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ITepiindm

Ev péow e exdetinfic avdntuing xou tev emtevypdtwy ot gnyovixd pdinon (ML) xodae xou tou Bardito-
Tou avtixTunol Tng ot xplolwoug Topelc, 1 avdyXn Yio EPUNVELCLUOTNTA TV HovTEAwY elvar udiotne onuaciog.
M yégpupa yior autéd 10 Ydoua poviélou-avipndnov moapéyeta and tnv EEnyfown Teyvnti Nonuoolivn (Ex-
plainable AI - XAI), n onola éyel onueidoel tayeia Tp6od0 tar Teheutaior Ypovia, TEOCVETOVTAS JUPEVELN OTLC
dradixacieg unyovixic udldnone. Ly mopoloa epyooio, eoTdlovue ot EENYNOELC UE AVTLRUPAEDELYUO, WLl
pédodo mou mapéyel YVOOES oyeTixd Ye TN Bladaoion MPne anopdoewy TV YOVTEAWY Unyavixic wdinong,
BlEpEUVOVTOS EVORNAXTIXG oevdpta xat UTOUETIN00C UETUOYNUATIONODE.  LUYXEXQWEVA, AOYONOVUICTE YE TN
onuovpyia e€nyfoewy ye avtinopddelypo o xelyevo xou TNy a€LoAGYNOY TWY CUVTAXTOV AVTLTUPAUSELYUATWY, O
omofol a€loTolOVY Ta HOVTEAA Xou TIC epyaciec otny enelepyooio guoic YAdooas (NLP) vy ) Snuovpyia
TAPUANAY OV TwV TpoTdoewy xewwévou. H mpooéyylor| poag mepthapBdvel Tov melpaationd e ToAAATAOUS GUV-
TAATEC AVTLMAPABELYUTWY amd TNV Tpdogatr BiBAoypapio, LovTEND 0ANS xou LeddOBOUC TopaY WY NS, TEOXEWEVOU
VO XUTOVONOOUKE TOUG ECWTERIXOUS UMY OVIOUODE TOUS XOL VO XUTACTAHCOUUE TIG AMOQPAOELS TOUG XOTOVONTEC.
INo va o emtdyovue autd, mopouctdlovye éva cbotnua eneéepyaoiog avTIRAUPAUSELYUATWY OTOU TUEYOUUE av-
TleTnég eENYNHOELC UE AVTITAUPADELY O GUVOUALOVTOC TOUS GUVTAXTES OVTLNAPUOELYUATWY UE Evay ToVOUNTY] XoL
OTN CUVEYELL EMAEYOVTAS TNV EAyLoTn Buvath eneepyaocia Tou avTloTEéel Ty oyt TedBAedn tou tall-
vount. Emnkéov, aflonoiobue pedddouc dnuiovpylac ovTimapaderyldtwy Tou YeNoLLOTo00VToL GE TEEYOVOES
oxadNPOiEG ONUOCLEDTELS XL ELTdYOUPE o VEa pEYodo mapaywYhHS EENYNOEWY UE AVTITOREDELYUA PE TN PO
ETIXETAOV UEPOUC TOU AGYOU ¢ meploplold otny mapaywyY touc. EEetdloupe enlone mohhamiég teyvinée oi-
OAOYNONC Kol UETELXES IOV HOG ETUTEETOLY VoL EEAYOUUE TONDTILO CUUTERACUOTA ToL OTLOlol XUAUTTOUY TOAUdELIUES
TTUYEC TNS YEVYNONGS EENYHOEMY HE AVTITOPAOELY A, SUVOTTIXE, TO TELRGUATE, oS OmEBWOOY TOAITHIN CUUTERHO-
potar xan yvaoels. Katogépvoupe vor amoxahOPouue xpuppévar yopaxtneto Tixd xon LotiBo Twy cuvTaxToy ov-
TITOEOBELYUETOV, Vo EENYHOOUUE T AOTEAEGUATY TOUS Xl VoL DIEEEUVHGOLUE Bldpopeg TTuYES TNne dmutoupyiog
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AVIALGONG OYETIXG UE TNV AELOAGYNON) TWV CUVTAXTOV AV TLTORUOELYUATEV omodexvieTAL OTL amoTENOUY ot TOARGL
UTOOYOUEVT) 006 Ylol UEANOVTLXY EQELVAL.
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Abstract

Amidst the exponential growth and breakthroughs in machine learning (ML) and its profound impact on
critical domains, the need for interpretability of the models is paramount. A bridge for this model-human
gap is provided by Explainable AT (XAI), which has seen rapid progress in recent years, adding transparency
to machine learning processes. In this work, we focus on counterfactual explanations, a method that pro-
vides insights into the decision-making process of machine learning models by exploring alternative scenarios
and hypothetical transformations. Specifically, we are concerned with the generation of text counterfactual
explanations and the evaluation of counterfactual editors, which leverage natural language processing (NLP)
models and tasks to generate perturbations of text sentences. Our approach involves experimenting with
multiple counterfactual editors from the recent literature, models, and generation methods in order to under-
stand their inner mechanisms and make their decisions comprehensive. In order to achieve this, we present a
counterfactual editing system where we generate counterfactual, contrastive edits combining counterfactual
editors with a predictor and then selecting the most minimal edit that flips the predictor’s original prediction.
Moreover, we utilize methods of counterfactual generation used in current academic publications and intro-
duce a novel method of generating counterfactual edits using part-of-speech tags to constrain the generation.
We also explore multiple evaluation techniques and metrics that allow us to extract valuable conclusions that
cover numerous aspects of counterfactual generation. In summary, our experiments have yielded valuable
conclusions and insights. We manage to unveil hidden characteristics and patterns of counterfactual editors,
explain their results, and explore various aspects of counterfactual generation. Our experiments showcase
performance enhancements in counterfactual generation methods through a systematic exploration of their
structural components and methodologies. Therefore, the contributions of this thesis including the utilization
and introduction of novel methods in the field of counterfactual generation and a comprehensive analysis on
the evaluation of counterfactual editors prove to be a promising avenue for future research.

Keywords — Explainable AI, Counterfactual Explanations, Text Counterfactuals, Machine Learning
Models, Text Generation, Multi-metrics Evaluation
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

1.1 Oewentixd urdéBadpo

T tehevtaiec dexaeties, n unyavy uddnon (ML) éyer onuewdoer alioonuelwtes eZelilels, éxovtag emdellet
EVIUTWOLAIXES IXAVOTNTEC GE BLAPOPES EPUPUOYES AMO TNV AVAY VIPLoT) ELXOVag xou oihlag éwg tnv eneepyaoia
QUOIXAC YAWOGCOC YOl TOL GUC THUATO CUCTAcEWY. AUTEC oL xawvotouieg éyouv Peel e@apuoyn o€ TOAES TTUYES TN
xodmuepvic pog Lo, and tig é€unvec cuoxevéc xou Toug Bondolc ue texvnTy vonuoolvny péyet T dnuouvpyia
TEY VNG, TOL CUTOXIVOUUEVA QUTOXIVNTAL Xal THY TEYVNTY VONuoolvn 6Tny uyelovopuxr nepidahdn. Qotdoo, ev yéow
TGV TV alloonueiwtwy e€elilewy, eivan eEaPETIXG ONUOVTIXG Vo BLEEEUVACOUUE TO ETUNESO EUTLGTOGUYNS TTOU
unopolue va oxodoufoovpe Ye autd ta gpyarelo. IIpoxintel ouvende éva Vepehlddec epdtnuo: T unopolue
VO XEVOUPE YLOL VO EVEQYOTIOLACOUUE GUGTAUATO TEYYNTAG VONUOGUVAE TIOL UTopoly Vo e€Nyoly TIC omoYdascElq
nou hapBdvouv tot LoVTENY;

O topéoc e E&nyfowne Teyvntic Nonuoolvne (Explainable AT - XAI) otoyelel va amovtfoet axpBoe oe
QUTO Xal VoL TAPdoyEL TANEOQOopleg Tiow amd TIC EVERYELES Kol TIC ATOPAOELS TwV WovTéhwy ML dote vo emitpénel
otoug eWlxols Tou Touéa va evronilouv midoavée mpoxatarfidels [3], opdhuata 1 axololec cuvéneles. Ye auTh
0 BlatElPt), BlEpELVOUUE TNV EVvold TWV EENYHOEWY UE AVTITUPADELYHA, OL OTO(EC TOREYOLY EVal LoyLEd ThaioLo
Yyl TRV vAonoinon g e€NYNOWOTNTOC XoL PAC EMLTEETOLY VO TOPATNEHOOUKE TS oL dAAoyéC ato xelyevo
enneedlouy TiC ano@dcelc Tou AopPBdveL TO UOVTENO ot Vo AOXOAOPOUUE TOUG UTOXEUEVOUS TORAYOVTEC TTOU
0dnyoLVv Tic TEoPAEPELS TOU LOVTEROL.

Yty napoloa epyaoia, ETXEVTIPWVOUACTE 0NV 0EOAGYNOY Twv eENYRoewy Tou TopdyovTol ond GUVTAXTES
XEWEVIXDY EENYHOEWY YE aVTLTOEAOELYUa UE TOMNATAES Pedod0UG, LOVTEN Xou TEPLOPLOUOUS. XENOLHOTOIO0UE
Bldpopec pe¥6B0UC xou HETPXES AELOAOYTNONG TPOXELWEVOU VOL EQUNVEDGOUUE T1) CUUTERLPORE AUTHV TWV GTOLYEIWY
xon va 8cdooupe eEnyfoelg Yo Tig ano@doelc toug. To €pyo pog mapoaveiton xuplwg amd tnv €peuva Twv PL-
Aovdprovod xon howol [20], émou ov cuyypagelc allohoyolv emione xewevixée eEnyNoelc pe avTinapdderyua.
Xenotpomowdvtog d0o véeg uedddoue mopaywYNe xou aloAGYNoNS, TOU TOPOUCIACTNXAY YIo TEWTY Popd oTNy
ev Moyw épeuva, e€etdlovtog €tol pa TpewToTUTY Sladxacio aEloAdYNoNG G8 CUVOUNCUS PE TILO TOPAUOOGLUXES.
M AAn eotlaon authc g epyaciag, elvon 1 LVAoTolnoy evoc cuoTARATOS dnploveYlag ENEENYNOEMY UE ov-
TINAEABELY U, OOV GUVOUALOVUE CUVTEXTES XEWEVIXOV OVTLTURUBELYUATWY UE Eva cLoTnUa TpoBAedng xAhdong,
TEOXEWEVOL Vo cuYXplvoude Bixouo Tor wovTéda xon Tic pedddoug 6To €pyo tTng avTeTixng avTimopadeTiny
eZnyfoewy.

Yty mapolioa STl apyed topéyouue 6ho to Yewpntind utdBadpeo ot Bacuxéc €vvoleg Tng unyavixnc udinong
xan e€nyolue TOC oL eENYNOELC aVTLPATIXWY YEYOVOTWY Elvol €VOl GNUAVTIXG PECO YL TNV EQUNVEUCHUOTNTA.
‘Eneita, divoupe évav Aentouept| oployd Twv eENYNoEwY Ue avTLIUpddeLy o xat Tapéyouue to x0plal xivntea Tlow
and T yeron toug. Metd and autd, culntdue Tic ued6d0ug aloAdYNONG Xou TIC HETEXES TTOL axolovdolvTol and
™V npdopaty Bihoypapia, ectidlovtac o auTég oL YenoLponotolue oty epyaoio pag. Enlong, npoteivoupe
™ yxefon Twy YeYddwy mov tapouctdotnxay oto [20] yall ye T S wag uédodo mou yenowwonotel oToysuuéva
éval U€pog Tou AGYou xdlde Qopd, WS XELTARLO Yiol TS OAAXYES OTIC XEWEVIXEC TPOTAGELS XU EENYOUUE TS
unopolv va ouuBdiouy oty adlohdynon tne e€fynong avtipatxdy yeyovotwy. Téhog, mapouoidloupe tov
TEOTO UE TOV OTOlo BOUOUUE XAl VAOTIOLOVUE TO cUCTNUA dNplovpyiag XEWEVIX®OY EENYHOEWY UE OVTLTORABELY UL
xa mopouctdloupe to amoteAéopata Tou Tpoéxuday T6co and mocotin 660 xou and motott| drodrn. Méow
awthg tNe Bladixaciag, Yo mopéyouue moludprdueg eEnyroeic pe avtinopdderypa pall pe enenyhoes yio Tic
ATOPAGELS TWV GUVTAXTWY eENYNoEWY, TON)TIHA GUUTEROUATO ahhd o TidovoUs TEpLOPLEUOUE.

1.1.1 Eneepyacia Puowrc 'wocoag
IMapaywyh Keiwpwévou xow Transformers

H naporywyn xewévou etvoun évac evepyde Topéag €peuvac otov topén tne Enelepyaoiac Puoinic I'hdooac (NLP),
TOU EMUXEVTRPOVETAL OTNY oVATTUEY ohyoplduwy xaL LOVTEAWY LXAVOY VO TUPAYOUY CUVEXTIXG XdL OYETIXO UE
To TEpleyOUevo xelpevo. Alo e€éyouoec Tpooeyyioelc otny mapaywy xewwévou elvon ta mdovoTixd LovTéla,
OTWE TA HOVTEAX N-gram xou Tot xpu@d wovtéha Markov, xau to povtéha mou Booilovian o veupwvixd dix-
T, 6w Tor emavolapBavouevo veupwvixd dixtua (RNN) xou ov mopadhoryés toug, dmwe tar dixtua poxeds
Beoayvnpddeounc pvhune (LSTM). O mpbogatec eZehilec otn Podid uddnon odfynoav otny eupdvior pov-
Téhwv petooynuoatiotdyv (Transformers), ta onolo €xyouv ennpedoet oNUAVTIXG TIC EPYUCIES TOPAYWOYAS HEYLE-
vou. To povtéra autd cuvdwe exmoudedovTol YENCLLOTOUIVTOS HEYAAN COUATE SEDOUEVKY XEWWEVOL, elte Ue
eniBhedn elte yoplc enlBredn. H a€iohdynon twv poviéhwy nopaywyric xeyévou eivar évo 50oxolo €pvo, xadde
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1.1. Oewpnuxd vndBadeo

amoutel gl ohoxhnpwuévn alohdynon tne mapayduevne €680u and drodn cuvdgelag, cUVOYNS, YEUUUATIXAC
%ot oUVoAC molotnToc. O deovtohoyixol npoBAnuotiouol etvan eniong eEoupetind onuavtixol oty €peuva Yia
Y ToEAY WY1 XEWEVOU.

O Transformers eivor éva onuavtixd ctovyeio tne enelepyaociac guowhc Yawooag (NLP) yio v naporywyt
xelévou. AZlomolovy tov pnyavioud meocoyng Yo va cUAAEBouv Tig mayxdouleg eE0pTOELS Xou VoL ETLTEEY-
ouv TNV TapEdAANAY eneepyacio axolovhov ewwddou. To mhololo xwBixomoINTA-ATOKWILXOTOINTY, O
UNYOVIOHOS AUTO-TPOCOYTC XAl To VELVPWVIXE BXTUN TeOQOBOTNONE TEOog Tal EUTEdS elvan 6Aa Baoixd cuo TaTixd
NS APYITEXTOVIXAC Tou peTacynuatio . H avtonpocoy sivon éva Boaoind yapaxtneiotind tou Transformer,
IOV ETUTEETEL GTO POVTEAO VoL eGTLALEL OE OyETIXd Wépn TNg axohoudiog eloddou xau vor urohoyilel Boduoroyieg
npocoyfc UeTald Ohwv twv Véoewv. To GPT xou to T5 eivar 800 Loyved poviéha mou Pocilovion otov
Transformer xou €youv emdellel eVTUTWOLOXES IXAVOTNTES OTY) ONuLovpyia cLVEXTIXOD Xol GYETIXOV UE TO TA-
Ol XEWEVOU, XL 1) TEQUUTEPW TEAOBOC TOUC EXEL TN BUVITOTNTA Vo BEATIOOEL TEPOUTEPL TNV IXAVOTNTA YIS Vol
TIPSy OLUE XelUEVO Tou poldlel we avip®mivo xadde xou T dnutoupyiot EVPUAY CUGTNUATOY.

Kotnyoprtonoinon Kewpévou

H xotnyoplonoinon xewévou eivan pa Yepehddne epyaoio otnv Eneepyooio Puowdc I'hdooac (NLP) mou
TepthoBavel TNV avalesT) TEoXalOPLOUEVKY XATHYORLMY 1) ETIXETOV OE EYypapa Xelévou e Bdor To mepleyo-
pevo touc. lHoapoabootoxol alyodprduol pnyavixic pdidnong, énwe o Naive Bayes, ou Mrnyavéc Awavuoudtev
Troothene (SVM) xou ta Aévtpa Anogdoewy, éyouy epopuoctel ye emtuyla o autéd 10 épyo. To vevpwvixd
dixtua, dTee T cuveENX TG veupwxd dixtua (CNN) xou ta emovahofBovépeva vevpwvixd dixtua (RNN), éyouv
eniong avadelyel wg Loyvpd povtéla yio Ty Ta€véunon xewpévou. Ipoexnoudeupéva YAWooE LovTEAN OTWS TO
BERT (Bidirectional Encoder Representations from Transformers) [12] xou to RoBERTa [46] £youv npowd-
o€l oNUAVTIXE TOV Toué TNe Tadvounong xetwévou. H a€lohdynomn twv yoviéhwy toévounong xeluévou yiveto
ouvideg Ye ™ yeron WeTexdy omwe 1 axplBela, 1 axpiBela, 1 avdxAnon xa 1 Padporoyio F1. H to€wounon
xewévou Bploxel eqapuoyég ot éva eupd Qaoua TEdiwY, OTKS 1 AVIALGT GLVALGTAUNTOS Yo TNV Topaxolobinon
TV UECKY XOWVWVIXAC SIXTUMONS, TO QUATEdpLoua avemdOunTNe aAAnAoypaplog Yol GUC TAULATO NAEXTEOVIXOU
ToyLBpopelov, N xaTnyoplononoT VeUdTOY Yot TNV 0pYAVMOY TEPLEYOUEVOU XOL TA GUC TAUITA CUCTACEWY UE
Bdon to cuvalodnua.

Avdivomn YuvoucOnuatog

H avdhvon cuvaiciuatos, yvwoth xou we e€6puln yvaune, elvar évac epguvnuxde touéac tne Enelepyooioc
Puowfic I'hdooag (NLP) mou enxevtpdvetar oty e€ay oY1) UTOXEWEVIXMY TANPOPOELDY, GTAGENY X0t omdPemY
mou ex@pdlovtal oe dedopéva xeyévou. Ilepihopfdvel ) yerion UTOAOYIGTIXWY YUEBOBWY YL TNV QUTOUITY
To€Lvounon xewwévou ot xatnyoplec cuvatoUNudtey, otwe YeTind, opvnTixd ¥ oudétepa.

@) @ s

The experience so The experience has The experince has
far has been been ok. been awful!
fantastic!
POSITIVE NEGATIVE

Figure 1.1.1: "Eva napddelypo to nolo delyvel twe plo tedTaon ONUELMVETAL UTd TO XATIAANAO HOVTEND WG
Yeten, oudétepn N apyNnTXr avdhoya pe to xuplapyo ouvaicUnud tng.

O1 napadootaxée npooeyyioe otny avdhuon cuvatctiuatoc otnellovton oe pedédouc nou Bacilovtou o Ae€ixd,
oAAG ot ahybprduol unyavinic udidnong, 6nwe ot unyavée Sravuopdtey unoothelne (SVM), Naive Bayes xou 1
Aovio T mohvdpdunom, €xouy yenowonomdel evpéwe Yo epyaociec Talvéunone ocuvauodfuatoc. Ta yovtéia
Bardide udinong éyouv emdeiel alloonueinT emtuyio 0Ty avdAUGY CUVLGTHUUTOS AELOTOLVTOC TNV IXAVOTHTA
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Toug VoL suAAaPBdvouy tepimhoxa potiBo xou TAnpoopicg mhonclou and dedopéva xetwévou. H avdhuon cuvancdn-
potog ebvan ) Sodixacia Tavounong twv cuvaicUnudtey ot xelpevo e ) yerion CNN xa RNN, ue Badid
yAwoouwxd poviéha 6nwe to RoBERTa va ypnowonotobvton yiot T cOMNYN 1o 80ox0Awv Topény Bedouévmy.
INo ) Bertlwon g anddoong e avdhuong cuvaiotiotog €youv Siepeuvniel mponyuéves teyvinés, Onwe 1
avdhuon cuvateduatos pe Bdon Tic nTuyéc xou ot Podié avanopactdoels Aélewy pe Bdon o cupppealdueva.

EnicApavon Mégoug Tou Adyou

H emofuavon pépoug tou héyou (POS - part-of-speech) eivou g Sepehicddng epyooia oty Enegepyaoia Puonhc
I'\dooac (NLP) mou mepthopBéver tny avEleo Yooupatixdy ETXETMY oTic AEELC plag TpdTaong, UTodexviov-
TAC TOV OUVTAXTIXO TOUC EOAO xou TN Aettovpyla toug. O mapadooloxés TpooeyYIoelS Yol TNV EMCHUAVOT
POS éyouv ypnowonowoet yed6douc Baciopéve oe xavOVeS, GTOYACTIXG LOVTERA Xalk axoUY] o ovpdmivoug
oyohaotéc. Ta povtéha Patde pddnong, Wiwe to enavahauBavéueva veupwvixd dixtuo (RNN) xou ou apyttex-
Tovwég mou Pocilovton oe peTaoyNUATIOTES, €xouy xepdloel onuavTtixy tpocoyn otnyv emofuaven POS Adyw
NS XavOTNTAC Toug vor cLAAOPPAVOLY TiC Bladoynés eEapTHOELS Xou TIC TANpoopiec mou oyetilovion Ye To
miaioto. H axpric emonueinwon POS éyel onuavtixée emntwoeic oe endpevee epyaociec NLP, dieuxohdvovtag
Y oxEUBECTERY, CUVTOXTIXY] AVAAUGT], TN BEATIWHUEVY] AVAYVOELOT) OVOUACTIXWY OVIOTATOV ol To BeATiwUéva
GUOC THUATO AUTOUATNG UETAPEAOTS.

1.1.2 Nevpwvixd Aixtua

Y pédinon ue enifhedn, Eva vevpwvixd dixtuo exmoudebeTal yeNnoulonoldvToC évay atadepd aprdud IV detypdtwy
amd T0 6UVONO dedouévwy exnaidevone D = (21,Y1), ..., (Tn, Yn), OTOU TO T; AVILTPOCKTEVEL TNV EICOBO KoL TO Y;
v avtiotoiyn etixéta. To povtého otoyelel otov uTohoYLos Uiag cuvdptnone f : XBY mou avtiotouyilel v
eloodo X oty é€0d0 Y, xou oL exnawdeloes napduetpol Tou ouyvd avagpépovtar we Bder. H anddoon e f
afrohoyeltar pe ) xpfon pag cuvdetnong anmieiog (loss function) L, n onolo petpd T dtapopd petalld e
TpoPhenduevne e£680uL xon TNE TpayUaTXNE eTétoc. Emlong, ot éva veupwvind Sixtuo, 1 €€odog xdlde vevpdva
dev xadoplletar anoxAelotxd and to otadulouévo dlpolopa TV elcddwv x;. Avt’ autol, yenoidomnoleitor Lo
CLVEETNOT EVEpYOTOIMONE Yl VoL peTartpedel To otaduouévo ddpoloua ot €€odo. H emhoy? tng ouvdetnong
evepyomnoinong elvau xplowr, xotog ennpedlel onpavTixd Ty anodoaon tou dixtiou. Katd tn didpxewa tng
exmaidevone, o otdY0C elvon M TEOCUPUOYN TWY Pap®dy Tou f UE TEOTO TOL Vo EAUYLOTOTOLEl TN CUVAETNON
amdietac. T outh xadde X Tic Topoxdte Topaypdpous XeNoULOToLoVUE avapopés and to [23].

‘Ocov agopd TNV EXTABELCY] TWV VELEWVIXWOY BdIXTLWY, auth TepthauPdvel TNV apyixomoinoy Twy
TOPOUETEWY, TN BLdd0on TEog T gumpds Xat TN oUYXELoT Twv TEoPAédenv pe tc Tiwéc-otdyouc. H dadixaocia
exTaBEUOTC TWY VEUROVIXODY BXTUWY TepthopfBdvel Tov unoloylowd twv xhicewy eninedo mpog eninedo, v
EVNUEPWOT) TV ToEoETEWY Tou BixTiou péow evde alyopldpou Beltiotonoinone xat T BiéAeucn oAdXANEOL
TOU GUVOLOUL BeBOUEVLV eXTAlBEVOTC YEow TOAATAGY enavalidewy ¥ emoywv. Elvaw enlong onuoavtind va
Tapoaxolovdeiton 1 anddoon tou wovtélou ot adéata dedopéva xou vo aflohoyeiton oe éva Eeywploté ohvoho
doxudv.  Axoloudodvtog autd Tor BARaTa, Ta VEURKVIXE dixTud PTOoPOVY Vo EXTUBEUTOUY OGTE Vo eEGYOLY
onpavtixéc Thnpogopliec amd to dedopéva xou vo mopéyouv axplBelc tpoBiédelc.

Axdur, o TEPOEXTAUBEVUEVA VEVPWVIXA dixTLo amoTeENOVY TOAUTIWO TAgovEXTNU 0T Bahd pdinon,
)¢ €youv Tpo-exnaudeLTEl ot HEYAAA CUVORX DEDOUEVWV %o TEPLEYOUY EXTALOELUEVYL [BdpT Xl ToEAUETEOUC.
Mnopolv v amod®oouy xohd o€ €va eVl PACUN EQYATLLY, OXOUT| X0 PE TEPLOPIOPEV DEDOUEVY EXTA(DEUONC, Xal
yenowonolovvtal cuvidtwe ot udinon ye petapopd. To tpoexmoudeugéva LoVTEN £YOUV QEPEL ETAVAC TAGT, GTOV
Topéa g eneéepyacioc QUOXTC YAWOCOUC, TaEEYOVTAS ETOWES TPOG XPNOT), LOYUEES XOL ATOTEAECUATIXES AUCELS
yia Sudpopeg epyaciec. LuvAtng exnoudedovion 6 PEYIAA COUATA BESOUEVKDY XEWEVOU XAl UTOPOLY VoL YENOL-
pomotndoly yior TV eEoy WYY YUPUXTNELOTIXMY, TNV EEAYWYT] CUUTERUOHUATWY Xl TNV AELOAOYNOT HETPHOEWY.

1.1.3 E&nyrocic pe AvTinopddelypo

M e€¥ynon ue ovtinopdderyua 1y avtipotixr) e€nynon elval piar SHAWGT TOU TERLYPAPEL TNV OLTLLOTN CUVAPELL
poc xotdotaong utodétovtag 6Tl av dev elye cuuPel to A, de Va elye cupfel to B. Ilpoxintel and tny ovdyxn
VO QOVTOOTOVUE Uiot TAUCTY] TEAYUATIXOTNTA ToL €pyetan o avtideon ye v avtiindn yoc. Evo nopdderyua
avTipatxhc e€iynong eivar 1 unddeon 6Tl av dev elya ydoelr To Aewgopeio, de Va elyo opyroel ot dovAeld.
Do var tedel autd o mopdderypa o éva epunvetoo mhaloto otny TN, elvon amapaitnto va onueiwdel 6Tl T0
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"veyovéc" elvan m mpoPhedn evdc povtélou Yo Wit cuyxexpévn elcodo xou to "aftia" elvon xdmoleg Tudég
YAUEUXTNELOTIXOY Yo TNV (Bl elcodo mou odYynoav to pwoviého oe Ui cuyxexpiévn teoBiedn. To epdtnua
070 0Tolo GXOTEVEL VOl ATAVTACEL VAL AVTLPOTING YEYOVOC efvan T1 Yo Empene vor ahhdEel yia vor xatnyoplomolndet
4Tl oty xhdon X avtl v Ty xAdon Y.

M ovtipartinty e€ynom etvon emhextixn xou avtidetiny, xou oe auth Sapopomnoteiton xdVe popd Eva uixpd xopudT
ToL oEY X0 XEWWEVOL Xal ETol xadloTatal QLAY GOV apopd TNV xatavonon and tov avayveotr. H Siadxacio
a&lohdynong pag avtipatixic e€hynong Eexivd pe tov tehxd yerot va xadopilel pla emdupnty npoBiedn dote
va mapary el plar "eddytotn" e€Xynom, mou elvan dnhadr 660 o XovVTVY TNV oYXy TEpInTWoT GOV APopd TNV
OPOLOTNTA TWY TYWMV TwY Yopaxtnelotxay (features). Eivaw Lotnic onuacioc vo dnuiovpyolvioa toludprdueg
avTipaTnée eENYNOELS, DOTE Vo UTdpyel mouthopgoppio xar 1 duvatotnta emhoyhc tne BéATIoTNG avdueca oe
TOAMATAEC ETLNOYEC.

1.1.4 Keipevixol Zuvtdxteg AVIITOQASELYUATWY

H mopoloo datpfny Siepeuvd cucthpota mou otoyedouy otny ehdytotn duvaty enelepyaocia pog dedouévng
Tep(nTWoNS XEWEVOU TPOXEWEVOU vor aAAGEOLY TNV TEdBAedm evog tadivounts. Autd Tol GUCTAUNTA OVOUS-
Covtau xewpevixol ouvtdntee avunapoderyudtwy (Counterfactual Editors). Ov cuvtdxtes autol ypnoomololv
didpopec pedodoroylec yia v eniteun tou emduuntod amoTeAéoUOTOS, OTWE Yo TAPddELypa 1 dnutovpyia
avTinapadelyUdtwy nou eaptdtol dueco and Ny €€080 evoc cuyxexpyévou tadivounth. Mia and autéc Tig
vhomowoels eivar o cuvtdxtne MICE [75]. Axéun, undpyouv opiopévol ouvtdxtee 6nwe o Polyjuice [102]
Tou TpooTadoly va aAAGEOLY TN CNUUCIONOYIXH TG TEOTAONG dNULOURYMOVTAS ETOL Towxiha avTimopadelyporta
Tou unopolv va yenowomowdoly otny enéxtact dedouévwy (data augmentation) i to "und cuviixec avtimo-
padetyuata". Emniéov, oplopévol encéepyoactéc npoopilovtal yiol Tn SNuLoupylol avTLQaTIXGY TORAUOELYUAT®DY, TA
omola AnoGXoToVY GTOV EVIOTLOWS Xal TNV amoxdhudn TeenT®v onuelny evoe tadivounty. Eva mhaicto mou eviu-
Aoxdpvel Torhée Tétoleg vhonotfoels eivon to TextAttack [60], To onolo nepthaufBdver Tohkéc pedddouc yévynong
- ouvtéxtee, énwe to TextFooler [35]. Autéc ou uédodol eivan To amhéc xon YpNoLOTOLO0Y JIGPOPES TEYVINES
yior T Onovpyia TopadelyudToy, dnwe 1 evahhayh Aé€ewv e ypnon gradient descent 7 1 yprion evowpattoewy
MZewv (word embeddings).

Original
Perfect performance by the actor — Positive (99%)
Adversarial
Spotless performance by the actor — Negative (100%)

Table 1.1: EEAynon pe avunapdderypa mou dnuovpyeiton pe ) xphon tou TextFooler [35] yio évay
to€ivounty) ouvanodnuatog Boaoctopévo oto BERT. Avtixadiotidvtag tn AéEN "perfect” pe ) cuvdvuun e
"spotless” oAAdlel evtehds N tpdPredn Tou yovtélou, Topdho Tou 1) uoxeluevn Evvola TG TEoTACTC BeV EYEL
oG, [60]

1.1.5 AZwohoynon Kepevixory Tuvioaxtonyv AvTinapadelyhdtwy

IMopd To Yeyovoe 6T dev éyouv xadiepwidel xadohixée uédodol yio Ty allohAdynon e anddoons evoc cUVTEXTN
AVTLTAPABELYUATWY, UTdEY 0LV apxeTéC Boaoixéc ahfdeleg xou xolvég UeTpixéc pe Bdom Tig onoleg umopolye Vo oUY-
%PVOUUE TOUG GUVTEXTES X0 TOCO AMOTEAECUATIXG AEtTOVpYOUY. O avagpepdolue G AUTEG TWV OTOIKY XAVOUUE
yeron euelc otn dlatelBh avth. Apyixd, plo Tohd onpavtiny yetew eivan o "mococTté avticteoprg" 1 flip
rate, n omolol LOOUTAL YE TO TOCOOTO TWV AVTINAUPASELYUATWY Tou Xatapépaue va Takvountoly oe dlapopeTixy
uN&on and Ty apyixt, €nl TV cLVOAXDY. Mio dAAN TOAD onuavTixy HETEX elvan 1 AeYouevn "anboTaoT

7

AéBevotaiv" [95] | adhide "ehaytotétnTa (minimality) n onolo exppdler xatd mdoo elvon oL eNdyioTeS
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

BUVATES Ol aAAYEC TTOU €xavE 0 ouvTaxTne. Ewduxdtepa:

lal ifb=0
|b] ifa=0
lev(a, b) = lev(tail(a), tail(b)) if a[0] = b[0]
lev(tail(a), b)
1 + min < lev(a, tail(b)) otherwise
lev(tail(a), tail(b))

Axdun vdpyer pio xatnyopla yetpidy Tou aflohoyel Ty "euyépeta Aoy ou" 1 odkie fluency. Qotdoo, éva
ouyvé péoo umoloylopol Tne uetpiic authc eivan 1 TepirhoxdtnTaperplexity) evéc ueydhou YAwooxol
povtéhou ot eninedo ouufBohwy. Auth 1 uédodoc €xel epapuootel oe didpopes cpyaoiec NLP [87] [36] [92] xau
anoutel €va YAwoouxd povieho Mp exnoudeuuévo oe €va HEYAAO oUVORO debouévwy D xou Tov unohoyloud tng
péone meptTAOXOTNTAG Yl plot Bedouévr axohoudio XeWEVOL & = T1, X2, ..., TN WS EENAC:

T
1
PPL(z) = ea:p{ T Z log pamip (xt|x1:t1)}.

t=1

Trdpyet BéParor xan 1 aexpifBric teptnhoxdtn T (fine perplexity) n onola nepthaufdver T Aemtouepn piiuion
(fine-tuning) tou yAwoowol povtéhov Mp otn mporyUatixh XoTovour XeWwévwy L ylo Tov eviomioud mepin-
TOOEWY EXTOC XaTavourc Ye T xerion tou tinou PPL. H yédodog auth éyel yenotponomlel we pédodog xdhudne
yior vor ovtyveudolv xon var LeTenoly teplntioels extés xatavouns [39)].

1.2 Ilpotdosig

1.2.1 3uveiocpopd

o Ilopdyouye e€NyNHoElc PE OVTLIUEABELY YA UE T1) YENON TOARATAGY AVTLPATIXDY CUVTAX TGOV, TOU elvol TOAD
onpavtixol oty medogaty BiBhoypapia. Q¢ ex ToUTOU, BIEPEUVOUUE Tol TAEOVEXTHUATY Xal TLC oBUVOlES
70V TaEOoVGLAleL 0 xadévas amd auTolE Yio HeEhhovTiXY €peuva. Emixevtpdvoupe to evdlagépov yog otny
a€loAdyNon o TNV EEXYNOT TRV TOEAYOUEVLY EENYHOENY UE OVTITUPADELY O UE U TOUAUTOTONUEVES UETET -
OELC %Ol TOLOTIXE XELTARLAL.

e Eunveuopévol and to [20] afonolodye pla véo Tpocéyylon Yl TNV TopoywYr avitmopadelypdtony mou ei-
vou 1) L€0080¢ TN avaTpoPoddTNoNG AVTLTUPUDELYUATWY OTOUG CUVTAXTES YLol Tr) dnutovpyla VEWY ovTina-
paderyudtov (Counterfactuals of counterfactuals), xadde xou tn véa petpixf tou ovoudletor ACUVETRELAL.
H epyaocio poc enextelver onpavtixd to npotewvouevo mhaioto dnuovpyiog eényfoewy pe avuinapddetyua,
%8¢ mElpopaTi{OUUC TE UE TIEPLOGHTEPN GEVAQLOL YIol TOUG GUVTAXTES Xou TLC Ueddoug dnuovpylag Xou To
a€lomololpe Yo T Biegarywyr plog Baditepne dwduaciog agloldynone.

o Ilopouctdlouye €vav amhd ahhd Loyvpd tedémo mapéufacnc ot onuactoloyio evog avTLTopadelYUUTOS UE
™ XpHom ETMETOY ot Wépn Tou Aoyou (POS tags). AZiohoyolue auth ) wédodo xau eZdyouue TONDTIO
CUUTIERAOUATO OYETIX UE TNV TOROYWYY| AVTITORUBELYUATWY UE TEPLOPLOUOUG.

o To cuyxpitixd anoteréopota mou e€dyovton and auth ™ perétn Bonbodv oty e€fynon twv anogdoewy
0ploPéVLY PEVOBOVY %ot UOVTEAWY TOU YENOWOTOLOUVIOL EUREWS OTNY TORAYWYY €ENYHOEWY Ue ov-
TUTOREBELY L.

1.2.2 YAloroinon tou Ilpotewoduevou Juvcthpatog Ilapaywyrns xt Agi-
OANOYTNONG AVTINARABELY UATWY

Boaowxo unoBadeo

T o Telpdato pog yenotdonoiooue 800 cOVoAa dedopévwy e ayyhuf Yhdooog, to IMDb [51] mou
Yenoulonoleitar oty avoryvoptor) cuvatodfuatoc xor To NewsGroups [41] mou yenowonoteiton yio tnv gpyooio
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1.2. TIpotdoeic

e depatiehc Tovounong. Axour, exTEAECUUE TEIPGUATA YE TEELS OLAPOPETIXOVG CUVTAXTES, TOUC
MiCE [75], Polyjuice [102] xou TextFooler [35]. "Evog oxdun onuavtinds nopdyovtos oTo oUGTNUN Xl TO TELRd-
partor pac ebvor oL wedodot paoxapicpnatog. Xenowonotooue tuyaio paoxdploya, ) uédodo pooxaplopa-
TOC TPOCOYMC, TOU YPNOWOTOLEL TOV UNYaviopd Tpocoyhc tou tadvounty yia va Peel nolec Aéelg ennpedlouy
neplocdtepo TNV TEoBhedm Tou Tavounty xodide xo TNy xotdtaln onouvdaudtntac AEENC.

Axbun ta yAwoowxd povtéla nou yenowwonowvta efvor o Transformer T5 [70] yir tov MiCE xou o
Transformer GPT-2 [100] vyt tov Polyjuice. O cuvtdxtne TextFooler 8¢ ypenowonotel xdmoto yoviého ahhd
EVOLUATOOELS AEewY G GuUVBLaoUS We ddpopoug Teploptopols. Enlong, 6cov agopd tov tTagivounty, autde
elvan Boaotopévog oto povtého RoBERTa Large [46] xan éyel exnoudeutel Eeywpiotd oo 300 chvoha deBopévv
mou ypnoiponotolue. Télog, oL RETEIXES TTOU YENOWOTOLOVUUE Elval: EAUYLOTOTNTA, ACUVETELN, TOGOGTO AVTL-
otpo@rc, Paoixr| TeptmhoxoTNTo xou oxpUBhC TeplTAoxdTNTA

In a =extra_id_0= where movie sequels are
=gxira_id_1= loathed, the "John Wick' series has

<gxtra_id_2= remarkably consistent and well <extra_id_0> world <exira_id_1> easily
received. =exira_id_2> remained <extra_id_3>

- i i N =gxira_id_0= D. Roosevelt <exira_id_1=
President Franklin <extra_id_0= was bomn in <extra id 2=

<extra_id_1= January 1882

Figure 1.2.1: Topadelyyoto TwV anoTeAEoUdToY ToU Toedyel To poviého TH yio 800 mpoTdoelg uE xATOLES
"yohupuévee" Aéeig. H évdeiln xdhudne ovpyforileton we "<extra_id_i>" 6mou 1o i elvon 0 ab&wv aprudg
&0 xUAUPPEVNS AEENS EXNLVOVTAS ATd TO UNOEV.

