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Me emupiiadn TovTtog BIXAOUATOS.

Anayopebetan 1 avtiypapn, amodrixeuon xou Slovour| Tng mapoloog epyasiag, €& 0hoXAHEou
1) TWAUATOS AUTAS, Yo EUTopixd oxomnd. Emtpéneton n avatinwor, anodixeuct xou dlavoun
YL OXOTO U1 XEEOOOKOTUXO, EXTAUOELTIXNS 1| EpELVTIXAC pOONE, UTO TNV Tpolndveon
VOU AVAQERETOL 1) TINYT) TPOEAEUOTC o VoL Blatneeiton To mapdy prvuua. EpwtAuata mou
apopoLY TN YENOT TNG ERYIUCIAS VLol XEEDOOXOTIXG GXOTO TEETEL Vo ameu)ivovToL TEOE TOV

CLUYYPAPEA.

O omoédelc xan T cLUTERPACUATA TOL TERLEYOVTOL GE OUTO TO EYYPAUPO EXPEALOUY TOV
ouyypapéa xou Oev TEENEL Vo epUNVELVEl OTL AVTITPOCWTEVOLY TI¢ enionueg VECELC TOU
Edvixod Metodfiou Hoiuteyvelou.



ITepiindm

Ye outh T Oumhoyotixy epyaocio, mpoyuoatonowolue uio €ig Bddog elepelivnor uiog
pedodoroylog unyovixnc Leinong e YVOUOVOL TNV SLTHENOT ATOPEHTOU, Xl CUYXEXQULEVA
v Opoomovdioxr Mnyovixy Méinon (OMM). Xopaxtneillduevo m¢ TpoTUTO XAUTUVEUY-
pévng unyovixic udinong, 1 OMM avtetoniler tig Paoixéc npoxhnoeic tng Mnyovixrc
Méinone (MM) xon Tewv SeBoUEVWY, OTWS 1) ETECOYEVELX BEBOUEVWY, 1) TPOGTAGLN TOU UTOE-
efTou xou 1 wioxtnoio dedouévev. Tlapéyel wa TAaT@OpU TOL ETUTEENEL GTOUS OPYOVIO-
©o0g Vo GUUBAAOLY a6 XOLVOU GTNY AVETTUEN LOVTEAWY, SLUTNEOVTAS TAHEN XUPLOTNTA O
dedopéva Toug. Autd TO YoEUXTNELOTIXG TO XoMOTA EEUPETING WPENUO OE TEQITTMOELS
6mou to dedouéva ebvar eite evaloUnTa elte 0YXROOT), XUHNOTWOVTAC TOL AVEPLXTA YL XEVTELXN
GUANOYT).

Auth 1 Simhowpotiny gpyocio oToyedel Vo BLEEEUVACEL TI BUVITOTNTES XU TIG TEQLTAOXES
e yerong tne Ouoomovdiaxrc Mnyavixic Mdadnone oe mpoxtixég eqapuoyés. Xpnot-
UOTIOLACOE €V EUPEMS OVOLY VWRLoPEVO Aoylouxd, To Flower, yla va dnuloupyicouue uio
Aoom mou €yel oyedlooTel v Tov e€oploroyiond Twv npocouowwcewy OMM. ‘Eyouue
enione epapudoel dlagopeTinéc teyVixEC yenowonowwviae FedAVG xou FEDMA vy
va o&lohoyfooude TNy omotelecpoTixOTnTa.  Emmiéov, €youue euPadivel oty eé-
TAUOT NG ETEPOYEVELNS DEBOUEVMV ol UAXOU, X xou oTNny olOAOYNOT TV TEAATWY
TOU EYXATUAEITOUY Yol XJUGTEPOLY, YLOL VO TOREYOUUE WAL OAGTIXH XATAVONOT TWV
TEOXANCEWY XU TWV PETIPANTOV Tou oyeTiovion Ye AUTAV TNV XUTAVEUNUEVY TEOCEY-
yiomn punyovixfc weinong. To anoteAéopata authc TG HEAETNS Pl VOLY YW OTIC EVEAIXTES
eQapuoYES xou TNV ToAuThoxotnta e OMM, unoypaupilovtac Ty o&la Tne yiot JEAAOVTIXY
€PELVAL XL VAOTIOLACELS OTOV TRUYUATIXG XOGUO.

[Mot vor GUUTANEOCOUPE TNV €ELVA YOG, DNULOVEYHOUE VO PUAMXO TEOC TOV YENOTN EQ-
YOAElo GYEDLAOUEVO YLoL VO ETUTOYUVEL X0 VAL OATAOTIOLAGEL TNV EXTENECT] TROCOUOUDCEWY.
Auté 10 gpyoheio evowpATOVEL Booixd €EELYNTIXG EUPHUOTA XL AVTUTOXQIVETAL ATOTE-
Aeopatind otny moAumhoxotnta g OMM, omwg 1 etepoyévela BEBOUEVLY ol UAXOU.
‘Etot, otoyebouye va cuvelopépouue oty €peuva oty Ouootovdlxr Mrnyavi Mddnon,
OLEUXONOVOVTOG TNV TEUXTIXT| EPUPUOYY| TN OE OLAPORA GEVAQLY TEAYUATIXOU XOGUOU.

AéZeig-xAedid —  Mrnyavixr) pdinor, Ouoomovdior unyovixy uddnom, dwtrenon
ATOPENTOL, ETEPOYEVELN OE00UEVWY, etepoyéveln LUAxo0, Flower framework, FedAVG,
FEDMA






Abstract

In this thesis, we undertake an in-depth exploration of a privacy-conscious machine
learning methodology, namely Federated Machine Learning (FML). Characterized as a
distributed machine learning paradigm, FML addresses core Artificial Intelligence (AI)
and data-related challenges such as data heterogeneity, privacy protection, and data
ownership. It provides a platform for organizations to jointly contribute to model devel-
opment, maintaining full authority over their data. This feature makes it exceptionally
beneficial in instances where data is either sensitive or voluminous, rendering it imprac-
tical for centralized collection.

This diploma thesis aims to investigate the potential and intricacies of employing Fed-
erated Machine Learning (FML) for advanced research and practical applications. We
have used a widely recognized framework, Flower, to craft a solution designed to stream-
line FML simulations. The aspects considered in our study include various parameters
such as the number of clients, rounds, and epochs. We have also implemented dif-
ferent techniques using FedAVG and FEDMA to assess their effectiveness within the
FML context. Furthermore, we have delved into the examination of data and hardware
heterogeneity, as well as the evaluation of client dropouts and strugglers, to provide a
holistic understanding of the challenges and variables associated with this distributed
machine learning approach. The outcomes of this study shed light on the versatile
applications and complexities of FML, underscoring its value for future research and
real-world implementations.

To complement our research, we have created a user-friendly tool designed to expedite
and simplify the execution of FML simulations. This tool integrates key research findings
and effectively navigates the complexities of FML, such as data and hardware hetero-
geneity, client dropouts, and strugglers. With this development, we aim to stimulate
further research in Federated Machine Learning, easing its practical application across
diverse real-world scenarios.

Keywords — Machine Learning, Federated Machine Learning, Privacy preservation,
Data heterogeneity, Hardware heterogeneity, Flower framework, FedAVG, FEDMA
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Chapter 1

Extetopevn Ilepiindn ota
EAAN V&

1.1 Ewcayowyn

1.1.1 H ouavouevr enippor] TV UEYAIAWY BEOOUEVLY Xl TNG
Teyxvntns Nonpooivng

Ta "yeydho dedouéva, mou aVTITPOCWTEVOLY PEYHAN Xou cUVIETA GOVOAA BEBOUEVW™Y,
€YOLY CUYXEVTPWOOEL ALENUEVT TIPOGOYT) GE OGAOUS TOUS XAGDOUC AOYW TV TEOOGIWY GTLC
Teyvoloyleg amoUrixeuong xan Slayelpiong oedouévmy. To ueydio dedouéva TEOGPECOLY
TOAUTIHES TTANPOYORIEC Yol TIC TACELC XOU TS CUUTERLPOREC OF TOUElC OTwS 1) LYela, )
owovopla xaL To eunopLo. 2oTOCO, YE TNV ETEXTAUCY| TOU, TEOXUTTOLY VEEC TROXAHCELS,
WLk tepa TEOXAACELS ToU OYeTlOVToL UE TNV WOIWTIXOTNTA.

Iapd Tic extevelc yeléteg yio Ty mpootacio tng WwTwAc Lwng, o Tepdotio péyedog
TWV TUPAYWOUEVWY BEBOUEVODY XoMG TE TG TORUDOCIAXES XEUTTOYRAPIXES ADGELC ALYOTEQO
AmOTENEOUATIXEC. AEDOUEVOY TWV TEQLOPIOUMY YWENTIXOTNTIC TWV CUGXELMY X0k TNG UT-
OXEWEVIXOTNTAS TOU OPLOUOU TOU AmoEENTO, 1 avaTTUEN VEWY ohyopliuwy xat TAaciowy
amoperitou elvor uplotng onuactag. Axdun xou GTav YENOLOTOLUVTUL TEYVIXEC EVIOYUONG
TOU AMOEEHTOL OTWS 1 k-anonimity, 1 t-closeness, n I-diversity, n e€ehicoduevn @plon twv
eMWECEWY AMOPEHTOL UEYAAWY OEOOUEVWY amonTel GUVEYT Epeuva.

H Teyvnth Nonpoolvn xou Tt Meydho Aedopéva popdlovton o atevry oyéon, pe tnv TN
oL Yenotponoteitol cLYVE Yior TN Bleuxduvon Tng cUAANYNG, TNE Boung X TNG aVIAUCTG
Twv Meydhwv Aedopévev. H TN, yenowonowwvtag unyavixn udinon xaw dhAec teyvixée,
EMTEENEL TNV AnoTEAEOUOTIXY enedepyacion xat avdAUGT HEYSAWY CUVOAWY BedoUEVLY, [Bo-
NIOVTIC 0TOV EVIOTIGUO YOoTIBwY, oyéoewy xal TpoAédewy mou Yo unopodoay vo yodooy
and T un avtouatn avdhuon. H wavétnta avtopatonoinong tng TN Bondd eniong Toug
0pYOVIGUOUS VoL ETIXEVTPOVOLY GE Xploldo BEGOUEVO X0 VAL ATOXTHCOUY YR YORA YVWOELS.

H Teyvnti Nonuoolvn evéyel eniong xvdivoug, Onwe 1 Blatdvion Twy Teoxatokipewy, 1
anwhet Yéoewy gpyaotac xar ol aviidixeg amogdoeic. ‘Etot, o nhxol mpofAnuatiopol
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Chapter 1. Extetopévn Hepihndn ota EAAvixd

€youv mpooeixloel auénuévn mpocoyt. Ilopd to mbavd peovextAuata g TEXVNTAC
VONUOCUVNG, To OPENT TNg, ouuneptioufoavouévne tne Bertiwuévne vyetovouxnig neplo-
AMNng, TwV BEATIOTOTOMNUEVWY CUCTNUATOY UETAPORMY Xob TNG PEATIWUEVNS OCPIAELIS
oTOV xUPBepvoy e, clvar onuavtxd. [o vo emiteuydel Woopponio, To CUGTAUATA TEYV-
Nt vonuoouvng Yo TEENEL VoL avamTOCCOVTOL Xl VoL YENOWOTOLOUYTOL UE UTELILVOTNTA,
drauopailovtog Sopdveta, enednuotixotnta xou utevduvotnta. Ot nhixée avnouyleg tepth-
opfdvouy Yéuata 6w 1 EMNeUN euToTOooUYNG, 1 axplBeEla TV BEdOUEVKY, TO amodEENTO,
1 Btapdvela, 1 uepoAndio, 1 xoxr| yeHom TEOCWTIXWY dedoUEVwY xau 1 éAkewlrn Aoyodoatiog,
HETAUE) GAAWY.

Yto mhaioto e Teyvntic Nonpoolvng, eivon onuavtixd va yiver dudxpton Petadld tng
ACPAAELNG OEDOUEVKY %ol TOU amoperiTou dedopévewy. H acpdieia Sedouévenvy eotidlel otny
oA un e€ovclodotnuévng TedoPacTc xal ToEdBldoEwmY SEBOUEVWY UECK PUETPWY OTIKC
1 XEUTTOYEAPNON XL oL EAeY Yol TpocPaong. Amd tnv GAAN TAEUEd, TO AMdEENTO TWV
OEBOUEVOV ETUXEVTPWVETAL YVP® OO TO TOLOC UTOREL Vo €xEl TeOoPaoTr e Bedouéva, TNV
) enelepyacio TANPOPORLOY TEOCWTXNE TAUTOTOMNGONG KoL TOV EAEYYO TWV UTOULXWY
oedouévey. Evad ol avnouyieg yio v ac@dicior elvan xaAd UEAETNUEVES, OL EYYUNOELS
ATOPENTOL EYOLY AVTIUETWTICEL dEXETEC adlooNUElWTES amoTuYeC.

1.1.2  Apyrtextovixéc Mnyavixic Mddnong

Ou e€eMeic oty TN xou 0 pnyovixyy pdinon €youv evioyudel omd avaxollpelg oe
Topelg 6mwe to cloud computing xou to edge computing. Autd enétpede TNV unyavixn
uddnon vo AELTOURYEL ATOXEVTIPOTONUEVY, OTIOU TOEAYOVTOL BEQOUEVA, EMITEETOVTAS TNV
ATOTEAECUATIXT EEUYWYT] CUUTEPUOUATOV 0TOo onuelo mpoéhevone. H xatoveunuévn
pnyovixr) Udinom xan 1 SloToed TOU UTOAOYIGUOU G TOANOUS XOUPoUS, ONUATOB0TOOY
ULOL METATOTILOT) OO TO XEVIPXO UOVTENO, YELOVOVTOS TNV xaduoTtépnon xot evioyoviag
NV enextaodTNTa. 201600, dev Blacparilouy TAHEWS TO amdEENTO TWV BEBOUEVKDY Xa-
Vg e€oxoroudel vo amontel xoLvi| yehHor BedoUEVLY PETAE) TwV XOUBwY.

[o v avtwetodmon autic Tng avnovylag, ewoydn n Opoonovdioxr Mnyavix Mddnon.
Emteénel tnv exnaideucr wovtéhwy, tn Soxu) xan Ty e€orywyr| CUUTERUOUATWY ATOXEY-
TEOTOLNUEVA, DLATNEMOVTOC TA OEBOPEVA GTNY TNYT| TOUS Xk, WG EX TOUTOU, BATNEOVTAS TO
ATOEENTO ATO TO OYEBACUO.

1.1.3 Xuveiwocpopég

Yy epyaocio auth) mapéyeton wa Sielodxry diepedvnorn tne Opoomovdtaxhc Mnyavixnic
Mdinong, e€nywvtog T apyés g, Ti¢ Bacixéc ouvelspopés Tng otny Miyovixr Mdinon,
oM xou TG SUVOTOTNTES TG PE oxomd TNV eniluot {NTNUdTwY amoperTou SEBOUEVKY.
Avantoydnxe enlong éva véo epyahelo mpooouoinong Bacioyévo oto hoylouxo Flower,
TO oTolo TPOGOUOWVEL Lo TowtAla oevaplny Ouoctovotaxhc Mrnyavixie Mdaidnong, hay-
Bdvovtag Lo TNV ETEPOYEVELXL TWV GEBOUEVLV X0 TOU UALXOU.
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1.2, Mnyaviy Mddnon Awrrienong Aroperitou

1.1.4 3yetuxn epyacia

Ot Aoeg Opoonovdiaxhc Mdainone ywetlovto evpéwe oe Bihlodrixec xou oe hAettoupyxd
eunopwd cuothAuata. Ot BBAodfxec Tpoopépouy Eva eUEAXTO GUVORO EQYUAEIWY Yid TO
oYEdLoN, TNV LAoToinan xau TNy extérect) alyopiduwy FL, odld amoutolv e&etdixeuon xou
TedcveTn uTodouY Yo TN Slayeipion xan TNV Tapaxoloinon Twy powy epyacioc. Avtideta,
TOL CUCTAATO TTPOGPEPOLY OAOXATIEWUEVES AUGELS TTOL YEWRiloVToL OAES TIC TTUYES TNG POC
epyaoiog [45, 8, 22, 29|.

1.2 Mnyavixry Mdidnon Awxtripnong Aropertou

H ynyoviny| exudidinon mou BlaguAdcoel To andpenTto elvor €va UTOTEDIO TNG UMy ovixhc
udinong mou aToyelEL GTNY TEOCTAGIN TWV EVAUCUNTWY TANEOPOELHY EVIOC TWV DEBOUEVLY,
EVO EMITEETEL TNV ATOTEAEOUATIXT Xat axeif3n) exnaideuot) xan TpoPAédelc yovtéhwy. Autd
TepthoBavel TNV avdmTugn HeYOBmY XL TEYVIXMY TOU TEOCTATEVOLY To DEBOUEVA Amd UM
eZouatodotnuévn mpdcPoon X eaywyn. Oplouévee dnuoguielc yédodol mepthoudvouy To
drapopixd amdpento [19], to onolo mpoodéter VopuBo ota Bedouéva 1 GTOUC LTOAOYIO-
poUg it Vo Slacalioer 6Tl To amotéAeoua evog ahyopluou unyovixhc expdinong dev
ATOXAAOTITEL CUYXEXPWIEVEC AETTOUEREIES VIOl OTIOLOOYTOTE UELOVWUEVO ONUEID DEBOUEVWY.
Mo dAAN Tpocéyyion elvan 1 opocTovdloxy| expdidnor, 1 ool diotneel dedoyéva oe TOT-
IXEC CUOXEUES %O HOLOALETOL UOVO EVNUEQWOELS UOVTEAWY Yol ouYXEvTpwor). Teyvixég
OIS 1) OPOPOPPIXA XpuUTTOYEEPNOT [3] Xou oL amodeiZelc Undevinic YVHONE YENOHLOTOLOUY-
Ton emlong v TNV exTtéAeot) umoloyilopwy ancuieiog o xpuntoypagnuéva dedopéva. H
Uy oV EXUdInGcT oL SLapUALCCEL TO amdEENTO Elval WOLUTEPN ONUAVTIXT) OE TOUELC 0TS
1 vyetovouy| tepidahn 1 T otxovouxd, OTou 1) EUTLCTELTIXOTNTA TwV BedOPEVwY elval
amaElTNTY.

1.2.1 Enwoxénnorn Opoonovoiaxic Mdaidnong

H opoomovdiaxr exudidnon elvan pio Tey vixr unyavixnc expdinong mou diatneel To amdpento
X0 ETUTEETEL TNV AMOXEVTPWUEVY EXTUOELOT LOVTEAWY GE GUOXEVES, Ywelg va wotpdlovTal
OXATERYUTTO OEDOPEVOL.

H Baowr| opoomovdiaxt| apyttextovixy| tepthopfdver cuppetéyovies xoufouc (cuoxevéc tou
OLVELOPEPOLY BedoUéva), Evay xevtpnd dtaxouo T (ouvtoviler tn dradixaoia expdinong),
€vol TpOTOX0ARO emixowvmviag (acgariler Tnv avtodloyr dedouévwy) xon olyopLipous ex-
udinone (Behtiotonoinon tou cuothuatog) [40].

1.2.2 Tonolw Opoonovdiaxrc Mdidnong

H opoomovoioxy udidnon xatnyoplomoleiton o€ TOTOUE TOAATAMY GUOXEUMY Xl OLOUPOPE-
TIXOV oA Ue Bdon TN glon xaL TI¢ SUVITOTNTES TV BldEouwY TOPWY TWY CUUUETE-
YOVIRV oviotAtwv. 1.2.1 Ytnv oydonovdn udinor ue moAAamAd OLhG, To BEGOUEVA TOU
ywpellovTol o€ BLaPORETIXOUE 0PYAVIOUOUS YENOULOTOOOVTOL YLal TNV EXTALOEUCT) LOVTEAWY.
Etvor xatdhAnio 6tav 1 cLYEVTEWOT BEBOUEVKY OeV efval eQUXTH) AOY® ATOPEHTOU 1| PU-
Yo Tixolg Aoyouq.




Chapter 1. Extetopévn Hepihndn ota EAAvixd

H opoomnovdiaxt| udidnomn uetald cuoxeudy, and tnv dAkn mAcupd, eunneetel Tor Gedouéval
mou elvan amodnxevpéva oe cuoxevég yenotwy. Kdbe cuoxeur| exmawdedel to dixd tng
HOVTEND, GTEAVOVTOC UOVO EVIUEPWOELS GE EVOY XEVTPIXO OLUXOULOTH, EVIGYVOVTAS ETOL TO
ATOPENTO XA TNV ACPIAEL TWVY OEOOUEVWYV.

[ Types of Federated Learning ]
I

: !

-'.v JX
with small amount of data, such A//' T ‘ '%4

e e
— Types of participants ] —1 Types of data ]
\ -
/ Features Features \
. . r 1 ——
Central server Horizontal Federated Learning:

MY P ; . w
Cross-device Federated Learning: Ko — s1>nV\-11ar data features but from =
. 11 . WK different samples &
usually requires a million devices &

as smartphones, wearables, and

edge devices \
/ Features
——

) Vertical Federated Learning:
\_ Devicel Device? Devicen J shared or overlapped -
samples but different data ;‘-‘:- { [ | |
/ Central server \ features s LEEEN
Cross-silo Federated Learning: ¥\ \_ I ion 1 I n /
usually requires a smaller number R
of collaborative participants with / v e Features Features \
—>| large sample sizes, such as e T‘ 'k& . ——
hospitals or banks ERNuEE EENEEE - Federated Transfer Learning:
BEEEEE SEEEEE different in both samples and £
Slgal= =lpl= features &
g
\ e e ) ’

N

Figure 1.2.1: TOnot Oyoorovdioxic Mdnone

Emumiéov, n opoomovdluxy udidnorn uropel va tadivouniel oe xddetoug, opilldvTtioug xau
TUTOUG UETAPORAS VAAOY L UE T1) BLAVOUT] OECOUEVWV.

Kd¥etn Opoonovdiaxy) Mddnor: Xenowonotelton 6tay SlapopeTinés ovioTnteg
€YOLV BLUPOPETIXG YOLUXTNEICTIXE YLl TO (510 GUVORO BELYUT®Y, EMTEETOVTAS T1 GUA-
Aoyut| OnuLovpyla HOVTEAWY Ywelg X0y YeNon TEOTOYEVGOY BEQOUEVKY.

Opilovtia Opoonovdiaxyy Mdadnon: loylelr 6tav SlapopeTinéc ovioTNTES €Y0UY
T {Bla Y oEaX TNELOTIXG Vi BLOPORETIXG BTOUA, ETTEENOVTAS T SLUBOAY ot udinoT ywelc
VoL LoLpdlovTol TEOCKTXA DEBOUEVAL.

Mertagopd Opoonovdiaxng wddnong: Ilepiaufdver yovtéha exnaideuong oe évay
OPYOVIOUO XL UETOPOPE GE JANOV YOl TEAELOTIOINGT), TOU YENOWOTOLEITAL GUYVE OTAY O
0pYAVLOUOC-0TOYOC OEV el EMapXY| DEBOUEVOL.

