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MepiAnyn

Ta tedeutaia xpovia, tepdotieg roootnteg debopévav mapayovial pe paydaio pubuo,
riepiExoviag minpodopieg rmou Sa propovoav va PEATIOO0UV ONPaviika S1adopeg MTUXES
g KaBnuepvng {wng, €dv agloroinbouv armoteAeoPaTIKA HE TEXVIKEG UNXAVIKES 1abnong.
QOot1000, 1 KEVIPIKL PNXAVIKI] PaBnon ouyvd umokettal o rmpoBAnpata 1810TKotntag Kat
aopdlelag, mou gprnodidouv v avartudn oxupov poviedwv. H opoorovéiakrn pdabnon
elvatl pa véa mpooyylon oto medio g PnXavikng pabnong, n onoia aviipetoidel avtd ta
{nupata ermmrpérnioviag oe H1aApopoug opelg va eknatdeUoouv ouvePyaTIKA £vav adyopiOpo
X@pig Vv avtaddayn v torkev toug dedopéveov. Metadu addav, o topéag g uyeiag Sa
Hopouoe va enwdeAnOel onpavikd ano v opoonoviiaky) pabnor), kabwg ta dedopéva aro
dragopa kévipa uyelag Hev PImopouv va oUYKeVIPOOOUV AOY® TOU ATOpPI|TOU T®V aGOeVHV.

Zv napovoa SUAGNATIKY epyacia, PeAETdpe ) XPron ponypévav aiyopibpev o-
poorovilakng pabnong ya tmyv €ykaipn rpoBAeywn tou Kivduvou Svnowpotntag ot ME®.
ZUYKERPIPIEVA, ETUKEVIPWVOHACTE Ot XPHON TV HETPTOE®V {OTIKWV eVOEI§EmV Kal TV £p-
YAOTNPLAaKOV eEETACE@V, O HOPPT] TTOAUPNETABANTOV XPOVOOEPQV, aArd TS MPRTES 24 WPES
napapovrg ot ME® yia va exktiprjooupie 1o pioko dvnotpotntag Katd tig enopeveg 48 wpeg.
Ta debopéva pag rpoépyxoviatl aro voookopeia twv HITA petaiy 2014 kat 2015, ermtpérno-
VIAG 1Ag VA KATAOKEUAOOUHE €va PEAAIOTIKO op100Tiovi1ako repiBadAov. I'a va amoktjoou-
H€ pa KaAUtepn Katavornor g OPlooIovilakng pabnong, oe oX€on pe auto 1o rmpoBAnpa,
oxeb1adoupe 1a o1pd NMEPAPATIKOV Oevapi®v. Z10X0g 1ag £ival va eEepeuVI|O0ULE T YEVL-
KEUOTPOTTA KAl TV EVOOPUATOO0T] S1adPOPETIKOV HOVIEA®V avadpOPIKOV VEUPOVIK®OV S1KTUGV
Babidg pdbnong oto mAaiolo g opoomovilakng pabnong, v evalcbnoia dradpopetik®v
aAyopiBumv oe avopolopopdeg KATAVOHEG TOV TOTUKAOV deSoEvaV KAl 11 OUVEIOPOPA CUYKE-
KPIPEVROV VOOOKOUEI@Y 0TV avarttudn evog POVIEAOU OP00TIOVA1aKYG 1dbnong.

Ta amotedéopatd pag urmodelkvuouy Ot ta povieda opooriovilakng padnong nmapouot-
alouv KaAutepeg EMBOOEIS ATIO TA TOTIIKA POVIEAA KAl EAAPPOS XELPOTEPES ETTIOOOELS ATIO TA
HOVIEAQ KEVIPIKNG PNXAVIKAG pabnong. Xt ouvéxeld, avaloya pe 1o peyebog Kat v Ka-
Tavopr) TV 6e60PEVEV TV GUVEPYALOHIEVOV (POPE®V, OPLOHEVOL AAYOPlO01 O1100TIOVO1aKG
pdbnong eivat mo anoteAecPaTIKol 08 OUYKEKPIPEva oevapla. ErumAéov, voocokopeia dia-
(POPETIKOU HeyeEOoUg propouv va ocupBailouv otr BeAtioorn g emidoon 1OV MPOYVAOTIKOV

PoVIEAeV IMAave ota Tormkd dedopéva toug, ouppetExoviag oty eKaideuot) Toug.

Acterg KAe1ba

Opoormovdiaxkr) Mabnorn, Babid Nevpwvika Altktua, Avadpopikd Nevpovikd Aiktua, Mn-

xavik) Mdabnon, I6iwukowmta, IIpoBAsyn Ovnowpotntag, Extipnon Kivéuvou, Xpovooeipeg






Abstract

In the technological age, vast amounts of data are being generated continuously,
holding information that could significantly improve various aspects of everyday life, if
effectively utilized with machine learning techniques. However, traditional centralized
machine learning approaches are subject to privacy and security concerns, which impede
the development of robust, generalizable models. Federated learning is a novel approach
in the field of machine learning, which addresses the aforementioned issues by allowing
multiple parties to collaboratively train a machine learning algorithm without exchanging
their local data. One domain that could be significantly benefited from the advancement
of federated learning is healthcare, where data from multiple medical institutions cannot
be centralized due to patient privacy.

In this thesis, we investigate the application of state-of-the-art federated learning (FL)
algorithms on the early prediction of ICU mortality risk. More specifically, we focus on
utilizing the rich temporal dynamics of vital signs and laboratory results, in the form of
multivariate time series, from the first 24 hours of an ICU stay to estimate the mortality
risk in the following 48 hours. Our data originates from multiple hospitals across the
US between 2014 and 2015, therefore allowing us to recreate a realistic, multi-center
federated environment. In order to gain an insight into the FL framework, with regard
to this task, we design a series of experimental scenarios. Our aim is to explore the
generalizability and integration of different deep recurrent neural network (RNN) models
with FL, the sensitivity of different FL algorithms in the presence of heterogeneous local
data distributions and the effect of individual hospitals on the development of a FL model.

We compare our FL models with reference to the centralized machine learning (CML)
and local machine learning (LML) approaches. Our results indicate that, in settings with
non-IID datasets, the FL models are superior to the privacy-preserving LML models, in
terms of AUROC, AUPRC and F1-Score, while they perform slightly worse, in general, than
the CML models. Then, depending on the characteristics of the FL participants, in relation
to data size and class representation, certain FL algorithms exhibit better suitability for
specific scenarios. Moreover, hospitals with both smaller and larger datasets may improve

the models’ performance on their local data, by participating in FL model training.

Keywords

Federated Learning, Deep Neural Networks, Recurrent Neural Networks, Machine

Learning, Privacy, Mortality Prediction, Risk Prediction, Time Series






Euyxaploticg

[Mpota, 9a BsAa va euxapiotriom Jeppd v ermBAénovoa kabnyripld pou, ka. Baollikn
Kavtepé, yla tnv ayoyn ouvepyaoia pag Katd 1) StdpKreld g EKnovnong g rnapovoag ot-
nmlepatkng epyaociag. H diapkng kaBodrjynor tng kat ot cupBouAég tng ftav KaboploTikeg,
1600 yla v rnopeia g SUMA®PATIKAG 1ou 000 KAl yid TV avdArttudn ToU IO OVIKOU
TPOTTIOU OKEWPNG HOU KAl TV YVAOOEDV Pou. Odeide €miong va €Uxaplotjom OV UTIOWnHP1lo
618axtopa k. Ilapaokeud Kepaoidw yla tyv moAvtpn Boribeid tou Kat 11§ MIPOTACELS TOU
OXETIKA HE TIS EPEUVNTIKEG KaTeuBuvoelg mou da propouoa va akoAoubrjo® o authv v
epyaoia.

'Enetta, euxaplote toug @idoug pou, ot oroiot rtav mavia dirmla pou kata ) Sidpkela
TOV AUTOV TOV QOLTNTIKAV Xpovev. Ot otiypég ou {roape padi pou édwoav v anapaitntn
wBnon va ouvexiom kat pe Bondnoav va enepdowm omnoteg SuokoAieg avupetwrmoa. Ga r16sia
va guxaplotow 18laitepa tov Zrmupo, He ToV oroio §eKivrioape nmapéa auto 1o akadnuaiko
1agidl, kabwg 6ev 9a propovoa va avianokplBe oTig araltjoelg IOV oroudav pe v ida
ermuyia 6ixwg ) ouvepyaoia padi tou.

TéAog, 9a 11BeAda va euxaploton toug yoveig pou, Anurtpn kat EAévn, kat v adepor
pou, Ieavva-Xodia, kat va ekppdon 1 Pabutatn euyvoPooUvr) HOU yia 0Ad 00d 1oU £X0UV
npoopépet Kad' OAn ) Sidpkela g {wng pou. H apeiotn otpi&rn) toug kat n gpoviiba rou
pou mapesixav ouvéBale OUCIACTIKA OTNV EIMTUXNHEVI] OAOKANP®OT] AUTOU TOU KUKAOU T®V
ormoudwv pou, Kabwg Kat ot S1apopP®or ToU XapaKIpd HoU Katl ot ouveXr) BeAti®or) pou

®S avOpIoG.

ABnva, 4n Iouliou 2023

ABavaotiog 'ewpyoutcog
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Extetapévy IepiAnyn ota EAAnvika

/ I v KedPdAalo autd amoteAel pia eKtetapévn nmeptAnyn g napovoag SIMA®PATIKAG p-
yaolag ota eAAnvikd, orou Sraturnevovial 01 KEVIPIKEG 18¢eg amd Kabe evotnta g

£pyaoiag Pe CUVOITTIKO TPOTIO.

0.1 Ewayoyn

L1 onpepvr) Yn@laky Moy, 1 EKPNKUKEA audnon g napayeyng Sedopévev ano nin-
Ywpa NAEKTIPOVIKOV CUOKEUMV £XEL ONIOUPYIOEL TV AVAYKI Yid KaAutepn Siayxeipion kat
agloroinor toug o d1agopoug topueig. 'Evag amd autoug sivatl o touéag tng uyeiag, orou
1 OUVEXHS KATAYPADI] 1ATPIKOV MTANPOMOPIOV KAl PEIPHOERV, HE T NOPPL] XPOVOOEIPRV, O
NAEKIPOVIKY] LOPOT], TIPOOPEPEL 1) Suvatotnta yla dpapatikn Bedtioon tng @poviidag tov a-
00evav, TG ANYPNG 1aTPIKOV anodPAoe®v Kl TG EpEUvVAg OT0 KOPPATL TG uyeiag. Qotdoo, ot
ouvnOiopéveg nipooeyyioelg aglonoinong debopévav ard S1aPopetikég mnyég rpounobEtouy
TV OUYKEVIPOOT] TV §e801EVOV 08 £va KEVIPIKO Pnxavnpa. Autd cuvodsustal anod diagopa
{nujpata, Onwg audnpéveg UMOAOYIOTIKEG AITAITHOELS Y1d TO KEVIPIKO unxdavnua, kabuote-
proeig Kat H1axkorég Aoyw SKTuakev nmpoBAnpAte®v Katd 1) perapopd v dedopévev Kat
Y¢pata aopalelag kal WewUKOTNTAg euaiobntev dedopévav. To tedeutaio {Nnua eivat pe-
dovog onuaociag yua tov xopo tng uyeiag, kabmg 1 ernedepyaoia mpooemkov debopévav
UTIOKELTAL O€ VOPIKEG KAl 1O1KEG UTIOXPEDOELG, OTIWG eKelveg Tou 'evikou Kavoviopou yua v
[Ipootaocia twv Acdopévav (General Data Protection Regulation - GDPR) g Euponaikng
'Eveong [16], ol ontoieg anotpenouv ) ouyKEVIp®OoT Sedopévav ano diadopa 1atpika Kevipa
Yla Vv eKnAaideuon 10XUpQOV IPOYVOOTIKGOV HOVIEA®V PNXAVIKAS 1abnong. H opoomovoia-
K1 pabnon (Federated Learning), pia véa TeEXVIKI PNXAVIKAG PAONONG MOU EMITPETEL 1)
OUVEPYATIKY eKMTAIBEUOT EVOG HOVIEAOU ard TOAAAITAOUG OUVEPYALOEVOUG (POPELS XWPIg TN
OUYKEVIP®OT] TV dedopévav eknaibeuong, anotedel pia KAvotopo, UnmooXopevr Auorn yla
10 TAPAIIAVE® TPOBANUa.

Y mapovoa epyaocia, egetadoupe 1o npoBAnua tng £ykaipng npoBAeyng tou Kivduvou
Svnowomtag otig povadsg eviatkng depareiag (ME®) oto mAaiclo g OPOOTIOVOIAKNAG
pabnong. H éykaipn poBAsyrn tou kKivbuvou dvnopotntag eivat pia amno 1a onpavilkoTeEPES
IPOKANOEIG OTOV TOPEA NG UYEIAG, £V 1] AVAYKI] yld 10XUpd Kal aglormota mpoyveoTiKa
poviéda eivatl akopn 1o emraktiky oug ME®, 6rou voonAevovial acBeveig oe kpiown Ka-
tdotaor. Epeig opioupe 10 ouykekpippévo ripdBAnpa g éva rpdBAnpa tagivopnong o dUo
KAAQOg1G, OOU I TIPWTN MEPLEXEL Toug aoBeveig mou KatéAngav Katd tn diapkela g rapda-
povrig toug oty ME® (Setuikr) kAdon) kat n deUtepn ekelvoug mou rrjpav e§itrpto (apvnukn

KAdon). Ta 6edopéva exraibeuong eivat o1 Petpr)oelg {OTKOV eviei§ewv KAl ta epyaoctnpla-
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KA arotedéopata tov aobevev, Pe ) Pop@r) oAUPETaBANT®OV XPOVOOEIPWY, ATIO TO IMP®TO
24wmpo tng tapapovnig toug ot ME®, evo ermikevip@vopaote otnv mpoBAeyn Tou KivéUuvou
Svnowotntag yua 1o endpevo 48mpo, SnAadn ) 2n kat 3n npepa g napapovrg ot ME®.

O otdxog g epyaociag eivat n a§loddynon g emidoong Sapopetkov aiyopibpwv o-
poorovdlakng padnong, oUuyKpika pe v 18avikn, addd pn aodadr), KEVIPIKI] UIXAVIKY)
ndabnon kat pe v acpadr), aAdd Alyotepo AmodOTIKY], TOIUKY UNXAVIKY pabnor, yia to
napandave npéBAnpa. To opoorovdlakd cUVOAO VOOOKOHEI®V aTtoteAgital amo mPaypatika
b6edopéva, anod v ouvepyatik), epeuvnuik Baon dedopévev elCU [17], dnpioupywviag £tot
€va PEAAIOTIKO, ETEPOYEVEG TTEIPAPATIKO TEPIBAAAOV. ApX1KA, EPEUVOUE TTIOCO KAAA EVORUA-
tovovial dlapopetikd Padbia avadpopikd veupmvikd Siktua oto TAAiolo NG OP0CTIOVO1aKNAG
Bdabnong, avapopikd PE T0 CUYKERPIPEVO TIPOBANA, KAB®MG KAl TV 1KAVOTNTA YEVIKEUONG
TOV OPOOTIOVOlaK®V POVIEA®V Idve ot éva testing ouvolo pe Sebopéva amod voooxkopeia
mou 8ev CUPPETEiXaV Ot PAoT NG eKMAibeUong, OUYKPITIKA HE TNV KEVIPIKI] KAl TOTKY)
nipoogyyilon. 'Enetta, eAéyxoupe tnyv euatobnoia tov adyopibpmv o100movilakg PnXavikng
Bdabnong oe éva opooTiovolako meptBaiAov rmou repltAapBavet TeXvNTd VOCOKOPEla e akpa-
la xapakinpiotikd, oe ox€on pe 1o peyebog Katl v Katavour v dedopévav toug. TEAog,
egetadoupie Vv emidpaocr) g CUPHETOXNS HEPOVOUEVROV VOCOKOUEIDV O £€va 01100TIOVE1aKO
niep18addov eknaibevong, a§lodoyoviag v eriboor) 1oV OpooTIoVH1aKOV HOVIEA®Y AV ota

Torka toug dedopéva.

0.2 Oswpntiro YnoBabpo

Ze authv TV evOTnTd IapoUctaloulie KATIOlEG PAOIKES Je@PNTIKEG £VVOLEG, O1 OTTIOleg eivatl
XPTOTHES V1A TNV KAAUTEPT KATAVONOT) TOU AVIIKEIEVOU )G OIMAQPATIKYG £pyaociag, Kabwg

Kal OXETIKEG EPEUVITIKEG EPYAOIEG.

0.2.1 Xpovooceipég

H eupeia xprion ocuokeuov apakoAoubnong g uyeiag tov aobevav Kat 1 U008t on tov
NAEKTPOVIKOV PAKEARV Uyeiag £xouv odnyroet ot paydaia avénon tov S1abéoiev 1atpikov
bedopevav, pe ) popdn xpovooelpwv. Ol xpovooeipee aroteAoUV Hld OUAAOYT) Ao napatn-
PHOELS TASIVOUNIEVEG O XPOVOAOYIKY] O£1pd. AvadePOIAOTe 0TO0 GUVOAO TV pebddav yia v
€Cay®yr] OTATIOTIK@Y OTOIXEIOV KAl XAPAKINPIOTIKGOV T®V XPOVOAOYIKOV OEPQOV 0§ avdAuon
XPOVOOEP®V, £V 1] XPL)01] NOVIEA®V Y1d TNV IIPOBAEPT] NEAAOVIIKOV TIH®OV 114G XPOVOOELPAS,
oUpdGOVA PE TIG ITPOIYOUHEVEG TIIEG, OVOpAdeTtal Tpo6Asyn xpovooeav [18]. Avddoya pe to
mAN60G T®V KATAYEYPAPHEVOV XAPAKTINPIOTIKGV 1] PETABANT®V, 01 Xpovooelpég Siakpivoviat
0€ PNOoVOPETaBANTEG KAl ITOAUPETABANTEG, OTIOG AUTEG TTOU arteikovioviat oty Ewkova 1.

Ta v Babutepn Katavonon 1V XPOVOOEIp®Y, £ival onuaviiko va peAetndouv oplopéva
Baowka xapaxtnploukda toug. H tdon, n emoyikotnta, 1 KUKAKOINTA KAl 1) OTACTHOTTA
etvatl o1 KUplOTEPEG OUVIOT®OEG TTOU araptidouv pia Xpovooelpd Kat Popouv va arodopn)-
Souv kat va pedetnBouv pepovapéva PEOR TEXVIKAOV ArtoouvOeong XPOVooeElp®v. ZUXVA Ot
XPOVOOELPEG TIAPATNPOUVIAL akpaieg TiEG, dndadn mapatnpnoelg nou dev akoAoubouv tn

oupreplpopd mou opidetat amo ta unddouna Sedopiéva, ot onoieg Hev Propouv va epunveu-
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Figure 1. Metprocig {0tk eVOEIfE@V VOG ATOEVN KATA TIG MPWTIES WPES TNG TLAP AUOVNS TOU
ot ME® [1]

YoUv péom g aroouvleong Kat arattouv e1dikn petayxeipion. TEroleg TpéG Pmopouv va
EVIOITIOTOUV PEO® OTATIOTIKAV PeBOdmV KAl va avIlPeEt®Iotouy pe Sliaypadr), avilkatdotaor)
HE TS KOVIIVOTEPEG HN-aKkpaieg rapatnproelg [19] 11 pe ) Xpron TEXVIKOV avaAuong 1rou
givat avBektikég otnv vnapdn akpaiov tpev [20].

‘Entetta, ot moAupetaBAntég Xpovoloyikeg oeilpeg evdéxetal va mepldapBavouv adAnle-
Eaptroeig avapeoa ot petaBAntég, ol ornoieg propei va odnyrjoouv oe AavBaopéva cuprte-
pacpata av éev evtormotouv Kat AngOouv unoyrn. 'Eva akopa XapaKinpelotko TV IMOAU-
petaBAntav xpovooelpwv ivatl o uPndog ap1Bpog diactdoewy, 0 010iog auavel TV TOAU-
MAOKOTNTA KAl SUOKOAEUEL 1)V AvAAUOT] KAl OITTIKOTIOIN o) tov dedopévav. Mia ouvnOiopévn
Slad1kaoia aviPIEIRIONG AUTOV TV IIPOKANOe®V eival n efaywyn xapakinploTtikev Katd Vv
[IPOETIESEPYATia TV XPOVOoelpwV. APXIKA, PItopel va erideyel éva unoouvodo tev Siabéot-
Hev petaBAntov, dlatnpoviag Tig Mo ONUAVIIKEG TTANPOoPOopieg oG ertiduorn) tou egetalopie-
vou TpoBANIaTOg Katl peldvoviag 11§ draotaocelg g xpovooeipag [21]. 'Emetta, ot apXikeg
HeTaBAnTéG PIopouv va TPOorornonfouv Kat va ouviuaotouv PNEo® KatdAAnAev aiyopibuev
Y1d va rapagouv VEEG XPOVOOEIPEG, Ol OITOIEG AVIUIPOORKITEVOUV ITI0 OUVOETEG £VVOLEG TV XPO-
VOOEIP®OV, KAl va BEATIOO0UV T ATIOTEAE0PATA THS AVAAUONGS KAl TV POVIEA®V TIPOBAeyng
[22]. Zt0 1610 amotéAeopa anookormel Kal 11 KAVOVIKOToinon twv dedopévav, kabng peta-
BANTEG exPpacpEveg 0 UWPNAOTEPT] KATPAKA HITOPEL va Kuplapxouv 1§ Bapog dAAev Katd
MV eKMaideuon evog MPOYVOOTIKOU HOVIEAOU.

TéAdog, 1 Unapdn anovolalouo®v U@L eivatl éva Bacikd mpoBAnua TV XPOVOoElp®Y Kal
] ATTOTEAECHATIKI] CVIIHEIWITIOL TOU enrnpedadel dpeoa v emidoon £vog MPOYyVAOTIKOU [10-
viédou. 'Evag evdexopevog TpOrmog avilpeT®Iiong ivatl n amoppiyn IV XPOVOOEIPQOV TTIOU
gpgavidouv arouoladouoeg TIPEG, ®OTO0O AUTY] I TIPOCEYY10T 00Nyel 08 ONPAVIIKL An®Asla
rAnpogopiag. AAAeg MTPOOEYYIOELG ETTIKEVIP®OVOVIAL OTNV AVIIKATAOTACT] TV ATOUC1alouov

TIHOV € TIG IO KOVIIVEG TTAPATPOEIS O aUTEG 1] PIE TOV PECO 0po toug [4]. ITo ouvOeteg
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TEXVIKEG UTTIOAOY1¢oUV Hia ektipnon g anouotddouoag TiRng epappiodoviag pila YpapiK i
MOAU®VUNIKI] OUVAPTNOT) OTl§ MTAPATPL0ElS YUP® TG, Ol OIoieg eivatl rpotpodtepeg otav ot

arnouolaloucsg TIPEG €ival OTIOPADIKEG.

0.2.2 Ba6ua Nesupowvika Aiktua

H punxavucr padnon eivat évag vniokAadog g Texvntig Nonpoouvng rou diepsuva ) pe-
At KAl KATAOKEUT HOVIEA®V ITOU §1vOouv 0TOUG UITOAOY10TEG TV 1Kavotnta va “pabaivouv”,
dnAabdr) va adlorolovv anotedeopatikd £va ouvolo dedopévav yia va BeAtiwoouy tny emiboor)
T0UG MAV® o €va oetT epyactav [23]. Ot 1peig Pacikég KAtnyopieg g PNXAViKhG padnong
etvatl n ermBAernopevn, 1 | emBAeniopevn KAl 1) eVioXUTiKL pabnon. To mpdBAnpa auvtng
g SUMAPATIKIG £pyaciag avnKel oty P®In Katnyopia, kabwg kabe ouvolo e10060vu, 6n-
Aadn o1 {wtikég evieilelg Kal ta epyactnplakd anotedéopata evog acbevr), ouvbéetat pe pa
erubuunu) ur £§660u, v KatdAngn 1 1o e&ur)plo tou acbevr) and ) MEG.

Ta texvnia vevpwuka diKtua anotedouv §iKtud arA®v UMTOAOY10TIKOV KOPBmV, ePIveU-
opéva amnd 1 Sracuvdeon TV BlOAOYIKOV VEUP®WV®V TOU avBporivou eykepdalou. Kabe
TETO10G UTIOAOY10TIKOG KOPBog (1] veupwvag) déxetal €éva ouvolo apldpnukov 1006V amno
10 TIPONYyoUnevo erminedo, emedel £vav UMOAOYIORO NAVR 0 aUTO Kat PowBbel To arotéle-
OJla OTOUG VEUP®VEG TOU EMOPEVOU ertrieédou 1] otnv €060, mMoAAarnAactacpévo pe KAoo
OoUVaITtikO BAapog 1mou aviiotoixel ot ouyKekpipévn ouvdeon [24]. Kata ng didpkelag g
EKTIAiBEUONG EVOG VEUPWVIKOU POVIEAOU e eruBAeropevn pabnon, to poviédo enegepyadetal
pe v napandve dadikacia v mAnpogopia aro 1o ouvodo £10060u yia va napdiel pia
€060 [2]. Autr) n ekupouevn £€§060g ouykpivetal pe tyv ermbupnt) £6060 Kat 10 VEUPOVIKO
poviédo npooapnodet ta Bapn tou diktvou avadoya pe to peyebog tou opaipatog. H 16¢a
TOV VEUPOVIK®V SIKTUGV arnotédeoe 10 epébopa yia ) Sadid uadnon, pia teXVIKL pnxavi-
KNG pabnong mou torobetel oAAd emineba veup®VeV og €va HOVIEAO, dnuioupydviag €10t
uynlou emunedou avanapaotdoelg 1oV dedopévev e1codou [25].

Ta veupevika diktua ywpidoviar oe dUo Paocikég Katnyopieg: ota VeEUpVIKA Siktua
mpoodiag 1po@odotnong, mou dev nepldapbdvouv kapia avadpopikn ouvdeorn, kat ota a-
vadpoutkd veupmvikd Siktua, pe TouAdayxiotov éva Bpdyxo avadpaong. Zupdeva pe 1) Pa-
OlKI] QPXITEKIOVIKL] AVASPOHIKAOV VEUPOVIKOV SIKTUMV, Ol £0MTEPIKOL KOIBO1 £VOG ETITESOU
AapBavouv v £§060 TOU mponyouevoU erurEdou ouyxpoviopéva , Kabmg Kat v T tou
YEITOVIKOU ToUG KOPBoU yia ta §edopéva tng mponyoupevng XPOVIKAG oTiypng dSuvapikd, ya
va uroAoyioouv v tipr) toug [2]. O tpdrog pe tov oroio enegepyaloviat v rAnpodopia kat
10 YEYOVOG OTL PUITOPoUV va enegepyactouv e1006oug petaBAntou peyéboug [26] kabiotouv ta
avadpopikd Siktua 1davika yla epappoyég ota redia g enedepyaciag govng Kat QUOIKNG
YA®ooag, g PoBAEYng XPOVOOEIP®V KAl, YEVIKOTEPA, OE EPYAOIEG TIOU adPOpPOoUV OEIPLAKA
debopéva. Ta avabpopikd veupwvika diktua divouv v aioBnon tou Baboug oty Sidotaon
10U XpOVoU, ®OTO00, OTIKG PAIVETAl OTO LXNHad 2, Propouv eniong va odnyrjocouv o Poviedd
Babiag pabnong pe v 1ornobEnon MOAA®Y E0NTEPIKAOV EMMIEWV OTr Og1pd.

Ext66 g Baoikng apXlIeKTOVIKNG £vOg avadpopikoU VEUP®VIKOU O1KTUOoU, €Xouv On-
poupynOel kat oAdég mapaddayég mg. To poviédo Long Short-Term Memory (LSTM)

TIPOCOETEL YA OEPA PNYXAVIOP®V 08 KABE e0MTEPIKO KOPBO, 01 ortoiot pubpidouv 10 peyebog
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g enidpaong g €10odou otnv TP Tou KOpBou Kat tou divouv v wkavotnta Siatnpet
mAnpogopieg artd 6edopéva mPonyouRevaVY XPOVIKGOV OTYHOV, Pia évieldn "pakpdg pvipng”
[2]. To povtedo Gated Recurrent Unit (GRU) akoAoubei tnv nipooéyyion tou LSTM, eve
Hewwvel 10 TIARO0G TOV ATIAITOUHREVOV PNXAVIOR®OV KAOs KopBou, 0dnyoviag oe taxUTeEpOUs
UTIOAOY10110UG KAl XapnAdtepeg unodoylotikeg anattyoetg [2] (Exnpa 3). Tédog, pa akdpa
pooéyyton sivat i Xprion apdibpopev avadpopik®v S1ktuwv, rmou enegepyddovial ta oelpia-
Ka 6edopéva €10060U ®G MPOG TNV MPAYHATIKY KAl v avarnodn kateubuvon, kabiotoviag
1a 18avikd yia epappoyEg Ormou o1 PeAAOVIIKEG TIHEG 11AG XPOVOOELPAG EVEXOUV ONLAVIIKES

TANPOPOPIES Yia TOV ITPOCdloP1o|d TOV IIPONYOUHEVOV TGOV [2].

