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IlepiAnypn

Ta botnets eivat opadeg amo nmapabiacpéveg cUoKeUEG ouvdedepéveg oto Aladiktuo Tou
eAéyyovial and KakoBoudo mPoonmIio. XP1olplorolouvidal yid TV EKTEAEOT KATAVEPNIEVOV
ermbeoewv apvnong unnpeolov (Distributed Denial-Of-Service, DDoS), kAot dedopévav,
avermOuuntn alAnloypadia 1 anatn kAk. H eupeia epgpavion embéoewv odnyoupevav
aro botnets mpoxdAeoe v avarttuén pebodewv avixveuong toug. Mia tétola mpPooiyyion
ouvbuddel otatiotiky aviyveuon aveopaiiev (anomaly detection) pe avixveuorn KoOwotrntev
KOWOVIK®V d1ktuev (community detection) yia v avakdduyn duopeveov kOpbBev os éva
biktuo. To mpwto otddlo g peboddou ypnoporolel kabapn Kivnon diktuou yla ekpabnon
H1lag EPMEIPIKIG KATAVOUL PUOIOAOYIKHG KUKAOpopiag. Auth n Katavopur avadopdsg ouy-
Kplvetal ot ouvéxela pe véa Kivnor, pe peyaleg anoxkAioelg va Sewpouviatl avopaieg. To
bevtepo otadio enefepyadetal v avopadn Kivnorn facigopevo otny 16€a 61t ot aAAnAerubpad-
0e1§ TV KOpBwv-bots cuoyetidovial petay toug Kat Snpoupyeitatl éva ypadnpa KOWmVIKEG
ouoyétong (FKX) (Social Correlation Graph, SCG). Zto I'KX ta bots eivat apketd mbavo va
OXNPATicouV KOWOTNTEG, OTOTE XPNOHOIOEITAl AVIXVEUOT] KOWOTH IOV Yid TNV avayvoplor)
T0UG.

YKOMOg tng rapovoag dumdepatkng epyaoiag eivat n a§loddynon Siadpopetikiv alyo-
pPOnwV aviyveuong KOOtV oto 1eAko otadio g pebodou, cuprneplAapBavopévou Tou
Hyperbolic Girvan-Newman, &vog aAyopiOpiou rmou xpnotporotel UnepBoAKY] eVOOPATOOT)
yla va ermrayxuvel toug urodoyiopoug. Ot aAyopiBuot ouykpivovral pe Bdaon v akpiBeia
TOUG OTOV eVIOIopPo napabiacpévev KopBav amnod tpelg Siapopetikeg embeoelg ano botnets

Katl avaAuovial ta oPpEAn KAl Td PEIOVEKTNIATA KABe Tepinmiaong.

Agge1g KAeda

Botnets, Avixveuon Avopaliov, Avixveuon Kowotrtov, AopdAeia Aiktuev, Evoopdtoon

Aktuev, YriepBoAikog Xampog
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Abstract

Botnets are groups of compromised Internet-connected devices that are controlled
by a malicious actor. They are used to perform Distributed Denial-of-Service (DDoS)
attacks, data theft, spam or click fraud. The widespread popularity of botnet-led attacks
caused the development of botnet detection methods. One such approach combines
statistical anomaly detection with social network community detection in order to identify
compromised nodes in a network. The first stage of the method uses clean network traffic
to learn an empirical distribution of normal traffic. This reference distribution is then
compared to new traffic, and large deviations are deemed anomalous. The second stage
processes the anomalous traffic based on the idea that the interactions of bot nodes are
correlated, and creates a Social Correlation Graph (SCG). In the SCG bots are likely to
form communities, so community detection is used to identify them.

The aim of this thesis is to evaluate several different community detection algorithms
on the final stage of the method, including Hyperbolic Girvan-Newman, an algorithm
that utilises hyperbolic embedding in order to speed up calculations. The algorithms are
compared based on their accuracy in identifying compromised nodes from three different

botnet attacks, and the benefits and drawbacks of each case are analysed.

Keywords

Botnets, Anomaly Detection, Community Detection, Network Security, Network Em-

bedding, Hyperbolic Space
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Extetapévn EAAnvikn IlepiAnyn

0.1 Ewayoyn

Ta botnets eivat opadeg cuokeumwv ouvdedepévav oto Atadiktuo nou £xouv napablactel
Kat gAéyxovial and KakoBouAo mpoowIo. XpProlporolouvidl Yid TV EKTEAECT] KATAVEWD)-
pévev embéoswv dpvnong vnnpeowwv (Distributed Denial-of-Service, DDoS), kAorry &e-
dopévav onwg otorxeia Aoyaplaocpou 1) tpanedag, avermuuntn aAAnloypadia 1) amdatn KAK.
Ot ermiBeoeig DDOS urieppopt®mvouV ToV OTOXO0 HE TIEPITIA atthpatd, Pe arnotédeopna va aduvatet
va SIEKTIEPAINOEL PUOIOAOYIKA AlTHHATA KAl EMOPEVRS I UTPEsia tou va pnv eivatl dia-
Yéomun. Adyo g dnpotkotntag Kat g coBapdtntag tewv ermbéoswv DDoS mou 0dnyouv-
tat ano botnets, 0 eVIOMONOG TOUG £XEL YIVEL éva ONPAVITIKO MPoBAnpa kuBepvoaodaldelag.
[Tpokep£vou va armoPpeuxBoUV 01 YVWOTEG TEXVIKEG AviXveuong Toug, ta botnets e§edicoovtat
81apKAOG, aAAd n oupreplpopd Toug ouveXilel va erbelkvuel oplopéva potiBa ou ermTpe-
TIOUV TNV aViXVEUOT) TOUG. X VEVIKEG Ypapupég, tvat rmo SUokoAo va evroruotel pia emibeon
Kal va avayveplotouv ol rmapabiacpévol KopBotl Katd ta apXlkKa otadia g emibeong, aida

600 vopitepa avakadupBOei 1o botnet, 1600 10 £UKOAN £ival ] Apuva arévavti tou.

H epyacia aut e§etdler pa vnapyovoa peéBodo aviyxveuong botnets mou cuvbualdet
aviXveuon aveOPaAlov Kdl aviXVveuorn KOWOTAT®V. ApXIKd, 1 1EO6060G CUYKEVIPpWVEL QU-
ol0Aoy1kr) Kivnon katd 1) Sidpreia piag reptodou exknaideuong, 1) oroia ot cUVEXELd XPnot-
poroteital yla va nipoodilopiotel edv n véa Kivnon eivat aveopadn Bacet tng arnokAong g
amo Vv Kivron avadopdg. Tin OUVEXELd, I avOpaAn Kivnon vroBadAstal oe enegepyaoia
TIPOKEEVOU va opadorionBouv ta bots pe Bdon ) cuoxEtion 1wv aAAnAsudpdaocedv ToUg.
H oupBoAr) g mapouvoag dumdopatkig epyaociag eivat i) e§€taon Kat oUYKP1on oAAArmAGv

SlapopetikV aAyopiBpmv avixveuong Kowotrtev oto TeAko otddio g pebodou.

Tpeig Srapopetikég ermubéoetg and botnets xpnoyiornoovvial yia tyv afloAoynor tov al-
YopiBpuwv, o1 oroiol ot CUVEXElA OUYKPIVOVIAlL G ITPOG TNV AKPiBeld TOUG OTOV EVIOITIONO
TV rapablacpévayv Kopbav. Z1a Ielpdpata Xprnolponoieital KUKAogopia arnod ta npetd otd-
61a kaBe emibeong, KaOwG Ta ermopeva otadia gival eUKoOAA aviXveuoipd AOY® ToU HEYAAou
OyKou KurAogopiag. ITévie adyopiBpotl avixveuong kowotntag ouykpivovial, cuprneptAap-
Bavopévou tou Hyperbolic Girvan-Newman, evog aAyopiOpou rmou evomopatovel 1o 8iktuo
o€ UnePBOAIKO XWPO Yia TaXUTNTa UMOAOYIOH®V. XT0 TEA0oG avaAduovial ta opEAn katl td

pelovektpata kabs adyopibpou.

Aitflopa Tneowg



LIST OF TABLES

0.2 Oswpntiro YnoBabpo

0.2.1 Ocwpia 'paPpwVv KAl AIKTUOV

'Evag ypagog 1 diktuo G = {V, E}, sivat pia pabnpatikn oviotta mou TMePEXel va
oUvolo amod Kopugeg (1) kopBoug) V kat éva ouvodo akpov E. M akpr (u, v) € E ava-
naptotd pia dtacuvdeon petadu duo kopBwv U, v € E. O1 ypdgot Xprotornotouviatl oe MotKl-
Ala epappoyov onwg odika diktua, 1o Aladiktuo, oUvEEDElS KOVOVIK®OV PEomV S1KTU®ONG,

rAn. 'Eva mapddeiypa ypdgou @aivetat oto oxrjpa 1.

B_'—__‘_‘—'———-_._
A

G
E C /
\ / ¢
D /
Figure 1. [Tapabdsiyua ypagou ue 8 kouboug kat 10 arxueg

Auvo kopBotl Aéyovial yertovikoi av eivar ouvdebepévol pe axkur). H yewtovid N, evog
KOpBou u eivatl 1o oUVOAO TV Yertovikwv KopBeov tou: N, = {v € V : (1, v) € E}, eve 10
péyebog g yettovidg Aéyetat fabpog tou kopBou. Mia ouvnOiopévn) avanapdotaon ypadpev
etvat ot ivakeg yerrviaong. O mivakag yetviaong A evog ypdgou pe n kopBoug sival evag
TETPAY®VIKOG TTivaKag N X N, Orou KAbe ypapjr] Katl ot avilotolXel oe évav KopBo. Av

unapxet n akpn (i, j) wote Ay = 1, dapopeuxa Ay = 0.

0.2.2 Aviyxveuon Kowotfjtev

YuvOeta diktua eivatl ypagot pie moAundokrn Sopr 1oV oroimv ot 1810trteg e§aptovial oe
peyddo Babpo arod tov 1poro mou ot KopBot cuvbiovial kat aAAnAerubpouv petadu toug [7].
[ToAAd Giktua otnv mpaypatiky (e eivat ouvleta, onewg ta Kowevika diktua 1 ta diktua
urtoAoytotev [8], [9].

Ta ouvbeta diktua £xouv v tdon va oxnpati{ouv kowotnteg, 6nAadr) opadeg kKOPBwV
oV eivat o nmukvd ouvbedepévol petaly Toug ouyKpluKa pe to urodouro dikrtuo [10]. H
YVOO1 T®V KOWVOTNTI®V AUTOV EIMITPENEl KAAUTeprn Katavonon tng Soprng 1tou diktuou Kat
g 61adoong mMAnpogopiag péca os autd, ondte 1 AviXveuorn Toug €ival éva npoBAnua pe
nokideg epappoyég. Ma napadetypa, moAdd cuotpata cuotdoewv Baocioviatl oto yeyovog
ot xprjoteg oty idta kowvotnta ivat rmo mbavo va €xouv kowva evoladépovia [11]. H yvoon
KOWOTTOV ot HiKTua pmopet eriong va xprnotponoinOet ot pedétn 61adoong emdnpiov oneg
tou COVID-19 [12], [13]. Zinv evétnta autr] 9a mapoucidcoupe TG TEXVIKEG AVIXVEUONS

KOWOTIT®V ITOU XP1oloIiolouvidl ot SumAopatiky pyaoia.
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0.2.2 Avixveuorn Kowotntewv

Girvan-Newman

O aAyop1Opog Girvan-Newman [14] Aettoupyel apalp@viag akpEg ano 1o ypado pexpt va
artoouvdeBel 0 CUYKEKPIPEVO aplOd KOWOTHt®V o ripoodilopiletat eapxns. H akur rou
adatlpeital oe kK&Oe Pripa tou aAyopiBpou eival autr) pe ) PeyaAutepn T KEVIPIKOTTAG
evBlapeokotntag akprng. H perpikn auvtr) ekppdalel 1o T0000Td TOV €AAX10TOV 1OVOITATIOV
petady 0Awv v JEuydv KOPUP®V TOU YPAPOU IOU IEPVAVE ATTO H1d OUYKEKPIPEVT] AKHL).
'‘Oco peyadutepn eivatl n T Kevipikotntag evdlapeokotntag akpng (edge-betweenness
centrality), 1600 mBavdtepo n akpr va ouvdeel U0 H1aPOPETIKEG KOVOTNTEG, OIMOTE O AA-
YOp1Op0g adalpel akpeg Pe YPnAn TR g PEIPIKNS AUTHG £0G OTOU O YPAPOG (PTACEL OTOV
TIPOKAO0PIOPEVO AP1OO CUVEKTIK®V OUVIOTOO®V. Melovéktnpa tou adyopibpou eivat ot
01 OUVEXEIG UTIOAOY101101 KEVIPIKOTNTAG £VOIAPECIKOTNTAG AKILG €ivatl laitepa kootoBopot

ortote Sev elvatl katdAAndog yla diktua peydlou peyeboug.

Louvain

O aAyop19pog Louvain [15] eivat piia dnAnotn p1€6060g Iou artoCKOTIIET 0T PEY10TOIT0IN 0o
g apBpatointag twv kowottov. H apBpotowmta (modularity) eival pia petpikn mouv ex-
ppadel 600 KAAT) eival n §1ap€Plon ToU H1IKTUOU 08 KOWOTHTEG, 0€ GUYKPLOT HE THV MEPITTROT)
TIOU 01 AKMEG fTav tuxaieg. Apxikda kafe kopBog tortodeteital ot §1Kr) TOU KOWOTNTd, EMELTA
HETaKiveital oty KOwotnta evog YEITovd ToU [I€ OKOTIO Tr] PEYLloTornoinon g apbpwtotntag,
av yivetat. Zin ouvéxela KaBe Kowotnta opadornoleital oe pia povadiky Kopugpr] Kat o aA-
Yop10pog enavadapBavetatl £mg 0Tou otapatiost va Bedtioverat 1 apbpwtdtnta tou Siktvou.
Ta mAeovektnpata g pebddou autrg eivat ot dev anattet ) yvoor tou aptfpol Koot tov

£Capxng Kat eivat mo yprnyopog ard tov Girvan-Newman.

Walktrap

O Walktrap [16] eivat évag adyop18110g avixveuong Koot IV Imou XP1olHoolel tTuxaioug
nieptatous. Baoiletatl otnv 16éa o011 pikpoti tuxaiot repimatot og £va §1KTUO Teivouv va P1EVouv

€VIOG TG 161ag KowvoTNTag.

Spectral Clustering

O Spectral clustering [17] eivatl évag aAyopiOpog rmou xpnotpornotet ta 16odtavuopata
10U AarmAaotavou mivaka tou diktuou. O mivakag autog opiletal wg L = D — A, orou A o -
vakag yerrviaong kat D évag draywviog mivakag rmou kKabe otoiyeio tou avuotoiyet oto fadpo
£vog kKopBou. O aAyopiBpiog urtoAoyidet ta 161odiaviopata kat tg 1810tipég 1ou Aaniaociavou
miivaka Kkat epappodel opadonoinon K-means ota 16i061avuopata v k peyaiutepov 1610-

TPV, 010U Kk 0 TIpokaBop1opEvog aplBpog KOOt I®V.

Hyperbolic Girvan-Newman

O Hyperbolic Girvan-Newman [5] eivat pia napaddayn-ripoogyyon tou alyopibpou
Girvan-Newman. Baoiletal otV evoopdtoon 10U S1KTUoU o€ UTEPBOAIKT) YEDUETPiA NECW®

evoopateong Rigel [18], dote avti va yivetat o KootoBo0pog UTTOAOYIOHOG TOV KEVIPIKOTITOV
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evdlapeokontag aKpng, va UmoAoyidetatl moAu ypnyopotepa 1o uriepBoAiko avadoyo [19] pe
eAdx1oto KOot0g akpiBelag. Le kAOe emavAAnyrn tou aAyopiBpou evoepat®vetal 1 peyaiutepn)
OUVEKTIKI] OUVIOT®OA T0U YPAdou Kal adalpouvidl ot k aKpEG Pe T Peyaduteprn) TR Umep-

BoAKNG KeEVIPIKOTNTAS VOIAPECTOTNTAS AKHLG, OOV k 10 11€yebog 6Eoung.

0.2.3 Botnets

Ta botnets eivatr opddeg ocuokeundv ouvdedepiéveg oto Aladiktuo, On®G UTIOAOYIOTEG 1)
€CUITVEG OUOKEUEG, TV Ormoinv 1 acpdldela £xel mapabiaotel kat o €Aeyxog yivetat arnod
KakOBoulAn ninyr). KdBe ouokeur| petatpénetal oe bot apou poAuvOel and kakdéBoudo Ao-
YIOHKO Kat petd eAéyyxetat €§ arnootacewsg. Ta botnets xpnowaonotlovvial yia mowkiAia erm-
9éoenv onwg avernbupntn adAndoypadia, KATAveERNPEVES €TIOE0ES APVNONG UTPECIOV,
KAorm 6edopévav (Kwb1kol, aplOpol MOoTRTIKOV KAPTeV, £talpika dsdopéva) 1) andreg KAK
yla ) Snuoupyia weudoug kivnong [20]. Ot katavepnpéveg emb€oelg apvnong U pe-
Ol®WV Mpaypartorolovvial otav rmoAAd bots katakAuouv 1o Supa pe Yeudeig althoelg wote
va aduvatel va e§urnpetr)oet @UOI0AOYIKEG attrjoelg. Mia yvaotr) tétola enibeon and botnet
ntav ot emBeoeig Mirai [21] o 2016.

