g
5

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
ScHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
DivisioN OF COMPUTER SCIENCE

v

A
7 NPOMHOEVS
Gh=:l

\

s

Performance Investigation of various Microservice

Architectures

DIPLOMA THESIS

of

ALEXANDROS KYRIAKAKIS

Supervisor: Vassilios Vescoukis

Professor

Athens, July 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
D1visioN OF COMPUTER SCIENCE

Performance Investigation of various Microservice

Architectures

DIPLOMA THESIS
of

ALEXANDROS KYRIAKAKIS

Supervisor: Vassilios Vescoukis

Professor

Approved by the examination committee on July 10th.

(Signature) (Signature) (Signature)

Vassilios Vescoukis Tsanakas Panayiotis Aris Pagourtzis

Professor Professor Professor

Athens, July 2023

NATIONAL TECHNICAL UNIVERSITY OF ATHENS
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING
D1visioN OF COMPUTER SCIENCE

Copyright (©) — All rights reserved.
Alexandros Kyriakakis, 2023.

The copying, storage and distribution of this diploma thesis, exall or part of it, is
prohibited for commercial purposes. Reprinting, storage and distribution for non - profit,
educational or of a research nature is allowed, provided that the source is indicated and

that this message is retained.

The content of this thesis does not necessarily reflect the views of the Department, the

Supervisor, or the committee that approved it.

(Signature)

Alexandros Kyriakakis
10 July 2023

ITepiindn

H apyitextovinr hoylopixol omotehel €va onuovTixd UEpog Twv cLYYeoveY (mploxmy
CUCTNUATOY, EMNEEACOVTUC CNUAVTIXA TNV OmO000T), TNV XAUAUXWOWOTNTA Xl TN CUVTNET-
owotnta Toug. Ta tedeutaio ypovia, emyelprioeic xou etonpeieg avtiuetoi{ouy auEavoueves
TEOXANOELS GTOV TPOGOLOPICUO X0l TNV EQPUPUOYT TN BEATIOTNG 0EYLTEXTOVIXAS AOYIoUX00,
Yl TS LOVOBIXES amouTAoELS Toug. AuTh 1) Tepimhoxn dadixacio AMdne anogpdoewy unopel va
EMNEEGCEL CTUAVTIXG TNV ETULTUYLA TV CUCTNUATWY AOYIOUX0) TOUG, XS XAl TIC CUVORNXES
ETUYEIENUATIXES AEtToupYiES.

Yy mapoloa epyocia, PETE MO WA CUYXELTIXY OVEAUGCT] XURLEY WV JEYLTEXTOVIXMY
OTUN hOYLoUXo0 - CUYXEXEIEVO TwV Lovoldixay (monolithic), twv apyttextovix®y npo-
cavotoMopol unnpeoty, (Service-Oriented Architectures/SOA) xou twv pixpoUnnpeotdv
(microservices) - Siveton Waitepn Eupoaom oTNY OAOEVA XU THO ONUOPIAY UEYLTEXTOVIXY Ui-
AEOUTNEESLOY, PLYVOVTAC YOS GTAU OPENT), TIC TEOXANOELS XU TIC TEYVIXEG ETUXOWVWVING TN,
EWOXOTERA, TNV EVORYTCTEWOT XAl TN Y0poYpaploL.

[Mo vae 8odel mpoxtind mhaiclo oe auTég Tic YewpnTixég EVVOLES, 1) TopoUGa EQYACTo ova-
AoBaver puor UEAETT TEQIMTWONG, YENOWOTOLMVTOS Lol OELRd amtd TEYVIXE epyoAela, OTWS TO
Docker, to Prometheus xou to Grafana, xau diouecoha3ntég unvuudtonv, 6mwg to RabbitMQ
xat To Redpanda. H pehétn Siepeuvd oohaoTixd TEVTE DLUPOPETIXESC APYLTEXTOVIXES, Blarv)o-
VTOG OAEC TIC PACELS TNG AVATTUENS Yot TV doxu®y autey. Eletdlel emmhéov to euprjuotd,
0B YOVTOG OF TEPlEXTXd cuunepdopata. H épguva auth mapéyet TOAUTIIES YVOOES O OGOUS
EQYOVTOL AVTYETWTOL UE ATOPACELS VPYLTEXTOVIXNAG AOYLOUIXOU ot GUUBHAAEL GTNV EUPUTERT
XATOVONOT) TOU POAOU TNG OEYLTEXTOVIXNC AOYLOULXOU, GTNY ETUTUYT| AvATTUET AOYLOULXOU Xal

OTNV EMLYEQRNUATIXNY OTEATHYLXY.

AéCeic KAeowk

Apyrtextovixr) Aoyiopxol, Mixpobnnpeaie, Evopyrotpwon, Xopoypagia, RabbitMQ,

RedPanda, Prometheus, Grafana, Docker

Performance Investigation of various Microservice Architectures

Abstract

Software architecture stands as a critical aspect in the modern landscape of digital
systems, strongly influencing their performance, scalability, and maintainability. In recent
years, businesses and organizations have faced growing challenges in identifying and im-
plementing the optimal software architecture for their unique requirements. This intricate
decision-making process can significantly impact the success of their software projects, as
well as overall business operations.

In this thesis, after a comparative analysis of prevalent software architectural styles -
namely, monolithic, Service Oriented Architecture (SOA), and microservices - a particular
emphasis is placed on the increasingly popular microservices architecture, shedding light
on its benefits, challenges and communication techniques, specifically, orchestration and
choreography.

To bring practical context to these theoretical concepts, this thesis undertakes a case
study, employing a range of technical tools such as Docker, Prometheus and Grafana and
message brokers, such as RabbitM(Q and Redpanda. The study meticulously explores
five distinct architectures, traversing through every phase of development and testing. It
further examines the findings, leading to comprehensive conclusions. This investigation
provides valuable insights to those grappling with software architecture decisions and con-
tributes to the broader understanding of software architecture’s role in successful software

development and business strategy.

Keywords

Software Architecture, Microservices, Orchestration, Choreography, RabbitMQ, Red-

panda, Prometheus, Grafana, Docker

Performance Investigation of various Microservice Architectures

Acknowledgements

After completing my thesis, my five-year trip to the School of Electrical and Computer
Engineering (ECE) at the National Technical University of Athens (NTUA) comes to
an end. This would not be possible without my family and friends, who supported me
throughout my undergraduate studies.

I would like to express my gratitude to my professor and supervisor Mr Vassilios
Vescoukis, for the opportunity to work and get hands-on experience on this subject, but
also for his valuable guidance, feedback and excellent cooperation during my thesis.

In addition, I wish to acknowledge the help provided by the ECE NTUA Post Graduate
Konstantina Freri, who assisted me throughout my thesis, to understand the subject in
depth.

Finally, I wish to extend my special thanks to all the people who were part of this
journey at the National Technical University of Athens.

Athens, July 2023

Alexandros Kyriakakis

Performance Investigation of various Microservice Architectures

Extetaupevn Ilepiindn

ApyrtexTtovixy Aoyiouixol

H apyrtextovin) Aoyiopxod eivon €va xploo otolyelo tTng Te)vohoylog AoyiopxoU, eidd
otn Slayelplon NG avATTUENG XL GUVTHENONE CUCTNUATWY UEYAANG Xhidoag. AvagpépeTon
0TO GUVOAO TV BOPWY Tou YeetdlovTon Yior Vo avaAUGOUPE €va GOGTNU, TO OTolo TEPLAA-
Bdver ta oTotyEla TOU AOYLoUXOU, TIC OYECELC TOUG xou TiC WLOTNTES Toug. H apyitextoviny
AOYIOUIXOU UTOREL v YapaxTNEto Tel Xt w¢ YEQUEA PETUED TWY OTAUTACEDY TOU CUC THUITOG
xou Tng vhonoinong. H apyttextovinr anogacileton xotd To apyixd TSI TNG AVATTUENG Xo
emnEEdLEL TNV VAOTIOINGT AELTOURYIXMY OVOYXOY, U1 AELTOURYIXOY OMOUTACEWY XAl ETLYELRN-
HaTXOV otoywy. 'Etol, 1 owoth) emhoyT TN apyTEXToVIXAC elvan xplown yio Tnv emtuyio
evog €pyou mou Pooiletar 6To AoYIoUIXO.

H texpunpinon (documentation) tne apyttextovixic eivon e€icou onuavtixg pe) dnutoup-
vl g, ebvan €var chvolo eyypdpwy Tou avahlouV TOV GYEDLAOUO XAl TNV CUVIQUONOYNOT
EVOC CUCTAUNTOC. 2UY VG TEPLAoUBAVEL Blory OOUUATO OEYLTEXTOVIXNG ToL omtolar uotdlouvy Ue
YUETEC TOU CUCTARATOS, AMELXOVICOUV Ta OTOLYEld, TIC OYECES TOUC XL T1) pOY| OEDOUEVWLY,
X0l UTOPOUY VoL OVOTOPAO THOOLY SLdpopes TAEUPES (Views) Tou cLOTAUATOS, OTWS douux,
ouumepLpopr, xou dhhec. H texunplonon tng apyrtextovinrc unopel va €yel Evay apriud eu-
EQPYETIXWY YPNOEWY, OTWS 1) SLEUXOAUVOT| TNE EmXovwViog OAwv twv stakeholders yio tov
OYEBLAOUO TOU GUC TAUATOC.

H yAdooa 1) to 0OVoAO TV GUUBOAWY XL TWY XAVOVKY TOU YENOHLOTOUVTAL Yo T1)
ONUIOVEY I VTV TOV OPYLTEXTOVIXMY BLotY UUUATOY OVOUALETOL URYITEXTOVIXT| ONUELOYEAUplOL.
Autr) Tapéyel €vay TUTOTIONUEVO TEOTO AVATAEACTACNE TWV GTOLYEIY TOU CUCTAUNTOS XoL
v ahnhemdpdoeny toug. H UML (Evoroumnuévn I'hddooo Movtehonoinang) €xet yiver pla
ELPEWS YENOWOTOLOVUEVY onuetoypapia Tou tepthaudvel €va TARdog amd BlaryEaUUATo TOU
Bontolv Toug ¥ENOTEC VO OTTIXOTOLACOLY X0 VO TEXUNPUOCOLY Tol GUCTAUATO AOYIOULXOU.
Ta Srorypdupotar 0TS TEPLYPAPOUY BLUPORETIXEC TTUYES TOU CUOTHUNTOSC X0l GE OLAPOPETIXG
eninedo AemTouépelag.

Ov anogdoeic apyttextovixic hoylouxol Bacilovton cuvAdng ot éva GOVORO amd apyLte-
ATOVIXG OTUA, ONAAOT XATOIEC YEVIXES, EMAVAYENOWOTOVUEVES AMICELC GE XOWVd TEOBA T
apyLTEXTOVIXNG Aoyiouxo0. Baowd apyitextovind oTtul mepthopBdvouy: T povohixy| apyi-
TEXTOVXT - OTOU OAN 1) AELTOURYIXOTNTO TOU GUCTHUAUTOS EVOWUATWVETUL OE Lol EQURUOYT),
v Apyttextovixy| Hpooavatohopol YTrnpeowdhv (SOA) - émou 1o clotnua ywpeiletou oe u-
TNEEGIES OL OTOIES EMIXOVWVOUY PETOED Toug péow evog Emtyetpnotoaxol Awdiou T rnpeouov
(ESB) xau téhog, TNy opyttextovixy| WxpoUmneectdy - 6Tou To cUoTNua anoteheiton and éva
GUVOAO Yohopd GUVBESEUEVLY, OVEEGOTNTWY, UXEWY UTNEECLMOY TOU ETUXOWVOYVOUV UE EAAPELY.
Tpwtéxola (6nwc HTTP/REST).

Performance Investigation of various Microservice Architectures

Extetopévn Heplindn

Apyitextovixy Muxpolnneeoiwy

H nopoadootaxt) povohidixy| opylTeEXToVXT 0EV AVTATOXEIVETOL OTIC GUYYPOVES OVAYXES TNG
HAPOXWOOTNTAS X0 TNS Toyelag avamTudng, yiot To Aoyo autod yiveton mhéov eupeia yprion
TWV UXPOUTNEECLOY.

H opyitextoviny] uixpolmneectody euvoel Ty aveldetntn ovamTugn xou ovoBdiuiorn twy
UTNRECLAY, UELOVOVTIS TI EMNTOOELS TwV 0Aay®)V oe 6ho to cbotnue. To poviého autd
EMTEENEL EMIONG TNV EVEAXTN XAUIXWOT), xad®E oL UTNEESIEC UTopolY Vo XAwoxwioly o-
veldptnta yetald touc. Ao TNV G TAEUR, 1) 0EYLTEXTOVIXY| WXEOUTNEECIOY Utopel Vo
eTLPEREL ALENUEVT) TOAUTAOXOTNTA, EWBXE GE OTL APOREE TNV CUVTOVIOUEVY Slaryelptom o Tapo-
xohoVUnoT TwV utneecty. Enlong, to {ntruota aopoieiog xou Sioyelpione dedouévmy umopet
Vo efval o TOAOTAOXOL GE GUYXELOT| UE T1| LOVOALDIXT| AE)YLTEXTOVIXT).

Me Bdion ta mopamdve YIveTan ELQAVES OTL 1) AEYITEXTOVIXT| AUTY| ENNEEALEL YAUPAUXTNELO TIXG.
TOLOTNTAUC TOU CUCTARATOS, ool odNYel o BEATIOUEVT BLUTNENOWOTNTA Xol TEOCUPUOGC Ti-
%0t 01600, TEETEL VoL YIVEL GWo T Blaryelplon TNG TOALTAOXOTNTG YLol VoL EEATPUMG TEl

1 amodoTxdTNTA, 1 o&IOTIG TIOL XAl 1) AGPEAELNL TOU CUC THUATOC.

Emuxowwviae Miuxpolnneeoumy

Ov pixpobnneeoiec ypewdleton vo cuvepydlovtar YeToCy TOUG YLaL VO IXOVOTIOLCOLY Lol
emyetpnoloxy ovdyxrn. Avo cuvAdn potiBa cuvepyastag wxpoinneeoioy eivar 1 Xopoypapio
xou 1 Evopyriotewon. X yopoypapia, ol pixpolnneesiec dnpootebouv éva uivupa (event),
wéow evoc dapecohafnt (broker) pnvuudtov, xdde @opd mou uTdpyel Yo ahhayh oTNY
AATAGTACT), Kol AAAES ULXPOUTNEEGIEC TTOL EYYEAPOVTAL OE aUTO TO event eToldlouvy Tov EaUTO
TOUC Lol TNV ENOUEVT ETaVEAN M Tne Sradixaciog. Ano Tnv dAAN TAEUEd, GTNY EVOoRYOTEWOT),
wor oOvieTn pixpolnneesia AELTOURYEL WG EAEYXTNAS TOU OPYAVOVEL T1) POT) TWV UNVUUATLY TNG
EQUPUOY TG, XAAWDVTAUC TOMATAES ATOUXES UTNEEGLES OE Lol GELRA.

H yopoypaplo xou 1 evopyHoTeman €Y0UV SLapORETIXG TAEOVEXTHUOTA X0 adUVOieg. 2T
Y0poYpapia oL Uixpoutneesiec unopoly va avartuy oy aveldptnta (Ehappne cUVOESEUEVN
Tpooéyyion) xat dev undpyet Tohd ‘pAuapla’ oo Bedopévar, oAAG 1 ETOTTEIL TWV BLoBLXACL-
oV elvon 80oXOAN X 1 oyedlaon TWV EPUPUOYOY elvan oyeTixd moAbTAoxY. Avtideta, 7
EVOPY O TEWOT| EMLTEETEL EUXOAOTERT] TaEAX0A0VUNGT) TWV SLUBIXACLOY XL 1) OYEDIUOT TWV &-
POPUOYOV ElvoL OYETXE AmAT), 0AAd 1 UTNeeaior EAEYYOU UTOPEL VoI UETUTEATEL OE “XEVTEIXT
eCouaiol 1 va Aettovpyfoel g povadixd onueio amotuyiog (SPOF).

