EoNIKO METTYOBIO ITOATTEXNEIO

Y XOAH HAEKTPOAOTON MHXANIKON KAI MHXANIKON YTIOAOTIESTON
TOMEAY SHMATON, EAETXOY KAI POMIOTIKHY

Tagvounon twv Xtadlwy Touv "YTrvou and Blooruata
Popntodv Yvoxevwy ue Xenorn Batioyv Nevpwvixoy
AwxtOwYV

Classification of Sleep Stage from Wearable-Derived Biosignals via
Deep Neural Networks

AIITAQMATIKH EPT'AXTA

g

Mupoivng Aspovidg Xpnotidou

EnBAenwyv: Métpoc Mopayxoc
Kodnyntic E.M.IL
Yuv-EmBAEnwv: Ap. Adavaoclo Zhativion

EPTAYTHPIO OPAYHY. TYIIOAOTIXTQON, EITKOINOQONIAY AOTOY KAI EIIEZEEPTAYIAY YSHMATON
Adva, Tovhiog 2023






Edvixd Metodfo Iloiuteyveio

Eyohh Hhextpohdywv Mnyovixav xan Mrnyoavixav Troloylotdy

Toyéac Xnudtwv, Eréyyou xa Pourotixrg

Epyaotipio ‘Opaone Trnoloyiotwdv, Emxowwviae Adyouv xou Emeéepyactoc
SnudTwy

Tagvounon twv Xtadlwy Touv Y rvou and Blooruata
Popntdv Xvoxesvoyv pe Xenorn Badikdv Nevpwvixdyv
AwxetOoV

Classification of Sleep Stage from Wearable-Derived Biosignals via
Deep Neural Networks

AIITAQMATIKH EPT'AYIA

™me

Mvugoivng Aspovidg Xenotidou

ETCLﬁKE’:Tt(:)V: ITétpoc Maporyxdc
Kodnyntic E.M.IL
Yuv-EmpBAEnwv: Ap. Adavoasia Ziotivion

Eyxpldnxe and v tpiwelr e€etaotind emtpony| v 12" Touiiov, 2023.

TTétpoc Mopayxde Adavdoioc Povtoyidvvng Iepdiowpoc Totopdvoe
Kodnyntic E.M.IL. Avomnpwthc Kadnyntic E.M.IL Avominpwtic Kadnyntig Ioaveniothulo Osocahiog

Adva, Tovhiog 2023






MYPsINH XPHITIAOY AEMONIA
Amhopotovyoc Hhextpordyoc Mryovinde
xaw Mnyovixog Trohoyiotov E.M.IL

Copyright (©) — All rights reserved Mupoivn Agpovid Xenotidou, 2023.
Me em@OIaEn TOVTOC SLXALDOUATOG.

Arnayopebeton n aviypagt, anodrixeuon xou Slavopr] Tne tapovoag epyaciug, €€ oAoxhipou Y TUAUITOS AUTAS, Yid
gunopd oxond. Emtpéneton 1 avatinwot), amodixeuct) xou diovour| Yo oxomd Urn xepdooxoTuxd, EXTOUDOEVTIXAC
1) EEELYNTXAC PUOTE, UTO TNY TEoUTOVEST Vo ovapEpeTal 1) TNYY) TPOEAEUOTC %ol VL BLTNEELTOL TO THPOV UHVUUAL.
Epwtiuata mou agopolv 1t yerion tne epyaciog yio xepdooxomxd oxond mpénel vo aneudivovTol Teog Tov
CLUYYPUPEA.

Or andielc xon Tol GUUTERIOUTA IOV TERLEYOVTOL OE oUTH TO EYYEUPO EXPEACOLY TOV GUYYEAUPEN XalL DEV TRENEL
va epunvevdel 6Tt avuinpoownedouy Ti¢ enionueg Yéocig Tou Edvixod Metodfiou Iloduteyvelou.






ITepiindm

H évvoua tou Unvou avéxadev amotehel éva amd to xafptar avixelyeva evilopépovtog 660V apopd TNV xatavéno
e avipdmivng @uone xou Oraping. Iapdro mou pehetdton and Ty apyardTnTa, 1 Borditepn xotavénon Tou €xel
avantuyVel Toug teheutaioug povo awves. H pehétn twv potiBwy tou Unvou evog atoduou unopel vo amoxolile
oNHAVTIXEC TANPOQOpRieC Yo TNV YEVIXY Tou uyela, aAAd xan Tuyov madoloywés xataotdoec. H xataypoupt
%o avEAUCT TOU UTVOU OE TEAYUATIXO YPOVO E€XYEL XLVACEL TO ETLOTNUOVIXS EVOLAQEROY, VG TUESAANAa, Ol
npoogatec e€elléelc otov Touda NG Unyavixnic udinong €youv BGOGEL TNV BuvaTOTNTA Yol TNV EEEEEUVNOT] EVOC
TOAD Loyupol emoTnUovXo) Tedlou yio autév tov oxond. H e€éhin tng gopnthc teyvoloyiag arountipwy
€xel enlong wifoel oY YENoT POENTWY GUOXELRDY Yiol EOXOAT) X0l TEOOLTH XUTAYPAUPY TOU UTVOU divovTac o
éva dropo v duvatéTnTa Vo tapaxorovdioel Ty uyela Tou, xadde xou TNV TEoANdY Tiavdy Ttadohoyixv
HOTAGTACEWY.

To avuxelyevo tne mapoloug epyaoctac elvar 1 uerétn tou npoPAfuatog tng Talivéunone twv Xtadlnv Tou
"Ttvou Y€ow VELEWVIXODY BIXTOWY, YENOWWOTOLVTISC U0 chVOAd BEBOUEVKY TIOU TEOEPYOVTOL OO BLAPORETIXES
popMTéC cuoxeLES, xan epthauBdvouy yeoxivnta totovetnuéveg eTéteg Umvou. Ta 800 clvola Blagpépouv
w¢ mpog To YEyedde Toug, e To TME®TO v elval TOAU pixpdTECO amd To BedTEPO. XTO TMEMTO OXENOC TWV
TELpAUdTwWY, Yenotwonoteiton yio au@dpoun-LSTM opyitextovinn oe éva GUVONO YOpUXTNELOTIXWY TOU €YOUV
non e€oydel, xan tor omola efvon xowvd xon yiar to 600 cUvola dedouévewv. To poviého mou €xel exmoudeutel ye
TO TPWTO GUVOAO BEBOUEVOV ETUTUYYAVEL OVTAYWVIGTIXY ENBOGCY), EVE Yia TO BelTepo oUVOAO Bedouévwy, ov
xou YoUnAoTep, N anédooy| tou e€oxoloudel va yopaxtneileton xohf. H mpoonddeia yevixeuone tou povtélou
ToU €yel EXTUBEUTEl OTO TPWTO GUVOAO BeBOUEVWY, YpnolHoTolVToS delypata and to delTepo cUVOLO, BeV
€yel emtuylo.  Xto BelTEPO OXENOC TWV TEWPUUATOY, doxipdletar Wa autopatomoinuévn uedodog egaywync
YOEUXTNELOTIXGY PE TNV YeNon eVOc cLVEAXTIXOV eminédou, To omolo evowpat@veTol Tty o aupideouo-LSTM
dixtuvo. Ta avene&épyoaota dedopéva divovion cav elcodog xou To HOVTEAD exmaudeleTol and oPY N -Ewc-TENOG.
To beltepo olvoho Bedouévnv anodidel ToAD xoAd, gTavovtag Tig TWwéS Tou aniol aupidpouou-LSTM ue to
TPWTO 0OVORO BEBOUEVLV, TOU GNUOLVEL OTL 1] GUVEALXTLXY) ORYLTEXTOVIXY] UTOPEL EMLTUY NS VoL LOVTEAOTIOLAGEL TG
YEOoVIXéC ouoyetioelg Twv avenelépyaotwy dedogévev. To mpdhto civolro dedouévmv dev ayyilel tdéco Ldnin
am6doaT), uTodeEVUOVTAG OTL Bev elval 1600 GUUPUTO Pe TNV cLYXEXEWEVT UEV0D0 eE0yWYNS YUPAXTNRLOTIXDY.

Téhog, ehéyyeton 7 Lepapyix) apyltextovixry SeqSleepNet, n omnolo cpyxd mpoopileton yia Sedopyéva mou
Tpogpyovtal and molucopvoypoapio. Ia TNy exnoideuorn Tou HoVTEAOU PE TO TEMTO GUVOAO dedouévwy, eE4-
YOVTOL TO XATIAANAG OTMEXTEOYPAUUATA, OUWS 1) anddoon elvan @twy . To dedtepo ohvolo Bedouévey dev umopet
vo egapuootel aneuvdeloc oto SeqSleepNet, yio avtd mpoteivovtan 800 Tponomolcelc Tou dwthou, GTIC omoleg
exteelton auTOpAT EEAYWYT| YOLUXTNELO TV HECK EVOG UNYAVIOUOV TPOCOY NG, TELY Ta BESOUEVA TPOYWEHOOUV
o710 eninedo tng to€véunone. H Slagpopd otic BUo tpomonoloelg £yxeitar 6To dTL 1) debtepn AowBdvel unddy T
€vvola TNG €moy1i§ Tov Umrou, 6mou xdde eTixéta OTVOL avTIoToyel oe éva ypovind Tapdiupo 30-deuteporénTwy,
xd&vovtog Ty elcodo mou déyeton To dixTuo o TEpimhoxT), xou ot dlo Suwe €xouv eElcou s amoteréouaTaL
Ané to metpopotind amotehéopota g epyaoiog avadetxvieTol 1 onuacio TS TPOCEXTXAC ETMAOYNC YAEAUXTNELO-
TIXY XL XUTHIAANANG AEYITEXTOVIXAC YLol TO xdde cUVoAo dedouevmv. Mnopel va enitevydel uPniy anddoon twv
povtéhwy, 1 omolo utepPaivel dAAeC TEOCPAUTES EPYACIES, UE TNV YPNON TULO WXEMY OEYITEXTOVIXMY XUl TPOO-
EXTIXG ETAEYUEVWV YURUXTNELOTIX®Y, elte autéuata elte yewpoxivnta, eve 1) Badltepn tepapyint| dpylteXTOVIXT
tou SeqSleepNet dev xplUnxe otov (Bro Badud xatdhAnin yio To 500 clvoha SEBOPEVLV ATO POENTEC CUOXEVES.

AgZeic KAewdid — Taléunon Ltadiwy "YTrvou, Popntéc Yuoxevée, Bioonpata, Augidpouo-LSTM, Xuve-
hxtnd Nevpwvixd Aixtua, SeqSleepNet

vii






Abstract

Sleep has always been of great interest regarding the understanding of human nature and its existence.
Although it has been studied since ancient times, its deeper understanding has only flourished in the last
centuries. Studying an individual’s sleep patterns can reveal crucial information for their general health and
it can also indicate special physical conditions. Under this perspective, monitoring and analyzing sleep in
real-time has been of major scientific interest, and the recent advancements in the field of machine learning
have allowed the exploitation of a very powerful scientific area for this purpose. The development of sensor
technology has also boosted the use of wearable devices for easy and accessible sleep monitoring, allowing an
individual’s health self-supervision or prevention of special conditions.

The objective of this thesis is to study the problem of Sleep Stage Classification employing neural networks,
given two datasets derived from wearable devices, which also contain manually transcribed sleep stage labels.
The two datasets differ in their source of monitoring on their size, since the first one is significantly smaller
than the second. In the first part of the experiments, a bidirectional-LSTM architecture is tested, trained
on a set of already extracted features that are common. The model trained on the first dataset achieves
competitive performance, and the one trained on the second dataset, while not reaching as high values, is still
good. The generalization of the model trained on the first dataset, utilizing unseen data of the second dataset
shows poor performance. In the next part of the experiments, an automated feature extraction method is
proposed for training the model end-to-end, by integrating a convolutional module on the bidirectional-LSTM
architecture that takes as input the raw data. The performance for the second dataset is very promising,
achieving prediction values close to those reached with the bidirectional-LSTM on the first dataset. Thus,
the proposed convolutional architecture can sufficiently model the temporal relationships among the raw
features. The first dataset, does not perform so well in this setup, indicating that the automated feature
extraction method is not adequate for it.

For the final part of the experiments a hierarchical architecture named SeqSleepNet is utilized, which was
initially designed for the task of sleep stage classification with data derived from polysomnography. For
the first dataset, the appropriate spectrograms are extracted for training the SeqSleepNet, however the
model performs poorly. This observation suggests that the specific dataset does not align well with deeper
architectures, but rather with shallower ones with carefully extracted features, either due to its small size,
or due to its internal structure. The second dataset does not allow for spectrogram extraction, thus two
modifications of the SeqSleepNet are proposed. Both receive the raw features of the second dataset and apply
an automated feature selection with an attention mechanism, before passing the data to the classification
module of the network. Their difference is that the second modification includes the concept of sleep epoch,
where one sleep stage label is aligned to every 30-second window, adding one more dimension to the training
input. The experimental results show that both of the proposed SeqSleepNet modifications achieve good
performance, even though the second one handles more complex input data. Based on the experiments
conducted in this thesis, we highlight the importance of a carefully chosen architecture and data handling for
each dataset. We show that competitive results surpassing other recent work on the topic can be reached,
either using meaningful extracted features or an automated method utilized in the shallower architecture of
bidirectional-LSTM. The deeper architecture of SeqSleepNet is not appropriate for the two wearable-derived
datasets.

Keywords — Sleep Stage Classification, Wearable Devices, Biosignals, Bidirectional-LSTM, Convolutional
Neural Networks, SeqSleepNet
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Chapter 0. Extetauévn Hepiindn

0.1 Eitcoaywyn

O Umvoc amotehel pa amd T mo Vepehddelc avdyxes tou avdpdmov, and v anopyl e Unapnc Tou.
Méow tng perétng tne Aettoupyloc tou Umvou umopel xavel va dlaxplvel TOAES xpuUPES TTUYEC TS PUOLXNAG
7 Yuyoroyiic xaTdoTAoNE EVOC ATOUOU, XoME Xol TNS YEVIXOTERNG VYElS ToU.

Yty napotioa spyacio avantdoceTon Yol TRooEY YIoT) TOU TEOBANUITOS TG AUTOUATOTOMNUEVNC XOTTYOPLOTOINoNG
TwV oTodiwy TOU UTYOU UE TNV XPNOY VELPGVIXDY BUXTUWY, UECK oNudtwy Tou €yxouy culkeydel and éva €&-
UTIVO pOROL Xl Lol aXOUT QOENTH CUGXEUT| XATAYRUPHC PBLOCNUATOY, GUYXEXPWEVO EVay axTlypdpo o omolog
e@apuoleTal oTOV X0ETO TUPIAANAL UE TNV EXTENEOT HEAETNE UTIVOU.

0.1.1 Eniotnpovixé YnoBadeo

To {itnua g pehétne xat Tne xatavonong tou Unvou €xel Bpedel oto enixevtpo tou avipdnivou evilagéoovtog
oaxOun omd TNV apyondTNTAL, AAUPBAvOVTaC TOAES BLUPORETIXEG LOPPEC TapdhANAc Ue TNV eEENET TNG EMOTAUNG
X0l TOU TOMTIOUOU. ZexvidvTos and TNy Yepnor ToL UIVOL w¢ Wio XATHo TAoT Un-avTidndng xaw adpdvelos, Tov
TeheuTalo xUplwg cnwva €yel xataotel copéc 6Tl mEdxeiTon Yo xdtt ToAD Barditepo amd auTd. BuyrEXPUEVA,
o Onvog amotekel pior Bladxacia €VTovng BpaoTNELOTNTIC TOU EYXEQPIAOU, XaTd TNV dldpxeia TNg omolag mooy-
patomotelton 1 xUXAXY evohhayr) eVOC GUVOAOU XaTaoTAoE®Y, Xadeula and Tic onoleg emitelel pla Slopopetiny)
Aertovpyla, Lot onpactac Yo tov dvdpnno. Ol napatnenoelc auTé AMEXTNONY CAPTVELD UE TNV AvaXdALdT
TOU NAEXTEOEYHEPUAOYRAUPHUOTOS XAl TNG HATAYRAPNS TWV NAEXTELXWY CNUATLY TWV VELPMVKY TOU EYXEPIAOU,
ToU UTOBEVOOUV Wi EVToVT xvnuxétnTo xotd Ty Sudpxeto Tou Unvou [LHH35; DK57]. Méow owtdv tov
TOROTNENOEWY, Xl GE GUVOULAOUO UE GAAEC €PEUVEC TOU TROYUUTOTOMUNMOY Yiot TNV XATOYPUPT NAEXTEIXOY
ONUETWY OIS TO NAEXTEOPUOYEAPNHA Xl TO NAEXTEOOPIahUoYdENuUa, avoxahdeUnxay tévie Baod oTddua
Omvou:

o >tddio N1 - petofatind otddio nov oyetiletan we v €vapsn tou Unvou. O pdhog Tou elvon uetaButixde
Yiot TO dTouo, Hote va enéAdel and xatdotaon eypiyopone ot xotdotacn Umvou, xou anoterel to 2-5%
NS CUVOAMXAC BLdpxelag Tou UTvou.

o Xtddio N2 - 10 oodua eloépyeton ot Yl xatdotaon Badltepne xotaoTolfc, atny onola 1 Yepuoxpaoio
TéQTEL, 0 xoEdLAXOE TOAROS XAl 1) Avamvor] GToIEPOTIOLOUYTOL Xol 1 X({VNOm TV PaTIdY ehayioTonolelton Y
%ol OTopoTdEL EVTIEADGS. ATotehel tepinov to 45-55% tne cuvolixic Sudpxeiac Tou UTVOU, ETOUEVLC EVal
dtopo mepvdel TUTLXA ToV Wod Tou Ovo 6To oTddlo N2.

o Ytddro N3 4 N4 (nhéov ouvevwpéva vg N3) - mpdxetton yio évay Bpadéwy-xupdtwy bvo, Tov Yewpelton
10 BodiTepo 6TEdLO Umvou xou epgavileton xuplng oto mpoTo éva teito e viytac. O xoapdlaxde mahude
X0 1) OVOTIVOY) TIEQPTOUY OTLC YOUNAOTERES TLIEC TOUC, Ol HOEC YOAAPOVOUY, Xl anoTehel To oTddlo and To
omnoio elvar Suoxohdtepo vo Eunvroet xavelc. To otddlo avtd Vewpeiton e&oupetind oNpovTind TG00 Yo TNV
OMOXATAGTACT, TOU GOUITOS OO TG QUOLXES PUORES, OGO Xou Yia THY avdrTuén tou atéuou. Emmiéov,
07O 0TEBI0 T Blevepyelton 1 ene€epyacio xan TAYIWON TOV YVOOTIXWY AVIUVIGEWY.

e Xtddto REM (Toayelo Kivion v Matiidv) - 1o otédio autd cvoyetileton pe to dvelpa. Tapotnpeiton
ot qLENUEVT BEAoTNELOTNTA TOU EYXEPEAOU, O XoEdLIXOS TAALOS Xon 1) TEOY TOU ofUaTOg (PTAVOUV OE
enineda TOL AVTLOTOLYOVLY GE €Vl GTOUO MOV MEPTATAEL, £V TOPSAANA GUUPBAIVEL TUPGAUGT] TWV LUGY,
Gote vo anogeuydel miovh puowt SpaotnetotnTa AoYw e€wtepixeuong Twv ovelpwv. Télog, Fewpelto
OTL xatd TNy Sudpxela autod Tou otadlou yivetan 1 enelepyaoia TV CUVULGUNUUTIXOY AVOUVACEDY TOU
atéPoL, YEYOVHC Tou TO xohoTd oUCUOSES yia TNV pddnon xou Ty dnwovpyixdétnta. To otddio REM
anotelel nepinou o 25% e cuvolniic didpxelas Tou VTVOU Yio Evay UYL EVAALXL.

‘Exovtoc autd wg dedopéva, xon yvwpllovtag mAgov v onuocio tng enldpaong Tou UTVOU Gty YEVOTERN
vyelo xou evpwaTia Tou aviEOTOoU, 1) XATAYEUPY Kol 1) ToEoXoAoUTUNCY| Tou Xxelvovtal anopaitnta oTolyela yLo
TNV e€A0QPAALTT) Lo UYELODE XOINUERLYOTNTAS, OIS XOL TNE AVTYETOTLONG dLopOpwY BLoTapdy YV oXETILOUEVWLV
ue tov Onvo, oTiC onoleg enlomng diveton TAéov Wialtepn PopdTnTa.

Méypl npdtivog 1 xatorypa@y| Twv oTodlwy Tou UTVOU YLVOTAY ATOXAELCTIXG GE ELBLXS BLULOpPOUEVA EpY AT,
oTa onola TO AToo TEEVOUTE OAN TNV BLdEXELd TNG VOYTAS POPMVTAS NAEXTEOBLA YLl TNV XUTAYRUPT] TV dlapoewV
onudTwy uné Ty cuveyn eniBredm evog eZedixeupévou emothpova. H Siadixacia auth ovoudleton pekéen vnrou
péow mohbunvoypoapxdy petpfioewwy (PSG - polysomnography) xou to foowxd oot tor omola xatorypdpovral
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0.1. Ewoyoyn

elval T0 NAEXTEOEYXEQOAOYRAPNUL, 1 XIVNON TWY LATIOY (MAEXTEOOPIOALOYREPNUL), TO NAEXTEOULOY PP, O
xapdlaxde mahude xan o eninedo 0Euyovou ato alda. Axoloulel 1 avdhuon TWV CNUETWY QUTOY YL TNV TEAMXY
xatnyoplonoinoy Twv otadiwy Tou \vou xal TNV eEoywyY| cupnepacpdtwy. H xatnyoplonolnon twv otadiwy
Tou OTVoU yivetow and évay eEELBIXEVUEVO ETULOTAUOVA, O OTO(OG, HEAETWVTOC Tol EE0YOUEVA CHUOTO OVE YEOVIXS
Tapdidupa 30 deuteporéntwy, avadétel pa eTixéta oTadiov UTvou avd ypovixd mapddupo, To onolo ovoudleTon
gL €moxn, yior Ohn v SLdpxela Touv DTVou.

Kadoe n dwdicooia auth elvar Wlodtepa ypovoldpa xat omontnTixy], To TEAguTalor }podviol YivovTol Tpoomd-
Yeleg viodétnone véwv mpooeyyicewy, oTic onoleg €xel dladpaportioe xalplo pdAo 1 TopdAANAY eEEMEN TNg
texvohoylag Twv aoinTipwy xou TV pxpo-acintieny, onwg eniong ot véeg uédodol avdhuong BeBOUEVLY
HECW TNG UNYAVIXTE HAONONE XL TV VEURWVIX®Y SIXTOMV.

0.1.2 Ogiopoc IpoAjuatog

Ye autd to mhalolo, N napoloa epyacio xavel yenon 800 CLUVOAWY BEBOUEVLV, EVOC GUAAEYEVOL antd Eva EEUTVO
POAOL %O EVOC HOTUYEYPOUUEVOL Od WUiot SAAY, POETTH) CUCKELY|, UE OXOTO TNV BIEEEOYNON HUTOUATOTONUEVGY
peB6dwY PESL VEUPWVIXWY BXTOWY Yiot TNV entiTeLEN NG XaTHYoPLOTOINONS TeVY GTadiwy Tou Utvou. To dedouéva
X0t oTIC BUO TEQINTACELS AMOTEAOUVTOL OO OHUATA ETULTAYLVVOYNS TOL %m0l Péow EVOS TELOOLEOTATOU
MLXPO-ETUTAUY UVOLOUETEOU X0l XAPBLAX WY TAAULDV UEow VoS ontxod TAnducpoyedpou, ta onola eivor eite
xou ToL 800 evowpatwpéve oto ¢nelaxd pohdl (Walch dataset [Wall9]), eite anotehoiv do Eexwplotéc popntéc
OLOXEUES, oL onolec cUNAEYOUV Ta dedopéva xatd tnv didexeta Tou Unvou (MESA dataset [Nat16; Zha+18a;
Che+15]). Eniong, xou ota 800 cUvoha dedopévev mepthoaufdvoviol oL ETIXETESC WE TO CWOTO cTAdLO
OTmVou yio xdde pétenom, ol omoleg €youv optodetniel and xdmolov eEElBIXEVUEVO EMGTALOVA, EVE TSN
XOTA TNV BLdpxEld TNG UEAETNG OL GUUUETEYOVTES QOPAVE TIC POPNTEC CUOXEVES UETENOTC.

H BopY) e epyaoioc anoteielton and 800 oxéhn, ota onola e€etdlovtal 500 DLUPOPETIXEC UPYLTEXTOVIXES:

1. H npdtn Booiletar og Eva avoxuxholuevo (recurrent) veupmvind dIXTUO, XL O GUYXEXPLUEVA ETUAEYETOL
1 apyltextovixy SixtOoL paxponpdVeounc wvAuns (Long-Short Term Memory). H emhoy?| tov
ouyxexplévou eldoug duxtiou yivetow Aoyw tng @OONE Tou TEOBAAUATOC, XIS TEOXELTOL YId EQPUPUOYY
npofAédewy mdve oe ypovixéc axohouvdiec. Ta RNN Sixtua €youv cav WBLA{TERO YopaxTNELOTIXG TNV
BuVATOTNTA VoL BlATNEOLY TANEOYOopieg and mpoMNYOUUEVES YPOoVXéS oTypés pe Ty Bordela uiog eldnnc
doulc pvnung, Ty onola evowUaTtdvouy otny encéepyaoia yia Tic TeoBréelc g napoloac YeovIxXhc
OTLYUNS, ETOUEVKC anoTEA0UY Wavixn emthoyy| Sixtlou yla To TEdBAnua tng Tadlvounong Twyv oTadiwy Tou
Omvou. Xta mAalota autd, egetdlovton 800 TopoAAAYES TOU BXTUOU, AVEAOY UE TOV TEOTO TOL divovTol
o Oedouéva oTNY €lc080 Yo TNV EXTOUBEVGT TOUL:

(a) Xty npdTn tepintwon, To dixtuo déyetar oav el00d0 €Vl GUVONO YUPAXTNPLETIXDY TOU €YOUV EX TWY
npotépwy e€ayVel and to aveneépyaota dedopéva pe Ty pEYodo Tou TEOTEIVETOL GE TEOTNYOVUEVN
epyaoia, 1 onola el npoteivel xou To oUVORO dedopévwy and to €Eunvo pordl [Wal+19].

(b) Ztnv deltepn mepintworn doxpdleton plar autopatonouévn uédodoc elaywyhc XopoXTNELO TV,
péow pag ouvelxtxic povédag (Convolutional Neural Network) nov npootideton oo apynd veup-
w6 dixtvo. Me autdv TOV TEOTO, To ONUAVTIXOTERO YOLUXTNEICTXE TN ECWTEPXNE Boung TwV
aveneépyaoTwy dedouévmy eEdyovton autoépaTta and To dixtuo Tely dodoly cov elcodog 6To EToUEVO
eninedo Tov, yio TNV expdinom e EOBAEdNC TwY oTAdlwV TOU UTYOU TNE XPOVOOELRdS. e auThv ThY
neplnTwon, 7 dadixactio exnaldeuong OAWY TwV EMTEDWY TOU GUVOALXOD BxTOoU YiveTow TAUTOY POV

2. H debtepn opyitextoviny Baocileton oe éva undpyov povtéro Padide pnyavixhc uddnone SeqSleepNet
[Pha+19], oto omnoio yivovtol 0ploUEVES TPOTIOTIOLAOELS TPOXEWEVOU Vol TPOCUPUOCTEL 6o dedopéva Tne
napovoac gpyooiag. To yoviého autd apynd mpotelvetan yio v mEdBAedn Twv otadlwy Tou UTVoUL
and oHpaTe Tou €youv mpoéhdel and uekétn Umvou PSG, xou cuyxexpiéva NAEXTROEYXEQUNOYRAPTUAL,
nhextpoopolpoypedpnua xou niextpouvoyedenua. To dedopéva autd elvar TOAD TO TUXVE Amd 6,TL Ta
DEDOUEVOL TTOU TROEPYOVTAL UG POPNTEC GUCKHEVES XAl YENOWOTOLOUVTUL OTNV Topolod EQYAT(O, ETOUEVKS
OPLOHEVEG AAAXYES YIVOVTOL GTO B{XTUO Yol VoL TROCUPUOCTEL 1) APYLTEXTOVIXY TOU XUTAAANAAL.
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Chapter 0. Extetauévn Hepiindn

0.2 Ilepiypapr XuvoAwy AcdoUeEvwY

Ta cOvola BeBoévwy TOU YENOWOTOWUVTAUL OTNY Tapoloa epydoio TpogpyovTol xal To 800 and QopnNTES
CUOXEVES, CUYXEXPWWEVA TO €var and EEUTVO POAGL xou To Be0TEPO amd TOV GUVBUIOUS EVOC ETULTOYUVOLOUETOOU
xapmol xo evog ToAmxoU o&luetpou. lapdddnio ge v xatoypapr) Twv BLOCNUETLY UE0W TWV QOPNTOY
GUGXEUY, Ol GUUUETEYOVTEC Xoi OTIC BU0 €peuveg €youv PBpedel TauToOyEOVA GE XATOLO EWBXE BLUUOPPWUEVO
EPYOUOTAPLO Yiot HEAETT OTVOU XoTd T SLdpXela plag YOy TS, OTOU Xol XATOyedpovToL XL avaAbovToL To o TddLol
Tou UTYOU Toug amd Evay eEEBIXEVUEVO ETULO THULOVAL.

0.2.1 XUvolo Acdoupévwyv Walch

IMpbxeiton yio éva E0wTEPXO GUVORO BEBOUEVWY OYEBLCUEVO Xal BNLoupYNUEVo and tny oudda tne Walch et al.
[Wall9] xou uropei va Ppedei e8¢d. To olvolo dedopévewv anoteleiton amd 31 dropa xatd T Sidpxetol VoS 8wpou
vuytepvol Umvou. Kdbe cuppetéywv napaxorovdeiton ye PSG, péow tou onolou e€dyovtan etixéte yla To
0TdBLo TOL VTYOU avd YEovixd Topddupo 30 Beuteporéntwv, To 0nolo OVOUGLETAL €mOXT). L TOUC GUUUETEYOVTES
d6UMxe v popéoouy éva €€utvo pohdL tne Apple (Apple Watch) xotd tnv Sidpxeia Tou yuyteptvold Ovou oto
EPYACTAPLO, TO OTOLO XUTAYPAPEL TNV ETULTAYLVOT (O &) XU TOV xoedtaxd TaAd (oe Tahdols avd Aento,
bpm). Tuyxexpuéva:

e Emitdyuvon (motion) otov tpwodidotato dZova (z,y, ), we T wétpnone ot g(9.8m/s) xou pu-
Yo derypotolndiog 50Hz. Ltny mpaypoatixdtnta 1 cuyvotnta derypotohndlog dépepe avdueoa oToug
CUUPETEYOVTES, EMOUEVWLE amoute(ton xdmotla pordnpotixn nopeuBolr| onpelnv wote va yivel oaxpiBoe 50Hz.
Enione, péoa oTic YpoVOOEIpES TV YUpaXTNELO TIXMY UTEEY0UV TEpLo TAGLUXE. xed Ypovixd napddupa mou
o 8edouéva Toug Aelnouy, miavde Adyw TEOBANUATWY and TNV TAEUEE TOL BLUXOULO T XATd TNV BldpXELa
NS XATAYPAPTIC TOU UTIVOU TWV ATOUMY.

o Kopdiaxdg moaiwds (heart rate), o pududc Serypatorndioc tou omolou eivan xdde pepixd
deutepdhenta (beats per minute) xou elvon povodidotatoc. o vor undpyer opolduoppoc pudude deryua-
Tohndlog avdueoa ota dtoud, 1 xoAUTERY TROGEYYLoT elval 1 emava-detypatolndio xdde 1 Seutepdhento
wote vo elvan otadepr) oto 1Hz, Kow oty nepintwon tou xapdlaxod tokpol undpyouy TuAuato ue EAALTY
delypora.

¢ PSG (labeled sleep) dedopéva xatd v Sidpxeto Tou Unvou: éva otédio Umvou opileton yio xdde turua
30-Seuteporéntwy, Tou ovoudletar OANOES Wa €moxT]. XpNoYLoToloUVToL ooy ETXETES Yot ToL OTASLL TOU
OTVOU XL BEV €YOUV XEVE OVIUESH OTIC TWES TOUC. LUYXEXELIEVA, UTdpyouv ol eTuxétec: wake = 0
(E0mwiog), N1 =1, N2 =2, N3 = 3, N4 = 4, REM = 5. ITop’élo autd nepthapPdvovton eniong xdmoteg
e -1, mou opllouv 6TL Bev undEyEL XAmoLa ETIXETA YIOL THY CUYXEXQULEVT] ETOY N, XAl OL TWES AUTEC TRETEL
VoL YELploTolV UE TEOCOYT.

e Brjuata (count): Kotd tny didpxela twv uetpriocwy culhéyovTon eniong ta BAUOTA TwY CUUUETEXOVTGOVY
ané to €EuTvo POAGL.

0.2.2 3>0Ovolo Acdopévey MESA

To deltepo clvoho Bedopévmv mou yenotdonotelton o avThY TNV epyacio etvon 1 HoAv-Edvikr) MeAétn ya Tny
AdnpoorAipwon (Multi-Ethnic Study of Atherosclerosis - MESA) [Nat16; Zha+18a; Che+15], xou Bploxetou
oto https://sleepdata.org/datasets/mesa. IIpdxeiton yior piot TOAUXEVTEXH TOAU-EDVIXY EpEUVA TWV TAPOYGV-
TV ou oyetiovton Ue TNV avanTUEN UTOXAVIXAC Xaedlory YELoG vOoou xat TNV eEENEN TNC OE XAV Xole-
droryyeto) véoo. Metall 2010-2012, 2237 dropa cuppetelyoy oe pa e&étoon Unvov (MESA sleep), xatd v
omnola Sie&rydn ohoviytia molucopvoypapia PSG, unhpye éva epwtnuatordylo Umvou, xadoe enlone Trueen
¥efion EVOS OXTIVOYEAPOL TOU PORIETOL GTOV XUPTO TOU Yeptol. XToY0¢ TNg Hehétne autrc oy va e&epeuvniel
TO TG Ol DLUXVUEVOELS TOU UTVOU X0l Ol UTVIXEC BLatapory€c Towdhhouy YeTol Twv QUAWY Xol TeV EUVOTIXOVY
oUddwY OTWC ETONG XoU 1) CUOYETION TOUG PE TIC UETPNOEL TNE LTOXAWIXN S adNEooxAHiEWoNS.

To nopamdve dedouéva ypnotwonotovvion 6mwe xou €8¢y [Wal4-19], xat’ apydc yio vo eheyydel 1 duvatdtnta
YEVIXEUOTC VEUPWVIXDY ULOVTEAWY NB1 exToudeupévwy, ot xouvolpla dedouéva mou Bev elyav mepingdel oto
cUVolo Bedouévmv extaldeuons. LTy CUVEYEL GUWS, YENOWOTOLOUVTU KOS EEXWELOTO GUVORO SEBOUEVLY YLa
VO EXTIOLOEUTOUY TAL TPOTELVOUEVA UOVTEAA OE PEYUADTERO OYXO Bedouévev and 6,1t autd tng Walch, xau ta
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omolo €youv AngUel ue BLoupOpeTIXG, oy xou TUPERPERT), epyoAela. Xe autd To Thaiolo, eMAEYOVTOL TA TPWTO
188 dropo and to clvoro dedouévev tng MESA, ue mopdhiniec petprioeig oxtiypaplog xoemol xal dedouévwy
PSG o enc€epydlovton xatdhhnha yio va yenowponondoly cov aveldptnto clvoho Sedouévwy yia €AeYyo
TV povtéhwy. ‘Onwg npotelvetar xou otny npoavagepleion epyacia tne Walch, undpyel yia dueon cuoyétion
HETOEY TN xivnong tou xaprod xat tne Tomxhc Tuxic andxione (standard deviation) tou xapdioaxol ool
ToU €EUTYOU POAOYLOU, UE TA YoEoXTNELOTXE Tou eEdyovion amd TNV axTiypa@lad Xapmol Xou TOV XopedLoxd
TS xotd TNy didpxetor tou PSG avtiotoiya Tou cuvohou dedouévwv tne MESA. O xoapdioaxde mahuds tne
MESA lopBdvetor yéow mohuxic ouuetplog, auédvovtas tnv cuufotétnta petoll tou €€unvou poloylol Tou
YENOWOTOLEITAL V1oL TNV EXTIUBEVCT) OPLOUEVGY VEURPMVIXWY SIXTOWY GTNY CUVEYELX TNS Epyaciog, xaL aTtov éAeyyd
Toug and to dedopéva tne MESA.

To cbvoho dedopévewv tne MESA anotehelton amd tor mopoxdted yopoxtnetotind:

o Kopdiaxdg marpwdg: culhéyeta Yéow PeTphioewy nohucouvoypdgou (PSG), xau éxyer pudud Serypo-
Tohndlog 1.

o Axtiypapion 2237 dTopo GUUUETE Y GTNY EPEUVAL POPWVTAS OTOV XUPTO TOUS POPNTES CUOXEVES UXTL-
yoaploac (Actiwatch Spectrum, Philips Respironics), yio pa eBdopdda. O eyypagéc eivan anodnreupéves
oe apyelo avd emoyr, 6mou xdlde ypauur oe éva apyelo avtinpoownelel 30-BeUTECORETTA TEQLANTTIXY
peTprioewy and to dedopéva Tne axtiypaploc, Yo 2159 cuguetéyoveg.

e O etixétec Tng moAvcowvoypagpiac (PSG), avtatoxpivovton oe névie otddia Uvou: (N1, N2,
N3, N4, REM, Wake).

To PSG mpayyoatonomidnxe evtoc-owxiog ye v yenon e teyvoroyiac Compumedics Somte System
(Compumedics Ltd., Abbotsford, Australia). To ofpoto TOU xATAYEAPOVTOL ATOTENOUVTOL ATO NAEX-
TEOEYHEPOAOYRAPNULL, NAETEOOPUVUNLOYRAPNUL, NAEXTEOUVOYEAPTUL coryoviol, Vwpoxixy| xou xothox
OVOTIVELO TLXY) ETOLY WYX TAEYHATOYpapla, TNV pOY) TOL 0€pa TNE AVATVOTS, NAEXTEOXAEBLOYEAPNUA, X{vron
TV TOdLOY ot dotuAr) taAwxr) ofuuetpio. opdhhnha, exmoudevuévol teyvixol Balouv Tic xotdhinieg
eTéteg UTVou.

Yy Exéva 0.2.1 napouctdlovton oL XaTovOopES TwV XAJOEWY, YL To BLPORETIXG TEOBARUATA XATNHYO0PLOTOINoNG
TOU UTVOU TOU UEAETWVTAL OE qUTHY TNV gpyaoia, yio To 500 cOvoha BEBOUEVKV TIOU TEQLEYPAPTIOAY TORUTAVE.
YupmnepiouBdvetar eniong TO LOTOYROUPO TNG XATOVOUNG TV apyidy €EL xhdoewy Twv 800 GUVOAWY, OTIC
omnolec undpyetl To oTddLo Utvou N4. Autd cuyywveldeta pe To oTddlo Uvou N3 yia Ti¢ anoutioels Tne topoloug
epyaoiog.

0.3 Bidirectional LSTM MovtéAa

Yov mputapynd nelpopa, tpoteiveton v anhd augidpouo dixtuo poxpoypdviac-Beayuteddecunc uvAune (bidi-
rectional long-short term memory - bidirectional LSTM), xadd¢ emhber oxpiide to eldog tou mpoPifuatog
TIOU XAUAOUUOCTE VAL AVTHETWOTICOUUE, dNnAadn Tnv xatnyoplomonan ypovooeds. To dixtuo autd Soxuudleton
AV OE YAEAXTNELOTIXE o €youv e€ayVel U€ow *AUCIXWY TEYVIXWY eneéepyaoiac ofpatoc and Ta dedouéva
e Walch, 6nwe npoteiveton oty avtiotoyn dnpooicuorn [Wal+19]. Xtdyoc eivan vo eheyydel n anddoon
TWV YOLOXTNRIC TV AUT®Y ot petddoug Bothde unyovinic pudidnong Yéow veupmwixmy dixtiwy, oe avtiveon
pe T xhaowée yedddouc tadvounone mou yenotdonoolvtal otny meoavagepleioa epyaoio. Xty cuvéyela,
T0 (610 PBooixd bidirectional-LSTM dixtuo ypnowwonoleitoan oe piar mo eEeAiyU€vn opyLTEXTOVIXY, GTNV omold
YIVETAL QUTOUTOTOINUEVY EEY YT YOUEAXTNELOTIXWDY o6 ToL avemelépyao o dedouéva, HECW UG CUVENXTIXAC
AP YLTEXTOVIXNC.