IMapadootlaka ta botnets Asttoupyouoav pe PoviéAo reddtn-eSunnpetnty, yia napadetypa
péowm Internet Relay Chat (IRC) [22]. To IRC eivat éva ovotnpa cuvopiAtev orou ta bots
ouvbéovtal oe évav S1aKOULOTY] KAl eYypAdovIal Oe €va KavdAdl ormou otéAvoviat odnyieg.
Aoylopikd aopaldeiag avilpeIRidouy T1g IEPUTIOOEIS AUTEG KAsivoviag ta Kavdaila odnylav,
e anotédeopa ta bots va AnBapyouv, orote ta botnets avayxkalovrat va aAAalouv ouvexmg
kavaldia Asttoupyiag. ITo pdogpata botnets, oniwg to Gameover ZeuS [23], xpnotpornotovy
poviéda aAAnlAenidpaong opotipev Kat Kpurtoypadia dnpooiou kKAed1oU.

ESattiag g uyniAng ouxvotntag Katavepnpévev ermbéoemv apvnong urnnpeotov [24]
g€xouv avarttuyBei oAAeg péBodot yia v aviyveuon botnets. Kamnoieg pébodor ermtnpouv
éva OUYKEKPIHEVO UNXAvIHa yla urortta apxeia 1 uwndo emneepyaotikd KOOToG, Ve AA-
Aot p€Bodot ermtnpouv éva oAdkAnpo diktuo yla vunorn Kivnor, acuvhfiotn kabuotépnon,

audnuévn Kivnon og omnavieg Xpnotponotoupeveg dupeg, KA [25].

0.3 Me0OodoAoyia

H pébobog mmou xpnotpomnolovpe yia v avixveuor botnets meptypagetat oto [26], pe
m Slagpopd Ot XpnotponolovUpe S1aPopeTikEG PNeEBOO0UG aviXveuong KOWOTAHT®V OTO TEAIKO

otado. H pébodog xwpidetatl oe dUo pépn mou meptypddovial otig EMOPEVES HU0 EVOTNTEG.

0.3.1 Aviyveuon avopaAng Kivnong

To p®to otadio g 11EBOS0U XPNOIOTIOEL TEXVIKEG AVIXVEUOTG AVOIAAI®V Y1d TOV EV-
TOMIOPO XPOVIK®V TePLOdav pe aouvnoiotn d1ktuakn Kivnon. ApxXika mpaypartornoteitat
€EKPAONO1 NG PUOI0AOY1KIG KUKAOPOPIag Tou S1KTUoU ot pia KaBoplopévn Xpovikn riepiodo
Xwpig enibeon pe oxond ) Snpoupyia Piag Katavourng avadopds. Xin OUVEXELA 1) Itepiodog

a&loddynong xepidetal oe Pikpd Xpovika rapddupa, v oroiewv 1 Kivnon ouykpivetat pe
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0.3.1 Avixveuon avopaAng Kivnong

Vv Kivnon avagopdag. Meyddeg anoxkAioelg and v QUOIOAOY1KI] Kivnon dewpouvial ave-
padeg. Avdldoya av n kuklogopia divetat oe apxeio pcap 1 netflow n avupetomnon eivat

dlagpopetikn.

Apxcia netflow

Yta apxeia netflow kdBe por| EKMPOOIIEL TNV EMMKOWVGVia petady 6Uo pnxavev Kat rep-
1£Xe1 MAnpogopia ornwg 1 H1apKeld TG EMKOIVOVIAG, TOV GUVOAIKO aplOfpd MAKEI®V ITOU
otdABnkav, T MPEIOoKoAdo xpnowaorow)dnke, kAn. H avixveuon avopadi®v oe TET010U
elboug apyeia mpaypatoroteital emMAEYOVIAG KATIOWW XAPAKINPLOTIKA TV pOowv, Td oroia
kBavtorolouvial, KAl 10 81avuopa mou MPOKUIITEl AVIIHEIIETAl ©G TN Plag S1akpitig
tuyaiag petaBAning. Xty niepiodo ekpddnong xtidetal pia epnelpikn Katavopr) mbavotntag
avagopdag ard 0Aeg g poig g reptodou. ‘Ernetta, yia kabe xpovikod napdbupo a§loddynong
XTidetat k1 exel pia katavopr] mbavotntag, 1 oroia CUYKPIVETal Pe TV Katavoun avadopag

péow® tng anokAiong Kullback-Leibler (KL):

D(pllq) = ZP(X) loy(@) (1)

= q(x)

orou p n katavopr] afloddynong, g n rkatavopr] avagopds kat X 1o Kowod nedio tpov
toug. H aroxkAion KL petadu tov §Uo katavopov ouykpivetat pe éva KatddAt, kat av eivat

peyaAutepn amod auto TOTE TO XPOVIKO Tapddupo xapaktnpidetal og avopalo.

Apxceia pcap

Ta apxeia pcap nepiexouv mAnpogopieg yla naketa rmov peradidoviat oe éva diktuo. Lta
apxeia t€rolou €iboug perpietal n kartavopn Babpou kopBwv o ypapoug adAnAenidpaong kat
ermAgyetal £va poviedo ypdgou otny riepiodo ekpdadnong. Ot katavopég KOpBmv tng neplodou
aAAnAenidpaong ouykpivovial Pe TV KATAvVoHl] avadopdg Katl av AroKA{vouv MmePlocotePO
and pa TP Kategdiou tote 1o napdBupo dewpeital avopado. H ouvapinon ouykplong
eivat drapopetikn avadoya pe 10 PoviEAo ypddou 1ou eriAexOnke.

O ypdgog aAdnlemnidpaong o€ KAMOI0 XPOVIKO Tapdbupo Snpioupyeital evovoviag pie
akpn 6vo dieubuvoelg edv urrpEe ermKoveVvia Petaiy toug oto rapdbupo autd. Xwpiloupe
v nepiodo ekpdbnong os moAdd apdbupa Katl emMALyoUpEs tuxaia pepPIKA amo auvtd yla
) dnuoupyia ypadpwv aAdndenidpaong. LTtoug ypApoug autoug petpdpe 1o Babpo tuxaia
ermAeypévev KOPBmV yla va XTIOOUHE TV KATtavopn avadopdg. Xir ouveéxela eAEyxetal av
n Katavourn auvty eivat mbavdtepo va mpogpxetal aro tuxaio ypago [27], [28] 1y ypado
xopig rAipaka [29], [30], xpnoworowwviag tg e§lonoeig 3.2 kat 3.4. Zta Mepapatd pag

TIAVIA ETMAEYOVIAV TO POVIEAO TUXAI0U YPApoU He Tapdpetpo j mou urnoldoyidetal amo v

KATavour] oG €§1g:
L&
M= Z di )
i=1
orou M o apiBpog deypdtov Babpov kopBou tng Katavopng avagopdg kat d; 1o i-ootd

Setypa.
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H nepiodog agloddynong eriong xopidetat oe pikpotepa xpovika rapabupa, oe kabéva
arod ta ortoia dnuoupyeitat o ypdgpog addnienibpaong kat uvnodoyiletal n katavopr) Pa-
9pou kopBwv. 1o poviedo tuxaiou ypdgou, n Katavour] aSloAoynong ouyKkpivetat pe v

KAtavopr] avagpopdg PEom tng akoAoubng ocuvdaptnong:
. [N DV B
Irana(q; /1) = D(qll pj) + §(q - )+ Elog(ﬁ) - ElOQ(Q) (3)

OTIOU p; N Katavopr) avagopdg, g n Katavopr) agloAéynong kat g n péon tjr mg. Av 1)
PN TS OUVAPTNONG AUTHg elval peyaAutepn aro KAMO0 IIPoKAB0PIoPEVo KATOGAL TOTE TO

XPOViko TtapaBbupo Seswpeital avopaio.

0.3.2 Aviyveuon botnets

To oUVOAO AVOPAA®V XPOVIK®V TTAPaBUp®@V XP1OIHOIIOEITdl Ot CUVEXELD Yid TOV €V-
TOMmopo 1wV KOopBwv-bots. Apyikd evromidovial KATO01 Keviplkoi kKOpBot mou eite eivat
bots-apxnyoi eite eivat kUpiot otoxot g emibeong. O1 KOpBo1 autoi £xouv audnuéveg aiAn-
Aemdpdoetg pe 1o urnddorno diktuo, kabwg o1 bots-apxnyot mpéret va oteAvouv odnyeieg ota
unoAorta bots, kat ot KUpol otoxot HExovial Hiaprag emibeon ano ta bots. 'Evag kopBog

i XapaKmpidetal wg KEVIPIKOG av €Xel OUVOAIKO pEtpo alAndenidpaong e; peyadutepo aro

esﬁZZGz (4)

010U (A 10 OUVOAO T®V AVOPAA®V ITapadupav Kat G;Z 0 ap19og 1wV aAAndermbpdoewv petagu

KATTIO10 KATOGMAL T:

10V KOpBwV i, j oto tapabupo k.

A@oU evioriooupe ToUG KeEVIPIKOUG KOpBoug, efetdloupe 11 aAAnAerudpdoelg v UIt-
olomwv kKOpBwv pe autoug. T'a kabe kopBo i €0t xik = DljeN GZ 0 ap1Bpog twv addn-
AeruidpAoe®V TOU J1e KEVIPIKOUG KOHBoUG oto tapdbupo k, 6rou N 10 0UVOAO TV KEVIPIK®OV
KOpBwv. 'Eotw emiong X; 0 ouvoAlkog aptBpog aAAndermdpdcemv 10U KOPBOU i e KEVIPIKOUG
KOpBoug oe 6Ao 1o A. Yrodoyidoupe to ouviedeotr] ouoxEtiong petady {euyov KopBwv i, j:

(k= Xk - X))

Xi,X' = 5
p(Xi, X)) (1A - Do(X;)o(X)) Y

omou X; kat 0(X;) o péoog 0pog kat 1) Sraoropd v X; Kat p(X;, Xj) = 0 av karowa daoropd

tooutat pe 0.

PTIAXVOUE TOV YPAPO KOWVRVIKIG ouoxETiong (FKXE) pe kopBoug 6Aoug toug KO6Boug oto
A xat kabe axpr i, j unapxet eav |o(X;, Xj)| > 1, 0mou 7, KAMo1o KatdPAt. XTo Yypdpo auto
ta bots eival apketda mbavo va eivatr ouvbedepéva petadu toug erneldr) ot aAdnderubpdaoeig
TOUG M€ TOUG KEVIPIKOUG KopBoug ouoyetidovial. Ormote yla va Toug eVIoIicoupe apkei
va XP1OoloIoiooupe KATO0 aAyopifpo aviyveuong kowvotntewv oto I'KE. TéAdog, yia va

arnopacicouple mola Kowotnta eivat ta bots, emAéyoupe auty) pe ) PEYAAUTEPT PEOT T
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0.4 Tlepdapata

pétpou adAndenibpaong pe Kevipikoug KopBoug rou opidetat wg e€rg yla tov kopbo i:

0.4 IIsipapata

Zv evotnta autr) 9a nmapouctacoupe ta rnelpapata nou diegnxtnkav ota mlaiowa g
Simlepatikng epyaociag. T'a kdBe meipapa apxika avagépoupe mAnpogopieg yia ta Oe-
dopéva kat 6, mpoenegepyacia nmpaypartorow|Onke oe avtd. Metd ggnyouye ) dadikaoia
ekpabnong kat deixvoupe ta anotedéopata aviyveuong avopadiov. Tédog avapépoupe Tig
TIAPAPETIPOUSG TIOU YprowpororiOnkav yua wm dnpouvpyia tou 'KE katl mapouoiadoupe ta

anoteAéopata g avixveuong KOwotrtev.

To rpwto Kat 1pito reipapa ekivnoav og rpoorddeia avanapayeyng IOV aroteAeopatmy
T0U [26], aAAd otnv mopeia anékAlvav Kal xpnotponotioape dtapopetiko 'KE. To deutepo

neipapa Hav rPETOTUIIo.

Ot aAyop19p01 avixveuong Koot tov rou dokipdotnkav fjtav ot Girvan-Newman, Lou-
vain, Spectral Clustering, Walktrap, Hyperbolic Girvan-Newman. A§ioAoynOnkav &g ripog
TV Kavovikorolnpévn apoBaia mAnpogopia (normalised mutual information, NMI) kat to
F1-score oxetka pe 11§ IIPAyHATIKEG KOWOTNTEG, TTOU Htav Siabéopeg oe kabe neipapa. H

apoiBaia mMAnpogopia petagy duo Slakpltdv tuxaiov petaBAntov X, Y opiletal og €81g:

pPxy(xy)
1067) = 3 3 prte g 22| @
= px(xX)py(y)
£V 1] KAVOVIKOTIOINPEVH apoBaia mAnpogopia:
21(X;Y)
NMIXY)= ————— (8)
H(X) + H(Y)
ornou H(X), H(Y) n evrportia twv X, Y. To Fl-score opiletal wg €8ng:
2XTP
F 9)

T 9% TP+ FP+ FN

orou TP = true positives o ap1Bpog twv bots rou aviyveubnkav cwota, FP = false positives o
ap1Bpog TV AKaK®V KOPBeV ITou aviyxveubnkav og bots kat FN = false negatives o ap10110g

TV bots rou dev aviyveudnkav.

H vlornoinon kodika €yve oe Python3, ektdg aro 1o koppdrtt tng evoopdteong Rigel rou
vdorow)Onke aro toug [31] oe C++. O kwdikag tou HGN uvlormow)Onke ano toug [5]. Xpnot-
porowrjoape eriong to Wireshark, gpyadeio avaluong npotokOAA@v S1KTtUouU, yia Ipoeres-

epyaoia apyesiov pcap.
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0.4.1 IIsipapata oto oUvoldo Scdopivov CTU-13

IIeprypadn kat npoenefepyacia cuvodou Sedopévav

To CTU-13 eivat éva ouvoAo dedopévav rmou kataypadnke oto Czech Technical Univer-
sity [32]. TIlegpiéxer 13 rataypadég Siktumv pe ermbéoeig arno botnets oe popor) netflow
OTou KABe por) £ival xapaxinplopévn g botnet 1) 0X1 Amd 10Ug CUYYPAPEIS TOU GUVOAOU
debopévav. Xprnopomowoape ) 2n Kataypadr) mou nepiexel 4.5 dpeg kuklodopiag pe
entiBeon and IRC botnet rmou €otedve dapkrwg avermbupn Kivnor).

To apxeio eixe péyebog 241MB kat niepieixe 1808122 poég, amnd tig oroieg 1o 1.04%
fnrav aro bots. dATpdpape T POEG WOTE va ATIOPEIVOUV povaxa O0EG XPI1O10TIOI0UcaV

NMP®TOKoAAa IPv4. Amnd kaOe por) Kpatroape 1d £§1G XAPAKTNPIOTIKA ©
e StartTime: o Xpovog ekKivnong tng Pong
e Duration: n diapkela ng pong

e EndTime: o Xpovog teppatiopoy g POng, UTOAOYIOTNKE IMPOCHEIOVIAG TO XPOVO

eKKivnong pe m daprela
e SrcAddr: n 6ievbuvon ninyng
e DstAddr: n 6ieubuvorn npoopiopiov
e Sport: n SUpa ninyng
e Dport: n Supa nipoopiopov
e SrcBytes: o0 apiBudg v bytes mou otdAOnkav amo v nnyr| otov IIPooPloHo

e DstBytes: o apOp0g tewv bytes mou otdABnkav amod v Tov IIPOOPIoHo OtV Ny,

unioAoyiotnke apalpwviag 1o SrcBytes amo tov ouvoAiko apiBuod bytes tng porng

e Label: o0 xapaxktnpiopog g pong

TV e1kova 2 @aivovial ol MEVIE MPWIEG YPAPHEG TOU Oouvolou dedopévav peta v

npoeregepyaoia.

StartTime EndTime Dur SrcAddr DstAddr Sport Dport SrcBytes DstBytes Label
0 09:49:23%%0132’;1 10:24%05%‘134’11; 2069.973145 203.253.8.233  147.32.84.229 30533 13363 123 74 ﬂOWZBaC"grg:t;%'uLéE:d'
1 09_49_232;’201‘%’;8 10_04_23“11;;%37"51; 005080258 814715413  147.32.84.229 49200 13363 4501 2531 flow=Background
2 oaaaa DO caaaa B 0000120 147.3284.220 784225171 13363 42988 2858 0 ﬂ""‘:Bad‘gm““g;t‘éEE;
3 pougaaiant e 35671927246 147.3284.220 113128219130 13363 59790 13419 2351 MowsBackground-UDP-
4 s el O 0000000 147.3284229  60.50.167.24 13363 40253 50 0 ﬂ""‘:Bad‘gm““g;t‘éEE;

Figure 2. Anotéisoua nposnelepyaoiag tov ovvojlou debousvov CTU-13
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0.4.1 TIlepdpata oto ouvodo debopévav CTU-13

IIepiodog expadnong

H niepiodog expdbnong fitav ta ripota 25 Aertd pocyv, mou Sev eixe SeKvioel akOpa 1) eIti-
9eorn. O ouvoAikog ap1Bog poav ekpabnong fnrav 257728 (14% tou ouvodou Sedopévav). Le
oupgevia pe o avtiotoyo reipapa oto [26] kBavroro|OnKav ta £§hg XapAKINPIoTIKA Kabe
pong: dieubuvon ninyng, dieubuvor poopiopoy, Yupa ninyng, Yupa npoopiopov, dSidpkela,
bytes ninyrg, bytes poopiopou.

O1 61euBuvong ninyrg npooptopou kBavionoinOnkav péon opadonoinong K-Means 256
opadev, adou o1 d1eudvvoeig IP a = (ay, ag, as, az) € {0, 1, ..., 255}* pnetarpanovv os Sexadikod
ovoua PEC® TOU TUMOU X9 = Z?zl 256%q;. H &idpkela kat o aplOudg bytes mnyng
KAl IIPooP1lopou KBavionow)fnkav pe ekOeTky KAlpaka, eve ot SUpeg mnyng Kat Iipoopio-
pou kBavroroBnkav ypappikda ava 10000 pe egaipeon tg mpwieg 1024 ratax@wpnpéveg
OUpeg. H ewkdva 3 deixvel 11g POTEG MEVIE YPAPHEG TOU KBAVIOIIOUEVOU OUVOAOU €K-
pdabnong. Agou kBavroroinBouv ta dedopéva, KABe POr] AVILIIPOOKHITEVETAL TTAEOV AT €va
diavuopa 7 akepaimv, ot TIJ€G TOU OIT010U SNII0UPYOUV TV EUIEIPIKI] KATAVONL) rmBavotn-

1ag avapopdag.