H vhomoinom tne yopoypapiog xar Tng evopyNoTewong TERLAUBAVEL BLUPORETIXES TEYVO-
rovytec. T tn yopoypapla, yenowonoolvto brokers 6mwe 1o RabbitMQ # to Redpanda
yio TNV emxovewvia ue Bdon To events. Amo tny dAAT TAEUR, YLoL TNV EVORY IO TEWOT), XENOoL-

pomolovvTan TeYVoloyies anthuatoc/andvinone énwe 1o RPC xa to REST.

Yxonog xou Epyaleio

Y10 onuepvd Toyéng eEEMGOOUEVO TEYVOLOYIXO ToTlo, ToMhOl opyaviouol avTiueTwnilouy
70 TEOBANUA TNG EMAOY NS TNG XATIAANAGTERNS OEYLTEXTOVIXNAS YLt TO Aoyiouxo Toug. To mo-
e6V €pyo embiinet va Bondfioel Toug evdlagepdpevous (stakeholders), touc opyttéxtoves xou

TIC OUAOES aVATTUENG VoL AAUPBAVOUY TEXUNPLWUEVES ORYLTEXTOVIXEC OMOYACELS Yo TO AOYL-

E Performance Investigation of various Microservice Architectures

Extetopévn Heplindn

OO, BIEPELVOVTOC XAl UELOAOYDVTOS TEVTE OLUPORETIXES OPYITEXTOVIXEC TpooeYYloelc. Ou
avadeiel o TAsoveEXTAMATA Xou TIC aduvoplec xdle apyrtextovixhc xou Vo aloloynoel Ty
amOB0GCT| TOUC YENOHLOTOWWVTAS BIAPOPES UETEWES, AauPdvovTag LTOYNY TIC ATUTHOELS, TOUC
OTOY OV XAl TOUC TEPLOPLOUOUE TOU GUG THUOTOC.

Avapepduevol ota epyolelar TOU YENOYWOTOLAUNXOY VLot TNV AVATTUEN TWY 0OYLTEXTOVIXWY
Hoc, 1 avdALoh pac Zextvder and touc dapecohafntéc unvupdtwy (brokers). ‘Evoc message
broker eivar piar egopuoyy) mou Aettovpyel wg EVOIAUESO GToLYElD Yior TNV OOV HETAED
OLapopwy epappoyny. Ou brokers mpoogépouy 800 Baoxd TEOTUTA BLVOUNC UNVURATOY: TO
povtého point-to-point xou To povtélo publish /subscribe. Ta RabbitMQ xot Redpanda etvou
dVo €ldn brokers mou ypnowonodnxay yia TNV VAOTOMOT TNE ACHYYEOVNE ETUXOVWVIAC.

To RabbitMQ eivou €évoa Aoyiopixé message broker ovolytol) x@dixo mou vlomotel to
Tpwtoxohho AMQP. To ynvipato mou mapdyovion and tov producer Unolvouv Ge Lo 0UEd
(queue) xou mapopévouv exel €ng 6tou xatavokwdolv and évav consumer. To RabbitMQ
Aettovpyel pe moltixh mpoddnone (push-based) yia v mopddoon twv unvupdtwy 6Toug
oLVOPOUNTES, €TaL ToL UNVoPaTo GTEAVOVTAL ameLYelag GTOV XATOAVOAWTY Ywpelc Vo yeelaoTel Vo
Ta {ntrioet o Blog.

To Redpanda eivon pror mhatpopua pofic unvupdtwy (events) mou mapéyel tnv UTOSOUN
yior pOY) OEBOPEVWY OE TEAYUATXO Yeovo. O Tapaywyol Unvuudtwy GTEAVOUV To OEGOUEVA
oto Redpanda xou autéd to amotnxedel oeptoxd xar tor opyavever oe Yépota (topics). Ot
consumers eyypdpovion o€ €va Yéua HoTe va umopoly va daBdoouy o unvouata. To Red-
panda ypnowonotel éva povtého xatavdlnone Bootouévo otnv avéxknon (pull-based), mou
ETUTEETEL OE L0l EQPUPUOYT| VO XATAVAUAWVEL BEBOPEVAL UE TOV dxd TNg pudud xou va Eavapyilet
TNV XATAVIAWOT) OTIOTE Efvar amopalTnTo.

‘Ao gpyadelar TOU yenoomot{inxay YLol TNV oVATTUEN OEYLTEXTOVIXWY AOYLOUXO) TE-
ethapBdvouv to Docker, to Grafana xa to Prometheus. To Docker elvon pia teyvoroyia
TOU ETUTEETEL TNV XUTACKELT], TNV EXTEAEDT), TN SOXIUT XU TNV OVATTUET BIAVEUNUEVWY EQOE-
HOY®V UECH EXOVIXMV TOXETOV AOYLOWXO0V, YVOOT®OV we containers. Autd To containers
TPOGPEROUV PEYEAT PoeNTOTNTA Xt CUVETELY, Xadde e€acpahilouy OTL To hoylopwnd Jo Aet-
Toupyel TdvTa P Tov (Lo TEoTo, aveldoTnTa and To TEPYBIAAOY Tou. XE GUVOUACUO UE AUTO,
to Prometheus eivan éva olotnuo mapoxololinong mou xotayedpeL TEoYUATIXES UETENOELS
o€ Uit Baom BEBOUEVHV YPOVOTELRMY, TOREYOVTAS TUPIAANAL SUVATOTNTES ELWBOTOLACEWY, EVE
7o Grafana eivan wa mhatpopua mapaxorotinong mou eMTEETEL TNV OTTIXOTOMON XaL TNV
AATAVONOT) TV DEDOUEVOY PETENOEWY.

Téhog, v tny epyaocio auty| yenowworotinxay axdua 1 PostgreSQL, w¢ Bdorn dedouévwy
e epopuoyhc, n Python we yAdooo npoypopuatioyol xa to Visual Paradigm wg epyoheio
viornoinone UML Suorypouudtey.

Meléxn Ilepintwong

Yty mapoloa gpyacio avantiooeTon UL UEAETN TepinTwone mou e€eTdlel TNy yerion Oia-
(POPETIXWY UPYITEXTOVIXODV WXEOUTNEECIOY YLol THY avETTLEN eVOC unyaviopol amodrixng de-
douévwyv (data warehouse). Yto mhaloto owtd, yiveton avdAuon xou amodhixeuct) dedouévev
xatovdiwong evépyelog and to ENTsoe V3 API, yia Sidpopec ywpee tne Evpwnaixic Eve-

omNG, UE O%OTO TNV e€aywYY) EVYENOTWY Xl EUXOAA TEOCPBACUWY BEBOUEVKV.

Performance Investigation of various Microservice Architectures E

Extetopévn Heplindn

Ot hertovpyée amoutnoelc tepthouBdvouy Ty eaywyr| 6edouévwy amd 1o AP, 1o Soyw-
PLOUO TGV DEBOUEVMV AVA YWEOL XL TOV UTOAOYIOUO TN NUERHOLG, eBBoUadiolog xou unviotag
XATAVIAWONG Yia xdie yopa. Ot un AetToupyixéc anouthoels TeptAop3dvouy TNy arnddocT), TNV
HAPAXOCUOTNTA XL TNV axplBela Tou cUC TAUATOC.

To Boowxd ototyeio (components) twv apyltextovxdy pog etvar ot workers, urevduvor
elte yioo TV apyxomoinon tne Bdone xou tou broker (initiator worker), eite yio v eZorywyn
v Sedopévewy and to API (data workers), eite yia tov unohoyioud e nuepfotac (daily
workers), eBSopadiaiac (weekly workers) xou unviaioc (monthly workers) xatavédhowong evée-
yewg. O unyovioudg emxovemviog HETOED TWV WoEXEES DLAPEREL AVAAOY O UE TNV AEYITEXTOVIXT
Tou Ypnowonolettar xat punopel va nepthapPdver oupéc RMQ, éva Véua Redpanda 1 webso-
ckets.

ApyrtexTtovixég
IMo v mopoamdve ueAéTn Teplnttwong VAomot|n oy TEVIE DLUPORETINES OPYLTEXTOVIXES.

To xowd otovyeior uetal auT®V elvou:
e To ENTsoe V3 API nogéyet to dedouéva xatavdhwong evépyelag yia xdie yohpa.

e H PostgreSQL Bdomn 6edopévwy 6mou armodnxedovion 1 cuvoluxt, 1 nuepnola, 1 eBdo-

podlodar 1o 1) nviakor XoTavahwon).

e To Prometheus mou cuvdoéeton pe toug workers xou GUAAEYEL BLAPOPES PETEIXES TOU

CUCTAUATOC.

e To Grafana mou cuvdéetar pe o Prometheus xou ypnoweldel otny ontixonoinon twv

HETEXOY TOU GUCTAHUATOC.
e O)ot ou workers Aettouvpyolv oe éva tepi3dAhov Docker, oe Eeywpeiotd containers.
e Ou data workers eZdyouv To dedopéva o€ TopTidec Tou evic ufva (= 1 request).

e Trdpyet évac data worker yio xdie ywpa (27 data workers mou hertoupyolv Towtdypo-

vaL).
SUYEXPWEVL, OL ORYLTEXTOVIXEC TTOU LAOTIOLUMXaY elvor ot eEAC:

1. Orchestrator: I v emxowwvia yetald twv workers yiveton yperorn websockets. O
data worker Aettoupyel w¢ o xevtpus povdda eréyyou (evopynotewthc). Agol ote-
fhet o cuvohxd Bedouéva otov daily, otélver (ta nueproto dedopéva) otov weekly xou

téhoc (o efdopadiaia dedopéva) otov monthly worker.

2. Serialised Orchestrator: Ernionc yenowornoiel websockets yio tnv emxowwvia, ohhd 7
emxovovio yetald twv workers yiveton oetploxd. O data worker otéhvel otov daily, o

daily otov weekly xor o weekly otov monthly.

3. Async Orchestrator: Xpnowonotel enione websockets, oArd o data worker otéhvel to

oLYOAXO @opTio oe dhoug Toug daily, weekly xow monthly workers tautdypova.

Performance Investigation of various Microservice Architectures

Extetopévn Heplindn

4. Serialised RabbitMQ: Ye authv tnv opyitextovixn n emxowvemvio Tpoypatonoleiton Ye
™ yenomn Tou dtapecora3nTy unvupdteoy RabbitMQ. To unvipata yedgovia o€ Teelg

oupEc unvuudtwy, Tic daily, weekly xaw monthly queues.

5. SOA Redpanda: H emxowvwvia mporyyotonoleiton Ue T Ypnor Tou Sloecoha3nTs -
vupdtov Redpanda. O data worker ypdger oe éva Oépa (topic) xau ov daily, weekly

xor monthly workers eyypdgovton o autd To Véua dote var SlBdlouy To UnvOaTa.

To deployment towv apyttextovixcv €yive oe 4 servers, o xadévag Ue dlaxpitole pOAOUC
xou mpodlarypapéc. Avahutixd ol servers: o Front server nepthaufBdver o Metabase xau Gra-
fana, o Broker Server nepihopfdver tov broker (eqpdoov undpyet), o DB Server yio tnv Bdon
oedopévmy xou o Workers Server yia toug workers xow 1o Prometheus.

Emniéov, €youv dnuiovpyfioetl apxetd UML Sarypduyoto, cuyxexpuuévo Slory pduota 6 Tol-
xelowv (component), Storypduparta axohovdiag (sequence) o dorypduparta avdntuing (deployment),

YL VoL TTUEEY OUUE ULOL OVOAUTIXT] OTITIXY| OVITAEAO TAOT) TNG XAVE APYLTEXTOVIXTC.

Yuyxeittinn) AEoAoynorn xou AnoteAEopaTa

[ty o€loAdYNon TV aEYLTEXTOVIXGY Tou LAOTOWdNXaY, ToEoLCLaloupE BLdpopes Ue-
Tewéc xau diedyoupe mhidoc doxymy (tests). Ou Boxuéc cuothuatog anoteholy T Bdon
oToLGONTOTE AELOTLOTNG OTEUTNYIXNAG AVATTUENG AOYLOUIXOU, TEOCPECOVTAS (WTIXEC TTANEO-
Qopleg Yot TNV amOB00TY), TNV EMEXTACHIOTNTO XAk T GTAVEQOTNTA TOU CUC THUATOG.

O apiude twv data workers éueve otadepde xod’ 6 T Bidpxelar Twv doxudy (27 data
workers). Ou Soxwée Eexivnoay e tnv extéheon tou cucsTtAuatog Ue évay worker amd xde
eldoc (nueprioto, eBdopadiaio, unviaio), evd eZopowddnxe 1 eneepyooio dedopévawv 1 étoug,
3 €10V xou 6 eTdV. Buveylooue auidvovtoag tov aptiud twv workers oe Tpelc Yo xdde €ldoc
xou Bte€yope TiC (Bieg doxiég.

AZ{Cer vo onuewwdel 6TL 6hol ou data workers cuvtovicTxay Yo Vo EEXVACOLY Tow-
toypova. Emlong, otny apyn xdie doxwune, n Bdorn 6edopévmy Aoy xevr xot OAOL OL TUVOXES
OlorypdipovTay HETE amd xdde Boxur| xou dnuiovpyolvtay Eavd otny enduevn extéleor. Ta
oTtotyela auTd Nray avaryxado yior TNV eEaoPIAoT (Blwv cuVINXOY UETAZ) TV BOXILMY.

Kotd 1 Sudipxetar Tov 5oxoy avTUETOTIo TNXay xdrnola Teofifuata, cuuteptiauBovo-
pévne tne otadtoxic e€dvTAnone yweou dioxou and to Docker (Aoyw xdmotag Soppofc) xou
e LdmMAAC xatavdhwone edpoug Lodvng dixtdou amd to Prometheus. Emilong, uéow twv
OOXLUDV XU TV ATOTEAECUATODY, UG EYLVOY YVWOTA XATOld GQIALATA GTNY UAOTOINGT TOU
cucTAATOC Ta ontola, BERata, Slopdwinxay metv Yivouv ol TEAXEC peTproELS.

Me Bdon tic doxpéc mapatnefinxay didpopa onuavTixd anoteAéopata xou e&hydInoay
XATOLOL GUUTEQACUATL.

Mepuég apyixéc petprioelc ebvan ot e€rg: o uécog ypedévog avd aitnua oo ENTsoe V3 oy
1 BeutepohenTO, 0 GUVOAXOGS apLluds requests yio 1 €tog Htav 405, yia 3 €tn oy 1053 xou
yioe 6 €tn Aoy 2025.

H Boaowr yetpwr mou a€ioloyiinxe ftav o péoog ypdvog mou anateiton and tn oTyun
mou o data worker éyet AdBel v amdvinon evog request oto API, uéypl tn otiyuy mou ta
enelepyoouéva dedopéva anodnxedovion otn Bdon dedopévwv, and évav dAho worker (nue-

prioto, efdopadiaio 1 unviado). ‘Ocov agopd auth T peTpixy, damotdinxe 6Tt 6e xdmoLleg

Performance Investigation of various Microservice Architectures

Extetopévn Heplindn

OPYLTEXTOVIXES, O YEOVOC UEIOVETOL XS 0 GY0g Twv dedouévwy avZdveton (dnhadh 6co
au&dvovtan T €11, and éva éwg €€1). H Redpanda amodeiydnxe n mo apyn apyltextoviny,
eved 1) opyttextovixy] Orchestrator amodetydnxe 1 mo yeryoen. Axour, uetald twv dlapodpwy
Orchestrator apyitextovixwy, n Async Orchestrator ntav n mo apy).

‘Otav ot doxwéc dielhydnoay ue 3 epydtec xde tomou (xadnueptvd, efdopadiaio, unvio-
fo) v Aettovpyolv mopdhhnha, Slamotddnxe wo ongovtxy| Bektiwon otov péco ypdvo amd
To request oe xdle worker. H mapdiinin Aertoupylo twv workers Beitinoe Spapotind tny
enidoon OAwv, extoc Tne apyitextovin’ic Redpanda. Emnilong, ol Sidpopec apyitextovinéc eu-
PAVICOY TUPOUOLOUG YPOVOUS, YEYOVOS Tou Tidavd ogelletan o€ cuUPOENoT AOYW TNg POoNG
e ovvdeone (TCP). Axéun, n Serialised RabbitMQ napousioce napduoo yedévo ye tig
Orchestrator apyitextovixéc agol eivon xat ot 50o push-based.