1.2.3 AAyép9uor

O opoomovdloxde péoog bpog, 1 FedAvg [40], elvon évac ahydprduoc oty Ougoonovdiaxy
Mdrdnon yio T Sntovpyior JOVTEAWY UMy OVIXAC EXUEUNONS YENOWLOTOLWVTIS dedouéva e
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Aggregate
Models

N

Server

S

/Ad A
Client 3 Client 3 Client 3
Eg Train g Train g Train
I Model I Model I Model

Figure 1.2.2: Ouoomovdion Mnyovixic Mdinon

ATOUOXEUOHEVT, GUOXELY|, avTi Yo exmaideuot mou Bacileton o xeVTEIX0UE BLUXOULOTES,
BEATIOVOVTAC TO AmOPENTO TWV OEOOUEVWLYV.

To Brjuata Tou FedAvg etvou:

1.
2.

‘Eva xodolxd povtého mpoetolwdletar aTov dlaxoploTt| ue tuyala Bden.

To xodohxd povtého petodidetar oc €va XAAOUN TWV CUVOMX®DY GUOXEUMY TOU
CUUMETEYOLY Yio TOTUXY EXTALDEVOT).

Kde cuoxeur| exnandelel 10 oVTEAO GTA TOTUXY TNG DEBOUEVAL Ywplg Vo UeTapEREL
oXATERY O TA BEQOUEVA, DLUTNEWVTAS TO ATOPENTO.

Ié 4 7 4 I4 4 Z Z
. Metd tny tomuxr exnaldeuot), xde cuoxeur| utohoy(lel wa evNuépwat) Tou LoVTEAOU

X0l TNV OTEAVEL GTOV OLUXOULOTH.

O BlaxoUloTAC CUYXEVTPWVEL TIC EVNUEPKOELS, CUVAUWS UE UTOAOYLOUO TOU UEGOU
OPOL, YLl VAL EVIUEPWOEL TO XAJOAXO LOVTENO.

To BAuoato 2-5 enavaroufdvovion Yéyet To HOVTIERO VO GUYXALVEL GE IXOVOTONTIXN
axp{Bela.

Eve to FedAvg elvar dovixd yioo egopuoyéc 6mou To oamdpento Oedopévwy omotehel
TEOBANUA 1) 1 xevTpxr Tokvounorn Sedouévwy Bev elvan mpaxtixy, e&axohouvdel var ov-
Tiwetoniler {nTiuata 6nwg 0 YElplopds dedouévwy mou dev eivon IID xou cuoxeuwy mou
€youv Towxihoug byxouc dedouévwy. And tnv dhAn, o ahyderduoc FedMA [54], eivon pia
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Chapter 1.

Extetopévn Ieptindmn oto EXAnvixd

One round of
Communication Round

Conv. Layer
e

with FEDMA Augmented Conv. Layer
Server =
-«
A
1st 2nd 3rd \
\ Nth N-1th
Round | Round Round | Round Round
e | [ ] IC 1| |\ m o | g
| T— S —— —
| [ |
L J
> «

Client

Figure 1.2.3: T'po¢ FEDMA

Behtlwon oe oyéon pe tov alyoprduo FedAvg. e avtideorn pe to FedAvg, to FedMA
0EV OUYYWVEVEL APERDS TIC TOPOUETEOUS TOU LOVTEAOU, SLATNEMVTIC ETOL LOVAOLXSL Y opaX-
TNeloTXd ot dedouéva mou oev elvon 1ID.

H FedMA ypenowomnotel tnyv teyviny) "avtictoryou yéoou 6pou" xa dnutovpyel éva nayxdo-
Wo xovoyenato povtého, avtiotoryiCovtog xou utohoyilovtog Tov PECo 6p0 TWV XEUPMY
oTolyelwy Tou povtéhou, 6mne to xavdiia Twv CNN, ol xpugéc xataotdoeic Twv LSTM 7
Ol VELPMVES TWV TAHENS CUVOEDEUEVLY emmEdwy. Kdie yOpog Ouoomovotaxhc Mnyovixric
Exudidnonc oto FEDMA mepihaufdver yOpoug avtiotolytonc. Ou cuoxeLég exmoudevouy
TO UoVTENO OE TOTUXA OEBOUEVO XAl TO GTEAVOUV Tiow GTOV BLIXOUGTH, OTOU €val GUY-
XEXPWEVO eninedo avtioTotyileton xou enowidveton xdde popd (Ewdva 4.2.2). Xtn ouvéyeta,
Ol GUOXEVEC EXTIUBEVOLY TO UTOAOITO UOVTERO UE TO ETOUENUEVO oTpOUa Torywuévo. To
TEMXO HOVTELO Blatnpeel TANPoQopleg and To YOVTEND Xdde GUOXELY.

It Sieuxdiuvon tou FEDMA, yenowonoteiton to miaicio Flower, to onolo Aettoupyet
oe dVo yOpoug: avtioTtolylong xon Tumixols yUpoug FML. O Siaxouotic xou oL cuoxevég
ouvTovilovton yior Vo eEXTUdENGOUY, Vo ToUELEEOUY X0t VoL aLENCOUY ToL LOVTEAX GE AUTOUC
Toug YOpOoUC.

1.3 IlpoxAnoeig Ex-

wdinong

Ouoonovoiaxne  Mnyavixnig

H Opoocmovoio Mnyoavixs) Mddrnon evonuatover tohuthoxotnieg Teyvntrc Nonuooivng,
oL omoleg yivovTol To TEPIMAOXES AOYW TNG XATAVEUNUEVNS PUOTC TV CUC TAUATOV.
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1.4. Apyitextovixry LucThuotog

[TepuhauBdvouy:

1. Acdopéva non-IID: Ta dedoyéva dev SlovéuovTal oveEdoTNTA Xl TOUVOUOLOTUTO
OTLC OTOUOXPUOHEVES CUOXEVES.

2. Etepoyéveia dedopévwv: To uéyedog, n xotavour, xou 1 moldTnTaL TKV Oe-
dopévwy Umopel var Blapépouy UETAED TWY CUOXEVEC.

3. AcUyypeovr emuxoltvwvio: O cuoxeuég evoéyeton v uny elvan tévta dardéoyeg
1) VoL €)0UV BLAPORETIXOVC UTOAOYLGTIXOUS TORPOUC.

4. AlopopeTIXy] LUUUETOYN CUCKRELW®V: AEY ETUTPETETOL VO CUUUETEYOUY OAES
oL cUOXEVES GE xdde YUpo.

5. Data Drift: H xatavoyr| 6edoyévwy evoéyeton VoL aAAGEEL UE TNV T8E0B0 TOU YeOVOL,
enneedlovtac TNV axp{Bela Tou povtérou.

6. EmBdpuvorn emuxownviag: Ou cuyvéc evnuep®oele UOVTEAWY UETAE) Ol-
UXOULO TY| X0l CUCHEUGY UTOREL Vo efvan damovneeg.

7. Avtimalot: O cuoXEUEC EVOEYETAL VOL ELGEYOUY OXOTIUO ECPUNIEVES EVIUEQWOTELS
1) xox6Bouha dedouéva.

8. Ypdlpata emxoitveviag xow YopuBog: H mpoyuatind emxovewvioa yetold
CUOXELMY X0l BLaXOPLGTY| UTopel Vo elvon emippenhc o€ opdhuata 1 Yopufo.

9. Yuurnieon xo xPavromoinoyn wovtélou: To rneplopioyévo edpog LWvng
emxovoviog uropel vo anartel cupnicon xo xBovtonoinon tou Loviélou.

10. Etepoyeveic apyitexTtovixég povtéhwy: O towxilol teplopiopol 1 ol Tpo-
TWAOEIC VALXOU UTOPEl Vo OONYNACOLUY OF OLUPORETIXES UPYLTEXTOVXEG UOVTEAWY
HETAEY TWV GUOXEVOV.

11. EmvO€ocic amopertou: Ilupd touc otdyouc amopprtou Tng OopocTovolomig

udinong, emiécelc Unopolv oxouo vor GUUBoLV.

1.4 ApyitexTtovixy, XuoTHpaTtog

1.4.1 Awypdppata

H viornoinon tou cuotiuatog anooxonel oty eOxohn UETIPacT and TOTUXNH UNyAvIXn
udinon oe SloxoUo T xou EmElTor o xataveunuévo mepBdihov. Ta darypduuota yenot-
MOTIOLOUVTOL Yol TNV ATEXOVLOY TN BOUNC TOU GUOTHUATOS X TV AAANAETULORACEWY TWV
OTOLYELWV.

YvoTatind ALdypoia

To dudrypappa 1.4.1 anoxaAUTTEL OTL OAO T GTOLYEl AELToVpYOLY péoa o€ container yio
EMEXTACWOTNTA ot duvatodTnTa Tpononoinong. To container FML Manager xow FML
Client utodnhwvouv 1 oyéon dlaxoulotr-cuoxeurc. H Bdor 6edopévwy Redis amoidnxelel
xplowa dedopéva exmaldeuone xal TANEoQopleg TapaxohoviINoNg CUCTAUATOC.
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- Listen for input

“‘ Provide Data
‘ Provide Graphs
-
©
Flask API

‘ Express API

&

Pool Data

Send & Receive Data

P e e e e i T R Y

-sua Paradigm Community Edition®y

Figure 1.4.1: Yvotatixd Awdypopua

H Trnpeola Awxouoty Awyelpione mepiauBdver éva Flask API mou exoavel to oi-
adixaota, Suoyetplleton dixtua, xou Tig unneeoieg Docker. To clotnua mepiéyel enlong
€va oTolyelo TopoxoAoINoNE xou Wi BIETAQPY) YEHOTN Yol OVUTORXY WY T) TROCOUOIWONS XAk
Topoxohoinon ot TeaypaTIXd YEOVO.

Awaypdppata unnesoiody REST

[Mo vor BEATIOCOVUE TNV EMEXTAGILOTNTA Xk TNV AVIEXTIXOTNTA TOU CUCTAUITOS, EYOUUE
evowuatooer API 1.4.2 oe évav dloaxouotr Flask. Autd ta API dnulovpyolv {wtinég
UTNEEGTES XoU ULLOVVTOL GEVAPLOL ETEQOYEVELNG UALXOU GTNV OLOCTOVOLOXY| Uy avixn uddno.
To APT umopoiv va exoavhcouy unnpeoieg «N», ue xdie Aertoupyior «R» avtiypogpa con-
tainer ye (Blouc TEPLOPIOUOUC TOPWY. AUTO ETUTEENEL TNV EXTETOEVY] EMEXTACYLOTNTA Xl
Vv e€opolnon eVOg TEayUTiXd ETEPOYEVOUS TOTHOU UMXOU, TOREYOVTUS TOAITYIES TATPO-
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Create Client Services
ST fcreate_client,_services —@

nitialiaze Docker Swam and Networks
POST Jinit_swarm_and_network

PO

500 - Error 500 -Errol

Initialiaze Docker Swam and Networks - Error

Create Client Services - Error

T T |-message
-message -status_id
-status_id
1 200-0K 1| 200-0k
Initialiaze Docker Swam and Networks - Success Response Create Client Services - Success Response
WL -message
-join_token -status_id
—status_id —

Docker Swam and Networks Request
-network_name
-subnet

Create Client Services - Reguest
-server_address

-service_name

-image

-replicas

—cpu_limit

-memory_limit

-network

Create Server Container
POST /create server_container —@

500 - Error

Create Server G i - Error
-message
-status_id

1| 200-o0K

Create Server C i - Success R
-message

-status_id

Create Server G i - Reguest
~Partitions
~dataset

-Model
-Min_avail_clients
-server_rounds
-epochs
-container_name
-image

-network
—container_ip

Figure 1.4.2: Awrypdupoto unneectwv REST

popleg Yl TNV AmOBOCT) TWVY OUOCTOVOLIXWOY HOVIEAWY UNYOVIXC EXUEUNONG XdTw amod
OLPOPETIXEC LV XES LALXOU.

Adypoppo axolovdiog

To oyfua 1.4.3 meprypdper v axorouvdior Tou mapadeiyyatoc tng Opoomovoloxrc
Mnyoavixric Mdidnone. Apywd, évag yeriotng xadopilel mopopuéteous YEcw PopUaS. TN
CLUVEYEL, AUTES oL TANEoYoplec amooTéhhovial Uéow Twv API REST ctov Sloxouio Ty oi-
ayelpiong, o onotog exxivel Tov dlaxouoth FML xou evepyonotel tng amapaitnteg cuoxelec.

Adypahor avaATTUENS

To oyfua 1.4.4 anewovilel v opyltexTovxy TS AOONG YOS, TOU OVOTTUGOETAUL OE EVaLY
uovo dlaxouloTh pe xdde otolyeio vo Aettovpyel ot éva EeywploTo container. Auti 1 Sour
HUUELTOL EVOL XATAVEUNUEVO GUCTNUA XAl Y ETNOWEVEL (O OXANOTATL TEOG LA TTLO XATOUVEUNUEVT)
eLduLon, 6Twe avanopioTotal oTo Ly rua 1.4.5, Tou Bely Vel TOUC GUOXEVES TTOU AELTOLEYOVY
amd EEYWELOTEC CUOXEVES, XATL TOU ELVOL OmOEOLTNTO YIoL TNV TEAYUATIXY) OHOCTOVOLIXT

udrdnonm.
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I
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I
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Figure 1.4.3: Awrypoupo axoroudiog
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Powered ByVisual Paradigm Community Ed\tmn¢

Figure 1.4.4: Audrypopuo avantuéng oe Sloxoutot
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GRPC

GRPC

T

FML Manager Server Edge Device 1 Edge Device 2 Edge Dey

ice 3

FML Manager Container Client 1 Container Client 2 Container Client 3 Container

<<componen>> @] [HH— gapc ——— [<<compenen=> @] <=companent=> ] <<component=> §]
FML Manager Script FML Client 1 FML Client 2 FML Client 3

TCP

TCP

TCP
TCP

Monitor Server
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Redis il er

TCP

Monitoring System Stack
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TCP InfluxDB
Management Server Serviq
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TCP

Express JS Serve 1

6 Flask Server
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Dashboard
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Browser

Pourered ByVisual Paradigm Community Edition€y

Figure 1.4.5: Amoxevtpwuévo Sudypopua avamtuing

Adypoppo TAENG

H ANoon pag yenowornotel to Flower Framework w¢ tn 9euehicdon apyitextovixr tou. Ilep-
thouBdver wordruartor yiar T Stayelplon cUoXENKY, AELTOURYIEC BLUXOULOTY, OTEAUTNYIXES EX-
Taldeuong, xotorypapn dedopévewy xar ToAG dAAa.  Autég ol xAdoelg Sleuxohivouv Tnv
TPOCUPUOYT, TNV EUPKOTIAL X TOV TAHET EAEYYO TOU TORUBEYHATOS UAC.

1.4.2 TITapaxoroldrnom

To opoonovdxd pag oclotnua exudinone yenowornowel to Telegraf yir oculhoy
uetproewy, to InfluxDB w¢ Bdon dedouévev ypovooeipwy xow to Grafana yio tnv on-
Tixonoinon dedopévey. Autd Ta pyolelo EmTEETOUY TNV ToRoxohoLINCT OE TEAYHATIXG
yeovo e yenone e CPU, tng yeriong uvAung xou twv cuvdécewy cuoxeuwy. To be-
dopéva and container xou cuoxeuvéc Docker anotnxebovtan oto InfluxDB xow avtinpooe-
mebovton omtixd oto Grafana, eMTEETOVIAC TNV AVOYVOELOT) TEOBANUATOV GE TEOYHATIXO
YEOVO %ot BEATUOOELC GTNY AmbB00T) TOU GUC THUITOC.
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Figure 1.4.6: Awrypoppo tédEnge

1.4.3 Apobpog Tpog TNV ANOXEVIPOTOINGCT)

H xplon avamapaywywotntag oty €peuva Opoonovdlomric Mnyavixic Mddnon, Aoyw
NG AVETOEXOUS TEXUNEIWONS TOV OTEUTNYIXWV XATAUEQLOUOL OEBOUEVWY XAl TWV UTEQ-
TOEOUETEWY, EUTOBILEL TNY EMOTNUOVIXT Ted080. AUTY| 1| TEOXANCT) TEQLTAEXETOL TEPOULTERPL
and TN duoxoMa peTdBaong and To VewpnTixd HOVTERA O (WVTUVES EQUOUOYES.

H Ao pag evowpatdvel ototyelor hoyiopxol oe évay mivaxa epyahelwy dlemagpnc yerot,
EMITEETOVTAS TPOCUPUOCUIES TROCOUOUMCELS YOl THEAUXOAOVUNCT) OE TEAYHATIXO YPOVO TNG
otaduaotac. O mivoxag epyahelwy napouctdlel YeTEHoELS Tou tepthauBdvouy axpifeto Lov-
TéNov, anmiela exnafdevong, yerion CPU xa yerion uvAung and cUeKEVES Xl OLUXOULC TEC.
Auto Behtuidvel TNy xatovonor Tne Sladixactiog and Tov yehoTn xon TeowVdel TNV anoTeAes-
HOTIXOTERT] EQEUVAL.

O nivaxog epyaheiwy diemaprc YpRotn teptAauBavel Wiar poOpUa Yo THY ETAOYY| TURUUETEWY,
1 omola EMTEETEL OTOUC YPNOTES VoL TPocupUolouy Tic Tpocopolkoels. H mapoxoroldinon
OE TEAYUATIXO YpOVo EmTEENEL TNV mopuxololinon tng axplBelog tou poviéhou, NG
ATWAELNG EXTUBEVCTC XAl TWV ATOTEAECUATOV BOXLUDY OE Bidpopa GUVORA BEBOUEVLY.
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1.5 Ileipapotind anoteAécpata

1.5.1 30Ovolo SedopéEvwy

To olvolo dedopévev MNIST [35] nepiéyer 70.000 ewxdvec o xhyaxa Tou Yxpl YEWO-
Yoapwy Pnelwy, yweiopéveg oe 60.000 exmoudeutinég xon 10.000 doxipocTinée eixdvee.
Kde edva 28x28 pixel elvon xavoVIXOTONUEVT] XL XEVTRUQIGUEVY) YLl OUOLOUORPLAL.

To clvoho dedopévwy FEMNIST, ané to LEAF [14], enexteiver to MNIST cuunepilay-
Bdvovtog emdvee yelpdypapwy Pnpiwy xon yopoxthewy and 3.550 cuyypageic. To cbvolo
oedouévev FEMNIST éyet oyediaotel yio anoxeviponomuévn Mnyovixy) Mddnon, ue oe-
oopéva yia xdde cuyypapéa.

1.5.2 Ezepoyéveia dedopEvwyY

H etepoyévela tov 6edopévny, wa xplown ttuyr| tne Opoorovolnic Mnyavixic Mdnong,
acyoAelton Ye TNV mowhion oTo péyevog, TN OLVOUY XaL TNV TOLOTNTA TV OEBOUEVLY
oe SpopeTixole xouPouc.  To dedopéva Tou mpayuaTiXol XOCUoU Elvol CUYVE dvioo
XATUAVEUNUEVA, OBTYDOVTIC O TEOXANOELS TOU Yol UTOPoVGAY VoL 081 YO0UV GE UTOPBEATIO TAL
1) avaxeL3r) HOVTERA.

O Boduode droxduovong Twv dedoUEVLY unopel vo uetenidel yior Ty emAoyh XoUTdAANAWY
ahyopliuwy yior TNV UElon TV BUOUEVOY ETUTTOCEWY. Autd umopel eniong vo agloloyr-
OEL TNV XATUAANAOTNTA TN 0PYAVWOTS OMOOTOVOLIXAS EXUAINCNE YL EVOLY GUYXEXQUEVO
Topéd TPOPANUAT®DY xou VoL BEATIGTOTOOEL TNV EXTOLBEVOT).

Y10l MEWRAUOTA YAC, 1) ETEQOYEVELN TV DEQOUEVKY TPOCOUOLWVETOL UE TNV TPOENEEERYATTN
GUVOAWY BEBOUEVLY X0t TNV avaleoT) o€ xdle GUOKELT] BLUPOPETIXWY LUTOAOITKY XAACEWY
1) evOg TuYaiov aELiUoy TUEADELYUATWY.

[Mo var yetpriooupe v avicoppeonior BEBOUEVOV, YENOWOTOLOVUE TN UETENOT ETELOYEVELIS
dtavouric tou [60]. To DH elvon wo yétenon uetadd 0 xou 100%, émou to 0% onuaiver
TovopotdTuTe tapodelypota and xde xhdon (IID) petald twv cuoxeudv xo to 100%
uTOdNAGVEL X8 cuaxeL Tou €yel Topadelypota wovo amd uio xhdorn (NON-IID).

Téhog, n pétpnon tng ouoloyévelng yenoylonoteitar yia TNy agloAdyNnom Tne anddoong Twy
ahyopliuwy opadomolinone ot Unyovixy udinom, xotayedpovtas TNy EXTaon Tou xdie
oUUTAEYUO OmOTEAE(TOL UOVO OO G TLYUOTUTIAL BEBOPEVWY Mo Lot eViadol XAEoT), agLOAOYOV-
Tag TNV oo tnTa Tng opadonoinong. H Boduoroyia 1 utodnhwvel tékeio ogadonoinom, eve
1 Boduoroyia 0 onuaivel avamoteAeopatiny opadonolno.

1.5.3 Ezepoyéveia vALx0U

H etepoyéveta Tou UAXOU elvon €vag amogacio TIXOG TaEdYOVTAS GTO TOTO TNE OUOOTOVOL-
g unyavixnc udinong, AauBdvovtog unodn T ONUAVTIXES TUPUAANYES OTLC OLOLORPWOELS
UAXOU OE TEPINTWOELS Yerong cross-silo xau cross-device.

[No tepintadoelg yeriong cross-silo, tor LOVTEAX unyavixnc exudinone YenoyLonoloby UviAun
upniic ywentixdtntog xan toyupols CPU mou Swtidevian cuvAdwe o Sloxouto tég
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1.5. Tlewpopotixd anoteréopata

LOPUUGTWY 1) ETOUELXDY UTNEECLOY, TEOGPELOVTIS ATOTEAECUATIXOUE UTONOYIoUOUS. AvTi-
YeTa, oL VAXES YPNoNe UETAL) GUOKELMY SLIETOUY Eval EUEY PAGUO UALXOU OTO UXQOETEE-
epyaotég xan cuoxevée Raspberry Pi éwg xivntd tnhépmva, 1o xadévo ye ovaoixée ut-
ONOYIOTIXEC BUVATOTNTES XU TEPLOPLOUOUS, UTOYRUUUILOVTAS TNV EXTETOHUEVY) ETEQOYEVELL
uAxoL og auTég Tig pululoeic.

Figure 1.5.1: Etepoyévelo uAxoU

Ot TepdioTieg BLUPORES OTLE BLOPPWOELS UAXOD YETOLY TROXACELS OTNY AVATTUET LoYLEWY
XL EVEMXTWY UOVTEAWY TEOCUQUOCUGY GE OAO TO (QUCUN TWV UTOAOYLOTIXMY OUVI-
Tottwy. H Sour tou xdoixa pog, euéhixtn xou mpocopudoun, Bondd oty eoyolwon
NG ETEPOYEVELUC TOU UAXO) OTA TELRUUATE YOG, ETUTRETOVTOS T1) BUVATOTNTO BLoORPOONG
TOMA®Y TOROUETEMV.