Dur SrcAddr DstAddr Sport Dport SrcBytes DstBytes

0 4 245 140 4 2 2 1
1 3 151 140 5 2 3 3
2 0 140 135 2 5 5 0
3 4 140 128 2 6 4 3
4 0 140 213 2 5 1 0

Figure 3. K6avromompévo ovvojo ekudadnong

Avixveuon avopaiiov

Erméyetat piia SAern riepiodog a§lodoynong 26 Aertd petd tou t€Aoug g eKPAadnong
(51-56 Aertd oto ouvodo 6edopévwv). To ouvoro aglodoynong kKBavioroleital Onwg v
riepiodo ekpAdnong, eKT6g amno TG 61eUBUVOEIS OTIOU XPNOOTIOEITAl TO EKTIAISEUPEVO 110V-
1¢do K-means. 'Enetta 1o 5Aertto ouvolo agloddynong Siaornatal oe tapdbupa 2 Seutepole-
IOV KAl 1] Katavopr) kKdBe mapaBupou ouykpivetal pe tyv katavoprn avadopdg. Ta armoteAdéo-
pata g aviyveuong aveopaiiev @aivoviat oty eikova 4. H prde ypappr aviiotoixei otov
ap1Bpo v powv bot eri 0.005, eve 1 MOPTOKAAL ypapPpr] AVIIOTOXEl OtV AMOKA10L TGOV
katavopev. Mapatnpoupe ot n andxkAlon eivatl peyadutepn ota rapabupa pie TIOAAEG POEG

bot ondte ermAéyoupe kKatogAt 0.1 yia va tig avixveuooupe.

Anpoupyia F'KZ

Ia v avixveuon bots xpnowyonojoape £€va Pikpo oUVoAo avoauaAev napabupwev, ouy-
Kekppéva ta 47-55 g ewkdvag 4. Iepieixe 936 dieubuvoelg, petadu twv oroiov 119 fav
bots. To cuvoAiko pérpo aiAnAenidpaong v KOPB®V @aivetal oty €1Kova 5, omou Kabe
KOKKIVOG OTAUPOg avtlotoixel oe évav kopBo. Xpnoworotoape KatdpAt T = 20 ya wmyv

ermoyr 4 Keviplkev KopBwv, 2 bots kat 2 Supata.
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Anomaly detection, CTU-13, (flow method)

—— bot flows per window (scaled)
KL divergence

Figure 4. Aviyvevon aveopaiiov oto ovvojlo debopsvov CTU-13

Total interaction measure e; of all nodes

-

0 200 400 600 800
node i

Figure 5. Zuvojuko pétpo aiinfenibpaong

I'a 1 dnuoupyia tou TKE xpnowpornowjoape 1, = 0.88 kar mpoékuyes ypagpog 103

KOpBwv pe 8 bots onwg paiveral mave aplotepd otV £1Kova 6.

Zuykplon adyopiOpwv aviyveuong KowvotyteVv

Egpappoloupe toug 5 alyopibpoug aviyxveuong kowottov oto 'KE. T'a to HGN xpnot-
poroibnkav 3 kopBot opdonua kat péyebog d¢opng 1. Ta arnotedéopata @aivoviat otov
miivaka 1 kat otnv ewkova 6. Iapatnpoupe 6t 6Aot o1 aAyopiOpot ektog tou Spectral Clus-
tering evionii{ouv v Kowodnta 4 bots oty Kopudr), eve o Spectral Clustering eviomilet

povayxa Toug 2 KeVIPIKOUG KOpBoug.

AAyop16pog NMI F1l-score
Girvan-Newman 0.5 0.67
Louvain 0.5 0.67
Spectral Clustering | 0.28 0.44
Walktrap 0.5 0.67
HGN 0.5 0.67

Table 1. NMI kat F1-score tov ajyopiduwv aviyvevong kowotrjtov oto CTU-13
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0.4.1 TIlepdapata oto ouvolo dedopévav CTU-13

(a) Ground truth (b) Girvan-Newman

Figure 6. Anotejléouara aviyvevong koworntwv oto CTU-13
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0.4.2 IIsipapata oto oUvoldo Sedopivov Kitsune
IIeprypadn ratl npoenefepyacia Sedopévav

To ouvoAo 6ebopévev Kitsune Network Attack Dataset [33] amoteAeitatl and 9 kata-
ypadeg Kivnong diktumv pe moikideg ermbéoelg. Xpnoponojoape pia Kataypagpn orou éva
biktuo ouokeuwv Atadiktuou-tev-TIpaypdtov poAuvOnke pe Aoylopiko Mirai petatpénoviag
T1G NOAUCHEVEG OUOKEUEG O bots.

H xataypadr) ftav os popdry pcap kat riepteixe 73MB and 764137 nakéta. Kpatroape
povo ta takera [IPv4 omote épetvav 197701, Ano kABe TAKETO KpATjoape 4 XAPAKIPIOTIKA :
Xpovog, dieubuvorn rinyrg, S1eUBuvon MPooP1oPoU Kal XApaKINPlopog, O OI0iog IpoepxXotav

arod 51aPopeTIKO apyeio csv.

IIepiodog expadnong

H nepiodog ekpdaBnong rmou Xprno1iponorjoape NIav 1 npein opd MAKEI@V OIou dev eixe
Eexvnoel akopa 1 emnibeorn. O cUVOAKOG ap1Bpog akEtwv frav 90476 (46% twv Sebopévav)
pe 76 dieubuvoeig IP. Xwpioape ta 6edopéva exkpabnong oe mapdBupa 10 SeutepoAémmv
Kat erdé§ape 25 touxaia apdbupa. Ze kabéva anod auvtda dnpioupyrnoape 10 ypado adin-
Aenibpaong kat perprjoape o0 Pabpo 10 tuxaieov kOpBwv avda ypdgo, dSnpioupywviag tnv
Katavopr] avagpopdg. EmA&xOnke to poviédo tuxaiou ypdadou pe apdpeTpo =2.664.

Aviyveuon avopaiiov

H niepiodog agiodoynong eixe didpreia 20 Aertov Kat Sekivroe 3 Aemtd Petd 1o téA0g g
exnaidevong. Ilepieixe 33903 makera, 16829 and ta omoia rrtav andbots kat exivnoav
va epgavidoviat Atyo petd ta 10 Aertd. H mepiodog agloddynong xwopionke o apdbupa
10 deutepoAemmv, ta oroia ouykpiBnkav pe v Katavourn ekpabnong. Ta anoteAéopata
@aivovtat oty €1kova 7. BAémoupe pia avodikr adAdayn taong otav epgaviotmkav ta bots

ortdte eruAégape katwpAl 0.78.

Anomaly detection, Mirai botnet

—— bots per window (scaled)
175 Inana

150

125

100

0.75

050

0.25

0.00

0 P a0 60 80 100 120
10sec window

Figure 7. Aviyvevon aveouadiov ota dsbousva Kitsune
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0.4.2 Tlepapata oto ouvodo debopévav Kitsune

Anpoupyia 'K

Egetdoape 2 Sapopstika avopada ouvoda. To mpoto arotedeitat ard 10 aveopada
rapabupa yupe ota 15 Aerttd tou cuvodou agloddynong, eve to Seutepo artotedeital amo ta
20 npota aveopada apdabupa.

To avopaldo cuvoldo ota 15 Aemtd niepieixe 44 Sieubuvoetg, ano tig onoieg 18 nrav bots. O
ypagog aAAndenidpaong gaivetatl oto oxfpa 8. Me katdgAt T = 20 ermAexOnkav 5 KeEVIPIKOL
KoOp6ot, 6dot bots, kat pe katwPAt 1, = 0.65 Snuioupyndnke to 'KE tou oxnpatog 9, pe 27

O6teuBuvoeig kat 13 bots.

-

Figure 8. Ipagogc aiinisnibpaong twv 10 avouaiov tapadvpwv

Figure 9. I'KX tov 10 avouaieov tapadvpov

To avopado ouvolo tev PKOTeV 20 avopalev tapadupwv riepieixe 52 dieubuvoelg, amnod
11§ oroieg 18 rtav bots. XpnowonowOnke katoapAt T = 20 yia v emAoyrn 4 KEVIPIKOV
KOpBav, 6Aot bots. Me katwgAt 7, = 0.47 dnuioupyndnke I'KE pe 29 dievbuvoeig xkat 13

bots, 6niwg @aivetat oto oxrpa 10.

ZUykplon aAyopiOpwv avixveuong KOvoTHTOV

Zto TKE tou oxfjpatog 9 epappooapie 1oug alyopidpoug aviyxveuong KOwoTHTov OTig

800 peyaAUtepeg OUVEKTIKEG oUVIoTwoeG. Ta arotedéoparta yia Tt PEYAAUTEPI OUVEKTIKI)
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Figure 10. I'KY tov npotov 20 avouaiov tapadvpov

oUVIOT®OaA @aivovral otov Iivaka 2 kat otv eikova 11. ITapatnpoupe 6t1 6Aot o1 adyopiBpol
evrortiouv Vv peydln kowotnta bots, aAdd povo o Spectral Clustering avixveuetl kat 1o

povadiko bot katwe 6e€ia.

AAyop19pot NMI Fl-score
Girvan-Newman 0.71 0.94
Louvain 0.71 0.94
Spectral Clustering 1 1
Walktrap 0.71 0.94
HGN 0.71 0.94

Table 2. NMI xat F1-score tov ajlyopidu®v aviyveuong KOwotnI®v otn UEyajutepn OUVEKTIKY
ovvotwoa tov I'KX
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0.4.2 TIlepdapata oto ouvolo dedopévav Kitsune

(a) Ground truth

(¢) Louvain

S
e <\
IR

(e) Walktrap

(b) Girvan-Newman

Sy,
Y =172
IRIR

R

NV

(d) Spectral Clustering

(f) Hyperbolic Girvan-Newman

WK/
Lo

2>

Figure 11. Amotéfeoua aviyveuong KOWOTHIOU 0N UeyaAUTepn OUVEKTIKY OUVIOT®OA TOU

I'K>
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Ta amotedéopata yla ) 21 OUVEKTIKI OUVIOTOOA @Aivovidl otov Iivaka 3 Kat oty
ewova 12. 'OAot o1 aAyopiBpot ektog tou Louvain evioniidouv 2 amnd ta 4 bots, eved o Louvain

evrortidel 3. 'OAot £€xouv 1 peudbwg Jetiko anotédeopa.

AAyop16pog NMI Fl-score
Girvan-Newman 0.08 0.57
Louvain 0.23 0.75
Spectral Clustering | 0.08 0.57
Walktrap 0.08 0.57
HGN 0.08 0.57

Table 3. NMI kat Fl-score twv ajyopiduwv aviyveuong KoOwomiov otn 21 OUVEKTIKY
ovvotwoa tou I'KY

Zto TKY tev 20 mpoteov avopalev napabupev spappooape toug adyopibpoug povo
OTnVv PEYAAUTEPT OUVEKTIKY ouviotwod. Ta anotedéopata gaivovial otov mivaka 4 Kat otnv
ewova 13. E6o mapatnpoupe peyadutepn andkAion petaiy tov adyopibpev kat xeipdtepa
aroteAéopata amnod mptv, Tou £ival avapevopevo Kab®g 10 avPalo oUVOAO TIEPIEXEL TIEPLO-
o00tepeg aAAnAemdpaoelg AKaKV KOpBwv. KaAutepa anotedéopata @aivetal va €xet o Spec-
tral Clustering, rou evrortidet 6Aa ta bots ektég ano 1 pe povo 2 YPeudwg Jetkd anotedéo-
pata. Ot adyopiBpotl Girvan-Newman Xopidouv apKetd KaAd 10 ypdpo o€ KOWOTTEG, TTOU
@atvetat oto YynAd NMI, aAAda avayvepidouv ) AdBog kowdtnta wg bots omdte £xouv moAu
xapnAo Fl-score. O1 alAyopiBpotl Louvain, Walktrap evrormiouv mepiooodtepeg amo 2
KOWOTNTEG KAl ETMAEYOUV 1) Heoaia &g bots. Autd avadeikviel o6tt o1 pecaiot KOpBot £xouv
peyaldo pérpo aAAnAemidpaong pe KeVIpikoug KopBoug, ylauto kat emAéxOnkav og bots aro

0Aoug toug adyopibpoug.

AAyop16pog NMI Fl-score
Girvan-Newman 0.53 0.13
Louvain 0.02 0.63
Spectral Clustering | 0.3 0.57
Walktrap 0.01 0.22
HGN 0.53 0.13

Table 4. NMI xat F1-score tov aiyopiduov aviyvevong kowottov oto I'KE tov npatov 20
aveuadov tapadvpwv
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0.4.2 TIlepdapata oto ouvolo dedopévav Kitsune

(a) Ground truth (b) Girvan-Newman

(c) Louvain (d) Spectral Clustering

(e) Walktrap (f) Hyperbolic Girvan-Newman

Figure 12. Anotejléopata aviyveuong Kowotniev ot 21 CUVEKTIKY ouviotooa tou KX
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(a) Ground truth
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(b) Girvan-Newman
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Figure 13. Anoteféouara aviyvevong kowottov oto I'KY t1ov npetwv 20 aveuaiov taoa-

9vpev
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0.4.3 TIlepdapata ota ouvoda dedopévav AIAA, ZiprensB

0.4.3 Ilsipapata ota ouvoda dcdopévav CAIDA, Simpleweb
IIeprypadt) kat npoenefepyacia Sedopévav

Ia 1o tedeutaio meipapa avakaréyape KukAogpopia amo §uo Sapopetikda ouvola Se-
dopévav, Eva aro ta oroia mepleixe KaAKOBoUAa MMAKETA KAl £€va TIOU TIEPIEIXE PUOI0AOYIKY)
KUkAogpopia. Tia ta makeéra tou botnet xpnoworowrjoape 1o CAIDA USCD "DDoS Attack
2007" Dataset [34]. TlepiExel 1 Opa KAKOBOUA®V MTAKETOV ATIO P1d KATAVEPNEVT €ITiOe0n
apvnong nopav. Xpnotpomnouwjoape KukAodopia aro ta npota 5 Asmtd, peyéboug 8.6MB.
IMa v @uotodoyikr kivnon xpnowpornowoape 1o 60 ixvog tou University of Twente traffic
traces data repository (simpleweb) [35]. To ixvog €xet péyebog 192MB kat petpndnke oe
Pla pikprn eKnadeutiky opyaveon pe 100 otabpoug epyaoiag.

Kat ta §Uo apyeia mou xpnoipionorjoapie nIav oe pop@r] pcap, Kat 1d PETATPEYPALIE OE CSV
péom tou Wireshark. Ta va ta avakatépoupe, aAdd§ape v XpOVIKI Oty KaOe nmakétou
®ote va ekPpadel 1a SeutepOAETTTA TTIOU TEPACAV ATIO TNV KATAYPAdr] TOU MP®IOU TTAKETOU.
A6 kdBe MAKETO KPATNOAPE TA XAPAKINPIOTIKA XPOVou gpdaviong, dieubuvon ninyng Kat
S1evbuvor 1Pooplooy, Kat rpocfécajie ey xapaktnplopo 0 ota dkaka rmakera kat 1
ota KakoBouAa.

A6 ta 6edopéva simpleweb kpatrjoapie v npwin wpa KukKAogpopiag, pe 329967 naxketa
Kat 743 6ieubuvoeig IP. Ta 6edopéva CAIDA niepieiyav 166448 nakéta arno 136 dieubuvoeig
IP, aAAd kpatrjoape tuxaia povo 6000 rakeéra €101 GOTE va PV €ival mapa moAu 1o muKva
ano 1 PUOloAOYIKY KuKAodopia. Avuikatactroape tg 136 dieubuvoeig tov makétov CAIDA
tuxaia oe Sieubuvoeig simpleweb kat elodyapie v emibeon petady twv dsutepoArérmtov 2000
kat 2300. H avuotoixnon 6ieubuvoewv eyve pe 2 1poroug, pia @opd avtototyifoviag 3
O6teuBuvoeig bot oe 1 kavoviky kataAnyoviag oe 45 dieubuvoeig bot, kat pa gopd avtio-

torxidoviag 5 Sieubuvoeig bot o pia kavovikr) kataAnyoviag os 27 bots.

IIepiodog erpadnong

H niepiodog expabnong nrav ta npota 20 Asmtd Kivnong, pe 198440 nakéta (59% tov
naketv) kat 539 Sieubuvoeilg IP. Ta 6edopéva ekpdabnong xwpiotnkav oe napabupa 10
SeutepoAérmov kat ermAégape wyxaia 50 ano autd. Arno tov ypdgo adAnlemnidpaong kabe
makETou perprjoape 10 Babpo 10 tuxaiov kOpBev yla va dnpioupyrooupe v KAtavour

avagpopdg. EmAéxOnke 1o poviédo tuxaiou ypadou He IapApPETPO a=1.628.

