EGNIKO METXOBIO ITIOAYTEXNEIO
3XXOAH HAEKTPOAOT'QON MHXANIKON KAT MHXANIKOQN
YTIIOAOTIXTOQN
TOMEAY TEXNOAOTI'TAY ITAHPO®OPIKHY KAI YIIOAOTIXTON

AIITAQMATIKH EPTAYITA

Persistent B+4-Tree Index Evaluation over Heterogeneous
DRAM/NVM Systems

Kwvotavtiva 3. 3xoBold

Emprénwy : Anuntpoc I Yolvteng
Koadnyntic EMIL

Adrva
IoOAw0c 2023

EOGNIKO METXOBIO IIOAYTEXNEIO
Y XOAH HAEKTPOAOT'QON MHXANIKOQN KAT MHXANIKON TIIOAOT'TETON
TOMEAY TEXNOAOI'TAY ITIAHPO®OPIKHY KAI YIIOAOT'IETOQN

AIITAQMATIKH EPTAYIA

Persistent B4-Tree Index Evaluation over Heterogeneous
DRAM/NVM Systems

Kovotavtiva 2. XxofBohd

Emprénwy : Anuntpoc I Yolvteng
Kodnynthc EMII

Tewelfc Entponn E&étaoncg

(Yrovpepr) (Troypapr) (Troypapr)
Anurtelog Xolvteng Ywthplog Z00NC Anurteiog Tooupdxog
Kodnyntic Enixovpoc Kadnyntrc Avaminpwtic Kadnyntic
EMII EMII EMII

Hpepounvia EEétaong:
20 IouvAiov 2023

Copyright © - All rights reserved Xxofohd Kwvotavtiva, 2023.

Me empOAaln TovToOS SLXAOUATOS.

Arnayopeetar 1 avTiypapy], amovixeuon xou diovouy) Tng mapoloag epyaciag, € ohoxhpou 1 TuRua-
TOC aUTNG, YL Eunopxd oxomd. Emteéneton 1 avatdnwon, anoUixeucT) xoL Slvour Yot GXOTO UY| XEp-
000%0TXO, EXTAUBEVTIXNAG 1) EpELVITIXAS POONG, UTO TNV TpolmodeoT var avapépeTal 1 TNYY| TEOEAEUCTS
X0l VoL SloTneelton To mopdy Uhvupa. Epwthpata mou agopolv T yefion NG epYaoiag yia xEpd0oX0oTIXO
oxond npenel va anevdivovTal TEOg TOV GUYYEUPE.

Ot améeig xan ToL CUUTEPACUATA IOV TEPLEYOVTAL GE OUTO TO EYYRAPO EXPEALOUV TOV GUYYRAUPEN oL

oev mpEnel va epunvevdel 6Tl avTinpocwnedouy Tig enlonueg Véoeig Tou Edvixod Metodfiou Ilohuteyvelou.

(Yroypapn)

YxoBord Kwvotavtiva
Awmhopotovyoc Hiextpohdyoc Mnyovinde xow Mnyovixde Troroyotov E.M.IIL.
©2023 - All rights reserved.

ITepiindm

H Persistent Memory elvon ptar oyetind vEo xatnyopla cuoxeL®Y uvAung, mou Beloxovtan yetadd
DRAM xau Flash otnv epapyio tng pviung, ot omoiec cuvdudlouv ta €€AC YUEAUXTNEIO TIXA:
OLaTNEOVY Tal BEBOUEVA TOUG Y WPIC TapOoy Y| PEVUNTOS, £V ETioNG LTOG TNEIloLY TNV dUECT) TPOOTEANO
(tuyoio tpdofBaon) xou dievduvalodotnon byte, oe tayUtnTee xovtd oe autéc tne DRAM. Ilpéo-
gota 1 Intel Siédeoe oto eumdplo To TEHOTO TEOIOY awTod Tou TiToU, TNV Intel® Optane™ Per-
sistent Memory. Idiadtepa ot egupuoyéc Bdoewmy BedOUEVLY UToPOoLY Vo GPEANIOUY oNUaVTIXS
am6 Ny €hevorn g NVM, xodog undpyet 1 anaftnon agevog vo Slatneoly To Be00UEVA TOUS Xl
VO UTTOROVY VoL OVOXGUTITOUY YRTYORX UETH amtd ammAEL peOUATOS 1| a0 TOYIEC TOU GUC TAUATOG,
APETEPOL VoL ToREYOLY UPNAY ambdoor xat Ty OtnTo amoxpeione. Ta teleutala ypodvia TOAES p-
yaoieg éyouv npoteivel Bopéc eupetnpiny (index structures) eldxd oyediacuévee yio v Persistent
Memory (persistent indexes), ot onoiec €Y 0LV WG OTOYO VoL BATNEYOOLY TIC LPNAES ETIBOCELS, EVE)
TV TOYEOVA UTOEOUV VOL BLATNEOVY GNHOVTIXG UEYUADTEQO OYXO BEQOUEVMY OE OYECT| UE TTNTIXEC
OopES upeTNEiwY xat XorhoTOOV TO GUGTNUA XAVO VoL AVOXAUTTEL G TLyptakor, xodog Tor OEBOPEVA
Toug elvan dueco Brardéotuo xon O YEEIALETOL VO OVOXATACHEVUG TOUV.

Yty mapovoa dimAwuatixy epyacio yiveton por ouyxpltixd afloAdynon tne enidoonc per-
sistent dop®v cupeTnEiny Bdoewy GEBOUEVKY, YENOWOTOWMVTAS Uiot in-memory ulomnoincr Tou
OLTP Benchmark TPCC xo to microbenchmark YCSB. IIépa and tnv enidoor, sotidlouye
ETUTAEOY XU OTNY XATAVAAWOT) EVEQYELNG, Tou efvan Wior UeTpixy| TNy omola 1 untdpyouoa BiBAL-
oypaplo €yel o yeydro Podud ayvoroel. AlIMIGTOVOUUE OTL 1) XATAVIAWCT) EVERYELNS Efval orv-
TIOTEOPOEC AVIAOYY TNG ENIDOONE %o OTL BLUPORETINEC DOUES ETUTUYYAVOLUY XUAVTEREC ETUOOCELC
avdhoyo ye to benchmark xau Tic oyediaotinée emhoyéc touc. I mopdderypa yioa to TPCC
xou 1 warehouse, 1 xohOtepn enidoon emituyydvetar and to Fast&Fair xau etvan mepinou 53 yuh-
18dec ouvahharyéc avd Seutepdhento, yio évay client, enidoon xohbtepn xatd 8%, 91% xar 400%
xohOTEPN aUTrC TouTeTUYabvouy Yl TG (Bleg mapapéteoug o WBtree, Masstree, FastFair avtio-
torya. o to YOSB, xohOtepn entdoorn yia axépara xAewdid €yet to Bw'Tree, axoloudoluevo ota
neplocotepa workloads améd to FastFair xoaw to Masstree. I'a xAewdid-cupfBohooelpeg, 1 enidoon
Ohwv Tov indexes pewveton apxetd. T uixpdtepn apvntixy endEAoT) TUEATNEOVUE GTNY TEPITTLWON
Tou Masstree, €yovtog yelpdtepn eniboarn tovhdyotov xotd 39%, To onoio elvar oYEBIICUEVO Yia
va yetplleton amoTeAeoUaTXd xAEBId-cuuBohooelpée, eved yio To BwTree, FastFair, n enidoon
YEtpoTeEpelEL amod 3 ewg xan 6.5 popeg, xou yioa to WBtree, n enidoor elvan yelpdtepn xotd 2 €wg
2.5 gopéc. Emlong audvetar 1 xotavdhworn evépyeLog.

AéZeic KAewdid — B+trees, TPCC, range indexes, databases, indexing, evaluation, Optane,
NVM, Persistent Memory, benchmark implementation, heterogeneous DRAM/NVM systems

Abstract

Persistent Memory is an emerging class of memory devices, sitting between DRAM and flash-
based storage in the memory hierarchy, and offering data persistence and direct (random) access
(byte addressability) at close to DRAM speeds. It recently became commercially available by
Intel with the release of its Optane modules. Database applications in particular can greatly
profit from NVM, since they are required to provide both durability and speed / high per-
formance. In recent years, many research works have proposed index structures specifically
designed for Persistent Memory (persistent indexes), which aim to maintain high performance,
while at the same time being able to hold more data compared to volatile indexes and enabling
instant recovery through data persistence.

In this thesis we conduct a comparative evaluation of persistent database indexes, using an
in-memory implementation of the TPCC OLTP benchmark and the YCSB microbenchmark.
In addition to performance, we focus on energy consumption, which is a metric that the existing
literature has for the most part ignored. We find that energy consumption is inversely propor-
tional of performance and that different index structures achieve better performance depending
on the benchmark/workload and their design choices. For example, for the TPCC benchmark,
a single warehouse and 750,000 transactions performed by a single client, the best performing
index is FastFair, achieving 53 thousand transactions per second, which is 8%, 91% and 400%
better than WBtree, Masstree and Bw'Tree’s respective performance. For the YCSB, we find
that BwTree performs best, followed by FastFair and then Masstree for most integer work-
loads. For string workloads we observe a significant performance drop for all index structures.
Masstree is the least affected, experiencing at least 39% performance drop. Single-threaded
WBtree experiences 2-2.5x performance decrease, FastFair and Bw'Tree performance decreases
3 to 6.5x compared to integer keys, while energy consumption increases.

Keywords — B-+trees, TPCC, range indexes, databases, indexing, evaluation, Optane, NVM,
Persistent Memory, benchmark implementation, heterogeneous DRAM/NVM systems

Euyoplotieg

Oa flela VoL eLy aplo THO ToV ETBAETOVTA XY NTH AUTAS TNS SITALUTIXAS epyaciog x. AnurTelo
Yo0vTten Yyl TNV guxatpla TOu You EBWOE VoL TNV EXTIOVIOW GTO epyacTrhplo Mixpolnoloyiotmy
xou Wnproxey Yvotnudtwy. Euyapiotd eniong wiaitepa tov utodrgio diddxtopa Movorn Kat-
coparydxm yioe TNy xadodnRynom, tn oTheEn xou TV ToALTW Borield Tou, xS xon TOUC PETO-
OB TOPWOUE EPEUVNTES Xal CUVERYATEC Tou epyaotrnplov Xeroto MnauroUxa o Adlapo Ilo-
TOUBOTOVAO, TOU HOU EDWOUY TNV ELXLEIN Vo YVWEIoK XuL Vo CUUPETACY W OF i oxadnuadxn
EQELVITIXY| OUADAL.

TéNog, ELYAUELOTE TNV OWOYEVELS HOU TOU NTAV BITAN HOU OTT| OLIOXELN TWV CTIOUBMY [LOU Xl
Toug pihoug pou, ewdwd “To Iapadoctaxd™, xadoe xon Ty oudda g BBAodrxne X HMMT mou

OUOPPUVOLY TOL POLTNTIXY OV YEOVLL.

Contents

ITepiindn
Abstract
Evyopiotieg
Contents
Extevigc EAAnvixy] Ilepiindn
Ewoywyh) . . .
Ocopnmd Tréfodpoo
Persistent Memory xou Intel Optane DCPM
Hpoyeappotionde Persistent Memory xou mpoxhfoeg
Aopéc Evgetnplov otig Bdoewg Aedopévwy oL
Eyeto| BlBhoypaplor . . oL
Hewpopote) ACOAOYNOT L
Thomoinon TPCC o
Hewpopotin Alordynon ue to TPCC o000 0000000
Hewpapate) Allohdynonue o YCSB . . .o o 0000000
Yovolm xou Hpotewopevee Enextdoei Lo
Introduction
Theoretical Background
2.1 Persistent Memory
2.2 Intel Optane DC PMEM
2.3 Programming Persistent Memory & PMDK
2.3.1 Operating system support for persistent memory
2.3.2 Challenges of Programming Persistent Memory
2.3.3 Persistent Memory Development Kit (PMDK)
2.4 Linearizability
2.5 Database Indexes
2.5.1 B4-Tree s
2.5.2 LSM-Tree e
2.5.3 Skiplist
2.5.4 Trie & Radix Tree
2.5.5 Hashindex

11

13
13
14
14
15
15
16
18
18
19
20
23

25

3 Literature Review

3.1 Challenges of persistent index structure design
3.2 Recent Index Designs for Optane
3.2.1 BzTree e
3.2.2 Masstree
3.2.3 PACTree e
3.2.4 Fast&Fair
325 P-BwTree
3.2.6 wBTree e
3.2.7 DPTree e
3.2.8 ChameleonDB
3.2.9 ViPer
3.3 Other evaluation works Lo
3.4 Converting DRAM indexes to persistent memory indexes

4 Proposed Framework

4.1 TPC-C Benchmark Specification
4.2 In-memory TPC-C Benchmark implementation
4.2.1 Multiple clients support
4.2.2 Mapping of TPCC operations to tree operations
4.3 Evaluated Indexes

5 Evaluation Results

5.1 Server characteristics and configuration
5.2 Ewvaluation metricso Lo
5.3 TPC-C . . . e
5.3.1 Load phase
5.3.2 Runphase
5.4 YCSB (microbenchmark) o oo
54.1 Integer keys
5.4.2 String keys Lo
5.4.3 Performance comparison of integer and string keys.

6 Conclusions
6.1 Thesis Summary and Future Work

12

41
41
42
42
42
43
43
43
44
44
45
45
46
47

49
20
o1
o2
53
23

55
55
25
26
56
o7
61
62
69
74

77

Extevrg EAAnvixn Tlepiindm

Ewcaywyn

H Persistent Memory (PMEM) eivon ptot oyetixd véo teyvohoyia uviune, n omola cuvoudlet tn un
mtnmwoTnta e pvAung Flash, ue tn Sievduvolodotnon oe eninedo byte tng DRAM. Teyvoloyleg
oQUTOU TOU TUTOU UEASTMOVTAL €0G) XU UEXETA YPOVIX, WOTOCO, UEYEL TOND Tedo@uTa, OEV UT-
HEYE xdmolo eunopixd dlodéoiuo Teoldy otny ayopd. (¢ ex To0TOU, 1) €EELVA TTOLU UTOCXOTOVCE
OTNV EVOOUITLOT AUTAS TNG UVAUNG OF EPapUoYEs, poviehonotoloe Ty PMEM yenouyomolwhvtog
DRAM emulation, utotétovtag 6Tl 1 uévn drapopd frav tog PMEM ftay amhdg o o apy,
un-ntnuxy DRAM. Ty tekevtalo tetpoetio nepinou, ye tny wdeon tne Intel Optane DCPM
OTNV AY0pd, XATEGTN TAEOV BUVATO YL TOUG EPELVNTEC VoL 0CLOAOYHCOLY To TEYVIXEL Y ARUXTNPLO-
T EVOC TEOYUATINOD TEOIOVTOC, YO VoL OYEDLICOUY EQUPUOYES T8V GE AUTO TOU VoL Ao3Evouy
UTOYN ToL CUYXEXQIIEVAL YapoxTNEWOTIXE Tou. ‘'Etol @dvnxe otL ot utodécelg Tou maperddvTog
oev evotodoly, xawg o olxypton pe v DRAM, n PMEM eugaviCer peydhn aocuuuetela ot
CUUTIEPLPORE, OVALY VWCEWYV /EYYRaPMOY Xt €EL uxpdtepo bandwidth to onoio eivar ebxoho vo xo-
ceotel axdun xou ye Abya viuota.

MeTa€l Twv e@apuoy®y Tou unopoly va weeAnloly wialtepo and TN yeron tne Persistent
Memory, etvar oL egopuoYég Bdocwy BEBOUEVKV, Xatg oXOTOS TOUG Efval Vol ToEEYOLY ATOdOTIXS
queries eve TAVTOYPOVOL VL EYYUWVTOL 6TL Tot SedoUEVa Toug Vo Blatnenoly oe TepInTwoT AmMALLC
eevpatoc) actoylag Tou cucTiuatoc. Emmhéov ebvon emduunty| n toyeio avéxopdry toug (recov-
ery) o€ auTé Ti¢ Teptntwoelc. ‘Evo and ta onuavtixdtepo performance-critical components piog
eqappoyic Bdoewy dedouévwy elvon 1 Bopr| eupetneiou (index structure) mou yenowwonotel, Tou
ebvon xan Toh0 Paoixnd xouudtt Twv NoSQL Bdoswv 6edouévey xan twyv key-value stores mou yvopi-
Couv Biadtepn dnuogiior T Teheutaba ypovia. Méoa oe autéd To TAdiolo, TOANS epeuvnTiXd dpdpa
€y 0LV EEEPEVVHOEL TS TEETEL VOL ETOVATPOOOIOPIG TEL O GYEBLIOUOS TETOWWY BouwY, UE Bdomn TNy
UTBEY 0UGH TEYVOROYIA XoU TOL TROYHOTiXd TG YapaxTnelo Td. Ot epeuvnTéc €youy mpoTelvel véeg
OopEC el oyedlaocuéveg Yo Ty Optane, woTt600, Oev elvan 1660 CaPES M OL VEEC TPOTACELS
ouyxpivovTal PETOEY TOUC Yol PE TIC TEOTAGELS TOU TapeAYOVTOC.

Ye auth) TNV epyaotio, otdyoc pog eivon vo TpoTtelvoupe uio uedodohoyia yio TNV a&loAOYNGT| TNG
enBOONC HoU TN XATAVIAWGCTNC EVERYELIC BLOPORETIXWY DOV EVEETNRIWY BAcEWY BEBOPEVWY, TYE-
Soopévev Y etepoyev) ouotThuatae DRAM/NVM. H cuvelogopd tne adlohdynohc pag oe oyéon
ue v undpyouoa BBAoypapio etvor 6Tt apevog AauBdvouus LTOPTN TNV XATAVIAWGCT] EVEQYELIS WS
uetewr, agetépou allohoyolue TNy enidoor xou uTé transactional workloads ye to benchmark
TPCC, nou elvon 800 deic mou 1 undpyouca BiBAoypapio ot ueydho uépog ayvoel. ‘Etot, €youue
0&LOAOYTOEL TEGOEPLC BOUEC AVTITPOOWTEVUTIXES DLOPORETIXWY CYEDLUCTIXWY ETIAOYWY XoEUld,
YenoylomolwvTog Ui in-memory vhonoinon tou TPCC emnicov tou standard YCSB, xou €youpe

enlong €oTdoEL OTNV HATAVIAWOT EVERYELNG TEEQXL ATh TNV ATOBO0T).

13

Oewpentindé YTroRadpo

Persistent Memory xot Intel Optane DCPM

H Persistent Memory 7 ahidg Non-Volatile Memory (NVM) eite Storage Class Memory (SCM)
elvon e oyeTind véa teyvoroylo un-ntnTixiic pvAung. YTmdpyouv didpopes TEYVOROYIEC TOU UT-
dyovton og auTthv TNV xotnyopio, 6nwe Phase Change Memory (PCM), Spin-Transfer Torque
RAM(STT-RAM), Resistive RAM (Re-RAM) xou 3D-XPoint. Ta Baocixd yopoxtnetotind g ef-
vou 6Tt ebvan byte-addressable, 6mwe xow n DRAM, onhadt| uropel xou autr vo tpootehaoTel dueca
ond tov enelepyacth ue evioléc load/store. ‘Eyer emlonc vdmhn nuxvétnta xou youniéd x6ctog
avd bit, yaunhotepn xatavdhwon eVERYELNG xou UixpoTeRT avtoyn and 6,1 1 DRAM. Q¢ mpog o
access latency, auto eivon oty (dia T8N peyédouc pe e DRAM, wotéco onuavtixd ueyahitepo,
eldWd boov aopd Tic eyypopéc (writes), xadode évo oaxdun alloonueiwTo yopaxTNEoTXd elvor 1
aouuPeTela UETaED TG xUCTERNONG TWV OVAYVWOOEWY Xl TV EYYRUPOV: ot avtideon pe v
DRAM, o avoryvaoeig eivat ToUAd Lo ToV 3 QOREC o YRHYORES amd Tig eYypapés otnyv Optane.
H mpdytn eumopud Stordéoun uviun autod tou tomou eivar 1 Optane DCPM nou dattdeton and
v Intel, n onola etvon Bactopévn oty teyvoroyio 3D-XPoint xau etvon cuufote ue enelepyactéc
Cascade Lake xou vedtepoug. H uviun auvtd tomodeteiton 6to memory bus xou cuvdéeton Ue
Tov emelepyaoTy| e Tov (Blo Tedmo Tou cuvoéovtar xou Tt DIMMS tng DRAM xou €yel 600
TeoTouS Acttoupylog: umopel elte v Acttoupyrioel we eméxtoaon tnge DRAM (Memory Mode)
otV onola TERIMTMOT OUCLAGTING GUVIGTEL Lol UEYUADTERNC YWENTXOTNTOS TTNTXH UVAUT), lte va
Aertovpyroet oto Application-Direct Mode nou eivon xau o tpémog Acttouvpylag mou exeTahhedeTo
TN UN-TINTXOTNTA TNG UWVAUNG. 2TO TAXLGLO AUTAG TNG OLTAWPATIXYS, OF Uag eVOLagepel To Memory
Mode. Enuoavtind va onuewwiel 6t eved, o memory controller emxowwvel ye v NVM Bdoetl tou
mewtoxdirou DDR-T yenowonowwvtag umhoxg twv 64 bytes, to péyedog oeiidac tne Optane
elvon Tor 256 Bytes. Yuvenae, loads xau stores pixpdtepa twv 256B anioe onatarody to dtadéoiuo
bandwidth xou tpoxaholv amplification. O topéoc mou ovoudletor ADR (Asynchronous DRAM
Refresh) etvon o topéog mou, av ta dedopéva @Tdoouy Ge qUTOY, EiVOL EYYUNUEVT 1) UN-TTNTXOTNTA
touc. Koppdtt tou elvar to WPQ (write-pending queue), émou tonodetodviat oL eyypapés ool
exteieotel eva flush instruction, xou uowd 1 B) Persistent Memory. To nopandve, xadaog

xou 0 TPoTo¢ dlaclvdeome evoc Optane DIMM aneixoviCovton oynuatixd oty Ewdva 1.

iMC

ADR Domain |
DDR-T

Cacheline: 64B
Controller Optane DIMM

Buffer:

30-XPoint Media

(b) Optane DIMM Overview

Ewoéva 1: Optane DIMM Overview

14

ITooypoappatiowds Persistent Memory xow mpoxAvoelg

ITpoxewévou ta dedopéva va @Tdoouy and Ty TnTxt| xpuy| uviun e CPU otnv Optane, xou va
Yewpniolv TAéov un TTNTixd, o TeoYpuuaTioTAc {Ntd eNnTd TNV ey Yeapr Toug. I'a to oxond autd
yenoylomoolvta ot eviorég clflush, clflushopt, clwb ov omoleg ypdpouv otn uviun uia yeouuy| e
cache, mfence/sfence ot onofec eivor memory fences nou o oxondg Touc elvar vo OELPLOTIOLOVY TIC
eyypapéc, eacpourilovtag ot Yo yivouv ue T oepd Tou opilel 0 TEOYEAUUUUTIOTHS, xou temporal
stores (movnt) ot onoleg anodnxebouv Tic eyypapéc oe évay ewdwd buffer, ta nepeydueva Tou
omofou ypdpovton 6T pvhAun 6tay yeploel elte dtav pntd exteieotel o evioAy sfence.