1.2.3 H cpylTEXTOVIXY TOLU CUCTAUATOG

H apyitextovixr] mou yenowlomoiinxe yio To melpduota anotelelton and telo otolyeior: €vay ouvTdxTn av-
TinapaderyudTwy, évay tagvounth xou T ddixacio aflohdynone twv aviinapaderyudtwy. o tov cuvtdxtn
xenowonoloVue mpo-exmoudeupéva povtéha yia toug MiCE xou Polyjuice eve) o TextFooler dev amoutel xdmoto
povtédo. Ta tov tavounty yenowonoloiue npo-exnoudeupévous talvountés pe t PiAodrixn AllenNLP [22].
v T oOvola dedopéveyv IMDDb xaw NewsGroups. Edv nepiocdtepeg and évar avtinapadelypata tagivopodval
oTnY xhdon avtideong, yenowwonoteiton éva telto Brua yia TNy aloAdynor Twy avTinapadelyydtwy mou Pacileton
ot petp) e ehaytotétnrag. Téhog, n é€odoc poppomoteitan xatdAAnia yia vo ypnotponowmdel we elcodog
Yiot T0 €mOUEVO PBrina Tng Sladixaciag emavaAnng Tou ¥eNoLHoToloUKE.
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

e a \

Input text samples 5
Stage 2: Generate edits

% i )

J This movie was fantastic. nlr;gr\neatl prr:dilsttil:nn.'o'l This movie was terrible. | prediction:0
' getp : _ The movie was ok. | prediction: 1

! ~ '\\ This theater was fantastic | prediction: 1
: / Editor , [This game was awful. | prediction: 0
! [ \
5 This movie was terrible.
MESKII'IQ Method The movie was ok e
Can be random of use some This theater was fantastic. || Predictor model
attention mechanism This game was awful
Stage 1: Train Editor Search Language = 'l' z Qutput
Algorithm model Evaluation and selection counterfactual
In our case, the editors are pre-trained. rocess i i 3
This movie was <masic=. p This movie was terrible_
<mask> was <mask= o S
Select the most | edit with thi :
This =mask= was fantastic cﬂfu"l;llim:“;?rr:i?imaﬂy_ - new prediction: 0

Output of Step i

Fermat output counterfactuals of Step i and feed them as input for step i+1

Figure 1.2.2: Mo emiox6mnom e opytTEXTOVIXNS TOU CUOTAUITOS XL TOU TPOTOU UE TOV OTolo Tov
ouvdudloupe e tov Tadlvounty Yo va SleEdyoude Tol TELRAUATS Yag. X To oy, Unopolue enlong va SoUue g
xenotonolotye tnyv €€odo tou Editor yio v Snplovpyrfiooupe wa véa elcodo 6To cUGTNUE Hag.

Ytdyog tou TopdVTOC GUCTALITOC elval 1) TEAY WYY AVTLIAUPAUSELYHAT®OY Tou XaTapépvouy v taétvountoly ot
BLAPOPETIXNY XAAOT) Omd TNV 0EYLXY) UE TOV EAGYLOTO BUVOTO TEOTO, BNAUDY UE TOUC CUVTAXTNE VoL ETUPEPOLY TIG
EAGYLOTES AANAYEC OTIC TROTAOELS XELWEVOU.

1.2.4 Evooudtwon tng Medodouv Xtoyesvuévwy Mepwv tou Adyou

OEhovToc Vo TETUYOVUE TNV TopaywYh) 660 To duvatdy o "eldytotwv" avtinopaderyudtony, npootadoldue vo
HELOOOLUE Ti¢ uTorple AéEelg yia paoxdpiopa pe T U€odo GToyeupévey Hepdy tou Adyou. Me tov tpdmo
T UAUOHAPOUUE UOVO AEEELS TIOU OVAXOUY GTO GTOYELPEVO WEpog Tou Aéyou. H mieovétnta tov nelpaudtev
Tou meaypatoToldnxay oe auth T SltelBY) dnuioveyoly avtinapadelypoata Ye Bdon auth ) uédodo. doTtdc0,
Yo Vol TO TETOYOUUE UTO UE ETULTUYLN TEEMEL VO EVOWHATOOOUUE ol Vol UAomtolicouue TN u€dodo xatdAinia
oe xdde €vay and Toug CLUVTEXTES, UE TEOTO Tou Vo PNy emneedlel Ta dhha otolyela tou cuvtdxty. 'Etol, to
TPOYUATOTOLOVUE OTN pdon Tou Jaoxaplopatoc xdde enclepyoaoty, npoclétovtag Ye auToéV TOV TEOTO €vay
neptoptold Yo Tic MéZelg mou umopel vou xohUer To cvotnua yaoxapiopatoc (masker). H BiBhiodrxn mou
XENOWOTOLOVUE YioL TNV avdxTnom Twy etixetdv POS xdde Mé&ne elvon n Spacy [31], xadde nopéyet oto ypfiot
To pé€pog tou Aéyou tne xde AéEng ue aflacto tedéno. H tunomoinoy tou napoamdve tpofiiuatoc topovotdletol
w¢ e€hg:

‘Eotw S n npdtaon eoddov xaw TARGET 1 otoyeudpevrn etéta pépouc tou Adyou. Téte, 1o tok(S) avo-
noplotd T ddcacio tokenization (avayvdpion tunudtwy) Tou egappdleton o pla TedTacy eloédou S xou
mopdyer pa Moto and Aéeic T = [t1,ta, ..., tn], 670U n eivar 0 oprdudc TV Aélewv. XpnolwonoloOue o
ouvdpTNnon pos(t) Tou EMOTEEPEL TNV ETUUETA YEPOUS Tou AOYoL Wiac Aéne ¢ xau dnwovpyolpe po véo Aota
and héZewe T mou emhéyovton and v T, n onola Vo tepiéyetl pévo tig Mé€eic ye v etnéta POS TARGET,
TO SLUTUTOVOLPE WG eENC:

T = [ti|ti eT, pOS(ti) = TARGET]

Y ouvéyeta, masker(T’,S) eivar 1 cuvdptnom tou avuxahotd dha to tokens tng npdTaONC EL0GBOL S TOU
Beloxovton oto T” e plo eTéta YAoxas Yo Vo SNovpyAOEL Lot TPOTOTOMUEVY] UAoXpLoUéVY TpbdToon M.
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1.3. Iewapatixd pépoc

Targeted POS tag

ADJ The <mask= film was a
l <mask> experience.
POS tag filter
The short film was a TR , F . The I_gngth\; ﬂlm was a
marvellous experience. The film was a { terrible experience.
Input(label: pos) EEE Output(label:neg)
Counterfactual
Editor

Figure 1.2.3: "Evo nopddetypa mou e€nyel ) daduxaocio dnpovpyiog avTinapadetydtemy HE (Lot OTOYEURET
enuxéta pépoug tou Aoyou. Ilupatneolye dtL 1 otoyeupévn etnéta POS oto napdderypa etvon "ADJ", dnhadn
enideTo, xou emouévwg tar Aextxd onuela Tou elvon enldeta oTtoyevovta yio tpomonoinoy. Xtny €€060 tou
eneepyaoTh, TOEATNEOVUUE OTL O CUVTAXTNG €xEl TAPAEEL AANUYEC HOVO Yiol QUTA Tol AexTixd onpela.

1.3 Ileipopotind pépog

1.3.1 Enwoxénnon tov Ieipoudtwy

Apyixd, Yewpolue onuovtind vo SOCOUPE €vo TERIYROU TWY TELPUUETWY ToL BlegdyovTal, WOTE Vol AmOCupT-
viotel YOpw amd molov dEova EXTEAOUYE ToL TELRGPOTY Xat T cuvdudlouue tig pedodoroyiec mou culntinxay
OTo TEOMNYOUUEVO Xe@dAona.  Suvohxd, yenowonowlue teelg eneepyactés, to MICE, to Polyjuice xa to
TextFooler. Xuyxexpwéva yia to MiCE, yenowonolotye 800 tpdnous paoxaplopgotog, To Tuyolo pooxdployo
X0l TO Uaoxdpiopa Tpocoyhc. 2to e€ng, Yo avagepduacte oto MICE e tn yeron tuyaiog paoxopioyotog
we MiCERandom xo oto MiCE e ) yprion xdhudne npocoyhc, amhd we MiCE. Emnhéov, dieldyoupe 6ha
To TELEGUATE Hog xou oto 800 clOvola dedouévwy, IMDb xow NewsGroups. e dha to melpduaTo TOU TEAY-
poatomoydnxay, uhonotolue v évvola Twv "Counterfactuals of counterfactuals" yio 10 BAuarto. To 10 Briporta
autd elvon 10 ouveyduevee Sadixaoies avatpopodoaiog g €600V TWV CLYVTUXTOY WG Véo elcodo oe autolc.
Emniéov, yenowonolotye xat Toug teelg ouvtdxtee xar o MiCERandom yio vor Smuloupyiooupe avTiQatinég
eneepyaoieg pe 1 pédodo TwV oTOYELPEVWY ETIXETMOY Pépoug Tou Adyou. Téhog, exteholyue oplopéva melpd-
porta yioe v emtdempioovpe Ty enidpoot tou aptduol twv deoudv dtav yenowonotolue avalitnor déounc oto
MiCE.

I vat cuvoicovye Gha T ToEATAVE, ToEOLGLELOUKE TOV TaEaX ST TiVoXa TEWRUUAT®Y, 0 0Tolog amoTENEL Evoy
OPYOUVWUEVO TEOTIO TEQLYRUPHC OAWY TV TELQOUATOY HAS.

Editors Experiment Types
Out-of-the-box ADJ NOUN VERB Beam - search*
MiCE v v v v v
MiCERandom v v v v -
Polyjuice v v v v -
TextFooler v v v v -

* Beam-search experiments are conducted with multiple numbers of beams, namely 1,5,15,30,60 and 120

Table 1.2: 'Evo neplypoypa twv netpaudtoy yoc. Out-of-the-box onpalvel ) yerion twv cuvtoxtdvy ywelc
xapio mapéuPaon and eude, ADJ, NOUN, xow VERB elvau o1 otoyeuuéves etixéteg pépoug tou AGyou xou
Beam-Search eivou pio npoondewa pe nelpdpata oto MiCE. ‘Oha tar netpdparta Sieldyovton T600 yia to
olvolo dedouévewy IMDD 6c0 xou yioa To NewsGroups.

1.3.2 TIlocoTuxd anoteAéopata

e autd TO xopdTL TNE epyaciog pag, aflOAOYOUUE TA TOCOTIXA ATOTEAEGUATO YENOLLOTIOLOVTAS TIC UETEIXEC TTOL
TEpLYPAPaUE TEONYOLUEVLC Kol TA TOPOUCLALOUPE O HOPQES TULVAXWY Xl Slaypoppdtedv yia va poc Bondioouy
VO XUTAYOHIOOUUE TS AMOPACELS Tou eEAfipinoay and Tig didpopeg puedddoug.
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EXaytotétnta

H x0plo mapatripnon e obyxplone Yetol towv cuvtoxtoy etvon 6t o TextFooler nopdyel avtimapadelypato ue
TIC TWO EAAYLOTES BuVATEC aAAAYEC X oTal 500 GUVORA BEBOUEVLY AOY L TNC VIETEPUIVIO TIXHC TROGEYYIONE Xa
e xeYone ToMTAGOY teptoptopty. Eminiéov, o MiCE nou yenowonotel paoxdpiopa npocoytc (gradient mask-
ing), To onolo Beloxet xou pooxdpeL TIC TLO ETUBPUCTIXES AEEELS Yol TOV TASLVOUNTY, AVTIC TPEPEL TNV 0PY X XAAOT)
NG TPOTACNS UE MYOTERPEC TPOTMOTOLACELC OE OYEDT UE TOUG CUVTAXTEC TOU YENOWOTOL0V TUY O UaoKdpLoUL
onwe eivar oo MiCERandom xou Polyjuice. Koddde avgdvovtar to friyato avatpopodotnong, 1 ehaylototna
TRV AVTLTHPAUOELY UATWY HELWVETOL, UTODEXVIOVTOS OTL Ol GUVTAXTES TElVOUV VoL exTENOVUY AydTeEpeS eneepyaaie
METS amd xdde Bripa avartpo@oddTnong.

Axour 6c0ov agopd tov Polyjuice, mopatnpodue 6t yevwd avTimopadelyato Ue ONUAVTIXG UEYAADTERES TWIES
ehaytototnrag. To tuyaio paoxdpiopa Tou yenotwonotel yia va Bpet Tol neenel va yivouv cAlayéc o cuVBLACUS
ME peydhou prxoug mpotdoels, odnyel oe exdetind peyolltepo ypo avalitnong. e melpduata, OmnS Xol
oto [20], domotddnxe 6t dorypdgel Tdvew and to 70% tng apyixfc ewwédou oTo chvoho dedouévewv IMDb
xou T0 50% Tou apyol xeyévou oto cUvohro dedopévey NewsGroups ota dUo mpmta Bruata enelepyacioc.
Avuty| 1 ouuneplpopd ogelhetar ot Swdixacio aglohdynonc Tou cuvtdxtn, 1 omolo emAéyel enelepyaoieg ue
BLAPOPETIXEC ETIXETEC amd TO apy b Xeluevo, xau 0To eowtepind Tou povtého, to GPT-2, to omolo dev elvan
xadéhou meploptopévo oe olyxpion ue to TH Tou MiCE.

400-

100 -
editor

—— mice

300- editor

—— mice

mice_randem
polyjuice
= textfooler

mice_random
polyjuice
= textfooler

200-

50-

mean # of tokens of the edited text
mean # of tokens of the edited text

100 200 300 400 50 100

# tokens of the input text # tokens of the input text
(a) Méooc aprdude héewv Tou avtinapadelyuatoc ot (b) Méoog aprdudc AéZewv Tou avtimapadelypatoc oe
oOyxplon e Tov péoo apldud AéEEewv e eloddou oTo olyxpion pe Tov Y€oo aptdud AZewv tne eloddou oto
IMDb. NewsGroups.

Figure 1.3.1: Méoog apududc M€ewv Tou avtinapadelypotog oe alyxplon Ye Tov U€co apldud Aé€ewv Trng
eloédou.

‘Ocov apopd Tic ahhayég Ue SUYXEXPUEVO PEPOC TOU AOYOU, HAOL OL GUVTAXTES BNULOUEYOLY avTinapadelypaTo Ue
onpavTixd To eNdytotec enelepyaoiee xou ota 800 cOvoha dedouévmy oe clYXELoN HE OTAY AELTOLEYOVY Ywpelc
xdmoto meptoploUd. Autd ogelleton GTO YEYOVOS OTL O MEQLOPLOUOS MG Yot ToL UEEY TOU AOYOU TPOXUAEL TNV
amoxELPN AMYOTEPOU XEWEVOU XU TNV TEoToToiNoT TepiocdTepou xelwévou. Xto IMDb, ta enldeta mapdyouv
QAVTLTOPOOELYUOTA UE TILO EAGYLOTO TEOTO Amd OTL PE PHUOTA 1) OUCLAGTIXG, VK oTo NewsGroups, to 0UCLAoTIXG
ocupfdihouy oe mo ehdyloteg encéepyaoieg and dti tar priwata xon Ta entdeta. Auth 1 cuuneplpopd, ogelheTon
xuplwe oty epyacio yia v onola ypnowonoteitow o xdde GOVOAO BEBOUEVKV GAAG XU TNV XATAVOUT| TWV
peEMY Tou Adyou oto xelpevo. Téhog, Ta oupnepdopota Tou eEdyoue yio T 00YXELOT AVAUESH OTOUC GUVTEXTES
QULVETAL Vo ETUXVEOVOVTAL Xt PE T H€D000 GTOYELUEVKY PEPWY TOU AdYOU.

Acuvénreia

Ytov nivoxa 1.3, BAénovye 6Tl undpyouv a&loonueinTeg dlapopés PETUED TWY CUVTUXTWY, Ol omoleg UTopoly
vor anododolv otic pedédouc xan tar Lovtéda mou yenoiwonotel xdde cuvtdxtne. O TextFooler elvan o mo
oLVETAG amd Toug enegepYAoTES, €YOVTAS TOAD Yauniés Twwée acuvénetag. O mo uPmhéc Téc otoug dAloug
CUVTAXTEC OYelhovTaL OTN YENON YAWCOXWY YoVTEAWY, Ta ontola €yel anodelydel 6Tt efvon mo evaictnta otig
drapoponotfioelc otny elcod6 toug [59]. To clvolo dedopévwy IMDd napoucidlet UPNAY Ty ACUVETELAS Yia TO
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1.3. Iewapatixd pépoc

Polyjuice oto npdhto Brua Twv enelepyactcv, oAld to chvoho dedouévev NewsGroups delyvel 6tu o Polyjuice
elvon CUVETEC YiaL UXEOTEPES ELGOBOUC.

Yo oyxfua 1.3.2 n vk Ty acuvénewac v o MiCE oe {uyd apudud PBrudtwyv Selyvel 6t 0o cuvtdxtrng
duoxoheleTol var peTovnlel amd TNV apyixf| XAhdon uiag elcddou oe wa dlapopeTinh. And v GAAN mAsupd,
omwe emonuaiveton xou oto [20] 1 emoTpogh oy apyw xAdo elvon EUXONSTERY Yiot TOV CUVTEXTY, xadde
ouvidee o TUAUATE TG aEYXNE ELo6B0L ToL GUURBEAAOLY GTNV TEOBAEdN TS dpyIXAC XAJOMG TAUPUUEVOLY
OXOUT OTNY TEOTACT] XEWEVOL, UE AMOTEAEGHA Vo omontovTaL AlydTtepee enclepyaoieg yio TNV EMOTEOPH GTNY
apy | eTxétoL.

e yevixée ypoupéc, oL CUVTAXTEC YivovTal o cuvenel 6co auédvovtol Ta Briuata avatpopoddtnong. Metd
0 dnuiovpyio enelepyaoldy oTa TEWTO Briate, aivetor OTL amouToOVTAUL AYOTEPES TEOTOTOCELS GTA EMOUEVA
Bruara, xadde undpyouv mohhamiés mepintoel dmou undpyouv "unoieluyata xewévou" and mponyolUUeveq
ene€epyaoieg mov cuufdihouy oty TedBredn Tou Taivounty.

25-
Table 1.3: Ta anoteAéopato Yior T UETEWXA TNG 20.
OGUVETELOC. -
(8]
c
IMDb g1
MiCE MiCERandom Polyjuice TextFooler @ 10.
inc@Q117 0.86 2.42 6.21 0.01 S
inc@2t | 5.95 5.81 4.65 0.33 £ |
inc@31 | 4.65 6.37 3.98 0.36 1 ‘ ‘ - g %
inc@57 | 4.87 7.58 2.9 0.47 RTITY iy [Teg By (g
inc@Q97T 4.73 8.11 2.22 0.49 ‘ ‘ . . .
1 2 3 4 5 6 7 8
NewsGroups Step
inc@Q17 1.23 2.66 0.53 0.04
inc@271 2.53 4.3 1.27 0.36 = mice © mice_random = polyjuice = textfooler
inc@317 2.44 4.37 1.28 0.27
132231 gjg igi 11?24 g;; Figure 1.3.2: Awrypoppa 6mou anewxovioupe Ty

acuvéneta yioo 10 Brpata 6to obvoro Bedopévey
IMDb.

Téhog, pe ) YED060 GTOYEVUEVWV UEPMY TOU AOYOU TOpUTNENCOHE OTL Ol GUVTEXTESG YivovTon o cuvenelg omod
ot elvon 6tav dev meploptllovtan ot wia cuyxexpévn etxéta POS. Ou tolhamiéc Twée aouvénelag xovtd 6To
0 pog delyvouv 6t oL cuvtdxteg pe ™ pédodo auty, Slopoponolody Ue TETOLO TpoTo TNV £lcodo €TOL WOTE Vo
elvan mpdypatt n eAdytotn duvaty). Iapddetypa auvtol o TextFooler, 6tou 10 T000GTO TWV TEOTACEWY UE TIUY
aocuveénelog 0 Eenepvd o 90% Yo Ta wovd Brpata xou to 60% yio tor Luyd Brporta.

Fevixd, 1 petpin| g aouvénelag g ehaytototnTog Bondd oty amoxdAudr YapaXTNEIGTIXOY TOU GUVTAXTY
nov dev umopel vo anoxahbel 1 ehayloToTnTo Xou amexovilel Tic aduvapieg Tou €xouv oL cuvTdxTteg dGoV aPopd
v ehaytotétna. Enlong delyvouue 6Tt pe pedodouc OTwe auTh TwV OTOYEVUEVLY UEPMY TOU AGYOoUL delyvouue
6Tl glvon Buvatod var "xATATOAEUNCOUPE" ATOTEAECUATIXG OPLOHEVES OO QUTEG TLC ADUVOIES KOl VO €XOUUE O
ouvenelc CUVTAXTES.

ITocootd aviicTEOoPNS

To 1060616 AVTIETEOPHC, OE GUVBLAGUS PE T1 PEV0BO TG TPy WYNS AVTLTUEUDELYUATWY ontd avTinapadelypata,
pog PBonddel va dSwapwticovpe mapaieldelg xou emavaiaufoavoueve potifa otoug cuvtdxteg. Ltov mivoxa 1.4
nopouctdloupe to anoteléopatd oog. Kdvovtag nelpduato otoug cuvtdxTes yio méve omd évo Bridota BAénoupe
OTL 1} AmOBOCT TWV CUVTAXTWY (VoL BLUPOPETIXY) XU CUYXEXELIEVA ETEPYETOL onuavTxy pelwor tng. dotdoo,
TopotnEodUE O0TL N pelworn auth Eexuvdel and to Briua 2 Tou avticTolyel ot petdfoon Teog TNy oy xAdon. Auto
emPBefoudvel T ouuneplpopd Tou MiCE mou Suoxoleletan vo yupioel otnv apyix Tou ¥Ador. XN olUyxplon
TWVY CUVTUXTOV oA TneoLUe atabloxt| peiwon yio toug MiCE xow MiCERandom, oe avtideon ye Polyjuice xou
TextFooler émou BAénovue otadepr|; adinorn. H avinuévn enidoon tou Polyjuice (owe ogeileton oto petwpévo
péyedog Twv TphTwY Pnudtwy mov odnyel ot wxpdTepo Yweo avalATNoNS Yl TO HOVTENO TOU GUVTAXTY).
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Chapter 1. Extetopévn Ieptindmn ota EAAnvixd

Tt vo e€nyhooude Toug AOYOUS it ToL TOEAmAvVe dlepeuvolue To Xyfuo 1.3.3 mou pog delyvel v emppon
07O MOCOGTO GLWATHOY TEOPRAEPewy amd tov Tadivountr. o To mapaxdtey Sudypouua ohhd oL GO TELRGUOTA
YewpoUPE OTL 1 AVTLOTEOPY ETLTUYYAvETAUL 6Tay 1) TedPBhedn Tou Tadivounty elvan dve tou 0.5. Xto didypouua
napatneolue eniong Swoupopéc oe povd xon Luyd Brpato omwe eldaue xar oTNY avdAUCN Yiol TN YETEIXY NG
acvveénetag. Enlong, mapatneoldue nwe n mdavétnta va Peedolue oty xAAoN-0TOY0 GTABLONE UELVETOL GTOV
MiCERandom »ote¢ ot ahharyég mou npoxahel o cuvtdntng gaiveton vo tpoxarolv $6pufo mou ctadioxd odnyel
o€ nepLoa6TEpES Un emduuntég mpoPiédelc.

1 oy g |l B R KX H R
, , >
Table 1.4: To aroteAéoyoto TNV TOGOGTOV = i r H H
AVTLOTROPNC UE TOUG 4 GUVTAXTEG. 8 0.75- \ \ |
IMDb s 0.50 ¥ [ ‘ ’j
MiCE MiCERandom  Polyjuice = TextFooler S | ‘ ‘
Flip Rate@11 1.0 0.9953 0.8747 0.6241 0 |
Flip Rate@21 | 0.8422 0.8419 0.9107 0.6984 T 0.25-
Flip Rate@31 | 0.891 0.7163 0.9392 0.7193 g_ |
Flip Rate@57 | 0.8677 0.6279 0.9592 0.7517 0 J
Flip Rate@97 | 0.8561 0.5674 0.9668 0.7865 "I s e e e insnee e e S
NewsGroups 01 2 3 456 7 8 9
Flip Rate@11 0.89 0.79 0.726 0.941 step
Flip Rate@27 | 0.9188 0.715 0.9131 1.0 , . .
mice_random
Flip Rate@37 | 0.8806 0.6395 0.9074 1.0 mmice - polyjuice = textfooler
Flip Rate@57 | 0.8574 0.5972 0.9237 1.0
Flip Rate@97 | 0.8322 0.5444 0.9659 1.0

Figure 1.3.3: IIWYavétnta npdPBredng tne xhdong
otdyov 6T0 cUvoho dedopévey IMDb

Y T0 amoTEAECUATO TOU TOGOGTO) AVTIGTEOPHS OTaY Yenolonololue ) uédodd pog Yol oTOYELUEVA UéEY TOU
Aoyou, BAénouye UElwOT TOL TOCOGTOL AVTICTEOPHC TWV TEWTKY BNUATWY AOYw TOU TEPLOPLOUOY OV ETLPEROVUE
otoug ouvtdxtec. Elvon onpavtind va onueiwdel molo eTixéto Yépoug Tou AdYou €xel xahlTepeS EMBOTEL 60OV
apopd T0 TOGOGTS AVTLETEOPHC OE *dE GUVORO dedopévwy, pe Ta emideta va elvon Ta emxpatéotepa oto IMDb
xaL Tot ouctaoTixd va efvan 1 BéATiotn wédodog oto NewsGroups. Auth 1 Sagpopd otny anddoorn @alveto
v oyetileton pe v epyaoto, xodde to IMDb yenowwonoieiton yio avdiuvor cuvanodiuotoc xar o enfdeta
enneedlouy TEPLOCOTERO TO cuvaioUNuo amd OTL T PRUOTA XL TO OUCLICTIXE Tou elvar o oudétepa. To
NewsGroups and v & yenotponoteiton yio Talvéunomn Yepdtwy 6mou ta ovotaotixd elvon {wtinic onuooioc.

ITepinhoxoTnTA

To anotehéoyata yio ) Baoixy TERITAOKOTN T, TN piot oo TG 500 YeTELXES TTOL AELOAOYOUY TNV EUYERELN
Aoyou Twv avunapadetypdtwy, €deiav 6t to TextFooler nouphyaye to mo ebylwtto xelpevo, evéd oo MiCE,
MiCERandom xou Polyjuice etyoav av&nuévec tipée nepimhoxdtnroc xadwe avgdvovtay ta BAuata. To XyAua
1.3.4a Belyvel T ouvoyt touv TextFooler xou tnv emdeivwon twv MiCE, MiCERandom xou Polyjuice pe autn
) oepd. H enldoorn tou TextFooler de uoc exmifooel agol amodexvieton xon Péoa amd T OMOTEAECUOTO
aUTAG NG UETEXNE OTL 660 TLO AUGTNEOVE XUVOVES YENOWOTOLOUUE YO TN YEVYNOT| AVTLPoTIX0) XEWEVOU TOCO
AYOTERPO TAUPEXHAIVEL MO Lol GUYXEXPUEVN XaTovouT].  Axoun, 1 olyxpelon PETaEl Twv 800 GUVTUXTMV TOU
yenowornololv tuyaio paoxdeiopa, MiCERandom xau Polyjuice, édeile 6t o mpodtog €xel xahltepn anddoon
and tov d8eltepo. Autd ogelleton OTA ECWTEPIXA YAWOOIXE LOVTENX TTOU YPTOULOTOLOUY OL GUVTEXTES, opol TO
GPT-2 tou Polyjuice moapdyel xelpevo ye dewpnrixd "anpdfrento" tpdémo oe oyéon pe to Th mou elvon €va oD
O EAEYYOUEVO HOVTENO.

H axpiprc nepinhoxdtnTo elvan ulo yetpiny) mou delyvel m6oo BlapopeTind elvan To mopayouevo xeluevo
oe olyxplon Ue To cUvoho dedouévwy mou yenowonoleltow yio ) pUwon tou YAwooixol poviéhou. Ta
amotehéopato Tou Lyfuatog 1.3.4 delyvouv ot o TextFooler eivon o mo otadepdc cuvtdxntng, eved oo MiCE
ot MiCERandom mopdyouv mo 6wotéd yAwoouxd xelyevo 6tay a&lohoyolvton ye tny axplBy| neptmioxdtnta.
Qotéoo, autd ta anotehéopota elvon garvouevixd agol ol cuvtdxteg MiCE xaw MiCERandom exnoudebovton
aAmOXAELGTIXG 6TO GUVOLo dedouévey IMDDb, xu étol 0dnyolbvton 6K Qaiveton 68 CUUTERLPOEE LTEETEOCUPUOY NS
(overfitting) [20]. To Polyjuice avtidétne, to onoio exnondedeton o€ toAamAd clvola dedouévmy [102], topdyet
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1.3. Iewapatixd pépoc

o moLtAdpop@o xeluevo and To MiCE xou yia autd afveton var €yel UeYOAITERES TWEC GTO BLAYEOUUAL.

10- 30-

base perplexity
[#)]

fine perplexity
N
o
- —
oa—

2 10-
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Step Step
g2 mice =1 mice_random 1 polyjuice = textfooler g2 mice 1 mice_random - polyjuice == textfooler
(a) Baow Hepimhoxdtnta 6T0 6OVOAO deBOUEVKDV (b) AxpBrc Iepumhoxdtnto 6to chvoho dedopévwv
IMDb. IMDb.

Figure 1.3.4: Ilepimhoxdtnta oto IMDb.

‘Ocov aopd TNV Topay®YN AvTLIAPASELYHATOY Ue oToYELHEVA Uépn Tou AoYou BAénouue 6Tl auty 1 pédodoc
odnyel oe mo edyhwttoug cuvtaxtes. To TextFooler efvon 0 cuvtdntne mou nopdyet Tic o eOYAWTTES TEOTATELS
HE TN XeNHoT HEEWY ToL A6You, eved ot MiCE xow MiCERandom ¢aiveton var €youv xahéc emdooELS xou VoL YIvovTaL
To e0YAWTTOL XaU O CUVETELS amd Tig apyxée Toug exdoaEl;. AuTéc ol apatnproels delyvouv va cuuninttouv
HE TIC YoNAES TWEG aouVETELNC TTou Tapouctdlouy autol ol cuvtdxtes. Ernlong, n yenon otoyeuuévwy yeptv
Tou A6YoL Bonid oToV TEPLOPLOUS TNEC CUUTERLPORAS UTEPTPOGUPUOYHC oToug ouvtdxteg MiCE yia to dedoyéva
tou IMDb, xadog ol 1ég e axeBric TEITAOXOTNTAC THPAUUEVOUY YEVIXE UPNAGTERES Al AUTES TV OPYLXWY
exdOoEWY.

Avolhtnon d¢éounc oto MiCE

To MICE eivon éva povtého mou yenowonoiel molvwvupxr] derypotoindio wg uédodo avalitnong, 1 onola
emAéyel tuyaio To emouevo aluBoro ye Bdor Ty xoatavour mavdtntag oe ohOXANEo To Ae€hOYio Tou Bivel
To povTého. Xt mewpdpoto pog, 1 avalAtnon dEoung e 120 d€opeg €xel xaAUTEEY ENidoOT
and TNV ToAvwvuuxY detypatoindic oto clvolo dedouévewy IMDb 6cov agopd TtV EAaLOTOTNTA X
TNV AoLVERELA. 270 cOvoho dedopévewv NewsGroups, 1 avalitnon déounc @tdvel oe anddoorn ahhd dev
Eemepvd TV moAuvwvupxy| detypotodndio. Autéd lowe ogeileton oTo ppdTEpOS HéYEDOC TWV TEOTACEWY GTO
NewsGroups mou euvoel v avalhtnorn avixatdotaong A& xotd Aén oe avtideon pe tnv avalhtnor déoung
nou e€epeuvd xan YeyolUtepeg axoloudieg Aé€ewv. 3to Lynua 1.5, elvan evdlopépov va TopatneCOVHE TS
oL TWEC TNG EAAYLOTOTNTOC XOL TNG OCUVETELNS UELWVOVTUL xododg awEdveton o aptdudc Twv decp®y, xadde o
ohybpriuoc e€epeuvd HEYOADTERO YMpo avalfTnong %ot €ToL €YOUNE TEPLOCOTERES LTOPHPIES AVTIXAUTACTACELS
TOU UTopoUV VoL 08N YHO0UV TLO EUXOAA GE ENAYLOTEG AAAYES.
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IMDb
MiCE Greedy 5 beams 15 beams 30 beams 60 beams 120 beams
inc@17 0.86 3.5 3.59 1.91 3.35 2.27 0.57
inc@27 5.95 13.73 11.75 9.25 11.85 8.78 3.29
inc@31 4.65 11.62 10.09 8.2 9.91 7.5 3.01
inc@57 4.87 11.38 9.65 8.3 9.56 7.03 3.04
inc@97 4.73 10.51 9.0 8.19 8.34 6.43 2.9
NewsGroups
inc@11 | 1.23 4.32 3.64 3.04 2.74 2.36 2.13
inc@27 | 2.53 5.19 4.41 3.97 3.69 3.52 2.88
inc@Q37T | 2.44 5.18 4.31 3.83 3.43 3.21 2.67
inc@57T | 2.46 5.29 4.24 3.69 3.23 3.09 2.48
inc@97 2.42 5.33 3.99 3.38 2.98 2.9 2.31

Table 1.5: To anoteAéopota Yo TN UETPXY TNS AOUVETELNS Yot OAeC Tic BlapopeTtinés mapariayés tou MiCE.

Enlonge, 6oov agopd 10 Toc0cTd avTioTeopRc. ta mewpduato €delay 6tt 0 MiCE e nohuwvupxy deryuo-
Tohndla Aoy 1 xahOtepn emhoyy Yo To mpodto Briwa oto IMDDb, odAd 1 napodhayy) tou MICE ye ypron 120
deoumy omodider xahbtepa oto petayevéotepa Phuata. H dminotn avalhtnon (greedy search) métuye mohl
VPNAG T0G0GTA AVTIG TEOPHS Xak 6Ta 800 GhVORX BESOUEVWY, YEYOVOS TIOU LTOONAWYVEL OTL 1) ETLAOYT AéEEwY Y
v udmAidteen mdavotnta odnyel oe mo "emdetxéc" encéepyaoiec oto xelpevo mou TeEAd avTIoTEEPOUV TO
anotéheopa e tpoBredne. Emnhéov, to mocootéd avatponhc oto IMDbD pewddnxe xadde avlavdtay o aprdude
TOV DOXWY.

Yyetnd pe v toldtnta tou Adyou oto avtinopadeiyuata pe avalfnon déoune Brénoupe twe 600 uPnhdtepog
elvar 0 aprdude Twv deou®yv 600 o ToXAOPOPYO Xeluevo TopdyeTon. Axoun Ye TNV Tépodo Twv Prudtev
e Swdaciog mapaywyhc aviimopadelypdtwy, N euyépeto Adyou (fluency) uewdveton oe évar uixpd Padud.
‘Ocov agopd v axplPr] TEELTAOXOTNTO Xol TO PUUVOUEVO UTEETEOCUpHOYNS Tou mopatneiooue oto IMDb oe
TpoNyoLPEVA TELpduata, Tapatneiooue nwe to MiCE ye tohuwvupixn detypatoindio tapovoidlel oe younidtepo
Bardud autd 1o Qouvéuevo oe oy€on e TIC ToROAAAYES TOU cLVTAXTY e avalrtnor déounc.

Téhog, elvon onuavtind va onuetwdel OTL Yol VoL TEWPUUATIOTOVUE HE TOCO PEYAAO dpllud Beouwy dmwe ol 120,
meénel va oLUPBACTOOUE PE HATOLOUC TEQLOPLOHOUS, OIS 1) BLIEXELL TOU TELRHUATOS XOL Ol UTONOYLOTIXES
anouTAOELS.

1.3.3 IIotoTtixd anoTteAECUATA

e auto To pépog Tne dlateifric tapouctdlovton TOAAATAG ToloTxd anoteAéopata tou Bondody oTny Tapathenon
CUUTERLPOPQY, HOTIBWY xat LBLUTEROTATWY GTO TapayOUEVO Xelpevo xdbe cuvtdntn. Adyw tTng QUONS TV omOTE-
AEOUSTWY Xl TOUS TOAAATAOUE GUVTEXTES, TPOOTI)OVUE VOl TTOUPOUGLECOUNE T ATOTEAEGHUATA IOV TTAPOLGLELouY
TO YEYOAUTERO EVOLUPEPOY YLOL TOL GUUTERAOUATA TOU EEQYOVTOL, AARG Xtk VoL EENYHCOUHE TOL YAUPOXTNELO TIXG TCV
CLUVTAX TGOV Ue Tapadelyyorta Tou Bev elval paxpooxehy|, TEoXEWEVoL Vo emixevipwitolyue otic e&nyroceic mou e&d-
YOUUE YLl TOUC GUVTAXTES Xal Oyt oTNV WLoutepdtnTa xdde mopadelypatoc. Xtoug nivaxeg mou Yo nopouctdcouye
oL M&ewc mou tponomoloUvtan ot xdle eneepyaocia Topouctdlovtan Ue EVTOVN YEOPY.

Tuyaio Maoxdpiopa xow Maoxdpiopa Ilpocoy g

Yo napadelyporto Twv Iivdxwy 1.6 xon 1.7, unopodue va 6o0ue tnv xpta Slopopd HETAED TwV 800 GUVTAXTHY Xol
v "loyven" enldpact mou unopel va £yl GTA AVTITOEODEIY AT HAS UETE ol TOAAATAL BAUTO. SUYXEXQUIEVA,
o MiCE to onolo yenotponotel udoxo npocoyfc, ovotaotxd "yvopilel" nolec Aéeic eivon mo onuovtixée ylo
TOV GLUVTEXTN X AV TXGTE 660 TO BUVITOV AYdTERES amd AUTEG Yol VoL EMLTUYEL TNV avTloTpopt]. Me awtdv
Tov Tpeomo, PAénovpe yiotl to MiICE efvor mohd mo ouvenée and tov MiCERandom, o onoloc npoonotdel v
avTioTeéel To anotéleoua Tou TaElvounTy TpoTonolwvToS Tuyalee Aé€elc. Me autd tov tpémo, to MiCERandom
Oyt wovo mopdyel enelepyaoiec Tou elvar NYOTEPO EAGYLOTES AAAE Xt AYOTEPO EVYAWTTES, XADMC UTOPOVUE Vol
TOUEATNEHOOUPE OTL TO XEUEVO TOROUOPPWVETOL OAO XL TEPLOCOTERO
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"Eva §Aho @arvbpevo Tou toapatnpolue, To onoto €xel napoatnendel xo and toug ulavdptavdc xa hotrol [20] eivou
N eloayoyn v "havdacuévey Aeuxoy Slootnudtenv", n onola toAlamiactdletar HETE and OploUEVeL BT,
Avuté galvetan vo mpoxodeitan and Toug EcwTERIXOUE Unyoviopole X to povtého tou MiCE, xodode 6e cupBaivel
ue Tov Polyjuice 1} tov TextFooler. Eniong, uiot dhAn xoLv| eAdTToUTIN CUUTERLPORE TTOU TORATNEOVUE elvol 1
didonaomn twv tokens xou twv "Peudouotioewv" (hallucinations) énwe ota PAuata 9 xan 10 twv enelepyooldv
pe To MiCERandom xou ) Aé€n "Unbelievably".

Metd xon and ta 10 Briuata, nopatneolue mwe to avinopadelypata tou MiCERandom €youv yetatomiotel oe
peydho Badud and v apyxt eloodo, evéd o MIiCE éyel mopapeivel ToA) To cUVeThc, mapd TNy enavdindn e
AéEne "Script". Autéd ovuPaivel eneldr| o npoPientinde unyoviouds xotatdooel otadepd TNy teheutaio AN Tne
TPOTAONE WS TO Mo eMBRUCTIXO, 0dnywvtac Tov MIiCE va diagoponoel tnv npdtacy xuplwe aviixadhotodvrog

HOVO auUTH TN AEEM.

Table 1.6: To napayoduevo avurnopadelypata yior 10 BAuata otov MiCE oe éva Selypa and to IMDb.

Step MiCE

What a script, what a story, what a mess!

What a script, what a story, what a filmmaker!
What a script, what a story, what a disappointment!
What a script, what a story, what a thriller!
What a script, what a script, what a suck!
What a script, what a script, what a director!
What a script, what a script, what a mess!
What a script, what a script, what a script!
What a script, what a script, what a disaster!
What a script, what a script, what a script!

BEoowwuoumwnr

Table 1.7: To napayoduevo avtinapadeiypota yia 10 Bruata otov MiCERandom oe éva delypo and to IMDb.