Ou cuoxeuéc pmopovv va xatryoptonodolyv oe xatnyopleg younhig, pueoaiog xou LPnirg
OtardeolpoTnTog YE BAom ToL YoEOXTNELOTIXG UAXOU ol TOUC TEELOPLOHOUS TOPMY TOUC.
O ouoxevéc yaunhic dtadeoipdtntoc (teptoplopéves oe mopoug) mephaBdvouy éZunval
PONOYLOL X0l OPLOUEVOUS UXPOETEEERYUOTES UE TEQLOPLOUEVT] ETEEEQYATTIXT LOY L XoU UVAUT.

[Mo v e€opolwon g ETEPOYEVELNC TOU UAXOU, TO GUGTNUO YOG ETUTEETEL VO TROCURUO-
GOUUE To UTOAOYLO TIXA OpLal XAUE GUOXELY|C, TTROCOUOUWVOVTAS TERUSAANOVTA TEQLOPLOUEVLY
TOEWYV TOU EIVOL XOLVA OE TEQINTWOELS UETALY cUoXELKOY. MeTtafSdAlovTag To PéYLoTo 6pLo
eNe€EPYUOTH XAl TO OPLO UVAUNG, TROCOUOLOVOUUE OLdpopa TEPUSAAAOVTA UTONOYLO TIXWY
TOPWV.

[Tpocopoiwwvouye emlong CEVAPLY TEAYUATIXOU XOGUOU OTOU Ol GUOXEVEC GUVOEOVTOL Xl
ATOGLVOEOVTOL XAUTA BLAC THUATA AOY W TEOBANUATWY OIS BlaxoTES EMXOVKVINS 1) Slaxomég
PEVHATOC, EEXVMVTOS YOl O TUUATOVTAC Tuyaio To container. Auty| 1 ohoXANEWUEVY TEOCEY-
YIOT| TEOCOUOIWOTNG CGTOYEVEL Vo DIEQEUVIOEL, VO XOTAVONOEL XU Vo TpOTelvEL ADoELS oF
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TEOXANOELS ETEPOYEVELNC UALXOU, GUUBIAAOVTAS GTNY AVATTUEYN THO LOYUEWY X0l TROGIR-
HOCLUWY HOVTEAWY UNyYavixic udinong.

1.5.4 Metpuxég

H axp{Beia, mou avtinpoownedel TNy avaroyio Twv owoTtdy TpoBrEPeny Tpog Tig GUVORXES
ToEATNENOELS, elvon €va Paoxd UETEO NS amddOcNC TOU UOVTENOU OTIC OUOCTOVOLOXES
Tpocopolhoelg pdinong. To epyaieio pog utootneilel 1600 TNV xevTexr| doxiun, 1 omolo
TEOCPEREL AUEROANTTY ALOAOYNON YEVIXEUGTC, OGO X0 TNV ATOXEVTIPWUEVT) doxuun, 1 oTola
oelyveL TNV amddOCT) TOU UOVTEAOU GE DLUPOPETIXES OLUVOUES DEDOUEVWLV.

To Kéotoc Opoonoviuxic Iowétnrac Movtéhou (CFMQ) eivan piar pétpnon yuo v
allohdynon g enidpaong g £TEpoYEvelang Tou UAxol otny Ouoocmovoxr Mdidnon.
Evowyatover 1o x66T0¢ emovemviag, To ToTixé xOGTOC UTOAOYIGHOU XOL TNV TOIXLAO-
Hoppior LA yior Vo dWoeL TANEOYOop{ES Yol TNV AmdOdOCT XAl TIC ATMAUTHOES TOPWY O
OLPOPETIXA TEPBAAAOVTA LALXOU.

IMohéc napduetpor cupPdilouy oto CEFMQ éneg ol yipor emxowvwviog (R), o o@éhuo
poptio emxowvwviag (P),0 6poc eliooppdmnone (a),0 péoog apliude Pnudtov Tomxic
Behtiotonoinone (m;), N UEYLOTNH UVAUN TOU XOTOVOAMVETOL Xotd TN didpxeto Bua (v)
xou 0 aptduds TV cUoXELKOY Tou cuuueTéyouy (K).

Yto nopddetypd pog, to CEMQ eivon mpooapupocuévo yio vo Aopfdver unddn nopouéteoug
Tou oYeTLOVTaL UE TNV GUOXELY|, OTIWS TO WPEAHO QopTio emxovwviog avd cuoxeur (F;),
€VOlY TPOTIOTOUNUEVO Péco aprdud Brudteny tomxhc BehtioTonoinong avd cuoxeut| (m;) xou
N LEYLOTY) UVAUT TTOU XOTOVOAMVETAL XoTd T didpxetol evog Bruatog avd cuoxeun (v;). To
véo CFMQ exgpdletan wg e&hc:

CFMQ = R- Z (P +a-m;-vi) YL OAEC TIC CUOKEVEC

)

Enlong, o ypdvog exnaldevong mocotixonolel Tn didpxelor Tou amonteltan yior vou el Eva
povtého and to xotaveunuéva dedouéva. IlepthauPdver to ypdvo mou oamoutelton yior TNV
EXTAUOEUCT] TOU YOVTENOL OE AUe %OUBO ol Yl TNV EMXOLVWVIA XOL TN CUYXEVTPWOT)
TWV EVINUEPWOE®Y TOU Yoviéhou. Ot pxpdTepol Ypovol eXTUBEUCNC, TOU UTOBNAWVOUY
ATOTEAEOUATIXY UAUNOT Xl XOADTERT) EMEXTACUOTNTA, elvon emtiuuntol oTIC TEPIOCOTEPES
TEOYUOTIXES XATAOTAGELS.

1.5.5 IIpocopoiwoelg

To Xuvehxtixa Nevpovixd Aixtua (CNN), arotehodv wa xotnyopio poviédov Badide
udinong, Slampénouy GToV YElpLoWd BeBoUEVKY Tou Potdlouy Ue TAEYUD, OTwe exoves. To
x0plo ouoTaTxd, To eninedo cLVEAENS, yenolponotel Evay Tuprval yiol Vo eEAYEL CUTTY-
HOTIXG. Y OROXTNELO TLXGL OO ELXOVEC.
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YuvAdog, Wia un yeouuixy| cuvdetnon evepyonoinong 6mng 1 ReLU axohoulel ta eninedo
GUVENENC, ALEAVOVTAC TIC BUVATOTNTEG EXUAUNONG. 2T CUVEYELDL, TO OTPWUATO CUYXEVTE-
WONG HELWVOUY TO YWEwO PEYEVOC, EAEYYOVTOC TI TORUUETPOUS Xl TNV TOAUTAOXOTNTA,
EVG anoteémouy TNy unepmpooapuoyn. H epapyia tou dixtdou Tou emTEéENEL Vo aviyveleL
mohUmhoxo. puot{o aveldotntor and TN V€O TOUC OE WLl ELXOVA, ETLOEWYOOVTUS ETEX-
TACWOTNTA Xl ATOTEAECUATIXOTTAL.

H Beitiotonoinon mapauétpwy, 1 n exnaideuor, oTtoyedel otny elaytotonoinon tne O
apopdc PETAED TV EEOBWY TOU LOVTEAOU XU TOV TROYUATIXWY ETIXETWY, cUVATKLS Yenol-
nomowwvtac backpropagation xou gradient descent.

O npocopoiwoelg pag TepthauSavouy TNV TEOTOTOMNOT ToEUUETEWY OTWS TO GUVOAO Ot-
BoPEVLY, TO YUOVTENO, O BEATIOTOTOMNTAHS, Tol YeYEDT TopTidag xou oL TEPLOPIGUOL TOU GUCTYH-
patog.  Xenowomowlue xuplwg éva Boaoixd poviého CNN pe 800 cuvehixtind xan teio
TANpwe cLVOEdEPEVY entineda.

Y1 Swdixaoio exmaldeuchc pog, yenowonololue TN cuvdptnon Cross-Entropy Loss xou
Tov Beitiotomointy) Stochastic Gradient Descent, ye puduéd exuddnong 0,001.

YUYAEVTEOVOUUE Paocnég HETPNOELS XATA TN OLIEXELN TNG EXTOUOEUCTC OO TNV TAELEA TN
CUOXELAC, OTWE 1) AMWAEL XOUTA TNV SLIEXEL EXTIOUBOEUONS XU 1) AmdBOCT) TOU GUVOAOU
07O XoppdTL Bedouévwy To omolo TEoPAéneTaL Yo TEAXT Boxiur, xou enlong Soxiudlouue
TNV anddoon oe dedopéva Ta omolo oL cuoxeVeS dev €youv mpdoPaot. Ilpoyuatomoiolue
TEOCUETEG DOXES YPNOYWOTOWVTISC TO GUYOAMXO GOVOAO BEBOUEVLY TOU OLOXOULOTH, TO
omolo pmopel va dlopépel we TEog To PEYEVOC, TNV XaTavour| XaL ThV €tepoyévela. Auth
1N mowtAla TEPIBAUAAOVTWLY SOV EVIOYVEL TNV ELEWOTIN XU TNV TEOGUPUOCTIXOTNTA TOU
HOVTEAOU oG OE BLOPORETING TEQLBAAAOVTO DEQOUEVMV.

Apyxd, exmoudelouue TO UOVTEAO WG OF CUYXEXPUIEVO CUUTAEYUOTO YENOTOV TWV Ot-
douévwv and v Bdon FEMNIST, emtuyydvovtag mdve and 0,9% axplBeia oe napduota
GTUA Yeaprc. 2oT600, 1 axpifeia TépTel 6Tay SOXIUACETAL OE BLUPOPETIXA OTUA, UTOYEU-
ullovtag TNy ovdyxn YLol LOVTEND TTOU YEVIXEVOVTOL OE BLapOpETXE. BeBouéva.

YTV CUVEYEW TNC XEVIPOTONUEVNG  exmoldeuong, yenowdoroolue  Ouoctovolaxt
Mnyovixry Madnon ue tov ahyoprluo FEDMA. H pOduion nepihopfBdver 7 ouoxeuég, 10
yopoug xou 10 emoyéc avd yOpo. To mpoximtov poviého, mou OnuovpyHUNXE Ye TNV
EVOWUATOON BLUPORETIXGY TOTUXWY UOVTEAWY, TEOPAENEL ue oxp(Belo axdun xou 6e OTUA
Yeupol YopoxThed Tou onolou ol cuoxeleg dev €youv mpodoPacr 1.5.2.

To povtého xdie cuoxeunc umopel va mpofBiéder pe axpllela tor amoteAéoyoto Twv Oe-
OoPEVWY TOU, oxOurn xan pe oxpaleg Twée. Edv eyypagel pio véa ocuvoxeur, umopel va
YENOWOTOLACEL TO TAYXOCULO HOVTENO Yiot axplBY) e€oy®YY) CUUTEPUOUATOY Ywplc TEdo-
Yetn exnaidevor, delyvovtac Ty anoteheoyatixétnta e Ouoomovdaric Mdadnone otov
YELPLOUO TNC ETEQOYEVELNS TWV OEBOUEVWY XA T1| YEVIXEUDT) GE BLAPORES ELIGOBOUC.

Yty ouvéyela yenotwomololue to cUvoro dedopévwy MNIST pe avicoppotia Sedouévuwy
670 melpopd pag, pe xdie cuoxeln va €xel 4 xhdoelg. Ilpocopowdvouue Ty etepoyEveL
xhdoewmv (DH=0,4) exywpendvtac &L and ta déxa Pnelo/xAdoeic and to oivolo dedoyévnv
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FEDMA - 7 Clients - 10 Epochs per Round
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Figure 1.5.2: Anoteréopata exnaideuone oto FEDMA ye Sgpopetinéc ouddeg
FEMNIST

oe xade cuoxedn. Kotd tn dwdixacio FML, ot cuoxeuég exnoudebouy o poviéha Toug xau
TOL GTEAVOUY GTOV BLoaXOULOTN YETE amd xdie emavdhnd.

Ov axpifeleg petd v exmaldeuon cuoxeur| delyvouy LPMAEC TWéS Yia Ta GET exaldevaTng
xou emixdpwong. H Soxyr| ota dedopéva tng (Blag Tng ouoxeLiic oUYXAIVEL GTadLoXd OTNVY
axp{Bela exnaldevong, Ve 1 BoXIY O TOYXOOULL U1 TROCBACIUN BEQOUEV OVOUEVETAL
va ptdoet to 0,6, avtxatontpilovtog to 60% Ttou cuvdlou dedouévev ou dlodétel xde
GUOXELY).

H mporypotie o&io tng opoomoviioxic unyavixic udidnong ev Uéow Tng ETERPOYEVELNS TNG
TAENG AMOXOAUTITETOL PE TNV Tapathenon tng oxpBetag tou xadohxod Yoviéhou Tou Oi-
OXOULOTY) GE OAOXATPO TO GUVORO BOXUWY TOU GUVOLOL Bedouévwy 1.5.3.

g 8 8 & 8B 8 B 8

v

Server's Global model Confusion Matrix through FML training

Figure 1.5.3: IIpbodog untpoac cLyyuong o ToyXOOULO HOVTEAD

Yuyvd ou cuoxeleg €youv TOWIAES YWENTXOTNTES Xou WEYEDN OUVORWY BeBOUEVWLY.
Aoxwdlovtog pe SlopopeTind Yeyeln oe xdlde mpocoupoiwon, avolbouue v axpeifelo.
Enuewwtéoy, axdun xou 6Tay pewwvovtal Ta Oetypota dedopévwy amd 15.000 oe 10.000,
10 obotnua eoxohovdel vor cuYXAveEL pe TNV (Bl oxpiBeta, oNUAVTIXG OTAY Ol GUOXEVES
€Y 0LV TEPLOPLOUOVE TOPMV.

H npocoyoiwon BSupopetixddyv  aptumy cuoxeunv elvar {oTxAc onuaoclag yio T
BehtioTtomoinon evog ouoomovdlaxold cucTAuaTog exudinonc.  Atyotepec cuoxeuég
amhomoloy To cloTnua xat Bondodv GTOV EVIOTOUO CQUAIATWLY, €V TEPLOCOTERES
GUOXEVESC BoXdlouy T1 POETWAON TOU CUCTAUNTOC XAl OTOXOAUTTOUY TEOBANUTA ono-
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Figure 1.5.4: Axpifeio xou ypdvoc extéleons oe dlopopeTind uey€dn dedouévmnv

doong. Avtimpoownebouv eniong xaAbTepa TNV €TEPOYEVELL TIOL YapaxTnellel TNV opo-
omovolaxt) udinon.

[Mo v Tpocouolnon BIAPORETIXWY JELIUMY CUOXEUGY, BLUTNEOVUE CTOERES OPLOUEVES
Topopéteous, omwe uviun, CPU, ylpol dlaxouoty|, enoyéc avd yOpo, GUVOAO GEBOUEVKY,
xan otpotnywr. Metpdue tnv axpifeta, Tov ypévo xou to CEMQ e 3, 5 xou 10 cuoxeuég
META TNV exmoldevon.

Table 1.1: Xpévog extéheone xou twéc CFMQ

Apiude Xuoxeudyv | Xpdvoe (beut.) | CFMQ Anédoon Sraxoutoth uetd and 3
YUpoUg
3 900 2,177MB 0.43
5 1,193 3,347TMB 0.38
10 1,606 7,296 MB 0.36
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E&etdoope tov aviixtuno tng etepoyévelag g CPU oty Oupocmovdiaxd Mrnyavixt
Mdidnon. T vo amopovOcoude autd To QUUVOUEVO, SLUTNEHOUUE TOAOUS TORAYOVTES
o Tolep00¢ OTIC TPOGOUOLCELS, OIS TO OPLO UVAUNS, TOUS XOXAOUS DLOXOULOTY), TIG ETO-
Y€¢ avd yUPO, TO UOVTENO VELPWVIXOU BIXTUOU, TO GUVORO OEGOUEVWY, TIC XUTATUNOELS
OEDOUEVLY XL TN CTRUTNYLXA.

Sexwvrioope pe TNy xotovour dvo muerivey CPU avd cuoxeur] xou otodioxd UEWWooUE €S
6tou xdde pla éhaPe to 1/8 e oyic e CPU. Kadde n woyic tne CPU avd cuoxeur
pewinxe, o ypedvog extéheonc yia Ty exnaldevor oimhaoidotnxe. H pérenon CFMQ
napépetve epinou ota 22 * 108MB, mapd Tic adharyée oty xatavour e CPU. H axplBeta
e TeEhxNg Boxung Tapéuelve mepimou oto 0,9 uetd amd Teelc yOpoug dlaxouoTy. Autd
TOL AMOTEAEGUOTA LUTOYEAUUUILOUY TNV TROCUQUOCTIXOTNTO TOU CUCTAUNTOS OF SLUPORETIXES
otapoppnoelg CPU.

Table 1.2: Anoteréopata etepoyévetac CPU

Yuoxeveg | CPUs | CPUs/Xuoxeur; | Xpdvog(deut.) | CFMQ AxpiBela
Aloxoulot
3 6 2 623.28 2530MB 0.92
3 3 1 1240.51 2300MB 0.93
3 3/2 1/2 2315.45 2240MB 0.92
3 3/4 1/4 0487.26 2210MB 0.91
3 3/8 1/8 12065.69 2010MB 0.92

[Tparypatonoiooue €vor TEPAUO Yol VO XUTOUVONCOUUE TOV OVTIXTUTIO TV GUOXEUMY TOU
0ev umopoLV v cUUPBABICOLY UE TIC UTOAOLTEG GUOXEVEC AOYW TEQLOPLOUEVODY TOPMV.
Anuovpyfoope ouddee cuoxev®y ayunc pe ton xoatavoury CPU oe xdde oudda, oAAd
Touihec xoTavopés UETOEY OUdd®Y, TEOCOUOWOVOVTOS CEVIQLL TEAYUATIXNG AVICOTNTAC
mopwv. O otdy0¢ pog ebvar var yenotuomotiooude auTthy T eOOULCT] YL VO XATAVOCOUUE
XAANOTEPA T1) CUUTIERLPORE TV OUOCTIOVOWY GUC TNHATMY USUNOTNS TOEOUGTa ATOUWY Xal VoL
BEATIOCOUYE TNV AMOTEAECUATIXOTNTA TOUC OE TEQUBGANOVTA UE TEPLOPIOUEVOUS TTORPOUC.

Ilpoo. 1 Ilpooc. 2 Ilgooc. 3
YUVOhO XUOGHEU®Y 4 4 8
YUOAEVEC - 2uoTddo 1 2 2 4
YUoKeVEC - LuoTdda 2 2 2 4
CPUs/Xuoxeut| - Xuotdda 1 2 3 3
CPUs/Xuoxeut| - Xvotdda 2 1 1/2 1/2
Xp6voe(8) /Tpog M.O.-Xuotéda 1 150, 79, 55 79, 47, 32 238, 237, 235
Xp6voc(6) /TOpoc M.O.-Xuotdda 2 238, 124, 85 | 314, 190, 125 | 566, 562, 568
Xpovog Ilpoo. 1019s 1569s 2443s
CFMQ 3027MB 6102MB 13012MB
Tehxny Axp{Bewa 0.92 0.92 0.92

Table 1.3
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1.5. Tlewpopotind anoteréoyata

[o v mpocouolwon  xotavedunuévey  TERBUAAOVTOY  UaUNoNne OTov  TEUYHATIXO
XOOU0,ELGAYOUPE xOUBouC Tou amocLVOEoVTUL xatd OlaoTrhdata.  Ou Adyor yia auTég
T eyxatoheldelg umopel vo mepthopfdvouy {ntAuata cuvdeoydTNTag, SardeoydTnTo
GUOXELWMY, TEPLOPIOHOUE TOPWY, TPOTWACELS YENOTT), EVNUEQMOOELS GUCTHUNTOS 1) GOAAUAUTA
%o Aovldvous oL XoTdo TUOY) ETUXOWVGVIOC.

AnurovpYoope TOAMATAES OUADEC GUOXELOY XU TTou 1) xodepior avTipeTdTLE Slopope-
TIXd TOCOOTY EYXATAIAEUPNG TEOXAAWVTOG AMOCLVBESES xOUBwy. AuTth 1 Tpocouolwo
actdielog Sixtiou pag Bofince va UEAETHACOUUE TIC ETUNTOOEL TV CTORUOIXDY OTO-
GUVOEGEWY GTNY ATOBOGT| XUl TNV EVPKCTIA TOU GUC THUATOC.

Client Participation and Accuracy in Rounds

Client Participation and Accuracy in Rounds

-

Clients
o)
Accuracy

IS

Accuracy

34 |
2
1 02 02
0 ﬂ
T T T T 1 0.0 T 0.0
2 4 6 8 10 4 6 8 10
Rounds Rounds
(a) AxpiPela otic Tuyaiec ouvdéoels xau (b) AxpiBela oty anoclVES GUGKEVWY OTOV
ATOGUVOEGELC GUGKEUWY 30 y0po
Client Participation and Accuracy in Rounds 1.0 Client Participation and Accuracy in Rounds

8
0.8 8 0.8
— |
7 7
6 6

Accuracy
Clients
Accuracy

0 * 0
T T T T 1 0.0

2 4 6 8 10 2 2
Rounds Rounds

0.0

(c) AxpiBela oty anocivdeon cuoxeuwy otov  (d) AxpifBelo TNy omooiViEoT GUOXEUHGY GTOV
6o y0po 7o y0po

Figure 1.5.5: Axp(Beta oty amocivOEcT) GUGKEUGDY

IMopd TNV XUPOVOUEVY) GUUUETOYY XL TNV EYXATIAEUYN TWY CUCXELWY, To AvVeEdETNToL
X0 TIOVOUOLOTUTIAL XaToveUnuéva dedopuéva eacpdiioay T cuvéyton tng PBeitiwong g
oaxpBelag Tou ToYXOOUIoU HOVTEAOU.  AxoUn XoL Ol CUCXEUEC TOU TROCYWENCOY Xd-
YuoTepNUEVE UndpecaY Vo ETWPEAIoOY and TNV Tpolndoyouca udidnor, ue anoTéAeoud
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Vv Toyelo uddnom xan TV LPNAT apyix oxplBeta. Autd To melpauo €8eie TNV amoteheo-
HOTIXOTNTA TNS OUOOTIOVOLOXNG Udinong o Buvopxd xataveunuéva tepiBdhhovTa.

H npdwen eyxatdreun twv cuoxeuny elye wg anotéheoyo Ty 1o OTERT ONOXAHRWST| TWV
20X AWV exTadELONE AOYW PElWPEVNE TdavoTnTog xorducTépnong. 2o0T600, 1 eyxatdhewdn
CUGXEUNY TOU GUVERT) 0pYOTERA EEAGPIACE TLO ONOXANEWUEVY] EXTUDBEVGY) TOU Ty XOo-
HLOU HOVTEAOU AOY® TNE ALENUéVNg Towalouopplag xal 6Yxou dedouévewy. Emouévee, ctvar
Cotnhc onuaociog va e€loopponniel 1 GUUUETOYT TWV CUGKELWY UE TIC EXTIUNOELS Aov-
YdvovTtog ypdvou yia TN BEATIOTN opooTovdloxy| udino.