X X, X, X,

Figure 2. Avadpouuxd Nevpwvko Aiktuo IToAAov Emnedov [2]
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Figure 3. H apytextoviky) evog kou6ov GRU [2]
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0.2.3 Opoonovdiaky Maénon

H opoormovédiarn puadnon sival pa teXVIKY PNXavikng pdbnong, omou €vag KEVIPIKOG
€U Pe g OUVIOVILel TV eKMAISEUOT) £VOG POVIEAOU IMAV® OF 1110 OUYKEKPIPEVT epyaoia
Bdbnong aro €va oUvolo ouvePYAlOPEVOV QPOPE®V, XWPIS T OUYKEVIP®OOT TRV Sedopévav
eknaidbevong [27]. Autn n MPOGCEYY1ON AVIIPEIRITCEL TIS UTIOAOY10TIKEG HUOKOAlEG Kal, OF
peyaldo Babpo, ta Sfpata aodpdleiag kat S1OTKOTNTAG TOV ouvnOilopévav pebodov pnxa-
VKNG pabnong, eve, oe aviiBeon pe v katavepnpévn pabnor), dsv mpolnobitel nog ta
TormKAa ouvoAa dedopévav eival aveddptnia, opoldpopPa KATAVEPNHPEVA KAl PE TAPERPE-
pr] peyebn. Zuyxpoveg, éva mepiBailov opooriovdlakng pabnong pmopet va nepldapBavet
peyaldo AY00¢ ouvePYalONEVOV CUOKEU®MV (TUTTIKA PEYAAUTEPO ATIO TO KATA PECO OPO NEYE-
90¢ TV TOTUKOV OUVOA®V Sedopévav), Kabwg emiong eival mo avOeKTKO ot ApyES 1) Hn-
AVTATIOKPIVOHIEVEG CUOKEUEG XWPIS va avaotéddet 1 Siadikaoia eknaideuong.

O otoxog tng opooriovdlakng pabnong eivar va Bpebel éva oUVOAO evNUEPOOE®V TRV
Bapwv evog "TIAYKOOH10U™ HOVIEAOU A TOUG OUVEPYALOHEVOUG POPETS, OUT®SG MOTE va PBeA-
tiotorownBouv ot tapduetpoi tou. Ipotou Eexivioet i Siadikaoia g pPaONONG, 0 KEVIPIKOG
eCurnpe g ermAgyel Kat apXIKOrotel 1o Poviédo pnyavikng pabnong mou mpokettat va
eknadeutel. AKOPA, EVIIIEPWVEL TIG CUPHETEXOUOEG OUOKEUEG OXETIKA HE I Popdhr] TV de-
dopévev ou anattovvial yua v eknaideuon [28]. Kabe yupog exknaibeuong tng 010CIIOV-

dlakng pabnong anoteAeital amo ta napakdate Prpata:

1. EmAoyn ZuppeteXoviav: O KeVIPIKOG eSUINPEG S1adéyel €éva UTOOUVOAO eV

S1abéopev opéwv rmou Sa CUPPETEXOUV 0E aUTOV T0 YUpo exknaidsuong [28].

2. Metadoon IIAnpodoptov: O KeVIPIKOG ESUTNPETTG ATIOOTEAAEL OTOUG ETAEYHEVOUG
popeig ta 1o mpoodata Papn tou ‘maykooptou” poviedou kat ) pébodo exnaideuong
[28].

3. Exrnaidesuon: Kdabe ermdeypévog @opeag evnpepwvel ta Bapn evog aviiypadpou tou
“maykoopiou” poviédou pe eknaidsuorn ndve ota tormkd tou dedopéva, akodouboviag

v ripokaBopiopévr pEBodo exnaidbevong [28].

4. Zuyxoveuon Evnpepdoewv: Ot ermdeypévol @opelg arnootéAAouv ta evipepopéva
TOIMKA PAPN TOUG OTOV KEVIPIKO £GUIPEINTI], O OrMoiog ta ere§epyddetal Kal ta ouy-

X®VEUEL Pe KatdaAAnAo tporo [28].

5. Evnpépwon Movtédou: To "mayKoopio™ poviédo, mou diatnpeital otov KEVIPIKO &-
Sunnpetnt, evnuep®veTal oUPP®VA e Toug tedeutaioug urodoyiopoug. Eite i) ekna-
16euor 0AOKANPWVETAL KA TO POVIEAO OTEAVETAL O OAOUG TOUG OUVEPYALOIIEVOUS (POPETS,
elte emAgyetal €va vEo UTIOOUVOAO (POPERV Yld TOV EMTOHEVO YUPO OPOOTIOVOIAKNG K-

naidevong [28].

2t Babia pdbnon, évag adyopiBpog pe kupiapyxo podo eivatl o gradient descent. Autog
0 €EMAVAANTIUIKOG aAyop1B110¢ BEATIOTONOINONG ATIOOKOITEL OtV €UPEOT] EVOG TOTIKOU €Aa-

Xlotou piag 81adopomnou|oing ouvaptnong opAApatog Pocapiodoviag tig IapapeTpous
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ToU poviédou. Qotooo, eneldr) 1) XP1ON AUToU T0U aAyopifpou enave oe 0AOKANPO T0 oUVO-
Ao exnaideuong rmapouotadel UPnAod UMOAOYIOTIKO KOOT0G, 0 otoyxaotikog gradient descent
€MMAEYEL €va UTTOOUVOAO TV debopévav ekmnaibeuong Kat epappodet tov adyopiOpo oe auvtd.
O Baoikdég aAyopiB110g OP00TIOVE1aK G 1AON0NG AMOTEAEL 11a TIPOCAPOYT] TOU OTOXACTIKOU
gradient descent oto mAaiolo g opoorovdlakng pddnong kat ovopadetat FedSGD [29].
Avti yla ) ouppetoxr) 0A®v tov ouvepyalopevav popEémv ot Eva YUpo eknaidsuong, autog o
aAyop1Opog mpoteivel v €MmMAOYI £VOG UTTOCUVOAOU AUTOV Kdl TV €UPECT] TOU PECOU OPOU
1oV gradients ou urtoAoyidouv yla tyv evNIEP®OT TOU "TIAYKOOHU10U~ POVIEAOU.

McMahan et al. [27] ipdtetvav pia yevikeuor tou FedSGD, o1mou o Kevipikog egurtnpe-
TS UTtoAoyidetl 10 PECO OPO T®V UTIOAOYILONEVOV TOTIIKGV Bapav, Kabng autd coduvapet
e Tov péco 0po twv gradients epocov ta torukd povieda §exivave 1o yUpo eknaidsuong pe
ta 161a Bapn. Autog o adyopiBpog ovopdadetal FedAvg kat eivat o mo eupéng 6iadedopévog
alyopiBpog opoorovolakng pabnong. Qotdco, autdg o aAyopilbpog 6ev eyyudtal UPnAr
eridoorn Katl yprjyopn oUYKALOI O£ 0EvVAPLlA OPOOTIOVO1aKAS PAOnong, Orou 1a TormKAa oUvo-
Aa Sedopévev HiEmovial and vPnlrn otatiotiky etepoyevela. [Ipog autv v katevbuvorn,
€xouv rpotaBel adyopiBpot mou pubpidouv v eknaideuon oto eminedo v ouvepyalopevev
popéwv, oniwg o FedProx pe évav mapdayovia eyyutniag rmou rePlopidel TIG TOTKEG EVIHE-
pPOOoElS Bapwv MANOiEctEpa OT0 Tedeutaio "Ttaykoopo” poviedo [30]. 'Enetta, dAAot adyopib-
POl EIMKEVIPMVOVTIAL OV BeATIOTONOINON OT0 E€IUESO TOU KEVIPIKOU €SUMINPETY], ON®G
ot aAyopiBpotl FedAdam, FedAdagrad kat FedYogi [31] ou mpooappddouv toug avtiotot-
X0UG BeATIOTOMONTEG OV EVIHEPWOOT TRV BApqV TOU ‘TtayKooptou” poviédou 1 o FedAvgM
[32, 33] rou npocbitet Evav mapdayovia momentum otig POoNyouneveg evpepnoets. Tédog,
a&ider va onpewOei nwg oto rmiaioto tng opoorovéiakng Pabnong Propouv va evoapatmbouv
pnxaviopot wtikotntag, onag differential privacy [11], kaBog katl pnyaviopot acpdaleiag,

onwg secure aggregation [11].
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Figure 4. 'Eva ovotua ouoomovdiakng uadnong otov tousa mg vyesiag, pe évav Kevipiko
oupoomnovéiako efuntnpentn [3]
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0.2.4 XIxeukég Epeuvnukég Epyaoieg

H extipnon tou kwvduvou dvnodintag evog acbevr) eival éva arod ta Io onpavika
TIPOYVMOTIKA TIPOBARIATA OTOV XOPO NG UYElag, Pe aKopa PEYaAUTEPO AVIIKTUIIO yld TEPt-
MIEOoelS aobevov ot 1ovadeg evtatikng deparneiag. I'a apketo kapo, o Kiviuvog Svnopon-
1ag evog acbevr) urtodoyldotav Pe ) XP1Hon oupBatiKoVv ouoTnRAT®V £YKAlPNG IIPOe18oroin-
ong Kat a§loAdynong g Kataotaong v acbevav, onwg to APACHE [34] kat to SAPS [35],
®Oto00 1 paydaia avuinon OV XPOVOAOYIK®V OEplakwVv debopévav oxetkd pe tv uyeia
1OV aoBevav, 0c NAEKIPOVIKY] HOPGL), €XEL SNUIOUPYNOEL TV AVAYKI] Yid IO 10XUpdA IIpOo-
yvootika cuotnpata. Ta tedeutaia xpovia, £xouv diepeuvnOel oAda Siapopetika povieda
HNXavikng padnong kat S1apopeTtikd cUVoAd 1atplk®V deS0PEVRV Yia TV AVIIHETOINON aU-
10U 10U IPoBANIaTog, 08NydVTag 08 AMOTEAEOPATIKA TIPOYVOOTIKA POVIEAA TIOU O HEIDVOUV

adloonpeinteg ermdooelg o oxéorn He ta oupBatkd cuotnpara.

Zuyvd ta oUVoAd TOTIK®V Se60PEVRV TV KEVIPOV UYElag eival rieploplopéva os Péyebog
Kal ektefepéva oe aoBevelg e CUYKEKPIIEVA XAPAKINPIOTIKA, YEYOVOG TIOU £XE1 08Ny oet
otV €peuva 1efodwv opoomoviilakng Pdbnong yla ) ouvepyatiki) eKnaideuorn KaBoAkov
POYVROTKOV poviedov. [Ipdopata, Dang et al. [14] a§iodoynoav Siapopoug arydpibpoug
opooTiovilakng pabnong oty atxpn wng texvodoyiag pe tw Paon 6edopévav elCU, exkti-
poviag Tov Kivuvo Svnopdtntag Katd v mapapovi) 1oV acBevov OT0 VOOOKOWEIO HE T
XpHon dnNuoypadikeVv Katl OTATIOTKOV OTOIXEi®V anod 10 mpato 24®P0 g IAPAIoVHS TOUG.
'Edsi§av nwg ta poviéda opooroviiakng pabnong sixav mapopola emiboor pe w0 16aviko
HOVIEAO KEVIPIKIG UNXAVIKNG PABnong, eve avedei§av i Xprjon XPOVOAOYIKOV OEIPIaKMV
dedopévav Katl oUVOETOV APYITEKTOVIKOV PNXAVIKAS 11a0nong oto miAaiolo g opoomnovoia-

KI)G PAOnong g PeAAOVIIKEG EPEUVNTIKEG KaTteubuvoelg.

Erukevipaovoviag v £épguva toug oto Xwpo tmg ME® pe ) Bdaon debopévov MIMIC-III
[36], Mondrejevski et al. [37] ipdtewvav to FLICU, pia por) epyaciag yia v eKtipnorn tou
Kwbuvou dvnopotnrag ot ME® pe xprion moAupetaBAni®v XPOVOOEIP®Y KAl VEUPOVIK®V
diktuwv Padiag pabnong oto mAaioto tng opoomovdlakng pabnong. H nipoogyyior) toug ma-
pouciale 0p1oPEVOUG TIEPIOPIOIIOUG, OTIMG TO OTL XPNO10ITolouVv dedopéva anod 1g teAsutaieg
MPES NG ITapapovrg twv acbevov ot ME®, ou anotpérnouv v edpappoyt) tou FLICU yua
urtoot)pi€n KAWIKoOV aropdacswv. Randl et al. [15] mpoodppoocav auty| v mpotevopevn
pO1] £pyaociag oTig MPAOTEG WPES NG ITAPAPOVHS TV acdevav ot ME®, napatmpoviag neg ta
poviéda opooroviilakng pabnong Siatnpouv UYPnAr emidoor), KOvid o€ KEVI TOV 186AVIKOV
HOVIEA®V KEVIPIKNG PNXAVIKNG PAONoNg KAl ONUAvVIKA KAAUTEPT] A0 EKEIVI] TOV TOTIKGOV
poviédev, kabwg audvetatl 1o mAN00g TV oUVEPYalOIEVOV TEXVITOV "ATPIKOV KEVIPKV"'. 'O-
H®G, Ta MEPAPATA TOUG £ITi0NG ITAPOoUo1adouV KATOld PEIOVEKTIATA, OTIOG TO YEYOVOS OTL Td
dedopéva toug rnyddouv aro éva 1atpikod KEVIPO Kal X®Pi{ovial otoug TEXVNTOUS (POPEiS 100-
duvapa kat opodpoppa, SNIIOUPY®VIAG £va MEPAPATIKO OEVAPL0 TIOU OV aviaIioKpivetatl
OTOV IMPAYHATIKO KOOHO0. Le authv ) SImAe@patiky epyaocia, Kataokeuddoupe éva rieptB8aiiov
opooTiovdlakng padnong pe mpaypatnka dedopéva anod drapopetikd voookopeia otg HITA,
egetadoviag mr0og aiyopibuwv opootiovdlakrg Pabnong Katr avadpopikev VEUPWVIKGOVY B1-

KTU®V UTIO PEAAIOTIKEG OUVONKEG OTATIOTIKAG ETEPOYEVELQAG.
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0.3 IIeipapatiroe Mépog

e autrv Vv evotnta napouctiadoupie ) Baot §£60EVeV TIOU XP1OOTIOW|0AlIE, TO OXE-
81aopo 1ev nepapdtev kat g dtadikaociag exknaideuong twv PovieAnv, KaBwg Katl ta aro-

Tedéopata TV MEPAPATEV KAl td oUPrepdopata rnou e§ayoupe and auvtd.

0.3.1 Ac=dopéva & IIpoencepyaoia

Ta debopéva yia 10 melpapatikd péPog autng g epyaciag mpoépyoviat amod tn Lu-
vepyatikr] Epsuvnuikn Bdon Agbopévav elCU [17], v omoia draxeipidetal 1o Epyaotrplo
Yrodoyiotikng @uotodoyiag tou MIT, kat r pdoBaocn o autnv eyKpivetal £netta and v
ETTITUXNHEVI] OAOKANP®OL €vO§ TIPOYPAPHATOS OXETIKA Pe nNOikoUg Kal pubpiotikoug ma-
pAyovieg g £peuvag pe mpaypankd dsdopéva euaiobning guong. Ta dedopéva tng elCU
elval mpaypatika otorxeia anod neploootepeg arno 200 y1A1adeg ermokEWelg acbevov ot ME®
ot 208 Slapopetika voooxkopeia twv HITA tv riepiodo 2014-2015. Autd ta otoixeia rept-
AapBavouv petprioelg {OTUKOV eviei§emv, £pyaotnplakeg eCetdoelg, PAPURAKEUTIKY] AYWYT),
mmAdvo atpknig riepibadyng, Sidyveor), 10topikd tou acbevr), K.a. I'a v napovoa gpyaoia,
avagopikd pe to mpoBAnpa mou edetaloups, Xpelalopaocte toug mivakeg patient, vitalpe-
riodic xat lab ané ) Paon 6edopévav, ol oroiol mePlEXoUV Pacikég MANPOPOPieg yia v
eriokeyn ot ME® kat Snpoypadikda otoixeia twv acbevev, Petprioelg {wukov evbei§emv
KAl EPYAOTNPLAKES £EETAOELS avIioToya.

Kabwg egetaloupe 10 mpoBAnpa tng eKtipnong tou Kivduvou dvnopdtntag péoa oe éva
OUYKEKP1IEVO MAAioto, e aoBeveig rmou katéAniav 1 rijpav egirpio v Sevtepn 1) it fje-
pa g rnapapovig toug ot ME® katl Xpnoiionotoviag tig HETProelg {wtkav evbei§emv kat
TG EPYAOTINPIAKEG EGETACEIG ATIO TO TIP®TO 24wPo ©g dedopéva e1006ou, amnatteital va dfoou-
e Kanowa Kpurpla emAoyng ermokewenv oty ME® aro to ouvolo g Baong 6edopévav. Ta

Kplupla rmou epappodoupe eivatl ta akdéiouba:

1. Ermdéyoupe ermokéyelg ot ME® orou 1o anotéleopd toug (e§1tr)p1o 1] KatdAnin tou

aobevn) £xel kataypagetl.

2. Emdéyouye ermokéwelg ot ME® orou o1 {otikeg evbeifelg tou aobevr) kataypagpoviav
yla touddxiotov 24 ¢peg, EEKIV@VIAg Ao TNV npaty HEtpnorn {wukmv evbei§emv petd

Vv emionyn swoayeyr ot ME®.

3. Eméyoupe emokéyelg oty ME® mou dujpknoav touddyiotov 24 @peg, aAld ot re-
PLO00TEPEG ATd 72 OPEG, AMO TNV MPQATH HEIPNON {WUK®V evbei§emv Tou onpeliooape

napanavae.

4. Emléyoupe v npotn emiokewn o ME® yia kabe acbevr). Ze mepimwon mou Sev
propoupe va 6lakpivoupe mola eival 1) IIPOYEVECTEPT) EMIOKEWT], AMOPPIITTOUPE OAEG

11§ ermokewelg oe ME® yia tov ouyKReKpIEVO aoBevr.

5. Emdéyoupe srmokéyelg ot ME® orou §1e§axOnke touAd)10ToV pld £pyAOTnplaKy e-

Eétaon katl 1o anotédeopd g £xel Kataypagel oto ovotnua.
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’ Demographics ‘ Total ‘ Survival ‘ Death ‘
Number of Patients 55,147 53,052 2,095
Age (years) 63.72 (17.13) | 63.53 (17.16) | 68.48 (15.53)
ICU stay (hours) 44 (14.4) 43.96 (14.41) | 45.21 (14.04)
Gender

Male 29,845 28,708 1,137
Female 25,288 24,331 957
Unknown 14 13 1
Ethnicity

Caucasian 42,548 40,891 1,657
African American 5,837 5,642 195
Hispanic / Latino 2,116 2,054 62
Asian 1,012 966 46
Other / Unknown 3,634 3,499 135

Mivaxkag 1. Anuoypagikd ooy eia ToV acdevdv Uetd v mpoenefepyaoia

Egappoloviag ta maparndve KPurpla ermAoyHG, KATAAYOUHE 1€ €va OUVOAO £YKUPGV
emokéPenv ot ME® yua to npoBAnpa mou pedetape. O Ilivakag 1 mapouotddel kdmowa
dnpoypagika otoixeia yla auto 1o oUvolo acBevov.

To enopevo otddilo apopd Vv npoctotpacia v 6edopévav yia ) dradikaoia exknaibeu-
ong NG PNXAVIKNG Pabnong. ApXiKd, aroppirtoupe KAMoleg akpaieg TPeg {OTIKOV evoe-
§e@V Kal epyaotnplak®V AroteAeoPdI®V. AUTEG Ol TIHEG SemepPVoUV €va IPOKaboploEvo
dlaotnpa eykupev Tipev ano toug diaxelploteg g Paong elCU katl opeidoviatl Kuping oe
HNXavika opdApara 1oV OUOKEUQV Kataypadpng. 'Emneita, enavadetypatoAnmtovpe 1g {ott-
Kég evdeielg ava pia wpa Kat Tig epyactnPlakeg eE€TAOELS ava 8 MPeg, OUYXWVEUOVTAG Tig
petprioelg tou KAbe Slaotjpatog He Tov UTOAOYIOPO Tou PEcOoU 6pou Toug. Me autov tov
TPOTI0, TIEPlopidoupie NV eMMidPAOT] E0OPAAPEVOV PETPIOEDV OTNV eKMAIOEUOT KAl PEI®VOUNE
10 P€yeb0g ToU GUVOAOU TV He60PEVRV, H1EUKOAUVOVIAG £101 TV EKTEAECT) TOV MIEIPAPATIKOV
oevapiev g epyaociag. TéAog, ol arnmouoladouoeg PEIPLOEIS OTIS XPOVOOELPEG CUHITAT PGOVO-
Vidl IPOTa Pe 0AloBnon mponyoUpeveVv TIPHGOV P0G Td €UIPOS Kal, £MeEltd, Pe 0Alobnon
HEAAOVUIKGOV TIHGV IMPOG Td MoK, Y& MEPIM®Oon Mou KArola {®ikn évbedn n epyaotnpla-
K1) €§¢taon Hev KAtaypaPnKe KAtd 10 npato 240po yla karoov acbevry ot ME®, tote ot

arnouctadouoeg TIPEG oUPIAnp®vovat pe -1.

0.3.2 IIsipapatirog LXeSraopog

Metd and rpooeKTIKT) £6ETA0T] OXETIKGOV EPEUVITIKAV EPYAOCIWV, 0Xed1Aoape pia oe1pd amno
MEPAPATIKA oevApld, Pe OTOX0 va 11ag 000UV 1iid TTo 0AOKANP®PEVE) E1KOVA Yid TV emido-
on @V aAyopiBpuwv opoorovilakng padnong oe meptBAAAov OTATIOTIKNG EIEPOYEVELAG. XTO
TOWTO TEWAUATKO oevdpto esetdloupe éva opooriovilako diktuo 8 voookoueiov (ITivakag 2),
10 011010 eKMABEVEL éva VEUPKOVIKO HOVIEAO TOU aglodoyeital rmave oe éva "§Evo” ouvolo be-
dopévev and 4 voooxkopeia mou dev ouppe€xouv oto opoorovdlako diktuo (IIivakag 3).
Z10)0Gg pag eivatl va eKTIPIHCOUHE TO EMINMES0 EVOOUAT®OONG H1aPOPETIKOV APXITEKTOVIKGOV -
vadpoukav veupavikov S1ktuev (RNN, LSTM, GRU), kaB®kg Kat va OUYKPivVOUHE TO £rminedo

yevikeuong evog poviédou opooroviiakng pdbnong nave oe éva “tEvo” ouvodo Sedopévav,



0.3.2 Ilepapatikog Xxediaopog

Datasets ‘ Total ‘ Survival ‘ Death ‘
Hospital A 1,018 977 41 (4.0%)
Hospital B 1,041 972 69 (6.6%)
Hospital C 1,788 1,714 74 (4.1%)
27 (
41 (

Hospital D 773 746 3.5%)
Hospital E 1,129 1,088 3.6%)
Hospital F 1,344 1,244 100 (7.4%)
Hospital G 930 878 52 (5.6%)
Hospital H 1,316 1,248 68 (5.2%)

Training Set | 9,339 | 8,867 | 472 (5.1%) |

IMivarag 2. Ot KATAVOUES TV TOTKWU OUVOA®U Se80UEVOU yla Ta 8 VOCOKOUELA TOU OUOOTIOV-
Slarxou Suktvou

OUYKPITIKA PE TV KEVIPIKI] KAl TV TOTIKI] ITPOOEYY10T.

Datasets ‘ Total ‘ Survival ‘ Death ‘
Hospital I 421 398 23 (5.5%)
Hospital J 477 456 21 (4.4%)
Hospital K | 420 397 23 (5.5%)
Hospital L 485 460 25 (5.2%)

| TestSet [ 1,803 | 1,711 | 92 (5.1%) |

IIivarag 3. Ot KATQVOUES TOV TOTKMV OUVOA®Y Seboucvov yia ta 4 voookoueia Tou anap-
tiouv 10 testing ouvoo

To 6evtepo e auatikd oevapio PooBETel HUO TEXVNTA KATAOKEUAOUEVA VOOOKOLIEIA OTO
OP00TIOVO1aKO H1KTUO, TV OTIOI®V TA TOTIKA 0UVOAa dedopévav xapaktnpidovial amod arpaieg
katavopég. ITo ouykekpipéva, 1o voookopeio X1 mepiéxet Sedopéva yra 1900 aobevelg, ex
@V oroiev Povo to 0.5% ratéAnge katd ) d1dpKrela g rapapovrg tou ot ME®, evo 1o
voookopeio X2 mnepigxetl debopéva yia 300 aobeveig, ek twv oroinv 1o 25% katédnie otn
ME® (ITivakag 4). AuSavoviag tr) OTatioTiKY] £IEPOYEVELA TOU OPOOITIOVE1aKOoU S1KTUOU He TV
POooOr K TV 6U0 MapArdve VOCOKOUEI®Y, 0 0TOX0G Hag eivat va e§etdooupie v eualobnoia

1OV aAyopifpwv opoomiovdlaknig pabnong os autd ta H1adopeTtikd oevapla ouvepyalopevav

VOOOKOUEIDV.
’ Datasets Total | Survival ‘ Death ‘
Hospital X1 1,900 1,890 10 (0.5%)
Training Set + X1 | 11,239 10,757 | 482 (4.3%)
Hospital X2 300 225 75 (25.0%)
Training Set + X2 | 9,639 9,092 547 (5.7%)

IIivarag 4. O! KATAVOUES TOV TOTUKOV OUVOA®U Se60UEVav yia ta texvntd voookoueia X1
Kat X2

TéAog, T0 TPITO OEVAPIO ETIKEVIPWVETAL O SUO CUYKEKPIEVA VOOOKOHEL Ao T0 apXiko
opoortovdlako 6iktuo twv 8 ouvepyaldopevav voookopeiov, 1o C, pe T0 PEYAAUTEPO TOITIKO
ouvolo debopévav, kat 10 G, pe pikpo Anbog Sabéomv tormkev dedopévav (Ilivaxkag 2).

Exnaibevoviag veupmvikd poviéda oto rmAaiolo tng opoonovilakng pdabnong pe Kat Xepig



Extetapévn [epiAnyn ota EAAnvikda

1) CUPETOXT) TOUG, e§etadoupie Vv emibpaot) rou €Xel 1) CUPHETOXT) ToUg otr) diadikaoia tng
opoortovilakng eknaideuong oty midoon ToU POVIEAOU MAVE Otd TOITKA Toug Sedopéva.
Méow autrg g MElPApatiKyg 61ad1kaoiag, artooKOMOUIE OTO VA ATIOKTII|COUE Pd KAAUTEPD)
16€a yia 1o havo KivnTpo evOg VOOOKOHEIOU VA CUPHETEXEL OE £va OP00TIOVE1aKO §1KTuo Kat
10 O0elog TIOU evOEXETAL VA £XEL AVAPOPIKA HE TA XAPAKTNPIOTIKA TOU.