Step MiCERandom
1 What a script, what a story, what a mess!
2 What great script & story, but a mess!!!!!!!
3 What fantastic script & story, but GREAT FUN!!!IIII!
4 What fantastic script & story but INO FUN!!IIII
5 What fantastic script . Unbelievable story but amazing story!!!!!!!!!
6 What  unbelievable script . Unbelievable unbelievable story!!!!!!!!
7 What incredible script . Unbelievable unbelievable!!!!11ee
8 What incredible script . Unbelievable unbelievable acting.!!!!!11IIIIIT
9 What incredible script . Un believably unbelievable acting. 111NN
10 What incredible script . Un believ believably unbelievable acting. !

YOyxpLon TV 4 CUVTAXKTOV

Yroug Iivaxeg 1.8 xau 1.9, mapovscidlouvye éva napddelypa eioédou and to alvoro dedopévwy IMDb xau medg
Tor avTimapadelypota Slapépouy and cuvtdxtyn oe cuvtdxty. Ilpdtov, mapatneoltue 6t oo MiCERandom xou
Polyjuice 8ev moapopévouv cuvenelc ye tic AEELC TOU EMAEYOUY VOl TPOTIOTOLACOUY, DELYVOVTAC TNV TUYUOTNTY
toug. O Polyjuice gaiveton vo xdver Ty mo emidetin| ahdory) eTol Twv dAAwy oTo Bua 3, 6Tou Tpomonoleltol
oh6XANEO TO Xeluevo dnplovpydvTas pio eviehds dlapopetnt| tpdtact). Auth n cupneplpopd tou Polyjuice eivou
oLVNOLoUEVY o ETUXVEMVEL TG AUENUEVES TWES aoLVETELS X ddS Tapdyel To TOoLUAOHOPYPO XElUEVO antd TOUg
dMhoug ouvtdxteg. And v dAAN mieupd, o TextFooler dev emnpedlel xorddhou 0 doun tng mpdtaong xadde
emhéyel mohh "awotneéc" tpomonoioel. Ta avtinapadeiypato tou TextFooler otov nivaxa 7.16 Sodétouv
wor acuvénelo Tng 0 o dha T BT xou EMXLEWVOLY T cuVENEL Tou cuvTtdxTty. T'a to MiCE, to yoti{Bo
TPOGTUIEUEVOV XEVHV DLUCTNUETWY, Xo®E xou 1) Sldomaon Twv AEewy AauBAvouy e xat Tl oo TeEheu Tl
Briwarto authc tng enelepyaoioc.
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Table 1.8: Ta avunapadeiypoato and toug MiCE xoaw MiCERandom yio 10 Bruata oe éva delyua omd to IMDb.

MiCERandom

Step MiCE
1 Read the book, forget the movie!
2 Read the book, enjoy the movie!
3 Read the book, not the movie!
4 Read the book, not the screen!
5 Read the book, not the film!
6 Read the  book, not the dictionary!
7 Read the book, not the movie!
8 Read the book, not the snob!
9 Read the book, not the Sn atchbox!
10 Read the Book, not the Sn atchers!

Read the book, forget the movie!

Read the book, forget the computer!
Read the book then forget the computer!
Read the book then forget the TV!

Read the book , forget the movie!

Read the book , forget the blah!

Read the book , forget the duh!

Read the book , forget the dash!

...the book , forget the dash!

.. classic book, forget the dash!

Table 1.9: To avtintadeiypata yioa toug Polyjuice and TextFooler yio 10 BApata oe éva delypo and to IMDb.

Step Polyjuice TextFooler
1 Read the book, forget the movie! Read the book, forget the movie!
2 ‘Watch the book, watch the movie! Read the book, missed the movie!
3 Don’t waste your time, or your money. Read the accountancy, missed the movie!
4 You don’t waste your time, or money. Dsl the accountancy, missed the movie!
5 Spend your time, or money. Dsl the accountancy, forget the movie!
6 Spend your time, money, or money. Dsl the accountancy, missed the movie!
7 Spend your time, money or money wisely. Dsl the accountancy, forget the movie!
8 Spend your time, money, and wisely. Dsl the accountancy, missed the movie!
9 Spend your time, money, and dollars wisely. Dsl the accountancy, forget the movie!
10 Spend your time, money and time on this masterpiece. | Dsl the accountancy, missed the movie!

Y10 onpelo auto elvon Boxpo va tapoucidooupe xou tov Hivaxa 1.10 énov yenowonoieitar o0 MiCE ue avalftnon
déoune pe 120 déopec.

Table 1.10: To avuropadelypata tov nopdyel o cuvtdxtne MiCE ye aval¥tnon déounc pe 120 Séoyec.

Step MIiCE with 120 beams
1 Read the book, forget the movie!
2 Read the book, savor the movie!
3 Read the book, avoid the movie!
4 Read the book, LOVE the movie!
5 Read the book, avoid the movie!
6 Read the book, enjoy the movie!
7 Read the book, skip the movie!
8 Read the book, LOVE the movie!
9 Read the book, skip the movie!
10 Read the book, LOVE the movie!

ITapdho mou 660 oty 1) €xBoan Tou cUVTAXTN 600 xou 1) oyt Tou MiCE yenowonotoly ) uédodo pacxapio-
HATOC TPOCOY NG, N BLAPOEE TOUC EYXELTOL GTO YEYOVOC OTL AUTOC O CLVTAXTNE Olepeuvd TOAD TEplooHTERES OL-
AUPOPETIHES OVTLXATAC TAOELS xoddC eMAEYEL AEEC TOU GUVOAXE Tapdyouv TNy o mdavy) axoloudlo AéEewy.
Q¢ ex to0ToL, TopATNEOVUE dTL amd TO Pruc 3 xou UETA 0 cUVTAXTNG aWToE elvan ot VEon va ETLAEYEL PUTOL TTOU
AVTIOTEEPOLY TO XVpLo cuva{cUnua NG TEOTAONG, KoL OTY) CUVEXELX VO AVTLOTEEPEL €0X0No TNV TEdPBAedn yio
v mpdtaoy. Avtideta, o MiCE tpononolel v mpdtoaon ue ) Aé€n "not" oto Briua 3, yeyovdg mou gaiveton
vo unv etvan Bovind xou vo emnpedlel T dnpovpyia eneepyaoidv apydtepa. Emniéov, oe autd to napdderypa
napatneolue Wi enavdindn twv Aélewv "LOVE", "avoid" xo "skip". Autéd anodewviel 6Tl 6tav autég ot
NéZelc emAéyovton and TOV cUVTAXTY, 0 TEOYVKWOTiXOS delxtne ennpedleton évtova mpog TNV xatelduvon e
G TOYEUPEVNS XAOTC.
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Katdtunon xeipévou and tov Polyjuice

Ytoug Hivaxec 1.9 xou 1.12, Brémouvye dVo mapadelyyota and to cbvoro dedouévewv IMDb énou moagatnpeolue
6t 1o Polyjuice agoupel tnv mhetovétnta ToU xeWEVOL El0dB0L, dANGLoVTOS SpopaTixd T1) Boun XL T oYt
ohoylo tng mpoTaone. Autd emixupdVEL TN cUUTERLPopd Tou Polyjuice mou Siepeuviicaue 6To LToXEPIULO TNS
Eloylotétntoc, 6Tt dnhadr to Polyjuice apatpel xatd péoo dpo ndve and 70% tou xewévou eloédou.

Table 1.11: 'Evo napdderypo and to IMDb énou o Polyjuice agoupel yeydho xouudtt tng elcodou.

Step Polyjuice

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-

less they want to gag.

2 This movie was fun and corny. James Agee is rolling in his grave.

This movie was boring and depressing. James Agee is rolling in his grave.
This movie was good and moving. James Agee is at his best.

=~ W

ing at all like the book and made a mockery of it. No one should see this movie un-

Table 1.12: 'Eva nopdderyua ond to NewsGroups émouv o Polyjuice agoupel ueydho xouudtt tneg eicodou.

Step Polyjuice
1 On all 1.44Mb drives (both Mac and PC), the disk spins at a con-
stant RPM. On 800k Mac disk drives, the spin rate of the disk is var-

tion for the outer tracks, and a faster rotation for the inner tracks. A PC needs
cial controller hardware to make this happen.

2 A PC needs to be able to make this game happen.
3 A PC needs to be installed to run this game happen.
4 A PC needs to be installed to play this game correctly .

ied so that the tracks pass under the head at a constant speed; a slower rota-

spe-

AZLoAOYTNOT AVTITAEABELYUATWY LE CTOYEVUEVO EEOS TOLU AGYOUL

Ytoug mivaxeg 1.13, 1.14 xou 1.15, ta otoyevpéva pépn Tou Aéyou elvan to enltdeto xat To ouclaoTiXd og €va
delyua NewsGroups. Kadde to olvoho dedopévwy IMDDb e€eidixedetar otnv avdhuon cuvauofuatoc to enideta
ennpedlouv onuavTixd TNy Taglvounon e npdtaong, eved oto NewsGroups, to onolo yenouonoleltol yio Ty
Tagvounon Yeudtev, ta ovolauoTxd nailouv onuavtixd pého oto anotélecpa Tou tadtvounty. To mopoadelyuorta
xoTadexviouy nHéco anotelecpatixol elval oL CUVTAXTEC OTAV GTOYEUOUUE OE Wla oLuYXEXpLéV etxéta POS,
xou omexoviouv enlone T onpavtiny pelworn g ehaytotdTnTag xou enaxohovty) adénon Tng cuVENELC Yo
Toug ouvtdxtes. lotdoo, autd BuvnTXd Belyvel TwS €vag CUVTAXTNG HE Teploplools BnutovpYel Aydtepo
rouxihec ene€epyaoie GUYXELTIXG UE TNV TUPAYWYT) OVTITAUPUOELYUATOV YwplS TEPLOPLOUOUS OTIOL YEVVATOL TLO
TOLXLAGOUOPQO XeluEVo.

Y1a TopadTey TopodELY T, TUPATNEOVUE TS 1) GTOYXEVUEVY UET0B0C TWY ETIXETOV UEEOUE TOU AOYOU HELGVEL
ONUAVTIXE TNV EAAYLOTOTNTO TV avTimapadelyudtwy. Emmiéoyv, nopatnpolue 6Tl topdho nou to delypa dev €xel
HXEO UHXOC, Ol CUVTAXTES XATAPERVOUY VoL avTIoTeEdouy T TedBiedr tou Ttafivounty| TROTOTOIOVTAS UOVO
plor 1) 800 Aé€ete. (2 ex ToUTOU, OL TEPLOPIGPOL OV ETUPBEANOUHIE GTOUC GUVTAXTES TOUS XAVOUV Vo SLoTapdcoouy
TNV TEOTAGT] LGB0V TLO ETMWETIXG TEOXEWEVOU VoL ETITUYOUY TNV emtduunty xhdo.
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Table 1.13: Iapdderyyo ané TO IMDDb ye tov cuvtdxtn MiCE étav otoyebouye ta entdeta yioo ahhoyéc.

Step MiCE ADJ
1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.
2 The great carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a bril-
liant ending is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.
3 The great carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-

prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

4 The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly predictable ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

5 The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

6 The liminal carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s romplimlim carrier.

7 The romplimpig carrier, heroes, is one of the best horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

8 The romplimpig carrier, heroes, is one of the worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

9 The romplimpig carrier, heroes, is one of the greatest horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

10 The romplimpig carrier, heroes, is one of the worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

Table 1.14: ITopdderypa andé TO IMDb pe tov cuvtdxtn TextFooler étav otoyebouue to enideta yior ahharyég.

Step TextFooler ADJ

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The longer heroes, is one of the more movies ever. A ok story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

3 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

4 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

5 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a laudable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

6 The longer heroes, is one of the further movies ever. A okay story, dramatic actors and a laudable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

7 The longer heroes, is one of the further movies ever. A okay story, dramatic actors and a praiseworthy end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

8 The longer heroes, is one of the further movies ever. A okay story, disastrous actors and a praiseworthy end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

9 The longer heroes, is one of the further movies ever. A okay story, catastrophic actors and a praisewor-
thy ending is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

10 The plus heroes, is one of the alternatively movies ever. A okay story, catastrophic actors and a praisewor-
thy ending is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

Axdur, ota ev AOYe TopadelyUoTa TapaTnpoUUE OTL Ol CTOYEUMEVES ETIXETEC HEPOUC TOU AGYOU HOG TOPEYOUV
éva eninedo ehéyyou oTa Topayoueva avTinapadelypata xou Tautoypova eEac@ahilovy UPMAY xewwevinr cuvoyn
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TV Tpotdoewy. Emmiéov, ol adhayéc mou emBdAhouvy ol cuvtdxtes pdc delyvouv v gueh&lol TwV avTina-
padetyudTov mou eEac@ahilel n uédodoc pag otav TeomonololUE xdde Qopd BlUPOPETIXES ETIXETEG PERPGOY TOU
AOYOUL.

Table 1.15: Iapdderyuo and to NewsGroups pe tov cuvtdxtn TextFooler eve otoyeboupe ta ovolaotind yio

aAAoYECS.
Step TextFooler NOUN

1 This is very curious being that they are both built by Mercury in the very same factory. Steve

2 This is very curious continual that they are both built by Mercury in the very same factory. Steve

3 This is very curious continual that they are both built by Mercury in the very same factories. Steve

4 This is very curious indefatigable that they are both built by Mercury in the very same factories. Steve

5 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve

6 This is very curious indefatigable that they are both built by Mercury in the very same manufac-
ture. Steve

7 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve

8 This is very curious indefatigable that they are both built by Mercury in the very same manufac-
ture. Steve

9 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve

10 This is very curious indefatigable that they are both built by Mercury in the very same manufac-
ture. Steve

Eivau emlong onuovtixd vo onuewwdel 1L o adhayéc tou TextFooler otov Ilivoxa 1.15 umopel va galvovton
AoHUOVTES X TPWOTNG OEnS Go0V aopd TN YeToBoAnc Tou Vorpatog Tne mpotaong. Lo napddelypa, and to
50 Priuwa xou énelta mopatneolue TV evaliayy Twv Aéewy, "fabrication" xou "manifacture" o omnolec elvon
OYEDOV GUVOVUUES X0 EYOUV WXEY| AOCTACT] OTLC EVOWUATOOELS Tou yenotponolel o TextFooler aAld yia tov
Tadivount apxolv Yot va odAEEel 1 TedPBAedn yior To xuplapyo Vépo tng mpdtaone. Me owtév Tov tpdTO
enouévang, o TextFooler pog amoxahintel v evonoinoio tou ta€ivounty| oe uixpég olhayéc.

Emmiéov, emxupdvoude 1600 6 oUTd OGO X0l GTO TOQATAVE THPAUOElYHATH OTL 1) CUVOYT TOU TRy OUEVOU
XEWEVOU TORAUEVEL YEVXE oTadepr] xadidg Blatapdoooupe Ty TEOTIOY, OTOTE 1 YAWGCOLXY TOOTNTA TV Av-
TINAPABELY UG TWY ElVal OTIC TEPLIOCOTEPES TEPLITTOCELS ETOPXNG.

1.3.4 Xpovog Extéleone: 'Evag Ynuavitixog Ilepropiopodg

Towe, 0 oNUAVTIXOTEPOS TEPLOPLOUOS TWY TELCUUATWY ELVaL 1) BLEEXELX TWVY TEPAUETKY, 1) ontolal AmoTEAEl GLYVE
€vary aVaUEVOUEVO TEpLoplold oe epyaoieg unyavieric uddnong. Io va avtigetonicovye autdv Tov Teploploud,
TEQOUATIOTAXAUE UOVO UE €va PEPOC TWV CUVOAWY BOXUWMY TWY CUVOALY OEBOUEVWY, YEYOVOS TOU UTOpE(
Vo U paC meptdploe GooV apopd ToL ANOTEAEOUATE Wog oANE pog eunodilel and v mapaywyY TEPLOCOTERLY
AVTLTAPABELYUATWY ot omd TNy e€orywyT) plog mo cuvolxrg exdvoc. Evdlagpépov éxouv xdmotol apriyol oyetixnd
HE T1) OLdpXELOL OTIC O UECOE YPOVOC TTOL amalTELTAL Yiar T dnplovpyia evog avtinapadelypatog, mou etvon 20 xou 9,5
deutepoienta yia to IMDDb xou to NewsGroups avtiotoiyo. Axdun, ot cuvohixée tpec GPU nou ypetdotnxoy
yioe Oha Tor melpdpatd poc frav 1670 (1) mou petagppdlovton oe 69,5 nuépec. To TyAua 1.3.5 delyvel mde o
OTOUTOVUEVOS YPOVOG XUTOVEUETOL UETOED TGV BLPORMY XATNYOPUIV TEROUATOY Xl TS oplopéves uévodol
enneedlouv onuavtxd Tt didpxeta Twv Tewpopdtov. Enlone, onuoavtind onuelo napatienone eivon 6t to MiCE
ue 120 déopeg ypedleton mepitou teTpanAdoio ypdvo extéheonc and 1o MiCE ye noluwvupxr detypoatohndio,
eve 1 €Y0B0C TV aTOoYELPEVLY eTXeT®V POS peidvel onuoavtixd tov anoutoluevo Ypdvo extéheans ae 6Aoug
TOUC CUVTAXTEC.
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Figure 1.3.5: Katavouy tou cuvohixol ypdvou extéreons otic 6 xatnyopleg melpopdtwy mov nepthaufdvouy to
TelpdoTa oToug 4 cuvtoxtedy o T tetpdpata 6to MiCE e avalitnon déoung xan ota 2 cUvola Bedouévwy.

1.4 2vunepdopota
1.4.1 3uvlAtnon

H moapoloa gpyacio Slepebvnoe 0 yeRor SLUPORETIXDY CUVTAXTOY aVTLPATXOY eENYNACEWY Yiol TO €pY0 NG
OnpLovpYiag aVTLPATIXWY TPOTACEWY PE OXOTO TNV AELOAGYTON TWV BLUPOPETIXWY GTOLYEIWY XL PEVOBOY AUTWV
TOV CUVTOXTOV UE TN XPNOT TOMATAGY PETEHOEWY Xt ToloTixrc avdhuone. T ) Sielorywyr) Twv melpapdtwy
poc, yenowonotfioaue T véa pédodo twv Counterfactuals of counterfactuals [20] xou yio v aZlohéynon diepe-
uvoaue Ta anotehéopato g Tpdogata ewooydeicug yetpixric tou ovopdletar acuvénela. Emimiéov, mapoivoi-
MEVOL amd TNV UTOERY st TNG BNUOVEYING CUYTOXTMV TTOU EMLPEROUY AARAYEC YE TOV TILO EAAYLOTO TEOTO, Elo-
oy Gy aUe Wit TOROARALY T TV oV TLPUTIXGY EENYHOEWY GTIOL 0L GUVTAXTES TEELoE(loVToL GTO VoL SNULOUEYOUY oVTLT-
PODELYHATOL EVE GTOYEVOLY OE WIal CUYXEXPWEVN ETIXETA HEPOUS TOU AOYOU. X Tol ANOTENECUATA, TOQUTNENOUUE
6T x&de cuvtdnTne Topovoldlel ToAamhéc aduvopies xou TAsovexTHoTa, o ontola e€nyolvton and Tic eTBOOELC
Toug ot Wla 1) TeplocdTepeg UETPES, ahAd Xou amd TNV ToloTxY avdiuor. Buyxexpéva, N uédodoc xdhudng
oL yenolponoieiton eupavilel oNUAYTXS aVTIXTUTO GTIC TUEAYOUEVES OVTLPAUTIXES EENYTHOELC, UE TOUG CUVTAXTEG
Tou Ypnotgonotoly uédodo LaoxaploUdaTog ToU EYEL OTOLBNTOTE YVOON Yo TLC TICEIC TOU TAEVOUNTH Vo €YOUY
XOAOTEQEG EMBOTELS WG TEOS OAES TIC UETEIXEC XOU TNV TOLOTNTO TOU TRy OUEVOU XEWEVOL.

Emnmiéov, yio TO VIETEPUIVIOTIXEG TPOOCEYYIOEIC OTNY TRy YY) OVTLPUTIXGY Ta TElpduata €del&ay 6Tl oL GUV-
Txteg oTic exdooelc e eTétec POS yivovtan mo ouvenelc, ahAd pe To x60T0¢ TNg amotuylag var avao teédouy
oplopéves and Tig eényroeic. Qotdoo, o enineda evyEpelac HToy GUYXEIOLUO XOL OE OPLOUEVES TIERLTTWOOELS UXOU
xat vPnAdtepa and Tic enelepyasies ywplc otoyeupéves etnétec POS. Emmiéoyv, péow authc tne ueddédou cuk-
Ay Onpoy ToAUTIHES TANPOQOpieg OYETXE pe TN onuacia xdde eTixéTog UEPOUC TOU AOYOU GE GUVBLAGUOS UE TNHY
epyaoia xdde uvohou BeBoPEVLY. AUTH N YAWCSGOMOYIXY avdAUGT) €8€1Ee OTL Yia TNV AvEAUGCT) GUVALCONUATOS XOol
10 oOvoho dedopévev IMDDb, 1 Swtopayh tewv emtdétwy elvar {oTxng onuaciog yio Ty emTUYT AVTITORUBOAT.
Ané v &k mheupd, To cUvolo dedouévwyv NewsGroups amodeixvieton 6Tt anodidel peyolltepn onuacio ota
OUGLUO TIXG IOV UTOEOVY VoL ETNEEGCOLY ATOTEAECUATIXOTERA TO XVELO VEUO TOU XEWEVOU.

Téhog, 1 Y€BoB0C TV AVTLPATIXDY TWV OVTLPATIXGY amodelytnxe avextiunTtn yio TNy EpELVNTIXT XOLVOTNTA, Xa-
Bde Blepeuvd xaTao TdoelE Tou dev ely oy Tponyoupévwe tapatneniel and Tic Tapadoctaxég uetddoug dnutovpylag
avtipotxodv. To napdv xelyevo e€etdlel ) yphon twv eEnyhoewy aviinapadetyudtwy yia v e€iynon e
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1.4. Xuyurepdoporo

CUUTEQLPORESC TWV CUVTOXTWY AVTITUQUDELYHATWY Xl TWV LOVTEAWY Xou ahyoplduwy mopaywyhc xewwévwy. Y-
ootnpiletar 6Tl pe XATGAANAES UeVOBOUC aglohoYNoNG Xl TN YeYon EENYNOEWY UE AVTIIUPUDELYUOTO, UTOPOUUE
va topéyoupe endpxelc e€nyRoeic Yol T anddoo Blapdpwy ETEEEPYUC TGOV, LOVTEAWY ol HedOdwY mapaywyhc
xeWévou. Méow Twv TEpUUATWY Hoc, dNULoupYHOUUE YLMEDES aVTLQUTIXES EENYNOELS Xol UTORECUUE VoL AELOTOLY-
COUUE TIC ETETES HEPOUC TOU AGYOU YLd VA ELOSYOUUE Lol VEX ATOTERECUATIXY) UEVOBO TOQOY WY N OVTLPOTIXGY
xewévov. To anoteréopata Tne epyaolog Loc TopEy oLy Tepattépw xivntea Yio hEAAOVTIXY épeuva oo (Blo nedlo,
HE TEOOUETEC UETELXES, CUVTAXTES Xl EQYAOIES.

AlomotOooye 6Tl 0 TEploploldds TV UovTéAwY unopel va odnyroel Ue omodellelc oe xahlTepa TOCOTIXG
ATOTEAECUATA Yot TOMAATMAEG UETENOELS, ahAd Tolo elvar To "xb6oT0¢" do0V agopd TNV MOLdTNTA TKWV ANoTE-
Aeopdtwy; Mnopolue Vo YpNotloToooVUE TNV eENYNOT TWV UPLO TAUEVWVY LOVTEAWY YLOL Vo ONULOVEYHOOUUE
TEAXA PENTIOTOUC GUVTEXTES/LoVTERA 1 Vot TIRETEL VoL T1) YPNOULOTIOLACOVUE Y10l VoL AoPacicovpe To cUPPBLBaoTiNd
avdhoya Ue TNy exdoTote gpyaoia;

1.4.2 Ilepropiopol

Kotd ) Sdpxeia autrc tne dlatpBrc, aviiwetwnioope apxetolc meploployole mou npoéxuday xuplwe and Tig
peYdhec umohoyloTixée anoutioelc e epyaotac yoc. ‘Onwe neptypdpouye otny evotnta 7.2.4, To Telpduoto
mou By dnooay anatolouy SNUAVTIXG YEOVIXO DLACTNUO Xl UEPXES POPEC MUPAAANAT EXTENECY) OE TOAAES
GPU. Autéc o meproplopdc ennpéoce dueca To PEYEDOS TwV GUVOAMY BEBOUEVMV OTO OTIO(0L TELPUUATICTHXOUE,
YEYOVOC OV EUTUYWC DEV EUTODLOE TA AMOTEAECUATO Yol Tl CUUTEPdouatd poag. Emniéov, pe Bdon autdv tov
nepLoplopd emAéEope va pnv e€avtiioouue dhoug Toug dladéotpoug avtimapotetinols cuvTaxTes, xadoe autd Yo
ATOLTOUGE ONUAVTIXE TEPLOCOTERES UTOAOYIOTIXEC AmoLTroELS xou ¥povo. Téhog, ta nelpduatd poc xotagelyouy
OTN YADOOH TV oy YAXMY, xotd¢ BEV TEWRUUATIOTAXOPE PUE oOVOAX BedoUEvwy and dAlec YAwooee. 261600,
avaévoupe 4Tl Ta ouunepdopato Tou TEoéxuday xod’ OAn T didpxela auTAS TS epyaoiog Loy louy Yio GAES
T YADOOES xou OTL oL U€YodoL Tou YeNoWonolinxay oe auTH TNV €pyacior UTopody Vo AELTOLRYHoOUY Ywelc
TEOTIOTOLOELS XAl O GANEC YAWOOES.

1.4.3 MeAlovTixéc xateLYVVOELS

Khelvovtag autd ) dlatpr) Yo 9éhape va mpotelvoupe dldpopoug dpdpous o nepontépw Bedtiwon 1 evolhox-
TIXEC eQappoYES xaL Tpooeyyloeic mou Go umopoloav va eunveboouy pedloviiny| épeuva. Ilpwtov, xadde o
auth TNV epyaocio Ta oOvolo dedouévmy Ue to omola epyacTixaue eEedixeboviar oTic gpyacies e avdhuong
ocuvauoUAUaTog xou e TaEvounone Yepdtoy, Yo Hrav evilapépov va BIEPEUVACOUUE TOV TEOTO UE TOV OTolo oL
oLVTAxTEC amodiBouy 6e cUVBLAGWS xou HE BAAES Epyacies, OTwE 1) avary védeLon ovouao Txay oviotitwy (NER),
6mou 1o eViLpEpoy Var Hitay var dlatopay Vol UOVO oL OVOUAoTIXéS ovidTnTeg, 1 1 tadvéunon ue Bdon Tic
TTUYES OTIOU TO GUVOLCUNUA XATNYOPLOTIOLELTAL GE GYECT] UE CUYXEXPWEVES OVTOTNTEG-GTOYOUG 1 CUYUEXPIUEVES
ntuyéc. Emmiéov, wa dhhn evilagpéoouca Teooceyylon Yo HTay Vo TELRUUATIO TOUUE UE BLopopeTX00S TOEVOUNTES
TEOXEWEVOU VoL XaTorypapel TS amodldouy 6 GUVBUNCUS YE TOMNATAG GUVORX DEBOUEVWY, ETUBLOXOVTAS TNV
amoxd v TUY OV VPG TaPEVKLY TeoXATUAPEWY 1) pepohndiwy. Téhog, autd mou Va propolioe enlong vo dlepe-
uvnlel elvon 1 aoLVETELN TV GAAWY UETEXWOY eXTOE and TNV ehoyiototnTa. ‘Onwg delyvouv Ta anoteléopatd
KOS, 1) TROCEYYLON TWY oV TLIUPUSELYUATWY omd avTimopadely oo Ty ouyypapéwy tov [20] ot cuvduaoud pe v
€VVOLOL TNC ACLVETELNG oG EMITEENOUY Vo amoxaAboupe Toug Tiavolc TEQLOPLOKOUE WAS UETELXNAG XAl GUVETHS
7 Yefon HoC TapoUoLaE TEOCEYYIoNS UE GAAeC UeTpxés Tou oyetilovtar pe Tt BBhoypapia o unopoloe va
anodetyVel emwperrc. Mio dAAn e yiow ueArovtiny €peuva Ya oy eniong to avtiotpopo mpélAnua, dniadt
VOL ETILYELPTOOVPE VA YPNOLLOTOWGOVUE TG EENYNHOELC Yol TOUS TERLOoptopolg xdie enelepyaoTy| TPOXEWEVOU Vo
npoonadoovue va BEATIOCOVUE TIC UTHPYOUCES VAOTOINOELS 1) oxOUn Xol VO SMUIOVEYHCOUKE Evay VEO GUV-
Ty and 1o undév ue Bdomn to moleg pédodol xan Yovtéla amodidouv xaibtepa. ot mopddelypa, Tpoxelué-
vou va dnutovpyniel €vac cuVTaXTNG AVTIRUPUDELYUATWY O OTOlog Vo lvol O GUVETAC UE TIC TROTOTOLACELS
Tou xdvel, Yo UTopoVCOHE Vo BLEPEUVACOLUE TLC UNoTolnoT evic cuvtdxtn mou Ya elvon pudpiopévoc (fine-
tuned) pe Vv TpocéyYLon NG AvaTEOPod6TNONE Tou [20] xau THY AoLVERELN TN EAAYIOTOTNTAS, 1) oTolo QotveTon
6t Yo uropoloe va mapéyel eAmdo@opa amoTEAETUATO Xou Topoybueves avtinapadelypota. Télog, ol ytAiddeg
naparyoueveg ene&nyfoeic Ye avtinopadelypota Yo propotoay va oflonotndoly npoxeiuévou va dnuovpyndel ev-
BEYOUEVLC EVal GUVORO BEBOUEVKV Yiol TNV Tepattépw a€loAGYNoT Toug N Ylol TN Ypnor Toug o dhAec epyaoieq,
omwe N enadEnon dedopévemv.
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Chapter 2

Introduction

Over the past few decades, machine learning (ML) has undergone remarkable advancements, revolutionizing
the field of artificial intelligence. ML algorithms have exhibited impressive capabilities across various ap-
plications, from image and speech recognition to natural language processing and recommendation systems.
Additionally, sophisticated techniques like generative adversarial networks (GANs) [24] and reinforcement
learning have pushed the boundaries of what ML can achieve, generating realistic images and videos and en-
abling optimal decision-making. These innovations have found application in multiple aspects of our everyday
lives, from smart devices and Al-powered assistants to art-creation, self-driving cars, and Al in healthcare.
However, amidst these remarkable developments, it is of utmost importance to investigate the level of trust
we can build with these tools. Thus, a fundamental question arises: What can we do to enable Al systems
that can explain the decisions taken by models?

The field of Explainable Al (XAI) aims to answer just that and provide insights behind the actions and
decisions of ML models. The explanation is crucial in the realm of AI because as ML algorithms become
increasingly complex, their decision-making processes can become less transparent. In domains such as
healthcare, finance, and law, where critical decisions are made based on Al-generated recommendations,
interpretability, and transparency are paramount. Stakeholders, including end-users, regulators, and eth-
ical committees, demand a clear understanding of the factors influencing AI decisions to ensure fairness,
accountability, and trustworthiness. Moreover, explainability facilitates user acceptance and enables domain
experts to identify potential biases [3], errors, or unintended consequences. By providing explanations for
ML decisions, Al systems can bridge the gap between the black-box nature of complex models and human
understanding, empowering users to make informed judgments, refine models, and mitigate risks.

In this thesis, we investigate the concept of counterfactuals, which provide a powerful framework for im-
plementing explainability in AI systems. Counterfactuals, in the context of a text, refer to hypothetical
alterations or "what-if" transformations applied to the input text that result in alternative versions of the
output. These alterations allow us to observe how changes in the text impact the decisions made by the model
and uncover the underlying factors driving the model’s predictions, shedding light on the intricate workings
of the AI system. To illustrate the concept of counterfactuals, consider a scenario where an automated
news summarization system generates a summary for an article about a political event. The original sum-
mary reads: "The candidate’s speech received widespread acclaim for its inspiring message." To investigate
the factors contributing to this positive sentiment, a counterfactual edit could involve replacing "inspiring"
with "divisive." By generating this counterfactual version, we can discern how altering the sentiment of the
summary affects its reception and assess the model’s sensitivity to such changes.

In this work, we focus on the evaluation of counterfactual explanations generated by different counterfactual
editors with multiple methods, models, and constraints. We use multiple evaluation methods and metrics in
order to interpret the behavior of these components and provide explanations for their decisions. Our work is
mainly motivated by the research of Filandrianos et al. [20], where the authors also evaluate counterfactual
edits in order to explain decisions made by models. Using two novel methods of generation and evaluation, first
presented in [20] we examine an original evaluation process combined with more traditional ones. Moreover,
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this thesis proposes a linguistics-inspired method of counterfactual generation using specific part-of-speech
tags to add an extra constraint to edit generation. In this way, we seek to provide another aspect in the
generation and evaluation of counterfactual explanations, examine its efficiency, and how it differentiates
from other generation tactics.

In addition, this thesis provides a broad exploration of Counterfactual Explanations and the motivation for
their use, as long as methods of counterfactuals other than text. We also discuss relevant work and demon-
strate the range of existing systems that specify in counterfactual generation. Another focus of this work is
the implementation of a counterfactual generation system where we combine state-of-the-art text counter-
factual editors with a predictor, in order to fairly compare models and methods on the task of contrastive
counterfactual explanations. An important aspect of counterfactual generation and a main examination point
of our work is the minimality of counterfactual edits.

The outline of this thesis is as follows:

e We firstly provide all the essential background in basic Machine Learning concepts and explain how
counterfactual explanations are a significant means to interpretability.

e We give a detailed definition of Counterfactual Explanations and provide the main motivations behind
them. After doing so, we discuss the evaluation methods and metrics that are followed by recent
literature, focusing on the ones that we employ in our work.

e We propose the use of the methods introduced in [20] along with our targeted part-of-speech tagging
method and explain how they can all contribute towards the evaluation of counterfactual explanation.

e Lastly, we show how we structure and implement our counterfactual generation system and present the
results obtained from both a quantitative and qualitative standpoint. Through this process, we provide
numerous counterfactual edits along with explanations for the decisions of the counterfactual editors,
valuable conclusions but also potential limitations.
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Chapter 3

Machine Learning

Over the course of centuries, researchers have been captivated by the pursuit of replicating the remarkable
capabilities and intelligence exhibited by humans through technological advancements. This quest has been
further fueled by the advent of computers and the subsequent establishment of Artificial Intelligence (Al) as
a dedicated field of study. According to [23] AT encompasses the development of computer systems capable of
performing tasks that typically demand human intelligence. At its inception, Al primarily focused on solving
problems that posed challenges to humans but were relatively straightforward for machines. However, as the
field evolved, the importance of addressing the converse challenge became evident — that of teaching machines
to handle tasks that humans find intuitive due to their accumulated experiences. This endeavor gave rise to
the domain of Machine Learning, which plays a pivotal role in enabling machines to acquire knowledge, learn
from data, and navigate tasks previously deemed exclusive to human intellect.

Machine Learning (ML) is a branch of Al that leverages data in order to make predictions with the use of
statistical methods and algorithms. As the name of the field implies, machine learning algorithms structure
models based on sample data, known as training data, to reach a specific level of knowledge without being
explicitly programmed to do so [78] [97]. These models process input data using multiple methods and can
extract multiple patterns from raw data in order to generate outputs for various tasks.

To accomplish these tasks effectively, machine learning heavily relies on data that should be diverse, repre-
sentative, and properly labeled. This data serves as the input from which the algorithm learns and extracts
patterns and features. It can be in the form of text, images, audio, or any other structured or unstructured
data. Machine learning then utilizes this data effectively for a wide range of tasks, starting with the fun-
damental ability to classify and group data based on patterns and similarities. These two tasks form the
foundation of many other advanced machine learning applications.

In the field examined by our work, which is Natural Language Processing (NLP), machine learning can
be utilized for sentiment analysis, text generation, text classification, and semantic analysis. Computer
vision tasks are also a vast category and include image recognition, object detection, facial recognition, and
even autonomous driving. Machine learning is also employed in recommendation systems, fraud detection,
e-learning [85], predictive analytics, and many more fields. These diverse applications demonstrate the
versatility of machine learning and its potential to extract insights, automate processes, and improve decision-
making across numerous domains, driven by the power of data analysis and pattern recognition.
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3.1. Natural Language Processing

3.1 Natural Language Processing

In this section, we focus on Natural Language Processing (NLP), specifically text generation, text classifi-
cation, sentiment analysis, and POS tagging. These tasks are essential in enabling computers to generate
coherent text, categorize documents, understand emotions in text, and assign grammatical tags to words.
Each subsection explores the underlying techniques and practical applications of these NLP tasks, providing
valuable insights into the field’s advancements and their impact in various domains.

3.1.1 Text generation

Text generation is an active area of research within the field of Natural Language Processing (NLP), focusing
on the development of algorithms and models capable of generating coherent and contextually relevant text.
It encompasses a range of techniques and methodologies aimed at producing human-like textual output based
on given prompts, conditions, or learned patterns.

One prominent approach in text generation is the use of probabilistic models, such as n-gram models [80]
or hidden Markov models (HMMs) [1]. These models estimate the likelihood of generating the next word or
sequence of words based on the previous context. While they can capture local dependencies and generate text
relatively quickly, they often struggle with capturing long-range dependencies and producing coherent and
meaningful output. Another widely adopted approach is the use of neural network-based models, particularly
recurrent neural networks (RNNs) [16] and their variants, such as long short-term memory (LSTM) [29]
networks. RNNs excel in capturing sequential dependencies and have shown success in various text generation
tasks. By processing input text step-by-step and updating hidden states, RNNs can generate text that is
contextually informed and coherent.

Recent advancements in deep learning have led to the emergence of Transformer models [89], which have
significantly impacted text generation tasks. Transformers leverage the attention mechanism, allowing for
parallel processing and capturing global dependencies across input sequences. This architecture has rev-
olutionized the field by achieving state-of-the-art results in machine translation, summarization, and text
generation. In the context of text generation, models are typically trained using large corpora of text data,
either in a supervised or unsupervised manner. Supervised approaches involve training the model on paired
input-output examples, while unsupervised approaches focus on learning from unannotated text. Pre-training
on vast amounts of data followed by fine-tuning for specific tasks has proven effective in improving the quality
and coherence of the generated text. Evaluation of text generation models is a challenging task, as it requires
a comprehensive assessment of the generated output in terms of relevance, coherence, grammaticality, and
overall quality. Metrics such as perplexity, BLEU score, or human evaluation through crowdsourcing are
commonly employed to measure the performance of text generation models.

Ethical considerations are also of utmost importance in text generation research. Issues related to bias,
fairness, and the potential for malicious use must be addressed to ensure responsible and ethical deployment
of text generation algorithms.

Transformers

In this segment, we provide some information on Transformers as they are a crucial component of our work
which we present in the next chapters. Transformers have emerged as a powerful architecture for text gen-
eration within the field of Natural Language Processing (NLP). Unlike traditional recurrent neural networks
(RNNs) that process text sequentially, Transformers leverage the attention mechanism to capture global
dependencies and enable parallel processing of input sequences. Introduced by Vaswani et al. in 2017 [89],
the Transformer architecture has significantly impacted text generation tasks. Unlike traditional recurrent
neural networks (RNNs), Transformers leverage the attention mechanism, enabling parallel processing and
capturing global dependencies within input sequences.

The Transformer architecture includes the encoder-decoder framework, self-attention mechanism and
feed-forward neural networks. The encoder is the component that takes the input sequence and transforms
it into a set of high-dimensional representations, capturing the contextual information of each token in the
sequence. The decoder then generates the output sequence based on the encoder’s representations and
previously generated tokens. Self-attention is a key feature of the Transformer, allowing the model to
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focus on relevant parts of the input sequence. It computes attention scores between all positions, weighing
their importance during generation. By capturing long-range dependencies and contextual information, self-
attention enables effective processing of the sequence. Lastly, Transformers employ feed-forward neural
networks as a way to transform the representations learned by the self-attention mechanism. These networks
consist of multiple layers of fully connected layers with non-linear activation functions. They help to capture
and refine the learned representations, enabling the model to better model complex relationships in the data.
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Figure 3.1.1: An overview of the Transformer’s architecture. The figure is obtained from the relevant paper
[89].