[ty emouevn PETEWXN, TOV GUVORLXO YEOVO EXTEAECTS, OEV UTHRY ALY ONUAVTIXES OLopORES
UETAED TOV JPYLTEXTOVIXGWY, 0pol OAEC OAOXATpwONY Ta requests otov (Blo mepinou ypdvo
(89s Yy 6 €tn BeBouéviv). AuTO BNAMVEL THY EYXUPOTNTA TWV UETEXMY, a@ol EGV XdmoLa
aEYLTEXTOVIXY fTay o oYY TOTE Yot elye xou draopetind CPU time, dnhadr nepiocdtepoug
otard€aipoug TopouS.

INo v doxactel To oV TNUA UG U xavovixée ouvirxes, To dedouéva tou API ano-
VNUEVTIXAY TOTUXE, OOTE VoL YIVEL TAUTOYEOVY EXTEAECT) OAWY TwV requests. e auth Tnv
nepintwon mopatneiinxe éva véo onueio ouupdenone (ota mepimou 62s) ool To GloTNHUA
€pTaoe To 6plo yerong CPU.

O mnyafog x@Owog yia TNV e@apuoy” Tou avartuydnxe o auUTAV TN OlotEBr) TapéyeTon
oto Ioapdptnua B vyl tepautépw avadewpnon xan avdiuon. To anoteAéopator TwV BoXUWY

elvow enlong dradéoipa o popyy| snapshots omd to Grafana, oto Iopdptnuo A.

Yuunepdopata

Yxomog tne epyaciog elvon 1 ToEOUCIIOT TWV ATOTEAECUATWY TWV BOXWY %ot O)L 1
e€0y WYY CUUTERUOUAT®Y Yia TNV OUYXELON TV opyLTeExTOVIX®Y. BéBaa, uéoa amd tic doxyuég
Tou Sefydnooy xou Ye oTéy 0 TNV oZLOAGYNON TV UPYITEXTOVIXAOY UoC, TUpadETOUUE UEPIXT

CUUTERACLOTAL.

e H SOA Redpanda eivon 8ovix| yior cuothuata pe tohhols Toporywyols/xatovahwtés
Tou TEénel Vo efvan stateless, SnAadY| vor uny LTEEYEL XATOLOC XATAVOAWTAS TOU VoL Vol
umeduvoe yio Ty aviextixdtnta (resiliency) tne opyttextovinic. Eniong, n Redpanda
ETUTEENEL TNV ETAVIAN (T BeBopévwy xat TNV dueom xhudxwon. Avtideta, yio cuoTApoTa
omou 1 xaduotépnon avd altnua eivon Tewtapywhc onuactag, 1 Redpanda unopel va

unv etvon 1 BEATIOTN ETAOYT).

e H Serialised RabbitMQ eivon umAnc anddoone xan apxeTd VEAXTY, WOAVLXY) Yio TEPL-
TTOOELS OTOL 1] TPOTEPOUOTNTO XUTAVIAWONGS dedouévwy (pe yeron queue) eivon Lotxnhc
onuactag. ‘Ouwg, uropel vo unv ebvan 1 xahOTepn EMAOYT OTAV 1) TEOTEQOUOTNTA XAUTA-

VO woNe OV elval TOGO ONUOVTIXY.

e O Orchestrator eivor o Wavixde otay ypeldleton €va xevipixd onueio eréyyou (m.y. oe

pihtpdptopa dedopévwv) yior T dayelplon aveldptntwy utneeouny. ‘Oune, utopel vo

Performance Investigation of various Microservice Architectures

Extetopévn Heplh

unV etvor 1BoVIXOS Yo CUCTAUATA OV TEETEL Va eivon stateless.

e O Async Orchestrator eivon e€apetindg yia cuotidota e thedvaouo CPU, ahhd uropet

vau dnutovpyfoel tpofAfuata edv ol topot Tne CPU elvon meploplopévot.

e Télog, o Serialized Orchestrator eivan ypriowog 6tav 1 enelepyocio HETABEBOUEVHDY

npoo¥étel onuavtixh o&io oty anddoon (t.y. Aoyw peiwong dyxou mAnpogopiag).

To cbotnuo mou avantdydnxe ot TAalolo aUTAS TS BITAWUATIXAC Epyaciag Yo Umopo-
Ooe va Bedtiwdel xan va emextodel TEpaUTERL. LUYXEXPWEVA, 1) €EEEELYNOY EVOAAAXTIXWY
oto30v hoylouxoy, 6mwe Golang ¥ Rust, umopel vo 0dnyfioel oe SlapopeTind anoteAéouaTa.
Emniéov, yio mo eunepio TATOUEVT oLOAOYNOT) TWV CUUTEQUOUITOV UaS HEGW UG TNEWY Bla-
OixaoLdY emxlpnmong Yo unopoloe va GUUBAAEL onuavTixd otr diebpuvon tne €peuvac. Télog,
N ¥eHom cLYBLACUOY BlaPdEKY UEVOdWY ETIXOVKVING UTOPEL Vo ETNEEACEL SLPORETIXE TNV

an6dooT xan TNV oloTo Tl TOU GUG THUATOC.

Performance Investigation of various Microservice Architectures

Contents

ITepiAndm

Abstract

Acknowledgements

Extetopévn Ilepiindn

1

Software Architecture

1.1 Documenting software architecture
1.2 Architectural styles
1.2.1 Monolithic.o oo
1.2.2 Service Oriented Architecture (SOA)
1.2.3 Microserviceso

Microservices Architecture

2.1 Advantages of Microservices
2.2 Challenges of Microservices
2.3 Quality attributes and Microservices

Microservices Communication

3.1 Choreography
3.2 Orchestration
3.3 Implementing choreography
3.4 Implementing orchestration

Motivation and Tools

4.1 Motivation and objective
4.2 Quantitative measurements
4.3 Message brokers.o
4.3.1 RabbitMQ.
432 Redpanda
4.4 Othertools
441 Docker
4.4.2 Prometheus
4.4.3 Grafana

Performance Investigation of various Microservice Architectures

17
17
20
20
21
21

23
23
24
25

27
27
28
29
30

CONTENTS

4.4.4 PostgreSQL 37

4.4.5 Visual Paradigm 0 37

4.4.6 Python 37

5 Case Study 39
5.1 Functional requirementso 39
5.2 Non-functional requirements L. 40
5.3 Workers 40
6 Architectures 43
6.1 Architecture descriptions 43
6.1.1 Orchestrator 44

6.1.2 Serialised Orchestrator 45

6.1.3 Async Orchestrator 47

6.1.4 Serialised RabbitMQ 48

6.1.5 SOA Redpanda 50

6.2 System deploymento 52
7 Benchmarking and Results 55
7.1 Metrics o e 55
7.2 Execution and difficultieso 56
7.2.1 Tests e 56

7.2.2 Running thetests. 57

7.2.3 Problems and observations. 58

7.3 Results. e 58
8 Conclusions 65
8.1 Comparison of architectures 65
8.2 Further improvements 66
A Grafana Snapshots 67
B Source Code 69
Bibliography 74

Performance Investigation of various Microservice Architectures

Chapter

Software Architecture

The domain of software architecture has grown to be a significant aspect of software
engineering, particularly in managing the development and maintenance of large-scale sys-
tems. Practitioners have come to realize that getting an architecture right is a critical
success factor for system design and development. [1| There are many definitions of soft-
ware architecture [2], [3|, among which is the following: "The software architecture of
a computing system is the set of structures needed to reason about the system, which
comprise software elements, relations among them and properties of both."

The core of all the definitions is the same: the architecture of a system describes its
high-level structure. This structure reveals things such as how the system is composed
of interacting parts, where are the main pathways of interaction, and what are the key
properties of the parts. In other words, the architecture is presented as a description of a
system as a sum of smaller parts, and shows how those parts relate to and cooperate with
each other to perform the work of the system. [4] Software architecture typically plays a
key role as a bridge between requirements and implementation. By providing an abstract
description of a system, the architecture exposes certain properties, while hiding others.
This representation provides a guide to the overall system, permits designers to reason
about the ability of a system to satisfy certain requirements, and suggests a blueprint for
system construction and composition. [3], [5]

Software architecture is planned out during the initial stages of the development pro-
cess. It either enables or restricts the realization of particular functional needs, non-
functional requirements and business goals. As a result, making the right architectural

choices is fundamental to the success of a software-based project. [1]

1.1 Documenting software architecture

As we have already seen, software architecture plays a central role for the success-
ful development and maintenance of large complex systems. The architecture serves as
a blueprint and defines the work assignments that must be carried out by the various
teams (e.g. design and development). Moreover, quality attributes desired for a system
depend heavily on the architecture, such as performance, accuracy, reliability, scalability
and security.

Documenting the architecture is as important as crafting it. Even a perfect architecture

Performance Investigation of various Microservice Architectures

Chapter 1. Software Architecture

is useless if no one understands it or (perhaps even worse) if key stakeholders misunderstand

it. [2] Architecture documentation can have a number of beneficial uses, such as [4]:

e Facilitating communication about the system’s design with relevant stakeholders

throughout its evolution.

e Providing a foundation for initial analysis to verify the soundness of architectural
design decisions, identify potential weaknesses, and make necessary refinements or

changes.
e Serving as the initial resource for gaining comprehensive understanding of the system.

So, the problem here is “How should you document an architecture so that others can suc-
cessfully use it, maintain it, and build a system from it?” The answer given by Clements

et al. [6] is an approach called “views and beyond”. 7]

Views

The basic concept associated with software architecture documentation is the concept
of architectural views. A view is a representation of a set of system elements and rela-
tions associated with them. Due to their complexity, comprehending modern systems can
be challenging. Therefore, we typically focus on one, or a small set of, software system
structures at a time, which we represent as views.

The first principle for documenting software architectures is to document the relevant
views and then document the information that applies beyond views. However, there
are different approaches to finding out which views are relevant, Rational’s 4+1 approach
prescribes one set; the Siemens Four Views approach prescribes another set. A recent
trend, however, is to recognize that architects should produce whatever views are useful
for the system at hand. IEEE 1471 holds that an architecture description consists of a
set of views, each of which conforms to a viewpoint, which in turn is a realization of the
concerns of one or more stakeholders.

Views can be usefully grouped into viewtypes, corresponding to the three broad ways an
architect must think about a system: as a set of implementation units - module viewtype,
as a set of runtime elements interacting to carry out the system’s work - component-and-
connector viewtype, and as a set of elements existing in and relating to external structures
in its environment - allocation viewtype. Within each viewtype, there are well-known pat-

terns of design decisions (styles) that the architect can re-use. [6]

Diagrams

Architectural documentation refers to the collection of documents that communicate
the design and describe how a system is put together. It generally includes architectural
diagrams (often created using architectural notations), as well as descriptions of archi-
tectural decisions, system components, interaction mechanisms, constraints, justifications,
and more.

An architectural diagram is a visual representation of a system’s architecture. It’s

like a map, depicting components of the system, their relationships, interactions, and flow

Performance Investigation of various Microservice Architectures

1.1 Documenting software architecture

of data. The diagrams could represent various views of the system, like structural view,
behavioral view, or deployment view. These diagrams are very useful for understanding,
communicating, and documenting the system’s architecture.

The language or the set of symbols and rules used to create these architectural dia-
grams, is called an architectural notation. These notations provide a standardized way to
represent system components and their interactions, making the diagrams easier to under-
stand and share among different stakeholders. Examples of architectural notations include
Unified Modeling Language (UML), Systems Modeling Language (SysML), and Architec-
ture Description Language (ADL).

UML

Since we have used a variety of UML diagrams in order to describe our architectures,
we are going to talk a little bit more about Unified Modeling Language. Although informal
box-and-line sketches communicated on viewgraphs may still be the most popular form of
architectural expression, the UML has become a widely used notation.

UML, short for Unified Modeling Language, is a standardized modeling language con-
sisting of an integrated set of diagrams, developed to help system and software developers
for specifying, visualizing, constructing, and documenting the artifacts of software systems,
as well as for business modeling and other non-software systems. The UML is a very im-
portant part of developing object oriented software and the software development process.
The UML uses mostly graphical notations to express the design of software projects. Us-
ing the UML helps project teams communicate, explore potential designs, and validate the
architectural design of the software. [§]

The first thing to notice about the UML is that there are a lot of different diagrams
(models) to get used to. The reason for this is that it is possible to look at a system from
many different viewpoints. A software development will have many stakeholders playing a
part, all of which are interested in different aspects of the system, and each of them require
a different level of detail.

UML offers two main types of diagrams [§]:

e Structure diagrams, which show the static structure of the system and its parts on
different abstraction and implementation levels and how they are related to each

other. These include class diagrams, component diagrams, deployment diagrams etc.

e Behavior diagrams, which show the dynamic behavior of the objects in a system,
which can be described as a series of changes to the system over time. These include
use case diagrams, activity diagrams, sequence diagrams, communication diagrams

etc.

From the above-mentioned types, we are going to explain only the ones we will use in our

project.

e Component diagram: it depicts how components are wired together to form larger
components or software systems. It illustrates the architectures of the software com-

ponents and the dependencies between them.

Performance Investigation of various Microservice Architectures

Chapter 1. Software Architecture

e Deployment diagram: it shows the architecture of the system as deployment (dis-
tribution) of software artifacts to deployment targets. Artifacts represent concrete
elements in the physical world that are the result of a development process. It models
the run-time configuration in a static view and visualizes the distribution of artifacts
in an application. In most cases, it involves modeling the hardware configurations

together with the software components that lived on.

e Sequence diagram: it models the collaboration of objects based on a time sequence.

It shows how the objects interact with others in a particular scenario of a use case.

e Communication diagram: it is also used to model the dynamic behavior of the use
case. When compared to Sequence Diagram, the Communication Diagram is more

focused on showing the collaboration of objects rather than the time sequence.

1.2 Architectural styles

Software architecture decisions can rely on a set of idiomatic patterns commonly named
architectural styles or patterns. A software architectural pattern defines a family of systems
in terms of a pattern of structural organization and behavior. [9] In other words, architec-
tural patterns are a general, reusable solution to a commonly occurring problem in software
architecture within a particular context. They are best practices that the software devel-
opment community has found to work well in some situations. Some common architectural
patterns include Monolithic, Service Oriented Architecture (SOA), Publisher-Subscriber,
Microservices, Model View Controller (MVC), Layered, Multi-tier, Event-driven, Pipe-

Filter and Client—Server.

System-wide architectural styles

Monolithic, SOA and Microservices architectures are all high-level architectural pat-
terns that dictate the overall structure and organization of a software system. In the next
chapters, we are going to stir our attention towards the Microservices architecture and
explain the concepts of orchestration and choreography in detail. But before we proceed,
it’s worthwhile to briefly examine the historical context and interplay among these three
key architectures. This historical backdrop will provide a richer understanding and pave

the way for our forthcoming detailed discussion.

