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HepiAnyn

Sty tapovoa SutAwpatiki epyacic, O pedetrcovpe Prhaineig AAyopiBpovg Xpovodpoporoyn-
ong Epyaciov oe Acvoyétioteg Mnyavég pe oxomo tnv Ehayiotonoinen tov Befapnpévov Xpovou
OMoxkApwonG. XTo HOVTEAO TTOU HOG EVOLOPEPEL, OL pYyaaieg SNAGVOLVY oL idleg TOvg XPOVOUG eTte-
Eepyaoiog TOUG, VK CUUTEPLPEPOVTOL WG LOLOTEAELG OVTOTNTESG, GTOXEVOVTOG GTNV EACYLOTOTOLNGT)
Tov S1koL Tovg XpOVoL OAOKANpwOTG. Enpet@voupe OtL atn PLpAtoypagio vitdpyovv PrAairBelg
A)lyopiBpot povo yia tnv o antAf mepintwon twv Opotwv Mnyavov. H yevikevon avtdv tov AN-
yopibuwv oe Acvoyétioteg Mnyavég dev eivon e0koAn), KaBDG 0TV TEPITTWOOT PG OL EpYAOiES,
€KTOG atd TO VoL SNAWGOLV Evay JKPOTEPO ATd TOV TPAYHATIKO Xpovo emeEepyaciog yia vo emLtid-
XOLV évav KoAUTEPO XpOVO OAOKAPWOTC, £XOLV TO KIVIITPO va SNAGVOLY peYOADTEPOLG ATTO TOVG
TPAYHATIKOVG XpOvoug eme€epyaociog oe Mnyavég otig omoieg BéAovv va amophyovy v ovote-
Bovv. Apyikd, apabétovpe évov Mn PdariOn Bédtioto Aeopevticd AlyopiBpo, kabog kot éva
dAaAnOn AlyopBpo Tov omoiov tov Adyo Ilpocéyyiong dev éxovpe katapépel var avaADCOLHE
TANPWG. Yrootnpilovpe Tov mapostdve ahyopiBpo pe tn dieEoywyn piog melpopotikig doediko-
olog, e oKkomd TN cLYKpLoT TNG emidooTg TOL e qLTH TOL KaAVDTEPOL emti Tov TapdvTog Online
AlyopiBpov Xpovodpoporoynong, kabag emiong kal pe éva kdtw o6plo g PéATioTng Adorg.

AéEerg kAedri

Online aAyopiBpot, AAyopiBpor Xpovodpopordynong, Xpovog OlokAnpwong, Aecpevtikodtnta, di-
AadnOea, Zyedroopog Mnyoviopov






Abstract

In this thesis, we study the problem of online job scheduling in unrelated machines with the goal of
minimizing the weighted sum of completion times, in the setting where the jobs are selfish agents,
self-reporting their processing times. In the majority of the literature surrounding scheduling prob-
lems, the jobs’ characteristics are assumed to be known to the algorithm. In the case where the jobs
are selfish agents and the objective is the minimization of the sum of weighted completion times,
only the simpler setting of identical parallel machines has been explored. Generalizing these re-
sults to the broader case of unrelated machines proves to be challenging as, apart from having an
incentive to underbid their processing times to achieve a better completion time, jobs have an extra
incentive to overbid some of their processing times in order to manipulate the machine assignment
rule. We first propose a non-truthful tight approximation algorithm, as well as a truthful algorithm
whose competitive ratio we were unable to fully analyze. Finally, we conduct an experimental eval-
uation of the truthful algorithm, comparing it to the state-of-the-art online algorithm for the setting
of unrelated machines with the objective of minimizing the weighted sum of completion times, as
well as to a close lower bound of the optimal solution.

Key words

Online Algorithms, Online Scheduling, Completion Time, Promptness, Algorithmic Mechanism De-
sign, Truthfulness






Evyapiotieg

Me v 0AokANpwo TNG TopodEG SITAMUHATIKNG EPYOCLAG TTEPATOVOVTAL HETA OTTO 6 £TT) OL GTTOL-
dég pov ot XyoAn HAektpoldoywv Mnyovikov ko Mnyavikedv Yroloyiotodv tov EOvikod Metoo-
Brov IToAvteyxveiov. Oa el TpwTicoTwg va evyaplotion tov k. Ptk 1000 Yo TNV Poribeld
TOL KOTQ TNV €KTOVIOTN TNG EPYACLOG, OG0 KOL YlO TNV EUITVELGT] KaL TNV kotebBvver Tpog TN
Ocwpntikn IIAnpogopikr) mov pov mpocépepe 1 eEatpetikny didaokaria tov. Oa 1feia emiong va
evYOPLOTHOoW OAa Ta PEAN ToL epyactnpiov CoReLab yia Tic ToATIHEG Wpeg ov mephoope poli
SLevpHivovTag TIC YVHOOELS Pag Ko peAeTdvTag Ta Stdpopa Bépata mov pag evdlapépouv. EmmAéov,
BéAw va evyapLoTow GAOLG TOVG PIAOLG KAl GUHPOLTNTES OV, TOUG OTTOLOVG otV EEKLVOVGH VOl KO-
Tovopalw dev Ba aprotoe pio oeAida, yior OAEG TIG OTLYPEG TTOL TTEPAOaLE, 1) KOBepLo OTd TIG 0TTOlEG
éxel oupPdAre kot éva TpOTO GTN SLOUOPPWST] TNG TALTOTNTOG POV WG avBpwitog. Télog, BéAw
VO ELYOPLOTHOW PUOLKA TNV OLKOYEVELR POV TTOL TTAVTH OTEKETAL ApwYOG o€ k&be duokoAio mov
prropel vor avTipeTorilw, fonddvTag pe pe TOV TPOTO TOLG VAL KOLTA® TAVTH HITPOCTA.
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KepdaAaro 1

Extetapévn EAAnvikn IepiAnym

H mapovoa duthwpatikn éxel ekmovnBel kot kOpLo Adyo otnv AyyAlkn yYAdooo. Xe avtd To
Kepaloto, B cuvoicovpe To kLpLOTEPO TEPLEXOpEVO NG ota EAANvikd. H opydvwon tng ekteta-
pEVNG eEAANVIKNG TTEPIANYNG CUPPWVEL TAPOGS HE TNV 0PYAVWOT) TOL AYYALKOD KELHEVOD, £XOVTOG
xwplotel ota idla kepdrona

1.1 Ewayoyn

To yevikotepo mpOPAnpa TO 0molo amao)oAel T GLYKEKPLHEVT) SUTAWHATIKT epyacio eival 1)
Xpovodpopordynon Epyaociov (Job scheduling). IIpoxetton yia éva mpdéPAnpa to omoio amaoyotei
v avBpwrdtnta amd To apyaio xpovia. Ola ta peydla emitedypata tng avOpomdTnTRg, amd to
Meyaro Zwiko Teiyog péxpl tnv avlnon tng apyaioag EAANvikg okovopiog pécw Tov Boaldooiov
ELITOPLOV, AITOTEAOVV L GUAAOYT] OTTO HLKPES EPYULTIES OL OTTOLES ETTPETIE VAL TPOY POUPATLOTOVY GTO
oWoTO XPOVIKO SIAGTNHA KL HE TN GWOTH GELP, MOOTE va opyovwbel 660 To duvatdv KoldTepa
KOL 1] KOTOVAA®GT] TOV oTapaitnTeV TOpwy. 2T oUyxpovr) emoxr], To TpoPfAnpa tng xpovodpo-
HOAOYNOTG EPYAOLOV EXEL ATAOYOANTEL TOVG epevvnTéG NG Emothpng twv Yroloylotdv amd ta
HLo & TOL TEPACHEVOL adVa, TO60 oTov Topéa TG OewpnTikng [IAnpopopikng 660 koL 6TOV TOpEX
g Emyepnowoknig Epevvog. Ztnv mopovoa SITAGpaTIKY, peAetdpe To TpOPANHa TG Xpovodpo-
HOAOYNONG EPYACLOV G AOLOYXETIOTES UNYAVEG e OKOTTO TNV eAaylotormoinot tou Pefapnuévou
XpOvou olokAnpwonc. Mag evdiagépel kupiwg to online povtédo, katk To omoio oL epyocieg ép-
Xovtol otV mopeia kaL dev £xovpe TPATEPT YVOGOT TNG peAlovTikng elocodov. Emiong, peAetdye
QL aAnfelg alyoplBpovg, HOVTEAOTOLOVTOG TIG epyacieg wg WloTelelg malkteg mov mpoomadolv
VoL EAOYLGTOTTOLGOUV TOV JLKkO TOLG XPOVO OAOKAPWOTG.

1.2 Online xpovodpoporoynon epycci®dv yio TNV EAXYLGTOTOINGT
0V Befapnpévou xpovou oAOKANP®WONG

T'o va oploovpe Tumikd To TPOPANe, éva TPOPANHA XPOVOSPOHOAOYNONG EPYAOLOV ATTOTE-
Aeiton a6 n epyaoieg ko m pnxavég. H xdOe epyacio propel va éxel éva Bapog wj, éva xpovo
EKTENEDTG P;j CUCYETIOHEVO e k&Oe pmyov) kabwg ko évav xpovo aiEng 5. Or Graham et al. [21]
oploav Eva OGTNIX OTHELOYPOPLNG Yia TTPOPATIHATR XpOVOodpopoAdYN oG PACLOHEVO GE TPELS Je-
toaPAntéc | B, Twv omoiwv n onpacio o opicovpe:

1. a: Opilel to meplPaAdov Tewv pnyavov. OL kupLoTepeg KaTyopieg Tov pHog evOlapEPOuV GtV
TOPOoLo SUTAWHATIKT eivat oL e€Ng:

e 1: M pnyovn

o P:TlaphAAnheg (Opoteg) pnxavég. Xe avtr) Tnv epintwon, 1 k&be epyacia éxel povadikd
Xpovo eme€epyaciog p;j mov eivon idlog yix OAeg TIg pnxovég
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e R: Acvoyétioteg pnyavég. H kaOe epyacia éxel évav xpovo ektédeong p;; yio k&Oe
pnyeoevr). Ot xpdvor awwtol dev cuvdéovtol pe kKavévay TpOTo.

2. fB: Opilelr toug meploplopotg Tov TpofAnpatoc. Ot Vo TEPLOPLOHOL TTOL AVAPEPOVTAL GTHV
TOPOLGQ SUTAWHATIKT efvat:

e 7;: Xpovog dgLEng tng k&be epyaciog.

e prec: Opilel oxéoelg apyardTNTOG HeTaED epyaciodv. SupfoAilovpe pe j < j' 6Tawv yio
Vo eKKWoeL 1) ekTéleoT) TG epyactog j', mpémel va éxel ohokAnpwbei ) extédeon tng
epyooiag j.

3. ~: OpileL Tov oTOY0 TOL CAYOpLBpOL. Ot 3 BacikdTepol oTOYOL Elva oL e€NG:

® Craz: Makespan. O xpdvog 0AoKANpwGNG TG TEAELTALAG EPYOTLOG O€ OTOLAONTOTE UN-
xovr}, dnAadn) To TEAOG TOU TPOYPAUHATOC.

o > ; Wic- ABporiopa fefapnpévev xpovov olokAnpwong. To dbBpoiopa dAwv Twv emL-
HEPOLG XPOVWV OAOKAPWOTNG TOAAATAXCLAGHEVODVY He TO avTioTolyo B&pog Tng epyot-
olog.

e ) Fj. ABpoiopa xpoévwv poric. O xpdvog porig piag epyasiog eivat n Stapopd tov xpo-
VOU OAOKANPWOTG TNG ¢j ATTd TO XPOVO APLENG TNG T'j.

Ago¥ opicape to TpOPANIa, otnv eAANVIKY TepiAnym g mapoloag epyaciag Oa TapovoLi-
ooUe TIG Paotkég SOLAELEG OTO TLG OTTOLEG AVTAT|COLE EUTTVELOT] YL VXt OPLOOVHE TOUG SLKOVG HOG
alyopiBpovg. Ze kapia mepintwor dev eivat povo avtég ot o onpovtikég SovAelég, kabdg n épevva
0TO TTPOPANHA TNG XPOVOSPOHOAOYTOTIG EPYACLOV ELVOL OLPKETT) VIO VAL YERLIOEL Lot eyKUKAOTTadELL.
H mpotn dovAeld mov pedétnoe tr XpOovoSpoHOAOYTOT) EPYACLOV e GTOXO TNV EAQXLOTOTOINGT)
Tov PBePapnpévou xpdvov oAokAnpwong ftav auth Tov Smith [49]. MeAetdvtag To TpdPANpa o€
meptPpariov pog pnyavig, o Smith mpoteve évav PéAtioto alyopiBpo mov Advel to podPAnNua, o
omolog éxet peivel yvwotog wg WSPT (Weighted Shortest Processing Time, Befopnpévog Zuvtopo-
tepog Xpovog Extéleong) xar wg kavovag tov Smith. O adydpiBpog avtdg Takivopel Tig epyaoieg
oe pBivovoa oelpi % Kot TIg ektedel kotd oelpd. Adyw tng PeATIoTOTNTAG TOV, TapopéVveL KOPLX
10éa o€ HAovg Toug online aAlyopiBpoug xpovodpopordynong. Metomndovrtag oto meptfeAiov Twv
TopdAANA v pnyovov, ot Megow ko Schulz [38] ewofyayov tnv texvikn tng kabvotépnong epya-
owv (job delaying), xatd tnv omoia oL epyacieg pe peydho xpovo exktédeong kabvoTepobvTon Katd
EVOL TOPAYOVTA WOTE VAL TPOCTEPAGTOVV (av X peltdletar) amd pukpoTepeg epyacieg mov o épBovv
peAlovtikd 6to cvaTNe. Me Ut TNV TEXVLKT, KATAPEPAY VAL ETEKTELVOLV PLoL TAPAAACLYT) TOU OtA-
yop1Bpov Tov Smith oTig TapdAAnAeg pnyavég metuyaivovtag évay 3.28-npoceyyloTikd adyopLbpo
ywx to online setting.