To veupeviko poviedo Tou Kataokeudadoupe anotedeital and duvo napdaAinda kavdaiia
€10060U, €va yla TG PeTproelg {WuKmv evbeifemv Kal éva yia 11§ epyactnPlaKkeg eSeTAOELS.
Kd6e kavdAt €€ autwv arotedeitat aro 3 erineda avadpopikng apxitektovikng (RNN, LSTM,
GRU) pe 16 xo6pBoug 1o kabéva, rpoadidoviag "Babog" oto poviédo pag Kat 0dnyoviag oe
UYPnAoU emréEdou avanapaotdoelg 1oV apXikov dedopévav. 'Encita, kabe kavail ouvode-
vetat arno éva emninedo batch normalization yia Kavovikonoinon TV avarnapactice®V P
) ouyxwveuorn toug otnv 16a didctaon. Xt ouvéxela, dUo MAnNpwg ouvdebepéva erine-
da veupavav, e e§0doug peyéboug 16 kat 16 avtiotoiya, enefepyadoviatl ta ouyxwveupéva
xapaktnpotkd. Tédog, pia otypoeldrig ouvdaptnon epapuddetat oty €060 tou tedeuta-
iou TANPwg ouvdedepévou emredou yia va Urnodoylobel 10 eKUP®PEVO ploko Svnodtntag
ot ME®. Kabag sgetdloupe éva mpdBAnpa ta§ivopnong oe 6U0 KAACELG, XP1OTOIIOI0UHE
emtiong v binary cross-entropy ©g ouvaptnon opaApatog Kat tov aAyopifpo BeAtiotonoin-
ong Adam, pe apxiko pubpo eknaidevong 0.001 mou uvrnodirthaoiadetal ava 5 yupoug.

Y& kABe POCEYY10T) TToU £EeTAlOUE, APXIKOMOI0UME Ta Poviéda He ta ibwa tuxaia Bdapn
yla va arnoguyoupe @awvopeva pepodnyiag ota arotedéopatd pag. IIpotou Eexivrioet n
dadikaoia g exknaibeuong, ta dedopéva e10060u KavovikomoloUvial Kat, Aoye g duoa-
vadoyiag detypdatev yia tg dvo rAdoelg, anovépovial class weights oe kaBe detypa, wote
01 EVIHEPHOELS TOV SelyPaT®v TV §U0 KAACE®V va £X0UV 1008Uvan emidpacn oto PoviéAo.
Ta dedopéva xwpidoviat oe batches yia mo amodotiky) eknaibeuon, eve epappodetal £vag
pnxaviopog éykaipng dtakorg g exnaidsvong, o oroiog napatnpet 1o F1-Score nave
oto ouvolo Hedopévev emaArBeuong Kal erMAEyel TO POVIEAD e TV KaAutepn emnidoor) pe
niepiodo unopovr)g 30 yUpwv katl péytotn nepiodo ekmnaidsvong 100 yupwv. 'Enetta, ya v
TIPOCEYY101] TG OPOOTIOVOIaK G PAbnong, Sempoulie g o KAOs YUPO CUPHIETEXOUV OAOL Ot
ouvepyadopevol popeig kat kKaBe @opéag ekmaideuetl 1o poviédo tou pia opd nave ota oe-
bdopéva exknaideuor|g tou. O1 adyopiBpot opoorniovilakng pabnong neptiapBavouv diadopeg
MAPAPETPOUG, O1 OTT0lEG ETMAEXONKAV HETA ATTO TIEIPAPATIKO EAEYXO.

KaBwg 1o ouvolo edopévmv 1ou mipoBArjpiatog ev eival 100pPOINEVA KATAVEPRNEVO OTIS
du0 kAdoeig, 1 akpiBela (accuracy) tov poBAéwewv Sev propei va xpnotponown el wg agior-
Ot HEIPIKT adloAoynong v poviédev. H mpotn PEIpIK) IoU XPNoonoloupie adpopd v
kapnudn ROC (Receiver Operating Characteristic curve), n oroia oxediadetatl unoAoyido-
vtag g perpikeg recall kat specificity oe Si1apopetikd thresholds ta§ivopnong tov Setypatov
otig 6Uo KAAoelg. Ymodoyidoviag to epBaddv mou nepikAeictal and toug afoveg Kat Vv Ka-
pruAn ROC (Area Under Receiver Operating Characteristic curve - AUROC), AapBavouyie
H1a PETPIKT) €riB00Ng TOU POVIEAOU TOU SNADVEL TV 1KAVOTNTA TOU va tagvopel ta deiypata
owotd. 'Enetta, pe avtiototyo tpormo, urtodoyidoviag 11 petpikég precision kat recall oe 6ia-
popetikd thresholds ta§ivopnong oxediadoupe v kaurudn PRC (Precision-Recall Curve),
n oroia exkppadel 1o tradeoff mou kaAeital va yivel avapeoa otg §uUo petpikeg. H petpikn

AUPRC (Area Under Precision-Recall Curve) sivat e€aipetikd xprjoyan oe ripoBArjjpiata orou



0.3.3 ArnoteAéopata & Zudnnon

1 9etikn KAAQOL €Xel Peyadutepn onpacia Kat Undpxel UPnin avopolopopdia oty Katavo-
un v Sedopévev otig KAdoelg, kKabwg ot precision kat recall ev e§aptovial anod 11§ OROTEG
nPoBAEYPELS NG Kuplapyouoag apvhuikng kKAdaong [38]. Tédog, n petpikr F1-Score eivat o ap-
HOVIKOG 11€00G 0pog TV precision kat recall, onote taipiadel aviiotorxa oto IPOBAna oy
e€etadoupie. TUVOAIKA, EIMIKEVIPOVOHAOTE MEPLOCOTEPO oTlg petpikég AUPRC kat F1-Score

AOY® g UYPNAIG AVICOKATAVOLG TOU OUVOAOU Sedopiévav pag.
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210 MPQTO IEPAPATIKO OEVAP10, £§eTAOUNE TO POVIEAO TOU MEPLypAWape pe S1adpopett-
KEG APYXITEKTOVIKEG AVASPOIIKOV VEUPOVIKOV SIKTUGV ot TIEP1BAAAOV oplooTiovdlakng 1abn-
ong. Xpnotporoloupe 1o opoorovilako Siktuo twv 8 voookopeinv tou Iivaka 1 kat a&lodo-
youpe ta povtéda oto “§Evo” ouvolo Sedopévav tou Ilivaka 2.

Apxikd, e&etaloupe 1o povieho RNN. H 16avikn mpoo€yylon g KEVIPIKAG HNXAVIKAS
pabnong ermtuyxavet AUROC 0.836, AUPRC 0.400 kat F1-Score 0.473, evo 1 Baoikr) pébo-
506 NG TOTTIKNG PNXavikng pabnong ermtuyxavet AUROC 0.764, AUPRC 0.239 kat F1-Score
0.252. O1 aAyopiOpot opoonovilakng pabnong metuxav apKetd KaAutepeg ermbooelg anod
TNV TOITKY) PNXAViKL pabnorn, addd Xopig va ripooeyyilouv ekeiveg TNG KEVIPIKIG HIXAVIKAG
pabnong (pe e€aipeon ) petpiky AUROC). O FedProx onueinoe v KaAutepn emniboorn ya
) petpiky) AUROC (0.838), o FedAdam yia ) petpikyy AUPRC (0.364) kat o FedAvg yua
) petpiky) tou F1-Score (0.335). Ta amoteAéopata yla auto 10 MEPAPATIKO OeVAPLO0 1€ TO

povtédo RNN g@aivoviat otov [Tivaka 5.

| Method || AUROC | AUPRC F1-Score Best FL Round

CML 0.836+0.013 | 0.400 +0.009 | 0.473 £0.029 | -

LML 0.764 +0.009 | 0.239 +0.009 | 0.252 £0.013 | -

FedAvg 0.832+0.037 | 0.348+0.052 | 0.335+£0.047 | 11.2+4.3
FedProx 0.838£0.021 | 0.360+0.039 | 0.321+£0.035 | 12.5+3.4
FedAdam || 0.837 £0.022 | 0.364+0.037 | 0.303+0.007 | 9.8+1.2
FedAdagrad || 0.815+0.016 | 0.318+0.016 | 0.327+0.024 | 9.3+2.3
FedYogi 0.825 +0.021 [ 0.329+0.029 [ 0.325+0.041 [ 9.1+1.1
FedAvgM 0.818+0.023 | 0.322+0.035 | 0.314+0.035 | 8.7 £2.2

IIivarag 5. Eniboon tou puoviéilou RNN mdve oto ~“&Evo™ ovvoflo beboucvov

'Enetta, edetaloupie 1o povigdo LSTM. H 18avikr) mpooeyyion g KEVIPIKASG UNXAVIKNG
pabnong ermtuyyavet AUROC 0.894, AUPRC 0.499 kat F1-Score 0.489, evo n faowkn pébo-
80¢ NG TOIIKIG PNXavikig pabnong ermruyxavet AUROC 0.803, AUPRC 0.326 kat F1-Score
0.384. Ot aAyopiBpot opooroviilakng padnong maitl meTuyxav apKetd KaAutepeg ermdooelg
and IV TOIKI PNXaviky pabnorn, mAnolddoviag auvtr] ) Qopd IEPLOOOTEPO OTIG HETPIKES
€MMO0O0EIS TNG KEVIPIKNG PNXAVIKAG pabnong. O FedAvg onpeinos tnv kaAutepn ermiboon
yia ) perpikr) AUROC (0.899), o FedYogi yia ) petpikr) AUPRC (0.476) kat o FedProx yua
1 petpikn tou F1-Score (0.438). Ilapatnpoupe niwg to poviedo LSTM metuxaivel ouvoAika
KAAUTEPEG EMIBOOEIS OTO CUYKEKPIHIEVO TIPOBANIIA, EVO EVOOIATMOVETAL ITI0 ArtoS0TIKA OTO ITe-

pBaAdov ng opoomiovilakng pabnong. Ta amotedéopata yia autd 10 MEPAPATIKO OEVAPLO
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e to poviédo LSTM @aivoviat otov [Tivaxka 6.

| Method | AUROC AUPRC F1-Score Best FL Round

CML 0.894 + 0.007 | 0.499 +0.020 | 0.489 +0.023 | -

LML 0.803 +0.034 | 0.326+0.038 | 0.384 +0.020 | -

FedAvg 0.899 + 0.006 | 0.446+0.037 | 0.417+0.035 | 16.8+3.9
FedProx 0.897 + 0.010 | 0.456 +0.032 | 0.438+0.014 | 18.9+3.0
FedAdam 0.895+ 0.009 | 0.454 +0.029 | 0.409 +0.028 | 16.5+ 1.8
FedAdagrad || 0.897 + 0.010 | 0.449 + 0.035 | 0.422 +0.036 | 15.4+ 1.7
FedYogi 0.893+0.010 | 0.476 +0.022 | 0.424+0.040 | 14.7+0.8
FedAvgM 0.897 +0.011 | 0.453+0.038 | 0.418+0.031 | 17.2+3.8

ivarag 6. Eniboon tou poviédou LSTM nave oto “E€vo ™ ovvoAo deboucvwv

H tedevutaia extédeor] pag yla auto 10 MEWPAPATIKO 0evdplo apopd to poviedo GRU.
H mpooéyyion g KeVIpiKLg PnXavikig pabnong emrtuyyxavet AUROC 0.895, AUPRC 0.539
kat F1-Score 0.541, evo 1 1€6060g NG TOIKLG PNXAVIKEG PAOnong, rou ekratdevet €va 10-
KO PoVIEAo yla Kabe voookopeio, ermtuyyxavet AUROC 0.807, AUPRC 0.360 kat F1-Score
0.413. Ot aAyopiBpot opoorovdlakng pabnong gerépaocav Sava TG ermdooelg g TOTIKLG
HNXavikng pabnong, evo eixav pia aiednir) anootact) amno g emdooelg NG KEVIPIKAG Un-
Xavikrg padnong. O FedAdagrad onpeinoe tnv kadutepn emniboon ya ) petpiky) AUROC
(0.892), kabwg ka1 ya tr perpikn F1-Score (0.512), eve o FedProx métuye v uynlotepn e-
niiboon yia ) petpikr) tou AUPRC (0.507). TTapatnpoupe niog 1o poviedo GRU nietuxaivet tig
KaAUtepeg eTSO0ELG O€ AUTO 10 MEPAPATIKO 0evApto yia g petpikég AUPRC kat F1-Score,
eve ertiong eivat mo “"eAadpu” unodoylotika oe oxéon pe to poviedo LSTM. Qotooo, ot e-
mbooelg TV POVIEA®V opooriovilakng pabnong napouoialouv peyaAduteprn ATIOKALOL AIlo
EKEIVEG NG KEVIPIKNG PNXAVIKIG PAaBnong, oe oxéorn He 1o povieho LSTM. Ta anotedéopata

ylad auto 10 MEPAPATIKO oevaptlo pe to poviedo GRU @aivoviat otov [Tivaka 7.

| Method || AUROC AUPRC F1-Score Best FL Round

CML 0.895 + 0.002 [ 0.539 £0.004 [ 0.541+0.020 | -

LML 0.807 £0.032 | 0.360 £0.021 | 0.413+0.024 | -

FedAvg 0.890 + 0.007 [ 0.499 +0.020 | 0.489£0.023 | 15.2+2.3
FedProx 0.891 +0.006 | 0.507£0.016 | 0.472+0.042 | 14.2+2.5
FedAdam | 0.891+0.005 | 0.505+0.014 | 0.480+0.046 | 16.1+2.1
FedAdagrad || 0.892+0.006 | 0.502+0.018 | 0.512+0.032 | 155+ 1.7
FedYogi 0.887 +0.007 | 0.500 +0.021 | 0.475+0.030 | 13.7+0.7
FedAvgM 0.889 +0.008 | 0.502 +0.020 | 0.466+0.039 | 13.9+0.9

IIivaxkag 7. Eniboon tou poviedov GRU ndve oto “EEvo ™ ouvoao debopsvov

Zto 6eUtepo melpapatko osvaplo, egetdloupe to poviedo GRU oe éva opoorioviiako
bikTUO P& TV MPOOONKI) TEXVITOV VOOOKOHEI®V € AKPAlEG KATAVOIES TV SeSOEVOV TOUG
otig 6U0 KAdoelg, onwg gaivoviat otov Ilivaka 3. Zto mpoto opoorovilako diktuo pe v
nipooBrKn tou voookopeiou X1, n MPOoEYY1lon TG KEVIPIKNG PNXAVIKIG P1abnong, mou ek-
ra1devet Eva TIayKOo10’ HoviéAo 1 pooBaon os 0Aa ta debopéva eknaideuong, emruyxavet
AUROC 0.870, AUPRC 0.461 xat F1-Score 0.498, eve 1 pn€0od0og tng TOMMIKNG PIXAVIKIG
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pdabnong emrtuyyavet AUROC 0.689, AUPRC 0.185 kat F1-Score 0.289. Ot aAyopiBpot o-
poorovdlakng pdbnong ennpeadoviat ano v npocHety) OTATIOTIKY] ETEPOYEVELA TOU OIKTUOU,
®OTO00 TIAAL EEMepvmVIAG T1g £MSO0ELIG G TOIMKAG PNXavikrg padnong. O FedProx onue-
1woe v KaAutepn enidoon yia ) petpikyy AUROC (0.854), o FedAvg yia ) petpikr) AUPRC
(0.405) xat o FedYogi yia t petpikn tou F1-Score (0.433). Ta anoteAéopata yia auto 1o

TMEPAPATIKO OEVAPLO HE TNV TIPocbr K tou voookopeiou X1 gaivoviat otov [Mivaka 8.

| Method || AUROC AUPRC | F1-Score Best FL Round

CML 0.870 £0.004 [ 0.461+0.046 | 0.498+0.042 | -

LML 0.689 £0.030 | 0.185+0.028 | 0.289+0.046 | -

FedAvg 0.852 +0.008 | 0.405+0.055 | 0.407+0.058 | 15.5+2.3
FedProx 0.854+0.008 |0.402+0.044 |0.413+047 |165+1.2
FedAdam || 0.851+0.012 | 0.392+0.056 | 0.400+0.072 | 15.6 £2.0
FedAdagrad || 0.848+0.007 | 0.390+0.049 | 0.426+0.060 | 17.2+2.4
FedYogi 0.850 + 0.008 [ 0.399 +0.051 | 0.433+0.050 |16.1+1.4
FedAvgM 0.851 +0.006 [ 0.392 +0.042 | 0.395+0.074 | 15.7+2.5

IIivakag 8. Enioon tou povtéiou oto opoomovdiaxo Siktuo ue 1o vodokoueio X1

Receiver Operating Characteristic (ROC) Curve
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Precision

Precision-Recall (PR) Curve
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Figure 6. Xuykpion wwv kaurudov PRC ywa ta poviéAda oto opoomovdiakod SIKTUO Ue 10

voookoueio X1

Zto 8eutepo opooriovdlako SIKTUO J€ TV IPOCOrKn ToU vOoooKopeiou X2, 10 PHOVIEAO

NG KEVIPIKIG PNXavikng pabnong ermtuyyxavet AUROC 0.871, AUPRC 0.537 kat F1-Score

0.526, evo Ta poviEAad g TOTIKLG PUNXavikng pabnong ermtuyyxavouv AUROC 0.728, AUPRC

0.288 kat F1-Score 0.390. Ot aAyopiBpotl opooriovdlakrg pdbnong cuvolikd aglonoiouv

KaAvutepa 1g Srabéopeg mAnpodopieg oe autd 1o opoorovdiako diktuo. O FedAvgM on-

Helwoe 11§ KaAutepeg ermbooetg ya tig perpikég AUROC (0.860) kat AUPRC (0.503), eve o

FedYogi rétuxe 1o uwnAdtepo okop yia ) perpikn F1-Score (0.477). Ta anoteAéopata ya

aUTo TO MEPAPATIKO OEVAP10 L€ TNV IIPOCOK T0U voookoeiou X2 gaivoviat otov ITivaka 9.

| Method | AUROC AUPRC F1-Score | Best FL Round

CML 0.871+0.012 | 0.537 +0.029 | 0.526 +0.032 | -

LML 0.728 £ 0.032 | 0.288 +0.037 | 0.390 + 0.025 | -

FedAvg 0.859+0.011 | 0.481 +0.038 | 0.447 +0.062 | 19.2+2.0
FedProx 0.859 + 0.013 | 0.492 +0.027 | 0.405+0.052 | 19.6 + 3.8
FedAdam 0.857 +0.013 | 0.495+0.032 | 0.452 +0.048 | 19.1+2.6
FedAdagrad || 0.857 +0.013 | 0.492 +0.034 | 0.463+0.054 | 19.3+1.5
FedYogi 0.854 +0.012 | 0.501 +0.036 | 0.477 +0.038 | 19.2 + 3.2
FedAvgM 0.860 = 0.011 0.503 + 0.026 0.463 +0.052 | 20.2+3.2

IMivarag 9. Enidoon tou poviéAdou oto opuoomovdiaro SiKtuo pue 1o voookopueio X2
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To Tpito MEPAPATIKO CEVAPLO ETTIKEVIPMVETAL 0 HU0 OUYKEKPIHEVA VOOOKOUELD, OOTE va
e€etaoel v enidoon poviédwv opoorovdlakng pabnong ndve ota tormkda toug dedopéva.
To mpwto £§ autav eivat 1o voookopeio G e éva oUvoAo TOTIKAOV §e80EVOV OXETIKA IKPOU
Heyeboug, onwg gaivetat otov [Tivaka 1. To tormkoé poviédo 1ou voookopeiou G ermtuyxavet
AUROC 0.775, AUPRC 0.322 xkat F1-Score 0.320, eve 1 IpooE€yylon g OPLOOTIOVOIAKIG
ndbnong xwpig to voookopeio G ermruyyxavert AUROC 0.827, AUPRC 0.282 xkat F1-Score
0.341. Ot aAyopiBpot opooriovdlakrg padnong pe 1o voookopeio G meétuyxav apketd Ka-
AUtepeg erbooelg anod ta PHOVIEAd TOV IPOoNyoupevev dUo 11e00dwv, Kabng exktéOnKav kata
) Sidprela g eknaideuong kat oe Sedopéva tou voookopeiou G KAl IMPooappooTnKaAV Ka-
1dAAnAa og mpog ta xapakinplotkd tou. O FedYogi onpeiwos tv kadutepn eniboon oe
O0Aeg 11§ perpikég Katnyopieg pe AUROC 0.888, AUPRC 0.497 kat F1-Score 0.488. Ta

AroTeEA£oATA Y1d AUTO TO MEPAPATIKO 0gevaplo gaivoviatl otov ITivaxka 10.

| Method | AUROC AUPRC F1-Score Best FL Round

LML 0.775+0.055 | 0.322+0.156 | 0.320+0.117 | -

TransferFL || 0.827 £ 0.011 | 0.282 +0.057 | 0.341 £0.033 | 17.0+ 1.2
FedAvg 0.887 +0.036 | 0.492 +0.129 | 0.470+0.138 | 14.7+1.1
FedProx 0.887 +0.037 | 0.494 +0.130 | 0.444 +0.084 | 15.3+1.3
FedAdam 0.886 + 0.036 | 0.488 +0.126 | 0.465+0.095 | 14.0+0.8
FedAdagrad || 0.885+0.038 | 0.488 +0.131 | 0.466 +0.159 | 14.6+ 1.1
FedYogi 0.888 + 0.039 0.497 + 0.135 0.488 + 0.142 144+ 1.0
FedAvgM 0.886+0.034 | 0.492+0.129 | 0.414+0.073 | 13.6+ 1.4

IIivakag 10. Emnidoon tou puoviéfou oto testing ouvoo tou voookoueiov G

'Entetta, 10 6eUtepo repiBaAdov rmou £8etadoulie 08 aUTO T0 OEVAPIO EMIKEVIPROVETAL OTO
voookopeio C, mou mepldapBavel 1o peyadutepo mAnbog dedopévav avapopika pe ta vo-
OOKOJIElA TOU OpooTIOVE1aKOoU d1ktuou eknaibeuong tou Ilivaka 1. To toruko poviédo tou
voookopeiou C ermtuyyxavet AUROC 0.792, AUPRC 0.324 kat F1-Score 0.328, eve 1) mipo-
OyYlon g opooriovilakng pabnong xwpig to voookopeio C emtuyyxavert AUROC 0.802,
AUPRC 0.244 xat F1-Score 0.320. Ot aAyép1Bp01 opoorovdiakng pabnong 1€ 10 VOGOKO-
peio C &ava obnyouv oe povieda pe 1§ KaAutepeg ermbOOElg 0TI NETPIKEG KATNYOPIEG TTOU
e€etadoupe. O FedYogi onpewmvel tnv kaAutepn emniboor yua ) petpikry AUROC (0.814), o
FedAdam yua ) petpikr) AUPRC (0.382) kat o FedAdagrad yia tn petpikn F1-Score (0.388).

Ta arnoteAéopata yia auto 10 TIEPAPATIKO oevapio gaivoviat otov ITivaxka 11.

| Method | AUROC | AUPRC | F1-Score Best FL Round |

LML 0.792 £ 0.056 | 0.324 +0.154 | 0.328 +0.049 | -

TransferFL || 0.802 + 0.033 | 0.244 +0.026 | 0.320+0.026 | 17.9+ 1.6
FedAvg 0.811+0.058 | 0.371+0.124 | 0.382+0.136 | 14.8+1.2
FedProx 0.810+0.060 | 0.373+0.132 | 0.367+0.142 | 16.0+ 1.4
FedAdam 0.812+0.058 | 0.382+0.135 | 0.347+0.119 | 15.7+0.7
FedAdagrad || 0.811 +0.061 | 0.370+0.140 | 0.388+0.132 | 17.9+3.6
FedYogi 0.814+0.060 | 0.376+0.140 | 0.354+0.134 | 16.9+0.6
FedAvgM 0.812+0.059 | 0.378+0.134 | 0.379+0.140 | 19.3+ 1.1

IMivarag 11. Emnidoon tou povtéflou oto testing ouvofo tou voooroueiou C
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A6 10 TPAOTO MEPAPATIKO OeVAP10, TTIAPATNPoUE KOG To poviedo RNN metuyaivel Tig Xet-
potepeg erdO0EIG TIAVR OTO “EEvo™ oUvoAo ebopévav, £Xoviag OPeg TNV PIKpOtepn ermbBapuv-
o1 avadopilkd HPe IV EMKOVOVIA NAve aro 1o diktuo, Kabng replAapBavel 10 PIKPOTEPO
ap1Bpod mMapapEpeV Kal v Taxutepn OUYKALon oto KaAutepo F1-Score mave ota ouvola
dedopévav emaArnBsuong. Avtifeta, to poviedo LSTM mpoodidet ) peyadutepn embBapuvon
oto 6iktuo, aAAd ta poviéda opoorovilakng Padnong mpooopoladouv EPIoCOTEPO TIG ETTL-
B800€1g TOU POVIEAOU KEVIPIKIG PNXAVIKLG pabnong. To poviedo GRU @aivetal nwg amoteAet
) "Xpuon toun" avapeoa oe autd ta 6Uo otolkeia v nepapdiev. ‘Enetta, nmapatnpoupe
wg 0 aAyopiBpog FedAvg metuyaivel upnAég emdooelg yla g EPIOCOTEPES HETPIKEG Ka-
TNYOPIEG, EVO AVIIOTOLXA ATOTEAEONATIKOG eival Kat o aAyopiOpog FedProx. Ot aAyopiOpot
OP00TIOVO1aKY)G PAB10Ng IOV ArtooKOIoUV otr| [3EATIOTONOINO OTo EIMIMESO TOU KEVIPIKOU
£CUMNPE T TIETUXAIVOUV TaXUTePT) OUYKALOT O 0X£0T] PE ToUug HU0 PO youpevoug aiyopif-
HOUG, OI®G AUTO Qaivetal Mg £XEL AVIIKTIUTIO otV eKraideuorn toug, Kabag dsv onueidvouv
ermdooelg avaloyeg 1wv FedAvg xkat FedProx.

To beUtepo melpapatiko osvaplo pag 6ivel pua eikova ya v emnidoon twv adyopibpev
opoorovolakng padnong os diapopetikd opoorovdlaka diktua. To voookopeio X1 €xet pe-
YAAn enidpaor oto §iKTuo A0Yy® ToU peyddou peyeBoug Tou ouvoAlou debopévav ToU, Ve EXEL
HPNndapvr) eEKmpoonon g YeUKG KAAONG, 1) ontoia Kabiotd v eknaideuon Tou PovieAou
oto voookopeio X1 mpodiateBeipévn) npog v apvhuiky kAdaor. Qg anotédeopda, mapatn-
POUHE J1a MTOOT NG £ridoong T®V HOVIEA®V 01100TIOVOlaKTG PAbnong os oxEon He eKEIVO
NG KEVIPIKAG PNXAVIKAG HdBnong, eve o aAdyopiOpog FedProx gativetatl va eival o katad-
AnAotepog yia autd 1o OpooItovdlako §iktuo, adou o mapdyoviag eyyutntag rneplopidet tmv
pepoAnyia tou voookopeiou X1 katd v eknaibevorn. ‘Enetta, oty nepintwor tou VOooKo-
peiou X2, €xoupe HIKPDR €MiSPAon 010 TIAYKOOU10 POVIEAO AAAd ONHAVIIKY EKITPOCOIOT
TG KAAONG ITOU OUVOAIKA UTtoeKTipoonIieitat. ITapatnpoupe nwg o adyopBpog FedProx edm
PE1®OVEL aKOpa MEPLOOOTEPO T OUVEIOPOPA TOU VOoooKopeiou X2, eve ot alyopiBpot PeAtt-
oToroiNoNg OTo EIMIESO TOU KEVIPIKOU edurtnpetnty] rapouvoidlouv uywndotepn emniboor Kat
KaAUtepn H1aXelp10T] TOV EVIIIEPWOEWV AUTOU TOU HIKPOU TEXVNTOU VOCOKOUEIOU.

TéAoG, TO TPITo IEPaPATIKO oevaptlo egetadet v enidoon poviéAev oploorovilakng p1abn-
ong Mnave ota tormka testing ouvola ouyKeRpIPEVOV VOOOKOPEI®V, TpooTtadmviag va d®oet
H1a €1KOVA Y1d TO KIvITPO VOCOKOUEIRV PE H1a(POPETIKA XAPAKTINPIOTIKA VA CUHHETIEXOUV O
€va opooTovolako diktuo. [Mapatnpouviie neg 1o voookopeio G enapeleital epoodTEPO Ao
Ta POVIEAA OPOOTIOVOlaKLG PABONnonNg IoU CUPHETIEXEL, apou dev £xel apketd debopéva yua
va eknaldeuoel £va 10XUPO TOITIKO HOVIEAO KAl TO0 POVIEAO opooTiovilakng pdadnong Xopig
1) CUPHETOXN TOU 6ev Ipoocappodetal enapkag ota dedopéva tou. 'Enetta, to voocokopeio C
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Chapter “

Introduction

In the digital era, an exponential upsurge in data generation has transformed the
landscape across various domains. Sensors, trackers and connected devices capture not
only immense volumes of information, but also the temporal aspect of the data, mak-
ing it inherently time series in essence. This proliferation of time series data presents
unprecedented opportunities for extracting valuable insights, identifying patterns, and
making data-driven decisions that can drive innovation and advancements across nu-
merous industries. The distributed nature of this data, often residing in remote devices

and endpoints, calls for innovative approaches to harness its vast potential.