O rnpoypoupatiouos Persistent Memory 6ev etvon ebxoln diadiacio, xadoe mapovoldlel emi-
TAEOV TIPOXATCELS GE OYECT UE TOV Tapadoolaxd Tpoypoppatiopd oe DRAM. O Baowdtepeg amd
avTEC ebvon ot axdhovVeC:

Yuvéneia Acdopévwy. H npdxinon auty apopd otny avdyxrn To Sedouéva Vo £YYedpovTL
otnv PMEM ye tnv cwoty| oelpd, mtapd 10 YEYOVOS OTL OTOLEGONTOTE YRUUUES TNG cache pnopel
VoL adetdoouy avd mdoo oTiypr. H owoty| oeipd v eyypapny dlac@allleTton Ue TN Y1 0T EVIOAGDY
clflush /sfence.

Avéxtnon Acdopévwy. ‘Otav emaveravel €vo TEOYROUUA, YO TORAOELYUO UETA and €va
XPUGYPLOUL, O YWEOS EXOVIXGY OLEVHUVOEWY ToU TOL BlveTtal UTOREL VoL BLapEPEL amd TNV TEOTYOU-
uevn extéleon. Autd amotehel pia Suoxolio yio To g anodnxebovton ot deixteg(pointers) otny
PMEM. H hoon cuvdeg etvor va amodnxedeton eva offset, avtl yia ouyxexpyevn dieduvon, to
omnolo petd mpootiletan o vEa SledYuvon YioL TNV AVEXTNOT TV DEBOUEVMV.

Awoppoég Persistent Memory. Trdpyouv 600 edwv diappoéc: Ilpdtov, autéc mou um-
dEYOLY XL GTOV THUEABOCLAXO TROYPUUUATIONS, OTAY Lol EQUEUOYT) aEAEL Vo ameleuiep®oel uviun
TOU OECUEUCE DUVAULXAL, UE TN OLPOEE OTL PETE TNV EXTEAECT] TOU TEOYQRAUUATOS, 1) UWVAUY AUTN
TOEOPEVEL OECUELPEVT Xl Blatnpolvtan To mepieyoueva tne NVM. Emmiéov umdpyet x éva
0eUTERO €lBOC BlapEO®Y, ToL UToEOLY Vo GUPBoVY xatd To memory allocation. Av yio mapdderyua
xpaodpet To cLoTnua eve yiveton éva allocation, undpyel nepintwon o allocator va BAémel e Eva
XOUMATL TNG UVAUNG €yl Btatedel otny eQapuoYY|, VO 1) EQUEUOYY VoL UV UTOREL Vo T BetL.
Huwteleic eyypagég O obyypovee CPUs unootnpilouv atouxés eyypapéc uéypt 8 bytes.
Qotoo0 eivan oOvnieg To péyedog plag eyypapnc va urepBaiver ta 8 bytes. Etou wio egapuoyt yio
VoL XAVEL ‘aToXES” aANayEC pEYAAOU UEYETOUC, TEETEL Vo EXMETUAAEUTEL TIC aTOUXES AELTOVEY(EC
mou UooTNEilel To LAXO, ot cUVATWS aUTO YIVETOL YENOWOTOIOVTAS UixpOTERA Tedlar pueyédoug
€wc 8 bytes, mou umopoly vo evueEw oY ATOUIXE Xou BELYYOUY TNV XATACTUCT) UAS UEYOADTERNC
EYYPUPNS.

Aouég Evpetnplwyv otic Bdoesig Acdopévwy

‘Eva onuoavtind tufua tng épeuvag otov Touéa tng adlonoinong tng Persistent Memory oe egap-
HoYEc apopd 0TI Bdoelg BEBOUEVLY Xou To EWOWG, 0TS Dopég eupeTnpiny Toug. Ta eupethpta €youy
YepeAwon onuacto yio T Bertinon tng anddoong tng Bdorng SEBoPEVLY Xt TN YRTYORT| avaXTNoT
oedopévwy. Kdmoleg and tic wlpleg poppés supetnpiwy etvor ta B+-trees, LSM-trees, Tries xou
Radix trees, ot nivoxec xotoxepuatiopol(hashtables), ot skiplists. Optlopévec and tic Sopéc autég
elvor mapadootoxd oyedaopéves Yo Ty DRAM. Ou douéc autéc meprypdpovial avahuTixd otny
avtiotoryn evotnta Tou Chapter 2. Ed¢ emvypopuuatind avopépouye:

o B+-0évtpa. To B4-0évtpa elvon tooppomnuéveg Oevdpinéc doueg cupetnplou mou yernol-

Homoto0VTaL EVPEWS 0T CLCTHUATA Bdoewy dedopevewy. Ou cowtepixol xoufol Tou OEv-

15

TEOU OEV PUABCGOULY BEBOUEV, UOVO DBEIXTEC TPOS To XATWTEPX ETUTEDA TOU BEVIPOU, EVE
Ta Oedopéva Bploxovton otoug xouBouc-gUila. Eivar wbialtepa amoteAeouatiné SOUESC Yo
avalnthoelc xou avolNTHOELS €0POUC ahhd AyOTERD Yo EYYROPES/BLorypopéc, xodde ouTég
Ol AELTOVPYIEC UTOPEL VoL ETULPEQOUY ETUTPOCVETEG DOUKES OAAXYEC GTO DEVIPO TEOXEWEVOU
VoL OLUTNEHOEL TNV LGOPEOTNUEVT, OOUT| TOU.

o LSM-8évtpa. To LSM(Log Structured Merge) 0évtpa eUoavioTnxoy e eVOANIXTINY TwV
B-+-8évtpwy yioo TNy umooTApln TayUTEpwY eYYpap®y. Eivow molveninedec douég, dmou
T0 TpWTO eninedo efvar TTNTWO xou Tor MOV prFnTnTd. Kdie eninedo pmopel var €yel
OLapopeTX) uAoTolnoT. Xto apy o dpvpo Tou TpdTEVE TN dopr auTY, xdle eninedo YTov
vhoTotnuévo we €vor B4-6évtpo. Ou véeg eyypagéc elodyovTol 6To TEMTo ETUNEDO, T0 oTolo
otay yeploet, Todivouelton xon Tol TUELVOUNUEVO TIEQLEYOUEVA CUYYWVEVOVTOL UE TO EMOUEVO
eninedo. H (Bl Sradixaola Talvounuévng cuYYWVEUONS EQUOUOCETOL Xal Yol Tol ETOUEVA
enineda, TANY ToL TEAEUTAlOU, OTAY PTAVOLY EVa CUYXEXPWEVO UEYEDOC.

« Tries xou Radix trees. Etvon xon autég 0evopinéc Souéc, oyedlaopéves yiol Th QUANET XAELOLOV-
oudfolocelpwy, Behtiotomonuéves Yoo anodotixy avalhtnon. e éva Trie xdie xoufog
pUAGooEL Eva yopoxThed, eve o éva Radix tree pmopel vo guldooel éva mpdlepo mou
amoteheiton amd TOANOUG YopUXTHRES.

o IIivaxec xatoxepuotiopon. O ivaxeg xatoxepuatiopol eivon douéc otatepol yeyédoug, mou
unootneilouv ToAD anoteheopatinég avalnTHoels Y éva oTolyelo, aAld 6ev utooTtneilouv
avalntrhoec oe €0pog.

« Skiplists. Ou skiplists etvar mdavotixéc dopéc mou amoTeNOVY Uiol EVOAAAXTIXT EVAVTL TOV
B-+-8évtpwy, xadoe utootneilouv Tic Bleg Aettovpyiec e autd, oAld dev €youv TNy (Bla
VALY XY YLl QOUIXES OANXYEC TIOOXELIEVOU VO DLUTNEHCOUY AUGTNEY| LOORROTNUEVT] Bou.

Yxetxn BiBAoypapia

IToAéc Bouég eupetnpinv €youv mpotadel and cpeuvntés. [evixol otdyol otn oyedlaon ulog
persistent-memory Souric eupetnpiou eivar: va xpatniel o apriudc Twv persist-operations(clwb,
clflush, sfence) younhoc xotd to duvatdy, xadde ot tpooPdoeic oty Optane agevic etvon axptBéc,
APETEPOL OL EYYPUPES TEOXUAOUY plopd Tne uviung. Enlong, xadoe ypeetdletar vo amopedyovton
TEPLTTES EYYPAPES, YiveTon Tpoomdieia va uewwdolv ot Acttoupyieg yio Tr) SLoTr|enoT) UETUOESOUEVLY
xou doux@yv WTthTwy. Evog axoun otoyoc etvon 1 dour| va utootneilel TauTtdypoveS AetToupyleg
OXOUT) YO Yol TOAAG VAUATOL, €V VoL Ur) omtotachd To bandwidth o onolo eivan teplopiouévoc népog
vt Tnv Persistent Memory.

L'evixd oxomndg etvon v emiteuy Vel xohn enidooT), amoTEAEOUATINOS CUYYPOVIONOS TTOU ETLTEETEL
TNV XAEXWOT YLol TOMG VAUOT, %ot TauToypova Vo dtatnendoly ta dedouévo o mepintmon
ATWAELIG PEVUATOC 1) Ao TOY(0C TOU UG TAUATOC YLt YRTYoRY avdxoudn tou cuothuatog. Ot epe-
UVNTES €Y0UV avary vewploel xdmoteg xoweg Pactnéc’ TeYVINES:

[tn Behtiwon g enldoorng etvan obvnieg va egapuoletar “selective persistence’, dSnhadt| ol
xotarywenoelg otny Optane vo teptop{Covton 6TIC amapolTNTES YLot TNV avaxodr), xon xaTé Tor GAAaL,
va yenoworoteiton 1 DRAM w¢ taydtepn. o topdderyyo otny nepintwon twv B+-dévtpwy, Tou
(QUALGGOLY BEBOUEVY UOVO GTO GUAAXL, aUTO UTOREl BloncUNTXd Vo EQopuooTel TotodeTtimvTag T

UM uOvo otnv Persistent Memory xou tor mponyolueva enineda tou 8évtpou (Tou Pmopolv

16

VOl oVaXOTOOXELAOTOUY Bdoel Twy QUM@Y) ot DRAM. ‘Alec dobedouévec teyvixée ebvor 1
yenhon atalwéuntov xouBwv (unsorted nodes) otnv PMEM, eve Swrtnpeiton poe axdun dopt,
ouvidwe évag Tiavaxog (indirection slot array) otny DRAM mou xpatdet tnv tAnpogopio yia Tny
TEWVOUNUEYY GERd TwV oToLyElwy, xodwe xat To fingerprinting. To fingerprint, eivon éva 1-byte
hash yio xde xhewdi Tou umdpyet oo UANo. Ta fingerprints Torodetolvtoun oto mpwTo cacheline-
sized TuRuo TOL X6UBOL-PUANOU, e UVOVTOS TNV avalATNOT XoMOE amoPatvovTaL Yiol THY UToEEN
1) U1 EVOS (AEWBOL Ywpelg va ypelaoTel 1) Sldoyton Tou gUAAoL. T'tor TNV XAUEHWOT), TEOTIUMYTHL Ot
AOOEC TToU amogelyouY To TONNG/ Boptd xhedOUOTA, TS lock-free/optimistic locking. Hopdra
aUTd, Ol OYEBLOTIXES eMAOYEC uTtopel var Totxihhouy. Xtov Ilivoxa 1 cuvoldiCovton oL oyediaoTixég

EMLAOYEC OPIOUEVWV AVTITOOOWTEVTIX®Y TEOTACEMY TWV TEAEUTULWY ETMV.

Aopun ApxiteExTOoVixg Aoun xOuBwv Suyxpoviopmos KAewdid TuupPoroocesipég
wBTree B+-tree;PMEM-only Unsorted, indirection slot array Single-threaded Pointer to key
FPTree B+-tree; selective persistence; in- Unsorted leaf nodes; fingerprints HTM & locking Pointer
ner nodes in DRAM, leaf nodes in
PMEM
BzTree B+-tree;PMEM-only Partially unsorted leaf; sorted inner lock-free(PMwCAS) Inline
nodes
DPTree selective persistence; B+-tree and unsorted leaf; fingerprints; indirec- optimistic locking; async Pointer
inner trie in DRAM; trie leaf in tion; extra metadata updates
PMEM
PACTree Trie;PMEM-only (optional Unsorted leaf; fingerprints; indirection optimistic locking; async Inline
selective persistence) updates
FastFair B+-tree;PMEM-only Sorted nodes Lock-free reads; blocking writes Pointer
Masstree Hybrid: trie-like concatenation of unsorted leaf; sorted internal; lock-free reads;write exclusion Inline
B+-trees;converted
BwTree B+-tree;converted logical pages; mapping table;deltas non-blocking reads and writes Inline
prepended to node;

ITivoxac 1: Yyediaotixéc Emhoyég avd doun

"AXha dpipa TOU XEVOLY Lot CLUC TNUATIXT cUYXELoT xou allohdynor persistent indexes eivon ol
epyooiec twv Lersch et al.[1] xadd¢ enione xou He et al.[2], 6mou ol epeuvntéc ouyxpivouv petald
Toug range indexes, 6nhadt| Souég EVPETNPIWY TOL PTOPOVV Vo UTOG TNEIEOLY EpMTANNTA EUPOUC,
omwe etvor T B4-8évtpa. Mo oxdun napepgpepnc pekétn eivon twv Hu et al.[3], ov onolot ofi-
ohoyNoay TNV ETBOCT BOUMY XaToxEpUATIoNoL oTnellduevol 6Tny epyacio Twv Lersch et alylo to
benchmarking framework. Ta eupetfplor Tou cuumeplérofoy 6TIC AZlOAOYHOELS ElVOL AVTLTPOC-
TELTXY OLUPOPETIXWY TYEDLAC TIXGY ETAOYMY ot concurrency schemes.

Hopdhhnha ye TNy TpdTaoT VEOY B0UOY GEB0UEVKY €BLXd oyedlacuévwy yia Ty Optane, Tou
AopfBdvouy uTodn Ta WLalTepa YapaxTNEo Td NG ot oyéor ue Ty DRAM dote va Bedtiotonols-
COoUV TNV ETBOCY TOUg eVe TAUTOY POV BLATNEOVY Tal OEBOPEVA TOUG OF TEPIMTWOT ATMAELG
pelpatog, €youy mpotoel uedodoloyieg yiol TN UETUTEOTY| 1|01 UTOEYOVCHY TTNTIXGMY DOUMY OF
UN TTNTXES xou TNV Xot8AANAN mpooappoyr Toug otny PMEM. ‘Apgipa énwe to RECIPE[],
NVTraverse[5], PRONTOI6] xou to TIPS[7], npoteivouv teyvixée petaoy nuottopol.

Ewwotepa 1o RECIPE, dev napéyel TooypouuaToTiXES DIETUPES AANS TUREYEL XAVOVES Yol TNV
TEOCUPUOYT| TOU TNYolou x@oxa yiot TN METUTEOTY. Ataxplvel TEEIC XATNYOPIEC TTNTIXDY BOUGOY
TOLU UTOPOUV Vo TeocdpuocTtoly yio Tty Persistent Memory, avdhoyo pe tar XASOOUATO TOU
TodEYOLY Ol avory VOoELS /ey Ypapés, concurrency scheme mou yenowomnoteiton o Tov Tp6TO TOU
yivovton ot evruepoeic. Ou odnyleg yio T petatpont xdie xatnyopiog, ovotaoTixd Sieuxpvilouy
OTOV TROYPUUUOTIOTH OE Tola onuelor Tou x@dixa ogeilel va Totodetroel evtohég cache line flush
xou memory fences. Ye auth) Ty epyacio, 600 and Tic Souéc TN AELOAOYNONE EYOLY TEOGUOUOCTEL
Bdoel tou RECIPE v tnv Persistent Memory.

To NVTraverse nopouoiwe pe o RECIPE, xodopiler tor onueior otov xoixa émou meénetl va
mpootedoLyv cache line flushes/memory fences, yio uar véo xAdom Bouwy mou opilel we traversal

17

1
2

3

1

data structures. To Pronto yenowonotel wa teyvixf) mou ovopdletan Asynchronous Semantic
Logging yio vo yetatpédel o un nTnuixéc Tic nTnTiéc dopéc, datnewmvtag logs, eve to TIPS,
enlong ouvoudlet UNDO xou Operational logging aAAd eiodyel mpoypauaTIoTIXES SIETAPES TTOU
0ev amantolV amd TOV TEOYEUUUATIOTH vo yenotuonolioet flushes xou fences.

‘Okeg oL mopamdve epyacieg allohoyolv TNV AMOTEAEGUATIXOTNTO TWV YETUTROTWY TOU TEOTE(-
vouv, ouyxpivovtdg teg e state-of-the-art douéc eldwd oyedioouéves yia Ty Persistent Memory.
O alohoyfioeig Toug Belyvouv 6TL, 1 EMBO0T TOU ETTUYYAVOUY Ol UETUOYNUATIOUEVES DOUEC,
elvon avdAoyn | xaAOTERT AUTHC TWV EWOWXS oYEdlaoUEVLY Yia TV Persistent Memory douwv €u-
cetneiwv. Emmiéov, népeuva twv He et al. elye éva evolapépov avdhoyo edpnua, amd Ty avtidetn
xateiuvon: 6tav extérecay benchmarks oty DRAM ue dopéc eidind oyediaouéveg yio tny Per-
sistent Memory, aAAd apopmvTag Tig evToAég cache line flushes xow memory fences, dumlotwoay
OTL 1) enidooN Elval TOREUPERTC, OF OPLOPEVES TEQITTWOELS Yol XUAUTEQT), Ulag Boung BeATioTonoln-
uévne v Ty DRAM. Autd ta anotedéopata eivon eviappuvTtixnd yia Uio duvatr evonolnon 6To
OYEBLOUO BOPGY EUPETNELY, Ywplc dNAudY| va amarteltan SlopopoTolinoT TwV CYEBUC TIXWY ETL-

AOY@®V avdAOY o UE TOV TUTO UVAPNG Yot Tov oTtofo mpoopilovTal.

ITewpapotiny A&oNoyYToT

[a v a&lohdynon yenowonomoope dVo benchmarks, 1o TPC-C xou 1o YCSB. Ou Souéc mou
ouunephpinxay otnv allohdynon frav ot P-Masstree, P-BwTree (ou UNFTTNTIXESG EXDOYES TV
Masstree, BwTree avtiotowya, tpocopuoouévev yio tny PMEM ané toug ouyypageic tou RECIPE),
Fast&Fair xou WBtree.

YAoroinon TPCC

To benchmark TPC-C anoteiet éva industry standard benchmark yia tnv allohéynon tng emi-
doonc OLTP (OnLine Transactional Processing) cuotnudtwv Bdocwy dedopévwy. O otdyog
TOU Elval VoL TPOGOUOLOOEL €va TERBdAOY eTtyelpnone Tou TepLAaUPAveL SLdpopous TOTOUS GUVOA-

Aoy @V, OT6C VEEC Topary YEAES TEAATOV, TANEWUES, EAEY YO ATOVEUSTLY Xl XATAC TUCTIG TTUEOLYYEALDY.

[o mewpopatind YEEOC TNG BIMAWUTIXAS aUTHG, EYouue Pactotel og Ui in-memory vhonoinon
tou benchmark[8] autol, v onola €youue enexteivel yio vo yenowonoticoupe 1o TPCC oty
a&lohbyNoT doumy eVpeTNRlwY oyedloouévey yia Ty PMEM. H ulornoinon éyel yiver oe C++ xou
T0 Oudrypopua UML gatvetar otnv Ewdva 4.3 tou Kegahaiou 4. Kdéde dour| mou alioloyeltan pe
0 TPCC, npénet va vhorotel Ti¢ ouvapthoeig Tou API tng dienagric mou gaiveton oto Listing 1
HEOW Wog xAdorg wrapper, 1 omoio yivetow compile cav shared library mou @optoveton duvoquixd
XATA TNV EXTEAECT] TOU TROYEAUUHUATOG.

class TreelApi;

extern "C" TreeApi *create_tree(tree_options_t *opt);

class Treelpi

5 {

public:
virtual ~TreelApi () {};
virtual void insert(const void *Nkey, const void *Nvalue) {};
virtual bool find(const void #*key, void *value = nullptr) const { return 0; };
virtual bool remove(const void *key) {return 0;};
virtual bool findLastLessThan(const void *key, void *value = nullptr, void *

out_key = nullptr) const {return 0;};

18

throughput (txns/sec)

40000

35000 -

30000 -

25000 -

20000 1

15000

10000

5000 -

Listing 1: TPC-C API

[a vo umootnpl€ouue ToAaniolg clients oe éva transactional mepidiioyv, 6mwe anoutel To
standard tou TPCC, vlomotolue 10 eninedo amoydOVHONC GELPLOTONCHIOTNTAS (serializability).
[v uhomoinon e oelplonotnotpdTTag, egapuoloupe strict two-phase locking (2PL). Kéde
cuvahhoryy| Tou TEoxELTaL Va Yeder o€ ula oyéor, Talpvel Eva xAeidmua EYYPapNC o 0AOXANRN TN
oy€on xou avtioTorya xdie cuvahhay T Tou TEOXELTHL Vo Slaf3doEt, Todpvel Evar xAeldmua avdyvworg,
T omolol xpatdeL Y€yl To TEROC TNg. To xhedwuarto €youy uhomotniel yENOLOTOWBVTAS TNV XAAOT
¢ C++ std::shared_mutex.

To newpdpata €ywvav oe server ye 128GiB DRAM, 1536 GiB Optane poipocyévo oe 6x256
GiB DIMMs.

ITepapatixry A&wohdynon pe to TPCC

Y1ic Ewdvee 2 éwe 5 mopovoidletan 1 anddoon (cuvakhoyée avd BeUTEPOAETTO), 1) xAUTaVaA-
(O EVEQYELNG, XOU Ol EYYQRUPES xou avayvaoel oty Optane xotd tny extEheon Tou oY EdU-
uotoc. ‘Eyouue petprioel Tic dlopopéc otny ambddoon Yo extéleon o Optane xoa oe DRAM.
Hapatnerioaue 6T 1 entldoor etvar eAapem H6vo xohltepn yia OAo o indexes Yo extéAeot oTny
DRAM. Iapatnpolue 6Tt v xolbtepn enidoon onuewwvel to Fast&Fair, oAl xon 1o WBtree.
Eniong napousctdlouv mapduolor xatavdhenor eVERYELOS.

{d¢ TPOC TNV AATAVIAWOT) EVEQYELIC, TOQUTNEOVUUE OTL elvoll avTIGTROPWS avahoyT TG ETldooNC,
X OTL OAEC Ol BOUES €youv TNV (Blol CUUTERLPORY ol GTOUC 000 TUTOUG UVAUNG: AUTEC TOU
XATAVAAWDVOLY TEQLOCHTERY EVEPYELX 0Ty Optane xaTavoAOVOLY XaL TEQIGOOTERY) EVEQYELL GTNV
DRAM.

(d¢ mpo¢ TIC TEOGBACELS OTN UVAUY), Ta BEVTEA UE TNV XUAUTERT) ETUBOCT QulveETAL VoL EYOLY ToRO-
wola cupmeplpopd. Eniong, xodoe auédveton to mAdoc twv clients xou o apriudc twv warehouses,
xou pewnvetar to throughput, auédveton xon o TARYog Twv TpooBdoewy ot uvAun.