Avixveuon avopaiiv

H mepiodog a&lodoynong eixe dapkeia 20 Aertd kat exivroe 5 Aertd petd 1o téAog
g exknaideuong (1500-2700 SeutepoAerta). Ilepieixe 32763 makéra, anod t oroia 6000
ftav kaxkoBouda oto Sidotnpa 2000-2300. To amotédeopa aviyveuong avopailov yia ta 45
bots @aivetat oto oxnua 14 pe katoagAt 1.5 kat yua ta 27 bots oto oxfjpa 15 pe rkatopAt
1.2. 'Onwg fjtav avapevopevo 1 avixveuor aveapPaAl®yv eival TTOAU IO AIOTEAECHATIKI) OtV

TEPITIOOT HE TIEPloooTeEpa bots.
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Anomaly detection, CAIDA (45 bots)

—— bots per window (scaled)
| ER

10sec window

Figure 14. Aviyvevon avouadiov oto pukto ovvodo bedoucvamv ue 45 bots

Anomaly detection, CAIDA (27 bots)

= bots per window (scaled)
I_ER

10sec window

Figure 15. Aviyvevon avouaiiov oto pukto ovvoio beboucvamv ue 27 bots

Anpwovpyia TKE

To avopalo ouvodo tng mepimwong pe 45 bots mepieixe 94 Sievubuvoerg 1P, ano tg
ortoieg 44 fjtav bots. Xpnowornowjoape 1 = 30, ermAéyoviag 4 KeEVIPIKOUG KOPBoug, aro
Toug oroioug £vag rjrav bot kat ot dAdot Supata. Oéoape 1, = 0.38 kat kataAn§ape oe FKE
48 xopBav, amnod toug ornoioug 41 ntav bots. To ’KY gaivetat mave apilotepd oty eikova 16.

E@ooov ) avixveuorn avopaliov oty riepintowon pe 27 bots arétuye, srmudégape xelporointa
avopalo ouvodo pe 101 képBoug amnd toug oroioug 20 rtav bots. Xpnowonowoape t = 30
ermAgyoviag 5 Keviplkoug KopBoug, ano toug oroioug 2 ftav bots. To '’KE dnpioupynOnke
pe 17, = 0.3 xat nepieixe 31 k6pBoug pe 15 bots. To I'KE gaiverat mdve apiotepd otnv eikéva
17.

ZUykplon adyopiOpwv aviyveuong KOwvotHToVv

Ta anmoteAéopata g aAviXveuong Kowotntev yia 1o npeto KE gaivoviatl otov mivaka 5
Kat oty ekova 16. Lrov HGN xpnowpornotjoape 3 kopBoug opdonpa kat peyebog déopng
1. Tlapammpoupe ot o1 duo aAyopiBpotl Girvan-Newman eviornidouv tn peyddn kowotnta
ardbots eve ot untdAoinol adyopiBpol Suokodsvoviat. O Spectral Clustering evrorntidet p16vo

éva Koppatt g Kowotntag, eved ot Louvain, Walktrap xwpiouv v kowotnta anobots oe
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0.4.3 TIlepdpata ota ouvoda dedopévav CAIDA, Simpleweb

HKPOTEPEG KOVOTITEG KAl AVIXVEUOUV HOVO Pid amod autég.

AAyop19pog NMI Fl-score
Girvan-Newman 0.62 0.96
Louvain 0.18 0.62
Spectral Clustering | 0.23 0.53
Walktrap 0 0
HGN 0.62 0.96

Table 5. NMI xat F1-score tov afdyopiduamv aviyvevong kowottev oto I'KY e nepintwong
ue 45 bots

Iy nepintoon v 27 bots xpnowornowmjoape 10 kopBoug opoonpa otov HGN kat péye-
Sog 6¢éoung 1. Ta arotedéopata @aivoviatl oto oxnpa 17 kat otov mivaka 6. I[TaAt kaAutepa
arnotedéopata €xouv ot Girvan-Newman aAydpiOpot. O Spectral Clustering eviomidel 0Aa
1a bots aAAd €xel moAAd weubwg Yetikd anotedéopara, eve ot Louvain, Walktrap mdAt ev-

Torti{ouv TIOAAEG KOIVOTITEG KAl AVIXVEUOUV HOVO Atyoug KOpBoug.

AAyop19pog NMI Fl-score
Girvan-Newman 0.21 0.84
Louvain 0.01 0.35
Spectral Clustering | 0.03 0.77
Walktrap 0 0
HGN 0.13 0.79

Table 6. NMI xat F1-score tov afyopiduamv aviyvevong kowottev oto I'KY tn¢ nepintwong
ue 27 bots
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Figure 16. AnotéAsoua aviyveuong kowottev oto I'KX g nepintwong ue 45 bots
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0.4.3 TIlepdpata ota ouvoda dedopévav CAIDA, Simpleweb

(a) Ground truth (b) Girvan-Newman

(c) Louvain (d) Spectral Clustering

(e) Walktrap (f) Hyperbolic Girvan-Newman

Figure 17. Anotéfsoua aviyvevuong kowottwv oto I'KX ¢ nepintwong ue 45 bots
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0.5 Zupnepaopata Kat 18£€g yla napattépw ReEAETY

Amno 1a mepapata pag embBsBaiwoape Ot 1 aviyveuon aveopaliov kat botnets eivat
mo 8UOoKOAnN otav ta bots eivat Alya, 1dwaitepa onv apyr) g enibeong. 'Ocov agopa 1N
dnuoupyia I'KE, nmapatnpricape 6t av n Mapaperpog 1, eivar avotnpr| t6te Siatnpovvial
Atyotepa bots oe autd alAd o1 Kowotnteg eivat o §1aKkpiteg, EVe av 1 apapeTpog dev eivat
auotnpn 10te Undpxouv meplocdtepa bots aAda eival mo §uokodo va diakpiBouv amod toug
AKAKOUG KOPBouUG.

IMa v avixveuon v botnets napatnpnoape 6t ot adyopiBpotl Louvain, Walktrap tei-
vouv va Staxwpidouv 1o F'KE o moAAEg KovotnTeg Pe amotédeopa va evrori¢ouv Atya bots. To
npoBAnpa autd propel va ermAubel av xpnoponojcovpe S1aPOoPETIKY] OTPATYIKI] KATYO-
P10TT0INONG TRV KOWOTHT®V. Avti va ermAé§oupe povo pia Koot ta og bots, Sa propovoape
va egetddoupe KABs KowotnIa §eX®POTA, 100G XPNOTOIIOINVIAS KA XAPAKTINPIOTIKA TOU
d1ktUou. Me 10V TPOTIO AUTO 01 aAyop10110t ITOU eVIOTTi{oUV TTEP1O0OTEPES ATTO SUO KOIVOTNTESG
100G €xouv kaAutepa arotedéopara, kat Sa propovoape va tpéfoupe kat toug Girvan-
Newman, Spectral Clustering pe peyaAutepo api®po Kowotntev ylia ouykplon. ‘Opeg 1
OTPATNYIKY aUTH] IIPOCBETEL EMIMAEOV TTAPAPEIPOUS Yia va AUoel éva TipoBAnpia mou dev ep-
@avidetal av andog emAeyet S1apopeTkog aAyopiOpog.

Metady tewv adyopibuwv Girvan-Newman, Spectral Clustering o SeUtepog eixe xeipotepa
arnotedéopata ota PIKtd 6edopéva, Ve 0 TIPOTOG £ixe PETPLA ATIOTEAECATA OTA TTPWTA TIEPA-
pata. e yevikég ypappég ot adyopiBpot Girvan-Newman rtav apketd adiormorot av 1o F'KE
ftav kadd guaypévo. Afilel mapattépe pedétn oe peyalutepa avopadla ouvoda, kKabwg
Kal otnv ermAoyr] IOV MApapéipeyv I, 1, oote 10 FKY va niepidapBavet nepiocotepa bots pe
HIKPOTEPT) TOWVH] OTNV AKPiBeld eVIormopoU Kowottav. Metadu tov Girvan-Newman, HGN
a&ilet n ermdoyr) tou HGN av €xet ipotepatdtnta n taxu)a (yia nmapdadetypa oty apxr) tmg

eniBeong) kabwg ta arotedéopara toug ivatl oxedov idia.
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Introduction

Botnets are groups of internet-connected devices that have been compromised and are
controlled by a malicious actor. They are used to perform Distributed Denial-of-Service
(DDoS) attacks, steal data such as account or bank information, spam or click fraud.
DDoS attacks overload the target with superfluous requests, resulting in it being unable
to process regular requests and therefore its service becoming unavailable.

Because of the popularity and severity of botnet-led DDoS attacks, botnet detection
has become an important cybersecurity problem. In order to avoid the known detection
techniques, botnets constantly evolve, but their behavior continues to exhibit certain
patterns that allow their detection. Overall, it is more difficult to detect an attack and
identify compromised nodes during the early stages of the attack, but the earlier the

botnet is caught, the easier it is to defend against it.

1.1 Thesis contribution

This thesis examines an existing botnet detection method combining anomaly and
community detection. Initially, the method gathers normal traffic during a training period,
which is then used to determine whether new traffic is anomalous based on its deviation
from the reference. The anomalous traffic is then processed in order to group bots together
based on the correlation of their interactions. The contribution of this thesis is to examine
and compare multiple different community detection algorithms on the final stage of the
method.

Three different botnet attacks are used to evaluate the algorithms, which are then
compared in terms of their accuracy in identifying the compromised nodes. Traffic from
the early stages of each attack is used in the experiments, since the later stages are
straightforward to detect due to the large volume of traffic. Five community detection
algorithms are compared, including Hyperbolic Girvan-Newman, an algorithm that em-
beds the network into hyperbolic space for efficiency of calculations, and the benefits and

drawbacks of each algorithm are analysed.

1.2 Thesis outline
The rest of this thesis is organised into four chapters:
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Chapter 1. Introduction

e Chapter 2: Theory, provides theoretical background on graph theory, complex net-

works, machine learning, community detection and botnets.
e Chapter 3: Methodology, explains in detail the algorithm used.

e Chapter 4: Experiments, presents the experimentation carried out for this diploma

thesis, including information about the code and datasets used.

e Chapter 5: Epilogue, contains a summary of the thesis, some conclusions and ideas

for further improvements.
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Theory

This section contains the theoretical background needed before our methodology and
experiments are explained. It is split into five sections: graph theory, complex networks,

machine learning, community detection and anomaly detection.

2.1 Graph theory

In this section we provide a quick introduction to graph theory by defining some basic

concepts we will use throughout the thesis.

2.1.1 Basic definitions

A graph, or network, G = {V, E} is a mathematical structure containing a set of vertices
(or nodes) V and a set of edges E. An edge (u,v) € E represents a connection, or a
relationship, between two nodes u, v € V. Graphs are used in a variety of applications

such as road networks, the world wide web, social media connections, etc.

B-‘_‘_‘_‘_‘_-_‘_‘—-—-_
A

G

E E
\ / F
D —
Figure 2.1. Example of a graph with 8 nodes and 10 edges

Directed graphs A graph may be directed or undirected. In directed graphs each edge
is oriented, so it has a source node and a destination node. In undirected graphs edges

are not oriented. Figure 2.1 shows an example of an undirected graph.

Weighted graphs A graph is called weighted if each edge has a weight assigned to it.

The weight represents quantities such as distance or cost.
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In figure 2.2 we can see an example of a weighted undirected graph and an unweighted

directed graph.

A 3 ————(® A _°
/5/
c
N
C— o E

[~ D

Figure 2.2. Left: a weighted undirected graph
Right: an unweighted directed graph

Neighbourhood Two nodes are neighbours, or adjacent, if they are connected by an

edge. The neighbourhood N, of a node u is the set of nodes adjacent to it.
N,={veV:(uv)€E} (2.1)

Clique A clique is a subset of V where every pair of nodes is connected by an edge. A

(e=1)

clique of k nodes has k 5— edges. A clique of 4 nodes is shown in figure 2.3.

A

\ =
U\

Figure 2.3. Nodes B,D,E,G form a clique

2.1.2 Graph representations

In this section we outline the two most common graph representations. There are
benefits to using either, which depend on the situation.
Adjacency matrix

The adjacency matrix A of a graph with n vertices is a square n X n matrix where
each row and column corresponds to a vertex. If the edge (u, v) connecting the vertices
u, v exists then A, = 1, else Ay, = 0. The main advantage of adjacency matrices is that

they provide an immediate way to add, remove, or check if an edge exists. Inserting new
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vertices however is costly, and their n X n space requirement does not scale well for large
graphs.

Some properties of the adjacency matrix:
e In undirected graphs the adjacency matrix is symmetric
e In weighted graphs the elements of the adjacency matrix are the weights of the edges

e In graphs without self-edges the diagonal of the adjacency matrix is all zeros

Adjacency list

The adjacency list of a graph with n nodes is a set of n lists. Each list’s elements are
the neighbours of a specific node. Adjacency lists are more space-efficient than adjacency
matrices, especially in sparse graphs where the number of edges is small. They provide
a quicker way to iterate over all edges, but checking for the existence of a specific edge is

costlier than in adjacency matrices.

2.2 Complex networks

Complex networks are graphs with a complicated structure whose properties depend
largely on the way the nodes connect and interact with each other [7]. Most real-life
networks are complex, such as social networks or computer networks [8], [9]. This section
presents some common metrics used to study the structure and behaviour of complex

networks.

2.2.1 Degree distribution

The degree of a node is defined as the number of nodes adjacent to it, or the size of its
neighbourhood. The degree distribution of a network is the probability distribution that
describes the probability of a node in the network having a specific degree.

In weighted graphs, the strength of a node is the sum of weights of the edges connected
to it. In directed graphs, we define an in-degree and an out-degree (similarly in-strength
and out-strength) using only edges where the given node is the target or the destination
node.

The degree distribution can give some insight on the type and structure of the graph.
In section 2.2.6 we compare the degree distribution of two different network models (fig-
ures 2.7 and 2.10).

2.2.2 Average path length

A path is defined as a sequence of nodes where every two consecutive nodes are linked
by an edge. If the nodes in a path are distinct, it is called a simple path. The length of the
shortest path between two nodes is called their distance.

The average path length of a network is the mean of the lengths of the shortest paths

between every pair of nodes in the network. If d(u, v) is the distance between nodes u, v
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of a graph G with |V| = n, then the average path length [; is calculated by:

1
lG = m Z d(u, U) (22)

w,veV

The average path length is a way to estimate how quickly information travels inside a

network. It can also be used to predict the spread of epidemics [36].

2.2.3 Clustering coefficient

In many complex networks, nodes tend to cluster together and create local communi-
ties with lots of connections between them. This behaviour is measured by the clustering
coefficient. Quantifying the existence and strength of communities is important in appli-
cations such as recommendation systems [11] or epidemiology [12], [13]. The clustering

coefficient can be measured either across the whole network or on a single node.

Global clustering coefficient

The global clustering coefficient C is a way to quantify how clustered a network is as a

whole.

3 X number of triangles
- ) triang 2.3)

number of triplets

Local clustering coefficient

The local clustering coefficient refers to a single node and measures how closely con-
nected its neighbours are. It is calculated by dividing the number of connections between
the node’s neighbours to the total possible connections between them (which is the case

if they formed a clique). If I, = |N,| then the local clustering coefficient C, of node u is:

_2><|{eij:i,jeNu, e; € E}|

v leu(ley — 1) 24

Figure 2.4 shows the local clustering coefficient of a node, marked in green, in three
different scenarios. On the left, all three edges exist between the neighbours of the green
node, so its local clustering coefficient is 1. In the middle, only one of the three edges

1

exist, so the local clustering coefficient is 3. On the right, no edges exist between the

three neighbours, so the local clustering coefficient of the green node is O.

Average clustering coefficient

The average clustering coefficient is an alternative to the global clustering coefficient
and is measured by calculating the mean of the local clustering coefficients of all n nodes
in the network.

c-1 (2.5)

S| =
™M
Q
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C=1 C=13

Figure 2.4. Example of the calculation of the local clustering coefficient of the green node
in three different scenarios [1]

2.2.4 Centralities

Node centralities are metrics that indicate the importance of nodes in a network. There
are multiple ways to measure the centrality of nodes, as different problems and networks
view different properties as more important [37], [38], [39]. In this section we present

some of the most popular centrality metrics.

Degree centrality

The simplest centrality measure is the degree centrality, which is equal to a node’s
degree. Nodes with many neighbours are deemed more important, because they have
many connections and control the information flow. If A the adjacency matrix of a network
G = (V, E) with n nodes, then the degree centrality of node i € V is:

n
Cp(i) = Z ay 2.6)
J=1
Sometimes the normalised degree centrality is used:

1
Cb(l) = m Z Qjj 2.7)

Closeness centrality

Closeness centrality values how close a node is to all other nodes. It is a way to
estimate how quickly information travels from a node to the rest of the network. It is
measured by dividing the total number of nodes minus the source with the distance of
the source to all other nodes. For this reason closeness centrality is only defined if the
network is connected, which means a path should exist between any pair of nodes.

n-1

c(i) j:1d(l’J)
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Betweenness centrality

Betweenness centrality is a metric that estimates the importance of a node based
on the number of shortest paths between all nodes in the network that pass through
it. A node with high betweenness centrality controls a large amount of the information
that flows through the network, since many paths go through it, whereas a node with
low betweenness centrality can be bypassed via different nodes. For a node u € V, the
betweenness centrality Cg(u) is defined by iterating through every pair of nodes i,j € V
and dividing the number of shortest paths oj(u) between i and j that pass through u by
the total number of shortest paths o between i and j.

Cow = )’ o) 2.9)

ijenev O

Figure 2.5 shows a graph whose nodes are coloured based on their betweenness centrality,
from blue denoting high values to red denoting low values. As expected, the nodes on the

outside of the graph have lower betweenness centrality than the more central ones.

Figure 2.5. A graph coloured based on the betweenness centrality of the nodes [2]

Edge-betweenness centrality

Edge-betweenness centrality is a metric similar to node betweenness centrality, but
referring to edges instead of nodes. It is defined as the fraction of shortest paths between
all pairs of nodes that pass through a given edge. Like node betweenness centrality, many

paths go through edges with a high value of edge-betweenness centrality, so those edges
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control the flow of information throughout the network. This metric is used in Girvan-

Newman’s community detection algorithm [14], further discussed in section 2.4.2.

2.2.5 Complex network characteristics

Most networks that appear in real-life situations are complex networks and have
various characteristics. Some of the most important features of real networks are listed

in this section.

e Dynamic topology: Real networks usually don’t have a static number of nodes and
edges. New nodes connect to the network and existing links may change with time.

