On-Write etc. It is inherently compat-
ible to nested paging, applied independently by the guest and host OS to generate contiguous
mappings in each dimension. It maintains minimal metadata per memory mapping to identify

target physical pages for allocation during faults. It also employs a system contiguity map and



2.4. Proposals 13

mapping placement policies to deal with external fragmentation, but without reserving or pre-
allocating physical memory. It supports heap and file mappings, multi-threaded workloads and
multi-program execution. We’ve implemented it in Linux and made it publicly availablefl

SpOT is a micro-architectural speculation engine, that predicts the missing physical address
translation on a TLB miss. It feeds the address to the processor to continue the execution in
speculative mode while verification, e.g. (nested) page walk, happens in the background. The key
observation is that we can exploit the underlying contiguity, generated by CA paging, to predict
translations. We show that tracking and caching the boundaries of arbitrarily sized contiguous
mappings in virtualized execution is architecturally complex, by extending the state-of-the-art
RMM design [130]. We consider this complexity the reason why most prior work designs do not
support virtualization. The proposed SpOT design on the other hand achieves high performance,
trading architectural complexity with strong security guarantees.

CA paging is a SW-enabler for any HW-method that exploits linearity in mappings to accel-
erate translations, and combined with SpOT they form a drop-in optimization for any HW tech-
nique that involves translation caching. We evaluate them on the side of paging with transparent
huge page support enabled. The co-designed proposed scheme reduces translation overheads to

<1% on average for memory-intensive workloads running inside virtual machines.

2.4.2 Stressing the Limits of Memory as a File Interface

In this thesis we study virtual memory interface for direct access (DAX) [4] to persistent data.
We identify all the overhead sources and propose DaxVM, a new mapping interface that pushes
system performance close to what the underlying storage hardware can provide.

Direct access to byte-addressable storage omits the need for any form of DRAM buffering
of persistent data (e.g. page cache); yet we identify multiple virtual memory design points that
assume data is always buffered through memory to be accessed. We show how this affects vir-
tual memory operations performance under DAX. In example, mappings are always lazily pop-
ulated to save scarce DRAM resources and TLBs are synchronously invalidated when mappings
are teared down to free memory. DaxVM maintains pre-populated persistent page tables per
file and (de)attaches them to process address spaces during m(un)map operations to eliminate
paging overheads and provide O(1) mmap [201]. DaxVM also batches unmap requests and
flushes TLBs lazily for direct access mappings, significantly boosting virtual memory scalabil-
ity to many cores. Another key observation is that file mappings for PMem storage may live
shortly compared to heap or memory-buffered file mappings. In example, common IO-bound
multi-threaded applications that operate over small files —e.g. web-servers, mail-servers or file-

servers— access files once and with direct access avoid entirely the DRAM copies of persistent

'https://github.com/cslab-ntua/contiguity-isca2020



14 Chapter 2. Introduction

data. DaxVM provides a dedicated virtual address space (de)allocator for such ephemeral map-
pings that scales better to many cores. Also, direct access file mappings enable durability con-
trol/enforcement from user-space and this is considered as good programming practice [220].
For such cases, DaxVM eliminates entirely kernel-space tracking of dirty pages. Finally, in this
thesis we show that zeroing newly allocated blocks is an overhead introduced by direct access
for security reasons and can throttle append performance. We propose asynchronous zero-out
of storage blocks by PMem file systems instead, following proposals for volatile memory [179].
DaxVM design is exposed as a new interface, with semantics that allow developers to enable/dis-
able most optimizations based on the application’s performance and security requirements.

DaxVM re-thinks and relaxes POSIX strict requirements for DAX mappings, following known
rules [[72] for interface scalability. We implemented DaxVM in Linux and two state-of-practice
and state-of-the-art PMem-optimized file systems — ext4-DAX [216] and NOVA [221] - and
made it publicly available f. For multi-threaded workloads that process multiple small files for
short intervals, e.g., Apache, DaxVM improves standard mmap performance up to 4.9x. It also
reverses the trend that favors read for such setups, outperforming it by up to 1.5x. DaxVM also
increases system availability, providing fast boot times for PMem databases, and sustains their
high throughput even when running on fragmented file system images.

DaxVM, despite being designed on Intel Optane, is relevant to multiple fast storage tech-
nologies. It is directly applicable to any byte-addressable device, a design advocated by the
emerging Compute Express Link [B85] - e.g., Samsung’s memory-semantic SSD [186]. More-
over, state-of-the-art flash memory technologies have reduced storage-access latency to tens of
microseconds [[175] and fast file data blocks indexing [162] has become a critical performance
factor. DaxVM’s persistent page tables can be leveraged for this scope.

DaxVM'’s ephemeral mappings and asynchronous unmappings are relevant to any mem-
ory access with ephemeral characteristics. This could apply both to direct or buffered memory-
mapped storage access or even heap mappings. Memory tiering and fast storage rapidly change
the usage of memory as a now common interface to multiple mediums with varying latencies.

This imposes new challenges to address space management, questioning the state-of-practice.

2.5 Thesis Organization

Chapter 2 provides additional background on page based virtual memory, physical memory man-
agement, address translation in native and virtualized environments and finally on persistent
memory and its available interfaces.

Chapter 3 presents our co-designed virtual memory implementation to address high address

translation overheads in virtualized execution and scale better translation performance with the

*https://github.com/cslab-ntua/DaxVM-micro2022
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ever-increasing memory capacities. It describes (i) Contiguity-aware paging (CA paging), (ii)
the hardware virtualization extensions for Redundant Memory Mappings to support virtual ma-
chines and (iii) the micro-architectural support for Speculative Offset Address Translation (SpOT).
This chapter follows mostly from our work published in the 47nd International Symposium on
Computer Architecture (ISCA 2020) [33].

Chapter 4 presents our study on virtual memory overheads over persistent memory DAX
file mappings and describes DaxVM, the POSIX-relax file mapping interface we propose. It gives
details for our real system implementation and evaluation. This chapter follows mostly from our
work published in the 55th IEEE/ACM International Symposium on Microarchitecture [32].

Chapter 5 concludes this thesis and points to future research directions.



CHAPTER 3

Background

This chapter provides background on virtual memory as a physical memory abstraction and as
an interface towards files. More specifically, we discuss the functionality it provides and we
introduce the basic concepts of virtual memory’s most common implementation —paging. We
then discuss the necessity for address translation and its state-of-practice and state-of-the-art
architectural support in native and virtualized execution. We also go through the OS internals
with respect to (i) virtual address space management, (i) mapping management and address
translation and (iii) physical memory management. We finally discuss the file mapping interface
and focus on the unique case of direct access (DAX) and persistent memory (PMem). We go
through the software and hardware layers of the PMem data path. We comment on how the
OS virtual memory internals apply here, and we introduce also PMem-aware file systems. We
finally discuss good programming practices for PMem access and some state-of-the-art proposals
for efficient PMem interfaces. At the end of each section we have some key take-away messages

on how the basic concepts discussed apply on later chapters of this thesis.

3.1 The Virtual Memory Abstraction

Virtual memory was invented in the late 50’s [136] as a response to the problem of scarce main
memory resources and the consequent programming burden of allocating/managing both mem-
ory and auxiliary storage, transferring manually the required data from one to another at the

various computation phases of workloads. In turn, virtual memory provides the programmer

16
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with a big flat unified view of memory, known as the virtual address space, and the OS manages
automatically and under the hood the allocation and data movement between the various tiers
of store. This allows the automatic deployment of workloads whose memory needs to expand
beyond the limits of available physical memory in a machine.

Apart from the catalysing boost in programmability, due to the resource management ab-
straction, other aspects made virtual memory a dominant computing mechanism as well. For

example, the level of indirection that it introduces enables:

+ Consolidation of multiple processes running on the same machine, as the OS efficiently
manages and shares physical resources between them. One example of agile physical mem-

ory management is demand paging, which we cover later on this section.

« Protection enforcement, as access rights can be set per virtual address ranges in a process
address space — enforced by the hardware layer of virtual memory discussed next. In
example, parts of the address space like text (code binary) are marked as read-only and thus
programming bugs cannot overwrite them and corrupt data. Per process address spaces
and protection also enable the isolation of processes, as they can not access memory that

they do not own.

« Sharing of data. Virtual address ranges, even in multiple processes address spaces, can be
mapped to the same physical location of a shared data block (e.g. library code) — saving

physical resources.

An impactful virtual memory attribute is the granularity in which the OS manages the virtual
address space of a process. Under this scope, paging was introduced in the late 60’s [86] and has

been the dominant virtual memory implementation since then.

3.2 Paging and Address Translation

Figure B.1 gives an example of page-based virtual memory management. There are four key
conceptions (i) the virtual address space, (ii) the physical address space, (iii) the page mappings
and (iv) address translation.

Virtual address space. This is private per process and constitutes the set of virtual memory
addresses that user-space can use. The OS manages and makes this set available to each process.
In a 64-bit x86 system with 4-level paging (discussed next) this is commonly the range [0, 24%],
meaning that each process can potentially address 256TB of private store.

Physical address space. This is the set of addresses used by the underlying hardware. It com-
monly refers to main memory physical addresses, but it can also reflect locations in other devices

(e.g. IO as we will see later in this chapter). The Operating System is in charge of allocating
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Figure 3.1: Paged Virtual Memory.

physical memory blocks for the various running processes. It enables user-space access to the
allocated blocks by mapping them into processes virtual address spaces.

Pages and the virtual-to-physical page mappings. Paging is named after the granularity
in which the OS manages the virtual and physical address space, the page — an architecture
dependent and fixed size. In most architectures the base page size is 4KB and this is also the
granularity in which physical memory is managed by the OS. To expose physical memory to user-
space, the OS divides each process address space in page chunks, named virtual pages, and maps
them to equally sized physical page frames,e.g. 4KB blocks of free memory. There are a few larger
page sizes, multiples to base (e.g. 2MB and 1GB), that are supported in mappings — discussed later
in this section. These virtual-to-physical page mappings per process are maintained by the OS
and are exposed to the Memory Management Unit (MMU) of the CPU.

Address Translation. As programmers use virtual addresses to access data, there is a transla-
tion step required in every memory operation executed by a running process on the CPU. Every
load and store instruction issues an access on a virtual address, thus its physical translation is
necessary for the CPU to request and fetch the corresponding data from the memory subsystem.
This step is an inherent cost of virtual memory and CPUs are equipped with architectural support

to accelerate it.

3.2.1 Address Translation Hardware

Virtual Memory and particularly its address translation step, is perhaps the most representative
example of hardware and software co-design. In this section we discuss how OS maintained
information is accessed and exploited by the Memory Management Unit (MMU) of a modern
CPU to accelerate address translation.

Page Tables. The Operating System stores the virtual-to-physical page mappings of every pro-
cess in dedicated data structures, named page tables, which are also accessed by the address
translation hardware. Page tables are indexed by virtual page numbers and the resulting page

table entry stores the number of the physical page frame where the corresponding data is stored.
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Figure 3.2: The multi-level organization of the page table in x86-64 architecture with 4-level
paging. Page walks access all levels of the table requiring an equal number of memory references.

In other words, each process’s page tables store the valid virtual-to-physical page translations
for its entire address space. Hence, page table traversals, known as page walks, can retrieve the
physical translation of any mapped virtual address of a process.

Page Table Entry (PTE) Metadata. Apart from the physical frame number —the address trans-
lation of the virtual page—, a PTE also stores metadata for the virtual-to-physical page mapping
that enable/control much of the virtual memory functionality discussed in B.1 (e.g. protection)

and monitor user-space page access. In x86 the metadata bits of each 64-bit PTE entry are [123]:

+ The present (or valid) bit: must be set to 1 to map a valid 4KB page.
« The protection bit: if set to 0 writes are not allowed to the 4KB page referenced by this entry.

« The privilege bit (user/supervisor): if set to 0 user-mode access is not allowed to the 4KB page

referenced by this entry.

+ The cache management bits (write-through bit, cache disable bit, pat bits): a conjunction of

them sets the type of caching of memory access to the 4KB page referenced by this entry.
« The access bit: indicates if software has accessed the 4KB page referenced by this entry.
+ The dirty bit: indicates if software has written to the 4KB page referenced by this entry.

« The protection key bits: determine the protection key of the page. Memory protection keys
(MPK) are an additional mechanism to control access to user-mode addresses, with lower per-
formance overheads compared to the per-page protection bit, offering also intra-process mem-

ory isolation (different protection among threads of the same process) [133].

+ The no execute bit: if set to 1 instruction fetches are not allowed from the 4KB page controlled

by this entry.



20 Chapter 3. Background

In Chapter § we discuss how many of the page table entry metadata are tailored for volatile
memory monitoring (e.g. access and dirty bits) and are irrelevant for direct access to

storage (introduced in the following subsections).

Multi-level paging. Paging is nowadays commonly multi-level, meaning that page-tables are
organized in a multi-level hierarchy. Figure B.4 shows the page table organization of x86 [[123]
with 4-level paging. Each entry of the three intermediate levels (e.g. PML, PDPE, PDE) stores
the base address of the next level page table. The last level page table entry (PTE) stores the base
address of the physical 4KB frame that holds the corresponding data. The virtual page number
(48 bits of the full virtual address minus the bits of the page offset) is divided into 4 regions and
each region indexes the corresponding page table level. Figure B.4 shows the top-down traversal

of the page table to retrieve a missing translation of a 4KB virtual page.

Page tables could be implemented as monolithic flat arrays but that would be a significant
waste of memory. Processes tend to populate sparsely their address spaces —allocate and use frag-
ments of it- thus multiple entries would always stay “empty” or “invalid”, as the corresponding
virtual pages would never get mapped to physical memory. With multi-level page table organi-
zation we only need the root of the table tree to always be in memory and the rest of the levels
can be built (or paged in from disk) on demand as the process populates (or accesses) regions of
its address space. Multi-level paging is a memory-efficient page table organization. On the other
hand, more levels in paging imply more memory references to get the physical address of the
target virtual page — one access for each level required. This is commonly referred to as the page
table walk cost. Multiple state-of-the-art studies propose different page table organizations, e.g.

hashing [[198,[199,234] or flattening [173], targeting a lower walk cost.

The page table base register. The page tables are part of a process control block or context. As
we will discuss in a later section they are maintained by the OS per process and when the process
is scheduled-in to a CPU core (context switch), the OS sets the base (root) physical address of the
page table tree to the CPU page table base register (i.e. CR3). This enables hardware access to the
tables.

Hardware Page Table Walkers. Nowadays most processors provide support for hardware
traversals of the page tables to retrieve the physical translation for a virtual page during load/s-
tore operations. A hardware finite state machine, the page table walker, uses the CR3 register to

walk top-down the tables in the same way as depicted in Figure .2,

In Chapter [ we show how page walk costs are an important execution overhead for

memory intensive workloads and we propose techniques to hide this cost.
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Figure 3.3: Address Translation with hierarchical TLBs is performed entirely in HW.

Translation Lookaside Buffers. Walking the tables on every load/store CPU instruction, to
retrieve the physical translation of the target virtual address, is prohibitively expensive even
when the walk is performed entirely in HW. It would add the extra cost of multiple page walk
memory accesses on every user-space memory reference. For that reason, most processors main-
tain hardware caches close to the cores, the Translation Lookaside Buffers, that store the most
recently used page table entries. TLBs are commonly organized in a two-level hierarchy (Fig-
ure B.3). The L1 TLB is small, set or fully associative, and its purpose is to support very fast
search operations in parallel with the L1 data cache access, as the latter is commonly virtually
indexed. The L2 TLB is larger and its purpose is to store more page table entries. On the execu-
tion of every memory instruction, the TLB hierarchy is first searched for the missing translation,
and if found (hit), the look-up has costed less than 10 cycles [117] - significantly cheaper than
accessing main memory. On a TLB miss event, a hardware page walk is triggered to retrieve
the missing translation. The TLB reach —the amount of memory accessible from the TLB or in
other words its hit ratio— is one of the most important performance factors of address trans-
lation [47,[101,102,171,1172,176,177, 178]. Figure @ summarizes the core steps of the address
translation hardware path.

Address Space Identifiers. As all processes have access to a private set of the same range of
virtual addresses —e.g. all have a virtual address space of [0,2%%]- the problem of TLB mainte-
nance during context-switches arises (when we switch the process that runs on a CPU core, e.g.

scheduling). To avoid flushing the entire TLB, most processors nowadays support address space
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identifiers. ASIDs or Intel’s PCIDs (process context identifiers) uniquely identify each process
and TLB entries are also tagged with them. When the TLB attempts to resolve virtual page num-
bers, it ensures that the ASID for the currently running process matches the ASID associated
with the virtual page. If the ASIDs do not match, the attempt is treated as a TLB miss. This saves
the need for TLB flushes whenever the root page table address (e.g CR3) changes on the CPU, i.e

during context switching or privilege switching (e.g. system calls), in most cases.

MMU caches. To minimize the costs of the page walks that TLB misses trigger, most processors
are equipped with extra MMU caches storing intermediate levels of the page table tree, i.e. PML4
and PDP or PD levels [44,52]. Page walks that hit on the MMU caches or even on the CPU data
caches, potentially storing also page table entries fetched by the walks that access main memory,
are significantly cheaper. The reference to each level of the tree during a page walk (Figure B.2)
no longer necessarily translates to an expensive access to main memory. Despite this significant
acceleration, in Chapter Jj we show that page walk overheads can still be an important percentage

of the execution time in memory-intensive workloads.

Note that the memory hierarchy may also cache any level of the page table. For example,
Intel processors may cache the page table up to the L1 cache. This accelerates the page walk

references made by the hardware page table walker.

3.2.2 Contiguity in mappings can be exploited to accelerate address translation

One of paging’s most important properties is the non-contiguous physical memory allocation,
i.e. contiguous virtual addresses are not necessarily mapped to contiguous physical blocks (Fig-
ure B.1). This property is important for internal and external fragmentation control, and the
smaller the page size the most fine-grain the control over all kinds of memory fragmentation.
This property has also gained attention the past years for security reasons, in terms of non-
predictable physical memory allocations [217]. There is an opposing force, however, to this. The
larger the contiguity in mappings, the more opportunity there is for address translation acceler-
ation. In this section we discuss how the latter drives the state-of-practice and state-of-the-art
virtual memory designs in the big-memory era, where workloads frequently suffer from costly
TLB misses [47,101,102,155,171,172,176,177,178,194,199] and the 4KB page size has likely aged

to be too small.

Huge Pages. Huge pages are what they sound like, larger blocks of virtual and physical memory,
properly aligned and mapped, with uniform protection (Figure B.4H). They increase the TLB
reach and decrease the page walk latency. For example, with 2MB pages a single TLB entry
can translate 2MB of memory and the PD (3d) level of the page table tree becomes the last level
of the tree. The PD level now stores the physical translation of the 2MB virtual page and the
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Figure 3.4: Contiguity in Mappings and Address Translation.

page walk involves only 3 memory references. Their efficiency [[157] has made them the state-of-
practice mitigation technique for address translation overheads and modern operating systems
support them transparently (e.g., THP [19]). However, 2MB pages still fail to eliminate translation

overheads for big-memory irregular workloads — as we will show and discuss in Chapter §.

Huge page sizes larger than 2MB can push the translation performance barrier further away.
In x86-64, though, the out-of-the-box eligible sizes are 1GB and 512GB due to the page table lay-
out. However, such huge gaps bear challenges [47]. First, paged translation requires alignment
and large aligned free blocks quickly become scarce in long running systems [227]. Moreover,
transparent management is not straightforward. For example, intermediate sized mappings will
either use larger pages wasting physical resources (internal fragmentation and bloat) or will use
multiple smaller ones suffering from translation penalties. In fact, all considerations around 2MB

management, including page fault tail latency (which we will discuss in a later section), fairness,
and NUMA placement [[143, 158,164,166, 226], manifest more severely as the page size increases.

Larger-than-a-page contiguous mappings. To come around some of paging’s increasing page
size inefficiencies, primarily its alignment and fixed size restrictions, state-of-the-art proposes
breaking the correlation between the mapping and the translation granularity. Multiple propos-
als [83,1130,172,1176,177,202] preserve smaller page sizes in mappings and increase the TLB reach
by leveraging larger-than-a-page contiguous mappings, i.e., contiguous virtual pages mapped to
contiguous physical pages (Figure B.4d). The most common way to exploit this linearity is to
cache such mappings as a single translation entry, and the most important advantage of this
strategy is that a single entry can potentially have a varying size and thus scale TLB reach more
easily. TLB coalescing [83,[172,[176,[177] compacts such mappings to a single translation entry
to slightly modified commodity TLBs. But to comply with current TLB design and indexing, it
either supports a limited number of small coalescing factors (e.g. [177]) or caches mappings with
certain alignment restrictions (e.g. [172]). In Chapter i we show how these properties limit the
method’s efficacy. The most flexible alternative representation of larger-than-a-page contiguous

mappings is that of range translations (Figure B.5) introduced by Redundant Memory Mappings
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(RMM) [130]. Given that in this thesis we examine extensions of the RMM design to support

virtualization, we provide a more detailed overview of the initial proposal.

Range Translations. Redundant Memory Mappings (RMM) [[130] extend the Direct Segment [47]
proposal that initially revived and re-purposed segmentation for a primary region on a process

address space. This entire line of research [47,1101,[130] draws on the key observation that most

memory-intensive workloads apply unified protection over large virtual ranges in their space and

most of their footprint resides always in memory. Thus coarse-grain virtual-to-physical trans-
lation representations do not break such applications functionality. To avoid the cumbersome

management of a single monolithic physical segment per process, RMM introduces architectural

support for range translations. In more detail, the authors define a subset of a process’s pages that

are virtually and physically contiguous as a range translation (Figure B.5). Each process can have

multiple range translation entities and each is represented by BASE, LIMIT, and OFFSET values

that can translate any address falling into its boundaries. The two key advantages of RMM are

that i) range translations can be of unlimited size and of no special virtual or physical alignment

and ii) paging is still enabled in their regions. This means that the virtual area of each range trans-
lation remains mapped by pages and the entire architectural support for RMM is redundant to

that of paging. Later on this chapter we discuss how RMM generates such contiguous mappings

in the OS, we now focus on the method’s architectural support.

RMM maintains a range table per process, managed by the OS and accessible by HW, similar
to page tables. Each range table entry stores the BASE, LIMIT and OFFSET values of a range
translation along with its protection (e.g read/write). The tables are implemented as B-trees since
no fixed indexing scheme can be applied due to the un-aligned and arbitrary size range properties.
A fully-associative Range TLB caches the most recently used range translations. On a L1 page
TLB miss the Range TLB is looked-up in parallel with the L2 page TLB. On a Range TLB hit,
hardware logic generates the missing physical address translation for the target virtual address
falling into the cached range translation boundaries. On a Range TLB miss, a regular page walk
is triggered to fetch the missing page translation on the L2 page TLB so that the processor can

proceed with execution. In parallel and on the background a more expensive range table walk
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is also performed in hardware to update the Range TLB with the missing range translation. The

method efficacy depends on high Range TLB hit ratios and small range table depths and for that

reason it provides optimizations that filter out single page or small contiguous page mappings.
RMM was originally proposed for native execution, and despite its efficiency, in this thesis

we show that extending it for virtual machines requires extra complex architectural support.

In Chapter {| we discuss architectural extensions to RMM required to support the chal-

lenging setup of virtualization, introduced in the next paragraph.