1.2.1 Monolithic

Monolithic architecture is a traditional method of software development, which has
been used by large companies such as Amazon and eBay in the past. [10] In a monolithic
architecture, all functionality is encapsulated into one single application, its modules rely
on the sharing of resources of the same machine (memory, databases, or files), so they
cannot be executed independently. [11] This type of architecture is tightly-coupled, and

all your logic for handling a request runs in a single process.

m Performance Investigation of various Microservice Architectures

1.2.2 Service Oriented Architecture (SOA)

While it is a good idea to start a project using this type of architecture, because this
allows you to explore both the complexity of a system and its component boundaries, once
the application becomes large and the team grows in size, this architecture also has some
drawbacks. A notable problem of monoliths involves scalability and, in general, all the
aspects related to change, since a change made to a small part of the application requires
the entire monolith to be rebuilt and deployed. [12]

1.2.2 Service Oriented Architecture (SOA)

In the 1990s, SOA was proposed as a revolutionary innovation to decouple service-side
applications and improve the reuse of components. The SOA architecture could be divided
into multiple server application oriented functions of loosely coupled services, each service
can be managed in different containers, between services through an enterprise service bus

to communicate, and share the same database. [10]

—
ul

I—QI?H

Business
Logic

Microservice
Microservice| 3
1 S

Microservi

¥ (Sominz| [somioz]

BB

% |a

Database Database DB 1

Monolithic SOA Microservices

Figure 1.1: Diagram of Monolithic, Service-Oriented and Microservices Architectures [13]

1.2.3 Microservices

The microservices architecture style is an approach to developing a single application
as a suite of small services, each running in its own process and communicating with
lightweight mechanisms. Microservices are built around business capabilities and indepen-
dently deployable by fully automated deployment machinery. Because of their size, they
are easier to maintain and more fault-tolerant since the failure of one service will not break

the whole system, which could happen with a monolithic architecture. [12]

Both microservices architecture and SOA are considered service-based architectures,
meaning that they are architecture patterns that place a heavy emphasis on services as the

primary architecture component used to implement and perform business and nonbusiness

Performance Investigation of various Microservice Architectures

Chapter 1. Software Architecture

functionality. [14] However, SOA and microservices have a number of differences. First,
the size of a Microservice is much smaller than that of an SOA. Also, SOA looks to reuse
components, while microservices are all about minimizing the reuse of code. Thirdly, SOA
services obtain data from a central location, while microservices use a local data source for
each service. [13]

The market’s high pace of demand for new application features requires changes both
in the applications themselves (loose coupling and high scalability) and in the way they are
built (loose team dependencies and fast deployment). Microservices address both concerns
since small services can be built and deployed by independent development teams; the
concomitant freedom allows teams to focus on improving each service and increase business
value. [12]

It is worth mentioning that many companies, such as Walmart, Spotify, Netflix, Ama-
zon, and eBay, among others, and many other large-scale websites and applications have
evolved from a monolithic architecture to microservices. |15] Moreover, a significant body
of contemporary literature engages with case studies and examines methodologies for mi-
grating from monolithic applications (built of interconnected, interdependent components)
to collections of large services, like SOA and further to collections of small, autonomous,

lightweight-connected services: the microservices architecture. [11], [12], [16]

m Performance Investigation of various Microservice Architectures

Chapter

Microservices Architecture

Currently, organizations face the need to create scalable applications in an agile way
that impacts new forms of production and business organization. The traditional mono-
lithic architecture no longer meets the needs of scalability and rapid development. This is

why companies must adopt new technologies and business strategies. [15]

Definition

Microservices is a modern approach to software development that structures an appli-
cation as a collection of loosely coupled, independently deployable sets of small services
which are often developed, deployed, and maintained by a single team. Each service is

running in its own process and communicating with other services by using lightweight

mechanisms (e.g. HTTP/REST). [12], [17]

Key features of a good service

Each service has to be in sync with two key concepts: loose coupling and high cohesion.
When services are loosely coupled, a change to one service should not require a change
to another. Moreover, a loosely coupled service knows as little as it needs to about the
services with which it collaborates. High cohesion means that we want related behavior to
sit together, and unrelated behavior to sit elsewhere. If we want to change behavior, we
want to be able to change it in one place, and release that change as soon as possible. [17],
18]

2.1 Advantages of Microservices

The advantages of microservices are numerous and diverse. While many of these ad-
vantages can be attributed to any distributed system, it’s the extent to which microservices
apply the principles of distributed systems and service-oriented architecture that they of-
ten realize these benefits more substantially. The main benefits can be reviewed in the

following key points [19]:

e Technology Heterogeneity: Since the system is composed of multiple collaborating

services, each one can use different technology.
e Resilience: In a monolithic service, if the service fails, everything stops working, but

Performance Investigation of various Microservice Architectures

Chapter 2. Microservices Architecture

in microservices, a failure does not cascade, the problem can be isolated and the rest

of the system can keep on working.

e Scaling: Not all parts of the system have to scale together. Microservices allow for

scaling in some systems while the rest can work in smaller, less powerful hardware.

e Ease of deployment: A change can be made to a single service and be deployed

independently of the rest of the system, which allows for faster code deployment.

e Composability: A functionality can be consumed (reused) in many different ways

and for different purposes.

e Organizational Alignment: The team can be distributed, which usually results in

higher productivity.

) »

Organized around Independently Highly maintainable

business capabilities deployable and testable Loosely coupled $mall teams

Figure 2.1: The advantages of Microservices [20]

Microservice architecture (MSA) has undoubtedly become the most popular modern-
day architecture, often used in conjunction with the rapidly advancing public cloud plat-
forms to reap the best benefits of scalability, elasticity and agility. [21] Though MSA is

highly advantageous and comes with a huge set of benefits, it has its own set of challenges.

2.2 Challenges of Microservices

MSA introduces several challenges due to its inherent complexity and the distribution of
services. Maintaining consistency, monitoring, alarming and fault tolerance are difficult for
a distributed system, which means that you have to operate a much more complex system
than in monolithic architectures. [22] Based on various literature sources, a number of
challenges can be identified [10], [23], [24]:

e One challenge lies in skill and knowledge gaps, especially at higher management
levels, where there can be difficulty in understanding microservices. This is because
they are usually more complex to set up and maintain. There are also challenges
in finding the right technical talent and shifting the mindset of those accustomed to

traditional monolithic architectures.

e Identifying suitable service boundaries, commonly referred to as service discovery.

Getting service boundaries wrong can be costly, so we should keep related code

Performance Investigation of various Microservice Architectures

2.3 Quality attributes and Microservices

together and attempt to reduce the coupling to other services in the system. That is
why decomposing, the process of breaking down a large monolithic application into
smaller, individual services, is a widely discussed issue with various approaches (such

as Single Responsibility Principle or Domain-Driven Design (DDD)).

e Maintaining data consistency across different services can be difficult, as each service
typically has its own database. In a monolithic system, data is stored centrally
in the same database; while in a microservices architecture, data is distributed in
databases of different microservices, so ensuring consistency across multiple databases

is a critical issue.

e Network reliability, latency, and bandwidth become more critical and complex to
manage with a microservices architecture. Network communication, also, negatively

affects the performance of microservices.

e With multiple services interacting, it becomes challenging to understand, test, and

verify the system’s behavior under normal or abnormal conditions.

e Microservices systems are essentially concurrent distributed systems. In general, the
effective way to debug concurrent distributed systems is to track and visualize the
execution of the system. The current debugging of microservices systems depends
largely on the developer’s experience with the system and similar failure cases, and

mainly relies on manual methods to check logs.

% '\

Skills and Service . . Network
- Data integrity -
knowledge discovery connection

W8S

f

th
il

]
"I

Testing
Figure 2.2: The challenges of Microservices

Despite these challenges, many still recommend MSA, especially for distributed teams

that can logically separate their operations.

2.3 Quality attributes and Microservices

In this section, we are going to look into how microservices affect some of the basic
quality attributes. These are the characteristics or properties of a system that can be
used to determine its level of quality. They are usually non-functional requirements that

describe how the system works.

Availability: Availability is a major concern in microservices as it directly affects the
success of a system. Even if a single service is not available to satisfy a request, the whole

system may be compromised and experience direct consequences. It has been found that

Performance Investigation of various Microservice Architectures

Chapter 2. Microservices Architecture

the size of a microservice is related to its fault proneness. However, it is possible to keep
optimal size for services, which may theoretically increase availability. Spawning an in-
creasing number of services, as a system grows larger, will make the system fault-prone on
the integration level, which will result in decreased availability due to the large complexity

associated with making dozens of services instantly available. [25]

Performance: The prominent factor that negatively impacts performance in the mi-
croservice architecture is communication over a network. The network latency is much
greater than that of memory. In other words, in-memory calls (i.e. procedure or function
calls that run in the same memory space - they are typical in a monolithic architecture)
are much faster to complete than sending messages over the network. [25] Therefore, the
application must minimize the number of messages sent between each service to prevent
the time behavior of the system from being severely affected. This can be accomplished
by reducing the responsibility of each microservice and avoiding tight coupling to ensure

that communication between services is restricted to the lowest amount. [26]

Scalability: Scalability is the potential to implement more advanced features of the
application. Each microservice can be independently scaled leading to improved resource
utilization. System scalability is increased, compared to monolithic, because of the smaller

services. Scaling may be either vertical, or horizontal.

Reliability: Particular attention should be paid to the reliability of message-passing
mechanisms between services and to the reliability of the services themselves. Simple
components with clean interfaces can enhance reliability. Integration, a key aspect of mi-
croservices, can pose a risk to reliability, especially when the fallacy of assuming network
reliability is considered. This factor makes microservices potentially less reliable than appli-
cations with in-memory calls, a challenge common to all distributed systems. Microservices
streamline integration mechanisms by eliminating additional, potentially complex features

and concentrating exclusively on reliable message delivery. [25]

Security and Data integrity: With microservices, security becomes a challenge
primarily because no middleware component handles security-based functionality. Instead,
each service must handle security on its own, or in some cases the API layer can be made
more intelligent to handle the security aspects of the application. [14| Also, choosing
to use the microservice architecture will most likely negatively affect the security of the
system due to the communication being over a network. Since the messaging mechanism
is what allows the different services to communicate with each other, security becomes
a necessity to implement for the messaging to ensure high confidentiality and integrity.
Confidentiality is of the utmost importance to guarantee that the data sent can only
be accessed by authenticated parties. Maintaining high levels of data integrity, through

methods like encryption, is crucial to ensure the protection of all transmitted data. [26]

m Performance Investigation of various Microservice Architectures

Chapter

Microservices Communication

In a microservices-based architecture, an application is composed of multiple microser-
vices, each executing a part of the required functionality. Microservices need to cooperate
and collaborate in order to satisfy a business need. Rather than language-level method calls
as in a monolith, microservices communicate via standards-based protocols, e.g. HTTP
for invocation-based communication, or message-based communication via a message bro-
ker. In this note, the microservice collaboration patterns which are commonly used are

Orchestration and Choreography. [27]

3.1 Choreography

In this pattern, there is no ‘controller’ of the end-to-end application process flow. In-
stead, microservices will publish an event (message), via a message broker, whenever there
is a state change, whereby other microservices subscribing to that event then set themselves
up for the next iteration of the process. [27]

With choreography, we inform each part of the system of its job, and let it work out the

details, like dancers all finding their way and reacting to others around them in a ballet.

pos=ses=eses=——-= Loyalty points bank
}
; Subscribes
Publishes Customer created | _ _ >ubscribes | Post service
(_’ event
}
I
Customer service b e - ————————— Email service

Figure 3.1: Ezample of customer creation via choreography [19]

Strengths:

e It is a loosely coupled approach, meaning that microservices can be deployed inde-

pendently.

Performance Investigation of various Microservice Architectures

Chapter 3. Microservices Communication

e There is low chattiness, in other words, data is exchanged between microservices only

if there is a state change.
Weaknesses:

e End-to-end processes are difficult to monitor (poor visibility). Also, point-to-point
connections can lead to ‘spaghetti’ architectures which are inherently unmanageable.
This pattern is less suitable for larger applications where the number of microservices

rises.

e Due to the poor visibility of end-to-end processes, and the need for a message bro-
ker to intermediate the process flow, the design of applications becomes relatively

complex.

e If a microservice goes offline temporarily during a process iteration, the process will
eventually complete when the microservice goes back online, so the response time is

indeterminate.

3.2 Orchestration

Here, a composite microservice acts as the ‘controller’ which orchestrates the end-to-end
application process flow by invoking multiple atomic services in a sequence. Microservice
invocation is done via request/reply interaction, during the process execution (instead of
event-based publish-subscribe interaction). [27] With orchestration, we rely on a central

brain to guide and drive the process, much like the conductor in an orchestra.

(reate points balance

3

Loyalty points bank

: Send welcome pack ;
Customer service P Post service

Send welcome email -
»| Email service

Figure 3.2: Ezample of customer creation via orchestration [19]

Strengths:

e End-to-end processes are easy to monitor (assuming we use synchronous request/re-

sponse, we could even know if each stage has worked).

e Due to the clear visibility of end-to-end processes, and point-to-point style of invocation-

based communication, the design of applications is relatively simple.

e Each step in the application process flow uses invocation-based request-reply inter-

action, so the response time is predictable.

Performance Investigation of various Microservice Architectures

3.3 Implementing choreography

Weaknesses:
e The ‘controller’ service can become too much of a central governing authority.

e The orchestrator service can act as a single point of failure, so if it fails, it will stop

the entire system from working.

e [t is a tightly coupled approach, microservices can be deployed independently, but
require downtime during deployment in order to avoid interruption of the application

process flow.

e There is high chattiness, which means that data is exchanged between microservices

during each step of the application process flow.

According to Newman [19], systems that tend more towards the choreographed ap-
proach are more loosely coupled, and are more flexible and amenable to change. Also, in
[14] by Richards, it is stated that microservices architecture favors service choreography
over service orchestration, primarily because the architecture topology lacks a centralized

middleware component.

3.3 Implementing choreography

In Choreography, event-based, asynchronous communication is used. Here there are
two things we need to consider: a way for our microservices to emit events, and a way for
our consumers to find out those events have happened. [19]

One strategy involves using HTTP to broadcast events. ATOM, which is a REST-
compliant specification, provides a means of publishing resource feeds. Consequently, a
service, such as customer service, can post an event to an ATOM feed when any changes
occur. Consumers then simply poll the feed for any updates. However, this approach has
its drawbacks: HTTP doesn’t excel in low latency as some specialized message brokers do,
and consumers are left with the responsibility of tracking viewed messages and controlling
their own polling schedules.

This brings us to the more traditionally used approach, message brokers. Message
brokers like RabbitM(@ or Redpanda try to handle both problems of asynchronous com-
munication. Producers use an API to publish an event to the broker. The broker handles
subscriptions, allowing consumers to be informed when an event arrives. These brokers can
even handle the state of consumers, for example by helping keep track of what messages
they have seen before. These systems are normally designed to be scalable and resilient. As
a consequence, though, these systems can introduce additional complexity and overhead,
as it is another system you may need to run to develop and test your services.

Since both RabbitMQ and Redpanda are going to be used in our architectures, we will
take a better look at them in chapter 4, where we talk about the message brokers and tools

used in our project.

Performance Investigation of various Microservice Architectures m

Chapter 3. Microservices Communication

3.4 Implementing orchestration

In Orchestration, we use synchronous request/response. Two technologies fit well when
we are considering request/response: remote procedure call (RPC) and REpresentational
State Transfer (REST). [19]

e RPC: A type of protocol that allows a program on one computer to execute a program
on a server computer. In the context of HTTP, the client makes an HTTP request
that represents a method or function call to the server. The server executes the

function and returns the result as an HTTP response.

e REST: An architectural style that defines a set of constraints to be used when cre-
ating web services. It uses standard HTTP methods, such as GET, POST, PUT,
DELETE, etc., to perform operations. In a RESTful system, resources are identified
by their URLs, and are accessed and manipulated using HTTP protocol methods.
For example, if you wanted to retrieve (or "GET") a particular resource, you could
do so by sending an HT'TP GET request to the resource’s URL.

Both RPC and REST use HTTP as their underlying protocol for communication.
While this protocol can be suited well to large volumes of traffic, it isn’t great for low-
latency communications when compared to alternative protocols that are built on top of
Transmission Control Protocol (TCP) or other networking technology.

This is where alternatives like WebSockets can be advantageous. WebSockets operate
distinctly from the standard web protocols. Following an initial HT'TP handshake, Web-
Sockets essentially form a TCP connection between client and server, making it a more
efficient tool for data streaming, particularly to a browser. However, it’s worth noting that

in this mode of operation, you’re barely using HT'TP, and REST principles do not apply.

In general, the following need to be kept in mind. Synchronous calls are simpler, and we
get to know if things worked straight away. If we like the semantics of request /response but
are dealing with longer-lived processes, we could just initiate asynchronous requests and
wait for callbacks. On the other hand, asynchronous event collaboration helps us adopt a
choreographed approach, which can yield significantly more decoupled services—something

we want to strive for to ensure our services are independently releasable. [19]

Performance Investigation of various Microservice Architectures

Chapter

Motivation and Tools

In this chapter, we are first going to introduce the problem that motivated us to write
this thesis. Subsequently, we will present quantitative measurements and fundamental tools
that are going to be used in our project, which is a prerequisite for fully understanding the

architectures described afterwards.