In response to this, traditional centralized approaches face significant challenges. A
central server may be unable to meet the computational and memory requirements for
processing massive quantities of data, leading to performance degradation, slowdowns,
or even failures. Then, the amount of communication needed introduces additional mat-
ters that should be considered. The transmission of raw data from remote devices to
a centralized location raises concerns regarding data privacy and security, as sensitive
information may be exposed. Moreover, network issues during data transfer may cause
increased latency, delays and interruptions in the overall workflow. As a result, federated
learning has emerged as a promising solution, leveraging the decentralized nature of the
data and enabling collaborative model training while preserving privacy, reducing com-
munication overhead and parallelizing the computational workload across multiple local
devices.

One domain that could be greatly benefited from the federated learning approach is
healthcare, which generates data at an unprecedented rate. The availability of electronic
health records (EHRs), containing a wealth of patient information in the form of multi-
variate time series (MTS), and the accumulation of healthcare data from multiple sources
present tremendous opportunities for improving healthcare delivery, enhancing clinical
decision-making, and advancing medical research. By aggregating data from various
medical centers, researchers and healthcare professionals can gain deeper insights into
diseases, treatment effectiveness, and patient outcomes. However, the integration and
analysis process is complicated by data heterogeneity, due to variations in data formats,
collection methods and patient populations. Moreover, privacy concerns, data security
and regulatory compliance pose significant hurdles when for data aggregation.

Federated learning offers a compelling framework to address the challenges of health-
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care data collaboration. By decentralizing the model training process, federated learning
allows healthcare institutions to retain control over their local data and collaborate on de-
veloping state-of-the-art ML models, without sharing sensitive patient information. This
approach has the potential to effectively capture the nuances and characteristics of het-
erogeneous local datasets, while it significantly reduces data privacy and security risks.
The ML models constructed in the context of federated learning often display improved
accuracy and generalizability, as they have been exposed to a diverse dataset, comprising
data from various sources. Overall, the application of federated learning in healthcare
holds great promise for revolutionizing the field and advancing patient care.

In this thesis, we investigate the application of federated learning in the healthcare
sector, with a focus on addressing the early ICU mortality risk prediction task with the
utilization of MTS data from multiple hospitals. In Chapter 2, we formulate this clas-
sification problem and describe the objectives of this study. Then, we introduce some
fundamental theoretical concepts that are prevalent throughout this thesis. In Chapter
3, we discuss about the characteristics of time series and how to handle them efficiently.
In Chapter 4, we present an overview of deep neural network architectures, focusing
on their use with time series data. In Chapter 5, we introduce the federated learning
framework, examining its basic workflow, different federated learning algorithms and
compatible privacy-preserving and security mechanisms. Afterwards, in Chapter 6, we
present some related works to this study, before we turn our focus on our experiments. In
Chapter 7, we present the eICU Collaborative Research Database and analyze our cohort
selection criteria and data preparation methodology. In Chapter 8, we elaborate on the
federated learning scenarios for our experiments, and lay out our evaluation strategy. In
Chapter 9, the results of our experiments are presented and discussed in detail. Finally,
in Chapter 10, we recapitulate the main conclusions of this study and propose some

future research directions.
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Problem Formulation

The problem studied in this thesis is the early ICU mortality risk prediction, leveraging
data from multiple healthcare centers. Patients admitted in intensive care units typically
exhibit a critical health condition that requires continuous medical care and monitoring.
Early identification of patients at high risk of mortality within a specific time frame after
ICU admission plays a crucial role in improving patient results. By developing accu-
rate, forward-looking predictive models, healthcare providers are enabled to take action
promptly to prevent adverse outcomes. Therefore, early ICU mortality risk prediction is a

significant medical task with vast and impactful potential.

We formulate the task of predicting ICU mortality as a binary classification problem,
with multivariate time series, where the patients who died during their ICU stay constitute
the positive group (output = 1) and the patients who got discharged constitute the negative
group (output = 0). The time point indicating the mortality event or discharge is defined
by the ICU discharge offset variable, while the beginning of the ICU stay is defined as
the first vital signs measurements after the ICU admission record. Since this study
focuses on early prediction, we consider an observation window during the first hours of
a patient’s ICU stay. It consists of 24 hours of vital signs (7 variables) and laboratory tests
(16 variables) after the beginning of the ICU stay. The MTS data from this observation
window are extracted and utilized for training and evaluation of the predictive models.
The resulting algorithm indicates the mortality likelihood of a patient during the 48-hour
period after the prediction time, which is at the 24-hour mark of the ICU stay.

To address the early ICU mortality risk prediction problem, deep recurrent neural
network architectures are employed across different ML setups. The typical central-
ized machine learning (CML) approach assumes that patient data from the participating
healthcare centers are collected and processed on a central server, enabling the devel-
opment of more generalizable models. However, certain challenges are presented with
concerns over data privacy, security and scalability. Its direct alternative is the local
machine learning (LML) approach, which assumes no data sharing among the partici-
pants, training a ML model on each healthcare institution on its local dataset. Even
though this method reduces privacy and security risks by eliminating the communication
of sensitive information, the obtained models are often subject to bias and limitations of
the local datasets. Counteracting the shortcomings of the aforementioned approaches,

federated learning (FL) is a promising paradigm that allows the collaboration of multiple
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medical centers on training a global predictive model, while keeping the sensitive pa-
tient data localized. Instead only local model parameters are shared and aggregated at
a central server, to construct the global model. Thus, this decentralized approach uti-
lizes the statistical power of multiple local datasets to develop generalizable models in a
privacy-preserving manner.

The goal of this study is to evaluate the performance of state-of-the-art FL algorithms
on the early ICU mortality risk prediction task, using MTS data, with a realistic, hetero-
geneous setting of participating hospitals. Initially, we aim to explore how well different
RNN architectures are integrated into the federated learning setting, with respect to this
problem, while also evaluating the ability of the FL models to generalize on a foreign test
set, compared to the CML and LML approaches. Then, we recreate FL environments with
the participation of hospitals with ’extreme’ data distributions and analyze the sensitivity
of each FL algorithm under challenging conditions for collaborative training. Finally, we
investigate the impact of participation in federated learning, by focusing on specific hospi-
tals and how their engagement in a FL training environment may improve their predictive
performance on their local data. Overall, we conduct a thorough study of the application
of federated learning methods on early prediction of ICU mortality risk with a real world,
multi-center database, showcasing the potential of federated learning in the healthcare

domain.
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Time Series

This chapter provides an overview of time series. First, the concept of time series and
their main characteristics are presented. Afterwards, we examine standard preprocessing
techniques for handling common time series problems. Then, we discuss about the role

of time series data within the healthcare domain.

3.1 Introduction to Time Series

With the advent of Internet of Things (IoT) devices, sensors, and social media plat-
forms, vast amounts of time series data are being generated every second. A time series
is a sequence of data instances indexed in time order, where each data instance repre-
sents an observation or measurement that corresponds to a specific moment or period of
time. These measurements are referred to as metrics, when they are collected at regular
time intervals, or as events, when the observations are unevenly spaced over time [39].
Time series data has numerous applications in a wide range of fields, from finance and
healthcare to engineering and environmental science.

The unprecedented amount of data being generated in today’s world has led to an
increasing need for an advanced set of methods for extracting useful statistics and char-
acteristics of time series data, referred to as time series analysis. Depending on the nature
of the application domain, the primary goals of the analysis vary. In the context of signal
processing, the analysis aims first and foremost at signal detection, while within data
mining and pattern recognition, the primary objective could be clustering, or anomaly de-
tection. However, most applications focus on constructing a model to predict the future
values of a time series by studying the relationship of previous values with each other, a

procedure which is called time series forecasting [18].

3.2 Characteristics of Time Series

There are two main categories of time series data, depending on the amount of ob-
served variables. Univariate time series are observations of a single variable or feature
over a time period. Because they have only one dimension other than time, they can
be visualized easily, leading consequently to easier overall analysis. On the other hand,

multivariate time series (MTS) are observations of two or more variables over time [40].
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The multiple features make the analysis of the time series more challenging, however

a successful analysis of the interdependencies among the the variables can give better

insights about the nature of the data. In healthcare, both types of time series can be

utilized. A healthcare professional could focus on a single aspect of a patient’s health

condition, such as their heart rate, or they could analyze their condition from various

angles, assessing the underlying patterns of a combination of patient data (Figure 3.1).
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Figure 3.1. Patient vital signs during the first hours of an ICU stay [1]

However, in both cases, in-depth understanding of the characteristics of a time series

data is crucial for developing effective models for classification, prediction and other tasks.

Below, we present certain basic characteristics of a time series:

Trend is a pattern that indicates the tendency of a time series to increase or decrease
over a long period of time [40]. A pattern of movement towards higher values for
a time series is called an uptrend, while a downwards trend is called a downtrend.
When the time series values increase or decrease with a constant rate, the trend is
linear, while a nonlinear trend is characterized by a changing rate. Early detection
of trend is important for many applications in various domains. For instance, in
clinical decision-making, if the heart rate or respiratory rate of a patient display a
trend, then this could indicate the deterioration of their condition to their healthcare

provider.

Seasonality is a common time series characteristic that refers to the repeating
pattern of periodic fluctuations, occurring at regular intervals over time [40]. De-
pending on the problem at hand, a variety of factors can cause seasonality. For
instance, in healthcare, a patient could be administered a specific drug at a certain
time each day, causing lower-than-normal measurements of his respiratory rate
within a short period of the drug administration. Consequently, seasonality, when

detected, is an important factor that should be taken into account for forecasting.
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e Cycle is a time series feature that refers to a repeating pattern that occurs over
a period of time, similar to seasonality. However, there are some key elements
distinguishing cycle from seasonality. Cycles describe medium-term changes in
the time series, in contrast to the short-term seasonal patterns [40]. Then, if the
period of a pattern is stable and connected to a specific aspect of the time frame,
this behavior is characterized as seasonal, whereas an irregular period indicates
cyclical, variable behavior. The detection and modeling of cycles in time series data
has various applications across different domains and, thus, it is a crucial aspect

of time series analysis.

e Stationarity is a key property of a time series that refers to the constancy of its
statistical properties over time, thus indicating neither trend nor seasonality. In
other words, the mean and variance of a stationary time series do not fluctuate.
There are two types of stationarity: strict stationarity, which requires that the joint
distribution of any subset of the time series remains the same regardless of the
observation time points, and wealk stationarity, which requires that the mean value
of the time series is constant and the auto-covariance of two observations depends
only on the chronic difference of the observations and not the observation time
intervals themselves [41]. A stationary time series is ideal for stable analysis and
modelling, because the underlying patterns and relationships are not obscured by

trends or seasonality.

e Outliers are irregular data points in a time series that deviate from the expected
from the expected pattern of the data over time [40]. These random fluctuations do
not indicate a specific pattern by repeating themselves over time and, as a result,
they cannot be predicted by any statistical technique. The cause of their sudden
appearance may be an external unpredictable factor, such as the rapid increase of
the patient admissions to ICUs after the outbreak of a contagious disease or an error
during data collection. Outliers pose as a major challenge for time series analysis,

since, without careful treatment, they may lead to false results.

The aforementioned time series characteristics are equally important in studies of both
univariate and multivariate time series. Nevertheless, the nature of MTS data showcases
the need for considering even more aspects of a time series during the analysis process,
in order to gain a multifaceted understanding of the subject and construct more robust
models [42]. Thus, we point out some key aspects that are more often present in MTS
data:

e Interdependencies among the observed variables require a good understanding,
in order to design accurate and efficient models. Studying the cross-correlation
between each pair of variables may give fruitful insights about the underlying rela-
tionships and indicate the need for a multivariate transformation of the data, such
as using principal component analysis (PCA) [42] [43]. For example, the cause-effect

relationship of the administration of a drug to a patient and the subsequent changes
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to their vital signs should be taken into account when assessing a patient’s medical

condition.

e High dimensionality is, as expected, more common in multivariate time series
data than univariate. A higher dimensional space leads to increased complexity
and makes the analysis and visualization of the data more challenging [44]. It is
important to use appropriate tools for dimensionality reduction and visualization
or select a subset of features accurately, to effectively reduce the overall complexity

and retain as much useful information as possible.

e Missing values is a major obstacle in time series analysis. Because MTS data com-
prise of observation of multiple variables, the problem of missing values occurs more
frequently. By using the appropriate technique to handle missing values, depend-
ing on the task, the results of a time series analysis could be considerably better
and more insightful [45]. Regarding a patient’s hospital stay, different methods to
handle missing vital sign measurements may lead to quite divergent conclusions
about his health status.

3.3 Time Series Preprocessing Techniques

In the previous section, we presented some key time series features that should be
taken into consideration before the phase of time series analysis and forecasting com-
mences. These characteristics require specialized preprocessing techniques to be effec-
tively utilized. Thus, the preprocessing phase should be carefully designed and imple-
mented for the subsequent success of the analysis and modeling stages. Below, we
present some basic preprocessing techniques that deal with each of the aforementioned

time series characteristics.

3.3.1 Time Series Decomposition

Decomposition of a time series is a common preprocessing method that aims to the
isolation and analysis of individual time series components. Usually, a time series is
decomposed to three underlying components [4]. The first is a combination of trend and
cycle into a trend-cycle component (usually referred as trend), which captures the overall
trend and medium and long-term patterns of the time series. Then, the seasonal compo-
nent consists of the short-term regular changes to the time series. Finally, the remainder
component contains anything that cannot be explained by the other two components [4].

The classical time series decomposition method was introduced in the 1920s and
forms the basis for many modern decomposition techniques [4]. The first step of this
method is the application of a moving average filter, to produce an estimation of the
trend-cycle component. The equation of a moving average filter of order m can be written

as

L
T = - Z Ytjs
J=-k
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where T} is the estimate of the trend-cycle component at time t by calculation of the
average values of the time series y; within k periods of t and m = 2k + 1 [4]. This
technique eliminates any seasonal patterns and some of the randomness introduced by
noise to produce a smooth trend-cycle component [46].

There are two models of classical decomposition: the additive model, when the level
of the time series does not have an effect on the variations around the trend, and the
multiplicative model, when the trend and the level of the time series are proportional. For
the additive model

yt:Tt+St+Rt,

where T}, 5; and R; are the trend-cycle, seasonal and remainder component respec-
tively, the seasonal component is calculated by averaging the values of the de-trended
series, y; — T, .for each defined season, and the remainder component is the residue of

the other two components, y; — Ty — S;. Similarly, for the multiplicative model

yt:TtXStXRt,

the component calculations are the same, but with divisions instead of subtractions
to isolate the time series components. Figure 3.2 shows an example of the use of additive
decomposition method on a time series of the total retail employment across the US.

However, the classical decomposition methods have significant drawbacks, such as
the over-smoothing of the trend-cycle component and the inability to estimate it for the
first and last observations, the assumption that seasonal patterns remain unchanged over
time and the mishandling of irregular time series observations over small periods [4]. As a
result, modern methods have been developed to tackle with these problems. Some of the
most popular techniques that are widely used by statistics agencies are the X-11 Method
[47], originating from the US Census Bureau and further developed by Statistics Canada,
SEATS (Seasonal Extraction in ARIMA Time Series) Method [47], developed by Bank of
Spain, and the STL (Seasonal and Trend decomposition using Loess) Decomposition,

developed by R.B.Cleveland et al. [48], and their variations.

3.3.2 Handling Outliers

As explained earlier, outliers are observations that deviate from the overall behavior
of the series, which is dictated by the majority of the observations. As such, it is vital that
they are detected with precision and handled carefully, in order to limit their detrimental
effect on the analysis of the time series. One approach on the detection of outliers is
using statistical methods, namely the Z-Score, the Modified Z-Scores, the Median Absolute
Deviation (MADe) method and the Tuley boxplot method [49]. These techniques use the
distribution of the data and their statistical properties to determine a range of values that
would be accepted as normal, pointing out every observation that falls outside of it as an
outlier.

Once the outliers are detected, the proper course of action should be considered re-
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Classical additive decomposition of total US retail employment
Employed =trend + seasonal + random
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Figure 3.2. US retail employment series and the additive decomposition components [4]

garding how to handle them. One approach is to exclude outliers from the dataset. There
are two common methods to exclude outliers: trimming, where the outliers are simply
discarded, and Winsorising, where the outliers are replaced with the nearest observation
that is not considered an outlier [19]. However, if the number of available observations is
limited, these techniques may lead to significant loss of information.

Another approach to deal with outliers for time series analysis is to use analysis
methods that are resistant to the effects of outliers. Using robust time series analysis
techniques minimizes the impact of outliers on the results, while they are not excluded
with the techniques that were previously mentioned. For instance, regression types, such
as standard square error loss, have desired properties if their underlying assumptions
are true, which outliers may violate, thus obscuring the results. Robust regression [20]
reduces the outliers’ contributions to the results by using robust alternatives, such as
the Huber loss function [50].

3.3.3 Feature Selection, Engineering & Scaling

Multivariate time series data usually involve multiple variables with different units,
scales and ranges. Therefore, the high dimensional space and scale differences of MTS
data pose as major challenges, in terms of computational cost and performance, for time

series analysis tasks and model training. As a result, it is important to address them in
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the preprocessing phase [51].

Feature selection is a method for selecting a subset of the available time series features,
thus improving the predictive performance of ML models by avoiding overfitting and going
into a lower dimensional space, often with lower computational costs and fewer trainable
ML model weights [21]. Moreover, the results could be an easily interpreted representation
of the objective function [52], thus providing a better understanding of the nature of the
data and their importance for the task at hand [21]. However, feature selection is a
costly procedure that should be carefully implemented, in order to limit the loss of useful
information and approximate the assumed optimal performance, which utilizes all the
available information [51].

Another solution for the high dimensionality problem and for better usage of the time
series features within the ML framework is feature engineering. This method involves
studying the original features of a time series and, by using domain knowledge, con-
structing new features from the pre-existing ones [22]. These new features represent
different, more complex aspects of the time series. Since the representation of the feature
vector has a direct effect on the performance of ML models [22], these constructed fea-
tures could significantly improve the quality of the results. Some typical methodologies to
engineer useful features are clustering algorithms [53], PCA [43], category encoders [54]
(such as one-hot encoder), group aggregated values and mathematical transformations
[55].

A common feature engineering technique is feature scaling (or data normalization),
which is an essential step in preprocessing multivariate time series data. Variables with
different scales may deteriorate the performance of a machine learning algorithms, since
some may unjustly dominate over others causing bias in the model. Through feature
scaling, the MTS data are transformed such that each variable lies within a specific range
or scale, thus eliminating any phenomena of bias. Moreover, deep neural network training
is expedited, because gradient descent convergence is achieved considerably faster after
data normalization [56]. Two of the most common feature scaling methods are min-max
scaling, which re-scales each variable within a range [a, b], and standardization (or z-
score normalization), which transforms each variable such that it has zero-mean and

unit-variance.

3.3.4 Handling Missing Values

Missing values are a common phenomenon in time series data, often due to sensor
malfunctions, data corruption or errors during data collection [57], leading to biased re-
sults and inaccurate predictions. Consequently, it is crucial to deal with missing values
effectively during the preprocessing stage. There are several sequential imputation meth-
ods for missing observations. One approach is to delete data that contain missing values,
however this may lead to significant information loss [4]. Other approaches focus on re-
placing the missing observations by employing information from the existing data. Some
common techniques are replacing a feature’s missing values with the mean value, with

the value of the median observation, with the closest previous observed value or with the
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closest following observed value [4].

An alternative approach is interpolation, which estimates missing values by using the
observations around them. Some common interpolation techniques utilize adjacent data
observations to make this estimation, by using a linear function (linear interpolation), low-
degree polynomial functions (spline interpolation) or higher-degree polynomial functions
(polynomial interpolation). The simplicity of the interpolation techniques favour them

over imputation methods, when the missing values are sporadic.

3.4 Time Series in Healthcare

With the widespread adoption of electronic health records (EHRs) and registries, vast
amounts of patient time series data are generated within the healthcare sector. They
inform on genetic and lifestyle health risks, signal the onset or presence of diseases,
indicate the time and stage of diagnosis and record the drafting of treatment plans and
their outcomes [5]. This has motivated further research on how time series data can be

utilized to provide solutions to many healthcare-related problems [58].

Time series data
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Figure 3.3. Development of machine learning models within the healthcare domain, using
time series [5]

By employing time series analysis methods to recognize trends, patterns, and anoma-
lies in patient data, and by developing powerful machine learning models, healthcare
providers can make more accurate diagnoses, predict the trajectory of patients’ medical
conditions and their outcomes, as well as shape personalized treatment plans, tailored
to each individual patient’s needs [59]. Gradually, machine learning could be the cor-
nerstone for developing long-term comprehensive patient management programs that
monitor the patient’s life and adjust accordingly [5]. Potential benefits of such practices
can be also pointed out for the overall operation of a medical center. Time series anal-
ysis techniques and ML models can help medical centers optimize resources allocation,
including staff, equipment and supplies, to meet patient needs and minimize the spread
and impact of infectious diseases with early detection [60].

However, time series introduce some unique challenges to model development. Some

originate from the nature of the data, such as missing values and outliers which we
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discussed earlier, while others are related to the sensitive nature of the healthcare domain.
Healthcare problems pose some additional requirements for the deployment of ML models
to tackle them. The outputs of the models should be actionable, informative and reliable,
for a healthcare professional to take them into account and act on them [5].The models
should also offer uncertainty estimates, which may lead a healthcare professional to give
an analogous weight to their suggestions when assessing a situation. Moreover, the
models’ suggestions should ideally be interpretable, in order to assist clinicians gain new
insights and explain to their patients the reasons behind a specific course of action [5].
Consequently, time series data in healthcare constitute an exciting research domain.
Combined with the computational capabilities of machine learning models, healthcare
professionals gain a deeper understanding of individual health and disease trajectories,
thus being able to aid patients in their health-related decision making and designing

effectively their treatment plans [5].






Chapter ﬂ

Deep Neural Networks

This chapter contains an overview of deep neural networks (DNNs). First, it presents
some fundamental concepts to better understand DNNs, such as machine learning and
artificial neural networks. Then, it delves deeper into feedforward and recurrent neural

network architectures, discussing their characteristics and process of learning.

4.1 Central Concepts

4.1.1 Machine Learning

Machine learning (ML) is a subfield of Artificial Intelligence (Al) that focuses on un-
derstanding and developing models that enable computer systems to "learn", which is
to improve their performance on a set of tasks by effectively utilizing data, according to
Mitchell et al. [23]. A model is constructed using a machine learning algorithm, which
is trained on a set of data. During the training process, the algorithm learns underlying
patterns and relationships in the training data and, then, uses this gained experience to

make a prediction on new data

There are three main categories of approaches to machine learning, depending on
the provided feedback from the training data. Supervised learning is a machine learning
paradigm, where the available data consist of both a set of inputs for the model (features)
and the desired outputs (labels) [61]. In this scenario, supervised learning algorithms
attempt to optimize an objective function, which, subsequently, can be used to predict
the label associated with a set of features of a data point [62]. When the data do not
contain desired outputs for the learning process, then the respective learning algorithms
fall under the unsupervised learning paradigm. The goal of unsupervised learning is to
explore the nature of the data itself and discover underlying patterns that can be used
to group similar data instances into clusters or project the data into a lower-dimensional
space, while retaining as much useful information as possible. Finally, the reinforcement
learning paradigm is used in dynamic environments, which an intelligent agent navigates
according to a set of rules, with a specific goal. The agent aims to maximize the rewards
they earn with their actions, which is a form of feedback in this paradigm [63]. This thesis

is concerned with a supervised learning classification problem.
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4.1.2 Artificial Neural Networks

Artificial neural networks (ANNs), commonly referred as neural networks (NNs), are
computing systems designed after the structure and function of biological neural net-
works. Neural networks consist of layers of interconnected computing cells, referred as
neurons or processing units, while the weighted connections among them are called links
or synapses [24]. During training, each neuron takes its weighted sum of the inputs
from the previous layer, processes it using an activation function and, then, passes the
output to the neurons of the next layer it is connected to (Figure 4.1). To optimize the
performance of the neural network, in a supervised learning scenario, the weights of the
connections are adjusted to minimize the difference between the predicted outputs and

actual outputs of the training data.

——— Output

W. Z Activation

Function

Figure 4.1. The structure of an artificial neuron [6]

The basic concept of ANNs has inspired deep learning (DL), a class of machine learn-
ing algorithms that employ multiple layers in the network to extract higher-level features
from the input data [25]. Each layer of these deep neural networks learns to transform its
input into more abstract and complex representations, thus identifying subtle patterns
and relationships that would otherwise be extremely difficult or impossible to detect. De-
pending on the task, machine learning models are based on one of two types of networks,
feedforward neural networks and recurrent neural networks, which will be presented in

the following sections of this chapter.

4.1.3 Learning via Training

As stated previously, a neural network adjusts the synapses weights based on the
deviation of the predictions from the desired outputs of the training data, in a supervised
learning setting. Nevertheless, it is important to dive deeper into the training procedure
and understand exactly how the model evolves to optimize its performance.

The first phase of the training process is called the forward pass. The features of a
data instance are passed as input to the first layer of the network. Following the workflow
mentioned earlier, each neuron processes its input and passes its new output as input to
the corresponding neurons of the next layer. When the last layer of the network receives

its input, it produces a prediction for this data instance [2]. At this time, a selected
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loss function is employed to quantify the error of the prediction in regard to the actual
output, an evaluation metric for the performance of the network. Then, the second phase
of the training, called backpropagation, commences. Backpropagation is a commonly
used algorithm for computing the gradient of a prediction-label pair, with respect to the
loss function. However, this term is often used to describe how the gradient is utilized
afterwards, such as by stochastic gradient descent [64]. In reverse order, according to
the chain rule, the gradients of all the layers up to the input layer are computed [2]. The
gradients of each layer are used to update the weights of the layer’s nodes, in order to
decrease the total loss.

For each sample of the training set, the forward pass and backpropagation are used
interchangeably, updating the network weights with the gradients calculated by back-
propagation. This procedure is repeated for a predefined number of training epochs or
until convergence is achieved. Although the final model could have excellent performance
on the training data, the goal is produce a model capable to generalize beyond the training
set [2]. As a result, it is important to overcome the challenge called overfitting, that is a
model performing excellent on the training data, but poorly on an unknown dataset. A
method to overcome this problem is to calibrate the ML model properly with regularization
techniques, either on the loss function, such as L1-Regularization and Dropout, or on the

time dimension, by using early stopping criteria on the training [2].

4.2 Feedforward Neural Networks

The feedforward neural network (FNN) is the first and simplest type of artificial neural
network [65], where the information flows only forward, from input to output, as there
are no recurrent connections [66]. Successive layers are fully connected, meaning each
neuron is connected to all the neurons of the following layer. Depending on the number of
layers that constitute the network, FNNs are characterized as single-layer or multi-layer
FNNs. A single-layer FNN (also called single-layer perceptron) consists of a single layer
of neurons, where the input is multiplied by a single set of weights and passed directly
through an activation function to produce the output. Marvin Minsky and Seymour
Papert proved in their monograph titled Perceptrons that it was impossible for a single-
layer perceptron to learn the XOR function [67], which showcased the inability of single-
layer FNNs to learn non-linear relationships. On the other hand, a multi-layer FNN (also
called multi-layer perceptron) contains one or more hidden layers between the inputs and
the output layer, addressing the non-linearity limitations of single-layer models [2]. The
transformations through the hidden layers enable the model to learn complex patterns in
the input data.

Deep learning refers to the number of hidden layers in a neural network. Each hidden
layer transforms the input into more abstract representations, thus allowing the network
to gain a "deeper" understanding of the data. Except from the size of each hidden layer
and the "depth" of the network (the amount of hidden layers and output layers for FNNs),
a DNN organizes the transformations and the derived representations of each layer on its

own [25] during training. Even though the resulting model learns composite underlying
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patterns of the input data, often allowing it to perform exceptionally in the objective task,
its mathematical manipulations of the input and the respective abstract representations

are hardly impossible to be interpreted by a human.