An important Transformer-based model is GP'T, which includes models such as GPT-1, GPT-2 (which we
use later in this work), and GPT-3, which has demonstrated impressive capabilities in generating coherent
and contextually relevant text. By pre-training on large-scale datasets and fine-tuning for specific tasks,
GPT models have displayed very prominent results. For example, GPT-3, with its 175 billion parameters,
has demonstrated impressive capabilities in various text generation tasks. It can generate human-like arti-
cles, compose poetry, answer questions, and even write code snippets. The upsurging Al-powered chatbot
ChatGPT [62] launched by OpenAl in 2022, an instantiation of GPT-3, is one of the most recent examples
of what the model can achieve, where by providing a prompt or a starting sentence, the model can continue
generating text that is consistent with the provided context and undertake complex problems.

On the other hand, T5, or Text-to-Text Transfer Transformer, introduced by Raffel et al. [70] in 2019, is
another powerful Transformer-based model. T5 takes a different approach by casting various NLP tasks,
including text generation, as text-to-text problems. It is trained on a massive corpus of diverse text and
can be fine-tuned for specific tasks such as translation, summarization, question answering, and more. T5’s
versatility and flexibility make it a highly effective model for a wide range of text-generation tasks.

In summary, Transformers have revolutionized the field of text generation in NLP. Their attention mecha-
nisms and parallel processing capabilities allow for the generation of coherent and contextually relevant text,
revolutionizing tasks such as creative writing, machine translation, and more. Continued advancements in
Transformer models hold the potential to further enhance our ability to generate human-like text and create
intelligent systems that understand and produce language in a nuanced and natural manner.
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3.1.2 Text classification

Text classification is a fundamental task in Natural Language Processing (NLP) that involves assigning
predefined categories or labels to text documents based on their content. It plays a crucial role in various
applications, such as sentiment analysis, spam detection, topic categorization, and document classification.
The goal of text classification is to develop models that can automatically analyze and classify text data
accurately. This task typically involves a two-step process: training a classification model on labeled data
and then using the trained model to predict the class of new, unseen text documents.

Several techniques have been employed for text classification, with machine learning algorithms being widely
used. Traditional machine learning methods such as Naive Bayes, Support Vector Machines (SVM), and
Decision Trees have been successfully applied to this task. These algorithms rely on handcrafted features ex-
tracted from the text, such as bag-of-words representations or TF-IDF (Term Frequency-Inverse Document
Frequency) vectors. With advancements in deep learning, neural networks have also emerged as power-
ful models for text classification. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), such as Long Short-Term Memory (LSTM) networks, have shown great success in capturing the
sequential and contextual information present in the text.

In recent years, pre-trained language models, such as BERT (Bidirectional Encoder Representations from
Transformers) [12] and RoBERTa [46], have significantly advanced the field of text classification. These
models are trained on large-scale text corpora and can effectively capture complex linguistic patterns and
contextual information. By fine-tuning these pre-trained models on specific classification tasks, they can
achieve state-of-the-art results in various domains.

Concerning the evaluation of text classification models, it is typically done using metrics like accuracy,
precision, recall, and F1 score. These metrics measure the model’s ability to correctly classify text documents
across different categories.

Text classification finds applications in a wide range of fields, including sentiment analysis for social media
monitoring, spam filtering for email systems, topic categorization for content organization, and sentiment-
based recommendation systems, among others. The ability to automatically classify text documents based
on their content allows for efficient information retrieval, data organization, and decision-making processes.

3.1.3 Sentiment Analysis

Sentiment analysis, also referred to as opinion mining, is a prominent research area within Natural Language
Processing (NLP) that focuses on extracting subjective information, attitudes, and opinions expressed mainly
in text data. It involves the use of computational methods to automatically classify text into sentiment
categories such as positive, negative, or neutral. The analysis of sentiment has gained significant attention
due to its practical applications in understanding public opinion, social media monitoring, brand reputation
management, market research, and customer feedback analysis.

& o o

The experience so The experience has The experince has
far has been been ok. been awful!
fantastic!
POSITIVE NEGATIVE

Figure 3.1.2: An example of how a text sentence can be annotated to have a positive, neutral, or negative
main sentiment.

Traditional approaches to sentiment analysis relied on lexicon-based methods, where sentiment lexicons or
dictionaries were used to assign sentiment scores to words or phrases, for example in [101]. These methods
often suffered from limited coverage and failed to capture the complex nuances of sentiment expression.
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However, with the advent of machine learning and deep learning techniques, sentiment analysis has witnessed
substantial advancements. Machine learning algorithms, such as Support Vector Machines (SVM), Naive
Bayes, and logistic regression, have been widely employed for sentiment classification tasks [63]. These
algorithms learn to classify text based on features derived from the input, such as word frequencies, n-grams,
or syntactic patterns. They can effectively model the relationship between textual features and sentiment
labels, enabling accurate sentiment prediction.

On the other hand, deep learning models have shown remarkable success in sentiment analysis by leveraging
their ability to capture intricate patterns and contextual information from text data, images, or even music
[67] [68]. Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs), including variants
like Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU), have been extensively used for
sentiment classification. These models can automatically learn hierarchical representations of text, enabling
them to capture both local and global dependencies in sentiment expression. With the rise of deep language
models, such as RoBERTa, more difficult data domains can be processed, e.g., news texts where authors
usually do not express their opinion/sentiment [96].

Evaluating the performance of sentiment analysis models is essential for assessing their effectiveness. Com-
monly used evaluation metrics include accuracy, precision, recall, F1 score, and area under the receiver operat-
ing characteristic curve (AUC-ROC). Additionally, domain-specific evaluation measures, such as aspect-level
sentiment analysis or sentiment intensity analysis, can be employed to capture more nuanced sentiment
information.

However, sentiment analysis cannot perform accurately when specific language patterns are present in a text
sentence. There are various such examples that contain ambiguations such as double negation e.g. "I do not
dislike comedies.", sarcasm e.g. "I would really like to go out in this nice weather, I love rain on my clothes."
and the use of negative characterisms to express positivity "The movie keeps you on the edge with plenty of
unsettling plot twists.".

Researchers have also explored advanced techniques in sentiment analysis, such as aspect-based sentiment
analysis, which aims to identify sentiment towards specific aspects or entities mentioned in the text. Further-
more, deep contextualized word representations, such as ELMo (Embeddings from Language Models) and
GPT (Generative Pre-trained Transformer), have shown promise in capturing contextual information and
improving sentiment analysis performance.

3.1.4 Part-of-speech tagging

Part-of-speech (POS) tagging, also called grammatical tagging, is a fundamental task in Natural Language
Processing (NLP) that involves assigning grammatical labels to words in a sentence, indicating their syntactic
role and function. The process includes marking up a word in a text (corpus) as corresponding to a particular
part of speech, based on both its definition and its context. It plays a crucial role in various NLP applications,
such as parsing, named entity recognition, and machine translation, providing essential linguistic information
for language understanding and analysis.

The DET short apJ film mMouN did VERB not apv leave VERB up PRT

to prT [ the DET m expectations Noun [§

Figure 3.1.3: An example of the part-of-speech tagging of a sentence.

Traditional approaches to POS tagging have employed rule-based methods, stochastic models, and even
human annotators. Rule-based methods utilize handcrafted linguistic rules and lexicons to determine ap-
propriate POS tags based on contextual patterns. The first try to implement a major corpus for linguistic
analysis was The Brown Corpus [21], where the researchers created a handmade rule list [27] and achieved a
70% accuracy. Stochastic models, such as Hidden Markov Models (HMMs) and Maximum Entropy Markov
Models (MEMMs), leverage statistical patterns learned from annotated training data to make POS tag
predictions.
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In recent years, deep learning models, particularly Recurrent Neural Networks (RNNs) and Transformer-based
architectures, have gained significant attention in POS tagging. These models excel at capturing sequential
dependencies and contextual information, which are crucial for accurate POS tagging. For instance, the
Bidirectional Long Short-Term Memory (BiLSTM) model processes input sequences in both forward and
backward directions, allowing it to leverage information from both past and future contexts. It is important
to mention that in 2014, a paper using the structure regularization method for part-of-speech tagging [82],
achieved 97.36% accuracy on a standard benchmark dataset.

Deep learning models for POS tagging typically require extensive training on large annotated datasets, such
as the Penn Treebank [54] or Universal Dependencies [61], which provide word sequences along with their
corresponding POS tags. During training, the models learn to predict the most probable POS tags based on
contextual information and distributed word representations.

Accurate POS tagging holds significant implications for downstream NLP tasks, facilitating more precise
syntactic parsing, improved named entity recognition, and enhanced machine translation systems. It serves
as a foundational step in NLP pipelines, contributing to a comprehensive understanding and analysis of
natural language text.

3.2 Neural Networks

3.2.1 Basic concepts

Firstly, we explain the basic concepts of a neural network by presenting the architecture of a shallow neural
network, which is essential in order to perceive more complex architectures.

In supervised learning, a model is trained using a fixed number of N samples from the training dataset
D = (z1,11), ..., (Tn, Yn), where x; represents the input and y; represents the corresponding label. The model
aims to compute a function f : X8Y that maps the input X to the output Y, and its trainable parameters
are often referred to as weights. The performance of f is evaluated using a loss function L, which measures
the discrepancy between the predicted output and the true label. During training, the objective is to adjust
the weights of f in a way that minimizes the loss function [23].
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Figure 3.2.1: The shallow neural network of one neuron - Perceptron [74] [56]

In a neural network, the output of each neuron is not solely determined by the weighted sum of the inputs
x;. Instead, an activation function is employed to transform the weighted sum into an output. The choice of
activation function is crucial as it significantly influences the network’s performance. Activation functions
can be linear or non-linear, and there are several commonly used examples, including sigmoid, tanh (Hyper-
bolic tangent), ReLU (Rectified Linear Unit), leaky ReLU, and softmax. The selection of an appropriate
activation function depends on the specific problem and the desired behavior of the neural network. Careful
consideration should be given to choosing an activation function that enables the network to capture complex
patterns and exhibit desirable properties during training and inference. One of the most widely adopted and
best-performing activation functions in neural networks is the Rectified Linear Unit (ReLU) and its variants.
However, ReLLU is not without its limitations, as it entails the "dying ReLLU" problem, where some neurons
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become non-active, leading to decreased model capacity [99]. Variants of ReLU have been developed to
address this issue.

The loss function or cost function, which was previously mentioned, is utilized to quantify the dissimilarity
between the model’s predictions and the true values. It maps the output space Y X Y to a non-negative real
number, denoted as L(y;, f(x;)) for the ith sample. Neural models undergo training iteratively for a specific
number of epochs, which can be understood as iterations until they achieve a predefined objective or reach
the maximum allowed iterations [23]. Generally, the total loss of the model in each epoch is defined as a
normalized average of the cost function computed for each data point in the training set. The goal of training
is to discover the optimal parameters that minimize this function, leading to an effective model. The most
notable loss functions are Mean Squared Error (MSE), Mean Absolute Error or L1, and Cross Entropy Loss.
It is important to add that for complex tasks, custom loss functions are created.

After defining the cost function, the next step is to minimize it through optimization. Gradient-based
methods are commonly used for this purpose. These methods rely on the calculation of gradients, which
provide information on how to adjust the model’s parameters to approach the desired output. By iteratively
computing the loss function and its gradients for all training samples, the parameters are updated in the
opposite direction of the gradient.

One widely adopted gradient-based method is Gradient Descent [98]. It aims to minimize the objective
function by updating the model’s parameters according to the equation:

0 =0 — ey OL(0) (3.2.1)

Here, 6 represents the model’s parameters, € is the learning rate, and \70L(6) denotes the gradient of the loss
function. The learning rate is a small positive constant chosen during training, and its selection is crucial for
the model’s performance.

There are several other gradient-based optimizers commonly used in practice, many of which are extensions
or variations of Gradient Descent. Stochastic Gradient Descent (SGD) is one popular variant that computes
gradients and updates parameters in batches, rather than considering the entire dataset at once. This
approach provides a significant speed advantage. Other notable optimizers include AdaGrad, RMSProp,
AdaDelta, and Adam.

Although the computation of analytical gradients is straightforward, the numerical evaluation can be com-
putationally expensive. To address this, the back-propagation algorithm was introduced. It efficiently
applies the chain rule to compute gradients in a specific order of operations, utilizing computational graphs
and reusing previously computed values. The process of computing outputs and adjusting weights through
back-propagation is typically repeated for multiple epochs until the loss function converges or reaches another
predefined threshold. After training, the performance of the neural network can be evaluated using various
metrics and unseen data that were not encountered during training.

3.2.2 Training

In this subsection, we discuss the key steps involved in training neural networks. The training of neural
networks involves the process of optimizing the model’s parameters in order to minimize a specified loss
function.

The initial step of the training encompasses the parameter initialization of the neural network, including
weights and biases, often initialized with small random values. Proper initialization is critical as it facilitates
faster convergence and mitigates the issues of vanishing or exploding gradients during the training process.
In fact, Goodfellow et al. even propose 'Parameter initialization strategies’ to achieve nearly optimal initial-
ization. After initializing, what follows is the forward propagation phase, where input data is fed through
the neural network, and computations are executed to generate predictions or outputs. Each layer within
the network applies a transformation to the input utilizing its parameters and an activation function. The
outputs of one layer serve as inputs to the subsequent layer, effectively propagating information through the
network.
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Following the generation of predictions, the subsequent step involves the comparison of these predictions
with the true labels or target values. This comparison is accomplished through the calculation of a loss or
cost function, which quantifies the dissimilarity between the predictions and the ground truth. Commonly
employed loss functions encompass mean squared error (MSE) for regression tasks and categorical cross-
entropy for classification tasks. Then, back propagation stands as a fundamental step in training neural
networks. It includes the computation of gradients of the loss function with respect to the parameters of the
network, employing the chain rule of calculus. The gradients provide insights into the direction and magnitude
of the parameter updates necessary for minimizing the loss function. The back-propagation process involves
calculating gradients layer-by-layer, commencing from the output layer, and propagating backward through
the network.

Once the gradients have been computed, the network’s parameters can be updated through an optimization
algorithm. Gradient Descent is the most widely adopted algorithm, whereby the parameters are adjusted in
the direction opposite to the gradients, scaled by a learning rate. This iterative parameter update process
is repeated multiple times, gradually reducing the loss and enhancing the model’s performance. In this way,
the training process typically entails multiple iterations or epochs. Each iteration involves passing the entire
training dataset through the network and applying the parameter updates. An epoch signifies a complete
pass through the entire training dataset. Multiple epochs are employed to facilitate comprehensive learning
from the data.

Throughout the training process, it is vital to monitor the model’s performance on unseen data to prevent
overfitting. A distinct validation set is utilized to assess the model’s generalization capability and make
informed decisions regarding hyperparameter tuning or early stopping. Finally, the trained model undergoes
evaluation on a separate testing set to gauge its performance on unseen data and ascertain its real-world ap-
plicability. By diligently following these steps, neural networks can be effectively trained to extract meaningful
insights from data and provide accurate predictions. The training process entails searching for an optimal
configuration of the model’s parameters that minimizes the loss function and enables reliable generalization
to unseen data.

3.2.3 Pre-trained Neural Networks

Pre-trained neural networks have become a valuable asset in the field of deep learning. These networks
are pre-trained on large datasets and contain learned weights and parameters that capture knowledge about
various features and patterns in the data. By leveraging the knowledge encoded in these pre-trained models,
researchers and practitioners can benefit from the expertise of the original model developers and avoid the
need to train models from scratch.

One of the key advantages of pre-trained neural networks is their ability to perform well on a wide range
of tasks, even with limited training data. The pre-trained models are typically trained on massive datasets,
often consisting of millions of examples, allowing them to learn rich representations of the input data. These
learned representations can be transferred to new, related tasks, where the pre-trained models can be fine-
tuned or used as feature extractors. For example, Dervakos et al. [9] present a method to enhance the
pre-trained BERT embeddings using medical-related knowledge and thus show that it is possible to enhance
BERT pre-trained models for domain-specific tasks.

A popular approach in utilizing pre-trained models transfer learning. In transfer learning, the pre-trained
model is first trained on a source task, such as image classification on a large dataset like ImageNet. The
knowledge acquired by the model in the source task is then transferred to a target task, which may have a
smaller dataset or a different data distribution. By initializing the target task model with the pre-trained
weights and fine-tuning the model on the target task data, it is possible to achieve better performance and
faster convergence compared to training from scratch. For example, in [55] the authors fine-tune and stack
dense convolutional networks pre-trained on ImageNet for the task of art style recognition.

When it comes to natural language processing and its many downstream tasks, pre-trained models have
revolutionized the field by providing ready-to-use, robust and effective solutions for various tasks. Pretrained
models in NLP are typically trained on large corpora of text data, such as Wikipedia articles, news articles,
or web text. These models learn contextual representations of words, phrases, and sentences, capturing
semantic and syntactic information. Several popular pre-trained NLP models are BERT, GPT, T5 etc.
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One of the biggest advantages of pre-trained models is their availability, which has greatly facilitated research
and development in deep learning. Accessing and using pre-trained neural networks typically involves using
a deep learning framework, such as TensorFlow, PyTorch, or Keras. Then, we can load the model’s
architecture and weights into our programming environment. After preprocessing the input data based
on the model’s expected format, we can fine tune our model, i.e. train it on our target task by updating
the weights of some or all of the layers. Otherwise, we can use the model for feature extraction, where
essentially we remove the last few layers and use the output from earlier layers as input to our task-specific
model. After these steps, we can use the model to perform inference in our input data, meaning to pass our
input data through the model and obtain predictions for our task. Lastly, we can evaluate the performance
of the pre-trained model by using metrics and visualizing predictions.

3.3 Explainable Artificial Intelligence (Explainable AI)

Explainable AT (XAI) is a rapidly growing field of AI that seeks to increase transparency and interpretability
in machine learning models. It aims to provide a clear understanding of how models make decisions and
provide insights into their inner workings. The motivation behind XATI is to increase trust and accountabil-
ity in automated decision-making systems, particularly in high-stakes applications such as healthcare and
finance. Moreover, interpretability helps ensure impartiality in the model’s decision, meaning detecting and
not promoting potential biases in the training dataset [3].

Artificial Intelligence (AI)

Machine Explainable

Learning (ML) Al

Figure 3.3.1: A Venn diagram that helps to better understand the position of Explainable Al in today’s
Artificial Intelligence scene.

There are various techniques and tools used in XAI, such as feature importance analysis, saliency maps,
and decision trees, among others. These techniques aim to provide users with intuitive explanations of how
models arrive at their predictions. They can also be used to identify potential sources of bias and evaluate
the fairness of models.

One approach to XAI is to use model-agnostic methods, which can be applied to any machine learning
model without modification. Examples of such methods include LIME (Local Interpretable Model-Agnostic
Explanations) [71], which structures locally linear models around the predictions of an opaque model to
explain it, [3] SHAP (Shapley Additive Explanations) [48], where its authors calculate an additive feature
importance score for each particular prediction with a set of desirable properties that its antecedents lacked
and Anchors which also utilizes local explanations [72]. Other methods, such as [49], propose query-agnostic
evaluation methods that decompose and quantify the conceptual differences between ground truth and re-
trieved instances using adversarial queries. All these methods use perturbation techniques or surrogate models

34



3.3. Explainable Artificial Intelligence (Explainable AT)

to generate explanations that are understandable to humans.

Another approach is to use model-specific methods that are tailored to the specific characteristics of the
model. For example, decision trees and rule-based models are inherently interpretable and can provide clear
explanations of their decision-making process. Deep learning models, on the other hand, can be more difficult
to interpret due to their complex and non-linear nature. To address this, techniques such as Grad-CAM [79]
and Integrated Gradients [83] have been proposed. Moreover, there are occasions where the researchers
employ rule-based explanations for a machine learning model. For example, in [10] the authors compute
rule-based explanations of ML classifiers using knowledge graphs.

Moreover, counterfactual explanations another approach to XAI, which is the focus of this thesis, are
classified as example-based approaches for XAI [7]. Counterfactuals can be either model-agnostic or model-
specific. Model-agnostic counterfactuals are designed to work with any machine learning model, without
requiring access to the model’s inner architecture or parameters. This type of counterfactual explanations
offers us flexibility, transparency, and generalizability across models. On the other hand, model-specific coun-
terfactual explanations are tailored to a specific machine learning model and leverage the model’s structure,
parameters, and internal mechanisms to generate counterfactual instances. These counterfactuals provide us
with more detailed insights into the model’s behavior but may need modifications to be directly applicable
to other models. In the next chapter (4), we discuss counterfactual explanations in detail and provide the
basic information needed to capture their importance in this work.

Finally, XAI is a crucial aspect of modern machine learning, particularly in high-stakes applications. The
field is rapidly evolving, with new techniques and tools being developed to provide more transparent and
interpretable models. The proper use of XAl can definitely lead to a better understanding and evaluation of
the underlying data, models, and assumptions.
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Chapter 4

Counterfactual Explanations

Explainable AT (XAI) is an emerging field that aims to provide transparency and interpretability to black-box
models, which are increasingly being used in decision-making applications. The ability to understand how an
AT model arrives at its predictions is crucial for building trust, avoiding bias, and ensuring that the model is
making the right decisions for the right reasons[45]. While many methods for generating explanations have
been proposed, such as feature importance, decision rules, and local surrogate models[57], counterfactual
explanations represent a promising approach that goes beyond justifying a model’s outputs[91].

In this thesis, we focus on Counterfactual Explanations, a technique that provides a deeper understanding of a
model’s decision-making process by constructing hypothetical scenarios in which an input feature or multiple
features are altered while holding all other features constant[91]. By observing how the model responds
to these changes, we can gain insight into how the model’s reasoning is influenced by different inputs, and
whether the model is robust and generalizable. Furthermore, counterfactual explanations can be used to test
and improve the robustness and fairness of a model, by revealing any hidden biases or areas of uncertainty[91,
45]. As such, counterfactual explanations are an important tool for building trustworthy and responsible Al
systems. In the following sections, we will discuss the motivation behind counterfactual explanations and
how we can generate and evaluate counterfactual text sentences.
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4.1 Definitions

A general definition for a counterfactual explanation - or simply a counterfactual - is that it describes the
causation of a situation by assuming “If X had not happened, Y would not have occurred”. Its name derives
from the need to imagine a counterfeit reality that contradicts our perception [58].

In order to be more precise and give a better understanding of what a counterfactual is, we can observe
an example, which is the following hypothesis: "If T hadn’t missed the bus, I would not have been late at
work." In this case, we have an event(A), this person was late at work, and a cause(B) for that event, this
person missed the bus. To grasp this in "counterfactual logic" we have to imagine a hypothetical case that is
contrastive to the original facts, for example, a world in which this person had not missed the bus. Therefore,
the name "counterfactuals".

To put the above example in the context of interpretable AI, it is necessary to note that the "event" we
described in the example above is a model’s prediction for a specific input, and the "causes" are some feature
values for that same input that led that model to a specific prediction.

This brings us to the question that a counterfactual intends to answer: “What would have to change for
something to be classified as X instead of Y” [19] or in other words, what changes are necessary to our input
and consequently in its feature values in order that the model makes a different prediction.

Thus, another definition for a counterfactual can be the following: Given a classifier b that outputs the
decision y = b(z) for an instance x, a counterfactual explanation consists of an instance z’ such that the
decision for b on 2’ is different from y, i.e., b(z') # y, and such that the difference between z and ' is
minimal. [2§]

PREDICTED TEXT
LABEL
POS This movie was fantastic!
NEG This movie was awful!

Figure 4.1.1: An example of a counterfactual, showing a change in the input sentence that leads to a
different prediction. [20]

We also find importance in answering the question "What is a good counterfactual?". The basic charac-
teristics of counterfactuals are selectiveness and contrast. This makes them friendly to the human eye
as they target only a small fraction of the feature values to be altered. However, these prerequisites cause
counterfactuals to have a broad range and sometimes become contradictory. In trying to solve this issue,
different methods can either specify a criterion to select the best counterfactual based on that or select all
possible outcomes and let the end user decide which counterfactuals suit them.

In general, the process of evaluating a counterfactual as a good one begins with the end user specifying
a desired prediction. Hence, the principal requirement of a good counterfactual is that it generates that
preset prediction. It should also provide a minimal explanation, meaning the closest possible to the original
instance in terms of the similarity of feature values. Moreover, it is vital to generate numerous counterfactual
explanations so that we ensure both diversity and a selection process over multiple options.
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4.2 Motivation and Usage

Counterfactual explanations have become an increasingly important topic in natural language processing
(NLP) due to their potential to provide greater transparency and interpretability for machine learning
models [91]. In addition to addressing issues of bias in machine learning models, counterfactual explanations
can also be used to improve the user experience of machine learning applications [38], as well as their
interpretability and transparency [25].

Artificial Intelligence (AI)

Explainable
Machine Al
Learning (ML)

Counterfactual
Explanations

Figure 4.2.1: A Venn diagram showing the use of Counterfactual Explanations in Artificial Intelligence.

One of the key motivations for the use of counterfactual explanations in NLP is to address issues of bias
in machine learning models. As noted by Wachter et al. [91], machine learning models can exhibit various
forms of bias, including both explicit and implicit biases. Counterfactual explanations can help to identify
these biases by enabling users to explore how the model would behave if the input were different.

For example, in a study by Kusner et al. in 2017 [40] the authors used counterfactual explanations to identify
and mitigate indirect influence bias in several machine learning models. Indirect influence bias occurs
when a model uses features that are correlated with sensitive attributes, such as race or gender, to make
decisions. The study compares several models for predicting the future academic performance of law students.
In this example, they successfully demonstrate that the model which uses race and sex as features is not fair.
On the other hand, the two models proposed by the authors, which use counterfactual examples with no
sensitive features, achieve fairness as they present a very weak causal link between sex and GPA.

Another motivation for the use of counterfactuals is to improve the user experience of machine learning
applications. Kaur et al. [38] used counterfactual explanations to explain the reasoning behind the responses
provided by a conversational chatbot. By offering alternative responses based on counterfactual examples,
the chatbot was able to provide more personalized and effective responses to users.

A primary application of counterfactual explanations is in improving the interpretability and transparency
of machine learning models. According to Goyal et al. [25], counterfactual explanations provide a way to
explain how a machine learning model arrived at a particular decision. The lack of transparency in complex
models like deep neural networks has led to their black-box nature, which has resulted in a lack of trust from
end users. Thus, by generating counterfactual examples, users can explore how changes to the input affect
the model’s output, providing greater transparency and understanding of the model’s underlying reasoning.

Counterfactuals have also been used in various NLP tasks such as sentiment analysis, text classification, and
machine translation. In sentiment analysis, counterfactual explanations have been used to explain why a
particular text was classified as positive or negative. For example, one approach is to generate counterfactual
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explanations by modifying the input text and seeing how the model’s output changes.

In text classification, counterfactual explanations can be used to explain why a particular document was
classified as belonging to a particular class. For example, in the framework GYC proposed by Madaan
et al. [52] the authors use multiple models to generate counterfactuals that change the predicted class of
a sentence to a specific "target" class given as input. Moreover, counterfactuals can also be applied in
machine translation to explain why a particular translation was generated. For example, in a translation
from English to Spanish, a counterfactual explanation can help explain why a particular word was translated
in a particular way. This can be useful for language learners who want to understand the many nuances of
a language.

Model: Topic Classifier

Source Topic: World, Target Topic: Sci-Fi

Input Sentence: The country is at war with terrorism.
Counterfactual Text Samples:

[1] The country is at war with piracy at international waters.
[2] The country is at war with its own beurocracy.

[3] The country is at war with piracy offenses.

Figure 4.2.2: An example of counterfactuals generated by GYC [52] for text classification

Counterfactuals can also be used in data augmentation, where they are generated to create new training
examples that help improve the robustness and fairness of machine learning models. By generating coun-
terfactual examples that represent plausible alternative scenarios, the model can learn to generalize better
and make more fair and accurate predictions. This approach has been applied to various domains, including
image recognition, natural language processing, and healthcare. It can also help mitigate issues related to
data imbalance, where certain groups may be underrepresented in the training data.

Control code  Definitions and Poryjuice-generated Examples Training Datasets
negation A dog is not embraced by the woman. (Kaushik et al., 2020)
quantifier A dogis+ Three dogs are embraced by the woman. (Gardner et al., 2020)
shuffle To move (or swap) key phrases or entities around the sentence. (Zhang et al., 2019b)
A dog » woman is embraced by the woman » dog.
lexical To change just one word or noun chunk without altering the POS tags. (Sakaguchi et al., 2020)
A dog is embraced » attacked by the woman.
resemantic Yo replace short phrases without altering the remaining dependency tree. (Wieting and Gimpel, 2018)
A dog is embraced by the woman + wrapped in a blanket.
insert To add short phrases without altering the remaining dependency tree. (McCoy et al., 2019)

A dog is embraced by the little woman.

delete To remove short phrases without altering the remaining dependency tree. (McCoy et al., 2019)
A dog is embraced by the woman.

restructure To alter the dependency tree structure, e.g., changing from passive to active. (Wieting and Gimpel, 2018)
A dog is embraced by + hugging the woman.

Figure 4.2.3: Examples of different counterfactual examples using the different control codes of the
counterfactual editor Polyjuice. The figure is obtained from the relevant paper. [102]
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Although in this thesis we center around text counterfactual explanations, counterfactuals can also be used
for image data. One approach for the generation of image counterfactuals is optimizing a perturbation
to the input image that causes the model’s output to change to a desired class. This approach has been
used to generate counterfactual explanations for a variety of image-based machine learning applications, in-
cluding image classification, object detection, and segmentation. Another method used recently is generative
adversarial networks (GANs) to generate counterfactual images that are similar to the input image but with
different features that lead to a different classification outcome. Moreover, a recent field of research is the
evaluation of generative methods on images. For example, Lymperaiou et al. [50] propose a conceptual
model-agnostic evaluation method that explains by design which concepts affect the images generated.

0 2 3 -+ 5 8
0]2]3]4]5]8
8 7 5 9 8 9
0]2]3]49]5]8

Figure 4.2.4: Examples of counterfactual images on the MNIST dataset of handwritten digits from [47]
showing that the predicted class shifted from the original prediction.

Original

Counterfactual

Furthermore, counterfactual explanations show great interest when combines with graphs. For example,
in [11] the authors propose an algorithm that provides counterfactual explanations in terms of knowledge
graphs.

In summary, counterfactual explanations offer a powerful tool for improving the accuracy, interpretability,
and trustworthiness of machine learning models in NLP applications. They have the potential to transform
the way we use and interact with NLP applications by providing a clearer understanding of how machine
learning models work and how they can be improved.

4.3 Counterfactual Editors

In this thesis, we explore systems that aim to minimally edit a given text instance in order to change the
prediction of a classifier. From now on, we will refer to such systems as counterfactual editors or simply
editors. In this section, we demonstrate a general overview of the counterfactual editors that we explore and
the architecture they use, and we also categorize some counterfactual editors based on different criteria.

Firstly, we must underline that counterfactual editors use different methodologies to reach the desired out-
come, as they usually have different use cases. For example, there are editors that attempt to generate edits
that are directly dependent on the output of a specific predictor, f() by masking words in a text input and
replacing the masks optimally in order that the output of f() changes. Such editors are MiCE [75] and
DoCoGen [4].
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. n . . original pred: positive
I Stage 2: Make edits ] contrast pred: negative

¥
| Step 1: Binary search with s levels to find optimal masking percentage 1. | (——j
1a. Prepend contrast label Beam
and mask 11,% tokens This movie is bad. | ———>
This movie is okay.
] _ label: negative. o Step 2: Repeat Step 1 for
[ Stage 1: Train editor J iﬂPuti=s Zl;i:siwie 1d. Store candidates with each element in the Beam.

highest contrast predictions
Train editor to make edits ¢ >

targeting (original) labels T Step 3: Repeat Steps 1-2
This movie is okay. until reached maximum
l 3 This movie is bad. > 4
This movie is a comedy. Predictor number of edit rounds
1b. Generate candidates 1c. Get predictions

Figure 4.3.1: An overview of MiCFE, where In Stage 1 the editor is trained to make edits targeting specific
predictions from the predictor and in Stage 2 contrastive edits are generated by the editor model from
Stage 1 such that the predictor changes its output to the contrast prediction. The figure is from the
relevant paper [75].

On the other side, there are editors such as Polyjuice [102] that attempt to create generic text perturbations
that alter the semantics of a sentence, without depending on a predictor. This type of counterfactuals can be
multipurpose as they can be used for data-augmentation tasks or for conditionally generated counterfactuals
to a specific dataset or task.

Another implementation of an editor is Tailor [77]. The authors present a method for generating and manip-
ulating counterfactuals with fine-grained control over their semantics. Tailor introduces a novel perturbation
technique, called "control perturbation", which allows the user to modify specific aspects of the generated
text while preserving its semantic properties. The perturbation process is guided by the same semantic
controls used in text generation, which ensures that the modified text remains consistent with the desired
semantics.

Moreover, a plethora of editors is intended for generating adversarial examples, which aim at identifying
and exposing the vulnerabilities of a classifier. These models, also called adversarial models, usually do not
aim to create fluent, grammatically correct text edits of the original input, so we might encounter noise,
word repetition, or other structural issues in the text generated. A framework that encapsulates many such
implementations is TextAttack [60], which includes many adversarial generators such as TextFooler [35],
HotFlip [15] and Bert-Attack [43]. These are simpler methods than the previously mentioned counterfactual
editors that use various techniques to generate examples, such as gradient descent word swap or counter-fitted
word embedding swap.

Original
Perfect performance by the actor — Positive (99%)
Adversarial
Spotless performance by the actor — Negative (100%)

Table 4.1: Adversarial example generated using TextFooler [35] for a BERT-based sentiment classifier.
Swapping "perfect” with its synonym ”spotless” completely changes the model’s prediction, even though the
underlying meaning of the text has not changed. [60]

In addition, there are editors that, instead of attempting to generate random permutations of a sentence,
use mechanisms to alter only the important features of the sentence. This "importance" can be evaluated
in multiple ways, among which are: using the predictor’s attention[75], and training a classifier to retrieve
the correlation between each separate term and the task.[93], calculating the impact of feature deletion on
the prediction of the classifier [35]. After that procedure, the masked-important terms can be infilled with
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synonyms, antonyms, and related words from other tasks or by using pre-trained seq2seq models. [75] [102]
[18]

4.4 Evaluation of Counterfactual Editors

Despite the fact that there are no global methods established for evaluating the performance of a counterfac-
tual editor, there are several ground truths and common metrics on which we can compare editors and how
efficiently they operate.

One significant metric, which is used by editors that depend on a predictor for their output, is the flip rate.
Flip rate also referred to as validity, fidelity, or attack success rate is a criterion for evaluating editors based
on how often the output of a predictor is flipped to the desired class. A definition for the flip rate is:

fli ’ edits with successful flip to the desired class
ip_rate =

number of inputs to the editor

This metric is used among others in MiCE, which depends on a predictor for the generated edits, in Text Attack
and in our experiments which will be detailed in 7.

Another category of metrics, widely used in natural language processing, is distance metrics. Distance metrics
are a rough, but reasonable, proxy for the overall performance of a counterfactual method. [39]. The word
level Levenshtein edit distance [42] also referred to as minimality in MiCE, closeness in Polyjuice, and edit
distance in CAT is a very common way to estimate how minimal are the changes that an editor makes to the
input. The Levenshtein edit distance between two strings a, b (of length |a| and |b| respectively) is given by
lev(a, b) and can be defined as:

|al ifb=0
1] ifa=0
lev(a, b) = lev(tail(a), tail(b)) if a[0] = b[0]
’ lev(tail(a), b)
1 + min ¢ lev(a, tail(b)) otherwise
lev(tail(a), tail(b))

, where the tail of some string x is a string of all but the first character of x, and x[n] is the nth character of
the string x, counting from 0. [95]

In most papers and studies, the authors use the normalized format of the Levenshtein distance, which is on
the scale [0,1] and can be defined as:

. lev(a,b
normalized_lev(a,b) = |(|)
a
We will use the normalized Levenshtein distance in our experiments in 7 in the form of the metric minimality
and show its practical importance.

Moreover, there are several criteria that we observe in order to assess the quality of the generated text by
an editor. One of them is the quality of the generated edits or in other words the fluency of the sequences
that are generated. A fluent counterfactual can be defined as grammatically correct [60] and semantically
meaningful (e.g. “Colorless green ideas sleep furiously” is not meaningful [6])[102].

In order to avoid human assessment, there are multiple metrics used in the bibliography to achieve that
type of evaluation. For example, in MiCE, Polyjuice, and CAT [5] the metric used to assess the quality of
the generated counterfactuals is fluency. Similar metrics include grammaticality and semantics as defined in
TextAttack [60] and perceptibility in counterfactual GAN [73]. All of these metrics use some language model
to compare masked language model loss between the original and edited text or to compute similarity in
semantics between the original and the edited text.
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However, identifying counterfactuals that are both fluent and within distribution can be a hard task because
the real distribution of texts L is usually inaccessible, and thus fluency is difficult to evaluate systematically.
A usual proxy used for fluency estimation is token-level perplexity of a large language model. This method
has been applied in several NLP tasks [86] [36] [92] and it requires a language model Mp trained on a large
dataset D and the computation of the averaged perplexity over a given text sequence x = 1, Z9,...,TN as
follows:

T
1
PPL(z) = exp{ T Z log paip (xt|x1:t_1)}.

t=1

We must underline that for the fluency estimation, our language model Myp is not fine-tuned on L. If we
assume that L is accessible, we can fine-tune Mp on it, acquiring a new model M. We can then use
M to detect out-of-distribution cases [2| using the same PPL formula as shown in equation 3, and in this
case, we can argue that the probability predicted over the tokens by M, represent the probability under
the distribution of £. This method of detecting and counting out-of-distribution cases out of the total ones

generated is also employed by Keane et al. [39] in the form of coverage. In our experiments, we will employ
both PPL over Mp (PPLp) and PPL over M, (PPLy).

There are several other criteria that have been applied for the evaluation of counterfactuals, such as diversity
employed in GYC [52] that ensures diversity in the generated counterfactual text samples by introducing
diversity loss, closeness [90] or relative distance [39] to the training data which is calculated by comparing
counterfactuals to instances from the original data and also sparcity [39] that refers to the number of features
being changed.

Finally, more recent studies approach the problem of evaluating counterfactual explanations from a more
"human" perspective by assessing the performance of editors based on how much the explanations can assist
a human [84] [14] or a student model [66] to learn to imitate a black-box teacher model. These methods
contribute to the evaluation of the informativeness of the explanations. For example, Treviso and Martins
[84] introduce the communication success rate as a quantifiable measure of explainability.

In this thesis, we focus only on the automated metrics that do not depend on human input or external data
and are most commonly used in editor evaluation, more significantly, minimality, flip-rate, and fluency.
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Proposal

In this section, we propose a new method of evaluating and analyzing counterfactual editors based on the work
by Filandrianos et al. [20]. Our method is based on the concept of generating what we call counterfactuals
of counterfactuals, which we further described in 5.2.1. Moreover, in this work, we evaluate editors to see
how the vital parts of the architecture of each editor perform, in order to better understand if they operate

efficiently.

We first highlight the main contributions of this thesis and then explain the proposed method in detail.
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5.1 Contributions

The contributions of this dissertation are multiple and can be summarized as follows:

e We generate counterfactual explanations using multiple counterfactual editors, that are very relevant
in recent literature. Therefore, we explore the advantages and weaknesses that each one of them poses
for future research. We cast our focus on evaluating and explaining the generated counterfactuals with
automated metrics and qualitative criteria.

e We step upon a novel approach for generating counterfactuals, the method of Counterfactuals of coun-
terfactuals, and the evaluation metric called inconsistency, both introduced by Filandrianos et al. [20].
Our work extends the proposed counterfactual generation framework significantly, as we experiment
with more editor scenarios and generation methods, and utilize it for conducting a more thorough
analysis.

e We introduce a simple yet powerful way to intervene in the semantics of a counterfactual edit by using
part-of-speech tagging. We assess this method and withdraw valuable conclusions regarding constrained
counterfactual generation.

e The comparative results extracted from this study help explain more aspects of the decisions of some
methods and models that are widely used in counterfactual edits generation.

5.2 Proposed methods

In this section, we enumerate the proposed methods of evaluation and the approaches used for counterfactual
generation. We describe in detail the method of Counterfactuals of counterfactuals, the inconsistency metric,
the counterfactual generation based on part-of-speech tagging, and the modifications we can make in the
structural components of the editors in order to identify which methods optimize their performance.