1.6 Ilepintwoslg yenong

1.6.1 Egoapupoyvég yia xivnTtd

H Opoonovdiaxy unyavixh expdinon (FML) Behtdver tic eunetpiec and xivntéc cuoxeuéc,
CUUTERLAUBAVOUEVWY LOVTEAWY YAWOGUS OE TANXTROAGYLO X0 VLY VWPELOTG TROCKTOU 1)
POVAC, XPNOWOTOUWVTIS EXUAINGCT OTT CUOXELY| Y Wp(C ATOCTOAY| BEBOUEVWY OE XEVTELXOUC
droxoptotée 28, 4, 27, 25]. Autéc ot egapuoyéc houBdvouy vrddn Sidpopous mTopdyovieg
OTWE Ol BLUVATOTNTEG LAOU ¥eHoTn, oL cUVUXES OixTOOU Xou 1) YeHoT TNG UraToplag.
H Opocmnovdiaxr; Mddnon €yel deiel Beltiddoelc oc oyéon Ue To Topadootaxd LOVTEND,
Aopfdvovtag uddn To AmdEENTO, TNV UTOTEAECUATIXOTNTA X0l TOUS YOUIXOUS TEPLOPLOHOUS
mou oyeTi{ovion Ye TN YEHOoT OESOUEVLY.

1.6.2 Avutovopa oyRuaAT

H Opoonovdwxry Mddnon evioyler tny euneiplor ToU aUTOXWVATOU AUTOVOUNS OB1YNOoMNS
HELOVOVTOG TOV Aavidvovia ypovo, UEWwvovTae To €000 PETAB0OTG OEBOUEVLDY  Xal
Behtidvovtag to andppnro (23, 18, 43]. Avtl yio xevtpixy| exnaideuon dedouévmy, emttpénel
TNV ATMOTEAECUATIXT| YPNHOT| OESOUEVWY GE TEAYUITIXG YEOVO amd BLdpopous o ONTHRES.

1.6.3 Tatpuxd dedopéva

H pnyovin| expdrinorn nou BaciCeton o dedouéva et TOAES SUVATOTNTES GTNY UYELOVOUXT
nepidordm, odhd mepropiletoan and puduiotixolc mepopopole [34].  H Opoomovdioxd
Mddnon mapéyer wa Aoon Slathienone TS WOLWTIXOTNTAS, EMITEETOVTAS TNV AVIAUGCT] Oc-
Bopévmy ywpelc YeTapopd dedouévwy Tépa and To (Bpuua 6Tou eivan armodnxeuuévo. Mropel
VoL AVTHIETOTIOEL TROXANOEIC OTwe 1 uepohndla, 1 etepoyévela Bedouévwy xal To amdp-
ENTO OTA LTEWXE OedOPEVA, BEATIOVOVTUSC TOUEAAANACL TO AMOTEAECUATO TNG UYELOVOUIXHC
repldohng.

1.7 vunépacua

1.7.1 MellovTtixég avoPaduiostg

Ov yehhovtuée avaPBaduioelc yio to epyaielo mpocopoiwone Ouoonovomxic Minyavixig
Mdidnone Yo emxevipwioldv otn Beitiwon e oAANAeTOpaong UE TOV YeHoTrn, OTnV
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1.7, Yvurépaoya

evioyuon TV AVIALTIXOY GTOLYEIWY Xt TNE ToEaX0A0VINCTC, GTNY EMEXTACT) TWY ETLAOYWY
HOVTEAWY X0l OTEATNYXNS, OTNY EVOWUATWOT) SLopoplxol AmopeHTou, GTNV EVERYOTOINOT
NG AVATTUENG OF CUOXEVESC TROYUATIXWY GUCXEUWY X0k OTNY TEOGOUOIOY) TOQUUETOWY
TEAYPATIXO) XOCUOVL.

O BievpuUéveg EMAOYEC LOVTEAWY X0l Ol OTEATNYIXES OLooTOVOLXTE Udinong Yo emitpéd-
0LV GTOUC EQEUVNTES VAL ETUAEEOLY T TILO XUTHAANAL LOVTEAD YOl TIC AMOUTHOELS TOUG.

Me Vv eVOWUATWOT BLPORIXOY TEYVIXWOY ATopEY|TOV, Yo EVICYUCOUNE TG OLUGHIACEL
ATOPENTOU TOL EQYAAEIOL TPOCOUOIWONS, TEooTaTELOVTAS euaicUnTo Bedouéva xatd TN
Oidpxetor TN exmaldeuong. Ot BUVITOTNTES AVAMTUENC YLl CUOXEUES TROYUATIXODY AXEWY
Yo SLEUXOALYOUV TOV TEAXTIXO TELRoATIONG. Ol TPOCOUOLOCEL TOU EVOOUNTWVOUY
TOUEUUETEOUC TNG CUCKEUNE TOU TEAYMATIXOU X000, OTws 1 toyUg ofjpatog WiFi, ta
enineda punataploc xou to tpdTUTAL YEHoNe Ya fondncouy oty peako Tixy| a&lohdyY o).

1.7.2 Erniloyog

Auth n perén éxel gotioel Tic duvatdtnteg Tng Ouoonovdiore Mnyavixic Mddnon otnv
AVTLIETOTLOT CNUAVTIXODY TPOXANCEWY BEBOUEVKV, CUUTERLAAUBOVOUEVNC TNE ETEPOYEVELIC,
TOU amopEEHTOL XA TNG WoxTnotag. XenowwomolnvTag To Thaicto avolytol xwowa Flower,
€YOuUE OmOOEIEEL TNV TEOXTIXOTATA XAl TNV €VEMEIN TOU OF Uiol TOLXALD EQEUVNTIXWY
oevaplev, oZlONOYOVTAS TUPAYOVTEG OTWC 1) ETEPOYEVELN OEGOUEVWV oL UMXOU XoL 1|
ATOGUVOEST) GUOKEVMY.

To evpruotd pag emBeBardvouy v alo e Opoomovduaxhc Mnyavixhc Mddnon otov
YEWRLOUO ELACUNTWY Xl UEYAANG HAUOXOS DEBOUEVMV, SLITNEMVTAS TUPIAANAL TO ambE-
ento xan TNy Woxtnolo. ©étouv wa otoepr| Bdon yior pEAROVTIXY €pEuva o oVETTUEN,
UTOYEUUUIOVTAS TNV IXAVOTNTA TOU WS TEONYHEVOU €pYOAEOU Yiol EQEUVAL XAl EQPUPUOYES

unyovIXhc pdinong.
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Chapter 2

Introduction

2.1 Rise of Big Data

In recent years, the term "Big Data" has become increasingly popular not only within
the technology sector but also in other fields. This term refers to the aggregation of
enormous quantities of data in a single repository, which has become possible due to
advancements in data storage and management technologies.

The collection and analysis of Big Data has become a critical element in many sec-
tors, including healthcare, financial institutions, government agencies, and e-commerce
companies, to name a few [10]. These organizations have been at the forefront of data
gathering and have utilized Big Data to gain insights into customer behavior, market
trends, and other valuable information. As technology continues to evolve, it is expected
that the use of Big Data will become increasingly widespread, with many organizations
recognizing its potential to drive innovation and growth.

Big Data is also a term used to describe extremely large and complex data sets that
cannot be effectively processed or analyzed using traditional data management and
processing tools. These data sets include structured data, semi-structured data, and
unstructured data. The concept of Big Data is characterized by the "3Vs" of data
[33]: volume, variety, velocity and new "Vs" like Veracity, Variability and Low-Value
density|10].

2.2 Privacy in the Age of Big Data

Over the past few decades, privacy has been extensively studied, with a focus on top-
ics such as cryptography, communication, and information theory. However, given the
enormous size of Big Data, it has become increasingly challenging to effectively ap-
ply existing cryptographic solutions. Furthermore, the limited processing and storage
capacity of mobile devices makes encryption and decryption infeasible. As a result,
conventional cryptographic solutions are no longer suitable for addressing the emerging
privacy requirements of Big Data.
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The failure of simple anonymization techniques also adds to the challenges in managing
privacy in the era of Big Data. The lack of a clear definition of privacy, coupled with its
subjective nature, makes it difficult to establish a universal definition that can be applied
across all contexts. As the adoption of Big Data continues to grow rapidly, questions
about the reliability of existing privacy techniques have emerged. As a consequence, it
is important to revisit existing privacy studies in the context of Big Data and develop
new algorithms, models, and frameworks to address the challenges of privacy in this
new paradigm. This will be crucial for ensuring that privacy concerns are effectively
addressed and that individuals’ personal data is protected as Big Data continues to play
an increasingly important role in various sectors [5].

The increasing use of Big Data has brought about a range of issues and challenges, par-
ticularly with regard to privacy attacks and the need for effective counter-techniques.
Various techniques, such as k-anonymity [49], t-closeness [36], l-diversity [39], and dif-
ferential privacy [19], have been developed to address these privacy concerns. However,
there is still a need for further research in this area, particularly with regard to devel-
oping effective anonymization techniques for unstructured Big Data [5].

2.3 Rise of Al

Indeed, AI and Big Data are closely connected [32], as Al is often used to facilitate
the capture, structure, and analysis of Big Data. With the volume, variety, velocity,
and veracity of Big Data, it can be challenging for organizations to extract meaningful
insights from the data. This is where Al comes in, as it can help automate and streamline
the data analysis process, making it easier to identify patterns and trends.

By leveraging machine learning algorithms and other AI techniques, organizations can
process and analyze large data sets more efficiently and effectively. Al can help identify
key relationships between different data points, predict future outcomes, and provide
insights that might not be apparent through manual analysis.

In addition, the use of Al can help organizations overcome some of the challenges associ-
ated with Big Data, such as the complexity and diversity of data types. By automating
certain aspects of the data analysis process, Al can help organizations focus on the most
critical data and gain valuable insights more quickly.

2.4 FEthical Problems of Al

AT has the potential to transform our lives and make them easier in many ways, but
it is important to acknowledge that there are also potential drawbacks associated with
its use. Al systems can be incredibly powerful, but they can also perpetuate biases
and discrimination [6, 17|, and they may make decisions that are harmful or unethical.
Additionally, there are concerns that the use of AI may result in job loss or other negative
impacts on employment. Ethics on Al is a subject that has been gaining increment
attention the recent years and a lot of studies focus on this burning subject |7, 48|
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Despite these concerns, the benefits of Al cannot be ignored. Al is being used to im-
prove healthcare outcomes, optimize transportation systems, enhance cybersecurity, and
more. Al-powered virtual assistants and chatbots are also becoming increasingly popu-
lar; providing a convenient way for people to access information and services.

To ensure that the benefits of Al are realized while minimizing the potential drawbacks, it
is important that Al systems are developed and used in a responsible and ethical manner.
This includes designing Al systems that are transparent, explainable, and accountable,
as well as developing regulations and guidelines to ensure that Al is used in a way that
aligns with societal values. By taking a thoughtful and responsible approach to Al, we
can harness its potential to improve our lives while minimizing the potential risks. Based
on [48] there are 39 ethical issues that we can identify and some of them are:

1. Lack of trust

Lack of quality data
Negative impact on health
Problems of integrity
Lack of accuracy of data
Lack of privacy

Lack of transparency

Bias and discrimination

© ® N o ot WD

Unfairness

,_.
e

Misuse of personal data

—_
—_

. Negative impact on democracy

J—
[\)

. Loss of freedom and individual autonomy

—_
w

. Contested ownership of data

[a—
S

. Problems of control and use of data and systems

—_
ot

. Negative impact on vulnerable groups

—_
(=}

. Lack of accountability and liability

[
EN{

. Negative impact on the environment
18. Loss of human decision-making

These issues have a close connection to the usage of Machine Learning and researchers
and regulations are trying to safeguard humanity in the face of this ever-growing tech-
nology. The outcome of these efforts p.e. is the AT Act [21].

The issues of opacity, unpredictability, and the need for large datasets in machine learn-
ing techniques based on artificial neural networks contribute to the growing concerns
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about Al explainability. The lack of transparency and interpretability in Al decision-
making can result in decisions that are difficult to understand, leading to concerns about
potential biases, inaccuracies, and unintended consequences. With machine learning al-
gorithms that are opaque and unpredictable, it is difficult for the developer, deployer,
or user to know how the system will react to a given set of inputs. Furthermore, the
adaptiveness and dynamic nature of these systems mean that past behaviors are not
always a perfect predictor of future behavior in identical situations. Therefore, the need
for Al explainability is becoming increasingly important to ensure that Al systems are
transparent, accountable, and aligned with ethical and societal values. Developing tech-
niques and tools for improving Al explainability is essential to overcome these challenges
and ensure the responsible development and deployment of Al systems.

2.5 Privacy Vs Security on Al

In the context of AI, it is important to distinguish between data security and data
privacy. While both are essential considerations in ensuring the responsible development
and deployment of Al systems, they address different aspects of data protection.

Data security focuses on protecting data against unauthorized access, including when
and what can be accessed. This involves implementing measures to prevent data
breaches, such as encryption and access controls, and ensuring that AI systems are
designed and deployed in a secure manner. Data security can be achieved without com-
promising privacy, as it is possible to implement strong security measures while still
protecting personal data.

Data privacy, on the other hand, focuses on who can access the data and the ability to
protect personally identifiable information. This includes ensuring that personal data
is collected and processed in a respomnsible and ethical manner, and that individuals
have control over their own data. Data privacy cannot be achieved without adequate
data security measures, as protecting personal data requires ensuring that it is kept
confidential and secure.

Overall, both data security and data privacy are essential considerations in ensuring
the responsible development and deployment of Al systems. By implementing robust
security measures and ensuring that personal data is protected and used in a responsible
manner, we can help to ensure that the benefits of Al are realized while minimizing the
potential risks.

Although there is always a concern for security, it has been well-researched and studied
in depth. However, when it comes to privacy guarantees, there are numerous examples
of failures that have resulted in significant problems.

2.6 Machine Learning Architectures

Significant advancements in Artificial Intelligence (AI) and Machine Learning (ML) have
been driven by breakthroughs not only in these specific areas but also in related fields
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Figure 2.5.1: Privacy vs Security

such as cloud computing, edge computing, and hardware technology. These develop-
ments have facilitated Al and ML to operate effectively on the edge, directly where data
is produced, streamlining the process of inference at the point of origin.

One approach that has garnered considerable attention in recent years is distributed ma-
chine learning, which involves dispersing computation across multiple nodes for efficient
processing. This evolution from the traditional centralized model, where all data was
collected and processed in a single location, was a major leap forward. Distributed ma-
chine learning significantly reduced latency and increased scalability but still fell short
in ensuring complete data privacy as it still necessitated data sharing between nodes.

To address this lingering concern, Federated Machine Learning (FML) was introduced
[40]. FML represents the latest evolution in this journey [2], presenting an innovative
method that allows model training, testing, and inference to be conducted at the edge.
By keeping data at its source, it eliminates the need for data transfer, thereby preserving
privacy by design and offering a robust solution to protect user data.

FML is part of the broader scope of Privacy-Preserving Machine Learning technolo-
gies [16]. By combining the benefits of decentralized processing with enhanced privacy
measures, Federated Machine Learning represents the industry’s continuous efforts to
balance efficient data processing with stringent data privacy and security [52]. The
implementation and further development of such technologies signify the ever-growing
importance of data privacy in our increasingly interconnected digital world [11].
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2.7 Contributions

This thesis provides an exhaustive exploration of Federated Machine Learning (FML),
outlining its principles, key contributions to Machine Learning (ML), and potential as
a solution for data privacy concerns. In this research endeavor, we have also developed
an innovative simulation tool based on the Flower framework.

This tool facilitates the simulation of a multitude of FML scenarios, accounting for as-
pects like data and hardware heterogeneity, as well as the occurrence of stragglers and
client dropouts. It features an intuitive user interface that empowers researchers to dis-
tribute partitioned datasets among multiple clients with diverse hardware specifications.
Equipped with comprehensive monitoring capabilities, this tool enables detailed track-
ing of a wide range of performance metrics, including accuracy, training loss, network
capacity, and CPU performance.

The objective of this study is not only to provide an in-depth understanding of FML
but also to bridge the gap between theoretical knowledge and its practical application,
shedding light on the expansive potential of FML in addressing real-world challenges.

2.8 Related Work

Federated Learning (FL) solutions in the field of machine learning have been divided
broadly into two categories: libraries and end-to-end systems. Libraries such as PySyft
[45], and Flower 9] offer a flexible suite of tools to design, implement, and execute FL
algorithms. They provide granular control over the FL process but require considerable
expertise and additional infrastructure to manage and monitor FL workflows at scale4.

On the other hand, end-to-end systems such as FEDn [22] and FedML [29] provide com-
prehensive, prepackaged solutions that handle all aspects of the FL. workflow. These
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include data distribution, model training, updates aggregation, and monitoring, among
other features. They are designed to offer an integrated experience, reducing the com-
plexity typically associated with orchestrating FL. workflows.

In addition to these systems and libraries, our work also delves into the challenges
that arise due to hardware heterogeneity, class heterogeneity, stragglers, and dropouts
in the context of federated learning. Each of these factors can significantly impact the
effectiveness and efficiency of FL algorithms and require thoughtful strategies to mitigate
their effects. We investigate these issues and propose solutions to address them, with a
particular emphasis on their relevance in real-world FL deployments.

2.9 Chapter Description

The "Introduction" outlines the context of the study, addressing the rise of big data
and Al, the resultant privacy concerns, the ethical problems of Al, and the ongoing
struggle between privacy and security in Al. It also briefly introduces the variety of
machine learning architectures, underlining the specific contributions of the thesis and
associated works in the field. Subsequently, the "Privacy Preserving Machine Learn-
ing" section delves into various methodologies for maintaining privacy within machine
learning, discussing concepts like differential privacy, homomorphic encryption, and mul-
tiparty computation.

The thesis then provides a comprehensive overview of Federated Learning (FL), elab-
orating on its learning algorithms, its frameworks, and the challenges it poses. In the
"System Architecture" section, the focus shifts to the practical aspects of the study. The
architecture of the system used in the thesis is presented using UML diagrams, with sec-
tions dedicated to system description, monitoring, and transitioning from Jupyter to
Federation. In the "Experimental Results" section, the outcomes of the experimental
investigations are detailed, including discussions about the datasets used, class/data and
hardware heterogeneity, and simulation results. Finally, the thesis explores practical ap-
plications or "Use Cases" of the system, in contexts like mobile applications, autonomous
vehicles, and medical data management, before concluding with an assessment of the
study and potential directions for future work.
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Chapter 3

Privacy Preserving Machine
Learning

Privacy-preserving machine learning [44] is a subfield of machine learning that aims to
protect the sensitive information contained within the data while still enabling efficient
and accurate model training and predictions. This involves developing methods and
techniques that safeguard the data used in the machine learning process from unautho-
rized access or extraction. One popular method is differential privacy, which adds noise
to the data or computations to ensure that the outcome of a machine learning algorithm
does not reveal specific details about any individual data point. Another approach is
federated learning, where the data remains on local devices and only model updates
are shared and aggregated. Homomorphic encryption, secure multi-party computation,
and zero-knowledge proofs are also used to perform computations directly on encrypted
data. Privacy-preserving machine learning is crucial in many areas such as healthcare
or finance where data confidentiality is paramount.

3.1 Differential Privacy

Differential privacy [19] is a framework designed to enable data analysis without com-
promising individual privacy. By adding statistical noise to either input or output data,
the probability of learning a specific set of parameters remains relatively consistent, even
if a single training example in the dataset is altered. This framework ensures privacy
by maintaining a privacy budget, where smaller budgets correspond to stronger privacy
guarantees. There are two main types of differential privacy: Local and Global. Local
differential privacy adds noise to individual data points, providing plausible deniabil-
ity for each user, while Global differential privacy introduces noise in the output of a
dataset, requiring users to trust the party managing the database. Both types provide
similar privacy guarantees, with Global differential privacy offering higher accuracy at
the expense of requiring trust in a central authority.

The level of privacy provided by a differential privacy mechanism is determined by
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Figure 3.1.1: Differential Privacy with FML

two parameters, epsilon (€) and delta (§). Epsilon represents the maximum difference
between the output probabilities of two neighboring databases, with smaller values in-
dicating stronger privacy guarantees. Delta is the probability of accidental information
leakage, with zero leakage corresponding to (e)-differential privacy. The amount of noise
added to achieve the desired level of privacy depends on several factors, including the
sensitivity of the query, desired epsilon and delta values, and the type of noise to be
added (e.g., Gaussian or Laplacian). By carefully selecting these parameters, differential
privacy allows for meaningful data analysis while maintaining the privacy of individuals
within the dataset. Differential Privacy is able to tackle different privacy attacks like
linkage and reconstruction [20].

Definition: Differential Privacy: A randomized algorithm M is (¢, §)-differentially private
if for all data sets D and D’ differing on at most one row, and any S C Range(M),

Pr[M (D) € S] < exp(e) x Pr[K(D’) € S|+

One of the early works in machine learning using Differential Privacy can be found
in the work by Abadi et al.[1] where they presented a study on differentially private
stochastic gradient descent. They introduced the "moments accountant" as a tool to
monitor privacy loss when applying the Gaussian mechanism to random subsets of the
input data. Differential privacy can be used as the mean to minimize the risk of the
AlI-Big data recognized problems of bias and discrimination while preserving the model
accuracy. With the use of DP the models comply to the strict regulations, ethical
requirements and keep inclusiveness and fairness in their predictions [51].
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3.2 Homomorphic Encryption

Homomorphic encryption [3] is a form of cryptography that allows computation to be
performed on ciphertext, without revealing the underlying plaintext. In simpler terms, it
allows computations to be carried out on encrypted data, thereby protecting the privacy
of the data. There are two main types of homomorphic encryption: fully homomor-
phic encryption (FHE) [|26] and partially homomorphic encryption (PHE). Also there
are more types with different attributes, like Somewhat homomorphic encryption [24],
Leveled fully homomorphic encryption [57] FHE allows for arbitrary computations to
be performed on ciphertext, while PHE only allows for computations of a specific type
(either addition or multiplication) to be performed on ciphertext.

Homomorphic encryption has many applications in areas such as cloud computing [50],
secure data storage, and secure data processing. For example, it can be used to allow
computation on sensitive data without the need for the data to be decrypted first, thus
protecting the privacy of the data.
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Figure 3.2.1: Homomorphic Encryption with FML

However, homomorphic encryption has some limitations. Firstly, it can be computa-
tionally intensive, which can limit its practical use in certain applications. Secondly, it
can be vulnerable to attacks that exploit the structure of the encrypted data. Despite
these limitations, homomorphic encryption is an active area of research, and it has the
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potential to revolutionize the way sensitive data is handled and processed.