3.2.3 Support for virtual machines

A virtual machine is the virtualization of a computing system running on physical, “real-world”,
hardware usually referred to as the “host machine”. The virtual machine —its virtual devices and
the OS instance that manages them— are generally referred to as the “guest”. To run multiple
OS instances (guests) on top of shared physical hardware, virtualization introduces a layer of
indirection called the VMM or hypervisor. Under this scope, virtualizing memory introduces
an extra layer of indirection between the guest applications virtual address spaces and the un-
derlying physical memory, the guest physical address space (Figure B.6d). In other words, the
guest physical address space is what the guest OS understands as physical memory and it is itself

independently mapped to real hardware by the hypervisor. So in virtualized execution we have:

« the guest virtual address space (gVA)
« the guest physical address space (gPA) and
« the host physical (hPA) address space
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and thus on every memory operation an extra translation step is required to retrieve the physical

location where data reside.

In this thesis we focus on hardware-assisted memory virtualization, a technique also known
as nested paging [51]. With this method, the guest OS maintains the guest page tables (gPT)
holding gVA— gPA mappings and the hypervisor maintains the nested page tables (nPT) that hold
gPA—hPA mappings independently. Extended hardware walkers traverse both tables in a nested
fashion to retrieve 2D translations, gVA—hPA, and cache them on the TLBs (Figure B.6H). The
two-dimensional page walk is required because each intermediate guest physical address must
be translated through the hypervisor page tables. The nesting multiplies page walk overheads
versus native execution, i.e. figure shows how memory references grow from a native 4 to

a virtualized 24 references with 4-level paging [99].

TLB miss overheads can throttle memory virtualization performance and have proven diffi-
cult to eliminate [[101,199]. Also the two-dimensionality of the problem imposes challenges in the
creation and exploitation of effective 2D larger-than-a-page contiguous mappings, introduced in

the previous paragraph, to accelerate translation.

In Chapter § we study address translation in virtualized execution and propose hardware

and software techniques to exploit larger-than-a-page contiguous mappings.

3.2.4 Address Translation Coherence

TLBs must remain coherent to processes page tables throughout their execution. The OS may
update the process page tables during various virtual memory operations that change its address
space state. In example, during unmap operations the OS destroys the PTEs of the mapping that
is torn-down. These changes have to be propagated to the TLBs of the various cores to invalidate
any cached copies of the modified PTEs. Otherwise, erroneous or insecure execution may take
place if the application access a stale address mapping. Processors based on x86_64 architecture
do not support hardware TLB coherence — i.e. automatic invalidation of the TLBs upon PTE
modifications. The OS is in charge of the invalidation instead, via a process commonly known as
TLB shootdown. Figure B.7, originally found in [39], shows the steps that lead to and implement a
shootdown in a multi-core CPU. First accesses on a mapping lead to the caching of its page tables
entry on the private TLBs of the cores that issued the memory accesses (1,2). Then the OS updates
the entry, e.g. it clears it due to an unmap operation (3). It sends out an invalidation request to
all participating cores via an inter-processor interrupt (IPI) and waits for an acknowledgment
that each core has performed its local TLB invalidation (4-5). Cores invalidate their TLBs in an

interrupt handling routine and at the end send back the acknowledgment.
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Figure 3.7: TLB shootdowns [39].

TLB shootdowns are notoriously expensive operations, inherently non-scalable as they are

based on IPIs, and their cost increases with the number of cores [34,35,39,141,[168,170,209].

In Chapter § we study translation coherence impact on the scalability of the virtual mem-

ory interface for direct access to persistent data.

3.3 The role of the Operating System

The OS is in charge of managing processes virtual address spaces, mapping them to physical
resources and (de)allocating physical memory as needed. In this section we go briefly through
some of its fundamental operations and give some details on the Linux implementation — as it is

the OS we extend in our proposals.

3.3.1 Virtual Address Space management

As discussed in the previous section, the OS provides every process with a private linear set of
virtual addresses, e.g. the range [0,2%%] in x86_64 and 4-level paging. This address space contains
the process’s code, data, and stack. When a process is created (forked) a few virtual memory re-
gions are instantly populated, e.g. the process heap and stack or the region mapping the program
binary file. The processes can then use system calls to request the extension of a virtual memory

region or the population (in other words allocation) of a new one to store anonymous data (e.g.
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System Call Description

brk() Changes the heap size of a process

execve() Loads a new executable file, thus changing the process address space

exit() Terminates the current process and destroys its address space

fork() Creates a new process, and thus a new address space

mmap() Creates a memory mapping (file or anonymous), enlarging the address space
mremap() Expands or shrinks a memory region

mprotect() Changes the access protections of address space range

madvise() Gives advice to the kernel about address space range access (e.g. pattern)
msync() Flushes changes made to a file mapped to memory back to storage

mlock() Locks part or all of the process address space in DRAM

mbind() Sets NUMA memory policy for part or all of the process address space
munmap() Destroys a memory mapping (file or anonymous), contracting the process address space
shmat() Attaches a shared memory region

shmdt() Detached a shared memory region

Figure 3.8: System calls related to virtual memory region creation, management and deletion [5§].

heap) or map and access files (discussed in Section B.3.4). Figure B.§ summarizes the most com-
mon system calls in Linux related to virtual address space management. In example, the brk()
system call extends the process heap and the mmap() system call allocates a new set of virtual

addresses to map both files or anonymous memory.

Figure gives an example of a process address space layout in Linux and some of the core
OS data structures involved in its description. At the bottom of the address space it is the text
region, which holds the instructions of the program the process executes. Then it is the BSS and
the data segments containing static (global) variables in C and the heap that dynamically expands.
At the top of the address space we find the stack that grows down and in between we have various
sparsely located mappings of files or anonymous memory. In the past, the initial virtual addresses
of the segments had the same value for virtually all processes. Now, randomizing the address
space [[104] is preferred for security reasons and linux randomizes the stack, the file mapping
segment, and the heap, adding offset to their start address. Virtual memory operations that

(de)allocate virtual addresses either shrink/expand an existing mapping or destroy/create one.

Each mapping in the process address space is commonly referred to as virtual memory area
(VMA) and in linux it is represented by the vin_area_struct that stores among others its protection
properties (e.g. read/write/execute) and the file it maps, if the VMA corresponds to a file mapping.
All VMAs are recorded under the central struct that represents the entire address space of the
process, the mm_struct. VMAs are indexed by multiple data structures (e.g. linked lists) but a red-
black tree is also used for fast O(log n) search (Figure B.9H). The OS uses this tree on every virtual
memory operation. The mm_struct stores as well the page table tree of the process, discussed in

the previous section.
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Figure 3.9: Virtual Address Space in Linux [58,[144]
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Virtual Memory Locks. Linux protects the entire address space of a process under a central
lock, the mmap semaphore, that all virtual memory operations hold as readers or writers. In
example, when virtual address ranges are (de)allocated or expanded/shrinked during system calls,
when their protection changes or when the process page tables are referred or updated —e.g.
during page fault traps discussed next— the OS locks the entire address space of the process to
perform maintenance or scan it safely. This central locking is a well-known scalability bottleneck

that limits virtual memory performance in the multi-core era [48,59,60,70,71,80,140]

In Chapter i we extend the vm_area_struct to store minimal metadata for the page fault
handler, discussed next, to perform contiguous allocations during demand paging. Also
in Chapter f we revisit VMA recording data structures and virtual memory locking under

the scope of direct access to persistent data.

3.3.2 The Page Fault Handler and Demand Paging I

The Operating System, apart from allocating and managing active areas in a process address
space, is also in charge of (i) mapping them to physical resources and (ii) enforcing memory pro-
tection in orchestration with the MMU hardware. Both fundamental properties are implemented

via a special exception — known as the page fault.

Memory Protection. As discussed in earlier sections one of virtual memory’s important func-
tionality is the enforcement of memory protection, i.e. forbidding write or execute access over
sets of virtual addresses or forbidding access altogether to virtual addresses that the process has
never allocated. Such illegal accesses are detected by the MMU hardware that upon memory
reference fails to find a valid translation entry or an entry with valid permissions for the target
virtual address on the TLBs or the page tables. At that point the hardware throws and exception
—page fault- and traps into the OS that executes the exception handler. The OS first performs
various checks to detect if the access is really illegal. Figure shows some of the checks of a
user-mode page fault — when the memory access happens from user-space. If the access is indeed
illegal, the OS commonly sends a SIGSEGV signal on the process, the known segmentation fault.
But there are some scenarios (marked in beiz) that the access is found to be legal and just valid
page table entries do not yet exist. We go through the most common scenario that is also tightly

coupled with the way a modern OS manages physical memory, demand paging.
Lazy mapping population a.k.a demand paging. Modern OS do not allocate any physical

resources upon user new mapping requests, at least not by default. In example, when brk() or

mmap() system calls are issued —introduced in Figure B.§- the OS allocates only a virtual address
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range for the new mapping —the virtual memory area creation— and does not allocate any phys-
ical memory for it. Instead the OS maps processes’ virtual addresses to physical resources in a
per-page basis and when the process accesses each virtual page for the first time — a technique
named demand paging. Demand paging minimizes tail latency as no bulk physical memory
allocations are performed, and most importantly enables agile physical memory management.
Workloads tend to access parts of their address spaces in bursts and with temporal and spatial lo-
cality. With demand paging the OS can micro-manage processes footprints, keeping in-memory
only the pages of the active working-set of the workload under its various execution phases.

When page faults are triggered by cold accesses on valid pages, the OS detects that and
performs the necessary steps to set up a valid page mapping. Figure shows the basic steps
of demand paging when the faulting address refers to a valid anonymous (heap) or file mapping.

If the faulting virtual page refers to anonymous memory, the page fault handler allocates a
physical page and sets up the page table entry to store the physical frame number - initializing
the page mapping. In the next paragraph, we discuss in more detail the OS’s mechanism to
allocate physical pages. If no available free physical page can be found at the time of the fault
the OS may have to reclaim physical memory, i.e. throw cold pages to disk to create free space.
During anonymous faults the most common expensive operations are the zero-out of the newly
allocated pages and the set-up of the page tables (marked in beiz). Some of these overheads
increase with the size of the page and various works try to come around sky-rocketing page
fault latencies in modern systems [[143,[153,[158,[164,179].

We discuss page faults for file mappings in the following Section B.3.4.2.

3.3.3 Physical Memory Allocation and Contiguity

Buddy Free Lists Free Memory Blocks
order zone->free_area 2"%page sized blocks (4K)
0 — -
1
2
3 2"4 page sized blocks (16*4K)
4 —
| 5
6
7
8 2"9 page sized blocks (512*4K)
9 —— -
MAX_ORDER-1

Figure 3.11: The buddy allocator free block lists [58].



3.3. The role of the Operating System 33

During page faults the OS commonly allocates physical pages to map the faulting virtual
pages. The buddy allocator is the core mechanism that most OS use to manage physical memory
(Figure B.11). It maintains [0, MAX_ORDER] lists, each populated by free aligned blocks of 207"
pages. This power-of-two logic supports fast memory coalescing and simplifies the management
of free blocks. Memory allocation requests are served by order 0 (4K pages) or order 9 (2M
pages [[19]). If the lists are empty, larger blocks are split recursively. When memory is freed, the
buddy allocator coalesces properly aligned free neighboring blocks (buddies) of the same order

recursively, to control external fragmentation.

This scheme is tailored for paged virtual memory and does not facilitate the creation of
larger-than-a-page contiguous mappings, discussed in Section B.2.d, for novel address transla-
tion hardware. With demand paging and the buddy lists, the maximum contiguity generated
under control is within the fixed size boundaries of pages (e.g. small or huge). At the same time
the maximum contiguous free memory blocks tracked by the system have sizes of 2MAX_ORDER

and any greater contiguity falls under the radar.

Novel OS support for larger-than-a-page contiguous mappings. To generate contiguous
mappings beyond the page size limit most prior works employ some pre-allocation technique [47,
130] or page migrations [227]. Direct Segments [47] allocate one big physical segment block
when the process is spawned while RMM [[130] apply a more flexible scheme that pre-allocates
memory at user memory allocation request time. In more detail, during mmap() or brk() system
calls RMM synchronously allocates physical memory in large contiguous blocks. The authors
name this technique eager paging as it breaks the on-demand allocation property of modern OS.
To track large free memory blocks on the system, RMM increases the MAX_ORDER OS constant
parameter, increasing the tail-latency of the coalescing operations of the buddy-allocator and
remaining highly sensitive to external fragmentation (as we will show in Chapter ff). Transla-
tion Ranger [227] on the other hand does not work at the allocation path at all and employs
page migrations to coalesce processes footprints and create virtual-to-physical contiguous page
mappings. However, the technique pays migration overheads even when abundant contiguity
can be found on the system at allocation time and its mechanisms are cumbersome in terms of
multi-program support, i.e. multiple processes running concurrently on the same system. In
general, in this thesis we find that there is a lack of lightweight and non-intrusive support for

large contiguous mappings creation.

In Chapter § we study lightweight-memory management OS support for contiguous map-

pings and propose a technique compatible to demand paging.
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Figure 3.12: Block-level vs byte-level access.

3.3.4 Virtual Memory as a File Interface

As discussed throughout this section, virtual memory can also be used to access files. In example,
the mmap() system call (Figure B.§) can be used to allocate a virtual address range (a virtual
memory area-VMA) that will map a file into memory. This means that after a successful call, all
process’s accesses in the newly allocated virtual range must result in accesses on the file’s data
at the corresponding offset. The OS implements this functionality, employing both its virtual
memory and file system layers, that is commonly referred to as the file mapping interface.

Block level vs Byte level Storage access, the case of Persistent Memory. Most traditional
IO devices support block-level access or are connected to inter-connection links that support
block-level addressing. Thus to enable CPU access to file data the latter must be copied from
storage to DRAM, as CPU performs accesses only at byte-granularity. Figure shows such a
set-up. For most common IO devices, i.e. not ultra low-latency SSDs, the OS maintains a DRAM
cache of the most recently used file pages —the page cache- to which it also applies prefetching
(readahead) techniques to hide IO latency and utilize better IO device bandwidth. With the file
mapping interface, as discussed later, the OS maps page cache physical frames —caching copies

of file data- to processes virtual address spaces.

However, recent storage technologies enable direct CPU access to fast byte-addressable stor-
age, such as persistent memory [[119,186] and/or the CXL link [85]. Persistent memory (PMem)
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is connected to the system via the memory bus, like DRAM, and is accessible via CPU load and
store instructions. This byte-level access is abstractly depicted in Figure B.12H. The Direct Ac-
cess (DAX) file interface [4] and its file mappings can map persistent memory pages directly to

processes virtual address spaces, forming the shortest available path to storage.

3.3.4.1 DAX file mappings and direct access to persistent data

DAX code in the Linux kernel bypasses the page cache file data buffering — removes the extra
copy by performing reads and writes directly to the storage device. For file mappings, the storage
device is mapped directly to user-space [4] and Figure shows such a DAX mapping. During
DAX-mmap operations the OS allocates a new virtual memory area for the file mapping, similar
to default mmap, but the newly created VMA is marked as DAX. During page faults within its
range the OS sets-up page table entries that directly store persistent memory physical addresses.
The CPU MMU hardware is then in charge of translating virtual addresses into PMem physical
addresses, as with DRAM, during load and store CPU instructions. We discuss page faults for file
mappings in the next paragraph. File-systems must support DAX to enable such file mapping
operations. Currently 3 mainline filesystems support it, ext2, ext4 and xfs, but as we will discuss

next, there are multiple novel PMem-aware file systems.

3.3.4.2 The Page Fault Handler and Demand Paging II

Demand paging, introduced in Section B.3.4, is applied by the OS on file mappings as well. Fig-
ure shows the path of page faults triggered by cold accesses on virtual pages that map files.
The handler differs if the mapping is for direct or DRAM-buffered access to storage, as expected.

For buffered access the OS allocates a physical page, invokes the file system to retrieve file
block storage location and triggers IO operations to bring-in the requested data from storage to
the DRAM page. It then sets-up the page table entry to store the number of the physical frame
that now caches a copy of the persistent data. As discussed, the OS commonly maintains a DRAM

cache of the most recently used file pages —the page cache- to which it also applies prefetching
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techniques. For page faults that hit on the cache no IO is performed. In any case, the page table
entries for file mappings are set-up to map process virtual pages to page cache physical page
frames. For buffered mappings, it is the page cache maintenance that has been identified as one
of the most important sources of mapping overhead [[168,[170].

For direct access the OS does not have to allocate any physical memory at all, as data are
already stored in a byte-addressable medium. The OS simply invokes the PMem-aware file system
to retrieve the storage physical location were data reside and sets the page table entry for the
faulting virtual page to store directly the retrieved PMem physical page frame. For direct access,
it is the file system indexing [[149,162] and the page table set-up [[124, 149, 220] that dominate

fault overheads and can commonly throttle performance.

In Chapter f we study page fault overheads for direct access to persistent data (DAX).

3.3.4.3 PMem-aware kernel file systems

With PMem, storage accesses can be cheaper than OS invocations, so reducing the OS overheads
is a strong requirement. Multiple works attempt to reduce the PMem software stack overheads by
extending file systems to support DAX [67,216], and allow direct storage access, or by designing
file systems entirely from scratch as PMem-aware
(e.g. [[74,90,1124, 221, 222, 230]) and also optimize meta-
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with DAX and PMem we have cache line IO operations.
One interesting aspect of this is durability management
and what we call the persistent domain. As shown in
the picture, to persist data with PMem one only needs to evict the corresponding dirty cache

lines storing them from the CPU cache hierarchy.

3.3.4.5 User-space durability management

Without DAX, syncing a memory-mapped file’s data to storage (e.g. via msync()) writes back
data from the page cache to storage in the granularity of pages. With DAX it is necessary to only
write back dirty CPU cache lines to persist data. This creates the opportunity for applications
to manage data persistency directly from user-space and at fine granularities. The application
may use non-temporal stores or cache line flush instructions (e.g., the clwb instruction combined
with the sfence instruction) to persist file data in the granularity of bytes [122,241]. In fact, this
approach is recommended [220] as it can significantly outperform kernel msync() operations.
To manage durability in user-space safely, the applications needs to use DAX-mmap() with the
MAP_SYNC( [78]) interface. The interface guarantees metadata durability and consistency for
file system integrity.

FLEX [220]. One way to harvest PMem benefits is re-designing applications to use persistent
memory objects (e.g., data structures [38,[110,[160,232]) managed by user-space persistent mem-
ory programming libraries [20,773,212]. However, designing PMem-aware applications with per-
sistent data structures requires substantial programming effort [5,220]. Xu et al. propose FLEX,
a simpler programming approach to attain PMem benefits FLEX emulates file system operations
like read()/write() in user-space by mapping a file during open() and using user-space memcpy()

instead of read(), and non-temporal store instructions instead of write().

3.3.4.6 User-space file systems

In the same direction, multiple works [66, 87, 125, 142, 149, 211] exploit PMem direct access via
new file system (FS) designs with user-space components. Performing (meta)data operations
directly from user-space avoids syscall overheads, but comes with two inherent challenges: (i)
(meta)data security and (ii) concurrent file sharing. Mapping parts [66,125,[142] or the entire FS
image [[149,211] to user-space for large time frames opens a window for intentional attacks or
unintentional errors (stray writes) that can leak data or corrupt the FS image [87]. Such FS must
employ a mechanism to control this that may lead to scalability issues [[142,211]. Moreover, such
FS commonly employ user-space data buffering to provide performance, e.g., for writes [[125,142,
211], making concurrent file sharing among processes difficult to support. In addition, many

user-level FS do not support memory mapping [[142,211] at all, removing a high performance
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interface. Kernel-space FS can be less performant but support seamlessly sharing and secure
(meta)data operations. In this paper we focus on such well-tested mature FS targeting to improve

the kernel’s file mapping interface performance rather than bypass it.



CHAPTER 4

Enhancing and Exploiting Contiguity for Fast

Memory Virtualization

4.1 Overview

Page-based address translation overheads are alleviated by caching translations in Translation
Look-aside Buffers (TLBs). However, the growing demand for physical memory is limiting the
efficacy of TLBs, increasing the rate of costly TLB misses. To make things worse, the adoption
of virtualized cloud infrastructure amplifies these overheads. The state-of-practice MMU vir-
tualization technique (hardware-assisted nested paging [51]) requires two-dimensional address
translation that increases the TLB miss penalty up to 6 x compared to native execution. Looking
forward, the continuing growth in physical memory sizes (e.g. via CXL [85] and the tiered-
memory future of servers [[148]) will soon require 5-level paging [22], further exacerbating the
cost of TLB misses. Ideally, software and hardware support for address translation should mini-
mize overheads, maintain memory availability with flexible allocations, avoid memory waste by
minimizing fragmentation and preserve resource-saving mechanisms like demand paging and
copy-on-write, under both native and virtualized systems.

In response, industry has increased the page size and translation hardware [21]. We show
that 2MB huge pages still fail to cover the needs of irregular workloads, and nested paging mag-
nifies the problem. Even though increasing the page size is prominent, larger pages increase

internal fragmentation and restrict fine-grained memory management [[143,158, 164,166, 226].

39
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THP DS [47] RMM [1130]
OS memory demand static pre- dynamic pre-
manager paging allocation allocation
translation ages segments ranges ages ranges
representation pag & & pag &
virtualization nested dual direct B nested
support paging  segments [[101]] paging
micro-

architecture

Table 4.1: Overview of our contributions with respect to state-of-practice (THP) and state-of-the-
art (DS,RMM) approaches for reducing virtualization overheads.

Prior works [47,83,[101,[130,172,[176,177,202] have shown the potential of breaking the tradi-
tional page-based mapping between hardware translation and OS memory management. They
usually exploit larger-than-a-page contiguous mappings [54] but fail to achieve the desired flex-
ibility. For example, previous proposals rely on pre-allocation [101,130], which suffers from
external fragmentation, and is antagonistic to demand paging. Additionally, prior hardware
schemes [[130,172] track the exact boundaries of contiguous mappings but do not support vir-
tualized execution. Finally, prior approaches for increasing TLB reach have been limited by
indexing and alignment requirements [83,172,176,177, 202] reducing their efficacy.

In this thesis, we aim to reduce the address translation overhead, focusing primarily on vir-
tualized execution; a set-up that magnifies the problem and hardens the solution. We generate
and exploit larger-than-a-page contiguous mappings while avoiding pre-allocation to preserve
the flexibility of existing paging-based mechanisms. We take a two-fold approach: (i) we intro-

duce contiguity-aware (CA) paging which promotes contiguity as a first-class citizen in the OS

memory manager, and (ii) we harvest the generated contiguity to accelerate address translation
via via two orthogonal hardware designs: vRMM that works at the architecture level and SpOT
that works at the micro-architecture level. Tablelt.] summarizes the contributions of this work

(in green). Note that, CA paging and SpOT can improve both native and virtualized execution.

CA paging enables the OS memory allocator to generate contiguous mappings beyond the
page-size limit, using minimal per-process metadata. Specifically, CA paging allocates contigu-
ous physical pages to map contiguous virtual memory regions of processes, working across page
faults and on a best-effort basis. In this way, CA paging creates and extends contiguous mappings
gradually while preserving the increased memory utilization and low tail latency of demand pag-
ing. CA paging can improve the performance of any hardware design that relies on contiguous
mappings [83,[130,[172,1176,177,202] and can be used both in native and virtualized execution. In

virtualized execution, it is used independently by the guest and the host OS. Our results show
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that CA paging significantly boosts the creation of vast contiguous mappings, achieves perfor-
mance similar to pre-allocation, and outperforms it in the presence of external fragmentation.
Compared to asynchronous defragmentation [227], CA paging operates on the allocation path
and generates contiguity instantly, increasing the opportunity to exploit contiguity and avoiding
the cost of the post-allocation page migrations.