This property makes analysis of real networks especially challenging.

e Small-world effect: Networks where the average shortest path length is small and
the clustering coefficient is relatively high exhibit small-world behavior. In small-
world networks most pairs of nodes can be connected by a small number of hops.
This means that information travels relatively quickly even in large networks. In
a study by Leskovec and Horvez in 2008 [40], a network of 180 million nodes was
created from Microsoft Messenger instant-messaging conversations between users.
Despite the large size of the network it was found that the average path length was

only 6.6 hops.

o Preferential growth: In evolving real networks, new nodes tend to connect to ex-
isting nodes that have a large number of existing links. Nodes with a large number
of connections are called hubs and they have a higher probability of connecting to

new nodes than nodes with only a few connections.

e Scale-free distribution: The result of preferential attachment in real networks is
that their degree distribution tends be exponential. This means that there are many
nodes with only a few neighbours and a few nodes, the hubs, with a large number
of links. More specifically, the fraction P(k) of nodes with k neighbours follows

P(k) k7Y, where y is a parameter usually valued between 2 and 3.

2.2.6 Synthetic network models

Many models exist that attempt to simulate the behaviour of real networks. In this

section some popular models for synthetically creating networks are presented.

Regular graphs

Regular graphs are graphs where all nodes have the same degree. In k-regular graphs
all nodes have degree k.

Lattice graphs are a similar model where the graph is organised like a grid. Not all
nodes have the same degree but there are only a few possible degrees and there is an
obvious pattern for the graph’s creation.

Examples of regular-like networks are crystallic molecular structures or mobile cellu-

lar networks. Figure 2.6 shows a 2-regular graph and a lattice graph.
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Figure 2.6. Left: a 2-regular graph
Right: a lattice graph

Erdos-Rényi G(n,M) model

A model was proposed by Erdés and Rényi [28] in 1959 to create random graphs with
nnodes and M edges. The model chooses with equal probability a graph out of all possible
graphs with n nodes and M edges.

Random graphs are mostly used for comparison purposes with other models, but
they can also be used to model neural networks. An example of the normalised degree

centralitiy distribution of an an Erdés-Rényi network is shown in figure 2.7.
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Figure 2.7. The normalised degree centrality distribution of an Erddés-Rényi network with
n=42 nodes and M=150 edges. The distribution follows a Gaussian curve.

Gilbert’s G{n,p) model

The G(n, p) model for random graphs with n nodes was also proposed in 1959 by
Edgar Gilbert [27]. A Bernoulli trial with probability p is performed independently for
each possible edge, and the edge is added to the graph in case of success. In other words,

for every pair of nodes the edge connecting them is added with probability p independently
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of other edges.

The number of edges in a G(n, p) graph follows a binomial probability distribution
B((;) p). The expected number of edges is (g)p If p = 1 then the resulting graph is a
complete graph with all possible (g) = @ edges.

For large enough n the G(n, p) model approximates a G(n, M) model with M = (g)p
because by the law of large numbers the number of edges will tend to the expected value.
This happens when pn? — o as n — oo. Therefore in this case the two models can be

used interchangeably.

Random Geometric Graphs

Random Geometric Graphs G(n, r) are graphs with n nodes that have randomly as-
signed coordinates in a metric space. Two nodes are connected by an edge if their distance
in the metric space is smaller than a radius r. An example is shown in figure 2.8.

This model creates graphs with a relatively high average clustering coefficient, be-
cause nodes that are close in the metric space are connected, forming well-connected
communities [41].

RGGs are often used to model road networks and other geographical data, as well as

in statistical data analysis, due to the nature of their construction.

Figure 2.8. Example of a random geometric graph [3]
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Watts-Strogatz model

The Wattz-Strogatz model proposed in 1998 [42] creates graphs with the small-world
property that was analysed in 2.2.5. The model initially creates a k-regular graph with n
nodes. Afterwards, each edge (u, v) from the regular graph is randomly rewired to (u, w)
with probability p, where w € V,w # u # v a node chosen uniformly at random among
V. This model results in graphs with a small average path length and high clustering
coefficient. If p = O then the result is a k-regular graph, while if p = 1 the result is a
random graph. As p changes from O to 1 the network becomes more random, as seen in

figure 2.9.

Figure 2.9. Example of a Wattz-Strogatz network with n = 10 and k = 4. On the left with
p = 0 the result is a regular graph. In the middle with p = 0.3 a small-world network. On
the right p = 1 so the graph is random.

Barabasi-Albert model

Barabasi and Albert proposed a model in 1999 [43] simulating preferential network
growth in order to create scale-free networks. The model initially has mg nodes randomly
connected with each other and continues by adding new nodes one at a time. Each

new node is connected to m < my already existing nodes, with a higher probability of

connecting to nodes with high degrees. More specifically, the probability of a new node
[Nu|

ZUEV |N u|

normalised degree centrality of a Barabasi-Albert network is shown in figure 2.10.

connecting to node u is p(u) = where |N,| the degree of node v. An example of the

2.3 Machine Learning

Machine learning is a computer science field that studies methods and algorithms
that allow machines to learn from data, called training data, and apply their knowledge

to solve problems such as classification or data analysis.

2.3.1 Supervised learning

Supervised learning is a sub-field of machine learning where the training data are
labelled, which means each data point consists of a feature vector and a label. The goal
is to learn a function that will enable the correct classification of new data points given

their feature vector.
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Figure 2.10. The normalised degree centrality distribution of a Barabasi-Albert network
with n=42 nodes and m=4. Unlike the random graph in figure 2.7, the distribution is
exponential.

Supervised learning is mostly used for classification problems, where the model trains
on data that are labelled as different classes and then is tasked to assign labels to new
data. Examples of applications include handwriting recognition [44], spam email filtering

[45] and satellite image classification [46].

2.3.2 Unsupervised learning

Unsupervised learning is a sub-field of machine learning where the training data are
not labelled. It includes methods for data analysis and exploration as well as generating

new data.

The most common problems in unsupervised learning are clustering and anomaly
detection. Clustering is used to group data into smaller groups, where data points inside
the same group have similar properties. It can be applied to a variety of fields such as
medicine [47], political and social science [48] and data mining [49]. Anomaly detection

refers to the problem of identifying abnormal data and is expanded upon further in 2.3.5.

2.3.3 Deep learning

Deep learning refers to machine learning models that attempt to simulate neural net-
works like the human brain. Multi-layered architectures are used to create artificial neu-
ral networks which are very powerful but require a lot of training data and computational

resources [50].

Deep learning is very successful in computer vision [51], natural language processing

[52] and speech recognition [53].
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2.3.4 One-class classification

One-class classification is a machine learning problem that attempts to describe a
single class of objects and distinguish them from other objects. The training data consists
only of objects from the class, as opposed to supervised classification problems where
there exist labelled data from all classes during training.

The goal is to identify whether new data belongs to the learned class or not, thus there
are applications in novelty detection, anomaly and outlier detection. Novelty detection
refers to identifying new classes of objects that may start appearing, whereas anomaly
and outlier detection attempt to identify exceptional data points. One-class classification
is also used in scenarios with highly imbalanced training data [54], as in these cases
traditional classification methods tend to have heavy bias towards the majority class.

One-class classification methods can be split into three large categories:

e Density estimation methods: These methods assume the data follows a probabil-
ity distribution, for example Gaussian, and try to find the distribution parameters
that best fit the data. New points are evaluated based on a threshold.

e Boundary methods: These methods attempt to set a boundary around the training

data based on a few target points, for example the K-centers algorithm [55].

e Reconstruction methods: Reconstruction methods create a generating model that

fits the data, for example self-organising maps [56].

2.3.5 Anomaly detection

Anomaly detection refers to the problem of identifying abnormal events and data points
that deviate significantly from the majority of the data. These data points may make
calculations unnecessarily difficult due to being outliers. For example, in supervised
learning, detecting and removing exceptional training data often improves the results of
the model [57]. Similarly, prediction models for time-series also benefit from the removal
of outlier data [58].

Anomalous data points may also have different origins from the rest of the data, in
which case the goal is to identify these events. Anomaly detection is commonly used in
cybersecurity [59], [60] in order to detect network attacks. Other applications include
medicine [61], financial fraud detection [62] and industrial quality assurance [63].

Some categories of anomaly detection methods are the following:

e Statistical methods: These methods fit the data into a probability distribution and

check which points deviate most from it.

e Density methods: The main idea behind these methods is that the majority of the
data is similar and creates a dense population, so the outlier points are in sparser

regions. An example technique is isolation forests [64].

e Clustering methods: These techniques group the data into similar clusters and
outliers are detected based on their distance to the clusters. An example clustering

algorithm is K-means, explained in 2.3.6.
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e Deep learning: Neural networks can be used to learn patterns from data and detect
new points that do not follow these patterns. Long short-term memory neural

networks (LSTMs) are often used for this purpose [65].

e Bayesian networks: These methods calculate the probability that an event occurs

based on previous events. Events with low probability are deemed anomalies.

2.3.6 K-means clustering

K-means clustering is an unsupervised learning algorithm that splits data points into
I clusters [66]. It is an optimisation problem with the goal of finding an assignment of
points to clusters such that the sum of the distances of the data points to the mean of
their cluster is minimised. The cluster means can then be used for classification, as new
points can be assigned to their closest cluster.

The problem is NP-hard [67], but there are many algorithms that find potentially
sub-optimal solutions. We will examine the most popular one, which after an initialisa-
tion phase, iterates over 2 steps until the cluster means converge. During initialisation,
coordinates are assigned to the means of the k clusters. There are many methods for
initialisation [68], but the most common is to randomly pick k data points and assign
their coordinates as cluster means.

The algorithm then repeats the following two steps until the cluster means no longer
change, or change less than a given tolerance. It converges to a local optimum as long as

euclidean distance is used.

e Calculate the distance of each data point to every cluster mean and assign it to the

nearest one.

e Compute a new mean for each cluster by averaging the coordinates of all data points

belonging to it.

2.4 Community Detection

Complex networks have a tendency to form communities, which are sets of nodes
more densely connected among each other than the rest of the network [10]. Knowledge
of these communities may allow a better understanding of the structure of the network
and spreading of information inside it, so their detection is a problem with an abundance
of applications. For example, community-based recommendation systems take advantage
of the fact that users in the same community are more likely to have similar interests [11].
Communities can also be used to examine the spread of epidemics such as COVID-19 [12],
[13].

Detecting communities in networks is a difficult problem, because the number, size
and density of communities is unknown and may vary. For this reason there exist multiple
algorithms that tackle it, each with different advantages and disadvantages. They are
usually evaluated based on accuracy, execution time and/or computational complexity.

Furthermore, depending on the problem, communities may overlap or not, meaning that
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in certain problems a node may belong to multiple communities, whereas in others each
node belongs to a single community.

An extensive survey was published in 2021 by Moscato and Sperli [69] comparing
many different community detection algorithms based on their complexity and the type
of problem they solve, i.e., whether the communities are strong and/or overlapping. A
community is called strong if every node that belongs to it has more within-community
neighbours than outside-community neighbours, whereas it is called weak if there are
more total edges inside it than edges connecting a node from the community to a node
outside it.

In the survey, community detection techniques are classified into five broad categories
depending on if they use topological features of the networks, game theory optimizations,
artificial intelligence (Al), fuzzy or greedy methods. The Al category is further divided
into two subcategories: network representation learning and deep learning, which will be

discussed in section 2.4.7.

2.4.1 Hierarchical communities

Many community detection algorithms follow a hierarchical approach, which means
that communities may have smaller communities inside them. Depending on when the
algorithms stop, the resulting communities are larger or smaller. There are two categories

of hierarchical methods, depicted in figure 2.11:

e Agglomerative methods begin by having each node be its own community, and
continue by merging communities with each other until the whole network is a

single community.

e Divisive methods are the opposite. At the beginning the whole network is a single
community and it is constantly divided into smaller communities until each node is

its own community.

We will now present the community detection methods used in this diploma thesis.

2.4.2 Girvan-Newman algorithm

The Girvan-Newman algorithm [14] is a divisive hierarchical community detection al-
gorithm which performs an iterative removal of edges that disconnect the network. The
number of communities to detect has to be specified beforehand, then the algorithm re-
moves edges from the network until the correct number of connected components remain,
each of which is a community.

The algorithm decides which edge to remove based on the edge-betweenness central-
ity metric. Edges with a low edge-betweenness centrality are more likely to be within-
community edges, because they can be bypassed by other edges in the community. On
the other hand, edges with a high edge-betweenness centrality are more likely to connect

two different communities, since all shortest paths between pairs of nodes, one from each
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[ Agglomerative ]

Figure 2.11. Hierarchical communities, edited from [4]

community, have to pass through that edge. For this reason each iteration of the algo-

rithm removes the edge with the highest edge-betweenness centrality. Figure 2.12 shows

a network partitioned into five communities via Girvan-Newman’s algorithm.
Girvan-Newman algorithm can be summarised as follows, given a specified number of

communities k.
1. Calculate the edge-betweenness centrality of all edges in the network.
2. Remove the edge with the highest edge-betweenness centrality.

3. If the number of connected components in the network is k, stop. Otherwise repeat

steps 1 and 2.

The main problem with this algorithm is its O(nm?) time complexity, due to the con-
stant calculations of edge-betweenness centrality. This makes it unviable for modern
large-scale network applications. An alteration that speeds it up is to remove multiple
edges during step 2 instead of just one. This may result in less accurate communities
but saves a significant amount of time, because the edge-betweenness centralities are

computed fewer times overall.

2.4.3 Louvain method

The Louvain method for community detection [15] is a greedy method that attempts to
optimise the modularity score of the resulting communities. Modularity is a measure used
to evaluate community detection methods, explained further in section 2.4.9. Two ad-
vantages of this algorithm relative to Girvan-Newman is that the number of communities
is not specified at the start, and the time complexity is only O (n log(n)).

The Louvain algorithm is an agglomerative hierarchical method. It consists of three

steps that are repeated until modularity no longer increases:

1. Assign each node of the network to its own community.
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Figure 2.12. An example of Girvan-Newman'’s algorithm applied to a network to separate
it into five communities.

2. For each node, calculate the modularity score after assigning it to the communities
of each of its neighbours. Assign the node to the community which results in
the largest modularity increase than if it remained in its own community. If no

reassignments increase the modularity, leave the node in its own community.

3. Create a new network, where each previous community corresponds to a single
node. Edges within a community are turned into self-loops. Multiple edges from
one community to another are turned into a single edge between two nodes, with a
weight equal to the number of edges that connected the communities. Repeat from

step 1 with the new network.

The Louvain method is similar to the Clauset-Newman-Moore greedy method [70]. The
Clauset-Newman-Moore method also begins with each node in its own community, and

repeatedly joins pairs of communities into one in order to maximise modularity.

2.4.4 Walktrap

Walktrap [16] is a community detection algorithm that uses random walks. It is
an agglomerative hierarchical method based on the idea that short random walks in a

network tend to stay in the same community, as most edges in a community are within
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itself. These random walks are easy to compute and are used to create a custom distance
metric, based on which the communities are joined. The complexity of the algorithm is

O(mn?) in the general case and O(n2log(n)) for sparse graphs.

2.4.5 Spectral clustering

Spectral clustering is a clustering algorithm that uses the eigenvectors of the Laplacian

matrix of a network [17]. The Laplacian matrix of a network is defined as follows:
L=D-A (2.10)

where A the adjacency matrix of the network and D a diagonal n X n matrix where Dy is
equal to the degree of node i. After the Laplacian matrix of the network has been com-
puted, we also calculate its eigenvalues and eigenvectors. For detecting k communities,
the k eigenvectors corresponding to the k largest (or smallest) eigenvalues are selected.
K-means clustering is then applied (see section 2.3.6) on the vectors created by grouping

each row of all eigenvectors. The results of K-means clustering are the communities.

2.4.6 Hyperbolic Girvan-Newman

Hyperbolic Girvan-Newman (HGN) [5] is a variation of the classic Girvan-Newman
algorithm that utilises a mapping of the network into hyperbolic space in order to more
efficiently calculate the edge-betweenness centralities. Before the algorithm is explained,

we will make a short introduction to hyperbolic embedding.

Hyperbolic Embedding

Mapping networks into low dimensional geometric spaces while preserving their prop-
erties is a difficult challenge with a lot of benefits such as better visualisation or quicker
calculations of distances.

This work by Serrano and Boguna [71] presents hyperbolic geometry as an ideal
metric space for mappings of complex networks, since it preserves important qualities
such as the small-world property, scale-free degree distribution. Two equivalent models
are discussed, the first of which gives each node an angular position in a circle and a
hidden degree. The second model gives each node coordinates inside a disk, where nodes
closer to the center are more popular. The probability of two nodes in the real network
being connected is relative to their proximity in the hyperbolic space (similarity) and their
popularity. The hyperbolic embeddings also preserve the initial network’s communities,
as well as mimic the phenomenon of new nodes tending to appear in popular regions.

An algorithm to create popularity-similarity models in hyperbolic 2-dimensional space
is hypermap [72]. An example of its application is shown in figure 2.183.

Another algorithm for hyperbolic embedding of networks is Rigel embedding [18]. In
the hyperbolic geometry used by this algorithm, the distance dy(x, y) between two points

X, y is given by:

coshdp(x, y) = (1 + IxI2)(1 +lyl2)- < x. y > 2.11)
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Figure 2.13. An example of the Hypermap algorithm used to embed the above network
into hyperbolic space. Hypermap follows the disk model, which means nodes closer to the
center are more popular in the real network (high degree) and nodes near each other in the
disk are more likely to be connected in the real network.

where ||x||, ||yl| the euclidean norms and < x, y > the inner product of x, y. Rigel algorithm
selects a subset of | << n nodes from the network, called landmarks. The first step
of the algorithm assigns hyperbolic coordinates to the landmarks by solving a global
optimisation problem, in order for the hyperbolic distances of each pair of landmarks to
be as close as possible to the hop distances of the nodes in the original network. In the
next step of the algorithm the coordinates of the rest of the nodes are computed based on
the coordinates of the landmarks, so that the hyperbolic distances of each node to all the

landmarks are as close as possible to their hop distances before embedding.