The federated machine learning process can potentially expose sensitive information in
the updates sent to the server. By using homomorphic encryption, the updates can be
encrypted before being sent to the server, thus ensuring that the sensitive information
remains private. The central server can then perform computations on the encrypted
updates without decrypting them, and send the updated model back to the parties.
This is a different approach from the common encryption technics where the encryption
happens when the data are stored or when are transmitted. There are several challenges
associated with using homomorphic encryption in federated learning, such as the com-
putational overhead and the need for specialized hardware. However, researchers have
made significant progress in overcoming these challenges, and homomorphic encryption
is seen as a promising technique for enhancing the privacy and security of federated
learning.

In this paper [57] purpose a system model for based on the BFV scheme [56] so that the
server is aggregating on encrypted data. Also they give the algorithms for model train-
ing in the clients where the model is trained normally in a federated machine learning
paradigm with the difference of encrypting the data after the fit. In the server, the model
aggregation happens on the encrypted data without decrypting doing the holomorphic
addition and multiplication that is required. Lastly, the decryption on the client side
is taking place where the clients are using their keys in order to access the weights and
update them for the next round of local training. In the same work it is shown that the
execution times are exponentially greater with the use of encryption but the prediction
model performance metrics stay the same.

3.3 Multiparty Computation

Secure multi-party computation (MPC) is a cryptographic technique designed to safe-
guard digital assets or protect sensitive information by splitting it into multiple parts.
The method is characterized by its ability to maintain secrecy since no single participant
can access or leak the entire "truth". MPC eliminates the need for trusted third parties
to see the data, resolving the tradeoff between data usability and privacy, while offer-
ing high accuracy and precision. However, the technique comes with some drawbacks:
it requires significant computational overhead due to the need for generating random
numbers to ensure secure computation, and it involves high communication costs since
it necessitates connectivity and communication between all participants. Thus, while
MPC is highly secure and reliable, it can slow down runtime and increase operational
costs. Furthermore, MPC can be combined with federated machine learning, enhancing
the efficacy and privacy-preserving capabilities of these systems [41, 30, 13].
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Federated learning Overview

By enabling machine learning models to be trained on data that remains decentralized
and secure, federated machine learning can help to ensure that Al systems are both
privacy-respecting and secure. By leveraging the power of decentralized data, federated
machine learning has the potential to unlock new insights and drive innovation while
protecting personal data and mitigating the risks associated with centralized data
collection and analysis.

The inception of federated learning can be traced back to the seminal paper by
McMahan et al [40], which primarily focused on the growing capabilities of modern
devices to store, analyze, and process vast amounts of data, as well as to train machine
learning models locally. The authors identified several critical challenges associated with
such devices, including the sensitivity of the data they contain and the reluctance of
users to share this information. Furthermore, the authors recognized the difficulties in
transmitting data to external locations, primarily due to concerns related to data quality
and volume. In response to these challenges, the concept of a decentralized approach,
termed Federated Learning, was proposed. This innovative method aimed to facilitate
the analysis and application of machine learning models directly on the devices, without
compromising data privacy. In this paper, McMahan demonstrated the potential of
this technology in addressing issues related to privacy and robust machine learning.
Additionally, they highlighted the challenges posed by heterogeneous data (non-1ID)
and communication costs. To summarize, this pioneering paper laid the groundwork
for Federated Learning by addressing the burgeoning need for decentralized machine
learning approaches. The authors acknowledged the potential of modern devices in
handling large-scale data and model training, while simultaneously emphasizing the
importance of addressing data privacy concerns. The proposed Federated Learning
framework not only demonstrated the feasibility of addressing these issues, but also
shed light on the challenges of dealing with heterogeneous data and communication
costs, paving the way for future advancements in this domain.

The basic Federated architecture consists of several key components:
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Participating Nodes: In the FML architecture, nodes refer to individual devices
or organizations that contribute data to the learning process. These nodes could be
smartphones, IoT devices, or separate entities with their own data repositories like
financial and government institutions. The nodes are responsible for local computation
and maintaining the privacy of their data. Each node trains a local machine learning
model using its own dataset and shares only the model parameters or updates with the
central server, rather than raw data, thus preserving data privacy.

Central Server: The central server plays a crucial role in the Federated Machine
Learning process. It is responsible for aggregating the model updates received from the
participating nodes and coordinating the overall learning process. The server merges the
updates from all nodes to create a global model, which is then sent back to the nodes
for further refinement. The central server also ensures that the communication between
nodes is secure and efficient.

Communication Protocol: An essential aspect of the FML architecture is the com-
munication protocol that facilitates the exchange of information between the participat-
ing nodes and the central server. The protocol needs to be secure, reliable, and efficient
to ensure the privacy and integrity of the data while minimizing the communication
overhead.

Learning Algorithms: The choice of learning algorithms in Federated Machine
Learning is an important factor that affects the overall efficiency and effectiveness of
the system. FML typically uses distributed optimization algorithms that can be applied
iteratively and in parallel across the participating nodes.

4.1 Types of FML

A fundamental characteristic of federated machine learning (FML) revolves around the
nature of the participating devices or entities, which dictates whether the approach is
cross-device or cross-silo[42]. The magnitude, specifications, and resource capabilities
of these entities form the basis for differentiating between these two styles of federated
learning.

The difference between cross-silo and cross-device federated learning lies in the nature
of their architectures and the specific data privacy challenges they address. In cross-silo
federated learning, data is split across different servers or organizations (the silos), and
machine learning models are trained on each of these separate silos. This approach is
particularly valuable in scenarios where data cannot be pooled together due to regula-
tory constraints, competitive considerations, or privacy concerns. For example, multiple
hospitals might collaborate to train a shared machine learning model without having to
disclose individual patient data to one another.

On the other hand, cross-device federated learning is designed for scenarios where data
is generated and stored directly on users’ devices, such as mobile phones or Internet-
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of-Things (IoT) devices. In this setting, each device trains its own machine learning
model based on locally stored data and only sends model updates to a central server for
aggregation. This approach enables data to stay on the original device, boosting privacy
and security. It’s particularly useful in consumer-focused applications, where personal
data is often sensitive and regulations like GDPR demand strict privacy protections.

In essence, the differences arise due to the contrasting demands of the environments
where the data resides, and the unique privacy and logistical challenges posed by each
environment.
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Figure 4.1.1: FML Types

There are also three types of federated learning, depending on how data is distributed.

Vertical Federated Learning [55][59]: This method is used when different entities
have different features for the same set of samples. In vertical federated learning, all
participating organizations collect different feature data for the same group of users.
This form of federated learning is useful when there is a large number of features, and
the models that are being build, consider all of these features without having to share
raw data between organizations.

An example could be two businesses that interact with the same clients but collect
different kinds of information about them. A bank might have financial data about a
customer, and a health app might have health data about the same person. In verti-
cal federated learning, these two businesses can collaboratively learn a model without
sharing their raw data.
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Horizontal Federated Learning [59]: This method is used when different entities
have the same features but for different individuals. It means that different parties own
information about different individuals but share a similar feature space.

For example, multiple hospitals might have the same type of medical information (like
MRI scans) about different patients. Each hospital can contribute to the learning process
without directly sharing patient data, protecting individual privacy.

Transfer Federated Learning [46]: In this type, learning models are trained in one
organization and then transferred to another where the model can be fine-tuned. This
is often used when the target organization has insufficient data or when it is desirable
to transfer knowledge from one domain to another.

For instance, a general image recognition model could be trained on a large, diverse
dataset at a tech company, then transferred to a hospital where it’s fine-tuned to recog-
nize specific types of medical images. The hospital benefits from the initial learning but
doesn’t need a large dataset of its own to get started

4.2 Learning Algorithms
4.2.1 FedAVG

Federated Averaging, often called as FedAvg, is an algorithm used in Federated Learning.
This method was introduced by McMahan et al. [40] as a way to build machine learning
models using data that remains on the device where it was created, instead of transferring
it to a central server for training. Here is a general description of how the FedAvg
algorithm works:

1. Initialize the global model: A global model is initialized on the server. This model’s
weights are randomly initialized.

2. Broadcast the global model: The global model is then sent to a fraction of the
total devices participating in the federated learning process. This fraction may
be chosen randomly or based on certain criteria (e.g., devices that are currently
active). The model received by the devices is used as a starting point for local
training.

3. Local Training: Each of these devices, often referred to as clients, trains the model
on their local data. This typically involves several epochs of training on the local
dataset. During this phase, the raw data never leaves the individual device, thus
preserving privacy.

4. Aggregate updates: Once local training is completed, each client calculates an
update to the model (i.e., the difference between the weights of the locally trained
model and the original global model), and sends these updates back to the server.

5. Update the global model: The server then aggregates these updates from all the
clients. The most common way to do this is by averaging the updates (hence the
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Figure 4.2.1: Federated Machine Learning Setting

name "Federated Averaging"). This averaged update is then used to update the
weights of the global model.

6. Repeat the process: Steps 2-5 are repeated for a number of communication rounds
until the model converges to a satisfactory level of accuracy.

The goal of FedAvg is to provide a method to train machine learning models that can
effectively learn from decentralized data while maintaining privacy, as the raw data
never leaves the local device. This makes it useful for applications where data privacy
is a concern or when it is impractical to bring all the data to a central server. However,
it is worth noting that it still faces challenges such as handling non-IID data, stragglers,
and varying amounts of data among clients.

4.2.2 FedMA

The federated matched averaging (FEDMA) algorithm is designed for neural networks
CNN and LSTMS and was proposed by IBM [54].

One difference from FedAVG is that the merging of model parameters is not being done
in a naive way. More specifically, Fed AVG assumes that the neurons of all the client
models, explain the features extracted from the training are in the same parameter
and overlap. This issue arises due to the permutation invariance of neural network
(NN) parameters, where the same NN can have different parameters even if the input
is the same.This problem becomes even more visible when the data are Non-IID and
fed AVG loses a lot of the unique characteristics of each client by this naive averaging.
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Algorithm 1 Federated Averaging (FedAvg)

1: Initialize global model parameters w
2: for each round t = 1,2,...,T do
3:  Randomly select K clients to participate in training

4:  for each client k in selected clients do

5: Send global model parameters w to client k

6: Client k trains model on local data to produce updated parameters wy
7 Client k sends updated parameters wy, back to server

8: end for

9:  w = average of all received parameters wy from clients

10: end for

11: return final global model parameters w =0

So FedAVG is a good strategy for benchmarking but losses in accuracy. To tackle
this problem, FEDMA algorithm uses a technique called matching average, based on
Probabilistic Federated Neural Matching (PFNM)|61].

Its key point is that the global shared model that creates comes from a layer-wise manner
by matching and averaging the hidden elements of the model: the channels of the CNNs
or the hidden states of the LSTMs, or the neurons of the fully connected layers. The
matching of the hidden elements is happening with similar feature extraction signatures.

In the FEDMA algorithm, there are, the federated learning rounds like to ones in FE-
DAVG and in every FML round there are the matching rounds where each client trains
the model on the local data, sends it back to the server where each time a specific layer
is matched and augmented as shown in Figure 4.2.2. More in detail, FEDMA matches
the neurons of each client model’s (FCNN) before averaging them by using the Bayesian
non-parametric method to adapt to global model size and to the non-IID data. After
the clients receive the augmented layer and train the rest of the model with that model
frozen. At the end of the layers, the model is augmented in every layer, holding the
information from every client’s model.

An FCNN can be formulated as: § = o (xW1II)ITT W5,
where II is any L x L permutation matrix, and L is the number of hidden units.

Suppose we have datasets X;, X ]’ and the weights after training as {W111;, H?Wg} and

{Why,, l_IjTO Ws}. With high probability, we have II; # II;; and % = VWAII for
any II. To tackle this FEDMA needs to undo the permutation.

In order to test FEDMA and transition it in a more federated learning format, we used
the Flower framework and the neccessary changes were made in order to achieve this.
So from the simple FedAVG strategy we transitioned to a more complex architecture
and flow that can be seen at the diagram.

The server initiates the process by configuring the models, datasets, and setting up the
requisite SSL configurations. Following this, the relevant classes, namely FEDMA and
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Figure 4.2.2: FEDMA Round

Client Manager, are initialized. The server then commences operation, starting with the
first round during which the clients undergo fitting. Concurrently, the Client Manager
waits for clients to connect. Once a sufficient number of clients have connected, the
server distributes the configuration file to each client.

Parallel to this, the clients boot up, establish a connection with the server, and receive
the eagerly-awaited configuration file. Subsequently, the clients proceed to load the
datasets and the model.

The Flower Framework is designed to operate in two rounds: the matching round and
the standard FML round. The unique aspect of the matching round is the augmentation
of the models as previously described, wherein each round trains the subsequent layer
before freezing it. During the standard FML round, the models adapt to align the
augmented model with the initial one.

On the client side, the model undergoes evaluation and testing. If it’s the end of the
round on the server, the final model layers are generated or the server performs layer-wise
matching, subsequently sending the models back to the clients.
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Algorithm 1: Federated Matched Averaging (FedMA)

Input :local weights of N-layer architectures {W; 1,..., W, y} J:,-’:1 from J clients
Output: global weights {Wy,..., Wy}
n=1,;
while n < N do
if n < N then
{IL;}/_, =BBP-MAP({W; n}/_;) // call BBP-MAP to solve Eg. 2
Wn = % Zj WJ!HH?;
else
‘ W, = Zszl Ej Pk Wji.n where py, is fraction of data points with label k£ on worker j;
end
forj e {1,...,J} do
Wjnt1 ¢ ILW, g1 s // permutate the next-layer weights
Train {W; n41,..., W, .} with W, frozen;
end
n=n++1;
end

Figure 4.2.4: Federated Matched Averaging

4.3 FML Frameworks and Systems

A multitude of frameworks have been developed to facilitate the implementation and de-
ployment of Federated Machine Learning (FML). These frameworks vary greatly in their
design, functionality, and focus areas, aiming to tackle different aspects of the challenges
in the FML paradigm. Some are designed with a focus on certain machine learning tasks,
such as deep learning or gradient-boosted trees, while others prioritize specific comput-
ing environments like edge computing or data center setups. Furthermore, they can
differ in terms of privacy preservation techniques, such as differential privacy or secure
multi-party computation, that are built-in or supported. Additionally, the type of feder-
ated learning scenario they cater to - horizontal, vertical, or federated transfer learning -
can also be a differentiating factor. Some are designed to be highly scalable and handle
a large number of clients, while others emphasize the robustness against dropping out
or malicious clients. Interoperability with popular machine learning libraries, usability,
and community support can also differ among these frameworks. In the sections that
follow, we will delve into a detailed discussion about the most prominent frameworks
developed for Federated Machine Learning.

4.3.1 Flower

Flower is a friendly federated learning framework. It is designed to allow machine
learning practitioners and researchers to easily implement and experiment with federated
learning algorithms. This is particularly useful for training models on decentralized data,
where data privacy and security are important, or when data cannot be moved for other
reasons.
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Figure 4.3.1: Flower Framework Architecture

Flower provides an easy-to-use framework for implementing federated learning algo-
rithms. It is designed to be flexible and extensible, allowing the use of different machine
learning libraries (e.g., TensorFlow, PyTorch), and is compatible with various program-
ming languages. It provides a server-client architecture, where a central server commu-
nicates with multiple clients to orchestrate the federated learning process. The central
server coordinates the learning process, sends model updates to clients, and collects
updates from them.

4.3.2 FEDn by Scale:

FEDN |22] is a production-scale, hierarchical federated machine learning (FML) frame-
work that offers a flexible tool for research. It is designed to incorporate private data into
the federated model without exposing the data, ensuring privacy. The framework sup-
ports various aggregation techniques and privacy-enhancing technologies, while focusing
on scalability and resilience. Although most FML work is based on neural networks,
random forest implementations also exist.

FEDN is structurally similar to distributed optimization for statistical learning, with
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no control over data distribution across nodes. The framework balances local training
iterations with global synchronization to minimize communication rounds and avoid
poor convergence. Inspired by the MapReduce programming model, FEDN aims to be
robust, resilient, and highly scalable in real-world applications, accommodating both
large numbers of edge clients and large model sizes.

The FEDN architecture supports cross-device and cross-silo scenarios, incorporating
horizontal and vertical approaches. Federated averaging (FedAvg) is the most widely
used method for horizontal FL, a decentralized version of stochastic gradient descent.
FEDN’s architecture consists of three main components: Combiners, Reducers, and
Clients.

1. Combiner (CB): A stateless gRPC server that coordinates client updates and ag-
gregates model updates from a subset of clients. It operates independently of
other combiners in the network and works on one partial model update at a time.
This stateless design provides fault-tolerance and horizontal scalability, with the
combiner workload scaling linearly with the number of attached clients.

2. Reducer: Responsible for implementing a reducer protocol, which combines partial
model updates from combiners into a single global model update for each round.
The system supports multiple reducers running in active-passive mode, with one
reducer preparing the global model at a time. The reducer workload scales with
the number of combiners, independent of the number of clients.

3. Clients (CL): Main workers in the system that run on local sites or devices and
access private data. Clients join the network by requesting a combiner assignment
from the discovery service. They receive training and validation requests, down-
load the global model from the combiner, execute model updates and validations,
and stream results back to the combiner. Clients follow a black-box execution
model, allowing for ML-framework agnostic implementation, and do not require
any open ingress ports, which is an important consideration in many production
environments.

The Controller Round Protocol algorithm and HAProxy for high availability are utilized
in FEDN, along with specific metrics tailored for this architecture. In summary, FEDN
offers a fault-tolerant, scalable, and flexible federated learning system with stateless
Combiners, Reducers, and Clients working together to coordinate and aggregate model
updates while preserving privacy.

4.3.3 Protea

Protea [62], designed as a client profiling component within federated systems using the
Flower Federated Learning framework, is a forward-thinking tool focused on enhancing
simulation capabilities in Federated Learning (FL). The tool offers automatic collec-
tion of system-level statistics and resource estimation for each client, which facilitates
resource-aware simulation. Guided by principles of usability, flexibility, compatibility,
efficiency, and scalability, Protea aims to streamline the design and implementation of
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FL frameworks. It ensures higher degrees of realism in FL simulations by considering
the specific capabilities of each client, such as computational power, network speed, and
data size.

Protea is proficient in monitoring critical metrics such as CPU, RAM, GPU, VRAM,
CPU time, and CUDA time. By providing this granular view, Protea aids in accurate
client profiling and resource allocation, fostering efficient simulations. The tool shows
commendable performance in accelerating simulations with its design successfully aug-
menting parallelism, leading to significantly faster wall-clock times and improved GPU
utilization. The capabilities of Protea extend to handling both homogeneous and hetero-
geneous configurations of clients, making it a valuable tool for large-scale experiments.
Through these functionalities, Protea contributes towards reducing the barriers in Fed-
erated Learning research and application, thus encouraging more realistic and scalable
FL solutions.

4.3.4 FLINT

FLINT [53], a device-cloud collaborative platform for Federated Learning (FL) integra-
tion, is an innovative addition to LinkedIn’s established centralized machine learning
platform. Its architecture is designed to share common components with the centralized
ML platform such as model stores, job scheduling, monitoring, and visualization tools,
thus creating a synergy between centralized and federated approaches.

One of the key strengths of FLINT lies in its ability to build upon well-known FL and
centralized ML platforms, integrating tools to leverage centralized data and resources.
This allows for comprehensive analysis of FL’s impact and viability in various contexts.
FLINT also introduces a feature catalog that manages both cloud and device-based
data, providing a unified view of the data landscape across different sources. It con-
tains an experimental framework designed to optimize model performance and system
requirements, facilitating efficient and effective FL implementations. Moreover, FLINT
aids decision-making through its workflow that provides an understanding of the con-
straints, costs, and effectiveness of FL for business needs. It delivers key insights that
help decision-makers assess the applicability and potential benefits of implementing FL.
FLINT is also attentive to the User Device Availability, considering the compute capa-
bilities of devices, device state, user attributes, and the use of a proxy data generator.
This focus ensures that the platform can effectively operate in real-world scenarios where
device availability and capabilities can significantly impact the performance of federated
learning models.

In essence, FLINT represents a holistic approach to FL integration, blending the
strengths of existing ML platforms with the privacy and decentralization benefits of
federated learning.

4.4 FML Challenges

In the paradigm of distributed Federated Machine Learning (FML), not only are the
fundamental complexities of Artificial Intelligence (AI) and Machine Learning (ML)
present, but additional challenges arise due to the distributed nature of the systems
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involved. Particularly when factoring in devices and the Internet of Things (IoT), the
level of difficulty and intricacy substantially increases.

1.

10.

11.

12.

Non-IID Data: In a federated learning setup, data may not be independently and
identically distributed (non-IID) across clients.

Data heterogeneity: Varying data size, distribution, and quality across nodes

Asynchronous Communication: In real-world federated learning, clients might not
always be available or have varying computational resources.

Varying Client Participation: Not all clients may participate in every round of
federated learning.

Data Drift: The data distribution may change over time (concept drift), causing
the model to become less accurate.

Communication Overhead: High communication costs due to the frequent model
updates between server and clients.

Adversarial Clients: Federated learning may involve clients that intentionally in-
troduce incorrect updates or malicious data.

Communication Errors and Noise: In real-world scenarios, communication between
clients and the server may experience errors or noise.

Asynchronous Communication: Clients might not always be available or have vary-
ing computational resources.

Model Compression and Quantization: Communication bandwidth may be limited,
leading to the need for model compression and quantization.

Heterogeneous Model Architectures: Clients may have different model architec-
tures due to varying hardware constraints or preferences.

Privacy Attacks: Federated learning aims to protect clients’ privacy, but privacy
attacks can still occur.
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Chapter 5

System Architecture

5.1 UML diagrams

One of the most pressing challenges in the field of Federated Machine Learning (FML)
pertains to issues of reproducibility and implementation. Unlike traditional data science
or machine learning scenarios, where the requisite code executes on a centralized server
with abundant data, FML represents a convergence of distributed systems and machine
learning. It’s essential to recognize that the bulk of academic research in this area does
not adequately reflect the realities of real-world software infrastructure. Moreover, many
issues pertinent to FML are frequently overlooked. The approach to implementing an

FROM SIMULATION TO FEDERATION

Local simulations Server powerful simulations Real Scenarios

P ' [ =\
A =0
T (10001=0]

Figure 5.1.1: Simulation to Federation

FML paradigm closely mirrors the established protocol for implementing mainstream
machine learning models and use-cases. It begins with scripts that operate on a re-
searcher’s personal computer, with FML servers and clients represented as instances of
processes communicating within the local machine.

The subsequent phase involves transposing the implementation to an upgraded environ-
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ment, such as a server, where memory, CPU, and disk space no longer constitute bottle-
necks. The final test of implementation efficacy takes place in a distributed environment,
on other large-scale servers (cross-silo) or across multiple edge devices (cross-device).

As part of our initiative, we have developed a robust system, equipped with state-of-
the-art components, that can effectively simulate the entire Federated Machine Learning
paradigm. This approach allows for a comprehensive understanding of the complexities
and challenges inherent to this domain, promoting efficient solutions and more reliable
results.

In order to visualise the details of each part of our solution, there are Unified Modeling
Language (UML) diagrams below. This schematic representation enables a compre-
hensive understanding of the complex structure and interrelationships of our system
components.