To better exploit the large generated contiguous mappings of CA paging, we examine two
orthogonal hardware techniques. First we extend Redundant Memory Mappings [[130] to sup-
port virtualization (virtualized Redundant Memory Mappings (VRMM)); focusing particularly on
hardware assisted virtualization (nested paging). In vRMM, we define a 2D range translation as a
contiguous mapping in both guest and host address spaces (guest_virtual_address(gVA)—guest_
physical_address(gPA) and guest_physical_address(gPA)—host_physical_address(hPA)). Assum-
ing RMM support, we introduce: (a) co-designed support for nested range tables that hold gPA
—hPA range translations and (b) hardware extensions to traverse the guest and nested range ta-
bles to generate a 2D range translation. Unlike the native design [[130] that uses pre-allocation on
the software layer to generate ranges, we combine VRMM architectural support with CA paging
and adjust range table construction. We show that vRMM and CA paging significantly reduce
the number of nested page walks due to TLB misses, bringing translation overheads below 1%.

Driven by the increased architectural complexity of vRMM, we propose a second alternate
technique that works entirely at the micro-architecture level: Speculative Offset-based Address
Translation (SpOT). We base our approach on the key observation that contiguity can be ex-

pressed simply through offsets, decoupling contiguous mappings from virtual boundary checks.

L1TLB
2D CONTIGUOUS LARGER-THAN-A-PAGE MAPPINGS . gVA hPA
gOffset ——
l—! P
gBase | glimit 2DBase 2DLimit L2 TLB Range TLB
! gVA hPA
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est v ' l —
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| I - oot e 5B
hOffset Zi;dffset gVA->gPA | gPA->hPA  Guest Range| Nested Range
Guest0S | VMM Guest 0S| VMM

Figure 4.1: General overview of our proposal for virtualized execution. (a) CA paging is used
by the guest and the host independently; seamlessly generating contiguity on both dimensions;
the intersection forms the desired 2D contiguity. (b) vRMM (green) and SpOT (blue) are two
orthogonal techniques to exploit the 2D contiguity and eliminate address translation overheads.
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Figure 4.2: Trade-offs between pre-allocation (eager paging), asynchronous defragmentation
(ranger), and CA paging. Pre-allocation suffers from external fragmentation and asynchronous
defragmentation delays contiguity generation.

SpOT is a simple hardware mechanism on the TLB miss path that speculates the existence of
large contiguous mappings to predict translations while performing verification page walks in
the background. SpOT exploits the OS provided contiguity at the micro-architectural level, re-
quiring minimal hardware support. In contrast to prior speculation designs [45,178], SpOT
predicts translations far beyond the huge page limit and is completely independent of virtual
addressing and alignment. SpOT supports both native and virtualized systems. Our evaluation
in a virtualized system shows that SpOT combined with CA paging reduces the address trans-
lation overhead of nested paging from ~16.5% to ~0.9% on average. SpOT performs close to
prior schemes [[101,/130] but without pre-allocation and complex virtualization extensions at the
architecture level. While speculation introduces security concerns, SpOT uses the same generic

mitigation mechanisms proposed for other speculation attacks [[135, 224].

4.2 Software Technique: Contiguity-aware Paging

4.2.1 Key design concepts

All the state-of-the-art techniques that increase TLB reach require contiguity across pages [83,
130,1172,1176,[177,202]. Prior proposals mostly lie on two extremes: they either rely on randomly
generated contiguity by a vanilla OS [83,[172,[176,[177], or on brute-force pre-allocation schemes
via reservation [47, 101] and eager paging [[130]. The former clearly wastes opportunities for
contiguity, while the latter abandons key OS mechanisms for flexible memory management (e.g.

on-demand allocations, copy-on-write faults and sharing etc.). Pre-allocation is also sensitive to
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external fragmentation. Translation Ranger [227] takes a different approach, and creates contigu-
ity performing asynchronous and iterative memory defragmentation. A system daemon scans pe-
riodically process memory and migrates random physical pages to contiguous ones. Ranger is an
effective contiguity mechanism, but migrations may delay to coalesce an application’s footprint;

migrations also penalize memory accesses latency and trigger costly TLB shootdowns [34,[141].

As a response to the limitations of the state-of-the-art, we propose CA paging; an extension
to the core OS memory manager that operates at allocation time and creates large contiguous
mappings while preserving the flexibility of demand paging. Figure f.4 depicts the discussed
prior work limits and depicts CA paging’s impact. Figure shows the percentage of the PageR-
ank’s memory footprint that is covered by the 32 largest contiguous mappings for 10 consecutive
runs of the benchmark (Section |t.9 describes our methodology in detail). We observe that eager
paging is sensitive to external fragmentation as the coverage drops progressively. CA paging
sustains contiguity, harvesting unaligned physical contiguity in the system. Figure shows
the percentage of XSBench’s memory footprint that is covered by the 32 largest contiguous map-
pings during the entire execution of the benchmark. We observe that Ranger’s migrations delay
to coalesce the application’s footprint to contiguous memory. CA paging avoids unnecessary

post-allocation migrations, harvesting the system’s available contiguity at page fault time.

4.2.2 CA paging overview

Contiguity-aware (CA) paging relies on the existing demand paging mechanism, but instead of
allocating physical pages randomly, it steers the allocation of physical pages to create contiguous
mappings. We introduce lightweight mechanisms and policies to the core physical OS allocator to
lazily create vast contiguous mappings across page faults. CA paging requires minimal metadata,
i.e,, an Offset per virtual memory area (VMA) and a system-wide contiguity map. To decide the
placement of a VMA’s pages, CA paging uses a next-fit policy. CA paging deals with external
fragmentation, supports multithreaded applications, and serves all common page fault types. We

design and prototype it in Linux for native and KVM for virtualized systems (nested paging).

Demand Paging. VMAs are contiguous virtual address ranges in a process’s address space, not
necessarily backed by physical memory, represented by the vma struct in Linux. Physical
memory allocation happens on demand, when a virtual page of a VMA is touched for the first
time. The OS core physical memory manager is a power-of-two buddy allocator, maintaining
[0, MAX_ORDER] lists. Each list is populated by free aligned blocks of 2°/¢* pages. Allocation
requests are served by the first available block of order 0 (4KB) or order 9 (2MB pages [[19]) lists.
Demand paging enables flexible memory management, but its random page allocations inhibit

the creation of large contiguous mappings.
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Figure 4.3: Overview of contiguity-aware paging.

Basic mechanism. CA paging leverages the unaligned and unlimited Offset representation of
larger-than-a-page contiguous virtual-to-physical mappings. Offset is defined as the common
[virtual_address — physical_address] identifier for all pages belonging to the same mapping.
CA paging tracks the Offset of the first page mapping created for each VMA (first page fault)
and stores it as minimal metadata to the corresponding vma struct. On a future fault in the
same VMA, CA paging uses the Offset to identify a target physical page for allocation. It examines
the occupational status of the target page, and if free, allocates it, extending the current VMA
mapping contiguity. Figure .3 (left) illustrates how CA paging exploits the notion of Offset to
perform contiguous allocations.

CA paging examines the availability of the target page relying completely on existing OS

metadata. In Linux, it retrieves a handle to the target page’s structure using the system mem-
ory map (mem_map), indexed by page physical address. Dedicated attributes (_mapcount,
_count) indicate if the target page is already in use. If the target page is free, it can be of the
requested size or part of a larger block. In the latter case, CA paging splits the block using the
default buddy allocator routine. In both cases, it retrieves the target page from buddy’s lists (Fig-
ure @ (right)). CA paging is independent to the order (size) of the allocation request and serves
both 4KB and 2MB page faults.
Contiguity Map. The first page allocation for a VMA can greatly affect the later-on generated
contiguity. To maximize contiguity, CA paging directs the mapping to a region of the physical
memory where there is enough free contiguity. To achieve this, a map of the system’s free
contiguous space is necessary. In Linux, the maximum size of tracked free memory is limited by
the MAX_ORDER attribute. Typically that equals to 11, and the allocator maintains up to 4MB
aligned free blocks. Prior research [[130] proposes increasing MAX_ORDER but that approach is
sensitive to external fragmentation (Section f.5.1.1)).

We introduce the contiguity_map, an indexing structure on top of the buddy allocator’s
MAX_ORDER list (Figure [4.4) to record unaligned contiguity at scales larger than the buddy heap.
Each entry of the map represents a variable length sequence (cluster) of free MAX_ORDER blocks.
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It stores the starting physical address and the total size of the cluster. Updates to the map are
triggered by all insertions/deletions to the corresponding buddy list. To avoid search operations
on every update, all physically indexed base blocks of a cluster point to their corresponding
contiguity_map entry (re-purposing the mapping attribute of the page struct, not used
when a page is free). We currently implement the map as a linked list sorted by physical address.
Even if a tree could yield better performance, our evaluation shows that keeping the map up to
date does not affect performance. A separate contiguity_map instance is maintained per NUMA

node (struct zone), as the OS maintains a separate buddy instance per NUMA node.

4.2.3 CA paging Mechanism

Placing the first page. During the first page fault fora VMA, CA paging searches the contiguity
_map for a free physical region that could fit it. Using the total VMA size as a key, it applies the
next-fit placement policy; it searches for an available free block of the requested size, starting
from where it left off the previous time. If no block larger or equal to the requested size is avail-
able, next-fit selects the largest found. CA paging allocates the first page of the selected region
and sets the Offset attribute of the corresponding vma struct. Figure .9 visualizes the steps
following the first fault in a VMA. Note that with CA paging, unlike the traditional segmentation
case, a placement decision does not result in the allocation of the entire VMA. Instead, CA paging
directs the forthcoming page faults of the same source VMA to the selected free block through
the Offset attribute (best effort approach).

As CA paging does not allocate memory beyond the page size, competition for the same
free blocks can arise when multiple faults by different processes or different VMAs of the same
process trigger placement decisions. We opt for next-fit policy because it can defer such racing.
The block that is selected to serve a placement request is the last one to be considered for the

next request. To implement next-fit, we use a simple rover pointer over the contiguity_map.
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Figure 4.4: The contiguity_map of CA paging.
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Handling unsuccessful CA allocations. A CA paging allocation target may be unavailable,
either because the end of a free physical block is reached or some other running process has
allocated the target page. Upon failure, if the fault is for a huge page, CA paging runs again the
placement decision routine using as key the size of the remaining unmapped VMA region (see
below sub-VMA placement) and tracks the new Offset. If, instead, the fault is for a 4KB page, CA
falls back to the default arbitrary allocation mechanism and skips the Offset tracking. Making
decisions on top of huge pages is more effective when targeting vast contiguous mappings. Also

huge allocations amortize placement overhead with their costly large block zeroing operations.

Dealing with external fragmentation. If there is no available free block to fit an entire VMA
(due to external fragmentation), CA paging makes multiple sub-VMA placement decisions and
distributes the VMA to multiple smaller free physical blocks. The sub-placement decisions are
triggered by unsuccessful allocation attempts (see above). In such scenarios CA paging perfor-
mance depends on the fault pattern. To support multiple sub-VMA regions, we track multiple
Offsets per VMA (instead of a single one) combined with the virtual address of the fault that cre-
ated them. During a page fault, CA paging picks the Offset associated with the virtual address
closest to the currently faulting. To control the search latency we track up to 64 Offsets per VMA
and apply a FIFO policy.

To restrain fragmentation, we also apply a general optimization. We keep the MAX_ORDER
buddy list sorted by physical address, using neighbors address computation and recursive logic
for fast operation (similar to buddy coalescing). This sorting prevents small random (4KB) page
allocations (e.g., the fallback path for CA failures) from using scattered physical pages and frag-
menting large free contiguous blocks. As discussed in Section }t.5.1, CA paging acts as a pre-
vention strategy with respect to external fragmentation. Keeping an application’s footprint coa-

lesced and isolated from other processes reduces the fragmentation of the physical address space.
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Avoiding multithreading pitfalls. In multithreaded applications, different threads may fault
concurrently triggering parallel allocations for different virtual addresses. We use spin locks to
protect CA paging VMA metadata updates. Nevertheless, concurrent allocations inside the same
VMA stress the Offset selection of CA paging. For example, if two different threads fault for
virtual addresses of the same sub-VMA region and both fail (target physical pages occupied), they
will both trigger re-placement decisions. Without proper handling, this race results in multiple

Offset updates for the same region and unnecessarily stresses the next-fit mechanism.

To handle such cases and support concurrent faults, CA paging allows only the first thread
that enters the allocation path to trigger a re-placement and Offset update in case of a failure
(using an atomic flag per VMA). If another thread fails, there are two options: (i) fallback to the
default allocation, or (ii) retry until replacement is allowed or the allocation succeeds. We choose

the former to not penalize fault latency.

Supported faults. CA paging supports all anonymous and copy-on-write (4KB or 2MB) page
faults, preserving demand paging. CA paging works also for the readahead allocations of the
system’s page cache, tracking an Offset attribute per file (struct address_space). Page
cache allocations directly improve the performance of applications that use memory-mapped
files. However, they can indirectly affect the translation performance of all processes. E.g. reada-
head allocations are usually interleaved with anonymous faults, as applications tend to read file
data to populate heap structures. If randomly allocated they can penalize the process’s contigu-
ity. Moreover, page cache allocations tend to outlive processes, increasing the possibility of the
file pages to be reused. If they are scattered, they tend to fragment the physical address space.

CA paging allocates them contiguously restraining process interference and fragmentation.

4.2.3.1 Virtualized execution

As CA paging is embedded in the OS memory management, it is applied in each dimension
(guest/host) independently, elegantly enabling contiguous allocations to span the virtualization
level and complying to nested paging. In the guest OS, it boosts the creation of gVA—gPA
contiguous mappings across guest page faults (15 dimension) and in the host, the creation of
gPA—hPA across nested faults (2" dimension) (Figure [4.6 left).

In virtualized execution, a larger-than-a-page mapping is effectively 2D contiguous, only if
contiguous in both dimensions (Figure [t right). Thus, using independently CA paging in each
dimension creates such mappings on a best-effort basis. On a freshly booted virtual machine
(VM), all guest page faults lead to nested faults as the guest physical pages are not mapped to
host physical memory. In this early phase, CA paging is triggered in both dimensions consecu-

tively. However, with nested paging the mappings of the second dimension (gPA—hPA) remain
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Figure 4.6: CA paging is applied independently in the guest and host OS, generating guest and
host contiguous mappings. Their intersection forms the effective 2D contiguity exploited by the
proposed hardware designs in Section }t.3

as long as the virtual machine is alive or until the host OS reclaims them. Thus, the 2"¢ dimen-
sion contiguity persists as a VM ages, while the guest CA paging creates new 1°¢ dimension
contiguous mappings for new applications running inside the VM. This leads to a less controlled

1°¢ and 2"¢ dimension mappings can be un-

generation of full 2D contiguous mappings, e.g.,
aligned, smaller or larger with respect to each other (Figures f.§4.9). Our experiments indicate

that CA though is still effective and creates significant 2D contiguity.

4.3 Hardware Techniques: vRMM and SpOT
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Figure 4.7: VRMM caches effective 2D contiguous mappings in a range TLB, looked-up in parallel
with the L2-page TLB. It requires complex architectural support; virtualization extensions over
native RMM (nested ranges and a nested range walker). SpOT works entirely on the micro-
architecture level, caching only 2DOffsets and using them to predict address translations on
the L2-TLB miss path. It feeds the predicted address to the CPU which continues execution on
Speculative mode.
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Any address translation scheme that leverages contiguous mappings (83,130,172, 176, 177,
202] benefits from CA paging. We target the challenging setup of virtualized execution, which
most state-of-the-art proposals do not support. To exploit CA paging and reduce translation
overheads in virtualized execution, we propose two orthogonal hardware schemes. vRMM is an
architectural solution (OS/hypervisor involved); it increases the TLB reach by caching 2D range
translations in virtualized execution. SpOT is a micro-architectural solution (no OS/hypervisor
support); it hides TLB miss latency with speculative execution by caching only 2D Offsets and
predicting the missing TLB entry. vVRMM is secure and high-performant, but involves a very
complex design. SpoT is comparable in terms of performance and requires minimum micro-
architectural support but raises security concerns. We discuss both designs in detail in the next

paragraphs. Figure [.7 gives an overview of the proposed hardware techniques.

4.3.1 Virtualized Redundant Memory Mappings

We describe vVRMM as a set of virtualization extensions to native RMM [[130] for x86-64, assuming
nested paging and a type-2 hypervisor (KVM).

Native RMM overview. RMM [[130] was proposed to increase the TLB reach and reduce the
number of page walks in native execution. RMM exploits contiguity through the notion of a
range translation: an arbitrarily large range of pages that are contiguously allocated in both
virtual and physical address space. Ranges are represented as [ base, offset, limit, permissions],
stored in a per-process software (OS) managed range table and cached on a range TLB. One of the
most significant advantages of RMM is that it is redundant to paging. The traditional page table
and TLB hierarchy remain the same and the range TLB is looked-up in parallel with the L2-page
TLB. In case of a page and a range TLB miss, a hardware range walker traverses the range table
and fetches range translations to the range TLB. To avoid range walks in miss a reserved bit is set
on all page table entries of pages that belong to a range translation. Thus upon a page and a range
TLB miss, first the page walker fetches the missing PTE and checks if the range bit is set. Then
the range walker updates the range TLB in the background. A register holds the starting physical
address of the range table (CR-RT); it is OS-maintained and part of each process’s context (similar
to cr3). Due to the unlimited, unaligned nature of range translations and of their representation,

range table is a B-tree and the range TLB is a fully-associative structure.

4.3.1.1 vRMM overview

To extend RMM and support virtualization we define 2 types (dimensions [[101]) of ranges fl: guest
and nested. We name their intersections full effective 2D ranges (Figures [£.§ and [.9). vRMM is
redundant to nested paging.

'We use range as a short term for range translation.
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Figure 4.8: Unaligned arbitrarily-sized contiguous mappings (ranges) in virtualized execution.

« Guest range (gVA—gPA): contiguously mapped pages, with uniform protection, per process
running on the VM. Represented via [gBase, gOffset, gLimit, gPermissions]. Maintained by the

guest OS in the guest range tables. (1st dimension)

« Nested range (gPA—hPA): contiguously mapped pages per VM (same protection is guaran-
teed). Represented via [hBase, hOffset, hLimit, hPermissions]. Maintained by the hypervi-
sor/VMM in the nested range tables. They are a subset of the host ranges (hWA—hPA) main-
tained by the host OS in the host range tables per host process [79]. Note that gPA and hVA

address spaces are linearly related, in a manner controlled by the VMM. (2nd dimension)

- Effective 2D range (gVA—hPA): contiguously mapped pages, with uniform protection, per
process running on the VM. Represented via [2DBase, 2DOffset, 2DLimit, 2DPermissions].
Generated online, during range TLB misses, by the nested range walker. (intersection of the

two dimensions)

Range TLB. It caches effective 2D gVA—hPA ranges. The structure and access remains intact
with respect to native RMM: (i) it is accessed in parallel with the L2-page TLB, (ii) in case of a
hit, the hardware generates the corresponding gVA—hPA page translation using the [2DBase,
2DOAfset, 2DLimit] attributes of the 2D range translation and inserts it in the L1-page TLB, (iii)
in case of a miss, the nested range walker generates the missing 2D range translation and fills it
in the range TLB. The range TLB remains (inherently) fully associative.

Range Tables. In vRMM, guest range tables store the guest ranges (gVA—gPA) per process
running inside the VM and are managed by the guest OS independently. They are redundant to
guest page tables. Extended/nested range tables store the nested (host) ranges (gPA—hPA) per
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Figure 4.9: The effective full 2D contiguous mappings (ranges). VRMM caches the 2D ranges in
a range TLB. SpOT caches only the 2D Offsets to predict translations.

VM and are managed by the hypervisor/VMM - e.g. KVM. A nested range walker uses the guest
and nested range tables to dynamically generate full 2D gVA—hPA range translations and fetch
them in the range TLB (discussed later).

All dimensions’ ranges hold mappings of more than a rmm_threshold contiguous pages (32

in our experiments). A reserved bit in the last-level (PTE or PMD) guest/nested page table entry
is set to indicate if the corresponding page is part of a guest/nested range.
Range Table setup. A notable difference in our design, compared to default RMM, is range
table management. It derives from the different memory management technique used to gen-
erate ranges. The native proposal [130] pre-allocates physical memory blocks synchronously
to virtual memory block allocations (malloc(), mmap()) (eager paging). This instant range cre-
ation enables the synchronous construction of range tables. Instead, we build on top of lazy and
flexible demand paging, using CA paging.

CA paging gradually constructs ranges as the process touches its virtual addresses for the first
time (across faults) (Section [£.9). Therefore, range tables must be updated/populated constantly.
During a fault, CA paging examines the neighboring page table entries of the faulting page and
if they are part of a range translation (reserved bit set), it extends the corresponding entry on
the range table. If the neighbors are not part of a range, CA paging inspects the entries in
rmm_threshold distance to detect a mapping of contiguous pages. If found, it promotes it to a
range translation, creates a new range table entry and sets the corresponding page table bits.

In virtualized execution this happens independently in each dimension. The guest OS uses
CA paging to generate guest ranges for the processes running inside the VM and setup their guest

range tables. The host OS uses CA paging to generate host ranges for each VM and gradually
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Figure 4.10: Range TLB miss in vRMM. Part1: The nested page walker identifies the missing page
translation and if the page is part of a guest and host range.

setup the host range tables. The hypervisor (KVM) uses either nested faults (VM-exits) or the
mechanism of MMU notifiers [79], already present for nested paging, to create or update nested
range table entries based on the host range tables.

An update of a range translation in any dimension triggers a range TLB flush. However, in
our experiments we find that flush operations do not affect range TLB performance as they occur

rarely compared to the number of lookups.

4.3.1.2 Nested Range Walk

On a range TLB miss, a nested range walk is required to fetch the missing 2D range translation,
if it exists.

Range TLB miss. In VRMM, gCR-RT and nCR-RT registers hold the base gPA and hPA of the
guest and nested range tables, and are part of a process’s context, similar to nested paging’s gCR3
and nCR3. Figures and visualise how a range TLB miss is served. Figure shows
the first part: (1) a standard nested page walk is triggered and retrieves the page’s gVA—hPA
translation and stores it in the L1-TLB. (2) During the walk, the walker checks if the reserved bit
of the last level entry of the guest page table (gPTE/gPMD) is set - indicating the page is part of
a guest range translation. (3) The walker checks also the corresponding entry of the nested page
table (nPTE/nPMD) which indicates if the page is also part of a host range translation. If both

set, a nested range walk is triggered. This first part filters out unnecessary range walks.
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Figure 4.11: Range TLB miss in VRMM. Part2: The nested range walker walks the guest and
nested range tables, and generates the 2D range translation.

Figure shows the actual nested range walk. The standard nested page walker is used to
translate the gCR-RT register to identify the hPA of the page storing the guest range table (4).
Then, the range walker walks the guest range table and identifies the guest range translation,
similarly to native RMM (5). In case the guest range table does not fit in a single page, the
translation step of gPA—hPA occurs for each accessed page of the guest range table using the
standard nested page walker. Fortunately, the representation of range translations in the range
table is compact; a single page can hold 128 range translations, which is sufficient for mapping
the vast majority of a process address space.