Hyperbolic Edge-Betweenness Centrality

Girvan-Newman algorithm for community detection does not scale well for large net-
works, as discussed in 2.4.2, because the constant computation of edge-betweenness
centralities is costly. However, by embedding the network into hyperbolic space an ap-
proximation to edge-betweenness centrality can be calculated much more efficiently [19].
The approximation measure is called Hyperbolic Edge-Betweenness Centrality (HEBC)

and utilises the coordinates of the nodes in the hyperbolic space produced via Rigel em-
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bedding.

Instead of shortest paths between nodes, greedy paths are used in the hyperbolic
space. A greedy path is a path with a source node and destination node. It begins from
the source node and chooses each next node as the one closest to the destination. Greedy
paths in hyperbolic space tend to be of similar length as shortest paths in the real network,
but the number of greedy paths between two nodes is not always the same as the number
of shortest paths between them in the real network. For this reason the HEBC may differ
from the EBC which results in a loss of accuracy. However, calculating greedy paths is
much quicker than shortest paths, so HEBC is more computationally efficient than EBC.
The algorithm for computing HEBC is shown in figure 2.14.

Algorithm : Hyperbolic Edge Betweenness Centrality (HEBC).
1 HEBC(u,v) =0; Yu, v € V,V the node set

2 foreachnodes € V do

3 % Part I: Sort all nodes in order of decreasing hyperbolic distance towards the destination s,
Uy =5

a Obtain Sas S = {v) = v < .. < vy}, % “ < " indicates the ordering of decreasing
hyperbolic distance from s, 5, = 5

5 % Part II:

6 % (1 ): the number of greedy paths beginning at node 1 and finishing at node s
7 Glu)=0%ue V, o(s) =1

8 % Ng(i,s): the greedy neighbors of i in 5

9 fori = N:1do

10 foreachu;: u; € Ng(i,s) do

11 L os(uj) = o (ug) + oe(u;);

12 remove u; from 51

13 % Part III: sum dependencies (§), and compute HEBC values for all edges
14 Su)=0,vu €V

15 fori = L:N-1do

16 foreach u; € Ng(i,s) do

17 c= :—':]—Ila-c(l Fo(ug));

18 HEBC[M;,MI)=HEBC[u;,uJi] +c;

19 HEBC[HJ,‘,H;)=HEBC[MJ,',HE] +c;

20 S(u;) = 0(u;) + ¢

21 remove u; from 5,

Figure 2.14. HEBC Algorithm [5]

Hyperbolic Girvan-Newman algorithm

The HGN algorithm, similarly to the Girvan-Newman algorithm, requires the number
of communities k to be given as input. There is an extra parameter b, the batch size,
which signifies the number of edges removed each iteration. It is described in [5] and can

be summarised as follows:
1. Embed the largest connected component into hyperbolic space.
2. Calculate the HEBC of all edges and remove the b edges with the largest values.
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3. If the number of connected components is equal to or higher than k, stop. Else

repeat steps 1 and 2.

Even though there is some initial overhead for the network embedding, this is far
less costly than the time saved by calculating HEBC instead of EBC. For this reason the
HGN algorithm is much faster than the original Girvan-Newman. There is some loss of
accuracy due to the inaccuracies caused by HEBC, but the authors of [5] showed that the
HGN algorithm produces communities of similar modularity as Girvan-Newman. Thus it
is a viable alternative for larger networks where the classic algorithm struggles.

In [73] the HGN algorithm was extended to work with graph databases. A graph
database is an alternative graph representation to the common adjacency matrix, which
is used for very large networks. The modified HGN algorithm stores all the necessary
information in the database, such as hyperbolic coordinates and neighbours of nodes,

and extracts any information it needs through SQL queries.

2.4.7 Deep learning methods

There have been many successful attempts to utilise deep learning models to solve
community detection problems, some of which are outlined in a 2021 survey by Su et
al. [74]. The survey divides the algorithms into six categories. The classification is
based on the deep learning models used: convolutional neural networks, attention mech-
anisms, generative-adversarial training, autoencoders, nonnegative matrix factorization,

and sparse filtering.

2.4.8 LFR Benchmark

The Lancichinetti-Fortunato-Radicchi (LFR) benchmark [75] is a synthetic network
generation model that creates networks with known communities. It is used to compare
different community detection algorithms.

The model creates scale-free networks where node degrees follow a power-law dis-
tribution with exponent y. The minimum, average and maximum degree are set. The
community sizes also follow a power law distribution with exponent . The model also
has a parameter p, called the mixing parameter, which inversely controls the fraction of
neighbours of a node that belong to the same community as the node itself. The value of
u is between O and 1, where at p = O all links from a node are with nodes of the same
community, and at u = 1 they are with nodes of other communities.

A 2016 analysis by Yang et al. [76] compares eight different algorithms using the
LFR benchmark. The algorithms are compared in terms of execution time, empirical
mixing parameter, and accuracy, which is calculated by the NMI with the ground truth
generated for the LFR networks. In the end, the authors note the best algorithms for
certain regions of values of mixing parameter and network size. The proposed strategy to
find the optimal algorithm for an application is to first run a good algorithm to estimate
the mixing parameter, if unknown, and then pick the best method in the corresponding

region.
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2.4.9 Evaluation Metrics

In this section we will present two common metrics used to evaluate communities

produced by community detection algorithms.

Normalised Mutual Information

Accuracy in community detection is often measured using the normalised mutual
information (NMI) of the results of the algorithm and the ground truth communities. The

mutual information between two discrete random variables X, Y is defined as:

(x,y)
I(X;Y) = ZZPXY(X’ y)lOQ(M (2.12)
T px(0)py(Y)
The normalised mutual information is then defined as:
21(X;Y)
NMIX,Y) = —————— (2.13)
H(X) + H(Y)

where H(X), H(Y) the entropy of X,Y. In the case of community detection the random
variables X, Y denote the probability of a node belonging to a specific community in the
ground truth or the algorithm result. The distribution can be calculated empirically by
dividing the number of nodes in each community to the total number of nodes in the

network.

Modularity

Another measure used to evaluate the results of community detection methods is mod-
ularity, which compares the number of within-community edges to the expected number
if the edges were randomly distributed. It is often used when there is no ground truth
available for the communities, which is required in order to calculate the NMI. Modularity
takes values between —% and 1, where positive values mean that there exist more edges

within communities than if the edges were random. It is defined as follows:

1 kik;
Q= % Z (Ay - % 6(Ci, Cj) (2.14)
ijev
where m is the number of edges in the network, A the adjacency matrix, k;, k; the degree of

nodes i,j, ¢;, ¢; the communities of nodes i, j and delta(x, y) the Kronecker delta function:

1 forx=y
6(x, y) = (2.15)
0 forx+y

2.5 Botnets

Botnets are groups of devices connected to the Internet, such as computers, smart-

phones or Internet of Things (IoT) devices whose security has been breached and are
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controlled by a malicious actor. Each device is turned into a bot after it is infected by
some malicious software (malware) and can be then controlled remotely. Botnets are
used to perform a variety of attacks such as spamming, Distributed Denial-of-Service
(DDoS) attacks (see section 2.5.1), data theft (passwords, credit card numbers, corporate
information) or click fraud to generate false traffic [20].

Traditionally botnets operated via a client-server model. The bots (clients) would lis-
ten to a server waiting for incoming commands. The attacker would send instructions to
the bots through the server, then bots would execute the command and send the results
back through the server. Many client-server botnets used Internet Relay Chat (IRC), a
text-based low-bandwidth instant messaging system [22]. The bots would connect to an
infected IRC server appearing as normal users and joined a channel where the attacker
sent their commands. The disadvantage of IRC-based botnets is that anti-malware soft-
ware can shut down the server or channel where the botnet coordinated, leaving the
infected clients dormant since they no longer receive instructions. To avoid being shut
down, IRC-based botnets need to constantly switch channels and servers. A famous IRC
bot that is still being maintained is Eggdrop [77].

More recent botnets operate via peer-to-peer (P2P) models, to avoid the vulnerability
of centralised botnets. P2P bots can both send and receive commands. They randomly
probe other IP addresses until they recognise another infected device, and then exchange
information about other known bots and latest instructions. This way the botnet spreads
and updates itself. To ensure the authenticity of the commands, public key encryption
may be used so that a private key is necessary to control the botnet [78]. A famous P2P

botnet is Gameover ZeuS [23] which was used for bank fraud.

2.5.1 Distributed Denial-of-Service attacks

A denial-of-service (DoS) attack is a type of cyber attack that aims to render a device or
service unavailable by overwhelming it with requests until it is unable to process normal
requests. A DDoS attack is a type of DoS attack that utilises many different sources to
launch DoS attacks, making it harder to defend against. While simple DoS attacks can
be mitigated by blocking traffic from the attacker, it is much more difficult to separate
normal from malicious traffic during distributed attacks. The compromised devices may
also hide their IP address by using a random one (spoofing) to make it near impossible to
pinpoint the source of the attack [79].

Botnets are often used to conduct DDoS attacks, as the attacker can command the
bots to spam the target with requests. A famous case was the Mirai botnet attacks in
2016 [21] that infected over half a million machines in the US east coast. Mirai is a
malware that targets consumer IoT devices turning them into bots that can be controlled

remotely, which are then used to launch DDoS attacks.

2.5.2 Botnet detection

Due to the high frequency of DDoS attacks [24] many methods have been developed
attempting to detect and stop botnets. Botnet detection methods can be broadly split into
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host-based and network-based techniques [25]. Host based techniques rely on monitoring
a single machine, checking for suspicious files, high processing overhead, etc. Network
based techniques monitor the traffic of a whole network either by passively waiting for
possible bot-commander communications or by sending test packets into the network
and observing the reaction.

We will now summarise a number of different botnet detection approaches:

e Anomaly-based: A very popular approach to botnet discovery is to utilise anomaly
detection techniques to detect unusual traffic [80], [81]. Network anomalies may be
unexpectedly high traffic, increased traffic on mostly unused ports, or higher than
usual latency. They may also be loosely defined deviations, after modelling normal
behavior [82].

e Signature-based: Signature-based methods make use of the signatures of known
botnets in order to detect them [83], [84]. They are incredibly quick and accurate

for detecting well-known botnets but cannot detect unknown botnets.

e DNS-based: DNS-based methods rely on monitoring Domain Name System (DNS)
requests on a network, for example by analysing the frequency of failed DNS reso-

lution requests since bots often used unregistered domains [85].

e Honeypots: A honeypot is an intentional vulnerability within a network aimed to

attract botnet attacks in order to obtain informtion about their behavior [86], [87].

e Deep learning: Recent advances in botnet detection also utilise deep learning tech-
niques such as graph convolutional networks [88], deep graph autoencoders [89],

transformers [90], etc.
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Methodology

The method we use for botnet detection largely follows the method described in [26],
but with different community detection algorithms in the last stage. The method consists
of two broad parts. The first part analyses network traffic attempting to identify time
periods with anomalous traffic, utilising anomaly detection methods. The second part
detects bots in the selected anomalous time periods. In this section we will describe the

method in detail.

3.1 Anomalous window detection

The first part of the botnet detection method is to use anomaly detection techniques
to identify time periods with unusual network traffic. We use statistical deviation based
anomaly detection. Initially, a training period without bots is used to generate a reference
distribution of normal traffic. Afterwards, the evaluation period is split into smaller
windows, and traffic from each window is compared to the normal traffic. Large deviations
from the normal behaviour are deemed anomalous.

We use two different approaches to this problem depending on if the input traffic is in

netflow or pcap format.

3.1.1 Netflow files

In the netflow format each flow represents a communication session between two
hosts. It includes a lot of relevant information such as the duration of the communication,
the total number of packets and/or bytes transmitted, what protocol was used, etc.

The flows may be unidirectional or bidirectional. If there is traffic between two hosts
A and B, who both send packets to each other, it can be represented as two separate
unidirectional flows, one from A—B and one from B—A, or it can be represented as a
single bidirectional flow.

The general idea of anomaly detection using netflow files is to select a number of fea-
tures from the flows, quantize them, and treat the resulting vector as a value of a discrete
random varable. An empirical probability distribution is then created using all vectors
inside a time window. This distribution created from the training period is the reference
used to evaluate future time windows for possible anomalous behavior. The comparison

of a probability distribution from an evaluation window with the reference distribution is
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done using the Kullback-Leibler (KL) divergence of the discrete distributions:

piplla) = Y po) log(@) .1
xeX q(x)

where p the evaluation distribution, g the reference distribution and X the common
sample space of the two distributions. It should be noted that if the evaluation window
contains a value x; that was not encountered in the training period, g(x;) = O resulting in
the KL divergence being undefined.

After calculating the KL divergence of the two distributions, the resulting value is
compared to a threshold. If it is larger than the threshold then the time window is

anomalous.

3.1.2 Pcap files

Pcap files contain information about individual packets transmitted through a net-
work. The main idea behind anomaly detection on pcap files is to create interaction
graphs and measure their degree distribution. A graph model is chosen based on the
degree distribution obtained during the training period. The evaluation period distribu-
tions are compared to the reference using a different function depending on the model
used, and if the divergence is higher than a threshold then the window is considered
anomalous.

The interaction graph for a given time window is a graph whose nodes are the set of all
hosts that sent or received a packet during that time window. If two nodes interacted with
each other inside the time window then they are connected by an edge in the interaction
graph. In order to create a larger distribution of node degrees during the training period,
it is split into smaller time windows. Some of these time windows are selected, possibly
at random, and some nodes are chosen, also possibly randomly, to sample their degree
on the interaction graph of those windows. This way we can get a set of M node degrees
D ={dy,dy,...dy}.

Selection of a graph model

After obtaining 9, we calculate whether it is more likely to be the distribution of a
random graph or a preferential attachment graph. For the random graph we use a Poisson
approximation of the Gilbert G(n, p) model.

On a G(n, p) random graph, the degree of any node follows a binomial distribution. As
n — oo and if np is constant, the binomial distribution converges to a Poisson distribution
with parameter A = np. For a G(n, A/n) graph the log-likelihood of degree distribution D
is: u

Lrana(D; ) = log(A) ) dy = AM + C (3.2)
i=1

where C = — Z?ﬁl log(d;!) and the parameter A can be calculated by maximum likelihood
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estimation:
L M
A= Z di (3.3)
i=1
For the preferential attachment case, two different models are used: offset Barabasi-
Albert [29] and Chung-Handjani-Jungreis (CHJ) [30]. Both models’ asymptotic degree
distributions are power-law like following Pps(k;y) = g(—;y) where y is a parameter and

{(x) = Y 7=, n™* is Riemann’s zeta function. The log-likelihood of D is:

M
Lea(D;y) = =y ), log(dy) = M log(¢(¥)) (3.4)
i=1

The parameter y can also be calculated by maximum likelihood estimation:

1 Zaolog(d)
o o1 &di
y=¢ ( — ) (3.5)

where ¢(x) = % and {(x) the first derivative of (x).
It should be noted that in 3.4 if a sample degree d; = O, possibly due to observa-
tion error, then the logarithm tends to —co. To deal with this possibility the authors
of [26] propose ignoring those values during summation and subtracting a penalty of
8 X (number of 0 values) at the end of 3.4.
Choosing a model between random and preferential attachment is done by comparing

the log-likelihood of D being generated from those models.

Anomaly detection test

The purpose of the training period is to select a graph model and estimate its parame-
ters. Afterwards, the evaluation period is also split into time windows and the interaction
graph for each of them is created. If the random graph model was selected, the degree

distribution q of each interaction graph is evaluated using the following function:
I A — I . q 2 q _
rRana(q; 1) = D(qll p3) + E(q -+ Elog(ﬂ) - 5log(q) (3.6)

where D the KL divergence as defined in 3.1, /i the MLE of the 7 parameter calculated
during the training period by 3.3, p; the reference distribution measured during the
training period and g the expectation of the empirical distribution g of the time window.
If the value of Irqngq is higher than a threshold then the time window is considered to be
anomalous.

Otherwise, if the preferential attachment models are selected, the degree distribution
q of each interaction graph is evaluated using two different functions, one for each PA
model, and the minimum of the two is compared to a threshold. The function for the
offset Barabasi-Albert model is:

Ina(q; @) = ) (1 - [q]l-)log( St L1 ) + [1 - > tgilog(2 + &) (3.7)

= (i+1+a)q/(2+a) =
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where [q]; = Zj:o gi» a a parameter of the offset Barabasi-Albert model and & = y — 3.
The function for the CHJ model is:

1-[ql: 2
Iens(q; p) = (1= qo)log( a —p)qo/Z) Z(l )log( TP+ l)qi/2)+(1 ;lql) log( p)
(3.8)

where p a parameter of the CHJ model and p=1 — 1%}7

3.2 Botnet detection

Having detected a number of anomalous time windows, the next step in the process is
to identify the bots in these anomalies. It is difficult to detect bots directly, so we initially
detect highly influential nodes in the network, called pivotal nodes, which correspond to
botmasters or targets. By measuring each node’s interactions with the pivotal nodes and
the correlations with other nodes, we then construct the social correlation graph, where
bots are more likely to be connected to each other. The final step is to run a community
detection algorithm on the social correlation graph to detect the bots.

Initially, we organise the anomalous windows detected previously by creating sets of
interaction records. An interaction record (i, j, t) is a tuple of two nodes i, j and a timestamp
t which denotes that nodes i and j interact at time t. If the data was in netflow format,
each flow in the anomalous time windows can be directly converted to an interaction
record. Otherwise, if the data was in pcap format, each edge in the anomalous win-
dow’s interaction graph also represents an interaction record. This way the output of the
anomaly detection can be written as a sequence A = {Sy, ..., Sz}, where S; = {ry1, ..., rysy}

represents the i-th anomalous window containing interaction records ry1, ..., Iys-

3.2.1 Pivotal nodes

The first part of the botnet discovery approach is to identify pivotal nodes, which are
the botnet’s leading nodes and its primary targets. Botnet leaders (botmasters) have to
control the rest of the bots, so they interact with them quite often, and in DDoS attacks
bots constantly interact with their targets, so these pivotal nodes have more interactions
than regular nodes.