5.1.1 Component Diagram

As depicted in the provided Component diagram 5.1.2, all components operate within
containers, ensuring a scalable and modifiable system structure. The fundamental el-
ements of our paradigm, the Federated Machine Learning (FML) Manager and FML
Client containers, represent the server-client relationship inherent to any FML use case.
The FML server houses scripts responsible for the management of the paradigm, while
clients each possess a unique database and maintain connectivity with the manager.

A pivotal component of the system is the Redis database, tasked with storing essential
information during the training process. This includes data vital for training, such as
dataset partitioning for each client, as well as container-specific information (names,
IPs), which is crucial for effective system monitoring.

The Management Server Service incorporates a Flask API designed to initiate the Docker
swarm, thereby facilitating seamless client connection and data transmission. This ser-
vice also oversees the necessary Docker networks, volumes, and services. Its role is crucial
in system initialization, scalability to accommodate numerous clients, and maintaining
fault tolerance. The monitoring system forms an integral part of a distributed machine
learning paradigm. With data creation occurring at the edge, this component manages
log transmission to the server, log grouping, and real-time logging.

Lastly, an Express server and client dashboard provide a user-friendly interface for users
and researchers. These tools allow for simulation replication, real-time monitoring via a
web browser, and more, offering an interactive and dynamic system interaction experi-
ence.

5.1.2 Rest Services Class Diagrams

To bolster system scalability and resilience, we have devised a series of application pro-
gramming interfaces (APIs) within a Flask server. These APIs ensure the inception of
vital services required for simulation and emulate various scenarios of hardware hetero-
geneity in federated machine learning. Three principal POST REST APIs, each serving
a unique function, form the core of this system as seen in Figure 5.1.3:
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1. Initialize Docker Swarm and Networks API:

(a) Description: This API requires specific input parameters such as the intended
network name for creation and the subnet available for container utilization.
It delivers a success message, a status ID of 200, and a join token required
for clients to connect to the swarm upon successful completion of its tasks.

(b) Functionality: The API’s primary tasks include initializing the Docker
Swarm, creating necessary Docker networks, activating the Monitoring Sys-
tem, and launching the Redis DB Container.

(¢) Purpose: The API lays the groundwork for the federated machine learning
simulation by setting up the foundational infrastructure. This includes net-
work creation, enabling a monitoring system, and initiating a database for
efficient data management.

2. Create Server Container API:

(a) Description: This API requires various input parameters to start the con-
tainer that hosts the FML server. Upon successful execution, it returns a
status message and ID.

(b) Functionality: The API’s main role is to create the necessary volumes for the
FML server and connect the appropriate network.

(c) Purpose: The API ensures the server’s readiness to manage the federated
learning workflow effectively. It sets up the server to coordinate the FML
tasks, maintain connectivity, and carry out training and testing processes.

3. Create Client Services API:

(a) Description: This API is designed to fabricate N’ groups of clients with
different configurations, including variable CPU and Memory limits for each
container. Upon successful execution, the API returns a status message and
ID, thus confirming the successful creation and configuration of client groups.

(b) Functionality: The API is tasked with generating and managing client con-
tainers, allowing them to participate in the federated learning process. This
includes the ability to emulate different types of devices, each with its own
computational capacity and memory constraints.

(c) Purpose: The API facilitates the simulation of diverse device clusters, cru-
cial for studying the impact of hardware heterogeneity on federated learning
performance. It affords a nuanced understanding of how varying hardware
configurations influence the behavior and performance of federated machine
learning models.

The APIs enable the launch of ’N’ services, where each service operates 'R’ replicas of
containers with identical resource constraints. This design yields extensive scalability;
we can generate an arbitrary number of client devices grouped by their resource config-
urations.
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Figure 5.1.4: Sequence Diagram

In order to simulate a broader variety of hardware configurations, we can create an
equal number of each resource-constrained container. This decision facilitates the depic-
tion of a truly heterogeneous hardware landscape, encapsulating a multitude of resource
configurations. Consequently, our simulation can closely mimic real-world hardware het-
erogeneity, providing valuable insights into the performance and behaviour of federated
machine learning models under diverse hardware conditions.

Overall, these APIs play an indispensable role in the set up of the federated learning
environment, facilitating the creation of a swarm, provisioning and configuration of the
server container, and simulation of multiple clusters of varied devices. This approach
allows us to model a network of multiple clusters of devices, each potentially possessing
unique characteristics, thereby enhancing our understanding of the performance dynam-
ics of federated learning in a heterogeneous environment.

5.1.3 Sequence Diagram

The accompanying sequence diagram 5.1.4 provides a comprehensive, high-level overview
of our federated machine learning paradigm, detailing the integral components that en-
sure its effective operation.

Initially, a User—typically a researcher—selects the parameters of the paradigm they
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wish to simulate via the Dashboard interface. Following this, the User Interface (UI)
communicates with our REST APIs, connecting to the Management Server to instigate
the entire federated machine learning procedure.

Subsequently, the Server initiates the Federated Machine Learning (FML) Server, which
houses the Flower scripts. It then dispatches the appropriate response, affirming the
commencement of the procedure, and ensuring all necessary elements are in place.
Concurrently, the Server activates the specified clients, each of which relays a confirma-
tion indicating their operational readiness.

The diagram further elucidates the unfolding federated machine learning process, il-
lustrating the synchronised operations of the FML Server and Client. The Server and
Clients execute their respective procedures, load their data, and the Clients acquire the
Server’s configuration file. The Clients commence their training and local testing phases
while the Server accumulates the Clients’ data, consolidates the results, and performs
global dataset tests. Following each round, the Server disseminates the global model
parameters to the Clients.

Upon the completion of the paradigm, the monitoring system procures logs from these
components and presents the results on the Dashboard. The culmination of the proce-
dure yields a display of aggregated data and the generation of corresponding graphical
representations.

5.1.4 Deployment Diagram

Presented in Figure 5.1.5 is the deployment diagram delineating the architecture of our
Federated Machine Learning (FML) solution. Given the complexity and challenges as-
sociated with conducting paradigm simulations in a genuinely distributed system, we
have elected to deploy our initial setup within a single server. In this setup, each FML
component operates within its own distinct container, thereby simulating the disparate
environments that would be encountered in a more distributed context. In this ar-
rangement, containers are utilized as isolated environments wherein each component
can operate independently of others. This simulates the condition of a distributed sys-
tem and allows for individualized management of each component, while still benefiting
from the cohesive oversight provided by a singular server.

Despite this, it’s essential to note that the aforementioned configuration primarily serves
as a stepping stone towards a more realistic and complex implementation. In real-world
scenarios, as demonstrated in the Figure 5.1.6, the deployment architecture is signifi-
cantly more distributed, with clients operating from separate devices.

Each device, effectively functioning as an individual client, interacts independently with
the federated machine learning system. This embodies the true essence of federated
learning, as it represents a system where multiple entities, or ’clients,” can collectively
contribute to, and benefit from, a machine learning model while maintaining data locally
The ability to transition smoothly from a contained, server-based deployment to a fully
distributed implementation is a testament to the flexibility and scalability inherent in our
federated machine learning solution. As we continue to refine and expand our system,
it’s anticipated that further complexity and variation will be integrated into our deploy-
ment architecture, ensuring our system remains adaptable to a wide array of potential
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Figure 5.1.5: Deployment Diagram in a Server
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Figure 5.1.6: Deployment Diagram Decentralized

5.1.5 Class Diagram

The Flower Framework serves as the fundamental architecture upon which the Federated
Machine Learning (FML) implementation is built. Our solution adopts this blueprint
and enhances it by extending several abstract classes, including Server, Strategy, Client-
Manager, Criterion, and Client. This approach allows for the complete customization of
the FML paradigm according to our needs.

Additionally, we have implemented robustness measures by creating a custom datasets
class and a monitor class. The latter is crucial for data accumulation throughout the
training process.

The Criterion class is where we establish the code for client selection in each training or
evaluation round. The criteria can be as simple as "all clients log in" for straightforward
FML paradigms. In cross-device scenarios, it may involve filtering based on the device’s
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battery status, excluding in-use devices, or even potentially malicious devices.

The ClientManager is responsible for managing low-level connectivity aspects. It moni-
tors clients, updates their statuses, and unregisters them if they become inactive.

The Server class is pivotal in organizing the paradigm from a system’s perspective. It
manages client log-ins, sets the strategy for the paradigm to follow, and coordinates
client fitting and evaluation in either a decentralized or centralized manner. In the
context of FEDMA, the Server class has been modified to handle the complexities of
FEDMA training. The Client class carries out tasks at the edge. It handles training,
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Figure 5.1.7: Class Diagram

testing, and the procedures needed for data loading and logging.

The Strategy class is invoked by the Server to define the trajectory of the FML paradigm.
This class configures all clients before and after fitting and evaluation, managing the
aggregation of model parameters.

The custom Dataset class facilitates the splitting of datasets into partitions, devising
ways to simulate class heterogeneity and unify dataset loading.

The TableLogger class plays a key role in managing the logs produced throughout the
FML paradigm. It is tasked with saving these logs and transmitting them to InfluxDB
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for real-time presentation.

5.2 System description

The system is running on an Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz which
supports 64-bit architecture, with 8 CPU cores each with a single thread. This setup
is an instance running on a VMware virtualization platform with full virtualization
capabilities.

The CPU has a three-level cache with a total size of 256 KiB for L1d (data) cache, 256
KiB for L1i (instruction) cache, 8 MiB for L2 cache, and 88 MiB for L3 cache. Each of
the 8 cores has an instance of these caches.

In terms of memory, the system has 62GB of RAM, of which 48GB is currently free.
This should be more than sufficient for most computing tasks. The swap memory,
which is used when the system runs out of RAM, is 8GB in size and it’s almost entirely
free.

If the code, along with its associated data, occupies 2.8GB, and the containers for
monitoring consume approximately 1GB, then remains a total of around 3.8GB of
storage being used.

5.3 Monitoring

In order to gather real-time information on our federated machine learning paradigm,
such as the CPU usage, memory usage, and the number of connected devices, we make
use of a trio of powerful tools: Telegraf, InfluxDB, and Grafana. Telegraf is an open-
source server agent for collecting and reporting metrics. It provides us with real-time
data collection of all relevant metrics from our Docker containers and connected devices.
Its plugin-driven architecture supports data extraction from a variety of sources, making
it a versatile choice for our needs.

InfluxDB is a high-performance time-series database. It stores the data collected by
Telegraf, effectively serving as our system’s memory. InfluxDB is designed to handle
high write and query loads, making it well suited for storing large amounts of time-
sensitive data.

Finally, Grafana is an open-source platform for monitoring and visualization. It re-
trieves data from InfluxDB and displays it in meaningful and interactive graphs and
dashboards. This enables us to monitor our system’s operation in real-time and facili-
tates the identification of any potential issues or bottlenecks.

By leveraging these tools, we are able to efficiently monitor our system’s performance,
swiftly address issues, and improve the overall efficacy of our federated machine learning
paradigm.

By leveraging these tools, we are able to efficiently monitor our system’s performance,
swiftly address issues, and improve the overall efficacy of our federated machine learning
paradigm.

For visualization of our simulation results, we employ InfluxDB queries. The data for

61




Chapter 5. System Architecture

Docker Swarm

FML Client 1 Container

¢

/ Monitoring Docker Stack \
docker

FML Client 2 Container

¢

telegrof influxdb 15 Grafana
docker

FML server Container

& N /

Figure 5.3.1: Monitoring System

from(bucket: "my-bucket")

| > range(start: v.timeRangeStart, stop: v.timeRangeStop)

|> filter(fn: (r) => r["com.docker.swarm.service.name"] == "fml-service-server-1")
|> filter(fn: (r) => r["_field"] == "started_at" or r["_field"] == "usage_percent")
|> filter(fn: (r) => r["_measurement"] == "docker_container_mem")

| > aggregateWindow(every: v.windowPeriod, fn: mean, createEmpty: false)

|> yield(name: "mean")

Figure 5.3.2: Influx example query code

these queries is sourced from an InfluxDB database, which is continuously updated via
the monitoring system, tracking the metrics of the Docker containers, and our custom
logging mechanism within the client system which records and emits logs in real time.
The sample query presented demonstrates how we extract meaningful information from
the large stream of data we collect. The query performs several functions - it narrows
the time scope of the data, filters out irrelevant data, and further refines the data based
on specific parameters like service name, specific fields, and measurements related to
Docker container memory.

The query 5.3.2 then proceeds to aggregate the filtered data based on a predetermined
window period, producing an average (mean) value for each window. The end result
of this query execution provides a focused snapshot of memory usage over time for the
specified service, which can be crucial for performance monitoring and optimization
strategies.

Also throughout the training and testing process of the clients, logs are are kept and
saved to be easily read with an easy to read human format like the Figure 5.3.3:
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Figure 5.3.3: Example of logs

5.4 Jupyter To Federation

The field of Federated Machine Learning (FML) is currently facing a reproducibility
crisis that hinders its scientific progress. This crisis primarily stems from custom data
partitioning practices by researchers, where many hyperparameters are often not fully
specified and intricate implementation details are overlooked or omitted in the pub-
lished reports. As a consequence, replicating and verifying the existing results requires
a substantial amount of effort, often involving extensive detective work to infer missing
methodological details. This lack of clarity and transparency poses significant challenges
to the scientific community attempting to reproduce previous studies’ findings or build
upon prior work. These issues underline the critical need for more rigorous reporting
standards in FML research, including clear and comprehensive documentation of data
partitioning strategies, hyperparameters, and other relevant implementation details. Ad-
dressing this reproducibility crisis will foster a more robust and cumulative science of
FML, accelerating advancements in this promising field.

Furthermore, a significant challenge in contemporary machine learning research is the
difficulty of transitioning from theoretical models to live applications, testing models
with real-world data, and establishing pipelines to assess the robustness of these models.
This issue is even more pronounced in the context of Federated Machine Learning (FML),
where the distributed and privacy-preserving aspects introduce additional complexities.
Despite recent growth in the field, research is advancing slowly, compounded by issues
such as the difficulty of reproducing the code featured in academic papers.

To address these challenges, we have combined the above software components and logic
into a User Interface (UI) dashboard that is a form like the Figure 5.4.1. This platform
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enables researchers to train, test, monitor, and even customize the FML process.

The dashboard includes a form from which users can select various parameters to alter in
an FML paradigm, thereby facilitating customizable simulations. Through our Ul, users
can monitor, in real-time, model accuracies, training loss, and testing results on diverse
datasets, among other metrics. Additional details such as CPU usage, memory usage of
the clients and server, and the volume of data transmitted between server and clients
can also be tracked. This comprehensive overview enhances the user’s understanding
and control of the FML process, promoting more effective research and development.
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Figure 5.4.1: Ul interface
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Experimental results

6.1 Datasets

6.1.1 MNIST

The MNIST dataset [35] is a well-known collection of handwritten digits that is widely
used in the field of machine learning for image classification tasks. It contains 70,000
grayscale images of handwritten digits from 0 to 9, with 60,000 images used for training
and 10,000 images used for testing. Each image is of size 28x28 pixels, and has been
normalized and centered to have a similar size and position.

To standardize the datasets, we use the mean and standard deviation of the training
set to adjust each data sample. This is done by subtracting the average value from
each sample and dividing it by its standard deviation. For neural networks that are
designed to classify images in the MNIST dataset, the input layer size is determined
by the number of pixels in each image. The goal of the classification task is to identify
which of the ten digits (0 to 9) is present in each input image. Therefore, the size of the
output layer in the neural network is set to 10, which corresponds to the ten possible
digit classes.

In the simulations conducted, the MNIST dataset was segmented into distinct partitions,
with each client receiving a unique partition as shown at 6.1.1. The design ensured that
the data assigned to a specific client remained exclusive to that client and was not shared
with or viewed by others. Furthermore, the server had the capability to evaluate the
global model on a partition that is analogous to those held by the clients, on data unseen
by the clients, or even on a client’s specific partition. The server could also conduct tests
on the entire dataset. This methodology facilitates a comprehensive evaluation of the
model’s performance under various data conditions while respecting the client-specific
data segregation.
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Figure 6.1.1: MNIST Dataset Split

6.1.2 FEMNIST

FEMNIST is a benchmark dataset from the LEAF framework used widely for federated
learning [14]. FEMNIST stands for Federated Extended MNIST, and it is an extension
of MNIST dataset. The FEMNIST dataset consists of 3,550 writers, with each writer
contributing a set of handwritten digit and character images. There are over 80,000 total
images, and each image is associated with a specific writer. On average every writer has
contributed with 200 images with unbalanced multitude of samples. FEMNIST is unique
in that it is designed to simulate a realistic, decentralized setting, where each writer’s
data is stored locally and only available to them.

In the interest of enhancing the relevance and applicability of the FEMNIST dataset to
our specific solution, we initially retain only the numerical samples from the dataset and
discard any letters. Subsequently, we calculate the variance of the remaining dataset
for each user and segment the users into 10 clusters 6.1.2 to accumulate more data
pertaining to the same handwriting style. The goal is to create clusters of users who
have similar handwriting styles, which can then be used to assign clients in a federated
paradigm. Each client will be assigned a cluster of users with similar handwriting styles,
and will train their model on that cluster’s data. By doing this, we hope to introduce
variability in the handwriting styles across clients, making the task of federated learning
more challenging. To demonstrate the heterogeneity of these clusters, we can visualize
the variance of handwriting examples within each cluster. This will help us to better
understand the impact of data heterogeneity on the performance of the federated learning
algorithm.

The revised dataset we employ possesses nearly the same sample quantity as the MNIST
dataset in both training and testing phases, approximating around 60,000. Each cluster
comprises 60 users, totaling 6000 training sets and 1000 test sets. The disparity in
training data across each cluster of users can be exemplified by the following visual
representation showcasing 8 numerical characters from a randomly selected group of
users as shown at 6.1.3 and 6.1.4.
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6.2 Class/Data Heterogeneity

As we dive deeper into the world of Federated Machine Learning, one of the most critical
aspects to consider is the heterogeneity of data across participating devices or nodes. In
real-world scenarios, data is often distributed unevenly among the participants, varying
in size, distribution, and quality. The challenge of dealing with such heterogeneity can
lead to suboptimal or even incorrect models if not addressed properly.

Ultimately, Federated Machine Learning provides a robust framework for addressing
data heterogeneity, allowing us to harness the full potential of diverse datasets while
preserving privacy and maintaining the decentralized nature of the learning process.
By embracing the heterogeneous nature of data, FML paves the way for more accurate
and reliable machine learning models that can be applied to a wide range of domains
and applications. Substantial research and progression have occurred in this domain, as
evidenced in the study referenced in 77.

Measuring data heterogeneity can help identify the degree of variation in the data
and enable the selection of appropriate federated learning algorithms and strategies to
mitigate the negative effects.

By measuring data heterogeneity, one can assess the suitability of the federated learning
setup for a particular problem domain and optimize the training process to improve
model performance.

The setup is challenging for FL algorithms, because each client only processes data
from a single institution, which potentially suffers from more severe domain-shift and
overfitting issues compared with a data-centralised training:

Also one of the biggest problems regarding data created "on the edge" is Domain shift.
Domain shift refers to the difference in the distribution of data between the source do-
main (typically, the training dataset) and the target domain (usually, the testing or
real-world deployment dataset). In machine learning, a model is trained on a specific
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dataset with the assumption that the data distribution in the training set is representa-
tive of the data distribution in the real world. However, in practice, the data distribution
in the real world can differ from the training data distribution, leading to a decrease
in model performance when applied to the target domain. Domain shift can occur for
various reasons, such as:

1. Changes in data collection methods

2. Different populations or demographics

3. Temporal changes (e.g., changes in trends, user behavior, or market conditions)
4. Different sensors or devices used for data collection

Addressing domain shift is an important aspect of machine learning research. Techniques
such as domain adaptation, transfer learning, and domain-invariant feature learning
aim to build models that are more robust to domain shift and can generalize better to
different data distributions in the target domain.

In our experiments we simulate data heterogeneity by pre-processing our data sets and
assigning each client with different class balances or with random number of examples.

In our experiments we will use four different ways of "splitting" the data sets of each
client.

1. Basic (Balanced): Clients have an equal number of images, and the distribution
of classes is balanced. This configuration can be achieved by evenly distributing
the images among the clients, ensuring that each client receives an equal number
of images from each class.

2. Imbalanced: Clients have a random number of images, but the distribution of
classes is maintained. This configuration can be created by randomly assigning a
different number of images to each client while ensuring that the class distribution
remains the same within each client’s dataset.

3. Skewed: Each client has the same number of images, but all the images come from
a single class. This configuration can be obtained by dividing the images by class
and assigning all images of a particular class to a single client, ensuring that each
client has images from only one class.

4. Imbalanced and skewed: Clients have a random number of images, and each client
has images from multiple classes.

5. Different handwriting in FEMNIST: This configuration can be created by selecting
a subset of writers from the FEMNIST dataset, ensuring that each client has
images from a different set of writers. This configuration introduces variability in
the writing styles among clients, making the task more challenging.

In order to measure the class imbalance we calculate the distribution of each class in
each clients’ data set using the Distributional Heterogeneity metric of [60].
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Where DH is the distributional heterogeneity metric, N is the number of classes, C is
the number of clients, and cj is the number of clients that have at least one instance of
class j in their local data. The function returns the DH metric.

DH is a metric between 0 and 100%, where DH = 0% means that our experiment has
clients with the same number of examples from every class (IID) and DH = 100% where
each client has examples from only one class (NON-IID). Some examples are:
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Figure 6.2.3: Distribution of Trainset with DH = 0.0

Homogeneity is a critical measure employed to evaluate the performance of clustering
algorithms in machine learning. This metric captures the degree to which each cluster
consists only of data instances from a single class, thus assessing the quality of the
clustering task.

In an ideal scenario, a homogeneity score of 1 is achieved when each cluster contains
data instances belonging to only a single class, implying that perfect clustering has been
performed. Conversely, a homogeneity score of 0 indicates the least desirable state, where
the class distribution within clusters is not significantly different from the overall class
distribution in the dataset, signifying that the clustering has not effectively separated
different classes.

6.3 Hardware Heterogeneity

In the realm of federated machine learning, hardware heterogeneity emerges as a critical
factor that plays a decisive role in the overall process. The hardware configurations
demonstrate substantial variations in cross-silo and cross-device use cases, each pre-
senting unique challenges and opportunities for model building.

For cross-silo use cases, the machine learning models are deployed on-premises, utilizing
the resources of corporate or institutional servers. These servers are often equipped
with a high capacity of memory and powerful CPUs, along with other sophisticated
hardware, making them an efficient choice for such scenarios.

On the contrary, in cross-device use cases, the hardware spectrum expands from
microprocessors and Raspberry Pi devices to ubiquitous smartphones. Each device
presents unique computational capabilities and constraints, thus underlining the vast

73




Chapter 6. Experimental results

Table 6.1: Summary of Strategies tackling Data Heterogeneity

Work

‘ Description

‘ Advantages

‘ Limitations

McMahan et.
[40] FedAVG

al.