0.3.1 Ilpoctoipacia TV AcSOREVLY
ITpoeneiepyaocia Acdopeévwy Walch

Egboov ta nelpdyota tne napovoag epyaciog eotidlouv otny encéepyacia xpovooeipty, xat’ apydc TeEneL v
emPBefouwiel 6TL oL oelpéc TwV Bedoutvev ou yenowornololvtal efvon cuveyelc. o var emteuydel autod, mpwv
v e€aywyh Twv yapaxtnplotxdy e Walch, npénel va avtipetwniotoly ta onpeio oo omoio Undpyouv %EVE
HETOEY TRV EMOYOV TNG XPOVOOELRES, X4t To omolo dev AauBdveto unt’ oduv oty epyaoio tne Walch, xadde exel
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Figure 0.2.1: Ta 10TOYROUUATO TOV XATAVOUWY TWV XAACEWY Yiol T SLUPOEETXE TpofAuaTa
xatnyoptonoinone tou Lvou. O €€l xhdoeLS avapépovTal OTIC OPYIXEC ETIXETES oTad(tY TOU UTVOLU TV
TUEEYOVTAL GTAU GUVOAX DEBOUEVWY, EVE Ol UTOAOLTEG XATNYOPRIEC XAACEWY UEAETWVTOL OE AUTHV TNV EpYaoiaL.
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TaL Yoo TNPELETINS apopolv xdde ypovixh oty (enoyh 30 SeuTEpORETTWY) YWPELOTA, xou Oyt TNV HETAEY TOUC
ouoyétion. Hpoxeévou va €youpe cuveYT| YEOVIXE TUNUOTA, T AXATERYAOTO BEQOUEVA OTdVE OTa oNuela amd To
omnola Aelmouv enoyéc amd TOLAGYLOTOV €Val YoEUXTNELOTING, ETOL (OOTE TA TEAXE TUAULITA TWV AVETEEEPYUTTWY
BeBOUEVWY VoL EYOUV CUVEYEIC YPOVIES ETOYEC UE EYXUPES TIES Yiot ONaL TaL YopoxTnptoTixd (psg, hr, xivnorn tou
XapTOV).

Yy cuvéyela, TeENEL Vol avTHETOTLOTOOY ol -1 Tiwég mou epgaviovta otic PSG etixéteg, mou unodeixviouv
un-tagLvounuévo dedopéva.

1. Yty nepintwon mou ol Téc autéc epgavilovion 6Ty oy h 1 0T0 TEAOC TNG YPOVOTELRAS, TOTE TO XOUUATL
TS amAd aponpeiton amd To dedopéval.

2. Yy neplntwon HEHOVWUEVLY TETOLWY TGV eVOLdUEca oTa dedopéva, toTe avtxodiotavton and Ty yéon
TR TV 800 YELTOVIXOVY TNG ETIXETMY.

3. Téhog, oc Mep(NTWOT TOU UTAEYOLUY MEQLOCOTERES ATO WAL CUVEYOUEVES OPVNTIXES THES EOWTEPXE OTNY
XPOVooELRd, ToTE auTh x6feton oe BUo TUHATH 6TO oNuelo exelvo, xouL Ol dEVNTIXES THES APALEOLVTOL
and Tic dvo uno-axorovdec mou mpoxUTTOLY; moE’ GAa AUTA Bev mapatneelTal 1 TEp(TTWON AUTH OTO
CUYXEXPWEVO GOVONO BEBOUEVEIV.

Eaywy”h XopaxtneloTixoy

To yopaxtneiotxd mou e&dyovion énwe npotelvetan otny epyooio tne Walch [Wal+19], xou yenowonotodvran
oTa apYLxd pog TElpduata, elvon tor axdhovdas

e Kotauétenon dpactnetothtwy (Activity counts) - eZdyovton and to dedopéva tne xivnone tou
xopmol. Metatpéneton omd tor avenelépyaota dedouéva Tne enttdyuvone Tou xapnol (o m/s?), uéow tne
ped6dou mou npoteivetar oto [TV13] xow vionoteiton otov x@dixa Tou €yel exdboet 1 Walch. To yopax-
NEIO TG AVUTO emAéyetol AOYw NG cLPPATOTNTAC TOL e YETEHOELS Tou eEdyovTol omd dAAa epyolela,
epboov autéc petatpanoly enione ot katapétpnon dpaotnpotitwy (activity counts). T tny e€ayoyh
TOL YoPAXTNEICTLXOU owToV, To dedouéva dloywpilovtar oe yeovixd napdduea 10 Aentdv YOpw and xdde
enoy. To tehxd yopaxtneiotxnd Tou activity count ntpoxinTeL and TNV cUVENEY Tou Ypovixol mapadipou
ue wo I'eaovoiov xatavour| ue o = 50 seconds.

e MeTtaoynuratiopos cuvnuitévou (cosine transform) - avunpoowredel yLo amhomonuévn popen
Tou KipkabdikoU podoyod tou atépov. Egopudletar évo otadepomoinuévo cuvnuitovo, to omolo elvou
HATEAANAOL XAUOXWUEVO Xl CYETIHE UETATOTILOUEVO PE TOV YPOVO EVapENe TNG XoTaypapic TWV oNuUdTwy,
%ol TO Oonolo ALEAVETOL O EAUTTOVETOL XOTd TNV Bidpxelor TNg VO ToC, €Tl MOTE Vo TauTileton Ye Ty
QUOLOAOYIXT| EXPEACY) TOU XiEXADLXOU POAOYLOD XATd TNV BldpXeld TOU UTVOU.

o XopaxtneltoTixd xapdiaxol ntaAkol - e&dyeton Votepa and xdmota Biuato npo-enelepyacioc Tou
opy ol ofuatoc. Apywd, 1o ofua mapepuPdAdetar ye onpelo (interpolation), dote va amoxthoel pu-
Yué derypatorndlag oxeBide 1Hz, Etnv cuvéyewa, eCopailveton (smoothed) xon @uitpdpeton Yéow g
oLVENENC Ue TNV Blapopd 800 I'raovaiavav giktewy, pe sigma = 120 seconds xau sigma = 600 seconds.
O petprioeic xdde aTdUOU HUVOVIXOTOLOUVTAL BLOLPWVTAS UE TO EVEVIXOOTO EXATOC TNUOELO TNS ATOAUTNG
dlapopdc petald xdde onuelou TwV BEBOUEVKV TOU %aEdloxol ToAROL ot TNg uéonc TWAC Tou xad’ OAn
v ddpxela Tou mvou. Télog, N Tumxr andxAior Tou Tapadlpou Tou oynuotileton YOPW and Ty xdde
EMOYN XPYOLOTOLELTOL GOV TO YORUXTNELOTIXS TOU EXTEOCKWTEL TOV 0EdlaXd TUAUS.

¢ XapaxTneloTixd TOU XEOVOU - UVUPERETOL GTOV YEOVo antd TNV Evapln NG eYYEUPhC.

o Etwxétec PSG

0.3.2 Anhqf apgidpoun LSTM apyitextovixi

H npdytn amh apyttextoviny augiSpopou dixtiou yaxpoypdviac-Peayuneddeounc uviune (bidirectional long-
short term memory - bidirectional LSTM) ulornoweiton ye v ypfion tou maxétov Pytorch [Pas+19]. To
TEOTELVOUEVO HOVTENO ANOTENELTAL Amo:

¢ 'Evo LSTM eninedo, éyovtac oploel Ty mapdueteo Tou au@iBpouou ooy owot).
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Figure 0.3.1: H npotewvouevn apyttextovixny| oaugidpopou dixtiou paxpoypedviac-Beayunpddeounc Lvhung
(bidirectional long-short term memory - bidirectional LSTM).

¢ 'Eva tAipwg cuvdedeuévo eninedo, ahhde ypapuikd enitedo, oto onolo 6ol oL xéuBol ele6d0L
TOU VELPWVLXOL BixTUoU elvon cuvdEdeuévol Ue Toug xouPoug e€6dou. Aéyetan oav elcodo v ¢£odo Tou
BiLSTM, xou emotpépet éva Sidvuopo peyédous doa xou ota otéddiar Utvou Tou TpofBAiuaTog, To onolo
expdlel Ty mbavétnTa xdde otadiou Gvou va elval T0 GWOTO.

e To ocpdipa tne SraoTavpobuevng evrponiag (cross-entropy loss), yenowonoleiton we To xpLthpto
Tou povtéhou yia Ty omoBodiddoon (back-propagation) xatd v didpxela tTne exnaideuonge.

H apyrtextovieh Tou ductbou aiveton otny Ewdva 0.3.1.

MévyeBoc Aéoung (batch size)

Ta veupwvixd dixtua eivor Wlodtepa amautnTxd Adyw Twv Bopldy uToAoYIoTIXGOY TEEEEwY Tou xoholvTol Vol
TEAYUATOTOACOUY XaTd TNV BLdEXEL TNG EXTALBEVCTC, EMOUEVWS 1) TUPAAANAOTOINOT TWY UTOAOYIOUMY QUTWY
€xeL anoteréoel éva xouPixd onuelo eotlaong tne teyvohoyiog Toug xat twv e€ehiewy Tou Aoylouxol. Egpboov
To. BEBOPEVAL IOV YENOWOTOLOUVTAL GTA VELEWVIXE dixTua exppdlovTal ©¢ TOALBLAGTATOL Tivaxes, 1 Hovada
eneepyacioc ypupixdv (graphic processing unit - GPU) ypnowonote{ton yior toug yetpiopois touc. Ov GPU
€YOULV dPYIE OYEDLAGTEL Yol TNV YEUPIXT| DIETAPY| UE TOV UTOAOYLOTH, Xl CUYXEXPWEVA Yol TNV BeATioToTolNoN
e enc€epyaoiog TV EXOVWY, Ol OTOIEC €YOUV WA TUPEUPERY) AVOTOREOTACY UECL TVAXWY, XaIoTOVToC
Ti¢ povddec GPU Wavixoie unodneloug yia toug Bapeic unoloyiopols Ty VEUpLVIXGY dxTiwy. Tao dedouéva
exnaldevone Tumxd Slvovtal évo-éva avd oelpd cay lcod0¢ GTO VEUP®VIXG BIXTUO Xl GTNY GUVEYELX EQUPUOLETAL
1N omoBodiddoon Tou CQIAIUTOC Yior TNV eEXTAlBEUCT, ToL dxTLOU Péow T Beltiwone twv Bapdv tou. Ouwg,
n Sadxaoio auth umopel vo emitoyLVIEl PE Yiot TLO TEONYUEVN TEOGEYYLOY), 1 Omolol EXUETUAAEDETOL OAN TNV
unohoytotixt| duvoun twyv povidwv GPU. Etot, ta Sedopéva opadonololvtar o 6éopues evog mpoxadoptopévou
peyédoug, xou Ui déoun diveton oe xdde Briua tng exnaldevong tou dixtvou. Kotd tnyv Siadixacio auth, oha
Tor Sedopéva exmaldeuone e déounc diépyovion ME®TA and TO BIXTUO XL TO CUVOAMXS GPIAUL TNS BEoung
unoloyileton Tty otakel pe Ty dradixacio tne omioBodiddoone opdipatoc (back-propagation) yio tny Bektivon
TV Bopdv Tou dixtiou. Xuvende, to dixtuo "BAémel” to Sedouévo oAOxANENE TS Béoune TEOTOU oANGEEL TaL
Bden tou, mou enneedlouy Toug UTohoYloroUS Tou. Autd duwe xplBel pla tory(da, xode, oe tepintwon Tov To
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6UVORO BEBOUEVLY elvan OYETIX Uxpd, Eva ueYahiTepo uéyetog déoung Ya odnyoloe ot wo aduvapio cOYXAMoNG
Tou wovtéhou, xadde Yo "éBhene" ohdxAneo to cUvolo dedouéviv oe moAD Alyec emavakrels, ywelc vo €xel
apxetd ypovo va exmoudeutel xou vo Behtiwoel to fden Tou uéow tne ddwaciog back-propagation. Erniong,
€xeL mapatnendel 6TL Béopeg peydhou peyédoug telvouv va uny Yevixebouv 1660 xaAd oo Bedouéva Boxiung Tou
dixtdou, xadde evronilouy oleio eNdytota avti yio o eninedo ehdytota onueio [Kes+16]. Auth n Wbiétnta Tou
peYE€9oug NS BEoUNC AMOULTE(TAL VOl LOOPPOTAGCEL UE TNV OMODOGCT] TNE EXTOUBEUGTC TOL OVTENOU O GUVETHS TO
uéyedog e déopng e€optdtan oe Yeydro Padpod and tny xdie nepintworn dedouévwy EeywploTtd.

Yy 0w poc mepintwon, doxydlovtag ueyédn déoune 8, 16, 32, 64, n xohltepn TWH Yot TNV anddoc Tou
OTOOU CUVBLHOTIXG UE TOV YpEOVo exntaldeuong elvon 32.

Exnoudebovroag To Lovtéro

To povtého déyeton cav elcodo LeLYBpLol GELOWV GUVEYMY YPOVIXDY TUNUETWY EVOS CUYXEXPLIEVOU URXOUS %ol
Tig avtioTolyeg eTIXéTEC TOUC UE TO 0TAdLo Tov Umvou ato omolo Beloxovtal. Totepa and doxiés ue Sidpopa
whinn oelpddy petold [5, 10, 20, 30] ypovixdv Bnudtomy avd Ty, Topatneolue 6Tl Tol XAADTEPO ATOTENEGUOTA
npogpyovta and ypovixd napddupa 30 ypovixdv Brudtwy (Snhadh 15 cuveydueva Aemtd Serypdtov). Xty
CLUVEYEW, TO HOoVTéAO TEOPBAENEL To 0Tddlo UTvou Tng Tedeutalag emoyNg NG XEOVOoelRds, haufdvovtag ur’
oy T Boopéveg emoyég mou mponyolvtal. Kot’ autov tov tpomo, ta dedouéva ywpellovtal oe EmxahUTTOUEV
nopddupa 30-emoy v, €tol Mote va mepthauBdvouy dheg T etéteg PSG yio v exmaldeuon tou dixtdov,
exTOg amd T TEWOTEC 29, oL onoleg Bev €YOUV UPXETEC EMOYES VAL TEOMYOUVTAL YLOL YO OYNUOTIOTEl 0WwoTd 1
yeovooelpd. ' tnv mpoetolacio twv Sedopévwy, UoTERA Ao TOV CYNUATIONS TWV YEoVooel®y 30-enoy MY,
auTé avoperyvoovton xou ywetlovton oe olvola extoideuone, a&lohdynone xau doxirc, oe nocootéd 80-10-10%.
M cuyxexpyévn T diveton yio Ty cuvdptnom avipeline twy dedouévmy (shuffling seed), n onola diatnpeiton
otadept xde @opd, diacparilovtag Tov (BLo Loy welopd Twv SeBOUEVKY Yio TNV exntaideuon xat a€lohdYNoT Tou
xdde povtélou, €Tl WoTe Vo uTtdpyel P€teo alYXELoNE PETAED TKV BLOUPOPETIXWY HOVTEAWY TOU BoxipdlovTal.
INo va e€aopaiiotel 6Tl T0 Toc0oTd *dde oTadliov UTvou xatavelpetor oe Lodéleg TocOTNTES PETAE)D OAWY TWV
uTo-0uddwY (exmaideuong, adloldynone xa Soxhc) Tou dtlou, yenotwonotolvta ta Bden Twv otudiny Tou
0TVOU ¢ TOPGPETEOL VIO TOV LOOCTAVUOUEVO BLOYWPELOUO TV BESOUEVMV.

Kotnyopieg nelpapdtowv

Yny epyaocio auth ehéyyovion TECoEPLC XATNYO0plEC TELPUUATWY Yiol T BLAPORETIXE o Tdda UTtvou, Tar omola efvol
g e€hc:

. Sleep - Wake

—

2. Wake - REM - NREM
3. Wake - Light - Deep - REM (light = N1 & N2, deep = N3 & N4)
4. Wake - N1 - N2 - N3 - REM (N3 = true N3 & N4, énwe neprypdgeton oto 1.3.1)

To otddlo Unvou N4 éyel opadonoindel pye to otddio N3 yio 6ha Tar melpdpota, €Tol 6TWE elvol AmodexTtd ©C
oLpPaon xou tpoteiveton o TOANEC dAAeg epyaoieg, odnywvTac ot éva chVolo EVTE oTadiwy Tou Uvou.

IMapduetpor exnaldsvong

Io Ty exnaddevon tou veupwvixoL dixtiov LSTM npénel vo eheyydolv oployévec napdueteot, yia Tic omoleg 1
eMAOYT XUTAAANAGY TV eNNEedlel TNV anédoor Tou dixtvou. EAéyydnxay ol mapaxdtew THEC THpUUETEWY Xal
HE o évTova YeduuaTa gaivovTon aUTEC Tou EBtvay Tol BEATIOTA ATOTEAECUATA VLo TO BIXTUO OTIC MEPLOCOTERES
TEQLTTWOELS:

o opLduoc emnédwy Tou dixtvou: 2 ¥ 3
o optdude Brpdtev ypovooelpds: 5 - 10 - 20 - 30

e dropout v to LSTM: 0.5 # 0 (3nhadr) yweic dropout. To dropout exppdlet tnv mdavétnta to Bdpoc
evog x6pPou enitndec va undeviotel xatd TNV Bidpxela TG EXTAUBEVONC TOU BLXTOOU, ATOTEENOVTAS TNV
nepintwon overfitting)
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Table 1: Ou napdyetpot mou Bertiotonololv 1o LSTM povtého yia ta obvola dedopévwy tne Walch xou
MESA, v 6hec tic xatnyoplec otadinv tou Onvou. 2-class: Sleep-Wake, 3-class: Sleep-NREM-REM,
4-class: Sleep-Light-Deep-REM, 5-class: Wake-N1-N2-N3-REM.

Walch MESA
ApwOuog Khdoewv ITgoBAfjuatog 2-class | 3-class | 4-class | 5-class || 2-class | 3-class | 4-class | 5-class
Apwdudg Brudtwy xpovooeipd 30 30 30 30 30 30 30 30
dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Puduédg expddnone (learning rate) || 0.0001 0.001 0.001 0.001 0.0001 0.0001 0.0001 0.0001
AptOuog eminédwyv LSTM duxtOou 2 2 2 2 2 2 2 1
MévyeDog xpupdv eminédwy LSTM || 512 512 512 512 512 512 512 512
MeéyeBog Séoune 32 32 32 32 32 32 32 32

o cudube exuddnone: 0.001 - 0 0001 - 0.00001

o optdude enoywy exmaldeuone: doxwdotnxay énc 1000 enoyée, e TOAAEC TEPLTTWOAOELS VoL £Y0LY XahbTERA
anoteréoparta yio To dixtuo otic 800 enoyéc.

o YpovompoypauuatioThg puinol exudinong: elattidvovtag Tov puiud exudinone xatd yio téén yeyédoug
METE amo yior oplopévn enoyy| exmaldevong dev napatnerinxe oti mpoogépet xdnota Wialtepn Behtiwon oto
6ixTu0, enopévwg Bev elonyln ooV TUPAUETEOS OTAL TEAIXA LOVTEAA.

o péyedoc xpupdv emnédwy touv LSTM: 256 - 512
o uéyedoc déounc: 32

e loss_ weights: 6tav 1 ouyxexpiuévn napduetpog opiletar we aindric, To Bdpn Twv XAACEWY YENOLHOTOL00V-
ToL OOV TORGUETEOL Yot TO o@dAua Tou xprtnpiou (Cross-Entropy Loss).

Ot tehixéc TUpdUETEOL IOV YENOWOTOUVTAL 0Ta LoVTEAX TNS e xatnyoplag otadiny UTvou QalvovTtal ovoku-
wxd otov Ilivoxa 1.

ITepapatind anoteAecpata Walch

Ta nelpapotind anoteréoyota and Ty exnaidevon tou aniold aupidpopov LSTM yovtéhou oto dedopéva tng
Walch, goivovtow cuvorntixd otov Hivoxa 2, cuvontixd poall Ye Tto anoTeEAEOUATA TWV UTOAOTOV TELOUUATLY
twv LSTM povtéhwv. Iopgdho mou ta povtéha goiveton vo exmoudedovton HOn amd Aiyeg puévo emovaiiideic,n
xahOtepn axp{Beto (accuracy) emituyydveton mepinou Yo Ty enavdindgn 800. H axpifeia mov emtuyydveton
pe to mpotewvéuevo LSTM povtého xou o dedopéva tne Walch pe ta avtiotoiyo e€oydévta yopaxtnelotixd,
unepPaivel Tic Tiwée e epyaocioc tne Walch, otny onola anhéc teyvixée unyoavinic pdinone epapudlovtar, ywelc
vou hafBdvetan unt’ 6y 1) WLl teEY POoT ToL TEOPBANUATOS, GTO OTolo LTAEYEL Uit YpovohoYuxn e€dpTnor uetagld
TWV UELOVWUEVLY OTUElwY Tou cuvohou dedouévev. Emlong mapatneeitor 6TL 1 axplBela Twv anotekeoudtwy
umepPalvel ATV GAAWY EPYACLOY TOU XENOLHOTOLO0Y TopduoL edouéva omd PopNTéS GUOXEVES Xan €EuTval
poloyia. Ioapdho mou Bev @Tdvel 10 VPO TV TYMY EPYAUCLIV TIOU YENOWOTOLOVY GHUATI TEOERYOUEVO OO
petpfoeic PSG, autd dev elvan amodappuvtins, xadaeg tétolou eldouc dedopéva eumeptéyouv mohd O TUXVY
TANEopopla xaL BlQOPETIXNG LOPPNC, OIS TO OTL YPNOWOoToloUVTAL TOAD TEPLOCOTERA XOUVAALNL XATOYPAUPHC
oNUdTeY, 6TWS eNioNC UTEEYOUY TEQLOGOTEROL CUUUETEYOVTES apol 1) Teyvoloyla autr) elvon TOAD mo TokLd.

A&iolbynom tou BiLSTM wpovtéhou tng Walch ndvw oto MESA 8edouéva

Egboov ta yopaxtnplotixd mov e€dyovion yio To oUvolo dedopévev tne Walch xouw tne MESA exqpdlouv Tic
{Blec puoxée Tég, To poviého mou €yel exnandeutel pe Ta dedopéva tic Walch afiohoyeltow otov TpdéTO TOUL
amodidel ota dedopéva tne MESA, xdt to onolo mpoteiveton #dn oty epyacia tne [Wal+19]. Kot autédv tov
TEOTO EAEYYETAL 1) BUVATOTNTA YEVIXEUOT|C TOU TPOTELVOUEVOU LOVTENOL OF BEdOUEVA TTOU DEV €xEL YELploTEL XUTd
v ddpxeia TN exnaldevorc tou. T'a Ta melpduata emAéyovtan ol mpwtol 188 cupuetéyovteg, onwe yiveTon
xon oty npoavagepdeion epyacio. Xtov Ilivaxa 2 @aivovtar cuvonTtixd To AnoTEAEOUOTA TWV LOVIEAWY Yo
Ohat oL 08B TOU UTVOU Téve 6To olvoho dedouévev e MESA. ‘Onwe uropel va napotnendel, n anddoon
TOV HOVTEAWY Oev elvol 1600 XaAf oe oyéon Ye To abvolo dedouévwy tne Walch, xadog to poviéha €youv
1on xetplotel dedopéva tou (Brou eldoug xatd TNV dLdpxeia TN EXTAUBEVCHC TOUG, TOU TEOEPYOVTAL Und To (Blat
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0.3. Bidirectional LSTM Movtéia

Table 2: H axpifeta xou ot tywég tev Fl-scores twv xahitepwy LSTM yovtélwv and dheg Tic xatnyopleg
oTtadiny Tou UTVOU TaPoUCLAOVTOL CUYXEVTEWTIXG, Yio Ta cUVOAa dedopévwy tne Walch xouw MESA.

[ | Sleep-Wake | REM-NREM | Light-Deep | All
Walch
BiLSTM F1-score 0.75 0.81 0.74 0.69
Accuracy
BiLSTM F1-score 0.67 0.46 0.38 0.30
on MESA Accuracy | 0.76 0.60 0.48 0.41
CNN-BiLSTM | Fl-score 0.60 0.50 0.60 0.50
Accuracy | 0.80 0.56 0.63 0.58
MESA
BiLSTM F1l-score 0.73 0.60 0.54 0.44
Accuracy | 0.78 0.66 0.63 0.63
CNN-BiLSTM | Fl-score 0.88 0.80 0.75 0.62
Accuracy

gpyohelo yetprioemv. o to tpoAnpata 2 xou 3 xhdoewy, To LOVTEAN AmodlBouy oEXETA XoRd, ETLTUY YAVOVTAS
oxpifela méve and 60%. Oupwe, oo mo nepimhoxo yiveton To TEOPANUA TG xaTnyoplonoinone 16o0 TEPTEL 1
anddoan Tou HoVTEANOL o VEa dedouéva, Tou Tpo€pyovTal and GAAES TNYES XATAYPAUPHS, OTNV TERINTWAY TOU
ouvorou MESA ané PSG xou axtiypagio. Enlong, unopolue va mopotneriooupe 0Tt oL ¥AJGELS TOU Bev €Y0uV
1600 €vtov Toeouciot 6To GOVOLO BEBOUEVWV TN EXTIAUBEVOTNS, AOYW UxEdTERPTNS BLAEXELAS TOUS XaTd ToV UTVO,
elvon xou autég mou emiTuYYdvouy WxpdTeET oxp{Bela xou TotodeToUVTAL ECQANUEVA OTIC TLO EEEYOVOES XAOELS.

ITepopatind anotereécpata MESA

Emduucdvtog vo yeheTACOLUE TIC TANRELS BUVITOTNTES TOU TPOTELVOUEVOL op@iBpogou LSTM poviéhou, 1o ex-
ToudeoVUE o€ 0OAOXANEO TO cUvolo Bedopévev tne MESA. Tha var untdpyet éva mpog éva avtiotouyio, edyovton
To {Blol YUpUXTNELO TIXG TTOL XENOWOTOLRUNXOY Xou OTNY TEONYOUUEVY] aXEBME EVOTNTA, YLoL TOV EAEYYO TNG
yevixeuong tou LSTM povtéhou exnawdeupévou ota dedopéva tne Walch, dnhadr activity counts, cosine
transform, heart rate feature, time feature xa oo PSG etuxéteg. H apyitextovinr} tou LSTM pov-
Téhou mapauével axplBac 1) (Bla, 6ung oL unepropdueteol Tou puduilovtal TEA PECWL TEROUATWY, UE TIC XONDTERES
va tapouatdlovton otov Ilivaxa 1. Eivow gavepd 6t tol XataAANAGTERO HOVTERD Yiol ToL GUVOAX BEBOPEVWY TNG
MESA xou tne Walch eivou mold nopeppept|, mapdhec tig Slopopés avipeco oo BEBOUEVL TOU YENOULOTOLOUVTOL,
ouyxexpéva tav Téve and dvo enineda LSTM yenowwonowotvtar yia too MESA 8edopéva, to povtého yiveton
aotadéc xou vrnepmpooapudélerar (overfits) ota dedopéva. O pudude exuddnone npénet vo ehattwdel xatd wa
T4€n peyédouc Yo vo amoTeédel auTd TO GUUVOUEVO Xal Vou ETLTUYEL €val o oTtadepd odhua Xxatd Ty SidpxeLa
e exnofdevong. Autd ogelheton elte oTov peyahldtepo 6yxo dedopévwy oe oyéor ue to Walch, eite oty
BLAPOPETIXY) TOUC XATAVOUY| AVAUECH OTLC XAJOELS OV amatTel £vary UixpdTtepo oL expdinone oe xdle enavih-
nn. And to merpopotind anoteréopata Tou @aivoviar cuvorntxd otov Ilivaxa 2 togatneeitar 6t 660 o TOANES
xAdoelg Umvou Teémel va uddel To Yoviého, Téco elaTTOVETOL 1 oxpiBELd TOU, LS XL TEoNYOoLUEVLS. AuTo
Yo umopovioe vo efvan delypa overfitting npog tic mo oyupéc xatnyoplee, 1 yevixd uio aduvauio Tou dixtdou va
EVTOTIOEL TIC TLO AEMTOUEQPELES Xall AUUOPEC TAEVEES TV BEBOUEVKY ETOL OTE VoL XATNYORloTooEL xdde o TddLo
OTVOL CLWOTA.

0.3.3 CNN - apgidpoun LSTM apyitextovixi

Yoy ouvéyeta TV TEpodTLY doxtudleTton wia tapohhayn Tou aupidpouou LSTM ductbou mou €yel Hon npotadel,
€tol Gote avtl va 8éyeton oty elcodd Tou HOY enelepyaoUEva YUPUXTNELO TIXG, Vo exTtandedeTon oTo avemeEép-
Yoo Tl OEBOUEVA, EVOWHUATOVOVTAS Lol LOVEDO UTOUATOTOMNUEVNG EEXYWYAHS YopoxTNEto Txdy. Autd cuvidng
EMUTUYYAVETAUL YEow evoe ouvehxTixo) dixtou (convolutional neural network), to onolo déyeton cav elcodo
TOL OXOTERY OO TAL OEBOUEVD, X0l HEGL) CUVEALXTIXWY TRAEEWY TV OE aUTH, eEAYEL QUTOUOTO OPLOUEVOL YOPUX-
TNELo Td, Ta onolat oty cuvéyela Tpowdel oto LSTM 8ixtuo yio v axoloudrioel i Saduixacio Tng exudidnong
TV otadinv tou Unvou. Kodog ta dedouéva Tou xopdloxol ToAol SLapépouy and auTd TNS ETLTAYLVONS TOU
xapnoV, téoo Yo tor Walch dedopéva 660 xou yio oo MESA, eqopuélovton ehappidc SLpopeTIES ApYITEXTOVIXEG
Y10 TV QUTOUATOTONUEVT] EEXYWYT) YUPAXTNELOTLXY YLol TO xadéva amd auTd, OTWE TEPLYPAPETAL OTNV GUVEYELAL.
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Figure 0.3.2: H npoTelvouevr) GUVEAXTIXY dEYLTEXTOVIXY] YIOL TNV QUTOUATOTONUEVT] EEAYWYT| YOQUXTNELOTIXWY
and ta aveneépyaoto dESOUEVO xS0l OO o ETULTAYUVONS TOU XapTol Tev dedopévmy tne Walch. Ta
YOO TNELOTIXG BlvovTtol cav elcodog aTo undhoino aupideopo dixTuo uaxpoypodviac-Beayuteddcouns UvAUNG,
hote vo exmoudeutel 0To TEOBANUA TNg Tadlvounong twv otadiny tou brvou. Egapudleton n uédodog
kataveunuévov xpdvov (time distributed method), émouv o pfixoc e ypovixic axoroudiog euduypopuileton
ue to uéyetdog tne Béoung yio xahlTepn LUTOAOYLOTIXY OTOBOOT).

CNN - apgidpopo LSTM ota Walch 5eSopéva

Axolovddvtog ta Brigato mpoetolaciouc Twy aveneépyaoTtwy dedouévwy mou meptypdpovion oty Evotnta
0.3.1, e€dyovran ypovixd cuveyelc oepéc v TOV xapdloxd Tohud xou TNV T UTNTO TOL XaETol EeYwWELoTd,
ToL OuwWS €youv éva mpog éva avtiotolyia avd emoyn xon PSG etxéta. To peyoldtepo eunddio otnv doun
TV GUVEAXTXOY dxTOwY elvan 6TL, ot avtileon pe o avakvkdolueva vevpwrikd diktva (RNN) ota onola
avixel xou to LSTM, 8éyovtau elcodo cuyxexpiuévou urxous, mou oplletal amd TNV XATaoXeLY) Tou dixThou.
ITpoxewévou vo emteuydel oyotduopen ddotact eloddou yio T axohoudieg Twv dedopévwy, epopudletar 1
uédodoc tne mapepuforic oe autd, wote va éyouv otadepd pulud derypatolndiog avd xatnyopia, énwe optleton
and v enlonun meplypapr Tou cuvohou dedouévwy, dnhadh S0Hz yia Ty emtdyuvon Tou xapnol xou 1Hz yio
Tov xapdloxd mohud. Télog to dedopéva xovovixonolobvTal avd dTopo, €10l MOTE Vo axoAoUTolY XovVOoVIXT
xorTavour] xou va Beloxovtar 6Ao otov (610 ¥eo Yot GAOUC TOUC GUUUETEYOVTEG.

H apyitextovinn tou dixtdou mou yenotponoteiton gaivetar oto LyAua 0.3.2. Avo Eeywprotd CNN Slapopetindv
OLOTEoEWY Y PNOWLOTOLOUVTAL YLot TOV Xopdlaxd TOARS Xou TNV EMLTEYLVON Tou xopmol, xat ot €£odol toug
evivovto Yo var 6ovoly pall ooy elcodo oto bidirectional-LSTM eninedo. Mua Slautepdtntal ToU NPOTELVOUEVOU
duxtdou elvar 0 TpdToC oL BivovTal To SEBOUEVI oaY ELCOBOE GTO GUVEAXTIXA BIXTUA, MOTE Vo ELVal TLO ATOBOTIXG
urohoylotxd, Ttou ovoudleton uéodog kataveunuévou xpdérouv (time distributed method). TTpdxeiton yio éval
eninedo memridiEng (wrapper layer), to onoio e@opudlet évo Tuiua evéc dixtiou oe xdle ypovixd xoppdtt e
yeovxnie Sudotaong pLag axoroudiog eloddou, otny tepintwon avth) éva CNN.

CNN - augidpopno LSTM octa MESA dedouéva

‘Opota pe ta dedopéva tne Walch, ta aveneépyaota MESA Aedopéva undxewvtar v (Bio dradixosio dtaywplo-
pol oe ouveyn ypovixd tuuate. Mia Siopopd avdpeso ota 800 chvola BeBOUEVKV elvor HTL TO YAUEAXTNELO TIXO
e axtiypagplag napéyetar oe KON enelepyaouévn wop@n, xordie ot Tiwég Tou €xouy emonuelwdel yeipoxivto ovd
xeovix6 mapddupo 30 deuteporéntwy (emoyy), enouévie Bev ypetdleton xdmota TEpanTépw oy WY YapaXTNELo-
TV yloowtd. O xopdlaxde naiuodg et 1dn otadepd pudud derypoatoindiog, etouévng eloépyeton ancudelac oe
éva CNN Bixtuo mpocappoouévo otig dlaoTdoelc Tou, Ye TNV péodo XATAVEUNUEVOU YPOVOU OIS TERLYPAPETAL
TOEATAVE, Yot TNV outépatn eaywyy yopaxtneotxdy. H apyitextovind) mou yenowwonoteiton oe authv v
neplntwon galveton oto oyfua 0.3.3.
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Figure 0.3.3: H npoTelvouevr GUVEAXTIXY dEYLTEXTOVIXY| YIOL TNV QUTOPATOTONUEVT] EEAYWYT| YOQUXTNELOTIXWY
and to avenelépyoaota MESA Sedopéva emitdyuvone tou xopmol. Ta yapaxtnpiotxd divovtor cav elcodo oto
unéloimo apPidpoUo dixTuo HoxpoypdvIac-Peayuntedleoung uviung, WoTe vo exntandeutel oto TEOBANUA NG
tadvépunone twv otadiny tou Utvou. Egapudletoa 1 pédodog kataveunuévov xpdévou (time distributed
method), 6mov to phxoc e ypovinfc axoroudioc evduypappiletar ye to yéyedoc e déounc yio xahdTepn
uToAOYLOTIXT| amdBOoT).

Table 3: O napduetpotl mou Behtiotonololy to LSTM turua tou povtéhou CNN - bidirectional LSTM yia ta
oUvola dedopévwv tne Walch xoaw MESA, yio 6hec tic xatnyoplec otadinwv tou Onvou. 2-class: Sleep-Wake,
3-class: Sleep-NREM-REM, 4-class: Sleep-Light-Deep-REM, 5-class: Wake-N1-N2-N3-REM.

Walch MESA
Apwdudg Khdoewv ITpoBAuatog 2-class | 3-class | 4-class | 5-class || 2-class | 3-class | 4-class | 5-class
ApvOuog Brudtwy ypovooeipds 30 30 30 30 30 30 30 30
dropout 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Puduédg expddnone (learning rate) || 0.0001 | 0.001 0.001 0.001 0.0001 0.0001 0.0001 | 0.0001
AprOuog eminédwyv LSTM Suxtou 2 2 2 2 1 1 1 1
MéyeBog xpupdv eminédwy LSTM || 512 512 512 512 512 512 512 512
Mévyedog déoune 32 32 32 32 32 32 32 32

O Bértioteg tég napauétewy Yo to CNN - bidirectional LSTM 8ixtua yio to 8§00 clvola dedouévny goivovto
otov Iivoxa 3.

IMetpapatind anoTeAéopata

Ta nelpapotind anotehéopota xou yior Ta 600 cUVoAa dedoutvev, yia TNy oaupideoun LSTM apyitextovinn ue
auTOPATn EEXYWYT YopoxTNRloTXDY Tapouatdlovtar tepthnmtixd otov Hivoxa 2.

'‘Ocov agopd ta Walch dedopéva, mapatnpeitor 6Tl 1 Tiwh e axplfeloc nopopével oyeTind otodepn avieoa oTig
dlapopeTixéc xotnyopleg otadiny tou \rvou. Ilopdhinia, TopatnedvTag THY TO Aentouepr avapopd Tagivounong
(classification report) otov Iivaxa 4.9 goiveton 6T tor 0tddia "wake" yio dhec Tic xatnyoplec elvon o dvoxolo
va tpoPregpdoiv. H ocuvoli T tne axpiPetac (accuracy) ovd xotnyopia otodiny tou Umvou ehattdveton ot
oyéon ue 1o Baowxd LSTM povtého mou déyeton cav eloodo ta fon e€aypéva yopoxtnelotxd. Autd unodeviel
OTL 1 TRPOTEWVOUEVY], HEV0BOC QUTOPATOTOMNUEVNS EEXYWYNC YALUXTNELOTIXMY HECW EVOC GLVEMXTIXOU BixTOOU
UTOAETETOL GTNY BUVATOTNTA TOU AETTOUERY) EVTOTUOUOD TWV CWOTWV YUPAUXTNELOTIXMV TV BESOUEVLV YLoL TOV
Bloywpeloud PETAED TeV Blapdpny atadiny Tou Unvou, ot oyéon pe TNV YEdodo e€aynYng mou Tpotelveton omod
v Walch. M mdovi autiohdynom g napathenong authc elvon 6Tl 0 Tponog Tou €xouy cUAkey Vel To dedouéva
e Walch (og oyéon pe ta dpyoava nou petpridnxay, xou tov pudpd derypatondiog touc), amodidel xahltepa
oY eEUYWYT XopOXTNELOTXOY atd xhaowée Puedddouc enelepyaoiog GHUATOC TOU AELTOURYOUV GTOYELUEV
Y10l TOV EVTOTLOUS YENOWLY TANPOQPORLDY, G OYEoT UE TIC pordnuotinés mpdlelc mou e@opuolovTal ECWTERIX
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o€ éva VELPWVIXG BixTUO aUTOPATNE EEUYWYNE YUPAXTNPLOTIXAY.