If the total number of nodes in A is n, and the number of interactions between nodes

i,j in anomaly Sy is GY, then we define the total interaction measure of node i as:
e = GJ (3.9)
ML

This measure is a way to quantify the interactions of each node with all other nodes in
A. Using it we can define pivotal nodes as the set of nodes N with a total interaction

measure higher than a threshold t:
N={i:e > 1} (3.10)
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3.2.2 Social Correlation Graph

Having identified the pivotal nodes, we now check the interactions between them and
regular nodes, because the interactions between bots and pivotal nodes are likely to be
correlated.

For each node i = 1,...,n let X; be the total number of interactions between i and
pivotal nodes. For each anomaly Sy let x = 2eN GZ be the number of interactions
between node i and pivotal nodes in Si. We calculate the mean X; and standard deviation
0(X;) of X; for all i:

(3.11)

)= Al >k - %2
o) =\ 7T ;m X)

We then calculate the correlation coefficient between all pairs of nodes i, j as follows:

S (G = Xk - X))

o(Xi, X;) = (Al = D o(X;)o(X))

(3.12)

and say that p(X;, X)) = 0 if 0(X;) = 0 or 0(X;) = 0. The correlation coefficient takes values
between -1 and 1.

Using the correlation coefficient, we create the social correlation graph (SCG). It is a
graph whose nodes are all nodes in A, and each pair of nodes i,j is connected by an edge

if |o(X;, Xj)| > 1,, where 1, is a threshold.

3.2.3 Community Detection

Bots are more likely to be connected to each other in the social correlation graph
because their interactions with pivotal nodes are correlated. The bot detection problem is
now transformed into a community detection problem. By detecting communities in the
SCG we can separate the bots from the regular nodes and identify them.

After the SCG has been partitioned into communities, we have to decide which com-
munity is the botnet. The interactions between pivotal nodes and bots are expected to
be stronger than the interactions between pivotal and regular nodes. Using this idea, we
calculate the pivotal interaction measure r; for each node i:

L ;
ri = @ZZeij (3.13)

k=1 jeN

The community with the highest average pivotal interaction measure is labelled as the
botnet.
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Chapter

Experiments

This chapter presents the experimentation carried out for this thesis, as well as in-
formation about the datasets and code used. The experiments test the botnet detection
process outlined in the previous chapter with focus on the comparison of different com-
munity detection methods on the botnet discovery section.

For each experiment we initially present information about the dataset and outline
any pre-processing we performed on the data. Next, we describe the training process
and show the results of anomaly detection on the datasets. Finally, the parameters used
for the creation of the SCG for each case are mentioned and the results of the different
community detection algorithms are shown both visually and numerically.

During the first and third experiment we attempted to replicate the settings used
in similar experiments in [26], by using the same datasets. However, in both cases
our experiments diverged, having different SCGs for the botnet discovery. The second
experiment was entirely original.

The community detection algorithms tested were Girvan-Newman, Louvain algorithm,
Spectral Clustering, Walktrap, and Hyperbolic Girvan-Newman. They were evaluated
based on the NMI and F1-scores of the botnet detection compared to the ground truth,

which was available for all experiments. The F1-score is calculated as follows:

_ 2 X TP
" 2XTP+FP+FN

o) 4.1)

where TP the number of true positives (bots that were correctly identified), FP the number
of false positives (normal nodes identified as bots) and FN the number of false negatives

(bots missed).
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4.1 Code implementation

Almost all the code for the experiments was implemented in Python3. The exception

was Rigel embedding for the Hyperbolic Girvan-Newman algorithm, which was imple-
mented in C++ by [31]. The HGN code was written by the authors of [5] in Python3 and

uses the Rigel code above. We also used Wireshark [91], a network protocol analyzer, for

some initial pre-processing of pcap files.

The following Python libraries were used in our implementation:

Networkx [92]: A package for the creation, manipulation, and study of the structure,
dynamics, and functions of complex networks. Most of the graph handling in our
experiments was done via networkx, including the Girvan-Newman and Louvain

algorithms.

scikit-learn [93]: A machine learning library, from which we used the implementa-

tions for K-Means clustering, spectral clustering, NMI and F1-score metrics.

Matplotlib [94]: A comprehensive library for data visualisation. All of our plots and

figures were created with matplotlib.

pandas [95]: A package for data analysis and manipulation. Used for processing

our data when not in graph format.

CDlib [96]: A specialised community detection library, from which we used the

walktrap implementation.
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4.2 Experiments on CTU-13 dataset

The first experiment we did started as an attempt to replicate the similar experiment
done in [26], however the parameters used for anomaly detection were not specified so
our results quickly diverged. This experiment utilises a netflow dataset and uses the
flow-based anomaly detection method. The size of the dataset was quite large so it had to

be scaled down significantly.

4.2.1 Dataset description

CTU-13 is a dataset captured in the Czech Technical University [32]. It includes 13

network captures with botnet traffic. The pcap captures were converted into bidirectional

.

netflow files and each flow was labelled as ‘botnet’, 'normal’ or ‘background’ by the authors

of the dataset.
We use the 2nd capture, which consists of 4.5 hours of traffic with a spamming IRC-
based botnet. IRC bots connect to IRC as clients appearing as normal users, but are

remotely controlled in order to spread malware or conduct DDoS attacks.

4.2.2 Data pre-processing of CTU-13 dataset

The netflow file we used from the CTU-13 dataset was 241MB in size containing
1808122 labelled flows, created from a 60GB pcap file of almost 72 million packets.
1.04% of those flows are bot flows, 98.33% background and the rest are normal. Each
flow had the following attributes:

e StartTime: The timestamp of the beginning of the flow.
e Dur: The duration of the flow in seconds.

e Proto: The protocol used.

e SrcAddr: The address of the source host.

e Sport: The port number of the source address.

e Dir: The direction of communication. ’->’ denotes that the communication was

one-way, while ’<->’ denotes that both hosts sent packets to each other.
e DstAddr: The address of the destination host.
e Dport: The port number of the destination address.
e State: Unused.
e sTos: Unused.
e dTos: Unused.

e TotPkts: Total number of packets exchanged.
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e TotBytes: Total number of bytes exchanged.
e SrcBytes: Number of bytes sent from the source to the destination.

e Label: The label of the flow: normal, botnet or background. Also contains a sum-

mary of the communication.

For our experimentation we limited ourselves to IPv4 flows. Using the Proto attribute
we filtered out the "ipv6", "ipv6-icmp", "ipx/spx" and "rarp" flows. We then checked the
source and destination addresses for any remaining IPv6 addresses, by checking if the
address contained the ":" symbol, and removed them. The remaining flows were 1808056.

We then removed the Proto, Dir, State, sTos, dTos and TotPkts columns, and replaced
the TotBytes column with a new column called DstBytes. DstBytes’s value was calculated
by subtracting the SrcBytes from TotBytes, and the result corresponds to the number of
bytes sent from the destination address to the source address. We also added another
column called EndTime, equal to the timestamp when the flow ended, whose value was
calculated by adding the duration of the flow and the starting time from the corresponding
columns.

Figure 4.1 shows the first five rows of the dataset after processing.

StartTime EndTime Dur SrcAddr DstAddr Sport Dport SrcBytes DstBytes Label
0 09_49_2305?;;0132’;1 10_24_%%%&%:11; 2069.073145 2032538233 1473284229 30533 13363 123 74 ﬂo"‘:BaC"grE:t”a‘I’;ﬁL;E;
1 09_49_2305?;’20%;8 10_04_23[11;;%37’;; 895989258 814715413 1473284229 49200 13363 4501 2531 flow=Background
2 49_23057;;0139"11; 5. 4923%1;’202%'31; 0000120 147.3284220 784225171 13363 42988 2858 0 ﬂo"‘:BaCkgm“"g{gE&
3 09_49_2305?;’202?11; 10_48%%;%37’%1 3561027246  147.3284220 113128219130 13363 59790 13419 2351 f'o"‘:BaC"grg't”a‘I’;ﬁL;E;
4 49.23057;;03%11[13 5. 4923%1;420383‘11[13 0000000 147.3284220 605016724 13363 40253 80 0 ﬂo"‘:BaCkgm“"g{gE&

Figure 4.1. Snapshot of the CTU-13 dataset after processing.

4.2.3 Training period on CTU-13 dataset

The training period we used for the CTU-13 dataset were the first 25 minutes of flows,
where there was no bot traffic. The total number of training flows were 257718 (14% of
the dataset).

Since the file was in netflow format we used the flow method for anomaly detec-
tion. The following attributes of each flow were quantized, in accordance with the similar
experiment of [26]: source address, destination address, source port, destination port,
duration, source bytes, destination bytes.

The source and destination IP addresses were quantized using K-Means clustering
with 256 clusters, as described in 2.3.6. Before the algorithm was applied, the IP ad-

dresses were transformed into baselO integers using the following formula:
4
X10 = Z 256%q; 4.2)
i=1
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where a = (a;, az, ag, as) € {0, 1, ...,255}* an IP address. The 117619 training addresses
were used to train the K-Means model, which will be used to fit the evaluation addresses
into their nearest cluster during evaluation.

The source port and destination port columns were quantized as follows:

-1 for x < O or missing or invalid
0 for x < 1024 (registered port)
qports(x) = 4.3)
1 for 1024 < x < 10000
1 + x div 10000 for x > 10000

where x is a port number.

The number x of source and destination bytes was quantized using the following function:

0 forx=0

1 forl1<x< 100
Qbytes(X) =42 for 100 < x < 1000 (4.4)
3 for 1000 < x < 10000
4

for x > 10000

Similarly, the duration x of each flow was quantized as follows:

0 forO0<x<1

1 forl<x<10
Qaur(X) = {2 for 10 < x < 100 (4.5)
3 for 100 < x < 1000
4

for x > 1000

Figure 4.2 shows the first five rows of the training dataset after quantization.

Dur SrcAddr DstAddr Sport Dport SrcBytes DstBytes

0 4 245 140 4 2 2 1
1 3 151 140 5 2 3 3
2 0 140 135 2 5 3 0
3 4 140 128 2 B 4 3
4 0 140 213 2 5 1 0

Figure 4.2. Snapshot of the quantized training data from the CTU-13 dataset.

After the data has been quantized, each flow is now represented by a vector of 7
integers. The values that the flow vector takes become the sample space of the reference
discrete random variable that represents the flows. An empirical probability distribution

is created by dividing the number of appearances of each vector value by the total number
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of training flows.

4.2.4 Anomaly detection on the CTU-13 dataset

A 5 minute evaluation period is selected 26 minutes after the end of the training period
(51-56 minutes into the dataset). The evaluation dataset is quantized just like the training
dataset, with the exception of the IP addresses now being fitted into the already trained
KMeans model. Afterwards, the 5 minute evaluation period is split into 2 second time
windows. The distribution of vector values for each 2 second time window is computed
and compared to the reference distribution using KL divergence 3.1.

The results of the anomaly detection process are shown in figure 4.3. The blue line
corresponds to the number of bot flows per 2 second window, multiplied by 0.005 for
visualisation purposes, while the orange line corresponds to the KL divergence of each 2
second window to the normal training traffic. The KL divergence is higher in time windows
with a lot of bot traffic, so by picking a threshold around 0.1 we can detect most of the

bot windows.

Anomaly detection, CTU-13, (flow method)

—— bot flows per window (scaled)

175 1 KL divergence

150

125 1

100

0.75 1

050

=1 AL,

0.00 Vv

0 20 40 60 80 100 120 140
2sec window

Figure 4.3. Anomaly detection on the CTU-13 dataset.

4.2.5 Creation of the SCG for the CTU-13 dataset

For the botnet detection process we require the unquantized value of the source and
destination IP addresses in order to create the interaction records. As the size of the
anomalous set increases, so does the number of unique IP addresses inside it, so for sim-
plification purposes we only evaluated a small anomalous time period between windows
47-55 shown in figure 4.3. This time period contained 936 unique IP addresses, out of
which 119 were bots.
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The total interaction measure e; of all 936 nodes is shown in figure 4.4. Each red
cross "X" represents one node. We can clearly see that there exist a few nodes with a
much larger interaction than the rest. We use a threshold of t = 20 for determining the
pivotal nodes. Four nodes are designated as pivotal, of which the two middle ones belong

to the botnet while the first and fourth are victims.

Total interaction measure e; of all nodes

x
80
X
60
x
X
&
40
20 L T OO T ST R D PP PP RLRERPPEYY
] %

0 200 400 600 800
node i

Figure 4.4. Total interaction measure of all nodes in A. The four nodes above the dotted
line are the pivotal nodes.

To create the SCG we use a strict threshold 7, = 0.88 for the correlation in order for
the SCG to be relatively small. There are multiple connected components to it, so the
community detection algorithm should be applied to each of them separately, but we will
only show the largest connected component. The resulting graph has 103 nodes, out of

which 8 are bots, as seen in figure 4.5. The red nodes correspond to the bots.

Figure 4.5. Largest connected component of the social correlation graph with 1, = 0.88.
The bots are marked in red.
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For comparison purposes we include an SCG created with 7, = 0.5 (figure 4.6). In
this case 1, is too small to distinguish the bots into communities, however more bots are
present in the SCG.

Figure 4.6. Social correlation graph with t, = 0.5

4.2.6 Comparison of community detection methods on the CTU-13 dataset

After the SCG has been created, we apply the 5 community detection algorithms on
it. For the HGN algorithm we use 3 landmark nodes and a batch size of 1. The results
are shown in figure 4.7. All algorithms except spectral clustering are able to detect the
community of four bots on the top left. Spectral clustering detects the two central bots,
while no algorithm is able to detect the two bots at the right side of the SCG.

The NMI and F1-scores of each method are displayed in table 4.1. Since spectral

clustering only detects two bots, its scores are lower than the other algorithms.

Algorithm NMI Fl-score
Girvan-Newman 0.5 0.67
Louvain 0.5 0.67
Spectral Clustering | 0.28 0.44
Walktrap 0.5 0.67
HGN 0.5 0.67

Table 4.1. NMI and F1-scores of community detection algorithms on the SCG
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4.2.6 Comparison of community detection methods on the CTU-13 dataset

(a) Ground truth (b) Girvan-Newman

W

A

\

(d) Spectral Clustering

W
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W
A

Figure 4.7. Results of community detection algorithms on the SCG
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4.3 Experiments on Kitsune dataset

The second experiment was carried out on a dataset that was in pcap format, so the
second anomaly detection method was used. This experiment was not replicated from
[26].

4.3.1 Dataset description

The Kitsune Network Attack Dataset [33] consists of nine traffic captures of various
network attacks. We used one capture where an IoT network was infected with Mirai
malware. The network, connected over Wi-Fi, consists of three PCs, a webcam, a baby
monitor, two doorbells, a thermostat and four security cameras, one of which was infected
with Mirai botnet malware mentioned in 2.5.1.

The capture includes around 1 million packets of clean traffic before the botnet attack
begins. The authors of the dataset provide a csv file labelling nefarious packets as 1 and

normal packets as 0.

Office
Deployment

Remote Site

Figure 4.8. Setup of IoT network used for the Kitsune dataset [6]

4.3.2 Data pre-processing of Kitsune dataset

From the Kitsune dataset we used a 73MB pcap file containing the traffic data of
764137 packets and a 2.2MB csv file containing the label for each packet. We converted
the pcap file into a csv file via the Wireshark program in order to parse it easier. The first
5 rows of the dataset are shown in 4.9

Each packet had the following attributes:

e No.: Index number of packet.

e Time: Timestamp of packet in YYYY-MM-DD hh:mm:ss.fiffff format
e Source: Address of source host.

e Destination: Address of destination host.
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e Protocol: The protocol used.
e Length: The size of the packet in bytes.

e Info: A summary of the contents of the packet

No. Time Source Destination Protocol Length Info
] 1 2018-10-25 05:46:22 933899 192.168.2.108 52.24 43 67 TCP 60 21074 = hitp(80) [SYN] Seg=0 Win=5840 Len=0 ...
1 2 2018-10-25 05:46:22.933904 192.168.2.108  52.25.66.250 TCP 60 20532 = synapse-nhttp(8280) [SYN] Seq=0 Win=...
2 3 2018-10-25 05:46:22. 934426 192.168.2.1 192.168.2.108 ICMP 86 Destination unreachable (Network unreachable)
3 4 2018-10-25 05:46:22 934636 19216821 192.168.2.108 ICMP a6 Destination unreachable (Network unreachable)
4 5 2018-10-25 05:46:23.291054  48:02:2e:01:83:15 Broadcast ARP 60 Who has 192.168.2.1067 Tell 192.168.2.109

Figure 4.9. First 5 rows of the Kitsune dataset

Again, we limit our experiment to IPv4 packets so we filtered out all the other packets,
leaving 197701 remaining ones. We then removed all columns except Time, Source and
Destination, and added the label for each packet. The first five rows of the dataset after

processing are shown in figure 4.10.

Time Source Destination Label

0 2018-10-25 05:46:22.933899 192.168.2.108 52.24 4367 0.0
1 2018-10-25 05:46:22.933904 1921682108 52.2566.250 0.0
2 2018-10-25 05:46:22.934426 192.168.2.1 192.168.2.108 0.0
3 2018-10-25 05:46:22 934636 19216821 192.168.2.108 0.0
4 2018-10-25 05:46:23.367591 192.168.2101 192.168.2.110 0.0

Figure 4.10. First 5 rows of the Kitsune dataset after processing

4.3.3 Training on Kitsune dataset

The training period for the Kitsune dataset was the first hour of packets, when there
was no bot traffic. The total number of training packets was 90476 (46% of the dataset),
including 76 unique IP addresses.