Once the nested page/range walker has identified the guest range translation for the gVA of
the missing address translation, it calculates the corresponding gPA using the gOffset attribute
(gPA=gVA—gOffset) (5). It uses it as a search key for the host range walk. The range walker uses
the nCR-RT register to walk the nested range table and identifies the host range translation where
the gPA of the missing address translation belongs to (6-7). Note that the walk of the range tables
happens in the background off the critical path, so as the latency of TLB miss remains unaffected.

The dynamic generation of the full 2D gVA—hPA range translation requires the intersec-
tion of the guest and host (nested) ranges (8), which can be of different size and unaligned. As
discussed in Section }t.9, in virtualized execution ranges in each dimension are created in a non-
coordinated way. Thus the guest ranges can be backed by multiple host/nested ranges and vice-
versa (Figures f.§ and [£.9), in the same way that a guest huge page can be backed by small pages
in the host and the reverse. The intersection is done on the guest physical address space (gPA)
as ranges of both dimensions are reflected there. We name gPABase and gPALimit the guest

physical addresses of the guest range boundaries.
+ gPABase = gBase-gOffset

+ gPALimit = gLimit-gOffset



54 Chapter 4. Enhancing and Exploiting Contiguity for Fast Memory Virtualization

The minimum distance of the gPA of the page that triggered the range TLB miss, from the
gPABase/hBase and gPALimit/hLimit —the boundaries of the guest/nested ranges- is used to
calculate the 2DBase, 2DLimit and finally the 2DOffset.

« 2DBase = hBase < gPABase ? gBase : (gBase + (hBase-gPABase))
. 2DLimit = gPALimit < hLimit ? gLimit : (gLimit - (gPALimit-hLimit))
+ 2DOfIset = 2DBase-2DLimit

All the above are generated online by the walker. Figure shows an example of generating
the direct gVA—hPA range translation. After the effective 2D range is generated online, it is
finally fetched on the range TLB (9).

4.3.1.3 vRMM design requires complex and redundant virtualization extensions

vRMM has the potential to exploit all existing contiguity, supporting unlimited and unaligned
ranges in all dimensions. But as shown in the previous paragraphs, this comes at a non-negligible
cost. Additional support to maintain nested range tables is required, and the nested range walker
is a complex hardware design that among others: a) uses the nested page walker to get the host
physical address of the pages that store the fragments of the guest’s range table B-tree that need
to be traversed and b) has additional logic to generate online the intersection of guest and nested
ranges. All this additional overhead to an already complex and redundant to nested paging design
may make VRMM a less appealing design choice for adoption by processor vendors.

Other alternatives. Hybrid coalescing [[172] combines contiguous page translations into one
translation entry, and augments TLBs to hold both coalesced and regular page translations. The
coalesced entries are aligned at variable granularity (anchor distance). The OS stores the coa-
lesced entries in modified page tables, and dynamically adjusts the anchor distance to reflect
the process’s average contiguity. Virtualizing hybrid coalescing (named as vHC in this work)
involves separate anchor distances for the guest and the host OS and therefore would require:
(i) the hypervisor to maintain the host coalesced entries in the nested page tables, and (ii) an
augmented nested page walker to intersect guest/host entries and calculate the 2D coalesced en-
try, respecting guest alignment. vHC requires simpler architectural support than vRMM, as it
augments the existing radix page table trees, making also the nested walk easier. However, vHC
suffers from its alignment restrictions. Table t.4 shows the number of VRMM ranges and vHC
coalesced entries required to cover the 99% of big-memory workload’s footprint in virtualized
execution. We observe that CA successfully supports both techniques, significantly reducing the
total number of entries for both methods compared to default THP. However, we observe that

vHC fails to fully exploit the contiguity generated by CA as the anchor entries are 38 x compared
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Mem. default THP CA paging

(GB) | Ranges vHC entries | Ranges vHC entries
SVM 29G 3759 6224 10 422
PageRank 78G 37453 39355 11 828
hashjoin 102G 4152 4260 7 403
XSBench 122G 4658 4968 11 644
BT 931 7061
geomean | - 7223 8485 | 23 914

Table 4.2: Number of ranges (VRMM), and anchor entries (vHC) to map 99% of the footprint of
big-memory workloads, using (i) default THP, (ii) CA paging in virtualized execution.

to ranges. This is due to the method’s virtual alignment restrictions, confirming the important

performance potential of unaligned contiguity.

4.3.2 Speculative Offset-based Address Translation

We pose the research question: Can we have high performance translation leveraging unaligned
contiguity of unlimited size but with simpler hardware support?

Observation. We find that the root cause of VRMM’s complexity and vHC’s low performance
potential is the requirement for explicit tracking of the mappings’ virtual and physical boundaries.
What if we speculate them? Figure [£.7 shows the key idea of SpOT; instead of tracking mappings
boundaries in guest and host, SpOT tracks only gVA—hPA 2DOffsets and uses them to predict

missing address translations.

4.3.2.1 SpOT Overview

We present SpOT in the context of virtualized execution as its operation in native execution
can be inferred in a straightforward manner. SpOT works on the micro-architectural level and
it primarily consists of a simple prediction table that caches [2D offset, permissions] translation
tuples (Figure §.17). Each offset maps from gVA—hPA and is dynamically calculated and stored
in the prediction table by the nested page walker (HW) at the end of the walk for a missing gVA
translation. On a last level TLB miss, SpOT uses the offset generated by the previous TLB miss
of the same memory instruction and predicts a host physical address (hPA). In a sense, SpOT
speculates that the specific instruction is accessing a contiguously mapped range of pages and
transparently tracks its corresponding offset to perform predictions. SpOT feeds the processor
with the predicted hPA to continue execution in a speculative mode and the verification page

walk happens in background. Thus, SpOT hides the latency of page walks.
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Figure 4.12: SpOT predicts the physical address of missing translations, inferring the offsets
of contiguous mappings. It consists of a micro-architectural prediction table tracking the [off-
set,permissions] of recently missed translations.

4.3.2.2 SpOT Mechanism

Prediction Table. To lookup and fill the prediction table with offsets, we use the program
counter (PC) for indexing and tag matching. Only a few instructions are typically responsible
for most TLB misses and therefore PC-indexing keeps the table size small (64 entries in our
experiments). It also serves the core idea of SpOT to correlate instructions with contiguous
mappings. In the presence of a contiguity-aware allocator (CA paging) and thanks to locality,
each memory instruction usually performs accesses (regular or irregular) inside a contiguously

mapped range of pages at different execution phases.

TLB miss path. We consider address translation speculation only for the last-level TLB misses.
Such misses trigger both the default nested page walk and a parallel lookup in SpOT’s separate
prediction engine (Figure §.13d). SpOT uses the [offset,permissions] retrieved by the prediction
table to predict a host physical address (hPA) translation for the guest virtual address (gVA) that
caused the miss (Figure {t.19). It subtracts the offset from the gVA and predicts a spec hPA =
gV A — of fset. It also speculates that this memory access will have the same permission rights
as the previous access of the same instruction. Then it feeds the processor with the spec hPA
to continue its execution but in speculative mode. It is worth mentioning that unlike previous
designs [178], we do not fetch the predicted translation in the regular TLB hierarchy, leaving the
TLB design intact.

As the speculative execution proceeds, the verification nested page walk happens in the back-
ground (Figure [£.13d, k.13H). When the walk completes, the spec hPA is compared to the original
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Figure 4.13: SpOT is integrated in the L2 TLB miss path and hides nested page walk latency under
speculative execution.

hPA retrieved from the nested page table entry (NPTE) and two scenarios exist: (i) the specula-
tion was correct and SpOT managed to hide the walk latency with useful speculative execution,
(ii) the speculation was incorrect and SpOT must flush the pipeline and replay the memory in-
struction. Flush is necessary because following instructions may have consumed incorrect data.
Incorrect predictions (mis-predictions) affect performance, as the cost of flushing is added on top
of the regular nested page walk latency.
Prediction table fills. The prediction table is updated at the end of a nested page walk. The
offset of the missing translation is calculated (of fset = gV A — hPA) and fetched in the ta-
ble along with the permission rights of the access. To minimize possible PC conflicts, SpOT’s
prediction table is a set associative structure and uses an LRU replacement policy.
Building confidence. As mis-predictions restricts SpOT’s effectiveness, we add a 2-bit satu-
rating counter for each prediction entry. When an offset is firstly fetched into the prediction
table the counter is set to 1. Correct predictions increase the counter by 1 and mis-predictions
decrease it. Predicted physical addresses are fed to the processor only when the counter is >1.
When the counter is <=1 no speculation is performed. Predictions, though, are still calculated
and compared to the original hPA at the end of each nested page walk to update the confidence
counters. Finally, an entry is replaced with a new offset only when the counter equals 0.
Preventing thrashing. To further boost SpOT accuracy, we involve the OS into filtering offsets
with low prediction potential. If the prediction table is updated on every TLB miss, offsets that do
not belong to large contiguous mappings may thrash it. Such offsets will never gain confidence
to enable predictions and will evict valuable offsets from the table.

We mark translations that belong to larger contiguous mappings using a reserved bit in their

corresponding page table entry (PTE), similar to vVRMM. In detail, the OS (CA paging) sets this
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bit at the end of a successful allocation (page fault) when updating the PTE. The OS checks if the
neighboring PTEs have the bit set, i.e., belong to contiguous physical pages. If that bit is not set,
the OS examines whether the last allocation extended a contiguous mapping beyond a threshold
size. If so, the OS sets the bit to all PTEs that belong to that contiguous mapping, establishing its
offset as candidate to trigger predictions. Even CA paging could dynamically adjust the threshold
based on its contiguity statistics, we currently empirically set it to 32 contiguous pages. With
nested paging, the guest and host OS sets the bit in the gPTs and nPTs, and the nested page
walker updates the prediction table only if both bits are set. This optimization crosses the border
of micro-architecture but we consider it a very simple and cheap mechanism. Note that still the

accurate size and boundaries of contiguous mappings are not calculated or tracked.

Hiding the verification page walk cost. With SpOT the page walk can be entirely or partially
overlapped with useful work in case of correct prediction. This can include prefetching data using
the speculative address translation, overlapping the page walk with the data fetch cost [55,109,
178]. In case the processor allows aggressive speculative execution, it can execute instructions

that depend on the missing translation/data, increasing further performance opportunity.

4.4 Discussion

4.4.0.1 SpoT Security Considerations

Speculation has been identified as a source of security vulnerabilities through cache side-channel
attacks [62,[107]. Transient unsafe loads (USLs [[107]) executed at a hardware mis-speculated
control/data path can transmit secret data via micro-architectural covert channels before the
mis-speculation is resolved. In example, USLs are the loads that are executed after branch pre-
dictions (Spectre attacks [139]) or the loads executed after exceptions (Meltdown attacks [[150]).
SpOT introduces a new unsafe memory instruction, i.e., load missing in the TLB, that an attacker
can exploit to read data from unauthorized memory locations. The loads that follow a SpOT pre-
diction are considered USLs until the prediction is verified. Fortunately, proposed mitigation
techniques [[135, 224, 225] for Spectre/Meltdown-type attacks also mitigate SpOT’s vulnerabili-
ties. Specifically, those techniques fetch and keep the data of USLs in a speculative buffer and do
not commit their changes to the cache hierarchy until the loads are considered safe. Preventing
USLs from changing the cache micro-architectural state effectively blocks all cache side channel
attacks. Note that such mitigation techniques are necessary for secure execution regardless of
SpOT’s presence. Section discusses the performance impact of SpOT when such mitiga-
tion techniques are employed. Finally, SpOT does not speculatively change the TLB state, so no
additional mitigation for MMU attacks [208] is required.
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4.4.0.2 CA paging Considerations

VMA size. CA paging targets big-memory applications that suffer from high translation over-
heads. Such applications typically have a few large VMAs. If an application has multiple small
VMAs, CA paging will inherently create multiple contiguous mappings due to the discontinuities
in its virtual address space. Such applications may not benefit from the translation schemes that
CA paging supports.

Reservation. Under severe memory pressure, different processes or VMAs may end up compet-
ing for the same scarce contiguous physical blocks. To shield contiguity, CA paging could employ
reservation [[161,202]. In this paper we opt for best-effort strategies and consider reservation for
future work.

NUMA placement. CA paging is currently aligned to the vanilla Linux policy with respect to
NUMA placement. Extending demand paging, it allocates pages from the node local to the core
that makes the allocation request. We have not examined autoNUMA, a technique that migrates
pages across nodes tracking locality via periodic hint page faults. We consider extending CA

paging to support autoNUMA faults —migrating pages to contiguous space—- for future work.

4.5 Evaluation

OS prototype and server machine. We prototype CA paging in Linux v4.19 for anonymous/copy-
on-write page faults and page cache allocations. We use Qemu/KVM v2.1.2 for virtualized exe-
cution. Our code and scripts are publicly available on GitHubf. Table .3 summarizes the con-
figuration details of our experimentation system. In our study, we focus only on the costly L2
STLB misses that trigger page walks; hence, we refer to those as TLB misses for simplicity.
Contiguity results. We collect statistics for contiguous mappings through page table informa-
tion. We use the standard pagemap [[14] API for native execution, and we develop an in-house
virtual-machine introspection (VMI) tool with similar functionality for virtualized execution. For
the latter, the guest OS exposes the application’s guest page table to the host (registering its lo-
cation in the guest physical address space), and then the host reads and combines the guest and
the nested page tables info to calculate a full 2D translation.

Hardware emulation. We emulate various hardware address translation schemes by instru-
menting the TLB misses that trigger page walks in our real system as applications run with
BadgerTrap [100] in the guest OS. BadgerTrap uses page table marking to force TLB misses to
cause page faults and enables hardware emulation in special fault handlers. For SpOT, we use a
4-way set associative prediction table of 32 entries. For Direct Segments (DS), we use the dual

direct mode [[101] that allows direct 2D gVA—hPA translation through a single direct segment.

*https://github.com/cslab-ntua/contiguity-isca2020.git
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Native Environment

2-socket Intel Xeon CPU E5-2630 v4 (Broadwell)

Processors 10 cores/socket, hyperthreading disabled, 2.2GHz
L1DTLB 4K: 64-entry, 4-way set associ.ati.%

2M: 32-entry, 4-way set associative
L2 DTLB 4K/2M: 1536-entry, 6-way set associative
Memory 256G (128G per socket)
oS Debian Linux v4.19

Fully-Virtualized Environment

VMM QEMU (KVM) v2.1.2 20vCPUS 2-socket
Memory 256G (128G per socket)

Host/Guest OS Debian Linux v4.19

Emulated hardware

Direct Segment Dual direct mode (single 2D segment)

vRMM Range TLB: 32-entry, fully associative

SpOT Prediction Table: 32-entry, 4-way set associative

Table 4.3: System Configuration.

For vRMM, we use a fully-associative range TLB of 32 entries and we implement the guest and
nested range tables as flat arrays, rather than B-trees. To identify the boundaries of 2D trans-
lations inside the guest OS, we expose the nested range table to the guest at a reserved guest

physical address area, using the standard nested page tables.

Performance model. We collect statistics from performance counters with perf (CPU cycles,
TLB misses, page walk cycles) to quantify virtual memory overhead. In more detail, we use
PAPI [204] commands injected in the benchmarks code to exclude their initialization phase. To
keep a common baseline, we adopt the same methodology of prior works [47,83,101,[130,178]. We
identify the ideal execution time of zero address translation overhead (T;4c4;) and then compare
all measured and simulated overheads to the ideal execution time using a simple linear perfor-
mance model. For vRMM, we assume that the latency of the nested range table walk is hidden
entirely in the background. For SpOT, we assume that: (i) correct speculations hide the entire
TLB miss cost, (ii) decisions to not apply speculation expose the entire TLB miss cost, and (iii)
mis-speculations add extra 20 cycles for flushing the pipeline [178] on top of the TLB miss cost.
For DS, we assume the dual direct mode that provides gVA—hPA address translation. Table .4

summarizes how we compute virtual memory overheads for the various configurations.
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Performance Model

Ideal execution time Tideal = Trap — CrHp
Native 4K/THP overhead  O,x/rrp = Cix TP/ Tideal
Virtual. 4K/THP overhead Oyx/vrrp = Coar jorap/Tideal

vRMM overhead Ovrvm =(Msin * AvgCyrp)/ Tideal
DS overhead Overps =(Msrar * AvgCuoar)/ Tigeal
Ospor =((N Psrm * AvgCyrap)+M P+

SpOT overhead b Y

P (AvgCyrup + MPpenalty))/T:ideal
T: Total execution cycles AvgC: average cost of page walk
C: Cycles spent in page walks Mgras: Simulated page walks
MPpenalty: 20 cycles MPg;ps: Simulated mispredictions

v4K/vTHP: 4K+4K/THP+THP NPgsps: Simulated no predictions

Table 4.4: Performance model based on hardware performance counters and hardware emulation
with BadgerTrap [[100].

Workloads
OpenMP  hashjoin microbenchmark 102G
(10 threads) XSBench [206] 128G
Liblinear SVM [94], kdd12 dataset 29G
Serial Ligra PageRank [[192], friendster graph [147] 78G
BT (NPBe [41]) class E 167G

Table 4.5: Workloads description and memory footprint.

Workloads. We use a set of memory/TLB intensive workloads, single- and multi- threaded,
from graph analytics, high performance, and machine learning domains (Table [£.5). Note that
we run PageRank with a single thread to enable comparison with Translation Ranger [227] as
multi-threaded execution was erroneous. CA paging results remain similar for both the single-

and multi-threaded version.

4.5.1 Results

We first evaluate the impact of CA paging on the creation of contiguous mappings in both native
and virtualized environments. We then evaluate SpOT that exploits the contiguity of CA paging

to mitigate the address translation overhead in virtualized execution.
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Figure 4.14: Contiguity performance without memory pressure for native execution.

4.5.1.1 Software Results: Contiguity-aware Paging

We compare CA paging with: (i) default paging—THP, the default OS technique that supports
transparent 2M allocations, (ii) Ingens [[143], a transparent huge page management framework
that performs asynchronous huge page promotions, (iii) eager paging [[130] that increases the
kernel MAX_ORDER attribute to allow the buddy allocator to maintain larger blocks and uses
them to perform pre-allocations, (iv) translation ranger [227] that coalesces application’s memory
footprint asynchronously using post-allocation page migrations, and (v) ideal paging that applies
an offline best-fit algorithm to find the maximum contiguity that could be provided based on the
contiguity_map’s state before execution. As CA paging is applicable to native and virtualized
execution (Section [£.9), we first present extensive native results to allow comparison with the
other techniques. We summarize virtualized execution performance at the end of this section.
To evaluate the impact on the virtual-to-physical mapping contiguity, we use the memory
footprint coverage of the 32 and 128 largest mappings (higher is better) and the average number
of mappings required to cover 99% of the total footprint (lower is better), averaged throughout
application’s execution time [227]. For all configurations, we use a modified TCMalloc [{17],
that increases maximum allocation as proposed for eager paging [130]. Note that, CA paging
and ranger are independent to the user space allocator. We did CA paging experiments with

standard libc and the results remain unchanged.

Contiguity in the absence of memory pressure. Figure summarizes the contiguity re-

sults when applications execute natively on a machine without external fragmentation. Both
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Figure 4.15: Contiguity performance under memory pressure/external fragmentation. Geomean
results for all benchmarks.

THP and Ingens perform similarly, generating thousands of non contiguous mappings to cover
applications footprint. This is expected behavior as both techniques control and manage contigu-
ity up to 2MB (huge page). CA paging generates contiguity comparable to that of eager paging
and improved compared to translation ranger, avoiding pre-allocations and page migrations. It
covers on average 99% of applications footprint with ~27 mappings, orders of magnitude less
than default paging. The effectiveness of translation ranger for XSBench and hashjoin decreases,
as their allocation phase is significant compared to total execution, and post-allocation migra-
tions takes time to fully coalesce their footprints (Figure &.2H). CA paging performance drops
for the BT workload as irregular faults compete for the last contiguous free blocks of the first
NUMA node, right before it spans to the second. We plan to study this side-effect in the future.

Note that we exclude hashjoin from eager paging results and BT from both eager paging and
translation ranger results. The two benchmarks, either due to memory bloat (hashjoin) or own
requirements (BT), span over two NUMA nodes and those techniques currently do not support
NUMA topologies.

Fragmentation Impact. To profile external fragmentation impact we use a “hog” micro- bench-
mark [[143,1176,[177]. Due to the increased memory pressure, all workloads footprint span two
NUMA nodes as there is not enough free memory in a single node to cover them. For that rea-
son, we turn NUMA off, via Linux kernel boot parameters, to enable comparison of CA paging

with the other techniques. Figure summarizes the geometric mean contiguity results for
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all benchmarks when memory pressure increases from 0% to 50%. We exclude BT as its 167G
footprint does not fit in the "hogged” memory.

Both THP and Ingens perform poorly and similar to the no memory pressure case. This is
expected as our hogging micro-benchmark fragments physical memory in coarse granularities

(>2MB) and thus, there are plenty of free huge pages to back benchmarks’ footprints.
CA paging is fairly robust, outperforming eager paging. It covers ~94% of the footprints

with only 128 mappings under maximum pressure (hog-50) and always follows Ideal paging
(with small deviations). Therefore, CA paging manages to fully exploit the available unaligned
free contiguity in the system. On the other hand, eager paging is highly sensitive to fragmen-
tation due to alignment restrictions. It relies on buddy allocator’s higher order blocks and the
allocator tracks only aligned contiguous blocks. Finally, translation ranger remains almost un-
affected by the increasing memory pressure, outperforming all allocation techniques in 32 map-
pings coverage (better than Ideal paging), as it relies on post-allocation migrations. CA paging,
however, achieves similar performance with respect to 128 mappings and 99% coverage. Gener-
ally, we consider the two approaches orthogonal and mutually assisted; CA paging can generate
early-on contiguity, and if required, ranger’s migrations can further boost it, similarly to how
khugepaged [19] complements THP allocations.

Fragmentation restraint. Previously we evaluated contiguity on an already fragmented ma-
chine; CA paging, though, can delay fragmentation as a machine ages. Figure depicts the
distribution of the unaligned free block sizes after a set of benchmarks runs to completion using
default and CA paging. We notice that a significantly larger portion of free memory is backed by
>1GB blocks. This is attributed to the allocation (and consecutive release) of contiguous pages
and to the long-lived contiguous page cache mappings (Section §.9).

Multi-programmed case. Figure depicts contiguity results while running two instances of
the SVM workload without fragmentation. CA paging provides increased contiguity, avoiding
eager pre-allocations, as the next fit placement policy successfully prevents workloads interfer-

ence over the same free blocks. Translation ranger fails to coalesce the two footprints, migrating

H<=4MB MW<=128MB MB<=256MB Mm<=512MB O<=1GB [©O>1GB

CA paging

THP

0 10 20 30 40 50 60 70 80 90 100
Unaligned free block sizes distribution (%)

Figure 4.16: Free block size distribution after benchmarks execution.
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Figure 4.18: Software runtime overheads normalized to THP.

pages between them across the entire execution. Note that the code released for ranger is not op-
timized to serve multiple processes. Multi-programmed workloads require ranger to scan serially
all processes’ footprint at every defragmentation epoch, penalizing its response time.