5.2.1 Counterfactuals of counterfactuals

Counterfactual editors typically generate edits by having the input perturbed in a one-step approach with
the end-user or system utilizing the output as what we call a counterfactual. However, in this section, we
discuss a method called Counterfactuals of counterfactuals, a back-translation inspired approach [20] as
it is called by the authors, where the output of a counterfactual editor is resupplied as a new input to the
editor.

To make the concept of Counterfactuals of counterfactuals understandable we first need to formalize the
problem of counterfactual generation. Let us assume access to a classifier g such that g: £ — [0, 1]¢, where
L is the set of text for a specific language and C is the number of different classes. Then, we define the
counterfactual editors for g as functions f : £ — £, and we assume that the editor f has a threefold goal
[20]:

1. The generated text is classified into a different class:

arg mazx g(f(z)) # arg max g(x)

2. The edits are minimal with respect to some distance metric d : f = arg minpecrd(x, h(x)), where F is
the set of functions for which arg maz g(f(x)) # arg maz g(x).

3. The edited text f(z) is fluent and within the distribution of L.

In order to evaluate the degree to which these conditions are valid, we examine the behavior of editors
when they are iteratively fed back with their generated output, meaning that we are exploring the function
Ff(f(...f(x)))), and assessing the three criteria we described above after n iterations of the editor.

To be more precise, we use a novel evaluation metric, inconsistency, to quantitatively evaluate the second
criterion based on the back translation approach, and then we analyze how the other two criteria can be more
carefully examined by utilizing automated performance metrics after n feedback iterations. This feedback
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technique and these evaluation methods are then used with all the different variations we examine for every
editor.

Counterfactuals of counterfactuals prove to be a very significant tool for generating counterfactual edits, as
opposed to the traditional one-step generation, it helps us evaluate the editor in non-dataset dependent
content and monitor the editor’s sensitivity to minor or major changes in an input sentence. Moreover, they
help us unveil faulty patterns of the editors and assist us to explain them.

PREDICTED TEXT STEP
LABEL
l 0: original text
POS This movie was fantastic!
l o 1: first edit
NEG This movie was awful!

l O 2: second edit

(1st feedback step)
POS This movie was incredible!

l o. 3: third edit

(2nd feedback step)

!
Erroneous whitespace added

NEG This movie was pathetic!

Erroneous whitlespace added

l 0 10: tenth edit

(9th feedback step)

POS This  movie was tremenous!
4 erroneous Spelling error
whitespaces added
o 20: tenth edit
l (19th feedback step)
POS This movie was marvellous!lous!!ous!lous!
—_— [
9 erroneous gibberish/hallucination

whitespaces added

Figure 5.2.1: Example of the back-translation framework we use to feed back the edited text to the editor.
We see the progression of edits(centre) and the predicted labels(left) through the iteration steps(right).
With the increase in feedback steps, we notice erroneous behavior in the edits. The figure is from [20].

5.2.2 Inconsistency of minimality

Inconsistency of minimality or simply inconsistency is a novel metric introduced in [20] which is tightly
bound with the concept of Counterfactuals of counterfactuals. In our experiments, inconsistency constitutes
the primary metric for the evaluation of the counterfactual editors.

In order to clarify what inconsistency measures we first need to explain some concepts about minimal edits
which will then lead us to the definition of inconsistency. Assuming that the generated edits of an editor
are minimal, if a sentence A is edited into a new sentence B and their distance is d(A, B), then sentence B
is fed back to the editor to generate another sentence C' for which the distance d(B,C) < d(A4, B), because
if that does not stand then C' is not the result of a minimal edit. There are several requirements for the
inequality mentioned above : (a) we know that A exists, (b) we assume all textual edits can be reversed, so
A is reachable from B and (c) d is symmetric, meaning d(4, B) = d(B, A) [20]. Therefore, A can be used as
our basis, or in other words as ground truth, in order that we can compare it with C.

As a result, we can measure how consistent a counterfactual editor is with respect to a given distance metric
d (e.g. Levenshtein distance, embedding cosine similarity, etc.) by iteratively giving us input the edited text
to the editor and measuring the change in the value of d. In greater detail, given an editor f : L — L, a text
x € L and a distance d : £ x £ — R we define the inconsistency of f with respect to d, for z as [20]:

inc(f,x) = reluld(f(f(x)), f(x)) — d(f(z), 2)]

The difference of the distances d(f(f(x)), f(z)) — d(f(z),x) shows us how the distance d fluctuates between
consecutive iterations on the editor, f and the relu function is only affected by the increase of the distance.
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As the authors state [20], when the value of inconsistency is positive it is certain that a better set of edits
exists, specifically the one of the previous step. On the other hand, a negative value should be concerning, as
it indicates probably a set of edits that is not good. For example, it may denote that there were not enough
changes made by the editor or that a better, more minimal set of edits was found. Equation 5 only counts
the difference in distance between consecutive steps, but we can continue to feed back the generated edits
to the editor itself and compute the inconsistency at step n of the process to gain more information on the
editor’s inconsistency. Thus, the inconsistency at step n is measured as follows:

n—1

incQn(f,x) = % Z inc(fiy1(x), fi(x))

=0

where fo(z) =z and fi(z) = f(fi-1(2)).

5.2.3 Generating counterfactuals with part-of-speech tagging

Generating counterfactuals is a task where we want to achieve minimality so that the generated edits are
as close to the original input as possible. There are several ways to achieve that, but one way is to reduce
the number of candidate tokens and phrases for modification. By generating counterfactuals with the help
of part-of-speech (POS) tagging, we only target specific POS tags and therefore the search space for changes
in the sentence is significantly reduced. Moreover, POS tagging can assist in generating more accurate and
fluent counterfactual edits as the context and meaning of each masked word are more specific if we refer to
a single part-of-speech tag.

The method we use for counterfactual generation in order to leverage the part-of-speech tagging task of NLP
is to target a specific POS tag and then mask only the word tokens that belong in this specific POS tag
group. Therefore, we implement a complementary component to the architecture of the editors that works as
a filter and serves the purpose we describe above. Thus, after the tokenization of the sentence and after the
filter process, the word tokens with the target POS tag are candidates to be masked by the masker that each
editor uses. Then, each counterfactual editor works as a black box generating edits without us intervening
in the generation process.

A formalization of the above problem is as follows. Let S be the input sentence and TARGET be the
targeted part-of-speech tag. Then, tok(S) represents the tokenization process applied to an input sentence S
that generates a list of tokens T = [t1,ta, ..., t,], where n is the number of tokens. We use a function pos(t)
that returns the part-of-speech tag of a token ¢, and generate a new list of tokens T” selected from T', which
will contain only the tokens with the TARGET POS tag, we formulate this as following:

T = [t1|t1 efT, pOS(ti) = TARGET]

Then, masker(T’,S) is the function that replaces all the tokens in input sentence S that are in 7" with a
mask token to create a modified masked sentence M.

Targeted POS tag

AD] The <mask> film was a
l <mask> experience.
POS tag filter )
The short film was a Tokenizer » 18 P The I_gngthy ﬂlm was a
marvellous experience. The film was a [ terrible experience.
Input(label: ) experience. Output(label:neg)
Counterfactual
Editor

Figure 5.2.2: An example explaining the process of counterfactual generation with a targeted part-of-speech
tag. We notice that the targeted POS tag in the example is ’ADJ’, i.e. adjective, and therefore the word
tokens that are adjectives are targeted for modification. In the output of the editor, we observe that the

counterfactual edit only contains changes for these word tokens.
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attr

det det
l amod | l nsubj | amod |

The shart film was a marvellous experience.

DET AD] NOUN AUX DET AD] NOUN

Figure 5.2.3: A visualization of the dependency parse of the input sentence in the example in figure 6.3.3.
We observe that the POS tag of each word token is under the word, thus helping us identify which POS
tags are candidates for modification.

5.2.4 Comparing editors based on different structural components

Counterfactual generation editors feature multiple structural parts which are combined in order to generate
as accurate counterfactual edits as possible. In this thesis, we seek to evaluate and compare different editors
that utilize different models and methods (e.g. for masking), in order to gain insights into their performance
and see how these crucial components affect their efficacy in generating high-quality counterfactual text.

By using various evaluation metrics, which enable us to examine the problem from multiple perspectives,
we aim to expose the capabilities and limitations of each editor and interpret the reasons behind their
decisions. Some of the parts of the editor that we focus on are the underlying model architecture, the masking
method employed as well as the text generation algorithm (e.g. beam-search versus multinomial sampling in
7.2.2). By systematically comparing the editors based on these components, we can assess their effectiveness
in preserving the contextual integrity of the text, their ability to introduce plausible counterfactual variations,
and their overall fluency.

This analysis can contribute largely to the community, as it helps us identify the strengths and weaknesses
of multiple text generation methods, and thus facilitate future research and the development of more robust
counterfactual editors based on the use case.
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Chapter 6

Implementation of our experimental
setup

In this section, we describe in detail the experimental setup that we use in order to conduct our experiments.
Firstly, we present some preliminary information about the datasets, the editors, and other main components
that are utilized. Then, we explain how we formed the experimental setup used in our experiments, including
information about the implementation of the structural parts of the editors and how we modified some of
them. Lastly, we describe some of the main technologies used in our work and how they contribute to it.
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6.1 Technologies and systems used

In this segment, we overview the technical aspects needed to set up our counterfactual editing system, from
programming languages and libraries to the systems used.

6.1.1 Python

The main programming language we use in all of the code studied, used, and written for the editors, data
processing, and edits evaluation is Python. Python is a powerful and widely used computer language and is
essential in machine learning and text generation tasks.

First, Python boasts extensive Machine Learning libraries including TensorFlow, PyTorch, and scikit-
learn, which provide strong tools and frameworks for constructing and deploying machine learning models.
These libraries include multiple methods, from classical models to deep learning architectures, making so-
phisticated machine learning pipelines for text creation jobs easy to deploy. Moreover, Python excels at data
manipulation and preprocessing tasks, which are critical for machine learning and text production.
NumPy and pandas libraries provide efficient data structures and operations for data manipulation, cleaning,
and analysis. This enables us to efficiently process and prepare text data for modeling, including tasks like
tokenization, stemming, and vectorization.

Furthermore, Python provides several powerful NLP libraries that greatly assist in text generation. Li-
braries such as NLTK (Natural Language Toolkit), Spacy, and Gensim offer a wide range of functionalities,
including part-of-speech tagging, named entity recognition, topic modeling, and language modeling. These
tools help us simplify the complex tasks involved in understanding and generating text, enhancing the effi-
ciency and effectiveness of text-generation models. Finally, Python supports a variety of interactive develop-
ment environments and integrated development environments (IDEs) that provide a smooth coding
experience. IDEs like Jupyter Notebook and online IDEs like Kaggle Notebooks and Google Colaboratory
offer features like code autocompletion, interactive debugging, and data visualization, making it easier to
experiment, iterate, and debug machine learning and text generation models.

PyTorch

PyTorch is a popular deep learning framework [64], initially released by Facebook’s AI Research (FAIR) lab
in October 2016, that plays a significant role in enabling text generation with transformers. It is a library
that provides a flexible and intuitive platform for building transformer-based models, as well as extensive
support for various transformer models, such as GPT2. It also contains pre-trained model weights, tokenizers,
and evaluation utilities, simplifying the process of integrating these models into text generation pipelines.
PyTorch’s efficiency and support for GPU acceleration also enable faster training and inference, crucial
for complex text generation tasks.

Additionally, PyTorch provides powerful tools and libraries for efficient text preprocessing, tokenization,
and batching, such as torchtext and transformers. These libraries handle tasks such as tokenizing text into
subword units, building vocabularies, and batching data for training and inference. PyTorch also empowers
text generation with transformers by providing a versatile development platform with efficient preprocessing,
training, and fine-tuning capabilities, and also seamless integration with language generation pipelines.
For instance, it can be combined with techniques such as beam search, nucleus sampling, or temperature
scaling to enhance the diversity and quality of the generated text [34].

Spacy

Spacy is a powerful natural language processing library that seamlessly assists in part-of-speech (POS)
tagging, a fundamental task in language analysis and our experiments. With its robust linguistic models
and efficient processing capabilities, Spacy simplifies the process of automatically assigning the appropriate
part-of-speech tags to words in a given text. Its pre-trained models are trained on extensive labeled data,
enabling accurate and reliable POS tagging for a wide range of languages. Spacy’s POS tagging capabilities
allow us to access the basic yet important noun, verb, and adjective classifications. Additionally, Spacy’s
efficient tokenization and dependency parsing algorithms ensure accurate POS tagging by considering the
contextual relationships between words [31]. All in all, with Spacy, we are able to effortlessly incorporate
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POS tagging into our counterfactual generation pipeline, enabling deeper analysis and understanding of text
data.

6.1.2 GPU accelerated environments
ARIS High-Performance Computer (ARIS HPC)

ARIS is the name of the Greek supercomputer, deployed and operated by GRNET S.A. (National Infras-
tructures for Research and Technology S.A.) in Athens. ARIS consists of 532 computational nodes separated
into four “islands” of nodes. For our experiments, we used GPU-accelerated nodes that operated with the
high-performance NVIDIA Tesla k40m GPU by NVIDIA.

The use of the hardware provided by the ARIS HPC was vital for this thesis and our experiments as it provided
us with multiple graphic processing units (GPUs) and allowed parallelism, in the sense of executing
different experiments simultaneously, each one in a dedicated GPU. ARIS also provided the necessary storage
space that was necessary in order to store our models and parameters but also the results of our experiments.

Kaggle and Google Colaboratory

Kaggle and Google Colaboratory (Colab) provide invaluable assistance to machine learning tasks, particularly
when it comes to leveraging GPUs (Graphics Processing Units) for accelerated computation.

Kaggle is a popular platform for data science and machine learning. It offers an environment where users
can access a vast array of datasets, notebooks, and tools to solve real-world problems. Kaggle provides GPU
resources that significantly speed up computationally intensive tasks. Using all of these tools, we were able
to conduct our first experiments and test how the editors and models behave, obtain some first results, and
generally use the platform to build the foundations of our code implementations [37]. Moreover, we were
able to create multiple datasets with our counterfactual edits and results which are easily reusable for further
analysis. Similarly, Google Colaboratory, commonly known as Colab, is a cloud-based Jupyter notebook
environment that also provides free access to GPU resources. Colab notebooks also allowed us to conduct
some first experiments by leveraging Colab’s GPU support.

In general, both Kaggle and Colab offer user-friendly interfaces that simplify the setup, configuration, and
use of GPU resources. Users in this way can easily have access to GPU-enabled environments, eliminating
the need for local hardware upgrades or complex configurations. For us, it provided a necessary preparation
step before moving to the resources of a hypercomputer.

6.2 Preliminaries

6.2.1 Datasets

For our experiments, we used two English-language datasets: IMDb [51] and 20 Newsgroups[41].

IMDd

The IMDDb dataset is a widely used benchmark in natural language processing and machine learning research.
The dataset covers a wide range of movies and genres ensuring diversity and has been carefully annotated
by human annotators, ensuring labels that can be safely used for supervised learning tasks. It is also a very
commonly used dataset in the task of Counterfactuals Generation as it is also used in the editors: MiCE,
Polyjuice, TextAttack, and Textfooler among others. The dataset consists of 50,000 movie reviews, split into
train and test sets, where each review is labeled as positive or negative depending on the sentiment expressed
in the text. That being said, the dataset is widely utilized in the task of sentiment classification and namely
the binary sentiment classification task.

In the version of the dataset that we use, we have kept 500 randomly selected documents. In this sampled
test set, the mean number of tokens and characters is 204 and 1000, with a standard deviation of 112 and
562 respectively. Moreover, the test set is balanced as 52% of the samples are classified as "positive" and
48% of them are classified as "negative". The mean number of characters and tokens for inputs that are
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classified with "positive" sentiment is 990 and 204, with a standard deviation of 530, and 108, respectively.
The distribution for texts that are classified with "negative" sentiment is similar, where the mean number of
characters and tokens is 1006 £ 589 and 204 + 115, respectively.

20 Newsgroups

The 20 Newsgroups dataset is a collection of approximately 20.000 newsgroups posts across 20 different
topics, including topics like politics religion, science, and sports. The dataset is used as a benchmark for
text classification and topic classification, where the goal is to predict the topic of an article or document
in general based on its content. It is a diverse and complex dataset as it covers a wide range of topics, but
this also makes it more challenging than simpler text datasets. It is worth noting that we gain access to the
20 newsgroups dataset from the scikit-learn datasets library [65]. Regarding counterfactual editors, the 20
Newsgroups dataset is used in MiCE and CAT editors among others.

In our experiments, we use a sample of 1,000 documents that are randomly derived from the test partition
of the dataset which includes 7,000 documents. We use samples only from the test set due to the fact that
the train set of the dataset has already been used for fine-tuning in some of the editors. Also, in order to
experiment with a cleaner dataset we remove all headers, footers and quotes from the text samples, along
with line changes.

During the creation of our test set, we constrained the created test set to follow the same distribution over the
7 different classes of the dataset as the original test set. The mean number of characters and tokens for our
samples is 263 and 58, with a standard deviation of 134 and 31, respectively. Our test set’s distribution over
the 7 dataset classes is as follows: 'rec’: 210 samples, ’comp’: 261 samples, ’alt’: 42 samples, 'talk’: 174 sam-
ples, ’sci’: 208 samples, ’soc’: 53 samples, 'misc’: 53 samples. The list of the 20 classes present in the original
dataset is: [comp.graphics, comp.os.mswindows.misc, comp.sys.ibm.pc.hardware, comp.sys.mac.hardware,
comp.windows.x, rec.autos, rec.motorcycles, rec.sport.baseball, rec.sport.hockey sci.crypt, sci.electronics,
sci.med, sci.space, misc.forsale, talk.politics.misc, talk.politics.guns, talk.politics.mideast, talk.religion.misc,
alt.atheism, soc.religion.christian]. However, we work on a 7-class version of the dataset comprising of the 7
main topics of the dataset, comprising of the following: [comp, rec, sci, misc, talk, alt, soc].

Topic distribution in the test set of NewsGroups dataset Topic distribution in our sampled NewsGroups dataset
2000 -
250 -

1750 -

1500 - 200 -
1250 -

"g‘ 150 -
1000 - 8
750 - 100 -
500 -

50 -
) . . . .
1] 0 -
alt s0C talk sci rec comp alt s0C sci rec comp

Count

misc misc talk
Topic Topic
(a) The original NewsGroups test set with 7500 samples (b) Our sampled test set with 1000 samples

Figure 6.2.1: Comparison between the topic distribution in the original NewsGroups test set and ours

Test set sizes

Regarding the sizes of the test sets used for our experiments, we underline that t-tests for different sample
sizes, feedback steps, and the two datasets in the work of Filandrianos et al. [20] show that for test sizes
greater than 200 the results converge for both datasets. Based on these findings, and in order to reduce the
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computational load we decide to utilize the test sets as described above which both fulfill the requirement of
the 200 samples and above.

6.2.2 Counterfactual Editors

In this subsection, we will review the main characteristics of the counterfactual editors that are utilized for the
generation and evaluation processes of our counterfactuals and how we integrated them into our experiments.

MiCE

MiCE is an editor that involves two main steps in order to generate counterfactual edits. In the first step, the
editor is trained to infill masked spans of text in a targeted manner [75]. Specifically, a pre-trained model,
the T5 model (Text-To-Text Transfer Transformer), is fine-tuned to infill masked spans given masked text
and a target classification label as input. The model is fine-tuned for each dataset to better fit each dataset’s
distribution.

In the second step, the editor is used to generate edits using multinomial sampling, "a method which randomly
selects the next token based on the probability distribution over the entire vocabulary given by the model"
[34]. The input text can be masked either randomly or using the predictor’s attention in a white-box manner
and then the fine-tuned model fills these blanks. After that, a binary search of 4 levels is conducted which
attempts to find edits after masking a percentage of the sentence which ranges from 0% to 55%. In this step,
the editor’s aim is to identify the most minimal edits, i.e. that have the lower minimality score, that will
alter the classifier’s prediction to the targeted one.

In the experiments of the authors of MiCE, the fine-tuning of the model is done by using the predictor’s
outputs (and not the ground-truth label), and for selecting the masks’ locations, the classifier’s attention is
used as described above. Therefore, we used MiCE as a white box. We also used the pre-trained T5 model
that the authors provided. This model was fine-tuned on the same data as the predictor.

For the edits generation, we used the code provided by the authors [76] and we generated edits based on the
default arguments used by the authors for each one of the datasets. The authors use a mix of top-k [17] and
top-p (nucleus) sampling [30] while early stopping is also used.

However, aside from the default arguments used, we conduct different experiments for both random and
attention-based masking. Moreover, we introduce some new code in the original codebase in order to imple-
ment edit generation based on part-of-speech tagging. Another modification we made to the code is to serve
the integration of our data as an input, and not the whole datasets, in order to generate counterfactuals from
the data needed at each step. Finally, we experiment with different generation methods in order to evaluate
their effect on the edits using beam-search with different numbers of beams, namely 1, 5, 15, 30, and 60
beams as well as multinomial sampling.

Polyjuice

In contrast to MiCE, which is an editor which generates counterfactuals based on a target prediction, Polyjuice
is a general-purpose counterfactual generator. Polyjuice employs GPT-2, a large-scale language model used
for the task of text generation, after fine-tuning it on various datasets consisting of pairs in the format of
(input, counterfactual), including the IMDb dataset. A main characteristic of Polyjuice is that it utilizes
multiple control codes in order to allow the user to specify what type of perturbation they aim for. These
control codes are namely: [negation, quantifier, shuffle, lexical, resemantic, insert, delete, restructure] which
are also shown in figure 4.2.3.

Polyjuice uses random masking and then for the edits generation uses multiple "application-agnostic rela-
tionships" [102], to create perturbations and afterward uses "application-specific selection methods" in order
to find counterfactuals that best apply to specific control codes. Thus, Polyjuice is an editor that falls under
the wider category of conditional text generation.

Polyjuice does not use a predictor during the counterfactual generation so for our experiments, we used
the editor in a black-box manner combined with the same predictor we use with MiCE. Specifically, in our
experiments, we first predict the original label of the input sentence and then select from the editor’s output
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only the counterfactuals that flip the original label to the contrast one. After that, for the sake of the
minimality of the counterfactuals, we only select the most minimal edit amongst them.

For Polyjuice, we used the code provided through this module [103]. For the generation of edits, we searched
in all the control codes available, and we produce as many perturbations as possible for each instance by
setting num_pertubations = 1000. However, Polyjuice did not generate this many perturbations in any of
our experiments.

TextFooler

TextFooler differs a lot from the editors of MiCE and Polyjuice since it does not employ a model or neural
network in order to generate counterfactual edits. TextFooler, therefore, utilizes a different technique to
generate what we call adversarial examples and then use them as inputs for a black-box classifier.

In order to create counterfactuals, TextFooler identifies the word tokens that are most influential to the
predicted class and replaces them with some fixed methods. In contrast to MiCE, where the model’s gradients
are used to solve this problem, in TextFooler the classifier is used as a black box and therefore these are not
available. The authors score the importance of each word by monitoring the predictor’s output before and
after the removal of this specific word. [44]. Moreover, the replacements of the word tokens are identified
based on the closest match in an embedding space and are consequently independent of the context of the
word and the predictor. Thus, TextFooler opts for word swaps that are synonyms with the removed word and
to maintain the grammar of the input sentence constrains these synonyms to have the same part of speech.

In our experiments, we use TextFooler through the TextAttack framework. As TextFooler can attack different
classifiers in a black-box manner, we use the same predictor as in MiCE and Polyjuice in order to compare
the editors fairly. For the edit generation, we use the same parameters as defined by the authors in the paper.
Specifically, we use constraints that prohibit the modification of stopwords and already modified words. We
also use a threshold of the word embedding distance (the distance that two words are considered synonyms)
equal to 0.5, we perform a search in a maximum of 250 candidate words within this embedding distance and
we enforce replacements based on POS tagging, i.e. the generated word has the same part-of-speech tag as
the original word.

It is worth noting that in TextFooler, we do not have any control in terms of selecting the most minimal edit
as in Polyjuice and MiCE, but TextFooler already creates very minimal edits and so this does not influence
our problem specifications.

6.2.3 Masking methods

In this subsection, we will describe in short the masking methods used by the counterfactual editors. Masking
plays a significant role in counterfactual generation, as the masker of each editor is the component that decides
which word tokens will be substituted with a mask token in order to then be replaced by a new word token.

Random Masking

Random masking can be considered the baseline for masking methods used by a counterfactual editor. Its
implementation is simple but can deliver good results if it is combined with a clever search algorithm.
Specifically, a random masker receives the tokenized input text sentence and randomly selects some indices
of the word tokens list to be masked with a predefined mask token, e.g. <mask>. The number of selected
indices is either pre-determined or defined by some search algorithm, which iterates until it finds the optimal
number of masked tokens which satisfy the editor’s goal. For example, in MiCE, binary search is used to find
optimal masking percentages [75] for the input sentence. In contrast, in Polyjuice, where random masking is
also used, the user provides a maximum number of masked tokens, and all the randomly masked sentences
are generated at once without the use of a search algorithm.

In general, random masking is computationally worse than other masking methods, which also makes it
require more time in order to generate a counterfactual. However, it is considered to be a good starting point
and a strong baseline for counterfactual generation experiments.
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Attention Masking

Attention masking is the masking method that uses the predictor’s attention mechanism to find which word
tokens affect the predictor’s prediction the most. Since our task is sentiment analysis and our goal is to flip
the predictor’s outcome in the most minimal way possible, we want to mask the tokens that are most strongly
associated with our target class. One way of achieving that is the method of gradient masking, which is used
in MiCE. The authors suggest the use of gradient attribution [81] to select the tokens to be masked. For each
text sentence, they use the gradient of the predicted logit for the target label with respect to the embedding
layers of the predictor and take the I; norm across the embedding dimension[75]. Then the gradient norms
are sorted from highest to lowest and the masker selects a percentage of them based on a masking fraction
which is the result of a binary search.

Intuitively, using attention masking allows our masker to have some "knowledge" of what tokens should be
masked and this makes attention masking methods perform better than random masking methods.

Word Importance Ranking

Word Importance Ranking is a masking method used in TextFooler. Since TextFooler attacks models in a
black-box setting, it does not have access to the model’s architecture or parameters and therefore cannot use
a masking method like gradient masking. Thus, the authors of Textfooler introduced a "selection mechanism"
which measures the influence of a word towards the prediction of the model by calculating the prediction
change before and after deleting each word[35]. This process is followed for all words, and then they are
ranked by their importance score.

Using this masking process, the semantic similarity of the sentence is maintained as much as possible and
the editor can result in successful contrastive edits faster.

6.2.4 Models

T5 Transformer

The T5 model [70] is an encoder-decoder model pre-trained on both supervised and unsupervised tasks, for
which each task is formatted into a text-to-text format. The model achieves state-of-the-art results on many
benchmarks including text classification, text generation, and more. For our task, which is counterfactuals
generation, we use the version of TH which addresses the task of Text-to-Text generation. The T5 model
comes in five different sizes depending on the number of parameters and computational requirements, these
are from smaller to larger: t5-small, t5-base, t5-large, t5-3b, and t5-11b. For our experiments, we use the
standard version, t5-base, which uses approximately 220 million parameters. The model is pre-trained on the
Colossal Clean Crawled Corpus (C4) dataset [70] which is a cleaned version of the Crawled Corpus dataset
[8] that includes approximately 750 gigabytes of English text from the web.

In a =extra_id_0= where movie sequels are
=<extra_id_1= loathed, the "John Wick' series has

<extra_id_2= remarkably consistent and well =<extra_id_D>world <exira_id_1> easily
received. =exira_id_2= remained <extra_id_3=

15

=gxira_id_0> D. Roosevelt <extra_id_1=

President Franklin <exira_id_0= was bormn in <extra id 2=

=gxira_id_1= January 1882.

Figure 6.2.2: Examples of the results that the T5 text-to-text model generates for two sentences with some
masked tokens. The mask token is formatted as "<extra id i>" where i is the number of occurrence of
each masked token starting from zero.

In our experiments, we use T5 through MiCE where the authors utilize a fine-tuned version of the t5-base
version. The generation method used by the authors is multinomial sampling, but we also experimented with
beam search and different numbers of beams. Also, the most important parameters that are fine-tuned are:
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e num_return sequences equal to 15

e top p equal to 0.95

top_k equal to 30

e use of early stopping

length penalty equal to 0.5

e no_repeat ngram _size equal to 2

GPT2

GPT2 or Generative Pre-trained Transformer 2 is an open-source large language model created by OpenAl
[69][100] which translates, summarizes, and generates text. GPT-2 has a pre-trained transformer architecture
and uses attention mechanisms in order to predict text in the most suitable manner. The model was trained
on a large dataset named WebText [69] that was published in the same paper as the model and contains text
from millions of web pages. It is worth noting that the model uses approximately 1.5 billion parameters, and
it is the predecessor to the widely known GPT-3 model which uses 175 billion parameters.

Today, scientists confirmed the worst possible outcome: the massive asteroid will
collide with Earth in 2028. The asteroid is called 2012 DA14, and it's the largest
known object in the solar system. The asteroid is about 1,500 feet (500 meters) wide
and is about 2,000 feet (600 meters) long. The asteroid will be traveling at about
12,000 miles per hour (20,000 kilometers per hour) when it hits the Earth. The
impact will be so powerful that it will vaporize the ground and cause a global
tsunami.

Written by Transformer - A

Figure 6.2.3: Example of the text that the GPT-2 model generates (in bold) given a random initial
sentence. The web app Write With Transformer [33] used to generate the example is created by
HuggingFace and uses gpt2-large and other models to generate text.

In our experiments, Polyjuice uses a fine-tuned version of GPT-2 for the task of Text-to-Text generation.
To achieve that, the authors of Polyjuice incorporate fill-in-the-blank structures [102] [13] in the fine-tuned
model to define which word tokens will be perturbed. The finetuned version of GPT-2 for Polyjuice also uses
specific control codes, as referenced in 4.2.3. It is also of importance that the authors of Polyjuice fine-tuned
the model using 7 different datasets, which do not include neither IMDb nor NewsGroups.

Moreover, the fine-tuned model uses the default parameters as they are stated in the GPT-2 codebase, but
uses fewer hidden layers than all three of the open-source versions of the model available, namely: gpt2-
medium, gpt2-large, and gpt2-xl. We must also note that the version of the model that Polyjuice uses cannot
accept inputs larger than 512 tokens and consequently, we truncate each input larger than this threshold.
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control_codes: [negation]
num_perturbations=3

|

Polyjuice 1:lt is not great for kids.
/ It is great for kids. H It [BLANK] for kids. 2:It is not ok for kids.
e 3:It is bad for kids.

Figure 6.2.4: A diagram that shows the operation of Polyjuice on text input. The word or words that we
want to mask are swapped with the mask token [BLANK], the desired control code is negation and the
desired number of perturbations is 3.

6.2.5 Predictors

In this thesis, where the problem at hand is contrastive counterfactual generation we need classifiers that can
support both binary classification, for the IMDDb dataset where the task is sentiment analysis, and multiclass
classification, for the NewsGroups dataset where the task is topic classification. In the scope of counterfactual
editing, we refer to these classifiers as predictors.

In our experimental setup, we use the pre-trained predictors used by the authors of MiCE. Those predictors,
each for a different dataset, have been built on RoBERTa-Large [46] and have a maximum sequence length of
512 tokens. The test accuracies they achieve are 95.9% for the IMDDb predictor and 85.3% for the NewsGroups
predictor [75]. Concerning the training of the predictors, the authors of MiCE fine-tune both predictors for
5 epochs with batch size 8 using Adam with an initial learning rate of 2e — 05 [75]. The training is done with
AllenNLP [22].

As far as how each predictor works, the IMDb predictor given an input sentence predicts the probabilities
of two labels in the range of [0,1], which represent positive and negative sentiment. When we use this
predictor, the target label for our counterfactual editors is always the contrast one.

The NewsGroups predictor, however, calculates the probability for each one of the seven different classes
listed as: [comp, rec, sci, misc, talk, alt, soc] and labels the input with the class of the highest probability.
The target label when using this predictor in MiCE and Polyjuice is the second highest probability calculated
by the predictor. In TextFooler, we do not use a target prediction but rather check if the original prediction
was changed.

6.2.6 Metrics

In this subsection, we enumerate the metrics that we use in order to evaluate the generated counterfactuals.
In general, the symbolism used for the metrics used is metric@n, i.e. metric at step n of the iteration process.

Minimality
Minimality is the metric that calculates the word-level Levenshtein distance between the original text and

the edited text. In our results, we symbolize minimality as min@n.

We calculate minimality with the help of the score_minimality python function from the MiCE module
[76]. Also, this function was utilized in order to optimize edits’ minimality in our experiments in MiCE and
Polyjuice.

Inconsistency

Inconsistency calculates, as it is called, the inconsistency of the word-level Levenshtein distance. In our
results, inconsistency is labeled as inc@n. In order to calculate inconsistency for our results we use equation
5.2.2 and use the Python implementation by the authors of [20] for that cause.
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Flip rate

Flip rate is the metric that calculates the ratio 7”7’17";""1, where ngy; is the size of the input dataset, and nfiipped
is the number of samples for which the predictor’s output changed for the counterfactual edit. In our results,
we label flip rate as flip rate@n.

In order to calculate the flip rate at step n, we count the edits for which the predictor’s output was flipped
in step n and then divide by the number of all input sentences at step n.

Base perplexity

The metric that calculates the language model perplexity of GPT-2, a large, general-domain language model.
We label base perplexity as ppl-base@n. To calculate the base perplexity values in our experiments we
use the implementation from the module disentanglement-vae [88] which supports the related paper of the
authors [87].

Fine perplexity

Fine perplexity calculates the language model perplexity of GPT-2, fine-tuned on the IMDb [94] and on
the 20 Newsgroups [26] datasets. This metric differs from Base Perplexity, as it is used to identify if the
generated text contains "surprising" edits compared to the datasets’ content. We label fine perplexity as
ppl-fine@n. To calculate the fine perplexity values in our experiments, we use the implementation from the
module disentanglement-vae.

We must note that both base perplexity and fine perplexity require a GPU in order to complete calculations
in a reasonable amount of time, as they use a language model (GPT-2) and perform computationally intensive
calculations.

6.3 Implementing our counterfactual generation and evaluation sys-
tem

In this section, we describe in detail how we implement our counterfactual and generation system. To
facilitate the understanding of the processes, we present the system as a pipeline and then explain each
separate component and method of the system separately.

6.3.1 Overview of the system’s architecture

For this thesis, we create a pipeline with distinct components which facilitate the generation and analysis
of our counterfactual edits. The first step of our pipeline is the proper formatting of the two datasets used,
IMDDb and NewsGroups, in order to create the input for the counterfactual editors. The second step is the
setup of the system we use for counterfactual generation. In this component, we encapsulate both the editors
and the predictor and run experiments with each editor separately. The last step of our flow line is the
evaluation process of all the generated edits. In order to, evaluate the edits on different aspects we use 5
different metrics along with qualitative analysis and examples.
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44 experiments conducted
A

Ve >~ Minimality

Inconsistency

| IMDb ‘

Flip Rate

il

| NewsGroups ‘

Perplexity

Datasets
/ Fine Perplexity

Counterfactuals

Generation .
Evaluation

Figure 6.3.1: A pipeline diagram showing how we structure our system. We utilize two datasets, which are
then passed as input to the editors in the correct format. We then conduct 44 separate experiments on the
editors, which are wrapped with the predictor as a single component. After all the experiments are
conducted, we format the output suitably and evaluate the generated edits based on the 5 metrics shown,
which are also detailed in 6.2.6 and 4.4.

6.3.2 Counterfactual generation: Implementation

In the following segment, we present the architecture that we used for the counterfactual editors, how we
integrated the use of part-of-speech tags, and the concept of Counterfactuals of counterfactuals in this system.
We elucidate the processes followed and concepts used with the use of pipeline diagrams and their explanation
in detail.

The editor’s architecture

In this subsection, we provide a detailed overview of the architecture we use for our experiments. First, in
order to use a counterfactual editor to generate counterfactual edits we need to train the editor, ideally on
more than one dataset. For our tasks, we use pre-trained models for the editors of MiCE and Polyjuice,
whereas in TextFooler, an editor is not needed.

Secondly, we focus on the counterfactuals edits generation. This process consists of three significant compo-
nents, the editor, the predictor, and finally the evaluation of the edits. For each editor, a different masking
algorithm is used, specifically in MiCE we either use random or attention-based masking, in Polyjuice we
use random masking and in TextFooler we use an importance ranking algorithm as provided by the authors.
After the masking, each editor utilizes different methods and editor models for generating edits, as described
in 6.2.2.
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Figure 6.3.2: An overview of the counterfactual editor’s architecture and how we wrap it with the predictor
to conduct our experiments. In the figure, we can also see how we use the output of the counterfactual editor
to create a new input

The next component we use for the counterfactuals generation is the predictor. We use two different predictor
models for the IMDb and the NewsGroups datasets accordingly, which are pre-trained AllenNLP predictors,
that are also used by the authors of MiCE. In order to integrate the predictor with all three of our editors,
we used different methods for each editor as described in 6.2.2. Since our counterfactual generation method
focuses on sentiment analysis, and we have a target prediction class for each edit, we need at least one
counterfactual which satisfies the target prediction class. If more than one edit is classified in the contrast
label class, we utilize a third step in the edits generation which evaluates the edits based on minimality 6.2.6
and selects the counterfactual with the lowest minimality score. This allows us to create edits that not only
flip the predictor’s class prediction but are also minimal.

After that, we format appropriately the output generated after these three main steps, in order to use it as
input for the next step of the iteration process. This is the concept of Counterfactuals of Counterfactuals
referred to in 5.2.1. In this way, we create a 10-step automated pipeline that is used for each one of our
experiments.
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Part-of-speech tags integration and implementation

The majority of experiments carried out in this thesis generate counterfactuals based on a targeted part-of-
speech (POS) tag. In order to achieve this successfully, we need to integrate POS tagging in each one of
the editors, in a way that does not influence the other components of the editor. Thus, we integrate POS
tagging in the masking phase of each editor, adding in that way a restriction for the words that the masker
can mask. The library we use to retrieve the POS tags of each word is Spacy [31], as it exposes the part of
speech of each word in an effortless way.

X N . original prediction: 1

/ l Editor \\. This movie was termible. | prediction:0
| . ) | This movie was ok. | prediction: 1
Masking Algorithm (a)
Can be random or use some
attention mechanism Th $h10¥§:gai;§T:.‘e' Predictor model
targeted_pos_tag: ADJ { 5 — —_—
Search Editor 'I' Output
Algorithm model Evaluation and selection counteractual
rocess
l P This movie was terrible.
Sem:;;"k‘,ﬁ:.;?,mﬂ,ﬁ::wm the new prediction: 0
This movie was <maske .

AN J

Figure 6.3.3: The diagram which shows the counterfactual generation system that we use, also shown in
6.3.2, but with the needed changes (in the red ovals) to highlight how we integrate the use of part-of-speech
tags into the process. One can notice that the generated edits (see (a) in the diagram) only contain changes

in the adjective of the input.

However, each counterfactual editor we use needs an appropriate implementation to support edit generation
using a specific POS tag. So, we had to implement different methods and functions to fit each editor.

In MiCE, we intervene in the Masker class of the editor and introduce a new Python function called
pos_masker () [37] that takes as arguments the input sentence, the tokenized sentence, and the targeted
POS tag. As the MiCE editor uses a different tokenizer, the T5Tokenizer [32]|, than what Spacy uses, we
create a mapping that ensures compatibility between the two tokenizers. Moreover, we noticed that the T5
tokenizer sometimes splits a token into two separate tokens, e.g. ’apple’ to ’app’+’le’. As this erroneous be-
havior could influence our implementation, we locate these wrongly split tokens and join them back together
in order to ensure the integrity of our tokens. After these necessary steps, we filter the input tokens based on
the targeted POS tag and return them to the masker. After this process, either if we use random or gradient
masking, the masker only operates on the tokens with the targeted POS tag.

In Polyjuice, we use a function written by the authors of Polyjuice which generates randomly masked
sentences but allows us to pass as an argument the indexes of the words to be masked. Therefore, we identify
the words with the desired POS tag through Spacy and pass their indexes as an argument to the function. In
this way, we use a variation of random masking based on the targeted POS tag. Moreover, Polyjuice normally
substitutes tokens, inserts tokens, or modifies the word’s subtree(next and previous token of a word). To
accommodate the need of masking specific words with a certain POS tag, we force Polyjuice to work only
with single token substitutions. However, Polyjuice’s language model, GPT-2, despite this refinement, still
acts unpredictably by deleting or inserting large parts of text, rendering Polyjuice unable to qualitatively
compare with the other editors. These implementations of Polyjuice can be found in our codebase [37].