4.1 Motivation and objective

In today’s rapidly evolving technological landscape, many organizations face the prob-
lem of selecting the most suitable architecture for their software. The choice of architecture
is crucial for the system’s scalability, maintainability, performance and overall success. For
the right choice to be made, the system’s requirements, goals and constraints need to be
taken into account. Since there are numerous architectures available, including microser-
vices, service-oriented architecture (SOA), monolithic, event-driven and more, making a
decision can be complex and challenging.

This project aims at helping out stakeholders, architects and development teams by
providing the knowledge necessary to make an informed architectural decision. The objec-
tive is to explore and evaluate five different architectural approaches for a case scenario,
showing the strengths and weaknesses of each architecture, while also observing their per-

formance by calculating different metrics.

4.2 Quantitative measurements

At this point we are going to refer to the quantitative measurements that are a key
to evaluating the performance of architectures in a business environment. These mea-
surements provide concrete data that can be used to compare different systems and make
informed decisions about which architecture is most suitable for a specific application or
workload. The most commonly used quantitative measurements for evaluating architec-
tures include performance metrics, scalability metrics, reliability metrics, and cost metrics.

28]

e Performance metrics are essential indicators of how well a system is operating. For

example:

Performance Investigation of various Microservice Architectures

Chapter 4. Motivation and Tools

Latency: The time it takes for a system to respond to a request. Lower latency

often means better performance.

— Throughput: The amount of data processed by a system in a given amount
of time. Higher throughput indicates the system can handle larger amounts of
data.

— Capacity: The maximum workload that a system can handle without affecting

performance.

Availability: The percentage of time a system is operational and available. This

metric is often presented as a percentage, such as "99.9% uptime".
e Scalability metrics assess the system’s ability to accommodate increased load.

e Reliability metrics measure how often a system experiences faults or failures. Mean
Time Between Failures (MTBF) and Mean Time To Recovery (MTTR) are commonly

used metrics.

e Cost metrics help businesses understand the economic implications of implementing
and maintaining different architectures. This includes the cost of the resources used
(like CPU, memory, storage, network bandwidth), the cost of licensing, maintenance

costs, the cost of downtime, etc.

Each metric may have implications on the others. For instance, a system might achieve
high throughput by using more resources, leading to higher costs. Similarly, striving for low
latency might involve trade-offs in terms of cost and complexity. Therefore, these measure-
ments should be seen as interconnected pieces of a larger puzzle that businesses must solve
to find the optimal balance for their specific needs. Understanding and effectively utilizing
these quantitative measurements is a key component of successful technology strategy in
today’s business landscape.

In order to evaluate our architectures, we use specific metrics, focusing on performance,

that get recorded by Prometheus and get visualized in Grafana.

4.3 Message brokers

Transitioning our focus to the core components used in our architecture, we shall begin
by exploring the message brokers.

A message broker is an application that acts as an intermediary or a middleware for
communication between various applications. Message brokers offer two basic message

distribution patterns or messaging styles [29]:

e Point-to-point messaging: This is the distribution pattern utilized in message queues
with a one-to-one relationship between the message’s sender and receiver. Each

message in the queue is sent to only one recipient and is consumed only once.

e Publish/subscribe messaging: In this message distribution pattern, often referred to

as “pub/sub,” the producer of each message publishes it to a topic, and multiple

Performance Investigation of various Microservice Architectures

4.3.1 RabbitMQ

message consumers subscribe to topics from which they want to receive messages.
All messages published to a topic are distributed to all the applications subscribed
to it (broadcast-style method).

There are two approaches for message delivery. One is pull-based approach, where the
subscriber queries the broker for new messages and the other is the push-based approach
where the messages are automatically forwarded to the subscribers as soon as they are
received. [30]

As we found out in the previous chapter, message brokers are used in asynchronous
communication. An asynchronous communication system can be implemented in either
one of two ways: one-to-one mode or one-to-many mode. In a one-to-one (queue) im-
plementation there is a single producer and single receiver. But in one-to-many (topic)
implementation there are multiple receivers and each request can be processed by zero to

multiple receivers. [31]

4.3.1 RabbitMQ

Keywords: message broker, push-based, connection, channel, producer, consumer

b raooit

RabbitMQ is an open-source message-broker software that implements the Advanced
Message Queuing Protocol (AMQP) but also provides support for other protocols. The
basic concepts of RMQ include the channel, the queue, the producer and the consumer.
The implementation of a RabbitMQ application has the following steps: First, a connection
is established to the RMQ Server, then a channel is created for the connection and finally,
a queue is declared with a specific name. Once the application is up and running, the
producer can send messages to the queue (publish function) and the consumer receives the
messages from the specific queue by declaring the name of the queue (consume function).

The produced messages remain in the queue until they are handled by a consumer. By
default, after a message is delivered, it will be deleted from the queue. It is also important
to note that RabbitMQ is implemented in one-to-one mode, so each message is consumed
by exactly one consumer. [32], [33]

RabbitMQ adopts a push policy for delivering messages to subscribers. This is not
necessarily fast, especially when the message production rate is faster than the consumption

rate, and harms performance when the queues are overloaded with messages. [30]

Performance Investigation of various Microservice Architectures

Chapter 4. Motivation and Tools

4.3.2 Redpanda

Keywords: event streaming platform, pub/sub, pull-based, producer, subscriber, topic

ﬁRedpanda

Redpanda is an event streaming platform: it provides the infrastructure for streaming

real-time data. The basic concepts of Redpanda include producers, consumers and top-
ics. Producers are client applications that send data to Redpanda in the form of events.
Redpanda safely stores these events in sequence and organizes them into topics, which
represent a replayable log of changes in the system. Consumers are client applications
that subscribe to Redpanda topics to asynchronously read events, regardless of the events’
publisher. Consumers can store, process, or react to the events. Producers and consumers
interact with Redpanda using the Apache Kafka API. [34], [35]

Redpanda and Kafka share basic concepts. A server in a Kafka cluster (group of
servers that operate together) is called a broker. Each topic is partitioned for scaling,
parallelism and fault-tolerance. The typical consumer will process the next message in the
list, although it can consume messages sequentially starting from any offset, as the Kafka
cluster retains all published messages for a configurable period of time. Producers are able
to choose which topic, and which partition within the topic, to publish the message to.
Consumers assign themselves a consumer group name, and each message is delivered to
one consumer within each subscribing consumer group. If all the consumers have different
consumer groups, then messages are broadcasted to each consumer. Redpanda follows a
one-to-many asynchronous communication implementation.

Still, Redpanda and Kafka have a number of differences. Compared to Kafka, Redpanda
has significantly lower latency and higher performance, is much easier to install and tune
and does not require using ZooKeeper (for management) or the JVM.

Redpanda employs a pull-based consumption model that allows an application to con-
sume data at its own rate and rewind the consumption whenever needed. [36]

Redpanda comes with Redpanda Console, which is a developer-friendly web UI for
managing and debugging your Kafka/Redpanda workloads. [37]

To get a better understanding of the key differences between RabbitMQ and Redpanda

we present the following table. Keep in mind that these features may differ according to

the examined scenario. (38|, [39]

Performance Investigation of various Microservice Architectures

4.4 Other tools

RabbitMQ Redpanda
Message delivery push-based pull-based
Messaging design | smart brokers / dumb clients | dumb brokers / smart clients
Implementation one-to-one one-to-many
Message Storage queue disk partition

. when consumed, messages are
Data persistence stores data for later use
deleted from queue

Scalability scales quite well is highly scalable
o increasing availability affects) o
Availability high availability
performance
lower end-to-end latency at lower latency at higher
Latency
lower throughputs throughputs

4.4 Other tools

Except for message brokers, various other tools were used in the development and

testing of our application, all of which are presented below.

4.4.1 Docker

Keywords: OS-level virtualization, containers, environment consistency

Wdocker

Docker is a technology that allows you to build, run, test, and deploy distributed appli-

cations. It uses operating-system-level virtualization to deliver software in packages called
containers. Fach container is a standalone, executable package that includes everything
needed to run a piece of software. This ensures that the software will always run the
same, regardless of its environment thus reducing inconsistencies between development
and production environments.

Docker is packaging an application and its dependencies in a virtual container that
can run on any computer. In other words, a container encapsulates an application along
with its runtime dependencies into a highly portable, standard image. This allows for
applications to be decoupled from the operating system and underlying hardware, providing
an environment where an application can be packaged once and run anywhere. More
specifically, containers enable each workload to hold exclusive access to resources such as
processor, memory, service account, and libraries, which is essential for the development
process. They also run as groups of isolated processes within an operating system, allowing
them to start fast and maintain. [15]

With regards to providing abstraction and isolation, containers closely resemble virtual
machines (VMs); however unlike VMs, in a container the application is packaged with only

the essential elements for it to run and not the entire guest OS. This allows containers to

Performance Investigation of various Microservice Architectures

Chapter 4. Motivation and Tools

have unique capabilities when compared with VMs like quick spin-up, minimum overhead,
miniscule footprint, and high portability. [17]

Containers are a type of technology that has gained popularity due to their high per-
formance, light weight, and enhanced scalability. They have proven particularly beneficial
for microservices architecture, wherein applications consist of many independent services.
[10] The lightweight characteristics of Docker containers can help creating and running
more microservices, which furthermore contributes to a higher resource utilization. Also,

containers can be easily moved to more performant machines. [40]

4.4.2 Prometheus

Keywords: monitoring system, time series database, real-time metrics

Prometheus

Prometheus is an open-source monitoring system with a dimensional data model, flex-
ible query language, efficient time series database and modern alerting approach. It is
primarily used for recording real-time metrics and it can generate insightful graphs, tables,
and alerts. In other words, prometheus is able to collect all the metrics from a target
system over HT'TP and place it into a time-series database. It is a simple yet effective
data model which when combined with a powerful query language, is able to inspect how
the applications and underlying infrastructure is behaving. [17], [41]

One of the metric types offered by Prometheus is the histogram, which samples ob-
servations (usually things like request durations or response sizes) and counts them in

configurable buckets. It also provides a sum of all observed values.

4.4.3 Grafana

Keywords: monitoring platform, queries, visualizations, alerts, graphs

15 Grafana

Grafana is an open-source platform for monitoring and observability. It allows you to
query, visualize, alert on, and understand your metrics. Grafana provides the users with
tools to turn their time-series database data into beautiful graphs and visualizations. It
has a data source model which is highly pluggable and supports multiple time-series—based
data sources like Prometheus, InfluxDB, and OpenTSDB as well as SQL databases like
MySQL and Postgres. Grafana is probably the only tool which supports combining data

from many different sources into a single dashboard. [17]

Performance Investigation of various Microservice Architectures

4.4.4 PostgreSQL

4.4.4 PostgreSQL

Keywords: object-relational, DBMS, SQL

PostgreSQL

PostgreSQL is an advanced, enterprise class open source relational database that sup-
ports both SQL (relational) and JSON (non-relational) querying. It is a highly stable
database management system, backed by more than 20 years of community development
which has contributed to its high levels of resilience, integrity, and correctness. PostgreSQL
is used as the primary data store or data warehouse for many web, mobile, geospatial, and

analytics applications. [42]

4.4.5 Visual Paradigm

Keywords: UML, BPMN, modeling, agile development

Visual Paradigm

NV

Visual Paradigm is a software application designed for software development teams
to model business information systems and manage development processes. In addition
to modeling support, this technology provides report generation and code engineering
capabilities including code generation. This technology can reverse engineer diagrams
from code, and provide round-trip engineering for various programming languages. Vi-
sual Paradigm features Unified Modeling Language (UML) diagrams, Entity Relationship
Diagram (ERD), and Object Relational Mapping Diagrams (ORMD) utilities essential in
system and database design. [43]

4.4.6 Python

Keywords: programming language, high-level, scripting, agile development

@ python’

Python is a high-level, interpreted programming language known for its clear syntax
and readability. It supports both procedural and object-oriented programming paradigms

and comes with a large standard library that includes areas like internet protocols, string

Performance Investigation of various Microservice Architectures

Chapter 4. Motivation and Tools

operations, web services tools, and operating system interfaces. Python’s dynamic typing
and built-in data structures make it an excellent language for scripting and rapid ap-
plication development. Python’s ecosystem is enriched by a thriving community which
contributes to the development and maintenance of countless packages for diverse appli-
cations. The language’s flexibility and versatility make it a powerful tool for any software

development project.

Performance Investigation of various Microservice Architectures

Chapter

Case Study

To really test and appreciate the performance and the features of the different architec-
tures, implementing them in a real application can be a good idea. This section presents
the case study that our application relies on and proposes five different architectural ap-

proaches to be implemented and tested under its conditions.

Case Study: Alternative Microservice Implementations of a Data Warehouse Engine

e Overview: This case study explores the use of microservices architecture in the de-
velopment of a data warehouse engine, focusing on parsing, analyzing and storing
energy consumption data from the ENTsoe V3 API, for a number of countries, aiming

at extracting data that are useful and easily accessible.

e Background: The European Union (EU) comprises multiple countries, each with its
unique energy consumption patterns, which necessitates a sophisticated data analysis

approach.

e API overview: The provided API, ENTsoe V3, presents a wealth of information
regarding energy consumption for each country, timestamped every 15, 30 or 60

minutes, extending back to August 24, 2014.

e Goal: The task is to process this big data volume, extracting the daily, weekly, and

monthly energy load for each EU member.

5.1 Functional requirements

The functional requirements of this project include:
1. Extraction of energy load data from the API.
2. Segregation of the data on a country-wise basis.

3. Aggregation of the energy load data on a daily, weekly, and monthly basis for each

country.

It should be noted that this thesis does not go any deeper in the field of data analysis
and thus we are not going to report the processed energy load for each country nor will we

focus on the time it took for each worker to write the data to the database.

Performance Investigation of various Microservice Architectures

Chapter 5. Case Study

5.2 Non-functional requirements

The non-functional requirements include:

1. Performance: The system should perform data extraction, management, and report-

ing in an efficient and timely manner.

2. Scalability: The system should be scalable to accommodate future increases in data

volume and frequency of API calls.

3. Reliability: The system should reliably access the API and handle any potential

errors in the data or API downtimes.

4. Accuracy: The system should accurately calculate and report the aggregated energy

consumption.

5. Maintainability: The architecture should be maintainable, with clear, modular code

that allows for easy updates and debugging.

5.3 Workers

Within our software architectures, we deploy various types of specialized services, the
workers, each performing specific background tasks. The workers can be classified into five

different categories:

e Initiator worker: Upon the initialization of our application, the initiator worker is
responsible for the creation of database tables and possibly the establishment of the
connection with our message brokers, RabbitMQ or Redpanda. This ensures that

the system is properly set up before the main processing begins.

e Data worker: The function of a data worker is to fetch data from a specified API
via a GET request, parse the retrieved data, and relay it to the remaining workers.
Given the considerable volume of data processed, we have designed multiple data
workers, each assigned to a specific country (e.g., data-worker-germany, data-worker-
spain). In total, our system hosts 27 dedicated data workers, effectively segregating

data handling per country.

e Daily worker: This worker calculates the daily load and stores the result to the

database.
o Weekly worker: This worker calculates and stores the weekly load.
e Monthly worker: This worker calculates and records the monthly load.

In our architectures, the number of daily, weekly and monthly workers can be specified
by the user of the application. All daily, weekly and monthly workers have the same

number of instances (considered as N in the UML diagrams). For example, if the user

Performance Investigation of various Microservice Architectures

5.3 Workers

specifies the number to 3, there will be 3 daily workers, 3 weekly workers and 3 monthly
workers, working in parallel.

The communication mechanism between the workers differs according to the architec-
ture in use, it could involve RMQ queues, a Redpanda topic or websockets. The workers
also interact with other components (such as the database) in the system to accomplish
their tasks.

Load balancing

One thing that needs to be pointed out before describing our architectures, is the way
that messages are distributed when multiple daily, weekly or monthly workers run in the
system. In the case of architectures that use message brokers, it is quite straightforward
as the brokers handle the distribution of the messages. In order to achieve this, RabbitMQ
uses a round-robin algorithm and Redpanda uses consumer groups.

However, in other architectures, the way that we distribute the messages is that we
assign each (of the 27) data worker to a specific daily/weekly /monthly worker based on
the modulo of the data worker’s index (0 to 26) to the number of parallel workers (1 or
3). What this effectively does is evenly distribute the workers across different hosts in
a round-robin fashion. For example, in case of 3 parallel workers, the first data worker
connects to daily-worker-0, the second to daily-worker-1, the third to daily-worker-2 and
then the fourth data worker goes back to daily-worker-0, and so on. This helps to balance

the load across all available data workers.