Yyetnd ye ta dedopéva tng MESA, undpyel i eppoavic Bedtinon otic Tiwég tne oxplfBetag xan tou Fl-score,
oe oyéon ye to LSTM povtého pe ta 1On enclepyaocuévo dedopéva. Ilapatnpodue 6Tl undpyel xan méAL Lot
cuoyéTion NS TWhC tng axp{Beloc xou Tou Fl-score ye tny nepimhoxdtnta Tou mpofAiuatog, dnhadr 600 Teplo-
cotepa elvol Tor 0TEBLL o TEENEL Vo TEoAepdoly, TOGO EAATTOVETOL Xou 1) TWh Tou accuracy. Ot Tyég Twv
amoteAeopdTLY Yo Ty axp{Belar xupaivovtor Yipw and to 80% xou elvor cuyxplowee pe ta anotehéopaTa TOU
amhod LSTM povtélou ue ta 11 enclepyaouévo dedopéva tng Walch. H mopatienon auty| elvon eviiopépouca
xoddg Sropatvetan 6TL SLopopeTind cUvola Bedouévmv amodidouy xalltepa ot Slapopetinés Tpooeyyioelg enclep-
yoolog TOUC Xl BLUPOPETIXES APYITEXTOVIXEC DIXTUWY. LTNY CUYXEXPWEVT TERInTWoT), T0 GOVOAO BEBOPEVLY NS
Walch avtanoxpivetor xahOtepa otny enelepyoaoion YopoxTNRIO TIXOY HECK XAACIXMV TEYVIXMY enelepyaoiog o1
HOTOC X0l OTNY GUVEYELX ELOAYWYT) TOUG OE €Vol AmAG a@IBEono avadpopixd iXTuo, EVE TO GUVOAO BEBOUEVMLY
MESA anod{der xohUtepa o piar Bordid apyltextovix) 0oL 1 oYWy YUPUXTNEIO TIXWY EVOOUITOVETOL GTO
TeGTO and Ta enineda Tou Bixtlov, eV oxohoudel €vo TapoUolo ouBpopo avadpouixd dixTuo Yia To TEdBANUL
e Tevounong twv otadiwyv tou Unvou. IIfavétata pdho oe autd To Yeyovde SadpapatiCel xan o dyxog
TV BelyUdTwy oTa 8Uo cUvoha dedouévnv, xadwe to dedouéva tng Walch elvon moll Aydtepa oe Thdog xou
evdeyoévee dev emopxolV Yio Vo extatdeloouy éva Bardltepo veupwvixd dixtuo, oe avtideon e to MESA
dedoyéval.

0.4 SeqgSleepNet ApyitexTtovixm

Y10 6e0tepo oxéhog TG epyaoiog EAEYYETAL Lol DLOPOPETIXY APYLTEXTOVLXY) VELPWVIXWY BIXTOWY, 1) ontola apyixd
elariydn vy v to€ivéunon otadiwy tou Umvou and ofuata Tou TEoépyovTon and tolvcouvoypdgpnua (PSG),
XL CUYXEXPUIEVOL TAEXTROEYXEPUNOY PP, NAEXTEOULOYPAONUO X0t Nhextpoogduluoypdynua [Pha+19]. H
xOpla SLopopd avdueca oe TETOLOL €lBOUC CHUNTO XAl AUTE TOU TEOEPYOVTAL Ad QPOENTEC CUOKEVES OTWS TO
€Eunvo poAdL, elvon 6Tt Tar Tp@TA elvan TOAD To TUXVE. Buvidwe undpyouy TOA) TeEplocdTEPOL CUNTHPES Ylot
TNV XATUYPOUPT TOUS, PE TEPLOGOTERN XAVEALL 6TO x&Ue Broorua xau pe ToAD yeyahitepo pudud derypotoindioc,
CUVETWE UTAPYEL TEQLOGOTEPOS O YOG TANPOQoplac Yio TNy exmaldeuoy tou dixtiou. Enouévwe, o otdyog edd
elvon vo e€etaotel 1) anoteAeopaTXdTNTA EVEC TETOLOL E(BOUE BLXTVOL GE BESOUEVA TTOL TPOERYOVTAL UG POENTES
GUOXEVEC, oL 0Toleq BLaPEPOUY XTd TOAY amd TOV EEOTAOUS XAk TIC HETPNOELS TTOL EMLTUY Y AVOVTOL GE EQYACTHELO
o€ Wo pedéTn vnvou.

0.4.1 SeqSleepNet poviélo avapopdg

Y10 Baowd yovtého, mou mpoteiveton oty npoavagepleioa epyacio, N ypovinh @UoT TwV dedouévev AouPdve-
Ton U Oy, Vewp®VTAC To WG Lol YEoViXT| axoloudia, xou VOUETMVTAC Uio dpyltexTovixy] many-to-many.
Této0u eldouc apyttextovinée avixouv otny xatnyopla Twv avadpopukdy vevpwrikdy diktiwy (RNN), ota
omolo Tor wovtéha AauBdvouy wia axoloudio elo6dwY xou Topdyouy dio axoloudio eE6dwy, (Blou 1 SlapopeTinod
uixouc. To npdBinua twv otadinwy tou Ovou Yiveta avTANTTd we pat TadvounoT axoloududy, oto onolo o
oxohovdila TOAATAGY emoy WV divetal ooy elcodog xaL GAeg oL eTixéTeg TOUG TUELVOUOUVTOL TUUTOYEOVA. LTNVY
apywn epyaota 1 exnaidevor yivetow e dedouéva and 200 dtoya, o omola elvon doywpeiopéva oe 180 - 10 - 10
unoclGvoha exmaldevong - enaidevone xo doxuunc avtiotolyo. To dedopéva anoterolvton and éva PSG orua
TV xavahiody, ouyxexpyéva EEG, EMG xa EOG, pe apyixd pudud derypoatorndiac 256Hz, onolog péow
downsampling ehattoveton ota 100Hz. And ta ofpato e€dyovion hoyoptduixd onexTpoYpdUuaTo avd Ypovixd
nopdiupa 30 deuteporéntwv (emoyéc) avd xavéAl, xou elodyoviar 6To dixtuo Yyio exmoidevon. Enopévac, n
eloodog Tou apyod HovTéNou amoteheltal amd Wia EXOVAL YPOVOU-CUYVOTNTAS TELWOY XAVAUALDY.

Boaowh apyitextovixi

H apyitextovins Tou Paoixold dixtbou anotee(tar and tpelg dopopetinéc dopée, xat tapovotdleton otny Ewdva
0.4.1.

1. Apywd undpyet éva eninedo gpiltpwr (filterbank layer) yio xéde yopoxtnpiotxd, yia v expdinon twy
dldpopwy Lwvdy ouxrotntwy. AouBdvovtag wg elcodo EXOVEC GTOV YOPEO TOU YPOVOU-GUYVOTNTAS, TO
dixtuo avapévetar va dwoel éugaon otig o Yerotes Liveg yio TNy {ntolduevn epyaota xou vo aBAUVEL
e Myotepo epgoveic. Kdde eninedo @ihtpwv poviehonoleiton and éva mArjpws ouvdedepévo (ypaupiiks)
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Figure 0.4.1: H Baow apyitextovinr) SeqSleepNet, npdxetton yio éva and v opyf-ewc-TéNOG Lepapyind
avadpouix6 dixtuo Yo Ty ta€ivouncn otadiny Tou Kvou oxohoudluxd, YENOULOTOLVTAS To
onextpoxpdupata twv PSG onudtwy cav elcodo yia to dixtuo [Pha+19].

eninedo M xpupdv uovddwy, 6mou o M expedlel tov aptdud twv @itpwny. H exdva tne e€6dou elvan
uxpotepn ot uéyedog and 6,TL N exova TNE €Lo6Bou. XNV cUVEYELN EQUEUOLETAL CUVEVWOT| 0TO ET{nedo
NG CUYVOTNTOG YLol OAOL TOL YUEOXTNELOTIXG, OBNYOVTAS OE PLlol ELXGVA BUO BLIGTACEWY, 1) ontola UTOPEL Vol
npoohneVel we wa axohovdia and T Swvbopata yopaxtnplotxmy X = (z1, T2, ..., 1), 6m0L 10 *dle (4
unopel va Yewpniel we pla eéva-cTHAN TNV Yeovixy| oTiyur t.

2. X0 3edtepo eninedo Tou duxtbou Peloxeta éva augidpopo avadpomxd veupwvixd dixtuo (RNN), cuvduaoc-
HEVO UE évay unyarioud mpoooyris (attention mechanism), ye oxond v expdinon twv Beoyunpddeouwy
OXONOUTHAXY YORUXTNPLO TV TOU EXTPOCWTOLY TNy xdde emoyy. Xuyxexpiuéva, yenowonoleitar éva
dixtuo GRU (gated recurrent unit - enavalapBavopevn povdda pe miAn), xadoe nephopfdvel Aydtepes
TPAUETEOUC, TRy TToL To XarhoTd uTohoYLlo Tixd anodotixdtepo. Télog, o unyavioude mpoooyns yenot-
pomotelton YL vo eVioyOOEL Tl Lo YeRoldol TUAUATA TNG oaxoAoudiag xou Vol EAATTMOEL AT TOU TERLEYOLY
Aydtepr Thnpogopia.

Ytov unyavioud tpocoyic éva otadiopévo didvuopa podolvetal autouato WoTe vo cuvdLalel ta dlavio-
portol e€68WV BLUPOPETIXMY YPOVIXWY GTIYUWY GE €Vol Hovadixo didvucpa yopoxtnelotixdy. ‘Etol, xdde
EMOY Y| EXTPOCWNELTAL 06 €Vl BLAVUOUIL YUROXTNELO TIXWY TO 0To{0 TPOXVUTTEL and To GUEOIoU TWY Blavuo-
HATOY TNG YPOVOCELRAC TOANATAACLICUEVLY UE TO avTioTolyo attention Bdpog toug.

3. To tpito eninedo tou dixtlou anoteleiton and éva opBpouo avadEops VELEWVIXS BiXTLO, AAAS o AUTHY
v meplntwon elvon oe eninedo oxohoudiag. Ytodyoq elvon vor eviomioel OAeq TIC UOXPOTPOVEGUES YPOVIXES
TANPOPORIES UETAEY TWY ETOYWY TNG axoAoLD{oC ELGOBOL, LOVTIENOTIOIOVTOS TNV avo-Enoy Y| axohoudiol Twy
dtavuopdtev yopaxtnelo txdv. Kai oe authv v nepintwon ypnowonoteiton évo dixtuo GRU oaxohouddv-
TaC TNV BOPT| TOU TPOTEIVETOL GTO TRONYOUUEVO ETUNEDO TOU SxTOOU Xt houfdvel we elcodo To Bdvuoua
YOEAXTNELO TIXWY TEOCOYNS, ETUOTREPOVTIS Wial VEo axohoudio Slovuoudtwy.

4. Téhog, 1 é€odog tou deltepou emmédou GRU nepvdel and éva softmax eninedo mpoxeyévou va napoydoiv
ol TpoPAédelc Uiag eToyhAE Vo avixel oe xdde aTddlo KTvou, Yia GAES TIC EMOYES TNE YPOVIXNC axohoudiog
ewoédou. ‘Etol, 1o povtého bivel cav €€0b0o pio axoloudio Tadivounoewy pe Tic mdovoTxés XoTovoués yia
xdde oTddlo Umvou, Yo xdde enoyr NG eleddoL.

I v tehie] mpoPhedn tou Bixtbou, yenotwonoleiton éva cUVOAO amo@doenwy xal tdavoloyiny cuvddpolon,
onwe mpotelveton oe mponyoluevn epyacia tou [Pha+18], émou éva oyfua molhaniaciootinfc ocuvdidpoiong
anodewxvieton 6T elvan To anoteheopatixdtepo. To SeqSleepNet elvon €va dixtuo ToAAaTAGY €€68wV, divovtag
TpoPBAEYPeLC Yot OAEC TIC EMOYES TOU GUPHETEYOUV oe xdle axoroudio elcddou. Aedopévou dti 1 axoloudia
elo6dou E€xel pnxog L, t6te enauidvovtde v xotd pior emoy xotd v didpxeto aflohdynong e ta dedouéva
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Chapter 0. Extetauévn Hepiindn

doxuhc, Yo odnyroel oe éva cbvoro anogdoewy L o xdde enoyn. H cuvévwon tou cuvdrou twv npoiédenv
yioo xdde emoyn oe wo TEAXY amdpooy Tagvouncong omodidel xahltepa omd 6, Yo amédLday oL UEHOVOUEVES
TeoPAédelc Yl To 6Tddlo Umvou xdlde emoyTg.

0.4.2 X0Ovolo Acdoupévwyv Walch
ITpoeToipocia Sedopevemy

To npwto melpopa ye Vv apyrttextovixy SeqSleepNet yiveton ota dedopéva e Walch, axohloudovtoag tnv
Bl tpocéyylon pe Ty audevtin epyooio, dnhady| e€dyovVTaC OTEXTEOYPGUUATO ATd ToL OXAUTERYUOTA DEDOUEVL
Tpoxeévou va Bodolv ato Bixtuo yio autdpatn e€aywyn yapaxTneloTix@y xou exnoidevor. Ilpoxewévou va
yivel autod, mpénel vo mponynUel Lot TEOETOWAGIN GTA OXATERYAGTA DEDOYEVOL TNG EMTAYUVONG TOU XAPTOD ol
oL XaPdLox0 TahLo0, xat var e€ay Yoy Ta avTioTOLY O OTEXTPOYPAUUATAL.

Kot apydc, ta dedoyéva Sioywpllovton ota onpeia mou undpyouv xevd otny oxohoudio TwV ETOY OV G TOLAYLO-
Tov €va and To U0 YapaxTNELoTIXd, 6Twe €xel teptypagel otnv Evétnta 0.3.1. Ov PSG euxéteg enlong encé-
epyalovtan 6we Teptypdpetal oty npoavapepleica evoTnTa, amopaxplvovTag TiC -1 TWES 0L OTOIES AVTLTPOTK-
Tebouv oTddLa UTVoL Ywplc eTixéTta. LNy cuvéyeta epapudleton ota dedopéva 1 dwdixacio tne tapepufolrc étol
ate va éyouv puiud derypotondiog axpBng 50Hz yio thyv tpiodidotatn xivnon tou xaprot xar 1Hz yio tov
xoedloxd mahud. Téhog, e€dyovtan tar Aoyaprduxd onextpoypdupota yioo dha ta yopaxtneio txd. Ilpoxeiévou
T OTEXPTOYRGPUOTA VoL utopoLy Vo dodolv aneudeioc oto SeqSleepNet poviého, oL BlacTdoelS TOUC TEETEL Vo
elvar 600 xou Ta apyxd Tou dedopéva exmoideuong, dnhadn (29,129) oTov YWEO TOL YEGVOU Xou CLYVOTHTOC.
E&dyovton péow tne Bihodrinne scipy tne python, eite npdta unoloyilovtag tov Short-Time Fourier Trans-
form (STFT) xou oty cuvéyetot AouBavovTos To TETpOYwVLoUEVO TAATOS TOL YeTacyNuatiopol, eite aneudeiog
YETOWOTOLOVTAG ot GUVAETNOY Tou mapéyeton and Ty BiBlodrxm. Ko otig 800 nepintdoelg, ol mopdueteol
TWV CLVAPTACEWY EMAEYOVTAL £TOL WOTE TO PEYEDOC TWV OTEXTEOYPOUUATY Vo efval To emtduunTo.

IMelpopatind anoTeAEcUATA

To dedopéva tne Walch ywpilovton oe dedopéva exnaideuone, enahfideuone xou Soxudc pe tocootd 90 - 5 - 5%,
Yenowonolnvtog Ta (Bl odvola dedopévwy yia Ol o mewpduata. H emhoyr Twv cuyXexplévmy ToCOGTMY
dlaywptopol €ytve Yewpdvtag 6t éva 1600 mepimhoxo xou Bodd vevpwvixd dixtuo yeeldletar 660 To duvatdv
neplocdTeERn TANEOYoplol Yia TNV exTaldeuct| Tou, enopévwe auth elvon uio obuPocr tou e€acpailel avTtAy TNy
anaitnon, ot avtideon pe to mepdyato e mponyoLuuevne evotntac. To SeqSleepNet dev Aopfdver un’ 6¢uv Tou
TNY TOUTOTATA TOU ATéUou yia xdde delypor xatd tnv Sidpxelo Tng exnaldevong, lvan dnhady| subject-agnostic,
01660 dev Jewpelton To wovtého awto e’ apync xadohixd, 6Tl BNAadY Uropel Vo EQUpUOCTEL EMLTUY WS Ot VEA
droua to omolo Bev €xel BeL xatd TNV didpxela TN exnaldeuong. ‘Etol, ota nelpdpata mou TeoyatonolodvTol
otny mapodoa epyactio Ta delyyota mou nepthaudvovTal 6To cUVOAO Boxiunc TEopyovTal and dTopd To onola
TepLEyovion enione oTo olvolo exnaldevong.

Egboov to SeqSleepNet yenoiuonolel apyixd éva ofiua TELOY XaVOALOY, GTO TEMOTO TEPUUO Y ENOULOTO00VTAL To
dedoyéva T emtdyuvong, Ta onola eivon eniong TplodidoTtata, yio va e€aydoly Ta hoyoptduxd Toug omexTpo-
yeduuoro. Erniong, o pudude deryporolndiog tou yopaxtnelotixod auvtol etvar wio T8En ueyédoug ueyahitepog
and 0,TL 0 puiuoeg derypatoindiog Tou xoEdLX0l TOAMOD, TOU CUVERdYETHL OTL TeplocdTepn TANPopopia Vo
nepthopfdveton ota onextpoypdupata. Ilpaypatonolotvtal tela BlpOPETIXd TELPAUOTA, YPNOULOTOLWVTAS GOV
dedopéva exnaideuone ta i) hoyaprdund onextpoypdypata, i) STET xou iii) to anhd onextpoypdupotoa. Avo-
TUY WS, TO TELPAUUOTIXG AMOTEAECUATO UTOBEXVOOLY OTL, EVE 1) axpifeia xatd TNy Bidpxeia TN EXTABEVONS TOU
povtéhou etvon 70% 1 xou Topamdves, 1 axpifBelo Twv dedopévewy emoddevone xar doxuhc elvor TOAD yonAY.

Y tov 8eUTEPO XOUNO TELEOPATWY TO HOVTEAO EXTIUDEVETAL YPNOULOTOLOVTAS To SEDOPEVO TOU XapBLOXOU TUAUOY,
pe oAU adVvapa anoteréopota. Epocov o pudude Sevypotorndiog eivon 1Hz cuyxpitind pe to apyixd dedouéva
exnaideuong Tou SeqSleepNet nou itoy 200Hz, to Aoyaplduixd onextpoypdupata Qalveton Vo unv cuAAauBdvouy
Ti¢ xatdhAnieg mThnpogoplieg Yo Ty exnaideuot Tou povtéhou. H axpifeia xatd tnv didpxelo tng exmaldeuone tou
povTéhou Topapével YOpw oto 50%, Ttou unodexviel 4Tt To povtého dev elvan ot Béom va Saywploel Tic ypRotues
TIANPOQPOPRIEC XAl UTHPYOLY UEYIAES BLOXUUAVOELS TTIOU BElYVOUY OTL TO HOVTEAD €xel TUAVMC UTEp-eknaidevTel
(over-fitted).
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0.4. SeqSleepNet Apyitextovixi

0.4.3 3>0Uvolo Acdopevwy MESA - ITapaiioyr 1

Egbcov 1o civolo dedopévwy MESA nopéyetan oe fon npo-enelepyaoyévn popet, dev unopel to SeqSleepNet
va eapuootel anevdeiog oe autd. Avt’ autol mpotelvovtal 800 mopaAAoyEC Tou BixTOou, dTOU BlaPORETIXES
HOPYESC ELGOBOU YPNOHLOTOLOUVTOL, 0ol Ta GTEXTEOYEIUUAT BeV Unopoly vo e&aydolv yia to Topdy alvolo
dedouévov. H Baou déa tne npocéyylone autrc elvar 6Tt tol 1idn npo-enelepyYaoUEVO YUPUXTNELOTIXG UTOPOUV
amevdeiog va egappoctoly 6To devtepo enlnedo tou dixtbou. ‘Etot, avtl va dihdouv to omextpoypduuato TeVv
oaxATéEYUOTWY SESOUEVWY PEGW TOU ETUTEDOL PIATOMVY TEOXEWEVOU VoL EVTOTLGTOUV YENOWA YoURaXTNELOTIXG, To
10N mpoeTolAoUEVA YopaxTNEloTiXd Bidovta anculeloc oTo debtepo eninedo, mou elvan avadpouxd avd etoy),
oxOAOLIMVTAC PE TOV Pnyoviopd Tpocoyc (attention layer).

H npcdytn omd tig 800 mpotevouevee mopodioyég elvan par amhomotnuévny exdoyr) tou agyxol SeqSleepNet dux-
toou. Ta yopoxtnelotind tou xoedlaxod Takwol xou e xivnone tou xapemol Suywetlloviar oe axohoudieg
and ypovixd cuveyt| delypoata evoe cuyxexpldévou emtduuntol unixoug, Ta onola TNV cUVEYELX BlvovTol omeu-
Yelog oTo devtepo eninedo Tou dxtou. Xto clvoho dedouévwv MESA, or PSG etixétec twv otadivwy tou
Omvou mopéyovton avd 1 deutepbiento, EnOUéVLE 1| ToPoloo TEOGEYYIOY| elvol aveEdpTnTn amd TIC ETOYES TWV
30 deuteporéntwv mou Tumxd opllovtan and o eTixéta aTadiou HTVou.

ApyrtexTtovinn xou exnaidevor dixtOOL

To yoapoxtneiotind Tou xaediaxod TaAkol éyel puiud derypatoindiog 1Hz, emouévng Yewpeiton étowo va
dovel oto dixtuo Yo exmaidevoy), xou dev ypeldletar Vo eQappooToly Tepautépw Brpata npoencéepyacioc oe
auTo.

To yopaxtneloTnd TS EMLTAYLYOMG TOU XopEnol avttiétwg, napéyetan pe 30 delyporta avd pla eTéto Un-
VOU, TOU OTUOLVEL OTL €Val VELPGVIXO BIXTUO EMAOYNC YUPUXTNELOTIXDY UTOPEL VoL EQUPUOCTEL TNV oxohoudia
dedouévev ou aviiotolyel oe xdde etixéta otadlov Umvou. Axolouldvtoac TNV TEOLUTHEYOLCA HEYLTEXTOVIXT
tou SegSleepNet, to dedouéva Tne emtdyuvong diépyovtal and éva aupidpouo avadpouxd eninedo €10l WOTE
v amoxTnolyV xdmoleg EVOIUECES AVATOPACTAOELS, Ol OTOIEC OTNV CUVEYELXL BIEQYOVTAL 0N TOV UNYOVIOUS
Tpocoyfc Yo va oy Bolv Tol o RO XoEaXTNELO T

H €€08oc tou unyoviogol TEocoyNC CUVEVEVETAL UE TO YOEUXTNELOTIXG TOU XUEdloxol ToAUoU, Xdl, OTnV
CUVEYELN, T YUPUXTNELOTIXA TOU avVTITPOoWTEVOLY xdde enoyr| 30 deuteporéntwv Biépyovtal and €vo oupi-
dpouo avadpopxd dixtuo oe eninedo enoyc étol Gote va amoxtniody ol mdavdtnTes yia xdle emoyy Vo avixel
o€ x&de €va and ta oTddLla UTtvouL.

Téhog, oL mbavotnteg yia xdde emoyn Tng axohoudiag SlépyovTat and €va TANEKS CUVEESEUEVO YEaUUUXS eNinedo
xa pot softmaz cuvdptnom evepyonoinong Gote va anoxtnioly ol tehxés TpoPAédelc Twv otadiny Tou LTvou.

H apyrtextovixd Tou povtéhou gaiveton oto Myfua 0.4.2.

0.4.4 X0Ovolo Acdopévwy MESA - IToaparay? 2

Tt v Bedtepn mapadhayy) tne apyttextovixiic Tou SeqSleepNet emdupolue va ABouue v’ ddiv v évvola
0V enoY®V 30 SEUTECORENTWY TOL TUTLXE AVTLOTOLY OV OE xdle eTéta otadlou Uvou. T va emteuydel autd,
Tor dedopéva daywpeilovton oe yYpovixd cuveyr nopddupa 30 deuteporénT®Y, BLATNEMVTIC TO 0TAdLO UTVOU TOU
TeheuTalov YEOVIXOD ONUEIOLV WC TO AVTITPOCWTNEVTIXG YO TNV EMOYY|, XU GTNY CUVEYELY, Bladoyxd Tapddupa
(rou avtitpocwnevouy enoyéc) oynuatilouy Ty glcodo Tou poviélou Yo exnaideuoT).

H Baour apyltextoviny] Tou BixTtiou TUpoEVEL OTWE X0 GTNY TEWMTY) TUPUARXYT) TTOU TUPOUGIAGTNAE TRV,
oUW 0 TEéTOC ToL YivEToL O YElplowds Twv dedopévwy oANdlel, hote va eEunneeTHoeL TNV VEo BLdoTaoT TWV
enoywy 30-0euTEPOAENTWVY Yiat xdle ornuelo Sedouévwy.

ApyrtexToviny xou exnaidevaon dixtLoL

Ta dedopéva Tou xoEdLaAx oV TAAOV EYOULV WLa LovadLxy) TN Yio xdle onuelo oty YeovixY dldotacT epdcov
0 puduog derypotoindios Toug ivar 1Hz, emouévig, dTeg xoL TEonyYouuéves, éxouy wa didotaor AydTeEpo omd
6,TL 0 %0EdLINOE TOAUOC.
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Figure 0.4.2: H mpoteivouevn mpdtn mapodhory Yl Ty e@apuoyf Tou cuvohou dedopévwv MESA oty
apyttextovixt] tou SeqSleepNet. Mo etixéta otadlou Umvou napéyeton avd 1 deutepdiento, xa ol npofBiédelg
yivovtal oe ypovixéc axoloudicg emdupntod unixoug deuteporéntwy. To N avagpépeton otov aptdud twv
xhdoewv ot xdde éva and ta mewpdpata (all: N=5, light-deep: N=4, rem-nrem: N=3, sleep-wake: N=2).

‘Opola pe TNy mponyoluevn wédodo, n emttdyuvomn diépyeta omd éva au@iBpopo avadeopixd dixTtuo Tol WoTe
vor arox o0V oL EVOIIUECES aVATUPAGTATELS TV oxohouddy oe eninedo enoyng.

Yty mpoxelyevn neplntwon, duwe, e€etdleton wo axohovdio oe eninedo emoyne oe xdde Bruo exnaidevorng,
anoteloluevr and dladoyxéc axohoudieg oe eninedo napadlpwy 30-8cuteporéntwy. Ta TEMXE YopoxTNEIOTIXG
mou elvon va emAeydoly mpénel va avtitpoowneouy dAn v axohoudia ané N Swdoywxéc emoyée. Lo vo
emtevy el autd, 1 €€080¢ TOU TEADTOUL EMUTEBOU auPBEOUOU avadEoUixol BixTOoU oL TepaBAveL TIC EVOIdUETES
AVOTOPACTACELS TNE XEVNONC TOU XUPTOU, GUVEVVETOL UE T avTiGTOLY o BEQOUEVA TOU X0EDLIXOU TOUAUOU GTO
eninedo g oaxoloudlac emoydy, €tol Kote oty cuvéyela va diéhdouy and tov unyavioud mpocoyhc. Kat’
QUTOV TOV TEOTO, T TILO ONUAVTIXE YApaX TNELO TG TNG axohoudiag ot eninedo enoy e xpatodvTol YLol TO ENOUEVO
eninedo.

Xty cuvéyela, to dedopéva diépyoviol and to deUTEQO auPBEOUo avadpouxd diXTUOo, TAEEYOVTUS TIC TUES
mdavothTwY Yl xdde otddio Umvou tng axohoudlag, eved ue Ty Porndela evog Ypouueod emnédou, OMwS ol
TUEATAVE, XIS XL PE TNV CUVAETNOY EVERYOTONONC TEoXVOTTOLY oL Tehixéc Tpofiédelc.

H apyitextovied tng debtepng noparloyric gaiveton otny Ewdva 0.4.3.

0.4.5 Ileipapatixnd anoteAéopata MESA

I v exmaideuoy tou duxtlou SeqSleepNet ypnowonoleiton 6ho 10 clvoro dedopévwy e MESA, ye v
elalpeon 5 atduwy Tol onola YENOLLOTOLOVVTOL ATOXAELTTIXE ooV BoxipaoTiXd dedopéva, atolyela Twy onolwy To
povtélo dev éyel Eavadel. Ta dedopéva Sy wpeilovtal ue tov (Blo TpdTo oe UTocUVOAX exTaldevong, enahideuong
xou doxiunc xdide popd, yio var undpyel ota melpdpata cuvoyy. H exnaideuorn tou xdie povtéhou elvan omontel
Wlaitepa TOAD Ypovo, xou dlapxel neplocdTepo and 24 Hpec yia vor ohoxhnpwitel, eETou£vng dev €yel epopuooTel 1
uédodoc Tov cross-validation (Sractavpolyevn etodfdeuon), tapdho tou auth Yo Atav n opddtepn Tpocéyylon
EMOTNUOVIXE Ylot TOV EAEYYO TOV UOVIEAWY.

JTATLOTIXT) AVAAVCT) BEBopEVELY

Io v otatiotixn avéhuoT tou cuvohou dedouévwy g MESA e€dyovton 1 uéomn tun) xou 1 Tumxr andxhion
avé xatnyopla otadiov Hvou yio xdde dToyo, Yio To YUEUXTNELOTXE TNS X(VNONS TOU XAPTOU X0l TOL XUEBLIXOV
naAgo0 EeywploTd, xou Ta avtioTtolya violin plots xou scatter plots galvovton oto Xyfuata 4.8.4, 4.8.3.

‘Ocov apopd T0 YapaxTNEloTixd Tou xoediaxol TaApoU, and to violin plots @alveton 6T, mépa amd Ta
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0.4. SeqSleepNet Apyitextovixi
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Figure 0.4.3: H mpotewvopevr deltepn xou o neplnioxn nopohhoy) tou dxtvou SeqSleepNet yio tnv
eQopUOYY TOu cuVOAoL dedouévwy MESA, onou yio xdle emoyr 30-deutepohéntwy Yewpeitar éva aTddio
Omvou, xau 1 npdPiedn yiveton oe ypovixée axoloudiec 10 Serypdtwv (emoyv). To N avagépetar otov apidud
TV xhdoewv xdde nedpatog (all: N=5, light-deep: N=4, rem-nrem: N=3, sleep-wake: N=2).

otédia wake xou N4 to onola Pploxovrar Alyo mo younhd, ot uéoec tiée Twv udlotnwy otadiey trvou (dnhadn
N1, N2, N3, REM) éyouv didpeon Ty moAd xovtd oto 60. Autd o unopovoe vo mpounviel 6t dev elvan
ebxoha Slaywpeloa to €vo and to dhho. Emiong, axoloudolv pia mapduola xovovixt| xatovopun yowelc ToAlég
napexxAioelc, mou onuaivel 6Tl UTdpEyEL YeYdAn TdavoTnT 1 T TOU Xopdloxol Tahdol va Bploxeton xovtd
otov ddpeco Yo ta otddio Ovou NI, N2, N3, REM. Ilopdio autd, To otddio wake oxohoudel pio oyeddv
drwvuui) xotavouy), 1 onola emlong emunxOveETaL TOAD GTOV XUTaXOELYO GEova, TOU oNUAlVEL OTL UTEEYOLY
TOAAG omuelor Tou amoxhivouy amd Tny péon T Tou avd dtouo. I'a to otddlo Umvou N 1 uéomn Ty avd dtouo
axohoudel xavovixr| xatavour| tou eniong elvar otev oTov 0plldvTio dEova, OUKS PUiVETOL VoL UTIEEYOUY TOAAES
TIES OV amoXALVOLUY ot ToL dedopéva Bev elvon cuYXEVTPWUEVA YUPW Ao TNV BLAPEST) THUY.

IMopatnedvtag v TuTKY amdxALoT avd dtouo uécw Twv violin plots, galvetar 6Tl oL TWéS TN axohoutolv
TLO OUOLOOP@N %avOVIXY xoTavour] HeTaEd Twv oTtadiny Tou Uvou, Tou onuaivel 6Tt oL TWEéS Yol xde dtouo
YWELoTd Bev anoxAlvouy ToAD petal toug. Oplouéveg eEaupéaoelg evrtonilovtal ota otddia Unvou N1, N2, N3,
REM. To mo dlaxpitd and 6io tor otddior Ovou elvon to wake, oto onolo 1 xatavour elvo TOAD GTEVY XL
npoexteiveton TOAD otov xddeto d€ova, oxolouddvTag wa oyeddv Siwvuuxr| xotavour. Enopévwe, vl ta
delyparta Tou oTadlov wake UTdEYEL LEYAAN AmOXALON PETOED TWV XATOVOUDY Ve dTOUO.

‘Ocov apopd T0 yapaxTneloTixd TS %ivnong Tou xapnoV, gaivetar 6tL 1 péon Ty Twy otadiwv NI, N2,
N3, REM oxohouiel wo oyedov govodiola xatovopr], 6mou dha to delypota efvan cuyxevipwuéva tohd xovtd oe
éva Lovadixd onueio mou elvor o Biduecoc, xou dev undipyouv oyeddy xalddlou anoxhicelc. Avtidétne, To oTddla
wake xaw N4 extelvovton oe éva peydho ebpoc tiwwyv. H obyxhon twv 1wy tov otadiov N1, N2, N3, REM
elvor TOAD hoywr dedopévou 6T To yopaxTnEloTixd TNe xivnong Tou xopmol eivan 101 enelepyYaoUEVo OTKC
napéyeton and 1o ohvolo dedopévwv MESA xau ta axatépyoota yopaxtnelotixd dev eivon dnudota diardéotya

H tumxn andxhion yio To yoeaxtnelotixd Tou xapnol eniong axoAoulel gia Xovovixy) Xatavour yiot GAo Tor oTddL
Omvou épav Tou N4, to onolo alvetar va €yel Oheg T TWéS Tou undevixég. Tmdpyel wia gixer| tothopopplo
petagd twv N1, N2, N3, REM, tv omolwv ol Tég TNg TUTxAS amdxhone avd dtouo elval TOAD xovtd 6Tto
UNOEY, aVUBEXVIOVTOC OTL TO YORUXTNELOTIXG TNS %vNomne Tou xapnol elval ToAD ouoLduoppo oe xdie dtoyo.
‘Opwe, xau méhl T0 otddlo wake @aivetar vor mepthauBdver TohhéS eEoupéoels, TapORO TOU XU AUTO axoloudel
I'xaouoiovy) xatavour. ‘Ocov agopd to otddio N4, Gotepa and hentouep) avaltnon 6To GUVOAO BEBOUEVLY
MESA, golveton 6Tt yiot ToARE dTopa To oTddl0 auTd BEV UTHPYEL XV OTIC UETPHOELS TOUC, TOU GUVETAYETOL 1|
péomn ) va hoféver Ty T NaN (xevo) xou 1 tumxd| andxhion v etvan pndevinr|. Auté dev anotelel eunddio
v Tor TEpdPatd pag, xadoe To otddio N4 mdvta ouyywveleton pe to N3, 6nwe opiletor and tic olyypoveS
oLUBdoELS, 1) Xou UE TEPLOGOTERO GTABLA, AvAAOYO PE TO TEOBANUA TaELVOUNONG Tou avTieTwTileTton xdde Popd.
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Chapter 0. Extetauévn Hepiindn

Table 4: H axpiBeta xou 1 yetpixr) tou Cohen’s kappa yio xdde xotnyoplo npofAfuatog otadiwy tou Grvou,
omwe éxouv e€aydel and to chvoho dedopévwy doxuhc tne MESA, v tic 800 napahayéc tne SeqSleepNet
apyrtextovixic. Tao xahbtepa povtéha xotd Tnv Sidpxelo NG exnaldeuons anoUNxeloVTaL Xl YENOULOTOL00VTOL
YioL TOV 6%0T TNG BOXUNG TG TPOTELVOUEVNC ORYLTEXTOVIXHC.

Modification 1 Modification 2

Accuracy | Fl-score | Kappa || Accuracy | Fl-score | Kappa
All 0.58 0.32 0.33 0.59 0.27 0.34
Light-Deep 0.63 0.35 0.37 0.64 0.35 0.38
REM-NREM || 0.69 0.49 0.42 0.7 0.49 0.45
Sleep-Wake 0.78 0.78 0.54 0.8 0.77 0.56

To scatter plot tng Ewdvag 4.8.3 emPBeBoncdvel Tic napandve napatnenfoelc, ue OAeC Ti WEOES TIIESC TV oTadlwy
N1, N2, N3, REM vo. Bpioxovton TOAD x0vTd 1 Ulot aTnv GANY, eved To oTddLlo wake xuyalvetol og €va ueYohdTERO
ebpog WY xou To N4 elvar oyeddv avOTapXTO.

IMelpopatind anoTeAEopata xol cULHTNON

Ytov Iivoxa 4 mapoucldlovtol GUVOTTIXE TO TELPOUATIXG OTOTEAECUATH TwV dUO TopaAAXY®Y TOU BixTOOoU
SeqSleepNet, xou cuyxexpyéva 1 axplBeia, To Fl-score xou to Cohen’s kappa. H petpuer) Cohen’s kappa
exppdlel Tov Badud e oupguviog wetald 800 aflohoynTdy, dnAadh Ty ueTal Toug YeTaBAnToTnTA.

Kou ot 800 mapodiayéc tou dixtdou SeqSleepNet divouv mopdpolo anoteréopota. Trdpyel pior avgovouevn
am6d0oT X oTa 500 HOVTENX, 1) omtola cuoyeTCeTal Ue TNV TEPITAOXOTNTA TOV TPOBAUTOS ToL elvan vor emAudel,
enopévwg 600 AMyotepa oTddior Umvou meemel var Talvoundoly, téco xahbtepn elvon 1 anddoon Tou poviéhou.
Eivou eviappuvtind to 6tL 1 mo meplmhoxy apyrtextoviny tng dedtepne napodhayhic odnyel oe npofrédeic mohd
XOVTLVEC O QUTEC NG TEOTNG Topohhaye avd otddlo Umvou. Palveton 6tL 1) elofynon g WO Topomdve
TOEUUETEOL TWV Ty WV 30-deuTteporénTwY avtl yio onuetaxd dedouéva ot xdde etxéto oTadiov UTVou, oL Lo
axohoudior N-Seryudtwy and dedouéva emoydv 30-deuteporéntov yio TNy TeoBiedn 1oV TeEMx®Y oTadiwy Tou
Onvou e€axohovdel Vol ETLTEENEL OTO HOVTEAO VO ATOTUTIVEL ATOBOTING. TIC ECWTEPIXES DOPES TV BESOUEVLV YLo
emtuyelc npoBiédeic. H eppdvion undevixidv npofrédewv yio xdmola and tor 6tddiar UTvou, dTwe QalveTal 6Tov
avohutixd Iivaxa 4.14, o yiot i 800 mopodhayéc Tou Baoxol Sixtiou cuoyetileton Ue To TOCO LoYUEH 1 O)L
elvon 1 mapousia TV otadiwyv Tou UTVou 6To GUVOLO Bedougvwy. Xuyxexpluéva, Ta otddia N1 xou N3, 6mou
T0 TAfidog Toug Blapépel xatd wio TEEYN YeyEVoug amd To UTONOLTAL, QOIVETOL VoL £XEL TIC TEPLOGOTERES UNBEVIXES
Téc otny axplBela. Eniong, n Setepn napaiiayy) gatvetar va ta€ivopel Addog neptocdtepa otddlar Unvou and
0,TL 1) TEWTY), N UETEIXY) macro-average Tou Fl-score elvan wxpdtepn, 6nwe enione eupavilovion neplocdTepe
TpoPAédelc pe undevixéc Téc yio oplopéva otddia (to oTtddio Utvou N8 Aeinel xou and o 300 LOVTEND YLl TO
TROBANUAL TV 5 xhdoEwY, eVH To o1édto NI Aeinel povo ota anotehéopato tne deTepne Topahhayhc).