Finally, in TextFooler, in order to generate counterfactuals based on a targeted POS tag, we create a
new PreTransformationConstraint child class [37] in the TextAttack module, which enforces the editor’s
algorithms to only perturb tokens with the targeted part-of-speech, as it is given by the user. Then, we add
this constraint method to the attack process along with the other methods and constraints in the TextAttack
module.
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If you like the excitement of a good submarine drama and the fun of a good comedy,
then this film comes highly recommended. Kelsey Grammer gives an excellent
performance here. The film also gives you something to think about the next time a
serious sub movie asks for 'silent running’....
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If you like the excitement of a <mask> submarine drama and the fun of a <mask>

comedy, then this film comes highly <mask>. Kelsey Grammer gives an <mask>

performance here. The film also gives you something to think about the <mask>
time a <mask> sub movie asks for 'emask> running'....

Figure 6.3.4: An example of how we mask sentences based on POS tag by using the Spacy library. The
targeted POS tag in the example is the adjective.

Counterfactuals of counterfactuals implementation

In order to implement the feedback process of Counterfactuals of counterfactuals, we carry out specific output
and input formatting. After the editor finishes one step of edits generation and produces a CSV file with the
edits, we save the file, and for all the edits that were successfully flipped we create separate text files with a
counterfactual in each of them. Then the next round of edits reads its input from the folder where the text
files with the edits of the previous round are saved. For each editor, we formulated the process in the same
way for the sake of totality.

Input text samples i Output of step i 10 csv files
Editor csv file
Dataset N J
ixtfiles & Experiment's
’ output
Create txt file Save file for

_ later

for each sample .
evaluation

Format output counterfactuals of Step i and feed them as input for step i+1

Figure 6.3.5: A flow diagram showing how we implement Counterfactuals of counterfactuals in our system.
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6.3.3 Counterfactuals evaluation: Implementation

As far as evaluation is concerned, we conduct it as a separate process of our experiments after each experiment.
In order to optimize the process and structure it in an organized way we use object files (pickle files) to store
the edits and the results of each metric. The code used to generate each metric’s results is largely borrowed
from the works of Filandrianos et al. [20] for inconsistency and minimality, and from Vasilakes et al.[87] for
base perplexity and fine perplexity. We present Figure 6.3.6 which conveys the pipelining of our counterfactual
evaluation process.

10 csv files Minimality

Inconsistency —

.~ : \ Results &
\ Flip Rate Analysis
Base Perplexity =

Pickle files

Pickle file
Experiment's Fine perplexity

output
GPU

Figure 6.3.6: A flow diagram showing how we evaluate our edits as a separate process.

After having the results of all metrics, we use Jupyter Notebooks to present the results in an understandable
way and to generate the tables and diagrams that help us structure and also support our conclusions.
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Chapter 7

Experiments

In this section, we will present our experiments, their results and discuss the outcomes of the evaluation
process. Besides the quantitative results, we will also provide qualitative results which will assist in a better
understanding of the generation and evaluation methodologies that we use.
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7.1 An outline of the experiments

First, we find importance in providing an outline of the experiments conducted, in order to clarify around
which axis we perform the experiments and how we combine the methodologies discussed in the earlier
chapters. In total, we use three editors, MiCE, Polyjuice, and TextFooler. Specifically for MiCE, we utilize
two ways of masking, random masking and gradient masking. From now on, we will refer to MiCE with the
use of random masking as MiCERandom and to MiCE with the use of gradient masking, simply as MiCE. In
addition, we conduct all of our experiments in both datasets, IMDb and NewsGroups. In all the experiments
that were carried out, we implement the concept of Counterfactuals of counterfactuals (5.2.1) for 10 steps.
Moreover, we use all three editors, and MiCERandom, to generate counterfactual edits with the method of
targeted part-of-speech tags (5.2.3). Finally, we execute some experiments to inspect the influence of the
number of beams on MiCE.

To sum up all the following, we present the table of experiments below, which is an organized way of outlining
all of our experiments.

Editors Experiment Types
Out-of-the-box ADJ NOUN VERB Beam - search*
MiCE v v v v v
MiCERandom v v v v -
Polyjuice v v v v -
TextFooler v v v v -

* Beam-search experiments are conducted with multiple numbers of beams, namely 1,5,15,30,60 and 120

Table 7.1: An outline of our experiments. Out-of-the-box signifies the use of editors without any
intervention from us, ADJ, NOUN, and VERB are the targeted part-of-speech tags and Beam-Search is an
attempt on MiCE. All experiments are conducted for both IMDDb and NewsGroups datasets.

7.2 Results

7.2.1 Interpreting the metrics results

In the following paragraphs, we evaluate the quantitative results with the help of the metrics used (6.2.6)
and describe what each metric’s results hint for the edits and how they can help us explain the editors’ and
models’ decisions.

In this evaluation process, we present results both in table form and in various diagrams, which assist largely
in understanding the results and help us focus on the point to be made. In the tables in the section, the
optimal value of each metric in each step of the generation process is highlighted in bold.

In order to present a first example of how a counterfactual edit shapes after 10 steps of the feedback process
and also have a reference point, we show the example below.

Table 7.2: An example of 10 steps of feeding back counterfactuals on MiCE on an IMDDb sample.

Step Counterfactual Prediction
1 What a script, what a story, what a mess! 0
2 What a script, what a story, what a movie! 1
3 What a script, what a story, what a disappointment! 0
4 What a  script, what a story, what a movie! 1
5 What a  script, what a story, what a waste! 0
6 What a film, what a story, what a movie! 1
7 What a film, whata story, what a disappointment! 0
8 What a film, what a story,  what a delight! 1
9 What a film, what a story, what a disappointment! 0
10 What a film, what a story,  what a movie! 1
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7.2.1.1 Minimality

Comparing our results from minimality’s point of view is essential, as our target during counterfactuals
generation was minimal contrastive counterfactuals. First, we compare the editors with one another as they
are used out-of-the-box, i.e. without us intervening in any way.

200-
Table 7.3: Minimality results from each editor
without targetting some part of speech. 150.
IMDb )
MiCE MiCERandom Polyjuice TextFooler E 100-
min@17 | 41.78 87.31 167.86 33.4 E
min@27 | 24.91 54.43 90.95 2323 F
min@31 | 22.11 43.48 62.83 18.26 201 [
min@571 | 17.42 33.83 39.41 13.13 LH l El Tl | § ’g I
min@91 | 13.65 27.76 23.12 8.62 0- wul $.0 wila B il ol &) 9
NewsGroups 1 2 3 4 5 6 7 8 9
min@17 11.78 26.48 38.71 7.03 Step
min@271 8.22 19.07 32.5 4.04 . . L
min@31 757 16.79 28.5 3.26 = mice - mice_random & polyjuice = textfooler
min@57 6.51 14.39 23.56 2.47
min@97 | 5.71 13.11 18.88 1.9 Figure 7.2.1: Boxplot of minimality for the

IMDb dataset.

The main observation is that the editor which generates the most minimal edits in both datasets is
TextFooler. As we mention in 6.2.2, TextFooler does not use a text generation model to create counterfac-
tuals, but a more deterministic approach using multiple constraints. This ’constrained’ logic of TextFooler
enables it to make much fewer changes in an input sentence than the other editors, as it chooses specific
tokens and replaces them with specific words that satisfy all of its constraints. On the other hand, a text
generation model, like the ones utilized in the other three editors, is trained on big text datasets and therefore
can modify a sentence in a more complex way. Also, TextFooler has a mechanism that ranks the tokens,
based on how ’important’ they are for the editor’s prediction, which allows it to generate impactful edits
without many modifications.

Another aspect of the results is that the editor of MiCE which uses gradient masking, as expected, performs
better than the editors that use random masking (MiCERandom and Polyjuice). This can be attributed to
the fact that gradient masking finds and masks the most influential tokens for the predictor, and therefore
can flip the original class of the sentence with fewer modifications and more impact. A random masker, as is
normal, cannot have the same efficacy as the randomness in the selection of tokens to mask leads it to also
choosing tokens with no influence on the predictor.

In addition, we see a noticeable decrease in the minimality of the edits as the feedback steps increase, which
hints that the editors tend to perform fewer edits after each feedback step [20].

Targetting part-of-speech tags

We then evaluate the editors with the use of targetted POS tags method. In the table below, we can see
once more that the editor which performs better is TextFooler. However, what must be noted is that all
the editors create significantly more minimal edits on both datasets than they did without targetting
part-of-speech tags. One of the factors that contribute towards that, is that our part-of-speech constraint
causes less text to be masked and therefore less text to be modified. However, our method most of the
time enforces the editor’s model to make more aggressive edits in order to flip the predictor’s outcome more
minimally, as we show in the qualitative results in 7.2.3. Concerning part-of-speech tags, in IMDb, we also
notice a pattern where the modification of adjectives produces more minimal counterfactuals than with verbs
or nouns. In NewsGroups, we notice almost the same pattern, but with nouns contributing to more minimal
edits than verbs. As we also explain in B, this is largely due to the part-of-speech tags distribution on the
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text, but also due to each dataset’s task. Finally, it must be noted that all the conclusions we reached above
for the editors, seem to be validated with the use of part-of-speech tags.

IMDb
MiCE MiCERandom Polyjuice TextFooler

ADJ NOUN VERB | ADJ NOUN VERB | ADJ NOUN VERB | ADJ NOUN VERB
min@17 | 12.16 24.45 19.54 | 12.43  27.57 22.21 | 44.29  52.86 46.59 | 6.33 10.28 9.5
min@21 | 7.61 15.02 12.33 8.07 17.11 13.5 28.46  30.31 27.45 | 3.69 5.7 5.25
min@371 | 6.37 11.94 9.59 6.51 13.49 10.47 | 23.15  22.84 21.21 | 3.18 4.48 4.26
min@57 | 4.85 8.76 7.0 4.83 10.0 7.49 16.33  15.37 14.89 | 2.46 3.26 3.21
min@97 | 3.76 6.32 5.22 3.27 7.46 5.22 10.65 10.1 9.78 1.92 2.53 2.45

NewsGroups

min@17 | 3.27 4.59 5.07 3.0 4.95 5.18 30.55  20.51 23.55 | 1.81 2.84 2.58
min@271 | 2.54 3.45 3.49 2.22 3.55 3.66 20.95 13.9 15.96 | 1.46 1.94 1.82
min@371 | 2.14 3.08 2.84 1.88 3.05 2.98 16.79  11.25 12.74 | 1.39 1.78 1.66
min@57 | 1.69 2.56 2.15 1.45 2.42 2.17 13.18 8.59 9.67 1.27 1.53 1.47
min@91 | 1.21 2.05 1.6 1.06 1.84 1.53 10.19 6.36 7.13 1.16 1.35 1.3

Table 7.4: Minimality results from each editor with all part-of-speech tags.

Another important observation for minimality, in general, is that MiCE generates much less minimal edits
than Polyjuice. This can be explained up to a point by the fact that Polyjuice uses a random method in order
to find where the changes should be made, and specifically for larger inputs this leads to exponentially larger
search space. However, per Filandrianos et al. [20], and as we noticed in our experiments, Polyjuice deletes
over 70% of the original input on the IMDb dataset and 50% of the original text on the NewsGroups
dataset on the first two steps of edits. A factor that contributes to that behavior is our evaluation procedure.
We opt for edits that have a different label than the original text, and this restriction combined with the
"task-agnostic nature of Polyjuice" [20] forces it to delete large parts of the text in order to make more
effective edits towards the predictor’s flip. Another important factor, however, is the inner model used by
Polyjuice, GPT-2, which is not constrained by any means, compared to T5 of MiCE which is a text-to-text
model that can be fine-tuned for specific tasks like in our case. All of the above seem to add to the robustness
issues identified for Polyjuice [20] [53]. In Figure 7.2.2 shown below, we present the behavior described by
showing the mean number of the edited text’s tokens in relation to the mean number of the input text’s
tokens. The figure idea derives from [20] and is adjusted to our results and editors.
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(a) Mean number of tokens of the edited text compared
to the mean number of tokens of the input on the IMDb
dataset.
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# tokens of the input text
(b) Mean number of tokens of the edited text compared
to the mean number of tokens of the input on the
NewsGroups dataset.

Figure 7.2.2: Mean number of tokens of the edited text compared to the number of tokens of the input for
the four editors.
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7.2.1.2 Inconsistency

In Tables 7.5 and 7.6 we show the results of the inconsistency metric on our edits. Before, expressing our
conclusions, we should refer to the practical meaning of this metric. Inconsistency of minimality expresses
the mean number of words that the editor modifies on top of the words that would suffice in order to produce
a valid counterfactual. This means that the minimum value of inconsistency a set of edits can have is 0.00,
and corresponds to optimal edits made by the editor.

Observing Table 7.5, we can see that there are noticeable differences between the editors, which can be
attributed to the methods and models each editor uses. TextFooler is the most consistent out of the
editors, having very low inconsistency values, which hint that minimality rarely increases between steps.
These low values help us explain once again that a largely constrained editor like TextFooler, can generate
more consistent edits than MiCE and Polyjuice which seem more inconsistent editors. What seems to be the
most important factor that explains this performance is the use of language models which have been proven
to be more sensitive to input deviations [59].

Moreover, we should make a reference to the high value of inconsistency for Polyjuice in the first step of
edits with the IMDd dataset. As we demonstrated above, Polyjuice erases a big part of the input text in
the first steps, and therefore it is deemed inconsistent in the first step. However, this does not apply to the
NewsGroups dataset, where the input contains text with almost 4 times fewer tokens (58 instead of 204 on
IMDb). This signals that the Polyjuice editor is consistent for shorter inputs, which also explains its low
inconsistency values in NewsGroups and all the steps in IMDb after the first, where the number of tokens is
significantly decreased.

25-
Table 7.5: Inconsistency results from each editor
without targetting some part of speech. 20-
>
v
IMDb G 15-
MiCE__MiCERandom _ Polyjuice  TextFooler
inc@Q11 0.86 2.42 6.21 0.01 5 10-
inc@21 5.95 5.81 4.65 0.33 b
inc@31 | 4.65 6.37 3.98 0.36 5 S
inc@Q57 4.87 7.58 2.9 0.47 . v - o U < . & .
inc@9t | 4.73 8.11 2.22 0.49 0- 1> Mym me W moo M omics Wt
NewsGroups i 2 3 4 5 6 7 8
inc@11 1.23 2.66 0.53 0.04 Step
inC@zT 2.53 4.3 1.27 0.36 =mice - mice_random == polyjuice = textfooler
inc@31 2.44 4.37 1.28 0.27
inc@57 2.46 4.62 1.24 0.27
inc@91 | 2.42 4.94 1.2 0.25 Figure 7.2.3: Boxplot of inconsistency for the

IMDb dataset.

Another point worth discussing is the high value of inconsistency for MiCE on even numbers of steps. As
it is also discussed in [20] even steps in our contrastive edits’ system are the steps where we move from the
original class of an input to a different one, and thus higher inconsistency in these steps indicates that the
editor struggles to do so. On the other hand, transitioning back to the original class is easier for the
editor as usually parts of the original input which contribute to the original class prediction still remain in
the text sentence, leading to fewer edits needed to return to the starting label. This MiCE’s tendency can be
observed in the boxplot in Figure 7.2.3. In the qualitative results (7.2.3) we notice multiple occasions where
there are noticeable text remnants of the input sentence that usually contribute towards the original class.

What is also worth mentioning is the increase in the values of inconsistency the more we continue on the
feed-forward process for MiCERandom in both datasets. In this way, the inconsistency metric explains to us
the potential existence of counterfactuals with lower minimality that the editor could but did not explore.
These unexplored states by the editor, therefore, seem to increase as the steps increase because with
random masking the editor does not have any knowledge as to what parts of the sentence are influential
for the editor, and thus the editor makes multiple unnecessary changes that pile up after multiple steps of
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the feedback resulting in a significant deviation from the most minimal edit. However, we notice that this
pattern does not repeat in Polyjuice which also uses random masking. This is probably due to the fact that
after the first step in Polyjuice, the number of input tokens is significantly reduced, and therefore the editor
stays more consistent with shorter sentences.

In general, editors turn more consistent as the feedback steps increase. After generating edits in
the first steps, it seems that there are fewer modifications required in the next steps as there are multiple
occasions where there is "text residue" from previous edits which assist in the predictor’s outcome.

Targeting part-of-speech tags

After conducting our experiments with targeted POS tags, we notice that we enforce all the editors to
become far more consistent than they are when they are not limited to a specific POS tag. We can
characterize the edits with this method to be much closer to the most minimal edit possible, as almost all
values are below 1, signaling a word-level distance of less than one token from the optimal edit. By this,
we understand that the majority of the edits were indeed the most minimal edits possible, i.e. at most as
minimal as the one of the previous step, but there were also some edits with higher inconsistencies. Especially
for TextFooler, which achieves lower values than the other editors, we find that the percentage of sentences
with a value of inconsistency of 0 is over 90% for odd steps and over 60% for even steps. This differentiation
seems to also correlate with the high inconsistency values in the even steps of the feedback for MiCE. We
analyze this behavior on all the editors and part-of-speech tags in the appendix. Finally, from the results in
7.6 the adjective is the part-of-speech tag with which the editors are generally the most consistent, followed
by the verb and noun.

IMDb
MiCE MiCERandom Polyjuice TextFooler

ADJ NOUN VERB | ADJ NOUN VERB | ADJ NOUN VERB | ADJ NOUN VERB
inc@l11 | 0.13 0.75 1.0 0.47 0.58 0.69 4.7 1.39 1.33 0.05 0.09 0.0
inc@21 | 1.16 2.03 2.22 0.9 2.02 1.5 5.76 2.88 2.69 0.58 0.56 0.62
inc@31 | 0.99 1.89 1.95 0.88 2.21 1.52 4.76 2.39 2.15 0.41 0.39 0.43
inc@571 | 1.05 2.08 1.79 0.85 2.13 1.44 3.68 2.25 2.08 0.38 0.42 0.5
inc@91 | 1.06 1.99 1.73 0.73 2.15 1.3 2.88 1.9 1.79 0.35 0.55 0.54

NewsGroups

inc@1t1 | 0.3 0.5 0.26 0.22 0.47 0.32 2.19 1.11 0.91 0.04 0.03 0.02
inc@21 | 0.29 0.76 0.4 0.28 0.7 0.44 1.79 1.33 0.9 0.13 0.23 0.18
inc@31 | 0.26 0.69 0.37 0.24 0.67 0.41 1.65 1.26 0.8 0.1 0.16 0.13
inc@571 | 0.22 0.65 0.35 0.21 0.62 0.39 1.34 1.18 0.76 0.08 0.16 0.14
inc@Q971 | 0.17 0.6 0.31 0.18 0.55 0.34 1.19 1.03 0.69 0.06 0.15 0.12

Table 7.6: Inconsistency results from each editor with all part-of-speech tags.

To offer a comprehensive overview, through the inconsistency of minimality metric, we illustrate the im-
portance of the feed-forward process on counterfactual editors. Through this iteration process, and with
the use of inconsistency, we can notice the full range of capabilities of the editors as the one-step approach
(represented by the @1 rows in our results) presents a "limited, dataset-dependent aspect" [20] of the editors’
performance. Also, as we conducted our experiments with a goal of minimal contrastive counterfactual
edits, inconsistency assists in revealing characteristics of the editor that minimality cannot and even depict
the weaknesses of the editors in relation to minimality which is the studied metric. Taking a step forward,
we prove that there are methods we can use to effectively "combat" some of these weaknesses, as we show
that the editors become more consistent with the use of targeted part-of-speech tags.

7.2.1.3 Flip Rate

Another metric that acts as a useful tool in the explanations of the editors’ inner decisions and results is the
flip rate. As discussed in subsection 6.2.6, the flip rate indicates the percentage of successfully flipped inputs
to a different class. Combined with the method of counterfactuals of counterfactuals, the flip rate reveals
editors’ imperfections and repeated patterns, which help us reach more stable conclusions.
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Table 7.7: Flip rate results from each editor without targetting some part of speech.

IMDb
MiCE MiCERandom Polyjuice TextFooler
Flip Rate@17 1.0 0.9953 0.8747 0.6241
Flip Rate@21 | 0.8422 0.8419 0.9107 0.6984
Flip Rate@31 | 0.891 0.7163 0.9392 0.7193
Flip Rate@57 | 0.8677 0.6279 0.9592 0.7517
Flip Rate@91 | 0.8561 0.5674 0.9668 0.7865
NewsGroups
Flip Rate@11 0.89 0.79 0.726 0.941
Flip Rate@21 | 0.9188 0.715 0.9131 1.0
Flip Rate@31 | 0.8806 0.6395 0.9074 1.0
Flip Rate@57 | 0.8574 0.5972 0.9237 1.0
Flip Rate@91 | 0.8322 0.5444 0.9659 1.0
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Figure 7.2.4: Flip rate for the IMDb dataset on the  Figure 7.2.5: Flip rate for the NewsGroups dataset
four editors. on the four editors.

For example, if we had generated edits with MiCE using a one-step approach, we would conclude that the
editor always achieves the prediction flip on the IMDDb dataset. However, by running the editor for 10 feedback
steps, we see that this result varies depending on the input content or dataset. MiCE seems to not perform
as perfectly after the first step where the input is perturbed by little or by a lot, confirming the sensitivity
that language models are characterized with. Its flip rate continuously decreases until the last step of the
feed-forward process, an observation that once again enforces the importance of analyzing editors’ behavior
further than one step of edits. In addition, the flip rate of step 2, which corresponds to the transition from
the counterfactual to the original class, validates the difficulty of MiCE to return to the original class.

Trying to explain the results, we notice that MiCE and MiCERandom flip fewer edits as the steps
increase, while Polyjuice and TextFooler become more effective. A potential explanation for the
effectiveness of Polyjuice as the steps increase lies in the input size, which decreases largely after the first
step. In this way, the language model used by Polyjuice, GPT2, has a smaller search space which enables the
editor to reach successful states easier, and thus the desired contrastive counterfactual is achieved easier. On
the other hand, another editor which uses a random way of masking input, MiCERandom, performs worse
as the input is more and more perturbed, maybe because it uses a more constrained language model in T5
than GPT2.

In order to examine the reasons for these behaviors, we present Figure 7.2.6 which shows how the target
class probability is affected as we move along the feedback steps. The flip of the sample is achieved when the
target class probability has a value above 0.5. In this boxplot, we notice visible differences in the even and
odd steps as we did in the inconsistency analysis, and also detect how TextFooler’s target class probability
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improves towards the last steps, contrary to MiCERandom’s where random masking and substitutions in the
edits seem to create noise which progressively causes a decrease in the target class probability of the samples.
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Figure 7.2.6: Probability of the target class on the IMDDb dataset.

Targeting part-of-speech tags

Observing the flip rate results in Table 7.8 when we use our method of targeted part-of-speech tags, we see
a noticeable decrease in the flip rate of the first steps. This is due to the fact that the editors are
enforced by our method, to flip the predictor’s outcome by performing perturbations only in a fraction of the
tokens. As a result, many of the influential tokens for the predictor are not available for modification, and
thus the flip is not accomplished.

It is also important to notice which part-of-speech tag performs better in terms of flip rate in each dataset.
We observe that the prevalent part-of-speech tag in IMDDb is the adjective, while in NewsGroups it is the
noun. This difference in performance among the POS tags seems to be task-related as for example, IMDD is
a dataset where the task is sentiment analysis, and the adjectives usually "carry" more importance toward
the sentiment of a sentence, while verbs and nouns are more neutral. On the other hand, the NewsGroups
dataset is used for the task of topic classification, and thus nouns are the words that can shift the meaning of
a sentence from one topic to another. Hence, we notice that targeting adjectives in the NewsGroups dataset
is a rather ineffective approach, as they evidently do not contribute much to different topic classifications.

We notice many examples which highlight this explanation in the qualitative results section (7.2.3) and in
A.3.

Table 7.8: Flip rate results from each editor wuth the use of part-of-speech tags.

IMDb
MiCE MiCERandom Polyjuice TextFooler

ADJ NOUN VERB ADJ NOUN VERB ADJ NOUN VERB ADJ NOUN VERB
Flip Rate@11 | 0.4419 0.4 0.393 0.4628 0.4442 0.4023 0.8814 0.6977 0.807 0.2581 0.2233 0.2395
Flip Rate@27 0.7917 0.7011 0.6608 0.801 0.6528 0.6571 0.9657 0.93 0.9251 1.0 1.0 1.0
Flip Rate@31 | 0.7241 0.6412 0.5549 0.601 0.4635 0.5523 0.9809 0.9785 0.9751 0.973 1.0 0.9806
Flip Rate@51 | 0.5395 0.5122 0.461 0.4731 0.3403 0.3373 0.9744 0.9852 0.9935 1.0 1.0 0.9901
Flip Rate@97 0.4054 0.3248 0.3284 0.2035 0.2246 0.2687 0.9819 1.0 0.9967 1.0 1.0 0.9899

NewsGroups

Flip Rate@17 0.272 0.571 0.335 0.247 0.5246 0.312 0.492 0.524 0.472 0.186 0.577 0.376
Flip Rate@21 | 0.3692 0.6803 0.4868 | 0.4179 0.6089 0.4697 0.6382 0.6469 0.6144 0.8602 0.9879 0.9601
Flip Rate@31 | 0.3202 0.6294 0.482 0.3441 0.5229 0.3579 0.7739 0.823 0.8034 0.9563 0.9807 0.9584
Flip Rate@57 0.216 0.5667 0.4012 0.2328 0.4372 0.2842 0.8031 0.8745 0.872 0.98 0.9892 0.9735
Flip Rate@91 0.155 0.448 0.2975 0.1307 0.2812 0.1923 0.8803 0.9167 0.9524 0.9862  0.9945 1.0
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Regarding, the editors’ performance, it is interesting to notice how consistent TextFooler remains after
"deciding" which sentences it can flip successfully in the first step. In addition, Polyjuice also performs well
in regard to the flip rate. In order to integrate the part-of-speech method, we enforced Polyjuice to make
only single token substitutions (see Polyjuice in 6.3.4). In this way, we managed to increase the flip rate
of Polyjuice. However, although we can identify qualitative examples where our POS tag method performs
as expected, the results of Polyjuice are not representative as its inner language model, GPT-2, deletes big
parts of the input text and also inserts text, practices that lead to the prediction’s flip but not in a way that
the targeted POS tag controls.

Total flip rate of each editor

As each sentence cannot be flipped by the editors for all POS tags, due to its content, we also present a
combined flip rate for the first step of each editor that depicts what percentage of the input sentences were
flipped with at least one of the targeted POS tags. In this manner, we can see a more comprehensive aspect
of how our method performs in terms of flip rate. For this reason, we present Table 7.9 where we show these
results.

Table 7.9: Combined flip rate results from each editor for all part of speech tags.

IMDb
MiCE  MiCERandom Polyjuice TextFooler
Combined Flip Rate@11 | 0.7697 0.66 0.9093* 0.3558
NewsGroups
Combined Flip Rate@11 | 0.769 0.687 0.63 0.642

* Polyjuice is not a representative editor for the POS tag method in terms of flip rate

We observe that Textfooler struggles to flip the sentences’ prediction when we specify a targeted POS tag
in the IMDDb dataset. Because IMDb samples feature longer texts, TextFooler’s deterministic practices come
across a wall as they are not able to insert generated text or delete existing text which might lead to the
flip of the prediction. In addition, we see that MiCE with gradient mask is the most preferred editor when
considering the flip rate with our method, as it is more efficient than the others.

7.2.1.4 Base Perplexity and Fine Perplexity

In our experiments, we use two metrics to evaluate the fluency of the generated edits. The results for both
of these metrics are shown in Table 7.10. For base perplexity, where lower values indicate more fluent text,
we see that among the editors tested, TextFooler generates the most fluent text. In addition, specifically
for TextFooler, we notice stability after multiple feedback steps, a result that corroborates highly with
the consistency of the editor. As for MiCE, MiCERandom, and Polyjuice, we observe increased values of
perplexity as the steps increase, and thus less fluent text. This result seems logical, as all three editors were
much more inconsistent than TextFooler. The same results are observed in both IMDb and NewsGroups.

Moreover, we present Figure 7.2.7, where we show how base perplexity evolves for each editor for the feedback
steps. What stands out in both figures is TextFooler’s consistency and the deterioration of MiCE, MiCERan-
dom, and Polyjuice in this order. TextFooler’s behavior does not surprise us, as it is proved for this metric
too, that the more constrained and deterministic an editor is the less it deviates from a specific distribution.
On the other side, in a comparison between the two editors which utilize random masking, MiCERandom,
and Polyjuice, we observe that the first performs better than the second as it uses a more specific way of
text generation with the T5 Transformer. Polyjuice, as we saw, alters the input text largely on the first step,
which certainly causes it to not be as efficient in terms of fluency.
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Table 7.10: Base perplexity and fine perplexity computed for the four editors, on the IMDb and
NewsGroups datasets, after the first step of the feedback (@1), and after 8 additional steps (@9).

IMDb
MiCE MiCERandom Polyjuice TextFooler
ppl-base@17 1.2546 14171 8.0101 4.1178
ppl-base@97 4.4512 4.8002 8.1586 4.1161
ppl-imdb@17 16.5315 16.2096 35.9845 18.0662
ppl-imdb@91 14.6069 14.5973 30.7309 17.9917
NewsGroups
ppl-base@17 5.6343 5.7294 7.226 5.3049
ppl-base@97 5.9288 5.7281 7.0663 5.2383
ppl-newsgroups@11 | 4.472 4.5179 6.4405 4.2303
ppl-newsgroups@91 | 4.6043 4.5173 5.1213 4.2001
10- 12.5-
g 8 > 10-
: :
2 8 75
: S
i l gl %] g @ 11 I J
B paydidididdirinien £ SM |
7. 2.5-
0 1 2 3 4 5 6 7 8 9 01 2 3 45 6 7 8 9
Step Step
g2 mice 1 mice_random & polyjuice e textfooler g mice =1 mice_random =1 polyjuice es textfooler
(a) Base Perplexity on the IMDb dataset. (b) Base Perplexity on the NewsGroups dataset.

Figure 7.2.7: Base Perplexity

As to fine perplexity, as mentioned in 6.2.6, high values imply that the generated text is "diverse" when
compared to the dataset used to fine-tune the language model whose perplexity we calculate. The quantitative
results of fine-ppl are found in Table 7.10, but the main conclusions are mostly drawn based on Figure 7.2.8
where we show how fine perplexity shapes out as the steps increase.

In the figures, we notice that TextFooler once again is the most stable editor, but what stands out is the
different patterns observed for the MiCE and MiCERandom editors. While the fluency for these editors
seems to deteriorate when calculated with base perplexity, with fine perplexity the editors generate or seem
to generate more fluent text. However, this behavior is only phenomenal as MiCE is trained exclusively on
IMDDb data, and thus the generated counterfactuals contain text that is closer to the distribution of the IMDDb
dataset. These results point to an "overfitting behavior" [20] of the MiCE and MiCERandom editors. On
the other hand, Polyjuice which is trained on multiple datasets [102] generates text that is more diverse than
that of MiCE.
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(a) Fine Perplexity on the IMDDb dataset. (b) Fine Perplexity on the NewsGroups dataset.

Figure 7.2.8: Fine Perplexity

7.2.1.5 Targeting part-of-speech tags

When we use the editors with targeted POS tags, we notice that the editors produce more fluent coun-
terfactuals edits than what they produced without their use. This happens because we constrain editors
to substitute specific tokens, resulting in fewer modifications of the sentence, and hence the structure of the
input sentence tends to be maintained in the counterfactual. This leads to lower values of base perplexity
across all editors and part-of-speech tags, but also less diversity in the generated text. We present Table
7.11, which includes the results of base perplexity and fine perplexity, where the lower values of perplexity
for each POS tag in each step are bolded.

Table 7.11: Base perplexity and fine perplexity computed for all editors with ADJ, NOUN and VERB

part-of-speech tags, on the IMDb and NewsGroups datasets, after the first step of the feedback (@Q1), and after 8

additional steps (@Q9)

IMDb
MiCE MiCERandom Polyjuice TextFooler
ADJ NOUN VERB ADJ NOUN VERB ADJ NOUN VERB ADJ NOUN VERB
ppl-base@17 4.1748 4.278 4.2599 4.1968 4.3046 4.2639 5.5252 5.9737 6.0615 4.091 4.1491 4.1166
ppl-base@97 4.2493 4.3383 4.3154 4.2935 4.4345 4.3484 6.8178 6.9426 6.919 4.1 4.1463 4.044
ppl-imdb@11 | 17.0192 16.3556  16.6649 17.0942 16.2741 16.6063 | 22.2159  24.8189  24.9765 18.0654  18.1228  18.2363
ppl-imdb@91 16.1344 15.351 15.7454 16.0439 14.7513 15.1843 25.4604 25.6867 27.3699 18.0773 18.0512 18.0364
NewsGroups
ppl-base@17 5.331 5.4517 5.5203 5.2863 5.5137 5.3993 8.2656 7.4842 7.9413 5.3034 5.2405 5.3797
ppl-base@97 5.3465 5.4437 5.4864 5.2368 5.2812 5.294 9.2572 8.7526 8.5392 5.0862 5.1495 5.2243
ppl-news@17 4.2144 4.3176 4.3573 4.2003 4.3696 4.3367 7.1215 6.1762 6.5113 4.1836 4.1996 4.2441
ppl-news@91 4.2714 4.3539 4.3731 4.2053 4.2677 4.3365 7.7188 6.4435 6.4412 4.0787 4.1495 4.1502

Regarding the results, we notice that TextFooler is the editor that produces the most fluent edits with the
use of part-of-speech tags. However, the editors of MiCE and MiCERandom, also seem to perform well and
become more fluent and more consistent than their original versions. This result coincides with the lower
inconsistency values of the editors when being constrained to a specific POS tag.

As to the editors’ base perplexity results as the feedback steps increase, TextFooler seems to be very consistent
whereas MiCE, MiCERandom, and Polyjuice become slightly less fluent. It is important to highlight the fact
that the use of part-of-speech tags helps limit the overfitting behavior of the MiCE editors to the IMDb data,
as we notice that the values of fine perplexity generally remain higher than those of the original versions
of the MiCE editors. This advantage is gained by the substitutions of fewer tokens in the counterfactuals,
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especially with the adjective part-of-speech tag, whereby comparing Tables 7.11 and 7.10 we see that the fine
perplexity values are much higher in the versions of the editors in which only adjectives are masked.

7.2.2 Experimenting on MiCE with beam-search

After experimenting with the four editors and the different part-of-speech tags, we conducted 12 more exper-
iments on MiCE in both datasets to study what effect the model’s search method has on the editor’s results.
The authors of MiCE [75] present their results using multinomial sampling as their search method. Contrary
to greedy search (beam search with 1 beam) which always chooses a token with the highest probability as
the next token, multinomial sampling is a search method that randomly selects the next token based on the
probability distribution over the entire vocabulary given by the model [34]. In this way every token with a
non-zero probability becomes a candidate token, reducing the risk of repetition.

In our experiments, we seek to evaluate if beam search, with a suitable number of beams, can outperform
multinomial sampling for MiCE and with what consequences. In Tables 7.12 and 7.13, we notice that
beam-search with 120 beams outperforms multinomial sampling in the IMDb dataset in terms of both
minimality and inconsistency. In the NewsGroups dataset, we notice that it follows but it cannot perform
better than the original version of MiCE. This discrepancy between the two datasets is mainly due to the
different lengths of sentences in the two datasets. IMDDb features more lengthy sentences than NewsGroups
and so beam-search with a high number of beams is more effective, as it can capture more complex linguistic
structures and patterns, leading to better coverage of the sentence space. On the other hand, the NewsGroups
dataset contains shorter sentences, so multinomial sampling, which only explores a single token each time,
performs better in keeping the structure of the sentence intact and allows for the possibility of more minimal
edits.

It is interesting to observe how minimality and inconsistency values decrease as the number of beams increases.
The algorithm explores a larger search space as the number of beams increases, thus, it considers more diverse
possibilities for each decoding step, which can lead to a broader exploration of alternative phrases, structures,
or wording. However, MiCE always sorts the candidate edits based on the minimality score and selects the
most minimal, so the more we increase the number of beams, the more potential options there are for the
editor to choose from, and the higher the possibility of selecting a more minimal edit than with a lower
number of beams.

IMDb
MiCE Greedy 5 beams 15 beams 30 beams 60 beams 120 beams
min@11 | 41.78 76.61 71.32 65.75 63.32 53.77 34.4
min@21 | 2491 48.55 43.8 39.11 38.58 32.09 19.9
min@31 | 22.11 43.98 38.08 33.41 34.33 28.02 16.23
min@51 | 17.42 34.95 28.8 25.52 26.14 20.96 11.99
min@91 | 13.65 26.66 21.8 19.21 19.16 15.18 8.75
NewsGroups
min@11 | 11.78 20.45 17.48 15.53 14.4 13.93 12.59
min@21 | 8.22 17.34 13.97 11.85 10.7 9.91 8.93
min@31 | 7.57 16.4 12.69 10.71 9.67 8.99 7.78
min@57 6.51 15.37 11.12 9.16 8.09 7.48 6.33
min@9t 5.71 14.44 9.49 7.54 6.52 6.28 5.05

Table 7.12: Minimality results for all the variations of MiCE we experimented with.
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IMDb
MiCE Greedy 5 beams 15 beams 30 beams 60 beams 120 beams
inc@17 0.86 3.5 3.59 1.91 3.35 2.27 0.57
inc@27 5.95 13.73 11.75 9.25 11.85 8.78 3.29
inc@31 4.65 11.62 10.09 8.2 9.91 7.5 3.01
inc@57 4.87 11.38 9.65 8.3 9.56 7.03 3.04
inc@97 4.73 10.51 9.0 8.19 8.34 6.43 2.9
NewsGroups
inc@11 | 1.23 4.32 3.64 3.04 2.74 2.36 2.13
inc@27 | 2.53 5.19 4.41 3.97 3.69 3.52 2.88
inc@Q37T | 2.44 5.18 4.31 3.83 3.43 3.21 2.67
inc@57T | 2.46 5.29 4.24 3.69 3.23 3.09 2.48
inc@97 2.42 5.33 3.99 3.38 2.98 2.9 2.31

Table 7.13: Inconsistency results for all the variations of MiCE we experimented with.

Regarding inconsistency, it is important to note that the increased inconsistency pattern in even steps is
repeated in these experiments too, with Figure 7.2.9 illustrating this behavior in a noticeable way. This
signifies that even if we change the generation method MiCE still struggles to transition to the contrast class.

inconsistency
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Figure 7.2.9: Inconsistency of minimality for different beams.

As far as flip rate is concerned, we notice that MiCE with multinomial sampling is the best option for the
first step in IMDb but is outperformed by the 120 beams version of MiCE in later steps. The big number of
possible candidate edits explored by the large search space of beam-search with 120 beams seems to enable
the editor to detect counterfactuals that are not accessible to MiCE when using multinomial sampling.

A surprising result is that the implementation of greedy search achieves very high flip rates in both datasets,
which denotes that selecting words with the highest probability leads to more aggressive edits which eventually
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flip the predictor’s outcome, but with the cost of less minimal edits as the binary search algorithm of MiCE
selects bigger fractions of the total tokens to be substituted. Another noticeable pattern in the results is that
the flip rate in IMDDb decreases as the number of beams increases.

Table 7.14: Flip rates using beam-search for the IMDb and NewsGroups datasets.

IMDb
MiCE Greedy 5 beams 15 beams 30 beams 60 beams 120 beams
Flip Rate@11 1.0 0.9977 0.8907 0.8767 0.8628 0.8605 0.9977
Flip Rate@21 | 0.8422 1.0 0.9186 0.893 0.8698 0.8837 0.958
Flip Rate@91 | 0.8561 0.8735 0.8465 0.807 0.7972 0.7786 0.9568
NewsGroups
Flip Rate@11 0.89 0.865 0.887 0.881 0.882 0.891 0.9
Flip Rate@21 | 0.9188 0.896 0.8811 0.8655 0.8927 0.8637 0.8758
Flip Rate@97 | 0.8322 0.789%4 0.7368 0.6876 0.6875 0.701 0.7104

In order to evaluate the results of these experiments in terms of fluency we present Figures 7.2.10 and 7.2.11
where we show how the base and fine perplexity are influenced by the number of beams. In Figure 7.2.10 we
see that the fluency of all editors deteriorates after feedback, with the original version of MiCE deteriorating
the less, and thus being the most fluent version of the editor.

base perplexity

0 1 2 3 4 5 6 7 8 9
Step

B mice B mice_beam5 4 mice_beam30  mice beam120
B mice_greedy g1 mice beaml5 ¢ mice beam60

Figure 7.2.10: Base perplexity for the IMDb dataset.