Performance Investigation of various Microservice Architectures

Chapter m

Architectures

As mentioned previously, our project includes the development of five different archi-
tectures. In this chapter we are going to introduce each one and explain how the various
components work together to achieve their goals. Since all of the tools used have already
been presented in the previous chapter, we are now focusing on their collaboration with
each other and the final setup. It is vital to note that the architectural solutions we present
are built using Python as our programming language, since a different stack could produce

a different system behavior.

6.1 Architecture descriptions

All architectures have a few things in common, so we will begin by looking at these.

Common features:

e All of our workers (Initiator, Data, Daily, Weekly and Monthly) run in a Docker
environment in separate containers. The initiator worker is responsible for creating

the database tables for the total, daily, weekly and monthly load to be stored.

e Our PostgreSQL database is connected to Docker via a TCP connection and is run-

ning in port 5432.

e Data workers interact with the provided API through an HT'TP GET request method.
This interaction is facilitated via the endpoint 'api/v3/data’. Each worker gets only
the data for the specific country it is responsible for. This way, the data workers now

have the total load data specified for the country of interest.

e Data workers parse the data in batches of one month, so each request includes one

month’s data.

e Prometheus follows a pull-based model where it scrapes metrics from the workers over
HTTP. It is integrated with all the workers via the HTTP endpoint ’http/metrics’.

Prometheus runs in port 9090.

e Grafana is connected to Prometheus via an HTTP connection and Prometheus acts

as a data source providing Grafana with the metrics. Grafana runs in port 3000.

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

e The number of our Data workers is the same and is equal to 27, as many as the EU

countries given in the data.

All of the above mentioned information, as well as some more details, can be clearly un-
derstood by looking at the UML component diagrams of each architecture. These include
all of the components while also stating the connection or communication between them.
Moreover, another view of each architecture is described through the UML sequence dia-
grams that show how the components (lifelines) interact with each other based on the time
sequence.

Now, we are ready to look further into each one of the architectures.

6.1.1 Orchestrator

This architecture utilizes websockets for the communication between the workers. The
data workers act as the central control unit that orchestrates the application processes. In

further detail, each data worker adheres to the following pattern:

e The data worker sends the total load to the daily worker that processes the infor-
mation and returns the daily load, again through a websocket connection. The daily

worker also saves the daily load to the db.

e Then, the data worker sends the daily load to the weekly worker that processes the
data and returns the weekly load. The weekly worker also saves the weekly load to
the db.

e Finally, the data worker sends the weekly load to the monthly worker that processes

the information and saves the monthly load to the db.

The UML component diagram can be found below.

<<component>>
PostgreSQL. g

5432

o
<<componeri>> « - tote et sEmEEs (] dailyload
e gl jorker - [-mmmmmmm o n OEEE o >f Daily Worker - -2 e
< > <<websocket>>
- ai

total load daily load

HTTP apilv3/datal

HTTPImetrics

Figure 6.1: Component diagram of the Orchestrator architecture

Performance Investigation of various Microservice Architectures

6.1.2 Serialised Orchestrator

The UML sequence diagram is the following.

% ENTsoe V3 ‘ Datatase ‘ Prometheus ‘ ‘ Gralana |
— NSWMME
1
2 create cuaase tavis N
r g
[foon
3 create daly waker
ks ool TTREE el SRR NS >| _ Dady
=D
L T R, it s IO Veoky
Worker
[on
fer i=N] 5: create monthly worker
L
T
]
& stant sener
T —
|
p & stan sanver
oo
S S
_________________ R,
i
T
ar T 70 g2 mers par second
fosncusenty
for each data worker] 104: GET dea
i
[par]] ! 11: get metics par second
| 12 sana sl dats 5
EJ I
! | 12.1: calcuta dady load
| 122 retum daiy data Pl i
Lo n | 125 mete catylosaw ab !
| ! !
; b L 150 mves parsscons
1221 s dsy s 1o skl websmchat i
I
T !
T ; PR [PPSR
|
! 122.1.2: retum weeklydata i
_ _— 122,13 wite weskyload to db
»
| o
! |
! A 1d: get mewics per second
122.121: send wesity dats b monny websocket]
i
1221211 cauats morahiy oag
i
122.1.2.1.2 wite morthy load 1 b
N
¥
|] v
15: wete o a0 60 i i
1
I ! i
1 1
| i
| | |
| 1 1 16 get metrics 1
I 1
i i
i i
17: reum metrics i i
L !
i | i i)
1 | 1 T
i | 1 1

Figure 6.2: Sequence diagram of the Orchestrator architecture

6.1.2 Serialised Orchestrator

This architecture also utilizes websockets for the communication between the workers.
However, the sequence of events is more straight-forward. The data worker sends the total
load to the daily worker which in turn sends the daily load to the weekly worker which
sends the weekly load to the monthly worker. Fach of the workers writes their processed
data to the database.

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

The UML component diagram is the following.

Figure 6.3: Component diagram of the Serialised Orchestrator architecture

And the UML sequence diagram is below.

aor
1: stant massursments
2 create dmabase tabkes
o
=0 : cresie daiy warker
for i=h) - - - -
oo 4 oreate
: creste weekdy warker
oo
- 52 create maay worker -
I:‘ 6: slad websockel server
o) 7 oo
I‘__| 4 stad wetsocket server
=24
Mor sachcowiny] % cresi daa werkar '
o/ 10 g metica per secand
forach dae ok 10.4: GET data
102:ratum data
[par] +1a: sand dia to dady vabieazket

r

15 wrts total load 1 8B

12: get mevios per seand

i 12.1; calculte dady load
122: send 1o weekly websocket

12:3: wite daiy ioad 10 db

13: gat matics per ssoond

12.1: cakulaie weekly loas

132 s6m 1 monty websockst

18.3: wite weekly load to db

»

14: gt meics par sacond
0

14.1: caicuiae modtnly load

142 wrtemoaty basto s |

18: gt meties

16 catuen metrics
1

Figure 6.4: Sequence diagram of the Serialised Orchestrator architecture

Performance Investigation of various Microservice Architectures

6.1.3 Async Orchestrator

6.1.3 Async Orchestrator

This architecture also utilizes websockets for the communication between the workers.
This time, the data worker sends the total load to all daily, weekly and monthly workers
at the same time (asynchronously). This means that weekly and monthly workers have to
process the data in a different way than before since they are getting the total load (and
not the daily or weekly load respectively). Each of the workers writes their processed data
to the database.

The UML component diagram is:

-mamata/

HTTP/metrics.

Z
HTTP/metrics.

Figure 6.5: Component diagram of the Async Orchestrator architecture

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

And the sequence diagram is the following:

x = == = B

| 2: creae databasetables

.

loog,

[pa] i i 11: get mevics per sacond
| 12a; send tctal data o
b | » i
T | 7 |
] 128.1: cacuiate daiy los |
| ‘- 1
12a.2: wite daiy load o d& 1
I LJ]
I T L
| ‘get mewies per secon
san i 10 wesioy websockst » ;
0 ! |
lq] 12 coe oy oo
1202 wite weetly load o do
; »
i et
i 1
} L
v 14: gat metics per seond
125 send il Gt to moniity websocket N
1} i ®— | T
T | 126.1:caloate montiy load |
| | [— e |
| 1202 wete montily st @ | !
| | T
| u
H
T |
‘F 126 write total load 1o db I }
Lai} }
! gatmerics

ry

Figure 6.6: Sequence diagram of the Async Orchestrator architecture

6.1.4 Serialised RabbitMQ

In this architecture the communication is established with the use of the RabbitMQ
message broker. RabbitMQ is connected to Docker via a TCP connection and is running
in port 15672. The Initiator worker has the extra role of initializing the RMQ daily, weekly
and monthly queues. Each queue is named after the receiver of the messages. In further

detail, the process goes as follows:

e The data worker adds the total load to the daily queue.

e The daily worker receives the total load (from the daily queue), calculates the daily

load and adds it to the weekly queue.

e The weekly worker receives the daily load (from the weekly queue), calculates the

weekly load and adds it to the monthly queue.

e Finally, the monthly worker receives the weekly load (from the monthly queue) and

calculates the monthly load.

Performance Investigation of various Microservice Architectures

6.1.4 Serialised RabbitMQ

All workers also save their processed data to the database, in the corresponding tables.

The UML component diagram gives a detailed idea of the component-level structure.

[HTTP apifva/datal

adds tolal data in queve ' 1 weekly datain queue

create RMQ queue:

Figure 6.7: Component diagram of the Serialised RabbitM@Q architecture

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

And the UML sequence diagram

is the following.

% ENTsoe V3 R Datatase Prometheus Gratina.
s
1:stad
MMMM
i
i
2 croaie dctabase tadks
3: reate daiy, woaky
and menty qusues
ioop)
) 4: croate daty wrker Doy
__
ioop)
)
5: create weaidy workr prere
,,,
loop)
&: craaie montily worker
e S L S SRR Vit
Viorker
| toar
o each cauntny] i
7. reate datawarkar]
___________________________ >
[2a]
par 5 getmetics per second
fooncusenty .
o cazh aamwones] o1 G d
8.2:reten dota .}
4.3 add datato daiy queve.
8.4: wete ttal load 1080 N
gt
: getmetics per second
9.1: get data fromdady quese
:‘ 92 calculste daiy load]
i
2.3: 2dd daia 0 weekly quewe b
4. wite dady load .y .
10 get metics per second
10.1: getaata vom weskly qusue
1
i
i
102: caeutate weaklyload
i
10.3: add datato menthly cueue N
. N
‘ I n
‘.‘ 1:t movinpo second
11.1: get data fom meniny queve
i
:‘ 11.2:calcuiate mantiy load
i
113 wete montry load 1o db.
12 get mercs
13: netum metrics é]
|
i
i

6.1.5 SOA Redpanda

Figure 6.8: Sequence diagram of the Serialised RabbitM Q) architecture

In this architecture the communication is established with the use of the Redpanda

broker. Redpanda is connected to Docker via a TCP connection and is running in port

18081. The Initiator worker, here, has the extra role of initializing the Redpanda topic.

The data worker produces data to the ‘General topic’ within Redpanda and all daily,

weekly and monthly workers subscribe to that topic in order to receive the messages. The

total data is consumed simultaneously by daily, weekly and monthly workers.

All workers after processing the data also save them to the database, in the correspond-

ing tables.

Performance Investigation of various Microservice Architectures

6.1.5 SOA Redpanda

The UML component diagram is the one below.

HTTP apilv3/datal

reate red panda
topic
I

Dashboard

Figure 6.9: Component diagram of the SOA Redpanda architecture

The UML sequence diagram is the following.

ator
1o start
— >-
2 omato databas tables
P
3: create redPanda topic.
oo,
T P S s G s >-
Toop,
N s of e
[foon
- e -
[focp]
for each courtry]
Terege >-
[e=) & gel melrics per second
fconcurenty
L B8.1: GET data
8.2 rotum data
83:500d dala
8.4 save toal foad
[pT 5 get marcs orsecons
9.1: consume data
9.2 caloutate daiy oad
93 save daily load
i
{
| 10: got metics por sacond
10.1: consume data
i
10.2: calculate weekly load
] 10.3: savo weeidy load
1
11.1: consume data !
11.2: calculate monthly load
:‘ i
11.3: save monthly lcad
>
>
12: got metrics
13:return metrcs

Figure 6.10: Sequence diagram of the SOA Redpanda architecture

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

6.2 System deployment

The deployment of the system architecture is a crucial stage of the project. It dictates

how various components interact with each other, determines system performance, and

significantly influences the system’s resilience and scalability. The deployed architecture

for this project incorporates 4 different servers, each with distinct roles and specifications,

thereby allowing for an efficient allocation of tasks and resources.

e Front server: 2 CPU cores, 4GB RAM, 40GB of disk space

The Front server houses Metabase and Grafana - two critical tools used in our data
visualization pipeline.
Broker Server: 4 CPU cores, 16GB RAM, 40GB of disk space

In case the architecture includes a message broker (either RMQ or Redpanda), then
this is located in the Broker server. The substantial computational resources on
this server ensure smooth message brokerage and effective communication between

different system components.

DB Server: 2 CPU cores, SGB RAM, 40GB of disk space

The DB server hosts the PostgreSQL database. The hardware resources for this

server are dedicated to ensuring swift database operations and data integrity.

Workers Server: 4 CPU cores, 16GB RAM, 40GB of disk space

The Workers server hosts all the workers and Prometheus. The hardware resources

of this server are tuned to ensure efficient data processing and system monitoring.

The exchange of data between our servers and the data workers, as well as the over-

all system communication, is fortified through the use of a Virtual Private Network (VPN).

In addition to the above descriptions, we have created several deployment diagrams to

provide a visual representation of the architectures. These diagrams further elucidate the

interaction between different components and the overall structure of the system.

Performance Investigation of various Microservice Architectures

6.2 System deployment

UML Deployment diagrams
For all Orchestrator architectures built on Websockets, there is no Broker Server and
the following deployment diagram applies:

Network

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

Figure 6.11: Deployment diagram of the Orchestrator, Async Orchestrator and Serialised
Orchestrator architectures

For Serialised RMQ the deployment diagram, including the RabbitM(Q in the Broker

Server, is below.

Network

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

Figure 6.12: Deployment diagram of the Serialised RabbitM (@) architecture

Performance Investigation of various Microservice Architectures

Chapter 6. Architectures

For SOA Redpanda the deployment diagram, including the Redpanda in the Broker
Server is the following. In this architecture, Front Server also includes the Redpanda

console.

Network

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

<<TCP/IP>>

Figure 6.13: Deployment diagram of the SOA Redpanda architecture

Performance Investigation of various Microservice Architectures

Chapter

Benchmarking and Results

In this section, we are going to present our metrics, the tests that were conducted and

the results as well as some of the observations that we made based on them.

7.1 Metrics

In the development stage of the application we decided to record a number of different
metrics in order to later be able to analyze the behavior of our system and each architecture.
The following is a list of these metrics:

Cross Worker Metrics

— Time spent from Request to Monthly data write: measures the total time elapsed

from receiving a data request to writing the monthly data to the database.

— Average time spent from Request to each Worker: measures the time from when a

data request is received to when it is processed by each worker.

— Min and Max time spent from Request to each Worker
Metrics for Data Worker

— Time for a 30-day request: measures the time taken to process a data request (each

request spans 30 days).

— Time to save in DB: measures the time taken by a worker to save processed data

into the database.

— Total Requests Processed: tracks the total number of data requests processed by a

worker.
— Total Bytes Received: keeps track of the total volume of data handled by a worker.

— Average Bytes Per Request: provides an average size of the data requests that a

worker processes (total bytes received / total requests processed).
Metrics for Daily, Weekly and Monthly workers
— Total Requests Processed

Performance Investigation of various Microservice Architectures

Chapter 7. Benchmarking and Results

— Total Bytes Received

— Average Bytes Per Request
— Time to parse data

— Time to write data to DB

— Time to consume and forward data: measures the time taken to consume data from

the broker and forward it for further processing or storage.

Of course, not all metrics in this list produced interesting results in the testing phase, so
we will subsequently focus on the metrics that give us more information on the comparison
of our five architectures.

In order for the reader to better understand the environment we worked in and the
visualization of the metrics, we provide a screenshot of the Grafana dashboard taken at

the time of the testing phase.

U mmm

Figure 7.1: Grafana dashboard at the time of testing

7.2 Execution and difficulties

7.2.1 Tests

System testing forms the backbone of any reliable software deployment strategy, offer-
ing essential insights into the performance, scalability, and stability of the implemented
solution. In this project, a series of comprehensive tests were conducted using a variety of
configurations and data volumes. This allowed us to evaluate the performance and scalabil-
ity of our microservice-based data warehouse architecture under different load conditions.

To keep in mind, we need to mention again that our system works with 27 data workers,
one for each country and that their number remained unchanged throughout the testing
phase.