370 TePPAANOV TOV ACVOYETIOTWV HIYXAVEOV, TTOV ElvoL KAl VTO TTOL KUPLWG LG eVOLOPEPEL,
nopovotdlovpe dvo dovietég. H mpdytn ovyypdenke amd tovg Hall et al. [24], ko mepihapPdver
évav 8-mpooeyylotikd adyopibpo Paciopévo oe éva Ipoppikd Ipdypoppio To 070lo 0L GUYYPRPELS
amokahov xpovikd-detktodotolpevo (time-indexed),. Avtd o ypappikd Tpdypoppa pag divel éva
aPKETE KOAO KATw OpLo NG PEATLOTNG ADOTG KoL YU t0TO TO X PT|CLUOTTOLOOHE GOV HETPO GUYKPOTG
oty metpapatiky afloAdynon tov Keporaiov B. lopoust&lovpe TO YPOUHLKO TTPOYPOHHO THPA-
KATO:
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minimize g wjg E TI—1Ti5¢

i=1 (=1
subject to Z injg =1 Jj€n]
=1 (=1
n
Zpijxije <, i€[m] (el[L]
Zije =0 if 7y <1rij + pij
Tije > 0 i€[m],j€n],lelL]

Yxedov 20 xpovia apydtepa, oL Gupta et al. [23] métvyov v mpdn Pelticwon oto online mpod-
PANpa TV ACLOXETIOTWOV PNXOVOV, KaTaokevdlovtag évav 7.216-tpoceyylotikd alyopiBpo Pa-
olwopévo oe 3 G€oveg: Tnv texvikn kabvotépnong epyaotodv, tov WSPT kou éva dmAnoto kpitiplo
avaBeong epyootdv oe pnyovéc. To drAnoto kpitnpio vtohoyilel To méco emiPapivel 1 kabe ep-
yooio Tnv dn vapyovoo ovpd oe k&Be pnyov, ko opileTol G TAPOKATW:

Definition 1.2.1 (cost(j — 1)). La kdOe epyacio j kou pnyavi i, opilovue o cost(j — i) as

cost(j — i) = w <1 + i) rij + pij + > P | > kP
keUs(r), k>3 keUs(ry) k<3t
To mpidTo péAog Tov abpoicpatog meplypl@el T0 GOVOAO T®V £pYaGLOV oL B TponyolvTol
TIC J TNV 0VPA TNG PNXAVAG ¢, kaBuvoTepdvTag TV ektéheot] e AvtioToiya, To debtepo PEAOG
oL afpoicpaTog TepLYpaPeL TO GOVOAO TWV EPYOTLOV To onolo Ba Tpoomephoel 1) j, kabvotep®d-
vTog TNV ektélect] Touvg. Me Paon to mapandve kpitriplo, o Gupta et al. opilouv Tov mopakdTe
aiyopibpo.

Mechanism 1: ArAnotog online adydpiBpog yi tnv eloryiotomnoinon tov Befopnpévouv xpdovou
0AOKAKNPWONG

1. OpiCovpe évav tpomomoupévo xpdvo apiéng 75 yo k&Be pnxavi 4, @ € [m]. O k&be xpovog
GiEng opiletan wg akohovBwe: ri; = max{r;,c - p;;j} ywo pua otabepi ¢ = %

2. Avabétoupe kabe epyacio oe po pnyovn pe Paon to akdrovbo kpiriipro. Eotw Ui (t) to
oUVOLO TV epYaoLOV TTOL Exouv N1 avarteBel ot pnxavr ¢ péxpL 0 XPOVIKT oTLypn ¢ Ko
Sev éyer Eexivijoer n exté)eoti Tovg. Yroloyilovpe to cost(j — i) tng epyaciog j oe k&be
pnxav @ pe Baon to obvoro epyacidv Us(r;) kot Tnv avabétovpe ot pnyoavi pe To
eAAYLOTO KOOTOG.

3. Xe kabe pnyovn, opilovpe to mpoypappa akplPog onwg otov WSPT. Andadn, oe k&be
pnyovr, 6tow yiveton dtoBéoin tn xpovikr otiypn ¢, 8popo7\0youps 1 dovAeld amd to
ovvolo U;(t) N {j|ri; < t} pe v vmAodtepn Tipr tov Xoyou

Oempnua 1.2.1. O adydpibuoc (ll) éxer competitive ratio ico pe 7.216

1.3 PulaAndsia kot XpovodpopoAdoynon

270 Topamive KePhAaio, aoyoAnOrkoe pe to TpdPANpa TG online xpovodpopordynong ep-
YAOLOV G€ AoVOXETLOTEG PNYXAVEG, BEmPOVTHG OTL OAEG OL TTANPOPOPLES TTOL ALPOPOVV UL EPYATiO
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elvor dnpooieg xat dpo o alyoplBpog Tig yvopilel enakplpdc. e TOAAEG TPAKTIKES EQPAPHOYEG
oL TPOoPANpHaTOG, pio TéTolo LITOBeaT dev eivan mpoaktikn. IIoAAEG popéc, oL epyaoieg pmopel va
XPELLOTEL VAL ATOKAADYOUV KATTOL KPLPT] TANPOPOPic TTOL €XOLV, KoL, SpOVTOG LOLOTEAMG, HITo-
povV va TNV aokaAOouy Yevddg Yo va TeTlyoLvy karmolo dikd Tovg okomo. ['Vavtd to Adyo, To
TPOPANHA TNG XPOVOSPOHOAOYTOTG EPYUCLOV QTG OAEL TTOAAOVG epevVNTEG GTNV TEPLOXT] TOV
OxESIOIOU UnYavIopY. TKoTOg Toug elvar va Tapd€ovv @riainBelg alydpiBpovg, otovg omoiovg
elval mavta pog 6@ehog g k&be epyaciag vo amokadOyel oAnBmg tnv omota TAnpogopio. T
TOAAG XpoVLaL, TO KOpLo TPOPANpHa Xpovodpopoddynong yio Toug epevvntég 6To Zyedioopd Mnyo-
viopov Hrav 1o e€ng: Epyaoieg mpémel va dpoporoynbovv oe acvoyxétioteg pnyavég e okomd tnv
ehaytotomoinon Tov makespan. H ke epyocio éxel évav xpovo emeEepyaciag yio kdbe pnyovn
Dij TOV omoio yvwpilel povo n punyavy. dvcikd, éxel to kivntpo va dnAnoel Yevdaig évav TOAD pe-
YoAUTEpPO XpoOVO, WaTe ) epyasio va SpoporoynOel adrol kal £ToL 1) pnyovr va AL TOTIOLCEL
70 d1Kd NG PopTo. H mpidTn dovdeid oe awtd to mpdPAnpa avriker otovg Nisan kot Ronen [39],
ot omoiol amédelEav Ot dev pmopei va vtapEel 2-TpoceYyLoTUKOG aAyOpLOpog, kKot vtéBecav OTL TO
TPAYHATIKO KAT® OpLo Tov TtpofAfpartog eivon 2(m). Metd otd moAl& étn kou ToAAEG eviidpeoeg
BeATidoELC TIC 0moieg avapépoupe oo kepdAato H, ot Christodoulou, Koutsoupias ko Kovacs [39]
amédelEay TNV Tapandve vtobeon kAévovtag to TPOPANpa.

2tnv tapovoa epyocio pog evdiapépel éva GANo setting: n epyacieg eloépyovTol 6To GVUGTNHA
yiae vae SpoporoynBotv oe m mopdAAieg pnyxavég, SLaTnpmOVTOG WG KPLEPT TANPOYopia Tov Xpovo
ekTéAeong Tovg p;. Adyw tov kavova WSPT, ol epyacieg éxovv kivntpo v dnAwcovy pikpdtepo
XPOVO eKTENEGTIG 0O TOV TTpOyHaTLKO Yio va SpopoloynBovv vwpitepa 6To mpdypappa. to TAai-
o0 T, Topovotdlovpe i 2 facikég dovAeieg Tov aoyolovvTon pe wtd To TPOPANpHe. Ot Angel
et al. [[I] opiCouv pia Texvikr pe To dvopa preventive preemption, KT& TNV OOl LA EPYAGLQ TOV
Pevdetan ylo To xpovo emeEepyaciog dniodvovrag éva p;» < pj Tpopeitar og e€Ng: Av dev éxel
0AokANpwOel petd od xpovo p;, petartibeton oe ot ovPA GTO TEAOG TOL TPOYPAPPATOG Hall pe Tig
VTTOAOUTTEG TWHWPTHEVES EPYOOLEG, 1] OTTOL OLPA ek TeAeiTa e adydpLBpo round robin. O adydpiBpog
TOUG YLOL L0 X0V TTOLPOLCLATETOU TOHPAKATW:

Mechanism 2: WSPT-PP

1. To€wopovpe 0Aeg TG epyaoieg oe oelpd WSPT (L <b2 < <b

1 w2 —

S

)

2. HpoypoppoatiCovpe o didotnpa ektéeong tng kabe epyaciog wg V= Zf;ll b; and
J J

£

3. Metd amod xpovot = > ; bj dpopoloyovpe Tig TipwPTpEVES epyacieg pe adyopiBpo round
robin: T kB = > 2 (61ov x 0 aplBpdg TV epyaoLodV), av 1 epyacio  dev éxel
oAokAnpwBei oe xpovo Zj bj +n(x —2) + i — 1 v dpoporoyodpe oo didotnpa [IF, 7],

pelf =3 bj+n(x—2)+i—lwxorf =3 bj+n(x—2)+i

Oempnua 1.3.1. O adydpibuoc ) eiven pértioroc yiar To epifddlov ¢ pag pnyaviic.

O1 ovyypageic opilovv tnVv eméktoct Tov adyopibpov yio meptpaAlov ToapdAANA Y pnYovov
g e&ng: Apyikd yiveton pio Toyxaia kol opoldopopen avabecn epyaciodv oe pnxovég. Avto eivol
amapaitnTo kaOC ot avtifetn mepinTwon (6mwg Seixvovpe oTo kepdato f) oL epyasiec éxovv
kivntpo va dnidoovv Yevdn xpovo exktédeong. Emerta, Spoporoyoipe Tig epyaoieg ot kdbe pryavn
akpLpog 6mwg otov WSPT-PP.

Oewpnua 1.3.2. H exékraon tov WSPT-PP oe mapadAndeg unyavég eivau %—competitive.

H devtepn dovAed mov mpoteivel évav @Liaindn alyopiBpo yio xpovodpoporoynon epyaciov
o€ mopbdAAnieg pnyavég eivor avtr) Tewv Eden et al. O cuykekpipévog alyopiBpog éxel kol pa ma-
POTTAV® OLOTN T, CUTH) TNG SECUEVTIKOTHTAG.
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Opropog 1.3.1 (Aeopevtikoi alyopibpor). Evag adydpibuog eivar Seopevtikds étav yix ke epyacia j
HE xpdvo diéng 1, 0 xpdvog oAokAripwatic tng c; opileTar opioTikd Ko opeTdKAnTA TV YpOVIKY OTLYUN
Ty.

Ocopnua 1.3.3. Kdbe Seopevtikds alydpibuos éxer competitive ratio Q(log Ppaz) 000 Prgy eivar o
UEYIOTOG YPOVOG EKTEAETNS LUAG EPYATIOG TTOV ELCEPYETA TTO TUCTHUA.

T va emitdyovy deapevtikdTnTa, OL GLYYpPaPeig xwpllovv To Ypovikd opilovta ot mpokado-
PLOHEVEL XPOVIKE SLACTHHOTO, TOL OTTOLO TTOPOLOLALOLY OTLG EPYOCIEC GE HOPPT] HEVOD ETTLAOYMV,
xwpic mpdTepo input amd Tig epyaoiec. Etor, emtvyydvetal avtopata n grlainbeia, epdcov 1 ep-
yaoio emihéyel povr g to dtotnpo wov emibupel arrd to pevov. O TpOTOG XWPLGHOV TOL X POVLKOD
opilovta ot diotripata Paciletol otny Topakdtew akolovdia:

So = (1)
S1 = Sol|Sol[2" = (1,1,2)
Sy = 51181122 = (1,1,2,1,1,2,4)
Sk = Sp-1]|Sk-12*

AvTtiotoya, pio dmerpn akodovbia opileton 6mwG mapakdtw, £xovrag ke Sk wg TpodOepa:

Seo = (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, 16, ...)

H outio emidoyng g ovykekpévng axorovdiag cvvoyiletor 6To akdAovbo Anppa. 1o ke@-
Ao [ avadbovpe ekTevéoTepa ko StoucONTIKG TN XPNOHOTNTA TOL AHHATOC:

Afqppa 1.3.1. Na kdbe d > 0 xou i ke 0 < k < d, 0 ovyywveuuévog oykog 6Awv twv dieothpdtwy
prfcovg 2F oy Sy 1o0bran pe 2%

Z ok _ od

i:Sg[i]=2k

Me Bbon v mapamdve akolovbia, oL cuyypagelc opilovy Tov TpOTO e ToV omoio yiveTat o
XWPLoPOG Tov opilovra ot StaoTripato K&Be POPA TOL ELGEPYXETOL OTO GUGTNHA L EPYOTin f, He
Béon mapdyovreg: Tov xpodvo &iEng g epyasiag rj, To Xpovo ohokApwong g ¢; (kpitripLo
OV £PPECOL POIG ITOKOADITTEL TO XPOVO EKTEAEGTIC TNG Pj), Kot To péyeBog ka To TeAlkd onpeio Tng
axolovdiag péypl Topa T omoio cupPoAilovpe pe [ ko e(A{j) avtiotoryo. H akolovBia peto-
Bardeton wg e€ng:

o Ave; < e(Ai ), ToTe 1) epyacia enédele éva N mpokabopiopévo Siotnpa ko dev peto -

Aetal 1 axolovdio.

o Avrj > e(A{j), TOTE 1) epyacio oupiyOn 6To cVoTNHA PeTA TO TENOG TNG TeEAELTALAG OLKOAOVL-
Biog. H Agj HOVIHOTTOLELTAL, KOl pa VEX aKoAoLBia A{Hl dnpovpyieton Eektvdrvtag omd v
Sk(rj). H mepintoon avtr dnpovpyei kevd ato mpoypappa kot dev prropel v tpokOyet pie
adversarial eilcodo

e Avr; < e(Agj) Ko ¢ > e(AZj‘) aAA& A{] elvor psyoc?xl?repr] and k, tote 1 Azj emekteivetal
pe TNV TpocsbiKn g Sk(e(A{j)) (rapatnpodpe 6TL Y Agj nopopével TpdBepa TG Soo ()

e Télog, av r; < e(A{j) Ko ¢ > e(A{j) oA N A{J éxel péyebog pukpotepo and k, tote A{J

ETEKTELVETAL, HETATPETOVTAG TNV 6TV Sk (b(A{]))
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Me Baon Tig mapandve pedddovg tpomomnoinong tng akorovbing katackevdlovpe oe kébe
OTIYHLOTUTO TNV KaTAGTaoT) TOL adyopiBpov tnv ontoia cupPolilovpe pe 7( A7 __11 , 755 7). Méow av-

G opileTon 0 ToPAKATW alyOpLOpog ’

Mechanism 3: AAyopiBpog Snpovpyiog pevod pe Suvopikéc okolouvbieg

AoBeiong puog epyaciog j pe xpovo &@LEng 1, Kol Piog KATAGTAOTG A{;ll, KOToKELALOVLE

i—1 , , .
™mv T(A{j_1 .7, J) Ko K&voupe o akdAovBo:

a<+ 1;

while 5 epyacia dev éyer emAéEer Sicotnua do
[Ipocpepe To TpwTO Srdotnpa peyéboug 2 oe kabe pnyovn;
a<+ ax*?2;

end

Oempnua 1.3.4. O adydpibuos B) eivar O(log Pay )-competitive 67r0v Prap 0 xpovog emelepyaciog
NG UEYOAUTEPNS EpYaTiag TTov EITEPYETAL OTO CUOTHUA.