"Non-deep" feedforward Deep neural network
neural network

hidden layer ) hidden layer 1 hidden layer 2 hidden layer 3
- input layer

Figure 4.2. A shallow multi-layer FNN with 1 hidden layer and a deep multi-layer FNN
with 3 hidden layers [7]

4.2.1 Convolutional Neural Networks (CNN)

There are two major challenges related to the fully-connected layers of deep feedfor-
ward neural networks. First, an increase in the size of the input data subsequently leads
to an increase in the number of trainable weights and the overall complexity of the deep
FNN. Then, the "full-connectivity" makes the deep FNN prove to overfitting on the training
data. A regularized version of deep FNNs that deals with these problems is the convolu-
tional neural network (CNN), a class of deep neural network that is widely used in image
recognition and processing [68], with applications for time series tasks as well [69].

The most fundamental component of the CNN architecture is the convolutional layer,
which transforms its input to an abstract representation called feature map [64]. Similarly
to the cortical neurons that inspired them, the neurons of a convolutional layer receive
input from a restricted area of the previous layer that constitutes their receptive field.
Then, the dot product of this input with a convolutional kernel is calculated to generate
a representation of the input. For two-dimensional tensors f and g, the mathematical

expression of convolution [2] is:

(*9)ij) = ), > flabgli-aj-b).
a b

By repeating this procedure for all the layer’s neurons, the feature map is constructed
and, subsequently, used as input to next layer of the network. The convolution ap-
proach requires significantly less parameters to process the data than deep FNNs, thus
allowing the construction of "deeper" neural networks [70], capable to learn increasingly
complex patterns and representations of the input. The convolutional layers are usually
intertwined with pooling layers, with the goal to reduce the dimensions of the data by

aggregating the outputs of a cluster of neurons into a single cluster [2]. A pooling layer
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is characterized as global, when it is applied on all the neurons of the previous layer’s
feature map, and local, when it combines small clusters of neurons. Then, the two most
popular pooling aggregation methods are max pooling and average pooling, where the
representative value of a cluster of neurons is the max or the average value respectively.

Finally, the last layers of a CNN are often fully-connected layers, referred as dense layers.

fc_3 fc_4
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelLU activation
Convolution Convolution A /—M
(5 x5) kernel Max-Pooling (5 x5) kernel Max-Pooling (with
valid padding 2x2) valid padding 2x2)

"\.dropout)

INPUT n1 channels nl channels n2 channels n2 channels E \5.
(28x28 x1) (24 x24 xn1) (12 x 12 xn1) (8x8xn2) (4x4xn2)

OUTPUT

n3 units

Figure 4.3. A CNN for handwritten digit image classification [8]

4.2.2 Temporal Convolutional Networks (TCN)

Following the paradigm of the convolutional neural networks, temporal convolutional
networks (TCNs) were recently proposed to explore long-range temporal patterns, using
a hierarchy of temporal convolutions [71]. Similarly to a recurrent neural network (pre-
sented later), a TCN can map an input sequence of any length to an output sequence
of the same length, by using a one-dimensional, fully convolutional network architecture
[9]. One other key characteristic of TCNs is the use of causal convolutions, which prevents
information "leakage" from future observations to the past [72]. By applying zero-padding
at the left side of the input tensor, an output at time t is convoluted only with elements
of the previous layer from time ¢ or earlier, thus ensuring causal convolution.

One desirable feature of temporal convolutional networks is the ability to effectively
deal with long time series. However, a simple causal convolution can only look back at a
history of linear size, depth-wise in the network [72]. To tackle this challenge, the dilated
convolution is employed, which enables an exponentially large receptive field [73]. The
dilated convolution operation on a one-dimensional input sequence s of a parameter p is
defined [9] as:

=1
(P *af)(s) = ) fDOPs-ai
i=0
where d is the dilation factor, k is the size of the filter f and s — d.i accounts for the
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direction of the past. The dilation factor corresponds to a fixed step between adjacent
filter taps. Larger dilation factors and larger filter sizes allow the expansion of the re-
ceptive field, as illustrated in Figure 4.4. By stacking multiple TCN layers on top of one
another, the construction of deep learning models is enabled, while the characteristics of
TCNs make them a strong candidate for complex time series problems [74]. The convo-
lution architecture allows the parallel process of long input sequences, leading to lower
computational time and better memory usage than RNNs, which process the input data
in a sequential manner [74].

Y, Y, 0¥ Y,
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Input

Output N kK %

(a) Proposed DNN with stacked TCN (b) A typical TCN layer
layers

Figure 4.4. Architecture of a TCN with causal convolution and different dilation factors [9]

4.3 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural networks that captures
the dynamics of input sequences via recurrent connections in the network [2], which
create a cycle that allows the output of some nodes to influence the subsequent input of
the same nodes. The basic RNN architecture consists of the input layer, a hidden layer and
the output layer. As shown in Figure 4.5, recurrent neural networks are unrolled over time
steps, corresponding to the sequential input, with the application of the same underlying
parameters at each step [2]. There are two types of behavior that can be identified within
the RNN: through the regular connections, one layer’s outputs are passed synchronously
to the subsequent layer, while the recurrent connections are dynarmic, passing data across
adjacent time steps asynchronously [2]. In other words, the hidden state H; of the current
time step t is determined by the input of the current time step from the previous layer X;

and the hidden layer of the previous time step H;_; as:

H; = f(XiWyxn + Hi—1 Whn + bp),

where f is an activation function, W,; and Wy, are the weight parameters for the
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input from the previous layer and the hidden layer of the previous time step respectively
and by, is the selected additive bias of the hidden layer. Afterwards, the output O; of the

current time step t is calculated, similarly to the multi-layer FNNs, as:

Ot = HiWpo + b,

where Wy, is the weight parameter for the output layer of the current time step and
b, is the selected additive bias of the output layer [2]. Because of the way the recurrent
neural networks process information and the fact that they can process input sequences
of variable lengths [26], RNNs are often used in speech recognition, time series prediction,

natural language processing and, generally, in many tasks with sequential data.

Output Output 1 Output 2 Output ... Qutput T
] I R
s
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\
Input Input 1 Input 2 Input ... Input T

Figure 4.5. Depiction of a RNN via cyclic edges and unfolded over time steps [2]

Despite the fact that the basic RNN approach consists of only one hidden layer, the
recurrent connections give a sense of depthness in the time dimension [2]. However,
stacking hidden layers on top of one another can make a RNN deep in the direction of the
input towards the output for each discrete time step, similar to the construction of deep
CNNs. Figure 4.6 illustrates a deep RNN with L hidden layers.

H, * H, - H,

X X, X

Figure 4.6. Deep RNN architecture [2]
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4.3.1 Long Short-Term Memory (LSTM)

In theory, a classic RNN, as presented above, can keep track of long-term dependencies
of the input sequences. However, during backpropagation, the long-term gradients of the
basic RNN can turn to zero, a phenomenon called the vanishing gradient problem [75]. In
order to address this problem, the Long Short-Term Memory (LSTM) model was proposed,
replacing the previous recurrent nodes with memory cells. Each memory cell contains
an internal state, which ensures that the gradient is going to pass through many of the
subsequent time steps without vanishing [2], and a number of multiplicative gates that
regulate the functions of the LSTM unit.

As shown in Figure 4.7, the main components of a LSTM unit are the forget, input and
output gates and the candidate memory. Based on these mechanisms, the hidden state
is updated or reset. The values of the three gates are computed via three fully connected
layers with sigmoid activation functions, in the range of (0, 1), while the candidate memory
is calculated in a similar manner by using a tanh function with a value range of (-1, 1)

[2]. The mathematical equations for these calculations are:

F; = O(Xthf + Ht_1th + bf),

It = o(XiWy; + Hi_1 Wy; + by),

O = O(Xtho + Hi_ 1 Wy + bo),
C; = tanh(X; Wy + Hi—1 Wie + be),

where, for each of the three gates and the candidate memory, W, are the weight
parameters for the input, W), are the weight parameters for the hidden state and b are
the additive biases [2]. In order to calculate the internal state of the memory cell C; at the
current time step t, we take into account the internal state at the previous time stepC;_;
and the candidate memory C;, which contains new data. The forget gate F; dictates how
much of the previous internal state C;_; we retain, while the input gate I; determines the
importance of the new data, via C‘t, to the current internal state [2]. This function can be

expressed in a mathematical way as:

C,=F0C_1+L0C,

where © is the Hadamard element-wise product operator. Afterwards, the output gate
O; determines whether the current internal state C; should affect the current output (or

hidden state) H; at time step t [2]. This leads to the following equation:

H; = Ot O] tanh(Ct)

Overall, the LSTM has the ability to decide whether the internal state should be ad-
justed in response to subsequent inputs and whether the hidden state should be impacted
by the internal state [2]. This flexibility allows the information to be propagated across

many time steps, without affecting the network, and influence a later hidden state, thus
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enabling long-term memory effects on the network [2]. Deep LSTM networks are con-
structed in a similar manner to deep RNNs, employed many applications in time series

prediction tasks within the healthcare domain [76].
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Figure 4.7. The architecture of a LSTM unit [10]

4.3.2 Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU), proposed by Cho et al. [77], requires fewer parame-
ters than LSTM, while retaining the LSTM memory cell approach. As a result, the less
resource-intensive GRU leads to faster computations [78] than LSTM and comparable
performance on certain tasks. The main components of a GRU unit are the reset and
update gates and a candidate hidden state. Similarly to the LSTM, two fully connected
layers with sigmoid activation functions, in the range of (0, 1), are employed to compute
the values of the two gates. The reset gate R; controls how much of the previous state
should be retained, while the update gate Z; controls how much of the old state is copied

to the new state [2]. The respective mathematical equations are:
Rt = 0(XtWyr + Hi—1 Whr + by),

Zy = 0(X; Wy + Hi-1 Why + by).

where, for each of the reset and update gates, W, are the weight parameters for the
input, W} are the weight parameters for the previous hidden state and b are the additive
biases [2]. Similarly to the calculation of the hidden state for a RNN, we compute the

candidate hidden state Hy, with the integration of the reset gate as:

H; = tanh(X; Wy, + (R © Hy—1)Whp + bp)

where, for the candidate hidden state, W,; are the weight parameters for the input,
Wi are the weight parameters for the previous hidden state and by are the additive

biases. Finally, the update gate determines how much each of the previous hidden state
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H;_; and the candidate hidden state H; contribute to the current hidden state H; [2]. This

leads to this final update equation:

Hi=ZOHi1 +(1-%Z)0H,

Overall, the GRU captures short-term dependencies via the reset gate and long-term
dependencies via the update gate in the input sequences, thus emulating the behavior of
LSTM [2].
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Figure 4.8. The architecture of a GRU unit [2]

4.3.3 Bidirectional Recurrent Neural Network (BRNN)

The standard RNN and its variants process the past values of a sequence to make fu-
ture predictions. However, many tasks require the predictive models to take into account
the overall context, both from past and future values, to enhance their performance. On
this front, building upon the standard unidirectional RNN structure with another RNN
layer, which processes the same input backwards, the bidirectional recurrent neural net-
work (BRNN) is implemented [79]. Therefore, the BRNN contains a forward hidden state
I?i and a backward hidden state I?t which are computed for the time step t similarly to
the standard RNN hidden state, as:

- — - — -
He = WS + Hoaw,” + b)),
& — &~ — —
He =Wl + Hows) + b)),

where, for each of the forward and backward hidden states, f is an activation function,
Wy and Wy, are the weight parameters for the input from the previous layer and the
hidden layer of the previous time step respectively and by is the selected additive bias
of the hidden layer [2]. Next, the forward and backward hidden states are concatenated
into a final hidden state H;, which is passed to the output layer or, in the case of a deep

BRNN, to the next RNN layers. Afterwards, the output O; at the current time step t is
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computed as:

O¢ = HWp, + by,

exactly the same as for a standard unidirectional RNN [2]. In general, bidirectional
RNNs are slower models that have high computational cost, thus requiring more time for
training. The bidirectional approach is applicable to the other variants (BiLSTM, BiGRU)
as well. It is especially useful for natural language processing tasks, such as language
translation and sentiment analysis, for time series forecasting and for audio processing

tasks, such as speech recognition [80].
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Figure 4.9. Architecture of a bidirectional RNN [2]
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Federated Learning

In this chapter, we delve deeper into the concept of federated learning and its imple-
mentation. We start by discussing the advantages of federated learning over centralized
and distributed ML and presenting the key elements of a typical FL system. We then
examine some widely used FL algorithms that aim to optimize different aspects of the FL
workflow. Finally, we turn our attention to the privacy and security concerns that arise in

FL systems and how mechanisms can be integrated into the FL context to mitigate them.

5.1 Introduction to Federated Learning

5.1.1 Limitations of Centralized Machine Learning

Artificial Intelligence (Al) has been evolving rapidly during these last decades, showing
its strengths in numerous industries and in many aspects of everyday life. As a result,
researchers and businesses attempt to incorporate ML solutions in continuously more
domains, with applications in transportation, healthcare, finance, etc. One of the key
factors that drives these tremendous developments in Al is the Big Data availability [81].
As it was explained earlier, ML models, in particular, learn to perform specific tasks by
training and understanding underlying relationships on available data. Since enormous
amounts of data are generated every second, it is expected that ML models will become
more accurate, ubiquitous and capable of generalizing. However, the real world scenario
does not agree with these expectations. In most domains, the available, centralized data
are often limited and of poor quality, impeding the realization of Al technology [81].

The traditional ML workflow is based on the assumption of centralized data training,
where the data are gathered and the whole training process takes place at a central server
[82]. Nevertheless, there are several challenges to the wide adoption of this approach. In
today’s world, data privacy and security has evolved into a major issue, prohibiting orga-
nizations and businesses to access personal data without the users’ agreement. Often,
this agreement presupposes explicitly informing the users about how their data are go-
ing to be handled and utilized, thus complicating the process of collecting their data.
For instance, the General Data Protection Regulation (GDPR) [16], enforced by the Euro-
pean Union on May 25, 2018, aims to protect the personal data of EU citizens in such
a manner. Recent breaches of data privacy, such as the collection of personal data from

Facebook users from the British consulting firm Cambridge Analytica without consent in
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the 2010s [83], have led to stricter regulations on data collection and processing, which
make their utilization more difficult, even though they are an important step towards data
security and transparency. Even within a single organization, data integration between
its different sectors is often subject to complex administrative procedures, which further
complicate the centralized data gathering [81].

Furthermore, traditional centralized ML algorithms show limitations in terms of scal-
ability and efficiency, thus being unable to handle large-scale data and model parameters
[84]. These limitations translate into the inability of a single computer system to address
the high computational and memory requirements of large-scale ML applications. First,
as the sizes of the model and the training data grow, the training time becomes increas-
ingly longer, slowing down the development of ML models and the experimentation with
different structures. Then, the memory of a training system is often inadequate for fitting
a large ML model and batches of data during training, leading to performance degrada-
tion or even system failure. A potential solution to this problem is vertical scaling, that is
the upgrade of the system’s components to improve the memory capacity and processing
power, which is expensive and not always sufficient [85]. As a result, it is important to
come up with efficient, cost-effective alternatives to centralized machine learning, tackling

the aforementioned limitations.

5.1.2 Distributed Machine Learning

One approach, that addresses the latter challenges of large-scale data and model
parameters, is distributed machine learning (DML), an amalgamation of distributed com-
puting and machine learning [11]. The main idea behind DML is to partition the training
data and model to multiple devices, referred as clients, which learn each partition as a
subtask [11]. A central server is responsible for the model partitioning and instructing
the data manager, which could be the server or a third-party storage system, on data
partitioning [11]. As each client works on their allocated subtasks, the training process
is parallelized. The clients could work independently or communicate with each other, if
a specific subtask depends on the output of another [11]. Once all clients have completed
their work, a central server aggregates the clients’ models into a final, complete model
[11]. Figure 5.1 shows a simple DML system, in accordance with the workflow described
above.

However, the DML framework is also accompanied with its own basic assumptions.
In order to design the data partitioning scheme, the central server needs to have access
to the whole dataset [11]. Otherwise, if the clients generate the data locally, it is assumed
that the local datasets are independent and identically distributed (IID) and have roughly
the same size [86]. This powerful assumption on data homogeneity significantly restricts
the applications of DML, as the local datasets can be subject to privacy regulations and
often showcase certain levels of heterogeneity. Then, DML relies heavily on communica-
tion between the central server, the data manager and the participating clients, causing
high communication costs, slow training times and increased vulnerability to malicious

attacks. Consequently, the participants are often computing nodes within a data cen-
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ter, with powerful computational capabilities, supported by a fast and reliable network
infrastructure [28]. Overall, distributed machine learning mainly aims at the horizontal
scaling of the training system, while it shows certain limitations related to data privacy

and security and the system requirements.
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Figure 5.1. A basic distributed machine learning system [11]

5.1.3 The Concept of Federated Learning

Federated learning (FL) is a term first introduced by McMahan et al. [27], to describe
a machine learning framework where "the learning task is solved by a loose federation
of participating devices (which we refer to as clients) which are coordinated by a central
server" [27]. This approach aims at reducing the data privacy and security risks deriving
from traditional, centralized ML, as multiple clients collaboratively train a model while
keeping the training data decentralized [28]. Only the locally-computed client updates on
a global model are communicated via the network, which are subsequently aggregated by
the central server to perform an update on the global model [27].

The underlying assumptions of federated learning are what differentiates it from dis-
tributed machine learning. One of the main properties of federated learning is that the
local datasets are not required to be independent and identically distributed. Far from it,
the local datasets are typically non-IID, thus not representing the population distribution,
and vary in size [27]. This enables the application of federated learning in domains where
local dataset heterogeneity is expected, such as in finance, healthcare, IoT and telecom-
munications. For instance, federated learning is a potential solution for the collaboration
of medical centers with privacy-sensitive data on various tasks, such as the early ICU
mortality risk prediction that is studied in this thesis. Then, depending on the federated
setting, the requirements on the participating devices are looser than in DML. In the
cross-device federated setting, the number of participants is expected to be significantly

larger than the average size of the local datasets [27], while slow or non-responsive clients
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do not cause the FL training process to be aborted. Consequently, federated learning ad-
dresses many of the limitations of centralized ML and distributed ML, thus representing a

promising approach for training ML models on decentralized data in a privacy-preserving

manner.
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Figure 5.2. A federated learning system in healthcare, with a federated server and a
privacy-preserving mechanism [3]

In this work, we focus on the non-IID and unbalanced properties of federated opti-
mization [27] within the healthcare domain. We recreate a horizontal federated learning
scenario, where the participants share the same feature space, but their local datasets
contain different samples [81]. In our setting, this corresponds to a group of medical

centers that monitor the same health indicators for their own ICU patients.

5.2 Federated Learning Workflow

The basic federated learning setting consists of a centralized server, orchestrating
the training process, and the participating nodes, which locally compute updates to the
global model [28]. The objective function for federated learning is the weighted average of
the local objective functions of each participating client. In a mathematical manner, the

objective function can be expressed as:

K

J@w) = Y EF(w),

k=1
where w are the model weights, K is the number of participating clients, n is the total
number of samples in the local datasets of the K clients, ny is the size of the local dataset
of client k and Fj, is the local objective function of client k [27]. The goal is to minimize
this objective function, that is to find a set of weight updates to a global model from the

clients that lead to the optimal global model parameters.
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Before the learning process commences, the central server decides on the most suit-
able machine learning model for the FL task at hand. This model can be initialized either
with a random set of weights or with the weights of a pre-trained model on this task. At
the same time, if needed, the clients are instructed to collect and store their training data
locally [28], structured in a specific way for training the ML model. Each iteration of the
learning process constitutes a FL round, which leads to an update to the global model by

the central server. A typical FL round consists of the following steps:

1. Client Selection: The central server selects a subset of the clients to participate
in the subsequent round of federated learning, if they meet certain eligibility re-
quirements [28]. For instance, mobile devices could be required to be fully charged
and connected to a stable, fast Wi-Fi network, in order to participate in the training

process.

2. Broadcast: The server broadcasts the current global model parameters and the

chosen training method to the selected cohort of clients [28].

3. Client Computations: Each client computes an update to the current global model
on their local dataset, following the training algorithm that was predefined by the

central server [28].

4. Aggregation: Once the clients have computed their model updates, they are com-
municated and aggregated to the server. A privacy-preserving mechanism may be
incorporated in this stage, such as differential privacy or secure aggregation, as an
additional security measure [28]. The training round is considered successful if a
sufficient number of clients reports their local model updates on schedule. Other-

wise, it is aborted and a new FL round commences [87].

5. Model Update: Afterwards, the global model, maintained by the server, is updated
based on the aggregated client update, computed at the current round [28]. If the
termination criterion is met (a certain number of training rounds is reached or an
early stopping mechanism is activated), the server updates all the clients with the
final model and signals the end of the training process [87]. Otherwise, the server
broadcasts the latest model parameters to a new cohort of clients and the next FL

round commences.

The model updates, in the procedure described above, are considered synchronous.
However, asynchronous federated learning approaches have been proposed as well. One
such approach is asynchronous SGD, where each client’s local update is applied to the
global model, once it is computed, without aggregation with other client updates [28]. Ad-
ditionally, split learning techniques for deep learning have been suggested, where clients
train certain layers of deep neural networks and communicate them to the server, which
completes the model training with forward propagation, without access to the raw data
[88]. Another assumption of basic FL strategies is that the local models share the same
global model architecture. Aiming to address client heterogeneity, the HeteroFL frame-

work was proposed in 2020, which enables the training of heterogeneous models from
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clients with varying computational and communication capabilities to produce a single
global inference model [89].

FEDERATED MACHINE LEARNING IN STEPS

Step 1 Step 2 ‘ Step 3 Step 4 Step 5
Server Server Server Server Server
model model model model model
Model sync Model sync

# N/

Edge Edge Edge Edge Edge Edge Edge Edge

device 1 device3 |devicel device 3 device1 device 3 device 1 device 3
Edge Edge dge Edge
device 2 device 2 device 2 device 2 device 2

Q altexsoft

Figure 5.3. Federated machine learning process in steps, altexsoft [12]

Then, certain decentralized FL settings eliminate the need of a central server, to co-
ordinate the learning process (Figure 5.4), thus preventing single point system failures.
For instance, a blockchain-based FL setting for autonomous vehicles was proposed by
Pokhrel et al. [90], which integrates federated learning with blockchain technology. How-
ever, the network topologies to support this approach may affect the overall performance,
by increasing the communication costs [28]. Also, a central authority may still be re-
quired to set up the learning process, deciding on the model, the training algorithm, the

hyperparameters, etc. [28]

Serverless Federated Learning

Figure 5.4. A decentralized federated setting, without the orchestration of a central server
[13]
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5.3 Federated Learning Algorithms

The selection of the FL training algorithm is paramount to the performance of the final
global model. Heterogeneous federated learning environments present challenges that
need to be addressed by employing effective, federated strategies. Different algorithms
aim to optimize different aspects of the FL workflow, such as the design of the global and
local objective functions, server and client optimization, etc. In this section, we present
some state-of-the-art federated learning algorithms, some of which are implemented in

the stage of experimental analysis of this thesis.

5.3.1 Federated Stochastic Gradient Descent (FedSGD)

In Chapter 4, the central role of gradient descent, as an optimization method in deep
learning training, was highlighted. The gradient descent algorithm iteratively adjusts the

model’s parameters using the gradients of the loss function on the whole training set, as:

wi= w-nVQw) = w- 1 3" VQi(w).
i=1

where w are the model’s weights, 7 is the learning rate, n is the number of data points
in the training set, Q; is the value of the loss function on the i-th data point and @ the
value of the loss function on the training set. Gradient descent moves in the direction
of the steepest descent to minimize prediction error. However, calculating a step of the
gradient descent on the entire training set can be computationally expensive, slowing
down the learning process. Stochastic gradient descent (SGD) addresses this challenge
by computing gradients on a random subset of the training dataset at each iteration.
Typically this subset contains more than 1 data point, to achieve smoother convergence
and reduced variance in the weight update and to enable the use of highly optimized
matrix operations (thus referred as mini-batch) [91].

Federated stochastic gradient descent (FedSGD) [29] is a basic adaptation of the SGD
algorithm to the federated setting. A federated environment contains another level of
separation among the data, as they are split into multiple local datasets. As a result, on
each round, a random fraction C of the FL clients is selected to participate in training,
where the gradient of the loss function is computed on the entire local dataset of each
of these clients [27]. The gradients are averaged, according to the number of training
data per client, to produce the next gradient descent step. This can expressed with the

following mathematical equation:

n.
Wer1 = wy — NVF(wy) = wy — TZZ —VF(w),
£ n
i€eK
where K is the subset of clients that participate in the FL training round. Parameter
C determines the global mini-batch size, as C = 1 means all the clients participate in the
FL round (corresponding to the full-batch gradient descent algorithm) [27], and C = rll

means only one random client participates in the FL round (corresponding to the SGD

algorithm).
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5.3.2 Federated Averaging (FedAvg)

Federated Averaging (FedAvg), introduced by McMahan et al. [27], is a generalization
of FedSGD and constitutes one of the most widely used federated learning algorithms.
FedAvg proposes that the server takes a weighted average of the client model weights,
rather than the computed gradients, to update the global model. This approach was
developed under the premise that, if all clients start with the same model, averaging the
gradients is equivalent to averaging the model weights themselves [27]. Consequently,

this model weight update can be expressed as:

n
Wiy = é — Wiy

Respective of how the FedAvg algorithm is formulated, each client may perform more
than one training round on their entire local dataset, before the model averaging phase
[27]. Therefore, the number of local training epochs E and the local mini-batch size B are
two additional parameters that need to be set before the FL process commences, along
with the fraction of participating clients C [27].

In homogeneous federated scenarios, where all local datasets are independent and
identically distributed (IID), the FedAvg algorithm performs considerably well. However,
its efficiency is not guaranteed in the presence of data heterogeneity, with non-IID local
datasets. The final global model may become biased towards the datasets of certain FL

participants, unable to generalize sufficiently to unseen data.

5.3.3 Federated Optimization in Heterogeneous Networks (FedProx)

A federated learning setting may present two types of heterogeneity. Systems hetero-
geneity refers to the differences, in terms of system characteristics, on each participating
node [30]. Typically, devices with limited computational and communication capabil-
ities may be ignored during FL training, if they are straggling to complete their tasks
[87]. However, by excluding these clients from the learning process due to their techni-
cal limitations, one may negatively affect convergence and induce bias in the final model
[30]. Statistical heterogeneity refers to non-IID, unbalanced local datasets and poses a
challenge for the generalizability of the final model, as it was discussed above.

To address the heterogeneity in a FL environment, Li et al. [30] proposed FedProx,
a FL framework that can be seen as a generalization and re-parametrization of FedAvg.
This algorithm aims to correct client drift, a drift of local updates that causes slower
convergence, due to heterogeneity. In order to do so, FedProx introduces a proximal term
to the client tasks, which restricts the local updates to be closer to the latest global model
update [30]. Instead of minimizing their local loss function F;(w), a client i approximately
minimizes a new objective function h;:

u
hi(w; wh) = Fy(w) + Slhw- w2,

where p is the proximal term, w are the variable weights of the local model during
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training and w' are the weights of the latest global model. The use of the proximal term
deals with the issue of statistical heterogeneity with the restrictions on local updates and
enables the efficient aggregation of variable amounts of local training, by removing the
need to manually set the number of local training epochs beforehand [30].

A similar approach, addressing the phenomenon of client drift, is SCAFFOLD [92].
It measures the drift in the local updates of each client, during every FL round, and
adjusts their local updates accordingly. Client drift can be expressed as the difference
between the global model update and the client’s local update. Overall, both FedProx and
SCAFFOLD are FL approaches that focus on the optimization of local training, to address

slow convergence and generalizability issues.

5.3.4 Adaptive Federated Optimization (FedOpt)

Another approach, addressing the undesirable convergence behavior of FedAvg in het-
erogeneous settings, is to experiment with different optimization methods both on client
and server level. The server update of FedAvg is equivalent to applying SGD optimization
with learning rate n = 1 to the aggregated "pseudo-gradient" [31]. However, in non-
federated learning environments, adaptive optimization techniques have demonstrated
considerable performance in tackling convergence issues. This motivated Reddi et al.
[31] to propose an adjustment of adaptive optimizers in a federated setting. They refer
to the family of algorithms, that employ different optimization techniques than SGD for
client optimization or the model update on the server, as FedOpt. By maintaining SGD
for client optimization and using adaptive optimization methods on the server-side, they
specialize FedOpt from a global perspective. Their proposed algorithms are FedAdagrad,
FedAdam and FedYogi, which employ the Adagrad, Adam and Yogi optimizers in the
server optimization step respectively. The optimization step for each of these algorithms

is expressed as:

U = up_1 + A% (FedAdagrad)
w = Baty — (1 - Bo)A} (FedAdam)
w=u_;—(1- JBZ)A%sign(ut_l - A%) (FedYogi)

where S35 is a decay parameter and A; is the weighted average of the local gradients,
obtained from each client. The model weights are updated based on the following mathe-
matical expression:
my

Xt+1 = X + 1 — 7’
¢

where 7 is the learning rate and t is referred as degree of adaptivity. Variable my
has been previously updated based on the current "pseudo-gradient" and another decay

parameter f3;, according to the equation m; = Symy_; + (1 — B1)A; [31]. Since these
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FL algorithms concentrate on server-side optimization, they can be integrated with the
previous algorithms that focus on client-side optimization (FedProx, SCAFFOLD) for better
results. Overall, FedAdagrad, FedAdam and FedYogi are promising FL algorithms that
enhance the efficiency and performance of federated learning, especially in complex, non-

stationary data environments.