For each architecture we performed the following tests:

Performance Investigation of various Microservice Architectures

7.2.2 Running the tests

e Daily, weekly and monthly workers: 1 of each and 3 of each
We started with testing the performance of the system with a single worker of each
kind (daily, weekly, monthly). We then simulated the processing of data for periods
of:
— 1 year of data (since 1st May 2022)
— 3 years of data (since 1st May 2020)
— 6 years of data (since 1st May 2017)

We continued with increasing the number of workers to three of each (daily, weekly,

monthly) and performed the same tests for 1 year, 3 years and 6 years.

In order to better explain the testing phase we present the below diagram.

Alternating the number of shards in

\ Daily, Weekly and Monthly workers
L]

-

&5
=1

Alternating the data load
since

6 tests
2022 2020, 201; 2022 2020 2017 = for each

architecture

Figure 7.2: Visual representation of the testing

7.2.2 Running the tests

We continue by talking about the execution of the tests. The same tests (as mentioned
in the previous paragraph) were performed for each architecture under the same conditions.

A few things about the testing need to be noted before we move on to their execu-
tion. First, we should mention that all data workers were coordinated to start at the same
time. So, although the data workers were created sequentially, for each country, they were
programmed to wait for a specific interval so that it is ensured they will all start simulta-
neously. Another important element is that at the beginning of each test the database was
empty. All tables were deleted after each test and then recreated in the next one. Finally,

the workers” VM was cleared up after each testing, which means that all workers were shut

Performance Investigation of various Microservice Architectures

—

Chapter 7. Benchmarking and Results

down and rerun in the next test. All of the above actions were needed to ensure that no
conditions differed between the tests.

In order to perform the tests, the setup we built was this:
e We connected to a VPN

e We connected to each of our 4 VMs, hosting each one of our servers (front, broker,

workers and database)

e We got all of the external services up and running - Grafana, Prometheus, Docker,

Postgres.
e We got our workers running

Afterwards, we started testing our application and all of our architectures one by one.
Initially, we had only 1 of each of the daily, weekly and monthly workers and tested for 1
year, 3 years and 6 years of data. Then, we increased the number of workers to 3 of each

and ran the app with the same configurations.

7.2.3 Problems and observations

One problem faced during the testing of our application is that Docker gradually ex-
hausted disk space due to some leakage. To solve this, we had to regularly use the ‘docker
prune’ command to delete all images and volumes of containers. By running these com-
mands after the testing of each architecture and regularly checking our disk space, we were
able to control the docker leakage.

Another important problem that hindered the testing phase was that Prometheus con-
sumed great network bandwidth. This was because Prometheus was scraping the workers
very frequently (every 1 sec) and so we had to increase the scrap interval (to 5 sec) men-
tioned in the prometheus.yml file.

One thing we observed from looking into the metrics of our system was how the weekly
worker was slower than the others. We suspect this is because of the function that calculates
the week of the data based on the data, but further investigation into this should be carried
out.

Once the testing phase was done and judging by the metrics we got and the diagrams
that were made, we realized that our implementation of the orchestrator architectures was
wrong so we looked into it. The problem was lying on the way the websockets connection
was implemented so we fixed that and rerun all of the tests.

The final results are listed in the next section.

7.3 Results

Each of the tests revealed a variety of metrics for our system. In order to understand
these metrics and explain the results in a simple way, we continued by making various

diagrams that better compare the behavior of our architectures.

Performance Investigation of various Microservice Architectures

7.3 Results

Before presenting the results we need to mention a few potentially useful information
for the overall evaluation of the system. These have to do with the time spent for each

request in the API and also the amount of data that we get from it.

Average Time Per Request in ENTsoe V3: 1s
— Total Requests at 1 year: 405

— Total Requests at 3 years: 1053

Total Requests at 6 years: 2025
— Total Bytes at 1 year: 44MB

— Total Bytes at 3 years: 118MB

Total Bytes at 6 years: 224MB

Another thing we would like to point out before looking at the time it took for each
architecture to run is the difference in the size of the request that each worker receives. On
that note, we decided to compare serialized with non serialized architectures in account
of the size of the request they receive. Of course, since in non serialized architectures all
workers get the total load, they all get the same amount of data. However, in serialized
architectures, the average size of the request that the weekly and monthly workers receive
had to be smaller. Indeed, by looking at the diagram, we can see that the size of the request
in serialized architectures has dropped dramatically for the last two workers, reaching 470

Bytes for the monthly worker to process.

Average Size Per Request
B Serialised [Non Serialised

113.00 KiB

113.00 KiB

113.00 KiB

Daily; 113.00 KiB

2.24 KiB
\VVeekKly, 113.00 KiB
0.47 KiB
Monthly, 113.00 KiB
25.00 KiB 50.00 KiB 75.00 KiB 100.00 KiB

Now, we can go ahead on monitoring the average time it takes from the request to each
worker. This means the metric that starts at the time when the data worker has received
the response of a request to the API and stops right after another worker (daily, weekly or

monthly) saves their processed data in DB.

Performance Investigation of various Microservice Architectures

Chapter 7. Benchmarking and Results

From this metric we decided to present the time of the slowest worker in two diagrams,

as depicted below. The first diagram shows the metric for 1 worker, of each (daily, weekly,

monthly). In this diagram, we made the following observations.

e In some architectures, the time drops while the load increases (for one to three years).

This is probably because the older the data the sparser. Another reason would be
that all workers are coordinated to start at the same time, so there is great load at
the point the system starts while later on the average value of the message delay

lowers.

e Redpanda is the slowest architecture. The reason behind this lies in the fact that

Redpanda implements a REST API connection, so consumers perform GET requests
to get the data. The exchange of messages to open and close the connection is costly.
Another cause of why Redpanda is slow is that it performs multiple jobs such as
keeping the data for later consumption and being responsible for the resiliency of
data.

e Async Orchestrator is slower than the other Orchestrator architectures. One cause

of this is that each message that is received for the weekly and daily workers is large

since all workers get the total load.

e Orchestrator architecture is the fastest. This is because orchestrator implements a

single connection between the workers while in a serialised orchestrator two connec-
tions are established each time (one connection to the previous worker and one to
the next)

Average time spent from Request to each Worker

Parallel 1

B 1Year [3 Years 6 Years

58.6 ms
A

RabbitMQ

RedPanda

QOrchestrator

Async Orchestrator

Serialised
Orchestrator

0.0 ms 50.0 ms 100.0 ms

The second diagram shows the metric for 3 workers, of each (daily, weekly, monthly)

working in parallel.

Performance Investigation of various Microservice Architectures

7.3 Results

Average time spent from Request to each Worker

B 1Year B 3 Years 6 Years

23.1ms

RabbitMQ 24.2 ms

42.0

1
RedPanda 122.0 ms

ks 23.8ms
9 Orchestrator 23.7ms
1]
kS
29.8 ms
Async Orchestrator 29.5ms
Serialised 23,3 ms
Orchestrator 21.6ms
0.0 ms 50.0 ms 100.0 ms

The first thing we can clearly examine from the above graph is that parallelism dra-
matically enhanced the average time from request to each worker. Another thing we can
observe is that most architectures have similar metrics. This is due to the fact that all
connection are TCP which means that they are keepalive (allows connection to remain ac-
tive even when no data is exchanged for a long period). The architectures get bottlenecked
by the nature of the connection, thus they all metrics are similar, and not by the load of
the data. Finally, we can see that RabbitMQ has similar performance to the Orchestator
architectures and this is because they are all push-based, so they have the same commu-
nication system. Finally Redpanda is still the slowest architecture due to its resiliency, it
consumes more system resources thus reducing the performance.

In the next diagram we decided to keep the data we got from the previous metric and
compare the 1 worker and 3 workers for each architecture. The reason behind this graph

is to show how parallelism affects the system more clearly.

Performance Investigation of various Microservice Architectures

Chapter 7. Benchmarking and Results

Average time spent from Request to each Worker

6 Years

B Paralel1 [Paralel 3

RabbitMQ

118.0 ms

RedPanda

Orchestrator

Async Orchestrator

Serialised
Orchestrator

0.0 ms 50.0 ms 100.0 ms

It seems that because of peer-to-peer connections, parallelism of workers significantly

improved the time.

Proceeding to the next graph, we compare the total execution time of each architecture.

In this graph, it is obvious that no distinctive differences appear, so all architectures

complete the requirement in the same amount of time. This is because this time our API

(ENTsoe) acts as a bottleneck, since each request takes 1 sec. The question that comes to

mind is ‘Why are our architectures important then?’. The answer to this question is that

the goal of our system is to make the data available to the consumers and to get them fast.

The fact that the total execution time of all architectures is the same makes this metric

valid. This is because if each architecture’s time was different then each one would also

have a different CPU time (so more available resources) and we would not be able to

compare the architectures.

Performance Investigation of various Microservice Architectures

7.3 Results

Total Time for experiment

Paralel 1

RabbitMQ

RedPanda

Orchestrator

Async Orchestrator

Serialised TCP

B 1Year [3Years | 6 Years

18 s
46 s
18 s
44 s
19 s
49 s
18 s
48 s
17s
47 s
25s 50s

89s

88s

93s

80s

86s

75s 100 s

Finally, we decided it would be interesting to test the system under abnormal conditions

and observe its behavior. In this regard, we moved all of our data (from ENTsoe V3) locally

and then ran the system so that we make all requests simultaneously. The below graph

shows the total execution time of the system under heavy load.

Total Time for experiment with cached data +/- 5s

Parallel 3/ 6 years

RabbitMQ

RedPanda

Orchestrator

Async Orchestrator

Serialised
Orchestrator

00s

10.0s 20.0s 30.0s 40.0s

50.0s 60.0s 70.0s

From the above diagram we observe two things. First, we have a new bottleneck that

is the general capacity of our system. At the time of getting the metrics we checked the

CPUs of the system and they were all full. Second, we have to mention that since the

system’s capacity cannot cope with the time it takes for the data to get processed, then

Performance Investigation of various Microservice Architectures

—

Chapter 7. Benchmarking and Results

the architecture of the system is irrelevant.
The source code for the application discussed in this thesis is provided in Appendix B
for further review and analysis. The results of the tests are also available in the form of

snapshots from Grafana, in Appendix A.

Performance Investigation of various Microservice Architectures

Chapter E

Conclusions

In this concluding chapter, we aim to give a comprehensive assessment of various ar-
chitectural performances based on the measured metrics and interpreted graphs provided
in Section 7.3. It is crucial to underscore that the objective of this study is to explore and
understand the distinct performances of our architectures rather than making definitive

conclusions about them.

8.1 Comparison of architectures

Redpanda, a powerful open-source alternative to Apache Kafka, is ideal for handling big
data systems with a high volume of producers and consumers that demand statelessness.
This system’s strength lies in its flexibility, specifically the ability to set any consumer
offset. This unique feature allows for the possibility to replay data in various scenarios,
enhancing the system’s resilience and ensuring system continuity during unexpected events.
Further, Red Panda’s instant scalability becomes essential when it comes to managing
workloads effectively and efficiently, as it allows for quick and seamless addition of workers
as and when required. But one must consider that Redpanda’s strengths come with the
trade-off of increased infrastructure demands. Therefore, for latency-sensitive applications
where minimizing per-request delays is vital, Redpanda might not be the optimal choice.

RabbitMQ is a robust open-source message broker that excels in situations where data
consumption prioritization is crucial. Its built-in First-In-First-Out (FIFO) queue ensures
prioritized and orderly data processing, a feature especially beneficial in systems where
message sequence is important. Beyond prioritization, RabbitMQ’s reputation as a high-
performance message broker stems from its stability, flexibility, and compatibility with
multiple messaging protocols. Also, its capability for instant scalability, made possible
by its support for clustering and high-availability configurations, is a valuable feature for
dynamic and growing systems. Despite these advantages, it’s important to recognize that
RabbitMQ may not be the best choice when message consumption prioritization is not a top
priority, or when dealing with very high throughput rates as it might impact performance.

An Orchestrator shines when you require a centralized control plane to oversee multiple
independent services, particularly in a microservices architecture. Its capacity to streamline
processes, ensure system-wide consistency and harmonize communication between services

can significantly improve system performance. Additionally, the Orchestrator offers a level

Performance Investigation of various Microservice Architectures

Chapter 8. Conclusions

of reliability, making sure that if a single service fails, it does not affect the overall system.
However, while an Orchestrator provides many benefits, it also maintains a level of state
awareness. This can introduce complexity when handling failures and limit its applicability
in systems that need to operate in a stateless manner.

The Async Orchestrator leverages asynchronous communication, a method of commu-
nication where the sender and receiver do not need to interact with the message at the
same time. This model allows tasks to be handled independently and concurrently, effec-
tively utilizing available CPU resources, and greatly reducing communication costs. It’s
particularly useful in situations where a system has surplus CPU resources and needs to
handle multiple communications efficiently without blocking or waiting. However, this
asynchronous model does have its limitations. For example, if a system is CPU-bound
and doesn’t have extra resources, the asynchronous operations could lead to performance
issues due to the overhead of context switching and potential difficulties in debugging and
handling errors.

Finally, a Serialized Orchestrator is designed to process tasks in a serial or sequential
manner. This can be particularly useful in systems where metadata processing can sig-
nificantly enhance performance, or where the sequence of task execution is critical. The
serialized processing model ensures a defined order of operations, maintaining the integrity
and accuracy of processed data. This can be especially beneficial in complex systems where
tasks have dependencies or order of execution matters. However, it’s essential to consider
that a Serialized Orchestrator may not be the best fit for systems where tasks are inde-
pendent and can be processed concurrently, as it could potentially underutilize available

resources and lead to decreased overall system performance.

8.2 Further improvements

Firstly, the exploration of alternative software stacks such as Golang or Rust can po-
tentially lead to different outcomes, thus enriching our perspective on the varying impacts
of distinct programming environments. This variation might pave the way for optimized
choices based on specific requirements or constraints, ultimately enhancing the performance
and efficacy of our technological solutions.

Secondly, further scrutinizing our initial conclusions through rigorous validation pro-
cesses presents an excellent opportunity for contributing to the expanding research around
microservices. It is through this in-depth investigation that we can either confirm or de-
bunk our findings, thereby refining our understanding and ensuring that our conclusions
are grounded in robust evidence.

Lastly, employing a combination of various communication methodologies can signifi-
cantly enrich our investigation. This comprehensive approach enables us to gain a nuanced
perspective on how different interaction mechanisms affect system performance and relia-
bility. Such an understanding is invaluable in facilitating more efficient and reliable system
designs, further pushing the boundaries of what can be achieved within the realm of mi-

croservices.

m Performance Investigation of various Microservice Architectures

Appendix

Grafana Snapshots

All of the metrics recorded by Prometheus and Grafana can be found in a visual
representation within the Grafana dashboard. In the following links you can take a look
at the results.