1.4 P aANOe1 08 XGUVOXETIOTEG UIXAVEG

TNV TPONYOOHEVT) EVOTNTA OVOPEPIpE 2 PLAOANOeLS ahyOpLBPOULS Yo TO TpOPANpa X povodpo-
poAdynong o mTapdAAnieg pnyavéc. O alyopiBpog twv Angel et al. BaociloTav oe TAnpogopia o
aVEPEPOLY OL EPYUTILES YL TOV XPOVO eKTEAEGTIC TOVG. XTO setting TwV AGLGYETIOTWV PNYXAVOV QUTO
dev pmopei va oupfet, kabng oL epyacieg pmopodv va xepaywynoouvv k&be kavova avaBeong pe
TPOTTO TAPOHOLO e TO akOAovBo Tapdderypo:

Hopadevypa 1.4.1. M epyacior jie xpovovs eKTEAEONS Dij UTOPEL Vo YELPOywYToEL TRV Unyavy m
otV omoia O avarebel avapépovrag TavTdypovae aAnbdg Tov ypovo EKTEAETNS THG YIXt TH CUYKEKPIUEVD
unyavy ws akodovbwg:

1. Ajdwoe ypovo ekTédeong pmj yie T pyavy m.

2. AfjAwoe Yevdes 0Tt Py = 00 yiar ke AN pnyavii m’ # m

AbY® TOL TOPATAVW, YL TNV XPOVOIPOHOAOYTOT) GE ACVOYETLOTEG HXOVEG 1) EPELVITIKT HOG
dovAeld emkevtpdOnke oe unyaviopovg pevov. Iopdia avtd, mopovctdlovpe évoy pn-@LAcAnon
deopevtikd adyopLbpo mov metuyaivel To PéATIoTo Suvatd competitive ratio, faciopévo oTovg oA-

yopibpoug (1) kou @)

Mechanism 4: Mn-®loAiOng deopevticdg alyopiBpog pevot

Tpéxovpe éva avtiypago” Tov alyopibpov () oto mapackivio. T k&de epyasio mov
EPYETOL OTO GUGTNHA e XPOVOUG EKTENETTG Pt

YrohoyiCovpe tnv avéBeot| Tng oe puo pnyovn pe Baon ta cost(j — i);
YmoAoyilovpe tnv akorovbio T(A{j ,T5) YL TN pnxowvr) otnv omoio avartédnie (tn
oupPoAilovpe pe 7);
a<+1;
while 7 epyacia Sev éyer emidéer Sidornua do
[Ipocpepe To TpwTO Srdotnpa peyéboug 2% otnv pnyavn ;
a$—ax*x2;
end

Oempnua 1.4.1. O adydpibuog§} eiven O(log Pyay )-competitive.
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1.5 PAaAndng aAdyopiBpog kot netpapatikn aglodoynon

210 TeAevTOio 0KEAOG TNG SUTAWHATIKNG epyaciag Tapovotalovpe évav @LAaAnOn alyopiBo
Tov omoiov To competitive ratio dev emitdyope va amodeifovpe. IlepiocdTepeg TANpoPOpieg Yo
™ Sradikacio ov akolovdrioaye kat TG SuoKOAieg OV TPoKLITTOLVY divovTan 6To Kepdhao [,
O aydpibpog eivan opotog pe Tov ahyopidpo (B) pe ) Sixpopd 11 k&Oe pxave éxer T Sikr g
akolovBio epdcov éxoupe acvoyétioteg pnyavés. Tumikd, o alydpiBpog opileton mopokdTw:

Mechanism 5: AAyopiBpog dnpovpyiag pevod pe Suvapikég akolovdieg yio aGLOYETIOTEG HN-
XOWVEG

AoBeiong epyaciog j pe Xpovo AQLENG 75, KoL PLOG KATAGTAGTG A{;ll KOTaoKeLALOLVpE TNV

i1 » » .
7'(141]'71 , T4, J) KoL K&voupe To akdAovBo:

a <+ 1;

while 7 epyacia Sev éyer emiAéer Sidornua do
[Ipocgepe To mpwTo drdoTnpa peyéboug 2 oe ke punyavi;
a <+ ax*2;

end

Epooov dev katapépajie vo amodei&ovpe To competitive ratio tov topamdvw alyopibpov, tpay-
HaToTTO GO piar TELpapaTiky) afloAdynon cuykpivovtag Tovg alyopibpove (B), (??) kan tn BéA-
Tion Abor). Ot eicodol Twv melpopdtwy ywpiotnkav ot 2 ykpour. To mpwto dnpovpynOnke oo
EPAC Kal T YoUpAKTPMLOTIKE Tov avalbovral 6o kepdhato . To Sevtepo mpotkvye amd Ty
KOTAAANAN emeEepyacio dnpociwv dedopévav tng PipAtodning PSPLIB [32, B3, 13] yio va tpocap-
pootovv oto TpOPAnpa pag. To Pacikd evprjpata Tng melpapatikng afloAdynong nrov ta e€ng
3:

1. O alyopbpog fil éxer OAD kaAbTepT emiSoon amd To BewpnTikd &ve dpto Tov 7.216, apod
Topotnpricape évo competitive ratio mepinov 4, 0tav Oheg oL epyaoieg eival dwabéoipeg T
xpovikn otiypn 0, ko 1.5 éwg 2, 0tav ol epyaaieg éxouv ypovoug apLeng.

2. O péyiotog xpovog ene€epyaciag P - mov eppavileton ot PéATiotn Adon eivon oe péyebog
ovykpiowyo (pe Adyo yOpw oto 1) pe tov péyrtoto xpovo enekepyaoiog mov eppaviletor oTov
ahy6pibpo B Prraz,ALG. Avtd onpaivel 0TL éva avw 0plo log P €xel k&molo vonpa (to
omoo dev O ioyve av 10 Praz ALc 88V ppaccdTaV amod TinmoTw).

3. O ahyopibpoc f éxel apketd kol eniSoon dote va vrooTnpilet TV vVIOBeon HTL OTN péon
nepintwor, To competitive ratio tov eivar O(log Praz)

21






Chapter 2

Introduction

Project scheduling and resource allocation challenges have captivated the attention of scholars and
practitioners throughout history, making them an enduring and significant area of study. From
monumental construction endeavors like the Great Wall of China to the intricate trade networks
of Ancient Greece, the effective allocation and scheduling of individual tasks that collectively con-
tribute to the accomplishment of a larger objective have been prevalent in diverse and complex
scenarios. In the modern world, job scheduling problems have captured the attention of both prac-
titioners in the operations research field, as well as computer scientists aiming to propose efficient
algorithms that handle the influx of diverse tasks and optimally schedule them among different ma-
chines, often with different objectives. Historically, the main objectives of interest for researchers
have been the makespan, which is the completion time of the final job that finished its execution in
any machine, the sum of completion times, which is the sum of all times at which a job’s execution
was completed, and the sum of flow times, i.e. the sum of each job’s time where it was awaiting its
execution. In this thesis, we mostly concern ourselves with the sum of completion times. Perhaps
the more natural way of showcasing the importance of the sum of completion times as an objective
is by presenting it as an equivalent objective to the average completion time of all jobs. It is evident,
that as the above objective is minimized, it can be used to measure how “happy” the average partic-
ipant is with the result of the scheduling algorithm. We shall first go through a review of the most
important works on this objective, in the regular case where the jobs are mostly known and either
are all available at once or arrive online. Subsequently, we shall present the case where each job is
submitted by an agent who might have the ulterior motive of maximizing their own “happiness”,
i.e. minimizing their own completion time. This setting of the problem poses extra challenges and
has captured the attention of researchers working in the field of algorithmic mechanism design. Fi-
nally, we shall propose a new algorithm for a specific setting of this problem, and also compare the
performance of different scheduling algorithms by performing an experimental evaluation.

2.1 Previous Work

2.1.1 Online scheduling to minimize the sum of completion times

The seminal work that introduced job scheduling as a problem in the field of Operations Research
was that of Smith [49]. Proposing the now very famous SPT algorithm that minimizes the sum of
completion times on a single machine by scheduling the shortest jobs first, Smith was the first in a
long line of works spanning decades and tackles the scheduling problems in different settings and
under different sets of constraints. The single-machine problem was studied in much more detail in
the online version of the problem, where the jobs arrive over time and the algorithm cannot know
which or even how many jobs will arrive in the future. To formalize the setting, we shall use the
notation proposed by Graham et al. [21]. There exists a set J = {j € {1,2,...,n}} of jobs to be
scheduled among aset M = {i € {1,2,...,m}} of machines, obtaining a completion time c;. Each
job has m processing times p;; associated with each machine (if all p;; are the same, the machines
are called identical), a weight w; and a release time 7;. The goal of the algorithms we will examine
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is to minimize the sum of weighted completion times » ;jwjc;. In some algorithms, preemption
is allowed, meaning that a job’s execution can be paused and continued at a later time. To assess
the performance of an online algorithm, we usually denote by cost(ALG) the cost of the online
algorithm, and by cost(OPT) the total cost of the optimal offline algorithm (in this case, schedule),
who possesses knowledge of the entire input a priori. Then, the online algorithm is considered c-
competitive, if for every single possible input, it holds that cost(ALG) < c¢-cost(OPT'). Parameter
¢ can be a constant, or an asymptotic function of any input variable (for example the number of
jobs m). The first constant-factor approximation for the online single machine setting was given
by Phillips et al. [#1], who first used the technique of creating the optimal preemptive schedule
and then transforming it into a good enough non-preemptive one. In the case of parallel machines,
Megow and Schulz [38] are the first to use the technique of job delaying. As we stated with Smith’s
rule, when scheduling to minimize the completion time, the algorithm wants to schedule the smaller
jobs first and the larger jobs last. Job delaying aims to create a “buffer” between a large job’s arrival
and its earliest possible execution time, during which smaller jobs may arrive and bypass it. In the
unrelated machine case, Hall et. al [24], present the “interval-indexed” LP relaxation, an LP whose
variations are still used today to achieve close-to-optimal approximation algorithms in the offline
case (with the state-of-the-art algorithm being that of Im and Li [29]). With this LP, they divide
the time horizon into intervals with sizes of different powers of two, and define a decision variable
for each combination of job-machine-interval, adding the appropriate constraints. The rounding
happens in a deterministic manner, by creating a bipartite graph of job-machine assignments based
on the fractional load of each decision variable. Their algorithm can be adapted to work in the
online case of the problem yielding an 8-approximation. The first (and only at the time of writing
this thesis) improvement to this bound was achieved by Gupta et al. [23], who propose a greedy
online 7.216-competitive algorithm using a combination of greedy assignments based on the load
added to a machine, the technique of job delaying, and a modified WSPT schedule.

2.1.2 Scheduling under the presence of selfish agents

As we mentioned earlier in the introduction, assuming that the processing times of the jobs that
entered the systems are public information is an assumption that cannot be made in a lot of real-
life applications. Consider the case of an open-to-public supercomputer, where researchers have
to submit their tasks and wait for them to be completed in order to yield their results. Of course,
every researcher would like to minimize their own job’s completion time; they are not interested in
the collective sum of completion times. Therefore, they have the incentive to lie about their jobs’
processing times in order to achieve a better completion time. In this case, the scheduling problem
of minimizing the sum of completion times can be studied from the perspective of algorithmic mech-
anism design. In fact, when Nisan and Ronen introduced the term algorithmic mechanism design in
[89], they considered the problem of scheduling jobs in unrelated machines in the case where ma-
chines are the selfish agents, reporting the time they would need to finish a task. The objective was
the minimization of the makespan. Before reviewing their line of work, we shall introduce the basic
notions of mechanism design. As Hurwicz introduced it in [28] a mechanism is a communication
system in which participants exchange messages with each other and/or with a central adminis-
tration and, based on a predetermined rule, an outcome (for example, an allocation of resources) is
decided for a set of messages. The mechanism should always guarantee truthfulness, meaning that
participants who lie about their information should never benefit because of it, while agents who
present their true information should never be damaged for playing fairly. As we mentioned above,
the problem of truthful scheduling to minimize the makespan in the case where machines are selfish
agents is a well-studied hard problem. To start with, Nisan and Ronen conjectured that any truthful
algorithm has an approximation ratio of at least {2(n), where n is the number of machines, and actu-
ally proved a lower bound of 2 [39]. Since then, there was a plethora of works gradually improving
this lower bound [9, 18, 34, 12, []] until the conjecture was proven in [§] closing a long-standing open
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problem. Of course, this is not the only setting under which truthful scheduling has been investi-
gated. In [[19], Gkatzelis, Markakis and Roughgarden propose a constant-approximation mechanism
that minimizes the sum of completion times when the private information is the job’s weight. Fur-
thermore, in the setting where the private information is the jobs’ processing times, Feldman et al.
[17] propose a mechanism using posted prices to approximately minimize the makespan. In this
thesis, we consider the case where the private information is the jobs’ processing times, they are to
be reported by the jobs themselves, and the objective is to minimize the sum of completion times.
We review two lines of work that tackle this scheduling problem from two very different perspec-
tives. The first is the work of Angel et al. [[1], which utilizes a direct revelation mechanism. A direct
revelation mechanism works in the following way:

e First, each agent reports their individual valuation functions to the mechanism

e Then, the mechanism decides on an outcome based on the above reports.

In our scheduling problem, each agent (job) reports their processing time to the mechanism, and
then the mechanism decides on a close-to-optimal schedule. Naturally, due to Smith’s SPT rule [49],
the jobs have no incentive to report a higher than true value. In order to guarantee that the jobs
do not underbid their processing time, the authors propose a punishment rule they call preventive
preemption, which ensures that any lying job will complete later than any truthful job. Using a
completely different philosophy, Eden et al. [15] provide a truthful menu-based mechanism, with
the main goal of also making it prompt, meaning that every incoming job immediately finds out
its completion time on arrival. Their menu-based mechanism presents each job with a number of
possible timeslots where they can be executed and lets each job choose one by itself, therefore also
guaranteeing privacy to the jobs. The sequence of timeslots is built in a way such that larger jobs are
slightly delayed in order to quicker accommodate smaller jobs, similar to job delaying. Also, truth-
fulness is achieved as any job that chooses a slot smaller than its processing time in order to "cheat”
is never actually completed. As we will see in chapter [, this prompt mechanism has a significantly
worse competitive ratio than the simple truthful mechanism in [1]. Naturally, the question arises;
why would we want to sacrifice performance to guarantee promptness? The main motivation be-
hind prompt scheduling algorithms is the uncertainty that large jobs have to tolerate in any other
case. If we consider Smith’s rule, one can observe that a large job can be indefinitely postponed
by smaller jobs that arrive while the machine is occupied. This large job has zero guarantees as to
when it will be executed; the algorithm simply lets it hang around until it decides that it is time for
it to be assigned. A prompt algorithm combats this inconvenience by immediately determining the
completion time c; of an incoming job. To better illustrate how useful this property is in a lot of
real-life scenarios, let us revisit the example of the supercomputer; a prompt algorithm operates as
if it is informing the researcher: "Come back at time ¢, your job will be ready then”.