H yetpur) Cohen’s kappa unopel vo ypnowonoindel yio v uétpnomn tng opdotnrag twv mpoPfiédewy eviog
povtéhou tadvéunong, Selyvovtac v cupgwvia § Ty Tuyola emhoyy LeTo€l Twv TEOBAEPEmY XL TWV aEYLXWY
ETXETAOV ToL TPoPAfuatog, avtl va ouyxplvel i Baduoroyieg dVo alloroynt®dy. ‘Oco mo xovtd oty Ty 1
Beloxeton 1 petpixh xdnno, 1600 mo axpiPeic eivon ol npofrédeic Tou povtéhou, eved oo yaunhdtepn N TN
TOU Xdnma, oL owotéc TpolAédelc Telvouy va yivovtol ye Tuyolo TpdéTo, ot Oyl ENESH TO LOVTENOD €YEL TEdYUATL
pddel v tig Eeywpllel owotd. And tov Ilivoxa 4.14 galveton dti 1 T TOU xdmmor elvon WBLlTEP YUUNAY Yidl
To o meplmAoxa TEoBAuaTe TwY TEVTE Xal TEcodpwy oTadlwv Unvou, eved Beloxeton xdmou xovtd oty uéon
Tou 0.5 vy Ta Tpofrfuata Twv BVo X Telwy xAdoewy. H mapathenon auty umopel va emfBefoumdel and tig
Tipéc tov Fl-score tne avagopds tadivéunong (classification report), mou mopovotdletar xon O avVIALTIXG GTOV
IMivoxa 4.14. Xtov mivaxo outd, oL BlaxLPAVoES TwY TGV TNg axpeifeiag xou twv Fl-score avd xatnyoplo
npoPMuartoc (Smhoady aprdud otodicy Gnvou mou meénel va Tadivopndolv), euduypouwilovion cwotd ue TV
XOTAVOUT] TwV dedouévevy Tou culnthiinxe oe TEoNYOUUEVES TopoYEdPoUS, OToL oplouéva and To oTddia UTVoU
elvor BLalTEPA UTO-EXTPOCWTOUUEVA AOY® TOU PuUALXOL xUXhoOL Tou avdpdmivou Gvou. Autd To oTolyelo TN
HEYIANG avicoppoTiag Twv dedopévwy Vo énpene va unv Stodpapatiler 1600 peydho pého dtav apxetds Gyxoc
dedopévwy elvan dlardéaitog, oAAd paiveton vor eZaxoloudel va ennpedlel To TPOTELVOUEVD OVTENX TNG EpYaciog.
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Chapter 1. Introduction

1.1 A Brief History of Human Sleep

Sleep is one of the fundamental human functions and can indicate various hidden information for an individ-
ual’s condition, either physical or psychological, as well their general health. In fact, humans spend one-third
of their lives asleep. It has been of a great interest from the earlier years of human history, where the focus
was mostly on the interpretation of dreams and its connection with consciousness, up to the 18th century,
when the interest shifted towards a different, more thorough direction; scientists started researching sleep
patterns and their corresponding physiology of the human body.

Stepping a little bit behind, in 1729, the French astrophysicist Jean-Jacques d’Ortous de Mairan, conducting
research in plants, noticed that mimosa leaves open during the day and close at night, even when kept in
total darkness [deM29]. Thus, a day-night cycle seemed to exist in living organisms independently of the
environment, known today as circadian rhythm. In 1880, Jean Baptiste Edouard Gellineau published his
landmark description of the narcolepsy syndrome [Sch+07], while some years earlier, in 1875, the Scottish
physiologist Richard Caton demonstrated electrical rhythms in the brains of animals [Cat75]. However,
the aforementioned scientific landmarks occurred too early to be exploited by the field of sleep medicine
[Dem98]. Interestingly enough, we have to mention here that the leading sleep disorder of the 20th century,
obstructive sleep apnea syndrome, was firstly described not by a scientist, but by the novelist Charles
Dickens in his series of papers entitled The Posthumous Papers of the Pickwick Club; there, he outlines an
obese boy named Joe, who was excessively somnolent, a loud snorer, and who probably had right-sided heart
failure (thus earning the nickname “young dropsy”) [Tholl].

Back to our narration, the greatest advancements in the field have taken place during the last cen-
tury. The discovery of neurons in 1888 paved the path for a deeper understanding on how the brain
communicated with the rest of the body and consequently how it induced sleep. Some years later, in
1925, the invention of electroencephalogram (EEG) lead to the observation that brain waves connected to
wakefulness, differentiated during sleep. Hans Berger, a German psychiatrist, made in 1929 early descriptions
of the difference between sleep and wakefulness through the record and study of brain wave patterns [Ber29].
However, at that time these observations still strengthened the notion that sleep is an inactive or “idling”
state. Specifically, until the discovery of rapid eye movements (REM) by Nathaniel Kleitman, sleep was
universally regarded as an inactive state of the brain, which occurred of the lack of sensory input during
night-time [Dem05]. In 1935, two other researchers in parallel, Hans Kalmus and Erwin Biinning [Biin35],
independently discovered that the circadian rhythm existed in fruit flies and plants, and consequently to all
living creatures. Just two years later, the team of Loomis, Newton and Hobart determined the different sleep
states using the newly discovered electroencephalograph; they classified sleep into five stages and named
the different characteristics of brain waves: delta, alpha, theta, beta, gamma [LHH35]. In 1939, Kleitman
published his monumental treatise titled "Sleep and Wakefulness", where many years of sleep research
were covered, as well sleep disorders, temperature changes during sleep and sleep-wake cycles, establishing
the role brain stem has in skeletal muscle relaxation during sleep, which advanced the neurophysiology of sleep.

REM sleep was firstly detected in 1953 by Kleitman and Eugene Aserinsky in a young boy, contra-
dicting the general impression that brain activity declined during sleep [AK53]. REM is the deepest stage of
sleep, during which the eyes move rapidly from side to side and most dreaming occurs. Another student of
Kleitman, Dr. William Dement, for the first time documented sleep cycles in 1955. Together with Kleitman,
they observed some cyclical variation of EEG patterns and found that they occurred repeatedly throughout
the night at intervals [DK57]. In 1958, melatonin hormone was discovered by Aaron Lerner and proved to
be the key in sleep regulation. Michael Jouvet made the crucial distinction between REM and NREM (non
rapid eye movement) sleep, demonstrating the sleep-related muscle atonia in 1959 [JMC59; Lupl9] as well
that the brainstem serotonin-containing neurons of the raphe nuclei were important in sleep and wakefulness
[Rou+67]. Jouvet found that REM was not light-sleep, but "paradoxical" sleep, where increased brain
activity is accompanied by skeletal muscle inhibition, which prevents the body from actively interpreting
the vivid images and sounds in the dreams experienced during REM. In parallel, during NREM sleep, the
brain activity is low and inhibition at this state is not detected.

The same year of 1958, Franz Halberg is said to be introducing the word "circadian", which derives from the
Latin about (circa) a day (diem). Circadian rhythm is a physiological roughly 24-hour cycle, dictating when
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1.2, Sleep monitoring methods - then and now

the body feels tired, awake, and hungry. Halberg was the first to thoroughly study these rhythms in human
and was named the father of chronobiology. The discovery of the circadian rhythm revolutionized how the
diagnosis of sleep disorders was done.

In the 1960s, the Association for the Psychophysiological Study of Sleep started collecting all the sleep-related
research findings and discussing the creation of a consistent system for sleep staging. 1960s was the decade
when sleep research greatly developed, emphasizing in all-night sleep recordings and paving the path for
sleep medicine, specifically its core clinical test, polysomnography. The need of a consistent sleep staging
occurred, thus the newly formed Association for the Psychophysiological Study of Sleep started collecting all
the sleep-related research findings for this purpose. Allan Rechtschaffen and Anthony Kales were selected
as co-chairs of an expert committee, tasked to develop a scoring manual for human sleep [Kirll]. There,
they defined four non-REM stages of sleep according to brain wave patters. This guide was officially used
up to 2017, where the American Academy of Sleep Medicine changed it to three non-REM stages [Mos+09].
A milestone during this time, was the discovery of obstructive sleep apnea in Europe in 1965, by two
independent groups; Gastaut and colleagues in France [GTD66] and Jung and Kuhlo in Germany [JK65].
However, those findings were initially ignored in the US, since there was still no tradition in observing
breathing during sleep in the prominent medical communities [Dem98].

The next phase of sleep research in recent history begins in 1970 with the launching of the first
sleep lab, at Stanford University, by Dr. William Dement, specifically focused on studying sleep disorders.
Stanford sleep researchers formally extended the practice of sleep medicine in order to include the sleeping
patient [Dem98], meaning that the concept of sleep disorders and people suffering of those being considered
as patients, is taken into account. The foundation of the routine of recording the respiratory and cardiac
variables as part of the all-night sleep test was set, later to be called polysomnography. The specific
parameters of Obtrusive Sleep Apnea syndrome (OSA) were established in 1976 [GTD76], while a year
earlier the American Sleep Disorders Association (ASDA) or Association of Sleep Disorders Centers was
formed, which later became the American Academy of Sleep Medicine (AASM). Also in 1975, Dr. Dement
and Dr. Mary Carskadon created the Multiple Sleep Latency Test (LSLT), which helps diagnose a variety
of sleep disorders [CD79], and is the standard approach until today as a quantification for sleepiness. One
final important addition in this decade was the launching of the scientific jounal Sleep in 1979.

The latest history of sleep is marked by the introduction of alternative treatments to chronicle tracheostomy
for OSA in the 1980s. The connection between circadian rhythms and sleep duration was determined, as well
with other cues [Pot+16]. Also the relationship between sleep and learning was studied and the physiological
necessity of sleep to human life, both in terms of quality and existence, was confirmed. The gold standard
for sleep research to date was published in 1989, entitled Principles and Practice of Sleep Medicine [KRD8&9],
now being at its 6th edition.

In the 1990s, the biggest aim grew to be the acceleration in the acceptance of sleep medicine throughout the
world. Together with the establishment of several Foundations and Research Centers to pursue sleep science
and its normalization to the public, new theories have also been proposed. Narcolepsy was discovered to be
due to orexin receptor deficiency [DGD11], while the synchronization of human’s biological clock with the
sun as the retinal pigment processes the light was uncovered [BM16]. In 2003, Giulio Tononi and Chiara
Cirelli suggested that sleep allowed the nervous system’s communication networks to increase and reduce
energy levels to conserve strength [TC14]. They also found that memory was directly dependent on sleep, so
was the ability of a person to make correct judgment.

1.2 Sleep monitoring methods - then and now

Coming to a conclusion, it can be safely said that sleep is one of the fundamental human functions, with a
great history, which has immensely developed during the last century. Its influence applies on so many aspects
of human life, that it has to be taken into serious consideration on how it affects not only the profound health
related issues, but our everyday life in general. Towards this direction, the most common method for sleep
monitoring has been polysomnography since its discovery in the 20th century. However, the advancements
of technology have allowed for newer methods, more straightforward, which can be easily used by individuals
for their self-monitoring as well.
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Chapter 1. Introduction

1.2.1 Polysomnography

Polysomnography, also called a sleep study, is a comprehensive test used to diagnose sleep
disorders. Polysomnography records your brain waves, the oxygen level in your blood, heart
rate and breathing, as well as eye and leg movements during the study.

It is typically done in a sleep center or a sleep disorder’s unit of a hospital and originally performed at
night. It can be also performed during day in order to accommodate shift workers or other people with
circadian rhythm sleep disorders, who habitually sleep during different times of the day. A polysomnography
technologist is supervising the process and monitoring the subject the whole night. Specifically, during the
night’s sleep, they monitor:

e brain activity (EEG)

e eye movements (EOG)

e muscle activity or skeletal muscle activation (EMG)
e heart rhythm (ECG)

e blood oxygen level through pulse oximetry

e snoring and other noise made during sleeping

The collected data are afterwards used to determine the subject’s sleep stages and cycles, and detect possible
abnormalities. A sleep "scorer" analyzes the extracted data, by reviewing the study into 30-second epochs.
The extracted sleep score consists of the following:

e Sleep onset latency, meaning the onset of sleep after the lights were turned off; typically no more
than 20 minutes.

e Sleep efficiency, defined as the real sleep duration in minutes by the total minutes in bed; this is
usually around 85% or higher.

e Sleep stages, there are 4 sleep stages in total, 1-3 being called non-REM, whilst 4 being the REM
stage. Awake is often considered as an extra sleep stage, for consistency.

e Breathing irregularity

e Arousals, which are sudden shifts in brain wave activity.
e Cardiac rhythm abnormality

¢ Leg movement

¢ Body position during sleeping

¢ Oxygen saturation during sleeping

A sleep medicine physician is interpreting the sleep score together with the test recording, in order to
determine the subject’s health matters. In that case, any medical history, list of drugs the patient is taking,
as well any other crucial information are taken into consideration. Thus, many types of sleep disorders
can be diagnosed, including narcolepsy, idiopathic hypersomnia, periodic limb movement disorder (PLMD),
REM behavior disorder, parasomnias, and sleep apnea, although circadian rhythm sleep disorders cannot be
directly diagnosed through this process.

1.2.2 Wearable devices

With the development of sensor technology, more fine and lightweight devices are used for the purpose of
monitoring the signals to perform sleep analysis afterwards, which even allow the process to take place at
the individual’s home. Amongst the most common techniques are actigraphy and photoplethysmography.

Actigraphy refers to the use of an actimetry sensor with an embedded accelerometer, in the form
of a wristwatch-like package, in order to measure gross motor activity, for a prolonged period of time. The
actigraph is typically worn on the non-dominant arm and is used to study sleep-wake patterns by detecting
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Figure 1.2.1: Characteristic EEG activity of each of the four stages of NREM sleep. On the second tracing,
the arrow indicates a K-complex and the underlining shows two sleep spindles [CD+05] [01].

motion of the wrist with linear accelerometers in single or multiple axes. Based on movement-derived data,
predictions of the time spent during sleep and wakefulness can be made, and even assumptions on sleep
staging.

Photoplethysmography is a simple and low-cost technique for detecting blood volume changes in
the microvascular bed of tissue, usually obtained with a pulse oximeter. This is a device that monitors
the perfusion of blood to the dermis and the subcutaneous tissue of the skin, by illuminating the skin and
measuring the changes in the light absorption. The collected measurements of a photoplethysmography are
usually processed to determine heart rate and cardiac cycle. It can also be used to monitor respiration,
depth of anesthesia, hypo- or hypervolemia and blood pressure.

Those advancements are increasingly being incorporated into smart wristbands, such as smartwatches
or activity trackers, not only to monitor health-related issues, but also to serve as a daily lifestyle
self-tracking interface, with the purpose of improving physical, mental or emotional performance.

Under this perspective, sleep tracking has been one of the main goals for wearable devices technology, due
to the high impact it has on so many aspects of life. It consists of two primary parts; the first being
the data monitoring and collection, and the second being the data processing to extract the sleep stages
and other sleep-related factors, such as its efficiency. One of the key differences from a traditional PSG is
that it does not measure sleep as defined by electroencephalography (EEG), electrooculographic (EOG), or
chin electromyographic (EMQG) criteria or the subjective experience of sleep (as measured by sleep logs and
questionnaires). Thus, there might be differences in the estimation of e.g. sleep duration or latency between
the two and the results of a wearable device’s health monitoring should not be taken as proof or evidence,
but as an indication for the need of possible further research with the cooperation of a professional medical
expert.
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Figure 1.3.1: The progression of sleep stages across a single night in a normal young adult volunteer is
illustrated in this sleep histogram. The text describes the ideal or average pattern. This histogram was
drawn on the basis of a continuous overnight recording of electroencephalogram, electrooculogram, and
electromyogram in a normal 19-year-old man. The record was assessed in 30-second epochs for the various
sleep stages. REM, rapid eye movement [CD+-05] [01].

1.3 Sleep Physiology

1.3.1 Sleep Architecture

Sleep might be considered by some as an inactive state of mind, but the truth lies far from that. In reality,
some parts of the brain are quite active during sleep. There are two types of sleep, rapid eye movement
(REM) and non-rapid eye movement (NREM), and the latter one consists of three different stages, named
N1, N2 and N3. During the course of the night, the body goes through several rounds of the sleep cycle,
with every successive REM stage increasing in duration and depth of sleep. Each sleep stage has unique
characteristics, including variations in brain wave patterns, eye movements and muscle tone. The sleep-
wake cycle is regulated by two internal biological mechanisms: circadian rhythm and homeostasis, and sleep
patterns are dependent on age, changing over an individual’s life span.

REM - NREM sleep cycles

Beginning with a short period of N1 stage from NREM category, sleep episode is processing through stages
N2, N3 and REM, circulating around them several times. NREM sleep constitutes around 75-80% of the total
amount of sleep, and the remaining 25-30% is REM. The first REM-NREM cycle has an average length of
70-100 minutes, but, as the night progresses, the cycles’ duration increases, getting approximately at 90-120
minutes [CD+-05]. REM has its longest duration at the last one-third of the sleep episode, while N2 begins
to be the primary stage of NREM sleep and stages N3 and N4 might gradually disappear [MLW18].

In Figure 1.3.1 a hypnogram of a whole night’s sleep is depicted, derived from a young adult without any
sleep disorders.

Stage N1

The first stage of sleep serves a transitional role between wakefulness and sleep. This is the way an average
individual’s sleep episode begins, except for people with narcolepsy or other specific neurological disorders,
as well as newborns.

e The body and brain activities start to slow down, with periods of brief movements (twitches). The
body has not fully relaxed yet during this sleep stage and it can be easily interrupted by a disruptive
noise. If an awakening happens, the individual might not feel as if they have slept at all.
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e If no interruption occurs, N1 stage usually lasts 1-7 minutes in the initial cycle, being 2-5% of the total
sleep.

e Brain activity as monitored by EEG, transitions from wakefulness, marked with rhythmic alpha waves,
to low-amplitude mixed-frequency (LAMF) activity.

e Also, muscle tone is detected in the skeletal muscles and breathing still occurs at a regular rate.

Stage N2

During this stage, the body enters a more subdue state, where the body temperature goes down, heart rate
and breathing regulate, and the eye movements slow or completely stop.

e Its approximate duration is 10-25 minutes in the beginning of sleep, expanding with each successive
cycle, eventually being the 45-55% of the total sleep episode. Thus, a person typically spends about
half their sleeping in N2 stage.

e The brain patterns as seen in an EEG also change; this stage is characterized by the presence of sleep
spindles, K-complexes or both.

e Sleep spindles [SP18] are thought to be a feature of memory consolidation [And+11]. It has been shown
that individuals who are in the process of learning a new task have significantly higher density of sleep
spindles than those in a control group [Gai+02].

e K-complexes show a transition into deeper sleep. They are single, long delta waves only lasting for a
second. As deeper sleep ensues and the individual will be passing through N3, all their brain waves will
be gradually replaced by delta waves.

Stage N3

Sleep stage N3, previously known as two separate stages N3 and N4, is referred to as slow-wave sleep (SWS)
and it mainly occurs during the first third of the night. It is considered the deepest stage of sleep and it is
characterized by delta waves, which are high amplitude signals with much lower frequency.

e The heartbeat and breathing slow to their lowest levels during sleep. The muscles are relaxed and it is
the most difficult stage to wake up from.

o Getting enough N3 NREM sleep is considered to be crucial for feeling refreshed next morning. It is
believed that this stage is critical to restorative sleep, boosting bodily recovery and growth. Also,
although brain activity is low, declarative memories are processed and consolidated [FD15].

e This stage is the most difficult to awaken from, and for some individuals even loud noises, over 100
decibels, will not fulfill this purpose. Awakening from N3 stage leads to a transient phase of mental
fogginess, known as sleep inertia, which might take 30 minutes up to 1 hour to recover from.

e As people get older, the time spent in NREM sleep stages is shifted from N3 to N2. Typically, during
the early sleep cycles, N3 stages last 20-40 minutes, while as sleep processes, these stages get shorter
and more time gets spent in REM phase instead.

REM

REM stage is associated with dreaming. During REM sleep, an increased activity of the brain is observed,
similar to when a person is awake. At the same time, the skeletal muscles are atonic and without movement.
This temporary immobilization of the body prevents individuals from acting out their dreams [AC-+06].

e The eyes move rapidly behind the closed eyelids and breathing rate becomes more erratic and irregular.
e Also, the heart rate and blood pressure increase to almost the waking levels.

e REM sleep occurs after around 90 minutes into the sleep cycle. The first REM period lasts approx-
imately only around 1-5 minutes. However, it becomes progressively prolonged as the sleeper cycles
through the stages several times before waking, gradually lasting even up to an hour in later rounds
[Mon—+18; Fer+17].
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e The amount of REM sleep an individual gets, changes with aging. The percentage of REM sleep is
highest during infancy and early childhood, declines during adolescence and young adulthood, and then
lessens even more as a person gets older. In total, a healthy adult experience around 25% of REM sleep
through a whole nights’ sleep.

e REM is considered essential for cognitive functions such as memory [EPS06], learning and creativity
[Cai+09]. Specifically, it is believed that REM sleep is the time when mostly emotions and emotional
memories are processed [Glo+20].

e People suffering of sleep disorders, such as obstructive sleep apnea, often do not reach deeper sleep
levels as needed, since they get frequently woken due to their condition. Their quality of life is thus
affected, and might be drastically decreased, as a result of their body being unable to perform the
needed actions of repairing damage, leading to an increased fatigue upon waking and throughout the
day.

Once REM sleep is over, the body will normally return to N2 stage of NREM sleep, before beginning a new
cycle all over again. About four or five cycles in total are passed through during a normal night’s sleep, each
one being around 90 - 110 minutes. For adults, it is recommended to get a total of at least 7 up to 9 hours
of sleep per night.

1.3.2 Sleep - Awake Regulation

The sleep-wake system is considered to be controlled by the interplay of two separate, internal biological
mechanisms; the circadian rhythm and homeostasis. These two processes are complementary, with one
promoting sleep (homeostasis) and the other maintaining wakefulness (circadian rhythm) [GA05]. The need
of sleep accumulates throughout the day, reaches its highest level right before bedtime, and decompresses
during the night’s sleep.

Circadian rhythms lead a wide range of body functions, from daily fluctuations in wakefulness, to body
temperature, metabolism or even the release of hormones. They control the timing of sleep and motivate the
body to get sleepy at night and wake up in the morning without the need of an alarm.

Sleep-wake homeostasis regulates an individual’s need for sleep. The homeostatic sleep drive directs the
body to sleep after a certain amount of time has passed, and controls the intensity of sleep. To achieve this,
it strengthens with every passing hour of wakefulness, leading to longer and deeper sleep after a period of
sleep deprivation.

The way circadian rhythm maintains wakefulness balances the homeostatic drive for sleep during the day,
promoting alertness and vigilance. The system gradually withdraws, until bedtime, in order to enhance sleep
consolidation, which deprecates through the night [AC+06; GA05]. An adequate night’s sleep allows the
homeostatic drive for sleep to reduce, while the circadian waking drive increases, leading to a new start of the
cycle. This cycle lasts roughly 24 hours, in other words a day, and is synchronized with the environmental
cues, such as light and temperature, although it can function in the absence of those cues as well. In case
the process of maintaining wakefulness is lacking or deficient, total sleep time remains the same, however
it is not consistent during the nighttime, but rather randomly distributed during the whole duration of the
day. Thus, it is important to note that circadian rhythm serves to maintain sleep and wake states into two
separate functions, which successively alternate in the course of 24-hour time periods.

1.3.3 Circadian Rhythms

Circadian rhythms collectively refer to the daily rhythms of a 24-hour time window, in physiology and
behavior [AC+06]. They are generated by neural structures that lie in the hypothalamus and are functioning
as a biological clock [DLD04]. As Biinning observed in 1964, plants and animals have endogenous clocks,
which give rhythm to their daily behavioral and physiological functions in accordance with the external day-
night cycle [Biin64]. The foundation of these clocks is believed to be the expression of a series of molecular
pathways involving "clock" genes, in a nearly 24-hour basis [VPT05].

In mammals there is a closed cycle of two specific proteins’ expression which bind together and travel into
the nucleus, causing the activation of genes in specific areas of the DNA, among which are Period and
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Figure 1.3.2: Changes in sleep with age. Time (in minutes) for sleep latency and wake time after sleep
onset (WASO) and for rapid eye movement (REM) sleep and non-REM (NREM) sleep stages 1, 2, and slow
wave sleep (SWS). Summary values are given for ages 5 to 85 years [CD+-05] [01].

Cryptochrome. The products from the expression of those two genes return to the nucleus to disrupt the
binding of these proteins, resulting in stopping their own synthesis. This results in a rising and falling
pattern of the expression of Period and Cryptochrome, with a periodicity being approximately 24 hours. This
biological process is applied to many other genes as well, which affect many tissues in the body, triggering
daily patterns of activity. Those rhythmically expressed genes contribute to several parts of cellular function,
pointing out the great importance of the circadian system in many central aspects of life.

The Suprachiasmatic Nucleus

Responsible for regulating all organs’ circadian rhythms is the suprachiasmatic nucleus (SCN); it receives
signals from a class of nerve cells in the retina, which have the role of brightness detection, and can reset the
clock of SCN in a daily basis. The signals are transmitted from there to the rest of the body and brain, in
order to synchronize with the external day-night cycle.

Resultingly, the sleep mechanism is also affected by the SCN; a series of relays of the environment’s brightness
signal is passed through the dorsomedial nucleus of the hypothalamus, where the structures generating the
circadian rhythms are lying. Hence, the wake-sleep systems are forced to coordinate their activity with the
day-night cycles. This can be altered independently of the day-night cycle under some circumstances in
animals due to special external conditions, but they will not be discussed here.

One more important pathway that gets signals from SCN as input, is the mechanism controlling the secretion
of melatonin, which is a hormone created in the pineal gland. Melatonin is mostly produced during night
and further stabilizes the circadian rhythm, but its effect directly on sleep has limited range.

Sleep and Thermoregulation

Circadian system influences the body temperature regulation. In general the body temperature is higher
during the day and lower at night. Together with body temperature reduction, a decrease in heat production
is also observed, as well an increase of heat loss, which all lead to sleep onset and maintenance and EEG
slow-wave activity. There is an opposite mechanism promoting heat to increase some hours before waking,
where the brain sends signals to other parts of the body to pursue heat production and conservation, which
will gradually stimulate waking.
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1.3.4 Sleep Patterns and Aging

Sleep architecture is greatly dependent on age, changing continuously and considerably in parallel with aging.
Starting from infancy and moving towards adulthood, prominent changes appear in how sleep is initiated
and maintained, the percentage of time each sleep stage lasts, and the overall sleep efficiency. Sleep efficiency
is observed to decline with age and, while the consequences of this state are well documented, its causes seem
quite complex and poorly understood. The clarification of sleep characteristics by age, however, allows for
a deeper understanding of human sleep and its effect on human development and successful aging [AC+06].
Thus, aging should be taken into consideration in parallel to the general health condition of a subject when
conducting sleep research.

1.4 Thesis Overview

Summing up all the above, in this thesis we will examine methods for sleep stage classification using bio-
signals collected from a wearable device; specifically an Apple Watch. Except of the data collected through the
smartwatch, one more dataset is incorporated to enhance the amount of data tested on the proposed methods.
The second dataset is collected via actigraphy and polysomnography, which can be directly compared to the
smartwatch-collected dataset.

The aim of the current thesis is to test several deep learning architectures for the task of sleep stage classi-
fication, using data collected from wearable devices. For this purpose, two main approaches are applied on
the two aforementioned datasets separately:

1. In the first approach, a standard neural network (Bidirectional Long-Short Term Memory), appropriate
for temporal and sequential classification problems, is incorporated and an architecture is designed from
scratch, in order to analyze the following two cases:

(a) Using manually extracted features to train a neural network for the sleep-stage classification task.
First the same kind of features are extracted for both datasets, so that they can be directly
comparable with each other. Then they are given to the proposed neural network architecture for
training.

The chosen features are derived by another work, which introduced the AppleWatch dataset and
incorporated some classic machine learning algorithms for the same task of sleep stage classifica-
tion. Under this scope, in this work a comparison is also made between typical machine learning
approaches and neural networks for the specific task, using the same kind of features to train both
system categories.

(b) The second case is an extension of the first, where the proposed architecture is enhanced with a
neural module (consisting of Convolutional Neural Networks) for automated feature extraction,
taking as input the raw data provided by the wearable devices.

2. One more approach is tested, where a deep neural network initially designed for PSG (polysomnography)
data, hence EEG, EMG and EOG spectrograms, is altered in order to take as input the raw data of the
two wearable-derived datasets and train on those for the task of sleep-stage classification. In this case,
except for testing a more complex model on the two datasets, a comparison of how wearable-derived
datasets perform on an architecture designed for PSG-collected signals is presented, and the initial
differences and even possible limitations of the wearable devices are highlighted.

Neural networks lie under the umbrella of machine learning, which is an advanced section of artificial intel-
ligence. Specifically, a neural network algorithm automatically improves through experience and by the use
of data in order to get the best possible results.

Hence, this work begins with a short explanation of sleep stages and the problem of sleep stage classification.
It continues with an introduction to machine learning, neural networks and the techniques that are mostly
used on the subject of sleep stage classification. Finally, the implemented experiments of the two main
categories and datasets follow, together with the results and final thoughts.

30



Chapter 2

Literature Review

2.1
2.2
2.3
2.4

Introduction . . . . . . . . L e e 32
Typesof Data . . . . . . . . . . e 32
Data preprocessing and Feature Extraction . . . . . . .. ... ... ... 0oL, 32
Related Work . . . . . . . . e 34
2.4.1  PSG-based Works . . . . . . . ... e 34
2.4.2  Wearable-based Works . . . . . . . . . . . ... e 37

31



Chapter 2. Literature Review

2.1 Introduction

Some of the most noteworthy works on the subject of sleep stage classification will be discussed next, covering
several approaches to the problem, starting with the type of features to be handled. There are two main
categories of data in the field of sleep stage classification; traditional data recorded during a polysomnography
study in a specialized sleep center or unit and data taken from a wearable device, which can be done in the
individual’s home. After collecting the data, typically some preprocessing methods are used, to clean them
and shape them in a useful form to be further processed. Following the data preparation, future extraction
and feature selection can be applied to the processed data, to collect meaningful features that will help with
the classification afterwards. It is to be noted that this is a typical pipeline of processing steps for any kind
of data and application on a scientific problem and not only for sleep stage classification, which is examined
here. Finally, after the data are properly prepared, a classification method is applied, which can also be
divided in two main categories, as presented in Chapter 3.1. This can be either a particular machine learning
algorithm or a deep learning approach with neural networks and will be further discussed in section 2.4.

2.2 Types of Data

As stated in Section 1.2 of Chapter 1, there are two types of data to be used for sleep stage classification, de-
pending on the manner they were recorded. The first one is the traditional method of monitoring the human
physiology during sleep through polysomnography, including EEG, EOG, EMG, ECG and pulse oxime-
try recordings for blood oxygen levels. The second category of data is acquired through a wearable device,
typically consisting of actigraphy and photoplethysmography measurements, deriving 3-D acceleration and
blood volume changes thus the heart rate of the individual, respectively.

During the recording session of the first type of data via PSG, the labels for the sleep stages are collected as
well, determined by a sleep expert who has been monitoring and supervising the whole process. Thus, the
analysis of the data and the task of classification, after the manual labeling of the expert are straightforward.
Since this method of sleep monitoring and data collection has been the main approach for many years now,
there is a great amount of data and datasets to be used in research and other applications of sleep stage
classification and sleep physiology in general. One drawback however is how demanding PSG is, as it requires
the subject to be in a specified unit during the whole sleep session and a sleep expert to be in charge of the
procedure the whole time.

The second type of data acquired from wearable devices are much easier to collect due to the portability of
the devices and how accessible they are, which is their main advantage as discussed in section 1.2. However,
in order to obtain sleep stage labels, a setup similar to PSG is required, with a sleep expert supervising
and labeling the whole sleep session. Since wearable devices are a much newer approach in sleep stage
monitoring, the data resources for research purposes are still limited. One of the first open datasets collected
from a smartwatch and consisting of both heart rate and wrist acceleration measurements in parallel to
PSG labels is developed by Walch et al. [Wal+19]|, which is also examined in the current thesis. One more
standard dataset is the Multi-Ethnic Study of Atherosclerosis (MESA) cohort, which consists of motion data
from actigraphy-derived activity counts and heart rate via pulse oximetry from co-recorded PSG [Bil+02],
which is also utilized in this thesis for experimental purposes.

2.3 Data preprocessing and Feature Extraction

The collected bio-signals need to go through preprocessing, to ensure that only quality signals will be used
in the next stages of the experiments [Sup+16]. This pipeline includes removing irrelevant artifacts from
the signals, correcting inaccurate signals, applying interpolation or extrapolation, normalizing them into a
desired range of values, or use a filter to exclude unwanted components.

After the first preprocessing steps, meaningful features need to be extracted or derived for the specific problem
to be solved. The algorithms to be used for feature extraction are defined by the nature of the problem and
are typically hand-engineered by experts. With the establishment of neural networks, machine learning
algorithms are employed to train and construct models that understand relationships between input (i.e.,
extracted features) and their desired output (i.e., labels), and generalize observed data to new situations.
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Towards this direction, deep learning can be employed in several applications to automate the hand-engineered
process of feature extraction. Due to the NN’s complexity, which consists of multiple layers of linear or non-
linear processing units, meaningful representations are expected to be derived from high-dimensional data in
an automated way. The data can either be given to the network having undergone a minimal preprocessing
first, thus the network is considered to be taking as input the raw data; or a subset of extracted features is
used as input to an NN model, as it can speed up the whole process, and improve the generalization of the
constructed model to prevent overfitting.

The biological data used for sleep stage classification consist of time sequences, which belong to the spatio-
temporal domain. A wide variety of signal processing techniques can be utilized to extract discriminative
information from the collected signals; those can be grouped in the following categories [BKN17]:

¢ Time domain features - They are simply interpretable and can represent the morphological charac-
teristics of a signal. They are quite suitable for real-time applications and some of the most prominent
ones are the statistical parameters. They consist of the 1% to 4*"-order moments of a time series,
namely mean, standard deviation, skewness and kurtosis respectively, but also the median and 25,
75th percentile of the signal distribution.

e Frequency domain features - In order to extract spectral characteristics of the signals, the time
series should be transferred in the frequency domain first. To do so, the Fourier Transform (FT) is
applied on the auto-correlation of the signal, to extract the Power Spectral Density (PSD).

Fourier Transform is an extension of the Fourier series, which introduces the incorporation of complex
exponential functions for expressing features, such as the amplitude and phase of a frequency compo-
nent, through complex numbers. It consists of a frequency continuum of components using an infinite
integral of integration, as it can be seen in Equation 2.3.1.
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In the discrete time domain, the estimation of PSD can be either done through parametric or non-
parametric methods.

The first ones are based on parametric models of a time series, such as autoregressive (AR), moving
average (MA), and autoregressive-moving average (ARMA) models. Therefore, parametric methods
are also known as model-based. To estimate the PSD of a time series with parametric methods, the
model parameters of the time series need to be obtained first.

The non-parametric methods are based on the Discrete Fourier Transform and are calculated directly
from the signal samples in a given windowed signal. Amongst these methods are the periodogram,
Welch, and Capon method for calculating PSD and extracting features from the signals. An easy im-
plementation of DFT is the Fast Fourier Transform, which is widely used for this kind of calculations.
The primary limitation of non-parametric methods is that the computation uses data windowing, re-
sulting in distortion of the PSD due to window effects, but this is counterbalanced by the method’s
robustness.

Higher order spectra is another way of extracting frequency domain features and represents the fre-
quency content of higher order statics of signals (cumulants). The main advantage of high order
spectra is its ability to reveal non-Gaussian and nonlinearity characteristics of the data.

e Time-Frequency domain features - This type of features is quite efficient in bio-signals due to
their non-stationary nature. The most used category of time-frequency feature extraction is signal
decomposition, in which signals are decomposed to a series of basis functions.

Short-time Fourier Transform (STFT) is the most typical time-frequency analysis, and, being a Fourier-
related transform, it is used to determine the sinusoidal frequency and phase content of local sections
of a signal as it changes over time. Specifically, the signal is split into windows and a Fourier Transform

33



Chapter 2. Literature Review

is applied to each one separately, as shown in Equation 2.3.2.
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where w(7) is the window function, commonly a Hann window or Gaussian one centered around zero,
and x(t) is the signal to be transformed. X (7,w) is essentially the Fourier transform of z(t)w(t — 1),
which is a complex function that represents the phase and the magnitude of the signal over time and
frequency.

However, one pitfall of STFT is that it has a fixed resolution; the width of the window determines
whether there is a good frequency or time resolution. There is an inverse relationship between the
length of the window and the time resolution and also a trade-off between the time and frequency
resolution in an FT. The product of standard deviation in time and frequency is lower bounded and
this property is connected to Heisenberg’s uncertainty principle.

This is one of the reasons for the creation of the Wavelet Transform (WT) and multiresolution anal-
ysis, which can give good time resolution for high-frequency events and good frequency resolution for
low-frequency events. WT is a popular time-frequency transformation that applies different filters to
decompose a signal into dyadic frequency scales. It is a powerful method since it describes the sig-
nal into different frequency resolutions where the decomposed signals are orthogonal in most mother
wavelets. A mother wavelet is a function that generates the filters for the signal’s decomposition.

e Non-linear features - Due to the non-linear characteristics and complex dynamics that comprise
biological signals, there are two major non-linear methods for their analysis.

Entropy-based methods calculate the irregularity and impurity of a signal in the time domain. Entropy
indicated the amount of changing patterns inside a windowed signal; the more regular they get, the
lower the entropy value and vise versa.

A second non-linear approach for bio-signal analysis is fractal-based. It derives from the notion that
such signals, while having a noisy behavior, are rule-based in nature. Instead of analyzing a signal in
the time domain, these methods analyze its trajectory behavior in the phase space, in terms of self-
similarity. Thus, the concept of fractal dimension can describe the behavior of random-like shape by
determining the amount of self-similarity on that given shape or signal [BKN17].

2.4 Related Work

Based on the previously stated discrimination between the data types used for sleep stage classification, there
will be two separate sections discussing each, starting with the classical PSG bio-signals, and continuing with
works on signals collected via wearable devices, which is also the main focus of this thesis. The pipeline of
each work will be briefly presented as it allows for a preliminary understanding of how the problem of sleep
stage classification is handled under different circumstances.

2.4.1 PSG-based Works

Machine Learning

In an early work of sleep stage classification [Lia+12] employing multichannel EEG, EOG and EMG signals
and PSG labels from seventeen subjects, twelve features including temporal and spectral analyses were
extracted. The signals were firstly downsampled and filtered, and then segmented into 30-second epochs. For
the spectral features, the Fast Fourier Transform was applied into 2-s non-overlapping segments. Then the
extracted features were normalized to reduce the effects of individual variability. A hierarchical decision tree
with fourteen rules was constructed for the classification of five stages, as scored by R&K rules [Kirl1], with
the overall agreement and kappa coefficient of the proposed model being 86.68% and 0.79, respectively.

In [Sen+14], a combination of methods is applied on a single-channel EEG signal to extract 41 features
of the aforementioned categories (time, non-linear, frequency-based and entropy). For the experiments 25
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individuals are selected from the [Gol+00] database. Some preprocessing filters are applied on the signal
in order to smooth it and remove any noise and artifacts. The signal is split into 30-second epochs and a
Hamming window is applied on each. A group of feature selection algorithms is applied on the extracted
features, in order to reduce redundancy, increase the computation efficiency and keep only the useful ones.
Those are the fast correlation based filter (FCBF) [YLO03], mRMR algorithm [DPO05|, Fisher score algorithm
(FS), t-test and the ReliefF algorithm (RF) [Kon94] and are tested with four different classification algorithms,
to find the combination with the highest score. The best results for six sleep stages according to R&K rules
are obtained via a hybrid approach where three or more attributes of each category were selected and the
final accuracy score is 97.03% for Random Forest algorithm (RF), followed by Decision Trees with 92.35%,
Radial basis network (RBF) with 89.45%, Support Vector Machines (SVM) with 93.12% and Feed-forward
neural network with 71.88%.

An attempt to combine classical ECG measurements with thoracic respiratory effort collected via respiratory
inductance plethysmography (RIP) was made in [Fon+15], for 3 and 4-sleep stage classification. The data
collection is made through an unobtrusive method with the ability to analyze them digitally afterwards. In
this work the dataset consist of 48 subjects acquired by the Siesta project [Klo+01] and 142 features are
extracted from cardiac and respiratory activity using a sliding window centered on each 30-second epoch.
The features lie on the time and frequency domain and are z-score normalized and smoothed via cubic spline-
fitting, for better interpolation of missing values due to e.g. motion artifacts. A multi-class Bayesian linear
classifier with time-varying prior probabilities [Lon+14] is used on a final set of 80 features, found through
a wrapper feature selection method based on sequential forward selection (SFS) and using as criterion the
Cohen’s kappa coefficient of agreement . Applying 10-fold cross validation, the best accuracy for Wake, Light,
Deep and REM classification was 69% and x = 0.49, while for 3-stage classification the values increased to
80% and 0.59, respectively.

In another work using a single-channel EEG signal of 25 individuals [HB17], a newly proposed tunable-Q
factor wavelet transform (TQWT) is applied, decomposing the signal segments into TQWT sub-bands. Then,
a normal inverse Gaussian (NIG) PDF modeling of TQWT sub-bands is performed, wherein NIG parameters
are used as features and statistical hypothesis testing is applied on those in order to extract the final feature
set. Adaptive boosting [FS97] is employed for sleep stage classification, resulting in accuracy of 91.36%,
92.46%, 94.83% and 98.01% for 5-, 4-, 3- and 2-stage classification respectively.