For 1 of each workers (daily, weekly, monthly):

1 worker 1 Year 3 Years 6 Years
RabbitMQ RMQ1-one RMQ1-three RMQ1-six
Redpanda Redpandal-one Redpandal-three | Redpandal-six
Orchestrator Orchl-one Orchl-three Orchl-six
Async AsyncOrchl- .
AsyncOrchl-one AsyncOrch1-six
Orchestrator three
Serialised i i . .
SerialOrchl-one SerialOrchl-three | SerialOrchl-six
Orchestrator

For 3 of each workers in parallel:

3 workers 1 Year 3 Years 6 Years
RabbitMQ RMQ3-one RMQ3-three RMQ3-six
Redpanda Redpanda3-one Redpandad-three | Redpanda3-six
Orchestrator Orch3-one Orch3-three Orch3-six
Async AsyncOrch3-)
AsyncOrch3-one AsyncOrch3-six
Orchestrator three
Serialised) . . .
SerialOrch3-one SerialOrch3-three | SerialOrch3-six
Orchestrator

After experimenting with cached data in order to increase the system’s load:

with cached data 6 Years
RabbitMQ RMQ-cached
Redpanda Redpanda-cached
Orchestrator Orch-cached

Async Orchestrator

AsyncOrch-cached

Serialised Orchestrator

SerialOrch-cached

Performance

Investigation of various Microservice Architectures

https://snapshots.raintank.io/dashboard/snapshot/LGw04I5ONiHPv1fRLOUUOyk7Vq2m9ZHw
https://snapshots.raintank.io/dashboard/snapshot/T1Dk9Ni9yRuDl3w5dotb3jrhuwYVG401
https://snapshots.raintank.io/dashboard/snapshot/SpRBNiQYiV8Ozvmy7rtZjxKjQFi0e1PG
https://snapshots.raintank.io/dashboard/snapshot/UDIxStgMVNFmeG38c7rHswZqRNFxJB1j
https://snapshots.raintank.io/dashboard/snapshot/kIgQZt7izg6uRclGrTyK2Kj4lj0gLiO6
https://snapshots.raintank.io/dashboard/snapshot/0IHdM9Qq3ZyTM2cFOFnFStM491YhqI7J
https://snapshots.raintank.io/dashboard/snapshot/6odYmO2aFAknq5dTD4NvG0oAbJmzQFsW
https://snapshots.raintank.io/dashboard/snapshot/DL4RWHr7PyVJBL1kvy4dpLs3eDcZq2dN
https://snapshots.raintank.io/dashboard/snapshot/lfvtRK1WDMi1NBW0HedkQqlp48X0zvut
https://snapshots.raintank.io/dashboard/snapshot/ld227nND27hXMUqs7U2I9cU4sZUUpRAN
https://snapshots.raintank.io/dashboard/snapshot/V8IpXUHtMnXCTcBAPWINfaMIxCnw9uh3
https://snapshots.raintank.io/dashboard/snapshot/V8IpXUHtMnXCTcBAPWINfaMIxCnw9uh3
https://snapshots.raintank.io/dashboard/snapshot/DQC7505V4lng0ylfjrRC1pMyV7RUjeGs
https://snapshots.raintank.io/dashboard/snapshot/ECr62q9a19LSrFINXYYPuo06oyUCu6i8
https://snapshots.raintank.io/dashboard/snapshot/FdL6nodT24pchTAwutSzZOC5ZFauq4GS
https://snapshots.raintank.io/dashboard/snapshot/rmGMTQ1I3LMLXTkKh4TGxGvXEr3gNgqB
https://snapshots.raintank.io/dashboard/snapshot/2kVHkhr3c6OXtj3WWPxcjdbQ7YoS1Pbp
https://snapshots.raintank.io/dashboard/snapshot/dKTX3Oq9IgGxh99Rx4tqPUqPse7Fs9Wv
https://snapshots.raintank.io/dashboard/snapshot/hjiYtEja04Y7PRT5IB5app8kjCNMyTU5
https://snapshots.raintank.io/dashboard/snapshot/jvKjCIfbSFvkYDTjH8TX1D9KLJpDKp0u
https://snapshots.raintank.io/dashboard/snapshot/QD7kj96LddQFskLmOkWuNgB9CTuVRsQt
https://snapshots.raintank.io/dashboard/snapshot/p1rB4M7WuYjPMZtZG56ZfiSn0bWGvv7M
https://snapshots.raintank.io/dashboard/snapshot/eyaMkqEL53O768m1KNYT7xOFIei6aZoE
https://snapshots.raintank.io/dashboard/snapshot/qNiWLs1jbvOhU6kAc38mxzEVc8vW565R
https://snapshots.raintank.io/dashboard/snapshot/CJky53u2fGwexPzBr3i0SNGhY73XYtcv
https://snapshots.raintank.io/dashboard/snapshot/7LWyj3EC6GXbcJLgXeNZBP2FRSORxOoj
https://snapshots.raintank.io/dashboard/snapshot/aIwOP2n66rP5hkU84vu51MOE9euUIFU6
https://snapshots.raintank.io/dashboard/snapshot/aIwOP2n66rP5hkU84vu51MOE9euUIFU6
https://snapshots.raintank.io/dashboard/snapshot/4WGA7QJWrb0MYcrD4xchHNfWViVRCqvY
https://snapshots.raintank.io/dashboard/snapshot/MePqtRgkvLS3Zhi23ezqTSr94dapHYa5
https://snapshots.raintank.io/dashboard/snapshot/6U8EGcBtPOLxJlOXR4jbppgeXS7APVEd
https://snapshots.raintank.io/dashboard/snapshot/9Ofh1IvNRHAPk8YV50XauB1eRIZHtH5I
https://snapshots.raintank.io/dashboard/snapshot/TBytWK1sEQIqO9IIFwlSSArcCfxrr28P
https://snapshots.raintank.io/dashboard/snapshot/3Pz7oka80kyliTq1jrr0lSyDLamw1l7A
https://snapshots.raintank.io/dashboard/snapshot/e464DZ5WKaWJyY7KdtvEzFCVXpdGOZzf
https://snapshots.raintank.io/dashboard/snapshot/xmpl47OxGm65vDuA5NmAS6PLSrF3AVP3
https://snapshots.raintank.io/dashboard/snapshot/myMcGS9SJu3UG0ZuAmzux2tUUyxyPVjI

Appendix E

Source Code

For those wishing to examine our project in more detail, we provide you with the link to
the GitHub repository where the source code of the application for this thesis is available.

Link to the repository: https://github.com/ntua/apistresstesting

Keep in mind that the link will be accessible by all viewers once the repository gets
published.

Performance Investigation of various Microservice Architectures m

https://github.com/ntua/apistresstesting

Bibliography

[1] Davide Falessi, Giovanni Cantone, Rick Kazman xou Philippe Kruchten. Decision-
making techniques for software architecture design: A comparative survey. ACM Com-
puting Surveys, 43(4):1-28, 2011.

[2] Len Bass, Paul Clements xou Rick Kazman. Software architecture in practice. Addison-
Wesley, Upper Saddle River, NJ, third editionn éxoor), 2013. OCLC: 825819423.

[3] David Garlan. Software Architecture. https://www.nasa.gov/pdf/637608main_day_
2-david_garlan.pdf, 2012.

[4] Felix Bachmann, Len Bass, Jeromy Carriere, Paul Clements, David Garlan, James
Ivers, Robert Nord xow Reed Little. Software Architecture Documentation in Practice:
Documenting Architectural Layers:. Teyvinh Avagopd ue oprdud, Defense Technical
Information Center, Fort Belvoir, VA, 2000.

[5] David Garlan. Software architecture: a roadmap. Proceedings of the Conference on
The Future of Software Engineering, pages 91-101, Limerick Ireland, 2000. ACM.

[6] P. Clements, D. Garlan, R. Little, R. Nord xou J. Stafford. Documenting software
architectures: views and beyond. 25th International Conference on Software Engineer-
ing, 2003. Proceedings., pages 740-741, Portland, OR, USA, 2003. IEEE.

[7] Paul C Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Lit-
tle, Robert Nord xou Judith Stafford. A Practical Method for Documenting Software

Architectures.

[8] Visual Paradigm. What is Unified Modeling Language (UML)? https://www.visual-

paradigm.com/guide/uml-unified-modeling-language/what-is-uml/.

[9] Mohamad Kassab, Manuel Mazzara, JooYoung Lee xou Giancarlo Succi. Software
architectural patterns in practice: an empirical study. Innovations in Systems and
Software Engineering, 14(4):263-271, 2018.

[10] Guozhi Liu, Bi Huang, Zhihong Liang, Minmin Qin, Hua Zhou xot Zhang Li. Mi-
croservices: architecture, container, and challenges. 2020 IEEE 20th International

Conference on Software Quality, Reliability and Security Companion (QRS-C), pages
629-635, Macau, China, 2020. IEEE.

[11] Antonio Bucchiarone, Nicola Dragoni, Schahram Dustdar, Stephan T. Larsen xou
Manuel Mazzara. From Monolithic to Microservices: An FExperience Report from the
Banking Domain. IEEE Software, 35(3):50-55, 2018.

Performance Investigation of various Microservice Architectures

https://www.nasa.gov/pdf/637608main_day_2-david_garlan.pdf
https://www.nasa.gov/pdf/637608main_day_2-david_garlan.pdf
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/what-is-uml/

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

Francisco Ponce, Gaston Marquez xor Hernan Astudillo. Migrating from monolithic
architecture to microservices: A Rapid Review. 2019 38th International Conference of
the Chilean Computer Science Society (SCCC), pages 1-7, Concepcion, Chile, 2019.
IEEE.

ParTech Media. A to Z of Microservices. https://www.partech.nl/nl/
publicaties/2020/12/a-to-z-of-microservices, 2020.

Mark Richards. Microservices vs. Service- Oriented Architecture. O’Reilly Media, Inc,
2016.

Freddy Tapia, Miguel Angel Mora, Walter Fuertes, Hernan Aules, Edwin Flores xou
Theofilos Toulkeridis. From Monolithic Systems to Microservices: A Comparative
Study of Performance. Applied Sciences, 10(17):5797, 2020.

Ervin Djogic, Samir Ribic xou Dzenana Donko. Monolithic to microservices redesign of
event driven integration platform. 2018 41st International Convention on Information
and Communication Technology, FElectronics and Microelectronics (MIPRO), pages
1411-1414, Opatija, 2018. IEEE.

Mainak Chakraborty xot Ajit Pratap Kundan. Monitoring Cloud-Native Applications:
Lead Agile Operations Confidently Using Open Source Software. Apress, Berkeley, CA,
2021.

Microservice Architecture - Blueprint. https://www.tutorialspoint.com/

microservice_architecture/microservice_architecture_blueprint.htm.

Sam Newman. Building microservices: designing fine-grained systems. O'Reilly Media,
Beijing Sebastopol, CA, first editionn €xdoor, 2015. OCLC: ocn881657228.

What is Microservices Architecture? | Microservices Definition. https://katalon.

com/resources-center/blog/microservices-introduction.

Chaitanya K. Rudrabhatla. Impacts of Decomposition Techniques on Performance
and Latency of Microservices. International Journal of Advanced Computer Science
and Applications, 11(8), 2020.

Wilhelm Hasselbring xot Guido Steinacker. Microservice Architectures for Scalability,
Agility and Reliability in E-Commerce. 2017 IEEE International Conference on Soft-
ware Architecture Workshops (ICSAW), pages 243-246, Gothenburg, Sweden, 2017.
IEEE.

Morgan Bruce xou Paulo A. Pereira. Microservices in Action. 2019.

Javad Ghofrani xou Daniel Liibke. Challenges of Microservices Architecture: A Survey
on the State of the Practice. ZEUS 2018, Dresden, Germany, 2018.

Performance Investigation of various Microservice Architectures

https://www.partech.nl/nl/publicaties/2020/12/a-to-z-of-microservices
https://www.partech.nl/nl/publicaties/2020/12/a-to-z-of-microservices
https://www.tutorialspoint.com/microservice_architecture/microservice_architecture_blueprint.htm
https://www.tutorialspoint.com/microservice_architecture/microservice_architecture_blueprint.htm
https://katalon.com/resources-center/blog/microservices-introduction
https://katalon.com/resources-center/blog/microservices-introduction

BIBLIOGRAPHY

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara, Fab-
rizio Montesi, Ruslan Mustafin xou Larisa Safina. Microservices: Yesterday, To-
day, and Tomorrow. Present and Ulterior Software EngineeringManuel Mazzara xou
Bertrand Meyer, emueAntée, pages 195-216. Springer International Publishing, Cham,
2017.

Filip Bahnan. A Comparison Between the Quality Characteristics of Two Microservice
Applications. 2021.

Alan Megargel, Christopher M. Poskitt xot Venky Shankararaman. Microservices Or-
chestration vs. Choreography: A Decision Framework. 2021 IEEE 25th International
Enterprise Distributed Object Computing Conference (EDOC), pages 134-141, Gold
Coast, Australia, 2021. IEEE.

Service-level Requirements | What Is System Architecture? | InformIT. https://www.

informit.com/articles/article.aspx?p=29030&seqNum=>5.

What are Message Brokers? | IBM. https://www.ibm.com/topics/message-
brokers.
Apostolos Lazidis, Euripides G. M. Petrakis, Spyridon Chouliaras xou Stelios Sotiri-

adis. Open-Source Publish-Subscribe Systems: A Comparative Study. Advanced In-
formation Networking and ApplicationsLeonard Barolli, Farookh Hussain xou Tomoya
Enokido, empeintéc, touoc 449, pages 105-115. Springer International Publishing,
Cham, 2022. Series Title: Lecture Notes in Networks and Systems.

Mehmet Ozkaya. Microservices Communications. https://medium.com/design-
microservices-architecture-with-patterns/microservices-communications-
£319£8d76b71, 2023.

Aditya Jadon. Understanding RabbitM Q) Queue & Messaging Simplified 101 - Learn
| Hevo. https://hevodata.com/learn/rabbitmq-queue/, 2022. Section: message
broker.

Valeriu Manuel lonescu. The analysis of the performance of RabbitM@) and ActiveM ().

Introduction to Redpanda | Redpanda Docs. https://docs.redpanda.com/docs/get-

started/intro-to-events/.
Ying Liu xou Beth Plale. Survey of Publish Subscribe Event Systems.

Khin Me Me Thein. Apache Kafka: Next Generation Distributed Messaging System.
2014.

Manage Redpanda Console | Redpanda Docs. https://docs.redpanda.com/docs/
manage/console/.
Redpanda. Redpanda as a RabbitM(@) alternative. https://redpanda.com/blog/

rabbitmg-alternative-redpanda-vs-rabbitmgq.

Performance Investigation of various Microservice Architectures

https://www.informit.com/articles/article.aspx?p=29030&seqNum=5
https://www.informit.com/articles/article.aspx?p=29030&seqNum=5
https://www.ibm.com/topics/message-brokers
https://www.ibm.com/topics/message-brokers
https://medium.com/design-microservices-architecture-with-patterns/microservices-communications-f319f8d76b71
https://medium.com/design-microservices-architecture-with-patterns/microservices-communications-f319f8d76b71
https://medium.com/design-microservices-architecture-with-patterns/microservices-communications-f319f8d76b71
https://hevodata.com/learn/rabbitmq-queue/
https://docs.redpanda.com/docs/get-started/intro-to-events/
https://docs.redpanda.com/docs/get-started/intro-to-events/
https://docs.redpanda.com/docs/manage/console/
https://docs.redpanda.com/docs/manage/console/
https://redpanda.com/blog/rabbitmq-alternative-redpanda-vs-rabbitmq
https://redpanda.com/blog/rabbitmq-alternative-redpanda-vs-rabbitmq

BIBLIOGRAPHY

[39] Benchmarking Kafka vs. Pulsar vs. RabbitM(Q): Which is Fastest? https://www.
confluent.io/blog/kafka-fastest-messaging-system/.

[40] Thomas Schirgi. Architectural Quality Attributes for the Microservices of CaRE. 2021.

[41] Prometheus. Overview | Prometheus. https://prometheus.io/docs/introduction/

overview/.

[42] What is PostgreSQL? — Amazon Web Services. https://aws.amazon.com/rds/
postgresql/what-is-postgresql/.

[43] What is Visual Paradigm. https://www.oit.va.gov/Services/TRM/ToolPage.
aspx?tid=10208.

Performance Investigation of various Microservice Architectures

https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://www.confluent.io/blog/kafka-fastest-messaging-system/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://aws.amazon.com/rds/postgresql/what-is-postgresql/
https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=10208
https://www.oit.va.gov/Services/TRM/ToolPage.aspx?tid=10208

	Περίληψη
	Abstract
	Acknowledgements
	Εκτεταμένη Περίληψη
	Software Architecture
	Documenting software architecture
	Architectural styles
	Monolithic
	Service Oriented Architecture (SOA)
	Microservices

	Microservices Architecture
	Advantages of Microservices
	Challenges of Microservices
	Quality attributes and Microservices

	Microservices Communication
	Choreography
	Orchestration
	Implementing choreography
	Implementing orchestration

	Motivation and Tools
	Motivation and objective
	Quantitative measurements
	Message brokers
	RabbitMQ
	Redpanda

	Other tools
	Docker
	Prometheus
	Grafana
	PostgreSQL
	Visual Paradigm
	Python

	Case Study
	Functional requirements
	Non-functional requirements
	Workers

	Architectures
	Architecture descriptions
	Orchestrator
	Serialised Orchestrator
	Async Orchestrator
	Serialised RabbitMQ
	SOA Redpanda

	System deployment

	Benchmarking and Results
	Metrics
	Execution and difficulties
	Tests
	Running the tests
	Problems and observations

	Results

	Conclusions
	Comparison of architectures
	Further improvements

	Grafana Snapshots
	Source Code
	Bibliography