In Figure 7.2.11 we notice that the versions of MiCE which use beam-search seem to also have an overfitting
behavior to the IMDDb data, but to approach the distribution of IMDb much faster than MiCE with multi-
nomial sampling. We see that the less the number of beams is, the more aggressively this overfitting occurs,
hinting that we move closer to the dataset’s distribution when we perturb sentences with the sole criterion
being the high probability of the next word or sequence of words.
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Figure 7.2.11: Fine perplexity for the IMDd dataset.

Finally, it is important to mention that in order to experiment with such high numbers of beams as 120,
we have to accept some trade-offs such as the experiment’s duration and the computational requirements
which we discuss further in 7.2.4. To put the problem into perspective, MiCE requires approximately 15 and
21 hours in a GPU to complete a 10-step feed-forward experiment for the IMDb and NewsGroups datasets
accordingly. For the version of MiCE with 120 beams, we need approximately 70 and 80 hours in a GPU
accordingly for the same experiment.
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7.2.3 Qualitative Results

In this part of the thesis, we present multiple qualitative results which help observe behaviors, patterns, and
particularities in the generated text of each editor. Because of the nature of the results and the big number
of different versions of editors, we try to showcase results that present the most interest to the conclusions
drawn, but also provide a dedicated section in the appendix which features multiple qualitative results.

Also, through the following examples we try to explain the editors’ characteristics with examples that are not
lengthy, in order to focus on the points being made and not the specific nature of each example. However,
most samples of the IMDDb dataset are rather long in size, and so to ensure completeness we also present
qualitative results in the appendix with lengthier sentences.

In the following tables which present the counterfactual edits generated from our experiments, the words
which are altered in each edit are shown in bold.

Gradient vs random masking

In the example of Tables 7.15 and 7.16, we can see the main difference between the two editors and the
"strong" effect it can have on our edits after multiple steps. Specifically, MiCE which uses gradient masking
on the sentence, essentially "knows" which tokens are more important for the editor and substitutes just
them to achieve the flip. In this way, we see why MiCE is much more consistent than MiCERandom.
On the other hand, MiCERandom tries to flip the predictor’s outcome by modifying random tokens. In this
way, MiCERandom not only generates edits that are less minimal but also less fluent, as we can observe that
the text gets more and more distorted.

Table 7.15: The generated counterfactuals for 10 steps for MiCE on an IMDb sample.

Step MiCE

1 What a script, what a story, what a mess!
What a script, what a story, what a filmmaker!
What a script, what a story, what a disappointment!
What a script, what a story, what a thriller!
What a script, what a script, what a suck!
What a script, what a script, what a director!
What a script, what a script, what a mess!
What a script, what a script, what a script!
What a script, what a script, what a disaster!
What a script, what a script, what a script!
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Table 7.16: The generated counterfactuals for 10 steps for MiCERandom on an IMDDb sample.

Step MiCERandom
1 What a script, what a story, what a mess!
2 What great script & story, but a mess!!!!!!!
3 What fantastic script & story, but GREAT FUN!!!IMN
4 What fantastic script & story but NO FUNI!IIIMN
5 What fantastic script . Unbelievable story but amazing story!!!!!!!
6 What  unbelievable script . Unbelievable unbelievable story!!!!!!!!!
7 What incredible script . Unbelievable unbelievable!!!!!11I1t
8 What incredible script . Unbelievable unbelievable acting.!!!!!!11IIIIIT
9 What incredible script . Un believably unbelievable acting. /!
10 What incredible script . Un believ believably unbelievable acting. !

Another phenomenon we notice, which has also been noted by Filandrianos et al. [20] is the introduction
of "erroneous whitespaces" which multiplies after some steps. This seems to be caused by the inner mecha-
nisms or model of MiCE as it does not happen with Polyjuice or TextFooler. Also, another common faulty
behavior that we notice is the splitting of tokens and hallucinations, like in steps 9 and 10 of the edits with
MiCERandom and the word "Unbelievably".
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After all 10 steps, the counterfactual edit of MiCERandom has shifted largely from the original input while
MiCE has remained much more consistent, despite the repetition of the word "Script". This happens because
the predictor consistently ranks the last token of the sentence as the most influential, leading MiCE to perturb
the sentence mainly by substituting only this token.

Comparing the four editors

In Tables 7.17 and 7.18 we present an example of an input from the IMDb dataset and how the counterfactuals
vary from editor to editor. Firstly, we observe that MiCERandom and Polyjuice do not stay consistent
with the tokens they select to modify, hinting at their randomness. Polyjuice seems to make the most
aggressive perturbation amongst the others in step 3, where the whole text is modified, generating a totally
different sentence. This behavior of Polyjuice is common and validates the increased perplexity values as
more diverse text is generated. On the other hand, TextFooler does not influence the sentence’s structure
at all, as it opts for very "strict" modifications. The counterfactuals of TextFooler in Table 7.18 feature
an inconsistency value of 0 across all steps and validate the editor’s consistency. For MiCE, the added
whitespaces pattern, and also the splitting of words, take place again in the late steps of this edit.

Table 7.17: The generated edits for 10 steps from MiCE and MiCERandom editors.

Step MiCE MiCERandom
1 Read the book, forget the movie! Read the book, forget the movie!
2 Read the book, enjoy the movie! Read the book, forget the computer!
3 Read the book, not the movie! Read the book then forget the computer!
4 Read the book, not the screen! Read the book then forget the TV!
5 Read the book, not the film! Read the book , forget the movie!
6 Read the  book, not the dictionary! Read the book , forget the blah!
7 Read the book, not the movie! Read the book , forget the duh!
8 Read the book, not the snob! Read the book , forget the dash!
9 Read the book, not the Sn atchbox! ...the book , forget the dash!
10 Read the Book, not the Sn atchers! | ... classic book, forget the dash!

Table 7.18: The generated edits for 10 steps from Polyjuice and TextFooler editors.

Step Polyjuice TextFooler
1 Read the book, forget the movie! Read the book, forget the movie!
2 Watch the book, watch the movie! Read the book, missed the movie!
3 Don’t waste your time, or your money. Read the accountancy, missed the movie!
4 You don’t waste your time, or money. Dsl the accountancy, missed the movie!
5 Spend your time, or money. Dsl the accountancy, forget the movie!
6 Spend your time, money, or money. Dsl the accountancy, missed the movie!
7 Spend your time, money or money wisely. Dsl the accountancy, forget the movie!
8 Spend your time, money, and wisely. Dsl the accountancy, missed the movie!
9 Spend your time, money, and dollars wisely. Dsl the accountancy, forget the movie!
10 Spend your time, money and time on this masterpiece. | Dsl the accountancy, missed the movie!

At this point, we introduce Table 7.19 which presents the counterfactuals edits for 10 steps when we use
beam-search on MiCE with 120 beams.
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Table 7.19: The generated counterfactuals for 10 steps for MiCE that uses beam-search with 120 beams.

Step MIiCE with 120 beams
1 Read the book, forget the movie!
2 Read the book, savor the movie!
3 Read the book, avoid the movie!
4 Read the book, LOVE the movie!
5 Read the book, avoid the movie!
6 Read the book, enjoy the movie!
7 Read the book, skip the movie!
8 Read the book, LOVE the movie!
9 Read the book, skip the movie!
10 Read the book, LOVE the movie!

Although, both this version of the editor and MiCE use gradient masking, their difference lies in the fact
that this editor explores many more different substitutions as it selects the token which generates
the most probable sequence. Hence, we notice that in step 3 and onwards this editor is able to select verbs
that carry the main sentiment of the sentence, and then easily flip the prediction of the sentence. In contrast,
MiCE modifies the sentence with the word "not" in step 3, which seems to not be ideal and to affect the
edits’ generation later on. Moreover, in this example we observe a repetition of the words "LOVE", "avoid"
and "skip". This demonstrates that when these words are selected by the editor, the predictor is strongly
influenced toward the targeted label.

In addition, in Tables 7.20 and 7.21 we can observe that the edits created on a NewsGroups sample with
MiCE and beam search of 120 beams are evidently more minimal than those of the original MiCE editor.
Similar behavior is seen across multiple examples of both IMDb and NewsGroups, and it seems that the
exponentially larger explored search space leads the editor that utilizes beam search to select edits that make
the editor more minimal in general.

Table 7.20: The generated edits for 10 steps from MiCE editor for a NewsGroups sample.

Step MiCE

1 Does anyone know of any free X-servers for PCs, preferably that run under MS Win-
dows? THANKS.

2 Does anybody know of MS-DOS v.3.1 games for Windows, Win-
dows and DOS that run under DOSA? - SteveS.

3 Does anybody know of MS-DOS v.3.1 games for Windows, Windows and DOS that run un-
der XWindow? - SteveS.

4 Does anybody know of  eShop for the Sony 3.1.3.1 editions for Apple comput-
ers, TVsand other gamesthat run on OS/2 or 3.27 E - mail reply.

5 Does anybody know of the available ROMs for the Sony 3.1.3.1 ?for DOS and other com-
puters? Depending on the version of the 3.3.1 or 3.2.3.1, please E - mail.

6 Where does a 3.1. 3.2 env. land? Depending on the state of the 3.2 or 3.2.3.1, the E-
mail address needs to be included.

7 Where does a 3.1.3.2 .3.1 biker. land? Depending on the state of the 3. 2 or 3.2.3.1, the E-
mail address needs to be included.

8 ‘unk’ ° T am currently implementing version 3.1. 3.2 . The following is a com-
mon question: How does the word "alienation" work?

To use the word p.3.1, the alert name of umanish needs to be enunciated.

9 Hello. I am looking at p- 3.1. 3.2 . The following is a com-
mon question: How does the "president" of Israel mean? To  trans-
late the word p.3.1, the _ bereft symbol of Israel needs to be enunciated.

10 Hello. T am  looking at p- 3.1. 3.2 . The following is a com-
mon question: How does the " pst dft" of alt.atheism mean? To trans-

late the word p.3.1, the  ft definition of alt needs to be en negated.
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Table 7.21: The generated edits for 10 steps from MiCE editor when it uses beam search with 120 beams for a

NewsGroups sample.

Step

MiCE with 120 beams

e I N

Does anyone know of any free X-servers for PCs, preferably that run under MS Windows? THANKS.

Does anyone know of any free DOS-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free graphic-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free DOS-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free graphic-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free DOS-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free graphic-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free DOS-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free graphic-servers for PCs, preferably that run under MS Windows? THANKS.
Does anyone know of any free DOS-servers for PCs, preferably that run under MS Windows? THANKS.

For the NewsGroups dataset, we present the examples in Tables 7.22, 7.23, 7.24 and 7.25.

What we notice at first is that both the input and generated text are more diverse than that of the IMDb
dataset. As NewsGroups is a text dataset with text samples classified into multiple topics, this is an expected
difference between the two datasets.

Regarding the editors, it is important to notice the consistency of MiCE and TextFooler, contrary to
MiCERandom and Polyjuice which perturb the sentences much more intensely. Moreover, in this exam-
ple, we can see that TextFooler essentially "fools" the predictor by mainly substituting words with their
synonyms. The use of embeddings and counterfactual examples like this one seem to unveil one of the
predictor’s vulnerabilities, which is its sensitivity to very small changes in a sentence. The fact that
the modification "arrived" — "occurred" results in a change of class mainly means that the predictor needs
more specific training for each class, so it cannot be "fooled" by such methods. In general, we see the same
erroneous patterns as in IMDb, e.g. added whitespaces in MiCE editors.

Table 7.22: The generated edits for 10 steps from MiCE editor for a NewsGroups sample.

Step MiCE

I heard he had a strained abdominal muscle or something like that.
I heard he had a car or something like that.

I heard he had a car or something like a satellite.

I heard he had a car or something like a Porsche.

I heard he had a car or something like a rocket.

I heard he had a car or something like a Honda.

I heard he had a bible or something like a bible.

I heard he had a scroll or something like a bible.

I heard he had a  bible or something like a bible.

I heard he had a  bible or something like a bibleshelf.

Sowuook wN e
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Table 7.23: The generated edits for 10 steps from MiCERandom editor for a NewsGroups sample.

Step MiCERandom
1 I heard he had a strained abdominal muscle or something like that.
2 I heard that Honda had a factorytrained brake guy or something like that.
3 I heard that DRAM makes a trained sound like that.
4 I heard that DRAM makes a trained GPU like that.
5 I heard AMD makes new processor chips.....cccccevieiiineneenn. !
6 I heard AMD makes new x86 chipS............cceeeeennnn.
7 I heard AMD makes new x86 chips........cccccceereeennnn
8 I heard AMD makes 386P chips........ccccccceernnnnnnn
9 I heard AMD makes 386P chips.......ccccccovvinnnni.
10 I heard AMD makes 386P chips........cocoouuvneeeeen.

Table 7.24: The generated edits for 10 steps from Polyjuice editor for a NewsGroups sample.

Step Polyjuice
1 I heard he had a strained abdominal muscle or something like that.
2 well. . . i heard he had a hamstring or something like that.
3 well. . . i heard he had a hamstring or something like pinprick .
4 well. . . i heard he had a hamstring or something of an injury.
5 well. . . i heard he had a little problem or something of an injury.
6 well. . . i heard he had a little problem or something with an old stick .
7 well. . . i heard he had a slight problem or something with an old stick.
8 well. . . i heard he had a slight problem during the run an old stick .
9 well. . . i heard he had a slight problem during his run, an old lung complaint .
10 well, i heard he suffered a slight problem prior to his move on, a lung complaint .

Table 7.25: The generated edits for 10 steps from TextFooler editor for a NewsGroups sample.

Step TextFooler

I heard he had a strained abdominal muscle or something like that.
me heard he had a jerked underside biceps or something like that.

me heard he had a tensed underside biceps or something like that.

me heard he brought a tensed underside biceps or something like that.
me heard he occurred a tensed underside biceps or something like that.
me heard he occurred a glared underside biceps or something like that.
me heard he occurred a trembled underside biceps or something like that.
me heard he arrived a trembled underside biceps or something like that.
me heard he occurred a trembled underside biceps or something like that.
me heard he arrived a trembled underside biceps or something like that.

B0 oo ok wN e

Polyjuice truncates large parts of the input text

In Tables 7.18 and 7.27 and 7.28, we see three examples from the IMDb dataset where we notice Polyjuice
removes the majority of the input text, changing dramatically the structure and semantics of the sentence.
This validates the behavior of Polyjuice we investigate in the Minimality subsection of 7.2.1, that Polyjuice
cuts an average of more than 70% of the input text.
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Table 7.26: An example from IMDb where Polyjuice truncates most of the input text.

Step Polyjuice

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to gag.

2 This movie was fun and corny. James Agee is rolling in his grave.
3 This movie was boring and depressing. James Agee is rolling in his grave.
4 This movie was good and moving. James Agee is at his best.
Table 7.27: A second example where Polyjuice erases most of the input text.
Step Polyjuice
1 Wonderful songs, sprightly animation and authentic live action make this a classic adapta-

tion of a classic tale. A nice British feel which sets it apart and above from the standard, sac-
charine sweet Disney cartoons.

2 Don’t bother to watch this movie with all the friends.

Do bother to watch this movie with all the friends.

Not bother to watch this movie with all the friends.

~ W

Table 7.28: An example from the NewsGroups dataset where Polyjuice truncates most of the input text.

Step Polyjuice

1 On all 1.44Mb drives (both Mac and PC), the disk spins at a con-
stant RPM. On 800k Mac disk drives, the spin rate of the disk is var-
ied so that the tracks pass under the head at a constant speed; a slower rota-
tion for the outer tracks, and a faster rotation for the inner tracks. A PC needs spe-
cial controller hardware to make this happen.

2 A PC needs to be able to make this game happen.

A PC needs to be installed to run this game happen.

A PC needs to be installed to play this game correctly .

=~ W

Evaluating targeted part-of-speech tags

In Tables 7.29 and 7.30, the targeted part-of-speech tag is the noun in a NewsGroups sample. As the
NewsGroups dataset is used for topic classification, nouns play a significant role in the predictor’s outcome.
From the displayed sequences of edits, we notice exactly that. The examples demonstrate how effective the
editors are when we target a specific POS tag, and also depict the significant decrease of minimality and
subsequent increase of consistency for the editors.

For the MiCE editor, we notice that although it presents very consistent behavior until the 6th step, in the
Tth step it perturbs most of the sentence’s text, altering the meaning largely. However, this also potentially
shows that a non-constrained editor generates more diverse text. On the other hand, MiCE NOUN and
TextFooler NOUN both remain consistent, but potentially create less diverse edits.
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Table 7.29: An example from the NewsGroups dataset for MiCE and MiCE when we target nouns for

modification.
Step MiCE MiCE NOUN

1 This is very curious being that they are both built by Mer- | This is very curious being that they are both built by Mer-
cury in the very same factory. Steve cury in the very same factory. Steve

2 This is very curious being that they are both built by Ap- | This is very curious being that they are both built by Mer-
ple in the very same factory. Steve cury in the very same company. Steve

3 This is very curious being that they are both built by NASA | This is very curious being that they are both built by Mer-
in the very same factory. Steve cury in the very same era. Steve

4 This is very curious being that they are both built by Ap- | This is very curious being that they are both built by Mer-
ple in the very same factory. Steve cury in the very same company. Steve

5 This is very curious being that they are both built by Tesla This is very curious being that they are both built by Mer-
in the very same factory. Steve cury in the very same spacecraft. Steve

6 This is very curious being that they are both built by Com- | This is very curious being that they are both built by Mer-
paq in the very same factory. Steve cury in the very same company. Steve

7 The only difference between Microsoft Win- | This is very curious being that they are both built by Mer-
dows and DOS is the fact being that they are both MS- | cury in the very same year. Steve
Windows Comp and the very same OS. Steve

8 The only difference be- | This is very curious being that they are both built by Mer-
tween Canon and Sony is the fact be- | cury in the very same company. Steve
ing that they are both Canon and the CMOS are the same.
Steve

9 The only difference be- | This is very curious being that they are both built by Mer-
tween Canon and CMOS is the fact be- | cury in the very same year. Steve
ing that they are both Canon and the CMOS are the same. Steye

10 The only difference between NES and NT is the fact be- | This is very curious being that they are both built by Mer-

ing that they are both PS/2 compatible and the moth-

erboards are the same. Steve

cury in the very same company. Steve

Table 7.30: An example from the NewsGroups dataset for TextFooler with the targetted part-of-speech being

the noun.
Step TextFooler NOUN
1 This is very curious being that they are both built by Mercury in the very same factory. Steve
2 This is very curious continual that they are both built by Mercury in the very same factory. Steve
3 This is very curious continual that they are both built by Mercury in the very same factories. Steve
4 This is very curious indefatigable that they are both built by Mercury in the very same factories. Steve
5 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve
6 This is very curious indefatigable that they are both built by Mercury in the very same manufac-
ture. Steve
7 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve
8 This is very curious indefatigable that they are both built by Mercury in the very same manufac-
ture. Steve
9 This is very curious indefatigable that they are both built by Mercury in the very same fabrication. Steve
10 | This is very curious indefatigable that they are both built by Mercury in the very same manufac-

ture. Steve

In Tables 7.31 and 7.32, we present an example for MiCE and TextFooler when targeting the ’ADJ’ POS
tag, each one with 10 steps of counterfactual edits on the same sample.
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Table 7.31: An example from the IMDDb dataset for MiCE with the targetted part-of-speech being the

adjective.
Step MiCE ADJ
1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.
2 The great carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a bril-
liant ending is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.
3 The great carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-

prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

4 The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly predictable ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

5 The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

6 The liminal carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s romplimlim carrier.

7 The romplimpig carrier, heroes, is one of the best horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

8 The romplimpig carrier, heroes, is one of the worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

9 The romplimpig carrier, heroes, is one of the greatest horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

10 The romplimpig carrier, heroes, is one of the worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the director Thomas Vin-
terberg’s romplimpig carrier.

Table 7.32: An example from the IMDDb dataset for TextFooler with the targetted part-of-speech being the

adjective.
Step TextFooler ADJ

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The longer heroes, is one of the more movies ever. A ok story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

3 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

4 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a creditable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

5 The longer heroes, is one of the more movies ever. A okay story, dramatic actors and a laudable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

6 The longer heroes, is one of the further movies ever. A okay story, dramatic actors and a laudable end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

7 The longer heroes, is one of the further movies ever. A okay story, dramatic actors and a praiseworthy end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

8 The longer heroes, is one of the further movies ever. A okay story, disastrous actors and a praiseworthy end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

9 The longer heroes, is one of the further movies ever. A okay story, catastrophic actors and a praisewor-
thy ending is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.

10 The plus heroes, is one of the alternatively movies ever. A okay story, catastrophic actors and a praisewor-
thy ending is what makes this film the jumping start of the director Thomas Vinterberg’s unbelievable carrier.
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In the examples above, we observe how the targeted part-of-speech tag method greatly decreases the mini-
mality of the counterfactual edits and thus leads the editors to be more consistent. In addition, we notice
that even though the sample is not short, the editors achieve to flip the prediction by only modifying one
or two tokens. Hence, the constraints that we enforce on the editors make them perturb the input sentence
more aggressively in order to achieve the target label. It is also important to note that TextFooler’s changes
seem minor to the human eye in terms of altering the meaning of the sentence. For example, from Step 5
onwards in Table 7.30 the swapping of the words "fabrication" and "manufacture", which are close in embed-
ding distance and practically synonyms, achieves the flip of the predictor’s outcome. In this way, TextFooler
reveals the vulnerability of the predictor to small changes.

Moreover, in Tables 7.33 and 7.34 we present some examples from the NewsGroups dataset where we observe
the differences in the generated edits depending on the targeted part-of-speech tag. In this way, we notice
that the targeted part-of-speech tags provide us a level of control over the generated counterfactual edits and
at the same time ensure high consistency of the edits. In addition, these perturbations show us the flexibility
of the edits that the method ensures by modifying different POS tags each time.

Furthermore, with the targeted part-of-speech tag method we validate both in this and the examples above
that the fluency of the generated text generally remains stable as we perturb the sentence, so the linguistic
quality of the counterfactual edits is in most cases adequate.

Table 7.33: An example from the NewsGroups dataset for MiCE with the targetted part-of-speech being
the adjective.

Step MiCE ADJ

1 Ultimately it rests with personal opinion...in my opinion. :-) The

ter than [for example] a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy bet-

2 Ultimately it rests with personal opinion...in my opinion. :-) The

ter than [for example| a libertarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy bet-

3 Ultimately it rests with personal opinion...in my opinion. :-) The

ter than [for example| a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy bet-

4 Ultimately it rests with personal opinion..in my opinion. :-) The
tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy more
resentative than [for example| a dictator regim?"

ques-
rep-

5 Ultimately it rests with personal opinion..in my opinion. :-) The

racy more evil than [for example] a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democ-

6 Ultimately it rests with your opinion...in  my opinion. :-) The

racy than [for example] a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy a democ-

7 Ultimately it rests with your opinion..in my opinion. :-) The

racy a democracy than [for example] a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be reasonable to ask, "What makes a democ-

8 Ultimately it rests with your opinion..in my opinion. :-) The

racy than [for example] a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be nicer to ask, "What makes a democracy a democ-

9 Ultimately it rests with your opinion...n  my opinion. :-) The

racy a democracy than [for example| a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be reasonable to ask, "What makes a democ-

10 Ultimately it rests with your opinion...n my opinion. :-) The

racy than [for example] a dictator regim?"

ques-

tion doesn’t make sense to me. Maybe it would be nicer to ask, "What makes a democracy a democ-
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Table 7.34: An example from the NewsGroups dataset for MiCE with the targetted part-of-speech being

the noun.
Step MiCE NOUN
1 Ultimately it rests with personal opinion...in my opinion. :-) The ques-

ter than [for example| a totalitarian regim?"

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democracy bet-

2 Ultimately it rests with personal opinion...in my opinion. :-) The

ter than [for example| a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a government bet-

3 Ultimately it rests with personal opinion...in my opinion. :-) The

cratic regime better than [for the most part| a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a demo-

4 Ultimately it rests with personal opinion...in my opinion. :-) The

nism better than [for the most part| a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic commu-

5 Ultimately it rests with personal experience...in my opinion. :-) The ques-
tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic dic-
tatorship better than [for the most part| a totalitarian regim?"

6 Ultimately it rests with personal experience...in  my opinion. :-) The ques-

ship better than [for the most part] a totalitarian regim?"

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic wreck-

7 Ultimately it rests with personal preference...in my case, the CIA. :-) The

ship better than [for the most part] a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic wreck-

8 Ultimately it rests with personal bias...in my case, the CIA. :-) The

ship better than [for the most part] a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic wreck-

9 Ultimately it rests with personal preference...in my case, the CIA. :-) The

ship better than [for the most part] a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic wreck-

10 Ultimately it rests with personal experience...in my case, the CIA. :-) The

ship better than [for the most part] a totalitarian regim?"

ques-

tion doesn’t make sense to me. Maybe it would be better to ask, "What makes a democratic wreck-

7.2.4 Duration: A noteworthy limitation

Although this work provides us with valuable results and explanations for the decisions models take, there
is an important limitation that must be highlighted, and this is the duration of the experiments. Amongst
44 experiments, the mean time to execute a 10-step iteration of generating counterfactual edits was an
astonishing 38 hours.

Therefore, the duration of the experiments, which is often an expected limitation in machine learning tasks,
seems to be a factor in our study that can only be bypassed and not entirely tackled. In order to address
this limitation we only experiment with a fraction of the test sets of the datasets, a method that certainly
confines us from generating a bigger number of edits and having a more wide picture, but which does not
influence our quantitative results, as proved in [20].

To provide some numerical results, the average time needed to generate a counterfactual edit is 20 and 9.5
seconds approximately for IMDb and NewsGroups accordingly. The total GPU hours (consecutive hours
that one GPU needs to operate) needed for all of our experiments were 1670 (!) translating to 69.5 days.
These numbers allow us to understand how resource-intensive counterfactual generation is, and that available
resources are a factor that must be reckoned with.

Moreover, in Figures 7.2.12, 7.2.13a and 7.2.13, we show how the needed time was distributed among the
different categories of experiments that we conducted and how some methods significantly influence the ex-
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periments’ duration. For example, we point out that MiCE with 120 beams needs approximately a quadruple
amount of runtime than MiCE with multinomial sampling. On the other hand, we show that the method of
targeted POS tags reduces significantly the needed runtime, presenting in this way another benefit.
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Figure 7.2.12: Distribution of total runtime among 6 big categories of experiments: the experiments with
the 4 editors and the beam search experiments on MiCE for both datasets.
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(a) Duration comparison between MiCE and MiCE (b) Duration diagram for the method of targeted POS
with 120 beams for both datasets. tag on the MiCE editor for both datasets.

Figure 7.2.13: Duration diagrams.
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Conclusion

8.1 Discussion

In this work, we explored the use of different counterfactual editors for the task of Contrastive Counterfactual
Explanations Generation in order to evaluate the different components and methods of these editors using
multiple metrics and qualitative analysis. To conduct our experiments, we employed the novel method of
Counterfactuals of counterfactuals [20], and for the evaluation, we explored the results of the recently intro-
duced metric named inconsistency. Moreover, motivated by the subtask of generating minimal counterfactual
edits, we introduce a variation of counterfactual explanations where the editors are constrained to generate
counterfactuals while targeting a specific part-of-speech tag. In our work, we combined the methods outlined
above to create and utilize a pipeline-like counterfactual generation system that generated the counterfactual
edits that we use to evaluate the basic components of the editors.

We experimented with four different editors, each one with different characteristics, in order to explain their
decisions and which of their structural components affect these decisions and how. In the results, we noticed
that each counterfactual editor presents multiple weaknesses and advantages which are explained by their
performance on one or multiple metrics, but also on the qualitative analysis. Specifically, we saw that the
masking method used displays a significant impact on the generated counterfactual edits, with the editors
that use a masking method that has any knowledge of the predictor’s tendencies (either its gradients or its
predictions when a specific word is missing) performing better in terms of all metrics and the quality of
the generated text. On the other hand, random masking proved to provide us with an adequate baseline of
results, but is not a reliable option to generate quality edits. Moreover, we observed that more deterministic
approaches in counterfactual generation, such as those used by TextFooler, can lead to more minimal, more
consistent editors than text generation models. In addition, MiCE and MiCERandom, which use T5, a
language model which appears to have more controlled generation, perform better than Polyjuice across
all metrics. Polyjuice employs GPT2, a language model which proves to generate more diverse text than
MiCE and TextFooler which translates to worse performance regarding the metrics examined. In general,
the conclusion that we encounter on multiple occasions is that adding constraints to the editor and models
clearly leads to more optimal results. Nevertheless, the efficacy of these models is not always guaranteed and
the diversity of results is a loss for us that seems inevitable.

In terms of part-of-speech tags, we employed counterfactual generation targeting three POS tags: ADJ,
NOUN, and VERB with all four editors. Our experiments showed that the editors in the POS tag versions
become much more consistent, but at the cost of failing to flip some of the edits. However, aside from the flip
rate, the edits present fluency levels comparable and in some cases even higher than edits with no targeted
POS tags. Moreover, through this method, we collected valuable information regarding the importance of
each part-of-speech tag combined with the task of each dataset. This linguistic analysis showed that for
sentiment analysis and the IMDb dataset, perturbing the adjectives is crucial to successful counterfactuals,
as adjectives are more influential than verbs and nouns. On the other hand, the NewsGroups dataset, which
specifies in the task of topic classification, proves to attribute more importance to nouns that can influence
the main topic of the text more effectively.
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As to the novel methods utilized, through the results of this work, it is demonstrated how feeding the
editor’s output back as a new input can provide us with an abundance of vulnerabilities and patterns an
editor entails. Moreover, we can see how an editor performs on non-dataset-dependent content and what
quality of edits it generates after multiple steps. Thus, the method of counterfactuals of counterfactuals
proved to be invaluable for the research community as it explores states previously unseen by traditional
counterfactual generation methods, unveiling editors’ weaknesses and providing valuable insights on how they
can be combatted. Regarding inconsistency, we saw that it is a metric that largely complements the method
of Counterfactuals of counterfactuals and in our case provides a clear image regarding which methods and
models contribute to more consistent but also easily explainable editors. The metric leads us to conclusions
about the editors that other metrics cannot provide, such as the stability of the editor and how optimally it
performs in terms of minimality. Of course, in this work, we use inconsistency of minimality but the logic
behind the metric shows the premise for use with other evaluation metrics too.

To conclude, we can affirm that with suitable evaluation methods and the use of counterfactual explana-
tions, we can provide adequate explanations for the performance of various editors, models, and generation
methods. Through our experiments, we generated thousands of counterfactual explanations, we were able
to leverage part-of-speech tags to introduce a new efficient method of text counterfactual generation, and
utilized novel metrics and methods of counterfactual generation. However, most importantly we managed
to explain the behavior of counterfactual editors and text generation models and algorithms, demonstrating
that valuable conclusions can be drawn from their performance, but also their sensitivity and vulnerabilities.
This evaluation process in general allowed us to gain interpretable knowledge of the counterfactual editors
we worked with and not resort to simple comparisons between them.

To move a step further though, it is important to contemplate what these conclusions offer for future work.
The results of our work provide further motivation for future research in the same scope, with additional
metrics, editors, and tasks. To put one of our conclusions in perspective and form a potential research
question, we found that constraining models can lead by proof to better quantitative results for multiple
metrics. Nevertheless, what is the "cost" regarding the quality of the results? Is this quantitative optimization
sufficient? To generalize that properly: Can we use the explanation of existing models to eventually create
optimal editors/models, or should we use it to decide the tradeoffs depending on the task at hand?

8.2 Limitations

During the course of this thesis, we encountered several limitations, which mainly stemmed from the large
computational requirements of our task. As we describe in 7.2.4, the conducted experiments required a
considerable period of time and sometimes parallel execution in multiple GPUs. This limitation directly
affected the size of the datasets which we experimented on, which fortunately did not impede our results and
conclusions. Moreover, based on this constraint, we opted to not exhaust all available counterfactual editors
as this would require significantly more computational requirements and time. Finally, our experiments resort
to the language of English, as we did not experiment with datasets from other languages. However, we expect
that the conclusions generated throughout this work hold across languages and that the methods used in this
work can function without modifications to other languages too.

8.3 Future Work

In closing this thesis, we would like to propose several avenues for further improvement or alternative ap-
proaches that could inspire future research. Firstly, as in this work the datasets we worked with were specified
in the tasks of sentiment analysis and topic classification, it would be interesting to investigate how the editors
perform combined with other tasks such as Named Entity Recognition (NER), where the interest would be in
perturbing only named entities, or aspect-based classification where the sentiment is categorized with respect
to specific target entities or specific aspects. Moreover, another interesting approach would be to experiment
with different predictors in order to capture how they perform in a combination of datasets, seeking to unveil
any existing prejudice or bias. Finally, what could be also explored is the inconsistency of other metrics aside
from minimality. As our results show, the back-translation approach of the authors of [20] combined with
the concept of inconsistency allow us to reveal the potential limitations of a metric, and thus using a similar
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approach with other literature-related metrics could prove to be beneficial.

Another idea for future research would also be the inverse problem, meaning to attempt to use the expla-
nations and limitations of each editor in order to try to improve existing implementations or even create
a new editor from scratch based on which methods and models perform better. For example, in order to
create a counterfactual editor which is more consistent with the modifications it makes, we could explore
the implementation of an editor fine-tuned with the feedback approach and the inconsistency of minimality,
which seems that could provide promising results and generated edits. Finally, the thousands of generat-
ing counterfactual edits could be leveraged in order to potentially create a dataset for further evaluation of
counterfactual explanations or to use them in other tasks such as data augmentation.

95



Chapter 8. Conclusion

96



Chapter 9

Bibliography

1]

2]
3]
4]
[5]

[6]
7]

18]
19]

[10]
[11]
[12]

[13]

[14]
[15]
[16]

[17]
(18]

“A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov
Chains”. In: Annals of Mathematical Statistics 41.1 (1970), pp. 164-171. DOI: 10 . 1214 / AOMS /
1177697196.

Arora, S. et al. “Pretrained Transformers Improve Out-of-Distribution Robustness”. In: arXiv preprint
arXiv:2106.03880 (2021).

Arrieta, A. B. et al. “Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities
and challenges toward responsible AI”. In: Information fusion 58 (2020), pp. 82-115.

Calderon, N. et al. DoCoGen: Domain Counterfactual Generation for Low Resource Domain Adapta-
tion. 2022. arXiv: 2202.12350 [cs.CL].

Chemmengath, S. et al. “Let the CAT out of the bag: Contrastive Attributed explanations for Text”.
In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. Abu
Dhabi, United Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 7190-7206.
URL:

Chomsky, N. “On nature and language”. In: Linguistic Inquiry 33.1 (2002), pp. 1-45.

Chou, Y.-L. et al. “Counterfactuals and causability in explainable artificial intelligence: Theory, algo-
rithms, and applications”. In: Information Fusion 81 (2022), pp. 59-83.

Common Crawl Dataset. Accessed: May 15, 2023.

Dervakos, E. et al. “Semantic Enrichment of Pretrained Embedding Output for Unsupervised IR”. In:
CEUR Workshop Proc. 2846 (2021).

Dervakos, E. et al. “Computing Rule-Based Explanations of Machine Learning Classifiers using Knowl-
edge Graphs”. In: arXiv preprint arXiv:2202.03971 (2022).

Dervakos, E. et al. Choose your Data Wisely: A Framework for Semantic Counterfactuals. 2023. arXiv:
2305.17667 [cs.AI].

Devlin, J. et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
2019. arXiv: 1810.04805 [cs.CL].

Donahue, C., Lee, M., and Liang, P. “Enabling Language Models to Fill in the Blanks”. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for
Computational Linguistics, July 2020, pp. 2492-2501. DOI: 10.18653/v1/2020.acl-main.225. URL:
Doshi-Velez, F. and Kim, B. Towards A Rigorous Science of Interpretable Machine Learning. 2017.
arXiv: 1702.08608 [stat.ML].

Ebrahimi, J. et al. HotFlip: White-Box Adversarial Examples for Text Classification. 2018. arXiv:
1712.06751 [cs.CL].

Elman, J. L. “Finding structure in time”. In: Cognitive Science 14.2 (1990), pp. 179-211. 1sSN: 0364-
0213. DOI: https://doi.org/10.1016/0364-0213(90)90002-E. URL:

Fan, A., Lewis, M., and Dauphin, Y. “Hierarchical neural story generation”. In: ACL. 2018.

Fern, X. and Pope, Q. “Text Counterfactuals via Latent Optimization and Shapley-Guided Search”. In:
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Online and
Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021, pp. 5578~
5593. DOIL: 10.18653/v1/2021.emnlp-main.452. URL:

97


https://doi.org/10.1214/AOMS/1177697196
https://doi.org/10.1214/AOMS/1177697196
https://arxiv.org/abs/2202.12350
https://arxiv.org/abs/2305.17667
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/2020.acl-main.225
https://arxiv.org/abs/1702.08608
https://arxiv.org/abs/1712.06751
https://doi.org/https://doi.org/10.1016/0364-0213(90)90002-E
https://doi.org/10.18653/v1/2021.emnlp-main.452

Chapter 9. Bibliography

[19]
[20]
21]
22]
[23]
[24]
[25]

[26]
[27]

28]

129]
130]
31]
132]
133]
134
135]
136]
137]
138
139]
j40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

(48]

Filandrianos, G. et al. “Conceptual Edits as Counterfactual Explanations.” In: AAAI Spring Sympo-
stum: MAKE. 2022.

Filandrianos, G. et al. Counterfactuals of Counterfactuals: a back-translation-inspired approach to
analyse counterfactual editors. 2023. arXiv: 2305.17055 [cs.CL].

Francis, W. N. and Kucera, H. “The Brown Corpus”. In: Linguistic investigations of the written
language. Vol. 3. De Gruyter Mouton. 1964, pp. 1-51.

Gardner, M. et al. AllenNLP: A Deep Semantic Natural Language Processing Platform. 2018. arXiv:
1803.07640 [cs.CL].

Goodfellow, I., Bengio, Y., and Courville, A. Deep learning. MIT press, 2016.

Goodfellow, I. J. et al. Generative Adversarial Networks. 2014. arXiv: 1406.2661 [stat.ML].

Goyal, Y. et al. “Counterfactual explanations of machine learning models: A survey”. In: arXiv preprint
arXiv:2012.14420 (2020).

GPT2-News. 2021.

Greene, B. and Rubin, G. Automatic Grammatical Tagging of English. Department of Linguistics,
Brown University, 1971. URL:

Guidotti, R. “Counterfactual explanations and how to find them: literature review and benchmarking”.
In: Data Mining and Knowledge Discovery (Apr. 2022), pp. 1-55. DOIL: 10.1007/s10618-022-00831-
6.

Hochreiter, S. and Schmidhuber, J. “Long Short-term Memory”. In: Neural computation 9 (Dec. 1997),
pp- 1735-80. DOI: 10.1162/neco.1997.9.8.1735.

Holtzman, A. et al. “The curious case of neural text degeneration”. In: ICLR. 2019.

Honnibal, M. and Montani, I. spaCy: Industrial-strength Natural Language Processing in Python. 2022.
HuggingFace contributors. T5Tokenizer. Accessed: May 18, 2023.

HuggingFace contributors. Write With Transformer. Accessed: May 15, 2023.

HuggingFace.co. HuggingFace. 2021. URL:

Jin, D. et al. Is BERT Really Robust? A Strong Baseline for Natural Language Attack on Text Clas-
sification and Entailment. 2020. arXiv: 1907.11932 [cs.CL].

John, A. et al. “A review of data augmentation techniques for natural language processing”. In: 2018
International Conference on Computer Communication and Informatics (ICCCI). IEEE. 2018, pp. 1—-
5.

Karavangelis, A. thesis_ counterfactuals. GitHub repository. 2023. URL:

Kaur, H., Chakraborty, A., and Mukherjee, S. “Counterfactual evaluation of conversational recom-
mendation systems”. In: Proceedings of the 43rd International ACM SIGIR Conference on Research
and Development in Information Retrieval. 2020, pp. 1235-1238.