[itemsep=0pt|Train using
SGD  Naive parameter
averaging on the server

[itemsep=0pt|Preserves
data  privacy = Reduces
comm. costs Scalable for
many devices Simple to
implement

[itemsep=0pt|Struggles
with non-IID data Slowed
down by stragglers Lacks
robustness

Zhao et. al. [63]

|itemsep=0pt|Creating

a small globally shared
subset of data between
all clients The weight
divergence is measured
using the Earth Mover’s
Distance (EMD)

[itemsep=0pt|Improved ac-
curacy with globally shared
data Effective non-IID han-
dling

[itemsep=0pt|Complex ini-
tial set-up Server dataset
bias Sensitive data expo-
sure Increased communica-
tion costs

Yuan et. al. [60] Dis-

Trans

|itemsep=0pt|Optimizes
distributional offsets and
models for each client to
shift their data distribution
and aggregate them on the
Uses train and
distributional

server.
test-time
transformations with a
double  input  channel
model structure.

[itemsep=0pt|Better
performance without sig-
nificant communication
overhead. First to utilize
test-time  transformation
to improve federated learn-
ing accuracy under data
heterogeneity.

[itemsep=0pt|Difficulties
in practical implementa-
tion due to complexity a
Potential overfitting.

Liet. al. [37] MOON

|itemsep=0pt|Corrects the
local updates by maximiz-
ing the agreement of rep-
resentation learned by the
local model and the global
model.

[itemsep=0pt|Efficient
learning with fewer
communication rounds
Scalability ~ Robust  to
different levels of data
heterogeneity Mitigates
local update drift.

[itemsep=0pt|Lower accu-
racy with minimal local
epochs. Initial train-
ing slowdown with large
model-contrastive loss
Performance relies on
parameter.

Zhou .et .al
FEDFA

[64]

[itemsep=0pt|It introduces
a concept called feature an-
chors to align the extrac-
tion of features and classi-
fier updates across clients.

[itemsep=0pt|Effective un-
der combined label/ feature
distr. skews Significant
advantage in homogeneous
data Robustness and scala-
bility.

[itemsep=0pt|Performance
decrease under combined
skews vulnerable to high
local epochs.

Li et. al. [38] Fed-

Prox

|itemsep=0pt|Designed to
tolerate  "stragglers" or
slow-performing clients

[itemsep=0pt|Addresses
system and  statistical
heterogeneity Reduced
comm. rounds. It tolerates
devices dropping in and
out of the network Robust
to variations in the number
of local updates.

[itemsep=0pt|The use of
proximal terms in the opti-
mization process increases
the computational com-
plexity of each iteration.

Karimireddy et.
[31] SCAFFOLD

al.

|itemsep=0pt]Addresses
the issue of client-drift in
local updates by using con-
trol variates for variance
reduction

litemsep=0pt|Efficient con-
vergence Robust to data
heterogeneity and client
sampling Accelerated con-
vergence with similar data.

|itemsep=0pt|Performance
decreases by increasing the
number of local training
epochs.
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hardware heterogeneity in these use cases.

Figure 6.3.1: Hardware heterogeneity

The significant variations in hardware configurations present challenges in developing
robust and versatile models that can adapt to the spectrum of computational capabili-
ties.

To effectively tackle this issue and emulate hardware heterogeneity in our experiments,
we have structured our code to be flexible and adaptable, governed by several config-
urable parameters.

Based on their hardware characteristics and resource constraints, some example devices
can be clustered into low, medium, and high availability categories:

le Low availability (resource-constrained):

(a) Smartwatch: Given their limited processing power and memory, smartwatches
fall into the low availability category. They require optimized software that
can function efficiently under strict hardware constraints.

(b) Microprocessor: Depending on the model and use case, some microprocessors
can also be categorized as low availability. For instance, the microcontrollers
used in small embedded systems are usually very resource-constrained.

2. Medium availability:
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(a) Phone (Smartphone): With diverse hardware capabilities, smartphones typ-
ically fit in the medium availability category. They have more processing
power and memory than smartwatches or low-power microprocessors, but
less than high-powered devices like autonomous vehicles or industrial robot
arms.

3. High availability:

(a) Car (Connected Cars/Autonomous Vehicles): Cars, specifically autonomous
ones, need robust computational capabilities for their complex real-time tasks.
They have high-powered CPUs and a considerable amount of memory, making
them fall into the high availability category.

(b) Bionic Arm of a Factory (Industrial Robot Arm): These are optimized for
specific tasks with real-time requirements. Industrial robot arms generally
have high computational power and ample memory to perform complex op-
erations, categorizing them as high availability.

To effectively tackle this issue and emulate hardware heterogeneity in our experiments,
we have structured our code to be flexible and adaptable, governed by several config-
urable parameters.

Leveraging Docker container options, we can adjust the computational limits of each
container in our paradigm, thereby simulating resource-constrained environments typ-
ically found in cross-device use cases. Our simulation approach specifically alters the
maximum CPU limit and memory limit, simulating environments with diverse compu-
tational resources.

Furthermore, we manipulate parameters such as batch size, model size, and data size
within each device. This adjustment allows us to explore how the federated machine
learning paradigm functions when dealing with insufficient models and data sizes.
Lastly, to simulate realistic scenarios where clients, or ’stragglers,” intermittently con-
nect and disconnect - a phenomenon possibly resulting from communication hitches,
power disruptions, or other issues - we have devised our experiment to start and stop
the containers at random intervals.

Our research strategy provides a comprehensive simulation of various conditions that
arise due to hardware heterogeneity in federated machine learning. By doing so, we aim
to explore, understand, and propose solutions to the challenges presented in this field,
thus contributing to the development of more robust and adaptable machine learning
models.

6.4 Metrics

6.4.1 Accuracy

Accuracy is a crucial metric that is used to evaluate the performance of the models
in our federated machine learning simulations. Specifically, it is a ratio of the cor-
rectly predicted observations to the total observations. It provides a straightforward,
understandable measure of a model’s performance, offering a quick snapshot of the effec-
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tiveness of a prediction. In the context of federated learning, where data is distributed
across multiple nodes and the model is trained collectively on this data, accuracy gives
an aggregated measure of how well the global model is performing.

The most reliable method to assess this accuracy is by testing the final model that
the server constructs, combining all the updates from the client models, on a separate
dataset that none of the client models have encountered before. This approach provides
an unbiased evaluation of the model’s generalization ability and its capacity to make
accurate predictions on unseen data.

In addition to this centralized accuracy measurement, our tool also supports a decentral-
ized testing approach. In this setup, a subset of clients is sampled to evaluate the global
model on their local data. This decentralized evaluation provides additional insights
into the performance of the model across different data distributions present in the fed-
erated learning system. It reflects the model’s performance in real-world scenarios where
predictions are often made on the individual nodes. However, it’s important to bear in
mind that this decentralized testing could be biased if the local data distributions are
not representative of the overall data distribution. Therefore, a balanced combination
of centralized and decentralized testing can give a more comprehensive understanding
of the model’s performance.

6.4.2 CFMQ

Federated Learning has gained prominence as a collaborative training approach for de-
centralized data, but evaluating its effectiveness in the context of hardware heterogeneity
poses significant challenges.

Traditional deep learning metrics, including accuracy, precision, and recall, are com-
monly used to evaluate FL. models. However, these metrics fail to provide a comprehen-
sive assessment of FL’s performance when confronted with diverse device characteristics.
Consequently, there is a need for a comprehensive metric that accounts for hardware het-
erogeneity in FL evaluations.

To address this limitation, the Cost of Federated Model Quality (CFMQ) metric is
used as a comprehensive measure that incorporates the considerations of communica-
tion costs, local computation costs, and their interplay with hardware heterogeneity.
By utilizing CFMQ), researchers gain valuable insights into the efficiency and resource
requirements of FL in the presence of diverse hardware environments.

While traditional deep learning metrics serve as important evaluation tools, they are in-
sufficient for fully capturing the impact of hardware heterogeneity on the FL paradigm.
The CFMQ metric offers a holistic approach to evaluating FL in diverse hardware set-
tings, providing researchers with a comprehensive measure to assess the computational
resource requirements and performance of FL systems.

The Cost of Federated Model Quality (CFMQ) is a novel metric that quantifies the
computational resources required for a federated learning process. It is a comprehensive
measure that takes into account both the communication cost (data transfer between the
server and clients) and the local computation cost (processing done on each client). Using
CFMQ allows for systematic and comparative assessment of different federated learn-
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ing setups, enabling more efficient design and resource allocation. It aids in balancing
trade-offs between local computation and data communication, which can significantly
impact the efficiency, speed, and feasibility of federated learning processes, especially in
large-scale or resource-constrained scenarios.

1. R (Number of rounds): R denotes the quantity of communication iterations be-
tween the central server and the associated clients throughout the federated learn-
ing procedure.

2. P (Communication Payload): P symbolizes the magnitude of the data (in bytes)
reciprocally exchanged between the server and each client during each communi-
cation round.

3. a (Balancing term): « is a modifier that adjusts the relative weight of the local
computational cost, and can be fine-tuned to match the specific system require-
ments or constraints.

4. m; (Average number of local optimization steps): m signifies the average count of
computations a client executes during the process, calculated as m = g—%, where e
is the number of local epochs, N is the total number of examples in a round, b is
the batch size, and K is the number of clients.

5. v (Peak memory consumed during a step): v represents the peak memory con-
sumption during a local computation step on a client.

6. K (Number of clients participating): K denotes the total count of clients partici-
pating in the federated learning process.

7. b (Batch size): b refers to the grouping of examples processed collectively during
the learning operation.

8. N (Total number of examples in a round): N symbolizes the complete count of
examples or data points utilized in each round of learning.

9. e (Number of local epochs): e represents the number of comprehensive passes
through the complete dataset made on each client.

Consequently, these parameters are combined to compute the CFMQ, which estimates
the necessary computational resources for a federated learning operation. The CFMQ
is expressed as:

CFMQ = RK (P + auv) [bytes]

In order to make this metric more adapted in our paradigm we make the below changes.

1. P; (Communication Payload per client): P; symbolizes the magnitude of the data
(in bytes) exchanged between the server and each i-th client during each commu-
nication round.
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2. m; (Modified Average number of local optimization steps per client): m; signifies
a modified version of u. It accounts for the average count of computations a client
executes during the process, now calculated as:

ms — e < Ntraini + Ntesti >
i — €7 )
Bszitraini + Bszitesti

where e is the number of local epochs, Nirain, and Niest; are the total number of
training and testing examples for the i-th client in a round, and B, train, and
Bs, test, are the batch sizes for the i-th client during training and testi;lg phases,
respectively.

3. v; (Peak memory consumed during a step per client): v; represents the peak mem-
ory consumption during a local computation step on the i-th client.

Incorporating these new definitions, the CFMQ is recalculated for each client and then
summed over all clients. The new CFMQ is expressed as:

CFMQ=R- Z (P;+a-m;-v;) for all clients

By breaking down the calculation per client, the new CFMQ allows for more flexibility
and precision when clients have different parameters. This approach is beneficial when
dealing with federated learning in heterogeneous environments, which is often the case
in real-world scenarios.

6.4.3 Training time

Training time is another critical factor when assessing the efficiency of our federated
machine learning simulations. It quantifies the amount of time taken for a model to
learn from the distributed data, with the learning process typically involving multiple
iterations or epochs. Shorter training times are generally more desirable, particularly
in environments where quick decision making is paramount or where computational
resources are limited. It is worth noting that in the context of federated learning,
training time not only includes the time taken to train the model on each node but
also the time taken to communicate and aggregate the model updates. The training
time can provide insights into the scalability of the federated learning system and can
help identify bottlenecks, such as network latency, straggler nodes, or computational
inefficiencies. As such, optimizing training time without compromising the model’s
accuracy is a key challenge in federated learning.

6.5 Simulations

6.5.1 Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNNs) are a class of deep learning models, especially
apt for processing data with a grid-like structure, such as images. They draw inspira-
tion from the organization of the animal visual cortex and are specifically designed to
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automatically and adaptively learn spatial hierarchies of features, ranging from low- to
high-level patterns.

CNNs are typically comprised of three core types of layers: convolutional layers, pooling
layers, and fully connected layers. Convolution and pooling layers handle feature ex-
traction, while fully connected layers map these extracted features into the final output,
like classification or prediction.

The convolution layer is the pivotal component of CNN. It involves a stack of mathe-
matical operations, with convolution being a specialized form of a linear operation. In
digital images, pixel values are organized in a two-dimensional (2D) grid, i.e., an array
of numbers. A small, optimizable grid of parameters known as a kernel or filter is sys-
tematically applied across this grid. The kernel operates as a feature extractor, making
CNNs highly efficient for image processing since a particular feature can occur anywhere
in the image.

Convolution layers are often followed by non-linear activation functions, like the Rectified
Linear Unit (ReLU), which introduces nonlinearity into the model, enhancing its learning
capability. Pooling layers, on the other hand, progressively reduce the spatial size of
the input, controlling the number of parameters and computational complexity while
preventing overfitting.

As the output of one layer feeds into the next, the extracted features hierarchically
and progressively become more intricate and complex, effectively capturing the spatial
relationships in the input data. This unique architecture of CNNs allows the detection
of intricate patterns and features, irrespective of their location in the image, making
them remarkably scalable and efficient.

The process of optimizing parameters, such as kernels, is referred to as training. The goal
is to minimize the difference between the model’s outputs and the ground truth labels.
This optimization is usually achieved using algorithms like backpropagation and gradient
descent, among others. In essence, CNNs automatically learn the most relevant features
directly from the data, reducing the need for manual feature extraction and making
them powerful tools for numerous tasks, especially in image and video recognition.

6.5.2 Paradigm

In our simulations, we have the ability to modify a wide array of parameters. From a
machine learning perspective, these range from the dataset employed (including its size
and class heterogeneity) to the specific model, optimizer, batch sizes, as well as CPU
and memory limitations of our clients.

A significant portion of our simulations involve the utilization of a straightforward Con-
volutional Neural Network (CNN) model. This model is comprised of two convolutional
layers and three fully connected layers.

Furthermore, we’ve incorporated a loss function and an optimization method as es-
sential elements in our training process. Specifically, we used the Cross-Entropy Loss
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Figure 6.5.1: MNIST CNN model

function (torch.nn.CrossEntropyLoss) and the Stochastic Gradient Descent (SGD) op-
timizer (torch.optim.SGD), configured with a learning rate of 0.001 and momentum of
0.9. These provide us with a robust foundation for effective network training.

Furthermore, during client-side training, we acquire several crucial metrics. These in-
clude training loss, performance on the validation set, and performance on an unseen
dataset that mirrors the client’s data characteristics. We also conduct testing using the
server’s global dataset. This dataset may differ significantly in size, distribution, and
data heterogeneity compared to the client’s data. This diverse array of testing environ-
ments helps us ensure the robustness and adaptability of our model across varying data

contexts.
Table 6.2: Configuration of the Neural Network Layers
Layer Type Configuration
Convolutional | Input channels: 1, Output channels: 6, Kernel size: 5
Max Pooling Kernel size: 2, Stride: 2
Convolutional | Input channels: 6, Output channels: 16, Kernel size: 5

Max Pooling

Kernel size: 2, Stride: 2

Fully Connected

Input features: 16*¥16, Output features: 120

Fully Connected

Input features: 120, Output features: 84

Fully Connected

Input features: 84, Output features: 10
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6.5.3 Data heterogeneity

First, we train our model using various clusters of users, resulting in a model that is
primarily based on a single handwriting style (or multiple styles with similar character-
istics). The validation accuracy in this scenario exceeds 0.9%. However, when the same
model is tested on a different handwriting style, the test accuracy significantly drops.
Our experiment demonstrates that the model trained on cluster 4 does not perform well
on test datasets from other clusters (see Figure 6.5.14), yet it achieves an acceptable
level of accuracy when applied to its own handwriting style. This highlights the impor-
tance of addressing data heterogeneity and developing models that can generalize across
diverse styles in real-world applications.

Train Dataset: FEMNIST CLUSTER-4 Test Dataset: FEMNIST CLUSTER-5 Train Dataset: FEMNIST CLUSTER-4 Test Dataset: FEMNIST CLUSTER-6 Train Dataset: FEMNIST CLUSTER-4 Test Dataset: FEMNIST CLUSTER-4
10

1.0 10

Figure 6.5.2: Accuracies of FEMNIST Group Training

Following the initial training, we employ the same clusters to train our Federated Ma-
chine Learning (FML) algorithm of choice using the FEDMA algorithm and the Flower
framework, with a setup of 7 clients, 10 rounds, and 10 epochs per round. The results
align with our expectations as shown in Figure 6.5.3; clients utilize their own datasets,
characterized by unique handwriting styles, to train their local models. The merged
model on the server side, however, integrates these diverse local models to form a more
comprehensive and generalized global model, enabling accurate inference even on unseen
handwriting styles.

Each client possesses a model that can accurately predict outcomes for their own dataset
and correctly infer results, even in the presence of outliers within the client’s homoge-
neous dataset. Furthermore, if a new client joins the FML paradigm, it can immedi-
ately leverage the global model for accurate inference without the need for additional
training. This demonstrates the effectiveness of Federated Learning in addressing data
heterogeneity and creating models that can generalize across a wide range of input data.

In this experiment we use the skewed-imbalance dataset of MNIST. In the simulation
where we have 4 classes per client, as shown below:

The clients have taken their own partition of the dataset and we can simulate the class
heterogeinity with DH=0.4 by assigning data points from only the 6 out of 10 digits
/classes from our dataset. As the FML process starts the users train on their data and
at each iteration they send their models back to the server. As we can see the results of
the accuriacies after training on local clients. The train and validation set are expected
to reach high accuracy values and the test on their own data is slowly converging to the
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Figure 6.5.4: Data Heterogeneity of Simulation

same level of the train accuracy. The Test on Global Unseen data is expected to reach
the 0.6 as each client has the 60

In order to see the real value of federated machine learning behind class heterogeneity
is to observe the accuracy of the global model that is created on the server on the test
set of the whole dataset.

6.5.4 Data Size Heterogeneity

In practical scenarios, it is observed that edge devices exhibit varying capacities, and
their data set sizes differ as well. Given the information provided below, the accuracy
of tests with different sizes in each simulation can be analyzed.
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Figure 6.5.7: Accuracy with different data sizes

Three clients are employed, each having the same data size. It is evident that the overall
execution time of the entire paradigm increases. However, noteworthy is the fact that the
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paradigm achieves convergence to the same accuracy value, specifically when all clients
possess a data size of 15,000, as well as when the data size is 10,000. These simulations
hold significant relevance in cases where edge devices face resource limitations, thereby
allowing the omission of 5,000 data samples.
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Figure 6.5.8: Accuracy and Execution time on Different Data sizes

6.5.5 Number of Clients

In developing and optimizing a federated learning system, the ability to effectively sim-
ulate different configurations is crucial. Simulating the paradigm with the same number
of clients as in the real-world deployment enables us to approximate the system’s actual
behavior, offering valuable insights into its performance, potential bottlenecks, and areas
for improvement.

Simulating the system with a smaller number of clients can help to simplify the com-
plexity and make it easier to understand the fundamental behaviors of the system. It
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can also be helpful for debugging, as fewer clients can often mean fewer places for things
to go wrong. Conversely, simulating with a larger number of clients can allow us to test
the system under heavier loads, potentially revealing scalability issues or performance
bottlenecks that might not be visible with fewer clients. Additionally, it can better re-
flect the diversity of the client’s local datasets, capturing more of the heterogeneity that
is often a key characteristic of federated learning.

So in order to simulate our paradigm with different number of clients we keep the below
arguments fixed:

1. Memory: max 250
CPU: max 1
Server rounds: 3

Epochs per round: 1

2

3

4

5. Model: Net2
6. Dataset: Mnist

7. Partitions: 10

8. Strategy: FedAVG

We use 3, 5, and 10 clients and we measure their accuracy, time and CFMQ after the
training has completed.

FedAvg - 3 Clients - 1 Epochs per Round
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Figure 6.5.9: Accuracy of training on 3 Clients
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Figure 6.5.10: Accuracy of training on 5 Clients
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Figure 6.5.11: Accuracy of training on 10 Clients

Table 6.3: Execution Time and CFMQ Values

Number of | Time (sec) CFMQ Server Accuracy
Clients after 3 rounds
3 900 2,177TMB 0.43
5 1,193 3 347MB 0.38
10 1,606 7,296 MB 0.36
6.5.6 Impact of CPU heterogeneity

In this study, we explore the effects of CPU heterogeneity within the context of the
Federated Machine Learning (FedML) paradigm.

In order to maintain consistency throughout the different simulations and to ensure
that the variations in CPU resources are the sole differentiating factors, several key
parameters are kept constant across all simulations:

1.

Memory: Each simulation is confined to a maximum memory limit of 250 units,
thus ensuring that any performance variation cannot be attributed to differential
memory utilization.

Server Rounds: We restrict the number of server rounds to three for all simulations.
This ensures that any observed changes are not due to differences in the number
of server rounds.

Epochs Per Round: Each server round is structured to include three epochs, a
feature that is invariant across all simulations.

. Model: The neural network model utilized in all simulations is 'Net2’. This stan-

dardization prevents any variations in the neural network architecture from influ-
encing the outcomes.

Dataset: All simulations make use of the 'Mnist’ dataset, eliminating any discrep-
ancies that might arise from using different datasets.

Partitions: We uniformly divide the dataset into ten partitions for each simulation.
This ensures that the data distribution remains constant across all simulations.
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7. Strategy: We adopt the FedAVG strategy in all simulations.

By standardizing these elements across all simulations, we can isolate the impact of
CPU heterogeneity on the performance and efficiency of the Federated Machine Learn-
ing paradigm.

Initially, we investigate a scenario where each client within the simulation shares an
identical CPU configuration, with variations in CPU power only present between differ-
ent simulations. This means, at the onset, we allocate six out of the available eight CPU
cores on our machine to three clients, effectively allocating two CPUs per client. Over
time, we progressively reduce the CPUs assigned per client until each receives 1/8th of
a CPU, a procedure we refer to as CPU division.

As per our expectations, we observe that with every successive reduction in CPU power
per client, the time required to train, test, and conclude the entire FedML paradigm ap-
proximately doubles. Despite these alterations in CPU allocation, the Communication-
Computation Trade-Off measure, denoted here as CFMQ, remains relatively stable,
hovering around a value of 22 * 10® as all the parameters are the same in the FML tests
except the Peak Memory usage that adds at the CFMQ metric when more CPUs are
used.

Furthermore, we note that the Test Accuracy metric on the server at the conclusion of
the simulations is approximately 0.9. This result is achieved after three server rounds,
each comprising three epochs per round. These findings demonstrate the resilience of
the FedML system in the face of varying computational resources and offer insights into
optimizing its performance under different CPU configurations.