5.3.5 Federated Averaging with Server Momentum (FedAvgM)

Following the direction of the previous FedOpt algorithms, Hsu et al. [32, 33] propose
the use of adaptive server optimization in the FL setting by adding momentum at the
server, with their FL algorithm FedAvgM. It has been proven that momentum on top
of SGD leads to faster convergence by a running accumulation of gradient history to
dampen oscillations. This behavior seems applicable to heterogeneous FL settings, where
participants have a sparse distribution of data and a limited number of samples [32].
Instead of updating the model weights with the weighted average of the local updates in

the basic version of FedAvg, a variable u is calculated:

u=Bu+ Aw,

where 8 is the momentum parameter and Aw is the weighted average of the local

model weights. Then, the global model weights are simply updated according to u:

w=w-—u.

By testing FedAvgM on FL scenarios with increasingly non-IID data, it was shown that
FedAvgM maintains a relatively good performance even in highly heterogeneous settings.
On the same FL scenarios, the performance of FedAvg deteriorated significantly, as the

datasets became progressively more non-identical [32].

5.4 Privacy and Security in Federated Learning

One of the main advantages of federated learning is the improvement of data privacy
and security over centralized and distributed machine learning. Gathering the raw client
data to a central server creates an attractive attacking point for potential adversaries,
since they may gain access to the entire dataset. The FL framework keeps the data
decentralized, making client devices the only breach point for accessing raw data. Even
if these adversaries hack a client device, they acquire only a small, single-sourced subset
of the entire dataset.

Nevertheless, federated learning still has certain vulnerabilities and security risks that
prevent it from guaranteeing privacy and security [11]. The local client updates can be
targeted for individual inference attacks, while the global model parameters provide an
insight into the characteristics of the entire dataset. Most data leaks occur when data are
in transit, highlighting the need for secure communication. This has motivated the de-

velopment of encryption mechanisms, which ensure that any malicious third party would
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be unable to make any inferences from the ciphered version of the data. The federated
learning framework can be integrated with modern privacy and security algorithms, which

further strengthen it as a privacy-preserving alternative to other ML frameworks.

5.4.1 Differential Privacy

Differential privacy (DP) is a privacy-preserving concept, built upon the premise that,
if a substitution of single item does not significantly affect the statistical properties of the
database, then joining the database does not expose any individuals to large inference
attacks [93, 94]. Regarding centralized DP, a randomized algorithm M gives e-differential
privacy for any pair of neighbouring datasets D and D’ (which differ on a single element)

and every set of outcomes (2 when:

Pr[M(D) € Q] < exp®-Pr[M(D’) € Q],

where ¢ is the parameter that controls the level of privacy preservation [11]. As €
grows smaller, the criteria for differential privacy are stricter, thus guaranteeing a higher
level of privacy. Randomized algorithms for DP add noise to the dataset from a predeter-
mined distribution, leading to the widely used Laplacian and Gaussian mechanisms for
the respective distributions. However, in many instances, the individuals require further
protection, even against the data manager that gathers their data. As a result, an im-
proved model, referred as e-local differential privacy, was proposed, preventing the data
manager to learn too much sensitive information about any individual data contributors
[11]. The algorithm is similar to the one presented above, for any two inputs x and x’ and

any possible output Q:

Pr[M(x) = Q] < exp®-Pr[M(x’) = Q].

Local DP adds randomized noise over each user’s data separately, in contrast to the
standard DP, where randomized noise, deriving from the same algorithm, is added to the
combined dataset [11]. As aresult, local DP is considered a stronger privacy-guaranteeing
mechanism, since the data collector is unable to distinguish between the original data x
and the noise-distorted data x’.

These differential privacy models are often incorporated into deep learning, because
of their desirable properties of composability, group privacy and robustness to auxiliary
information[95]. McMahan et al. [27] were the first to suggest using DP to protect
client data in the federated learning setting. In the FL setting, the standard DP model
works on the server-side, treating the client updates as a "dataset", where each client
update is a "data instance". The goal of DP in this scenario is to "hide" the individual
client updates during the model aggregation process [11]. Setting the sensitivity of DP
is crucial for improving privacy without deteriorating the global model’s performance.
However, this procedure may prove to be quite challenging, since the server should not
be able to distinguish individual client updates [11]. In a similar manner, local DP can

be adapted into the FL setting, with clients sending noisy local updates to the server for
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aggregation. Even though it provides greater privacy, the total volume of added noise
to the local updates is significantly higher than in standard DP, which can negatively
affect performance. Overall, there is a trade-off between privacy and performance with

the integration of DP into the FL setting, which requires further exploration in the future.

5.4.2 Secure Aggregation

Security mechanisms are typically employed to provide secure data transmission over
a communication channel, with the use of cryptography techniques and protocols. In the
FL setting, the phase of model aggregation involves the largest amounts of communication,
since the participants send their local model updates to the central server for averaging.
To better protect individual model updates, the secure aggregation protocol encrypts each
client update before their transmission over the network. Secure aggregation guarantees
that any third party, including the central server, may have access only to the encrypted
version of local updates [11]. Some widely used security protocols are secret sharing
schemes, homomorphic encryption and secure multiparty computation, the family of
security algorithms where secure aggregations belongs into.

Yao et al. [96] was the first to propose the concept of secure multiparty computation.
The underlying problem is that a set of parties with private inputs collaborate to compute
an agreed-on function over their data, without compromising their privacy. The idea of
secure multiparty computation is that an encryption scheme can provide this privacy
guarantee without diminishing the utilization of the data. These algorithms seem directly
applicable to federated learning, where client updates, containing sensitive information,
are aggregated to a server and both privacy and model performance are of utmost impor-
tance [11].

Secure aggregation is a subclass of secure multiparty computation algorithms, where
a group of trustless parties with sensitive information cooperate in calculating an aggre-
gated value [11]. Bonawitz et al. [97, 98] proposed the first secure aggregation protocol for
federated learning, where the server learns only the sum of clients’ model updates. This
initial approach later developed into a full version for practical applications, where each
local client update is masked by a random number, preventing the server from accessing
it directly, and each client generates a private-public key pair for each FL round and a
private shared key with a hash function, by combining their private key with the public
keys of the other participants. The hash function guarantees that each pair of private
shared keys is additive inverse, thus allowing the server to effectively offset the effect of
the masks during aggregation to calculate an accurate result [11]. However, client dis-
connections and reconnections at various moments can prevent the server from offsetting
the effect of the masks, a problem that can be tackled with additional properties, such
as a second mask. Overall, this protocol provides a comprehensive and robust security

guarantee over the model aggregation process [11].
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Mortality risk prediction tasks hold paramount importance in the healthcare domain,
as they assist in identifying patients who are at high risk and require immediate attention.
As such, predicting the probability of a patient dying during hospitalization is one of the
most researched clinical prediction tasks [99]. The need for developing effective models
that address this challenge is even more prominent in the ICU setting, where patients with
a severe health status and critical medical conditions are admitted and treated. Regarding
this issue, early warning and scoring systems, like APACHE [34] and SAPS [35], have been
utilized to estimate patient mortality, since they monitor various clinical variables, such as
vital signs and lab results, during the first hours of an ICU stay. However, the widespread
adoption of electronic health records (EHRs), leading to vast amounts of patient data with
rich temporal dynamics being generated rapidly, has motivated researchers to seek other

techniques to utilize the available information better for early mortality prediction.

6.1 Centralized ML Approaches

Machine learning algorithms can learn complex relationships among clinical variables
and patient outcomes that conventional models may be unable to capture, and develop
effective, data-driven models that make accurate estimations of patients’ mortality risk.
Johnson and Mark [100] focus on real-time mortality prediction in the ICU, developing
Logistic Regression (LR) and Gradient Boosting (GB) models having both dynamic fea-
tures, such as physiologic and laboratory measurements, and static features, such as
gender, age, etc., as their input. Their results on the MIMIC-III database [36] showed
that the AUROC score of a GB model (0.920) was considerably higher than the AUROC
of the conventional SAPS-II scoring system (0.809). Working on the MIMIC-III database
as well, Purushotham et al. [101] presented a benchmark of deep learning models on
various medical tasks, including mortality prediction, and showed that they consistently
outperform both traditional machine learning models and conventional scoring systems,
especially when the input data were not pre-processed.

Subsequently, Awad et al. [102] proposed a framework for early mortality prediction
in the ICU and conducted a thorough time-series analysis on the performance of different
mining methods, namely random forest (RF) classifiers, partial decision trees (PART) and

Bayesian Networks (BN) algorithms, during the first 48 hours of an ICU stay. Their results
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on the MIMIC-II database [103] showed that ML classifiers, with data from the first 6 hours
of ICU stays, outperformed conventional scoring systems, with access to data from the first
48 hours of ICU stays, while their best performing model was a RF classifier on 48 hours
after ICU admission with an AUROC of 0.83. Additionally, Pattalung et al. [104] proposed
a data-driven framework for ICU mortality prediction with time-series, combining high-
accuracy RNNs with the SHAP system [105] that calculates the contribution of each
variable for a prediction, thus providing an interpretable explanation. Their experiments
were conducted on three public critical care databases (MIMIC-III, MIMIC-IV [106] and
eICU [17]) with their models achieving an AUROC of 0.87-0.91.

6.2 Federated Learning Approaches

With regard to multi-center collaboration and patient data privacy, several federated
learning solutions have been proposed, however, focusing on in-hospital mortality predic-
tion rather than on the ICU setting. Lee and Shin [107] experimented on the MIMIC-III
database by setting up a federated environment with 3 clients and evaluating the perfor-
mance of a LSTM model. Their results indicated that the FL model can reach a comparable
performance to the CML model, in terms of AUROC and F1-Score, while they observed
that the performance of FL with imbalanced client datasets (regarding size, not distribu-
tion) was scarcely affected. Budrionis et al. [108] extended on the work of Purushotham
et al. [101] on the MIMIC-III database, studying different parameters that may affect a
federated learning environment. Their experiments include increasing the amount of data
in the system with a constant number of FL clients, increasing the number of FL clients
with a constant amount of data and using imbalanced local datasets (as with [107], only
in terms of size). Their predictive models performed better as the training data increased,
while their performance remained largely unaffected by an increase in the number of FL

clients or different local dataset sizes.

At the same time, many federated learning solutions shift their focus to other clinical
variables and setups to address the mortality prediction task. Huang et al. [109] proposed
community-based federated learning (CBFL), a novel method that clusters EMR data into
several clinically meaningful communities training their own FL models. The clustering
criteria and training features were the drugs administered to the patients during the first
48 hours of the ICU stays. Besides training, the clustering process is also incorporated
into the FL framework. Their results in different FL scenarios were comparable to CML, in
terms of AUROC, both for ICU mortality prediction and for length of ICU stay prediction,
another crucial medical task. Moreover, motivated by the recent COVID-19 outbreak,
Vaid et al. [110] employed federated learning, utilizing real-world data from 5 hospitals to
address 7-day mortality prediction for hospitalized COVID-19 patients. They developed
LASSO and multi-layer perceptron (MLP) models and compared their performance with
various ML approaches. Their results showed that the FL models outperformed their
locally-developed counterparts, enhancing the view that federated learning is a promising

privacy-preserving alternative to traditional ML approaches within healthcare.
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6.3 Recent Relevant FL Studies

Regarding more recent studies, Dang et al. [14] experimented on the real world,
multi-center eICU database and evaluated the performance of several state-of-the-art FL
algorithms on two significant medical tasks, in-hospital mortality and AKI prediction.
Their results on the in-hospital mortality prediction task, shown in Figure 6.1, indicate
that the performance of most FL algorithms was comparable to CML, in terms of AUROC
and AUPRC, despite the existence of statistical heterogeneity across participants. Their
features were static, obtained at the 24-hour mark after ICU admission, and consisted
of basic demographics and statistics of several measurements up to that point, while
It is

important to mention that the authors propose the evaluation of different FL methods on

their predictive model was a simple neural network with 2 fully-hidden layers.

time series data and more complex model architectures (which are the focus of this work)

in healthcare, as a future research direction.

Method AUC-ROC (95% CI) AUC-PR (95% CI)
Local 0.833 (0.808-0.859) 0.472(0.373—0.480)
Centralized 0.918 (0.907-0.929) 0.668 (0.633-0.701)
IIL 0.877 (0.857—0.897)  0.505 (0.451-0.559)
CIIL 0.828 (0.803-0.852) 0.426 (0.373-0.480)
FedAvg 0.901 (0.882-0.921) 0.638 (0.584-0.688)
FedProx 0.895 (0.877-0.914) 0.577 (0.523-0.630)
FedAvgM  0.9006 (0.888-0.925) 0.645 (0.591—0.695)
FedAdam  0.890 (0.870-0.911) 0.578 (0.524—0.631)
FedAdagrad 0.893(0.873-0.913) 0.596 (0.543—0.649)
FedYogi 0.895 (0.875-0.915) 0.594 (0.539—0.646)

Figure 6.1. Global Test Performance on the In-Hospital Mortality Prediction Task, Dang et
al. [14]

Furthermore, giving more emphasis to the ICU setting, Mondrejevski et al. [37] pro-
posed FLICU, a workflow for analyzing ICU mortality with MTS data by integrating sequen-
tial deep neural network models into the FL framework, using the MIMIC-III database.
In terms of data pre-processing and model architecture, they follow the approach de-
scribed in Pattalung et al. [104]. They evaluated their models (CNN, RNN, LSTM and
GRU) with a varying number of FL participants (2, 4 and 8 clients) and with different time
windows of vital signs and lab results before ICU discharge or death (8-hour, 16-hour,
24-hour, and 48-hour windows). Their FL approach, using the standard FedAvg algo-
rithm, showed comparable performance to the ideal CML approach and outperformed the
privacy-preserving, but inefficient, LML approach, unaffected by the number of FL par-

ticipants. However, in their study, they assume that the moment of discharge or death
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is known beforehand, as they use data from the end of the ICU stay that do not allow
early prediction. Thus, the retrospective nature of their analysis prevents the use of their
workflow for clinical decision-support.

In response to these limitations, Randl et al. [15] built upon their research, focusing
on predicting ICU mortality at an early stage with MTS data from the beginning of the ICU
stay. They adjust the workflow of Mondrejevski et al. [37] to the vital signs and laboratory
results from the beginning of the ICU and evaluate their GRU-based models on analogous
scenarios. They also suggest that F1-Score is a more suitable early stopping criterion
for training, as it is the harmonic mean between precision and recall and shows a more
defined maximum during training, compared to minimum loss. Figure 6.2 shows their
results, indicating that the performance of FL is comparable to CML and considerably
better than LML, especially as the number of participating clients increases. However,
both works [37, 15] show certain limitations. The MIMIC-III database consists of data from
a single medical center, which have been allocated to the simulated FL clients horizontally
with stratified splits. Therefore, the federated environment is largely homogeneous, both
in terms of data distribution and patient characteristics, which does not correspond to

real-world cases.

FL LML

2 clients 4 clients 8 clients 2 clients 4 clients 8 clients

scaore H CML

A tgara = Bh; avg. Atprea = 3520

AUROQOC || 0.87+0.01 | 0.87+0.01 087001 087+001| 086001 084+001 080+001
AUPRC || 039+004 | 038004 037004 037+0.03| 036005 032+004 028+0.02
F1| 040+0.03|038+002 039+004 039+004(039+003 036+003 035+0.02
precision || 0.42+ 007 | 038005 035+006 035+008 | 037005 037005 035+004
recall || 0.41+008 | 041+011 046+008 047+0.09| 043+0.04 036+003 034+0.03

Atgara = 16h; avg. Atgred = 27.20

AUROQC || 0.89+0.01 | 0.88+0.01 0.88+001 088+001| 087001 085001 082+001
AUPRC || 044+0.05( 041+0.04 041+004 042+003| 040005 037+0.04 033+0.03
F1| 044+002 (041001 040005 043%x003| 041002 039003 0.37+0.02
precision || 046005 | 041004 043+006 043%+0.04|038+0.08 038x005 041%=0.03
recall || 0.42+005| 042007 040+011 043+0.06| 046008 042+006 033=0.04

Atgata = 24h; avg. Atpres = 19.2h

AUROC || 090+0.01 | 090+0.01 090+000 089+0.01|089+0.01 087x001 083+0.01
AUPRC || 050£004 | 049+0.04 047004 047+0.03| 047004 043+0.04 037+0.03
F1| 049+0.04 | 048+003 046+003 044+003|045+x0.02 042+002 040+0.02
precision || 055005 | 052005 049+007 045%+0.07| 048008 039+004 046=0.02
recall || 0.46+0.08 | 0.46+0.05 044+005 046=+011| 046010 048+0.09 035003

Figure 6.2. Results of Randl et al. [15] with F1-Score as early stopping criterion

In this thesis, we address the aforementioned limitations by using the real world,
multi-center eICU database. It allows us to use actual hospitals as FL clients, thus
recreating a realistic, heterogeneous federated environment to conduct our experiments.
Since our FL scenarios involve non-IID datasets, we do not limit ourselves to the stan-
dard FedAvg algorithm, but evaluate other federated learning algorithms that address the
challenges of heterogeneous environments, similar to Dang et al. [14]. Moreover, we
built upon Randl et al. [15], evaluating more RNN model architectures on the early ICU

mortality risk prediction and their incorporation into the federated learning framework.
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Data & Preprocessing

In this chapter, we focus on presenting the dataset utilized in the study. It begins by
introducing the eICU Collaborative Research Database and presenting some key informa-
tion about its contents. Next, the cohort selection criteria are discussed and the cohort
demographics are displayed. Following the cohort selection, the chapter delves into the

data preparation process that precedes ML training and evaluation.

7.1 Dataset

For the purposes of this thesis, we utilize the eICU Collaborative Research Database
[17], managed by the MIT Laboratory for Computational Physiology. The eICU is popu-
lated with real-world data from multiple critical care units throughout the United States,
participating in the Philips eICU telehealth program. The multi-center nature of the eICU
database makes it an ideal choice for recreating a realistic, heterogeneous federated learn-
ing environment. It contains over 200 thousand patient intensive care unit (ICU) stays
for over 139 thousand unique patients, admitted to 208 different hospitals between 2014
and 2015. In order to meet the safe harbor provision of the US Health Insurance Portabil-
ity and Accountability Act (HIPPA), each database table is de-identified and all protected
health information is removed, in addition to hospital and unit identifiers to protect the
privacy of data contributors [17].

Before receiving access to the eICU database, researchers are required to complete
training in human research and data privacy. As recommended by the database man-
agers from the MIT Laboratory for Computational Physiology, the "Data or Specimens
Only Research" course, provided by the Collaborative Institutional Training Initiative (CITI
Program), was successfully completed. This course contains an overview of ethical and
regulatory considerations involved in conducting research using existing data or speci-
mens that are not collected specifically for the research study. It covers topics such as
informed consent, data privacy and confidentiality, and the ethical use of existing data
or specimens, among other modules. It also provides guidance on how to comply with
regulatory requirements and best practices for data management and sharing. Besides
the training course, researchers are obliged to agree not to share or attempt to de-identify
the data, as well as not release code related to any publication involving the data.

Patient ICU stays assumed a central role in the construction and composition of the
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elCU database, providing comprehensive and rich clinical information. The collected data
include vital sign measurements, laboratory measurements, medications, care plan infor-
mation, admission diagnosis, patient history, drug infusions, etc. Across the database,
identifiers are used to identify unique concepts and link different tables. These include
hospitallD, uniquepid and patientHealthSystemStayID to identify hospitals, patients and
hospital stays respectively, though the primary identifier for most tables is patientUnit-
StayID, used to uniquely identify ICU stays. Throughout the database, time is represented
through time stamps that are measured as offsets from the time of ICU admission.

For the task of early ICU mortality risk prediction with MTS data, the most rele-
vant information consist of vital sign measurements, lab test results, ICU admission and
discharge time stamps, ICU discharge patient status and the necessary identifiers. We
briefly present the eICU database tables containing this information, which we utilize in

our experiments.

e patient table: It is a core part of the eICU database, as it contains patient de-
mographics and important admission and discharge information, both for hospital
and ICU stays, with patientunitstayid as the primary identifier. Related to our
task, columns unitdischargestatus and unitdischargeoffset inform us about the ICU
stay patient outcome (Alive or Expired) and the ICU discharge time, as the num-
ber of minutes from ICU admission, respectively. Then, the ICU stay is linked via
uniquepid to a unique patient and via hospitalid to a specific hospital. The afore-
mentioned columns are the ones that correspond to the problem studied in this

thesis.

e vitalperiodic table: "Periodic" data refers to data which is consistently obtained
from bedside vital signs monitors and loaded into the eCareManager system. The
vital signs in the vitalperiodic table are not validated by care staff. In order to avoid
most cases of spurious observations, data are typically interfaced as 1 minute aver-
ages and archived into the table as 5 minute median values. Even though numerous
vital signs are observed, we are concerned with heart rate (heartrate), respiratory
rate (respiration), temperature (temperature), peripheral oxygen saturation (saO2)
and systolic, diastolic and mean blood pressure (systemicsystolic, systemicdiastolic
and systemicmean respectively). They are linked to a ICU stay via the patientunit-

stayid, while their time stamp is available via the observationoffset column.

e lab table: This table contains laboratory test results that have been mapped to a
standard set of measurements. Even though some rarely conducted lab tests are not
interfaced into the system, their absence does not necessarily mean they were not
conducted. On the other hand, if the result of an interfaced lab test is missing, then
this lab test was not conducted. The labname and labresult columns indicate the
laboratory test and the obtained value respectively. In this thesis, we utilize a group
of common laboratory tests, namely albumin, band neutrophi, bicarbonate, biliru-
bin, blood urea nitrogen, chloride, creatinine, glucose, hematocrit, hemoglobin, lac-

tate, partial thromboplastin time, platelet count (platelet), potassium, sodium and
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Figure 7.1. Data availability in hospitals [1]

white blood cells. Similarly to the vitalperiodic table, the columns patientunitstayid
and labresultoffset are employed to link a lab result with an ICU stay and determine

its time stamp, in relation to the ICU admission.

As shown in Figure 7.1, the vast majority of the hospitals interfaced vital signs and
laboratory tests into the eCareManager system for most stays in their intensive care units.
High data coverage is extremely important for successfully training machine learning

models on these features.

7.2 Cohort Selection

Let us reiterate the binary classification problem investigated in this thesis. Early ICU
mortality risk prediction is defined as the estimation of a patient’s risk of dying within
a specific timeframe after ICU admission. For this study, we focus on estimating the
mortality risk during the second and third day of an ICU stay (that is 24h-72h after ICU
admission). The patients who died during their stay in the ICU constitute the positive
label group (output=1), while the patients who got discharged from the ICU comprise the
negative label group (output=0). Our observation window consists of observations of 7
vital signs and 16 laboratory values, in the form of multivariate time series, obtained
during the first 24 hours of an ICU stay. The data within this specific timeframe were
extracted and utilized for the purposes of training and evaluating the predictive models.

Regarding the eICU database, an exact time of death is not recorded for patients who
died during their ICU stay. As a result, we assume the discharge time stamp corresponds
to the end of their ICU stay, similarly to the patients who survived. Moreover, a patient’s
first vital signs measurements may occur a considerable amount of time after their ICU
admission, signifying an ICU admission may be interfaced into the eCareManager system
before the patient is set up with clinical monitoring devices. Consequently, we consider
the first vital signs observation, after the official ICU admission (that means with an
observation offset larger or equal to 0), as the beginning of the ICU stay and take into
account only vital signs and laboratory tests that happened after that.

In order to extract a subset of ICU stays for our experiments, we follow the approaches
described in Pattalung et al. [104], Mondrejevski et al. [37] and Randl et al. [15] with
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some adjustments. The cohort selection criteria applied to the eICU database are the

following:

1. Filter for ICU stays with a recorded patient outcome (Alive for survival and Expired
for death).

2. Filter for ICU stays, where the patient’s vital signs were observed for at least 24 hours
after the beginning of the ICU stay. This condition guarantees that the patient was
alive and periodically monitored up until the time of prediction, which is at the

24-hour mark.

3. Filter for ICU stays that lasted at least 24 hours, but not more than 72 hours.
This ensures that each patient of the final cohort either survived or died during the

second and third day of their ICU stay, and, therefore, is valid for this task.

4. Filter for the first ICU stay of each patient. If a patient is linked with multiple ICU
stays at the same hospital, then the first stay can be inferred from the hospital
admission offset values for each ICU admission and the hospital admission time.
However, the eICU database does not contain specific dates for ICU and hospital
stays, making it impossible to determine the first ICU stay of patient among a
number of ICU stays across different hospitals. Consequently, we exclude these

patients from our study.

5. Filter for ICU stays where at least one laboratory test result is available and inter-

faced into the eCareManager system.

After applying the above selection criteria, our final study cohort consists of 55,147
ICU stays, each linked with a unique patient. Table 7.1 summarizes the patient demo-
graphics for our study cohort. It should be mentioned that the age of patients over 89
years old is not explicitly stated for privacy issues, so, in order to calculate the mean and
standard deviation for the age of the cohort, they are assumed to be 90 years old. It is
evident that the positive label class (patients who died during their ICU stay) is underrep-
resented, constituting 3.8% of the total ICU stays of the study cohort. This highlights that
our final dataset is highly imbalanced, in favor of the negative label class (patients who
survived their ICU stay). Consequently, we should take it into account when designing

our experiments and evaluation strategy.

7.3 Data Preparation

After selecting the study cohort, the next step involves preparing the data for machine
learning training. This data preparation process is crucial to ensure that the data is in a
suitable format for training ML models. It typically includes steps such as pruning out-
liers, re-sampling time series variables, handling missing values and encoding categorical
variables. By performing these preparatory tasks, we aim to enhance the quality and
reliability of the data, facilitating effective training and evaluation of machine learning

algorithms.
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’ Demographics ‘ Total ‘ Survival ‘ Death ‘
Number of Patients 55,147 53,052 2,095
Age (years) 63.72 (17.13) | 63.53 (17.16) | 68.48 (15.53)
ICU stay (hours) 44 (14.4) 43.96 (14.41) | 45.21 (14.04)
Gender

Male 29,845 28,708 1,137
Female 25,288 24,331 957
Unknown 14 13 1
Ethnicity
Caucasian 42,548 40,891 1,657
African American 5,837 5,642 195
Hispanic / Latino 2,116 2,054 62
Asian 1,012 966 46
Other / Unknown 3,634 3,499 135

Age and ICU stay values are mean (standard deviation)

Table 7.1. Patient demographics for our study cohort

For our work, we are only concerned with the vital signs and laboratory tests that
are mentioned in the presentation of the vitalperiodic and lab tables respectively. First,
we remove outliers from these features, which are most likely caused by malfunctions
of the monitoring devices. In order to accomplish this, we do not take into account
observations that deviate from a valid range of values for each feature. These valid ranges
are obtained from the eICU Collaborative Research Database Code Repository [1], as
provided by the database managers. By the initial removal of these outliers, we exclude

faulty measurements that could tamper with our results.

The following preparatory procedure is to re-sample the variables. The reasons for
this are three-fold. First, by re-sampling the time series data in less frequent intervals,
the size of the data reduces considerably, facilitating the ML training and evaluation in
terms of both time and computational requirements. Then, this process further reduces
the effect of spurious readings, by applying a suitable aggregation function on a group
of successive observations. Moreover, the re-sampling time intervals are consistent with
related work [104, 37, 15], allowing a more direct comparison of different methodologies
and results.