Keane, M. T. et al. If Only We Had Better Counterfactual Explanations: Five Key Deficits to Rectify
in the Evaluation of Counterfactual XAI Techniques. 2021. arXiv: 2103.01035 [cs.LG].

Kusner, M. J. et al. “Counterfactual Fairness”. In: Advances in Neural Information Processing Systems.
2017, pp. 4066-4077.

Lang, K. and Turney, P. “Unsupervised Learning of Synchronous Syntactic Structure for Hidden
Markov Model Induction”. In: Proceedings of the 33rd Annual Meeting on Association for Computa-
tional Linguistics. Association for Computational Linguistics. 1995, pp. 531-537.

Levenshtein, V. I. “Binary codes capable of correcting deletions, insertions, and reversals”. In: Sowviet
physics doklady 10.8 (1966), pp. 707-710.

Li, L. et al. BERT-ATTACK: Adversarial Attack Against BERT Using BERT. 2020. arXiv: 2004 .
09984 [cs.CL].

Liang, B. et al. “Deep Text Classification Can be Fooled”. In: Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence. International Joint Conferences on Artificial
Intelligence Organization, July 2018. DOI: 10.24963/ijcai.2018/585. URL:

Lipton, Z. C. “The mythos of model interpretability”. In: arXiv preprint arXiv:1606.03490 (2018).
Liu, Y. et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. 2019. arXiv: 1907.11692
[cs.CL].

Looveren, A. V. and Klaise, J. Interpretable Counterfactual Explanations Guided by Prototypes. 2020.
arXiv: 1907.02584 [cs.LG].

Lundberg, S. M. and Lee, S.-I. “A unified approach to interpreting model predictions”. In: Advances
in Neural Information Processing Systems 30 (2017), pp. 4765-4774.

98


https://arxiv.org/abs/2305.17055
https://arxiv.org/abs/1803.07640
https://arxiv.org/abs/1406.2661
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1907.11932
https://arxiv.org/abs/2103.01035
https://arxiv.org/abs/2004.09984
https://arxiv.org/abs/2004.09984
https://doi.org/10.24963/ijcai.2018/585
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.02584

[49]
[50]

[51]

[52]
[53]
[54]
[55]
[56]
57]

[58]
[59]

160]
61)
62]
63]
164]
165]

(6]

[67]

[68]
[69]
[70]

[71]

[72]

(73]

Lymperaiou, M. et al. “Towards Explainable Evaluation of Language Models on the Semantic Simi-
larity of Visual Concepts”. In: ArXiv abs/2209.03723 (2022).

Lymperaiou, M. et al. “Counterfactual Edits for Generative Evaluation”. In: ArXiv abs/2303.01555
(2023).

Maas, A. L. et al. “Learning Word Vectors for Sentiment Analysis”. In: Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics: Human Language Technologies. Portland,
Oregon, USA: Association for Computational Linguistics, June 2011, pp. 142-150. URL:

Madaan, N. et al. Generate Your Counterfactuals: Towards Controlled Counterfactual Generation for
Text. 2021. arXiv: 2012.04698 [cs.CL].

Madsen, A., Reddy, S., and Chandar, S. “Post-hoc Interpretability for Neural NLP: A Survey”. In:
ACM Computing Surveys 55.8 (Dec. 2022), pp. 1-42. DOI: 10.1145/3546577. URL:

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. “Building a Large Annotated Corpus of
English: The Penn Treebank”. In: Computational Linguistics 19.2 (1993), pp. 313-330. URL:
Menis-Mastromichalakis, O., Sofou, N., and Stamou, G. “Deep Ensemble Art Style Recognition”. In:
2020 International Joint Conference on Neural Networks (IJCNN) (2020), pp. 1-8.

Minsky, M. and Papert, S. Perceptrons; an Introduction to Computational Geometry. MIT Press, 1969.
ISBN: 9780262630221. URL:

Molnar, C. “Interpretable Machine Learning: A Guide for Making Black Box Models Explainable”. In:
https://christophm.github.io/interpretable-mi-book/ (2019).

Molnar, C. Interpretable machine learning. Lulu. com, 2020.

Moradi, M. and Samwald, M. Evaluating the Robustness of Neural Language Models to Input Pertur-
bations. 2021. arXiv: 2108.12237 [cs.CL].

Morris, J. X. et al. TextAttack: A Framework for Adversarial Attacks, Data Augmentation, and Ad-
versarial Training in NLP. 2020. arXiv: 2005.05909 [cs.CL].

Nivre, J. et al. Universal Dependencies v2: An Evergrowing Multilingual Treebank Collection. 2020.
arXiv: 2004.10643 [cs.CL].

OpenAl. ChatGPT: Language Models for Task-Oriented Conversations. Available online at. Accessed:
May 27, 2023.

Pang, B., Lee, L., and Vaithyanathan, S. Thumbs up? Sentiment Classification using Machine Learning
Techniques. 2002. arXiv: ¢s/0205070 [cs.CL].

Paszke, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. 2019. arXiv:
1912.01703 [cs.LG].

Pedregosa, F. et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learning
Research 12 (2011), pp. 2825-2830.

Pruthi, D. et al. “Evaluating Explanations: How Much Do Explanations from the Teacher Aid Stu-
dents?” In: Transactions of the Association for Computational Linguistics 10 (2022), pp. 359-375.
DOI: 10.1162/tacl_a_00465. URL:

Pyrovolakis, K., Tzouveli, P. K., and Stamou, G. “Mood detection analyzing lyrics and audio signal
based on deep learning architectures”. In: 25th International Conference on Pattern Recognition, ICPR
2020, Virtual Event / Milan, Italy, January 10-15, 2021. IEEE, 2020, pp. 9363-9370. pOI: 10.1109/
ICPR48806.2021.9412361. URL:

Pyrovolakis, K., Tzouveli, P. K., and Stamou, G. “Multi-Modal Song Mood Detection with Deep
Learning”. In: Sensors 22.3 (2022), p. 1065. DOI: 10.3390/522031065. URL:

Radford, A. et al. “Language models are unsupervised multitask learners”. In: OpenAI blog 1.8 (2019),
p- 9.

Raffel, C. et al. Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer.
2020. arXiv: 1910.10683 [cs.LG].

Ribeiro, M. T., Singh, S., and Guestrin, C. “" Why should i trust you?" Explaining the predictions
of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. ACM. 2016, pp. 1135-1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. “Anchors: High-precision model-agnostic explanations”.
In: AAAT 18 (2018), pp. 1527-1535.

Robeer, M., Bex, F., and Feelders, A. “Generating Realistic Natural Language Counterfactuals”. In:
Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana, Dominican

99


https://arxiv.org/abs/2012.04698
https://doi.org/10.1145/3546577
https://arxiv.org/abs/2108.12237
https://arxiv.org/abs/2005.05909
https://arxiv.org/abs/2004.10643
https://arxiv.org/abs/cs/0205070
https://arxiv.org/abs/1912.01703
https://doi.org/10.1162/tacl_a_00465
https://doi.org/10.1109/ICPR48806.2021.9412361
https://doi.org/10.1109/ICPR48806.2021.9412361
https://doi.org/10.3390/s22031065
https://arxiv.org/abs/1910.10683

Chapter 9. Bibliography

[74]

[75]

[76]
[77]
(78]
[79]
[80]
[81]
[82]
[83]

[84]

[85]

[36]

[87]

[83]
[89]
90]
[91]

92]

193]

94]
195]

[96]
97]

Republic: Association for Computational Linguistics, Nov. 2021, pp. 3611-3625. pO1: 10.18653/v1/
2021 .findings-emnlp.306. URL:

Rosenblatt, F. “The perceptron: a probabilistic model for information storage and organization in the
brain.” In: Psychological review 65 6 (1958), pp. 386—408.

Ross, A., Marasovi’c, A., and Peters, M. E. “Explaining NLP Models via Minimal Contrastive Edit-
ing”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). 2020, pp. 7077-7082.

Ross, A., Marasovi¢, A., and Peters, M. E. Ezplaining NLP Models via Minimal Contrastive Editing
(MiCE). 2021.

Ross, A. et al. Tailor: Generating and Perturbing Text with Semantic Controls. 2022. arXiv: 2107 .
07150 [cs.CL].

Samuel, A. L. “Some Studies in Machine Learning Using the Game of Checkers”. In: IBM Journal of
Research and Development 3.3 (1959), pp. 210-229. DOI: 10.1147/rd.33.0210.

Selvaraju, R. R. et al. “Grad-cam: Visual explanations from deep networks via gradient-based local-
ization”. In: Proceedings of the IEEE international conference on computer vision. 2017, pp. 618-626.
Shannon, C. E. “A mathematical theory of communication”. In: Bell Syst. Tech. J. 27 (1948), pp. 623—
656.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep Inside Convolutional Networks: Visualising Image
Classification Models and Saliency Maps. 2014. arXiv: 1312.6034 [cs.CV].

Sun, X. Structure Regularization for Structured Prediction: Theories and Experiments. 2015. arXiv:
1411.6243 [cs.LG].

Sundararajan, M., Taly, A., and Yan, Q. “Axiomatic attribution for deep networks”. In: Proceedings
of the 34th International Conference on Machine Learning-Volume 70 (2017), pp. 3319-3328.
Treviso, M. and Martins, A. F. T. “The Explanation Game: Towards Prediction Explainability through
Sparse Communication”. In: Proceedings of the Third BlackboxNLP Workshop on Analyzing and In-
terpreting Neural Networks for NLP. Online: Association for Computational Linguistics, Nov. 2020,
pp- 107-118. por: 10.18653/v1/2020.blackboxnlp-1.10. URL:

Tzouveli, P. K., Mylonas, P., and Kollias, S. D. “An intelligent e-learning system based on learner
profiling and learning resources adaptation”. In: Comput. Educ. 51 (2008), pp. 224-238.

Vasilakes, J., Papadopoulos, S., and Karkaletsis, V. “Counterfactual Data Augmentation for Neu-
ral Machine Translation”. In: Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 2022.

Vasilakes, J. et al. “Learning Disentangled Representations of Negation and Uncertainty”. In: Proceed-
ings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers). Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 8380-8397. DOL:
10.18653/v1/2022.acl-1long.574. URL:

Vasilakes, J. et al. Learning Disentangled Representations of Negation and Uncertainty. 2022.
Vaswani, A. et al. Attention Is All You Need. 2017. arXiv: 1706.03762 [cs.CL].

Verma, S. et al. “A survey of reinforcement learning algorithms for autonomous navigation of un-
manned aerial vehicles”. In: Journal of Field Robotics 37.4 (2020), pp. 618—-648.

Wachter, S., Mittelstadt, B., and Russell, C. “Counterfactual explanations without opening the black
box: Automated decisions and the GDPR”. In: Harvard Journal of Law & Technology 31.1 (2018).
Wang, B. and Cho, K. “Learning to ask unanswerable questions for machine reading comprehension”.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019,
pp. 3431-3441.

Wang, Z., Shu, K., and Culotta, A. Enhancing Model Robustness and Fairness with Causality: A
Regularization Approach. 2021. arXiv: 2110.00911 [cs.LG].

Werra, L. von. GPT2-IMDB. 2021.

Wikipedia. Levenshtein distance — Wikipedia, The Free Encyclopedia. [Online; accessed 18-April-
2023]. 2021. URL:

Wikipedia. Sentiment Analysis. 2023.

Wikipedia contributors. Machine learning — Wikipedia, The Free Encyclopedia. [Online; accessed
22-September-2022]. 2022.

100


https://doi.org/10.18653/v1/2021.findings-emnlp.306
https://doi.org/10.18653/v1/2021.findings-emnlp.306
https://arxiv.org/abs/2107.07150
https://arxiv.org/abs/2107.07150
https://doi.org/10.1147/rd.33.0210
https://arxiv.org/abs/1312.6034
https://arxiv.org/abs/1411.6243
https://doi.org/10.18653/v1/2020.blackboxnlp-1.10
https://doi.org/10.18653/v1/2022.acl-long.574
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2110.00911

(98]
[99]
[100]
[101]
[102]

[103]

Wikipedia contributors. Gradient descent — Wikipedia, The Free Encyclopedia. [Online; accessed 1-
June-2023|. 2023.

Wikipedia contributors. Rectifier (neural networks) — Wikipedia, The Free Encyclopedia. [Online;
accessed 27-May-2023]. 2023.

Wikipedia contributors. GPT-2. Accessed: May 15, 2023.

Wilson, T., Wiebe, J., and Hoffmann, P. “Articles: Recognizing Contextual Polarity: An Exploration
of Features for Phrase-Level Sentiment Analysis”. In: Computational Linguistics 35.3 (Sept. 2009),
pp- 399-433. DOI: 10.1162/c0li.08-012-R1-06-90. URL:

Wu, T. et al. Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models.
2021. arXiv: 2101.00288 [cs.CL].

Wu, T. et al. Polyjuice: Generating Counterfactuals for Explaining, Evaluating, and Improving Models.
2021.

101


https://doi.org/10.1162/coli.08-012-R1-06-90
https://arxiv.org/abs/2101.00288

Chapter 9. Bibliography

102



Chapter 10

Appendix

A Further Results and Analysis

In this section, we provide some further results from the metrics explained in 7 in order to add more insights
and analyze them at a deeper level.

A.1 Minimality

First, we show one box plot for each one of the editors that depict how minimality is altered after several
feedback steps. For MiCE, we notice increased minimality in the versions that use random masking. We
also notice that adjectives provide more minimal results than verbs and nouns in that order. Regarding
part-of-speech tags, we notice the same pattern in the other editors too. Moreover, it is noticeable that
editors with a targeted part-of-speech tag perform better than the version that does not target POS tags.
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Figure A.1: Minimality on MiCE on the IMDb dataset.
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Figure A.4: Minimality on Polyjuice on the NewsGroups dataset.

25- . . -

20- . . . .

15- o . . . 5

10- 5 - . . . 5

5- . . B .

i ) N
1 2 3 4 5 6 7 8 9

Step

s textfooler = textfooler_adj = textfooler_noun  textfooler_verb

Figure A.5: Minimality on TextFooler on the IMDb dataset.

105



Chapter 10. Appendix

5- . . . .

4. . - L} ® . L] °
>..,3 e . ® . . e - ® ®
=
©
E
£
E 2 . o @ L L L] ® o @ - ° * o @ L]

1-

0-

1 2 3 4 5 6 7
Step

e textfooler & textfooler_adj e= textfooler_noun  textfooler_verb

Figure A.6: Minimality on TextFooler on the NewsGroups dataset.

106



A. Further Results and Analysis

A.2 Inconsistency

Regarding inconsistency, we first notice that editors that target some part-of-speech tags present very low in-
consistency values, as we also explained in 7. It is also interesting to observe the higher values of inconsistency
in even steps in Figures A.7, A.9, and A.11.
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Figure A.8: Inconsistency on MiCE on the NewsGroups dataset.
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A.3 Flip Rate

In Figures A.13 and A.14, we notice how the flip rates shape for each editor and part-of-speech tag in the
first step of our edits. An important takeaway from these two figures is that the prevalent POS tag in the
IMDDb dataset is the adjective, while in NewsGroups, it is the noun. This hints that in IMDb, where the
task is sentiment analysis, adjectives play a more significant role than other POS tags. On the other hand,
in NewsGroups, nouns seem to flip more samples as they have the ability to alter a sentence’s topic more

drastically.
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Figure A.13: Flip Rates on the first step of the IMDb dataset.
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A.4 Base Perplexity

As we explain in the Experiments chapter (7), increased base perplexity values indicate more diverse edits,
while lower values show more predictable text has been generated. The figures below indicate that part-of-
speech tags present more stable, predictable edits in almost all the editors, and with all possible part-of-speech
tags. This is due to the fact that the part-of-speech constraint does not "allow" the editors to "improvise"
as it usually produces modifications that retain the sentence’s structure and semantics.
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Figure A.15: Base Perplexity on MiCE on the IMDb dataset.
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Figure A.16: Base Perplexity on MiCE on the NewsGroups dataset.
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Figure A.17: Base Perplexity on Polyjuice on the IMDb dataset.
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Figure A.18: Base Perplexity on Polyjuice on the NewsGroups dataset.
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Figure A.19: Base Perplexity on TextFooler on the IMDb dataset.
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Figure A.20: Base Perplexity on TextFooler on the NewsGroups dataset.
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A.5 Fine Perplexity

As for Fine Perplexity, we observe that POS tags generally help the editors generate more predictable edits,
i.e. present values closer to the values of step 0. Especially for MiCE on IMDb, we see that the part-of-speech
tags, and specifically the adjectives, reduce the overfitting phenomenon we pointed out in 7.2.1.4.
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Figure A.21: Fine Perplexity on MiCE on the IMDDb dataset.
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Figure A.22: Fine Perplexity on MiCE on the NewsGroups dataset.
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Figure A.23: Fine Perplexity on Polyjuice on the IMDb dataset.
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Figure A.25: Fine Perplexity on TextFooler on the IMDb dataset.
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Figure A.26: Fine Perplexity on TextFooler on the NewsGroups dataset.
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B Analysis on part-of-speech tags

An important aspect of our part-of-speech tag method presented in 5.2.3 is the distribution of part-of-speech
tags in the text. We notice in Figure B.1 that in both datasets and as it stands in more texts, there are more
nouns than verbs than adjectives.
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Figure B.1: Part-of-speech tags distribution in the two datasets.

Moreover, in order to interpret each editor’s behavior when targeting a part of speech, it is important to
calculate how many words of that particular part of speech it modifies. As a result, we present Figures B.2
and B.3 that show the mean number of the tokens of each POS tag in comparison with the mean number of
modified tokens of each POS tag. We can notice the same distribution in the mean numbers of swapped tokens
per POS tag across all editors. However, we must underline that in Polyjuice the number of modified tokens
is much higher than in the other three methods. This behavior explains why Polyjuice does not generate as
minimal edits as the other editors, but also why it flips more samples. As for MiCE with attention masking
used in IMDb, we notice a higher number of modified tokens in the adjective POS tag. This is probably due
to the fact that MiCE’s masking mechanism unveils that the adjectives are more influential for the classifier
for the task of sentiment analysis rather than other POS tags that usually carry more neutral information. In
general, we notice that the methods that use random masking (Polyjuice and MiCE with random masking)
have a higher number of swapped tokens per POS tag and thus create less minimal counterfactuals.
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Mean number of total vs swapped tokens of each POS tag per sentence
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Figure B.2: Part-of-speech tags distribution in the two datasets.

Mean number of total vs swapped tokens of each POS tag per sentence

on IMDb
20.0
. Ad)
17.5 - HEE Noun
. \erb

g
a 15.0 -
v
2
o
B 125 -
73]
o
o
i 10.0 -
-
[1H]
0
E T75-
=
=
=
© 5.0 -
=

2.5+

0.0 . . —

MICE MICERandom Polyjuice TextFooler
Experiment

Figure B.3: Part-of-speech tags distribution in the two datasets.
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C Duration

Concerning the duration of our experiments, we present some complementary figures for section C. In Figure
C.1 , we observe how Polyjuice consumed the majority of the runtime for the experiments. On the other
hand, we see that TextFooler only required 2% of the total runtime, which makes it more efficient than the
others if we take into account its efficacy across all qualitative metrics.

MICERandom

MICE

TextFooler

Polyjuice

Figure C.1: Pie diagram for the duration of experiments per editor.

Finally, we also present Figure C.2 which shows the amount of time consumed for the experiments of each
dataset. Despite the fact, that NewsGroups contains shorter sentences, its 1000 samples require more time
than the 500 used in IMDb.

IMDb

NewsGroups

Figure C.2: Pie diagram for the duration of experiments per dataset.
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D Extra Qualitative Results

A.1 IMDDb Dataset
Example 1
Table 10.1
Step MiCE

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the absolute worst of the director Thomas Vinterberg’s great masterpiece.

3 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a happy end-
ing is what makes this film the absolute crowning of the director Thomas Vinterberg’s great masterpiece.

4 The biggest stinker, is one of the greatest movies ever. A good story, great actors and a happy end-
ing is what makes this film the absolute trashing of the director Thomas Vinterberg’s great masterpiece.

5 The biggest Marx Brothers trashing, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the greatest trashing of the director Thomas Vinter-
berg’s great masterpiece.

6 The biggest Swedish film trashing, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the greatest ripoff of the director Thomas Vinter-
berg’s great masterpiece.

7 The biggest Swedish film trashing, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the greatest trash of the director Thomas Vinter-
berg’s great masterpiece.

8 The biggest Swedish film trashing, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the ruin of the director Thomas Vinterberg’s great mas-
terpiece.

9 The biggest Swedish film ever, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the highlight of the director Thomas Vinter-
berg’s great career.

10 The biggest Swedish film ever, is one of the funniest movies ever. A good story, great ac-
tors and a happy ending is what makes this film the worst of the director Thomas Vinterberg’s great ca-
reer.
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Table 10.2

Step

MiCE ADJ

The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

The great carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a bril-
liant ending is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

The great carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly predictable ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

The original carrier, heroes, is one of the best horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s great carrier.

The liminal carrier, heroes, is one of the worst horror movies ever. A good story, great actors and a sur-
prisingly satisfying ending is what makes this film the jumping start of the director Thomas Vinter-
berg’s romplimlim carrier.

The romplimpig carrier, heroes, is one of the  best horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the direc-
tor Thomas Vinterberg’s romplimpig carrier.

The romplimpig carrier, heroes, is one of the  worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the direc-
tor Thomas Vinterberg’s romplimpig carrier.

The  romplimpig carrier, heroes, is one of the greatest horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the direc-
tor Thomas Vinterberg’s romplimpig carrier.

10

The romplimpig carrier, heroes, is one of the  worst horror movies ever. A good story, great ac-
tors and a surprisingly satisfying ending is what makes this film the jumping start of the direc-
tor Thomas Vinterberg’s romplimpig carrier.
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Table 10.3
Step MiCERandom

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The biggest heroes, heroes of slasher movies ever. Stupid story, bad actors and a bril-
liant script is what saved the director Wolfgang Vinterberg’s great carrier -operatio!

3 The original heroes, heroes of slash movies ever created - actors and actresses ! This is leg-
endary director Une Vinterberg’s great carrier -opera duo..

4 The original heroes, heroes & slash movies ever created ! WORST actors and actresses ! This is leg-
endary director Une Vinterberg’s great carrier -opera duo..

5 The original heroes, heroes & slash movies ever created | WORST actors and actresses ! This is leg-
endary director Une Vinterberg’s great carrier -opera du c..

6 ! original heroes!! Original heroes !!! Cheaper slash movies .. WORST story ! WORST ac-
tors & actresses | This remake of legendary director Werner Vinterberg’s great carrier -
opera movie screamed great..

7 ! Original heroes!! Original heroes 1" Cheaper slash movies !! WORST hor-
ror. WORST story | WORST actors & actresses | Complete remake of legendary direc-
tor  Werner Vinterberg’ s great carrier.. Mlockopera movie screamed great..

8 Classic Movies! Original heroes!! Original heroes ! Exceptional movies !! Original anima-
tion! PERFECT acting. TERT story ! GERT actors / actresses ! Complete resem-
blance to legendary legend Wer niet Vinter va carrier.. Mockopera movie s emble ly great..

9 Script idiots! Original heroes!! Original heroes | OOPERATIVE acting! Original anima-
tion. COMPLETEERFECT !! TERT animation ! GERT actors / actress -educating id-
iots !!! Complete re semblance to legendary legend mén niet Vinter va carrier. SUB-
STANT Mockopera movie s tremble een nowlsy great..

10 Script idiots!  Original heroes!! Original heroes ! OOPERATIVE acting! Original animation. COM-

PLETEERFECT !!' TERT TERRIFICATIONS ! GERT actors / actress -educating id-
iot s Il Complete re semblance to legendary legend mén niet einter va carrier. SUBSTANT Mock-
opera movie s tremble ien nowlsy great..
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Table 10.4
Step MiCE 120 beams

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the weakest start of the director Thomas Vinterberg’s great career.

3 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the coolest start of the director Thomas Vinterberg’s great career.

4 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the embarrassing start of the director Thomas Vinterberg’s great career.

5 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the absolute start of the director Thomas Vinterberg’s great career.

6 Unforgivable, but one of the greatest thrillers ever. A good story, great actors and a brilliant end-
ing is what makes this film the terrible start of the director Thomas Vinterberg’s great career.

7 Unforg ivable, but one of the greatest thrillers ever. A good story, great actors and a brilliant end-
ing is what makes this film the embarrassing start of the director Thomas Vinterberg’s great career.

8 Unforg ivable, but one of the greatest thrillers ever. A good story, great actors and a brilliant end-
ing is what makes this film the absolute start of the director Thomas Vinterberg’s great career.

9 Absolutely abominable, as one of the greatest thrillers ever. A good story, great actors and a bril-
liant ending is what makes this film the absolute start of the director Thomas Vinterberg’s great career.

10 Absolutely abominable, as one of the greatest thrillers ever. A good story, great actors and a  bril-
liant ending is what makes this film the absolute start of the director Thomas Vinterberg’s great career.

Table 10.5
Step Polyjuice

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what doesn’t makes this film the jumping start of the director Thomas Vinterberg EMPTY .

3 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what doesn’t EMPTY makes this film the jumping start of the director Thomas Vinter-
berg EMPTY .

4 The biggest problem with "Dan in Real Life" is that the rebellious, middle daugh-
ter is played so outrageously by actress Brittany Robertson.

5 The biggest problem with "Dan in Real Life" 1is that the rebellious, middle daugh-
ter is never played so outrageously by actress Brittany Robertson.

6 The biggest problem with "Dan in Real Life" is that the rebellious, middle daughter is actu-
ally played so outrageously by actress Brittany Robertson.

7 The biggest strength of "Dan in Real Life" is that the rebellious, middle daughter is actu-
ally played so outrageously by actress Brittany Robertson.

8 The biggest problem of "Dan in Real Life" is that the rebellious, middle daughter is actu-
ally played so outrageously by actress Brittany Robertson.

9 The biggest strength of "Dan in Real Life" is that the rebellious, middle daughter is actu-
ally played so outrageously by actress Brittany Robertson.

10 The biggest strength of "Dan in Real Life" is that the rebellious, middle daughter is actu-

ally EMPTY played so outrageously by actress Brittany Robertson.

123




Chapter 10. Appendix

Table 10.6
Step TextFooler

1 The biggest heroes, is one of the greatest movies ever. A good story, great actors and a brilliant end-
ing is what makes this film the jumping start of the director Thomas Vinterberg’s great carrier.

2 The biggest heroes, is one of the greatest movies ever. another good story, great actors and a brilliant end-
ing is what do this film the jumping beginner of the director Thomas Vinterberg’s great carrier.

3 The biggest heroes, is one of the greatest movies ever. another good story, great actors and a brilliant end-
ing is what do this film the jumping beginners of the director Thomas Vinterberg’s great carrier.

4 The biggest heroes, is one of the greatest movies ever. another good historic, great actors and a bril-
liant ending is what do this teatro the jumping beginners of the directors Thomas Vinterberg’s great car-
rier.

5 The biggest heroes, is one of the greatest movies ever. another good historic, great actors and a bril-
liant ending is what do this teatro the jumping novices of the directors Thomas Vinterberg’s great car-
rier.

6 The biggest heroes, is one of the greatest movies ever. another good historic, great officer and a shiny end-
ing is what do this teatro the jumping novices of the directors Thomas Vinterberg’s great carrier.

7 The biggest heroes, is one of the greatest movies ever. another good historic, great officer and a shiny end-
ing is what do this teatro the jumping newbies of the directors Thomas Vinterberg’s great carrier.

8 The biggest heroes, is one of the greatest movies ever. another good historic, great offi-
cer and a shiny end is what do this teatro the jumping newbies of the directors Thomas Vinter-
berg’s great carrier.

9 The biggest heroes, is one of the greatest movies ever. another good historic, great offi-
cer and a shiny end is what do this teatro the jumping starters of the directors Thomas Vinter-
berg’s great carrier.

10 The biggest heroes, is one of the greatest movies ever. another good historic, great offi-

cer and a shiny end is what do this teatro the jumping starters of the directors Thomas Vinter-
berg’s grand carrier.
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Example 2
Table 10.7
Step MiCE
1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-

ing at all like the book and made a mockery of it. No one should see this movie unless they want to gag.

nn-

2 This movie was hilarious and totally amazing. Jean Du Agee is rolling in his grave.This movie was not
ing at all like the book and made a lot of it. No one should see this movie unless they want to gag.

3 This movie was horrible and totally amazing. Jean Du Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

4 This movie was simply excellent and totally hilari-
ous. Jean Du Agee is perfect in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

5 This  movie  was simply  excellent and totally embarrass-
ing. Jean Du  Agee is perfect in  his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

6 This movie was simply  hilarious and totally unique. Jean Du Agee is  per-
fect in his role.This movie was nothing at all like the book and made a lot of it. No one should see this movie 1
less they want to laugh.

7 This movie was simply terrible and totally unique. Jean Du Agee is  per-
fect in his role. This movie was nothing at all like the origi-
nal and made a lot of it. No one should see this movie unless they want to laugh.

8 This movie was simply amazing and totally unique. Jean Du Agee is per-
fect in his role. This movie was nothing at all like the origi-
nal and made a lot of it. No one should see this movie unless they like to laugh.

9 This movie was simply terrible and totally unique. Jean Du Agee is per-
fect in his role.This movie was nothing at all like the origi-
nal and made a lot of it. No one should see this movie unless they like to laugh.

10 This movie was simply wonderful and totally unique. Jean Du Agee is per-
fect in his role.This movie was nothing at all like the origi-

nal and made a lot of it. No one should see this movie unless they like to laugh.
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Table 10.8
Step MiCERandom

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie unless they want to gag.

2 This movie was silly and corny. Teen Age Joe is really good in his roles.This movie por-
trayed nothing at all like the book and made a joke of it. No one should think they want a gag.

3 This movie was extremely silly and corny. Teen Age Joe sucked re-
ally good in his roles.This movie portrayed nothing at all like the book and made a joke of it.

No one should think they want a gag.

4 This movie was extremely silly and corny. Teen Age Joe sucked really good in his roles.This movie por-
trayed nothing at all like the book and made a joke of it.No one should think they wrote a gag.

5 This movie was extremely silly and corny. Teen ager Joe sucked re-
ally good in his roles.This movie portrayed nothing at all like the book and made a joke of it.

No one should think he wrote a gag.

6 This movie was extremely boring and corny. Teen ager Joe s warts re-
ally good in his roles.This movie portrayed nothing at all like the book and made a joke of it.
No one should think he wrote a gag.

7 This movie was extremely silly and corny. Teen ager Joe s wart looks re-
ally good in their roles. This movie looked noth-
ing at all like the book and made a joke about it. No one should think he wrote a gag.

8 This  movie  was extremely silly and corny. Teen  ager Joe s wart looks  re-
ally good in their roles. This movie read noth-
ing at all like the book and made a joke about it. No one should think Eugene wrote a gag.

9 This movie  was extremely silly and corny. Teen  ager Joe s wart looks  re-
ally pathetic in their roles.  This movie read noth-
ing at all like the book and made a joke about it. No one should think Eugene wrote a gag.

10 This movie is extremely silly / corny. Teen ager Joe Bog wart looks really approxi-

mathetic in their roles. This movie read nothing at all like the book and made hilari-
ous joke .Iloved it! No one should think Brooke wrote a gag.
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Table 10.9
Step MiCE 120 beams

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie unless they want to gag.

2 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

3 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to laugh.

4 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

5 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to laugh.

6 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

7 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to laugh.

8 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie unless they want to laugh.

9 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to laugh.

10 This movie was great and John Le Agee is great in his role.This movie was noth-
ing at all like the book and made a lot of it. No one should see this movie un-
less they want to laugh.

Table 10.10
Step Polyjuice

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie un-
less they want to gag.

2 This movie was great and made a mockery of it. EMPTY

3 This movie was great and made a mockery of it.

4 This movie was great and made a star of it.

5 This movie was not great and made a star of it.

6 This movie was EMPTY great and made a star of it.

7 This movie lacked EMPTY great and made a star of it.

8 This movie made EMPTY great and made a star of it.

9 This movie made EMPTY great and made a mockery of it.

10 This movie made EMPTY great and made a difference of it.
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Table 10.11
Step TextFooler

1 This movie was horrible and corny. James Agee is rolling in his grave.This movie was noth-
ing at all like the book and made a mockery of it. No one should see this movie unless they want to gag.

2 This movie was abysmal and corny. James Jefferies is rolling in his grave.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought see this film un-
less they want to gag.

3 This movie was abysmal and corny. James Jefferies is rolling in his grave.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

4 This movie was abysmal and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

5 This movie was terrible and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

6 This movie was abysmal and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

7 This movie was terrible and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

8 This movie was abysmal and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

9 This movie was terrible and corny. James Jefferies is rolling in his burying.This movie was noth-
ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

10 This movie was abysmal and corny. James Jefferies is rolling in his burying.This movie was noth-

ing at all adore the book and tabled a mockery of it. Anything one ought seeing this film un-
less they want to gag.

A.2 NewsGroups Dataset

Example 1
Table 10.12
Step MiCE
1 Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a phone number for Applied Microbiology so I can give them a call?

Anyone have a phone number for Applied X so I can give them a call?

Anyone have a phone number for PC Disc Makers so I can give them a call?

Anyone have a phone number for PC Key Makers so I can give them a call?

Anyone have a phone number for PC File Makers so I can give them a call?

Anyone have a phone number for SNES so I can give them a call?

Anyone have a phone number for Dell so I can give them a call?

O OO x|WN

Anyone have a  good place for selling CDs? I can give them a call?

e
o

Anyone have a  good place for selling sci.science? I can give them a call?
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Table 10.13

Step

MiCE NOUN

—

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a telephone number for Applied Engineering so I can give them a call?

Anyone have a fax number for Applied Engineering so I can give them a call?

Anyone have a telephone number for Applied Engineering so I can give them a call?

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a telephone number for Applied Engineering so I can give them a call?

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a telephone number for Applied Engineering so I can give them a call?

O OO O x|

Anyone have a phone number for Applied Engineering so I can give them a call?

[
o

Anyone have a telephone number for Applied Engineering so I can give them a call?

Table 10.14

Step

MiCERandom

—

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone got a phone number for Applied Engineering so I can give them a call?

Anyone got a phone number for Applied Engineering so I can give them a call?

Anyone got a phone number for Applied Engineering so I can give them a call?

Anyone got a phone number for Applied Engineering so I can give them a call?

Anyone got a phone number for GS Engineering so I can give them a call?

Anyone got a phone number for GS Software so I can give them a call?

Anyone got acoupon for theS NES sol can buy my Sony VHS card? Anyone give me a call?

Q||| G| W N

Anyone got a coupon for theS ALESTORES so I can buy an SD VHS card? Any-
one give me a call?

[
o

Anyone know of coupon codes for theS ALE DEALS so I can buy an AT&T VHS card? Any-
one give me a mailing address!

Table 10.15

Step

MiCE 120 beams

=

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a phone number for Applied Physics so I can give them a call?

Anyone have a phone number for Applied Visualisation so I can give them a call?

Anyone have a phone number for Dolby Audio so I can give them a call?

Anyone have a phone number for Spaceby Audio so I can give them a call?

Anyone have a phone number for Spacescape Audio so I can give them a call?

Anyone have a phone number for Sony Audio so I can give them a call?

Anyone have a phone number for Space Audio so I can give them a call?

Q||| G| W N

Anyone have a phone number for Space Graphics so I can give them a call?

[
o

Anyone have a  phone number for Space Research so I can give them a call?

Table 10.16

Step

Polyjuice

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a phone number for Applied Engineering so I can give them EMPTY call?

PNECUIR
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Table 10.17

Step TextFooler

—

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a phone numbers for Applied Engineering so I can give them a call?

Anyone have a phone numbers for Applied Tech so I can give them a call?

Anyone have a phone numbers for Conducted Tech so I can give them a call?

Anyone have a phone numbers de Conducted Tech so I can give them a call?

Anyone have a phone numbers de Conducted Technology so I can give them a call?

Anyone have a phone numbers de Proceeded Technology so I can give them a call?

Anyone have a phone numero de Proceeded Technology so I can give them a call?

O OO O x|

Anyone have a phone numero de Embarked Technology so I can give them a call?

[
o

Anyone have a phone numero de Embarked Technological so I can give them a call?

Table 10.18

Step TextFooler NOUN

—

Anyone have a phone number for Applied Engineering so I can give them a call?

Anyone have a phone numbers for Applied Engineering so I can give them a call?

Anyone have a phone numbers for Applied Engineering so I can give them a contacting?

Anyone have a phone number for Applied Engineering so I can give them a contacting?

Anyone have a telephoning number for Applied Engineering so I can give them a contacting?

Anyone have a telephoning nombre for Applied Engineering so I can give them a contacting?

Anyone have a telephoning number for Applied Engineering so I can give them a contacting?

Anyone have a telephoning nombre for Applied Engineering so I can give them a contacting?

O OO x|WIN

Anyone have a telephoning number for Applied Engineering so I can give them a contacting?

[
o

Anyone have a telephoning nombre for Applied Engineering so I can give them a contacting?

Example 2

Table 10.19

Step MiCE

—

Static test firings are now scheduled for this Saturday.....after many schedule changes.....

Xserver test firings are now scheduled for this Saturday.....after many schedule changes.....

Programs are now scheduled for this Saturday.....after many schedule changes.....

Game are now scheduled for this Saturday.....after many schedule changes.....

DVD nights are now scheduled for this Saturday.....after many schedule changes.....

CPU nights are now scheduled for this Saturday.....after many schedule changes.....

O OO x|WN
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Table 10.20

Step

MiCERandom

—

Static test firings are now scheduled for this Saturday.....after many schedule changes.....

Static test firings are now scheduled for this Saturday,after many schedule changes.....

Static playoffs are now scheduled for this month,after many schedule changes.....

Static mailings are now scheduled for this month, with many schedule changes.....

Static mailings are now scheduled for this week, with many schedule changes.....

Static mailings are now scheduled for this week, with many schedule changes.....

Static mailings are now scheduled for this week, with schedule changes.....

Static mailings are now scheduled for this week, with schedule changes.....

O OO O x|

Static mailings are up for this week, with schedule changes.....

[
o

Static mailings are up for this week, with schedule changes.....

Table 10.21

Step

MiCE 120 beams

=

OO G| W N

[
o

Table 10.22

Step

Polyjuice

—

Static test firings are now scheduled for this Saturday.....after many schedule changes.....

Static test firings are now available for this Saturday , after many schedule changes.

Static test firings are now available for this Saturday , after testing several more .

Static test firings are now available for this Saturday, and testing several static .

Static test firings are now available for EMPTY | and there is several static testing noted .

Static test tests are now available for EMPTY , and there is a few static sketches .

Static test tests are now available EMPTY | and there is a few static methods .

Static test tests are now included , and there is a few static methods for simple targets .

O OO x|WN

Static test tests are now included , and there are several static methods for simple subinterval’s .

e
o
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Table 10.23
Step TextFooler
1 Static test firings are now scheduled for this Saturday.....after many schedule changes.....
2 Immobile test firings are now scheduled for this Saturday.....after many schedule changes.....
3 Stationary test firings are now scheduled for this Sabbath.....after many schedule changes.....
4 Stationary test firings are now scheduled for this Saturday.....after many schedule changes.....
5 Stationary test firings are now scheduled for this Shabbat.....after many schedule changes.....
6 Stationary test firings are now scheduled for this Saturday.....after many schedule changes.....
7 Stationary test firings are now scheduled for this Shabbat.....after many schedule changes.....
8 Stationary test firings are now scheduled for this Saturday.....after many schedule changes.....
9 Stationary test firings are now scheduled for this Shabbat.....after many schedule changes.....
10 Stationary test firings are now scheduled for this Saturday.....after many schedule changes.....
Table 10.24
Step TextFooler NOUN
1 Static test firings are now scheduled for this Saturday.....after many schedule changes.....
2 Static test firings are now scheduled for this Saturday.....after many programming changes.....
3 Static experiment firings are now scheduled for this Saturday.....after many programming changes.....
4 Static experience firings are now scheduled for this Saturday.....after many programming changes.....
5 Static experience firings are now scheduled for this Saturday.....after many broadcasting changes.....
6 Static experience firings are now scheduled for this Saturday.....after many programming changes.....
7 Static experience firings are now scheduled for this Saturday.....after many broadcasting changes.....
8 Static experience firings are now scheduled for this Saturday.....after many programming changes.....
9 Static experience firings are now scheduled for this Saturday.....after many broadcasting changes.....
10 Static experience firings are now scheduled for this Saturday.....after many programming changes.....
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