Rahman et al. [RBH18] used single-channel EOG signals and applied DTW to decompose them into time-
frequency domain components, extracting various statistical features afterwards. The discrimination ability
of the features is established via One Way Analysis of Variance (ANOVA) statistical analysis and a feature
reduction scheme based on Neighborhood Component Analysis (NGA) is employed to reduced their number.
Finally, three different ML classification algorithms are tested, namely Random Under-Sampling Boosted Tree
(RUSBoost), Random forest (RF) and Support Vector Machine (SVM), achieving state-of-the art results at
the time of the publication for the 4- and 2-class sleep stage problem of 92.89% and 98.24% respectively.

Deep Learning

A single-channel EEG signal is used in [Hsu+13], but instead of classical ML methods, a recurrent neural
network is utilized for the classification task. The greatest advantage of choosing NN instead of simple ML
algorithms, apart from their learning capability and robustness, is their fault tolerance property, as recording
phases can be partially impeded and processed data can be blurred due to undesirable or unexpected events.
The data undergo some preprocessing steps and energy features are extracted. The proposed classifier is an
Elman RNN;, capable of dealing with time series signals and it is compared with a Feed-forward NN and a
Probabilistic NN. The experimental results indicate that the classification rate for 5 sleep stages of the RNN
outperforms the ones of FNN and PNN, being 87.2%, 81.1% and 81.8% respectively.

In [Don+17] a mixed neural network (MNN) is proposed, consisting of a rectified neural network, suitable
for detecting naturally sparse patterns, followed by an LSTM, best handling temporal pattern recognition
problems. A single-channel EEG signal is used as well, and time-frequency analysis is applied to extract
spectral features. The spectral features are given as input to the rectified neural network for detecting the
internal hierarchical structures and then the outputs are passed to the LSTM for sequential learning, leading
to a final model’s accuracy of 85.92%.

35



Chapter 2. Literature Review

[Sor+18] also use a single-channel EEG signal, but apply a CNN architecture instead. In order to include
the temporal context of the data, the network takes as input the current epoch as well as the two preceding
epochs and the following one, and requires no signal preprocessing or feature extraction phase. The network
is trained to learn feature detectors that are suited to the classification task at hand and are likely to perform
better than hand-engineered features, while this learned sensible pattern detection can be visualized. The
proposed method is competitive in terms of performance for the task of 5-sleep stage classification, with
accuracy of 87% and Cohen’s kappa of 0.81.

An ensemble of five CNNs is proposed in [Fer+19], to improve the results obtained by a single model: all the
5 models classify the same input and the final decision is taken using the majority of the votes. The ensemble
consists of the 5 best performing hyperparameter configurations, for the task of 5-sleep stage classification.
In this work multiple signals are used, namely two EEG, one EMG, and two (left and right) EOG channels,
which undergo filtering first to reduce noise and artifacts. The proposed method achieves an average precision,
sensitivity, and F1 score of 0.78, 0.75 and 0.76 respectively, with a kappa index value of 0.83.

[FRP20] conduct experiments to test whether a double EEG signal outperforms a model using a single signal
as an input. The proposed model is CNN-based and two cases are examined; the first one is giving the two
EEG signals as double input to a single model, while the second method is to construct an ensemble model as
described in the previous work. Experimental results indicate that using two signals improve the result over
using a single one as input to the mode, whereas the ensemble model shows no advantage with respect to the
double-signal-input one. This observation lays on the incapacity of the single-signal-input architectures to
identify information that was not previously captured by the double-signal-input model. The best acquired
result shows an accuracy of 92.67% and a Cohen’s kappa value over 0.84 compared to human experts.

A different approach is proposed in [Li20], trying to show-light the importance of data pre-processing in
parallel to the choice of a simpler neural network to deliver a more robust model, outperforming traditional
ML methods as well as complex DL models. For this purpose, a single-channel EEG signal of 45 individuals is
chosen and the Welch method is applied to make the conversion from time domain to the frequency domain.
It is observed that the raw EEG signal in time domain contains a huge amount of noise, which misleads the
model during training; on the other hand, signals in the frequency domain could circumvent the presence of
noises and augment the effect of valuable features for sleep stage scoring. A shallow CNN structure is utilized
and the experimental results showcase that the model performs relatively well on the 5-class problem, in all
stages except from stage N1. The incorporation of an LSTM layer at the end of the CNN does not make a
big difference on the results, while the computational cost greatly increases. Hence, both data pre-processing
and neural network structure is equally important when designing the model, especially balancing between
model accuracy and efficiency.

[Zha-+20] propose an orthogonal convolutional neural network (OCNN) for learning rich and effective feature
representation. Using EEG signals for the experiments, it is stated that time-frequency analysis can provide
a better representation of EEG waves and sleep events; thus the input signals are converted to dynamic
time-frequency images via Hilbert-Huang transform (HHT), which is considered to perform better when the
signal is nonlinear and non-stationary. Afterwards, an autoencoder is used to reduce the dimensionality of
the extracted images, which are then given to an orthogonal CNN for sleep stage classification. Compared
to vanilla CNNs, it is observed that the proposed OCNN can learn rich and diverse feature representations.
Testing on two different datasets, the accuracy and kappa coefficient are formed as 88.4% and 0.82, 87.6%
and 0.8, respectively.

In the same manner of automatic feature learning without utilizing any hand-engineered features, [XZY20]
uses single-channel EEG signals and proposes a fast representation learning (FRL) and semantic-to-signal
learning (S2SL) framework. Inspired by the use of semantic information in image classification to improve the
performance of the model, this work employs S2SL, with auxiliary classifier generative adversarial network
(ACGAN) as the basic structure to mine semantic features related to sleep stages. Textual information
is collected from the AASM manual [Ibe07] and Wikipedia articles, describing each sleep stage class. This
information is processed and used together with the EEG signals to train the GAN network and an AdaBoost
model for predicting the original EEG signal features and the plausible sleep stage classes. The main model
comprises a shallow CNN and a bidirectional LSTM for feature extraction. The weighted softmax loss
is applied to the FRL in order to alleviate class-imbalance problems. The results show that the FRL can
extract effective EEG features and achieve state-of-the-art performance on some evaluation metrics. Applying
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weighted model fusion to the results of FRL and S2SL enhances the performance of the proposed method
even further.

In another worth-stating work [Che-+20], a combined bidirectional-LSTM and CNN, named Bi-LSTM-CNN,
is used to perform sleep stage classification on multi-channel PSG data, specifically EEG, EOG and EMG.
Three model configurations are tested; one simple LSTM-RNN, which takes as input features extracted from
the signals after some preprocessing steps. The second model tested is a bidirectional LSTM, taking the
same extracted features as input. Finally, the first layer of the LSTM is replaced by a CNN; in this case the
model takes as input the raw signal in order to automatically extract features and perform sleep classification
afterwards. The acquired accuracies for the three models are 81.6%, 84.8% and 89.4%, respectively, showing
a better performance with the Bi-LSTM-CNN and the automatically extracted features for the specific setup
and dataset.

A more complicated architecture is proposed in [Pha+19], where a hierarchical recurrent neural network
named SeqSleepNet tackles the task of sleep stage classification as a sequence-to-sequence problem. In the
aforementioned model, data are received as a sequence of multiple epochs as input and all of their labels are
classified at once. At the epoch processing level, the network consists of a filterbank layer tailored to learn
frequency-domain filters for preprocessing and an attention-based recurrent layer designed for short-term
sequential modelling. At the sequence processing level, a recurrent layer placed on top of the learned epoch-
wise features for long-term modelling of sequential epochs. The model is trained in an end-to-end manner.
Using EEG, EOG and EMG channels, the proposed method achieves a total accuracy, macro F1l-score, and
Cohen’s kappa of 87.1%, 83.3%, and 0.815 respectively, for a 5-sleep stage classification.

An extension of SeqSleepNet is presented in [Pha+21], where the proposed model, namely XSleepNet, is
capable of learning a joint representation from both raw signals and time-frequency images, getting multiple-
view inputs. Different views may generalize or overfit at different rates while training, thus XSleepNet
is trained such that the learning pace of each view is adapted dependent on their generalization/overfit
behavior. The time-frequency stream is based on an RNN to extract epoch-wise features in the same manner
as SeqgSleepNet, while the raw stream is based on a CNN. The multi-view network is trained such that learning
on the network stream that is generalizing well is accelerated while the overfitting one is discouraged. Using
SeqSleepNet as a baseline and testing on 5-sleep stage classification task, the proposed model not only delivers
more favorable results than the baseline, but also outperforms existing work on five databases of different
sizes. One advantage of the proposed method is that it is generic enough to serve sleep analysis with other
modalities other than EEG, EOG and EMG, especially when multimodal data are available. Also, it could
be applicable on other applications where the target signals are inherently multi-view.

2.4.2 Wearable-based Works

In the field of wearable-acquired data, fewer publications exist, due to its newer nature. The two most
common data used are heart rate and wrist actigraphy, derived from a wearable device. This type of data
are used in [Bea+17], where a wrist-worn device is used (a Fithit Surge), measuring movement through a
3D accelerometer and an optical pulse photoplethysmograph (PPG). The data are obtained during overnight
recordings of 60 adult participants, wearing these devices on their right and left wrist simultaneously, in
parallel to recordings for getting the scores of the sleep stages based on the standard AASM guidelines, on a
30s epoch level. The data undergo some preprocessing steps and features are extracted from the accelerometer
and PPG sensors, reflecting movement, breathing and heart rate variability. A peak detector algorithm has
been developed to find the peaks in the PPG signal; the time between PPG peaks (PP-interval) is taken as
a surrogate for the RR intervals obtained from an ECG. The initial set of the extracted 180 features on a
30s epoch basis consists of motion-based features, heart-rate and breathing-based. The features are fed to an
automated classifier together with the gold standard labels, for a 4-sleep stage classification of "Wake’, ’Light’,
'Deep’ and "/REM’. As a second experimental step, a standard recursive feature elimination is implemented
to reduce redundancy between them, ending up with a set of 54 features, which provide good performance.
Several types of classifiers are tested: linear discriminant classifiers, quadratic discriminant classifiers, random
forests and support vector machine approaches. The LDA had the best performance, thus this is chosen for
the final model. The overall Cohen’s kappa for the leave-one-out cross validation on the left-hand recordings
was 0.52 £ 0.14. This corresponds to an overall per-epoch accuracy of 69%. Interestingly, the most common
misclassification errors are Light classed as REM, REM classed as Light, Deep classed as Light, and Wake
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classed as Light.

[Fon+17] uses heart variability measured by a photoplethysmography (PPG) combined with body move-
ments measured with an accelerometer, to examine their accuracy in sleep stage classification compared to
polysomnography (PSG) and traditional actigraphy. The study is based on three separately collected datasets,
one used to train the sleep staging algorithm and two for validation. The training dataset consists of PSG
measurements in parallel to a CE-marked logging device containing a PPG and three-axial accelerometer
sensors, while the second validation set includes actigraphy measured with Actiwatch Spectrum, which uses
a piezoelectric accelerometer to detect and log limb movements. Interbeat intervals are detected from PPG
instead of a traditional ECG, and HRV features are extracted both on time and frequency domain. Those
are combined with features related to body movements, calculated based on the three-axial accelerometer
signal, while no respiratory features are available from the wrist-worn sensors. No PPG data are available in
the training set, so the HRV features used to train the algorithm are estimated from ECG. Since the features
are based on the distance between consecutive R-R intervals, they are essentially equivalent (in the absence
of cardiovascular conditions) when computed from consecutive pulses measured from PPG. An algorithm
similar to [Fon+15] is used for the evaluation of the proposed method, using linear discriminant analysis. In
the final results, the sleep—wake classifier obtained an epoch-by-epoch Cohen’s xk between PPG and PSG sleep
stages of 0.55 £ 0.14, sensitivity to wake of 58.2 + 17.3%, and accuracy of 91.5 £+ 5.1%. x and sensitivity
were significantly higher than with actigraphy (0.40 £+ 0.15 and 45.5 + 19.3%, respectively). The 3-class
classifier achieved a x of 0.46 £ 0.15 and accuracy of 72.9 + 8.3%, and the 4-class classifier, a x of 0.42 +
0.12 and accuracy of 59.3 + 8.5%.

In [Zha+18b], a multi-learning feature technique is proposed and an RNN-based method is applied for 5-sleep
stage classification. The dataset consist of 39 healthy subjects’ recordings, both by a Microsoft Band I and
the respective PSG labels. Firstly low-level features are extracted; for heart rate, temporal and frequency
properties of the data are considered on a 10-epoch window. For actigraphy, the features are extracted
within one epoch and the dominant cepstrum components of the first-order difference along the three axes
are calculated and concatenated to form the actigraphy feature vector. The mid-level features are calculated
based on the low-level ones. Mid-level feature learning pays more attention to analyzing compositions and
exploring the inherent structure of signals. Sleep can be seen as comprising of different compositions, with
varying weights among the different sleep stages. Thus, a bag-of-words (BOW) is incorporated for obtaining
the mid-level sleep representations. K-means clustering is applied on the low-level feature set of all epochs
and K cluster centers are extracted. Then, for each epoch the mid-level features are the reciprocals of
the Euclidean distances from all cluster centers, expressing the weighted influence of each cluster center
(sleep) composition to the current epoch. The final feature vector is formed by the concatenation of the low
and mid-level features and z-score normalization is applied. A deep bidirectional-LSTM is used and 8-fold
cross validation is conducted for unbiased performance of the algorithm. The best performances, weighted
precision, recall, and F1 score are formed as 58.0%, 60.3%, and 58.2% in the resting group and 58.5%, 61.1%,
and 58.5% in the comprehensive group using heart rate combined with actigraphy.

In [Zha+19] a new low-cost wearable multi-sensor system is presented, for acquiring the cardiorespiratory
signals from subjects. The designed system measures ECG and breathing signals via three electrode patches
to achieve the single ECG monitoring and a wrist oximeter, thus it does not lie in the standard wearable
category of heart rate and actigraphy signals. Feature extraction is applied to acquire three novel features,
being effective to detect the sudden variation of RR intervals; 152 features are extracted in total, both on
time and frequency domain. A bidirectional-LSTM is used for 5-sleep stage classification, with the prediction
accuracy being 80.25% on a large public dataset (417 subjects), and 80.75% on a private dataset of 32 enrolled
subjects, respectively.

In [Wal+19] a mobile application is developed in order to collect raw acceleration data and heart rate
from the Apple Watch worn by participants undergoing polysomnography, as well as during the ambulatory
period preceding in lab testing. The collected data are used for extracting three crucial features, namely
motion, local standard deviation in heart rate and "clock proxy", and testing them on several classifiers
afterwards. The concept of circadian rhythm and how the changing circadian propensity for sleep over night
influences the performance across classifiers is specifically taken into account. Sleep is governed by the well-
described two-process model comprised of the circadian oscillator and homeostatic sleep drive. Additionally,
an ultradian cycle of alternating non-rapid eye movement (NREM) and rapid eye movement (REM) sleep
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stages is superimposed on the two-process model. Thus, the "clock proxy" feature, representing simulated
input to sleep from the circadian clock, is introduced alongside the traditionally incorporated measurements
of motion and heart rate. To make trained classifiers backwards compatible with historical data collection
methods, raw acceleration data is converted to activity counts using MATLAB. Regarding heart rate, the
standard deviation in the window around the scored epoch is used as the representative feature and while
this represents variation in heart rate, it is distinct from ECG-based definitions of HRV. Regarding the clock
proxy feature, the well-validated mathematical model used for its computation requires light input in order
to predict circadian phase; since no such data are available via the smartwatch, the steps data are imported
instead, with a rationale that walking or running typically takes place in a lit environment. The imported
steps data are used to infer a "typical" daily pattern of rest and activity, and are converted to estimate
light via a simple steps-to-light function. The algorithms used are logistic regression, k-nearest neighbors, a
random forest classifier and an MLP, which is the simplest form of neural network. Models are trained and
tested using both Monte Carlo cross-validation, with parameters being tuned for each training dataset to
minimize the risk of overfitting, and leave-one-out cross validation, to understand the subject variability in
classifier performance. The generalization of the models is tested on data derived from the Multi-ethnic Study
of Atherosclerosis (MESA), which consists of motion data from actigraphy-derived activity counts and heart
rate via pulse oximetry from co-recorded PSG, achieving performance close to the wearable-based dataset.
The “clock proxy” feature is derived from the ambulatory actigraphy recording for each MESA participant.
The experimental results indicate that across every algorithm surveyed, performance is best when all available
features—motion, heart rate, and clock proxy are used as inputs to the classifiers. The best performance is
achieved using the MLP classifier, where for sleep-wake classification it scores 90% of epochs correctly, with
59.6% of true wake epochs (specificity) and 93% of true sleep epochs (sensitivity) scored correctly. Accuracy
for differentiating wake, NREM sleep, and REM sleep is approximately 72% when all features are used. The
generalization of the trained models on the MESA dataset indicates that it is possible to predict sleep with
performance comparable to testing the private training dataset.

[Li+20] presents a novel ML unsupervised algorithm based on Hidden Markov Model (HMM) for sleep /wake
classification, using only actigraphy features acquired by Actiwatch. PSG is used as reference for the perfor-
mance evaluation. While actigraphy does not contain as rich information as PSG, it is useful when long-time
and non-invasive monitoring is required. It is an individualized approach, meaning that it takes into account
individual variabilities and analyzes each individual actigraphy profile separately into sleep and wake stages.
Three methods are compared in this study: HMM, an unsupervised algorithm embedded into Actiwatch
software and a pre-trained UCSD algorithm [Jea+01]. The Actiwatch software uses information such as
10 consecutive epochs below a pre-specified immobility threshold as the sleep start and consecutive epochs
above a pre-specified mobility threshold as the wake start. All three methods tend to over-estimate sleep and
under-estimate wake compared to PSG. The estimated HMM parameters can characterize individual activity
patterns and sedentary tendencies that can be further utilized in downstream analysis. Actigraphy data
is converted into activity counts. Assuming that the sequence of the observed activity counts is generated
from an unobservable two-state Markov chain, with the two states being sleep and wake, in the sleep state
the activity counts are mostly zeros with some low values, while in the wake state they are generally high
with some low counts denoting sedentary behaviors. Thus, the activity counts follow different distributions
under the sleep and wake states, and it is possible to infer the hidden sleep/wake states at each time point
based on the observed count data. Although the activity count can be directly modeled using a Poisson or
Negative Binomial distribution in the wake state and a zero-inflated Poisson distribution in the sleep state,
the observed activity counts can range from 0 to 4,000 per epoch, and this large range poses both statistical
and computational challenges in data analysis. For this reason, log-transformed values are considered and,
empirically, HMM works well for them. Based on the obtained sequence of hidden states, the focus stays on
the same-state sequences longer than 15 minutes and shorter sequences are smoothed out to ensure that it
captures stable sleep durations. Using PSG as the reference, the accuracy is configured as 85.7% for HMM,
84.7% for the AS, and 85.0% for UCSD.
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3.1 Introduction

Machine Learning (ML) is a branch of Artificial Intelligence (AI) and Computer Science (CS), which
provides systems the ability to automatically learn and improve from experience, without being explicitly
programmed [Koz+96].

But what is really learning?

Learning has been an intimate process of human since its early years of evolution. As described in the book
[Har15], "Sapiens did not forage only for food and materials. They foraged for knowledge as well". Their
survival depended on their constant development and learning of crucial skills and an understanding of their
surrounding environment as well themselves. This kind of learning is known as experiential, in other words
defined as "learning through reflection on doing" [Felll]. The notion is believed to be initially introduced
by Aristotle in the Nicomachean Ethics, quoting "for the things we have to learn before we can do them,
we learn by doing them" [Arill]. This primitive procedure has been advancing together with human for
over 2 million years now, taking different shapes and forms; leading to today’s structure of learning, which
is considered as "the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes,
and preferences" [Grol0].

But learning has not been only a human characteristic. It is a standard behavior in animals, allowing them
to adapt in a constantly changing environment, increasing their chances of survival. Oftentimes, this process
of "learning by doing" even comes in contradiction to their genetically inherited, innate knowledge and can
be beneficial in case their innate behavior is disadvantageous for them. A similar habit is detected in plants
and how they respond to external cues, a function necessary for their endurance. In a series of experiments
done on the garden pea (Pisum sativa) presented in [Gag+16], Monica Gagliano aimed in differentiating
between innate phototropism behavior and associative learning behaviors, based on the observations of a
plant’s directional growth to maximize its capture of sunlight.

Thus learning has been a natural process for all living creatures, amongst them human, since the beginning
of life. Through this, we have acquired the knowledge to reach the current levels on our primary aspects of
life, but also to achieve great advancements in science and technology; and this is an ongoing procedure. It
is a logical continuation to consider applying our inherent way of learning to those fields as well. But this
turns out to be not-so-easy to implement.

Artificial Intelligence as an academic discipline was introduced in 1959 at a workshop at Dartmouth College.
The previous years had already been an outburst in the scientific world, with the discovery of the Church-
Turing thesis, indicating that digital computers can stimulate any process of formal reasoning [Ber01]. In
parallel, new discoveries in neurobiology, information theory and cybernetics made the idea of building an
electronic brain seem feasible for researchers. McCullouch and Pitts in 1943 designed the "Turing-complete"
artificial neurons [Rus10], considered to be the first work generally recognized today as AL However, it was
not until the 1980s, after two "AI winters", when artificial intelligence was finally established.

Machine learning (ML) reorganized as a separate field in the 1990 and started to grow independently. It
shifted from the logical, knowledge-driven approach inherited from AI, to a data-driven one, with algorithms
incorporating probability theory and statistics in order to solve practical problems, in terms of providing
services. Two major factors influenced this shift, one being Big Data; the amount of data had outgrown in such
a scale that new approaches were brought to life by practical necessity of how they would be handled, rather
than pure scientific interest [Fra20]. The second factor was the exponential increase of the computational
efficiency with the introduction of GPUs as units, where the machine learning algorithm calculations would
be made, as well the advancements in computing parallelization and better memory handling. A milestone
in this new era was in 1997, when the IBM-developed Deep Blue computer won against the world’s chess
champion Garry Kasparov. Since then, the progress in the machine learning and Al field has been tremendous,
with applications varying between computer vision, speech recognition, natural language processing, medical
imaging, data analysis, fraud detection, recommendation systems and the list continuous.
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3.2 Machine Learning Definition

The structure of ML in the way it has been formed today, is very close to the natural process of learning as
described in the previous section.
As stated in T. Michell’s book of 1997 [Mit97]:

A computer program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as measured by P, improves with experience
E.

Thus, the main goal of ML is for a machine to achieve a good level of generalization on a specific
task, based on its experience. Having a learning dataset, where the training examples come from a generally
unknown probability distribution, the ML algorithm has to build a model for this space which can accurately
predict any new given cases. As human observe their surrounding environment and analyze the information
they perceive in order to extract conclusions about it, in the same manner an ML model discerns discrete
features from the given data, in order to make a mathematical representation of them to resolve a specific
task; and thus be able to correctly process unseen data afterwards, and extract results about them. Also,
as human learn by repeating an action and improving from their faults, the same principle idea is applied
on ML systems learning the features’ representation. The main objectives ML is handling are two, the first
being data classification and the second one being prediction making for future outcomes based on the input
data.

Given the input signal’s nature, which is passed through an ML system, and the way the "feedback" is
returned for the system to learn by itself and improve its performance, ML approaches are divided in three
main categories:

e Supervised learning: the computer is presented with the input data together with the corresponding
desired outputs and the system has to learn a mapping for the inputs to the correct outputs.

e Unsupervised learning: in this case the computer is presented only with the input data and no
labels are given for them; it has to learn an internal structure on its own.

¢ Reinforcement learning: the computer actively interacts with a constantly changing environment
(dynamical), such as playing a game against an opponent or driving a vehicle, having to perform a
certain goal. In this case the feedback it receives while navigating the problem’s space is in the form of
a reward, which it tries to maximize.

3.3 Supervised Learning

Supervised Learning (SL) is the ML task of learning a function that maps an input X to an output Y
based on example input-output pairs [Rus10]. The data for training are given as a set of training examples
D ={f(Xn,yn);n =1,..., N}, and each pair has an input object z;, typically a vector known as the feature
vector, and its corresponding output value or label y;. An objective function or loss function L : X xY — R4
is iteratively optimized so that the SL algorithm learns a mapping function f : X x Y, which can be used for
predicting the correct output § = f(x) of an instance . The term "supervised" derives from the concept
of a teacher supervising the learning process. As the algorithm iteratively learns from the training data,
it makes predictions and in each step it is corrected by the teacher, based on the loss function. Given a
training example (xj,y;), the loss for predicting the value §; = f(x;) is calculated as L(¥;,yi). When an
acceptable level of performance is achieved and the loss reaches a desired threshold, the learning process
stops. The accuracy of the SL algorithm can then be defined as its potential in making accurate predic-
tions of inputs unseen during the training: X ¢ D. This is known as the generalization ability of the algorithm.

Having gathered a dataset of training examples, a sequence of specific steps has to be followed for
the solution of an SL problem.

e The data have to be split into two separate sets, one called training and one test set, with a ratio of
around 80% - 20% of the total amount of data.
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e The input feature representation has to be determined, choosing a suitable feature vector which ade-
quately describes the object and contains enough information to accurately predict the output. The
curse of dimensionality has to be taken into consideration though, to avoid various unwanted phenom-
ena that arise in high-dimensional spaces.

e After choosing the correct feature representation, a learning algorithm has to be determined, together
with the structure of the learning function. Usually, there are several control parameters in SL algo-
rithms that have to be adjusted as well. The cross-validation method is applied for this purpose, or
else a subset of the training set is selected, around 10% of it, called validation set, and the algorithm’s
performance is optimized on it.

e The trained model’s accuracy is finally measured through the evaluation of the learning function on
the test set.

3.3.1 No-Free Lunch Theorem

The selection of the correct algorithm is essential for the solution of an SL problem and the No Free Lunch
(NFL) theorem strongly highlights this. In the NFL theorem is stated that, in mathematical problems lying
in the search space of probability density function like SL does, the computational cost of finding a solution
will be the same for any solution method, when averaged over all problems in the class [Wol96]. The "cost
of lunch" reflects the performance of a procedure in solving a problem and "no free lunch" means that
there is no improvement in the cost when the probability distribution on problem instances is such that
all problem solvers (algorithms) have identically distributed results; prior information is needed to match
the procedures to the problems to achieve performance improvement. Thus, no single ML algorithm is a
universal, best-performing solution for learning all possible target functions of an SL problem.

The term inductive bias or learning bias is introduced to describe the set of assumptions about the nature
of the target function, for the learning algorithm to be able to predict a certain target output given inputs
that it has not previously encountered [Mit80; GD95]. In ML, the goal is the construction of an algorithm
with the ability to predict a specific type of target output. This is done by exposing the algorithm to training
examples which demonstrate the intended relation between the input and output values. However, lacking
the additional assumptions to be made for the data, the algorithm might not be able to solve the problem of
the approximation of the correct output for examples that have not been seen during training. This is due
to the probability of those situations to have an arbitrary output value.

3.3.2 Bias - Variance Tradeoff

The bias-variance tradeoff explores the relationship between two major sources of error for an SL model,
namely variance error and bias error.

The expected generalization error of a learning algorithm can be decomposed into three interpretable terms
[Has+09]. Considering a learning variable denoted as Y and its covariates denoted as X, there is a relationship
relating one to the other so that Y = f(X) + ¢, where ¢ is an error term following the normal distribution

e ~N(0,0.).

The typical ML approach of estimating the relation f(X) is by creating a model f(X) of it using an SL
algorithm. The most common loss function which can be used is the mean squared loss, and in this case the
expected test error can be written as:

Err(X) = E[(f(X) - Y)?

Err(X) = E[(f(X) = J(X))’] + 2B[(f(X) = F(X)(F(X) = V)] + E[(J(X) = Y)?] (3-3.1)
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BI(F(X) — V)2 = E[F(X) - Y + ¥ — V)| =
E[(F(X) =Y) ]+ E[(Y - V)] +2E[Y - Y)(F(X) - Y) (3.3.2)
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Figure 3.3.1: Graphical illustration of bias and variance [02].

The multiplying terms are zero:

2E((Y - Y)(f(X)=Y)] =0
2B[(/(X) — F(X)(F(X) - Y)] =0 (3.3.3)

Considering that f(X) = E[f(X)], E[f(X)] = f(X) since f(X) is constant for a particular X, Y = f(X)+e,
Ele] =0, E[g?] = 02, and combining the Equations 3.3.2, 3.3.2, 3.3.2, we have the final expected error:

Err(X) = E[(f(X) = J(X))*] + BEI(J(X) = Y)’| + E[(Y —=Y)*] =
Err(X) = E[(f(X) = E[f(X)))?] + (E[f(X)] = f(X))* + o2 —
Err(X) = Variance + Bias® + Noise (3.3.4)

e Bias is the simplifying assumptions needed to be made in order for the target function to be easier to
learn. It is connected to the inability of a model to capture the true relationship f between Y and X,
and it is a type of error that can be reduced. In general, a higher bias makes algorithms faster to learn
and easier to understand, but less flexible, e.g. linear algorithms, which cannot perform well on more
complex problems due to their simplicity.

e Variance refers to the amount of change, which is introduced in the estimate of the target function,
when different training data are used. This is a kind of error that can also be improved. High variance
implies that the trained model cannot perform well on previously unseen data (the test set), and this
is an undesirable characteristic that more flexible, e.g. nonlinear models share.

e Finally, noise, otherwise known as irreducible error, is a kind of error that fundamentally cannot
be reduced. It corresponds to noise of the true relationship itself, and represents ambiguity in the data
distribution and feature representation.

The goal for any SL algorithm is to achieve good prediction performance through the minimization of both
bias and variance, however this is a constant battle to counterweight between the two. Intuitively, bias is
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Figure 3.3.2: Example scatter plot of predictions from model being underfit, optimal and overfit [03].

reduced by using only local information, where accurate assumptions can be made, whereas variance can
be reduced only by averaging over multiple observations, meaning that the data are selected from a larger
region.

Figure 3.3.1 depicts a bull’s eye diagram, where the center of the target indicates a model that makes perfect
predictions of the correct values. Repeating the entire training of the model over a several times’ course,
the portion of hits during testing greatly depends on the chance variability in the training data gathered.
In cases where the training data have a good distribution, the predictions are close to the bull’s eye, while
in cases where many outliers or non-standard values exist, the predictions tend to be further away from the
center.

3.3.3 Overfitting and Underfitting

In Figure 3.3.1 can also be seen a tendency of low bias and high variance leading to predictions close to
the center, but far away from each other, while high variance and low bias give predictions which are close
to each other, but away from the center. Those trends are called overfitting and underfitting respectively.
Another visual example of overfitting and underfitting is shown in Figure 3.3.2. In the second case the model
is unable to capture the underlying pattern of the data, while at the first case it captures it in such a detail
that part of the inherent noise is also contained.

If a model is too simple, without a lot of parameters, it mostly has high bias and low variance, whilst when it
has a large number of parameters and is in general complex, the opposite happens. Thus bias is reduced and
variance is increased in relation to model complexity. For example, as more polynomial terms are added to
a linear regression, the greater the resulting model’s complexity will be. In other words, as it is can be seen
in Figure 3.3.3, bias has a negative first-order derivative in response to model complexity, while variance has
a positive slope.

Understanding bias and variance is critical for understanding the behavior of prediction models, but in
practice, what the attention has to be led on is the overall error, not the specific decomposition. The desired
spot for every model is where the increase in bias is equivalent to the reduction in variance and there is not
an analytical way to detect this. Instead, an accurate measure of prediction error has to be selected, and this
needs to be very considerate, and, by exploring different levels of complexity to pick up the best one for the
specific problem.

3.3.4 Classification

This kind of problem has discrete categories as the output variables, also called classes, such as "car" or
"bicycle", and the goal for the ML algorithm is to assign the test data, each one to the correct class.
For example, given retinal medical images from healthy subjects and subjects with glaucoma or diabetic
retinopathy, the goal is to detect those deceases in new images and thus claim whether the subject falls under
the healthy category or to one of the diseases. A common practice for classification models is to predict a
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Figure 3.3.4: Logistic Regression [04].

vector of continuous values as the probabilities of a given example to belong to each of the classes. The
predicted probabilities can be interpreted as the likelihood of the example to belong to each class, and the
one with the highest probability is chosen as the model’s prediction. Thus, in classification problems the
input space is divided into classes based on different characteristics of the feature vectors of the training data
and the mapping function identifies the decision boundary, which is the line where the different classes meet.

Some examples of standard classification algorithms are:

Linear Classifiers
In this group of algorithms, amongst others, belong logistic regression and naive bayes classifier, each one
having its own characteristics.

Logistic regression is a fundamental classification algorithm, which uses one or more independent variables
to determine a binary outcome. The probabilities describing the possible outcomes of a single trial are
modeled using a logistic function. The coefficients of its equation are estimated by the "maximum likelihood
estimation" (see Figure 3.3.4). It is a simple and efficient, with low variance, algorithm, however it has poor
performance in handling large categorical data and it also assumes that there are no missing values and the
predictors are independent from each other.

Naive Bayes calculates the possibility of whether a data point belongs within a certain category or does
not. It is an extension of the Bayes theorem wherein each feature assumes independence. Being an easy and
quick way to predict the class of the dataset, it can be used for multi-class prediction, provided the validness
of the independence assumption. However this is difficult to achieve in real-life data.
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Figure 3.3.5: Support Vector Machine (SVM) [05].

Support Vector Machines

SVM are based on the concept of decision planes that define decision boundaries. A decision plane (hy-
perplane) separates between a set of objects having different class memberships. An SVM performs non-
probabilistic classification and other tasks by finding the hyperplane (or set of hyperplanes in a high- or
infinite-dimensional space), that maximizes the margin between two classes with the help of support vectors.
The margin is defined as the perpendicular distance between the decision boundary and the closest of the data
points, as shown in Figure 3.3.5. Maximizing the margin leads to a particular choice of decision boundary,
the location of which is determined by a subset of the data points, known as support vectors.

In order for the SVM to perform non-linear classification, the kernel trick was developed, implicitly mapping
the SVM inputs into high-dimensional feature spaces. Instead of using x € R™ to describe the inputs of an
SVM algorithm, a feature map is used ¢(x)” € RM, M > m. It is observed that many ML algorithms can be
written exclusively in terms of dot products between the training examples. Also, the kernel theorem directs
that a feature map ¢(.) can be defined using a kernel function k(.,.) such as k(x,x’) := (x7x")? = ¢(x)T ¢(x').
Extending this idea into high-dimensional spaces, if the data is linearly separable in R™, then the classification
problem can be solved as follows. The optimal b* of the hyperplane is derived through:

b* =t; — Za’{tik(xi,xj), for any a; >0 (3.3.5)

i=1

and the prediction for a new data point x:

n
sign(w*T ¢(x) + b*) = sign(z ajtik(x;,x) + b") (3.3.6)

i=1
where a is a vector of coefficients.
The kernel-based learning SVM function is equivalent to transforming the data space into a linear represen-
tation by applying ¢(x) on all the input data, and then learning a linear model on the newly transformed
space.
Kernel Estimation
Oue typical algorithm from this group is k-nearest neighbors (KNN), which is non-parametric and it classifies
data points based on their proximity and association prior available data. The algorithm does not attempt
to construct a general internal model by making any assumptions about how the data is distributed, but
instead classification is computed from a simple majority vote of the k nearest neighbors of each point, as it
can be seen in Figure 3.3.6.

Decision Trees and Random Forest

Given a data of attributes together with its classes, a decision tree produces a sequence of rules that can be
used to classify the data. Specifically, it is a form of algorithmic tree where each node represents a feature
or attribute, each branch represents a decision or rule and each leaf defines an outcome, which can be either
a categorical or continuous value. The idea is very straightforward to understand and little data preparation
is required. However, it is prone to creating complex structures that do not generalize well.
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Figure 3.3.6: K-nearest neighbors (KNN) [02].

A way to improve this method’s performance, is through merging together multiple uncorrelated decision
trees to reduce variance and create more accurate data predictions. This structure is known as random
forest and it facilitates the reduction of over-fitting while maintaining the intuitive nature of this form of
classification approach.

3.3.5 Regression

There is one second category for SL problems, which differentiates in the sense that the output variables lie
in a continuous space, or have to be real values. Those often refer to quantities such as amounts ("salary")
or sizes ("weight"). In this case, the mapping function tries to find a correlation between a dependent
variable (response variable) and one or more independent variables (features). The most common form of
regression analysis is linear regression, which tries to fit the training data with the best hyper-plane that passes
through the points in the input feature space, according to a specified mathematical criterion. Regression
analysis is widely used for prediction and forecasting problems, such as house pricing or weather prediction.
Another substantial use of regression, though not so widely spread as forecasting, is the detection of casual
relationships between the independent and dependent variables, provided that this kind of relationships have
a causal interpretation.

3.4 Unsupervised Learning

In Unsupervised Learning (UL), the data for training do not contain any corresponding output variables,
or else labels. Thus the nature of the problem to be solved differentiates to learning internal patterns of
untagged data. The algorithms are expected to learn an adequate representation of the dataset, finding its
underlying structure, uncovering hidden similarities and grouping by them, as well expressing the dataset in
a compressed format. Being able to handle a dataset without any labels can be very beneficial in cases of
exploratory data analysis, cross-selling strategies or image recognition.

3.4.1 Clustering

For example, given a dataset consisting images of cats and dogs with no accompanying labels, and applying
an unsupervised algorithm on them, it can unravel the images’ hidden patterns of the two different categories
(cats, dogs). The UL algorithm can thus accomplish the clustering task for those two groups based on the
detected similarities between the images.

This is a representative example of to the first main category of unsupervised learning, which is clustering.
Some typical algorithms for clustering are K-means, Principal component analysis (PCA) and hierarchical
clustering.
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3.4.2 Association

The second category is called association, and refers to the problems where the goal is to discover association
rules that describe large portions of the data, thus finding relationships between variables in the dataset.
A common use of this kind of unsupervised learning is for companies to understand consumption habits
of customers, in order to improve their business strategies and recommendation engines, such as Spotify’s
"Discover Weekly" playlist [FS17; TY17].

3.4.3 Dimensionality Reduction

A final main application of unsupervised learning is dimensionality reduction. This is very useful in
cases where the dataset contain a lot of redundant information with features overlapping in the input space,
increasing the computational time and making the machine learning algorithms prone to overfitting. By
applying dimensionality reduction as a preprocessing step, the dataset is reshaped so that the number of
features is of manageable size while at the same time the integrity of the dataset is preserved as much as
possible.

3.5 Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn in an
interactive environment by trial and error using feedback from its own actions and experiences. Though both
supervised and reinforcement learning use mapping between input and output, unlike SL where the feedback
provided to the agent is a correct set of actions for performing a task, RL uses rewards and punishments
as signals for positive and negative behavior. Hence RL does not need labeled input/output pairs to be
presented, or sub-optimal actions to be explicitly corrected. Instead, a reinforcement agent decides what
action need to be taken for performing a task, in a game-like situation. Compared to unsupervised learning,
RL differs in terms of goals. While the goal in Unsupervised Learning is to detect similarities and differences
between data points, in the case of RL the goal is to find a suitable action model capable of maximizing the
total cumulative reward of the agent. Due to the absence of training data, an RL model is bound to learning
from its own experience. During training, the model will return a state and the agent will decide to award
or punish it based on the current output, as its goal is to maximize the total reward. Since RL requires a
lot of data, it is most applicable in domains where simulated data is readily available, such as game-play
and robotics. Applications of RL can be found in training autonomous vehicles or to train a virtual runner
for upgrading the prosthetic legs technology [Kid+18]. Other applications of RL include abstractive text
summarization engines, dialog agents (text and speech), which can learn from user interactions and improve
with time, learning optimal treatment policies in healthcare and RL based agents for online stock trading.

3.6 Neural Networks

Artificial Neural Networks has been a specific part of machine learning, and, while existing for already some
decades now, it has gradually gained ground over the course of recent years; being one of the most drastic
methods for solving ML problems nowadays, and a state-of-the-art technology with applications ranging in
almost every aspect of modern life. NNs lie in the same trend of nature-inspired discoveries in last century’s
technological world, and, as indicated by their name, are computing systems inspired by the biological neural
networks that constitute animal brains.