Software Overhead Analysis. We evaluate the isolated software overheads of the different
mechanisms when there is no gain from novel larger-than-a-page address translation schemes.
Figure depicts the normalized execution time of benchmarks running on our commodity
hardware. Hashjoin does not run with eager paging as the benchmark spans to two NUMA
nodes with this method and this is not supported. Translation ranger penalty is ~3% on average
due to page migrations. Eager and CA paging add no overhead. We also run a set of TLB friendly
workloads from Spec2017 and find that the execution time is not affected by CA paging. However,
the two paging methods behave differently with respect to tail latency and resource utilization.
Table ft.q summarizes the number of page faults and their average latency (us) measured for all
benchmarks with ftrace [[10]. CA paging does not affect latency while eager paging magnifies it

due to zeroing large blocks. The latter though decreases the total number of faults.
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Table 4.6: Total number of page faults and 99th latency (us).

99th latency (us) Total Number of page faults

THP CA paging Eager paging THP CA paging Eager paging

515 526 80372 45148 45148 67

Table 4.7: Bloat [memory (overhead%)] compared to 4KB.

SVM PageRank hashjoin XSBench BT

THP (MB)  13.3(0.0%)  5.2(0.0%) 3.8(0.0%) 4.7(0.0%) 136(0.1%
Ingens (MB) 1.4(0.0%)  3.3(0.0%) 0.4(0.0%) 1.4(0.0%) 89(0.0%
CA (MB) 13.1(0.0%)  6.8(0.0%) 3.3(0.0%) 6.2(0.0%) 137(0.1%
Eager (GB)  2.3(8.0%) 5(6.5%) 48(47.5%) 0.5(0.4%) 0.1(0.1%

)
)
)
)

Finally, Table .7 summarizes the extra memory allocated by the different techniques com-
pared to demand paging (bloat) with 4K pages. We observe that CA paging and THP perform
the same (bloat up to 136MB), as CA paging builds on top of THP and does not affect the page
size decision. Ingens, on the other hand, decreases it as it asynchronously promotes 4K pages
to huge based on utilization. Note that CA paging can add mechanisms from Ingens to boost
contiguity while preserving the low internal fragmentation that Ingens offers. We plan to study
this combination for future work. Finally, eager pre-allocation suffers the most as it leads to

occupation of multiple GBs that the application will not eventually use.

Virtualized execution. Figure summarizes the results for virtualized execution. We em-
ploy CA paging in both guest and host OS independently, without any form of coordination, and
measure the 2D gVA—hPA mappings contiguity. On average, CA paging decreases the num-
ber of mappings required for 99% coverage by an order of magnitude (~90) compared to default
paging and covers ~86%/~96% with 32/128 mappings. However, we observe that 32 mappings
coverage is slightly worst compared to native execution. This is expected as the contiguous
mappings in the guest and host dimensions are created independently and on a best-effort ba-
sis. Note also that our applications run consecutively without VM reboots. Therefore, unaligned
mismatches between the guest and the host contiguous mappings are more frequent, as the gPA-

to-hPA mappings persist across benchmarks runs (Section f.7).

4.5.1.2 Hardware Results: vRMM and SpOT

We now quantify the execution overhead of address translation and evaluate vRMM and SpOT
in virtualized execution. Figure summarizes our findings. We run our experiments without

extra memory pressure (no “hogging”). We use performance counters to measure the translation
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Figure 4.19: Contiguity performance without memory pressure for virtualized execution.
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Figure 4.20: Execution time overheads due to data TLB misses that trigger page walks in virtual-
ized execution.

penalty in native (hashed bars) and virtualized (solid bars) execution with base pages (blue) and

Transparent Huge Pages (lightblue). We emulate the performance of SpOT, vVRMM and DS [[101].

Paging Overheads. For native execution, our results corroborate all past studies indicating

that address translation overheads are exceptionally high with 4K pages. Overheads above 100%

are due to overlapped page walk cycles and comparison with the ideal baseline. THP reduces
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Figure 4.21: Percentage of TLB misses that SpOT made (i) correct predictions, (ii) mispredictions,
and (iii) no predictions.

substantially the overhead but fails to eliminate it, bringing it to ~7% on average and up to
~13% for SVM. Note >99% of the memory footprint of the workloads is mapped with 2M pages.
In virtualized execution, the address translation overhead is magnified due to nested page walks.

Even with THP on, it grows to ~16.5% on average and up to ~28% for SVM.

vRMM Performance. For vVRMM we use CA paging in both the guest and host OS. Note that
RMM was originally proposed with a pre-allocation technique named eager paging [[130]. We
verify previous section’s observation that CA paging is equally effective, avoiding all drawbacks
of pre-allocation, when memory is not fragmented. vVRMM with CA paging reduce the translation
overheads to less than 0.1% on average. Range TLB hits are always above 95%, reducing the
number of nested page walks. The technique performs slightly worse for SVM and BT due to CA

paging stressing, discussed also in the previous paragraph.

SpOT Performance. For the evaluation of SpOT we apply CA paging in both the guest and
host OS as well. SpOT reduces the translation overheads to ~0.85% on average. The perfor-
mance improves significantly for all applications, but less for SVM and BT. For BT, CA paging
(Figure [.144[4.194)) fails to provide optimal contiguity when the application expands to the sec-
ond NUMA node as discussed in Section .5.1.1. For SVM, CA paging successfully maps 99% of
the application’s footprint with less than 32 mappings (Figure §.19d) but a portion of the observed
TLB misses (~4%) are on a few virtual addresses that fall outside these mappings. SVM has also
high number of irregular TLB misses triggered by the same instruction. SpOT sensitivity to the
access pattern is highly exposed by the hashjoin micro-benchmark as well which makes random
accesses. To better understand SpOT performance, Figure breaks down the percentage of
TLB misses predicted correctly, mis-predicted, and not predicted at all. We observe that correct

predictions can be over 99% (PageRank), while mis-predictions never more than 4% (hashjoin).

Comparison with Direct Segments. Finally, we compare vRMM and SpOT with direct seg-
ments (DS) dual mode [101]. We observe that DS eliminate TLB miss penalty almost entirely.
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Despite its prominent efficiency, the method is rigid, reserving the segment when a virtual ma-
chine boots and abolishing paging. SpOT and vRMM, combined with CA paging, preserves the

benefits of demand paging sustaining high address translation performance comparable to DS.

Security mitigation techniques discussion. As discussed in Section .3, SpOT can be ex-
ploited to leak data from unauthorized memory locations through cache side-channel attacks.
Fortunately, proposed Spectre/Meltdown mitigation techniques [[135, 224, 225] can also miti-
gate SpOT vulnerabilities. However, such techniques introduce performance overheads propor-
tionate to the number of Unsafe Loads (USLs) [224], i.e., loads that are executed in speculative
state. Studying accurately the impact of SpOT USLs requires full system cycle-accurate simu-
lation that is prohibitively slow for our TLB studies. However, we make some rough estima-
tions for the number of SpOT USLs and their impact on performance, assuming the InvisiSpec
design [224, 225]. We use performance counters to measure the number of TLB misses, loads,
cycles, and the average latency of page walk, and we calculate the number of SpOT USLs (Equa-
tion 2 in Table k.§). To put our results into perspective, we also measure the number of branches,
and we compare the number of SpOT USLs with the number of Spectre USLs, i.e., unsafe loads
that are executed due to branch predictions (Equation 1 in Table §.§). We assume a linear dis-
tribution of load instructions over time. Table §.§ summarizes the results for all our workloads
(geometric mean). We observe that the events that trigger speculative execution with SpOT, i.e.,
TLB misses, are a small fraction (0.25%) compared to Spectre’s branch predictions (5%). How-
ever, SpOT’s transient window of speculative execution is much larger (the average page walk
latency is ~81 cycles in our experiments) compared to branch resolution (~20 cycles [178]). In
total, ~3% of total instructions would execute as USLs with SpOT, whereas the percentage of
USLs with Spectre would be ~16%. As InvisiSpec for mitigating Spectre USLs has been shown
to add ~5% overhead [225], we expect that extending InvisiSpec for SpOT USLs would introduce

< 2% overhead. Hence, SpOT’s performance translation benefits would remain still beneficial.

Branches/ DTLB misses/ Spectre USL/ SpOT USL/
Instructions(%) Instructions(%) Instructions(%) Instructions(%)

5.87 0.25 16.5 2.9

Spectre USL = #Branches * Branch Resolution Cycles * Loads/cycle (1)
Spot USL = #DTLB misses * Page Walk Cycles * Loads/cycle (2)

Table 4.8: Estimation of Unsafe Load Instructions (USL).
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4.6 Related Work

Memory Management. Multiple software proposals [[143,158,161,164] improve huge page man-
agement, addressing issues like fairness, memory bloat, increased tail latency, and fragmentation.
Instead, CA paging targets the reduction of translation overheads that persist in the presence of
huge pages, and builds on top of huge page management to create larger-than-a-page contigu-
ous mappings for novel translation hardware. Other proposals control external fragmentation
(106, 166] again in the scope of huge pages, focusing on the allocation [[166] and the reclama-
tion [106] OS routines. In contrast, we study fragmentation in coarser granularities and show
that contiguous allocation beyond the page size can delay fragmentation.

Address Translation Hardware. Bhargava et al. [51] analyzed nested paging translation
overhead and proposed MMU caching and large page sizes. Our experiments show that such
support—that is present in commodity processors—is not sufficient, as the address translation
overhead still remains significant. Other works have focused on the implications of huge pages
and have proposed specialized hardware to support them better [89,95,98,[167,[171,[190,200, 202].
Still, those designs provide limited TLB reach and suffer from alignment issues. SpOT and vRMM
harvest unaligned contiguity to hide the page walk latency.

Multiple works [[102, 214, 238] combine shadow and nested paging to minimize the MMU
virtualization overhead. Our evaluation focuses on nested paging, the state-of-practice virtual-
ization technique. While vVRMM is dependent/complis to hardware-assisted virtualization, CA
paging and SpOT are agnostic to the virtualization technology and directly applicable to shadow
and hybrid paging. Ahn et al. [29] proposed an inverted shadow page table combined with a
flat nested page table, and used speculative execution to relax the synchronization between the
tables. That design modified paging subsystem extensively.

DVM [[109] introduces regions for which the virtual address equals the physical address (iden-
tity mappings) and caches only the translation permissions. An optional enhancement speculates
whether a mapping is identity. DVM restricts the flexibility of common OS mechanisms, e.g.,
copy-on-write and fork. Our approach is compatible with such mechanisms and vVRMM and
SpOT accelerate translations without any virtual or physical special address requirements.

Speculating address translation has been proposed by SpecTLB [45] and Glue [178]. SpOT,
albeit motivated by those designs, differs in some key ways. Their target is to predict the physical
addresses of multiple reserved (SpecTLB) or splintered (Glue) base 4KB pages that belong to a
huge 2MB page. Because such base pages are aligned with respect to their huge page boundaries,
they are promoted to a single speculative huge page TLB translation entry. Hence, SpecTLB and
Glue target to sustain huge page performance under different memory management conditions.
We are the first, on the other hand, to leverage speculation to exploit unaligned, larger-than-

a-(huge)-page contiguous mappings while completely avoiding the complexity of maintaining
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them in software (OS) and hardware. SpOT targets to predict translations far beyond the huge
page limit and the mechanism is completely independent to virtual addressing and alignment.
In a sense, SpOT builds on top of the idea of range translations without tracking them; instead
it exploits instructions memory locality combined with inferred mappings contiguity to predict
translations. Finally, SpOT’s prediction mechanism bears similarities to SIPT [239] as they both
use a PC indexed prediction table of offsets, but they target different problems and use different
mechanisms. SIPT targets to speculatively index larger L1 data caches, predicts just a few (e.g., 1-
3) bits of a physical address, and requires a complex perceptron confidence mechanism to throttle
mispredictions. Instead, SpOT targets to predict the entire physical address translation to hide
the cost of TLB misses without any complex confidence mechanism.

Several mechanisms reduce the cost of page walks either targeting alternative page table
representations [31, 194, 234], enhanced MMU caches [44, 52], direct page table indexing [[155],
or page table replication [25]. SpOT is orthogonal as it hides page walk latency under specu-
lative execution. TLB prefetching can also reduce TLB misses by predicting the next missing
translation [57,[127,[188]. Instead, SpOT predicts the actual address translation itself.

Finally, prior works propose: (i) storing TLB data as part of the memory subsystem [[154,184],
(ii) pinning frequently accessed pages with poor temporal locality to reduce the number of TLB
misses [92], (iii) modifying TLBs to better accommodate chip multiprocessors [56,197,237] and
(iv) reducing TLB shootdown overheads through hardware [40, 182,209, 228] or OS [34,35,141]
optimizations. Both vRMM and SpOT are orthogonal to those mechanisms, as they are either
redundant to the page TLB hierarchy (VRMM) or working on the page TLB miss path (SpOT).



CHAPTER 5

Stressing the Limits of Memory as a File Interface

5.1 Overview

Persistent memory (PMem) is a new storage technology [[119,[186] that is connected to the system
via the memory bus, like DRAM, and is accessible via CPU load and store instructions. The tech-
nology uniquely combines four characteristics: (i) scaling capacities, (ii) byte-addressability, (iii)
latency/bandwidth close to DRAM, and (iv) non-volatility, blurring the decades-old distinction
between slow but persistent storage and fast but volatile memory.

With PMem, storage accesses can be cheaper than OS invocations, so reducing the OS over-
heads is a strong requirement. The DAX (Direct Access) interface [4] can map persistent memory
directly to user-space, enabling applications to access storage via regular load/store instructions.
Multiple works [[15,[74,90,125,[142,[162,211,219, 220,221, 222] attempt to reduce PMem software
stack overheads e.g., by optimizing file systems [67, 216], or designing them from scratch as
PMem-aware to optimize metadata operations [[125,221,222,230]. This work focuses on a differ-
ent part of the stack: the performance of DAX memory-mapped file access. We refer to this as the
memory-mapped (MM) file interface.

Prior research focuses on MM overheads deriving from the until-recently necessary DRAM
buffering of the data (page cache) [[168,170]. PMem and DAX-mmap remove this necessity, as
files are already stored in byte-addressable memory. Despite the true zero-copy access that they
provide, we find that memory-mapping can still be significantly slower than system call file

access. The overheads have two sources. First, fast storage exposes the overheads of Linux

72
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mmap operations. Second, direct access to fast storage enables new use cases for mmap; e.g.
replacing read system calls with mmap operations for applications that access numerous small
files (e.g., web and mail servers). Such new use-cases, change the traditional mmap workload
and expose new overheads not previously important.

In this thesis, we analyze how Linux behaves when it maps files stored in PMem and observe
that the interface’s generic design often assumes that file mappings refer to DRAM resources.
For example, all file mappings are populated lazily via page-faults and deleted synchronously
to save scarce volatile memory. Such savings are irrelevant with PMem and DAX-mmap. In
addition, hardware-maintained metadata — page access and dirty bits — target and drive efficient
volatile memory management. By design they assist the selection of victim pages to reclaim page
cache memory. With PMem and DAX, page cache management is no longer necessary. From
this analysis, we identify multiple opportunities to remove unnecessary overheads targeting a
design that comes close to the limits of what hardware can provide for MM direct access to
byte-addressable storage.

We propose DaxVM, an efficient interface to byte-addressable storage, that extends the Linux
virtual memory and file system layers. To reduce latency, DaxVM maintains shareable pre-
populated page tables per file (file tables) and (de) attaches them to processes’ address spaces
during mmap. This eliminates paging costs and enables fast O(1) operation [201]. To improve
scalability, DaxVM provides support for ephemeral file access patterns, e.g. opening multiple
small files, reading/processing the data once, and closing them. Such concurrent access usually
dictates the use of read/write system calls, as contention over virtual memory locks makes MM
access prohibitive. DaxVM introduces a dedicated lightweight virtual address space manager
that enables ephemeral MM access scaling to many cores. DaxVM also provides batched, asyn-
chronous unmapping operations to minimize TLB coherence overheads. It also minimizes and
potentially eliminates kernel-space dirty tracking overheads for applications that manage dura-
bility from user-space. Finally, DaxVM introduces asynchronous background block zeroing on
PMem file systems to deal with the inherent double-writing costs of MM append operations.

DaxVM combines these techniques under a new high- performance interface for persistent
memory operations providing new m(un)map calls. Separating the current unified volatile and
non-volatile interface supports the observation that usage patterns for persistent and volatile
data may differ substantially, enabling distinct optimizations.

Some of DaxVM’s mechanisms are inspired by prior works; however, those works targeted
different setups (e.g., block mapping for flash storage [112] or lazy unmapping for volatile mem-
ory [[141]), required hardware extensions [[112], or described high-level ideas [201,223]. Our
work combines these into an interface to persistent memory, implements them in a real operating
system—enabling us to study the complexity and the details of their realization and synergy—and

evaluates them with commodity hardware.
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Despite tailoring for byte-addressable storage and PMem, various DaxVM aspects, e.g., file
tables and virtual memory scalability optimizations, are relevant for fast access to other high-
performance storage mediums (Section p.6).

We implement DaxVM in Linux 5.1.0 with the ext4-DAX [216] and we make it publicly
availablel. For multi-threaded workloads operating for short time intervals over multiple small
files, e.g., Apache [2], DaxVM improves standard mmap performance up to 4.9 x. It also reverses
the trend that favors read for such setups, outperforming it by up to 1.5%. It comparably boosts
the performance of other applications with ephemeral access patterns that do not move data out
of PMem (e.g., text search like ag [[18]),. DaxVM also increases system availability, providing fast
boot times for PMem databases [[16]. It can finally provide up to 2.95% better throughput than
baseline MM for PMem-optimized key-value stores [118] running on a fragmented ext4 image.

This chapter makes the following contributions:

o It details the inherent costs of MM file access and we identify virtual memory features that
assume data are always buffered in DRAM. We show how byte-addressable storage attributes

can be leveraged to control the costs.

« Itintegrates file tables with a well-tested kernel-space file system (ext4) and show how they can
eliminate paging costs via O(1) mmap. We study the address translation overhead implications

of placing page tables on a slower medium (PMem) and show mitigations.

« It exploits the potentially ephemeral lifetime of DAX mappings and their access characteristics
for fast address space (de)allocation and lazy unmappings, significantly improving DAX MM

scalability to many cores.

« It shows that block pre-zeroing is an inherently different requirement for MM access than write
syscalls which undermines MM benefits. We demonstrate how asynchronous pre-zeroing in

the file system removes this cost.

+ It shows that kernel’s dirty page tracking harms performance even for applications that man-

age durability from user-space, and enable bypassing these costs.

« It shows that a dedicated interface for DAX mappings unleashes optimization opportunities

not possible with POSIX strict semantics.

« It combines all the above in DaxVM, an interface close to the limit of what hardware can
provide for MM access. We provide an end-to-end implementation in Linux and evaluate it on

a real system.

DaxVM is available at https: //github.com/cslab-ntua/DaxVM-micro2022
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5.2 Background

DAX [4] mechanism enables PMem file access without buffering data through DRAM (e.g., copy-
ing files pages in page cache). With DAX-mmap, virtual pages are directly mapped to PMem
physical locations. The OS virtual memory subsystem creates virtual-to-pmem translations and
persistent data can be accessed via load/store CPU instructions.

Memory-mapped and system call file access. Intuitively, memory mapping files holds impor-
tant advantages compared to system call access (read/write), even for traditional block storage.
Memory mapping files spares crossing the user/kernel boundary on multiple same file access,
and always avoids at least one data copy. However, with block devices, file data must still be
copied from the device to the volatile page cache to be mapped. In addition, the avoided extra
copy (compared to read/write) is relatively cheap; from page cache to private per-process mem-
ory locations. Hence, for decades the guidance has been to use memory-mapping over block
devices only when files are big and accessed randomly or multiple times [205].

PMem and DAX mappings offer true zero-copy storage access for the first time. However,
with the faster and direct access storage path, the performance bottleneck moves from the device
latencies to the software stack, with the complex and prohibitively expensive virtual memory
operations being the primary source of overhead. In this paper we seek to study how this affects

the decades-old trade-off between memory-mapped and system call file access.

5.3 Memory as File Interface

In this section we study how DAX zero-copy memory-mapped file access performs compared
to system call access. We aim to understand the inherent overheads of file mapping. We run
experiments on a system equipped with 384GB Intel Optane DCPMM (PMem) in AppDirect mode
with an aged ext4-DAX file system using micro-benchmarks (Section p.5).

One time access. First, we examine the latency of accessing multiple files once: opening them,
reading their content and closing them. This is a common access pattern in server workloads (e.g.,
web servers, mail servers). For memory-mapped access we measure the latency of mapping a file
(mmap), access all its data in-place at 8-byte granularity (sum them) and then unmap it (munmap).
For system call access, we read the file data into a private buffer (read) with one call and consume
them similarly. Figure shows the latency results for a single thread as a function of the file
size. We plot the average of reading up to 50K files or as can fit on 100GB of storage. For small
files (shaded), memory-mapped access is significantly slower than read (up to ~30%) despite the
avoided copy. We refer to this as the small files problem. For larger files, the performance of
memory-mapped access depends heavily on the number of huge persistent pages that back the

mapped file. For files close to 2MB, memory-mapped access performs significantly better than
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Figure 5.1: DAX interfaces: (a) the latency of reading a file once via MM is worse than read system
calls, especially for small file sizes (lower is better), (b) MM read-once access does not scale to
many cores (higher is better), (c) MM repetitive access on a large file can perform worse than
read/write (higher is better). All results are from a system equipped with Intel’s Optane DCPMM
and an aged ext4-DAX [216] file system image (Section b.5). DaxVM significantly reduces latency
and improves scalability for MM, regardless of the file system fragmentation.

system call access as files are 100% huge page covered. However, as the file size increases the
performance drops non-deterministically, depending on the mix of small and huge pages that
back the file, due to fragmentation on the aged ext4-DAX system [[124]. For example, memory-
mapped access performs ~10% worse than read for 1GB file on this run. We did not consider

1GB huge pages in our experiments.

Next, we focus on throughput, and perform the same access pattern but over 32KB files
using multiple threads. Figure shows the operational throughput. As thread count increases,

memory-mapped access does not scale to many cores, corroborating a known problem [59,71,72].

Repetitive access. Figure shows the operational throughput of another common file ac-
cess pattern, that of repetitive operations over the same large file (e.g., databases). We issue
sequential and random 4KB reads and writes over a 100GB file. For memory-mapped access, we
initially map the entire file and use memcpy() [[124,125,220] with AVX512 instructions [149,231]
and non-temporal stores [215] to perform reads and writes [124, 125,149, 220]. We observe that
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FlashMap [i13] O(1) (eoi] Merr [223] ctFS[i4d) DaxVM

PMem storage v v v v
Real OS implementation v v v
Commodity hardware v v

O(1) mmap v v v

Scalable mmap

Fast unmap

Per-process permissions v v v

Dirty-page tracking avoidance

SENIENENENENIEN

Asynchronous block pre-zeroing

Table 5.1: Comparison of DaxVM with prior works that focus on memory mapping storage.

memory-map performs equally (for random access) or even worse than system calls (for sequen-
tial access) [84].

We now discuss inherent memory-mapped access overheads and compare them to system call
behavior. We examine how PMem attributes affect some of the current OS design assumptions.
We discuss prior work and seek ways to minimize the overheads; we target a design to stress the

limits of memory as a file interface.

5.3.1 Virtual Memory Overheads

Memory mapping files inherently involves virtual memory operations that are costly.