TPCC throughput, 10 warehouses, 750K transactions, varying # clients
Throughput on Optane Throughput on DRAM

—8— masstree —@— masstree

fftree 400004 fftree
—8— pbwtree —8— pbwtree
—8— wbtree —8— wbtree

30000

throughput (txns/sec)

20000

clients # clients

Ewéva 2: Comparative throughput on Optane and DRAM, 10 warehouses, 750K transactions, in-

creasing number of clients

19

energy (Joules)

12000

10000

8000

6000 -

4000 1

2000 4

TPCC energy consumption, single client, 750K transactions, varying # warehouses

Energy consumed by Optane Energy consumed by DRAM Total energy consumed

4
500 16000 1

4000 4
14000

3500

12000 4

—8— masstree 3000
—o— fftree
—8— wbtree

—8— pbwtree

—8— masstree
—o— fftree
—8— wbtree
—8— pbwtree

—&— masstree
—o— fftree
—&— wbtree
—8— pbwtree

10000
2500

energy (Joules)
energy (Joules)

8000 -
6000

2000

1500

10004 4000 4
2

warehouses # warehouses # warehouses

Ewéva 3: Consumed energy when running on Optane, 10 warehouses, 750K transactions, increasing

number of clients

Optane writes, TPCC with 750k transactions

masstree bwtree fastfair wbtree
) H
[0}
w0
=}
[e]
e
©
2
B3
-0.6

1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 6 810 1 2 4 6 810 1 2 4 6 810
threads threads threads

Ewéva 4: TPCC Optane write accesses, 750K transactions

Optane reads, TPCC with 750k transactions

masstree bwtree fastfair wbtree

4.0

0 3.5
[0}
S

o 3.0
<
g

© 2.5
2

N - -2.0

— - -1.5

1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 6 810 1 2 4 6 810 1 2 4 6 810
clients threads threads threads

= -
N -
N
o -
o0 -
=
o

Ewéva 5: TPCC Optane read accesses, 750K transactions

IMepapatixry AEwohdynon ue to YCSB

To YCSB eivou éva eupéwg yenoylonolovuevo benchmark otny a€lohdynon key-value stores. Eivou
TOQUUETPOTOLACUIO WG TROG TNV XATAVOUT| TwV OEB0UEVKY, To TARYog vudtwy, To Uelypo Tov
Aettoupytdv(etsaywyy, avalAmon, eviuéenor, epitnua ebpouc, Starypadr)) alhd xau optlet xdmota

20

standard workloads, mou yovtehomololy cuyxexpyévous tomoug cloud egopuoy®y. Amd autd
to standard workloads €youue yenowonowmoer o A, B, C, E yior axéponar xAeOLd %ot xAELWOLY-
oUUPoAOGELRES TTOU 0XOAOLTOUY OUOLOUORPT HATAVOUT.

Axépoa xAedLd Twv 8 bytes

[oe axéponar xhewdrd, ta FastFair, Masstree eugaviouyv avtaymvioTixég emdooelc Hetall Toug,
aAAd To xahTepo ebvar To BwTree. o 20 vrpata, mou yéypel autd to tAlog vnudtwy gatveto
Vo xAoxwvouy To Masstree, FastFair, dwamotovouue 6t to Masstree ebvan 2.43 @opég mo apyo
an6 to BwTree xou to FastFair 3.8 gopéc mo apyd vy) @don load, yia to workload A ot
avtioTolyeg emdodoelc ebvon 1.8 xan 2.4 popéc mo apyd v yio To workload B, to FastFair etvou
xohOtepo amd To Masstree xan ebvon 1.8 gopég mo apyd and to BwTree evey 1o Masstree etvon 2.07
popeg o apYo. T'iot TNV xaTavdAwor EVERYELNG THPATNEOVUNE XaL TIEAL OTL 660 XaAUTERT] ETDOOT
eyel eva index 1600 MyOTERY EVEQYELN XATAVUAWVEL, wOTOGO To Masstree av xau €yel yewdteen
enidoorn and to FastFair qofveton vo xatavahover ehagppig Arydtepn evépyeta. O mpooPdoelg ot
UV Oetyvouv va auvgdvovton xadoe auidveton To mhdog vnudtwy. Emione to FastFair xdver
Teptoo6tepeg npocPdocic oty NVM oe olyxpion ye to Masstree yeyovog mou pmopel va e&nyroet
TNV TEOTNYOUUEVY] TURUTNARNOT) OE OYECT) UE TNV XATAVIAWOT| EVEQYELNC.

YCSB run throughput on Optane

S workload a S workload b

g = ¢

2 —&— masstree | 3 —&— masstree \'/./.

0 . 0 .

§ 10 4 fastfair g 20 fastfair

5 —&— bwtree = —&— bwtree

Q —&— wbtree o —&— wbtree

< ey 10 i

o 5 o

35 =}

o o

5 (=

g 0 L T T T T g 0 B T T T T

< 0 20 40 60 & 0 20 40 60
threads # threads

S workload ¢ S workload e

Q 9 15

3 —&— masstree 3 —&— masstree /

(%) . 0 .

E- 20 - fastfair §- 104 fastfair

5 —&— bwtree = —o— bwtree

2 —e— wbtree a —e— wbtree -

2 10 1 = - -

o o

e c

+— +—

g 0 L T T T T g

< 0 20 40 60 &
threads # threads

Ewoéva 6: YCSB run throughput for integer keys on Optane

21

YCSB energy consumption running on Optane for integer keys, workload A

Energy consumed by Optane Energy consumed by DRAM Total energy consumed
30000 120000
80000
25000 1 100000 -
i m m
E 60000 1 —o— masstree | 2 20000 4 —8— masstree | £ 800001 —8— masstree
2 —o— fastfair 2 —o— fastfair =N —o— fastfair
5 —8— wbtree 5 15000 4 —8— wbtree 5 60000 4 —8— wbtree
g 40000 - —8— bwtree g —8— bwtree] —8— bwtree
c o o
10000 A 40000 -
20000 1
5000 - —a 20000 A
" o 6 § o o .
6 1‘0 26 36 4‘0 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b Sb Gb 6 1‘0 2‘0 3‘0 4‘0 5‘0 Gb
threads # threads # threads
7 .
Ewéva 7: YCSB energy consumption on Optane for workload A
YCSB energy consumption running on Optane for integer keys, workload B
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
—8— masstree —8— masstree 120000 4 —8— masstree
80000 1 —o— fastfair 30000 1 —o— fastfair —o— fastfair
—8— wbtree —8— wbtree 100000 4 —8— wbtree
—o— bwtree 25000 4 —8— bwtree —8— bwtree
3 60000 1 7 S 80000
3 S 20000 =
=) =3 =
P > 2 60000 -
o o 4
£ 40000 4 215000 2
c c c
c o o
10000 4 40000 -
20000 1
5000 20000 4
6 1‘0 Zb 36 4‘0 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b Sb Gb 6 1‘0 2‘0 3‘0 4‘0 5‘0 Gb
threads # threads # threads
7 .
Ewova 8: YCSB energy consumption on Optane for workload B
YCSB energy consumption running on Optane for integer keys, workload C
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
60000 225001 80000
20000 1
] 70000 4
50000 17500 4
_ —_ . 60000 1
£ 40000 —e— masstree | 8 150007 —e— masstree | & —8— masstree
3) 3) 2 50000 1 .
2 —o— fastfair 2 125004 —o— fastfair =3 —o— fastfair
5 30000 4 —8— wbtree E —8— wbtree 540000_ —8— wbtree
g —8— bwtree o 10000 - —8— bwtree o —o— bwtree
o o o
30000 4
20000 A 7500 1
5000 20000 4
10000 __{_.43
2500 1 — 10000 —
6 1‘0 2‘0 36 4‘0 5‘0 6‘0 6 1‘0 2‘0 3b 4b 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b 5‘0 6‘0
threads # threads # threads
’ .
Ewova 9: YCSB energy consumption on Optane for workload C
YCSB energy consumption running on Optane for integer keys, workload E
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
80000 4 30000 A
100000
70000 25000 1 ®
60000 1 80000 4
v g 20000 0
= —8— masstree = —8— masstree = —8— masstree
> 50000 - A > . 3 .
2 —o— fastfair 2 —o— fastfair =N —o— fastfair
60000
5 40000 4 —o— wbtree § 15000 4 —8— wbtree § —8— wbtree
g —e— bwtree g —8— bwtree] —8— bwtree
[4 7] 7]
30000 10000 4 40000 -
20000 1
5000 - 20000 A
10000 -
6 1‘0 Zb 3b 4‘0 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b Sb Gb 6 1‘0 2‘0 3‘0 4‘0 5‘0 Gb
threads # threads # threads

Ewéva 10: YCSB energy consumption on Optane for workload E

22

KA\ewdid-ovpforooceipég twv 8 bytes

YCSB run throughput on Optane, string keys

S workload a S workload b
(O] (O]
2 3 2,
~ T 2 .
3 8_ - — .
o 23 —&— masstree
§_ 27 —e— masstree §_ fastfair

. 2 - —e— bwtree
S fastfair S
5 1A o bwtree 5 1 —e— wbtree
= —e— wbtree =
g 0 - T T T — T — g 0 - T T T T
£ 0 20 40 60 € 0 20 40 60

threads # threads
S workload c S workload e
3 —&— masstree =l
8 41 fastfair &
o S 2+
= —e— bwtree 2
o —e— wbtree Q
S 2 S 1 —8— masstree
3 3 fastfair
S S —e— bwtree
% 0 - T T T T g 0 B T T T T
€ 0 20 40 60 0 20 40 60
threads # threads

Ewova 11: YCSB run throughput on Optane for string keys

[xhewdid-cuuBorocelpée Ty xoAUTeRT emidoon €yel yevixwe to Masstree, Tou omolou 7
apyLtexTovxt| ebvon €vag cuvduaouog B4-tree xou Trie, 6mou to Trie eivon doury BeAtioTonoinuévn
Yo T Brayetpion cupBorooetptv. Avdhoyo pe to workload, To Masstree eivon and 1.18 éwe 1.78
popéc xohlTtepo and To BwTree, xou and 2.3 €we 2.58 popéc xahltepo and to FastFair. Awgopéc
Tou eVTOT{LOUUE UETOEY AXEPALOY HAELBLY Kol XAELOLOY CUUBOAOCEROY, Efval apyixd OTL 1) enidoo
elvoun yelpdTepT Yo 6Aa o indexes otny tepinTwon xhediwv-cupforooeipny. T uxpdteen dapopd
€yl To Masstree, 1o onolo duwg €yet enldoor Toukdytotov 1.65 Qopeg yeipdTepn, eve o BwTree,
FastFair, WBtree éyouv enidoon and 3.5 - 6.5, 2.9 - 6.4 xau 2 - 2.5 Qopéc yelpdtepn o€ oyéon
e axépanol xAedd avdhoyo pe to workload. Erniong n xatovdhwon evépyetog auédvetar, xou elvor
evoeTd, yioo To workload A xan 20 threads, 1.3 gopéc peyahitepn yio To Masstree, 2.6 gopéc
peyohUtepn yia To FastFair xou 2 gopég ueyahitepn yio 1o BwTree.

Y0von xow Ilpotewwoueveg Enextdoelg

H ocuveloopd autrc tne epyacioc oc oyéon ue mpolndpyouces alloloyfoeic ot Bihoypapla,
elvor TE®TOV OTL Yenotponolel €va oaxoun benchmark yio tny a&rohdynom, To TPC-C. H ulomoinon
Tou benchmark etvar 6e pop@n xaTdAANAN OGOTE Vo umopel var yenotuonowniel yior Ty allohéynon
X GAAWY BOUWY EQOGOV UAOTIOOUV OPLOUEVESG GUVIRTAOELS OF il XAdom wrapper. Acltepoy, N
epyaoio pog e€etdlel EMTAEOY TNV XATAVIAWGCT) EVEQYELNS, 1 oTtolar lvon Uior UETELXT Tou €Y oLV
oY VOY|OEL PO YOUUEVES EQYUGCIES.

Me 1o TPCC aohoyinxe n enidoon yu transactional workloads. Awmotdooue otL yia
T0 cuyxexpwévo benchmark etvon xahOtepn 1 enidoon tou Fast&Fair. Trv xohOtepn enldoon e

23

0 TPCC onueinoe to FastFair, éyovtac xotd 8.7%, 91% xou 400% anbédoon and ta WBtree,
P-Masstree, P-Bw'Tree yia 1 client, 1 warehouses, 750,000 transactions.

Emuniéov ye Tic Yetprioelg uag Ye morrd viuota v o YCOSB Samotoooue OTL To TEPLo-
ootepa indexes xdvouv scale péypl ta 20 threads, xar Votepa 1 anddooT elte TaPUUEVEL oTadERY
elte pewwvetar. Enlone dwmotodooue 6Tt xovéva index dev amodidel eloou xahd yior xAELOLY-
oUUPoAOGERES GGO Yol oxEpatol XAELOLE.

YuvonTxd, eldoue OTL BLapOPETIXES Boueg amodidouy xoAlTepa we to TPCC xan dhkeg e ta
workloads tou YCSB. ‘Ocov agopd tny xatovdhwon evépyelag, Topatnefooue 6Tl oL BOUES TOoU
€Y 0LV XUAUTERY ETBOGCT] EYOLUY XOU TN YUUNAOTEQT EVEQRYELOXT) XATAUVIAWOT).

Trdoyouv apXeTEC TEOTACELS Yl TNV EMEXTAOT, auTrS TN gpyaciag. Mia mpwtn enéxtoon
agopd v uhornoinon tou TPCC, 1o onolo Yo unopolos va viomolel Eva eninedo amoudvwong
Ay OTERO UOTNES A6 T1) GELRLOTIOLNOHIOTNTA, XAVDS OTKE TEOEXUPE amd Tal TELRAUAUTIXG ATOTENED-
Hota, 1) am6d00r) TEQTEL dpxeTd Ye To TANYoc twv clients, xou Bacdg Adyog yio auTH TNV €v-
Tovn Uelwon elvon o aviaywviopog yio T xhewouota. Ernlong, n vhonoinon yag yia to TPCC
elvar in-memory xou o scaling factor(opriuog warehouses) xadodg xou to mhridoc cuvakhorydy
ToL eXTEAOUVTAL OYETWE Wxpd. Ou elye evdlopépov va oltomondel wa ‘Bounyavixn’ €xdoon
tou TPCC, énwe yiveton yio mapdderypo otnv epyooia twv [9], ot onolot éyouv aglonotfcet to
custom storage engine tnc MySQL xo adiohoyrioel tnv enidoorn tou CUGTAUNTOS TOUC PE TO
TPCC, yenowonowvtag 1o wg MySQL plugin. H a&iohdynor pag ¥tav enlong neploptopévn we
meog To TAYoc Bouwy mou eéetdoope. H ouumepiindn meplocdtepnmy indexes oty allodynon
Yo Aoy OTwodATOTE Wit Yol LelovTiny| enéxtaor. Emmiéov, Ya unopolooue vo e&epeuviy-
GOUME TNV ETOPAOT) TOU UNYAVIOUOL GUYYROVIXOTNTOG o Yenotuonolel xdide dopur xodmg xan va
CUUTEQIAGBOUNE TEPLOCOTERES TUPUUETEOUS OTIC UETENOELS, 0w cache misses, aprdud cache line
flush/fence operations yio T eZorywyn TEPIOCOTEPWY GUUTERUOUATOV Yo TO TS CUUTEPLPERETOL
eowtepxd xde dour|. Téhog, 1 uedodohoyla pog Yo uropolce Vo anoTEAEGEL TO TEMTO BrUd TNV
avamTuén wog pedodoloylag Tou vo autopatonolel TV emhoyy| Tou xatdhinhou index structure
v évor etepoyevég ootnua DRAM/NVM, avéhoya pe tov tOno tou workload xat tic petpixég
Teo¢ BehtioToinoino,.

24

Chapter 1

Introduction

Persistent memory (PMEM) is a relatively new addition to the memory hierarchy, sitting
between DRAM and flash-based storage and offering data persistence and direct (random)
access (byte addressability) at close to DRAM speeds. It has greater capacity and lower cost per
byte than DRAM and also lower energy consumption. This technology opens up new potential
for building scalable, low-latency and high throughput, instantly recoverable applications with
reduced total cost of ownership.

Database systems in particular, both memory-oriented and disk-oriented, are among the
applications that stand to profit from leveraging this memory technology in their design, since
they are required to durably store large volumes of data while also achieving high performance
and quick recovery. There are several components of a database system where NVM can be
integrated to improve aspects such as capacity, query performance and recovery time. For
example, Arulraj [10] has extensively studied the integration of NVM into the logging and
recovery, storage and buffer management, and indexing components of a DBMS. In recent years,
NoSQL systems and key-value stores are gaining popularity in the database domain, alongside
relational databases, due to their simplicity and flexibility compared to relational counterparts,
as they do not have to adhere to rigorous data formats. At its core, a key-value store can
be considered an index structure combined with a memory allocator. In relational databases,
index structures are crucial for performance, hence index structures are a core component of
modern database systems.

In a traditional database system, designed for a DRAM/SSD memory architecture, index
structures are usually placed in DRAM as their purpose is fast data retrieval. However, as
DRAM has limited capacity and is volatile, this limits the amount of data that a volatile index
can store and can additionally increase downtime during system recovery, as the index needs
to be rebuilt. Persistent memory enables the design of index structures that maintain high
performance, while being able to store larger volumes of data and recover instantly. For these
reasons, the design of persistent memory index structures are a prominent area of research in
the broader field of redesigning database systems for new heterogeneous memory systems.

The first memory product of the NVM type recently became commercially available by Intel
with the release of its Optane DCPM modules, which are based on the 3DX-Point technology.
Before the release of actual persistent memory, researchers had used emulation and assumed that
it would essentially perform as slower, persistent DRAM. The advent of actual hardware proved
that this assumption was wrong. Compared to DRAM, PM has great read/write asymmetry
and a smaller bandwidth that is easily saturated, especially in the case of writes. Since then,

25

several publications have explored how the design of such persistent memory structures needs
to be redefined, based on existing technology and its actual characteristics. Researchers have
proposed new structures specifically designed for Optane, as well as ways to adapt volatile
structures for Persistent Memory to turn them into persistent ones. However, it is not so clear
how the new proposals compare against each other and with past designs based on emulation.

The goal of this thesis is to propose a methodology for evaluating the performance and energy
consumption of different index structures designed for heterogeneous DRAM/NVM systems.
Our contributions compared to the existing literature are twofold; firstly, we additionally take
into account the energy consumption as an evaluation metric and secondly, we evaluate index
performance under transactional workloads using the TPCC benchmark in addition to YCSB.
Both are aspects that the existing literature for the most part ignores.

This thesis is structured as follows: In Chapter 2 we provide an informational background on
the Intel Optane Persistent Memory Technology and database indexing structures. In Chapter
3 we provide an overview of the existing literature and state-of-the-art persistent memory
indexing, in Chapter 4 we discuss our evaluation methodology, in Chapter 5 we present and
discuss the results of the evaluation. Chapter 6 concludes this thesis and proposes ideas for
future research.

26

Chapter 2
Theoretical Background

Modern computer systems comprise several components. These components can be arranged
in a hierarchy based on their characteristics such as capacity, access speed, and cost. This
hierarchy, often referred to as the memory hierarchy pyramid, consists of multiple levels, with
smaller, faster, and more expensive components closer to the CPU and the top of the pyramid,
while larger but slower, and cheaper components are placed further away from the processor
and towards the bottom of the pyramid.

Traditionally, these components are classified into two categories, memory and storage de-
vices: Memory is fast, byte-addressable, which means it can be directly accessed via Load/Store
instructions and volatile, which means it requires constant refreshes to retain data, and loses
its contents in the event of a system crash or loss of power supply. Additionally, it is more
expensive than storage. Storage is higher-capacity, lower cost, and persistent, which means
that data written to it will be maintained even upon power failure. Storage is also much slower
to access and, unlike memory, is block-addressable, so data from storage can only be accessed
at block granularity and not directly with Loads/Stores. Persistent memory is a recently devel-
oped type of memory that combines properties of both types, breaking this strict classification.
With the advent of persistent memory, the updated memory /storage hierarchy is illustrated in

Figure 2.1

We will discuss Persistent Memory more in depth in the rest of this chapter.

2.1 Persistent Memory

Persistent memory (PMEM) or non-volatile memory (NVM) or Storage-Class Memory (SCM)
is an emerging storage technology that combines the byte-addressability of DRAM with the per-
sistence of storage, while maintaining close-to-DRAM speed, aiming to bridge the gap between
DRAM and flash-based storage.

Several NVM types exist, such as Phase Change Memory (PCM), Spin-Transfer Torque
RAM (STT-RAM), resistive RAM(ReRAM) and 3D X-Point, offering generally much higher
memory density, much lower cost-per-bit and standby power consumption than DRAM [12].
Another notable property is the limited endurance compared to DRAM. Recently, Intel released
its Optane DC Persistent Memory[13], which is the first commercially available persistent mem-
ory. In the remainder of this document, we often refer to it as simply Optane. A comprehensive

27

* Volatile Memory
* Load/Store Instructions

* Cache Line Granularity

= Non-Volatile Storage “~~ -~~~
» Load/Store Instructions

* Cache Line Granularity __ _ _ _/

» Non-Volatile Storage b

« /O Commands
* Bock Granularity

Hard Disk Drives (HDD)

Tape

(*) See vendor specifications Capacity

Figure 2.1: Storage/Memory hierarchy pyramid. Adapted from [11]

comparison of the different features of Non-Volatile Memory technologies is shown in Table 2.1

Memory Technology Read Latency(ns) Write Latency (ns) | Write Endurance | Standby Power
Flash SSD 25,000 200,000 10° Z€ero
DRAM 80 80 >10'6 Fresh Power
PCM 50-80 150-1000 108 Z€ero
STT-RAM 6 13 10° 7ero
ReRAM 10 50 10M Z€ero
Intel Optane DCPMM | 169 (Sequential), 305 (Random) 90 108 Zero

Table 2.1: Different Features of NVMM Technologies. Adapted from [12]

2.2 Intel Optane DC PMEM

Optane PMEM is based on the 3D-XPoint technology. 3D-XPoint is based on modifying elec-
trical resistance of a material using heat to change the state between crystalline and amorphous.
Because each cell does not require a transistor, its density is around four times higher than
DRAM [14].

Optane is connected to the processor in the same way that traditional DRAM DIMMs
are: The Optane DIMM sits on the memory bus, and connects to the processor’s integrated
Memory Controller (iMC). The iMC is part of the CPU and its purpose is to manage data flow
to and from the computer’s main memory. DRAM and DCPM DIMMs are attached to the
memory controller’s memory channels. Only Intel’s Cascade Lake CPUs and later can support
the Optane DIMM. Each processor contains one or two processor dies and there are two iMCs
per processor die, and each iMC supports three channels. Therefore, in total, a processor die

28

can support up to six Optane DIMMs across its two iMCs|[15].

Persistence Domains A hardware system’s persistent domain or power-fail protected do-

main is the set of areas for which it is safe to assume that, once data is located within them, will
not be lost in the event of power failure[11]. For each Optane DIMM, the iMC maintains two
buffer structures for reads and writes called the read pending queue(RPQ) and write pending
queue(WPQ) respectively. The WPQ is especially important for persistence as it is part of
the Asynchronous DRAM Refresh domain(ADR), together with persistent memory, and it is
critical for ensuring the persistence of stores. Data to be written to a memory device is (after
cache evictions) placed into the memory controller’s write buffers where it is then written to
the memory device [15, 11]. The ADR does not include the CPU caches.
The enhanced ADR persistence domain (eADR) also includes the CPU caches in the persis-
tence domain, which enables persistence once data reaches the CPU cache. This means no
flush instructions are needed for persistence. However the need for SFENCE instructions is not
eliminated by eADR as it’s still necessary to guarantee the correct ordering of writes, which
SFENCE does by serializing store operations. It must be noted that eADR is not available
prior to Intel’s 200-series Optane DCPMM and Skylake platforms [2]

While the memory controller communicates with the NVM device with the DDR-T protocol
using 64 byte cache line sized blocks, the internal page size of the NVM device, or more simply
its access granularity is 256 bytes due to density requirements and physical space limits. Loads
and stores (reads and writes) that are smaller than this 256 byte granularity waste bandwidth
as they have the same latency as a 256 B access. Yang et al. [15] refer to this attribute as
XPLine in their work. They also provide an overview of the Optane DIMM (shown in Figure
2.2):

iMC

Cacheline: &64B
Controller Optane DIMM

Buffer:

30-¥Point Media

(b) Optane DIMM Overview

Figure 2.2: Optane DIMM Overview. Adapted from [15]

Each Optane DIMM also maintains buffers inside the DIMM-controller. There is a small
write-combining buffer present on the on-DIMM controller that merges adjacent writes. [16]
refer to this buffer as the read-modify-write(RMW) buffer, while [15] name it XPBuffer. Both
specify its size as 16KB. This means that contiguous writes smaller than 256 B do not incur
write amplification. However, non-contiguous stores smaller than 256 B do, as they trigger a
read-modify-write operation in the controller, also reducing memory bandwidth [17].