We split the training data into 10 second windows and randomly selected 25 windows.
For each of the selected windows we created the interaction graph as described in section
3.1.2. We then sampled the degree of 10 random nodes from each interaction graph,
resulting in a sample size of |D| = 250 node degrees.

We computed the Lrgsng and Lpa and selected the random graph model with =2.664.

4.3.4 Anomaly detection on Kitsune dataset

The evaluation period for this dataset was 20 minutes long and started 3 minutes
after the end of the training period (63-83 minutes into the dataset). It contained 33903
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packets, out of which 16829 were bot packets and started appearing a little bit after the
10 minute mark.

We split the evaluation dataset into 10 second windows and calculated the Igq,q score
of each compared to the reference normal traffic collected during training. The results of
anomaly detection are shown in figure 4.11. The blue line corresponds to the number of
bot packets per 10 second window, multiplied by 0.004 for visualisation purposes, while
the orange line corresponds to the Igsng value of each window compared to the normal
traffic. We can clearly see a small increase in level when the bots start appearing. By
selecting a threshold of 0.78 (dotted line) we detect a good number of bot windows with

only few false positives.

Anomaly detection, Mirai botnet

—— bots per window (scaled)
175 Inans

100 1

0.00 1

0 20 40 60 80 100 120
10sec window

Figure 4.11. Anomaly detection on the Kitsune dataset. The dotted line is the anomaly
threshold.

4.3.5 Creation of the SCG of the Kitsune dataset

We experimented with 2 separate anomalous sets on the Kitsune dataset. The first
one was created from 10 anomalous windows around the 15 minute mark, while the

second was created from the first 20 anomalous windows.

Anomalous period around 15 minutes

The anomalous set created around 15 minutes contained 44 unique IP addresses, out
of which 18 were bot addresses. The interaction graph during those 10 windows is shown
in figure 4.12.

We calculated the total interaction measure of each node in the anomalous period and
selected 5 pivotal nodes above a threshold of t = 20, as shown in figure 4.13. Each red

cross "X" represents one node, and the threshold is the dotted line. All 5 of the pivotal

nodes above the threshold were bots.
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Figure 4.12. Interaction graph of 10 anomalous windows in the Kitsune dataset. Bots are
marked in red.

Total interaction measure g, of all nodes
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Figure 4.13. Total interaction measure of all nodes in A. The five nodes above the dotted
line are the pivotal nodes.

For the creation of the SCG we used a threshold 7, = 0.65. The SCG contained 27
nodes, out of which 13 were bots. It was split into 3 connected components, one of which
only had 3 nodes. The SCG is shown in figure 4.14. We can see that in the largest
connected component the bots form a community and are well separated from the normal

nodes.

First 20 anomalous windows

The anomalous set created from the first 20 anomalous windows contained 52 IP
addresses, out of which 18 were bots. The interaction graph during this period is shown
in figure 4.15.

A threshold of t = 20 was used to select 4 pivotal nodes, all of which were bots. For
the SCG we used 1, = 0.47, resulting in an SCG with 29 nodes, of which 10 were bots, as

shown in figure 4.16.
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Figure 4.14. SCG of 10 anomalous windows. Bots are marked in red.

Figure 4.15. Interaction graph of the first 20 anomalous windows

4.3.6 Comparison of community detection methods on the Kitsune dataset

We now apply the 5 community detection algorithms on the SCGs. For the HGN

algorithm we used 3 landmarks and a batch size of 1.

Anomalous period around 15 minutes

For the SCG in figure 4.14 we applied the algorithms on both the largest and sec-
ond largest connected components. The results for the first component are shown in
figure 4.17 and table 4.2. We can see that all algorithms are able to detect the large bot

community, but only spectral clustering detects the single bot on the bottom right.
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Figure 4.16. SCG of the first 20 anomalous windows

Algorithm NMI F1l-score
Girvan-Newman 0.71 0.94
Louvain 0.71 0.94
Spectral Clustering 1 1
Walktrap 0.71 0.94
HGN 0.71 0.94

Table 4.2. NMI and F1-scores of community detection algorithms on the largest connected
component of the SCG
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(a) Ground truth _ (b) Girvan-Newman

(c) Louvain

(d) Spectral Clustering
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Figure 4.17. Results of community detection algorithms on the largest connected compo-
nent of the SCG
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For the second connected component the results are shown in figure 4.18 and table
4.3. All algorithms except Louvain detect 2 out of 4 bots, while Louvain detects 3. Every

algorithm has a single false positive.

Algorithm NMI Fl-score
Girvan-Newman 0.08 0.57
Louvain 0.23 0.75
Spectral Clustering | 0.08 0.57
Walktrap 0.08 0.57
HGN 0.08 0.57

Table 4.3. NMI and F1-scores of community detection algorithms on the second connected
component of the SCG

First 20 anomalous windows

For the SCG of the first 20 anomalous windows, in figure 4.16, we applied the commu-
nity detection algorithms only on the first connected component. The results are shown
in figure 4.19 and table 4.4.

In this case the algorithms diverge a lot more and have worse results than the previous
cases, which is expected since the anomalous period contains more non-bot interactions.
Spectral clustering seems to have the best results, identifying all but 1 bot and having
only 2 false positives. The Girvan-Newman algorithms separate the communities quite
well, based on the high NMI score, but identify the wrong community as bots. The
reason becomes clearer once we look at the results of Louvain and Walktrap. These two
algorithms detect more than 2 communities, and in the end select the one in the middle
as the bot community while the others are classified as normal nodes. This selection
shows that the middle nodes have a high pivotal interaction measure compared to the
4 bots on the top left. For this reason the bot community of all algorithms includes the

middle nodes.

Algorithm NMI Fl-score
Girvan-Newman 0.53 0.13
Louvain 0.02 0.63
Spectral Clustering | 0.3 0.57
Walktrap 0.01 0.22
HGN 0.53 0.13

Table 4.4. NMI and F1-scores of community detection algorithms on the SCG of the first 20
anomalous windows
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(a) Ground truth (b) Girvan-Newman

(c) Louvain (d) Spectral Clustering

(e) Walktrap (f) Hyperbolic Girvan-Newman

Figure 4.18. Results of community detection algorithms on the second connected compo-
nent of the SCG
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(b) Girvan-Newman

(a) Ground truth

Figure 4.19. Results of community detection algorithms on the second connected compo-
nent of the SCG
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4.4 Experiments on the CAIDA and Simpleweb datasets

For the final experiment we mixed traffic from two different datasets, one containing
normal background traffic and one containing only the attack. This experiment began
as a replication of the 2nd experiment of [26], but the mixing was done differently so the

resulting graphs were also different.

4.4.1 Dataset descriptions
CAIDA dataset

For the botnet traffic we used the CAIDA UCSD "DDoS Attack 2007" Dataset [34]. It
contains an hour of traffic from a DDoS attack that happened in 2007 split into 5-minute
pcap files. Only the attacking packets are included in the dataset; the background traffic
has been removed by the authors.

The total size of the dataset is 21GB. During the first half hour the bots probe their
targets to find vulnerabilities, so the traffic is relatively low, whereas during the second
half the DDoS attack is carried out with much higher bot traffic. For our experiment we

used the first 5-minute pcap file of size 8.6MB.

Simpleweb dataset

For the background traffic, like the authors of [26], we used trace 6 in the University
of Twente traffic traces data repository (simpleweb) [35]. This trace, which is around
192MB in size, was measured from a 100 Mbit/s Ethernet link connecting an educational
organization to the internet. This is a small organization with 100 workstations that
have a 100Mbit/s Lan connection while the core network has a 1 Gbit/s connection. The
recordings took place between the external optical fiber modem and the first firewall and

the measured link was only mildly loaded during this period.

4.4.2 Data pre-processing of CAIDA and Simpleweb datasets

Both files for this experiment were pcap files. In order to mix them, we changed the
timestamp of each packet in Wireshark to the time that passed (in seconds) since the
capturing of the first packet. We then converted the pcap files into csv files and kept only
the Time, Source and Destination columns like we did with the Kitsune dataset in 4.3.2.
We added a label column, with values O for the Simpleweb dataset and 1 for the CAIDA
dataset. For the Simpleweb dataset we only kept the first hour of traffic. To mix the
datasets we added 2000 seconds to the timestamp of each packet in the CAIDA dataset,
inserting the botnet traffic between 2000 and 2300 seconds of the background traffic.

The Simpleweb dataset contained 329967 packets and 743 unique IP addresses, while
the CAIDA dataset contained 166448 packets from 136 IP addresses. Since the bot
traffic is way denser than the background traffic, we kept only 6000 bot packets selected
randomly, resulting in a total dataset of 335967 packets. Another problem we had to solve

was that the IP addresses of the CAIDA dataset were distinct from the Simpleweb ones.
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To mix them, we randomly mapped the 136 CAIDA addresses into Simpleweb addresses
and changed them accordingly. We experimented with two different mappings, one of
which mapped 3 bot addresses into 1 normal address resulting in 45 bots, and one which

mapped 5 bot addresses into 1 normal address resulting in 27 bots.

4.4.3 Training period for the mixed dataset

The training period for this experiment was the first 20 minutes of traffic, when there
were no bot packets. The total number of training packets was 198440 (59% of the
dataset) with 539 unique IP addresses.

We split the training data into 10 second windows and randomly selected 50 windows
to create the interaction graph. We then sampled the degree of 10 random nodes from
each interaction graph, creating a sample of |[D| = 500 node degrees. We computed the

Lrana and Lpa and selected the random graph model with A=1.628.

4.4.4 Anomaly detection on the mixed dataset

The evaluation period for this dataset was 20 minutes long and started 5 minutes
after the end of the training period (1500-2700 seconds into the dataset). It contained
32763 packets, 6000 of which were attack packets that appeared around the middle of
the evaluation period (2000-2300 seconds).

Like we did with the Kitsune dataset in section 4.3.4, we split the evaluation data into
10 second windows and calculated the Iggnq score. The results of anomaly detection for
45 and 27 bots are shown in figures 4.20 and 4.21 respectively. The blue line corresponds
to the number of bot packets per 10 second window multiplied by 0.02, while the orange
line corresponds to the Igqng value of the window. We can clearly see that in the 27 bot
case anomaly detection is more difficult because the bot traffic is not distinct enough from
the normal traffic. Nevertheless we selected a threshold of 1.5 for the 45 bot case and
1.2 for the 27 bot case in order to detect a decent number of bot windows with few false

positives.

Anomaly detection, CAIDA (45 bots)

—— bots per window (scaled)
f\ IER

10sec window

Figure 4.20. Anomaly detection in the mixed dataset with 45 bots. The dotted line is the
anomaly threshold.
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Anomaly detection, CAIDA (27 bots)

—— bots per window (scaled)
IER

10sec window

Figure 4.21. Anomaly detection in the mixed dataset with 27 bots. The dotted line is the
anomaly threshold.

4.4.5 Creation of the SCG for the mixed dataset

We experimented with two anomalous sets on the mixed dataset, one for the 45 bot

case and one for the 27 bot case.

45 bot case

The anomalous set created from the 45 bot case contained 94 IP addresses, of which
44 were bots, so only a single bot was missed. The interaction graph is shown in figure
4.22.

Figure 4.22. Interaction graph of the anomalous set from the 45 bot case of the mixed
dataset. Bots are marked in red.

We calculated the total interaction measure of each node and selected a threshold
7 = 30 resulting in 4 pivotal nodes, of which only the third was a bot. To create the SCG
we used a threshold 7, = 0.38, resulting in a graph of 48 nodes including 41 bots. The
SCG is shown in figure 4.23, with a clear separation between the bots and the normal

nodes.

m Diploma Thesis



4.4.5 Creation of the SCG for the mixed dataset

Figure 4.23. SCG of the anomalous set from the 45 bot case of the mixed dataset. Bots
are marked in red.

27 bot case

Since anomaly detection failed in the 27 bot case, we handpicked the first half anoma-
lous windows resulting in an interaction graph with 101 nodes, 20 of which were bots.
We used a threshold 7 = 30 to select 5 pivotal nodes, of which 2 were bots. For the SCG
we used 1, = 0.3 resulting in a graph of 31 nodes with 16 bots. The SCG is shown in
figure 4.24. The bots arent as separated from the normal nodes as the previous case but

there is a distinct bot community in the middle.

Figure 4.24. SCG of the anomalous set from the 27 bot case of the mixed dataset. Bots
are marked in red.
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4.4.6 Comparison of community detection methods on the CAIDA dataset

We now apply the community detection algorithms on the two SCGs. For the HGN
algorithm we used a batch size of 1 in both cases, 3 landmarks for the 45 bot case and
10 landmarks for the 27 bot case.

The results of community detection in the 45 bot case are shown in figure 4.25 and
table 4.5. We can see that both Girvan-Newman algorithms detect the large bot commu-
nity but the rest of the algorithms struggle. Spectral clustering detects only part of the
bot community, while Louvain and Walktrap split the bot community into several small

parts and identify only one of them.

Algorithm NMI Fl-score
Girvan-Newman 0.62 0.96
Louvain 0.18 0.62
Spectral Clustering | 0.23 0.53
Walktrap 0 0
HGN 0.62 0.96

Table 4.5. NMI and F1-scores of community detection algorithms on the mixed dataset (45
bot case)

The results of community detection in the 27 bot case are shown in figure 4.26 and
table 4.6. Again, the Girvan-Newman algorithms have the best results, detecting most of
the large bot community. Spectral clustering follows, detecting all the bots but having
many false positive results, while while Louvain and Walktrap again identify too many

communities and only detect a few bots.

Algorithm NMI Fl-score
Girvan-Newman 0.21 0.84
Louvain 0.01 0.35
Spectral Clustering | 0.03 0.77
Walktrap 0 0
HGN 0.13 0.79

Table 4.6. NMI and F1-scores of community detection algorithms on the mixed dataset (27
bot case)

From this experiment it is clear that the Louvain and Walktrap algorithms, that do
not specify the number of communities beforehand, perform poorly because of this extra
degree of freedom. A possible solution to improve their results is to evaluate each commu-
nity separately, perhaps based on a threshold on the pivotal interaction measure, whether
they are a bot community or not, instead of only selecting the community with the largest
value to be the bots. This however adds an extra parameter to the problem, which we can

bypass by selecting one of the other algorithms that strictly detect two communities.
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4.4.6 Comparison of community detection methods on the CAIDA dataset

Figure 4.25. Results of anomaly detection on the SCG of the mixed dataset (45 bot case)
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(a) Ground truth (b) Girvan-Newman

(c) Louvain (d) Spectral Clustering

(e) Walktrap (f) Hyperbolic Girvan-Newman

Figure 4.26. Results of anomaly detection on the SCG of the mixed dataset (27 bot case)
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Chapter E

Epilogue

In this final chapter we summarise the results and conclusions of this thesis and

provide some ideas for future improvement.

5.1 Summary and conclusions

In this diploma thesis we implemented an existing community-based botnet detection
method and experimented with different community detection techniques in it, including
Hyperbolic Girvan-Newman.

Initially we provided the required theoretical background on complex networks, com-
munity detection, machine learning and botnet detection, as well as summaries of recent
works on these topics. We then described in detail the botnet detection method this work
was based on. Using statistical based anomaly detection, at first an empirical distribution
of normal traffic is created and then used as a reference to detect small time windows of
traffic that deviates from normal behavior. Highly interactive nodes, called pivotal nodes,
are identified in the anomalous windows and a social correlation graph (SCG) is created
based on how the interactions of regular nodes and pivotal nodes are correlated. Since
pivotal nodes are either botmasters or target nodes, bot interaction with pivotal nodes is
very likely to be correlated. Based on this idea, community detection is then applied on
the SCG in order to detect bot communities.

We experimented with three different datasets, one of which was created by combining
normal traffic with attacking traffic. For the anomaly detection part we confirmed that
detecting anomalous windows is more difficult the fewer bots there are, especially at the
beginning of the attack. For the SCG we saw that there is a trade-off based on how strict
we set the threshold for its creation: stricter SCGs have fewer bots present in them, but
the communities are more distinct, while less strict SCGs include more bots but it is more
difficult to separate them from normal nodes.

We selected both easy and difficult SCGs to run five different community detection
algorithms: Girvan-Newman, Louvain, Spectral Clustering, Walktrap and Hyperbolic-
Girvan-Newman (HGN). HGN is a variant of Girvan-Newman that embeds the network
into hyperbolic space for quicker calculations, with a slight loss of accuracy.

We evaluated the results of community detection by comparing them with the ground

truth using NMI and F1l-score metrics. From our experiments we saw that Louvain and
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Walktrap algorithms, that do not specify the number of communities beforehand, tend
to over-split the SCG into multiple communities and only identify part of the botnet.
Spectral Clustering performed best on the first two datasets but struggled on the mixed
one, whereas the Girvan-Newman algorithms performed decently on the first two datasets
and had the best results on the mixed one. Overall the Girvan-Newman algorithms proved
the most reliable as long as the SCG is correctly calibrated. In this case there are benefits
of using HGN over Girvan-Newman for larger networks if speed is a priority, since its

results are nearly identical.

5.2 Future work

At the end of this thesis we provide some ideas for further experimentation:

e Different way to distinguish whether a community is a bot community or not. The
current algorithm picks the community with the highest average pivotal interaction
measure as the bot community. This makes it so that community detection methods
that detect more than two communities often only identify part of the botnet, since it
has been split into multiple smaller communities. If for example a threshold-based
method is used instead, or a method using different network characteristics, then
perhaps more bots would correctly be detected by these algorithms. This would also
allow Girvan-Newman-like algorithms to detect disconnected bots in the SCG, by
having them detect more than two communities and then identifying more than one

bot community.

e Tuning of 7, 7, parameters to include more bots in the SCG without sacrificing

accuracy during community detection.

e Testing on larger anomalous windows and larger SCGs, which would require more

specific tuning of HGN parameters (landmarks, batch size).
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