5.3.1.1 Paging

Memory-mapped file access requires a page table entry (PTE) for each mapped page of the file.
Linux populates virtual mappings lazily, adding the cost of a synchronous page fault to create
PTEs at page access time.

DAX impact: With block devices, file content is page cache buffered so faulting is important for
fine-grain volatile memory management. With PMem, moving data between storage and DRAM
is unnecessary as files are already in a byte-addressable medium. Also, the entire set of physical
translations is known upfront and changes slowly as it reflects storage locations.

Prior works: Multiple works [112,]149,191,201,219, 223] leverage the concept of page tables
maintained by the file system to translate file offsets to PMem physical locations. O(1) mem-
ory [201] suggests the high-level idea of sharing them among processes to eliminate paging,
following an older proposal for flash SSDs [[112], but the design is only discussed at a conceptual

level. MERR [223] emulates O(1) operations for fast address space randomization and requires
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special hardware to support per-process permissions. SIMFS [[191] implements some key con-
cepts but fails to support file sharing with different permissions and requires a pre-set global
maximum file size. All the above also emulate persistent memory so the performance of persis-
tent page tables remains unclear. Finally, ctFS [[149] integrates file tables to a FS that maps the
entire DAX device to user-space, trading secure (meta)data operations for fast appends. Table p.1l

summarizes the limitations of prior works and the key aspects of the DaxVM approach.

DaxVM approach: We provide flexible O(1) memory mappings via pre-populated file tables
integrated on a well-tested kernel file system, without restrictions and using only existing
hardware on a real system. We manage the potential overheads (e.g., TLB miss costs) of

shared page tables residing on persistent memory.

5.3.1.2 Virtual address space management

File mapping requires (de)allocating an area in the process address space to (un)map the file.
Operating systems serialize address space operations (e.g., virtual address allocation), limiting
manycore scalability of virtual memory. For example, Linux protects the entire virtual address

space of a process with a semaphore (mm—mmap_sem) [80].

Linux also records all allocated virtual memory areas (VMA) in a centralized data-structure
(the VMA red-black tree). This fine-grain recording enables the support of a variety of POSIX
memory operations (partial munmap and mprotect, etc.). However, it induces significant lock
contention when VMAs live briefly (are quickly unmapped). Applications that access many small
files once before closing (e.g., web servers, mail servers) issue frequent (un)map requests but
rarely any other memory operations. On the other hand, applications that repetitively access

files (e.g., databases) commonly use complex operations (mremap, etc.).

Prior works: Clements et. al [70,[71] proposed using concurrent data structures to enable simul-
taneous operations on different address ranges. However, a relevant Linux implementation [80]
showed that the transition is not trivial because the contention may be transferred to range locks

as memory operations commonly affect multiple ranges [140].

DaxVM approach: We focus on file mappings only, and differentiate the address space
(de)allocation scheme based on the expected mapping lifetime and the required operation sup-
port. We provide lightweight file mappings that trade complex memory operations support

(e.g., partial mprotect/mremap) for scalable virtual address space (de)allocation operations.
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5.3.1.3 Synchronous resource release

File unmapping releases virtual addresses and requires maintaining virtual memory coherence.
POSIX dictates that the release occurs synchronously, i.e., before the operation returns. This
requirement for synchrony requires clearing PTEs and invalidating corresponding TLB entries
in local and remote cores (shootdowns). If stale translations remain in the TLB, an application
could access reclaimed physical memory, raising correctness and security issues. Shootdowns are
inherently non-scalable operations, requiring synchronous inter-processor interrupts (IPIs) [48]
that cost up to thousands of cycles [35].

DAX impact: With block devices, unmap operations also potentially release physical resources
(page cache) under memory pressure. PMem mappings no longer occupy volatile memory; thus,
unmap operations release only virtual addresses. The mapped persistent memory is indepen-
dently and exclusively reclaimed by specific file system operations (e.g., when files truncate)
whose frequency is relatively low [42].

Prior works: To avoid scalability overheads, state-of-the-art PMem user-space filesystems, never
unmap the files [125,149]. For example, SplitFS [125] maps files under the hood and keeps them
mapped to user-space until the process dies or the files get truncated. This extreme strategy
raises safety concerns [223]. LATR [141] on the other hand, uses a message-passing mechanism
in place of IPIs to invalidate TLBs locally and asynchronously [72], but in very short time inter-
vals as it targets volatile memory. This general-purpose mechanism is complex, error prone [35],

and still suffers from scalability issues due to its own locking (Section p.5).

DaxVM approach: We focus on file mappings only, and take advantage of the fact that the
mapped physical resources (storage) are reclaimed slowly and independently. We opt for a
simple design of lazy unmapping; we still unmap files but asynchronously and use existing

robust mechanisms to achieve that.

5.3.1.4 Dirty page tracking for file syncing

With block devices, both system call and memory-mapped write access is buffered in volatile
memory and the corresponding pages are tagged as dirty in the OS page cache metadata tree, to
be flushed to disk during sync (e.g., fsync).
DAX impact: Persisting data requires just writing-back dirty CPU cache lines. Thus, DAX
write system calls commonly bypass the CPU caches using non-temporal store instructions to
copy data to the device (e.g., ext4-DAX, NOVA), omitting the need of any dirty tracking.

With DAX memory-mapped access, however, the kernel still has to record the physical re-
gions that user-space dirtied, to be able to flush the corresponding CPU cache lines on sync

operations. Thus, the OS still uses the page cache tree to tag dirty pages when DAX-mmap is
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used. While x86 hardware page walkers set the PTE dirty bit when a page is first written, Linux
also tracks mapped dirty pages in software. It initially marks pages as read-only and relies on
permission faults to detect writes and update the page cache tree [6,181,240]. Sync operations
write-protect file pages again for all mapping processes after flushing, to restart the mechanism.
We measure that performing one msync call every 10 write operations (random access, 1KB each)

on a memory-mapped 10G file causes ~2.8x more faults compared to no sync.

Prior works: DAX mapping allows applications to manage data durability from user-space,
omitting sync system calls. Prior works actually recommend this approach [125,149,220]. The
application can use non-temporal stores or cache line flush instructions (e.g., clwb and sfence)
over DAX mappings to persist file data at the granularity of bytes. However, the OS in those
works still tracks each initial dirty page access and remains oblivious to user-space managed
endurance. In this way, the system remains compatible with sync operations but pays all the

overheads of dirty-page tracking.

DaxVM approach: We drop all kernel-space dirty page tracking activity for applications that

manage durability from user-space, to achieve maximum performance.

5.3.2 Double writing for secure appends

Append operations are write operations that involve block allocations by the file system. To
append a file via MM requires to allocate first new blocks (e.g., via fallocate) and then map them

to user-space for write access.

DAX impact: Append operations via direct access file mappings can potentially leak informa-
tion if storage blocks with stale data (e.g. blocks that deleted files previously occupied) get di-
rectly mapped to use-space without being cleared. To address this issue and secure MM appends,
PMem file systems zero-out blocks during fallocate operations. This necessary block zeroing, in-
troduced by DAX, doubles the written bytes per MM append operation penalizing performance.
We measure that 30-40% of DAX MM append operation latency (fallocate()+mmap()+memcpy()

sequence) is spent in block zeroing, irrespective to the append size.

Appends through DAX write system calls update directly block content and thus it is not
strictly necessary to zero-out the blocks that get allocated in the process to secure operations. In
example, NOVA and PMFS do not zero out blocks during append system calls, they just overwrite
blocks stale data with non-temporal stores. Ext4-DAX, though, zeroes out blocks on DAX append
write system calls as well, to fortify against races between DAX write and DAX mmap calls that

could again end up in leaking stale data via DAX mmap.
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Prior works: The exact same security concerns exist for volatile memory, and multiple works [[165,
179] propose asynchronous page pre-zeroing to control allocation overheads. For storage, asyn-
chronous zeroing is not that simple as it can consume the available bandwidth and stall con-
current requests to the device. It is only considered for SSDs (garbage collectors) due to their

erase-before-write NAND nature and multiple works attempt to mitigate GC overheads [128].

DaxVM approach: Inspired by volatile memory strategies and harnessing the high PMem

bandwidth we adopt asynchronous pre-zeroing in PMem file systems.

5.3.3 Micro-architectural performance

Memory-mapped and system call file access behave differently at the micro-architectural level.
These are fundamental observations about CPU and OS operation that we cannot work around.
TLB performance. Linux maps the entire PMem physical space with huge pages. Thus, the
internal copy of a read/write call benefits from reduced TLB misses, even when files are <2M
or fragmented. But, small file MM access always pays small page TLB miss costs and large file
performance depends heavily on the file system fragmentation and the ability to use huge pages.
Cache performance. System calls copy data, which pre-fetches persistent data into higher
layers of the cache hierarchy. User-space code runs faster hitting in the caches. With memory-
mapped access the user-space code will pay the cost of fetching data from persistent memory.

Vectorization. User-space memory-mapped access can use Advanced Vector Extensions [115],
to perform SIMD operations over file data (e.g., memcpy). This can significantly improve perfor-
mance [96,149,231]. Copies inside kernel system calls cannot benefit from AVX instructions as
supporting them would introduce register save and restore overheads when crossing the user-

kernel space boundary.

5.4 DaxVM

Based on the observed opportunities we design and implement DaxVM, a fast and scalable MM
interface aiming to come close to the limit of what hardware can provide. DaxVM extends the
OS memory-management and file system layers and consists of five key components.

1. Fast paging operations through pre-populated file tables. With DaxVM, the file system
maintains pre-populated page table fragments that translate file offsets into storage physical
addresses. These file tables are attached/detached to processes page tables during m(un)map
operations, eliminating the paging setup and teardown costs of DAX mappings.

2. Scalable address space management for ephemeral mappings. DaxVM maintains a
dedicated heap to serve fast (de)allocation requests for ephemeral mappings. These mappings are

expected to live for short periods and support no other operations (e.g., protection change).
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3. Asynchronous resource release; batching unmap requests. If application correctness
does not rely on synchronous unmapping, DaxVM’s virtual memory layer can optionally defer
munmap operations. It tracks the zombie mappings and releases them asynchronously in batches.
This eliminates frequent fine-grain TLB shootdowns.

4. Low durability cost. DaxVM provides a mode that drops all kernel-space dirty tracking for
applications that manage durability in user-space and opt for maximum performance.

5. Asynchronous storage block pre-zeroing. DaxVM extends PMem file systems to asyn-
chronously zero out storage blocks when they are freed (e.g., unlink, truncate).

DaxVM comes as a new interface, with stripped-down POSIX features and relaxed restrictions
targeting performance (Section p.4.6). It adds two new system calls: daxvm_mmap and daxvm_
munmap along with new optional flags.

DaxVM speeds applications that perform frequent m(un)map operations, e.g., briefly process
small files, applications sensitive to paging (e.g., databases), and allocation-intensive workloads
especially on fragmented FS images.

We implement and evaluate DaxVM in Linux 5.1 and the ext4-DAX [216] and NOVA [221] file
systems. We target the x86-64 architecture. DaxVM primarily targets DAX-aware file systems
that relax data operation atomicity for performance (e.g., NOVA relaxed [221], xfs-DAX). They
allow in-place updates on DAX mappings. Atomic copy-on-write updates, e.g., shadow paging,

negate DaxVM benefits with frequent page table updates.

5.4.1 O(1) mmap

DaxVM maintains pre-populated page tables per file (file tables), and (de)attaches them to process
address spaces during m(un)map operations. This eliminates paging costs and provides instant
access to files irrespective to their size (O(1) operation). Prior work [201] discussed O(1) memory
conceptually without any implementation, while others simulated its functionality [223]. Here

we focus on designing and implementing O(1) performance in a real system.

5.4.1.1 Pre-populated File Tables

They are fragments of an x86-64 page table (radix tree) and translate file offsets to PMem ad-
dresses. For example, if a 1MB file is stored in pages P1-P256 of PMem, the file table stores the
addresses of P1-P256 starting from index 0.

Maintenance. Upon storage allocation (e.g., append), DaxVM populates the file’s tables with
the physical addresses of the newly allocated PMem pages. Upon storage de-allocation (e.g.,
ftruncate), DaxVM clears the file table entries and/or frees the corresponding file tables.
Fragments instead of entire trees. Files usually shrink/grow sequentially and densely at the

end of the file. Unlike the sparse population of virtual address spaces, this characteristic makes
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Figure 5.2: DaxVM maintains pre-populated shared file tables and attaches them to processes
address spaces for O(1) mappings.

it possible to build file tables in a bottom-up fashion. For small files, we use a single 4KB page of
PTEs, and expand in 4KB increments. In Figure 5.4 only the PTE level of the radix tree is needed
to hold the translations of inode 2. This bottom-up maintenance controls file tables storage tax.
Huge Pages. For aligned huge page blocks in larger files, DaxVM supports huge PMD entry
formats. To simplify the description, we consider the general 4KB block condition.

PTE status bits. Page table entries also maintain status bits to record per-page process access.
Surprisingly, we find that most of these bits track metadata mostly relevant to volatile memory
management: the access and dirty bit are mainly used for page cache evictions and volatile
memory reclamation. DaxVM drops their maintenance in the file table entries, as reclamation
happens explicitly during file delete for DAX mappings. DaxVM sets the PTE permission bits to
maximum and supports per-process access at 2MB or coarser granularities. Similarly, it manages
durability at coarser granularities. We discuss both in the next section.

Dynamic File Table Management. Tables can be stored both in DRAM and PMem.

Volatile file tables are re-constructed each time the system accesses an inode for the first time,
loading it to the VFS inode cache (cold open). The table’s root pointer is stored as metadata in
VFS inodes. As long as the inode is cached, the tables are updated. When the inode is evicted
from the VFS cache, they are destroyed.

Persistent file tables are stored in PMem pages and survive across power cycles/failures. Their
root pointer is stored as metadata in the file’s permanent inode struct. During table updates, the

table entries must be flushed from the CPU caches synchronously to guarantee persistence. To
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Benchmark DRAM file tables PMem file tables

seq_read 28 103
rand_read 111 821

Table 5.2: Average page walk cycles measured when file tables are stored in PMem or DRAM.
We consider sequential and random 4K access on a 10G memory-mapped file.

Performance Monitor

AvgPageWalk Total Page Walk Cycles / Number of TLB misses
MMU overhead Total Page Walk Cycles / Execution Time Cycles
Rule if (AvgPageWalk > 200 c) and (MMU overhead > 5%) migrate

Table 5.3: DaxVM monitors the average TLB miss costs and MMU overheads to migrate file tables
to DRAM if necessary.

control this overhead, DaxVM leverages that multiple PTEs are usually updated sequentially
within a single operation (e.g., append). When possible, it batches their flushes at cache-line
granularity (8 64-bit PTEs in x86_64).

Persistent tables occupy storage resources but provide good cold-start performance and save
DRAM as they substitute parts of multiple processes’ page tables. Apart from the storage cost,
they introduce higher TLB miss costs, as page table walkers have to access slower memory [26].
Table .4 shows the average page walk latency measured with perf when we perform sequential
and random reads on a file mapped using volatile and persistent file tables. We observe that with
random access and persistent page tables, TLB misses can cost up to 800 cycles. On the other
hand, keeping all file tables always in DRAM can lead to waste of resources, while aggressively
reclaiming them can penalize performance as they will have to be re-constructed frequently.

To keep the best of both worlds, DaxVM maintains volatile tables for files smaller than a
threshold (32KB) and persists them for larger. This policy controls the storage tax which is high
for small files (e.g., for every 4KB file a 4KB PTE is allocated). DaxVM also monitors the MMU
performance of applications via performance counters [[165]; it tracks the average page walk
latency along with the average time spent in page walks (MMU overhead) (Table b.3). If the
latency is above 200 cycles and 5% of the execution time is spent in walks, DaxVM (i) builds
asynchronously volatile tables (copying the persistent ones) and (ii) walks the process tables to
detach the persistent fragments and attach the new volatile. After DaxVM migrates file tables to
DRAM both volatile and persistent tables are maintained.

File Tables and Crash Consistency. For journaling systems, e.g., ext4, file tables are updated
within a journal transaction. When the transaction is committed, the tables are guaranteed to be

consistent and persistent. Similarly, for a logging FS like NOVA, file table updates happen before
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the (meta)data updates are committed (log entry appended). File table PTEs are flushed on write
and re-use the fence from the FS log/journal commit. Incomplete PTEs are recovered on reboot
when replaying open transactions. The overhead of persisting file tables is included in all our

experimental results.

5.4.1.2 Fast table (de)attachment

DaxVM uses file tables to minimize the cost of creating a mapping. When an application maps
a file, DaxVM populates all translations for the requested target file offset (i.e., mmap-populate).
It attaches parts of the pre-populated file tables to the process’s private page table. Figure 5.9
depicts how DaxVM builds a page table in DRAM (blue) up to the PMD level. Then it attaches
the pre-populated file PTE (orange) on the PMD. Attachments enable O(1) mmap operations; the

latency is near constant with respect to file size.

Mapping size. Attaching a file table’s fragment updates interior pointers at some level of the
process’s private page table radix tree. Therefore, the attachment can happen only at certain
granularities/levels, i.e., at PMD, PUD, etc. In addition, the mapping’s virtual address and the
corresponding file offset must be properly aligned, i.e., to 2MB for PMD.

To enable O(1) mmap, DaxVM silently rounds the size and file offsets attributes of the daxvm_
mmap system call to the granularity of the next level of the process’s page table tree. Up to 1GB,
files are mapped using PMD entries at 2MB granularity, and files above 1GB are mapped using
PUD entries at 1GB granularity. This leads to the anomaly that mapping files >1GB can be faster

than smaller files.

DaxVM returns to the user the virtual address that maps to the requested file offset. A larger
portion of the file may be silently mapped (before/after the requested boundaries).

Permission rights per process. With DaxVM, the pre-populated file page table fragments are
shared among the processes that map the same file. The pre-populated PTEs have the maximum
access rights pre-set. To enable different access permissions per process, DaxVM manages the
permission bits at the attachment level (e.g., the PMD) rather than at the PTEs, as the former
belongs to the private part of each process’s page tables. Figure 5.4 shows how two different pro-
cesses have read-only and read/write access rights over the same 2MB file region while still using
the shared file tables. The x86 translation hardware (page walker and TLB) applies the minimum
access rights found at all the page table levels for an address, enabling this strategy [[123].

Copy-on-Write and Fork. Private mappings initially share data and mark all PTEs as read only,
relying on CoWs. To support private mappings, DaxVM initially attaches shared file tables in the
process table tree, On a CoW fault, DaxVM copies the file data and also copies the corresponding
file table leaf(s) into volatile private page(s). At process creation DaxVM sets the child process
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page tables to point at the file’s shared file tables (shared mappings). For private mappings it
follows a same mechanism as CoW. This preserves O(1) mmap for the child.

ASLR. With DaxVM, the address space layout randomization works seamlessly at 2MB granular-
ity. File tables are attached to randomly allocated virtual addresses aligned to 2MB. The file data
will always be located at the same offset within the random 2MB region (alignment restriction).
FS extensions. To support O(1) mmap a file system must be extended to (de)construct and

update file tables during storage block (de)allocations and to attach them during mmap.

5.4.1.3 Virtualization

In this paragraph we discuss how O(1) mmap integrates with persistent memory virtualization
in the current design.

Persistent Memory Virtualization. As discussed in Chapter i, three sets of page tables exist
with hardware assisted virtualization: (i) the guest page tables per process running inside the
virtual machine, (ii) the host page tables for the VMM host process (e.g. qemu) and (iii) the
extended/nested page tables maintained by the hypervisor (kvm) per VM. O(1) mmap can be
used by any process running inside the virtual machine to memory-map a file residing in a virtual
persistent memory device exposed to the VM. Pre-populated file tables will be attached to the
private guest page table tree of the process and most of the guest paging overheads will be
eliminated (as in native execution). If the back-end of the virtual device is a file residing in
persistent memory or a raw DAX device [23], the VMM can use DaxVM O(1) mmap to map
it. The pre-populated tables will be attached to the VMM host process private page table tree,
eliminating host paging. However, the current design does not include any DaxVM extensions
(e.g. extended pre-populated page tables) that could be leveraged to eliminate nested paging
VM-exits and accelerate persistent memory virtualization itself. We plan to explore DaxVM
virtualization in the future. Currently the attached tables on the VMM host page table tree just

accelerate the VM exit routine, that would otherwise have to execute host page fault code.

5.4.2 Ephemeral mappings

As discussed in Section .3, the centralized locking of a process’s virtual address space prohibits
issuing parallel frequent m(un)map operations as they cannot scale to many cores [60]. This al-
most excludes MM as an interface for a common file access pattern: open a file, quickly process
its data and close it. An old study on distributed file systems shows that 75% of files are open
for less than a quarter of a second [42]. We refer to this as ephemeral file access, and DaxVM pro-
vides a dedicated address space manager for ephemeral mappings of persistent memory files. It
builds its strategy for better scalability on the idea that such mappings do not require support

for complex virtual address space operations beyond unmap.
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Figure 5.3: DaxVM ephemeral VMAs.
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Ephemeral heap. DaxVM pre-allocates a virtual address range (ephemeral heap) in the process’s
address space and manages it independently to (de)allocate virtual address regions for ephemeral
mappings. The allocator’s objectives are similar to a user space heap allocator (e.g., malloc()): to

quickly allocate and free address regions. It does not support splitting and merging of mappings.

Our current heap implementation leverages short mapping lifetimes to perform linear allo-
cations. The heap is dynamically extended in virtual regions of 1GB, to avoid exhaustion. Each
region’s virtual addresses are reclaimed only when all the mappings populating it are destroyed,;
tracked by a counter. Thus, currently allocations from the ephemeral heap resemble a stack; but

other allocation schemes can be applied.

Ephemeral mapping visibility and tracking. Only munmap operations are allowed for ephe-
meral mappings; any other operation (mprotect, mremap, etc.) that falls inside the heap’s range
returns an error. As complex per-mapping support is omitted, ephemeral VMAs do not need to
be recorded by the virtual memory’s core data structures, i.e., the VMA red-black tree (mm_xb).
It is sufficient that the manager records only the aggregate ephemeral heap region. This enables
tracking ephemeral VMA’s in a dedicated data structure, a list (or a tree) associated only with
the heap (Figure b.3).

The major advantage of this design is that lightweight locking can be used to protect this
structure, avoiding contention over the global manager’s locks. In Linux, the entire address space
of a process is protected by the heavily contended mmap semaphore [80], which mainly protects
the VMA tree. Table p.4 summarizes the main code paths that contend for the semaphore for
insight. DAX mappings inherently aren’t involved in paths that target volatile memory manage-

ment (set A). On top of that, DaxVM ephemeral mappings do not fault often (only for dirty page
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Reader/ DAX Ephemeral

Path Target Writer Mappings Mappings
Khugepaged
Ksm Volatile Memory

A Mlock Management RwW X X
Madvise
Mempolicy

B Page Fault Populate Mapping R v/ X
Mremap Resize mapping

C Mprotect Change Perm R/W v/ X
Exec Set up binary
Mmap Create Mapping
Munmap Dissolve Mapping

b Fork Duplicate mm W v v
Msync Flush dirty pages

Table 5.4: Paths acquiring the mmap semaphore and their involvement in DAX and ephemeral
mappings management.

tracking) (set B) nor support memory operations (set C). This leaves mainly m(un)map to contend
for the semaphore (set D); simplifying the design of a more scalable address space manager.