Performance Characteristics Several studies have attempted to derive the performance
characteristics of Optane. Important points in memory/storage performance characterization
are latency, throughput and bandwidth.

29

Latency
The latency measurements of different studies are collected in Table 2.2.

Latency (ns) Publication
305 (random read) Izraelevitz[18]
160 (sequential read) Izraelevitz[18]
450 (random read) Benson[19]
50 (sequential read) Benson[19]
403 (random read, app-direct) [20]
382 (random read, memory mode) [20]

Table 2.2: Reported Optane latency

Bandwidth
Izraelevitz et al[18] report that, "for a single Optane DC PMM, its max read bandwidth is
6.6 GB/s, whereas its max write bandwidth is 2.8 GB/s". As bandwidth increases with in-
creasing number of DIMMs, the maximum bandwidth available is for the case of 6 DIMMs.
Existing publications have reported the following bandwidth measurements (sequential read is
the fastest among sequential read/write, and random read/write), listed in Table 2.3. There is

Bandwidth (GB/s) | # threads | Publication
40 (sequential read) 32 Benson[19]
39.4 (sequential read) 17 Izraclevitz[18]
13.9 (sequential write) 4 Izraclevitz[18]

13.9 (sequential write) 4 [20]

Table 2.3: Reported Optane bandwidth

some discrepancy in the reported number of threads to achieve the maximum bandwidth, but
researchers report the same maximum values. There is also some discrepancy in the reported
latency values, but other studies support the findings of Izraelevitz et al.

Operation Modes Optane has two modes of operation: the Memory Mode and the Appli-
cation Direct Mode. In the Memory Mode mode, the DCPMM is used as a volatile extension
of DRAM, acting as a large L4 cache without persistence support. This extends the capacity of
DRAM, but also introduces additional access overhead for cached data, around 10%.[20] Per-
sistence is enabled in the App-Direct mode. In the App-Direct mode, the DCPMM is exposed
to the operating system as a separate persistent device. This can be mapped directly into the
application’s virtual memory space for example with mmap, or used with a file system. To
guarantee persistence in the App-Direct mode, the application programmer must flush cache
lines to PMEM by using e.g. the clwb instruction. As the compiler and OS can re-order in-
structions for better performance, it is necessary to explicitly avoid this behavior by issuing an
sfence instruction which guarantees that the write to PMEM was completed and not reordered

[19].

30

2.3 Programming Persistent Memory & PMDK

2.3.1 Operating system support for persistent memory

In order to provide support for integrating persistent memory in applications, operating systems
like Windows and Linux have been extended with an NVDIMM driver, and a persistent memory
aware filesystem. The NVIDIMM driver is required to make persistent memory detectable,
and exposes it to the operating system and applications as a fast block storage device. A
persistent memory aware filesystem is optimized for persistent memory since it can bypass
the I/O subsystem and use persistent memory directly as byte addressable load/store memory
(instead of using the block driver in the I/O subsystem, as it would for a regular block device,
although that too is possible). This ability is referred to as Direct Access or DAX. DAX not
only eliminates the I/O costs but also enables smaller read /write granularity, as it is no longer
necessary to read and write entire blocks. [11] The two possible access methods are illustrated
in Figure 2.3 below.

Application
address
space

read()
write()

Figure 2.3: Basic Access Methods to NVM device. Adapted from [21]

Instruction Set Architecture (ISA) support As mentioned before, the path from CPU
to NVM is long and for the most part volatile. In addition to this, modern CPUs support
out-of-order execution. Therefore, certain instructions are necessary to ensure that data from
the volatile CPU caches gets to NVM and in the correct order to guarantee consistency. In this
section we mention the relevant instructions that are employed by data structure designed for
persistent memory to guarantee the consistency of their data.

o clflush (Flush Cache Line) Evicts a cacheline and writes it back to memory. It is a
synchronous instruction and does not require a memory fence to be serialized.

« clflushopt (followed by sfence) (Flush Cache Line Optimized) The asynchronous ver-
sion of clflush. Not ordered with writes so it has improved throughput.

« clwb (followed by sfence) (Cache Line Write Back) This instruction writes back a
cache-line to memory, but without evicting it from the CPU cache, which makes it prefer-

able for performance reasons when it is to be accessed again soon after eviction.

31

« mfence/sfence Memory barriers. Sfence: memory barrier that serializes all pending
stores. Performs a serializing operation on all store-to-memory instructions that were
issued prior to this instruction. Mfence is similar to sfence, but it also serializes all

pending loads as well as stores while sfence only serializes pending stores.

« non-temporal stores (movnt, _mmb512_ stream_ si512) Non-temporal stores by-
pass the cache by writing to a special buffer, which is evicted either when it is full, or
when an sfence is issued, therefore an sfence is still required to ensure the stores have

reached the persistence domain.

An in-depth performance evaluation and comparison of cache line flush instruction variants
and non-temporal stores has been conducted by van Renen et al in [20]. Both Scargall and van
Renen advise developers to use primarily CLWB and non-temporal stores, falling back to other
options if these are unavailable.

2.3.2 Challenges of Programming Persistent Memory

Compared to traditional programming, NVM introduces unique properties and with those also
a new set of programming challenges. Some of the key challenges include:

Data Consistency As already mentioned, data that is directly accessed on NVM cache-
resident before it reaches persistence. The cache however may at any time and in any order
evict a cache line. Therefore it is necessary to ensure explicit ordering and flush of the data
to the persistence domain to guarantee its consistency. This is achieved through the usage of
cacheline flushing instructions in combination with memory fences, which prevent subsequent
writes from completing before preceding writes.

Data Recovery When a program restarts, (after a crash for example), its virtual address
space cannot be assumed to be the same as it was for the previous execution, due to the Address
Space Layout Randomization (ASLR) feature used by most operating systems[11]. Since NVM
is mapped into virtual address space and addressed using virtual pointers, like DRAM, it is
necessary to have a reliable way of accessing and recovering data stored in NVM. Storing

Persistent Memory Leaks Memory leaks are an issue even with traditional programming
with volatile memory: when a program fails to release dynamically allocated memory, this
causes memory consumption to grow unnecessarily with execution. However, once execution
finishes, these memory resources are freed. This is not the case with persistent memory; such
memory leaks are persisted even after execution finishes, since the contents of NVM are retained.
Persistent memory leaks can increase long-term memory consumption and can lead the In
addition to this, with NVM there is a new class of persistent memory leaks as well. These leaks
occur during persistent memory allocation: if the allocator marks the memory as allocated,
before the data is written, a crash will result in the allocator seeing this allocation, but the
application still requiring to write data to persistent memory, thus creating a memory leak.

Partial/Torn Writes Modern CPUs only support 8-byte atomic writes. This means that
if there is a crash while an aligned 8-byte store is in progress, upon recovery these 8 bytes will
contain either the old or the new contents. However, writes can be more than 8 bytes long.
In that case, the application that needs to write more than 8-bytes must leverage the 8-byte
failure atomicity supported by the hardware. A common solution to this problem is to use (up
to 8 bytes) flags that can be written atomically, to indicate whether a larger write operation

32

has completed.

2.3.3 Persistent Memory Development Kit (PMDK)

The PMDK is a set of open-source libraries made available by Intel to facilitate software
development for persistent memory. These libraries are meant to insulate application developers
from the complexities of the hardware and to keep them from having to research and implement
code specific to each platform or device. They are mentioned here briefly since the are building
blocks for many of the applications encountered in the literature review and in particular, the
index structures developed for persistent memory. It is worth mentioning especially:

o libpmem. Libpmem is a library based on the direct access feature (DAX), which provides
a low-level platform-independent interface to PMEM.

o libpmemobj. Libpmemobj in particular is designed to address the challenges described in
Section 2.3.2. It is a transactional object store, offering transaction support for persistent
memory, handling persistent memory allocation and management, and internally it relies

on the low-level PMEM support provided by libpmem.

o libpmemobj-cpp. This library provides C++ bidings for libpmemobj, allowing develop-
ers to use C++ for persistent memory programming to take advantage of C++ features
such as the Standard Template Library (STL) and other useful C++--specific features and

idioms. In fact all the indexes evaluated in this thesis are implemented in C++-.

2.4 Linearizability

The concept of linearizability was introduced by Herhily[22] in 1989 and it is a correctness
condition for data structures concurrently accessed by multiple processes. It enables us to
reason about concurrent operations on a data structure as if they were performed sequentially,
by a single process, with each operation taking effect instantly at a single point in time. The
point in an algorithm where the operation is treated as “taking effect” by all other operations
is known as a linearization point. Linearizability is the standard consistency model for DRAM
concurrent data structures. Izraelevitz et al. in [23] have introduced the concept of durable
linearizability, which extends the concept of linearizability to account for crashes, and which
is the standard consistency model for PMEM indexes. Similar to how linearizability requires
all operations to appear to execute atomically in some legal total order consistent with their
real-time execution order, durable linearizability requires the same to also hold for the state
recovered after a crash: it should correspond to some legal execution of a subsequence of the
operations before the crash containing at least all the operations that completed before the
crash.

2.5 Database Indexes

Indexing plays a significant role in improving the performance of the database. In the case of
key-value stores, which are a popular form of database nowadays, as mentioned in the intro-
duction, the index is one of the two basic components that make up the key-value store. The

33

purpose of the index is fast data retrieval. For that reason, in both traditional database archi-
tectures (main-memory oriented and storage oriented) the index is usually placed in DRAM,
which is fast to access.

One of the key properties of a database system is durability, which is the guarantee that
a committed transaction will remain committed even in the event of a system failure, such
as a crash or power outage. The changes made by the transaction must survive and remain
visible despite the system failure. To achieve that, some persistent storage medium is employed.
NVM’s byte addressability allows for low-latency loads and stores. At the same time, NVM
is persistent, which means that unlike DRAM, all writes to NVM are potentially durable.
Therefore, a database tuple or metadata stored on NVM can directly be accessed after a
system crash, significantly speeding the recovery process by saving much rebuild /loading time.
This makes bulding persistent memory indexes attractive, as there is no need for reconstruction
after a crash. Additionally, with NVM having lareger capacity than DRAM, it is possible to
build larger index structures to index more data at comparable speed.

There are several types of indexes used in relational databases and key-value stores, each
taking into account different parameters to optimize for. In the remainder of this chapter
we present the classic architecture of B+-trees, LSM-trees, skiplists, tries and hashtables, as
these data structures are commonly used as building blocks in the literature we reviewed. In
this thesis we focused on evaluating B+4-tree based range indexes, which are among the most
representative and commonly used in database systems.

2.5.1 B-+-Tree

A B+-tree is a self-balancing m-ary tree. It consists of a root, inner, and leaf nodes. Unlike a
B-tree, it only stores keys in the root and inner nodes, and values are stored only in the last
layer, the leaf nodes. (This property is leveraged in the selective persistence implemented by
many persistent indexes). A typical B+-tree node is shown in Figure 2.4. Leaf, inner and root
nodes share the same structure, where P; is a pointer and K; is a key. It holds true that for
i,7 such that i« < j,K; < k;. For i = 1,2,..n — 1 the pointer F; points to a record, with a
corresponding key value of K;. The pointer P, has a special function. It is a link pointer that
is used to connect the records in the order defined by the search key. In the case of internal

nodes it points to a record on the next level, whereas for the leaves it points to a sibling leaf.

J':II. K] PE Fﬂ-l Ku—I P.'I

Figure 2.4: Typical B+-tree node

Figure 2.5 shows an example of a B+4-tree.

Additional important parameters of B4-trees are the order of the tree d and its fill factor f.
Each node has a number of entries that ranges between d and 2d, enforcing a minimum 50%
occupancy at all times. Fill factor is the percentage of slots in the B+4-tree that are occupied
(filled with data). This is usually kept less than 100% to allow for quick inserts, otherwise, a

34

L IMmﬂII 1l

| |Ca]|f1er|| IE.mqtelnI IGoldl | | ISer\rasanl | | |

O\

| IAdams’ ﬁrandtl I |H |Ca1|ﬁen| |(,m_‘k| | H"’| |I :nsteml |r| ‘-,a:d| | H-»l |Gcrld| |Kat;| |K1m|-|-| IMmartI |5mgh| | H~| |5riﬁivasan| |Wu| |

Figure 2.5: A B+-tree example

new node would have to be created much more often. Fanout is also defined as the inverse of
the fill factor.

Point Lookup operations A lookup operation starts at the root of the tree. The target
key is compared with the keys stored in the current node, and based on the comparison, the
appropriate child node to traverse to is determined: If the target key is less than the smallest
key in the node, then follow the leftmost child pointer to the children. If the target key is
greater than the largest key, follow the rightmost pointer. Otherwise, select the pointer P; such
that, K;_; < K < K; and follow it to the next level of the tree. This process is repeated at each
inner node of the tree until reaching the appropriate leaf node. There, the leaf node is searched
until the target key is either located in the leaf and the corresponding value is returned, or the
target key is not found and the fact the target was not found is indicated. One observation
is that without getting to the leaf node, it is not possible to tell whether a key exists in the
B+-tree.

Insert operations An insert operation first locates the leaf where the new record must be
inserted, the same way a lookup operation does, then inserts it in that leaf, in the appropriate
place to maintain the ordering of keys, shifting other keys if necessary. An insert may cause
the leaf to have more keys than allowed, therefore a split operation is performed to enforce that
structural properties of the B4+-tree are not violated. The split may be propagated up the tree
to the root level, causing the tree to grow in height by one level.

Delete operations

Delete operations also begin by locating the leaf containing the record to be deleted, and then
delete the entry from the leaf node. If after deletion, the node contains fewer entries than

acceptable, it is first attempted to "borrow" records from a sibling leaf. If that is not possible,
then the leaf is merged with a sibling. Deletions are also propagated up the tree, as described
later in the section Node Merge and Node Split Operations

Range Lookup operations A range lookup operation retrieves the values corresponding to a
given range of keys. It is almost identical to a point lookup operation using the lower bound of
the range. When reaching the appropriate leaf node, the range lookup operation then performs
a sequential iteration through the leaf node keys, starting at the key corresponding to the lower
bound of the search. While the current key is not greater than the range end, the range lookup
retrieves the value corresponding to the current key, and moves to the next key to the right.
It’s possible to cross to the right sibling leaf through the sibling pointer.

Node Merge and Node Split Operations These are the Structural Modification Operations
(SMOs) taking place in B+-trees. Node Split operations are triggered by Insert operations that

cause the leaf node they are inserting into to exceed its capacity. Then the leaf is split in two,

35

by creating a new sibling leaf, keeping the first [n/2] entries in the old node and moving the
following entries to the new node. The parent node must also be updated to contain the new key
and to point to the new child. Inserting the new key into the parent node can cause additional
split of the parent node, which might need to be propagated up the tree reaching the root. A
split of the root adds an extra level to the tree.

Similarly, a Delete operation can trigger a Node Merge, if borrowing from siblings is not possible.
In that case, entries from the right leaf are moved to the left, the empty right child is deleted,
and the parent node must be updated: the entry pointing to the recently deleted child must be
removed. This removal can cause the parent node to contain less than the minimum number
of keys, so it may have to be merged with a sibling node as well. This can recursively lead to
node merges up until the root level, and it is possible to reduce the height of the tree by one
level.

Concurrency in B+4-trees

It is very important for an index to support concurrent operations in order to be scalable with
increasing number of threads and remain performant. In B+-trees, the structural properties
must be maintained at all times. Insert and delete operations though can cause structural
modifications across several nodes of the tree, as mentioned. The simplest concurrency protocol
would be to lock the entire tree. However, that is not performant. Therefore, fine-grained
solutions for concurrency are desirable, yet not trivial to implement.

B-link Trees A basic "building-block" of B+-tree concurrency are B-link trees[24]. They are
a prevalent solution for concurrency in B--trees that provides lock-free searches and guarantees
that at most three nodes will be locked at any given time by other operations that can cause
structural modifications. Briefly, B-link trees allow for delayed updates to the parent, also
relaxing the requirement to maintain structural properties of the tree at all times a little bit,
as will be described below. B-link trees are B+-trees with a few additional properties: They
maintain pointers from the left sibling to its right sibling, at all levels of the tree (whereas for
B+-trees, this is only true for leaf nodes). The last key in an internal node is known as the
high key. Searches to the tree take no locks.

B-link tree search Searches do not take any locks. If a split happens concurrently with
a search, and the high key of the current node is smaller than the search key, this could mean
that a split has occurred and the parent node had not been updated yet, so following the link
pointer, the right sibling is searched. If the key is found in the sibling, the search succeeds,
otherwise fails.

B-link tree insertion The leaf to insert into is located through the search process described
above. Once found, it is locked. In the worst case, the node will need to be split. A new sibling
node is created, and the link pointer of the original leaf node is updated to point to the new
node. Then, the parent node is locked, as it will need to be updated with a key and pointer to
the new child node, and locks on the child nodes are released. At most three nodes are locked.
For brevity, we skip the discussion of delete and range lookup operations. An additional thing
to note about B-link trees is that they delay updates to parent nodes: If a leaf node overflows
(or underflows) as a result of an Insert (or Delete), then a new sibling node is added (removed)
and the high-key pointer accordingly updated. The parent is updated at a later time, when a

write operation occurs on it.

36

2.5.2 LSM-Tree

The B+-tree structure is not ideal for applications that need to support a very large number of
random writes/inserts per second[25]. A popular alternative to B4-tree is the LSM-Tree, which
is widely used in modern key-value stores and NoSQL database systems. The Log-Structured
Merge-Tree (LSM-Tree) was originally proposed in a 1996 paper[26], as a disk-based index
structure that can support low-cost real-time indexing for insert/delete heavy workloads. In
its simplest form, illustrated in Figure 2.6, it comprises two components, one small memory-
resident component and one large, disk-based component, but can also have a multi-component
architecture. Each component is larger than the previous one, usually with exponentially
increasing capacity between consecutive layers, resembling a tiered tree-like structure.

Co tree C1tree

e T

Memory ' Disk I

Figure 2.6: Two-component LSM-Tree architecture

The memory-resident component (Cp) is also often referred to as MemTable (Memory Table)
in literature[17, 27]. For the remainder of this document, we also refer to the in-memory
component of an LSM-Tree as MemTable.

LSM-Trees are optimized for write performance: As data is inserted into the tree, it is first
placed in the MemTable (and also written to a write-ahead-log to ensure durability). This way,
write operations are fast since they involve the memory and do not incur I/O costs using the
disk, which has much higher latency. When the MemTable (or in general, a component) size
reaches capacity, the data it contains is sorted, batched together and then flushed to the next
level, in a rolling merge process.

Unlike a B+-Tree, which is described by a specific implementation, an LSM tree can be
considered more a conceptual than a structural directive. Each layer doesn’t have a specific
format and its components may be implemented in a variety of ways, using different data
structures|28]. The original paper[26] implemented its components as B-trees. An LSM-tree
index supports the following operations:

Insert (write) operations Inserts into LSM trees simply add the new record into the MemTable
as mentioned.

Point Lookup operations LSM-trees are out-of-place update structures, and therefore, a
key-value pair may be found across several components. Lookup operations in LSM-trees usu-
ally have to search across multiple components for a specific key. A point lookup (searching for
a single key-value pair) must retrieve the latest value corresponding to the given key. To do
that, the operation simply searches for the given key across all components of the LSM-tree,
starting at the newest component and moving down the tree to the oldest, stopping once the
first match is found. This is possible since newest data is contained in topmost components.

37

Delete operations Deletes in an LSM-Tree are in fact treated as inserts, by inserting a special
"tombstone" value for the respective key-to-be-deleted, which indicates deletion. On a lookup,
if the most recent (top level) entry for a key is a tombstone, then that means the key is not
present in the index.

Range Lookup operations A range lookup in LSM-trees has to perform reconciliation, that
is, to find the latest version of each key. In order to do that, the operation will search multiple
components simultaneously, using a priority queue such as min-heap to keep the latest version
of each key-value pair available.

Merge(compaction) operations As components accumulate over time, read performance
tends to degrade since the number of components it has to search increases. To address that,
disk components are periodically compacted(merged). Two main compaction schemes exist,
although in practice combinations of both are used. The first is leveling, the other is size-
tiering, illustrated in Figure 2.7. In a leveling merge (this technique is employed for example
by RocksDB[29] and LevelDB), each level has a fixed size. Key-value pairs from adjacent levels
are merge-sorted, then inserted into the lower level. This causes write amplification, as the
lower level can be several times larger than the higher one [17] Leveling merge is more read
optimized, as it reduces the number of components that must be searched during a read. In
size-tiering, each level consists of multiple sublevels whose key ranges overlap. Key merge-sort
operation is conducted among the sub-levels and the result key-value items are written as a
new sub-level of its lower level compaction is better for writes since it reduces merge frequency.
Concurrency in LSM-trees For concurrency control, LSM-trees need to handle concurrent
reads and writes, and also deal with concurrent flush and merge operations. The main chal-
lenges with concurrency in LSM-trees are concurrent merge and flush operations. During a
flush operation, the MemTable to-be-flushed becomes read-only, in order to still support reads,
and new writes will go into a new MemTable. As mentioned, each component of an LSM-tree
does not have a specific implementation, although it is common for components to be imple-

mented as B4+-trees, so it is up to the respective implementation to correctly handle concurrency

merge
level 0 | 0-100) new component
level1 [o100 F~ TTU-- > (0-100]

level 2 (0-100] | 0-100]
Before Merge After Merge

internally.

(a) Leveling Merge Policy: one component per level

merge
lovel 0
eve -
Tl new component
T [(C0-1000)
level 1
0-100 0-100
level 2 ! J)
(0-100] [0-100)
Before Merge After Merge

(b) Tiering Merge Policy: up to T components per level

Figure 2.7: LSM-Tree merge policies. Adapted from [28]

38

2.5.3 Skiplist

A skiplist is a probabilistic in-memory data structure first proposed by Pugh[30], as an alterna-
tive to B-trees, which performs similarly to them but without the need for explicit rebalancing,
as inserts and updates do not require rotation or relocation but use probabilistic rebalancing
instead. A skiplist is shown in Figure 2.8. It is essentially a linked list of nodes of different
heights. The height of each node is determined by a random function and computed during
Skiplists have inferior worst-case performance compared to B-+-trees, but their average time
complexity is the same due to their probabilistic nature. Their space complexity is also better
than that of B4+-trees. They are relatively simple to implement and support all operations
supported by B+-trees: inserts, deletes, point as well as range lookups.

Point Lookups A search operation in a skiplist begins from the highest level of the header,
following the highest level pointer of the current node, until it reaches a node where the key
is larger than the search key. Then it returns to the predecessor and follows the next-level
pointer. This process is repeated until the search key is located.

Inserts An insert operation follows the same process as a point lookup, to locate the insertion
point. Then a new node is created, the height i of which is determined randomly. All the
predecessor nodes of height up to h are linked to the new node, and the successor nodes are
linked as well.

Deletes Deletes follow the same process as lookups and inserts to locate the deleted key, then
once the corresponding node is located, forward pointers of the removed node are placed to
predecessor nodes on each level.

Range Lookups A range lookup operation starts as a point lookup operation for the lower
key in the range. Once it reaches the corresponding node, it follows the bottom level pointers of
each node that is within the range, retrieving the corresponding values until there is no longer
a node within the range.