An ANN consists of a collection of connected computational units or nodes, which are called artificial neurons,
and are supposed to loosely model neurons in a biological brain. Each neuron functions by receiving a
collection of signals, which is actually a set of real numbers given as separate, parallel inputs, and processes
it by applying a non-linear function on the sum of its inputs. Neurons are connected with each other by
structures called edges, and like the synapses in a biological brain, can transmit a signal through them. Both
neurons and edges have a weight, which adjusts during the process of training the network, as the learning
progresses. The purpose of the weight is to increase or decrease the strength of the signal at a connection,
hence to control the amount of the specific signal’s impact during the non-linear function computations. It
is common for neurons to also contain a threshold for the aggregated signal, after which it is allowed to be
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Figure 3.6.1: Perceptron visualization, where wy is equal to the bias [06].

forwarded to the succeeding neurons. Typically, neurons are assembled into layers, which perform different
transformations on their outputs, justifying different purposes for the network. Details for the architectures
that are used in this thesis will be discussed in the following sections, after firstly covering some fundamental
topics of neural networks.

3.6.1 The Perceptron

The first artificial neural network named perceptron was introduced in 1958, by psychologist Frank Rosenblatt
[RP57; Ros57], funded by the United States office of Naval Research [Ola96]. Rosenblatt heavily inspired by
the biological neuron and its ability to learn, created an algorithmic implementation of it, consisting of one or
more inputs, a processor and only one output. Perceptron is made up with only one node, and it belongs to
the SL category of binary classifiers, meaning that it is able to solve the task of binary classification, provided
linearly separable classes [Figure 3.6.1]. Although today perceptron is widely recognized as an algorithm, it
was initially intended as an image recognition machine. It gets its name from performing the human-like
function of perception, seeing and recognizing images.

Given a real-valued vector x € R™, where n is the number of inputs for the perceptron, a single binary valued
output y € {0,+1} and a real-valued vector of weights w € R"™, the perceptron learns a threshold function
which maps the input x to the output value as denoted below:

1 Ax-w+b>0
= 3.6.1
/() {O ,otherwise ( )

where x - w is the dot-product Y .- w;x; and b is the bias, which does not depend on any input value. The
step function was historically being used as threshold and it can be considered as a very simple activation
function for the dot-product term x - w + b and the bias allows shifting the activation function up or down.
Thus, it is a simple mapping of summed weighted input to the output of the neuron. The term activation
function is used because it governs the threshold at which the neuron is activated and the strength of the
output signal.

3.6.2 Multi-Layer Perceptron

The idea of perceptron can be generalized into creating more complex networks consisting of groups of nodes,
forming different layers: an input layer, one or more hidden layers and an output layer which gives the final
result. This kind of architecture is known as Multilayer perceptron (MLP) and is depicted in Figure 3.6.2.
One key difference from the original simple perceptron though, is that MLP utilizes non-linear activation
functions for its nodes; this allows it to distinguish data that is not linearly separable, which was a necessary
condition for perceptron. Also, if an MLP had linear activation functions in all of its neurons, then linear
algebra shows that this architecture can be reduced to a two-layer input-output model, no matter how many
hidden layers initially existed.
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Figure 3.6.2: Multilayer Perceptron visualization, where each node, except for the input ones, is a neuron
that uses a nonlinear activation function [07].

The input layer of an MLP receives the signal to be processed and does not apply any transformations to it.
Provided an input vector x € R” and an MLP with K hidden layers, each layer with My nodes, the input
layer receives the vector x, one value at each node, and distributes them to the first hidden layer, for k = 1.
Each node of the K hidden layers applies an activation function h(.) on the received input data, in a manner
similar to the perceptron.

For the first hidden layer, the equations for node j, j = 1,..., M(y), are formed as:

D
a” =" Wiz + oV
=1
AV = h(al") (3.6.2)

where Wi(jl) are the weight parameters and bﬁl) is the bias of the node.

Those parameters form the weight matriz and bias vector of the layer. The quantity ag.l)

activation of node j of the 1! layer and is passed through the node’s activation function to give the output
0,

Thus, for the ky, layer, since it receives the previous layer’s outputs as its input signals, the activation
equations are shaped as follows:

is known as the

D

k_ k k-1 | 1k

a; = E Wijzj + b;
i=1

25 = h(ak) (3.6.3)

Activation Functions

The choice of activation function depends on the nature of the problem to be solved and the assumed
distribution of the training data. The linear or identity activation function, is the simplest case and is not
capable in solving more complex problems; this is where nonlinear activation functions are acquired. Non-
linearity allows the model to generalize or adapt with variety of data and to differentiate between the output.
Some typical activation functions can be seen in Figure 3.6.3.

When the desired prediction of the model is a probability, then usually the sigmoid or logistic activation
function is used, since its output is limited in the range of [0,1]. Softmaz is a more generalized logistic
activation function, which is used for multiclass classification. Tanh (hyperbolic tangent Activation Function)
is also sigmoidal (s-shaped) but ir ranges from (—1, 1). Its main advantage is that the negative inputs will be
mapped strongly negative and the zero inputs will be mapped near zero in the tanh graph, and it is mainly
used for binary classification problems. ReLU (rectified linear unit) is the most commonly used activation
function today and Leaky ReLU is used to solve a problem known as dying ReLU, where all the negative
values in the simple ReLU activation immediately become zero, decreasing the ability of the model to fit or
train from the data properly.
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3.6.3 Training Algorithms

The multilayer perceptron lies under the category of feed-forward algorithms, where the information moves
forward, starting from the input nodes, going through the hidden nodes -if any- and to the output ones. In
order for this kind of network to learn internal representations of the training data, several techniques have
been developed; and one of the most popular ones is backpropagation [RHWS86.

Backpropagation

The idea behind this method is the backward-propagation of the error that occurs between the network’s
output against the true label of the input data. The goal is to optimize the network’s weights, by adequately
iterating through the training data and in each iteration improving the node weights based on the current
error from the loss function. The problem of training the neural network would thus be considered as an
optimization problem of the form ,{2% f(x).

The term backpropagation is used under two perspectives; the first one being to describe the whole algorithm
for fitting a neural network. The second refers to the computation of the derivative from the loss function,
given a single input-output example, with respect to the weights of the network, with great efficiency. The
chain rule is utilized and the gradient is computed in one layer at a time, iterating backward from the last
layer, to avoid redundant calculations of intermediate terms. Using the notation from Equations 3.6.2, the
chain rule formula calculating the derivative of the loss function L(%,x) is:

9L - 197L1921 19aj
’1911)1‘]‘ o 192_7' 19(1]' 19’(1)1‘]‘

(3.6.4)

Gradient Descent

In mathematical optimization, this kind of minimization problems is solved by algorithms using the gradient
method, where the search directions are defined by the gradient of the function at the current point. Gradient
descent, which is the most common approach, is an iterative algorithm used to find the local minima of a
differentiable function and it originates from the fact that a function f(x) reaches faster the local minima if
x moves towards the direction of the negative gradient of f at x, —V f(x). Given a neural network and its
weight matrices W, the weights can be updated in each iteration as follows:

W =W —~yVwL(x) (3.6.5)

where 7 is the learning rate, a tuning parameter that determines the step size at each iteration while moving
toward the minimum of the loss function L.

The above Equation 3.6.5 describes vanilla gradient descent, or else batch gradient descent (BGD), where
the calculation of the gradients is done on the whole dataset, before the update of the weights. However,
this approach is very computational demanding and time consuming, making it impractical for real-life
applications, where the amount of data is large, the network architectures are deep and there is need for
online learning.

To overcome these limitations, a stochastic approximation of the algorithm is introduced, named stochastic
gradient descent (SGD), where the actual gradient is replaced by an estimate thereof, calculated by a
randomly selected data point. Thus, the equation for a training example z*, 4* is formed as follows:

W =W — 4V L(x', y") (3.6.6)

The stochastic aspect of SGD makes it prone to overshooting, missing convergence to the exact minimum,
while on the other hand gives the freedom of finding potentially better local minima than the standard one
BGD converges to. Also, it has been shown that, when the learning rate is slowly decreased through iterations
during training the network, SGD closely follows the performance of BGD, converging to a local or the global
minimum, for non-convex or convex optimization spaces.
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One last common approach lies in between the two aforementioned gradient descent methods, known as
mini-batch gradient descent. It dictates for each iteration to sample a small subset instead of a single
data point, called mini-batch, consisting of n data points. Then, the weight update equation becomes:

W =W — AV L(x"Hn yitn) (3.6.7)

However, the use of grouped data for the calculation of the derivative for the network’s weights update has
to be mindful. Since the learning rate is applied to the whole mini-batch at once, it is prone to erroneous
generalizations in case the data are sparse and the features appear with varying frequencies, where there
should be a different handling in each feature category. Also, the choice of a suitable learning rate value is
difficult to achieve and might demand the exhaustive search to find an appropriate one.

Adaptive Moment Estimation - Adam

Adam [KA15] is a method for efficient stochastic optimization, computing adaptive learning rates for each of
the network’s parameters. It combines two stochastic gradient descent approaches, Adaptive Gradients, and
Root Mean Square Propagation (RMSprop). In addition to storing an exponentially decaying average of past
squared gradients vy, like RMSprop, Adam also keeps an exponentially decaying average of past gradients my,
similar to momentum. Momentum can be perceived as a ball running down a slope, whilst Adam is closer
to a heavy ball with friction, preferring flat minima in the error surface [Heu+17]. The decaying averages of
past gradients and past square root gradients m; and v; respectively, are computed as:

my = frmy—1 + (1 — B1)ge
vy = Bavi—1 + (1= B2)gi (3.6.8)
where m; and v; are the estimates of the first and second moment of the gradients (mean and variance

respectively). Those variables are initialized as vectors of 0's, thus have a natural tendency towards the zero
value. To overcome this bias, the bias-corrected first and second moment estimations are proposed:

A my
my = ———
t 1 — B{
N Ut
O = —— 3.6.9
Thus, the Adam update rule for the network’s parameters is formed as:
_ DA
Wiyl = Wy — ————My (3.6.10)

3.7 Deep Learning

Deep learning is an advanced form of Artificial Neural Networks, where the term "deep" refers to the use of
multiple layers in the network. It is a modern variation which is concerned with an unbounded number of
layers of bounded size, permitting practical application and optimized implementation, while retaining theo-
retical universality under mild conditions. In deep learning the layers are also permitted to be heterogeneous
and to deviate widely from biologically informed connectionist models, for the sake of efficiency, trainability
and understandability, whence the "structured" part. The use of multiple layers allows the network to pro-
gressively extract higher-level features from the raw input; for example, in image processing, lower layers may
identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters or
faces. The advancement of different network architectures has been tremendous and two of the most common
ones will be discussed in the following sections, as they are used for this thesis’ experiments.
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Figure 3.7.1: Convolutional neural network architecture for image classification [09].

3.7.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) is a specialized type of neural network for handling data with a
known grid-like topology. This kind of data includes images, which can be perceived as a 2-D grid of pixels,
but also time-series data, which can be thought of as a 1-D grid, taking samples at regular time intervals
[GBC16]. The name of this network category derives from the mathematical operation of convolution, which
is utilized in some of the network’s layers in place of general matrix multiplication, as done in the simpler
case of fully-connected networks.

The Convolution Operation

The mathematical operation of convolution expresses the weighted average over a period of time and it
consists of an input argument, a kernel defining the weighting factor and an output, oftentimes referred to as
feature map. The continuous and discrete time convolution is defined by the following equations respectively:

s(t) = (xxw)(t) = /z(a)w(t —a)da

s(t) = (xxw)(t) = Z z(a)w(t — a) (3.7.1)

a=—0oQ

In machine learning, the input is usually a multidimensional array of data, and the kernel is also a multi-
dimensional array of parameters to be adapted by the learning algorithm. Those multidimensional arrays
are known as tensors and, since they have a finite set of points for which values are stored, we can assume
that the convolutional function is zero everywhere else. Thus, for a two-dimensional image I with kernel K,
convolution is shaped as:

S(Z’J) = (K*I)(Z’]) =
= ZZI(m,n)K(i—m,j—n)

=> " I(i—m,j—n)K(m,n) (3.7.2)

A simplified alternative of Equation 3.7.1 is used on most machine learning and deep learning implementa-
tions, known as cross correlation:

S(i,j) = (K« I)(i,5) = Y _ Y I(i+m,j+n)K(m,n) (3.7.3)
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Figure 3.7.2: An example of 2-D convolution without kernel flipping, with receptive field of size F' = (2,2)
[10].

The difference between the two lies in whether the commutative property of convolution is applied for
flipping the kernel relative to the input or not; in the context of machine learning, the algorithm will learn
the appropriate values of the kernel in the appropriate place, so an algorithm based on convolution with
kernel flipping will learn a kernel that is flipped relative to the kernel learned by an algorithm without the

flipping.

CNN Architecture

Typically, a CNN consists of three main types of layers: a convolutional layer, a pooling layer and a fully
connected layer. The layers are stacked to form a full convolutional network architecture (see example in
Figure 3.7.1).

Convolutional Layer

The convolutional layer is the core building block of a CNN and most of the computational heavy lifting is
done in this layer. The layer’s parameters can be perceived as a set of learnable filters, where every filter
is relatively small spatially, but extends through the full length of the input’s volume. For example, for an
RGB image consisting of 3 color channels, the respective filter could be of size 5 x 5 x 3, where 5 pixels are
for width and height, and 3 is the depth to match the image’s channels. Filters represent the kernel of a
convolution. During the forward pass of the data through the CNN, each filter slides, convolving across the
width and height of the input volume, and computes dot products between the entries of the filter and the
input at all positions. This convolutional process will produce a two-dimensional activation map, giving
the responses of that filter at every spatial position. The activation maps from all filters of the convolutional
layer are stacked together, forming the final output volume to be forwarded to the next layer of the network.

One characteristic of convolutional layers is the local connectivity of their neurons. This is due to the
impracticality of connecting neurons to all the neurons in the previous volume when dealing with high-
dimensional inputs as images. The spatial extend of this connectivity is a hyperparameter called receptive
field of the neuron and it represents the area of the input visible to the kernel or filter at each operation.An
example of a convolution with receptive field F' = (2,2) applied on a 2D input can be seen in Figure 3.7.2.
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Figure 3.7.3: An example of CNN filters response in an image classification task [11].

The size of the output volume of the convolutional layer is controlled by four main parameters:

1. Depth corresponds to the number of filters to be used for the CNN, each one looking for a different
feature in the input data, that will be learned during training. The number of filters defines the number
of different feature maps yielded in the output, thus the depth of the output data. An example of the
filters’ response in learning different characteristics can be seen in Figure 3.7.3.

2. Stride is the number of pixels, or in general data points, that a filter has move towards one direction,
when preparing for the next convolutional operation on the input volume. The size of stride is inversely
proportional to the output volume size spatially; a larger stride will give smaller output volumes, while
a stride equal to 1 is neutral, meaning the convolution slides at the exact next position.

3. Zero-padding refers to padding the input volume with zeros around the border. This gives the
flexibility of controlling the spatial size of the output wrt the input volume. A common use of zero-
padding is to preserve the size of the input volume, so that the width and height of the output remain
the same. Padding can also be applied by repeating the edge values, thus instead of zero-padding,
same-padding might be used as well.

4. Dilation forms non-contiguous filters, introducing spaces between each cell of the kernel, the size of
which is defined by the dilation parameter and was more recently introduced as a CNN feature [YK15].
Denoting the kernel size as K and the dilation as D, then the size of the receptive field of the filter is
F = K x D. Also, when dilation is D = 1 the kernel cells are sequential, whilst a dilation of D = 2
would mean that one sample is skipped between each kernel cell. Dilation can be perceived as searching
for features at different scales, with low dilation indicating scanning of local patterns and higher dilation
for global ones.

In Figure 3.7.4 an example of using the above parameters is presented, where the weights of the kernel
(receptive field of neuron) are shared across all neurons.

Pooling Layer

A pooling layer is commonly used in between successive convolutional layers, to reduce the dimensionality
of the feature map, and hence decrease the amount of parameters and computation in the network, also
preventing it from overfitting. This type of layer operates on every depth slice of the input separately, and
resizes it spatially by applying a downsampling operation, usually the max mathematical operation. In
addition to max pooling, the pooling units can also perform other functions, such as average pooling or even
L2-norm. Average pooling was often used historically but has recently fallen out of favor compared to the
max pooling operation, which has been shown to work better in practice. Pooling layer requires the definition
of two hyperparameters, namely the stride of the kernel S and the receptive field F. Usually, pooling layers
are not trainable, meaning that the operation they perform is fixed and they have no weights to train.
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Figure 3.7.4: An example of 1-D convolution with zero-padding of P = 1, dilation D = 1 and receptive field
F = 3. The input size is W = 5. Left: The neuron strided across the input in stride of S = 1, giving
output of size (5 — 3+ 2)/1 + 1 = 5. Right: The neuron uses stride of S = 2, giving output of size
(5—-3+4+2)/2+1=3]12].

Fully-Connected Layer

A Fully-Connected layer (FC), is the final major layer of a CNN. Neurons in an FC layer work in a similar
fashion as MLP; they have full connections to all activations in the previous layer, so that each input is
connected to each output with a weight. Their activations can hence be computed with a matrix multipli-
cation followed by a bias offset. Fully-connected layers are typically used at the end of the CNN network,
succeeding all the other layers, and they perform the final task, either this be e.g. a classification task or
some transformation of the processed feature maps in order to discover global patterns in the data.

Motivation behind CNNs

Convolution leverages three important ideas that have motivated the machine learning community to in-
corporate the method into neural networks: sparse interaction, parameter sharing, and equivariant
representation. Moreover, convolution provides a means for working with inputs of variable size, contrarily
to a fully-connected network that requires a standard-size input.

First and foremost, CNNs are less computationally demanding and faster to train than their fully-connected
counterparts. Due to their need for a smaller kernel than the input size, known as sparse interactions or
sparse connectivity, fewer parameters have to be stored, which both reduces the memory of the model, but
also improves its statistical efficiency. Given a network of m inputs and n outputs, the original matrix
multiplication requires m x n parameters, and the runtime of the algorithm is O(m x n) per iteration. In
the case of convolutional operations, however, the connections are limited to k, which might be even several
orders of magnitude smaller than m, thus the parameters are reduced to k& x n and the runtime becomes

O(k x n).

Parameter sharing refers to the use of the same parameters for more that one function in the model. This is
an inherent property of convolutional neural networks, as by applying the convolutional operation, the kernel
passes through all the elements of the input. Hence, rather than learning a separate set of parameters for
every location, the same set is applied to all.

The property of parameter sharing in CNNs induces one more fundamental property of the convolutional
layers, named equivariance of translation. An equivariant function changes its output in the same way as the
input changes; specifically, a function f(z) is considered equivariant to a function g(z) if f(g(z)) = g(f(x)).
In the context of convolutions, denoting the convolutional operation as function f, this is equivariant to any
function that translates the input, e.g. shifts it, which can be denoted by g.

The importance of this property can be made more clear by the following examples. In time-series data,
when shifting an event later in time in the input sequence, the convolutional operation will be able to
detect it and the exact same representation of it will appear in the output, just in a later time slot.
This allows the identification of when different features appear in the input, hence the detection of their
timeline. Also, in the spatial domain of images, convolution creates a 2-D map of where certain features
appear in the input. When processing an image, it is typical to detect edges in the first layer of a CNN.
Similar edges might appear in several areas of the image to be detected, and here arises the need of pa-
rameter sharing across the entire image, which is nicely handled by the equivariance property of convolutions.
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Figure 3.7.5: Recurrent neural network (left) vs. Feed-forward neural network (right) [13].
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Figure 3.7.6: Unfolded RNN architecture, where the network has completed ¢t + 1 iterations, for ¢ € [0,T]
[14].

The neural networks that have been presented until now lie under the umbrella of feed-forward ar-
chitectures, where a fixed amount of input data is given to the network to be processed simultaneously,
giving the output data all together. This kind of networks is great for handling static data such as images;
however in sequential data the sequence-parameter and its dependencies are not taken into account as
the data points are processed each one separately, loosing possibly viable time-related or ordinal-related
information. A solution to this problem is proposed by the networks that will be discussed next, namely
recurrent neural networks.

3.7.2 Recurrent Neural Networks

Recurrent neural networks [RHW86] is a type of NN that applies on sequential or time-series data, taking
into consideration the nature of their structure, and they are commonly used in temporal or ordinal problems.
Specifically, they are distinguishable by their concept of "memory", where information from prior inputs is
saved to be used on the current input and influence the respective output. To transition from multilayer
networks to recurrent networks, the idea of sharing parameters across different parts of the model has to be
applied. Parameter sharing makes it possible to extend and apply the model to examples of different lengths
and generalize across them.

Basic RNNN Structure

A simple RNN has a feedback loop as shown in Figure 3.7.5, which gives the feedback of T' time steps, the
number of which is defined by the architectural design, and can be unfolded an equal amount of times to
the number of time steps. For simplicity, the RNNs will be referred to as operating on a sequence of vectors
x!, where the time step index ¢ will be ranging from [1,7]. The time step index does not have to literally
express the passage of time in the real world, it could be just the position in the sequence. An unfolded
middle stage representation of an RNN can be seen in Figure 3.7.6. This process will be repeated for T' time
steps, starting from 2<%> until 2<7>, where the network gives the final output y”. For each time step ¢, the
activation a; and the output y; are expressed by the following equations:
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hy = a<t” = gl(Waaa<t_1> + Wazx<t> + ba)

y<t = go(Wyea<" +b,) (3.7.4)

where Wau, Waa, Wya, ba, by are the RNNs coefficients which are temporarily shared, and g1, g» are the ac-
tivation functions. In RNNs specifically, the activations of the middle representations of the sequence are
better known as hidden states of the network, h;.

Types of RNNs

Depending on how the input and the output data are related and fed to the recurrent neural network, there
are four different types of RNNs:

1. One to One - else known as Vanilla RNN, is used for general ML problems and has one input and
one output, as a single (x,y;) pair.

2. One to Many - in this type of networks, a single input at z; can produce multiple outputs e.g.
(Y20, Ye1, Ye2)-

3. Many to One - those networks take many inputs from different time steps, to produce a single output.
For example, (4, Xt41,Zr42) can produce the output y;.

4. Many to Many - they take a sequence of inputs and generate a sequence of outputs. The input and
the output can have the same or different lengths.

As it can be seen in Figure 3.7.7, the type of RNN to be chosen greatly depends on what kind of data are
to be handled and the problem that has to be solved. In our work, data is in the form of time sequences,
were many inputs are given and a single prediction has to be made for each sequence, thus the Many to One
architecture will be used. But this will be further discussed in Chapter 4.

Bidirectional RNNs

The basic structure of RNNs that has been discussed until now is "causal", meaning that it takes into
consideration only states of the past k(1) ..., h*=1 and the current input x(*) in order to make a prediction
y® for the current time step. Also, some of the models allow information from past y values to affect the
current state, when they are available. However, there are applications were future time steps need to be
utilized in order to improve the model’s accuracy; thus the whole input sequence is used to output a prediction
of y®). For example, in speech recognition, the correct interpretation of the current sound as a phoneme may
depend not only on the previously predicted phonemes, but also on the next ones, due to co-articulation.
Also, since linguistic dependencies between nearby words may exist, if there are multiple interpretations of
the current word that are acoustically plausible, it is needed to look both into the preceding and following
words to disambiguate them.

Bidirectional RNNs achieve the access to both past and future time steps for each prediction, by stacking an
RNN that moves forward through time, beginning from the start of the sequence, with a second RNN that
moves backwards through time, beginning from the last time step of the sequence. This presupposes that the
prediction of y® is made after the whole sequence is passed through the network, as it is depicted in Figure
3.7.8.

Long Term Dependencies

There are cases in sequential problems, where the relevant information lie far away in the sequence, thus
a larger network is needed to capture their relation. However, as that gap grows, RNNs become unable
to efficiently learn to connect the information. It is difficult to capture long-term dependencies, since the
multiplicative gradient during the model’s training can exponentially decrease or increase with respect to
the number of layers. Hence, the vanishing and exploding gradient phenomena are often encountered in the
context of RNNs.
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Figure 3.7.7: The different RNN categories, depending on the relation between the length of input and
output sequences, Ty, Ty, [15].
The choice of the correct architecture is defined by the nature of the problem, for example: (a) Traditional
neural network, (b) Music generation, (c) Sentiment classification, (d) Name entity recognition, (e¢) Machine

translation
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Figure 3.7.8: Bidirectional RNN architecture [14].

As an example of long term dependencies, consider predicting the last word in the text “I grew up in Greece,
[...] I speak fluent Greek.”. Recent information suggests that the next word is probably the name of a
language, but in order to narrow down which one it is, the context of Greece is needed, which appeared
further back. It’s entirely possible for the gap between the relevant information ("Greece" in the current
example) and the point it is needed in the sequence ("I speak fluent ..."), to become very large.

In order to remedy the vanishing gradient problem, specific gates are used in some types of RNNs
and usually have a well-defined purpose. They are normally noted as I" and are equal to:

[ =o(Wz<"” + Ua<""'> + ) (3.7.5)

where W, U, b are coefficients specific to the gate and o is the sigmoid function.

Two of the most well-known gated RNN architectures will be discussed next.

Gated Recurrent Unit - GRU

This RNN variant has two gates, a reset gate I, and an update one I';,, which control how much and which
information of the sequence to retain for future predictions [Chu+14]. Basically, these are two vectors, which
decide what information should be passed to the output. They are trained together with the rest of the
network, learning to keep useful information from long ago, without washing it through time, and remove
information, which is irrelevant to the prediction.

The equations for time step ¢ of the GRU module are formed as follows:

2zt = o(Woxy + Uyhy—q)
ry = o(Wexy + Uphyi—1)
hy = tanh(Waxy + 1 © Uhy—1)
he =2 @by + (1 —2) @ hy (3.7.6)

e The update gate z; helps the model to determine how much of the past information needs to be
passed along to the future. This is a powerful method of the model to decide whether to copy all the
information of the previous time steps and eliminate the risk of the vanishing gradient problem.

e The reset gate r; allows the model to decide how much of the past information to forget.
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Figure 3.7.9: Different RNN variations overview: RNN, GRU and LSTM [16].
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e The current memory content hs uses the reset gate to store the relevant information from the past.
The element-wise multiplication between the reset gate and the previous memory product Uh;_; will
determine what to remove from the previous time steps.

e The final memory at the current time step h; incorporates the update gate to determine what to
collect from the current memory content h; and what from the previous time steps h:_1.

The application of update and reset gates in GRUs eliminates the vanishing gradient problem since the model
is not washing out the new input every single time (meaning that the previous input information is deleted
every new iteration); instead, it keeps the relevant information and passes it down to the next time steps in
the network. GRUs, if carefully trained, can perform extremely well, even in complex scenarios.

Long-Short Term Memory Network - LSTM

LSTM [HS97] is another variation of RNNs, predecessor of GRUs, and has been widely used for efficiently
coping with long-term dependencies limitations of RNNs until today. At each time step, the LSTM cell takes
as input three different pieces of information — the current input data x;, the short-term memory from the
previous cell h; (similar to hidden states in RNNs) and lastly the long-term memory ¢;. The short-term
memory is commonly referred to as the hidden state, and the long-term memory is usually known as the
cell state. There are three gates in LSTMs compared to the two gates GRUs have. Their purpose is also
to regulate the information to be kept or discarded at each time step before passing on the long-term and
short-term information to the next cell, and are known as the input gate, the forget gate, and the output gate.

The key to LSTMs is the cell state, which, as shown in Figure 3.7.10, runs straight through the entire chain,
with only some minor, linear interactions. Information can be easily added or removed from it, regulated by
the LSTM’s gates.

The equations that define an LSTM are the following:

fe=0(Wy - [hs—1, 2] + by)
it = o(W; - [he—1, ] + b;)
Cy = tanh(We - [he_1, x¢] + bo)
Cy :ft*C’t,1+it*C~'t

ot =Wy - [he—1,x¢] + bo)
hy = oy x tanh(C}) (3.7.7)
where the weight matrix can be considered as W; = [W;|U;] for j = f, 4, C for consistency with the equations

of GRU 3.7.2 and b; is the bias.

e The first step of an LSTM is to apply the forget layer to the input cell state, as shown in Figure 3.7.11.

e The next step is to decide what new information is going to be stored in the cell state and it consists of
two parts. First, the input gate layer, which is a sigmoid layer, decides which values to update. Then, a
tanh layer creates a vector of new candidate values C’t, that could be added to the state, as it is shown
in Figure 3.7.12.

e In the next step, these two are combined to create an update to the state, as it can be seen in Figure
3.7.13. To do so, the old state is multiplied by f;, forgetting the things which were decided to forget
earlier. Then, i; x C, is added. This is the new candidate values, scaled by how much it was decided to
update each state value.

e The output of the LSTM is a filtered version of the cell state. First, a sigmoid layer is applied, deciding
what parts of the cell state are going to output. Then, the cell state go through tanh and are multiplied
by the output of the sigmoid gate, so that only the parts that were decided form the output. This final
step can be seen in Figure 3.7.14.
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Figure 3.7.10: Cell state of an LSTM. It’s very easy for information to just flow along it unchanged [16].

Figure 3.7.11: The Forget Gate Layer of an LSTM. In this layer, the decision of whether to keep or throw
away from the cell state some information is made [16].

Figure 3.7.12: The Input Gate Layer of an LSTM [16].
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Figure 3.7.14: Output Layer of an LSTM [16].
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4.1 Datasets

In our work the problem of sleep stage classification via wearable devices is examined, testing some of the
previously presented methods in the literature review, as well as some new advancements on them. The data
used for the experiments that follow are the two datasets employed in [Wal+19].

4.1.1 Walch dataset

The first one is an internal dataset created by the team of Walch et al. [Wall9], and can be acquired from
here: https://physionet.org/content /sleep-accel /1.0.0/. The dataset consists of 31 subjects during an 8-hour
night’s sleep. Initially 39 subjects were recruited, but eight of them were excluded due to errors with data
transmission, sleep apnea and REM sleep behavior disorder conditions. The sleep is monitored with PSG,
giving labels of the sleep stage every 30-second epochs. The subjects were given an Apple Watch to wear
during the night’s sleep at the lab, which recorded acceleration (in g) and heart rate (in beats per minute,
bpm). Specifically, the measurements consist of:

e Acceleration on the 3D axis. It has values in the (x,y,z) direction, and it is measured in units of
9(9.8m/s). Tts sampling rate ranges around 50H z.

By investigating the dataset, it was observed that the sampling rate greatly differed among subjects,
thus some kind of interpolation should be applied to ensure a uniform sampling rate amongst all
subjects.

Also, short windows of time with missing data occasionally occurred, likely due to server-side issues
during the real-time sleep night data collection.

¢ Heart rate, for which the sampling rate is every several seconds (beats per minute) and is 1-dimensional
feature.

In order to have a uniform sampling rate, the best approach is to resample every 1-second, so that it is
fixed to 1Hz.

There are missing values in some time segments during the night’s sleep as well.

e PSG data during a night’s sleep: one sleep state is annotated with a value every 30-second segments,
equivalent to 1 epoch.

They are used as labels for the data and they have no missing values.

However, they contain -1 values which indicate unlabeled data and need to be handled carefully during
the data processing.

The subject’s ambulatory steps are also collected with the Apple Watch. The PSG labels consist of: Wake,
N1, N2, N3, N4, REM as directed by the AASM method. In total, the following types of data are provided
in the Walch Dataset:

e motion (acceleration): Recorded from the Apple Watch and saved as .txt text files with the naming
convention ’[subject-id-number| _acceleration.txt’

Each line in this file has the format: date (in seconds since PSG start), x acceleration (in g), y accel-
eration, z acceleration

e heart rate (bpm): Recorded from the Apple Watch and saved as .txt files with the naming convention
"[subject-id-number| heartrate.txt’

Each line in this file has the format: date (in seconds since PSG start), heart rate (bpm)

e steps (count): Recorded from the Apple Watch and saved in the format ’[subject-id-
number| _steps.txt’

Each line in this file has the format: date (in seconds since PSG start), steps (total in bin from this
timestamp to next timestamp)
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e labeled sleep: Recorded from polysomnography and saved in the format ’[subject-id-
number| labeled sleep.txt’

Each line in this file has the format: date (in seconds since PSG start) stage (0-5, wake = 0, N1 = 1,
N2 =2, N3 =3, Nj = 4, REM = 5)

4.1.2 MESA dataset

The second dataset used in our work is the Multi-Ethnic Study of Atherosclerosis (MESA) [Nat16; Zha+18a;
Che+15] and can be found in here https://sleepdata.org/datasets/mesa. MESA is a multicenter longitudinal
investigation of factors associated with the development of subclinical cardiovascular disease and its progres-
sion from subclinical to clinical cardiovascular disease, hence from a state where the patient has no signs and
symptoms that are detectable by physical examination or laboratory test to a state where the disease can
be clinically manifested. It consists of 6814 black, white, Hispanic and Chinese-American men and women
initially aged between 45-84 starting at baseline in 2000-2002. Between 2010-2012, 2,237 participants also
were enrolled in a Sleep Exam (MESA Sleep), which included full overnight unattended polysomnog-
raphy, 7-day wrist-worn actigraphy, and a sleep questionnaire. The objectives of the sleep study are
to understand how variations in sleep and sleep disorders vary across gender and ethnic groups and relate to
measures of subclinical atherosclerosis.

We use the data in the same manner as in [Wal+19], for testing purposes of how well can the pre-trained
models generalize on unseen datasets. In this sense, the first 188 subjects of MESA dataset with co-recorded
actigraphy and PSG data are extracted and processed for use as an independent testing set. As is done in
the referring work, there is a direct correspondence between the motion and local standard deviation of heart
rate features to activity counts from actigraphy and heart rate during PSG, respectively. The heart rate in
the MESA dataset is derived from pulse oximetry (PPG), enhancing the comparability of the Apple Watch
dataset used for training and the MESA dataset used for testing purposes.

Specifically, the dataset is formed as follows:
e Heart rate: it is collected via the polysomnography records, as described below.
It is derived through the corresponding .EDF files, with sampling rate of 1Hz.

e Actigraphy: 2,237 participants were recruited to wear wrist-worn actigraphy devices (Actiwatch Spec-
trum, Philips Respironics) between 2010 and 2013. Participants were instructed to wear the watch for
a week. Records were scored by a trained technician at the Boston Sleep Reading Center.

Epoch-by-epoch (EBE) data files (CSV) have been created for 2,159 participants with actigraphy data.
Each row in these files represents 30 seconds worth of summary data from the actigraphy device.

¢ PSG: Polysomnography records, corresponding to five sleep stages (N1, N2, N3, N4, REM, Wake).

In-home polysomnography (PSG) was conducted using the Compumedics Somte System (Compumedics
Ltd., Abbotsford, Australia). The sensors and recording montage consisted of cortical electroencephalo-
grams (central C4-M1, occipital Oz-Cz, and frontal Fz-Cz leads), bilateral electrooculograms, chin
EMG, thoracic and abdominal respiratory inductance plethysmography (by auto-calibrating induc-
tance bands); airflow (by nasal-oral thermocouple and pressure recording from a nasal cannula); ECG;
leg movements, and finger pulse oximetry. In addition to connection of sensors and electrodes, trained
staff members completed signal calibrations and checked impedance. Nocturnal recordings were trans-
mitted to the centralized reading center at Brigham and Women’s Hospital and data were scored by
trained technicians using current guidelines.

Raw polysomnography data are available for 2,056 MESA Sleep participants. Each recording has a
signal file ((EDF) and two versions of the event scoring and epoch staging annotations (.XML).

In Figure 4.1.1 are depicted the data distributions for both Walch and MESA datasets, for all the sleep stages
tested in this work. Their initial labels distributions are also presented, which consist of six sleep stages,
including stage N4. In Figure 4.1.2 and in Figure 4.1.2 can be seen the histograms of each feature separately,
for every sleep stage, for the Walch and MESA dataset respectively.
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Figure 4.1.1: The histograms of class distributions both for MESA and Walch datasets, for all the sleep
stage classes. The first six classes are the ones provided by the original datasets, while the rest of the
classification schemes are studied in this work.
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Figure 4.1.2: Histograms of the raw features from the Walch dataset, grouped by the sleep stage they
belong to. (a) heart rate, (b) wrist motion of x-axes, (c) wrist motion of x-axes, (d) wrist motion of z-axes
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Figure 4.1.3: Histograms of the raw features from the Walch dataset, grouped by the sleep stage they
belong to. (a) heart rate, (b) wrist motion
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4.2 Simple Bidirectional LSTM

For the first of the proposed experiments, a simple bidirectional-LSTM architecture was tested on the Walch-
designed features, as described in [Wal+19]. The source code for the feature extraction can be found in
here: https://github.com/ojwalch/sleep classifiers. In the aforementioned paper, the classification methods
used lie in the area of ML algorithms, and a simple MLP deep learning approach, which do not take into
consideration the temporal relations of the data. Hence, here an RNN architecture is applied on the features
extracted by Walch et al. to take the time parameter into account and examine how such a model performs
having those features as input. Bidirectional-LSTMs have been widely used in other works tackling sleep
stage classification with wearable derived data, thus it seemed to be the best-suited option for the task. The
classification task is tested in all of the 2-5 sleep stages.

4.2.1 Data Preparation
Data Preprocessing

For the data preparation, the same feature extraction method is followed as in Walch et al., as it is proposed
in their given code. However, some preprocessing steps are taken first, to ensure the correctness of time
alignment between the epochs:

e To begin with, there are missing epochs in Walch‘s data, which were not handled in their approach,
since they did not use continuous sequential data, but separate timestamps as their data points.
In order to get continuous time segments, in our work the raw data are split at the points where
epochs were missing from at least one feature, so that the new segments have continuous epochs with
valid values in all features (psg, heart rate, acceleration).

e Also, the -1 values needed to be removed from the PSG labels, as they indicate unsorted data. To do
this, 3 cases are considered:

1. If the values are at the beginning or the end of the sequence they are just removed, by cutting
them off the sequence.

2. If there is a single value in the middle of the sequence, it will be replaced by the round of the mean
value of the two neighboring ones.

3. Finally, in the case of a sequence of -1 values being in the middle of the data (meaning that they
are not boundary values), they have to be removed and the data is split in their place; but this
case is not practically encountered in the dataset.

e Then, the preprocessed raw data (psg, motion, acceleration), segmented into continuous time sequences,
are given as input to the Walch code for feature extraction.

e Finally, the extracted features are given as input to the proposed bidirectional-LSTM for training.

Feature Extraction
The final features consist of:

e Activity counts, extracted from the motion data; it is converted from raw acceleration in m/s? using
the method outlined in [TV13] and implemented in Walch source code. It is chosen in order to allow
compatibility with measurements from other tools after they are also being converted into activity
counts. For the preparation of features, the data are cropped to a local window of 10 minutes around
the scored epoch. The final activity count feature is derived by convolving the window with a Gaussian
(o0 = 50 seconds).

e Cosine transform, which implements a simplified version of the circadian clock of the individual. A
fixed cosine wave is used, appropriately scaled and shifted relative to the time of recording start, which
rises and falls over the course of the night, so that it matches the physiological behavior of the circadian
clock during a night of sleep.
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e HR feature, which is derived after the application of some preprocessing steps on the heart rate
measurements. The signal is firstly interpolated in order to have sampling rate of 1Hz exactly. Then it
is smoothed and filtered by convolving with a difference of Gaussian filter (o7 = 120 seconds, o3 = 600
seconds). Normalization is applied on each individual by dividing with the 90" percentile of the
absolute difference between each HR data point and the mean value of heart rate over the whole sleep
period. Finally, the standard deviation in the window around the scored epoch is extracted and the
resulting values are used as the representative feature for heart rate.

e Time feature, which refers to the time since the recording offset.
e PSG labels

In Figure 4.2.1 are depicted the raw heart rate and 3D wrist acceleration features for subject 46343 0, after
applying the preprocessing method described in Section 4.2.1.In Figure 4.2.2 are depicted the corresponding
extracted features, as described above. The time feature is used for the horizontal axes of all the other subject
figures, given that it expresses a linear time sequence, since the beginning of the recording. In Figure 4.2.3
are presented the histograms per extracted feature for the Walch dataset, grouped by their corresponding
sleep labels. For the activity count feature, there are outliers, which are purposely collected together in the
histogram for better visibility. Figure 4.2.4 shows the same extracted features for the MESA dataset.