We use atomic operations to update heap’s metadata and a spinlock to protect the ephemeral
VMA list. Heap (de)allocations hold the mmap semaphore as readers. The idea of VMA locks
instead of a global semaphore has been discussed [75], with the concern that they could lead
to contention for one big VMA lock. In our design, ephemeral heap locking scales because the
operations that take place under the lock are stripped down and fast.

Ephemeral VMAs are still visible to the file system. They are attached to the address space
trees that track the VMAs that map each file (address_space—i_mmap). This enables their man-
agement (e.g., unmapping) by the file system.

5.4.3 Optimized munmap

Unmapping a virtual region involves three steps: (i) clearing/destroying the page tables, (ii) in-
validating the local and remote TLB entries (shootdowns) that cache the region’s PTEs, and (iii)
releasing resources. DaxVM detaches file tables instead of destroying them.

Async unmap. TLB shootdowns are inherently non-scalable as they require IPIs. Linux batches
the virtual addresses of a single munmap request to perform a cheaper range TLB invalidation

(one IPI) instead of individual page shootdowns. After a certain threshold (33 pages for x86), it
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opts for a full TLB flush as the gains of the flush are estimated to outperform the penalty of the
TLB misses introduced.

DaxVM builds on this strategy and gives the option to not perform munmap operations syn-
chronously at all. It records the VMAs that the user requested to unmap, the now “zombie” VMAs,
and defers their unmapping to batch TLB invalidations across requests. It tracks the total number
of zombie pages and when a threshold is reached, it tears down their corresponding page table
entries and performs a single full remote TLB flush on the cores that the application runs. It does
so on the munmap request that exceeds the threshold. Apart from the key advantage of replacing
frequent TLB invalidations with fewer, cheaper, entire TLB flushes, the virtual memory locks are
also held for shorter periods.

File system races. While an unmapping is deferred, the size of the mapped file may change
if the file gets truncated or even deleted. DaxVM maintains safety by synchronously forcing

unmappings if storage blocks are reclaimed.

5.4.4 Durability management

DaxVM fully supports msync and fsync calls in the same way as default DAX through permission
faults. DaxVM tracks dirty regions at 2MB or coarser granularities, as access permissions are held
at the attachment level of the file tables. For example, if a 4KB page is written, DaxVM will mark
the entire 2MB region as dirty in the page cache. Note that the same happens if a huge page
backs the file. This can potentially penalize fsync calls, but reduces dirty tracking overheads, as
fewer permission faults take place (Section p.5).

DaxVM does not require userspace durability management to work properly. But to further
stress performance limits, DaxVM has a nosync mode for applications that manage durability
from user-space [220]. In this mode, it does not track dirty pages via permission faults and does
not record them at all in the page cache metadata tree. In a nutshell, it drops sync operation
support (e.g., msync), which becomes a no-op, and data durability becomes entirely a userspace
responsibility. This creates a race condition if a file is mapped via DaxVM and POSIX simulta-
neously: data modifications of the DaxVM mapping might not be captured by the msync() op-
erations of the POSIX mapping. To manage this, DaxVM pushes the cost to the POSIX process,

which flushes the entire file during its msync().

5.4.5 Asynchronous block pre-zeroing

DAX memory-mapped append operations — unlike system calls — inherently require the zero-
out of the newly allocated blocks for security reasons, doubling the write activity and penalizing
performance by ~30-40% irrespective to the append size. DaxVM extends the file system to

pre-zero blocks asynchronously to avoid this cost.
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DaxVM does not interfere with the file system block allocator, to avoid inducing involun-
tarily external fragmentation to the system. With storage, external fragmentation matters in
the granularity of extents — rather than pages — which can grow up to multiple MB. Instead,
DaxVM hooks the file system’s free operations. Upon a file truncate operation, the blocks to be
freed are kept on per-core lists instead of being immediately released to the FS block allocator. A
rate-limited kernel-thread periodically scans the lists and zeros-out blocks using non-temporal
store instructions for persistence and to minimize bandwidth consumption [231]. Once a whole
set of blocks-to-be-freed is zeroed, they are released to the allocator. Per-core lists preserve the
scalability of free operations.

With PMem, more so than volatile memory, pre-zeroing consumes precious bandwidth and
can potentially penalize other operations. To avoid BW saturation we throttle bandwidth to a

configurable amount on an idle core.

5.4.6 DaxVM forms a new relaxed interface

Many of DaxVM’s mechanisms relax some of POSIX strict requirements and abandon some
POSIX functionalities, e.g., advanced memory operations support for all file mappings, to draw
performance. Interfaces’ impact on scalability and performance is a formally studied topic [[72].

DaxVM interface consists of two new system calls (daxvm _mmap and daxvm_munmap).
Daxvm_mmap implements O(1) file tables attachment and currently supports shared mappings.
From the rest of the POSIX flags, DaxVM currently supports MAP_SYNC and adds three new flags.
MAP_EPHEMERAL: the mapping is expected to be brief and does not need any memory opera-
tion support. This flag activates the ephemeral address space allocator.
MAP_UNMAP_ASYNC: the program does not require access faults right after unmap. Activates
asynchronous unmapping.
MAP_NO_MSYNC: this flag is combined with MAP_SYNC and means that the program will not
rely on msync functionality at all. This flag activates the no sync mode, where all dirty page
tracking is dropped and msync becomes a no-op.

We now discuss how DaxVM affects other operations.
Memory protection. Partial mprotect system calls over DaxVM mappings fail. DaxVM only
allows changing the permissions for an entire mapping. Moreover, when the MAP_EPHEMERAL
flag is set, any mprotect call fails.
Mremap. Similar to mprotect, DaxVM allows only mremap calls on the entire mapping (e.g., to
resize) and fails if MAP_ EPHEMERAL is used.
Madvise. It is designed for volatile memory management (e.g., page cache), thus DaxVM does
not support it.

Msync. DaxVM supports msync, unless MAP_ NO_MSYNC is used when it becomes a no op.
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POSIX comparison. POSIX maps files in multiples of pages and references beyond the map-
ping’s last page results in a segmentation fault. DaxVM guarantees that at least the portion of the
user requested is mapped, but a portion before and after may also be silently mapped to the pro-
cess address space (for proper alignment that enables O(1) mmap). If the file is extended inside
this virtual portion, the new pages are automatically mapped to the address space. Moreover,
POSIX promises synchronous unmappings. DaxVM relaxes that requirement, but guarantees

that mappings are removed before physical and virtual resources are reassigned.

5.4.7 Discussion and summary

Security and correctness. Daxvm_mmap may map more of the file than requested. If entire
file’s content must not be visible to the calling process, DaxVM must not be used. Also, with
MAP_UNMAP_ASYNC, user accesses to unmapped regions may not trigger an exception for a
time window after a daxvm_munmap call. Correctness is not violated as DaxVM

guarantees that the virtual regions will not be re-used before the page table and TLB entries are
invalidated. However, if an application depends on traps triggered by accesses to unmapped re-
gions (e.g., userfaultfd() or guard pages), MAP_UNMAP_ASYNC should not be used. With respect
to security, if an application expects attacks, e.g., untrusted code injection/execution, DaxVM in-
creases the time that data are vulnerable, keeping them mapped for longer than expected. Note
that some DAX user-space file systems (e.g., SplitFS [[125]) map files under the hood indefinitely.
Applications can limit this behavior omitting the MAP_UNMAP_ASYNC flag.

Huge pages. Currently Linux and various file systems try to control DAX paging overheads
by backing files with huge (2MB or 1GB) pages. DaxVM supports large pages when present,
harnessing their TLB performance advantages. However, huge pages are very sensitive to FS
fragmentation [124], due to alignment restrictions, and cannot be used for files smaller than 2MB.

For both cases, DaxVM eliminates paging and sustains high performance (more in Section p.5).

Programmability. Applications must change to use DaxVM interface, replacing either a read
system call or a POSIX mmap. Simple uses of mmap can be replaced directly, while reads should
be replaced with daxvm_mmap and direct access to the data. MAP_EPHEMERAL is meaningful
for files accessed briefly (i.e., once) and closed, but functionality does not break if used with

mappings of longer lifetime.

Applicability. In a nutshell, DaxVM enables performant and scalable concurrent m(un)map
requests and minimizes paging costs, unleashing DAX benefits also for applications that perform
short-lived accesses to smaller files (a usage previously favoring read/write). DaxVM is still
beneficial to applications that access files mapped for long periods (e.g., databases), especially on

fragmented FS images, acting complementary to huge pages.
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5.5 Evaluation

5.5.1 Experimental Setup

Our experimental platform is equipped with an Intel Xeon Gold 5812T Cascade Lake CPU with
2 x 16 physical cores, with frequency fixed at 2.7 GHz and SMT disabled. Each socket is equipped
with 94GB DRAM and 384GB Intel Optane DCPMM (PMem) in AppDirect mode (3 DCPMM
DIMMs). We limit our experimentation in one socket. To study interfaces performance under
realistic file system conditions, we use the Geriatrix [[12€] tool to age the fs image. We use the

suggested [[124] Agrawal profile [28] and apply 100TB of write activity to PMem (70% utilization).
We implement DaxVM in Linux kernel v5.1.0, incorporating it with ext4-DAX [216], NOVA

[221], and the core virtual memory manager. We use a set of micro-benchmarks and real-world
workloads to evaluate DaxVM in relation to (i) system call file access (read and write) and (ii)
the default DAX-mmap interface. Due to space limitations, our evaluation focuses on the com-
monly used ext4-DAX FS. We discuss where results differentiate significantly with NOVA. We
use the nosync mode when applications enforce durability from user-space. For Linux mmap we
consider both lazy page faulting and pre-faulting (MAP_POPULATE flag — populate). We also
provide some comparison with an asynchronous unmapping technique (LATR [141]). We run

experiments three times and plot the average.

5.5.2 Micro-benchmarks

Because there is no standardized benchmark to profile file memory mapping and compare with
read/write file access [[159,203], we construct our own set of micro-benchmarks. We revisit the
same experiments as in Figure b.1}; we consider: (a) accessing files once — ephemeral access (e.g.,
webservers) and (b) accessing files repetitively (e.g., databases). We use AVX-512 instructions

and non-temporal stores for user-space write access [231].

Ephemeral access. We open 50K files (or 100GB/filesize for >2MB files), briefly process their
content, and close them. For memory-mapped access, we map each file, access its data in-place
at 8-byte granularity, sum them and then unmap the file. For read, we read the entire file with

one system call into a private buffer and then process its data similarly.

Figure .4 reports throughput (MB processed/second) relative to read for a single thread and
as a function of the file size (Figure p.1 shows latency). For small file sizes (shaded), mmap per-
forms ~ 20% worse than read despite avoiding data copies due to paging. Pre-faulting (Populate)
improves performance, as the file size increases, but does not entirely solve the problem; it still
pays the cost of (de)constructing page tables. DaxVM improves throughput by up to 50% over

read for small files eliminating paging with O(1) mmap operations.
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Figure 5.4: Read-once (ephemeral) file access.

For larger files, baseline memory-mapped access is heavily affected by huge page coverage;
reporting better performance for file sizes close to 2MB (e.g., 4MB). As the file size increases
though, performance drops further and becomes non-deterministic due to the increasing number
of small pages involved in the file’s mapping from a fragmented FS. DaxVM’s file tables provide an
almost robust 55% benefit over read and 30-50% over mmap, independent of the FS fragmentation.
Repetitive access over large files. We consider the case of memory mapping a 100GB file and
use memcpy to perform 1KB and 4KB reads and overwrites in sequential and random order. This
microbenchmark [[124] mimics database operations [220]; a use-case favoring memory-mapped
access as it avoids the significant cost of crossing the user-kernel boundary frequently [46]. Fig-
ure 5.5 summarizes our results.

For 1KB access all mmap interfaces outperform read/write access. Notably though, default
mmap performs only 11% better than read for sequential access, despite avoiding 100M system

calls. This is attributed to paging overheads. Pre-faulting (Populate) improves performance for
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Figure 5.5: Repetitive file access.
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Figure 5.6: Kernel-space and user-space syncing operations.

read access, but penalizes it for write. For the latter, it ends up paying the fault overhead twice
for each page of the mapping: (i) pre-population and (ii) dirty page tracking faults (Section 5.3).
DaxVM eliminates all costs via O(1) file tables attachment during mmap and managing durability
either (i) at 2MB granularity irrespective to fs fragmentation (faults) or (ii) entirely in user-space

(nosync). It performs up to 3.9 better than system-call access and 1.9x than default mmap.

For 4KB access, default mmap, even with pre-faults, performs worse than read/write sequen-
tial access. The avoided cost of the fewer system calls is not enough to amortize paging overheads.

DaxVM outperforms read/write calls from 1.3 X up to 2.72x, and mmap from 1.8x to 2.2x.

For the irregular access workloads, DaxVM’s performance monitor detects the high TLB miss
overheads (Section b.4) and migrates file tables from PMem to DRAM. We measure that migrating
the tables provides a 10% performance improvement, avoiding the costly page walks when table

fragments are located in slow PMem.

Sync. With PMem, sync operations are needed to ensure modified file data is flushed from
processor caches. We consider the same experiment as in Figure 5.5, but with a 10GB file and
perform 1000 sync operations after a varying number of sequential write operations. For kernel-
space syncing and MM, we use memcpy and perform periodically fsync. For user-space syncing
we use non-temporal stores and omit the fsync calls. We turn huge pages off, to stress the com-
parison with DaxVM, that always performs flushes at 2MB granularities. Figure 5.6 summarizes
our results for the variable syncing sizes. We omit pre-faulting results, since as discussed do not

benefit write access.

Kernel-space syncing. Kernel syncing of a mapped file performs worse than DAX write
syscalls (up to 68% slowdown). Writes use non-temporal stores and synchronously persist data,
while fsync on a mapped file flushes CPU caches. A prior study [231] shows that non-temporal
stores almost double the bandwidth of cacheline flushes. For smaller syncing (<2MB), DaxVM per-

forms up to an order of magnitude worse than default MM because it always handles durability at
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2MB granularity. However, in a non-fragmented FS image that uses 2MB pages, the default MM
suffers from the same overheads due to huge pages (we measured this). Hence, DaxVM provides
the same sync overhead performance trade-off with huge pages irrespective to FS fragmentation.
User-space syncing. Despite the kernel bypass, default MM performs worse than writes + kernel
syncing (40%). DaxVM performs better and combined with the nosync optimization provides
speedup up to 80%.

Appends. We now examine append performance via the different interfaces. As discussed in
Section .3, MM append operations require an fallocate() to allocate new blocks and then map
them for user-space write access. For security reasons, the OS must zero all blocks before al-
lowing user-space access. Figure b.7 shows the relative throughput achieved appending variable
sizes as a single operation (one system call) on an empty file from a single thread. We compare
against DaxVM (i) without pre-zeroing and with kernel-level page tracking to support sync oper-
ations, (ii) with pre-zeroing, and (iii) with both pre-zeroing and nosync, where the application is
responsible for data durability. Because the results for ext4-DAX and NOVA differ substantially,
we present them separately.

Regarding ext4-DAX, the results show that pre-zeroing can improve MM performance up
to 2x for larger file sizes (DaxVM). For ext4-DAX this reflects also as a benefit compared to
system call appends, as this FS conservatively zeroes-out blocks also on the system call path
unnecessarily. Nosync mode boosts further performance up to ~50%, eliminating entirely dura-
bility management faults and their page cache metadata update operations. For 4MB, default
MM performance improves significantly due to huge page coverage. For very small files (e.g.,
4KB) DaxVM performs worse due to the overheads of page table construction.

On the other hand, NOVA is a PMem-aware file system that does not zero out blocks during
write system calls, but it zeroes them out only during fallocate calls for secure user-space DAX

access. Figure b.7 shows how this inherent differentiation in DAX interfaces requirements leads
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to more than 2x faster write call performance (compared to MM) even for large append sizes
(>1MB). DaxVM’s pre-zeroing narrows this gap, and combined with O(1) mmap (file tables) and
nosync optimizations, DaxVM outperforms write syscalls by up to 45%. It eliminates paging costs
and exposes the user-space benefit of AVX instructions that are unavailable to the kernel. These
results underline the necessity of handling block zeroing asynchronously with PMem storage.
DaxVM storage overheads. DaxVM occupies at least 4KB for files >32KB and adds an overhead
of 4KB per 2MB of data (0.2%). For file tables smaller than 32KB, DaxVM builds volatile files tables.
For the 891MB Linux git tree consisting of 68K small files, DaxVM occupies 25MB of PMem, and
ephemerally uses up to 216MB of DRAM if all inodes are cached in memory.

DaxVM latency overheads. DaxVM benefits come at the cost of (de)constructing page tables
during FS operations that involve storage block (de)allocations (e.g., fallocate/append/unlink).
We measure the latency of appends with and without DaxVM’s file tables. We find that volatile
table construction adds almost zero overheads. But, persistent table construction penalizes op-
erations at worst by ~ 10% for 32KB appends on an empty file, and thereafter the overhead
declines and is entirely amortized for 256KB and beyond. Persistent tables are more expensive

to (de)construct as cache lines are flushed for durability.

All DaxVM benefits discussed so far are attributed to O(1) mmap, durability management and
asynchronous pre-zeroing. We study DaxVM ’s scalability optimizations (ephemeral allocator and

async unmappings) on real-world applications in the next section.

5.5.3 Real-world Applications

In this section we measure DaxVM performance with real-world applications operating over

small and larger files. We change their source code to use daxvm_m(un)map.

5.5.3.1 Small files and ephemeral access

Apache [2] webserver uses the mpm_event module where threads serve requests via memory-
mapped access. They map web pages, copy data into sockets, and unmap them. The scheme
stresses virtual memory due to frequent m(un)map requests. We measure Apache’s throughput
(requests/second) while hosting static 32KB webpages stored on PMem. We use Wrk [12] to
generate HTTP requests, configuring it to run with 16 threads and 16 open connections. We run
Wrk and Apache on the same machine but on different sockets and scale Apache from 1 to 16
cores (socket limit). We run wrk/Apache with multiple webpages of the same size [3] to avoid
the unrealistic scenario of always hitting on the CPU cache when serve a webpage.

Figure plots scalability results for Apache for 32KB webpages, and corroborate that its

scaling is limited by virtual memory performance [35, 141]. Baseline MM access cannot scale
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Figure 5.8: DaxVM allows applications that issue many (un)map requests (e.g., web-servers) (b))
to scale to many cores and exposes the zero-copy advantage of MM over system call access on a
setup that was previously considered prohibitive.

beyond 4 cores, while read scales almost linearly up to 16. To study DaxVM performance we
incrementally add each optimization, starting with pre-populated file tables.

We verify that paging significantly limits MM scalability; DaxVM’s O(1) mmap via file tables
enables scaling up to 8 cores and improves performance by 80% compared to pre-faulting (Pop-
ulate). Address space management is the other severe bottleneck. DaxVM’s ephemeral address
space (de)allocation enables scaling to 16 cores and improves throughput by 100% over file tables
alone. The ephemeral heap operations acquire the mmap semaphore only as readers and use
independent spinlocks for ephemeral address space management (Section 5.4.3). This enables
concurrent m(un)map requests, significantly improving scalability. Finally, for this workload
batching unmap requests does not improve substantially performance over ephemeral mappings
(5%). The latter is sufficient to release the stress from the mmap semaphore. Overall, DaxVM min-
imizes VM overheads and outperforms baseline MM by 4 x and read by 30%.

Finally, we run experiments with a kernel supporting LATR [[141], a mechanism that uses mes-
sage passing to replace TLB shootdowns with lazy local TLB invalidations on context switches.
We run with MAP_POPULATE to control paging costs and find that LATR improves baseline MM
performance by 10% at 8 cores and fails to scale beyond that because shootdowns are not the main
problem. We find that DaxVM with only asynchronous unmapping (without O(1) mmap) out-
performs LATR by 12% because: (i) DaxVM’s batching can be more aggressive as it targets only
PMem - it flushes the TLBs every 33 batched pages, (ii) DaxVM’s batching is very simple, using
existing IPIs, while LATR’s status tracking mechanisms induce contention on its own locks. Note
that DaxVM'’s asynchronous unmapping efficiency depends on the level of batching (number of
pages allowed to be batched). When we increase batching level from 33 to 512, the performance
increases by 20%. However, increasing the batching level increases also the DaxVM vulnerability

window; the extra time that data remain mapped beyond what the user expected (Section p.4.7).
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Figure 5.9: Text search performance. DaxVM improves scalability of applications that never
move data out of PMem (like text search).

Figure shows how webpage size affects performance. It summarizes the relative through-
put results (ops/sec with respect to read) when we run Apache at 16 cores and for increasing
webpage sizes. With read system call access, Apache copies the webpage content from PMem to
DRAM and then from DRAM to a socket, while with MM access it copies it directly from PMem
to socket. As the webpage size increases, the added cost of read’s extra memory copy becomes
more significant. DaxVM eliminates paging overheads and minimizes VM scalability bottlenecks
to expose the zero-copy advantage of MM,; it provides up to 50% benefit for bigger webpages.

Multi-threading vs multi-processing: Using multiple processes to serve requests trades system
resource utilization (heavy processes vs. lightweight threads) for scalability to many cores, as
there is less contention on the VM locks. Apache can run with a hybrid scheme, spawning a
small set of processes with multiple threads each. However we find that even in the extreme
case of using single-thread processes, baseline MM performs at best similar to read and only if
pre-faulting is applied (populate). DaxVM provides 50% benefit over read both with lightweight
threads and on a hybrid configuration, eliminating paging and scalability bottlenecks.

Overall, we note that combining DaxVM’s optimizations under a single PMem dedicated
interface is essential as the techniques operate synergistically. For example, combining asyn-
chronous unmapping with O(1) mmap (applicable only to PMem) boosts the effect of the former,
as shootdowns emerge as a contention bottleneck.

Text search. We now examine an application that operates directly over small mapped files (via
load/store instructions). We use the ag [18] search engine to search the Linux codebase for a
string. The folder contains the source tree (68K files) and a few large files used for git versioning.
Using MM access, the search engine maps a file, searches for the requested string and unmaps it,
while with read it copies the file into a private buffer. Figure p.9 shows that DaxVM outperforms

baseline mmap interfaces and read by ~70% at 16 cores. The application does not spend time
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copying data and DaxVM eliminates contention on the data access interface. Unlike Apache,

asynchronous unmapping further boosts performance by 10%.

5.5.3.2 Large files and long-lived mappings

Our evaluation so far shows that DaxVM is beneficial for applications that issue frequent m(un)map
operations to access data. We now examine how DaxVM affects applications already benefiting
from MM access, operating over large files and for longer periods. For this set of workloads we

only compare against baseline MM access.

5.5.3.2.1 Increasing availability with fast startup times. DaxVM’s mmap can significantly
increase the availability of applications that serve requests from memory-mapped files, as it en-
ables O(1) access to the file data after reboot.

Redis. P-Redis [220] is a PMem-aware version of the
Redis [[16] in-memory key-value store from NVSL [[13,

220]. It consists of a key-value cache and an in- 60| [

dex hash table, both in PMem. When the server is

Redis GET

spawned, it maps both structures and uses loads/s- &40 —— DaxVM
w
. .. Populate
tores for access. Loading data for P-Redis involves é‘ Mr:ap

populating the mappings’ page tables. With baseline 20

MM access this happens lazily during a warmup pe-

riod when client requests trigger faults. Figure 0
0 50 100

shows throughput for the first 2M random get opera- Time (sec)

tions on a 60GB cache that stores 16KB values. Base-
line mmap performance increases slowly (warm-up Figure 5.10: Redis boot

faults) while mmap-populate penalizes server start-up time by 10sec to pre-fault the cache pages
and then provides high throughput. DaxVM gets the best of both worlds, achieving instant max-
imum throughput at no cost.