Concurrent skiplists Concurrent skiplists can be implemented by using an additional fully linked
flag [31], that determines whether or not the node pointers are fully updated. This flag can be
set using compare-and-swap. Atomically setting the flag is necessary because the pointers have
to be updated on multiple levels to fully restore the skiplist structure.

v
¥

A4

10

h 4
h 4
h 4

header sentinel

Figure 2.8: Skiplist

2.5.4 Trie & Radix Tree

Trie, also known as Prefix Tree or Digital Tree, is an m-ary tree that is commonly used to store

and retrieve strings efficiently. The word "trie" comes from the word retrieval, which accurately

39

describes its purpose. A trie is shown in Figure 2.9 Its shape only depends on the key space and
key lenghts, and not on existing keys or their insertion order, which means that rebalancing is
not a requirement for Tries, and all operations have O(1) complexity, where 1 is the key length.
A Radix Tree is a special type of Trie. It is also known as a "Compact Prefix Trie" because its
main difference from a Trie is that instead of a single character, each node stores a string prefix
that may consist of multiple characters. For this reason, a Radix tree can require rebalancing

HELLO, HAT,

with inserts and deletes.

Figure 2.9: Trie

2.5.5 Hash index

A hash index is a data structure that uses a hash function to map keys / values to a fixed-size
array called a hash table, and it performs very well for point queries. We have not included
them in our evaluation, but listed here for completeness, as there are works adapting them for

persistent memory, as well as evaluation works assessing the efficiency of proposed solutions|3]

40

Chapter 3

Literature Review

Non-Volatile Memory integration into Database Systems is an area of active research, before
and after the advent of actual hardware; as mentioned in the Introduction, several components
of a database can benefit from the use of NVM. For example, Shanbhag et al.[32] study how well
in-memory databases perform when large datasets are stored in Persistent Memory instead of
DRAM; van Renen et al.[33] propose a 3-tier (DRAM, NVM, SSD) architecture (in accordance
with the guidelines of [34]), where buffer management is adapted to keep warm pages in NVM,
allowing the Database System to maintain its performance with increasing dataset sizes; Chen
et al.[35] also explore the integration of Persistent Memory in an in-memory database engine in
the context of real-time feature extraction applications and On-Line Decision Augmentation:
by replacing a volatile skiplist in the critical path with a persistent one, they remove the need to
sync logs from the critical path of the application, reducing response times, minimizing recovery
time and reducing total cost of ownership.

In this thesis, we have focused on the indexing components of a database system and how
they can leverage Persistent Memory. While NVM has features that make it attractive for
use in database indexing, it is not trivial to design efficient index structures for database
applications that take into account and leverage the unique properties of NVM. Simply moving
data structures from DRAM or SSD to NVM is not beneficial, as it is a different class in
the storage hierarchy with its own performance characteristics. Several designs have been
proposed by researchers, aiming to leverage the unique properties of NVM. Some studies have
also proposed general guidelines for persistent index design; however, there is no one-fits-all-
usecases solution.

In this chapter we give an overview of recent work on persistent index design, presenting
the main architectural components and implementation choices of the proposed indexes. We
also reference other evaluation works for in-memory and persistent index structures. The
architecture of the indexes we included in our evaluation is discussed in further detail in chapter
(insert section number when appropriate). as well as other index structures that were not

evaluated in this thesis.

3.1 Challenges of persistent index structure design

Researchers have identified the following challenges in designing index structures for persistent
memory|1, 36, 37]:
C1: persist primitive (clwb, clflush, sfence) is necessary to ensure persistence and

41

consistency of writes, but also expensive (high latency, device wear) As CPU caches
are volatile, one has to ensure that data is flushed to PM by using instructions like clflush
or clwb. Furthermore, writes must be performed in a certain order for consistency, which is
ensured by fence instructions like sfence. Fencing also drains the CPU store buffer and stalls
the execution pipeline.

C2: Structural Modification Overhead (SMO) By this term is desginated the write am-
plification caused by the need to maintain metadata and structural properties of the index
when inserting a new key-value pair. Any further write besides the inserted key-value pair
incurs write amplification.

C3: PM Bandwidth scarcity The bandwidth of persistent memory is limited and more easily
saturated compared to DRAM. Especially for machines with a smaller number of NVDIMMs,
maximum PM bandwidth is even smaller. Therefore, persistent data structures must be de-
signed to not exhaust the available bandwidth.

3.2 Recent Index Designs for Optane

Persistent index designs proposed for PM can be roughly classified into three categories accord-
ing to their architecture: B-+-tree based, Trie based, and hybrid [36, 2]

3.2.1 BzTree

BzTree[38] is a PMEM-only, latch free B+-tree structure. It uses PMwCAS (persistent multi-
word compare and swap) for concurrency. Both inner and leaf nodes of BzTree are stored in
PMEM. BzTree applies copy-on-write to keep inner nodes immutable except for updates to
child pointers. Inserting to a parent node causes it to be replaced with a new one that contains
the new key. Then, an update in the grandparent node is conducted to point to the new parent
node. Splits can propagate up to the root and grow the tree. Records in inner nodes are always
sorted, while records in leaf nodes are not. Initially,records are inserted to the free space serially.
Periodically leaf nodes get consolidated (sorted) and subsequent inserts may continue to insert
into the free space serially. After searching the sorted area(using binary search), the tree must
linearly search the unsorted area to get correct result. The design rationale is that inner nodes
are not updated as often as leaf nodes and should be search-optimized; leaf nodes, however,
need to be write-optimized.

3.2.2 Masstree

Masstree[39] is a "highly-concurrent, cache-efficient trie-like concatenation of B+-tree nodes".
It was designed to provide high performance even for variable-length keys, potentially with
long common key prefixes, which is enabled by its trie-like design. Essentially Masstree is a
trie, in which each node of the trie is a B+-tree, indexed by a different 8-byte slice of a key.
The concurrency scheme used is write exclusion with lock-free readers, with readers retrying if
they observe an inconsistent state, indicated by a version number. To reduce write operations,
inserts into leaf nodes in Masstree which do not cause an SMO to the tree, do not reorder the
nodes. Instead, a new key-value pair is simply appended to the node, in an unordered fashion,
and a separate 8-byte permutation table (maintained per-node) is atomically updated. The
internal nodes in Masstree, however, do maintain the sorted order, hence operations leading to

42

SMOs employ a non-atomic, key-shifting algorithm to reorder records. Masstree was converted
by the authors of RECIPE to a persistent version.

3.2.3 PACTree

PACTree[37] is a PM-only, hybrid index combining trie and B+-trees. It consists of a search
layer and a data layer, plus a structural modification operation log. The search layer is im-
plemented as a trie, based on ART and using Read-optimized write exclusion (ROWEX) for
concurrency, while the data layer is implemented as a doubly-linked list of unsorted B+-tree-
style leaf nodes. Each node in the list contains an anchor key, which is the minimum key in
the node, as well as a fingerprint array and a permutation array to speedup point queries and
scans. In order to prevent them from becoming a scalability bottleneck, SMOs in PACTree
only update the data layer; the SMO is logged in the corresponding log and the update of
the search layer is performed asynchronously by a dedicated background thread that replays
the SMO log. Additionally, PACTree was implemented to take into account NUMA effects, by
using separate pools for the data and search layers and logs in each NUMA node.

3.2.4 Fast&Fair

Fast&Fair[40] is a concurrent B+-tree that provides lock-free reads. It is composed of two
algorithms, Fast (Failure Atomic ShifT) and Fair (Failure Atomic In-place Rebalance). Fast
is used to insert the keys within a node of the B+-tree by performing atomic shift operations
to maintain the sorted order of the keys. Fast also reduces the number of clflush instructions,
because flushes are called only when crossing a cache line, and not for every array element
shift. Because a shift operation requires updating both the key and its corresponding pointer,
assuming 8-byte keys, a key could be atomically persisted and a crash could occur before its
respective pointer is updated. This would leave the tree in an endurable inconsistent state,
where a duplicate key appears in a node; however, because the B-+-tree property of unique keys
is violated, readers encountering this know to disregard a key that appears between two identical
pointers. Fair avoids the use of logging (that is usually necessitated by SMOs in B+-trees),
by exposing intermediate states to readers, who can detect and tolerate such inconsistencies
without being blocked by writers. For concurrency, Fast&Fair provides lock-free reads, but uses

mutexes for write operations.

3.2.5 P-BwTree

BwTree[41] is the volatile version of the P-Bwtree used in our experiments. BwTree is a highly
concurrent B+-tree developed for new hardware platforms which is completely lock free, in
order to scale efficiently on multi-core systems. It has a complex architecture based on B+-
trees. Tree nodes are logical memory pages, each logical page having its own PID, which replaces
the pointer in the traditional B+-tree. A logical page consists of a linked list, where each node
of the list covers a certain key range and is indexed by its pid. A mapping table is used to keep
track of the correspondence between logical pages and physical memory addresses of the head
node of the composing linked lists. A logical page is updated using a "delta strategy" which
prepends a new delta record to the original head node of the linked list of the logical page;
then the mapping table is udpated with the new mapping using a single CAS instruction. This
complex architecture is captured in Figure 3.1

43

I:l Used space

D Unused space

Page — Physical poi

ysical pointer
PID K -~

s K ~* Logical pointer
A # \‘\
Page S,

B . -

b : Page
c }d "\ : \‘
D Lo

Figure 3.1: Architecture of BwTree (Adapted from [42])

BwTree was converted by the authors of RECIPE to a persistent version.

3.2.6 wBTree

wBTree[43] stands for write atomic B+-tree which optimizes the performance of insert and
delete operations while striving to maintain good search performance. It aims to minimize
the overhead introduced by expensive PMEM write operations and by cacheline flushes and
achieves this by employing several methods: Keeping nodes unsorted. A new record is inserted
into a free slot without any sorting occurring in-place, thus reducing PM writes. Two additional
structures can be part of each node, a bitmap and an indirection slot array. The purpose of
the bitmap is to indicate which entries are valid, and it is up to 8 bytes, therefore atomically
updated. Hence, inserts and deletes that do not incur SMOs, need only update the bitmap,
again reducing the need for additional writes. When operations do cause SMOs, wBTree uses
undo/redo logging. However, the bitmap only guarantees atomic updates, and not sorted
order, which is why in addition, the indirection slot array is used, and is updated instead of
the leaf nodes to maintain ordering and enable faster lookups. In small nodes, the bitmap can
be omitted and the indirection slot array serves to guarantee atomicity, indicate validity and
maintain sorted order. The authors of wBTree mention that it can be extended to support
variable length keys, through the use of pointers. It does that by storing 8-byte keys in the
tree, which are actually pointers to the actual variable sized keys. In addition, wBtree is not a

concurrent data structure.

3.2.7 DPTree

DPTree[36] employs an architecture reminiscent of a two-level LSM tree. Its volatile/DRAM
resident memtable (LO) is called buffer tree and is a B+tree, while its persistent L1 called the
base tree, employs selective persistence, comprising a DRAM component (radix tree) and a
PM component (linked list of leaf nodes). Since the buffer-tree is DRAM resident, durability is
ensured by the existence of a write-optimized redo log in PM. The decision to employ two levels
is made to reduce read latency. The authors refer to it as the dual-stage index architecture. For
concurrency, DPTree employs Optimistic Lock Coupling[44] to make the DRAM-resident buffer
tree concurrent and enables concurrent logging by hash partitioning the log and implementing

44

each partition as a linked list of log pages. Tree components are synchronized by tracking active
readers/writers to make sure they are accessing the correct version of the buffer tree.

3.2.8 ChameleonDB

Zhang et al have developed ChameleonDBI[17], a key-value store for Optane PMEM. ChameleonDB’s
index architecture is based on LSM-trees. However, while an LSM-tree is an attractive option
for deployment on PMEM due to its being optimized for writes, they notice that a multi-level
LSM-tree is incapable of leveraging Optane’s low read latency, and therefore propose an archi-
tecture that combines the strengths of LSM in terms of write performance with hashtables to
speed up reads. The authors implement a sharded index, where each shard covers a range of
the key-space. Its in-memory components are the MemTable of the LSM structure, plus the
Auziliary Bypass Index (ABI). The ABI is an in-DRAM hash table that indexes all the keys in
the next levels, except the last. This reduces the the read latency, as a read operation has to
search at most 3 levels, only one of which is PMEM-resident: the MemTable, the ABI, and the
last level of the LSM structure. Each LSM level consists of multiple fixed-size hash-tables. They
employ Lazy Leveling compaction scheme, that is, size-tiered compactions for the intermediate
LSM-levels and leveling compaction for the last level, thus balancing write amplification and
read latency.

3.2.9 ViPer

ViPer, (standing for Volatile Index Persistent data) is an embedded DRAM-PMEM key-value
store designed by Benson et al.[19]. The authors use a custom persistent memory allocator, to
first memory map PMEM into virtual address space and then allocate memory in blocks. They
maintain an in-DRAM hash index, the Offset Map, based on CCEH, which stores the page id
and offset of a persistent memory block. They also employ fingerprinting, by keeping a hash of
each key in the Offset Map.

In summary, the specific design choices of each reviewed persistent index are collected in Table

3.1

Index Architecture Node Structure Concurrency String keys
wBTree B+-tree;PMEM-only Unsorted, indirection slot array Single-threaded Pointer to key
FPTree B+-tree; selective persistence; in- Unsorted leaf nodes; fingerprints HTM & locking Pointer

ner nodes in DRAM, leaf nodes in
PMEM

BzTree B+-tree;PMEM-only Partially unsorted leaf; sorted inner lock-free(PMwCAS) Inline
nodes

DPTree selective persistence; B4-tree and unsorted leaf; fingerprints; indirec- optimistic locking; async Pointer
inner trie in DRAM; trie leaf in tion; extra metadata updates
PMEM

PACTree Trie;PMEM-only (optional Unsorted leaf; fingerprints; indirection optimistic locking; async Inline
selective persistence) updates

FastFair B+-tree;PMEM-only Sorted nodes Lock-free reads; blocking writes Pointer

Masstree Hybrid: trie-like concatenation of unsorted leaf; sorted internal; lock-free reads;write exclusion Inline

B+-trees;converted
BwTree B+-tree;converted logical pages; mapping table;deltas non-blocking reads and writes Inline

prepended to node;

Table 3.1: Collective Table of design choices per index

45

3.3 Other evaluation works

Xie et al [42] have evaluated in-memory indexes Masstree, BwTree, Fast, ART, and PSL in a
DRAM/SSD memory system, studying their performance in terms of query throughput and
latency, scalability with increasing number of threads, memory consumption and cache miss
rate, for diverse workloads. They evaluate skip-list based indexes (PSL), B-+-tree based indexes
(Masstree, BwTree), and trie-based indexes (ART, Masstree).

Regarding the performance of Masstree and Bw'Tree, they find that they perform worse
than the other structures due to their using linked lists instead of arrays, as arrays allow for
cache alignment and SIMD processing, while linked lists allow for flexibility. They also scale
less well for write workloads, compared to the other evaluated index structures. Also, BwTree,
followed by Masstree, consume the most space; especially BwTree due to its delta-append logic
for updates. For BwTree they observe that the write throughput drops considerably for write-
only workloads, which they attribute to “contention caused by frequent fails of the hot blocks".
Masstree is found to exhibit the least performance fluctuation for different kinds of workloads.

A limitation of their evaluation is that they only use the YCSB benchmark with integer
keys with a fixed length of 4 bytes. That does not showcase the strengths of Masstree and
BwTree, both structures aiming for flexibility by supporting keys of arbitrary length, unlike
the other indexes. Another finding of their evaluation is that Hardware Transactional Memory
(HTM) might not scale so well compared to other concurrency solutions if there are frequent
concurrent exclusive accesses to a critical section, so it requires careful engineering.

Other evaluation works specific to Persistent Memory indexes are those of Lersch et al[l],
He et al[2] and Hu et al[3].

As part of their evaluation work, Lersch et al [1] have developed PiBench[45], (Persis-
tent Index Benchmarking framework), which is an effort to provide a unified framework for
"highly customizable benchmarks, ruling out the impact of different benchmark implementa-
tions". They chose to evaluate persistent memory range indexes, that is indexes that support
accessing values within a range, and in particular B+-tree index structures, as B+-trees are the
most widely used index type in OLTP systems, they have been extensively studied and mature
techniques have been developed for B+-trees in the context of persistent memory. The indexes
used in the evaluation are NVTree, BzTree, FPTree (fingerprinting tree) and wBTree. They
are chosen as representative of different concurrency schemes, node architecture and placement
choices.

NVTree is lock-based, BzTree is lock-free and uses PMWCAS, FPTree employs HTM for its
inner nodes and fine-grained locking for its leaf nodes. WBtree and BzTree place nodes in PM
only, NVTree is PM-only but could also be hybrid (DRAM/PM), FPTree places inner nodes in
DRAM and leaf nodes in PM. The metrics tracked in this work are throughput (operations/sec-
ond), accesses to persistent memory, operation latency, cache misses, and number of cacheline
flushes to persistent memory per tree operation (insert/update/delete). Their key findings are

summarized below:

o throughput Placement of inner nodes in DRAM makes traversal faster and leads to
higher performance for FPTree and NVTree. The best performer is FPTree, due to its
optimizations: leveraging DRAM and fingerprinting.

e per-operation performance Lookup performance also affects other operations as first

46

they do a lookup - traversal. Insert performance is directly affected by number of flushes
per insert, maintenance work per insert, and overhead of node splits. Update performance
again depends on the number of writes and flushes to PM. Scan: reading less from PM

does not compensate the overhead of sorting and filtering.

o« HTM and PMwCAS (both optimistic concurrency schemes) are not scalable, as they are
vulnerable to high contention. The finding regarding HTM is inline with the observations
of [42] .

e recovery time As expected, PM only structures are able to recover instantly after a
crash. Structures that employ selective persistence are much slower to recover, but in the
case of clean shutdowns, inner nodes could be spilled to PM to enable fast restart. The
wBTree recovery time is two orders of magnitude less than that of FPTree (the faster
of DRAM-PM structs). Also, for DRAM-PM the recovery time grows linearly with the
dataset size, while it is constant for PM only structures as all they have to do is retrieve
the root object persistent pointer.

He et al. have relied on the previous work of [1] and extended it in [2], to include the impact
of variable-length keys, PM allocator and NUMA effect in the evaluation. Indeed the impact
of variable-length keys has not been studied by other evaluations. They evaluate DPTree,
uTree, LB+Tree, ROART and PACTree (which are either newer, or focused on optimizing
other metrics than throughput - uTree for latency) against FPTree which was found to be
the best performing index in the pre-optane era. They find that proposals from the “pre-
Optane era" employed optimizations that are beneficial even for Optane (such as fingerprints
and selective persistence), while newly proposed indexes do not necessarily outperform older
proposals. There are still aspects that are not adequately addressed by existing proposals, such
as supporting variable-length keys, mitigating NUMA effects and efficiently managing PMEM.
An interesting observation is that when running in DRAM without extra memory fences and
cache line flushes, an index designed for PM may outperform well-tuned volatile indexes. This,
combined with the evaluation findings from RECIPE and TIPS, which prove that DRAM
indexes converted for PM can outperform PM-crafted indexes, suggests that there is potential
for unifying index design for both types of memory.

Hu et al. perform similar evaluations on Persistent Memory hash indexes (CCEH, Level-
hashing, Dash, PCLHT, SOFT, Clevel), leveraging and extending the Pibench benchmarking
framework published by Lersch et al. Some of their key findings have been that:

« Random small writes, which are an inherent pattern in the design of hash tables, are the

primary factor restricting performance of hash indexes on PMEM.

o Contrary to the observations made for range indexes, the impact of the persist primitive
(cost of clflush/sfence) is in comparison very small, due to the smaller number of these

instructions required in hash table operations.

o Fingerprinting is an optimization that works well for hash indexes.

3.4 Converting DRAM indexes to persistent memory indexes

Developing an index tailored for persistent memory is a challenging task, as mentioned in

Section 3.1, and addressing issues like concurrency, persistent memory allocation without leaks

47

is not trivial. On the other hand, DRAM indexes have been studied in-depth over the course
of many years, and are much more mature and optimized. As noted by [4, 7], it is much easier
and less error-prone to convert a volatile index to its persistent counterpart, than it is to build
a persistent index from scratch. For structures that meet certain criteria, it saves a lot of effort
to try and take advantage of existing DRAM indexes, that are known to do their job very well,
by converting them to persistent ones. This enables applications to avail of a large number
of well-engineered indexes, but it also paves the way for porting applications from DRAM to
NVM.

RECIPE[4] is a "principled approach for converting DRAM index structures to persistent
memory index structures'. The guidelines provided by RECIPE are not at the source level, but
in practice indexes can be converted by only adding a few lines of code, when they meet one of
the following conditions. The key observation the authors make is that volatile consistency of
reads and writes has a persistent counterpart (consistency of reads and writes after a crash)

1. Reads are non-blocking, writes can be either blocking or non-blocking. Write operations
are made visible to other threads using a hardware-atomic store. The solution is to add
clflush and mfence/sfence instructions after each store (and each load for non-blocking
writes because in their case, the order of the load/stores can not be guaranteed by a
lock).

2. Reads and writes both non-blocking. Writers fix inconsistencies. Solution: add clflush
and mfence/sfence after each load and store. Example: BwTree.

3. Non-blocking reads, and blocking writes.

After ensuring the persistence of stores by adding clflush and sfence instructions, the volatile
allocations must also be converted to persistent memory allocations. The conversion method
proposed by RECIPE is essentially to convert volatile memory allocations to persistent memory
allocations, by using PMDK’s libvmmalloc. Libvmmalloc transparently converts traditional
dynamic allocation interfaces to work on a volatile memory pool built on a memory-mapped
file on PMEM. Other frameworks have also been proposed to convert volatile index structures
into persistent ones, such as PRONTO[6], NVTraverse[5] and more recently, TIPS[7]. Unlike
RECIPE, it does not impose restrictions on the concurrency model, (RECIPE requires the
concurrency model to be either lock-free, or fine-grained,) supporting any concurrency model.

PRONTO Pronto is a library that adds persistence to volatile data structures using asyn-
chronous semantic logging (ASL). Pronto requires that the converted volatile structure meets
two conditions: that its modification methods do not read or write global variables, and that
the structure is linearizable, if it is concurrent. Application developers can add persistence to
their volatile structures by wrapping the data structure in a PersistentObject class and imple-
menting appropriate wrapper methods for the structure’s API and using the Pronto memory
allocator instead of malloc/realloc/free. Pronto consists of three components: The ASL, which
logs the persistent operations, a volatile online image of the data structure in DRAM, and a
persistent snapshot of the data structure. Essentially PRONTO places the index on DRAM
and logs the necessary operation on PMEM.

NVTraverse NVTraverse is a general transformation that takes a lock-free data structure
that belongs to the traversal data structure class and transforms it into a PMEM implementation
that is durably linearizable and highly efficient. It is applicable to lock-free data structures.

48

Chapter 4

Proposed Framework

In this chapter we describe our evaluation methodology and the evaluation framework we
propose. We apply a systematic and extendable methodology to enable the effective evaluation
of state-of-the-art indexes, which consists of four steps, as illustrated in Figure 4.1.