Vital signs measurements were typically taken 2.5-12 times per hour, while laboratory
test measurements were typically taken 1-2 times per eight hours. Initially, we align the
time offsets of the vital signs and lab tests to the beginning of the ICU stay, as we defined
it, in contrast to the record of ICU admission. Next, we aggregate each vital signs variable
into a 1-hour time interval from the beginning of the ICU stay, while each lab test variable
was aggregated into an 8-hour time interval from the beginning of the ICU stay. For every
time interval, we calculate a single value for each variable by using the mean function on
the variable values of the time interval. Up to this point, the re-sampling methodology
and selected time intervals correspond to [104, 37, 15]. In addition to this,we use the
min and max functions on three selected vital signs (heart rate, respiratory rate and

peripheral oxygen saturation), as they are the most important vital signs features for
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mortality prediction in the eICU database, according to Pattalung et al. [104]. In this
way, we also address their rich temporal dynamics, which may be partly suppressed due
to the re-sampling.

To address phenomena of missing values, we use imputation methods, since most
patients are linked to some variables with missing values and their elimination would
bias the study. Starting from the beginning of the ICU stay, missing values are filled
with forward and, then, backward imputation. However, some variables may not be
measured at all, because of the lack of the respective monitoring devices, the severity
of the patient’s condition or the hospital’s decision to not interface this specific variable
into the eCareManager system. In this case, the feature’s values are replaced with -1,
indicating the absence of observations.

Figures 7.2 and 7.3 present the vital signs measurements and the lab test results,
during the first 24 hours of an ICU stay, for a patient who got discharged, after the
above preparation steps. We observe that temperature was never recorded during this
time period, since it constantly has the value -1. Depending on the frequency and the
intervals for the original observations, some vital signs are updated every hour, while other
measurements change every few hours. Then, many laboratory results have a constant
value, indicating that they were conducted only once during this period. Figures 7.4
and 7.5 show the same features for a patient who died during their ICU stay. We observe
that many vital signs showcase a different behavior from the previous patient, in terms
of the range of values and fluctuations. Lab measurements again do not show many
fluctuations, as some tests do not need to be conducted very often.

The last step is encoding the categorical variable of the ICU discharge status to map
the ICU stays to the positive and negative classes. As such, we replace the status Expired
with 1, indicating the positive label class, and the status Alive with O, indicating the
negative label class. After following this multi-step procedure, we have formatted our
data for ML training and evaluation in our experiments. The overall experimental setup

is described in the following chapter.
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Chapter B

Experimental Setup

In this chapter, we describe the experimental strategy of our work. First, we introduce
the experimental scenarios of this thesis, as well as their accompanying goals. Then, we
present the architecture of the constructed neural network models, the design of their
training process and the employed metric scores for evaluating their performance on the

task of early prediction of ICU mortality risk.

8.1 Experimental Scenarios

This thesis focuses on the application of federated learning in the healthcare domain,
addressing the early ICU mortality risk prediction task with the use of MTS data. After
careful examination of recent related studies, we designed a series of experimental scenar-
ios that aim to give us an insight into how well federated algorithms address the challenge
of statistical heterogeneity in a federated environment. Through our experiments, we ana-
lyze the integration of different RNN architectures into the federated learning framework,
the performance of current state-of-the-art FL algorithms (FedAvg, FedProx, FedAdam,
FedAdagrad, FedYogi, FedAvgM) and the impact of certain FL participants with specific
characteristics in the training process. Therefore, we present our experimental FL scenar-

ios and the objectives we aim to achieve with each of them in the following subsections.

8.1.1 Scenario 1: Model Architecture and Generalizability

This first scenario constitutes our basic experimental setup. Due to the high com-
putational and memory complexity of a simulated FL environment, we select 8 hospitals
from our study cohort to comprise our FL training participants. This allows us to ex-
periment more with different models and setups, facilitates the analysis of the different
factors that affect federated learning and enables a direct comparison of our results with
those of Randl et al. [15]. Our selection is based on the diversity of the patient pop-
ulations and demographics, in order to ensure the statistical heterogeneity of our local
training datasets. Table 8.1 summarizes the data distributions of each single training
hospital and the training set as a whole. It is evident that the datasets of the participating
hospitals differ in terms of size and class distribution, highlighting the non-IID settings

of our experiments.
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Datasets ‘ Total ‘ Survival ‘ Death ‘

Hospital A 1,018 977 41 (4.0%)
Hospital B 1,041 972 69 (6.6%)
Hospital C 1,788 1,714 74 (4.1%)
Hospital D 773 746 27 (3.5%)
Hospital E 1,129 1,088 41 (3.6%)
Hospital F 1,344 1,244 100 (7.4%)
Hospital G 930 878 52 (5.6%)
Hospital H 1,316 1,248 68 (5.2%)

Training Set | 9.339 | 8,867 | 472 (5.1%) |

Death column also contains (% over total)

Table 8.1. Data distributions for the participating training hospitals in Scenario 1

There are two goals linked with this scenario. The first one is to evaluate the extent
of the generalizability of the obtained models with each FL algorithm, by comparing them
with the respective models of the CML and LML approaches. With regard to this, we use
a foreign test set, consisting of patient data from 4 hospitals that do not participate in
the training process. Table 8.2 summarizes the data distributions of each single testing
hospital and the testing set as a whole. By combining data from 4 different hospitals
to assemble the test set, we may gain a better understanding of the ability of each FL

algorithm to utilize information from all FL clients to build a robust, effective model.

Datasets ‘ Total ‘ Survival ‘ Death ‘

Hospital I 421 398 23 (5.5%)
Hospital J 477 456 21 (4.4%)
Hospital K | 420 397 23 (5.5%)
Hospital L 485 460 25 (5.2%)

Test Set | 1,803 | 1,711 [ 92(5.1%) |

Death column also contains (% over total)
Table 8.2. Data distributions for the test set in Scenario 1

The second goal is to evaluate the incorporation of different RNN models (RNN, LSTM,
GRU) into the federated learning framework. We do not limit ourselves to comparing their
performance on the chosen evaluation metrics, but we also aim to assess the computa-
tional overhead of each architecture. In order to achieve this, we take into account the
number of trainable parameters that are transmitted over the network and the average
FL rounds until convergence. Overall, this scenario aims to assess the ability of each
FL algorithm to develop generalizable models and their integration with different RNN

architectures.

8.1.2 Scenario 2: ’Extreme Cases’ of Participating Hospital

Our second experimental scenario considers the robustness of the different FL meth-
ods under the presence of artificial ’extreme’ FL participants, in terms of data size and
class distribution. Our FL environment consists of the 8 training hospitals from the first

scenario and each of two ’extreme’ hospitals, which we construct by aggregating ICU stays



8.1.3 Scenario 3: Importance of Participation

from the remaining hospitals. Hospital X1 includes the most ICU stays, compared to the
rest 8 training hospitals, however it is characterized by an extreme class imbalance, with
just above 0.5% of their ICU stays in the positive class (mortality). As the FL participant
with the most data, hospital X1 influences the aggregated FL model more than any other
FL client and our goal is to regulate this effect. On the other hand, hospital X2 includes
data only for 300 ICU stays with 25% of them belonging to the positive class. This positive
class distribution is much higher than for any other training hospital (hospital F is the
second highest with 7.6%). As this hospital contains much useful information for the
under-represented positive class, our aim is to process and utilize its information in the
best possible way. Table 8.3 summarizes the data distributions of each ’extreme’ hospital

and the derived 9-hospital training sets for these experiments.

’ Datasets ‘ Total | Survival ‘ Death ‘
Hospital X1 1,900 1,890 10 (0.5%)
Training Set + X1 | 11,239 | 10,757 | 482 (4.3%)
Hospital X2 300 225 75 (25.0%)
Training Set + X2 | 9,639 9,092 547 (5.7%)

Death column also contains (% over total)

Table 8.3. Data distributions for the datasets in Scenario 2

For these experiments, we split the 9-hospital datasets into training, validation and
test sets with sizes 68%, 12% and 20% of the original datasets respectively. Overall,
the goal of this experiment is to evaluate the sensitivity of each FL algorithm in 2 FL
environments that require special attention. Either with a highly influential FL client
with a negative-biased dataset, or with a limited FL client with valuable information,

these FL environments provide serious challenges to the proposed FL methods.

8.1.3 Scenario 3: Importance of Participation

One of the cornerstones of federated learning is the participation of a party in the
training process and the construction of a ML model, along with other parties. In the
first scenario, we evaluate the performance of the final model on a foreign test set and,
in the second scenario, on a test set assembled by data from the FL participants. This
third experimental scenario evaluates the performance of the FL models on the test set
of specific FL clients. Our FL environment consists once again of the 8 training hospitals
from scenario 1, however we focus on two hospitals G and C, the former with fewer data
and the latter with the most data within this training set. These two hospitals will serve
as our scenario subjects, each of them providing as with a test set for our experiments.

We explore the performance of FL on each of these two hospitals in an isolated sub-
scenario. In the first sub-scenario, we use 20% of the hospital G’s data as a test set and
consider 3 different approaches. The first is the LML approach, with hospital G training
its own local model. The second is the privacy-preserving FL approach without the partic-
ipation of hospital G (utilized with transfer learning). Finally, the third is the FL approach

with the participation of hospital G. Through this experiment, we want to measure the
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impact of hospital G’s participation in the FL setup on its own test set, compared to the
other two aforementioned approaches. The other sub-scenario concerns hospital C in a
similar manner. By experimenting with two hospitals with different characteristics, such
as hospital G and C, we aim to draw conclusions with regard to how much a hospital
with adequate or insufficient amount of data can be benefited from participating in a FL

environment.

8.2 Model Architecture & Optimization

As mentioned earlier throughout this thesis, the input data of this task are vital signs
and laboratory results, in the form of multivariate time series, from the first 24 hours of a
patient’s ICU stay. The temporal nature of the data dictates the use of sequential neural
network architectures, which are capable to learn complex temporal dynamics from the
input. With regard to this, we employ recurrent neural network architectures (RNNs) as
the basic building block of our predictive model.

Our model consists of two parallel input channels, one of them processing the vi-
tal signs measurements and the other processing the laboratory test results. The input
data have already been pre-processed and prepared for training, as we discussed in the
previous chapter. Each of these branches is implemented with 3 recurrent layers of 16
units each, conferring a sense of depthness on the model and allowing the progressive ab-
straction of the information and its transformation into high-level representations. Each
of these two branches is followed by batch normalization, before we concatenate their
outputs along the channel dimension. Subsequently, two fully-connected layers (with 8
outputs and 1 output respectively) fuse these feature maps and a sigmoid layer applies
a sigmoid function to the single, final output to calculate the risk of mortality in the ICU
in the range [0,1]. We explore 3 different variants of RNNs (RNN, LSTM, GRU), leading
to different amounts of trainable parameters, shown in Table 8.4. The number of train-
able parameters is of great importance in a federated learning setting, as it signalizes the
communication overhead of the whole training procedure, in accordance with the total FL

training rounds and the number of FL clients.

’ Model ‘ Trainable Parameters

RNN 4,001
LSTM 13,361
GRU 10,529

Table 8.4. Trainable parameters for our model with each RNN architecture

Since we aim to predict whether a patient is going to die or not during their ICU stay, we
use the binary cross-entropy loss function and the Adaptive Moment Estimation (Adam)
optimization algorithm, which are suitable optimization methods for binary classification

tasks.
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8.3 Training Process

We evaluate three different approaches, CML, LML and FL, on the three experimental
scenarios we described earlier. Depending on the scenario, the testing data could either be
a foreign test set, an aggregated test set from the training hospital cohort or an individual
test set from a specific hospital. For the foreign test set, we use 5-fold cross-validation on
the training-validation splits to eliminate any randomness induced by data partitioning.
For the two latter test sets, we use 5-fold cross-validation on the test splits, allocating
20% of the data for testing, and then split the remaining data into an 85% training set and
a 15% validation set. As our data are, in fact, an aggregation of several local datasets,
the above procedure is applied to every local dataset individually. Moreover, for every
approach, the training models are initialized with the same randomized weights to tackle
any additive bias from choosing different initial weights as the models’ starting point in

each experiment.

For all three CML, LML and FL approaches, we initially normalize the training and
validation datasets before the training commences. Then, we address the problem of class
imbalance by assigning class weights to data instances during training, in order to give
equal importance to the gradient updates of both classes. The CML models are trained on
a mini-batch size of 256, while the local and FL models are trained on a mini-batch size
of 32, respective to the size of local datasets compared to the size of the aggregated global
dataset. Training starts with a local initial learning rate of 0.001, which drops by 50%
every 5 epochs, in order to avoid undesirable divergent behavior with the loss function.
Furthermore, we implement an early stopping mechanism, monitoring the F1-Score on
the validation set, which presents a more defined maximum during validation than the
other metrics, with a patience period of 30 epochs and a maximum training period of 100
epochs. When the early stopping mechanism is triggered, we restore the weights of the

best model during training, in terms of F1-Score on the validation set.

Since federated learning involves more hyperparameters, it requires additional setup
steps. All FL clients are trained for 1 epoch per FL round, in order to maintain a high
training speed. We assume total participation of the federated network, which corre-
sponds to the real-life scenario, since hospitals are typically considered powerful and
reliable computational nodes. The weight aggregation of the standard FedAvg algorithm
is based on the relative sizes of the FL participants. The FedProx algorithm involves a
proximal term that regulates the local model updates, which is set to 0.1 after calibra-
tions within our experiments. Regarding the server-side optimization FL algorithms, the
decay rates 3; and 3 are set to 0.9 and 0.99 respectively, while the server-side learning
rate and t are adjusted based on the experimental setting. Similarly, the learning rate of
FedAvgM is adjusted to each experiment, while the momentum factor of the optimization
step is set to 0.9. The overall FL training design and the rest of the training parameters

are the same as the ones presented above for the CML and LML approaches.
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8.4 Evaluation Metrics

The performance of each model is evaluated on a test set dictated by the chosen
experimental scenario. Either it is a foreign test set (scenario 1), a test set consisting of
data from all participating FL clients (scenario 2), or a test set with data from a specific
hospital (scenario 3). Moving forward, we consider a true positive (TP) as the result of
a correct mortality prediction, a true negative (TN) as the result of a correct discharge
prediction, a false positive (FP) as the result of a wrong mortality prediction and a false
negative (FN) as the result of a wrong discharge prediction.

Typically, for ML tasks, accuracy is the most commonly used evaluation metric, de-
fined as the proportion of correct classifications over the total predictions. However,
on imbalanced problems, accuracy can be a misleading criterion for the performance of a
model, since it could achieve high accuracy by simply predicting only the over-represented
class, thus being unable to capture the patterns of the under-represented class and gen-
eralize. As a result, we need to utilize other metrics to effectively assess the model’s
performance and better understand its characteristics. In order to do so, we first define

some basic evaluation metrics:

TP
Recall = ——
TP + FN
Specificit ™N
ecificity = ————
P Y TN + FP
TP
Precision = ——
TP + FP
. - N
NegativePredictiveValue(NPV) = ————
TN + FN

Recall indicates how many of the total positive class instances were correctly identified,
while specificity is its symmetrical counterpart regarding the negative class instances.
Then, precision measures the ability of the model to correctly classify the positive class,
whereas the analogous negative predictive rate is not often employed for model evaluation.

By plotting recall and specificity at different classification threshold values, one can
generate the receiver operating characteristic (ROC) curve. The area under the ROC (AUC)
is a metric that describes the overall classification performance of a predictive model and
it constitutes the main focus of many related studies [104, 14], with respect to model
evaluation. Respectively, by plotting precision against recall in a similar manner, one can
generate the Precision-Recall curve (PRC) and utilize the area under the PRC (AUPRC) as
a performance metric. PRC visualizes the precision-recall tradeoff, a frequent challenge
for predictive tasks, allowing researchers to find the optimal classification threshold in
accordance with the goals of their experiments. Another metric that is expressed as

a relationship between precision and recall is F1-Score, which is the harmonic mean



8.4 Evaluation Metrics

between the two. AUPRC and F1-Score are most informative about a model’s performance,
when identifying the positive class correctly is more important than predicting the negative
class.

In our work, we evaluate the performance of our models on these three aforementioned
metrics (AUROC, AUPRC and F1-Score). As we address a binary classification task with
a highly imbalanced dataset, we tend to focus more on AUPRC and F1-Score. The results
of the AUROC metric are often unreliable, when the minority class is heavily under-
represented, while the AUPRC is more suitable for such problems and provides more
useful information for the behavior of a model [38]. Besides these metric scores, we also
monitor the training rounds that each FL algorithm requires until achieving the best F1-
Score on the validation set, as the communication overhead is an important aspect of the
FL setting.






Chapter E

Results & Discussion

This chapter presents the experimental results and discussion pertaining to the eval-
uation of the proposed methodologies for early prediction of ICU mortality risk using
federated learning with multivariate time series data. Our main objectives are to ex-
amine the performance of different RNN models integrated within the federated learning
framework, conduct a comparative analysis of various state-of-the-art federated learning
algorithms and explore the impact of participation in a FL setting for individual clients.

The first experimental scenario focuses on evaluating the FL models on a foreign test
set, thus exploring their generalizability and the degree of incorporation of each RNN
model within the FL environment. Then, the second experiment investigates the sensi-
tivity and robustness of FL algorithms in federated learning environments with varying
degrees of statistical heterogeneity, by including a ninth artificially constructed hospital
with ’extreme’ data distribution into the FL training cohort. The third scenario focuses
on two specific hospitals and measures the effect of their participation, in training a FL
model, on their local test sets, thus indicating the motivation for potential hospitals to
engage in a federated learning environment.

Through the discussion on the results, we provide a comprehensive analysis of the
performance and limitations of the proposed approaches. We aim to gain a deeper un-
derstanding of the attributes of a federated learning environment and the potential of
federated learning for early prediction of mortality risk, which may expand to other prob-

lems both within the healthcare domain and in other industries and fields of interest



Chapter 9. Results & Discussion

9.1 Results for Experimental Scenario 1

9.1.1 RNN architecture

Table 9.1 contains the metric scores for the CML, LML and FL approaches with the
RNN model. The CML model, which treats the local datasets as a single, centralized
dataset, achieved an AUROC of 0.836, an AUPRC of 0.400 and a F1-Score of 0.473. These
scores are considerably better than the ones obtained with the localized models, which
reached an AUROC of 0.764, an AUPRC of 0.239 and a F1-Score of 0.252 respectively.
Overall, all FL models outperformed the LML models by a significant margin. In terms
of AUROC, the FedProx algorithm, with a score of 0.838, outperformed all the other FL
algorithms, as well as the CML model, while FedAdam had a similar performance, with
a score of 0.837. Then, FedAdam achieved the best AUPRC among the FL models, with
a score of 0.364. However, the F1-Score achieved with FedAdam (0.303) was the worst
among the FL models, whereas the standard FedAvg, with a F1-Score of 0.335, was the
Besides F1-Score, the FedAvg obtained good AUROC and

AUPRC scores as well, narrowly behind FedProx and FedAdam that led in these metrics.

best performing FL model.

The remaining server-side optimization FL algorithms, namely FedAdagrad, FedYogi and
FedAvgM, obtained the lowest AUROC and AUPRC scores between the FL models, while
their F1-Scores were comparable to FedProx. The ROC and Precision-Recall curves ob-
tained with the CML, LML and FL approaches and RNN-based models are visualized in
Figures 9.1 and 9.2 respectively.

Regarding the FL training rounds, we observe that the best F1-Score on the validation
set was achieved, on average, after 10 rounds for most FL algorithms. FedProx required
the most training until convergence, achieving it after 12.5 FL rounds, on average, while
FedAvg required 11.2 FL rounds respectively. Among the server-side optimization algo-
rithms, FedAdam reported the best F1-Score on the validation set after 9.8 FL rounds, on
average, while the remaining FL algorithms trained for approximately 9 FL rounds. This
could possibly partly explain their lower AUROC and AUPRC scores in comparison to the
other FL algorithms, as they may have obtained them slightly earlier than the optimal
training time. Overall, the performance of the FL algorithms was significantly better than
the one achieved with the LML approach, while they achieved comparable AUROC and
AUPRC with the CML approach.

| Method | AUROC AUPRC F1-Score Best FL Round

CML 0.836 +0.013 | 0.400 +0.009 | 0.473 +0.029 | -

LML 0.764 +0.009 | 0.239+0.009 | 0.252 +0.013 | -

FedAvg 0.832+0.037 | 0.348+0.052 | 0.335+0.047 | 11.2+4.3
FedProx 0.838+0.021 | 0.360+0.039 | 0.321+0.035 | 12.5+3.4
FedAdam 0.837 +0.022 | 0.364+0.037 | 0.303+0.007 | 9.8+1.2
FedAdagrad || 0.815+0.016 | 0.318+0.016 | 0.327 +0.024 | 9.3+2.3
FedYogi 0.825+0.021 | 0.329+0.029 | 0.325+0.041 | 9.1+1.1
FedAvgM 0.818 £0.023 | 0.322+0.035 | 0.314+0.035 | 8.7+2.2

Table 9.1. Test Performance with RNN architecture
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Figure 9.1. Comparison of ROC curves obtained with CML, LML and FL approaches with
the RNN architecture
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Figure 9.2. Comparison of Precision-Recall curves obtained with CML, LML and FL ap-
proaches with the RNN architecture



Chapter 9. Results & Discussion

9.1.2 LSTM architecture

Table 9.2 contains the metric scores for the CML, LML and FL approaches with the
LSTM model. The ideal CML model achieved an AUROC of 0.894, an AUPRC of 0.499
and a F1-Score of 0.489. The LML approach, which treats each hospital as an isolated
data silo and trains a local model for each hospital, obtained an AUROC of 0.803, an
AUPRC of 0.326 and a F1-Score of 0.384. Among the FL algorithms, FedAvg provided
the best AUROC score, but the worst AUPRC score, 0.899 and 0.446 respectively. It is
important to note that all FL. models, except FedYogi, achieved better AUROC scores than
the CML model, with FedProx, FedAdagrad and FedAvgM roughly equalizing the score
of FedAvg with an AUROC of 0.897. The best AUPRC score among the FL methods was
obtained with FedYogi (0.476), approximating the AURPC of the CML model, while the
FedProx, FedAdam and FedAvgM models reached AUPRC scores ranging from 0.453 to
0.456, considerably lower than FedYogi. Regarding F1-Score, FedProx performed the
best with a score of 0.438, whereas FedYogi and FedAdagrad followed up with scores
0.424 and 0.422 respectively. Once again, all FL models outperformed the LML models
in every metric category, showing a better predictive behavior on the foreign test set. The
ROC and Precision-Recall curves obtained with the CML, LML and FL approaches and
LTSM-based models are visualized in Figures 9.3 and 9.4 respectively.

We observe that the LSTM models required further FL training rounds before triggering
the early stopping mechanism, which is probably caused by the increased number of
trainable parameters (the LSTM model involves over three times more parameters than
the RNN model). Again, FedProx required the most FL training rounds until convergence,
18.9 on average, followed by FedAvgM with an average of 17.2 FL rounds and FedAvg
with an average of 16.8 FL rounds. The remaining federated optimization algorithms
The

models constructed following all 3 learning approaches were benefited from the LSTM

achieved convergence in less FL rounds, ranging from 14.7 to 16.5 on average.

architecture, achieving better scores for every metric. However, the FL models showed the
most significant improvement, in comparison with the CML approach, as their reported
AUPRC and F1-Scores were closer to the ideal scores of the CML model.

| Method | AUROC AUPRC F1-Score Best FL Round

CML 0.894 + 0.007 | 0.499 +0.020 | 0.489 +0.023 | -

LML 0.803 +0.034 | 0.326+0.038 | 0.384 +0.020 | -

FedAvg 0.899 + 0.006 | 0.446+0.037 | 0.417+0.035 | 16.8+3.9
FedProx 0.897 £ 0.010 | 0.456 +0.032 | 0.438+0.014 | 18.9+3.0
FedAdam 0.895+ 0.009 | 0.454 +0.029 | 0.409 + 0.028 | 16.5+ 1.8
FedAdagrad || 0.897 £ 0.010 | 0.449 +0.035 | 0.422+0.036 | 15.4+ 1.7
FedYogi 0.893+0.010 | 0.476 +0.022 | 0.424 +0.040 | 14.7 £ 0.8
FedAvgM 0.897 +0.011 | 0.453+0.038 | 0.418+0.031 | 17.2+3.8

Table 9.2. Test Performance with LSTM architecture



9.1.2 LSTM architecture

Receiver Operating Characteristic (ROC) Curve

104
0.8 4
— 0.6 1
z
a
=)
2
]
4
o
=
=
@
-4
@
2
= 044
0.2 4
4 — CML
L,
L — L
- —— FedAvg
o FedProx
S —— FedAdam
-
P4 —— FedAdagrad
e —— FedYogi
0.0 1 —— FedAvgM
=== baseline
0.0 0.2 0.4 0.6 0.8 10

False Positive Rate (FPR)

Figure 9.3. Comparison of ROC curves obtained with CML, LML and FL approaches with
the LSTM architecture
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Figure 9.4. Comparison of Precision-Recall curves obtained with CML, LML and FL ap-
proaches with the LSTM architecture
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9.1.3 GRU architecture

Table 9.3 contains the metric scores for the CML, LML and FL approaches with the
GRU model. The model constructed with the CML approach obtained an AUROC of 0.895,
an AUPRC of 0.539 and a F1-Score of 0.541. On the other hand, the LML approach with
the localized hospital models achieved an AUROC of 0.807, an AUPRC of 0.360 and a
F1-Score of 0.541, deviating significantly from the metric scores of CML. With regard to
AUROC, the FedAdagrad optimization algorithm reported the highest score, specifically
0.892, while FedAdam, FedProx and FedAvg roughly achieved an equivalent score. In
terms of AUPRC, the model trained with the FedProx algorithm reached a score of 0.507,
the FedAdam model achieved a score of 0.505 and the remaining FL algorithms had a
similar performance ranging from 0.499 to 0.502. The FedAdagrad algorithm also led to
the best F1-Score among the FL methods, reporting a score of 0.512. For this metric,
the other FL algorithms scored considerably lower, with FedAvg scoring 0.489 and the
remaining methods ranging from 0.466 to 0.480. Overall, the FL GRU-based models
performed significantly better than the LML models, while they achieved better AUPRC and
F1-Scores than the respective LSTM-based models. The ROC and Precision-Recall curves
obtained with the CML, LML and FL approaches and GRU-based models are visualized in
Figures 9.5 and 9.6 respectively.

Considering the number of FL training rounds, we observe that the FL algorithms
required on average less FL rounds than the LSTM-based models until convergence, but
considerably higher than those of the RNN-based models. In these experiments, FedAdam
achieved the best F1-Score on the validation set after 16.1 FL rounds on average, while
FedAdagrad and FedAvg required 15.5 and 15.2 FL rounds on average respectively. Then,
FedYogi, FedAvgM and FedProx reported their best FL model approximately after 14 FL
training rounds. Taking everything into account, the GRU-based models achieved a
comparable AUROC to the LSTM-based models, however they reported an improvement
in terms of AUPRC and F1-Score.

| Method | AUROC AUPRC F1-Score Best FL Round

CML 0.895+ 0.002 | 0.539+0.004 | 0.541 +0.020 | -

LML 0.807 £ 0.032 | 0.360 +0.021 | 0.413+0.024 | -

FedAvg 0.890 £ 0.007 | 0.499 + 0.020 | 0.489 +0.023 | 15.2+2.3
FedProx 0.891 +0.006 | 0.507 +0.016 | 0.472+0.042 | 14.2+2.5
FedAdam 0.891 + 0.005 | 0.505+0.014 | 0.480+0.046 | 16.1+2.1
FedAdagrad || 0.892 + 0.006 0.502 + 0.018 | 0.512 +0.032 15.5+ 1.7
FedYogi 0.887 + 0.007 | 0.500 + 0.021 | 0.475+0.030 | 13.7+0.7
FedAvgM 0.889 + 0.008 | 0.502 + 0.020 | 0.466 +0.039 | 13.9+0.9

Table 9.3. Test Performance with GRU architecture
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Figure 9.5. Comparison of ROC curves obtained with CML, LML and FL approaches with
the GRU architecture
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Figure 9.6. Comparison of Precision-Recall curves obtained with CML, LML and FL ap-
proaches with the GRU architecture
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9.2 Results for Experimental Scenario 2

9.2.1 Extreme Hospital X1

Table 9.4 contains the metric scores for the CML, LML and FL approaches with the
participation of hospital X1 in the FL training process. The CML model, our point of
reference, achieved an AUROC of 0.870, an AUPRC of 0.461 and a F1-Score of 0.498. The
local models were heavily affected by the increased statistical heterogeneity, leading to an
AUROC of 0.689, an AUPRC of 0.185 and a F1-Score of 0.289. In terms of AUROC, all FL
models performed slightly worse than the CML model, with FedProx achieving the best
AUROC among them (0.854). FedAvg follows up with an AUROC score of 0.852, while the
remaining FL algorithms reported AUROC scores in the range of 0.0848-0.851. Regarding
AUPRC, the FL algorithms were considerably affected by the presence of hospital X1 among
the participants, with FedAvg performing the best with an AUPRC of 0.405. The second
best performing FL algorithm was FedProx with an AUPRC of 0.402, while the server-
side optimization FL algorithms reached an AUPRC ranging from 0.390 to 0.392, besides
FedYogi with an AUPRC of 0.399. Considering the F1-Scores, two of the server-side
optimization FL algorithms, FedYogi and FedAdagrad, stand out, recording a F1-Score of
0.433 and 0.426 respectively, while FedProx and FedAvg achieved a F1-Score of 0.413
and 0.407. Overall, each approach was affected by this new experimental environment,
with the performance of the FL methods slightly deviating from the scores of the CML
approach, compared to the previous experiment with the GRU-based models. The ROC
and Precision-Recall curves obtained with the CML, LML and FL approaches and the
participating hospital X1 are visualized in Figures 9.7 and 9.8 respectively.