4.2.2 Architecture
A bidirectional-LSTM architecture is implemented using Pytorch [Pas+19]. The model consists of:

e an LSTM layer with the bidirectional parameter set to true.

e a Linear Layer, which receives the output of the biLSTM layer and returns a vector of size equal to
the number of sleep stages, which represent the probability of each sleep stage to be the correct one.

e Cross-entropy loss is used as the model criterion for back-propagation during training: softmax
and logarithmic transformation are applied to the output of the linear layer in order to get the
prediction of the class, by returning a one-hot vector with the sleep stage with the highest probability.

Batch size

The parameters determining some of the most prominent NN architectures, which are also incorporated in
our work, are discussed in Chapter 3. However, some more technical details need to be explained before
presenting the models designed for the purpose of the current work’s experiments. Neural networks are
quite time demanding due to the heavy computations that need to be performed during the training process,
so parallelizing the computations has been a major focus point of the NN technological and hardware ad-
vancements. Since the data used in neural networks are interpreted as multidimensional arrays, the graphic
processing unit of a computer is utilized for their handling. GPUs are originally designed for the graphic
interface of the computer, to optimally process images, which have the same representation of arrays, making
GPUs a perfect candidate for the heavy computations of neural networks. The standard way of passing the
data through the network for training, is by giving the data points one at a time to the CPU, then applying
back-propagation to calculate the corresponding loss and improve the network’s weights at each iteration.
However this method is quite time-consuming, hence a more advanced technique has been developed, in order
to take full advantage of the computational power of the GPU. The data are split into batches of a predefined
size, and one batch is given as input at each iteration during the training process. The total training loss
is computed for all the samples in the batch and it is back-propagated for correcting the network weights.
Once all the batches of the training data are passed through the network and back-propagated accordingly,
this is called a training epoch. The total training of the network consists of a specified number of training
epochs. In this manner, the network "sees" the data points of the whole batch before improving its weights.
The choice of the batch size needs to be handled carefully though, as, in case the dataset is relatively small, a
larger batch size will not allow the model to properly train. This is due to the fact that the model’s weights
are corrected with the aggregated loss of all samples in each batch; hence, if a dataset is relatively small and
it has a large batch size, the model will be corrected just a few times in each training epoch, not capturing
all the details of the dataset and not being able to converge in an optimal state. Also, it has been observed
that larger batch sizes incline to generalizing worse at test data, as the model tends to find sharp minima
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Figure 4.2.1: The raw features of subject 46343 0 from the Walch dataset, with their corresponding sleep
labels. (a) raw heart rate and (b) wrist acceleration
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Figure 4.2.2: The extracted features with their corresponding sleep labels, for the Walch subject 46343 0.
The x-axes is the time feature, which is counting since the start of the recordings. (a) heart rate feature,
(b) activity count feature, (c) cosine feature
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Figure 4.2.3: Histograms of the extracted features of the Walch dataset, grouped by their corresponding
sleep labels. (a) heart rate, (b) activity count, (c) cosine
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instead of flat ones [Kes+16]. The batch size and its effect on the performance of the model needs to be
counterbalanced with the time efficiency that is desired for training and, hence, the choice of its size depends
on each different case of training.

In our work, after experimenting with batch sizes of 8, 16, 32, 64, the best performing value for the shorter
amount of time is 32. Thus, a batch size of 32 is used for the experiments that follow.

Training the model

The model takes as input pairs of sequences of continuous time segments with a specified length and their
respective sleep label, which is the one defining the last epoch of each sequence. After experimenting with
several sequence lengths, varying between [5, 10, 20, 30] time-steps per segment, it is shown that a 30 time-
step window (15 continuous minutes of samples) gives the best results. Then, the model makes a prediction
for the sleep stage of the last epoch of the segment, taking into consideration the given previous epochs as
well. Thus, the data are split into 30-epoch overlapping windows, in order to incorporate all PSG labels for
training. The first 29 PSG labels are not included, as there are not enough preceding data points to form the
required sequence. To prepare the data, after the 30-epochs’ segmentation, they are shuffled and split into
train — evaluation and test sets, divided by 80-10-10% respectively. A specific seed is given to the shuffling
function in order to always have the same data for training and evaluation, for the comparison of different
model parameters. Sleep stages differ in their presence in the dataset, due to the natural cycle of sleep. Hence
a weight is calculated for each one of them, by taking the percentage of its samples against the samples of all
sleep stages in the dataset. Those weights are used for splitting in a balanced way between train, evaluation
and test sets, to ensure that the amount of each sleep stage is proportionally similar between the three sets.

Experiment categories
There are four categories of sleep stage classification tested:
1. Sleep - Wake
2. Wake - REM - NREM
3. Wake - Light - Deep - REM (light = N1 & N2, deep = N3 & N4)
4. Wake - N1 - N2 - N3 - REM (N3 = true N3 & N4, as described in Section 1.3.1)

The sleep stage N4 was grouped together with N3 for all the experiments as it is proposed is several works,
having a total of 5 sleep stages.
Training Parameters

The following parameters were tested, to find the combination giving the best results and the model with the
highest accuracy. With bold are depicted the best resulting values in most of the cases. The final choices for
training parameters for all sleep stages are presented in Table 4.1.

e number of layers for the LSTM: 2 or 3

e number of timesteps: 5 — 10 — 20 — 30

e dropout for the LSTM: 0.5 or 0. (no dropout)

e learning rate: 0.001 — 0.0001 — 0.00001

e number of epochs for training: up to 1000 (best results for epoch 800 in most cases)

o learning rate scheduler: reducing the learning rate by 0.1 after a checkpoint did not seem to improve
the model, thus it was not applied on the final training.

e hidden size of LSTM: 256, 512
e batch size: 32

e loss_weights: when set to true, the class weights are used as a parameter for the criterion loss (CrossEn-
tropy)
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Table 4.1: Best model parameters for Bidirectional-LSTM.

Sleep - Wake - ‘Wake - Light - Wake -
Wake REM - Deep - REM N1-N2- N3 -
NREM REM
Tl.me sequence 30 30 30 30
(time-steps)
dropout 0.5 0.5 0.5 0.5
learning rate 0.0001 0.001 0.001 0.001
Number of
LSTM layers 2 2 2 2
LSTM hidden size || 512 512 512 512
Batch size 32 32 32 32

4.2.3 Experimental Results

In this section the results of training the models on the Walch dataset and testing them on both the Walch
and MESA datasets, are presented. The best resulting model configurations for each of the four sleep-stage
categories are presented in Table 4.1.

Training and testing on Walch dataset

The results of the best-performing models on the Walch data can be seen in Table 4.2. The classification
report on the test set is presented for all sleep stages. As it can be observed, the best accuracy is for the less
complex problem of two sleep stage classification (Sleep - Wake), while its value degrades as the number of
sleep stages to be predicted increases. Nevertheless, the accuracy is very promising for all the four categories
of sleep stages, ranging between 79% for the five-class problem to 94% for the two-class one. Examining
each class separately, however, the F1-score and support values indicate that the actual occurrences of each
class in the dataset greatly affect the ability of the model to detect the class correctly. Thus, there is a
discrimination between the total accuracy of the model and the F1-score of each class. Even though the total
accuracy can be of a high value, the model might not be able to properly detect specific sleep stages, such as
stage N1 in the five-class problem.

The confusion matrices of the experiments are visualized as heatmaps and can be seen in Figure 4.2.7. A
confusion matrix is a class-wise distribution of the predictive performance of a classification model, where
the columns represent the original or expected class distribution, and the rows represent the predicted or
output distribution by the classifier. The cells with the brightest color on the heatmaps indicate that most of
the predictions are collected in those categories, and the cells following the diagonal line of the map indicate
correct predictions. As it can be seen from the heatmaps, the cells with the brightest color indicate that
most of the predictions are consistent with the PSG labels, since the cells around the diagonal line contain
most of the samples. However, there is a divergence for some sleep stages, which are misclassified with their
neighboring stages in the sleep cycle. This observation is also consistent with the classification report, where
the most prominent sleep stages have the highest values for F1l-score, while the less-represented classes do
not achieve so good classification results.

The train and validation accuracy and losses are seen in Figure 4.2.6. Although it seems like the models train
quite fast from very early epochs, such as epoch 50, when inferring the sleep stages from the test data, the
best accuracy is acquired at around epoch 800. Checkpoints are saved every 50 epochs, so that the model
parameters can be retrieved for testing. The results compared to other works presented in Chapter 2.4 can
be seen in Table 4.4. It is clear that the proposed bidirectional-LSTM model outperforms the NN utilized
in the Walch paper, but it also gives a higher accuracy than the other wearable-based models. It can be
seen that the works incorporating PSG signals for training the models achieve better performance, but this
may be justified by several factors. The signals derived by a PSG are of greater detail than the ones coming
from a wearable device, since they are typically much more dense with a higher sampling rate, but also the
technology used tends to be more precise. Also, more channels are usually measured for each of the signals,
such as in an EEG, making the final dataset more rich with useful information.
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Table 4.2: BiLSTM - Classification report on the test set of the model trained on Walch dataset, for epoch
800, for the all the classification problems, hence All, Light-Deep, REM-NREM, Sleep-Wake.

precision | recall | fl-score | support
wake 0.49 0.61 0.54 272
sleep 0.98 0.96 0.97 4420
accuracy 0.94
macro avg 0.73 0.78 0.75 4692
weighted avg || 0.95 0.94 0.94 4692
precision | recall | fl-score | support
wake 0.68 0.64 0.66 272
nrem 0.93 0.94 0.93 3375
rem 0.84 0.84 0.84 1045
accuracy 0.90
macro avg 0.82 0.80 0.81 4692
weighted avg || 0.90 0.90 0.90 4692
precision | recall | fl-score | support
wake 0.60 0.63 0.62 272
light 0.84 0.86 0.85 2677
deep 0.71 0.71 0.71 698
rem 0.84 0.75 0.79 1045
accuracy 0.80
macro avg 0.74 0.74 0.74 4692
weighted avg || 0.80 0.80 0.80 4692
precision | recall | fl-score | support
wake 0.68 0.62 0.65 272
nl 0.46 0.34 0.39 306
n2 0.80 0.88 0.84 2371
n3 0.80 0.67 0.73 698
rem 0.85 0.84 0.85 1045
accuracy 0.79
macro avg 0.72 0.67 0.69 4692
weighted avg || 0.78 0.79 0.78 4692

Table 4.3: Simple BiLSTM - Classification report on the test set of the model trained on Walch dataset,
with the criterion loss being parameterized with the class weights, for epoch 800, for the 5-sleep stage
classification problem, hence All (Wake - N1 - N2 - N3 - REM).

precision | recall | fl-score | support

wake 0.59 0.68 0.62 272

nl 0.34 0.43 0.38 306

n2 0.83 0.81 0.82 2371

n3 0.79 0.71 0.75 698
rem 0.84 0.83 0.83 1045
accuracy 0.77

macro avg 0.68 0.69 0.68 4692
weighted avg || 0.78 0.78 0.78 4692
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Figure 4.2.6: Train and Validation Accuracy (left column) and Loss (right column) of Bidirectional-LSTM,
when training with the Walch dataset for 1000 epochs. Training data are depicted with the blue line and
validation data are depicted with the orange line.
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Adding class weights to criterion loss

One alteration to the baseline model is to add the class weights, as described in Section 4.2.2, as a parameter
for the criterion loss. Cross-entropy is used as the criterion loss for the bidirectional-LSTM, which is a
very typical choice for this type of multi-class classification problems. In the Pytorch implementation of
CrossEntropyLoss, there is an optional weight argument, which, when provided, receives as input an 1D
Tensor (an array visible by the GPU), that assigns a weight to each one of the classes. This asset is
particularly useful when the training set is unbalanced, as the weight of each class is taken into account while
training, to avoid emphasizing only on the most prominent classes. However, when adding a weight to the
bidirectional-LSTM model, the performance does not improve; on the contrary the accuracy of the model
even slightly decreases, as it can be seen in Table 4.3 for the case of all the 5-sleep stages problem.

Learning rate scheduler

One more alteration to the baseline BILSTM model, is to add a learning rate scheduler during training,
instead of having a permanent learning rate for the whole training session. A learning rate scheduler applies
a different learning rate at each given epoch of the schedule, and the training continues with the new value,
until it changes again. In the Pytorch implementation used in the current work, a parameter gamma is defined,
with which the current learning rate is multiplied when a specified epoch is reached. Gamma is chosen to be
v = 0.1, thus the learning rate is reduced by one order of magnitude each time. This serves in letting the
model learn with a slower pace after the epoch threshold, lowering the amount of updating the weights in each
iteration. In our work, several combinations were tested. We have experimented using varying learning rates,
in the range of [0.01,0.001,...0.00001] and the milestone epochs for the weight update are [300, 500, 800, ...].
However, no improvement was detected compared to the baseline model using a standard learning rate. For
instance, a model with the same starting parameters and learning rate as the baseline BiILSTM, with a value
of v = 0.1 and the epoch milestone being 300, will decrease its learning rate by an order of magnitude after
epoch 300 and will learn in a slower pace. Experimental results have shown that for this model, the accuracy
of the test set at checkpoint 800 is 0.77, which lies in the same range of values as the baseline and even it is
slightly worse than it.

Evaluation on MESA dataset

After training the BiLSTM model on the Walch dataset, a similar approach to their proposed method is
followed, testing its generalization capabilities on a subset of the publicly available MESA dataset. To do
so, the same method as in the Walch approach is used for feature extraction, in order to be analogous
to the features used in the training of the models. The extraction of heart rate and motion features is
straightforward, while for the "clock proxy" feature, the ambulatory actigraphy recording for each MESA
participant is used. Following the approach proposed in the aforementioned paper, the goal is to test the
model performance to unseen individuals and whether it can generalize to a new dataset, unseen during
training, which is derived from a different source. The subset of the first 188 individuals is used and the best
performing model for each sleep-stage group is selected for the experiments.

In Table 4.5 are presented the results of testing the models of the four sleep-stage classification problems on
the MESA subset. It can be observed that the models do not perform as well on data derived with a different
monitoring method, in this case PSG and actigraphy. In the simpler problems such as 2- and 3-sleep stage
classification, the model performs quite well, achieving accuracy of 60% and higher. However, focusing on the
performance of each one of the sleep stages separately, it can be seen that the accuracy immensely decreases
the more complex the problem gets, hence more sleep stages to be classified. Additionally, the sleep stages
that have a weaker presence in the dataset, due to their shorter duration during sleep, tend to get a lower
accuracy and be misinterpreted as the most prominent ones. In Figure 4.2.8 a hypnogram is depicted for
the first subject of the MESA dataset, tested for 2- and 5-sleep stage classification. It can be seen that the
model does not adapt so well on this sort of data.
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Figure 4.2.7: Confusion matrix heatmaps of the different classification schemes for the best performing
BiLSTM models on the Walch-test set: (a) Sleep - Wake, (b) Wake - REM - NREM, (c) Wake - Light -
Deep - REM, (d) Wake - N1 - N2 - N3 - REM.
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4.2. Simple Bidirectional LSTM

Table 4.4: Comparison of accuracy achieved in previous works to ours, on all the four categories of
classification. In yellow color are emphasized the ones using a bidirectional-LSTM architecture. In red color
is highlighted the best accuracy in each classification category among all works, independently of whether
the data used are derived by PSG or a wearable device. It can be seen that our proposed method
incorporating the Walch-extracted features achieve the best accuracy in the wearable category.

Wake Wake
Sleep Wake Light N1
Author Year | Data Method REM N2
Wake Deep
NREM REM N3
REM
HR Logistic
Walch et al. 2019 | PPG Regression 0.8 0.71
(Smartwatch)
k-nn 0.8 0.721
Random 0.799 | 0.702
Forrest
MLP for NN 0.801 0.723
EOG
X. Chen et al. 2020 | EEG 89.40%
EMG
84.80%
81.60%
PSG
P. Fonseca et al. || 2017 | PPG ML 91.50% 72.90% 59.30%
Actigraphy
Zhang et al. 2018 iijifgtrij‘}f; 58.20%
58.50%
H. Phan et al. 2021 Egg XSleepNet 80%
H. Phan et al. || 2019 gg(é S(‘iiqastf:eptlf;t 87.60%
SeqSleepNet
(dataset2) §9.10%
Z. Beattie et al. || 2017 3D acc. 69%
PPG
HR
Our results PPG 94.22% | 89.62% | 81.30% | 78.88%
(Smartwatch)
0.56% 0.63% 0.58%
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Table 4.5: BiLSTM - Model generalization: testing on MESA subset for all classification categories, hence
All) Light-Deep, REM-NREM, Sleep-Wake.

precision | recall | fl-score | support
wake 0.59 0.43 0.49 47536
sleep 0.80 0.89 0.84 126933
accuracy 0.76
macro avg 0.70 0.66 0.67 174469
weighted avg || 0.75 0.76 0.75 174469
precision | recall | fl-score | support
wake 0.70 0.37 0.48 47536
nrem 0.66 0.82 0.73 102748
rem 0.17 0.15 0.16 24185
accuracy 0.60
macro avg 0.51 0.45 0.46 174469
weighted avg || 0.60 0.60 0.58 174469
precision | recall | fl-score | support
wake 0.74 0.23 0.35 47536
light 0.54 0.75 0.63 88324
deep 0.23 0.23 0.23 14424
rem 0.15 0.14 0.14 24185
accuracy 0.48
macro avg 0.41 0.34 0.34 174469
weighted avg || 0.51 0.48 0.45 174469
precision | recall | fl-score | support
wake 0.70 0.38 0.50 47536
nl 0.12 0.08 0.09 16332
n2 0.48 0.59 0.53 71992
n3 0.19 0.42 0.26 14424
rem 0.18 0.12 0.14 24185
accuracy 0.41
macro avg 0.33 0.32 0.30 174469
weighted avg || 0.44 0.41 0.40 174469
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Figure 4.2.8: BiLSTM - Hypnograms for the subject 001 of the MESA dataset, tested on the 2- and 5-class
models of the proposed bidirectional-LSTM. The blue lines are the PSG values and the red cross depicts
the false predictions. Note: The hypnogram is split on the data point stated at the top of each figure, in

order to better fit into the page.

4.3 Simple Bidirectional LSTM - MESA

Willing to study the full potential of our proposed simple bidirectional LSTM model, it is tested on the
whole MESA dataset, which is quite bigger than the Walch dataset. In order to make an 1-1 comparison,
the same features which were extracted for the first set of experiments in Section 4.2 are used. The RNN
model used does not need any alterations or modifications, since the applied features are meant to express
the same physical values for both Walch and MESA datasets. Thus, after the feature extraction, which is
presented in [Wal+19], the bidirectional LSTM model is trained and tested on the whole MESA dataset.

4.3.1 Data preparation & Architecture

The features are extracted using the method proposed by Walch et al., giving as input the raw MESA data.
The final features used for training are the same as in Section 4.2.1, hence consisting of activity count,
heart rate feature, cosine feature, time feature and the corresponding PSG labels, per 30-second
epochs.

In Figure 4.3.1 are depicted the raw heart rate and wrist activity features for the subject 0001, after cleaning
the data by applying the preprocessing method described in Section 4.2.1. In Figure 4.3.2 are depicted the
corresponding extracted features. The time feature is used for the horizontal axes of the rest of the feature
plots, given that it expresses a linear time sequence, since the beginning of the recording.

The model architecture is the same as presented in Figure 4.2.5 and described in Section 4.2.2. The model
parameters are tested and fine-tuned to improve the model performance for each one of the four sleep-
categories. They are firstly initialized with the parameter values chosen for the simple BiLSTM, as derived
for the Walch dataset. The best parameters are presented in Table 4.6. The experimental results are analyzed
in the following section.
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Figure 4.3.1: The raw features of subject 0001 from the MESA dataset, with their corresponding sleep
labels. (a) raw heart rate and (b) wrist acceleration
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Figure 4.3.2: The extracted features with their corresponding sleep labels, for the MESA subject 0001. The
x-axes is the time feature, which is counting since the start of the recordings. (a) heart rate feature, (b)
activity count feature, (c) cosine feature
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4.4. CNN-Bidirectional LSTM

Table 4.6: Best model parameters for Bidirectional-LSTM on MESA.

Sleep - Wake - ‘Wake - Light - Wake -
Wake REM - Deep - REM N1-N2- N3 -
NREM REM
Tl.me sequence 30 30 30 30
(time-steps)
dropout 0.5 0.5 0.5 0.5
learning rate 0.0001 0.0001 0.0001 0.0001
Number of
LSTM layers 2 2 2 1
LSTM hidden size || 512 512 512 512
Batch size 32 32 32 32

4.3.2 Experimental Results

After experimenting with different values for the network parameters, it is shown that a similar architecture
to the one used for the Walch dataset is also suitable for the MESA dataset. Specifically, when more than
two layers are used for the LSTM module, it tends to overfit and becomes unstable while training. Hence,
for the case of the MESA dataset, two layers are also used for most of the sleep stage experiments, except for
the one where all the five sleep stages are to be predicted. This classification problem is the most complex
one, and the experimental results indicate that a more shallow architecture with a smaller learning rate can
better capture the different class details. Furthermore, the amount of data in the MESA dataset is quite
larger than in the Walch dataset, thus in each training epoch the model is exposed to more information and
a slower learning pace might be needed. Reducing the learning rate by one order of magnitude prevents the
model from overfitting and assures a more stable training loss. The different monitoring methods used for the
MESA dataset might also affect the way the model trains, since the internal patterns might differ compared
to the Walch dataset.

The classification report of the best performing model for each sleep category is presented in Table 4.7.
Additionally, in Table 4.8, can be seen the classification report for the 5-class problem, where the criterion
loss of the model is not parameterized by the class weights. The accuracy of the model using the class weights
for the criterion loss is similar to the model with no such weighting parameters. We keep the model with the
parameterized criterion loss as the main experimental architecture, since these were the initial experiments to
be conducted. Observing the classification tables, the accuracy values are proportional to the complexity of
the problem to be solved, hence the more sleep stages to be predicted, the lower the accuracy value is. In the
case of five sleep stages, the accuracy ranges around 53%, which indicates that there is a high tendency for the
correct predictions to be so by chance and the model performs relatively poor. In the rest of the classification
problems (two, three and four sleep stages), the model performs better, with the accuracy ranging between
63% for the four-class and 78% for the two-class problem. The above observation is verified by the F1-score
of the different classification models, as its value increases the less sleep stages to be predicted. Fl-score is a
weighted harmonic mean of precision and recall, between 1.0 (best model performance) and 0.0 (worst model
performance). This model behavior could be a sign of overfitting towards the most prominent categories, or
in general a difficulty of the network to capture some of the more detailed aspects of the data, in order to
classify each sleep stage correctly.

4.4 CNN-Bidirectional LSTM

In the next stage of the experiments, a more advanced approach to the bidirectional-LSTM baseline is adopted.
Instead of having as input the extracted features as proposed by Walch et al., the raw data are used. It is a
common practice to incorporate a CNN architecture as an automatic feature extraction module and feed its
outputs to an RNN network in the case of time sequences classification or prediction (forecasting), which has
been described in detail in previous works in Chapter 2. The data used in our work are sequential, hence an 1D
convolutional architecture is chosen. Since motion and heart rate raw data have different sampling rates, two
separate CNN architectures are created for each one of them respectively, and by taking the concatenation of
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Table 4.7: BiLSTM trained on MESA - Classification report on the test set for epoch 300 - 300 - 800 - 300
for the All, Light-Deep, REM-NREM, Sleep-Wake class problem respectively.

precision | recall | fl-score | support
wake 0.57 0.69 0.62 13129
sleep 0.88 0.80 0.84 35739
accuracy 0.78
macro avg 0.72 0.75 0.73 48868
weighted avg || 0.79 0.78 0.78 48868
precision | recall | fl-score | support
wake 0.53 0.79 0.64 13129
nrem 0.82 0.64 0.72 29108
rem 0.46 0.45 0.45 6631
accuracy 0.66
macro avg 0.60 0.63 0.60 48868
weighted avg || 0.69 0.66 0.66 48868
precision | recall | fl-score | support
wake 0.63 0.74 0.68 13129
light 0.69 0.69 0.69 24933
deep 0.35 0.30 0.32 4175
rem 0.54 0.40 0.46 6631
accuracy 0.63
macro avg 0.55 0.53 0.54 48868
weighted avg || 0.63 0.63 0.63 48868
precision | recall | fl-score | support
wake 0.58 0.73 0.65 13129
nl 0.18 0.24 0.20 4504
n2 0.62 0.55 0.59 20429
n3 0.34 0.31 0.32 4175
rem 0.56 0.38 0.45 6631
accuracy 0.53
macro avg 0.94 0.44 0.44 48868
weighted avg || 0.53 0.53 0.53 48868

Table 4.8: Simple BiLSTM - Classification report on the test set of the model trained on MESA dataset for
all five sleep stage categories (Wake - N1 - N2 - N3 - REM), with the criterion loss of the model not taking
the class weights as an extra parameter.

precision | recall | fl-score | support

wake 0.59 0.75 0.66 13129
nl 0.19 0.2 0.19 4504

n2 0.62 0.59 0.6 20429
n3 0.34 0.32 0.33 4175
rem 0.56 0.34 0.42 6631
accuracy 0.54

macro avg 0.46 0.44 0.44 48868
weighted avg || 0.54 0.54 0.53 48868
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their outputs, the extracted features are forwarded to the previously introduced simple bidirectional-LSTM,
by altering some of the model parameters in order for the newly extracted features to fit to the input of the
network. The total network is trained end-to-end, meaning that the data pass through the whole length of
the network, both the CNN and the bidirectional-LSTM module, before applying back-propagation, hence
all its components are trained simultaneously.

4.4.1 Data Preprocessing

The disadvantage of CNNs compared to RNNs is that they take a standard-sized input instead of the flexibility
that an LSTM offers regarding the length of the input sequence. Thus, in order to secure this condition, the
following preprocessing steps are applied on the raw Walch dataset:

1. Firstly, the same segmentation method as in the first experiment, Section 4.2, is applied on the data,
in order to remove the unscored PSG labels (denoted as -1 in the dataset.) This way, continuous time
sequences are created, which may be sub-sequences of the initial one.

2. The second step is to apply interpolation on both raw features, so that all 30-second segments (epochs)
have the exact same number of samples. The interpolation frequency is indicated by the dataset
description, and it is the same as the sampling rate of monitoring, at 50Hz for motion and at 1Hz for
heart rate.

3. Finally, the interpolated data are standardized per individual, in order to have a normal distribution
and lie in the same space for all participants:

z =

(4.4.1)

g

where 1, 0 are the mean and standard deviation of the individual for each feature and X is the value
at each data point.

The final features consist of two sequences of data points, one for the motion feature and one for the ac-
celeration, being 1- and 3-dimensional, respectively. Every continuous time sequence occurring from the
segmentation of the whole raw data consists of a number of epochs and its length has to be equal to or
greater than the chosen number of time steps that will form each input sequence. We experiment with 5,
10, 20 and 30 time steps as it was done for the simple bidirectional-LSTM baseline. Each epoch consists
of exactly 1 sample for the motion feature and 50 3D samples for the acceleration feature, for axes x, y, z
respectively.

4.4.2 Architecture

The design of the CNNs has to be made with great precaution, since the output dimensions of the two features
(motion and acceleration) need to have identical lengths, in order to be concatenated and fed in parallel to
the bidirectional-LSTM, as it was done in the baseline model. To do so, some technical characteristics of the
CNNs need to be examined. Specifically, how the dimensionality of the input data in a CNN model affects
the dimensionality of its output.

The output size of a CNN depends on two kinds of variables: (i) the size and dimensions of the input data
and (ii) the parameters that define the network. The parameters characterizing the network are the ones
controlling the convolution operation as presented in Section 3.7.1, namely depth, stride, zero-padding
and dilation, also the number of filters used, each one studied separately as follows:

e The depth of the network differs for the heart rate feature and the motion one. To begin with, the
features extracted by the CNN will be fed to the bidirectional LSTM afterwards, to continue the process
of automated data analysis and pattern recognition, for the final classification of each epoch. Thus,
the CNN network does not need to be very deep, in contrast a narrow architecture is preferred. Since
the HR feature has a small sampling rate of 1Hz, meaning that only a short amount of data points is
included in each training sequence, a single-layer CNN is chosen, with the depth parameter being equal
to 1. For the acceleration feature, the sampling rate is much higher, at 50Hz, so a 2-layered network
is designed to process it. The parameters of each convolutional layer are defined separately from each
other and which will be presented in greater detail below.

91



Chapter 4. Experiments

(32x5x30)

>

(160x1x30) (160x2x14)

Heart
rate

| I(160x1x1500)

(160x2x13)

(32x( 14x5)x10
Stride: 1 Sz 2

Kernel size: 4 CNN1

|
maxpooling ]—P[ RelU zero-padding | |

(32x5x1500)

32><70x10)
reshape &
>

concatenate
BlLSTM

(160x8x14)

e Stride: 5 05 Stride: 5
tride: Stride: 2
Kernel size: 10 CNN1 Kernel size: 10 CNN2

CNN maxpooling ]—P[ RelU m maxpooling H RelU

Motion

Figure 4.4.1: The proposed convolutional architecture for the automated feature extraction of the raw heart

rate and acceleration data, in order to be given to the bidirectional LSTM afterwards. The time

distributed method is adopted, where the sequence length is aligned with the batch size for computational

efficiency.

e No zero-padding is added to neither of the two CNN architectures; both heart rate and motion

sequences already have a defined and fixed length, so there is no need to adjust them again inside the
CNNs. However, each heart rate feature sequence, extracted by the respective HR 1-layer CNN, is
extended and reshaped afterwards, in order to match with the length of the motion feature sequence.
Motion has a larger sampling rate, so it is expected to have a longer output sequence after the 2-layered
CNN. Thus the HR output feature has to be zero-padded to match with the length of the motion feature
sequence, in order to be then given together, as a whole input, to the bidirectional LSTM module. The
process of how the motion and heart rate features are prepared and given as input to the bidirectional
LSTM are described in the following Paragraph of Time-Distributed network 4.4.2.

Dilation is omitted in the initial experiments as well. It refers to the spacing between the kernel
elements and it offers a wider field of view without increasing the computational cost at the same time.
Dilated convolution can expand the receptive field without pooling, allowing each convolution output to
contain a wide range of information, and it is typically applied to problems that require longer sequence
information dependencies such as speech and text. However, given that sampling rate is not very high
neither for HR nor for the motion feature and long-term dependencies are supposed to be handled by
the LSTM afterwards, dilation is not incorporated in the current CNN models.

Stride refers to the stride of the cross-correlation. It determines the length of the output sequence,
and for the heart rate feature at least one sample per epoch is needed. Thus, since HR has sampling
rate of 1Hz, a stride of 1 is used for it, so that the convolutional operation moves one step at a time
and the desired condition is satisfied. Regarding the motion feature, the sampling rate is much higher
at 50Hz, thus a stride of size 2 is used for both CNNs of the motion feature network, to constrict its
output length. The mentality behind this choice of stride values, is that, since the already proposed
bidirectional LSTM will be incorporated for the experiments, a similar input of features would be
preferred, in terms of their shape and size. The value of the stride for the two CNNs is chosen so that
the output of the networks has a size close to the size of the manually extracted features, both for heart
rate and for motion. The method proposed by Walch, introduces a single representative value of every
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4.4. CNN-Bidirectional LSTM

feature for each epoch, so the automatically extracted features by the CNN modules try not to differ
much from this form.

e The number of filters used in the CNN network determine how many output features will be, which
are also called channels.

e Batch size does not alter the output shape of the network, but it is a factor of how the input sequences
are given to the model. For this network a batch size of 32 is used.

Given an input for a CNN network of size (N, C;y, L;y, ), where N is the batch size, C' denotes the number of
channels and L is the length of the signal sequence, the output size is (IV, Cout, Loy:) and the output length
is calculated as:

Lin + 2 X padding — dilation x (kernel _size —1) — 1

Lout = +1] (4.4.2)

stride

Time Distributed network

For the design of the CNNs used in the proposed model, a specific method is applied, namely time distributed.
The layer parameters are as described above, however the way the input sequences are given to the network
slightly differs than the standard approach. Time Distributed is a wrapper Layer that will apply a layer on
every temporal slice of the temporal dimension of an input. Originally, it was introduced in Keras [Cho+15],
but a workaround can be implemented in Pytorch, as well. The goal of the method is to optimally handle
the input data in order to save up computational time and memory, in the case of sequence processing.

In the specific case of our work, the input data are split into 5-timestep sequences (for each of those
sequences one sleep stage is aligned for prediction), and each sequence contains four features, the three being
the 3D acceleration for motion, and the fourth is the heart rate. Each time step represents a 30-second
segment and 30seconds x 50H z = 1500 data points are for motion, while 30seconds * 1 Hz = 30 data points
are for heart rate. Thus, in order to form the feature vector, heart rate is initially zero-padded to be of the
same length as motion, thus 1500 data points. Given the batch size defined as 32, an input to the model
during training is of size (batch _size,time_ steps,channels,data_points) = (32,5,4,1500). The goal is to
extract for each time step some features from the raw data, in an automated way through the CNNs. Thus,
the input vector is reshaped as (batch_size x time _steps, channels, data_points) = (32 x 5,4, 1500), where
the batch size is perceived as the batch samples and their number of time steps, and each input of the CNN
is just the 1500 features of a single 30-second time step. This method gives robustness to the model, as it
allows the incorporation of a smaller network architecture and it also takes advantage of the optimized way
that Pytorch utilizes the GPU for the parallel computations of the batch samples.

As previously explained, a separate CNN architecture is used for the motion and the HR features. The input
data array is split into a motion-feature array of shape (batch_size,time_steps, channels, data_points)
(32,5,3,1500) and an HR-feature array of shape (batch_size,time_ steps,channels,data_points) =
(32,5,1,30), where the zero-padding at the end of the array is removed. Then, each of these arrays is
reshaped again, in order to get the desired format of (batch size x time_ steps, channels, data _points), as
described. The raw feature arrays are given to each of the two CNN architectures, with an output of size
(batch_size x time__steps, output _channels, output _sequence), where the output sequence is derived by
Equation 4.4.2.

Finally, the output arrays are reshaped again to regain their initial format

(batch_size,time_steps, channels, data__points), and the heart rate is zero-padded, to exactly match the
length of the motion array. The final arrays are concatenated in their third dimension, which corresponds to
the number of channels, and are ready to be forwarded to the next layer, which is the bidirectional LSTM
used in the previous experiments as well.

4.4.3 Experimental Results

The experimental results from the different classification schemes are presented in Table 4.9. The bidirec-
tional LSTM used for those experiments applies the weighted cross-entropy loss, as it was discussed in the
baseline model’s section. Interestingly, the accuracy does not tremendously differ between the classification
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Table 4.9: CNN-BiLSTM - Classification report on the test set of the model trained on Walch dataset, for
epoch 800, for all the classification categories, hence All, Light-Deep, REM-NREM, Sleep-Wake

precision | recall | fl-score | support
wake 0.22 0.53 0.31 417
sleep 0.95 0.83 0.89 4610
accuracy 0.80
macro avg 0.59 0.68 0.60 5027
weighted avg || 0.89 0.80 0.84 5027
precision | recall | fl-score | support
wake 0.28 0.59 0.38 417
nrem 0.84 0.54 0.66 3525
rem 0.37 0.64 0.47 1085
accuracy 8 0.56
macro avg 0.49 0.59 0.50 5027
weighted avg || 0.69 0.56 0.59 5027
precision | recall | fl-score | support
wake 0.36 0.70 0.47 417
light 0.81 0.60 0.69 2818
deep 0.52 0.64 0.57 707
rem 0.60 0.69 0.64 1085
accuracy 0.63
macro avg 0.57 0.66 0.60 5027
weighted avg || 0.69 0.63 0.65 5027
precision | recall | fl-score | support
wake 0.45 0.54 0.49 417
nl 0.21 0.27 0.23 345
n2 0.71 0.64 0.67 2473
n3 0.49 0.53 0.51 707
rem 0.61 0.61 0.61 1085
accuracy 0.58
macro avg 0.49 0.52 0.50 5027
weighted avg || 0.60 0.58 0.59 5027

categories, while it can be seen that the wake stages are the most difficult to predict. Also, the total accuracy
per classification category is degraded compared to the baseline bidirectional LSTM model using the manu-
ally extracted features presented in Section 4.2.1. This observation indicates that the proposed automated
feature extraction through CNN modules is not capable of detecting so much in detail the correct feature
characteristics for discriminating between the different sleep stages, compared to the manually extracted
features.

4.5 CNN-Bidirectional LSTM - MESA

The CNN-Bidirectional LSTM model is tested on the raw MESA dataset as well. To do so, the whole MESA
data is incorporated and some alterations are applied to the proposed network, since the provided raw MESA
data differ from the ones collected by Walch.

4.5.1 Data preparation & Architecture

The given raw MESA data consist of heart rate and activity count. The activity count is manually
labeled and has one corresponding value per 30-second epoch, thus there is no need for self-supervised
feature extraction by a neural layer, as it was done with the analogous raw acceleration data of the Walch
dataset. Hence, the CNN-BiLSTM model described in Section 4.4 is slightly altered. Specifically, the activity
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Figure 4.5.1: The proposed convolutional architecture for the automated feature extraction of the raw heart
rate and acceleration data, in order to be given to the bidirectional LSTM afterwards. The time
distributed method is adopted, where the sequence length is aligned with the batch size for computational
efficiency.

(motion) CNN layer is discarded and only the CNN for the heart rate feature extraction is used in the model.
The activity count feature is zero-padded in order to match the dimensions of the extracted heart rate feature.
Then, the output of the heart-rate CNN is concatenated with the padded activity count feature, they are
reshaped and given as input to the bidirectional LSTM layer, where the temporal information of the data is
learned, as shown in Figure 4.5.1. The output of the LSTM layer is passed through a linear layer and the
final predictions for each sleep stage are made.

The model is initialized with the best parameter values found in Section 4.4 and, after experimenting with
a variety of values, the best model parameters for the CNN-BiLSTM on the MESA dataset can be seen in
Table 4.10.

Table 4.10: Best model parameters for CNN - Bidirectional-LSTM trained on the MESA dataset.

Sleep - Wake - Wake - Light - Wake -
Wake | WEM - | peep - REM | NL = N2 - N3 -
NREM REM
Tl.me sequence 30 30 30 30
(time-steps)
dropout 0.5 0.5 0.5 0.5
learning rate 0.0001 0.0001 0.0001 0.0001
Number of
LSTM layers 1 1 1 1
LSTM hidden size || 512 512 512 512
Batch size 32 32 32 32
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Table 4.11: CNN-BIiLSTM - Classification report on the test set of the model trained on MESA dataset, for
epoch 300, for all the classification categories, hence All, Light-Deep, REM-NREM, Sleep-Wake

precision | recall | fl-score | support
wake 0.85 0.87 0.86 26518
sleep 0.91 0.89 0.9 37206
accuracy 0.88
macro avg 0.88 0.88 0.88 63724
weighted avg || 0.88 0.88 0.88 63724
precision | recall | fl-score | support
wake 0.78 0.89 0.83 26518
nrem 0.87 0.77 0.82 30355
rem 0.77 0.75 0.76 6851
accuracy 0.82
macro avg 0.81 0.8 0.8 63724
weighted avg || 0.82 0.82 0.82 63724
precision | recall | fl-score | support
wake 0.8 0.9 0.85 26518
light 0.81 0.76 0.78 26087
deep 0.75 0.5 0.6 4268
rem 0.79 0.77 0.78 6851
accuracy 0.8
macro avg 0.79 0.73 0.75 63724
weighted avg || 0.8 0.8 0.8 63724
precision | recall | fl-score | support
wake 0.79 0.88 0.83 27034
nl 0.24 0.21 0.22 4949
n2 0.71 0.71 0.71 21674
n3 0.68 0.5 0.57 4286
rem 0.82 0.68 0.74 6998
accuracy 0.73
macro avg 0.65 0.6 0.62 64941
weighted avg || 0.72 0.73 0.72 64941

Table 4.12: CNN BiLLSTM - Classification report on the test set of the model trained on MESA dataset for
all five sleep stage categories (Wake - N1 - N2 - N3 - REM), with the criterion loss of the model being
conditioned on the class weights.

precision | recall | fl-score | support

wake 0.67 0.9 0.77 27034
nl 0.16 0.28 0.21 4949

n2 0.78 0.28 0.42 21674
n3 0.4 0.38 0.39 4286
rem 0.51 0.62 0.56 6998
accuracy 0.58

macro avg 0.5 0.49 0.47 64941
weighted avg || 0.63 0.58 0.56 64941
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4.6. Discussion - LSTM models

4.5.2 Experimental Results

The classification report of the best model for each sleep stage category is presented in Table 4.11. Addition-
ally, in Table 4.12 can be seen the classification report of the 5-class sleep stage problem, where the criterion
loss for training the model is conditioned on the class weights, due to the imbalanced nature of the dataset.