’ Configuration parameters(operation ratio, dataset, metrics, ...) ‘

\4 \ 4

Set of indexes Benchmark

Profiling & P— i
Monitoring
H Optane
Memorv\Ac_cesges mE DRAM DCPM
° Monitoring

Power Monitoring

’ Heterogeneous DRAM/NVM Memory System ‘

v v v o

DRAM Energy Optane DCPM
Results Energy Results

‘ Processing and Analysis °

NVM Memory Performance
Accesses Evaluation

Performance Results

Energy Evaluation

Figure 4.1: Evaluation Methodology Overview

On the one end of our methodology, we provide as input a set of indexes (Step @), a

benchmark(Step @) which is configured by a set of parameters (for example, ratio of opera-
tions, data distribution) and a set of metrics of interest to the evaluation such as throughput
and energy consumption. The benchmarks we used were TPC-C[46] and YCSB[47]. The set of
indexes we evaluated was based on the open-source implementations provided by [4] and con-
sists of the following implementations: P-BwTree, P-Masstree, WBtree and Fast&Fair. Each
index’s architecture is described in detail in the respective subsection of Chapter 3.

The Profiling & Monitoring Component of the methodology (Step 9) is responsible for

49

power and performance monitoring and it is based on Intel’s Processor Counter Monitor (PCM),
a tool that provides run-time low-level system metrics and allows to sample energy /power over
the main memory DIMMs through hardware sensors [48]. The raw measurements are then
grouped and processed (e and g respectively) in order to provide the throughput, total
memory accesses and energy consumption results for each evaluation experiment. Experiments
are setup with shell scripts and results processing is done with Python scripts.

Energy consumption is monitored using Intel’s pem-power tool[49], which reports measure-
ments for both DRAM and Optane. We have used a sampling rate of 10 milliseconds in all
experiments. Accesses to the Optane Persistent Memory medium are measured by the ipmctl
utility.

For the TPC-C Benchmark, we have provided our own in-memory implementation, which

we describe in the following sections.

4.1 TPC-C Benchmark Specification

TPC-C is an industry standard benchmark for evaluating the performance of OLTP (On-
Line Transaction Processing) systems and their ability to handle transactional workloads. In
summary, it represents a wholesale business scenario, simulating a set of transactions that are
commonly encountered in real-world business operations, such as order placement, inventory
management, and financial accounting. It measures the performance of the DBMS by executing
a mix of transactions involving multiple users, each performing tasks like order processing,
payment processing, and database updates. The TPC-C schema consists of nine tables and
five procedures that simulate a warehouse-centric processing application and its E-R diagram
is shown in Figure 4.2

10

District
w*10

Warehouse
W

Stock
W*1 00k

W*Qk+ 1+
OrderLline Oder

Figure 4.2: TPCC Entity-Relationship Diagram. Adapted from [46]

The workload mix defined by TPCC consists of the following five distinct transaction types:
o New-order (45%) Represents the submission of a new customer order.

o Payment (43%) Simulates a payment transaction, where a customer pays for an existing

order

o Delivery (4%) Updates the status of an order to indicate delivery.

50

o Order-status (4%) Retrieves the status of a customer’s latest order. Order-status is a
read-only transaction.

« Stock-level (4%) Calculates the current stock level for a specific item. This is also a
read-only transaction.

As shown in Figure 4.2, the Scale Factor (SF) of the TPC-C benchmark is the number of
warehouses. The TPC-C benchmark consists mostly of transactions that insert or access new
records (i.e. NewOrder) and older records are almost never accessed. There is therefore a
strong temporal skew built into the semantics of the benchmark. Only a subset of tables are

increasing in size, and the rest are static. [10].

4.2 In-memory TPC-C Benchmark implementation

For the TPC-C performance experiments, we based our implementation of the benchmark on
an existing C++ implementation[8], to which we made the necessary extensions to support
multiple clients and to enable evaluation of any index as a plug-in. The benchmark we used is
an in-memory implementation of the schema and workload specified in [46]. For randomness,
we treat the transaction mix as a deck of cards, with multiple clients(terminals) picking trans-
actions(cards) from the deck. We randomly shuffle the deck in the beginning of execution. Like
most implementations in research, we do not implement think times. A class diagram for the
implementation is shown in Figure 4.3. This is an overview of the implementation; the diagram

is not exhaustive as several helper methods are omitted here.

TPCC_DB TPCC_Client TPCC_Generator

+ stockLevel(type): int32 + std: vector ten_mix +field: type

+ std::shared_lock district_mutex,

customer_mutex, orders_mutex, +makeWarehouse : void

+ orderStatus(type): void

+ newOrder(type): int32 +TPCC DB db + makeStock() : void
+ payment(type): int32 + TPCC_Generator generator + generateDistrict() : void
+ delivery(type): int32 + Lock district mutex + generateOrder() : void

+ generateCustomer(): void
+ doStockLevel()
+ generateOrderLine(): void

Extends + doCOrderStatus()
+ generateHistory(): void
+ doDelivery()
+ generateltem(): void
TPCC_Tables + doPayment()
+warehouses_: *TreeApi + doNewOrder()
+ stock_: *TreeApi + spawnThreadsAndDoAll() library_loader
- - handle_: void*
+ districts_: *TreeApi
+ customers_: *TreeApi + create_tree(options) TreeApi*
+ orders_: “TreeApi
+ orders_by_customer_: *TreeApi
<<Interface=:
+ orderlines_: *TreeApi TreeApi =
+ delivery(type): int32 +field1: Type
+ field2: Type

+ payment(type): int32
_ + TreeApi "create_tree(tree_options_t *opt);

+ newOrder(type): int32 + virtual void insert(key, value) const

+ virtual bool find{key, value)

+ virtual bool remove(key)

-+ virtual bool findLastLessThan(key.value,out_key)

+ orderStatus(type): void

+ stockLevel(type): int32

Figure 4.3: TPCC UML Diagram

TPCCDB This class defines the structs representing each TPCC relation, such as Order, Or-
derLine etc. It acts as an interface for transaction implementation, by defining virtual functions

o1

for each transaction type; these are actually implemented in the TPCCTables class.
TPCCClient This class is the one responsible for issuing transactions. The logic for transac-
tion isolation is also implemented in this class; among its members are locks for each TPC-C
table, that transactions must request at their start. It also has a vector member corresponding
to the transaction mix; for multiple clients, each client is a different thread that is allocated a
distinct range of the transaction mix to execute.

TPCCTables The methods corresponding to transactions are implemented here. Also, here
we define the underlying tables for the TPCC relations: warehouses , stock ,districts_, cus-
tomers_, orders , orders by customer , orderlines : these are all instances of the TreeApi
class, which is a wrapper around the evaluated index.

TPCCGenerator This class implements the methods responsible for populating the TPCC
database, pre-filling the tables before transaction execution begins.

Our benchmark defines an abstract class, TreeApi, that defines the following operations: in-
sert, find, remove, and a custom operation, findLastLessThan, as shown in Listing 4.1. The
custom operation is similar to the Scan operation of the YCSB benchmark, as its functionality
is similar: It starts at a given key in the index and scans the records in order, retrieving the
value that corresponds to the last key that is smaller than a given value. It is required in order

to support the OrderStatus transaction.

class Treelpi;

extern "C" TreeApi *create_tree(tree_options_t *opt);

class TreelApi

{

public:
virtual ~Treelpi (){};
virtual void insert(const void *Nkey, const void *Nvalue) {};
virtual bool find(const void #*key, void *value = nullptr) const { return 0; };
virtual bool remove(const void *key) {return 0;};
virtual bool findLastLessThan(const void *key, void *value = nullptr, void *
out_key = nullptr) const {return 0;1};

};

Listing 4.1: TPC-C API

Each evaluated index must implement these functions, extending the TreeApi class in a
wrapper class. Then at runtime, the index being benchmarked with TPC-C will be loaded as
a shared library.

4.2.1 Multiple clients support

TPC-C is a transactional benchmark, therefore in order to support multiple clients / multiple
concurrent sessions, we must also provide transaction isolation. We have chosen to implement
the strongest isolation level, serializability, with strict two-phase locking (2PL). An advantage
of strict 2PL is deadlock prevention, which made it an attractive option for our in-memory im-
plementation of the benchmark. One disadvantage though is the increased resource contention
and reduced concurrency. Our implementation of serializability is based on the std: :shared_mutex
class of C++. Each table (districts, orderlines, stock, history, customerByName, ordersByCus-
tomer, newOrder, Orders, Customer, Warehouse) has its own shared mutex. Depending on the
type of operation each transaction performs with a table, it either takes a read or write lock on

52

it. In order to make sure that we do not run into a deadlock, we ensured that locks are taken
and released in a specific order in each transaction.

4.2.2 Mapping of TPCC operations to tree operations

The TPC-C benchmark defines transactions, whereas the YCSB benchmark defines certain
ratios of tree operations such as inserts, lookups, scans. We have quantified how the TPCC
implementation we used translates to basic tree operations, by using a counter for each tree for
each type of operation and summing the results after the run finishes. For 10 warehouses, 1
million transactions and a single client, a total of 10,249,106 inserts were performed, 37,200,424
lookups and 40,000 range scans.

4.3 Evaluated Indexes

The indexes included in the evaluation were P-BwTree, P-Masstree, WBtree, Fast &
Fair. Their architecture is described in the respective subsections of Chapter 3. We obtained
the open-source implementations of all index structures from [4]. In most cases, we had to
make some modifications to the source code to support the findLastLessThan operation. This
operation is similar to a range scan, where instead of determining the number of keys, starting
at a certain key, we determine the end key for the scan. As the range scan supported by
most indexes is of the form RangeScan(startkey, number), we had to modify the source code of
most indexes to implement our version of a RangeScan. We implemented a custom rangeScan
operation for all indexes except P-Bw'Tree based on their existing implementations of scan
and rangeScan. P-BwTree’s implementation provided iterators, therefore making it easy to
implement our own custom scan without modifying the source code.

Additionally we considered for the evaluation DPTree, PACTree, FPTree and BzTree, but
we leave the integration of these indexes with TPC-C as future work due to the modifica-
tions/bugfixes to their source code required for a correct wrapper class implementation. (We
found bugs in the implementation of DPTree and PACTree; PACTree was experiencing frequent
crashes whereas DPTree searches returned incorrect values. We did not find bugs with FPTree

and BzTree but they required more extensive source code modification).

93

Chapter 5
Evaluation Results

This chapter presents the main contribution of this thesis, which are our evaluation results.

5.1 Server characteristics and configuration

Experiments were conducted on a machine with the following characteristics and configuration:

Sockets

threads per core

cores per socket 20

microarch Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz

L1/L2/L3 cache 1.3MBL1i & 1.3MBL1d / 40MB / 55 MB

Total DRAM 128GB

Total NVMM 1536 GB (6x256 GB)

GNU/Linux Distro & Kernel Ubuntu 20.04.2 LTS (Focal Fossa) 5.4.0-121-
generic

Table 5.1: Evaluation platform specifications

5.2 Evaluation metrics

« TPCC transaction throughput reported in transactions per second.
« YCSB operation throughput reported in operations per microsecond.

o Total energy consumption Energy consumption is a metric that existing literature
has not widely explored, focusing mostly on operation throughput instead. Katsaragakis
et al. have provided some insights into the energy consumption of hybrid DRAM-NVM
applications that use Intel Optane in memory mode[50, 51], App-Direct mode [52], as well
as the energy consumption of database index structures[48]. We rely on the methodology

used in [48] to measure energy consumption.

» Optane read/write accesses As mentioned, Optane memory accesses are measured by
the ipmctl utility, by monitoring the read and write accesses to each Optane DIMM.

95

Load time (msec)

5.3 TPC-C

TPC-C consists of two phases, a load phase in which data is loaded into the database and tables
are populated with "old data"; we report the total number of keys initially loaded in Table 5.2
(we show the average over 6 runs). The load phase of the TPCC implementation we used is
single threaded. From the table we can see the load time is the time required to load about
half a million keys per warehouse, with a single thread.

Warehouses | Total Keys Loaded
1 489424
2 979997
4 1957960
8 3917608
10 4900255

Table 5.2: TPCC number of keys loaded

5.3.1 Load phase

5.3.1.1 Load time

TPCC load time

Load time on Optane Load time on DRAM

17500 4

15000 4

12500 4

10000 4

7500 1

5000 A

2500 4

—&— masstree 16000 | —®— masstree
fftree fitree

—8— pbwtree —e— pbwtree

—8— wbtree —8— wbtree

14000

12000

10000 1

8000 -

Load time (msec)

6000 -

4000 q

2000 +

2 4 6 8 10 2 4 6 8 10
warehouses # warehouses

Figure 5.1: Comparative load times on Optane and DRAM

As mentioned, TPCC is mostly a write and update heavy workload. Its load phase per-
formance is indicative of how an index performs under a write-heavy workload. The best

o6

1

1

1

1

Load time (msec)

35000 -

throughput (txns/sec)

15000 A

10000 1

30000 -

25000 -

20000 -

TPCC Load time on DRAM vs Optane

masstree fftree pbwtree wbtree
12000
—8— masstree Optane —o— fftree Optane 16000 | —g— pbwtree Optane —&— wbtree Optane
7500 masstree DRAM fftree DRAM pbwtree DRAM wbtree DRAM
10000 4 14000 1 10000 1
5000 1
12000 4
2500 4 8000 - 8000 -
10000 1
0000 |
6000 - 5000 4 6000
7500 1
4000 | 6000 40004
5000 1
4000 -
2500 2000 4 2000 4
/ 2000 1

2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
warehouses # warehouses # warehouses # warehouses

Figure 5.2: Per-index comparative load times on Optane and DRAM

performers in the load phase, requiring the least load time are Fast&Fair and WBtree which
have almost identical performance (less than 1% difference). P-Masstree has the worst load
performance and P-Bw'Tree also does poorly. For 10 warehouses, P-Masstree is approximately
1.6 times slower to load about 5 million keys, while P-BwIree is 1.43 times slower than both
Fast&Fair and WBtree.

5.3.2 Run phase

We have evaluated TPCC with all combinations of the following configurations: Number of
warehouses in [1,2,4,8,10] and number of transactions in [10k, 25k, 50k, 75k, 100k, 250k, 500k,
750k, 1mil).

5.3.2.1 Runtime performance - throughput

Figure 5.3 shows the runtime throughput achieved by each index on Optane and DRAM re-
spectively, for a single client submitting transactions, 10 warehouses and increasing number of
transactions. We can see the number of transactions does not much affect performance and
there is a clear difference between all indexes in terms of performance regardless of the number
of transactions executed.

Therefore we choose to present results for larger numbers of transactions which better rep-

resent a real-world application.

TPCC throughput, single client, 10 warehouses, varying # transactions

Throughput on Optane Throughput on DRAM
45000 -
40000 -
o
g 35000
~®— masstree g —&— masstree
fftree £ 30000 4 fftree
—e— pbwtree E —e— pbwtree
—8— wbtree 5 25000 4 —&— wbtree
g
‘/‘_‘A’\‘\o\‘\‘ £ 20000 1 /—“\/\\‘\‘
15000
'/./.\._'/0—0—0‘. oo0o M

10000 25000 50000 75000 100000 250000 500000 750000 1000000 10000 25000 50000 75000 100000 250000 500000 750000 1000000
transactions # transactions

Figure 5.3: Comparative throughput on Optane and DRAM, 10 warehouses, single client

Figure 5.4 shows the runtime throughput achieved by each index on Optane and DRAM

o7

respectively, for a single client submitting transactions, 750K transactions performed, for in-

creasing number of warehouses.

TPCC throughput, single client, 750K transactions, varying # warehouses

Throughput on Optane Throughput on DRAM

60000
—8— masstree —e— masstree
—o— fftree —o— fftree
50000 4 —8— pbwtree —o— pbwtree
—e— wbtree 500001 —o— wbtree
9 o
a a
& 40000)
£ £ 40000
=1 5
£ 30000 2
= 2 30000
3 3
£ £
20000 20000 4
— o — o
2 4 6 8 10 2 a 6 8 10
warehouses # warehouses
Figure 5.4: Comparative throughput on Optane and DRAM, 750k transactions, single client
TPCC throughput, 10 warehouses, 750K transactions, varying # clients
Throughput on Optane Throughput on DRAM
40000
—8— masstree —e— masstree
35000 4 —o— fftree] —o— fftree
—8— pbwtree 40000 —&— pbwtree
30000 —8— wbtree _ —e— whtree
g g
‘2 25000 1§ 30000
3 3
520000 A 5
2 2
5 £, 20000
3 15000 3
£ £
10000 q 10000 4
5000 —
1 2 4 6 8 10 1 2 4 6 8 10
clients # clients
Figure 5.5: Comparative throughput on Optane and DRAM, 10 warehouses, 750K transactions, in-
creasing number of clients
TPCC Run Throughput on DRAM vs Optane, 750K transactions, single client
masstree fftree pbwtree wbtree
28000 4 —&— masstree Optane —o— fftree Optane —8— pbwtree Optane —— wbtree Optane
~#— masstree DRAM | 575007 ~e— fftree DRAM | 14000 - ~#— pbwtree DRAM ~&— wbtree DRAM
26000 1 55000 1 13800 4 45000
g 52500
'@ 24000 13600 -
5 50000 { 40000
2 220001 47500 134004
=)
g 45000 132004 35000
5 20000
42500 13000 4
30000
18000 - 40000
12800 -
v v v v — 37500 4 v v v v v v v - v v v v - - v
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
warehouses # warehouses # warehouses # warehouses

Figure 5.6: Comparative throughput on Optane and DRAM, 10 warehouses, 750K transactions, in-

creasing number of warehouses

In the run phase, the best performing index in our TPCC experiments is Fast&Fair, followed
by WBtree, P-Masstree and finally P-BwTree. Fast&Fair outperforms WBtree which is the next
best performing index by achieving approximately 8.7% higher throughput and performing

o8

8% better for a single warehouse, single client and 750 thousand transactions. It achieves
91% higher throughput than P-Masstree, performing approximately 47.6% better and 400%
higher throughput than P-BwTree, performing 75.3% better for the same configuration. For
10 warehouses, Fast&Fair is 1.14x faster than wbtree, 2.24x faster than P-Masstree and 3.17x
faster than P-Bw'Tree.

Regarding the effect of multiple clients on runtime throughput, we observe the same trends
in performance drop for all the indexes. Table 5.3 shows the runtime performance (measured
in transactions per second) for 10 warehouses, 1 million transactions executed by a varying
number of clients in the range 1 through 10. For more than 4 clients, transaction serialization
and waiting on locks becomes the bottleneck, which is indicated by the much slighter difference

in throughput.

Index 1 client 2 clients | 4 clients | 6 clients | 8 clients | 10 clients

Fast&Fair 37204.05 | 26898.91 | 13560.13 | 9765.58 | 8940.94 8398.36
WBtree 37583.41 | 20239.28 | 13281.38 9604.29 8689.69 8372.70
P-Masstree | 15400.44 12070.3 7219.05 5766.27 5364.95 5212.51
P-BwTree 12195.86 7739.72 3978.07 3167.24 2911.19 2731.59

Percentage drop

Fast&Fair 27.7% 49.6% 27.9% 8.4% 6%
WBtree 46.1% 34.3% 27.7% 9.5% 3.6%

P-Masstree 21.6% 40.1% 20.1% 6.9% 2.8%

P-BwTree 36.5% 48.6% 20.4% 8% 6.1%

Table 5.3: Effect of multiple clients on TPCC throughput

Increasing the number of clients does not allow us to evaluate the concurrency behavior of
each index. This is additionally verified by including the WBtree, which is single-threaded, in
experiments with multiple clients. This performance degradation, that we similarly observe for
all indexes, is due to the transactional nature of the TPC-C benchmark, the isolation level we
have implemented and the specifics of our implementation. As we are using shared mutexes to
implement serializability with 2PL, but most operations modify several tables and only 8% of
the transactions are read-only, this in practice leads to serial performance, with the additional
significant overhead of lock contention. In order to evaluate the scalability of each index and
its behavior in concurrent settings, we rely on diverse workloads of the YCSB benchmark. The
behavior under YCSB is discussed later in this chapter.

5.3.2.2 Energy Consumption

Figure 5.7 shows the energy consumed by each index on Optane and DRAM respectively, for a
single client submitting 750K transactions, and increasing number of warehouses. We observe
that energy consumption is inversely proportional to throughput and execution time. The
better an index performs, the less energy it consumes on both DRAM and Optane. Table 5.4
also summarizes the Optane energy consumption results for 1 and 10 warehouses for all indexes.

In terms of energy consumption, Fast&Fair consumes 5.7% less PMEM energy than WBtree,
and also 52.1% less than P-Masstree and 58.4% less than P-BwTree. Masstree consumes 2.1x

99

energy (Joules)

more energy, P-BwTree consumes 2.4x more energy than FastFair.

Index 1 Warehouse | 10 Warehouses

FastFair 2.32 kJ 4.80 kJ

WBtree 2.29 kJ 5.09 kJ
P-Masstree 4.14 kJ 10.05 kJ
P-BwTree 8.16 kJ 11.56 kJ

Table 5.4: Energy consumption for 1 warehouse, 10 warehouses

TPCC energy consumption, single client, 750K transactions, varying # warehouses

Energy consumed by Optane Energy consumed by DRAM Total energy consumed
12000 4500
16000 q

4000 4

10000 4 14000

3500
12000

8000 - —8— masstree
—o— fftree
—8— wbtree

—&— pbwtree

3000 —8— masstree
—0— fftree
—8— wbtree

—8— pbwtree

—@— masstree
—o— fftree
—8— wbtree
—&— pbwtree

10000
2500

6000 8000 4

energy (Joules)
energy (Joules)

2000

6000 -

4000 1 15001

1000 1 4000 4

2000 1

warehouses # warehouses # warehouses

Figure 5.7: Consumed energy when running on Optane, 10 warehouses, 750K transactions, increasing

number of clients

Energy consumption, single client, 750K transactions, 10 warehouses

15000 4 . Optane energy
[DRAM energy
12500 1 Wl Total energy

10000 A

7500 A

Energy (Joules)

5000 A

2500 A

Fast&Fair WBtree P-BwTree P-Masstree
Index

Figure 5.8: Consumed energy for 10 warehouses, 750K transactions, single client

5.3.2.3 Memory Accesses

With respect to memory accesses to Optane, we observe that they tend to increase with in-
creasing number of clients, as well as with increasing number of warehouses. This observation
is inline with the throughput drop we have observed as the number of clients increases and
as the number of warehouses increases. We also observe that FastFair and WBtree, the two

best performers, have a similar write access pattern and appear to make fewer write accesses

to NVM.

60

The better performance achieved by FastFair and WBtree can be attributed to the fact that
they minimize write operations to NVM; FastFair does so by removing the need for logging
operations with its FAIR algorithm and WBtree by maintaining unsorted nodes and atomically
updating a bitmap and indirection slot array instead.

Optane writes, TPCC with 750k transactions

masstree bwtree fastfair wbtree

i sl

l_'_ I _0.6
1 I 1 I I I

1 1 1 1 1 1 1 1 1 1 1 1 1
1 2 4 6 8 10 1 2 4 6 810 1 2 4 6 810 1 2 4 6 810
clients threads threads threads

warehouses

Figure 5.9: TPCC Optane write accesses, 750K transactions

Optane reads, TPCC with 750k transactions

masstree bwtree fastfair wbtree
o
—
$
()]
=}
[e]
S -
© I I
z
H# N
|_|_
1 1 1] 1 1 1 1 1 1 1
1246810 1 2 4 6 810 1
clients threads

Figure 5.10: TPCC Optane read accesses, 750K transactions

5.4 YCSB (microbenchmark)

Yahoo Cloud Serving Benchmark([47] (or YCSB) is a popular key-value store benchmark frame-
work. It is configurable and specifies different workloads, each representing a particular mix
of read/write operations (insert, update, read, scan) , data sizes, request distributions and so
on. allows selecting different key distributions. It also defines some standard workloads that
emulate the specific cloud applications shown in Figure 5.11:

61

‘Workload Operations Record selection | Application example

A—Update heavy | Read: 50% Zipfian Session store recording recent actions in a user session
Update: 50%

B—Read heavy Read: 95% Zipfian Photo tagging; add a tag is an update, but most operations
Update: 5% are to read tags

C—Read only Read: 100% Zipfian User profile cache, where profiles are constructed elsewhere

(e.g., Hadoop)

D—Read latest Read: 95% Latest User status updates; people want to read the latest statuses
Insert: 5%

E—Short ranges Sean: 95% Zipfian/Uniform* Threaded conversations, where each scan is for the posts in a
Insert: 5% given thread (assumed to be clustered by thread id)

Figure 5.11: YCSB workloads. Adapted from [47]

We have run the YCSB benchmark with workloads A, B, C, E for all evaluated indexes,
with 8-byte integer keys, and with 24-byte string keys, all uniformly distributed.