2.2  Our contribution

Drawing motivation from the results of [[15] and [[I] in the problem of truthful scheduling of jobs
in identical machines, our goal was to explore truthful scheduling algorithms for the much more
general setting of unrelated machines. We note that, in the case of unrelated machines, a direct
revelation mechanism would not be easy to implement. In addition to having an incentive to un-
derbid their processing times in order to get a better completion time (which can get solved by
introducing punishments for underbidding), in our case, jobs also have an incentive to overbid their
processing times in some machines in order to manipulate their assignment to a specific machine.
Since this incentive is inherently very hard to counteract, we shifted our focus toward the fam-
ily of prompt menu-based mechanisms. In chapter § we propose a tight O(log Pynqz) non-truthful
prompt scheduling algorithm for the case of unrelated machines. Moreover, in chapter ff we propose
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a truthful algorithm for the same setting and present the indications we have that its performance
is comparable to the algorithm in chapter f. While we were unable to prove its actual competitive
ratio, we support the above claim by conducting an experimental evaluation of our proposed algo-
rithm, comparing it to the state-of-the-art greedy online algorithm [ and also to a lower bound of the
optimal solution obtained by solving the LP B.3.1. This experimental evaluation also shows (some-
what surprisingly) that the simple greedy algorithm f] performs much better than its theoretical
guarantees, in many cases being almost optimal given that it is designed to be non-preemptive.

2.3 Organization

In chapter B, we give a brief review of the most important works on minimizing the sum of comple-
tion times both in the offline and in the online version of the problem. We analytically present two
LP-relaxations that are commonly used as a backbone to most offline approximation algorithms,
and also present the state-of-the-art greedy online algorithm of Gupta et al. [23]. In chapter }§, we
present the two main works of Angel et al. [1] and Eden et al. [[15] on truthful scheduling for selfish
agents. In chapter | we present a non-truthful algorithm based on the work of Eden et al. [[15] for
the setting of unrelated machines, using some ideas from Gupta et al. [23]. Finally, in chapter 6 f we
present a truthful algorithm whose competitive ratio we have been unable to analyze, supporting it
with an experimental evaluation that suggests that its performance is close to the theoretical opti-
mal for a prompt algorithm. In those experiments, we also measure the performance of algorithm
f, noting that it performs a lot better than its theoretical upper bound.
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Chapter 3

Scheduling for the Minimization of Weighted Completion
Times

Job scheduling is a fundamental and very well-studied problem in Theoretical Computer Science,
having a plethora of real-world applications. For example, in manufacturing, a different schedule of
specific tasks amongst different machines can have implications on the total time needed to com-
plete them, the total cost needed to complete them and other objectives that might be of interest.
Moreover, the algorithm that should be used to define the optimal schedule for these tasks is sensi-
tive to the setting in which they have to be completed. The number of machines that are available,
the different processing speeds they might have, the fact that some tasks might need to be com-
pleted after others are all factors that drastically change the approach that should be used to tackle
the problem.

In order to organize the different challenges that might arise when trying to solve a schedul-
ing problem, we cite the universal notation provided by Graham et al. [21], according to which
a scheduling problem can be classified into a category based on a triplet of characteristics «|f|7.
There are n jobs (j = 1,2, ...,n) that should be processed on m machines (i = 1,2, ...,m). We as-
sume that each machine can only process one job at a time and that each job can only be processed
by one machine (non-malleable setting). For each job, the following information might be provided:

1. m; : the number of operations the job requires to be deemed completed.
2. rj : the job’s release time; the time at which it becomes available to the system for processing.

3. pi; : the job’s processing time for machine i. Note that a job can have different processing
times for different machines (we elaborate on that later).

4. d; : the job’s due date. If it is not completed before d; the objective we are trying to optimize
might suffer a penalty.

5. wj : the job’s weight, indicating it’s importance (higher weight means the job should be com-
pleted earlier rather than later).

6. f; : anon-decreasing cost function measuring the cost f;(t) if job j is completed at time ¢.

We will now describe what the fields | 3|y might entail. v describes the machine environment
and might have one or two entries (i.e. @ = ajaz2) from the following:

e o1 = 1: Single machine, p; = p;.
e o = P : Identical parallel machines, p;; = p;, i € [m)].
e o = U : Uniform parallel machines, p;; = ¢;p; where g; is the speed factor of machine i.

e a1 = R : Unrelated machines.
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e o1 = O : Open shop. Each job j consists of a set of m operations (O1;, Ogj, ..., Op,;. Op-
eration O;; has to be processed by machine ¢ in p;; time units (note that p;; might be zero)
and there are no constraints limiting the order in which the different operations have to be
completed.

e a1 = F': Flow shop. Same as open shop, but now the set of operations is ordered, meaning
O;j must be completed before O;/; for i < 7

e a1 = J : Job shop. Same as flow shop, but the order in which the operations must be com-
pleted is not necessarily the same arbitrary order with which we numbered the machines (i.e.
the set of operations is (O, 5, Omyj, -y Om,j)-

® « can be a positive integer denoting that the number of machines is fixed. If a is not given
we assume that the number of machines is a variable.

The second field 5 will be a subset of 6 possible constraints that might be imposed:

e 31 € {pmtn,D} :If pmtn then preemption is allowed, which means that at any time we
might interrupt a job’s execution and continue it later. If empty, then each job that starts its
execution must be completed with no interruption.

e 3y € {res,resl,(} : Used in resource allocation problems. If res, then it is assumed that
there exists a set of resources Ry, h = (1,2, ..., s) and that each job j requires the use of 7y,
units of Ry, at all times during its execution. A resource cannot be used by more than one
job at a specific time index. If res1 it is assumed that there exists a single resource. If empty,
there are no resource constraints.

o 33 € {prec,tree,(} : If prec then a precedence relation < is defined between different jobs.
It can be described by a directed acyclic graph G. If G has a path from i to j then J; < J;
which means that job j has to be completed before job 7 can start being executed. If tree then
G is a rooted tree with having either outdegree at most one or indegree at most one for all
vertices. If empty, then there are no precedence constraints.

e 34 € {r;,0} :If r; then each job has a release time r; at which it becomes available for
execution. If empty, we assume that all release times r; = 0.

e 35 € {m; < m, 0} : In the first case, m; is upper-bounded by a constant (can only be used
when a1 = J).

o s € {pij = 1,p < pij < p,0} : I p;; = 1 then we assume unit length jobs. If p < p;; < p
then the job processing times are lower and upper-bounded respectively. If empty, there are
no limits to the processing times.

Finally v € {fmaz, > f;} describes the optimality criterion chosen, and can be one of the fol-

lowing (among others that are omitted):

e (; : Completion time. When minimizing C’; ;4. the problem is called makespan minimiza-
tion. When minimizing the sum, the problem is called minimization of the sum of completion
times.

e L; =Cj —d; : Lateness.
e T; = max0,C; — d; : Tardiness.
e U; =if C; < d; then 0, else 1. Unit penalty.

In this chapter, we will review the most notable previous work on the minimization of the sum

of completion times ) | C; in different (a, /3) settings.
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3.1 Weighted Completion Times Minimization on A Single Machine

In Graham notation, the problem of scheduling a single machine in order to minimize the sum of
completion times is denoted by 1| ; ¢j- Smith [49] showed that scheduling the jobs in a non-
decreasing order based on their processing times solves the problem optimally in O(nlogn) time.
This rule is commonly referred to as Shortest Processing Time (SPT). Similarly, when the jobs are
assigned weights, it is optimal to schedule the jobs in a non-decreasing order based on the ratio 5}—3

J
When we add release times to the problem but preemption is allowed (1]rj, pmitn| >’ j chj), the

above rules can be modified to schedule the job with the Weighted Shortest Remaining Processing
Time (WSRPT) at each step, solving the problem optimally. These two rules are a benchmark for
job scheduling problems, as they can be used in harder instances to derive good approximation
algorithms.

In the case where preemption is not allowed, the problem of minimizing the sum of weighted
completion times with release times is strongly NP-Hard, even for unit weights (w; = 1 for all jobs j)
(Lenstra et al. [35]). For unit weights, Phillips, Stein and Wein [41] proposed the first constant-factor
approximation algorithm, deriving a schedule based on SRPT. First, the optimal preemptive sched-
ule P is computed and used as a guide. The jobs are scheduled in an increasing order based on their
completion times in the SRPT schedule cf , adding some idle time where needed due to the release
times 7;. With an elegant proof, they show that each job completes in at most QCf time, which
means the algorithm is a 2-approximation. It is useful to note that their algorithm works in an on-
line fashion, as being oblivious about job j before r; does not change its behavior. Subsequently,
Hoogeveen and Vestjens [26] prove that 2 is actually the lower bound in the online setting for de-
terministic algorithms, which means the above algorithm is the best we can do without introducing
randomization. In [6] Chekuri et al. describe an _“;-approximation deterministic algorithm for the
offline problem, and an online randomized algorithm with the same competitive ratio, also proving
that the latter is optimal. Their work introduces the notion of a-schedules. Given a preemptive
schedule P and a constant o € [0, 1], they define cf (cv) as the time at which an a—fraction of job j
has been completed. Then, an a—schedule is the non-preemptive schedule obtained by ordering the
jobs increasingly based on their cf (). Choosing « with the density function f(«a) = :_—al results
in an optimal online _“;-competitive randomized algorithm.

In the case of minimizing the sum of weighted completion times with no preemption, forming a
non-preemptive schedule based on the optimal preemptive schedule is not the best solution. Instead,
several works use linear programming (LP)-based algorithms, with several LP relaxations having
been proposed (non-preemptive and preemptive time-indexed LP relaxation, completion time relax-
ation and more, see Hall et al. [24], Queyranne [42], Queyranne and Schulz [43], Dyer and Wolsey
[14], Belouadah et al. [4]). Goemans et al. [20] combine an LP relaxation with an a-schedule to
provide an 1.6853-approximation algorithm for this problem.

A final technique that should be noted is derived from the online versions of single machine
job scheduling problems and is called job delaying. In [51] Vestjens describes an instance in which
any online algorithm that schedules jobs as soon as the machine is idle can have an arbitrarily bad
performance. Assume the following instance: A job j with processing time 1 is available at time
0. Then, at time ¢ a set of n — 1 jobs with processing times 0 arrive. Obviously the optimal offline
schedule has a total cost of ne + 1 whereas any online algorithm that does not delay the first job
has cost at least n, which means the algorithm is %—competitive where € can be arbitrarily small.
Vestjens proves that it is optimal to delay the first job until the time index 1 — % — ¢ for this instance,
proving in the process that no online algorithm can have a competitive ratio better than 2 for the
online version of the problem 1|r;| >, wjc;.

All of the above techniques have been used to provide algorithms for the generalizations of these
problem in the settings of identical and unrelated machines, some of which we will review in the
following sections.
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3.2 Weighted Completion Times Minimization on Identical Machines

In this section, we will briefly go through the literature of scheduling parallel identical machines to
minimize the sum of completion times. The problem of scheduling identical machines is of signifi-
cant importance, as even in the case of two machines (P2[ ), ¢;) it can be shown that the problem
is NP-Hard, by reducing its instance to an instance of Knapsack (Bruno et. al [5]). The hardness
results hold even when preemption is allowed, as shown by McNaughton [37]. Recall that we men-
tioned that the SRPT criterion that solves one-machine scheduling optimally can be used to derive
good approximation algorithms for the NP-Hard problems in identical machines. In [38] Megow
and Schulz prove that WSRPT is a 2-approximations for the problem P[pmtn|}_; wjc; in the on-
line setting. Their algorithm has convenient properties and is very commonly used to compare and
analyze the competitive ratios of algorithms for different identical machine scheduling problems,
one of which we will describe later on. Therefore, it is useful to present the algorithm and its proof.

Mechanism 6: Weighted Shortest Remaining Processing Time (WSRPT)

At each point in time, interrupt all jobs that are being scheduled. Then, among all available and
not completed jobs, schedule the m (or fewer if less than m jobs are available) jobs with the
highest priority based on their weight and remaining processing time (p] )

Note that this algorithm works for the online version as well, as its decisions are only based on
the characteristics of available jobs. We will now prove the following theorem:

Theorem 3.2.1. Algorithm WSRPT produces a schedule where the sum of completion times is at most
2-times the optimal value of the solution for the offline problem P|r;, pmtn| Zj w;c;.

Proof. To prove the competitive ratio of WSRPT we will consider the time interval between a job’s
release time and its completion time (7}, c;]. We partition this interval into two disjoint sets of
subintervals I(j), I(j). The first one contains all subintervals where job j is being processed by
some machine, whereas the second one contains all other subintervals in (7, ¢;). Note that in
all subintervals belonging to I(j), since job j is not being processed, all machines should be busy
processing some other jobs. By definition of the two sets, we obtain that:

¢j < i+ G|+ ()]

where |I(j)| and |I(j)| denote the total length of all subintervals in each set. Also, by definition of
I(j) we have that |I(j)| = p;. Note that by definition of WSRPT, during all subintervals of I(3)
all machines are processing some jobs with a greater weight to processing time ratio than job j. In
the worst case, all higher priority jobs are fully processed during these subintervals, meaning that

1)) = =k

. Now, we can give an upper bound to the sum of completion times:

Zw]c] < ij i+ pj) -I-ijzpk:

k<j

The proof concludes when we note that both parts of the sum are actually a lower bound to
the optimal solution. First, for each job’s completion time it obviously holds that ¢; > r; + p;.
For the second term, we can observe that ) ;W5 D oke j Pk can be modeled as the objective function
when relaxing the problem to scheduling an m-speed scaled single machine (a single machine that
has m-times the speed of each individual machine in our identical machines environment). As the
m-speed scaled 1| ;j wj¢; is a relaxation of our problem, its solution is at least as good as our
problem’s optimal solution. Therefore we conclude that:

Z’ijj S QOPT
J
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and we have proved that WSRPT is 2-competitive. O

Furthermore, we can use an instance provided in [44] by Schulz and Skutella to prove that the
above algorithm is tight:

Lemma 3.2.1. For any number of machines, the competitive ratio of WSRPT is lower bounded by 2 for
the online problem P|r;, pmtn|}_; w;c;.

Proof. We will first describe the instance where WSRPT cannot achieve a better solution than 2
times the optimal one. Assume we have m copies of n + 1 jobs (practically, each one of these m

copies is fully assigned to one machine). These n+1 jobs have the following characteristics: w; = 1,

pj=mn-— fl rj = jn — (]H) for all 0 < j < n. WSRPT preempts every job exactly when it has

just % processing time left, and only finishes it when all jobs with a greater release time have been
finished. Therefore, it holds that:
= j (n+1)? n+1
cost(ALG) = ijc] z(:)rn+pn+n :n3+n2_T+n2_1+
j:

In contrast, the optimal schedule is actually non-preemptive and has the value:

3 2
n°  n® (n+1)(n+2) n+1l n+1
t(OPT) - 4+ _
cost( g ri +pj+ 5 T35 5 +n 5 T
It is clear that as n goes to infinity, the limit of the ratio between ALG and OPT becomes 2. O

From the above, we derive that WSRPT is a tight 2-competitive algorithm for the online problem
of scheduling n jobs in m identical machines. We will use this fact to prove the competitive ratio
of other scheduling algorithms in later chapters. Now, we shall provide an overview of the most
notable results for offline and online job scheduling problems in the identical machines setting. In
the same paper ([38]) Megow and Schulz provide a 2-competitive algorithm for the online problem
without preemption. They argue that scheduling a "long” job with a high priority ratio ’ - might be
very suboptimal, as a job with an even higher priority ratio might arrive right after and be delayed for
a long time. To combat this, they propose SHIFTED WSPT, in which they assign a modified release
time r; to each job, which is a number between max{r;, ap;} and r; + ap; for some constant

€ (0,1]. During all time indices prior to 7"} (even the ones after r;) the algorithm acts as if it
is oblivious to the existence of job j. Technically, this algorithm works exactly the same as using
WSRPT to solve P|r’| > wjc;. It is 3.28-competitive for a variable number of machines m.