Table 6.4: CPU heterogeneity configurations and results

TestClients | CPUs | CPUs/Client Time CFMQ | Server Test Accuracy
1 3 6 2 623.28sec | 2530MB 0.92
2 3 3 1 1240.51sec | 2300MB 0.93
3 3 3/2 1/2 2315.45sec | 2240MB 0.92
4 3 3/4 1/4 5487.26sec | 2210MB 0.91
5 3 3/8 1/8 12065.69sec | 2010MB 0.92

6.5.7 Stragglers

To simulate the phenomenon of stragglers - nodes that lag behind in performance due to
limited resources - we have designed a nuanced experimental structure. The objective is
to explore the impact of non-uniform resource distribution among the federated learning
nodes.
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Figure 6.5.13: Visualisation of Stragglers

This is achieved by constructing multiple groups of edge devices, each characterized by
uniform CPU allocation within the group. However, the CPU allocation varies between
different groups, thus creating a systematic disparity in computational capacity among
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them. This setup emulates a real-world scenario where certain nodes, or stragglers, do
not function as swiftly as others due to resource constraints.

By carefully orchestrating this resource heterogeneity among the federated learning
nodes, we aspire to gain deeper insights into the dynamics of the system under the
influence of stragglers. This understanding will enable us to develop more robust and
efficient strategies for federated learning in resource-limited settings.

Test 1 Test 2 Test 3
Total Clients 4 4 8
Clients - Group 1 2 2 4
Clients - Group 2 2 2 4
CPUs/Client - Group 1 2 3 3
CPUs/Client - Group 2 1 1/2 1/2
Time(s)/Round AVG-Group 1 150, 79, 55 79, 47, 32 238, 237, 235
Time(s) /Round AVG-Group 2 238, 124, 85 | 314, 190, 125 | 566, 562, 568
Exec Time Total 1019s 1569s 2443s
CFMQ 3027MB 6102MB 13012MB
Final Accuracy 0.92 0.92 0.92

Table 6.5

6.5.8 Dropouts
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Figure 6.5.14: Visualisation of Client Dropouts

To further simulate the real-world complexities of a federated learning environment, we
introduce the concept of ’dropouts’ in our experiment. 'Dropouts’ refer to the nodes that
intermittently disconnect from the network, often without any prior indication, thereby
introducing unexpected discontinuities in the learning process.
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In cross-device federated learning, where a large number of client devices collaborate to
train a machine learning model while keeping their data locally, there can be numerous
reasons for client dropouts. These could include:

1. Network Connectivity Issues: Client devices may drop out due to intermittent or
unreliable network connections. If a device cannot maintain a stable connection
to the server, it may not be able to participate effectively in the training process.

2. Device Availability: Devices may not be continuously available. Users may turn
off their devices or disconnect from the network. For example, mobile phones may
be switched off, put on airplane mode, or simply run out of battery.

3. Resource Limitations: Devices with low battery power, limited computational
resources, or insufficient memory might be unable to participate in the training
process and may drop out.

4. User Preferences: Users can often choose whether or not to participate in federated
learning processes. If a user decides to stop participation (due to privacy concerns,
for instance), their device becomes a dropout.

5. System Updates or Crashes: If a device needs to update its operating system, or if
it crashes for some reason, it will also drop out of the federated learning process.

6. High Communication Latency: In some cases, a client might have a slow commu-
nication link. If the server waits for updates from all clients, then a slow client can
significantly delay the entire training process. To prevent this, the server might
set a deadline and proceed with the next round without waiting for slow clients.
Thus, clients with high latency might frequently drop out.

7. Data Changes: If the local data on a client device changes significantly (due to new
user actions, for instance), the client might be unable to provide a useful model
update and may drop out of the learning process.

8. Load Balancing and Client Selection: Sometimes, the server selects only a fraction
of available clients for each round to reduce communication overhead or balance
the load. So, some clients might appear as "dropouts" in some rounds.

The issue of client dropouts is a widely recognized challenge in Federated Machine
Learning (FML), and numerous studies have been conducted aiming to address this
problem. Various solutions have been proposed, demonstrating the depth of ongoing
research in this area [47], [12] [58] [15].

We establish multiple groups of edge devices, wherein each group experiences a unique
dropout rate. This is achieved by artificially inducing disconnections in the nodes at
different intervals, thereby creating a diversified range of dropout patterns across groups.
This allows us to evaluate the resilience of our federated learning system to sudden and
unexpected interruptions.

The design of our experimental framework mirrors the unpredictable network instabili-
ties often encountered in practical deployments. Through this, we aim to understand the
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effects of sporadic node disconnections on the performance and robustness of our feder-
ated learning system. This understanding will empower us to devise strategies that are
capable of handling and adapting to unexpected network interruptions, thereby ensuring
sustained learning performance in the face of uncertainties.

To accomplish this objective, we posit an environment where all nodes are endowed with
identical configurations and resources. Our primary focus is to analyze how the system
dynamically adapts to fluctuations in the number of active clients. Leveraging the real-
time scalability of our APIs, we have the ability to modulate the number of clients in
operation, thus facilitating a comprehensive examination of the system’s response to
varying levels of client engagement.

IID Data on Dropouts Scenario:

In scenarios such as Test 1, we begin with a Federated Machine Learning (FML)
paradigm that uses a homogeneous configuration of clients. The paradigm commences
with three clients, and throughout its execution, the number of participating clients
fluctuates. Despite these variations and multiple client dropouts, the data remains ho-
mogeneous and independently and identically distributed (IID), ensuring the accuracy
of the global model continues to improve. Each new client, working with a distinct par-
tition of the dataset, inherits the most recent version of the model, contributing to its
ongoing refinement through further training. Consequently, the resilience of the model
is demonstrated as it successfully accommodates changes in client participation while
persistently enhancing accuracy.

In this simulation, we notice a significant trend wherein the clients that initiate midway
through the entire learning paradigm display an intriguing behavior. These clients are
downloading the parameters of an already trained model and initiating training on their
own datasets. Given the Independent and Identically Distributed (IID) nature of the
data, it is observed that these clients start off with a high accuracy right from the
onset. This implies that even late-joining clients can benefit significantly from the pre-
existing learning of the model, resulting in an accelerated learning process and high
initial accuracies. This behavior underscores the effectiveness of federated learning in
dynamically distributed environments.

In the realm of cross-device federated machine learning, the issue of client dropouts
emerges as a significant challenge. In practical scenarios, various factors can lead to
device disconnections. For instance, devices may disconnect due to unstable network
conditions, power outages, or the server may deliberately reduce the number of devices
sampled to optimize resource utilization. Our observations suggest that early client
dropouts result in quicker completion of training rounds. This is because fewer clients
participating in fewer rounds translates into reduced potential for latency, thereby accel-
erating the overall learning process. However, while this can enhance system efficiency,
it’s important to consider the potential impact on learning quality and model robustness,
given the reduced data diversity and volume.

Conversely, when client dropouts occur towards the end of the overall training process,
each client participates in more rounds of model training. This extended participation
contributes to a more comprehensive training of the global model. The inclusion of more
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client data across multiple rounds enriches the model by adding diversity and volume to
the training data. This results in a model that is better generalized and more robust,
highlighting the value of sustained client participation in the federated learning process.
However, it’s crucial to balance this with the potential increase in latency due to the
larger number of rounds and the associated computational and communication overhead.
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Non-IID Data on Dropouts Scenario:
In the current setup, the dataset is partitioned into ten separate segments, with the

data uniformly and randomly distributed among these partitions. Consequently, even if
certain clients disconnect midway through the training process without contributing to
the overall training, the global model should theoretically continue to improve. This is
because new clients joining the network receive a well-refined model, while the clients
that have disconnected retain their model up to the point of disconnection. However,
the situation might drastically change when we transition to a non-IID (Independent
and Identically Distributed) data scenario. For instance, in the extreme case where
each client obtains different classes of the MNIST dataset or a combination thereof, the
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dynamics of the federated learning process may become more complex. The model’s
performance could potentially be impacted by the intermittent participation of clients,
and the evolution of the global model might not follow the same progressive improvement
trajectory as observed in the IID scenario. Therefore, handling these situations will
require a careful consideration of the distribution of data among the clients and a well-
designed strategy for managing client participation and dropout.
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Use cases

7.1 Mobile applications

In the context of mobile phones, federated machine learning has a wide range of appli-
cations.

One of the most early applied use cases is the language models on keyboards where
the fml is used in a personalized manner to improve the writing experience of the user
without the used words sent to a centralized server for inference. In et. al. [28] the
authors train an RNN language model using on-device learning using FedAVG. More in
detail the Google Keyboard has 600 language varieties and 1 billion installs as of 2019
and offers autocorrection, word completion and next-word prediction. Also they add
that the users, the mobile phones used are running in different hardware capabilities
and the communications are not always the best, and the batteries are a problem as
the inference takes a lot of their capacity. ALso they use hyperparameter optimization
in terms of batch size, number of client epochs and the number of clients per round
supporting our claims that these kind of simulations are vital for the usage of fml in
real use case scenarios. At the end the show that a language model trained from scratch
using federated learning can outperform an identical server trained CIFG model and
baseline n-gram model on the keyboard next-word prediction task.

Furthermore, this technology can be used in face detection use cases where the users
want to connect with their face for faster login but they hesitate to give their face
representations in big companies. the privacy concerns in the face dataset and also
the legal restrictions are growing. As the authors suggest at [4] the Automated Face
Recognition systems are used widely and have a lot of uses, but to be used they need
a big database with different and wide characteristics like race and age. And because
is very difficult to buy that kind of data the big companies use the public images from
the well known social media websites to train their models without user consent. In
order to compact this there are regulation that target this “web scraping” of faces. In
this paper they propose FedFace, that learns an accurate face recognition model from
multiple mobile devices in a collaborative manner without sending training face images
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outside of the device, using a pretrained face recognition system, CosFace and trying it
more only in the case of one face per device.

In the same length voice recognition is a valid use case where the models can always get
better to identify the voice of the users and make the use better and the experience whole
while keeping their data private. More in depth the speaker verification use case is vital
for the usage of devices that need a “wake-up phrase”. For this purpose the authors at el.
[27] support the idea that a side federated model can contribute to upgrade the already
created models while preserving the user privacy. In this paper they use federated
machine learning in conjaction with different differential privacy methods like Local and
Central DP to ensure the privacy in the inference and they conclude that the fml way
in combination with the central training have 6% better results. Also at el. [25] they
study on training Automatic Speech Recognition (ASR) models in Federated Learning
(FL) settings while trying to make the experiments as close to real world systems while
using cross-silo and cross-device scenarios with only 10 and then 2.000 and 4.000 clients.

7.2 Autonomous Vehicles

In this context FML can be used to provide a safer and better self-driving car experience
with real-time data and predictions. In the most common machine learning scenarios in
the autonomous vehicles, the data that are captures by the various sensors like RADAR
and LIDAR and cameras are transmitted for a centralized training, this add latency and
transmission overhead and privacy concerns. So there are some efforts to research the
implementation of fml in these use case in order to make the autonomous vehicles more
robust [23], [18]. In the paper [43] the authors name the integration of the FML paradigm
in vehicular networks as Federated Vehicular Network (FVN) which in conjunction with
distributed learning and blockchain conclude, as presented, the future of autonomous
vehicles.

7.3 Medical Data

Data-driven machine learning has emerged as a promising approach for extracting valu-
able insights within the healthcare sector, where data is generated and stored in vast
quantities. However, due to various regulatory constraints, the full potential of this data
remains largely untapped, and public datasets available for use are often limited and
inadequate for real-world applications. Furthermore, there are instances where access to
medical datasets requires substantial financial investments. These challenges have led
to the increased interest in privacy-preserving paradigms, with particular emphasis on
federated learning [34]. Although several obstacles remain to be addressed in the imple-
mentation of federated machine learning, it presents a viable pathway to unlocking the
hidden value of underutilized medical data and ultimately enhancing health outcomes.

Machine learning has found extensive applications in various healthcare domains, such
as radiology, pathology, and genomics. For these applications, deep learning models
often necessitate a large number of parameters to achieve the accuracy required for
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real-world scenarios. One major challenge associated with medical datasets is the gen-
eralization of models to previously unseen data. Medical data is often subject to high
levels of bias and heterogeneity, which arise due to geopolitical and social factors, as well
as hardware-related differences, such as the quality of imaging equipment. Data-driven
methodologies necessitate datasets that accurately represent the data distribution rel-
evant to the problem at hand. Comprehensive and inclusive databases are crucial for
ensuring generalizability; however, advanced algorithms are often evaluated using care-
fully curated datasets that originate from a limited number of sources, or even a single
source. This presents substantial challenges, as isolated data repositories can introduce
sample bias, resulting in demographic imbalances (e.g., gender, age) or technical dis-
parities (e.g., acquisition protocol, equipment manufacturer) that can skew predictions
and compromise the accuracy of predictions for specific groups or locations. Regula-
tory restrictions often limit the use of medical data for research purposes, with patient
consent and ethical approval being prerequisites for data utilization [5]. Although data
anonymization has been proposed as a means to circumvent these constraints, it has
become increasingly apparent that the removal of metadata, such as patient names or
dates of birth, is often insufficient to ensure privacy [6]. For instance, it has been demon-
strated that a patient’s face can be reconstructed from three-dimensional imaging data,
such as computed tomography (CT) or magnetic resonance imaging (MRI), and that
the human brain itself is as unique as a fingerprint [7]. Consequently, subject identity,
age, and gender can be predicted and disclosed [8]. The advantage of federated learning
(FL) lies in its ability to protect sensitive training data by obviating the need for data
transfer beyond the firewalls of the institutions where it is stored. This approach en-
ables the development of robust models while maintaining patient privacy and adhering
to regulatory requirements.

In support of our claims regarding the potential benefits of federated learning and
privacy-preserving paradigms in healthcare, we will present several cases of initiatives
aimed at combining health data from various sources. These initiatives not only demon-
strate the growing interest in utilizing medical data to enhance healthcare outcomes but
also highlight the challenges associated with data privacy and regulatory compliance:

1. IBM’s acquisition of Merge Healthcare for 1 billion dollars: IBM has completed
the acquisition of Merge Healthcare, a provider of medical image handling and
processing technology used in over 7,500 U.S. healthcare sites, as well as clini-
cal research institutes and pharmaceutical firms. The Watson Health Cloud is
expected to be utilized by these organizations to gain insights from consolidated
medical images, electronic health records, and other medical data. This acquisi-
tion will enhance IBM’s Watson Health business unit and improve its ability to
cross-reference medical images against 315 billion data points in the Watson Health
Cloud, providing insights that can help clinicians diagnose, treat, and monitor pa-
tients more effectively. By comparing new medical images with a patient’s medical
history and other similar patients, Watson can help healthcare providers pursue
more personalized approaches to healthcare.

2. Charter for Safe Havens in Scotland: The Charter for Safe Havens in Scotland is
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a set of guidelines created to regulate the use of unconsented data from National
Health Service (NHS) patient records for research and statistical purposes. The
charter outlines a framework for the establishment of "safe havens" that can handle
such data securely and safely, ensuring that the privacy of patients is protected.
By providing a secure environment for handling unconsented patient data, the
initiative seeks to support the development of new treatments and therapies, as
well as advance medical knowledge and understanding.

3. The French Health Data Hub and the German Medical Informatics Initiatives:
These two national projects aim to promote data sharing in healthcare while ad-
dressing the challenges related to data privacy and security. Both initiatives focus
on creating a centralized platform for managing and sharing health data, enabling
researchers and clinicians to access valuable information that can contribute to the
improvement of healthcare services, the development of new treatments, and the
advancement of medical knowledge.

In addition to these examples, further research and initiatives in federated learning and
privacy-preserving paradigms will be explored to underscore the growing importance of
these approaches in the healthcare sector. By examining the successes and challenges of
these cases, we aim to demonstrate the potential of federated learning in unlocking the
value of underutilized medical data while maintaining patient privacy and adhering to
regulatory requirements.

Federated machine learning (FL) holds significant potential to benefit a wide range of
stakeholders within the healthcare industry. For clinicians, augmenting their expertise
with expert knowledge from other institutions can ensure a level of diagnostic consis-
tency not attainable today. Patients in remote areas or those with rare diseases can also
benefit from the same high-quality, ML-aided diagnosis available in larger hospitals. By
maintaining full control and possession of their patient data while contributing to a po-
tentially vast collection of real-world data, hospitals and practices can facilitate research
and development of novel algorithms. FL can enhance the accuracy and robustness of
healthcare Al, leading to improved patient outcomes and cost reductions, which are
essential for the advancement of precision medicine. Manufacturers of healthcare soft-
ware and hardware can leverage FL to foster the continuous improvement of ML-based
systems, potentially unlocking new sources of data and revenue. However, stakeholders
must invest in on-premise computing infrastructure or private-cloud service provision
and standardize data formats to ensure the seamless training and evaluation of predic-
tive models. Additionally, stakeholders must conduct research on algorithmic strate-
gies for federated training and navigate the complex regulatory frameworks surrounding
continual and FL approaches. Despite the inherent challenges, FL has the potential
to profoundly impact the healthcare industry by promoting data sharing and collabora-
tion, improving patient outcomes, and advancing medical knowledge and understanding.
By addressing the obstacles and capitalizing on the opportunities presented by FL, the
healthcare sector can harness the power of underutilized medical data while upholding
patient privacy and adhering to regulatory requirements.

Federate Machine learning use cases in healthcare:
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1. Identifying clinically similar patients through electronic health records (EHR).
Predicting hospitalizations due to cardiac events.

Estimating mortality and intensive care unit (ICU) stay durations.
Conducting whole-brain segmentation in MRI scans.

Performing brain tumor segmentation.

Enhancing mammogram assessments.

Predicting treatment responses for breast cancer and melanoma patients.

® N o otk WD

Improving tumor boundary detection in brain gliomas, breast tumors, liver tumors,
and bone lesions from multiple myeloma patients.

9. Optimizing drug discovery processes.

Patients: FL can ensure high-quality clinical decisions globally, benefiting patients
in remote areas and those with rare diseases. Data donors may feel more comfortable
knowing that their data remains with their own institution.

Hospitals: By retaining control and possession of patient data, hospitals and prac-
tices limit the risk of misuse. However, they must invest in computing infrastructure,
private-cloud services, and standardized data formats for seamless ML model training
and evaluation.

Researchers and Al developers: Access to a vast collection of real-world data ben-
efits smaller research labs and start-ups. However, they must develop algorithmic strate-
gies for federated training and work without direct access to all training data.

Healthcare providers: FL can support the shift to value-based healthcare and pre-
cision medicine by increasing accuracy and robustness of healthcare Al, reducing costs,
and improving patient outcomes.

Manufacturers: Healthcare software and hardware manufacturers can benefit from
FL by continuously validating and improving their ML-based systems, although this may
require significant upgrades to local compute, data storage, networking capabilities, and
software.

Clinicians: Clinicians can augment their expertise with expert knowledge from other
institutions, ensuring diagnostic consistency. While federated training may yield less
biased decisions, it requires compliance with agreements on data structure, annotation,
and report protocols.
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8.1 Future Upgrades

In order to further enhance the capabilities and flexibility of our Federated Machine
Learning (FML) simulation tool, we propose several future upgrades for consideration:

Improved User Interface (UI): Enhancing the visual appeal and user-friendliness of the
tool’s Ul is a key priority. By adopting modern Ul frameworks or libraries, we can create
a more responsive design that adapts seamlessly to different screen sizes and devices. A
visually appealing and intuitive interface will enhance the user experience and facilitate
easier interaction with the tool.

Enhanced Details, Analytics, and Monitoring: To provide researchers with comprehen-
sive insights into the performance of the FML paradigm, we intend to augment the tool
with additional features for detailed analytics and monitoring. This includes integrating
comprehensive statistics, visualizations, and metrics such as accuracy, loss, convergence
speed, communication costs, and other relevant measurements. These enhancements
will empower researchers to gain deeper insights into the behavior and effectiveness of
their models.

Expansion of Model and Strategy Options: A crucial aspect of FML is the availability
of diverse machine learning models and strategies. In our future upgrades, we aim to
incorporate a wider range of model options, such as neural networks, decision trees, sup-
port vector machines (SVMs), and more. Additionally, we plan to expand the available
strategies for federated learning, including federated averaging, hierarchical aggregation,
and other advanced techniques. This will enable researchers to select the most appro-
priate models and strategies for their specific requirements.

Integration of Differential Privacy: Privacy preservation is a critical concern in FML.
Therefore, we intend to integrate differential privacy techniques into our tool. By im-
plementing mechanisms such as noise injection, privacy-preserving aggregations, and
privacy budget management, we can ensure that participants’ sensitive data remains
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protected during the training process. This addition will strengthen the privacy guar-
antees of our FML simulation tool.

Real Edge Device Deployment: The deployment of FML on real edge devices is an
important aspect for practical evaluation and experimentation. As a future upgrade, we
plan to enable the deployment of the FML paradigm on physical edge devices. This will
involve developing functionalities to connect and communicate with real devices, allowing
researchers to conduct experiments and evaluate the performance of their models in
realistic edge computing scenarios.

Simulations with Added Parameters: WiFi, Battery, In Use: To create more realistic
FML simulations, we aim to introduce additional parameters that mimic real-world edge
device characteristics. These parameters include variables such as WiF1i signal strength,
battery levels, and device usage patterns. By incorporating these factors into our sim-
ulations, we can analyze the impact of these realistic conditions on the performance of
the FML paradigm.

Data Augmentation: Data augmentation is a widely used technique to improve model
generalization and robustness. As a future upgrade, we plan to implement data aug-
mentation capabilities within our tool. This will allow researchers to perform various
transformations such as rotation, scaling, cropping, and noise addition to augment the
diversity and quantity of training data available to each client. The inclusion of data
augmentation techniques will enable researchers to explore the impact of augmented
data on the FML paradigm.

Model Save Before End: We recognize the importance of model persistence and reusabil-
ity for researchers. As part of our future upgrades, we aim to incorporate an automatic
model-saving feature at predefined checkpoints or before the completion of training.
This functionality will ensure that trained models are saved and easily accessible for
further analysis, fine-tuning, or deployment purposes.

Customizable Input of Code from Researchers: To cater to the diverse needs and prefer-
ences of researchers, we plan to provide a customizable input feature. This feature will
allow researchers to input their own custom code for model architectures, preprocessing
techniques, or any other specific requirements. By facilitating customization, our FML
simulation tool can adapt to different research goals and support the exploration of novel
approaches.

By implementing these future upgrades, our FML simulation tool will offer researchers
an advanced platform for conducting experiments, analyzing results, and exploring the
potential of FML in various scenarios. These enhancements will empower researchers to
push the boundaries of federated machine learning and facilitate progress in this rapidly
evolving field.
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8.2 Epilogue

In conclusion, this study offers a comprehensive exploration of Federated Machine Learn-
ing (FML), elucidating its potential to address critical data-related challenges such as
heterogeneity, privacy, and ownership. Through the effective utilization of the open-
source framework, Flower, we have demonstrated the practicality and adaptability of
FML in diverse research scenarios. Our simulations encompassing varying numbers of
clients, rounds, and epochs, coupled with the implementation of distinct techniques such
as FedAVG and FEDMA, have shown the versatility of FML. Additionally, the exami-
nation of data and hardware heterogeneity, as well as the evaluation of client dropouts
and strugglers, have provided valuable insights into the complexities inherent to FML.
The findings underscore the value and potential of FML as an advanced tool for ma-
chine learning research and applications, affirming its capacity to handle sensitive or
large-scale data while preserving privacy and ownership rights. Our work, therefore,
provides a robust foundation for future studies and developments in the burgeoning
field of federated machine learning.
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