Firecracker snapshots. Serverless computing benefits from fast function start time to reduce
request handling latency. Function instantiation overheads, particularly after long idle periods,
are known as the cold-start latency problem. Cold starts commonly include boot costs as most
providers use virtualization (fat or micro VMs ) to deploy functions for secure and isolated ex-
ecution. To eliminate boot overheads, the state-of-the-art revisits an old idea: resuming VM
execution from snapshots [[7,207]. After a function instance is fully booted, its complete state is
captured and serialized in a binary snapshot file. When a new event arrives, the function instance
is loaded from the snapshot and can immediately start processing the request, bypassing entirely

the boot process. Loading a snapshot from storage implies that the Virtual Machine Monitor (e.g



100 Chapter 5. Stressing the Limits of Memory as a File Interface

| 1] |
N
— (LTI eea

—————memory size——————
QEMU hVAl V'V'Al | | :I—
DEXVM-mmap/,

KVM | Nested ( Host Linux

Tables hPA (P
(Pmem) Tables

nCR3 DaxVM CR3

I i Eiaishot File i i
PMEM DRAM

Figure 5.11: DaxVM O(1) mmap accelerates the restoration of a virtual machine state from a
snapshot stored in PMem. In this unique set-up snapshot’s read-only pages are never copied to
DRAM, and thus the VM’s physical memory gets essentially backed by PMem [132].

gemu or firecracker) memory maps the snapshot file and exposes it as the instantiated virtual
machine’s guest physical memory. The mapping is marked as private, and any write to the guest
physical address space causes a copy-on-write fault on the host. As the function executes, VM ex-
its are triggered to build both host and extended page tables that map the guest physical address
space to snapshot pages. We examine cold start latencies of Firecracker microVMs [27] when
the snapshots are stored in PMem and memory mapped using DAX. Figure shows such a
unique set-up, evaluated recently by Katsakioris et.al [132]. DaxVM O(1) mmap can be used dur-
ing snapshot loading, to attach the snapshot’s pre-populated file tables to the VMM host process
private page table tree. This can accelerate the aforementioned VM exits, as only the extended

page tables will be built.

Figure summarizes our initial results for a

E= Warm Execution 523 Cold-Populate CNN function that serves image classification re-
== Cold-Mmap B Cold-DaxVM . .
20 quests using a pre-trained ResNet model [111]. We

use 1GB microVMs and we take a snapshot when the

function has loaded the model, ready to serve infer-

[5;]

ence requests. We use two different ResNet configu-

rations with increasing depth of layers. We show the

Time(seconds)
5

e
3

time it takes to serve a classification request when the

function instance is in-memory (warm) and when it
loads from the snapshot (cold). With default MM ac-

cess, cold execution suffers from expensive VM exits

0.0

ResNet101 ResNet152

Figure 5.12: Firecracker Cold-starts
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Figure 5.13: YCSB on RocksDB. DaxVM sustains high operational throughput for databases on a
fragmented ext4 images.

that build both the host and the extended page tables (~70% for ResNet152) for the snapshot
mapping. Applying pre-faults is beneficial for the large CNN but harmful for the smaller one.
Pre-populating the entire mapping of the VM memory sets up host page table entries for regions
that are never accessed by the guest/function; paying the cost without any benefit. DaxVM at-
taches the pre-populated page tables of the snapshot file to the host mapping (host page tables)
via O(1) mmap operations. This way i) it accelerates VM-exits as only extended page tables are
built and ii) remains still beneficial even if parts of the snapshot are never accessed. Cold execu-
tion time with DaxVM drops to only 25% slower than warm. As discussed in Section p.4.1.3, we

consider DaxVM virtualization extensions as future work to eliminate also VM-exits.

5.5.3.2.2 Databases. Finally we examine how DaxVM affects the performance of a database
optimized to use PMem programming.

YCSB on Pmem-RocksDB.. Pmem-RocksDB [[118] is Intel’s PMem-optimized version of RocksDB
[03] that mmaps SSTables/write-ahead logs (WALSs) (placed on PMem) and writes directly to
PMem using non-temporal stores (e.g., nt-store), omitting kernel sync operations [[116]. It also
recycles SSTables and WAL files whenever possible to control paging and zeroing overheads. We
run YCSB workloads on a 50G dataset [[124] and perform ~12M operations (4KB records).
Ext4-dax results. Figure summarizes our results. As discussed earlier, pre-faulting (populate)
hurts performance of write/append intensive workloads (such as Load a, Load e and Run a). For

the rest it performs close to default mmap.
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DaxVM significantly improves performance for applications that perform insert operations
(e.g., Load a, e). DaxVM dirty page tracking faults happen always at 2MB granularities (Sec-
tion b.4), irrespective to the file system’s fragmentation. This significantly decreases the number
of page-faults (10x less) improving performance by ~2.3x. When we pre-zero in advance of
running the workload (shown), performance is further boosted to ~2.8x. With concurrent pre-
zeroing, a 64MB/sec throttle reduces this by 5-10%. Finally, this version of RocksDB enforces
durability from user-space [[116] so we apply the nosync mode that brings performance to ~2.95x

compared to default mmap, eliminating faults entirely.

The main reason why DaxVM is so effective is that default mmap on an aged ext4-dax suffers
from synchronous faults imposed by the MAP_SYNC interface [[78] necessary to safely handle
durability from user-space. On the first write fault on each mapped page the dirty file metadata
(if any) will be synchronously flushed to storage. This triggers journaling transaction commits
on ext4 that severely penalize scalability. On an aged FS, 4KB pages are involved on the mapping
of a file, and thus such faults are more frequent. With DaxVM this happens always at 2MB gran-
ularities (less frequently) irrespective of FS fragmentation, restoring scalability to many cores.

Note that on a fresh file system (100% huge page coverage) default mmap performs similarly.

DaxVM improves also performance by 1.46 x for workload d (that also performs insertions)
and 1.05-1.21x for the rest. All benefits come from fault elimination, as DaxVM’s ephemeral al-

locator and asynchronous unmapping do not affect the long-lived file mappings of the workload.

NOVA results. For PMem-aware file systems that update metadata synchronously and in-place
(such as NOVA) the MAP_SYNC interface becomes a no-op with zero overheads. We run the
same experiments on a NOVA FS image and DaxVM'’s benefits for Load a and e are ~35% com-

pared to default mmap. For the rest of the workloads are ~10%.

Comparison to default RocksDB [|93]. This (Intel) optimized version of the key-value store provides
~1.1x-2.1x benefit compared to the default version, when we run on a fresh FS image. When
run on an aged ext4 image this benefit is penalized (as discussed before). DaxVM sustains up to

2x benefit even on the fragmented FS.

5.5.4 Summary

Table b.5 summarizes our benchmarking observations. DaxVM minimizes paging overheads,
for small and large file mappings, and enables virtual memory operation scalability to many
cores. This boosts the performance of ephemeral MM file access over small files (e.g. webservers),
where baseline MM performs poorly and read system calls are commonly favored. For larger file
mappings with long lifetimes and on commonly fragmented FS images, DaxVM sustains high

MM performance, reducing the paging overheads attributed to the small pages involved in the
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Linux MMIO DaxVM MMIO
Fresh Aged Fresh Aged
(huge pages) (small pages) (huge pages) (small pages)

Low paging overheads

for small files X X

Low paging overheads X

for large files

Operations scalability X X

TLB performance X X

Table 5.5: Summarizing observations.

file’s mapping due to FS fragmentation. On a fresh FS image, DaxVM performs equally to all MM
interfaces by supporting huge pages in file tables.

5.6 Discussion: DaxVM beyond persistent memory

According to Intel’s 2022 Q2 earning release [121], the company is winding down its Optane
Memory business, which is a significant step back for persistent memory research. We do not
consider this as the end of PMem storage design potential and discuss how DaxVM is relevant

and beneficial for other fast storage technologies (despite being designed on Optane).

5.6.1 O(1) mmap and file tables

Byte-addressable storage and CXL. DaxVM is directly applicable to any byte-addressable storage
technology; a design advocated by the emerging Compute Express Link (CXL [85]), e.g., Samsung
has already announced a memory-semantic SSD that is CXL-compatible [[186]. Any such storage
solution, even PCle and byte-addressable Flash NVMe combinations [24], is very close to PMem’s
philosophy and can benefit from DaxVM.

Microsecond-scale PCle SSDs and direct access. State-of-the-art flash memory technologies
have reduced storage-access latency to tens of microseconds [46,175]. Such performance has
exposed system storage stack as an important bottleneck and has questioned DRAM buffering
as a necessary layer leading to various proposals for user-space direct access to storage [65,129,
233]. Such solutions require rethinking and speeding up file system indexing [[162] and even
accelerating it in hardware [[145] for performance and security reasons. DaxVM’s FS file tables

fall into this scope.
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Memory-mapped buffered access. DaxVM’s O(1) mmap and pre-populated file tables can be

integrated as a page cache extension, to speedup traditional buffered storage access.

5.6.2 Address Space Scalability

DaxVM’s ephemeral mappings and asynchronous unmappings are relevant to any memory ac-
cess with ephemeral characteristics. This could apply both to direct or buffered memory-mapped
storage access or even heap mappings. Memory tiering and fast storage rapidly change the us-
age of memory as a now common interface to multiple mediums with varying latencies. This

imposes new challenges to address space management, questioning the state-of-practice.

5.7 Related Work

User-space file systems. Multiple works [66, 87, 125, 142, 149, 211, 235] exploit PMem direct
access via new file system (FS) designs with user-space components. Performing (meta)data
operations directly from user-space avoids syscall overheads, but comes with two inherent chal-
lenges: (i) (meta)data security and (ii) concurrent file sharing. Mapping parts [66,125,[142] or the
entire FS image [[149,211] to user-space for large time frames opens a window for intentional at-
tacks or unintentional errors (stray writes) that can leak data or corrupt the FS image [87]. Such
FS must employ a mechanism to control this that may lead to scalability issues [142,211]. In
addition, many user-level FS do not support memory mapping [[142,211] at all. Kernel-space FS
can be less performant but support seamlessly sharing and secure (meta)data operations. In this
paper we focus on such well-tested mature FS targeting to improve the kernel’s MM interface
performance rather than bypass it.

File system indexing. HashFS [162] uses hashing instead of the commonly employed ex-
tent trees to accelerate software overheads of file indexing on the read/write system call path.
ctFS [[149] is a user-space file system that maps the entire DAX device in user-space to (de)allocate
files contiguously in the virtual address layers, similar to SCMFS [219]. It then uses page tables
to index files quickly. Exposing the entire device to user-space raises significant security con-
cerns acknowledged by the authors. DaxVM (de)attaches file tables directly to address spaces,
primarily to eliminate the paging costs of MM access. By doing so, it entirely removes software
file indexing from the MM path. We discuss other works that employ file system maintained
page tables on Section 5.3,

Address space scalability. Past studies [[70,71] of address space scalability target generic solu-
tions (e.g., range locking or concurrent lock-free data structures in VM) that apply to all memory
regions. However, the Linux community has been discussing such radical changes for many

years [76] and relevant implementations [80, 183] show that the transition is not that easy in
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terms of performance [[140] or complexity. A key insight of DaxVM is that one can exploit the
special lifetime and access characteristics of PMem mappings to provide a much simpler dedi-
cated address space (de)allocator that can scale to many cores (ephemeral mappings).

Fast unmap. LATR [[141] proposes message passing — a generic radical re-design of the TLB
invalidation mechanism to enable lazy invalidations. DaxVM exploits batched un-mapping re-
quests, adopting a dedicated design already present for the IOMMU and traditional storage DMA
mappings [174]. The key insight is that opting for a dedicated design for targeted uses can enable
higher performance at a much lower complexity. Numerous proposals for faster/simpler delivery
of shootdowns in hardware [210,229] and software [48], or for more accurate shootdowns [34,35]
would reduce the need for DaxVM’s asynchronous unmapping. Boyd-Wickizer et al. [59] exam-
ine per-thread address private ranges to avoid synchronization and TLB shootdowns.
Pre-zeroing. Hawkey [165] and Trident [179] examine asynchronous pre-zeroing for huge
volatile page allocation latency. DaxVM exposes its necessity for PMem file mappings and
integrates it in a file system. Our key insight is that block zeroing is an inherently different
requirement among DAX interfaces (MM access vs system calls) that if not managed can flip
performance trends.

Faster paging: Previous works underline the cost of paging and particularly of faults for PMem
direct access [[125,220,223]. They propose huge page usage [[125,220], caching per-process file
mappings [69], and O(1) memory [201] on a conceptual or emulated level (more in Section 5.3)
DaxVM expands on this work with a real implementation of O(1) mmap in Linux and on unmod-
ified hardware, reduces DRAM consumption by placing file tables in PMem, and avoids depen-
dence on huge pages. WineFS [[124] is a new huge-page aware FS for high huge page coverage.
DaxVM is complementary to huge pages, supporting them when available, but resilient to frag-
mentation in terms of paging. Prior work on sharing page tables focused on speeding fork [88]
and removing duplicate TLB entries [[194].

Song et al. [[195,196] focus on faster page reclamation and batching shootdowns under mem-
ory pressure. Papagiannis et al. [170] propose an mmap design that ignores DAX, targeting page
cache optimizations. DaxVM focuses on DAX mappings that are neither subject to memory pres-
sure nor use a cache.

PMem file systems: Many research projects focus on faster file systems for PMem, and mostly
look at (i) avoiding the page cache like DAX [74, 9], (ii) providing faster metadata operations
with fine-grained persistence [[74, 137, 219, 221, 222], and (iii) moving kernel operations to user-

space (discussed before).
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Conclusions

6.1 Summary

This thesis analyzes the performance overheads of today’s virtual memory design with respect
to (i) address translation, focusing on virtualized execution, and (ii) the direct access interface to
persistent data. It then proposes hardware/software co-designed techniques to address them.

We introduce complementary software and hardware methods to mitigate the address trans-
lation overheads, focusing on the challenging setup of nested paging. On the OS level, we pro-
pose CA paging to generate vast contiguous mappings by allocating target pages across page
fault traps. CA paging maintains all lightweight memory-management techniques of a modern
OS (e.g. on demand allocation, Copy-on-Write etc) and avoids any reservation/pre-allocation of
memory, working on a best-effort basis. It can be used to support any hardware scheme that
harvests contiguity in mappings, e.g. RMM [130] or AnchorTLB [172]. We have implemented
it in stock Linux and made it publicly available. On the hardware side, we propose SpOT, a
micro-architectural engine that predicts translations on the TLB miss path. SpOT exploits map-
pings linearity and hides TLB miss penalties under speculative execution, trading a very simple
micro-architectural design —that can easily and transparently support virtualization— with strong
security guarantees. Combined with CA paging, SpOT significantly reduces the translation over-
heads of nested paging from ~16.5% to ~0.9%.

We also study all sources of overhead that emerge when we use memory as the interface

towards files. We look at how each of the expensive mechanisms of this legacy interface are
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Figure 6.1: Huge Pages and NUMA. Local NUMA placement may not always be the optimal
choice in the presence of external fragmentation. We compare the total execution time of a
workload when its memory is i) 100% local but 50% covered by huge pages and ii) 100% covered
by huge pages but interleaved. We observe that the latter is better for SVM.

affected by new fast storage technologies or become obsolete. Based on our analysis we pro-
pose a new interface for fast and scalable direct access to persistent data that aims to come
close to what the underlying storage can provide. DaxVM is a POSIX-relaxed file mapping in-
terface for persistent memory, implemented as a re-design of virtual memory operations and a
co-designed support in PMem-aware file systems — all driven by direct access unique character-
istics. DaxVM offers (i) O(1) memory mapping operations via persistent page tables integrated
in file system’s inode metadata, (ii) lazy invalidation of TLBs via batching and asynchronous is-
suing of unmapping requests, (iii) scalable address space management for ephemeral mappings,
(iv) elimination of kernel-space durability management support when user-space is in charge and
(v) asynchronous storage block pre-zeroing by the file system to accelerate append operations,
dealing with added overheads introduced to cover the security implications of direct access. We
implement DaxVM in stock Linux and the ext4-DAX and NOVA file systems and make it pub-
licly available. For multi-threaded workloads that process multiple small files for short intervals,
e.g., Apache, DaxVM improves standard mmap performance up to 4.9x. It also reverses the trend
that favors read for such setups, outperforming it by up to 1.5x. DaxVM also increases system
availability, providing fast boot times for PMem databases, and sustains their high throughput

even when running on fragmented file system images.

6.2 Future Research Directions

In this section we discuss some new research ideas that we shaped during this study:.
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6.2.1 Address translation and Non-Uniform Memory Access performance

The current thesis focused mainly on single-node address translation performance; we did not
study the relationship between address translation and Non-Uniform Memory Access (NUMA).
In the next paragraphs we discuss briefly how the two interfere, based on literature findings and

some initial findings of our own.

NUMA performance may dictate page allocations to span over multiple nodes for better local-
ity and/or less link contention. Address Translation performance may antagonistically require
large memory blocks to be contiguously allocated in a single node (e.g. large pages) to minimize
TLB miss overheads. In this direction, prior work [103] finds that huge pages can indeed harm
NUMA systems performance, especially for heavily threaded workloads that span over multiple
sockets. We question if the reverse trend is also valid; if there are scenarios that address transla-
tion should be prioritized over NUMA locality for overall better system performance. For initial
insight, we fragment a memory node in our server and measure the execution time of workloads
running inside a VM with a) 100% of their memory local but 50% covered by 2MB pages (due
to external fragmentation) and b) 100% covered by 2MB but interleaved between the local and
a remote node. Workloads’ threads are always located in a single node. We compare with the
state-of-practice optimal setup: 100% locality and 100% huge page coverage. Figure f.1] summa-
rizes our results. We interestingly observe that SVM performs better when we trade locality for
higher huge page coverage (exploiting the available huge pages on a remote node). This is an ini-
tial verification that there is research potential in data placement policies that take into account
and co-ordinate (i) NUMA locality, (ii) nodes bandwidth contention and (iii) address translation
performance. As dis-aggregated memory pools are expected to dominate future data-center sys-
tem architectures (via CXL [85]), we believe that NUMA placement will play a significant role

in future systems performance.

6.2.2 Efficient multiple page size support

While the x86 architecture supports only a limited number of page sizes, namely 4K, 2MB and
1GB, other (micro-)architectures and ISAs support multiple page sizes [37,180] or TLB coalescing
techniques [[1]. Despite the potential in such more flexible and higher reach translation schemes,
discussed extensively in this thesis, we find that none of the above is transparently supported
by stock Linux. Other page sizes —beyond THP- are supported only by the rigid libhugetlbfs [9]
that reserves/pre-allocates memory. Moreover, TLB coalescing exploits only the limited beyond-

page-size-limit contiguity that the default Linux buddy allocator randomly generates.



6.2. Future Research Directions 109

Table 6.1: ARMv8 supported page sizes

Processor H Base ‘ Large ‘ Intermediate
4KB | 2MB, 1GB | 64KB, 32MB
ARMv8 16KB 32MB 2MB, 1GB

64KB 512MB 2MB, 16GB

6.2.2.1 The case of ARMvS8

ARM architecture supports multiple base page sizes (called granules), 4KB, 16KB, 64KB, set at
boot time. More interestingly, its paging structures support a ’contig’ bit, that promotes contigu-
ously allocated and properly aligned mapped base pages into a single translation entry, cach-able
on the TLB, that resembles a restricted version of range translations [[130]. We name these new
translation granularities, intermediate. Table p.1] summarizes ARMvS8 arch translation support.
We consider an impactful research topic to extend CA paging to transparently support the
intermediate page sizes of ARMvS for the 4KB base page (64KB and 32MB). This would require
support to transparently manage the ’contig bit” by the OS and also adjust CA paging’s VMA
placement decisions to comply with the alignment restrictions of the hardware. Apart from
our high interest in extending virtual memory to efficiently support commodity hardware and
enable its usage, we also believe that such a study would deal with research questions of broader
interest: (i) Are always 2MB pages necessary or 64KB pages are sometimes enough? (ii) Since
64KB/32MB translation entries are created by contiguous allocations of 4KB/2MB base pages,
what is the trade-off between address translation performance and internal fragmentation when
you compare intermidiate with fixed page sizes? (iii) How do we decide the target page size at
page fault time? We generally believe that multiple page sizes —beyond x86 architecture support—
can be of great benefit and that CA paging can play a significant role in designing an efficient,

transparent OS support for them.

6.2.3 Virtual machine snapshotting

As discussed throughout this thesis, cloud infrastructure has dominated the computing deploy-
ment landscape and thus virtualization performance has become a leading cost-effectiveness
factor. In Chapter }f we discussed how efficient memory virtualization plays a significant role
in this and in Chapter f| we briefly went through the impact of paging on the performance of
a low-latency boot time technique, virtual machine snapshotting. In the realm of serverless
computing [[189], the latter has concentrated a lot of attention [36,[132,207]. Efficient execution
restoration from virtual machine snapshot files is a set-up that uniquely combines memory man-
agement and file access performance, i.e. the state of the guest OS memory is serialized in a

file that must be efficiently mapped by the host OS and the hypervisor on a future invocation of
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the target application. We consider this area an elaborate intersection of this thesis study and
combining Contiguity-Aware paging and the DaxVM file mapping interface (our proposals) an
interesting research direction. In example, contiguous guest OS memory allocations, coalesced
based on access rights (read-only libraries, read-write heap etc), could increase the linearity in
guest memory accesses. In turn, this could increase the effectiveness of host page cache read-
ahead linear prefetching over the snapshot file, limiting the need for offline/online working set
tracking and specialized prefetching proposed in literature [36,207]. Also such linearity could
boost the usage of larger page sizes in the host, a direction already initially explored for fast
snapshot restoration [[152]. Moreover, DaxVM O(1) mmap via pre-populated page tables could
be leveraged to accelerate further snapshot file mapping. This could involve extending DaxVM
O(1) mmap to support block devices and page cache buffered access —pre-populated page tables
for snapshot file pages residing on DRAM- and/or virtualize DaxVM by enhancing the hypervi-
sor with extended/nested pre-populated page table caching per VM to eliminate entirely nested

paging overheads.

6.2.4 Fast user-space access to low-latency SSDs

As already discussed in previous chapters, high performance IO devices evolve rapidly and get
widely adopted in the data-center world. In this thesis we have focused on persistent memory
technologies, but there is also an increasing number of low-latency PCle SSDs (e.g. [8]) that
operate at single digit microsecond scale and offer bandwidth of multiple GBs/sec. This out-
standing device performance has exposed the kernel software IO stack as a very expensive data
path, e.g. context switching overheads [[113], interrupt processing [46] or storage queue man-
agement [114] emerge as bottlenecks. Kernel-bypass and user-space access are a way out widely
explored both by the state-of-the-art (e.g. [151,[175,236]) and the state-of-practice (e.g. [233]).
To this direction Intel’s new ENQCMD instruction and shared virtual addressing [[120, 134], ini-
tially proposed for accelerator device access, open new opportunities for submitting work to IO
devices from user-space using the IOMMU for translation and security reasons. We believe that
DaxVM’s optimizations, e.g. pre-populate file tables or TLB management, could be adoptedto

support the IOMMU and accelerate user-space access for low-latency PCle devices.
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