In [44] Schulz and Skutella provide a randomized 2-competitive algoithm for the online problem
Plr;| 3_;wjc; by combining the a-schedule technique with randomization during the phase of
assigning jobs to machines. Their algorithm, RANDOM ASSIGNMENT, first solves the problem
1ri| > ;j Wwjc; assuming an m-speed scaled single machine and then assigns each job to a machine
randomly and uniformly. Using the shadow a-schedule produced by the single machine, it schedules
each job j in order of their non-decreasing a-fraction completion times in the same way that Chekuri
et. al [6] described for the single machine problem, as stated in the previous section.

Using both the single machine a-schedule technique and LP relaxations, Correa and Wagner [[11]
improved the deterministic bound of the online non-preemptive version of the problem to 2.62 with
their algorithm NAS. In the same paper, they provide a (2 — —) competitive randomized algorithm
named CW2005. Combining the speed-scaled single machine a-schedule technique and the job
delaying technique proposed in [38] (Megow and Schulz), Sitters [47] gave an (1.79(1 + \/—lm)2)
upper bound with an algorithm she named ONLINE. Using the best of ONLINE and CW2005 for
different values of m (the threshold being 320) gives a 1.997-competitive algorithm for the non-
preemptive scheduling of identical machines.
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3.3 Weighted Completion Times Minimization on Unrelated Machines

The third machine environment that will be analyzed in this thesis is that of unrelated machines.
In this setting each job j has m different processing times p;;, ¢ € [m], all of which are completely
unrelated to each other. It is clear that this setting is a generalization of identical machines, an
instance of identical machines can be replicated by choosing all p;; to be equal. In contrast to the
identical machines setting, where a PTAS exists, scheduling unrelated machines to minimize the
sum of weighted completion times is APX-Hard (Hoogeveen et. al [27]).

3.3.1 Offline version

The first constant-factor approximation (?—approximation) of the problem R|ri;| ) jwjc; was
given by Hall et al. [24]. In their work, they use an interval-indexed linear programming formula-
tion, where the decision variables indicate the time interval during which a job is completed. The
time horizon is split into intervals whose endpoints follow a geometric progression. Then, for each
interval, a set of jobs is scheduled whose sum of processing times is no larger than the interval’s
length. The so-called "interval-indexed” LP relaxation is the following:

n m L
minimize E wjg E To—1%ij¢
Jj=1

i=1 =1
m L
subject to ZZ&"W =1 Jj € n]

i=1 r=1

n
> pigwije < 0, i€[m] lelL]
j=1
Tije = 0 if 7p < rij + Dij
xije >0 i€lm],j€[n],le[L]

In order to round the LP solution, the authors at first completely disregard the interval indices
in order to match jobs to their respective machines. They form a bipartite graph in the following
way (first proposed in Tardos and Shmoys [46]):

On a high level, they create £ copies of each machine node where k¥ = sum;x;;. They also
create a node for each job j. A bipartite graph is created in the following manner: Add job-machine
edges to the first copy of a machine until the first index j' where sum;:l:lxij > 1. Then, continue
by adding the edges between the remaining jobs and the second machine until it also reaches 1
and so on. Finally, when the bipartite graph is constructed, find the minimal cost matching that
exactly matches each job to one machine. Finally, schedule each job in the time interval that the
LP calculated for the specific variable x;;, with the ordering being arbitrary if two jobs are to be

processed in the same machine during the same interval.

In [44] Schulz and Skutella use a similar time-indexed LP but with randomized rounding to pro-
vide a (2+¢)-approximation. Independently, Skutella [48] improved the bound, giving a 2-approximation
based on the randomized rounding of a very simple convex quadratic program’s solution. Further
improving upon this 2-approximation had been a challenging open problem for many years since
then. 15 years later, Im and Li [30] provided a 1.8786-approximation algorithm using yet another
time-indexed LP paired with a novel rounding and scheduling technique, which uses the idea of job
delaying paired with randomization. First, they solve the LP and randomly assign each job to a ma-
chine i; based on the values of its decision variables. Then, they fix a distribution © over [0, 1] where
no number appears with positive probability and independently draw a ¢; for each job j from ©, as-
suming that each job has a distinct ¢;. Finally, they invoke a modified release time 7“;- = s+ 0;pi;j,
and then schedule the jobs in WSPT order based on the modified release times.

In [48] Skutella also gave a long-standing 1.5-approximation algorithm for the offline problem
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with no release times R| ) jwjc;. Coincidentally, this bound also lasted exactly 15 years, until

Bansal, Srinivasan and Svensson [3] improved upon it with a (1 5—10" ) -approximation using a
lift-and-project based SDP relaxation. Li [36] provided a (1 5— 6000) follow-up result using the
same technique as a black box. The current state-of-the-art result comes from Im and Li [29], with
a 1.45-approximation based on the same SDP relaxation and bipartite-rounding techniques.

A completely different approach to the problem is that of the Configuration LP”. Sviridenko
and Wiese [50] designed a PTAS for the problem R|[r;|| > ; wjc; using the following LP relaxation:

min Z Z vis - Wis

€M SeS(i
subject to Z Y5 < < 1 Vie M
Ses(i
Z Z Yi,S >1 VJ elJ
€M SeS(i
yLSZO Vie M, S e S(i)

In the above relaxation, M is the set of machines, J is the set of jobs, and S(7) is the set of
all possible schedules of machine 7. Note that j € S if job j appears on the schedule S. The
configuration LP might have only a linear number of constraints, but it has an exponential number
of variables. Therefore, it is not directly solvable. To tackle this issue, they solve the dual LP by the
ellipsoid method and a polynomial separation routine. The dual LP is the following:

max Z@—Zai

jed ieM
subjectto —a; + Zﬂj <W;sVie M, VS € S(i)
jed
a; >0 Vie M
Bi >0 vjeJ

For this separation problem, we want to either find a schedule S € S(i) such that —a; +
ZjeJ Bj > W, g or assert that for all schedules it holds that —c; + ZjeJ Bj < Wi . The au-
thors provide a reduction to the problem of scheduling one machine with rejections and minimizing
the sum of weighted completion times plus the sum of rejections, where each job’s rejection penalty
ej equals 3;. This problem is a well-studied NP-Hard problem [25, 16, 45]. However, in order to
approximate the original configuration LP within a factor of (1 4 €) we can solve the following
relaxed version of the dual LP:

max Zﬁ] szt + Z Tsj) me : Rt+1*Z Z g - end(s)

jedJ t s€Q(P) JjeJ Jj€J s€Q(P)
subject to me + Z s <1 Vied
s€Q(P)
Z] s, j <1 Vs € Q(P)
djesPj - wej < rem(t) Vit
x5 >0 Vi,VieJ:rj < RiAp;j <e-1
Te; >0 Vs € Q(P),Vj e J: pj < size(s) Ar; < begin(s)

Elaboration on the notation used above is needed. We define R, = (14+¢)® and I, = [Ry;, Ry+1)-
Q(P) denotes the set of jobs in a schedule S that start in an interval I, such that p; > ¢ - I, (which
means they are large enough to not be contained solely between that interval). All jobs that are
not in Q(P) are considered small jobs. size(s) denotes the size of slot s, begin(s) and end(s)
denote its begin time and ending time, and rem(t) denotes the remaining time of interval I; to be
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allocated to small jobs (as a fraction of it has been allocated to a large job not completed within a
previous interval). The above LP is the dual to an analogous relaxation of the original configuration
LP and can be solved exactly. Finally, to obtain a feasible solution for the original configuration LP,
the authors provide a lemma that allows to compute for each schedule S of the relaxed LP a convex
combination of configurations 51, . . ., Sp and coefficients A1, . . ., Ap in order to satisfy the original
set of feasible schedules.

3.3.2 Online version

For the online version of R|r;;| ) ;j wjc; the first improvement upon the results obtained in [24] was
achieved by Gupta et al. [23] 20 years later. Surprisingly, they give a simple online greedy algorithm
which is a 7.216-approximation of the optimal solution. Because of its simple nature, it can be used
as an auxiliary algorithm in order to prove the competitive ratios of other algorithms that will be
analyzed later. Therefore, it is useful analyze its own proof to gain useful insight on why it works.
First, we shall describe the algorithm:

Consider a job j that is released at time r; and has processing time p;; for each machine 7, i €
[m]. The algorithm works by going through the following steps:

Mechanism 7: Greedy online algorithm minimizing sum of weighted completion times

1. Define a modified release time r;; for each machine 7, i € [m/]. The release times are defined
as follows; 7;; := max{rj, c- pij} for a constant c. Parameter c will be optimized later, as it
also depends on other constants.

2. Assign each job to a machine based on the following criterion. Let U;(¢) be the set of jobs
that have already been assigned to machine ¢ at time ¢ and have not yet been started. Define
cost(j — 1) as an upper bound of the cost that the assignment of job j to machine i would
impose on a theoretical WSPT schedule of jobs U;(r;). We will define cost(i — j) and
explain the need to use an upper bound later.

3. On each machine, schedule the jobs exactly as in WSPT. That is, as soon as machine ¢ falls
idle at time ¢, schedule the job among U;(t) N {j|ri; < t} with the highest ratio ;U—J
ij

Definition 3.3.1 (cost(j — i)). For job j and machine i, we define cost(j — i) as:

o 1
cost(j — 1) := wj <1 + C) rij + Dij + ZU N Dik | + Z; N WkPij
kEUi("'jLﬁZﬁ keUi(Tj)’ﬁ<ﬁ'Jj

We will now prove the following lemma. In the proof, when considering a job j assigned to a

. . . .. . o . w w; P .. . ..
machine i, a higher priority job j' is one where i Similarly, a lower priority job j' is one
i ij
w ;1 w5
where —- < —L:
Pijt Pbij

Lemma 3.3.1. Define m(j) as the machine to which job j was assigned by the greedy algorithm. Then:

ALG < Zcost(j — m(j))
J

Proof. To prove the lemma, we shall give an upper bound to the contribution of job j to > ; Wjic;.
Recall that when a job j is released at time 7; it is immediately assigned to the machine ¢ that
minimizes cost(i — 7). First, we shall derive the latest time at which job j might start being
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executed. By definition of the algorithm, it cannot start at a time earlier than 7;;. At time r;
another job h could be under execution in machine ¢, which will further delay job j’s execution by
X (ri;) time units. Finally, job j will be delayed by all jobs in U;(r;) with higher priority. Therefore,
the increase of > ; Wjic; attributed to job j will be at most:

wj | ri; + Xi(rig) + pij + > wipij | + > wypi; < cost(j — 1)
kGUl(TJ),:)TIZE% ]CGUZ‘(T‘J'),:TIZ<%

To prove that the inequality holds, it remains to show that X;(r;;) < % Indeed, since job A is
being processed at time 7;;, and therefore 7;;, < r;;, it holds that:

- .
Xi(rij) < pin < %h <2

Notice that our proof only uses the jobs released prior to r;. At the time indices between 7; and
rij, some (or several) job j' with higher priority than job j might be assigned to machine ¢, and it
might delay the execution job j further. However, the upper bound we defined does not account
for these jobs. That is done on purpose as these delays will be accounted for when calculating the
individual costs cost(j’ — ). For the set of jobs with lower priority released between r; and 7,
the maximal delay that can be imposed upon job j is X;(7;;) as we defined it above, as job j will be
scheduled ahead of all other non-scheduled lower priority jobs. Summing over all jobs j it follows
that 3, wjc; < 3, cost(j — m(j). O

We shall now prove the following theorem:

Theorem 3.3.1. ALG has a 7.216 competitive ratio for minimizing the sum of weighted completion
times Zj wjcj on unrelated machines. That means that ALG < 7.216 - OPT

Proof. Let m(j) be the machine to which job j got assigned. We define

aj = cost(j — m(j))

ﬁi,s = Z Wk

k:m(k)=i; r,<s cx>s

By definition ), . 8;s = ALG and by B.3.1) ALG < > @;. Now, consider an f-speed-scaled

instance, where we modify the release times and processing times by a factor f as follows:

rf ::% and pf — Dij

i - 7

J

. It follows that:

riy
f

Tij =

Note that the presence of f only serves to scale time by this factor. All assignments of jobs to

machines remain unchanged. Therefore, we can define a new upper bound on the increase of the

sum of weighted completion time af and a new total weight of assigned-but-unfinished jobs on

machine ¢ at time s Bif . as follows:
5i,8

O‘f = %M = Bifs) = 7 (3.1)
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Finally, we define the new total cost of ALG in the speed-scaled instance as ALG/ = 3", @f s <

> j a;-c . Using (B.3.9), which gives us a lower bound on the value of the optimal solution OPT, we
can derive that:

f f
5 B@s ALG (1 1
OPT =) =) 5> a5
] 275
f-OPT
ALG < ——M—
= ALG < 7T

Setting the algorithm’s parameters to ¢ = 2/3,a = 32/23,b = 16/3, f = 23/6, a combination
that is a feasible choice to use (3.3.9), it follows that ALG < 7.216 - OPT. O

To state Lemma (B.3.9), we shall first define a linear programming relaxation Pr of the problem
at hand, as well as its dual linear program Dr, that will be used to derive a lower bound for the
optimal solution. Consider the following linear program:

. Pr __ P
min 2" = ) wjc;

jeJ
st D yis <1 foralli € M,s € Z>y,
jed
Sy Y forallj € J
€M sE€L>,; Pig (32)
=Y Y (%(H L4 %)for all j € J
€M s€Lsy;
Yijs = 0 fOralliEM,jEJ,SEZZTj

As it is a relaxation of the original problem, its solution will be at most as large as the solution
given by OPT. Now, consider its dual linear program:

max ZDT:ZOlj_ > 2 Bi,s

jeJ i€M s€Zx
j +3 , . .
st < B+ (spi;’ + %) foralli € M, j € J, 5 € Zs,, (3.3)
Bis =0 foralli € M, s € Z>,,

By duality, any feasible solution to the dual linear program Dr is a lower bound to the optimal
solution of the problem. We finally state Lemma (B.3.3) as follows:

a b
ifaf <2(2+c), 2 < f(a—1), andaf > b. For the valuesc = 2/3, o = 32/23, b = 16/3, f =

23/6 the objective function value of (8.3) yields 2P (%, %) > ALTG (é — %) = #1?51

Lemma 3.3.2. Withaf and 57 as defined in (B.1), the values (af Bf) are a feasible solution to (B.3),

Proof. We have only to prove the feasibility of the solution (%f, %) From the constraints of the

dual program, for any job j and machine ¢ it holds that:
s+ %

s
—L < Bis + wj
Pij Dij

1

Substituting in the solution, it suffices to show that:

f f 1

(o J s+ 5 1
—L < Pis +w;—2 +wj- =
a-pi — b Pij 2
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Using the facts that of = %, ,6’1}; = Bi ts) 5+ % > s it is enough to show that:

&Saf-M—i-wji-af—i-wj-a—f (3.4)
Dij b Dij 2

Due to (8.3.1) and having chosen a; to be the one that minimizes cost(i — 7) it holds that:

Qj  wj 1
o=t (1 + c> rjtpg+ >, pw|+ D>, wp  (35)

Dij Dij . ws )
() Yk J ) Pk Y
kEUZ(rJ),pik ZPij kEUZ(Tj),pik <Pi]’

Therefore we have to show that the RHS in (B.9) is upper bounded by the value of the RHS in
(B.4). We can achieve that by showing a slightly stronger inequality. Because Bi, fs is the total weight
of jobs k assigned to machine ¢ and unfinished at time fs but with r;, < fs, keeping f > 1 and
since r; < s it holds that 7; < fs. Consequently, we have that:

Bi,fs > Z wy, > Z wy,
kxm(k)=i,re<rj,cp>fs keUi(rj),ce>fs

Therefore (B.4) is actually bounded from above by:

af s af
keU;(ry),c>fs K
B af w ' wj ‘ ‘ af
il Z wg + —(fs — 1)) —I—f(fs(a—1)+'rj)+wj-?
k’GUi(T]'),CkaS pw pl‘]
Thus, finally, we have to prove that:
1
wi- | (1+ A Z Pik | + Z Wi Pij
KEU;(ry) > ok KEUi(ry) pk <3t
af af
|5 X wwyrwUs =) | Fus(fsla—1) 4 r) w5

keUi(rj),ck>fs

We can rewrite this as:

1
(O ) S me S

w w4 wi. w
kEUi(Tj)’ﬁZﬁ keUi(Tj),ﬁ<ﬁ;

I

11

S%f. Z wgpij +w;(fs —rj) +w; ((fs(a_l)Jrrj)erij_af)

2
kEUZ'(T]'),CkaS

I*
17+

Now we can prove separately that:
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1. I < I*: We split the proof in two cases. If r;; = 7 then I = (1 + %)T‘j + pij, and since
s>rj, I* = ((fs(a —1)+75) +pij - %f) >+ flao—1)rj + pij - %f Therefore we get
that I < I*if1/c¢ < f(a—1) and aof > 2. If r;; = cp;j then I = (2 + ¢)p;; and we get that
I < I* when 2(2 + ¢) < af for every a > 1. To get that I < I* in both cases, we need the
conditions 1/¢ < f(a— 1) and 2(2+ ¢) < af

2. II < IT*: By definition of U;(r;) it holds that:

wi(fs=r) >w; Y pa

keU;(ry),c<fs

Therefore, conditioned on a—bf > 1 we have that 11 < IT*, as:

I —II = > (wkpij —wipik) + > (wjpik —wipir) > 0
kEUi(rj),%Z%,ckas kEUi(rj)7%<%,ck<fs
]



Chapter 4

Truthfulness and Promptness in Scheduling

Assuming that every job’s metadata is publicly available at all times is an assumption that does not
work in every real-life application of scheduling problems. On many occasions, a job’s processing
time or other useful information might be held privately, and exposed to the algorithm by the jobs
themselves. In these cases, each job can be modeled as a selfish agent, that might reveal false in-
formation if that would cause it to receive a better result from the algorithm. To combat this, an
important research question in the area of Mechanism Design has been to create truthful algorithms
in order to guarantee that the jobs will have no incentive to lie about any private information they
hold. Once again, the primary objective researchers are interested in is the minimization of the
makespan. Since the volume of literature involving makespan minimization is vast, we shall only
briefly review the most important works on this problem.

4.1 Truthful Scheduling for the Minimization of the Makespan

Minimizing the makespan when the jobs’ processing time is private information is inherently a
hard problem. Nisan and Ronen [39], where the first in line to tackle the problem of minimizing
the makespan in unrelated machines, in the case where the machines are selfish agents that seek to
minimize their load. When presented with a task, each machine has to declare t? , the time it would
need to process task j. Obviously, the machines have incentive to overbid this processing time, in
order for it to be scheduled somewhere else. The authors applied the VCG [52, [10, 22] mechanism
(that we will analyze later) and showed that it achieves an m—approximation where m is the number
of available machines. They then formed a conjecture that no truthful mechanism can achieve an
approximation better than m for this problem. A long line of works had tackled this conjecture,
gradually proving tighter lower bounds. Nisan and Ronen were the first to prove a lower bound of
1+ /2. A series of papers led to the improvement of this lower bound to 3 [9, [18, 34, 12]. The first
super-constant lower bound of 1 + v/m — 1 was given by Christodoulou, Koutsoupias and Kovacs
[7]. Finally, the same three authors proved the conjecture to be true in [§]. The above line of works
shows that the need for truthfulness can have a significant impact on a problem’s hardness. In the
next section, we shall further investigate the impacts of truthfulness constraints on the objective of
minimizing the sum of weighted completion times.

4.2 Truthful Scheduling for the Minimization of the Sum of Weighted
Completion Times

As has been stated above, the objective of interest in this thesis is the minimization of the sum of
weighted completion times. In a mechanism design setting, this objective could theoretically be
presented as a social welfare maximization problem, assuming the utility function of each of the
jobs is modeled as u; = —w; - ¢;. The de facto family of truthful mechanisms that is used when
tackling such problems is known as the VCG mechanism [52, 22, 10]. However, this family of mech-
anisms cannot be applied to scheduling problems. To understand the reasoning behind this, we shall
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first analyze when and why the VCG mechanism works. Then, we will present two fundamentally
different truthful mechanisms for scheduling parallel identical machines, based on two different
philosophies. The first one is a direct mechanism, where the agents report their information to a
central entity, which then decides on an outcome. The second is a menu mechanism, where an
agent never really reports their privately-held information. Instead, each agent enters the system
and chooses one of the possible outcomes they are presented with.

421 Preliminaries

First, we shall provide some notation and definitions to be used when describing the VCG mech-
anism. Assume there are n agents and a set X of possible outcomes. Each agent has a valuation
function v; : X — R that maps each outcome to the value the agent receives from it. For the VCG
mechanism to work, it is also assumed that all agents have a quasi-linear utility function:

Definition 4.2.1 (Quasi-Linear Utility). An agenti has a quasi-linear utility function iff when receiving
a negative or positive payment p;, their utility becomes:
u;(vi) = v; + p;
Now we shall define truthfulness:

Definition 4.2.2 (Truthfulness). Letv; be the true valuation function of agent i, v} be the one the agent

presents to the mechanism and v be the vector of valuations presented by all agents. The mechanism is
truthful iff:

wi(vg, v—g) > ’LLZ'(UZ,», v_i), VU; £ v;

Another property that is often useful in mechanisms is individual rationality, which dictates that
an agent should not incur a negative utility by participating in the mechanism:

Definition 4.2.3 (Individual Rationality). A mechanism M is individually rational iff for every agent
i and every declared valuation function v;

ui(vi, V_Z') Z 0

A mechanism that is both truthful and individually rational is said to be Dominant Strategy
Incentive Compatible (DSIC).

4.2.2 The VCG Mechanism

A VCG mechanism works as follows: First, every agent submits a valuation function v; : X — RT,
describing their preferences over all possible outcomes. Based on the vector of valuation functions
v, the mechanism calculates 2* = zopr(v) as follows:

xopr(v) = argmax » v;(x)
zeX P

In the final step of the mechanism, the payments each agent has to make are calculated as:
pi=max(} vj(w) =D vj(a)

zeX “— —
J#i J#i

The above value represents the externality of agent ¢, i.e. the total utility reduction all other
agents had to suffer due to agent ¢ participating in the mechanism. Since z* € X, the payments are
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always non-negative, therefore the mechanism has a net gain in the end. Individual rationality is
also satisfied, as no agent is "forced” to participate if their payment would outweigh their valuation.
Now, we shall prove the truthfulness of the mechanism by analyzing the utility of each agent:

ui = vi(z") = pi(v) = vi(z") + Z vj(x”) — glea)?(z vj(x))
JFi JFi
The last term is fixed for all possible actions of agent i. Therefore, to maximize their utility, each
agent seeks to maximize the quantity v; (2*)+>_, ,; v;(z*) = >_; v;j(z"). Observe that this quantity
is exactly the quantity that the mechanism seeks to maximize, the social welfare. Therefore, each
agent has the incentive to submit their true valuation function in order to ”aid” the mechanism in
achieving its objective and consequently maximizing each individual agent’s own utility.

Angel et al. [[] proved that the VCG mechanism cannot be used even in the single machine case
when preemption is not allowed:

Theorem 4.2.1. There exists no truthful non-preemptive mechanism for minimizing the sum of com-
pletion times in a single machine.

Proof. We shall prove the above theorem by contradiction. Assume that there exists a truthful mech-
anism and that the input consists of 2 jobs with processing times ¢;,t2 where t; < t3. It is known
that Smith’s rule [49] produces the optimal schedule for a single machine. Let us assume job 1 de-
clares a processing time t] = t; truthfully, and job 2 declares a processing time t,. If t}, < t; then
job 2 is scheduled before job 1 and obtains the utility us = —t3 — po. If job 2 does not lie, then
t, > t1 and job 2 is scheduled after job 1, which means u$ = —t; — to — p5. If the mechanism is
truthful, then u}, > ugs = —t; — to — py > —to — p2 = pa — py > t1. However, t1 is not known by
the algorithm (as job 1 could have also lied) and therefore the payments cannot be calculated. [

4.2.3 Preventive preemption

In order to obtain a truthful mechanism that minimizes the sum of weighted completion times in
identical machines, Angel et al. [[l] propose a "punishment” for jobs that lie about their processing
times, which they call preventive preemption.

Definition 4.2.4. An algorithm uses preventive preemption if it constructs a schedule in which a job j
is preempted (and resumed later), if and only if, b; < p;, where b; is the presented processing time and
pj is the true processing time.

Having defined preventive preemption, we can describe the algorithm they use to optimally
schedule jobs truthfully on a single machine, called WSPT-PP. WSPT-PP creates a schedule in which
each job is executed during a set of time intervals p; = {(l1,71), ..., (Ix, %)}, being preempted in
between them iff b; < p;.

Mechanism 8: WSPT-PP

1. Sort all jobs in WSPT order (5}—11 <o < by

wo —
2. Schedule the first interval of each job j such that P o= Zi;ll bj and 7“{ = l{ +b;

3. After timet = ) ; bj schedule the jobs that have been preempted using a round robin (RR)
policy: For each x > 2 (where z is the number of jobs), if job ¢ is not completed at time
> bj + n(z —2) +i — 1 schedule this job in the time interval [I7, r{], with

F=>%b+n(x—2)+i—landr =3 b +n(z—2)+1i
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In essence, preventive preemption "punishes” a job that lies about its true processing time by
sending it in a queue at the very back of the schedule, where it alternates its execution with the
other lying jobs. Therefore, presenting a shorter-than-reality processing time always hurts the job’s
completion time. At the same time, it is never optimal for a job to overbid its size, as that will only
push it further in the schedule as well. Formally, the authors prove the following theorem:

Theorem 4.2.2. Algorithm WSPT-PP is a truthful, optimal algorithm for the single machine case where
each job’s private data is their processing time and the objective is the minimization of the weighted
sum of completion times.

Proof. Proving that b; > p; does not favor the job is trivial; in that case, the job will start at a later
time than if it had bid b; = p; and therefore also finish at a later time. If b; < p;, then the job
will be preempted at time b; later than its execution start, and by definition of the algorithm it will
be continued at least at time Z?Zl b;. Therefore for its completion time the following will hold:
¢ > 2?21 bj + pi — b;. If it had bid b; = p; its starting time would be at most 2?21 b; and thus
for its completion time it would be true that ¢; < Z?Zl bj + p; — b;. We conclude that job j has no
incentive to lie. Finally, if no job has an incentive to lie then the produced schedule is identical to
WSPT, therefore WSPT-PP is optimal. O

We have shown that preventive preemption can be used to produce an optimal truthful algorithm
for minimizing the sum of weighted completion times on a single machine. One could propose to use
WSPT-PP as is, sorting the tasks in descending WSPT order and executing them in order whenever
a machine becomes available, preempting any jobs that underbid and starting them again after the
completion of the last task in any machine. However, the above algorithm is not truthful. Consider
the following case:

Counterexample. Consider two machines and three jobs with w; = ws = p; = pa = 1 and w3 =
2,p3 = 2 + €. If job 3 bids truthfully, its completion time will be 3 4 € in one of the two machines.
However, if job 3 bids 2 — ¢, its execution will start on machine 1 and jobs 1 and 2 will be scheduled
on machine 2. Therefore, even if we preempt job 3, its completion time will be 2 + 2¢ at worst, if we
continue its execution on machine 2. O

It is evident that preemptive preemption does not work in the parallel machine case as we de-
fined it above. In [31], it is shown that imposing a large enough penalty (i.e. continuing all deferred
jobs at time at least Z;-L:l) is a truthful 1 + /2 approximation. In [[], the authors propose a simple,
yet efficient trick to derive a truthful %—approximation: the assignment of jobs to machines sim-
ply happens randomly and uniformly, stripping the jobs of any agency they could have over their
assignment if they lied.

4.3 Promptness in Scheduling

A second line of work that combined truthfulness with the minimization of the sum of weighted
completion times in scheduling parallel machines, with a notion they call promptness is that of Eden
et al. [15]. A scheduling algorithm is considered prompt, when it immediately determines (on a
job’s arrival) the starting time and ending time of a job’s execution, without preemption. The need
for prompt algorithms was born by an inherent weakness of Smith’s WSPT rule and all of its online
variants: a long job has zero guarantees as to when its execution will begin. In fact, if we allow
preemption, even when a very large job begins getting executed, it might be indefinitely deferred
by smaller jobs that arrive later.

Definition 4.3.1 (Prompt algorithms). An algorithm is prompt when for every job j with release time
rj, its completion time c; is determined definitively and irrevocably at time r;.
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Theorem 4.3.1. Every prompt algorithm is at least Q2(log P, )-competitive, where Py, is the max-
imal processing time of a job that entered the system.

To combat this, the authors propose the following idea: Divide the time horizon into predeter-
mined time slots, provide the incoming job with a menu of options, and simply let the job itself
choose the time slot in which it will be executed. If a job chooses a time slot smaller than its own
processing time, it is punished harshly, as it will never finish its execution. This fully prompt algo-
rithm achieves a tight bound of O(log Py,4z ), where Py, is the maximal processing time out of all
the jobs that arrive. Note that it is not known to the algorithm a priori. We should also note that
since the algorithm uses timeslots with lengths powers of two, we round the jobs’ processing time
to the nearest power of two, which multiplies the algorithm’s sum of completion times at most by
a factor of 2.

4.3.1 The prompt sequence

To divide the time horizon into the appropriate slots, Eden et al. introduce a recursive sequence of
exponentially increasing timeslots defined as such:

So = (1)
Sy = Sol|Sol|2" = (1,1,2)
Sy = S1|181]12% = (1,1,2,1,1,2,4)
Sk = Sk—1]Sk—1][2"

Similarly, an infinite sequence is defined that contains every Sy, as a prefix:

Seo = (1,1,2,1,1,2,4,1,1,2,1,1,2,4,8,1,1,2,1,1,2,4,1,1,2,1,1,2,4,8, 16, ...)