4.6 Discussion - LSTM models

Table 4.13 collectively presents the accuracy values and the macro-average F1-scores from all LSTM models
tested on both Walch and MESA datasets.

Accuracy is the fraction of predictions the model got right, hence

(Number of correct predictions) TP+TN (4.6.1)
accuracy = = .6.
Y Total number of predictions TP+TN+FP+FN

The F1-score represents the arithmetic mean per sleep stage label, and is calculated as the weighted harmonic
mean of precision and recall.

Precision x Recall
F1— =2 4.6.2
seore % Presicion + Recall ( )

where TP TP
Precision = W, Recall = m (463)

and TP : True Positives, TN : True Negatives, FP : False Positives, FN : False Negatives.

The F1-score should be used for model comparisons, since it embeds both precision (the accuracy of positive
predictions) and recall (the fraction of positives that were correctly identified). In our case, the models can
be compared based on their Fl-score grouped by the dataset they were trained on, while accuracy can be
used as a universal comparison among inter-dataset comparisons. It can be seen that the best Fl-scores for
the Walch dataset models occur in the simple bidirectional LSTM using the designed features of Section 4.2.
On the contrary, for the MESA dataset, the model with the highest F1-score is the CNN-BiLSTM of Section
4.5, where a CNN module is used for automatic feature extraction from the raw data.

The best overall accuracy appears on the Simpe-BiLSTM model trained on the Walch dataset, but the CNN-
BiLSTM trained on the MESA dataset follows quite closely, with its values ranging around 0.80 + —8%. It
can be concluded that the internal structure of the data and their hidden patterns pay a crucial role in how
a model performs on each dataset, as well the depth of the network needed for a successful classification.
The Walch dataset, although quite smaller, with the correct choice of manual feature extraction can give
good results with a narrow and simple, hence less computationally demanding architecture. However, we
could not show that there is a good generalization capability of the pre-trained model on the Walch dataset
to correctly classify samples extracted from different sources, such as the MESA dataset, even though they
have undergone a similar manual feature extraction process. Regarding the MESA dataset, it has performed
better in the model containing the automated feature extraction CNN module, where the raw data are given
as input for training. This could be either due to the larger amount of data, being able to properly train the
model, or it could be due to the different internal nature and distribution of the dataset. The main differences
between the Walch and MESA datasets, except of the amount of data, are the different technology used for
collecting each dataset, as well the different group of participants used for each. Specifically, in the MESA
dataset description it is stated that the subjects participating in the study are aged between 45-84 years
old, while the Walch dataset recruited subjects from the University of Michigan without defining their age
range. There might be a need for a larger and more representative group of participants in order to achieve
good generalization on unseen subjects. Also, a possible fine-tuning of a system on different datasets, by
training the pre-trained model for a few iterations on the new dataset could be another approach for a better
generalization.

Finally, a degradation in both accuracy and F1-score is observed the more complex the classification problem
becomes, meaning the more classes to be predicted correctly. This is quite intuitive due to the increased
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Table 4.13: The accuracy and F1-scores of the best model for all sleep-stage categories are collectively
presented, for both the Walch and MESA dataset.

‘ ‘ Sleep-Wake ‘ REM-NREM ‘ Light-Deep ‘ All
Walch
BiLSTM Fl-score | 0.75 0.81 0.74 0.69
Accuracy
BiLSTM Fl-score | 0.67 0.46 0.38 0.30
on MESA Accuracy | 0.76 0.60 0.48 0.41
CNN-BiLSTM | Fl-score | 0.60 0.50 0.60 0.50
Accuracy | 0.80 0.56 0.63 0.58
MESA
BiLSTM Fl-score | 0.73 0.60 0.54 0.44
Accuracy | 0.78 0.66 0.63 0.63
CNN-BiLSTM | Fl-score | 0.88 0.80 0.75 0.62
Accuracy

difficulty of the task; however, the heavily imbalanced nature of the dataset should play a crucial role as
well. As seen in the data distributions in Figure 4.1.1, some of the classes are greatly under-represented,
being difficult for the models to correctly learn to predict them. This does not improve with increasing the
amount of the training data, as we can see from the MESA CNN-BIiLSTM model compared to the Walch
simple-BiLSTM one, hence a more thorough study of different architectures and more defined approaches for
the imbalanced dataset need to be examined.

4.7 SeqgSleepNet

As a final experiment of this thesis, a model initially designed to handle PSG signals for the task of sleep
stage classification was incorporated and altered in order to use the Walch and MESA datasets, to test
its performance on wearable-derived data. The original work of SeqSleepNet is described in [Pha+19] and
the code for the implementation can be found in https://github.com/pquochuy/SeqSleepNet. This model is
implemented using TensorFlow v1.3.0 [Mar+15]. In the proposed model, the time-sequence nature of the
data is taken into account, leading to the design of a many-to-many architecture for taking advantage of
this characteristic. The the task is perceived as a sequence-to-sequence classification problem that receives a
sequence of multiple epochs as input and classifies all of their labels at once.

In the original work, the training was done with a 200 subject dataset, split into 180 train - 10 evaluation -
10 test sets. The data consists of a 3-channel PSG signal of ECG, EOG and EMG with an initial sampling
rate of 256Hz, which was downsampled at 100Hz for the experiments. The log-spectrograms of the data are
extracted per 30-second epoch per channel, and are used as input to the model. Since three channels are
used for the initial SeqSleepNet, the model’s input consists of a 3-channel time-frequency image S, where
C is the number of the image’s channels.

4.7.1 Basic Architecture

The SeqSleepNet architecture comprises of three different modules, trained in an end-to-end manner.

1. The first one is a Filterbank layer for learning frequency-domain filterbanks. Taking as input the
extracted time-frequency images, the learned filterbank is expected to emphasize the most useful sub-
bands for the required task and attenuate the less prominent ones. Also, since the nature of the PSG
channels used in the initial SeqSleepNet work greatly differ from one another, a different filterbank
layer is used for each one of them; so, in this case 3 separate filterbank layers are used to learn three
channel-specific filterbanks.

Each filterbank layer is modeled by a fully connected layer of M hidden units. The number of
hidden units represent the number of filters, where M < F' and F' if the size of the initial image in the
frequency domain. Then, the weight matrix M € BF*M of the layer counterparts as the filterbank’s
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Figure 4.7.1: SeqSleepNet architecture, an end-to-end hierarchical RNN for sequence-to-sequence sleep
stage classification, utilizing signal spectrograms as the network’s inputs [Pha+19].

weight matrix. Typically, a filterbank has the characteristics of being non-negative, band-limited and
ordered in the frequency domain, and some constrains are enforced to the FC layer that need to be
satisfied.

XY =W§ TS89 XY e RMT
WG, = f+(W)o T, T e RT*M (4.7.1)
where

e f, is the sigmoid function, which is non-negative and will make the elements of the matrix W
non-negative as well.

e T is a linear-frequency triangular filterbank matrix, in order to enforce the filters to have limited
band, and

e the operator ® is the element-wise multiplication.

The output image X is smaller in the frequency dimension than the input S¢, and concatenation is
applied on the frequency dimension as well, resulting in a final image of size M C x T'. This image can
be interpreted as a sequence of T feature vectors, X = (x1, o, ..., o7), where each z; € RMC 1 <t < T
can be perceived as an image column at time index ¢.

2. For the second layer of the proposed model, a bidirectional-RNN coupled with an attention mecha-
nism [LPM15; BCB14] is incorporated to learn short-term sequential features for epoch representation.
Specifically, a GRU network is employed, since it has fewer parameters making it more computation-
ally efficient. The equations describing the GRU layer are presented in Chapter 3.7.2, Equation 3.7.2.
Provided that the forward and backward sequences of the hidden state vectors Hf = (h{, hg, ey h;)
and H® = (h%,h}, ..., hY.) are computed as:

h{ = H(Xtvh{—l)
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h? = H(Xtahg—‘rl) (4.7.2)

where H is the hidden state function as described in the Equations 3.7.2, then the output sequence of
the GRU A = (aj,as, ...,ar) is computed as:

a; = Wy, [h! @ h/] + b, (4.7.3)

where b, is the bias.

Finally, an attention mechanism is used in this layer to strengthen the more informative parts of the
sequence and lower the focus of the weaker ones. To achieve this, a weighting vector is learned through
the attention mechanism in order to combine the output vectors a; at different time steps into a single
feature vector. The attention weight oy at the time index ¢ is computed as:

_ eaplf(a))
i exp(f(ai)

f(a) = aTWatt (474)

where f is the scoring function of the attention layer and W is a trainable weight matrix, that gets
improved, while training the whole model. Finally, the attention feature vector, which is used as the
representation of each PSG epoch in the next level of the network, is calculated as:

T
a=>y oa (4.7.5)
t=1

3. The third layer of the original SeqSleepNet network consists of a sequence-level bidirectional-RNN, to
capture the long-term temporal information across epochs, by modeling the sequence of epoch-wise
feature vectors. Given the attentional feature vectors per epoch as calculated by Equation 4.7.5, the
total attentional feature vector for a sequence of length L is represented as A = (aj,as,...,ar),1 <
Il < L. A bidirectional-GRU module is incorporated, following the same structure proposed in
the second layer of the network, taking as input the attentional feature vector A and returning the
sequence of vectors O = (01,09, ...,0r),1 <1 < L, where each output vector o; is computed similarly
to Equation 4.7.3:

o, = Wj,[h? & hf] + b, (4.7.6)

where fllf , l~1;’ are the forward and backward hidden states respectively, Wy, is the weight matrix and
b, is the bias.

4. Finally, the output of the second GRU layer O is passed through a softmax layer in order to
produce the probability predictions of one epoch belonging to each of the sleep stages, for all the
epochs of the current input sequence. Thus, the model gives as an output a classification sequence

Y = (¥1,¥2,...,¥1), where y; is the output probability distribution over all sleep stages for the I*"
epoch.

The loss used for training the network needs to take into account all the predictions made for each input
sequence (S1,Sa, ..., Sy). Denoting the classification predictions for the epochs of a sequence as (y1,¥2, ..., ¥1.)
and the ground-truth PSG labels as one-hot vectors (y1,¥y2, ...,y 1), then the sequence loss is defined as follows:

ES(0) = —%Zmlog(f’z(@)) (4.7.7)
=1

While training the network, the backpropagation of the loss is done over N training sequences at a time,
thus the final loss to be minimized at each iteration of the network over a batch of N training sequences of
the data is:
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Figure 4.7.2: The many-to-many approach adopted in the SeqSleepNet model (d), compared to the other
possible classification schemes: (a) one-to-one, (b) many-to-one, (c¢) one-to-many [Pha+19].

B(0) = 5 S ES0) + 31013 (478)
n=1

where \ is a hyperparameter for trading off the error terms and the ¢5 — norm.

For the final prediction of the network, an ensemble of decisions and probabilistic aggregation
is used, as proposed in a previous work of [Pha+18], where a multiplicative aggregation scheme is shown to
be efficient. SeqSleepNet is a multiple-output network, giving a prediction for all the epochs participating
in each input sequence. Given that the input sequence is of length L, then advancing it by one epoch
when evaluating the model on test data will result in an ensemble of L decisions at every epoch. Fusing
the ensemble of predictions for each epoch to a final classification decision performs better than having
individual predictions for the sleep stage of each epoch.

The log—posterior probability of each sleep stage y; € L = {W, N1, Na, N3, REM } at time index t is calcu-
lated as follows:

t

1
log P(y:) = i Z log P(y:/S;) (4.7.9)
i=t—L+1

where S; = (S;, Sit1,..-,S1—1) is the epoch sequence starting at point i.

Then, likelihood maximization is applied for the final prediction of the network ¢;:

9y = argmaxlog P(y;),y: € L (4.7.10)
Yt

Training the network

For training the network, the data are split in batches that are used in the same iteration for the backprop-
agation of the loss, to improve the network weights. Each batch consists of S sequences, and each sequence
consists of L epochs. For simplicity, the assumption of a single-channel input is made. Given this, the
network uses only one filterbank layer for the first processing step of the input. Each 30-second epoch of the
training data, which is assigned to one PSG label, is represented by a time-frequency image of size T x F.
For passing the data through the first layer of the network, each epoch image is interpreted as a sequence of
T image columns. Thus, the S input sequences are unfolded to a set of S x L x T image columns, each of
size F, to be presented to the filterbank layer. The filterbank layer outputs the same form of image-columns
of size S x L x T, however each column is now of size M instead of F. The output set is folded again to form
a set of new feature-images of size S x L, and each image is of size T' x M, and is given as input to the next
layer. The epoch-level attention-based bidirectional-LSTM encodes each epoch’s image into an attentional
feature vector, resulting in a set of S sequences, each one consisting of L attentional feature vectors. This
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set is passed through the last layer of the sequence-level bidirectional-LSTM for the sequence-to-sequence
classification and the final sleep stages prediction.

4.7.2 Walch Data Preprocessing

To prepare the Walch dataset for training and testing on SeqSleepNet, some preprocessing steps are first
applied.

1. Firstly, the data are split on the timestamps, where missing epochs exist for at least one of the mo-
tion and heart rate features, in the same manner it was done for the BiLSTM and CNN-BiLSTM
experiments.

2. Then, the data are interpolated in order to have a sampling rate of exactly 50Hz for the 3D motion
feature and 1Hz for the heart rate.

3. Afterwards, the log-spectrograms are extracted for all the features. The extracted spectrograms are
saved as .mat files, which is the file format used in the original SeqSleepNet work, where the PSG data
are preprocessed using Matlab.

4. Additionally, regarding the PSG labels of the Walch dataset, they were prepared in the same manner
that was done for the BiILSTM experiments in the preprocessing method described in Section 4.2.1,
removing the —1 values indicating unlabeled sleep epochs.

The final spectrograms after the preprocessing steps, are ready for training and consist of images of size
(29,129), where 29 are the dimensions in the time-axis and 129 are the dimensions in the frequency domain.

Extracting the spectrograms

The spectrograms are required to have the same size as the original PSG spectrograms that are used in the
SeqSleepNet work, of dimensions (29,129) in the time and frequency domain respectively. To achieve this,
some technical details on how spectrograms are extracted in python need to be addressed.

The scipy python library is used for this purpose [Vir+20]. The motion feature is examined first, since it
consists of three channels, matching the 3-channel data structure of the original SeqSleepNet work. For the
extraction of the motion feature’s spectrograms, the Short Time Fourier Transform is firstly applied on the
data. Given the continuous-time equation of STFT in 2.3.2, the respective discrete time equation is:

STFT{z[n]}(m,w) = X(m,w) = Z x[njw[n — me 7" (4.7.11)

n=—oo

In the discrete time case, the data to be transformed are broken up into chunks or frames, which usually
overlap each other, to reduce artifacts at the boundary. On each chunk, the Fourier transform is applied,
and the complex result is added to a matrix, which records magnitude and phase for each point in time and
frequency. z[n] denotes the signal and w[n] is the window, where m is discrete and w is continuous. Typically
in computer applications the STFT is performed using the Fast Fourier Transform, on which both variables
are discrete and quantized, described by the following equation:

N-—-1
Xp= > ape” F k=0,..,N -1 (4.7.12)
n=0

The STFT output size is defined by the window size and overlapping percentage used for the calculation.
Given that the input signal’s size for the motion feature is (30 seconds per epoch)x (50 samples per second)
= 1500 data points, then in order to get 29 spectrograms, a hamming window of size 110 is chosen with 55%
overlap.

The spectrogram is mathematically derived through the squared magnitude of the STFT of a signal:

spectrogram{z(t)}(7,w) = | X (,w)|? (4.7.13)
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For the heart rate feature a similar approach is followed, based on the specific signal characteristics. The
heart rate has a sampling rate of 1Hz after the interpolation, meaning that for (30 seconds per epoch) x
(1 sample per second) = 30 data points are in each 1-epoch sequence. In order to get an output spectrogram
of (29,129) as it was desired for the motion feature as well, the window used for the spectrogram calculation
is a hamming window of size 100, with a 50% overlap.

Finally, as a last step for both the motion and the heart rate feature, the common logarithm with base 10 is
applied, in order to convert the spectrograms to log-power spectra. Thus, those extracted features are used
for testing the SeqSleepNet on the Walch -wearable derived- dataset.

4.7.3 Experimental Results - Walch

For the experiments, except for the log-spectrograms suggested in the original SeqSleepNet work, some of the
other previously described spectral features were tested to examine the performance of the model on them
as well. The data were split in train-eval-test sets in a manner similar to what was done for the BiLSTM
experiments, in a percentage of around 90 - 5 - 5 %. Specifically, a text file is manually created defining
which of the segments belong to the train - evaluation and test sets. Thus, for each training of the model,
the same data are used for consistency of the different experimental setup comparison.

After splitting the data of each individual into continuous epoch segments, the experimental sets are created
so that different segments of each individual exist in all data sets. The way that SeqSleepNet is designed,
the model is subject agnostic, meaning that no subject identification is given to the model for each training
sample. However, in the experiments conducted in our work, the individuals used for testing are also seen
during training, but the segments of the data are unique in each set.

Training with motion data

Since the SeqSleepNet model originally uses a three-channel signal, the acceleration data are utilized in the
first experiments, also consisting of a 3D signal, to extract the required log-spectrogram feature as described
above. Also, the motion feature has a much higher sampling rate than the sampling rate of the heart rate
feature, meaning that the extracted spectrogram should contain much more information. After testing with
a batch size of 2, 8 and 16, batch size = 16 was chosen as the best for the current experimental setup.

The following experimental combinations were tested:
¢ log-spectrogram
o stft
e spectrogram

with the learning rate varying between [0.001,0.0001]. The rest of the model’s parameters are the same as
the ones proposed in the original SeqSleepNet work.

Unfortunately, the experimental results indicate that when training is done with the acceleration data the
accuracy while training can be as high as 70% or more, but the test and evaluation accuracy is pretty low at
around 20% or less.

Training with heart rate data

As a second experiment, the heart rate feature was tested on the SeqSleepNet, with poor results. Due to
the quite small sampling rate of only 1Hz compared to 200Hz in the original SeqSleepNet data, the log-
spectrograms cannot capture proper information to be then learned by the model, as it was intended. The
accuracy when training with the heart rate spectrograms stays at around 50%, which shows that the model
is not capable of distinguishing useful information from training, and there are wide fluctuations indicating
the model has potentially over-fitted.

Since the HR sampling rate is so low, the spectrograms do not seem like an optimal choice for handling this
kind of feature, as a big amount of information seems to be lost, and by inspecting the output spectrograms
from the different sleep stage categories, no consistency seems to exist.
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4.8 SeqgSleepNet - MESA Modifications

Due to the MESA dataset being already in a preprocessed form, the SeqSleepNet architecture can not be
directly applied on it. Instead, two modifications of the network are utilized for this purpose, where a different
type of input is used, since spectrograms cannot be extracted from the current form of MESA data. The
main idea of the proposed modifications is that the already preprocessed features can be directly applied on
the second level of data processing of the SeqSleepNet architecture. Thus, instead of passing the extracted
spectrograms of the raw data through filter-bank layers in order to capture meaningful features from them, the
already prepared features are directly passed through the epoch-wise recurrent layer, and then, the outputs
are given to the attention layer that follows.

4.8.1 Modification 1

The first data application on the network is a simplified version of the original SeqSleepNet architecture. The
activity and heart rate features are split into sequences of continuous samples with a specified length, which
are then directly fed to the (column-wise) tied filter-bank layers. The model is supposed to predict the sleep
stages of all the data points in the sequence, but, since it is temporal in nature, the prediction of the last
data point is the most crucial, as it defines the current sleep stage of the subject.

The current approach is independent of the typical 30-second epochs defined by a single sleep stage label,
since the MESA dataset version used in this work is labeled every 1 second.

e Heart rate feature has a sampling rate of 1Hz, meaning that it has 1 sample per second. Thus it can
be considered ready for training, and no extra preprocessing steps need to be applied.

e Wrist acceleration on the contrary is provided with 30 values per second in the dataset, meaning
that an automated feature extraction and selection approach via neural networks can be applied on
the data sequence corresponding to each sleep stage label. Following the already existing architecture
of SeqSleepNet, the HR sequence is passed through a bidirectional recurrent layer in order to obtain
an intermediate representation, which is then passed through an attention layer so that the most
meaningful features are kept.

The output of the attention layer is concatenated with the activity feature and then the features
defining each epoch are passed through an epoch-level bidirectional recurrent layer in order to obtain
the probabilities for each epoch to match to each one of the existing sleep stages.

Finally, the probabilities for each epoch of the sequence are passed through a fully-connected linear
layer and a softmax activation function to get the final sleep-stage prediction.

The model’s architecture can be seen in Figure 4.8.1.

4.8.2 Modification 2

For the second modification of the SeqSleepNet architecture, we wanted to take into account the concept of
a 30-second epoch corresponding to each sleep stage. To do so, the data are split into continuous 30-second
frames, keeping the sleep stage of the last timestep as the correct one, and then consecutive frames form the
input of the model for training. The number of consecutive frames forming each training input constitutes
one of the hyperparameters to be tuned for the best performance of the model.

The basic SeqSleepNet architecture remains the same as described in Modification 1 presented in Section
4.8.1, however the way the input data is handled changes to serve the extra dimension of the 30-second epochs
for each data point.

e The heart rate has a single value for each data point in the temporal dimension since it has sampling
rate of 1Hz, thus it has one dimension less than the wrist activity data.

e Similarly to the previous method, the motion (acceleration feature) feature is passed through a bidirec-
tional recurrent layer in order to obtain an intermediate representation for each frame-level sequence.

e However, since in the current method an epoch level sequence is examined at each training step,
consisting of several 30-second frame-level consecutive sequences, the final features to be selected need
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Figure 4.8.1: The proposed first modification for MESA application on SeqSleepNet architecture, where a
sleep stage value is given per second, and the prediction is made for a sequence of X seconds. N refers to
the number of classes in each experiment (all: N=>5, light-deep: N—4, rem-nrem: N—=3, sleep-wake: N=2).
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Figure 4.8.2: The proposed second and more complex modification for MESA application on SeqSleepNet
architecture, where each sleep stage is considered for a 30-second epoch, and the prediction is made for a
10-sample sequence. N refers to the number of classes in each experiment (all: N=5, light-deep: N—=4,
rem-nrem: N=3, sleep-wake: N=2).

105



Chapter 4. Experiments

to represent the whole sequence of N consecutive epochs. Thus, the output of the first bidirectional-
RNN layer containing intermediate representations of the motion feature is concatenated with the
corresponding heart rate data at the epoch-sequence level, in order to be passed through the attention
layer together. Consequently, the most important features at the epoch-sequence level are attended for
the next neural layer.

e Afterwards, the data are passed through a second bidirectional-RNN layer giving the probability scores
for each sleep stage of the sequence, followed by a linear layer and an activation function to get the
final prediction.

The total architecture of the second modification can be seen in Figure 4.8.2.

4.8.3 Experimental Results - MESA

For training the SeqSleepNet models the whole MESA dataset was utilized, excluding only 5 subjects to be
used for testing purposes. The data were split the same way for the train-test-evaluation subsets each time
for consistency. Since the training of the models is quite time consuming and requires a lot of resources,
taking more than 24 hours for each training session, no cross-validation was applied, although this would be
the most scientifically correct approach. In Figure 4.8.5 and Figure 4.8.6 are depicted the hypnograms of the
five excluded subjects, tested on the Modification 2 of the SeqSleepNet model, trained on the MESA dataset.

MESA statistical analysis

The statistical analysis of the raw MESA activity and heart rate features can be seen in Figure 4.8.4 and
Figure 4.8.3. The mean value and standard deviation are extracted per sleep-stage category for every subject,
for the activity and heart rate features separately, and the corresponding violin plots and scatter plots are
presented.

Regarding the heart rate feature, in the violin plots it can be seen that, except of wake and Nj stages which
are a little bit lower, the mean values for the rest of the subjects have a median very close to 60 for all of
the N1, N2, N3, REM sleep stages. This could indicate that they are not so easily distinguishable from one
another. Also, they follow a similar normal distribution without many outliers, meaning that there is a high
chance of heart rate value being close to the median for N1, N2, N3, and REM. However, wake sleep stage
follows an almost bimodal distribution, which also elongates a lot on the vertical axis, exceeding the Tukey’s
fences, meaning that there are a lot of outliers on its mean value per subject. For stage N4, the mean-value
per-subject distribution is normal and narrow, but many outliers seem to be present and the data are not
being collected around the median value.

By the observation of the violin plots depicting the per-subject standard deviation of heart rate, it can be seen
that the standard deviation values have a more even normal distribution between the sleep stage categories,
meaning that inter-subject values for each sleep stage do not deviate much. Some outliers are present in
sleep stages N1, N2, N3, and REM. The most distinct of all sleep stages is wake, where the distribution is
very narrow and expands a lot on the vertical axis, following an almost bimodal kernel density estimation.
Hence, for wake samples, there is a great divergence between the data distribution per subject.

Concerning the activity feature, it can be seen that the mean value for sleep stages N1, N2, N8, and REM
follows an almost unit distribution, where all the samples are collected very close to a single point, which
is the median, and there are almost no outliers. On the contrary, wake and N4 span across a large range
of values. The fact that the mean value per subject of the sleep stages N1, N2, N3, REM is converging
towards the median is quite reasonable, since the activity feature provided in the MESA dataset is already
preprocessed, and the raw data are not publicly available.

The standard deviation for activity feature is also a Gaussian distribution for all sleep stages except N/,
which seem to have all its values equal to zero. There is a small diversity between NI, N2, N3, REM with
all of the stages having their standard deviation values per subject very close to zero, showcasing that the
activity feature is very uniform in each subject. However, again the wake stage appears to have a lot of
outliers, although following a Gaussian distribution as well. Concerning stage N4, after finely investigating
the MESA dataset, we found that for many subjects the N stage is not present in their recordings, meaning
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a NaN mean value and a zero standard deviation. This is not a burden for our experiments, since N4 is
always merged with another sleep stage, depending on the classification task.

The scatter plot in Figure 4.8.3 verify the above observations, with all the mean values of N1, N2, N8 and
REM sleep stages lying very close to each other, while wake ranges in a big variety of values and N/ is almost
absent from the dataset.
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Figure 4.8.3: Scatter plot of MESA statistical features per sleep stage category: a. Activity mean value, b.

Heart rate mean value, c. Activity standard deviation, d. Heart rate standard deviation. The data points

correspond to every subject of the dataset, and the statistical features are extracted for every subject, for
every sleep-stage category.
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Figure 4.8.4: Violin plots of the distribution for each sleep stage, for the MESA dataset. The mean value
for each sleep stage category for each subject is taken, in order to showcase the distribution between the
subjects of the dataset.
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Experimental results and discussions

Table 4.14 presents the classification reports of all sleep stage categories from the best model of each, for
both modifications. In Table 4.15 are presented the accuracy and Cohen’s kappa values of each sleep stage
category for both modifications.

Cohen’s Kappa measures the degree of agreement between two evaluators, hence the inter-rater variability.
Provided raters 1 and 2, let:

e A: The total number of instances that both raters said were correct. The Raters are in agreement.

e B: The total number of instances that Rater 2 said was incorrect, but Rater 1 said were correct. This
is a disagreement.

e (': The total number of instances that Rater 1 said was incorrect, but Rater 2 said were correct. This
is also a disagreement.

e D: The total number of instances that both Raters said were incorrect. Raters are in agreement.

Then, the following probabilities can be defined:

b A+D
° A+B+C+D
___A+B AscC
 A+B+C+D " A+B+C+D
C+D B+ D
P(incorrect) = X
A+B+C+ D A+B+C+D
Pe = P(correct) + P(incorrect) (481)

P(correct)

where P, is the probability of agreement and P, is the probability of random agreement.

Cohen’s kappa is then formed as:

Po_Pe
K— 4.8.2
- (4.8.2)

Both of the modifications on the standard SeqSleepNet model give similar results. There is an increasing
performance on both of the models correlated to the complexity of the problem to be handled, hence the
less sleep stages to be classified the better the performance of the model is. It is encouraging that the more
complex architecture of the second modification results in predictions very close to the first modification. It
shows that, taking into account the extra parameter of the 30-second epoch sequences per every single sleep
stage label, and an N-sampled sequence of 30-epoch data-points to predict the final sleep stage, can still
sufficiently capture the internal patterns of the data. The appearance of zero-valued predictions for some
of the sleep stages on the classification report for both modifications is correlated to how strong is their
presence in the dataset. Specifically, this occurs on stages NI and N3, where their number of samples differ
by an order of magnitude from the most prominent classes. Additionally, the second modification seem to
misclassify more sleep stages than the first modification: the macro-average of the F1-score is lower, and also
more zero-valued predictions for stages appear (stage N3 has no predictions for both models in the 5-class
problem, while stage N1 is missing predictions only for the second modification).

Cohen’s Kappa can be used to measure the correctness of predictions a classification model has made.
Specifically, instead ot comparing the ratings between two evaluators, Cohen’s kappa metric can be used to
show the agreement or random choice between the predictions and the true class labels of a classification
task. The kappa value being closer to 1 indicates that the model makes more accurate predictions, while
a lower value of kappa, closer to 0, indicates that the correctly predicted samples tend to be so by chance,
and the model is not properly trained. It can be seen that Cohen’s kappa is quite low for the more complex
problems of five and four sleep stages, while it is somewhere around the middle of 0.5 for the two and three
class problem. This observation can also be confirmed by the Fl-scores of the classification report. It aligns
correctly with the data distribution discussed in the previous paragraphs, where some of the sleep stages
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Table 4.14: The classification report of each sleep-stage category for both modifications done on the original
model to apply it on MESA. The best models during training are saved and chosen for testing purposes.

Modificationl Modification 2
ALL precision | recall | fl-score | support || precision | recall | fl-score | support
wake 0.73 0.72 0.73 28573 0.67 0.78 0.72 27124
nl 0.11 0.02 0.03 4911 0 0 0 4861
n2 0.51 0.79 0.62 23593 0.52 0.78 0.62 23388
n3 0 0 0 4260 0 0 0 4232
rem 0.47 0.15 0.23 7015 0.55 0.02 0.03 6987
accuracy 0.59 0.59
macro avg 0.36 0.34 0.32 68352 0.35 0.31 0.27 66592
weighted avg || 0.54 0.59 0.54 68352 0.51 0.59 0.52 66592
Light-Deep precision | recall | fl-score | support || precision | recall | fl-score | support
wake 0.82 0.66 0.73 28573 0.79 0.65 0.71 27124
light 0.56 0.88 0.68 28504 0.56 0.89 0.69 28249
deep 0 0 0 4260 0 0 0 4232
rem 0 0 0 7015 0 0 0 6987
accuracy 0.64 0.64
macro avg 0.34 0.39 0.35 68352 0.34 0.38 0.35 66592
weighted avg || 0.57 0.64 0.59 68352 0.56 0.64 0.58 66592
REM-NREM || precision | recall | fl-score | support || precision | recall | fl-score | support
wake 0.82 0.63 0.71 28573 0.78 0.66 0.72 27124
nrem 0.63 0.9 0.74 32764 0.66 0.88 0.75 32481
rem 0 0 0 7015 0 0 0 6987
accuracy 0.69 0.7
macro avg 0.48 0.51 0.49 68352 0.48 0.52 0.49 66592
weighted avg || 0.65 0.69 0.65 68352 0.64 0.7 0.66 66592
Sleep-Wake precision | recall | fl-score | support || precision | recall | fl-score | support
wake 0.85 0.63 0.73 28573 0.82 0.63 0.71 27124
sleep 0.78 0.92 0.84 39779 0.78 0.9 0.84 39468
accuracy 0.8 0.79
macro avg 0.81 0.78 0.78 68352 0.8 0.77 0.77 66592
weighted avg || 0.81 0.8 0.79 68352 0.8 0.79 0.79 66592

are quite under-represented, due to the natural cycle of human sleep. This characteristic of the dataset
highlights an imbalance in its distribution between the classes. Given that an adequate number of samples is
available, this property of the MESA dataset could be overcome, but, as it can be seen, it still greatly affects
the proposed models. Thus, more samples of the under-represented sleep stage classes might be needed, or
different, architectures and ways of handling the data could be explored to surpass this occurrence.
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Table 4.15: The accuracy and Cohen’s kappa for each sleep-stage category extracted on the test subset of
MESA, for both modifications. The best models during training are saved and chosen for testing purposes.
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Accuracy | Kappa || Accuracy | Kappa
All 0.58 0.33 0.59 0.34
Light-Deep 0.63 0.37 0.64 0.38
REM-NREM || 0.69 0.42 0.7 0.45
Sleep-Wake 0.78 0.54 0.8 0.56
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Figure 4.8.5: Hypnograms of five test subjects from the MESA dataset, excluded from the training and
evaluation subsets. The hypnograms show the predictions for the first three subjects tested on the
Modification 2 model of the SeqSleepNet architecture, trained on the MESA dataset, for the five sleep

stages: Wake, N1, N2, N3, REM.
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Figure 4.8.6: Hypnograms of five test subjects from the MESA dataset, excluded from the training and
evaluation subsets. The hypnograms show the predictions for the last two subjects tested on the
Modification 2 model of the SeqSleepNet architecture, trained on the MESA dataset, for the five sleep

stages: Wake, N1, N2, N3, REM.
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5.1 Contributions, Conclusions and Future Work

5.1.1 Contributions

This Thesis has covered a thorough study on the task of sleep stage classification using data derived from
wearable devices and employing neural network architectures for this purpose. Two datasets are incorporated
for the experiments of this work. The first one is collected from a smartwatch (Apple Watch) [Wal19] and
consists of 3D motion from wrist accelerometer and heart rate from pulse oximetry. The second dataset
[Nat16; Zha+18a; Che+15] consists of motion signals derived from a wrist-worn actigraphy and heart rate
derived from polysomnography. Both of them have sleep stage labels, manually aligned by an expert during a
polysomnography night’s sleep study. The main differentiation between the two datasets is, while the first one
has much less subjects, the second dataset is not completely derived from wearable devices, since the heart
rate feature is collected from the polysomnography recordings. The goal of this work is to study the sleep
stage classification problem utilizing datasets derived from wearable devices with deep learning architectures.
Specifically, the two datasets are tested under different neural architectures and it is investigated, how they
correspond to the task of sleep stage classification, given their primary differences.

In the initial experiments, the two datasets undergo the feature extraction method firstly presented in
[Wal+19], in order to obtain epoch-level features of heart rate and activity count, where each epoch is a
30-second segment with a corresponding sleep label. The extracted features represent the same physical
values for both datasets, hence they are directly comparable. The aforementioned work, which firstly intro-
duced the manually extracted features, applies traditional machine learning techniques on them for the task
of sleep stage classification, using every sample separately for training. The aim of the experiments proposed
in the current Thesis, is to take advantage of the temporal nature of the feature sequences per subject, and
test some standard neural network architectures on them, to examine their performance compared to the
classification techniques, which do not take this aspect into account. The first model to be implemented
is a bidirectional LSTM network. The choice for this kind of recurrent neural network is made based on
other works utilizing this architecture [Zha+18b; Zha+19], and also the bidirectional attribute is adopted,
since it is more intuitive and better suits the type of temporal sequential problem. Under this perspective,
at first, the smartwatch-derived dataset is tested on the proposed bidirectional LSTM model, giving very
promising results and overriding the results given by the classical machine learning approaches. The already
trained model on the first dataset is also tested on unseen data from the second dataset, performing poorly,
which shows that the model cannot generalize to data unseen during training that are sourced in a different
way. Then the same model is tested on the features derived by the second dataset. Although the results are
relatively good, they are lower than the model trained on the first dataset, which indicates that the extracted
features better suit the first dataset, combined with a bidirectional LSTM architecture.

As a second group of experiments, an automated feature extraction method is tested in parallel to a similar
bidirectional LSTM architecture. Specifically, a CNN architecture is utilized to automatically extract features
from the raw data sequences, which are then given to the bidirectional LSTM module to solve the sleep stage
classification task. The use of CNNs for automated feature extraction has been previously tested on PSG-
extracted data, as seen in [Che+20]. Training the CNN - bidirectional LSTM model end-to-end with the
smartwatch derived dataset, leads to inferior results compared to the manually extracted features with the
simple LSTM architecture. On the contrary, training the model with the raw data originated from the second
dataset, leads to quite accurate predictions on the test set. The sleep stage classification capabilities of the
CNN-bidirectional LSTM architecture on the second dataset are comparable to the performance of the simple
bidirectional LSTM model on the manually extracted features of the first dataset. This observation leads
to the conclusion that the performance of the model greatly depends on the nature of the data. Hence, in
our case, the first dataset is relatively smaller, but an appropriate manual feature extraction method with
a shallow network performs better, while for the second dataset an automated feature extraction module
combined with the basic model leads to similar results.

As a final set of experiments, a deeper architecture is tested, which was initially proposed in [Pha+19] utilizing
signals derived from a PSG study. The aforementioned architecture is a hierarchical recurrent neural network
with an attention mechanism named SeqSleepNet, and handles the problem of sleep stage classification as a
sequence-to-sequence task. The aim of the final experiments is to test a deeper architecture, initially designed
for the more complex signals of a PSG study, on wearable derived data. The two datasets differ in their
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raw format in terms of sampling rate and their monitoring method, thus they are handled separately. For
the first dataset, the type of raw features allow for spectrogram extraction, which is the format the original
SeqSleepNet takes as input. However, the experiments give poor results, indicating that this kind of deep
architecture is incompatible with the specific dataset. For the second dataset, due to the format the heart
rate feature is provided, the model is altered so that it does not receive spectrogram images as input, but
temporal sequential features instead. Two approaches are adopted in this case: in the first one the sequence
is on second-level, meaning that there is one sleep label for every second. The second case is on epoch level,
which means that one sleep label corresponds to a 30-second window (epoch), and the sequence consists of
consecutive epochs, adding one more dimension to the input data. The experimental results indicate that
the altered SeqSleepNet network performs relatively good for the problem with less classes to be predicted
(e.g. sleep-wake), but the more complex the prediction task gets (e.g. for the five sleep stages), the model
capabilities get weaker.

5.1.2 Conclusions

Given the above experiments, it must be stated that, regarding the bidirectional-LSTM models, both cases
give better results than previous works on data derived from wearable devices, and especially when classical
machine learning techniques are used for the task of sleep stage classification. Provided the previous work
employing both datasets in [Wal+19], where the manual feature extraction method is applied in combination
with typical machine learning applications for the classification task, we show that deeper neural network
architectures, which take into account the temporal nature of the data sequences, lead to an improved
performance. Additionally, the utilization of manual or automatic feature extraction greatly depends on the
specific dataset. Finally, the choice of a shallower architecture with carefully extracted features can perform
better or equally to a deeper architecture, with less computational needs. As seen from the results of the
SeqSleepNet in comparison to the bidirectional-LSTM models, a deeper and more complex architecture does
not guarantee better performance for the network.

5.2 Future Work

Towards this direction, other architectures, suitable for sequential data, such as Transformers [Vas+17], could
be adapted on the problem of sleep stage classification. This could be an interesting examination of whether
other deep applications perform better with any of the two datasets, as well the extend to which the size of
the dataset affects the training of the model. Additionally, different combinations of features from different
domains can be tested, compared to the features utilized in this work, in order to examine whether the
bidirectional-LSTM performance can be improved. Regarding the two different datasets, and the difficulty
of the bidirectional-LSTM model to generalize on unseen data from a separate source, a fine-tuning method
could be tested. By firstly training the model on one dataset, fine-tuning could be then applied for a few
iterations on the second one, to explore the model’s capabilities. This application could be quite useful in
cases where not enough data are available for fully training a model, but, given that the same kind of features
can be extracted for two different datasets, the model trained on the largest dataset can be then partially
trained on the fewer samples of the second dataset. Finally, all the experiments presented in this work
are subject-agnostic, meaning that there is no information for the subject that the training samples belong
to. Considering that each individual have their unique physical mechanisms and homeostatic patterns, a
personalized model could be a next step towards optimizing the automatic sleep stage classification task. By
adding a user embedding module on a model, more personalized information could be learned, thus, during
the classification process, more accurate details might be retrieved, leading to more precise predictions.
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