5.4.1 Integer keys

In Figures 5.12 through 5.15 we can see the comparative load and run throughput on DRAM

vs Optane for each index and workload type.

5.4.1.1 Load Phase Throughput

YCSB load throughput on DRAM

o workload a o
a a
2 —e— masstree 2
g 301 ; a
e fastfair e
= —e— bwtree =
3 201 a
g —&— wbtree £
[@)] (o)}
3 10 3
—_ —_
S s
E 0 L T T T T E
— 0 20 40 60 —
threads
T workload ¢ o
(0] [0
(%] (%]
2 301 —#— masstree 2
s fastfair s
£ 20~ —&— bwtree 2
a —e— wbtree s
g g
5 107 o
e <
-~ -
© e}
g 01 . . . o
— 0 20 40 60 —
threads

workload b
——
30 4 masst.ree
fastfair
204 ™™ bwtree
—— wbtree
10 A
o - T T T T
0 20 40 60
threads
workload e
30 1 —— masstree //.
fastfair
2041 —®— bwtree
—&— wbtree
10 A
0 - T T T T
0 20 40 60
threads

Figure 5.12: YCSB load throughput on DRAM for integer keys

In the load phase, BwTree appears to outperform all indexes for all workloads on Optane.

Masstree does better than FastFair in terms of load throughput.

62

Load throughput (ops/usec)

Load throughput (ops/usec)

YCSB load throughput on Optane

workload a
10.0 A =
—&— masstree
7.5 1 —a&— fastfair
—o— bwtree
5.0 1 —e— wbtree
2.5 A
0.0 1] - - ;
0 20 40 60
threads
workload ¢
100 T -~
—&— masstree
7.5 4 —o— fastfair
—&— bwtree
5.0 1 —e— wbtree
2.5 A
0.0 1} - - ;
0 20 40 60
threads

Load throughput (ops/usec)

Load throughput (ops/usec)

workload b
10.0 A —&— masstree
25 —&— fastfair
’ —&— bwtree
5.0 - —e— wbtree
2.5
00 L T T T T
0 20 40 60
threads
workload e
-~
10.0 1 —e— masstree
7.5 —o— fastfair
—&— bwtree
5.0 4 —&— wbtree
2.5 1
0.0 -

0 20

40

threads

60

Figure 5.13: YCSB load throughput on Optane for integer keys

63

5.4.1.2 Run Phase Throughput

YCSB run throughput on DRAM

workload a workload b

—&— masstree
—o— fastfair

—o— bwtree ’/._/
201 _o— wbtree

30 - 40 1

——

masstree

Run throughput (ops/usec)
Run throughput (ops/usec)

20 1 —o— fastfair

10 A —a— bwtree

—a— wbtree

04 - - ; 04 = = - —
0 20 40 60 0 20 40 60
threads # threads
workload ¢ workload e

40 A

—&— masstree e— wbtree

—&— masstree
20 - —o— fastfair
—e— bwtree /

Run throughput (ops/usec)
Run throughput (ops/usec)

20 4 —o— fastfair 10
—&— bwtree
—&— wbtree
01 ; — 01 ; ; ;
0 20 40 60 0 20 40 60
threads # threads

Figure 5.14: YCSB run throughput for integer keys on DRAM

YCSB run throughput on Optane

S workload a S workload b

2 =1 ¢

3 —&— masstree 3 —&— masstree

1) %)

S 10 - —o— fastfair 2 20 1 —e— fastfair

= —e— bwtree = —e— bwtree

=} =}

o —&— wbtree <% —o— wbtree o

e e

o 5 - o 10 1

>3 3

2 e

e e

g 0 B T T T T g 0 B T T T T

e« 0 20 40 60 & 0 20 40 60
threads # threads

S workload c S workload e

9 0 154

3 —&— masstree 3 —&— masstree

%) Q)

S 20 —o— fastfair 2 —o— fastfair

= —e— bwtree = 107 —e— bwtree

5 _——e—a—a| 5

2 —e— wbtree 2 —e— wbtree /0—0——'|

2 S 7

£ £

g 0 L T T T T % 0 - T T T T

e 0 20 40 60 & 0 20 40 60
threads # threads

Figure 5.15: YCSB run throughput for integer keys on Optane

Regarding the performance on Optane, we find P-Bw'Tree to have the best load perfor-

64

mance for all workloads. Masstree and FastFair perform close together. Masstree has better
performance than FastFair for the load phase and for workload A, which is update-heavy, but

is outperformed in the other workloads.

5.4.1.3 DRAM vs PMEM Comparison

This comparison allows us to observe how well indexes scale on Optane. We can see that
Masstree and FastFair reach their peak at around 20 threads on Optane, whereas on DRAM
they continue to scale well beyond that.

YCSB load throughput on DRAM vs Optane masstree YCSB run throughput on DRAM vs Optane

9 workload a 9 workload b 9 workload a g workload b

w (%} w (%}

3 30 —*— masstree DRAM / 3 30 —*— masstree DRAM /. 2 —e— masstree DRAM / 2 40 ||~ masstree DRAM /

3 —&— masstree Optane S —a— masstree Optane & 301 —o— masstree Optane 2 —a&— masstree Optane

= = = =

3 201 3 201 2 20 2

g) g § 20

3 101 3 101 3 101 3

e e e e

s S s k=

B o . . — B 0 . . — B 0+ . . — B 0- . . .

S o 20 40 60 3 0 20 40 60 3 o0 20 40 60 3 0 20 40 60
threads # threads # threads # threads

9 workload ¢ 9 workload e S workload ¢) workload e

0 " 1 [0

2 301 —#— masstree DRAM / 2 301 —e— masstree DRAM — El —e— masstree DRAM / E] —®— masstree DRAM)/.

w . [

S —&— masstree Optane S —&— masstree Optane 2 401 _o— masstree Optane 3 204 —&— masstree Optane

= 20 1 = 20 A = = -

210+ 3 101 2 2101

£ £ <4 I

= = s s

g ol . . — 8 0 . . — 5§ 04 . . —1 5 04 . . .

3 0 20 40 60 3 0 20 40 60 < 0 20 40 60 < 0 20 40 60
threads # threads # threads # threads

Figure 5.16: Masstre Comparative DRAM vs Optane throughput, integer keys

YCSB load throughput on DRAM vs Optane fastfair YCSB run throughput on DRAM vs Optane

o) workload a o workload b) workload a o workload b

g % 15 a a

% 154 @ % 201 @

Q Q Q 34 30 A

)) <])

5 101 ~e— fastfair DRAM | 5 107 —e— fastfair DRAM 5 —e— fastfair DRAM | 5 50 | —e— fastfair DRAM

5 —e— fastfair Optane 5 —a— fastfair Optane S, 101 —a— fastfair Optane 5 —o— fastfair Optane

3 5 3 5 3 3 101

g 2 2 51 g1

s k= s k=

g ol . . — B 04 . . — B 04 . . — B 04 . . .

S o0 20 40 60 3 0 20 40 60 3 0 20 40 60 3 0 20 40 60
threads # threads # threads # threads

9 workload ¢ 9 workload e S workload ¢ < workload e

b @] Q Q]

2151 2 15 E] —e— fastfair DRAM 3 207 —a— fastfair DRAM /

w - n

s s g 401 o fastfair Optane S 15 —*— fastfair Optane

5 101 —e— fastfair DRAM 5 101 Zeo— fastfair DRAM = = .,'/',' ot ._/

5 —o— fastfair Optane | § —a— fastfair Optane % 20 .c: 101

g g o———0

g ° g ° 3 . 3 s

= S s s

g ol . . — B 04 . . — 5§ 04 . . —1 5 01 . . .

S o0 20 40 60 3 0 20 40 60 T 0 20 40 60 £ 0 20 40 60
threads # threads # threads # threads

Figure 5.17: FastFair Comparative DRAM vs Optane throughput, integer keys

65

YCSB load throughput on DRAM vs Optane

bwtree YCSB run throughput on DRAM vs Optane

o) workload a T workload b o workload a o workload b
3 10.0 1 5 1007 E E
g g g § 201
T 754 ~ 751 = 101 =
> > =} >
g & , & £
e 501 2 >0 5] 2104
o 254 —&— bwtree DRAM <} 25 —e— bwtree DRAM o —&— bwtree DRAM o —e— bwtree DRAM
g ’ —&— bwtree Optane E ’ —&— bwtree Optane E —&— bwtree Optane E —&— bwtree Optane
< T T T —' 8 T T T T T 0+ T T T g 0 T T T
4 0 20 40 60 - 0 20 40 60 0 20 40 60 4 0 20 40 60
threads # threads # threads # threads
< workload ¢) workload e G workload ¢) workload e
& 2 2 30 4 9 15 A
3 > 10.0 1 a 9
4 10.0 A 2 2 a
° S 7.5 S 201 2 104
5 73] E 5 5
Q o o o
< < 5.0 < <
g >0) 210 2 s5-
o 254 —&— bwtree DRAM o 25 —&— bwtree DRAM ° —&— bwtree DRAM ° —a&— bwtree DRAM
i ! —&— bwtree Optane g —o— bwtree Optane S —&— bwtree Optane =1 —&— bwtree Optane
° . . . — © : : : : S 0+ : : : S o4 . T :
3 0 20 40 60 0 20 40 60 < 0 20 40 60 < 0 20 40 60
threads # threads # threads # threads
Figure 5.18: BwTree Comparative DRAM vs Optane throughput, integer keys
YCSB load throughput on DRAM vs Optane wbtree YCSB run throughput on DRAM vs Optane
workload a workload b workload a workload b
WO\./.___. Poeeet_, o 0 "W/.\.—-—O-—" 1.2
0.8
0.6 1 0.6 1 1.0 A
—&— wbtree DRAM —e— wbtree DRAM 0.6 1 —&— wbtree DRAM —e&— wbtree DRAM

—&— wbtree Optane —&— wbtree Optane

—&— wbtree Optane

o
©
A

—&— wbtree Optane

Load throughput (ops/usec)

Load throughput (ops/usec)
Load throughput (ops/usec)

Load throughput (ops/usec)

0.6 0.6

1.0

—a— wbtree DRAM —e— wbtree DRAM

—— wbtree DRAM

o
wn
A

0.4 0.4
0.4 1 0.6 1
{attttte—o—0—o o D i — -ttt —0—0—0— no—o-o—.—o—o/.\o—.———o
0.2 T T T 0.2y T T T T T T T 0.4 4 T T T
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
threads # threads # threads # threads
workload ¢ workload e workload ¢ workload e
f e L s frrtee . &] W 0.6 W

—e— wbtree DRAM

Load throughput (ops/usec)
Load throughput (ops/usec)
Run throughput (ops/usec)

Run throughput (ops/usec)

04 —&— wbtree Optane 04 —&— wbtree Optane 0.8 —&— wbtree Optane —&— wbtree Optane
-4 4 0.4 1
0.6 "f.-fo——__.—"
opifEeeene o e 0-2’."'("‘7‘_‘\?*"’." 04200 : —| g 03 . ; :
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
threads # threads # threads # threads

Figure 5.19: WBtree Comparative DRAM vs Optane throughput, integer keys

5.4.1.4 Energy Consumption

Energy is measured for the entire duration of the run, including the load and run phase, with

a sampling rate of 0.01 sec for pcm-power. In Figures 5.20 through 5.23 we can see the energy

consumption of each index. Again we observe the same trends as for the TPCC experiments:

Indexes with better performance consume less energy. At 20 threads, where Masstree and

FastFair stop scaling, energy consumption on NVM for each index and workload combination

is shown in Table 5.5. We can see that while Masstree performs generally worse than FastFair,

it consumes slightly less energy (from 5 up to 18% less, depending on the workload).

Index A B C E

FastFair 9.06 kJ | 9.26 kJ | 7.62 kJ | 10.52 kJ
P-BwTree | 7.12 kJ 5.8 kJ 6 kJ 7.27 kJ
P-Masstree | 9.52kJ | 816 kJ | 7.28 kJ | 8.48 kJ

WBtree 87.68 kJ | 55.97 kJ | 60 kJ | 67.82 kJ

Table 5.5: Energy consumption at 20 threads for integer keys

66

YCSB energy consumption running on Optane for integer keys, workload A
Energy consumed by DRAM

Energy consumed by Optane

Total energy consumed

30
threads

20 40 50 60

Figure 5.22: YCSB energy consumption on Optane for

30
threads

20

67

30000 120000
80000
25000 1 100000 -
i m m
E 60000 1 —o— masstree | 2 20000 4 —8— masstree | £ 800001 —8— masstree
2 —o— fastfair 2 —o— fastfair =N —o— fastfair
5 —8— wbtree 5 15000 4 —8— wbtree 5 60000 4 —8— wbtree
g 40000 - —8— bwtree g —8— bwtree] —8— bwtree
c o o
10000 1 40000 -
20000 1
5000 - —a 20000 A
" o 6 § o o .
6 1‘0 26 36 4‘0 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b Sb Gb 6 1‘0 2‘0 3‘0 4‘0 5‘0 Gb
threads # threads # threads
Figure 5.20: YCSB energy consumption on Optane for workload A
YCSB energy consumption running on Optane for integer keys, workload B
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
—8— masstree —8— masstree 120000 4 —— masstree
80000 1 —0— fastfair 30000 1 —0— fastfair —0— fastfair
—8— wbtree —8— wbtree 100000 4 —0— wbtree
—o— bwtree 25000 4 —8— bwtree —8— bwtree
g 60000 A —o— - o | % 800004
3 S 20000 S
(=} o o
= = =
- - > 60000 4
o o 4 o
40000 S 15000 g
f=4 c c
o o o
10000 4 40000 -
20000 1
5000 - 20000 A
Py o—23
>— & ——— °
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
threads # threads # threads
Figure 5.21: YCSB energy consumption on Optane for workload B
YCSB energy consumption running on Optane for integer keys, workload C
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
60000 225001 80000
20000 1
] 70000 4
50000 17500 4
—_ —_ . 60000 1
£ 40000 —e— masstree | & 150007 —o— masstree | & —8— masstree
3) E . 3 50000 .
S —o— fastfair £ 125004 —o— fastfair k=3 —o— fastfair
5 30000 4 —8— wbtree E —8— wbtree 540000_ —8— wbtree
@ —&— bwtree o 10000 - —8— bwtree o —&— bwtree
o o o
0000 o
20000 A 7500 1 3
5000 20000 4
10000 __{_.48
2500 1 — 10000 —

3‘0 4b

threads

20

workload C

energy (Joules)

YCSB energy consumption running on Optane for integer keys, workload E

Energy consumed by Optane Energy consumed by DRAM Total energy consumed
30000 1

80000

100000 1
70000 25000

60000 80000 -

20000 4
—8— masstree

—o— fastfair
—8— wbtree
—8— bwtree

—8— masstree
—o— fastfair
—8— wbtree
—8— bwtree

—8— masstree
—o— fastfair

—8— wbtree
—8— bwtree

50000 -

60000 q

40000 q 15000 4

energy (Joules)
energy (Joules)

30000 1 10000 4 40000 q

20000 4

5000 - 20000

10000 -

6 1‘0 26 36 4‘0 5‘0 6‘0 6 1‘0 2‘0 3‘0 4b Sb Gb 6 1‘0 2‘0 3‘0 4‘0 5‘0 Gb
threads # threads # threads
Figure 5.23: YCSB energy consumption on Optane for workload E

5.4.1.5 Memory Accesses

Optane reads

masstree bwtree fastfair 1e9
<
o
o
o 8
o
<
o
m
0 N 6
b
£ o©
e |
* 4
—
[s¢]
= -2
o
—

b C b C
workload workload workload

Figure 5.24: YCSB Optane reads, integer keys

Since WBtree is single-threaded, we present the memory accesses for each workload for a
single thread in Table 5.6.

‘Workload Reads Writes
A 10320349444 | 2873135412
B 8218588896 | 1867941884
C 7851467292 | 1678547880
E 8922810740 | 1867332216

Table 5.6: Total Optane accesses for single-threaded wbtree, integer keys
For memory accesses, we observe that as the number of threads increases, so do accesses to

68

Optane writes

masstree bwtree fastfair 1e9
3
o 4.0
n
g 3.5
o
« 3.0
<
n N
©
°R 2.5
59 20
* N ’
—
-1.5
o 10]
< - -1.0
o~ 4
[s
— -
a b C e a b C e a b C e
workload workload workload

Figure 5.25: YCSB Optane writes, integer keys

NVM. We can also see that FastFair makes more accesses to NVM than Masstree does, which
could explain the lower energy consumption by Masstree despite the lower performance.

5.4.2 String keys

WBtree implementation for string keys does not support the Range Scan operation, therefore
we have excluded workload E from the experiments.

5.4.2.1 Throughput

YCSB load throughput on DRAM, string keys

workload a workload b
20 yy
15 —Ak— masstree —A— masstree
—A— fastfair 15 A —A— fastfair
—&— bwtree —&— bwtree

10 A

—A— wbtree —&— wbtree

Load throughput (ops/usec)
Load throughput (ops/usec)

5 -

0 -_I_ T T T T T T T

0 20 40 60 0 20 40 60
threads # threads
workload ¢ workload e
20 A A

—A— masstree —&— masstree

154 —A— fastfair 15 4 —A— fastfair

—A— bwtree —A— bwtree

—— wbtree 10 A —— wbtree

Load throughput (ops/usec)
=
o

Load throughput (ops/usec)

T T T T T T
0 20 40 60 0 20 40 60
threads # threads

Figure 5.26: YCSB load throughput on DRAM for string keys

69

Run throughput (ops/usec)

Run throughput (ops/usec)

Load throughput (ops/usec)

Load throughput (ops/usec)

indexes in terms of performance.

YCSB run throughput on DRAM, string keys

workload a

—A— masstree
151 —A— fastfair
—A— bwtree
101 —A— wbtree
5 -
O -_I_ T T T
0 20 40 60
threads
workload ¢
20 4 —A— masstree
—A— fastfair
—A— bwtree
10 - —&— wbtree
0 -_I_ T T T
0 20 40 60
threads

workload b

20 1

10 A

A

—&— masstree
—A— fastfair
—A— bwtree
—&— wbtree

T T T T
0 20 40 60
threads
workload e
T —&— masstree
| —A— fastfair
—A— bwtree
—&— wbtree (A/‘/‘
T T T T
0 20 40 60
threads

Figure 5.27: YCSB run throughput on DRAM for string keys

YCSB load throughput on Optane, string keys

workload a
4
3 -
2 -
1 -
o -L|_ T T
0 25 50
threads
workload ¢
4
3 -
2 -
1 -
O -L|_ T T
0 25 50
threads

9 workload b
(] 4 B
=}
@
o
S 31
-
3
221
()]
>
211
s
o 0-1& : . —h— masst'ree
S 0 25 50 —— fastfair
threads —A— bwtree
—&— wbtree
9 workload e
w0 44
2
a
S 37
5
Q 24
N
g
o 11
ey
<
-(% 0 -'l_ T T
S 0 25 50
threads

Figure 5.28: YCSB load throughput on Optane for string keys

70

The best performers for string keys are P-Masstree and P-BwTree. P-Masstree does better
than P-BwTree in the run phase overall, but P-Bw'Tree does better in the load phase. Another
general observation across workloads is that P-Bw'Tree appears to scale much more than other
P-Masstree seems to scale up to 20 threads on Optane.
Fast&Fair appears to scale up to 20 threads as well. For workload A (read/update, 50/50),
run phase performance is dominated by P-Masstree until 20 threads. Then we observe that
P-BwTree scales better with increasing number of threads. For workload B (read/write, 95/5),
we observe that P-Masstree outperforms all other indexes, P-BwTree by achieving at least 1.2x

better runtime performance at P-BwTree’s peak throughput(50 threads), FastFair by 2.5x. The

YCSB run throughput on Optane, string keys

S workload a S workload b
b b
o 23 —&— masstree
§_ 2 —e— masstree g_ —o fastfair
= —e— fastfair 521 =R=_bytree
317 —e— bwtree 3, —#— whbtree
= —e— wbtree =
g 0 - T T T — — g 0 T T T
£ 0 20 40 60 € 0 20 40 60
threads # threads
workload ¢ workload e
—&— masstree
41 —o— fastfair 5
—o— bwtree
—— wbtree

Run throughput (ops/usec)
Run throughput (ops/usec)

24 14 —&— masstree
—o— fastfair
—&— bwtree
0 ; T ; 01 ; ; ;
0 20 40 60 0 20 40 60

threads # threads

Figure 5.29: YCSB run throughput on Optane for string keys

Single-threaded WBtree throughput, string keys

I Load Throughput DRAM
I Run Throughput DRAM
I load Throughput Optane
Il Run Throughput Optane

0.4 1

Throughput (ops/usec)

A B C
workload

Figure 5.30: WBtree single-threaded YCSB throughput for string keys

relative behavior is the same for workload C. All indexes perform worse for workload E (scan-
heavy) compared to their performance for other workloads. The difference is more pronounced
for P-Masstree which is outperformed by P-Bw'Tree. P-Masstree’s good performance is expected
due to its design that efficiently supports even variable-length string keys, by combining Trie
and B+-tree architectures: a 24-byte string key is broken into 8-byte pieces that can use integer
comparison to complete the operation much faster. P-BwTree also performs well for string keys,
as it also has native support for string keys; FastFair and WBtree have to use pointers instead,
which adds another level of indirection and negatively impacts performance.

At 20 threads, Masstree is 1.18x, 1.65x, 1.78x better in terms of operation throughput than
BwTree and 2.3x, 2.48x, 2.58x better than FastFair for workloads A, B, C respectively.

71

5.4.2.2 Memory Accesses

Optane writes
masstree bwtree fastfair

1e9
3 []
2 6
o
<
™ 5
<t
n N
©
SR 4
£ o
+ -
H*
N -3
@ L
s I — 1In 2
~ I | [
— -1
1 1 1 1 1]
a b C e a b C e a b C e
workload workload workload
Figure 5.31: YCSB write accesses, string keys
Optane reads
masstree bwtree fastfair 1e10
< _
3 l J..
o _
Te]
g A 3.0
o _
m
< _ 2.5
n N
©
o _
o N 2.0
L O _
+ o~
H*
N -1.5
w -
-1.0
<r -
™ -0.5
-
]] 1
a b C e a b C e a b C e
workload workload workload

Figure 5.32: YCSB read accesses, string keys

For memory accesses, we again observe that as the number of threads increases, the accesses
to NVM tend to increase as well.