The sequence’s shape might not seem intuitive at first, but the reasoning behind it becomes clear
with the following lemma:

Lemma 4.3.1. Foralld > 0 and for all0 < k < d, the volume of all 2k time slots in Sy combined is
equal to 2¢:

S o
i:Sg[i]=2k

The proof is achieved via induction over d:

Proof. The claim is true for Sp. Assume that it holds for Sy_;. Then for Sgy = Sg_1||Sq_1]|2¢ it
holds that:

> 2b=2.20 1 =0d
i:Sg[i]=2k

Corollary 4.3.1. The following hold:
e S} appears in Sy 297F times

e The sum of lengths of intervals in Sy is (d + 1)2¢

43



Remember that we assume every job has a processing time that is a perfect power of 2. If we
divide the jobs into groups based on their processing times, the above lemma inherently suggests
that each distinct group contributes equally to the sum of completion times over a fixed sequence.
To better illustrate that, we can imagine that d + 1 different groups of jobs (with processing times

20 21 ... 2% are divided in equal volume into d + 1 machines, as shown below:

Mo (o[ e [aJafafafafala [l [a]ala]a]n]
m 2 | 2 | 2 | 2 [ 2 [ 2 [ 2 [ 2 |
w oo : | : | : | : |
™

™

™

My 29=P gy

Figure 4.1: Equivalence of volume for different sizes

We shall denote by Sy (t) the sequence of timeslots S, that starts at time ¢ (i.e. S1(t) = ([t,t +
1, [t + 1,t 4+ 2], [t + 2,t + 4])). We denote by b(Si) the beginning of sequence Sy and by e(Sy)
its ending time. Also, for a job j, D(j) will denote the set of jobs that were assigned to the same
machine and completed no later than job j, and I(j) will denote the specific interval in which job j
was executed in. The authors prove that using the infinite sequence S (0) on every machine yields
an Q(v/ Ppuqaz) competitive algorithm. If we instead repeat the sequence Sjog p,,,, on all machines,
the algorithm is O(log P44 )-competitive. To prove this, we shall first prove the following lemma:

Lemma 4.3.2. Letd > 0. Lett and q be such that some job j withr; < t,p; = 2% chose the last
interval of Sy(t) on machine q (28 < 29). Let D(j,q,Sa(t)) be the set of jobs, completing no later
than job j under SRPT, that execute on the same machine as job j, and occupy some interval in Sy(t).
Le, D(j. 4, Sa(t)) = D(G) N {7'11(") € Salt), M(j") = q}. Note that j € D(j, q, Sa(t). Then,

vol(D(j, Sa(t), q)) = 2

Proof. The claim is trivially true for £ = d and also for d = 0. We shall prove it by induction over d
for the case when k < d. Assume that the claim holds for all 0 < d’ < d. Since k < d, every interval
of length 2¥ in S;(¢) must be occupied by some other job j/, otherwise job j would have chosen one
of them. By the induction hypothesis, for every such job j' it holds that vol(D(j’, Sk(t'), q)) > 2%,
and since there are 29 2% sized slots in S;(t), adding them up leads to vol(D(j, S4(t),q)) >

24, O
Corollary 4.3.2. In the above lemma, ifd > 1, replacing the conditionr; < t with the weaker condition

r;j < e(Sq_1(t)) gives us the weaker guarantee vol(D(j, Sq(t), q)) > 2¢7L.

Proof. Recall that by construction Sy(t) = Sy_1(t)||S4_1(t")||2¢ and ¢’ = e(Sq_1(t)). Once again,
if k = d the claim is trivially true since j € D(j). For the case where k < d — 1, since the job
arrived at time r; < ¢’ and did not choose the last interval of S;_1(¢'), it means that the interval
was occupied. Therefore vol(D(j, Sq(t),q)) > 2471 O

Theorem 4.3.2. For Py, = 2%, the repeating static sequence Sy = Sq(0)||Sq((d + 1)24)]|... pro-
duces an O(log Py,q.) competitive schedule with respect to the sum of completion times.
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Proof. For simplicity, we shall notate the repeating sequences as S1, Ss, . . ., with the indices repre-
senting their order of appearance. For a job j there exists an o > 0 such that:

e(Sa) < 7j+pj < e(Savi(t))
e(Sa+z) < ¢j < e(Sa+at1)

Since P4 is known a priori, job j can fit in every single interval of Uf‘: a1 Si» which means

that every one of these intervals must be occupied. Applying (f.3.9) 2 times leads to:

a+x

UOZ(D(])a U Si,Q) > T 2d
i=a+1

Since, c;f > r; + pj, the above implies that:
cj > max {T‘j +pj,x- Qd} = max {a2d(d +1),z- 2d}
Also, from our assumption, the following holds for c¢;:

¢j < e(Satar1) = (a+ x4+ 1)2%d + 1)

The proof is now split into the following two cases:
1L a(d+1)2¢ > x-2¢ = 2 < a(d + 1). In that case, we obtain:

a+z+1 (ad +2a+ 1)
cngcjgch#c;gO(d).cj

2. a(d+1)2% < 2-29 = x> a(d + 1). In that case, we obtain:

_(atz+1)(d+1) , a 1 . 1 1 . .
In both cases, ¢; < O(d) - c}. O

Note that the above algorithm requires a priori knowledge of P4z, which is an undesired con-
straint for an online algorithm. In order to achieve a competitive ratio of O(log Pp,qz) without
knowing P, before the input ends, the authors propose a dynamic way of using the sequences,
which we shall now describe.

4.3.2 O(log P,,4;)-competitive dynamic menu, unit weights

First, we will describe the algorithm used to minimize the sum of (unweighted) completion times
for scheduling identical machines and then we will provide the natural extension for the weighted
case. Since the machines are identical, every machine shares the same schedule. Whenever a job
arrives, every machine updates its division of [0, max ¢;| into time slots. A division is compiled of
a set of disjoint sequences. All sequences are set (and will never change) except for the last one,
which is tentative. The tentative last sequence is the largest suffix that can be a prefix of S (). Let
us denote the state of the algorithm when job j + 1 arrives as 1)/ = (A7, X7), where A/ is the set
of disjoint sequences and X7 is the set of occupied time intervals. We also denote with /; the size
of the sequence set A7 and with Ag the i-th sequence. When job j 4 1 with processing time 2P*
arrives, it chooses a timeslot by itself and its completion time c; is determined (in a way that we
shall describe later) and the new state 17+ = (A7+! XJ*+1) is calculated in the following way:
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1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
Jq 1 1 1 1 1 1 1 1 1 1 1
Jq 1 2 1 1 1 1 1 1 1 1
Jq 1 J2 1 1 1 1 1 1 1 1
Jq 1 Jz 1 1 2 4
Jq 1 Ja 1 1 2 Ja
J4 1 Jz 1 Jy 2 J3
Jq 1 Jz 1 Jg 2 Ja
J1 1 Jz 1 Jg Js - Ja

Figure 4.2: One-machine schedule for the following input: J; : p; = 1,7, =0, Jo : p; = 2,7; = 0,

J3:pj=4,7;=0,Js :pj = 1,r; =5, J5 : pj = 1,r; = 6. The colors represent the
following states: Blue - Tentative Sequence, Orange - Timeslot the job chooses, Green
- Job locked in, White - Sequence is fixed, Black - Slot’s unused fraction (cannot be
occupied)

Ifc; < e(A ) then the job chose an already computed unoccupied interval and nothing
changes.

Ifr; > e(Aj ), then the job arrives at a later time than has been computed. Aj becomes set,
and a new tentative sequence AJ | is created with Sy, (rj). Note that this 1ntroduces a gap in
the schedule, which can never happen when the input is chosen adversarially, as it benefits
our algorithm’s competitive ratio.

Ifr; < e(A{j) andc; > e(A{j) but A{J is of size larger than k, then A{J is extended by plugging
in Sk(e(A{j )) (note that Agj remains a prefix of S (%))

Finally, if r; < e(A{j) and ¢; > e(A{j) but A{j is of size smaller than k, then A{] is extended,
becoming Sk(b(A{_)).

J

We shall now define (on a high level) the algorithm that provides the arriving job with a set of
time intervals from which the job chooses its actual execution timeslot. Obviously, the job chooses
the earliest timeslot that is at least as big as its processing time, making the algorithm trivially
truthful.

Given a state A{ ~and a time ¢, we construct the following sequence:
J
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r(A,1) = At As || A3, ][So ()

After job j arrives, 7(A,t, j) is updated based on the three rules outlined above. Intuitively, this
means that every machine uses the repeating static sequence Sy (i.e. repeating slots of unit size)
until a job j arrives that requires a bigger timeslot. Then, each machine updates to the appropriate
sequence needed to serve job j, and repeats Sy after I(j). Finally, we define the algorithm as the
following:

Mechanism 9: Dynamic menu-offering algorithm, parallel machines

Given a job j with processing time p; and release time r;, and a state A{]__ll construct

7(A]~" 7, j) and do the following:

a<+ 1;

while job has not picked an interval do
Offer the first interval of size 2% on every machine;
a<— ax2;

end

The proof of this algorithm’s O(log P,,q,) competitive ratio is achieved by comparing its per-
formance to SPT. Since it is very similar to the proof we construct for algorithm [L0, we will simply
present a proof sketch and refer to the appropriate lemmas in the next section. Formally, the theo-
rem is the following:

Theorem 4.3.3. For every job j, it holds that:

cj < O(log Praz) - €

The proof is achieved by using slightly altered versions of lemmata 5.1.1, 5.1.4, 5.1.3 and b.1.4.
First, it is proven that when job j is scheduled very close to its arrival time, its completion time is
naturally very close to its corresponding completion time in the optimal solution. The second part
of the proof consists of finding a lower bound to the volume of jobs that are scheduled between the
arrival time of job j and its actual completion time, both in algorithm [| as well as in the optimal
solution. This is achieved by noticing that in each sequence between job j’s ”arrival” sequence
and “completion” sequence, every single timeslot of size > p; has to be occupied by a job that is
completed earlier than job j in SRPT.

4.3.3 Arbitrary weights

To solve the weighted case of the problem, we require prior knowledge of the maximum weight
Winaz- Then, we can simply repeat each time interval logW 4, times, with the ¢ — th repeating
interval having been designed to only hold jobs of weight w; > 2°. The analysis of algorithm g using
the static sequence holds when multiplying everything with log W,,,4,, meaning that the following
theorem holds.

Theorem 4.3.4. The prompt algorithm that schedules weighted jobs is O((log n+log Pp,az)-1log Winaz ) -
competitive
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Chapter 5

Prompt Scheduling in Unrelated Machines

5.1 A non-truthful O(log P,,,,)-competitive algorithm

5.1.1 Unit weights

In this chapter, we shall provide an O(log P4, )-competitive non-truthful algorithm for minimiz-
ing the sum of weighted completion times in the unrelated machines setting. To achieve this, we
combine the algorithm from Gupta et al. [23], together with the algorithm from Eden et al. [{15],
with some modifications to make it applicable to unrelated machines. Specifically, each machine
has its own set of sequences (that is computed exactly as in Eden et al., described in the previous
section). The algorithm is the following:

Mechanism 10: Non-truthful dynamic menu-based scheduling algorithm

Run a "ghost” copy of the algorithm of Gupta et al. in the background. Whenever a job arrives
and declares its processing times p;;:

Determine the machine it is assigned to by computing cost(j — i) for every machine ;
Compute T(A{j ,7;) for the machine the job was assigned to (denoted by 7);
a<+1;
while job has not picked an interval do
Offer the earliest interval of size 2% on machine 7 ;
aax2;
end

The idea of the above algorithm is simple: As long as we can manage to achieve the exact same
job-to-machine assignments as a good-working algorithm A, the properties of the prompt sequence
will guarantee that our algorithm will be at most an O(log P42 )-factor worse than A.

Let us denote by ¢ the completion time of job j in the algorithm of Gupta et al. and by ¢;
the completion time of job j in our algorithm. We shall prove that ¢; < O(log Ppaz) - c;. This
implies that ;6= O(log Praz) - > ; ¢; and as algorithm (@) is a constant approximation of the
optimal, our algorithm’s competitive ratio will be O(log P,,q ). Note that as each job has m different
processing times (for each of the m unrelated machines) P,,,, here will denote the maximal realized
processing time by any job. Before analyzing the proof, we should note that the algorithm is non-
truthful, as the jobs can manipulate the assignment criterion. While underbidding a processing
time will only damage a job (as it will never be completed if it chooses an interval smaller than its
processing time), a job can overbid its processing time on some machine, in order to be assigned
to a different machine that is preferable to it. Consider figure b1 below: A job arrives with r; =
0,p1 = 2,pz = 4. If it bids truthfully, the job will be assigned in machine 1, with ¢; = 14. If it bids
Py = 4,ph = 4, it will be assigned in machine 2, with ¢; = 12.
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Figure 5.1: A job with r; = 0, p1 = 2, pa = 4 can benefit by bidding p| = 4,p5, = 4

Now we shall prove the following theorem:

Theorem 5.1.1. Assuming unit weights, for every job j, it holds that c; < O(log Praz)c}

Let us denote by A, the sequence during which job j arrived, and A, ), the sequence during
which job j was completed:

b(AOéj> <rj< e(Aaj) b(Aaj+Pj) <7< 6<A0éj+9j)

For the sake of simplicity, we will use the shorthand notation:

AO = AajaA]. = Aaj-l—h ceey Apj = Aaj+pj
We shall now prove the following lemma:

Lemma 5.1.1. Assume p; > 0,p; = 2. Let A; = S4(t) for somei < p; and some d, t. If r; < b(A;)
then vol(D(j) N {j'|I(5") € A;}) > 24.

Proof. The proof is separated into two cases depending on d:

e If d > k, then for job j to chose an interval in Apj, all intervals of size 2% in A; should be
taken by other jobs, otherwise job j would have chosen one of them. Applying Lemma (.3.9)
directly leads to vol(D(j) N {j'|1(j") € A;}) > 24.

e Ifd < k, consider the minimal index j’ with ¢;; > e(A;). Due to the structure of the algorithm,
j' chose an interval in A; 1, which is disjoint from A;, and appears no later than Apj. It must
also be that 7;; < r; (otherwise j” is not the minimal) and that p;; = 2% < 2¢ (or else the
sequences would not be disjoint). Therefore, job j’ could fit in any 2¢ sized interval, which
means every 2¢ sized interval in A; was occupied. Once again, applying Lemma (.3.9) leads
tovol(D(5")N{5"|I(5") € A;}) > 2¢, which then leads to vol(D(5)N{j'|1(j') € A;}) > 24,
since 7 < 7.

O]

The above lemma gives us a lower bound for the total volume occupied by jobs between the
release time and completion time of job j. The following lemma will cover the case when job j
arrives in the middle of Ay, but is scheduled in a later sequence.