Observing the best FL round of each FL algorithm, the first thing to notice is that
the FL methods trained longer before triggering the ES mechanism, compared to the
previous experiment. FedAdagrad required 17.2 FL training rounds on average, while
FedProx and FedYogi needed more than 16 FL rounds before reporting their best F1-
Score on the validation set. The other FL methods converged approximately after 15.5
FL rounds on average. Taking everything into account, the participating hospital X1
altered the characteristics of the global dataset and the FL environment, affecting every
ML approach. The FL methods still outperformed the LML approach, even though they

deviated more from the ideal CML performance.

| Method | AUROC AUPRC F1-Score Best FL Round |

CML 0.870 £ 0.004 | 0.461 +0.046 | 0.498 +0.042 | -

LML 0.689+0.030 | 0.185+0.028 | 0.289 + 0.046 | -

FedAvg 0.852 + 0.008 | 0.405+0.055 | 0.407 +0.058 | 15.5+2.3
FedProx 0.854 +0.008 | 0.402+0.044 | 0.413+0.47 16.5 + 1.2
FedAdam 0.851 +0.012 | 0.392 +0.056 | 0.400+0.072 | 15.6+2.0
FedAdagrad || 0.848 +0.007 | 0.390 +0.049 | 0.426 +0.060 | 17.2+2.4
FedYogi 0.850 + 0.008 | 0.399 +0.051 | 0.433+0.050 | 16.1+1.4
FedAvgM 0.851 + 0.006 | 0.392 +0.042 | 0.395+0.074 | 15.7+2.5

Table 9.4. Test Performance with ‘extreme’ hospital X1
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Figure 9.7. Comparison of ROC curves obtained with CML, LML and FL approaches with
the ’extreme’ hospital X1
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Figure 9.8. Comparison of Precision-Recall curves obtained with CML, LML and FL ap-
proaches with ‘extreme’ hospital X1
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9.2.2 Extreme Hospital X2

Table 9.5 contains the metric scores for the CML, LML and FL approaches with the
participation of hospital X2 in the FL training process. The model trained with the CML
approach achieved an AUROC of 0.871, an AUPRC of 0.537 and a F1-Score of 0.526. The
local models performed again significantly worse with an AUROC of 0.728, an AUPRC
of 0.288 and a F1-Score of 0.390. The FL models maintained a performance relatively
closer to that of the centralized ML method, both in terms of AUROC and AUPRC. The
best performing FL algorithm in these two metric scores was FedAvgM, with 0.860 and
0.503 respectively. Regarding AUROC, the remaining FL algorithms showed a similar
performance ranging from 0.854 (FedYogi) to 0.859 (FedAvg and FedProx). With respect
to AUPRC, FedYogi reported the second best score (0.501), while the remaining FL algo-
rithms obtained scores ranging from 0.492 to 0.495, besides the standard FedAvg method
(0.481). Moreover, FedYogi achieved the best F1-Score (0.477), followed by the rest of the
server-side optimization FL methods, with FedAvgM and FedAdagrad reaching a F1-Score
of 0.463. FedProx considerably underperformed in comparison to the other FL algorithms,
achieving a F1-Score of 0.405, a slight improvement upon the F1-Score of the LML ap-
proach. On average, the FL methods effectively handled the additive statistic heterogeneity
of hospital X2, maintaining their performance with reference to the CML approach. The
ROC and Precision-Recall curves obtained with the CML, LML and FL approaches and
the participating hospital X2 are visualized in Figures 9.9 and 9.10 respectively.

Considering the number of FL training rounds for each FL algorithm, we observe that
all FL algorithms required more FL training on average than in the previous experiments,
before reaching the best F1-Score on the validation set and triggering the early stopping
mechanism. The FedAvgM method required the most FL rounds on average (20.2), while
FedAdam needed the least for convergence (19.1). Overall, we observe that CML obtained
comparable metric scores to our previous basic experiment with the GRU-based models,

while the FL algorithms were slightly affected in a negative manner.

| Method || AUROC | AUPRC | F1-Score Best FL Round

CML 0.871+0.012 [ 0.537 £0.029 [ 0.526+0.032 | -

LML 0.728 +0.032 | 0.288 +0.037 | 0.390 +0.025 | -

FedAvg 0.859 +0.011 | 0.481+0.038 | 0.447 £0.062 | 19.2+2.0
FedProx 0.859 +0.013 | 0.492 +0.027 | 0.405+0.052 | 19.6+3.8
FedAdam || 0.857 £ 0.013 | 0.495+0.032 | 0.452+0.048 | 19.1£2.6
FedAdagrad || 0.857 +0.013 | 0.492+0.034 | 0.463+0.054 | 19.3£15
FedYogi 0.854 +0.012 [ 0.501£0.036 | 0.477+0.038 | 19.2+3.2
FedAvgM 0.860 +0.011 | 0.503+0.026 | 0.463+0.052 | 20.2 + 3.2

Table 9.5. Test Performance with ’extreme’ hospital X2
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Figure 9.9. Comparison of ROC curves obtained with CML, LML and FL approaches with
the ’extreme’ hospital X2
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Figure 9.10. Comparison of Precision-Recall curves obtained with CML, LML and FL ap-
proaches with ’extreme’ hospital X2
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9.3 Results for Experimental Scenario 3

9.3.1 Examination of Hospital G

Table 9.6 contains the metric scores for the LML and FL approaches with and without
the participation of hospital G in the FL training process on its local test set. It is important
to restate that hospital G consists of only 930 ICU stays, showing a 5.6% mortality ratio.
The local model of hospital G achieved an AUROC of 0.775, an AUPRC of 0.322 and a
F1-Score of 0.320, unable to learn more complex relationships about its data due to the
limited size of the training dataset. The FedAvg algorithm with the training hospitals
besides hospital G (TransferFL) achieved an AUROC of 0.827, an AUPRC of 0.282 and a
F1-Score of 0.341, improving in terms of AUROC and F1-Score upon the local hospital G
model, but still showing limitations, which can be pinpointed on the AUPRC metric score.
Nevertheless, all FL methods that included hospital G in the training process performed
better than TransferFL. FedYogi was particularly effective, obtaining the best scores for
every evaluation metric, with an AUROC of 0.888, an AUPRC of 0.497 and a F1-Score
of 0.488. Regarding AUROC, the other FL methods reported scores ranging from 0.885
to 0.887, while, in terms of AUPRC, FedProx reached the second highest score (0.494),
followed by FedAvg and FedAvgM (0.492). In relation to F1-Score, besides FedProx (0.444)
and FedAvgM (0.414), the other FL algorithms reached more similar scores to FedYogi,
ranging from 0.465 to 0.470.

federated network had a significant positive impact on the final model, as it performs

It is evident that the participation of hospital G in the

considerably better than both the corresponding FL model without hospital G and the
local model of hospital G.

TransferFL achieved convergence slower than the FL algorithms with the participation
of hospital G. It required 17 FL rounds on average for achieving the best F1-Score on the
validation set, while the other FL models required from 13.6 (FedAvgM) to 15.3 (FedProx)
FL rounds on average. Overall, hospital G provided useful information to the FL network,
thus helping in developing a more robust and efficient predictive model for its local data
as well. It outperforms the FL model without hospital G, thus providing strong motivation

for its participation in FL training.

| Method | AUROC | AUPRC F1-Score | Best FL Round |

LML 0.775+0.055 | 0.322+0.156 | 0.320+0.117 | -

TransferFL || 0.827 £ 0.011 | 0.282+0.057 | 0.341 £0.033 | 17.0+ 1.2
FedAvg 0.887 £ 0.036 | 0.492+0.129 | 0.470+0.138 | 14.7 £ 1.1
FedProx 0.887 £ 0.037 | 0.494+0.130 | 0.444+0.084 | 15.3+ 1.3
FedAdam 0.886 + 0.036 | 0.488+0.126 | 0.465+0.095 | 14.0+0.8
FedAdagrad || 0.885+0.038 | 0.488+0.131 | 0.466+0.159 | 14.6+ 1.1
FedYogi 0.888 + 0.039 0.497 + 0.135 0.488 + 0.142 144+ 1.0
FedAvgM 0.886+0.034 | 0.492+0.129 | 0.414+0.073 | 13.6+ 1.4

Table 9.6. Test Performance on Hospital G
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9.3.2 Examination of Hospital C

Table 9.7 contains the metric scores for the LML and FL approaches with and without
the participation of hospital C in the FL training process on its local test set. Hospital
C contains the most data samples among the training hospitals, with 1,788 patient ICU
stays and a 4.1% mortality ratio. The local model of hospital C achieved an AUROC of
0.792, an AUPRC of 0.324 and a F1-Score of 0.328. On the other hand, the FL model
with the collaboration of the other 7 training hospitals, referred as TransferFL, reached
an AUROC score of 0.802, an AUPRC score of 0.244 and a F1-Score of 0.320. However,
both approaches are outperformed by the FL models with the training cohort of all 8
hospitals. FedYogi achieves the best AUROC score of 0.814, while the other FL algorithms
reported scores in the range of 0.810 to 0.812. In terms of AUPRC, another server-
side optimization FL algorithm, FedAdam, achieved the best score of 0.382, followed by
FedAvgM and FedYogi with scores 0.378 and 0.376 respectively. Then, regarding F1-
Score, FedAdagrad reached a score of 0.388, the best among the implemented methods in
this experiment. FedAvg and FedAvgM provided the best F1-Scores besides FedAdagrad,
0.382 and 0.379 respectively, and FedAdam obtained the worst F1-Score among these FL
algorithms (0.347). Once again, the local model of hospital C and the FL model trained
by the remaining 7 hospitals fail to perform as good as the FL models that were developed
with the participation of hospital C in the collaborative training process.

Regarding the FL round when the best F1-Score on the validation set was observed,
FedAvgM required 19.3 training rounds on average, more than any other FL method.
Then, TransferFL and FedAdagrad needed 17.9 FL rounds on average before obtaining the
best F1-Score on the validation set, while, for the remaining FL algorithms, the training
rounds before achieving this ranged from 14.8 (FedAvg) to 16.9 (FedYogi). Overall, hospital
C, as the hospital with the most data within the training cohort, should theoretically be
capable to train a powerful predictive model on its own, reducing the positive impact of
FL on its local dataset. However, we observe that the FL methods, with the participation
of hospital C, also led to a considerable increase in the evaluation metric scores for the

local test set of hospital C.

| Method | AUROC AUPRC F1-Score Best FL Round

LML 0.792 + 0.056 | 0.324 +0.154 | 0.328 +0.049 | -

TransferFL || 0.802 +0.033 | 0.244 +0.026 | 0.320+0.026 | 17.9+ 1.6
FedAvg 0.811+0.058 | 0.371+0.124 | 0.382+0.136 | 14.8+1.2
FedProx 0.810+0.060 | 0.373+0.132 | 0.367 +0.142 | 16.0+ 1.4
FedAdam 0.812+0.058 | 0.382+0.135 | 0.347+0.119 | 15.7+0.7
FedAdagrad || 0.811+0.061 | 0.370 +0.140 | 0.388 + 0.132 17.9 £ 3.6
FedYogi 0.814 £ 0.060 | 0.376+0.140 | 0.354+0.134 | 16.9+0.6
FedAvgM 0.812+0.059 | 0.378 +0.134 | 0.379+0.140 | 19.3+ 1.1

Table 9.7. Test Performance on Hospital C
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9.4 Discussion

In this work, we studied the performance of federated learning on task of early predic-
tion of ICU mortality risk, using multivariate time series data, with a real world, multi-
center database. We simulated various FL environments, each of them designed to gain
insight into the efficiency of FL algorithms in the presence of statistical heterogeneity. We
integrated different RNN-based models into the federated learning setting, while testing
the generalizability of the FL models on a foreign test set. Then, we explored how ’extreme’
FL clients, that increase the heterogeneity of the federated network, affect the training of
FL models in comparison to the ideal centralized ML approach. Finally, we focus on
single hospital units and evaluate the performance of models created collaboratively be-
tween them and a cohort of training hospitals in comparison to other privacy-preserving
approaches (a local model of the studied hospital or a FL model without its participation).
The results of our experiments, which we previously presented, indicate the advantages
of federated learning over the standard privacy-preserving approach of localized mod-
els, while its performance often approximates the performance of the ideal, but heavily

restricted due to data privacy risks, CML approach.

9.4.1 Experimental Scenario 1

One of the main objectives of the first scenario was to assess the performance of
different recurrent neural network architectures (RNN, LSTM and GRU) on this problem.
Studying tables 9.1, 9.2 and 9.3, we observe that the RNN-based model produced the
worst performance scores for every evaluation metric, regardless of the learning approach
that was followed. However, we expected this type of predictive behavior, as the basic
RNN architecture involves significantly less trainable parameters than the LSTM and
GRU-based models, as shown in Figure 8.4, therefore being unable to understand more
complex relationships from the input data. Then, the LSTM-based model performed
significantly better, learning underlying patterns that allowed it to achieve higher scores
with the CML, LML and FL approaches. Nevertheless, the less resource-intensive GRU-
based model obtained the best metric scores among the 3 different RNN architectures,
with all 3 approaches (the only exception is the AUROC metric with the FL approach, since
the best federated learning LSTM-based model achieved a score of 0.899, slightly better
than the best federated learning GRU-based model with a score of 0.892 respectively).

Another aspect of FL training that should be taken into account is the communication
overhead. In our experiments, we utilize an early stopping mechanism, monitoring the
F1-Score on the validation set. Consequently, faster convergence to the best F1-Score on
the validation set would reduce the required FL training rounds for developing a robust
model, therefore reducing the total transmission of model parameters over the network.
The FL algorithms employed in this thesis, needed approximately 10 FL rounds before
obtaining their best F1-Score on the validation set during training with the RNN model,
Respectively, when training the LSTM model, the FL methods required just above 16.5

rounds on average, while the training of the GRU model needed less than 15 training
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rounds. Considering the number of trainable parameters for each model, the number
of clients and the FL training process, we calculate that training the LSTM-based model
induced the heavier communication overhead (transmission of over 3.5 million trainable
parameters in total), while the GRU-based model was approximately 30% lighter (with
the transmission of less than 2.5 million parameters in total) and the RNN-based model
was the most resource-efficient among the three, with approximately a fifth of the com-
munication overhead of the LSTM model(with the transmission of roughly 650 thousand
parameters in total).

Then, it is important to evaluate the effectiveness of federated learning, by comparing
the performance of FL models with the CML and LML approaches, which constitute our
two points of reference as the ideal and baseline performance respectively. Table 9.8
shows the performance gap between the best FL approach and the CML and LML ap-
proaches for each model architecture and evaluation metric, thus giving us an insight of

how well the FL models approximate the ideal CML and build upon the baseline LML.

Metric RNN LSTM GRU
FL-CML | FL-LML | FL-CML | FL-LML | FL-CML | FL-LML

AUROC +0.002 | +0.074 | +0.005 | +0.096 | —0.003 | +0.085
AUPRC -0.036 | +0.125 | -0.023 | +0.150 | —-0.032 | +0.147
F1-Score | —0.137 | +0.083 | -0.051 | +0.054 | —-0.029 | +0.099

Table 9.8. Performance analysis of the best FL. model of each RNN architecture, in compar-
ison to the CML and LML

We observe that the LSTM-based models, trained within a federated learning environ-
ment, perform more similarly to the respective CML model, in terms of AUROC (+0.005)
and AUPRC (-0.023), and indicate a larger improvement in performance over the base-
line LML models (+0.096 and +0.150 respectively). Regarding F1-Score, the GRU-based
model seems to be the one better adapted to the FL setting, scoring only 0.029 less than
the CML approach and a substantial 0.099 more than the LML approach. These obser-
vations, along with the communication overhead analysis, render GRU architecture the
most suitable for the task of early prediction of ICU mortality risk using MTS data, within
the FL framework we conduct our experiments.

All models were evaluated on a foreign test set, consisting of data from 4 hospitals
that did not participate in the training phase. This allows us to draw conclusions about
the performance of the model, with regard to its predictions, and the model’s ability
to generalize beyond the training hospitals. We observe that, despite the non-IID local
datasets of the FL clients, the FL models achieve noteworthy metric scores, closely re-
sembling the performance of the CML approach which has access to the entire global
dataset and optimizes the training process. We observe that, based on the performance
on each evaluation metric, the standard FedAvg algorithm performs considerably well,
especially in combination with the RNN-based and LSTM-based models. This highlights

the inherent robustness of the simplest and most commonly used FL algorithm in an
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environment with a certain degree of heterogeneity. The FedProx algorithm, which reg-
ulates the client updates with a proximal term, outperformed FedAvg for certain metrics
and model architectures, such as the F1-Score of the LSTM model (0.438 over 0.417) and
the AUPRC score of the GRU model (0.507 over 0.499), highlighting its ability to han-
dle statistical heterogeneity more efficiently. The server-side optimization FL algorithms,
namely the 3 FedOpt algorithms and FedAvgM, generally converged faster than FedAvg
and FedProx when training the models with the RNN and LSTM architectures, as they
incorporate additional optimization techniques, usually resulting in increased training
efficiency. However, this may have led them to slightly underfitting during training with
the RNN and LSTM models, performing worse than FedAvg and FedProx on average. Con-
sidering the GRU architecture experiment, FedAdam and FedAdagrad required more FL
rounds than FedAvg and FedProx before convergence, which translated into an improve-
ment in their predictive performance, with FedAdagrad providing the best AUROC and
F1-Score among the FL algorithms on this experiment. Taking everything into account, a
more exhaustive fine-tuning could potentially lead to some FL algorithms performing even
better under certain circumstances, however our results indicate that federated learning
is robust to heterogeneous federated networks, leading to the development of powerful,

generalizable models, in contrast to the privacy-preserving localized ML.

9.4.2 Experimental Scenario 2

This second scenario investigated the performance of federated learning in the pres-
ence of ‘extremely’ divergent FL clients, in terms of dataset size and class distribution,
from the cohort of training hospitals. First, we added hospital X1 to the training cohort,
which contains 1,900 ICU stays, with just 10 of them resulting in mortality, a mere 0.5%.
Due to its size, this hospital has a contribution of 17% during the aggregation of local
model parameters, significantly affecting the final FL model. As the test set for this exper-
iment derives from the training hospitals and is characterized by a mortality ratio of 4.3%,
we would want to regulate the influence of this hospital, while simultaneously developing
a robust global model.

At first glance, it seems that the federated learning algorithms perform considerably
well, nevertheless affected by the addition of hospital X1. One of our points of focus is
FedProx, which surpasses the standard FedAvg in terms of AUROC and F1-Score and is
slightly behind regarding AUPRC. Even for AUPRC, Figure 9.8 shows that FedAvg achieves
a better combination of precision and recall only as recall is substantially reduced, roughly
approximating 0. This is an indicator of the effect of the proximal term on the client
updates, as they tend to remain closer to the global model of the previous FL round.
Even though increasing the proximal term could further restrict the divergent behavior of
hospital X1, it could deteriorate the FL system’s ability to capture underlying patterns and
relationships from the other FL clients. On a similar note, the server-side optimization FL
algorithms displayed worse performance in these highly heterogeneous settings (in terms
of AUROC and AUPRC), with the exception of FedYogi and FedAdagrad, which provide the
best F1-Scores. This highlights a weakness of this category of algorithms to effectively
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handle this type of client heterogeneity. As a result, we deduce that, in heterogeneous
federated networks with highly influential ‘extreme’ clients, local-side mechanisms are
more suitable to regulate local model updates, such as a proximal term with FedProx
or control variates with SCAFFOLD. However, the FL approach is seriously impacted, in
comparison to CML. As shown in Table 9.9, the best FL metric scores diverge considerably
more from the respective CML scores, in the presence of hospital X1. Even though the
FL performance is significantly better than the performance of LML models (which also
include hospital X1), we evaluate federated learning with CML as a point of reference,

therefore regarding this scenario demanding for federated learning.

Analogously, our second sub-scenario involves hospital X2, which contains only 300
ICU stays, with 75 of them resulting in mortality, a ratio of 25%. With regard to its
size, hospital X2 has a small contribution of 3% during the aggregation of the local
model updates. Once more, the dataset of this artificial hospital is biased in comparison
to the other participating hospitals and the global data distribution, requiring special
treatment during FL training, while the combined test set from the participating hospitals

is characterized by a mortality ratio of 5.7%.

The results for this experiment provide us with an insight into the performance of the
FL algorithms from another point of view. The FedProx algorithm could be considered the
most unsuitable among the FL optimization algorithms for this sub-scenario. In this case,
the regulation of the local model updates with the proximal term does not allow hospital
X2 to train ’freely’ its local model. As a result, the minor contribution of hospital X2 to
the final model is actually reduced even further, since the hospital X2 model update is
limited to be closer to the previous global model. This can be observed both with AUPRC
and F1-Score, where especially the value of the latter for FedProx is considerably lower
than the other FL methods. Similarly, we observe that the standard FedAvg algorithm is
outperformed by the server-side optimization FL algorithms, as it also fails to effectively
utilize the available information from the heterogeneous network of clients. On the con-
trary, the 3 FedOpt algorithms (especially FedYogi) and FedAvgM perform significantly
better, in relation to AUPRC and F1-Score which are the most informative metrics for
this imbalanced task. This indicates that server-side optimization and local-side training
without regulations is a more appropriate FL approach to this problem, as it does not
further weigh down the influence of clients with smaller datasets. Table 9.9 shows that
the difference between the best FL and CML scores has increased, however not as much

as in the first sub-scenario, partly because of the size of hospital X2.

Metric GRU GRU + X1 GRU + X2
FL-CML | FL-LML | FL-CML | FL-LML | FL-CML | FL-LML
AUROC -0.003 | +0.085 | -0.016 | +0.165 | -0.011 | +0.132
AUPRC -0.032 | +0.147 | -0.056 | +0.220 | -0.034 | +0.215
F1-Score | —0.029 | +0.099 | -0.065 | +0.144 | —-0.049 | +0.087

Table 9.9. Performance analysis of the best FL models from scenario 2 and the GRU-based
model from scenario 1, in comparison to the CML and LML
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9.4.3 Experimental Scenario 3

The third scenario focuses on individual hospitals, evaluating the impact of their
participation in a FL environment on their local test sets. Our first point of interest is
hospital G of the training cohort, containing 930 ICU stays with a 5.6% mortality ratio.
Table 9.6 indicates that hospital G contains few data to train a robust predictive model
and the privacy-preserving transfer learning alternative, adopting a FL model trained on
the remaining hospitals of the training cohort, fails to generalize sufficiently to capture the
characteristics of the hospital G’s dataset. By incorporating hospital G into the federated
training network, we observe a substantial improvement in every metric score, regardless
of the employed FL method. Even though hospital G has a minor 8% contribution during
the model weights aggregation at the server-side, it clearly improves the final model by
exposing it to a subset of its local data during training. FedYogi algorithm achieved
the best scores in every evaluation metric, however most FL algorithms had roughly
similar performance in terms of AUROC and AUPRC. As we expected, by participating in
FL training, hospital G advances the development of a more generalizable model, which
simultaneously constitutes the most effective, privacy-preserving solution for predictions
on its local data.

Since hospital G contains limited data, it is strongly motivated to participate in a FL
environment, in order to develop a robust model that has also been trained on its unique
set of patient ICU stays. Our next step was to explore the impact of participation for a
larger hospital, thus focusing on hospital C. It contains data for 1,788 ICU stays with a
4.1% mortality ratio, the largest hospital of our training cohort. According to our results,
shown in Table 9.7, the local model of hospital C achieves slightly better metric scores
than those achieved earlier by the local model of hospital G, mainly due to the increase
in data availability. The transfer learning FL model performs overall worse than the local
model, potentially due to the absence of the hospital C that provided the most data to the
federated network (which also changes the dynamics of the FL environment, with all FL
clients now contributing more to the final model). Then, we observe that the FL methods
with the participation of hospital C achieve the best scores for all evaluation metrics,
even though they do not improve upon the performance of the local model as much as
for hospital G. One of the main reason behind this behavior is that hospital C already
has a sufficient amount of data to train a satisfactory predictive model. Nevertheless,
participating in the development of a FL model again leads to a noticeable improvement,
especially in terms of AUPRC and F1-Score. Consequently, even though a larger hospital
seems to gain less from FL participation, in contrast to a smaller-sized hospital, there are
still significant advantages to be reaped from collaboratively building a FL model, with
regard to both improving performance on the local data and obtaining a generalizable

model with respect to the global data.
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This thesis addressed the problem of multi-center collaboration on the early ICU mor-
tality risk prediction problem with multivariate time series data. We studied the effective-
ness of different privacy-preserving FL algorithms on a realistic, non-IID federated net-
work of hospitals, comparing them to the ideal centralized ML approach and the baseline,
privacy-preserving local ML approach. Our study cohort derives from the eICU Collab-
orative Research Database, which contains real world data for ICU stays from multiple
hospitals across the US, thus allowing us to recreate a real-life, heterogeneous environ-
ment. To train our models, we employed deep neural network architectures, focusing
on RNN, LSTM and GRU, and their integration within the FL framework. We designed a
series of experimental scenarios in order to gain insight into different aspects of federated
learning, such as global model generalizability, sensitivity to ’extreme’ FL clients and the

importance of participation in the FL setting.

The results of our experiments showcase the potential of federated learning in a task
where data privacy and security is of paramount importance. Among the three recurrent
neural network models we implemented, we observed that the GRU-based model consti-
tutes the golden ratio in the tradeoff between performance and communication overhead
in the FL setting for this task, whereas the LSTM-based model was the most resource-
intensive and the performance of the RNN-based model deviated the most from the ideal
CML method. Simultaneously, the FL models achieved robust scores on a foreign test set,
therefore highlighting the capacity of FL models to generalize beyond the training data
in contrast to localized models. Then, in the presence of a FL client with an ’extreme’
data distribution against the under-represented class and significant contribution to the
model aggregation phase, our results indicate local-side mechanisms, such as the proxi-
mal term of FedProx, are more suitable to regulate any negative effects on the final model.
On the other hand, in the presence of a FL client with an ’extreme’ data distribution
towards the under-represented class (in comparison to the training cohort) and minor
contribution to the global model, we observe that server-side optimization FL algorithms
(such as FedYogi) perform better, as they allow the FL clients to train without restrictions
and employ optimization techniques during weight aggregation. Moreover, we measure
the impact of a hospital partaking in a FL training process, showing that, besides smaller
sized hospitals, larger sized, more *powerful’ hospitals can also be individually benefited

from contributing to the development of a FL model.
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However, we should state certain limitations of our experiments, which point out some
intriguing future research directions. Initially, regarding the task of early ICU mortality
risk prediction, it would be interesting to develop ML models that process both temporal
variables, such as vital signs and lab tests, but also static characteristics, such as age,
diagnosis and patient history, and integrate them into the FL setting, measuring their per-
formance. Another interesting direction would be to explore the re-sampling frequency
of the MTS data used in this thesis and determine the frequency that provides the most
useful information to the predictive models. Then, regarding the federated learning set-
ting, experiments with a larger number of participating hospitals would create different
dynamics in the FL environment and provide more representative results of the study
cohort. Moreover, one could focus on specific FL algorithms and study their behavior in
different settings with a more exhaustive hyperparameter fine-tuning, as well as develop
personalized federated learning algorithms to adapt more effectively to individual client

datasets.
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