72

energy (Joules)

energy (Joules)

energy (Joules)

Workload Reads Writes
A 25231356632 | 4545216304
B 23210235536 | 3353854820
C 22827446432 | 3165294056

Table 5.7: Total Optane accesses for single-threaded wbtree, string keys

5.4.2.3 Energy Consumption

YCSB energy consumption running on Optane for string keys, workload A

Energy consumed by Optane Energy consumed by DRAM Total energy consumed
—8— masstree —8— masstree 300000 4 —8— masstree
200000 - —o— fastfair 80000 1 —o— fastfair —o— fastfair
—8— bwtree —8— bwtree 250000 4 —8— bwtree
—8— wbtree —8— wbtree —8— wbtree
150000 60000 1 200000 4
100000 - 40000 4 150000
100000 -
50000 q 20000 1
50000
o == = e = F e T =
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
threads # threads # threads
Figure 5.33: YCSB A energy consumption, string keys, running on Optane
YCSB energy consumption running on Optane for string keys, workload B
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
160000 —8— masstree —8— masstree —8— masstree
—o— fastfair 60000 1 —o— fastfair —o— fastfair
140000 200000 -
—8— bwtree —8— bwtree —8— bwtree
120000 4 —8— wbtree 50000 4 —8— wbtree —8— wbtree
150000
100000 40000
80000
30000 4 100000 4
60000 1
20000 4
40000 - 50000 4
20000 4 10000
0 a T T T T T T T 04 T T T T T T T 04 T T T _ T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
threads # threads # threads
Figure 5.34: YCSB B energy consumption, string keys, running on Optane
YCSB energy consumption running on Optane for string keys, workload C
Energy consumed by Optane Energy consumed by DRAM Total energy consumed
160000
—8— masstree 60000 4 —8— masstree —&— masstree
140000 4 —0— fastfair —0— fastfair 200000 - —0— fastfair
—8— bwtree —8— bwtree —8— bwtree
120000 - —8— wbtree 50000 4 —8— wbtree —8— wbtree
150000
100000 - 40000 4
80000
30000 1 100000 -
60000 1
20000 1
40000 50000
200004 10000
0+ T T T T T T 0 T T T T T T 0 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
threads # threads # threads

Figure 5.35: YCSB C energy consumption, string keys, running on Optane

Regarding energy consumption, we again observe that the higher the throughput, the lower
the energy consumption.

73

energy (Joules)

YCSB energy consumption running on Optane for string keys, workload E
Energy consumed by DRAM

Energy consumed by Optane

Total energy consumed

100000
—e— masstree —8— masstree —8— masstree
—o— fastfair —o— fastfair 300000 —o— fastfair
200000 - —e— bwtree 80000 4 —8— bwtree —8— bwtree
—o— wbtree —8— wbtree 250000 —o— wbtree
150000 60000 A 200000
100000 40000 4 150000 -
100000 -
50000 20000 4
- e - _ o | 500001 - .
N e % ¢ 0l ~—¥ ol - L — o
10 20 30 40 50 60 10 20 30 40 50 60 0 10 20 30 40 50 60
threads # threads # threads

Figure 5.36: YCSB E energy consumption, string keys, running on Optane

5.4.3 Performance comparison of integer and string keys

masstree YCSB load throughput on Optane for string vs integer keys

workload a

workload b

masstree YCSB run throughput on Optane for string vs integer keys

workload a

workload b

©

o

EN

Load throughput (ops/usec)
N

Load throughput (ops/usec)
N

Run throughput (ops/usec)

Run throughput (ops/usec)

14 —&— masstree strings 1 —&— masstree strings —&— masstree strings 2 —&— masstree strings
—&— masstree integers —&— masstree integers —&— masstree integers —&— masstree integers
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
threads # threads # threads # threads
2 workload ¢ 9 workload e 5 workload ¢ S workload e
) [0
3 3 3 10.0 56
0 ua A B
Q 3 Q 3 3 o
< < > 7.5 S
5 5 3 = 41 —e— masstree strings
a 2 2 2 3 a N
5 5 H 5.0 < —&— masstree integers
3 3 4
o1 —&— masstree strings O 1 —&— masstree strings 3 2.5 —&— masstree strings § 2
E —a— masstree integers g —&— masstree integers 3 —a— masstree integers =1
s L - - T z L T T —3 0.0 : T T S0+ T T T
S 0 20 40 60 S 0 20 40 60 * 0 20 40 60 e« 0 20 40 60
threads # threads # threads # threads

Figure 5.37: P-Masstree

comparative performance

for integer vs string keys. The figure on the left

shows load throughput, the figure on the right shows run throughput for workloads A, B, C, E

fastfair YCSB load throughput on Optane for string vs integer keys

workload a

workload b

fastfair YCSB run throughput on Optane for string vs integer keys

workload a

=N
[=}
P

1.0

—a— fastfair strings

—a— fastfair strings
—a— fastfair integers

—&— fastfair strings
—o— fastfair integers

1

workload b
0 B

—e— fastfair strings
5 —e— fastfair integers

Load throughput (ops/usec)

0.5
—o— fastfair integers
0.0 47 . . .
0 20 40 60
threads
workload ¢

Load throughput (ops/usec)

40 60
threads
workload e

20

Run throughput (ops/usec)

40 60
threads
workload ¢

20

Run throughput (ops/usec)

—e— fastfair strings
—o— fastfair integers

—e— fastfair strings
—o— fastfair integers

154

10 A

—e— fastfair strings
—o— fastfair integers

0 L T T T T
0 20 40 60
threads
workload e
o //—4—’4
41 —e— fastfair strings

—a— fastfair integers

Load throughput (ops/usec)
=

40 60
threads

0 20

Load throughput (ops/usec)

Run throughput (ops/usec)

40 60
threads

20

40 60
threads

20

Run throughput (ops/usec)

40 60

threads

0 20

Figure 5.38: Fast&Fair comparative performance for integer vs string keys. The figure on the left

shows load throughput, the figure on the right shows run throughput for workloads A, B, C, E

Throughput decreases significantly for all indexes for string keys compared to integer keys,

as can be seen in Figures 5.37 through 5.40.

74

bwtree YCSB load throughput on Optane for string vs integer keys bwtree YCSB run throughput on Optane for string vs integer keys

workload a workload b workload a workload b
10.0 1
10.0 A /\//‘/. /\/./.
731 7.5 101 27 i
504 —a— bwtree strings —e— bwtree strings
. 5.0 —&— bwtree integers 104 —&— bwtree integers

a0 . —— o

Load throughput (ops/usec)
Load throughput (ops/usec)
Run throughput (ops/usec)
Run throughput (ops/usec)

2.51 —a— bwtree strings 2.5 —&— bwtree strings

—&— bwtree integers —&— bwtree integers
00 L T T T T 00 L T T T T O L T T T T 0 L T T T T

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
threads # threads # threads # threads
workload ¢ workload e workload ¢ workload e
10.0 1 15
10.0 —&— bwtree strings / —e— bwtree strings ,./.
7.5 J | —®— bwtree integers —a— bwtree integers
7.5 20 10 A

5.0 5.0 -

-~

0

10 A

Run throughput (ops/usec)
Run throughput (ops/usec)

Load throughput (ops/usec)
Load throughput (ops/usec)

2.51 —e— bwtree strings 2.5 —&— bwtree strings
—&— bwtree integers —&— bwtree integers
0.0 1] . . . 0.0 1§ . . . 01 . . . 0} . . .
0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
threads # threads # threads # threads

Figure 5.39: P-BwTree comparative performance for integer vs string keys. The figure on the left

shows load throughput, the figure on the right shows run throughput for workloads A, B, C, E

Single-threaded WBtree performance, string vs integer keys

load throughput string
load throughput integer
run throughput string

run throughput integer

0.4 1

0.3 1

0.2 1

Throughput (ops/usec)

0.14

0.0 -

A B C
workload

Figure 5.40: WBtree comparative performance for string vs integer keys

P-Masstree is the least impacted; performance drops for it about 39% at 20 threads for
workload A (which is where it stops scaling) compared to integer keys, about 44% for workloads
B and C and 67% for workload E. The performance trends however are similar to integer keys.

For P-BwTree, performance is at least 3.5 (workload A) and up to 6.5 times worse for string
keys than it is for integer keys (workload B)

For Fast&Fair, performance is between 2.9(workload A) and 6.4x(workload C) worse for
string keys.

For single-threaded WBtree, performance for string keys is almost 2x worse for workload A,
2.5x worse for B and C.

In terms of energy consumption compared to integer keys, indicatively for workload A we
present the results in Table 5.8. Masstree consumes 1.3x more energy, FastFair 2.6x more
energy and Bw'Tree consumes 2x more energy compared to integer keys.

75

Index String | Integer
Masstree | 12.83 kJ | 9.52 kJ
FastFair | 24.1 kJ | 9.06 kJ
BwTree | 14.1kJ | 7.12kJ

76

Table 5.8: Energy consumption at 20 threads, workload A, string vs integer keys

Chapter 6

Conclusions

6.1 Thesis Summary and Future Work

In this thesis we have evaluated different persistent B-+-tree index structures, aiming to provide
insights based on metrics such as operation throughput, energy consumption and scalability. We
proposed an extendable evaluation methodology, that uses a transactional industry standard
benchmark , the TPCC, in addition to the YCSB microbenchmark. Our evaluation shows that
the best performing index under TPCC is FastFair; a close performer is WBtree; the converted
Masstree and Bw'Tree perform 3-4x worse. In terms of energy consumption, we find that the
indexes which achieve the highest throughput also have the lowest energy consumption. Our
experiments with the YCSB benchmark show that most indexes do not scale beyond 20 threads
on Optane for any of the workloads, for both integer and string keys. Converted volatile indexes
turn out to be very competitive with indexes tailored for NVM. We also observed that all
indexes perform better for integer keys; even Masstree, which is designed to efficiently support
arbitrary prefixes and variable length keys and outperforms the rest of the indexes for string
keys, experiences at least a 39% performance drop compared to integer key performance.
In general, we conclude that there are tradeoffs:

« Different indexes turned out to be better performers for transactional workloads (repre-
sented by the TPCC benchmark) and for cloud applications (represented by the YCSB

benchmark).

o String keys provide more flexibility, but they not only negatively impact performance but

also increase energy consumption.

There are several ideas for extending the present work: A first extension idea concerns the
TPCC benchmark implementation which could implement a less strict isolation level than se-
rializability, since as we have seen in our experiments, throughput drops a lot with increasing
number of clients, the main reason for that being lock contention. Additionally, our TPCC
implementation is in-memory, and the scaling factor used and the number of executed transac-
tion is relatively small. It would be interesting to employ an "industrial" version of TPCC, as
is done for example in the work of [9], who have leveraged the custom storage engine feature
of MySQL to evaluate their proposal’s performance with TPCC, using it as a MySQL plugin.

Our evaluation is additionally limited with respect to the number of indexes included; there
are recent proposals in the literature which have not been evaluated against the indexes we
examined and their inclusion would be a useful extension of the present work. We could also

7

consider more low-level metrics for the evaluation, such as the number of cache line flush/sfence
operations, cache misses etc.

Finally, our evaluation methodology could serve as a first step in developing a methodology
for automatically selecting the appropriate index structure for a heterogeneous DRAM/NVM
system, depending on the workload type and metrics to optimize for.

More in general, the following areas remain relatively unexplored in the existing literature:

« Impact of eADR (extended ADR). The impact that eADR could have on performance is
unknown. eADR guarantees persistence of writes when they reach the CPU caches, as
opposed to ADR which does not include them and guarantees persistence of the WPQ.
eADR enables the use of optimizations such as Intel’s TSX (transactional synchronization
extensions), [53]. [2] also leave it to future evaluations to assess the impact, but they do
not believe it will greatly impact their own conclusions. Authors of [1], have evaluated
eADR by emulation, and they find that it improves throughput by less than a factor of
2, and think that the main benefit is "probably in terms of simplifying the programming
model, leading to fewer bugs and saving in development and maintenance costs".

« Write endurance of PMEM [48]

78

Bibliography

[1] L. Lersch et al., “Evaluating persistent memory range indexes,” vol. 13. VLDB Endow-
ment, Dec. 2019, pp. 574-587.

[2] Y. He et al., “Evaluating persistent memory range indexes: Part two,” Proc. VLDB En-
dow., vol. 15, no. 11, p. 2477-2490, Jul. 2022.

[3] D. Hu et al., “Persistent memory hash indexes: An experimental evaluation,” Proceedings
of the VLDB Endowment, vol. 14, pp. 785-798, 2021.

[4] S. K. Lee et al., “Recipe: Converting concurrent dram indexes to persistent-memory in-

dexes.” Association for Computing Machinery, Inc, Oct. 2019, pp. 462-477.

[5] M. Friedman et al., “Nvtraverse: In NVRAM data structures, the destination is more
important than the journey,” CoRR, vol. abs/2004.02841, 2020. [Online]. Available:
https://arxiv.org/abs/2004.02841

[6] A. Memaripour et al., “Pronto,” in Proceedings of the Twenty-Fifth International Confer-
ence on Architectural Support for Programming Languages and Operating Systems. New

York, NY, USA: ACM, Mar. 2020.

[7] R. M. Krishnan et al, Tips: Making Volatile Index Structures Persistent with

DRAM-NVMM Tiering. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/krishnan

[8] In-memory tpc-c implementation. [Online]. Available: https://github.com/evanj/
tpccbench

[9] B. Yan et al., “Revisiting the design of LSM-tree based OLTP storage engine with persistent
memory,” Proceedings VLDB Endowment, vol. 14, no. 10, pp. 1872-1885, Jun. 2021.

[10] J. Arulraj, “The design and implementation of a non-volatile memory database manage-
ment system,” PhD dissertation, Carnegie Mellon University, 2018.

[11] S. Scargall, Programming Persistent Memory. Apress, 2020. [Online]. Available:
https://doi.org/10.1007/978-1-4842-4932-1

[12] H.-K. Liu et al., “A survey of non-volatile main memory technologies: State-of-the-arts,
practices, and future directions,” Journal of Computer Science and Technology, vol. 36,
no. 1, pp. 4-32, Jan. 2021.

[13] Intel, “Intel® Optane™ persistent memory,” https://www.intel.com/content /www /us/en/architecture
and-technology /optane-dc-persistent-memory.html, [Online; Accessed 1 March 2022].

79

https://arxiv.org/abs/2004.02841
https://www.usenix.org/conference/atc21/presentation/krishnan
https://www.usenix.org/conference/atc21/presentation/krishnan
https://github.com/evanj/tpccbench
https://github.com/evanj/tpccbench
https://doi.org/10.1007/978-1-4842-4932-1

[14] D. Waddington et al., “Evaluating intel 3d-xpoint NVDIMM persistent memory in the
context of a key-value store,” in 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 1EEE, Aug. 2020.

[15] J. Yang et al., “An empirical guide to the behavior and use of scalable persistent memory,”
in 18th USENIX Conference on File and Storage Technologies (FAST 20). Santa Clara,
CA: USENIX Association, Feb. 2020, pp. 169-182.

[16] Z. Wang et al., “Characterizing and modeling non-volatile memory systems,” in 2020 53rd
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1EEE,
Oct. 2020.

[17) W. Zhang et al., “Chameleondb: a key-value store for optane persistent memory,” in
FEuroSys °21: Sixteenth Furopean Conference on Computer Systems, Online Event, United
Kingdom, April 26-28, 2021. ACM, 2021, pp. 194-209.

[18] J. Izraelevitz et al., “Basic performance measurements of the intel optane DC persistent
memory module,” CoRR, vol. abs/1903.05714, 2019.

[19] L. Benson et al., “Viper: An efficient hybrid pmem-dram key-value store,” Proceedings of
the VLDB Endowment, vol. 14, no. 9, pp. 1544-1556, 2021.

[20] A. van Renen et al., “Building blocks for persistent memory: How to get the most out of
your new memory?” vol. 29. Springer Science and Business Media Deutschland GmbH,
11 2020, pp. 1223-1241.

[21] P. Gotze et al., “Data management on non-volatile memory: A perspective,” Datenbank-
Spektrum, vol. 18, no. 3, pp. 171-182, Oct. 2018.

[22] M. P. Herlihy and J. M. Wing, “Linearizability: a correctness condition for concurrent
objects,” ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 463-492, Jul. 1990.

[23] J. Izraelevitz et al., “Linearizability of persistent memory objects under a full-system-crash
failure model,” in Lecture Notes in Computer Science, ser. Lecture notes in computer
science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 313-327.

[24] P. L. Lehman and s. B. Yao, “Efficient locking for concurrent operations on b-trees,” ACM
Trans. Database Syst., vol. 6, no. 4, p. 650-670, Dec. 1981.

[25] A. Silberschatz et al., ISE Database System Concepts, Tth ed. Columbus, OH: McGraw-
Hill Education, Mar. 2019.

[26] P. O'Neil et al., “The log-structured merge-tree (LSM-tree),” Acta Informatica, vol. 33,
no. 4, pp. 351-385, Jun. 1996.

[27] Google leveldb. [Online|. Available: https://github.com/google/leveldb

[28] C. Luo and M. J. Carey, “Lsm-based storage techniques: A survey,” The VLDB Journal,
vol. 29, no. 1, p. 393-418, Jul. 2019.

[29] Facebook rocksdb. [Online]. Available: https://github.com/facebook/rocksdb

80

https://github.com/google/leveldb
https://github.com/facebook/rocksdb

[30]

[31]

[32]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,” Commun. ACM,
vol. 33, no. 6, pp. 668-676, Jun. 1990.

A. Petrov, Database Internals: A deep dive into how distributed systems work. O’Reilly
Media, 2019.

A. Shanbhag et al., “Large-scale in-memory analytics on intel® optanetm dc persistent
memory,” in Proceedings of the 16th International Workshop on Data Management on

New Hardware, ser. DaMoN 20, 2020.

A. V. Renen et al., “Managing non-volatile memory in database systems.” Association
for Computing Machinery, May 2018, pp. 1541-1555.

J. Arulraj and A. Pavlo, “How to build a non-volatile memory database management
system,” in Proceedings of the 2017 ACM International Conference on Management of
Data. ACM, May 2017.

C. Chen et al., “Optimizing in-memory database engine for Al-powered on-line decision
augmentation using persistent memory,” Proceedings of the VLDB Endowment, vol. 14,

no. 5, pp. 799-812, Jan. 2021.

X. Zhou et al., “Dptree: Differential indexing for persistent memory,” vol. 13. VLDB
Endowment, 12 2019, pp. 421-434.

W. H. Kim et al., “Pactree: A high performance persistent range index using pac guide-
lines,” SOSP 2021 - Proceedings of the 28th ACM Symposium on Operating Systems Prin-
ciples, pp. 424-439, 2021.

J. Arulraj et al., “Bztree,” Proceedings VLDB Endowment, vol. 11, no. 5, pp. 553-565,
Jan. 2018.

Y. Mao et al., “Cache craftiness for fast multicore key-value storage,” in Proceedings of the
7th ACM european conference on Computer Systems - FEuroSys '12. ACM Press, 2012.

D. Hwang et al., “Endurable transient inconsistency in Byte-Addressable persistent B+-
Tree,” in 16th USENIX Conference on File and Storage Technologies (FAST 18). Oakland,
CA: USENIX Association, Feb. 2018, pp. 187-200.

J. J. Levandoski et al., “The bw-tree: A b-tree for new hardware platforms,” in 2013 IEEE
29th International Conference on Data Engineering (ICDE). TEEE, Apr. 2013.

7. Xie et al., “A comprehensive performance evaluation of modern in-memory indices,”
in 2018 IEEE 3jth International Conference on Data Engineering (ICDE). 1EEE, Apr.
2018. [Online]. Available: https://doi.org/10.1109/icde.2018.00064

S. Chen and Q. Jin, “Persistent B * -trees in non-volatile main memory,” Proceedings
VLDB Endowment, vol. 8 no. 7, pp. 786-797, Feb. 2015.

V. Leis et al., “The ART of practical synchronization,” in Proceedings of the 12th Interna-
tional Workshop on Data Management on New Hardware. ACM, Jun. 2016.

Pibench. [Online|. Available: https://github.com/sfu-dis/pibench

81

https://doi.org/10.1109/icde.2018.00064
https://github.com/sfu-dis/pibench

[46]

[47]

[48]

[49]

[50]

Tpc-c. [Online]. Available: https://www.tpc.org/tpec/

B. F. Cooper et al., “Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM symposium on Cloud computing - SoCC '10. ACM Press, 2010.

M. Katsaragakis et al., “Energy consumption evaluation of optane dc persistent mem-
ory for indexing data structures,” in 2022 IEEFE 29th International Conference on High
Performance Computing, Data, and Analytics (HiPC), 2022, pp. 75-84.

Intel performance counter monitor (pcm). [Online]. Available: https://github.com/intel/

pcm

M. Katsaragakis et al., “Adjacent LSTM-Based Page Scheduling for Hybrid DRAM/NVM
Memory Systems,” in 14th Workshop on Parallel Programming and Run-Time Manage-

ment Techniques for Many-Core Architectures and 12th Workshop on Design Tools and Ar-
chitectures for Multicore Embedded Computing Platforms (PARMA-DITAM 2023), 2023.

——, “Memory management methodology for application data structure refinement and
placement on heterogeneous dram/nvm systems,” in 2022 Design, Automation Test in

Europe Conference FEzhibition (DATE), 2022, pp. 748-753.

——, “Performance, Energy and NVM Lifetime-Aware Data Structure Refinement
and Placement for Heterogeneous Memory Systems,” Jul. 2023. [Online]. Avail-
able: https://www.techrxiv.org/articles/preprint /Performance Energy and NVM__
Lifetime- Aware Data_ Structure Refinement and Placement_for Heterogeneous
Memory Systems/23628924

P. Zardoshti et al., “Understanding and improving persistent transactions on optane™
dc memory,” in 2020 IEEFE International Parallel and Distributed Processing Symposium
(IPDPS), 2020, pp. 348-357.

82

https://www.tpc.org/tpcc/
https://github.com/intel/pcm
https://github.com/intel/pcm
https://www.techrxiv.org/articles/preprint/Performance_Energy_and_NVM_Lifetime-Aware_Data_Structure_Refinement_and_Placement_for_Heterogeneous_Memory_Systems/23628924
https://www.techrxiv.org/articles/preprint/Performance_Energy_and_NVM_Lifetime-Aware_Data_Structure_Refinement_and_Placement_for_Heterogeneous_Memory_Systems/23628924
https://www.techrxiv.org/articles/preprint/Performance_Energy_and_NVM_Lifetime-Aware_Data_Structure_Refinement_and_Placement_for_Heterogeneous_Memory_Systems/23628924

	Περίληψη
	Abstract
	Ευχαριστίες
	Contents
	Εκτενής Ελληνική Περίληψη
	Εισαγωγή
	Θεωρητικό Υπόβαθρο
	Persistent Memory και Intel Optane DCPM
	Προγραμματισμός Persistent Memory και προκλήσεις
	Δομές Ευρετηρίων στις Βάσεις Δεδομένων

	Σχετική Βιβλιογραφία
	Πειραματική Αξιολόγηση
	Υλοποίηση TPCC
	Πειραματική Αξιολόγηση με το TPCC
	Πειραματική Αξιολόγηση με το YCSB

	Σύνοψη και Προτεινόμενες Επεκτάσεις

	Introduction
	Theoretical Background
	Persistent Memory
	Intel Optane DC PMEM
	Programming Persistent Memory & PMDK
	Operating system support for persistent memory
	Challenges of Programming Persistent Memory
	Persistent Memory Development Kit (PMDK)

	Linearizability
	Database Indexes
	B+-Tree
	LSM-Tree
	Skiplist
	Trie & Radix Tree
	Hash index

	Literature Review
	Challenges of persistent index structure design
	Recent Index Designs for Optane
	BzTree
	Masstree
	PACTree
	Fast&Fair
	P-BwTree
	wBTree
	DPTree
	ChameleonDB
	ViPer

	Other evaluation works
	Converting DRAM indexes to persistent memory indexes

	Proposed Framework
	TPC-C Benchmark Specification
	In-memory TPC-C Benchmark implementation
	Multiple clients support
	Mapping of TPCC operations to tree operations

	Evaluated Indexes

	Evaluation Results
	Server characteristics and configuration
	Evaluation metrics
	TPC-C
	Load phase
	Run phase

	YCSB (microbenchmark)
	Integer keys
	String keys
	Performance comparison of integer and string keys

	Conclusions
	Thesis Summary and Future Work