Lemma 5.1.2. Assume p; > 0,p; = 2% Ag = Sy(t). If0 < d < k andr; < e(Sq_1(t)) then
vol(D(j) N {j'[1(j") € Ag}) > 2%,

Proof. Since Ay is disjoint from A, consider the minimal index j’ such that ¢;; > e(Ap). Once
again, ry < r; and p;; = 2% < 29 Since the job fits in the 24 sized last interval of Ay, but did
not choose it, it must have been occupied. Using Lemma (4.3.2), gives us the desired vol(D(j) N
{7'1(j") € Ai}) = 297L. O

We shall finally prove two lemmata that, when combined, produce Theorem (f.1.1))

Lemma 5.1.3. For every j such that p; = 0, ¢; < O(log Pmax)c;f.
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Proof. p; = 0 means that b(Ag) < r; < ¢j < e(Ap). Let Ag = S4(t) and as j fits in this sequence,
k < d. We split the proof in the following cases:

1. If j occupies the first interval of size Sy in Ao, then by Corollary (1.3.1) ¢; < b(Ag)+ (k+1)2*
and ¢ > b(Ao) + 2F, therefore:

c; < (k+ 1)0; < O(longax)c;k»

2. Otherwise, e(Sq(t)) < 7+ p; < e(Sa+1(t)) for some . Again we distinguish the following
cases:

(a) If ¢; < e(Sat2(t)), then by Corollary (£.3.1), ¢; < b(Ap) + (a + 3)2%+2 while c; >
b(Ap) + (o + 1)2%. Thus:

4(a+3
¢; < (a++1)c; < 12¢;
(b) Otherwise there exists a « such that e(Sqa44(t)) < ¢; < e(Saqa+1(t)). This implies
that every interval of size 2¥ in the set S, ,(t) \ Sar1 must have been occupied, or
else job j would have chosen it. Once again using Corollary (£.3.1)), we can deduce that
Sy, appears 2°T~F times in S,y (t) and 2°717F times in S, 1. Therefore S, appears
gotr—k _ gatl=k > gatz=k=1 timesin Suyq \ Sail-
Using Lemma (4.3.9) that bounds the volume of jobs completed before j, we can deduce
that ¢ > max {b(Ap),20F2 1}, By Corollary (f.3.1) it holds that:

¢j < e(Satar1(t)) = b(Ag)+(at+a+2)2°T ! < max {b(Ag), 2*T" !} (5+4(a+z+1))

Also since Sq45+1 is fully contained within Sy(t), Prar > a2+ 1, which means that:
¢; < (5+4log Pmax)c;f
O

The above lemma fully covers the case where job j is scheduled in the same sequence in which
it arrives. The following lemma will cover all of the other cases:

Lemma 5.1.4. If pj > 1, then for every j, ¢; < O(log Prnaz)cj.-

Proof. We will prove the above lemma by deriving a lower bound for the volume of jobs in every
Aj between Ag and A, . Let D; be the set of jobs in D(jj) that are completed in some A; (obviously
U Di € D(j)). We can deduce that:

0<i<p;
Pj
cj > max {’I“j +pj, Zvol(Di))}

0
We distinguish the following cases for A;:
1. i = 0 when r; > b(Ap), which means that ; > (« + 1)2* for some cv.

(a) Ifd = v+ 1 then e(Ag) = b(Ag) + (a +2)2°F < 4r;
(b) Ifd > o+ 2 then e(Ag) = b(Ag) + (d +1)2¢ < b(Ag) + 2(log Praz + 1)vol(Dy) from
Lemma (5.1.9).
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In both cases:

e(Aop) — b(Ap) < max {47}, 2(log Prax + 1)vol(Dg)} < 4(log Prgs + 1) max {r;, vol(Dy)}

2.1€{1,2,...,p; — 1} or i = 0 when r; = b(Ay)

In that case 7; < b(A;) < e(4;) < ¢;. Let A; = S4(t). As the sequence is disjoint from 4,
Praz > d and in conjuncture with (5.1.1)):

e(A;) — b(A;) = (d+1)2% < (log Praz + 1)vol(D;)

3. 1= Pj
Let A, = S4(t). If j chooses the first 2* sized intervalin A, then c; = b(A,,) + (k+1)2F <
Ap, + (log Ppas + 1)p;. Otherwise let a be the maximal integer such that e(S,()) < ¢; <
e(Sqa41(t). Once again, every 2* sized interval that comes before then must be occupied, and
by Lemma (£.3.2) and Corollary (.3.1) ¢; < b(Ap,) + (a+2)2°T < b(A,)) + (log Praz +
1)vol(D,,). In both cases:

¢;j —b(Ap,) < (log Praz + 1) max {p;,vol(D,,)}

Notice that we can assume that in the worst case, there are no gaps between intervals in the
schedule, as the idle time caused by the gaps would exist in the optimal solution as well, and therefore
would be beneficial to our algorithm’s competitive ratio. Thus, we assume e(4;) = b(A;4+1) and
finally it holds that:

pi—1
¢j = e(Ao) = b(Ag) + Y e(Ai) —b(Ai) + ¢ — b(A,,)
i=1
pi—1
< 1j 4+ 4(log Py + 1) max {rj,vol (Do)} + Z (log Praa + 1)vol(D;) 4 (log Pras + 1) max {pj, Uol(Dpj)}
i=1
pi—1
=1+ (log Ppaz + 1) | 4max {r;,vol(Dy)} + Z vol(D;) + max {p;,vol(D,,)}
i=1

< ¢ + (log Prax + 1)(4¢; + ¢ + ¢5)
= O(log Pz )c;

Theorem (5.1.1) follows directly from Lemmata (5.1.3) and (5.1.4)

Corollary 5.1.1. Given the assignments of an «-competitive scheduling algorithm minimizing the sum
of completion times, we can obtain a O(« - log Ppaz)-competitive prompt algorithm.

The above corollary implies that any constant-factor competitive online truthful scheduling al-
gorithm for unrelated machines will inherently provide us with an optimal prompt menu-based
algorithm as well.

5.1.2 Arbitrary weights

To cover the case of arbitrary weights, we can simply propose an extension. Given a maximum
weight W4, (note that the algorithm needs to know it in advance this time), create logW, 44
copies of every interval that appears. The i-th copy (zero-indexed) is designed to hold jobs of weight
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w; > 2¢. Since we do not care about truthfulness, the analysis in the above section holds when
multiplying everything with logW,q., providing a O(log Wiaz - (log Pz + log n)-competitive
online scheduling algorithm with the objective of minimizing the sum of weighted completion times.
Formally, the following theorem holds.

Theorem 5.1.2. For every job j, it holds that c; < O((logn + log Prnaz) - log Winaz )¢}
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Chapter 6

A Truthful Algorithm and Experimental Results

In the final section of this thesis, we will present a truthful prompt scheduling algorithm for un-
related machines with the objective of minimizing the sum of weighted completion times, whose
competitive ratio we have not managed to analyze fully. Then, we shall compare this algorithm to
the state-of-the-art online algorithm of Gupta et al. [23] and to the lower bound given by the LP of
[24], by solving some instances found in literature, as well as some we created on our own.

6.1 The truthful algorithm

6.1.1 Unit weights

We propose a truthful menu-based algorithm for scheduling unrelated machines, which we con-
sider a natural extension of the algorithm for parallel machines proposed by Eden et al. [[15]. The
algorithm maintains a dynamic sequence of timeslots for each of the unrelated machines, and of-
fers a menu of options to each incoming job. Each job is left to choose an interval on its own, and
the punishment of never finishing its execution if it chooses an interval smaller than its processing
time remains, making the algorithm trivially truthful. The algorithm is the exact same as [, the only
difference being that for job j, each machine ¢ updates its sequence individually based on p;;:

Mechanism 11: Dynamic menu-offering algorithm, unrelated machines, unit weights

Given a job j with processing times p;; and release time 7, and a state A{;ll construct

7( A{;ll ,7j,J) and do the following:

a <+ 1;

while job has not picked an interval do
Offer the first interval of size 2% on every machine;
a4+ ax*2;

end

While we have not been able to fully analyze the above algorithm’s competitive ratio, our survey
as well as the experimental results below lead us to believe that its performance may be bounded
by O(log Pp,qz) (making it an optimal prompt algorithm), with P,,,, being the maximal realized
processing time of a job.

6.1.2 Arbitrary weights

As is the case in the parallel machine setting, there exists a natural extension of the above algorithm
for handling arbitrary weights in unrelated machines. Once again, we simply add log W, copies
of each timeslot to the sequence, with the ¢—th copy having been designed to allow jobs of weight
> 2! to occupy it. The analysis is the exact same as the parallel machines setting, as the jobs have
the same weight for all machines.
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6.1.3 Main Remarks

While we were unable to fully analyze the competitive ratio of algorithm [L1, our attempts at a proof
have given us valuable insight on some of its key parameters. As mentioned in section b.1, as long
as our algorithm follows the assignments of algorithm [, its performance is optimal given the lower
bound of (log Py,4.) of prompt algorithms. Therefore, it makes sense to understand the patterns
and circumstances under which our algorithm differentiates itself from the assignments done in al-
gorithm 1. Our first goal was to try to quantify these differences and measure the "damage” that each
of these could cause as more jobs arrived. Note that since each job minimizes its own completion
time, at the time of a discrepancy, our algorithm is optimizing the current sum of completion times;
therefore the implications of such a discrepancy can only be measured by the damage caused to the
completion time of future jobs. Furthermore, since the sequence’s design intuitively means that each
job is delayed by log P4, (and therefore the expected competitive ratio would be O(log P,,4 ), our
main goal was to give an upper bound to the value of P, arc as opposed to P, ., as the optimal
algorithm has different assignments to our algorithm, and we are scheduling in unrelated machines.
When testing how much larger than P}, ., Praz, AL can become, we had the following indications:

1. In all our attempts at creating a “bad” instance, Py,q., 4L Was never larger than (P;;um:)2

2. Even in the case where P4 aLc reached a size of O((P,,..)?), the very long setup of such
an instance made it so our algorithm is practically identical to the optimal algorithm. More
specifically, these instances had a very long line of same assignments between the 2 algo-
rithms, followed by a discrepancy that was not enough to damage our algorithm’s perfor-
mance.

3. Due to the dynamic nature of the sequence, any "bad” assignment that leads us to an extended
large sequence is quickly forgotten; the resetting of each sequence to Sy whenever no bigger
jobs arrive (and in general, the fact that the sequence only extends itself whenever it needs
to), means we never pay more than one factor of log P, when a very large job is scheduled.

All of the above, have led us to the assumption that algorithm [11]is actually a tight O(log Pyaz)
competitive scheduling algorithm. The following section aims to provide an experimental evaluation
to further support the above claim.

6.2 Experimental Results

In literature, the works conducting an experimental evaluation of scheduling algorithms in the set-
ting of unrelated machines with the objective of minimizing the sum of weighted completion times
are scarce [53, 2, 54]. In order to get a better understanding of the algorithms presented in this
thesis in practice (and not only in their worst case, which may consist of a very specific, unnatural
instance), we conducted experiments based on known instances in literature as well as instances that
we created specifically for this comparison. The main results of the experiments are the following:

1. Algorithm [] has a much closer to optimal performance than its theoretical upper bound of
7.216, mainly hovering between 4, when all jobs are available at time 0, and 1.5 to 2, when
jobs arrive over time.

2. The maximal realized processing time in the optimal solution P, .. is always comparable
(with a ratio of around 1) in size to the maximal realized processing time in @ Praz,aLa-
That means that the log P,,,, bound is valuable (which would not be the case if P02 arc

was unbounded).

3. Algorithm [L1 has a good enough performance to support the conjecture that in the average
case, its competitive ratio is ©(log Paz)
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6.2.1 Input files

The inputs used to measure the performance of the compared algorithms can be divided into two
groups. The first group consists of instances downloaded from the library PSPLIB, a library of in-
stances for the Resource Constrained Project Scheduling problem [32, 33, 13]. We downloaded 100
instances of the multi-mode (resembling unrelated machines) resource-constrained scheduling prob-
lem for a varying number of jobs n and machines m (n = {30, 50,100}, m = {3,6,9}) and erased
all constraints except from the precedence constraints. Note that the maximum processing time of
a job in these instances is 50, which tunes the parameter P, of algorithm [11] to 64. The second
group of instances are the ones we created by sampling processing times (differing for each machine)
randomly and uniformly from the interval [0, 100] (which tunes the P,,,, parameter of algorithm
L1 to 128), sampling weights randomly and uniformly from the interval [0, 10] and sampling arrival
times simulating a Poisson stable queue with A = 0.2. Once again there are instances for a varying
number of jobs (n = {10, 20, 50,100,500} and machines (m = {2,5,7,10}). The algorithm of
Gupta et al. [23] and algorithm [L1] based on Eden et al. [15] were implemented in Python 3.6 with
the needed modifications to support precedence constraints where applicable. We note that the lan-
guage of implementation does not matter, as the algorithms are deterministic and our experiments
only measure their competitive ratio and not their running time. The LP from [24] solved to obtain
the lower bound was solved using Google’s OR Tools [40].

6.2.2 Results

Comparing algorithm [ to algorithm [ 1

In principle, these two algorithms follow the same logic. Whenever a job j with processing times
pij arrive, they delay the job by an adequate amount of time in order to fit smaller jobs or jobs
of higher priority before it. Algorithm [] delays the job by a maximum of %pij for each machine,
whereas algorithm [ delays it by log P4, due to the nature of the prompt sequence. Below, we

present four figures showcasing the competitive ratio of algorithm [L1] compared to algorithm [ (i.e.

%) for the instances that we created (Group 2).

It is evident that as more jobs and machines are included in the instances, the closer the perfor-
mance of the two algorithms becomes. Also, as was expected, adding release times to the problem
brings the two algorithms closer, as the job’s arrival times become more and more spaced out.
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Figure 6.1: Competitive ratio wrt number of jobs, no release times
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Competitive ratio change for different number of jobs, with release times
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Figure 6.3: Competitive ratio wrt number of jobs, with release times
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Comparing the algorithms to a lower bound obtained by solving LP B.3.1, we can observe the
following results:

e When jobs have release times simulating a poisson stable queue, ALG [ is extremely close
to being optimal. Practically, the job delaying it introduces only causes some minor damage
at the start, and as times passes the algorithm simulates the optimal solution. ALG [L1] also
achieves a very good performance, better than the asymptotical factor O(log P4z )-

e When jobs have no release times, meaning they are all available to be scheduled from time
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0 and just arrive online one after the other, ALG [ is still better than its theoretical upper
bound, but loses some performance due to the mandatory job delaying it introduces. At the
same time, ALG [L1] has a considerably worse performance, but it still remains within a logical
constant margin of the asymptotical factor O(log P,,4). This is important, as in the case of
release times being 0, promptness is a much more desired trait since the jobs can wait for a
long time before their execution is initiated.

Competitive ratio with respect to the optimal solution, no release times
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Figure 6.5: Competitive ratio compared to optimal, no release times
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Figure 6.6: Competitive ratio compared to optimal, with release times

We also present the results comparing ALG L1 to ALG [] obtained from the experiments con-



ducted on Group 1 of the instances, noting that precedence constraints (as expected) also bring the
algorithms closer in performance, as in a lot of cases they limit the damage caused by a larger than
needed delay.

Competitive Ratio | min median max
n=300m=3 |162 192 227
n=50m=3 |147 196 215
n=50,m=6 |147 1.87 251
n=50m=9 |151 187 265
n=100,m =3 |223 2.67 3.13
n=100,m=6 |191 225 249
n=100,m=9 | 138 2.02 246
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